

Analysis of IBM Custom Key Block formats to

PCI PIN Security Requirements

UL report on the compliance to key block format requirements contained within the PCI PIN

Security Requirements document and associated FAQs.

Reference Standard: PCI PIN Security Requirements

Certification Body: PCI Security Standards Council LLC

Evaluation Report No: UL13487133

Authors: Andrew Jamieson

Joehannes Bauer

Sajal Islam

Benoit Feix

16 September 2022

This report may be reproduced in full. Partial reproduction may only be made with the written

consent of UL Transaction Security.

Copyright Notice

The information held in this document is proprietary and is confidential to UL Transaction

Security and to IBM. Intellectual property relating to the HSM evaluation standards referenced

in this document belongs to PCI SSC. Intellectual property relating to the content of this report

and evaluation processes and methods used belong to UL.

This document is owned by IBM. Any reproduction, disclosure, or unauthorised use of this

material is expressly prohibited except as may be specifically authorised by IBM.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 2/39 Report Revision: 2.9

Revision history

Revision Date Nature of amendment

0.1 26 Oct 2020 Initial creation and release

1.1 28 Oct 2020 Update after customer review

2.2 22 Dec 2020 Update to include VLS key block

2.3 1 Feb 2021 Update to include key block examples

2.4 3 Feb 2021 Update to include VLS key block example

2.5 19 Mar 2021 Update after customer review

2.6 22 Mar 2021 Final update and release

2.7 5 May 2021 Update to include summary of VLS

2.8 6 May 2021 Update list numbering typo

2.9 16 Sep 2022 Add appendix with bios of the authors

2.9

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 3/39 Report Revision: 2.9

Executive Summary
PCI SSC manage rules for the use of cryptographic keys within payment systems, particularly

those used to secure and process PIN based transactions. The requirements for the key

management of such PIN security related keys are provided in the PCI PIN Security

Requirements, and these rules now mandate the use of ‘key blocks’ within the local

environments of payment service providers. Mandates for the use of key blocks with external

connections are coming at later dates within this decade.

The requirements for key blocks are set to refer to existing standards of TR-31 and ISO20038.

Some technology providers have implemented key block systems that are not identical to those

outlined in these standards, and PCI require that an independent review of these

implementations is performed to validate they provide equivalence, with specific rules set to

define the interpretation of this equivalence.

IBM have contracted UL to produce such a report on one of their key block implementations.

This report is produced based on documentation provided by IBM, without any functional

testing.

Through this review, UL has concluded that the WRAPENH3 and VLS formats designed by IBM

can be considered equivalent to the standards of TR-31 and ISO20038, within the scope of

‘equivalence’ as put forward by PCI SSC for the purpose of such a review.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 4/39 Report Revision: 2.9

Table of Contents

EXECUTIVE SUMMARY .. 3

PAYMENT KEY MANAGEMENT OVERVIEW .. 5

Attacks on Payment Key Management ... 7

Key Blocks and Key Wrapping .. 9

IBM WRAPENH3 KEY WRAP IMPLEMENTATION .. 11

IBM VARIABLE LENGTH SYMMETRIC KEY BLOCK ... 15

PCI SSC KEY WRAPPING MANDATES ... 18

Examples of Key Wrapping Implementations ... 19

TR-31 Example Key Blocks .. 19
IBM Sample Key Blocks ... 22
Comparing IBM key blocks to TR-31 .. 24

IBM WRAPENH3 PCI PIN COMPLIANCE ... 25

IBM VLS KEY WRAPPING PCI PIN COMPLIANCE ... 27

APPENDIX I – IBM CONTROL VECTOR VALUES ... 29

APPENDIX II – AUTHORS ... 33

Andrew Jamieson .. 33

Education and Awards: .. 33
Peer-reviewed Talks and Publications: .. 33
Patents : ... 33

Joehannes Bauer .. 34

Education and Awards: .. 34
Peer-reviewed Talks and Publications: .. 34

Sajal Islam ... 35

Education and Awards: .. 35
Peer-reviewed Talks and Publications: .. 35

Benoit Feix .. 37

Education and Awards: .. 37
Peer-reviewed Talks and Publications: .. 37

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 5/39 Report Revision: 2.9

Payment Key Management Overview
The financial industry can be considered one of the earliest widespread adopters of encryption

systems, outside the military and governmental arenas. Methods to encrypt customer PINs

were standardized in ISO9564 from 1991i, with general principles of key management outlined

in ISO11568 from 1994ii. Indeed, in many geographies, the use of encryption predates these

International Standards by a decade or more.

Of course, the secure use of encryption relies upon the secure storage and management of the

cryptographic keys used for these operations. This lead to the creation of even further

standards for secure cryptographic devices, in documents such as FIPS140-1iii (published in

1994, now superseded by FIPS140-3) and a more payments focused ISO13491 (published in

1998iv).

In these standards, and the implementations that they both preceded and were informed by, the

ways in which cryptographic keys may be generated, loaded, used, and replaced within

payment instruments were developed. These processes are collectively understood as the ‘life

cycle’ of the cryptographic keys that are used, and are governed by key management practices.

As payment systems security has matured, the use of cryptography has been expanded from

purely encrypting PINs to protecting other data (such as the payment card data itself), as well

as providing authentication across message transmissions, and providing for the update of the

working keys stored in a payment acceptance device.

In payment systems, it is common to consider there are three high level forms of key

management:

1) Fixed

2) Derived Unique per transaction

3) Master/Session

In a Fixed Key system, a single key (for each purpose) is loaded into the payment acceptance

system, and this is used throughout the lifetime of the product. A fixed key is often never

changed, it is expected to not be changed, as it requires a physical process for any re-keying

operation (although of course the keys are unique per purpose and device). Regardless of how

long the payment acceptance system is in operation, or how many transactions are performed

on this system, the keys used remain identical.

In a Derived Unique per transaction key management system, a single key is loaded into the

payment acceptance device and new keys are generated for each transaction that is

performed. This is achieved through the use of an on-device key derivation process, which

uses a pseudo-random process for generating a new key from the previous key data, potentially

along with additional transaction related data. The most commonly implemented Derived

Unique key management system is that standardized in Annex C of ANSI X9.24 (known as

Derived Unique Key Per Transaction, or DUKPT), although other methods do exist and are

used around the world.

The key derivation method used in a Derived Unique key management system will often

implement a separate process for host-side key derivation, allowing for easy derivation of any

arbitrary transaction keys at the host whilst maintaining forward secrecy over key derivation at

the acceptance terminal side. This alleviates the risk of the terminal/host key sets becoming

out of sync. The derivation process will also generally allow for the creation of more than one

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 6/39 Report Revision: 2.9

key, so that there may be different transaction unique keys for each purpose required during the

transaction.

The third common form of key management used in payment systems is Master/Session key

management, which is essentially a catch-all phrase used for any key management process

which is neither Fixed Key, nor Derived Unique. This form of key management allows for the

loading of new keys as required, although key derivation may also be included as part of this

process. As implied by the name, a Master/Session key management system will result in the

implementation of some form of ‘key hierarchy’, where the lowest level keys – the ‘working’ or

‘session’ keys – are loaded into the payment acceptance system using other keys that are

higher-up in the chain.

Figure 1 – Example key hierarchies

So, in a simple example we may have the PIN key Kp loaded encrypted under the Master Key

Km, and the data key Kd also loaded under the same master key Km. Consider an encryption

function E that encrypts plaintext P to ciphertext C, using input key K. This could be denoted as

E(K, P) = C. The reverse of this function would be the decryption function D, performing the

operation D(K, C) = P.

For PIN key loading we may then have encrypted forms of the PIN key K_p, which are secured

under encryption using the master key K_m, as illustrated below.

 Loaded PIN Key = E(K_m, K_p)

 Loaded data Key = E(K_m, K_d)

In many key management implementations, it is common to have a need to create new keys

from an existing key. For example, in Derived Unique systems, new working keys are created

for each transaction on the payment acceptance device. Even in Master/Session key

management systems, it is common to have a single ‘Base Derivation Key’ (BDK) which is used

to create unique Master keys for each individual payment acceptance device.

ISO11568 considers three broad methods for the creation of a cryptographic key:

1) Non-repeatable key generation

2) Repeatable key generation

3) Key calculation

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 7/39 Report Revision: 2.9

Non-repeatable key generation involves the use of random or pseudo-random functions, where

it is computationally infeasible to generate the same output state. This may be through the use

of a true random number generator to directly generate a key with sufficient entropy, or through

use of non-repeating values input to a pseudo-random number generator or key agreement

scheme.

A repeatable key generation process uses a non-reversible process, such as a pseudo-random

number generator (PRNG), with a predictable and known seed (so that process can be

repeated). Commonly in payments this would be a process using a One Way Function (OWF)

or PRNG seeded by the serial number of the payment acceptance device to generate the

device unique master key.

Another method of key creation is ‘key calculation’, which is a reversible process applied to an

existing key to create a new key. In payment systems, this is commonly implemented through a

so-called ‘variant’ process, where values are XOR’d across an existing plaintext key to change

the value of that key to ‘calculate’ the value of a new key (the term ‘calculate’ is used

specifically in ISO11568). Because variants are reversible, it is a requirement that they are not

exposed beyond the security boundary in which they are created (e.g. the payment acceptance

device in which the original key on which the variants are applied). For this reason, amongst

others, the use of variants has been deprecated in many newer key management systems.

