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Executive Summary 
PCI SSC manage rules for the use of cryptographic keys within payment systems, particularly 

those used to secure and process PIN based transactions.  The requirements for the key 

management of such PIN security related keys are provided in the PCI PIN Security 

Requirements, and these rules now mandate the use of ‘key blocks’ within the local 

environments of payment service providers.  Mandates for the use of key blocks with external 

connections are coming at later dates within this decade. 

 

The requirements for key blocks are set to refer to existing standards of TR-31 and ISO20038.  

Some technology providers have implemented key block systems that are not identical to those 

outlined in these standards, and PCI require that an independent review of these 

implementations is performed to validate they provide equivalence, with specific rules set to 

define the interpretation of this equivalence. 

 

IBM have contracted UL to produce such a report on one of their key block implementations.  

This report is produced based on documentation provided by IBM, without any functional 

testing.   

 

Through this review, UL has concluded that the WRAPENH3 and VLS formats designed by IBM 

can be considered equivalent to the standards of TR-31 and ISO20038, within the scope of 

‘equivalence’ as put forward by PCI SSC for the purpose of such a review. 
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Payment Key Management Overview 
The financial industry can be considered one of the earliest widespread adopters of encryption 

systems, outside the military and governmental arenas.  Methods to encrypt customer PINs 

were standardized in ISO9564 from 1991i, with general principles of key management outlined 

in ISO11568 from 1994ii.  Indeed, in many geographies, the use of encryption predates these 

International Standards by a decade or more. 

Of course, the secure use of encryption relies upon the secure storage and management of the 

cryptographic keys used for these operations.  This lead to the creation of even further 

standards for secure cryptographic devices, in documents such as FIPS140-1iii (published in 

1994, now superseded by FIPS140-3) and a more payments focused ISO13491 (published in 

1998iv). 

In these standards, and the implementations that they both preceded and were informed by, the 

ways in which cryptographic keys may be generated, loaded, used, and replaced within 

payment instruments were developed.  These processes are collectively understood as the ‘life 

cycle’ of the cryptographic keys that are used, and are governed by key management practices.  

As payment systems security has matured, the use of cryptography has been expanded from 

purely encrypting PINs to protecting other data (such as the payment card data itself), as well 

as providing authentication across message transmissions, and providing for the update of the 

working keys stored in a payment acceptance device. 

In payment systems, it is common to consider there are three high level forms of key 

management: 

1) Fixed 

2) Derived Unique per transaction 

3) Master/Session 

In a Fixed Key system, a single key (for each purpose) is loaded into the payment acceptance 

system, and this is used throughout the lifetime of the product.  A fixed key is often never 

changed, it is expected to not be changed, as it requires a physical process for any re-keying 

operation (although of course the keys are unique per purpose and device).  Regardless of how 

long the payment acceptance system is in operation, or how many transactions are performed 

on this system, the keys used remain identical. 

In a Derived Unique per transaction key management system, a single key is loaded into the 

payment acceptance device and new keys are generated for each transaction that is 

performed.  This is achieved through the use of an on-device key derivation process, which 

uses a pseudo-random process for generating a new key from the previous key data, potentially 

along with additional transaction related data.  The most commonly implemented Derived 

Unique key management system is that standardized in Annex C of ANSI X9.24 (known as 

Derived Unique Key Per Transaction, or DUKPT), although other methods do exist and are 

used around the world. 

The key derivation method used in a Derived Unique key management system will often 

implement a separate process for host-side key derivation, allowing for easy derivation of any 

arbitrary transaction keys at the host whilst maintaining forward secrecy over key derivation at 

the acceptance terminal side.  This alleviates the risk of the terminal/host key sets becoming 

out of sync.  The derivation process will also generally allow for the creation of more than one 
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key, so that there may be different transaction unique keys for each purpose required during the 

transaction. 

The third common form of key management used in payment systems is Master/Session key 

management, which is essentially a catch-all phrase used for any key management process 

which is neither Fixed Key, nor Derived Unique.  This form of key management allows for the 

loading of new keys as required, although key derivation may also be included as part of this 

process.  As implied by the name, a Master/Session key management system will result in the 

implementation of some form of ‘key hierarchy’, where the lowest level keys – the ‘working’ or 

‘session’ keys – are loaded into the payment acceptance system using other keys that are 

higher-up in the chain.   

 
Figure 1 – Example key hierarchies  

So, in a simple example we may have the PIN key Kp loaded encrypted under the Master Key 

Km, and the data key Kd also loaded under the same master key Km.  Consider an encryption 

function E that encrypts plaintext P to ciphertext C, using input key K.  This could be denoted as 

E(K, P) = C.  The reverse of this function would be the decryption function D, performing the 

operation D(K, C) = P. 

For PIN key loading we may then have encrypted forms of the PIN key K_p, which are secured 

under encryption using the master key K_m, as illustrated below. 

 Loaded PIN Key = E(K_m, K_p) 

 Loaded data Key = E(K_m, K_d) 

In many key management implementations, it is common to have a need to create new keys 

from an existing key.  For example, in Derived Unique systems, new working keys are created 

for each transaction on the payment acceptance device.  Even in Master/Session key 

management systems, it is common to have a single ‘Base Derivation Key’ (BDK) which is used 

to create unique Master keys for each individual payment acceptance device. 

ISO11568 considers three broad methods for the creation of a cryptographic key: 

1) Non-repeatable key generation 

2) Repeatable key generation 

3) Key calculation 
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Non-repeatable key generation involves the use of random or pseudo-random functions, where 

it is computationally infeasible to generate the same output state.  This may be through the use 

of a true random number generator to directly generate a key with sufficient entropy, or through 

use of non-repeating values input to a pseudo-random number generator or key agreement 

scheme. 

A repeatable key generation process uses a non-reversible process, such as a pseudo-random 

number generator (PRNG), with a predictable and known seed (so that process can be 

repeated).  Commonly in payments this would be a process using a One Way Function (OWF) 

or PRNG seeded by the serial number of the payment acceptance device to generate the 

device unique master key. 

Another method of key creation is ‘key calculation’, which is a reversible process applied to an 

existing key to create a new key.  In payment systems, this is commonly implemented through a 

so-called ‘variant’ process, where values are XOR’d across an existing plaintext key to change 

the value of that key to ‘calculate’ the value of a new key (the term ‘calculate’ is used 

specifically in ISO11568).  Because variants are reversible, it is a requirement that they are not 

exposed beyond the security boundary in which they are created (e.g. the payment acceptance 

device in which the original key on which the variants are applied).  For this reason, amongst 

others, the use of variants has been deprecated in many newer key management systems. 

