
iSeries

Travel Portal scenario

���

iSeries

Travel Portal scenario

���

© Copyright International Business Machines Corporation 2005, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Travel Portal scenario overview 1

Development team 1

Scenario Background 1

WebSphere Portal Server 5

WebSphere Portal Server overview 5

WebSphere Portal Server setup 5

Server environment 6

Domino Directory 8

Discoveries 8

Collaboration server setup 9

Sametime 9

Discoveries 11

Travel Portal application 13

Development environment 13

Application model 13

Application flow 14

Application details 15

Application design points 16

BestDeals portlet 16

CreateCustomerAccount portlet 19

DisplayCruise portlet 21

AgentWeb portlet 24

Collaboration portlets 25

Portal administration 25

Installation of portlets 29

Portal application discoveries 30

Disclaimer 33

© Copyright IBM Corp. 2005, 2006 iii

iv iSeries: Travel Portal scenario

Travel Portal scenario overview

This report describes the iSeries(TM) Platform Evaluation Test (iPET) team’s experience with WebSphere(R)

Portal Server on the IBM(R) eServer(TM) i5 platform. The team developed a new test scenario that utilizes

WebSphere Portal Server to provide users a portal interface. This interface allows users to view and use

business and personal information from another, pre-existing test scenario. The pre-existing scenario was

named Travel Agency, so the new portal scenario was given the name Travel Portal. This section of the

report describes the Travel Portal development team, and provides background information about the

Travel Agency and Travel Portal scenarios.

Development team

The iPET team designs, implements, deploys, and evaluates customer-like solutions in a fashion similar to

that used by information technology architects throughout industry. Although the team is restricted to a

test laboratory environment, great effort is made to reflect a true customer environment. The team cannot

cover every possible customer situation, so it focuses on those scenarios and methodologies that

iSeries(TM) customers are most likely to implement in their production environments.

When portal technology started to gain popularity, a small subset of the iPET team began to develop a

new test scenario specifically targeting WebSphere(R) Portal Server on the eServer(TM) i5 platform. This

report describes this team’s work, including the discoveries that were made during the development of

the scenario.

Scenario Background

Before the development of the Travel Portal scenario, the iPET team developed the Travel, Flights, and

Cruise (TFC) scenarios to test the self service (user-to-online-buying) and the extended enterprise

(business-to-business) business patterns. TFC is composed of several fictitious companies, including a

cruise company, a travel agency, a flights company, and a bank. Figure 1 illustrates some of the

companies within the TFC environment.

© Copyright IBM Corp. 2005, 2006 1

Additional information on the existing TFC scenario can be found in the IBM(R) redpaper

Business-to-Business Integration Guide: Using WebSphere Application Server and Domino for iSeries

,

REDP0139.

When the TFC scenarios were initially developed, the Travel Agency scenario provided a Web-based

application where travel agents could purchase cruises from the cruise company, create and update

customer information, book cruises for customers, and so on. However, there was no interface provided

for customers to directly access this application, or to view the travel agency’s cruise information. To

address this need, the iPET team turned to WebSphere Portal Server to provide such an interface for both

customers and travel agents. The new portal application became known as the Travel Portal scenario.

By integrating WebSphere Portal Server into its environment, the Travel Agency now has an easy means

of obtaining the following:

v Increased programmer productivity by using the portal architecture with its site themes, skins, and

Cascading Style Sheet (CSS) support. This allows the developer to focus on the business problem that

they must solve, and create the portlet that addresses the problem without having to worry about

graphic design.

v Increased employee productivity by allowing the employee easy access to the critical business

applications and information from within one portal place.

v Improved customer satisfaction through an easy-to-use public Web site where customers can easily

view the availability of future cruises, view the cruises they have already booked, communicate online

with a travel agent representative, and so on.

Figure 1. TFC scenario environment

2 iSeries: Travel Portal scenario

http://www.redbooks.ibm.com/abstracts/redp0139.html?Open

Using WebSphere Portal Server, the Travel Portal scenario provides travel agents and customers access to

the following portlets:

v Travel Agents

– Welcome — Displays the travel agency welcome page

– Agent Web — Allows access to the Web-based travel agency application

– Best Deals — Displays the best deals available on different cruises

– Create Customer Account — Creates accounts for new customers

– Customer History — Displays the cruise history for a specific customer

– eInvestments — Allows access to an investment’s company application (another test scenario)

– eMail — Provides e-mail capability

– Sametime — Provides instant messaging capability

– SQL Query — Provides the ability to run SQL queries

– Unbooked Cruises — Displays a list of unbooked cruises

– World Clock — Displays a clock
v Customers

– Welcome — Displays the travel agency welcome page

– Best Deals — Displays the best deals available on different cruises

– Future Trips — Displays a list of cruises that the customer has booked

– Sametime — Provides instant messaging capability

– Trip Reminder — Displays a list of cruises that the customer has booked within a certain time

period based on the departure date

– World Clock — Displays a clock

Travel Portal scenario overview 3

4 iSeries: Travel Portal scenario

WebSphere Portal Server

The Travel Portal scenario was developed by the iPET team to directly test the WebSphere(R) Portal Server

product on the eServer(TM) i5 platform. WebSphere Portal Server provided the base functionality for the

scenario, but the team also incorporated Domino(R) Directory for user authentication, Lotus(R) Sametime(R)

for instant messaging capabilities, and Domino mail to enable travel agents to send e-mail to one another.

This section of the report provides an overview of WebSphere Portal Server, and descriptions of the

server configurations, including WebSphere Portal Server, Domino Directory, and Lotus Sametime. This

section also provides brief descriptions of the discoveries the team made during the setup and

configuration of these servers.

WebSphere Portal Server overview

WebSphere(R) Portal Server consists of middleware, applications (portlets), and development tools for

building and managing secure business-to-business (B2B), business-to-customer (B2C), and

business-to-employee (B2E) portals. A portal is a Web site that provides end users with a single point of

access to Web-based resources by aggregating those resources in one place. End users of a portal are

required to log in only to the portal itself, instead of to each portlet the end users use. WebSphere Portal

Server can deliver Web content to wireless application protocol-enabled (WAP-enabled) devices and

i-Mode phones, as well as to various Web browsers.

As an administrator, you can customize WebSphere Portal Server to meet the needs of your organization,

users, and user groups. You can adapt the look and feel of the portal to fit the standards of your

organization, and customize page content for users and groups in accordance with business rules and

user profiles. End users, such as business partners, customers, or employees, can further customize their

own views of the portal. End users can add portlets to pages and arrange them as they want, and control

portlet color schemes. By aggregating portlets in one place and giving end users the power to customize

their own desktops, WebSphere Portal Server gives end users a means for doing business more efficiently

and with higher satisfaction.