Because of the early adoption of encryption within the financial services industry, key

management systems have often spanned multiple changes in cryptographic algorithms or key

sizes. ANSI X9.24 DUKPT, for example, has three versions – one for single DES, one for

Triple DES (TDES), and one for AES. In Master/Session key management systems which

implement TDES, it is common for the two 64 bit ‘halves’ of the DES key to be separately

encrypted with the master key, as shown below:

 Loaded Key = E(K_m, K_pl)||E(K_m, K_Pr)

 Where K_pL = the left most 64 bits of the 128 bit TDES key Kp

 K_pR = the right most 64 bits of the 128 bit TDES key Kp

 || is a concatenation operation

The mode of operation used may vary, but ECB is often used in practice.

Attacks on Payment Key Management

It may now start to become clear that there are some potentials for exploiting the ways in which

financial key management is performed as outlined above. For example, although the brute

force exhaustion of a TDES key remains computationally infeasible, exhaustion of the key

domain for a single DES key is very easily achieved with todays computing power. When a

TDES working key is loaded using ECB encryption of the two key halves, it becomes possible

to exploit this.

If an adversary were to take a single, encrypted TDES key and separate out the two halves,

each of these could be duplicated and loaded as their own TDES key – but with the effect that

the loaded key would operate as a single DES key equivalent in value to that key half. Using

the PIN key example we have from above:

 Loaded Key = E(K_m, K_pl)||E(K_m, K_pr) eKm(Kp_L)|eKm(Kp_R)

 Adversary Key1 = E(K_m, K_pl)||E(K_m, K_pl)

 Adversary Key2 = E(K_m, K_pr)||E(K_m, K_pr)

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 8/39 Report Revision: 2.9

The adversary intercepts the attempt to load the genuine Loaded Key, and generates from this

Adversary Key1 and Adversary Key2. Either one of these keys may be then loaded into the

payment acceptance terminal and will properly decrypt into a key which has the same value for

each of its two 64 bit halves. Because two key Triple DES operations are performed using an

encrypt-decrypt-encrypt process, this results in the key being the equivalent of a single DES

key of value equal to the plaintext of the key half used (either K_pl or K_pr).

The attacker only has to obtain a few plaintext/ciphertext pairs to then brute force that key, and

then can either load the other key half (and repeat) or load the full key (with both key halves)

and brute force the remaining 64 bits they do not know. In either case, the attacker has now

successfully obtained the plaintext value of that working key, despite it being loaded encrypted.

This attack works because it is possible to manipulate the encrypted key value without

detection. However, in systems where multiple algorithms that support the same master key

are implemented, it can be possible to exploit a similar attack without changing the key at all.

For example, we may have a system where both TDES and AES PIN keys are supported. If an

AES key of 128 bits can be loaded using the function that is intended to load a TDES key, then

it may allow for the use of that key using the weaker algorithm.

The notion of parity bits within a TDES key may imply that such an attack would be likely to fail,

but it is common in many systems for parity bits to be ignored.

Another attack exploits the fact that there are multiple purposes a key may have in a payment

system, and often the operations performed by a key are constrained by that purpose. For

example, a PIN key within a payment terminal is only permitted to encrypt PINs – it cannot

decrypt a PIN, or perform cryptographic operations on any other data. Similarly, a data key

may never be used directly on a customer PIN.

However, an arbitrary payment device which is loading an encrypted key does not inherently

know what purpose that key has until it is informed of that purpose. Traditionally, this has been

through the command used – “load PIN key” or “load data key” – as the keys themselves have

historically not carried any metadata that describe their use. This presents an opportunity for

an attacker to alter the purpose of a key during loading.

If we have a system which has two keys, K_p for encrypting PINs and K_d for encrypting (or

decrypting) data, and both are loaded into the device encrypted with the master key Km using

the commands:

 Load_PIN_key(E(K_m, K_p))

 Load_data_key(E(K_m, K_d))

An adversary may intercept these commands and alter them so that the PIN key is loaded into

both the PIN and data encryption functions, as per below:

 Load_PIN_key(E(K_m, K_p))

 Load_data_key(E(K_m, K_p))

This now allows for an attacker to use the data decrypt function to decrypt any PIN block output

by the device. Even if the system only allows for data encryption, not data decryption, it is trivial

for an attacker to use the encrypt function to exhaust the PIN domain (as customer PINs are

commonly only four decimal digits in length, with an allowed maximum of 12 digits).

These problems do not only affect payment acceptance terminals. The Hardware Security

Modules (HSMs) which are used to store and manage cryptographic keys at the banking

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 9/39 Report Revision: 2.9

backend systems also often rely on key encryption under some master storage key to protect

the working keys they use during operation. Many HSMs do not actually store more than a

handful of keys, and all other keys (which may be many hundreds to thousands of unique keys)

are managed externally encrypted under a ‘master storage key’.

Key Blocks and Key Wrapping

To prevent the possibility of key manipulation attacks on both acceptance and backend

systems, standards have been introduced to provide metadata describing the use and type of

an encrypted key, as well as providing integrity and authenticity checks over the key and

associated metadata. This is known as ‘key wrapping’, or storing the key in a ‘key block’. This

concept has been introduced and analyzed previouslyv, but for the purposes of this paper the

primary implementations referenced are TR-31 and ISO20038.

In these standards, a cryptographic key is conveyed encrypted along with unencrypted

metadata that describes the type and purpose of the key. This general format is illustrated

below.

 Header Additional header

(optional)

Key

length

Key Padding MAC

Figure 2 – Illustration of a wrapped key

In line with key management best practice of ensuring a unique key for each unique purpose,

key wrapping process involved two different keys, one for use as a KEK and one for the

creation of the MAC. The encryption key is used to protect the confidentiality of the key during

transport, and the MAC is used to protect the integrity of the key (to prevent key manipulation

as described above) as well as the integrity of the key metadata.

In both TR-31 and ISO20038 these keys are created from a base ‘Key Block Protection Key’

(K_bpk, or KBPK). In both standards there are two ways in which the MAC and KEK keys can

be produced, a variant method and a key derivation method, although the variant method is

considered deprecated for new use in many standards which reference these. The process

used to generate the keys and encrypt/MAC the key block for both the variant and derivation

method is illustrated below.

The input data used for the derivation of each key is dependent upon the purpose of the key

(MAC or KEK) as well as the mode of operation used, and other optional data which may be

supplied.

The security of this key wrapping process is a function of the security of the cryptographic

algorithm(s) used in the generation of the encrypted key block and the MAC, which may be

AES or TDES. The MAC function used is CMAC (as defined in NIST SP800-38B), and the

mode of operation used for the encryption of the key may be either CBC or CTR mode,

depending on the configuration used (which is then defined in the header and key derivation

process).

Encrypted

Authenticated with MAC

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 10/39 Report Revision: 2.9

Figure 3 – The derivation and use of encryption and authentication keys TR-31 ‘A’ and ‘C’ versions

Figure 4 – The derivation and use of encryption and authentication keys in ISO20038 / TR-31 ‘B’ and

‘D’ versions

It can be noted that the two types of TR-31 (the ‘A’ and ‘C’ variant versions, and the ‘B’ and ‘D’

CMAC versions) differ in how they approach the way in which the MAC is calculated. In the

variant versions of TR-31, a CBC MAC is calculated across the key block once it has been

constructed with the key header and encrypted key block. This ‘encrypt then MAC’ approach

provides value in allowing for any manipulated key block to be rejected prior to any further

parsing of the key block, or use of the actual KEK that protects the key.

However the more recent version of TR-31, which uses CMAC operations to derive the working

KEK and authentication keys for the key block, calculates the MAC across the key block prior to

the encryption of the key. This means that in all cases, the key block must be (at least partially)

parsed and unencrypted prior to determining even if it is has been subject to manipulation. This

exposes additional code surface within the key usage areas to attack, as well as exposing the

KEK to side channel and other types of attack as it is used.

However, for the purposes of comparing IBM key block implementations to TR-31, it will be

assumed that a MAC-then-encrypt approach is acceptable as used in TR-31 ‘B’ and ‘D’

versions.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 11/39 Report Revision: 2.9

IBM WRAPENH3 Key Wrap Implementation
IBM have implemented a proprietary key wrapping method designated WRAPENH3 (a

shortening of wrap enhanced 3). Details on this were supplied through various documents and

discussions with IBMvivii. This system is an increment of existing IBM wrap modes that utilize a

‘control vector’ (CV) to provide metadata on the key, but instead of relying upon a binary

addition of this CV onto the KEK, the metadata is bound to the wrapped key using a CMAC.

This document does not detail the implementation of the existing WRAPENH1 and WRAPENH2

modes used in IBM systems, and concerns itself solely with the new WRAPENH3 format.

In this format, the key metadata and key itself are bundled into a 64 byte block that forms the

key bundle / wrap. This block is defined in Table 1 – IBM WRAPENH3 format on the next page

(note this contains details on settings for key wrapping other than WRAPENH3). This block

includes details on the length and use of the key, as well as version details for the wrapping

process itself, the encrypted key value and the CMAC output, amongst other data.