Because of the early adoption of encryption within the financial services industry, key 

management systems have often spanned multiple changes in cryptographic algorithms or key 

sizes.  ANSI X9.24 DUKPT, for example, has three versions – one for single DES, one for 

Triple DES (TDES), and one for AES.  In Master/Session key management systems which 

implement TDES, it is common for the two 64 bit ‘halves’ of the DES key to be separately 

encrypted with the master key, as shown below: 

 Loaded Key = E(K_m, K_pl)||E(K_m, K_Pr) 

 Where  K_pL = the left most 64 bits of the 128 bit TDES key Kp 

  K_pR = the right most 64 bits of the 128 bit TDES key Kp 

  || is a concatenation operation 

The mode of operation used may vary, but ECB is often used in practice. 

Attacks on Payment Key Management 

It may now start to become clear that there are some potentials for exploiting the ways in which 

financial key management is performed as outlined above.  For example, although the brute 

force exhaustion of a TDES key remains computationally infeasible, exhaustion of the key 

domain for a single DES key is very easily achieved with todays computing power.  When a 

TDES working key is loaded using ECB encryption of the two key halves, it becomes possible 

to exploit this. 

If an adversary were to take a single, encrypted TDES key and separate out the two halves, 

each of these could be duplicated and loaded as their own TDES key – but with the effect that 

the loaded key would operate as a single DES key equivalent in value to that key half.  Using 

the PIN key example we have from above: 

 Loaded Key = E(K_m, K_pl)||E(K_m, K_pr) eKm(Kp_L)|eKm(Kp_R) 

 Adversary Key1 = E(K_m, K_pl)||E(K_m, K_pl) 

 Adversary Key2 = E(K_m, K_pr)||E(K_m, K_pr)  
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The adversary intercepts the attempt to load the genuine Loaded Key, and generates from this 

Adversary Key1 and Adversary Key2.  Either one of these keys may be then loaded into the 

payment acceptance terminal and will properly decrypt into a key which has the same value for 

each of its two 64 bit halves.  Because two key Triple DES operations are performed using an 

encrypt-decrypt-encrypt process, this results in the key being the equivalent of a single DES 

key of value equal to the plaintext of the key half used (either K_pl or K_pr). 

The attacker only has to obtain a few plaintext/ciphertext pairs to then brute force that key, and 

then can either load the other key half (and repeat) or load the full key (with both key halves) 

and brute force the remaining 64 bits they do not know.  In either case, the attacker has now 

successfully obtained the plaintext value of that working key, despite it being loaded encrypted. 

This attack works because it is possible to manipulate the encrypted key value without 

detection.  However, in systems where multiple algorithms that support the same master key 

are implemented, it can be possible to exploit a similar attack without changing the key at all.  

For example, we may have a system where both TDES and AES PIN keys are supported.  If an 

AES key of 128 bits can be loaded using the function that is intended to load a TDES key, then 

it may allow for the use of that key using the weaker algorithm. 

The notion of parity bits within a TDES key may imply that such an attack would be likely to fail, 

but it is common in many systems for parity bits to be ignored. 

Another attack exploits the fact that there are multiple purposes a key may have in a payment 

system, and often the operations performed by a key are constrained by that purpose.  For 

example, a PIN key within a payment terminal is only permitted to encrypt PINs – it cannot 

decrypt a PIN, or perform cryptographic operations on any other data.  Similarly, a data key 

may never be used directly on a customer PIN. 

However, an arbitrary payment device which is loading an encrypted key does not inherently 

know what purpose that key has until it is informed of that purpose.  Traditionally, this has been 

through the command used – “load PIN key” or “load data key” – as the keys themselves have 

historically not carried any metadata that describe their use.  This presents an opportunity for 

an attacker to alter the purpose of a key during loading. 

If we have a system which has two keys, K_p for encrypting PINs and K_d for encrypting (or 

decrypting) data, and both are loaded into the device encrypted with the master key Km using 

the commands: 

 Load_PIN_key(E(K_m, K_p)) 

 Load_data_key(E(K_m, K_d)) 

An adversary may intercept these commands and alter them so that the PIN key is loaded into 

both the PIN and data encryption functions, as per below: 

 Load_PIN_key(E(K_m, K_p)) 

 Load_data_key(E(K_m, K_p)) 

This now allows for an attacker to use the data decrypt function to decrypt any PIN block output 

by the device.  Even if the system only allows for data encryption, not data decryption, it is trivial 

for an attacker to use the encrypt function to exhaust the PIN domain (as customer PINs are 

commonly only four decimal digits in length, with an allowed maximum of 12 digits).   

These problems do not only affect payment acceptance terminals.  The Hardware Security 

Modules (HSMs) which are used to store and manage cryptographic keys at the banking 
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backend systems also often rely on key encryption under some master storage key to protect 

the working keys they use during operation.  Many HSMs do not actually store more than a 

handful of keys, and all other keys (which may be many hundreds to thousands of unique keys) 

are managed externally encrypted under a ‘master storage key’. 

Key Blocks and Key Wrapping 

To prevent the possibility of key manipulation attacks on both acceptance and backend 

systems, standards have been introduced to provide metadata describing the use and type of 

an encrypted key, as well as providing integrity and authenticity checks over the key and 

associated metadata.  This is known as ‘key wrapping’, or storing the key in a ‘key block’.  This 

concept has been introduced and analyzed previouslyv, but for the purposes of this paper the 

primary implementations referenced are TR-31 and ISO20038.   

In these standards, a cryptographic key is conveyed encrypted along with unencrypted 

metadata that describes the type and purpose of the key.  This general format is illustrated 

below. 

 Header Additional header 

(optional) 

Key 

length 

Key Padding MAC  

     

   

 

Figure 2 – Illustration of a wrapped key 

 

In line with key management best practice of ensuring a unique key for each unique purpose, 

key wrapping process involved two different keys, one for use as a KEK and one for the 

creation of the MAC.  The encryption key is used to protect the confidentiality of the key during 

transport, and the MAC is used to protect the integrity of the key (to prevent key manipulation 

as described above) as well as the integrity of the key metadata.   

In both TR-31 and ISO20038 these keys are created from a base ‘Key Block Protection Key’ 

(K_bpk, or KBPK).  In both standards there are two ways in which the MAC and KEK keys can 

be produced, a variant method and a key derivation method, although the variant method is 

considered deprecated for new use in many standards which reference these.  The process 

used to generate the keys and encrypt/MAC the key block for both the variant and derivation 

method is illustrated below. 

The input data used for the derivation of each key is dependent upon the purpose of the key 

(MAC or KEK) as well as the mode of operation used, and other optional data which may be 

supplied. 

The security of this key wrapping process is a function of the security of the cryptographic 

algorithm(s) used in the generation of the encrypted key block and the MAC, which may be 

AES or TDES.  The MAC function used is CMAC (as defined in NIST SP800-38B), and the 

mode of operation used for the encryption of the key may be either CBC or CTR mode, 

depending on the configuration used (which is then defined in the header and key derivation 

process). 

