
IBM z/VSE
VSE Central Functions

VSE/VSAM User’s Guide and Application
Programming
Version 9 Release 2

SC34-2742-00

���

IBM z/VSE
VSE Central Functions

VSE/VSAM User’s Guide and Application
Programming
Version 9 Release 2

SC34-2742-00

���

Note !

Before using this information and the product it supports, be sure to read the general information under “Notices” on page
xiii.

This edition applies to Version 9 Release 2 of IBM VSE/VSAM, which is part of VSE Central Functions, Program
Number 5686-CF9, and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC33–8316–02.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address
your comments to:
IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:
Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1979, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

Notices xiii
Trademarks xiii
Accessibility xiv

Using Assistive Technologies xiv
Documentation Format xiv

About This Publication xv
Who Should Use This Publication xv
How to Use This Publication xv
Where to Find More Information xvi

Abbreviations xvii

Summary of Changes xxi

Chapter 1. Introduction to IBM
VSE/VSAM 1
Overview 1

Advantages. 1
Functions of IBM VSE/VSAM 2

Concepts of Data Organization 4
File Types 4
Elements of Organization 5
Catalogs with VSE/VSAM. 7
Indexes with VSE/VSAM 8

How to Communicate with VSE/VSAM 9
IDCAMS Commands 9
VSE/VSAM Macros 11
Job Control Parameters to Access VSE/VSAM
Files 12
z/VSE Interactive Interface 12

Chapter 2. Planning Information 15
Compatibility with IBM VSE/VSAM Version 2 . . 15
Overview of Environment and Requirements . . . 15
What to Consider 15

Partition Space for Non-SVA-Eligible Routines. . 16
Device Dependencies 16

Storage for VSE/VSAM 16
Space for Running in Virtual Mode 16
Space for Running in Real Mode 16
Partition Requirement for Buffers and Control
Blocks 16

Storage for the VSE/VSAM Space Management for
SAM Function 19
Storage for the ISAM Interface Program (IIP) . . . 20
Storage for IDCAMS Including the VSE/VSAM
Backup/Restore Function. 20

VSE/VSAM Backup/Restore Function 21

Chapter 3. Operation and Job Control 23
IPL Command Specifications for VSE/VSAM . . . 23

Assigning a Device to the Master Catalog . . . 23
Defining the Lock File 23
Specifying the Number of Supervisor Buffers for
Channel Programs 24

Volume Mounting 24
Mounting a Volume Through Job Control
Specifications 24
Mounting a Volume Through Automatic
Assignment 24

Use of z/VSE Job Control Statements for
VSE/VSAM 25

Job Control Statements for Catalogs 25
Job Control Statements for Files 27

// DLBL Statement. 28
Format of the DLBL Statement 29
File Disposition 32

// EXEC Statement. 38
Note to Users of the VSE/VSAM Space
Management for SAM Function 38
Format of the EXEC Statement 39

// EXTENT Statement. 41
Format of the EXTENT Statement 41

Using Job Control for Catalog Definition 42
Overview of Catalogs 42
Specifying the Master Catalog 43
Specifying a User Catalog 44
Specifying a Job Catalog 44
Search Sequence of Catalogs 46

Chapter 4. Tasks under VSE/VSAM. . . 47
Data and Space Management 47

About the VSE/VSAM Catalog 47
Defining VSE/VSAM Data Spaces on a Volume 48
Defining VSE/VSAM Files 48
About Volumes and VTOCs 48

Work Files on Virtual Disk 51
Transporting Files between Systems 52
Catalog and File Migration 53

Definitions for Catalog Migration 54
Migrating Catalogs 55
Migrating VSE/VSAM Files to Another Device 56
NonVSAM Migration 57
Space Allocation through Modeling 57

Using an Object as a Model 58
About the MODEL Subparameter 58
Explicit Allocation Models 59
Explicit Noallocation Models 61
Implicit NOALLOCATION Models (Default
Models) 61
How VSE/VSAM Determines Which Parameters
to Use 62
Restrictions 63
Default Volumes. 66

© Copyright IBM Corp. 1979, 2014 iii

Chapter 5. Working With Compressed
Files 67
Introduction to VSE/VSAM Compression 67

Advantages 67
Activating VSE/VSAM Data Compression . . . 68

How VSE/VSAM Data Compression Works
Internally 68

Dictionary Creation. 68
Compression States 69
Data Format of Records 70

How to Define the Compression Control Data Set 70
Which Data Set Types Are Eligible. 71
Restrictions 71
The VSE/VSAM Compression Prediction Tool
(IKQCPRED) 72

Using IKQPRED. 72
Method of Operation 73
Interpreting IKQCPRED Results 73

Chapter 6. Device Dependencies . . . 77
VSE/VSAM Support of Large DASD 77

Making Use of the Support 78
Migrating to Large DASD Using IDCAMS
Backup/ Restore. 79
Performance Considerations (KSDS Only) . . . 79
Increased Size of the Catalog Index 80
Restrictions for VSE/VSAM Support of Large
DASD 80
New or Changed Fields in LISTCAT Output . . 80

Support for FBA Disk Devices (FBA and SCSI) . . 80
Technical Considerations 81
Restrictions 82

Virtual Tapes 83

Chapter 7. Optimizing the Performance
of VSE/VSAM 85
Number of Files Defined in a Catalog 85
Data Space Classification 86
Control Area (CA) Size 88

Minimum and Maximum CA Sizes 88
Performance Implications. 88
Disk Storage Sizes 89

Control Interval (CI) Size 90
How to Specify 90
Data CI and Block Sizes 90
CI Size in a Data Component 92
CI Size in an Index Component. 94
Key Compression 95

I/O Buffer Space (Using Non-Shared Resources) . . 96
Considerations 97
Buffer Specification 97
Buffer Allocation 98

I/O Buffer Space (Using Local Shared Resources) 102
Miscellaneous Notes on Buffer Allocation (LSR) 102
LSR Buffer Hashing 102

Preventing Deadlock in Buffer Contention 104
Multiple Volume Support 104

Key Ranges 104
Space Allocation 105

Examples: Allocation of Space on Multiple
Volumes 106

Space Allocation 111
Possible Options 111
NOALLOCATION. 112

Data Protection and Integrity Options 113
Distributed Free Space 114

Loading a File 114
CI/CA Splits 116
Examples: CI/CA Splits 117

Index Options 122
Performance Measurement 123

Displaying Statistics About Buffer Pools . . . 124

Chapter 8. Data Protection and Data
Recovery 125
Data Protection 125

Passwords to Authorize Access 125
IDCAMS Commands Security 128
User Security-Verification Routine 130
Protecting Shared Data 131

Data Integrity 134
IDCAMS Commands and Command Options
for Data Integrity 135
Using the DEFINE SPACE Command 135
Using the DEFINE CLUSTER Allocation
Subparameter 135
Using the DEFINE USERCATALOG Command 136

Protecting VSE/VSAM Files and Volumes 136
Backup Considerations 137
Relationship of Catalog Entries to VSE/VSAM
Files and Volumes 137
Creating Backup Copies of VSE/VSAM Files 138
Creating Backup Copies of Volumes 139

Protecting VSE/VSAM Catalogs 139
Creating Backup Copies of Catalogs 140
Rebuilding a Catalog 141

Guide to VSE/VSAM Recovery 141
Tools for Data Integrity, Backup, and Recovery . . 142
Procedures for VSE/VSAM Recovery 146

File is Not Properly Closed 146
File is Inaccessible 147
Catalog is Unusable 148
Volume is Inaccessible 152

Quick Recovery 153

Chapter 9. VSE/VSAM Support for
SAM Files 155
Overview. 155

About SAM ESDS Files 155
About the VSE/VSAM Space Management for
SAM Function 156

Advantages in Using SAM ESDS Files 156
Planning for Files 158

Work Files 158
Disposition 159
Extending Existing SAM ESDS Files 159

Levels of Migrating Data and Programs from SAM
to VSE/VSAM Control 160

iv VSE/VSAM V9R2 User’s Guide and Application Programming

Functions Available at the Various Migration
Levels 160

Creating a SAM ESDS File 161
Setting Up a Quantity of Space 162
Defining a SAM ESDS File 162
Explicit Define Cluster (Using the DEFINE
CLUSTER Command) 162
Implicit Define Cluster 166
Resetting and Reusing a Previously-Defined File 169

Using a SAM ESDS File 169
Access to a SAM ESDS File. 169
Managed-SAM Access: Differences to
(Unmanaged) SAM Access 170
Using SAM ESDS Files: Restrictions 172
VSE/VSAM Access of SAM ESDS Files:
Considerations 173

The IDCAMS Commands for a SAM ESDS File . . 175
Implicit Deletion of a SAM ESDS File 178

Sample Programs and Job Streams 179
Example 1: Load a SAM ESDS File by Way of
Managed-SAM Access 179
Example 2: Implicit Define of a SAM ESDS File 181
Example 3: Define a Default Model SAM ESDS
File 181
Example 4: Define a Dynamic SAM ESDS File
and Access 182

Differences Between VSE/VSAM ESDS and SAM
ESDS File Format 183

How CIs are Formatted into CAs. 183
Relationship of Physical and Logical Layout . . 185

Chapter 10. Performing an IDCAMS
SNAP (FlashCopy) 187
Overview of the IDCAMS SNAP Command . . . 187
Avoiding Incorrect Usage of Volumes and Catalogs 188
Advantages in Creating a Snapshot of Entire Disk
Volumes 188
Using IDCAMS SNAP and BACKUP With a
Synonym List 189
Example of Running IDCAMS SNAP / BACKUP
With a Synonym List 191
Using the FlashCopy Dialog to Backup
VSE/VSAM Data 191
Controlling Access to the IDCAMS SNAP
Command 192

Chapter 11. Using VSE/VSAM Macros 195
Groups of Macros 195
Relating a Program and the Data 196

ACB: Specifying the Access Method Control
Block 196
EXLST: Specifying the Exit List 197
RPL: Specifying the Request Parameter List . . 198
GENCB: Generating Control Blocks and Lists 199

Connecting and Disconnecting a Processing
Program and a File 200
Manipulating and Displaying the Information
Relating Program and Data. 201
Requesting Data Transfer, Positioning, and Deletion
of Records 201

Displaying Catalog Information. SHOWCAT . . . 201
Sharing Resources Among Files and Displaying
Catalog Information 203
Data Set Name Sharing 204

Considerations 204
Processing 205
Specifying Manipulation Macros 205

Buffers and LSR Pools above 16MB Line of Storage 206

Chapter 12. Descriptions of
VSE/VSAM Macros 207
Syntax of VSE/VSAM Macros 207
VSAM Executable Macros and Their Mode
Dependencies 208
The ACB Macro 208

Format of the ACB Macro 209
OPEN/CLOSE/TCLOSE Message Area. . . . 217

The BLDVRP Macro 219
Deciding How Big a Pool to Provide 220
Displaying Information about an Unopened File 220
Displaying Statistics about a Buffer Pool . . . 220
Format of the BLDVRP Macro 220
Return Codes from BLDVRP 222
Connecting a File to a Resource Pool 223
Restrictions 223

The CLOSE Macro. 223
Format of the CLOSE Macro 224

The DLVRP Macro 225
The ENDREQ Macro 226
The ERASE Macro. 227
The EXLST Macro 227

Format of the EXLST Macro 228
EODAD Exit Routine to Process End-of-File . . 229
EXCPAD Exit Routine 230
JRNAD Exit Routine to Journal Transactions . . 231
LERAD Exit Routine to Analyze Logic Errors 234
SYNAD Exit Routine to Analyze Physical Errors 234

The GENCB Macro 236
Format of the GENCB Macro 236
Examples of the GENCB Macro 238

The GET Macro 238
Format of the GET Macro 239

The MODCB Macro 240
Format of the MODCB Macro 240
Examples of the MODCB Macro 242

The OPEN Macro 242
Format of the OPEN Macro 242
Return Codes from OPEN 243

The POINT Macro. 244
The PUT Macro 245
The RPL Macro. 246

Format of the RPL Macro 246
RPL Processing Options 250
Specifying Processing Options for a Request . . 252

The SHOWCAT Macro 260
Format of the SHOWCAT Macro 260
Return Codes from SHOWCAT 263

The SHOWCB Macro 266
Format of the SHOWCB Macro 267
Keywords of the ACB, EXLST, and RPL Macros 268
Length of a Control Block or List 269

Contents v

Attributes of an Open File 269
Structure of the ATRB 273
Examples: The SHOWCB Macro 274
Example: Statistics on Use of LSR Buffer Pools 275
LSR Matrix 276
Extent Matrix 279
Example of an LSR Matrix Call 283
Example of an Extent Matrix Call 285

The TCLOSE Macro 286
The TESTCB Macro 286

Format of the TESTCB Macro 287
Operands of the ACB, EXLST, and RPL Macros 288
Length of a Control Block or List 289
Attributes of an Open File or Index 289

The WRTBFR Macro 291
Managing I/O Buffers 291
Deferring Write Requests 291
Relating Deferred Requests by Transaction ID 292
Writing Buffers Whose Writing Has Been
Deferred 292
Format of the WRTBFR Macro. 293

Examples: ACB, EXLST, and RPL Macros 294
Specifying VSE/VSAM Control Blocks 294
JCL to Open and Process a File 296

Examples of Request Macros 297
How to Retrieve a Record: GET Macro 298
How to Position for Subsequent Sequential
Access: GET and POINT Macros 304
How to Chain Request Parameter Lists and
Terminate a Request: ENDREQ Macro 306
How to Store a Record: PUT Macro 309
How to Update a Record: GET and PUT Macros 313
How to Delete a Record: GET and ERASE
Macros 317
How to Use Extended User Buffering: GET and
PUT Macros 319
Current User Buffering Support 319
Extended User Buffering Support. 319
Using Extended User Buffering 320

Return Codes of Request Macros 320
Return Codes from the Control Block Manipulation
Macros 322
List, Execute, and Generate Forms of the Control
Block Manipulation Macros. 322

List and Execute Forms 323
Generate Form 323
Examples of the List, Execute, and Generate
Forms 323

Appendix A. Operand Notation and
Parameter Lists for VSE/VSAM
Macros 325
Operand Notation for VSE/VSAM Macros . . . 325

GENCB Macro Operands 326
MODCB Macro Operands 328
SHOWCB Macro Operands. 329
TESTCB Macro Operands 329
BLDVRP Macro Operands 332
DLVRP Macro Operands 332
SHOWCAT Macro Operands 332

WRTBFR Macro Operands 332
Parameter Lists for VSE/VSAM Macros 333

The GENCB Parameter List. 334
The MODCB Parameter List 336
The SHOWCB Parameter List 338
The TESTCB Parameter List 339
The BLDVRP Parameter List 342
The SHOWCAT Parameter List 343

Appendix B. Invoking IDCAMS from a
Program 345
Invoking Macro Instructions 345

User I/O Routines. 347

Appendix C. Advantages of the ISAM
Interface Program (IIP) 351
Comparison of VSE/VSAM and ISAM 351

Differences Between ISAM and VSE/VSAM . . 351
VSE/VSAM Functions That Go Beyond ISAM 352

Preparations and Using the ISAM Interface
Program 354

Step 1: Consider Restrictions in the Use of IIP
and VSE/VSAM 354
Step 2: Define a VSE/VSAM File 355
Step 3: Load the VSE/VSAM File. 356
Step 4: Changing ISAM Job Control Statements 356

What the ISAM Interface Program Does 357

Appendix D. Compatibility With Other
Products 359
Portability of VSE/VSAM Files to DFSMSdfp
VSAM. 359
Compatibility of VSE/VSAM with DFSMSdfp
VSAM. 361
Similarities between VSE/VSAM and ACF/VTAM 361

Appendix E. VSE/VSAM Labels 363
Types of VSE/VSAM Labels 363
Location of Labels 364

Volume Layouts 364
Label Information Area 365

VTOC Label Processing 365
VSE/VSAM Data Spaces 366
VSE/VSAM Files 366
VTOC Labels for FBA Devices 367
VSE/VSAM Data Space 367
VSE/VSAM Files 369

Job Stream Examples 371
Example - Define Data Spaces 371
Example - Define a File in a Catalog. 373
Example - Define a Unique File 373
Example - Process a File 373

Appendix F. Diagnosis Tools 375
Catalog Check Service Aid (IKQVCHK) 375

In Case of Errors 376
How to Run a Check 376
Examples of Error Messages 376
Output of a Check. 378

vi VSE/VSAM V9R2 User’s Guide and Application Programming

SNAP Trace (IKQVEDA) 380
How to Run a SNAP Trace 382
Example: SNAP Trace 0001 383

Maintaining VTOC and VOL1 Labels on Disk
(IKQVDU) 385

How to Run the IKQVDU 385
Error Message and Codes (from IKQVDU) . . 388

Appendix G. Using the VSAM
Redirector Connector 391
Overview of the VSAM Redirector Connector . . 391

Using the VSAM Redirector Client For
Synchronous Data Redirection 392
Using the VSAM Capture Exit For Asynchronous
Data Redirection 392
EXCPAD for The Redirector 393

Glossary 395

Index 411

Contents vii

viii VSE/VSAM V9R2 User’s Guide and Application Programming

Figures

1. KSDS File Format: Records Stored in Key Field
Sequence 5

2. VRDS File Format: Variable-Length Records
Stored by Record Number 5

3. VSE/VSAM File Type Structures 6
4. Example: Two Alternate Indexes for a

Key-Sequenced File 8
5. Relationship of Catalogs and Files 42
6. Explicit Allocation Model 59
7. Specifying the MODEL Parameter at the

CLUSTER Level Only 60
8. Explicit NOALLOCATION Model 61
9. Implicit NOALLOCATION Models. 62

10. The Four Compression States of a Compressed
Cluster 69

11. Sample IKQCPRED Output 74
12. Classification of Data Space 86
13. How VSE/VSAM Computes Physical Block

Size 92
14. Migration from SAM Control to VSE/VSAM

Control 160
15. Example of CA Format Using a VSE/VSAM

Entry-Sequenced File 184
16. Example of Non-CA Format Using a SAM

ESDS File 185
17. Comparison of a VSE/VSAM Block to a SAM

Logical Block 186
18. Relationship of Catalog Entries 202
19. GENCB Macro Examples 238
20. MODCB Macro Examples 242
21. Example of an RPL Chain Built by Specifying

the NXTRPL Operand. 249
22. SHOWCB Macro Example 275
23. Example of a SHOWCB Call 275
24. SHOWCB Macro Example 276
25. TESTCB Macro Examples 291
26. Example of Specifying Control Blocks for a

File 295
27. Example of JCL Needed to Open and Process

a File 297
28. Request Macro Example 1: Keyed-Sequential

Retrieval 298
29. Request Macro Example 2: Skip-Sequential

Retrieval 299
30. Request Macro Example 3:

Addressed-Sequential Retrieval 301
31. Request Macro Example 4: Keyed-Direct

Retrieval 302
32. Request Macro Example 5: Addressed-Direct

Retrieval 303

33. Request Macro Example 6: Keyed Positioning
with POINT 304

34. Request Macro Example 7: Switching from
Direct to Keyed-Sequential 305

35. Request Macro Example 8: Chaining Request
Parameter Lists 307

36. Request Macro Example 9: Giving up
Positioning for Other Request 308

37. Request Macro Example 10: Keyed-Sequential
Insertion 309

38. Request Macro Example 11: Skip-Sequential
Insertion 311

39. Request Macro Example 12: Keyed-Direct
Insertion 312

40. Request Macro Example 13:
Addressed-Sequential Addition 313

41. Request Macro Example 14: Keyed-Sequential
Update. 314

42. Request Macro Example 15: Keyed-Direct
Update. 315

43. Request Macro Example 16:
Addressed-Sequential Update 316

44. Request Macro Example 17: Keyed-Direct
Deletion 317

45. Request Macro Example 18:
Addressed-Sequential Deletion. 318

46. Examples of the List and Execute Form 324
47. Example of the Generate Form. 324
48. Processor Invocation Argument List from a

Program 346
49. Arguments Passed to and from a User I/O

Routine 348
50. Using the ISAM Interface Program 357
51. Volume Layouts of VSE/VSAM Files 365
52. Examples: Defining VSE/VSAM Data Spaces 372
53. Example: Defining a VSE/VSAM File

Suballocated from a Data Space 373
54. Example: Defining a Unique VSE/VSAM File

(File-ID MSTRFILE) 373
55. Example: Processing a VSE/VSAM File with

an Assembler Program 374
56. Example: Key-Range Names not Matching 377
57. Example: Incorrect Association Group

Occurrence 378
58. Example: Output from the Catalog Check

Service Aid (IKQVCHK) 379
59. Example: SNAP Trace Output 385
60. Display of IKQVDU Functions 387

© Copyright IBM Corp. 1979, 2014 ix

x VSE/VSAM V9R2 User’s Guide and Application Programming

Tables

1. ESDS File Format: Records Stored as Received 4
2. RRDS File Format: Fixed-Length Records Stored

by Record Number 5
3. Partition Requirements for Control Blocks and

Buffers (with NSR) 17
4. Partition Requirements for Control Blocks and

Buffers (with LSR) 18
5. How VSE/VSAM Allocates Buffers 19
6. // DLBL Statement Required for Job Catalogs

and User Catalogs 26
7. Job Control Statements Required for Files 27
8. DLBL Statement Disposition Values 30
9. VSE/VSAM Access: OPEN Disposition 34

10. Managed-SAM Access: OPEN Disposition --
OUTPUT/INPUT 34

11. Managed-SAM Access: OPEN Disposition --
WORKxxxx 35

12. VSE/VSAM Access: CLOSE Disposition 37
13. Managed-SAM Access: CLOSE Disposition 38
14. // DLBL Specifications and Search Sequence

of Catalogs. 46
15. Modeling of DEFINE Parameters 64
16. Minimum CI Sizes Depending on Key Length 79
17. Minimum and Maximum CA for Generic FBA

Devices 82
18. Disk Storage Sizes for IBM CKD Devices 89
19. Disk Storage Sizes for IBM FBA (and SCSI)

Devices 90
20. Relationship of CI Size to Physical Block Size

for Data Component 93
21. Register Settings on Passing Control to

Authorization Routine 130

22. Tools for Integrity, Backup, and Recovery 143
23. Valid Combinations of Access Methods and

File Types. 160
24. VSAM Macros and Their Mode Dependencies 208
25. Summary of Processing Options for Keyed

and Addressed Access 252
26. Example of Backward Sequential Retrieval

through a Path with Non-Unique Alternate
Keys 255

27. GENCB Keywords 326
28. ACB Keywords (BLK=ACB). 327
29. EXLST Keywords (BLK=EXLST) 327
30. RPL Keywords (BLK=RPL) 327
31. MODCB Keywords 328
32. ACB Keywords 328
33. EXLST Keywords 328
34. RPL Keywords 329
35. SHOWCB Keywords 329
36. TESTCB Keywords. 329
37. ACB Keywords 330
38. EXLST Keywords 331
39. RPL Keywords 331
40. EXLST Keywords 332
41. ERREXT Parameter List for ISAM Programs

with IIP 358
42. FilenameC with IIP when IOROUT=ADD,

RETRVE, or ADDRTR. 358
43. FilenameC with IIP when IOROUT=LOAD 358
44. VSE/VSAM Diagnosis Tools 375
45. Low-Key-Range Catalog Records and Codes 379
46. Explanation to IKQVDU Functions 387

© Copyright IBM Corp. 1979, 2014 xi

xii VSE/VSAM V9R2 User’s Guide and Application Programming

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM websites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no
responsibility for the content or use of non-IBM websites specifically mentioned in
this publication or accessed through an IBM website that is mentioned in this
publication.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Deutschland GmbH
Dept. M358
IBM-Allee 1
71139 Ehningen
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

© Copyright IBM Corp. 1979, 2014 xiii

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

Accessibility
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/VSE enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/VSE. Consult the assistive technology documentation for
specific information when using such products to access z/VSE interfaces.

Documentation Format
The publications for this product are in Adobe Portable Document Format (PDF)
and should be compliant with accessibility standards. If you experience difficulties
when you use the PDF files and want to request a web-based format for a
publication, you can either write an email to s390id@de.ibm.com, or use the Reader
Comment Form in the back of this publication or direct your mail to the following
address:
IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

xiv VSE/VSAM V9R2 User’s Guide and Application Programming

About This Publication

This publication contains guidance information for using the functions that are
available with the IBM® VSE/Virtual Storage Access Method (VSE/VSAM). It
describes the major facilities of the program and how to use them efficiently.

This publication explains concepts of VSE/VSAM. Furthermore, it includes
information about:
v Planning for VSE/VSAM.
v Using various diagnosis tools.
v Using VSE/VSAM macros.

Who Should Use This Publication
This publication is intended for the VSE/VSAM application programmer and for
the end user.

How to Use This Publication
v Conceptual Information:

If you want basic information about VSE/VSAM, refer to Chapter 1, “Introduction
to IBM VSE/VSAM,” on page 1.

v Requirements and Planning:
If you need to know about VSE/VSAM requirements, or want to plan and
calculate storage space, refer to Chapter 2, “Planning Information,” on page 15.
If you are responsible for planning the protection of data at your installation, you
should acquaint yourself with Chapter 8, “Data Protection and Data Recovery,”
on page 125.

v For information on VSE/VSAM macros:

Chapter 11, “Using VSE/VSAM Macros,” on page 195 describes how to use the
VSE/VSAM macros.
Chapter 12, “Descriptions of VSE/VSAM Macros,” on page 207 shows the
format for each VSE/VSAM macro and the meaning of each parameter.
Appendix A, “Operand Notation and Parameter Lists for VSE/VSAM Macros,”
on page 325 shows how to specify operands and how to use parameter lists of
the various VSE/VSAM macros.

VSAM for VM

As of z/VSE release 3.1, the component VSE/VSAM for VM operating system
(Program Number 5686-081) was discontinued and is no longer available as an
optional product. Consequently, all references to it have been removed from the
VSE/VSAM technical documentation. However, customers having a need for
running VSE/VSAM in the VM environment must keep the reference publications
titled VSE/VSAM User's Guide and Application Programming, VSE Central Functions
6.4, SC33-6732-00, and VSE/VSAM Commands, VSE Central Functions 6.4,
SC33-6731-00, as well as VSE/ESA documentation up to release 2.7.

© Copyright IBM Corp. 1979, 2014 xv

Where to Find More Information
v VSE/VSAM Commands, SC33-8315

gives an overview of and detailed information on the IDCAMS utility program
(how to create and maintain files).

v z/VSE Messages and Codes, Volume 1, SC34-2632, z/VSE Messages and Codes, Volume
2, SC34-2633, z/VSE Messages and Codes, Volume 3, SC34-2634
lists VSE/VSAM messages and their explanations.

z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date
information about VSE-related products and services, new z/VSE functions, and
other items of interest to VSE users.

You can find the z/VSE home page at

http://www.ibm.com/systems/z/os/zvse/

You can also find VSE User Examples (in zipped format) at

http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

xvi VSE/VSAM V9R2 User’s Guide and Application Programming

http://www.ibm.com/systems/z/os/zvse/
http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

Abbreviations

The following abbreviations are used in this publication:

ACB Access control block

ACF Advanced Communications Function

AIX® Alternate index

ASA American Standards Association

ASCII American National Standard Code for Information Interchange

ASI Automated system initialization

BG Background

BSM Basic Security Manager

CA Control area

CCDS Compression control data set

CCW Channel command word

CI Control interval

CIDF Control information definition field

CKD count-key-data (device)

CP Control program

CPU Central processing unit

DFSMSdfp
Data Facility Storage Management Subsystem Data Facility Product

DLBL Disk label

DLF Define lock file

DOS Disk Operating System

DSF Device Support Facilities

DTF Define the file

EBCDIC
Extended binary coded decimal interchange code

ECKD™

Extended count key data

EOF End of file

EOV End of volume

ESA Enterprise Systems Architecture

ESCON®

Enterprise systems connection

ESS Enterprise Storage Server®

ESDS Entry-sequenced data set

© Copyright IBM Corp. 1979, 2014 xvii

EXCP Execute channel program

FBA Fixed-block-architecture (device)

HALCRBA
High allocated relative byte address

ICCF Interactive Computing and Control Facility

ICF Integrated Catalog Facility

ID Identifier

IIP ISAM Interface Program

IPL Initial program load

ISAM Indexed-sequential access method

ISO International Standards Organization

JCL Job control language

JIB Job information block

KB Kilobyte (1024 bytes)

KSDS Key-sequenced data set

LSR Local shared resources

LU Logical unit

MB Megabyte (1,048,576 bytes)

MSHP
Maintain system history program

MVS™ Multiple Virtual Storage

NSR Non-shared resources

RBA Relative byte address

RDF Record definition field

RL Record length

RRDS Relative record data set

SAM Sequential Access Method

SCSI Small Computer Systems Interface

SDL System directory list

SEOF Software end-of-file

SIO Start I/O

SP System Package

SVA Shared virtual area

UPSI Use program switch indicator

VM Virtual machine

VRDS Variable-length relative-record data set

VSAM
Virtual Storage Access Method

xviii VSE/VSAM V9R2 User’s Guide and Application Programming

VSE Virtual Storage Extended

VTAM®

Virtual Telecommunications Access Method

VTOC Volume Table of Contents

XA Extended Architecture

z/VSE®

z/Virtual Storage Extended

Abbreviations xix

xx VSE/VSAM V9R2 User’s Guide and Application Programming

Summary of Changes

This publication has been updated to reflect enhancements and changes that are
implemented with VSE/VSAM 9.2. It also includes terminology, maintenance, and
editorial changes.
v Support of the CISIZE parameter of DLBL statement was added for VSE/VSAM

Implicit Cluster Definitions. Refer to “Format of the DLBL Statement” on page
29.

v Starting with z/VSE V5.1, the SHOWCB macro also provides the following
information:
– LSR (Local Shared Resources) matrix which contains string statistics

information, information about each buffer pool defined for the specified LSR
pool, and LSR string and buffer statistics for each cluster within a specified
share pool.

– Extent matrix which contains characteristics of physical devices where the
specified cluster and information about all extents for the specified cluster
resides.

Nine new keywords for the FIELDS parameter were added. For more details,
refer to “The SHOWCB Macro” on page 266.

v Resource Access Control Facility interface for IDCAMS commands has been
implemented to integrate VSAM into the overall z/VSE BSM concept. Access
control on the level of IDCAMS has been added. Refer to “IDCAMS Commands
Security” on page 128.

What is New With z/VSE 5.2?

For a complete overview of the functions that are new with z/VSE 5.2, refer to the
z/VSE Release Guide, SC34-2636.

© Copyright IBM Corp. 1979, 2014 xxi

xxii VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 1. Introduction to IBM VSE/VSAM

This Chapter ...
v Summarizes the advantages of using the IBM VSE/Virtual Storage Access Method

(VSE/VSAM).
v Highlights the use of programs and functions of VSE/VSAM.
v Provides you with conceptual information on physical file organization, and the

elements that are used in managing and processing the files.
v Gives you an outline on the various means for communicating with

VSE/VSAM.

For information on requirements and compatibility of VSE/VSAM, refer to
Chapter 2, “Planning Information,” on page 15.

Overview
IBM VSE/VSAM is an access method for the indexed or sequential processing of
records on direct access devices. Records can be of fixed-length or variable-length.

VSE/VSAM is the preferred file management system for VSE environments.

Note: If you presently have SAM or ISAM files, you can convert such files to the
VSE/VSAM format.

VSE/VSAM can handle:
v Batch and online processing
v Direct and sequential access
v Access by key, record number, or address
v Intermixed types of processing in a common data base

VSE/VSAM provides the following means of communication:
v The IDCAMS utility program. You use IDCAMS commands to create and

maintain VSE/VSAM files on disk, independently of a specific program.
v The VSE/VSAM macros. You use the macros for processing such created files

from a program.

Advantages

Central Control

You can centrally control all the VSE/VSAM files at your installation, because all
information about files and their storage space is collected in VSE/VSAM catalogs.
In the catalogs, you can define and delete files, and you can change information
about the files.

Data Protection and Integrity

You can control the access to data by assigning passwords to various objects (for
example, to files and catalogs).

© Copyright IBM Corp. 1979, 2014 1

Also, you can protect your data from accidental loss or destruction by using the
VSE/VSAM Backup/Restore Function. This function allows you to easily store data on
tape or disk and call it back.

Device Independence

You simply set aside an area of space to be used exclusively by VSE/VSAM. From
this space, VSE/VSAM selects whatever space is needed for a file when it is
defined. Space allocation is dynamic; if a file or catalog must be extended,
VSE/VSAM allocates more space to it.

Portability of Data Between Systems

VSE/VSAM uses a record format that is common to the IBM operating systems
z/VSE and z/OS® 1. Therefore, but with some exceptions, VSE/VSAM files are
portable to MVS/VSAM. You can get full portability for files and volumes by
using only those commands, file types, devices, and programming interfaces that
are supported by all environments (z/VSE and z/OS). For information on
portability requirements, refer to Appendix D, “Compatibility With Other
Products,” on page 359.

To move files between different operating systems, you can use the
EXPORT/IMPORT commands of the IDCAMS utility program. Communication with
VSE/VSAM is essentially the same for the z/VSE and z/OS operating systems,
except for job control.

Ease of Conversion from SAM or ISAM to VSE/VSAM

To take advantage of VSE/VSAM processing capabilities, you can convert SAM
(sequential access method) files and ISAM (indexed sequential access method) files
to VSE/VSAM format:
v If you have SAM files, you can use the VSE/VSAM Space Management for SAM

Function to convert the files. Then, you can use commands of the IDCAMS utility
program to manipulate the converted files. For an overview, see below; for more
details, refer to Chapter 9, “VSE/VSAM Support for SAM Files,” on page 155.

v Your existing ISAM programs can use the ISAM Interface Program (IIP) to process
the files. For further considerations, refer to Appendix C, “Advantages of the
ISAM Interface Program (IIP),” on page 351.

Functions of IBM VSE/VSAM
With VSE/VSAM, the following functions are included:
v VSE/VSAM Space Management for SAM Function

v VSE/VSAM Backup/Restore Function

1. The principal component of z/OS is MVS; references to MVS in this publication should be understood as meaning the MVS
element of the z/OS operating system.

VSE/VSAM Overview

2 VSE/VSAM V9R2 User’s Guide and Application Programming

VSE/VSAM Space Management for SAM Function
You can use this function to manage your SAM files, including most system work
files.

Use the function to convert a SAM file into a SAM ESDS file by placing the SAM
ESDS file into VSE/VSAM space. Then, the SAM ESDS files can be accessed by
SAM macros as well as by VSE/VSAM macros.

The VSE/VSAM Space Management for SAM Function allows you to:
v Define and delete a SAM ESDS file in VSE/VSAM space. Use IDCAMS

commands, or define/delete implicitly at OPEN/CLOSE time.
v Access a SAM ESDS file.

For files in CI-format, use DTFSD and DTFCP with DISK=YES.
For files that are either in CI-format or non-CI-format, use DTFPH for disk with
MOUNTED=SINGLE.
SAM access is provided for all CKD and FBA devices that are supported by
VSE/VSAM.

v Allocate dynamic secondary space during creation or extension of a SAM ESDS
file.

v Access a SAM ESDS file through the VSE/VSAM macro ACB (that is, native
VSE/VSAM) for files in CI-format.
An existing VSE/VSAM program that processes a VSE/VSAM ESDS file can
access a SAM ESDS without change (except for extending the file).

VSE/VSAM Backup/Restore Function
You can use this function to back up VSE/VSAM files to magnetic tape or disk
devices, and restore the files again into a VSE/VSAM data set. You can use the two
IDCAMS commands BACKUP and RESTORE.

Use the function to:
v Write and read data sets as follows:

– Write from disk to magnetic tape or disk (BACKUP).
– Read from magnetic tape or disk to disk (RESTORE).
You can perform these operations for the following VSE/VSAM objects:
– KSDS files
– ESDS files
– RRDS files
– VRDS files
– Alternate indexes
– SAM ESDS files in CI format
– Paths

v Handle several VSE/VSAM files with a single command, either with a generic
name or as files of one catalog.

v Restore VSE/VSAM files to locations, volumes, and device types that are
different from those where the files were before.

v Exclude files from a collective back up or restore operation.
v Tune the performance of VSE/VSAM by specifying the size of the buffers in the

BACKUP command, and the number of buffers in both the BACKUP and
RESTORE commands.

VSE/VSAM Overview

Chapter 1. Introduction to IBM VSE/VSAM 3

Also, the VSE/VSAM Backup/Restore Function allows you to:
v Back up and restore empty objects, where an empty object may be either a:

– VSE/VSAM object defined with NOALLOCATION (such as a default model
or a dynamic file), or

– VSE/VSAM cluster that has not been loaded since being defined or reset.
v Change the allocation size for the data component of a file at restoration. You

can specify allocation size in device-independent units by using the RECORDS
parameter when the cluster is defined to facilitate restoration of objects.

v Change the index CI-size at restoration.

Note: You cannot process magnetic tape files that were created by the EXPORT
command with RESTORE, or magnetic tape files that were created by BACKUP
with the IMPORT command. REPRO files can only be processed by using REPRO.

Concepts of Data Organization
The following provides you with basic information (terminology and concepts)
with which you have to be familiar to understand the information in other parts of
this publication.

File Types
IBM VSE/VSAM supports four types of physical file organization:
v ESDS (Entry-sequenced data set)
v KSDS (Key-sequenced data set)
v RRDS (Relative-record data set)
v VRDS (Variable-length relative-record data set)

These files differ in the record lengths they allow and in the sequence in which
they contain the records:

Type Record Length Sequence by

ESDS Fixed or variable Entry

KSDS Fixed or variable Key field

RRDS Fixed only Record number or entry

VRDS Fixed or variable Record number or entry

Formats of Files

The following figures show the file organization (or file format) for the different
file types:

Table 1. ESDS File Format: Records Stored as Received

First Record Second Record Third Record Forth Record Fifth Record ...

VSE/VSAM Overview

4 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 2. RRDS File Format: Fixed-Length Records Stored by Record Number. RRDS
records are entered in one of two ways: Either you give the records a sequence number
explicitly, or you just enter them one by one and they get their sequence number
automatically.

Relative
Record 1

Relative
Record 3

Relative
Record 4

Relative
Record 6

Elements of Organization

Data Space

For the data that you want to include in VSE/VSAM files, you have to define
VSE/VSAM data space. You define the space on a disk volume for exclusive use by
VSE/VSAM. From this space, VSE/VSAM selects whatever room (control area) is
needed for a file when it is defined. VSE/VSAM allocates space dynamically; that
is, if a file or a catalog must be extended, VSE/VSAM allocates the space as
required.

The VSE/VSAM data space you define is owned by a catalog. You establish the
ownership when defining a catalog or data space.

Control Area (CA)

For a definition of “control area”, refer to the “Glossary” on page 395.

A file occupies one or more control areas (CAs). Note that:
v For count-key data (CKD) devices, a CA cannot be larger than a cylinder and

not smaller than a track. For details, refer to Table 18 on page 89.
v For every type of fixed block architecture (FBA) device, specific maximum and

minimum CA-sizes exist. For details, refer to Table 19 on page 90.

VSE/VSAM determines the CA-size for a file, but you can influence it through the
space allocation parameters of the IDCAMS command DEFINE CLUSTER.

Key
Albert

Key
Charl

Key
Collin

Key
Jenny

Key
Ria

Key
Vicky

Data Data Data Data Data Data

Figure 1. KSDS File Format: Records Stored in Key Field Sequence

Data Data Data Data Data

RRN 1 RRN 2 RRN 3 RRN 4 RRN 5

Figure 2. VRDS File Format: Variable-Length Records Stored by Record Number

VSE/VSAM Concepts

Chapter 1. Introduction to IBM VSE/VSAM 5

Control Interval (CI)

For a definition of “control interval”, refer to the “Glossary” on page 395.

Control intervals (CIs) are fixed-length parts of a CA. They are the unit of transfer
between processor and external storage. You specify a CI-size for the file in the
IDCAMS command DEFINE CLUSTER; however, if your specification is
inappropriate, VSE/VSAM determines the correct CI-size.

Spanned Records

VSE/VSAM allows records to extend across, or span, CI boundaries. Such records
are called spanned records. Spanned records can be used only in KSDS and ESDS
files.

A spanned record must always begin on a CI boundary; such a record occupies
two or more CIs within a given CA. The CI with the last portion of a spanned
record may contain unused space that can be used only to extend the spanned
record.

Clusters

Every type of VSE/VSAM file has a cluster name and a data component name; the
cluster name must be different from the data component name.

Depending on the type of file, a cluster consists of a data component and
corresponding index component, or just the data component. This is illustrated in
Figure 3:

KSDS and VRDS Files

The file types KSDS and VRDS have two components: a data component
and an index component (as indicated in Figure 3).

The index component of KSDS and VRDS files are built and used by
VSE/VSAM to locate the records in the data component. You can either
treat the data and index components separately or together as a single unit.
If you treat the two components as a single unit, it is called a “cluster”.

ESDS and RRDS

The file types ESDS and RRDS have a data component, but no index
component (as indicated in Figure 3). Nevertheless, these file types are also
referred to as “clusters”.

Index component

Data component Data component Data component Data component

Index component

KSDS VRDS ESDS RRDS

VSE/VSAM Cluster

Figure 3. VSE/VSAM File Type Structures

VSE/VSAM Concepts

6 VSE/VSAM V9R2 User’s Guide and Application Programming

Catalogs with VSE/VSAM
A catalog is a central file that holds information about data spaces and files.
VSE/VSAM uses catalogs for space and file management.

For a given environment, you have a master catalog, and you can have one or more
user catalogs. VSE/VSAM creates such catalogs from the information you provide
through IDCAMS commands.

Space Management

When you define a VSE/VSAM data space on a volume, you set up a relationship
between that data space and a catalog. The data space is owned by the catalog.
You can define other data spaces on that same or a different volume in the same
catalog.

Thus, a catalog describes where and how much data space is available, the number
and device characteristics of the volume, and other values. Whenever data space is
allocated to a file, VSE/VSAM automatically updates the data space information in
the catalog.

File Management

For each of your VSE/VSAM files, an entry must exist in a catalog. Making an
entry in a catalog for a file is called “defining the file”. Unless you have defined
the file, you cannot, for example, load records into the file.

The entry in the catalog describes the location and attributes (for example, record
size and key location) of the file.

Also kept in the catalog are dynamic statistics about the file (such as the number of
records inserted since the file was created), and the number of CIs that have been
split. This information provides you with the information you need in making a
decision to reorganize your files, or for changing the current type of processing so
as to improve performance.

Master and User Catalogs

As mentioned above, VSE/VSAM allows you to define several catalogs. This can
have significant advantages for performance as well as for data security. Every
catalog exists on a single volume; it is independent of other catalogs and controls
exclusively its own data spaces and files.

In an environment with several catalogs, one of the catalogs is the master catalog.
All other catalogs are user catalogs and are defined in the master catalog. By placing
information about your files and storage volumes into user catalogs, you
decentralize control and reduce the time required to search a given catalog. Note
that you can have only one user catalog per volume.

Using several catalogs also allows you to:
v Transfer files between the IBM operating systems z/VSE and z/OS. You can do

so by using the EXPORT/IMPORT commands. ESDS, KSDS, and RRDS files are
compatible between these operating systems. VRDS files are incompatible.

VSE/VSAM Concepts

Chapter 1. Introduction to IBM VSE/VSAM 7

v Specify that one of the user catalogs is to be used as a job catalog. The job
catalog will then be used to reference all VSE/VSAM files in the current job. You
have the option of overriding the job catalog reference to a file through a
VSE/VSAM job control statement.

Indexes with VSE/VSAM
For KSDS and VRDS files, VSE/VSAM builds an index. This index is called the
prime index.

For KSDS and ESDS files, you optionally can specify that VSE/VSAM builds an
alternate index (AIX).

Alternate Indexes - Their Advantages

An alternate index provides you with another way of gaining access to the records
in a given KSDS or ESDS file. It eliminates the need for you to keep several copies
of the same information organized in different ways for different applications. For
example, you can take a KSDS payroll file that is indexed by employee name, and
using the same base data, index it according to department number or social
security number (Figure 4). You can use any field in the records of the file as an
alternate-index key field, as long as the field has a fixed length and fixed position
in the record.

Paths to Base Clusters

To gain access from an alternate index to the file with its prime index (base
cluster), you must define a path to it. The path sets up an association between the
alternate index and the base cluster (Figure 4). The two alternate indexes shown
make the records of the base cluster available to you in different orders.

Base Cluster

Indexed by
Employee Name

Adams 3247 183...
Newton 3235 299...
Wright 3240 015...
.
.
.

Alternate
Index 1

Indexed by
Department
Number

3235 Newton
3240 Wright
3247 Adams
.
.
.

Alternate
Index 2

Indexed by
Social Security
Number

015... Wright
183... Adams
299... Newton
.
.
.

Path 1 Path 2

Figure 4. Example: Two Alternate Indexes for a Key-Sequenced File

VSE/VSAM Concepts

8 VSE/VSAM V9R2 User’s Guide and Application Programming

How to Communicate with VSE/VSAM
To make your wants known to VSE/VSAM, you use:
v Commands of the IDCAMS utility program.
v VSE/VSAM macros.
v Job control (JCL) parameters.
v Dialogs of the z/VSE Interactive Interface.

IDCAMS Commands
The IDCAMS utility program is part of IBM VSE/VSAM. Use IDCAMS commands
to define VSE/VSAM files, catalog such files, and request many other IDCAMS
functions:
v Establish catalog(s)
v Create data spaces
v Create VSE/VSAM files and load records into the files
v Build an alternate index for a file
v Create backup copies of files and their associated catalog entries
v Print, copy, or reorganize files
v Delete files, data spaces, and catalogs
v Alter file definitions and file attributes
v Print catalog entries
v Move catalogs and files from one system to another
v Convert nonVSAM files to VSE/VSAM files
v Map a VSE/VSAM cluster to a relational structure, and later maintain the

associated map or view
v Recover from damage to files or catalogs
v Copy entire volumes to support offline backup to tape from the target volume,

for example
v Verify command syntax
v Merge two VSE/VSAM files

For details on the IDCAMS utility program and its commands, refer to the
VSE/VSAM Commands, SC33-8315.

The IDCAMS utility program supports two types of IDCAMS commands:
v Functional commands

Used for requesting the actual work (for example, defining a file or moving a
catalog).

v Modal commands

Used for the conditional execution of functional commands.

Commands and Macros

Chapter 1. Introduction to IBM VSE/VSAM 9

Functional Commands
The functional IDCAMS commands can be grouped according to the following
user tasks.

To Define, Alter, and Delete Objects

DEFINE
to define catalogs, files, clusters, alternate indexes, paths, and data spaces.

ALTER
to change previously-defined attributes of an object.

DELETE
to delete catalogs, clusters, and data spaces.

BLDINDEX
to build an alternate index for an existing file.

To Move Data

REPRO
to copy, convert, merge, and reorganize files.

EXPORT
to create a copy of a file on tape or disk for back up, or transport to
another system.

IMPORT
to read a copy of a file into a system, and make it available for use in that
system.

BACKUP
to create a backup copy of a file.

RECMAP
to map a VSE/VSAM cluster to a relational structure and later maintain
the associated map or view. For details on the RECMAP command, refer to
VSE/VSAM Commands, SC33-8315.

RESTORE
to restore a file backed up via the BACKUP command.

SNAP to snap (copy) a given set of source volumes within an IBM Enterprise
Storage Server (ESS).

To Print Objects

LISTCAT
to list entries from a catalog, or only certain information from every entry.

PRINT
to print all, or a specified range of records of a file. Several output formats
are available: every byte printed as a single character, or every byte printed
as two hexadecimal digits, or both side by side.

To Correct a Problem, To Cancel a Job or Job Step

VERIFY
to prepare a file for the next access if it was not closed successfully the last
time it was processed.

CANCEL
to cancel either a job or the current job step.

Commands and Macros

10 VSE/VSAM V9R2 User’s Guide and Application Programming

Modal Commands
The modal IDCAMS commands control command execution and establish options.

IF to test a condition code and run according to the results of the test. IF is
followed by THEN and ELSE clauses which specify alternative actions.

DO, END
to denote the beginning and end of a functional command sequence
(normally within a THEN or ELSE clause).

SET to change condition codes.

PARM to specify diagnostic aids and printed output options and change input
record margins. With PARM, you can verify the syntax of your IDCAMS
commands before running them.

VSE/VSAM Macros
Once you have defined your VSE/VSAM files with IDCAMS commands, you can
load data into the files and process the records. Use VSE/VSAM macros in your
programs to process VSE/VSAM files.

You can load the data by use of any programming language. The programs can use
VSE/VSAM, SAM, or ISAM macros, but only the assembler language supports all
VSE/VSAM functions.

For details on the macros, refer to Chapter 11, “Using VSE/VSAM Macros,” on
page 195 and Chapter 12, “Descriptions of VSE/VSAM Macros,” on page 207.

To Relate the Program and the Data (Declarative Macros)

ACB specifies the file to be processed and the access type.

EXLST
specifies a list of user-supplied exit routines.

RPL specifies information for a particular request.

To Handle Declarative Macros

GENCB
specifies declarative parameters during program execution.

MODCB
changes declarative parameters.

SHOWCB
displays declarative parameters in effect.

TESTCB
checks declarative parameters (or their error codes) and sets the condition
code accordingly.

To Display Data

SHOWCAT
displays data from the catalog in a buffer you have supplied.

To Connect/Disconnect a Program to/from a File

OPEN connects a program to a file.

Commands and Macros

Chapter 1. Introduction to IBM VSE/VSAM 11

CLOSE
prepares the separation and disconnects a program from a file.

TCLOSE
prepares the separation but leaves program and file connected.

To Share Resources Between Several Files (LSR)

BLDVRP
builds a VSE/VSAM pool of buffers, control blocks, and channel programs.

DLVRP
deletes such a resource pool.

WRTBFR
writes waiting buffer contents to satisfy a GET request.

To Handle Records

GET retrieves a record from a file for processing.

PUT inserts a record in a file.

ERASE
deletes a record in a file.

POINT
positions control to a specific address in the file.

ENDREQ
ends processing of a GET or POINT request.

Job Control Parameters to Access VSE/VSAM Files
Use job control parameters to complete or override the file information already
stored in the catalog.

As most of the information normally coded with job control statements is available
to VSE/VSAM in the catalog, you need to specify only a minimum of job control
parameters with any one job. In most cases, only the DLBL statement has to carry
VSE/VSAM information.

z/VSE Interactive Interface
The following highlights the functions and use of the z/VSE Interactive Interface as
applicable to VSE/VSAM. For more information about the interactive interface,
refer to the z/VSE Administration, SC34-2627.

To use the interface, start with the panel entitled z/VSE Function Selection. On this
panel select:
v Resource Definition if you want to manage files or catalogs.
v Operations if you want to back up or restore VSE/VSAM objects, or transfer files.

If you select Resource Definition and then File and Catalog Management, you can
make further selections to:
v Display or process a file
v Define a new file
v Define a library
v Define an alternate index (AIX) or name
v Display or process a catalog, or space

Commands and Macros

12 VSE/VSAM V9R2 User’s Guide and Application Programming

v Define a new user catalog.

For example, if you select to define a new file, you can specify elements such as
the file ID and name, file organization (for example SAM ESDS organization), and
space allocation. You can then select how the job is to be run.

If you select Operations and then Backup/Restore VSE/VSAM Objects, you can make
further selections to export, import, back up, or restore VSE/VSAM files, and back
up or restore master and user catalogs.

Commands and Macros

Chapter 1. Introduction to IBM VSE/VSAM 13

Commands and Macros

14 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 2. Planning Information

This Chapter...

Provides information on storage requirements for IBM VSE/VSAM and related
programs and utilities. It explains how to calculate the required partition virtual
storage for your files.

Compatibility with IBM VSE/VSAM Version 2
IBM VSE/VSAM Version 7 is compatible with IBM VSE/VSAM Version 2. Files,
programs, and jobs that were created under IBM VSE/VSAM Version 2 can be
used without changes.

Overview of Environment and Requirements
IBM VSE/VSAM operates on any:
v IBM processor supported by any operating system under which it runs.
v IBM disk device supported by both VSE/VSAM and the operating system under

which it runs.

IBM VSE/VSAM, which is part of VSE Central Functions Version 7 Release 1,
5686-CF7, runs under IBM z/VSE Version 3 Release 1.

What to Consider
Before IBM VSE/VSAM is used, you should plan for the storage needs of
VSE/VSAM. Consider storage requirements for:
v IBM VSE/VSAM routines loaded automatically into the SVA during IPL. The

routines occupy about 300KB in the SVA (shared virtual area).
v Routines that are not eligible for the SVA.

See “Partition Space for Non-SVA-Eligible Routines” on page 16, below. For
information on the ISAM Interface Program, see “Storage for the ISAM Interface
Program (IIP)” on page 20.

v Running VSE/VSAM in real mode.
See “Space for Running in Real Mode” on page 16.

v VSE/VSAM buffers and control blocks.
See “Partition Requirement for Buffers and Control Blocks” on page 16.

v The IDCAMS utility program.
See “Storage for IDCAMS Including the VSE/VSAM Backup/Restore Function”
on page 20.

© Copyright IBM Corp. 1979, 2014 15

Partition Space for Non-SVA-Eligible Routines
Most VSE/VSAM routines are automatically loaded into the SVA during IPL.
Routines that are not reentrant are not eligible for SVA (non-SVA-eligible).
Therefore, such routines require space in the partition GETVIS area. For example,
modules of the ISAM Interface Program are non-SVA-eligible and must be loaded
into every partition where they are used.

The partition where the non-SVA-eligible VSE/VSAM routines are loaded must
have at least 128KB plus the partition GETVIS area. Add to this 28KB for the
IDCAMS root modules, plus the extra space for every IDCAMS command, which
varies between 2KB and 100KB depending on the command.

Device Dependencies
See Chapter 6, “Device Dependencies,” on page 77 for information on special
functions, restrictions, and exceptions when using certain devices.

Storage for VSE/VSAM

Space for Running in Virtual Mode
Many VSE/VSAM phases run in the SVA. This means that one copy of the
VSE/VSAM modules is shared by all partitions.

Space for Running in Real Mode
If you specify REAL in the // EXEC statement, the system loads VSE/VSAM
modules that normally reside in SVA into your partition. Your partition must have
sufficient storage to accommodate these VSE/VSAM SVA modules.

Running programs in real mode in one partition can degrade the performance in
other partitions. For more information, refer to “Format of the EXEC Statement” on
page 39 (see REAL).

Partition Requirement for Buffers and Control Blocks
The partition in which VSE/VSAM files are to be processed must allow for a
GETVIS area to accommodate VSE/VSAM buffers and control blocks; the user
program resides in the same partition, below the GETVIS area.

The size of the partition GETVIS area depends on the number of VSE/VSAM files
that are accessed, and on their CI sizes. The minimum requirement is 64KB.

For your files, you need to calculate the total required partition virtual storage. You
have to consider that:
v Every open catalog needs 14KB for basic buffers and control blocks.
v During open and close processing, an additional 50KB is required for open

control blocks and catalog check routines that are used in error analysis.
v Every file needs the partition virtual storage shown in:

Table 3 on page 17 if non-shared resources (NSR) is specified.
Table 4 on page 18 if local shared resources (LSR) is specified.

The following applies to both Table 3 on page 17 and Table 4 on page 18:

Planning

16 VSE/VSAM V9R2 User’s Guide and Application Programming

v To calculate the requirements for one file, add the values given in one column
(according to the applicable path/input/output conditions). Complete this
calculation for every file; then, add the individual results to obtain the total
requirements.

v The buffer space (n in the figures) depends on the CI size(s) and on the buffer
specifications. If upgrade is done, one set of buffers serves all alternate indexes
in the upgrade set. This set of buffers includes two data buffers and one index
buffer. (Buffer space can be specified in the IDCAMS command DEFINE, in the
DLBL statement, or in the VSE/VSAM macro ACB. For more information, see
“Buffer Specification” on page 97.)

v If data set name sharing is used, only the first cluster of a DSN structure uses the
partition GETVIS space as calculated in Table 3 or Table 4 on page 18.
All the subsequent opens to ACBs (for those clusters that are connected to the
existing DSN structure) need a minimum GETVIS space of 128 bytes per 28
ACBs.

If NSR is Specified
Table 3. Partition Requirements for Control Blocks and Buffers (with NSR)

Item

No Path Specified Path Specified

Input Output Input Output*

Basic requirement
(minimum)

7KB 7KB 9KB 9KB

Upgrade set (minimum) 0 (u+1) x 2KB 0 u x 2KB

Buffers for base cluster n n n n

Buffers for alternate index 0 0 n** n**

Upgrade buffers*** 0 n 0 n

For every string (S - 1) x 1KB (S - 1) x 2KB

* The file must be opened for output only,
or for both output and input.

** Always two data buffers and one index buffer.
*** If there is an upgrade set.

u = Number of alternate indexes in the upgrade set.
n = Buffer space.
S = Number of strings.

A file may exceed minimum requirements under any of these conditions:
v If the file has key ranges associated with it.
v If the file has several extents for data or for index.
v If SHAREOPTIONS(4) is used.
v If the length of the key field is very long.
v If the ACB or RPL is not created by GENCB, with the space allocation left up to

VSE/VSAM, or if the GENCB requests are not done in the following sequence:
1. GENCB ACB, 2. GENCB RPL.

v If CCW areas are insufficient (see below).

Additional space is required for CCW areas for a) output files that use RECOVERY
mode, and b) KSDS files in case of CA split. The size can be calculated by this
formula:

Planning

Chapter 2. Planning Information 17

(CI/CA)÷40
and rounded down to the next 2KB value

For example:
CI/CA = 450
450÷40 = 11.25
and rounded down = 10

That is, the required additional
GETVIS space is 10KB.

If LSR is Specified
If LSR is used to share control blocks among some files, the requirement for the
VSE/VSAM resource pools must be taken into account. Refer also to “The
BLDVRP Macro” on page 219.

For LSR, virtual storage is equal to the working set.

Table 4 shows the partition virtual storage requirements when LSR is used.

Table 4. Partition Requirements for Control Blocks and Buffers (with LSR)

Item

No Path Specified Path Specified

Input Output Input Output*

Basic requirement
(minimum)

3.25KB 3.25KB 5.25KB 5.25KB

Upgrade set (minimum) 0 u x 2KB 0 (u-1) x 2KB

Buffers for base cluster 0 0 0 0

Buffers for alternate index 0 0 0 0

Upgrade buffers** 0 0 0 0

For every string (S - 1) x 1KB (S - 1) x 2KB

* The file must be opened for output only,
or for both output and input.

** If there is an upgrade set.

u = Number of alternate indexes in the upgrade set.
n = Buffer space.
S = Number of strings.

To these values, add the requirement for the LSR pool, which consists of:
n The total space specified for buffers.
72p The space for subpools, where p is the number of subpools.
104b The number of Buffer Control Blocks; b = number of buffers
s(920 + k) The space for ACB strings, where:

s = the number of strings.
k = the maximum key length for files

sharing the resource pool.

2048 Space for the channel program area. Dynamically increase
this value by 2048 if the resource pool is very active.

Round the result to the next page boundary. If you build a large resource pool, the
VSE/VSAM working set will be somewhat reduced when resource pool activity is
light.

Planning

18 VSE/VSAM V9R2 User’s Guide and Application Programming

Buffer Allocation above the 16MB Line of Storage
To keep the use of the GETVIS space below the 16MB line as little as possible,
VSE/VSAM tries to allocate buffers above the 16MB line whenever possible.

The allocation depends on whether sufficient partition GETVIS space is available
above the line. If no partition GETVIS space is available above the line,
VSE/VSAM allocates all buffers below the line. This means that buffer handling in
partitions residing below the 16MB line is fully compatible with previous buffer
handling.

Table 5 shows the buffer allocation relative to the 16MB line. If you have:
v NSR, refer to the entries for the ACB specifications.
v LSR, refer to the entries for the BLDVRP specifications.

Table 5. How VSE/VSAM Allocates Buffers

Specification in ACB or
BLDVRP Object

Allocation

Below Any

ACB RMODE31=ALL All buffers X

ACB RMODE31=NONE All cluster/path NSR data buffers
All cluster/path NSR index buffers¹
All upgrade set NSR buffers¹

X X
X

BLDVRP RMODE31=ALL All buffers X

BLDVRP RMODE31=NONE All cluster/path NSR data buffers
All cluster/path NSR index buffers¹
All upgrade set NSR buffers¹

X
X
X

Note:

1. The buffers are not accessible by user applications.

Storage for the VSE/VSAM Space Management for SAM Function

SAM Access Routines

The working set is the same as for unmanaged-SAM access. VSE/VSAM does not
need additional work storage for managed-SAM access.

Space for Running in Real Mode

If you specify REAL in the // EXEC statement, the system loads VSE/VSAM
modules that normally reside in SVA into your partition. Your partition must have
an additional 340KB to accommodate these SVA modules.

Running programs in real mode in one partition can degrade the performance in
other partitions. For more information, refer to “Format of the EXEC Statement” on
page 39 (see REAL).

Partition Requirement for Control Blocks and Buffers

Specify additional work storage:
v 2KB for control blocks. The buffer must equal CISIZE.

The working set for DTFPH is determined by the user program.

Planning

Chapter 2. Planning Information 19

Partition Virtual Storage

Add to the virtual storage requirements for VSE/VSAM:
v During open processing, additional 4KB is needed for open control blocks.
v For every file, the amount of virtual storage required is equal to the working set,

except for DTFPH access, in which case the virtual storage requirement is
determined by the user program.

GETVIS Requirements for Managed-SAM Access to SAM ESDS
Files

When you run programs that issue SAM imperative macros to access
managed-SAM files, the default GETVIS size of 48KB is inadequate. For more
information, refer to “Note to Users of the VSE/VSAM Space Management for
SAM Function” on page 38.

For programs that are invoked by using the EXEC statement, you must specify the
SIZE parameter of the EXEC statement to provide adequate GETVIS storage.

For job control routines that process an INCLUDE statement when IJSYSLN has
been defined as a managed-SAM file, both the minimum partition size of 128KB
and the default GETVIS size of 48KB are too small. Proceed as follows:
1. Use the ALLOC command to adjust the partition size to provide the required

GETVIS space, plus 80KB non-GETVIS space for job control routines.
2. Set aside adequate default GETVIS space in the partition with the SIZE

command. GETVIS space for file OPEN and catalog handling is the same as for
VSE/VSAM. See “Storage for VSE/VSAM” on page 16.

Storage for the ISAM Interface Program (IIP)
IIP modules are non-SVA-eligible and must be loaded into every partition where
they are used.

To accommodate interface translation modules, add 6KB to the working set
previously determined for VSE/VSAM record management modules. Also add
approximately 6KB for the IIP phases. This is in addition to the storage required
for buffers and control blocks,

Storage for IDCAMS Including the VSE/VSAM Backup/Restore Function
IDCAMS must be used for file definitions, catalog manipulation, and other
functions. Because IDCAMS modules cannot be loaded into the SVA, their partition
requirement depends on the functions required for the current job.

The required partition GETVIS area can be provided by specifying the job control
statement:

// EXEC IDCAMS,SIZE=AUTO ...

For more information, refer to “// EXEC Statement” on page 38.

To operate efficiently, IDCAMS needs a working set of about 72KB.

In addition to the basic allocation for VSE/VSAM, IDCAMS needs up to 256KB of
virtual storage in the partition in which it is to run.

Planning

20 VSE/VSAM V9R2 User’s Guide and Application Programming

VSE/VSAM Backup/Restore Function

Note: To use the function with a user-generated supervisor, you must generate
the supervisor with the option RPS=YES.

Loading VSE/VSAM Backup/Restore into the SVA

At IPL, provide:
10 entries in the SDL
122KB of storage in the SVA

The VSE/VSAM Backup/Restore Function may be loaded into the SVA. Simply
store the following statements in the job control procedure for the background
partition (in procedure $0JCL):

SET SDL
IDCBP01,SVA
IDCBP03,SVA
IDCCDBP,SVA
IDCTSBP0,SVA
IDCRT01,SVA
IDCCDRT,SVA
IDCBPDNC,SVA
IDCBPDNT,SVA
IDCRTDDC,SVA
IDCRTDDT,SVA

/*

Note that you can use the skeleton SKJCL0 to update the job control procedure
$0JCL. For more information on $0JCL and skeletons, refer to the z/VSE
Administration, SC34-2627

Partition Virtual Storage

In addition to basic VSE/VSAM and IDCAMS virtual storage requirements, you
must provide sufficient virtual storage in the partition to accommodate the
BACKUP or RESTORE command:

BACKUP: 42KB + n * b If COMPACT parameter is not used.
42KB + (2n + 1) * b If COMPACT parameter is used.

RESTORE: 52KB + n * b If restoration from a
non-compacted backup file.

52KB + (2n + 1) * b If restoration from a
compacted backup file.

where: n = Number of buffers.
b = Size of one buffer in bytes.

A buffer size of 32KB is recommended.
In most cases, there is no advantage
in providing larger buffers.

Planning

Chapter 2. Planning Information 21

22 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 3. Operation and Job Control

This Chapter ...
v Describes operating procedures that are unique to VSE/VSAM. You may also

need to refer to the z/VSE Operation, SC33-8309, for example, for details on
exporting VSE/VSAM files.

v Describes job control commands whose meaning for VSE/VSAM is different as
compared to the meaning they have with other access methods.
The information supplements the job control information is contained in the
z/VSE System Control Statements, SC34-2637.

IPL Command Specifications for VSE/VSAM
The IPL commands described here are part of the pre-defined automated system
initialization (ASI) procedure for z/VSE. The following specifications are important
for VSE/VSAM:
v Assign a device to the master catalog (DEF command).
v Define the lock file (DLF command).
v Specify the number of supervisor buffers (SYS command, BUFSIZE operand).

Assigning a Device to the Master Catalog
To assign a device to the VSE/VSAM master catalog, you must first ready the
device. Then use the IPL command DEF with the LU name of the master catalog,
which is always SYSCAT:

DEF SYSCAT=cuu...

where: cuu = the device number of the
assigned disk device.

The assignment is valid until the next IPL. The DEF command must follow the
(optional) SET and precede the DPD command.

Defining the Lock File
If you are using the z/VSE DASD Sharing facility, you must define the lock file (the
cross-system communication file) by specifying the DLF command at IPL.

The number of resources that can be locked by a lock file depends on the device
type on which the lock file resides. For detail information, refer to a description of
the DLF command in the publication z/VSE System Control Statements, SC34-2637.

Lock File Requirements

VSE/VSAM determines its lock requirements according to this formula:
n = Px(2xU+1) + 5C + (2xS3) + (3xS4) + O + P + 5

where:
n = number of lock table entries (optimal upper limit).
C = number of catalogs open concurrently.
O = number of VSE/VSAM components that are open but not

accounted for by S3 and S4.
P = number of partitions.
S3 = number of share option 3 VSE/VSAM components

© Copyright IBM Corp. 1979, 2014 23

concurrently open for output.
S4 = number of share option 4 VSE/VSAM components (for

example, key component or data component) concurrently
open for output.

U = number of user catalogs open concurrently.

All these values should reflect the situation that exists when n is at its maximum
value. The value for n (calculated in the above manner) will cause sufficient space
to be reserved for the variable resources to be used. Depending on the application,
however, the number of resources actually required most of the time might be
much lower.

Note: If the value substituted for n is too small and the pool of named resources
gets exhausted, the VSE/VSAM partition is canceled and an error message is
displayed.

Specifying the Number of Supervisor Buffers for Channel
Programs

You must specify the number of supervisor buffers for channel programs. You do
this in the BUFSIZE=n operand of the IPL command SYS. For details on this
operand, see a description of the SYS command in the z/VSE System Control
Statements, SC34-2637 publication. After you have determined a value, add 40 for
the use by VSE/VSAM.

Volume Mounting
To access VSE/VSAM files, the appropriate volume or volumes must be mounted
on a device. There are two approaches that allow you to mount one or more
required volumes.

Mounting a Volume Through Job Control Specifications
If full job control describes the file (DLBL, EXTENT, and ASSGN statements), the
required volume must be mounted on the device specified in the job control.

If the requested volume (except for a catalog volume) is not mounted on the
requested device, VSE/VSAM issues a message to inform you; then, you can
correct the situation.

You should take advantage of job control simplification (by omitting a LU on an
EXTENT statement), because it gives VSE/VSAM greater flexibility in providing
the required volume. In this case, VSE/VSAM is free to use any device on which
the required volume (as indicated by the VSE/VSAM catalog) is mounted or can
be mounted.

Mounting a Volume Through Automatic Assignment

If the Volume is Mounted

If the required volume is already mounted on some device, VSE/VSAM attempts
to automatically assign that device (if successful, it avoids the need for operator
intervention).

For the automatic assignment to be successful, ensure that devices are up before
mounting volumes, and do not reserve devices unnecessarily. Refer to the z/VSE

Operation: IPL

24 VSE/VSAM V9R2 User’s Guide and Application Programming

System Control Statements, SC34-2637 for information about DVCUP, FREE, and
RESERV commands.

If the Volume is Not Mounted

If the required volume is not yet mounted, VSE/VSAM prompts you to mount it.
If possible, VSE/VSAM recommends a device and reserves it while the mount is
pending.

If you choose to use a device other than the recommended device (or if
VSE/VSAM did not recommend one), you must ensure that the device you use is
up and operational, and that mounting the required volume does not interfere
with other users in the system.

To hold a device while a mount is pending, use the RESERV command. When the
volume is mounted, the device becomes ready and the reserved status is reset to
free. Your reply to the mount message allows VSE/VSAM to verify the volume
mount and continue processing the file.

Use of z/VSE Job Control Statements for VSE/VSAM
In many jobs, you can omit from your job control the following z/VSE job control
statements: // DLBL, // EXTENT, and // ASSGN. Under certain circumstances,
however, you may have to explicitly specify EXTENT or ASSIGN statements for
the catalogs, (for example, if your program uses CHECKPOINT/RESTART).

Table 6 on page 26 shows under which circumstances you have to specify //
DLBL statements for job catalogs and user catalogs.
Table 7 on page 27 shows under which circumstances you have to specify job
control statements for files when you want to run VSE/VSAM applications and
want to use IDCAMS commands.

For a detailed explanation of the z/VSE job control, refer to the z/VSE System
Control Statements, SC34-2637.

Job Control Statements for Catalogs

VSE/VSAM Application Programs
All VSE/VSAM application programs must specify a // DLBL statement for the
master catalog; no // EXTENT statement is necessary. This also applies to ISAM
programs that access VSE/VSAM through the ISAM Interface Program (IIP), and
SAM programs that access SAM ESDS files through DTFs.

The // DLBL statement may be in the job stream, or in the system or partition
standard label area.

If the program accesses a file in a user catalog, you must supply a file // DLBL
statement for the VSE/VSAM file. You can refer to the user catalog by either:
v The CAT=filename parameter pointing to that user catalog,

Or
v A job catalog // DLBL IJSYSUC statement pointing to that user catalog.

Irrespective of which way you specify, you do not need to supply // EXTENT and

// ASSGN statements.

Operation: Volume

Chapter 3. Operation and Job Control 25

Note that if an application program accesses files in several catalogs, you must
supply a user catalog // DLBL for all files not in the job's default catalog.

IDCAMS Commands
From the job control that you specify to identify the catalog you are using, you
may omit // EXTENT and // ASSGN statements. VSE/VSAM handles the
distribution of logical units (LUs) to physical disk addresses in an optimized way.
You do not need to reserve one logical unit for every file. However, when you run
out of LUs, use // ASSGN statements, or cut the single job into several jobs.

For the master catalog (with filename IJSYSCT), you always require a // DLBL
statement. Include the statement in the job stream, or in the system or partition
standard label area.

For certain operations (for example, to alter file attributes in catalog entries), you
can omit the // DLBL statement. You can do so if you specify the name of the
catalog through IDCAMS commands. Depending on which IDCAMS command
you issue, you have to specify the CATALOG, WORKCAT, or MODEL parameter;
in the parameter, specify the name in the subparameter catname. Table 6 shows
when you must specify a // DLBL statement for a job catalog (IJSYSUC) and,
when applicable, for a user catalog (not a IJSYSUC).

Table 6. // DLBL Statement Required for Job Catalogs and User Catalogs

ALTER No job catalog // DLBL statement is required, but you must specify CATALOG(catname) in the
command if the catalog referenced is not the master catalog, or if a password is required.

BACKUP A job catalog // DLBL (IJSYSUC) is required if the catalog to be referenced is not the master catalog.

BLD-
INDEX

Location of
Alternate index = = >
Work file = = >

MCAT
MCAT

UCAT1
MCAT

MCAT
UCAT1

UCAT1
UCAT2

MCAT
none

UCAT
none

Specify job cat
// DLBL?

No Yes No Yes
(UCAT1)

No Yes

Specify BLDINDEX
catalog parameter?

No * Yes
(MCAT) **

Yes
(UCAT1) **

Yes
(UCAT2) **

No * No *

(*) Unless a password is required, in which case you must specify the CATALOG parameter.

(**) Specify the WORKVOLUMES parameter, because it does not require a // DLBL for the work file. If you specify
the WORKFILES parameter, you must also specify CAT= in the // DLBL statement.

CANCEL A job catalog // DLBL is not applicable.

DEFINE AIX
CLUSTER or
PATH

No job catalog // DLBL is required, but you must specify CATALOG(catname) and MODEL(catname)
(if applicable) in the command whenever the catalog to be referenced is not the master catalog, or if
a password is required.

DEFINE
NONVSAM
or SPACE

No job catalog // DLBL is required, but you must specify CATALOG(catname) in the command if the
catalog to be referenced is not the master catalog, or if a password is required.

DELETE No job catalog // DLBL is required, but you must specify CATALOG(catname) in the command if the
catalog to be referenced is not the master catalog, or if a password is required.

EXPORT A job catalog // DLBL (IJSYSUC) is required if the catalog to be referenced is not the master catalog.

IMPORT No job catalog // DLBL is required, but you must specify CATALOG(catname) in the command if the
catalog to be referenced is not the master catalog, or if a password is required.

Job Control

26 VSE/VSAM V9R2 User’s Guide and Application Programming

LISTCAT No job catalog is required, but you must specify CATALOG(catname) in the command if the catalog
to be referenced is not the master catalog, or if a password is required.

PRINT
INFILE in master catalog: Do not specify a user catalog // DLBL or a job

catalog // DLBL.
INFILE in user catalog: Specify either a user catalog // DLBL (CAT=parameter)

or a job catalog // DLBL (IJSYSUC).
INFILE is nonVSAM: A user catalog // DLBL or a job catalog // DLBL statement is

not applicable.

RECMAP No job catalog // DLBL is required, but you must specify CATALOG(catname) in the command.

REPRO
INFILE and OUTFILE in same catalog:

Master catalog: Do not specify a user catalog // DLBL or a job catalog // DLBL.
User catalog: Specify either a user catalog // DLBL(CAT=parameter) or a job catalog
// DLBL(IJSYSUC).

INFILE and OUTFILE in different catalogs:
Specify a user catalog // DLBL for every catalog that is not the default catalog.

RESTORE No job catalog // DLBL is required, but you must specify CATALOG(catname) in the command if the
catalog to be referenced is not the master catalog, or if a password is required.

SNAP A job catalog // DLBL (IJSYSUC) is required if the catalog to be referenced is not the master catalog.

VERIFY A job catalog // DLBL (IJSYSUC) is required if the catalog to be referenced is not the master catalog,
or if a password is required.

Job Control Statements for Files
In specifying job control statements for user files, // DLBL, // EXTENT, and //
ASSGN statements may or may not be required. Table 7 indicates when you should
specify these statements.

Table 7. Job Control Statements Required for Files

File Job Control

Type of Processing
DLBL

Required
EXTENT
Required

ASSGN
Required

Files to be implicitly opened. (For example, accessing a file through AIX or
path during which VSE/VSAM must open index files without user
specification.)

No No No

Files to be explicitly opened. (The // DLBL filename must match the ACB
DDNAME parameter, or the ACB name if DDNAME is omitted, and the
file-ID must be the name of the object opened.)

Yes No No

ISAM programs accessing VSE/VSAM files through the ISAM Interface
Program

Yes No No

SAM programs accessing SAM ESDS files through DTFs. (The // DLBL
filename must match the DTFxx name field.)

Yes No [1] No

IDCAMS Commands

ALTER No No No

BACKUP to tape No No Yes

BACKUP to disk Yes Yes Yes

BLDINDEX No No No

CANCEL No No No

DEFINE AIX/CLUSTER UNIQUE Yes Yes No

Job Control

Chapter 3. Operation and Job Control 27

Table 7. Job Control Statements Required for Files (continued)

File Job Control

Type of Processing
DLBL

Required
EXTENT
Required

ASSGN
Required

DEFINE AIX/CLUSTER not unique No No No

DEFINE MASTERCATALOG Yes No No

DEFINE NONVSAM/PATH/SPACE No No No

DEFINE USERCATALOG No No No

DELETE No No No

EXPORT OUTFILE (SAM file on disk) Yes Yes Yes

EXPORT all others No No No

IMPORT INFILE (SAM file on disk) Yes Yes Yes

IMPORT OBJECTS FILE UNIQUE unless predefined Yes Yes No

IMPORT all other No No No

LISTCAT No No No

PRINT VSAM file Yes No No

Print nonVSAM file (SAM or ISAM file on disk) Yes Yes Yes

RECMAP No No No

Repro VSAM file Yes No No

REPRO nonVSAM file (SAM or ISAM file on disk) Yes Yes Yes

RESTORE from tape No No Yes

RESTORE from disk Yes Yes Yes

SNAP Yes No No

VERIFY No No No

Note:

[1] Exception: An EXTENT statement is required for the implicit definition of an output or work file for which
no implicit model exists.

// DLBL Statement
To determine when you must supply a // DLBL statement, refer to “Use of z/VSE
Job Control Statements for VSE/VSAM” on page 25.

If you specify many // DLBL parameters, you may need to use a continuation
statement. If so, column 72 (on the first statement) must contain a continuation
character. The columns between the last comma and the continuation character
must be blank, and the continuation statement must start in column 16 (no // in
columns 1 and 2).

Job Control

28 VSE/VSAM V9R2 User’s Guide and Application Programming

Format of the DLBL Statement
The following describes the // DLBL statement and its operands in the context of
VSE/VSAM.

�� // DLBL filename,'file-id'
(1)

,
date

,VSAM
,BUFDAT=RMODE31

�

�
,BUFND=n ,BUFNI=n ,BUFSP=n ,CAT=filename ,CISIZE=n

�

�
,DISP=(OLD,KEEP,KEEP)

,DISP= d1
(d1,d2)
(d1,d2,d3)

,RECORDS= n ,RECSIZE=n
(n,n1)

,BLK= n
(n,n1)

,CYL= n
(n,n1)

��

Notes:

1 This comma and the following comma are positional, they must be used even
if the operands are omitted.

BLK=n|(n,n1)
Indicates the number of blocks on an FBA device that are used for space
allocation. BLK is only valid for VSE/VSAM managed-SAM clusters. n
specifies the number of blocks used for the primary allocation, n1 the
number used for secondary allocation. VSE/VSAM accepts values up to
16,777,215 for n and n1.

BUFDAT=RMODE31
Indicates that data buffers will be allocated in the 31-bit GETVIS area of
the partition, if sufficient space is available. Otherwise, the 24-bit GETVIS
area of the partition will be used, without an error return code or message
being issued.

BUFND=n
Specifies the number of I/O buffers to hold control intervals containing
data records. Each buffer is the size of one data control interval. This
specification overrides the value given for BUFND in the ACB macro.

BUFNI=n
Specifies the number of I/O buffers to hold control intervals containing
index records. Each buffer is the size of one index control interval. This
specification overrides the value given for BUFNI in the ACB macro.

BUFSP=n
This operand specifies the number of bytes of virtual storage (0-9999999) to
be allocated as buffer space for a VSE/VSAM cluster. It overrides the
values specified for BUFSP in the ACB macro and for BUFFERSPACE in
the DEFINE command. See “I/O Buffer Space (Using Non-Shared
Resources)” on page 96 for further details on buffer spaces.

VSE/VSAM uses the maximum of the following:
v The BUFFERSPACE value specified in the IDCAMS command DEFINE

CLUSTER

Job Control: // DLBL

Chapter 3. Operation and Job Control 29

v The BUFSP parameter specified in the ACB macro
v The BUFSP parameter specified in the DLBL statement

When you access a cluster using an alternate index, the DLBL BUFSP value
applies only to the alternate index.

CAT=filename

This operand specifies the filename (1 to 7 alphanumeric characters) of the
DLBL statement for the catalog owning this VSE/VSAM cluster. The
system searches only this catalog for the file-id when the VSE/VSAM
cluster is to be opened. Specify this operand only if you want to override
the system’s assumption that the job catalog or, if there is no job catalog,
that the master catalog owns the cluster.

The only Access Method Services commands that use the CAT operand to
specify a private user catalog are the PRINT, REPRO, VERIFY, and
DELETE ERASE commands.

CISIZE=n

For VSE/VSAM this parameter specifies a control interval size for SAM
ESDS dataset. The size overrides that specified (or defaulted) in the
respective DTF macro. The specified size must be a number from 1 to
32,768. VSAM will round the value up to the multiple of 512 bytes or
multiple of 2K (if specified value is greater then 8K) but greater than the
SAM logical block length.

CYL=n|(n,n1)
Indicates the number of cylinders on an CKD device that are used for
space allocation. CYL is only valid for VSE/VSAM managed-SAM clusters.
n specifies the number of cylinders used for the primary allocation, n1 the
number used for secondary allocation. VSE/VSAM accepts values up to
16,777,215 for n and n1.

date With one exception, this parameter is ignored for VSE/VSAM clusters.

Normally, the expiration date used is that specified in the IDCAMS
DEFINE command. The only case in which the // DLBL date parameter
applies to a VSE/VSAM cluster is for implicit definition of VSE/VSAM
managed-SAM clusters. VSE/VSAM clusters (that have been explicitly
defined) or data spaces can only be deleted through the DELETE
command, even though the expiration date has been reached. For details
on the possible formats of the date parameter, please refer to the
description of the DLBL statement for non-VSAM files in the z/VSE System
Control Statements, SC34-2637.

DISP=disposition

This parameter is valid only in a DLBL statement for a VSE/VSAM cluster.
It permits specification of the data set disposition. Table 8 shows the
possible disposition values, applicability and their meaning. The default is
DISP=(OLD,KEEP,KEEP).

Table 8. DLBL Statement Disposition Values

Possible value Indicates the file is:
Applies when the file
is:

d1 NEW reset at OPEN opened

OLD not reset at OPEN

Job Control: // DLBL

30 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 8. DLBL Statement Disposition Values (continued)

Possible value Indicates the file is:
Applies when the file
is:

d2 DELETE made inaccessible at CLOSE regularly closed

KEEP kept at CLOSE

DATE kept at CLOSE, if the expiration
date has not been reached

made inaccessible at CLOSE, if the
expiration date has been reached

d3 DELETE made inaccessible at CLOSE abnormally terminated

KEEP kept at CLOSE

If you use the parenthesis syntax, each keyword (but not the separating
commas) can be omitted. For example, the following three specifications
are equivalent:
v DISP=NEW
v DISP=(NEW,)
v DISP=(NEW,,)

Specifying DISP=(,) or DISP=(,,) is the same as if the whole DISP parameter
is omitted.

For additional information about these keywords, see “File Disposition” on
page 32.

‘file-id’

For VSE/VSAM, 'file-id' is mandatory when a file is being processed. The
file-id is identical to the name of the cluster that was specified in the
DEFINE command of IDCAMS and listed in the VSE/VSAM catalog. For
VSE/VSAM, the file-id must be coded according to the following rules:
v One to 44 characters long, enclosed in quotes (');
v Characters must be alphanumeric (A-Z, 0-9, @, $, or #) or hyphen (-) or

plus zero (+0);
v After each group of eight or fewer characters, a period (.) must be

inserted;
v No embedded blanks are allowed;
v The first character of the file-id and the first character following a period

must be alphabetic (A-Z) or @, $ or #.

For details on the VSE/VSAM partition/processor unique file-id (%%), see
“VTOC Label Processing” on page 365.

filename
This can be from one to seven alphanumeric characters, the first of which
must be alphabetic, @, # or $. This unique filename is identical to the
symbolic name of the program DTF that identifies the file.

Note: Do not use the same filename for both a DLBL and a TLBL
statement.
For VSE/VSAM, filename is identical to the DDNAME=filename
parameter of the access method control block (ACB) in the processing
program that identifies the cluster. If the DDNAME parameter is omitted,
the filename must be contained in the symbolic name (label) field of the
ACB.

Job Control: // DLBL

Chapter 3. Operation and Job Control 31

RECORDS=n|(n,n1)
This operand is only valid for VSE/VSAM managed-SAM clusters. It
permits specification of the number of records for the primary and
secondary data set allocation. The operand can be specified in one of two
formats:
v RECORDS=n
v RECORDS=(n,n1)

where n indicates the number of records for the primary allocation, and n1
the number of records for the secondary allocation. n must not be zero; n1
can be larger or smaller than n. VSE/VSAM accepts values up to
16,777,215 for n and n1.

The RECORDS and RECSIZE operands must either both be specified or
both be omitted.

RECSIZE=n

This operand is only valid for VSE/VSAM managed-SAM clusters. It
specifies the average record length of the file. The value specified for n
must not be zero. The RECSIZE and RECORDS operands must either both
be specified or both be omitted.

VSAM
This parameter is required for all Virtual Storage Access Method clusters.

For details on the RECORDS and RECSIZE parameters, see “Defining a SAM ESDS
File” on page 162.

File Disposition
Disposition processing applies to reusable files only. Implicitly defined SAM ESDS
files are always reusable.

For VSE/VSAM access, the options available at OPEN and the disposition of the file
at CLOSE depend on the DISP parameter of the // DLBL statement or the
MACRF/CLOSDSP parameters of the ACB macro. Options specified for DISP
override those specified for MACRF/CLOSDSP. The default for the DISP
parameter depends on the file opened or closed. For VSE/VSAM access, the
default is:

DISP=(OLD,KEEP,KEEP)

where:
OLD is the default when the file is opened.
The first KEEP is the default when the file is normally closed.
The second KEEP is the default when the job is abnormally ended.

For managed-SAM access, the options available at OPEN and the disposition of the
file at CLOSE depend on the DISP parameter of the // DLBL statement and
options specified in the DTF.

Each option of the DISP parameter has a corresponding option in the
MACRF/CLOSDSP parameters that causes the same function to be performed. The
NEW, OLD, RST, and NRS options apply when the file is opened; KEEP, DELETE,
and DATE apply when the file is closed. VSE/VSAM allocates space, resets the file,
or implicitly defines a file (for managed-SAM access of a SAM ESDS file that is not
already defined in the catalog) when the ACB/DTF for the file is opened. At close,
VSE/VSAM keeps, resets, deallocates, or deletes the file, depending on which
function has been specified.

Job Control: // DLBL

32 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 9 on page 34 through Table 13 on page 38 list the VSE/VSAM actions when
opening and closing different kinds of files. The following definitions apply to the
figures:
v Keep means to retain a file's data and accessibility.
v Reset means to set a file to empty and release its secondary extents.
v Deallocate means to set a file to empty and release its primary and secondary

extents.
v Allocate means to provide primary disk space, as specified by the user at

DEFINE time.
v Define means to place information describing the file into the VSE/VSAM

catalog.
v Delete means to remove all references to the file from the catalog, and release

the file's space.

OPEN Disposition
A file may appear in one of the following four states when it is opened for output:

Unallocated

A file is unallocated if its catalog records have no information of suballocated
space. This happens for one of two reasons. Either the file was defined as a
dynamic file (NOALLOCATION, REUSE) and it has never been opened, or the file
was defined as a dynamic file (NOALLOCATION, REUSE) and it has been closed
with DISP and/or MACRF/CLOSDSP options that caused deallocation.

All open options cause space to be suballocated for the file, providing enough
space is available. If enough space is not available, the open fails. The ACB user is
informed by an ACB return code; the DTF user's job is canceled.

Allocated for Native VSE/VSAM Access

The options DISP=NEW and/or MACRF=RST cause the file to be reset to its
primary allocation; its secondary extents are released. Although the file records are
not erased, the file is considered empty. The options DISP=OLD and/or
MACRF=NRS do not cause the file to be reset to empty and allow updating and
extension of the file.

Allocated for Managed-SAM Access of a SAM ESDS File

Same as for Allocated for Native VSE/VSAM Access, above.

Undefined for Managed-SAM Access

All options of the DISP parameter cause the file to be implicitly defined. The
native VSE/VSAM user cannot implicitly define a file.

When a file with suballocated space is opened for input, the options DISP=NEW
and/or MACRF=RST are invalid, and the options DISP=OLD and/or
MACRF=NRS cause the file to be opened without resetting the file to empty.

Table 9 on page 34 shows the action performed by VSE/VSAM when you try to
open a file that is allocated for VSE/VSAM access.

Job Control: // DLBL

Chapter 3. Operation and Job Control 33

Table 9. VSE/VSAM Access: OPEN Disposition

Files with REUSE Attribute

OPEN
(ACB) File Status

DISP on DLBL or MACRF on ACB

NEW/RST OLD/NRS

OUTPUT Unallocated Allocate space for the file. Allocate space for the file.

Allocated Reset the file. (DISP=NEW
prevents access to any data
that exists prior to open.)

File is not reset. Output
operations allow updating
and extension of the file.

Undefined Open fails. Open fails.

INPUT Allocated Open fails. File is not reset. If the file is
already empty, open fails.

Table 10 and Table 11 on page 35 show the action performed by VSE/VSAM when
you try to open a file that is allocated for managed-SAM access. For explanations to
the “See ()” references in the two figures, refer to the explanations below the
tables.

Table 10. Managed-SAM Access: OPEN Disposition -- OUTPUT/INPUT

Files with REUSE Attribute

OPEN
(DTF) File Status

DISP is NOT
specified. See (A)

DISP on DLBL. See (B)

NEW OLD

OUTPUT Unallocated SAM
ESDS file. See (1)

Allocate space for
the file.
(DISP=NEW)

Allocate space for
the file.

Allocate space for
the file.

Allocated for
SAM ESDS file.
See (1) (2)

Reset the file.
Position to the
beginning of the
file. (DISP=NEW)
See (B)

Reset the file.
Position to the
beginning of the
file.

File is not reset.
Position to the
end of the file for
extension.

Undefined. Implicitly define a
SAM ESDS file.
(DISP=NEW)

Implicitly define a
SAM ESDS file.

Implicitly define a
SAM ESDS file.

INPUT Allocated for
SAM ESDS file.

File is not reset.
Position to the
beginning of the
file for input.
(DISP=OLD)

Invalid. File is not
reset. Open fails.

File is not reset.
Position to the
beginning of the
file for input.

Job Control: // DLBL

34 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 11. Managed-SAM Access: OPEN Disposition -- WORKxxxx

Files with REUSE Attribute

OPEN (DTF) File status

DISP is NOT
specified See

(A)

DISP on DLBL See (B)

NEW OLD

WORK Unallocated
SAM ESDS file.
See (1)

Allocate space
for the file.
(DISP=NEW).

Allocate space
for the file.

Allocate space
for the file.

Allocated for
SAM ESDS file.
See (1)

Reset the file.
Position to the
beginning of the
file.
(DISP=NEW).

Reset the file.
Position to the
beginning of the
file.

File is not reset.
Position to the
beginning of the
file. The file may
be read.

Undefined. Implicitly define
a SAM ESDS
file.
(DISP=NEW).

Implicitly define
a SAM ESDS
file.

Implicitly define
a SAM ESDS
file.

WORK-IN
See

Unallocated
SAM ESDS file. Invalid.

Open fails.
(DISP=OLD).

Invalid.
Open fails.

Invalid.
Open fails.

Allocated for
SAM ESDS file.

File is not reset.
Position to the
beginning of the
file. The file may
be read.
(DISP=OLD).

File is not reset.
Position to the
beginning of the
file. The file may
be read.

File is not reset.
Position to the
beginning of the
file. The file may
be read.

Undefined.
Invalid.
Open fails.
(DISP=OLD).

Invalid.
Open fails.

Invalid.
Open fails.

WORK-INUP
See

Unallocated
SAM ESDS file. Invalid.

Open fails.
(DISP=NEW).

Invalid.
Open fails.

Invalid.
Open fails.
.

Allocated for
SAM ESDS file.

File is not reset.
Position to the
beginning of the
file. The file may
be read.
(DISP=NEW).

File is not reset.
Position to the
beginning of the
file. The file may
be read.

File is not reset.
Position to the
beginning of the
file. The file may
be read.

Undefined.
Invalid.
Open fails.
(DISP=NEW).

Invalid.
Open fails.

Invalid.
Open fails.

Job Control: // DLBL

Chapter 3. Operation and Job Control 35

Table 11. Managed-SAM Access: OPEN Disposition -- WORKxxxx (continued)

Files with REUSE Attribute

OPEN (DTF) File status

DISP is NOT
specified See

(A)

DISP on DLBL See (B)

NEW OLD

WORK-MOD Unallocated
SAM ESDS file.
See (1).

Allocate space
for the file.
See (1).
(DISP=NEW).

Allocate space
for the file.

Allocate space
for the file.

Allocated for
SAM ESDS file.

Reset the file.
Position to the
beginning of the
file.
(DISP=NEW).

Reset the file.
Position to the
beginning of the
file.

File is not reset.
Position to the
end of the file.
The file may be
read.

Undefined. Implicitly define
a SAM ESDS
file.
(DISP=NEW).

Implicitly define
a SAM ESDS
file.

Implicitly define
a SAM ESDS
file.

Explanations

In Table 10 on page 34 and Table 11 on page 35:
(A) The default value is given in parentheses, for example (DISP=NEW).
(B) Do not specify the DISP parameter for IJSYSLN (SYSLNK file).
(1) If the characteristics of the file do not match those specified in the DTF,
open fails and the file cannot be implicitly deleted. In particular, the maximum
logical block that may be written (DTF BLKSIZE) must not be greater than the
maximum allowed in the file (DEFINE maximum RECORDSIZE). If DTFSD is
used, the file must be in CI format.
(2) DISP=NEW prevents access to any data existing prior to open.

CLOSE Disposition
Close disposition takes effect only after the file has been successfully opened. If
you open a file but do not close it, close disposition takes effect during automatic
close at the end of the job step.

VSE/VSAM Access

If you specify DELETE as the only disposition at CLOSE, VSE/VSAM always
deletes the data by deallocation or resetting the file. The contents of the file is lost.
The next open for INPUT will fail because the file is empty. If any other DTF (or
ACB) is open for the same file, the close is completed, but the file is not reset,
deallocated, or deleted; the operator and the invoking program are notified by a
return code.

If you specify a second close disposition in the // DLBL DISP parameter, this
specification takes over the function of the first close disposition if the job is
canceled by the operator or is ended abnormally for any other reason before the
file was closed.

Note: A nonzero job return code is not an abnormal end of job. This means:
v The first close disposition will be performed.

Job Control: // DLBL

36 VSE/VSAM V9R2 User’s Guide and Application Programming

v The second close disposition will not be performed.

If, for example, you open a reusable file through a // DLBL statement with the
close disposition specified as ...DELETE,KEEP then this file is only deleted if the
job comes to a normal end. In any other case the file is not deleted and you can
rerun the job without reloading the file.

Table 12 shows the action performed by VSE/VSAM when you try to close a file
that is allocated for VSE/VSAM access.

Table 12. VSE/VSAM Access: CLOSE Disposition

Files with REUSE Attribute

CLOSE (ACB)

DISP on DLBL or MACRF on ACB

KEEP DELETE

Date

Expired Unexpired

File was explicitly defined
(NOALLOCATION)

Keep Deallocate Deallocate Keep

REUSABLE (suballocated) Keep Reset Reset Keep

File was implicitly defined Keep Reset Reset Keep

Managed-SAM Access

If you specify DELETE as the only disposition at CLOSE, VSE/VSAM always
deletes the data by deallocation, resetting, or implicit deletion. To avoid
sharing-problems, however, if any other DTF (or ACB) for the same file is open at
the same time, no deletion occurs; the operator is notified by a message with a
warning return code, and close processing continues. With DELETE specified at
CLOSE, the contents of the file is lost. The next open for OUTPUT WORK will
write new data. If the file has been deallocated or reset, an OPEN for INPUT will
be successful, but the first GET will cause control to be passed to the EOFADDR
routine because the file is empty.

If you specify a second close disposition in the // DLBL DISP parameter, this
specification takes over the function of the first close disposition if the job is
canceled by the operator or is ended abnormally for any other reason before the
file was closed.

Note: A job return code of not 0 is not an abnormal end of job. That means:
v The first close disposition will be performed.
v The second close disposition will not be performed.

If, for example, you open a reusable file through a // DLBL statement with the
close disposition specified as ...DELETE,KEEP then this file is only deleted if the
job comes to a normal end. In any other case the file is not deleted and you can
rerun the job without reloading the file.

Table 13 on page 38 shows the action performed by VSE/VSAM when you try to
close a file that is allocated for managed-SAM access.

Job Control: // DLBL

Chapter 3. Operation and Job Control 37

Table 13. Managed-SAM Access: CLOSE Disposition

Files with REUSE Attribute

CLOSE (DTF)
DISP not
specified

DISP on DLBL. See (A)

KEEP DELETE

Date

Expired Unexpired

File was explicitly
defined
(NOALLOCATION)

Keep. See (1) Keep Deallocate Deallocate Keep

REUSABLE
(suballocated)

Keep. See (1) Keep Reset Reset Keep

File was implicitly
defined

Keep. See (1) Keep Delete Delete Keep

(A) Do not specify the DISP parameter for IJSYSLN (SYSLNK file).
(1) DISP is DELETE if TYPEFILE=WORK and DELETFL is specified.

Additional Considerations
v Specifying DISP=NEW in the // DLBL statement overrides MACRF=NRS in the

ACB, such that the result is as if MACRF=RST were specified. Because
MACRF=RST is mutually exclusive with MACRF=IN and MACRF=LSR, open
fails if DISP=NEW is specified for a file opened through DTF TYPEFLE=INPUT,
or ACB MACRF=IN, or MACRF=LSR.

v If the close disposition specified for the file results in the resetting or
deallocation of the file, and if the file is password-protected, the ACB must
specify (or the operator will be prompted for) the update- or higher-level
password of the file at open. If the close disposition specified for the file results
in the implicit deletion of the file, there is no prompting for the entry password
because an implicitly defined file cannot be password-protected. If the catalog
itself is password-protected, the operator is prompted for the master password
of the catalog at CLOSE.
Using DISP could eliminate data inadvertently if the wrong parameter is
specified. You may want to use an entry password to protect against inadvertent
destruction of data. A catalog password may also provide protection for files
owned by the catalog. If the file is accessed through DTF, the password must be
supplied by the operator. If the file is accessed through ACB, the password may
be supplied in the ACB, by the operator, or through IDCAMS commands.

// EXEC Statement
To run a job or job step, enter the EXEC command with the SIZE parameter.

Note to Users of the VSE/VSAM Space Management for SAM
Function

When job control routines process linkage editor control statements (such as
ACTION, ENTRY, INCLUDE, or PHASE) with IJSYSLN defined as a
managed-SAM file, both the minimum partition size of 128KB and the default
GETVIS space of 48KB are too small. Before attempting to run the linkage editor
with a managed-SAM IJSYSLN file, tell the system operator to issue the ALLOC
command to adjust partition size to provide the required GETVIS space, plus 80KB
non-GETVIS space for job control routines. The operator must then issue the SIZE
command to set aside an adequate amount of default GETVIS space in the partition.

Job Control: // DLBL

38 VSE/VSAM V9R2 User’s Guide and Application Programming

To determine how much GETVIS space is adequate, consider the following:
v You must provide enough storage to access the catalog(s) to locate the SAM

ESDS file(s). For every catalog required, provide at least 40KB of GETVIS space.
v For every SAM ESDS file you wish to have open at any given time, you should

provide at least an additional 20KB of GETVIS space.

For example, to use 4 work files cataloged in the same user catalog, provide 40KB
(user catalog) + 40KB (master catalog) + 80KB (4 SAM ESDS files) = 160KB of
GETVIS space. This is in addition to the space for the program you intend to run
in that partition.

Format of the EXEC Statement

��
//

EXEC
progname

PGM=
,REAL

�

�
,SIZE= nK

mM
AUTO
(AUTO, nK)

mM
phasename
(phasename, nK)

mM

,GO ,PARM='value'
�

�
,DSPACE= nK

mM
,TRACE

��

For information about parameters not described here, refer to the description of the
EXEC statement in the z/VSE System Control Statements, SC34-2637.

PARM=‘value’
The parameter is optional. The syntax and meaning of the PARM
parameter are identical to that of the PARM IDCAMS command (modal
command) as described in the VSE/VSAM Commands, SC33-8315.

Follow IDCAMS syntax rules for coding ‘value’, but follow VSE/VSAM job
control rules for coding continuation statements. (Use a nonblank character
in column 72 and continue the statement in column 16.) The maximum
number of characters between the quotes is 100 and consists of all data in
columns 16 - 71, including blanks. IDCAMS treats this data as one
100-character line. Do not code the IDCAMS continuation dash.

Examples:
16 72
| |
V V

// EXEC IDCAMS,SIZE=AUTO,PARM=’GRAPHICS(CHAIN) X
MARGINS(10 80)’

// EXEC IDCAMS,SIZE=AUTO,PARM=’TEST(TRACE FULL((IOGR 3 3) X
(IOPR 3 3)(IOVY 4 4)))’

Job Control: // EXEC

Chapter 3. Operation and Job Control 39

In the examples, there is a continuation character in column 72,
and the continuation line begins in column 16.
In the second example, the FULL dump IDs are IOGR, IOPR, and IOVY.

REAL Tells the system to execute the program in real storage, without paging. In
VSE/VSAM, use of this parameter causes the system to load VSE/VSAM
modules that normally reside in the SVA into your partition. Your partition
must have an additional 300KB to accommodate these VSE/VSAM SVA
modules. To run the VSE/VSAM Space Management for SAM Function in real
mode, add another 40KB (340KB total) to your partition.

There are only a few cases (for example, time-dependent applications) in
which VSE/VSAM should run in real mode instead of virtual mode.
Running programs in real mode in one partition can significantly degrade
performance in other partitions, so you should use real mode sparingly. Do
not specify REAL on the // EXEC IDCAMS invoke statement, because the
partition cannot accommodate both VSE/VSAM and IDCAMS modules at
the same time.

SIZE=size
Specifies how much storage is needed for loading the specified program.
For ease of use, specifying SIZE=AUTO is recommended. This indicates
that the program size, as calculated by the system, is to be taken as the
value for SIZE. For other possible specifications of SIZE, see the description
of the EXEC statement in the z/VSE System Control Statements, SC34-2637.

You must specify SIZE for VSE/VSAM programs (including IDCAMS),
ISAM programs using the ISAM Interface Program (IIP), and SAM files
using the VSE/VSAM Space Management for SAM Function. SIZE specifies
the size of that part of the partition that is directly available to the
program to be executed. The remainder of the partition may be used as
GETVIS storage area.

The non-SVA-eligible VSE/VSAM phases and IDCAMS must be
accommodated in the partition GETVIS area. The partition GETVIS area
must contain at least 40KB for VSE/VSAM buffers and control blocks for
every catalog that is open, plus 12KB for every KSDS and 10KB for every
ESDS or RRDS (assuming a CI size of 2KB or less). Additional space for
modules, buffers, and control blocks is required if you use any
non-SVA-eligible VSE/VSAM phases (for example, the ISAM Interface
Program) or IDCAMS. For exact storage requirements, see “Storage for
VSE/VSAM” on page 16.

To invoke IDCAMS through job control, specify:
// EXEC IDCAMS,SIZE=AUTO,PARM='value'

If you do not specify the SIZE parameter, IDCAMS terminates your job
immediately. When you specify SIZE=AUTO, the system determines the
amount of storage required for the IDCAMS root segment and leaves the
rest of the partition free for the GETVIS area.

Job Control: // EXEC

40 VSE/VSAM V9R2 User’s Guide and Application Programming

// EXTENT Statement
To determine when you must supply a // EXTENT statement, refer to “Use of
z/VSE Job Control Statements for VSE/VSAM” on page 25.

Format of the EXTENT Statement

�� // EXTENT
logical_unit

,
serial_number

,
1

type
, �

�
sequence_number

,
relative_track_number
block_number

,
number_of_tracks
number_of_blocks

��

logical_unit
Specifies a six-character field indicating the logical unit (SYSxxx) of the
volume on which this extent resides. VSE/VSAM does not require this
parameter; if you do not specify a LU, VSE/VSAM will assign one.

If you specify this parameter, you must supply full job control statements
(// DLBL, // EXTENT, and // ASSGN) for all volumes (including
candidate volumes) for the file and its associations.

number_of_tracks│number_of_blocks
This parameter indicates the number of tracks (CKD), or number of blocks
(FBA) to be allocated to the file or space. You must specify it when a file
with the UNIQUE option is created (DEFINE or IMPORT command).

This parameter is ignored when a VSE/VSAM file is created within an
existing data space, because VSE/VSAM suballocates the space for the file
from direct-access extents it already owns. This parameter is not required
for VSE/VSAM input files, because the extents are obtained from the
VSE/VSAM catalog.

For an implicitly defined SAM ESDS file that does not specify RECORDS
(and RECSIZE), or CYL or BLK (on the // DLBL statement), VSE/VSAM
uses the number of tracks│blocks parameter to determine the primary
allocation size. A secondary allocation size equal to 20% of the primary
size is used.

This parameter and the relative track│block parameter must either both be
present or both be omitted.

relative_track_number│block_number
This parameter indicates the number of the track (CKD), or number of
block (FBA) on which the extent is to begin. You must specify it when a
file with the UNIQUE option is created (DEFINE or IMPORT command).

This parameter is not required (and is ignored) if it is specified for a
VSE/VSAM file that is created within an existing data space. In this case,
VSE/VSAM suballocates the space for the file from direct-access extents it
already owns. You are not required to specify this parameter for a
VSE/VSAM input file, because the extents are obtained from the
VSE/VSAM catalog.

This parameter and the number of tracks│blocks parameter must either
both be present or both be omitted.

Job Control: // EXTENT

Chapter 3. Operation and Job Control 41

sequence_number
This parameter is ignored for VSE/VSAM users, but if it is specified
incorrectly, it is flagged by job control.

serial_number
VSE/VSAM users are required to specify the serial number of the volume
this extent is on. For data integrity reasons, do not have two volumes with
the same serial number in your system (even if one of the volumes
contains no VSE/VSAM space).

type For VSE/VSAM, a value of 1 is assumed.

Using Job Control for Catalog Definition

Overview of Catalogs
VSE/VSAM catalog(s) are central information points for files and volumes. A
catalog contains the information VSE/VSAM needs to allocate space for files,
verify authorization to gain access to files, compile use statistics on files, and relate
relative byte addresses (RBAs) to physical locations. Each VSE/VSAM catalog also
contains entries that describe the catalog itself. Figure 5 shows the relationship
between a master catalog and user catalogs, as well as their relationships with
VSE/VSAM and nonVSAM files.

Master Catalogs
This type of catalog is mandatory. A master catalog must be defined in your
system. Defining a master catalog is the first job that needs to be done after you
have installed VSE/VSAM in your system. You can have several master catalogs at
your installation; however, only one can be connected to the system at a time.

The master catalog volume must always be mounted whenever a VSE/VSAM file
or catalog is to be processed. If the VSE/VSAM file to be processed is defined in a
user catalog, the user catalog volume must be mounted also.

The master catalog volume is connected to the system at IPL (initial program load)
by the DEF SYSCAT=cuu command. It is always on a LU named SYSCAT.

Files and
Volume Records

VSAM Files

VSAM Files
Other Files

Other Files

User Catalog
(Optional)

User Catalog
(Optional)

Pointer Pointer

Files and
Volume Records

Files and
Volume Records

VSAM FilesVSAM FilesVSAM Files
Other Files

Master Catalog

Figure 5. Relationship of Catalogs and Files

Job Control: // EXTENT

42 VSE/VSAM V9R2 User’s Guide and Application Programming

User Catalogs
This type of catalog is optional. A user catalog has the same structure and function
as the master catalog. If defined, a user catalog is pointed to by the master catalog.

One or more user catalogs can be defined in your system. They are used to
increase data integrity and security, improve performance, and provide volume
portability.

Files and Catalogs
All VSE/VSAM files (except implicitly defined SAM ESDS files) must be defined
(have an entry) in a catalog. To make such an entry, or to perform other actions on
a file, you do not act on the file, but on a VSE/VSAM catalog. For example: to
establish a file, you have to create an entry in a catalog by using the IDCAMS
command DEFINE; to delete a file involves removing an entry from the catalog; to
move a file from one system to another involves moving an entry from one
system's catalog to another system's catalog.

Note that VSE/VSAM either:
v Uses a catalog to access a file (as in the PRINT command, where VSE/VSAM

locates the file to be printed through the catalog), or
v Accesses the catalog information only and does not access a file (as in the

ALTER command, where VSE/VSAM changes an entry in the catalog).

Catalog Volumes
Several catalogs can own space on a volume, but with the restriction that only one
catalog can reside on a volume.

If a VSE/VSAM file resides on several volumes, every one of those data spaces
must be owned by the same catalog.

Note that information requests to a catalog might be answered more quickly if the
information is distributed across several catalogs. For example, if the master
catalog primarily contains pointers to user catalogs, which in turn contain entries
for most files and volumes, catalog search time can be reduced, and the effect of an
inoperative or unavailable catalog is minimized.

The following discussion (except where noted) pertains to the accessing of a file.

Specifying the Master Catalog
To define a master catalog you must supply a master catalog // DLBL statement, and
you must specify extent information, either in the form of an // EXTENT
statement or by DEFINE command parameters.

// DLBL IJSYSCT,’VSAM.MASTER.CATALOG’,,VSAM

The // DLBL statement in the above example identifies:
v The filename: must be IJSYSCT.
v The file-ID: VSAM.MASTER.CATALOG

This can be any name you choose (it must match the NAME parameter in the
DEFINE MASTERCATALOG command).

v The access method.

You can omit the master catalog // DLBL statement from the job stream if you
place the statement in the system or partition standard label area. You do this by
preceding it with one of the following job control statements:

Job Control: CATALOGS

Chapter 3. Operation and Job Control 43

// OPTION STDLABEL=ADD
// OPTION PARSTD=ADD

Another way of referring to the master catalog (after its initial specification) is by
coding the CAT=filename parameter in a VSE/VSAM file's // DLBL statement. For
further explanation to the CAT=filename parameter, see below.

Specifying a User Catalog
To define a user catalog you supply a // DLBL statement for the master catalog
only. But to access files in a user catalog, specify a user catalog // DLBL statement.
(For information on // DLBL requirements for IDCAMS commands, refer to
Table 6 on page 26.) No // EXTENT statement is required.

Specifying a Job Catalog
With VSE/VSAM, you can designate one (but only one) of your user catalogs as a
job catalog.

You specify a job catalog by coding the filename, IJSYSUC, in the // DLBL
statement that specifies the user catalog; for example:

// DLBL IJSYSUC,'JOBCAT',,VSAM

When you specify a job catalog, VSE/VSAM will always use that one catalog for
all catalog and file access in the current job, unless it is specifically overridden by:
v The CAT=filename parameter of a VSE/VSAM file's // DLBL statement.
v The CATALOG or WORKCAT parameter of an IDCAMS command.

Using a Job Catalog
The following example makes use of the REPRO command (data is to be copied
from one file to another) to show how you use a job catalog. It is assumed that the
input file, PAY, and the output file, PAYROLL, were already defined (cataloged) in
the job catalog. It is also assumed that the // DLBL statement for the master
catalog has been placed in the system or partition standard label area and so need
not be included in the example.

Example:

// JOB Specify a job catalog
(a) // DLBL IJSYSUC,'USER1',,VSAM
(b) // DLBL VSAMIN,'PAY',,VSAM
(c) // DLBL VSAMOUT,'PAYROLL',,VSAM

// EXEC IDCAMS,SIZE=AUTO
REPRO INFILE(VSAMIN) OUTFILE(VSAMOUT)

/*
/&

In this example, VSE/VSAM finds a // DLBL statement with a filename of
IJSYSUC (a). VSE/VSAM interprets this to mean that files PAY (b) and PAYROLL
(c) have their respective entries in the job catalog. It, therefore, searches the job
catalog to locate the entry for input file PAY and output file PAYROLL.

Assume that you want to process a file, but the file is not cataloged in the job
catalog. In this case, you can override the job catalog by using either:
v The // DLBL CAT=filename parameter, or
v The CATALOG parameter of an IDCAMS command.

Job Control: CATALOGS

44 VSE/VSAM V9R2 User’s Guide and Application Programming

The following explains these two methods of explicit catalog specifications.

Explicit Catalog Specification (With a VSE/VSAM File's // DLBL
CAT Parameter)
The following example directs VSE/VSAM to search a catalog other than the job
catalog (specified in the previous example). Assume that the input file PAY was
defined in job catalog USER1 as before, but output file PAYROLL was defined in
user catalog USER2. Also assume, as before, that the // DLBL statement for the
master catalog has been placed in the system or partition standard label area.

Example:

// JOB USING the // DLBL CAT PARAMETER
(a) // DLBL IJSYSUC,'USER1',,VSAM
(b) // DLBL VSAMIN,'PAY',,VSAM
(c) // DLBL VSAMOUT,'PAYROLL',,VSAM,CAT=PRIVCAT
(d) // DLBL PRIVCAT,'USER2',,VSAM

// EXEC IDCAMS,SIZE=AUTO
REPRO INFILE(VSAMIN) OUTFILE(VSAMOUT)

/*
/&

VSE/VSAM encounters the filename IJSYSUC in a // DLBL statement (a), but it
also finds CAT=PRIVCAT in a file's // DLBL statement (c). CAT=PRIVCAT directs
VSE/VSAM to search catalog (d) USER2 (rather than the job catalog) for
PAYROLL's file entry. (Filename PRIVCAT links the CAT parameter to the
appropriate // DLBL user catalog statement.)

VSE/VSAM locates the entry of file PAY (b) in the job catalog as before because, in
this case, you have not overridden the job catalog specification.

The // DLBL CAT=filename parameter is used with the PRINT and REPRO
commands. (Each of these commands is used to access data.) The // DLBL
CAT=filename parameter can also be used for VSE/VSAM application program
access.

Explicit Catalog Specification (With the IDCAMS CATALOG
Parameter)

Master Catalog

A master catalog // DLBL statement is always required. You may include it in the
job stream or in the partition or standard label area.

User Catalog

If you specify the CATALOG parameter in an IDCAMS command, generally no //
DLBL is needed for a user catalog. Only the PRINT and REPRO commands require
a user catalog // DLBL because they are used with nonVSAM files. For
information on the requirement of // DLBL for IDCAMS commands, see Table 6
on page 26.
The format of the CATALOG parameter is:

CATALOG (catname/password)

Specify password only if needed.

Job Control: CATALOGS

Chapter 3. Operation and Job Control 45

Search Sequence of Catalogs
VSE/VSAM follows a certain order in searching for the catalog of a file. The
established hierarchy that determines the specific catalog to be searched is as
follows:
1. Explicitly specified user or master catalog.

This is the catalog that is specified by the IDCAMS CATALOG parameter or by
the CAT=filename parameter of a VSE/VSAM file's // DLBL statement.

2. Job catalog.
If the above catalog is not specified, the job catalog (IJSYSUC) specified as the
filename of a // DLBL statement is searched.

3. Master catalog.
If the above catalogs are not specified, the master catalog (IJSYSCT) is searched.

Table 14 shows which catalog is searched, depending on your // DLBL
specification.

The default catalog is the catalog that VSE/VSAM searches if you do not specify
CAT=filename in the // DLBL statement, or if you do not use the CATALOG
parameter in an IDCAMS command.

Normally, the default catalog is specified by the // DLBL IJSYSUC statement (also
referred to as job catalog). If not specified, the default catalog is the master catalog
(// DLBL IJSYSCT).

Table 14. // DLBL Specifications and Search Sequence of Catalogs

// DLBL IJSYSUC
specified?

// DLBL
CAT=filename

CATALOG
Parameter Specified?

See (1)
Catalog to be

Searched

Yes None No Job Catalog

Yes Filename of User
Catalog // DLBL

No User Catalog

Yes ’IJSYSCT’ No Master Catalog

Yes ’IJSYSUC’ No Job Catalog

Yes None Yes CATALOG(catname)

No None No Master Catalog

No Filename of User
Catalog // DLBL

No User Catalog

No ’IJSYSCT’ No Master Catalog

No ’IJSYSUC’ No Master Catalog. See
(2)

No None Yes CATALOG(catname)

Note:

1. For more information on the CATALOG parameter, see Table 6 on page 26.
2. If the filename for the job catalog is specified but not a job catalog, VSE/VSAM

defaults to the master catalog.

Job Control: CATALOGS

46 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 4. Tasks under VSE/VSAM

This Chapter ...

Explains the relationship between a catalog, the data space on a volume, and
VSE/VSAM files.

The chapter includes “how to” information for:
v Defining data space and files, and handling ownership of space and volumes.
v Transporting files.
v Migrating catalogs and files.
v Modeling a new object from existing definitions.

Data and Space Management

About the VSE/VSAM Catalog
When you define a catalog under VSE/VSAM, the catalog is the first object
contained on a volume, and VSE/VSAM allocates a specific amount of data space
to the catalog. This data space is “owned” by the catalog, and it is managed by
VSE/VSAM. Of this data space, you can make portions available to other
VSE/VSAM objects; that is, you can suballocate space.

Information Contained in the Entries of a Catalog
The VSE/VSAM catalog is a key-sequenced file composed of a data part and an
index part. The data part of the catalog consists of:
v Cluster entries that describe files.

Cluster entries contain the information that VSE/VSAM requires to properly
access a file, verify access authorization (if required), and provide statistics on
operations performed on a file.

v Volume entries that describe direct-access volumes in terms of the allocation of
data spaces and the location of available space.
Volume entries in a catalog enable VSE/VSAM to keep track of data spaces and
free storage areas.

The index part of the catalog allows VSE/VSAM to find the cluster entry through
its 44-byte name (file-ID), and to find the volume entry through the volume serial
number.

The information contained in VSE/VSAM catalogs is sufficient to enable
VSE/VSAM to suballocate and deallocate space for files on the available volumes.
Because these volumes need not be mounted on a device of the system, file
management is less dependent on job control information, or on information
specified in processing programs. In certain cases, however, volumes must be
mounted; refer to “Volume Mounting Needs” on page 51.

Except for clusters that have been defined with the UNIQUE attribute, VSE/VSAM
can allocate and deallocate space for files on cataloged volumes that are not
mounted.

© Copyright IBM Corp. 1979, 2014 47

Defining VSE/VSAM Data Spaces on a Volume
To define VSE/VSAM data space on a volume, and to identify the volumes that
will contain the VSE/VSAM clusters, you use the IDCAMS command DEFINE
SPACE.

