

IBM z/VSE/
VSE Central Functions IBM

VSE/POWER
Diagnosis Reference
Version 7 Release 1

 SC33-6322-07

IBM z/VSE/
VSE Central Functions IBM

VSE/POWER
Diagnosis Reference
Version 7 Release 1

 SC33-6322-07

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page xvii.

Seventh Edition (July 2006)

This edition applies to Version 7 Release 1 of IBM Virtual Storage Extended/POWER, which is part of VSE Central Function,
Program Number 5609-ZVS, and to all subsequent releases until otherwise indicated in new editions or Technical Newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation or to: IBM Deutschland Entwicklung GmbH
Attn: Dept ECJ - BP/003D Department 3252
6300 Diagonal Highway Schoenaicher Strasse 220
Boulder, CO 80301, D-71032 Boeblingen
U.S.A. Federal Republic of Germany

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1979, 2006. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xvii
Programming Interface Information . xvii
Trademarks and Service Marks . xvii

Preface . xix

Chapter 1. Introduction . 1
Purposes of VSE/POWER . 1

VSE/POWER Private Subtasks . 2
VSE/POWER Direct Access Files . 8

Communication with VSE/POWER . 9
VSE/POWER Operator Commands . 9
Job Entry Control Language . 9
Format of VSE/POWER Operator Messages . 9

Environmental Requirements . 11
Programming Requirements . 11

Storage Requirements and Allocations . 14
Virtual Storage . 14
Real Storage . 15

Hardware Supported . 16
Machine Requirements . 16
Devices Supported . 16

Chapter 2. Method of Operation . 19
VSE/POWER Linkage Conventions . 19

Register Conventions . 19
Interface Linkage . 21
Function Linkage . 21
Service Linkage . 22

Chapter 3. Program Organization . 25
Code Organization . 26

Storage Structure . 26
Code Structure . 27
Internal Macro Instructions . 32

Initialization and Termination . 39
Initialization of VSE/POWER . 39
VSE/POWER Startup . 45
Termination of VSE/POWER . 54
VSE/POWER Multitasking . 58
Task Initiation . 60
Task Selection . 62
Task Termination . 64

Reader, Execution Processor, and Writer Tasks . 65
Reader Tasks . 66
Execution Processor Tasks . 68
Writer Tasks (List and Punch) . 73
Offload Reader/Writer Tasks (IPW$$OF) . 76

Dynamic Partition Support . 78
Enabling Dynamic Partition Scheduling . 78

© Copyright IBM Corp. 1979, 2006 iii

Driving Dynamic Partitions . 79
Tracking Dynamic Partition Allocation . 82
Attributes and Restrictions . 82
Load, Modify, and Display the Dynamic Partition Support . 83
Abnormal Termination with Dynamic Partitions . 86
Interplay of Dynamic Partition Scheduling Functions . 87

The Spooling Process . 89
Queue File Organization . 89
In-Storage Queue Principles . 92
Data File Organization . 94
Queue File and Data File Processing . 96
Time Event Scheduling . 103

Running in ESA-Mode . 108
Usage of ESA-Mode . 108
Usage of Access Registers . 108
Usage of Access Register in Modules . 109
Addressing Exception in Access-Register Mode . 110

Multiprocessor Support . 111
External Invocation and Function . 111
Internal Implementation Overview . 111
Internal Functional Specifications . 113
Internal Implemented Design . 115

Services . 123
Resource Management . 123
Real Storage Management . 123
Virtual Storage Management . 125
Message Service . 127
Queue File Server . 136
Disk Service . 138
Tape Service . 140
Timer Service . 141
Interval Timer Service . 141
Validation Service . 141
Remote Service . 142
Get Trace Entry . 142
Switch NP/PA Mode Service . 143

Miscellaneous Tasks and Functions . 143
Message Handler Overview . 143
Notify Processing . 157
Asynchronous Service . 159
IDUMP in Flight Function . 160
Open/Close Tape . 164

Command Processor . 165
Initiation of the Permanent Command Processor Task . 165
Initiation of the Temporary Command Processor Task . 165
Command Processor Organization . 166
Command Authorization Verification . 166
Command Processing Routines . 166
Command Processing Due to Operator Communication . 181

VSE/POWER Job Accounting . 183
Account File Processing . 183

VSE/POWER Networking Function . 187
PNET Initialization . 188
PNET Driver . 188

iv VSE Central Functions V7R1 VSE/POWER DRM

PNET Node Operations . 191
PNET BSC/CTC/TCP/SSL I/O Manager . 195
PNET TCP Interface to TCP/IP . 198
TCP/IP Driver Subtask (TD Subtask) . 199
PNET SSL Interface to TCP/IP . 221
TCP/SSL Driver Subtask (SD Subtask) . 223
PNET SNA Interface to VTAM . 251
PNET SNA Session Establishment . 252
PNET SNA Session Termination . 259
PNET SNA VTAM Exits . 263
PNET SNA SEND/RECEIVE Function . 267
PNET Transmitter . 273
PNET Composer . 276
PNET Receiver . 278
PNET Presentation Service . 283
PNET Buffer Service . 284
PNET Compression/Decompression . 284
PNET Multi-Leaving Format . 286

Remote Job Entry (RJE) Function . 296
RJE,BSC . 296
RJE,SNA . 303

Appendages . 331
Page Fault Appendage . 331
Attention Interface Appendage . 332
RJE,BSC and PNET,BSC/CTC Channel End Appendage . 332
Hot Reader Appendage . 332
SVC 0/3 Appendage . 332
SVC 90/91 Appendage . 333
Interval Timer Appendage . 333
JCL End-of-Job Appendage . 333
Appendage Summary . 333

VSE/POWER Shared Spooling Function . 335
Timer Task . 335
Queue Control Area (QCA) . 337
Command/Message Passing Between Sharing Systems . 341

VSE/POWER Spool-Access Support Interface . 344
Spool Access Support Master Task . 344
SAS User Task . 346
SAS Protocol . 348

External Device Support . 373
Device Service Task (DST) . 374
Orders from VSE/POWER (Outbound) . 382
Orders from the DDS (Inbound) . 383

Heartbeat Task . 383
Codes using REIPL Macro . 385

Chapter 4. Directory . 387
CSECT and Control Block Name List . 388
PHASE Name List . 392
Macro List . 395

Macro Shipables' List . 399
Programming Example Shipables' List . 400

Message Reference . 401

 Contents v

Chapter 5. Storage Layout and Data Areas . 433
The Layout of the SVA Part of VSE/POWER . 433

How to Locate the CAT . 434
The Storage Layout of the VSE/POWER Partition . 434

The Permanent Area . 439
The Fixable Area . 439
The GETVIS Area . 442

Account Control Block (ACCB) . 444
Accounting Record Layouts . 448
Assign/Unassign Work Space . 449
Asynchronous Service Anchor Block (ASAB) . 450
Asynchronous Service Control Section (ASCB) . 451
Asynchronous Service Work Element (ASWE) . 452
Buffer Control Word (BCW) . 453
Buffer Layout . 454
Cancel Codes of VSE/POWER . 456
Channel Command Word (CCW) . 457
Command Control Block (CCB) . 458
Command Processor Work Area (CPWA) . 459
Communicator Information Block (CIB) . 485
Class Table Entry . 487
Communicator Information Block 2 (CI2) . 488
Communicator Information Element (CIE) . 489
Application Communicator Information Element (ACIE) . 490
Control Address Table (CAT) . 491
Data Set Control Block . 508
Compaction Table Block (CMPT) . 509
Disk Management Block (DMB) . 510
DSECTS for Accounting (A-FILE ON FBA) . 523
Dynamic Partition Control Block . 524
Execution Processor Work Area . 525
External Device Control Block (EDCB) . 526
FCB Table (FCBCB) . 527
Function Management Header 3 . 528
Generation Table (GNB) for VSE/POWER . 529
Initialization Processor Work Area (IP) . 533
Journal Communication Area (JCA) . 535
Logical Data Record Area (LDA) . 539
Logical Reader Work Area . 540
Logical Writer Work Space . 542
Message Control Block (MMB) . 544
Master External Device Control Block . 546
Module Control Block (MCB) . 547
Network Composer Work Area . 550
Network Compression Work Area . 552
Network Definition Table (NDT) . 553
Network Data Set Header Record (DSHR) . 555
Network Job Header Record (JHR) . 559
Network Job Trailer Record (JTR) . 563
Network Presentation Work Area . 564
Network Receiver Work Area . 565
Network Transmitter Work Area . 567
Network Transmitter Exit Parameter List . 569
Nodal Message Record (NMR) . 570

vi VSE Central Functions V7R1 VSE/POWER DRM

Node Control Block (NCB) . 571
Node Control Block Task Entry . 583
Open 3540 Diskette Work Space . 584
Output Exit Parameter List . 586
Output Parameter Definition Entry . 587
Output Parameter Text Block . 588
Output Parameter Processing Interface List . 589
Partition Control Block (PDB) . 591
Physical Data Record Area (PDA) . 594
Physical Work Space (PWS) . 595
3540 Physical Work Space . 596
PNET Control Block (PNCB) . 597
PNET TCP Driver Control Block (TDCB) and PNET SSL Driver Control Block (SDCB) 599
Print Status Processor Work Area . 608
Printer TCB Extension Area . 613
Queue Record Area (QRA) . 614
Remote Message Control Block (MSCB) . 620
RJE Line Control Block (LCB) . 621
Segment Macro Parameter List . 629
Shared System Slot Communication (SLOT) . 631
Service Request Block (SRB) . 633
SNA Session Control Block for PNET (SSCB) . 635
SNA Compaction Table Control Block (COCB) . 636
SNA Control Block (SNCB) . 637
SNA Logical Unit Control Block (LUCB) . 638
SNA Logon Request Control Block (LRCB) . 641
SNA Remote Control Block (RMCB) . 642
SNA Session Request Queue (SRQE) . 644
SNA Unit Control Block (SUCB) . 645
SNA Work Area (WACB) . 647
Source Library Member Element (SLME) . 650
Source Library Work Area (SLWA) . 651
Spool Parameter List (SPL) . 654
Spool Access Support Parameter List (PWRSPL) . 656
SPL Checking Parameter List . 674
Spool Access Support Task Work Area . 675
Spool Environment Block . 679
Spool Environment Header (SEH) . 680
Spool Environment Record (SER) . 682
Storage Control Block (SCB) . 684
System Information Area (SIA) . 686
Tape Control Block (TBB) . 687
Task Control Block (TCB) . 690

TCB State . 691
TCB Task Register Save Area (TRSA) . 691
TCB . 693
Command Processor Control Block (CPB) . 714
Additional Linkage Register Save Area (LRSA) . 715

Task Dispatch Trace Area . 720
Timer Queue Element (TQE) . 721
Trace Information Block (TIB) . 722
User Exit Data Table . 723
Virtual Buffer Control Area (Prefix) . 724
VTAM Driver Control Block (VDCB) . 725

 Contents vii

Virtual Storage Control Block (VSCB) . 726
Wait Control Block (WCB) . 727

Chapter 6. Diagnostic Aids . 729
General Debugging Hints . 729

Stand-alone Dump . 729
Identifying the VSE/POWER Partition . 729
Identifying the SVA Part of VSE/POWER . 729
Identifying Fixed Pages . 729
Identifying the Start of the Pageable Area . 730
Locating and Identifying Control Blocks, Tables, and Areas . 730
Identifying the Start of a CSECT . 734
Establishing the Level of a CSECT . 735
Determining the Active Routine and Analyzing Register Save Areas 735
Analyzing Event Control Blocks (ECBs) . 735
Using Buffer Control Words . 735
Analyzing TCBS . 735
RJE,BSC and PNET Telecommunication Trace Facility . 737
PNET BSC/CTC/TCP I/O Logging on Console . 740
Hardware Error Recording . 740
VSE/POWER Disk Dump Program . 740
Establishing the Last Command Issued . 740
An Aid to Eliminate Functions . 740
Problems Related to VTAM . 740

System Dump Containing the VSE/POWER Partition . 741

Appendix A. VSE/POWER Status Bytes in the VSE/AF Supervisor 743

Appendix B. Summary of ECB Usage (4 and 8-Byte) . 745

Appendix C. VSE/POWER Internal Macros . 747
Coding Aids . 747
Macro Notation . 747

Format of Internal Macros . 748
IPW$ALN - Align to Storage Boundary . 748
IPW$AJ# - Assign New VSE/POWER Job Number . 748
IPW$AQS - Add Queue Entry to Class Chain . 748
IPW$ATT - Attach VSE/POWER Task . 749
IPW$BUF - Invoke PNET Buffer Service . 749
IPW$CAF - Close Account File . 751
IPW$CLI - Close Logical Interface . 752
IPW$CPY - Provide Copyright . 752
IPW$CNC - Cancel VSE/POWER or VSE/POWER Task . 753
IPW$CTT - Perform Tape Control Operation . 753
IPW$DQS - Delete Queue Entry from Class Chain . 754
IPW$DET - Detach VSE/POWER Task . 754
IPW$DSD - Define Storage Descriptor . 754
IPW$FQS - Free Queue Entry . 755
IPW$GAM - Get Message and Send to Designated Person . 755
IPW$GAR - Get Account Record . 757
IPW$GDR - Get Data Record . 757
IPW$GLR - Get Logical Record . 757
IPW$GMS - Call General Message Service . 757
IPW$GQR - Get Queue Record . 758

viii VSE Central Functions V7R1 VSE/POWER DRM

IPW$GQS - Get Next Queue Entry . 759
IPW$GSL - GET SLI Record . 759
IPW$GTE - Get Trace Entry . 760
IPW$GTO - Issue TD-Subtask Message . 760
IPW$GTS - Issue SD-Subtask Message . 760
IPW$IAS - Invoke Asynchronous Service . 761
IPW$ICP - Invoke VSE/POWER Command Processor . 762
IPW$ICS - Invoke Common Services . 763
IPW$IDM - Invoke IDUMP of the VSE/POWER Partition . 763
IPW$IDS - Invoke Data Management Service Routines . 764
IPW$IIS - Invoke Print Status Processing Service . 764
IPW$IOM - Invoke I/O Monitor or SNA Send/Receive Routine . 765
IPW$IOC - Invoke Compaction Processing . 765
IPW$IPS - Invoke PNET Driver Routines . 765
IPW$IQS - Invoke Queue Management Service Routines . 766
IPW$IRY - Invoke Queue File / Account File Recovery . 768
IPW$ITP - TD-Subtask EZASMI Interface . 768
IPW$ITS - SD-Subtask EZASMI Interface . 769
IPW$ITQ - Invoke Maintain Wait for Run Subqueue . 770
IPW$IXS - Invoke Cross-Partition Services . 770
IPW$MQR - Modify Queue Record . 771
IPW$NTY - Notify User . 772
IPW$OAF - Open Account File for Read Mode . 772
IPW$OEF - Open 3540 Diskette File . 773
IPW$OLI - Open Logical Interface . 773
IPW$OPI - Invoke Output Parameter Processing Routine . 773
IPW$OTP - Open Tape Processing . 774
IPW$PAR - Write Account Record . 774
IPW$PDR - Put Data Record . 775
IPW$PLR - Put Logical Record . 775
IPW$RDC - Get Time of Day (Read Clock) . 775
IPW$RDD - Read Data Block from Disk . 776
IPW$RDQ - Read Queue Record from Disk . 776
IPW$RDT - Read Tape Record . 777
IPW$RET - Return to Caller . 777
IPW$RLR - Release Resource . 777
IPW$RLV - Release GETVIS Storage . 778
IPW$RLW - Release Fixed (Real) Storage . 778
IPW$RMS - Remote Message Service . 779
IPW$RQS - Reserve Queue Record . 780
IPW$RSR - Reserve Resource . 780
IPW$RSV - Reserve GETVIS Storage . 780
IPW$RSW - Reserve Fixed (Real) Storage . 782
IPW$SAV - Save Caller's Registers . 782
IPW$SRJ - Scan Reader JECL Statement . 783
IPW$SRM - Set Remote Mask . 783
IPW$SSJ - Call Parameter Checking Routine . 783
IPW$STM - Set Timer Interval . 784
IPW$SXJ - Scan Execution JECL Statement . 785
IPW$TDM - Switch Turbo Dispatcher Mode . 785
IPW$TTM - TD-Subtask Timer Interval Support . 785
IPW$TTS - SD-Subtask Timer Interval Support . 786
IPW$ULP - Update LUB/PUB Tables . 787
IPW$UNV - Unchain Virtual Storage Element . 787

 Contents ix

IPW$VCA - Validate Command Authorization . 788
IPW$VDA - Validate Data Area Address . 788
IPW$WF[x] - Wait for VSE/POWER Event . 789
IPW$WQR - Write Queue Record . 790
IPW$WTD - Write Data Block to Disk . 790
IPW$WTO - Write to Operator . 791
IPW$WTQ - Write Queue Record Block to Disk . 792
IPW$WTR - Write to Operator with Reply . 792
IPW$WTT - Write Tape Record . 793

Appendix D. VSE/POWER Storage Requirements for Release 6.1 795

List of Abbreviations . 799

Bibliography . 801

Glossary . 803

Index . 805

x VSE Central Functions V7R1 VSE/POWER DRM

 Figures

1. Relationship Between VSE/POWER, VSE/AF, and the Program Running under the Control of
VSE/POWER . 7

2. Basic Organization of the VSE/POWER Partition . 14
3. SVA Part of VSE/POWER . 15
4. Devices Supported by VSE/AF . 16
5. Hierarchic Structure of VSE/POWER . 19
6. Relationship of Internal and External Save Area . 21
7. Contents of Registers when a Service is Invoked . 23
8. Interface Macros . 32
9. Function Macros . 33

10. Service Macros . 34
11. Definition Macros . 36
12. Miscellaneous Macros . 37
13. PNET TCP TD-Subtask Support . 37
14. PNET SSL SD-Subtask Support . 38
15. Initiation Logic . 40
16. Initial Task Selection (TCB Chain) . 45
17. Free DBLK Group Subchain . 46
18. Task Selection List (TSL) . 59
19. Attaching a Task . 61
20. Overview of Task Selection . 62
21. Detaching a Task . 64
22. Data Flow Throughout the Spooling Process . 65
23. Physical and Logical Work Areas . 66
24. Physical Data Area - GETVIS Space . 67
25. Execution Segmentation Data Flow Overview . 71
26. SETPRT Handling . 72
27. SETPRT Request Processing Flow . 74
28. Internal Tape Format . 77
29. Flow of a Dynamic Partition . 81
30. Logic Flow of PLOAD DYNC Command . 85
31. Control Block Relationship for Dynamic Partitions . 88
32. Device Type - Queue Record Block Relationship . 89
33. Free Queue Record Chain . 90
34. Class Chain and Queue Entry Structure . 91
35. Data Record . 94
36. Job Header, Data Set Header and Job Trailer Format . 95
37. Structure of Job Queue and 'Wait For Run' Subqueue . 104
38. Resource LOCKWORD of a VSE/POWER Control Block . 123
39. Storage Management Control Blocks Relationship . 124
40. Virtual Storage Relationship . 126
41. Local Job Submission and Notification Message Queuing . 129
42. Shared System Notify Message Queuing . 129
43. Job Completion Message Queuing at Receiving System . 130
44. Job Completion Message Queuing at Shared Receiving System 131
45. Message Flow with Shared Processing System and Network . 132
46. Job Event Message Queuing . 133
47. Control Block Relationship for Communicator Information Block 2 134
48. Conversion from f.f. NMR to Message Queue Format . 135
49. Message Service Control Block Relationship . 136