WebSphere Portal Server setup

WebSphere(R) Portal - Express 5.0.2.2 on iSeries(TM) is used to deploy the portlets and to make them

available to the travel agents and customers. It also provides the travel agents and customers with a

variety of collaboration features, such as instant messaging, e-mail, and so on. Figure 2 illustrates the

addition of Travel Portal to the existing TFC environment. The portal server, Lotus(R) Domino(R), and

Lotus Sametime(R) are installed on System 5.

© Copyright IBM Corp. 2005, 2006 5

The changes made to the existing TFC environment include the following:

v Install Lotus Domino and Lotus Sametime on the travel portal system

v Install the prerequisites for WebSphere Portal 5.0.2.2 on the travel portal system

v Install WebSphere Portal 5.0.2.2 on the travel portal system

v Create and configure the portal server instance

v Install the portlets

The next three sections of this report provide an overview of the environment used during the portlet

integration. The sections include the following:

v An overview of the server environment

v An overview of the use of Domino Directory for the LDAP server

v A list of discoveries the were made during the set up of the environment

Server environment

WebSphere(R) Application Server supports a wide variety of ways to deploy WebSphere Portal Server in a

computing environment. Commonly used topologies fall into the following categories:

v Single-machine topology. The components are installed on the same machine.

v Multi-machine topologies. The components (the Web server, application server, databases, and so

forth) are physically separated onto different machines.

v Vertical scaling topologies. Additional WebSphere Portal processes are created on a single physical

machine through vertical cloning.

Figure 2. Addition of travel portal to TFC scenario environment

6 iSeries: Travel Portal scenario

v HTTP server separation topologies. The Web (HTTP) server is located on a different physical machine

from WebSphere Application Server and WebSphere Portal.

v Demilitarized zone (DMZ) topologies. Firewalls can be used to create demilitarized zones, which

isolate machines from both the public internet and other machines in the configuration. This improves

portal security, especially for sensitive back-end resources such as databases.

The Travel Portal scenario uses the single-machine topology. The Web server, portal server, database,

Domino(R) Directory server, and Lotus(R) Sametime(R) server all exist on one system.

Two systems are used to implement the Travel Portal scenario:

Existing Travel Agency system

The Travel Agency scenario exists on an eServer(TM) i5 running i5/OS(TM) V5R3. The Travel Agency

application is deployed in a WebSphere Application Server Version 5.1 server instance. The application

accesses the Travel Agency’s database located on the same system through enterprise beans.

During the design of the portlets, a decision was made to utilize the existing enterprise beans within the

Travel Agency application. This provides a common interface to access the back-end databases and also

limits the amount of coding required for the new portlets. Additional information about the use of

enterprise beans within the Travel Agency can be found in the IBM(R) redpaper Enterprise JavaBeans with

VisualAge for Java: A Case Study for the IBM eServer iSeries Servers

, REDP0136.

New Travel Portal system

Another eServer i5 running i5/OS V5R3 is used for the portal server. The following outlines the steps

used to configure the server:

1. Install and set up the Domino Directory and Lotus Sametime servers. More information about the

installation and setup of the servers can be found in “Collaboration server setup” on page 9.

2. Install the prerequisites for WebSphere Portal 5.0.2.2. This includes the WebSphere Application Server

V5.0, the required Program Temporary Fixes (PTFs), and the WebSphere Application Server V5.0

Enterprise Enablement product. See Supported hardware and software

for the hardware

requirements and software product levels that are supported for WebSphere Portal.

3. Install the WebSphere Portal Version 5.0.2.2 product (using the Install only option).

4. Configure the new portal instance using the WebSphere Portal wizard (available within the IBM Web

Administration for iSeries tool). The wizard simplifies the configuration of WebSphere Portal and its

core components. It is designed to handle a range of common WebSphere Portal configurations. If

additional configurations are required, the configuration can be modified by running WebSphere

Portal configuration tasks at a later time.

The wizard is used to perform the following tasks:

a. Create the HTTP server and WebSphere Application Server server instance.

b. Configure the WebSphere Application Server server instance for Portal.

c. Configure the database for Portal. (A local database is specified for this scenario.)

d. Deploy the portlets installed with the WebSphere Portal product. (Administration Portlets, Themes

and Skins, Business, Document Manager, and Lotus Collaboration are selected for this scenario.)

e. Configure the Lotus Collaborative Components for Portal (Lotus Sametime and Lotus Domino

Directory).

f. Secure the application server and WebSphere Portal with LDAP. (Lotus Domino Directory located

on the system is selected for this scenario.)

WebSphere Portal Server 7

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp0136.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp0136.html?Open
http://publib.boulder.ibm.com/pvc/wp/502/smbi/en/InfoCenter/index.html

5. Customize the portal instance for use by the travel agency. This includes creating the travel agent and

customer user IDs/groups, creating the labels and pages used by the travel agency, and granting the

user IDs the appropriate authority to the labels, pages, and portlets.

6. Deploy, install, and activate the Travel Portal portlets.

7. Activate the new collaboration portlets (Sametime and eMail).

Additional information regarding the installation of WebSphere Portal Version 5.0.2.2 can be found in the

WebSphere Portal Express and Express Plus V5 for the IBM eServer iSeries Server

redbook.

Domino Directory

For the Travel Portal scenario, Domino(R) Directory is used for the LDAP server and security. The LDAP

server serves as the central repository for all of the Domino Directory data. The scenario utilizes the

replication features of Domino to push LDAP data from the DomHub server to the other Domino servers.

The other two servers are used solely for mail and instant messaging. This implementation provides the

flexibility to stop and restart each Domino server without impacting the other servers, as well as

improved scalability.

To manage and configure the Domino Directory (LDAP) and the server documents for the Domino

servers, the Domino Administrator 6 client is used. All users are added and registered through the

Administrator client on the LDAP hub server DomHub, and then replicated to the other Domino servers.

It is important to register users to give them access to mail on Domino. Adding a user creates a Person

record for that user in the Domino Directory, but does not create a mail file for the user. Registering a

user through the Domino Administrator client creates a Person document in the Domino Directory and

also creates a mail file for the person. Users must have mail files in order to access Domino mail.

Additional information about registering and adding users to Domino Directory can be found in the

Domino Administrator 6 Help (Doc Pack G210-1425-00) documentation. These documents can be found

on the Domino product documentation Web site at

http://www.lotus.com/ldd/doc/AS400/6.5/i400help.nsf

.

Discoveries

This section lists the discoveries that were made during the setup of the WebSphere(R) Portal Server

Version 5.0.2.2:

v If you need to delete and recreate your WebSphere Application Server (WebSphere Application Server)

portal instance and HTTP servers, the easiest way is to use the IBM(R) Web Administration for

iSeries(TM) Web page that you used to create the instances. The following steps outline what needs to

be done:

 1. Type the following URL into your the address field of your browser:

http://MySystem:2001/HTTPAdmin

 2. Enter your user name and password.

 3. Click the Manage tab.

 4. Click the All Servers tab.

 5. In the Manage All Servers frame, click the All Application Servers tab.

 6. Select the server that you want to delete.

 7. If the server is Running, click the Stop button.

 8. After the server is Stopped, click the Delete button.

 9. If you want to recreate a new HTTP server, then you would want to do the following after your

WebSphere Application Server portal server has been deleted:

a. Click All HTTP Servers tab.

b. Select your HTTP server.

c. If the server is Running, click the Stop button.