The space you define will be:
v Identified in the volume table of contents (VTOC) of the volume.
v Controlled entirely by the VSE/VSAM catalog in which it is defined.

Note that the volumes that will contain VSE/VSAM files must be mounted.

Defining VSE/VSAM Files
VSE/VSAM files (or clusters) are stored in VSE/VSAM data spaces. Usually, you
first define a data space, then you define the files.

All VSE/VSAM files of an installation must be cataloged in a VSE/VSAM catalog.
You catalog a file by defining it through the IDCAMS command DEFINE CLUSTER.
IDCAMS, then, enters the name of the file and other characteristics into the
catalog.

When you define VSE/VSAM files, you normally do not need any // DLBL and
// EXTENT statements. This is because VSE/VSAM automatically allocates space
for the files from existing data spaces.

When you define a file with the UNIQUE attribute (to enable the file to be
allocated a space of its own), you do not define the data space beforehand. Instead,
you provide extent information. You do this through // DLBL and // EXTENT
statements in the IDCAMS job stream that defines that file. The data space is then
set up at the same time as the entry for the file is created. The volume(s) must be
mounted, as in defining a data space.

Note that you can also identify nonVSAM files in a VSE/VSAM catalog, but you
cannot suballocate nonVSAM files within VSE/VSAM data space.

About Volumes and VTOCs

Volume Ownership
A given catalog controls (owns) any space that is defined in it. This includes the
space in which the catalog resides, as well as the VSE/VSAM data space occupied
by VSE/VSAM files.

The VSE/VSAM data space occupied by VSE/VSAM files is recorded in the volume
entries in a catalog. The ownership of the volume, and the use of VSE/VSAM data
space on a volume are indicated by label entries in the VTOC of the volume.

VSE/VSAM volume ownership does not affect nonVSAM files that reside on the
volume. NonVSAM files can exist on a volume owned by a catalog but can be
cataloged as nonVSAM entries in a catalog that does not own the volume.
(NonVSAM files do not have to be defined in a VSE/VSAM catalog.)

Label Entries in the VTOC

The data secure file bit in the format-1 VTOC (identifier) label of every VSE/VSAM
data space on the volume is set to indicate both read and write protection.

Managing Data and Space

48 VSE/VSAM V9R2 User’s Guide and Application Programming

The ownership bit in the format-4 VTOC label is set to 1 if the volume contains a
VSE/VSAM data space, or if the volume is a candidate volume for a VSE/VSAM
object. The ownership bit indicates that the volume is owned by one or more
catalogs, but does not identify the volumes.

Volume Entries in a Catalog

Every catalog contains a volume entry for every volume it owns. The volume entry
describes:
v The characteristics of the direct-access volume
v Every extent of the VSE/VSAM data space
v Every VSE/VSAM object that uses the space of the volume

Note that volumes with duplicate volume serial numbers cannot be owned by the
same catalog.

Handling Ownership

Removing Volume Ownership

To remove a volume ownership from a catalog, you must delete all VSE/VSAM
objects and data spaces owned by that catalog on the volume.

If you cannot use the DELETE command because IDCAMS can no longer access
the volume (due to the damage that resulted from a system or hardware failure),
you can reset the ownership bit by using the IKQVDU program.

Note: Do not use IKQVDU if more than one catalog owns space on the volume.
This is because IKQVDU resets the ownership bit even if other catalogs own space
on the volume. For more information on the IKQVDU program, see “Maintaining
VTOC and VOL1 Labels on Disk (IKQVDU)” on page 385.

Releasing Space from Ownership

To release space from ownership by a catalog, you must delete all VSE/VSAM
objects that reside in that space. The catalog contains a volume entry, which
describes the volume and its VSE/VSAM data spaces.

After deleting the VSE/VSAM objects, you must issue the DELETE SPACE
command. The DELETE SPACE command deletes the VSE/VSAM data spaces
owned by that catalog, removes the volume entry from the catalog, deletes the
format-1 label, and revises the format-4 label in the VTOC (if no other catalogs
own space on that volume).

The following fields in the format-4 VTOC label are reset only when all catalogs
have released their VSE/VSAM space on the volume:
Offset Length Description

77 8 VSE/VSAM time stamp 1 is set to the system’s time of day
when VSE/VSAM acquires volume ownership in a catalog. This
time stamp is modified whenever physical space allocated to
VSE/VSAM is acquired, either by allocation of an extent
or any time VSE/VSAM physical space is returned to the
VTOC by VSE/VSAM catalog management routines.

85 1 VSE/VSAM indicators:
Bit 0 set to 1 = One or more VSE/VSAM catalogs owns space

on the volume.

Managing Data and Space

Chapter 4. Tasks under VSE/VSAM 49

Bit 1 set to 1 = No significance for VSE.
Bits 2 - 7 = Reserved (set to binary zeros).

86-87 Not used

88 8 VSE/VSAM time stamp 2 is the VSE/VSAM-only timestamp. (Set
only for MVS compatibility and not used by VSE.)

Recognizing VSE/VSAM Data Space Names in the VTOC
VSE/VSAM generates names for data spaces and enters the names in the VTOC of
the applicable volume. You want to be able to recognize the names that relate to
VSE/VSAM when you list the volume's VTOC, when you reinitialize the volume,
or when you dump the volume to a magnetic tape.

The VTOC contains the:
v Name of every VSE/VSAM data space on the volume, and
v For unique files, the names for the data and index components of a cluster or

alternate index (the format-1 VTOC label is identified with the object's entry
name).

The names generated by VSE/VSAM have the following format:
v For a data space containing suballocated VSE/VSAM objects, the

VSE/VSAM-generated name is:
Z999999n.VSAMDSPC.Taaaaaaa.Tbbbbbbb

where:
n=2 if no catalog resides in the data space
n=4 if a user catalog resides in the data space
n=6 if the master catalog resides in the data space
aaaaaaabbbbbbb is the time stamp value

v For a unique data space (defined as a data space that cannot contain more than
one cataloged VSE/VSAM object), the VSE/VSAM-generated name is:

VSAMDSET.DFDyyddd.Taaaaaaa.Tbbbbbbb

where:
yyddd is the date (year and Julian day)
aaaaaaabbbbbbb is the time stamp value

Relating Names Created for Unique Data Spaces
When you define a VSE/VSAM file with the UNIQUE attribute, VSE/VSAM
creates a unique data space. If you specify a name for the data and/or index
component, VSE/VSAM places the name you specify in the format-1 VTOC label
rather than generating a name.

To relate the VSE/VSAM-generated name with a VSE/VSAM cluster, alternate
index, catalog, or data space, you have to list the catalog that owns the volume.
Issue a LISTCAT command to list the content of the catalog. The LISTCAT output,
then, relates the VSE/VSAM-generated names with user-assigned entry names for
cataloged objects.

Managing Data and Space

50 VSE/VSAM V9R2 User’s Guide and Application Programming

Time Stamps
Every volume owned by a catalog contains a time stamp that is written in the
VTOC when the volume is first cataloged. Both time stamps, the one in the VTOC
and the one in the volume entry in the catalog, are updated whenever the catalog
is updated in response to the following IDCAMS commands:

DEFINE SPACE
DEFINE CLUSTER (with UNIQUE attribute)
DEFINE ALTERNATEINDEX (with UNIQUE attribute)
DEFINE MASTERCATALOG
DEFINE USERCATALOG
DELETE SPACE
DELETE CLUSTER (with UNIQUE attribute)
DELETE ALTERNATEINDEX (with UNIQUE attribute)
DELETE MASTERCATALOG
DELETE USERCATALOG
EXPORT PERMANENT a cluster or alternate index with the UNIQUE attribute.
(The cluster or alternate index is deleted.)
IMPORT a cluster or alternate index with the UNIQUE attribute. (Any old copy,
if present, is deleted, and a new version is defined.)

If the time stamp of the volume is earlier than the time stamp of the catalog, the
volume is considered down-level. IDCAMS will not open a file on a down-level
volume.

Volume Mounting Needs
Volumes must be mounted in the following cases:
v If it is the owning VSE/VSAM catalog.
v If a volume contains a unique file.
v If there is not enough unused data space to contain a file, you must mount one

or more volumes to allocate new data space, or you have to assign to the file
other volumes that contain unused data space.

v In all cases where files are actually accessed (for example, VSE/VSAM
application programs, PRINT, REPRO, DELETE ERASE, work files, EXPORT,
IMPORT), you have to mount the volumes.

v In all cases where a VTOC update is necessary (for example, DEFINE or
DELETE SPACE, DEFINE or DELETE a UNIQUE file, ALTER NEWNAME
NONVSAM, ALTER NEWNAME UNIQUE), you have to mount the volume(s)
for the affected VTOC(s).

Work Files on Virtual Disk

Work files may reside on real disk devices, but also on virtual disks, that is: in
virtual storage that has been reserved for z/VSE data spaces. If a work file resides
on virtual disk, data is moved to or from data space (instead of being written to or
from a real disk device).

Virtual disk processing should only be used in conjunction with temporary work
files, because the information in a z/VSE data space is lost whenever the system is
restarted.

Managing Data and Space

Chapter 4. Tasks under VSE/VSAM 51

Preparations for Use

To prepare for the use of virtual disk, in general proceed as follows:
1. At IPL time, add one or more virtual disks by using the ADD command, FBAV

operand.
2. Define z/VSE data space by using the SYSDEF command.
3. After IPL, define the layout of the virtual disk(s) by using the VDISK

command.
(Using the VDISK command makes the virtual disk available automatically.)

For information on these commands, refer to the z/VSE System Control Statements,
SC34-2637.

To use the virtual disk support for VSE/VSAM:
1. Define one or more user catalogs on the prepared virtual disks by using the

IDCAMS command DEFINE USERCATALOG.
A catalog can own VSE/VSAM space on one or more virtual disks (up to 123
volumes).

2. Catalog the VSE/VSAM objects in the defined catalog by using the DEFINE
commands of IDCAMS.

For an example of definitions, refer to the VSE/VSAM Commands, SC33-8315.

Restrictions

Files residing on virtual disk are managed by VSE/VSAM as if they resided on
real devices. However, note the following restrictions:
v Master catalogs must not reside on virtual disk.
v If the user catalog resides on a:

– Virtual disk, and if defining an object on a real disk, the define will fail.
– Real device, and if defining an object on a virtual disk, the define will fail.
That is, cataloging an object to a user catalog is only successful if both - object
and catalog - are either on real volumes or virtual volumes.

v Whenever virtual disks are lost for VSE/VSAM (for example, on re-IPL or
detach), you have to EXPORT DISCONNECT the corresponding user catalog(s)
before defining a new user catalog of the same volume serial name.

Transporting Files between Systems

Transporting Catalog Information

Because all VSE/VSAM files must be cataloged, moving a file from one system (or
set of systems if in a disk sharing environment) to another requires that catalog
information be moved along with it or that the copy of the file moved be cataloged
in the receiving system. If the catalog information is copied with the file, it must be
in a format that both systems can process.

Transporting Files between VSE/VSAM and DFSMSdfp VSAM or
DFSMS/MVS

Use EXPORT and IMPORT to copy VSE/VSAM files and their catalog information
to DFSMSdfp VSAM (which uses the Integrated Catalog Facility - ICF). The only

Virtual Disk

52 VSE/VSAM V9R2 User’s Guide and Application Programming

way you can move MVS files cataloged with the new catalog format to
VSE/VSAM is to export those files to tape while running on DFSMSdfp VSAM.
Then you can import the tape files to VSE/VSAM. You cannot mount a DFSMSdfp
VSAM format volume on a z/VSE system. VSE/VSAM cannot process DFSMSdfp
ICF catalog information.

Do not use BACKUP and RESTORE to transport files from z/VSE to MVS, because
MVS does not have BACKUP and RESTORE commands.

Transporting Files between VSE/VSAM and MVS/VSAM (not DFP)

Use EXPORT and IMPORT to transfer files and their catalog information between
systems. Files and volumes are portable between VSE/VSAM and MVS/VSAM
“old” catalog format systems.

You can use BACKUP and RESTORE to back up MVS “old” catalog format files on
z/VSE and restore them on z/VSE. This procedure is recommended only for a
one-time move of files from MVS to z/VSE. The only way you could move the
files back to MVS is to use EXPORT/IMPORT, because MVS does not support
BACKUP and RESTORE.

The description under “Transporting Files between z/VSE Systems” also applies to
transferring files between z/VSE and MVS “old” catalog format systems.

Transporting Files between z/VSE Systems

You can move individual files and user catalogs from one z/VSE system to another
by using the EXPORT and IMPORT commands. When you move a user catalog
from one system (or set of systems) to another, its VSE/VSAM volume ownership
moves along with it. Thus, a VSE/VSAM volume (without compressed data sets) is
portable between systems together with all VSE/VSAM data spaces and files
contained on the volume(s). Any VSE/VSAM volume including compressed data
sets is portable between z/VSE systems.

The entire VSE/VSAM master catalog and the VSE/VSAM volumes owned by the
master catalog can be moved from one z/VSE system (or set of systems) to
another.

To use a VSE/VSAM master catalog from another system, you need only assign it
by use of the DEF SYSCAT=cuu command during initial program load. All
VSE/VSAM volumes owned by that catalog are then available to the receiving
system. In addition, a // DLBL statement for the master catalog must be provided
either in the job stream or in the label area.

Catalog and File Migration
The following explains how to proceed if you want to migrate VSE/VSAM
catalogs and files from one device type to another. This includes movement from
one CKD device type to another, one FBA device type to another, or from a CKD
device to an FBA device (and vice versa). Note that a catalog on an FBA device can
own CKD volumes (and their VSE/VSAM files), and a CKD catalog can own FBA
volumes.

There are two ways to migrate objects and their catalog information from one
device type to another. The simpler method is to use the VSE/VSAM

Transporting Files

Chapter 4. Tasks under VSE/VSAM 53

Backup/Restore Function, but there are some restrictions; the other way is to use a
combination of EXPORT/IMPORT and DEFINE commands. For a description of
the methods, refer to “Migrating Catalogs” on page 55.

Definitions for Catalog Migration

Defining a Catalog

The following applies to both master and user catalogs. Whenever you use
BACKUP/RESTORE or EXPORT/IMPORT for migration, you must first define the
catalog that will own the VSE/VSAM objects after migration.

VSE/VSAM defines a VSE/VSAM data space from which the catalog is
suballocated. This is done on CKD devices using the DEDICATE, ORIGIN,
CYLINDERS, TRACKS, or RECORDS subparameter of DEFINE
MASTERCATALOG│USERCATALOG. FBA devices require the same process,
except that the DEDICATE, ORIGIN, BLOCKS or RECORDS subparameter must be
specified. (CYLINDERS or TRACKS is not accepted.) Therefore, you must convert
a CYLINDERS or TRACKS value to a BLOCKS or RECORDS quantity.

If you specify DEDICATE for the CKD device, no conversion is necessary.

Convert the number of tracks or cylinders into the number of bytes, using
LISTCAT to determine the number of bytes per track and tracks per cylinder.
Divide the number of bytes by 512 to determine the BLOCKS value. Adjust it
accordingly if you want more or less space allocated.

The beginning-block-number specification in the ORIGIN parameter depends on
where you want the data space to be on the volume (VSE/VSAM always rounds it
to the next minimum CA boundary). Use the LVTOC utility program to determine
what space is available on the volume. The catalog will be located at the beginning
of the defined data space. In VSE/VSAM Commands, SC33-8315, refer to
v the description of the NAME|VOLUME... parameter in the description of the

LISTCAT command,
v the description for special fields BLKS/MAX-CA.

You may wish to change other subparameters of MCAT or UCAT (for instance, the
volume serial number), but there are no special considerations for FBA devices.

Specify the actual space to be suballocated for your catalog using the BLOCKS or
RECORDS subparameters of DATA and INDEX. Do not try to directly convert a
CKD catalog size definition to a fixed block definition. Instead, calculate the
desired values; refer to the instructions in the VSE/VSAM Commands, SC33-8315. To
avoid an overly small, inefficient CA size, make the secondary allocation value at
least as large as the desired CA size.

Defining a VSE/VSAM Data Space

The considerations for data space definition are essentially the same as for catalog
definition. Differences are:
v A catalog is not suballocated from the data space.
v Both BACKUP/RESTORE and EXPORT/IMPORT assume that you have already

defined a VSE/VSAM data space on the new volume.

Migrating Catalogs and Files

54 VSE/VSAM V9R2 User’s Guide and Application Programming

If CANDIDATE is specified with DEFINE SPACE, fixed block data space definition
is the same as CKD data space definition.

Defining a Non-Unique Cluster or Alternate Index

Because these files (or their components) are suballocated from VSE/VSAM data
spaces, there are no job control considerations for FBA devices. For FBA devices,
you must convert the TRACKS or CYLINDERS subparameters to BLOCKS or
RECORDS. (The RECORDS subparameter does not require conversion.) This
conversion is the same as described above for catalog conversion.

Defining a Unique Cluster or Alternate Index

If a cluster or alternate index contains both a non-unique component and a unique
component, conversion considerations for the non-unique component are as
described above.

For every unique component (data and, if present, index), you must convert
EXTENT statement parameters and the TRACKS│CYLINDERS subparameters. Both
conversions are required because a unique component occupies its own
VSE/VSAM data space. If the component is to be on more than one volume,
specify a new EXTENT statement for every volume.

Migrating Catalogs

Catalog Migration Using BACKUP/RESTORE

You cannot actually back up and restore catalogs under BACKUP/RESTORE, but
when you back up and restore objects (including empty objects), their catalog
information is backed up and restored too. This makes it possible for you to use
BACKUP and RESTORE to copy objects and their catalog information into a
different catalog. If the new catalog already contains an entry name for the object
restored, the original object is deleted, and the restored object is added to the new
catalog.

Catalog Migration Using EXPORT/IMPORT

Moving a Master Catalog to Another Volume:
1. Using EXPORT, create portable copies of all files that are to be in the new

catalog (procedure described below). For EXPORT, DISCONNECT any user
catalogs to be reconnected to the new catalog.

2. IPL with the master catalog assigned to the new volume, using the IPL DEF
SYSCAT=cuu command.

3. Define the new master catalog (procedure described above).
4. Define any VSE/VSAM data spaces required for the volumes. (You need not

delete files and catalogs belonging to another catalog.) Note that the define
catalog operation has already defined a data space on the catalog volume. Any
space to be occupied by unique files should be left unallocated.

5. Using IMPORT, copy VSE/VSAM files to volumes belonging to the new
catalog. (For considerations on moving to a different device type, refer to
“Migrating VSE/VSAM Files to Another Device” on page 56.) If IMPORT was
used, you can IMPORT CONNECT user catalogs.

Moving a User Catalog to Another Volume:

Migrating Catalogs and Files

Chapter 4. Tasks under VSE/VSAM 55

1. Using EXPORT, create portable copies of all files that are to be in the new
catalog (procedure described below).

2. Delete or disconnect the previous user catalog entry unless it is owned by a
different master catalog.

3. Define the new user catalog (procedure described above).
4. Define any VSE/VSAM data spaces required for the volumes. (You need not

delete files and catalogs belonging to another catalog.) Note that the define
catalog operation has already defined a data space on the catalog volume. Any
space to be occupied by unique files should be left unallocated.

5. Using IMPORT, copy VSE/VSAM files to volumes belonging to the new
catalog. (For considerations on moving to a different device type, refer to
“Migrating VSE/VSAM Files to Another Device.”)

Migrating VSE/VSAM Files to Another Device

File Migration Using BACKUP and RESTORE

Note: VSAM will tolerate the use of IDCAMS BACKUP/RESTORE for migration
from a non-SCSI device to a SCSI device, or vice versa. However, not every cluster
can be migrated in this manner. In these cases, IDCAMS EXPORT/IMPORT must
be used instead. EXPORT/IMPORT is the recommended method of data migration.

The VSE/VSAM Backup/Restore Function can back up the following objects and
their catalog information onto tape or disk volumes:
v Key-sequenced data sets (KSDS)
v Entry-sequenced data sets (ESDS)
v Relative-record data sets (RRDS)
v Variable-length relative record data sets (VRDS)
v Alternate indexes (AIX)
v SAM ESDS files in CI format

Empty objects can be backed up and restored. An empty object is an object that
was defined using the NOALLOCATION parameter, an object that has never been
loaded with data, or an object that has not been loaded since reset. Although they
cannot be specified in the command, paths are backed up and restored
automatically when their respective path entry clusters are backed up or restored.

VSE/VSAM Backup/Restore supports backing up onto tape and disk, and
restoring from tape and disk; this support applies to all tape and disk devices that
are supported by z/VSE.

You can back up and restore multiple objects with a single command. If you
specify BACKUP (*), all objects defined in a specific catalog will be backed up. If
you specify RESTORE (*), all objects residing in a specific backup file are restored.
You can also specify generic names representing groups of related objects to be
backed up or restored. Because the generic specification may include objects you
do not want backed up or restored, you can exclude objects by specifying either
their entry names or other generic names. For information on the use of generic
names for back up and restore, refer to the VSE/VSAM Commands, SC33-8315
under:
v “Using BACKUP and RESTORE”
v “Generic Names”

Migrating Catalogs and Files

56 VSE/VSAM V9R2 User’s Guide and Application Programming

To copy objects from one volume to another volume of a different device type,
specify the volser representing the new volume in the RESTORE command.

Other Methods of File Migration

In addition to Backup/Restore, there are three ways to move VSE/VSAM files
from one volume to another. They may or may not require moving from one
catalog to another.
v DEFINE/REPRO:

– To move files between two volumes owned by different catalogs, DEFINE
every file on the new volume, using its old name. REPRO every file onto the
new volume, and delete it from the old one.

– To move files between two volumes owned by the same catalog, DEFINE
every file on the new volume, using a temporary name that is not already in
the catalog. REPRO every file onto the new volume, and delete it from the
old volume. Using ALTER, rename the new copy with the name the file had
on the old volume.

In both cases, alternate indexes can be copied. You must redefine all paths for
the new copy.

v EXPORT/IMPORT:
With EXPORT/IMPORT, every file to be migrated is first exported to a
temporary SAM file (tape or disk). For EXPORT PERMANENT, this frees the
space (and volumes if all files on them are exported) that is potentially reusable
during the IMPORT phase.
To ensure the desired space allocation, DEFINE the files importing them. If files
are imported but not defined, too much or too little space may be allocated to
them. Then IMPORT the files.
Unique files require extent values specified on an EXTENT statement. Path
definitions are implicitly transferred.

NonVSAM Migration
Catalog entries can be moved also into catalogs on FBA devices (as described
above) through DEFINE NONVSAM and DELETE, but they cannot have fixed
block specified as their device type.

Space Allocation through Modeling
If a user catalog, cluster, or alternate index migrated from one device type to
another had its space allocation defined by modeling, you should consider
changing to explicit specification, or modeling it on a catalog, cluster, or alternate
index on the new device type. Otherwise, you will allocate space based on the
track and/or cylinder capacity of the old device type rather than the new device
type. This can cause wasted space, excessive secondary allocation, and inefficient
or even invalid CA or CI sizes.

For further information about modeling, see “Using an Object as a Model” on page
58.

Migrating Catalogs and Files

Chapter 4. Tasks under VSE/VSAM 57

Using an Object as a Model
You can use the entry of an already-defined alternate index, catalog, cluster, or
path as a model for the definition of another object of the same type. When one
entry is used as a model for another, its attributes are copied as the new entry is
defined.

Modeling permits you to set your own parameter defaults to override system
defaults. Once defaults are established, you need not specify them every time you
define new objects. An explicit parameter specification, however, overrides defaults
established by you (through modeling) and by the system.

The normal IDCAMS DEFINE CLUSTER or DEFINE ALTERNATEINDEX
procedure is greatly simplified by reducing the numbers of parameters required.
This in turn can reduce the number of errors that are likely to occur, and the
number of parameters to which the user needs to be exposed. At the same time, it
permits application- and installation-associated standards.

There are three kinds of models; they are referred to as:
v Explicit Allocation (Example in Figure 6 on page 59)
v Explicit NOALLOCATION (Example in Figure 8 on page 61)
v Implicit NOALLOCATION (Example in Figure 9 on page 62)

With explicit modeling, you have to specify the name of the model you wish to use.
With implicit modeling, VSE/VSAM chooses a default model based on the kind of
object you are trying to define.

About the MODEL Subparameter
You can specify the MODEL parameter in the DEFINE commands
ALTERNATEINDEX, CLUSTER, PATH, and USERCATALOG.

Using the MODEL parameter, you can easily define files that are identical, except
for their names and security attributes. When you use the MODEL parameter,
ensure that your job is not terminated because of allocation problems when you
explicitly do any of the following:
v Specify a different type of device with the VOLUMES parameter.
v Change the length or position of the keys with the KEYS parameter.
v Change the size of records, buffer space, or CIs with the RECORDSIZE,

BUFFERSPACE, or CONTROLINTERVALSIZE parameters.
v Change the type of cluster (that is, entry-sequenced, key-sequenced, or

relative-record), the type of alternate index (that is, key-pointer or RBA-pointer),
or the allocation-type of the object (that is, unique or non-unique).

v Change the unit of allocation with the BLOCKS, TRACKS, CYLINDERS, or
RECORDS parameters.

When you explicitly specify any of the above parameters for your to-be-defined
object, you might have to make corresponding changes to other related parameters.

Modeling

58 VSE/VSAM V9R2 User’s Guide and Application Programming

Explicit Allocation Models
Figure 6 shows an explicit model that occupies data space and can be used as a
normal VSE/VSAM object. You must explicitly specify the entryname subparameter
of the MODEL parameter to identify the object to be used as a model. This is the
only form of modeling that is valid for paths and user catalogs. If MODEL is
specified as a parameter of PATH:
v The attributes of the model are used for the path defined.
v Any attributes explicitly specified as parameters of the defined path are defined

and override those of the model.

Figure 7 on page 60 shows how parameters are merged from a Model Cluster and
an Explicit Specification into New Cluster. Once the merge is completed, New Cluster
contains a new list of cluster parameters which VSE/VSAM uses to create a cluster.

In the figure, it is assumed that MODEL is specified at the cluster level in the
DEFINE CLUSTER command. It is also assumed that MODEL is not specified at
the data component level and index component level of the command.

The following explains the step numbers shown in the figure:
v (1) The non-propagating cluster level attributes (entryname, passwords,

AUTHORIZATION, ATTEMPTS, CODE, OWNER, TO, FOR, and allocation
attributes) of the model are used for the defined user catalog, cluster, or
alternate index.

v

(2) Any non-propagating cluster level attributes explicitly specified as parameters
of the defined object are applied to and override those of the model.

v

(3) The attributes of the model are used for the data and index components of
the alternate index, cluster, or user catalog.

v

(4) Attributes explicitly specified at the cluster level are propagated to the data
and index components of the cluster.

v

(5) Attributes that are explicitly specified for the data and index components of
the object (that is, specified as subparameters of the DATA or INDEX parameter)
are defined.

Note that attributes specified for every step (n) override the attributes specified by
the previous step.

MODEL (entryname)

DEFINE CLUSTERDEFINE CLUSTER
NAME (entryname)

Establishing the Model Using the Model

Figure 6. Explicit Allocation Model

Modeling

Chapter 4. Tasks under VSE/VSAM 59

If MODEL is Specified in DATA or INDEX Parameter

(not applicable to a user catalog):
v Attributes explicitly specified at the cluster level are propagated to the data and

index components of the object.
v Attributes of the model specified for the data or index component are defined

(that is, the model specified with the MODEL subparameter of the DATA or
INDEX parameter).

v Attributes explicitly specified for the data and index components are defined
(that is, the attributes specified with subparameters of the DATA or INDEX
parameter).

Attributes specified for every step override the attributes specified by the previous
step.

Note: The DATA and INDEX component levels have similar rules; for simplicity,
only the DATA component is shown in this figure.

Cluster Level

Data Component
Level (See Note)

Cluster Level

Data Component
Level (See Note)

MODEL (X)
.
.
.

.

.

.

Cluster Level

Data Component
Level

(1)
(2)

(3)

(4)

(5)

Cluster X

DEFINE CLUSTER
Command

Model Cluster
Explicit
Specification

New Cluster

Figure 7. Specifying the MODEL Parameter at the CLUSTER Level Only

Modeling

60 VSE/VSAM V9R2 User’s Guide and Application Programming

Explicit Noallocation Models
Using explicit noallocation and default models, the defined object exists only as a
model; no space is suballocated to it. The model is represented by entries in the
VSE/VSAM catalog.

Figure 8 is an explicit model because you must specify MODEL(entryname) for the
cluster you wish to use as a model. It is a NOALLOCATION model because no
storage is allocated to it.

Implicit NOALLOCATION Models (Default Models)
In the case of an implicit model, you do not have to specify the name of the model
in order to reference it. It is a NOALLOCATION model because no storage is
suballocated to it.

The implicit model is a default model.

When you define the model, specify the entryname subparameter of the NAME
parameter as one of the following:

DEFAULT.MODEL.KSDS
(key-sequenced file)

DEFAULT.MODEL.ESDS
(VSAM entry-sequenced file)

DEFAULT.MODEL.ESDS.SAM
(managed-SAM file)

DEFAULT.MODEL.RRDS
(relative-record file)

DEFAULT.MODEL.VRDS
(variable-length relative record file)

DEFAULT.MODEL.AIX
(alternate index)

Every catalog may have six implicit models, one of every type.

As shown in Figure 9 on page 62, you need only specify INDEXED,
NONINDEXED, RECORDFORMAT(...)NONINDEXED, NUMBERED, or AIX for
VSE/VSAM to locate the appropriate model.

MODEL (entryname)

DEFINE CLUSTERDEFINE CLUSTER
NAME (entryname)

Establishing the Model Using the Model

NOALLOCATION

Figure 8. Explicit NOALLOCATION Model

Modeling

Chapter 4. Tasks under VSE/VSAM 61

How VSE/VSAM Determines Which Parameters to Use
VSE/VSAM goes through the following sequence in determining which parameter
to use in the definition of a cluster or alternate index.
1. Did you explicitly specify a parameter in the define? If yes, VSE/VSAM uses it.

(If you explicitly specify a space allocation parameter (CYLINDERS, TRACKS,
BLOCKS, or RECORDS) at any level of DEFINE CLUSTER/AIX, the space
allocation parameter(s) in your model are ignored.)

2. Did you specify MODEL parameter in the define (refer to Figure 6 on page 59)?
If yes, go to step 4, below; VSE/VSAM creates a file using the parameters
specified in MODEL(entryname).

3. Did you specify the NOALLOCATION parameter with a
DEFAULT.MODEL.xxxx in a previous DEFINE command, thereby creating a
default model (refer to Figure 9)? If yes and the file organization matches the
entryname, VSE/VSAM uses the parameters specified in the default model.

DEFINE CLUSTER
NAME (entryname)

DEFINE CLUSTER
NAME (DEFAULT.MODEL.KSDS)

Establishing the Model Using the Model

NOALLOCATION INDEXED

DEFINE CLUSTER
NAME (entryname)

DEFINE CLUSTER
NAME (DEFAULT.MODEL.ESDS)

NOALLOCATION NONINDEXED

DEFINE CLUSTER
NAME (entryname)

DEFINE CLUSTER
NAME (DEFAULT.MODEL.ESDS.SAM)

NOALLOCATION NONINDEXED

RECORDFORMAT (...)

DEFINE CLUSTER
NAME (entryname)

DEFINE CLUSTER
NAME (DEFAULT.MODEL.RRDS)

NOALLOCATION NUMBERED

DEFINE CLUSTER
NAME (entryname)

DEFINE CLUSTER
NAME (DEFAULT.MODEL.VRDS)

NOALLOCATION NUMBERED
RECORDSIZE (a<m)

DEFINE ALTERNATE INDEX
NAME (entryname)

DEFINE ALTERNATE INDEX
NAME (DEFAULT.MODEL.AIX)

NOALLOCATION

Figure 9. Implicit NOALLOCATION Models

Modeling

62 VSE/VSAM V9R2 User’s Guide and Application Programming

4. If none of the above apply, VSE/VSAM uses the system default (if one exists).

Restrictions
The following restrictions exist for modeling of VSE/VSAM objects.
v If you specify DEFINE CLUSTER or DEFINE ALTERNATEINDEX and the

cluster name begins with DEFAULT.MODEL., VSE/VSAM assumes that you are
establishing a model. The rest of the name must be KSDS, ESDS, ESDS.SAM,
RRDS, VRDS or AIX. It is not possible to open a file or component whose name
begins with DEFAULT.MODEL.. DEFINE CLUSTER and DEFINE
ALTERNATEINDEX ignores user-specified DATA and INDEX component names
for clusters that have the DEFAULT.MODEL. prefix. Instead, these components
are implicitly assigned a name constructed from the cluster or alternate index
name with the additional qualifier of DATA or INDEX. A message will tell you
any data/index names that have been generated in this way.

v If space parameters (CYLINDERS, TRACKS, RECORDS, or BLOCKS) are
specified at any level of DEFINE CLUSTER or DEFINE ALTERNATEINDEX,
they override any modeled defaults.

v You can model the USECLASS parameter only if one of the following is true:
– If space parameters (CYL, TRK, REC, BLK) are not specified
– If space parameters are specified at a different level
You cannot model USECLASS if both specifications, USECLASS and space
parameter, are at the same level (that is, both specifications are at cluster, data,
or index level). If you do specify the same level, VSE/VSAM cannot model from
a default model.
However, you can, for example, model the USECLASS at cluster level if space
parameters are specified at the data or the index level.

v You cannot rename (through ALTER NEWNAME or IMPORT NEWNAME) any
catalog entry such that the name is changed to or from DEFAULT.MODEL.xxxx.
An attempt to do so causes the command to terminate with an error message.

v When a file is defined implicitly (through managed-SAM access) and if you have
not provided volume information in an EXTENT statement, VSE/VSAM
attempts to construct a volume list of up to 16 volumes from the
DEFAULTVOLUMES parameter in a managed-SAM ESDS default model
(DEFAULT.MODEL.ESDS.SAM). No other parameters from the SAM ESDS
default model are used for an implicit define.

v When a VRDS has to be defined through a default model, and to indicate a
VRDS, you have to define the recordsize (a<m). If recordsize is not defined, an
RRDS is assumed.

v The use of this utility in a VSE/VSAM environment requires special
considerations, because both the volume VTOC and the catalog contain space
mapping information about the volume which has to be synchronized to insure
accessibility and to avoid damage to data.

Table 15 on page 64 lists the various DEFINE parameters and shows for each one
if it can be modeled explicitly with 'MODEL(entryname)' and implicitly with
'DEFAULT.MODEL.xxxx'.

Modeling

Chapter 4. Tasks under VSE/VSAM 63

Table 15. Modeling of DEFINE Parameters

Parameter

Modeling

System
Default if
Parameter

Not
Modeled NotesExplicit Implicit

ATTEMPTS Yes Yes Yes Not propagated to other levels.

AUTHORIZATION Yes Yes* No Not propagated to other levels.

BLOCKS Can model only if not
explicitly specified at any
level.

No Propagated via algorithm from cluster or data
levels.

BUFFERSPACE Yes No Yes

CLASS No No Yes See USECLASS Parameter.

CODE Yes Yes* No Not propagated to other levels.

COMPRESSED n/a n/a No Must not be used with a model data set.

CONTROL INTERVALSIZE Yes No Yes

CYLINDERS Can model only if not
explicitly specified at any
level.

No Propagated via algorithm from cluster or data
levels.

DEDICATE No No No

DEFAULTVOLUMES No No Yes

ERASE Yes Yes Yes Propagated to data level only; NOERASE is
the default.

EXCEPTIONEXIT Yes Yes No

EXTRALARGE No No No

FILE No No No

FOR Yes Yes Yes Specified at cluster level only; propagated to
data or index.

FREESPACE Yes Yes Yes (0 0) is the default.

INDEXED See last
column.

No Yes KSDS is created if nothing or INDEXED is
specified.

KEYRANGES Yes Yes No

KEYS(AIX) Yes Yes Yes

KEYS (cluster) Yes Yes Yes Not specified or modeled for INDEX.

NOALLOCATION Yes No Yes SUBALLOCATION is the default.

NOERASE Yes Yes Yes NOERASE is the default.

NONINDEXED See last
column.

No Yes ESDS or SAM ESDS.

NONSPANNED Yes Yes Yes NONSPANNED is the default.

NONUNIQUEKEY Yes Yes Yes NONUNIQUEKEY is the default.

NOREUSE Yes Yes Yes NOREUSE is the default.

NOUPGRADE Yes Yes Yes UPGRADE is the default.

NOWRITECHECK Yes Yes Yes NOWRITECHECK is the default.

NUMBERED See last
column.

No Yes RRDS is created if recordsize (a=m), VRDS is
created if recordsize (a<m).

ORDERED Yes Yes Yes UNORDERED is the default.

Modeling

64 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 15. Modeling of DEFINE Parameters (continued)

Parameter

Modeling

System
Default if
Parameter

Not
Modeled NotesExplicit Implicit

OWNER Yes Yes No Not propagated to other levels.

Passwords Yes No No No propagation from cluster level, but lower
level password is propagated to master if no
master password is specified.

RECORDFORMAT Yes n/a Yes For SAM ESDS models only.

RECORDS Can model only if not
explicitly specified at any
level.

No. Propagated via algorithm from cluster or data
levels.

RECORDSIZE Yes No Yes

RECOVERY Yes Yes Yes

RELATE No No n/a

REUSE Yes Yes Yes NOREUSE is the default.

SHAREOPTIONS Yes Yes Yes

SPANNED Yes Yes Yes NONSPANNED is the default.

SPEED Yes Yes Yes

SUBALLOCATION Yes No. Yes SUBALLOCATION is the default.

TO Yes Yes Yes Specified at cluster level only; propagated to
data and index.

TRACKS Can model only if not
explicitly specified at any
level.

No Propagated via algorithm from cluster or data
levels.

UNIQUE Yes No Yes SUBALLOCATION is the default.

UNIQUEKEY Yes Yes Yes NONUNIQUEKEY is the default.

UNORDERED Yes Yes Yes UNORDERED is the default.

UPGRADE Yes Yes Yes UPGRADE is the default.

USECLASS Only if space parms are
specified at different
level, or if space parms
are not specified.

Yes

VOLUMES Yes Yes No

WRITECHECK Yes Yes Yes NOWRITECHECK is the default.

(*) To implicitly model this parameter, the object must be defined with at least one password, and the master
catalog password must be specified in the CATALOG parameter.

Modeling

Chapter 4. Tasks under VSE/VSAM 65

Default Volumes
Default volume lists are derived from the volumes list of a default model that is of
the same type as the object defined. For example, if a VSE/VSAM ESDS cluster is
defined without a VOLUMES parameter, an ESDS default model
(DEFAULT.MODEL.ESDS.DATA) is used to build the volumes list for the ESDS.
Because volume selection from the default volume list is done randomly for every
component, the data and index components of a KSDS or AIX could reside on
different volumes and even different device types. You can eliminate the possibility
of different device types by including devices of only one type when defining the
KSDS or AIX model.

When a file is defined implicitly (through managed-SAM) and if you have not
provided volume information in an EXTENT statement, VSE/VSAM attempts to
construct a volumes list of up to 16 volumes from a managed-SAM ESDS default
model (DEFAULT.MODEL.ESDS.SAM). No other information is used (from the
SAM ESDS default model) for an implicit define.

DEFAULTVOLUMES forces a default model to override an explicit model for
purposes of determining the volumes list. There are three sources of volumes lists:
1. Explicit specification (VOLUMES parameter)
2. Explicit model (MODEL parameter)
3. Default model (DEFAULT.MODEL.xxxx plus VOLUMES parameter)

These sources are listed in order of precedence. 1 overrides 2, and 3 takes effect if 1
and 2 are missing. If only 2 and 3 are present, however, specifying
DEFAULTVOLUMES causes the volumes list in 2 to be bypassed in favor of the
volumes list in 3. You cannot specify the DEFAULTVOLUMES parameter to bypass
2 if 3 does not exist. (At least one of these options (1, 2, or 3) must be specified or
modeled.)

DEFAULTVOLUMES cannot be explicitly modeled because it is not retained as an
attribute in the catalog. Do not try to use default volume lists with KEYRANGES,
because VSE/VSAM does not order the volumes in any way when allocating space
to them.

Modeling

66 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 5. Working With Compressed Files

This Chapter ...
v Introduces you to data compression.
v Describes how it works internally.
v Explains what you need to do to work with compressed data.
v Differentiates the files for which data compression works and under which

circumstances.
v Describes the IKQCPRED tool, which examines VSE/VSAM data for its

suitability and calculates how well it would compress.

Introduction to VSE/VSAM Compression
If a cluster is defined with the COMPRESSED attribute, VSE/VSAM attempts to
minimize the external storage needs by compressing each record written to the file.
The compression algorithm is compatible with the zSeries and ESA/390 hardware
compression facility, that is if the processor supports the CMPSC instruction, then
this hardware instruction is used to compress or expand data. The ESA/390
compression facility is further described in Enterprise Systems Architecture/390: Data
Compression SA22-7208. On processors without the ESA/390 compression facility,
an equivalent software emulation is performed. See also the Principles of Operation
publication for your processor.

The compression facility compresses and expands data using a dictionary. This
dictionary contains the information which substrings of the data are to be encoded
and how to expand the encoded strings. When data is loaded into a compressed
cluster, VSE/VSAM attempts to build a dictionary that can compress that data. As
soon as this dictionary is built, all records written to the file are compressed using
this dictionary, and all records read from the file are expanded using this
dictionary. The information on what the dictionary looks like is stored in the
VSE/VSAM Compression Control Data Set (CCDS), which needs to exist in each
catalog that holds compressed data sets.

Advantages
Working with compressed files has several advantages. The reduction in DASD
space is the most obvious one, but not the only one:
v Since records in a compressed file are smaller, the resulting relative byte address

(RBA) is smaller. While the maximum size of a VSE/VSAM data set (excluding
extended-addressed KSDS data sets) is still 4GB (x'FFFFFFFF'), more user data
can be stored within a single data set.

v More data can be stored per control interval or buffer. The advantages are:
– For sequential workloads, a new buffer is required less often. This reduces the

number of I/O requests.
– For random access workloads, the control interval size might be decreased,

which in turn might speed up the data transfer time.

© Copyright IBM Corp. 1979, 2014 67

Activating VSE/VSAM Data Compression
This involves the following steps:
1. Identify which data sets are eligible for compression and which ones you want

to have compressed.
2. Define the Compression Control Data Set (CCDS)

While the CCDS is required for those catalogs that contain compressed clusters,
it is recommended to have a CCDS defined for each catalog.
Catalogs that were newly defined using the VSE/VSAM Interactive Interface
already have a CCDS defined for them. Otherwise, see “How to Define the
Compression Control Data Set” on page 70 on how to define a CCDS or use the
skeleton SKVSAMDC in the ICCF library 59.

3. Define the cluster with the COMPRESSED attribute.
4. Load data into the file.

It is necessary to use load mode since VSE/VSAM can determine the dictionary
only during the initial load mode. You could use, for example, IDCAMS
REPRO to load the data from an existing file to DASD or tape.

How VSE/VSAM Data Compression Works Internally
As mentioned previously, the ESA/390 compression facility, as well as its software
emulation, requires a dictionary to compress and expand data. The dictionary is the
key to an effective compression.

Dictionary Creation
Unfortunately there is no dictionary that is able to compress all kinds of data
effectively. The dictionary is data-dependant and needs to be constructed by the
actual data, or, to be more precise, by a subset of data that should be
representative for the total data. On the other hand, the vast majority of data
would actually consists of certain elements that are likely to re-occur. Thinking of
an English text, such elements could be English suffices (-ion, -ing) or character
sequences such as a comma followed by a space. Of course there are many and not
just text-related elements that are likely to re-occur, and hence might be good
candidates for a compression. For each of these elements it is known how to
compress them, this information is contained in a data structure called dictionary
building block (DBB). Each DBB can be viewed as a small, very specialized
dictionary. VSE/VSAM has several hundred of them.

VSE/VSAM determines the dictionary for each compressed cluster by examining
the first set of data loaded into the cluster. This examination consists of two
phases:
1. Interrogation: In this phase VSE/VSAM examines the data written to the file

and attempts to find out which elements make up the data, that is it identifies
a number of DBBs that might be fit to compress the data.

2. Sampling: Eventually the DBBs selected in the interrogation phase are used to
compress the encountered data. Those that perform best are selected and a real
dictionary is then assembled from all the selected DBBs.

If the interrogation and sampling phase successfully ends with the creation of a
dictionary, then all records written subsequently to the file are compressed with
this dictionary. The dictionary remains associated ('mated') with the cluster for the
lifetime of the cluster.

Data Compression

68 VSE/VSAM V9R2 User’s Guide and Application Programming

The information about which DBBs make up the dictionary is stored in the CCDS.
Each record in the compression control data set identifies one compressed cluster
and holds information about the compression state of the cluster, and usually
which DBBs constitute the dictionary for the cluster.

Compression States
A compressed cluster always assumes one of four possible compression states, as
outlined in Figure 10. These states are reported in the LISTCAT output.

States Explanation

CMPPENDING
If a compressed cluster is newly defined by the IDCAMS command
DEFINE CLUSTER �1�, nothing is known about the data that will be
loaded into it. When records are loaded into the file, VSE/VSAM
interrogates the data in order to create a dictionary for it.

CMP-ACTIVE
If VSE/VSAM has successfully determined how to compress the data �2�,
the compression state changes to ACTIVE. From now on all records written
to the file are compressed.

CMP-REJECT
If VSE/VSAM cannot compress the data, the compression state is changed
to REJECTED �3�. You can access a cluster in this state just like any other
compressed cluster; the only difference is that the records are not
compressed. Possible reasons for rejection are:
v The data is already in some compressed format.
v You closed the file before the interrogation phase completed, that is you

did not write enough data during the initial load mode.

CMP-UNDET
If the information how to compress and expand a cluster is lost �4�, then
the compression state is undeterminable. In this case the compression
control data set might be deleted or become inaccessible.

Figure 10. The Four Compression States of a Compressed Cluster

Data Compression

Chapter 5. Working With Compressed Files 69

Data Format of Records
In general, the format of data records in compressed and nocompressed format is
very similar. The control area and the RDF (record descriptor field) in the control
interval is identical. However, the record as stored within the control interval has a
different format. Each record can consist of the following parts:
1. The compressed record prefix. This prefix has a length of 3 bytes for

nonspanned records, and a length of 5 bytes for spanned records. Its format is:

Offset
Dec Hex Bytes

Hex
Digit Description

0 0 1 Flags
X'40' Record is compressed

1 1 2 Length of expanded record (nonspanned)
1 1 4 Length of expanded record (spanned)

1. The non-compressed part of the record. This applies only to files with a key, it
is the first part of the record, up to (and including) the prime key.

2. The compressed part of the record.

How to Define the Compression Control Data Set
The VSE/VSAM Compression Control Data Set (CCDS) is an indexed cluster called
VSAM.COMPRESS.CONTROL. A cluster with this name is always used as a CCDS, hence
no other data set of this name must exist in any catalog. The compression control
data set must be defined for each catalog into which compressed clusters are
defined. It is recommended, however, to define a compression control data set for
every catalog.

The "Define a New User Catalog" dialog of the z/VSE Interactive Interface defines
a CCDS for each newly defined catalog.

You can also define a CCDS manually using the IDCAMS DEFINE CLUSTER
command, as outlined below. Once the compression control data set is defined,
compressed clusters can be defined or restored.
// JOB DEFINE CLUSTER
// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER -
(NAME(VSAM.COMPRESS.CONTROL) - �1�
VOLUME(volser) - �2�
RECORDS(200 100) - �3�
KEYS(44 0) -
RECSZ(128 500) -
SHR(4 4) - �4�
NOREUSE -
) -
DATA (NAME(VSAM.COMPRESS.CONTROL.@D@)) -
INDEX(NAME(VSAM.COMPRESS.CONTROL.@I@)) -
CAT(catalog.id) �5�

/*
/&

Explanation:

�1� The name identifies this cluster as a compression control data set.

�2� The compression control data set should reside on the same volume as the
catalog to which it is defined.

�3� The compression control data set contains one record per compressed

Data Compression

70 VSE/VSAM V9R2 User’s Guide and Application Programming

cluster. Specify a number that is sufficiently large to accommodate the
number of compressed files you anticipate.

�4� The CCDS is always defined with the SHAREOPTIONS(4 4) attribute.

�5� Specify the name of the catalog for which you want to define the CCDS.
Alternatively, you could identify the catalog using a DLBL IJSYSUC
statement.

Which Data Set Types Are Eligible
The following types of data sets can be defined with the COMPRESSED attribute:
v KSDS files, i.e. clusters with the INDEXED attribute, under the following

condition:
– The maximum record length must be greater than the following sum:

key_offset + key_length + 40.
v ESDS files, i.e. clusters with the NONINDEXED attribute, under the following

conditions:
– The maximum record length must be greater than 40.
– The RECORDFORMAT attribute must not be specified (this implies that SAM

files in VSE/VSAM-managed space cannot be compressed).
– The file is not defined for use as a virtual tape.

v VRDS files, i.e. clusters with the NUMBERED attribute, under the following
conditions:
– The average record size is not equal to the maximum record size.
– The maximum record length must be greater than 40.

The following types of data sets cannot be defined with the COMPRESSED
attribute:
v Alternate index files
v Relative Record Data Sets (RRDS)

If you would like to use VSE/VSAM data compression with your existing
relative record data sets, you could attempt the following approach: change the
DEFINE CLUSTER for the RRDS to specify a maximum record size that is larger
than the average record size. This actually defines a VRDS rather than a RRDS,
but the VRDS is eligible for data compression and offers a user interface that is
almost identical to the user interface of a RRDS.

v SAM ESDS files
v ESDS files defined for use as virtual tapes.

Restrictions
The following restrictions apply to compressed data sets:
1. In a compressed file, you cannot update existing records using addressed access

(RPL OPTCD=ADR). This implies that records of an entry-sequenced file
cannot be replaced.

2. An application must not compute record positions (RBA) itself. Rather use
SHOWCB RPL=...,FIELDS=(RBA),... instead.

3. A compressed file cannot be opened in control interval mode (MACRF=CNV in
the ACB), except if the ACB also specifies MACRF=CMP. In this case all data
passed to the application and expected from the application is in compressed
(not expanded) format.

Data Compression

Chapter 5. Working With Compressed Files 71

4. The data or index component of a compressed cluster cannot be opened by
itself. VSE/VSAM would allow, however, an input open of a compressed data
component.

The VSE/VSAM Compression Prediction Tool (IKQCPRED)
Before you compress data, you may want to know which of your VSE/VSAM data
sets are suitable candidates for compression. IKQCPRED is a program that
examines VSE/VSAM data and calculates how well it would compress.

A measure for compressibility is the compression ratio, which is the ratio of the
length of the data in uncompressed format to the length in compressed format.

IKQCPRED can compute the anticipated compression ratio for one or more data
sets residing in the same VSE/VSAM catalog on a z/VSE or VSE/ESA Version 2
system.

Using IKQPRED
Invoke IKQCPRED with the following JCL statement:

�� // EXEC IKQCPRED
,SIZE=IKQCPRED

,PARM= �

�
(1)

'catalog_id/cluster_specification '
/LIMIT=m

��

Notes:

1 The last or only character of cluster_specification can be the wild-card character
*, indicating all clusters with a matching name up to the asterisk.

The parameters for IKQCPRED are specified on the PARM parameter of the
EXEC IKQCPRED statement, and are separated by slashes(/):
v The first parameter is the target catalog name. This is mandatory, and must be

fully qualified.
v The second parameter is the cluster specification. You can specify cluster names

generically with an asterisk (*). IKQCPRED can process up to 400 clusters.
v The third, optional parameter LIMIT=m, where m is an integer greater than 0,

specifies an upper limit (in megabytes) to the amount of data to be examined
per cluster.
Where m is 0, no upper limit is set, and each cluster is examined completely.

For performance reasons, IKQCPRED should be run in a relatively large partition.
2MB GETVIS(any) should be sufficient. Specifying SIZE=IKQCPRED on the EXEC
statement allows for maximum use of the partition GETVIS.

IKQCPRED Examples

Here are some typical uses for IKQCPRED, with examples of the control
statements you could use, and a short description of what these statements would
result in:
v Examine all files in a catalog

Data Compression

72 VSE/VSAM V9R2 User’s Guide and Application Programming

// JOB IKQCPRED PREDICT VSAM DATA COMPRESSION RATIO
// EXEC IKQCPRED,PARM=’VSESP.USER.CATALOG/*/LIMIT=2’
/&

IKQCPRED scans all the data sets in catalog VSESP.USER.CATALOG. Up to 2
megabytes of data per cluster are scanned.

v Examine a group of files in a catalog
// JOB IKQCPRED PREDICT VSAM DATA COMPRESSION RATIO
// EXEC IKQCPRED,SIZE=IKQCPRED,PARM=’VSESP.USER.CATALOG/TST*’
/&

IKQCPRED scans all data sets in catalog VSESP.USER.CATALOG whose names
begin with 'TST'.

v Examine a single file
// JOB IKQCPRED PREDICT VSAM DATA COMPRESSION RATIO
// EXEC IKQCPRED,PARM=’VSESP.USER.CATALOG/TST.KSDS3/LIMIT=8’
/&

IKQCPRED scans only the cluster TST.KSDS3 in catalog VSESP.USER.CATALOG.
A maximum of 8 megabytes of data is scanned.

Method of Operation
IKQCPRED works internally in three phases:
1. IKQCPRED searches the specified catalog, and selects all cluster entries

matching the specification on the PARM statement.
2. Clusters with inappropriate data-set attributes, such as NOCIFORMAT files

(VSE libraries), are excluded from examination.
3. Each of the remaining data sets is opened, and each record fed into the

VSE/VSAM data compression routines for interrogation and compression. The
process ends at the end of a data set, or when the threshold specified in
LIMIT=m is exceeded.
The length of time required for this step depends on the amount of data to be
scanned.

IKQCPRED prints the results for each examined cluster to SYSLST. The output is
described in “Interpreting IKQCPRED Results.”

Interpreting IKQCPRED Results
This section explains the output of the IKQCPRED program with reference to the
sample output in Figure 11 on page 74:

Compression Prediction Tool

Chapter 5. Working With Compressed Files 73

Message IKQ5000I tells you which catalog was examined. Message IKQ5003I, as
shown in the example, states that the processor supports the CMPSC instruction
(hardware data compression).

If the processor does not support this instruction, you will see the message:
IKQ50004I This processor does not support hardware data compression

This indicates that software emulation has been used instead of hardware data
compression. Performance is slower than on a processor that supports hardware
data compression.

The results of the data compression prediction tool, arranged into several columns,
show:

Cluster Name
The names of the clusters that were examined. Only cluster entries can be
examined; other objects, such as AIXs, are not eligible for VSE/VSAM data
compression.

Type The type of the data set being examined. The following types may appear:

Type Remarks

ESDS Entry sequenced (flat) file. ESDS files are eligible for VSE/VSAM
data compression, but with one restriction: Existing records must
not be updated. When you have compressed an ESDS, you can
only append new records to it.

KSDS Key sequenced (indexed) file. Only the part of the record following
the prime key can be compressed, and only if it has a length of at
least 40 bytes. Consequently, placing the key near the beginning of
the record allows optimum compression.

RSDS Relative record (numbered) file. RSDS files are NOT eligible for
VSE/VSAM data compression. IKQCPRED examines them because
it might be possible to define them as VRDS files, which can be
compressed.

SAMESDS
CIFORMAT SAM file in VSE/VSAM managed space. SAMESDS
files are NOT eligible for VSE/VSAM data compression.

// EXEC IKQCPRED,PARM=’VSESP.USER.CATALOG/TST.*/LIMIT=5’

VSE/VSAM Data Compression Prediction - (Copyright IBM , 1995, 1996)
IKQ5000I Computing compression ratios for files in catalog VSESP.USER.CATALOG 07/16/96
IKQ5003I This processor supports hardware data compression

Cluster Name Type CmpStatus Ratio AvgLRECL # Records Open FDBK Close (HU-)RBA
TST.KSDS1 KSDS CmpActive 1.38 256 3949 00/00 000000 00/00 0024C000
TST.SAM.ESDS1 SAMESDS CmpActive 7.88 256 12067 00/00 000000 00/00 0035E000
TST.ESDS1 ESDS CmpActive 1.01 256 300 00/00 000000 00/00 00015800
TST.ESDS2 ESDS CmpActive 7.42 256 12067 00/00 000000 00/00 0035E000
TST.ESDS3 ESDS-CMP CmpActive 8.69 256 12107 00/00 000000 00/00 00056000
TST.ESDS4 ESDS CmpReject .92 80 875 00/00 000000 00/00 00011800
TST.KSDS2 KSDS-CMP CmpActive 1.30 256 1236 00/00 000000 00/00 00150000
TST.SAM.ESDS.IMPLICIT SAMESDS CmpActive 2.69 256 120 00/00 000000 00/00 00009000
TST.VRDS VRDS CmpActive 12.36 256 * 00/00 000000 00/00 00E38000

1S55I LAST RETURN CODE WAS 0000
EOJ CMPRATIO MAX.RETURN CODE=0000 DATE 07/16/96,CLOCK 09/56/06,DURATION 00/00/41

Figure 11. Sample IKQCPRED Output

Compression Prediction Tool

74 VSE/VSAM V9R2 User’s Guide and Application Programming

IKQCPRED examines them because it might be possible to define
them as native ESDS files, which can be compressed.

VRDS Variable length relative record file. Only records longer than 40
bytes can be compressed.

-CMP The suffix -CMP indicates that the examined file was already
defined with the COMPRESSED attribute.

CmpStatus
The compression status anticipated for the file:

CmpActive
Actual compression will achieve a significant result.

Pending
There is not enough data in the file to determine whether
compression will achieve results. If possible, load more data into
the file and rerun IKQCPRED.

CmpReject
The data set is expected to be compression-rejected, because the
data is not suited for VSE/VSAM data compression.

Ratio The compression ratio. IKQCPRED computes the approximate
compression ratio as:

(sum of lengths of uncompressed data records)
Ratio = ---

(sum of lengths of compressed data records)

The larger the value of Ratio, the better the file will compress. In other
words, the file is expected to shrink to 1/Ratio of the size of the
uncompressed file.

Because of rounding effects and the way the records happen to fit into the
control intervals, the computed compression ratio may differ from the
compression ratio that could actually be achieved. However, this effect
should be significant only for SPANNED data sets with relatively short
records. Each record in a spanned data set begins in a new control interval.

AvgLRECL
The average record length of the file. This is the actual average record
length, not the value specified on the DEFINE CLUSTER command.

Records
The number of records in the data set. This column shows an asterisk (*) if
data interrogation ended at the threshold specified by LIMIT=m.

Open The VSE/VSAM return and reason code, if an OPEN error occurred. It
would be normal to see some errors in this column. For example, 08/6E
would indicate that this cluster is empty, or 08/A8 would indicate that the
cluster cannot be opened because it has been opened from another
partition.

FDBK The VSE/VSAM feedback information, if a record management error
occurred while reading the data set. Under certain circumstances, record
management errors can be tolerated when processing SAM files in
VSE/VSAM managed space. This is the case when, for example, the SAM
files have been written using non-VSAM (that is, DTFSD) access.

Close The VSE/VSAM return and reason codes, if a CLOSE error occurred

Compression Prediction Tool

Chapter 5. Working With Compressed Files 75

(HU-)RBA
This column normally shows the hexadecimal number of bytes in the
high-used-RBA of the data set. However, if a record management error
occurred, it shows the current RBA for which the error indicated in the
FDBK column was posted.

The IKQCPRED return code is the highest return code encountered during
processing. If, for example, one or more data sets could not be examined because
they were empty, the return code would be 4.

Compression Prediction Tool

76 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 6. Device Dependencies

This chapter discusses special functionality, restrictions, and exceptions applying to
specific types of devices.

IBM System Storage® DS8000® / DS6000™ 64K cylinder support: z/VSE 4.1 is
designed to exploit the Large Volume Support (LVS) of IBM System Storage
DS8000, DS6000, and TotalStorage ESS. z/VSE 4.1 will support disks that are
defined as 3390 ECKD with a size of up to 64K cylinders.

VSE/VSAM Support of Large DASD
VSE/VSAM supports DASD with a capacity exceeding 65535 (64K) tracks, referred
to in this publication as Large DASD. (Accordingly, DASD with a capacity of 64K
tracks or less is referred to as Small DASD.) This support provides a capacity of up
to 10017 cylinders (150255 tracks), which corresponds to the capacity of an IBM
3390 Model 9.

VSAM recognizes two types of ECKD DASD:
v Small DASD have less than 64K tracks per volume and are reported in a

LISTCAT as “3390” .
v Large DASD:

– BIG DASD, have a capacity of more than 64K tracks and are reported in a
LISTCAT as “BIG-3390”. VSAM supports up to 10017 cylinders on this device.

– FAT DASD supports a device with more than 64K tracks up to 64K cylinders.
LISTCAT reports this device as “FAT-3390”.

If you try to define a VSE/VSAM catalog or space on a DASD volume that exceeds
the limit of 10017 cylinders without the parameter FATDASD, then you will receive
the following message:
IDC0055I VOLUME SPACE EXCEEDS MAXIMUM VSAM CAPABILITY. MAXIMUM WILL BE USED.

BIG-DASD implementation does not change the mapping of free and used tracks
of the space map in the catalog. However, using BIG-DASD, the number of space
map segments and catalog records used will increase. One catalog record can hold
one segment of the space map, which describes 3520 tracks. For Small DASD, the
maximum number of space map segments is 19 (this means that 19 catalog records
are required to map 65535 tracks on one disk). For the IBM 3390 Model 9, which
has 10017 cylinders and 150255 tracks, the catalog will map the tracks of this disk
device type with 43 catalog records.

FAT-DASD implementation does change the mapping of free and used tracks of
the space map in the catalog. One catalog record can hold one segment of the
space map, which describes 3520 cylinders instead of tracks.

© Copyright IBM Corp. 1979, 2014 77

Making Use of the Support
The following IDCAMS DEFINE commands can be used for defining space
allocation:

DEFINE MASTERCATALOG
DEFINE USERCATALOG
DEFINE SPACE
DEFINE CLUSTER UNIQUE
DEFINE ALTERNATEINDEX UNIQUE

The above commands internally check the disk capacity. They use either:
v The "Small DASD" model: using up to 65535 tracks of the disk (the support

prior to Large DASD) when:
– the disk has up to 65535 tracks, or
– the current catalog owns VSAM space on this disk and it was defined before

VSE/ESA 2.6.
v The "Large DASD" model:

– BIG-DASD uses up to 10017 cylinders of the disk, when the disk has more
than 65535 tracks, and the current catalog does not own VSAM space on that
disk, that was defined before VSE/ESA 2.6.

– FAT-DASD: uses up to 65520 cylinders of the disk, when the disk has more
than 65535 tracks, the parameter FATDASD is explicitly specified and the
current catalog does not own VSAM space on that disk, that was defined
before z/VSE 4.1.

For an IBM 3390-9 or other Large DASD, this means that either:
v VSAM space was already allocated on this disk for the current catalog from a

previous VSE/ESA release. The disk will therefore not have Large DASD
support, and will only be supported as a “64K track disk”.

v Space was not used by VSE/VSAM before VSE/ESA 2.6. The disk will therefore
have Large DASD support, and in addition to the “Large DASD” in the Catalog
Volume Record, a new flag bit will indicate a “FAT DASD” and the volume (up
to 64K cylinders) could be used by VSAM.

In addition, for an IBM 3390-9 or other Large DASD:
v Where possible, allocations other than CYLINDERS (for example, TRACKS or

RECORDS) will be translated internally to multiples of CYLINDERS. Or, if track
allocation is required by VSE/VSAM for Large DASD, allocations of tracks or
records (for example) will be translated internally to multiples of
tracks-per-cylinder. For example, a VSE/VSAM cluster with a primary (and
secondary) allocation of one track will have a primary (and secondary) allocation
of one cylinder. Direct allocation in CYLINDERS is recommended.

v Track boundaries of extents will be rounded to cylinder boundaries.
v If a catalog resides on a Large DASD, the minimum allocation for the catalog is

5 cylinders (4 cylinders for the data component plus 1 cylinder for the index
component).

Device Dependencies

78 VSE/VSAM V9R2 User’s Guide and Application Programming

Migrating to Large DASD Using IDCAMS Backup/ Restore
Most files that have been defined using a CI size of 512 cannot be migrated using
IDCAMS Backup /Restore to a Large DASD device (this is due to internal
restrictions). Backup/Restore is intended to transfer files with high performance,
and is based on the CI Size.

Any file defined with IMBED option cannot be restored to or defined on a Large
DASD.

If you want to use files that have been defined with a CI size of 512 on a Large
DASD, you must follow these general steps:
1. Restore the files that have a CI size of 512, to a previously supported Small

DASD type. You use the IDCAMS RESTORE command to do this.
2. Export the files from the previously supported Small DASD type using the

IDCAMS EXPORT command.
3. Import the files to a Large DASD using the IDCAMS IMPORT command.

For further details about using the above IDCAMS commands, refer to VSE/VSAM
Commands, SC33-8315.

Performance Considerations (KSDS Only)
The performance of KSDS access may change if the data control area size (data
CA) changes. One index control interval (index CI) controls one data control area.
The larger the data control area together with a large index control interval, the
better the keyed access performance. This is because less index I/O is required for
keyed-direct and keyed-sequential access. VSE/VSAM calculates the control area
size from the smaller of the primary or secondary allocation. The minimum is one
track, and the maximum is one cylinder (15 tracks).

Note: A control area size of one cylinder is recommended.

Where possible, a VSE/VSAM KSDS on a Large DASD will have a control area
size of one cylinder. Primary and secondary allocations are rounded up to cylinder
multiples and cylinder boundaries, even if they have been defined as TRACKS or
RECORDS. To also get a control area size of one cylinder for long keys (up to 255
bytes), VSE/VSAM calculates the minimum data control interval size (CI size) of a
KSDS and increases it where required. The following key lengths require the
following minimum control interval sizes:

Table 16. Minimum CI Sizes Depending on Key Length

Key Length in Bytes Minimum CI Size

7 - 35 1024

36 - 55 2048

> 55 4096

BUFFERSPACE Parameter

The BUFFERSPACE parameter could force a smaller data control area size, and
must have a size that is at least two data control intervals plus one index control
interval. It is recommended not to use this parameter with DEFINE CLUSTER.
Large DASD support ensures that the BUFFERSPACE parameter will not reduce
the CA size.

Device Dependencies

Chapter 6. Device Dependencies 79

Increased Size of the Catalog Index
As a result of Large DASD support, the index primary allocation of a catalog on all
DASD (large or small) will be at least 4% of the primary catalog data allocation.
The catalog index secondary allocation will have the same size as the index
primary allocation.

Restrictions for VSE/VSAM Support of Large DASD
The following restrictions apply when using Large DASD with VSE/VSAM:
v No support for imbedded indices:

– The definition of imbedded indices for catalogs, alternate indices, and clusters
is not supported. If the keyword IMBED is used in existing IDCAMS DEFINE
jobs, it will be ignored or rejected with an error message.

v Per default VSAM handles a DASD with more than 64K tracks as a BIG-DASD,
if no FATDASD parameter is specified.

v The catalog default is NOIMBED:
– For Large DASD support, the default value for DEFINE MASTERCATALOG

and DEFINE USERCATALOG is NOIMBED.
– Newly defined catalogs (MASTERCATALOG and USERCATALOG) will never

have an imbedded index.

New or Changed Fields in LISTCAT Output
The LISTCAT output reflects Large DASD support in the field DEVTYPE. Either
the Volume Group (DATA, INDEX) or the Volume Entry has a prefix:
v “BIG-” in case of a Large DASD with space bitmap in tracks (Example:

DEVTYPE-----BIG-3390)
v “FAT-” in case of a Large DASD with space bitmap in cylinders (Example:

DEVTYPE-----FAT-3390)
v The field TRACKS in the Volume Group (DATA, INDEX) is replaced by

CYLINDERS for a Large DASD.
v The field SPACE-MAP in the Volume Entry is replaced by CYL-SPC-MAP, which

indicates cylinder mapping instead of track mapping for a Large DASD.

Support for FBA Disk Devices (FBA and SCSI)
z/VSE 3.1 is designed to allow IBM eServer™ zSeries servers to attach
industry-standard Small Computer System Interface (SCSI) disk devices via zSeries
Fibre Channel Protocol (FCP) channels.

User-written programs use VSE's existing Fixed Block Architecture (FBA) support
(512 byte blocks) to access SCSI disks. User programs cannot use SCSI commands
directly. z/VSE 3.1 is designed to support SCSI disk volume sizes from 8 MB to 24
GB. Because z/VSE itself uses the first 4 MB for internal purposes, the available
user space is equal to the defined size of the disk minus 4 MB. z/VSE 3.1 limits
VSE/VSAM to the first 16 GB of any SCSI volume.

Special migration considerations apply:
v It is not possible to use the Fast Service Upgrade (FSU) process to move from a

VSE/ESA 2.6 or 2.7 system to a z/VSE 3.1 system with SCSI system residence
disks.

v Not every cluster can be migrated using Backup/Restore. In some cases,
Export/Import must be used.

Device Dependencies

80 VSE/VSAM V9R2 User’s Guide and Application Programming

Similar restrictions apply to FBA to SCSI migration.

z/VSE SCSI-FCP disk support complements SCSI support in z/VM® Version 5 and
Linux for zSeries. The individual z/VSE maximum SCSI volume size limits do not
apply to z/VM minidisks backed by SCSI disks. When operating as a guest under
z/VM (using SCSI disks not directly attached to z/VSE), z/VM presents SCSI
disks as 9336-20 FBA disks. In this case, z/VSE sees them as FBA, not SCSI disks.

The maximum size of a z/VSE 3.1 FBA volume is 2 GB. Of course, multiple 2 GB
minidisks can be assigned within the limits of a single physical SCSI disk volume
controlled by z/VM. For SCSI disks directly attached to z/VSE under z/VM, the
normal z/VSE limits described above apply.

Technical Considerations
VSE/VSAM extends the existing FBA logic to support SCSI disks. VSAM
implements a SCSI disk as a generic FBA device and uses its own "virtual
characteristics" for mapping and building channel programs for optimized VSAM
performance and space utilization.

Except as noted, all commands, parameters, and requirements for FBA devices are
valid for SCSI as well.

Several FBA configurations are supported. The generic FBA model is used to:
v simulate an FBA device in virtual storage; for example, the user can defined in

CP:
CP DEF VFB-512 AS 152 BLK 100000

This virtual disk will be presented to the user under VSE as an FBA disk after
the initialization with ICKDSF:
volume 152
AR 0015 CUU CODE DEV.-TYP VOLID USAGE SHARED STATUS CAPACITY
AR 0015 152 90 9336-10 FBA001 UNUSED 99960 BLK
AR 0015 1I40I READY

v access a VM minidisk (as part of a real SCSI device). VSAM can address only 2
GB. (z/VM 5.1 and later releases allows defining VM FBA minidisks with a
larger size, but VSE/VSAM can only handle a 2 GB FBA disk in this case.)
The nature of this 2 GB limit can be explained as follows: VSE/VSAM supports
so-called Generic FBA Devices with a virtual FBA disk device characteristic of 64
FBA blocks per track and 15 tracks per cylinder, that is: 960 FBA blocks per
cylinder = 4,194,240 bytes per cylinder.
A space map in the catalog maps each track of a particular disk device with 1 bit
(0 = track used, 1 = track free). Additional catalog fields and control blocks map
the number of tracks and the start/end track of data spaces and data set extents
in 2-byte-fields, which limits the maximum capacity of one DASD device to
X'FFFF' = 65,535 tracks (64K - 1).
Therefore, the current maximum FBA disk capacity is 65,535 tracks * 64 FBA
blocks = 4,194,240 FBA blocks = 2,147,450,880 bytes = 2 gigabytes.

v directly access the SCSI device as an FBA-SCSI device (via FCP). The limit for an
FBA-SCSI device is 24 GB, and VSAM can use up to 16 GB on this device by
using a different device model (different min-CA and max-CA) as shown in the
following table:

Device Dependencies

Chapter 6. Device Dependencies 81

Table 17. Minimum and Maximum CA for Generic FBA Devices

FBA Device
Blocks per

Minimum CA
Minimum CA per

Maximum CA
Blocks per

Maximum CA

Generic Virtual FBA 64 15 960

Generic FBA as VM
Minidisk

64 15 960

FBA-SCSI 512 60 30720

The new device model for SCSI significantly improves the performance (due to
fewer CI/CA splits, for example) but requires the system programmers to review,
re-calculate, and possibly adapt the space definitions of the JCLs (for example, the
minimum size for a catalog (6 min-CAs) and the size for space sub-allocation are
different).

Restrictions
The following notes and restrictions apply to VSAM structures on SCSI disks:
v The minimum CA (min CA) is 512 blocks, which implies that the minimum file

size for VSAM on such a device is 512 blocks. Space specifications will be
rounded up to a multiple of 512 blocks (for example, 10000000 blocks will
effectively become 10000384).

Note: Due to different rounding values (different min CA values on FBA and
SCSI), it is not guaranteed that the same JCLs will run on generic FBA and SCSI
devices.

v The absolute minimum space specified for primary allocation is 2561 blocks,
which is rounded to 3072.

v If the ORIGIN option is used during cluster definition, the minimum specified
must be 3072, because rounding will not be performed in this case.

v The maximum CA (max CA) on a SCSI disk is 30720 (60*512) blocks, i.e., the
min CA per max CA is 60.

v Any cluster defined in blocks with a key length >38 requires a minimum CISIZE
of 1024.

v If no key length is specified, the default will be used, which in most cases is 64.
In this case, any cluster definition with a CISIZE of 512 (smallest possible value
under VSAM) will be rejected by VSAM with a corresponding error code

v Migration to any cluster defined on a SCSI device must be done using REPRO
or EXPORT/IMPORT. The use of IDCAMS BACKUP/RESTORE is not
recommended for long-term recovery or data migration and is not supported.

v VSAM data can be transferred to SCSI using IDCAMS BACKUP/RESTORE. For
certain files that cannot be restored with IDCAMS RESTORE because of file
definition restrictions for SCSI, IDCAMS REPRO should be used. This includes,
but is not limited to, all files defined with the SPANNED option and some files
defined with very small allocations or CI sizes.

v The parameters IMBED, REPLICATE, and RECOVERABLE are no longer
supported and are either ignored or rejected with an error message.
Migration of older clusters defined with any of these options should be
performed using IDCAMS REPRO.

v The entire SCSI device can be made available to VSAM if SPACE is defined with
option DEDICATE. Otherwise, up to X'FFFFFF' (16,777,215) blocks can be
specifed (this is the same restriction as for the current RECORDS parameter).

Device Dependencies

82 VSE/VSAM V9R2 User’s Guide and Application Programming

v The hardware architecture of Large DASD and SCSI devices imposes minimum
allocation requirements in VSAM device support (1 cylinder, 512 block minimum
CA size).

VSAM detects and reports the SCSI disk as device type 'FBA' on LISTCAT output:
CHARACTERISTICS

BLKS/MIN-CA----------512 DEVTYPE---------FBA
BLKS/MAX-CA--------30720 VOLUME-TIMESTAMP:

IUI dialogs for FILE AND CATALOG MANAGEMENT under RESOURCE
DEFINITION assist the user in generating the JCLs for IDCAMS jobs to support
SCSI devices.

Virtual Tapes
Local virtual tapes are implemented as standard VSAM ESDS files. One restriction,
however, is that they must not be compressed. Information on using virtual tapes
is provided in z/VSE Planning, SC34-2635.

Device Dependencies

Chapter 6. Device Dependencies 83

Device Dependencies

84 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 7. Optimizing the Performance of VSE/VSAM

This chapter ...

Explains the following VSE/VSAM options that affect performance:
v “Data Space Classification” on page 86
v “Control Area (CA) Size” on page 88
v “Control Interval (CI) Size” on page 90
v “I/O Buffer Space (Using Non-Shared Resources)” on page 96
v “I/O Buffer Space (Using Local Shared Resources)” on page 102
v “Multiple Volume Support” on page 104
v “Space Allocation” on page 111
v “Data Protection and Integrity Options” on page 113
v “Distributed Free Space” on page 114
v “Index Options” on page 122

For an outline on file statistics that are available to you for evaluating possible
performance improvements, refer to “Performance Measurement” on page 123.

Most of the options are specified in the IDCAMS command DEFINE when creating
a file, and in the VSE/VSAM macros ACB and GENCB when a processing
program prepares to open a file.

Because of the great number of variables, not everything presented in this chapter
is true for all installations and under all conditions.

Number of Files Defined in a Catalog
The number of files defined in a catalog can have a direct impact on the
performance of most VSE/VSAM activities. Generally, it is recommended that files
on a single volume be defined in a unique user catalog.

A large number of files in a single catalog (for example, a thousand files) can
significantly increase the run time for most IDCAMS functions. This includes
DEFINE, DELETE, and LISTCAT functions. It also impacts open and close
performance.

The exact number of files at which the impact on performance becomes noticeable
depends on several factors (for example, DASD access speed and file name
pattern). As the number of files in a single catalog increases, you should carefully
monitor the performance of the indicated IDCAMS functions.

© Copyright IBM Corp. 1979, 2014 85

Data Space Classification
To direct the suballocation of data space to VSE/VSAM objects, you can assign a
class value to VSE/VSAM data space; it allows you to optimize performance.
Specify the value in the CLASS(value) parameter of the command DEFINE SPACE,
DEFINE MASTERCATALOG, or DEFINE USERCATALOG. You can specify a value
from 0 to 7.

After you have assigned a value to a data space, you can request that it will be
available for suballocation to an alternate index or cluster (or their components).
Make the request in the USECLASS parameter of the command DEFINE
CLUSTER, DEFINE ALTERNATEINDEX, or IMPORT.

The class values and their meaning are:

0 General use and default. (Data spaces defined under MVS/VSAM are
treated as class-0.)

1 High performance (specifically suggested for fixed-head areas).

2-7 User-defined classes (for example, data space in the middle of a volume).

Figure 12 illustrates the classification of data space and the use of classified data
space.

Explanation:
1. Class─1 data space defined
2. Class─7 data space defined
3. Class─1 data space suballocated to the data component of CLUST1

Volume 222222

Class-1 Space

Class-7 Space

(3) DATA(-
USECLASS(1)-

.

.

.

(4) INDEX(-
USECLASS(7)-

.

.

.

(5) DEFINE CLUSTER(-
NAME(CLUST1)-
VOLUME (222222)-

no USECLASS specified

DEFINE CLUSTER(-
NAME(CLUST1)-
VOLUME (222222)-

.

.

.

(1) DEFINE SPACE-
VOLUME(222222)-
CLASS(1)

.

.

.

(2) DEFINE SPACE-
VOLUME(222222)-
CLASS(7)

.

.

.

Figure 12. Classification of Data Space

Performance: Data Space Class

86 VSE/VSAM V9R2 User’s Guide and Application Programming

4. Class─7 data space suballocated to the index component of CLUST1
5. This DEFINE command fails, because the default class (0) is not available on

volume 222222

The definition of VSE/VSAM catalogs involves the implicit allocation of data space
and the suballocation of some (or all) of that data space to the catalog itself.
Because of this, you need only specify the CLASS parameter if you want to assign
a catalog's data space to a certain performance class. You do not have the option of
specifying the USECLASS parameter. The catalog is automatically suballocated
from the same data space and the same performance class.

You can request a new class through the USECLASS parameter in the IMPORT
command when an object is implicitly defined through this command.

The following restriction applies:
v Classes other than 0 are not permitted for unique objects.

For the DEFINE command, you must specify USECLASS concurrently (at the same
level) with the space parameters (TRACKS, BLOCKS, and so on). For example, if
you specify USECLASS in DEFINE CLUSTER at the data level, you must also
specify CYLINDERS, TRACKS, BLOCKS, or RECORDS at the data level. If you do
not do so, the USECLASS specification will be ineffective. The following are the
three possible combinations of levels at which space may be specified for DEFINE
CLUSTER or DEFINE ALTERNATEINDEX:

(a) Cluster level only or alternate index level only
(b) Data component level only
(c) Data component and index component levels

Therefore, these are also the levels that are effective for USECLASS.

In case (a), the USECLASS specified (or defaulted to) is also applied to the data
and index components.

In case (b), the USECLASS specified, defaulted to, or modeled for the data
component level is also applied to the index component level. This permits you to
apply the same class of data space to both components while leaving the
calculation of the index allocation to VSE/VSAM.

In case (c), the data and index components may be assigned (or modeled or
defaulted) to a separate or to the same class of data space, depending on the
values chosen.

For information on assigning classes of data space, refer to the USECLASS
parameter in the index of the VSE/VSAM Commands, SC33-8315, for example, for a
description of the DEFINE ALTERNATEINDEX command.

Performance: Data Space Class

Chapter 7. Optimizing the Performance of VSE/VSAM 87

Control Area (CA) Size

Minimum and Maximum CA Sizes
The terms minimum control area size (min CA) and maximum control area size (max
CA) are device independent terms. For CKD devices, the term:
v minimum CA relates to track size

v maximum CA relates to cylinder size

For FBA devices, however, the terms tracks and cylinders (as used for CKD) are not
meaningful, because FBA devices store data on fixed-size blocks (where the blocks
are not associated with tracks or cylinders).

The terms of minimum CA and maximum CA, however, are common to both CKD
and FBA devices.

For applicable values for the various IBM CKD and FBA devices, refer to Table 18
on page 89 and Table 19 on page 90.

For CKD devices, the CA allocation limits depend on the:
v Index CI size you indicate, if the BUFFERSPACE parameter prevents an increase

of the index CI size.
v Primary or secondary allocation.

Note: If VSE/VSAM runs in an environment where simulated devices are used,
VSE/VSAM depends on the characteristics provided by the simulating system.
These device characteristics may be different from those of the simulated device
type. Therefore, VSE/VSAM may use unexpected device characteristics.

Performance Implications
In the case of a key-sequenced file, the size of a CA can affect the size of the CI of
the index component. If there is not enough room for index entries in the sequence
set record, VSE/VSAM increases the CI size to accommodate more entries.

CA size has significant performance implications. When a whole number of CAs
occupies a maximum CA (cylinder), performance is better than when CAs cross
maximum CA (cylinder) boundaries. If you allocate space in a DEFINE command
using the CYLINDERS parameter, or if a CKD file is defined as unique (that is, the
file is the only one in its data space), IDCAMS sets the CA size to one maximum
CA (cylinder). If a CA is smaller than a maximum CA (cylinder), its size will be an
integral multiple of minimum CAs (tracks), and it can cross maximum CA
(cylinder) boundaries. However, a CA can never cross the extent boundaries of a
file; that is, an extent of a file is made up of a whole number of CAs.

Aside from specifying space in terms of maximum CAs (cylinders) or defining a
CKD file as unique, you do not have a direct way of specifying that a whole
number of CAs will occupy a maximum CA (cylinder). But, you can provide
values in the DEFINE command that will influence the CA size as computed by
IDCAMS.

IDCAMS checks the smaller of the primary and secondary space values against the
maximum CA (cylinder) size of the specified device. If the smaller space quantity
is less than or equal to the device's maximum CA (cylinder) size, the size of the

Performance: CA Size

88 VSE/VSAM V9R2 User’s Guide and Application Programming

CA is set equal to the smaller space quantity. If the smaller space quantity is
greater than the device's maximum CA (cylinder) size, the CA size is set equal to
the maximum CA (cylinder) size.

You specify space in number of tracks, cylinders, blocks, or records; the system
then preformats space in CAs (except for DEFINE CLUSTER/AIX SPEED). By
calculating the size of a CA as it does, IDCAMS is able to meet your primary and
secondary space requirements without over committing space for this file.

An index record must be large enough to address all of the CIs in a CA. The more
CIs an index record addresses, the fewer reads for index records are required for
sequential access. Generally, the greater the size of the CA, the better the
performance and space utilization.

Disk Storage Sizes
Table 18 lists values for cylinders, tracks, and other capacities for IBM CKD
devices.

Table 18. Disk Storage Sizes for IBM CKD Devices

IBM CKD
Device

Cylinders (Max
CA) per Volume

Tracks (Min CA)
per Cylinder

Bytes per Track
(1)

Maximum Total
Capacity (Bytes)

3375 959 12 19,456 -33,280 382,986,240

3380 ADJ 885 15 23,552 - 45,056 570,931,200

3380 E 1770 15 23,552 - 45,056 1,141,862,400

3380 K 2655 15 23,552 - 45,056 1,712,793,600

3390-1 1113 15 25,088 - 55,296 846,236,160

3390-2 2226 15 25,088 - 55,296 1,692,472,320

3390-3 3339 15 25,088 - 55,296 2,538,708,480

3390-1 (2) 1113 15 23,552 - 45,056 718,018,560

3390-2 (2) 2226 15 23,552 - 45,056 1,436,037,120

3390-3 (2) 3339 15 23,552 - 45,056 2,154,055,680

3390-9 (3) 10017 15 56,664 8,514,049,320

3390-9 (4) 65520 15 56,664 55,689,379,200

Note:

1. Depending on the physical block size (see Table 20 on page 93)

2. When in 3380 track compatibility mode.

3. Large DASD (BIG-DASD)

4. Large DASD (FAT-DASD)

VSE/VSAM treats the IBM 3995 Model 151 Optical Library Dataserver as an IBM 3390
Model 2 direct access storage device.

An Enterprise Storage Server (ESS) is reflected as a 3390-3 or 3390-9 depending on the
number of cylinders available.

Table 19 on page 90 lists values for minimum and maximum CA, and 512-byte
blocks for IBM FBA devices.

Performance: CA Size

Chapter 7. Optimizing the Performance of VSE/VSAM 89

Table 19. Disk Storage Sizes for IBM FBA (and SCSI) Devices

IBM FBA
Device

Max CA per
Volume

Min CA per
Max CA

Blocks* per
Min CA

Blocks* per
Max CA Total Blocks

0671 See (1) 8 63 504 See (1)

3370-1 750 12 62 744 558,000

3370-1 958 712,752

9332-1 (2) 1,233 4 73 292 360,036

9332-2 (3) 1,900 4 73 554,817

9335 1,890 6 71 426 805,140

Other FBA (4) See (1) 15 64 960 See (1)

SCSI (5) See (1) 60 512 30720 See (1)

Note:

1. Configuration or device dependent.

2. Models 200, 400, 402.

3. Models 300, 600, 602.

4. For example, IBM 9336 and virtual disk.

5. Appears as device type FBA.

(*) 1 block = 512 bytes.

Control Interval (CI) Size

How to Specify
You can let IDCAMS select the size of a CI for a data or index component, or you
can specify CI size in the DEFINE command. CI size should be specified at both
DATA and INDEX levels. If the CI size is specified at the CLUSTER or
ALTERNATEINDEX level, this size applies to the data component and also to the
index component.

The CI size you specify is checked for being within acceptable limits. IDCAMS tries
to modify an unacceptable value. If it cannot, the DEFINE fails. If you specify a CI
size that is not a proper multiple, IDCAMS increases it to the next multiple. For
example, 2050 is increased to 2560.

Data CI and Block Sizes
The limits (mentioned above) depend on the maximum (nonspanned) or average
(spanned) record size that you specify in the RECORDSIZE parameter of the
DEFINE command.

Note that a CI is always a multiple of the physical block size.

Physical Block Size for Data Component

A physical block (or physical record) is any multiple of:
v 512 bytes up to 8,192 bytes
v 2048 bytes from 8,193 bytes to 30,720 bytes

Performance: CA Size

90 VSE/VSAM V9R2 User’s Guide and Application Programming

Figure 13 on page 92 shows how VSE/VSAM computes physical block size, using
DEFINE attributes and device type. The following explains the numbers shown in
the figure:
1. Maximum record size can be specified as 1 through 32761; the default is 4089

bytes.
2. The CONTROLINTERVAL size of the data component can be specified as 512

through 32768; the default is:
v 2048 bytes if RECORDSIZE is specified
v 4096 bytes if RECORDSIZE is not specified

3. The control area size chosen by VSE/VSAM is never larger than one max CA
(cylinder).

4. BUFFERSPACE(size) must provide enough space to accommodate:
v two control intervals, and
v one index control interval if the file is key-sequenced.

This is also the default. If you specify less than the default, the command is
terminated.

5. The physical block size chosen by VSE/VSAM depends on the device type that
is being used, and on the size of the control interval. The physical block size
chosen by VSE/VSAM is:
v For CKD devices:

– 512 bytes up to 8,192 bytes
– 2048 bytes from 8,193 bytes to 30,720 bytes

v For FBA devices: always 512 bytes.

Performance: CI Size

Chapter 7. Optimizing the Performance of VSE/VSAM 91

CI Size in a Data Component
The size of a CI in the data component can be any multiple of 512, up to 32,768. If
it is over 8,192 bytes, it must be a multiple of 2048.

For nonspanned records, the CI must be at least seven bytes larger than the largest
record in the data component.

For spanned records, the CI must be at least ten bytes larger than the average
record in the data component.

Average and largest record are specified in the RECORDSIZE parameter.

CI size affects space utilization because of the way VSE/VSAM chooses physical
block sizes on CKD devices. (There are no similar considerations for FBA devices.)
For a given CI size, VSE/VSAM chooses the physical block size that results in the
most efficient use of track capacity.

Space for I/O Buffers Physical Block Size

Device Type
BUFFERSPACE

(size)

Control Interval Size (for the data component)

RECORDSIZE
(average,maximum)

CONTROLINTERVALSIZE
(size)

Control Area Size

The three values (1), (2), and (3)
determine the “control interval (CI) size”:

(1) (2) (3)

(4) (5)

BLOCKS
CYLINDERS
RECORDS
TRACKS

(primary,secondary)
Max CA of Device

(cylinder size)

v1 v2 v3

VSE/VSAM picks the smallest nonzero value
of the values v1, v2, and v3 to
choose the “control area (CA) size”:

Figure 13. How VSE/VSAM Computes Physical Block Size

Performance: CI Size

92 VSE/VSAM V9R2 User’s Guide and Application Programming

Note: A file with a data physical block size or index CI size other than .5, 1, 2, or
4KB cannot be directly processed by MVS. (File portability between VSE/VSAM
and MVS via EXPORT/IMPORT is not impacted by data physical block size, but it
does require an MVS-compatible CI size.)

Table 20 shows the physical block size that VSE/VSAM uses for a data CI, and the
number of KB (kilobyte) of user data that can be accommodated on the track (the
values depend on the specified CI size and the device that is used). For example,
given a CI size of 6KB on a 3380, VSE/VSAM chooses a physical block size of 6KB
that results in 42KB (plus overhead) of data on a 43008-byte track.

VSE/VSAM treats the IBM 3995 Model 151 Optical Library Dataserver as an IBM
3390 Model 2 direct access storage device.

Table 20. Relationship of CI Size to Physical Block Size for Data Component

CI Size

Physical Block Size (in KB) Track Space Used (in KB)

3375 3380 3390 9345 3375 3380 3390 9345

0.5 0.5 0.5 0.5 0.5 20 23 24.5 20.5

1 1 1 1 1 25 31 33 28

1.5 1.5 1.5 1.5 1.5 27 34.5 39 31.5

2 2 2 2 2 28 36 42 34

2.5 2.5 2.5 2.5 2.5 30 37.5 42.5 35

3 3 3 3 3 30 39 45 36

3.5 3.5 3.5 3.5 3.5 31.5 38.5 45.5 38.5

4 4 4 4 4 32 40 48 40

4.5 4.5 4.5 4.5 4.5 31.5 40.5 45 36

5 5 5 5 5 30 40 45 40

5.5 5.5 5.5 5.5 5.5 27.5 38.5 49.5 38.5

6 6 6 6 6 30 42 48 36

6.5 6.5 6.5 6.5 6.5 32.5 39 45.5 39

7 3.5 7 7 7 31.5 42 49 42

7.5 7.5 7.5 7.5 7.5 30 37.5 45 37.5

8 8 8 8 8 32 40 48 40

10 5 10 10 10 30 40 50 40

12 4 6 12 4 32 42 48 40

14 3.5 14 7 14 31.5 42 49 42

16 16 8 16 8 32 40 48 40

18 4.5 6 18 18 31.5 42 54 36

20 4 20 10 20 32 40 50 40

22 2 22 5.5 22 28 44 49.5 44

24 8 6 24 8 32 42 48 40

26 6.5 6.5 26 6.5 32.5 39 52 39

28 4 14 7 14 32 42 49 42

30 7.5 6 10 10 30 42 50 40

32 16 8 16 8 32 40 48 40

Performance: CI Size

Chapter 7. Optimizing the Performance of VSE/VSAM 93

Performance Considerations
For performance improvement, consider the following rules.
v The larger the data CI, the better the sequential performance. EXPORT and

IMPORT are sequential applications.
v As the size of your nonspanned data records increases, you may need larger data

CIs.
v As data and index CI size increases and record size remains unchanged, more

buffer space is required in storage for every CI.
v Free space will probably be used more efficiently as data CI size increases

relative to data record size, especially with variable-length records.
Free space in a nonspanned data CI is not used if there is not enough free space
for a complete data record. In any event, free space in the last CI of a spanned
record is never used for any other record, even if there is room enough to hold a
complete data record.

v Direct processing is less sensitive to data CI size. But smaller data CIs generally
improve performance.

v When you process input that already has been sorted, on the other hand, large
data CIs may be better.

v If you have a choice between a large index CI or a large data CI for direct
processing, choose the combination that yields the smallest buffer space value.
This combination needs the least active storage and the least data transfer time.

CI Size in an Index Component
The CI size in the index component can be any multiple of 512, up to 8,192 bytes.
Generally a 512-byte index CI is adequate if:
v The number of data CIs per CA is small,
v The full key size is not too large, and
v The key compresses well (usually when the data CI is 4KB or greater).

IDCAMS might adjust your specifications. To find the values actually set in a
defined file, you can issue the IDCAMS LISTCAT command or, while your
program is executed, the SHOWCB macro.

Considerations
Generally, you should specify the smallest index CI size that still is adequate.

You may want to specify the smallest value, that is 512. To find out if a 512-byte
index CI size is adequate, do the following experiment:
v Use your chosen data CI size and a 512-byte index CI.
v Do not allow free space.
v Load enough records to equal one CA.
v At the end of the run, perform a LISTCAT.

If there is only one level of index, a 512-byte index CI is large enough. For n
CAs, there should be two levels of index with the number of index CIs equal to
n + 1.

A smaller data CI may require a large index CI. The sequence set index CI contains
pointers to the data CIs in a CA. If the data CI is made smaller (when the CA stays
the same size), there will be more data CIs per CA, and therefore more entries in
the sequence set. As an example, assume a one cylinder CA size on an IBM 3380.
Using 4096-byte data CIs, one CA can contain 150 data CIs. If the data CI size were

Performance: CI Size

94 VSE/VSAM V9R2 User’s Guide and Application Programming

changed to 1024 bytes, the CA could contain 465 data CIs. The sequence set would
now require 465 pointers instead of 150.

What IDCAMS Calculates and Adjusts
For a key-sequenced file, after CI size has been set, IDCAMS determines the
number of bytes to be reserved for free space, if any. For example, if the CI size is
4096, and the percentage of free space in a CI is twenty, 820 bytes are reserved
(4096 x 20% = 820.)

If you do not specify a size for:
v Data CIs, IDCAMS uses 2048, if possible.
v Index CIs, IDCAMS uses 512, if possible.

To determine a suitable index CI size, IDCAMS uses the following formula:
(DCI x AES) + (2 x ’DCI) + 31

where:
v DCI = number of data CIs per CA
v AES = average entry size:

If Key Length is Then AES is

>64 28

30-64 3 + (key length/3)

10-29 13

0-9 3 + key length

If the result of the calculation is an odd value, VSE/VSAM rounds it to the next
higher even value.

After IDCAMS determines the number of CIs in a CA (see “Control Area (CA)
Size” on page 88), it estimates whether one index CI is large enough to handle all
of the data CIs in a CA. If the index CI is not large enough, its size is increased, if
possible. If not possible, the number of CIs in a CA is decreased. This calculation
may result in IDCAMS overriding the specified index CI size. For example, for a
file without an index, if CI size space is not specified and the maximum record
size is specified to be 200 bytes, IDCAMS sets the data CI size to 2048 bytes. For a
key-sequenced file, IDCAMS additionally sets the index CI size to 512 bytes.

If spanning is not specified and the maximum data record size specified in
RECORDSIZE is 2500 bytes, and 2500 is also specified for the data CI size, the
system adjusts the 2500-byte CI size to the next higher multiple of 512: 2560.

Key Compression
The following information relates to the KEYRANGES parameter/subparameter of
the IDCAMS commands DEFINE and IMPORT.

VSE/VSAM increases the number of entries that an index record can hold by key
compression. Compression makes an index smaller by reducing the size of the keys
in the index entries. VSE/VSAM eliminates from the front and back of a key those
characters that are not needed to distinguish it from the adjacent keys. For
example, the keys in the sequence 1110, 1230, 1450 would compress to 11, 23, 45
respectively.

Performance: CI Size

Chapter 7. Optimizing the Performance of VSE/VSAM 95

Front compression works best when the keys of the last records of every CI run in a
series (for example, 100, 101, 102, 106). When several high keys have the same
leading characters, those characters can be compressed.

Rear compression works best when adjacent keys have large differences at the back
of the key.

If keys compress poorly, more room is required in the index CI to store the
compressed key. The index CI may be too small for the data. If it is too small,
more CAs are needed. When VSE/VSAM has no more room to insert compressed
keys from the data CIs into the index CI, it continues to load data into the next
CA, using its associated sequence set CI. The previous CA contain fewer “filled”
data CIs than if the index CI had been adequate.

Poor key compression can occur under the following conditions:
v The key is comprised of multiple fields.
v Changes occur in the front of the key and the back of the key, but not in the

middle.
v If the number of keys in a group is less than the number of keys in a data CI,

the high key in every data CI does not repeat the high-order characters.
Therefore, front compression is almost non-existent.

v If the last field of the key is long and very dense, poor rear compression results.

Single field keys do compress well. Larger keys (20 - 30 bytes) can compress to 8 or
9 bytes (including control information). Smaller keys (5 - 15 bytes) can compress to
3 - 5 bytes (including control information).

Example of a Key that Compresses Poorly
NNN0000000000SS

where: NNN -- changes every 4 or 5 records; there are more
than 4 or 5 records per data CI.

0000000000 -- changes rarely.
SS -- changes in every record.

The key would compress well if:
v NNN changed every 20 - 25 records;
v SS is seldom changed;
v SS were located next to NNN (NNNSS0000000000) and changed frequently; or
v The entire key were one field and the bytes changed randomly.

I/O Buffer Space (Using Non-Shared Resources)
VSE/VSAM transmits the contents of a CI to a buffer in main or virtual storage.
Therefore, the CI size affects the use and size of I/O buffers, and the amount of
storage space for I/O buffers.

If you do not specify buffer space, VSE/VSAM allocates buffer space for two data
CIs and (if the file is indexed) one index CI. You may not specify less space, but to
optimize performance, you may want to provide additional buffer space.

If you specify a buffer space that is not large enough to contain:
Two data CIs, and
One index CI for KSDS and for VRDS,

Performance: CI Size

96 VSE/VSAM V9R2 User’s Guide and Application Programming

the DEFINE command terminates.

Considerations

Sequential Processing

Increasing the space to hold three or more data CIs generally improves
performance due to I/O command chaining. More than four or five data buffers
may cause excessive paging.

If there is an index component, the buffer space must be large enough to hold an
index CI also.

Direct Processing

Any remaining buffer space beyond that required for two data CIs is used for
index CIs. To optimize performance, specify enough buffer space to accommodate
one index CI for every level of index. If the index CI size or the number of index
levels is not known, specify 2KB of buffer space for the index (default
BUFFERSPACE, which rounds to a 2KB boundary, may in some cases accomplish
this for you), and check the result with LISTCAT output. Make adjustments with
ALTER, if necessary.

Buffer Specification
You can specify buffer space through the:
v IDCAMS command DEFINE,
v ACB macro, or
v // DLBL statement.

The buffer space entry in the catalog was either specified or defaulted to when the
cluster was defined or modified with the ALTER command.

Specifying through DEFINE Command
Using DEFINE, you can specify the BUFFERSPACE parameter at the cluster or
data level, but not both. The default buffer space allocation is two data buffers and
one index buffer (key-sequenced data sets only). For ESDS and RRDS, the default
is two data buffers.

Specifying through ACB Macro
You can specify buffer space values or cause a default buffer space through the
ACB macro:

ACB .
.
.
BUFSP=n
BUFNI=n
BUFND=n

To use the ACB buffer space, the value selected must be larger than the catalog
entry buffer space. The use of ACB parameters is explained under “Buffer
Allocation” on page 98.

Performance: Buffer Space NSR

Chapter 7. Optimizing the Performance of VSE/VSAM 97

Specifying through // DLBL
At run time, you may require more than the buffer space specified in the catalog
or ACB. The minimum requirements for run time buffers are as follows (default
STRNO=1):

Data buffers = ACB STRNO + 1
Index buffers = ACB STRNO

If STRNO = 2 (that is, you require concurrent file positioning), the minimum buffer
space required for output is three data CIs and two index CIs.

Examples
1. Specifying Buffer Space

You can specify buffer space through the use of the // DLBL statement:
// DLBL filename,’file-ID’,,VSAM,BUFSP=size

To be effective, the value specified for the DLBL buffer space must be larger
than the catalog entry buffer space.
VSE/VSAM rounds the buffer space value (obtained from the DLBL, ACB, or
DEFINE) so that it is a multiple of either the index CI size or the data CI size,
whichever is smaller.
If the amount of buffer space specified is greater than the minimum required,
VSE/VSAM uses the remainder for additional index buffers (direct processing)
or additional data buffers (sequential or skip sequential processing).

2. Specifying Number of Buffers
You can specify the number of buffers through the use of the // DLBL
statement:

// DLBL filename,’file-ID’,,VSAM,BUFND=m,BUFNI=n

Note that BUFND and BUFNI represent the total number of buffers,
independent of the number of strings. That is, if the value for BUFND,
respectively BUFNI, is lower than the required minimum, the default values are
used.

Buffer Allocation
The following explains how VSE/VSAM allocates buffer space according to ACB
specification. The following ACB parameters relate to buffer allocation:

ACB MACRF=(IN│OUT,SEQ│DIR│SKP)
STRNO=n
BUFSP=n
BUFND=n
BUFNI=n

Minimum Buffer Allocation

Data Buffers

If you specify:
MACRF=(...,IN,...)

then, the number of data buffers for:
ESDS and RRDS is the greater of BUFND or STRNO.
KSDS is the greater of BUFND or STRNO + 1.

If you specify:
MACRF=(...,OUT,...)

Performance: Buffer Space NSR

98 VSE/VSAM V9R2 User’s Guide and Application Programming

then, the number of data buffers is the greater of BUFND or STRNO + 1.

Index Buffers

If the number of index buffers is the greater of BUFNI or STRNO, then OPEN
calculates the remainder as follows:

Remainder = BUFSP - ((NDB*DCI) + (NIB*ICI))

where: NDB = number of data buffers
DCI = size of a data CI
NIB = number of index buffers
ICI = size of an index CI

If the remainder ≤ 0, then OPEN allocates the number of data buffers and index
buffers and increases BUFSP to hold them.
If the remainder > 0, and to calculate additional buffers, refer to the section
below.

Note that you get no indication if the BUFSP used for the minimum allocation is
greater than that specified in DEFINE, DLBL, or ACB.

If Remainder > 0
1. MACRF=(...,SEQ,OUT,...)

VSE/VSAM allocates data buffers until there is a remainder that is less than the
data CI size; then it allocates more index buffers. (This is only possible when
the index CI size is less than the data CI size. If the index CI size is larger, see
item 2 below.)
Example:

BUFSP=13824
data CI size=4096
index CI size=512
STRNO=1
MACRF=(...,SEQ,OUT,...)

Allocation Cumulative Totals

Minimum = 2 data buffers 8192
1 index buffer 512 8704

Additional = 1 data buffer 4096
2 index buffers 1024*

12800
13824

* Resulting from MACRF specification.

2. MACRF=(...,DIR,OUT,...)
VSE/VSAM allocates more index buffers until there is a remainder that is less
than the size of one index CI; then it allocates more data buffers. (This is
possible only when the data CI size is less than the index CI size.)
Example:

BUFSP=13824
data CI size=4096
index CI size=512
STRNO=1
MACRF=(...,DIR,OUT,...)

Performance: Buffer Space NSR

Chapter 7. Optimizing the Performance of VSE/VSAM 99

Allocation Cumulative Totals

Minimum = 2 data buffers 8192
1 index buffer 512 8704

Additional = 10 index buffers 5120 * 13824

* Resulting from MACRF specification.

3. MACRF=(...,SEQ,DIR,OUT,...)
VSE/VSAM increases the number of index buffers to twice STRNO. (If this is
not possible, VSE/VSAM uses the procedure described in item 2 above.) If
there is still a remainder, VSE/VSAM uses the procedure described in item 1
above to allocate the remainder.
Example:

BUFSP=13824
data CI size=4096
index CI size=512
STRNO=1
MACRF=(...,SEQ,DIR,OUT,...)

Allocation Cumulative Totals

Minimum = 2 data buffers 8192
1 index buffer 512 8704

Additional* = 1 index buffer 512
= 1 data buffer 4096*
= 1 index buffer 512*

9216
13312
13824

* Resulting from MACRF specification.

Later modifications of RPLs do not change buffer allocations.

Buffer Allocation for a Path

Path Entry for Alternate Index (AIX)

If the path entry is not a member of the upgrade set, buffers are allocated in the
same manner as for a normal KSDS. Your ACB is used for the path entry.

If the path entry is a member of the upgrade set, then buffers are allocated as for a
normal KSDS, but minimum allocations are increased by one for both the number
of data buffers and the number of index buffers. Your ACB is used for the path
entry.

Buffer Allocation for Path Entry when the Base Cluster is a KSDS

Buffers are allocated in the same manner as for a normal KSDS with the following
ACB specifications:

BUFND=0
BUFNI=0
STRNO=number of strings specified in the ACB

You can influence buffer allocation only through the BUFFERSPACE parameter of
DEFINE CLUSTER or through DLBL BUFSP= ,BUFND= ,BUFNI=.

Performance: Buffer Space NSR

100 VSE/VSAM V9R2 User’s Guide and Application Programming

If you open the path for input only, the base cluster uses MACRF=(...,DIR,IN,...). If
you open the path for output, the base cluster uses MACRF=(...,DIR,OUT,...).

Buffer Allocation for a Base Cluster of an Alternate Index

You can influence buffer allocation through the path DLBL BUFND=, BUFNI=. If
the base cluster is a KSDS, the minimum index buffer allocation is one buffer per
index level per string.

Buffer Allocation for an Upgrade Set

The buffer allocation is always two data buffers and one index buffer. You cannot
influence buffer allocation for the upgrade set.

Miscellaneous Notes on Buffer Allocation (NSR)
v Data and index buffers are acquired and allocated only at OPEN time. Buffer

space is freed at CLOSE time.
v The data buffers will be allocated in 24-bit partition GETVIS, unless

“RMODE31=BUFF” is specified in the ACB definition, or “BUFDAT=RMODE31”
is specified on the DLBL at run-time. If there is insufficient storage available to
satisfy this request, processing will terminate with an appropriate OPEN error
code.

v Buffer space is aligned on page boundaries. Data buffers are allocated first, then
the index buffers.

v Writing a buffer does not free buffer space. The CI is still in storage, so if you
again reference that CI, VSE/VSAM does not reread the CI. Because VSE/VSAM
checks to see if the CI is in storage, processing directly in a limited key range
may increase throughput if extra data buffers are provided.

v The POINT macro does not cause read ahead because its purpose is to position
for subsequent sequential retrieval. It fills only one data buffer.

v When processing directly, VSE/VSAM reads only one data CI. It does not reread
data or index CIs if they reside in storage, except when SHAREOPTIONS(4) is
specified. VSE/VSAM will immediately write a data buffer if PUT (UPD,DIR) or
PUT (NUP,DIR) was issued. VSE/VSAM will write immediately for a sequential
PUT if PUT (SEQ) follows GET (DIR) for the same RBA.

v Although VSE/VSAM does not read index buffers ahead, the effect is similar.
Index buffers are loaded when referenced. If multiple index buffers are
provided, index CIs are not reread because there is room for the CIs in storage.
VSE/VSAM reuses buffers on a least-recently-used basis.

v For SHAREOPTIONS(4) processing, VSE/VSAM usually reads data and
sequence-set CIs on every request. Exceptions are:
– Consecutive retrievals, not for update, from the same CI do not cause a

reread in sequential or skip-sequential mode.
– Consecutive inserts or retrievals for update, in sequential or skip-sequential

mode, do not cause rereads, unless the SHAREOPTIONS(4) lock has been
held for a period longer than about 0.5 seconds. (The SHAREOPTIONS(4)
lock is for a CA.)

v High-level index CIs are not reread unless they are out of date.
v Read-ahead is not done under SHAREOPTIONS(4); therefore extra data buffers

are of no benefit.

Performance: Buffer Space NSR

Chapter 7. Optimizing the Performance of VSE/VSAM 101

I/O Buffer Space (Using Local Shared Resources)
Using the Shared Resources facility of VSE/VSAM, you can manage I/O buffers.
This includes:
v Deferring write operations for direct PUT requests.
v Correlating deferred requests by transaction ID.
v Writing out buffers whose writing has been deferred.

For more information, refer to “Sharing Resources Among Files and Displaying
Catalog Information” on page 203.

Miscellaneous Notes on Buffer Allocation (LSR)
v Read-ahead is not done under LSR. Therefore, extra buffers are of no advantage.
v Writing a buffer does not free buffer space. The CI is still in storage, so if you

again reference that CI, VSE/VSAM does not reread the CI. Because VSE/VSAM
checks to see if the CI is in storage, processing directly in a limited key range
may increase throughput if extra data buffers are provided.

v When processing directly, VSE/VSAM reads only one data CI. It does not reread
data or index CIs if they reside in storage, except when SHAREOPTIONS(4) is
specified. VSE/VSAM will immediately write a data buffer if PUT (UPD,DIR) or
PUT (NUP,DIR) was issued. VSE/VSAM will write immediately for a sequential
PUT if PUT (SEQ) follows GET (DIR) for the same RBA.

v Although VSE/VSAM does not read index buffers ahead, the effect is similar.
Index buffers are loaded when referenced. If multiple index buffers are
provided, index CIs are not reread because there is room for the CIs in storage.
VSE/VSAM reuses buffers on a least-recently-used basis.

v For SHAREOPTIONS(4) processing, VSE/VSAM usually reads data and
sequence-set CIs on every request. Exceptions are:
– Consecutive retrievals, not for update, from the same CI do not cause a

reread in sequential or skip-sequential mode.
– Consecutive inserts or retrievals for update, in sequential or skip-sequential

mode, do not cause rereads, unless the SHAREOPTIONS(4) lock has been
held for a period longer than about 0.5 seconds. (The SHAREOPTIONS(4)
lock is for a CA.)

High-level index CIs are not reread unless they are out of date.

LSR Buffer Hashing
Large VSAM LSR buffer pools can improve response time and reduce I/O
operations. However, searching the pool to find the right buffer takes time. Benefits
were often reduced due to the increased CPU time needed to search large buffer
pools. To overcome this reduction in performance, VSAM buffer hashing has been
implemented, in which a VSAM hashing algorithm allows direct access to the
required buffer. Using VSAM buffer hashing, you can take advantage of very large
buffer pools without the disadvantage of additional processor load. VSAM buffer
hashing is a function introduced with VSE/ESA 2.5. This buffer management
technique provides the following improvements over the existing sequential buffer
management:
v The time required to perform buffer searches is reduced, since the need to do

sequential searches through the buffer pool is removed. The search technique
uses a hashing algorithm. Using this hashing algorithm, the path length of the
search is significantly shortened. The I/O rate is therefore reduced.

Performance: Buffer Space LSR

102 VSE/VSAM V9R2 User’s Guide and Application Programming

v The path length does not depend upon the number of buffers (therefore the
search time is independent of the buffer pool size).

How Does Buffer Hashing Work?
Using VSAM buffer hashing, you can take advantage of using very large buffer
pools, without the disadvantage of additional processor load.

VSAM Buffer Hashing uses a:
v Hash Table – A table in main storage in which each table entry is used as a

pointer to a BCB (Buffer Control Block). A BCB contains the address of the
buffer (for data or index), and information about the buffer itself. There is one
BCB for each buffer in the LSR buffer pool.

v Synonym – When using a hashing technique, synonyms may occur when two or
more entities hash to the same anchor point. In VSAM Buffer Hashing,
synonyms are chained together in the BCB. However, the possibility that
synonyms occur is very small, and the chain is usually very short.

v Hash Algorithm, which is calculated as follows:
–

X = remainder of (RBA/2 + DSID1/2 + DSID2/2) / DIM

where:

X The remainder of the above calculation, and is used as the index to
the hash table.

RBA The Relative Byte Address, used by VSAM to identify a certain buffer
in the LSR buffer pool.

DSID1 and DSID2
The Data Set Identifiers (DSIs), which are unique identifications of a
certain opened VSAM data set component, either a data or an index
component.

DIM The number of entries in the Hash Table. DIM = (2N-1).

N The number of buffers in the subpool.

Here is a "simple" example:

"Simple" in this case means that the values of this example were simplified to
decimal values (not hexadecimal) to give a better understanding of the technique.
1. Let us assume that we have an LSR pool with 10 buffers. The Hash Table will

have (2 * 10 -1) = 19 entries. Therefore:
DIM = 19

2. A VSAM GET operation reads a data record from a certain VSAM data set with
the internal data set identifications DSD1 and DSD2 into a data buffer.
Therefore:
DSID1 = 220, DSID2 = 32

The BCB pointing to that data buffer is at storage location '640000'. The RBA
(Relative Byte Address) of the VSAM data buffer is 800. Therefore:
RBA = 800

3. The hash algorithm X = remainder of (RBA/2 + DSID1/2 + DSID2/2) / DIM
therefore calculates the following index for the hash table:
(800/2 + 220/2 + 32/2) /19 = 27, remainder = 13 = X

"13" will be used as index into the hash table.
4. The BCB pointer '640000' will be stored in the 13th position of the hash table.

Performance: Buffer Space LSR

Chapter 7. Optimizing the Performance of VSE/VSAM 103

5. Whenever another request is searching for a data buffer with RBA 800 from this
certain dataset, the hash algorithm can calculate easily the index of 13 into the
hash table and use the BCB at address '640000' and its related data buffer
without a long pool search. This hashing technique also works, of course, with
very large buffer pools (for example, 32767 buffers).

Preventing Deadlock in Buffer Contention
Contention for VSE/VSAM data (the contents of a CI) can lead to deadlocks, in
which a processing program is stopped because its request for data cannot be
satisfied.

Your processing program gets exclusive control of a buffer (CI) whenever you issue
a GET for update (RPL option OPTCD=UPD) to retrieve a record from that buffer.
You are responsible for preventing a deadlock by releasing as soon as possible the
buffer for which another request may be waiting. Two requests, for example, A and
B, may engage in four different contests:
1. A wants exclusive control, but B has exclusive control (OPTCD=UPD).

VSE/VSAM refuses A's request. A must either do without the data or retry its
request.

2. A wants exclusive control, but B has read-only access to the data
(OPTCD=NUP). VSE/VSAM gives A a separate copy of the data.

3. A wants read-only access to the data (NUP), but B has exclusive control.
VSE/VSAM refuses A's request. A must either do without the data or retry its
request.

4. A has read-only access to the data, and B has read-only access. VSE/VSAM
gives A a separate copy of the data.

VSE/VSAM's action in a contest for data rests on the assumptions that, if a
processing program has exclusive control of the data (OPTCD=UPD), it will (or at
least might) update or delete it and that, if a processing program is updating or
deleting the data, it has exclusive control of it.

In contests 1 and 3, B is responsible for giving up exclusive control of a CI by way
of an ENDREQ or a request for access to a different CI. (The RPL that defines the
ENDREQ or request is the one that was used to acquire exclusive control in the
first place.)

Multiple Volume Support

Key Ranges
The records of a key-sequenced file, including alternate indexes, can be grouped on
volumes according to key ranges. A payroll file, for example, could have employee
records beginning with A, B, C, and D on one volume, with E, F, G, H, and I on a
second volume, and so on. Every portion of a multivolume file can be on a
separate volume. Every key range of a file, as well as the end of the file, is
preformatted. Multiple volume support is affected by the following DEFINE
parameters: VOLUMES, ORDERED│UNORDERED, CYLINDERS│RECORDS│
TRACKS│BLOCKS, and KEYRANGES.

The first allocation made on every volume is always the primary allocation.

Your CLASS specification in the DEFINE command can affect suballocation. For
further information, see “Data Space Classification” on page 86.

Performance: Buffer Space LSR

104 VSE/VSAM V9R2 User’s Guide and Application Programming

Space Allocation

Space Allocation without Key Range Specified
Primary space is acquired from the first volume at define time. If VSE/VSAM
needs more space during loading or processing of the file, and if secondary
allocation was specified, VSE/VSAM uses the secondary extents on the first
volume. When VSE/VSAM has acquired all the secondary space it can on the first
volume and still needs more space, then primary space from the second volume is
acquired, even if no secondary allocation was specified. If more space is needed,
secondary space is acquired on the second volume.

Space Allocation with Key Range Specified
Primary space is acquired from every volume at define time. Every key range is
assigned to a volume. There is a primary allocation for every key range. If there
are fewer volumes than key ranges, the extra key ranges are grouped together on
the last volume. If there are more volumes than the number of key ranges, the
excess volumes become overflow volumes. A key range is associated with the
primary allocation volume and can extend to any overflow volumes.

A key range is extended first by acquiring secondary extents on its volume of
primary allocation, next by acquiring primary allocation on the first overflow
volume, then secondary extents on the first overflow volume. Primary allocation is
then acquired on the second overflow volume, followed by acquiring secondary
extents on the second overflow volume. If there is not enough room on an
overflow volume to acquire primary space for that key range, VSE/VSAM does
not acquire any secondary space for that key range. VSE/VSAM just skips that
overflow volume and goes to the next overflow volume to try to obtain primary
space.

VSE/VSAM searches for space on volumes in the order they were specified in the
VOLUMES parameter. This does not mean that the volumes are allocated or
suballocated in that order. Allocation depends on whether ORDERED or
UNORDERED was specified.

Unordered Space Allocation

If no Key Range was Specified

UNORDERED means VSE/VSAM must find a primary allocation (or the DEFINE
command will fail), but not necessarily on the first volume listed in the VOLUMES
parameter. If there is no room for a primary allocation on the first volume,
successive volumes are checked for primary space.

If Key Range was Specified

UNORDERED means that VSE/VSAM must find room for a primary allocation for
every key range, but not necessarily the first key range on the first volume, the
second key range on the second volume, and so on.