© Copyright IBM Corp. 1979, 2006 xi

50. I/O Request Word . 138
51. Disk Management Control Blocks Relationship . 140
52. Tape Service Control Blocks Relationship . 140
53. Areas Checked by Validation Service . 142
54. Trace Service Control Block Relationship . 143
55. Local Message Routing Codes for WTO/WTOR Macro . 145
56. Local Message Descriptor Codes for WTO/WTOR Macro . 146
57. Message Modification Characters and Action Table . 150
58. Relationship Between VSE/POWER and VSE/AF Job Accounting 184
59. User Specified Account Records, Data Relationship . 186
60. Starting a PNET Connection - Shown for a BSC Link . 193
61. Control Flow when Stopping a PNET Connection . 194
62. PNET BSC and CTC CCW Sequences . 196
63. TD Subtask - Three Operation Layers for PNET TCP support. 200
64. TD-Subtask - Flow of I/O after PSTART . 207
65. TD Subtask - Startup and First PSTART Command . 208
66. TD Subtask - Second PSTART Command and Signon Complete 209
67. TD Subtask - Processing the Idling State . 210
68. Socket Calls Used . 225
69. Synchronous Socket Calls Read and Write Used Implicitly . 226
70. SD Subtask - Three Operation Layers for PNET SSL support. 226
71. SD Subtask - Startup and First PSTART Command . 235
72. SD Subtask - Second PSTART Command and Signon Complete 237
73. SD Subtask - Processing the Idling State . 239
74. PNET SNA Session Establishment - for First Node . 254
75. PNET SNA Session Establishment . 255
76. PNET SNA Remote Initiated Session . 257
77. PNET SNA Primary Initiated Stop . 260
78. PNET SNA Secondary Initiated Stop . 262
79. PNET SNA Abnormal Termination . 266
80. PNET SEND Function . 269
81. PNET RECEIVE Function . 271
82. General Transmission Flow - Shown for BSC Link . 273
83. Format of Output Records . 277
84. JES2 to VSE/POWER Priority Conversion Table . 279
85. PNET Internal Record Format . 283
86. SCB Byte Codes . 285
87. String Control Byte (SCB) for BSC/CTC/TCP/SSL communication 286
88. Record Control Byte (RCB) . 287
89. Subrecord Control Byte (SRCB) . 288
90. Function Control Sequence (FCS) . 289
91. Block Control Byte (BCB) . 290
92. Multi-Leaving Buffer Format for SNA Communication . 290
93. Multi-Leaving Buffer Format for BSC/CTC/TCP/SSL . 291
94. PNET BSC/TCP/SSL Control Block Relationship . 292
95. PNET BSC/CTC/TCP Buffer Relationship and Queuing . 293
96. PNET SNA Control Block Relationship . 294
97. PNET SNA Buffer Relationship and Queuing . 295
98. RJE,BSC Relationship . 297
99. LCB Activity Checking and Channel End Processing . 298
100. Line Action . 299
101. RJE,BSC Reader Flow . 300
102. RJE,BSC Writer Flow . 302
103. RJE,SNA Interrelationship . 304

xii VSE Central Functions V7R1 VSE/POWER DRM

104. BIND Format . 307
105. FMH1 Format . 311
106. Default FMH1 . 312
107. FMH2 Format . 313
108. FMH3 Format . 314
109. Description of RJE,SNA Routines . 317
110. Description of RJE,SNA Control Blocks and Work Areas . 320
111. RJE,SNA Execution Flow . 321
112. RJE,SNA Control Block and Work Area Chaining . 330
113. Appendage Summary . 334
114. Slot-DBLK Structure . 338
115. SAS Master Task Control Block Relationship . 346
116. SAS User Task Module Structure . 347
117. Possible Requests within GET Function . 349
118. Possible Requests within GET BROWSE Function . 350
119. Possible Requests within PUT Function . 351
120. Possible Requests within CTL Function . 352
121. Possible Requests within GCM Function . 352
122. CTL Function Control and Data Flow . 354
123. GET Data/Control Flow . 356
124. PUT Function Control/Data Flow . 359
125. Output Parameter Text Block Structure . 360
126. GCM Function Program Logic . 364
127. Processing GCM-OPEN-KEEP Followed by GCM-MORE and GCM-REMOVE 365
128. Processing GCM-OPEN-KEEP Followed by GCM-OPEN-REMOVE 366
129. GCM Function Control/Data Flow . 367
130. GCM Function Control/Data Flow (cont.) . 368
131. Device Serving Support - Device Driving System Overview . 374
132. Normal Protocol to Start a Communication . 376
133. External Device Reactivation Protocol . 378
134. Flush HOLD Protocol . 380
135. External Device Termination Protocol . 381
136. Message Reference . 408
137. Message Reference . 430
138. Message Reference . 431
139. Control Blocks in the SVA Part of VSE/POWER . 433
140. Storage Layout of VSE/POWER Partition . 435
141. Control Blocks Permanently Allocated in the Fixable Area . 439
142. Control Blocks Dynamically Allocated in the Fixable Area . 440
143. Control Blocks Dynamically Allocated in the GETVIS Area . 443
144. Cancel Codes of VSE/POWER . 456
145. Task Class List . 712
146. Summary of Linkage Register Save Areas . 713
147. Linkage from a Physical Routine to a Function Routine . 715
148. Linkage from One Function Routine to Another Function Routine 716
149. Linkage Between the Two LRSAs in a Double Linkage Register Save Area (Case 1) 717
150. Linkage Between the Two LRSAs in a Double Linkage Register Save Area (Case 2) 718
151. Locating and Identifying Control Blocks, Tables and Areas in the SVA Part 730
152. Locating and Identifying Control Blocks, Tables, and Areas in the Fixable Area 731
153. Locating and Identifying Control Blocks, Tables and Areas in the VSE/AF GETVIS Area 734
154. General Meaning of the Task Management Fields . 736
155. General Meaning of Fields in the TRSA . 737
156. Summary of ECB Usage . 745
157. Relationship Between Classes in the TCB and the Master Class Table in the DMB 746

 Figures xiii

158. Values for Calculating IBM VSE/POWER's Fixable and Getvis Areas 796

xiv VSE Central Functions V7R1 VSE/POWER DRM

 Figures xv

xvi VSE Central Functions V7R1 VSE/POWER DRM

 Notices

References in this publication to IBM* products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any of the intellectual prop-
erty rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM, are
the responsibility of the user.

This publication is intended primarily for use by IBM personnel responsible for program service. The infor-
mation contained in this document has not been submitted to any formal IBM test and is distributed AS IS.
It is not intended as a description of a programming interface. The use of this information is a customer
reponsibility. Service for errors, ommissions, accuracy, or completeness will not be provided.

IBM may have patents or pending patent applications covering subject matter in this document. The fur-
nishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785,
U.S.A.

Programming Interface Information

This publication is intended to help the customer to do diagnosis of VSE/ESA. This publication documents
information that is Diagnosis, Modification, or Tuning Information provided by VSE/ESA.

Warning: Do not use this Diagnosis, Modification, or Tuning Information as a programming interface.

Trademarks and Service Marks

The following terms, used in this publication, are trademarks or service marks of the IBM Corporation in
the United States and/or other countries.

ACF/VTAM
Advanced Function Printing
AFP
AS/4��
CICS
CICS/VSE
Enterprise Systems Architecture/37�
Enterprise Systems Architecture/39�
ES/9���
ESA/39�
IBM
OS/39�
Print Services Facility
System/37�
VM/ESA
z/VSE
VTAM

© Copyright IBM Corp. 1979, 2006 xvii

xviii VSE Central Functions V7R1 VSE/POWER DRM

 Preface

This manual, contains:

� Chapter 1: Gives an overview of VSE/POWER, states requirements for operation, and lists the
devices supported by VSE/POWER.

� Chapter 2: Describes the method of operation, including linkage and register conventions.

� Chapter 3: Outlines the logical structure of VSE/POWER; it explains the internal operations and
shows the relationships between tasks and routines.

� Chapter 4: Lists program identifiers. This allows you to establish the relationship between phases,
modules, and control sections. This part also lists the VSE/POWER messages and the relating
modules.

� Chapter 5: Describes the layout of the VSE/POWER partition, account records, control blocks, and
the work areas required by VSE/POWER.

� Chapter 6: Gives debugging hints, and shows how you can get information from a dump of the
VSE/POWER partition.

At the back of this manual, you find:

� VSE/POWER Internal Macros.
� Appendixes: They expand on the information given in the above sections.
� List of Abbreviations.
� Bibliography: Lists manuals you may want to consult.
� Glossary: Explains some of the terminology used in this manual.

 � Index.

© Copyright IBM Corp. 1979, 2006 xix

xx VSE Central Functions V7R1 VSE/POWER DRM

 Chapter 1. Introduction

This section contains an overview of the Virtual Storage Extended/Priority Output Writers, Execution
Processors and Input Readers (VSE/POWER) Program Product. It is organized as follows:

� Purposes of VSE/POWER. A general description of VSE/POWER and the way its major functions are
performed under VSE/AF.

� Communication with VSE/POWER. A summary of the VSE/POWER Operator Commands and the Job
Entry Control Language, which allow the user to control VSE/POWER operations. The format of the
messages issued by VSE/POWER is also explained.

� Environmental Requirements. The programming requirements for the various functions of
VSE/POWER, and the basic organization of the VSE/POWER partition with its storage requirements.
The machines and devices which are supported by VSE/POWER are listed under "Hardware Support".

Purposes of VSE/POWER

VSE/POWER performs automatic spooling and priority scheduling under the control of the VSE/AF super-
visor. VSE/POWER occupies a virtual partition in which it is initiated and can service from one to eleven
batch partitions (other than the VSE/POWER partition) of a lower or sometimes a higher dispatching pri-
ority. Coexisting with the spooled static partitions, VSE/POWER services dynamic partitions. Input to
supported partitions is first spooled onto intermediate disk storage. When the supported partition com-
mences execution, I/O requests to reader devices are intercepted and satisfied from intermediate storage
via I/O data areas in the VSE/POWER partition. Output requests to list and punch devices are also inter-
cepted, with the output being stored in output data areas of the VSE/POWER partition and later trans-
ferred to disk or tape. Printing and punching of the output from disk or tape is carried out when requested
by the operator. Under the control of VSE/POWER, programs may be executed in either real or virtual
mode.
The optional Shared Spooling function permits the sharing of the VSE/POWER files that contain the
spooled input and output among two or more VSE/AF systems running in the same processor or different
processors.

The use of the optional networking function, referred to in other parts of this manual as PNET, allows
VSE/POWER to fully participate within networks consisting of other VSE/POWER nodes, JES2/JES3 NJE
nodes or RSCS nodes.
Jobs, Output (list, punch), operator commands and messages can be transmitted from one computer
system to another.
The methods of communication used are binary synchronous communication (BSC) lines, channel-to-
channel adapters (CTCA), synchronous data link control (SDLC) lines, and Internet (Transmission Control
Protocol/Internet Protocol: TCP/IP).

Three major operations are performed under VSE/POWER control:

Read User job information is read from a reader device (card, diskette, or tape) and spooled to interme-
diate storage (DASD). The PUTSPOOL macro interface can be optionally used to submit a job
stream from the user's buffer area to intermediate storage.

The input may also come optionally from a remote terminal supported by the VSE/POWER
Remote Job Entry, or from a network supported by the VSE/POWER Networking function.

The job is executed under the control of the VSE/POWER execution processor to meet user
program requests.

© Copyright IBM Corp. 1979, 2006 1

List List output generated by the user program is spooled to intermediate storage (DASD or magnetic
tape) before being transferred to a list device, normally a line printer.

The GETSPOOL macro interface can be optionally used to request retrieval of printer output.

The list output may optionally be returned to a remote printer supported by the VSE/POWER
Remote Job Entry, or to another node within a network supported by VSE/POWER Networking.

Punch Punch output generated by the user program is spooled to intermediate storage (DASD or mag-
netic tape) before being transferred to a punch device, normally a card punch.

The GETSPOOL macro can be used to request retrieval of punched output.

The punch output may optionally be returned to a remote punch supported by the VSE/POWER
Remote Job Entry, or to another node within a network supported by VSE/POWER Networking.

Additionally, VSE/POWER provides a programmable interface, referred to in other parts of the manual as
Spool Access Support (SAS), which allows accessing the VSE/POWER spool files from any application
running in another partition either controlled or not controlled by VSE/POWER. It offers services that allow
two-way communication between VSE/POWER and a user using the cross partition communication facility
(XPCC) of VSE/AF. A "User" can be defined as any application, task, transaction, or interactive user who
is active in another partition. The support enables a user to:

� Submit a job to the VSE/POWER RDR queue for later execution in a VSE/POWER controlled partition
or to the XMT queue for transmission to another node in the network.

� Spool list or punch data to the output queues (LST, PUN or XMT).

� Retrieve data from the RDR, LST or PUN queue.

� Manipulate the local or remote queues.

� Route messages to the central operator, any remote operator, any other interactive user either on the
local or remote system or any remote RJE terminal operator.

� Pass other commands, such as PDISPLAY T, to VSE/POWER for processing.

� Return job event messages

Intermediate storage therefore contains user input and output data spooled to and from it under the control
of VSE/POWER.

The user can generate several different versions, depending on the parameters specified in the POWER
macro, and optional PLINE, PRMT, PNODE and PCPTAB macros.

The partition in which VSE/POWER is initiated is referred to as the VSE/POWER partition.

VSE/POWER Private Subtasks

To perform the required operations concurrently, VSE/POWER is structured into a series of asynchro-
nously executed tasks. These tasks are:

� VSE/POWER partition VSE/AF maintask

� VSE/POWER partition VSE/AF subtasks

In addition, VSE/POWER has its own

� VSE/POWER partition private subtasks

VSE/POWER private subtasking task support is provided within the VSE/POWER system and does not
presuppose Multitasking Support within the VSE/AF supervisor.

The VSE/POWER private subtasks are as follows:

2 VSE Central Functions V7R1 VSE/POWER DRM

INITIATOR TASK. Takes over from the VSE/POWER maintask at startup time and completes
VSE/POWER initiation. For details refer to “Initialization of VSE/POWER” on page 39.

TERMINATOR TASK. Created at initialization time, and waits for posting of either

� offline formatting of data file extents, or

� final deletion of entries in the DELetion queue, or

� termination processing due to the PEND command.

For details refer to “Termination of VSE/POWER” on page 54.

COMMAND TASK. Handles system operator commands and initiates other VSE/POWER tasks, or allows
stopping of tasks.

WAIT TASK. Transfers the VSE/POWER partition to and from the wait state to meet system requirements.

RJE,BSC LINE MANAGER TASK. Controls line activities with remote terminals. The task is alive as long
as VSE/POWER is active.

RJE,SNA MANAGER TASK. Controls the activation of transmission processing to and from a remote
SNA workstation on a demand basis. The task is attached when the central operator issues a PSTART
RJE,SNA command. The SNA manager also attaches a VSE/AF subtask in which the interface with
VTAM is opened.

RJE,SNA LOGON TASK NO. 1. Initializes session work areas and does validity checking of logon
request.

RJE,SNA LOGON TASK NO. 2. Establishes a session between VSE/POWER and a remote SNA work-
station.

RJE,SNA LOGOFF TASK. Terminates a session between VSE/POWER and a remote SNA workstation.

RJE,SNA MESSAGE TASK. Sends messages to a remote SNA workstation.

SPOOL MANAGER TASK. Controls the activation and deactivation of the internal reader task and the
spool/command manager list task. The task is attached during VSE/POWER initialization when
SPOOL=YES is specified in POWER macro and detached at VSE/POWER termination.

READ TASK. (See Notes, item 2 on page 6.) Performs the first part of the read operation and transfer
information from a peripheral reader to intermediate direct access storage. The operator may call for
concurrent execution of as many read tasks as he has physical readers available. Each read task is
therefore associated with a specific reader.

TAPE READ TASK. (See Notes, item 3 on page 6.) Performs the first part of a read operation and
transfer information from a tape device to intermediate direct access storage.
The operator can call for the concurrent execution of as many tape read tasks as he has physical tape
units available.

RJE,BSC READ TASK. (See Notes, item 2 on page 6.) Performs the read operation for a remote station.
Each RJE,BSC read task has the standard name '1RDR' assigned to it. Different RJE,BSC read tasks are
further distinguished by suffixing the line address to this standard name.

RJE,SNA READ TASK. Performs the read operation from a remote SNA workstation.

 Chapter 1. Introduction 3

INTERNAL READER TASK. Performs the read operation for the PUTSPOOL VSE/POWER cross-
partition communication macro interface.

EXECUTION READ TASK (See Notes, items 1 and 2 on page 6.) Performs the second part of the read
operation and transfer information from intermediate direct access storage to meet the read requests of
the user program. Each execution read task is associated with a specific partition. There can therefore
exist as many execution read tasks as there are partitions controlled by VSE/POWER.

EXECUTION LIST TASK. (See Notes, items 1 and 3 on page 6.) Performs the first part of the list func-
tion and transfer information from the user program to either intermediate direct access storage or tape.
There can exist as many execution list tasks as printers being spooled per partition, under VSE/POWER
control. Each execution writer is associated with the partition for which it is spooling.

EXECUTION PUNCH TASK. (See Notes, items 1 and 3 on page 6.) Performs the first part of the punch
function and transfer information from the user program to either intermediate direct access storage or
tape. There may exist as many execution punch tasks as punches being spooled per partition, under
VSE/POWER control. Each execution punch task is associated with the partition for which it is spooling.

LIST TASK. (See Notes, item 3 on page 6.) Performs the second part of the list operation and transfer
information from intermediate direct access or tape storage to the printer. The operator may call for con-
current execution of as many list tasks as he has physical printers available. Each list task is therefore
associated with a specific printer.

RJE/BSC LIST TASKS. (See Notes, item 3 on page 6.) Performs the list operation for a remote BSC
work/workstation. Only one list task may be active per line. Each RJE,BSC list task has the standard
name '1LST' assigned to it. Different RJE,BSC list tasks are further distinguished by suffixing the line
address to this standard name.

RJE,SNA LIST TASK. Performs the list operation to a remote SNA workstation.

SPOOL/COMMAND MANAGER LIST TASK. Performs the list/punch retrieval (GETSPOOL) and the
command invocation (CTLSPOOL) for the VSE/POWER spool manager interface.

PUNCH TASK. (See Notes, item 3 on page 6.) Performs the second part of the punch function and
transfers information from intermediate direct access storage or tape to the punch. The operator may call
for concurrent execution of as many punch tasks as he has physical punches available. Each punch task
is therefore associated with a specific punch.

RJE,BSC PUNCH TASK. (See Notes, item 3 on page 6.) Performs the PUNCH operation for a remote
BSC workstation. Each RJE,BSC punch task has the standard name '1PUN' assigned to it. Different
RJE,BSC punch tasks are further distinguished by suffixing the line address.

RJE,SNA PUNCH TASK. Performs the punch operation to a remote SNA workstation.

ACCOUNT TASK. Supports the VSE/POWER job accounting option (together with VSE/AF JAI). It gives
the user the option to either save the account file on another medium (tape, disk, cards) or delete the
contents of the account file. The contents and format of the account records are not checked or changed
by this task.

STATUS TASK. Scans the queue file, POFFLOAD or spool tapes, or network definition table and prints
the status display or node information respectively on SYSLOG, a line printer, a workstation printer, builds
a LST queue entry containing the desired information, or sends the queue status display / node informa-
tion back to the originating node.
The Status task also performs the dumping of the storage copy of the queue file residing in VIO or parti-
tion GETVIS.

4 VSE Central Functions V7R1 VSE/POWER DRM

OFFLOADING TASK. Performs one of the following functions:

� Saves queue entries on tape, or
� Stores the contents (backup) of an entire class chain or queue onto tape, or
� Restores saved queue entries, selectively if desired, from POFFLOAD or spool tape to VSE/POWER

queue.

The operator can call for the concurrent execution of as many off-loading tasks as he has physical tape
units available.

TIMER TASK. Supports the time-sharing approach used by the Shared Spooling function. Interfaces with
a VSE/AF subtask that handles the timer intervals.

NOTIFY TASK. Controls the transfer of messages destined for a particular subsystem, such as
VSE/ICCF or VSE/DSNX. The task is attached by the SAS master task when the first 'notify' connection
request is encountered; the task is detached at VSE/POWER termination.

PNET DRIVER TASK. Controls all activities on a PNET BSC/CTC or SDLC communication line. Proc-
essing is performed on a demand basis. The task is attached when the first PSTART PNET, nodeid is
entered and detached when the last node is disconnected (signed off). The Network Driver also attaches
a VSE/AF subtask in which the interface with VTAM is opened, when the first PSTART for a node is given
using an SDLC communication line.

TRANSMITTER TASK. Transmits job or output to another node in the network. Up to eight transmitters
can be active at a time for any node currently connected. There can be a mixture of job and output
transmitters active concurrently. The task is active as long as there are jobs or output eligible for trans-
mission.

RECEIVER TASK. Receives either job or output from another node in the network. Up to eight receivers,
which may be a mixture of job or output receivers, can be active at a time for any node which is currently
connected. The receiver task is attached only for the duration of the transmission of one job or output.

CONSOLE TRANSMITTER TASK. Sends messages and commands to another node in the network. The
task exists as long there are messages or commands to send.

CONSOLE RECEIVER TASK. Receives messages and commands from another node in the network.
The task is associated with a specific node and is attached when the node is started and exists as long as
the connection to that node exists.

CONNECT TASK. Establishes a SNA session between VSE/POWER and another node in the network.
The task is attached either when a PSTART nodeid is entered by the central operator, in which case the
task acts as primary application, or when a BIND is received, in which case the task acts as secondary
application.

DISCONNECT TASK. Terminates a SNA session between VSE/POWER and another node in the
network acting as a primary or secondary application.

SPOOL ACCESS SUPPORT MASTER TASK. Acts as a watchdog and waits for connection requests
from other partitions; it controls the activation of the notify task and SAS user tasks. The task is attached
during VSE/POWER initialization and detached at VSE/POWER termination.

SPOOL ACCESS SUPPORT USER TASK. Performs each function request from a SAS user. The func-
tion can be to:

� Spool jobs to the VSE/POWER RDR or XMT queue.
� Spool list or punch data to the output queues.

 Chapter 1. Introduction 5

� Retrieve job/output data from the various VSE/POWER queues.
� Manipulate queue entries in the various VSE/POWER queues.
� Issue VSE/POWER commands or to send messages.
� Retrieve fixed format Job Completion messages queue for a user

The task is attached by the SAS master task when a new XPCC connection is established and detached
on demand by the SAS user or the system operator by means of the PSTOP command.

DEVICE SERVICE TASK. Services a Device Driving System (DDS) and transfers output data from the
VSE/POWER spool files to the DDS processing the external output device. The task is attached by the
command processor when a PSTART DEV command is given and terminated as result of a PSTOP DEV
command.

TIME EVENT SCHEDULING TASK. Calculates the time interval for the first queue entry in the wait for
run subqueue and waits for its expiration. After expiration it removes the queue entry from the wait for run
subqueue and chains it to the really dispatchable class chain. The task is attached during VSE/POWER
initialization and detached at VSE/POWER termination time.