As with other key wrapping standards, the keys used for encryption and authentication are

derived separately from a single master key block protection key. This process utilizes a

SHA256 HMAC operating as a Key Derivation Function (KDF) in counter mode, as per NIST

SP800-108viii. Specifically, this is:

K = HMAC(Kbpk, 0x0000||Label||0x00||[Length])

Where ‘Length’ = Four byte big-endian bit length of the key being derived

 ‘Label’ = The ASCII characters WRAPENH3KEY-ENCR for the KEK

 = The ASCII characters WRAPENH3KEY-CMAC for the authentication key

 = The ASCII characters PCI-HSM_ENC_2020 for KEKs used in PCI mode

 = The ASCII characters PCI-HSM_MAC_2020 for auth keys in PCI mode

For WRAPENH3, the key wrapping process itself is defined as follows:

1) Set the values of the Control Vector 1 (CV1) as required for the key type, version, etc.

2) Set the value for Control Vector 2 as all zeros.

3) Generate the authentication and key encrypting keys for the key wrapping process.

4) Place the plaintext values of the key into the key block. The length of the key is

represented by the first key that has all zero values, so a single length key has the key

value stored in the K1 position, with K2 and K3 loaded with zeros. A double length key

has the first half of the key loaded in K1, the second half loaded in K2, and all zeros

loaded into K3. A triple length key has all key positions loaded with their key values.

5) Calculate a CMAC across the entire block, using the derived authentication key. Place

the output of this CMAC calculation into the location for Control Vector 2.

6) Chain the parts of the plaintext key together using SHA256, in the following process:

a. K3C = K3

b. K2C = K2^Trunc_SHA256(K3)

c. K1C = K1^Trunc_SHA256(K2)

d. KC = K1C||K2C||K3C

Where: Trunc_SHA256 is the first 64 bits of the SHA256 of that part of the key

 ^ is the XOR operator

 || is concatenation of two values

7) Encrypt the key using the derived key encryption key across the chained key parts (KC)

using the CBC mode of operation.

8) Place the encrypted key parts into the respective K1, K2, and K3 slots in the key block.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 12/39 Report Revision: 2.9

The key block format is defined in the table below.

Offset

(bytes)

Length

(bytes)

Field Definition

0 1 Token flag EMPTY_TOKEN_FLAG 0x00

INTERNAL_TOKEN_FLAG 0x01

EXTERNAL_TOKEN_FLAG 0x02 (all other values reserved)

1 1 RFU RFU

2 2 Oldmkvp Legacy field, now always loaded with 0x0000

4 1 Version 0x00 (for WRAPENH3 version)

5 1 RFU RFU

6 1 Flag byte 1 MASK_KEY 0x80 // encrypted key & MKVP present

MASK_CV 0x40 // CV in token has been applied

S390-ONLY :: MASK_NOCV 0x20 // KEK used for NOCV processing

MASK_AKEK 0x10 // ANSI KEK (AKEK)

MASK_AKEK_DOUBLE 0x08 // AKEK is double-length key

MASK_AKEK_PART_NOTARIZED 0x04 // AKEK is partially notarized

MASK_ANSI_PARTIAL_KEY 0x02 // key is an ANSI partial key

MASK_XPORT_PROHIB 0x01 // prohibit export when bit is 0b1

7 1 Flag byte 2 bit 0-2: wrap method:

 '000xxxxx' WRAP_TK_LEGACY = 0,

 ECB/legacy method

 '001xxxxx' WRAP_TK_ENH_CBC = 1,

 Chain Keys with SHA-1, SHA-256 KDF->KEK, variant

 KEK, CBC encryption

 '010xxxxx' WRAP_TK_ENH_2 = 2,

 Chain Keys with SHA-256, SHA-256 KDF->KEK, variant

 KEK, CBC encryption

 '011xxxxx' WRAP_TK_ENH_3 = 3,

 Chain Keys with SHA-256, SHA-256 KDF-> MAC key,

 TDES-CMAC, SHA-256 KDF->KEK, CBC encryption

 bit 3-5: 'xxx000xx' reserved

 bit 6: 'xxxxxx1x' used for legacy case

 pre-2009 code was not clear on how this is used, but it

 is checked

 bit 7: 'xxxxxxx0' reserved

8 8 Mkvp KEK or Master Key verification pattern

16 8 Left key part (K1) First 8 bytes of the chained and encrypted (T)DES key

24 8 Right key part (K2) Second 8 bytes of the chained and encrypted (T)DES key

32 8 Control Vector 1 (CV1) The value of the Control Vector 1

40 8 Control Vector 2 (CV2) The value of the Control Vector 2, used for CMAC in WRAPENH3

48 8 Third key part (K3) The third 8 bytes of an encrypted 168 bit (T)DES key, or random data

56 3 RFU RFU

59 1 Token Marks TM_KEY_LENGTH_SINGLE 0x00

TM_KEY_LENGTH_DOUBLE 0x10

TM_KEY_LENGTH_TRIPLE 0x20

TM_CDMF_DATA 0x80

TM_CDMF_KEK 0x80

TM_DES_DATA 0x00

TM_SYSTEM_DEFAULT_KEK 0x00

TM_DES_KEK 0x40

TM_KEY_LENGTH_MASK 0x30

TM_TOKEN_MARKS_MASK 0xC0

TM_TOKEN_MARKS_SINGLE_MASK 0xCF

TM_RESERVED 0x0F

60 4 Token Validation Value (TVV) Legacy checksum

Table 1 – IBM WRAPENH3 format

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 13/39 Report Revision: 2.9

The attributes of the key are defined in the Control Vector 1 value, which are provided in detail

in Appendix I to this document. These provide for specific values to be used for defining the

key type in the first byte, with variations on that specific key type defined in the third byte of the

control vector. The fifth byte defines what subordinate keys a key that is defined as a KEK may

operate on, and the sixth and eighth bytes are used for general key metadata such as

exportability, etc.

Some of the general metadata values – such as wrap format and key length – are not used in

the WRAPENH3 format, and only exist for legacy reasons.

The overall Control Vector format is summarized below. For specific details on all values, refer

to the Appendix.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Key Type Key type

specifics

 Permitted

subordinate

keys for

KEKs

General

metadata

 General

metadata

Table 2 – High level IBM control vector format

Examples of default / common control vector values are provided in the table below (copied

from reference vi

Type Control Vector Description

Key encrypting keys

EXPORTER 00 41 7D 00 03 41 00 A0
00 41 7D 00 03 21 00 A0

Used to encrypt a key taken from this local node

CCA 6.2+: allowed to be triple-length key type.

IKEYXLAT 00 42 42 00 03 41 00 A0
00 42 42 00 03 21 00 A0

Used to decrypt an input key token in a key
translation service that decrypts an external input
key token under an IKEYXLAT KEK, then
encrypts the key material as a new external
output key token under an OKEYXLAT KEK.

IMPORTER 00 42 7D 00 03 41 00 A0
00 42 7D 00 03 21 00 A0

Used to decrypt a key brought to this local node.

CCA 6.2+: allowed to be triple-length key type.

OKEYXLAT 00 41 42 00 03 41 00 A0
00 41 42 00 03 21 00 A0

Used to encrypt an output key in a key translation
service that decrypts an external input key token
under an IKEYXLAT KEK, then encrypts the key
material as a new external output key token under
an OKEYXLAT KEK.

Data protection keys

CIPHERXI 00 0C 50 00 03 C0 00 A0
00 0C 50 00 03 A0 00 A0

Used to decrypt ciphertext during text translation
from 1 cipher key to another cipher key.

CIPHERXO 00 0C 60 00 03 C0 00 A0
00 0C 60 00 03 A0 00 A0

Used to encrypt ciphertext during text translation
from 1 cipher key to another cipher key.

CIPHERXL 00 0C 71 00 03 C0 00 A0
00 0C 71 00 03 A0 00 A0

Used to decrypt or encrypt ciphertext during text
translation.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 14/39 Report Revision: 2.9

Type Control Vector Description

CIPHER 00 03 71 00 03 41 00 A0
00 03 71 00 03 21 00 A0

Used only to encrypt or decrypt data.

CCA 6.2+: allowed to be triple-length key type.

DATAC 00 00 71 00 03 41 00 A0
00 00 71 00 03 21 00 A0

Used only to encrypt or decrypt data.

DECIPHER 00 03 50 00 03 41 00 A0
00 03 50 00 03 21 00 A0

Used only to decrypt data.

CCA 6.2+: allowed to be triple-length key type.

ENCIPHER 00 03 60 00 03 41 00 A0
00 03 60 00 03 21 00 A0

Used only to encrypt data.

CCA 6.2+: allowed to be triple-length key type.

Data integrity keys

DATAM 00 00 4D 00 03 41 00 A0
00 00 4D 00 03 21 00 A0

Used to generate or verify a MAC.

DATAMV 00 00 44 00 03 41 00 A0
00 00 44 00 03 21 00 A0

Used to verify a MAC code; cannot be used in
MAC-generation

MAC 00 05 4D 00 03 41 00 A0
00 05 4D 00 03 21 00 A0

Used to generate or verify a MAC.