Encrypted 

Authenticated with MAC 
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Figure 3 – The derivation and use of encryption and authentication keys TR-31 ‘A’ and ‘C’ versions 

 

 
Figure 4 – The derivation and use of encryption and authentication keys in ISO20038 / TR-31 ‘B’ and 

‘D’ versions 

 

It can be noted that the two types of TR-31 (the ‘A’ and ‘C’ variant versions, and the ‘B’ and ‘D’ 

CMAC versions) differ in how they approach the way in which the MAC is calculated.  In the 

variant versions of TR-31, a CBC MAC is calculated across the key block once it has been 

constructed with the key header and encrypted key block.  This ‘encrypt then MAC’ approach 

provides value in allowing for any manipulated key block to be rejected prior to any further 

parsing of the key block, or use of the actual KEK that protects the key. 

However the more recent version of TR-31, which uses CMAC operations to derive the working 

KEK and authentication keys for the key block, calculates the MAC across the key block prior to 

the encryption of the key.  This means that in all cases, the key block must be (at least partially) 

parsed and unencrypted prior to determining even if it is has been subject to manipulation.  This 

exposes additional code surface within the key usage areas to attack, as well as exposing the 

KEK to side channel and other types of attack as it is used. 

However, for the purposes of comparing IBM key block implementations to TR-31, it will be 

assumed that a MAC-then-encrypt approach is acceptable as used in TR-31 ‘B’ and ‘D’ 

versions. 
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IBM WRAPENH3 Key Wrap Implementation 
IBM have implemented a proprietary key wrapping method designated WRAPENH3 (a 

shortening of wrap enhanced 3).  Details on this were supplied through various documents and 

discussions with IBMvivii.  This system is an increment of existing IBM wrap modes that utilize a 

‘control vector’ (CV) to provide metadata on the key, but instead of relying upon a binary 

addition of this CV onto the KEK, the metadata is bound to the wrapped key using a CMAC.  

This document does not detail the implementation of the existing WRAPENH1 and WRAPENH2 

modes used in IBM systems, and concerns itself solely with the new WRAPENH3 format.    

In this format, the key metadata and key itself are bundled into a 64 byte block that forms the 

key bundle / wrap.  This block is defined in Table 1 – IBM WRAPENH3 format on the next page 

(note this contains details on settings for key wrapping other than WRAPENH3).  This block 

includes details on the length and use of the key, as well as version details for the wrapping 

process itself, the encrypted key value and the CMAC output, amongst other data.   

As with other key wrapping standards, the keys used for encryption and authentication are 

derived separately from a single master key block protection key.  This process utilizes a 

SHA256 HMAC operating as a Key Derivation Function (KDF) in counter mode, as per NIST 

SP800-108viii.  Specifically, this is: 

K = HMAC(Kbpk, 0x0000||Label||0x00||[Length]) 

Where  ‘Length’ = Four byte big-endian bit length of the key being derived 

 ‘Label’  = The ASCII characters WRAPENH3KEY-ENCR  for the KEK 

  = The ASCII characters WRAPENH3KEY-CMAC for the authentication key 

  = The ASCII characters PCI-HSM_ENC_2020 for KEKs used in PCI mode 

  = The ASCII characters PCI-HSM_MAC_2020 for auth keys in PCI mode 

For WRAPENH3, the key wrapping process itself is defined as follows: 

1) Set the values of the Control Vector 1 (CV1) as required for the key type, version, etc. 

2) Set the value for Control Vector 2 as all zeros. 

3) Generate the authentication and key encrypting keys for the key wrapping process. 

4) Place the plaintext values of the key into the key block.  The length of the key is 

represented by the first key that has all zero values, so a single length key has the key 

value stored in the K1 position, with K2 and K3 loaded with zeros.  A double length key 

has the first half of the key loaded in K1, the second half loaded in K2, and all zeros 

loaded into K3.  A triple length key has all key positions loaded with their key values. 

5) Calculate a CMAC across the entire block, using the derived authentication key.  Place 

the output of this CMAC calculation into the location for Control Vector 2. 

6) Chain the parts of the plaintext key together using SHA256, in the following process: 

a. K3C = K3 

b. K2C = K2^Trunc_SHA256(K3) 

c. K1C = K1^Trunc_SHA256(K2) 

d. KC = K1C||K2C||K3C 

Where: Trunc_SHA256 is the first 64 bits of the SHA256 of that part of the key  

 ^ is the XOR operator 

 || is concatenation of two values 

7) Encrypt the key using the derived key encryption key across the chained key parts (KC) 

using the CBC mode of operation. 

8) Place the encrypted key parts into the respective K1, K2, and K3 slots in the key block. 
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The key block format is defined in the table below. 

Offset 

(bytes) 

Length 

(bytes) 

Field Definition 

0 1 Token flag EMPTY_TOKEN_FLAG             0x00 

INTERNAL_TOKEN_FLAG          0x01 

EXTERNAL_TOKEN_FLAG          0x02            (all other values reserved) 

1 1 RFU RFU 

2 2 Oldmkvp Legacy field, now always loaded with 0x0000 

4 1 Version 0x00 (for WRAPENH3 version) 

5 1 RFU RFU 

6 1 Flag byte 1 MASK_KEY                  0x80 // encrypted key & MKVP present 

MASK_CV                   0x40 // CV in token has been applied 

S390-ONLY :: MASK_NOCV   0x20 // KEK used for NOCV processing 

MASK_AKEK                 0x10 // ANSI KEK (AKEK) 

MASK_AKEK_DOUBLE          0x08 // AKEK is double-length key 

MASK_AKEK_PART_NOTARIZED 0x04 // AKEK is partially notarized 

MASK_ANSI_PARTIAL_KEY  0x02 // key is an ANSI partial key 

MASK_XPORT_PROHIB         0x01 // prohibit export when bit is 0b1 

7 1 Flag byte 2 bit 0-2: wrap method: 

 '000xxxxx' WRAP_TK_LEGACY   = 0, 

  ECB/legacy method 

 '001xxxxx' WRAP_TK_ENH_CBC  = 1, 

  Chain Keys with SHA-1, SHA-256 KDF->KEK, variant 

  KEK, CBC encryption 

 '010xxxxx' WRAP_TK_ENH_2    = 2, 

  Chain Keys with SHA-256, SHA-256 KDF->KEK, variant 

  KEK, CBC encryption 

 '011xxxxx' WRAP_TK_ENH_3    = 3, 

  Chain Keys with SHA-256, SHA-256 KDF-> MAC key, 

  TDES-CMAC, SHA-256 KDF->KEK, CBC encryption 

 bit 3-5: 'xxx000xx' reserved 

 bit 6: 'xxxxxx1x' used for legacy case 

  pre-2009 code was not clear on how this is used, but it 

  is checked 

 bit 7: 'xxxxxxx0' reserved 

8 8 Mkvp KEK or Master Key verification pattern 

16 8 Left key part (K1) First 8 bytes of the chained and encrypted (T)DES key 

24 8 Right key part (K2) Second 8 bytes of the chained and encrypted (T)DES key 

32 8 Control Vector 1 (CV1) The value of the Control Vector 1  

40 8 Control Vector 2 (CV2) The value of the Control Vector 2, used for CMAC in WRAPENH3 