HEARTBEAT TASK. Watches in an unattended node environment over VSE/OCCF. If VSE/OCCF termi-
nates abnormally the heartbeat task forces VSE/POWER termination via PEND IMM and indicates REIPL
to do. The task is attached by the spool access support master task if the environment is unattended and
the application id is SYSOCCF. The task is detached at VSE/POWER termination time or if the connection
is terminated normally or abnormally.

DYNAMIC PARTITION SCHEDULING TASK. Operates as a static 'hyper'- execution reader task. It allo-
cates dynamic partitions for queue entries whose class is defined in the dynamic class table. The
dynamic partition scheduling task is attached during VSE/POWER initialization. It is detached during
VSE/POWER termination.

Notes:

1. Execution read tasks, execution list tasks, and execution punch tasks are collectively referred to as
“execution processor” tasks.

2. Read, list and punch tasks are collectively referred to as “read/write” tasks.

3. Each read task is divided into two parts, physical reader (PR), tape reader (SY), BSC reader (BR)
and/or 3540 reader (ER), which performs the device-dependent functions related to data collection
from a specified device or family of devices, and logical reader (LR), which performs the logical func-
tions related to entering input data into the VSE/POWER data file and inserting a new queue entry into
the correct position in the VSE/POWER queue file. These two parts are linked by means of a high-
level logical record interface.

Similarly, each list task is divided into Physical List (PL), BSC Writer (BW) or Physical Punch (PP),
and Logical Writer (LW). The physical part of a task performs device-dependent functions for printer
or punch, respectively. The Logical Writer retrieves data from the list queue or the punch queue, as
required. In each case a high-level logical record interface is defined to connect the two parts of the
task.

Figure 1 shows the relationship of the user program to the VSE/POWER partition and tasks and to the
VSE/AF supervisor.

6 VSE Central Functions V7R1 VSE/POWER DRM

Figure 1. Relationship Between VSE/POWER, VSE/AF, and the Program Running under the Control of VSE/POWER

Notes:

1. SVC 0 for I/O to VSE/POWER files.

2. SVC 0 from user partition unit record devices converted to I/O to a spooling device on VSE/POWER
partition.

3. SVC 7 issued by VSE/POWER.

4. SVC 0 for I/O from VSE/POWER files

 Chapter 1. Introduction 7

VSE/POWER Direct Access Files

VSE/POWER files can be either on Count-Key-Data (CKD) or Fixed Block Architecture (FBA) devices. A
mixture is also possible, however the extents of the Data File must all reside on the same disk type.

For a list of disk types available to contain the VSE/POWER 7.1 spool files refer to z/VSE 3.1 Planning.

For more information on the organization of the VSE/POWER files, refer to the VSE/POWER Adminis-
tration and Operation.

8 VSE Central Functions V7R1 VSE/POWER DRM

Communication with VSE/POWER

VSE/POWER Operator Commands

VSE/POWER provides operator commands that allow the central-system operator and the remote-terminal
operator to communicate with the system. Following types of commands are provided:

� Task-management commands, which allow the operator to initiate and terminate VSE/POWER tasks
(except spool management tasks). For RJE, task management commands are only applicable to the
RJE writer task. The RJE reader task is started whenever the workstation is ready to send. Its opera-
tion is controlled by the system.

� Queue-management commands, which allow the operator to display and modify the contents of
VSE/POWER queue entries. Queue-management commands are only applicable to users that have
the correct authority.

� List-control commands, which allow the operator to perform certain device-dependent operations on
line printers.

� Workstation-control commands, which allow the remote operator to initiate and terminate VSE/POWER
RJE tasks.

� Network-control commands, which allow the operator to perform certain operations to control the func-
tioning of the network system.

� External device control commands, which allow the operator to initiate, control and terminate external
devices.

For further information on VSE/POWER operator commands refer to VSE/POWER Administration and
Operation.

Job Entry Control Language

VSE/POWER provides a job entry control language (JECL) to assist the user in delimiting jobs to the
system and to allow him to specify special requirements that may apply to particular jobs. JECL supple-
ments but does not replace the job control language (JCL) provided by VSE/AF itself. The JCL statements
required for normal VSE/AF system operation are also required when operating under VSE/POWER.

For a detailed description of the VSE/POWER JECL statements, refer to VSE/POWER Administration and
Operation.

Format of VSE/POWER Operator Messages

Messages sent by VSE/POWER to SYSLOG, SYSLST, or to a terminal may have the following formats:

1QnnI or 1RnnI or 1VnnI (information-type message)
1QnnD (decision-type message)
1QnnA or 1RnnA or 1VnnA (action-type message)

where:

Q VSE/POWER general-message indicator.

R VSE/POWER message indicator for messages issued by RJE,BSC, the command-processor tasks,
the Shared Spooling function and networking.

V VSE/POWER message indicator for messages issued by RJE,SNA tasks.

 Chapter 1. Introduction 9

nn message-identification number. (May also include alpha characters.)

I-type messages are for the operator's information only; no response is required. Processing continues
normally.

D-type messages require an immediate reply from the operator.

A-type messages require some action from the operator, such as mounting a tape. A-type messages for
remote workstations are directly displayed on the remote printer. The VSE/POWER task issuing the
message is put in the wait state.

Messages issued by VSE/POWER are listed in “Message Reference” on page 401 and are further
described in the manual VSE/ESA Messages and Codes.

10 VSE Central Functions V7R1 VSE/POWER DRM

 Environmental Requirements

 Programming Requirements

The programming requirements for VSE/POWER are as follows:

1. For Basic VSE/POWER

� The following phases must be cataloged in a library.

IPW$$AQ
IPW$$AS
IPW$$AT
IPW$$CA
IPW$$CB
IPW$$CC
IPW$$CD
IPW$$CE
IPW$$CF
IPW$$CG
IPW$$CH
IPW$$CI
IPW$$CJ
IPW$$CL
IPW$$CLD
IPW$$CM
IPW$$CO
IPW$$CP
IPW$$CR
IPW$$CS
IPW$$CT

IPW$$CU
IPW$$CV
IPW$$CX
IPW$$CY
IPW$$DD
IPW$$DP
IPW$$DQ
IPW$$DS
IPW$$DT
IPW$$ER
IPW$$FQ
IPW$$GD
IPW$$IC
IPW$$ID
IPW$$IP
IPW$$I1
IPW$$I2
IPW$$I3
IPW$$I4
IPW$$I5
IPW$$I7

IPW$$LO
IPW$$LR
IPW$$LU
IPW$$LW
IPW$$MM
IPW$$MS
IPW$$MX
IPW$$NQ
IPW$$NS
IPW$$NU
IPW$$OE
IPW$$OF
IPW$$OP
IPW$$OT
IPW$$PC
IPW$$PD
IPW$$PL
IPW$$PP
IPW$$PR
IPW$$PS
IPW$$PS1

IPW$$Q1
IPW$$RQ
IPW$$RY
IPW$$SC
IPW$$SQ
IPW$$SY
IPW$$TQ
IPW$$TR
IPW$$TV
IPW$$T1
IPW$$XH
IPW$$XJ
IPW$$XM
IPW$$XRE
IPW$$XT
IPW$$XTC
IPW$$XTG
IPW$$XTP
IPW$$XTM
IPW$$XTS
IPW$$XWE

� The following macros must be cataloged in a library.

 POWER
 PWRSPL
 IPWSEGM
 IPW$MXD
 SEGMENT

� The number of entries in the LUB table (in the VSE/AF supervisor), belonging to the VSE/POWER
partition must be large enough to accommodate all reader and writer tasks that may be running
concurrently. Programmer LUB's SYS000 through SYS034 are reserved for the account, queue,
and data files, and queue file re-allocation.

 � I/O Files

The queue file and data file must be assigned to a spooling device as required:

Queue file - SYS001
Data file - SYS002 through SYS033

A queue file extent, with the name IJQFILE, and data file extent(s), with the name IJDFILE, must
be defined by DLBL/EXTENT statements.

 Chapter 1. Introduction 11

2. For VSE/POWER RJE/BSC (optional)

� The following phases must be cataloged in a library.

 IPW$$BM
 IPW$$BR
 IPW$$BW
 IPW$$LM

� The following macros must a cataloged in a library.

 PLINE
 PRMT

3. For VSE/POWER RJE/SNA (optional)

� The following phases must be cataloged in a library.
IPW$$IB
IPW$$LF
IPW$$LH
IPW$$LN

IPW$$MP
IPW$$OB
IPW$$OC

IPW$$SN
IPW$$VE

� The following macros must be cataloged in a library.

PRMT
PCPTAB

4. For VSE/POWER Networking (optional)

� The following phases must be cataloged in a library.

IPW$$BS
IPW$$CAC
IPW$$CN
IPW$$CPF
IPW$$CPS
IPW$$IN
IPW$$LD
IPW$$LD1
IPW$$LD2
IPW$$LD3

IPW$$LD4
IPW$$LD5
IPW$$NC
IPW$$NK
IPW$$NM
IPW$$NP
IPW$$NR
IPW$$NR2
IPW$$NT

IPW$$SD
IPW$$SE
IPW$$SR
IPW$$SS
IPW$$S1
IPW$$S2
IPW$$S3
IPW$$TD
IPW$$TS

� The following macros must be cataloged in a library.

PNODE
PLINE (BSC only)

12 VSE Central Functions V7R1 VSE/POWER DRM

5. For VSE/POWER Accounting (optional)

� If the account file is on a CKD device, the following phases must be cataloged in a library.

IPW$$BA
IPW$$GA
IPW$$PA
IPW$$SA

� If the account file is on an FBA device, the following phases must be cataloged in a library.

IPW$$BA
IPW$$GF
IPW$$PF
IPW$$SF

� The following macros must be cataloged in a library.

PACCNT
PUTACCT

� The required job accounting specifications must be given at VSE/AF IPL time.

� An account file must be assigned to SYS000 on a disk device. Account file space must be
defined for IJAFILE by the DLBL/EXTENT statements.

6. For VSE/POWER Spool manager (CTLSPOOL/GETSPOOL/PUTSPOOL) support (optional)

� The following phase must be cataloged in a library.

IPW$$SM

� The following macros must be cataloged in a library.

CTLSPOOL
GETSPOOL
PUTSPOOL
SPL

7. For VSE/POWER SLI Support (optional)

� The following phase must be cataloged in a library.

IPW$$SL

8. For VSE/POWER Shared Spooling function (optional)

� The following phases must be cataloged in a library.

IPW$$TI
IPW$$CRE

 Chapter 1. Introduction 13

Storage Requirements and Allocations

 Virtual Storage

The virtual-address space of the VSE/POWER partition consists of five major areas as shown in Figure 2.

Figure 2. Basic Organization of the VSE/POWER Partition

� The SVA part of VSE/POWER is 32K and is permanently fixed in the SVA. This is done during initial-
ization of VSE/POWER and freed when VSE/POWER is terminated. The SVA part contains the
nucleus (IPW$$NU) with the control address table ("CAT", also called the permanent area) and the
POWER partition control blocks for static partitions.

The POWER partition control blocks for dynamic partitions are also allocated in the SVA but not in
these 32K.

� If RJE,BSC support is used, the permanent area is 2K and permanently fixed in the real partition
during initialization of VSE/POWER. These pages are freed only when VSE/POWER is terminated. If
RJE,BSC support is not used, these 2K belong to the fixable area.

� The fixable area consists of pages that are fixed when a task is started and freed when they are no
longer required for the completion of this task.

14 VSE Central Functions V7R1 VSE/POWER DRM

� The pageable area consists of pages that are allowed to be paged out whenever VSE/AF requires
additional real storage.

� The GETVIS area contains logical data areas, queue record areas, control blocks and work areas
used by RJE SNA, PNET, VSE/AF service routines, SYSIN tape support, printer setup processing
(3800 or 3200), fixed format Job Completion messages queues, notify message queue and I/O buffers
for accounting if the account file is on an FBA device.

If VSE/POWER has been activated in a private partition, the storage copy of the queue file is placed
into the partition GETVIS area also.

� VIO or partition GETVIS area contains the storage copy of the queue file while VSE/POWER is active.
The size of the area depends on the size of the queue file. 384 bytes are allocated for each queue
record. The allocation for the VIO area is rounded up to the next multiple of 64K.

 ┌────────────────────────────┐ ───
RA ───> │ Common Address Table │ A

 ├────────────────────────────┤ │
│ Task Management Routines │ │

 │ Resource Management │ │
R9 ───> │ Real Storage Management │ │

 │ Message Service │ │
│ Validate Data Address │ │
│ Disk and Tape Service │ │
│ Queue file server │

 │ Timer Service │ 24K
│ Interval Timer Service │
│ Set Remote Mask Routine │ │

R8 ───> │ Virtual Storage Mgnt │ │
│ Trace Service Header │ │
│ Switch NP/PU mode service │ │
│ Space for more services │ │
├─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┤ │
│ Trace Service Body │ │
│ Disk Service Body │ │
│ VIO/GETVIS Move Routine │ │
│ Local Msg 1Q85I Routine │ │
│ JCL EOJ-Exit Routine │ │

 │ Supervisor Appendages │ │
│ Interval Timer Exit Rtn │ │
│ Local Msg Control Block │ │
│ Exit OC Routine │ │
│ IPWSEGM Interface Routine │ │
│ Command Code Table │ V

 ├────────────────────────────┤ ---
│ POWER partition control │ │
│ blocks for static │ 8K

 │ partitions │ │
 └────────────────────────────┘ ---

Figure 3. SVA Part of VSE/POWER

 Real Storage

The minimum real-address space must be equal to the size of the permanent area (2K, if RJE BSC is
generated) plus the fixable area. The size of the fixable area (minimum = 74K) depends on the number of
tasks active at any time and the control blocks and work areas used by these tasks.

For a description of how to calculate VSE/POWER storage requirements, refer to VSE/POWER Adminis-
tration and Operation.

 Chapter 1. Introduction 15

 Hardware Supported

 Machine Requirements

Any processor supported by VSE.

 Devices Supported

The devices for which support has been introduced in VSE/POWER are listed in Figure 4 and may exist
until deleted. For a complete list of officially supported devices refer to VSE/ESA System Control State-
ments.

Notes:

1. The IBM 2495 tape cartridge reader does not belong to this series.

2. List, punch, tape reader and off-load devices. For 7-track tape units the data conversion feature is
required.

3. The following I/O devices are supported by RJE,BSC.

IBM 545 Punch (Model 3 or 4)
IBM 2213 Printer (Model 1 or 2)
IBM 2502 Card Reader (Model A1 or A2) on the 2770
IBM 2203 Printer (Model A1 or A2)
IBM 3781 Punch on the 3780

Teleprocessing control units supported by RJE,BSC are:

IBM 2701 Data Adapter Unit with SDA (Type 2)
IBM 2703 Transmission Control Unit
IBM 3704 Communications Adapter in 2703 emulation mode
IBM 3705 Communications Adapter in 2703 emulation mode
IBM 372x Communications Adapter in 2703 emulation mode
Integrated Communications Adapter in the various models

Restrictions:

� TP connections must be point-to-point on switched or non-switched lines.

� Multipoint connections are not supported.

Figure 4. Devices Supported by VSE/AF

Readers Printers� Punches Spooling Devices Terminals

1442
2501
2520
2540
2596
3505
3525
3540

1403
3200
3203/4/5
3211
3262/1/2
3289/4
3800
4245
4248
6262

1442
2520
2540
2596
3525

2400 series� �
3400 series�
3350
3380
3390
3480
3490
8809
9300 series
FBA

2770
2780
3741
3771�
3773�
3774�
3775�
3776�
3777-1
3780
3790�

16 VSE Central Functions V7R1 VSE/POWER DRM

� Terminals and control units having the multipoint line control or multipoint data link control
features are prohibited. (Connecting such a terminal or control unit to the POWER/RJE,BSC
system will cause continuous error recovery processing.)

4. The Universal Character Set Buffer (UCB) and Forms Control Buffer (FCB) features are supported by
VSE/POWER. The execution processor will accept UCB and FCB load requests from the various sup-
ported partitions for appropriate action at list time. On encountering an FCB load command, the exe-
cution processor will update the internal buffer representation to reflect the new buffer.

5. The following I/O devices are supported by RJE,SNA:

IBM Magnetic Diskette Storage (3774, 3775, 3776)
IBM 2502 Card Reader (3774, 3775, 3776)
IBM 3501 Card Reader (3771, 3774, 3775, 3776)
IBM 3521 Card Punch (3771, 3774, 3775, 3776)
IBM 3784 Printer (3774)

VSE/POWER does not control SDLC lines. The SNA terminals may be connected to VTAM and the
NCP on any communication media supported by VTAM.

6. The 3790 support is limited to that comprising the 3790 RJE facility.

 Chapter 1. Introduction 17

18 VSE Central Functions V7R1 VSE/POWER DRM

Chapter 2. Method of Operation

VSE/POWER Linkage Conventions

This section begins with a description of the conventions used in the hierarchic structure of the
VSE/POWER program, including the following linkages (see Figure 5) and register usage.

� Register conventions which define the general usage of registers within the VSE/POWER program.

� Interface linkage, when an external routine passes control to an internal routine, or vice versa.

� Function linkage, when an internal routine invokes a VSE/POWER function.

� Service linkage, when any VSE/POWER routine invokes a VSE/POWER service.

I n t e r f a c e

I n t e r n a l R o u t i n e s

E x t e r n a l R o u t i n e s

L i n k a g e

F u n c t i o n s

L i n k a g e

S e r v i c e s

Figure 5. Hierarchic Structure of VSE/POWER

 Register Conventions

This section describes the standard functions and uses assigned to certain of the general purpose regis-
ters throughout VSE/POWER. The VSE/POWER registers are conveniently regarded as running from reg-
ister 10 to register 9.

Register 10 - Nucleus Base Register

Register 10 points to the beginning of the nucleus which contains first the control address table (CAT), the
main VSE/POWER control block. R10 secures also addressability for task management and task services
contained in the first part of the VSE/POWER nucleus. The register is not available for other use.

Register 11 - Task Control Address Register

Register 11 is used to contain the address of the first byte of the TCB for the task currently in control of
the central processor, and thus secures addressability for the task parameters and task work space con-
tained in the TCB. The register is not available for other use.

© Copyright IBM Corp. 1979, 2006 19

Register 12 - Asynchronous Address Register

Register 12 is used by the task management and page fault appendage routine to retain the return
address of a task entering task selection. Since the register contents are liable to asynchronous change,
the register is not available for other use.

Register 13 - Save Area Register

Register 13 is used to address the current save area, that is, the storage area in which the general
purpose registers are to be saved when an entry linkage is next performed.

Register 14 - Linkage Register

Register 14 is used to contain the linkage address, that is, the address to which return is to be made
when an exit linkage is next performed. When not required for this purpose, the register is available for
general use.

Register 15 - Entry Point Register

Register 15 is used to address the entry point of the routine to be entered when an entry linkage is per-
formed. This address is normally that of the storage descriptor which precedes the routine to be exe-
cuted. The register may be conveniently used as the base register for the routine to be executed. When
not required for this purpose, the register is available for general use.

Register 0 - Parameter and Work Register

Register 0 is used to pass parameters to and from invoked routines. When not required for this purpose,
the register is available for general use.

Register 1 - Parameter and Work Register

Register 1 is used to pass parameters or addresses of parameter lists to and from invoked routines, and
in particular to pass command control block addresses to the physical IOCS routines of the VSE/AF super-
visor. It also has machine usage when a translate and test instruction is executed. When not required for
these purposes, the register is available for general task use.

Register 2 - Linkage and Work Register

Register 2 is used by function and service routines to retain the return address of the requesting task. It
also has machine usage when a translate and test instruction is executed. When not required for these
purposes, the register is available for general task use.

Register 3 - Resource Address Register

Register 3 is used by functions and services to address resource control blocks. When not required for
this purpose, the register is available for general task use.

Registers 4-9 - General Use

Registers 4-9 are available for general task use.

20 VSE Central Functions V7R1 VSE/POWER DRM

 Interface Linkage

Each external and internal routine of VSE/POWER is coded as a unique control section. Control is initially
given by task management to the external routine to be associated with a specific task. This external
routine must then establish a linkage to the appropriate internal routine or routines by means of the inter-
face linkage.

Open interface (IPW$OLI macro instruction): The interface is opened by the creation of a dynamic
save area, which is associated with the internal routine. The save area associated with the external
routine is located in the TCB or in case of an SAS user task in the XP work area. The external save area
contains in word 1 the address of the next (internal) save area and word 2 contains the address of the
previous save area, if there is any. The internal save area contains in word 1 the address of the calling
task TCB and the second word contains the address of the previous (external) save area. Figure 6 illus-
trates the relationship.

External save area
 ┌───//───────┐
 ┌───┘──� │ │ R14 │ R15 │ R� │ R1 │ R2 │ R3 │ │ R9 │
 │ └───//───────┘
 │ �
 │ └────────┐
│ │ Internal save area

 └──�┌────────┼────────────────────────────────────//───────┐
│ TCB │ � │ R14 │ R15 │ R� │ R1 │ R2 │ R3 │ │ R9 │

 └───//───────┘

Figure 6. Relationship of Internal and External Save Area

Get/Put Linkage (IPW$GLR and IPW$PLR Macro Instructions): Linkage is done as follows. The
calling task must first establish its return address in register 14, and then save the current contents of
registers 14 through 9 in its own save area. It must then load register 13 from its save area, thus
addressing the other save area. Registers 14, 15, and 2 through 9 are then loaded from the second save
area, and a branch made to the address contained in register 14. Registers 0 and 1 are used for passing
parameters and are therefore not reloaded at this time.