Performance: Multiple Volume Support

Chapter 7. Optimizing the Performance of VSE/VSAM 105

Ordered Space Allocation
ORDERED means VSE/VSAM must suballocate space on the volumes in the order
in which the volumes are listed in the VOLUMES parameter.

If secondary allocation is specified, space for a component can be expanded to
include a maximum of 123 extents. Every primary and every secondary allocation
can be made up of up to five non-contiguous areas (extents).

Examples: Allocation of Space on Multiple Volumes
The following examples show various combinations of ORDERED and
UNORDERED space allocation, VOLUMES, and primary versus secondary
allocations.

Example 1
VOLUMES(A B C)
ORDERED
CYLINDERS(50 5)
SUBALLOCATION

Volume A is the primary volume; volumes B and C are overflow volumes. Fifty
cylinders of primary space must be available on volume A, or the DEFINE
command will fail.

If the file is extended, a 5-cylinder secondary allocation is made on volume A,
providing volume A has enough available VSE/VSAM space of the required class.
Otherwise, an allocation of 50 cylinders (primary amount) is made on volume B. If
volume B does not have enough data space for this allocation, the request for
extension is rejected.

If volume B has 50 cylinders for allocation (primary amount) and the file needs to
be extended further, secondary allocations are made from volume B. Volume B
must have enough space available of the required class. Otherwise, a 50-cylinder
allocation is made on volume C.

Volume A Volume B Volume C

50

5

5

50

5

5

5

50

5

5
*

*

*

* means extended at execution time

Performance: Multiple Volume Support

106 VSE/VSAM V9R2 User’s Guide and Application Programming

Example 2
VOLUMES(A B C)
UNORDERED
CYLINDERS(50 5)
SUBALLOCATION

Fifty cylinders of primary allocation must be made on one volume. It may be
volume A, B, or C. If it is not possible to allocate all 50 cylinders a single volume,
the DEFINE fails.

Volumes are searched in the order they are specified. If both A and B have 50
cylinders available, allocation is made on A because it was specified first.

When the file is extended, VSE/VSAM attempts to make the 5-cylinder secondary
allocations on the same volume the primary allocation was made on. This
continues until all data space of the required class is used.

To further extend the file, VSE/VSAM searches the volumes for space in the same
order specified for primary allocation. If VSE/VSAM cannot acquire the primary
amount of space (50 cylinders), an error code is issued.

Example 3
VOLUMES(A B C)
KEYRANGES((00 30) (31 65) (66 99))
ORDERED
CYLINDERS(50 5)
SUBALLOCATION

A, B, or C A, B, or C A, B, or C

50

5

5

50

5

50

5

*

* *

* means extended at execution time

Performance: Multiple Volume Support

Chapter 7. Optimizing the Performance of VSE/VSAM 107

A primary allocation of 50 cylinders is made for every key range. The first key
range is on volume A, the second on volume B, the third on volume C. If 50
cylinders cannot be allocated on every volume, the DEFINE fails. The 5-cylinder
secondary allocations are made as needed.

A key range can be extended only on the volume it occupies or on an overflow
volume. If volume D were added to the VOLUMES list, all key ranges would be
extended on volume D if the volume initially assigned to the key range became
full: first a primary allocation amount of 50 cylinders for a key range on volume D,
then secondary allocations of 5 cylinders.

Example 4
VOLUMES(A B)
KEYRANGES((00 30) (31 65) (66 99))
ORDERED
CYLINDERS(50 5)
SUBALLOCATION

If only volumes A and B are specified, the first key range is allocated on volume A,
and the second and third key ranges are allocated on volume B. Volume A has one
50-cylinder primary allocation, and volume B has two 50-cylinder primary
allocations. This can occur only for a file with the SUBALLOCATION attribute
specified. If both UNIQUE and KEYRANGES are specified, every key range must

A B C

50

5

5

50

5

50

5

*

* means extended at execution time

*

**

5

5

50

5

50

5

50

D

00-30 31-65 66-99

00-30
31-65
66-99

A B

50

5

5

50

50

5

5

*

*

* means extended at execution time

00-30
31-65
66-99

Performance: Multiple Volume Support

108 VSE/VSAM V9R2 User’s Guide and Application Programming

reside on a separate volume.

Example 5
VOLUMES(A B A)
KEYRANGES((00 30) (31 65) (66 99))
ORDERED
CYLINDERS(50 5)
SUBALLOCATION

A primary allocation of 50 cylinders is made for every key range. The second key
range is on volume B; the first and third key ranges are on volume A. This can
occur only for a file with the SUBALLOCATION attributed specified. If both
UNIQUE and KEYRANGES are specified, every key range must reside on a
separate volume.

Example 6
VOLUMES(A B C)
KEYRANGES((00 30) (31 65) (66 99))
UNORDERED
CYLINDERS(50 5)
SUBALLOCATION

A primary allocation of 50 cylinders is made for every key range. VSE/VSAM
attempts to put one key range on every volume. If volume A does not have 50

A B

50

* means extended at execution time

00-30
66-99 31-65

5

50

5

50

5

5

*

*

*

A, B, C, or D A, B, C, or D A, B, C, or D

50 50 50

* means extended at execution time

50

5

50

50

A, B, C, or D

00-30 31-65 66-99

00-30
31-65
66-99

5

5

5 5

5

5

*
*

*

*

Performance: Multiple Volume Support

Chapter 7. Optimizing the Performance of VSE/VSAM 109

cylinders available, the first key range is put on volume B, and the second and
third key ranges are put on volume C. If neither A nor B has 50 cylinders, all three
key ranges are placed on volume C.

VSE/VSAM first extends a key range on the volume it is on before trying to
extend it on any overflow volume. If volume D were added to the VOLUMES list,
every key range would be extended on volume D, if no more spaces were available
on the volume of its primary allocation.

If volume D were listed in the VOLUMES parameter, it would not necessarily be
an overflow volume. If 50 cylinders of primary allocation were available on A, B,
and C, then D would be an overflow volume. If volume A does not have 50
cylinders available, but B, C, and D have 50 cylinders each, the first key range is
put on volume B, the second on volume C, and the third on volume D. Volume A
becomes the overflow volume.

An Exercise
Assume that you have a 600-cylinder file that you want to have reside on two
volumes: 400 cylinders on volume A, and 200 cylinders on volume B. How would
you specify this allocation requirement in the DEFINE command?

Do not specify:
VOL(A B)
CYL(600)

This request would be rejected because the amount of primary space to be
allocated on every volume is greater than that available on one volume.

Do not specify:
VOL(A B)
CYL(400,200)

This request would obtain 400 cylinders of primary allocation on volume A and
400 cylinders of primary allocation on volume B.

Do specify:
VOL(A B)
CYL(200,200)

This request obtains:
200 cylinders primary allocation on volume A,
200 cylinders secondary allocation on volume A, and
200 cylinders primary allocation on volume B.

The mounting requirements with multiple volumes are simple. All volumes must
be mounted (except with sequential KSDS, ESDS, and RRDS). A primary allocation
amount will be acquired on every volume.

Performance: Multiple Volume Support

110 VSE/VSAM V9R2 User’s Guide and Application Programming

Space Allocation

Possible Options
The CYLINDERS│RECORDS│TRACKS│BLOCKS parameters of the DEFINE
command determine how VSE/VSAM allocates space. You may specify allocation
at the CLUSTER/AIX level, DATA level, DATA and INDEX levels, and
CLUSTER/AIX and DATA levels. Considerations in choosing allocation parameters
are:
v If you specify allocation at the CLUSTER/AIX level only, the amount needed for

the index is subtracted from the specified amount. The remainder of the
specified amount is assigned to data.

v If you specify allocation at the DATA level only, the specified amount is assigned
to data. The amount needed for the index is in addition to the specified amount.

v If you specify allocation at both the DATA and INDEX levels, the specified data
amount is assigned to data, and the specified index amount is assigned to the
index.

v If you specify secondary allocation at the DATA level, secondary allocation must
be specified at the INDEX level unless you specify allocation at the CLUSTER
level.

v A CA can never cross an extent boundary. A cluster extent consists of a whole
number of CAs.

v A CA is never larger than one cylinder (CKD) or one maximum CA (FBA).
Optimum performance is obtained when an integral number of CAs occupy a
cylinder (or maximum CA).

v IDCAMS checks the smaller of primary and secondary space allocation values
against the specified device's cylinder (or maximum CA for FBA devices) size. If
the smaller quantity is greater than the device's cylinder (or maximum CA) size,
the CA is set equal to the cylinder (or maximum CA) size. If the smaller
quantity is less than or equal to the device's cylinder (or maximum CA) size, the
size of the CA is set equal to the smaller space quantity. For FBA, this value is
then rounded up to a multiple of minimum CA size.
For example:

CYL(5 10) results in a 1-cylinder CA
TRK(100 3) results in a 3-track CA
REC(2000 5) results in a 1-track CA (assuming 10 records

per track - minimum CA is 1 track)
TRK(3 100) results in a 3-track CA

For a device with 64 blocks per minimum CA and 960 blocks per maximum CA:
BLK(1100 1000) results in a 960-block CA
BLK(900 400) results in a 448-block CA
BLK(100 40) results in a 64-block CA

For CKD to force IDCAMS to select cylinder CAs, specify CYLINDERS or
UNIQUE. When defining through the RECORDS│TRACKS parameters, specify the
smaller of primary or secondary allocation as a value of at least one cylinder.
v If you specify secondary allocation, space for a component can be expanded to a

maximum of 123 extents (if there is sufficient data space) with a limit of 16
extents per volume if REUSE is specified.

v A UNIQUE file can have a maximum of 16 extents per volume, but it can not be
extended; no secondary allocations are permitted for UNIQUE files.

Performance: Space Allocation

Chapter 7. Optimizing the Performance of VSE/VSAM 111

v A spanned record cannot be longer than a CA minus the control information (10
bytes per CI). Do not specify large spanned records with small primary or
secondary allocation.

v VSE/VSAM acquires space in increments of CAs. For example, if the allocation
amount is 20 tracks and the device is an IBM 3380, the CA size is one cylinder.
Two cylinders of space (two CAs) are allocated, because a 3380 has 15 tracks per
cylinder.

v LISTCAT gives information in increments of CA size. If you specify either
TRACKS or RECORDS and the allocation is less than one cylinder, LISTCAT
reflects the allocation as TRACKS. If the specification results in a one-cylinder
CA, LISTCAT reflects the allocation as CYLINDERS. If you specify BLOCKS, the
allocation is given in multiples of blocks.

NOALLOCATION
NOALLOCATION allows you to define a file into a catalog without suballocating
any space to it. This parameter can be useful in two ways:
v Creating default models. (For a discussion of default models, see “Using an

Object as a Model” on page 58.)
v Creating dynamic files for which space is not actually suballocated until the file

is opened.

Dynamic Files
Formerly, files that were used for brief periods of time (for example, work files)
occupied disk space from the time they were defined until they were deleted. If
they were required again, they had to be redefined.

Using the DEFINE CLUSTER command with NOALLOCATION and REUSE
parameters makes it possible to define a file for which no space is suballocated
until the file is to be opened; this file is called a dynamic file. The catalog entry for
a dynamic file contains only the allocation size specified at define. Information
about the suballocated space is added to the catalog when the file is opened.

When you try to delete a dynamic file, VSE/VSAM determines if space is currently
allocated to it. If it is, VSE/VSAM deletes it as if it were a normal VSE/VSAM
cluster. If space is not allocated, only the catalog entry of the file is removed.

Dynamic files may be entry-sequenced (including SAM ESDS supported by the
VSE/VSAM Space Management for SAM Function), key-sequenced, or relative-record
files.

Dynamic File Restrictions

The following restrictions apply to dynamic files:
v A path (but not an alternate index) may be built over a dynamic file, except for

a SAM ESDS file.
v A dynamic file that does not have space allocated to it cannot be printed

(PRINT), copied (REPRO), or exported through EXPORT. EXPORT only supports
non-empty dynamic files

v A default model cannot be opened. If you specify NOALLOCATION, you must
also specify REUSE if you plan to open the file.

v Normally, parameters such as CYLINDERS, TRACKS, and USECLASS control
space allocation. However, for noallocation models (other than reusable files),
these attributes are recorded only for modeling purposes.

Performance: Space Allocation

112 VSE/VSAM V9R2 User’s Guide and Application Programming

v If you specify the VOLUMES parameter when you define a file as
NOALLOCATION, VSE/VSAM records those volumes in the catalog as
candidate volumes.

v The NOALLOCATION attribute exists in the catalog entry, but it cannot be
implicitly modeled. It can be explicitly modeled (MODEL parameter of DEFINE).

v You cannot specify NOALLOCATION on the ALTER command.
v You cannot ALTER REMOVEVOLUMES for the last existing volume on the

candidate list for NOALLOCATION files.

Data Protection and Integrity Options
When considering performance, you must also consider the data protection and
integrity options you are using. VSE/VSAM performance is affected by the
following:
v Share options.

For more information, see “Protecting Shared Data” on page 131.
v Write check.

If you specify WRITECHECK in the DEFINE command, it means you wish to
have your records checked as they are written. After a record is written, it is
then read without data transfer to test for a data check condition. If applicable,
VSE/VSAM uses the bypass cache option when writing to write check files. If
NOWRITECHECK is specified (and this is the default), a record is written but
no checking occurs. That is, you will get better performance with the
NOWRITECHECK option.

v Recovery versus Speed.
The RECOVERY and SPEED parameters in the DEFINE command control the
preformatting of CAs before records are inserted. RECOVERY|SPEED applies
only to initial loading. Specifying RECOVERY means that space allocated to the
data component is preformatted. Specifying SPEED means that space will not be
preformatted.
Specifying SPEED gives you better performance, whereas specifying RECOVERY
enables you to recover from certain system failures.
Consider the following:
– If you specify SPEED in a file's DEFINE command, and a system failure

occurs, the file must be deleted, redefined, and reloaded. RECOVERY is only
useful if you have a recovery procedure that allows you to resume loading
the file after a system failure. RECOVERY formats every CA before loading
records into it. It allows you to find the software end-of-file if an abnormal
termination occurs during initial creation. After the initial creation of the file,
RECOVERY is always in effect.

– RECOVERY works in conjunction with the IDCAMS VERIFY command. If a
system failure occurs before a file is closed (CLOSE or TCLOSE), VERIFY can
prevent your having to reload the file by updating the catalog with the
current high RBA. This ensures that your data will not be overwritten
inadvertently at a later time, and that you may continue the load at the point
of interruption (load-extend). If the SPEED option was in effect while the file
was loaded, VERIFY cannot help because no preformatting was done and no
high RBA exists until the file is closed.

Performance: Space Allocation

Chapter 7. Optimizing the Performance of VSE/VSAM 113

Distributed Free Space
Free space can occur in files as a result of:
v your FREESPACE specifications in the commands DEFINE ALTERNATEINDEX

and DEFINE CLUSTER, or
v CI/CA splits.

For more information and examples on CI and CA splits that result from record
inserts during direct and sequential processing, refer to “CI/CA Splits” on page
116.

You can specify free space only for key-sequenced data sets (KSDSs),
variable-length relative-record data sets (VRDSs), or alternate indexes. The CI free
space should be as large as the design insertion level. Determine the free space
required by estimating the percentage of additions to be made between file
reorganizations. Also, consider the size of your records. If there are to be no
additions, or if records will not be lengthened, there is no need for free space.

Loading a File

Specifying Free Space
You specify free space for both the CI and the CA as a percentage of the total space
for the respective unit. For example:

FREESPACE (20 10)

indicates that:
20% of every CI is to be initially empty, and
10% of every CA is to be initially empty.

If you specify the minimum CA free space of 1%, free space for one CI in every
CA will be provided. The system default for free space is (0 0).

Altering Free Space
You can change the free space after the file is loaded. To take full advantage of
mass insertion, specify FREESPACE(0 0) in the ALTER command after the file has
been loaded.

Considerations for Loading a File
v If additions occur only in a specific part of the file:

Load those parts that will have no additions with a free space specification of (0
0). Alter the free space to (n n) to load those parts of the file that will receive the
additions.
If SPEED is specified, it is in effect for loading the initial portion only. Any
subsequent portions are loaded with RECOVERY, regardless of the DEFINE
specification.

v If additions occur throughout the file, but are unevenly distributed:
Specify a small amount of free space when you define the file. Then, increase the
percentage after loading the file. As new CIs and CAs are required, they are
created with the increased free space specification.
Additional splits (after the first split) in the part of the file with the most growth
will be minimized. CIs that have little or no growth will contain only a small
amount of unneeded free space.

v If there are few additions to the file:

Performance: Free Space

114 VSE/VSAM V9R2 User’s Guide and Application Programming

Consider a free space specification of (0 0) for loading the file and subsequent
processing.
When records are added, new CAs are created to provide room for additional
insertions. In this case, unused free space is not provided.

v For direct insertions:
Make the CI free space larger than the CA free space, unless the frequency of
insertions is very low. In that case, zero CI free space and average CA free space
might be indicated.

v For sequential processing:
The greater the free space specification, the more disk space is required.
For sequential processing, more I/O operations (with more system overhead) are
required to process the same number of records. A bad combination of
CI-size/record-size/free-space can cause poor sequential performance if much of
the free space is unusable.

Performance with Too Much or Too Little Free Space
Too much free space could increase the number of index levels, which could
increase run time for direct processing.

Too little free space can cause an excess of (time-consuming) CI/CA splits:
v For sequential processing - and after a split occurred - extra time is required

because the records are not in physical sequence.
v For direct processing, CA splits can increase seek time.

Another factor is the additional VSE/VSAM overhead to do the split. (If insertions
are truly random, ideally all CAs would split at approximately the same time.) It is
recommended to monitor CA splits and to reorganize the file when the splits
become prevalent. To monitor CA splits, use LISTCAT or the ACB JRNAD exit.

Where VSE/VSAM Places the Records
Records are loaded or mass inserted at the end of a CI until the free space
threshold is passed. The free space threshold is the point at which free space
becomes less than the amount specified in the DEFINE command.

VSE/VSAM ensures that at least one record (or one segment of a spanned record)
is placed into a CI. Also, if the CA free space specified in the DEFINE command is
not zero but is less than one CI, the result is one free CI in the CA.

Specifying Free Space in a CI and CA
You specify free space in a CI as a percentage of bytes in the CI. Generally you
should specify a value equal to at least one record, because VSE/VSAM does not
round up the free space to hold a whole number of records.

The amount of unused space in the CI, however, may be more than the free space
you requested. For example:

If you specify (33 0) free space, you are in effect telling VSE/VSAM to put as
many records as possible into 67% of the CI. If the CI can contain four logical
records, the first two records will fit into 50% of the CI. This leaves 17%
unallocated space. The unallocated space is added to the 33% free space, for a
total of 50% free space available for allocation. In this case, where the amount
of unused space is greater than the amount of requested free space, the value
you requested is stored in the catalog.

Performance: Free Space

Chapter 7. Optimizing the Performance of VSE/VSAM 115

For this same CI, if you specify (25 0) free space, the CI would contain three logical
records and 25% free space. If (20 0) free space is specified, the result is three
logical records and 25% free space. If (80 0) free space is specified, the result is one
logical record and 75% free space. Specifying free space in a CA is somewhat
different. If you specify any value greater than zero, VSE/VSAM will round up the
value so that you get at least 1 free CI per CA. As in CI free space allocation,
however, you may get additional space due to the combination of requested free
space plus unallocated space.

Note:

1. Remember that a CI contains logical records, free space, and control
information (CIDF and RDF). A 4KB CI cannot contain four 1KB logical records.
A 4KB CI with (25 0) free space specified will contain at least 1KB of free space;
only two 1KB fixed length logical records could be loaded into the CI. Only one
more 1KB logical record could be added before a CI and/or CA split would be
required.

2. If you specify FREESPACE(100 100), the CIs and CAs are not left empty.
VSE/VSAM writes one record per CI and one CI per CA; the rest is free space.

3. If ten CIs fit into one CA and (0 5) free space is specified, the CA will have one
free CI.

Reclaiming Space
You can use the ERASE macro to delete records. The space that was occupied by
the deleted record is returned to the free space.

If a CI is emptied by ERASE, it can be reclaimed later as a free CI if it is needed.

Note: Space that becomes free within a CI because of records deleted or shortened
may remain unused even though the space is available. This situation occurs when
new records to be added to the file do not have key-field values that match the
range of the freed area within the CI. For example:

A record with key-field value 250 cannot be inserted between records with
key-field values 22 and 70.

Depending on the amount of unusable space, you may want to reorganize the file
(using EXPORT and IMPORT) to make the available free space useable.

The same problem can exist on a CA level. If all records in all CIs (in one CA) are
deleted, the CA is not reused unless space is required in its key range. To reclaim
unused CAs, use BACKUP and RESTORE to reorganize the file.

CI/CA Splits
The following explains the rules for CI and CA splits.

Sequential Processing
v CI Split

If the insert is in the middle of the CI, the records with higher keys are moved
to the free CI. The insert and the records with lower keys remain in the old CI.
If the insert is at the logical end of the CI, the inserted record goes to the free CI.

v CA Split
If the insert is not in the last logical CI, all CIs after the split CI are moved to the
new CA. If the insert is within the last logical CI, that CI is moved to the new
CA. If the insert is at the end of the last logical CI, the inserted record is placed
into the new CA.

Performance: Free Space

116 VSE/VSAM V9R2 User’s Guide and Application Programming

Direct Processing
v CI Split

Half the records (those with the higher keys) in the CI are moved into the new
CI. The new record is inserted (in key sequence) into the CI to which it belongs.

v CA Split
Half the CIs (those with the higher keys) are moved to the new CA. Insertion
then occurs through regular CI split processing, using the newly-created free
space CIs.
Updates can cause CI/CA splits when:
– The record length is increased, and there is not enough free space in the CI,

or
– The record length is decreased and additional RDFs are required. If the space

required for the RDFs is more than the amount by which the record is
shortened, and there is insufficient free space, the CI must be split.

Examples: CI/CA Splits
In the examples:

HK means High Key
FS means Free Space

Example 1
shows the CA after direct and sequential insertion of records 025 and 101.

Control Area (before)

Sequence Set (before)

010

040 175 HK FS

015 020 040

099 100 150 175

190 200

Sequence Set (after)

Control Area (after)

040 175 HK FS

010 015 020 025 040

099 100 101 150 175

190 200

Performance: Free Space

Chapter 7. Optimizing the Performance of VSE/VSAM 117

Example 2
shows the CA after direct insertion of record 026, causing a CI split.

Control Area (before)

Sequence Set (before)

010

040 175 HK FS

015 020 025

099 100 101 150

190 200

Sequence Set (after)

Control Area (after)

020 040 175 HK

010 015 020

099 100 101 150 175

190 200

040

175

025 026 040

Performance: Free Space

118 VSE/VSAM V9R2 User’s Guide and Application Programming

Example 3
shows a CA split and CI split caused by the direct insertion of record 168.

Sequence Set (after) Sequence Set

Control Area 1 (after) Control Area 2

020 040 FS FS 101 175 HK FS

010 015 020

025 026 040

099 100 101

190 200

150 168 175

020 040 175 HK

010 015 020

099 100 101 150 175

190 200

025 026 040

Sequence Set (before)

Performance: Free Space

Chapter 7. Optimizing the Performance of VSE/VSAM 119

Example 4
shows the CA after sequential insertion of records 12, 13, and 14. Record 12 causes
a new CI split. Note that the key associated with the old CI is one number less
than the low key in the new CI. This permits mass insertion to take advantage of
the newly-created free space.

Control Area (before)

Sequence Set (before)

010 019 020 025

099 100 101 147

191 200

Sequence Set (after)

Control Area (after)

060

175

060 175 HK FS

14 60 175 HK

010 012 013 014

099 100 101 147 175

190 200

019 020 025 060

Performance: Free Space

120 VSE/VSAM V9R2 User’s Guide and Application Programming

Example 5
shows a CA split and CI split caused by the sequential insertion of record 144.
Note that the key associated with the old CI is one less than the low key in the
new CI. This permits mass insertion into the newly-created free space.

Sequence Set (after) Sequence Set

Control Area 1 (after) Control Area 2

014 60 144 175 HK FS FS FS

10 12 13

19 20 25

191 200

14 60 175 HK

10 12 13

99 100 101 147 175

191 200

019 20 25

Sequence Set (before)

14

60

14

99 100 101 144

147 175

60

Performance: Free Space

Chapter 7. Optimizing the Performance of VSE/VSAM 121

Example 6
shows a CA after a sequential insertion of records 205, 210, 223, and 228, during
load extend processing. Note that the free space is preserved.

Index Options
Number of Index Records in Virtual Storage

For keyed access, VSE/VSAM needs to examine the index of a file. Performance
improves if a large number of index records can be held in virtual storage.

Before the processing program begins to process the file, it must specify, either
explicitly or by default, the amount of space VSE/VSAM can use to buffer index
records. Enough space for one index record is the minimum. However, when the
space is large enough for only one or two index records, an index record may be
continually deleted from virtual storage to make room for another and then
retrieved again later when it is required anew. Ample space in which to buffer
index records can improve performance by preventing this situation, provided that
the buffer allocation does not cause excessive paging by z/VSE. Remember that
VSE/VSAM searches only the sequence set for sequential access but every index
level for direct access.

You can ensure that an acceptable number of index records is in virtual storage by
specifying enough space for I/O buffers for index records through one of the
following parameters when you open the file:

Control Area (before)

Sequence Set (before)

191

HK FS FS FS

200

Sequence Set (after)

Control Area (after)

210 HK FS FS

191 200 205

223 228

210

Performance: Free Space

122 VSE/VSAM V9R2 User’s Guide and Application Programming

v BUFFERSPACE parameter of the DEFINE CLUSTER command for a file
v BUFNI and BUFSP parameters of the ACB macro
v BUFNI and BUFSP parameter of the DLBL statement

VSE/VSAM keeps as many index set records in virtual storage as the space will
hold. Whenever an index record must be retrieved to locate a record, VSE/VSAM
makes room for it by deleting another index record from the space.

Consideration for ECKD Devices

For extended count key data (ECKD) devices (such as the IBM 3390), special
considerations apply. Especially in conjunction with cached devices, performance
will usually be best if the index is as compact as possible.

Key Ranges

The records of a key-sequenced file and an alternate index can be grouped on
different volumes according to key ranges. For example, a payroll file could have
employee records beginning with A, B, C, and D on one volume, with E, F, G, H,
and I on a second volume, and so on. You can then process the records of every
volume, or you can process as many volumes together as your program(s)
requires. For more information and examples, refer to “Multiple Volume Support”
on page 104.

Performance Measurement
VSE/VSAM keeps statistical information about a file in its catalog record. Some
statistics, such as number of extents in a file, number of records retrieved, added,
deleted, and updated, and number of CI splits, can help you decide when to take
action to improve performance. Appropriate actions could be, for example,
reorganizing a file or altering the type of processing.

You can list the entire catalog record, the statistics, and the parameters selected
when the file was defined, by using the LISTCAT command. For an explanation of
the output produced by the LISTCAT command, refer to the VSE/VSAM
Commands, SC33-8315. You can use the SHOWCB and TESTCB macros in a
processing program to display or test one or more file statistics and parameters.
These statistics and parameters include:
v CI size
v Percentage of free CIs per CA
v Number of bytes of available space at the end of the file
v Length and displacement of the key
v Maximum record length
v Number of buffers
v Usage of LSR buffer pools
v Number of records See Note 1, below.
v Password
v A time stamp that indicates if either the data or the index has been processed

separately
v Number of levels in the index
v Number of extents
v Number of records retrieved, inserted, deleted, and updated See Note 1, below.

Performance: Index Options

Chapter 7. Optimizing the Performance of VSE/VSAM 123

v Number of CI splits in the data and in the sequence set of the index
v Number of EXCPs that VSE/VSAM has issued for access to a file

Note:

1. VSE/VSAM does not update these statistics when a file is processed in control
interval access (that is, MACRF=CNV is specified in the ACB macro).

2. When a cluster or alternate index is exported, that is, named in an EXPORT
command, the statistics are reset in the exported catalog record due to the
redefinition of the imported cluster or alternate index in another catalog.

3. SAM ESDS statistics are not updated when the file is accessed via DTF.

Displaying Statistics About Buffer Pools
You can use the SHOWCB macro to obtain statistics about the use of buffer pools.
These statistics help you to determine how to improve both a previous definition
of a resource pool and a mix of data sets that use it.

The statistics are available through an ACB that describes an open data set that is
using the buffer pool. They reflect the use of the buffer pool from the time it was
built to the time SHOWCB is issued. All but one of the statistics are for a single
buffer pool (subpool). To get statistics for the whole resource pool, issue SHOWCB
for each of its buffer pools.

The statistics cannot be used to redefine the resource pool while it is in use. You
have to make adjustments the next time you build the resource pool.

For information on the use of SHOWCB, refer to “The SHOWCB Macro” on page
266.

For buffer pool statistics, the keywords described below are specified in the
FIELDS operand. These fields may be displayed only after the data set described
by the ACB is opened. Each field requires one fullword in the display work area.

Field Description

BFRFND The number of requests for retrieval that could be satisfied without an
I/O operation (the data was found in a buffer).

BUFRDS The number of I/O operations to bring data into a buffer.

NUIW The number of nonuser─initiated writes. Applies only for DFR. Writes
that VSE/VSAM was forced to do because no buffers were available for
reading.

STRMAX The maximum number of place holders currently active for the resource
pool (for the whole resource pool).

UIW The number of user─initiated writes. For DFR only.

Performance: Measurement

124 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 8. Data Protection and Data Recovery

This Chapter ...
v Explains which VSE/VSAM options and z/VSE utilities you can use to protect

your data. Data protection includes:
– data security, the safety of data from theft or intentional destruction.
– data integrity, the safety of data from accidental loss or destruction.

v Includes procedures to analyze problems with files, catalogs, and volumes, and
shows how to recover from error conditions.

For an overview of available tools, refer to “Tools for Data Integrity, Backup, and
Recovery” on page 142.

Data Protection
VSE/VSAM provides options to protect files against unauthorized use and loss of
data. These options allow you to specify passwords and the use of a user
security-verification routine (USVR), and allow you to control file sharing and data
set name sharing. Using IDCAMS commands, you specify the options when you
define a file or catalog.

Passwords to Authorize Access

Password Levels
You can optionally define passwords for clusters, alternate indexes, components
(data and index), paths, and catalogs. To gain access to password-protected objects,
a program or the operator must provide the appropriate password. Password
levels differ for various degrees of security. These levels are (from low to high):
v Read access (READPW parameter). This is the read-only password, which allows

you to retrieve data records and catalog entries, but not to add, update, or delete
them, nor to see password information in a catalog entry.

v Update access (UPDATEPW parameter). This password authorizes you to
retrieve, update, add, or delete records in a file. Specifying a catalog's update
password authorizes you to define files in it.

v CI access (CONTROLPW parameter). This password authorizes you to retrieve
and store the contents of an entire CI (rather than a logical record).

v Full access (MASTERPW parameter). This is the master password, which allows
you to perform all operations (retrieving, updating, adding, and deleting) on a
file and on the catalog entry or any index associated with it. Using this
password to gain access to a catalog entry allows you to delete an entire file and
to alter any catalog information (including passwords) about data, index, or
catalog. The master password allows all operations and bypasses any additional
verification checking by a user security-verification routine (USVR).

Every higher-level password allows all operations permitted by lower levels. Any
level may be null (not specified), but if a low-level password is specified, the
master level password must also exist. The DEFINE and ALTER commands
accomplish this by propagating the value of the highest password specified to all
the higher password levels. For example, if you specify only a read-level password,
that password becomes the update, control-interval, and master level passwords as
well. If you specify a read password and a control-interval password, the

© Copyright IBM Corp. 1979, 2014 125

control-interval password becomes the master level password as well. However,
the update level password is not affected (it remains null).

Password Submission
A password, if required, is normally supplied by the processing program in a field
pointed to by the ACB or through IDCAMS parameters. If neither of these are
supplied, the password must be supplied by the operator. VSE/VSAM prompts the
operator for every entry password.

Two options can be specified in the DEFINE command for use when the operator
supplies a password: the ATTEMPTS option and the CODE option.
v The ATTEMPTS option specifies how many times, 0 through 7, the operator can

attempt to supply the correct password. If 0 is specified, passwords cannot be
supplied by the operator. If ATTEMPTS is not specified in the DEFINE
command, the default (2) allows the operator to attempt to supply the password
twice.

v The CODE option specifies a one-to-eight character name, other than the name
(file-ID) of the file, to which the operator responds with a password. This
prompting code helps keep data secure by not allowing the operator to know both
the name of the file and its password. If the CODE option is not specified, the
name of the job and the name (file-ID) of the file are supplied to the operator.

If the processing program omits the password or supplies the wrong password,
and the operator cannot supply the correct password in the allowed number of
attempts, OPEN is terminated. An error code is set in the ACB indicating that the
file cannot be opened because the correct password was not supplied.

Password Relationships
Catalogs may have passwords. If you define passwords for any files in a catalog,
you must also define passwords for the catalog so that the file passwords can take
effect. If you do not define passwords for the catalog, no password checking takes
place during operations on the file's catalog entry. For some operations (for
example, listing all of a catalog's entries with their passwords, or deleting catalog
entries), the password of the catalog may be used instead of the password of the
file's catalog entry. Thus, if the master catalog is protected, its update or
higher-level password is required when defining a user catalog because all user
catalogs have an entry in the master catalog. When deleting a protected user
catalog, the user catalog's master password must be specified.

Password Checking
VSE/VSAM does password checking only for files that are password-protected.
Operations on a catalog may be authorized by the catalog's appropriate password
or, in some cases, by the appropriate password of the file whose definition in the
catalog is operated on. For example:
v If you want to delete a protected file from a password-protected catalog, you

must specify the catalog's or file's master password.
v If you want to alter a file definition in a password-protected catalog, and if the

file is password-protected also, you must specify the catalog's or the file's master
password.

v If you want to list a file's catalog definition in a password-protected catalog,
and if the file is password-protected also, you must specify the catalog's or the
file's read (or higher) password. If you want to list the passwords themselves,
you must provide the master password.

v If you want to list a file's catalog definition in a password-protected catalog, and
if the file is not password-protected, you do not have to specify a password.

Protection: Data Protection

126 VSE/VSAM V9R2 User’s Guide and Application Programming

Because a user catalog defines itself, it may be password-protected without the
master catalog being password-protected. To delete an empty user catalog, you
must give its master password, whether the master catalog is password-protected
or not.

Passwords and IDCAMS Operations
Some IDCAMS operations may involve more than one password authorization. For
example, importing a file involves defining the file and loading records into it. If
the catalog into which the file is imported is password-protected, its update (or
higher) password is required for the definition; if the file is password-protected, its
update (or higher) password is required for the load. In these cases, the master
password of the catalog satisfies both requirements.

Every VSE/VSAM file is represented in a catalog by two or more entries: a cluster
entry and a data entry or, if the file is a key-sequenced file, a cluster entry, a data
entry, and an index entry. Of the entries, the cluster entry is the controlling entry.
Each entry can have its own set of four passwords; the passwords you assign need
have no relationship to one another. One reason for this separate
password-protection is to prevent access to the index of a key-sequenced file
(because an index can be opened independently of the cluster). For example, if you
password-protect a cluster but do not password-protect the cluster's data
component, another user could issue LISTCAT to determine the name of your
cluster's data component, then open the data component and access records in it
even if the cluster itself is password-protected.

The following protection considerations and precautions should be observed when
using IDCAMS commands that refer to a catalog without using the files defined by
the catalog:
v To gain access to passwords in a catalog (for example to list or change

passwords), you must specify the master password of either the entry or the
catalog. If both the password of the entry and the password of the catalog are
supplied, the password of the catalog is used. Similarly, a master password must
be specified with the DEFINE command if you want to model the entry's
passwords (with the MODEL parameter).

v To delete a protected file entry from a catalog requires the master password of
the entry or the master password of the catalog containing the entry. To delete a
non-empty VSE/VSAM data space, the master password of the catalog is
required, if the catalog is password-protected; to delete an empty VSE/VSAM
data space, the update password of the catalog is sufficient. When a catalog
entry is created (with a DEFINE command), the catalog's update or higher-level
password is required.

v You can list catalog entries that are password-protected by specifying the read
passwords of the entries or the catalog's read password. You can list unprotected
entries without specifying the catalog's read password. If you wish to list the
passwords associated with a catalog entry, you must specify either the master
password of the entry or the master password of the catalog.

v If the proper password is not specified with an IDCAMS command, a password
prompt occurs. Unless you have specified the CODE parameter on either the
DEFINE or ALTER command, the prompt includes the file-ID of the file; if you
specify CODE, the prompt includes the code name you specified.
In some circumstances, more than one prompt occurs. For example, when an
ALTER or DELETE request is processed, the catalog must be referred to twice,
once to locate the information, and again to perform the requested function.
Again, incorrect password specification when you want to list catalog entries

Protection: Data Protection

Chapter 8. Data Protection and Data Recovery 127

may cause numerous prompts. To avoid unnecessary prompts, specify the
catalog's master password, which allows access to all entries contained in that
catalog.
An unprotected file can be deleted without a password, even if the catalog is
protected. This is important during IMPORT and RESTORE processing, because
the old, unprotected version of the file is deleted, but a new version is not
defined.

v Specification of a password where none is required is always ignored.

The following protection considerations and precautions should be observed when
using commands that cause access to a VSE/VSAM file:
v To access a VSE/VSAM file by using its cluster name instead of a data or index

name, you must specify the proper level of password for the cluster. The proper
level password for the cluster is required even if the data or index passwords
are null (that is, no password was assigned).

v To access a VSE/VSAM file by using its data or index name instead of its cluster
name, you must specify the proper level data or index password. If cluster
passwords are defined, however, the master password of the cluster may be
specified instead of the proper data or index password.

v If a cluster is not password-protected, you can access the file by using the cluster
name without specifying passwords. This is true even if the data and index
entries of the cluster have passwords defined. This allows unrestricted access to
the VSE/VSAM file as a whole, but protects against unauthorized modification
of the data or index as separate components.

v An update password is required at OPEN for MACRF=IN files when DLBL
DISP or ACB CLOSDSP is: DELETE or DATE.

IDCAMS Commands Security

IDCAMS tool provides a number of backup/restore, define/delete, and catalog
maintenance commands which can be destructive to data. To prevent cases of data
destruction, system administrators can restrict the usage of IDCAMS commands
with the help of a security manager, for example the Basic Security Manager (BSM)
provided with z/VSE. For more information on BSM and the BSTADMIN utility
used to issue BSM commands or the dialog support (fastpath 28) refer to “Part 3.
BSM Security” in z/VSE Administration, SC34-2627. Descriptions of specific
IDCAMS commands can be found in VSE/VSAM Commands, SC33-8315.

The administrator can control access to IDCAMS commands by using the BSM
resource profile of the resource class FACILITY called IDCAMS.GENERAL.

If batch security is not active, or if it is active but the profile IDCAMS.GENERAL
was not defined to the BSM, then IDCAMS commands are executed as requested
without warnings. Refer to z/VSE Administration, SC34-2627 under “Activating
Security for Batch Resources”. Same happens in the case when IDCAMS function is
executed in ICCF pseudo partition since IDCAMS commands access control is
designed for batch processing only.

If batch security is active and the corresponding IDCAMS.GENERAL profile in the
resource class FACILITY is defined, then an ID statement has to be supplied in the
job to authenticate a user.

Protection: Data Protection

128 VSE/VSAM V9R2 User’s Guide and Application Programming

IDCAMS commands are permitted depending on user's authorization level in the
IDCAMS.GENERAL profile: read, update, or alter. Users having read authorization
level are permitted to perform the following set of IDCAMS commands:
v LISTCAT - lists entries contained in a catalog
v PRINT - lists a part or the whole VSAM file
v BACKUP - produces a backup copy of one or more VSAM objects

Users having update authorization level are permitted to perform commands for
the read authorization level plus the set of IDCAMS commands listed below.
v DEFINE CLUSTER|AIX|PATH|NONVSAM - defines cluster, alternate index,

path, or nonVSAM file
v DELETE CLUSTER|AIX|PATH|NONVSAM - deletes cluster, alternate index,

path, or nonVSAM file
v EXPORT/IMPORT - exports/imports cluster or alternate index
v REPRO - copies data from one dataset to another
v RESTORE - defines cluster (if required) and fills it with the data from the

backup medium
v BLDINDEX - builds one or more alternate indexes
v VERIFY - verifies and corrects (if required) end-of-file information

Note:

1. The scope of using of the DEFINE and DELETE commands is limited to cluster,
alternate index, path, and nonVSAM file.

2. EXPORT CONNECT and IMPORT DISCONNECT are not allowed for this
authorization level.

Users having alter authorization level are permitted to perform commands for the
read and update authorization levels plus the following set of IDCAMS
commands:
v DEFINE MASTERCATALOG|USERCATALOG|SPACE - defines master catalog,

user catalog, or space
v DELETE MASTERCATALOG|USERCATALOG|SPACE - deletes master catalog,

user catalog, or space
v IMPORT DISCONNECT - disconnects user catalog from master catalog
v EXPORT CONNECT - connects user catalog to master catalog
v ALTER - changes attributes of catalog entries

If the user's authorization level to IDCAMS.GENERAL profile is enough to execute
a specific IDCAMS function, then the command is executed without any extra
messages.

Otherwise, if the user's authorization level to IDCAMS.GENERAL profile is not
enough to execute a specific IDCAMS function, IDCAMS function is interrupted
and the following message pair is displayed in SYSLST:
IDC32240I RACROUTE (AUTH) FAILED WITH RETURN CODE nn REASON mm
IDC32241I SAF RETURN CODE nn FOR RACROUTE (AUTH)

For description of the return codes, refer to z/VSE Messages and Codes, Volume 1,
SC34-2632 under “RACROUTE REQUEST=AUTH”. At the same time message
BST120I from BSM is displayed on the console. It shows which BSM resource class
and resource profile are affected. The example of the BST120I message is given
below.

Protection: Data Protection

Chapter 8. Data Protection and Data Recovery 129

BG 0000 BST120I USER(OPER)
BST120I IDCAMS.GENERAL CL(FACILITY)
BST120I INSUFFICIENT ACCESS AUTHORITY
BST120I FROM IDCAMS.GENERAL
BST120I ACCESS INTENT(UPDATE) ACCESS ALLOWED(READ)

Job is not cancelled, IDCAMS processing continues with the next command
specified.

Note:

1. IDCAMS RECMAP command is not under control of BSM resource profile
since is does not affect any VSAM data directly. Commands like CANCEL and
other modal commands (IF-THEN-ELSE, SET, PARM) are not covered by
security manager as well.

2. IDCAMS SNAP command is controlled by a separate BSM resource profile of
the BSM resource class FACILITY. Refer to Chapter 10, “Performing an
IDCAMS SNAP (FlashCopy),” on page 187.

The JCL sample below shows how to use BSTADMIN utility for defining the
IDCAMS.GENERAL profile in BSM. This sample profile allows everyone to use the
'read-only' commands and grants user USR1 update authorization level and user
USR2 alter authorization level to the IDCAMS.GENERAL profile.
// JOB BSTADMIN SETUP
* Define IDCAMS.GENERAL security profile and setting user permissions
// EXEC BSTADMIN

ADD FACILITY IDCAMS.GENERAL UAC(READ)
PERMIT FACILITY IDCAMS.GENERAL ID(USR1) ACCESS(UPD)
PERMIT FACILITY IDCAMS.GENERAL ID(USR2) ACCESS(ALT)
PERFORM DATASPACE REFRESH

/&

Instead of BSTADMIN, you can also use the Interactive Interface dialogs (fastpath
28) for security maintenance.

User Security-Verification Routine
If you specify password-protection when you define a file or catalog, you can also
supply your own routine to double-check the authority of a processing program to
access the file. To use this routine, specify the name of your user
security-verification routine (USVR) in the AUTHORIZATION parameter of the
DEFINE or ALTER command.

The verification routine must be a phase residing in the library (LIBDEF=).
VSE/VSAM transfers control to the verification routine only after the program that
tries to open the file gives a correct password other than the master password.
(The verification routine is always bypassed whenever a correct master password
is specified.) The authorization option can also include a maximum of 255 bytes of
information which will be passed to the authorization routine when it is called.
The verification routine receives control in AMODE24. Therefore, the routine must
reside below the 16MB line of address space. When the authorization routine gets
control from VSE/VSAM, the registers are set as shown in Table 21.

Table 21. Register Settings on Passing Control to Authorization Routine

Register Content

0 Unpredictable.

Protection: Data Protection

130 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 21. Register Settings on Passing Control to Authorization Routine (continued)

Register Content

1 Address of a parameter list with the following format:

44 bytes: File-ID.
8 bytes: Prompting code (specified by the CODE

parameter), or zero.
8 bytes: Owner-ID (specified by the OWNER parameter),

or zero.
8 bytes: Password that has already been verified.
2 bytes: Length of the authorization string (next field).
Up to 255 bytes: Authorization string (specified in the

AUTHORIZATION parameter) of DEFINE or ALTER.

2-12 Unpredictable.

13 Address of save area. Note: This address must not be destroyed by the USVR.

14 Return address to VSE/VSAM.

15 Entry point to verification routine.

The USVR should not issue any VSE/VSAM macros because they will cause
VSE/VSAM to loop. The USVR should return control to the program for any
VSE/VSAM requests.

When the authorization routine returns to VSE/VSAM, register 15 should be set to
zero if the processing program is authorized to access the file or catalog. If register
15 is not zero, VSE/VSAM does not allow the processing program to open the file.

Protecting Shared Data
Files can be shared among partitions, among tasks in a partition, or among z/VSE
systems. File sharing is controlled by the use of the SHAREOPTIONS parameter in
the DEFINE command, and the type of processing (input or output) for which the
file was opened.

For sharing among systems, you must establish the DASD sharing environment
through the correct system generation and IPL commands. You are also responsible
for ensuring that the volume containing the file is mounted on a shared device.

In determining the level of sharing you intend to allow, you must evaluate the
consequences of a loss of read integrity (reading the correct information) to the
processing program, and a loss of write integrity (writing the correct information) to
the file owner.

The degree of sharing to be allowed for the file is specified, when the file is
defined, in the SHAREOPTIONS parameter of the DEFINE command. The
SHAREOPTIONS parameter can be changed by the ALTER command (if the file is
not concurrently open for another program). A file cannot be deleted or reset if it is
currently open for another program, regardless of the share option specified.

During the initial load of a file (and regardless of the share option values
specified), VSE/VSAM treats the share option specification as if it were share option
1 (see below). After the file is loaded and successfully closed, VSE/VSAM uses the
specified share option value.

Protection: Data Protection

Chapter 8. Data Protection and Data Recovery 131

One of the following file share options can be specified, where every open ACB
counts as one request:
v Share option 1: The file may be opened by any number of requests for input

processing (retrieve records), or it can be opened by one request for output
processing (update or add records). This option ensures full (read and write)
integrity. Every open ACB counts as one request.

v Share option 2: The file may be opened by more than one request for input
processing and, at the same time, it may be opened by one request for output
processing. This option ensures write integrity but, because the file might be
modified while records are retrieved from it, read integrity must be ensured
individually by every user.

v Share option 3: The file can be opened by any number of requests (ACBs) for
both input and output processing. VSE/VSAM does nothing to ensure either the
integrity of information written in the file or the integrity of the data retrieved
from the file. VSE/VSAM does ensure, however, that an open file is not deleted
or reset.

v Share option 4: A key-sequenced or relative-record file can be opened by any
number of requests (ACBs) for both input and output processing by users in the
first system requesting output to the file. Once a file has been opened for output
by one system, VSE/VSAM accepts only open for input requests from another
system.
VSE/VSAM ensures write integrity by using the z/VSE LOCK facility. Read
integrity is ensured by VSE/VSAM only when records are retrieved for update.
If records are not retrieved for update, VSE/VSAM may miss or skip some of
the records in CIs that are updated concurrently by more than one program. In
this case, read integrity is not ensured, because every program might retrieve a
different copy of the CI. If one task makes multiple GET/PUT requests (through
two or more ACBs) to the same file, VSE/VSAM cannot resolve the integrity
conflict and issues an error code. The requestor must resolve the conflict and
retry the request.

Note: If you specify share option 4 for an ESDS file, VSE/VSAM treats the
specification as if it were share option 2.

If a file cannot be shared for the type of processing you specify, your request to
open a file is denied.

If a file is fully sharable (share options 3 and 4), more than one request can open it
at the same time to update or add records. If the file is not sharable, only one
request at a time can open it to update or add records. With share options 2, 3, or
4, any number of requests can retrieve records from the file regardless of whether
it is sharable or not. With share option 1, data retrieval is prevented by the OPEN
macro if the file is already opened for output.

If an alternate index is defined with the UPGRADE attribute and share option 1 or
2, keep in mind the restrictions on the number of requests that can open it for
input and/or output processing. For example, if you specify share option 2 for an
alternate index that is a member of an upgrade set, you cannot open another
update path over the base cluster, or the base cluster itself, for output. This is
because share option 2 does not allow a file to be opened twice for output.

Protection: Data Protection

132 VSE/VSAM V9R2 User’s Guide and Application Programming

Cross-Systems Sharing
VSE/VSAM allows the sharing of catalogs and files across z/VSE systems. To this
end, the catalogs and files must reside on shared devices that have been defined to
the supervisor at IPL.

You do not specifically invoke cross-system sharing when opening catalogs and
files, because:
v Catalogs are automatically shared if they reside on shared devices.
v Files are automatically shared if they are owned by a shared catalog.

To ensure data protection, the degree of file sharing that is to be allowed can be
specified in the SHAREOPTIONS parameter of the IDCAMS commands: ALTER,
DEFINE CLUSTER, and DEFINE ALTERNATEINDEX. The following explains
various options and their results.
v Specifying SHAREOPTIONS(4)

This specification provides:
– Input OPEN function for all the systems that participate in cross-system

sharing, and
– Output OPEN function only for the first system that requests it.
If you ignore this behavior, VSE/VSAM issues an OPEN error message with the
error code 168 (X'A8') when trying to open a file. The error code means that the
file is already opened for output from a different processor, and that only one
processor may write output to the file at a time. In this case the OPEN error
message is accompanied by the explanatory message:
FILE ALREADY OPEN IN ANOTHER PARTITION, RC X'rc_value' TASK X'task_id'

which shows the owning task ID as X'FFFF'. The actual task ID will appear here
only if the file is opened in another partition of the same processor.

v Specifying SHAREOPTIONS(4 4)
This specification provides OPEN functions for input and output processing for
all the systems that participate in cross-system sharing. It provides full read and
write integrity for a file that is accessed from:
– Different partitions of a particular CPU, or
– Different CPUs.

Note: With SHAREOPTIONS(4 4) specified, the lock file activity (with regard to
z/VSE DASD sharing) increases. This may have an effect on performance.

v Defining Shared User Catalogs
You may wish to have a non-shared master catalog on every system, and shared
user catalog(s) that connect to every master catalog as illustrated in the
following diagram:

Protection: Data Protection

Chapter 8. Data Protection and Data Recovery 133

To do this, define the user catalog under one master catalog, then IMPORT
CONNECT the user catalog to another master catalog. The shared (user)
catalog(s) must contain entries for all shared files.

Data Integrity
To protect your VSE/VSAM data from accidental loss or destruction, you can use
the IDCAMS commands and command options listed below, and you can use the
following IBM utility programs:
v VSE/Fast Copy

The use of this utility in a VSE/VSAM environment requires special
considerations, because both the volume VTOC and the catalog contain space
mapping information about the volume which has to be synchronized to insure
accessibility and to avoid damage to data.
With VSE/VSAM, data can be flexibly distributed among many DASD volumes
(minidisks) of different device types and capacity. However, some rules need to
be followed:
– A catalog resides on a single volume.
– Only one catalog can exist per volume.
– A catalog may own space on any number of DASDs of different device types,

sizes, and architectures.
– Several catalogs can own space on the same volume, but then the recovery

may become quite complex.
– Each component of a cluster must reside on the same DASD type. The

DASDs can have different sizes.
v VSE/VSAM VTOC Utility (IKQVDU)

For brief explanations on when to use which command, option, or utility, refer to
Table 22 on page 143. The figure also shows where to find more detailed
explanations and procedures.

Master Catalog A Master Catalog B

System A System B

User
Catalog

User
Catalog

User
Catalog

Protection: Data Protection

134 VSE/VSAM V9R2 User’s Guide and Application Programming

IDCAMS Commands and Command Options for Data Integrity
BACKUP/RESTORE commands
DEFINE CLUSTER allocation option (See Note)
DEFINE CLUSTER RECOVERY│SPEED option
DEFINE CLUSTER DATA WRITECHECK option
DEFINE CLUSTER WRITECHECK option
DEFINE USERCATALOG command (See Note)
DEFINE SPACE command (See Note)
DELETE SPACE FORCE option
EXPORT/IMPORT commands
LISTCAT command
REPRO command
SNAP command
VERIFY command

Note: Though not specifically designed for the purpose of data integrity, the
commands and options DEFINE SPACE, DEFINE CLUSTER, and DEFINE
USERCATALOG can be used for that purpose as explained below.

Using the DEFINE SPACE Command
The DEFINE SPACE command and its DEDICATE parameter can be used to easily
dedicate an entire volume to VSE/VSAM by defining a space that occupies the
whole volume. Other volumes can be used exclusively for nonVSAM files. This
allows recovery on a volume basis to be strictly VSAM or nonVSAM. If the
volumes are mixed, two different approaches are needed for integrity. For example,
a copy of the data on tape is needed to back up the nonVSAM data, but several
exports may be all that is necessary for VSE/VSAM files. Both a COPY run with
VSE/Fast Copy and the EXPORT command are necessary on the mixed volumes. If
the volumes are segregated, only one of the integrity measures is necessary.

Using the DEFINE CLUSTER Allocation Subparameter
Secondary allocation that occurs after the last catalog backup results in new catalog
records that are not available to the backup catalog. The allocation subparameter of
the DEFINE CLUSTER command can be used to improve file integrity and reduce
this exposure by eliminating or minimizing secondary allocation. An
entry-sequenced file is extended only by adding new CAs to the end of the file.
Thus, the effect of addition is predictable and the problem is eased. If it is
impractical to allocate enough primary space to accommodate additions, the
secondary allocation quantity should be large enough so that extension is
infrequent.

When secondary allocation is done, a new back up of the catalog or file (or both)
can be made. By monitoring the file statistics in the catalog, either by way of a
LISTCAT command or by way of a SHOWCB macro against an open ACB (to
inspect the number of bytes of available space), you can predict when secondary
allocation will occur. You can determine if a secondary allocation took place with a
SHOWCB or TESTCB for the RPL feedback information after every PUT request.

For a key-sequenced file the problem is much more complicated. If existing records
are not lengthened and all additions are made to the logical end of the file, the
situation is similar to that of an entry-sequenced file, except that the index must

Protection: Data Integrity

Chapter 8. Data Protection and Data Recovery 135

also be checked. The other patterns of insert and update activity are limitless.
Some of them are specific and dictate specific back up strategies, but discussion
here assumes a random distribution of activity against the file.

There are reasons, other than recovery, to design a key-sequenced file to minimize
extensions. A control-area split takes a relatively long time. For many online
systems this can be a serious disruption. A characteristic of key-sequenced files is
that, assuming a random insert pattern, all CAs tend to split at roughly the same
time. Because every split results in two CAs created from the original one, the file's
physical size doubles in a short period of time.

For these reasons it is advisable to design free-space percentages to minimize the
probability of a split for a given insert level, rather than to allow extra primary
allocation for expansion. The file should be reloaded (reorganized) when its insert
level approaches the design point. For further information, see “Distributed Free
Space” on page 114.

Using the DEFINE USERCATALOG Command
The DEFINE USERCATALOG command can be used to create many user catalogs
(as many as one per volume) and reduce the number of files per catalog. If a
catalog becomes unusable and has, for example, only ten files cataloged in it,
access to only those ten files has to be recovered.

Note that once a catalog has been destroyed, the data it controls can no longer be
accessed. Thus, if a system contains only one (master) catalog and that catalog is
destroyed, the resources of the whole system are lost and must be restored by the
use of backup copies.

Catalogs with only nonVSAM entries can be backed up with VSE/Fast Copy. After
the volume is restored, only those jobs that updated the files since the backup was
made would have to be rerun.

When several user catalogs are involved, only the resources controlled by the
destroyed catalog are affected, and it can be rebuilt while processing on other data
continues. Because user catalogs (like the master catalog) are self-describing, you
need only rebuild the master catalog and the resources directly connected to it.
This applies even if the master catalog has been destroyed. No files in a user
catalog connected to that master catalog can be accessed until the user catalog is
again connected to a master catalog.

Protecting VSE/VSAM Files and Volumes
You must plan in advance how much and what kind of protection you need. You
need to consider questions such as:
v Does it take less time, effort, or expense to recreate lost data than it does to

maintain backup copies?
v Should I segregate VSAM and nonVSAM files and make maximum use of

recoverability, or is it sufficient to use VSE/Fast Copy plus the file update reruns
necessary to make the file current?

The following explanations should help you answer such questions.

Protection: Data Integrity

136 VSE/VSAM V9R2 User’s Guide and Application Programming

Backup Considerations
In choosing methods of back up and recovery, you need to consider the physical
matters of accomplishing the work, and the need for back up, operational
characteristics, and security and integrity of the backup medium.
v Necessity for Back Up: If the file can be recreated from the original input or from

records or journals you kept, perhaps there is no need for back up. Considering
the time required for regular backup procedures and the relative infrequency of
recovery, many files may fit into this category.

v Operational Factors: You should consider frequency of back up and possible
frequency of recovery, time required for back up and recovery, and the ease or
difficulty of the backup and recovery technique used.

v Frequency Factors: In deciding for the best method for back up and recovery, you
have to find a good balance between the frequency of, and the time required for
making back ups and recoveries. You may find some methods are considerably
easier to use than others but may require more time to accomplish. Thus, a
method that might be suitable for one file because of its relative infrequency of
backing up might be unacceptable for another file that must be backed up
frequently.

v Time Required Factor: The time required for back up and recovery may be a
deciding factor in the choice of method, particularly for real-time systems where
recovery must be accomplished quickly. A method that takes longer may have
other characteristics that are more desirable. Time required for recovery may also
necessitate that a backup technique be used that takes longer.

v Ease of Use: The alternatives for back up and recovery vary widely in relative
ease of use. Complicated methods that are difficult to use may cause errors,
which makes recovery much more time consuming than estimated. If recovery is
infrequent, a difficult method may require more time to reason out than another
method would require to do the actual recovery.

v Physical Security and Integrity: Security and integrity of the backup medium are
often neglected. Measures used while data is on the system are of no use for a
backup copy that is stored elsewhere. Security and integrity factors may also
need to be reviewed as the nature of data changes in an installation.

Relationship of Catalog Entries to VSE/VSAM Files and
Volumes

The VSE/VSAM catalog contains information essential to accessing and controlling
its files and volumes. Note the following:
v All VSE/VSAM files must be cataloged. Because the physical and logical

description of a file is contained in its catalog entries, VSE/VSAM requires
up-to-date catalog entries to be able to access files.

v For multivolume files, the same catalog must own space on all current and
candidate volumes.

v Logical and physical mapping information is contained in the catalog entries.
For files defined in nonunique VSE/VSAM data spaces, the catalog contains the
only record of the physical extents allocated to the file. For unique files, entries
in the VTOC also contain a record of physical extents. In both cases, only the
catalog contains the logical-to-physical mapping information (the relationship of
the RBA ranges of the file to the physical extents).

All other types of data access must use catalog information.

Protection: Files and Volumes

Chapter 8. Data Protection and Data Recovery 137

Creating Backup Copies of VSE/VSAM Files
Several methods of back up and recovery can be used for VSE/VSAM files.
Usually, it is not possible to use only one method for all files in an installation. You
should consider individual files or groups of files, and then determine the most
suitable method for each.
v Use the BACKUP command to create a copy of the file on tape or disk. The

command backs up empty objects, including catalog entries.

Note: The file you are backing up must be available for an INPUT OPEN. The
OPEN might fail if the file is currently opened for input or output by another
partition or system. Because the OPEN might not always fail, it is strongly
recommended that the file which is being backed up should not be opened for
output by any other partition or system. Otherwise, the resulting backup copy
might not represent the actual state of the original file.
Use the RESTORE command to create - from the backup copy - an object that is
equivalent to the original one. You can also use the RESTORE command to move
the files to a different disk device type, or to increase the allocation size of a file.
You can back up (or restore) all the objects owned by one catalog (or contained
on the backup file) with a single command. Generic names let you include or
exclude subsets of objects from the backup or restore operation.
Note that the format of the file produced by BACKUP is different from the
format produced by EXPORT. Therefore:
– RESTORE cannot process files created by EXPORT, and
– IMPORT cannot process files created by BACKUP.
Recommendation: Because of their performance advantage, BACKUP and
RESTORE should be used for regular back up of files, with restoration as
necessary. EXPORT and IMPORT should be used for migration between
VSE/VSAM and MVS, and for reorganization on record-level or CI-level. For
optimum performance a COMPRESSED file is stored by BACKUP. A compressed file
can only be restored on a system with support for VSE/VSAM data compression
(that is VSE/VSAM Version 2 or later).

v Use the EXPORT command to create an unloaded, portable copy of the file. The
operation is simple. There are options that offer protection, and most catalog
information is exported along with the data, easing the problem of redefinition.
You can prevent the exported file from being updated until the IMPORT
command reestablishes its accessibility. A COMPRESSED file is backed up by
EXPORT in an uncompressed format, hence the IMPORT can be done by any
system supporting the IMPORT command. IMPORT defines the file as a
NOCOMPRESS file, unless the target file is a pre-defined, empty file with the
COMPRESS attribute.
For more information and examples, refer to the VSE/VSAM Commands,
SC33-8315 .

v Use the REPRO command to create either a SAM file, or a duplicate
VSE/VSAM file for back up. The advantage in using REPRO (instead of
EXPORT) is the accessibility of the backup copy. A DEFINE command is
required before reloading, but this is a relatively minor inconvenience,
particularly if the original DEFINE statements can be used. A COMPRESSED file
is copied by REPRO in an uncompressed format.
For more information and examples, refer to the VSE/VSAM Commands,
SC33-8315.

v User-written programs for back up are usually appropriate when the data has
some characteristic that does not allow you to take advantage of a generalized

Protection: Files and Volumes

138 VSE/VSAM V9R2 User’s Guide and Application Programming

backup method. Files for which not all records have to be saved for back up
might fit into this category. Also, keyed sequential files which have to be
processed sequentially on a regular basis could be backed up by creating a
sequential file as a by-product.

You must keep in mind that any backup procedure that does not involve an image
copy of the file (for example, the BACKUP, EXPORT, and REPRO commands do
not provide an image copy of the file) will result in data reorganization and the
re-creation of the index for a key-sequenced file. Therefore, any absolute references
by way of RBA may become invalid.

Creating Backup Copies of Volumes
You can use VSE/Fast Copy to create a backup copy of an entire volume and to
restore that copy on a volume. However, the use of this utility in a VSE/VSAM
environment requires special considerations, because both the volume VTOC and
the catalog contain space mapping information about the volume that has to be
synchronized to ensure accessibility and to avoid damage to data. Therefore, it is
generally recommend that every volume should have its own user catalog. This
can make the problem of synchronizing data and catalog information much
simpler.

For details on how to use VSE/Fast Copy, refer to the z/VSE System Utilities,
SC34-2675.

For information on how to solve problems relating to catalogs and volumes, refer
to “Procedures for VSE/VSAM Recovery” on page 146.

Protecting VSE/VSAM Catalogs
Because of the importance of the VSE/VSAM catalog, you should consider to back
up catalogs as well as files and volumes. If all of the files owned by a catalog are
backed up individually, it is possible to recover from destruction of the catalog by
carrying out recovery procedures for every file. The probability of losing an entire
catalog is very low. However, to speed recovery or minimize exposure in the case
of catalog damage or destruction, three backup methods are available:
v Use the REPRO command to create a backup copy of either a master catalog or

user catalog, and to reestablish that backup copy as a catalog. Use the command
to unload the catalog to a VSAM or nonVSAM file.
This set of functions is referred to as catalog unload and reload. The REPRO
command requires no special parameters to perform the function. The unload
function is triggered when the REPRO source is a catalog. The reload function is
triggered when the REPRO target is a catalog. When a new catalog is defined,
an unloaded catalog file may be reloaded into the newly defined catalog, or the
unloaded catalog can be reloaded into a version or the original catalog.
Before using REPRO unload/reload as the method for catalog recovery, refer to the
VSE/VSAM Commands, SC33-8315 for a description on how to use REPRO for
catalog backup and file reorganization.

v Use VSE/Fast Copy to back up the entire catalog volume.

The following explains how to proceed if integrity problems occur with catalogs,
files, or volumes.

Protection: Files and Volumes

Chapter 8. Data Protection and Data Recovery 139

Creating Backup Copies of Catalogs
You should protect catalogs by backup procedures against:
v Loss of data.
v Unusable catalog.

Protect Against Loss of Data, and Recover
The only way to safeguard against loss of data is to have a copy of the data in
another form or place. The usual method of doing this is to use the BACKUP
command of the VSE/VSAM Backup/Restore Function to copy the volume to tape
or to another disk volume.

If you have lost a file and if you do have a backup copy, use the RESTORE or
IMPORT command to copy the volume to disk. Then reprocess any updates made
since the backup copy was made. If you do not have a backup copy of the file, you
must recreate the file by redefining, loading, and updating the file.

Before you restore a volume, consider the following:
v If the information on the restored volume is downlevel, (your original volume

has been updated since the back up was made), you must apply the updates to
the restored level of the volume to bring it to the level of the original volume.

v If the volume is not the catalog volume, you have information about the volume
in the catalog that may not match what is actually on the volume. It would be
helpful to have a LISTCAT listing of the catalog at the time you created the
backup copy to compare with a present listing. The data spaces and file extents
may be different if any file updates have been made since the back up was
made. See “Volume is Inaccessible” on page 152 for a complete recovery
procedure.

v If the volume is the catalog volume, all of the volumes owned by the catalog
may have file and data space extents that do not match the catalog information.
Again, LISTCAT listings of the backup copy and the original catalog can be of
help. Every volume must be handled as if the volume was just restored. See
“Volume is Inaccessible” on page 152.

Protect Against Unusable Catalog, and Recover
If there is no loss of data, but the catalog is partially or totally unusable, you can
use (depending on prevailing conditions) one or the other of the following
methods:
v If REPRO has been used to periodically copy your catalog, perform the

following steps:
1. BACKUP or EXPORT those files that have been updated (and that can still

be accessed through the catalog) since the catalog copy was made.
2. Reload the catalog using the catalog REPRO copy.
3. RESTORE or IMPORT the files copied in step 1.
4. If there are files that were updated but could not be copied by BACKUP or

EXPORT, recreate the files from back level copies by reprocessing updates.
If you do not have a REPRO unload copy, you have to restore a volume backup
as explained under “Volume is Inaccessible” on page 152.

v If you do not have a copy of the catalog, perform the following steps:
1. BACKUP or EXPORT those files that have been updated (and that can still

be accessed through the catalog) since the last backup.
2. Delete the data spaces from the volume.
3. Redefine the catalog and data spaces.

Protection: Catalogs

140 VSE/VSAM V9R2 User’s Guide and Application Programming

4. RESTORE or IMPORT the files copied in step 1.
5. RESTORE or IMPORT the files not copied in step 1 from the backup tape.
6. If there are files that could not be processed in step 1, recreate them from

back level copies by reprocessing updates.

Rebuilding a Catalog
You may have to rebuild your catalog if it gets damaged. Use the following
procedure:
1. Run a LISTCAT command to determine which files own space on the volume.

Assuming that you want to save the contents of these files, determine if an
acceptable back level copy exists of each. If not, save the contents of these files
by running either BACKUP or REPRO.
The BACKUP command is preferable, because it automatically saves any
alternate indexes built over the cluster backed up. (If REPRO is used, you must
rebuild these alternate indexes at restoration.) If there is catalog damage, it may
not be possible to recover all files.

2. Issue a DELETE command for every object in the catalog. (alternate indexes
and paths associated with the file are automatically deleted.)

3. Issue a DELETE SPACE command for all volumes owned by the catalog.
4. Delete the catalog itself.
5. Define the catalog.
6. Issue a DEFINE SPACE command for any volumes on which the catalog will

own space.
7. Define a compression control data set.
8. If any files (and associated alternate indexes or paths) were deleted in step 1,

reintroduce them into the catalog in one of the following ways:
v If you used BACKUP in step 1, use the RESTORE command to define and

restore objects saved in step 1.
v If you used REPRO in step 1, DEFINE every object that was deleted in step

2. Then use REPRO to restore the objects saved in step 1. Also DEFINE any
alternate indexes or paths deleted in step 2. Recreate any associated alternate
indexes using the BLDINDEX command.

Guide to VSE/VSAM Recovery

About Data Organization and Recovery

Questions and considerations on VSE/VSAM recovery have a very close relationship
to how you organize the VSE/VSAM data so that it can be recovered more easily,
and on how you provide for backup data. For information on these topics, refer to:

“Data Integrity” on page 134
“Protecting VSE/VSAM Files and Volumes” on page 136
“Protecting VSE/VSAM Catalogs” on page 139

If the time required for recovery is the governing factor, follow the preparation and
recovery steps explained under “Quick Recovery” on page 153.

Protection: Catalogs

Chapter 8. Data Protection and Data Recovery 141

About the Recovery Process

VSE/VSAM recovery is the process of regaining access to lost VSE/VSAM data. To
regain access to lost data, you can use a combination of functions from
VSE/VSAM, IDCAMS, and z/VSE system utilities.

Levels of Recovery

The types of VSE/VSAM data recovery, in terms of the currency of the recovered
data, are: current and downlevel.

The current type of data recovery operation restores addressability and access to
the most recent version of the data. Operations that recover current data are
generally used to correct problems such as read and write errors associated with
the data itself or with the data description.

The downlevel type of data recovery operation restores addressability and access to
a version of the data other than the most recent. Operations that recover downlevel
data are generally used to correct logical problems such as a programming error or
faulty transactions. This is the most common type of recovery, probably because of
the types of problems encountered and the level of data available for recovery. An
example of a downlevel recovery is the restore of a volume.

Note: Some of the utilities (listed in Table 22 on page 143) can only recover data
that currently is not downlevel. Further processing is necessary to make the file,
volume, or catalog current.

Tools for Data Integrity, Backup, and Recovery
Table 22 on page 143 lists the integrity options, backup programs and commands,
and recovery tools. In the figure, the column headings that are not self-explanatory
have the following meaning:

TOOL TYPE indicates where the tool is supported: in VSE/VSAM, in IDCAMS, or
in z/VSE. For more information on current and downlevel, refer to “Levels of
Recovery.”

FILE TYPE indicates what is recovered:
FILE means VSE/VSAM file.
VOL means volume.
CAT means VSE/VSAM catalog.

TOOL CLASS indicates the command or program class:
INT is any tool that is a VSE/VSAM integrity option.
BKP is a backup command or program other than recovery, and other than
recovery-type tools.

(X) in the last column means that you have to refer to the VSE/VSAM Commands,
SC33-8315. There, you find the discussion under the quoted title.

Protection: Recovery Guide

142 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 22. Tools for Integrity, Backup, and Recovery

Tool Name Tool Type
File
Type

Tool
Class Application Where Discussed

VSE/Fast
Copy

z/VSE
Utility

VOL BKP Use the VSE/Fast Copy system
utility to create a backup copy
of an entire volume and to
restore that copy on a volume.
The use of this utility in a
VSE/VSAM environment
requires special considerations,
because both the volume
VTOC and the catalog contain
space mapping information
about the volume which has to
be synchronized to insure
accessibility and to avoid
damage to data.

v In the z/VSE System Utilities.

BACKUP/
RESTORE

IDCAMS CAT or
FILE

BKP Use BACKUP and RESTORE
for high-speed data recovery
operations, or to move files to
a different disk device type, or
to change the allocation size of
the file. Besides, you can just
print the contents of the tape
or disk without restoring
objects.

v (X) VSE/VSAM Commands

v “Creating Backup Copies of
VSE/VSAM Files” on page 138, and
“Creating Backup Copies of
Catalogs” on page 140.

EXPORT/
IMPORT

IDCAMS FILE BKP Use the EXPORT command to
create backup copies of data
and associated catalog entries.
The catalog entries can be
reestablished in the catalog
from which they were
extracted or into a different
catalog using IMPORT
command. The data file is
reestablished by IMPORT
without redefining it.

v (X) VSE/VSAM Commands

v “Creating Backup Copies of
VSE/VSAM Files” on page 138, and
“Creating Backup Copies of
Catalogs” on page 140.

LISTCAT IDCAMS FILE,
VOL,
CAT

REC Use the LISTCAT command to
list the contents of a catalog
after a recovery operation.
Visually compare this list with
a copy of the LISTCAT list
most recently done before the
recovery. For a description of
the out-of-synchronization
condition you may find, see
“Catalog Entry Mismatches”
on page 150.

v (X) VSE/VSAM Commands

v “Catalog Entry Mismatches” on
page 150.

REPRO IDCAMS CAT BKP The REPRO command is used
to create a backup copy of
catalog. The unloaded or
backup copy can be reloaded
into a newly defined catalog
or a version of the original if
the backed up catalog becomes
unusable.

v (X)VSE/VSAM Commands

v “Creating Backup Copies of
Catalogs” on page 140.

Protection: Tools

Chapter 8. Data Protection and Data Recovery 143

Table 22. Tools for Integrity, Backup, and Recovery (continued)

Tool Name Tool Type
File
Type

Tool
Class Application Where Discussed

SNAP IDCAMS VOL BKP Use the SNAP command to
copy entire ESS volumes so
that a backup operation can be
performed on the target
volumes involved. Access to
SNAP can be restricted by
using RACROUTE security.

v Chapter 10, “Performing an
IDCAMS SNAP (FlashCopy),” on
page 187

v (X) VSE/VSAM Commands

VERIFY IDCAMS FILE INT Use the VERIFY command if
you want to compare the file's
catalog information with the
EOF indicator in the file.

v (X) VSE/VSAM Commands

VTOC
Utility
(IKQVDU)

VSE/VSAM
Utility
Program

VOL BKP Use the VSE/VSAM VTOC
utility program IKQVDU to
initialize a VSE/VSAM-owned
volume when the owning
catalog is not available.
VSE/VSAM volume
ownership can be given up
and VSE/VSAM space can be
returned to the VTOC as
available space. All data in
that space is lost. Caution. The
owning catalog is not
modified.

v “Maintaining VTOC and VOL1
Labels on Disk (IKQVDU)” on page
385.

DEFINE
SPACE

IDCAMS VOL,
CAT

INT Use the DEFINE SPACE
command to dedicate use of
volumes for VSE/VSAM files
in order to segregate
VSE/VSAM and
non-VSE/VSAM recovery. You
can dedicate a volume by
defining a VSE/VSAM data
space that occupies the whole
volume, or by specifying the
DEDICATE parameter.

v (X) VSE/VSAM Commands.

v “Data Integrity” on page 134.

DEFINE
USER-
CATALOG

IDCAMS VOL,
CAT

INT Use the DEFINE
USERCATALOG command to
maximize the use of user
catalogs and to limit the use of
the master catalog. Compare
the effect of the loss of a
catalog when 10 files are
cataloged and 50 files are
cataloged in every of two
catalogs. The fewer the
catalogs the greater the
disruption of daily operations
in the event of loss of a
catalog.

v (X) VSE/VSAM Commands.

Protection: Tools

144 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 22. Tools for Integrity, Backup, and Recovery (continued)

Tool Name Tool Type
File
Type

Tool
Class Application Where Discussed

DEFINE
option
WRITE-
CHECK

IDCAMS FILE INT Use the optional
WRITECHECK parameter of
the DEFINE command to
verify every write operation
when writing data to auxiliary
storage. (See the
WRITECHECK parameter for
an explanation.)

v (X) VSE/VSAM Commands.

v (X) VSE/VSAM Commands.

DELETE
SPACE
FORCE

IDCAMS VOL INT Use the DELETE SPACE
FORCE command to remove
information from both the
VTOC and the catalog. When
space is deleted by using
FORCE option, the VTOC's
VSE/VSAM volume
ownership is given up (if no
other catalogs own space on
that volume), the catalog's
VSE/VSAM space is returned
to the VTOC, the space
definition in the catalog for
that volume is deleted, and
VSE/VSAM files on that
volume are marked as
unusable in the catalog. If you
want to redefine the files, you
must first delete them.

v (X) VSE/VSAM Commands.

DEFINE
CLUSTER
RECOVERY
SPEED

IDCAMS FILE INT When you define a cluster, you
can indicate that VSE/VSAM
is to preformat every CA as
records are loaded into the
cluster (RECOVERY) or is not
to preformat them in interest
of performance (SPEED). As
records are loaded into a
preformatted area there is
always a following end-of-file
indicator that indicates how
far loading has progressed. If
an error occurs that prevents
loading from continuing, you
can readily identify the last
successfully loaded record and
resume loading from that
point.

v (X) VSE/VSAM Commands.

v “Data Protection and Integrity
Options” on page 113.

DEFINE
CLUSTER
ALLO-
CATION

IDCAMS FILE INT Minimize or eliminate
secondary allocations for files
to overcome the difficulty in
catalog recovery stemming
from secondary extents.

v “Using the DEFINE CLUSTER
Allocation Subparameter” on page
135.

Protection: Tools

Chapter 8. Data Protection and Data Recovery 145

Procedures for VSE/VSAM Recovery
You can use the following procedures to analyze and to recover from the following
conditions:
v “File is Not Properly Closed,” below
v “File is Inaccessible” on page 147
v “Catalog is Unusable” on page 148
v “Volume is Inaccessible” on page 152

Because the two activities backup and recovery overlap, read also the explanations
under:

“Creating Backup Copies of VSE/VSAM Files” on page 138
“Creating Backup Copies of Volumes” on page 139
“Creating Backup Copies of Catalogs” on page 140

Several of the following procedures use volume restore. If this is indicated, one or
the other of the following must be true:
v The volume restored does not contain multivolume files.
v If a volume does contain a portion of a multivolume file, all volumes that

contain portions of those multivolume files are treated as a single unit. That is, if
a volume is required, the entire set is restored.

File is Not Properly Closed

Cause of Failure

VSE/VSAM files are not properly closed when they are opened for output and a
system failure occurred, or automatic CLOSE was not activated. This condition is
reflected in the catalog and is communicated to the next program that does an
OPEN of the file. There is a possibility that the failure occurred after the load or
update of the file was complete. In this case, the file itself and the file's catalog
entry are correct.

Error Conditions:
v Incorrect high RBA in catalog
v Incomplete write to direct access device
v Duplicate data

Overview

The warning “file not properly closed” may indicate an error in a VSE/VSAM file.
This condition can generally be corrected by using the VERIFY command. If other
errors are encountered or suspected, they can generally be corrected by using
either the IMPORT command or the REPRO command.

Recovery for Incorrect High RBA in Catalog

This is the error most likely to occur. If you are running in RECOVERY mode, all
you need to do is reopen the file, and the automatic VERIFY function of
VSE/VSAM will correct the error and update the catalog with the correct high
RBA. However, VSE/VSAM cannot correct the following:
v If an ESDS file opened for control interval (CI) access.

Protection: Recovery Procedures

146 VSE/VSAM V9R2 User’s Guide and Application Programming

v If a SAM ESDS file is in non-CI format.
v If a SAM ESDS file is in CI format. VSE/VSAM cannot update the EOF

indicator, because the file is always loaded and extended in SPEED mode.

Recovery for Incomplete Write to a Disk Device

The file must be restored from a backup copy. You can use either an exported or
sequential backup copy created by the REPRO command.

Use the IMPORT command to put a previously exported copy into the catalog, or:
1. Delete the file that failed.
2. Redefine the file with the DEFINE command.
3. Load the new file with the sequential backup file by using the REPRO

command.

The restored file is downlevel and all updates since the back up was made must be
reapplied to make the file current.

Recovery for Duplicate Data in a Key-Sequenced File, Alternate
Index, or Catalog

This can result from a failure during a CI or CA split. One of two possible
situations can exist for a duplicate data error conditions, depending on the type of
processing done.

For addressed or control interval (CI) processing, you correct the error condition by
using the REPRO command to copy the current version of data to a temporary file
and then copy it back into the original file. This gives you a reorganized file
without duplicate data.

For keyed or sequential processing, VSE/VSAM automatically detects and corrects
the duplicate data condition. (VSE/VSAM erases the original versions of the
copied records.) Duplicate records caused by a failure during a CI split may cause
an error if the file is processed by z/VSE.

File is Inaccessible

Cause of Failure

A VSE/VSAM file may become inaccessible due to damage to the file itself,
damage to related information in the catalog, or both. Depending on the extent of
damage and prior actions, it may be possible to gain access to either the current or
a downlevel version of the data.

Error Conditions:
v The file cannot be opened
v The file is partially unreadable (but can be opened)
v The file is totally unreadable (but can be opened)
v The compression status of the file is CMP-UNDET

Overview

The inaccessibility of a VSE/VSAM file can be analyzed by using the LISTCAT
command, and the extent of file damage can be determined. Based on the analysis,

Protection: Recovery Procedures

Chapter 8. Data Protection and Data Recovery 147

you can recover the data by using BACKUP/RESTORE, EXPORT/IMPORT, and
REPRO.

Recovery for a File that Cannot Be Opened

The problem is probably due to catalog damage. Determine the extent of this
damage. If the damage is relatively minor (that is, relatively few catalog file entries
are affected):
1. Use the analysis tool LISTCAT to determine the extent of damage. This can be

done by comparing a previous LISTCAT list with one of the damaged catalog.
2. For a catalog, if a back level copy of the file is available, you can RESTORE or

IMPORT the file to gain access to the file.

Recovery for a File that is Partially Unreadable

The problem is either confined to the file itself, or to an entire physical extent of
the file.
1. Use an analysis tool as outlined in “Recovery for a File that Cannot Be

Opened” to determine if there is a mismatch in the number of extents. If the
catalog indicates one or more extents than there are on the volume, it may be
caused by a volume restored independent of the catalog.

2. For a catalog, you can import a previously exported copy. See “Recovery for a
File that Cannot Be Opened” for use of these tools.

3. If there is no catalog mismatch, a backup copy of the file must be restored,
using BACKUP/RESTORE, EXPORT/IMPORT, or REPRO.

Recovery for a File that is Completely Unreadable

Either the file has been destroyed, or the catalog and volume are not synchronized.
1. Analyze the catalog with LISTCAT to determine if the damage is in the file or

in the catalog.
2. Regain access to data
v If the damage is to the file or a catalog, use IMPORT or REPRO to restore the

file. This gives you access to a downlevel copy of the data.
v If the file has a CMP-UNDET compression status, the backup copy of the file

must be restored, using BACKUP/RESTORE, EXPORT/IMPORT, or REPRO.

Catalog is Unusable

Cause of Failure
A catalog may become unusable because of physical damage to the catalog.
Depending on the extent of the damage and prior actions, it may be possible to
gain access to current level catalog entries or to downlevel catalog entries.

Protection: Recovery Procedures

148 VSE/VSAM V9R2 User’s Guide and Application Programming

Error Conditions:
v Catalog can be opened, but many VSE/VSAM files cannot be opened.
v The catalog cannot be opened.
v The catalog volume is unusable.

Overview
An unusable catalog can be reestablished, provided certain backup procedures
made possible by the system copy utility and the REPRO command are followed.
This provides a downlevel version recovery when a file or volume is damaged or
unusable.

Recovery for a Catalog that Can Be Opened, but Many
VSE/VSAM Files Cannot Be Opened
A problem with the catalog probably exists. This can be determined by using an
analysis tool. If I/O errors are encountered or mismatches are detected, some form
of catalog recovery is required. If not, the problem is confined to the files
themselves and the procedures given for “Recovery for a File that Cannot Be
Opened” on page 148 can be used.
1. Use the analysis tool LISTCAT to determine if a problem exists in the catalog.

This can be done by comparing a previous LISTCAT list with one of the
suspect catalog.

2. If the problem is with the catalog, recovery depends on the availability of
backup copies of the catalog, volumes, and files.
Proceed as follows:
a. Delete each VSE/VSAM file that cannot be opened.
b. Redefine these files in the catalog, or use the IMPORT command to load

backup copies created by the EXPORT command.
c. If backup copies created by the EXPORT command are not available, load

the files with backup REPRO copies, if available.

Recovery for a Catalog that Cannot Be Opened
You must have either:
v Backups of all data sets of this damaged catalog, or
v A copy of the whole volume.

For catalogs, proceed as follows:
1. As applicable:
v Reload the backups of the data sets into a newly defined catalog.
v Restore the copy of the whole volume.

2. Use LISTCAT listings of backup files and current files to determine if there are
mismatches. If entry mismatches are detected, see “Catalog Entry Mismatches”
on page 150.

3. For those files with other than an RBA or general mismatch, delete the file and
reestablish with a backup copy of the file created by the IMPORT command or
the REPRO command.

Protection: Recovery Procedures

Chapter 8. Data Protection and Data Recovery 149

Recovery for a Catalog Volume that is Unusable
v See the procedure “Recovery for a Catalog that Cannot Be Opened” on page 149.

Catalog Entry Mismatches
Whenever a catalog is used out of synchronization with the volumes it owns, there
is the possibility that the information in the catalog does not match the physical
characteristics of the volumes or files that it describes. Catalog entry mismatches
may indicate that the data is inaccessible, partially accessible or completely
accessible.

The descriptions of catalog mismatches are meant to guide you through a
comparison of two LISTCAT listings that you have produced:

One listing of a catalog taken before the catalog is restored.
One listing of a catalog taken after the catalog is restored.

If you notice a difference in the entries of the two listings:
1. For the description of LISTCAT keyword fields, consult the VSE/VSAM

Commands, SC33-8315.
2. Determine what mismatch has occurred by following the descriptions given

under “Determination of Mismatches” below.

This method is for the analysis of catalogs for out of synchronization conditions
that may occur when the catalog is restored to a previous level.

Determination of Mismatches

By comparing the LISTCAT runs that were made when the catalog was backed up
with those when the catalog is restored, critical changes can be detected.

Volume Mismatches
v Mismatched Space Map

This mismatch indicates that the catalog does not correctly reflect the tracks
(Min CAs) on the volume occupied by its VSE/VSAM files. Files wholly
contained in space correctly indicated as allocated can be accessed if their file
descriptions in the catalog are correct.

v Mismatched Data Space Group
This mismatch shows that the catalog does not correctly reflect the VSE/VSAM
files that it owns on the volume. Files wholly contained within data spaces that
are accurately described are accessible if their file descriptions in the catalog are
correct.

v Mismatched File Directory
This mismatch shows that the catalog does not correctly reflect the files it owns
on the volume. Files known from the file directory are accessible if their
descriptions are correct.

File Mismatches
v Mismatched Statistics

These mismatches do not affect accessing of a file.
v Mismatched High RBA

This mismatch indicates that the catalog does not correctly reflect the end of
data in a file. Correct this condition by reopening the file, which causes
automatic VERIFY to reset the high RBA.

Protection: Recovery Procedures

150 VSE/VSAM V9R2 User’s Guide and Application Programming

v Mismatched Extents
This mismatch indicates that the file has acquired additional extents that are not
reflected in the catalog. The data contained in the extents that are correctly
identified may be accessed. For a key-sequenced file it may be necessary to treat
the data portion as an entry-sequenced file 0n order to access the data.

v Mismatched Volume or Key Range
This mismatch indicates that the file:
– Was extended to a volume which is unknown to the catalog's file record, or
– On the volume has the same name as the catalog, but it is not the same file

that is described in the catalog.
If the file was extended to a volume not known in its catalog record, the extents
of the file on that volume are not accessible. The extents of the file on known
volumes may be accessible.

Actions that Cause Catalog Mismatches

There are several actions that cause mismatches from a backup catalog. Some of
these are overt actions such as the use of the DEFINE and DELETE commands to
create files or data spaces. Others are automatic system actions, such as acquiring
additional extents.
v Define/Delete/Extend Data Space

Any of these actions cause the data space group set of fields for a data space to
be invalid in a backup catalog.

v Define/Delete Files
Either of these actions cause the file directory in the volume record and some of
the file entries to be invalid in a backup catalog. The use of the EXPORT
command may cause a deletion. The use of the IMPORT command always
causes an entry definition.

v Add/Remove Volumes
The ALTER ADDVOLUMES command is used to add a volume to a file as a
candidate. The ALTER REMOVEVOLUMES command is used to remove a
volume from a file as a candidate.

v File Extension through Suballocation
Extension causes the volume space map in the backup catalog to be invalid as
well as the entry for the file.

Minimization of Catalog Mismatches

The possible catalog mismatches described above, which cause files to be wholly or
partially inaccessible, are all caused by the DEFINE, DELETE, and ALTER
commands, or by the extension of VSE/VSAM files or data spaces. Because
DEFINE, DELETE, and ALTER are always known to you, a backup copy of the
catalog can be made every time one of these commands is used. Therefore, the
only action that invalidates a backup catalog without you being aware is the
extension of space. Thus, the minimization of space extension tends to minimize
critical catalog changes. To prevent any VSE/VSAM object from extending, you can
define VSE/VSAM objects with no secondary extent value. As long as a
VSE/VSAM object does not extend, it remains totally accessible from a backup
copy of the catalog.

Protection: Recovery Procedures

Chapter 8. Data Protection and Data Recovery 151

Volume is Inaccessible

Cause of Failure

A given volume may become wholly or partially unusable because of physical
damage to the volume, or because the catalog that owns the volume was restored
to a state that is not synchronized with the volume.

If the problem is because of a catalog restore operation, the procedure outlined
under “Catalog is Unusable” on page 148 can be used to correct the condition.

If the problem is because of physical damage to the volume, recovery depends on
the availability of backup copies of the catalogs, volumes, and files.

Error Conditions
v Volume is totally unusable.
v Volume is partially unusable.

Overview

A given volume that is wholly or partially unusable can be reestablished if backup
copies of the data are available. In certain cases, the current version of the data can
be extracted from the unusable volume and reestablished in the system.

Recovery for Volume that is Totally Unusable

You can recover only if you have a volume backup and a catalog volume backup
created at the same time (that is, at the same level), or if you have copies of the
files created by the REPRO command or by the EXPORT command.

If you have backup volumes:
1. Restore the damaged volume(s).
2. Compare the LISTCAT listing from the backup level with the current LISTCAT

listing for possible mismatches.
3. Use the EXPORT command or the REPRO command to move the downlevel

copies recovered to temporary files.
4. Initialize the volume and reestablish nonVSAM files.
5. If there is a volume mismatch which requires the use of the EXPORT command

or the REPRO command, use the DELETE command with the FORCE option to
clean up the volume and to remove the volume entry from the catalog (file
entries are marked unusable); then, define space on the volume.

6. Use the IMPORT command or the REPRO command to reestablish the files.
These files are downlevel and any update applied after the backup was made
has to be reapplied to make the file current.

7. If reestablished nonVSAM files are cataloged, delete and redefine the
nonVSAM entries.

If you do not have volume backup, but you do have a file backup:
1. Initialize the volume and reestablish the nonVSAM files.
2. Use DELETE FORCE to clean up the volume of VSE/VSAM ownership and

data spaces. This will also remove the volume entry from the catalog and mark
file entries unusable.

3. Reestablish files

Protection: Recovery Procedures

152 VSE/VSAM V9R2 User’s Guide and Application Programming

v If copies created by the EXPORT command of VSE/VSAM files are available,
use the IMPORT command to reestablish them.

v If backup files created by the REPRO command exist, delete the unusable
files and redefine them using the DEFINE command and then load the
backup copies into the newly created files with the REPRO command.

v If reestablished nonVSAM files were cataloged, delete and redefine the
nonVSAM entries.

Recovery for Volume that is Partially Unusable

If the VSE/VSAM files are partially or totally unusable, but the nonVSAM files are
accessible, use the above procedure. If the VSE/VSAM files are accessible, but the
nonVSAM files are not, proceed as follows:
1. Recover the VSE/VSAM files on the volume using the EXPORT command.
2. Initialize the volume and reestablish the nonVSAM files.
3. Using the IMPORT command, reestablish the VSE/VSAM files.
4. If the reestablished nonVSAM files were cataloged, delete and redefine the

nonVSAM entries.

Quick Recovery
There are some applications (such as online teleprocessing systems) which require
that file recovery be done as quickly as possible. In this type of situation, normal
VSE/VSAM recovery procedures may be too time consuming to be of much use.
For quick recovery, you have to:
v Implement certain “restrictions”.
v Ensure data integrity.
v Recover lost objects.

Procedure for Quick Recovery
1. Implement “restrictions”:
v Define all files so that they cannot acquire additional extents.
v Allocate sufficient extents (overallocate).

These definitions ensure that the backup catalog stays in synchronization with
the files that the catalog controls.
Explanation to “overallocate extents”: The restriction that files cannot acquire
additional extents does not mean that CA splits will not be allowed. As long as
there is sufficient unused space in the current extent, CA splits can still occur.
To provide sufficient space for CA splits, overallocate your extents. For
example, an overallocation of 20 cylinders for any VSE/VSAM file allows that
at least 20 CA splits may occur.

Note: Overallocate for the index also, because at least one new index record
will be created whenever a CA split occurs.

2. Create a backup of the catalog whenever any file is defined, deleted, or altered.
To do so, use the REPRO command.

3. Create a backup of the compression control data set whenever a compressed file
is defined, deleted, altered, or loaded. To do so, use the REPRO command.

4. Recover objects:
If the catalog controlling the files is lost, do the following:
a. REPRO the backup catalog into the existing catalog.

Protection: Recovery Procedures

Chapter 8. Data Protection and Data Recovery 153

b. Run VERIFY against all files controlled by the catalog.
If a volume is lost, do the following:
a. Restore the backup copy of the lost volume.
b. If the volume is the catalog volume, REPRO the corresponding backup

catalog into the existing catalog, and if applicable, REPRO the
corresponding backup of the compression control data set into the existing
CCDS.

c. Run VERIFY against all files on this volume. (The files may also belong to
other catalogs.)
If the volume is a catalog volume, also run VERIFY against all files of this
catalog (where the files may reside also on other volumes).

d. Update restored files from journaled records.

Protection: Quick Recovery

154 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 9. VSE/VSAM Support for SAM Files

This Chapter ...

Explains how you can prepare your existing SAM files and programs so as to take
advantage of the functions provided by VSE/VSAM.

The chapter highlights the optional and required steps and definitions, and
includes examples for loading and defining SAM ESDS files.

Overview

About SAM ESDS Files
A SAM file that can be processed within VSE/VSAM data space is called a SAM
ESDS file.

You can move/convert your SAM files to:
v SAM ESDS files, or
v VSE/VSAM ESDS files.

Note:

1. A SAM ESDS file is not identical to a VSE/VSAM ESDS file. For more
information, refer to “Differences Between VSE/VSAM ESDS and SAM ESDS
File Format” on page 183.

2. SAM ESDS files can only be created and used if the VSE/VSAM Space
Management for SAM Function is effective. This is always true for the z/VSE
environment.

SAM files that have been converted can take full advantage of the processing
capabilities of VSE/VSAM. You can use SAM with VSE/VSAM for data and work
files, and you can move data and programs from SAM control to VSE/VSAM
control.

The full conversion of SAM files involves the three steps explained under “Levels
of Migrating Data and Programs from SAM to VSE/VSAM Control” on page 160.
You have the option to stop at any level of the conversion. Depending on the level
that you implement, you can use specific VSE/VSAM functions and capabilities for
processing the files.

To indicate a SAM ESDS file and provide SAM record format information, specify
the RECORDFORMAT parameter in the IDCAMS DEFINE CLUSTER command for
a NONINDEXED (ESDS file). During VSE/VSAM access of a SAM ESDS file, SAM
records are processed according to your specifications in the RECORDFORMAT
parameter. To the VSE/VSAM program, a SAM ESDS file appears as though it is in
VSE/VSAM ESDS file format.

SAM ESDS files can be accessed by VSE/VSAM (ACB) access if the files are
formatted with control intervals (CIs).

© Copyright IBM Corp. 1979, 2014 155

About the VSE/VSAM Space Management for SAM Function
VSE/VSAM offers the VSE/VSAM Space Management for SAM Function. The
function allows you to:
v Define and process your SAM files within VSE/VSAM data space.
v Request quantities of disk space rather than absolute locations.

To define and process your SAM files in VSE/VSAM data space, you use a DTF,
and SAM imperative macros (for example, OPEN, GET, PUT). You indicate your
intention to use a SAM file in VSE/VSAM data space by opening a DTF that
specifies a file name described in a VSE/VSAM DLBL statement. This tells OPEN
that the file to be accessed is a SAM ESDS file. Then, managed-SAM OPEN
retrieves file information from the VSE/VSAM catalog rather than from the VTOC.

Data is written in a format similar to a VSE/VSAM ESDS file. The control interval
(CI) format is used; where the CI is the basic unit of information that is
transmitted to or from a direct-access device. This format allows:
v VSE/VSAM access (through ACB) to SAM files in VSE/VSAM data space.
v Disk independence (for example, maximum DTF BLKSIZE is not limited to disk

track size, but only to CI size minus 7).

You need not specify absolute extent limits for the file, because VSE/VSAM
determines the location of the file.

Advantages in Using SAM ESDS Files
If you move unmanaged-SAM files into SAM ESDS files, you can take advantage
of many of the functions available in VSE/VSAM, including IDCAMS commands.
The following are the functions that are available after you complete the first step
explained under “Levels of Migrating Data and Programs from SAM to
VSE/VSAM Control” on page 160.

Dynamic Allocation

With VSE/VSAM managing your space, you can take advantage of VSE/VSAM's
dynamic allocation. The allocation of file space is simpler because you do not have
to specify extent limits. You need only request a quantity of space. This space is
allocated when it is needed. If more space is subsequently needed, a secondary
quantity is allocated.

VSE/VSAM's dynamic file capability allows you to define a file in the VSE/VSAM
catalog without allocating space for it. Space is allocated at OPEN and deleted at
CLOSE under control of the DLBL DISP parameter. This dynamic file capability
applies to SAM ESDS files.

Simplified Job Control

This improvement is available to the SAM user through the VSE/VSAM Space
Management for SAM Function. The information required by the system to check the
location and characteristics of files is stored in the VSE/VSAM catalog. The need
for DLBL statements is also removed for many of the IDCAMS commands. Because
VSE/VSAM user catalogs are programmer logical units, they too are eligible for
automatic assignment. Operator communications are also simplified because the
operator may mount a requested volume on an available drive without the need to
assign the drive.

SAM ESDS: Overview

156 VSE/VSAM V9R2 User’s Guide and Application Programming

Default Modeling

Default modeling allows you to select your own parameter defaults in place of the
usual system defaults during explicit define. The ability to specify default
parameters for the IDCAMS DEFINE CLUSTER command through default
modeling is available for SAM ESDS files as well as for VSE/VSAM files.

Implicit File Definition

SAM ESDS files do not have to be explicitly defined (by way of the IDCAMS
DEFINE command) prior to the time they are opened. An implicit define of a
reusable SAM ESDS file occurs during managed-SAM OPEN if the file has not yet
been explicitly defined.

Generally, when a file is implicitly defined, it may be implicitly deleted during
managed-SAM CLOSE. This depends on the disposition parameters specified on
the DTF or DLBL statement. For more information, refer to “Implicit Deletion of a
SAM ESDS File” on page 178.

Device Independence

You do not have to be concerned with different track and cylinder sizes for various
types of devices. (The DTF DEVICE and DEVADDR parameters are ignored by
managed-SAM OPEN so that the file may reside on any disk device type.)
Allocation sizes may be requested in terms of number of records and average
record length rather than tracks, cylinders, or blocks which are device-dependent.
This may be specified in the DEFINE CLUSTER command for explicitly defined
files, or in the DLBL RECORDS and RECSIZE parameters for implicitly defined
files. For implicitly defined files, a default secondary allocation size of twenty
percent of the primary allocation size (rounded up) is assumed if none is specified.

The control interval (CI) is the basic unit of information that VSE/VSAM transmits
to or from a direct-access device. Because the CI size has no relation to the track
and cylinder size of a particular device, this makes the processing of files disk
independent.

IDCAMS Commands

You do not need to use different utility programs to manipulate files. With the
VSE/VSAM Space Management for SAM Function effective, you can use IDCAMS
commands to print, copy, alter, delete, and move files from one system to another.
For special considerations in using the commands, refer to “The IDCAMS
Commands for a SAM ESDS File” on page 175.

Security and Integrity of Data

VSE/VSAM ensures the security and integrity of data through a combination of
VSE/VSAM facilities:
v The share options support for SAM ESDS files.
v Password-protection to prevent unauthorized access.
v Automatic CLOSE facility for files not closed before the end of job.

SAM ESDS: Advantages

Chapter 9. VSE/VSAM Support for SAM Files 157

Data Recovery

Data recovery is supported for a SAM ESDS file through various IDCAMS
commands. As a basis for reconstruction (if the original file becomes inaccessible),
you can use the EXPORT and IMPORT commands in the same way as for a
VSE/VSAM file. That is, you can create a portable copy of a SAM ESDS file by
using the EXPORT command, and introduce the copy of the file into the system by
using the IMPORT command

Additional Functions Available for Managed-SAM Access

In addition to the specific functions mentioned above, the following additional
functions are available to facilitate processing of SAM ESDS files:
v Multiple extents and multiple volumes are supported, unless:

– During definition of the file there was no secondary allocation size specified,
or a single volume was specified, or

– The program accessing the file does not support multiple extents (for
example, DTFPH with EXCP access).

v A SAM ESDS file can be extended through the request in the DISP parameter of
the DLBL statement.

Planning for Files
Note that all the functions described in this chapter apply also to work files, but
you may find some of them as being inappropriate (for example,
password-protection and data recovery).

Work Files

Automatic Space Management

Work files may need varying amounts of space for different jobs. For some jobs
only a small quantity of space is needed. At other times, a great deal of space is
needed.

VSE/VSAM provides automatic space management. That is, you do not need to:
v Ensure that enough space is available for jobs that require large quantities of

space.
v Keep large amounts of space tied up. The space needed for work files can be

smaller.

You can think in terms of the average size of space needed rather than the
maximum size needed. This is because VSE/VSAM provides dynamic secondary
allocation. You can make your primary allocation nearer to the average size of space
needed; if more is needed, VSE/VSAM gets the necessary space by using the
secondary allocation. In addition to dynamic secondary allocation, VSE/VSAM
provides dynamic primary allocation. This allows you to define a file that does not
need space until it is opened. (A file defined in this way is called a dynamic file.)
When a dynamic file is opened, the needed space is provided by VSE/VSAM. The
options available at OPEN and the disposition of the files at CLOSE depend on
what you code in the DISP parameter of the DLBL statement, or what is specified
in the DTF (for example: DELETFL=NO).

SAM ESDS: Advantages

158 VSE/VSAM V9R2 User’s Guide and Application Programming

Partition/Processor Independence

VSE/VSAM provides for partition/processor independence through the implicit
define or explicit define with the dynamic data set capability. This VSE/VSAM
support eliminates the tasks of:
v Assigning different work files to different disk locations for every partition.
v Specifying those disk locations in your job control statements.

The file-ID is chosen according to the partition in which the job is running, and
space is assigned as needed. Work-space can also be shared between processors.
The same job can be processed in any partition of a number of different processors
without conflict in the catalog. When the file is closed, it may be deleted or
deallocated. The space the file occupied is reclaimed and made available for use by
other files.

Disposition
The disposition of a reusable file (REUSE) can be controlled through the DLBL
DISP parameter. A file can be allocated, reset, or implicitly defined at OPEN
according to these specifications. Whatever you specify in the DLBL DISP
parameter overrides whatever was specified in the DTF. Pertinent information from
the disposition parameters and the DTF is saved for closing of the file. At that
time, the file is kept, reset, deallocated, or deleted according to the disposition that
is specified in the DTF and DLBL statement. When you do not specify the DISP
parameter, a default is chosen according to the type of file opened or closed. The
default disposition is the same as would occur for unmanaged-SAM files. For
example, the default disposition for:
v DTFSD OUTPUT data file is DISP=(NEW,KEEP)
v DTFSD INPUT data file is DISP=(OLD,KEEP)
v DTFSD work file is DISP=(NEW,DELETE).

If DELETFL=NO, then DISP=(NEW,KEEP).

For disposition parameter specifications and their results, see Table 10 on page 34
and Table 12 on page 37. Disposition processing for VSE/VSAM (ACB) access of a
SAM ESDS file is the same as for a VSE/VSAM ESDS file.

Extending Existing SAM ESDS Files
With VSE/VSAM support you can also extend existing SAM ESDS files through
the use of the DLBL DISP parameter. For example, to extend a SAM ESDS file
during output processing using SAM access, DISP=OLD would position the file to
end-of-file to allow for extension. Refer also to Table 10 on page 34.

Space for extension of a file is allocated (if necessary) according to the secondary
space allocation specified at definition time. SAM ESDS files are always extended
in SPEED mode. See “Example 4: Define a Dynamic SAM ESDS File and Access”
on page 182.

This support is not provided for SAM ESDS work file access.

SAM ESDS: Work Files

Chapter 9. VSE/VSAM Support for SAM Files 159

Levels of Migrating Data and Programs from SAM to VSE/VSAM
Control

Moving from SAM-control to VSE/VSAM-control consists of up to three steps:
v Step 1: Move unmanaged-SAM data (files) into SAM ESDS files.

This allows managed-SAM access.
v Step 2: Change managed-SAM access programs to VSE/VSAM access programs.

SAM ESDS files are accessible by VSE/VSAM.
v Step 3: Convert data (files) from SAM ESDS files to VSE/VSAM ESDS files.

Files are accessible by VSE/VSAM only.

Depending on the VSE/VSAM functions you want to be able to use, you can
simply implement only the first step, or you can complete the other steps as well.

Figure 14 illustrates the relationship of the migration levels and steps.

Table 23 lists the valid combinations of access modes and file types that can be
used when the VSE/VSAM Space Management for SAM Function is effective.

Table 23. Valid Combinations of Access Methods and File Types

File Type

Access Mode

VSE/VSAM Access Managed-SAM Access

SAM ESDS Valid Valid

VSE/VSAM ESDS Valid Invalid

Functions Available at the Various Migration Levels
1. Step 1: Move SAM Files to SAM ESDS Files

After you completed this step, you get all the functions described under
“Advantages in Using SAM ESDS Files” on page 156.
Before you can move your SAM files, you have to create SAM ESDS files as
explained under “Creating a SAM ESDS File” on page 161.

2. Step 2: Change Managed-SAM Access Programs to VSE/VSAM Programs
After you completed this step, you get the following additional access functions
(they are provided by VSE/VSAM access):

Unmanaged-SAM
Access

Managed-SAM
Access

VSE/VSAM
Access

VSE/VSAM
Access

SAM
Files

SAM ESDS
Files

SAM ESDS
Files

VSE/VSAM ESDS
Files

Step 1 Step 3

Step 2

Figure 14. Migration from SAM Control to VSE/VSAM Control

SAM ESDS: Migration Levels

160 VSE/VSAM V9R2 User’s Guide and Application Programming

v VSE/VSAM provides a single ACB/RPL format and a single set of request
macros for all file types. You can generate the ACB or the RPL by specifying
the GENCB macro.

v The file can be accessed in a direct manner through access by RBAs.
v The file can be processed in a skip sequential manner or sequentially

backwards.
v Access statistics are maintained; they can be displayed through LISTCAT.
v Multiple (CI) buffers may be used in support of VSE/VSAM's read-ahead

capability.
v A password may be specified in the ACB so that the operator is not involved

with passwords.
v The job is not canceled due to logical or physical errors as is done in SAM.

Rather, a return code and error code are passed back to the user to allow
diagnosis of the failure within the user's program.

v Multiple strings and chained RPL support are provided by VSE/VSAM.
3. Step 3: Convert SAM ESDS Files to VSE/VSAM ESDS Files

After you completed this step, you get the following additional capabilities:
v You can build alternate indexes or paths. It allows you other ways of gaining

access to your files, thereby eliminating the need to keep multiple copies of
the same information sorted differently for different applications.

v You can specify RECOVERY in the DEFINE CLUSTER statement. This
parameter will help ensure data integrity by preformatting every CA before
records are loaded into it. In case of load or extend failure, the IDCAMS
VERIFY command can be used to recover data written, and your program
may resume writing data from the last correctly-written data record.

v Records can be spanned (SPANNED) records, eliminating the need for very
large CIs.

v You might be able to define the file with the COMPRESSED attribute to save
DASD space.

v Generally, a VSE/VSAM ESDS file is portable to MVS and can be accessed
by way of MVS/VSAM. See Appendix D, “Compatibility With Other
Products,” on page 359 for specific cases when files are not portable.

To copy data from SAM ESDS files to VSE/VSAM ESDS files, you can use the
IDCAMS command REPRO; refer to page 177.

Creating a SAM ESDS File
To create a SAM ESDS file, you have to:
1. Set up a quantity of space (see below).
2. Define a SAM ESDS file (see below).

After you created a SAM ESDS file, you can:
v Access the file by using:

– DTF and SAM imperative macros with VSE/VSAM DLBL
– ACB and VSE/VSAM imperative macros with VSE/VSAM DLBL
– IDCAMS commands with VSE/VSAM DLBL
For explanations, refer to “Access to a SAM ESDS File” on page 169.

v Delete the file either:
– Explicitly (through IDCAMS), or
– Implicitly (through managed-SAM CLOSE).

SAM ESDS: Migration Levels

Chapter 9. VSE/VSAM Support for SAM Files 161

For explanations, refer to “Implicit Deletion of a SAM ESDS File” on page
178.

Setting Up a Quantity of Space
Space for a SAM ESDS file may be suballocated by VSE/VSAM from data space
that was previously defined for VSE/VSAM files. You need not assign separate
space for SAM ESDS files. The size and boundaries of the suballocated space are
communicated to the managed-SAM access routines at OPEN and secondary
allocation time. You define this space (ideally entire volumes) in the usual way by
using one or more of the following IDCAMS commands:
v DEFINE MASTERCATALOG
v DEFINE SPACE
v DEFINE USERCATALOG

These commands are described in the VSE/VSAM Commands, SC33-8315.

Defining a SAM ESDS File
After sufficient space is defined, you can define a SAM ESDS file in one of two
ways:
v Explicitly. That is, by using the IDCAMS command DEFINE CLUSTER.
v Implicitly. That is, by providing the required file information in the job control

statements so that the file can be defined at managed-SAM OPEN.

Besides these defines, you can do the following with a file that already has been
explicitly or implicitly defined and used:

extend it, or
reset it to empty, or
reuse it.

Note: If the catalog is password-protected, implicit define will request the update
or higher level password of the catalog, and implicit delete will request the master
password of the catalog.

The following explains explicit and implicit define.

Explicit Define Cluster (Using the DEFINE CLUSTER
Command)

You define a SAM ESDS file explicitly by specifying parameters in the IDCAMS
command DEFINE CLUSTER.

The following is not a complete list of the parameters that are eligible to be
specified. However, for SAM ESDS files, you need to evaluate the applicability of
these particular parameters:
v NAME -- Cluster level (Required parameter)
v NAME -- Data component level (Optional parameter unless you wish to request

single extent primary allocation, in which case it is required)
v NONINDEXED -- (Required parameter)
v RECORDFORMAT -- (Required parameter)
v RECORDSIZE -- (Required parameter if RECORDFORMAT is in fixed format;

for example, FIXUNB or FIXBLK. Optional for V, VB, or U format.)
v RECORDS or

SAM ESDS: Creating

162 VSE/VSAM V9R2 User’s Guide and Application Programming

TRACKS or
CYLINDERS or
BLOCKS
(One of these parameters is required unless a default model exists for a SAM
ESDS file.)

v VOLUMES -- (Required parameter unless a default model exists for a SAM
ESDS file.)

DEFINE CLUSTER Command -- Explanations of Parameters
NAME(entryname)

Specifies the file-ID of the SAM ESDS file.

For a single extent primary allocation you must specify both the cluster
name and the data component name. (See “Single Extent Primary
Allocation” on page 165.) Otherwise, the data component name is optional
and if specified, can be any name.

Also, you can specify that a file be partition independent, or both partition
independent and processor independent (see “Partition/Processor
Independence Specification” on page 165.) Specifying file names at both
levels (cluster and data) gives you the capability to access data under two
different file IDs.

NONINDEXED
Specifies that the file defined is an ESDS file.

RECORDFORMAT(format)
Establishes a NONINDEXED file as a SAM ESDS file.

Note: This parameter is required to explicitly define a SAM ESDS file. You
can specify it either at the cluster level or data component level.

format For format, substitute one of the following values:

Format Abbreviation Meaning Type of Access

FIXUNB F Fixed, unblocked Managed-SAM/VSAM

FIXBLK FB Fixed, blocked Managed-SAM/VSAM

VARUNB V Variable, unblocked Managed-SAM/VSAM

VARBLK VB Variable, blocked Managed-SAM/VSAM

UNDEF U Undefined Managed-SAM/VSAM

NOCIFORMAT NCIF See below See below

FIXUNB, FIXBLK(logicalrecordsize), VARUNB, VARBLK, and UNDEF
indicate that data records are stored in CI format and therefore are
accessible and managed by VSE/VSAM.

NOCIFORMAT indicates that data is not stored in CI (VSE/VSAM) format.
Therefore, DTFPH with physical I/O (EXCP) must be used to access the
data records. (Do not use managed-SAM access or VSE/VSAM access.) The
DTFPH method of access should only be used for local (work) files. Other
SAM programs will not be able to read or write to the file (except for other
programs that have been written specifically for NOCIFORMAT access; for
example, EXCP). You cannot specify NOCIFORMAT together with any of

SAM ESDS: Creating

Chapter 9. VSE/VSAM Support for SAM Files 163

the following parameters: CONTROLINTERVALSIZE, ERASE,
BUFFERSPACE, EXCEPTIONEXIT, or WRITECHECK.

logicalrecordsize indicates the length of the SAM logical record. This value
must always be specified when using FIXBLK format.

RECORDSIZE(average maximum) and RECORDS(primary)
When you specify the RECORDFORMAT parameter with the FIXUNB or
FIXBLK subparameter, you must specify the maximum SAM logical block
size in the RECORDSIZE(maximum) parameter.

Note: This parameter specifies the largest SAM logical block size that may
be used. If a DTF is opened for OUTPUT or WORK and specifies a
BLKSIZE larger than the maximum SAM logical block size allowable in the
file, the OPEN fails and the job is canceled. You must be careful to specify
the maximum RECORDSIZE that a system program or program product
will use during explicit define of the file. If multiple system programs or
program products are to use the same (work) file, the maximum
RECORDSIZE should be equal to the largest record that any of the
programs will use.

If the RECORDFORMAT parameter is specified as VARUNB, VARBLK, or
UNDEF and the RECORDSIZE parameter is omitted, the RECORDSIZE
defaults to 4089 for the average and 4089 for the maximum (that is,
RECORDSIZE (4089 4089)). (Note that RECORDSIZE(maximum) is used in
calculating the CI size and therefore has no meaning when NOCIFORMAT
is specified.)

Whether or not you specify the NOCIFORMAT subparameter, you can use
the RECORDSIZE(average) and RECORDS parameters for the suballocation
of space. When using the RECORDSIZE and RECORDS parameters
together, they must be consistent in units of reference (either both refer to
SAM logical records or both refer to SAM logical blocks). Note that both
the average and maximum record size must be specified in the
RECORDSIZE parameter when one is specified.

For V, VB, or U records, the RECORDSIZE parameter is optional. For F or
FB records, the RECORDSIZE parameter is required. For FB records, the
RECORDSIZE must be a multiple of the SAM logical record size specified
in the RECORDFORMAT parameter. For V or VB records, the maximum
RECORDSIZE parameter must include room for the control information for
variable length records (the record length field is four bytes and the block
length field is four bytes) because the control information is part of the
SAM logical block.

TRACKS|CYLINDERS|BLOCKS(primary)
The rules involved in the use of these parameters are the same for a SAM
ESDS file as for a VSE/VSAM file. For information concerning the
TRACKS, CYLINDERS, and BLOCKS parameters, search the index of the
VSE/VSAM Commands, SC33-8315; they exist, for example, for the DEFINE
ALTERNATEINDEX command.

VOLUMES(volser)
Specifies the volume(s) to contain the SAM ESDS file. Every volume that
you specify must be owned by the catalog that is to own the SAM ESDS
file. If not specified during define of a SAM ESDS file, VSE/VSAM picks a
set of volumes for you if you have a default model
(DEFAULT.MODEL.ESDS.SAM) defined. For information on the

SAM ESDS: Creating

164 VSE/VSAM V9R2 User’s Guide and Application Programming

VOLUMES parameter, search the index of the VSE/VSAM Commands,
SC33-8315; they exist, for example, for the DEFINE ALTERNATEINDEX
command.

Additional Considerations
v The RECORDFORMAT attributes can be modeled by means of the MODEL

parameter.
v You should specify REUSE when a SAM ESDS file is used mainly for work

files. You should additionally specify NOALLOCATION in the DEFINE
CLUSTER command to provide the dynamic file capability to work files.

v Do not specify RECOVERY. (VSE/VSAM defaults to SPEED for a SAM ESDS
file.) You cannot build an alternate index or define a path over a SAM ESDS file.

Note: For work files, a zero retention period is the default and is normally
appropriate to avoid operator communications during a subsequent OPEN if the
file was not deleted at CLOSE.

Single Extent Primary Allocation
NAME(DOS.WORKFILE.SYSentryname) - data component level

Some programs that access data through DTFPH with EXCP may require that disk
space for the file be allocated as a single extent. You can specify that you want the
primary space allocated as a single extent by specifying the data component name
as above. (Normally, VSE/VSAM may obtain an allocation in as many as five
extents.) The cluster name is still chosen in the same manner as before, but
DOS.WORKFILE.SYS must prefix the data component name to ensure that space is
allocated within a single extent.

VSE/VSAM will deny the allocation request if it cannot obtain the primary
allocation in a single extent.

Partition/Processor Independence Specification
NAME(%entryname) - Partition independent file-ID.

You specify a partition-unique file-ID by using the prefix “%” in the cluster name
parameter of the DEFINE CLUSTER command. (The file-ID is limited to
twenty-seven characters in this case.)

If your system also has the Interactive Computing and Control Facility (ICCF)
installed, you are allowed only one partition-independent file for every ICCF
real-partition. (ICCF pseudo-partitions do not have unique partition IDs, so there
can be only one partition-independent file per partition.)

NAME(%%entryname) - Partition and processor independent file-ID.

To specify both a partition-unique and processor-unique file-ID together with a
single extent primary allocation, the cluster name must be prefixed with “%%” (the
file-ID is limited to twenty-seven characters in this case) and the data component
name must be prefixed with “%%DOS.WORKFILE.SYS” (the file-ID is limited to an
additional eleven characters in this case).