48 8 Third key part (K3) The third 8 bytes of an encrypted 168 bit (T)DES key, or random data 

56 3 RFU RFU 

59 1 Token Marks  TM_KEY_LENGTH_SINGLE         0x00 

TM_KEY_LENGTH_DOUBLE         0x10 

TM_KEY_LENGTH_TRIPLE         0x20 

TM_CDMF_DATA                  0x80 

TM_CDMF_KEK                   0x80 

TM_DES_DATA                   0x00 

TM_SYSTEM_DEFAULT_KEK        0x00 

TM_DES_KEK                    0x40 

TM_KEY_LENGTH_MASK           0x30 

TM_TOKEN_MARKS_MASK          0xC0 

TM_TOKEN_MARKS_SINGLE_MASK   0xCF 

TM_RESERVED                   0x0F 

60 4 Token Validation Value (TVV) Legacy checksum 

Table 1 – IBM WRAPENH3 format 



Work Item: IBM Key Blocks  

Reference Standard: PCI PIN Security Requirements  

Issue Date: 16 Sep 2022  

Project: UL13487133  
 

 

 

 

Confidentiality: Confidential 13/39 Report Revision: 2.9 

 

The attributes of the key are defined in the Control Vector 1 value, which are provided in detail 

in Appendix I to this document.  These provide for specific values to be used for defining the 

key type in the first byte, with variations on that specific key type defined in the third byte of the 

control vector.  The fifth byte defines what subordinate keys a key that is defined as a KEK may 

operate on, and the sixth and eighth bytes are used for general key metadata such as 

exportability, etc. 

Some of the general metadata values – such as wrap format and key length – are not used in 

the WRAPENH3 format, and only exist for legacy reasons. 

The overall Control Vector format is summarized below.  For specific details on all values, refer 

to the Appendix. 

 

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 

Key Type  Key type 

specifics 

 Permitted 

subordinate 

keys for 

KEKs 

General 

metadata 

 General 

metadata 

Table 2 – High level IBM control vector format 

 

Examples of default / common control vector values are provided in the table below (copied 

from reference vi  

 

Type Control Vector  Description 

Key encrypting keys  

EXPORTER  00 41 7D 00 03 41 00 A0 
00 41 7D 00 03 21 00 A0 

Used to encrypt a key taken from this local node  

CCA 6.2+: allowed to be triple-length key type. 

IKEYXLAT 00 42 42 00 03 41 00 A0 
00 42 42 00 03 21 00 A0 

Used to decrypt an input key token in a key 
translation service that decrypts an external input 
key token under an IKEYXLAT KEK, then 
encrypts the key material as a new external 
output key token under an OKEYXLAT KEK. 

IMPORTER 00 42 7D 00 03 41 00 A0 
00 42 7D 00 03 21 00 A0 

Used to decrypt a key brought to this local node.  

CCA 6.2+: allowed to be triple-length key type. 

OKEYXLAT  00 41 42 00 03 41 00 A0 
00 41 42 00 03 21 00 A0 

Used to encrypt an output key in a key translation 
service that decrypts an external input key token 
under an IKEYXLAT KEK, then encrypts the key 
material as a new external output key token under 
an OKEYXLAT KEK. 

Data protection keys  

CIPHERXI  00 0C 50 00 03 C0 00 A0 
00 0C 50 00 03 A0 00 A0 

Used to decrypt ciphertext during text translation 
from 1 cipher key to another cipher key. 

CIPHERXO  00 0C 60 00 03 C0 00 A0 
00 0C 60 00 03 A0 00 A0  

Used to encrypt ciphertext during text translation 
from 1 cipher key to another cipher key. 

CIPHERXL  00 0C 71 00 03 C0 00 A0 
00 0C 71 00 03 A0 00 A0  

Used to decrypt or encrypt ciphertext during text 
translation. 
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Type Control Vector  Description 

CIPHER 00 03 71 00 03 41 00 A0 
00 03 71 00 03 21 00 A0 

Used only to encrypt or decrypt data. 

CCA 6.2+: allowed to be triple-length  key type.  

DATAC 00 00 71 00 03 41 00 A0 
00 00 71 00 03 21 00 A0 

Used only to encrypt or decrypt data. 

DECIPHER 00 03 50 00 03 41 00 A0 
00 03 50 00 03 21 00 A0 

Used only to decrypt data.  

CCA 6.2+: allowed to be triple-length  key type. 

ENCIPHER 00 03 60 00 03 41 00 A0 
00 03 60 00 03 21 00 A0 

Used only to encrypt data.  

CCA 6.2+: allowed to be triple-length  key type. 

Data integrity keys  

DATAM 00 00 4D 00 03 41 00 A0 
00 00 4D 00 03 21 00 A0 

Used to generate or verify a MAC. 

DATAMV  00 00 44 00 03 41 00 A0 
00 00 44 00 03 21 00 A0 

Used to verify a MAC code; cannot be used in 
MAC-generation 

MAC 00 05 4D 00 03 41 00 A0 
00 05 4D 00 03 21 00 A0 

Used to generate or verify a MAC.  

CCA 6.2+: allowed to be triple-length  key type. 

MACVER 00 05 44 00 03 41 00 A0 
00 05 44 00 03 21 00 A0 

Used to verify a MAC code; cannot be used in 
MAC-generation  

CCA 6.2+: allowed to be triple-length  key type. 

PIN-processing keys  

IPINENC 00 21 5F 00 03 41 00 A0 
00 21 5F 00 03 21 00 A0 

Inbound PIN encrypting key, used to decrypt a 
PIN block  

CCA 6.2+: allowed to be triple-length  key type. 

OPINENC 00 24 77 00 03 41 00 A0 
00 24 77 00 03 21 00 A0 

Outbound PIN encrypting key, used to encrypt a 
PIN block  

CCA 6.2+: allowed to be triple-length  key type. 

PINGEN  00 22 7E 00 03 41 00 A0 
00 22 7E 00 03 21 00 A0 

Used to generate and verify PIN values  

CCA 6.2+: allowed to be triple-length  key type. 

PINVER  00 22 42 00 03 41 00 A0 
00 22 42 00 03 21 00 A0 

Used to verify, but not generate, PIN values  

CCA 6.2+: allowed to be triple-length  key type. 