Control has now passed across the interface to the called routine. This routine returns control to the
calling routine by repeating the sequence of operations described in the preceding paragraph.

Close Interface (IPW$CLI Macro Instruction): The dynamic save area associated with the internal
routine is released.

Registers 10 through 13 have the special uses described in “Register Conventions,” and are therefore
neither saved nor restored during interface linkage.

 Function Linkage

Each VSE/POWER function is coded as a unique control section. The first sixteen bytes of each control
section consist of an alphameric control section descriptor. A fullword address constant containing the
address of each control section is contained in the control address table (CAT) for the base VSE/POWER
routines or in the PNET master control block for all PNET routines.

Linkage to a function is achieved by loading register 15 with the address of the appropriate control section
and then executing a branch and link instruction in the form BAL 14,16(15). Thus, entry is made to the
control section at the first byte following the control section descriptor, the task return address being pre-
served in register 14.

 Chapter 2. Method of Operation 21

Upon entry, the contents of registers 14 through 9 are saved in words 3 through 14 of the dynamic save
area provided by the calling routine and addressed by register 13 (IPW$SAV macro instruction).

On return from a function, registers 14 through 9 are restored from the dynamic save area addressed by
register 13. A branch is then made to the return address now contained in register 14 (IPW$RET macro
instruction).

Registers 10 through 13 have the special uses described in "Register Conventions", and are therefore
neither saved nor restored during function linkage.

 Service Linkage

Each VSE/POWER service is coded as a unique routine contained in the nucleus phase (IPW$$NU).

Linkage to a service is based on the use of registers 0 through 3. In most cases register 2 acts as a
branch-and-link register.

Registers 0 and 1 are often used to pass parameters between calling routine and the invoked service.
Figure 7 shows the various usages of the registers 0 through 3.

The service macros are used to address the services via a service routine branch table located in the CAT
in the nucleus phase.

22 VSE Central Functions V7R1 VSE/POWER DRM

┌───────┬───┐
│Macro │ R� │ R1 │ R2 │ R3 │Other │
│ │Before After │Before After │Before After│Before After│ │
├───────┼──────────┬───────┼───────┬───────┼───────┬─────┼──────┬─────┼───────────┤
│IPW$ATT│return │ │TCB │TCB │ │ │ │ │ │
│IPW$DET│ECB │ │TCB │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$WFE│ │ │ECB │ │ │ │ │ │ │
│IPW$WFI│ │ │ │ │ │ │ │ │ │
│IPW$WFO│ │ │ │ │ │ │ │ │ │
│IPW$WFL│ │ │ │ │ │ │RCB │ │ │
│IPW$WFM│ │ │list │ │ │ │ │ │ │
│IPW$WFQ│ │ │list │ │ │ │ │ │R12=return │
│IPW$WFC│ │ │CCB or │ │ │ │ │ │ address│
│IPW$WFS│ │ │ECB │ │ │ │ │ │ │
│IPW$WFD│ │ │ │ │ │ │ │ │ │
│IPW$WFX│ │ │List │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$RSR│ │ │ │ │return │ │RCB │ │ │
│IPW$RLR│ │ │ │ │return │ │RCB │ │ │
│IPW$RSW│function─ │real │size │virtual│return │ │ │ │ │
│ │ code │address│ │address│ │ │ │ │ │
│IPW$RLW│ │zero │virtual│zero │return │ │ │ │ │
│ │ │ │address│ │ │ │ │ │ │
│IPW$WTO│ │ │ │ │return │ │ │ │ │
│IPW$WTR│ │ │ │ │return │ │ │ │ │
│IPW$RDQ│return │ │IORW │ │ │ │ │ │ │
│IPW$RDD│return │ │IORW │ │ │ │ │ │ │
│IPW$WTQ│return │ │IORW │ │ │ │ │ │ │
│IPW$WTD│return │ │IORW │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$WTT│return │ │TRW │ │ │ │ │ │ │
│IPW$RDT│return │ │TRW │ │ │ │ │ │ │
│IPW$CTT│return │ │TRW │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$RDC│ │ │ │TOD │return │ │ │ │ │
│IPW$VDA│ │return │ │ │return │ │ │ │R6=PDB │
│ │ │code │ │ │ │ │ │ │R8=CCWaddr.│
│ │ │ │ │ │ │ │ │ │ │
│IPW$GAM│destid or │ │message│Pointer│return │ │msg │ │ │
│ │zero │ │number │to │ │ │area │ │ │
│ │ │ │ │message│ │ │or │ │ │
│ │ │ │ │ │ │ │zero │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$SRM│request │ │remote │ │return │ │ │ │ │
│ │code │ │id │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$RSV│function─ │ │length │address│return │ │ │ │R4=Pointer │
│ │ code │ │ │of area│ │ │ │ │to anchor │
│ │ │ │ │or zero│ │ │ │ │ │
└───────┴──────────┴───────┴───────┴───────┴───────┴─────┴──────┴─────┴───────────┘

Figure 7 (Part 1 of 2). Contents of Registers when a Service is Invoked

 Chapter 2. Method of Operation 23

┌───────┬───┐
│Macro │ R� │ R1 │ R2 │ R3 │Other │
│ │Before After │Before After │Before After│Before After│ │
├───────┼──────────┬───────┼───────┬───────┼───────┬─────┼──────┬─────┼───────────┤
│ │ │ │ │ │ │ │ │ │ │
│IPW$RLV│function │ │address│ │return │ │ │ │R4=Pointer │
│ │code │ │of area│ │ │ │ │ │to anchor │
│ │ │ │or zero│ │ │ │ │ │ │
│IPW$UNV│address of│ │address│address│return │ │ │ │R4=Pointer │
│ │anchor to │ │of area│of area│ │ │ │ │to anchor │
│ │queue │ │or zero│or zero│ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$GTE│length of │ │ │address│return │ │ │ │ │
│ │trace area│ │ │trace │ │ │ │ │ │
│ │ │ │ │area │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$STM│ │ │address│ │return │ │ │ │ │
│ │ │ │ TQE │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$NTY│pointer to│ │address│ │return │ │ │ │ │
│ │target │ │ NMR │ │ │ │ │ │ │
│ │node name │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$GQR│ │ │IORW │ │return │ │ │ │ │
│IPW$MQR│ │ │IORW │ │return │ │ │ │ │
│IPW$WQR│ │ │IORW │ │return │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│IPW$TDM│ │unpred.│NP/PU │ │return │ │ │ │ │
│ │ │ │option │ │ │ │ │ │ │
└───────┴──────────┴───────┴───────┴───────┴───────┴─────┴──────┴─────┴───────────┘

Figure 7 (Part 2 of 2). Contents of Registers when a Service is Invoked

24 VSE Central Functions V7R1 VSE/POWER DRM

 Chapter 3. Program Organization

This section describes the program organization of VSE/POWER. It outlines the logical structure of the
VSE/POWER Program Product, presenting overviews of all internal operations and indicating the relation-
ships between the various tasks and routines.

The following topics are discussed:

Code organization explains the VSE/POWER code and storage structure and lists the internal macros.

Initialization and termination gives an overview of the phases that handle startup and shutdown of
VSE/POWER processing.

VSE/POWER multitasking explains the principles of task selection, of starting a task, and of terminating a
task.

Reader, execution processor, and writer tasks shows the data flow through the spooling process, and
highlights the work done by the various phases related to these tasks.

Dynamic Partition Support describes enabling, modifying and interplay of dynamic partitions.

The Spooling Process describes spooling to and from the queue file and the data file.

Running in ESA mode describes spooling to and from the queue/data file when VSE/POWER is running
on MODE=ESA supervisor.

Multiprocessor Support describes how this support can be activated and exploited in VSE/POWER, and
how it is implemented internally.

Services describes the routines of the nucleus phase.

Miscellaneous tasks and functions describes various tasks and functions that are not readily associated
with the above areas.

Command processor gives an overview of command processing; how the command processor is invoked,
and what actions are taken.

VSE/POWER job accounting describes the Account functions and the save account task.

VSE/POWER Networking gives an overview of how the Networking function works.

Remote job entry highlights the essentials of RJE,BSC and RJE,SNA.

Appendages lists the routines in the nucleus phase that are extensions of the VSE/AF system control
programs.

VSE/POWER Shared Spooling gives an overview of how the Shared Spooling function works.

Spool Access Support Interface describes the various functions of the interface and gives an overview of
how the SAS interface works.

External Device Support gives an overview of how that support works.

© Copyright IBM Corp. 1979, 2006 25

 Code Organization

 Storage Structure

The address space of the virtual VSE/POWER partition is composed of four major areas, each containing
an integral number of pages:

� The permanent area (CAT)
� The fixable area
� The pageable area
� The GETVIS area

Additional to the areas in the partition, VSE/POWER needs an area fixed in the SVA.

The SVA part of VSE/POWER is fixed during VSE/POWER initialization and contains the VSE/POWER
nucleus with major control tables and routines such as control address table (CAT). It also contains the
partition control blocks of the static partitions. The pages are freed when VSE/POWER is terminated.

The partition control blocks of the dynamic partitions are also located in the SVA. They are allocated by
the supervisor during partition allocation and freed during partition deallocation.

The first page of the VSE/POWER virtual address area is fixed in real storage as soon as the
VSE/POWER system begins execution, and remains fixed till the system is terminated. It contains the
RJE,BSC I/O Monitor if the RJE function is generated. If the RJE function is not generated the page is
added to the fixable area.

The fixable area is contained in the second group of pages within the VSE/POWER virtual address area.
These provide the necessary address space for dynamically-structured control areas and for physical data
buffers used by the VSE/POWER tasks. The size of this area depends on the amount of real address
space that the user has assigned to the VSE/POWER partition. The pages within the area are dynamically
fixed when reserved for specific task use and freed when no longer required. At any point in time certain
pages within the area will be fixed while others are free; the necessary page fixing and freeing is con-
trolled by the real storage management service of VSE/POWER. Some of the control blocks such as the
disk management block (DMB) and module control blocks (MCB) are allocated at VSE/POWER start up
time and exist as long as VSE/POWER is active. See Figure 142 on page 440.

The pageable area is contained in the third group of pages within the VSE/POWER virtual address area.
These contain the remaining phases of the VSE/POWER code and may be paged at any time the system
requires additional real storage. The size of this area depends on the particular VSE/POWER phases
required for system execution; this in turn depends upon the execution options selected by the user
(accounting, RJE, reader exit, PUTSPOOL/GETSPOOL/CTLSPOOL support, shared spooling, SLI facility,
PNET and spool access support).

The GETVIS area is contained in the remaining pages within the VSE/POWER virtual address area.
These contain control blocks and work areas used by the VSE/POWER tasks and the storage copy of the
queue file when running in a private partition. The pages may be paged out at any time the system
requires additional real storage. The size of the GETVIS area depends on the size of the logical data
buffers, which is determined by the value specified in the DBLK parameter of the POWER macro, the
maximum number of tasks active at any time with their storage requirements, and the number of queue
records as determined by the // EXTENT statement of the IJQFILE.

The GETVIS-24 area is used for the following purposes:

 � RJE,SNA operation
� 3200/3800 printer setup processing

26 VSE Central Functions V7R1 VSE/POWER DRM

� Logical data areas associated with each task
� Queue record areas associated with each task
� Input buffer for SYSIN tape support
� PNET SNA transmission buffers

 � Message queue(s)
� Input/Output buffer for Accounting (FBA only)

 � PNET operation
� SAS task work areas
� Exit phases (via PLOAD)
� Exit work areas
� VSE/POWER phases (via PLOAD)
� Queue file storage copy when running in a private partition, and no partition Getvis-31 exists.

The GETVIS-31 area (provided by sufficient ALLOC) is used for:

� Queue file storage copy when running in a private partition. If the Getvis-31 area cannot house the
storage copy totally, then the copy stretches over the 16 MB line.

The areas are allocated by the appropriate tasks when needed and freed when the tasks terminate or
when no longer needed.
Some of the control blocks, such as the network definition table (NDT) and the queue file storage copy are
allocated at VSE/POWER initialization time and exist as long as VSE/POWER is active.

The GETVIS area is logically divided into the following pools:

 � General pool
 � Message/command pool
 � PNET pool
� RJE,SNA pool (general)
� RJE,SNA WACB and compaction table pool

The page frames within real processor storage that are occupied by VSE/POWER at any time are divided
into two groups:

� The first group of page frames is obtained from within the VSE/AF page pool and contain pages of
code from the VSE/POWER pageable area which are currently being referenced for instruction exe-
cution. Page frames within this group remain part of the page pool and are susceptible to system
paging.

� The second group of page frames is withdrawn from the VSE/AF page pool and contain, firstly, the
pages of the VSE/POWER permanent area and, secondly, those pages of the VSE/POWER fixable
area which have been fixed in real storage by the VSE/POWER real storage management service.

Note: The pages of the VSE/POWER fixable area which have not been fixed in real storage by
VSE/POWER do not occupy real storage in any sense.

 Code Structure

The code of VSE/POWER consists of External Routines, Internal Routines, Functions, Services, and
Appendages.

External Routines: External routines provide task support at the highest level of the system. Each
external routine consists of a single phase which is physically located in the VSE/POWER pageable area.

The following external routines are provided:

 Chapter 3. Program Organization 27

IPW$$BR RJE,BSC Reader
IPW$$BW RJE,BSC Writer
IPW$$CM Command Processor Root Phase
IPW$$ER 354� Diskette Reader
IPW$$IB RJE,SNA Inbound Processor
IPW$$LD Network PNET Driver
IPW$$LF RJE,SNA Logoff Processor
IPW$$LH RJE,SNA Logon Processor No. 1
IPW$$LM RJE,BSC Line Manager
IPW$$LN RJE,SNA Logon Processor No. 2
IPW$$MP RJE,SNA Message Processor
IPW$$NS Notify Support
IPW$$OB RJE,SNA Outbound Processor
IPW$$OC Outbound Compaction Manager
IPW$$OF Offload Queues Routine
IPW$$PL Physical List
IPW$$PP Physical Punch
IPW$$PR Physical Reader
IPW$$PS Perform queue/node display
IPW$$NR Network Receiver
IPW$$NR2 Network Receiver Part 2
IPW$$NT Network Transmitter
IPW$$SA Save Account
IPW$$SD PNET SSL SD Subtask
IPW$$SE PNET,SNA VTAM Exit Routines
IPW$$SF Save Account for Account File on FBA device
IPW$$SM Internal Reader Spool Command Manager
IPW$$SN RJE,SNA Manager
IPW$$SY SYSIN Tape Reader Routine
IPW$$S1 PNET,SNA OPEN/CLOSE Subtask
IPW$$S2 PNET,SNA Connect Processor
IPW$$S3 PNET,SNA Disconnect Processor
IPW$$TD PNET TCP/IP TD Subtask
IPW$$TI Timer Task
IPW$$TV Time Event Scheduling Task
IPW$$VE RJE,SNA VTAM Exit Routines
IPW$$XH Heartbeat Task
IPW$$XM Spool Access Support Master Task
IPW$$XT Spool Access Support Main Routine
IPW$$XTC Spool Access Support CTL-Function Routine
IPW$$XTG Spool Access Support GET-Function Routine
IPW$$XTP Spool Access Support PUT-Function Routine
IPW$$XTM Spool Access Support GCM-Function Routine
IPW$$XTS Spool Access Support Subroutines

External Macros: External macros provide system generation and API support. The following
external macros are provided:

28 VSE Central Functions V7R1 VSE/POWER DRM

Generation Macros
POWER System Generation Macro
PACCNT Accounting DSECT Generation Macro
PCPTAB RJE,SNA Compaction Table Generation Macro
PRMT RJE Hardware Generation Macro
PLINE RJE,BSC Line Hardware Generation Macro
PNODE PNET Network Definition Table Generation Macro

API Interface Macros
PUTACCT Execution Accounting Record Append Macro
PWRSPL SAS PWRSPL Update and DSECT Generation Macro
CTLSPOOL Spool Manager Support - Control Macro
GETSPOOL Spool Manager Support - Get Macro
PUTSPOOL Spool Manager Support - Put Macro
SPL Spool Manager Support - DSECT Macro
SEGMENT Segmentation Macro (single threaded)
IPWSEGM Segmentation Macro (enhanced multiple threaded)

Internal Routines: Internal routines provide task support at a level below external routines, which
communicate with them by means of the Interface Macro Instructions described below. Each internal
routine consists of a single phase which is physically located in the VSE/POWER pageable area.

The following internal routines are provided:

IPW$$DP Dynamic partition scheduler
IPW$$LO Logical Output Routine
IPW$$LR Logical Reader
IPW$$LW Logical Writer
IPW$$XRE Execution Reader
IPW$$XWE Execution Writer

Functions: Functions provide support for operations common to two or more routines; they are to be
regarded as high-level subroutines capable of concurrent execution, and are invoked by means of the
Function Macro Instructions described below. Each function consists of a single phase which is physically
located in the VSE/POWER pageable area.

The following functions are provided:

 Chapter 3. Program Organization 29

IPW$$AQ Add Queue Entry to Chain
IPW$$AS Asynchronous Service
IPW$$AT Abnormal Termination
IPW$$BA Build Account Record Routine
IPW$$BM RJE/BSC Monitor (placed in fixed storage)
IPW$$BS Network Buffer Management Routines
IPW$$CA PALTER Command Processor
IPW$$CAC PACT Command Processor
IPW$$CB PBRDCST Command Processor
IPW$$CC PCANCEL Command Processor
IPW$$CD PDISPLAY Command Processor
IPW$$CE PEND Command Processor
IPW$$CF PFLUSH Command Processor
IPW$$CG PGO Command Processor
IPW$$CH PHOLD Command Processor
IPW$$CI PINQUIRE Command Processor
IPW$$CJ PACCOUNT Command Processor
IPW$$CL PDELETE Command Processor
IPW$$CLD PLOAD Command Processor
IPW$$CN PDRAIN Command Processor
IPW$$CO POFFLOAD Command Processor
IPW$$CP PSTOP Command Processor
IPW$$CPF PFLUSH PNET Command Processor
IPW$$CPS PSTART PNET Command Processor
IPW$$CR PRELEASE Command Processor
IPW$$CRE PRESET Command Processor
IPW$$CS PSTART Command Processor
IPW$$CSG PSEGMENT Command Processor
IPW$$CT PRESTART Command Processor
IPW$$CU PSETUP Command Processor
IPW$$CV PVARY Command Processor
IPW$$CX PXMIT Command Processor
IPW$$CY PCOPY Command Processor
IPW$$DQ Delete Queue Entry from Chain
IPW$$DS Data Management Service Routines
IPW$$DT Define Default Control Records and Tables
IPW$$FQ Free Queue Entry
IPW$$GA Get Account Record
IPW$$GD Get Data Record
IPW$$GF Get Account File on FBA Device
IPW$$IC Invoke Command Processor
IPW$$ID Process IDUMP 'In Flight' Request
IPW$$LU Update LUB and PUB Tables
IPW$$MM Message Module
IPW$$MS Message Handler
IPW$$MX Message Distributor / Modification

30 VSE Central Functions V7R1 VSE/POWER DRM

IPW$$NC Network Composer
IPW$$NK Network Compression/ Decompression
IPW$$NM Network I/O Manager
IPW$$NP Network Presentation Services
IPW$$NQ Get Next Queue Entry from Chain
IPW$$OE 354� Diskette Open
IPW$$OP User Defined Output Parameter Processing Routine
IPW$$OT Open/Close Tape
IPW$$PA Put Account Record
IPW$$PC Parameter Checker
IPW$$PF Put Account Record for Account File on FBA Device
IPW$$PD Put Data Record
IPW$$PS1 Print Queue Display Service Routine
IPW$$Q1 Allocate/Deallocate DBLK-Group Routine
IPW$$RQ Reserve Queue Record
IPW$$RY Queue-File Recovery
IPW$$SC Scan Reader JECL Statement
IPW$$SL Get Source-Statement-Library Record
IPW$$SQ Queue Management Service Routines
IPW$$SR PNET,SNA Send/Receive Manager
IPW$$TQ Add Queue Entry to Wait for Run Subqueue
IPW$$TQI Check Expiration of Due Date
IPW$$TR Terminate VSE/POWER Task
IPW$$XJ Scan Execution JECL Statement

Services: Services provide support for operations common to many routines and functions; they are to
be regarded as low-level subroutines capable of concurrent execution, and are invoked by means of the
Service Macro Instructions described below. Each service is coded as a separate segment; all of these
segments are however physically located within the nucleus phase (IPW$$NU).

The following services are provided:

� Disk and Tape Service
� Queue File Service

 � Message Service
Local Message Service
Remote Message Service

 Notify Service
Nodal Message Service

 � Remote Service
 � Resource Management
 � Storage Management
 � Task Management
 � Timer Service
� Interval Timer Service

 � Validation Service
� Get Trace Entry Routine
� Virtual Storage Management
� Switch NP/PU Mode Service

 Chapter 3. Program Organization 31

Appendages: Appendages provide code which, though physically present in the nucleus phase
(IPW$$NU), is logically part of the VSE/AF supervisor or of some other VSE component. Appendages may
reference and update VSE/POWER tables and data areas but may not invoke any VSE/POWER routine,
function, or service, and may not be invoked by them.