SAM ESDS: Creating

Chapter 9. VSE/VSAM Support for SAM Files 165

Implicit Define Cluster
A SAM ESDS file can be defined implicitly through managed-SAM OPEN when
TYPEFLE=OUTPUT or TYPEFLE=WORK is specified in the DTF. An implicit
define cluster occurs as a result of the following two conditions:
v The SAM ESDS file (to be opened through the DTF and written to) is currently

undefined in the VSE/VSAM catalog, or the characteristics of the file were not
compatible with the DTF and the file has been implicitly deleted by OPEN.

v Enough information has been provided for the implicit define to occur.
VSE/VSAM gathers the necessary information from three sources:
– It makes several assumptions about the file.
– It extracts information from the DTF specifications.
– It extracts information from the job control statements.
The following explains the assumptions made by VSE/VSAM, and the
information gathered by VSE/VSAM from the DTF and from job control
statements.

Assumptions Made by VSE/VSAM
For an implicit define, VSE/VSAM always makes the following assumptions:

Parameter
Assumption

NONINDEXED
An ESDS file is defined.

NONSPANNED
The maximum length of a SAM logical block must not be greater than the
CI size minus 7.

NOWRITECHECK
VSE/VSAM access will not check for correct data transfer for records
written to the file. (In managed-SAM access, checking for correct data
transfer is controlled by the DTF VERIFY=YES or NO parameters. The
NOWRITECHECK specification has no meaning for the managed-SAM
user. It is used only during VSE/VSAM access.)

REUSE
It is possible for a user to reset an already existing file back to empty and
reuse it.

SHAREOPTIONS(1 3)
Either any number of users are permitted for input processing, or one user
is permitted for output processing.

SPEED
Direct access storage is not preformatted.

SUBALLOCATION
VSE/VSAM data space for the file was previously defined and a primary
allocation is suballocated at define.

UNORDERED
The volumes need not be used in the order specified in the EXTENT job
control statements or the default model if EXTENT statements are omitted.

USECLASS(0 P)
The file occupies class-0 data space.

SAM ESDS: Creating

166 VSE/VSAM V9R2 User’s Guide and Application Programming

Information Obtained from the DTF
VSE/VSAM extracts information either from the:
v DTFSD or
v DTFPH MOUNTED=SINGLE

to determine the following:
v CI size.
v Length of the maximum VSE/VSAM logical record (SAM logical block).
v Record format of the records in the file.
v SAM logical record size for FIXBLK.

From DTFSD Specifications (for Data files)
v CI size — derived from the CISIZE=nnnnn parameter. VSE/VSAM rounds this

value up to a valid CISIZE before defining the file. If zero or no value was
specified, VSE/VSAM chooses a CI size. If IOAREA2 is specified and CI size is
not specified, VSE/VSAM attempts to choose a CI size that ensures that at least
2 logical blocks will fit into a CI. If no CI size was specified, VSE/VSAM
computes the size on the base of the maximum record size.

v Maximum record size — derived from the BLKSIZE=nnnn parameter. This value
(minus 8 for data OUTPUT DTFs) specifies the file's maximum RECORDSIZE.

v Record format — derived from the RECFORM=xxxxxx parameter. Specifies the
RECORDFORMAT of the file. If the RECFORM=FIXBLK, the SAM logical record
size is derived from the DTF RECSIZE=nnnnn parameter.

From DTFSD Specifications (for Work Files)
v CI size — derived from the CISIZE=nnnnn parameter. VSE/VSAM rounds this

value up to a valid CISIZE before defining the file. If zero or no value was
specified, VSE/VSAM chooses a CI size. If no CI size was specified, VSE/VSAM
computes the size on the base of the maximum record size.

v Maximum record size — derived from the BLKSIZE=nnnn parameter. This value
specifies the file's maximum RECORDSIZE.

v Record format — derived from the RECFORM=xxxxxx parameter. Specifies the
RECORDFORMAT of the file; FIXUNB and UNDEF are the only valid
subparameters that you can specify for work files.

From DTFPH MOUNTED=SINGLE (for Disk)
v CI size — derived from the CISIZE=nnnnn parameter If a non-zero value is

specified, VSE/VSAM rounds this value up to a valid CISIZE before defining
the file. Specifying zero is the same as not specifying a CI size. In this case,
VSE/VSAM indicates that the file is non-CI format; it is accessible only by EXCP
(not by VSE/VSAM or managed-SAM).

v Maximum record size —
– If CI format, maximum equals the DTF CISIZE minus 7.
– If non-CI format, this parameter does not apply.

v Record format —
– If CI format, the RECORDFORMAT is UNDEF.
– If non-CI format, the RECORDFORMAT is NOCIFORMAT.

Note: DTFPH (with a CISIZE of zero specified or no CISIZE specified) is the only
possible way you can implicitly define a non-CI format file. Also, if a nonzero
value is specified for the CISIZE parameter, it must be greater than seven in order
to choose a valid maximum record size.

SAM ESDS: Creating

Chapter 9. VSE/VSAM Support for SAM Files 167

Information Obtained from the Job Control Statements
Certain parameters in the VSE/VSAM DLBL and EXTENT job control statements
provide the information that VSE/VSAM needs to implicitly define a file.

Information from the DLBL Statement

The DLBL statement provides the following information for implicit define:
v file-ID — This parameter provides the unique name associated with the file.

To request single extent allocation through an implicit define,
DOS.WORKFILE.SYS must prefix the file-ID.
A partition/processor unique file-ID may also be specified. In this case the DLBL
file-ID must be specified with a prefix of “%” (partition-unique) or “%%”
(partition- and processor-unique) with a limit of twenty-seven characters. For
both partition/processor uniqueness and single extent primary allocation, the
DLBL file-ID prefix may be specified as “%%DOS.WORKFILE.SYS” (with a limit
of eleven additional characters).
If your system also has Interactive Computing and Control Facility (ICCF)
installed, you are allowed only one partition-independent file for every ICCF
real-partition. ICCF pseudo-partitions do not have unique partition IDs, so there
can be only one partition-independent file per partition.

v date — This parameter indicates either the retention period in days or the actual
expiration date. If this parameter is not present the normal default applies.

Note: For work files, specify a zero (retention period) to avoid operator
communications during a subsequent OPEN if the file was not deleted at
CLOSE.

v CAT=filename — This parameter indicates the catalog that owns the file. If this
parameter is not present the normal default applies.

v RECORDS=(primary,secondary) — This parameter designates the number of
SAM logical records for allocation purposes. If no secondary amount is specified,
twenty percent of the primary allocation is assumed. Zero can be specified for
the secondary amount. If RECORDS is specified, RECSIZE=n must also be
specified.

v RECSIZE=n — This parameter indicates the average SAM logical record size; it
must be specified together with the RECORDS=(primary,secondary) parameter.
The value n is only used for space calculation; it does not influence the CI size.

Note: You may alternatively specify the average SAM logical block size in the
RECSIZE parameter. If you do this, you should also specify the number of SAM
logical blocks in the RECORDS parameter.

v CYL=(primary,secondary) — This parameter designates the number of cylinders
for allocation purposes. If no secondary amount is specified, twenty percent of
the primary allocation is assumed. Zero can be specified for the secondary
amount. This parameter is correct only for CKD disks.

v BLK=(primary,secondary) — This parameter designates the number of blocks for
allocation purposes. If no secondary amount is specified, twenty percent of the
primary allocation is assumed. Zero can be specified for the secondary amount.
This parameter is correct only for FBA disks.

v CISIZE=n — For VSE/VSAM this parameter specifies a control interval size for
SAM ESDS dataset. The size overrides that specified (or defaulted) in the
respective DTF macro. The specified size must be a number from 1 to 32,768.
VSAM will round the value up to the multiple of 512 bytes or multiple of 2K (if
specified value is greater then 8K) but greater then the SAM logical block length.

SAM ESDS: Creating

168 VSE/VSAM V9R2 User’s Guide and Application Programming

Note: One of the parameters RECORDS|CYL|BLK must be specified if the
“number of tracks or blocks” is omitted in the EXTENT statement.

Information from the EXTENT Statement

The EXTENT statement provides the following information for implicit define:
v Volume serial number — This indicates the volume that this file resides on.

There must be one EXTENT statement for every volume that the file is eligible
to reside on. If EXTENT statements are specified, this parameter is required on
every EXTENT statement.

v Number of tracks or blocks (specified in the first EXTENT statement if multiple
EXTENT statements are specified) — This indicates the number of tracks (CKD)
or blocks (FBA) to be allocated to this file. A secondary allocation size of twenty
percent of the primary allocation size (rounded up) is assumed. Whether it is
tracks or blocks is determined by the device type of the volume serial number
specified. This parameter is ignored on subsequent EXTENT statements, or if the
RECORDS/RECSIZE, or CYL, or BLK parameters are specified in the DLBL.

Note: The EXTENT statement is not required for implicit define if a default model
for a SAM ESDS file was previously defined (providing VOLUME information)
and RECORDS/RECSIZE are specified in the DLBL statement (providing allocation
information). When an implicit DEFINE is done, only the VOLUMES parameter is
allowed to be modeled.

Resetting and Reusing a Previously-Defined File
You can specify that a file is to be reset and reused by specifying the
NOALLOCATION parameter together with the REUSE parameter in the DEFINE
CLUSTER command. This specification indicates that data space is not to be
suballocated to the file at DEFINE, but that it is to be suballocated as needed. This
type of file is called a dynamic file.

A file may be implicitly defined at OPEN and implicitly deleted at CLOSE.
However, performance is not as good as for an explicitly defined dynamic file.

Using a SAM ESDS File

Access to a SAM ESDS File
Managed-SAM access to a SAM ESDS file is provided so that you can:
v Open it through DTF
v Access it through the SAM imperative macros
v Close it through DTF

Support is also provided for DTFPH and EXCP access; in this case, it is space
management support only. The data formats that can be written and read by the
EXCP program are entirely under control of the EXCP program itself.

Dynamic secondary allocation is supported according to the access method or
EXCP program's constraints and the allocation sizes for the file contained in the
VSE/VSAM catalog.

SAM ESDS: Creating

Chapter 9. VSE/VSAM Support for SAM Files 169

Managed-SAM Access: Differences to (Unmanaged) SAM
Access

Considerations Relating to DEFINE CLUSTER Specifications
RECORDSIZE

If the SAM ESDS file is defined explicitly, the maximum RECORDSIZE
parameter is an important consideration. At OPEN, this maximum record
size is compared to the BLKSIZE parameter in the DTF (for
TYPEFLE=OUTPUT or WORK only). If the DTF BLKSIZE (minus eight for
output) is greater than the maximum record size in the file's catalog entry,
VSE/VSAM denies the OPEN and cancels the job. VSE/VSAM does not
allow you to write a larger SAM logical block than the maximum
VSE/VSAM record size specified during definition. If the SAM ESDS file is
defined implicitly, the maximum VSE/VSAM record size for define is
determined from the DTF BLKSIZE parameter so that the file's catalog
entry is consistent.

If the DLBL RECORDS/RECSIZE parameters are used for allocation
parameters (during implicit define), the RECSIZE parameter specifies the
average record size in the file's catalog entry. VSE/VSAM DEFINE does
not allow the average record size (from the DLBL RECSIZE parameter) to
be greater than the maximum record size (from the DTF BLKSIZE
parameter). Therefore, if the average record size is larger than the
maximum record size, a VSE/VSAM implicit define sets the average
RECSIZE equal to the maximum RECSIZE, and the RECORDS value is
increased by the same factor that the RECSIZE was decreased by.

RECORDFORMAT
The record format specified during the explicit define of a SAM ESDS file
need not match the DTF RECFORM specification. The only exception is
that VSE/VSAM does not allow a non-DTFSD to access a NOCIFORMAT
SAM ESDS file. Either the file is implicitly redefined or the job is canceled.

VOLUMES
The volume(s) specified during define determine the candidates eligible for
file allocation. If EXTENT statements are specified with symbolic units
during access to the file, there must be an EXTENT statement and a
corresponding ASSGN statement for every volume specified during define,
even if all of the volumes are not written to or read from. However,
EXTENT statements with symbolic units are not required and should not
be specified.

SHAREOPTIONS
The share options specified during define affect the sharing characteristics
of the file. For example, if SHAREOPTIONS(1) is specified for a SAM
ESDS file (allowing one output or many input users), and if you are
updating the file and then want to open the file for input to read it back
in, you must close the file. Otherwise, the INPUT OPEN will be denied
due to the SHAREOPTIONS specification.

If you want to allow multiple INPUT with UPDATE users to access a SAM
ESDS file (in conjunction with the DTF HOLD=YES parameter, for
example), explicitly define the file with SHAREOPTIONS(3) to allow
concurrent OPENs for update (that is, OUTPUT). VSE/VSAM does not
support SHAREOPTIONS(4) for an ESDS (SHAREOPTIONS(4) is treated as
SHAREOPTIONS(2) during OPEN).

SAM ESDS: Using

170 VSE/VSAM V9R2 User’s Guide and Application Programming

Regardless of the SHAREOPTIONS specification, if you have a file open
for load or extension, all other attempts to open that file are denied for
reasons of data integrity. Conversely, you would be denied access if you
attempted to open a file for load or extension and another user had
already opened that file. (A software end-of-file - SEOF - does not normally
exist until a file is closed. If concurrent access was not denied there would
be a chance that an input user would read past the end of the file.)

Considerations for Access to Files

Considerations for all Types of Files

Many of the considerations on CI format that relate to unmanaged-SAM on FBA
devices are also considerations for managed-SAM access (on both FBA and CKD
devices). For example, if an I/O error occurs during access, it concerns an entire CI
of information rather than a single logical block. Also, logical blocks are not
necessarily written to a device until a CI is full (refer also to the description of the
PWRITE parameter of the DTFSD macro in the z/VSE System Control Statements,
SC34-2637).

Empty Files

VSE/VSAM does not distinguish between a file that:
v Has just been defined (empty and never written to),
v Has been opened and closed with no records written into it, or
v Has been loaded but deallocated or reset at CLOSE.

A file in any of these states is considered empty (that is, the high-used RBA is
zero). In any of these cases, if the file is opened for input through DTFSD
TYPEFLE=INPUT, the OPEN will be successful and control will be passed to the
EOFADDR on the first GET. This DTF OPEN is actually simulated because
VSE/VSAM OPEN (ACB) will not open an empty file for input. However, this is
transparent to the DTFSD user.

If other DTF types (such as DTFPH) are opened for INPUT on an empty file,
VSE/VSAM cannot simulate the end of file condition. This OPEN cannot be
allowed because the file has not been opened by VSE/VSAM and the file extents
have not been located. (The file may not even be allocated in the case of a dynamic
file.) Therefore, such an OPEN will be cancelled if the file is empty.

Assignments and Files Ignored

If EXTENT statements with symbolic units and ASSGN statements are used, and if
any one (or more) of the assignments is ignored (IGN), then the entire file is
ignored. That is, the DTF is not opened and DTF+X‘10’, bit 2 (X‘20’) will be set.

Disk-Independence

In general, you should attempt to be as disk-independent as possible. You should
make no assumptions about the track size (or CI size), the size or the number of
extents or even the number of volumes that the file will reside on. You should not
attempt to choose a BLKSIZE that will maximize disk utilization because CI format
is used and also, your program cannot know what disk device type will be used
for the file before OPEN. It is better to use a smaller BLKSIZE that will be
reasonable for any disk device type -- it enables to process on any disk device

SAM ESDS: Using

Chapter 9. VSE/VSAM Support for SAM Files 171

type. You should not assume that a particular symbolic unit will be used. This will
allow you to take advantage of VSE/VSAM's job control simplifications. Note that
(unmanaged) SAM now provides for disk independence by ignoring the DTF
DEVICE= parameter during OPEN.

GETVIS Space

Sufficient GETVIS space must be provided for managed-SAM access; enter the
specifications in the SIZE parameter of the EXEC job control statement, or in the
SIZE job control command. The partition GETVIS area must contain at least 40KB
for the VSE/VSAM catalog, plus 10KB for every SAM ESDS file, plus storage for
the CI buffer for every SAM ESDS file.

Work Files
v The format of NOTE/POINT IDs for a managed-SAM CKD file is similar to

unmanaged SAM FBA NOTE/POINT ID format. That is, for all devices, the
managed-SAM NOTE/POINT ID format is CCCN rather than (as for
unmanaged SAM) CCHR for CKD and CCCN for FBA. Therefore, you should
not generate or modify a NOTE/POINT ID. Also, do not move or modify the
DTF between OPEN and CLOSE.

v The DELETFL=NO parameter of DTFSD TYPEFLE=WORK is determined at
OPEN. Modifying this indicator after OPEN will have no effect on the CLOSE
disposition. Note that DLBL DISP specification overrides the DTF DELETFL
indicator. If there are any other DTFs or ACBs currently open for this file at
CLOSE, the file is not deleted. If the DTF is not closed by the end of job step,
automatic CLOSE attempts to close the file.

v Files accessed through DTFSD TYPEFLE=WORK are normally reset at OPEN. If
you wish to read a file using a work file DTF, specify DISP=OLD in the DLBL to
avoid losing the data due to reset.

Using SAM ESDS Files: Restrictions

Device-Dependent SAM Functions

The following device-dependent SAM functions are not supported:
v Split cylinders
v FEOVD (ignored)
v CNTRL (ignored)
v Subsetting of the input file through EXTENT statement specifications.

SAM ESDS Files

The following restrictions apply:
v SAM ESDS files are limited to 16 extents per volume, unless they are explicitly

defined as non-reusable (NOREUSE).
v If SAM ESDS file is implicitly defined, DLBL allocation parameters (RECORDS,

CYL, BLK) are limited to 16,777,125 as a maximum value.
v DSF (data secured file) is not supported (it is ignored) in the VSE/VSAM DLBL

control statement. (VSE/VSAM password-protection may be used.)
v SAM ESDS files are not portable and cannot be imported (through IMPORT) to

MVS SAM or VSE/VSAM.
v IJSYSxx file restrictions:

SAM ESDS: Using

172 VSE/VSAM V9R2 User’s Guide and Application Programming

– The only system data file that is supported is SYSLNK (IJSYSLN). The job is
canceled if any other system data files are specified at OPEN.

– System work files (IJSYSnn) are supported unless restricted by the program
accessing the system work file.

v Some system programs or program products may have restrictions on the use
of managed-SAM files. (For example, the files may be limited to a single extent,
or managed-SAM files may not be supported.) Please consult the appropriate
VSE/VSAM or Program Product publication for planning and support
considerations.

DTF Specifications

The following restrictions apply to specifications in the DTF:
v User labels are not supported. The LABADDR specification of the DTF is

ignored.
v Because managed-SAM records are in CI format, SAM spanned records are not

supported. VSE/VSAM maximum record size (32KB minus 7) is not limited by
the device track size. The job is canceled if RECFORM=SPNUNB or
RECFORM=SPNBLK is specified in the DTF.

DTFPH Specifications

The following restrictions apply to the use of DTFPH:
v A file created with DTFPH with CISIZE=0 is not supported by managed-SAM

request macros (GET,PUT, and so on). That is, the file can only be read with
DTFPH and EXCP. The managed-SAM request macro routines support CI format
only. The job is canceled if a non-DTFPH OPEN is issued against a
NOCIFORMAT SAM ESDS file (unless the file can be implicitly deleted and
defined by OPEN).

v Conversely, if a file is created with DTFSD and is to be read through DTFPH
with EXCP, the EXCP routine must support it in CI format. If the DTFPH is a
“version 3 DTF”, OPEN stores the CISIZE in the version 3 extension and the
OPEN is successful. You must reference this CISIZE when you read the file. If
the DTFPH is not a version 3 DTF, OPEN has no means of indicating the CISIZE
and the job is canceled.

v There is no way to restrict a DTFPH EXCP user from opening a
password-protected SAM ESDS file for input (requiring a read password) and
then writing to the file. A DTFPH user may also violate SHAREOPTIONS
integrity protection in this same manner.

VSE/VSAM Access of SAM ESDS Files: Considerations
VSE/VSAM access of a SAM ESDS file processes SAM logical records. It uses the
RECORDFORMAT information in the catalog to block SAM logical records into
SAM logical blocks and de-block SAM logical blocks into SAM logical records.
Therefore, it is important that the RECORDFORMAT information in the catalog
matches the actual SAM record format of the data.

The valid SAM logical record formats are:
v Fixed unblocked
v Fixed blocked (logical record size)
v Variable unblocked
v Variable blocked

SAM ESDS: Using

Chapter 9. VSE/VSAM Support for SAM Files 173

v Undefined

SAM access (through DTF) of V or VB records returns the RL (record length field)
at the beginning of the record. VSE/VSAM access (through ACB) does not return
it. Correspondingly, for a PUT for V or VB records, no RL should be at the
beginning of the record when it is passed to VSE/VSAM because VSE/VSAM
prefixes the RL. A program using VSE/VSAM access (through ACB) for sequential
processing can process a VSE/VSAM ESDS file or a SAM ESDS file.

Differences between the VSE/VSAM access of a VSE/VSAM ESDS file and the
VSE/VSAM access of a SAM ESDS file are:
v VSE/VSAM always loads and extends a SAM ESDS file in SPEED mode.
v VSE/VSAM does not build an alternate index over a SAM ESDS file.
v VSE/VSAM does not support path entries over a SAM ESDS file.
v VSE/VSAM does not support VSE/VSAM SPANNED records for a SAM ESDS

file.

The following applies to VSE/VSAM access of a SAM ESDS file:
v TCLOSE and ENDREQ do not imply TRUNC or RELSE. VSE/VSAM continues

processing from the last SAM logical record.
v For direct requests or POINT, the ARG parameter of the RPL always specifies

the RBA (relative byte address) of the SAM logical record. The RL (record
length) and the BL (block length) fields are not included; however, they are
accounted for by VSE/VSAM. On a direct retrieval, you must supply to
VSE/VSAM the same RBA as returned during a VSE/VSAM load of a SAM
ESDS file.

v For both the RPL and control block manipulation macros, RECLEN is always the
SAM logical record length. It is not the SAM block length (that is, VSE/VSAM
record length), and does not include any RL or BL fields.

v When issuing a SHOWCB or TESTCB macro, the following apply:
– NLOGR refers to logical records. For blocked record files, NLOGR could be

greater than the number of VSE/VSAM records.
– NRETR and NUPDR have similar meanings; they are the number of retrieved

and updated SAM logical records, respectively.

When a SAM ESDS file is extended through managed-SAM access, managed-SAM
always starts with a new CI. When a SAM ESDS file is extended through
VSE/VSAM access, VSE/VSAM attempts to continue storing records into the last
CI of the file. Additionally, the number and method of blocking records in a SAM
logical block may differ between managed-SAM access and VSE/VSAM access.
The following parameters will cause differences:
v Logical record size comes from the LRECL in “RECORDFORMAT”.
v Block size comes from the maximum record size in “RECORDSIZE”.
v Average record size in “RECORDSIZE” is only used together with the

“RECORDS” parameter.

SAM ESDS: Using

174 VSE/VSAM V9R2 User’s Guide and Application Programming

The IDCAMS Commands for a SAM ESDS File
The following lists only those commands (and parameters) that need special
consideration when used with the VSE/VSAM Space Management for SAM Function.
The commands are listed in alphabetical order. For the complete set of the
parameters available with the commands, see the VSE/VSAM Commands,
SC33-8315.

ALTER Command

entryname/password
BUFFERSPACE(size)
ERASE|NOERASE
EXCEPTIONEXIT(mname)
WRITECHECK|NOWRITECHECK

The ALTER command is used to change attributes in catalog entries. The
subparameters and their use for a SAM ESDS file are explained here.

entryname/password
is a required parameter that names the SAM ESDS file to be altered and
supplies its master password if it is password-protected. For a
NOCIFORMAT SAM ESDS file, the specification of BUFFERSPACE,
ERASE, EXCEPTIONEXIT (except as a subparameter of NULLIFY), or
WRITECHECK causes the ALTER command to terminate.

BUFFERSPACE(size)
specifies the minimum space to be provided for buffers. For a
NOCIFORMAT SAM ESDS file, the specification of BUFFERSPACE causes
the ALTER command to terminate.

ERASE|NOERASE
specifies whether the SAM ESDS file is to be erased when its entry in the
catalog is deleted. For a NOCIFORMAT SAM ESDS file, the specification of
ERASE causes the ALTER command to terminate.

EXCEPTIONEXIT(mname)
specifies the name of the user module to be given control when an
exception occurs during the processing of the SAM ESDS whose entry is
altered. For a NOCIFORMAT SAM ESDS file, the specification of
EXCEPTIONEXIT causes the ALTER command to terminate.
(EXCEPTIONEXIT can be specified as a subparameter of NULLIFY.)

WRITECHECK|NOWRITECHECK
specifies whether to check the data transfer of records written in the SAM
ESDS through VSE/VSAM (ACB) access. For a NOCIFORMAT SAM ESDS
file, the specification of WRITECHECK causes the ALTER command to
terminate.

DEFINE CLUSTER Command

For the applicable DEFINE CLUSTER parameters, see “Explicit Define Cluster
(Using the DEFINE CLUSTER Command)” on page 162.

DELETE Command

SAM ESDS: IDCAMS Commands

Chapter 9. VSE/VSAM Support for SAM Files 175

You can use the DELETE command as described in the VSE/VSAM Commands,
SC33-8315, except that the ERASE parameter is not valid for a NOCIFORMAT
SAM ESDS file.

An implicitly defined SAM ESDS file may be deleted by way of the DELETE
command in the same manner as an explicitly defined SAM ESDS file. Refer also
to “Implicit Deletion of a SAM ESDS File” on page 178.

EXPORT Command

If you are exporting a CI-format SAM ESDS file, VSE/VSAM treats it as an ESDS
file. If you attempt to export a NOCIFORMAT SAM ESDS file, VSE/VSAM issues
an error message and terminates the command.

You cannot use a SAM ESDS file as the portable file (OUTFILE parameter).

IMPORT Command

IMPORT provides full import support for those SAM ESDS files which can be
exported. When attempting to import a SAM ESDS file into a predefined empty
file, IMPORT ensures that the exported file and the predefined file have fully
consistent RECORDFORMAT parameter values and that the maximum record size
of the predefined file is not less than that of the file originally exported. Any
mismatch causes an error message and command termination.

LISTCAT Command

You can display space for a SAM ESDS file by specifying LISTCAT SPACE. You
can display all files that have been defined for a particular catalog by using the
LISTCAT command; this includes all SAM ESDS files defined either explicitly or
implicitly.

The ATTRIBUTES portion of LISTCAT output is modified as follows for ESDS:
v CISIZE indicates 0 if RECORDFORMAT(NOCIFORMAT) was specified on either

an explicit or implicit define.
v CI/CA indicates 0 if RECORDFORMAT was specified on either an explicit or

implicit define.
v SAMLRECL indicates the SAM logical record length (listed for SAM ESDS files

only). This value is the user-supplied record length for FIXBLK SAM files and is
zero for all other record format SAM files.

v RECORDFORMAT indicates the SAM record format (listed for SAM ESDS files
only). FIXBLK, FIXUNBLK, VARBLK, VARUNBLK, UNDEFINED, or NOCIFMT
are the possible values for this attribute.

v IMP-DEFINE is listed if the SAM ESDS file has been implicitly defined;
otherwise EXP-DEFINE is listed (applies to SAM ESDS files only).

v SAMDATASET is listed if the ESDS is a managed-SAM file; otherwise
VSE/VSAMDATASET is listed.

The Statistics Group (data) is listed for a SAM ESDS file. However, it should be
noted that these statistics are maintained during VSE/VSAM access only and not
during managed-SAM access. For more information on the statistics, refer to the
VSE/VSAM Commands, SC33-8315.

PRINT Command

SAM ESDS: IDCAMS Commands

176 VSE/VSAM V9R2 User’s Guide and Application Programming

You can print a CI-format SAM ESDS file by way of managed-SAM access or
VSE/VSAM access. The output is always SAM logical records. You cannot print a
NOCIFORMAT ESDS file through either managed-SAM or VSE/VSAM access.

For managed-SAM access:
v Specify the ENVIRONMENT parameter.
v The output format is the same as unmanaged SAM (no RBA display, record

length field at the beginning of the record for format V and VB).
v The SKIP and COUNT parameters can be used and the value always indicates

the number of SAM logical records to be skipped or listed.

(For an example of printing a SAM ESDS file by retrieving the SAM logical records
with managed-SAM, see “Example 4: Define a Dynamic SAM ESDS File and
Access” on page 182.)

For VSE/VSAM access:
v Omit the ENVIRONMENT parameter.
v The output format is a VSE/VSAM ESDS file (RBA display, no record length

field at the beginning of format V and VB RECORDS. VSE/VSAM uses the
RECORDFORMAT information recorded in the catalog to determine the SAM
record format for access). Note that the record or block size and format has not
been changed through DTF-ACCESS.

v The SKIP and COUNT parameters can be used and the value always indicates
the number of SAM logical records to be skipped or listed.

v The FROMADDRESS and TOADDRESS parameters can be used. (The RBA value
for FROMADDRESS must be the exact beginning of a SAM logical record.)

REPRO Command

CI-format SAM ESDS files can be used as input or output files in a REPRO
command wherever SAM files or VSE/VSAM ESDS files are currently allowed.
(Do not specify a NOCIFORMAT SAM ESDS as an input or output file.) You can
use the REPRO command to convert an unmanaged-SAM file to a SAM ESDS file
by using the following specifications:
v INFILE(dname,ENVIRONMENT(subparameters))

Indicates the unmanaged SAM file to be used as the input file.
v OUTFILE(dname/password ENVIRONMENT(subparameters))

Indicates the CI-format SAM ESDS to be used as the output file. If the output
file is a managed-SAM file that is to be created by way of managed-SAM access,
and it has not been previously defined, it will be implicitly defined if the job
control statements meet the requirements of implicit define.
– For both the INFILE and OUTFILE parameters, dname specifies the filename of

the DLBL job control statement that identifies the file to be copied. The
ENVIRONMENT parameter is not always required. Coding the
ENVIRONMENT (...) parameter instructs IDCAMS to use SAM access, that is,
access through a DTF control block. Without the ENVIRONMENT parameter
VSAM access will be used (ACB). The ENVIRONMENT parameter is required
in one of the following cases:
- To access an unmanaged SAM file
- To allow an implicit definition of an output file
password is not allowed for SAM access.

v FROMADDRESS(address) TOADDRESS(address)

SAM ESDS: IDCAMS Commands

Chapter 9. VSE/VSAM Support for SAM Files 177

You can specify FROMADDRESS and TOADDRESS for VSE/VSAM access (not
managed-SAM access). The RBA value for FROMADDRESS must be the exact
beginning of a SAM logical record.

v SKIP(count) COUNT(count)
You can specify SKIP and COUNT (for both VSE/VSAM and managed-SAM
access) and the value always indicates the number of SAM logical records to be
skipped or copied.

VERIFY Command

If the VERIFY command is executed on a CI-format SAM ESDS file, you can
discover whether the file was successfully closed (warning messages are issued),
but you cannot cause the end-of-file indicator in the catalog entry to be updated.
This is because a SAM ESDS file is always loaded and extended in SPEED mode.
A SAM ESDS file cannot be accessed for input by VSE/VSAM unless it was
successfully closed after initially loaded. (If the file is accessed for input by
managed-SAM without closed, an OPEN in a subsequent job step will be
successful and the first GET will cause the user to be sent to the EOFADDR
routine.) The file can only be accessed by VSE/VSAM up to the data written by
the last successful CLOSE if extended. After extension, a SAM ESDS file can be
accessed by managed-SAM even if the CLOSE was unsuccessful; however, the file
may not terminate with an SEOF.

The VERIFY command terminates due to an OPEN error if it is executed on a
NOCIFORMAT SAM ESDS file.

Implicit Deletion of a SAM ESDS File
An implicitly defined SAM ESDS file may be deleted by way of the DELETE
command in the same manner as an explicitly defined SAM ESDS file.

You can use the DELETE command as described in the VSE/VSAM Commands,
SC33-8315, except that the ERASE parameter is not valid for a NOCIFORMAT
SAM ESDS file.

An implicit delete of a SAM ESDS file occurs if all the following conditions are
true for any of the following cases:
1. Case 1

During OPEN of DTF (implicit delete followed by implicit define)
v The catalog entry has been implicitly defined.
v The DTFSD maximum logical block size exceeds the VSE/VSAM catalog

maximum RECORDSIZE of the SAM ESDS file or the RECORDFORMAT of
the file is NOCIFORMAT.

v DTFSD TYPEFLE=OUTPUT, WORK, or WORKMOD.
v The file is unexpired and the operator has responded “delete” to message

4233A EQUAL FILE-ID IN CATALOG, or the file is expired.
v DISP=OLD is not specified.

2. Case 2
During CLOSE of DTF
v The catalog entry has been implicitly defined.
v DISP=(,delete)

Note: The job control statement overrides the DTF.

SAM ESDS: IDCAMS Commands

178 VSE/VSAM V9R2 User’s Guide and Application Programming

3. Case 3
During CLOSE of DTF
v The catalog entry has been implicitly defined.
v DISP=(,date)

Note: The job control statement overrides the DTF.
v The expiration date has passed.
In all cases, if another user has the same file open for access, the file is not
deleted.

Sample Programs and Job Streams
v Example 1 loads a SAM ESDS file by way of managed-SAM access (source

code).
v Examples 2, 3, and 4 use this program assuming that it is cataloged under the

phase name SDOUTPUT.

Example 1: Load a SAM ESDS File by Way of Managed-SAM
Access

Col. Col. Col. Col.
1 10 16 72

// JOB SDOUTPUT
// OPTION CATAL,NODUMP

PHASE SDOUTPUT,*
// EXEC ASSEMBLY,SIZE=120K,PARM=’XREF’
SDOUTPUT START X'200078'

BALR 2,0
USING *,2
OPEN SDOUT,PRINT
LA 5,1 INITIAL COUNT TO 1
L 6,MAXRCDS LOAD NO. OF RECORDS TO WRITE

LOOP CR 5,6 WRITTEN LAST RECORD YET
BH CLOSE YES

STORE ST 5,RECNO NO, STORE RECORD NUMBER
CVD 5,DWB CONVERT KEY TO DECIMAL
UNPK NUM(15),DWB(8) UNPACK KEY
TM UNPKSIGN,X’10’ SEE IF NUMBER WAS NEGATIVE
BO NEG1 YES, NEGATIVE
MVI SIGN,C’+’ MAKE OUTPUT SHOW POSITIVE
B CONTINUE

NEG1 MVI SIGN,C’-’ MAKE OUTPUT SHOW NEGATIVE
CONTINUE OI UNPKSIGN,X’F0’ MAKE LAST BYTE A NUMBER

PUT PRINT PRINT KEY
PUT SDOUT,WORKAREA PUT FROM WORKAREA
LA 5,1(5) INCR RECORD NO.
B LOOP GO BACK

CLOSE CLOSE SDOUT,PRINT CLOSE THE FILE
EOJ
EJECT

*
SDOUT DTFSD BLKSIZE=2008,1 X

DEVADDR=SYS007,2 X
IOAREA1=OUTPUT1, X
DEVICE=2314,3 X
RECFORM=FIXBLK,4 X
RECSIZE=80, X
TYPEFLE=OUTPUT,5 X
WORKA=YES

EJECT
PRINT DTFDI DEVADDR=SYSLST, X

SAM ESDS: IDCAMS Commands

Chapter 9. VSE/VSAM Support for SAM Files 179

IOAREA1=IOAREA, X
RECSIZE=17

*
EJECT

DWB DC D’0’ USED TO CVD INTO
*
IOAREA DC 0CL17’ ’

DC C’ ’ PRINT CONTROL
OUT DC 0CL16’ ’
SIGN DC C’ ’ PRINTED SIGN
NUM DC 0CL15’ ’ PRINTED KEY

DC CL14’ ’
UNPKSIGN DC C’ ’ LAST BYTE OF UNPACKED NUMBER
*
MAXRCDS DC F’400’ NO. OF RECORDS TO WRITE
*
WORKAREA DC 0CL80’ ’
RECNO DC F’0’ CURRENT RECORD NO.

DC CL76’ ’
OUTPUT1 DC CL8’ ’ AREA FOR COUNT

DC 25CL80’ ’
EJECT

* SDMODFOB6

DIMOD TYPEFLE=OUTPUT
END SDOUTPUT

/*
// IF $MRC GT 0 THEN
// GOTO ERRORS
// LIBDEF PHASE,CATALOG=USER.LIB
// EXEC LNKEDT
/*
/. ERRORS
// EXEC LISTLOG
/&

Explanations for Example 1:
1 The BLKSIZE specifies the logical block size of the SAM file. The extra

eight bytes specified include the count area required for DTFSD OUTPUT
data files.

2 This symbolic unit is ignored. The symbolic unit either comes from the
EXTENT statement or is dynamically chosen by VSE/VSAM.

3 The device type specified is ignored. VSE/VSAM determines the device
type from the volume serial of the volume that the file resides on. The
volume serial is specified either in the EXTENT statement during implicit
define, or in the VOLUMES parameter of the DEFINE CLUSTER
command, or is chosen by VSE/VSAM from a default model during
explicit or implicit define.

4 The RECFORM along with the BLKSIZE and RECSIZE information is used
to determine the record format and size characteristics of the file to be
written. In addition, if the file is implicitly defined, this information is
stored into the VSE/VSAM catalog to be used if the file is accessed
through VSE/VSAM (ACB).

5 An output file normally implies reset. That is, the file is set to empty
before the records are written into the file. This may be overridden by the
DLBL DISP parameter. If DISP=OLD is specified, the file will not be reset
and an existing file will have this data added to the end of the file. (If the
file does not exist or is empty, DISP=OLD or NEW has no effect.)

6 No SD logic module needs to be assembled or included. (Note that it is a
comment.)

SAM ESDS: Examples

180 VSE/VSAM V9R2 User’s Guide and Application Programming

Note: If IOAREA2 is specified in the DTFSD (in combination with either IOREG or
WORKA) and implicit define occurs, VSE/VSAM will attempt to choose a CI size
that will hold at least two SAM logical blocks.

Example 2: Implicit Define of a SAM ESDS File
A job that loads a SAM ESDS file through managed-SAM access (execution). This
job implicitly defines a SAM ESDS file.
// JOB LOAD A MANAGED SAM FILE (400 RECORDS)
// DLBL SDOUT,’MANAGED.SAM.FILE1’,0,VSAM,RECORDS=400,RECSIZE=801

// EXTENT ,VSER012

// LIBDEF *,SEARCH=(USER.LIB)
// EXEC SDOUTPUT,SIZE=AUTO3/&

Explanations for Example 2:
1 The information from the DLBL and the EXTENT statement (together with

the DTF information) provides the information to do an implicit define.

— The DLBL specifies VSE/VSAM indicating that the SAM file is to
be a SAM ESDS file.

— A retention period of 0 indicates that the file can be deleted at any
time (assuming it is not in use).

— RECORDS and RECSIZE specify that the primary allocation size
should be large enough to hold four hundred records of eighty
bytes each. The secondary allocation size is assumed to be twenty
percent of the primary allocation size.

— The default disposition for an OUTPUT DTFSD data file is
(NEW,KEEP).

2 The EXTENT statement specifies that the file is to reside on volume
VSER01 and that the logical unit is to be dynamically assigned by
VSE/VSAM. (This assumes, of course, that there is VSE/VSAM data space
available on volume VSER01.)

3 A SAM ESDS file needs about 52KB of GETVIS space for access (12KB for
the file and CI buffers, and a one-time requirement of 40KB for the
catalog). SIZE=AUTO will ensure that the maximum GETVIS space is
available to VSE/VSAM.

Example 3: Define a Default Model SAM ESDS File
A job stream that loads a SAM ESDS file through SAM access (execution). This job
stream defines a default model for a SAM ESDS file and then implicitly defines a
SAM ESDS file, using the default model to obtain a volume list (to allow
elimination of the EXTENT statement).
// JOB DEFINE DEFAULT MODEL FOR SAM ESDS FILE
// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER -
(NAME(DEFAULT.MODEL.ESDS.SAM) -1

VOLUMES(VSER02) -2

RECORDS(100 25) -
RECORDSIZE(2000 2000) -
RECORDFORMAT(UNDEF) -
REUSE -
NOALLOCATION -3

NONINDEXED)
LISTCAT -

ENTRIES(DEFAULT.MODEL.ESDS.SAM) -
ALL

SAM ESDS: Examples

Chapter 9. VSE/VSAM Support for SAM Files 181

/*
/&
// JOB LOAD A MANAGED SAM FILE (400 RECORDS)
// DLBL SDOUT,’MANAGED.SAM.FILE2’,0,VSAM,RECORDS=400,RECSIZE=804

// LIBDEF *,SEARCH=(USER.LIB)
// EXEC SDOUTPUT,SIZE=AUTO
/&

Explanations for Example 3:
1 This is the required file-ID for a default model for a SAM ESDS file.
2 This is the volume that will be used for any SAM ESDS file implicitly

defined with no EXTENT statement specified (or explicitly defined with no
VOLUMES parameter specified).

3 NOALLOCATION is required for default model.
4 The same DLBL information is specified as in Example 2, but the volume

that the file is to reside on is retrieved from the default model rather than
an EXTENT statement. (The file will reside on VSER02.) Also, the symbolic
unit is dynamically chosen and assigned by VSE/VSAM. Note that
allocation size and retention period are still obtained from the DLBL
statement. The only information retrieved from the default model during
implicit define is the volume list.

Example 4: Define a Dynamic SAM ESDS File and Access
A job stream that loads a SAM ESDS file through managed-SAM access
(execution). This job stream defines a dynamic SAM ESDS and then accesses the
defined file allowing elimination of the EXTENT statement.
// JOB ESDS DEFINE FOR SAM ESDS FILE
// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER -
(NAME(MANAGED.SAM.FILE3) -
VOLUMES(VSER03) -
RECORDS(16 4) -1

RECORDSIZE(2000 2000) -2

RECORDFORMAT(FIXBLK(80)) -3

REUSE -4

NOALLOCATION -
NONINDEXED)5

LISTCAT -
ENTRIES(MANAGED.SAM.FILE3) -
ALL

/*
/&
// JOB LOAD A MANAGED SAM FILE (400 RECORDS)
// DLBL SDOUT,’MANAGED.SAM.FILE3’,,VSAM,DISP=(NEW,KEEP)6

// LIBDEF *,SEARCH=(USER.LIB)
// EXEC SDOUTPUT,SIZE=AUTO
/&
// JOB EXTEND A MANAGED SAM FILE (ANOTHER 400 RECORDS)
// DLBL SDOUT,’MANAGED.SAM.FILE3’,,VSAM,DISP=(OLD,KEEP)7

// LIBDEF *,SEARCH=(USER.LIB)
// EXEC SDOUTPUT,SIZE=AUTO
/&
// JOB ESDS PRINT A MANAGED FILE WITH SAM
// DLBL ESDS1,’MANAGED.SAM.FILE3’,,VSAM,DISP=(OLD,DELETE)8

// EXEC IDCAMS,SIZE=AUTO
PRINT INFILE(ESDS1 -

ENVIRONMENT -9

(BLOCKSIZE(2000) -

SAM ESDS: Examples

182 VSE/VSAM V9R2 User’s Guide and Application Programming

RECORDFORMAT(FIXBLK) -
RECORDSIZE(80)))

/*
/&

Explanations for Example 4:
1 This specifies the number of VSE/VSAM logical records (SAM logical

blocks) for primary and secondary allocation. Sixteen is specified for the
primary allocation since sixteen 2000-byte logical blocks will be written to
hold four hundred 80-byte SAM logical records.

2 This specifies the average and maximum VSE/VSAM logical record size
(SAM logical block size) for the file.

3 This specifies the SAM logical record size for the file.
4 REUSE in connection with NOALLOCATION makes the file a dynamic

file.
5 NONINDEXED is required for a SAM ESDS file.
6 The DISP parameter specifies that the file is to be reset at OPEN, and kept

at CLOSE. The file resides on volume VSER03 as specified in the define
cluster. A symbolic unit will be dynamically assigned.

7 The DISP parameter specifies that the file is not to be reset at OPEN, that
is, the file will be extended with the records written by JOB EXTEND. The
file is to be kept at CLOSE.

8 The DISP parameter specifies that the file is not to be reset at OPEN. (A
specification of DISP=NEW would be an error in this case since the file
will be opened for input.) When the file is closed, it will be deleted (that is,
deallocated since this file was defined as a dynamic file).

9 The file is read by way of managed-SAM access by way of the
ENVIRONMENT parameter. The ENVIRONMENT subparameters specify
the information required to generate a DTF. The file may be accessed
through VSE/VSAM by omitting the ENVIRONMENT parameter. In that
case, VSE/VSAM gets the SAM file characteristics from the VSE/VSAM
catalog entry for the file.

Differences Between VSE/VSAM ESDS and SAM ESDS File Format

How CIs are Formatted into CAs
Figure 15 on page 184 and Figure 16 on page 185 illustrate the way in which CIs
are physically formatted into CAs for VSE/VSAM ESDS files as compared to SAM
ESDS files.

For values for CI size and tracks, refer to Table 20 on page 93.

SAM ESDS: Examples

Chapter 9. VSE/VSAM Support for SAM Files 183

VSE/VSAM ESDS Files
A VSE/VSAM ESDS file formats CIs into CAs in CA format. This means that CIs
cannot be written across CA boundaries. If there is not sufficient space at the end
of a CA to write a complete CI, an area of unusable space is left and the CI to be
formatted is written at the beginning of the next CA. This is illustrated in
Figure 15.

Assumptions
Device type=3390
Allocation specified=TRK(3 1)
CI size=14KB
Physical block size=7KB
1 track=7 blocks (PR)
11 CIs of data are written
CA=Min (primary (3 TRKs), secondary (1 TRK), Max-CA(1 CYL))

Therefore: CA=1 track

SAM ESDS Files
A SAM ESDS file formats CIs into CAs in non-CA format. This means that a CI
can be written across a CA boundary (tracks 2 and 3) but not across an extent
boundary. If there is not sufficient space at the end of the CA to write a complete
CI, the CI will be written across a CA boundary causing the CI to have part of its
contents in one CA and the rest of its contents in another. This is illustrated in
Figure 16 on page 185.

Assumptions:
Device type=3390
Allocation specified=TRK(3 1)
CI size=14KB
Physical block size=7KB

P R P R

CI

P R P R

CI

P R P R

CI Unusable
Space

P R P R

CI

P R P R

CI

P R P R

CI Unusable
Space

CI CI CI

P R P R

CI

P R P R

CI

P R P R

CI Unusable
Space

P R P R

CI

P R P R

CI UnusableSpace
or
Secondary Extent

.

.

.

.

.

.

VSE/VSAM ESDS File

T
R
K
4

T
R
K
2

T
R
K
3

T
R
K
7

C
A

C
A

C
A

C
A

E
x
t
e
n
t

E
x
t
e
n
t

Figure 15. Example of CA Format Using a VSE/VSAM Entry-Sequenced File

SAM ESDS: File Formats

184 VSE/VSAM V9R2 User’s Guide and Application Programming

1 track=7 blocks (PR)
11 CIs of data are written
CA=Min (primary (3 TRKs), secondary (1 TRK), Max-CA(1 CYL))

Therefore: CA=1 track

Relationship of Physical and Logical Layout
Figure 17 on page 186 shows the construction of a CI and how records are
physically and logically laid out for a VSE/VSAM ESDS file and a SAM ESDS file.
It explains the relationship between VSE/VSAM logical records and SAM logical
blocks.

When you have defined a VSE/VSAM ESDS file, the CI is made up of VSE/VSAM
logical records and their related control information. When you define a SAM
ESDS file, the VSE/VSAM logical records become SAM logical blocks. The CI size
is a multiple of the VSE/VSAM block size and normally determined by
VSE/VSAM, not by you, at DEFINE time. Control information in a CI consists of a
CIDF and RDFs. There is an RDF for every SAM logical block (VSE/VSAM logical
record) indicating its length, except in the case of consecutive logical blocks of
equal length, in which case the first RDF (right-most of the pair) describes the
length of the logical blocks and the second RDF (left-most of the pair) tells how
many logical blocks the first RDF describes.

The SAM logical block consists of SAM logical records. In the case of VB format,
every logical record is prefixed with an RL (record length) field which indicates the
length of the record. The SAM logical block begins with a BL (block length) field
which indicates the length of the block. During managed-SAM (DTF) access of V
or VB records, the RL is returned at the beginning of the record. For VSE/VSAM
(ACB) access, it is not. A program using VSE/VSAM (ACB) access for sequential
processing can process a SAM ESDS file or a VSE/VSAM ESDS file.

P R P R

CI

P R P R

CI

P R P R

CI Unusable
Space

P R P R

CI

P R P R

CI

P R P R

CICI CI CI

P R P R

CI

P R P R

CI

P R P R

CI

P R P R

CI

Unusable Space or Secondary Extent

.

.

.

.

.

.

SAM ESDS File

T
R
K
4

T
R
K
2

T
R
K
3

T
R
K
7

C
A

C
A

C
A

C
A

E
x
t
e
n
t

E
x
t
e
n
t

C

P R

I

P R

Figure 16. Example of Non-CA Format Using a SAM ESDS File

SAM ESDS: File Formats

Chapter 9. VSE/VSAM Support for SAM Files 185

Note:

1. The SAM LOGICAL BLOCK size is what you specify in the RECORDSIZE
parameter when you DEFINE a SAM ESDS file, and define in the BLKSIZE
parameter of the DTF.

2. The SAM LOGICAL RECORD size is what you specify in the SIZE parameter
of the DTF.

Physical Record Physical Record Physical Record

Defining a VSE/VSAM ESDS (file):
NAME(entryname)
NONINDEXED

.

.

.

Control Interval (CI)

VSAM LREC 1 VSAM LREC 2 VSAM LREC 3

C
I
D
F

R
D
F
3

R
D
F
2

R
D
F
1

Unused
Space

Defining a SAM ESDS (file):
NAME(entryname)
NONINDEXED
RECORDFORMAT (VB)

.

.

.

Control
Infor-
mation

SAM LBLOCK 1
See Note 1

SAM LBLOCK 2 SAM LBLOCK 3
Unused
Space

R
D
F
3

R
D
F
2

R
D
F
1

C
I
D
F

B
L

R
L Record

R
L Record

R
L Record

SAM Logical
Record
(SAM Access)
See Note 2

SAM Logical
Record
(VSAM Access)

Figure 17. Comparison of a VSE/VSAM Block to a SAM Logical Block

SAM ESDS: File Formats

186 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 10. Performing an IDCAMS SNAP (FlashCopy)

This chapter ...

describes how you can backup VSE/VSAM datasets using an IDCAMS SNAP
command:
v “Overview of the IDCAMS SNAP Command”
v “Avoiding Incorrect Usage of Volumes and Catalogs” on page 188
v “Advantages in Creating a Snapshot of Entire Disk Volumes” on page 188
v “Using IDCAMS SNAP and BACKUP With a Synonym List” on page 189
v “Example of Running IDCAMS SNAP / BACKUP With a Synonym List” on

page 191
v “Using the FlashCopy Dialog to Backup VSE/VSAM Data” on page 191
v “Controlling Access to the IDCAMS SNAP Command” on page 192

Related Topics:

For details of ... Refer to ...

how FlashCopy® is used within z/VSE z/VSE Administration, SC34-2627

the IDCAMS SNAP and IDCAMS BACKUP
commands (syntax diagram and parameters)

VSE/VSAM Commands, SC33-8315

the IXFP SNAP command (syntax diagram
and parameters)

z/VSE System Control Statements, SC34-2637.

how to backup VSE/VSAM data to tape
using FlashCopy

z/VSE Operation, SC33-8309

Overview of the IDCAMS SNAP Command
The IDCAMS SNAP command provides an interface to the FlashCopy feature that
produces a snapshot of specified source volumes onto target volumes. The snapshot
that is produced:
v Represents a copy of the source volumes that is “frozen” at the moment when

SNAP was invoked.
v Is immediately available for use, by referencing to the target volumes.
v Can be used before the physical copying to the target volumes is completed.

When SNAP is issued with the NOCOPY parameter, the physical copying of data
to the target volumes is not performed. Instead:
v The snapshot on the target volumes is “simulated” until a SNAP command with

the DDSR parameter has been issued.
v Both real and simulated “frozen” copies of VSE/VSAM data can be safely used

for archiving, while the source volumes are updated by other applications.

To support the “frozen” state of the snapshot, ESS utilizes its internal resources,
like ESS cache, for tracking possible updates of the source volumes that may be
done while copying is performed. When copying is finished, ESS resources are
freed automatically. However if you use SNAP with the NOCOPY parameter, you
should later free the ESS resources by the SNAP DDSR command. To prevent

© Copyright IBM Corp. 1979, 2014 187

wasting of the ESS resources, access to the SNAP command can be restricted. For
more information on this, refer to “Controlling Access to the IDCAMS SNAP
Command” on page 192.

The SNAP command is especially helpful when ordinary copy or backup may
cause problems with data integrity because of updates done to source volumes by
other applications. For the format of the SNAP command, refer to VSE/VSAM
Commands, SC33-8315.

Avoiding Incorrect Usage of Volumes and Catalogs
If you use FlashCopy to directly backup VSE/VSAM data, VSAM cannot access
the copies of VSAM catalogs and clusters on the target volumes in the way it does
for volumes for which a FlashCopy was not made. This is because the standard
VSAM search path (master-catalog -> [user-catalog ->] cluster) will point to
the original version of the VSAM data that is stored on the source volumes.

You can use the IDCAMS IMPORT CONNECT command to connect the copied
catalog on the target volume to the master catalog. This results in the copied
catalog being included in the search path. However, the connected catalog is of
limited use. This is because:
v To avoid duplication of names, the catalog on the target volume will be

connected via its new name (the synonym catalog name SYNONYMCATALOG).
However, the original name of the catalog is still stored internally in the catalog
and will be used by VSAM operations.

v VSAM catalogs retain the information about the VOLIDs on which the catalogs
and clusters were originally created. After this information has been copied to
the target volumes, it is therefore no longer valid. Note: VSAM does not allow
duplicate VOLIDs (that is, different volumes having the same VOLID).

VSAM only supports a BACKUP using a synonym list (SYNONYMLIST) when
backing up VSAM data from target volumes of the IDCAMS SNAP (see “Example
of Running IDCAMS SNAP / BACKUP With a Synonym List” on page 191).
However, this processing method makes these copies very safe.

Note: Before initiating the IXFP SNAP command, the target volumes must be
DOWN (DVCDN). This is the opposite to the situation when performing an
IDCAMS SNAP (where the volumes are UP by default).

Advantages in Creating a Snapshot of Entire Disk Volumes
These are the advantages in using IDCAMS SNAP together with a synonym list, to
produce “snapshots” of volumes:
1. After a snapshot of disk volumes is complete, backup processing can be started

immediately and can run during online processing.
2. During the very short “copy-time” of the snapshot (which may be minutes, or

even seconds), online systems only have to be shut down for a very short time.
3. There is no risk of losing data.
4. There is faster access to the target datasets.
5. There are no catalog changes to the catalog-copy that is stored on the target

volume.

IDCAMS SNAP (FlashCopy)

188 VSE/VSAM V9R2 User’s Guide and Application Programming

6. Error-prone and time-consuming catalog changes are not required on the target
catalog. The target catalogs remains 100% unchanged. The target catalogs and
the datasets could then be used for disaster recovery (for example, to replace
one or more complete disk volumes).

7. When the snapshot is made, the content of the target volumes remain identical
to the content of the source volumes. This is very important if you must carry
out a disaster recovery.

8. Any BACKUP jobs that you run after the snapshot, will use “frozen” data on
the target volumes. This data is independent of any data changes that take
place on the online systems.

9. Running IDCAMS SNAP and IDCAMS BACKUP using a synonym list
significantly reduces the time during which your system is unavailable.

Using IDCAMS SNAP and BACKUP With a Synonym List
These are the steps you should follow:
1. Run IDCAMS SNAP using the Synonym List.

Use the IDCAMS SNAP command to create a snapshot of all entire disk
volumes where the catalog and all its datasets reside. Give the target volumes
different VOLIDs than the source volumes. Note: The target volumes will then
be online after the IDCAMS SNAP has run.
This is an extract of the syntax of the IDCAMS SNAP command:

SNAP
[COPY|NOCOPY]
SOURCEVOLUMES(volser[volser...])
TARGETVOLUMES(volser[volser...])
[NOPROMPT|PROMPT]

where:

COPY This keyword specifies that both the temporary and permanent
snapshots of the source volumes on the target volumes are to be
created. The temporary snapshots are available immediately by
referencing the target volumes and are created by establishing the IXFP
FlashCopy relation supported with internal ESS resources.

NOCOPY
This keyword specifies that only temporary snapshots of the source
volumes on the target volumes are to be created by establishing the
IXFP FlashCopy relation between the source and target volumes. The
real copying to the target volumes normally is not performed because
of using internal ESS resources to track out any changes done to the
source volumes.

SOURCEVOLUMES(volser[volser...]) TARGETVOLUMES(volser[volser...])
Are a pair of lists indicating from which volumes, and to which
volumes, the snapshot is to be done. Please Note: The target device
must be set UP (DVCUP command) prior to initiating the IDCAMS
SNAP function. For the target, this is the opposite to what you would
set for the IXFP SNAP command.Abbreviations: SVOLUME or SVOL,
TVOLUME or TVOL

NOPROMPT
This keyword prevents decision-type messages from being issued.

PROMPT
This keyword allows decision-type messages to be issued.

IDCAMS SNAP (FlashCopy)

Chapter 10. Performing an IDCAMS SNAP (FlashCopy) 189

2. Run IDCAMS IMPORT CONNECT.

You run IDCAMS IMPORT CONNECT to inform the z/VSE system that a copy
of the User Catalog now exists on the target volume, and that this copy of the
User Catalog now has a synonym name.

Note:

a. The catalog that has a synonym name now exists (including its datasets),
but cannot be accessed by normal applications.

b. You use a target Master Catalog in the same way as you use a target User
Catalog.

3. Run IDCAMS BACKUP using the Synonym List.

IDCAMS BACKUP uses the parameters contained in the synonym list:
v The synonym list is used to route the VSAM OPEN and BACKUP functions

to the target volumes.
v The BACKUP works in the same way as before, except that it uses the

synonym list to access the target volumes. Therefore, you can use all features
of IDCAMS BACKUP.

v You can use the output from this IDCAMS BACKUP (that uses a synonym
list) in the same way as before (for IDCAMS RESTORE).

This is an extract of the syntax of the IDCAMS BACKUP command:
BACKUP

SYNONYMLIST(
SOURCEVOLUMES(volser[volser...])
TARGETVOLUMES(volser[volser...])
CATALOG(catname[/password])
SYNONYMCATALOG(catname[/password]))

where:

SYNONYMLIST
Indicates that this backup uses a synonym list of target VSAM volumes.
Abbreviations: SYNLIST or SYNL

SOURCEVOLUMES(volser[volser...]) TARGETVOLUMES(volser[volser...])
Are a pair of lists indicating from which volumes, and to which
volumes, a FlashCopy has to be performed. Abbreviations: SVOLUME
or SVOL, TVOLUME or TVOL

CATALOG(catname[/password])
Specifies the name and the password of the source catalog, which is the
original catalog from which a FlashCopy was done. Abbreviation: CAT

SYNONYMCATALOG(catname[/password])
Specifies the synonym name and password of the target catalog which
was created by a FlashCopy to the target volume. You must ensure that
the synonym name of the catalog has been imported using IMPORT
CONNECT, before running the IDCAMS BACKUP. The password is
identical to the password of the source catalog.

Note: You must provide the synonym name of the catalog in a DLBL
statement containing filename IJSYSUC.
Abbreviation: SYNCAT

IDCAMS SNAP (FlashCopy)

190 VSE/VSAM V9R2 User’s Guide and Application Programming

Example of Running IDCAMS SNAP / BACKUP With a Synonym List
The following job-stream example shows how to:
1. Create a snapshot of the source volumes SOURCE1 and SOURCE2 to the target

volumes TARGET1 and TARGET2.
2. Run an IDCAMS IMPORT CONNECT to inform the z/VSE system that a copy

of the User Catalog (VSESP.USER.CATALOG on SYSWK1 and DOSRES) now
exists on the target volume, and that this copy of the User Catalog now has a
synonym name (VSESP.SNAP.CATALOG).

3. Run an IDCAMS BACKUP that uses the parameters contained in the synonym
list.

Input
// JOB SNAP and BACKUP from target volumes
// ASSGN SYS005,180
// DLBL IJSYSUC,’VSAM.SNAP.CATALOG’,,VSAM
// EXEC IDCAMS,SIZE=AUTO
/* First: do the SNAP */ -
SNAP COPY -

SOURCEVOLUMES(SOURCE1 SOURCE2) -
TARGETVOLUMES(TARGET1 TARGET2)

/* Second: Synonym name for the target catalog */
IMPORT CONNECT OBJECTS((VSAM.SNAP.CATALOG -

VOLUMES(UCATVOL) DEVT(3390))) -
CATALOG(VSAM.MASTER.CATALOG)

/* Third: BACKUP from target volumes */ -
BACKUP (*) -

SYNONYMLIST(-
SOURCEVOLUMES(SOURCE1 SOURCE2) -
TARGETVOLUMES(TARGET1 TARGET2) -
CATALOG(VSAM.USER.CATALOG) -
SYNCATALOG(VSAM.SNAP.CATALOG))

/*
/&

You can also use the option Flashcopy VSAM Catalog/Files in the
BACKUP/RESTORE VSAM OBJECTS dialog (Fast Path 3719) to create such a job
stream. For details, refer to “Using the FlashCopy Dialog to Backup VSE/VSAM
Data.”

Output

The output from using IDCAMS BACKUP (with a synonym list) is any normal
backup media (tape or disk). This is the same as any other IDCAMS BACKUP
output.

Using the FlashCopy Dialog to Backup VSE/VSAM Data
The Flashcopy VSAM Catalog/Files dialog provides a fast backup function from disk
to tape for VSE/VSAM data. It does so by creating a job stream that includes three
IDCAMS commands: IDCAMS SNAP (including the DDSR function),
IDCAMS IMPORT CONNECT, and IDCAMS BACKUP.

Note: The IDCAMS BACKUP requires the availability of the catalog and of all the
related disk volumes holding data of the VSAM files owned by the catalog.

To access the dialog, start with the z/VSEFunction Selection panel and select:
v 5 (Backup/Restore)

IDCAMS SNAP (FlashCopy)

Chapter 10. Performing an IDCAMS SNAP (FlashCopy) 191

v 1 (Backup/Restore VSAM Objects)
v 9 (FlashCopy VSAM Catalog/Files (ESS only)

You can either:
v Copy a whole catalog and all its related files.
v Select individual files from the catalog for backup (IDCAMS BACKUP).

For further details about using FlashCopy to backup VSE/VSAM data, refer to the
z/VSE Operation, SC33-8309.

Controlling Access to the IDCAMS SNAP Command
The IDCAMS SNAP command creates a snapshot of source volumes on the IBM
TotalStorage Enterprise Storage Servers (ESS). ESS resources are used to ensure that
the snapshot is not affected by any updates done to the source volumes. Therefore,
inappropriate usage of the SNAP command can waste the internal ESS resources
and decrease the overall performance. For example, this would occur if the SNAP
NOCOPY command is not followed by the SNAP DDSR for a long time.

To prevent cases of this kind, system administrators can restrict the usage of the
IDCAMS SNAP command by using a security manager, for example the Basic
Security Manager (BSM) provided by z/VSE. For more information on BSM and the
BSTADMIN (fastpath 28) utility used to issue BSM commands or the dialog
support refer to z/VSE Administration, SC34-2627. A description of the IDCAMS
SNAP command can be found in VSE/VSAM Commands, SC33-8315.

You can control access to the IDCAMS SNAP command with the following BSM
profile names of the resource class FACILITY:
v VSAMSNAP.COPY for IDCAMS SNAP COPY
v VSAMSNAP.NOCOPY for IDCAMS SNAP NOCOPY
v VSAMSNAP.DDSR for IDCAMS SNAP DDSR

If no batch security is enabled in the z/VSE system (SYS SEC=NO) or it is enabled
but the profiles VSAMSNAP.COPY, VSAMSNAP.NOCOPY, and VSAMSNAP.DDSR
in class FACILITY were not defined to the BSM, then the IDCAMS SNAP
[COPY|NOCOPY|DDSR] statements are executed as requested but with a
warning:
IDC32204I RACROUTE RESOURCE NOT PROTECTED OR BATCH SECURITY=OFF

If batch security is enabled and the corresponding profiles VSAMSNAP.xxx in class
FACILITY are defined, then an ID statement has to be supplied in the job to
identify the user. To use the IDCAMS SNAP function one of the following access
conditions must be set:
1. The user has at least READ access to the VSAMSNAP.xxx profile related to the

issued IDCAMS SNAP command.
2. The VSAMSNAP.xxx profile is defined with at least universal access of READ.
3. The supplied user ID is an administrator's ID and, therefore, the user has access

to all the BSM protected resources.

Then the appropriate IDCAMS SNAP function is executed as requested and is
accompanied by the following message:
IDC32200I RACROUTE (AUTH) SUCCESSFUL

IDCAMS SNAP (FlashCopy)

192 VSE/VSAM V9R2 User’s Guide and Application Programming

In all other cases the requested IDCAMS SNAP function is suspended and the
following message pair is displayed:
IDC32240I RACROUTE (AUTH) FAILED WITH RETURN CODE xx REASON xx
IDC32241I SAF RETURN CODE xx FOR RACROUTE (AUTH)

The example below shows how to define profiles in BSM to allow everyone to use
the SNAP COPY and SNAP DDSR commands and how to completely forbid usage
of the SNAP NOCOPY command.
r rdr,pausebg
AR 0015 1C39I COMMAND PASSED TO VSE/POWER
F1 0001 1R88I OK : 1 ENTRY PROCESSED BY R RDR,PAUSEBG
BG 0001 1Q47I BG PAUSEBG 000XX FROM (SYSA) , TIME=15:10:27
BG 0000 // JOB PAUSEBG

DATE 12/27/2007, CLOCK 15/07/27
BG-0000 // PAUSE
BG 0000 // ID (PARAMETERS SUPPRESSED)
BG-0000
0 exec bstadmin
BG 0000 1S54I PHASE BSTADMIN IS TO BE FETCHED FROM IJSYSRS.SYSLIB
BG-0000 BST901A ENTER COMMAND OR END
0 add facility vsam.snap.copy uacc(read)
BG 0000 BST904I RETURN CODE OF ADD IS 00
BG-0000 BST901A ENTER COMMAND OR END
0 add facility vsam.snap.ddsr uacc(read)
BG 0000 BST904I RETURN CODE OF ADD IS 00
BG-0000 BST901A ENTER COMMAND OR END
0 add facility vsam.snap.nocopy uacc(none)
BG 0000 BST904I RETURN CODE OF ADD IS 00
BG-0000 BST901A ENTER COMMAND OR END
0 end
BG-0000
0

Instead of BSTADMIN, you can also use the Interactive Interface dialogs for
security.

IDCAMS SNAP (FlashCopy)

Chapter 10. Performing an IDCAMS SNAP (FlashCopy) 193

194 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 11. Using VSE/VSAM Macros

This Chapter ...
v Documents Programming Interface information. See “Notices” on page xiii.
v Explains the use of the VSE/VSAM macros. VSE/VSAM macro instructions are

coded in an assembler program to access the data.
v Assigns the macros to various tasks, there are macros for:

– Relating a program to the data. They identify the file and describe the kind of
processing to be done. They are ACB, EXLST, RPL, and GENCB.

– Connecting and disconnecting the program to the file. They are OPEN,
CLOSE, and TCLOSE.

– Displaying and changing the information relating a program to the data and
thus changing the type of processing. They are SHOWCB, TESTCB, and
MODCB.

– Initiating transfer of data between disk storage and processor storage,
positioning within the file, or deletion of records. They are GET, PUT, POINT,
ERASE, WRTBFR, and ENDREQ.

– Sharing I/O Buffers and control blocks among files, and to write out buffers.
They are BLDVRP, DLVRP, and again WRTBFR. Also ACB, RPL, and the
macros of the second group have been extended for sharing resources and
managing I/O buffers.

– Displaying catalog information: SHOWCAT.

Groups of Macros
The VSE/VSAM macros can be grouped according to main tasks and the
relationship between the various macros. The following shows the groups and
outlines the purpose of the individual macro.

Declarative VSE/VSAM macros:
v ACB specifies the file to be processed and the access type.
v EXLST specifies a list of user-supplied exit routines.
v RPL specifies information for a request to access a particular record.

Macros to Share Resources Between Several Files
v BLDVRP builds a VSE/VSAM pool of buffers, control blocks, and channel

programs.
v DLVRP deletes such a resource pool.
v WRTBFR writes waiting buffer contents to satisfy a GET request.

Request Macros
v GET retrieves a record from a file for processing.
v PUT inserts a record in a file.
v POINT positions control on a specific address in the file.
v ERASE deletes a record in a file.
v ENDREQ ends processing of a GET or POINT request.

© Copyright IBM Corp. 1979, 2014 195

Control Block Manipulation Macros
v GENCB specifies declarative parameters, but during execution of a program.
v MODCB changes declarative parameters.
v SHOWCB displays declarative parameters in effect.
v TESTCB checks declarative parameters (or their error codes) and branches

accordingly.
v SHOWCAT displays data from the catalog in a buffer you have supplied.

OPEN/CLOSE Macros
v OPEN connects a program to a file.
v CLOSE prepares the separation and disconnects a program from a file.
v TCLOSE prepares the separation but leaves program and file connected.

Relating a Program and the Data
The ACB macro specifies the file to be processed and the types of access you want
to use.

The EXLST macro specifies a list of user-supplied exit routines.

The RPL macro specifies information for a request to access a particular record in
the file.

These declarative macros are used while assembling or compiling an assembler
program.

The GENCB macro can be used in place of the ACB, EXLST, or RPL macros to
generate processing specifications while the processing program is running.

ACB: Specifying the Access Method Control Block

Every VSE/VSAM file has an ACB (Access Control Block) that contains
information about it. The file name of the DLBL job control statement that
describes the file is included, so that the Open routine can connect a program to
the data.

The other information that you specify enables OPEN to prepare the kind of
processing to be done by your program.

Exit Routines

The address of a list of exit-routine names that you supply (EXLST parameter). You
use the EXLST macro, described next, to construct the list.

I/O Buffers

The amount of space for I/O buffers (BUFSP parameter) and the number of I/O
buffers (BUFND and BUFNI parameters) that VSE/VSAM will use to process data
and index records. The minimum number of buffers allowed depends on how
much buffer space is allocated, the number of concurrent requests to be allowed,
and whether processing will be direct or sequential.

Using VSE/VSAM Macros

196 VSE/VSAM V9R2 User’s Guide and Application Programming

Password

The password, if required, indicates the level of authorization to access the file:
read, read and update, and so on (PASSWD parameter).

Processing Options

The processing options to be used (MACRF parameter): keyed or addressed access,
or both; sequential, direct, or skip sequential processing, or a combination;
retrieval, storage, or update (including deletion), or a combination; whether to use
the shared resource pool and to defer the writing of updated records.

Concurrent Requests

For processing concurrent requests (STRNO parameter), the number of requests
that are defined for processing the file (see the discussion of the RPL macro
following EXLST).

Error Messages

Address and length of an area for error messages from OPEN, CLOSE, or TCLOSE
(MAREA and MLEN parameters).

EXLST: Specifying the Exit List
The EXLST macro specifies the addresses of optional exit routines that you can
supply for analyzing physical errors and logic errors, for end-of-file processing, for
overlapping I/O operations, and for writing a journal. Any number of ACBs in a
program can indicate the same exit list, and an exit routine can be used for several
files.

Analyzing Physical Errors (SYNAD)

When VSE/VSAM encounters an error in an I/O operation that the z/VSE error
recovery routines cannot correct, it exits to the physical-error analysis (SYNAD)
routine. VSE/VSAM sets a code in the RPL to indicate whether the I/O error
occurred during reading or writing the data or the index.

Analyzing Logic Errors (LERAD)

Errors not directly associated with an I/O operation, such as an invalid request,
cause VSE/VSAM to exit to the logic error analysis (LERAD) routine. VSE/VSAM
sets a code in the RPL that indicates the type of logic error.

End-of-File Processing (EODAD)

When your program requests a record beyond the last record in the file during
sequential access, your end-of-file (EODAD) routine is given control. The last
record is the highest-addressed record for addressed or control-interval access or
the highest-keyed record for keyed access. If an EODAD exit routine is not
available, control is given to the LERAD exit routine.

Overlapping I/O Operations (EXCPAD)

When VSE/VSAM starts an I/O operation caused by a request macro, the
execute-channel-program (EXCPAD) exit routine is given control. The EXCPAD

Using VSE/VSAM Macros

Chapter 11. Using VSE/VSAM Macros 197

routine must return control to VSE/VSAM, which continues your mainline routine
at the instruction following the request macro. The EXCPAD exit is intended for
use by programmers of utilities and systems.

Writing a Journal (JRNAD)

You can use the JRNAD routine to journal the transactions made against your file
and to keep track of RBA changes.

For recording transactions, VSE/VSAM exits to the JRNAD routine every time
your processing program issues a GET, PUT, or ERASE. For keeping track of RBA
changes, VSE/VSAM takes the JRNAD exit every time data is shifted within a CI
or moved to another CI. To process a key-sequenced file with addressed access,
you need to know whether any RBAs have changed during keyed processing.
VSE/VSAM takes the JRNAD exit before transmitting to direct-access storage the
contents of a CI in which there was an RBA change.

RPL: Specifying the Request Parameter List
The RPL macro produces a Request Parameter List (RPL) which contains all the
information needed by a request macro to access a record in the file. The request
macros are GET, PUT, POINT, ERASE, and WRTBFR. The RPL identifies the file to
which the request is directed by naming the ACB of the file.

You can use a single RPL to define parameters that apply to several requests. With
the MODCB macro (described below) you can modify some of the parameters to
change the type of processing, such as from direct to sequential or from update to
non-update.

For concurrent requests, which require VSE/VSAM to keep track of more than one
position in a file, any number of RPL macros may be used asynchronously by a
processing program or its subtasks to process a file. The requests can be sequential
or direct or both, and they can be for records in the same part or different parts of
the file. You need specify only the RPL parameters appropriate to a given request,
as follows:

Processing Options for a Request (OPTCD)

A request is for keyed, addressed, or control-interval access. The processing can be
sequential, skip sequential (keyed access only), or direct. For keyed and addressed
access and for sequential or direct processing, records may be retrieved in
backward direction. A request may be for updating or not updating a record. A
non-update direct request to retrieve a record can optionally cause positioning at
the following record for subsequent sequential access.

For a keyed request, you specify either a generic key or a full key to which the key
field of the record is to be matched. A generic key can match several records while
a full key matches only one record. You can also specify that, if the key does not
match the key of any record in the file, the record with the next greater key will be
processed.

For retrieval, a request is either for a data record to be placed in a work area in the
processing program (move mode) or for the address of the record within
VSE/VSAM's I/O buffer to be passed to the processing program (locate mode).

Using VSE/VSAM Macros

198 VSE/VSAM V9R2 User’s Guide and Application Programming

Address of the Work Area for, or Pointer to, a Data Record
(AREA)

For retrieval, update, insertion, or addition of a record, you must provide a work
area in which the record is to be processed (move mode). For retrieval, you can
have VSE/VSAM give you the address of the record within VSE/VSAM's I/O
buffer (locate mode) in this field.

Size of the Work Area for a Data Record (AREALEN)

This parameter specifies either the length of the work area in which a record is
placed (for move mode) or the four-byte address of the record in VSE/VSAM's
I/O buffer (for locate mode). Having a work area that is too small is considered a
logic error.

Length of the Data Record Being Processed (RECLEN)

For storage, your processing program indicates the length to VSE/VSAM; for
retrieval, VSE/VSAM indicates it to your program.

Length of the Key (KEYLEN)

This parameter is required only for processing by generic key. For ordinary keyed
access, the full key length is available from the catalog.

Address of the Area Containing the Search Argument (ARG)

The search argument is either a key (including a relative-record number) or an
RBA. If the OPTCD parameter indicates a generic key, the KEYLEN parameter tells
how many high-order (leftmost) bytes of the search argument will be used.

Address of the Next RPL in a Chain (NXTRPL)

You can process several records with a single GET or PUT by chaining RPLs
together. For example, every RPL in a chain could contain a unique search
argument and point to a unique work area. A single GET macro would retrieve a
record for every RPL in the chain. A chain of RPLs is processed as a single request.
(Chaining RPLs is not the same as issuing concurrent requests that require
VSE/VSAM to keep track of multiple positions in a file.)

Transaction-ID (TRANSID)

With this parameter you can create a logical relationship between I/O requests
issued for different VSE/VSAM files.

GENCB: Generating Control Blocks and Lists
You can use the GENCB macro to generate an ACB, EXLST, or RPL during the
execution of your processing program, rather than to assemble it with the
corresponding macro. GENCB is coded in the same way as the other macros, but it
generates one or more copies of a control block or list and allows you to code
parameter values in more ways.

Using VSE/VSAM Macros

Chapter 11. Using VSE/VSAM Macros 199

Connecting and Disconnecting a Processing Program and a File
OPEN connects a processing program to a file, so that VSE/VSAM can satisfy the
program's request for data. CLOSE completes processing and frees resources that
were obtained by the Open routine. TCLOSE causes buffers to be written out and
the catalog to be updated.

OPEN: Connecting a Processing Program to a File

The OPEN macro calls the Open routine, which verifies that the processing
program has authority to process the file, constructs VSE/VSAM control blocks
and establishes linkages to VSE/VSAM routines. By examining the DLBL statement
indicated by the DDNAME operand in the ACB macro and the volume
information in the catalog, Open verifies that the necessary volumes have been
mounted. When you are opening a key-sequenced file or an alternate index,
VSE/VSAM issues an error code to warn you if the data has been updated
separately from its index.

CLOSE: Disconnecting a Processing Program from a File

The Close routine completes any I/O operations that are outstanding when a
processing program issues a CLOSE macro for a file. It writes any output buffers
that have not been stored.

Close updates the catalog entries for any changes in the attributes of a file; it also
updates the statistics on file processing (such as number of records inserted). The
addition of records to a file may cause its end-of-file indicator to change, in which
case Close updates the end-of-file indicator in the catalog. These end-of-file
indicators help ensure that the entire file is accessible. If an error prevents
VSE/VSAM from updating the indicators, the file is flagged as not properly closed.
When a processing program subsequently issues an OPEN macro, it is given an
error code indicating the failure.

Because it is essential for the integrity of a file that it is closed properly, z/VSE
automatically attempts to close all open VSE/VSAM files within the partition at
both normal and abnormal termination of a job step. If any control blocks for a file
have been destroyed through an error in your program, this file cannot be closed
and a message is issued to the operator. EXLST routines are not entered during
automatic CLOSE.

Close restores control blocks to the status that they had before the file was opened,
and frees the virtual storage space that Open used to construct VSE/VSAM control
blocks.

TCLOSE: Securing Records Added to a File

The TCLOSE macro performs the functions of CLOSE, except that it leaves the
program and the file connected so that you can continue processing without
reopening the file. You can use the TCLOSE macro to protect data while the file is
loaded or extended. Positioning is lost when a TCLOSE is issued.

Using VSE/VSAM Macros

200 VSE/VSAM V9R2 User’s Guide and Application Programming

Manipulating and Displaying the Information Relating Program and
Data

The MODCB, SHOWCB, and TESTCB macros are used for modifying, displaying,
and testing the contents of an ACB, EXLST, or RPL.

MODCB: Modifying the Contents of Control Blocks and Lists

The MODCB macro is used to specify new values for fields in an ACB, EXLST, or
RPL. For example, to use a single RPL to retrieve directly the first record having a
certain generic key and then to retrieve sequentially the rest of the records having
that generic key, you would use MODCB to alter the RPL to change from direct to
sequential access.

SHOWCB: Displaying Fields of Control Blocks and Lists

SHOWCB allows you to examine the contents of fields in an ACB, EXLST, or RPL.
VSE/VSAM displays the requested fields in an area you provide. You can also
display fields in addition to those defined in the macros. For example, when a file
is open, you can display various counts, such as number of CI splits, number of
deleted records, and number of index levels. The RBA of the last record accessed
and the error codes set in the ACB or RPL after macro execution can also be
displayed.

TESTCB: Testing the Contents of Control Blocks and Lists

The TESTCB macro enables you to test the contents of a field or combination of
fields in an ACB, EXLST, or RPL for a particular value and to alter the sequence of
your processing steps as a result of the test. Thus, TESTCB is similar to a branch
instruction. You can test the error codes set in the ACB or the RPL, for instance, or
the attributes of a file, such as record length.

Requesting Data Transfer, Positioning, and Deletion of Records
All of the preceding macros prepare to process a file. The request macros (GET,
PUT, POINT, ERASE, and WRTBFR) initiate an access to data. Another request
macro, ENDREQ, is provided to (1) terminate processing of a request when
completion is not required, or (2) free VSE/VSAM from having to keep track of a
position in the file. Each of these macros is associated with an RPL (or chain of
RPLs) that fully defines the request. The only parameter that is needed with a
request macro is the address of the RPL that defines the request.

Displaying Catalog Information. SHOWCAT

With the SHOWCAT macro, you can retrieve information from a catalog about any
non-open file defined in the catalog.

The entries in a catalog are related. Several entries are required to describe an
object and its associated objects (for example, a cluster and its data and index
components); one entry points to one or more other entries, which point to yet
others. Figure 18 on page 202 shows the relationship of entries that describe the
following types of objects:
v Alternate index (G)
v Cluster (C)

Using VSE/VSAM Macros

Chapter 11. Using VSE/VSAM Macros 201

v Data component (D)
v Index component (I)
v Path (R)
v Upgrade set (Y)

For example, an alternate index entry points to the entries of its data and index
components, its base cluster, and its path. SHOWCAT enables you to follow the
arrows pictured in Figure 18. You first issue SHOWCAT by specifying the name of
the object you want to display. The information VSE/VSAM returns to you (only if
EXTOPT is not specified) includes the CI numbers of the catalog entries that
describe any associated objects. You then issue subsequent SHOWCATs to retrieve
information from these associated entries by specifying the CI numbers that
VSE/VSAM has returned. The first time you issue SHOWCAT, VSE/VSAM
searches catalogs (in the following order) to locate the entry that describes the
object to be displayed:
1. The catalog identified by the SHOWCAT CATDSN parameter, if specified.
2. The catalog identified by the DLBL CAT parameter for the VSE/VSAM file.
3. The job catalog identified by the IJSYSUC DLBL statement, if supplied.
4. The master catalog (IJSYSCT).

You must provide DLBL cards for:
v The master catalog – if the entry is in the master catalog.
v The master and the job catalogs – if the entry is in the job catalog.

Path
(R)

Path
(R)

Cluster
(C)

Alternate
Index
(G)

Data
Component

(D)

Index
Component

(I)

Data
Component

(D)

Index
Component

(I)

Upgrade
Set
(Y)

Indicates a pointer
from one entry to another

Figure 18. Relationship of Catalog Entries

Using VSE/VSAM Macros

202 VSE/VSAM V9R2 User’s Guide and Application Programming

v The master catalog – if the entry is in a user catalog specified by either the
SHOWCAT CATDSN parameter or the DLBL CAT parameter for the
VSE/VSAM file.

VSE/VSAM returns to you the address of the ACB that defines the catalog
containing the entry to be displayed. The subsequent times you issue SHOWCAT,
you can specify that address, which causes VSE/VSAM to search only the
corresponding catalog.

Sharing Resources Among Files and Displaying Catalog Information
Normally, buffers and control blocks are allocated statically to a file at the time the
file is opened; they are freed when the file is closed. As long as the file is open,
these buffers and control blocks cannot be used by any other file.

The Shared Resources facility, however, allows you to share buffers, I/O control
blocks, and channel programs among several VSE/VSAM files within a partition,
and to manage I/O buffers. These buffers and control blocks are allocated out of a
common resource pool at the time you issue an I/O request for a file. When the
request is satisfied, the same buffers and control blocks can be assigned to another
file (for direct requests).

Sharing these resources optimizes their use and also reduces the amount of virtual
storage required (the working set) per partition. The facility is especially useful in
an environment in which (a) many VSE/VSAM files are open and it is therefore
difficult to predict the amount of activity that will occur at a given time, or (b)
every transaction may refer to several files.

Managing I/O buffers includes:
v Deferring write operations for direct PUT requests, thus reducing the number of

I/O operations.
v Correlating deferred requests by a transaction ID.
v Writing out buffers whose writing has been deferred.

Managing I/O buffers should enable you to speed up direct processing of
VSE/VSAM files whose activity is unpredictable.

When you share resources for sequential access, you have to establish positioning
before you can issue your initial retrieval request, because with shared resources
VSE/VSAM does not automatically position itself at the beginning of a file opened
for sequential access. Also note that you may not use shared resources to load
records into an empty file.

The macros you use to share resources and write I/O buffers are:
v BLDVRP (build VSE/VSAM resource pool)
v DLVRP (delete VSE/VSAM resource pool)
v WRTBFR (write buffer)

In addition, the SHOWCAT macro is provided to display, for non-open files, the
catalog information needed for the proper specification of some of the BLDVRP
operands.

The ACB, RPL, SHOWCB, MODCB, and TESTCB macros have been extended to
provide for sharing resources and managing I/O buffers.

Using VSE/VSAM Macros

Chapter 11. Using VSE/VSAM Macros 203

Data Set Name Sharing
Normally, VSE/VSAM handles data sets that are opened through different access
method control blocks (ACBs) always as different data sets; this applies even if
such ACBs point to the same data set. Thus, when a file is opened through
different ACBs, the read integrity may be impaired. Also, for non-shared resources
(NSR), individual buffers with different copies of the same data and index records
are in virtual storage, but cannot be shared. This results in unnecessary
input/output operations, and negatively affects read/write integrity.

VSE/VSAM provides the processing option data set name sharing. Using this option:
v Improves data integrity when opening a file through different ACBs.
v Does not violate data integrity when writing to base clusters directly, or when

writing through paths or alternate indexes simultaneously.
v Allows local shared resources (LSR) or non-shared resources (NSR) to share I/O

buffers and control blocks of a file that has been opened through different ACBs.
ACBs that are created by VSE/VSAM internally can also access shared buffers;
this, however, does not apply to catalogs.

To use Data Set Name Sharing, you essentially have to make entries in the ACB
macro; in the:
v MACRF operand -- you have to specify DSN and DDN.
v BSTRNO operand -- you have to consider additional requirements for handling

the base cluster of an alternate index (AIX).

The VSE/VSAM control block (CB) manipulation macros GENCB, MODCB,
SHOWCB, and TESTCB are available to manipulate the ACB.

The following ACB specifications are MVS compatible:
MACRF=(DDN|DSN) and BSTRNO=number

Considerations
If you use Data Set Name Sharing, note that:
v The first opening ACB has to define the total number of strings for the first and

all following ACBs. (This is similar to processing LSR resource pools.)
v All buffers have to be defined with the first ACB.
v All ACBs that are to be opened for a specific file must use the same resource

pool. That is, you have to specify the same SHRPOOL number in each ACB.
v VSE/VSAM ignores the definition of STRNO, BSTRNO, BUFSP, BUFNI and

BUFND for the second and further data set name shared ACBs.
v VSE/VSAM rejects an open to a reusable data set if ACB

MACRF=(....DSN,RST...) is specified.
v VSE/VSAM rejects an open if ACB MACRF=(....DSN,UBF...) is specified.
v Before issuing TCLOSE, issue ENDREQ to the ACB-related RPLs. This avoids

unpredictable results that could be caused by outstanding input/output
processing.

v For DSN shared ACBs, VSE/VSAM ignores the share option specified in the
IDCAMS commands ALTER and DEFINE. That is, if you specify data set name
sharing, and whenever VSE/VSAM has opened a file, all data integrity within
the DSN structure is handled internally by VSE/VSAM without the z/VSE
LOCK facility. Additional OPENs to this file without data set name sharing are
handled by VSE/VSAM depending on the specifications in the share option.

Using VSE/VSAM Macros

204 VSE/VSAM V9R2 User’s Guide and Application Programming

v It is not possible to share a path through an alternate index and a single alternate
index (either opened as a key sequenced file, or opened through a path specified
wit ACB MACRF=(AIX)). The reason for this is: there is a possibility that buffers
containing base cluster records and alternate index records are mixed.

Processing
The sharing of buffers and control blocks of a data set is initiated at OPEN time
through the operands MACRF=(DSN) and BSTRNO=number.

If a mix-up of input/output ACBs occurs, VSE/VSAM issues a warning message;
nevertheless, opening of the file will be successful. VSE/VSAM handles a mix-up
as follows:
v The first opening ACB designates whether the whole structure is for input or

output. After the first open, you cannot change the structure anymore.
v If the first ACB is opened with MACRF=(...OUT,DSN...), and if one of the

following ACBs is opened with MACRF=(...IN,DSN...), each insert/update request
through such following ACB is rejected.

v If the first ACB is opened with MACRF=(...IN,DSN...), each insert/update
request through this or each following ACB is rejected, even if the following
ACB has been opened with MACRF=(...OUT,DSN).

Specifying Manipulation Macros
The VSE/VSAM control-block manipulation macros GENCB, MODCB, SHOWCB,
and TESTCB are available to manipulate the ACB.

The following outlines the use of MACRF operand and the BSTRNO value:

GENCB ACB
,MACRF=(..,DSN),BSTRNO=number ...

This generates an ACB with MACRF=DSN, and sets the ACB field
BSTRNO to the additional base cluster string number.

MODCB ACB
,MACRF=(..,DDN|DSN),BSTRNO=number ...

This modifies the ACB to MACRF=DSN or DDN, and sets the ACB field
BSTRNO to the additional base cluster string number.

SHOWCB ACB
,FIELDS=(BSTRNO) ...

This shows the value of the ACB field BSTRNO.

TESTCB ACB
,MACRF=(..,DDN|DSN) ...
,BSTRNO=number ...

This tests the ACB for MACRF=DDN or DSN, and tests for the value of
the ACB field BSTRNO.

Using VSE/VSAM Macros

Chapter 11. Using VSE/VSAM Macros 205

Buffers and LSR Pools above 16MB Line of Storage
VSE/VSAM allows to allocate virtual storage for I/O buffers and for multiple local
shared resources (LSR) pools above or below the 16MB line of address space.

The option can be specified through the parameter RMODE31 that is available in
the macros ACB and BLDVRP. Refer to “The ACB Macro” on page 208 and “The
BLDVRP Macro” on page 219. For information on how VSE/VSAM allocates
buffers, refer to “Buffer Allocation above the 16MB Line of Storage” on page 19.

Note that a program check may occur if:
v A program uses a 24-bit address and if you attempt to reference control blocks,

I/O data buffers, or LSR pools that are located above the 16MB line of storage.
v You attempt to use LOCATE mode:

While in 24-bit mode, and
RMODE31=ALL was specified.

When you use 31-bit addresses in your programs, note the following:
v All VSE/VSAM control blocks that have fields defined as 31-bit addresses must

contain 31-bit addresses.
Do not use the high-order byte of a 31-bit address field as a user-defined flag
field. This applies to 24-bit and 31-bit addressing.

v You may obtain I/O data buffers from above or below the 16MB line as follows:
– Below the 16MB line by taking the default (=NONE) in the ACB or BLDVRP

macro.
– Above the 16MB line by specifying RMODE31=ALL in the ACB or BLDVRP

macro.
v The parameter list that is passed to your exit routine resides below the 16MB

line.
v You must recompile the portion of your program that contains the ACB,

BLDVRP, and DLVRP macro specifications, including control block manipulation
requests.

Using VSE/VSAM Macros

206 VSE/VSAM V9R2 User’s Guide and Application Programming

Chapter 12. Descriptions of VSE/VSAM Macros

This Chapter ...
v Documents Programming Interface information. See “Notices” on page xiii.
v Describes the macros in alphabetical order. For each macro, you find an

explanation of the format and operands, and other related details. When details
apply to macro groups, the information is organized as follows:
– Declarative Macros (ACB, EXLST, RPL):

- “Examples: ACB, EXLST, and RPL Macros” on page 294.
– Request Macros (GET, PUT, and so on):

- “Examples of Request Macros” on page 297.
- “Return Codes of Request Macros” on page 320.

– Control Block Manipulation Macros (GENCB, MODCB, and so on):
- “List, Execute, and Generate Forms of the Control Block Manipulation

Macros” on page 322.
- “Return Codes from the Control Block Manipulation Macros” on page 322.

– OPEN/CLOSE Macros:
- “OPEN/CLOSE/TCLOSE Message Area” on page 217.

v For information on the various macro groups, refer to Chapter 11, “Using
VSE/VSAM Macros,” on page 195.

Syntax of VSE/VSAM Macros
For the general command description conventions, refer to the VSE/VSAM
Commands, SC33-8315 under “Understanding Syntax Diagrams”.

In the VSE/VSAM macros, you can code address as a symbolic name. Except for
the ACB, EXLST, and RPL macros, you can also code an address as a register,
using either ordinary register notation (with registers 2 through 12) or, if shown in
the format description as a decimal number in parentheses, special register
notation. For example:

RPL=address│(1)

means that you can specify either a symbolic address, any of the registers 2 to 12,
or Register 1.

The use of Registers 0, 1, 13, 14, and 15 is the same as for z/VSE macros.
VSE/VSAM does not save the contents of registers 0, 1, 14, 15 before using them.
The highest order part of register 13 can be changed, depending on the caller's
AMODE. If you use these registers, you must either save their contents yourself
(and reload them later) or finish with them before VSE/VSAM uses them. For
additional information about the use of registers, see the z/VSE System Macros
Reference, SC34-2638.

You can code a value (number) as any absolute expression, except for a
self-defining character term. You can code a name according to the rules of the
assembler. The control block manipulation macros (GENCB, SHOWCB, MODCB,
and TESTCB) can be coded in even more ways as shown in “Operand Notation for
VSE/VSAM Macros” on page 325.

© Copyright IBM Corp. 1979, 2014 207

Some operands of the VSE/VSAM macros can have more than one parameter.
These operands are shown with parentheses around the parameters (for example,
the MACRF operand of the ACB macro). This means that you can code the
operand, if it has only one parameter, with or without parentheses around the
parameter:

MACRF=option
MACRF=(option)

However, if the operand is coded with two or more parameters, enclosing
parentheses are required:

MACRF=(option,option)

VSAM Executable Macros and Their Mode Dependencies
Table 24. VSAM Macros and Their Mode Dependencies

Macro AMODE RMODE Comment

CLOSE 31 ANY

OPEN 31 ANY

TCLOSE 31 ANY

GET(RPL) 31 ANY

PUT(RPL) 31 ANY

ENDREQ 31 ANY

POINT 31 ANY

GENCB 31 ANY All parameters and control blocks can be allocated
either above or below 16MB

SHOWCB 31 ANY All parameters and control blocks can be allocated
either above or below 16MB

MODCB 31 ANY All parameters and control blocks can be allocated
either above or below 16MB

TESTCB 31 ANY All parameters and control blocks can be allocated
either above or below 16MB

SHOWCAT 31 ANY All parameters and control blocks can be allocated
either above or below 16MB

BLDVRP 31 ANY

DLVRP 31 ANY

WRTBFR 31 ANY

The ACB Macro
You specify most information (such as key length or record format) about the file
in the DEFINE command of IDCAMS. That information then resides in the
VSE/VSAM catalog and is brought into virtual storage when the ACB is opened.

You code the values for the ACB macro operands as absolute numeric expressions,
character strings, codes, and expressions that generate valid relocatable A-type
address constants. Ordinary register notation cannot be used for address.

VSE/VSAM Macros: Descriptions

208 VSE/VSAM V9R2 User’s Guide and Application Programming

Format of the ACB Macro

��
name

ACB
AM=VSAM

,BSTRNO=number ,BUFND=number
�

�
,BUFNI=number ,BUFSP=number ,DDNAME=filename

�

�
,EXLST=address , Macfg ,MAREA=address

,MLEN=0

,MLEN=number
�

�

�

,

,PARMS=()
KEEP

CLOSDSP=()
DELETE ,KEEP
DATE ,DELETE

DSNAME=address

�

�
,PASSWD=address NONE

,RMODE31=
BUFF
ALL
CB

,SHRPOOL=0

,SHRPOOL=number
�

�
,STRNO=1

,STRNO=number
��

Macfg:

MACRF=(
ADR ,CNV

,KEY ,DDN

,DSN

,NDF

,DFR ,DIR
�

�
,SEQ

,SKP

,IN

,OUT

,NCM

,CMP

,NRM

,AIX

,NRS

,RST
�

�
,NSR

,LSR

,NUB

,UBF
)

This macro specifies the kind(s) of processing you will do with the file. The
options must be meaningful for the file. For example, if you specify keyed access
for an entry-sequenced file, you will not be able to open the file. You must specify
all of the types of access you are going to use, whether you use them concurrently
or by switching from one to the other.

ACB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 209

For information on the interaction between the DLBL DISP parameter and the ACB
MACRF specification when a file is opened, refer to “File Disposition” on page 32.

Mutually exclusive options are:
AIX and NRM NDF and DFR
IN and RST LSR and UBF
NRS and RST LSR and RST
NUB and UBF NSR and DFR
NSR and LSR NCM and CMP

The following restrictions apply to a SHAREOPTIONS 4 key-sequenced output file:
v One ACB cannot specify both KEY and ADR (or both KEY and CNV). Attempts

to do this result in an OPEN failure.
v If the file is open for output under one ACB for keyed access, an attempt to

open it under another ACB with MACRF=(OUT,ADR) or MACRF=(OUT,CNV)
will fail.

v If the file is open for output under one ACB for addressed or CI access, an
attempt to open it under another ACB with MACRF=(OUT,KEY) will fail.

If an application chooses to place a VSE/VSAM ACB in 31-bit partition GETVIS,
the Open macro can be used to open only that one ACB in a single invocation
(Open List). No DTFs can be included in an Open List containing an ACB residing
in 31-bit partition GETVIS.

name
one through eight characters that provide a symbolic address for the ACB that
is assembled. If you omit the DDNAME parameter, the specified name serves
as the file name that you must specify in the DLBL JCL statement. In that case,
the name you use must not exceed seven characters, and its first character
must be a letter (A - Z).

AM=VSAM
specifies that this is a VSE/VSAM control block. You may want to specify this
operand for documentation purposes if your installation also uses VTAM.

BSTRNO=number
specifies additional buffers and strings that are required whenever a path is
opened to handle the base cluster of an alternate index (AIX). It specifies the
number of strings that VSE/VSAM is to allocate internally for access to the
base cluster of a path.

BSTRNO applies only in conjunction with data set name sharing.

If you omit the operand or specify BSTRNO=0, the number of internally
created strings is twice that specified in STRNO.

No dynamic increase of string numbers is possible under VSE/VSAM.

If the value specified in BSTRNO is insufficient, requests could fail. BSTRNO is
accepted if the sum of the values in STRNO and BSTRNO does not exceed 255;
this applies even if the opened ACB does not belong to the path.

It is important to define a reasonable value with the first ACB that opens for
data set name (DSN) sharing. This is necessary, because VSE/VSAM ignores
the BSTRNO values of subsequently opened ACBs with DSN sharing to the
same data set.

For further information and considerations, refer to “Data Set Name Sharing”
on page 204.

ACB Macro

210 VSE/VSAM V9R2 User’s Guide and Application Programming

BUFND=number
specifies the number of I/O buffers to be used to hold CIs containing data
records. Every buffer is the size of one data CI. The allowable minimum
specification (and also the default) is the number specified for STRNO, plus
one. (The default for STRNO is one.) If you specify the BUFND operand, but
your specification is less than the minimum, VSE/VSAM overrides your
specification and uses the minimum. However, VSE/VSAM issues no message
to inform you of this.

These buffers will be allocated in 24-bit partition GETVIS, unless
“RMODE31=BUFF” is specified, or “BUFDAT=RMODE31” is specified on the
DLBL statement at run-time. If there is insufficient storage available to satisfy
this request, processing will terminate with an appropriate OPEN error code.

VSE/VSAM increases the number of data buffers you specify if the amount of
virtual storage available for buffers differs from the storage requirements
indicated by the BUFND and BUFNI operands. See the BUFSP operand for an
explanation. For examples of BUFND use, see “Buffer Specification” on page
97.

BUFNI=number
specifies the number of I/O buffers to be used to hold index CIs (index
records). Every buffer is the size of one index CI. The minimum number you
can specify is the number specified for the STRNO operand. (If you omit
STRNO, BUFNI must be at least one, because the default for STRNO is one.) If
BUFNI is omitted, the default is the number specified for STRNO, because the
smallest number of index buffers allowed is one for every string. If you specify
the BUFNI operand, but your specification is less than the minimum,
VSE/VSAM overrides your specification and uses the minimum. However,
VSE/VSAM issues no message to inform you of this.

VSE/VSAM increases the number of index buffers you specify if the amount of
virtual storage available for buffers differs from the storage requirements
indicated by the BUFND and BUFNI operands. See the BUFSP operand for an
explanation. For examples of BUFNI use, see “Buffer Specification” on page 97.

BUFSP=number
specifies the size, in bytes, of an area for data and index I/O buffers.
VSE/VSAM issues a GETVIS macro to obtain the buffer area in your
processing partition. It must be at least as large as the buffer space size
recorded in the catalog entry for the file. If your specification is too small,
VSE/VSAM overrides it and uses the value recorded in the catalog for buffer
space size. However, VSE/VSAM issues no message to inform you of this.

If you do not specify the BUFSP operand, the buffer space size will be the
larger of (1) the size recorded in the catalog or (2) the size determined from the
values specified for BUFND and BUFNI. (The size recorded in the catalog was
specified by the BUFFERSPACE parameter in the DEFINE command of
IDCAMS. If that parameter was omitted when the file was defined, a default
value was set in the catalog. This default value, the minimum amount of buffer
space allowed by VSE/VSAM, is enough space for two data CIs and one index
CI.)

You can also specify buffer space by means of the BUFSP=number operand on
the DLBL statement that identifies the file to be processed. This value overrides
the BUFSP operand in the ACB macro. It also overrides the BUFFERSPACE
parameter in the DEFINE command if it is greater than the BUFFERSPACE
parameter value.

ACB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 211

The data buffers will be allocated in 24-bit partition GETVIS, unless
“RMODE31=BUFF” is specified, or “BUFDAT=RMODE31” is specified on the
DLBL statement at run-time. If there is insufficient storage available to satisfy
this request, processing will terminate with an appropriate OPEN error code.

If the values you code for BUFND, BUFNI, and BUFSP are not consistent with
each other, VSE/VSAM increases the number of buffers to conform to the size
of the buffer area.

If BUFSP is greater than the minimum requirements and greater than the
BUFND and BUFNI requirements, the extra space will be allocated between
data and index buffers as follows:
v If the ACB MACRF operand indicates direct processing only:

First, BUFND and BUFNI are allocated as specified. Then, all additional
space is allocated to index buffers.

v If the ACB MACRF operand indicates sequential processing:
First, BUFND and BUFNI are allocated as specified. Then, one additional
buffer is allocated to the index and the remaining space is allocated to data
buffers. Any space remaining, but insufficient for a single data buffer, is
allocated to an index buffer.

If BUFSP is greater than the minimum requirements, but less than the BUFND
and BUFNI requirements, the buffer space will be changed to conform to the
BUFND and BUFNI requirements.

If you provide your own pool of I/O buffers for CI (CNV) access
(MACRF=UBF), the BUFND, BUFNI, and BUFSP operands have no effect. The
AREA and AREALEN parameters in the RPL macro then define the area for
user buffers.

For examples of BUFSP use, see “Buffer Specification” on page 97.

DDNAME=filename
specifies a character string of up to seven bytes and is the same as the filename
parameter specified in the DLBL statement that identifies the VSE/VSAM file
or path to be processed.

If the ‘file ID’ in the DLBL statement indicates a path, but you want to process
only the alternate index of the path, you must specify MACRF=AIX (see the
discussion of the MACRF operand). If the file ID does not indicate a path, the
AIX option is ignored.

If you omit the DDNAME operand, you must specify the DLBL filename as the
name (label) of the ACB macro.

EXLST=address
specifies the address of a list of user exit-routine addresses. The list is
generated by the EXLST macro (or the GENCB macro). If you use the EXLST
macro, you can specify its name (label) here as the address of the exit list. If
you use the GENCB macro, you can specify the address of the EXLST returned
by GENCB in Register 1. Omitting this operand indicates that you have no
user exit routines.

MACRF=
see the beginning of this section 209.

MAREA=address
specifies the address of an optional OPEN/CLOSE/TCLOSE message area.
(See “OPEN/CLOSE/TCLOSE Message Area” on page 217.)

ACB Macro

212 VSE/VSAM V9R2 User’s Guide and Application Programming

MLEN=number
specifies the length of an optional OPEN/CLOSE/TCLOSE message area. The
default is 0, the maximum value can be 32,768 bytes.

PARMS=(CLOSDSP=options DSNAME=address)

CLOSDSP=options
specifies the CLOSE disposition for a reusable file. Options specified in the
DLBLs DISP=(,option) JCL statement override the options specified in this
parameter.

If a second option (either KEEP or DELETE) is specified, this indicates
whether the file should be kept or deleted if it was opened during a job
that ended abnormally. For example, if you open a file with
PARMS=(CLOSDSP=(DELETE,KEEP)) specified, then this file is deleted
only if the job comes to a normal end. In any other case, the file is kept so
that you can rerun the job without reloading the file.

DATE
indicates that disposition depends on the current system date and the
file's expiration date. If the expiration date is yet future relative to the
system date, the file is treated as though KEEP were specified.
Otherwise the file is treated as though DELETE were specified.
DISP=(,DATE) on the DLBL statement is equivalent to
PARMS=(CLOSDSP=DATE) and will override any CLOSDSP specified
in the ACB.

DELETE
indicates that the file and its contents need not be preserved.
VSE/VSAM is free to release resources associated with the file.
DISP=(,DELETE) on the DLBL statement is equivalent to
PARMS=(CLOSDSP=DELETE) and will override any CLOSDSP
specified in the ACB.

KEEP
indicates that the file and its contents are to be preserved.
DISP=(,KEEP) on the DLBL statement is equivalent to
PARMS=(CLOSDSP=KEEP) and will override any CLOSDSP specified
in the ACB.

If disposition parameters indicate that file resources can be freed,
VSE/VSAM releases as many resources as allowed by the sharing status
and by the characteristics defined for the file. For details, refer to “File
Disposition” on page 32.

DSNAME=address
specifies the address of a 88 byte area that contains the data set names of
the cluster and the catalog that contains the data set. The DSNAME
operand allows to open a file without referring to a matching label (DLBL).
The format of the area pointed to by address is:

Offset
Dec Hex Bytes Description
0 0 44 Entry name of cluster or component to be used
44 2C 44 Entry name of the catalog

PASSWD=address
specifies the address of a field that contains the highest-level password
required for the type(s) of access indicated by the MACRF operand. The first
byte of the field pointed to contains the length (in binary) of the password

ACB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 213

(maximum of 8 bytes). A zero in the length byte indicates that no password is
supplied. If the file is password-protected and you do not supply a required
password in the ACB, VSE/VSAM gives the console operator the opportunity
to supply it when opening the file.

RMODE31=NONE | BUFF | ALL │ CB
specifies whether VSE/VSAM OPEN is to obtain virtual storage for I/O
buffers above or below the 16MB line of address space. The default is NONE.
Another option to accomplish the same effect as 'RMODE31=BUFF', would be
to specify 'BUFDAT=RMODE31' on the DLBL statement at run-time.

Note: The internal VSE/VSAM buffers and control blocks are not affected by
the RMODE31 parameter. If possible, VSE/VSAM places such buffers and
control blocks above the 16MB line.

(Internal VSE/VSAM buffers are, for example, NSR index buffers, path buffers,
and upgrade set buffers.)

NONE (CB)specifies that VSE/VSAM I/O buffers must be obtained from below
the 16MB line.

BUFF (ALL) specifies that VSE/VSAM I/O buffers may to be obtained from
above the 16MB line.

ALL and CB are implemented for reasons of z/OS (DFSMSdfp) compatibility.

SHRPOOL=number
identifies which LSR pool is to be connected to the ACB. This parameter is
only valid when MACRF=LSR is also specified. For number specify the
identification number of the shared pool; it can be a number from 0 through
15. The default is 0.

STRNO=number
indicates how many concurrent active requests VSE/VSAM is to handle. The
maximum value is 255. The default is one.

During initial load of a file, VSE/VSAM ignores your specification and sets the
value to one because a file can be loaded by one string only. After the file is
loaded and successfully closed, it can be reopened and processed by as many
strings as specified under STRNO.

Several requests, with the corresponding RPLs pointing to the same ACB, can
be active at the same time. Thus, you can access simultaneously (a) different
parts of a file, and (b) in different modes of operation (sequential and direct, or
keyed and addressed, for example). You may, for example, process one part of
a file sequentially (forward or backward) and intermix sequential processing
with direct requests to any part of the file, without affecting the sequential
positioning.

Every request is activated by its own RPL and action (GET, PUT, etc.) macro.
Positioning information is maintained separately for every RPL, so that every
request can be processed independently from all other requests.

A request is defined either by a single RPL or by a chain of RPLs (see “RPL:
Specifying the Request Parameter List” on page 198). Specify for STRNO the
total number of RPLs or chains of RPLs that you will use to define requests.
For a chain of RPLs VSE/VSAM needs to remember only one position.
However, every position beyond the minimum number that VSE/VSAM needs
to remember requires additional virtual-storage space for:
v A minimum of one data I/O buffer and, for keyed access, one index I/O

buffer (the size of an I/O buffer is the CI size of a file).

ACB Macro

214 VSE/VSAM V9R2 User’s Guide and Application Programming

v Internal control blocks and other areas.

VSE/VSAM remembers its position in the file for any sequential or update
request. For example, sequential access depends on VSE/VSAM being able to
determine the location of the next record from the location of the present
record. Updating or deleting a record depends on VSE/VSAM remembering its
location after you retrieve it. Also, processing a record in the I/O buffer
requires VSE/VSAM to remember its location in the buffer.

Note: If the number of concurrent requests (RPLs or chain of RPLs) exceeds
the number you have specified in the ACB STRNO operand, you must
disconnect a request from its RPL by means of the ENDREQ macro before you
can issue another concurrent request. The ENDREQ macro is discussed under
“The ENDREQ Macro” on page 226.

Options of the MACRF Parameter
The following explains the MACRF parameter options. The options are arranged in
groups, where every group has a default value (highlighted). You can specify
options in any order. You may specify both DIR and SEQ; with keyed access, you
may specify SKP as well. If you specify OUT and want simply to retrieve some
records as well as update, delete, or insert others, you need not also specify IN.
You may specify both ADR and KEY to process a key-sequenced file.

ADR
Addressed access (for key-sequenced and entry-sequenced files).

CNV
CI access.

KEY
Keyed access (for key-sequenced or relative-record files).

DDN
specifies to open the data set according to the DDNAME specification.

DSN
specifies that VSE/VSAM handles the first ACB that is opened as if you
specified DDN. However, VSE/VSAM also:
v Remembers that a DSN structure was built.
v Connects the second and all following ACBs that open the first data set to

the structure of the first ACB.

If DSN is specified, VSE/VSAM shares control blocks and I/O buffers.

For further information and considerations, refer to “Data Set Name Sharing”
on page 204.

DFR
Write operations are to be deferred when possible.

NDF
Write operations are not to be deferred.

DIR
Direct processing.

SEQ
Sequential processing.

SKP
Skip sequential processing (for key-sequenced or relative-record files).

IN Retrieve records only.

ACB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 215

OUT
Retrieve, insert, add-to-end, or update records (keyed access); retrieve, update,
or add-to-end (addressed access).

NCM
All data records exchanged between VSE/VSAM and the application are in
uncompressed (expanded) format. If the file is in COMPRESSED format,
MACRF=CNV must not be specified.

CMP
If the file is in COMPRESSED format, all data (records or control intervals)
exchanged between VSE/VSAM and the application are in compressed format.
The record includes the compressed record prefix (see “Data Format of
Records” on page 70). SHOWCB and TESTCB also take the prefix length into
account for the LRECL, RKP, and RECLEN keywords, if MACRF=CMP is
specified.

NRM
The file (or path) named in the DDNAME operand or in the DLBL statement is
to be processed.

AIX
The alternate index of the path specified in the DDNAME operand is to be
processed. If no path is specified there, this option is ignored. The AIX option
causes the path restrictions (that is, the restrictions limiting the access through
a path) to be ignored so that the alternate index can be processed like a
key-sequenced file. The alternate index of the path can be opened for input
(IN), output (OUT), or it can be reset (RST), provided it was defined with the
REUSE attribute (in the DEFINE ALTERNATEINDEX command).

NRS
The Open routine does not reset the file to ‘empty’. Output operations will
cause updating or extension of the existing record. DISP=OLD on the DLBL
statement is equivalent to MACRF=NRS and will override MACRF=RST.

RST
The Open routine resets the catalog information about the file (cluster or
alternate index) to its original status, that is, to the status it had before it was
opened for the first time. The file must have been defined with the REUSE
attribute for RST to be effective. Although the file is not erased, you can handle
it like a new file and use it as a work file. After the Open routine has
performed the reset operation, the RST option is equivalent to the OUT option.
DISP=NEW on the DLBL statement is equivalent to MACRF=RST and will
override MACRF=NRS.

NSR
Non-shared resources (normal operation).

LSR
Local shared resources (LSR).

When you specify LSR in the ACB, VSE/VSAM ignores the BUFND, BUFNI,
BUFSP, and STRNO operands, because it uses the BUFFERS and STRNO
values specified in the BLDVRP macro.

For more information, see “Sharing Resources Among Files and Displaying
Catalog Information” on page 203.

NUB
No user buffers; VSE/VSAM supplies buffers for I/O operations (KEY, ADR,
and CNV access).

ACB Macro

216 VSE/VSAM V9R2 User’s Guide and Application Programming

UBF
User buffers (only CNV access can be specified). VSE/VSAM will read and
write CIs in a buffer you supply. It is pointed to by the AREA parameter of the
RPL.

OPEN/CLOSE/TCLOSE Message Area

Providing the Area
After you have issued an OPEN, CLOSE, or TCLOSE macro, the ACB error code is
either zero, indicating that the files were opened or closed successfully, or
non-zero, indicating that a warning or error condition occurred. You can examine
this code by specifying the ERROR keyword in the SHOWCB or TESTCB macro.
However, during an OPEN, CLOSE, or TCLOSE more than one warning or error
condition may be detected, in which case the error code which you get when you
specify the ERROR keyword reflects only the warning or error condition which
occurred last. The error code does not indicate any other (earlier) conditions which
might have occurred during the OPEN, CLOSE, or TCLOSE.

In order to save such multiple warning or error conditions, you can provide a
message area in which those conditions are to be stored, together with additional
information. This message area is connected to the ACB when you specify the
following parameters in the ACB macro:

MAREA=address,MLEN=length

If MAREA or MLEN are not specified or a length of zero has been specified for
MLEN, no area is provided and the ACB error code is then the only indication for
errors or warnings which occurred during OPEN, CLOSE, or TCLOSE. If you have
specified both MAREA and MLEN (with a non-zero value) and error or warning
conditions are detected, appropriate messages are stored into the message area.

The OPEN/CLOSE/TCLOSE message area is also used by VSE/VSAM record
management if resources such as buffers and control blocks are shared among files.
If a GET request is issued for a file using the common resource pool, it can happen
that (owing to deferred write operations for PUT requests) the resource pool is
filled up with modified buffers forcing VSE/VSAM to write a buffer for another
file before it can satisfy the GET request. If an error occurs in writing out such a
buffer, this is indicated in the message area, together with the ACB name of the
affected file.

The message information provided by VSE/VSAM consists of the message area
header and the message list.

The message area header contains statistical, pointer, and general information. Its
contents are unrelated to the individual messages.

Format of the Message Area Header
The format of the message area header is:

Byte Meaning

0 Flag byte

Bit 0=1:
At least one warning or error condition has occurred and the
complete header is stored.

Bit 0=0:
Either no warning or error condition has occurred or the message

ACB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 217

area is too short for the complete header. No further header
information and no messages are stored.

Bits 1-7
Reserved (set to binary zero)

1-2 Length of message area header

3 Request type code:

X‘01’ OPEN

X‘02’ CLOSE

X‘03’ TCLOSE

X‘04’ GET (for shared resources only)

4-11 Filename used for ACB

12-13 Total number of error or warning conditions issued by OPEN, CLOSE,
TCLOSE, or (for shared resources only) by record management

14-15 Number of messages stored into message area

16-19 Address of message list, that is, of first message in the message area

Apart from the flag byte, message area header information is stored only when a
warning or error condition was detected (the ACB or RPL error code is non-zero)
and the length of the message area (MLEN) is large enough to accommodate the
full message area header. Thus, before accessing bytes 1-19 of the message header
information, you should test byte 0 to see whether further information was stored
at all.

The message list contains the individual messages corresponding to the warning or
error conditions detected. It is pointed to by bytes 16-19 of the message area
header. Within the message list, the individual messages are stored continuously
one after another in the form of variable-length records. The number of messages
stored is contained in the message area header (bytes 14-15). Before investigating
the message list, you should check whether the stored-message count is zero or
greater than zero. The format of a message is as follows:

Byte Contents

0-1 Total length of message (including length bytes).

2 ACB error code corresponding to error or warning condition represented
by this message, or (for shared resources) RPL error code indicating write
error.

3 Function-type code (indicates the component which produced the error or
warning condition and the state of the upgrade set):

X‘00’ Condition occurred during accessing the base cluster. Upgrade set
is correct.

X‘01’ Condition occurred during accessing the base cluster. Upgrade set
may be incorrect as a consequence of this request.

X‘02’ Condition occurred during accessing the AIX over a base cluster.
Upgrade set is correct.

X‘03’ Condition occurred during accessing the AIX over a base cluster.
Upgrade set may be incorrect as a consequence of this request.

OPEN/CLOSE/TCLOSE Message Area

218 VSE/VSAM V9R2 User’s Guide and Application Programming

X‘04’ Condition occurred during upgrade processing. Upgrade set is
correct.

X‘05’ Condition occurred during upgrade processing. Upgrade set may
be incorrect as a consequence of this request.

X‘06’ Condition occurred during writing of a buffer which does not
belong to the file for which the GET request was issued (for shared
resources only).

4-nn File ID of the component indicated by the function-type code (up to 44
bytes), or (for shared resources) name of the ACB identifying the file for
which the buffer write error occurred.

Exceptional Conditions for the Message Area
v Message area (MLEN) is too small to contain the complete message area header:

Byte 0, bit 0=0: The whole message area is overwritten with binary zeros.
v Message area is too small to contain a complete message:

Byte 0, bit 0=1: The header exists.
Bytes 12-13 not equal to 0: Warning or error conditions have occurred.
Bytes 14-15=0: No message stored.

v Message area is too small to contain all messages:
Byte 0, bit 0=1: The header exists.
Bytes 12-13 not equal to 0: Warning or error conditions have occurred.
Bytes 14-15 not equal to 0: If the value in bytes 14-15 is lower than in bytes
12-13, then not all messages have been stored.