CCA 6.2+: allowed to be triple-length key type.

MACVER 00 05 44 00 03 41 00 A0
00 05 44 00 03 21 00 A0

Used to verify a MAC code; cannot be used in
MAC-generation

CCA 6.2+: allowed to be triple-length key type.

PIN-processing keys

IPINENC 00 21 5F 00 03 41 00 A0
00 21 5F 00 03 21 00 A0

Inbound PIN encrypting key, used to decrypt a
PIN block

CCA 6.2+: allowed to be triple-length key type.

OPINENC 00 24 77 00 03 41 00 A0
00 24 77 00 03 21 00 A0

Outbound PIN encrypting key, used to encrypt a
PIN block

CCA 6.2+: allowed to be triple-length key type.

PINGEN 00 22 7E 00 03 41 00 A0
00 22 7E 00 03 21 00 A0

Used to generate and verify PIN values

CCA 6.2+: allowed to be triple-length key type.

PINVER 00 22 42 00 03 41 00 A0
00 22 42 00 03 21 00 A0

Used to verify, but not generate, PIN values

CCA 6.2+: allowed to be triple-length key type.

Key-generating keys

DKYGENKY 00 71 44 00 03 41 00 A0
00 71 44 00 03 21 00 A0

Used to generate a diversified key based on a
key-generating key.

Alteration of any of the control vector bits, or of the key itself, will result in changing the input

data used to generate the CMAC, and therefore invalidating the CMAC when it is checked.

Brute forcing of the potential values of the CMAC to attempt to load a modified block would

require an attack across the 64 bit domain of the CMAC to brute force a specific value.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 15/39 Report Revision: 2.9

IBM Variable Length Symmetric Key Block
IBM have also implemented another key wrapping method, designated as a Variable Length

Symmetric Key block. This system is based on the key wrapping standard published by ANSI

in X9.102ix, and utilizes AES based protection keys for the purposes of wrapping another key

for storage or distribution. For the purposes of this report, we refer to this key block under

review as the VLS key block.

Unlike TR-31 or ISO20038, which use separate keys for confidentiality and integrity, the VLS

key block uses a single key to encrypt a body of data that contains the key as well as specific

key metadata, using a mode of operation designated as AESKW. This mode of operation is

specified in ANSI X9.102, and also defined in NIST SP800-38Fx, specifically for the purposes of

key wrapping.

In their 2007 paper “Deterministic Authenticated-Encryption”xi, Rogerway et al note that no

formal proof for the security of this mode exists, but comment that “… we find it likely the

mechanism is correct”. The use of ANSI X9.102 and AESKW is additionally referenced in the

PCI SSC document “Information Supplement: Cryptographic Key Blocks”xii, within the section

defining the meaning and purpose of key wrapping, implicitly applying approval to this method

of key wrapping.

The PCI paper also notes, however, that there are many different ways to implement key

wrapping and ANSI X9.102 leaves open specifics of the implementation. This document

discusses the specifics of the IBM implementation utilizing AES keys for the key wrapping

process.

The key wrapping method used in VLS is performed in two stages. The first stage takes the

key metadata (as defined in Appendix I) and hashes this data using SHA256. This hash is then

taken, along with some static details on the type and length of the hash used for this type of key

block, and placed into a subsequent block – along with the plaintext key to be wrapped, an ICV,

and padding – that is encrypted with the wrapping key using the AESKW mode of operation.

Figure 5 – Illustration of IBM VLS key wrapping

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 16/39 Report Revision: 2.9

This process is illustrated above, and defined formally below.

Wrapped Key =

(AssociatedData)||AESKW(K_aeskw, [ICV||PadLength||HashData||Key||Padding])

Where Associated Data = The key block metadata, including header, wrapping information,

 and key attributes, as defined in Table 3

 K_aeskw = The key to be used as the wrapping key

 ICV = A 6 byte constant 0xA6A6A6A6A6A6

 This is the default ICV value defined in NIST SP800-38F for AESKW

 PadLength = The length of the padding applied, set so that the length of the key to

 be encrypted plus the padding is always the maximum key length for

 that algorithm XXX Need to reference v1 payload only XXX

HashData = The length, type and output of the hash function across the

associated data block. Length and type are fixed for this key wrapping

type to SHA256

 Key = The key to be wrapped

 Padding = The number of 0x00 bytes as defined by the padding length.

In this method, the key properties are set in the associated data block and the inclusion of a

hash over this data into the encrypted block is used as the method to bind this key data to the

key itself.

The value of the key properties contained in the Associated Data block are provided in the next

page in Table 3. This defines the key wrapping method used, the version, the length and

purpose of the key, etc. Changing any value within the Associated Data block would cause the

SHA256 calculation across this block to produce a different value, therefore failing the check

when they key is decrypted.

This key wrapping process does not utilize keys separately derived by the operating device

(HSM, Point of Interaction etc) before the wrapping / unwrapping process, as do both TR-31

and the IBM WRAPENH3 key wrapping methods. Therefore this mode also requires the use of

the KEK before authentication of the key block can be performed.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 17/39 Report Revision: 2.9

Offset

(bytes)

Length

(bytes)

Field Definition

Header

0 1 Token flag INTERNAL_TOKEN_FLAG 0x01

1 1 RFU RFU

2 2 Length Length in bytes of total associated data block

4 1 Version 0x05 (for VLS version)

5 3 RFU RFU

Wrapping Information

8 1 Key material state 0x00 No key is present

0x01 Key is clear (this would be non-compliant to PCI requirements)

0x02 Key is wrapped with a transport key

0x03 Key is wrapped with the AES master key

9 1 Key verification pattern (KVP) 0x00 No KVP, key is not present, plaintext, or RSA wrapped

0x01 AESMK (8 leftmost bytes of SHA256)

0x02 KEK (8 leftmost bytes of SHA256)

10 16 KVP value 0x00 The key material state is no key is present

0x01 The key material state is the key is clear

0x02 The key material state is the key is wrapped with a transport key

0x03 The key material state is the key wrapped with the AES master key

26 1 Encrypted key wrapping

method

0x00 No key wrapping method

0x02 AESKW

0x03 PKOAEP2, RSAES-OAEP RSA PKCS#1 v2.1

27 1 Hash algorithm used 0x00 No hash

0x01 SHA-1

0x02 SHA-256

0x03 SHA-384

0x08 SHA-512

28 1 Payload format version 0x00 v0 payload

0x01 v1 payload

 Wrapping methods uses fixed key length

29 1 RFU

Attribute Data

30 1 Attribute data section 0x01 Version 1

31 1 RFU

32 2 Attribute data length Length in bytes of all attribute data

34 1 Optional key label length Length in bytes of the optional key label

35 1 IBM optional data length Length in bytes of optional IBM extended attribute data

36 1 User definable data length Length in bytes of optional user definable attribute data

37 1 RFU

38 2 Key length Length in bits of key or wrapped key, including padding

40 2 RFU

41 1 Algorithm type The algorithm for which the wrapped key can be used:

0x01 = (T)DES, 0x02 = AES, 0x03 = HMAC

42 2 Key type The purpose of the wrapped key

0x0001 Cipher

0x0002 MAC

0x0003 KEK export

0x0004 KEK import

0x0005 PIN protection

0x0006 PIN calculation

0x0007 PIN reference value

0x0008 DESUSECV

0x0009 DUKPT key generation key

0x000A AES and (T)DES secure messaging, such as for EMV

0x000B Key generation key

44 1 Key field usage count (Kuf) The number of key usage fields contained below

45 - Variable Key usage fields

Table 3 – VLS key block structure (excluding AESKW encrypted key)

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 18/39 Report Revision: 2.9

PCI SSC Key Wrapping Mandates
One of the entities that governs the standards used for maintaining security across the card

payment landscape is the Payment Card Industry Security Standards Council (PCI SSC). This

entity has published requirements for the use of key wrapping in systems that fall under the

purview of their standards, with the primary resources being the PCI PIN standardxiii (which

covers the key management requirements for entities that process PIN based transactions),

and two information supplements’ published in 2017xiv and 2019xv.

In these documents, requirements for the implementation and use of key wrapping methods for

cryptographic keys which provide security for PIN based transactions are outlined. This

document does not attempt to cover the specific dates of these mandates, but instead outline

the actual requirements themselves so that conclusions can be drawn concerning the

compliance of IBMs key wrapping implementations.

In both of the information supplements, the Executive Summary indicates acceptable methods

for implementing the requirements of key wrapping to include:

- A MAC computed over the concatenation of the clear-text attributes and the enciphered

portion of the Key Block, which includes the key itself,

- A digital signature computed over that same data,

- An integrity check that is an implicit part of the key-encryption process such as that

which is used in the AES key-wrap process specified in ANSI X9.102.

In the 2019 supplement, several Frequently Asked Questions – with associated answers – are

provided, including the clarification that key wrapping methods do not need to provide for

‘directionality’ of keys, i.e. a key wrapping method does not need to be able to differentiate

between ‘send’ keys, which perform encryption operations on some data, as opposed to

‘receive’ keys, which would decrypt such data (this is clarified in Q14 of that document).