The following appendages are provided:

� Page Fault Appendages
� Attention Interface Appendage
� RJE/PNET Channel End Appendage
� Hot Reader Appendage
� SVC 0 / 3 Appendage
� SVC 90 and SVC 91 Appendage
� Timer Interval Exit Routine
� JCL End-of-Job Appendage

Internal Macro Instructions

Communication between external routines, internal routines, functions, and services is performed by
means of VSE/POWER internal macro instructions. Macro Instructions are also provided to define the
format of common tables and data areas, and to perform other miscellaneous functions.

There are five types of VSE/POWER internal macro instructions:

� Interface macros - see Figure 8.
� Function macros - see Figure 9 on page 33.
� Service macros - see Figure 10 on page 34.
� Definition macros - see Figure 11 on page 36.
� Miscellaneous macros - see Figure 12 on page 37.

Figure 8. Interface Macros

Macro Purpose

IPW$OLI
IPW$CLI
IPW$PLR
IPW$GLR

Open logical interface
Close logical interface
Put logical record
Get logical record

32 VSE Central Functions V7R1 VSE/POWER DRM

Figure 9. Function Macros

Macro Purpose

Queue management

IPW$AQS
IPW$DQS
IPW$FQS
IPW$GQS
IPW$IQS
IPW$RQS
IPW$ITQ

Add queue entry to chain
Delete queue entry from chain
Free queue entry
Get next queue entry from chain
Invoke queue management services
Reserve queue record
Add/Delete queue entry from Wait for Run
subchain or INIT Wait for Run subchain

Data management

IPW$GDR
IPW$IDS
IPW$PDR

Get data record
Invoke data management services
Put data record

Account management

IPW$CAF

IPW$OAF
IPW$GAR
IPW$PAR

Close account file (delete contents of
account file if on FBA device)
Open account file (not required for FBA)
Get account record (not required for FBA)
Put account record

Other functions

IPW$BUF
IPW$CNC
IPW$GMS
IPW$GSL
IPW$IAS
IPW$ICP
IPW$IDM
IPW$IIS
IPW$IOC
IPW$IOM
IPW$IPS
IPW$IRY
IPW$IXS

IPW$OEF
IPW$OPI
IPW$OTP
IPW$SRJ
IPW$SSJ
IPW$SXJ
IPW$ULP
IPWPUT

Invoke PNET Buffer management
Cancel VSE/POWER or terminate VSE/POWER task
Invoke general message service
Get source statement library record
Invoke asynchronous service
Invoke command processor
Invoke IDUMP 'In Flight' routine
Invoke queue display service routine
Invoke outbound compaction manager (IPW$$OC)
Invoke RJE,BSC I/O Monitor, PNET I/O Manager
Invoke PNET service routines
Invoke queue/account file recovery
Invoke Spool access support subroutines

Open diskette file
Invoke user ouput parameter processing routine
Open/close tape
Scan reader JECL statement
Invoke parameter checker
Scan execution JECL statement
Update LUB and PUB tables
Invoke PNET Composer IPW$$NC (not used)

 Chapter 3. Program Organization 33

Figure 10 (Page 1 of 2). Service Macros

Macro Purpose

Task management

IPW$ATT
IPW$DET
IPW$WFB
IPW$WFC
IPW$WFD
IPW$WFE
IPW$WFI
IPW$WFL
IPW$WFM
IPW$WFO
IPW$WFQ
IPW$WFS
IPW$WFX

Attach new task
Detach current task
Wait for BSC event
Wait for single posting
Wait for dispatch
Wait for single posting
Wait for initiation
Wait for locked resource
Wait for multiple posting
Wait for operator
Wait for class table posting
Wait for storage posting
Wait for mixed ECB and class table posting

Resource management

IPW$RLR
IPW$RSR

Release resource
Reserve resource

Storage management

IPW$RLV
IPW$RLW
IPW$RSV
IPW$RSW
IPW$UNV

Release virtual work space
Release real work space
Reserve virtual work space
Reserve real work space
Unchain virtual work space

Message service

IPW$GAM
IPW$GTR
IPW$ICS
IPW$NTY
IPW$RMS
IPW$WTO
IPW$WTR

Get message text
Get message (no longer used)
Nodal message service
Notify message service
Remote message service
Write to operator
Write to operator with reply

Disk service

IPW$WTQ
IPW$RDQ
IPW$WTD
IPW$RDD

Write queue record block or master record
Read queue record block or master record
Write data block
Read data block

Tape service

IPW$WTT
IPW$RDT
IPW$CTT

Write tape record
Read tape record
Execute tape control

Timer service

IPW$RDC
IPW$STM

Read (TOD) clock
Set timer interval

Validation service

IPW$VDA

Validate data area addresses

Remote service

IPW$SRM

Set remote mask in bit table

Trace service

IPW$GTE

Get trace entry

Queue File service

IPW$GQR
IPW$MQR
IPW$WQR

Get queue record
Modify queue record
Write queue record

34 VSE Central Functions V7R1 VSE/POWER DRM

Figure 10 (Page 2 of 2). Service Macros

Macro Purpose

Multiprocessor Service

IPW$TDM

Switch NP/PU Mode

 Chapter 3. Program Organization 35

Figure 11 (Page 1 of 2). Definition Macros

Macro Purpose

IPW$DAB
IPW$DAC
IPW$DBA
IPW$DCB
IPW$DCI
IPW$DCM
IPW$DCO
IPW$DCP
IPW$DCT
IPW$DCW
IPW$DDE
IPW$DDR
IPW$DED
IPW$DEF
IPW$DFC
IPW$DGN
IPW$DJK

IPW$DKA
IPW$DLC
IPW$DLR
IPW$DLU
IPW$DLW
IPW$DMD
IPW$DMC
IPW$DMM
IPW$DMS
IPW$DNC
IPW$DNR
IPW$DOP
IPW$DPA
IPW$DPD
IPW$DPN
IPW$DPW
IPW$DQC
IPW$DQR
IPW$DRM
IPW$DRQ
IPW$DSC
IPW$DSD
IPW$DSL
IPW$DSN
IPW$DSP
IPW$DSR
IPW$DSS
IPW$DSU

Define asynchronous service anchor block (ACB)
Define account control block (ACB)
Define virtual buffer control area
Define command control block
Define communicator information block
Define RJE, BSC commands
Define compaction table control block (COCB)
Define control blocks used by command proc.
Define class table entry
Define channel command word
Define device entry
Define data record format
Define external device control block
Define general use control blocks
Define printer control record
Define generation table (GNB)
Define layout of account file control
interval (HEADER, CDIF, RDF)
Define PNET compression/decompression work area
Define line control block (LCB)
Define logon request control block (LRCB)
Define logical unit control block (LUCB)
Define logical reader work area
Define message
Define module control block (MCB)
Define message control block (MSCB)
Define RJE (BSC and SNA) message control block
Define node control block
Define network control records
Define output parameter interface block
Define permanent area (CAT)
Define partition control block (PDB)
Define PNET master control block
Define physical work space (PWS)
Define disk management block (DMB)
Define queue record (QRA)
Define SNA remote control block (RMCB)
Define PNET SNA session request block
Define storage control block (SCB)
Define storage descriptor
Define SLI work space (SLW)
Define SNA control block (SNCB)
Define spool environment header and record & block
Define service request block (SRB)
Define PNET SNA session control block
Define SNA unit control block (SUCB)

36 VSE Central Functions V7R1 VSE/POWER DRM

Figure 11 (Page 2 of 2). Definition Macros

Macro Purpose

IPW$DSV
IPW$DTB
IPW$DTC
IPW$DTE
IPW$DTI
IPW$DTP
IPW$DTX
IPW$DVC
IPW$DVD
IPW$DVP
IPW$DVS
IPW$DWA
IPW$DWC
IPW$DWG
IPW$DWN
IPW$DWP
IPW$DXE
IPW$DXW
IPW$IOR
IPW$MXD

Define save area
Define tape control block (TBB)
Define task control block (TCB)
Define task control block extension area
Define RJE,BSC task identifiers
Define TCP/IP Driver Control Block (TDCB and SDCB)
Define transmitter exit parameter list
Define PNET VTAM control block
Define various DSECTS
Define various PNET DSECTS
Define virtual storage control block
Define SNA work area (WACB)
Define PNET composer work area
Define PNET receiver/transmitter work area
Define receiver/transmitter account area
Define PNET presentation service work area
Define output exit parameter list
Define cross-partition work area
Define input/output request (RJE,BSC)
Define segment macro IPWSEGM work area

Figure 12. Miscellaneous Macros

Macro Purpose

IPW$AJ#
IPW$ALN
IPW$CPY
IPW$VCA
IPW$EQU
IPW$GMD
IPW$GMM
IPW$RET
IPW$SAV

Assign new VSE/POWER job number
Align to storage boundary
Provide copyright instruction
Validate command authority
Establish equates
Generate message definition
Generate message module
Restore registers and return to caller
Save caller registers

Figure 13. PNET TCP TD-Subtask Support

Macro Purpose

IPW$GTO MSG=
IPW$GTO TRACE=
IPW$GTO DOM=
IPW$ITP PARMS=
IPW$ITP CKRC=YES
IPW$TTM STXIT=YES
IPW$TTM TIME=(Rx),TQE=
IPW$TTM CANCEL=YES,TQE=
IPW$TTM PROCESS=YES
IPW$TTM WAIT=(Rx)
IPW$TTM WAIT=(Rx,REACTIVATE)

Issue message for TD-Subtask
Issue trace message for TD-Subtask
Delete message for TD-Subtask
EZASMI API socketcall
EZASMI API socketcall error checking
Initialize STXIT interface for TD-Subtask
Specify timer interval interrupt
Cancel timer interval interrupt
Process timer interval interrupt(s)
Set TD-Subtask in wait for Rx interval
Set TD-Subtask in wait for Rx interval, and

then reactivate timer interface

 Chapter 3. Program Organization 37

Figure 14. PNET SSL SD-Subtask Support

Macro Purpose

IPW$GTS MSG=
IPW$GTS TRACE=
IPW$GTS DOM=
IPW$ITS PARMS=
IPW$ITS CKRC=YES
IPW$TTS STXIT=YES
IPW$TTS TIME=(Rx),TQE=
IPW$TTS CANCEL=YES,TQE=
IPW$TTS PROCESS=YES
IPW$TTS WAIT=(Rx)
IPW$TTS WAIT=(Rx,REACTIVATE)

Issue message for SD-Subtask
Issue trace message for SD-Subtask
Delete message for SD-Subtask
EZASMI API socketcall
EZASMI API socketcall error checking
Initialize STXIT interface for SD-Subtask
Specify timer interval interrupt
Cancel timer interval interrupt
Process timer interval interrupt(s)
Set SD-Subtask in wait for Rx interval
Set SD-Subtask in wait for Rx interval, and

then reactivate timer interface

38 VSE Central Functions V7R1 VSE/POWER DRM

Initialization and Termination

Initialization of VSE/POWER

The initialization of VSE/POWER comprises of the following phases:

� User-generated phase (POWER/IPWPOWER/username)
 � IPW$$IP
 � IPW$$I1
 � IPW$$I2
 � IPW$$I3
 � IPW$$I4
� IPW$$I5 (optional for Accounting support)

 � IPW$$I7
� IPW$$IN (optional for VSE/POWER PNET support,

refer to “PNET Initialization”).
� IPW$$T1 (entered at end of initialization, awaiting reactivation by PEND

command, refer to “Termination of VSE/POWER”)

Job control (EXEC statement processor) fetches the first of these phases, which contains a small loader
routine and a generation table. These are assembled from the generation macros POWER, PLINE
(optional) and PRMT (optional). There can be as many of these generation table phases in the library as
there are different versions of VSE/POWER needed by the user.

The loader routine in front of the generation table loads the initialization root phase behind the first page in
the pageable area (the first page is reserved for the permanent command processor task as work area)
and gives control to it (see Figure 15 on page 40).

In case the pageable area is not large enough to contain the initialization root phase, a message is issued
by the generation-table load routine and the initiation of VSE/POWER is canceled.

The root phase loads all necessary initialization phases one after the other in the overlay area that is part
of the root phase and passes control to them. After processing of an overlay phase, control is given back
to the root phase, which then loads the next overlay phase. This process continues until the termination
phase (IPW$$T1) is loaded.

 Chapter 3. Program Organization 39

Figure 15. Initiation Logic

Notes:

1. VSE/POWER Loader loads IPW$$IP (start of pageable area + 4K).
2. IPW$$IP saves the local part of the generation table internally.
3. IPW$$IP loads the initialization phases into the overlay area and gives control to them.
4. IPW$$I1 saves the BSC portion of the generation table behind IPW$$IP.
5. IPW$$I1 builds the SNA control block (if required) in the GETVIS area and saves the SNA portion of

the generation table.
6. IPW$$I1 loads IPW$$NU into the SVA and IPW$$BM (if BSC is supported) into the partition and fixes

them.
7. The other VSE/POWER phases are loaded into the pageable area.
8. The last phase loaded by IPW$$IP is IPW$$T1; this is the termination phase of VSE/POWER.

IPW$$IP contains the following services and DTFs:

� IPLOAD loads VSE/POWER phases and exits.
� IDA00 builds IDAL lists for MCBs.
� FM00 formats queue file and data file MCBs.
� FD00 formats the data file during COLD start.
� FX00 formats one data file extent during extension warm start and is called via FD00 (R0 ≠ 0 &rpar) .
� PS00 prints a Status Report if at warm start SYSLST is assigned to a printer or at PEND time when a

printer address is given.
� SD00 sets up the DTFPH for each file.
� DTFPH for the following files:

– IJQFILE for the queue file.
– IJAFILE for the account file.
– IJDFILE for the data file.
– IJSYSIN for the input file.

40 VSE Central Functions V7R1 VSE/POWER DRM

– IJDTEST for the test data file extent file.
– IJQFILE for the queue file.

IPW$$I1:

� Checks if VSE/POWER is already active.
� Checks if VSE/POWER runs as main task.
� Checks if VSE/POWER runs in a virtual partition.
� Issues SVC 13 to change PSW key to zero, and hense continues in NP-mode, provided Turbo Dis-

patcher is active.
� Checks if the VSE/AF Supervisor supports JAI, if VSE/POWER accounting is requested.
� Checks if real storage allocated to VSE/POWER partition is large enough.
� Checks if RJE,SNA is supported.
� Validates the remote work station ids for RJE,SNA.
� Builds the remote control block (SNA).
� Saves the SNA portion of the remote work station table in GETVIS area.
� Checks if RJE,BSC is supported.
� Validates line address(es) for RJE,BSC.
� Saves the BSC portion of the line/remote work station table behind IPW$$IP.
� Informs other subsystems that VSE/POWER is active.
� Loads VSE/POWER nucleus into pfixed system GETVIS area (SVA)
� Loads RJE,BSC monitor (if applicable) and issues PFIX command for it.
� Initializes storage control block (SCB) and storage fields in CAT.
� Obtains DOS/VS related information.
� Initializes local message control block (MMB).
� Relocates various addresses.
� Determines pageable area required depending on required functions.
� Loads all applicable command processor phases.
� Loads all VSE/POWER modules in the pageable area.
� Allocates trace area in pageable storage, if applicable.
� Loads local user reader exit, if applicable.
� Loads job exit, if applicable.
� Loads local user output exit, if applicable.
� stores exit data in the initialization processor work area

IPW$$I2:

� Defines cross-partition ECBs for spool management.
� Creates TCBs for initiation/termination task and permanent command processor task.
� Sets up virtual storage control block (VSCB).
� Builds the initial TCB chain, consisting of the wait control block, the command processor task control

block, and the initialization processor task control block.
� Calls 'IPW$TDM NP', so that the non-parallel mode is also reflected in TCF16 of Init-Task, and

enforces default NP-processing by setting CAF4WKNP=ON - being prepared for change by SET
WORKUNIT=PA.

� Establishes AB-Exit routine.
� Indicates in SYSCOM that VSE/POWER is active
� Extracts CPUID and saves it in IP-workarea
� Initializes 16 access registers with zero and obtains the access list entry token (ALET) of the

VSE/POWER partition if running in ESA mode on ESA hardware.
� Establishes linkage to operator communication routine.
� Establishes linkage to interval timer exit routine.
� Checks if VSE/POWER runs in shared partition (/370 mode only).
� Sets up trace information block (TIB) and attaches DUMP subtask, if applicable.
� Attaches asynchronous service subtask

 Chapter 3. Program Organization 41

� Saves session start date and time.
� Checks if running with new device structure (>254 devices).
� Checks if SYSIPT is assigned and if so, reads first autostart statement and saves it for later

PDISPLAY AUSTMT
� Processes SET autostart statements, if any.
� Processes DEFINE autostart statements, if any.
� Analyzes autostart statement (FORMAT=).
� Checks if supervisor is generated with shared DASD feature.
� Checks when queue file and data file are shared that the device(s) are defined as shared ones.
� Requires confirmation from the operator when cold start of one of the files was requested when

running shared.
� Locks the queue file for exclusive use when running shared.
� Establishes linkage to temporarily used timer routine to issue message 1QB6I if applicable.
� Allocates the exit data table and sets up address in CAT.
� Allocates the FCB table and sets up address in CAT.

IPW$$I3:

� Obtains device characteristics (device type) of VSE/POWER queue file.
� Calculates number of queue record blocks per track.
� Reserves storage for and initializes queue-file MCB.
� Saves device characteristics in MCB.
� Sets up sector table in MCB (if applicable).
� Opens queue file and allocates real storage for queue record block input/output area.
� If OPEN fails IPW$$AT passes control back to IPW$$I3, which starts Q-File Re-Alloaction:

– Reads and checks IJQFOLD DLBL/EXTENT using LABEL macro
– Obtains old Q-File device characteristics
– Calculates number of QRBs per track
– Reserves storage/formats old Q-File MCB
– Saves device characteristics in MCB
– Sets up sector table in MCB
– For Shared Spooling: Lock IJQFOLD disk if file does not reside on same disk assigned to SYS001
– Opens old queue file IJQFOLD on SYS034
– Reserves storage and formats DMB IJQFOLD
– Sets up defaults and user values in DMB
– Calculates total number of usable QRBs
– Reads IJQFOLD Master Record
– For Shared Spooling: Check for other system up and running
– Checks IJQFILE DLBL/EXTENT
– Checks that IJQFILE & IJQFOLD extents do not overlap
– Asks operator to confirm queue file re-allocation
– Adds IJQTEST DLBL/EXTENT with same location as IJQFILE
– Verifies IJQFILE extent by OPEN of IJQTEST
– Checks that IJQFOLD fits into IJQFILE by comparing the number of QRBs
– Reserves IO-area for IJQTEST/IJQFILE
– Reserves and formats DMB for IJQTEST (later used for IJQFILE)
– Calculates total number of usable QRBs for IJQTEST
– Reserves storage for incore copy of IJQTEST (later IJQFILE)
– Formats new IJQTEST extent on disk
– Returns to main routine addressing IJQFOLD as queue file (Return address is queue file mis-

match check)
� Acquires storage for and formats disk management block (DMB).
� Sets up default and user-specified values (out of generation table) in DMB.
� Calculates total number of usable queue records.

42 VSE Central Functions V7R1 VSE/POWER DRM

� Acquires VIO or partition GETVIS-31 space for storage copy of queue file.
� Sets up record-control fields in DMB.
� >>> Queue file Re-Allocation routine returns here after successful 1st part
� Checks for mismatch of queue file and offers "Release Migration During Warm Start" for a queue file

>= 6.7.
� Sets up default and standard values in DMB from generation table.
� Sets up VSE security SECNODE value based on cold/warmstart
� Sets up shared refresh bit mask in DMB.
� Calculates queue file limit percentage.
� Formats queue file and builds free queue record chain, if cold start.
� Determines type of start (warm start or abnormal warm start) including detection of equal shared

SYSID by means of CPUID.
� Reads in all queue record blocks if applicable
� For Q-File Re-Alloaction the old queue file is now extended in storage and written to the new location.

– IJQFOLD DMB is copied to the IJQTEST DMB
– The IO-words for the queue file and the master record are rebuild
– The queue file limit is recalculated
– The additional FREE queue records are appended if IJQFILE > IJQFOLD
– The additional FREE queue records are appended if IJQFILE > IJQFOLD
– All queue records and the Master Record are written to IJQTEST
– IJQTEST is closed and re-opened (for output) as IJQFILE
– IJQFOLD is overwritten by a DUMMY file
– For Shared Spooling: IJQFOLD disk is UNLOCKed if its separate to the IJQFILE disk.