Key-generating keys  

DKYGENKY  00 71 44 00 03 41 00 A0 
00 71 44 00 03 21 00 A0 

Used to generate a diversified key based on a 
key-generating key. 

 

Alteration of any of the control vector bits, or of the key itself, will result in changing the input 

data used to generate the CMAC, and therefore invalidating the CMAC when it is checked.  

Brute forcing of the potential values of the CMAC to attempt to load a modified block would 

require an attack across the 64 bit domain of the CMAC to brute force a specific value.   
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IBM Variable Length Symmetric Key Block 
IBM have also implemented another key wrapping method, designated as a Variable Length 

Symmetric Key block.  This system is based on the key wrapping standard published by ANSI 

in X9.102ix, and utilizes AES based protection keys for the purposes of wrapping another key 

for storage or distribution.  For the purposes of this report, we refer to this key block under 

review as the VLS key block.   

Unlike TR-31 or ISO20038, which use separate keys for confidentiality and integrity, the VLS 

key block uses a single key to encrypt a body of data that contains the key as well as specific 

key metadata, using a mode of operation designated as AESKW.  This mode of operation is 

specified in ANSI X9.102, and also defined in NIST SP800-38Fx, specifically for the purposes of 

key wrapping.   

In their 2007 paper “Deterministic Authenticated-Encryption”xi, Rogerway et al note that no 

formal proof for the security of this mode exists, but comment that “… we find it likely the 

mechanism is correct”.  The use of ANSI X9.102 and AESKW is additionally referenced in the 

PCI SSC document “Information Supplement: Cryptographic Key Blocks”xii, within the section 

defining the meaning and purpose of key wrapping, implicitly applying approval to this method 

of key wrapping.  

The PCI paper also notes, however, that there are many different ways to implement key 

wrapping and ANSI X9.102 leaves open specifics of the implementation.  This document 

discusses the specifics of the IBM implementation utilizing AES keys for the key wrapping 

process. 

The key wrapping method used in VLS is performed in two stages.  The first stage takes the 

key metadata (as defined in Appendix I) and hashes this data using SHA256.  This hash is then 

taken, along with some static details on the type and length of the hash used for this type of key 

block, and placed into a subsequent block – along with the plaintext key to be wrapped, an ICV, 

and padding – that is encrypted with the wrapping key using the AESKW mode of operation. 

 

Figure 5 – Illustration of IBM VLS key wrapping 
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This process is illustrated above, and defined formally below. 

Wrapped Key =  

(AssociatedData)||AESKW(K_aeskw, [ICV||PadLength||HashData||Key||Padding])  

Where  Associated Data = The key block metadata, including header, wrapping information,  

   and key attributes, as defined in Table 3 

 K_aeskw  = The key to be used as the wrapping key 

 ICV  = A 6 byte constant 0xA6A6A6A6A6A6 

   This is the default ICV value defined in NIST SP800-38F for AESKW 

 PadLength = The length of the padding applied, set so that the length of the key to 

   be encrypted plus the padding is always the maximum key length for  

   that algorithm XXX Need to reference v1 payload only XXX 

HashData = The length, type and output of the hash function across the 

associated data block.  Length and type are fixed for this key wrapping 

type to SHA256 

 Key  = The key to be wrapped 

 Padding = The number of 0x00 bytes as defined by the padding length.   

In this method, the key properties are set in the associated data block and the inclusion of a 

hash over this data into the encrypted block is used as the method to bind this key data to the 

key itself.   

The value of the key properties contained in the Associated Data block are provided in the next 

page in Table 3.  This defines the key wrapping method used, the version, the length and 

purpose of the key, etc.  Changing any value within the Associated Data block would cause the 

SHA256 calculation across this block to produce a different value, therefore failing the check 

when they key is decrypted. 

This key wrapping process does not utilize keys separately derived by the operating device 

(HSM, Point of Interaction etc) before the wrapping / unwrapping process, as do both TR-31 

and the IBM WRAPENH3 key wrapping methods.  Therefore this mode also requires the use of 

the KEK before authentication of the key block can be performed. 
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Offset 

(bytes) 

Length 

(bytes) 

Field Definition 

Header 

0 1 Token flag INTERNAL_TOKEN_FLAG          0x01 

1 1 RFU RFU 

2 2 Length Length in bytes of total associated data block 

4 1 Version 0x05 (for VLS version) 

5 3 RFU RFU 

Wrapping Information 

8 1 Key material state 0x00 No key is present 

0x01 Key is clear (this would be non-compliant to PCI requirements) 

0x02 Key is wrapped with a transport key 

0x03 Key is wrapped with the AES master key 

9 1 Key verification pattern (KVP) 0x00 No KVP, key is not present, plaintext, or RSA wrapped 

0x01 AESMK (8 leftmost bytes of SHA256) 

0x02 KEK (8 leftmost bytes of SHA256) 

10 16 KVP value 0x00 The key material state is no key is present 

0x01 The key material state is the key is clear 

0x02 The key material state is the key is wrapped with a transport key 

0x03 The key material state is the key wrapped with the AES master key 

26 1 Encrypted key wrapping 

method 

0x00 No key wrapping method 

0x02 AESKW  

0x03 PKOAEP2, RSAES-OAEP RSA PKCS#1 v2.1 

27 1 Hash algorithm used 0x00 No hash 

0x01 SHA-1 

0x02 SHA-256 

0x03 SHA-384 

0x08 SHA-512 

28 1 Payload format version 0x00 v0 payload 

0x01 v1 payload 

 Wrapping methods uses fixed key length 

29 1 RFU  

Attribute Data 

30 1 Attribute data section 0x01 Version 1 

31 1 RFU  

32 2 Attribute data length Length in bytes of all attribute data 

34 1 Optional key label length  Length in bytes of the optional key label 

35 1 IBM optional data length Length in bytes of optional IBM extended attribute data 

36 1 User definable data length Length in bytes of optional user definable attribute data 

37 1 RFU  

38 2 Key length Length in bits of key or wrapped key, including padding 

40 2 RFU  

41 1 Algorithm type The algorithm for which the wrapped key can be used:  

0x01 = (T)DES, 0x02 = AES, 0x03 = HMAC 

42 2 Key type The purpose of the wrapped key 

0x0001 Cipher 

0x0002 MAC 

0x0003 KEK export 

0x0004 KEK import 

0x0005 PIN protection 

0x0006 PIN calculation 

0x0007  PIN reference value 

0x0008 DESUSECV 

0x0009 DUKPT key generation key 

0x000A AES and (T)DES secure messaging, such as for EMV 

0x000B Key generation key 

44 1 Key field usage count (Kuf) The number of key usage fields contained below 

45 -  Variable Key usage fields  

Table 3 – VLS key block structure (excluding AESKW encrypted key) 
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PCI SSC Key Wrapping Mandates 
One of the entities that governs the standards used for maintaining security across the card 

payment landscape is the Payment Card Industry Security Standards Council (PCI SSC).  This 

entity has published requirements for the use of key wrapping in systems that fall under the 

purview of their standards, with the primary resources being the PCI PIN standardxiii (which 

covers the key management requirements for entities that process PIN based transactions), 

and two information supplements’ published in 2017xiv and 2019xv. 