The BLDVRP Macro
To share resources, you must provide a resource pool which you build by issuing
the BLDVRP (build the VSE/VSAM resource pool) macro. Issuing BLDVRP causes
VSE/VSAM to share the I/O buffers, I/O control blocks, and channel programs of
those files whose ACBs indicate the local shared resource (LSR) option. Control
blocks and channel programs are shared automatically; you can control the sharing
of buffers.

When issuing BLDVRP, you must specify one or more buffer pools within the
resource pool, and also the size and number of buffers in every buffer pool. A file
uses the buffer pool whose buffer size exactly matches the file's CI size or, if this
CI size is not available, the buffer pool with the next-larger buffer size. The file
uses only the one buffer pool.

To share resources, you must do all of the following:
v Issue the BLDVRP macro to build a resource pool.
v Code the LSR option in the MACRF operand in the ACBs of your files.
v Issue OPEN to connect these files to the resource pool.

When you issue a BLDVRP macro, Register 13 must contain the address of a
72-byte save area that you are providing. When you issue a BLDVRP macro from
within one of your exit routines such as LERAD or SYNAD, your program must
provide a second 72-byte save area for use by VSE/VSAM, because the original
save area is still in use by the external VSE/VSAM routine.

OPEN/CLOSE/TCLOSE Message Area

Chapter 12. Descriptions of VSE/VSAM Macros 219

Deciding How Big a Pool to Provide
You have to provide a resource pool before any clusters or alternate indexes are
opened to use it. Specifying the BUFFERS, KEYLEN, and STRNO operands of the
BLDVRP macro requires knowledge of the size of the CIs, data records (if
spanned), and key fields in the components that will use the resource pool and
knowledge about the way the components are processed.

Displaying Information about an Unopened File
The SHOWCAT macro enables you to get information about a component before
its cluster or alternate index is opened. The program that is to issue BLDVRP can
issue SHOWCAT on all of the components to find out the sizes of CIs, records, and
keys. This information enables the program to calculate values for the BUFFERS
and KEYLEN operands of BLDVRP.

Displaying Statistics about a Buffer Pool
You can get statistics about the use of buffer pools to determine how you could
improve a previous definition of a resource pool and the mix of files that use it.
The SHOWCB macro enables you to get statistics about a buffer pool. The statistics
are available from an ACB that describes an open file that is using the buffer pool.
They reflect the use of the buffer pool from the time it was built to the time
SHOWCB is issued. All of the statistics except one are for a single buffer pool. To
get statistics for the whole resource pool, issue SHOWCB for every buffer pool in
it.

The statistics cannot be used to redefine the resource pool while it is in use. You
have to make adjustments the next time you build it.

Format of the BLDVRP Macro

��
name

BLDVRP BUFFERS=(�

,

size(number)),STRNO=number �

�
,KEYLEN=255

,KEYLEN=length

,MF=L

,MF= L
(E, address)

(1)

,RMODE31=NONE

,RMODE31=
BUFF
ALL
CB

�

�
,SHRPOOL=0

,SHRPOOL=number

,TYPE=LSR

,TYPE=LSR, DATA
INDEX

��

name
one to eight characters that provide a symbolic name.

BUFFERS=size(number)
specifies the size and the number of buffers in every buffer in the resource
pool. The number of buffer pools in the resource pool is implied by the
number of size(number) pairs you specify. The buffer sizes should normally be

BLDVRP Macro

220 VSE/VSAM V9R2 User’s Guide and Application Programming

set equal to the CI sizes of the files to be processed. (You can find out the CI
size of a file by issuing the SHOWCAT macro for that file.) If you do not
specify the exact buffer (=CI) size for a file, VSE/VSAM will use buffers from
the buffer pool with the next larger buffer size. All buffers and control blocks
are automatically defined in 31-bit storage, if available.

When you process a key-sequenced file, the index component, as well as the
data component, shares the buffers of a buffer pool. When you use an alternate
index to process a base cluster, the components of the alternate index and the
base cluster share buffers. The components of alternate indexes in an upgrade
set share buffers. Buffers of the appropriate size and number must be provided
for all of these components, each of which uses the buffer pool whose buffers
are exactly the right size or the next-larger size.

size is 512, 1024, 2048, 4096, or so on in increments of 4096 to a maximum of
32KB.

number is at least 3 but must not exceed 32767.

KEYLEN=length
specifies the maximum key length of the files that are to share the resource
pool. The default is 255.

The keys whose lengths must be provided for are the prime key of every KSDS
and the alternate key of every alternate index that is used for processing or is
upgraded. The key length (relative record number) of a relative record file is 4.
If the buffer pool is to contain for entry-sequenced files only, specify
KEYLEN=0. (You can find out the key length of a file by issuing the
SHOWCAT macro for that file.)

MF=L
indicates that this is the list form of BLDVRP. The list form builds a parameter
list when the macro is assembled. It is not executable. If you do not specify
STRNO in the list form of BLDVRP, you must specify it in the execute form.

The list form of the BLDVRP macro is especially useful when the buffer sizes
of the VSE/VSAM files are not known. In that case you can first retrieve from
the VSE/VSAM catalog the CI sizes of the files to be processed via the
SHOWCAT macro and then enter these values in the BLDVRP parameter list.

The format of the BLDVRP parameter list is described in “The BLDVRP
Parameter List” on page 342.

MF=(E)
indicates that this is the execute form of BLDVRP. address is the address of the
parameter list built by the list form of BLDVRP.

If you use register notation, you may use Register 1, as well as any register
from 2 through 12. The execute form puts the address of the parameter list in
Register 1 and passes control to VSE/VSAM to process the list. You may,
however, first change the values for STRNO and/or KEYLEN (which are both
optional in the execute form of BLDVRP). BUFFERS may not be specified in
the execute form of BLDVRP, because this operand affects the length of the
parameter list.

If the MF operand is omitted, the standard form of the BLDVRP macro is
assumed, which builds a parameter list, puts its address in Register 1, and
passes control to VSE/VSAM to process the list.

RMODE31=NONE | BUFF | ALL│CB
specifies where the I/O buffers for the LSR pool are to reside. (The pools are
identified in the SHRPOOL keyword.) The default is NONE.

BLDVRP Macro

Chapter 12. Descriptions of VSE/VSAM Macros 221

NONE (CB) specifies that the buffers must reside below the 16MB line.

BUFF (ALL) specifies that the buffers may reside above the 16MB line.

ALL and CB are implemented for reasons of z/OS (DFSMSdfp) compatibility.

SHRPOOL=number
specifies the identification number of a shared resources pool that is to be
build. Specify a number from 0 through 15. The default is 0.

STRNO=number
specifies the maximum number of requests that may be issued concurrently for
all of the files that are to share the resource pool. The number must be at least
one and no more than 255.

If you want to find out how effectively your resource pool is utilized during
execution, you can display the maximum number of requests which were
concurrently active because the resource pool was built by issuing a SHOWCB
ACB=...,FIELDS=(STRMAX) in your processing program. Depending on the
result, you may want to redefine STRNO=number the next time you build
your resource pool. (You cannot redefine the pool while it is in use.)

The ACB specified in the SHOWCB macro can be any ACB that describes an
open file that is using the resource pool.

TYPE=LSR(,DATA│INDEX)
Allows definition of separate LSR pools for data and index. If only LSR is
specified, there is one LSR pool for both data and index. Definition of an
INDEX LSR pool requires a previous definition of a DATA LSR pool. The form
"TYPE=LSR" is implemented for compatibility with z/OS (DFSMSdfp). No
type other than LSR (such as GSR on z/OS) is accepted by VSE/VSAM.

Return Codes from BLDVRP
When VSE/VSAM returns to your processing program after a BLDVRP request,
Register 15 contains one of the following return codes:

Return Dec Code Hex Meaning
0 X‘00’ VSE/VSAM completed the request.
4 X‘04’ The resource pool already exists in the partition.

No new
pool was
build.

12 X‘0C’ The request was not executed because an error
was encountered while VSE/VSAM routines were
loaded (for example, CDLOAD failed), or
there was insufficient GETVIS space for the
partition that uses the BLDVRP macro.

20 X‘14’ STRNO is less than one or greater than 255.
24 X‘18’ BUFFERS is specified incorrectly: size or

number is invalid.
28 X‘1C’ SHRPOOL is less than 0 or greater than 15.
32 X‘20’ BLDVRP was issued to build an index resource pool, but the

required corresponding data resource pool does not exist.

BLDVRP Macro

222 VSE/VSAM V9R2 User’s Guide and Application Programming

Connecting a File to a Resource Pool
After having built a resource pool, you cause a file to use that pool by specifying
the SHRPOOL=number and MACRF=(LSR) operands of the file's ACB before you
open the file, thus:

ACB SHRPOOL=number,MACRF=(LSR)

When you have specified LSR in the ACB, VSE/VSAM ignores the BUFND,
BUFNI, BUFSP, and STRNO operands, because it uses the BUFFERS and STRNO
values that you have specified in the BLDVRP macro.

Restrictions
UBF (user buffering) may not be specified together with LSR. LSR may not be
specified in the ACB of an empty file (which implies that the file is to be loaded).

Apart from the standard error codes from the Open routine, you may get
additional error codes in the ACB ERROR field when you try to open a file with
the LSR option. These error codes are listed in the z/VSE Messages and Codes,
Volume 2, SC34-2633.

The CLOSE Macro
After your last request for access to the file, you will normally issue a CLOSE
macro to complete processing of that file and disconnect your program from the
file. If you have not issued a CLOSE macro before end-of-job or if your job
terminates abnormally, your file might not be closed properly and subsequent
processing of that file might cause errors.

Because it is essential for the integrity of a file that it is closed properly, z/VSE
automatically attempts to close all open VSE/VSAM files in the partition at both
normal and abnormal termination of a job step. If any control blocks for a file have
been destroyed through an error in your program, this file cannot be closed and a
message is given to the operator. EXLST routines are not entered during an
automatic CLOSE.

The TCLOSE macro performs the functions of CLOSE, except that it leaves the
program and the file connected so that you can continue processing without
reopening the file.

The Close routine completes any I/O operations that are outstanding when a
processing program issues a CLOSE macro for a file. It writes any output buffers
that have not been stored.

The Close routine updates the catalog entries of the file, including pointers to the
end of the file and statistics on file processing (such as number of records
inserted). If the file was loaded and the SPEED option was specified (in the
DEFINE command), the Close routine formats the last CA in the file to ensure that
the entire file is accessible.

The Close routine restores the ACB to the status that it had before the file was
opened and frees the virtual storage that the Open routine used to construct
VSE/VSAM control blocks.

You must specify a CLOSE macro to change from loading a file to retrieving
records from that file in the same run.

BLDVRP Macro

Chapter 12. Descriptions of VSE/VSAM Macros 223

Format of the CLOSE Macro

��
name

CLOSE �

,

address ��

name
one through eight characters that provide a symbolic name.

address
specifies up to 16 addresses of ACBs and DTFs that define the file(s) to be
closed.

If an application chooses to place VSE/VSAM ACBs in 31-bit partition GETVIS,
the OPEN and CLOSE macros can be used to open or close only one ACB in a
single invocation (Open or Close List). No DTFs can be included in an Open or
Close List containing an ACB residing in 31-bit partition GETVIS.

You can specify address:
v In register notation, using a register from 1 through 12. Specify within

parentheses.
Or

v With an expression that generates a valid relocatable A-type address
constant.

A return code is set in Register 15 to indicate whether the ACBs were closed
successfully. ACBs should be coded together (following the DTFs) to apply to all of
them. If, for example, you coded:

CLOSE ACB1,DTF1,ACB2

the return code will apply to ACB2 only. If ACB2 closed successfully and ACB1 did
not, the return code will still be X‘00’. (The Close routine sets Register 15 to zero
when it receives control after a DTF has been closed.) To ensure that the return
code is valid and applies to both ACBs, write the macro in the following way:

CLOSE DTF1,ACB1,ACB2

The Close routine sets one of the following return codes in Register 15:

Return Code
Meaning

X‘00’ All ACBs were closed successfully.

X‘04’ One or more ACBs were not closed successfully.

X‘08’ One or more Close routines could not be loaded because there was not
enough virtual storage space, or the modules could not be found.
Processing cannot continue.

If Register 15 contains X‘04’, an error code is set in one or more ACBs. You can use
the ERROR keyword of the SHOWCB or TESTCB macro to examine the error code.
For an explanation of the VSE/VSAM CLOSE (and TCLOSE) error codes, refer to
z/VSE Messages and Codes, Volume 2, SC34-2633.

CLOSE Macro

224 VSE/VSAM V9R2 User’s Guide and Application Programming

The DLVRP Macro
After all the files using the resource pool have been closed, you must delete the
resource pool by issuing the DLVRP (delete VSE/VSAM resource pool) macro.

If you do not delete the resource pool with the DLVRP macro, it will automatically
be deleted at the end of the job step, because it resides in virtual storage, which is
invalidated at the end of a job step.

When you issue a DLVRP macro, Register 13 must contain the address of a 72-byte
save area that you are providing. When you issue a DLVRP macro from within one
of your exit routines such as LERAD or SYNAD, your program must provide a
second 72-byte save area for use by VSE/VSAM, because the original save area is
still in use by the external VSE/VSAM routine.

Format of the DLVRP Macro

��
name

DLVRP
SHRPOOL=0

SHRPOOL=number TYPE=LSR
��

name
one to eight characters that provide a symbolic name.

SHRPOOL=number
specifies the identification number of a shared resources pool that is to be
deleted. Specify a number from 0 through 15. The default is 0.

TYPE=LSR
This parameter is accepted by VSE/VSAM for compatibility with zOS. It is
ignored, however, since no type other than LSR is available under VSE/VSAM.
See also BLDVRP. Separate deletion of data and index LSR pools is not
possible because they form a unit and must not be deleted individually.

Return Codes from DLVRP

When VSE/VSAM returns to your processing program after a DLVRP request,
following return codes:

Return Dec Code Hex Meaning
0 X‘00’ VSE/VSAM completed the request.
4 X‘04’ There is no resource pool to be deleted.
8 X‘08’ There is at least one other open file using

the resource pool.
12 X‘0C’ The request was not executed because an error

was encountered while VSE/VSAM routines were
loaded (for example, CDLOAD failed).

28 X‘1C’ SHRPOOL is less than 0 or
greater than 15.

DLVRP Macro

Chapter 12. Descriptions of VSE/VSAM Macros 225

The ENDREQ Macro
When you issue an ENDREQ macro, Register 13 must contain the address of a
72-byte save area that you are providing. When you issue the macro from within
one of your exit routines such as LERAD or SYNAD, you must provide a second
72-byte save area for use by VSE/VSAM.

This macro causes VSE/VSAM to end a request, that is, to forget its position for
the specified RPL and to release its associated buffers for use by another RPL.
Before you can issue a request specifying an RPL for which an ENDREQ macro
was executed, you have to reposition VSE/VSAM.

An ENDREQ macro is required in your program whenever you have already
issued as many concurrent active requests as you have specified for STRNO
operand of the ACB and you want to issue yet another request. (Refer to the
discussion under “VSE/VSAM is Not Yet Positioned” on page 239.)

If an I/O operation was started, it will be allowed to complete. Also, I/O
operations required to maintain the integrity of the file will be performed.

If the request involves a chain of RPLs, all records specified by the request may
not be processed. For example, two RPLs are chained in a PUT request to add two
new records to the file and an ENDREQ is issued after VSE/VSAM started the I/O
operation to add the first record. That I/O operation will be completed and, if it
causes a CI split, subsequent I/O operations will be performed to complete the
split and update the index. However, VSE/VSAM will then return control to the
processing program without adding the second record.

The ENDREQ macro causes VSE/VSAM to cancel the position in the file
established for that request and also invalidates data and index buffers to force
refreshing of all requests subsequent to the end request. There is, however, no
buffer invalidation for:
v SHAREOPTION 1 files
v SHAREOPTION 2 files opened for output
v Higher level index buffers (only sequence set invalidation).

Format of the ENDREQ Macro

��
name

ENDREQ RPL= address
(1)

��

name
one through eight characters that provide a symbolic name.

RPL=address│(1)
specifies the address of the RPL (or first RPL in a chain of RPLs) that defines
the request to be terminated. You can specify address:
v In register notation, using a register from 2 through 12. Specify within

parentheses, or
v With an expression that generates a valid relocatable A-type address

constant.

ENDREQ Macro

226 VSE/VSAM V9R2 User’s Guide and Application Programming

The ERASE Macro
When you issue an ERASE macro, Register 13 must contain the address of a
72-byte save area that you are providing. When you issue the macro from within
one of your exit routines such as LERAD or SYNAD, you must provide a second
72-byte save area for use by VSE/VSAM.

This macro deletes the record previously retrieved for update (with the GET
macro, OPTCD=UPD). You can delete records in a key-sequenced file by keyed or
addressed access, but you cannot delete records in an entry-sequenced file. You can
delete records in a relative-record file by keyed access. You cannot delete CIs
(OPTCD=CNV).

Format of the ERASE Macro

��
name

ERASE RPL= address
(1)

��

name
one through eight characters that provide a symbolic name.

RPL=address│(1)
specifies the address of the RPL (or the first RPL in a chain of RPLs) that
defines the ERASE request. You can specify address:
v In register notation, using a register from 2 through 12. Specify within

parentheses.
Or

v With an expression that generates a valid relocatable A-type address
constant.

The EXLST Macro
Assembly of the EXLST (exit list) macro produces an optional list of addresses of
user exit routines. An exit routine is entered when VSE/VSAM detects the
condition (such as an I/O error) that the routine is supposed to handle. The exit
list is associated with an ACB by the EXLST operand of the ACB macro. Two or
more ACBs can refer to the same exit list.

The number of exit addresses in a list is variable and depends on the number of
operands you code. You cannot add addresses to the list after it is generated, but
you can change an address or the indication of whether or not an exit is active
(with the MODCB macro).

Values for EXLST macro operands can be specified as codes and expressions that
generate valid relocatable A-type address constants. Do not use register notation.

ERASE Macro

Chapter 12. Descriptions of VSE/VSAM Macros 227

Format of the EXLST Macro

��
name

EXLST
AM=VSAM

,A
,EODAD=(address)

,N ,L

�

�
,A

,EXCPAD=(address)
,N ,L

,A
,JRNAD=(address)

,N ,L

�

�
,A

,LERAD=(address)
,N ,L

,A
,SYNAD=(address)

,N ,L

��

name
one through eight characters that provide a symbolic address for the exit list
that is established.

AM=VSAM
specifies that this is a VSE/VSAM control block. You may want to specify this
operand for documentation purposes if your installation also uses VTAM.

EODAD
specifies that an exit is provided for special processing when the end of a file
is reached by sequential or skip sequential access.

EXCPAD
specifies that an exit is provided to receive control from VSE/VSAM when an
I/O operation is started or when a task can be forced to wait for an SHR(4)
lock.

JRNAD
specifies that an exit is provided for journalizing as you process data records.

LERAD
specifies that an exit is provided for analyzing logic errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

address
is the address of a user-supplied exit routine. The address must always be
specified first.

A│N
specifies that the exit routine is active (A) or not active (N). VSE/VSAM does
not enter a routine whose exit is marked not active.

L specifies that the address is the address of an eight-byte field that contains the
name of a phase that VSE/VSAM is to load for exit processing. If L is omitted,
the address gives the entry point of the exit routine in virtual storage. L can
precede or follow the A or N specification.

EXLST Macro

228 VSE/VSAM V9R2 User’s Guide and Application Programming

EODAD Exit Routine to Process End-of-File
An EODAD routine finishes the processing of a file when VSE/VSAM reaches the
end of the file. VSE/VSAM exits to this routine when: (1) you attempt to
sequentially retrieve or point to a record beyond the last record in the file, that is,
the record with the highest key or the highest relative-record number (for keyed
access), or with the highest RBA (for addressed access); (2) during sequential
backward retrieval when the records in reverse sequence are exhausted or; (3)
when you have specified CI access and user buffers and there is no more data after
a GET request or a PUT for update request.

If your program retrieves records sequentially with a request defined by a chain of
RPLs, your EODAD routine must determine whether the end of the file was
reached for the first RPL in the chain. If not, then one or more records have been
retrieved but not yet processed by your program.

If you do not have this exit routine, VSE/VSAM exits to the routine for analyzing
logic errors (see the LERAD operand). If you do not have the LERAD exit routine,
VSE/VSAM returns to your processing program at the instruction following the
last executed instruction. In that case, Register 15 contains X‘08’, and register 1
contains the address of the RPL. Your program can examine the feedback field in
the RPL with the SHOWCB or TESTCB macro to see whether VSE/VSAM has
reached the end of the file.

When the exit receives control, it is in the same AMODE that was in effect when
the request was issued.

When VSE/VSAM exits to the EODAD routine, the contents of the registers (Reg)
are as follows:

Reg Contents

0 Unpredictable.

1 Address of the request parameter list that defines the request that
occasioned VSE/VSAM's reaching the end of the file. The register must
contain this address if you return to VSE/VSAM.

2-13 Same as when the request macro was issued. Register 13, by convention,
contains the address of your processing program's 72-byte save area, which
may not be used as a save area by the EODAD routine if it returns control
to VSE/VSAM.

14 Return address to VSE/VSAM.

15 Entry address to the EODAD routine.

If the EODAD exit routine returns to VSE/VSAM and you issue another GET
macro, VSE/VSAM enters the EODAD exit routine again. This can cause your
program to loop. If, however, you reach end-of-file during keyed access and then
change to addressed access, additional records may be retrieved provided they are
physically after the last record in key sequence (because of a CI or control-area
split).

EXLST Macro

Chapter 12. Descriptions of VSE/VSAM Macros 229

EXCPAD Exit Routine
An EXCPAD routine receives control from VSE/VSAM when an I/O operation is
started or when a task can be forced to wait for an SHR(4) lock. By supplying an
EXCPAD exit routine, you can overlap VSE/VSAM I/O or SHR(4) locking
operations with the execution of your processing program.

The exit routine must return to VSE/VSAM, so that VSE/VSAM can return to your
processing program at the instruction following the I/O request macro.

TheVSE/VSAM EXCPAD exit is used by CICS® TS to overlap VSE/VSAM I/O and
CICS task processing. When a CICS task issues a VSE/VSAM request and physical
I/O is required, the CICS EXCPAD exit places the CICS task into an internal wait
state and CICS is free to dispatch another task. When the physical I/O is complete,
the task is made dispatchable again.

Note: EXCPAD routine is called in AMODE 31 (31-bit addressing) only. Thus, if
the caller's application AMODE is not 31-bit, EXCPAD exit is skipped and
VSE/VSAM is just waiting for I/O to complete.

When VSE/VSAM exits to the EXCPAD routine, the contents of the registers (Reg)
are as follows:

Reg Contents

0 Unpredictable.

1 Address of a parameter list with the following contents:

Offset

X‘00’ Address of the RPL.

X‘04’ Address of the IORB or DTL ECB.

X‘08’ EXCPAD lock word.

X‘0C’ 116 bytes available to the user.

2-13 Same as when the request macro was issued. Register 13, by convention,
contains the address of the user's 72-byte save area, which must not be
used as a save area by the EXCPAD routine (because EXCPAD must return
control to VSE/VSAM).

14 Return address to VSE/VSAM.

15 Address of EXCPAD routine.

If the exit routine uses Register 1, it must restore that register with the
parameter-list address before returning to VSE/VSAM. (The routine must return
for completion of the request that caused VSE/VSAM to exit.)

The EXCPAD routine can test the traffic bit of the IORB or DTL ECB to determine
whether the VSE/VSAM I/O operation has been completed or if the SHR(4) lock is
now available. However, the routine must not change the contents of the IORB or
DTL because these control blocks are used by VSE/VSAM.

The EXCPAD lock word normally contains zero, in which case the routine may
issue any other VSE/VSAM request with another RPL to the same file, except a
CLOSE. When a CI split, control-area split or spanned record update occurs, the
lock word contains the address of the RPL for the request. In that case, the
EXCPAD routine must either complete the request because a second (simultaneous)

EXLST Macro

230 VSE/VSAM V9R2 User’s Guide and Application Programming

request in the same file results in a system deadlock, or issue a request against
another file. A split or spanned record update may occur during UPGRADE
processing of an AIX. If this happens, no other UPGRADE request may be issued
through any path to the same base cluster. EXCPAD lock words are not used for
EXCPADs for SHR(4) locks.

The EXCPAD exit routine may be entered more than once for a VSE/VSAM
request because a request may require more than one I/O operation. The EXCPAD
routine is not entered in the following cases:
v When the I/O operation completes before VSE/VSAM is ready to wait on it.
v When caller's application (processing program), which issues the request macro,

runs in AMODE 24.
v During processing to complete pending I/O at CLOSE time.
v During Upgrade processing.
v When VSE/VSAM is forced to do a PUT because of insufficient buffers available

(that is, when VSE/VSAM writes a buffer to be able to use this buffer for other
data).

JRNAD Exit Routine to Journal Transactions
A JRNAD routine records transactions made against a file and keeps track of RBA
changes. VSE/VSAM exits to this routine every time the processing program issues
a GET, PUT, or ERASE and every time data is shifted right or left in a CI or is
moved to another CI (because one or more records have been inserted, deleted,
shortened, or lengthened). VSE/VSAM takes the JRNAD exit before transmitting to
direct-access storage the contents of a CI in which there was an RBA change. (You
need to know whether RBAs have changed during keyed processing if later on you
want to process your key-sequenced file with addressed access.)

VSE/VSAM also takes the JRNAD exit whenever a segment of a spanned record is
transmitted to or from direct-access storage. This allows you to keep track of the
CIs occupied by a spanned record.

The JRNAD exit must return to VSE/VSAM for completion of the request that
caused VSE/VSAM to exit.

When the exit receives control, it is in the same AMODE that was in effect when
the request was issued.

When VSE/VSAM exits to the JRNAD routine, the contents of the registers (Reg)
are as follows:

Registers Contents

0 Unpredictable.

EXLST Macro

Chapter 12. Descriptions of VSE/VSAM Macros 231

Registers Contents

1 Address of a parameter list with the following format:

Displ Length Description

0 4 bytes Address of RPL of the request that caused
the exit.

4 4 bytes Address of the address pointing to the
dataset ACB.

8 4 bytes For RBA changes, the RBA of the first byte
of data that is shifted or moved. For a GET
or PUT request against a spanned record
segment, the RBA of the first byte of the
segment.

12 4 bytes For RBA changes, the number of bytes of
data that is shifted or moved. (The number
of bytes does not include free space (if any),
or control information - except for a
control-area split, when the whole contents
of a CI are moved to a new CI).

For a GET or PUT request against a spanned
record segment, the number of bytes in the
segment.

16 4 bytes For RBA changes only, the RBA of the first
byte to which data is shifted or moved.

20 1 byte Request type causing VSE/VSAM to exit to
JRNAD routine:

X'00' GET request

X'04' PUT request

X'08' ERASE request

X'0C' RBA change

X'10' GET request against a
spanned record segment

X'14' PUT request against a
spanned record segment

21 1 byte Reserved

22 1 byte Version Flag

X'00' indicates z/VSE Version 4.3

X’01’ indicates z/VSE Version 5.1

23 1 byte Reserved

24 4 bytes Address of the ACB

28 1 byte Component type

X’01’ indicates Data

X’02’ indicates Index

29 3 bytes Reserved

2-13 Unpredictable

14 Return address to VSE/VSAM

15 Entry address to the JRNAD routine.

EXLST Macro

232 VSE/VSAM V9R2 User’s Guide and Application Programming

If, in your exit routine, you intend to issue the GENCB, MODCB, SHOWCB, or
TESTCB macros, make sure that you save the contents of Register 14 before you
issue the macro and restore these contents in Register 14 before your exit routine
returns to VSE/VSAM. The same applies accordingly if, in your exit routine, you
intend to use registers. Your exit routine must return to VSE/VSAM for completion
of the request that caused VSE/VSAM to exit.

For journalizing transactions (when VSE/VSAM exits because of a GET, PUT, or
ERASE), you can use the SHOWCB macro, for example, to display information in
the RPL about the record that was retrieved, stored, or deleted by specifying:

FIELDS=(AREA,KEYLEN,RBA,RECLEN)

You can also use the TESTCB macro to determine whether a GET or a PUT was for
update (OPTCD=UPD).

You cannot use the keywords RBA or RECLEN to display the RBA or length of a
spanned record segment retrieved or stored. Instead, this information is given in
the parameter list at offsets 8 and 12, respectively.

For recording RBA changes, you must calculate how many records there are in the
data shifted or moved, so you can keep track of the new RBA for every one. With
fixed-length records, you calculate the number by dividing the record length into
the number of bytes of data shifted. With variable-length records, you could
calculate the number by using a table that not only identifies the records (by
associating a record's key with its RBA), but also gives their lengths.

Some CI splits cause data to be moved to two new CIs, and control-area splits
normally cause the contents of many CIs to be moved. In these cases, VSE/VSAM
exits to the JRNAD routine for every separate movement of data to a new CI.

If your JRNAD routine only journals transactions, it should ignore calls with the
reason code X‘0C’ and return to VSE/VSAM; conversely, if it only records RBA
changes, it should ignore all calls with reason codes other than X‘0C’.

The only journaling you can do during processing of a path is to record
transactions made against the base cluster; access to the alternate index during
retrieval of a base record or during upgrading cannot be journaled. Journaling for
path processing is triggered by the specification of the JRNAD exit in the EXLST of
the ACB identifying the base cluster.

The JRNAD exit must be indicated as active before the file for which the exit is to
be used is opened, and the exit must not be made inactive during processing. If
you define more than one ACB for a file and if you want to have a JRNAD
routine, the first ACB you open for the file must specify the exit list that identifies
the routine.

EXLST Macro

Chapter 12. Descriptions of VSE/VSAM Macros 233

LERAD Exit Routine to Analyze Logic Errors
A LERAD routine analyzes logic errors and all other error conditions except I/O
errors encountered by VSE/VSAM during execution of a GET, PUT, POINT,
ENDREQ or ERASE macro. The routine determines what error has occurred by
issuing a SHOWCB or TESTCB macro to examine the feedback (FDBK) field in the
RPL. The contents of FDBK will be 0000xx, where xx is the error code indicating
the type of error.

If the routine cannot correct the error, it should either:
v Close the file, or
v Return to VSE/VSAM (which will return to your processing program at the

instruction following the last executed instruction).

If you do not have the LERAD exit routine and VSE/VSAM encounters a logic
error, VSE/VSAM returns to your processing program at the instruction following
the last executed instruction. Register 15 then contains X‘08’, and Register 1
contains the address of the RPL. Your program can examine the feedback field in
the RPL with the SHOWCB or TESTCB macro to identify the logic error.

When the exit receives control, it is in the same AMODE that was in effect when
the request was issued.

When VSE/VSAM exits to the LERAD routine, the contents of the registers are:

Register
Contents

0 Unpredictable.

1 Address of the RPL that contains the feedback field the routine should
examine. The register must contain this address if you return to
VSE/VSAM.

2-13 Same as when the request macro was issued. Register 13, by convention,
contains the address of your processing program's 72-byte save area, which
may not be used as a save area by the LERAD routine if the routine
returns control to VSE/VSAM.

14 Return address to VSE/VSAM.

15 Entry address to the LERAD routine. The register does not contain the
logical-error indicator.

SYNAD Exit Routine to Analyze Physical Errors
A SYNAD routine can analyze physical I/O errors that were detected by
VSE/VSAM during execution of a GET, ENDREQ, PUT, POINT, ERASE, or CLOSE
macro and that the system error routine was unable to correct. The exit routine
determines what error has occurred (reading or writing either the data or the index
component) by issuing a SHOWCB or TESTCB macro to examine the feedback
(FDBK) field in the RPL. The contents of FDBK will be 0000xx, where xx is the
error code indicating the type of error.

If your exit routine cannot correct or bypass the error, it is recommended that the
routine (1) issues the PDUMP macro to obtain a dump of the contents of all
pertinent control blocks, including the IORB involved in the failing I/O operation;
(2) closes the files used by your program; and (3) ends the job. If the error

EXLST Macro

234 VSE/VSAM V9R2 User’s Guide and Application Programming

occurred while VSE/VSAM was closing the file or index, and if another error
occurs after the exit routine issues a CLOSE macro, VSE/VSAM does not exit to
the routine a second time.

If the exit routine returns to VSE/VSAM, whether the error was corrected or the
file closed, VSE/VSAM drops the request and returns to your processing program
at the instruction following the last executed instruction.

If you do not have this exit routine and VSE/VSAM detects a physical error,
VSE/VSAM returns to your processing program at the instruction following the
last executed instruction. Register 15 then contains X‘0C’, and Register 1 contains
the address of the RPL. Your program can examine the feedback field in the RPL
with the SHOWCB or TESTCB macro to identify the physical error.

An I/O error that occurs when processing a data CI during the execution of a
sequential GET request positions VSE/VSAM at the next CI in key sequence for
keyed access or in entry sequence for addressed access. The next GET after the
error will return the first record from the CI following the index CI, VSE/VSAM is
not positioned at the next index control in further.

Errors that occur while VSE/VSAM writes a CI cause the loss of positioning.

When the exit receives control, it is in the same AMODE that was in effect when
the request was issued.

When VSE/VSAM exits to the SYNAD routine, the contents of the registers are:

Register
Contents

0 Unpredictable.

1 Address of the RPL that contains a feedback return code and the address
of a message area, if any. If you issued a request macro, the RPL is the one
pointed to by the request macro; if you issued a CLOSE macro, the RPL
was built by VSE/VSAM to process the close request. Register 1 must
contain this address if the SYNAD routine returns to VSE/VSAM

2-13 Same as when the request macro or CLOSE macro was issued. Register 13,
by convention, contains the address of your processing program's 72-byte
save area, which may not be used by the SYNAD routine if it returns
control to VSE/VSAM.

14 Return address to VSE/VSAM.

15 Entry address to the SYNAD routine. The register does not contain the
physical-error indicator.

EXLST Macro

Chapter 12. Descriptions of VSE/VSAM Macros 235

The GENCB Macro
The GENCB macro generates an ACB, an EXLST, or an RPL when it is executed.
You can use it in place of the ACB, EXLST, and RPL macros to avoid (1)
reassembling your programs should the format or length of the control block or list
change, and (2) generating more than one copy of a control block or list.

VSE/VSAM returns, in Register 1, the address of the first (or only) control block
and, in Register 0, the total length of the control block(s) built. You can find out the
length of every control block by dividing the length of the area by the number of
copies. The address of every control block can then be calculated by this offset
from the address in Register 1.

GENCB generates the control block(s) or list(s) either in an area you specify or, if
you do not specify an area, in an area obtained by VSE/VSAM in your partition.
GENCB is sensitive to the current AMODE, if it is AMODE 31, then GENCB first
attempts to allocate the area above the 16MB line. The area obtained by
VSE/VSAM can contain other control blocks too. It will not be freed at closing
time but at end-of-job or end-of-job step only.

When you issue a GENCB macro, Register 13 must contain the address of a
72-byte save area that you are providing. When you issue a GENCB macro from
within one of your exit routines (such as LERAD or SYNAD), your program must
provide a second 72-byte save area for use by VSE/VSAM, because the original
save area is still in use by the external VSE/VSAM routine.

The operands of the GENCB macro are specified as absolute numeric expressions,
as character strings, as codes, as expressions that generate valid relocatable A-type
address constants, in register notation, as S-type address constants, and as indirect
S-type address constants. “Operand Notation for VSE/VSAM Macros” on page 325
gives all the ways of coding every operand for the macros that work at execution.

If you use register notation to specify specific addresses in your GENCB macro, be
sure that these registers contain the correct addresses before you issue the GENCB
macro. This is necessary because the assembler-generated instructions for this
macro store the addresses contained in the specified registers in the appropriate
control fields.

Format of the GENCB Macro

��
name

GENCB BLK= ACB
EXLST
RPL

,AM=VSAM

,COPIES=number
�

�
,keyword=value ,LENGTH=number

,MF=L

,MF= L
(E, address)

(1)

�

�
,WAREA=address

��

GENCB Macro

236 VSE/VSAM V9R2 User’s Guide and Application Programming

name
one through eight characters that provide a symbolic name.

AM=VSAM
specifies that this is a VSE/VSAM control block. You may want to specify this
operand for documentation purposes if your installation also uses VTAM.

BLK=ACB│EXLST│RPL
specifies whether you want to generate an ACB, an EXLST, or an RPL.

COPIES=number
specifies the number of control blocks or lists you want VSE/VSAM to
generate. The default is 1. If you generate two or more, they are generated next
to each other. They are identical, so you must use MODCB to tailor them for a
particular file or request.

VSE/VSAM returns, in Register 1, the address of the first (or only) control
block and, in Register 0, the total length of the control block(s) built. You can
find out the length of every control block by dividing the length of the area by
the number of copies. The address of every control block can then be
calculated by this offset from the address in Register 1.

keyword=value
The operands you code are identical to those of the ACB, EXLST, and RPL
macros, except that you can code them in more ways, as described in
“Operand Notation for VSE/VSAM Macros” on page 325. If you do not code
any operands, VSE/VSAM builds:
v For BLK=ACB, an ACB with default values provided by VSE/VSAM when

you open the file. You must supply the DDNAME=filename operand before
the file is opened.

v For BLK=EXLST, a complete EXLST with zeros for addresses and all entries
flagged inactive.

v For BLK=RPL, an RPL with default values.

LENGTH=number
specifies the length of the area, if any, you provided by the WAREA operand.
You can determine the length required for a control block or list by using the
SHOWCB macro.

MF=
For information on specifying this operand, refer to “List, Execute, and
Generate Forms of the Control Block Manipulation Macros” on page 322.

WAREA=address
specifies the address of an area in which you want VSE/VSAM to generate the
control block(s) or list(s). The area must begin on a fullword boundary. If
WAREA is specified, the LENGTH operand must also be specified. If you do
not specify WAREA, VSE/VSAM obtains an area in your processing partition
in which to generate the control block(s) or list(s). When control is returned to
you, Register 1 contains the address of the control block or list and Register 0
contains the total length of the control block(s) or list(s).

GENCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 237

Examples of the GENCB Macro
Figure 19 shows examples of how to specify VSE/VSAM control blocks by using
the GENCB macro. With GENCB, the control blocks are created dynamically
during execution of the program. The same parameters are specified in this
example as are specified in the example of ACB, EXLST, and RPL macros shown in
Figure 26 on page 295. VSE/VSAM obtains space for every control block in your
partition. The address of every control block is set in Register 1 after the GENCB is
executed.

The GET Macro
When your program issues a request macro, its processing does not continue until
VSE/VSAM completes the request. At that time, VSE/VSAM sets a return code in
Register 15. If end-of-file is reached or an error or other special condition occurs
during the request, VSE/VSAM sets a code containing additional information in
the feedback (FDBK) field of the RPL and takes any required exit. The return codes
and codes set in the feedback field of the RPL are described later in this section.

* GENERATE VSE/VSAM CONTROL BLOCKS
GENCB BLK=EXLST,EODAD=(ENDUP,N),

LERAD=LOGERR,
SYNAD=(IOERR,L)

LTR 15,15 GENCB successful?
BNZ GENERR No, go to error routine
LR 3,1 Yes, save EXLST address
GENCB BLK=ACB,EXLST=(3),PASSWD=PASS,

BUFND=4,BUFNI=3,BUFSP=11064,
MACRF=(KEY,SEQ,DIR,OUT),
DDNAME=VFILENM

LTR 15,15 GENCB successful?
BNZ GENERR No, go to error routine
LR 2,1 Yes, save ACB address

*
*

GENCB BLK=RPL,AREA=WORK,
AREALEN=125,OPTCD=(DIR,NSP),
ARG=SEARCH,ACB=(2)

LTR 15,15 GENCB successful?
BNZ GENERR No, go to error routine
LR 4,1 Yes, save RPL address

*
* PROCESSING ROUTINES
*

GET RPL=(4)
*
* CONSTANTS AND WORK AREAS
*
PASS DC FL1’6’,C’CHANGE’
WORK DS CL125
SEARCH DS CL4

Note: The continuation characters required in column 72 are not shown.

Figure 19. GENCB Macro Examples

GENCB Macro

238 VSE/VSAM V9R2 User’s Guide and Application Programming

Format of the GET Macro

��
name

GET RPL= address
(1)

��

name
one through eight characters that provide a symbolic name.

RPL=address│(1)
specifies the address of the RPL (or the first RPL in a chain of RPLs) that
defines the GET request.

You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

When you issue a GET macro, Register 13 must contain the address of a
72-byte save area that you are providing. When you issue the macro from
within one of your exit routines such as LERAD or SYNAD, you must provide
a second 72-byte save area for use by VSE/VSAM.

This macro retrieves the next record in key sequence or the record with the
next higher relative-record number with RPL operand OPTCD=(KEY,SEQ), and
the next record in entry sequence with OPTCD=(ADR,SEQ). It retrieves the
record specified by the key or relative record number in the search-argument
field with OPTCD=(KEY,SKP) or OPTCD=(KEY,DIR), and by the RBA in the
search-argument field with OPTCD=(ADR,DIR). With skip sequential retrieval,
every key or relative-record number that you specify must be greater by
number or alphabet than the key or relative-record number of the previous
record retrieved.

GET retrieves the next CI with OPTCD=(CNV,SEQ) and the CI specified by the
RBA in the search-argument field with OPTCD=(CNV,DIR).

You must issue a GET with OPTCD=UPD to update (PUT with OPTCD=UPD)
or to delete (ERASE) a record. You can have the record moved to your work
area (OPTCD=MVE) or you can have VSE/VSAM leave the record in its I/O
buffer and pass you the address of the record (OPTCD=LOC). The AREA
operand of the RPL macro points to your work area or to a field in which
VSE/VSAM will place a record address.

You can also keep VSE/VSAM positioned for subsequent sequential or skip
sequential processing when you issue a direct GET request with
OPTCD=(DIR,NSP) or OPTCD=(DIR,UPD). With OPTCD=(DIR,UPD) however,
positioning is canceled when you issue a PUT for update or an ERASE
following the GET for update.

VSE/VSAM is Not Yet Positioned
If VSE/VSAM does not already have positioning for the RPL (or chain of RPLs) for
which the GET request is to be issued, then you may have to issue an ENDREQ
macro for a different RPL. An ENDREQ must be issued to free a position if the
number of positions that VSE/VSAM must remember is already the same as the
value specified in the STRNO=number operand of the pertinent ACB macro. At
any particular time, VSE/VSAM will remember positions for any request macro in
process by VSE/VSAM, and for a succeeding request for any RPL (or chain of
RPLs) for which the preceding request was one of the following:

GET DIR,LOC
GET DIR,MVE,NSP

GET Macro

Chapter 12. Descriptions of VSE/VSAM Macros 239

GET DIR,MVE,UPD
GET SEQ
GET SKP
POINT any

PUT DIR,NSP
PUT SEQ
PUT SKP

ERASE SEQ
ERASE SKP

The MODCB Macro
The MODCB macro modifies the addresses, values, options, and names that you
can establish with the ACB, EXLST, RPL, and GENCB macros in an ACB, EXLST,
or RPL.

The operands of the MODCB macro are specified as absolute numeric expressions,
as character strings, as codes, as expressions that generate relocatable A-type
address constants, in ordinary z/VSE register notation, as S-type address constants,
and as indirect S-type address constants. “Operand Notation for VSE/VSAM
Macros” on page 325 gives all the ways of coding every operand for the macros
that work at execution.

When you issue a standard MODCB macro (not the short form described below),
Register 13 must contain the address of a 72-byte save area that you are providing.
When you issue a MODCB macro from within one of your exit routines such as
LERAD or SYNAD, your program must provide a second 72-byte save area for use
by VSE/VSAM because the original save area is still in use by VSE/VSAM.

If you want to modify only the length of a data record (the value of the RECLEN
field of the corresponding RPL), you can do so without any call to a VSE/VSAM
routine by issuing the MODCB macro in the following short form: MODCB
RPL=(1),RECLEN=(0)

The address of the RPL must be contained in Register 1 (short form only). The
record length, stored in Register 0, will be placed into the RPL. No parameter list
is created. For other MODCB functions, you must use the standard form of the
MODCB macro.

Format of the MODCB Macro

��
name

MODCB ACB
EXLST
RPL

=address,keyword=value
,AM=VSAM

�

�
,MF=L

,MF= L
(E, address)

(1)

��

GET Macro

240 VSE/VSAM V9R2 User’s Guide and Application Programming

name
one to eight characters that provide a symbolic name.

AM=VSAM
specifies that this is a VSE/VSAM control block. You may want to specify this
operand for documentation purposes if your installation uses also VTAM.

ACB│EXLST│RPL=address
specifies whether you want to modify an ACB, an EXLST, or an RPL and
specifies its address. Do not use the MODCB macro to:
v Modify an open ACB
v Activate or deactivate a JRNAD exit if the ACB to which the EXLST is

connected is already open. (See the discussion of JRNAD in the EXLST
macro.)

v Add entries to or delete entries from a field in an EXLST. (You can modify a
field in an EXLST at any time.)

v Modify an active RPL, that is, one that defines a request that has been issued
but not completed.

With the execute form of MODCB, you can change the address of the block or
list to be modified, but not the type.

keyword=value
The operands you code are identical to those for the ACB, EXLST, and RPL
macros, except that:
v You can code them in more ways, as shown in “Operand Notation for

VSE/VSAM Macros” on page 325.
v There are no defaults for the options of the ACB MACRF operand or the

RPL OPTCD operand. With OPTCD, when you set on a new option with the
MODCB macro, the old option is automatically turned off, because you can
specify only one option in every one of its groups (see “The RPL Macro” on
page 246).

v You can make an address in an EXLST active or not active without
specifying the address by coding: keyword=(,A│N).

v When you specify an address for an entry in an EXLST that previously
contained zeros (possible if you generated a default list with the GENCB
macro), you must code keyword=(addr,A) to make the address active,
because A is not a default for the MODCB macro.

MF=
For information on specifying this operand, refer to “List, Execute, and
Generate Forms of the Control Block Manipulation Macros” on page 322.

The MODCB macro cannot be used to reset a MACRF option which was set in an
ACB unless this option is mutually exclusive with the new intended option. For
example, if the options

KEY,SEQ,OUT

were set and you wish to have the options
ADR,SEQ,OUT

instead, then specifying MACRF=ADR in a MODCB macro results in options
KEY,ADR,SEQ,OUT

being set in the pertinent ACB.

MODCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 241

Examples of the MODCB Macro
Figure 20 shows two examples of modifying VSE/VSAM control blocks by using
the MODCB macro.

The OPEN Macro
The information you have specified in the ACB and EXLST macros must be
connected with the file to be processed so that you can gain access to the data. To
this purpose, you must supply, in the job stream, job control statements defining
the file and issue, in your program, an OPEN macro for the ACB you have set up
for the file.

The OPEN macro calls the Open routine, which verifies that the processing
program has authority to process the file. The Open routine constructs VSE/VSAM
control blocks and establishes linkages to those VSE/VSAM routines that are
needed to process your file(s).

By examining the DLBL statement indicated by the DDNAME operand in the ACB
macro and the volume information in the catalog, the Open routine verifies that
the necessary volumes have been mounted. If a key-sequenced file is opened,
VSE/VSAM issues an error code to warn you if the data has been updated
separately from its index.

Format of the OPEN Macro

��
name

OPEN �

,

address ��

name
one through eight characters that provide a symbolic name.

address
specifies the address of the ACB or DTF for the file(s) to be opened.

If an application chooses to place VSE/VSAM ACBs in 31-bit partition GETVIS,
the Open and Close macros can be used to open or close only one ACB in a
single invocation (Open or Close List). No DTFs can be included in an Open or
Close List containing an ACB residing in 31-bit partition GETVIS.

You can specify address:

The MODCB (short form) is used to place the length of a record in the
RPL when variable-length records are added to a file:

MODCB RPL=(1),RECLEN=(0) Current length in register 0
LTR 15,15 MODCB successful?
BNZ MODERR No, go to error routine
PUT RPL=(1) Yes, write record

The MODCB is used to activate the EODAD exit specified in the GENCB
example of Figure 19 on page 238.

MODCB EXLST=(3),EODAD=(,A)
LTR 15,15 MODCB successful?
BNZ MODERR No, go to error routine

Figure 20. MODCB Macro Examples

MODCB Macro

242 VSE/VSAM V9R2 User’s Guide and Application Programming

v In register notation, using a register from 1 through 12. Specify within
parentheses.
Or

v With an expression that generates a valid relocatable A-type address
constant.
You can specify up to 16 addresses of ACBs and DTFs that define the files to
be opened.

Return Codes from OPEN
A return code is set in Register 15 to indicate whether the ACBs were opened
successfully. ACBs should be coded together to ensure that the return code will
apply to all of them. If, for example, you coded:

OPEN ACB1,DTF1,ACB2

the return code will apply to ACB2 only. If ACB2 opened successfully and ACB1
did not, the return code will still be X‘00’. (The Open routine sets Register 15 to
zero when it receives control after a DTF has been opened.) To ensure that the
return code is valid and applies to both ACBs, the macro should be coded in the
following way:

OPEN DTF1,ACB1,ACB2

The Open routine sets one of the following return codes in Register 15:

Return Code
Meaning

X‘00’ All ACBs were opened successfully.

X‘04’ All ACBs opened successfully, but one or more ACBs had a warning
message.

X‘08’ One or more ACBs were not opened successfully. The entries with errors
are restored to their pre-open status.

If Register 15 contains X‘04’, an error code is set in one or more ACBs to indicate a
warning message. All ACBs are open and, unless you prevent it, processing will
continue on the file that the message applies to. You can use the ERROR keyword
of the SHOWCB or TESTCB macro to examine the code.

If Register 15 contains X‘08’, an error code is set in one or more ACBs. Again, you
can use the ERROR keyword of the SHOWCB or TESTCB macro to examine the
code. Note that Register 15 contains the maximum (worst) return code encountered
while opening a list of ACBs. This means that some of the ACBs in the list may
have been opened successfully, even though Register 15 contains X‘04’ or X‘08’.

For an explanation of the VSE/VSAM OPEN error codes, refer to z/VSE Messages
and Codes, Volume 2, SC34-2633.

OPEN Macro

Chapter 12. Descriptions of VSE/VSAM Macros 243

The POINT Macro
When you issue a POINT macro, Register 13 must contain the address of a 72-byte
save area that you are providing. When you issue the macro from within one of
your exit routines such as LERAD or SYNAD, you must provide a second 72-byte
save area for use by VSE/VSAM.

When OPTCD=KEY was specified in the pertinent RPL, this macro positions
VSE/VSAM at the record whose key or relative-record number you specify in the
search argument field. You can use the macro to position VSE/VSAM for
subsequent sequential or skip sequential processing, either forward or backward in
the file.

When OPTCD=ADR or OPTCD=CNV was specified in the pertinent RPL, the
POINT macro positions VSE/VSAM at the record or CI whose RBA you specify in
the search argument field. You can cause the macro to position VSE/VSAM for
subsequent sequential processing, either forward or backward in the file.

Note: You cannot issue the POINT macro in one mode of access, change to another
mode of access, and then request VSE/VSAM to continue processing the file
sequentially. This will result in termination of the request with an error. For
example, you cannot change from the mode OPTCD=ADR to another mode such
as OPTCD=KEY.

VSE/VSAM can also be positioned for sequential processing by either a direct GET
or a direct PUT as described in the preceding sections on the GET and PUT
macros.

You may have to issue an ENDREQ macro before you can issue a POINT request
in your program. Information about this possible requirement is given at the end
of the discussion of the GET macro.

Format of the POINT Macro

��
name

POINT RPL= (1)
address

��

name
one through eight characters that provide a symbolic name.

RPL=address│(1)
specifies the address of the RPL (or the first RPL in a chain of RPLs) that
defines the POINT request. You can specify address:
v In register notation, using a register from 2 through 12. Specify within

parentheses.
Or

v With an expression that generates a valid relocatable A-type address
constant.

POINT Macro

244 VSE/VSAM V9R2 User’s Guide and Application Programming

The PUT Macro
When you issue a PUT macro, Register 13 must contain the address of a 72-byte
save area that you are providing. When you issue the macro from within one of
your exit routines such as LERAD or SYNAD, you must provide a second 72-byte
save area for use by VSE/VSAM.

This macro stores a new record in key sequence or relative-record sequence if one
of the following combinations of options is set in the RPL:

OPTCD=(KEY,DIR,NSP)
OPTCD=(KEY,SKP,NUP)
OPTCD=(KEY,DIR,NUP)
OPTCD=(KEY,SEQ,NUP)
OPTCD=(KEY,SEQ,NSP)

If you specify OPTCD=(KEY,DIR,NSP), VSE/VSAM is kept positioned at the next
record in key sequence or relative-record sequence for subsequent sequential
processing.

PUT stores a new record at the end of an entry-sequenced file with OTPCD=ADR.
(You cannot store a new record in a key-sequenced file with addressed access.)

With skip sequential storage, OPTCD=(KEY,SKP), the key or relative-record
number of every record that you store must be greater by number or alphabet than
the key or relative-record number of the previous record stored.

With CI access, OPTCD=(CNV,NUP), PUT stores a new CI at the end of an entry
sequenced file.

When loading or extending a file with the PUT macro, you must specify sequential
or skip sequential processing (OPTCD=SEQ or OPTCD=SKP).

To store a changed record or CI, you must have previously retrieved it with option
OPTCD=UPD set in the RPL for both the GET and the PUT. You cannot change the
length of a record in either a relative record file or an entry-sequenced file.

The record to be added or updated with a PUT macro must be in your work area
(OPTCD=MVE); you cannot use OPTCD=LOC with the PUT macro. The AREA
operand of the RPL macro points to your work area.

You may have to write an ENDREQ macro before you can issue a PUT NUP or
PUT NSP request in your program. Information about this possible requirement is
given at the end of the discussion of the GET macro.

Format of the PUT Macro

��
name

PUT RPL= (1)
address

��

name
one through eight characters that provide a symbolic name.

RPL=address│(1)
specifies the address of the RPL (or the first RPL in a chain of RPLs) that
defines the PUT request. You can specify address:

PUT Macro

Chapter 12. Descriptions of VSE/VSAM Macros 245

v In register notation, using a register from 2 through 12. Specify within
parentheses.
Or

v With an expression that generates a valid relocatable A-type address
constant.

The RPL Macro
You define a request with the RPL macro, which produces a ‘request parameter
list’ (RPL). Every request macro (GET, PUT, POINT, ERASE, and ENDREQ) has
one and only one operand, the address of the request parameter list that defines
the request. Thus, the information a request macro needs to access a record in a file
(such as the ACB of the file to which the request is directed, or the search
argument for the record) is always in the RPL instead of in the request macro itself.

The RPL does not indicate a specific request, such as GET or PUT, for example;
you can use a single RPL, without modification, for several requests. However, if
you want to use the same RPL for different types of processing (for both direct and
sequential processing, for example), you must modify the RPL (with the MODCB
macro) every time you change from one type of processing to another.

As was pointed out in the discussion of the STRNO operand of the ACB macro,
several requests, with the corresponding RPLs pointing to the same ACB, can be
active at the same time. You may specify any number of RPLs for requests
requiring concurrent positioning, provided you do not exceed the maximum
number of concurrent active requests you have specified in the STRNO operand.
The requests can be for sequential or direct retrieval or both, and they can be for
records in the same part of the file or in different parts.

Values for RPL macro operands can be specified as absolute numeric expressions,
character strings, codes, and expressions that generate valid relocatable A-type
address constants. Register notation cannot be used for addresses.

If a customer application or vendor product uses the RPL OPTCD=LOC to access
records directly in VSE/VSAM data buffers, and if these data buffers are now
placed in 31-bit partition GETVIS, the application or product must be running in
AMODE(31). VSE/VSAM Record Management will reject a GET request with
OPTCD=LOC if the application does not have AMODE(31) enabled.

Format of the RPL Macro

�� name RPL
ACB=address

,AM=VSAM

,AREA=address
�

�
,AREALEN=number ,ARG=address ,KEYLEN=number

�

�
,NXTRPL=address , Optcd ,RECLEN=number

�

PUT Macro

246 VSE/VSAM V9R2 User’s Guide and Application Programming

�
,TRANSID=number

��

Optcd:

OPTCD=(
KEY

ADR
CNV

,SEQ

,DIR
,SKP

,ARD

,LRD

,FWD

,BWD

,NUP

,NSP
,UPD

,KEQ

,KGE
�

�
,FKS

,GEN

,MVE

,LOC

,NBF

,XBF
)

name
one through eight characters that provide a symbolic address for the request
parameter list that is generated. You can use it in the request macros to give
the address of the list. You can also use it in the NXTRPL operand of the RPL
macro, when you are chaining request parameter lists, to indicate the address
of the next list.

ACB=address
specifies the address of the access method control block that identifies the file
to which access will be requested. If you used the ACB macro to generate the
control block, you can specify the label of that macro for the address. If you
omit this operand you must issue a MODCB macro to specify the address of
the file's ACB before you can issue a request against the RPL.

AM=VSAM
specifies that this is a VSE/VSAM control block. You may want to specify this
operand for documentation purposes if your installation also uses VTAM.

AREA=address
specifies the address of your I/O work area to and from which VSE/VSAM
moves the record (OPTCD=MVE) for GET and PUT requests. You process the
record in this work area. If you process the records in VSE/VSAM's I/O buffer
(OPTCD=LOC), VSE/VSAM puts into this work area the address of the record
in the I/O buffer (GET only).

If you omit this operand you must issue a MODCB macro to specify the
address of the request against the RPL.

When you specify user buffers (MACRF=UBF in the ACB) for CI (CNV) access,
AREA specifies the address of a single I/O buffer. VSE/VSAM uses the buffer
to read and write CIs.

AREALEN=number
specifies the length, in bytes, of the work area. For OPTCD=MVE, the work
area must be large enough to contain the largest record in the file. For
OPTCD=LOC, the work area must be at least 4 bytes long to contain the
address of the record in the I/O buffer. For OPTCD=CNV, the work area must
be at least the size of a CI.

If you omit this operand, you must issue a MODCB macro to specify the
length of the request against the RPL.

ARG=address
specifies the address of a field that contains the search argument for:

RPL Macro

Chapter 12. Descriptions of VSE/VSAM Macros 247

v Direct or skip sequential retrieval (GET)
v Sequential positioning (POINT)
v Direct or skip sequential storage (PUT) for a relative-record file

For keyed access (OPTCD=KEY), the search argument may be a:
v Full key (OPTCD=FKS)
v Generic key (OPTCD=GEN) In this case you must also indicate its size in the

KEYLEN operand.
v Relative-record number (which is treated as a key of 4 bytes length)

For addressed access (OPTCD=ADR), the search argument is always an RBA
(relative byte address of a length of 4 bytes). To determine the RBA of a record
to which you have gained access sequentially or directly by key, you can use
the SHOWCB macro to display the RBA of the last record processed. (See “The
SHOWCB Macro” on page 266).

Note: Addressed access is not available with an extended-addressed KSDS,
and an RBA does not apply.
For CI access with user buffering and user-supplied RBA, the record is written
only to this RBA if positioning is not established by a previous request.

When records are inserted (sequentially or directly) into a key-sequenced file,
VSE/VSAM obtains the key from the record itself. When records are
sequentially inserted into, or retrieved from, a relative-record file, VSE/VSAM
returns the assigned relative-record number in the ARG field (as a four-byte
binary number).

KEYLEN=number
When a generic key is used as a search argument (OPTCD=GEN), this operand
specifies the length of the generic key in number of bytes. KEYLEN can be any
value from 1 to 255.

If, for example, the full key is 50 bytes long and KEYLEN=10 is specified,
VSE/VSAM uses the leftmost 10 bytes of the 50-byte key field for comparison
with the search argument. The length of the full key is in the catalog. It can be
obtained through the KEYLEN parameter of the SHOWCB macro. You place
the key (full or generic) in a field pointed to by the ARG parameter.

NXTRPL=address
indicates the address of the next RPL in a chain of RPLs; it is required when
you chain several RPLs together.

The standard request for access to a file retrieves, stores, or deletes a single
record by means of one RPL specified in the request macro. If you want to
retrieve or store more than one record with a single GET or PUT, you can
chain several RPLs together so that every RPL indicates a different data record.
For example, every RPL in the chain could contain a unique search argument
and point to a unique work area. For a GET against such a chain of RPLs,
VSE/VSAM retrieves a record for every RPL in the chain.

The positioning information, normally maintained for every RPL, is maintained
only once for the total chain, so a chain of RPLs is processed as a single
request. (Chaining RPLs is not the same as processing concurrent requests,
where every request requires that VSE/VSAM keep track of a position in the
file.) See the discussion of the STRNO operand under “The ACB Macro” on
page 208.

Figure 21 on page 249 shows how to build a chain of RPLs by specifying the
NXTRPL operand. When you issue a request that is defined by a chain of

RPL Macro

248 VSE/VSAM V9R2 User’s Guide and Application Programming

RPLs, specify in the request macro the address of the first RPL in the chain.
This request macro determines the request type for the whole chain, and the
same major operation, GET for example, is performed for all RPLs in the chain.
However, other options such as the request options, which you specify in the
OPTCD operand of the RPL macro, may vary from one RPL to another. Thus,
an RPL with the option SEQ may be followed by an RPL with the option DIR.

You cannot process records in VSE/VSAM's I/O buffer with chained RPLs
(OPTCD=LOC is invalid for chained RPLs).

With chained RPLs, the following types of requests cause VSE/VSAM to
position itself at the record following the one identified by the last RPL in the
chain:
v POINT
v Sequential or skip sequential GET
v Direct GET with positioning requested (OPTCD=NSP)

VSE/VSAM will execute the chain of RPLs as a single request, thereby
attempting to execute the requests with as few I/O requests as possible. All
control intervals residing in the same control area will usually be processed in
a single I/O. For a description of extended user buffering see “How to Use
Extended User Buffering: GET and PUT Macros” on page 319.

RECLEN=number
specifies the length, in bytes, of a data record stored by a PUT request. For
fixed length records, the length need only be set once. For GET requests,
VSE/VSAM indicates the length of the record in this field. To process a file
with records of different lengths you can examine the field with the SHOWCB
or TESTCB macro and modify it with the MODCB macro.

TRANSID=number
specifies a number that relates modified buffers in a buffer pool for a
subsequent write operation (with the WRTBFR macro). It is used in shared
resource applications and is described under “Sharing Resources Among Files
and Displaying Catalog Information” on page 203.

Specification in Program Generated RPL Chain

RPL1 RPL ...
NXTRPL=RPL2
...

RPL1

RPL2 RPL ...
NXTRPL=RPL3
...

RPL2

RPL3 RPL ... RPL3

Note:
In the RPL macro for the last RPL in the
chain, the NXTRPL operand must be omitted.

Figure 21. Example of an RPL Chain Built by Specifying the NXTRPL Operand

RPL Macro

Chapter 12. Descriptions of VSE/VSAM Macros 249

RPL Processing Options
Specifies the type of access to be gained to the file through the requests defined by
this RPL. Options are arranged in groups, and every group has a default value.
You can specify only one option in every group; therefore, if your ACB indicates
both sequential and direct processing for example, you must modify the RPL when
you switch from one to the other. In other words you can use the same RPL for
different types of request (GET, PUT, POINT, for example) by modifying the RPL.
Because VSE/VSAM ignores inapplicable option groups, there is no need for you
to zero out options that are not required before you go from one type of request to
another. For more information about modifying an RPL, see “The MODCB Macro”
on page 240. The following list gives the options; they are arranged in groups, and
every group has a default value (indicated by underlining):

KEY
Keyed access (for key-sequenced and relative-record files). For a key-sequenced
file, you can change from keyed to addressed access without positioning. If
you change from keyed to CI access, the results are unpredictable and no error
code will be issued.

ADR
Addressed access (for key-sequenced and entry-sequenced files, not for
relative-record files). If you change from addressed to keyed access, you must
reestablish positioning or the request will terminate with an error. If you
change from addressed to CI access, the results are unpredictable and no error
code will be issued.

Note: Addressed access is not available for extended-addressed KSDS files. For
more information, refer to VSE/VSAM Commands, SC33-8315.

CNV
CI access (provided for special applications such as utilities). If you change
from CI to keyed access, you must reestablish positioning or the request will
terminate with an error. If you change from CI to addressed access, the results
are unpredictable and no error code will be issued.

Note: CI access is not available for extended-addressed KSDS files. For more
information, refer to VSE/VSAM Commands, SC33-8315.

SEQ
Sequential processing.

DIR
Direct processing.

SKP
Skip sequential processing (for keyed access only).

FWD
Forward processing of a file.

BWD
Backward processing of a file (see “Specifying Processing Options for a
Request” on page 252). Backward processing is only allowed for keyed (KEY)
or addressed (ADR) access and for sequential (SEQ) or direct (DIR) processing.

ARD
The search argument given in your argument (ARG) field determines the
record to be located, retrieved, or stored.

RPL Macro

250 VSE/VSAM V9R2 User’s Guide and Application Programming

LRD
The last record of the file is to be located (POINT) or retrieved (GET direct).
LRD can only be used in conjunction with OPTCD=BWD.

NUP
Request is not for update (you will not update or delete a record you are
retrieving; a record you are storing is new). For a direct request, positioning
will be released.

NSP
For direct processing only, request is not for update, and VSE/VSAM will be
positioned at the next record for subsequent sequential processing.

UPD
Request is for update; you must issue a GET for update before you can issue a
PUT for update or an ERASE. However, if you supply your own buffers for CI
access, you can issue a PUT for update without a preceding GET.

KEQ
The search argument must equal the key of the data record (for keyed direct or
skip sequential retrieval or keyed sequential pointing).

KGE
If the search argument does not equal the key of a record the request applies to
the record with the next greater key (for keyed direct or skip sequential
retrieval or keyed sequential pointing). If the search argument is a
relative-record number, KEQ and KGE apply to a POINT request only. KGE is
ignored if BWD is specified.

FKS
The entire key is to be used for a search argument (for keyed direct or skip
sequential retrieval or keyed sequential pointing).

GEN
A generic key is to be used for a search argument (for keyed direct or skip
sequential retrieval or keyed sequential pointing). You must specify the length
of the generic key in the KEYLEN operand. GEN is ignored for relative-record
files and if BWD is specified.

MVE
For retrieval and storage, VSE/VSAM moves a data record between the I/O
buffer and your work area. MVE must also be specified when you supply your
own buffers for CI access.

LOC
For retrieval, you can process the record in VSE/VSAM's I/O buffer.
VSE/VSAM will pass you a pointer to the record in the buffer. If you want to
update the record, you will have to move it to your work area before issuing a
PUT macro (OPTCD=MVE). Do not specify LOC when processing spanned
records.

NBF
Normal user buffering.

Each request as identified by an RPL is executed serially and independently.
This is the conventional processing of user buffering and remains the default.

XBF
Extended user buffering.

For more details on the options you can specify in the OPTCD operand of the RPL
macro, refer to the section “Specifying Processing Options for a Request” on page
252

RPL Macro

Chapter 12. Descriptions of VSE/VSAM Macros 251

252

Specifying Processing Options for a Request
The following deals mainly with keyed and addressed access as applied to the
different types of processing (sequential, skip sequential, direct) and types of files.
CI access and move/locate mode are described at the end of this section. See also
“Examples of Request Macros” on page 297.

Keyed and Addressed Access
You can gain access to a record in:
v A KSDS file by keyed or addressed access.

Note: Access to an extended-addressed KSDS file (> 4 GB) is keyed only. For
more information, refer to VSE/VSAM Commands, SC33-8315.

v An RRDS file only by keyed access.
v An ESDS file only by addressed access.
v A VRDS file only by keyed access.

An alternate index or a path is treated like a KSDS, except that addressed access is
not allowed for an alternate-index path. All key references in the RPL are to the
alternate key (instead of the base cluster's prime key).

You can process spanned records in a KSDS by keyed (direct or sequential) access,
and in an ESDS by addressed (direct or sequential) access. In either case, the entire
record is returned. You cannot process spanned records in a KSDS file by
addressed access, because the CIs that contain the spanned record may not be
physically contiguous. You may process a file in backward direction by keyed or
addressed access.

Table 25 summarizes the use of keyed and addressed access to retrieve, add
(insert), update, or erase records in KSDS, ESDS, RRDS, and VRDS files. Sequential
BWD means that the previous, instead of the next record in sequence (FWD) is to
be accessed (see the BWD option of the OPTCD operand). Direct backward (BWD)
is mainly used to prepare for a following GET sequential backward.

Table 25. Summary of Processing Options for Keyed and Addressed Access

Type of File
Type of
Access Type of Processing

Records

Retrieve Add Update Delete

key sequenced keyed
sequential FWD
sequential BWD
skip sequential
direct (FWD or BWD)

yes
yes
yes
yes

yes
no
yes
yes**

yes
yes
yes
yes

yes
yes
yes
yes

addr***
sequential FWD
sequential BWD
direct (FWD or BWD)

yes
yes
yes

no
no
no

yes*
yes*
yes*

yes
yes
yes

entry
sequenced

addr
sequential FWD
sequential BWD
direct (FWD or BWD)

yes
yes
yes

to end
no
to end**

yes*
yes*
yes*

no
no
no

RPL Macro

252 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 25. Summary of Processing Options for Keyed and Addressed Access (continued)

Type of File
Type of
Access Type of Processing

Records

Retrieve Add Update Delete

relative record keyed
sequential FWD
sequential BWD
skip sequential
direct (FWD or BWD)

yes
yes
yes
yes

yes
no
yes
yes**

yes*
yes*
yes*
yes*

yes
yes
yes
yes

variable
relative record

keyed
sequential FWD
sequential BWD
skip sequential
direct (FWD or BWD)

yes
yes
yes
yes

yes
no
yes
yes**

yes
yes
yes
yes

yes
yes
yes
yes

* The length of the record cannot be changed.
** ’no’ for backward (BWD) processing.
*** Not available for extended-addressed KSDS files (> 4 GB).

Sequential and Direct Processing
VSE/VSAM allows both sequential and direct processing for every of its types of
files.

Sequential processing of a record depends on the position, with respect to the key,
relative-record number, or address of the previously processed record; direct
processing does not. With sequential access, records retrieved by key are in key
sequence, records retrieved by relative-record number are in numerical order, and
records retrieved by address are in entry (RBA) sequence. To retrieve or store
records sequentially after initial positioning, you do not need to specify a key,
relative-record number, or RBA. VSE/VSAM automatically retrieves or stores the
next record in order. Apart from OPEN's positioning to the first record of a file,
initial positioning can be established by:
v Pointing to the desired record, or
v Inserting a record into the file (keyed access with FWD only), or
v Using direct processing and:

– Retrieving a record for update (UPD) or
– Specifying OPTCD=NSP.

A variation of normal sequential retrieval is sequential backward processing.
Instead of retrieving the next record in relation to current positioning in the file,
the previous record is retrieved. Sequential backward processing is available for
keyed and addressed access.

With direct processing, the retrieval or storage of a record is not dependent on the
key, relative-record number, or address of any previously retrieved record. You
must identify the record to be retrieved by key, or relative-record number, or RBA.

Keyed Access

Keyed access is for key-sequenced and relative-record files. The relative-record
numbers of the records in a relative-record file are treated as keys. Keys or
relative-record numbers are specified and returned in the area pointed to by the
ARG operand of the RPL macro.

RPL Macro

Chapter 12. Descriptions of VSE/VSAM Macros 253

Keyed access provides for retrieval, update (including lengthening or shortening a
record in a key-sequenced file, as well as altering its contents, except for the key),
insertion, addition, and deletion. Each of these actions can be sequential, skip
sequential, or direct.

With sequential processing, records are retrieved or stored in ascending key or
relative-record sequence, starting from the beginning of the file or another position
that you select. You do not have to supply a search argument for VSE/VSAM to
process the records.

When you specify SEQ and BWD in the OPTCD operand of the RPL macro,
VSE/VSAM returns the previous, instead of the next record in the file (in relation
to current positioning). The previous record is the one which has the next lower
key (or relative-record number). With the SEQ and BWD options, you can retrieve,
update, or erase records, but you cannot insert or add records.

With direct processing, records are retrieved by the search argument (key or
relative-record number) you supply. Records can be processed in any order,
without regard to the sequence of records processed before or after.

With skip sequential processing, records are retrieved by search argument, but in
ascending key or relative-record sequence (no backward processing). Thus, skip
sequential combines functions of both sequential and direct processing.

The subject is discussed below in more detail for keyed retrieval, storage, and
deletion.

Sequential (SEQ) Retrieval

If you specify KEY and SEQ for a key-sequenced file, the record to be retrieved
depends on where VSE/VSAM is positioned in the file. When your program opens
the file, VSE/VSAM is positioned at the first record in the file to begin sequential
processing. However, if sequential processing is not to begin with the first record
of the file, you can issue a POINT macro to position VSE/VSAM at the record
whose key you specify. (If the specified key is generic, that is, a leading portion of
the key field, then VSE/VSAM is positioned to the first of the records that have
the same generic key.) A subsequent GET macro retrieves the record VSE/VSAM is
positioned at and, at the same time, positions VSE/VSAM at the record with the
next higher key. In the POINT macro you can also indicate the direction in which
the file is to be processed subsequently, by specifying either FWD or BWD.

When you are accessing a base cluster through a path, records from the base cluster
are returned according to ascending or, if you are retrieving the previous record,
descending alternate key values. If several records contain the same (non-unique)
alternate key, these records are retrieved in the order in which they were entered
into the alternate index (even if BWD was specified). In addition, although Register
15 contains X‘00’, a warning code (duplicate key) is set in the FDBK field of the
RPL if there is at least one more data record with the same alternate key value. For
example, if there are three data records with the alternate key “1234”, the error
code would be set during the retrieval of records one and two, and would be reset
during retrieval of the third record.

Besides the error code, a function code is set in the RPL indicating whether the
condition occurred during accessing the alternate index or the base cluster of a
path or during upgrade processing (for a description of the function code, see
“Return Codes of Request Macros” on page 320).

RPL Macro

254 VSE/VSAM V9R2 User’s Guide and Application Programming

If a base cluster is accessed in a partition, once using a path and once not using a
path, “a no record found” or “duplicate key error” can occur. These errors can be
avoided by using Local Shared Resources (LSR).

The example in Table 26 illustrates backward sequential retrieval through a path
with non-unique alternate keys.

Table 26. Example of Backward Sequential Retrieval through a Path with Non-Unique
Alternate Keys

Alternate Index Pointer Record

CI 1: Alternate Key 10
1
2
3

T
U
E

CI 2: Alternate Key 20
1
2
3
4

S
D
A
Y

Backward sequential retrieval results in the sequence: S, D, A, Y, T, U, E

Keyed sequential retrieval for a relative-record file causes the records to be returned
in ascending or, if you are retrieving the previous record, descending numerical
order, based on the positioning for the file. Positioning is established in the same
way as for a key-sequenced file, the relative-record number always treated as a full
4-byte key. If one or more empty slots are encountered during sequential retrieval,
they are skipped and the next (or previous) record is retrieved. The relative-record
number of the retrieved record is returned in the ARG field of the RPL.

Sequential Backward (SEQ BWD) Retrieval

To process a file in backward direction or to switch from forward to backward
processing or vice versa, you must position VSE/VSAM and, at the same time,
indicate the direction of subsequent processing. Open always establishes forward
processing direction so that a GET sequential backward immediately after Open
results in a positioning error.

To position VSE/VSAM to the end of the file, issue a POINT macro with
OPTCD=(BWD,LRD) specified in the RPL. A subsequent GET sequential backward
retrieves the last record of the file. To locate and retrieve any other record in the
file and establish backward processing direction at the same time, issue a POINT
with OPTCD=(BWD,ARD) and a subsequent GET sequential backward (or a direct
GET with OPTCD=(BWD,NSP)).

A read error during a GET with:
OPTCD=(SEQ,BWD)

does not cause the positioning to be lost. An immediately following GET with
OPTCD=(SEQ,BWD) will cause VSE/VSAM to skip the next logical record in
backward direction that can be retrieved without a read error.

RPL Macro

Chapter 12. Descriptions of VSE/VSAM Macros 255

Direct (DIR) Retrieval

Keyed direct retrieval for a key-sequenced file does not depend on previous
positioning; VSE/VSAM searches the index from the highest level down to the
sequence set to retrieve a record. You must specify the record to be retrieved by
supplying, in the ARG field of the RPL, one of the following:
v The exact key of the record (OPTCD=KEQ)
v A key less than or equal to the key field of the record (OPTCD=KGE)
v A leading portion of the key, or generic key (OPTCD=GEN)

You can specify OPTCD=KGE when you do not know the exact key. If a record
actually has the specified key, VSE/VSAM retrieves it; otherwise, it retrieves the
record with the next higher key. Generic-key specification for direct processing
causes VSE/VSAM to retrieve the first record with a key whose leading portion is
identical with the key in the ARG field. If you want to retrieve all the records with
the generic key, specify NSP for your direct request, which causes VSE/VSAM to
position itself at the next record in key sequence. You can then retrieve the
remaining records with the same generic key sequentially.

If you use generic keys in conjunction with direct requests there is an additional
aspect to consider. VSE/VSAM has to read a data CI to determine that it is empty.
So the performance of direct requests with a generic key will decrease if you have
many deleted records that match your generic key and precede the first existing
record.

To retrieve a record in the file and indicate backward processing direction for a
subsequent GET sequential backward, issue a direct GET with
OPTCD=(BWD,NSP,ARD), or LRD instead of ARD if you want to retrieve the last
record in the file. The search argument must always be a full key (FKS) and must
be the same as that of the data record (KEQ); KGE and GEN are ignored. A direct
GET or a POINT with OPTCD=(BWD,LRD) against an empty file results in a
no-record-found condition.

When you are accessing a base cluster through a path with direct access, a record
from the base cluster is returned according to the alternate key value you have
specified in the ARG field of the RPL macro. If the alternate key is not unique, the
record which was first entered with that alternate key is returned and a warning
code (duplicate key) is set in the FDBK field of the RPL. To retrieve the remaining
records with the same alternate key, specify the NSP option when retrieving the
first record and then change to sequential processing.

If a base cluster is accessed in a partition, once using a path and once not using a
path, a “no record found” or “duplicate key” error can occur. These errors can be
avoided by using Local Shared Resources (LSR).

When you are processing a relative-record file with direct access, you must supply
the 4-byte relative record number of the desired record in the ARG field of the RPL
macro. If you request a deleted or non-existent record, the request will result in a
no-record-found condition.

Skip Sequential (SKP) Retrieval

For skip sequential retrieval for a key-sequenced file, when you indicate the key of
the next record to be retrieved, VSE/VSAM skips to its index entry by using
horizontal pointers in the sequence set to get to the appropriate sequence-set index

RPL Macro

256 VSE/VSAM V9R2 User’s Guide and Application Programming

record to scan its entries. SKP is similar to direct processing, except that the key of
the next record must always be higher in sequence than the key of the preceding
record.

A relative-record file has no index. When you indicate the number of the next record
to be retrieved, VSE/VSAM calculates the CI containing the requested record and
the position of the requested record within that CI. As for a key-sequenced file, the
relative-record numbers you specify must be ascending sequence for skip
sequential retrieval.

For a path, skip sequential access is the same as direct access, except that the
alternate key values have to be in ascending sequence. If a base cluster is accessed
in a partition, once using a path and once not using a path, a “no record found” or
“duplicate key” error can occur. These errors can be avoided by using Local Shared
Resources (LSR).

Backward processing is not allowed for skip sequential retrieval.

Keyed Insertion

VSE/VSAM stores a record whenever you issue a PUT request against an RPL. A
PUT request for update following a GET for update stores the record that the GET
retrieved. To update a record, you must previously have retrieved it for update.

When you store records sequentially beyond the highest key in the file,
VSE/VSAM automatically extends the file as though you were continuing to load
records. VSE/VSAM does not use distributed free space for these records, but
establishes new control areas at the end of the file. Free space is left in the new
control areas and CIs according to the file's FREESPACE specification in the
catalog.

To store records in key (or relative-record) sequence throughout the file, you can
use sequential, skip sequential, or direct access.

When you insert records into a key-sequenced file, you never have to specify a
search argument; VSE/VSAM always obtains the key from the record itself. With
sequential insertion or skip sequential insertion of consecutive records, VSE/VSAM
creates new CIs and control areas and free space is left in them according to the
file's FREESPACE specification in the catalog. With direct insertion or skip
sequential insertion of non-consecutive records, VSE/VSAM uses the free space.

For a relative-record file, sequential insertion causes a record to be inserted into the
next slot (provided it is empty). The slot number is returned in the ARG field of
the RPL. If the slot is not empty, a duplicate-record error condition will occur.

Direct or skip sequential insertion of a record into a relative-record file causes the
record to be placed as specified by the relative-record number in the ARG field.
You must insert the record into a slot which does not contain a record; otherwise, a
duplicate-record error condition will occur.

If you insert a record after the current end-of-file of a relative-record file, the file is
preformatted from the current end-of-file up to and including the control area that
is to contain the inserted record. Preformatting mainly consists of inserting control
information in the control areas and indicating that the slots are empty.

RPL Macro

Chapter 12. Descriptions of VSE/VSAM Macros 257

You can update and insert base data records via a path, provided the PUT request
does not result in non-unique alternate-key values in an alternate index (in the
upgrade set) which you have defined with the UNIQUEKEY parameter. The
alternate indexes in the upgrade set are modified automatically when you insert or
update a data record in the base cluster. When you update a previously retrieved
base record via a path, you must not change the alternate key by which that record
was retrieved or its prime key. If the updating of the alternate index results in an
alternate index record with no pointers to the base cluster, that alternate index
record is erased.

PUT insert requests with OPTCD=NUP or NSP are not allowed in backward
direction.

Keyed Deletion

An ERASE macro instruction following a GET for update deletes the record that
the GET retrieved. A record is physically erased in the file when you delete it. The
space the record occupied is then available as free space.

You can erase a record from the base cluster of a path only if the base cluster is a
key-sequenced file. The alternate indexes of the upgrade set are modified
automatically when you erase a record. If the alternate key value of the erased
record is unique, the alternate index data record with that alternate key is also
deleted.

You can erase a record from a relative-record file after you have retrieved it for
update. The record will be set to binary zeros and the control information for the
slot will be updated to indicate an empty slot. You can reuse the vacated space by
inserting another record of the same length in that location.

Addressed Access

Addressed access is the only form of access for an entry-sequenced file, using the
RBA determined for a record when it was stored in the file. This form of access is
also allowed for a key-sequenced file, but not for a path or for a relative-record
file. For both key-sequenced and entry-sequenced files, addressed access allows
processing in backward direction (by specifying OPTCD=BWD in the RPL macro).
Positioning is established as for keyed retrieval. You cannot add or insert records
in backward direction.

Addressed access can be either sequential or direct for both key-sequenced and
entry-sequenced files, but the processing allowed for a key-sequenced file is
different from that allowed for an entry-sequenced file.

With a key-sequenced file, addressed access can be used to retrieve records, update
their contents, and delete records, but the length of a record and the contents of its
key field cannot be changed. Records cannot be added because VSE/VSAM does
not allow changes to the file which could cause the index to change. With an
entry-sequenced file, addressed access can be used to retrieve records and to
update their contents, but not to change their lengths. New records can be added
to the end of the file. Records cannot be physically deleted because that would
change the entry sequence of the records in the file (the RBAs of the records).

Keyed insertion, deletion, or update (length changing) of records can change the
RBAs of these records. Therefore, to use addressed access to process a
key-sequenced file, you may have to keep track of RBA changes. For this purpose

RPL Macro

258 VSE/VSAM V9R2 User’s Guide and Application Programming

VSE/VSAM passes back the RBA of every record retrieved, added, updated, or
deleted. (See also “JRNAD Exit Routine to Journal Transactions” on page 231.)

Note: Addressed access is not available for extended-addressed KSDS files (> 4
GB). For more information, refer to VSE/VSAM Commands, SC33-8315.

Addressed Retrieval

Positioning for addressed sequential retrieval is done by RBA rather than by key.
When a processing program opens a file for addressed access, VSE/VSAM is
positioned at the first record in the file in entry sequence to begin addressed
sequential processing. A POINT positions VSE/VSAM for sequential access
beginning at the record whose RBA you have indicated. A sequential GET causes
VSE/VSAM to retrieve the data record at which it is positioned and positions
VSE/VSAM at the next or previous record in entry sequence depending on
whether you have specified forward (FWD) or backward (BWD) processing in the
RPL. If you use addressed sequential retrieval for a key-sequenced file, records will
not be in their key sequence if there have been CI or control-area splits.

Addressed direct retrieval requires that the RBA of every individual record be
specified, because previous positioning is not applicable. The address specified for
a GET or a POINT must correspond to the beginning of a data record; otherwise,
the request is invalid.

With direct processing, you may optionally specify that GET position VSE/VSAM
at the next record in forward (FWD,NSP) or backward (BWD,NSP) sequence. Your
program can then process the following or preceding records sequentially.

Addressed Deletion

You can use the ERASE macro with a key-sequenced file to delete a record that
you have previously retrieved for update.

With an entry-sequenced file, you are responsible for marking a record you want
to delete. In other words, as far as VSE/VSAM is concerned, the record is not
deleted. You can reuse the space occupied by a record marked for deletion by
retrieving the record for update and storing in its place a new record of the same
length.

Addressed Insertion

VSE/VSAM does not insert new records into the middle of an entry-sequenced
file, but adds them at the end. With addressed access of a key-sequenced file,
VSE/VSAM does not insert or add new records. You cannot add or insert new
records in backward direction.

When you store records sequentially beyond the highest key in the file,
VSE/VSAM automatically extends the file as though you were continuing to load
records.

A PUT macro instruction stores a record. A PUT for update following a GET for
update stores the record that the GET retrieved. To update a record, you must
previously have retrieved it for update. You can update the contents of a record
with addressed access, but you cannot alter the record's length. Neither can you
alter the key field of a record in a key-sequenced file. To change the length of a
record in an entry-sequenced file, you must store it either at the end of the file (as

RPL Macro

Chapter 12. Descriptions of VSE/VSAM Macros 259

a new record) or in the place of a deleted record of the same length (as an update).
You are responsible for marking the old version of the record as deleted.

CI Access
VSE/VSAM provides programmers of utilities and systems with CI access. They
retrieve and store the contents of a CI, rather than a single record, by specifying CI
access in the macros and (for direct processing) giving the RBA of the CI. They are
responsible for maintaining the control information at the end of the CI. The
format of this information may change in future releases of VSE/VSAM.

CI access is allowed for relative-record files, provided the size of the file is not
changed by insertions or additions. CI access is not allowed when you process an
alternate-index path or access records in backward direction (with the BWD
option).

Note: CI access is not available for extended-addressed KSDS files. For more
information, refer to VSE/VSAM Commands, SC33-8315.

Processing a Record in a Work Area or in a Buffer

When your processing program retrieves a record, VSE/VSAM reads into virtual
storage the contents of the entire CI in which the record is stored. VSE/VSAM
de-blocks the records and either places the requested record in your program's
work area (OPTCD=MVE) or leaves the record in VSE/VSAM's I/O buffer and
gives you, in the AREA field, the address of the record in the buffer
(OPTCD=LOC). VSE/VSAM indicates the length of the record to your program (in
the RECLEN field) in both move mode and locate mode. You need not concern
yourself with any physical attributes of stored records. Spanned records cannot be
accessed in locate mode.

The SHOWCAT Macro
With the SHOWCAT macro, you can retrieve information from a catalog about any
non-open file defined in the catalog.

For explanations on the relationship of the information that you can retrieve, refer
to “Displaying Catalog Information. SHOWCAT” on page 201 (Figure 18 on page
202).

Format of the SHOWCAT Macro
When you issue a SHOWCAT macro, Register 13 must contain the address of a
72-byte save area that you are providing. When you issue a SHOWCAT macro
from within one of your exit routines, such as LERAD or SYNAD, your program
must provide a second 72-byte save area for use by VSE/VSAM, because the
original save area is still in use by the external VSE/VSAM routine.

The SHOWCAT macro has the following format:

��
name

SHOWCAT DDNAME=address
NAME=address
CI=address

,AREA=address
,ACB=address

�

RPL Macro

260 VSE/VSAM V9R2 User’s Guide and Application Programming

�
,CATDSN=address

,CATFIL=address
,EXTOPT= VOLSER

HARBADS

�

�
,MF=L
,MF=(E , address)

B (1)

��

name
one to eight characters that provide a symbolic name.

DDNAME│NAME│CI=address
specifies the address of an area that identifies the catalog entry that contains
the desired information.

DDNAME=address
specifies the address of a seven-byte area containing the file name of the object
to be displayed. The object can be a cluster (C), an alternate index (G), or a
path (R). Using the indicated file name, SHOWCAT first retrieves the
corresponding name (file ID) of the object from the label cylinder and then the
desired information from the catalog.

Either this parameter or the NAME or CI parameter must be provided.
However, when issuing the first SHOWCAT for an object, specify DDNAME or
NAME. VSE/VSAM then supplies the CI numbers of any associated objects for
subsequent SHOWCATs (in the work area supplied through the AREA
operand). See “Format of the SHOWCAT Work Area” on page 264.

NAME=address
specifies the address of a 44-byte area containing the name (file ID) of the
object to be displayed. The name is left-justified and padded with blanks on
the right. The type of object named must be C, G, R, D, or I.

Either this parameter or the DDNAME or CI parameter must be specified.
However, when issuing the first SHOWCAT for an object, specify DDNAME or
NAME. VSE/VSAM then supplies the CI numbers of any associated objects for
subsequent SHOWCATs (in the work area supplied through the AREA
operand). See “Format of the SHOWCAT Work Area” on page 264.

CI=address
specifies the address of a three-byte area that contains the CI number of the
catalog entry for the object to be displayed. The entry type of the object must
be C, G, R, D, I, or Y. (Y can only be retrieved via CI).

Either this parameter or the DDNAME or NAME parameter must be specified.
However, when you have already issued a SHOWCAT request for an object
(with the DDNAME or NAME parameter), you then issue any subsequent
SHOWCATs for its associated objects by specifying their CI numbers (as
returned to you via the previous SHOWCAT DDNAME or NAME request).

The three-byte area must be separate from the work area specified by the
AREA operand, even though VSE/VSAM returns a CI number in the work
area.

AREA=address
specifies the address of a work area in which the catalog information is to be
displayed. The first two bytes of this area must contain the length of the area,
including these two length bytes.

SHOWCAT Macro

Chapter 12. Descriptions of VSE/VSAM Macros 261

The minimum size of the area is 64 bytes, unless EXTOPT is specified. With
EXTOPT, the minimum size is 28 bytes. If it is smaller than the minimum size,
you get a return code of 4 in Register 15 and you can reissue the SHOWCAT
macro with a larger size. The format of the work area is described in “Format
of the SHOWCAT Work Area” on page 264.

ACB=address
specifies the address of the ACB that defines the catalog containing the entry
to be displayed. You issue the first SHOWCAT without ACB specified;
VSE/VSAM searches for the specified objects and returns to you (in the work
area supplied through the AREA operand) the address of the ACB that defines
the correct catalog. The catalogs are searched in the following order: the
catalog specified by the CATDSN parameter, the catalog specified by the CAT
parameter of the VSE/VSAM file, the job catalog, or if none of these exist, the
master catalog. When you subsequently issue SHOWCAT, you can specify that
ACB address, which causes VSE/VSAM to go directly to the correct catalog
without searching other catalogs first. You should always include the ACB
parameter when you specify CI instead of NAME.

CATDSN=address and CATFIL=address
CATDSN specifies the address of a 44-byte area containing the name (file ID)
of the catalog to be searched.

CATFIL specifies the address of an 8-byte area containing the file name of the
catalog to be searched. File ID and file name must be the same as those
specified in the DLBL statement (if one is provided) for the catalog. CATDSN
must always be specified if CATFIL is specified. CATFIL is always optional.
You use these parameters to override the established order in which catalogs
are searched. (VSE/VSAM always searches only one catalog for a specific
entry.) That is, you must specify CATDSN if the object to be displayed is (1)
not specified by the CAT parameter on the DLBL statement for the file, (2) not
in the job or master catalog, or (3) in the master catalog and not the job catalog
(if IJSYSUC and IJSYSCT are both specified).

EXTOPT=VOLSER│HARBADS
indicates that either the volume serial number of the file's primary allocation
volume (VOLSER) or the high allocated RBA for the file (HARBADS) is to be
returned to you. This operand can only be issued for a D or I type catalog
record.

The data returned for the EXTOPT operand replaces the associated object
information in the user return area. If you need the associated object
information as well as the EXTOPT data, you must issue separate SHOWCAT
macros.

MF=L
specifies that the list form of the SHOWCAT macro is required. The list form
builds a parameter list when the macro is assembled; it is not executable.
AREA and DDNAME│CI│NAME are optional in the list form; if you do not
specify them in the list form they must be specified in the execute form. In the
list form, the operand addresses cannot be expressed in register notation. The
format of the SHOWCAT parameter list is described in “Parameter Lists for
VSE/VSAM Macros” on page 333.

MF=(E│B,address│(1))
specifies that the execute form of the SHOWCAT macro is required.

E indicates that the parameter list, whose address is given in address or in a
register, is to be passed to VSE/VSAM for processing.

SHOWCAT Macro

262 VSE/VSAM V9R2 User’s Guide and Application Programming

B indicates that the parameter list is to be built or modified, but is not to be
passed to VSE/VSAM. This form of the macro is similar to the list form, except
that it works at execution time and can modify a parameter list, as well as
build it.

To build a parameter list, first issue SHOWCAT with only MF=(B) specified, to
zero out the area in which it will be built.

address gives the address of the parameter list. If you use register notation,
you may use Register 1, as well as a register from 2 through 12. Register 1 is
used to pass the parameter list to VSE/VSAM (if MF=E).

If the MF operand is omitted, the standard form of the SHOWCAT macro is
assumed, which builds the parameter list, puts its address in Register 1, and
passes control to VSE/VSAM to process the list.

Return Codes from SHOWCAT
When VSE/VSAM returns to your processing program after a SHOWCAT request,
Register 15 contains one of the following return codes:

Return Code Meaning

0 (0) VSE/VSAM completed the request.

4 (4) The area specified in the AREA operand is less than the minimum
required (64 bytes) or is too small to display all associated objects (as
many objects as possible are displayed).

8 (8) Either the ACB address is invalid or the VSE/VSAM master catalog
does not exist or could not be opened.

12 (0C) The request was not executed because an error was found while
VSE/VSAM routines were loaded (see Note).

20 (14) The named object or CI does not exist (see Note).

24 (18) An I/O error occurred in gaining access to the catalog (see Note).

28 (1C) The specified CI number is invalid.

32 (20) The specified object is not a C, D, G, I, R, or Y type (see Note).

40 (28) An unexpected error code was returned from catalog management to
the SHOWCAT processor (see Note).

44 (2C) An error occurred in searching the label area for the file ID
corresponding to the specified file name (See Note).

48 (30) EXTOPT field name is not valid for SHOWCAT.

52 (34) EXTOPT specified, but record type not D or I.

If a return code of 0 was passed in Register 15, the requested catalog information is
returned in the work area which you have supplied through the AREA operand.
The format is shown below.

Note: In case the SHOWCAT return code in Register 15 is 12, 20, 24, 28, 36, 40, 44,
or 52, the work area contains the return code and reason code issued by
VSE/VSAM catalog management as well as the module ID of the catalog
management module in which the error was detected. The format of the work area
is then as follows:

Offset Length Description
0 2 Length of work area
2 2 VSE/VSAM catalog return code1 or (for

SHOWCAT Macro

Chapter 12. Descriptions of VSE/VSAM Macros 263

Offset Length Description
return code 44) VSE/VSAM error code

4 2 VSE/VSAM catalog reason code1

6 2 VSE/VSAM catalog management module ID

1 For the codes, refer to z/VSE Messages and Codes, Volume 2, SC34-2633.

Format of the SHOWCAT Work Area

Offset Length
Description

0(0) 2 Length of the work area, including the length of this field (provided by
you).

2(2) 2 Length of the work area actually used by VSE/VSAM, including the length
of this field and the preceding field.

4(4) 4 The address of the ACB that defined the catalog that contains the entry
which is to be displayed.

8(8) 1 Type of object about which information is returned:

C Cluster

D Data component

G Alternate index

I Index

R Path

Y Upgrade set

The following fields contain one set of information for C, G, R, and Y
types, and another set for D and I types.

For C, G, R, and Y types:

9(9) 1 For Y type: Reserved.

For C type:

x... The SHOWCAT output for the D type record will provide the
VSAM file type (1).

.xxx xxxx
Reserved.

For G type:

x... The alternate index might (1) or might not (0) be a member of an
upgrade set. The way to find out for sure is to display information
for the upgrade set of the base cluster and check whether it
contains CI numbers of entries that describe the components of the
alternate index. Figure 18 on page 202 shows you how to get from
the alternate index's catalog entry to the entries that describe its
components (G to C to D to Y to D and I).

SHOWCAT Macro

264 VSE/VSAM V9R2 User’s Guide and Application Programming

.xxx xxxx
Reserved.

For R type:

x... The path is (1) or is not (0) defined with the UPDATE attribute (for
upgrading alternate indexes).

.xxx xxxx
Reserved.

10(A) 2
The number of pairs of fields that follow. Every pair of fields identifies
another catalog entry that describes an object associated with this C, G, R
or Y object. The possible types of associated objects are:

With C: D, G, I, R.
With G: C, D, I, R.
With R: C, D, G, I.
With Y: D, I.

Figure 18 on page 202 shows how the catalog entries for all these objects
are related.

12(C) 1
Type of associated object the entry describes.

13(D) 3
The CI number of its first record.

16(10) Next pair of fields, and so on. If the area is too small to display a pair of
fields for every associated object, VSE/VSAM displays as many pairs as
possible and returns a code of 4 in Register 15.

Every pair of fields occupies 4 bytes, except Y-type entries which require 8
bytes (4 for the data component and 4 for the index component of the
alternate index in the upgrade set).

For D and I types:

9(9) 1 For I type: Reserved.

For D type:

..xx1x. -> The file is a SAM file (NOCIFORMAT data set, DTFPH
access only). .01. -> The file is a SAM ESDS file (ACB access
allowed). .00. -> The file is a native VSAM file, defined as:

.x00 x...
0000 -> ESDS (Entry-Sequenced Data Set) 1000 -> KSDS
(Key-Sequenced Data Set) 0001 -> RRDS (Relative Record Data Set)
1001 -> VRDS (Variable-length Relative Record Data Set)

For SAM ESDS (invalid for native VSE/VSAM file):

x... File definition by implicit (1) or explicit (0) DEFINE

.... .x.. The SAM record format is blocked (1)

.... ..x. The SAM record format is variable records (1)

.... ...x The SAM record format is fixed records (1)

SHOWCAT Macro

Chapter 12. Descriptions of VSE/VSAM Macros 265

10(A) 2
Relative position of the prime key in records in the data component. For
the data component of an entry-sequenced or a relative record file there is
no prime key, and this field is 0.

12(C) 2
Length of the prime key, or length of logical record for fixed-blocked SAM
files.

14(E) 4
CI size of the data or index component.

18(12) 4
Maximum record size of the data or index component, or block size for
blocked SAM files.

22(16) 2
The number of pairs for fields that follow. Every pair of fields identifies
another catalog entry that describes an object associated with this D or I
object. The possible types of associated objects are:

With D: C, G, Y.
With I : C, G.

Figure 18 on page 202 shows how the catalog entries for all these objects
are related.

24(18) 1
Type of associated object the entry describes.

25(19) 3
The CI number of its first record.

28(1C) Next pair of fields, and so on. Fields for all associated objects can always
be displayed (with the minimum AREA size specified).

The SHOWCB Macro
The SHOWCB macro displays fields in an ACB, EXLST or RPL. VSE/VSAM places
these fields in an area that you provide. They are independent of the format of the
control block or list you are displaying. The fields are displayed in the order that
you specify the keywords for them.

The operands of the SHOWCB macro are specified as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in ordinary z/VSE register notation, as S-type
address constants, and as indirect S-type address constants. “Operand Notation for
VSE/VSAM Macros” on page 325 gives all the ways of coding every operand for
the macros that work at execution.

When you issue a standard SHOWCB macro (not the short form described below),
Register 13 must contain the address of a 72-byte save area that you are providing.
When you issue a SHOWCB macro from within one of your exit routines such as
LERAD or SYNAD, your program must provide a second 72-byte save area for use
by VSE/VSAM because the original save area is still in use by the external
VSE/VSAM routine.

SHOWCAT Macro

266 VSE/VSAM V9R2 User’s Guide and Application Programming

If you want to display only the length of a data record (the RECLEN field of the
corresponding RPL), you can do so without any call to a VSE/VSAM routine by
issuing the SHOWCB macro in the following short form:

SHOWCB RPL=(1),RECLEN=(0)

The address of the RPL must be contained in Register 1. The record length will be
put into Register 0. No parameter list is created. For other SHOWCB functions, you
must use the standard form of the SHOWCB macro.

Format of the SHOWCB Macro

��
name

SHOWCB
ACB =address,
EXLST
RPL

SHAREPL=number,

AM=VSAM,
�

� AREA=address,FIELDS=(�

,

keyword),LENGTH=number �

�
,MF=L

,MF= L
(E, address)

(1)

,OBJECT=DATA

,OBJECT=INDEX
��

name
one to eight characters that provide a symbolic name.

ACB│EXLST│RPL=address|SHAREPL=number
This operand specifies whether you want to display an ACB, an EXLST, an
RPL and its address, or information about an LSR share pool.

In the standard and list forms of SHOWCB, you can omit this operand if you
are displaying only the standard length of a control block or list (see “Length
of a Control Block or List” on page 269). With the execute form of SHOWCB,
you can change the address of the block or list to be displayed, but not the
type.

AM=VSAM
specifies that this is a VSE/VSAM control block. You may want to specify this
operand for documentation purposes if your installation also uses VTAM.

AREA=address
specifies the address of the area in virtual storage that you are providing for
VSE/VSAM to display the items you specify in the FIELDS operand. The items
are in the area in the order you specify the keywords. The area must begin on
a fullword boundary.

FIELDS=(keywords)
There are five groups of keywords you can code for the FIELDS operand of the
SHOWCB.

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 267

v The keywords that you can code with the ACB, EXLST, RPL, and GENCB
macros. For details, refer to “Keywords of the ACB, EXLST, and RPL
Macros.”

v The length of an ACB, RPL, or EXLST. For details, refer to “Length of a
Control Block or List” on page 269.

v The attributes of an open file or index indicated by the ACB. For details,
refer to “Attributes of an Open File” on page 269.

v The matrix of LSR statistics LSRINF. To retrieve this matrix into the user's
area, LSRINF must be the only keyword in the FIELDS parameter. If
SHAREPL=number is specified, OBJECT parameter is ignored. For details,
refer to “LSR Matrix” on page 276.

v The extent matrix EXTINF. To retrieve this matrix into the user's area,
EXTINF must be the only keyword in the FIELDS parameter. For details,
refer to “Extent Matrix” on page 279.

LENGTH=number
specifies the length of the display area you are providing (by way of the AREA
operand). Every field in the ACB and RPL takes a fullword, except for
DDNAME, STMST, and ATRB in the ACB, which take two fullwords. Every
EXLST operand takes only one fullword, because you cannot display the codes
A, N, and L.

MF=
For information on specifying this operand, refer to “List, Execute, and
Generate Forms of the Control Block Manipulation Macros” on page 322.

OBJECT=DATA│INDEX
specifies, for the open ACB of a key-sequenced file, whether the fields
displayed are for the data or the index. VSE/VSAM will display the same
values for KEYLEN regardless of your specification in the OBJECT operand.
The same is true for field RKP.

If you specify INDEX, VSE/VSAM's display is all zeros for the following
fields:

FS NRETR LNDELR LNUPDR
NCIS NSSS LNINSR
NDELR NUPDR LNRETR
NINSR LNCIS LNSSS

SHAREPL=number
specifies the identification number of a Local Shared Resources (LSR) pool to
be displayed. Specify a number from 0 through 15.

Keywords of the ACB, EXLST, and RPL Macros
The keywords in this group require one fullword every for display, except
DDNAME which requires two fullwords. The keywords are identical to those of
the ACB, EXLST, and RPL macros, except that:
v You can code the operands in more ways, as shown in “Operand Notation for

VSE/VSAM Macros” on page 325.
v You do not code the address, value, option, or name to which the keyword is

equal.
v In relation to the ACB macro, you cannot display the MACRF options and the

RMODE31 keyword.

SHOWCB Macro

268 VSE/VSAM V9R2 User’s Guide and Application Programming

With the keyword ERROR, you can display the error code (in the rightmost byte
of the display word) from the Open or Close routine (see the OPEN and CLOSE
macros); you can test the MACRF options with the TESTCB macro.
Also in relation to the ACB macro, you cannot display the ABEND CLOSE
disposition, that is, the second KEEP or DELETE keyword of the PARMS=
parameter.

v In relation to the EXLST macro, you cannot display the codes that indicate
whether an exit address is active or not active or is the address of the name of a
routine to be loaded; you can test them with the TESTCB macro.

v In relation to the RPL macro, you cannot display the OPTCD options, but you
can code the keyword FDBK to display error codes (in the rightmost byte of the
display word) from the request macros and the keyword RBA to display the
relative byte address of the last record processed; you can test the OPTCD
options with the TESTCB macro.
You can code the keyword AIXPC to display the number of key or RBA pointers
in the most recently processed alternate index record.
You can code the keyword FTNCD to display, after a logical or physical error,
the function code which indicates whether the respective condition occurred
during processing of the base cluster or the alternate index of a path or during
upgrade processing. (For details, see “Return Codes of Request Macros” on page
320.)

Length of a Control Block or List
You can code the keyword ACBLEN, EXLLEN, or RPLLEN to display either the
standard length of an ACB, EXLST, or RPL, or the actual length of a particular
block or list. You display a standard length by omitting the ACB│EXLST│RPL
operand and coding only one (or more) of these length keywords and no other
keywords. You display the actual length of a block or list by specifying the
ACB│EXLST│RPL operand and the corresponding length keyword.

Attributes of an Open File
After a file is opened, the ACB contains information that it does not contain before
it is opened or after it is closed. Whether you are displaying the attributes of the
data or the index of a key-sequenced file is determined by the OBJECT operand.
Every item displayed requires one fullword in your work area, except STMST
which require two fullwords. You can display the following items:

Note: If specified ACB is designated to the PATH, then the following keywords
refer to the values related to the corresponding alternate index (not the base
cluster): LRECL, HALCRBA, STRMAX, ATRB, ASTRNUM, STRTOT, SYMU.

Attribute
Meaning

ATRB An eight-byte field, the first four bytes of which contain the current
AMDSB attribute bytes. The fifth byte contains SAM ESDS RECFM INFO,
and the remaining three bytes are reserved for future use. Refer to
“Structure of the ATRB” on page 273.

ASTRNUM
Number of currently active requests in the resource pool.

AVSPAC
Number of bytes of available space in the data or index component from
all previous sessions.

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 269

LAVSPAC
Local number of bytes of available space in the data or index component,
that is, the number calculated during the current work session. When the
file is closed, this number is added to AVSPAC and LAVSPAC starts at
zero for the next session.

BFREE
Number of unassigned buffers.

BFRFND
Number of requests for retrieval that could be satisfied without an I/O
operation; that is, the data was found in the buffer. Applies for LSR only.

BLREC
The record length of a SAM ESDS file.

BUFNO
Number of buffers used for the data or index component.

BUFRDS
Number of requests for retrieval that required I/O operation; that is, the
data was not found in the buffer. Applies for LSR only.

CDBUF
Number of data buffers.

CIBUF
Number of index buffers.

CINV Size of a CI in the data or index component.

CIPCA
Number of control intervals per control area.

CNAME
Name of the cluster (44 bytes).

ENDRBA
Ending (high used) RBA of the space used by the data component or the
index component.

EXTINF
Refer to “Extent Matrix” on page 279.

FS Number of free control intervals per control area of a key-sequenced file.

IDACB
The ACB identifier is equal to x'A0'.

IDDOS
The DOS identifier is equal to x'28'.

KEYLEN
Full length of the prime key or alternate key field in every logical record
(depending on whether or not you access the base cluster via a path).

HALCRBA
High allocated RBA. The relative byte address (1 fullword) of the end of
the data component (OBJECT=DATA) or the index component
(OBJECT=INDEX) of the cluster opened by the related ACB.

LNEST
Local number of index levels.

SHOWCB Macro

270 VSE/VSAM V9R2 User’s Guide and Application Programming

LRECL
Maximum length of a logical record, or for an index, the index CI size
minus seven bytes.

NCIS Number of CI splits in the file from all previous sessions.

LNCIS
Local number of CI splits in the file, that is, the number calculated during
the current work session. When the file is closed, this number is added to
NCIS and LNCIS starts at zero for the next session.

NDELR
Number of data records deleted from the file from all previous sessions.

LNDELR
Local number of data records deleted from the file, that is, the number
calculated during the current work session. When the file is closed, this
number is added to NDELR and LNDELR starts at zero for the next
session.

NEXCP
Number of times EXCP was issued by VSE/VSAM I/O routines from all
previous sessions.

LNEXCP
Local number of EXCP issued by VSE/VSAM I/O routines, that is, the
number calculated during the current work session. When the file is
closed, this number is added to NEXCP and LNEXCP starts at zero for the
next session.

NEXT Number of logical extents, data spaces, or portions of data spaces, now
allocated to the data or index component.

NINSR
Number of data records inserted into the file from all previous sessions.
For a relative-record file, number of valid records (non-empty slots in the
file). For a key-sequenced file, number of records inserted between the
records, not records initially loaded or added to the end of the file.

LNINSR
Local number of data records inserted into the file, that is, the number
calculated during the current work session. For a relative-record file,
number of valid records (non-empty slots in the file). For a key-sequenced
file, number of records inserted between the records, not records initially
loaded or added to the end of the file.

When the file is closed, this number is added to NINSR and LNINSR starts
at zero for the next session.

NIXL Number of index levels in a key-sequenced file, including recent updates
to the referenced ACB.

NLOGR
Number of data records in the file from all previous sessions. For a
relative-record file, total number of slots (empty or non-empty) in the used
CIs.

LNLOGR
Local number of data records in the file, that is, the number calculated
during the current work session. For a relative-record file, total number of

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 271

slots (empty or non-empty) in the used CIs. When the file is closed,
LNLOGR number is added to NLOGR and LNLOGR starts at zero for the
next session.

NRETR
Number of data records retrieved from the file from all previous sessions.

LNRETR
Local number of data records retrieved from the file, that is the number
calculated during the current work session. When the file is closed, this
number is added to NRETR and LNRETR starts at zero for the next
session.

NSLOT
Number of relative record slots within each data control interval.

NSSS Number of data control-area splits in a key-sequenced file from all
previous sessions.

LNSSS
Local number of data control-area splits in a key-sequenced file, that is, the
number calculated during the current work session. When the file is
closed, this number is added to NSSS and LNSSS starts at zero for the next
session.

NUIW Number of write requests that VSE/VSAM was forced to do because
buffers were not available for reading the contents of a control interval
(CI). (NUIW is the number of write requests that were not initiated by the
user.) Applies for LSR with DFR only.

NUPDR
Number of data records updated in the file from all previous sessions.

LNUPDR
Local number of data records updated in the file, that is, the number
calculated during the current work session. When the file is closed, this
number is added to NUPDR and LNUPDR starts at zero for the next
session.

OPENOBJ
AMS flag byte. With the AMS flag you can determine whether the opened
object is a path, a base cluster, or an alternate index:
v x'80'=alternate index
v x'40'=access via path
v x'20'=access via base cluster

RKP Displacement of the prime key or alternate key field from the beginning of
a data record (depending on whether or not you access the base cluster via
a path); the same value is displayed whether the object is index or data.

SHAREOP
Share options byte.

SSRBA
RBA of the sequence-set index record which points to the logical beginning
of the data component.

STMST
System time stamp; the time and day (in microseconds) when the data or
index component was last closed. Bits 52 through 63 of the field are
unused.

SHOWCB Macro

272 VSE/VSAM V9R2 User’s Guide and Application Programming

STRMAX
Maximum number of requests which were concurrently active since the
resource pool was built. Used in shared resource applications (see “The
BLDVRP Macro” on page 219).

STRTOT
Total number of open ACB strings administered by the resource pool.

SYMU
Symbolic unit name of the volume.

UIW Number of all other write requests (those that are not counted in NUIW).
Applies for LSR only.

Structure of the ATRB

The first attribute byte includes the following options:

EQU X'80' Indexed Dataset (KSDS or VRDS)

EQU X'40' WRITECHECK attribute

EQU X'20' IBMED attribute (obsolete)

EQU X'10' REPLICATE attribute (obsolete)

EQU X'08' ORDERED attribute

EQU X'04' KEYRANGE attribute

EQU X'02' Relative record data set

EQU X'01' SPANNED attribute

The second attribute byte includes the following options:

EQU X'80' For internal use

EQU X'40' Load mode

EQU X'20' SPEED attribute

EQU X'10' This is an index component.

EQU X'08' Sharing

EQU X'04' Key range processing

EQU X'02' Component is mixed architecture (both FBA and CKD). This bit
is set only when a mixed architecture index is opened by itself.

EQU X'01' This is a catalog.

The third attribute byte includes the following options:

EQU X'80' For alternate index only: 0=UNIQUEKEY, 1=NONUNIQUEKEY

EQU X'40' Expiration date

EQU X'20' EXTRALARGE attribute

EQU X'10' COMPRESSED attribute

EQU X'08' FAT-DASD attribute

EQU X'04' For internal use

EQU X'02' VRDS dataset

EQU X'01' Reserved

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 273

The forth attribute byte includes the following options:

EQU X'80' If this AMDSB is for data component, this bit indicates
component is on FBA. If this AMDSB is for index component
(when both components are opened together), this bit indicates
that high-level index is on FBA.

EQU X'40' Used only when this AMDSB is for index component (when
both components are opened together). Indicates that sequence
set in on FBA.

EQU X'20' Reserved

EQU X'10' If this AMDSB is for data component, this bit indicates
component is on ECKD. If this AMDSB is for index component
(when both components are opened together), this bit indicates
that high-level index in on ECKD.

EQU X'08' Used only when this AMDSB is for index component (when
both components are open together). Indicates that sequence set
in on ECKD.

EQU X'04' Component is mixed architecture (both CKD and ECKD). This
bit is set only when a mixed architecture index is opened by
itself.

SAM ESDS RECFM INFO byte includes the following options:

EQU X'80' Implicitly defined file

EQU X'40' Reserved

EQU X'20' Non-CI format (for example, RECFM(NOCIFORMAT))

EQU X'10' Non-CA format (SAM ESDS)

EQU X'08' Reserved

EQU X'04' SAM blocked

EQU X'02' SAM variable

EQU X'01' SAM fixed

Examples: The SHOWCB Macro
Figure 22 on page 275 is an example of how to display information from
VSE/VSAM control blocks using the SHOWCB macro. Continuation characters
required in column 72 are not shown in the example.

SHOWCB Macro

274 VSE/VSAM V9R2 User’s Guide and Application Programming

Example: Statistics on Use of LSR Buffer Pools
This example shows what to specify in SHOWCB to obtain statistics about the
usage of buffer pools for local shared resources (LSR). The information can help
you to determine how to improve both, a previous definition of a resource pool,
and the mix of data sets that use a pool.

The statistics:
v Are available through an ACB that describes an open data set that uses a buffer

pool.
v Reflect the use of the buffer subpool from the time it was built up to the time

you issue SHOWCB.

The SHOWCB macro is used to display statistics about an open file:

SHOWCB ACB=(2),AREA=DISPLAY,LENGTH=12, x
FIELDS=(KEYLEN,LRECL,RKP)

LTR 15,15 SHOWCB successful?
BNZ SHOWERR No, go to error routine
.
.

DISPLAY DS 0F Align on fullword boundary
KEYLEN DS F
LRECL DS F
RKP DS F

The SHOWCB macro is used to display the length and RBA of a record that has been
retrieved:

GET RPL=(4)
LTR 15,15
GNZ GETRR
SHOWCB RPL=(4),AREA=DISPLAY,LENGTH=8, x

FIELDS=(RECLEN,RBA)
LTR 15,15 SHOWCB successful?
BNZ SHOWERR No, go to error routine
.
.

DISPLAY DS 0F Align on fullword boundary
RECLEN DS F
RBA DS F

Figure 22. SHOWCB Macro Example

SHOWCB ACB=ACB1,AREA=AREA1,LENGTH=100,FIELDS=(IDACB,IDDOS, x
CDBUF,CIBUF,CIPCA,LNEST,BFREE,OPENOBJ,CNAME)

LTR 15,15
BNZ SHOWERR
.
.

AREA1 DS 0F
IDACB DS F
IDDOS DS F
CDBUF DS F
CIBUF DS F
CIPCA DS F
LNEST DS F
BFREE DS F
OPENOBJ DS F
CNAME DS 44CL

Figure 23. Example of a SHOWCB Call

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 275

v Are for a single buffer subpool. To get statistics for all buffer subpools, issue a
SHOWCB for each of the subpools.

The example specifications for displaying the statistics are:

where:
v R6 must point to an ACB for an open data set.
v SHOW must be 16 bytes long. After processing of SHOWCB, the field SHOW

will contain all four counters (each being four bytes long).
v INDEX specifies that the statistics are to be taken from the LSR sub-pool that is

used by the index component of the data set.

LSR Matrix

Returned LSR matrix consists of three parts:
1. Header.
2. Share Pool Statistics Area. Includes string statistics area, which contains the

total number of LSR strings, and buffer matrix, which contains buffer statistics
for the requested share pool.

3. Cluster Matrix. Includes LSR string and buffer statistics for each VSE/VSAM
cluster assigned to a specified share pool.

Header

Header has a fixed size of 32 bytes and contains the following fields:

Field Length

Length of area supplied by user 4 bytes

Total length used (or required) by VSAM 4 bytes

Length of string statistics area 4 bytes

Number of rows in buffer matrix 4 bytes

Length of rows in buffer matrix 2 bytes

Number of rows in cluster matrix 4 bytes

Length of rows in cluster matrix 2 bytes

(reserved) 4 bytes

(reserved) 4 bytes

Length of area supplied by user
length of the area passed by the user in the Length parameter of the macro call
in bytes.

Total length used (or required) by VSAM
length of the area actually used by or needed for VSAM to display string
statistics, buffer matrix, and cluster matrix, including length of the header, in
bytes.

SHOWCB ACB=(R6),AREA=SHOW,FIELDS=(BFRFND,BUFRDS,NUIW,UIW), x
LENGTH=16,OBJECT=INDEX

Figure 24. SHOWCB Macro Example

SHOWCB Macro

276 VSE/VSAM V9R2 User’s Guide and Application Programming

Length of string statistics area
length of fixed string statistics area (first part of share pool statistics area) in
bytes.