IPW$$I4:

� Obtains device information of device containing data file.
� Checks DBLK specification.
� Reads IJDFILE DLBL/EXTENT information from Label Area.
� Checks whether number of extents in DLBL/EXTENT exceeds number of extents of previous session

by ONE or MORE. Then Data file Extension path is entered, which
– Requests confirmation for assumed data file extension.
– Assures that no other shared spooling system is logged on.
– Compares DLBL/EXTENT information with extent information saved from previous session in

Master Record field MRDFEXT (Logical Unit, start of extent, length of extent).
– Checks that device information of all logical units is consistent (device type, shared or not)
– Verifies planned location of additional extent(s) by OPEN test file.
– Switches IJDFILE DTF to open for output (COLD start) if tests are successful.
– Else DLBL/EXTENT truncated to previous EXTENT(s) is written into label area and normal warm

start is continued.
� Opens data file, builds and formats one MCB for each extent.
� Acquires input/output area in the length of DBLK for each extent.
� Checks if more than one extent exists on same volume.
� Checks if the same number of data-file extents are specified as at cold start time.
� Checks when queue file and data file are shared that further data file extents which do not reside on

the same volume as the 1st extent are on shared device(s).
� Builds sector table in MCB of first extent.
� Checks for matching DBLK and DBLK group size values in master record and on warm started data

file.
� Formats the data file, if cold start, and builds the free DBLK group subchains.
� For extension warm start formatting of the appended extent(s) is delegated to IPW$$T1.
� Calculates data file limit percentage.

IPW$$I5:

 Chapter 3. Program Organization 43

� Obtains device information of device containing account file.
� Opens account file.
� Builds and formats ACB.
� Acquires input/output area (4K), if account file resides on FBA device.
� If cold start, erases account file.
� If warm start, locates last written account record or CI if FBA device by invoking account file recovery.

IPW$$IN:

Entered when PNET= is specified at VSE/POWER generation time -- see “PNET Initialization” on
page 188 for more details.

IPW$$I7:

� Invokes queue-file recovery, if necessary (warm start).
� Updates in the master record, the maximum queue records used in present session, use count and

the SYSID/CPUID table (shared only).
� Attaches time event scheduling task (TES) and waits until posted by TES task and writes then modi-

fied queue record blocks back to disk.
� Prints status report, if warm start and SYSLST assigned.
� Writes master record back.
� Attaches librarian subtask, if applicable.
� Sets up timer task, if queue file and data file are shared and waits until initialization task gets posted

by timer task, so that later the “startup” account record is written within a T1 interval.
� Activates channel end appendage.
� Sets up line manager task (if RJE,BSC)
� Sets up dynamic partition control block (DPCB) and attaches dynamic partition scheduling task (DPST)

if running in /370 or ESA mode.
� Builds short on real storage cushion.
� Builds master external device control block.
� Sets up spool access service master task.
� Sets up SNA control block (if RJE,SNA).
� Builds and formats remote message control block.
� Sets up spool management master TCB.
� Informs software inventory control about default SLI member type.
� Obtains system-related boundary information and saves it in CAT.
� Writes VSE/POWER “startup” account record.
� Performs autostart and informs system operator by message 1Q12I that VSE/POWER is up.
� Provides VSE/POWER 'up' information for GETFLD service.
� Activates page-fault appendage.
� informs system operator that VSE/POWER is up.

IPW$$T1:

Entered at end of initialization awaiting reactivation either for

� formatting additional data file extents as determined by IPW$$I4. After formatting, the data file limit
percentage is re-calculated.

� scanning the DELetion queue for entries that need 'final freeing' via IPW$FQS LOCK=NO.
� PEND command entered by the operator -- see “Termination of VSE/POWER” on page 54 for more

details.

Initial task selection by VSE/POWER is illustrated in Figure 16.

44 VSE Central Functions V7R1 VSE/POWER DRM

Figure 16. Initial Task Selection (TCB Chain)

 VSE/POWER Startup

Currently there are three ways for a VSE/POWER system to be initialized:

 � Cold Start
� Warm Start and Recovery Warm Start (partial/full recovery)
� Data File Extension Warm Start
� Queue File Re-Allocation Warm Start

Cold Start: Cold start can be performed individually for the Queue/Data and/or account file.
In a shared spooling environment, the operator is prompted via message 1QB2D for confirmation that no
other VSE/POWER system is currently active. Depending on the reply, the initialization continues or ter-
minates abnormally.
Cold start is performed by opening the appropriate file in 'write' mode.

� The queue file is initialized with queue record blocks. The size of a queue record block is 12288 bytes
and contains 32 compartments. The compartment size is 384 bytes with each compartment containing
one queue record of 368 bytes. If the queue file resides on a FBA device, a queue record block
comprises 24 FBA blocks. The space of the last queue record block is used for the master record.
Depending on the size of the queue file, 1 or 2 queue record blocks are occupied by the master
record. All queue records are marked "free" and placed in the free queue record chain. The free
queue record chain is shown in Figure 33 on page 90.

Note: The first queue record (relative queue record number = 0) is reserved for internal purposes; it
contains the queue record block number of the master record.

� The data file (CKD or FBA) is initialized with empty (hex zero) DBLKs. The DBLKs are grouped
together in DBLK groups, that means every first DBLK in group is headed by a Spool Environment
Header (SEH) record and every last DBLK in group is headed by a Spool Environment Record (SER).
The free DBLK group subchains are built. The DBLK groups are distributed among 8 subchains, which
are chained off the master record. The free DBLK groups are forward chained together via the SER,
which contains the relative DBLK number of the first DBLK of the next DBLK group. The SEH record
has no function in the free subchains.

 Chapter 3. Program Organization 45

 Master Record DBLK Group
 ┌───────┐
 │ o───┼───────────────────�┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ :
 ├───────┤ : └─────┘ └─────┘ └─────┘ └─────┘ :
 │ Count │ : ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ :
 └───────┘ : └─────┘ └─────┘ └─────┘ └┬────┘ :
 :..........................│......:
 ┌────────────────────────────────┘
 │
 │

└──────�┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ :
: └─────┘ └─────┘ └─────┘ └─────┘ :
: ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ :
: └─────┘ └─────┘ └─────┘ └─────┘ :

 :..........................│......:
 ┌────────────────────────────────┘
 │
 └──────�
 :
 :
 : o
 ┌────────────────────────────────┘
 │
 │

└──────�┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ :
: └─────┘ └─────┘ └─────┘ └─────┘ :
: ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ :
: └─────┘ └─────┘ └─────┘ └─────┘ :

 :.................................:

Figure 17. Free DBLK Group Subchain

For more detailed information on the logical structure of the free DBLK group subchains see also
VSE/POWER Administration and Operation, Appendix B, 'Analyzing Dumps and Traces'.

� The account file is initialized with an EOF record written on each track when the account file resides
on a C-K-D device. If the account file resides on an FBA device, an EOF-CI is written as first CI on
the file.

Warm and Recovery Warm Start: The decision to perform a 'Warm Start' or a 'Recovery Warm
Start' depends on the contents of a field (the USE count), contained in the master record. When initializa-
tion is complete the USE count is incremented by one, and when a VSE/POWER system terminates
normally the USE count is decremented by one.

If at initialization time the USE count is zero, meaning that there are no VSE/POWER systems active and
that the last VSE/POWER termination was normal, a 'Warm' start is performed. All information required to
control the spool files are extracted from the master record, without re-constructing the class chains on
disk.

If however the USE count is non-zero in a non-shared environment the queue file recovery program
(IPW$$RY) is invoked to re-construct the class chains and to reset all queue entries which are still marked
'in execution'.

If the USE count is non-zero in a shared environment then another field, referred to as the
SYSID/CPUID-bucket, is used to check if the last termination of this VSE/POWER system was normal or
abnormal. If the bucket contains an entry with the same SYSID as the initializing system, then the last
termination was abnormal. In this case 'recovery' warm start is performed. If however the last termination
of this VSE/POWER system was normal, 'warm' start is initiated.

46 VSE Central Functions V7R1 VSE/POWER DRM

Note: Normal termination always resets the SYSID/CPUID-bucket for that system to zero if it is in a
shared environment.

An additional field, contained in the master record, is the 'SYSID' field, that contains the SYSID of the
system that is currently accessing the queue file in update mode. This field is important after VSE/POWER
initialization, because whenever a VSE/POWER system locks the queue file, it first checks the SYSID
field. If a SYSID is present then queue file recovery is performed for the SYSID found in the field, without
the operator having to re-initialize VSE/POWER in the abnormally terminated system.

The scope of "recovery warm start" depends on the status of the queue file. VSE/POWER distinguishes
between

 � full recovery
� partial recovery (shared spooling only)

Full recovery is always performed in a non-shared spooling environment, when the last termination was
abnormal or in a shared spooling environment when the master record indicates that either the initializing
system or any other system abnormally terminated while having the queue file in "update mode" (within T1
interval).

Partial recovery is performed in a shared spooling environment when the last termination of the initializing
system was abnormal, but the system was not 'owner' of the queue file (initializing system terminated
outside of T1 interval).

Full Recovery: The various class chains and the free queue record chain are re-built by queue file
recovery. Queue file recovery accesses (via IPW$GQR macro) each queue record in turn using the
sequential organization (not dependent on chains) and the status of each queue record is examined. A
queue record can be in one of the following states:

� 'free' (queue record is member of free queue record chain)
� incomplete & 'in creation' (queue entry is being created)
� queued 'inactive' in one of the various class chains
� queued 'active' (queue entry is in execution)
� incomplete & in 'delayed deletion' (queue entry is waiting for deletion until MACC is set to zero, for

details see “Access to Active Queue Entry” on page 101)
� 'bad' - queue record is inaccessible due to I/O error

In details, following steps are performed: First the count of accessing SAS BROWSE tasks (MACC) is
adjusted, by setting the count to zero for each recovered system. This enables correct handling of 'delayed
deletion' entries as described later.

� If the queue record is marked 'free', the free queue record function is called to place the queue record
back in the free chain.

� If the queue record is marked 'in creation', the queue record is placed in the free queue record chain
and all allocated DBLK groups are returned to the free DBLK group chain, unless the queue entry
represented by the queue record is checkpointed. In the latter case the queue entry is repositioned at
the last checkpoint, a job trailer record is written as last record of the queue entry and the add to
queue function is invoked by means of the IPW$AQS macro instruction to add the queue entry to the
appropriate class chain.

If, however, the queue record is 'in creation' on a system for which no recovery should be done, the
queue record is left as is (shared spooling only).

� If the queue record is marked 'inactive', the add to queue function (IPW$$AQ) is called to add the
queue entry into the appropriate class chain.

� If the queue record is marked 'active' by the recovering system or by the system that abnormally termi-
nated (in T1), the execution flag is reset and the queue set is added to its class chain by invoking the

 Chapter 3. Program Organization 47

add queue function. If the queue record represents a RDR queue entry and the NORUN=YES
AUTOSTART option was set, disposition 'X' is forced, too. If the queue record represents a LST or
PUN queue entry and the "protect" option is set, the temporary disposition "Y" is set.

If the queue record is 'active' on the system for which no recovery is done, the queue record is added
to the appropriate class chain but with the execution flag still set (shared spooling only).

� If the queue record is marked in 'delayed deletion', the free queue record function is called. If MACC is
zero, the queue record is placed back in the free queue record chain and all allocated DBLK groups
are returned to the free DBLK group . If MACC is not zero, meaning that the entry is still browsed, the
queue entry stays in 'delayed deletion'.

� If the queue record is marked 'bad', no action is taken.

When running shared, all queue record blocks are written back to disk after recovery warm start is per-
formed; the appropriate refresh bits are set to indicate other shared systems, that their queue record
blocks in storage are obsolete and should be refreshed.

Partial Recovery: Partial recovery assumes that the queue file on disk with all its chaining pointers is
valid. Only queue entries either marked 'in creation' or 'active' or in 'delayed deletion' for the initializing
system or the system(s) to be recovered are reset. Again first the count of accessing SAS BROWSE
tasks (MACC) is adjusted, by setting the count to zero for each recovered system. This enables correct
handling of 'delayed deletion' entries as described later.

� If the queue record is marked 'in creation' by the initializing system, the free queue entry function is
called to free the queue entry. If the queue entry was checkpointed, the queue entry is repositioned at
the last checkpoint, a job trailer record is written as last record of the queue entry and the add queue
function is invoked to add the queue entry to the appropriate class chain.

� If the queue record is marked 'active', the execution flag is reset and the queue record is written back
to disk. If the queue record represents a RDR queue entry and the NORUN=YES AUTOSTART
option was set, disposition 'X' is forced, too. If the queue record represents a LST or PUN queue
entry and the “protect” option is set, the temporary disposition "Y" is set.

� If the queue record is marked in 'delayed deletion', the free queue record function is called. If MACC is
zero, the queue record is placed back in the free queue record chain and all allocated DBLK groups
are returned to the free DBLK group . If MACC is not zero, meaning that the entry is still browsed, the
queue entry stays in 'delayed deletion'.

Data File Extension Warm Start The data file extension during warm start will not affect already
spooled data and is triggered when VSE/POWER detects ONE or MORE extent(s) appended with
ascending sequence number to the existing IJDFILE DLBL/EXTENT statements. The new extent(s) must
be added as last extent(s), because VSE/POWER accesses the extents as a contigious stream of DBLKs,
starting with DBLK #0 and ending with DBLK #n. DBLKs on existing extents are already referred by their
number which can not be changed.
The data file extension will format only the new extent(s), which is postponed after warm start has been
completed. While the additional extent(s) are formatted, spooling is no longer disabled as during format-
ting of queue and data file at cold start.
Leaving the already spooled data on the existing extents untouched and formatting the additional extent(s)
in flight reduces System-down-time from several hours to the time needed for RE-IPL.

Now during warm start VSE/POWER analyses the DLBL IJDFILE information in the label area and com-
pares the number of extents against the count saved from its last session.
If the new count is less the old count, VSE/POWER enters a warm start which terminates with message

1Q19I INVALID DATA FILE EXTENT, RC=���2

and messages 1Q0KI informing about IJDFILE DLBL and about data file used at previous session

48 VSE Central Functions V7R1 VSE/POWER DRM

1Q�KI DATA FILE EXTENT NO. �1 AS EXTRACTED FROM IJDFILE DLBL/EXTENT
(// EXTENT SYSxxx,volid,1,�,start,length)

1Q�KI DATA FILE EXTENT NO. �2 AS EXTRACTED FROM IJDFILE DLBL/EXTENT
(// EXTENT SYSyyy,volid,1,1,start,length)

- - -
1Q�KI DATA FILE EXTENT NO. �1 AS PRESERVED FROM PREVIOUS WARM START

(// EXTENT SYSxxx,------,1,�,start,length)
- - -

If the new count is equal the old count, VSE/POWER performs a normal warm start.

If one or more extent(s) are appended, but the total number of extents exceeds the maximum of 32,
VSE/POWER continues with a normal warm start and informs the operator by message

1QD1A TOO MANY ADDITIONAL EXTENTS (mm) FOR DATA FILE EXTENSION, RC=���2

If one or more extent(s) are appended, but the current total number of DBLKs is already the maximum of
2,147,483,647 VSE/POWER continues with a normal warm start and informs the operator by message

1QD1A TOO MANY ADDITIONAL EXTENTS (mm) FOR DATA FILE EXTENSION, RC=���3

If the new count exceeds the old count by one or more extents, VSE/POWER informs the operator by
message

1QD7A mm ADDITIONAL EXTENT(S) FOUND FOR EXTENSION OF EXISTING DATA FILE WITH nn EXTENT(S)

and continues by first showing each already used extent as found in IJDFILE DLBL and EXTENTs by
message

1QD2I EXISTING DATA FILE EXTENT NO. mm FOUND IN IJDFILE DLBL/EXTENT
(// EXTENT SYSxxx,volid,1,nnn,start,length)

and then asking the operator to confirm data file extension for each extent by message

1QD2D DATA FILE EXTENT NO. mm - FOR FORMATTING REPLY 'YES' ELSE 'NO'
(// EXTENT SYSxxx,volid,1,nnn,start,length)

If 'NO' VSE/POWER continues with warm start on the existing data file with message 1QD3A RC=000A
regardless whether the 1st additional or a middle or the last additional extent has been rejected and
regardless whether any extent has been confirmed before.
After answering 'YES' for each new EXTENT, VSE/POWER starts a process with the following stages.

1. For the already existing and for all appended extents VSE/POWER assures data file integrity by ana-
lysing and removing all BAM OPEN obstacles. The DLBL, EXTENT and ASSGN statements are
inspected for obeying the rules of VSE/AF BAM and VSE/POWER, for example

� All assignments (SYSxxx) must be in contiguous ascending order.
� There must be no duplicate assignments to the same disk.
� All extents must reside on disks of the same device type.
� All existing extents are compared against the extent information contained in the Master Record,

which presents the warm start information from disk and is part of the already opened queue file.

If one of the preceding tests fails for a certain extent mm, VSE/POWER issues the warning message

1QD3A DATA FILE EXTENSION FAILED FOR EXTENT NO. mm, RC=���x, WARM START CONTINUED

and continues with a normal warm start on the existing data file.

If the preceding tests are successful, a DLBL IJDTEST is added to the label area with the assignment
and extent information of all additional extent(s), but a retention period of 0 days. Via OPEN for
Output for IJDTEST VSE/POWER verifies whether the planned space is not occupied. The operator is
informed by

1QD4I VERIFYING LOCATION OF ADDITIONAL DATA FILE EXTENT(S) BY OPEN FOR 'IJDTEST'

If the space is in use, message

 Chapter 3. Program Organization 49

4744D OVERLAP ON UNEXPRD FILE IJDTEST ... file id ...

will be shown, which should be replied by 'DELETE', if the unexpired file is no longer needed. In case
the old file is still needed, VSE/POWER will switch to normal warm start on the existing data file after
reply 'CANCELV' or 'DSPLYV' or ENTER. The operator is informed by message 1QD3A with
RC=0007.

If the additional extents overlay each over, message

474�D EXTENT OVERLAPS ANOTHER IJDFILE SYS�xy=cuu volume

and the verification fails. VSE/POWER will switch to normal warm start on the existing data file after
ENTER. The operator is informed by message 1QD3A with RC=0007.

2. Step two starts when message

1QD5I LOCATION OF ADDITIONAL DATA FILE EXTENT(S) VERIFIED SUCCESSFULLY

has been issued. Then an OPEN for output for IJDFILE will rewrite the format-1/-3 labels of the
existing extents and create the format-1/-3 label of the additional extent(s) in the corresponding
VTOCs. Then VSE/POWER startup continues with EXTENT exit processing which records the new
extent(s) in the master record with the "format additional extent" flag and posts the VSE/POWER for-
matting task. The old extents are NOT flagged for formatting thereby maintaining their spooled data.

3. When VSE/POWER initiation is complete (1Q12I), the third step starts indicated by highlighted
message

1QD6I FORMATTING OF NEW DATA FILE EXTENT NO. mm STARTED

The named new extent is now formatted while VSE/POWER is spooling. When formatting has been
completed for this extent, the operator is informed by message

1QD6I FORMATTING OF NEW DATA FILE EXTENT NO. mm COMPLETED,
nnnnnn FREE DBLKGPS ADDED

The DBLK groups of the new extent are now chained to the existing free DBLKGP chain and are
available for future spooling. The total number of available DBLKGPs (MRDBMAX) and the number of
free DBLKGPs are adjusted at that moment.
This 3rd step is repeated for each new extent.

Error Recovery: If VSE/POWER finds an incorrect IJDFILE EXTENT it issues message 1QD1A or
1QD3A with a unique reason code to inform the operator. To enable VSE/POWER warm start and to
protect the original queue file and data file, it then truncates the IJDFILE label to the number of extents
used by the previous session and passes the modified label to the temporary partition label area. The
modified label should represent the previously used data file. However, if the system administrator has
exchanged the order of the existing extents, VSE/AF BAM OPEN assures that mismatches between the
modified label and the file labels on disk result in an OPEN error.

If VSE/POWER is terminated abnormally before the new format-1/-3 label has been written into the VTOC,
the number of data file extents is not yet updated in the master record. A subsequent VSE/POWER start
(with the same DLBL/EXTENT/ASSGN information) will detect the additional extent again and data file
extension processing starts from the beginning.

If VSE/POWER is terminated abnormally while formatting the new extent(s), a subsequent VSE/POWER
start will detect the additional extent(s), which are still regarded as unformatted ("format additional extent"
flag is still set) and formatting is resumed automatically.

If VSE/POWER is terminated abnormally while formatting of new extent(s) is still incomplete and if
VSE/POWER is started subsequently with even more extent(s) added to expand the data file once more,
extension will be rejected with message

1QD1A TOO MANY ADDITIONAL EXTENTS (mm) FOR DATA FILE EXTENSION, RC=���4

50 VSE Central Functions V7R1 VSE/POWER DRM

and formatting of the previously added extent(s) is resumed.

If VSE/POWER is terminated by PEND while formatting of an additional extent is in process but still
incomplete, termination is postponed until formatting of the currently addressed extent is complete. The
possibly residual - not yet formatted - extents will be formatted after the next warm start. The operator is
informed by message

1QD6I FORMATTING OF NEW DATA FILE EXTENT NO. mm POSTPONED TILL NEXT WARM START

If formatting of one additional extent fails due to I/O errors, VSE/POWER continues with the old extents
plus the new extents formatted so far. The operator is informed by message

1QD6I FORMATTING OF NEW DATA FILE EXTENT NO. mm FAILED, RC=���3/���4

The system administrator should either remove the failing EXTENT and its successors or he should
replace the failing extent and may at the same time also replace or remove any succeeding extent. At the
next VSE/POWER warm start data file extension will be started for the new additional extent(s).