In these documents, requirements for the implementation and use of key wrapping methods for 

cryptographic keys which provide security for PIN based transactions are outlined.  This 

document does not attempt to cover the specific dates of these mandates, but instead outline 

the actual requirements themselves so that conclusions can be drawn concerning the 

compliance of IBMs key wrapping implementations. 

In both of the information supplements, the Executive Summary indicates acceptable methods 

for implementing the requirements of key wrapping to include: 

- A MAC computed over the concatenation of the clear-text attributes and the enciphered 

portion of the Key Block, which includes the key itself, 

- A digital signature computed over that same data, 

- An integrity check that is an implicit part of the key-encryption process such as that 

which is used in the AES key-wrap process specified in ANSI X9.102. 

In the 2019 supplement, several Frequently Asked Questions – with associated answers – are 

provided, including the clarification that key wrapping methods do not need to provide for 

‘directionality’ of keys, i.e. a key wrapping method does not need to be able to differentiate 

between ‘send’ keys, which perform encryption operations on some data, as opposed to 

‘receive’ keys, which would decrypt such data (this is clarified in Q14 of that document). 

An update to the PCI PIN requirements for key wrapping was provided in Jan of 2021, with the 

following FAQ: 

Q 34 January 2021: Encrypted symmetric keys are required to be managed in 

structures called key blocks. These key blocks may be as defined in ANSI or ISO 

standards, or equivalent proprietary methods. PCI recently published detailed HSM 

and POI FAQs defining the characteristics that an ‘equivalent’ key block must 

possess, and the process for assessment. How does this impact PIN Security 

assessments? 

A Until January 2023, Service Providers can continue to operate using existing 

proprietary methods that have not yet been validated under the defined key block 

equivalency process. Any newly developed proprietary methods must undergo the 

defined key block equivalency process prior to any implementations. After December 

2022, proprietary methods not validated as equivalent will be considered non-

compliant. 
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Examples of Key Wrapping Implementations 

In this section we review some examples of both TR-31 and IBM proprietary key blocks, to 

demonstrate how they function practically and highlight similarities between the 

implementations. 

TR-31 Example Key Blocks 

Two TR-31 example key blocks are shown below: 

 

A0136V0TN00S0200102CIBMC012400227E000341000000227E0003210000PB047F5787

857B413A01A880461CB19203B0F2D9E3E5326133B9D29036D35BEC873C95F22E81 

 

B0144P0TE00S0200102CIBMC012400247700034100000024770003210000PB04C71F19

9CC5A13FECEAAF94EC3CC4C3025787E709BC8101236F51736F93421D65CABAD5E97A7F

D11B 

 

By simply viewing the first digit of each of these key blocks, it is possible to determine that one 

is definitely not compliant to the requirements – that is because the first digit indicates the key 

block version, and only versions ‘B’ and ‘D’ are compliant to PCI PIN key block rules.  In the first 

of the examples above, the version is ‘A’, indicating that it uses a variant method of diversifying 

the Key Block Protection Key into the encryption and authentication keys.  This violates the PCI 

PIN requirements. 
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Examining the first example block in more detail, we have the following: 

Byte 

Number 

TR-31 

assignment 

Value in 

example 

Description for this key block 

0 Version ID A Key block type ‘A’, using variants to calculate working keys 

1-4 Key block 

length 

0136 Total key block length is 136 characters 

5-6 Key usage V0 Key in block is a PIN verification key 

7 Algorithm T The wrapped key is a TDES key 

8 Mode of use N No restrictions on mode of use 

9-10 Key version 

number 

00 No key versioning is implemented for this key block 

11 Exportability S The key is sensitive and can only be exported under a KEK 

12-13 Number of 

optional 

blocks 

02 The key block contains two optional header blocks 

14-15 RFU 00 Reserved 

16-17 Optional 

Block ID 

10 The ID of the first optional block (is 10).  A numeric value 

indicates a proprietary optional block. 

18-19 Optional 

block length 

2C This optional block has a length of 2C, or 44 characters 

(expressed in decimal) 

20-59 Optional 

block 

content 

IBMC0124  - IBM proprietary block carrying DES control vectors 

00227E0003410000 – Control vector 1 

00227E0003210000 – Control vector 2 

60-61 Optional 

Block ID 

PB This is the ID for a padding block, used to space the key 

block out to relevant block lengths as required 

62-63 Optional 

block length 

04 The length of this optional block is 04, which means no 

further data is included 

64-128 Encrypted 

key 

7F5787857B413A01A880461CB19203B0F2D9E3E5326133B9D29036D

35BEC873C 

This is the wrapped key, length indicator, and associated padding all 

encrypted with the KEK varianted from the KBPK 

129-135 MAC 95F22E81 

The first four bytes of a CBC MAC used to authenticate the key block, 

calculated over the previous values (including encrypted key) using the 

auth key varianted from the KBPK 

Table 4 – TR-31 ‘A’ type, variant based key block example 
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For the second key block, the decomposition is: 

Byte 

Number 

TR-31 

assignment 

Value in 

example 

Description for this key block 

0 Version ID B Key block type ‘B’, using CMAC to derive the working keys 

1-4 Key block 

length 

0144 Total key block length is 144 characters 

5-6 Key usage P0 Key in block is a PIN encryption key 

7 Algorithm T The wrapped key is a TDES key 

8 Mode of use E The key can be used for encryption or wrapping only 

9-10 Key version 

number 

00 No key versioning is implemented for this key block 

11 Exportability S The key is sensitive and can only be exported under a KEK 

12-13 Number of 

optional 

blocks 

02 The key block contains two optional header blocks 

14-15 RFU 00 Reserved 

16-17 Optional 

Block ID 

10 The ID of the first optional block (is 10) 

18-19 Optional 

block length 

2C This optional block has a length of 2C, or 44 characters 

(expressed in decimal) 

20-59 Optional 

block 

content 

IBMC012400227E000341000000227E0003210000 

60-61 Optional 

Block ID 

PB This is the ID for a padding block, used to space the key 

block out to relevant block lengths as required 

62-63 Optional 

block length 

04 The length of this optional block is 04, which means no 

further data is included 

64-128 Encrypted 

key 

C71F199CC5A13FECEAAF94EC3CC4C3025787E709BC8101236F5173

6F93421D65 

This is the wrapped key, length indicator, and associated padding all 

encrypted with the KEK CMAC derived from the KBPK 

129-143 MAC CABAD5E97A7FD11B 

The first four bytes of a CBC MAC used to authenticate the key block, 

calculated over the previous values (including encrypted key) using the 

auth key CMAC derived from the KBPK 

Table 5 – TR-31 ‘B’ type, CMAC derivation based key block example 
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IBM Sample Key Blocks 