An update to the PCI PIN requirements for key wrapping was provided in Jan of 2021, with the

following FAQ:

Q 34 January 2021: Encrypted symmetric keys are required to be managed in

structures called key blocks. These key blocks may be as defined in ANSI or ISO

standards, or equivalent proprietary methods. PCI recently published detailed HSM

and POI FAQs defining the characteristics that an ‘equivalent’ key block must

possess, and the process for assessment. How does this impact PIN Security

assessments?

A Until January 2023, Service Providers can continue to operate using existing

proprietary methods that have not yet been validated under the defined key block

equivalency process. Any newly developed proprietary methods must undergo the

defined key block equivalency process prior to any implementations. After December

2022, proprietary methods not validated as equivalent will be considered non-

compliant.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 19/39 Report Revision: 2.9

Examples of Key Wrapping Implementations

In this section we review some examples of both TR-31 and IBM proprietary key blocks, to

demonstrate how they function practically and highlight similarities between the

implementations.

TR-31 Example Key Blocks

Two TR-31 example key blocks are shown below:

A0136V0TN00S0200102CIBMC012400227E000341000000227E0003210000PB047F5787

857B413A01A880461CB19203B0F2D9E3E5326133B9D29036D35BEC873C95F22E81

B0144P0TE00S0200102CIBMC012400247700034100000024770003210000PB04C71F19

9CC5A13FECEAAF94EC3CC4C3025787E709BC8101236F51736F93421D65CABAD5E97A7F

D11B

By simply viewing the first digit of each of these key blocks, it is possible to determine that one

is definitely not compliant to the requirements – that is because the first digit indicates the key

block version, and only versions ‘B’ and ‘D’ are compliant to PCI PIN key block rules. In the first

of the examples above, the version is ‘A’, indicating that it uses a variant method of diversifying

the Key Block Protection Key into the encryption and authentication keys. This violates the PCI

PIN requirements.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 20/39 Report Revision: 2.9

Examining the first example block in more detail, we have the following:

Byte

Number

TR-31

assignment

Value in

example

Description for this key block

0 Version ID A Key block type ‘A’, using variants to calculate working keys

1-4 Key block

length

0136 Total key block length is 136 characters

5-6 Key usage V0 Key in block is a PIN verification key

7 Algorithm T The wrapped key is a TDES key

8 Mode of use N No restrictions on mode of use

9-10 Key version

number

00 No key versioning is implemented for this key block

11 Exportability S The key is sensitive and can only be exported under a KEK

12-13 Number of

optional

blocks

02 The key block contains two optional header blocks

14-15 RFU 00 Reserved

16-17 Optional

Block ID

10 The ID of the first optional block (is 10). A numeric value

indicates a proprietary optional block.

18-19 Optional

block length

2C This optional block has a length of 2C, or 44 characters

(expressed in decimal)

20-59 Optional

block

content

IBMC0124 - IBM proprietary block carrying DES control vectors

00227E0003410000 – Control vector 1

00227E0003210000 – Control vector 2

60-61 Optional

Block ID

PB This is the ID for a padding block, used to space the key

block out to relevant block lengths as required

62-63 Optional

block length

04 The length of this optional block is 04, which means no

further data is included

64-128 Encrypted

key

7F5787857B413A01A880461CB19203B0F2D9E3E5326133B9D29036D

35BEC873C

This is the wrapped key, length indicator, and associated padding all

encrypted with the KEK varianted from the KBPK

129-135 MAC 95F22E81

The first four bytes of a CBC MAC used to authenticate the key block,

calculated over the previous values (including encrypted key) using the

auth key varianted from the KBPK

Table 4 – TR-31 ‘A’ type, variant based key block example

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 21/39 Report Revision: 2.9

For the second key block, the decomposition is:

Byte

Number

TR-31

assignment

Value in

example

Description for this key block

0 Version ID B Key block type ‘B’, using CMAC to derive the working keys

1-4 Key block

length

0144 Total key block length is 144 characters

5-6 Key usage P0 Key in block is a PIN encryption key

7 Algorithm T The wrapped key is a TDES key

8 Mode of use E The key can be used for encryption or wrapping only

9-10 Key version

number

00 No key versioning is implemented for this key block

11 Exportability S The key is sensitive and can only be exported under a KEK

12-13 Number of

optional

blocks

02 The key block contains two optional header blocks

14-15 RFU 00 Reserved

16-17 Optional

Block ID

10 The ID of the first optional block (is 10)

18-19 Optional

block length

2C This optional block has a length of 2C, or 44 characters

(expressed in decimal)

20-59 Optional

block

content

IBMC012400227E000341000000227E0003210000

60-61 Optional

Block ID

PB This is the ID for a padding block, used to space the key

block out to relevant block lengths as required

62-63 Optional

block length

04 The length of this optional block is 04, which means no

further data is included

64-128 Encrypted

key

C71F199CC5A13FECEAAF94EC3CC4C3025787E709BC8101236F5173

6F93421D65

This is the wrapped key, length indicator, and associated padding all

encrypted with the KEK CMAC derived from the KBPK

129-143 MAC CABAD5E97A7FD11B

The first four bytes of a CBC MAC used to authenticate the key block,

calculated over the previous values (including encrypted key) using the

auth key CMAC derived from the KBPK

Table 5 – TR-31 ‘B’ type, CMAC derivation based key block example

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 22/39 Report Revision: 2.9

IBM Sample Key Blocks

Examples of the IBM WRAPENH3 and VLS key blocks were also supplied, as shown below:

WRAPENH3 sample key block:

020000000000C0600000000000000000E0DCEFE482282605116F7A4CC3652AFD000371

0003600081AE1F4C7FD672C0E83C62B185E7411B890000000008692362

VLS sample key block:

[0100008c05000000030149da4dd4e87815730000000000000000020201000100]

[001e0000000002800002000304fc000000e000f80003e00000000505bfb9d631]

[8227f586edf221d05d41f908aae3ea49ede64347451556dad13030db164ba956]

[82664f496a5c85b6ba34c3202bd5491552ba23ede40850bd5f32b5a717dba2e3]

[74d24f5aee60f3122c10a265]

A decomposition of the WRAPENH3 key block is tabulated below:

Byte

Number

WRAPENH3

Assignment

Value in example Description for this key block

0 Token type 02 External token

1 RFU 00

2-3 Oldmkvp 0000

4 Version 00 This must be 00 for WRAPENH3

5 Reserved 00

6 Flag byte 1 C0

7 Flag byte 2 60 011xxxxx = WRAPENH3

8-15 Mkvp 0000000000000000

16-23 Left key part (K1) E0DCEFE482282605 Encrypted K1

24-31 Right key part (K2) 116F7A4CC3652AFD Encrypted K2

32-39 Control Vector 1 (CV1) 0003710003600081 Data encryption key

40-47 Control Vector 2 (CV2) AE1F4C7FD672C0E8 CMAC output across key block

48-55 Third key part (K3) 3C62B185E7411B89 Encrypted K3 or random data

56-58 RFU 000000

59 Token Marks 00

60-63 Token Validation Value 08692362

Table 6 – IBM proprietary WRAPENH3 key block example

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 23/39 Report Revision: 2.9

Decomposition of the VLS key block is performed in the table below:

Byte

Number

VLS Assignment Value in

example

Description for this key block

0 Token flag 01

1 RFU 00

2-3 Length 008c Length of key block is 8c, or 140 characters

4 Version 05 VLS version

5-7 RFU 000000

8 Key material state 03 Key is wrapped with an AES master key

9 Key verification pattern

(KVP)

01 Key verification pattern is AESMK

10-25 KVP value 49da4dd4e87815730000000000000000

26 Encrypted key

wrapping method

02 AESKW key wrapping is used

27 Hash algorithm used 02 SHA256 is used as the hash algorithm

28 Payload format version 01 V1 payload

29 RFU 00

30 Attribute data section 01

31 RFU 00

32-33 Attribute data length 001e Length of attribute data section, from byte 30, is

1E, or 30 characters in decimal

34 Optional key label

length

00

35 IBM optional data

length

00

36 User definable data

length

00

37 RFU 00

38-39 Key length 0280 Payload length in bits

40 RFU 00

41 Algorithm type 02 Wrapped key is an AES key

42-43 Key type 0003 Wrapped key is a KEK for key export

44 Key field usage count

(Kuf)

04

45-59 Key usage fields fc000000e000f80003e00000000505

60-139 Encrypted key block bfb9d6318227f586edf221d05d41f908aae3ea49ede64347451

556dad13030db164ba95682664f496a5c85b6ba34c3202bd54

91552ba23ede40850bd5f32b5a717dba2e374d24f5aee60f312

2c10a265

Table 7 – IBM proprietary VLS key block example

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 24/39 Report Revision: 2.9

Comparing IBM key blocks to TR-31

From the previous sections, it can be seen that all the described key blocks follow the broad

format of [header][encrypted key data][authentication block]. The organization and content of

the various parts are different for each key block, as are the derivation and use of the keys used

for the encryption and authentication functions. Although TR-31 format ‘A’ key blocks are

deprecated for new use, the use of variants to calculate the working keys continues to be used

in the ‘C’ version of TR-31 based key blocks, as does the use of CBC MAC as the

authentication function. Additionally, there is no consistency in TR-31 with regards to encrypt-

then-MAC, or MAC-then-encrypt, so it must be assumed for the purposes of comparison that

either is acceptable (although encrypt-then-MAC provides many benefits).