Number of rows in buffer matrix
number of fixed size rows that are displayed in user's area. This number also
indicates the number of subpools in a specified share pool.

Length of rows in buffer matrix
length of each row in buffer matrix in bytes.

Number of rows in cluster matrix
number of fixed size rows that are passed to the user. This number also
indicates the number of clusters in a specified share pool, including base
clusters opened via a path.

Length of rows in cluster matrix
length of each row in cluster matrix in bytes.

Share Pool Statistics Area

Share pool statistics area contains string statistics area and buffer matrix. String
statistics area includes the following data:

Field Length

Share pool number 2 bytes

Total number of strings 2 bytes

Number of active strings 2 bytes

Number of free strings 2 bytes

(reserved) 2 bytes

(reserved) 2 bytes

(reserved) 2 bytes

(reserved) 2 bytes

Buffer matrix includes the following data:

Field Length

Size of buffer 2 bytes

Type of buffer 1 byte

Flags 1 byte

Number of buffers 4 bytes

Number of modified buffers 4 bytes

Number of free buffers 4 bytes

Number of buffer reads 4 bytes

Number of retry requests without I/O 4 bytes

Number of user-initiated writes 4 bytes

Number of non-user-initiated writes 4 bytes

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 277

Size of buffer
the size of every buffer in the resource pool. See “The BLDVRP Macro” on
page 219 for how to define size of buffers, type of buffers, and number of
buffers in the resource pool.

Type of buffer
'D' means data, 'I' means index.

Flags
reserved field.

Number of buffer reads
number of requests for retrieval that required I/O operation, that is, the data
was not found in the buffer. Refer to a description of the BUFRDS attribute in
“Attributes of an Open File” on page 269.

Number of retry-requests without I/O
number of requests for retrieval that did not require I/O operation, that is, the
data was found in the buffer. Refer to a description of the BFRFND attribute in
“Attributes of an Open File” on page 269.

Number of non-user-initiated writes from buffer pool
number of write requests that VSE/VSAM was forced to do because buffers
were not available for reading the contents of a control interval (CI). This is the
number of write requests that were not initiated by the user. Refer to a
description of the NUIW attribute in “Attributes of an Open File” on page 269.

Number of user-initiated writes
number of all other write requests, those that are not counted in
non-user-initiated write requests. Refer to a description of the UIW attribute in
“Attributes of an Open File” on page 269.

Cluster Matrix

LSR string and buffer statistics for each cluster within a specified share pool. This
part contains fixed size rows, number of which equals number of clusters
associated with a specified share pool. The length of a row and the current number
of rows are contained in the header.

Field Length

DDNAME 8 bytes

Type of cluster 1 byte

Flags 1 byte

Number of active strings for this cluster 2 bytes

Size of data buffers 4 bytes

Number of data buffers used 4 bytes

Size of index buffers 4 bytes

Number of index buffers used 4 bytes

(reserved) 4 bytes

(reserved) 4 bytes

DDNAME
name of cluster in a specified share pool. Specifies a character string of up to
eight bytes and is the same as the file name parameter specified in the DLBL
statement that identifies the VSE/VSAM file or path to be processed.

SHOWCB Macro

278 VSE/VSAM V9R2 User’s Guide and Application Programming

Type of cluster
'B' means a base cluster, '00' means path.

Number of active strings for this cluster
number of active strings for a cluster with the name DDNAME.

Size of data buffers
size of data buffers in the resource pool.

Number of data buffers used
number of data buffers in the resource pool specified via BLDVRP Macro.

Size of index buffers
contains the size of index buffers in the resource pool.

Number of index buffers used
number of index buffers in the resource pool specified via BLDVRP Macro.

LSR Matrix Usage

The header is 32 bytes length. If the value specified for length is large enough,
VSE/VSAM returns:
v header;
v string statistics area;
v all rows of buffer matrix. Their number can be checked in the "Number of rows

in buffer matrix" field of the header;
v all rows of cluster matrix. Their number can be checked in the "Number of rows

of cluster matrix" field of the header.

If length is not large enough for the whole output but more than 32 bytes,
VSE/VSAM returns as much information as fits, the return code 4, and the reason
code 9. Check the field "Total length used (or required) by VSAM" in the header
for the required space length and issue another SHOWCB call specifying length
large enough to contain all the matrix information.

In case user specifies length less than 32 bytes, VSE/VSAM will reject the request,
issue the return code 4 and the reason code 21. Recompile the program with length
bigger than 32 bytes.

Extent Matrix

The output matrix consists of the three parts:
1. Header.
2. Physical Device Characteristics Area which contains information about the

extents allocated for the specified cluster (ACB). Note that VSAM requires that
all extents for a specific cluster component reside on the same type of DASD.
For KSDS and VRDS clusters, the data and index can reside on different types
of DASD, so there will be two sets of physical device characteristics, one set
used for data and the other used for index.

3. Extent Information Area which contains information about each extent for the
requested VSAM cluster. Data extents will be listed first, marked with 'D',
followed by the index extents, marked with 'I'.

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 279

Header

Header has a fixed size of 32 bytes and contains the following fields:

Field Length

Length of area supplied by user 4 bytes

Total length used (or required) by VSAM 4 bytes

Length of physical device characteristics area 4 bytes

Number of data extents 4 bytes

Length of data extents row 2 bytes

Number of index extents 4 bytes

Length of data extents row 2 bytes

(reserved) 4 bytes

(reserved) 4 bytes

Length of area supplied by user
length of the area passed by user in the Length parameter of macro call in
bytes.

Total length used (or required) by VSAM
length of the area actually used by or needed for VSE/VSAM to display
physical device information and extent information, including length of the
header, in bytes.

Length of physical device information area
length of this area in bytes.

Number of data extents
number of data extents for the specified cluster (ACB). It also indicates the
number of fixed size rows that are displayed in the user's area.

Length of data extents row
length of each row, which describes data extent, in the extent area in bytes.

Number of index extents
number of index extents for the specified cluster (ACB). This number also
indicates the number of fixed size rows that are displayed in the user's area.

Length of index extents row
length of each row, which describes index extent, in the extent area in bytes.

Physical Device Characteristics Area

This part contains the physical device characteristics for the indicated cluster. Data
volume information is displayed first and is followed by index, if applicable. Each
48 bytes contain the following fields:

Field Length

Volume ID 6 bytes

Type of extent 1 byte

Flags 1 byte

Physical block size 4 bytes

Number of bytes per track 4 bytes

Number of bytes per control area 4 bytes

SHOWCB Macro

280 VSE/VSAM V9R2 User’s Guide and Application Programming

Field Length

Number of physical blocks per control
interval

4 bytes

Number of physical blocks per track 4 bytes

Number of tracks per control area 4 bytes

Number of tracks per cylinder 4 bytes

Number of physical blocks per control area 4 bytes

(reserved) 4 bytes

(reserved) 4 bytes

Volume ID
identifier of the volume where extents of the current cluster reside.

Type of extent
'D' if data, 'I' if Index.

Flags
reserved.

Number of bytes per track

for ECKD this number actually shows the number of bytes per track.

for FBA:
v first 2 bytes contain the number of replications of the control interval that fit

on a track.
v last 2 bytes contain number of the total 'logical' blocks per control area.

Number of tracks per control area

for ECKD this number actually shows number of tracks per control area.

for FBA this field shows the total number of physical blocks per control area.

Number of tracks per cylinder for ECKD
for FBA this field is undefined.

Extent Information Area

This part shows information about all extents for a specified file. This part consists
of fixed size rows, number of which equals the number of extents associated with
a specified cluster. The length of each row and the current number of rows can be
found in the header. The length of each row is calculated as number of data
extents plus number of index extents.

Field Length

Volser 6 bytes

Type of extent 1 byte

Flags 1 byte

Low extent (CCHH) 4 bytes

(reserved) 4 bytes

High extent (CCHH) 4 bytes

(reserved) 4 bytes

Low RBA 8 bytes

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 281

Field Length

High RBA 8 bytes

(reserved) 4 bytes

(reserved) 4 bytes

Volser
serial number of volume on which the extent resides. This is a label assigned
when a volume is prepared for use in a system.

Type of extent
'D' if data, 'I' if index.

Flags

X'80' Data RBA with sequence set

X'40' Sequence set RBA with data

X'20' Index replication

X'10' Volume mount flag

X'08' Device contains more than 256 cylinders

X'04' Index for RPS device

X'02' Extent is located on FBA

X'01' Extent is located on an ECKD device

Low extent (CCHH)
device address (that is, CC = cylinder and HH = track) of the beginning of the
extent.

High extent (CCHH)
device address (that is, CC = cylinder and HH = track) of the end of the
extent.

Low RBA
hexadecimal field containing the RBA (relative byte address) of the beginning
of the extent. For an extended-addressed KSDS, this field contains the first CI
in the extent.

High RBA
hexadecimal field containing the RBA (relative byte address) of the end of the
extent. For an extended-addressed KSDS, this field contains the last CI in the
extent.

Extent Matrix Usage

The header is 32 bytes in length. If the value specified for length is large enough,
VSE/VSAM returns:
v header;
v physical device characteristics area;
v all rows of Extent Information Area. Their number is calculated as "Number of

data extents" plus "Number of index extents" fields of the header.

If length is not large enough for the whole output but more than 32 bytes,
VSE/VSAM returns as much information as fits, the return code 4, and the reason
code 9. Check the field "Total length used (or required) by VSAM" in the header

SHOWCB Macro

282 VSE/VSAM V9R2 User’s Guide and Application Programming

for the required space length, and issue another SHOWCB call specifying length
large enough to contain all the matrix information.

In case user specifies length less than 32 bytes, VSE/VSAM will reject the request,
issue the return code 4 and the reason code 21. Recompile the program with length
bigger than 32 bytes.

Example of an LSR Matrix Call
SHOWCB AREA=USER_AREA, LENGTH=800, SHAREPL=1, FIELDS=(LSRINF)

The following figure shows LSR input information. For information on ACB, RPL,
and BLDVRP macros, refer to Chapter 12, “Descriptions of VSE/VSAM Macros,”
on page 207.

LA R2,BLDVRPA
BLDVRP MF=(E,(R2))

LSREA DS 0F
BLDVRPA BLDVRP KEYLEN=16, x

BUFFERS=(8192(20),512(4)), x
STRNO=20, x
MF=L, x
SHRPOOL=1

ACB1 ACB DDNAME=KSDS,MACRF=(KEY,SEQ,OUT,LSR), x

STRNO=9,SHRPOOL=1,BUFND=03,BUFNI=03
RPL11 RPL ACB=ACB1,AREA=REC1,AREALEN=40,RECLEN=40,ARG=KEY1, x

OPTCD=(KEY,SEQ,NSP,KEQ,MVE)

ACB2 ACB DDNAME=KSDS2,MACRF=(KEY,SEQ,OUT,LSR), x
STRNO=2,SHRPOOL=1,BUFND=02,BUFNI=02

RPL21 RPL ACB=ACB2,AREA=REC2,AREALEN=40,RECLEN=40,ARG=KEY2, x
OPTCD=(KEY,SEQ,NSP,KEQ,MVE)

ACB3 ACB DDNAME=KSDS3,MACRF=(KEY,SEQ,OUT,LSR), x
STRNO=2,SHRPOOL=1,BUFND=02,BUFNI=02

RPL31 RPL ACB=ACB3,AREA=REC3,AREALEN=40,RECLEN=1000,ARG=KEY3, x
OPTCD=(KEY,SEQ,NSP,KEQ,MVE)

ACB41 ACB DDNAME=KSDS4,MACRF=(KEY,SEQ,OUT,LSR), x
STRNO=2,SHRPOOL=1,BUFND=03,BUFNI=03

ACB61 ACB DDNAME=KSDS6,MACRF=(KEY,SEQ,OUT,LSR), x
STRNO=2,SHRPOOL=1,BUFND=03,BUFNI=03

ACB71 ACB DDNAME=KSDS7,MACRF=(KEY,SEQ,OUT,LSR), x
STRNO=2,SHRPOOL=1,BUFND=03,BUFNI=03

ACB16 ACB DDNAME=KSDS16,MACRF=(KEY,SEQ,OUT,LSR), x
STRNO=2,SHRPOOL=1,BUFND=03,BUFNI=03

ACB20 ACB DDNAME=KSDS20,MACRF=(KEY,SEQ,OUT,LSR), x
STRNO=2,SHRPOOL=1,BUFND=03,BUFNI=03

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 283

LSR matrix output will look as follows:

00000320 00000190 00000010 00000002 00200000 00080024 10 ...
LEN OF CLUSTER ROW=X’24'
NUM =8OF CLUSTER ROWS

LEN OF BUFFER ROW X= '20'
NUM OF ROWS=2BUFFER

LEN OF FIXED AREA= '10‘X
AREA NEEDED FOR VSAM= '190‘X
AREA SUPPLIED BY USER=X'320'

00000000 00000000 00010014 00030011 00000000 00000000 0200C400 00000004 ..D......
NUM OF BUFFERS=4
FLAGS=RESERVED=0
TYPE OF BUF='D'
SIZE OF BUFFERS= '200‘X
RESERVED (6 bytes)=0
RESERVED
NUM OF FREE STRINGS= '11‘X
N OF ACTIVE STRINGS=3UM
TOTAL NUMBER OF STR= '14‘X
SHR POOL NUMBER=1
RESERVED2=0

RESERVED1=0

00000000 00000004 00000000 00000000 00000000 00000000 2000C400 00000014 ...D.......
NUM OF BUFFERS= '14‘X
FLAGS=RESERVED=0

TYPE OF BUF='D'
SIZE OF BUFFERS= '2000‘X

NUM OF NON-USER-INIT WR=0
NUM OF USER-INIT WRITES=0

NUM OF RETR-REQ WITHOUT IO=0
NUM OF BUFFER-READS=0
NUM OF FREE BUFFERS=4

NUM OF MOD BUF=0

00000000 00000008 0000000B 00000015 00000009 00000000 D2E2C4E2 40404040 ..KSDS
DDNAME=KSDS
NUM OF NON-USER-INIT WR=0

NUM OF USER-INIT WRITES=9
NUM OF RETR-REQ WITHOUT IO= '15‘X

NUM OF BUFFER-READS= 'B'X
NUM OF FREE BUFFERS=8
NUM OF MODIFIED BUFFERS=0

C2000001 00002000 00000007 00002000 00000007 00000000 00000000 D2E2C4E2 B...KSDS
DDNAME=KSDS3
RESERVED2=0
RESERVED1=0
NUM OF INDEX BUFFERS=7

SIZE OF INDEX BUFFERS= '2000‘X
NUM OF DATA BUFFERS=7
SIZE OF DATA BUFFERS= '2000‘X
NUM OF ACTIVE STRINGS=1
TYPE OF CLUSTER=B

F3404040 C2000001 00002000 00000005 00002000 00000005 00000000 00000000 3 B...
RESERVED2=0
RESERVED1=0

NUM OF INDEX BUFFERS=5
SIZE OF INDEX BUFFERS= '2000‘X
NUM OF DATA BUFFERS=5

SIZE OF DATA BUFFERS= '2000‘X
NUM OF ACTIVE STRINGS=1
TYPE OF CLUSTER=B

D2E2C4E2 F2404040 C2000001 00002000 00000003 00002000 00000003 00000000 KSDS2 B...

00000000 D2E2C4E2 F4404040 C2000000 00002000 00000000 00002000 00000000KSDS4 B.....................................

00000000 00000000 D2E2C4E2 F6404040 C2000000 00002000 00000000 00002000KSDS6 B.............................

00000000 00000000 00000000 D2E2C4E2 F7404040 C2000000 00002000 00000000KSDS7 B.....................

00002000 00000000 00000000 00000000 D2E2C4E2 F1F64040 C2000000 00002000KSDS16 B...........

00000000 00002000 00000000 00000000 00000000 D2E2C4E2 F2F04040 C2000000 ..KSDS20 B...

SHOWCB Macro

284 VSE/VSAM V9R2 User’s Guide and Application Programming

Example of an Extent Matrix Call
SHOWCB AREA=USER_AREA, LENGTH=300, ACB=ACB1, FIELDS=(EXTINF)

Extent matrix output will look as follows:

000000E0 00000060 00000001 00300000 00010030 00000000 00000000 E5E2C5D9-...............................VSER
VOLID=VSER02
RESERVED2

RESERVED1
LEN OF INDEX EXT ROW

IND EXTENTS=1
LEN OF DATA EXT ROW
DATA EXTENTS=1
FIXED AREA LEN=X’60'
VSAM NEEDS=X’E0'

F0F2C426 00000800 0000A800 0009D800 00000001 00000015 0000000F 0000000F 02D............y......Q.............................

0000A800 00000000 00000000 E5E2C5D9 F0F2C926 00000E00 0000B600 0000B600 ...y.............VSER02I.........................

TRACKS PER CYL=X’F’
TRACKS PER CA=X’F’

PHYS BLOCKS PER TRACK=X’15'
PHYS BLOCKS PER CI=X’1'
NUM BYTES PER CA=X’9D800'
NUM BYTES PER TRACK=X’A800'

PHYS BLOCK SIZE=X’800'
FLAGS=X’26'
TYPE OF EXT=’D’

NUM BYTES PER CA=X’0000B600'
NUM BYTES PER TRACK=X’0000B600'
PHYS BLOCK SIZE=X’E00'
FLAGS=X’26'
TYPE OF EXT=’I’
VOLID=VSER02

RESERVED2
RESERVED1
NUM PHYS BLOCKS PER CA (FBA only)

0000012C 10
USER’S AREA=X’12C’

00000001 0000000D 00000001 0000000F 0000B600 00000000 00000000 E5E2C5D9 ..VSER

F0F2C415 00070000 00000000 0009000E 00000000 00000000 00000000 00000000 02D..

001D87FF 00000000 00000000 E5E2C5D9 F0F2C915 000A0000 00000000 000A000E ...g...................VSER02I..........................

00000000 00000000 00000000 00000000 000AA9FF 00000000 00000000 00000000z.........................

VOLSER=VSER02
RESERVED2

RESERVED1
NUM PHYS BLOCKS PER CA (FBA ONLY)

TRACKS PER CYL=X’F’
TRACKS PER CA=X’1'
PHYS BLOCKS PER TRACK=D
PHYS BLOCKS PER CI=X’1'

HIGH RBA=X’001D87FF’
LOW RBA=0
EXTENT HIGH-CCHH=X’0009000E’
EXTENT LOW-CCHH=X’00070000'
FLAGS=X’15'
TYPE OF EXT=’D’

EXTENT HIGH-CCHH=X’000A000E’

EXTENT LOW-CCHH=X’000A0000'
FLAGS=X’15'
TYPE OF EXT=’I’

VOLSER=VSER02
RESERVED2
RESERVED1

RESERVED2

RESERVED1
HIGH RBA=X’000AA9FF’
LOW RBA=0

SHOWCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 285

The TCLOSE Macro
A TCLOSE macro completes outstanding I/O operations and updates the catalog.
Processing can continue without reopening the file. You use the TCLOSE macro to
protect data while the file is loaded or extended and the SPEED option was
specified when the file was defined. When TCLOSE is issued, the close routine
formats the last CA in the file to ensure that all of the data that has been loaded is
accessible.

The TCLOSE macro cannot be used to change the processing mode for a file from
sequential load to retrieve in the same run.

The TCLOSE macro has no effect when the local shared resources (LSR) option is
in the ACB macro together with DFR (deferred write).

The return codes and error codes are identical to those of the CLOSE macro.

Format of the TCLOSE Macro

��
name

TCLOSE �

,

(1)
address

��

name
one through eight characters that provide a symbolic name.

address
specifies up to 16 addresses of ACBs.

If an application chooses to place VSE/VSAM ACBs in 31-bit partition GETVIS,
the Open and Close macros can be used to open or close only one ACB in a
single invocation (Open or Close List). No DTFs can be included in an Open or
Close List containing an ACB residing in 31-bit partition GETVIS. You can
specify address:
v In register notation, using a register from 1 through 12. Specify within

parentheses.
Or

v With an expression that generates a valid relocatable A-type address
constant.

You cannot specify the address of DTFs with TCLOSE.

The TESTCB Macro
The TESTCB macro tests values in an ACB, EXLST, or RPL against values that you
specify in the macro.

You can examine the condition code after issuing a TESTCB macro and examining
the return code in Register 15. For keywords specified as an option (such as A for
an operand of the EXLST macro), a test is for an equal or unequal comparison; for
keywords specified as an address or value, a test is for an equal, unequal, high,
low, not-high, or not-low comparison. In the comparison, A to B, B is the address,
value, or option that you specify in the TESTCB macro. For example, if you test for
a value in an ACB, a high comparison means the value in the block is higher than
the value you specified in the TESTCB macro.

TCLOSE Macro

286 VSE/VSAM V9R2 User’s Guide and Application Programming

When you issue a TESTCB macro, Register 13 must contain the address of a
72-byte save area that you are providing. When you issue a TESTCB macro from
within one of your exit routines such as LERAD or SYNAD, your program must
provide a second 72-byte save area for use by VSE/VSAM because the original
save area is still in use by the external VSE/VSAM routine.

Format of the TESTCB Macro

��
name

TESTCB
ACB =address,
EXLST
RPL

AM=VSAM,
�

�
ERET=address,

keyword=value
,MF=L

,MF= L
(E, address)

(1)
,OBJECT=DATA

,OBJECT=INDEX

��

name
one to eight characters that provide a symbolic name.

ACB│EXLST│RPL=address
This operand specifies whether you want to test an ACB, an EXLST, or an RPL
and specifies its address.

In the standard and list forms of TESTCB, you can omit this operand if you are
testing only the standard length of a control block or list (see “Length of a
Control Block or List” on page 289). With the execute form of TESTCB, you can
change the address of the block or list to be tested, but not the type.

AM=VSAM
specifies that this is a VSE/VSAM control block. You may want to specify this
operand for documentation purposes if your installation also uses VTAM.

ERET=address
specifies the address of a user-written routine that VSE/VSAM gives control if,
because of an error, it is unable to test for the condition you specified (return
code in Register 15 is not X‘00’). When the ERET routine receives control, it
should inspect the return code. If the return code is X‘04’, an error code will be
tested in Register 0. See “Return Codes from the Control Block Manipulation
Macros” on page 322 for the error codes that can be tested by TESTCB.

After completing its processing, the ERET routine can terminate the job or pass
control to a point in the processing program that it determines. It cannot return
to VSE/VSAM.

keyword=value
specifies a field and a value. The contents of the field are compared with the
value and the condition code is set. You can specify only one keyword at a
time. There are THREE groups of operands that you can code with the
TESTCB macro:
v The addresses, values, options, and names that you can code with the ACB,

EXLST, RPL, and GENCB macros
v The length of a control block or list

TESTCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 287

v The attributes of an open file or index indicated by the ACB.

If you code more than one operand, every one of them must compare equal to
the corresponding value in the block or list for you to get an equal condition.

For details, refer to:
v “Operands of the ACB, EXLST, and RPL Macros”
v “Length of a Control Block or List” on page 289
v “Attributes of an Open File or Index” on page 289

MF=
For information on specifying this operand, refer to “List, Execute, and
Generate Forms of the Control Block Manipulation Macros” on page 322.

OBJECT=DATA│INDEX
specifies, for the open ACB of a key-sequenced file, whether the field tested is
for the data or the index. KEYLEN and RKP will contain the same value, no
matter whether the data or the index is tested. FS, NCIS, NDELR, NINSR,
NIXL, NLOGR, NRETR, NSSS, and NUPDR will contain zeros if the index is
tested.

Operands of the ACB, EXLST, and RPL Macros
The operands in this group are identical to those of the ACB, EXLST, and RPL
macros.
v You can code the operands in more ways, as shown “Operand Notation for

VSE/VSAM Macros” on page 325.
v In relation to the ACB macro, you can test for error codes from the Open and

Close routines by coding ERROR=code (as any absolute expression, except for a
self-defining character term). When an ACB is opened for a path, the base
cluster ACB is tested. However, you can test the alternate index ACB by
specifying MACRF=AIX in the ACB macro. For the ACB, you cannot test the
RMODE31.

v In relation to the EXLST macro, you can test whether an EXLST has an exit of a
certain type by coding keyword=0.

v In relation to the EXLST macro, you can test whether an address in an EXLST is
active or not active or is the address of the name of a routine to be loaded by
coding: keyword=,A│N or keyword=,A│N,L.

v In relation to the RPL macro, you can code the operand FDBK=code (as any
absolute expression, except for a self-defining character term) to test for error
codes from the request macros (see “Return Codes of Request Macros” on page
320). You can code the operand RBA=number to test the relative byte address of
the last record processed.

v In relation to the RPL macro, you can code the operand AIXPC=number to find
out the number of key or RBA pointers in the most recently processed alternate
index record.

v You can code the operand AIXFLAG=AIXPKP to test whether the alternate
index record just processed contains prime key pointers (or, if not, RBA
pointers).

v You can code the operand FTNCD=number to test (after a logical or physical
error) the function code. The function code indicates whether the respective
condition occurred during processing of the base cluster or the alternate index of
a path or during upgrade processing. (For details, see “Return Codes of Request
Macros” on page 320.)

TESTCB Macro

288 VSE/VSAM V9R2 User’s Guide and Application Programming

Length of a Control Block or List
You can code the operand EXLLEN=length, ACBLEN=length, or RPLLEN=length
to test either the standard length of an EXLST, ACB, or RPL; or the actual length of
a particular ACB, RPL, or EXLST. You test for a standard length by omitting the
ACB│EXLST│RPL operand and coding only one (or more) of these length operands
and no other operands. You can test the actual length of a control block or list by
specifying the ACB│EXLST│RPL operand and the corresponding length operand.

Attributes of an Open File or Index
After a file is opened, the ACB contains information that it does not contain before
it is opened or after it is closed. Whether you are testing for the attributes of the
data or the index of a key-sequenced file is determined by the OBJECT operand.
By coding OFLAGS=OPEN, you can test whether the file is open.

Note: If specified ACB is designated to the PATH, then the following keywords
refer to the values related to the corresponding Alternate Index (not the Base
Cluster): LRECL and ATRB.

You can test the following fields:

Attribute
Meaning

AVSPAC
Number of bytes of available space in the data or index component.

BUFNO
Number of buffers used for the data or index component.

CINV Size of a CI in the data or index component.

ENDRBA
Ending (high used) RBA of the data component or the index component.

FS Percent of free CIs in every data CA of a key-sequenced file.

KEYLEN
Full length of the prime key or alternate key field in every logical record
(depending on whether or not you access the base cluster via a path).

LRECL
Maximum length of a logical record or, for an index, the index CI size
minus seven bytes.

NCIS Number of CI splits in the file.

NDELR
Number of data records deleted from the file.

NEXCP
Number of EXCP commands issued since the data or the index was
opened.

NEXT Number of logical extents, data spaces or portions of data spaces, now
allocated to the data or index component.

NINSR
Number of records inserted into the file. For a relative-record file, number
of valid records, that is, non-empty slots in the file.

NIXL Number of levels in the index of a key-sequenced file.

TESTCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 289

NLOGR
Number of data records in the file. For a relative-record file, total number
of slots (empty or non-empty) in the used CIs.

NRETR
Number of data records retrieved from the file.

NSSS Number of control-area splits in a key-sequenced file.

NUPDR
Number of data records updated in the file.

RKP Displacement of the prime key or alternate key field from the beginning of
a data record (depending on whether or not you access the base cluster via
a path); the same value is displayed whether the object is index or data.

STMST
System time stamp; the time and day (in microseconds) when the data or
index component was last closed. Bits 52 through 63 of the fields are
unused.

You can also test for these attributes:

Specification
Meaning

ATRB=COMP
File is defined with the COMPRESSED attribute

ATRB=ESDS
Entry-sequenced file

ATRB=KSDS
Key-sequenced file

ATRB=RRDS
Relative-record file

ATRB=VRDS
Variable-length Relative record Data Sets

ATRB=WCK
VSE/VSAM is verifying write operations

ATRB=SSWD
Sequence set of the index is adjacent to the file

ATRB=REPL
Index records are replicated

ATRB=SPAN
File contains spanned records

ATRB=UNQ
Unique alternate keys in alternate index

ATRB=XLKSDS
Extended-addressed KSDS

Furthermore, you can determine whether the opened object is a path, a base
cluster, or an alternate index by coding:

OPENOBJ=PATH
Alternate index/base cluster pair (path)

TESTCB Macro

290 VSE/VSAM V9R2 User’s Guide and Application Programming

OPENOBJ=BASE
Base cluster

OPENOBJ=AIX
Alternate index

Examples of the TESTCB Macro
Figure 25 shows examples of how the TESTCB macro can be used to test values in
a VSE/VSAM control block.

Continuation characters required in column 72 are not shown in the example.

The WRTBFR Macro

Managing I/O Buffers
Managing I/O buffers includes:
v Deferring writes for direct PUT requests, which reduces the number of I/O

operations
v Writing buffers that have been modified by related requests.
v Writing out buffers whose writing has been deferred.

Deferring Write Requests
VSE/VSAM normally writes out the contents of a buffer immediately for direct
PUT requests. With shared resources, however, you can cause write operations for
direct PUT requests to be deferred. Buffers are finally written out:
v When you issue the WRTBFR macro.
v When VSE/VSAM needs a buffer to satisfy a GET request.
v When a file using a buffer pool is closed. (Temporary CLOSE is ineffective

against a file that is sharing buffers; nor does ENDREQ cause buffers in a
resource pool to be written.)

Example 1: Uses TESTCB to determine whether or not a file is open.

TESTCB ACB=(2),OFLAGS=OPEN,
ERET=TESTERR

BE OPEN
B UNOPEN
.

TESTERR

Example 2: Uses TESTCB to determine whether the LERAD exit routine was entered
because of an end-of-file condition or a processing error. (The example assumes that no
EODAD exit routine was provided.)

LOGERR TESTCB RPL=(4),FDBK=4,
ERET=TESTERR

BE EODATA
B ERROR
.

TESTERR

Figure 25. TESTCB Macro Examples

TESTCB Macro

Chapter 12. Descriptions of VSE/VSAM Macros 291

Deferring writes saves I/O operations in cases where subsequent requests can be
satisfied by the data in the buffer pool. Processing speed improves if CIs are
updated several times.

You indicate that writes are to be deferred by coding the MACRF DFR option in
the ACB, along with MACRF=LSR:

ACB MACRF=(LSR,DFR,...)

NDF, the default, indicates that writes are not to be deferred for direct PUTs.

The DFR option is incompatible with SHAREOPTIONS(4). (SHAREOPTIONS is a
parameter of the IDCAMS command DEFINE.) A request to open a file with
SHAREOPTIONS(4) for deferred writes is rejected.

Relating Deferred Requests by Transaction ID
You can relate action requests (GET, PUT, etc.) according to transaction by
specifying the same ID in the RPLs that define the requests.

The purpose of relating the requests that belong to a transaction is to enable
WRTBFR to cause all of the modified buffers used for this transaction to be written
out together. When the WRTBFR request is complete, the transaction is physically
complete. To relate requests, specify:

RPL TRANSID=number

TRANSID=number
specifies a number from 0 to 31. A number from 1 to 31 relates the
request(s) defined by this RPL to the requests defined by other RPLs with
the same transaction ID. The number 0, which is the default, indicates that
the request defined by this RPL is not associated with other requests.

You can find out what transaction ID an RPL has by issuing

SHOWCB or TESTCB:
SHOWCB FIELDS=(TRANSID)

TRANSID requires one fullword in the display work area.
TESTCB TRANSID=number

You can also change the transaction ID of an RPL by issuing the MODCB
macro:

MODCB TRANSID=number

Writing Buffers Whose Writing Has Been Deferred
If DFR is specified in the ACB of any file that is using a resource pool, you can use
the WRTBFR (write buffer) macro to write:
v All modified buffers for a given file
v All modified buffers in the resource pool
v The least recently used modified buffers in every buffer pool in the resource

pool
v All buffers that have been modified by requests with the same transaction ID.

(See “Relating Deferred Requests by Transaction ID”).

You can specify the DFR option in an ACB without using the WRTBFR to write
buffers. A buffer will be written when VSE/VSAM needs one to satisfy a GET
request, or all modified buffers will be written when the last of the files that uses
them is closed.

WRTBFR Macro

292 VSE/VSAM V9R2 User’s Guide and Application Programming

Using WRTBFR can improve performance, if you schedule WRTBFR to overlap
other processing.

VSE/VSAM notifies the processing program when there are no more unmodified
buffers into which to read the contents of a CI. (VSE/VSAM would be forced to
write buffers when another GET or PUT request required an I/O operation.)
VSE/VSAM sets Register 15 to 0 and puts 12 (X‘0C’) in the feedback (FDBK) field
of the RPL that defines the request that detects the condition.

VSE/VSAM also notifies the processing program when there are no buffers
available to process your request. This is a logic error. Register 15 contains 8,
unless an exit is taken to a LERAD routine. The feedback (FDBK) field in the RPL
contains 152 (X‘98’). You may retry the request and it will get a buffer if one has
been freed.

In addition, VSE/VSAM will notify the processing program when the number of
active requests exceeds the STRNO value specified in the BLDVRP macro (Register
15=X‘08’; RPL FDBK=X‘40’).

Format of the WRTBFR Macro
When you issue a WRTBFR macro, Register 13 must contain the address of a
72-byte save area that you are providing. When you issue a WRTBFR macro from
within one of your exit routines such as LERAD or SYNAD, your program must
provide a second 72-byte save area for use by VSE/VSAM, because the original
save area is still in use by the external VSE/VSAM routine.

��
name

WRTBFR RPL=address,TYPE= ALL
DS
LRU(percent)
TRN

��

name
one to eight characters that provide a symbolic name.

RPL=address
specifies the address of the request parameter list that defines the WRTBFR
request. An RPL need not be built especially for the WRTBFR; WRTBFR may
use an inactive RPL that defines other request(s) (GET, PUT, etc.) for a file that
is using the resource pool.

Only the ACB and the TRANSID operands of the RPL are meaningful for
WRTBFR; all other RPL operands are ignored. Unlike the other action macros
(GET, PUT, etc.), WRTBFR assumes that RPLs are not chained.

TYPE=ALL│DS│LRU(percent)│TRN
specifies what buffers are to be written.

ALL
specifies that all modified buffers in every buffer pool in the resource pool
are to be written. (Closing all of the files that use a resource pool has the
same effect.)

DS specifies that, for the file defined by the ACB to which the WRTBFRs RPL
is related all modified buffers are to be written.

LRU(percent)
specifies the percentage of the total number of buffers in every buffer pool
in the resource pool that are to be examined for possible writing. The least

WRTBFR Macro

Chapter 12. Descriptions of VSE/VSAM Macros 293

recently used buffers are examined. (If percent is coded in register
notation, only Registers 1 and 13 may not be used.)

When using the DFR option it is possible for the buffer pool to become
filled with modified buffers. VSE/VSAM would then be forced to write out
a buffer before satisfying any other GET or PUT request. To ensure that
buffers are always available for GET or PUT requests (without having to
wait for buffers to be written) you can periodically force out the least
recently used part of every buffer pool through the LRU option. To help
determine when to do this, VSE/VSAM sets a non-error return code of 12
(X‘0C’) in the FDBK field of the RPL whenever it is forced to write out a
deferred buffer because of insufficient free buffers.

TRN
specifies that all buffers in a buffer pool are to be written that have been
modified by requests with the same transaction ID as the one specified in
the WRTBFR's RPL. Transaction IDs are no longer associated with these
buffers.

Examples: ACB, EXLST, and RPL Macros

Specifying VSE/VSAM Control Blocks
Figure 26 on page 295 shows an example of how you can specify VSE/VSAM
control blocks by using the ACB, EXLST, and RPL macros. These control blocks are
generated during assembly of your program. Default values will be provided for
those parameters that are omitted.

WRTBFR Macro

294 VSE/VSAM V9R2 User’s Guide and Application Programming

Explanations to Figure 26:

ACB Macro

Because the DDNAME operand is not specified, VSE/VSAM uses the name,
ACBADR, of the ACB as the name (file name) of the associated file.

BUFND:
Four I/O buffers for data CIs.

BUFNI:
Three I/O buffers for index CIs.

BUFSP:
The size of the buffer space is sufficient to accommodate four data control
intervals of 2048 bytes each and three index CIs of 1024 bytes each.

// JOB ABCADR
// OPTION CATAL,NODUMP

PHASE ABCADR,*
// EXEC ASSEMBLY,SIZE=120K,PARM=’XREF’
ACBADR ACB EXLST=EXITS,

PASSWD=PASS,
BUFND=4,BUFNI=3,
BUFSP=11264,
MACRF=(KEY,SEQ,
DIR,OUT),
STRNO=2

EXITS EXLST EODAD=(ENDUP,N),
LERAD=LOGERR,
SYNAD=(IOERR,L),
EXCPAD=(OVERLP,A)

RETRVE RPL ACB=ACBADR,
AREA=WORK,
ARG=SEARCH,
AREALEN=125,
OPTCD=(DIR,NSP)

.

.
PASS DC FL1’6’,C’CHANGE’
WORK DS CL125
SEARCH DS CL4
IOERR DC C’PHYSICAL’
ENDUP End-of-file routine

.

.
LOGERR Logical-error routine

.

.
OVERLP I/O-overlap routine

.

.
/*
// IF $MRC GT 0 THEN
// GOTO ERRORS
// LIBDEF PHASE,CATALOG=USER.LIB
// EXEC LNKEDT
/*
/. ERRORS
// EXEC LISTLOG
/&

Figure 26. Example of Specifying Control Blocks for a File

Examples: ACB, EXLST, and RPL Macros

Chapter 12. Descriptions of VSE/VSAM Macros 295

EXLST:
Specifies that the label of the exit list associated with this ACB is named
EXITS.

PASSWD:
Specifies the location of the password. The DC at PASS gives the
password's length in the first byte and the password itself in the
subsequent six bytes.

MACRF:
Specifies keyed-sequential and keyed-direct processing for both insertion
and update.

STRNO:
Specifies that two requests will require concurrent positioning.

EXLST Macro

EODAD:
The end-of-file routine is located at ENDUP and is not active.

LERAD:
The logic error routine is located at LOGERR and is active.

SYNAD:
The physical I/O error routine's name is located at IOERR.

EXCPAD:
The I/O-overlap routine is located at OVERLP and is active.

RPL Macro

ACB: Associates the RPL with the ACB named ACBADR.

AREA:
Address of work area is WORK.

AREALEN:
Length of work area is 125 bytes.

ARG: The search argument is defined at SEARCH. Because the KEYLEN operand
is omitted, VSE/VSAM uses the full key as search argument.

OPTCD:
Specifies direct processing with positioning at the next record for
subsequent sequential processing.

JCL to Open and Process a File
Figure 27 on page 297 shows the JCL needed to open and process a file identified
in an ACB macro (file ACBADR in the example). Continuation characters required
in column 72 are not shown in the example.

Examples: ACB, EXLST, and RPL Macros

296 VSE/VSAM V9R2 User’s Guide and Application Programming

Examples of Request Macros
The following examples show the essential macros and operands required to
perform the operations indicated in the headings of the examples. The examples
illustrate the relationship between the ACB MACRF operand, the RPL OPTCD
operand, and the request macros themselves. They show how to use the other
operands as required by the assumptions for every example.

For your convenience in reading them, the examples show macros that generate
control blocks at assembly (ACB, EXLST, and RPL) at the beginning of the example
rather than at the end where they would normally be placed with program
constants. Every example assumes that the file has been opened and that it will be
closed. Only nominal checks for errors are shown. Exit routines to analyze errors
are not indicated.

Note: The continuation characters required in column 72 are not shown in the
examples, nor are the asterisks required in column 1 of the comment cards shown.

The examples relate to:
v “How to Retrieve a Record: GET Macro” on page 298
v “How to Position for Subsequent Sequential Access: GET and POINT Macros”

on page 304
v “How to Chain Request Parameter Lists and Terminate a Request: ENDREQ

Macro” on page 306
v “How to Store a Record: PUT Macro” on page 309
v “How to Update a Record: GET and PUT Macros” on page 313
v “How to Delete a Record: GET and ERASE Macros” on page 317

// JOB
// DLBL IJSYSCT,’AMASTCAT’,,VSAM
// DLBL ACBADR,’FILE1’,,VSAM
// EXEC progname,SIZE=AUTO

.

.

.
OPEN ACBADR
.
.
.
GET RPL=RETRVE
.
.
.
CLOSE ACBADR
.
.
.

/*
/&

FILE1 is the name of the file under which it is entered in the VSE/VSAM master catalog.

Figure 27. Example of JCL Needed to Open and Process a File

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 297

Errors

If extended user buffering was incorrectly used the request will be rejected as
logical error (R15=8) with error code 106 (X'6A').

How to Retrieve a Record: GET Macro
Examples 1, 2, 3, 4, and 5 illustrate keyed and addressed, direct sequential, and
skip sequential retrieval.

Example 1: Keyed-Sequential Retrieval

Assumptions

Records moved to a work area. Fixed-length records, 100 bytes. Control blocks
generated at assembly.

Discussion

The records are retrieved in key sequence. No search argument has to be specified;
VSE/VSAM is positioned at the first record in key sequence when the file is
opened, and the next record is retrieved automatically as every GET is issued. The
branch to ERROR will also be taken if the end of the file is reached.

INPUT ACB MACRF=(KEY,SEQ,IN) All MACRF and OPTCD options
specified are defaults and
could have been omitted.

RETRVE RPL ACB=INPUT,
AREA=IN,AREALEN=100,
OPTCD=(KEY,SEQ,NUP,MVE)

.

.

.
LOOP GET RPL=RETRVE This GET or identical GETs

can be issued, with no change
in the request parameter list,
to retrieve subsequent records
in key sequence.

LTR 15,15
BNZ ERROR
.
.
.
B LOOP

ERROR ... Request was not accepted or
. failed.
.
.

IN DS CL100 IN contains a data record
after GET is completed.

Figure 28. Request Macro Example 1: Keyed-Sequential Retrieval

Examples: Request Macros

298 VSE/VSAM V9R2 User’s Guide and Application Programming

Example 2: Skip-Sequential Retrieval

Assumptions

Variable-length records: they are processed in the I/O buffer. The search argument
is a full key, compared greater than or equal. Control blocks are generated at the
time of execution. Key length is eight bytes.

GENCB BLK=ACB, VSE/VSAM gets an area in virtual
DDNAME=INPUT, storage to generate the
MACRF=(KEY,SKP,IN) access method control block

and returns the address in
Register 1.

LTR 15,15
BNZ CHECKO
LR 2,1 Address of ACB
GENCB BLK=RPL,ACB=(2),

AREA=RCDADDR,AREALEN=4,
ARG=SCRHKEY,
OPTCD=(KEY,SKP,NUP,KGE,FKS,LOC)

LTR 15,15
BNZ CHECK0
LR 3,1 Address of the request
. parameter list.
.
.

LOOP MVC SRCHKEY,table Search argument for
retrieval, moved in from
a table or a
transaction record.

GET RPL=(3)
LTR 15,15
BNZ ERROR
LR 1,3 Put RPL address in Register 1.
SHOWCB RPL=(1), Display the length of the

RECLEN=(0) record.
LTR 15,15
BNZ CHECK0
ST 0,RCDLEN Save the record length.
.
.
.
B LOOP

ERROR ... Request was not accepted
or failed.

CHECKO ... Generation or display failed
.
.
.

RCDADDR DS F Work area into which VSE/VSAM
puts the address of a data
record within the I/O buffer
(OPTCD=LOC).

SRCHKEY DS CL8 Search argument for
retrieval.

RCDLEN DS F For retrieving variable
record lengths.

Figure 29. Request Macro Example 2: Skip-Sequential Retrieval

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 299

Discussion

The records are retrieved in key sequence, but some records are skipped. Skip
sequential retrieval is very similar to keyed direct retrieval (see Example 4), except
that you must retrieve records in ascending sequence (with skips) rather than in a
random sequence.

Internally, with skip sequential retrieval, VSE/VSAM uses only the sequence set of
the index to skip ahead; with direct retrieval it searches the index from top to
bottom to locate a record.

Example 3: Addressed-Sequential Retrieval

Assumptions

Many records are retrieved with one GET request. Records are moved to work
areas (only option); they are of fixed length, 20 bytes long. Chain of RPLs is
generated during execution.

Examples: Request Macros

300 VSE/VSAM V9R2 User’s Guide and Application Programming

BLOCK ACB DDNAME=INPUT,
MACRF=(ADR,SEQ,IN)

.

.

.
GENCB BLK=RPL,

COPIES=10,
ACB=BLOCK,
OPTCD=(ADR,SEQ,NUP,MVE)

LTR 15,15
BNZ CHECKO
LA 5,WORKAREA Address of the first

work area.
LA 3,10 Number of lists(10).
LR 2,1 Address of the first list.
LR 1,0 Length of all of the lists.

Registers 0 and 1 contain
length and address of the
generated control blocks when
VSE/VSAM returns control after
GENCB.

SR 0,0 Prepare for following
division.

DR 0,3 Divide number of lists into
length of all the lists.

LR 3,1 Save the resulting length of a
sing le list for an offset.

LR 4,2 Save address of the first list.

Do the following 6 instructions 10 times to set up all of the request parameter lists. The
tenth time register 4 must be set to 0 to indicate the last request parameter list in the chain.

AR 4,3 Address of the next list.
MODCB RPL=(2), In every request parameter

NXTRPL=(4), list, indicate the address
AREA=(5),AREALEN=20 of the next list and the

address and length of the
work area.

LTR 15,15
BNZ CHECKO
AR 2,3 Address the next line.
LA 5,20(5) Address the next work area.
. Restore Register 2 to address
. the first list before
. continuing to process.

LOOP GET RPL=(2)
LTR 15,15
BNZ ERROR
. Process the ten records that
. have been retrieved by the
. GET.
B LOOP

CHECKO ...
ERROR ... Display the feedback field

(FIELDS=FDBK) of every
request parameter list to
find out which one had an
error.

WORKAREA DS CL200 Space for a work area for
each of the 10 request
parameter lists.

Figure 30. Request Macro Example 3: Addressed-Sequential Retrieval

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 301

Discussion

The records are retrieved in entry sequence. In a key-sequenced file that has had
CI or control-area splits, it is likely that the entry sequence of the records is no
longer the same as their key sequence. Each of the ten RPLs in the chain identifies
a record to be retrieved by the GET. VSE/VSAM moves every record into the work
area provided for the request parameter list that identifies the record.

If an error occurred for one of the RPLs in the chain and you have supplied error
analysis routines, VSE/VSAM takes a LERAD or SYNAD exit before returning to
your program. Register 15 indicates the status of the request. A code of 0 indicates
that no error was associated with any of the RPLs. Any other code indicates that
an error occurred for one of the RPLs. Issue a SHOWCB for every RPL in the chain
to find out which one had an error. VSE/VSAM does not process any of the RPLs
beyond the one with an error.

Example 4: Keyed-Direct Retrieval

Assumptions

Fixed-length records are processed in the I/O buffer. Key length is 15 bytes. The
search argument is a 5-byte generic key, compared equal. Control blocks are
generated during assembly.

INPUT ACB MACRF=(KEY,DIR,IN)

RETRVE RPL ACB=INPUT, You specify all parameters
AREA=IN,AREALEN=4 for the request in the RPL
OPTCD=(KEY,DIR, macro.
NUP,KEQ,GEN,LOC),
ARG=KEYAREA,KEYLEN=5

.

.

.
LOOP MVC KEYAREA,table Search argument for retrieval,

moved in from a table or a
transaction record.

GET RPL=RETRVE This GET or identical GETs can
be issued with no change in the
RPL: just specify every new
search argument in the field
KEYAREA.

LTR 15,15
BNZ ERROR
.
. Process the record.
.
B LOOP

ERROR ... Request was not accepted
. or failed.
.
.

IN DS CL4 VSE/VSAM stores the address
. of the record here.
.
.

KEYAREA DS CL5 You specify the search
argument here.

Figure 31. Request Macro Example 4: Keyed-Direct Retrieval

Examples: Request Macros

302 VSE/VSAM V9R2 User’s Guide and Application Programming

Discussion

The generic key specifies a class of records. For example, if you search on the first
third of employee number, you get the first of presumably several records that
start with the specified characters. To retrieve all of the records in that class, either
switch to sequential access (see Example 7) or to a full-key search with
greater-than-or-equal comparison (Example 2), increasing the key of every record
you retrieve to the next possible key value.

Example 5: Addressed-Direct Retrieval

Assumptions

Fixed-length records, 20 bytes long, are moved to a work area.

Discussion

The RBA provided for a search argument must match the RBA of a record. Keyed
insertion and deletion of records in a key-sequenced file will probably cause the
RBAs of some records to change. Therefore, if you process a key-sequenced file by
addressed direct access (or by addressed sequential access using POINT), you need
to keep track of changes. You can use the JRNAD exit for this purpose.

BLOCK ACB DDNAME=INPUT, Access-method control block
MACRF=(ADR,DIR,IN) generated at assembly.

GENCB BLK=RPL,COPIES=1, Request parameter list
ACB=BLOCK, generated at execution.
OPTCD=(ADR,DIR,
NUP,MVE),
ARG=SRCHADR,
AREA=IN,AREALEN=20

LTR 15,15
BNZ CHECKO
LR 2,1 Address of the list.
.
.
.

LOOP MVC SRCHADR,table Search argument for retrieval,
calculated or moved in from a
table or a transaction record.

GET RPL=(2)
LTR 15,15
BNZ ERROR
.
. Process the record.
.
B LOOP

CHECKO ... Generation failed.
ERROR ... Request was not accepted

. or failed.

.

.
IN DS CL20 VSE/VSAM puts a record here

for every GET request.
SRCHADR DS CL4 You specify the RBA search

argument here for every request.

Figure 32. Request Macro Example 5: Addressed-Direct Retrieval

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 303

How to Position for Subsequent Sequential Access: GET and
POINT Macros

Examples 6 and 7 illustrate positioning both with the POINT macro and with
direct access followed by sequential access.

Example 6: Keyed Positioning with POINT

Assumptions

Sequential access. The search argument (for positioning) is a full key of 5 bytes,
compared equal. Records are 50 bytes long. Control blocks are generated during
assembly.

Discussion

No access is gained to a record with POINT. POINT causes VSE/VSAM to be
positioned ahead or back to the specified record for a subsequent sequential GET
request, which retrieves the record. If, after positioning, you issue a direct request
by way of the same RPL, VSE/VSAM does not remember the position established
by the POINT. VSE/VSAM would then either be positioned somewhere else or not
positioned at all, depending on whether OPTCD=NSP or UPD was specified or
OPTCD=NUP (see Example 7).

Positioning by address is identical to positioning by key, except that the search
argument is an RBA, which must match with the RBA of a record in the file.

BLOCK ACB DDNAME=10 Default MACRF options
sufficient.

POSITION RPL ACB=BLOCK, ARG operand and KEQ and
AREA=WORK,AREALEN=50, FKS OPTCD options define
ARG=SRCHKEY, the POINT request.
OPTCD=(KEY,SEQ,
KEQ,FKS)

.

.

.
LOOP MVC SRCHKEY,table Search argument for

positioning, moved in from a
table or transaction record.

POINT RPL=POSITION
LTR 15,15
BNZ ERROR

LOOP1 GET RPL=POSITION
LTR 15,15
BNZ ERROR
. Process the record. Decide
. whether to skip another
. position (forward or

backward).
BE LOOP Yes, skip.
B LOOP1 No, continue in consecutive

sequence.
ERROR ... Request was not accepted or

. failed.

.

.
SRCHKEY DS CL5 Search-argument field for

POINT request.
WORK DS CL50 VSE/VSAM puts a record here

for every GET request.

Figure 33. Request Macro Example 6: Keyed Positioning with POINT

Examples: Request Macros

304 VSE/VSAM V9R2 User’s Guide and Application Programming

Example 7: Switching from Direct to Keyed-Sequential Retrieval

Assumptions

Records are moved to a work area. The search argument (for the direct request
preceding sequential requests) is a generic key, 8 bytes long, compared equal.
Records are of fixed-length, 100 bytes long. Positioning is requested for direct
requests. Control blocks are generated during assembly.

INPUT ACB MACRF=(KEY,DIR, Both direct and sequential
SEQ,IN) access specified.

RETRVE RPL ACB=INPUT,
AREA=IN,AREALEN=100,
OPTCD=(KEY,DIR,
NSP,KEQ,GEN,MVE), NSP specifies that VSE/VSAM is
ARG=KEYAREA,KEYLEN=8 to remember its position.

.

.

.
LOOP MVC KEYAREA,table Search argument for direct

retrieval, moved in from a
table or transaction record.

LOOP1 GET RPL=RETRVE
LTR 15,15
BNZ ERROR
. Decide whether to switch from
. one type of access to the
. other. If now sequential:

To remain sequential, branch
to LOOP1
To switch to direct, branch
to DIR
If now direct:
To remain direct, branch
to LOOP
To switch to sequential,
branch to SEQ

SEQ MODCB RPL=RETRVE, Alter request parameter list
OPTCD=SEQ for sequential access.

LTR 15,15
BNZ CHECKO
B LOOP1 No search argument required.

DIR MODCB RPL=RETRVE, Alter request parameter list
OPTCD=DIR for direct access.

LTR 15,15
BNZ CHECK0
B LOOP Prepare new search argument.

ERROR ... Request was not accepted or
failed.

CHECKO ... Modification failed.
.
.
.

IN DS CL100 VSE/VSAM puts retrieved records
here.

KEYAREA DS CL8 Specify the generic key for
a direct request here.

Figure 34. Request Macro Example 7: Switching from Direct to Keyed-Sequential

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 305

Discussion

Positioning is associated with an RPL; thus to switch from direct to sequential
access without independently establishing positioning for the sequential access,
modify a single RPL that alternately defines requests for both types of access rather
than use a different RPL for every type.

With direct retrieval, VSE/VSAM does not remember its position for subsequent
retrieval unless you explicitly requested this (OPTCD=NSP). After a direct GET for
update (OPTCD=UPD), VSE/VSAM is positioned for a subsequent PUT,ERASE, or
sequential GET (if you modify OPTCD(DIR,UPD) to OPTCD=(SEQ,UPD)). If you
modify OPTCD=(DIR,NUP) to OPTCD=SEQ, you must issue a POINT to get
VSE/VSAM positioned for sequential retrieval, as NUP indicates that no
positioning is desired with a direct GET.

If you have chained many RPLs together, one position is remembered for the
whole chain. For example, if you issue a GET that gives the address of the first
RPL in the chain, the position of VSE/VSAM when the GET request is complete is
at the record following the one defined by the last RPL in the chain. Therefore,
modifying OPTCD=(DIR,NSP) in every RPL in a chain to OPTCD=SEQ implies
continuing with sequential access relative to the last of the direct RPLs.

How to Chain Request Parameter Lists and Terminate a
Request: ENDREQ Macro

Example 8 illustrates how to chain RPLs. Example 9 illustrates the use of ENDREQ
to cause VSE/VSAM to give up its position for a request to be able to remember
its position for another request.

Example 8: Chaining Request Parameter Lists

Assumptions

Records are 50 bytes long. Retrieved records are moved to a work area. Three RPLs
are chained.

Examples: Request Macros

306 VSE/VSAM V9R2 User’s Guide and Application Programming

Discussion

If an error occurred for one of the RPLs in the chain and you have supplied
error-analysis routines, VSE/VSAM takes a LERAD or SYNAD exit before it
returns control to your program. Register 15 is set to indicate the status of the
request. A code of 0 indicates that no error was associated with any of the RPLs.
Any other code indicates that an error occurred for one of the RPLs. You should
issue a SHOWCB macro for every RPL in the chain to find out which one had an
error. VSE/VSAM does not process any of the RPLs beyond the one with an error.

Example 9: Giving up Positioning for Another Request

Assumptions

There are three RPLs, all of which require VSE/VSAM to remember its position,
one only temporarily and two until VSE/VSAM is explicitly requested to forget its
position. VSE/VSAM can remember only two positions concurrently (STRNO=2).

FIRST RPL ACB=BLOCK,
AREA=AREA1,AREALEN=50,
NXTRPL=SECOND

SECOND RPL ACB=BLOCK,
AREA=AREA2,AREALEN=50,
NXTRPL=THIRD

THIRD RPL ACB=BLOCK Last list does not indicate
AREALEN=50 a next list.
AREALEN=50

.

.

.
LOOP GET RPL=FIRST Request gives the address of

the first request parameter
list.

LTR 15,15
BNZ ERROR
. Process the three records
. retrieved by the GET.
.
B LOOP

ERROR ... Display the feedback field
(FIELD=FDBK) of every request
parameter list to find out
which one had an error.

AREA1 DS CL50 A single GET request causes
VSE/VSAM to put a record in
each one of AREA1, AREA2,
and AREA3.

AREA2 DS CL50
AREA3 DS CL50

Figure 35. Request Macro Example 8: Chaining Request Parameter Lists

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 307

Discussion

The use of ENDREQ illustrated here is to cause VSE/VSAM to forget its position
for one RPL so a request defined by another RPL can be issued. When PUT is
issued after a GET RPL=DIRUPD request, ENDREQ need not be issued, because
PUT causes VSE/VSAM to forget its position (the next GET with RPL=DIRUPD
does not depend on VSE/VSAM's remembering its position). You need to cause
VSE/VSAM to forget its position when you have issued requests for as many RPLs
requiring concurrent positioning as the number you specified for STRNO (in the
ACB macro) and you want to issue a request for yet another RPL. In the example,
a GET with RPL=DIRNUP cannot be reissued unless VSE/VSAM is freed from
remembering its position for either SEQ or DIRNUP. VSE/VSAM must be allowed
to remember its position for SEQ because requests against this RPL are sequential
and depend on VSE/VSAM's remembering its position.

BLOCK ACB MACRF=(SEQ,DIR),
STRNO=2

SEQ RPL ACB=BLOCK, VSE/VSAM must remember its
OPTCD=SEQ position.

DIRUPD RPL ACB=BLOCK, VSE/VSAM must remember its
OPTCD=(DIR,UPD) position until explicitly

requested to forget it by
PUT or ENDREQ.

DIRNUP RPL ACB=BLOCK, VSE/VSAM must be able to
OPTCD=(DIR,NUP) temporarily remember its

. position.

.

.
LOOP GET RPL=SEQ VSE/VSAM now remembers its

position for this request.
LTR 15,15
BNZ ERROR
GET RPL=DIRNUP VSE/VSAM remembers its position

for this request only while
it is processing the request.

LTR 15,15
BNZ ERROR
GET RPL=DIRUPD VSE/VSAM can therefore remember

its position for this request,
even that STRNO=2.

LTR 15,15
BNZ ERROR
.
. Decide whether to update the
. record.
BE UPDATE
B FORGET No.

UPDATE PUT RPL=DIRUPD Yes, update the record,
causing VSE/VSAM to forget its
position for DIRUPD.

LTR 15,15
BNZ ERROR
B LOOP

FORGET ENDREQ RPL=DIRUPD Cause VSE/VSAM to forget its
position for DIRUPD.

LTR 15,15
BNZ ERROR
B LOOP

ERROR ... Request was not
accepted or failed.

Figure 36. Request Macro Example 9: Giving up Positioning for Other Request

Examples: Request Macros

308 VSE/VSAM V9R2 User’s Guide and Application Programming

To cause VSE/VSAM to give up its position associated with a chain of RPLs,
specify the first RPL in the chain in your ENDREQ macro.

Because VSE/VSAM remembers its position after a direct GET with OPTCD=UPD,
if no PUT or ENDREQ follows, you can switch to sequential access
(OPTCD=(SEQ,UPD) or OPTCD=SEQ) and use the positioning for a GET.

How to Store a Record: PUT Macro
Examples 10, 11, 12, and 13 illustrate the storage of records: keyed and addressed,
sequential, skip sequential, and direct.

Example 10: Keyed-Sequential Insertion

Assumptions

Records of variable length are moved from a work area (only option). These
records are up to 250 bytes long. Key length is 15 bytes. Some records are inserted
between existing records, others are added at the end of the file.

Discussion

Sequential insertion does not require VSE/VSAM to be positioned at the point of
insertion. VSE/VSAM automatically skips ahead (never back) to that point, as
though you were using skip sequential insertion (see Example 11). The difference
between sequential and skip sequential insertion is that sequential insertion leaves
free space in CIs and CAs according to the file's FREESPACE specification in the
catalog (which is entered by the IDCAMS command DEFINE). Skip sequential
insertion (and direct insertion) uses the free space.

You must use sequential storage (as opposed to skip sequential or direct storage)
when you load records into a file for the first time. Thereafter, you may use skip

BLOCK ACB DDNAME=OUTPUT,
MACRF=(KEY,SEQ,OUT)

LIST RPL ACB=BLOCK,
AREA=BUILDRCD,AREALEN=250,
OPTCD=(KEY,SEQ,NUP,MVE)

.

.
LOOP L 0,length Put length of record to be

inserted into Register 0.
LA 1,LIST Put RPL address into Register 1.
MODCB RPL=(1), Modify record length in

RECLEN=(0) request parameter list.
LTR 15,15
BNZ CHECKO
PUT RPL=LIST
LTR 15,15
BNZ ERROR
B LOOP

CHECKO ... Modification failed.
ERROR ... Request was not accepted

. or failed.

.

.
BUILDRCD DS CL250 Work area for building record.

Figure 37. Request Macro Example 10: Keyed-Sequential Insertion

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 309

sequential and direct storage, but you should use sequential storage when you are
inserting large numbers of records between two existing records or at the end of
the file.

When you store records sequentially beyond the highest key in the file,
VSE/VSAM automatically extends the file as though you were continuing to load
records. VSE/VSAM does not use distributed free space for these records, but
establishes new CAs at the end of the file.

Example 11: Skip-Sequential Insertion

Assumptions

Several records are inserted with one PUT request. The records are moved from a
work area (only option). They are fixed-length, 100 bytes long.

Examples: Request Macros

310 VSE/VSAM V9R2 User’s Guide and Application Programming

Discussion

You give no search argument for storage. VSE/VSAM knows the position of the
key field in every record and extracts the key from it. Skip sequential insertion
differs from keyed direct insertion in the sequence in which records may be
inserted (ascending non-consecutive sequence versus random sequence) and in
performance. With skip sequential insertion, VSE/VSAM uses only the sequence
set of the index to find the point of insertion; with keyed direct insertion,
VSE/VSAM searches from the top level of the index down to the sequence set.

With skip sequential insertion, if you insert two or more records into a CI,
VSE/VSAM does not write the contents of the buffer to direct-access storage until
you have inserted all records. With direct insertion, VSE/VSAM writes the contents

OUTPUT ACB MACRF=(KEY,SKP,OUT)
.
.
.
GENCB BLK=RPL,COPIES=5, Generate 5 request parameter

ACB=OUTPUT, lists at execution.
AREALEN=100,
OPTCD=(KEY,SKP,NUP,MVE)

LTR 15,15
BNZ CHECKO

Calculate the length of every list and use register notation with the MODCB macro to
complete each list. See Example 3.

MODCB RPL=(2),
AREA=(3),
NXTRPL=(4)

LTR 15,15
BNZ CHECKO

Increase the value in every register and repeat the MODCB until all five requests have
been completed. The last time, Register 4 must be set to 0.

.

.

.
LOOP ... Restore address of first list

Register 2. Build 5 records
in WORK.

PUT RPL=(2) Register 2 points to the first
request parameter list in the
chain. The five records in
WORK are stored with this one
PUT request.

LTR 15,15
BNZ ERROR
.
.
.
B LOOP

CHECKO ... Generation or modification
failed.

ERROR ... Display the feedback field
in every request parameter
list to find out if it had
an error (see discussion
for Example 8).

WORK DS CL500 Contains 5 100-byte work
areas.

Figure 38. Request Macro Example 11: Skip-Sequential Insertion

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 311

of the buffer after you have inserted each record.

Example 12: Keyed-Direct Insertion

Assumptions

Records are moved from a work area (only option.) They have a fixed length of
100 bytes.

Discussion

VSE/VSAM extracts the key from every record's key field. You give no search
argument. Using keyed direct access is very similar to using skip sequential access.
About the only differences are specifying DIR instead of SKP in the MACRF and
OPTCD operands and being able to process records randomly instead of in
ascending key sequence (with skips).

Example 13: Addressed-Sequential Addition

Assumptions

Records are moved from work area (only option). They are of variable-length, up
to 100 bytes long.

OUTPUT ACB MACRF=(KEY,DIR,OUT)

DIRECT RPL ACB=OUTPUT,
AREA=WORK,AREALEN=100,
OPTCD=(KEY,DIR,NUP,MVE),
RECLEN=100

.

.

.
LOOP PUT RPL=DIRECT

LTR 15,15
BNZ ERROR
.
.
.
B LOOP

ERROR ... Request failed
.
.
.

WORK DS CL100 Work area

Figure 39. Request Macro Example 12: Keyed-Direct Insertion

Examples: Request Macros

312 VSE/VSAM V9R2 User’s Guide and Application Programming

Discussion

With addressed access, you cannot insert records into or add records to a
key-sequenced file, because the index is not used and VSE/VSAM cannot locate
the CI into which to insert the record. You can add records to, but not insert
records into, an entry sequenced-file. Every record is stored in the next position
after the last record in the file. You do not have to specify an RBA or do any
explicit positioning (with the POINT macro). Addressed addition of records is
always identical to loading a file. When the last CA is filled up, VSE/VSAM
extends the file and establish new CAs.

Actually, there is no difference between addressed sequential and addressed direct
addition. Every method stores a record in the next position after the last record in
the file. However, you cannot use direct processing to load records into a file for
the first time; you must use sequential processing.

How to Update a Record: GET and PUT Macros
Examples 14, 15, and 16 illustrate updating a record by first retrieving it and then
storing it back with changes. (You cannot update a record without first retrieving it
for update.)

BLOCK ACB MACRF=(ADR,SEQ,OUT)

LIST RPL ACB=BLOCK,
AREA=NEWRCD,AREALEN=100,
OPTCD=(ADR,SEQ,MVE)

.

.

.
LOOP ... Build the record.

L 0,length Put the length of the record
into Register 0.

LA 1,LIST Put RPL address into Register 1.
MODCB RPL=(1), Indicate length of new record.

RECLEN=(0)
LTR 15,15
BNZ CHECKO
PUT RPL=LIST
LTR 15,15
BNZ ERROR
B LOOP

CHECKO ... Modification failed.
ERROR ... Request was not accepted

. or failed.

.

.
NEWCRD DS CL100 Build record in this work

area.

Figure 40. Request Macro Example 13: Addressed-Sequential Addition

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 313

Example 14: Keyed-Sequential Update

Assumptions

Records are updated in a work area (only option). They are fixed-length, 50 bytes
long. Not every record retrieved is also updated.

Discussion

A GET update (OPTCD=UPD) must precede a PUT for update. Besides retrieving
the record to be updated, GET positions VSE/VSAM at the record retrieved in
anticipation of the succeeding update (or deletion). It is not necessary to store back
(or delete) the record that you retrieved for update. VSE/VSAM's position at the
record previously retrieved allows you to issue another GET to retrieve the
following record (OPTCD=(SEQ,UPD) or OPTCD=SEQ). Then, however, the
position for update was not maintained because of the following GET.

This example requires the use of a work area because you cannot update a record
in the I/O buffer. Skip sequential retrieval (with OPTCD=UPD) can be used to
update. Compare this example with Example 2.

UPDATA ACB MACRF=(KEY,SEQ,OUT)

LIST RPL ACB=UPDATA, UPD indicates the record
AREA=WORK,AREALEN=50, may be stored back(or
OPTCD=(KEY,SEQ, deleted).
UPD,MVE)

.

.

.
LOOP GET RPL=LIST

LTR 15,15
BNZ ERROR
. Decide whether to update
. the record.
.
BE UPDATE
B LOOP Do not update it; retrieve

another.

UPDATE . Update the record and store
. it back.
.
PUT RPL=LIST
LTR 15,15
BNZ ERROR
B LOOP

ERROR ... Request was not accepted
. or failed.
.
.
.

WORK DS CL50 VSE/VSAM places the retrieved
record here.

Figure 41. Request Macro Example 14: Keyed-Sequential Update

Examples: Request Macros

314 VSE/VSAM V9R2 User’s Guide and Application Programming

Example 15: Keyed-Direct Update

Assumptions

Records are moved to and from a work area (only option). They are of
variable-length, up to 120 bytes (with some lengths changed by update). The
search argument is a full key of five bytes, compared equal.

INPUT ACB MACRF=(KEY,DIR,OUT)

UPDATE RPL ACB=INPUT, UPD indicates the record
AREA=IN,AREALEN=120, may be stored back (or
OPTCD=(KEY,DIR, deleted).
UPD,KEQ,FKS,MVE),
ARG=KEYAREA,KEYLEN=5

.

.

.
LOOP GET RPL=UPDATE

LTR 15,15
BNZ ERROR
LA 1,UPDATE Put RPL address in Register 1.
SHOWCB RPL=(1), Display the length of the

RECLEN=(0) record.
LTR 15,15
BNZ CHECKO
ST 0,RLNGTH Save the record length.
. Update the record. Does the
. update change the record’s
. length?

B STORE No, length not changed.
L 0,length Yes, load new length into

Register 0.
LA 1,UPDATE Put RPL address in Register 1.
MODCB RPL=(1), Modify length indication in

RECLEN=(0) the request parameter list.
LTR 15,15

BNZ CHECKO
STORE PUT RPL=UPDATE

LTR 15,15
BNZ ERROR
B LOOP

ERROR ... Request was not accepted
or failed.

CHECKO ... Display or modification
. failed.
.
.

IN DS CL120 Work area for retrieving,
updating, and storing a
record

KEYAREA DS CL5 Search argument for
retrieving a record.

RLNGTH DS F Area for displaying the
length of a retrieved record.

Figure 42. Request Macro Example 15: Keyed-Direct Update

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 315

Discussion

You cannot update records in the I/O buffer. A direct GET for update positions
VSE/VSAM at the record retrieved, in anticipation of storing back (or deleting) the
record. This positioning also allows you to switch to sequential access to retrieve
the next record.

You do not have to store back a record that you retrieve for update, but if you do
another retrieval, (using the same RPL). Or else, use two RPLs with STRNO=2.
One RPL is used solely for GET DIR with UPD.

Example 16: Addressed-Sequential Update

Assumptions

Entry-sequenced file. Records are processed in a work area. They are of
variable-length, up to 200 bytes long (lengths are not changed by updates; the
length of a record can never be changed if addressed access is used).

Discussion

The RBAs of records in an entry-sequenced file are fixed and free space is not
distributed. Therefore, it is not possible to change the length of records in an
entry-sequenced file.

If you have inactive records in your entry-sequenced file, you may reuse the space
they occupy by retrieving the records for update and restoring a new record in
their place.

ENTRY ACB MACRF=(ADR,SEQ,OUT)

ADRUPD RPL ACB=ENTRY, UPD indicates update
AREA=WORK, (or deletion).
AREALEN=200,
OPTCD=(ADR,SEQ,UPD,MVE)

.

.

.
LOOP GET RPL=ADRUPD

LTR 15,15
BNZ ERROR
LA 1,ADRUPD Put RPL address in Register 1.
SHOWCB RPL=(1), Find out how long the record is.

RECLEN=(0)
LTR 15,15
BNZ CHECKO
ST 0,RLNGTH Save the record length.
PUT RPL=ADRUPD
LTR 15,15
BNZ ERROR
B LOOP

ERROR ... Request was not accepted
or failed.

CHECKO ... Display failed.
.
.
.

WORK DS CL200 Record-processing work area.
RLNGTH DS F Display area for length of

records.

Figure 43. Request Macro Example 16: Addressed-Sequential Update

Examples: Request Macros

316 VSE/VSAM V9R2 User’s Guide and Application Programming

With a key-sequenced file, it is also impossible to change the length of records by
addressed update because the index is not used and VSE/VSAM could not split a
CI if required because of changing record length.

Addressed direct update differs from sequential update in the specification of an
RBA for a search argument.

How to Delete a Record: GET and ERASE Macros
Examples 17 and 18 illustrate deleting a record from a key-sequenced file.

Example 17: Keyed-Direct Deletion

Assumptions

Records are processed in a work area (only option). They are fixed-length, 50 bytes
long. Not every record retrieved for deletion is deleted. The search argument is a
full key, 5 bytes long, compared equal.

Discussion

When you retrieve a record for deletion (OPTCD=UPD, same as retrieval for
update), VSE/VSAM is positioned at the record retrieved, in anticipation of a
following ERASE (or PUT) request for that record. You are not required to issue
such a request, however. Another GET request nullifies any previous positioning
for deletion or update.

Keyed sequential retrieval for deletion varies from direct in not using a search
argument (except for possible use of the POINT macro). Skip sequential retrieval
for deletion (OPTCD=(SKP,UPD) has the same effect as direct, but it is faster or
slower depending on the number of CIs separating the records to be retrieved.

DELETE ACB MACRF=(KEY,DIR,OUT)
LIST RPL ACB=DELETE, UPD indicates deletion.

AREA=WORK,AREALEN=50,
ARG=KEYFIELD,
OPTCD=(KEY,DIR,UPD,MVE,FKS,KEQ)

.

.

.
LOOP MVC KEYFIELD,table Search argument for retrieval,

from a table or transaction
record.

GET RPL=LIST
LTR 15,15
BNZ ERROR
.
.
. Decide whether to delete

the record.
BE DELET
B LOOP No, retrieve the next record.

DELET ERASE RPL=LIST Yes, delete the record.
LTR 15,15
BNZ ERROR
B LOOP

ERROR ... Request was not accepted
or failed.

WORK DS CL50 Examine the data record here.
KEYFIELD DS CL5 Search argument.

Figure 44. Request Macro Example 17: Keyed-Direct Deletion

Examples: Request Macros

Chapter 12. Descriptions of VSE/VSAM Macros 317

Example 18: Addressed-Sequential Deletion

Assumptions

Records are processed in a work area. They are fixed-length, 100 bytes long. Not
every record that is retrieved is deleted. Skipping is effected by issuing the POINT
macro.

Discussion

Addressed deletion is allowed only for a key-sequenced file. The records of an
entry-sequenced file are fixed, both in their existence and in their location.

DELETE ACB MACRF=(ADR,SEQ,OUT)

REQUEST RPL ACB=DELETE, UPD indicates deletion.
AREA=WORK,
AREALEN=100,
ARG=ADDR,
OPTCD=(ADR,SEQ,UPD,MVE)

.

.

.
LOOP ... Decide whether you need to

skip to another position
(forward or backward).

B RETRIEVE No, bypass the POINT.
MVC ADDR,RBA value Yes, move search argument for

POINT into search-argument
field.

POINT RPL=REQUEST Position VSE/VSAM to the record
to be retrieved next.

LTR 15,15
BNZ ERROR

RETRIEVE GET RPL=REQUEST
LTR 15,15
BNZ ERROR
.
.
. Decide whether to delete

the record.
BE DELET
B LOOP No, skip ERASE.

DELET ERASE RPL=REQUEST Yes, delete the record.
LTR 15,15
BNZ ERROR
B LOOP

ERROR ... Request was not accepted
. or failed.
.
.

ADDR DS F RBA search argument for
POINT.

WORK DS CL100 Work area.

Figure 45. Request Macro Example 18: Addressed-Sequential Deletion

Examples: Request Macros

318 VSE/VSAM V9R2 User’s Guide and Application Programming

How to Use Extended User Buffering: GET and PUT Macros
User buffering is mostly used by database systems such as DL/I and SQL/DS.
Extended user buffering reduces the number of I/O requests and contributes to an
increase in performance. Extended user buffering is provided for VSE/VSAM
ESDS files and can be requested via the VSE/VSAM RPL control block. The
support became available for the first time with VSE/ESA 2.1.2.

Current User Buffering Support
User buffering is only possible in conjunction with the control interval mode, that is,
the ACB specifies: MACRF=(CNV,UBF,MVE,FWD). With user buffering, the RPL
identifies the buffer address via the AREA= parameter and, in case of direct access,
the RBA of the control interval to be read or written via the RPL ARG= parameter.

Since a READ request needs to be processed immediately and (on a PUT request)
the buffer cannot be copied from the user buffer, each VSE/VSAM request with
user buffering results in an immediate I/O for each single control interval.

If several RPLs are chained via the NXTRPL= option of the RPL, the situation is
unchanged, because each request as identified via each RPL is executed
independently. In addition, certain restrictions exist for use with RPL chaining.

Extended User Buffering Support
Extended user buffering improves performance by handling related I/O requests,
as far as possible, as a single I/O request. This reduces the number of I/O
requests required by a factor that is usually the number of buffers per extended
user buffering request.

To support extended user buffering, the options NBF and XBF are added to the
RPL macro OPTCD options:

OPTCD=(...,NBF,...)
OPTCD=(...,XBF,...)

NBF and XBF are also added as operands to the macros GENCB, MODCB, and
TESTCB.

OPTCD
Meaning

NBF Normal user buffering.

Each request as identified by an RPL is executed serially and
independently. This is the conventional processing of user buffering and
remains the default.

XBF Extended user buffering.

VSE/VSAM will execute the chain of RPLs as a single request, thereby
attempting to execute the requests with as few I/O requests as possible.
All control intervals residing in the same control area will usually be
processed in a single I/O.

VSE/VSAM User Buffering

Chapter 12. Descriptions of VSE/VSAM Macros 319

Using Extended User Buffering
When using extended user buffering, the following must be observed:
1. OPTCD=UBF and OPTCD=XBF can be used interchangeably.
2. To perform an actual request, an application must:

a. Set up a chain of as many RPLs as control intervals are to be read or
written.

b. Store the RBA and buffer address (AREA, AREALEN) information for each
control interval into the associated RPL.

c. Execute the appropriate request macro against the first RPL of the chain.
3. With OPTCD=XBF, the following request macros are valid:

GET
PUT

4. All requests will be executed as if OPTCD=(DIR,NUP,MVE) were specified.
OPTCD=SEQ is allowed but it would only affect the cache handling (DEFINE
EXTENT, global attributes) for ECKD devices. OPTCD=SEQ should only be set for
an application that has to process large portions of data sequentially in forward
direction.

5. There is no exclusive control handling. The consequences are:
v It is possible to update a control interval without having it read previously.
v There is no protection by VSE/VSAM that different strings update a control

interval concurrently.
6. With OPTCD=XBF, it is not possible to extend a data set. Hence pre-formatting

would still need to be done with either OPTCD=NBF, or with VSE/VSAM
buffering (MACRF=NUB).

Return Codes of Request Macros
When VSE/VSAM returns to your processing program, a return code in Register
15 indicates what happened. If an error occurred, the RPL contains additional
information. Your processing program can examine the feedback field of the RPL
with the SHOWCB or TESTCB macro. Register 1 contains the address of the RPL
which defines the request that caused the error.

Control is returned to the instruction following your action macro when:
1. The request was completed normally
2. The request was not accepted because another request was using the RPL
3. An error occurred and you did not have an active exit routine
4. An error occurred and you had an active exit routine.

The routine returns control to VSE/VSAM after processing the error.
VSE/VSAM then returns control to the instruction following the action macro.

When you gain control after a request, Register 15 contains one of the following
return codes:

Return Code
Meaning

X‘00’ Request completed successfully; the RPL might contain additional
(non-error) information about the request.

X‘04’ The request was not accepted because a request from another task is active
on the same RPL; no additional information is in the RPL.

VSE/VSAM User Buffering

320 VSE/VSAM V9R2 User’s Guide and Application Programming

X‘08’ Logic error; the error code in the RPL identifies the specific error.
End-of-file is considered a logic error (error code X'04').

X‘0C’ Uncorrectable I/O error; the error code in the RPL identifies the specific
error.

Note: For information on return and error codes, refer to z/VSE Messages and Codes,
Volume 2, SC34-2633.

As applicable, also refer to the descriptions of the request macros (GET, PUT,
POINT, ERASE, and ENDREQ).

Depending on the return code in Register 15 and your specification in the EXLST
macro, VSE/VSAM takes one of the following actions:
v When the RPL is in use (return code X'04'), retry the request.
v If the request is completed with a logic error (return code X'08') other than

end-of-file, your LERAD exit routine is entered if you specified the LERAD exit
in the EXLST and if it is active. If no LERAD exit routine is specified or if it is
inactive, control is returned to the instruction following the request macro that
raised the logic error condition with return code X'08' set.
When you reach end-of-file, your request completes with a logic error (return
code X'08' and error code X'04') and your EODAD exit routine is entered. If you
have no EODAD exit routine or if it is inactive, your LERAD exit routine is
entered. If no LERAD exit routine is specified or if it is inactive, control is
returned to the instruction following the request macro that raised the end-of-file
condition with return code X'08' set. Note, too, that if the EODAD exit is taken,
the LERAD exit is not.

v If the request completed with an I/O (physical) error (return code X'0C'), your
SYNAD exit routine is entered if you specified the SYNAD exit in the EXLST
and if it is active. If no SYNAD exit routine is specified or if it is inactive,
control is returned to the instruction following the request macro that raised the
I/O error condition with return code X'0C' set.

After your EODAD, LERAD, or SYNAD exit returns to VSE/VSAM, VSE/VSAM
returns control to the instruction following the request macro that raised the error
condition with a non-zero return code set.

The feedback field in the RPL (FDBK operand in SHOWCB and TESTCB) is a
three-byte field with the following format:
0000xx

where:

xx is an error code that describes the error or, if the return code is zero,
additional information about the request.

Besides the return code (set in Register 15) and the error code (which you may
obtain by specifying FDBK in the SHOWCB macro) a function code is provided for
alternate-index processing. This function code is set on logical or physical errors
detected by VSE/VSAM and indicates whether the respective error condition
occurred during accessing the base cluster or the alternate index. In addition, the
function code indicates whether or not the upgrade set is still correct after the
request that failed. The function codes and their meanings are:

Function Code
Meaning

Return Codes

Chapter 12. Descriptions of VSE/VSAM Macros 321

X‘00’ Condition occurred during accessing the base cluster. Upgrade set is
correct.

X‘01’ Condition occurred during accessing the base cluster. Upgrade set may be
incorrect as a consequence of this request.

X‘02’ Condition occurred during accessing the AIX over a base cluster. Upgrade
set is correct.

X‘03’ Condition occurred during accessing the AIX over a base cluster. Upgrade
set may be incorrect as a consequence of this request.

X‘04’ Condition occurred during upgrade processing. Upgrade set is correct.

X‘05’ Condition occurred during upgrade processing. Upgrade set may be
incorrect as a result as a consequence of this request.

You can display or test the function code by specifying the keyword FTNCD in the
SHOWCB or TESTCB macro, respectively.

Return Codes from the Control Block Manipulation Macros
When VSE/VSAM returns to your processing program after a GENCB, MODCB,
SHOWCB, or TESTCB request, Register 15 contains one of the following return
codes:

Return Code
Meaning

X‘00’ Operation successfully completed.

X‘04’ An error occurred.

X‘08’ The execute form of the macro was used in an attempt to change a
non-existent entry in the referenced parameter list.

X‘0C’ Request was not executed because an error was encountered while
VSE/VSAM routines were loaded.

If Register 15 contains X‘04’, an error code is set in Register 0, which indicates the
type of error. Make sure that, before issuing the macro, you save the contents of
Register 0 if you want to use its contents later on. For an explanation of the error
codes, refer to z/VSE Messages and Codes, Volume 2, SC34-2633.

List, Execute, and Generate Forms of the Control Block Manipulation
Macros

The list and execute forms of the control block manipulation macros (GENCB,
MODCB, SHOWCB, and TESTCB) allow you to save virtual storage by using one
parameter list for two or more macros. You can also make your program
reenterable, that is, executable by more than one task at a time. While the generate
form of the macros enables you to make programs reenterable it does not allow
shared parameter lists.

Return Codes

322 VSE/VSAM V9R2 User’s Guide and Application Programming

List and Execute Forms
The list form of GENCB, MODCB, SHOWCB, and TESTCB has the same
parameters as the standard form, except that it includes the parameter MF=L or
MF=(L,adress...).

The parameter list of the macro is created inline when MF=L is coded. This version
is not reenterable and register notation cannot be used for macro parameter
addresses.

When MF=(L,address...) is coded, the parameter list of the macro is created in the
area specified by address. This form is reenterable. You must supply the area by a
GETVIS macro when your program is executed. You can determine the size of the
parameter list by coding the third operand label. VSE/VSAM equates label to the
length of the list.

The execute form produces the executable code of the macros. The execute form is
also identical to the standard form, except that it includes the operand
MF=(E,address), where address points to the parameter list created by the list form
of the macro. All of the other operands of the macro are optional and are coded
only to change entries in the parameter list before the list is used. However, you
cannot use the execute form to add or delete entries from the parameter list or to
change the type of list.

Generate Form
The generate form of the macros allows you to make your program reenterable,
but it does not create shared parameter lists. The generate form is the same as the
standard form, except that you code MF=(G,address...). The parameter list is
created in an area pointed to by address. To ensure that the parameter list is
reenterable, address should be coded in register notation. You must obtain this area
by a GETVIS macro when the program is executed. You can determine the size of
the parameter list by coding the third operand label. VSE/VSAM equates label to
the length of the list.

Examples of the List, Execute, and Generate Forms
Figure 46 on page 324 and Figure 47 on page 324 show the use of the list, execute,
and generate forms of the control block manipulation macros.

In Figure 46 on page 324, MODCB is used to place the length of a record in the
RPL before the record is written. The list and execute forms are used so that only
one parameter list is created (though the macro is issued several times). This list
form is not reenterable.

In Figure 47 on page 324, the generate form is used to create an ACB. It is
reenterable because both the ACB itself and the parameter list of the GENCB
macro are created in areas obtained through a GETVIS macro.

Continuation characters required in column 72 are not shown in the examples.

Forms of CB Macros

Chapter 12. Descriptions of VSE/VSAM Macros 323

MODCB MF=(E,LENMOD),RECLEN=(7) Current length in register 7
LTR 15,15 MODCB successful?
BNZ MODERR No, go to error routine
PUT RPL=LIST Yes, write record
.
.
.
MODCB MF=(E,LENMOD) Length is 100 bytes
LTR 15,15 MODCB successful?
BNZ MODERR No, go to error routine
PUT RPL=LIST Yes, write record
.
.
.

LENMOD MODCB RPL=LIST,RECLEN=100,MF=L List form has default

Figure 46. Examples of the List and Execute Form

LA 10,PARMLEN Load length for GETVIS
GETVIS ADDRESS=(8),LENGTH=(10) Get area for parm, list
LTR 15,15 GETVIS successful?
BNZ VISERR No, go to error routine
GENCB BLK=ACB,MF=(G,(8),PARMLEN),

EXLST=(3),BUFND=4,BUFNI=3,
DDNAME=VFILENM,
MACRF=(KEY,SEQ,DIR,OUT),
PASSWD=PASS

LTR 15,15 GENCB successful?
BNZ GENERR No, go to error routine
LR 2,1 Yes, save ACB address
.
.
.

PASS DC FL1’6’,C’CHANGE’

Figure 47. Example of the Generate Form

Forms of CB Macros

324 VSE/VSAM V9R2 User’s Guide and Application Programming

Appendix A. Operand Notation and Parameter Lists for
VSE/VSAM Macros

This Appendix...
v Documents Programming Interface information. For a definition of this category

of interface information refer to “Notices” on page xiii.
v Lists the macro operands and parameter lists for VSE/VSAM macros.

Operand Notation for VSE/VSAM Macros
The addresses, names, numbers, and options required with operands in GENCB,
MODCB, SHOWCB, TESTCB, BLDVRP, WRTBFR, and SHOWCAT can be
expressed in a variety of ways:
v An absolute numeric expression, for example, RECLEN=400, as in the following

sample job stream:
LA 1,RPL Set RPL address in register 1.
MODCB RPL=(1),RECLEN=400 Set record length field in

* RPL to value of 400.

v A character string, for example, DDNAME=DATASET
v A code or a list of codes separated by commas and enclosed in parentheses, for

example, OPTCD=KEY or OPTCD=(KEY,DIR,IN)
v A register from 2 through 12 that contains an address or numeric value. Equated

labels can be used to designate a register, for example, SYNAD=(ERR), where
the following equate statement has been included in the program: ERR EQU 3.
Example of register notation for an operand taking numeric value:

LA 6,400 Set length desired in register 6.
MODCB RPL=RPL,RECLEN=(6) Set record length field in RPL

* to value specified in register 6.

Example of register notation for an operand that takes an address value:
LA 2,RCDAREA Set address of record area in

* register 2.
MODCB RPL=RPL,AREA=(2) Set area operand in RPL according

* to contents of register 2.
.
.
.

RCDAREA DS CL400

v An expression of the form (S,scon), where scon is any expression valid for an
S-type address constant, including the base-displacement form.
The use of the S-type notation for numeric-value operands is usually equivalent
to either absolute-numeric-expression notation or register notation (see the
following example).
Example of S-type address notation for an operand that takes a numeric value:

MODCB RPL=RPL,RECLEN=(S,400) Set record length field
* in RPL to value of 400.

Example of S-type address notation for an operand that takes an address value:
MODCB RPL=RPL,RECLEN=(S,RCDAREA1) Set area operand in RPL

* to address of RCDAREA1.
.
.
.

RCDAREA1 DS CL400

© Copyright IBM Corp. 1979, 2014 325

v An expression of the form (*,scon); where scon is any expression valid for an
S-type address constant, including the base-displacement form. The address
specified by scon is indirect, that is, it points to the location that contains the
value of the keyword.
If indirect S-type address notation is used, the value it points to must meet
either of the following criteria:
– If the value is a numeric quantity, a bit string representing codes, or a pointer,

it must occupy a fullword of storage.
– If the value is an alphameric character string, it must occupy two words of

storage, be left aligned, and be padded on the right with blanks, if necessary.
Example of indirect S-type address notation for an operand that takes a numeric
value:

MODCB RPL=RPL,RECLEN=(*,RECLEN1) Set record length field
* in RPL to value specified
* in the fullword RECLEN1.

.

.

.
RECLEN1 DC F’400’

Example of indirect S-type address notation for an operand that takes a name
value:

MODCB ACB=ACB,DDNAME=(*,DDNAME1) Set ddname field in ACB
* to value specified in the
* 8-byte field DDNAME1.

.

.

.
DDNAME1 DC CL8’FILENAME’

Example of indirect S-type notation for an operand that takes an address value:
MODCB RPL=RPL,AREA=(*,ARCDAREA) Set area operand in RPL

* to the address pointed to
* be the pointer ARCDAREA.

.

.

.
ARCDAREA DC A(RCDAREA1)

Example of an expression valid for a relocatable A-type address constant:
MODCB RPL=RPL,AREA=RCDAREA Set area operand in RPL

* to address of RCDAREA.

The expressions that can be used depend on the keyword specified. Register and
S-type address notations cannot be used when MF=L is specified.

GENCB Macro Operands
Table 27. GENCB Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

AM - x - - - - -

BLK - x - - - - -

COPIES x - - x x x -

LENGTH x - - x x x -

WAREA - - - x x x x

Macro Operands

326 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 28. ACB Keywords (BLK=ACB)

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

BSTRNO x - - x x x -

BUFND x - - x x x -

BUFNI x - - x x x -

BUFSP x - - x x x -

DDNAME - - x - - x -

EXLST - - - x x x x

MACRF - x - - - - -

MAREA - - - x x x x

MLEN x - - x x x -

PARMS=
CLOSDSP

- x - - - - -

PASSWD - - - x x x x

RMODE31 - x - - - - -

SHRPOOL x - - x x x -

STRNO x - - x x x -

Table 29. EXLST Keywords (BLK=EXLST)

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

EODAD - - - x x x x

EXCPAD - - - x x x x

JRNAD - - - x x x x

LERAD - - - x x x x

SYNAD - - - x x x x

Table 30. RPL Keywords (BLK=RPL)

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

ACB - - - x x x x

AREA - - - x x x x

AREALEN x - - x x x -

ARG - - - x x x x

KEYLEN x - - x x x -

NXTRPL - - - x x x x

OPTCD - x - - - - -

RECLEN x - - x x x -

TRANSID x - - x x x -

GENCB Macro Operands

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 327

MODCB Macro Operands
Table 31. MODCB Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

ACB - - - x x x x

AM - x - - - - -

EXLST - - - x x x x

RPL - - - x x x x

Table 32. ACB Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

BSTRNO x - - x x x -

BUFND x - - x x x -

BUFNI x - - x x x -

BUFSP x - - x x x -

DDNAME - - x - - x -

EXLST - - - x x x x

MACRF - x - - - - -

MAREA - - - x x x x

MLEN x - - x x x -

PARMS=
CLOSDSP

- x - - - - -

PASSWD - - - x x x x

RMODE31 - x - - - - -

SHRPOOL x - - x x x -

STRNO x - - x x x -

Table 33. EXLST Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

EODAD - - - x x x x

EXCPAD - - - x x x x

JRNAD - - - x x x x

LERAD - - - x x x x

SYNAD - - - x x x x

GENCB Macro Operands

328 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 34. RPL Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

ACB - - - x x x x

AREA - - - x x x x

AREALEN x - - x x x -

ARG - - - x x x x

KEYLEN x - - x x x -

NXTRPL - - - x x x x

OPTCD - x - - - - -

RECLEN x - - x x x -

TRANSID x - - x x x -

SHOWCB Macro Operands
Table 35. SHOWCB Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

ACB - - - x x x x

AM - x - - - - -

AREA - - - x x x x

EXLST - - - x x x x

FIELDS* - x - - - - -

LENGTH x - - x x x -

OBJECT - x - - - - -

RPL - - - x x x x

SHAREPL x - - - - - -

* For a list of the operands you can specify in the FIELDS parameter, see “The
SHOWCB Parameter List” on page 338.

TESTCB Macro Operands
Table 36. TESTCB Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

ACB - - - x x x x

AM - x - - - - -

ERET - - - x x x x

EXLST - - - x x x x

OBJECT - x - - - - -

MODCB Macro Operands

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 329

Table 36. TESTCB Keywords (continued)

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

RPL - - - x x x x

Table 37. ACB Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

ACBLEN x - - x x x -

ATRB - x - - - - -

AVSPAC x - - x x x -

BSTRNO x - - x x x -

BUFND x - - x x x -

BUFNI x - - x x x -

BUFNO x - - x x x -

BUFSP x - - x x x -

CINCV x - - x x x -

DDNAME - - x - - - -

ERROR x - - x x x -

EXLST - - - x x x x

FS x - - x x x -

KEYLEN x - - x x x -

LRECL x - - x x x -

MACRF - x - - - - -

MAREA - - - x x x x

MLEN x - - x x x -

NCIS x - - x x x -

NDELR x - - x x x -

NEXCP x - - x x x -

NEXT x - - x x x -

NINSR x - - x x x -

NIXL x - - x x x -

NLOGR x - - x x x -

NRETR x - - x x x -

NSSS x - - x x x -

NUPDR x - - x x x -

OFLAGS - x - - - - -

OPENOBJ - x - - - - -

PARMS=
CLOSDSP

- x - - - - -

TESTCB Macro Operands

330 VSE/VSAM V9R2 User’s Guide and Application Programming

Table 37. ACB Keywords (continued)

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

PASSWD - - - x x x x

RKP x - - x x x -

SHRPOOL x - - x x x -

STMST - - - - - x -

STRNO x - - x x x -

Table 38. EXLST Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

EODAD - - - x x x x

EXCPAD - - - x x x x

EXLLEN x - - x x x -

JRNAD - - - x x x x

LERAD - - - x x x x

SYNAD - - - x x x x

Table 39. RPL Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

ACB - - - x x x x

AIXFLAG x - - - - - -

AIXPC x - - x x x -

AREA - - - x x x x

AREALEN x - - x x x -

ARG - - - x x x x

FDBK x - - x x x -

FTNCD x - - x x x -

KEYLEN x - - x x x -

NXTRPL - - - x x x x

OPTCD - x - - - - -

RBA x - - x x x -

RECLEN x - - x x x -

RPLLEN x - - x x x -

TRANSID x - - x x x -

TESTCB Macro Operands

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 331

BLDVRP Macro Operands

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

BUFFERS x - - x - - -

KEYLEN x - - x - - -

RMODE31 - x - - - - -

SHRPOOL x - - x - - -

STRNO x - - x - - -

TYPE - x - - - - -

DLVRP Macro Operands
Table 40. EXLST Keywords

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

SHRPOOL x - - x - - -

TYPE - x - - - - -

SHOWCAT Macro Operands

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

ACB - - - x - - x

AREA - - - x - - x

CI - - - x - - x

CATDSN - - - x - - x

CATFIL - - - x - - x

DDNAME - - - x - - x

NAME - - - x - - x

WRTBFR Macro Operands

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

percent x - - x - - -

RPL - - - x - - x

TYPE=ALL - x - - - - -

TYPE=DS - x - - - - -

TYPE=LRU - x - - - - -

BLDVRP Macro Operands

332 VSE/VSAM V9R2 User’s Guide and Application Programming

Keyword
Absolute
Numeric Code

Character
String Register

Address

S-Type
Indirect
S-Type A-Type

TYPE=TRN - x - - - - -

Parameter Lists for VSE/VSAM Macros
The VSE/VSAM control block (CB) manipulation macros (GENCB, MODCB,
SHOWCB, and TESTCB) use an internal parameter list to describe the actions that
you specify when you code the macros. The BLDVRP macro (for building a
VSE/VSAM resource pool) and the SHOWCAT macro (which displays catalog
information) also use an internal parameter list to indicate the addresses and
values that you specify when you code the macros.

Depending on the form of the macro, the internal parameter list is built as follows:
v The standard form of these macros builds a parameter list in-line and processes

it.
v The list form builds a parameter list in an area you specified.
v The execute form processes a previously built parameter list.
v The generate form (not for BLDVRP and SHOWCAT) builds a parameter list in

an area you specify and also processes it.

(Use of the different forms are discussed under “List, Execute, and Generate Forms
of the Control Block Manipulation Macros” on page 322.)

For special purposes, such as developing high-level programming languages, you
may want to build and process parameter lists without using the macros. The
following describes the format of the parameter lists and gives the codes used for
the operands of each of the macros. The formats and codes are fixed, so that you
can build and alter them by your own methods. For the control block
manipulation macros, a parameter list contains a variable number of entries of
three types:

Type 1: At the beginning of the list, addresses of entries of Type 2 and Type 3.
The addresses are fullwords, and the high-order bit of the last fullword is 1.
Type 2: A header entry containing general information about the block or list that
you want to generate, modify, display or test.
Type 3: At the end of the list, keyword entries describing each field that you want
to generate, modify, display, or test.

In the following, entries of Type 2 and Type 3 are described separately for GENCB,
MODCB, SHOWCB, and TESTCB. When VSE/VSAM receives control, register 1
must point to your parameter list.

The format of the BLDVRP and SHOWCAT parameter lists is different from the
above scheme. Refer to “The BLDVRP Parameter List” on page 342 and “The
SHOWCAT Parameter List” on page 343.

WRTBFR Macro Operands

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 333

The GENCB Parameter List

Header Entry

(1) list explanation:

X‘A0’ indicates ACB
X‘B0’ indicates EXLST
X‘C0’ indicates RPL

Keyword Entries

The parameter list for GENCB contains no keyword entries if you are generating a
default ACB, EXLST, or RPL.

(1) keyword code explanation: Defined by AL2(value).

For an ACB For an EXLST For an RPL

Keyword Value Keyword Value Keyword Value

BUFND 4 EODAD 37 ACB 43

BUFNI 5 EXCPAD 38 AREA 44

BUFSP 7 JRNAD 39 AREALEN 45

DDNAME 9 LERAD 40 ARG 46

EXLST 12 SYNAD 41 KEYLEN 48

MAREA 14 NXTRPL 51

MLEN 15 OPTCD 52

MACRF 18 RECLEN 53

PASSWD 30 TRANSID 95

STRNO 32

BSTRNO 36

SHRPOOL 129

CLOSDSP 151

MACRF3 163

Block or list
See “(1) list” X’01' Number of copies

Address of the area you are providing, or zeros

Length of the area, or zeros (reserved)

0 1 2Offset

Dec
0

(HEX)
(0)

4 (4)

8 (8)

(reserved)

0 2Offset

Dec
0

(HEX)
(0)

4 (4)

Keyword code
See “(1) keyword code”

(value|address|option|name) of the keyword
See “(2) option”

(Required for some keywords)
See “(3) keywords”

8 (8)

Parameter List: GENCB

334 VSE/VSAM V9R2 User’s Guide and Application Programming

(2) option explanation: Indicates the options for MACRF, MACRF3, OPTCD, and
CLOSDSP with a 1 in a bit of the fullword:

MACRF
Option Bit

MACRF3
Option Bit

OPTCD
Option Bit

CLOSEDSP
Option Bit

KEY 0 DDN 0 KEY 0 First CLOSDSP
Option:ADR 1 DSN 1 ADR 1

CNV 2 NCM 8 CNV 2

SEQ 3 CMP 9 SEQ 3 KEEP 0

SKP 4 RMODE31 15 DIR 4 DELETE 1

DIR 5 SKP 5 DATE 2

IN 6 NUP 8 Second CLOSDSP
Option:OUT 7 UPD 9

NUB 8 NSP 10

UBF 9 KEQ 11 KEEP 3

NRM 15 KGE 12 DELETE 4

AIX 16 FKS 13

NSR 17 GEN 14

LSR 18 MVE 15

NDF 22 LOC 16

DFR 23 FWD 17

RST 28 BWD 18

NRS 29 ARD 19

NFY 30 LRD 20

VFY 31

(3) keywords explanation: The third fullword is required for the ACB operand
DDNAME, and for all of the EXLST operands, for which the third fullword
indicates A, N, and L:

Bit Meaning when Set to 1

0 Address is active (A).

1 Address is not active (N).

2 Address is of a field containing the name of an exit routine to be
loaded (L).

3 Address is specified in the preceding fullword of this entry.

4-31 Unused.

Parameter List: GENCB

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 335

The MODCB Parameter List

Header Entry

(1) list explanation:

X‘A0’ indicates ACB
X‘B0’ indicates EXLST
X‘C0’ indicates RPL

Keyword Entries

(1) keyword code explanation: Defined by AL2(value):

For an ACB For an EXLST For an RPL

Keyword Value Keyword Value Keyword Value

BUFND 4 EODAD 37 ACB 43

BUFNI 5 EXCPAD 38 AREA 44

BUFSP 7 JRNAD 39 AREALEN 45

DDNAME 9 LERAD 40 ARG 46

EXLST 12 SYNAD 41 KEYLEN 48

MAREA 14 NXTRPL 51

MLEN 15 OPTCD 52

MACRF 18 RECLEN 53

PASSWD 30 TRANSID 95

STRNO 32

BSTRNO 36

SHRPOOL 129

CLOSDSP 151

MACRF3 163

(2) option explanation: Indicates the options for MACRF, MACRF3, OPTCD, and
CLOSDSP with a 1 in a bit of the fullword:

Block or list
See “(1) list” X’02' (reserved)

Address of the block or list to be modified

0 1 2Offset

Dec
0

(HEX)
(0)

4 (4)

(reserved)

0 2Offset

Dec
0

(HEX)
(0)

4 (4)

Keyword code
See “(1) keyword code”

(value|address|option|name) of the keyword
See “(2) option”

(Required for some keywords)
See “(3) keywords”

8 (8)

Parameter List: MODCB

336 VSE/VSAM V9R2 User’s Guide and Application Programming

MACRF
Option Bit

MACRF3
Option Bit

OPTCD
Option Bit

CLOSEDSP
Option Bit

KEY 0 DDN 0 KEY 0 First CLOSDSP
Option:ADR 1 DSN 1 ADR 1

CNV 2 NCM 8 CNV 2

SEQ 3 CMP 9 SEQ 3 KEEP 0

SKP 4 RMODE31 15 DIR 4 DELETE 1

DIR 5 SKP 5 DATE 2

IN 6 NUP 8 Second CLOSDSP
Option:OUT 7 UPD 9

NUB 8 NSP 10

UBF 9 KEQ 11 KEEP 3

NRM 15 KGE 12 DELETE 4

AIX 16 FKS 13

NSR 17 GEN 14

LSR 18 MVE 15

NDF 22 LOC 16

DFR 23 FWD 17

RST 28 BWD 18

NRS 29 ARD 19

NFY 30 LRD 20

VFY 31

With the MODCB macro, there are no defaults for these options. When you code a
bit for the OPTCD operand, the contrary bit that was previously set is turned off.
For example, if KEY was previously set, and you set ADR, KEY is turned off,
because a request parameter list can be set for only one type of access.

(3) keywords explanation: The third fullword is required for the ACB operand
DDNAME, and for all of the EXLST operands, for which the third fullword
indicates A, N, and L:

Bit Meaning when Set to 1

0 Address is active (A).

1 Address is not active (N).

2 Address is of a field containing the name of an exit routine to be
loaded (L).

3 Address is specified in the preceding fullword of this entry.

4-31 Unused.

Parameter List: MODCB

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 337

The SHOWCB Parameter List

Header Entry

(1) list explanation:

X‘00’ indicates that no block or list is specified
to display the standard length of the block(s)
or list(s) specified by the keywords
ACBLEN, EXLLEN, or RPLLEN

X‘A0’ indicates ACB
X‘B0’ indicates EXLST
X‘C0’ indicates RPL

(2) displayed:

AL2(0) indicates the data of a file
AL2(1) indicates the index of a file

Keyword Entries

(1) keyword code explanation: Defined by AL2(value):

Block or list
See “(1) list” X’03'

Type of object
to be displayed
See “(2) displayed”

Address of the block or list to be displayed

0 1 2Offset

Dec
0

(HEX)
(0)

4 (4)

Address of the display area you are providing

Length of the display area (reserved)8 (8)

(reserved)

0 2Offset

Dec
0

(HEX)
(0)

Keyword code
See “(1) keyword code”

Parameter List: SHOWCB

338 VSE/VSAM V9R2 User’s Guide and Application Programming

For an ACB For an EXLST For an RPL

Keyword Value Keyword Value Keyword Value Keyword Value

AVSPAC
ACBLEN
BUFND
BUFNI
BUFNO
BUFSP
CINV
DDNAME
ENDRBA
ERROR
EXLST
FS
MAREA
MLEN
KEYLEN
LRECL
NCIS
NDELR
NEXCP
NEXT
NINSR
NIXL
NLOGR
NRETR
NSSS
NUPDR
PASSWD
RKP

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
19
20
21
22
23
24
25
26
27
28
30
31

STRNO
STMST
BSTRNO
BFRFND
BUFRDS
NUIW
UIW
STRMAX
SHRPOOL
HALCRBA
SHAREOP
ATRB
BLREC
NSLOT
SSRBA
ASTRNUM
STRTOT
SYMU
LNCIS
LNEXCP
LNINSR
LNUPDR
LNRETR
LNSSS
LAVSPAC
LNDELR
LNLOGR

32
35
36

124
125
126
127
128
129
148
161
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

EODAD
EXCPAD
JRNAD
LERAD
SYNAD
EXLLEN

37
38
39
40
41
42

ACB
AREA
AREALEN
ARG
KEYLEN
NXTRPL
RECLEN
RPLLEN
FDBK
RBA
AIXPC
TRANSID
FTNCD

43
44
45
46
48
51
53
55
56
57
58
95
99

The TESTCB Parameter List

Header Entry

(1) list explanation:

X‘00’ indicates that no block or list is specified
to test the standard length of the block(s)
or list(s) specified by the keywords
ACBLEN, EXLLEN, or RPLLEN

X‘A0’ indicates ACB
X‘B0’ indicates EXLST
X‘C0’ indicates RPL

Block or list
See “(1) list” X’04'

Type of object
to be tested
See “(2) tested”

Address of the block or list to be tested

0 1 2Offset

Dec
0

(HEX)
(0)

4 (4)

Address or the routine to return to
from unequal comparisons, or zeros

(reserved)

8 (8)

12 (C)

Parameter List: SHOWCB

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 339

(2) tested explanation:

AL2(0) indicates the data of a file
AL2(1) indicates the index of a file

Keyword Entries

(1) keyword code explanation: Defined by AL2(value):

For an ACB For an EXLST For an RPL

Keyword Value Keyword Value Keyword Value Keyword Value

ATRB 1* NEXT 22 EODAD 37 ACB 43

ATRB 162** NINSR 23 EXCPAD 38 AREA 44

AVSPAC 2 NIXL 24 JRNAD 39 AREALEN 45

ACBLEN 3 NLOGR 25 LERAD 40 ARG 46

BUFND 4 NRETR 26 SYNAD 41 KEYLEN 48

BUFNI 5 NSSS 27 EXLLEN 42 NXTRPL 51

BUFNO 6 NUPDR 28 OPTCD 52

BUFSP 7 OFLAGS 29 RECLEN 53

CINV 8 PASSWD 30 RPLLEN 55

DDNAME 9 RKP 31 FDBK 56

ERROR 11 STRNO 32 RBA 57

EXLST 12 OPENOBJ 33 AIXPC 58

FS 13 STMST 35 AIXFLAG 59

MAREA 14 BSTRNO 36 FTNCD 99

MLEM 15 SHRPOOL 129 XRBA 184

KEYLEN 16 CLOSEDSP 151

LRECL 17 MACRF3 163

MACRF 18

NCIS 19

NDELR 20

NEXCP 21

*) Option bits 0 to 7 only (see (2)).

**) Option bits 8 to 15 only (see (2)).

(reserved)

0 2Offset

Dec
0

(HEX)
(0)

4 (4)

Keyword code
See “(1) keyword code”

(value|address|option|name) of the keyword
See “(2) option”
See “(3) code”

(Required for some keywords)
See “(4) keywords”8 (8)

Parameter List: TESTCB

340 VSE/VSAM V9R2 User’s Guide and Application Programming

(2) option explanation: Indicate the options for MACRF, MACRF3 OPTCD,
CLOSDSP, ATRB, OFLAGS, AIXFLAG, and OPENOBJ: with a 1 in a bit of the
fullword:

MACRF
Option Bit

MACRF3
Option Bit

OPTCD
Option Bit

CLOSEDSP
Option Bit

KEY 0 DDN 0 KEY 0 First CLOSDSP
Option:ADR 1 DSN 1 ADR 1

CNV 2 NCM 8 CNV 2

SEQ 3 CMP 9 SEQ 3 KEEP 0

SKP 4 RMODE31 15 DIR 4 DELETE 1

DIR 5 SKP 5 DATE 2

IN 6 NUP 8 Second CLOSDSP
Option:OUT 7 UPD 9

NUB 8 NSP 10

UBF 9 KEQ 11 KEEP 3

NRM 15 KGE 12 DELETE 4

AIX 16 FKS 13

NSR 17 GEN 14

LSR 18 MVE 15

NDF 22 LOC 16

DFR 23 FWD 17

RST 28 BWD 18

NRS 29 ARD 19

NFY 30 LRD 20

VFY 31

ATRB
Option Bit

OPENOBJ
Option Bit

AIXFLAG
Option Bit

OPENOBJ
Option Bit

KSDS 0 OPEN 0 AIXPKP 0 AIX 0

ESDS 1 PATH 1

WCK 2 BASE 1

SSWD 3

REPL 4

RRDS 5

SPAN 6

UNQ 7

COMP 8

XLKSDS 11

VRDS 14

(3) code explanation: The codes for ERROR and for FDBK are documented with
the appropriate macro instructions. (4) keywords explanation: The third fullword is

Parameter List: TESTCB

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 341

required for the ACB operands DDNAME and STMST, and for all of the EXLST
operands, for which the third fullword indicates A, N, and L:

Bit Meaning when Set to 1

0 Address is active (A).

1 Address is not active (N).

2 Address is of a field containing the name of an exit routine to be
loaded (L).

3 Address is specified in the preceding fullword of this entry.

4-31 Unused.

The BLDVRP Parameter List

Pointer to beginning of buffer pool list (*+12)

RMODE31
flags

KEYLEN
value

STRNO
value

X’D0'
SHRPOOL

number

(Reserved)

buffersize 1 (beginning of buffer pool list)

X’0000' buffercount 1

buffersize 2

X’0000' buffercount 2

buffersize n

X’8000' (indicates the last
buffer pool) buffercount n

0 1 2 3

buffer
pool 1

buffer
pool 2

last
buffer
pool (n)

4

8

12

16

20

24

28 .
.
.

Parameter List: TESTCB

342 VSE/VSAM V9R2 User’s Guide and Application Programming

The SHOWCAT Parameter List

Header Entry

(1) entry explanation:

X‘80’ = The field at offset X'04' points to a 44-byte file ID
X‘40’ = The field at offset 'X04' points to a 7-byte file name
X‘00’ = The field at offset X'04' points to a 3-byte CI number

Address of filename, file ID, or CI
that identifies the catalog entry to be displayed

Type of entry
See “(1) entry”

X’80'=
EXTOPT spec X’0000'

Address of catalog ACB (or zero)

Address of return area in which
catalog information will be displayed

Address of 44-byte catalog file-ID

Address of 7-byte catalog file name

Name of EXTOPT field

Dec
0

(HEX)
(0)

4 (4)

Parameter List: SHOWCAT

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 343

Parameter List: SHOWCAT

344 VSE/VSAM V9R2 User’s Guide and Application Programming

Appendix B. Invoking IDCAMS from a Program

This Appendix...

Shows how IDCAMS can be invoked by a program through the use of the
CDLOAD macro instruction.

Describes how the dynamic invocation of IDCAMS enables re-specification of
selected processing defaults as well as the ability to manage input/output
operations for selected files.

Invoking Macro Instructions
IDCAMS may be invoked from a program by loading the root segment of
IDCAMS into virtual storage and then doing a branch entry to the module. To load
IDCAMS, the program should be invoked with the SIZE=AUTO parameter on the
EXEC statement, and should issue a CDLOAD macro of the form:

where address specifies the address of an 8-byte left-justified character string
'IDCAMS'.

CDLOAD returns the starting address of the module in Register 1.

The invoking program should branch to the address returned by CDLOAD plus 6.

Because IDCAMS uses MVS linkage conventions, the invoking program must
provide an 18 fullword area to be used as a save area by IDCAMS. On entry to
IDCAMS, Register:
v 1 should point to the argument list described in Figure 48 on page 346.
v 13 should point to the save area.
v 14 must contain the return address.
v 15 must contain the address of IDCAMS plus 6.

On return, all registers except Register 15 are restored by IDCAMS. Register 15
contains the final return code from the processor. The following table contains the
possible values of Register 15:

Code Meaning

0 The function was executed as directed and expected. Informational
messages may have been issued.

4 Some disturbance in executing the complete function was met, but it was
possible to continue. The results might not be exactly what the user wants,
but no permanent harm appears to have been done by continuing. A
warning message was issued.

8 A function could not perform all that was asked of it. The function was
completed, but specific details were bypassed.

CDLOAD Address

© Copyright IBM Corp. 1979, 2014 345

12 The entire function could not be performed.

16 Severe problem encountered. Remainder of command stream is not flushed
but processor returns code 16 to the system.

Figure 48 describes the argument list as it exists in the user's area that is passed to
the IDCAMS processor.

Explanation

The following explains Figure 48.
v (A) The Argument List

A maximum of four fullword addresses pointing to the various arguments. The
high-order bit of the last address must be set to one. Any argument you do not
wish to specify that precedes an argument you are specifying must be an
address pointing to a half word of binary zeros. If you do not specify IOLIST,
turn on the high-order bit in PAGE NUMBER.

v (B) The Page Number List

– LENGTH: Halfword that specifies the number of bytes in the PAGE NUMBER
field.

– PAGE NUMBER; Optional: Provides a way to specify the starting page
number for system output listing. If you do not wish to specify a starting
page number, you must set the length field to binary zeros.
PAGE NUMBER is a 1-4 byte character string that may specify the starting
page number of system output listing. This value is reset to the current page
number upon completion of the present invocation of the IDCAMS processor.

v (C) The Input/Output List

DNAMES

OPTIONS

PAGE NUMBER

IOLIST

LENGTH

PAGE NUMBER

EXTRACT

xx FFyy

PAGE NUMBER LIST (B)

USER DATA AREA (F)

Before call

After call

ARGUMENT LIST (A)

LENGTH

DNAMES LIST (E)

LENGTH OPTIONS

OPTIONS LIST (D)REG 1

n

DNAME

IOROUTINE

USER DATA

.

.

.

DNAME

IOROUTINE

USER DATA

I/O LIST (C)

FF

Figure 48. Processor Invocation Argument List from a Program

Invoking IDCAMS

346 VSE/VSAM V9R2 User’s Guide and Application Programming

Optional. Provides the means of identifying those files for which the invoker
wishes to manage all I/O operations.

n: A fullword that specifies the number of groups of three fields that follows.
Every group consists of a DNAME address, an IOROUTINE address, and a
USER DATA address.
DNAME: Address of a character string that identifies a file that causes the
invocation of the associated IOROUTINE for all I/O operations (including
OPEN and CLOSE) against the file. The character string identifies the data
set as follows: A 10-byte character string, the first two characters are 'DD', the
next 8 characters are the DNAME field left-justified (padded with blanks if
necessary), which may appear in the FILE, INFILE, or OUTFILE parameters
of any IDCAMS command. The SYSIPT (DDSYSIPT) and SYSLST
(DDTSYSLST) DLBL names may also appear if the Invoker wishes to manage
these files.
IOROUTINE: Address of the program that is to be invoked to process I/O
operations upon the file associated with DNAME. This routine, instead of the
processor, is invoked for all operations against the file. For information on
linkage and interface conventions between the IOROUTINE and IDCAMS,
see “User I/O Routines,” below.
USER DATA: Address of a data area that the user may use for any purpose.

v (D) The Options List

Required. Provides a way to specify processing options. If you do not wish to
specify any options, you must set the length field to binary zeros.
LENGTH: Halfword that specifies the number of bytes in the options field.
OPTIONS: Character string that contains the processing options of the Access
Method Services (AMS) PARM command. The options must comply to the
parameter syntax of the IDCAMS PARM command.

v (E) The DNAMES List

Optional. This value must be a halfword of binary zeros.
v (F) USER DATA AREA

As long as no return or reason codes are inserted, the user data area (8 bytes)
contains the character string EXTRACT.
If return or reason codes are inserted, the meaning is as follows:

FF = Valid return or reason code follows.
xx = Catalog return code in hexadecimals.
yy = Catalog reason code in hexadecimals.

User I/O Routines
User I/O routines enable a user to perform all I/O operations for a file that would
normally be handled by the IDCAMS processor. This makes it possible, for
instance, to control the command input stream by providing an I/O routine for
SYSIPT.

A user I/O routine is invoked by IDCAMS for all operations against the selected
files. The identification of the files and their associated I/O routines is via the
Input/Output list of the processor invocation parameter list (Figure 48 on page
346).

When writing a user I/O routine, the user must be aware of three things. First, the
processor handles the user file as if it were a nonVSAM file that contains
undefined records (maximum record length is 32760 bytes) with a physical

Invoking IDCAMS

Appendix B. Invoking IDCAMS from a Program 347

sequential organization. The processor does not test for the existence of the file.
Second, the user must know the data format so that the user's routine can be
coded to handle the correct type of input and format the correct type of output.
Third, every user routine must handle errors encountered for files it is managing
and provide to the processor a return code in register 15. The processor uses the
return code to determine what to do next.