Examples of the IBM WRAPENH3 and VLS key blocks were also supplied, as shown below: 

WRAPENH3 sample key block: 

020000000000C0600000000000000000E0DCEFE482282605116F7A4CC3652AFD000371

0003600081AE1F4C7FD672C0E83C62B185E7411B890000000008692362 

 

VLS sample key block: 

[0100008c05000000030149da4dd4e87815730000000000000000020201000100] 

[001e0000000002800002000304fc000000e000f80003e00000000505bfb9d631] 

[8227f586edf221d05d41f908aae3ea49ede64347451556dad13030db164ba956] 

[82664f496a5c85b6ba34c3202bd5491552ba23ede40850bd5f32b5a717dba2e3] 

[74d24f5aee60f3122c10a265] 

 

A decomposition of the WRAPENH3 key block is tabulated below: 

Byte 

Number 

WRAPENH3 

Assignment 

Value in example Description for this key block 

0 Token type 02 External token 

1 RFU 00  

2-3 Oldmkvp 0000  

4 Version 00 This must be 00 for WRAPENH3 

5 Reserved 00  

6 Flag byte 1 C0  

7 Flag byte 2 60 011xxxxx = WRAPENH3 

8-15 Mkvp 0000000000000000  

16-23 Left key part (K1) E0DCEFE482282605 Encrypted K1  

24-31 Right key part (K2) 116F7A4CC3652AFD Encrypted K2 

32-39 Control Vector 1 (CV1) 0003710003600081 Data encryption key 

40-47 Control Vector 2 (CV2) AE1F4C7FD672C0E8 CMAC output across key block 

48-55 Third key part (K3) 3C62B185E7411B89 Encrypted K3 or random data 

56-58 RFU 000000  

59 Token Marks  00  

60-63 Token Validation Value  08692362  

Table 6 – IBM proprietary WRAPENH3 key block example 

 



Work Item: IBM Key Blocks  

Reference Standard: PCI PIN Security Requirements  

Issue Date: 16 Sep 2022  

Project: UL13487133  
 

 

 

 

Confidentiality: Confidential 23/39 Report Revision: 2.9 

 

Decomposition of the VLS key block is performed in the table below: 

Byte 

Number 

VLS Assignment Value in 

example 

Description for this key block 

0 Token flag 01  

1 RFU 00  

2-3 Length 008c Length of key block is 8c, or 140 characters 

4 Version 05 VLS version 

5-7 RFU 000000  

8 Key material state 03 Key is wrapped with an AES master key 

9 Key verification pattern 

(KVP) 

01 Key verification pattern is AESMK 

10-25 KVP value 49da4dd4e87815730000000000000000 

 

26 Encrypted key 

wrapping method 

02 AESKW key wrapping is used 

27 Hash algorithm used 02 SHA256 is used as the hash algorithm 

28 Payload format version 01 V1 payload  

29 RFU 00  

30 Attribute data section 01  

31 RFU 00  

32-33 Attribute data length 001e Length of attribute data section, from byte 30, is 

1E, or 30 characters in decimal 

34 Optional key label 

length  

00  

35 IBM optional data 

length 

00  

36 User definable data 

length 

00  

37 RFU 00  

38-39 Key length 0280 Payload length in bits  

40 RFU 00  

41 Algorithm type 02 Wrapped key is an AES key 

42-43 Key type 0003 Wrapped key is a KEK for key export 

44 Key field usage count 

(Kuf) 

04  

45-59 Key usage fields fc000000e000f80003e00000000505 

60-139 Encrypted key block bfb9d6318227f586edf221d05d41f908aae3ea49ede64347451

556dad13030db164ba95682664f496a5c85b6ba34c3202bd54

91552ba23ede40850bd5f32b5a717dba2e374d24f5aee60f312

2c10a265 

Table 7 – IBM proprietary VLS key block example 
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Comparing IBM key blocks to TR-31 

From the previous sections, it can be seen that all the described key blocks follow the broad 

format of [header][encrypted key data][authentication block].  The organization and content of 

the various parts are different for each key block, as are the derivation and use of the keys used 

for the encryption and authentication functions.  Although TR-31 format ‘A’ key blocks are 

deprecated for new use, the use of variants to calculate the working keys continues to be used 

in the ‘C’ version of TR-31 based key blocks, as does the use of CBC MAC as the 

authentication function.  Additionally, there is no consistency in TR-31 with regards to encrypt-

then-MAC, or MAC-then-encrypt, so it must be assumed for the purposes of comparison that 

either is acceptable (although encrypt-then-MAC provides many benefits). 

The IBM WRAPENH3 format uses the same CMAC operation for authentication across the key 

and header data as do the ‘B’ and ‘D’ TR-31 key block versions, including taking a MAC-then-

encrypt approach, thereby providing equivalent protection against modification to the TR-31 

versions.  The header content provides for a similar range of key attributes in regards to key 

use, but does lack the key versioning TR-31 provides, which can help protect against injection 

of expired keys. 

The IBM VLS key block uses the AESKW mode of operation, as defined in NIST SP800-38F, 

rather than a CMAC for authentication.  To the best of our knowledge, no formal proof of 

AESKW exists, but importantly the authenticity of the associated data is provided through 

inclusion of the SHA256 hash within the AESKW rather than the AESKW algorithm itself.  

Modification of the key block associated data / header block will force a different SHA256 output 

when this is calculated on the receiving end, allowing the modification to be detected.  

Modification of the encrypted portion of the key block is unable to provide predictable changes 

to the content and will lead to failure of the AESKW authentication process.  
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IBM WRAPENH3 PCI PIN Compliance 
The PCI SSC have outlinedxvi eight specific requirements that must be met for any key block 

that is not implemented exactly as per TR-31 or ISO20038.  These points are detailed below. 

a) It must prevent the loading of PIN, MAC, and/or Data keys - or any keys used to 

manage these within the key hierarchy - from being used for another purpose. IPEK, 

KEKs, and derivation keys must be uniquely identified where supported. 

b) It must prevent the determination of key length for variable length keys. 

c) It must ensure that the key can only be used for a specific algorithm (such as TDES or 

AES, but not both). 

d) It must ensure a modified key or key block can be rejected prior to use, regardless of 

the utility of the key after modification. Modification includes changing any bits of the 

key, as well as the reordering or manipulation of individual single DES keys within a 

TDES key block. 

e) Where different key block formats are supported, with some providing the above 

protections and some not, it must be humanly readable from the key block prior to 

loading/use which format is implemented. E.g., by looking at the commands sent to the 

device. 

f) It must support all symmetric algorithms implemented by the device(s) that are to use 

the key blocks. 

g) Where asymmetric algorithms are supported, the algorithm type, padding and signature 

formats must be identified in the key block. 

h) It must use NIST approved modes of operation, with separate keys used for 

confidentially and authenticity. Any keys used must not be related in a reversible way. 