The IBM WRAPENH3 format uses the same CMAC operation for authentication across the key

and header data as do the ‘B’ and ‘D’ TR-31 key block versions, including taking a MAC-then-

encrypt approach, thereby providing equivalent protection against modification to the TR-31

versions. The header content provides for a similar range of key attributes in regards to key

use, but does lack the key versioning TR-31 provides, which can help protect against injection

of expired keys.

The IBM VLS key block uses the AESKW mode of operation, as defined in NIST SP800-38F,

rather than a CMAC for authentication. To the best of our knowledge, no formal proof of

AESKW exists, but importantly the authenticity of the associated data is provided through

inclusion of the SHA256 hash within the AESKW rather than the AESKW algorithm itself.

Modification of the key block associated data / header block will force a different SHA256 output

when this is calculated on the receiving end, allowing the modification to be detected.

Modification of the encrypted portion of the key block is unable to provide predictable changes

to the content and will lead to failure of the AESKW authentication process.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 25/39 Report Revision: 2.9

IBM WRAPENH3 PCI PIN Compliance
The PCI SSC have outlinedxvi eight specific requirements that must be met for any key block

that is not implemented exactly as per TR-31 or ISO20038. These points are detailed below.

a) It must prevent the loading of PIN, MAC, and/or Data keys - or any keys used to

manage these within the key hierarchy - from being used for another purpose. IPEK,

KEKs, and derivation keys must be uniquely identified where supported.

b) It must prevent the determination of key length for variable length keys.

c) It must ensure that the key can only be used for a specific algorithm (such as TDES or

AES, but not both).

d) It must ensure a modified key or key block can be rejected prior to use, regardless of

the utility of the key after modification. Modification includes changing any bits of the

key, as well as the reordering or manipulation of individual single DES keys within a

TDES key block.

e) Where different key block formats are supported, with some providing the above

protections and some not, it must be humanly readable from the key block prior to

loading/use which format is implemented. E.g., by looking at the commands sent to the

device.

f) It must support all symmetric algorithms implemented by the device(s) that are to use

the key blocks.

g) Where asymmetric algorithms are supported, the algorithm type, padding and signature

formats must be identified in the key block.

h) It must use NIST approved modes of operation, with separate keys used for

confidentially and authenticity. Any keys used must not be related in a reversible way.

In reference to WRAPENH3 for these set of requirements, we note (using the same numbering

system as above):

a) The WRAPENH3 format provides key identification, including unique identification of

PIN, MAC, Data, KEKs, and Derivation keys in the Control Vector value (as detailed in

Table 1 and Appendix I). IPEKs are designated as a specific type of derivation key,

which can only be used with ANSI X9.24 DUKPT based derivation operations.

b) The WRAPENH3 format always includes values in the three slots allocated to the key

parts. Determination of which of these are valid for key use requires knowledge of the

decrypted key parts which provide key length by setting unused key parts to all zeros

(so K2 and K3 = all zeros for a single length key, and K3 = all zeros for a double length

key). Without knowledge of the plaintext key, keys of different lengths are

indistinguishable.

c) The WRAPENH3 process is only defined for use with TDES keys.

d) The WRAPENH3 process implements a CMAC across the length of the block, including

the plaintext key values. Modification or manipulation of any of the values in the key

block will result in the failure of the CMAC validation, and subsequent rejection of the

key block.

e) There are multiple key blocks possible in this format, and the WRAPENH3 format is

able to be uniquely identified by the value of 011 in bits 0-2 of the Flag byte 2 value.

f) The WRAPENH3 key block is designed solely for TDES use. AES keys are supported

by another key block format by this HSM, which is considered acceptable.

g) Asymmetric algorithms are not supported by this key block format.

h) The key encryption is implemented using CBC, which is a NIST approved mode of

operation.

Therefore, the IBM WRAPENH3 algorithms can be seen as entirely equivalent to the key

wrapping processes defined in TR-31 and ISO20038, in both security and equivalency criteria

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 26/39 Report Revision: 2.9

outlined by the PCI SSC. Each use a CMAC process for the generation of an authentication

block across the key block, and each use the same algorithms and modes of operation for the

encryption of the key itself (and any associated padding).

The differences between the IBM WRAPENH3 and TR-31 / ISO20038 can be best summarized

as:

i. A different format is used for the metadata and key storage in the block.

ii. The WRAPENH3 process binds the key parts together with SHA256 prior to encryption

(which the TR-31 / ISO20038 process does not).

iii. The WRAPENH3 process derives the KEK and the authentication key using a HMAC

based key derivation function, rather than a CMAC based key derivation function used

in TR-31 / ISO20038.

iv. WRAPENH3 supports TDES keys encrypted with CBC mode of operation only. AES

keys are managed using another key block format in IBM HSM devices.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 27/39 Report Revision: 2.9

IBM VLS Key Wrapping PCI PIN Compliance
The PCI SSC have outlinedxvii eight specific requirements that must be met for any key block

that is not implemented exactly as per TR-31 or ISO20038. These points are detailed below.

a) It must prevent the loading of PIN, MAC, and/or Data keys - or any keys used to

manage these within the key hierarchy - from being used for another purpose. IPEK,

KEKs, and derivation keys must be uniquely identified where supported.

b) It must prevent the determination of key length for variable length keys.

c) It must ensure that the key can only be used for a specific algorithm (such as TDES or

AES, but not both).

d) It must ensure a modified key or key block can be rejected prior to use, regardless of

the utility of the key after modification. Modification includes changing any bits of the

key, as well as the reordering or manipulation of individual single DES keys within a

TDES key block.

e) Where different key block formats are supported, with some providing the above

protections and some not, it must be humanly readable from the key block prior to

loading/use which format is implemented. E.g., by looking at the commands sent to the

device.

f) It must support all symmetric algorithms implemented by the device(s) that are to use

the key blocks.

g) Where asymmetric algorithms are supported, the algorithm type, padding and signature

formats must be identified in the key block.

h) It must use NIST approved modes of operation, with separate keys used for

confidentially and authenticity. Any keys used must not be related in a reversible way.

In reference to VLS Key Wrapping for these set of requirements, we note (using the same

numbering system as above):

a) The associated data block bound into the key wrapping through the SHA256 function

includes designations for the key as a MAC, KEK, data, and key derivation key.

Different types of PIN key are also supported, depending on the function (e.g. PIN

calculation or PIN encryption)

b) The key block can support a mode where the wrapped key is padded to the maximum

key length for that algorithm. This is similar to how TR-31 and ISO20038 function.

c) The algorithm that the key can be used for is defined in the associated data block, and

maybe 0x01 to 0x03 for compliant usage, which defines a key to be used for the

(T)DES, HMAC, or AES algorithms respectively.

d) Modification of the key or associated data is prevented by the use of the SHA256

across the associated data block, and the use of the AESKW authenticated encryption

mode of operation. Changing any of the associated data will result in the calculated

SHA256 value within the encrypted key block no longer matching the value produced

during the key check process. Alteration of the data within the encrypted block itself

would result in failure of the AESKW mode to properly decrypt the data.

e) The key block format and version are defined in the associated data, which is a

plaintext value provided as part of the key block.

f) The key block supports AES. Other algorithms are supported by other key block

formats within IBM systems.

g) The key wrapping method allows for the definition of the algorithm for the wrapped key,

as does TR-31, and specific values for compliance with the PCI definition of ‘strong

cryptography’ are noted in this report.

h) The AESKW mode of operation is defined in NIST SP800-38F.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 28/39 Report Revision: 2.9

Therefore, the IBM VLS algorithm can be seen as entirely equivalent to the key wrapping

processes defined in TR-31 and ISO20038, in both security and equivalency criteria outlined by

the PCI SSC.