The permissible return codes are:
v 0 – operation successful
v 4 – end of data for a GET operation
v 8 – error encountered during GET/PUT operation, but continue processing
v 12 – do not allow any further calls (except CLOSE) to this routine

Figure 49 shows the argument list used in communication between the user I/O
routine and the IDCAMS processor. The user I/O routine is invoked by the
processor for OPEN, CLOSE, GET and PUT routines. The type of operation to be
performed is indicated via the IOFLAGS. The IOINFO field indicates, for OPEN
and CLOSE operations, the filename of the DLBL or TLBL statements for the file.
For GET and PUT operations, the IOINFO field is used to communicate the record
length and address.

Explanation

The following explains Figure 49.
v (A) Register 1

When IDCAMS gives control to the PUT I/O routine pointed to by the
IOROUTINE, Register 1 points to an IDCAMS argument list. Refer to Figure 48
on page 346.

v (B) User Data

The user data pointer is obtained from the input/output list of the processor
invocation parameter list. The user data area contains the character string
EXTRACT, or return or reason codes. Refer to Figure 48 on page 346.

v (C) Flags

IOFLAGS

FLAGS

REG 1

RECORD

RECORD LENGTH

USER DATA

IOINFO

(A)

(B)

GET
or
PUT

DSNAME

CLOSE

DNAME

OPEN

(D)

(E)

(C)

(F)

Figure 49. Arguments Passed to and from a User I/O Routine

Invoking IDCAMS

348 VSE/VSAM V9R2 User’s Guide and Application Programming

The following explains the fullword of FLAGS:

Byte
Value or Bit

Pattern Meaning

1* 0 OPEN

4 CLOSE

8 GET

12 PUT

2 1..... OPEN for Input

.1.... OPEN for Output

..1... On OPEN, indicates that IOINFO contains the
address of a DLBL or TLBL file name.

3, 4** 0 A normal data record is to be written.

N If an IDC message is to be written, the message
serial number converted to binary.

* Operation only.
** Record type for PUT only.

v (D) DSNAME

A 44-byte field, left justified, and padded with blanks if necessary. It contains the
name of the data set to be closed.

v (E) DNAME

An 8-byte field, left justified, and padded with blanks if necessary. It contains
the DLBL or TLBL file name.

v (F) RECORD and RECORD LENGTH

– For a GET: The information is returned to the processor by the user's I/O
routine in the 8-byte area passed to the routine. Where:

RECORD: Address of the retrieved record.
RECORD LENGTH: Fullword length of the retrieved record.

– For a PUT: The processor gives the information to the user's I/O routine.
Where:

RECORD: Address of the record to be written.
RECORD LENGTH: Fullword length of record to be written.

Invoking IDCAMS

Appendix B. Invoking IDCAMS from a Program 349

Invoking IDCAMS

350 VSE/VSAM V9R2 User’s Guide and Application Programming

Appendix C. Advantages of the ISAM Interface Program (IIP)

This Appendix ...

Is for users of ISAM who want to convert from ISAM to VSE/VSAM.

The information helps you to decide whether your existing ISAM processing
programs can use the ISAM Interface Program (IIP) to process files that have been
converted from ISAM format to VSE/VSAM format.

The IIP minimizes your conversion costs and scheduling problems by permitting
ISAM programs to process VSE/VSAM files. Also, through IIP, ISAM programs
can process ISAM files and VSE/VSAM files concurrently.

Comparison of VSE/VSAM and ISAM
In most cases, you can get better performance with VSE/VSAM while achieving
essentially the same results that can be achieved with ISAM. Furthermore,
VSE/VSAM can achieve results that cannot be achieved with ISAM.

The extent to which you can use your existing ISAM processing programs to
process key-sequenced files relates to the similarities between ISAM and
VSE/VSAM, as well as to limitations of the IIP.

The following describes the similarities and differences between VSE/VSAM and
ISAM in the areas that you are familiar with from using ISAM, and outlines the
functions of VSE/VSAM that have no counterpart in ISAM.

Differences Between ISAM and VSE/VSAM
A number of things that ISAM does are done differently or not at all by
VSE/VSAM, even though similar results are achieved. The following describes the
areas in which VSE/VSAM and ISAM differ.

Index Structure

Both a VSE/VSAM key-sequenced file and an indexed-sequential file have an
index that consists of levels, with a higher level controlling a lower level. In ISAM,
either all or none of the index records of a higher level can be kept in storage.
VSE/VSAM keeps individual index records in storage during processing, the
number depending on the amount of buffer space provided.

Relation of Index to Data

The relation of a VSE/VSAM index to the direct access storage space whose
records it controls is quite different from the corresponding relation for ISAM, in
particular with regard to overflow areas for record insertion.

ISAM keeps a two-part index entry for every primary track on which a file is
stored. The first part of the entry indicates the highest-keyed record on the primary
track. The second part indicates the highest-keyed record from that primary track
that is in the overflow area, and gives the physical location in the overflow area of
the lowest-keyed overflow record from that primary track. All the records in the
overflow area from a primary track are chained together, from the lowest-keyed to

© Copyright IBM Corp. 1979, 2014 351

the highest-keyed, by pointers that ISAM follows to locate an overflow record.
Overflow records are unblocked, even if primary records are blocked.

VSE/VSAM does not distinguish between primary and overflow areas. A control
interval (CI), whether used or free, has an entry in the sequence set, and after
records are stored in a free CI, it is processed in exactly the same way as other
used CIs. Data records are blocked in all CIs and addressed, without chaining, by
way of an index entry that contains the key (in compressed form) of the
highest-keyed record in a CI.

Defining and Loading a File

All VSE/VSAM files are defined in a catalog. Records are loaded into a file with
IDCAMS or with the processing program, in one execution or in stages. When
loading new records into an empty key-sequenced file, the index is built
automatically. IDCAMS does not merge input files. For a key-sequenced file,
however, input records are merged in key sequence with existing records of the
output file.

Deletion of Records

With ISAM, records cannot be deleted until the file is reorganized; you must mark
the records you want to delete.

VSE/VSAM automatically reclaims the space in a key-sequenced file and combines
it with any existing free space in the affected CI. VSE/VSAM's use of distributed
free space for insertions and deletions requires less file reorganization than ISAM
does.

VSE/VSAM Functions That Go Beyond ISAM

VSE/VSAM Functions Available through IIP

Secondary Allocation of Storage Space

When you define a VSE/VSAM file, you can specify the amount of direct access
storage space that is to be allocated automatically, when required, beyond the
primary space allocation. You can specify the amount of secondary space in
number of data records, or in number of blocks (for FBA), or tracks or cylinders
(for CKD).

Automatic File Reorganization

VSE/VSAM partially reorganizes a key-sequenced file by splitting a control area
(CA) when it has no more free control intervals (CIs) and if one is needed to insert
a record. VSE/VSAM allocates a new CA and gives it the contents of
approximately half of the CIs of the old CA; about half of the CIs of every CA are
then free.

Key Range Allocation

With a multiple volume key-sequenced file, you can assign data to various
volumes according to the ranges of key values in the data records. For example, for
a file that resides on three volumes, you might assign keys A-E to the first volume,
F-M to the second volume, and N-Z to the third.

ISAM Interface Program

352 VSE/VSAM V9R2 User’s Guide and Application Programming

Automatic CLOSE

Because it is essential for the integrity of a file that it be closed properly,
VSE/VSAM attempts to close all open VSE/VSAM files within the partition at
both normal or abnormal termination of the job step. It also restores control blocks
to their status before the file was opened, and it frees storage that open routines
used for VSE/VSAM control blocks.

Job Control

ASSGN or EXTENT statements are not required for file access. The IIP supports
disposition processing (DISP parameter on DLBL statement) for reusable and
dynamic files.

VSE/VSAM Functions Requiring Conversion from ISAM
If you convert your ISAM programs to VSE/VSAM, the following additional
VSE/VSAM functions become available to you.

Addressed Sequential Access

With VSE/VSAM, you can retrieve and store the records of a key-sequenced file by
relative byte address (RBA), as well as by key. With ISAM you can position by
physical address, but you must retrieve in a separate request.

Direct Retrieval by Generic Key

With VSE/VSAM, you can retrieve a record directly, not only with a full-key
search argument, but also with a generic search argument. ISAM can only position
a record by generic argument; you must retrieve the record separately.

Concurrent Request Processing

A processing program can issue concurrent requests for a single ACB. The requests
can be sequential or direct, or both, for the same part or different parts of the file.
VSE/VSAM maintains a position in the file for every concurrent request.

No Abnormal Terminations by OPEN

The VSE/VSAM OPEN routine does not abnormally terminate the user program,
but returns an explanatory message in all cases where it cannot carry out a request
to open a file.

Alternate Indexes for Key-Sequenced and Entry-Sequenced Files

Instead of only one index, you can build several indexes (called alternate indexes)
for a single data file. Every index can access the file in a different way so that you
need not keep multiple copies of the same information organized differently for
different applications.

Variable-Length and Spanned Records

In addition to fixed-length records, VSE/VSAM supports variable-length and
spanned records.

ISAM Interface Program

Appendix C. Advantages of the ISAM Interface Program (IIP) 353

Skip Sequential Access

You can process a key-sequenced file sequentially and skip records automatically,
as though you were using direct access.

Preparations and Using the ISAM Interface Program
Before you can use the IIP, you have to:
v Consider restrictions in the use of the IIP and VSE/VSAM
v Convert ISAM files to VSE/VSAM files, that is:

– Define a VSE/VSAM file
– Load ISAM files into the VSE/VSAM file
For a summary on converting files and processing them, refer to Figure 50 on
page 357.

v Change ISAM job control statements

Step 1: Consider Restrictions in the Use of IIP and VSE/VSAM
Most programs that use ISAM require little or no modification for using the IIP to
process VSE/VSAM files. It is suggested that you evaluate your existing ISAM
programs in terms of your requirements, and in terms of their suitability to use the
IIP.

The following lists prerequisites for using the IIP, and those ISAM functions for
which there is no VSE/VSAM equivalent or which cannot be simulated by the IIP.
v The program must run successfully under ISAM. IIP does not check for

parameters that are invalid for ISAM.
v The program must use standard ISAM interfaces.
v Record ID processing of ISAM cannot be used because VSE/VSAM does not use

the record ID functions.
v VSE/VSAM does not return device-dependent information or the storage or disk

address of the record containing the error in the ERREXT parameter list.
v VSE/VSAM always assumes EXTEND mode when loading a file. If you try to

reload an existing file, VSE/VSAM returns a sequence error code to you. You
must DELETE and DEFINE the file (or specify DISP=NEW to reset a reusable
file) before reloading it.

v The ISAM program cannot open a DTF while another ISAM DTF or VSE/VSAM
ACB is already open for output processing for the same file unless VSE/VSAM
SHAREOPTIONS(3) was specified for the file. If you select SHAREOPTIONS (3),
you must accept the responsibility of maintaining file integrity.
SHAREOPTIONS(4) may also be valid if the records accessed concurrently are
not in the same CA.

v Files defined with SHAREOPTIONS(4) cannot be shared between IIP users in
different systems because IIP always opens a file for output. Note that another
system can open the file for input using native VSE/VSAM access.

Ensure that your existing ISAM programs comply with the restrictions described
above. If they comply, there is no need to assemble or link-edit these programs
again.

ISAM Interface Program

354 VSE/VSAM V9R2 User’s Guide and Application Programming

Step 2: Define a VSE/VSAM File
Define a key-sequenced VSE/VSAM file by using the IDCAMS command DEFINE
CLUSTER, described in the publication VSE/VSAM Commands, SC33-8315. Note the
following information for specifying the command:

Data Space

You may define the file on a volume that already contains enough free VSE/VSAM
data space for it, or you may define data space when you define the file (unique
file).

Buffer Space

The BUFFERSPACE parameter in the DEFINE command specifies how much space
VSE/VSAM will have for I/O buffers. If you do not specify the BUFFERSPACE
parameter, the default is at least two data buffers and one index buffer. For better
performance, however, you can specify space for more than two data buffers and
one index buffer.

Reusable File

If you have a file that requires rebuilding, initially specify the REUSE parameter in
the DEFINE command. When reloading the file, specify DISP=NEW in the DLBL
statement.

DTFIS Parameters and DEFINE Command Relationship

For VSE/VSAM, some of the information given in the DTFIS parameters must be
specified correctly in the DEFINE command, because the value specified in the
command overrides the DTF. These parameters and the corresponding DEFINE
command options are:

DTFIS Parameter DEFINE Option

HOLD=YES SHAREOPTIONS(4).

KEYLEN=n and
KEYLOC=n

KEYS (length, offset)

v length should always be set to KEYLEN.

v offset should be set to:

– KEYLOC-1 if DTFIS RECFORM=FIXBLK

– 0 if RECFORM=FIXUNB

RECSIZE=n
RECORDSIZE (average, maximum). The average and maximum
values must be equal.
If (in the DTFIS):

v RECFORM=FIXBLK, you should set RECORDSIZE to RECSIZE.

v RECFORM=FIXUNB, you should set RECORDSIZE to RECSIZE
+ KEYLEN.

VERIFY=YES WRITECHECK.

The IIP uses the following DTFIS parameters (all other parameters are ignored):
ERREXT=YES (for a description of the ERREXT parameter

with IIP, see Table 41 on page 358)
IOAREAL=name (used when IOROUT=LOAD)
IOAREAS=name (used if SETL BOF is issued)

ISAM Interface Program

Appendix C. Advantages of the ISAM Interface Program (IIP) 355

IOREG=(r)
IOROUT=LOAD, ADD, RETRVE, ADDRTR
KEYARG=name
RECFORM=FIXUNB, FIXBLK
WORKL=name
WORKR=name
WORKS=YES

Step 3: Load the VSE/VSAM File
After you have defined the VSE/VSAM file, load the file by copying your existing
ISAM file into it. To do so, you may use one of the following:
v Your ISAM load program, by way of the IIP
v The IDCAMS command REPRO, described in the publication VSE/VSAM

Commands, SC33-8315.

Note:

1. Do not move files from ISAM to tape and then from tape to VSE/VSAM.
2. The REPRO procedure must be from disk to disk.
3. If you have records marked for deletion in the ISAM file and do not want them

copied into the VSE/VSAM file, you should use your ISAM load program,
because the REPRO command copies all records from the ISAM file, including
those marked for deletion.

4. REPRO of a fixed, unblocked ISAM file creates records consisting of the
original record preceded by its key. The IIP strips this leading key when a
program that specifies fixed unblocked ISAM is executed, and returns only the
original record to you. The leading key is returned with the record, however,
when the file is accessed in native VSE/VSAM mode.

Step 4: Changing ISAM Job Control Statements
To satisfy the requirements of VSE/VSAM, you have to replace the job control
statements for ISAM by job control statements for VSE/VSAM.

The following is an example of VSE/VSAM job control statements used with an
ISAM program:

// JOB PROCESS A VSE/VSAM FILE
// DLBL IFN,’MSTRFILE’,,VSAM
// EXEC ISAMPGM,SIZE=nK
.
. SYSIPT data for the program ISAMPGM
.
/*
/&

One DLBL statement is required for the file; it connects the ISAM filename (IFN) to
the VSE/VSAM cluster name (MSTRFILE) stored in the catalog. The DLBL type
code parameter (VSAM) causes the ISAM Interface Program to be called. The same
VSE/VSAM job control statements are required regardless of the type of ISAM
program.

ISAM Interface Program

356 VSE/VSAM V9R2 User’s Guide and Application Programming

What the ISAM Interface Program Does
When a processing program that uses ISAM opens a VSE/VSAM file, the VSE
open routine detects the need for the IIP by the type code “VSAM” specified in the
DLBL statement. The processing program calls the IIP OPEN routine to:
v Build control blocks required by VSE/VSAM
v Load the ISAM command processor
v Flag the DTFIS for the IIP to intercept ISAM requests

Figure 50 summarizes the steps required to convert indexed sequential files to
key-sequenced files and processing them either with programs that have been
converted from ISAM to VSE/VSAM, or with programs that still use ISAM.

Most existing processing programs that use ISAM can process VSE/VSAM files
through the ISAM Interface Program (IIP) with little or no change.

The IIP intercepts every subsequent ISAM request, analyzes it to determine the
equivalent keyed VSE/VSAM request, which it defines in the RPL constructed by
OPEN, and then initiates the request.

The IIP interprets VSE/VSAM's return codes and, if the VSE/VSAM condition
corresponds to an ISAM condition, turns on the respective bit in the filenameC
byte in the DTFIS. For irrecoverable errors that cannot be posted in the filenameC
byte, the IIP prints a message, closes the VSE/VSAM file (by the VSE/VSAM
CLOSE routine), and ends the job. If a physical I/O error occurs and ERREXT=YES
was specified in the DTFIS, the IIP transfers additional error information to the
processing program. Table 41 on page 358 shows the format of the ERREXT
parameter list.

Table 42 on page 358 and Table 43 on page 358 show the formats of the filenameC
byte for ISAM processing through the IIP.

Modified to
Satisfy

Restrictions

Unmodified

ISAM Programs
Converted to
VSE/VSAM

Programs (1)

ISAM
Interface
Program

VSE/VSAMACCESSKey-Sequenced
Files

with Indexes

Indexed
Sequential

Files

New
Files

ACCESS

Convert
Files

Interpret
Each

Request

ACCESS

ISAM ProgramsIIP and VSE/VSAMFiles

(1) Converted to take advantage of
additional VSE/VSAM functions.

Figure 50. Using the ISAM Interface Program

ISAM Interface Program

Appendix C. Advantages of the ISAM Interface Program (IIP) 357

Table 41. ERREXT Parameter List for ISAM Programs with IIP

Bytes Bits Contents

0-3 - DTF address

4-15 - Not supported by the IIP

16 0 Data

1 VSE/VSAM sequence set

2 VSE/VSAM index set

3-5 Not used

6 Read operation

7 Write operation

17 - Not supported by the IIP

Table 42. FilenameC with IIP when IOROUT=ADD, RETRVE, or ADDRTR

Bit Cause in ISAM Cause in IIP/VSAM

0 Disk error Disk error

1 Wrong length record Not set

2 End of file End of file

3 No record found No record found

4 Illegal ID specified Not supported by IIP

5 Duplicate record Duplicate record

6 Overflow area full No more VSE/VSAM data space available

7 Overflow Not set

Table 43. FilenameC with IIP when IOROUT=LOAD

Bit Cause in ISAM Cause in IIP/VSAM

0 Disk error Disk error

1 Wrong length record Not set

2 Prime data area full No more VSE/VSAM data space

3 Cylinder index area full No more VSE/VSAM data space

4 Master index full No more VSE/VSAM data space

5 Duplicate record Duplicate record

6 Sequence check Sequence check

7 Prime data area overflow Not set
Note: If there is no more VSE/VSAM data
space, bits 2 through 4 are set.

ISAM Interface Program

358 VSE/VSAM V9R2 User’s Guide and Application Programming

Appendix D. Compatibility With Other Products

This Appendix...

Describes what to avoid so as not to endanger the portability of VSE/VSAM files
to other systems.

Describes similarities between VSE/VSAM and ACF/VTAM.

Portability of VSE/VSAM Files to DFSMSdfp VSAM
You can port files and volumes to MVS if you avoid the use of device types, file
types, and functions that are not supported by MVS.

The following functions are not supported by DFSMSdfp VSAM:
v VSE/VSAM Space Management for SAM Function

v EXTOPT parameter of the SHOWCAT macro
v IDCAMS CANCEL command
v SYNCHK parameter of the PARM command
v IGNOREERROR parameter of the DELETE command
v %%-function in the NAME parameter of the DEFINE CLUSTER command that

gives a certain partition- or processor independence to the cluster.

Other critical functions are listed below and explained afterwards.
v FBA support
v Dedicated VSE/VSAM volume
v Data space classification
v Default models
v Default volumes
v Multiple volume ownership
v Catalog check services
v VSE/VSAM Backup/Restore Function
v Device Dependency
v VSE/VSAM data compression

FBA Support

Files on an FBA device cannot be processed by MVS. This does not affect the
processing of catalog entries or files for a CKD device.

Files on an FBA device can be transferred (through EXPORT and IMPORT) from
VSE/VSAM to a CKD device on an MVS system and vice versa.

Dedicated VSE/VSAM Volume

The DEDICATE parameter in the DEFINE commands is not supported by MVS.
However, a volume allocated to VSE/VSAM with the DEDICATE parameter can be
processed by MVS.

© Copyright IBM Corp. 1979, 2014 359

Data Space Classification

Space class specifications are not supported by MVS, but a file, data space, or
volume with space classes under VSE/VSAM can be processed by MVS/VSAM.

MVS/VSAM files can be transported to VSE/VSAM volumes defined with classes.

Default Models

They allow users of IDCAMS to choose their own parameter defaults. Default
models are not supported by MVS/VSAM; however, the resultant file and catalog
data can be processed by MVS.

Default Volumes

They allow users to omit explicit volume lists in the DEFINE CLUSTER and
DEFINE ALTERNATEINDEX commands. Also, the parameter DEFAULTVOLUMES
is provided in the IMPORT command to allow users to override the exported
volumes list. The required volumes are selected from the volumes list associated
with the default model.

The command functions are not supported by MVS; however, the resulting file and
catalog data can be processed by MVS.

Multiple Volume Ownership

Multiple catalogs can own space on the same disk volume, providing that only one
catalog resides on that volume.

After you use VSE/VSAM to define, on one volume, several spaces belonging to
different catalogs, you can perform the following activities while running on MVS:
v Define or delete a file in the space belonging to any one of the catalogs.
v Access any file.
v Define additional space belonging to any one of the catalogs.
v Define a UNIQUE file belonging to any one of the catalogs.
v Delete a UNIQUE file.

Do not issue a DELETE SPACE, DELETE MASTERCATALOG, or DELETE
USERCATALOG whenever spaces belonging to different catalogs reside on the
volume. If you were to do this, the spaces belonging to other catalogs would be
deleted from the volume, but their catalog entries would remain.

Catalog Check Services

Automatic Catalog Check

This service examines VSE/VSAM catalogs containing DFSMSdfp files (alias and
generation data group), but it can validate only their horizontal and vertical
extension chains. It does not check associations or volume information for
DFSMSdfp files.

Compatibility

360 VSE/VSAM V9R2 User’s Guide and Application Programming

Backup/Restore

Backup/Restore first verifies that an MVS/VSAM file to be backed up can be
successfully restored. In cases where restoration is not possible, VSE/VSAM
ignores the backup request and, instead, issues a message.

The IDCAMS commands BACKUP and RESTORE are not supported by IDCAMS
under MVS/VSAM.

Device Dependency

VSE/VSAM treats the IBM 3995 Model 151 Optical Library Dataserver as an IBM
3390 Model 2 direct access storage device. However, a VSE/VSAM catalog that
resides on an IBM 3995 Model 151 Optical Library Dataserver cannot be shared
with a DFSMSdfp system.

VSE/VSAM Data Compression

VSE/VSAM compressed files can be ported to an MVS system using the EXPORT
and IMPORT or REPRO functions. The portable data set will be in uncompressed
format.

Compatibility of VSE/VSAM with DFSMSdfp VSAM
ICF catalogs created under DFSMSdfp VSAM are incompatible with the
VSE/VSAM catalog, and VSE/VSAM cannot process them. Compatibility of files,
IDCAMS job streams, and VSE/VSAM user programs is unchanged.

Similarities between VSE/VSAM and ACF/VTAM
IBM VTAM is an access method for teleprocessing. There is considerable similarity
between the two access methods (VSE/VSAM and ACF/VTAM) regarding control
block names and fields, control block manipulation, and general approach to
request handling.

Both access methods use an ACB. The VSE/VSAM ACB represents the file. In
VTAM, however, the ACB essentially represents an application program. Both
types of ACBs are objects of the OPEN macro instruction, and VSE/VSAM and
VTAM ACBs can be opened with one macro instruction.

Both types of ACBs can contain pointers to an exit list. Both VSE/VSAM and
VTAM exit lists contain addresses of routines to be entered when error conditions
occur (LERAD and SYNAD exit routines) and addresses of routines to be entered
when special situations occur.

Both access methods follow the same general I/O-request procedure. An I/O
macro instruction is issued that indicates an RPL. The RPL in turn contains
information about the request, such as the location of the I/O work area or
whether the request is to be handled synchronously or asynchronously.

Finally, both access methods use the same macro instructions (GENCB, MODCB,
TESTCB, and SHOWCB) to generate and manipulate their respective ACB, EXLST,
and RPL control blocks.

To make control blocks unique, a special parameter is used when the control block
is generated. By specifying AM=VTAM on the ACB, EXLST, or RPL macro

Compatibility

Appendix D. Compatibility With Other Products 361

instruction, the control block is generated in VTAM form. Omitting this parameter
causes a VSE/VSAM control block to be built. A VSE/VSAM control block will
also be built if AM=VSAM is specified. If an installation uses both of these access
methods, it may be desirable to have AM=VSAM specified in VSE/VSAM
programs for documentation purposes.

Compatibility

362 VSE/VSAM V9R2 User’s Guide and Application Programming

Appendix E. VSE/VSAM Labels

This Appendix ...

Provides conceptual information on the labels that are used with VSE/VSAM for
identifying volumes, data space, and files. It explains how the labels are processed,
and includes definition examples relating to job control and IDCAMS commands.

Types of VSE/VSAM Labels
VSE/VSAM maintains identifying information for its files in a central location
called the VSE/VSAM catalog. Volumes that contain VSE/VSAM files have the
same internal labels as other volumes. Most of the identifying information for
VSE/VSAM files, however, is in the VSE/VSAM catalog.

VSE/VSAM uses a:
v Volume label (VOL1)
v Data space label and its continuation (format-1 and format-3)
v VTOC label (format-4)

User-standard labels are not supported. Neither is the F-5 label, but space is
reserved for it on the VTOC for the purpose of MVS/SP compatibility.

Volume Label

The volume label (VOL1) is generally written during initialization. At that time, a
permanent volume number is written on the volume as part of the label to give the
volume a permanent ID.

Data Space Label

The VSE/VSAM format-1 VTOC label describes direct access space; the
characteristics of the logical files that occupy that space are described in the
VSE/VSAM catalog.

There is a format-1 label for every VSE/VSAM data space that is on the volume.
Every data space consists of one or more separate extents:
v Up to three extents are described in the format-1 label.
v Extents additional to the first three extents are described in a format-3 label; the

format-3 label is pointed to by the format-1 label. (Refer to “Space Continuation
Label” on page 364.)

Usually, you do not name a VSE/VSAM data space, because VSE/VSAM
automatically assigns a name to the data space. This name is placed into byte 1
through 44 of the key area (called the 44-byte key area). However, if you allocate a
data space to contain the data or the index of only one specific VSE/VSAM file
(called a unique file), the 44-byte key area will contain the name given to the data
or the index when you define it.

When a new VSE/VSAM data space is created (IDCAMS command DEFINE),
existing format-1 and format-3 labels are read and checked, and new labels are
created by the catalog and space management routines.

© Copyright IBM Corp. 1979, 2014 363

Space Continuation Label

A format-3 VTOC label is written whenever a VSE/VSAM data space occupies more
than three separate areas (extents) of a volume. It is used to supply the limits
(starting and ending addresses) of the additional extents. Thirteen separate extents
can be defined by one format-3 label. This label is pointed to by the format-1 label.

VTOC Label

A format-4 VTOC label defines the volume table of contents (VTOC). Also, if a volume
contains VSE/VSAM spaces, the label defines the volume as a VSE/VSAM volume.

The format-4 label is always the first record in the VTOC. The record is written
when you initialize your disk pack by using the IBM Device Support Facilities
(ICKDSF). For details, refer to the Device Support Facilities User's Guide and Reference.

The OPEN/CLOSE routines refer to the format-4 label to determine the extent of
the VTOC.

The format-1 and format-3 labels are stored in the VTOC and are processed as
described under “VTOC Label Processing” on page 365.

Location of Labels

Volume Layouts
Each volume has a VTOC that contains labels for the data spaces.

Figure 51 on page 365 shows two volumes that contain VSE/VSAM data spaces (1,
2, and 3). The figure illustrates the relationship between volumes, VSE/VSAM data
spaces, and labels in the VTOC. Specifically:
v The two volumes contain the VSE/VSAM data spaces 1, 2, and 3. Each volume

has a VTOC that describes the data spaces owned by VSE/VSAM. The files are
described in the VSE/VSAM catalog.

v Data Space 2 is occupied by File A; this file is assumed to be a unique file. If a
unique file occupies a data space, no other file can be suballocated in the data
space, and File A cannot be extended to any other data space.

v The 44-byte name field of the label for Data Space 2 contains the name (the
file-ID) of file A. The 44-byte name fields of the other data spaces contain the
data space name that is automatically generated by VSE/VSAM

Labels: Types

364 VSE/VSAM V9R2 User’s Guide and Application Programming

Label Information Area
VSE/VSAM file label information, and standard labels for a user catalog, can be
submitted following // OPTION STDLABEL=ADD or // OPTION
PARSTD=ADD. VSE/VSAM searches the partition temporary user label area
(USRLABEL), the partition standard label area (PARSTD), and the system standard
label area (STDLABEL), in that order. Thus, it is possible to override permanent
label sets for a single job by submitting the new label set under

// OPTION USRLABEL. The default is // OPTION USRLABEL and can be
omitted.

VTOC Label Processing

VTOC

File B

File C

VSE/VSAM Catalog

Unallocated

File A
Unique

Data
Space 1

Data
Space 2

Volume 1

F-4 F-5 F-1 F-1 F-1

Labels in VTOC of Volume 1

(*) Data Space 2
(File A, Unique)

Data Space 1
(Two Extents)

VSE/VSAM Catalog

VTOC

File D

File Extent 1

SD File

DA File

File Extent 2

Data
Space 3

Volume 2

F-4 F-5 F-1 F-1 F-1

Labels in VTOC of Volume 2

(*) SD File

DA File

Data Space 3
(Two Extents)

(*) VSE/VSAM does not use the format-5 VTOC label,
but space is reserved for the label for reasons
of DFSMSdfp compatibility.

Figure 51. Volume Layouts of VSE/VSAM Files

Location of Labels

Appendix E. VSE/VSAM Labels 365

VSE/VSAM Data Spaces
The format-1 and format-3 VTOC labels describe VSE/VSAM data spaces. A data
space consists of one or more extents on a single volume allocated to VSE/VSAM
and controlled by a VSE/VSAM catalog. VSE/VSAM files are written in data
spaces.

Even if it does not contain any files, a data space is owned by VSE/VSAM and is
not available for files of other access methods.

Label processing is done when data spaces (including catalogs and unique files)
are created or deleted, and during ALTER NEWNAME for unique files.

The format-1 and (if needed) format-3 VTOC labels are created and checked (for
overlap or duplicate name) only when data spaces are created (including data
spaces for unique files). If data spaces are deleted, their format-1 and format-3
labels are removed from the VTOC. Labels are also altered during RESETCAT
processing if the data in the label and the catalog do not agree. When VSE/VSAM
files are processed, the VSE/VSAM catalog is used for checking the location and
characteristics of the files.

VSE/VSAM Files
VTOC label processing takes place only for unique VSE/VSAM files that are
defined, deleted, or renamed.

VSE/VSAM files are normally defined after data spaces have been defined. The
direct access space for the files is suballocated by VSE/VSAM from one or more
data spaces. You may select the volume or volumes the file will reside on. You tell
VSE/VSAM how much space to suballocate to the file initially and, optionally,
how much additional space to suballocate when the file must be extended.
VSE/VSAM decides which data spaces or portions of data spaces to suballocate to
a file.

You can, however, specify the size and exact location of the file when you define it.
In this case, the file is called unique and occupies its own data space which is
defined when the file is defined. No other files can occupy that data space. If the
file extends across more than one volume, it occupies one data space on every
volume. The format-1 and format-3 labels still describe the data space(s) occupied
by the unique file. A key-sequenced unique file requires separate data spaces for
the data and the index components.

The file-ID parameter of the // DLBL statement (if specified) indicates the file you
want to process. It is the same as the name of the file, stored in the catalog, which
was specified in the NAME(entryname) parameter of the DEFINE statement. For
VSE/VSAM data spaces, the format-1 label contains a data space name that is
generated by VSE/VSAM.

Labels: VTOC Processing

366 VSE/VSAM V9R2 User’s Guide and Application Programming

VTOC Labels for FBA Devices
The physical block is the basic unit of storage on an FBA device. A disk address is
a physical block number relative to the beginning of the volume.

A VTOC for an FBA is divided into control intervals (CIs) of the VSE/VSAM
relative record format; the VTOC labels reside in these CIs. There is a slot for the
VTOC label and its corresponding RDF in the CI. The CI size is a multiple of FBA
block size; a CI always starts on a block boundary. Specify VTOC size through the
DSF program.

The VOL1 label contains the VTOC CI size, the number of blocks per CI, and the
number of labels per CI. VTOC labels are referenced according to relative record
number (beginning with 1).

VSE/VSAM Data Space

VOL1 Label Processing
The VSE/VSAM VOL1 label fields are the same as for the other access methods.

The standard volume label (VOL1) must be located as follows:
v For CKD: on cylinder 0, track 0, record 3 (CKD).
v For FBA: in physical block 1.

This block is called the volume label block.

If the VOL1 label is not located correctly, the job is cancelled.

The VOL1 label, written by the IBM Device Support Facilities (ICKDSF) program,
contains a permanent volume number.

If any additional volume labels follow the VOL1 label, VSE/VSAM ignores them.

From the VOL1 label, VSE/VSAM determines the location of the VTOC.

Format-1 VTOC Label Processing for Unique Files
You must supply one // DLBL statement when creating a unique file and one //
EXTENT statement for every separate extent on the volume that the data space
will occupy. A multivolume unique file requires only one // DLBL statement, even
though it occupies a data space on every volume.

// DLBL Statement

The // DLBL statement for defining a data space under VSE/VSAM requires only
the filename parameter and the VSE/VSAM code. The // DLBL filename is
identical to the dname specified in the FILE parameter of the DEFINE command.

The file-ID parameter is not required and is ignored if you specify it. The date
parameter can be specified, but it has no real function. VSE/VSAM data spaces
and files can be deleted only by using the DELETE command of IDCAMS.

// EXTENT Statement

An // EXTENT statement defines a continuous extent of the volume that is to be
allocated to VSE/VSAM. There can be up to 16 extents in a data space, and a data
space is contained entirely on one volume.

Labels: VTOC Processing

Appendix E. VSE/VSAM Labels 367

The // EXTENT statement provides the starting address (relative address) and the
number of tracks (CKD) or blocks (FBA), which indirectly give the ending address.
The // EXTENT statement also provides the order in which this extent should be
processed in a multiple-extent unique file.

VSE/VSAM validates the // EXTENT specifications by checking the extent limits
against the limits of the format-4 label, and every format-1 and format-3 label
already written in the VTOC. If the new extent overlaps an existing extent,
VSE/VSAM issues a message to the operator. If the overlapped extent is part of a
file of another access method (expired or unexpired), the operator can delete the
file or terminate the job. If the overlapped extent is part of a VSE/VSAM data
space (or unique file), the operator can only cancel the job. VSE/VSAM data spaces
or files (expired or unexpired) can only be deleted through the IDCAMS command
DELETE.

If all extents of the new unique file are valid, VSE/VSAM writes one (or two, for a
KSDS) format-1 label, and (if necessary) the format-3 label into an available
location in the VTOC.

For the data or the index of a unique file, you may specify a data space name in
the DEFINE command. If specified, this name is entered in the catalog and in the
label. Remember that even though the name of a unique file is entered in the labels
of the data space it occupies, the information describing the file is in the catalog.

Bytes 45-60, 63-75, 83-84, and 94 are written in the format-1 label for VSE/VSAM.
This information is for compatibility with the format-1 labels of other access
methods; during processing, VSE/VSAM uses the catalog, rather than using
information from the VTOC.

Bytes 106-115 define the first (or only) extent allocated to the unique file
component. If there is more than one extent, bytes 116-125 define the second
extent, and bytes 126-135 define the third extent. These fields are written from the
// EXTENT statements you supply.

If you have included more than three // EXTENT statements, VSE/VSAM writes a
format-3 label and writes the address of that label in the pointer field (bytes
136-140) of the format-1 label.

If the unique file is deleted, the format-1 label (and if present, the format-3 label) is
removed from the VTOC.

Format-3 VTOC Label Processing
The VSE/VSAM format-3 label fields are the same as for the other access methods,
but a VSE/VSAM data space can have only one format-3 label.

If more than three extents are required for the data space (or unique file),
VSE/VSAM sets up a format-3 label for the additional extents. A data space can
consist of up to 16 extents, so only one format-3 label is allowed. VSE/VSAM
processes the extent fields of the format-3 labels in the same manner as those of
the format-1 label.

If the data space is deleted, the format-3 label is removed from the VTOC, along
with the format-1 label.

Labels: VTOC Processing

368 VSE/VSAM V9R2 User’s Guide and Application Programming

Format-4 VTOC Label Processing
The format-4 label describes the VTOC (it does not describe the files or data spaces
of individual access methods). However, a VSE/VSAM indicator field (bytes 77-87)
is written in the format-4 label of any volume that contains VSE/VSAM data
spaces or unique files. This field (volume time stamp) indicates the date and time
the most recent VSE/VSAM data space was added to or deleted from the volume.
For MVS compatibility reasons, this time stamp is repeated in bytes 88-95.

The same date and time are entered in the catalog. VSE/VSAM OPEN routines
check if the volume time stamp matches the time stamp for it in the catalog. If
they do not match, processing continues, but an error code is issued to indicate
that the VTOC might not agree with the data space information in the volume's
catalog entry.

Bit 0 of byte 85 indicates that this volume is owned by a VSE/VSAM catalog.
Either VSE/VSAM space was defined on the volume, or the volume was listed as a
CANDIDATE volume in the DEFINE SPACE command.

If all VSE/VSAM data space is deleted from a volume, the VSE/VSAM indicator
field (bytes 77-87) is erased. The deleted space can be used by other z/VSE access
methods.

VSE/VSAM Files

Defining a File: Suballocating Data Space (Non-Unique Files)
When a non-unique file is defined, the space for it can be suballocated from one or
more existing data spaces on one or more volumes. This is illustrated in Figure 53
on page 373. VTOC label processing is not performed for the following reasons:
v Information needed to set up the file is in the DEFINE command.
v Information about data spaces to be suballocated to the file is in the VSE/VSAM

catalog.

The resulting description of the file is entered in the catalog. The // DLBL and //
EXTENT statements are not required; they are ignored if specified for a catalog.

You indicate the volume(s) on which the file will reside, the amount of space to be
initially suballocated to the file and, optionally, the amount of space to be
suballocated if the file must be extended. VSE/VSAM selects the extent(s) on the
volume on which to write the file. If you specify more volumes than necessary for
the primary space, the additional volumes can be used when the file is extended, if
they contain free data space.

If none of the volumes contains free data space, new data spaces must be defined,
or volumes with free data space can be made available to the file through the
IDCAMS command ALTER. You can indicate in which order the volumes should
be used. You can also decide to place certain portions of the file (key ranges) on
certain volumes. If the file must be extended, VSE/VSAM can use only the
volumes you indicated. For further information, refer to “Multiple Volume
Support” on page 104.

Volume Mounting

The volume containing the catalog must be mounted, but the volumes on which
the file is defined need not be mounted. Additional information about volume
mounting requirements appears in “Using an Object as a Model” on page 58.

Labels: VTOC Processing

Appendix E. VSE/VSAM Labels 369

File Loading

Loading a file is a separate step from defining it. Records can be loaded into a file
by a VSE/VSAM processing program by using the PUT macro, or the IDCAMS
command REPRO.

Defining a File: Unique
A unique file occupies space described in the VTOC through // DLBL and //
EXTENT statements (all this is similar to unique files with other access methods).
Defining a unique file is illustrated in Figure 54 on page 373.

The data space for a unique file is defined (implicitly) in the same DEFINE
command as the file itself. Characteristics of the file (such as logical record length)
are specified in the command, just as with a suballocated file. Space information is
taken from // DLBL and // EXTENT statements instead of from the DEFINE
command.

The data and index of a unique key-sequenced file or alternate index require
separate data spaces, and hence, separate // DLBL and // EXTENT statements.

A unique file cannot be extended. The extents of the file are the same as the
extents of the data spaces and, because they are described in the VTOC, cannot be
changed without deleting the file.

Label processing is performed for the data spaces of a unique file as described
under “VSE/VSAM Data Space” on page 367. The only difference is that the
44-byte names of the data and index are placed in the labels and in the file's
catalog entry. The data spaces of unique files are described in the VSE/VSAM
catalog as well as in the VTOC.

Processing a File
When a previously defined file is processed by a VSE/VSAM application program
or by a PRINT or REPRO command, a // DLBL statement is required for the file.

The statement is retrieved by VSE/VSAM OPEN from the label area. OPEN
obtains the // DLBL statement from the file name specified in the IDCAMS macro
ACB in the processing program. All the information required to process the file is
in the VSE/VSAM catalog or the label area; no VTOC processing is performed (see
Figure 55 on page 374).

// DLBL Statement

The // DLBL statement is used to find the 44-byte name of the file in the catalog.
The 44-byte name matches the file-ID parameter. For PRINT and REPRO and
VSE/VSAM application programs, the CAT parameter is required only if you want
to override the system's assumption that the job catalog, or, if there is none, the
master catalog, owns the file. The function of the job catalog is explained under
“Specifying a Job Catalog” on page 44.

Volume Mounting

If the volumes allocated to the file are not mounted, messages are issued to the
operator to mount the required volumes or cancel the job. A file can span a
maximum of 16 volumes. If a multivolume file is opened for direct or
keyed-sequential processing, all volumes must be mounted. If it is opened for
addressed-sequential processing, only one volume at a time need be mounted.

Labels: VTOC Processing

370 VSE/VSAM V9R2 User’s Guide and Application Programming

The first allocation made on every volume is always the primary allocation.
VSE/VSAM extends a suballocated file if:
v Secondary space allocation was specified when the file was defined.
v No secondary space allocation was specified, but overflow volumes are specified

in the VOLUMES parameter of the DEFINE CLUSTER command. In that case,
the primary allocation is taken.

v A volume that contains or can contain part of the file has unused data space of
the required class.

Use the IDCAMS command ALTER to make more volumes available to the file
after it has been defined.

The VOL1 label is checked to verify that the correct volume is mounted (volume
serial number), and the format-4 label is checked to verify that the catalog is at the
proper level (volume time stamp). Processing for these labels is described under
“VSE/VSAM Data Space” on page 367.

Job Stream Examples
In the following, Figure 52 on page 372 through Figure 55 on page 374 show
examples of the job streams you must supply to:
v Define a data space
v Define a file in a catalog
v Define a unique file
v Process a file

Note:

1. In Figure 53 on page 373 through Figure 54 on page 373, further parameters are
required in the DEFINE command to specify the characteristics (such as logical
record length) of the VSE/VSAM file. These parameters are not shown, because
they do not affect space allocation and label processing.

2. For the description of the IDCAMS command DEFINE, refer to the VSE/VSAM
Commands, SC33-8315. More information about the job control statements
required for VSE/VSAM is in “Use of z/VSE Job Control Statements for
VSE/VSAM” on page 25.

Example - Define Data Spaces
Figure 52 on page 372 shows “samples” of the job streams you must supply to
define data spaces. The figure shows allocation of an entire volume to VSE/VSAM
(as a single data space), and allocation of a data space that is smaller than a single
volume.

“Sample 3” and “Sample 6” show allocation of data spaces on different volumes of
the same device type.

DEFINE command parameters supply the data space information.

For the master catalog, a // DLBL statement is required. In the samples, assume
that the statement is in the label information area.

Labels: VTOC Processing

Appendix E. VSE/VSAM Labels 371

==== Sample 1: ===
// JOB ALLOCATE A VOLUME TO VSE/VSAM
* VOLUME IS OWNED BY MASTER CATALOG
* ALL UNALLOCATED SPACE IS GIVEN TO VSE/VSAM
// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE(DEDICATE -
VOLUME(PAY001))

/*
/&

==== Sample 2: ===
// JOB DEFINE A VSE/VSAM DATA SPACE
* SPACE IS OWNED BY MASTER CATALOG
// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE(ORIGIN(760) TRACKS(570 -
VOLUME(PAY002))

/*
/&

==== Sample 3: ===
// JOB DEFINE VSE/VSAM DATA SPACES ON SEVERAL VOLUMES
* SPACES ARE OWNED BY USER CATALOG MYUCAT
// DLBL IJSYSUC,'MYUCAT',,VSAM
* DEFAULT ORIGIN USED FOR DATA SPACE ALLOCATION
// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE(TRACKS(190) -
VOLUME(PAY003))

/*
/&

==== Sample 4: ===
// JOB ALLOCATE A VOLUME TO VSE/VSAM
* VOLUME IS OWNED BY MASTER CATALOG
* ALL UNALLOCATED SPACE IS GIVEN TO VSE/VSAM
// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE(DEDICATE -
VOLUME(INV001))

/*
/&

==== Sample 5: ===
// JOB DEFINE A VSE/VSAM DATA SPACE ON A VOLUME
* SPACE IS OWNED BY MASTER CATALOG
// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE(ORIGIN(960) BLOCKS(2240) -
VOLUME(INV002))

/*
/&

==== Sample 6: ===
// JOB DEFINE VSE/VSAM DATA SPACES ON SEVERAL VOLUMES
* SPACES ARE OWNED BY USER CATALOG MYUCAT
// DLBL IJSYSUC,'MYUCAT',,VSAM
* DEFAULT ORIGIN USED FOR DATA SPACE ALLOCATION
// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE(BLOCKS(3100) -
VOLUME(DEV001))

/*
/&

==== Sample 7: ===
// JOB DEFINE SPACES ON A VOLUME BELONGING TO TWO CATALOGS
// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE(VOLUME(SCRTC1) /* SPACE BELONGING TO MASTER CATALOG */ -
CYLINDERS(40) ORIGIN(171)) /* CYLINDERS 9-48 */

DEFINE SPACE(VOLUME(SCRTC1) /* SPACE BELONGING TO USER CATALOG */ -
DEDICATE) /* THE REST OF THE SPACE AVAILABLE */ -
CATALOG (MYUCAT)

/*
/&

Figure 52. Examples: Defining VSE/VSAM Data Spaces

Job Stream Examples

372 VSE/VSAM V9R2 User’s Guide and Application Programming

Example - Define a File in a Catalog
Figure 53 shows the job stream you must submit to define a file that is
suballocated from an existing data space. This file is recorded in the master
catalog.

Example - Define a Unique File
Figure 54 shows the job stream for defining a unique file. The data space
information is supplied in // EXTENT statements. IDCAMS requires the
VOLUMES and CYLINDERS (BLOCKS, TRACKS, or RECORDS) parameters in the
DEFINE command if no MODEL is used.

Example - Process a File
Figure 55 on page 374 shows the job stream for processing a VSE/VSAM file. The
CAT parameter of the // DLBL statement indicates the file name of the user
catalog in which the file is recorded. The CAT parameter is written into the label
information area. For details on the use of this parameter, see “Use of z/VSE Job
Control Statements for VSE/VSAM” on page 25.

// JOB SUB-ALLOCATE VSE/VSAM FILE
// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER -
NAME(MSTRFIL1) -
VOLUME(PAY002)TRACKS(285 19))

/*
/&

Figure 53. Example: Defining a VSE/VSAM File Suballocated from a Data Space

// JOB ALLOCATE A UNIQUE VSE/VSAM FILE
// DLBL VDATANM,,,VSAM
// EXTENT ,338002,1,,1330,380
// DLBL VINDXNM,,,VSAM
// EXTENT ,338002,1,,1710,190
// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER(NAME(MSTRFIL3)UNIQUE -
DATA(FILE(VDATANM)VOLUMES(PAY002)CYLINDERS(20)) -
INDEX(FILE(VINDXNM)VOLUMES(PAY002)CYLINDERS(10))

/*
/&

Figure 54. Example: Defining a Unique VSE/VSAM File (File-ID MSTRFILE)

Job Stream Examples

Appendix E. VSE/VSAM Labels 373

// JOB PROCESS A VSE/VSAM FILE
// DLBL VFILENM,'MSTRFILE',,VSAM,CAT=PRIVCAT

(for the file)
// DLBL PRIVCAT,'MYUCAT',,VSAM
// EXEC USERPGM,SIZE=20K

CSECT
.
.
.

ACB DDNAME=VFILENM,...
.
.
.

END
/*
/&

Figure 55. Example: Processing a VSE/VSAM File with an Assembler Program

374 VSE/VSAM V9R2 User’s Guide and Application Programming

Appendix F. Diagnosis Tools

This Chapter ...

Contains Diagnosis, Modification, or Tuning Information.

Describes the VSE/VSAM tools summarized in Table 44, below. The information is
primarily for system administrators. The descriptions emphasize running the tools,
rather than interpreting the output.

Under certain conditions, the IBM support representative might ask you to supply
the output of diagnosis tools.

Table 44. VSE/VSAM Diagnosis Tools

Tool Purpose

Catalog Check Service Aid
(IKQVCHK)

To identify erroneous catalog records. Under certain
conditions, VSE/VSAM automatically invokes the tool,
or you can invoke it yourself.

SNAP Trace Facility
(IKQVEDA)

To print an error symptom infromation. You can
invoke a SNAP trace to provide an error code trace
during program processing.

Maintain VTOC and VOL1 Utility
(IKQVDU)

To assists you in maintaining the VTOC and VOL1
labels on disk devices.

For information on other diagnosis tools available in the z/VSE environment (for
example, for producing various types of dumps), refer to the z/VSE Guide for
Solving Problems, SC34-2605.

Catalog Check Service Aid (IKQVCHK)
The Catalog Check Service Aid (IKQVCHK) helps you to determine whether a
catalog has been damaged and, if damaged, the type and extent of the damage.

IKQVCHK is called under the following circumstances:
v If a file was not closed on a previous OPEN for update. In this case, VSE/VSAM

OPEN tries to VERIFY the file before opening it. If the VERIFY is successful,
VSE/VSAM calls IKQVCHK to examine the catalog records that describe the
file. Note that only the records pertaining to that file are checked. The rest of the
catalog is not examined.
OPEN error codes might tell you to run IKQVCHK yourself for additional
information.

v If the DELETE command with IGNOREERROR specified is issued. In this case,
IDCAMS calls IKQVCHK, and the entire catalog is checked to ensure catalog
integrity.

Furthermore, you should run IKQVCHK to assess catalog integrity in the following
circumstances:
v After a system failure.
v When a file or catalog does not behave as expected.
v As part of regular system maintenance.

© Copyright IBM Corp. 1979, 2014 375

In Case of Errors
IKQVCHK issues error messages that identify missing or inconsistent information.

Perform the corrective action documented in z/VSE Messages and Codes, Volume 2,
SC34-2633.Take the action before contacting IBM for support. If the problem
persists, report it. Make IKQVCHK output available so that the system
administrator or your IBM support representative can assess the extent of catalog
damage and how much rebuilding is required.

How to Run a Check
Issue the following job control statement:

// EXEC IKQVCHK,SIZE=AUTO,PARM=’aaaa...a/bbbbbbbb’

where:
aaaa is the name (up to 44 characters) of

the catalog that is to be checked.
The entire catalog is checked.

bbbbbbbb is the master, control, or update password of
the catalog that is to be checked.

If you omit the PARM parameter, the default catalog is checked. (The default
catalog is the job catalog if the IJSYSUC DLBL statement is specified. Otherwise, it
is the master catalog.)

Examples of Error Messages
The following examples show a few of the problems that IKQVCHK can diagnose
and the kinds of error messages that it produces. These examples are for users who
want a deeper understanding of IKQVCHK.

Catalog errors are difficult to understand, because they involve internal catalog
records, data, and control blocks which most users do not see. The programmer
action associated with every message, however, does not require a full knowledge
of the error condition. Similarly, you do not have to understand the listing of
catalog records and the 512-byte catalog record dump that accompany the
messages.

For the full documentation of all error messages issued by IKQVCHK, refer to the
"IKQ-Prefix" in z/VSE Messages and Codes, Volume 2, SC34-2633.

Example: Key-Range Names Not Matching
Figure 56 on page 377 shows the output associated with message IKQ0016I. In this
example, the problem is that the low-key-range name for a particular object does
not match the high-key-range name for that object, where the:
v Low-key-range name is XXXS1.INDEX
v High-key-range name is KSDS1.INDEX (identified by the submessage

ASSOCIATED HKR REC FOLLOWS)

To correct this problem, run a DELETE command, specifying IGNOREERROR for
KSDS1.INDEX. VSE/VSAM will delete the name KSDS1.INDEX from the catalog.

Diagnosis: Catalog Check

376 VSE/VSAM V9R2 User’s Guide and Application Programming

Example: Erroneous Association Group Occurrence
Figure 57 on page 378 shows a problem in which two error messages are produced,
IKQ0027I and IKQ0028I. The first hex dump shows the association group
occurrence at X‘08B’. The third byte of the association group occurrence indicates
the record type (D).

The contents of CI 2 are printed just below the submessage ASSOC WITH
UNEQUAL TYPE. Field X‘2C’ of a catalog record always tells what type of catalog
record it is. In this case, the record type is X‘C3’ or C, meaning a cluster record,
which does not match the record type (D) in the group occurrence (the first
record).

To correct this error, issue a DELETE IGNOREERROR command for KSDS2
(specified in NAME).

IKQ0016I DATA SET NAME NOT SAME IN HIGH AND LOW KEY RANGE RECORDS
LKR REC WITH INVALID DATA :
0000 0000002E 01000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0020 00000000 00000000 00000000 C9015700 8FE7E7E7 E2F14BC9 D5C4C5E7 40404040 *............I....XXXS1.INDEX *
0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40FFFFFF * ...*
0060 FFFFFFFF FF92057F 00000F20 F000FFFF FFFF0000 01000001 80000010 000000A0 *............0...................*
0080 00FFFFFF FF0000FF FFFFFFFF FFFFFF00 00000000 05000000 C0000000 00010100 *................................*
00A0 00620201 00006803 01000000 44010062 60000060 00040000 000A0000 000A0000 *................................*
00C0 00000000 00001000 00000FF9 00000000 00000000 00000000 00000000 00000000 *...........9....................*
00E0 A54E6475 B838FE02 00010001 00000001 00000000 00000000 00000000 00000000 *................................*
0100 00009000 00000000 00000000 0000000F 0006C300 002C0327 3010200E F1F1F1F1 *..................C.........1111*
0120 F1F10000 80010000 00000000 10000000 A0000000 1000000A 00010000 02000000 *11..............................*
0140 00001400 11000000 01000000 01000100 00000000 009FFF00 00000000 00000000 *................................*
0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
01A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
01C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
01E0 00000000 00000000 00000000 00000000 00000000 00000000 000001F9 01F90000 *...........................9.9..*
ASSOCIATED HKR REC FOLLOWS:
NAME = KSDS1.INDEX CI = 00002E

Figure 56. Example: Key-Range Names not Matching

Diagnosis: Catalog Check

Appendix F. Diagnosis Tools 377

Output of a Check
Figure 58 on page 379 shows catalog data that was produced by a run of
IKQVCHK against a catalog named VSAM.MCAT.

IKQ0027I RECORD TYPE IN ASSOCIATION GROUP OCCURRENCE NOT EQUAL TO RECORD TYPE IN RECORD IT REFERENCES
IKQ0028I AFFECTED GROUP OCCURRENCE AT DISPLACEMENT 135 (X’087’)
REC WITH ERRONEOUS GO FOLLOWS:
0000 0000002F 01000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0020 00000000 00000000 00000000 C3008D00 6CD2E2C4 E2F24040 40404040 40404040 *............C....KSDS2 *
0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40FFFFFF * ...*
0060 FFFFFFFF FF92057F 00000F00 00000000 00030000 00020100 00060202 00000044 *................................*
0080 010006C4 00003000 06C90000 31000000 00000000 00000000 00000000 00000000 *...D.....I......................*
00A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
00C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
00E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0140 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
01A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
01C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
01E0 00000000 00000000 00000000 00000000 00000000 00000000 000001F9 01F90000 *...........................9.9..*
ASSOC REC WITH UNEQUAL TYPE:
0000 00000031 01000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0020 00000000 00000000 00000000 C3015700 8FD2E2C4 E2F24BC9 D5C4C5E7 40404040 *............C....KSDS2.INDEX *
0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40FFFFFF * ...*
0060 FFFFFFFF FF92057F 00000F00 6000FFFF FFFF0000 03000003 80000008 000001B0 *................................*
0080 00FFFFFF FF0000FF FFFFFFFF FFFFFF00 00000000 05000000 C0000000 00010100 *................................*
00A0 00620201 00006803 01000000 44010062 60080060 000C0000 000A0000 00120000 *................................*
00C0 00000000 00000800 000007F9 00000000 00000000 00000000 00000000 00000000 *...........9....................*
00E0 A54E6DEF 570E8C04 00010001 00000001 00000000 00000000 00000000 00000000 *................................*
0100 0001A800 00000000 00000000 00000005 0006C300 002F0327 3010200E F1F1F1F1 *..................C.........1111*
0120 F1F10000 80010000 00000000 08000001 B0000000 08000012 00010000 02000000 *11..............................*
0140 00001400 01000100 01000100 03000300 00000000 01AFFF00 00000000 00000000 *................................*
0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
01A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
01C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
01E0 00000000 00000000 00000000 00000000 00000000 00000000 000001F9 01F90000 *...........................9.9..*
ASSOCIATED HKR REC FOLLOWS:
NAME = KSDS2 CI = 00002F

Figure 57. Example: Incorrect Association Group Occurrence

Diagnosis: Catalog Check

378 VSE/VSAM V9R2 User’s Guide and Application Programming

Note:

1. High-Key-Range Catalog Records

Each USED HKR-RECORD is a 47-byte “true name record”. It relates the
NAME (as specified in DEFINE CLUSTER or AIX), or the volume number (as
specified in DEFINE SPACE) to the CI number of the catalog record that
describes the object.

2. Low-Key-Range Catalog Records

The output line FORMATTED RECORDS shows the sum of formatted records
in the low-key range of the catalog (it equals the total of all fields below the
output line). Every low-key-range record occupies a full CI.For explanations to
the formatted records, refer to Table 45.

3. Depending on the circumstances, one of the following summary statements
appears at the bottom of the catalog data:

NO ERRORS WERE FOUND IN THIS CATALOG
MINOR ERRORS WERE FOUND AND CORRECTED IN THIS CATALOG
SERIOUS ERRORS WERE FOUND IN THIS CATALOG

The statement is preceded by messages that identify the catalog errors that
were found.

Record Types and Catalog Identifiers
In the output of IKQVCHK (shown in Figure 58), every record type is followed by
its one-letter catalog ID.

Table 45. Low-Key-Range Catalog Records and Codes

Record Type Code Description

CCR RECORDS L Catalog control records keep track of which CIs are allocated. When VSE/VSAM
needs space for a catalog record, the CCR indicates that space will be taken from
the unformatted section or from a list of CIs that are no longer in use.

FREE RECORDS F Free record; the CI in which it resides can be reused by another kind of catalog
record on subsequent DEFINEs. Free records are records that have been used
and made available again. Records that have not yet been used are not free
records.

DATA ABOUT VSAM CATALOG - VSAM.MCAT
==
THIS CATALOG CONTAINS USED HKR-RECORDS 60 See 1.

FORMATTED RECORDS 87 See 2.
- CCR RECORDS L 1
- FREE RECORDS F 2
- GDG BASE ENTRIES B 0
- CLUSTER RECORDS C 14
- INDEX RECORDS I 11
- DATA RECORDS D 21
- VOLUME RECORDS V 1
- VOLUME EXT. RECORDS W 4
- NONVSAM RECORDS A 0
- EXTENSION RECORDS E 14
- AIX RECORDS G 7
- PATH RECORDS R 7
- ALIAS RECORDS X 0
- UPGRADE RECORDS Y 4
- USER-CAT RECORDS U 1
- UNAVAILABLE RECORDS * 0

==
NO ERRORS WERE FOUND IN THIS CATALOG See 3.

Figure 58. Example: Output from the Catalog Check Service Aid (IKQVCHK)

Diagnosis: Catalog Check

Appendix F. Diagnosis Tools 379

Table 45. Low-Key-Range Catalog Records and Codes (continued)

Record Type Code Description

GDG BASE ENTRIES B Generation data group; applies to MVS objects only.

CLUSTER RECORDS C There is one cluster record for every cluster defined in the catalog.

INDEX RECORDS I An index record describes the index component of a cluster or AIX. There is one
index record for every KSDS cluster or AIX defined in the catalog.

DATA RECORDS D A data record describes the data component of a cluster or AIX. There is one
data record for every cluster or AIX defined in the catalog. The number of data
records should equal the number of cluster records (C) plus the number of AIX
(G) records.

VOLUME RECORDS V A volume record describes the following:

v VSE/VSAM data space on the volume;

v Every component residing in VSE/VSAM data space on the volume;

v Any available space in that data space.

There is one volume record for every volume owned by the catalog.

VOLUME EXTENSION
RECORDS

W A volume extension record provides the same data as a volume record. When a
volume record becomes full, a volume extension record is created for it. There
are as many volume extension records as necessary to contain overflow
information.

NONVSAM RECORDS A A nonVSAM record describes a nonVSAM file. There is one nonVSAM record
for every nonVSAM file defined in the catalog.

EXTENSION RECORDS E An extension record contains overflow information from another catalog record
(except type V or F). There are as many extension records as necessary to
contain overflow information.

AIX RECORDS G An AIX record describes an alternate index. There is one AIX record for every
alternate index defined in the catalog.

PATH RECORDS R A path record describes a path. There is one path record for every path defined
in the catalog.

ALIAS RECORDS X Alias; applies to DFSMSdfp objects only.

UPGRADE RECORDS Y An upgrade record describes a set of alternate indexes that are to be upgraded
(kept up to date) when their base cluster is modified.

USER-CAT RECORDS U A user cat record describes a user catalog. The master catalog contains one user
cat record for every user catalog defined in it.

UNAVAILABLE
RECORDS

An unavailable record is one that exists but is inaccessible because one or more
pointers to it were destroyed.

SNAP Trace (IKQVEDA)
The IBM support representative may ask you to run a SNAP trace to provide
information for problem diagnosis. You can enable any of the following types of
SNAP trace:

Type: Enables:

0001 Catalog management error code trace

0002 Buffer manager trace

0003

v OPEN control block trace (when OPEN processing is complete)

Diagnosis: Catalog Check

380 VSE/VSAM V9R2 User’s Guide and Application Programming

v OPEN error trace (prints control blocks if an error occurs during OPEN
processing)

v CLOSE control block dump (at the beginning of CLOSE processing)
v Managed-SAM OPEN and CLOSE control block trace (when OPEN

processing is complete and at the beginning of CLOSE Processing)

0004 VSE/VSAM I/O trace

0005 I/O error trace

0006 Available for future development

0007 Available for future development

0008 Catalog management I/O trace (prints all I/O operations done by
VSE/VSAM catalog management)

0009 Record management error trace (prints control blocks for any error
detected by VSE/VSAM record management)

0010 Redirector trace

0011 Available for future development

0012 Reserved for diagnostic purposes

0013 In-core wrap trace for trace points within VSE/VSAM Record Management

0014 Level2 SNAP013 Trace (I/O, EXCPAD and z/VSE Lock Activity)

0015 Level3 SNAP013 Trace (Buffer Management)

0016 Produce a printout (PDUMP) each time the SNAP013 Trace Table wraps.

Note: Depending on which SNAP013 level was selected and the amount of
system activity, this might produce a lot of SYSLST output. Consider using
the DDNAME= parameter to limit the number of files traced. The
DDNAME= parameter is not supported by SNAP Traces 0001 and 0008.

SNAP Trace Number Output

0001

0002 - 0005

0006, 0007

0009, 0010

0011

0012

0013 - 0015

0016

To Console

To SYSLST

Future Development

To SYSLST

Future Development

Reserved

In-core

To SYSLST

With the MSHP PATCH command, the trace output can be limited to specific
elements. Your IBM support representative can give you further details.

Diagnosis: SNAP Trace

Appendix F. Diagnosis Tools 381

How to Run a SNAP Trace

Activating a SNAP Trace

To activate IKQVEDA from the system console (SYSLOG) or SYSRDR, enter:
// EXEC IKQVEDA,PARM=’SYSnnn’

where SYSnnn specifies the LU from which the SNAP commands are entered:
SYSLOG - SNAP commands are entered from the system console

(this is the default if PARM is omitted)
SYSIPT - SNAP commands are read from SYSIPT

PARM is optional. If the input is to be entered from the console, the system
responds with:

ENTER FUNCTION ENABLE │ DISABLE │ END │ HELP

Enabling a SNAP Trace

To enable the SNAP trace, enter:
ENABLE SNAP=00nn,PART=yy,DDNAME=(list of filenames)

where yy is the partition (BG or Fn) in which the SNAP is to be enabled. If PART
is omitted, the SNAP is enabled for the issuing partition. SNAP013 has an
additional parameter: SIZE=nnK, which specifies the size of the in-core wrap trace.

Note that the SNAP trace becomes effective immediately (without re-IPL), and only
for the partition which you have specified (or defaulted).

Then the system prints:
SNAP 00nn ENABLED IN PARTITION yy
ENTER FUNCTION ENABLE │ DISABLE │ END │ HELP

To keep the SNAP option that you just selected (ENABLE) in effect, and to go on
to run your program, enter:

END

If you want to activate the HELP function (which produces explanatory messages
on the console), enter:

HELP

Note that for a dynamic partition, the trace must be enabled while the
VSE/POWER job that is to be traced is already active. At the end of the
VSE/POWER job, the SNAP traces will be lost.

Notes:

1. Input from SYSIPT: If the input is to be read from SYSIPT, you must prepare
your input records in advance and place them on SYSIPT before the EXEC
command is entered (either on SYSLOG or SYSRDR). The format of these
records must be the same as described above for the console input. The last
command must be END. All messages are issued on SYSLOG.

2. After enabling or disabling a SNAP trace, the message IKQ0082I is issued. The
message lists all SNAP traces that are currently enabled for the partition.

Diagnosis: SNAP Trace

382 VSE/VSAM V9R2 User’s Guide and Application Programming

Disabling a SNAP Trace
1. To disable the SNAP trace after the program is finished, enter:

// EXEC IKQVEDA,PARM=’SYSnnn’

where SYSnnn is either SYSLOG (default) or SYSIPT. PARM is optional.
The system responds with:

ENTER FUNCTION ENABLE │ DISABLE │ DISABLE │ END │ HELP

2. Enter:
DISABLE SNAP=00nn,PART=yy

PART is optional. The system responds with:
SNAP 00nn DISABLED IN PARTITION yy
ENTER FUNCTION ENABLE │ DISABLE │ END │ HELP

3. Enter:
END

Example: SNAP Trace 0001
The following example shows the use of IKQVEDA to enable SNAP 0001 as a
batch job in the BG partition.

Input (from SYSIN):
// JOB EXAMPLE
// EXEC IKQVEDA,PARM=’SYSIPT’
ENABLE SNAP=01
END
/*
/&

Output (on SYSLOG):
// JOB EXAMPLE ...
IKQ0082I SNAP 0001 ENABLED IN PARTITION BG
EOJ EXAMPLE ...

Activating
You must now activate SNAP 0001 in your program. Do this by including one of
three UPSI statements in your job stream.

The UPSI job control statement specifies under which conditions the SNAP code
should be executed. Because user programs can also use the UPSI byte, make sure
that there is no conflict between the UPSI setting for SNAP and the UPSI
requirements for any program running in the same partition. Using UPSI, you can
specify that the error symptom message be printed under one of the following
conditions. If you do not specify an UPSI value, 00000000 is the default.

// UPSI 0
When the catalog management return code is not 0, 40, 68, or 160, or if
LISTCAT issued a return code not equal to 8. (These codes occur during
normal processing.)

// UPSI 1
When the catalog management return code is not zero.

// UPSI 11
For all catalog management return codes, including zero.

// UPSI 01
Same as 1 but with operator reply required.

Diagnosis: SNAP Trace

Appendix F. Diagnosis Tools 383

// UPSI 011
Same as 11 but with operator reply required.

// UPSI 0111
Same as 0 but with operator reply required.

// UPSI 00001
Compression control services trace requires operator reply when a request
failed.

// UPSI 000011
Compression control services trace requires operator reply.

SNAP 0001 Output
SNAP 0001 prints the following error symptom string at the console (SYSLOG):

nnn,mn,rrr,ffff,ccc

The error symptom string is preceded by the partition identifier (for example, BG,
F1, F2).

The meaning of the string elements:

nnn Is the Catalog Management return code (decimal).

mn Are the last two characters of the name of the module that encountered the
error (IGG0CLmn).

rrr Is the Catalog Management reason code (decimal). The return and reason
codes are documented in z/VSE Messages and Codes, Volume 2, SC34-2633.

ffff Indicates which of the following functions was processed:

ALT - alter

DEF - define VSE/VSAM object

DEFA - define nonVSAM file

DEFC - define catalog

DEFS - define space

DEL - delete VSE/VSAM object or nonVSAM file

DELC - delete catalog

DELS - delete space

LOC - locate

LSTC - list catalog

UPD - update or update-extend

ccc Is one of the following:
v The number of the CI associated with the function (decimal)
v The object name, full length
v The volume number in EBCDIC

Figure 59 on page 385 is an example of the console listing for a job in which a
cluster and two alternate indexes are defined:

Diagnosis: SNAP Trace

384 VSE/VSAM V9R2 User’s Guide and Application Programming

Maintaining VTOC and VOL1 Labels on Disk (IKQVDU)
The utility IKQVDU assists in maintaining the VTOC and VOL1 labels on disk
devices.

Note: This utility changes information in the VTOC only; it does not change
catalog entries. If you want to redefine a VSE/VSAM data space or UNIQUE file,
you must first issue a DELETE command to erase the file's catalog information.

If you want conceptual information on labels, refer to Appendix E, “VSE/VSAM
Labels,” on page 363.

How to Run the IKQVDU
The following procedures should be followed to use IKQVDU at the system console
for such maintenance. The key difference in the three procedures is the presence or
absence of a // UPSI job control statement.

PROCEDURE 1

Type in the following, then press
ENTER Explanation

1. // ASSGN SYS000,X'cuu' For cuu, type in the address of the disk drive whose
volume is to be accessed.

Control Statement Meaning
==
// UPSI 11000000 Print error symptom string for all VSE/VSAM

return codes.
// EXEC IDCAMS,SIZE=AUTO

Error Symptom String Meaning
==
BG 000, ,000,LOC ,000000 Locate for CI 000000.
BG 000, ,000,LOC ,MASTER Locate for master catalog volume.
BG 000, ,000,LOC ,000001 Locate for CI 000001.
BG 000, ,000,LOC ,000001
BG 008,CG,006,DEL ,V3V003.KSDS Before defining V3V003.KSDS, user

issues a DELETE to make sure that the
object does not already exist (it doesn’t).

BG 008,CG,006,LOC ,DEFAULT.MODEL.KSDS Before attempting to define the new
cluster, VSE/VSAM looks for an optional
default model. No default model exists.

BG 000, ,000,DEF ,V3V003.KSDS VSAM defines the new cluster.
BG 008,CG,006,LOC ,DEFAULT.MODEL.AIX Before attempting to define the new AIX,

VSE/VSAM looks for an optional
default model. No default model exists.

BG 000, ,000,DEF ,V3V003.KSDS.AIX1 VSAM defines the first AIX.
BG 008,CG,006,LOC ,DEFAULT.MODEL.AIX
BG 000, ,000,DEF ,V3V003.KSDS.AIX2 VSAM defines the second AIX.

Figure 59. Example: SNAP Trace Output

Maintenance: VTOC and VOL1

Appendix F. Diagnosis Tools 385

PROCEDURE 1

Type in the following, then press
ENTER Explanation

2. // UPSI 1 This job control statement is optional. If it is
included, the following events take place on the
volume that was assigned to SYS000:

v The VSE/VSAM volume ownership bit in the F4
VTOC label is reset. The ownership bit is reset
regardless of how many catalogs own space on the
volume.

v The entire VTOC is scratched, that is, empty VTOC
labels are written over existing F1, F2, and F3
labels, except for labels that have names starting
with the characters “DOS.”, “VSE.”, or “PAGE”.

v An operator authorization prompt is issued if the
VTOC label to be scratched is security protected.

3. // EXEC IKQVDU,SIZE=AUTO Start execution of the IKQVDU phase. Then run an
IDCAMS DELETE SPACE command to delete the
catalog information for the volume you just
scratched. Specify the FORCE parameter if necessary.

PROCEDURE 2

Type in the following, then press
ENTER Explanation

1. // ASSGN SYS000,X'cuu' For cuu, type in the address of the disk drive whose
volume is to be accessed.

2. // UPSI 11 This job control statement is optional. If it is
included, the following events take place on the
volume that was assigned to SYS000:

v The VSE/VSAM volume ownership bit in the F4
label are reset. The ownership bit is reset
regardless of how many catalogs own space on the
volume.

v The entire VTOC is scratched, that is, F0 labels are
written over existing F1, F2, and F3 labels, except
for labels that have names starting with the
characters “DOS.”, “VSE.”, or “PAGE”.

3. // EXEC IKQVDU,SIZE=AUTO Start execution of the IKQVDU phase. Then run an
IDCAMS DELETE SPACE command to delete the
catalog information for the volume you just
scratched. Specify the FORCE parameter if necessary.

PROCEDURE 3

Type in the following, then press
ENTER Explanation

1. // ASSGN SYS000,X'cuu' For cuu, type in the address of the disk drive whose
volume is to be accessed.

2. // EXEC IKQVDU,SIZE=AUTO Start execution of the IKQVDU phase.

Maintenance: VTOC and VOL1

386 VSE/VSAM V9R2 User’s Guide and Application Programming

PROCEDURE 3

Type in the following, then press
ENTER Explanation

SPECIFY FUNCTION OR REPLY '?'
FOR OPTIONS READY

v You can specify the functions listed in Table 46. If
you specify a function, the list shown in Figure 60
is not displayed.

v You can enter the character ? This displays (at the
system console) a list of the functions that
IKQVDU can perform; refer to Figure 60.

Table 46. Explanation to IKQVDU Functions

Function

Enter one of the following,
then press ENTER Explanation

SET OWNERSHIP Causes the VSE/VSAM ownership bit to be set in the F4 VTOC label.

RESET OWNERSHIP Causes the VSE/VSAM ownership bit to be reset in the F4 VTOC label. The
ownership bit is reset regardless of how many catalogs own space on the volume.

SET SECURITY Causes the security bit to be set in the F1 VTOC label.

When the console responds with ENTER DSN, reply with the data set name of the
VTOC label to be modified.

RESET SECURITY Causes the security bit in the F1 label to be reset.

When the console responds with ENTER DSN, reply with the data set name of the
VTOC label to be modified.

SCRATCH DSN=dsname Causes the VTOC label with the specified file name to be scratched. If the file is a
VSE/VSAM data space or a UNIQUE VSE/VSAM file, run an IDCAMS DELETE
SPACE or DELETE CLUSTER command to delete the catalog information for the
object(s) you just scratched. Specify the FORCE parameter if necessary.

SCRATCH VTOC Causes the entire VTOC to be scratched except for file names starting with the
characters “DOS.”, “VSE.”, and “PAGE”. In addition, an operator-authorization
prompt will be issued if the VTOC label is security-protected or describes a catalog.
If the VTOC contained VSE/VSAM data spaces, run an IDCAMS DELETE SPACE
command to delete the catalog information for the volume you just scratched.
Specify the FORCE parameter if necessary.

TO SET THE VOLUME OWNERSHIP FLAG REPLY ’SET OWNERSHIP’
TO RESET THE VOLUME OWNERSHIP FLAG REPLY ’RESET OWNERSHIP’
TO SET THE SECURITY FLAG IN A F1 LABEL REPLY ’SET

SECURITY’
TO RESET THE SECURITY FLAG IN A F1 LABEL REPLY ’RESET

SECURITY’
TO REMOVE A LABEL FROM THE VTOC REPLY ’SCRATCH’
TO RENAME A LABEL REPLY ’RENAME’
TO ALLOCATE A LABEL REPLY ’ALLOCATE’
TO REINITIATE PROCESSING REPLY ’RESTART’
TO ALTER OR DISPLAY A disk VOL1 LABEL
REPLY ’CLIP LABEL=SER=N..N’ OR ’CLIP LABEL=DISPLAY’
TO TERMINATE PROCESSING REPLY ’END’
READY

Figure 60. Display of IKQVDU Functions

Maintenance: VTOC and VOL1

Appendix F. Diagnosis Tools 387

Table 46. Explanation to IKQVDU Functions (continued)

Function

Enter one of the following,
then press ENTER Explanation

RENAME Causes the DSNAME portion of the F1 VTOC label to be changed.

When the console responds with ENTER OLD DSN, reply with the file name of the
VTOC label to be changed. Be sure to enter the correct OLD DSN. No error checking
is performed if an invalid name is specified.

When the console responds with ENTER NEW DSN, reply with the new file name.

ALLOCATE Causes a new label to be created and written in the VTOC. To use this function, a
DLBL/EXTENT job control statement must be provided.

When the console responds with ENTER FILENAME, reply with the same file name
as that in the DLBL statement referred to above.

When the console responds with ENTER NEW DSN, reply with the file name of the
file to be created.

When the console responds with DO YOU WISH TO SECURITY PROTECT THIS
DATA SET? reply YES or NO. A reply of YES causes the data security bit to be set in
the F1 VTOC label. A reply of NO causes the data security bit to be reset.

RESTART Causes processing to be reinitiated with a READY prompt. This keyword can be used
as a response to any operator prompt.

CLIP LABEL=DISPLAY Causes the volume serial number to be displayed on the system console.

CLIP LABEL=SER=n..n Causes the existing volume serial number to be changed to the one specified as n..n.

END Causes processing to terminate.

Error Message and Codes (from IKQVDU)
If an error occurs during execution of IKQVDU, a message of the following format
is displayed at the system console:

ERROR** DADSM RETURN CODE IS nnn condition

where:
nnn is the code (for example: 020)
condition describes the problem (for example: VTOC FULL)

The following shows the code (nnn), the associated condition, and the action
required to correct the condition.

004 I/O ERROR WHILE READING VOLUME LABEL
Action: If the problem was not caused by a hardware error, restore the
volume.

008 VOLUME NOT MOUNTED
Action: Mount the correct volume.

012 I/O ERROR ON VTOC
Action: If the problem was not caused by a hardware error, restore the
volume.

016 DUPLICATE NAME ON VOLUME
Action: Choose another file name or scratch the original file from the
volume. If duplication is because of key ranges, ensure every UNIQUE key
range is on a separate volume.

Maintenance: VTOC and VOL1

388 VSE/VSAM V9R2 User’s Guide and Application Programming

020 VTOC FULL
Action: Delete any nonVSAM files or VSE/VSAM data spaces no longer
needed from the volume to make additional Format 1 labels available, or
reinitialize the volume with a larger VTOC.

024 EXTENT OVERLAPS EXPIRED FILE
Action: Examine the VTOC listing to determine where the overlap
occurred. Correct the EXTENT statement causing the error. To delete the
expired file, open a DTF using the same file-ID as that of the expired file,
and instruct the operator to reply DELETE to message 4n33A when it is
issued.

028 EXTENT OVERLAPS UNEXPIRED FILE
Action: Compare the high and low extent limits on the EXTENT statement
or LSERV output with the file or data space limits on the VTOC display. If
the extents overlap, correct the EXTENT statement in error.

032 EXTENT OVERLAPS PROTECTED UNEXPIRED FILE
Action: Examine the VTOC to determine where the overlap occurred.
Correct the EXTENT statement causing the error. If necessary, use another
volume.

036 EXTENT OVERLAPS VTOC
Action: Execute LVTOC. The Format 4 label (the first label in the VTOC
display) contains the extent limits of the VTOC. If the program executed
uses a temporary label set and overlaps the VTOC, correct the EXTENT
statements that overlap. If the job uses standard or partition standard
labels, use the LSERV output to correct the extents of the overlapping file,
VSE/VSAM data space, or UNIQUE VSE/VSAM file. Then rebuild the
appropriate label tracks.

040 REQUIRED EXTENTS MISSING
Action: If temporary labels were used, match the extents on the incoming
EXTENT card with the extents in the LVTOC output. If standard
(permanent) labels were used, match the extents in the LSERV output with
those in the LVTOC output.

044 LABEL NOT FOUND
Action: Use the LVTOC output to check for all file labels used in OPEN
macros. If the file has been destroyed, it was probably because of deletion
of overlapping extents on an unexpired file, and the file must be rebuilt.

048 INVALID LABEL ADDRESS
Action: Examine the VTOC for a label having an invalid forward chain
pointer, and delete it. If no invalid labels are found, just rerun the job.

056 EXTENT OVERLAPS PROTECTED EXPIRED FILE
Action: Examine the VTOC listing to determine where the overlap
occurred. Correct the EXTENT statement causing the error. If it is not
necessary to save the expired file, open a DTF using the same file-ID as
that of the expired file, and instruct the operator to reply DELETE to
message 4n33A when it is issued.

064 GETVIS FAILURE ENCOUNTERED
Action: Allocate GETVIS area. If VSE/VSAM is running in the SVA, re-IPL
and specify a new value for SET SVA. If VSE/VSAM is running in a
partition, rerun the job in a larger partition.

072 CDLOAD FAILURE ENCOUNTERED
Action: Either the CDLOAD directory or the GETVIS area is full. Allocate
more space.

Maintenance: VTOC and VOL1

Appendix F. Diagnosis Tools 389

080 OVERLAP AMONG NEW EXTENTS
Action: If DLBL and EXTENT statements are included in the program,
determine the conflicting extents and correct them. If a standard label set is
used, use the LSERV output to locate and correct the conflicting file
extents, and rebuild the standard label tracks.

088 FORMAT 4 LABEL NOT FOUND
Action: Reinitialize the VTOC to create a format-4 label.

092 VOL1 LABEL NOT FOUND
Action: Reinitialize the volume to create a VOL1 label.

096 JIB PROCESSING FAILURE
Action: Rerun the job when more JIBs are available.

Maintenance: VTOC and VOL1

390 VSE/VSAM V9R2 User’s Guide and Application Programming

Appendix G. Using the VSAM Redirector Connector

This Appendix ...

Describes the VSAM Redirector Connector, which enables you to use your existing
applications (for example COBOL programs) without any changes to work with data
on any Java-enabled platform (for example, Linux on System z).

Related Topics:

For details of ... Refer to ...

how the VSAM Redirector Connector works
(including diagrams and examples)

z/VSE e-business Connectors User's Guide,
SC34-2629

how to map VSE/VSAM data to a relational
structure

z/VSE e-business Connectors User's Guide,
SC34-2629

how to use the IDCAMS RECMAP
command

VSE/VSAM Commands, SC33-8315

Overview of the VSAM Redirector Connector
The VSAM Redirector Connector enables VSE programs to work with:
v VSAM data that is synchronized with a remote database or file system.
v VSAM files, all of whose data has been moved to a remote platform.

Using the VSAM Redirector Connector:
v VSAM data can be migrated to other file systems or databases.
v Data can be synchronized on different systems with VSE VSAM data.
v VSE programs can work transparently with data on other file systems or

databases.
v Changes made to VSAM data can be captured and temporarily stored on your

z/VSE system for further processing.

The VSAM Redirector Connector consists of:
v The VSAM Redirector Client for synchronous redirection (which is installed on

your z/VSE host).
v The VSAM Capture Exit for asynchronous redirection (which is installed on your

z/VSE host).
v A VSAM Redirector Server which can be installed on most Java™ platforms.
v VSAM Redirector Loaders, which are Java programs running on the remote

platform, and which are used to load and process VSAM data.

© Copyright IBM Corp. 1979, 2014 391

Using the VSAM Redirector Client For Synchronous Data Redirection
Using synchronous data redirection, you can migrate or synchronize your VSAM
data for example with DB2® tables residing on a remote system, and your VSE
programs will then work with this data, without requiring any changes to these
VSE programs. On the remote system, a Java handler provides access to the specific
file system or database on the remote system. For example, you can migrate your
VSAM data into DB2 tables residing on a remote system, and your VSE programs
will then work with this data, without requiring any changes to these VSE
programs.

The VSAM Redirector Connector handles requests to VSAM datasets and redirects
them to a different:
v Java platform (for example Linux on System z, Windows NT, Windows 2000,

Windows XP).
v file system (for example DB2 or flat files).

Your existing z/VSE host programs that are:
v written in any language (COBOL, PL/I, ASSEMBLER)
v batch or CICS programs

can therefore work with migrated VSAM data without the need to amend and
recompile these z/VSE host programs. The VSAM Redirector Connector manages
all connections and data conversions.

Using the VSAM Capture Exit For Asynchronous Data Redirection
Asynchronous redirection of VSAM data is provided by the VSAM Capture Exit,
which allows you to:
v Capture changes made to a particular VSAM file.
v Store these changes for further processing.

There are two options you can use:
v Save changes in a VSAM cluster (the VSAM delta cluster).
v Save changes in an MQSeries® queue.

Captured changes are written as “delta records” or messages. They contain:
v The data of the changed record.
v Information about when (the timestamp) and by whom (the partition, phase name,

origin value, and so on) the record was changed.

The saved changes can later be accessed via the Java-based connector by Java
programs running on the remote platform. Loader programs are also provided to
load and process the captured data from the VSAM delta cluster (for example, to
apply the changes to a database).

392 VSE/VSAM V9R2 User’s Guide and Application Programming

EXCPAD for The Redirector
Usually the Redirector runs in the same z/VSE subtask as VSAM. However, when
the EXCPAD exit routine is used, the Redirector call is performed in a separate
subtask. VSAM will return to the EXCPAD exit routine, while the Redirector task
waits for a remote connection. This allows the application to perform other
processing concurrently until the remote activity is complete. For an EXCPAD
description, refer to “EXCPAD Exit Routine” on page 230.

This capability is primarily implemented for CICS transactions. The Redirector
EXCPAD is not used for VSAM files opened by CICS/VSE.

The EXCPAD user exit is enabled automatically under the following conditions:
1. a VSE/VSAM cluster is enabled for the Redirector,
2. the EXCPAD exit is defined during the OPEN request.

VSAM will attach only one Redirector subtask per partition even if multiple
redirected files are opened in the partition with an active EXCPAD.

If the EXCPAD exit is not active within the user’s application exit list, then the
Redirector will function in a normal way within the same running task as the
application.

The Redirector call is performed through the IKQVEX01 module’s exit logic. If you
provide your own IKQVEX01 exit, then the EXCPAD function support is applicable
to this exit as well.

Appendix G. Using the VSAM Redirector Connector 393

394 VSE/VSAM V9R2 User’s Guide and Application Programming

Glossary

This glossary includes terms and definitions for
IBM z/VSE.

The following cross-references are used in this
glossary:
1. See refers the reader from a term to a

preferred synonym, or from an acronym or
abbreviation to the defined full form.

2. See also refers the reader to a related or
contrasting term.

To view glossaries for other IBM products, go to
www.ibm.com/software/globalization/
terminology.

A

Access Control Logging and Reporting. An IBM
licensed program to log all attempts of access to
protected data and to print selected formatted reports
on such attempts.

access control table (DTSECTAB). A table that is used
by the system to verify a user's right to access a certain
resource.

access list. A table in which each entry specifies an
address space or data space that a program can
reference.

access method. A program, that is, a set of commands
(macros) to define files or addresses and to move data
to and from them; for example VSE/VSAM or VTAM.

account file. A disk file that is maintained by
VSE/POWER containing accounting information that is
generated by VSE/POWER and the programs running
under VSE/POWER.

addressing mode (AMODE). A program attribute that
refers to the address length that a program is prepared
to handle on entry. Addresses can be either 24 bits or
31 bits in length. In 24 bit addressing mode, the
processor treats all virtual addresses as 24-bit values; in
31 bit addressing mode, the processor treats all virtual
addresses as 31-bit values. Programs with an
addressing mode of ANY can receive control in either
24 bit or 31 bit addressing mode.

administration console. In z/VSE, one or more
consoles that receive all system messages, except for
those that are directed to one particular console.
Contrast this with the user console, which receives only
those messages that are directed to it, for example
messages that are issued from a job that was submitted

with the request to echo its messages to that console.
The operator of an administration console can reply to
all outstanding messages and enter all system
commands.

alternate block. On an FBA disk, a block that is
designated to contain data in place of a defective block.

alternate index. In systems with VSE/VSAM, the
index entries of a given base cluster that is organized
by an alternate key, that is, a key other than the prime
key of the base cluster. For example, a personnel file
preliminary ordered by names can be indexed also by
department number.

alternate library. An interactively accessible library
that can be accessed from a terminal when the user of
that terminal issues a connect or switch library request.

alternate track. A library, which becomes accessible
from a terminal when the user of that terminal issues a
connect or switch (library) request.

AMODE. Addressing mode.

APA. All points addressable.

APAR. Authorized Program Analysis Report.

appendage routine. A piece of code that is physically
located in a program or subsystem, but logically and
extension of a supervisor routine.

application profile. A control block in which the
system stores the characteristics of one or more
application programs.

application program. A program that is written for or
by a user that applies directly to the user's work, such
as a program that does inventory control or payroll. See
also batch program and online application program.

AR/GPR. Access register and general-purpose register
pair.

ASC mode. Address space control mode.

ASI (automated system initialization) procedure. A
set of control statements, which specifies values for an
automatic system initialization.

attention routine (AR). A routine of the system that
receives control when the operator presses the
Attention key. The routine sets up the console for the
input of a command, reads the command, and initiates
the system service that is requested by the command.

© Copyright IBM Corp. 1979, 2014 395

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

automated system initialization (ASI). A function that
allows control information for system startup to be
cataloged for automatic retrieval during system startup.

autostart. A facility that starts VSE/POWER with little
or no operator involvement.

auxiliary storage. Addressable storage that is not part
of the processor, for example storage on a disk unit.
Synonymous with external storage.

B

B-transient. A phase with a name beginning with $$B
and running in the Logical Transient Area (LTA). Such
a phase is activated by special supervisor calls.

bar. 2 GigyByte (GB) line

basic telecommunications access method (BTAM). An
access method that permits read and write
communication with remote devices. BTAM is not
supported on z/VSE.

BIG-DASD. A subtype of Large DASD that has a
capacity of more than 64 K tracks and uses up to 10017
cylinders of the disk.

block. Usually, a block consists of several records of a
file that are transmitted as a unit. But if records are
very large, a block can also be part of a record only. On
an FBA disk, a block is a string of 512 bytes of data.
See also a control block.

block group. In VSE/POWER, the basic organizational
unit for fixed-block architecture (FBA) devices. Each
block group consists of a number of 'units of transfer'
or blocks.

C

CA splitting. Is the host part of the VSE JavaBeans,
and is started using the job STARTVCS, which is placed
in the reader queue during installation of z/VSE. Runs
by default in dynamic class R. In VSE/VSAM, to
double a control area dynamically and distribute its CIs
evenly when the specified minimum of free space get
used up by more data.

carriage control character. The fist character of an
output record (line) that is to be printed; it determines
how many lines should be skipped before the next line
is printed.

catalog. A directory of files and libraries, with
reference to their locations. A catalog may contain other
information such as the types of devices in which the
files are stored, passwords, blocking factors. To store a
library member such as a phase, module, or book in a
sublibrary. See also VSE/VSAM catalog.

cell pool. An area of virtual storage that is obtained
by an application program and managed by the callable
cell pool services. A cell pool is located in an address
space or a data space and contains an anchor, at least
one extent, and any number of cells of the same size.

central location. The place at which a computer
system's control device, normally the systems console
in the computer room, is installed.

chained sublibraries. A facility that allows
sublibraries to be chained by specifying the sequence in
which they must be searched for a certain library
member.

chaining. A logical connection of sublibraries to be
searched by the system for members of the same type
(phases or object modules, for example).

channel command word (CWW). A doubleword at
the location in main storage that is specified by the
channel address word. One or more CCWs make up
the channel program that directs data channel
operations.

channel program. One or more channel command
words that control a sequence of data channel
operations. Execution of this sequence is initiated by a
start subchannel instruction.

channel scheduler. The part of the supervisor that
controls all input/output operations.

channel subsystem. A feature of 370-XA and
Enterprise Systems Architecture that provides extensive
additional channel (I/O) capabilities over the
System/370.

channel to channel attachment (CTCA). A function
that allows data to be exchanged
1. Under the control of VSE/POWER between two

virtual VSE machines running under VM or
2. Under the control of VTAM between two

processors.

character-coded request. A request that is encoded
and transmitted as a character string. Contrast with
field-formatted request.

checkpoint.
1. A point at which information about the status of a

job and the system can be recorded so that the job
step can be restarted later.

2. To record such information.

CICS (Customer Information Control System). An
IBM program that controls online communication
between terminal users and a database. Transactions
that are entered at remote terminals are processed
concurrently by user-written application programs. The
program includes facilities for building, using, and
servicing databases.

396 VSE/VSAM V9R2 User’s Guide and Application Programming

CICS ECI. The CICS External Call Interface (ECI) is
one possible requester type of the CICS business logic
interface that is provided by the CICS Transaction
Server for VSE/ESA. It is part of the CICS client and
allows workstation programs to CICS function on the
z/VSE host.

CICS EXCI. The EXternal CICS Interface (EXCI) is one
possible requester type of the CICS business logic
interface that is provided by the CICS Transaction
Server for VSE/ESA. It allows any BSE batch
application to call CICS functions.

CICS system definition (CSD) file. Is the host part of
the VSE JavaBeans, and is started using the job
STARTVCS, which is placed in the reader queue during
installation of z/VSE. Runs by default in dynamic class
R. See CSD.

CICS Transaction Server for VSE/ESA. A z/VSE base
program that controls online communication between
terminal users and a database. This is the successor
system to CICS/VSE.

CICS TS. CICS Transaction Server

CICS/VSE. Customer Information Control
System/VSE. No longer shipped on the Extended Base
Tape and no longer supported, cannot run on z/VSE
5.1.

class. In VSE/POWER, a group of jobs that either
come from the same input device or go to the same
output device.

cluster controller. A hardware unit to control the
input/output operations of more than one device that
is connected to it. A cluster controller might be run by
a program that is stored and executed in the unit; for
example, the IBM 3601 Finance Communication
Controller. Or it might be controlled entirely by
hardware; for example, the IBM 3272 Control Unit.

Common Connector Framework (CCF). Is part of
IBM's Visual Age for Java, and allows connections to
remote hosts to be created and maintained. The CCF
classes are contained in the VSEConnector.jar file and
are used internally by the VSE JavaBeans. CCF is
important for multitier architectures where, for
example, servlets run on a middle-tier platform.
Because CCF allows open connections to be kept in a
pool, this avoids the time that is involved in opening
and closing TCP/IP connection to the remote z/VSE
host each time a servlet is invoked.

CMS. Conversational monitor system running on
z/VM.

common library. A library that can be interactively
accessed by any user of the (sub)system that owns the
library.

communication adapter. A circuit card with associated
software that enables a processor, controller, or other
device to be connected to a network.

communication region. An area of the supervisor that
is set aside for transfer of information within and
between programs.

component.
1. Hardware or software that is part of a computer

system.
2. A functional part of a product, which is identified

by a component identifier.
3. In z/VSE, a component program such as

VSE/POWER or VTAM.
4. In VSE/VSAM, a named, cataloged group of stored

records, such as the data component or index
component of a key-sequenced file or alternate
index.

component identifier. A 12-byte alphanumeric string,
uniquely defining a component to MSHP.

conditional job control. The capability of the job
control program to process or to skip one or more
statements that are based on a condition that is tested
by the program.

connect. To authorize library access on the lowest
level. A modifier such as "read" or "write" is required
for the specified use of a sublibrary.

connection pooling. Introduced with an z/VSE 5.1
update to manage (reuse) connections of the z/VSE
database connector in CICS TS.

ConnectionManager class. Is part of CCF, and
identifies the connection to a remote z/VSE host: it
holds connections between the middle-tier and the
remote z/VSE server. Servlets can reserve a connection
from the pool, work with it and give it back later. This
is performed internally using VSE JavaBeans.

connector. In the context of z/VSE, a connector
provides the middleware to connect two platforms:
Web Client and z/VSE host, middle-tier and z/VSE
host, or Web Client and middle-tier.

connector (e-business connector). A piece of software
that is provided to connect to heterogeneous
environments. Most connectors communicate to
non-z/VSE Java-capable platforms.

container. Is part of the JVM of application servers
such as the IBM WebSphere Application Server, and
facilitates the implementation of servlets, EJBs, and
JSPs, by providing resource and transaction
management resources. For example, an EJB developer
must not code against the JVM of the application
server, but instead against the interface that is provided
by the container. The main role of a container is to act
as an intermediary between EJBs and clients, Is the host
part of the VSE JavaBeans, and is started using the job

Glossary 397

STARTVCS, which is placed in the reader queue during
the installation of z/VSE. Runs by default in dynamic
class R. and also to manage multiple EJB instances.
After EJBs have been written, they must be stored in a
container residing on an application server. The
container then manages all threading and
client-interactions with the EJBs, and co-ordinate
connection- and instance pooling.

control interval (CI). A fixed-length area of disk
storage where VSE/VSAM stores records and
distributes free space. It is the unit of information that
VSE/VSAM transfers to or from disk storage. For FBA
it must be an integral multiple to be defined at cluster
definition, of the block size.

control program. A program to schedule and
supervise the running of programs in a system.

conversational monitor system (CMS). A virtual
machine operating system that provides general
interactive time sharing, problem solving, and program
development capabilities and operates under the
control of z/VM.

count-key-data (CKD) device. A disk device that store
data in the record format: count field, key field, data
field. The count field contains, among others, the
address of the record in the format: cylinder, head
(track), record number, and the length of the data field.
The key field, if present, contains the record's key or
search argument. CKD disk space is allocated by tracks
and cylinders. Contrast with FBA disk device. See also
extended count-key-data device.

cross-partition communication control. A facility that
enables VSE subsystems and user programs to
communicate with each other; for example, with
VSE/POWER.

cryptographic token. Usually referred to simply as a
token, this is a device, which provides an interface for
performing cryptographic functions like generating
digital signatures or encrypting data.

cryptography.
1. The transformation of data to conceal its meaning.
2. In computer security, the principles, means, and

methods for encrypting 'plaintext' and Is the host
part of the VSE JavaBeans, and is started using the
job STARTVCS, which is placed in the reader queue
during installation of z/VSE. Runs by default in
dynamic class R.decrypting 'ciphertext'.

D

data block group. The smallest unit of space that can
be allocated to a VSE/POWER job on the data file. This
allocation is independent of any device characteristics.

data conversion descriptor file (DCDF). With a
DCDF, you can convert individual fields within a

record during data transfer between a PC and its host.
The DCDF defines the record fields of a particular file
for both, the PC and the host environment.

data import. The process of reformatting data that was
used under one operating system such that it can
subsequently be used under a different operating
system.

Data Interfile Transfer, Testing, and Operations
(DITTO) utility. An IBM program that provides
file-to-file services for card I/O, tape, and disk devices.
The latest version is called DITTO/ESA for VSE.

Data Language/I (DL/I). A database access language
that is used with CICS.

data link. In SNA, the combination of the link
connection and the link stations joining network noes,
for example, a z/Architecture channel and its
associated protocols. A link is both logical and physical.

data security. Is the host part of the VSE JavaBeans,
and is started using the job STARTVCS, which is placed
in the reader queue during installation of z/VSE. Runs
by default in dynamic class R. See access control.

data set header record. In VSE/POWER abbreviated
as DSHR, alias NDH or DSH. An NJE control record
either preceding output data or, in the middle of input
data, indicating a change in the data format.

data space. A range of up to 2 gigabytes of contiguous
virtual storage addresses that a program can directly
manipulate through ESA/370 instructions. Unlike an
address space, a data space can hold only user data; it
does not contain shared areas, system data, or
programs. Instructions do not execute in a data space,
although in a program can reside in a data space as
nonexecutable code. Contrast with address space.

data terminal equipment (DTE). In SNA, the part of a
data station that serves a data source, data sink, or
both.

database connector. Is a function introduced with
z/VSE 5.1.1, which consists of a client and server part.
The client provides an API (CBCLI) to be used by
applications on z/VSE, the server on any Java capable
platform connects a JDBC driver that is provided by
the database. Both client and server communicate via
TCP/IP.

Database 2 (DB2). An IBM rational database
management system.

DB2-based connector. Is a feature introduced with
VSE/ESA 2.5, which includes a customized DB2
version, together with VSAM and DL/I functionality, to
provide access to DB2, VSAM, and DL/I data, using
DB2 Stored Procedures.

398 VSE/VSAM V9R2 User’s Guide and Application Programming

DB2 Runtime only Client edition. The Client Edition
for z/VSE comes with some enhanced features and
improved performance to integrate z/VSE and Linux
on System z.

DB2 Stored Procedure. In the context of z/VSE, a
DB2 Stored Procedure is a Language Environment (LE)
program that accesses DB2 data. However, from
VSE/ESA 2.5 onwards you can also access VSAM and
DL/I data using a DB2 Stored Procedure. In this way, it
is possible to exchange data between VSAM and DB2.

DBLK. Data block.

DCDF. Data conversion descriptor file.

deblocking. The process of making each record of a
block available for processing.

dedicated (disk) device. A device that cannot be
shared among users.

device address.
1. The identification of an input/output device by its

device number.
2. In data communication, the identification of any

device to which data can be sent or from which
data can be received.

device driving system (DDS). A software system
external to VSE/POWER, such as a CICS spooler or
PSF, that writes spooled output to a destination device.

Device Support Facilities (DSF). An IBM supplied
system control program for performing operations on
disk volumes so that they can be accessed by IBM and
user programs. Examples of these operations are
initializing a disk volume and assigning an alternative
track.

device type code. The four- or five-digit code that is
used for defining an I/O device to a computer system.

dialog. In an interactive system, a series of related
inquiries and responses similar to a conversation
between two people. For z/VSE, a set of panels that
can be used to complete a specific task; for example,
defining a file.

dialog manager. The program component of z/VSE
that provides for ease of communication between user
and system.

digital signature. In computer security, encrypted
data, which is appended to or part of a message, that
enables a recipient to prove the identity of the sender.

Digital Signature Algorithm (DSA). The Digital
Signature Algorithm is the US government-defined
standard for digital signatures. The DSA digital
signature is a pair of large numbers, computed using a
set of rules (that is, the DSA) and a set of parameters
such that the identity of the signatory and integrity of

the data can be verified. The DSA provides the
capability to generate and verify signatures.

directory. In z/VSE the index for the program
libraries.

direct access. Accessing data on a storage device using
their address and not their sequence. This is the typical
access on disk devices as opposed to magnetic tapes.
Contrast with sequential access.

disk operating system residence volume (DORSES).
The disk volume on which the system sublibrary
IJSYSRS.SYSLIB is located including the programs and
procedures that are required for system startup.

disk sharing. An option that lets independent
computer systems uses common data on shared disk
devices.

disposition. A means of indicating to VSE/POWER
how a job input or output entry is to be handled:
according to its local disposition in the RDR/LST/PUN
queue or its transmission disposition when residing in
the XMT queue. A job might, for example, be deleted
or kept after processing.

distribution tape. A magnetic tape that contains, for
example, a preconfigured operating system like z/VSE.
This tape is shipped to the customer for program
installation.

DITTO/ESA for VSE. Data Interfile Transfer, Testing,
and Operations utility. An IBM program that provides
file-to-file services for disk, tape, and card devices.

DSF. Device Support Facilities.

DSH (R). Data set header record.

dummy device. A device address with no real I/O
device behind it. Input and output for that device
address are spooled on disk.

duplex. Pertaining to communication in which data
can be sent and received at the same time.

DU-AL (dispatchable unit - access list). The access
list that is associated with a z/VSE main task or
subtask. A program uses the DU-AL associated with its
task and the PASN-AL associated with its partition. See
also PASN-AL.

dynamic class table. Defines the characteristics of
dynamic partitions.

dynamic partition. A partition that is created and
activated on an 'as needed' basis that does not use fixed
static allocations. After processing, the occupied space
is released. Dynamic partitions are grouped by class,
and jobs are scheduled by class. Contrast with static
partition.

Glossary 399

dynamic partition balancing. A z/VSE facility that
allows the user to specify that two or more or all
partitions of the system should receive about the same
amount of time on the processor.

dynamic space reclamation. A librarian function that
provides for space that is freed by the deletion of a
library member to become reusable automatically.

E

ECI. See CICS ECI.

emulation. The use of programming techniques and
special machine features that permit a computer system
to execute programs that are written for another system
or for the use of I/O devices different from those that
are available.

emulation program (EP). An IBM control program
that allows a channel-attached 3705 or 3725
communication controller to emulate the functions of
an IBM 2701 Data Adapter Unit, or an IBM 2703
Transmission Control.

end user.
1. A person who makes use of an application

program.
2. In SNA, the ultimate source or destination of user

data flowing through an SNA network. Might be an
application program or a terminal operator.

Enterprise Java Bean. An EJB is a distributed bean.
"Distributed" means, that one part of an EJB runs inside
the JVM of a web application server, while the other
part runs inside the JVM of a web browser. An EJB
either represents one data row in a database (entity
bean), or a connection to a remote database (session
bean). Normally, both types of an EJB work together.
This allows to represent and access data in a
standardized way in heterogeneous environments with
relational and non-relational data. See also JavaBean.

entry-sequenced file. A VSE/VSAM file whose
records are loaded without respect to their contents and
whose relative byte addresses cannot change. Records
are retrieved and stored by addressed access, and new
records are added to the end of the file.

Environmental Record Editing and Printing (EREP)
program. A z/VSE base program that makes the data
that is contained in the system record file available for
further analysis.

EPI. See CICS EPI.

ESCON Channel (Enterprise Systems Connection
Channel). A serial channel, using fiber optic cabling,
that provides a high-speed connection between host
and control units for I/O devices. It complies with the
ESA/390 and System z I/O Interface until z114. The
zEC12 processors do not support ESCON channels.

exit routine.
1. Either of two types of routines: installation exit

routines or user exit routines. Synonymous with exit
program.

2. See user exit routine.

extended addressability. See 31 bit addressing. The
ability of a program to use virtual storage that is
outside the address space in which the program is
running. Generally, instructions and data reside in a
single address space - the primary address space.
However, a program can have data in address spaces
other than the primary or in data spaces. (The
instructions remain in the primary address space, while
the data can reside in another address space, or in a
data space.) To access data in other address spaces, a
program must use access registers (ARs) and execute in
access register mode (AR mode).

extended recovery facility (XRF). In z/VSE, a feature
of CICS that provides for enhanced availability of CICS
by offering one CICS system as a backup of another.

External Security Manager (ESM). A priced vendor
product that can provide extended functionality and
flexibility that is compared to that of the Basic Security
Manager (BSM), which is part of z/VSE.

F

FASTCOPY. See VSE/Fast Copy.

fast copy data set program (VSE/Fast Copy). See
VSE/Fast Copy.

fast service upgrade (FSU). A service function of
z/VSE for the installation of a refresh release without
regenerating control information such as library control
tables.

FAT-DASD. A subtype of Large DASD, it supports a
device with more than 4369 cylinders (64 K tracks) up
to 64 K cylinders.

FCOPY. See VSE/Fast Copy.

fence. A separation of one or more components or
elements from the remainder of a processor complex.
The separation is by logical boundaries. It allows
simultaneous user operations and maintenance
procedures.

fetch.
1. To locate and load a quantity of data from storage.
2. To bring a program phase into virtual storage from

a sublibrary and pass control to this phase.
3. The name of the macro instruction (FETCH) used to

accomplish 2. See also loader.

Fibre Channel Protocol (FCP). A combination of
hardware and software conforming to the Fibre
Channel standards and allowing system and peripheral

400 VSE/VSAM V9R2 User’s Guide and Application Programming

connections via FICON and FICON Express feature
cards on IBM zSeries processors. In z/VSE, zSeries FCP
is employed to access industry-standard SCSI disk
devices.

fragmentation (of storage). Inability to allocate
unused sections (fragments) of storage in the real or
virtual address range of virtual storage.

FSU. Fast service upgrade.

FULIST (FUnction LIST). A type of selection panel
that displays a set of files and/or functions for the
choice of the user.

G

generation. See macro generation.

generation feature. An IBM licensed program order
option that is used to tailer the object code of a
program to user requirements.

GETVIS space. Storage space within partition or the
shared virtual area, available for dynamic allocation to
programs.

guest system. A data processing system that runs
under control of another (host) system. On the
mainframe z/VSE can run as a guest of z/VM.

H

hard wait. The condition of a processor when all
operations are suspended. System recovery from a hard
wait is impossible without performing a new system
startup.

hash function. A hash function is a transformation
that takes a variable-size input and returns a fixed-size
string, which is called the hash value. In cryptography,
the hash functions should have some additional
properties:
v The hash function should be easy to compute.
v The hash function is one way; that is, it is impossible

to calculate the 'inverse' function.
v The hash function is collision-free; that is, it is

impossible that different input leads to the same
hash value.

hash value. The fixed-sized string resulting after
applying a hash function to a text.

High-Level Assembler for VSE. A programming
language providing enhanced assembler programming
support. It is a base program of z/VSE.

home interface. Provides the methods to instantiate a
new EJB object, introspect an EJB, and remove an EJB
instantiation., as for the remote interface is needed
because the deployment tool generates the

implementation class. Every Session bean's home
interface must supply at least one create() method.

host mode. In this operating mode, a PC can access a
VSE host. For programmable workstation (PWS)
functions, the Move Utilities of VSE can be used.

host system. The controlling or highest level system in
a data communication configuration.

host transfer file (HTF). Used by the Workstation File
Transfer Support of z/VSE as an intermediate storage
area for files that are sent to and from IBM personal
computers.

HTTP Session. In the context of z/VSE, identifies the
web-browser client that calls a servlet (in other words,
identifies the connection between the client and the
middle-tier platform).

I

ICCF. See VSE/ICCF.

ICKDSF (Device Support Facilities). A z/VSE base
program that supports the installation, use, and
maintenance of IBM disk devices.

include function. Retrieves a library member for
inclusion in program input.

index.
1. A table that is used to locate records in an indexed

sequential data set or on indexed file.
2. In, an ordered collection of pairs, each consisting of

a key and a pointer, used by to sequence and locate
the records of a key-sequenced data set or file; it is
organized in levels of index records. See also
alternate index.

input/output control system (IOCS). A group of IBM
supplied routines that handle the transfer of data
between main storage and auxiliary storage devices.

integrated communication adapter (ICA). The part of
a processor where multiple lines can be connected.

integrated console. In z/VSE, the service processor
console available on IBM System z server that operates
as the z/VSE system console. The integrated console is
typically used during IPL and for recovery purposes
when no other console is available.

Interactive Computing and Control Facility (ICCF).
An IBM licensed program that serves as interface, on a
time-slice basis, to authorized users of terminals that
are linked to the system's processor.

interactive partition. An area of virtual storage for the
purpose of processing a job that was submitted
interactively via VSE/ICCF.

Glossary 401

Interactive User Communication Vehicle (IUCV).
Programming support available in a VSE supervisor for
operation under z/VM. The support allows users to
communicate with other users or with CP in the same
way they would with a non-preferred guest.

intermediate storage. Any storage device that is used
to hold data temporarily before it is processed.

IOCS. Input/output control system.

IPL. Initial program load.

irrecoverable error. An error for which recovery is
impossible without the use of recovery techniques
external to the computer program or run.

IUCV. Interactive User Communication Vehicle.

J

JAR. Is a platform-independent file format that
aggregates many files into one. Multiple applets and
their requisite components (.class files, images, and
sounds) can be bundled in a JAR file, and then
downloaded to a web browser using a single HTTP
transaction (much improving the download speed). The
JAR format also supports compression, which reduces
the files size (and further improves the download
speed). The compression algorithm that is used is fully
compatible with the ZIP algorithm. The owner of an
applet can also digitally sign individual entries in a
JAR file to authenticate their origin.

Java application. A Java program that runs inside the
JVM of your web browser. The program's code resides
on a local hard disk or on the LAN. Java applications
might be large programs using graphical interfaces.
Java applications have unlimited access to all your local
resources.

Java bytecode. Bytecode is created when a file
containing Java source language statements is
compiled. The compiled Java code or "bytecode" is
similar to any program module or file that is ready to
be executed (run on a computer so that instructions are
performed one at a time). However, the instructions in
the bytecode are really instructions to the Java Virtual
Machine. Instead of being interpreted one instruction at
a time, bytecode is instead recompiled for each
operating-system platform using a just-in-time (JIT)
compiler. Usually, this enables the Java program to run
faster. Bytecode is contained in binary files that have
the suffix.CLASS

Java servlet. See servlet.

JHR. Job header record.

job accounting interface. A function that accumulates
accounting information for each job step, to be used for

charging the users of the system, for planning new
applications, and for supervising system operation
more efficiently.

job accounting table. An area in the supervisor where
accounting information is accumulated for the user.

job catalog. A catalog made available for a job by
means of the file name IJSYSUC in the respective DLBL
statement.

job entry control language (JECL). A control language
that allows the programmer to specify how
VSE/POWER should handle a job.

job step. In 1 of a group of related programs complete
with the JCL statements necessary for a particular run.
Every job step is identified in the job stream by an
EXEC statement under one JOB statement for the whole
job.

job trailer record (JTR). As VSE/POWER parameter
JTR, alias NJT. An NJE control record terminating a job
entry in the input or output queue and providing
accounting information.

K

key. In VSE/VSAM, one or several characters that are
taken from a certain field (key field) in data records for
identification and sequence of index entries or of the
records themselves.

key sequence. The collating sequence either of records
themselves or of their keys in the index or both. The
key sequence is alphanumeric.

key-sequenced file. A VSE/VSAM file whose records
are loaded in key sequence and controlled by an index.
Records are retrieved and stored by keyed access or by
addressed access, and new records are inserted in the
file in key sequence.

KSDS. Key-sequenced data sets. See key-sequenced file.

L

label.
1. An identification record for a tape, disk, or diskette

volume or for a file on such a volume.
2. In assembly language programming, a named

instruction that is generally used for branching.

label information area. An area on a disk to store
label information that is read from job control
statements or commands. Synonymous with label area.

Language Environment for z/VSE. An IBM software
product that is the implementation of Language
Environment on the VSE platform.

402 VSE/VSAM V9R2 User’s Guide and Application Programming

language translator. A general term for any assembler,
compiler, or other routine that accepts statements in
one language and produces equivalent statements in
another language.

Large DASD. A DASD device that
1. Has a capacity exceeding 64 K tracks and
2. Does not have VSAM space created prior to

VSE/ESA 2.6 that is owned by a catalog.

LE/VSE. Short form of Language Environment for
z/VSE.

librarian. The set of programs that maintains, services,
and organizes the system and private libraries.

library block. A block of data that is stored in a
sublibrary.

library directory. The index that enables the system to
locate a certain sublibrary of the accessed library.

library member. The smallest unit of a data that can
be stored in and retrieved from a sublibrary.

line commands. In VSE/ICCF, special commands to
change the declaration of individual lines on your
screen. You can copy, move, or delete a line declaration,
for example.

linkage editor. A program that is used to create a
phase (executable code) from one or more
independently translated object modules, from one or
more existing phases, or from both. In creating the
phase, the linkage editor resolves cross-references
among the modules and phases available as input. The
program can catalog the newly built phases.

linkage stack. An area of protected storage that the
system gives to a program to save status information in
a branch or a program call.

link station. In SNA, the combination of hardware
and software that allows a node to attach to and
provide control for a link.

loader. A routine, commonly a computer program,
that reads data or a program into processor storage. See
also relocating loader.

local shared resources (LSR). A VSE/VSAM option
that is activated by three extra macros to share control
blocks among files.

lock file. In a shared disk environment under VSE, a
system file on disk that is used by the sharing systems
to control their access to shared data.

logical partition. In LPAR mode, a subset of the
server unit hardware that is defined to support the
operation of a system control program.

logical record. A user record, normally pertaining to a
single subject and processed by data management as a
unit. Contrast with physical record, which may be larger
or smaller.

logical unit (LU).
1. A name that is used in programming to represent

an I/O device address. physical unit (PU), system
services control point (SSCP), primary logical unit
(PLU), and secondary logical unit (SLU).

2. In SNA, a port through which a user accesses the
SNA network,
a. To communicate with another user and
b. To access the functions of the SSCP. An LU can

support at least two sessions. One with an SSCP
and one with another LU and might be capable
of supporting many sessions with other LUs.

logical unit name. In programming, a name that is
used to represent the address of an input/output unit.

logical unit 6.2. A SNA/SDLC protocol for
communication between programs in a distributed
processing environment. LU 6.2 is characterized by
1. A peer relationship between session partners,
2. Efficient utilization of a session for multiple

transactions,
3. Comprehensive end-to-end error processing, and
4. A generic Application Programming Interface (API)

consisting of structured verbs that are mapped into
a product implementation.

logons interpret interpret routine. In VTAM, an
installation exit routine, which is associated with an
interpret table entry, that translates logon information.
It also verifies the logon.

LPAR mode. Logically partitioned mode. The CP
mode that is available on the Configuration (CONFIG)
frame when the PR/SM feature is installed. LPAR
mode allows the operator to allocate the hardware
resources of the processor unit among several logical
partitions.

M

macro definition. A set of statements and instructions
that defines the name of, format of, and conditions for
generating a sequence of assembler statements and
machine instructions from a single source statement.

macro expansion. See macro generation

macro generation. An assembler operation by which a
macro instruction gets replaced in the program by the
statements of its definition. It takes place before
assembly. Synonymous with macro expansion.

macro (instruction).
1. In assembler programming, a user-invented

assembler statement that causes the assembler to

Glossary 403

process a set of statements that are defined
previously in the macro definition.

2. A sequence of VSE/ICCF commands that are
defined to cause a sequence of certain actions to be
performed in response to one request.

maintain system history program (MSHP). A
program that is used for automating and controlling
various installation, tailoring, and service activities for
a VSE system.

main task. The main program within a partition in a
multiprogramming environment.

master console. In z/VSE, one or more consoles that
receive all system messages, except for those that are
directed to one particular console. Contrast this with
the user console, which receives only those messages
that are specifically directed to it, for example messages
that are issued from a job that was submitted with the
request to echo its messages to that console. The
operator of a master console can reply to all
outstanding messages and enter all system commands.

maximum (max) CA. A unit of allocation equivalent
to the maximum control area size on a count-key-data
or fixed-block device. On a CKD device, the max CA is
equal to one cylinder.

memory object. Chunk of virtual storage that is
allocated above the bar (2 GB) to be created with the
IARV64 macro.

message. In VSE, a communication that is sent from a
program to the operator or user. It can appear on a
console, a display terminal or on a printout.

MSHP. See maintain system history program.

multitasking. Concurrent running of one main task
and one or several subtasks in the same partition.

MVS. Multiple Virtual Storage. Implies MVS/390,
MVS/XA, MVS/ESA, and the MVS element of the
z/OS (OS/390) operating system.