In reference to WRAPENH3 for these set of requirements, we note (using the same numbering 

system as above): 

a) The WRAPENH3 format provides key identification, including unique identification of 

PIN, MAC, Data, KEKs, and Derivation keys in the Control Vector value (as detailed in 

Table 1 and Appendix I).  IPEKs are designated as a specific type of derivation key, 

which can only be used with ANSI X9.24 DUKPT based derivation operations. 

b)  The WRAPENH3 format always includes values in the three slots allocated to the key 

parts.  Determination of which of these are valid for key use requires knowledge of the 

decrypted key parts which provide key length by setting unused key parts to all zeros 

(so K2 and K3 = all zeros for a single length key, and K3 = all zeros for a double length 

key).  Without knowledge of the plaintext key, keys of different lengths are 

indistinguishable. 

c) The WRAPENH3 process is only defined for use with TDES keys. 

d) The WRAPENH3 process implements a CMAC across the length of the block, including 

the plaintext key values.  Modification or manipulation of any of the values in the key 

block will result in the failure of the CMAC validation, and subsequent rejection of the 

key block. 

e) There are multiple key blocks possible in this format, and the WRAPENH3 format is 

able to be uniquely identified by the value of 011 in bits 0-2 of the Flag byte 2 value. 

f) The WRAPENH3 key block is designed solely for TDES use.  AES keys are supported 

by another key block format by this HSM, which is considered acceptable. 

g) Asymmetric algorithms are not supported by this key block format. 

h) The key encryption is implemented using CBC, which is a NIST approved mode of 

operation. 

Therefore, the IBM WRAPENH3 algorithms can be seen as entirely equivalent to the key 

wrapping processes defined in TR-31 and ISO20038, in both security and equivalency criteria 
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outlined by the PCI SSC.  Each use a CMAC process for the generation of an authentication 

block across the key block, and each use the same algorithms and modes of operation for the 

encryption of the key itself (and any associated padding). 

The differences between the IBM WRAPENH3 and TR-31 / ISO20038 can be best summarized 

as: 

i. A different format is used for the metadata and key storage in the block. 

ii. The WRAPENH3 process binds the key parts together with SHA256 prior to encryption 

(which the TR-31 / ISO20038 process does not). 

iii. The WRAPENH3 process derives the KEK and the authentication key using a HMAC 

based key derivation function, rather than a CMAC based key derivation function used 

in TR-31 / ISO20038. 

iv. WRAPENH3 supports TDES keys encrypted with CBC mode of operation only.  AES 

keys are managed using another key block format in IBM HSM devices. 
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IBM VLS Key Wrapping PCI PIN Compliance 
The PCI SSC have outlinedxvii eight specific requirements that must be met for any key block 

that is not implemented exactly as per TR-31 or ISO20038.  These points are detailed below. 

a) It must prevent the loading of PIN, MAC, and/or Data keys - or any keys used to 

manage these within the key hierarchy - from being used for another purpose. IPEK, 

KEKs, and derivation keys must be uniquely identified where supported. 

b) It must prevent the determination of key length for variable length keys. 

c) It must ensure that the key can only be used for a specific algorithm (such as TDES or 

AES, but not both). 

d) It must ensure a modified key or key block can be rejected prior to use, regardless of 

the utility of the key after modification. Modification includes changing any bits of the 

key, as well as the reordering or manipulation of individual single DES keys within a 

TDES key block. 

e) Where different key block formats are supported, with some providing the above 

protections and some not, it must be humanly readable from the key block prior to 

loading/use which format is implemented. E.g., by looking at the commands sent to the 

device. 

f) It must support all symmetric algorithms implemented by the device(s) that are to use 

the key blocks. 

g) Where asymmetric algorithms are supported, the algorithm type, padding and signature 

formats must be identified in the key block. 

h) It must use NIST approved modes of operation, with separate keys used for 

confidentially and authenticity. Any keys used must not be related in a reversible way. 

In reference to VLS Key Wrapping for these set of requirements, we note (using the same 

numbering system as above): 

a) The associated data block bound into the key wrapping through the SHA256 function 

includes designations for the key as a MAC, KEK, data, and key derivation key.  

Different types of PIN key are also supported, depending on the function (e.g. PIN 

calculation or PIN encryption) 

b) The key block can support a mode where the wrapped key is padded to the maximum 

key length for that algorithm.  This is similar to how TR-31 and ISO20038 function. 

c) The algorithm that the key can be used for is defined in the associated data block, and 

maybe 0x01 to 0x03 for compliant usage, which defines a key to be used for the 

(T)DES, HMAC, or AES algorithms respectively. 

d) Modification of the key or associated data is prevented by the use of the SHA256 

across the associated data block, and the use of the AESKW authenticated encryption 

mode of operation.  Changing any of the associated data will result in the calculated 

SHA256 value within the encrypted key block no longer matching the value produced 

during the key check process.  Alteration of the data within the encrypted block itself 

would result in failure of the AESKW mode to properly decrypt the data. 

e) The key block format and version are defined in the associated data, which is a 

plaintext value provided as part of the key block. 

f) The key block supports AES.  Other algorithms are supported by other key block 

formats within IBM systems. 

g) The key wrapping method allows for the definition of the algorithm for the wrapped key, 

as does TR-31, and specific values for compliance with the PCI definition of ‘strong 

cryptography’ are noted in this report. 

h) The AESKW mode of operation is defined in NIST SP800-38F. 
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Therefore, the IBM VLS algorithm can be seen as entirely equivalent to the key wrapping 

processes defined in TR-31 and ISO20038, in both security and equivalency criteria outlined by 

the PCI SSC.   

The differences between the IBM VLS and TR-31 / ISO20038 can be best summarized as: 

i. A different format is used for the metadata and key storage in the block. 

ii. The VLS process binds the key parts together with SHA256 prior to encryption (which 

the TR-31 / ISO20038 process does not). 

iii. The VLS process uses the AESKW mode of operation, rather than separate CBC and 

CMAC methods used for encryption and authentication in TR-31 / ISO20038. 
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Appendix I – IBM Control Vector Values 
 

 
Figure 6 – IBM Control Vector 1 settings (1 of 4) 
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Figure 7 – IBM Control Vector 1 settings (2 of 4) 
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Figure 8 – IBM Control Vector 1 settings (3 of 4) 
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Figure 9 – IBM Control Vector 1 settings (4 of 4) 
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