8 iSeries: Travel Portal scenario

http://www.redbooks.ibm.com/abstracts/sg246096.html?Open
http://www.lotus.com/ldd/doc/AS400/6.5/i400help.nsf

d. After the server is Stopped, click the Delete button.
10. Start a 5250 session to the system that contains the database collection used by your WebSphere

Application Server portal server.

11. Use DLTLIB to delete the database collection used by this WebSphere Application Server portal

server.
v The Travel Portal development team created a portal server instance using the iSeries WebSphere Portal

wizard, but forgot to select the option to deploy the Business Portlets. After the portal server instance

was created, the team ran the installportlets.sh script to deploy the Business Portlets. However, the

script encountered the following errors, indicating that it could not read files in the config/work

directory:

XMLA0006I: Connecting to URL http://localhost:19009/wps/config

XMLA0002I: Reading input file /QIBM/UserData/WebAS5/Base/<instanceName>/PortalServer5/config/work/SetupPortal.xml

XMLA0003E: An error occured while reading the file.

XMLA0009E: Could not connect to portal.

It was determined that the wizard runs the cleanup-work-dir task as the final step in the portal

configuration to clean up files used in the configuration of the portal. Thus, before running the

installportlets.sh script, the WPSConfig.sh script needed to be run in order to the recreate the directory.
v If you see several messages in a WebSphere Portal Server server’s SystemOut.log file that contain the

text Application process not in a connected state, it may be an indication that the QSQSRVR

prestart jobs on your system are not functioning correctly. If this is the case, it is necessary to restart

these prestart jobs. This is accomplished by executing the following steps:

1. End any jobs that could be using SQL prestart jobs (for example, LDAP Server):

ENDTCPSVR SERVER(*DIRSRV)

2. End and restart the SQL prestart jobs:

ENDPJ SBS(QSYSWRK) PGM(QSQSRVR)

STRPJ SBS(QSYSWRK) PGM(QSQSRVR)

3. Restart any jobs that were ended in step 1:

STRTCPSVR SERVER(*DIRSRV)

If this does not fix the problem, it may be necessary to perform a reclaim storage on your system.

Collaboration server setup

WebSphere(R) Portal Server Version 5.0.2.2 provides the ability to integrate many of the Lotus(R)

Domino(R) collaboration features and companion products within a single portal environment.

Collaboration features help people work together and share information more effectively. Collaborative

portlets provide access to a variety of applications that use Lotus Notes(R) databases hosted on Domino

servers, including mail, calendar, To Do, Notes View, TeamRoom, and discussion.

Within the TFC environment, the following Domino 6.5.1 servers were created:

v DomHub (LDAP)

v DomMail (e-mail)

v DomST (Lotus Sametime(R))

For step-by-step details on the installation and configuration of Lotus Domino servers, see the Lotus

Collaboration and WebSphere Portal Integration on the IBM eServer iSeries Server

redbook.

Sametime

Lotus Sametime(R) is an IBM(R) product and platform for real-time collaboration. The three main facets of

Lotus Sametime are:

v Presence awareness - Instantly see whether a person is online

WebSphere Portal Server 9

http://www.redbooks.ibm.com/redpieces/abstracts/sg246337.html
http://www.redbooks.ibm.com/redpieces/abstracts/sg246337.html

v Instant messaging - Communicate in real time through text, audio, or video-based information

v Web conferencing - Participate in virtual meetings, share information (an application or an entire

desktop), or engage in team white boarding

Within the Travel Portal environment, a Domino(R) server (DomST) was created for Sametime. Section 3.5

of the Lotus Collaboration and WebSphere Portal Integration on the IBM eServer iSeries Server

redbook contains detailed instructions on configuring Sametime within a Domino server. This redbook

provides clear and concise, step-by-step details for configuring Sametime within any environment.

Figure 3 shows the welcome screen when accessing the Sametime server through a Web browser.

 After users log into the Sametime server, they have access to instant messaging, Web conferencing, and

all the other features of Sametime. Figure 4 shows a user signed into a virtual meeting room with team

white boarding and instant messaging.

Figure 3. Welcome to Sametime

10 iSeries: Travel Portal scenario

http://www.redbooks.ibm.com/abstracts/sg246337.html?Open

Discoveries

Several discoveries were made during the setup and configuration of the Domino(R) collaboration servers:

v It is good practice to run each particular service (LDAP, Sametime(R), and Domino Web Access) on a

separate Domino server. When one server is stopped, other Domino servers can still maintain their

individual services. For example, with this environment you can start and stop the Domino Web Access

and Sametime servers independently of each other.
v Any of the other Domino servers could provide the LDAP directory services, but it is good practice to

run LDAP on a separate administration Domino server. This allows the other Domino servers to be

stopped while still maintaining the LDAP directory service for authentication, and therefore single sign

on, within the Domino domain.
v When running Sametime applications, you need to turn off pop-up blockers in Web browsers or

firewalls.
v The LDAP task should only be enabled on one server. This helps to avoid potential problems

configuring LDAP within your domain.
v If using Domino 6.5.1 for collaboration with Sametime and WebSphere(R) Portal, be sure to apply

Interim Fix Pack 6.5.1F1 to your system.
v If you run into problems logging into the Sametime server, make sure you are using the fully-qualified

host name of the Sametime server. You may not be able to log into Sametime if you use the IP address

or the short host name.

Figure 4. Virtual Meeting through Sametime

WebSphere Portal Server 11

12 iSeries: Travel Portal scenario

Travel Portal application

To take advantage of the functionality of WebSphere(R) Portal Server, developers must develop their own

portal applications or use existing portal applications, and deploy those applications to their production

portal server. The Travel Portal development team developed their own portal application to access

business data, and also utilized existing collaborative portlets to give users the ability to quickly and

easily communicate with one another.

This section looks at many aspects of portlet development and administration. Before writing their first

line of portlet code, the developers need a portlet development environment and a basic understanding

of how portlets work. This section addresses both needs by providing an overview of the development

environment that was used by the team, as well as descriptions of the application model and flow of the

portlets that were developed. With this knowledge, a developer can begin to develop portlets.

This section takes a close look at a subset of the Travel Portal portlets to see exactly how those portlets

are implemented. After portlets are developed, they need to be installed and administered, so this section

covers the basics of portlet installation and administration. This is followed by a list of discoveries that

were made by the team during the development, deployment and administration of the Travel Portal

application.