Considerations for Shared Spooling: If VSE/POWER shares queue and data file with other systems
(SHARED=Q|D), special considerations ensure data integrity. After confirming Dynamic Data File Exten-
sion ('YES' replied to 1QD2D for all extents), it is checked, that no other system is already initialized. If
the master record indicates another initialized shared spooling system, the operator is informed by
message

1QD3A DATA FILE EXTENSION FAILED FOR EXTENT NO. mm, RC=���8 , WARM START CONTINUED

that VSE/POWER has switched to a normal warm start preventing that DBLKs of the additional extent are
added to the free DBLKGPs chain. This would allow access by other systems running without the addi-
tional extent information which would be identified as Data File corruption.
If other systems have terminated abnormally, the operator may use PRESET to reset their 'active' status.
To check whether other systems are initialized, the operator may use the PDISPLAY STATUS report
showing all active systems, especially the 'others' e.g. 4,3,1

F1 ���1 1R46I TIME INTERVALS FOR SHARED SPOOLING (SYSID=2) :
F1 ���1 T1 = 5 SEC., T2 = � SEC., T3 = 6� SEC., T4 = 18� SEC.
F1 ���1 ACTIVE SYSID'S FOUND: 4,3,2,1

Also it is checked for shared spooling during step one whether all extents reside on shared disks. If not
message 1QD3A with RC=0009 is issued and VSE/POWER continues with normal warm start. To distin-
guish which system must format the new extent and to allow another system to take over formatting if the
first system fails and can not recover, a "formatting SYSID" will now be recorded in the master record
together with the "format additional extent" indication. If during warm start a shared spooling system finds
the "format additional extent" flag set together with the formatting SYSID of another system, highlighted
informational message 1QD6I is issued

1QD6I FORMATTING OF NEW DATA FILE EXTENT NO. mm DETECTED ON SYSID sysid

The operator may then check whether the formatting system (named by sysid) is still alive. If it has termi-
nated, a restart of the formatting system envokes queue file recovery, which will resume formatting. If that
system can't be restarted, the PRESET command - addressing the failing system by its sysid - can be
used to transfer formatting of the residual unformatted extents to the active system, which issued the
PRESET.
Note, that Queue file recovery may also be entered automatically (with the same result) when one system
detects, that the formatting system has terminated abnormally.

 Chapter 3. Program Organization 51

Queue File Re-allocation (without Re-Formatting the data file) at warm start: Re-
allocation means, that the queue file is placed at a different location and that it may be extended at the
same moment. The queue file re-allocation does not affect already spooled queue entries and adds the
additional queue records of the increased queue file as free queue records. This leaves the linkage
between existing queue entries and the data file as is, and therefore the data file must not be formatted
and system-down-time is reduced visibly to the time needed for re-IPL and for formatting and copying the
queue file to the new location. The new function is triggered when VSE/POWER detects new
DLBL/EXTENT statements for IJQFILE addressing a disk area assigned by SYS001 and named with a
'file-id' not yet listed in the appropriate VTOC. The previously used queue file must address its original
disk area by DLBL/EXTENT statements for IJQFOLD assigned to SYS034 with its original 'file-id'. (Note:
The latter used to be identified during the previous sessions as IJQFILE assigned by SYS001.)

Note: To re-allocate the VSE/POWER queue file to the same disk you must use a different 'file-id' than
the one of IJQFOLD which is already listed in VTOC. Otherwise VSE/POWER will warn the operator by
message

1QE8A IJQFILE (// EXTENT SYS001,volid,1,n,start,length) MISMATCH WITH file-id

If you want to re-allocate the VSE/POWER queue file on its current disk with the same 'file-id', then you
must first re-allocate the queue file to a second disk using the original 'file-id' and then you may re-allocate
it to the 1st disk (again with the original 'file-id').

Then during warm start, VSE/POWER tries to open the not yet existing IJQFILE. VSE/AF handles the
OPEN request by locating the 'file-id' in the VTOC of the disk assigned to SYS001 and if this fails, this is
indicated by VSE/AF message

46�1I NO FORMAT 1 LABEL FOUND IJQFILE SYS��1=cuu volid

Then VSE/POWER informs the operator by message

1QE1I RE-ALLOCATION PROCESS STARTED FOR VSE/POWER QUEUE FILE

and tries to open the existing (old) queue file IJQFOLD assigned to SYS034. If this fails due to incorrect or
missing DLBL/EXTENT/ASSGN statements for IJQFOLD, the operator is informed by message (RC=0020
or 0021)

1QE2A RE-ALLOCATION OF QUEUE FILE FAILED, RC=nnnn. WARM START TERMINATED

When the existing queue file is also not found, VSE/POWER is canceled by VSE/AF with message

46�1I NO FORMAT-1 LABEL FOUND IJQFOLD SYS�34=cuu volid

After successful open of the previously used queue file (IJQFOLD), VSE/POWER checks first whether the
old queue file DLBL/EXTENT addresses the correct location, otherwise the operator is informed by
message

1QE2A RE-ALLOCATION OF QUEUE FILE FAILED, RC=���5. WARM START CONTINUED FOR IJQFOLD ON SYS�34

The DLBL/EXTENT for IJQFILE is analysed, if the DLBL can not be read, the operator is informed by
message 1QE2A (RC=000B) and warm start continues with IJQFOLD. When the new queue file
(IJQFILE) does overlap the extent of the old queue file (IJQFOLD), the operator is informed by message
1QE2A (RC=0003) and warm start continues with IJQFOLD. When IJQFILE and IJQFOLD reside on two
disks with the same VOLID but with different cuu, the operator is informed by message 1QE2A
(RC=000A) and warm start continues with IJQFOLD. When the new queue file can be accepted, the
operator is informed about both (old and new) queue file extents and asked to confirm re-allocation by

1QE3I IJQFOLD: // EXTENT SYS�34,volid,1,n,start,length
1QE3I IJQFILE: // EXTENT SYS��1,volid,1,n,start,length
1QE3D CONFIRM QUEUE FILE RE-ALLOCATION FROM IJQFOLD TO IJQFILE BY 'YES' ELSE 'NO'

52 VSE Central Functions V7R1 VSE/POWER DRM

For 'NO', message 1QE2A with RC=0009 is issued and warm start for IJQFOLD is continued, for 'YES'
VSE/POWER will process the old queue file and the new queue file in parallel:
1) The operator is informed by message 1QE4I that the extent of the new queue file is now verified for
being unused and that therefore a test queue file is opened on the same location.

1QE4I VERIFYING LOCATION OF NEW QUEUE IJQFILE FILE BY OPEN FOR 'IJQTEST'

This test file IJQTEST uses the EXTENT information of IJQFILE, but is defined with a retention period of
zero days and with a different 'file-id'. When later re-allocation is completed, the VTOC entry of the test file
is changed to the 'file-id' and retention period of IJQFILE, thus changing the test file to the permanent
queue file without affecting the already re-allocated queue records. If the space is in use, message

4744D OVERLAP ON UNEXPRD FILE IJQTEST SYS��1=cuu volid 'file-id'

is shown by VSE/AF. In case the named file is still needed, the operator replies 'ENTER' or 'CANCELV' or
'DSPLYV' and VSE/POWER switches to normal warm start on the old queue file and issues message
1QE2A with RC=0006. If the unexpired file is not needed, the operator replies 'DELETE'. After deleting
the old file(s) or when no unexpired file was found at all, the following message is issued:

1QE5I LOCATION OF NEW QUEUE FILE IJQFILE VERIFIED SUCCESSFULLY

When the size of new queue file (IJQFILE) is compared against the size of the old one. If the new one is
smaller than the old queue file, the operator is informed by message 1QE2A (RC=0002) and warm start
continues with IJQFOLD.
2) Now PFIXed storage is reserved for internal work areas, if reservation fails the operator is informed by
message 1QE2A (RC=000C) and warm start continues with IJQFOLD. Then storage for the new larger
queue file is reserved either in Partition Getvis of VSE/POWER (running in a non-shared address space)
or in VIO, when the VSE/POWER partition resides in shared (ALLOC S,F1=xxM). If reservation fails the
operator is informed by message 1QE2A (RC=0007) and the reservation is retried with the size needed for
the previously used and still existing smaller old queue file.
3) When sufficient storage is obtained for the new queue file, its disk location is formatted into queue
record blocks, which consumes nearly no time (compared with formatting a data file). Any I/O error during
formatting terminates re-allocation indicated by message 1QE2A, RC=0008 and warm start for IJQFOLD is
continued.
4) The storage copy of the old queue file - already read into the storage area of the new queue file - is
extended by the free queue records of the larger new IJQFILE and is committed to disk. Any I/O error
when writing the extended queue file to the new location is indicated by message 1QE2A, RC=000F or
RC=0010 and warm start for IJQFOLD is continued.
5) Then the IJQTEST file is closed and reopened for output as IJQFILE, which updates the VTOC entry
with the specified 'file-id' and retention period. If this fails the operator is informed by message 1QE2A
(RC=000D or 000E) and warm start continues with IJQFOLD. Else re-allocation is done and the operator
is informed by message

1QE6A RE-ALLOCATION FOR IJQFILE COMPLETED, nnnnn FREE QUEUE RECORDS ADDED

6) Finally the original old queue file is overwritten by a 'DUMMY' work file (without operator intervention
needed). If this fails the the operator is informed by message

1QE7I DELETION OF IJQFOLD FAILED, REMOVE FILE-ID 'file-id' ON volid MANUALLY

that the system administrator should remove the now superfluous IJQFOLD VTOC entry.

Considerations for Shared Spooling: When VSE/POWER re-allocates the queue file, it requires exclu-
sive access of the old and the new queue file. If VSE/POWER shares queue and data file with other
systems (SHARED=Q|D), special considerations ensure queue file integrity. VSE/AF LOCK requests for
'IJQFL.volid' are issued for the new queue file and, if JQFOLD resides on a separate disk, also for the old
queue file to ensure that only 1 VSE/POWER shared spooling system initializes at a time. The re-
allocating system, having both files now locked, checks, that only itself has accessed the old queue file so
far (remember that the new queue file does not exist yet). Otherwise the operator is informed by message
1QE2A with RC=0001 and warm start for IJQFOLD is continued.

 Chapter 3. Program Organization 53

Also for shared spooling VSE/POWER checks, whether the new queue file resides on a shared disk. If
not, the operator is informed by message 1QE2A with RC=0004 and warm start for IJQFOLD is continued.
Furthermore the old queue file is deleted after re-allocation, to prevent access by other shared spooling
systems with outdated IJQFILE DLBL.

Invocation: To prepare a queue file re-allocation warm start of VSE/POWER, the system administrator
has to modify the DLBL/EXTENT statement for IJQFILE in STDLABEL.PROC and the ASSGN statement
for IJQFILE in DTRPOWR.PROC :

1. DLBL of the existing IJQFILE must be renamed to IJQFOLD, EXTENT & ASSGN must be changed
from SYS001 to SYS034.

2. A new DLBL and EXTENT statement for IJQFILE must be added to STDLABEL.PROC with logical
unit SYS001, and the matching ASSGN statement must be added to DTRPOWR.PROC. Note, that the
'file-id' of the old and the new queue file may be equal!

3. Either VSE/POWER partition Getvis (ALLOC F1=... statement in $0JCL procedure) or the VIO area
(1st statement in $IPLESA procedure) must be increased. Note, that for each 32 queue records 12K
more storage is needed to hold the storage copy of the new queue file.

4. The number of programmer logical units for the VSE/POWER partition is specified in the NPGR state-
ment, which is part of $0JCL procedure. At least 35 logical units must be specified, the default of 30
logical units is not sufficient!

5. Re-allocating the queue file from CKD disk to FBA disk or vice versa is allowed, but needs a careful
calculation of the present size and the new size. The same is needed when re-allocating the queue file
on CKD disks with different CKD track sizes. For these queue file size calculations use the
VSE/POWER Administration and Operation manual.

Restrictions: To re-allocate the queue file to the same disk different file-identifiers must be used for the
old and the new queue file, because VTOC must only contain unique file-identifiers.

For a shared spooling complex, all systems must be terminated, before one system can re-allocate the
queue file.

When re-allocation fails, VSE/POWER does not terminate but addresses the old queue file by logical by
programmer logical unit SYS034 during that session until the next start of VSE/POWER has either been
completed by a successful re-allocation, or the IJQFILE DLBL has been reset to its original value. For this
session the VSE/POWER spool file dump tool IPW$$DD can not use the IJQFILE DLBL/EXTENT/ASSGN
statements provided in STDLABEL.PROC and DTRPOWR.PROC, which addresses the new, not yet
existing queue file. To use IPW$$DD, partition DLBL/EXTENT/ASSGN statements must be provided which
address the old queue file by IJQFILE and SYS001, as done in the previous session.
OEM programs accessing the queue file by their own I/O must use the logical unit information from the
queue file CCB which is part of the queue file MCB.
PDISPLAY Q informs about the logical unit of the currently used queue file.

Termination of VSE/POWER

VSE/POWER is normally terminated by the PEND command. All active tasks are allowed to continue until
they finish processing the current queue entry. Deactivation is handled by each of the tasks, after the
command processor (IPW$$CM) has set a termination code ("S", "E", "F", or "H") in their TCBs. In case of
an I/O error or logic error VSE/POWER tasks can also be terminated by the IPW$$TR routine (see
“Abnormal Termination of VSE/POWER Tasks” on page 55).

After all supported partitions have been released, the VSE/POWER partition is restored for normal VSE/AF
operation.

54 VSE Central Functions V7R1 VSE/POWER DRM

The detach routine of task management actually gives control to the terminator routine IPW$$T1 by
posting the termination task when no more tasks, except of command processor, SAS master task and
timer task (shared spooling only) are active.

IPW$$T1:

Entered when initialization is complete, awaiting reactivation by PEND command.

� Checks and waits for not more than minimum number of VSE/POWER tasks active - reactivation by
task management.

� Detaches if applicable the dump subtask.
� Detaches the Librarian subtask, if applicable.
� Detaches the TES task, if applicable.
� Writes the final VSE/POWER execution account record.
� Optionally prints status report, especially for the queue file, by passing an internal PDISPLAY

command to invoke Print status task (if SYSLST assigned to a printer).
� Writes all queue record blocks back to disk and updates the master record accordingly.

Note: In a shared spooling environment only modified queue record blocks are written back to disk.

� Decrements use count, resets SYSID/CPUID-bucket and writes back master record to disk if running
non-shared or allows for timer task to do so if running shared.

� Deactivates the timer task if shared spooling was active.
� Writes end-of-file record to Account file, if applicable.
� Closes VSE/POWER files (Queue, data and Account file).
� Deactivates the spool access support master task, which in turn terminates the notify task, if present

and the heartbeat task, if present.
� Issues termination message 1Q21I.
� Restores VSE/POWER partition for normal use.
� Issues the EOJ macro which also PFREEs the permanent area and all other fixed pages.

Note: Since VSE/POWER abnormal termination routine processing is established with OPTION=EARLY,
IPW$$AT is also entered in case of EOJ termination. However no action is taken there, instead IPW$$AT
is exited again by the EOJ macro.

Abnormal Termination of VSE/POWER Tasks: The task termination routine IPW$$TR is
entered from task selection C state processing in case of an error at completion of any I/O operation, or if
'S' is posted in the TCB of a reader/writer task, or if the task encountered a severe logic error. It executes
under the TCB of the failing task. The failing task is canceled.

The following specific failures necessitate VSE/POWER termination:

� Logic error of VSE/POWER function encountered
� I/O error while IPW$$TR is trying to recover

VSE/POWER can be terminated abnormally by the PEND FORCE or VSE/AF CANCEL command also.

Abnormal Termination Processing of VSE/POWER: The VSE/AF supervisor passes control
to routine IPW$$AT when an abnormal termination condition for VSE/POWER or one of its subtasks is
encountered.

In these cases VSE/AF stores the PSW and the registers at the time of abend in the abnormal-termination
save area that is located at the entry of the routine (displacement X'14'). The stored PSW is not the
original EC-mode PSW, but has been modified and contains the interruption code, the instruction length
code, and the condition code. If a ESA supervisor is running, the original EC-mode PSW and the sixteen
access registers are stored after the general registers.

 Chapter 3. Program Organization 55

When one of the VSE/POWER tasks itself detects an abnormal-termination condition, it issues the
IPW$CNC (CANCEL) macro instruction, which stores the registers (but not the PSW) in the abnormal-
termination save area and branches immediately to the abnormal-termination routine with cancel code
X'FF'.

The first action of the abnormal-termination routine is to establish a VSE/AF lock 'ATGATE', so that the
routine may be used serially by the VSE/POWER main task and its several VSE/AF subtasks.

Since the VSE/POWER Maintask may have entered AB-exit in Parallel (PU) or Non-Parallel (NP) Mode,
and since AB-exit will update lowcore SYSCOM and COMREGs, NP mode is acquired by a local call for
TDSERV FUNC=SWITCHNP (see 'AT250'). The system operator is informed about the abnormal termi-
nation of the VSE/POWER main task via message 1Q2CI containing the PSW, failing module name and
module start address, if available. In case abnormal termination has been invoked by the IPW$CNC
macro, the system operator is informed by message 1Q2DI. Then a formatted dump is created automat-
ically calling the IDUMP in flight module IPW$$ID via macro IPW$IDM.
Only if the SET 1Q30D=YES autostart option has been used the operator is prompted via message
1Q30D to specify if he wants a dump of the VSE/POWER partition or not. If the operator replies with a
wrong answer (neither 'YES' nor 'NO'), message 1Q30D is reissued. If the answer is 'YES', the operator
is prompted again via message 1Q2ED whether or not a print-out of the storage copy of the queue file is
wanted, provided it resides in the VIO area. If the operator replies with a valid printer or tape address, the
VIO storage holding the queue file storage copy is printed on the specified device in SYSLST format.
Finally a formatted dump is created calling the IDUMP in flight module IPW$$ID via macro IPW$IDM.

Thereafter all VSE/POWER controlled partitions are canceled with the 'DOCLEAN' request, VSE/POWER
indicators in these partitions are turned off and all unit record assignments for spooled devices are
released.

For a summary of the IDUMP sections and their contents see “Operation of module IPW$$ID” on
page 162.

If an error, such as DUMP library full or not defined, occurs while writing the IDUMP to the DUMP library,
VSE/POWER informs the operator via message 1QC5I about the cause of the error and prompts the oper-
ator via message 1QC5D to specify the printer or tape device on which he wants the IDUMP alternatively
to be printed.

If he specifies an invalid device (such as no valid printer/tape device or device is down), the operator is
prompted again. Otherwise SYSLST is assigned to the device just specified and the IDUMP is written in
SYSLST format to the SYSLST device.

After the IDUMP has been taken which presents also VSE/POWER's partition control block for dynamic
partitions from the system GETVIS area, VSE/POWER awaits end of 'CLEANUP' processing for all parti-
tions under its control and requests then de-allocation of the dynamic partitions.

In all cases - dump requested YES or NO - the VSE/POWER partition itself will be tidied up. Indicators in
the SYSCOM and the partition COMREG are reset to indicate that VSE/POWER is no longer active. All
non DASD logical units are unassigned. For 3800 printers the setup is refreshed with defaults. If spool
management functions have been active, all VSE/POWER spool XECBs are deleted. Finally the VSE/AF
lock 'ATGATE' is released to allow VSE/AF subtasks to enter the abnormal termination routine too.
VSE/POWER terminates itself by issuing the VSE/AF EOJ macro.

Recovery Due To Exit Failure The above described behaviour is different in case the abnormal termi-
nation has occurred while being in 'exit-state'. If the active task is found to be in 'exit-state', recovery is
tried, meaning VSE/POWER continues to process normally and is not terminated. All changes necessary
for this behaviour can be found in module IPW$$AT:

56 VSE Central Functions V7R1 VSE/POWER DRM

1. Message 1Q2CI may contain type and name of a failing exit instead of a VSE/POWER module and is
extended to identify the failing task by task-id and the address of the TCB.

2. The test for being in 'exit-state' is done in the subroutine ATCEXST. Although subroutine ATCEXST
indicates 'exit-state', recovery is omitted, if the termination was caused by one of the following reasons
(near label AT257AX):
a. the macro IPW$CNC has been issued
b. the timer subtask issued a cancel request.

3. The recovery is done in the subroutine ATREXST:
a. Messages 1Q2KI and 1Q2HI, which are defined locally within IPW$$AT, are issued.
b. Using the IDUMP macro, a dump is written into the dump sublibary. If the IDUMP macro fails,

processing continues without taking a dump. The message 1QC5D, which asks for a device
address for printing the dump, is not issued.

c. The failing exit is marked as 'failed' in the exit-table.
d. All tasks in the TCB-chain which are in the state 'page-fault-occurred', are set to to the state

'dispatchable', because the page-fault-routine of the supervisor has forgotten any outstanding
page-fault after entry into the AB-exit routine.

e. The lockbyte ATGATE is unlocked to allow processing of further abnormal terminations by
IPW$$AT (also used to synchronize the abnormal terminations of the various subtasks, see
“Abnormal Termination Processing of VSE/POWER Subtasks”).

f. Using the SETPFA macro the page-fault-appendage routine is established again, because the
page-fault-appendage routine has been de-established:
1) by the supervisor whenever an abnormal termination of the maintask occurs
2) by VSE/POWER whenever the IPW$CNC macro has been issued

g. the page-fault-appendage routine is is de-established by the supervisor whenever an abnormal
termination of the maintask occurs

h. Set indication to stop the running task and return to the address within TCB which was updated by
VSE/POWER calling modules (IPW$$LR, IPW$$LW, IPW$$NR2, IPW$$NT) before giving control
to the exit routine. At this address a stop-code is set to stop the task using the normal way.
Usually the stop-code 'S' is used, but also an additional bit is set to update the stop-messages
(1Q33I, 1QX3I, 1QY4I, 1RA8I) with the wording 'DUE TO EXIT FAILURE' at the end of the
message or with the appropriate returncode (concerning the messages 1RA9I, 1RB6I). Also at
this address, the calling modules unconditionally return to parallel mode for their continuation.