N

NetView. A z/VSE optional program that is used to
monitor a network, manage it, and diagnose its
problems.

network address. In SNA, an address, consisting of
subarea and element fields, that identifies a link, link
station, or NAU. Subarea nodes use network addresses;
peripheral nodes use local addresses. The boundary
function in the subarea node to which a peripheral
node is attached transforms local addresses to network
addresses and vice versa. See also network name.

network addressable unit (NAU). In SNA, a logical
unit, a physical unit, or a system services control point.

It is the origin or the destination of information that is
transmitted by the path control network. Each NAU
has a network address that represents it to the path
control network. See also network name, network address.

Network Control Program (NCP). An IBM licensed
program that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability. Its full name is
ACF/NCP.

network definition table (NDT). In VSE/POWER
networking, the table where every node in the network
is listed.

network name.
1. In SNA, the symbolic identifier by which users refer

to a NAU, link, or link station. See also network
address.

2. In a multiple-domain network, the name of the
APPL statement defining a VTAM application
program. This is its network name, which must be
unique across domains.

node.
1. In SNA, an end point of a link or junction common

to several links in a network. Nodes can be
distributed to host processors, communication
controllers, cluster controllers, or terminals. Nodes
can vary in routing and other functional
capabilities.

2. In VTAM, a point in a network that is defined by a
symbolic name. Synonymous with network node. See
major node and minor node.

node type. In SNA, a designation of a node according
to the protocols it supports and the network
addressable units (NAUs) it can contain.

O

object module (program). A program unit that is the
output of an assembler or compiler and is input to a
linkage editor.

online application program. An interactive program
that is used at display stations. When active, it waits
for data. Once input arrives, it processes it and send a
response to the display station or to another device.

operator command. A statement to a control program,
issued via a console or terminal. It causes the control
program to provide requested information, alter normal
operations, initiate new operations, or end existing
operations.

optional licensed program. An IBM licensed program
that a user can install on VSE by way of available
installation-assist support.

output parameter text block (OPTB). in
VSE/POWER's spool-access support, information that

404 VSE/VSAM V9R2 User’s Guide and Application Programming

is contained in an output queue record if a * $$ LST or
* $$ PUN statement includes any user-defined
keywords that have been defined for autostart.

P

page data set (PDS). One or more extents of disk
storage in which pages are stored when they are not
needed in processor storage.

page fixing. Marking a page so that it is held in
processor storage until explicitly released. Until then, it
cannot be paged out.

page I/O. Page-in and page-out operations.

page pool. The set of page frames available for paging
virtual-mode programs.

panel. The complete set of information that is shown
in a single display on terminal screen. Scrolling back
and forth through panels like turning manual pages.
See also selection panel.

partition balancing, dynamic. A z/VSE facility that
allows the user to specify that two or more or all
partitions of the system should receive about the same
amount of time on the processor.

PASN-AL (primary address space number - access
list). The access list that is associated with a partition.
A program uses the PASN-AL associated with its
partition and the DU-AL associated with its task (work
unit). See also DU-AL.

Each partition has its own unique PASN-AL. All
programs running in this partition can access data
spaces through the PASN-AL. Thus a program can
create a data space, add an entry for it in the PASN-AL,
and obtain the ALET that indexes the entry. By passing
the ALET to other programs in the partition, the
program can share the data space with other programs
running in the same partition.

PDS. Page data sets.

phase. The smallest complete unit of executable code
that can be loaded into virtual storage.

physical record. The amount of data that is
transferred to or from auxiliary storage. Synonymous
with block.

PNET. Programming support available with
VSE/POWER; it provides for the transmission of
selected jobs, operator commands, messages, and
program output between the nodes of a network.

POWER. See VSE/POWER.

pregenerated operating system. An operating system
such as z/VSE that is shipped by IBM mainly in object
code. IBM defines such key characteristics as the size of

the main control program, the organization, and size of
libraries, and required system areas on disk. The
customer does not have to generate an operating
system.

preventive service. The installation of one or more
PTFs on a VSE system to avoid the occurrence of
anticipated problems.

primary address space. In z/VSE, the address space
where a partition is executed. A program in primary
mode fetches data from the primary address space.

primary library. A VSE library owned and directly
accessible by a certain terminal user.

printer/keyboard mode. Refers to 1050 or 3215 console
mode (device dependent).

Print Services Facility (PSF)/VSE. An access method
that provides support for the advanced function
printers.

private area. The virtual space between the shared
area (24 bit) and shared area (31 bit), where (private)
partitions are allocated. Its maximum size can be
defined during IPL. See also shared area.

private memory object. Memory object (chunk of
virtual storage) that is allocated above the 2 GB line
(bar) only accessible by the partition that created it.

private partition. Any of the system's partitions that
are not defined as shared. See also shared partition.

production library.
1. In a pre-generated operating system (or product),

the program library that contains the object code for
this system (or product).

2. A library that contains data that is needed for
normal processing. Contrast with test library.

programmer logical unit. A logical unit available
primarily for user-written programs. See also logical
unit name.

program temporary fix (PTF). A solution or by-pass of
one or more problems that are documented in APARs.
PTFs are distributed to IBM customers for preventive
service to a current release of a program.

PSF/VSE. Print Services Facility/VSE.

PTF. See Program temporary fix.

Q

Queue Control Area (QCA). In VSE/POWER, an area
of the data file, which might contain:
v Extended checkpoint information
v Control information for a shared environment.

Glossary 405

queue file. A direct-access file that is maintained by
VSE/POWER that holds control information for the
spooling of job input and job output.

R

random processing. The treatment of data without
respect to its location on disk storage, and in an
arbitrary sequence that is governed by the input
against which it is to be processed.

real address area. In z/VSE, processor storage to be
accessed with dynamic address translation (DAT) off

real address space. The address space whose
addresses map one-to-one to the addresses in processor
storage.

real mode. In VSE, a processing mode in which a
program might not be paged. Contrast with virtual
mode.

recovery management support (RMS). System
routines that gather information about hardware
failures and that initiate a retry of an operation that
failed because of processor, I/O device, or channel
errors.

refresh release. An upgraded VSE system with the
latest level of maintenance for a release.

relative-record file. A VSE/VSAM file whose records
are loaded into fixed-length slots and accessed by the
relative-record numbers of these slots.

release upgrade. Use of the FSU functions to install a
new release of z/VSE.

relocatable module. A library member of the type
object. It consists of one or more control sections
cataloged as one member.

relocating loader. A function that modifies addresses
of a phase, if necessary, and loads the phase for
running into the partition that is selected by the user.

remote interface. In the context of z/VSE, the remote
interface allows a client to make method calls to an EJB
although the EJB is on a remote z/VSE host. The
container uses the remote interface to create client-side
stubs and server-side proxy objects to handle incoming
method calls from a client to an EJB.

remote procedure call (RPC).
1. A facility that a client uses to request the execution

of a procedure call from a server. This facility
includes a library of procedures and an external
data representation.

2. A client request to service provider in another node.

residency mode (RMODE). A program attribute that
refers to the location where a program is expected to
reside in virtual storage. RMODE 24 indicates that the

program must reside in the 24-bit addressable area
(below 16 megabytes), RMODE ANY indicates that the
program can reside anywhere in 31-bit addressable
storage (above or below 16 megabytes).

REXX/VSE. A general-purpose programming
language, which is particularly suitable for command
procedures, rapid batch program development,
prototyping, and personal utilities.

RMS. Recovery management support.

RPG II. A commercially oriented programming
language that is specifically designed for writing
application programs that are intended for business
data processing.

S

SAM ESDS file. A SAM file that is managed in
VSE/VSAM space, so it can be accessed by both SAM
and VSE/VSAM macros.

SCP. System control programming.

SDL. System directory list.

search chain. The order in which chained sublibraries
are searched for the retrieval of a certain library
member of a specified type.

second-level directory. A table in the SVA containing
the highest phase names that are found on the
directory tracks of the system sublibrary.

Secure Sockets Layer (SSL). A security protocol that
allows the client to authenticate the server and all data
and requests to be encrypted. SSL was developed by
Netscape Communications Corp. and RSA Data
Security, Inc..

segmentation. In VSE/POWER, a facility that breaks
list or punch output of a program into segments so that
printing or punching can start before this program has
finished generating such output.

selection panel. A displayed list of items from which
a user can make a selection. Synonymous with menu.

sense. Determine, on request or automatically, the
status or the characteristics of a certain I/O or
communication device.

sequential access method (SAM). A data access
method that writes to and reads from an I/O device
record after record (or block after block). On request,
the support performs device control operations such as
line spacing or page ejects on a printer or skip some
tape marks on a tape drive.

service node. Within the VSE unattended node
support, a processor that is used to install and test a
master VSE system, which is copied for distribution to

406 VSE/VSAM V9R2 User’s Guide and Application Programming

the unattended nodes. Also, program fixes are first
applied at the service node and then sent to the
unattended nodes.

service program. A computer program that performs
function in support of the system. See with utility
program.

service refresh. A form of service containing the
current version of all software. Also referred to as a
system refresh.

service unit. One or more PTFs on disk or tape
(cartridge).

shared area. In z/VSE, shared areas (24 bit) contain
the Supervisor areas and SVA (24 bit) and shared areas
(31 bit) the SVA (31 bit). Shared areas (24 bit) are at the
beginning of the address space (below 16 MB), shared
area (31 bit) at the end (below 2 GB).

shared disk option. An option that lets independent
computer systems use common data on shared disk
devices.

shared memory objects. An option that lets
independent computer systems uses common data on
shared disk devices.

shared partition. In z/VSE, a partition that is
allocated for a program (VSE/POWER, for example)
that provides services and communicates with
programs in other partitions of the system's virtual
address spaces.

shared spooling. A function that permits the
VSE/POWER account file, data file, and queue file to
be shared among several computer systems with
VSE/POWER.

shared virtual area (SVA). In z/VSE, a high address
area that contains a list system directory list (SDL) of
frequently used phases, resident programs that are
shared between partitions, and an area for system
support.

SIT (System Initialization Table). A table in CICS that
contains data used the system initialization process. In
particular, the SIT can identify (by suffix characters) the
version of CICS system control programs and CICS
tables that you have specified and that are to be
loaded.

skeleton. A set of control statements, instructions, or
both, that requires user-specific information to be
inserted before it can be submitted for processing.

socksified. See socks-enabled.

Socks-enabled. Pertaining to TCP/IP software, or to a
specific TCP/IP application, that understands the socks
protocol. "Socksified" is a slang term for socks-enabled.

socks protocol. A protocol that enables an application
in a secure network to communicate through a firewall
via a socks server.

socks server. A circuit-level gateway that provides a
secure one-way connection through a firewall to server
applications in a nonsecure network.

source member. A library member containing source
statements in any of the programming languages that
are supported by VSE.

split. To double a specific unit of storage space (CI or
CA) dynamically when the specified minimum of free
space gets used up by new records.

spooling. The use of disk storage as buffer storage to
reduce processing delays when transferring data
between peripheral equipment and the processor of a
computer. In z/VSE, this is done under the control of
VSE/POWER.

Spool Access Protection. An optional feature of
VSE/POWER that restricts individual spool file entry
access to user IDs that have been authenticated by
having performed a security logon.

spool file.
1. A file that contains output data that is saved for

later processing.
2. One of three VSE/POWER files on disk: queue file,

data file, and account file.

stacked tape. An IBM supplied product-shipment tape
containing the code of several licensed programs.

standard label. A fixed-format record that identifies a
volume of data such as a tape reel or a file that is part
of a volume of data.

stand-alone program. A program that runs
independently of (not controlled by) the VSE system.

startup. The process of performing IPL of the
operating system and of getting all subsystems and
applications programs ready for operation.

start option. In VTAM, a user-specified or IBM
specified option that determines conditions for the time
a VTAM system is operating. Start options can be
predefined or specified when VTAM is started.

static partition. A partition, which is defined at IPL
time and occupying a defined amount of virtual
storage that remains constant. See also dynamic partition.

storage director. An independent component of a
storage control unit; it performs all of the functions of a
storage control unit and thus provides one access path
to the disk devices that are attached to it. A storage
control unit has two storage directors.

Glossary 407

storage fragmentation. Inability to allocate unused
sections (fragments) of storage in the real or virtual
address range of virtual storage.

suballocated file. A VSE/VSAM file that occupies a
portion of an already defined data space. The data
space might contain other files. See also unique file.

sublibrary. In VSE, a subdivision of a library.
Members can only be accessed in a sublibrary.

sublibrary directory. An index for the system to locate
a member in the accessed sublibrary.

submit. A VSE/POWER function that passes a job to
the system for processing.

SVA. See shared virtual area.

Synchronous DataLink Control (SDLC). A discipline
for managing synchronous, code-transparent,
serial-by-bit information transfer over a link connection.
Transmission exchanges might be duplex or half-duplex
over switched or non-switched links. The configuration
of the link connection might be point-to-point,
multipoint, or loop.

SYSRES. See system residence volume.

system control programming (SCP). IBM supplied,
non-licensed program fundamental to the operation of
a system or to its service or both.

system directory list (SDL). A list containing directory
entries of frequently used phases and of all phases
resident in the SVA. The list resides in the SVA.

system file. In z/VSE, a file that is used by the
operating system, for example, the hardcopy file, the
recorder file, the page data set.

System Initialization Table (SIT). A table in CICS that
contains data that is used by the system initialization
process. In particular, the SIT can identify (by suffix
characters) the version of CICS system control
programs and CICS tables that you have specified and
that are to be loaded.

system recorder file. The file that is used to record
hardware reliability data. Synonymous with recorder file.

system refresh. See service refresh.

system refresh release. See refresh release.

system residence file (SYSRES). The z/VSE system
sublibrary IJSYSRS.SYSLIB that contains the operating
system. It is stored on the system residence volume
DORSES.

system residence volume (SYSRES). The disk volume
on which the system sublibrary is stored and from
which the hardware retrieves the initial program load
routine for system startup.

system sublibrary. The sublibrary that contains the
operating system. It is stored on the system residence
volume (SYSRES).

T

task management. The functions of a control program
that control the use, by tasks, of the processor and
other resources (except for input/output devices).

time event scheduling support. In VSE/POWER, the
time event scheduling support offers the possibility to
schedule jobs for processing in a partition at a
predefined time once repetitively. The time event
scheduling operands of the * $$ JOB statement are used
to specify the wanted scheduling time.

track group. In VSE/POWER, the basic organizational
unit of a file for CKD devices.

track hold. A function that protects a track that is
being updated by one program from being accessed by
another program.

transaction.
1. In a batch or remote batch entry, a job or job step. 2.

In CICS TS, one or more application programs that
can be used by a display station operator. A given
transaction can be used concurrently from one or
more display stations. The execution of a
transaction for a certain operator is also referred to
as a task.

2. A given task can relate only to one operator.

transient area. An area within the control program
that is used to provide high-priority system services on
demand.

Turbo Dispatcher. A facility of z/VSE that allows to
use multiprocessor systems (also called CEC: Central
Electronic Complexes). Each CPU within such a CEC
has accesses to be shared virtual areas of z/VSE:
supervisor, shared areas (24 bit), and shared areas (31
bit). The CPUs have equal rights, which means that any
CPU might receive interrupts and work units are not
dedicated to any specific CPU.

U

UCB. Universal character set buffer.

universal character set buffer (UCB). A buffer to hold
UCS information.

user console. In z/VSE, a console that receives only
those system messages that are specifically directed to
it. These are, for example, messages that are issued
from a job that was submitted with the request to echo
its messages to that console. Contrast with master
console.

408 VSE/VSAM V9R2 User’s Guide and Application Programming

user exit. A programming service that is provided by
an IBM software product that can be requested during
the execution of an application program for the service
of transferring control back to the application program
upon the later occurrence of a user-specified event.

V

variable-length relative-record data set (VRDS). A
relative-record data set with variable-length records.
See also relative-record data set.

variable-length relative-record file. A VSE/VSAM
relative-record file with variable-length records. See
also relative-record file.

VIO. See virtual I/O area.

virtual address. An address that refers to a location in
virtual storage. It is translated by the system to a
processor storage address when the information stored
at the virtual address is to be used.

virtual addressability extension (VAE). A storage
management support that fives the user of VSE
multiple address spaces of virtual storage.

virtual address space. A subdivision of the virtual
address area available to the user for the allocation of
private, nonshared partitions.

virtual disk. A range of up to 2 gigabytes of
contiguous virtual storage addresses that a program
can use as workspace. Although the virtual disk exists
in storage, it appears as a real FBA disk device to the
user program. All I/O operations that are directed to a
virtual disk are intercepted and the data to be written
to, or read from, the disk is moved to or from a data
space.

Like a data space, a virtual disk can hold only user
data; it does not contain shared areas, system data, or
programs. Unlike an address space or a data space,
data is not directly addressable on a virtual disk. To
manipulate data on a virtual disk, the program must
perform I/O operations.

virtual I/O area (VIO). An extension of the page data
set; used by the system as intermediate storage,
primarily for control data.

virtual mode. The operating mode of a program can
be paged.

virtual partition. In VSE, a division of the dynamic
area of virtual storage.

virtual storage. Addressable space image for the user
from which instructions and data are mapped into
processor storage locations.

virtual tape. In z/VSE, a virtual tape is a file (or data
set) containing a tape image. You can read from or

write to a virtual tape in the same way as if it were a
physical tape. A virtual tape can be:
v A VSE/VSAM ESDS file on the z/VSE host side.
v A remote file on the server side; for example, a

Linux, UNIX, or Windows file. To access such a
remote virtual tape, a TCP/IP connection is required
between z/VSE and the remote system.

volume ID. The volume serial number, which is a
number in a volume label that is assigned when a
volume is prepared for use by the system.

VRDS. Variable-length relative-record data sets. See
variable-length relative record file.

VSAM. See VSE/VSAM.

VSE (Virtual Storage Extended). A system that
consists of a basic operating system and any IBM
supplied and user-written programs that are required
to meet the data processing needs of a user. VSE and
hardware it controls form a complete computing
system. Its current version is called z/VSE.

VSE/Advanced Functions. As part of VSE Central
Functions, a base program of z/VSE. A program that
provides basic system control and includes the
supervisor and system programs such as the Librarian
and the Linkage Editor.

VSE Connector Server. Is the host part of the VSE
JavaBeans, and is started using the job STARTVCS,
which is placed in the reader queue during installation
of z/VSE. Runs by default in dynamic class R.

VSE/DITTO (VSE/Data Interfile Transfer, Testing, and
Operations Utility). An IBM licensed program that
provides file-to-file services for disk, tape, and card
devices.

VSE/ESA (Virtual Storage Extended/Enterprise
Systems Architecture). The predecessor system of
z/VSE.

VSE/Fast Copy. A utility program for fast copy data
operations from disk to disk and dump/restore
operations via an intermediate dump file on magnetic
tape or disk.

VSE/FCOPY (VSE/Fast Copy Data Set program). An
IBM licensed program for fast copy data operations
from disk to disk and dump/restore operations via an
intermediate dump file on magnetic tape or disk. There
is also a stand-alone version: the FASTCOPY utility.

VSE/ICCF (VSE/Interactive Computing and Control
Facility). An IBM licensed program that serves as
interface, on a time-slice basis, to authorized users of
terminals that are linked to the system's processor.

VSE/ICCF library. A file that is composed of smaller
files (libraries) including system and user data, which
can be accessed under the control of VSE/ICCF.

Glossary 409

VSE JavaBeans. Are JavaBeans that allow access to all
VSE-based file systems (VSE/VSAM, Librarian, and
VSE/ICCF), submit jobs, and access the z/VSE operator
console. The class library is contained in the
VSEConnector.jar archive. See also JavaBeans.

VSE library. A collection of programs in various forms
and storage dumps stored on disk. The form of a
program is indicated by its member type such as source
code, object module, phase, or procedure. A VSE library
consists of at least one sublibrary, which can contain
any type of member.

VSE/POWER. An IBM licensed program that is
primarily used to spool input and output. The
program's networking functions enable a VSE system to
exchange files with or run jobs on another remote
processor.

VSE/VSAM (VSE/Virtual Storage Access Method).
An IBM access method for direct or sequential
processing of fixed and variable length records on disk
devices.

VSE/VSAM catalog. A file containing extensive file
and volume information that VSE/VSAM requires to
locate files, to allocate and deallocate storage space, to
verify the authorization of a program or an operator to
gain access to a file, and to accumulate use statistics for
files.

VSE/VSAM managed space. A user-defined space on
disk that is placed under the control of VSE/VSAM.

W

wait for run subqueue. In VSE/POWER, a subqueue
of the reader queue with dispatchable jobs ordered in
execution start time sequence.

wait state. The condition of a processor when all
operations are suspended. System recovery from a hard
wait is impossible without performing a new system
startup. See hard wait.

Workstation File Transfer Support. Enables the
exchange of data between IBM Personal Computers
(PCs) linked to a z/VSE host system where the data is
kept in intermediate storage. PC users can retrieve that
data and work with it independently of z/VSE.

work file. A file that is used for temporary storage of
data being processed.

Numerics

24-bit addressing. Provides addressability for address
spaces up to 16 megabytes.

31-bit addressing. Provides addressability for address
spaces up to 2 gigabytes.

64-bit addressing. Provides addressability for address
spaces up to 2 gigabytes and above. See also 24-bit
addressing.

410 VSE/VSAM V9R2 User’s Guide and Application Programming

Index

Special characters
// DLBL job control statement

(VSE/VSAM) 28
// DLBL statement, when required 25
// EXEC IDCAMS statement 20
// EXEC job control statement

(VSE/VSAM) 20, 38
// EXEC PARM 39
// EXTENT job control statement

(VSE/VSAM) 41
// UPSI statement (with maintain

VTOC/VOL1 labels) 385
// UPSI statement (with SNAP

trace) 383

Numerics
16MB line of storage, buffers above 19
3390-9 disk device 77
3995-151 Optical Library Server

support 92
3995-151, catalog on 359

A
abbreviations, list of xvii
abnormal

end with reusable file, default for 32
end-of-job disposition (managed-SAM

access) 36
end-of-job disposition (VSE/VSAM

access) 36
termination, find end-of-file at 113

abnormal end of job 209
ACB (VSE/VSAM macro)

access to SAM ESDS files 155
buffer space allocation 98
buffer space for index records 122
buffer space size 97
data set name sharing 204
DDNAME (file name) parameter 29
password, supplying 126
relationship to FILE(dname) 29
VTAM compatibility 361

ACB JRNAD exit (monitoring CA
splits) 115

ACB macro 208
ACB macro format 209
access method control block (ACB) 196
access method control block macro (ACB)

activation of requests 209
active requests 246
operand notations for macros 325
parameter lists for macros 333
positioning information 209

access modes valid for SAM ESDS
files 160

access modes valid for VSE/VSAM ESDS
files 160

access passwords in a catalog 126

accessibility xiv
ACF/VTAM similarities with

VSE/VSAM 361
activating VSE/VSAM data

compression 68
adding records to a file 114
addition, addressed sequential 312
addressed access 246, 250, 252, 253, 319
addressed-direct retrieval 303
addressed-sequential retrieval 300
allocate buffer space

above the 16MB line 19
ACB macro specification 98
for file 29
for path 100
minimum 98
performance considerations 101, 102
preventing deadlock in exclusive

control 104
supervisor buffers, specifying number

of 24
allocate file implicitly

BLK parameter (SAM ESDS) 29
CYL parameter (SAM ESDS) 29
primary allocation (SAM ESDS) 29
RECORDS parameter (SAM

ESDS) 29
RECSIZE parameter 29
secondary allocation 29
secondary allocation (SAM ESDS) 29

allocation limits of control area for CKD
devices 88

ALTER (IDCAMS command)
catalog entries (SAM ESDS) 175
free space, changing values 114
using with SAM ESDS files 175

alter file definitions in
password-protected catalog 126

altering VSE/VSAM control blocks 240
alternate index

access to 8
advantage of 8
example 8
path to 8
suballocating data space 86
UPGRADE attribute and share

options 131
upgrade record, what it is 379

AR commands
IDCAMS SNAP 187

assign
device to master catalog 23
device to volume 24

audience of this publication xv
authorization verification routine 130
authorize access to resources 125
automated system initialization (ASI)

IPL commands, specifying 23

B
back up

considerations (catalogs) 139
considerations (files) 137, 138
considerations (volumes) 137, 139
dialog for 12
generic names, using 56
tools 142

BACKUP (IDCAMS) 188
BACKUP command

migration to Large DASD 79
migration to SCSI disk 56
overview 3
use of 138

Backup/Restore Function
loading into SVA 21
protection of resources, use in 140
storage requirements 21
use of 3
use with user-generated

supervisor 21
backward reading of a VSE/VSAM

file 253
base cluster, paths to 8
basic information on VSE/VSAM

advantages of VSE/VSAM 1
alternate index, advantage of 8
authorize access to resources 125
buffer allocation above 16MB line 19
buffer space for CIs (with LSR) 102
buffer space for CIs (with NSR) 96
catalog check program

(IKQVCHK) 375
catalog, defining files in 43
catalogs supported 7
catalogs, advantages of 7
catalogs, defining through job

control 42
catalogs, moving from device to

device 53
central control of files 1
cluster 5
commands of IDCAMS, overview

of 9
communicate with VSE/VSAM 9
compatibility VSE/VSAM Version 2

and 7 15
compatibility with other

products 359
control area (CA) 5
control area size 88
control interval (CI) 5
control interval size 90
data integrity 125
data management 47
data organization concepts 4
data protection 1, 125
data space 5
data space classification 86
defining data space 48
defining files 48

© Copyright IBM Corp. 1979, 2014 411

basic information on VSE/VSAM
(continued)

device independence 1
diagnosis tools, overview 375
dialog, overview of 12
distributed free space 114
dynamic space allocation 1
environments, applicable 15
file organization 4
file types supported 4
files control 1
files, defining 48
files, move from device to device 53
files, transporting between

systems 52
functions of VSE/VSAM 2
IDCAMS commands (overview) 9
IDCAMS utility program, use of 9
indexes supported 8
integrity of resources 134
interactive interface for users 12
introduction 1
ISAM files, support for 351
ISAM Interface Program 351
ISAM Interface Program, use of 1
ISAM to VSE/VSAM, convert 1
job catalog 7
job control requirements 25
job control to access VSE/VSAM

files 12
labels used with VSE/VSAM 363
macros of VSE/VSAM 11
maintain VTOC/VOL1 labels

(IKQVDU) 385
master catalog 7
modeling 58
operation, IPL commands 23
organization elements 5
overview 1
ownership of data space 47
password checking 126
password-protected objects, operating

on 126
passwords 1
performance considerations 67, 85
planning for VSE/VSAM 15
portability of data 1
protection of resources 125
protection of resources, tools for 142
real mode operation 16
SAM ESDS file, purpose of 3
SAM ESDS files explained 155
SAM files, support for 155
SAM to VSE/VSAM, convert 1
scope of VSE/VSAM 1
SNAP trace program

(IKQVEDA) 380
space allocation 111
space management 47
statistics on files 123
storage required for VSE/VSAM 15
use of VSE/VSAM 1
user catalogs 7
virtual disk support 51
virtual mode operation 16
VSE/VSAM Backup/Restore Function,

use of 3

basic information on VSE/VSAM
(continued)

VSE/VSAM Space Management for
SAM Function, use of 3

Basic Security Manager (BSM)
IDCAMS commands security 128

Batch security 128
BIG DASD 77
BLDVRP macro format 220
BLK specification (SAM ESDS) 29
block size related to CI size (for data

component) 92
blocks allocation (SAM ESDS),

specifying 29
blocks per max CA (FBA devices) 89
blocks per min CA (FBA devices) 89
boundaries of CAs and performance 88
buffer allocation, miscellaneous

notes 102
buffer hashing 102
buffer pools (LSR), statistics on use 275
buffer pools, statistics on LSR 124
buffer space, I/O

additional (for CIs) 96
allocation (per ACB macro

specification) 98
allocation parameters in ACB

macro 98
control intervals (SAM ESDS) 171
default 90
direct processing considerations 97
for a file, specifying 29
for index records 122
minimum data buffers 98
minimum index buffers 98
performance considerations 97
preventing deadlock in exclusive

control 104
sequential processing

considerations 97
specifying 29
specifying for index records 122
specifying through ACB macro 97
specifying through BUFFERSPACE

parameter 97
specifying through DLBL

statement 98
specifying, methods of 97
supervisor buffers, specifying number

of 24
buffer write macro (WRTBFR)

operand notation 332
buffer writing 292
buffering, extended 250, 319
buffering, normal 250
buffers for VSE/VSAM use (ACB

macro) 209
buffers, specifying number of 29
BUFFERSPACE parameter 97, 122

effect on CA size with Large
DASD 79

BUFND parameter
in // DLBL 29, 98
in ACB macro 97

BUFNI parameter
in // DLBL 29, 98, 122
in ACB macro 97, 122

BUFSIZE operand (IPL) 24
BUFSIZE parameter

in IPL command 24
supervisor buffers, specifying 24

BUFSP parameter
in // DLBL 29, 98, 122
in ACB macro 97, 122

bytes per track (CKD devices) 89

C
capacities of disk storage devices 89
CAT=filename specification 29
catalog

// DLBL required 26
accessing passwords, hierarchy

of 127
advantages of 7
assigning data space to performance

class 86
authorization verification routine 130
back up considerations/methods 139
buffers for control blocks 39
check program (IKQVCHK), purpose

of 375
content relating to files/volumes 137
cross-system sharing 133
damaged, rebuilding if 141
data output from catalog check 378
data space ownership 47
data space ownership, releasing 49
default, explained 46
defining files in 43
defining through job control 42
DFSMSdfp VSAM, compatibility of

ICF catalogs 361
entries for cluster, purpose of 47
entries for files, purpose of 47
entries for files/volumes 137
entries for volumes, purpose of 47
entries for volumes, scope of 48
explicit specification 45
file name, specifying 29
file ownership, overriding 29
files in, performance

considerations 85
high-key-range records 378
IDCAMS commands and job

control 26
indicator of volume ownership 48
job catalog 7
job control requirements 25
listing entries 127
listing file definitions 126
low-key-range records 378
management, dialog for 12
master catalogs 7
migrating from device to device 53
migration 55
mounting requirements for

volume 42, 43
name, specifying through

IDCAMS 26
name, specifying through job

control 25
ownership of space on volume

(restrictions) 43

412 VSE/VSAM V9R2 User’s Guide and Application Programming

catalog (continued)
password protection (user and master

catalog) 126
performance on information

requests 43
protection considerations 139
recover from catalog cannot be

opened 149
recover from catalog volume

unusable 150
recover from files cannot be

opened 149
recover from inaccessible volume 152
recover from unusable catalog 148
recovering a 139
recovery considerations 139
relationship to files 42
reload function and REPRO 139
required 42
restore considerations 140
search order 46
search order and // DLBL

specification 46
sharing across systems 133
space ownership 48
space ownership on volume

(restrictions) 43
supported 7
transporting between VSE/VSAM

systems 52
types supported 7
unload function and REPRO 139
unload to VSAM or nonVSAM

file 139
user catalogs 7
volume ownership, removing 49

catalog (job)
// DLBL required 26
define through job control, how

to 44
purpose 7
relationship to user catalog 7
use of 44

catalog (master)
// DLBL required 26
assigning device to 23
back up, creating a 139
define through job control, how

to 43
file-ID 43
job control requirements 25
multiple 42
name of 43
not shared across systems 133
password protection 126
relationship to user catalogs 7

catalog (user)
// DLBL required 26
advantages of 7
back up, creating a 139
define through job control, how

to 44
deleting empty 126
multiple 43
password protection 126
relationship to master catalog 7
shared across systems 133

catalog check program (IKQVCHK)
actions on error discovery 376
examples 376
output of 378
purpose 375
running 376
when to use 375

catalog display macro (SHOWCAT)
operand notation 332
parameter list 343

catalog mismatch
actions and causes 150
data space group 150
entries do not match description of

volumes 150
extents 150
file directory 150
files 150
guide to solving problems 150
high RBA 150
key range 150
minimization 150
recovery procedures 146
space map 150
statistics 150
volume entry 150
volume information 150

catalog protection
back up considerations/methods 139
backup copy, creating a 139
REPRO command, use of 139
VSE/Fast Copy utility, use of 139

catalog restore considerations 140
catalog space

GETVIS requirements 39
multiple volume ownership

(MVS) 359
ownership 48
ownership bit 48

cataloging files 48
catalogs supported 7
CCDS 67
CCDS, how to define it 70
CDLOAD macro 345
chain of RPLs, positioning information

for 246
chaining I/O requests 246
chaining request parameter lists 306
change catalog entries (SAM ESDS) 175
changes in this publication xxi
changing VSE/VSAM control blocks 240
checking of passwords by

VSE/VSAM 126
CI access 250, 260
CIDF (control information definition

field) 115
CLASS parameter 86
class values for data spaces 86
close disposition 209

abnormal end-of-job (managed-SAM
access) 36

abnormal end-of-job (VSE/VSAM
access) 36

avoiding loss of data 38
deletion of file 36
explained 36

close disposition (continued)
file contents (managed-SAM access),

loss of 36
file contents (VSE/VSAM access), loss

of 36
file contents, protecting 38
managed-SAM access 36
of files 36
VSE/VSAM access 36

CLOSE macro
close routine 223
closing a file 223
compared to TCLOSE 223
description 223
format 224
return codes 224
use 200

close routine 223
closing a file 223
cluster

command (SAM ESDS) 162
data component 5
define (SAM ESDS) 162
defining 48
index component 5
paths to alternate indexes 8
suballocating data space 86
what it is 5

CLUSTER command (with SAM
ESDS) 175

CMP-ACTIVE 69
CMP-REJECT 69
CMP-UNDET 69, 147
CMPPENDING 69
CMPSC 67
CNV access 260
codes

ACB return code 33
actions on errors 376
catalog management reason code 384
catalog management return code 384
CODE option (file access) 126
CODES attribute in modeling 59
condition code, changing a 11
condition code, testing a 11
data security 126
error handling (with IIP) 357
job return code is not 0

(managed-SAM access) 36
job return code is not 0 (VSE/VSAM

access) 36
maintain VTOC/VOL1 labels

(IKQVDU) 388
on open failure 33
on time stamp mismatch 369
sequence error (with IIP) 354
tracing during processing (SNAP

trace) 375
with OPEN error message

(cross-system sharing) 133
commands (IDCAMS)

// DLBL required for catalogs 26
accessing passwords in a catalog 127
and // DLBL specifications 28
and // EXEC specifications 38
and // EXTENT specifications 41
BACKUP 3

Index 413

commands (IDCAMS) (continued)
BACKUP, use of 138
BUFFERSPACE and BUFSP

relationship 29
BUFND relationship 29
BUFNI relationship 29
catalog, defining files in 43
considerations for IDCAMS

operations 127
data integrity 135
DEFINE and file-ID relationship 29
DEFINE CLUSTER 48
DEFINE CLUSTER (use in data

integrity) 135
DEFINE SPACE 48
DEFINE SPACE (use in data

integrity) 135
DEFINE USERCATALOG (use in data

integrity) 136
defining SAM ESDS file

explicitly 162
deleting empty data space 127
deleting non-empty data space 127
deleting protected file entry from

catalog 127
DTFIS (ISAM) related to

DEFINE 355
DTFIS (ISAM), support for 355
expiration date relationship to //

DLBL 29
explicit catalog specification 45
EXPORT command, use of 138
EXPORTRA command, use of 138
file access, considerations for 127
file name, specifying 29
functional commands 10
IMPORT command, use of 138
IMPORTRA command, use of 138
job control statements required for

files 27
listing catalog entries 127
migrating catalogs from device to

device 55
migrating files from one device type

to another 56
migrating files from one volume to

another 56
modal commands 11
MODEL subparameter 58
name of catalog, specifying 26
operations and passwords 127
overview 9
password authorizations 127
password incorrect, prompt on 127
PRINT and CAT relationship 29
REPRO and CAT relationship 29
REPRO command, use of 138, 139
RESTORE 3
RESTORE, use of 138
SAM ESDS files, support for 156
SAM ESDS files, using with 175
time stamp entry, when updated 51
transporting catalogs between

VSE/VSAM systems 52
transporting files between

VSE/VSAM and DFSMSdfp
VSAM 52

commands (IDCAMS) (continued)
transporting files between

VSE/VSAM and MVS/VSAM 52
transporting files between

VSE/VSAM systems 52
types of commands 9
with SAM ESDS 156

commands (other than IDCAMS)
ASI, specifications for 23
IPL, specifications for 23
lock file, defining 23
master catalog, assigning device

to 23
supervisor buffers, specifying number

of 24
communicate with VSE/VSAM, how

to 9
compatibility

ACF/VTAM with VSE/VSAM 361
DFSMSdfp VSAM ICF catalogs with

VSE/VSAM 361
VSE/VSAM files to DFSMSdfp

VSAM 359
VSE/VSAM Version 2 and 6 15
with other IBM products 359

compressed data, introduction 67
compressed files, working with 67
Compression Control Data Set 67
Compression Control Data Set, Defining

the 70
compression control services trace 380
compression facility, ESA/390 67
compression management services control

block trace 380
compression prediction 72
compression states 69
concurrent I/O requests 209
connecting a file for processing 242
control area (CA)

allocation limits for CKD devices 88
and index record size 88
content of 5
crossing boundaries 88
disk storage size (CKD devices) 89
disk storage size (FBA devices) 89
fixed-size blocks (FBA devices) 88
free space, specifying 114, 115
maximum size 88
maximum size, relationship to

cylinder size 88
minimum size 88
minimum size, relationship to track

size 88
preformatting before inserting

records 113
size of 5
size, influencing 88
size, performance implications 88
specifying space 88
statistical information 123
statistical information not

updated 123
unused free space 116
what it is 5

control area, splitting of
direct processing 116
examples of record insertion 117

control area, splitting of (continued)
monitoring, means for 115
overheads 115
placement of records 116
rules 116
sequential processing 116

control block display macro (SHOWCB)
operand notation 329
parameter list 338

control block generate macro (GENCB)
operand notation 326
parameter list 334

control block manipulation macros 195
control block modify macro (MODCB)

operand notation 328
parameter list 336

control block test macro (TESTCB)
operand notation 329
parameter list 339

control information definition field
(CIDF) 115

control interval (CI)
and index record size 88
block size computation for data

component 90
buffer space (SAM ESDS) 171
for data component, performance

considerations 94
free space, specifying 114, 115
handling CIs 125
password parameter 125
physical block size computation for

data component 90
relationship to block size 90
size calculations 95
size defaults 90
size in a data component 92
size in an index component 94
size of 5
size relation to block size (for data

component) 92
size relation to track space (for data

component) 92
size relationship to other

specifications 90
size, displaying actual settings 94
size, effect on buffer size 96
size, performance considerations 94
specifying size 90
statistical information 123
statistical information not

updated 123
unused free space 116
what it is 5

control interval, splitting of
direct processing 116
examples of record insertion 117
placement of records 116
rules 116
sequential processing 116

CONTROLPW (control interval password
parameter) 125

converting ISAM files to VSE/VSAM
files 1

converting SAM files to VSE/VSAM
files 1

cross-system sharing 133

414 VSE/VSAM V9R2 User’s Guide and Application Programming

current type data, recovery of 141
CYL specification (SAM ESDS) 29
CYLINDER parameter 111
cylinder size (CKD devices) relationship

to max CA size 88
cylinders allocation (SAM ESDS),

specifying 29
cylinders per volume (CKD devices) 89

D
DASD

support of Large DASD 77
DASD sharing facility (VSE/VSAM) 23,

131
data

component name 5
integrity, tools for 134, 142
organization concepts 4
portability 1
portability to MVS/VSAM 359
recovery procedures 146
recovery, levels of 141

data compression
activation 68
backup 153
backup and restore, EXPORT

command 138
CMP-UNDET 147
CMP-UNDET, how to recover 147
compatibility considerations 359
compression control services

trace 380
compression management services

control block trace 380
compression states 69
data format of records 70
defining the CCDS 70
eligible data set types 71
introduction 67
portability to DFSMSdfp VSAM 359
restrictions 71
transporting files between

systems 52
data loss, avoiding 134
data protection 125
data recovery 125
data secure file bit, setting of 48
data set name sharing (ACB macro) 209
data set name, sharing of 204
data space

class value, assigning 86
continuation, where described 363
controlling performance 86
define (example) 371
defining 48
defining for files with UNIQUE

attribute 48, 370
delete, how to 49, 385
deletion, effect on VTOC 366
descriptor 363
empty, deleting 127
extents, where recorded 48, 363
format-1 label processing 367
format-3 label processing 368
format-4 label processing 369
group mismatch 150

data space (continued)
label (format-1 label) 363
label deletion from VTOC 366
label processing overview 365
name in the VTOC 50, 363
name, assignment of 363
names, format of 50
non-empty, deleting 127
ownership 5
ownership, releasing from 49
performance, controlling 86
protection status, indication of 48
purpose of 5
records of ownership, where

located 48
redefine, how to 385
relationship of volumes, files,

labels 364
suballocating 86
suballocation 366, 369
unique (user-specified names) 50
VOL1 label processing 367
VTOC label processing 366
work files in 51

data space class
CLASS parameter 86
classification, values for 86
default value 86
example 86
for MVS/VSAM 86
high performance value 86
IMPORT command 86
restrictions 86
USECLASS parameter 86
user-defined values 86
where specified 86

DATE disposition (ACB macro) 209
date, expiration 29
DBB 68
DDN (in ACB macro) 204
DDNAME (file name) parameter of

ACB 29
deadlock in exclusive control 104
DEF (IPL command) 23
DEF SYSCAT (assign device to master

catalog) 23
default catalog 46

// DLBL with application
programs 25

explained 46
ownership, overriding 29
with catalog check program

(IKQVCHK) 376
default volumes 66
deferred requests, relating 292
deferring write operations 291
DEFINE (IDCAMS command)

allocation of space 112
allocation of space for dynamic

files 112
allocation of space for modeling 112
basics on dynamic files 112
block size specification 90
buffer space default 90
buffer space for index records 122
buffer space size 97
CI size specification 90

DEFINE (IDCAMS command) (continued)
cluster 48
CLUSTER parameters (with SAM

ESDS) 163
CLUSTER parameters with DTFIS

(ISAM) 355
control interval size 90
data space class 86
data space on volume 48
date specification 29
dynamic file, specifying 112
files, defining 48
free space 114
identify volume to contain files 48
key compression 95
key range (with multiple

volume) 104, 105
modeling of objects 58
modeling of parameters 58, 63
NOWRITECHECK parameter 113
ORDERED parameter 106
ordered space allocation 106
preformatting space for CAs 113
record size 90
record size computation 90
records, write check of 113
RECOVERY parameter 113
RECOVERY/SPEED

considerations 113
space allocation (multiple volume),

examples 106
space allocation options 111
space allocation parameters 111
SPEED parameter 113
UNORDERED parameter 105
unordered space allocation 105
volume to contain file, identify 48
WRITECHECK parameter 113

DEFINE CLUSTER command (use in data
integrity) 135

DEFINE SPACE command (use in data
integrity) 135

DEFINE USERCATALOG command (use
in data integrity) 136

defining
access authority 125
clusters 48
data space 48
files 48
files with UNIQUE attribute 48
indexes 8
nonVSAM files in VSE/VSAM

catalog, identifying 48
objects (command overview) 10
objects by way of modeling 58

Defining the Compression Control Data
Set 70

DELETE (IDCAMS command)
data space 49
IGNOREERROR and checks on

catalog 375
remove volume ownership from

catalog 49
using with SAM ESDS files 175

DELETE disposition (ACB macro) 209
delete records (ERASE macro) 227

Index 415

delete VSE/VSAM resource pool
(DLVRP) macro 225

deleting
access authority 125
cluster 385
data space 49
data space, effect on VTOC 366
data space, how to 49, 385
empty data space 127
empty user catalog 126
files (SAM ESDS) 175
information from catalog 142
information from VTOC 142
labels from VTOC 366
non-empty data space 127
objects (command overview) 10
protected file entry from catalog 127
records 116
space using DELETE SPACE

FORCE 142
unprotected files 127
VTOC label 385

deletion, addressed sequential 318
deletion, keyed direct 317
device

assignment when mounting
volume 24

automatic assignment to volume 24
block size related to CI size 92
disk storage size (FBA devices) 89
fixed-size blocks (FBA devices) 88
limits of CA allocation 88
SCSI 80
storage capacities for CKD 89
support for 80
track space related to block size 92
track space related to CI size 92
track/cylinder size for CKD 88

device dependencies 16, 77
Device Support Facilities (DSF)

initialize disk pack (format-4 label
creation) 363

specify VTOC size 367
when used 363

DFSMSdfp VSAM
compatibility of ICF catalogs with

VSE/VSAM 361
transporting files to VSE/VSAM 52

diagnosis tools
catalog check program

(IKQVCHK) 375
maintain VTOC/VOL1 labels

(IKQVDU) 385
overview 375
SNAP trace program

(IKQVEDA) 380
diagnostics (processing option

PARM) 39
dialogs (z/VSE)

overview 12
dictionary 67
dictionary building block 68
direct processing 253
direct retrieval 253
directory mismatch 150
disability xiv
disk extent information 41

disk storage devices, capacities of 89
diskette extent information 41
DISP specification 29
disposition of a file 209
disposition of files 32
disposition, close 209
distributed free space 114
DLBL statement (job control)

alternative specification for catalog
name 26

and catalog search order 46
and defining files 48
avoiding loss of data 38
BLK specification 29
buffer number, specifying 29
buffer space for index records 122
buffer space size 98
buffer space, specifying 29
CAT=filename specification 29
CYL specification 29
DISP (disposition) specification 29
disposition control (SAM ESDS) 159
explicit catalog specification 45
file disposition, specifying 29
file name for catalog owning a

file 29
file name, specifying 29
file-ID specification 29
files with UNIQUE attribute, how to

define 48
for file processing 370
for job catalog 44
for master catalog 25
for unique files 367
for user catalog 44
format of 29
information for implicit define (SAM

ESDS) 168
job catalog, how to define 44
master catalog, how to define 43
options of the ACB macro 209
record allocation number (SAM

ESDS), specifying 29
record allocation size (SAM ESDS),

specifying 29
RECORDS specification 29
RECSIZE specification (SAM

ESDS) 29
required when using IDCAMS

commands 26
user catalog, how to define 44
virtual storage for buffer space 29

DLF (IPL command) 23
DLVRP (delete VSE/VSAM resource

pool) macro 225
DLVRP macro format 225
dname (file name) specification 29
downlevel type data, recovery of 141
DSN (in ACB macro) 204
DSN structure 215
DSN structure, GETVIS space

requirement 16
DSN=dsname (scratch VTOC label for a

specified file) 385
DTFPH support for SAM ESDS 155, 169
DTFSD information (implicit define SAM

ESDS file) 167

DTFSD information (implicit define SAM
ESDS work file) 167

DTFSD MOUNTED=SINGLE information
(implicit define SAM ESDS work
file) 167

DTFSD support for SAM ESDS 155
duplicate data condition, recover

from 146
dynamic files 112
dynamic space allocation

advantages 112, 156
basics 5
device independence 1
dynamic file, advantages 112
dynamic file, specifying 112
dynamic file, what it is 112
example (SAM ESDS) 182
EXCP support (SAM ESDS) 169
for files 112
how it works 5, 112, 156
job control (SAM ESDS) 156
making a file a dynamic file 112, 182
NOALLOCATION, use of 112
performance 112, 169
primary allocation 158
restrictions 112
REUSE with NOALLOCATION,

purpose of 182
SAM ESDS files, specifying for 169
secondary allocation 158
specifying for work files 165
unallocated dynamic file 33
with SAM ESDS files 156
work files (SAM ESDS), specifying

for 158

E
empty

CAs/CIs and FREESPACE
parameter 115

data space (non-empty), deleting 127
data space, deleting 127
deallocate a file, meaning of 32
dynamic file and

EXPORT/EXPORTRA support 112
file, open failure 36
object, backup 3, 138
object, restore 3
object, what it is 3, 56
objects, backup 55
objects, restore 55
reset a file, meaning of 32
user catalog, deleting 126

empty file (SAM ESDS), treatment
of 171

end-of-file processing 197, 229
ending a processing request (ENDREQ

macro) 226
ENDREQ macro format 226
Enterprise Storage Server (ESS) 10, 89
environments for VSE/VSAM 15
EODAD (end of data address) exit 197,

229
ERASE macro

description 227
format 227

416 VSE/VSAM V9R2 User’s Guide and Application Programming

ERASE macro (continued)
operands 227

ESA/390 compression facility 67
ESDS file (SAM)

access by ACB 155
access by VSE/VSAM programs 155
access considerations for

managed-SAM files) 171
access mode and record format,

specifying 163
access modes, valid 160
accessing data through DTFPH 165
allocating disk space as single

extend 165
allocating file extension space 159
allocation size, requesting 156
alter catalog entries 175
ALTER command, using 175
assignments ignored 171
BLOCKS parameter explained 163
buffer space for CI 171
change programs to VSE/VSAM

programs 160
CI and track/cylinder

relationship 156
CLOSE, checking for 175
CLUSTER command, using 175
CLUSTER parameters explained 163
convert to VSE/VSAM files 160
convert unmanaged-SAM files 175
creating, steps in 161
CYLINDERS parameter

explained 163
data not in CI format, accessing 163
define a default model (example) 181
DEFINE CLUSTER command,

purpose of 155
DEFINE CLUSTER command,

using 175
define dynamic (example) 182
define implicitly at OPEN 159
defined 155
defining explicitly 162
defining implicitly 166
defining, ways of 162
DELETE command, using 175
deleting explicitly 175
deleting implicitly 178
device independence 156
device-dependent SAM functions,

restrictions for 172
disk-independence, recommendations

for 171
DISP (disposition) parameter 159
disposition control for REUSE

file 159
disposition default (example) 159
DTF not opened (file ignored) 171
DTF specifications, restrictions

for 172
DTFPH access support 169
DTFPH method of access, when to

use 163
DTFPH specifications, restrictions

for 172
DTFPH support 155

ESDS file (SAM) (continued)
DTFSD information (implicit define

work file) 167
DTFSD information (implicit

define) 167
DTFSD MOUNTED=SINGLE

information (implicit define) 167
DTFSD support 155
dynamic space allocation 156
dynamic space allocation (work

files) 165
dynamic space allocation,

performance 169
dynamic space allocation,

specifying 169
empty file, treatment of 171
explicitly define 162
EXPORT command, using 175
extending existing files 159
format and access mode,

specifying 163
format differences to VSE/VSAM

ESDS file 183
formats, abbreviations used for 163
functions available 156
GETVIS space, specifying 171
ICCF, partition independence

with 165
IDCAMS commands, using 156, 175
ignored (DTF not opened) 171
implicit define 156
implicit define (example) 181
implicit define cluster, occurrences

of 166
implicit define cluster, VSE/VSAM

assumptions 166
implicit define, information from

DLBL statement 168
implicit define, information from

DTFSD 167
implicit define, information from

DTFSD MOUNTED=SINGLE 167
implicit define, information from

EXTEND statement 168
implicit delete 156
implicit deletion, cases of 178
IMPORT command, using 175
job control 156
level 1 advantages over SAM

file 156, 160
level 2 advantages over SAM file 160
level 3 advantages over SAM file 160
LISTCAT command, using 175
loading (example) 179
managed-SAM access, define

considerations 170
managed-SAM access, purpose

of 169
managed-SAM, access

considerations 171
management for work files (SAM

ESDS) 158
migrating SAM files 160
modeling for DEFINE CLUSTER

command 156
multiple extends, support for 156
multiple volumes, support for 156

ESDS file (SAM) (continued)
NOCIFORMAT specification, meaning

of 163
NONINDEXED file, establishing as

SAM ESDS file 163
overview 155
partition independence (work

files) 158
partition independence,

specifying 163, 165
physical record 185
planning for 158
portability 156
primary space allocation

(dynamic) 158
PRINT command, using 175
processor independence (work

files) 158
processor independence,

specifying 163, 165
programs changes 160
protection 156
purpose of 3
RECORDFORMAT parameter

explained 163
RECORDFORMAT parameter,

purpose of 155
RECORDFORMAT to RECORDSIZE

relationship 163
RECORDSIZE parameter

explained 163
recovery 156
REPRO command, using 175
requirements for creating/using 155
resetting at OPEN 159
restrictions in using 172
retention period default (work

files) 165
REUSE parameter 166
SAM file, defining for use in

VSE/VSAM data space 156
SAM logical block 185
secondary space allocation

(dynamic) 158
sharing characteristics 170
space assignment 162
space management (automatic) 158
space, where to specify 162
specifying 155, 161
specifying a file as ESDS file 163
system work file support 168, 172
TRACKS parameter explained 163
using IDCAMS commands 175
VERIFY command, using 175
VOLUMES parameter explained 163
volumes, specifying 163
VSE/VSAM access, considerations

for 173
VSE/VSAM block 185
VSE/VSAM Space Management for

SAM Function, use of 156
work files, considerations 158
work files, space management

for 158
ESDS file (VSE/VSAM)

access modes, valid 160

Index 417

ESDS file (VSE/VSAM) (continued)
format differences to SAM ESDS

file 183
examples

allocation for multiple volumes (an
exercise) 110

alternate index 8
CA splits 117
catalog check program

(IKQVCHK) 376
CI splits 117
data space class 86
data spaces, define 371
defining catalogs through job

control 44
explicit catalog specification 45
explicit models (allocation) 59
explicit models (noallocation) 61
file, define 373
file, process 373
implicit models (allocation) 61
invoke IDCAMS, how to 39
job catalog, use of 44
job streams 371
macro operands, notation of 325
maintain VTOC/VOL1 labels 385
PARM parameter 39
SAM ESDS file, define default

model 181
SAM ESDS file, define dynamic 182
SAM ESDS file, define implicitly 181
SAM ESDS file, loading 179
SNAP trace program

(IKQVEDA) 383
space allocation on multiple

volumes 106
unique file, define 373
volume layout (data spaces, files,

VTOC) 364
exclusive control, preventing deadlock

in 104
EXCPAD (EXCP address) exit 197, 230,

393
EXEC statement (job control)

catalog check program
(IKQVCHK) 376

coding rules 39
format of 39
GETVIS for non-SVA-eligible

phases 39
invoke IDCAMS, how to 39
job termination, how to avoid 39
non-SVA-eligible phases, GETVIS

for 39
PARM parameter, advantages of

using 39
PARM parameter, examples of 39
processing options 39
real mode, execute program in 39
size to load a program 39
SIZE=AUTO recommended 39
SNAP trace program

(IKQVEDA) 382
VTOC/VOL1 label maintain program

(IKQVDU) 385
execute form of GENCB, MODCB,

SHOWCB, TESTCB 323

exit list (EXLST) macro 197
exit list macro (EXLST)

positioning if I/O error occurs 234
exit, security-verification 130
EXLST macro 227
EXLST macro format 228
expiration date 29
explicit

allocation model 58
allocation model (example) 59
catalog specification 45
define cluster (SAM ESDS) 162
defining file (SAM ESDS) 162
modeling (SAM ESDS) 156
modeling, specifying the model 58
models 58
models (allocation) 59, 61
NOALLOCATION model 58
NOALLOCATION model

(example) 61
opening of file 27
specifications when migrating objects

to other device 57
EXPORT (IDCAMS command)

dynamic file support 112
use of 138
using with SAM ESDS files 175

export file (SAM ESDS) 175
EXPORTRA (IDCAMS command)

dynamic file support 112
use of 138

extended user buffering option 250
extended-addressed KSDS 246, 250, 252,

253, 260, 289, 319
extent information, when to specify 41
Extent matrix 279
extent overlap, action on 367
EXTENT statement (job control)

and defining files 48
define files with UNIQUE

attribute 48
for unique files 367
for unique files, validation 367
format of 41
information for implicit define SAM

ESDS file 168
logical unit of volume 41
number of blocks/tracks for file 41
relative block/track of extent 41
serial number of volume 41

extents of data space, where recorded 48
EXTRACT codes 345

F
Fast Copy utility (VSE)

backup copy, creating a 139
backup copy, restoring a 139
use in protecting resources 134

fast recovery of files, preparing for 153
FAT DASD 77
Fibre Channel Protocol (FCP) 80
file closing, temporarily 286
file disposition

basic information 32
considerations (DLBL, ACB, DTF) 38
DISP parameter, default of 32

file disposition (continued)
on closing files 36
on opening files 33
specification for OPEN/CLOSE

processing 29
states at OPEN 33
status at CLOSE 36
where to specify 32

file processing, close 223
file protection

back up considerations 138
BACKUP command, use of 138
data secure file bit, setting of 48
EXPORT command, use of 138
EXPORTRA command, use of 138
IMPORT command, use of 138
IMPORTRA command, use of 138
REPRO command, use of 138
RESTORE command, use of 138
user-written back up programs 138

file space
dynamic allocation 112
NOALLOCATION parameter 112

file types supported 4
file, connecting for processing 242
files

// DLBL statement 25
adding records, considerations

for 114
altering definitions in

password-protected catalog 126
and lock facility 131
authorization verification routine 130
back up and recovery

considerations 137, 138
back up methods 138
block, allocation size (SAM ESDS) 29
block, relative 41
blocks, allocating number of 41
buffer space, specifying 29
buffers, specifying number of 29
cataloging 48
CLOSE disposition 36
cross-system sharing 133
cylinder, allocation size (SAM

ESDS) 29
data space records, where located 48
data space suballocation 366, 369
define unique (example) 373
defining 48
defining and DLBL/EXTENT

statements 48
defining in catalog 43
defining with UNIQUE attribute 48
defining, what it means 7
delete, how to 385
deleting protected file entry from

catalog 127
directory mismatch 150
disposition, basic information on 32
disposition, specifying 29
duplicate file for back up,

creating 138
entries in catalog 137
entries in catalog, purpose of 47
extents mismatch 150
file-ID, specifying 29

418 VSE/VSAM V9R2 User’s Guide and Application Programming

files (continued)
formats 4
high RBA mismatch 150
IDCAMS and job control

statements 27
identifier, specifying 29
identify volume to contain files 48
identifying nonVSAM files in

VSE/VSAM catalog 48
in catalog, performance

consideration 85
job control statements required 27
listing definitions in a catalog 126
loading 369
loading a file, considerations for 114
loading records, considerations

for 114
management 7
management, dialog for 12
migrating from one device type to

another 56
migrating from one volume to

another 56
mismatches 150
name associated with volume 29
name, specifying 29
non-unique, defining 54, 366, 369
nonVSAM, unloading a catalog

to 139
number of blocks, allocating 41
number of tracks, allocating 41
OPEN disposition 33
opening for processing

(SHAREOPTIONS) 131
organization 4
ownership, overriding 29
portability to MVS/VSAM 359
porting, create copy for 138
processing (example) 373
processing (SHAREOPTIONS) 131
processing, DLBL statement for 370
protection considerations 127, 136
quick recovery, considerations

for 153
read integrity, ensuring 131
record allocation size (SAM ESDS),

specifying 29
record, allocation size (SAM

ESDS) 29
records adding, considerations

for 114
records, number of 29
recover from duplicate data

condition 146
recover from file cannot be

opened 147
recover from file completely

unreadable 147
recover from file not properly

closed 146
recover from file partially

unreadable 147
recover from files cannot be

opened 149
recover from inaccessibility 147
recover from incomplete write to

disk 146

files (continued)
recover from incorrect high RBA 146
recovery and backup

considerations 136
relationship of volumes, data space,

labels 364
relationship to catalogs 42
reorganization considerations 116
restore 138
reusable, specifying 29
SAM ESDS files, planning for 158
SAM file for back up, creating 138
search order in catalogs 46
secondary allocation, minimize 135
sharing 131
sharing across systems 133
sharing and protection 131
sharing control blocks 204
sharing, options for 131
states at OPEN disposition 33
statistic mismatch 150
statistical information 123
statistical information not

updated 123
trace of activities 380
track, relative 41
tracks, allocating number of 41
transporting between systems 52
types supported 4
unique, explanation for 366
unprotected, deletion of 127
user-written back up programs 138
volume mounting, requirements

for 369
write integrity, ensuring 131

files (DYNAMIC)
advantages 112
allocation of space 112
define example (SAM ESDS) 182
deleting 112
restrictions 112
space allocation (SAM ESDS) 156
space allocation (SAM ESDS),

performance 169
space allocation (SAM ESDS),

specifying 169
space allocation, suppressing 112
specifying 112
what it is 112

files (UNIQUE)
define (example) 373
define data space 48, 370
delete, how to 385
DLBL statement needed 367
explained 366
EXTENT statement needed 367
format-1 label processing 367
format-3 label processing 368
format-4 label processing 369
key area contents (format-1

label) 363
label processing 370
record of physical extents 137
redefine, how to 385
UNIQUE attribute and job control

statements 48
user-specified names 50

files (UNIQUE) (continued)
volume time stamp 369

files (WORK)
considerations 158
considerations for access 171
DTFSD information (implicit

define) 167
GETVIS space 38
IJSYSnn support 172
on virtual disk 51
on virtual disk, preparation for 51
partition/processor

independence 158
planning for (SAM ESDS) 158
recommendations (SAM ESDS) 165
retention period default 165
single extent allocation,

requesting 168
system work file support (SAM

ESDS) 172
files, restore of

if catalog damaged 141
RESTORE command, use of 138

FlashCopy 187
of VSAM data 187
of VSE/VSAM files and catalogs 191

FORCE option 142
format differences (VSE/VSAM ESDS

and SAM ESDS) 183
format of compressed data 70
format-1 VTOC label 48
format-1 VTOC label, purpose of 363
format-3 VTOC label, purpose of 363
format-4 VTOC label 48
format-4 VTOC label settings (when

space released) 49
format-4 VTOC label, purpose of 363
free space

causes of 114
changing values 114
CI size relative to record size

(performance) 94
default 114
file loading considerations 114
for mass insertion 114
in CA, specifying 115
in CI, specifying 115
parameter 114
reclaiming 116
specifying 114
threshold 115
too much/too little 115
unused if nonspanned data CI 94
unused, cause of 116

FREESPACE parameter 114
function codes for alternate index

processing 320
functions of VSE/VSAM 2

G
GENCB (generate control block)

macro 199, 236
GENCB macro format 236
generate form of GENCB, MODCB,

SHOWCB, TESTCB 323
generated names for data spaces 50

Index 419

generic back up 56
generic restore 56
GET macro 238
GET macro format 239
GETVIS space

default adjustment 19
failure correction 388
for buffers 16, 39
for control blocks 16, 39
for IDCAMS 20
for IDCAMS, where to specify 20
for non-SVA-eligible phases 39
for non-SVA-eligible routines 16
for users of the VSE/VSAM Space

Management for SAM Function 38,
171

minimum for files 16
non-GETVIS space for job control

routines 19
specifying for users of the

VSE/VSAM Space Management for
SAM Function 19

usage, keeping small 19

H
hardware compression facility,

ESA/390 67
hierarchy of catalog search 46
high RBA mismatch 150

I
I/O areas for a VSE/VSAM file 209, 260
I/O buffers, managing 291
I/O operations, overlapping of 230
I/O routines, user 347
ICF (Integrated Catalog Facility 361
ICF catalogs, compatibility with

VSE/VSAM catalogs 361
IDCAMS BACKUP 188
IDCAMS commands security 128
IDCAMS IMPORT CONNECT 188
IDCAMS SNAP 188, 189
IDCAMS utility program

GETVIS, where to specify 20
how to invoke (job control) 39
job termination, how to avoid 39
password authorizations 127
password prompt 127
storage requirements 20
use in protecting resources 134
use of 9

IGNOREERROR parameter and catalog
check 375

IJSYSCT (name of master catalog) 43
IKQPRED

overview 72
IKQVCHK (diagnosis tool) 375
IKQVDU (diagnosis tool) 375
IKQVEDA (diagnosis tool) 375
implicit

define file (SAM ESDS) 156
delete file (SAM ESDS) 156
file definition (SAM ESDS), allocation

size 29

implicit (continued)
information from DLBL statement

(SAM ESDS) 168
model, specifying name 61
modeling, choosing the model 58
models 58
NOALLOCATION model 58
NOALLOCATION model

(example) 61
opening of file 27

IMPORT (IDCAMS command)
data space class 86
key compression 95
using with SAM ESDS files 175

import file (SAM ESDS) 175
IMPORTRA (IDCAMS command)

using with SAM ESDS files 156
in-core wrap trace 380
inaccessible file, recover from 147
incomplete write to disk, recover

from 146
index

component 5
component, CI size of 94
key compression 95
keys, reducing size of 95
options 8
with VSE/VSAM 8

index options
AIX portions on different

volumes 122
buffer space required 122
file portions on different

volumes 122
key ranges 122
with KSDS and ESDS files 8

index records
in storage, methods of specifying 122
size to accommodate CAs and CIs 88

initial program load (IPL)
automatic device assignment to

volume 24
commands for VSE/VSAM 23
lock file, defining 23
master catalog, assigning device

to 23
supervisor buffers, specifying number

of 24
volumes, ways of mounting 24

inserting records in a file 114
insertion, keyed direct 312
insertion, keyed-sequential 309
insertion, skip-sequential 310
Integrated Catalog Facility (ICF) 361
integrity of data, tools for 142
Interrogation in data compression 68
introduction to VSE/VSAM 1
invoke IDCAMS (job control), how to 39
invoking IDCAMS from a program 325
invoking macro instructions 345
ISAM (indexed-sequential access method)

compared to VSE/VSAM 351
converting to VSE/VSAM 1
files, convert to VSE/VSAM 1
performance improvements,

possible 351

ISAM Interface Program (IIP)
defining a VSE/VSAM file 355
DTFIS related to DEFINE 355
ERREXT format 357
error handling 357
filenameC format 357
ISAM compared to VSE/VSAM 351
job control statements, changing 356
loading ISAM file into VSE/VSAM

file 356
processing explained 357
storage requirements 20
using, prepare for 354
using, prerequisites for 354
VSE/VSAM functions available 352

J
job

cancellation (VOL1 label
incorrect) 367

end-of-job disposition (managed-SAM
access) 36

end-of-job disposition (VSE/VSAM
access) 36

running a job 38
running a job step 38
step, start of 38
termination, how to avoid 39

job catalog // DLBL statement 25
job control

access VSE/VSAM files 12
and IDCAMS commands 26
catalogs, defining 42
for files 48
for job catalog 44
for master catalog 43
for user catalog 44
GETVIS space for managed-SAM

access 19
invoke IDCAMS 39
job control and IDCAMS

commands 26
linkage editor, processing of control

statements 38
mounting volumes 24
non-GETVIS space for managed-SAM

access 19
parameters 12
requirements 25
SAM in VSE/VSAM data space 156
simplified job control in using SAM

ESDS 156
job control statements

// DLBL (VSE/VSAM) 28
// DLBL, where to specify 25
// EXEC (VSE/VSAM) 20, 38
// EXTENT (VSE/VSAM) 41
access VSE/VSAM files 12
alternative specification for //

DLBL 26
and IDCAMS commands 26
avoiding job termination with

IDCAMS 39
avoiding loss of data 38
defining catalogs (// DLBL) 43
defining files 48

420 VSE/VSAM V9R2 User’s Guide and Application Programming

job control statements (continued)
explicit catalog specification 45
extent information, specifying 41
for application programs 25
for catalogs 25, 42
for ISAM programs 25
for SAM programs 25
implicit define SAM ESDS file 168
ISAM processing under

VSE/VSAM 356
job catalog (// DLBL), specifying 44
master catalog (// DLBL),

specifying 43
parameters, purpose of 12
program execution, starting 38
required for files 27, 48
required when using IDCAMS

commands 26
requirements 25
running catalog check program

(IKQVCHK) 376
running SNAP trace (IKQVEDA) 382
running VTOC/VOL1 labels maintain

program (IKQVDU) 385
setting up execution of maintain

VTOC/VOL1 labels 385
setting up execution of SNAP

trace 383
user catalog (// DLBL),

specifying 44
job step, start of 38
job stream

data spaces, define 371
examples 371
file, process 373
unique file, define 373

JRNAD (journal) exit routine 197, 231

K
KEEP disposition (ACB macro) 209
key compression 95
key range mismatch 150
key ranges 122
keyed access 252
keyed deletion 253
keyed insertion 253
keyed positioning with POINT 304
keyed-direct retrieval 302
keyed-sequential retrieval 298
KEYRANGES parameter (with multiple

volumes) 104
KSDS

performance considerations with
Large DASD 79

L
label

44-byte key area, what it is 363
check, when it occurs 366
creation, when it occurs 366
data space continuation, where

described 363
data space extents, where

described 363

label (continued)
data space name, assignment of 363
data space, description of 363
definition label for VTOC 363
deletion from VTOC, when it

occurs 366
entries in the VTOC 48
explained 363
format-1 and format-3 labels,

relationship of 363
format-1 label processing (unique

files) 367
format-1 label, purpose of 363
format-1 VTOC 48
format-3 label , purpose of 363
format-3 label processing (unique

files) 368
format-4 label processing (unique

files) 369
format-4 label, purpose of 363
format-4 VTOC 48
format-4 VTOC settings (when space

released) 49
information, submitting 365
key area contents (format-1

label) 363
location of 364
maintain program (IKQVDU), purpose

of 385
not supported by VSE/VSAM 363
processing overview 365
processing, when it occurs 366
relationship of volumes, files, data

space 364
sets, overriding 365
submitting 365
types 363
VOL1 label processing 367
VOL1 label, purpose of 363
VOL1 label, required location of 367
volume identifier 363
VTOC labels for FBA devices,

residence of 367
VTOC, definition label for 363

large DASD
BUFFERSPACE parameter 79
KSDS 79
LISTCAT output with 80
migration using BACKUP 79
migration using RESTORE 79
performance considerations 79
restrictions 80
support for 77

LERAD exit routine 197, 234
levels of data recovery 141
linkage editor statements, processing

of 38
list form of GENCB, MODCB, SHOWCB,

TESTCB 323
LISTCAT (IDCAMS command)

displaying CI size 94
file statistics 123
monitoring CA splits 115
purpose 115, 123
relating names in VTOC (generated

and user-specified) 50
using with SAM ESDS files 175

LISTCAT (IDCAMS command)
(continued)

with Large DASD 80
listing a file's definitions in a

password-protected catalog 126
listing information (SAM ESDS) 175
load a SAM ESDS file (example) 179
loading a file 114, 369
loading the VSE/VSAM Backup/Restore

Function into SVA 21
local shared resources (LSR)

allocate virtual storage for pools 206
buffer allocation 19
buffer pools statistics, requesting 275
buffer pools, statistics on use 275
connect pool to ACB 209
considerations 97, 102
control blocks of a file, sharing 204
data set name sharing 204
error codes, potential 223
file opening, specification before 223
I/O buffer sharing 204
LSR in ACB specified, effect on

TCLOSE 286
LSR operand in ACB 215
MACRF operand, specifying 223
macros, overview 11
managing 102
multiple LSR pools 206
partition virtual storage 16
pool, connect to ACB 209
pool, residence of I/O buffers 220
pools above 16MB 206
pools, allocate virtual storage for 206
processing errors, avoiding 253
processing option, advantages of 204
program check 206
requirements with 31-bit

addressing 206
restrictions with LSR 223
RMODE31 parameter in macros 206
separate data and index pools 220,

225
SHRPOOL parameter in ACB 209
space calculation 18
statistics on buffer pools 124
TYPE operand of BLDVRP

macro 220
TYPE operand of DLVRP macro 225
what to specify 219
write requests, deferring 291

locate mode 250, 260
lock facility (z/VSE), use of 131
lock file

defining 23
requirements, determining 23

logical unit of volume containing
extent 41

loss of data, avoiding 134
LSR matrix 276
LSR operand in ACB 215

M
MACRF operand, specifying for

LSR 223
macro groups 195

Index 421

macros (VSE/VSAM)
coding, ways of 207
descriptions 207
display file statistics 123
operand notations explained 325
overview 11
parameter lists explained 333
purpose 11
syntax 207
test file parameters 123
unique control block, generating 361
VTAM control block, generating 361

maintain VTOC/VOL1 labels program
(IKQVDU)

actions on error discovery 388
error message explained 388
execution, setting up for 385
output of 388
purpose and use 385
return codes explained 388
running 385
UPSI job control statement, setting

of 385
managing I/O buffers 291
manipulation macros

overview 195
parameter list, internal 333
specifying 205

mass insertion of records 114
master catalog // DLBL statement 43
MASTERPW (master password) 125
max CA per volume (CKD devices) 89
max CA per volume (FBA devices) 89
max CA, what it is 88
message area (OPEN/CLOSE/

TCLOSE) 217
message format 217
messages

catalog check program
(IKQVCHK) 376

maintain VTOC/VOL1 labels
(IKQVDU) 388

migrating
catalogs from one device type to

another 53
files from one device type to

another 53
files from one volume to another 56
ISAM files to VSE/VSAM

control 351
SAM files to VSE/VSAM control 160
to SCSI device 56
transporting files between

systems 52
min CA per cylinder (CKD devices) 89
min CA per max CA (FBA devices) 89
min CA, what it is 88
mismatch problem

catalog entries do not match
description of volumes 150

causes 150
data space group 150
extents mismatch 150
file directory mismatch 150
file statistics mismatch 150
files mismatch 150
guide to solving problems 150

mismatch problem (continued)
high RBA mismatch 150
key range 150
minimizing catalog mismatches 150
recovery procedures 146
space map 150
volume entry 150
volume information mismatch 150

MODCB (modify control block)
macro 201, 240

MODCB macro format 240
modeling

access authority 125
advantages of 58
allocation of space 112
default models, using 61
default volumes 66
explicitly (allocation) 59
explicitly (noallocation) 61
for SAM ESDS 156
implicitly (allocation) 61
job termination, avoiding 58
MODEL subparameter 58
overriding system defaults 58
processing by VSE/VSAM 62
restrictions for 63
SAM ESDS file (example) 181
types 58

modifying VSE/VSAM control
blocks 240

mounting need for volumes 51
move mode 250, 260
multiple extents (SAM ESDS) 156
multiple LSR pools 206
multiple volumes

DEFINE parameters for 104
ORDERED specification 106
performance notes 104
space allocation 104
space allocation (an exercise) 110
space allocation (with key range) 105
space allocation (without key

range) 105
space allocation, examples of 106
support 104
UNORDERED specification 105
with SAM ESDS files 156

multivolume files 137
MVS, transfer files from VSE to 7
MVS/VSAM

data space class 86
moving VSE/VSAM files to 1
transporting files to VSE/VSAM 52

N
names for data spaces 50
NOALLOCATION parameter 112
non-empty data pace, deleting 127
non-shared resources (NSR)

buffer allocation 19
buffer space for CIs 96
considerations 101
I/O buffer sharing 204
I/O operations 204
master catalog 133
partition virtual storage 16

non-shared resources (NSR) (continued)
read/write integrity 204
space calculation 17

non-unique files, defining 54, 366, 369
nonVSAM file, unloading a catalog

to 139
number of blocks for file, allocate 41
number of tracks for file, allocate 41

O
object (tasks, commands)

alter (command overview) 10
backup (command overview) 10
BACKUP command, use of 138
backup empty object 3, 138
backup multiple objects 56
backup operations on 3
backup to tape or disk 56
build alternate index (command

overview) 10
cancel job (command overview) 10
cancel job step (command

overview) 10
copying to another volume 56
data space, suballocating 86
define (command overview) 10
delete (command overview) 10
empty object, what it is 3
empty, what it is 56
first one on a volume 47
generated names 50
generic names, use of 56
interactive interface 12
levels of protection 125
list command 10
migrating catalogs 55
migrating files, methods for 56
migrating, methods for 53
MODEL subparameter 58
modeling of 58
modeling, advantages of 58
modeling, default volume lists 66
modeling, restrictions with 63
modeling, types of 58
move data (commands overview) 10
password-protected objects, operating

on 126
passwords, protection by 1
performance, controlling 86
print (commands overview) 10
print command 10
restore (command overview) 10
RESTORE command, use of 138
restore empty object 3
restore multiple objects 56
restore operations on 3
restrictions for master catalog 51
suballocate data space for 47
verify (command overview) 10

open disposition
explained 33
of files 33
states with 33

OPEN macro
connecting a file for processing 242
description 242

422 VSE/VSAM V9R2 User’s Guide and Application Programming

OPEN macro (continued)
format 242
open routine 242
operands 242
return codes 243
use 200

open routine 242
opening a file for processing 242
operand notation for macros

BLDVRP 332
DLVRP 332
explained 325
GENCB 326
MODCB 328
SHOWCAT 332
SHOWCB 329
TESTCB 329
WRTBFR 332

operation
authorize password submission 126
back up VSE/VSAM objects

(dialog) 12
extent overlap, action on 367
file access code 126
job cancellation (VOL1 label

incorrect) 367
password, supplying 126
real mode and virtual mode 39
restore VSE/VSAM objects

(dialog) 12
virtual mode and real mode 39

operation and job control 23
optimizing the performance of

VSE/VSAM 85
options for processing, summary of 252
order of catalog search 46
order of space allocation 106
ORDERED parameter 106
organization elements with

VSE/VSAM 5
overlap of volume extents, action on 367
overlapping I/O operations 230
overriding file catalog ownership 29
overview on VSE/VSAM 1
ownership

data space 5, 47
data space, releasing from catalog 49
indicator 48
of space 48
of volume 48
of volume and nonVSAM files 48
of volume, removing from catalog 49

P
parameter list (manipulation

macros) 333
parameter list request macro (RPL)

chain of RPLs, positioning
information 246

OPTCD values in RPL 239
OPTCD= specification and POINT

macro 244
positioning for processing 253
processing of records, positioning

for 253
records, processing of 253

parameter list request macro (RPL)
(continued)

sequential positioning 246
parameter lists for macros

BLDVRP 342
explained 333
GENCB 334
MODCB 336
SHOWCAT 343
SHOWCB 338
TESTCB 339

PARM parameter (EXEC statement),
advantages of using 39

PARM parameter (EXEC statement),
examples 39

partition independence (SAM ESDS work
files) 158

partition space
adjusting minimum value (users of

the VSE/VSAM Space Management
for SAM Function) 38

for buffers 16
for control blocks 16
for IDCAMS 20
for non-SVA-eligible phases 39
for non-SVA-eligible routines 16
for program execution 39
for real mode operation 16, 39
for SAM access routines 19
requirements 39

password
access to files, considerations for 127
access to passwords in a catalog 126
altering file definitions in a

catalog 126
ATTEMPTS option (password

control) 126
authorization routine

(user-written) 130
authorize file access 126
authorize for submission by

operator 126
catalog and files, relationship

between 126
checking 126
CODE option (file access) 126
control interval accessing 125
deleting data space

(empty/non-empty) 127
deleting protected file entry 127
deleting unprotected file 127
IDCAMS operations, considerations

for 127
levels of access to resources 125
levels of access, relationship 125
listing catalog entries 127
listing definitions of a file 126
master catalog and user catalog,

relationship of 126
MASTERPW (master password) 125
operator password, controlling

submission 126
prompt from IDCAMS 127
protect resources 125
protected objects, operating on 126
read access 125
resources protection 125

password (continued)
submission through operator 126
submission through processing

program 126
update access 125
UPDATEPW (update password) 125
user catalog and master catalog,

relationship of 126
user catalog, deleting empty 126
user security-verification routine and

MASTERPW 125
performance considerations

assigning data space to performance
class 86

buffer space considerations 101, 102
buffer space for CIs, optimizing 96
control area (CA) size 88
control interval (CI) size 90, 94
data integrity 113
data protection 113
data space class values, use of 86
data space classification 86
degradation with real mode

operation 16
dynamic files, advantages of 112
dynamic files, restrictions 112
file information, obtaining 123
files in catalog, number of 85
free space considerations 114
free space too much/too little 115
index records, buffer space for 122
information requests to catalogs 43
ISAM, improvements possible

for 351
key compression 95
measurements, means for 123
multiple volume support 104
optimizing VSE/VSAM 85
parts of a file on different

volumes 122
parts of an AIX on different

volumes 122
preformatting space for CAs 113
real mode and virtual mode 39
RECOVERY/SPEED

considerations 113
space allocation 111
space allocation for SAM ESDS

files 169
space utilization and CI size 92
statistics on files 123
suballocating data space 86
write check 113

physical block size for data
component 90

physical record size for data
component 90

planning
applicable environments 15
avoid performance degradation 16
buffer allocation above 16MB line 19
compatibility VSE/VSAM Version 2

and 7 15
considerations 15
for IDCAMS 20
for ISAM Interface Program (IIP) 20
for SAM ESDS files 158

Index 423

planning (continued)
for VSE/VSAM 15
for VSE/VSAM Backup/Restore

Function 21
for VSE/VSAM Space Management

for SAM Function 19
GETVIS for IDCAMS 20
local shared resource, space

calculations 18
non-shared resource, space

calculations 17
partition space for non-SVA-eligible

routines 16
performance considerations 67, 85
quick recovery, considerations

for 153
resources protection, considerations

for 125
space for real mode operation 16
SVA required for VSE/VSAM 15
VSE/VSAM Backup/Restore Function

with user-generated supervisor 21
POINT macro format 244
portability of data 1
portability of VSE/VSAM files to

DFSMSdfp VSAM 359
position for processing macro (POINT)

positioning VSE/VSAM at a wanted
record 244

positioning VSE/VSAM for
processing 244

positioning VSE/VSAM for processing
requests

activation of requests 209
active requests 246
at a wanted record 244
backward processing 244
cancellation of the position 226
chain of RPLs, positioning

information 246
ending a request 226
for sequential or skip sequential

processing 244
forward processing 244
if I/O error with data CI occurs 234
keeping for sequential or skip

sequential processing 239
loss of positioning 234
OPTCD values in RPL for

macros 239
positioning if OPTCD=(KEY,DIR,NSP)

in RPL 245
positioning information

maintained 209
positions for request macros in

process 239
records into RBA if positioning not

established 246
sequential positioning 246

primary allocation of file (SAM ESDS)
blocks 29
cylinders 29
records 29

primary index
how generated 8

PRINT (IDCAMS command)
overview 10

PRINT (IDCAMS command) (continued)
using with SAM ESDS files 175

printed output (processing option) 39
procedures

catalog cannot be opened, recover
from 149

catalog unusable, recover from 140,
148

catalog volume unusable, recover
from 150

data management 47
defining data space 48
defining files 48
deleting data space 49
duplicate data condition, recover

from 146
file cannot be opened, recover

from 147
file completely unreadable, recover

from 147
file inaccessible, recover from 147
file not properly closed, recover

from 146
file partially unreadable, recover

from 147
files cannot be opened, recover

from 149
incorrect high RBA, recover from 146
ISAM to VSE/VSAM, converting

from 354
migrating catalogs 55
migrating catalogs from device to

device 53
migrating files from device to

device 56
migrating SAM files 160
modeling objects 58
quick recovery of files 153
recognizing names in the VTOC 50
recovery of resources 146
relating names in VTOC (generated

and user-specified) 50
running catalog check program

(IKQVCHK) 376
running SNAP trace program

(IKQVEDA) 382
running VTOC/VOL1 labels maintain

program (IKQVDU) 385
space management 47
space ownership, releasing from

catalog 49
transporting catalogs between

VSE/VSAM systems 52
transporting files between

VSE/VSAM and DFSMSdfp
VSAM 52

transporting files between
VSE/VSAM and MVS/VSAM 52

transporting files between
VSE/VSAM systems 52

volume inaccessible, recover
from 152

volume ownership, removing from
catalog 49

work files on virtual disk 51
write to disk incomplete, recover

from 146

processing end request macro (ENDREQ)
cancellation of the position for

processing request 226
ending a processing a request 226
giving up the position for an

RPL 226
processing of file, close 223
processing options (PARM

parameter/command) 39
processing options, summary of 196, 252
processing shared data 131
processor independence (SAM ESDS

work files) 158
program execution, start of 38
program load, storage for 39
prompting code 126
protection of resources

avoiding loss of data at CLOSE
disposition 38

back up considerations (catalogs) 139
back up considerations (files) 137
back up considerations

(volumes) 137
catalog check program, when to

run 375
catalog content relating to

files/volumes 137
catalogs 139
control interval (CI) access 125
cross-system data, specifying share

options 133
data integrity tools 134
data integrity, commands for 135
data space classification 86
DEFINE CLUSTER command 135
DEFINE SPACE command 135
DEFINE USERCATALOG

command 136
explained 125
Fast Copy utility 134
file access, considerations for 127
file sharing, degrees of 131
file unprotected, deletion of 127
files 136
IDCAMS operations, considerations

for 127
levels of access to resources 125
levels of access, relationship 125
lock facility, use of 131
master access (MASTERPW

parameter) 125
master catalog and user catalog,

relationship of 126
operating on password-protected

objects 126
password check 126
password relationship between catalog

and files 126
password verification routine

(user-written) 130
passwords, use of 125
quick recovery, preparing for 153
read access 125
recovery considerations

(catalogs) 139
recovery considerations (files) 137

424 VSE/VSAM V9R2 User’s Guide and Application Programming

protection of resources (continued)
recovery considerations

(volumes) 137
recovery specification, purpose

of 113
RECOVERY/SPEED

considerations 113
secondary allocation, minimize 135
shared files 131
SHAREOPTIONS parameter 131
tools 142
update access 125
user catalog and master catalog,

relationship of 126
user security-verification routine and

MASTERPW 125
volume separation 135
volumes 136
VTOC utility (IKQVDU) 134
with SAM ESDS files 156
write check 113
write check default 113

publication, about this xv
PUT macro

description 245
format 245
operands 245
positioning VSE/VSAM for

processing 244

Q
quick recovery of files, preparing

for 153

R
RBA (relative byte address)

direct processing of records
(sequential) 253

processing of records
(addressed) 253

processing of records (direct) 253
search arguments, specifying 303
testing for the last processed

record 288
RDF (record definition field) 115
READPW (read password

parameter) 125
real mode operation 16, 39
RECMAP (IDCAMS command) 10
record allocation (SAM ESDS),

specifying 29
record definition field (RDF) 115
RECORDFORMAT parameter (for SAM

ESDS files) 155
records

adding 114
allocation size (SAM ESDS),

specifying 29
deleting 116
examples CI/CI splits 117
loading into a file 114
loading into a file, considerations

for 114
mass insertion 114

records (continued)
number of (SAM ESDS) 29
reclaiming space 116
size computation for data

component 90
size relationship to control

interval 90
size, specifying 90
write check 113
write check default 113

records retrieve macro (GET)
positioning for processing,

keeping 239
positions for request macros in

process 239
RECORDS specification (SAM ESDS) 29
RECORDSIZE parameter 90
RECORDSIZE parameter (for SAM ESDS

files) 162
recovery of resources

a guide to 141
catalog cannot be opened 149
catalog damaged 141
catalog unusable 148
catalog volume unusable 150
catalogs 139
considerations (catalogs) 139
considerations (files) 137
considerations (volumes) 137
current type of data 141
downlevel type of data 141
duplicate data condition 146
file cannot be opened 147
file completely unreadable 147
file not properly closed 146
file partially unreadable 147
files cannot be opened 149
inaccessible file 147
incomplete write to disk 146
incorrect high RBA 146
levels of data recovery 141
procedures 146
quick recovery, preparing for 153
tools 142
volume is inaccessible 152
what it is 141
with SAM ESDS files 156

RECOVERY parameter 113
RECSIZE specification (SAM ESDS) 29
relating deferred requests 292
relationship of catalog entries to

VSE/VSAM files and volumes 137
relative block of extent 41
relative track of extent 41
REPRO (IDCAMS command)

use of 138, 139
using with SAM ESDS files 175

request macros
examples 297
overview 195
return codes 320

request parameter list (RPL) 198, 246
requirements

and restrictions with modeling
objects 63

for creating SAM ESDS file from SAM
file 155

requirements (continued)
for job control 25
for lock file 23
ISAM to VSE/VSAM, converting

from 354
spanned record, begin of 5
VOL1 label, location of 367
volume mounting 51

reset high RBA mismatch 150
resource pool build macro (BLDVRP)

operand notation 332
parameter list 342

resource pool delete macro (DLVRP)
operand notation 332

resource pool, building 219
resources, shared 203
restore

access to data 141
addressability of data 141
dialog for 12
generic names 56
generic names, using 56

RESTORE command
migration to Large DASD 79
migration to SCSI disk 56
overview 3
use of 138

restrictions
Large DASD 80

restrictions, data compression 71
retrieval of records 253
return codes from BLDVRP 222
return codes from close routine 224
return codes from DLVRP 225
return codes from manipulation

macros 322
return codes from OPEN 243
return codes from request macros 320
return codes from SHOWCAT 263
reusable (REUSE) file, disposition control

for 159
reusable files 209
REUSE parameter 166
REUSE parameter with SAM ESDS work

files 165
RMODE31 parameter in macros 206
RPL chain, positioning information

for 246
RPL macro format 246

S
SAM (sequential access method)

file format differences to SAM
ESDS 183

files, processing with
VSE/VSAM 155

functions, restrictions with SAM
ESDS 172

migrating to VSE/VSAM control 160
SAM access (managed)

// DLBL date parameter for
managed-SAM file 29

// DLBL specifications, dependencies
on 32

change programs 160
considerations 170

Index 425

SAM access (managed) (continued)
considerations for access to files 171
considerations for access to work

files 171
differences to unmanaged-SAM

access 170
DTF specifications, dependencies

on 32
GETVIS space, specifying 171
modeling managed-SAM file 61
purpose of 169
requirements 19
steps in obtaining managed-SAM

access 160
SAM access (unmanaged)

considerations 170
differences to managed-SAM

access 170
disk-independence 171
steps in changing to managed-SAM

access 160
SAM file

converting to VSE/VSAM 1
creating back up 138
creating SAM ESDS files, requirement

for 155
defining for use in VSE/VSAM data

space 156
migrating to VSE/VSAM control 160
VSE/VSAM functions available 156

SAM file (managed)
// DLBL date parameter 29
disposition at CLOSE 32
GETVIS space, adjusting 38
modeling 61
options at OPEN 32
partition size, adjusting 38
possible restrictions 172
steps in obtaining managed-SAM

access 160
SAM file (unmanaged)

advantages in changing to SAM ESDS
files 156

steps in changing to managed-SAM
access 160

SAM files and data compression 71
SAM files to VSE/VSAM, convert 1
Sampling in data compression 68
scratch VTOC label for a specified

file 385
SCSI disk devices

FBA disk devices 80
migration using BACKUP 56
migration using RESTORE 56
restrictions 82

search order of catalogs 46
second close disposition 209
secondary allocation of file (SAM ESDS)

blocks 29
cylinders 29
records 29

secondary allocation, minimize 135
security-verification exit 130
sequential positioning 246
sequential processing 253
sequential retrieval 253

serial-number of volume containing
extent 41

shared resource (LSR) option in
ACB 215

shared resources 203
SHAREOPTIONS parameter

control file sharing 131
degrees of file sharing 131
purpose of 131
where to specify 131
with SAM ESDS files 170

SHAREOPTIONS(4) 101, 102, 133, 170,
230

sharing
catalogs across systems 133
cross-system data, specifying share

options 133
cross-system user catalogs,

specifying 133
DASDs, establish environment 131
data across system 133
data set names, advantages 204
data, protection of 131
file control blocks 204
files 131
files across systems 133
files and use of z/VSE LOCK

facility 131
files, protection for 131
I/O buffers 204
integrity when opening a file through

different ACBs 204
master catalog with shared user

catalogs 133
options 131

sharing of data set name 204
SHOWCAT (display catalog) macro 201,

260
SHOWCAT macro format 260
SHOWCB

Extent matrix 279
LSR matrix 276

SHOWCB (display control block)
macro 201, 266

SHOWCB macro 123
SHOWCB macro format 267
SHR(4) 230
SHRPOOL parameter in ACB 209
skip sequential insertion 253
skip sequential retrieval 253
skip-sequential retrieval 299
SNAP (IDCAMS command) 10, 142, 192
SNAP (IDCAMS) 188, 189
SNAP command 187
SNAP trace program (IKQVEDA)

activating 382
disabling 382
enabling 382
examples 383
execution, setting up for 383
output of 384
purpose 380
running 382
trace numbers 380
types of traces 380
UPSI job control statement, setting

of 383

snapshots, of entire disk volumes 188
space

allocation (dynamic file),
suppressing 112

allocation (dynamic) with SAM
ESDS 156, 169

allocation for multiple volumes 105
allocation for multiple volumes (an

exercise) 110
allocation options 111
allocation parameters 111
defaults 95
determination 95
dynamic allocation 5, 112
GETVIS space (SAM ESDS),

specifying 171
management 7, 47
map, mismatch of 150
ownership 47
partition for time-dependent

programs 39
suballocate data space 47
unused, cause of 116
utilization and CI size 92

SPACE FORCE command 142
spanned record, what it is 5
spanned records, handling 231, 250, 252
SPEED parameter 113
standard volume label (VOL1 label) 367
statistical information not updated 123
statistics mismatch 150
statistics on files 123
statistics provided by SHOWCB

macro 274
storage

above/below the 16MB line 19
capacities of CKD devices 89
capacities of FBA devices 89
for loading programs 39
GETVIS for non-SVA-eligible

routines 16
space for buffers (due to CIs) 96

storage requirements
buffers 16
considerations 15
control blocks 16
for index records 122
IDCAMS 20
if LSR is specified 18
if NSR is specified 17
ISAM Interface Program (IIP) 20
non-SVA-eligible routines 16
real mode operation 16
SVA for VSE/VSAM 15
VSE/VSAM 16
VSE/VSAM Backup/Restore

Function 21
VSE/VSAM Space Management for

SAM Function 19
suballocation of data space 112, 366
supervisor buffers, specifying 24
support of 3390-9 disk device 77
switching from direct to keyed-sequential

retrieval 305
SYNAD exit routine 197, 234
synonym list 188
syntax checking (processing option) 39

426 VSE/VSAM V9R2 User’s Guide and Application Programming

SYS (IPL command) 23, 24
system defaults, overriding through

modeling 58
system work file (IJSYSnn) support 172

T
TCLOSE macro

description 286
format 286
operands 286
use 200

temporary closing of a file 286
terminating a request 226
TESTCB (test control block) macro 201,

286
TESTCB macro 123
TESTCB macro format 287
threshold, free space 115
time stamp

entry in volume 51
entry in VTOC 51
error codes on mismatch 369
field in volume 369

time-dependent programs, partition space
for 39

tools for resources protection and
recovery 142

track size (CKD devices) relationship to
min CA size 88

track space used for data component 92
tracks per cylinder (CKD devices) 89
transaction ID (in RPL macro) 198, 246,

292

U
unique control block for access methods,

generating 361
UNIQUE parameter 48, 111
UNORDERED parameter 105
update, addressed sequential 316
update, keyed direct 315
update, keyed sequential 314
UPDATEPW (update password

parameter) 125
updating VSE/VSAM files 253
upgrade record, what it is 379
upgrade set (alternate index)

buffer allocation 100
buffer allocation for path entry 100
data output from catalog check 378
partition requirements (if NSR) 17,

18
UPGRADE attribute and share

options 131
upgrade record, what it is 379

UPSI statement (with maintain
VTOC/VOL1 labels) 385

UPSI statement (with SNAP trace) 383
USECLASS parameter 86
user catalog // DLBL statement 25
user I/O routines 347
user security-verification routine (USVR)

action with master password
(MASTERPW) 125

user security-verification routine (USVR)
(continued)

explained 130
register content 130
specifying name of routine 130

user-written program for file back
up 138

utilities for data integrity 134

V
verification of passwords (user-written

routine) 130
VERIFY (IDCAMS command)

// DLBL required 26
compare catalog with EOF

indicator 142
incorrect high RBA, handling of 146
mismatch, correct a 150
overview 10
using with SAM ESDS files 175

virtual disk support
preparation procedures 51
restrictions 51
use with VSE/VSAM 51
work files on 51

virtual mode operation 16, 39
virtual tape 71, 83
VM, transfer files from VSE to 7
VOL1 label, processing 367
VOL1 label, purpose of 363
volume

automatic device assignment 24
back up and recovery

considerations 137
back up considerations/methods 139
data space suballocation 366, 369
defining data space on 48
defining for SAM ESDS files 163
entries in catalog 137
entries in catalog, purpose of 47
entries in catalog, scope of 48
extent information, specifying 41
extent overlap, action on 367
file name associated with 29
identifier, when written 363
indicator of ownership 48
information mismatch 150
label maintain program

(IKQVDU) 385
layout of 364
lists with object modeling 66
logical unit 41
migrating files from one volume to

another 56
mismatch of catalog entry 150
mounting for file processing 369
mounting, ways of 24
mounting, when needed 51
ownership and nonVSAM files 48
ownership, records of 48
ownership, removing from

catalog 49
portability 43
protection considerations 136
relationship of data space, files,

labels 364

volume (continued)
relative block 41
relative track 41
separation for data integrity 135
serial number 41
space ownership by catalogs

(restrictions) 43
space ownership, determining 141
time stamp 369
time stamp entry, when updated 51
VOL1 label, purpose of 363
volume layout example 364
VSE/Fast Copy utility, use of 139

volume protection
back up considerations/methods 139
backup copy, creating a 139
VSE/Fast Copy utility, use of 139

volume space
define for VSAM and nonVSAM

files 135
ownership, determine 141

volume table of contents (VTOC)
data component names

(user-specified) 50
data space names, entries for 50
data space names, generation of 50
delete (scratch) 385
deletion of labels, when it occurs 366
Device Support Facilities (DSF), when

used 363
format-4 label, purpose of 363
format-4 label, when written 363
index component names

(user-specified) 50
label entries 48
label maintain program

(IKQVDU) 385
label processing 369
label processing overview 365
label that defines the VTOC 363
labels for FBA devices, residence

of 367
record of physical extents (unique

files) 137
relating generated and user-specified

names 50
relationship to labels 364
scratching label for a specified

file 385
size for FBA devices, specifying 367
time stamp 369
time stamp entry, when updated 51

volume time stamp 51, 369
VSAM

support of Large DASD 77
VSAM Redirector Client 391
VSAM Redirector Connector 391

overview 391
VSAM Redirector Server 391
VSAM.COMPRESS.CONTROL 70
VSE/Fast Copy utility 134
VSE/VSAM

FlashCopy support 187
VSE/VSAM access

to SAM ESDS files 173
to VSE/VSAM ESDS files 173

Index 427

VSE/VSAM catalogs
FlashCopy of 191

VSE/VSAM Compression Prediction Tool
(IKQPRED)

examples 72
interpreting results 73
invocation 72
output description 73
process 73

VSE/VSAM data
FlashCopy of 191

VSE/VSAM device dependencies 77
VSE/VSAM extended user buffering

new support 319
overview 319
using 320

VSE/VSAM Space Management for SAM
Function

BLK specification for SAM ESDS
files 29

creating/using SAM ESDS files 155
CYL specification for SAM ESDS

files 29
GETVIS space default 38
IDCAMS commands, using 175
partition requirements 39
partition size 38
RECORDS specification for SAM

ESDS files 29
RECSIZE specification for SAM ESDS

files 29
storage requirements 19
use of 3, 156

VSE/VSAM support of Large DASD 77
VSE/VSAM virtual tape 83
VSE/VSAM Virtual Tape 83
VTAM similarities with VSE/VSAM 361
VTOC utility (IKQVDU) 134, 385

W
work files on virtual disk 51
wrap trace 380
write operations, deferring 291
WRITECHECK

data integrity 135
default when modeling 63
performance with

NOWRITECHECK 113
purpose of 113, 142
with ALTER command 175

writing buffers 292
WRTBFR (write buffer) macro 292
WRTBFR macro format 293

Z
z/VSE Interactive Interface for users 12
z/VSE LOCK facility, use of 131

428 VSE/VSAM V9R2 User’s Guide and Application Programming

Readers’ Comments — We'd Like to Hear from You

IBM z/VSE
VSE Central Functions
VSE/VSAM User’s Guide and Application Programming
Version 9 Release 2

Publication No. SC34-2742-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +49-7031-163456
v Send your comments via email to: s390id@de.ibm.com
v Send a note from the web page: http://www.ibm.com/systems/z/os/zvse/

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2742-00

SC34-2742-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Product Number: 5686-CF9

Printed in USA

SC34-2742-00

	Contents
	Figures
	Tables
	Notices
	Trademarks
	Accessibility
	Using Assistive Technologies
	Documentation Format

	About This Publication
	Who Should Use This Publication
	How to Use This Publication
	Where to Find More Information

	Abbreviations
	Summary of Changes
	Chapter 1. Introduction to IBM VSE/VSAM
	Overview
	Advantages
	Functions of IBM VSE/VSAM
	VSE/VSAM Space Management for SAM Function
	VSE/VSAM Backup/Restore Function

	Concepts of Data Organization
	File Types
	Elements of Organization
	Catalogs with VSE/VSAM
	Indexes with VSE/VSAM

	How to Communicate with VSE/VSAM
	IDCAMS Commands
	Functional Commands
	Modal Commands

	VSE/VSAM Macros
	Job Control Parameters to Access VSE/VSAM Files
	z/VSE Interactive Interface

	Chapter 2. Planning Information
	Compatibility with IBM VSE/VSAM Version 2
	Overview of Environment and Requirements
	What to Consider
	Partition Space for Non-SVA-Eligible Routines
	Device Dependencies

	Storage for VSE/VSAM
	Space for Running in Virtual Mode
	Space for Running in Real Mode
	Partition Requirement for Buffers and Control Blocks
	If NSR is Specified
	If LSR is Specified
	Buffer Allocation above the 16MB Line of Storage

	Storage for the VSE/VSAM Space Management for SAM Function
	Storage for the ISAM Interface Program (IIP)
	Storage for IDCAMS Including the VSE/VSAM Backup/Restore Function
	VSE/VSAM Backup/Restore Function

	Chapter 3. Operation and Job Control
	IPL Command Specifications for VSE/VSAM
	Assigning a Device to the Master Catalog
	Defining the Lock File
	Specifying the Number of Supervisor Buffers for Channel Programs

	Volume Mounting
	Mounting a Volume Through Job Control Specifications
	Mounting a Volume Through Automatic Assignment

	Use of z/VSE Job Control Statements for VSE/VSAM
	Job Control Statements for Catalogs
	VSE/VSAM Application Programs
	IDCAMS Commands

	Job Control Statements for Files

	// DLBL Statement
	Format of the DLBL Statement
	File Disposition
	OPEN Disposition
	CLOSE Disposition
	Additional Considerations

	// EXEC Statement
	Note to Users of the VSE/VSAM Space Management for SAM Function
	Format of the EXEC Statement

	// EXTENT Statement
	Format of the EXTENT Statement

	Using Job Control for Catalog Definition
	Overview of Catalogs
	Master Catalogs
	User Catalogs
	Files and Catalogs
	Catalog Volumes

	Specifying the Master Catalog
	Specifying a User Catalog
	Specifying a Job Catalog
	Using a Job Catalog
	Explicit Catalog Specification (With a VSE/VSAM File's // DLBL CAT Parameter)
	Explicit Catalog Specification (With the IDCAMS CATALOG Parameter)

	Search Sequence of Catalogs

	Chapter 4. Tasks under VSE/VSAM
	Data and Space Management
	About the VSE/VSAM Catalog
	Information Contained in the Entries of a Catalog

	Defining VSE/VSAM Data Spaces on a Volume
	Defining VSE/VSAM Files
	About Volumes and VTOCs
	Volume Ownership
	Handling Ownership
	Recognizing VSE/VSAM Data Space Names in the VTOC
	Relating Names Created for Unique Data Spaces
	Time Stamps
	Volume Mounting Needs

	Work Files on Virtual Disk
	Transporting Files between Systems
	Catalog and File Migration
	Definitions for Catalog Migration
	Migrating Catalogs
	Migrating VSE/VSAM Files to Another Device
	NonVSAM Migration
	Space Allocation through Modeling

	Using an Object as a Model
	About the MODEL Subparameter
	Explicit Allocation Models
	Explicit Noallocation Models
	Implicit NOALLOCATION Models (Default Models)
	How VSE/VSAM Determines Which Parameters to Use
	Restrictions
	Default Volumes

	Chapter 5. Working With Compressed Files
	Introduction to VSE/VSAM Compression
	Advantages
	Activating VSE/VSAM Data Compression

	How VSE/VSAM Data Compression Works Internally
	Dictionary Creation
	Compression States
	Data Format of Records

	How to Define the Compression Control Data Set
	Which Data Set Types Are Eligible
	Restrictions
	The VSE/VSAM Compression Prediction Tool (IKQCPRED)
	Using IKQPRED
	Method of Operation
	Interpreting IKQCPRED Results

	Chapter 6. Device Dependencies
	VSE/VSAM Support of Large DASD
	Making Use of the Support
	Migrating to Large DASD Using IDCAMS Backup/ Restore
	Performance Considerations (KSDS Only)
	Increased Size of the Catalog Index
	Restrictions for VSE/VSAM Support of Large DASD
	New or Changed Fields in LISTCAT Output

	Support for FBA Disk Devices (FBA and SCSI)
	Technical Considerations
	Restrictions

	Virtual Tapes

	Chapter 7. Optimizing the Performance of VSE/VSAM
	Number of Files Defined in a Catalog
	Data Space Classification
	Control Area (CA) Size
	Minimum and Maximum CA Sizes
	Performance Implications
	Disk Storage Sizes

	Control Interval (CI) Size
	How to Specify
	Data CI and Block Sizes
	CI Size in a Data Component
	Performance Considerations

	CI Size in an Index Component
	Considerations
	What IDCAMS Calculates and Adjusts

	Key Compression

	I/O Buffer Space (Using Non-Shared Resources)
	Considerations
	Buffer Specification
	Specifying through DEFINE Command
	Specifying through ACB Macro
	Specifying through // DLBL

	Buffer Allocation
	Minimum Buffer Allocation
	Buffer Allocation for a Path
	Miscellaneous Notes on Buffer Allocation (NSR)

	I/O Buffer Space (Using Local Shared Resources)
	Miscellaneous Notes on Buffer Allocation (LSR)
	LSR Buffer Hashing
	How Does Buffer Hashing Work?

	Preventing Deadlock in Buffer Contention
	Multiple Volume Support
	Key Ranges
	Space Allocation
	Space Allocation without Key Range Specified
	Space Allocation with Key Range Specified
	Unordered Space Allocation
	Ordered Space Allocation

	Examples: Allocation of Space on Multiple Volumes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	An Exercise

	Space Allocation
	Possible Options
	NOALLOCATION
	Dynamic Files

	Data Protection and Integrity Options
	Distributed Free Space
	Loading a File
	Specifying Free Space
	Altering Free Space
	Considerations for Loading a File
	Performance with Too Much or Too Little Free Space
	Where VSE/VSAM Places the Records
	Specifying Free Space in a CI and CA
	Reclaiming Space

	CI/CA Splits
	Examples: CI/CA Splits
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Index Options
	Performance Measurement
	Displaying Statistics About Buffer Pools

	Chapter 8. Data Protection and Data Recovery
	Data Protection
	Passwords to Authorize Access
	Password Levels
	Password Submission
	Password Relationships
	Password Checking
	Passwords and IDCAMS Operations

	IDCAMS Commands Security
	User Security-Verification Routine
	Protecting Shared Data
	Cross-Systems Sharing

	Data Integrity
	IDCAMS Commands and Command Options for Data Integrity
	Using the DEFINE SPACE Command
	Using the DEFINE CLUSTER Allocation Subparameter
	Using the DEFINE USERCATALOG Command

	Protecting VSE/VSAM Files and Volumes
	Backup Considerations
	Relationship of Catalog Entries to VSE/VSAM Files and Volumes
	Creating Backup Copies of VSE/VSAM Files
	Creating Backup Copies of Volumes

	Protecting VSE/VSAM Catalogs
	Creating Backup Copies of Catalogs
	Protect Against Loss of Data, and Recover
	Protect Against Unusable Catalog, and Recover

	Rebuilding a Catalog

	Guide to VSE/VSAM Recovery
	Tools for Data Integrity, Backup, and Recovery
	Procedures for VSE/VSAM Recovery
	File is Not Properly Closed
	File is Inaccessible
	Catalog is Unusable
	Cause of Failure
	Error Conditions:
	Overview
	Recovery for a Catalog that Can Be Opened, but Many VSE/VSAM Files Cannot Be Opened
	Recovery for a Catalog that Cannot Be Opened
	Recovery for a Catalog Volume that is Unusable
	Catalog Entry Mismatches

	Volume is Inaccessible

	Quick Recovery

	Chapter 9. VSE/VSAM Support for SAM Files
	Overview
	About SAM ESDS Files
	About the VSE/VSAM Space Management for SAM Function

	Advantages in Using SAM ESDS Files
	Planning for Files
	Work Files
	Disposition
	Extending Existing SAM ESDS Files

	Levels of Migrating Data and Programs from SAM to VSE/VSAM Control
	Functions Available at the Various Migration Levels

	Creating a SAM ESDS File
	Setting Up a Quantity of Space
	Defining a SAM ESDS File
	Explicit Define Cluster (Using the DEFINE CLUSTER Command)
	DEFINE CLUSTER Command -- Explanations of Parameters
	Additional Considerations
	Single Extent Primary Allocation
	Partition/Processor Independence Specification

	Implicit Define Cluster
	Assumptions Made by VSE/VSAM
	Information Obtained from the DTF
	Information Obtained from the Job Control Statements

	Resetting and Reusing a Previously-Defined File

	Using a SAM ESDS File
	Access to a SAM ESDS File
	Managed-SAM Access: Differences to (Unmanaged) SAM Access
	Considerations Relating to DEFINE CLUSTER Specifications
	Considerations for Access to Files

	Using SAM ESDS Files: Restrictions
	VSE/VSAM Access of SAM ESDS Files: Considerations

	The IDCAMS Commands for a SAM ESDS File
	Implicit Deletion of a SAM ESDS File

	Sample Programs and Job Streams
	Example 1: Load a SAM ESDS File by Way of Managed-SAM Access
	Example 2: Implicit Define of a SAM ESDS File
	Example 3: Define a Default Model SAM ESDS File
	Example 4: Define a Dynamic SAM ESDS File and Access

	Differences Between VSE/VSAM ESDS and SAM ESDS File Format
	How CIs are Formatted into CAs
	VSE/VSAM ESDS Files
	SAM ESDS Files

	Relationship of Physical and Logical Layout

	Chapter 10. Performing an IDCAMS SNAP (FlashCopy)
	Overview of the IDCAMS SNAP Command
	Avoiding Incorrect Usage of Volumes and Catalogs
	Advantages in Creating a Snapshot of Entire Disk Volumes
	Using IDCAMS SNAP and BACKUP With a Synonym List
	Example of Running IDCAMS SNAP / BACKUP With a Synonym List
	Using the FlashCopy Dialog to Backup VSE/VSAM Data
	Controlling Access to the IDCAMS SNAP Command

	Chapter 11. Using VSE/VSAM Macros
	Groups of Macros
	Relating a Program and the Data
	ACB: Specifying the Access Method Control Block
	EXLST: Specifying the Exit List
	RPL: Specifying the Request Parameter List
	GENCB: Generating Control Blocks and Lists

	Connecting and Disconnecting a Processing Program and a File
	Manipulating and Displaying the Information Relating Program and Data
	Requesting Data Transfer, Positioning, and Deletion of Records
	Displaying Catalog Information. SHOWCAT
	Sharing Resources Among Files and Displaying Catalog Information
	Data Set Name Sharing
	Considerations
	Processing
	Specifying Manipulation Macros

	Buffers and LSR Pools above 16MB Line of Storage

	Chapter 12. Descriptions of VSE/VSAM Macros
	Syntax of VSE/VSAM Macros
	VSAM Executable Macros and Their Mode Dependencies
	The ACB Macro
	Format of the ACB Macro
	Options of the MACRF Parameter

	OPEN/CLOSE/TCLOSE Message Area
	Providing the Area
	Format of the Message Area Header
	Exceptional Conditions for the Message Area

	The BLDVRP Macro
	Deciding How Big a Pool to Provide
	Displaying Information about an Unopened File
	Displaying Statistics about a Buffer Pool
	Format of the BLDVRP Macro
	Return Codes from BLDVRP
	Connecting a File to a Resource Pool
	Restrictions

	The CLOSE Macro
	Format of the CLOSE Macro

	The DLVRP Macro
	The ENDREQ Macro
	The ERASE Macro
	The EXLST Macro
	Format of the EXLST Macro
	EODAD Exit Routine to Process End-of-File
	EXCPAD Exit Routine
	JRNAD Exit Routine to Journal Transactions
	LERAD Exit Routine to Analyze Logic Errors
	SYNAD Exit Routine to Analyze Physical Errors

	The GENCB Macro
	Format of the GENCB Macro
	Examples of the GENCB Macro

	The GET Macro
	Format of the GET Macro
	VSE/VSAM is Not Yet Positioned

	The MODCB Macro
	Format of the MODCB Macro
	Examples of the MODCB Macro

	The OPEN Macro
	Format of the OPEN Macro
	Return Codes from OPEN

	The POINT Macro
	The PUT Macro
	The RPL Macro
	Format of the RPL Macro
	RPL Processing Options
	Specifying Processing Options for a Request
	Keyed and Addressed Access
	Sequential and Direct Processing
	CI Access

	The SHOWCAT Macro
	Format of the SHOWCAT Macro
	Return Codes from SHOWCAT

	The SHOWCB Macro
	Format of the SHOWCB Macro
	Keywords of the ACB, EXLST, and RPL Macros
	Length of a Control Block or List
	Attributes of an Open File
	Structure of the ATRB
	Examples: The SHOWCB Macro
	Example: Statistics on Use of LSR Buffer Pools
	LSR Matrix
	Extent Matrix
	Example of an LSR Matrix Call
	Example of an Extent Matrix Call

	The TCLOSE Macro
	The TESTCB Macro
	Format of the TESTCB Macro
	Operands of the ACB, EXLST, and RPL Macros
	Length of a Control Block or List
	Attributes of an Open File or Index
	Examples of the TESTCB Macro

	The WRTBFR Macro
	Managing I/O Buffers
	Deferring Write Requests
	Relating Deferred Requests by Transaction ID
	Writing Buffers Whose Writing Has Been Deferred
	Format of the WRTBFR Macro

	Examples: ACB, EXLST, and RPL Macros
	Specifying VSE/VSAM Control Blocks
	JCL to Open and Process a File

	Examples of Request Macros
	How to Retrieve a Record: GET Macro
	Example 1: Keyed-Sequential Retrieval
	Example 2: Skip-Sequential Retrieval
	Example 3: Addressed-Sequential Retrieval
	Example 4: Keyed-Direct Retrieval
	Example 5: Addressed-Direct Retrieval

	How to Position for Subsequent Sequential Access: GET and POINT Macros
	Example 6: Keyed Positioning with POINT
	Example 7: Switching from Direct to Keyed-Sequential Retrieval

	How to Chain Request Parameter Lists and Terminate a Request: ENDREQ Macro
	Example 8: Chaining Request Parameter Lists
	Example 9: Giving up Positioning for Another Request

	How to Store a Record: PUT Macro
	Example 10: Keyed-Sequential Insertion
	Example 11: Skip-Sequential Insertion
	Example 12: Keyed-Direct Insertion
	Example 13: Addressed-Sequential Addition

	How to Update a Record: GET and PUT Macros
	Example 14: Keyed-Sequential Update
	Example 15: Keyed-Direct Update
	Example 16: Addressed-Sequential Update

	How to Delete a Record: GET and ERASE Macros
	Example 17: Keyed-Direct Deletion
	Example 18: Addressed-Sequential Deletion

	How to Use Extended User Buffering: GET and PUT Macros
	Current User Buffering Support
	Extended User Buffering Support
	Using Extended User Buffering

	Return Codes of Request Macros
	Return Codes from the Control Block Manipulation Macros
	List, Execute, and Generate Forms of the Control Block Manipulation Macros
	List and Execute Forms
	Generate Form
	Examples of the List, Execute, and Generate Forms

	Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros
	Operand Notation for VSE/VSAM Macros
	GENCB Macro Operands
	MODCB Macro Operands
	SHOWCB Macro Operands
	TESTCB Macro Operands
	BLDVRP Macro Operands
	DLVRP Macro Operands
	SHOWCAT Macro Operands
	WRTBFR Macro Operands

	Parameter Lists for VSE/VSAM Macros
	The GENCB Parameter List
	The MODCB Parameter List
	The SHOWCB Parameter List
	The TESTCB Parameter List
	The BLDVRP Parameter List
	The SHOWCAT Parameter List

	Appendix B. Invoking IDCAMS from a Program
	Invoking Macro Instructions
	User I/O Routines

	Appendix C. Advantages of the ISAM Interface Program (IIP)
	Comparison of VSE/VSAM and ISAM
	Differences Between ISAM and VSE/VSAM
	VSE/VSAM Functions That Go Beyond ISAM
	VSE/VSAM Functions Available through IIP
	VSE/VSAM Functions Requiring Conversion from ISAM

	Preparations and Using the ISAM Interface Program
	Step 1: Consider Restrictions in the Use of IIP and VSE/VSAM
	Step 2: Define a VSE/VSAM File
	Step 3: Load the VSE/VSAM File
	Step 4: Changing ISAM Job Control Statements

	What the ISAM Interface Program Does

	Appendix D. Compatibility With Other Products
	Portability of VSE/VSAM Files to DFSMSdfp VSAM
	Compatibility of VSE/VSAM with DFSMSdfp VSAM
	Similarities between VSE/VSAM and ACF/VTAM

	Appendix E. VSE/VSAM Labels
	Types of VSE/VSAM Labels
	Location of Labels
	Volume Layouts
	Label Information Area

	VTOC Label Processing
	VSE/VSAM Data Spaces
	VSE/VSAM Files
	VTOC Labels for FBA Devices
	VSE/VSAM Data Space
	VOL1 Label Processing
	Format-1 VTOC Label Processing for Unique Files
	Format-3 VTOC Label Processing
	Format-4 VTOC Label Processing

	VSE/VSAM Files
	Defining a File: Suballocating Data Space (Non-Unique Files)
	Defining a File: Unique
	Processing a File

	Job Stream Examples
	Example - Define Data Spaces
	Example - Define a File in a Catalog
	Example - Define a Unique File
	Example - Process a File

	Appendix F. Diagnosis Tools
	Catalog Check Service Aid (IKQVCHK)
	In Case of Errors
	How to Run a Check
	Examples of Error Messages
	Example: Key-Range Names Not Matching
	Example: Erroneous Association Group Occurrence

	Output of a Check
	Record Types and Catalog Identifiers

	SNAP Trace (IKQVEDA)
	How to Run a SNAP Trace
	Example: SNAP Trace 0001
	Activating
	SNAP 0001 Output

	Maintaining VTOC and VOL1 Labels on Disk (IKQVDU)
	How to Run the IKQVDU
	Error Message and Codes (from IKQVDU)

	Appendix G. Using the VSAM Redirector Connector
	Overview of the VSAM Redirector Connector
	Using the VSAM Redirector Client For Synchronous Data Redirection
	Using the VSAM Capture Exit For Asynchronous Data Redirection
	EXCPAD for The Redirector

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Readers’ Comments — We'd Like to Hear from You