Development environment

IBM(R) WebSphere(R) Studio Application Developer provides an Eclipse-based development environment

that allows developers to create, compile, and package Java(TM) Platform 2, Enterprise Edition (J2EE)

applications. The Travel Portal team used WebSphere Studio Application Developer version 5.0.2.x to

develop the portlets, JSP files, Java beans and enterprise beans that together form the Travel Portal

scenario.

For portlet development, WebSphere Studio Application Developer requires the installation of the Portal

Toolkit. This toolkit includes plug-ins that provide a portlet development environment, wizards to

facilitate the portlet development process, and several portlet examples. Specific versions of the Portal

Toolkit are available for each version of WebSphere Studio Application Developer. Thus, it is critical that

the proper version of the Portal Toolkit is installed, based on the version of WebSphere Studio

Application Developer that is being used. Additional information about this toolkit and a link to

download the toolkit itself can be found at the WebSphere Software platform Web site

.

Application model

The Travel Portal application uses the model depicted in Figure 5. In this model, a Web browser makes a

request to the initial portal login screen, and upon authentication, accesses the agent or customer

welcome page. The Web browser makes a specific portlet request at this time and interacts with JSP files

indirectly through a portlet. Portlets and JSP files reside within the portlet container. A portlet interacts

with the Travel Agency application to access the travel application business logic through enterprise

beans and Java(TM) beans. After receiving a response from the Travel Agency application, the portlet

performs necessary validations and computations, and the Java beans are then stored in the request

object. The JSP file extracts the information it requires from the Java beans and merges the information

with the HTML page. The response is sent back to the browser, which interprets and renders the HTML.

© Copyright IBM Corp. 2005, 2006 13

http://www.ibm.com/software/info1/websphere/index.jsp?tab=products/portaltoolkit

Application flow

In the MVC architectural design pattern, the model represents enterprise data and the rules by which the

data are accessed and updated. In the Travel Portal application, the existing Travel Agency application

enterprise beans form the model. These enterprise beans contain the data that are requested by a travel

agent or a customer. In the MVC architectural design pattern, the view is responsible for rendering the

contents of the model. In the Travel Portal application, the JSP pages that are displayed in a user’s Web

browser form the view. These JSP pages are displayed when a portlet is in its View, Edit, or Help mode.

The controller translates interactions from the view into actions to be performed on the model. In the

Travel Portal application, this is the responsibility of the portlets. The doView(), doEdit(), and doHelp()

methods in each of these portlets perform the various controller tasks.

The portal server instantiates only a single instance of each portlet, which is shared amongst all users.

When each portlet is initialized, a PortletConfig object is passed to the portlet’s init() method. In each

portlet’s init() method, a call is made to a method to retrieve the travel agent session bean context.

When a portlet is initially constructed on a Travel Portal page, it is displayed in its View mode. This

mode is the normal mode of operation for each of the portlets. Each portlet has a doView() method,

which accepts a PortletRequest object and a PortletResponse object as parameters. Based on the contents

of the request made by travel agents or customers, the doView() method creates the appropriate travel

Figure 5. Travel Portal application model

14 iSeries: Travel Portal scenario

enterprise beans and retrieves results from the methods in those enterprise beans. The doView() method

then calls the appropriate JSP file to render the data that were retrieved.

The doEdit() and doHelp() methods are responsible for controlling the portlet when the portlet is in Edit

and Help modes. These methods call appropriate JSP files to render the data in Edit or Help mode.

Figure 6 illustrates the interactions between the components of the Travel Portal application, as well as

the interactions between the Travel Portal and Travel Agency applications.

Application details

Because all of the portlets in the Travel Portal scenario follow the same application model and access

much of the same data, each portlet shares some similar application design points with the other portlets

in the scenario. This section describes those application design points that are common among the

portlets in the scenario.

Because each portlet was created to accomplish a specific task, each portlet also has its own application

design points that make it unique. This section takes a subset of portlets from the Travel Portal scenario,

and describes the application design points that make each of these portlets unique.

Figure 6. Travel Portal application flow

Travel Portal application 15

Application design points

The Travel Portal scenario is designed to support the travel agents and customers groups. Users within

each group are authorized to access portlets related to their group. Travel Portal is designed to support

different places and themes within each group. Different portlets within the Travel Portal scenario share

similar skeletons to achieve the required functionality.

The Travel Portal application utilizes WebSphere(R) Portal Server’s unique architecture. All the portlets

run within the portlet container. Each portlet uses the doView() method as the default execution point,

and calls other methods if needed. Portlets first display a JSP page from within the doView() method for

user input. User request parameters from the JSP pages are passed to methods within the Travel Agency

enterprise beans. Travel Agency enterprise beans access the database and return data to the calling

portlet. The portlet then displays this information by calling a JSP page with the results.

The following list explains the responsibility of each portlet method that the Travel Portal application

design utilizes:

v The init() method constructs the initial portlet instance and performs portlet initialization. The portal

always instantiates only a single instance of the portlet, which is shared among all users. This is similar

to the way a servlet instance is shared among all users of an application server.

v The doView() method handles all portlet requests when the portlet is in View mode. When a portlet is

initially constructed on the portal page for a user, it is displayed in its View mode. This is the portlet’s

normal mode of operation. This method is designed to handle most of the Travel Portal’s operations

and also calls other methods provided by the portlet container to achieve required functionality.

v The doHelp() method handles all portlet requests when the portlet is in Help mode. This method

displays Help.jsp, which provides help for a specific portlet.

v The doEdit() method handles all portlet requests when the portlet is in Edit mode. This method allows

the travel agent or customer to change the settings for the portlet. Changing the settings for the portlet

will affect the way this portlet runs and returns responses to the travel agent or customer.

The BestDeals portlet went through design and coding before the other portlets, and set up a framework

for data request - EJB method access - data response - display in the design and coding phases. Other

portlets adapted the style used by the BestDeals portlet to capture the same framework, but to provide

different functionality. Iteratively, errors in design and coding were removed during the review of the

BestDeals portlet; more importantly, errors were detected early before other portlets were developed.

BestDeals portlet

The BestDeals portlet is available in the Travel Agents and Travel Customers labels. It allows any user to

view the best deals available on different cruises. The portlet renders a JSP page where the user can

specify the search criteria to be used. The portlet allows users to specify a location, specify a departure

date, or select cruises departing within the next 30 days. When this information is submitted, the portlet

invokes the TravelAgent enterprise bean from within the Travel Agency application. The enterprise bean

obtains the cruises based on the search criteria and this information is returned to the user through a

second JSP page, which displays a list of cruises that meet the specified criteria. The list of cruises is

ordered according to the customer’s single occupancy price.

The BestDeals portlet also makes use of portlet messaging, which allows portlets located on the same

page to communicate with each other. Portlets can use messages to share information or notify each other

of a user’s actions. The BestDeals portlet gives a user the ability to select a cruise from the list, and then

view the cruise details using the DisplayCruise portlet. For more information about the DisplayCruise

portlet, see “DisplayCruise portlet” on page 21.