The differences between the IBM VLS and TR-31 / ISO20038 can be best summarized as:

i. A different format is used for the metadata and key storage in the block.

ii. The VLS process binds the key parts together with SHA256 prior to encryption (which

the TR-31 / ISO20038 process does not).

iii. The VLS process uses the AESKW mode of operation, rather than separate CBC and

CMAC methods used for encryption and authentication in TR-31 / ISO20038.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 29/39 Report Revision: 2.9

Appendix I – IBM Control Vector Values

Figure 6 – IBM Control Vector 1 settings (1 of 4)

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 30/39 Report Revision: 2.9

Figure 7 – IBM Control Vector 1 settings (2 of 4)

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 31/39 Report Revision: 2.9

Figure 8 – IBM Control Vector 1 settings (3 of 4)

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 32/39 Report Revision: 2.9

Figure 9 – IBM Control Vector 1 settings (4 of 4)

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 33/39 Report Revision: 2.9

Appendix II – Authors

Andrew Jamieson

Education and Awards:

Bachelor of Engineering (Electrical Engineering, Honours)

Master of Applied Science (Information Security)

Distinguished Member of Technical Staff, UL

Adjunct Professor, New York University

Peer-reviewed Talks and Publications:

“Preventing cryptocurrency theft: Learning from the past to secure the future”, Cyber Security; A

Peer Reviewed Journal, 2019

“IoT Security, Building a Secure Future”, Society of Instrumentation and Control Engineers

(SICE) 2019 conference

“Biohazard! – Biometric Security”, Auscert 2017

“IoT Security – It’s in the Stars!”, Auscert 2016

“Gone in a Flash!” (Flash memory security and data remnance), AusCERT 2012

“Securing Embedded Systems”, AusCERT 2011

“Encryption vs Tokenisation”, BSides Australia 2011

Patents :

“Keypad”, International Patent WO0177801

“Circuit Board Arrangement and Funds Transaction Device”, International Patent WO0189278

“Funds Transaction Terminal”, International Patent WO0188862

“Display Device and Funds Transaction Devices Including the Display Device”, International

Patent WO03102785

“Secure Payment System”, International Patent WO2005052801A1

https://hstalks.com/article/3761/preventing-cryptocurrency-theft-learning-from-the-/

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 34/39 Report Revision: 2.9

Joehannes Bauer

Education and Awards:

Master of Computer Science (Honors)

Ph.D. of Computer Science (magna cum laude)

Peer-reviewed Talks and Publications:

Johannes Bauer: On Inexpensive Methods for Improving Security of Embedded Systems —

Kostengünstige Maßnahmen zur Erhöhung der Sicherheit eingebetteter Systeme, November

2016. Doctoral Thesis. (URN urn:nbn:de:bvb:29-opus4-81273, 171 pages).

Johannes Bauer and Felix C. Freiling: Towards Cycle-Accurate Emulation of Cortex-M Code to

Detect Timing Side Channels, August 2016. 11th IEEE International Conference on Availability,

Reliability and Security—ARES 2016 (DOI 10.1109/ARES.2016.94, pages 49–58).

Johannes Bauer, Sebastian Schinzel, Felix C. Freiling and Andreas Dewald: Information

Leakage behind the Curtain: Abusing Anti-EMI Features for Covert Communication, May 2016.

IEEE International Symposium on Hardware Oriented Security and Trust—HOST 2016 (DOI

10.1109/HST.2016.7495570, pages 130–134).

Johannes Bauer, Michael Gruhn and Felix C. Freiling: Lest we forget: Cold-boot attacks on

scrambled DDR3 memory, March 2016. Digital Forensics Research Workshop Europe 2016

(Elsevier Digital Investigation, Volume 16, Supplement, pages S65–S74). Open Access:

http://www.sciencedirect.com/science/article/pii/S1742287616300032.

Johannes Bauer, Sebastian Schinzel, Felix C. Freiling and Andreas Dewald: Information

Leakage behind the Curtain: Abusing Anti-EMI Features for Covert Communication, March

2016. Technical Report CS-2016-03 of the University Erlangen-Nürnberg (URN

urn:nbn:de:bvb:29-opus4-71576).

Johannes Bauer and Felix C. Freiling: Schutz eingebetteter Systeme gegen physische Angriffe,

September 2015. DACH Security 2015—Bestandsaufnahme – Konzepte – Anwendungen –

Perspektiven (syssec-Verlag, Bonn, Germany, ISBN 978-3-000-49965-4, pages 387–396).

Johannes Bauer: Entwicklung einer OSEK/VDX-kompatiblen Systemschnittstelle für Linux,

January 2008. Informatiktage 2008 (Lecture Notes in Informatics, ISBN 978-3-88579-440-0,

pages 65–68).

https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-81273
https://dx.doi.org/10.1109/ARES.2016.94
https://dx.doi.org/10.1109/HST.2016.7495570
http://www.sciencedirect.com/science/article/pii/S1742287616300032
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-71576

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 35/39 Report Revision: 2.9

Sajal Islam

Education and Awards:

Ph.D. of Computer Science, 2006, Monash University, Australia

B.Sc. Engineering - Computer Science & Engineering, 2002, Bangladesh University of

Engineering & Technology, Bangladesh

CISSP, CISA, QSA, PA-QSA, P2PE QSA, P2PE PA-QSA, PCI 3DS Assessor, PCI PIN QPA

Peer-reviewed Talks and Publications:

Routing protocols for ad-hoc networks. Islam, M. M., Pose, R. & Kopp, C., 1 Dec 2007, Mobile

Multimedia Communications: Concepts, Applications, and Challenges. IGI Global, p. 178-221

44 p.

Security in ad-hoc networks. Islam, M. M., Pose, R. & Kopp, C., 1 Dec 2007, Mobile Multimedia

Communications: Concepts, Applications, and Challenges. IGI Global, p. 297-326 30 p.

Engineering a Suburban Ad-Hoc Network. Tyson, M. R., Pose, R. D., Kopp, C.,

Rokonuzzaman, SK. M. & Islam, M. M., 2006, Proceedings of the 7th Australian Information

Warfare and Security Conference. Valli, C. & Woodward, A. (eds.). Perth WA Australia: School

of Computer and Information Science, Edith Cowan University, p. 120 - 130 11 p.

An intrusion detection system for Suburban Ad-hoc Networks. Islam, M. M., Pose, R. D. &

Kopp, C., 2005, Proceedings of the 2005 IEEE Region 10 Conference. Bradlow, H. (ed.).

Melbourne Vic Australia: Swinburne Press, p. 1 - 6 6 p.

Challenges and a solution to support qos for real-time traffic in multi-hop ad-hoc networks.

Islam, M. M., Pose, R. D. & Kopp, C., 2005, Proceedings of the Second IFIP International

Conference on Wireless and Optical Communications Networks. Yeo, B. S., Ganaire, M. &

Omidyar, C. G. (eds.). Dubai UAE: IEEE, Institute of Electrical and Electronics Engineers, p.

394 - 399 6 p.

Effects on directional antennas on 802.11e. Islam, M. M., Pose, R. D. & Kopp, C., 2005,

Proceedings of the Second IFIP International Conference on Wireless and Optical

Communications Networks. Yeo, B. S., Ganaire, M. & Omidyar, C. G. (eds.). Dubai UAE: IEEE,

Institute of Electrical and Electronics Engineers, p. 1 - 6 6 p.

Link layer security for SAHN protocols. Islam, M. M., Pose, R. D. & Kopp, C., 2005,

Proceedings of the Third IEEE Conference on Pervasive Computing and Communications

Workshops on Pervasive Wireless Networking. Lee, B., Yu, C. & Mohapatra, P. (eds.). Los

Alamitos USA: IEEE Computer Society, p. 279 - 283 5 p.

MAC layer support for real-time traffic in a SAHN. Islam, M. M., Pose, R. D. & Kopp, C., 2005,

Proceedings of the International Conference on Information Technology: Coding and

Computing. Selvaraj, H. & Srimani, P. K. (eds.). Los Alamitos USA: IEEE Computer Society,

Vol. II. p. 639 - 645 7 p.

Making SAHN-MAC independent of single frequency channel and omnidirectional antennas.

Islam, M. M., Pose, R. D. & Kopp, C., 2005, Proceedings of the IASTED International

Conference on Networks and Communication Systems. Hamza, M. H., Prapinmonkolkarn, P. &

Angakew, T. (eds.). Anaheim USA: ACTA Press, p. 220 - 225 6 p.

Suburban ad-hoc Networks in information warfare. Islam, M. M., Pose, R. D. & Kopp, C., 2005,

Conference Proceedings of the 6th Australian Information Warfare and Security Conference.

Pye, G. & Warren, M. (eds.). Geelong Vic Australia: School of Information Systems, Deakin

University, p. 71 - 80 10 p.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 36/39 Report Revision: 2.9

A link layer security protocol for Suburban Ad-Hoc Networks. Islam, M. M., Pose, R. D. & Kopp,

C., 2004, Proceedings of the Australian Telecommunication Networks and Applications

Conference. Safaei, F. (ed.). NSW Australia: ATNAC, p. 174 - 177 4 p.

Multiple directional antennas in Suburban Ad-Hoc Networks. Islam, M. M., Pose, R. D. & Kopp,

C., 2004, Proceedings of the International Conference on Information Technology: Coding and

Computng. Srimani, P. K. (ed.). Los Alamitos USA: IEEE Computer Society, Vol. 2. p. 385 - 389

5 p.

A hybrid QoS routing strategy for Suburban Ad-Hoc Networks. Islam, M. M., Pose, R. D.

& Kopp, C., 2003, Proceedings of the 11th IEEE International Conference on

Networks. Moreton, N. (ed.). Piscataway NJ USA: IEEE, Institute of Electrical and Electronics

Engineers, p. 225 - 230 6 p.

A router architecture to achieve link rate throughput in suburban ad-hoc networks. Islam, M. M.,

Pose, R. D. & Kopp, C., 2003, Proceedings of the 8th Asia-Pacific Conference in Advances in

Computer Systems Architecture (ACSAC 2003). Omondi, A. & Sedukhin, S. G. (eds.). Berlin

Germany: Springer-Verlag London Ltd., Vol. 2823. p. 395 - 407 13 p.