Figure 7 shows the BestDeals portlet after a user specified the search criteria and obtained the list of

available cruises.

16 iSeries: Travel Portal scenario

Example Code

The following code snippet is the BestDeals doView() method. It is used to display BestDealsSearch.jsp.

Once the data is entered for the search criteria and the submit button is clicked, the doView() method

uses the TravelAgent session bean to obtain a list of cruises that match the search criteria. It then displays

BestDealsList.jsp.

public void doView(PortletRequest request, PortletResponse response) throws

 PortletException, IOException {

 // Invoke the JSP to render the BestDealsSearch page

 getPortletConfig().getContext().include(“/jsp/BestDealsSearch.”

 +getJspExtension(request), request, response);

 // Determine if a radio button is selected or if viewDetails has been selected.

 String radioSelected = request.getParameter(“selectedRadioButton”);

 String viewDetailsSelected = request.getParameter(“viewDetailsSelected”);

 if ((radioSelected == null) && ((viewDetailsSelected == null) ||

 (viewDetailsSelected.equals(“no”))))

 {

 radioSelected = “”;

Figure 7. BestDeals portlet

Travel Portal application 17

}

 else

 {

 // Depending on which radio button was selected, check to see if user has

 // entered any values

 String aType = “”;

 String aSearchCriteria = “”;

 // First check to see if values should exist in session to be used for

 // search criteria

 if (!(viewDetailsSelected == null))

 {

 aType = (String) request.getSession().getAttribute(A_TYPE);

 aSearchCriteria = (String) request.getSession().getAttribute(A_CRITERIA);

 }

 // Location specified

 else if (radioSelected.equals(“location”))

 {

 aType = “location”;

 aSearchCriteria = request.getParameter(“location_name”);

 }

 // Departure time specified

 else if (radioSelected.equals(“departure”))

 {

 aType = “departureDate”;

 aSearchCriteria = request.getParameter(“departure_date”);

 }

 // 30 Days specified

 else if (radioSelected.equals(“30days”))

 {

 aType = “30Days”;

 aSearchCriteria = “”;

 }

 if (aType == null)

 {

 aType = “”;

 aSearchCriteria = “”;

 }

 // Get the session values

 request.getSession().setAttribute(A_TYPE, aType);

 request.getSession().setAttribute(A_CRITERIA, aSearchCriteria);

 // If aType is specified, find the cruises and display the BestDealsList page

 if (!(aType.equals(“”)))

 {

 CruiseInfoBean cruiseInfoBean = null;

 try

 {

 TravelAgent travelAgent = taHome.create();

 cruiseInfoBean = (CruiseInfoBean)

 Beans.instantiate(getClass().getClassLoader(),

 “com.shoreline.CruiseInfoBean”);

 cruiseInfoBean = travelAgent.getBestDeals(aType, aSearchCriteria);

 // Add action event for handling the viewing of the cruise details

 // using the DisplayCruises portlet

 PortletURI viewCruiseDetailsURI = response.createURI();

 viewCruiseDetailsURI.addAction(“viewCruiseDetails”);

 request.setAttribute(“viewCruiseDetailsURI”,

 viewCruiseDetailsURI.toString());

 // Invoide the JSP to render the BestDealsList JSP

 request.setAttribute(“cruiseInfoBean”, cruiseInfoBean);

18 iSeries: Travel Portal scenario

getPortletConfig().getContext().include(“/jsp/BestDealsList.”

 +getJspExtension(request), request, response);

 } // end of try

 catch (Exception ex)

 {

 System.out.println(“Error in BestDeals.doView().”);

 ex.printStackTrace();

 } // end of catch

 } // end of if

 } // end of if

}

The following code snippet is the BestDeals actionPerformed() method. This method is used to extract the

bookingNumber, create a new message object, and send the message object to the DisplayCruise portlet;

it can display the details for the selected cruise.

public void actionPerformed(ActionEvent event) throws PortletException {

 // Getting action and sending appropriate message

 String actionString = event.getActionString();

 if (actionString.equals(“viewCruiseDetails”))

 {

 DefaultPortletMessage message = new

 DefaultPortletMessage(event.getRequest().getParameter(“bookingNumber”));

 getPortletConfig().getContext().send(“DisplayCruisePortlet”, message);

 }

}

JSP files

The following JSP files are used within the BestDeals portlet:

v BestDealsSearch.jsp: This JSP file is used to display the list of search criteria for the portlet. The JSP file

ensures only one item is selected.

v BestDealsList.jsp: This JSP file is used to display the list of cruises that meet the search criteria specified

by the user.

v BestDealsHelp.jsp: This JSP file is used to display the help information for the BestDeals portlet.

CreateCustomerAccount portlet

The CreateCustomerAccount portlet is available in the Travel Agents label and is used by travel agents to

create customer accounts. This portlet renders a JSP page where the customer name, address, phone

number, and date of birth can be entered. There is also a password field where a password for the

customer can be entered. When this information is submitted, the portlet invokes the TravelAgent

enterprise bean in the Travel Agency application and an account is created with a unique customer

number. The customer number, along with the customer information originally entered, is returned to the

user through a second JSP page.

This portlet does not directly add users to the portal server. Instead, the travel agent needs to add users

using the Users and Groups portlet within Administration.

Figure 8 shows the CreateCustomerAccount portlet.

Travel Portal application 19

Example Code

The following code snippet is the doView() method from the CreateCustomerAccount portlet. The

doView method renders the CreateCustomer.jsp to collect the customer information and password. It then

invokes the addCustomer() method of the TravelAgent enterprise bean to create the customer account,

and finally renders the CustomerInfoConfirmation.jsp to return the customer number generated by the

Travel Agency application, and the customer information originally entered.

public void doView (PortletRequest request, PortletResponse response)

 throws PortletException, IOException {

 // Render the CreateCustomer.jsp

 getPortletConfig().getContext().include(“/jsp/CreateCustomer.”

 +getJspExtension(request), request, response);

 .

 .

 .

 //Invoke Travel Agent addCustomer method

 TravelAgent travelAgent = taHome.create();

 CustomerInfoBean customerInfoBean =

 (CustomerInfoBean) Beans.instantiate(getClass().

 getClassLoader(), “com.shoreline.CustomerInfoBean”);

 customerInfoBean = travelAgent.addCustomer(request.getParameter(“fname”),

 request.getParameter(“mi”),

 request.getParameter(“lname”), request.getParameter(“addr”),

 request.getParameter(“city”),

Figure 8. CreateCustomerAccount portlet

20 iSeries: Travel Portal scenario

request.getParameter(“state”), request.getParameter(“zip”),

 request.getParameter(“country”),

 request.getParameter(“phone”), dateofBirth,

 request.getParameter(“password”));

 request.setAttribute(“customerInfoBean”, customerInfoBean);

 // Render the CustomerInfoConfirmation.jsp details

 getPortletConfig().getContext().include(“/jsp/CustomerInfoConfirmation.” +

 getJspExtension(request), request, response);

}

JSP files

The following JSP files are used in the CreateCustomerAccount portlet:

v CreateCustomer.jsp: This JSP file displays the following fields: first name, middle initial, last name,

address, city, state, country, zip code, phone number, date of birth (month, day, year), and the

password. The JSP file ensures that all fields have been filled in and returns the data entered to the

portlet.

v CustomerInfoConfirmation.jsp: This JSP file extracts the CustomerInfoBean from the request parameter,

and displays the customer number and customer information that are contained in the bean.

DisplayCruise portlet

The DisplayCruise portlet uses portlet messaging, which allows other portlets located on the same page

to communicate with it. The portlet is available on some of the pages contained in the Travel Agents and

Travel Customers labels. It allows a travel agent or a customer to view the detailed information for a

specific cruise. It is designed to receive messages from other portlets that specify the booking number of

the cruise. The DisplayCruise portlet obtains the detailed information for that cruise using the

TravelAgent EJB within the Travel Agency application. The detailed cruise information is returned to the

user through a second JSP page. There are two different views of the data, depending on whether the

user is an agent or a customer.

Figure 9 shows the DisplayCruise portlet.

Travel Portal application 21

Example Code

The following code snippet is the DisplayCruise messageReceived() method. The code snippet accepts the

message event; if the event is of type URLMessage, the code snippet casts event to the correct type. It

then retrieves the booking number from the message and stores it in the session.

public void messageReceived(MessageEvent event) throws PortletException {

 // Obtain booking number from the message and set in session

 if (event.getMessage() instanceof DefaultPortletMessage)

 {

 DefaultPortletMessage msg = (DefaultPortletMessage) event.getMessage();

 PortletSession sess = event.getRequest().getPortletSession();

 event.getRequest().setAttribute(“bookingNbr”, msg.getMessage());

 }

 else

 {

 System.out.println(“Message is not of type URLMessage”);

 }

}

The following code snippet is the DisplayCruise doView() method. It is used to obtain the detailed

information for the specified cruise using the TravelAgent session bean. The code snippet then determines

Figure 9. DisplayCruise portlet

22 iSeries: Travel Portal scenario

if the user is an agent or a customer, and displays the appropriate JSP page (AgentCruiseDetail.jsp or

CustomerCruiseDetail.jsp) to view the detailed information for the cruise.

public void doView(PortletRequest request, PortletResponse response)

throws PortletException, IOException {

 // Obtain booking number from session

 String bookingNbr = (String) request.getAttribute(“bookingNbr”);

 // Use TravelAgent session bean to obtain information for cruise

 CruiseInfoBean cruiseInfoBean = null;

 CruiseActivitiesInfoBean cruiseActivitiesInfoBean = null;

 if (!(bookingNbr == null))

 {

 try

 {

 TravelAgent travelAgent = taHome.create();

 cruiseInfoBean = (CruiseInfoBean)

 Beans.instantiate(getClass().getClassLoader(),

 “com.shoreline.CruiseInfoBean”);

 cruiseActivitiesInfoBean = (CruiseActivitiesInfoBean)

 Beans.instantiate(getClass().getClassLoader(),

 “com.shoreline.CruiseActivitiesInfoBean”);

 cruiseInfoBean = travelAgent.getCruise(bookingNbr);

 cruiseActivitiesInfoBean =

 travelAgent.getCruiseActivities(cruiseInfoBean.getCruiseCompany(),

 cruiseInfoBean.getCruiseID());

 request.setAttribute(“cruiseInfoBean”, cruiseInfoBean);

 request.setAttribute(“cruiseActivitiesInfoBean”, cruiseActivitiesInfoBean);

 // Determine which page to bring up according to User ID

 String user = “”;

 if (!(request.getUser() == null))

 user = request.getUser().getUserID().toString().substring(0,3);

 if ((user.toUpperCase().equals(“TFC”)) ||

 (user.toUpperCase().equals(“WebSphere Portal Server”)))

 getPortletConfig().getContext().include(“/jsp/AgentCruiseDetail.”

 +getJspExtension(request), request, response);

 else

 getPortletConfig().getContext().include(“/jsp/CustomerCruiseDetail.”

 +getJspExtension(request), request, response);

 }

 catch (Exception ex)

 {

 log(“Error in ShorelineTravelDisplayCruisePortlet.doView().”);

 System.out.println(ex);

 ex.printStackTrace(System.out);

 }

 }

 else

 {

 getPortletConfig().getContext().include(“/jsp/CruiseEmptyList.”

 +getJspExtension(request),

 request, response);

 }

}

JSP files

The following JSP files are used within the DisplayCruise portlet:

v CruiseEmptyList.jsp: This JSP file is used when the portlet is started on a page and no booking number

has been sent to it yet.

Travel Portal application 23

v AgentCruiseDetail.jsp: This JSP file is used to display the detailed information for a cruise when the

user is a travel agent. It displays the following information: cruise ID, cruise company name, booking

number, cruise description, room description, departure date, duration, single occupancy cost, double

occupancy cost, additional person cost, commission percentage, cruise activities, and ports of call.

v CustomerCruiseDetail.jsp: This JSP file is used to display the detailed information for a cruise when the

user is a customer. It displays the same information as AgentCruiseDetail.jsp, except that the

commission percentage will not be displayed. The commission is already calculated into the single,

double, and additional person costs.

v DisplayCruiseHelp.jsp: This JSP file is used to display the help information for the DisplayCruise

portlet.

AgentWeb portlet

The AgentWeb portlet is available in the Travel Agents label. It allows travel agents to access the existing

Web-based Travel Agency application. The AgentWeb portlet calls the getUser() method provided by the

portlet container. It extracts the agent ID of the agent who has logged in to the portal and passes it to the

viewShoreline.jsp. The viewShoreline.jsp invokes the existing Travel Agency application by passing the

agent ID as a query string to the Travel Agency servlet. The viewShoreline.jsp displays the Travel Agency

application within it, after the user is authenticated by the Travel Agency application.

Figure 10 shows the AgentWeb portlet.

 Example Code

The following code snippet is the AgentWeb doView() method. This method makes a call to the getUser()

method provided by the portlet container, storing the user ID in the bean.