Efficient Routing in Suburban Ad-Hoc Networks (SAHN). Islam, M. M., Pose, R. D. & Kopp,

C., 2003, Proceedings of the International Conference on Communications in

Computing. Jd'Auriol, B. (ed.). USA: CSREA Press, p. 188 - 194 7 p.

Routing in Suburban Ad-Hoc Networks. Islam, M. M., Pose, R. D. & Kopp, C., 2003, Computer

Science and its Applications: Proceedings of the International Conference on Computer

Science and its Applications. Dey, P. P., Amin, M. N. & Gatton, T. M. (eds.). San Diego CA

USA: US Educational Service LLC, p. 72 - 76 5 p.

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 37/39 Report Revision: 2.9

Benoit Feix

Education and Awards:

Ph.D. Embedded Cryptography, Limoges University

Peer-reviewed Talks and Publications:

Benoit Feix, Andjy Ricart, Benjamin Timon, Lucille Tordella:

Defeating Embedded Cryptographic Protocols by Combining Second-Order with Brute Force.

CARDIS 2016: 23-38

Julien Allibert, Benoit Feix, Georges Gagnerot, Ismael Kane, Hugues Thiebeauld, Tiana

Razafindralambo:

Chicken or the Egg - Computational Data Attacks or Physical Attacks. IACR Cryptol. ePrint

Arch. 2015: 1086 (2015)

Benoit Feix, Mylène Roussellet, Alexandre Venelli:

Side-Channel Analysis on Blinded Regular Scalar Multiplications. INDOCRYPT 2014: 3-20

Benoit Feix, Hugues Thiebeauld, Lucille Tordella:

Recovering CRT-RSA Secret Keys from Message Reduced Values with Side-Channel Analysis.

INDOCRYPT 2014: 53-67

Benoit Feix, Mylène Roussellet, Alexandre Venelli:

Side-Channel Analysis on Blinded Regular Scalar Multiplications. IACR Cryptol. ePrint Arch.

2014: 191 (2014)

Benoit Feix, Hugues Thiebeauld:

Defeating ISO9797-1 MAC Algo 3 by Combining Side-Channel and Brute Force Techniques.

IACR Cryptol. ePrint Arch. 2014: 702 (2014)

Benoit Feix, Alexandre Venelli:

Defeating with Fault Injection a Combined Attack Resistant Exponentiation. COSADE 2013: 32-

45

Christophe Clavier, Benoit Feix:

Updated Recommendations for Blinded Exponentiation vs. Single Trace Analysis. COSADE

2013: 80-98

Benoit Feix, Vincent Verneuil:

There's Something about m-ary - Fixed-Point Scalar Multiplication Protected against Physical

Attacks. INDOCRYPT 2013: 197-214

Christophe Clavier, Benoit Feix, Georges Gagnerot, Christophe Giraud, Mylène Roussellet,

Vincent Verneuil:

ROSETTA for Single Trace Analysis. INDOCRYPT 2012: 140-155

Christophe Clavier, Benoit Feix, Loïc Thierry, Pascal Paillier:

Generating Provable Primes Efficiently on Embedded Devices. Public Key Cryptography 2012:

372-389

Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, Vincent Verneuil:

Improved Collision-Correlation Power Analysis on First Order Protected AES. CHES 2011: 49-

62

Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, Vincent Verneuil:

Square Always Exponentiation. INDOCRYPT 2011: 40-57

Jean-Christophe Courrège, Benoit Feix, Mylène Roussellet:

Simple Power Analysis on Exponentiation Revisited. CARDIS 2010: 65-79

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 38/39 Report Revision: 2.9

Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet:

Passive and Active Combined Attacks on AES???Combining Fault Attacks and Side Channel

Analysis. FDTC 2010: 10-19

Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, Vincent Verneuil:

Horizontal Correlation Analysis on Exponentiation. ICICS 2010: 46-61

Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, Vincent Verneuil:

Horizontal Correlation Analysis on Exponentiation. IACR Cryptol. ePrint Arch. 2010: 394 (2010)

Frédéric Amiel, Benoit Feix, Michael Tunstall, Claire Whelan, William P. Marnane:

Distinguishing Multiplications from Squaring Operations. Selected Areas in Cryptography 2008:

346-360

Frédéric Amiel, Benoit Feix:

On the BRIP Algorithms Security for RSA. WISTP 2008: 136-149

Frédéric Amiel, Karine Villegas, Benoit Feix, Louis Marcel:

Passive and Active Combined Attacks: Combining Fault Attacks and Side Channel Analysis.

FDTC 2007: 92-102

Frédéric Amiel, Benoit Feix, Karine Villegas:

Power Analysis for Secret Recovering and Reverse Engineering of Public Key Algorithms.

Selected Areas in Cryptography 2007: 110-125

Bertrand Byramjee, Jean-Christophe Courrège, Benoit Feix:

Practical Attacks on Smart Cards. Handbook of Elliptic and Hyperelliptic Curve Cryptography

2005: 669-686

i ISO9564-1:1991, Banking – Personal Identification Number management and security – Part 1: PIN
protection principles and techniques, https://www.iso.org/standard/17309.html
ii ISO11568-1:1995, Banking – Key management (retail) – Part 1: Introduction to key management
iii FIPS140-1, Security Requirements for Cryptographic Modules,
https://csrc.nist.gov/csrc/media/publications/fips/140/1/archive/1994-01-11/documents/fips1401.pdf
iv ISO13491-1:1998, Banking – Secure Cryptographic devices (retail) – Part 1: Concepts, requirements
and evaluation methods, https://www.iso.org/standard/19521.html
v v Deterministic Authenticated-Encryption – A Provable-Security Treatment of the Key-Wrap Problem, P
Rogerway et al, https://www.iacr.org/archive/eurocrypt2006/40040377/40040377.pdf
vi IBM HSM Key Blocks, version 3.3.5.2
vii CCA Basic Services Reference and Guide for the IBM 4767 and IBM 4765 PCIe Cryptographic
Coprocessors Releases 5.5, 5.4, 5.3, 4.4, and 4.2, Thirty Six Edition
viii NIST SP800-108, Recommendation for Key Derivation Using Pseudorandom Functions,
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
ix Symmetric Key Cryptography for The Financial Services Industry – Wrapping of Keys and Associated
Data, ANSI X9.102 – 2008 (R2017), https://webstore.ansi.org/standards/ascx9/ansix91022008r2017
x Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping, SP800-38F,
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

xii xii PCI PTS PIN Information Supplement : Cryptographic Key Blocks, June 2017, PCI SSC,
https://www.pcisecuritystandards.org/documents/Cryptographic_Key_Blocks_Information_Supplemen
t_June_2017.pdf
xiii PCI PIN Requirements and Testing Procedures, Version 3.0, August 2018, PCI SSC,
https://www.pcisecuritystandards.org/documents/PCI_PIN_Security_Requirements_Testing_v3_Aug20
18.pdf

https://www.iso.org/standard/17309.html
https://csrc.nist.gov/csrc/media/publications/fips/140/1/archive/1994-01-11/documents/fips1401.pdf
https://www.iso.org/standard/19521.html
https://www.iacr.org/archive/eurocrypt2006/40040377/40040377.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
https://webstore.ansi.org/standards/ascx9/ansix91022008r2017
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://www.pcisecuritystandards.org/documents/Cryptographic_Key_Blocks_Information_Supplement_June_2017.pdf
https://www.pcisecuritystandards.org/documents/Cryptographic_Key_Blocks_Information_Supplement_June_2017.pdf
https://www.pcisecuritystandards.org/documents/PCI_PIN_Security_Requirements_Testing_v3_Aug2018.pdf
https://www.pcisecuritystandards.org/documents/PCI_PIN_Security_Requirements_Testing_v3_Aug2018.pdf

Work Item: IBM Key Blocks

Reference Standard: PCI PIN Security Requirements

Issue Date: 16 Sep 2022

Project: UL13487133

Confidentiality: Confidential 39/39 Report Revision: 2.9

https://www.pcisecuritystandards.org/documents/Cryptographic_Key_Blocks_Information_Supplemen
t_June_2017.pdf
xv PCI PIN Security Requirements Information Supplement: PIN Security Requirement 18-3 – Key Blocks,
June 2019, PCI SSC, https://www.pcisecuritystandards.org/documents/PIN_Security_Rqmt_18-
3_Key_Blocks_2019.pdf
xvi xvi See Q18 in PCI SSC PTS HSM Technical FAQs, PCI SSC,
https://www.pcisecuritystandards.org/documents/PTS_HSM_Technical_FAQs_v3_September_2020.pdf

https://www.pcisecuritystandards.org/documents/Cryptographic_Key_Blocks_Information_Supplement_June_2017.pdf
https://www.pcisecuritystandards.org/documents/Cryptographic_Key_Blocks_Information_Supplement_June_2017.pdf
https://www.pcisecuritystandards.org/documents/PIN_Security_Rqmt_18-3_Key_Blocks_2019.pdf
https://www.pcisecuritystandards.org/documents/PIN_Security_Rqmt_18-3_Key_Blocks_2019.pdf
https://www.pcisecuritystandards.org/documents/PTS_HSM_Technical_FAQs_v3_September_2020.pdf