Figure 10. The AgentWeb portlet

24 iSeries: Travel Portal scenario

public void doView(PortletRequest request, PortletResponse response)

 throws PortletException, IOException {

 // Make a bean

 AgentWebBean bean = new AgentWebBean();

 // Save name in bean

 bean.setPortletName(“ShorelineAgentWeb Portlet”);

 // Save bean in request

 request.setAttribute(“AgentWebBean”, bean);

 // Obtain userId

 String userId = request.getUser().getUserID().toString();

 // Pass the userId value to viewShoreline.jsp

 bean.setUsername(userId);

 // Render Jsp to call shoreline application

 getPortletConfig().getContext().include(“/jsp/viewShoreline.” + getJspExtension(request),request,response);

}

JSP files

The following JSP files are used within the AgentWeb portlet :

v viewShoreline.jsp: This JSP file is used to display the Travel Agency application. The following code

snippet illustrates the file. The viewShoreline.jsp retrieves the agent ID from the Java(R) bean, passes

the agent ID to the Travel Agency application as a query string, and then displays the Travel Agency

application.

 <%@pagecontentType=“text/html” %>

 <%@ taglib uri=’/WEB-INF/tld/portlet.tld’ prefix=’portletAPI’%>

 <portletAPI:init/>

 <jsp:useBean id=“AgentWebBean” class=“com.shoreline.portlets.AgentWebBean” scope=“request” />

 <IFRAME src=’http://MYSYSTEM.SHORELINE.COM:3080/webapp/Shoreline/ShorelineServlet?userIdValue=<%=AgentWebBean.getUsername()%>’

 width = “100%” height=“400” scrolling=“AUTO” frameborder=“0”>

 Your browser does not support frames

 </IFRAME>

v AgentWebHelp.jsp: This JSP file is used to display the help information for the AgentWeb portlet.

Collaboration portlets

To take advantage of the collaboration features supported by WebSphere(R) Portal Server 5.0.2.2, the

Travel Portal team deployed and configured portlets to give customers and travel agents the ability to

send instant messages and send e-mail to one another. The Lotus(R) Sametime(R) portlet was deployed to

provide instant messaging capability to users. When this portlet is viewed by a user, a Sametime login

window appears, which prompts the user for their user ID and password. Upon authentication, the

portlet creates another Sametime window, which displays the list of users who have logged into the

Sametime server. The Quick eMail portlet was deployed to provide users the ability to send e-mail to one

another. Both of these portlets are part of the Lotus Collaborative Porlets set of portlets, and are deployed

by the iSeries(TM) portal wizard during the creation of a WebSphere Portal Server 5.0.2.2 server instance, if

specified by the user.

Portal administration

Within WebSphere(R) Portal Server V5.0.2.2, a portal is composed of a hierarchical structure of nodes that

can be represented in a parent-child relationship, starting from the content root of the portal. A node is an

addressable element in the portal navigation tree belonging to one of the following types:

v Page: Pages display content in the form of portlets. Pages can contain child nodes, including other

pages that provide content. A page can contain column containers, row containers, and portlets.

Containers are columns or rows that you can use to arrange the layout of portlets or other containers

on the page.

Travel Portal application 25

v Labels: Labels do not display any content, but can contain other nodes. They are used primarily to

group nodes in the navigation.

v URL: URLs can launch any URL-addressable resource, including external Web sites or pages within the

portal site.

Nodes are located in a level of the navigation hierarchy relative to the parent node in which they are

created. The topmost node in the tree is the content root. After installation, the following nodes are

created under the content root:

v My Portal: A label containing prepackaged portlets for general business or productive use. By default,

this is the first page displayed after login.

v Page Customizer: A label containing child pages with portlets for managing page content and layout.

Direct access to this mode is hidden from navigation. Instead, the portlets in the page customizer are

accessed through context-sensitive links in the portal toolbar.

v Administration: A label containing pages with portlets used by portal administrators. A link is

provided in the banner to allow users with administrative privileges to access this content.

v Page Properties: A page containing the Properties portlet, which is used for editing the properties of a

page, such as locale-specific titles and description. This page is always hidden from navigation. It is

accessed through context-sensitive links in the toolbar or from the Manage Pages portlet in

Administration.

v Organize Favorites: A page containing the Organize Favorites portlet, which allows users to create,

edit, activate, order, and delete labels and URLs. Access is provided through the My Favorites

drop-down list in the banner.

The Travel Portal development team designed the Travel Portal application to include three labels. The

labels include Travel Home, Travel Agents, and Travel Customers. Each of these labels was modified to

use the Corporate theme. The theme is specified within the properties for the label and can be managed

using the Manage Pages portlet within Administration. After the labels were created, individual pages

for each of the supported portlets were created, the corresponding portlets were added to the page, and

the page was then added to the appropriate label.

The TravelAgents and TravelCustomers groups were also created. The travel agent user IDs were added

to the TravelAgents group and the customer user IDs were added to the TravelCustomers group. This

was accomplished using the Users and Groups portlet within Administration. The groups were then

given the appropriate authority to the labels, pages, and portlets using the Resource Permissions portlet

within Administration.

Each label used within the Travel Portal scenario is described in more detail as follows:

Travel Home label

The Travel Home label is used when a user first accesses the Travel Portal server. It allows users to access

the following pages and portlets:

v Welcome

v Best Deals

v Create Customer Account

v World Clock

All anonymous users have User access to the Travel Home label and the pages within it. User access

allows a user to view the portal content. The anonymous users also have User access to the individual

portlets contained within the pages.

Figure 11 shows the Travel Home label, and the list of pages and portlets available within it.

26 iSeries: Travel Portal scenario

Travel Agents label

The Travel Agents label is used by the travel agents after they have logged into the WebSphere Portal

server. It allows travel agents to view the following pages and portlets:

v Welcome

v Agent Web

v Best Deals

v Create Customer Account

v Customer History

v eInvestments

v eMail

v SQL Query

v Sametime

v Unbooked Cruises

v World Clock

Figure 11. Travel Home label

Travel Portal application 27

The TravelAgents group has User access to the Shoreline Travel Agents label and the pages within the

label. The TravelAgents group also has User access to the individual portlets contained within the pages.

Figure 12 shows the Travel Agents label and the pages and portlets contained within it.

 Travel Customers label

The Travel Customers label is used by the travel customers after they have logged into the Portal server.

It allows travel customers to view the following pages and portlets:

v Welcome

v Best Deals

v Future Trips

v Sametime

v Trip Reminder

v World Clock

The TravelCustomers group has User access to the Travel Customers label and the pages within it. The

TravelCustomers group also has User access to the majority of the portlets contained within the pages.

Figure 12. Travel Agents label

28 iSeries: Travel Portal scenario

The only exception to this is the Trip Reminder portlet. The TravelCustomers group has Priveldged User

access to it, so that customers can customize the portlet’s settings.

Figure 13 shows the Travel Customers label and the pages and portlets contained within it.

Installation of portlets

The installation of a portlet within WebSphere(R) Portal Server consists of the following steps:

v Export the portlet as a Web archive (WAR) file

v Deploy the WAR file to the target system

v Install the portlet within WebSphere Portal Server

v Activate the portlet

Following are links to the instructions for installing portlets within WebSphere Portal Server V5.0. Note

that the instructions include references to a specific portlet called the Hello World portlet. As the

instructions are followed, details specific to the portlet being installed need to be used in place of those

for the Hello World portlet.

Figure 13. Travel Customers label

Travel Portal application 29

The steps to export the portlet to a WAR file from WebSphere Studio Application Developer can be found

in chapter 16.4 at IBM WebSphere Portal V5, A Guide for Portlet Application Development

.

The detailed steps to deploy, install and activate a portlet within WebSphere Portal Server V5.0 can be

found at Hello World, the simplest portlet for WebSphere Portal V5

. Select the Deploy the WAR file

link to find the steps to deploy the portlet. Select the Adding a portlet to a page link to install and

activate the portlet.

Portal application discoveries

This section lists the discoveries that were made during the design, implementation, and installation of

the Travel Portal portlets.

v Within a portal application, you can define configuration parameters in the portlet.xml file. The Travel

Portal portlets utilize this support by specifying the PROVIDER_URL value, which is used to access the

Travel Agency EJBs, within the Configuration Parameters table of the portlet.xml file. It is then read

and used within the portlet’s init() method using the following line of code:

providerURL = portletConfig.getInitParameter(“PROVIDER_URL”);
v To make the edit and help buttons appear within a particular portlet, you need to enable the edit and

help views in the portlet.xml file for each portlet. Within portlet.xml, select Portlet Applications, then

select the Markups section, and change the html markup to specify Fragment for the Edit and Help

modes.
v While using IBM(R) WebSphere(R) Studio Application Developer to develop portlets, use the default JSP

files provided within the HTML folder rather than using the JSP files in the JSP folder. When the

portlet events occur, they call the JSP files located in the HTML folder.
v There is an easy way to make changes to a portlet that has already been installed and added to pages

within the portal server. Within the Portal Administration place, select the Portlets tab, select the

Manage Portlet Applications tab, select the appropriate Web module, and select Update. Then specify

the file location for the new WAR file. This installs the updated WAR file and you do not need to add

the portlet back into the pages or set up authority for the portlet again.
v The Travel Portal scenario needed a portlet that could be used to display the contents of a specified

Web address. The development team found that the IBM Workplace Solution Catalog

contains

IBM Web Page Portlet V5.0, which satisfied this need. This portlet was downloaded from the catalog

site, installed in the portal server, and made available within the Travel Agents label. After installed

and configured, the portlet enables travel agents to access an existing investment company (another

test scenario).

In addition to the IBM Web Page portlet, the IBM Workplace Solution Catalog also contains the

following useful items:

– Portlets and portlet builders

– Tools and other applications that integrate with WebSphere Portal

– Solutions, such as services and value-added offerings
v If you have developed portlets in WebSphere Studio Application Developer 5.0.x using an earlier

version of the Portal Toolkit, you must export those portlets from the earlier version and import them

into WebSphere Studio Application Developer 5.1.x with the appropriate version of the Portal Toolkit.

After this is complete, you can export the portlets to a new WAR file and deploy them to a WebSphere

Portal Server 5.x server instance. Execute the following steps to accomplish this :

1. Export the existing project to a WAR file in earlier version. To do this, in the earlier version of

Portal Toolkit, export each project to a WAR file with source files:

a. Right-click the project and select Export.

b. Select WAR file and Export source files and click Finish.

30 iSeries: Travel Portal scenario

http://www.redbooks.ibm.com/abstracts/sg246076.html?Open
http://www.ibm.com/developerworks/websphere/library/techarticles/0403_lynn/0403_lynn.html
http://catalog.lotus.com/wps/portal/workplace

2. Import the portlet WAR file

a. In the new version of Portal Toolkit, create a new empty portlet project in the J2EE level in

which the existing project was developed.

1) Select File > New > Project > Portlet Development > Portlet Project or Portlet Project (JSR

168).

2) Select Create empty portlet, select the Configure advanced options checkbox, and click

Next.

3) Select the J2EE Level in which the existing project was developed and click Finish.
b. Import the WAR file to this new empty portlet project.

1) Right-click the project and select Import.

2) Select WAR file and specify the WAR file you exported in step 1.

3) Do NOT select the Overwrite existing resources without warning checkbox.

4) Click Yes to overwrite the portlet.xml file and the web.xml file during importing.
3. Delete the TLD file. If you do not delete the TLD file from the project it exists, you will get a

warning message when you rebuild the project. Leaving the TLD file as is might cause problems

when the portlet project is deployed to WebSphere Portal and the TLD file of the portlet is different

from the file in the server.
v The following are links to the information that the Travel Portal development team found helpful

during the development of the Travel Portal application:

– WebSphere Portal Zone

– Information Center for IBM WebSphere Portal - Express for Multiplatforms Version 5.0.2 (iSeries)

– IBM WebSphere Portal - Express for Multiplatforms V5.0.2 Release Notes for iSeries

– WebSphere Portal Catalog

– WebSphere Portal on iSeries

Travel Portal application 31

http://www.ibm.com/developerworks/websphere/zones/portal/proddoc.html
http://publib.boulder.ibm.com/pvc/wp/502/smbi/en/InfoCenter/index.html
http://publib.boulder.ibm.com/pvc/wp/502/indexrn-smbi.html
http://www.ibm.com/developerworks/websphere/zones/portal/catalog/
http://www.ibm.com/servers/eserver/iseries/software/websphere/portal/

32 iSeries: Travel Portal scenario

Disclaimer

Information is provided ″AS IS″ without warranty of any kind. Mention or reference to non-IBM products

is for informational purposes only and does not constitute an endorsement of such products by IBM.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled

environment. The actual throughput or performance that any user will experience will vary depending

upon considerations such as the amount of multiprogramming in the user’s job stream, the I/O

configuration, the storage configuration, and the workload processed. Therefore, no assurance can be

given that an individual user will achieve throughput or performance improvements equivalent to the

ratios stated here.

© Copyright IBM Corp. 2005, 2006 33

34 iSeries: Travel Portal scenario

����

Printed in USA

Trademarks

IBM, the IBM logo, DB2, Domino, eServer, iSeries, i5/OS, Lotus, Sametime, and
WebSphere are registered trademarks of International Business Machines Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of others.

	tps.pdf
	Contents
	Travel Portal scenario overview
	Development team
	Scenario Background

	WebSphere Portal Server
	WebSphere Portal Server overview
	WebSphere Portal Server setup
	Server environment
	Domino Directory
	Discoveries

	Collaboration server setup
	Sametime
	Discoveries

	Travel Portal application
	Development environment
	Application model
	Application flow
	Application details
	Application design points
	BestDeals portlet
	CreateCustomerAccount portlet
	DisplayCruise portlet
	AgentWeb portlet
	Collaboration portlets

	Portal administration
	Installation of portlets
	Portal application discoveries

	Disclaimer