Abnormal Termination Processing of VSE/POWER Subtasks: If the AB-exit is invoked
due to abnormal termination of one of the VSE/POWER subtasks, the routine is first locked via 'ATGATE'
for serial usage. Then message 1Q2CI with PSW and cancel code is issued, and an IDUMP to the
VSE/AF DUMP sublibrary of the VSE/POWER partition is requested calling macro IPW$IDM. If IDUMP-ing
fails, the operator will be informed by message 1QC5I. Depending on the type of failing subtask different
actions are taken. If it is a asynchronous service subtask, the VSE/POWER task waiting on service by the
subtask is posted with the appropriate termination code set in the TCB. If the RJE,SNA subtask abends,
the ACB is closed and all RJE,SNA tasks waiting for VTAM posting are reactivated. If the PNET subtask
abends, the ACB is closed and the PNET driver is informed about the cancelation of the subtask. Finally
the 'ATGATE' lock is released and the subtask is terminated by the DETACH macro. Only in case of the
Timer subtask for shared processing, the whole VSE/POWER partition processing is terminated by a
CANCEL ALL macro.

In case of abnormal termination of a asynchronous service, the dump or librarian subtask, the subtask is
attached again with the next service request.

 Chapter 3. Program Organization 57

Termination in an Unattended System: If in an unattended system VSE/OCCF terminated
abnormally, and VSE/POWER terminates thereafter, VSE/POWER issues a REIPL macro to bring up the
system again. Note this is true not only for the abnormal termination of VSE/POWER but for the normal
termination of VSE/POWER, too. In both cases the VSE/POWER routine IPW$$AT (although called
abnormal termination) gets control due to the usage of the STXIT macro.

If VSE/POWER terminated abnormally due to an internal cancel issued by the heartbeat task, the REIPL
macro is issued at once. Otherwise VSE/POWER updates the REIPL parameters and (if no PEND
FORCE issued) waits till all controlled partitions are unbatched. During the cancelation of the controlled
partitions, VSE/POWER counted the canceled partitions and compares its counter with the counter which
is updated by the end of task routine of the supervisor whenever a partition gets unbatched. The flag
IJBPOWT in the system communication region indicates to the supervisor that counting is necessary.

 VSE/POWER Multitasking

In order to execute VSE/POWER tasks concurrently, but asynchronously, VSE/POWER incorporates multi-
tasking support. Because this support does not depend on the multitasking (asynchronous processing)
support provided in VSE/AF, it is called private multitasking.

Each VSE/POWER task is equipped with a task control block (TCB) created in fixed storage. The TCB is
used to establish the identity of the task and to preserve its status when it is not in active control of the
central processor.

The task control blocks present at any time in VSE/POWER are linked together by means of next task and
previous task pointers to form a logical list called the task selection list. The task selection list is consid-
ered to begin and end with the Wait Control Block (WCB), a skeleton TCB located within IPW$$NU (in
pfixed SVA) whose function is to delimit the task selection list.

The logical position of each task control block within the task selection list (see Figure 18 on page 59)
determines its dispatching priority relative to the other tasks within the list. This priority takes effect only
when task selection is entered; once a task is running it will continue to run until it yields control by means
of one of the task selection service macro instructions (IPW$WFx) or sustains a page fault. Thus, a
higher priority task will not interrupt a running task.

An initial task selection list is constructed by the VSE/POWER initiator (IPW$$I2). This list contains the
wait control block, the task control block of the permanent command processor task, and the task control
block of the initiator task. This list (or ring) is linked together by forward and backward pointers. All
further additions to and deletions from the task selection list are performed by the task management
service.

58 VSE Central Functions V7R1 VSE/POWER DRM

Figure 18. Task Selection List (TSL)

 Chapter 3. Program Organization 59

Notes:

1. A writer task started with option VM or SP is chained to the reader tasks and has therefore a lower
dispatching priority as the execution processors.

2. A writer task started with option HP is chained to the SAS or DST tasks and has therefore a higher
dispatching priority than the execution processors.

3. If SET DYNAL=LOW is specified during VSE/POWER autostart processing the dynamic partition
scheduling task is chained to the reader tasks and has therefore a lower dispatching priority than the
execution processors of static and dynamic partitions.

VSE/POWER provides three components of task management service:

� Task initiation - attach new task
� Task selection - select next task for dispatch
� Task termination - detach current task.

Each of these components is discussed in the following paragraphs.

 Task Initiation

Task initiation is entered from a VSE/POWER task by means of the IPW$ATT (attach new task) macro
instruction. The issuing task has already acquired storage for and formatted the task control block which
will represent the new task; in particular it has created the task storage descriptor which establishes the
task type and identity.

First task initiation pre-determines for all tasks to enter their processing code as a parallel workunit
(TCF16NP=OFF), except for tasks of the NP-Must list (PNET SNA Connect/Disconnect and all RJE/SNA
Tasks), that have to run always as a non-parallel workunit. For details, refer to “Multiprocessor Support” on
page 111. Then task initiation determines the point within the current task selection list at which the new
task control block must be inserted, and adjusts the 'previous task' and 'next task' pointers within the task
control blocks concerned. The new task is then set into D (dispatchable) state, and return is made to the
calling task. This is illustrated in Figure 19.

60 VSE Central Functions V7R1 VSE/POWER DRM

p r e v i o u s

T C B

n e x t

T C B

n e w p o i n t e r s

o l d p o i n t e r s

T C T N

T C B

a d d e d

T C T P

Figure 19. Attaching a Task

 Chapter 3. Program Organization 61

Figure 20. Overview of Task Selection

 Task Selection

An overview of task selection is shown in Figure 20. Task selection is entered from a VSE/POWER task
when that task yields control to the central processor by means of one of the IPW$WFx (wait for 'X')
macro instructions listed below. In each case 'X' represents the task state value to be associated with the
task yielding control.

IPW$WFE set E state and wait for external ECB posting.
IPW$WFI set I state and wait for initiation.
IPW$WFO set O state and wait for operator response.
IPW$WFB set B state and wait for posting on RJE,BSC or PNET event.
IPW$WFL set L state and wait for locked resource.
IPW$WFM set M state and wait for multiple control block posting.
IPW$WFQ set Q state and wait for class table posting

62 VSE Central Functions V7R1 VSE/POWER DRM

IPW$WFX set X state and wait for mixed posting of one ECB and/or class table anchor(s) posting.
IPW$WFC set C state and wait for ECB or CCB posting.
IPW$WFS set S state and wait for ECB posting.
IPW$WFD set D state and wait for re-dispatch.

(The significance of these individual states will emerge in the discussion of the routines that issue the
individual macro instructions.)

The status of the task yielding control is saved by storing the current contents of the general purpose
registers (and the condition code) in the task register save area of the task control block. This done, the
task selection process can begin.

The task selection list is used to address and examine each task control block in turn in order of dis-
patching priority to determine whether the associated task can be dispatched. This is done by means of
the task state value set in the task control block. In addition to the task states listed above, one additional
state must be mentioned: P state (page-bound), which is set by the page fault appendage (see
"VSE/POWER Appendages") when a task sustains a page fault.

Tasks in the following states are non-dispatchable:

I state - the task is waiting for reactivation.
P state - the task is waiting for a page-in operation.
O state - the task is waiting for operator response.

Tasks in the following states are conditionally dispatchable. A further test or tests must be performed to
determine whether the condition has been satisfied and the task is in fact ready for dispatch.

L state - the task is waiting for a locked resource.
E state - the task is waiting for external ECB posting.
S state - the task is waiting for ECB posting.
C state - the task is waiting for ECB or CCB posting.
Q state - the task is waiting for class table posting or multiple XECB posting.
M state - the task is waiting for any of a set of ECB or CCB postings.
B state - the task is waiting for a RJE,BSC or PNET event.
X state - the task is waiting for posting of one ECB and/or class table anchor(s)

Tasks in the following state are unconditionally dispatchable:

D state - the task is ready for immediate dispatch.

As soon as a dispatchable task is found within the task selection list, the active VSE/POWER Maintask,
which is about to give life to the dispatchable Private Subtask ...

1. requests NP/PA Mode switch according to the TCF16-workunit, which has been pre-determined for a
task been just attached, or has been recorded for a task been interrupted before

2. the general purpose registers (and condition code) are restored from the task register save area of the
task control block

3. the task is set into R state (running)
4. and execution of the task is resumed from the point at which it previously ceased with either

Amode-24 or even Amode-31 (as been recorded in the TCB at a previous page fault).

If running in /370 mode and the task to be dispatched is either an execution or spool manager task and
the partition serviced by the task resides in a different address space, VSE/POWER switches to the appro-
priate address space before giving control to the task.

 Chapter 3. Program Organization 63

If the entire task selection list is scanned without any task being found to be dispatchable, the task
selection service issues an SVC 7 to pass control to the VSE/AF supervisor. Additionally the
no-work-to-do ECB is posted when no task is waiting for a locked DMB or, if the account file is shared,
for a locked ACB. VSE/POWER will wait till the occurrence of some related event (I/O completion, for
example) causes VSE/AF to return control to the task selection service. The entire task selection process
is then repeated.

 Task Termination

Task termination (Figure 21) is entered from a VSE/POWER task by means of the IPW$DET (detach
current task) macro instruction.

Task termination removes the task control block of the current task from the task selection list by adjusting
the 'previous task' and 'next task' pointers within the neighboring task control blocks within the list. The
storage occupied by the eliminated task control block is returned to the system, and control is then passed
to task selection to determine the task next to be dispatched.

p r e v i o u s

T C B

T C T B T C T N

r e m o v e d

n e x t

T C B

T C B

n e w p o i n t e r s

o l d p o i n t e r s

Figure 21. Detaching a Task

64 VSE Central Functions V7R1 VSE/POWER DRM

Reader, Execution Processor, and Writer Tasks

The data flow throughout the reader, execution processor, and writer task is summarized by Figure 22.

A

B

A

B

C

D

C

D

S A S

P U T

I N P U T

D E V I C E

P U T S P O O L

f r o m

u s e r ' s

b u f f e r

a r e a

R e a d e r T a s k

Internal Rout ine

(L R)

F u n c t i o n s

I P W $ G L R

I P W $ A Q S I P W $ S A Q

I P W $ S P DI P W $ P D R

E x e c u t i o n R e a d e r T a s k

Internal Rout ine

(X R)

F u n c t i o n s

U s e r

P r o g r a m

S V C 0

D A S D

Q record

D record

I P W $ $ N W

I P W $ $ G D

I P W $ G Q S

I P W $ G D R

(X J)

Ex te rna l R ou t ine

(PR, SY, BR, IB)

E X C P IP W $ P L R

U s e r

P r o g r a m

S V C 0

E x e c u t i o n W r i t e r T a s k

I n t e r n a l R o u t i n e

(X W)

I P W $ A Q S

I P W $ P D R I P W $ $ P D

I P W$ $ AQ

F u n c t i o n s

D A S D

Q r e c o r d

D r e c o r d

F u n c t i o n s

I P W $ $ N Q

I P W $ $ G D

W r i t e r T a s k

I n t e r n a l R o u t i n e

(L W)

E x t e r n a l R o u t i n e

(PL , PP, BW,

OB, MP)

E X C PI P W $ G L RI P W $ P L R

I P W $ G Q S

I P W $ G D R

S A S

G E T

O U T P U T

D E V I C E

G E T S P O O L

to use r ' s

b u f f e r

a r e a

Figure 22. Data Flow Throughout the Spooling Process

 Chapter 3. Program Organization 65

 Reader Tasks

The reader task is executed by a physical reader routine (PR) and logical reader routine (LR). These
routines pass control to each other through a logical record interface. At unit exception, the task places
itself in a dormant state, releasing as much work space as possible. "Hot reader" support enables a
dormant task to continue without a PSTART command, if new input has become available (refer to “Hot
Reader Appendage”).

Physical Reader (IPW$$PR): The IPW$$PR routine is entered when a reader task is invoked by a
PSTART command, or when an unsolicited device-end interrupt occurs while the task is in a dormant state
(hot reader support). Special work areas will be allocated at entry time and initialized according to the
supported physical device (see Figure 23). The work areas can be released by the termination routine
IPW$$TR.

The IPW$$PR routine performs the physical input for one or more devices and establishes the linkage
with the IPW$$LR routine so that, on request, each logical record can be passed over the interface to the
IPW$$LR routine. Each input operation will handle a number of records by means of command chained
CCWs (refer to "Physical Data Record Area" in Chapter 5). The input operation is performed with real
addresses in the CCWs (/370 mode only).

 fixable area : pageable area
 �──────────────────────────�
 :
 ┌─────────┐ ┌──────────┐ : ┌───────────────┐
 │Physical │ │ Physical │ : │ │
│Workspace│ │ Data │ : │ Physical │
└─────────┘ │ Area │ : Physical │ Routine │
 └──────────┘ : � │ │
 : │ └───┬───────────┘
 Task Control : │ │ �
 Block : │ │ │
 ┌─────────┐ ────────┬────────────────────┴────────────── │IPW$PLR│ ───
│ │ │ : │IPW$GLR│
│ │ │ : V │
│ │ │ : ┌─────────┐ ┌───────────┴──┐
├─────────┤ � : │ Logical │ │ │
 │ LRSA │ Logical : │ Data │ │ Logical │
 └─────────┘ : │ Area │ │ Routine │
 : └─────────┘ │ │
 ┌─────────┐ : └──────────────┘
 │ Second │ :
 │ LRSA │ :
 └─────────┘ :
 :
 Fixed control blocks :
 and work areas :

Figure 23. Physical and Logical Work Areas

SYSIN Tape Reader (IPW$$SY): The IPW$$SY routine is entered when a tape reader task is
invoked by a PSTART command. An area of 4K bytes in the partition GETVIS area will be used for tape
input (see Figure 24). When started, the tape reader task requests GETVIS space and will wait until the
space is available. The number of SYSIN tape readers is only limited by the number of physical tape
units, or the amount of GETVIS space available. Record format CCW chaining may be performed, which
means unblocked format causes a number of CCWs chained to read a number of records with one input
operation.

66 VSE Central Functions V7R1 VSE/POWER DRM

The tape reader task establishes linkage to the logical reader (IPW$$LR) and passes each logical record
in turn to the logical reader using the interface (IPW$PLR).

Unblocked Tape Format:

 ┌─────┐
 │ CCB │
 └──┬──┘
┌───┘ ┌──┐
│ │ �
│ ┌────┬────┬─//─┬──┴─┬───────┬───────┬───────────//────────┬───────┐
└� │CCW1│CCW2│ │CCWn│RECORD1│RECORD2│ │RECORDn│
 └─┬──┴────┴─//─┴────┴───────┴───────┴───────────//────────┴───────┘
 │ �
 └─────────────────────┘

Blocked Tape Format:

 ┌─────┐
│ CCB │

 └──┬──┘
 │
 ┌───┘
 │
 │ ┌───┬──────────────┬──────────────┬─────//─────┬───────────────┐
 └────�│CCW│Logical Record│Logical Record│ │ Logical Record│
 └───┼──────────────┴──────────────┴─────//─────┴───────────────┤
 │ │

│�────────────────────── Block ───────────────────────────�│

Figure 24. Physical Data Area - GETVIS Space

Physical 3540 Diskette Reader (IPW$$ER): This routine is entered via the logical reader when
a RDR statement is encountered in the input stream, or via task selection as a result of a PSTART
command issued for the diskette reader only. It reads data from the physical diskette reader associated
with the reader task.
If the routine is entered from the logical reader and no diskette unit is assigned (dynamic RDR support),
the PUB table is scanned for a free, operational 3540 device. If no such unit is available, the job is flushed
and the operator is informed via message 1Q90I. Otherwise the diskette unit remains assigned to the job
until end of job is encountered.

Logical Reader (IPW$$LR): The first time the routine is entered, it reserves work space for the
queue record area and acquires a queue record from the free queue record chain (via IPW$RQS macro
instruction).

The values may be overwritten by specifications in the JECL statements (* $$ JOB and * $$ CTL). A job
header record is set up and passed to the put data record routine. Records passed via the logical record
interface will be passed in turn to the put data function routine (IPW$$PD) for writing to the data file. The
general purpose byte in the record control word (RCW) of the TCB indicates what action is to be taken by
the IPW$$PD routine.

General-purpose byte posted by the logical reader:

End of data for last record for this job entry
End of block in case of unexpected end of input (expected delimiter not encountered, or last record of

block).

 Chapter 3. Program Organization 67

The routine provides a user exit. It enables a user-written routine to examine each JCL and JECL state-
ment, including any continuation statements, and delete or insert records in the job stream. Before entry
to the user exit a default switch to non-parallel (NP) mode is done to allow for Supervisor Control Block
update by the exit. If however the loading conditions of the exit specify 'PA', this extra switch is sup-
pressed. Upon return from the user exit an unconditional switch to parallel mode is done. For details refer
to “Multiprocessor Support” on page 111.

If the last record for the currently processed job entry is passed, a skeleton job trailer record is passed to
the put data record routine and the add queue entry function is invoked (via the IPW$AQS macro) to add
the queue entry to the appropriate class chain according to its priority.

Note: When the logical reader encounters the first record with a record length other than 80 or with a
change of characteristics, a data set header record, which describes the characteristics of the following
data, is built and passed to the put data record routine.

Execution Processor Tasks

The execution processor tasks are:

� Execution reader task (IPW$$XRE and IPW$$XJ)
� Execution writer tasks (IPW$$XWE)

The dynamic partition scheduling task acts as a static 'hyper' execution task and selects jobs from the
RDR queue for processing in a dynamic partition. For more details on dynamic partition support see later
on in this chapter.

Each serviced VSE/AF partition has a partition control block. For the 11 static partitions the partition
control blocks are reserved behind the VSE/POWER nucleus during VSE/POWER initialization. Each
control block has space for the maximum number (29) spool devices (device entry list).

The partition control block contains also header information pertinent to the partition itself. Each device
entry relates to a single real or dummy physical device specified in the PSTART command for a static
partition given by the operator.

The first device entry within each partition control block describes the reader device for that partition. If the
partition is a writer-only partition the device described by the reader entry is the system console device.
Further device entries describe the list devices and punch devices for the partition.

Each device entry is used to pass information from the user partition to the VSE/POWER execution
processor task which is responsible for the emulation of that device.

An execution reader task is started for each partition at the time at which the partition is brought under
VSE/POWER control. It continues to run until the partition is returned to VSE/AF control by means of a
PSTOP command.

This task is responsible for servicing all read requests addressed by the user program to the partition read
device designated at partition PSTART time. It is additionally responsible for recognizing the first request
addressed by each job executed within the partition to each of the partition list and punch devices desig-
nated at partition PSTART time, and initiating an execution writer task to service the further program
requests addressed to that device.

Until end of job the execution tasks proceed concurrently but asynchronously. When the execution reader
task detects an end-of-job condition it posts a stop condition to each of the subordinate tasks that it
started. It then waits until each of these tasks detaches itself in turn.

68 VSE Central Functions V7R1 VSE/POWER DRM

If no other queue entry can be processed the execution reader task will place itself in a wait state, after a
message is issued. When a PSTOP command is issued, the execution reader task and its subordinate
tasks will eventually be detached after processing the current queue entry.

Execution Reader Routine (IPW$$XRE) This routine will emulate the user channel program input
requests for the reader device. To service these requests a data record is kept available throughout the
process of this routine. Records are retrieved via IPW$GQS and IPW$GDR macro instructions. The
routine does the following:

� Holds a copy of the job header record in storage anchored to the partition control block of the partition
concerned.

� Informs the supervisor that VSE/POWER intercepts read requests for 3540 diskette(s), when indicated
in the job header record.

� Intercepts first request for output of the user channel program. Acquires storage for the queue record
area and data set header record, initializes them with the VSE/POWER defaults and the information
obtained from the job header record. Both areas are then anchored to the TCB of the new execution
writer task and the task is then attached.

� Handles all input requests from the user channel program.

� In case of a writer-only partition, analyzes JECL statements from a console read/write operation and
starts a writer task.

� Indicates termination of a writer task once a queue entry has been processed.

� When an SVC 90 is encountered, real storage is reserved in the length of the total execution account
record plus the length of the user data; the user data are then moved into the account record.

� When an SVC 91 is encountered, storage for an execution account record is acquired, if not already
done so by a previous SVC 90. The account record is then initialized with values extracted from the
VSE/AF accounting tables and the queue record; finally the account record is written by means of the
IPW$PAR macro instruction.

� When an SLI JECL statement is encountered, a parameter list is built and passed to the SLI proc-
essing routine; this routine then calls the librarian subtask in order to locate the member in the source
statement library.

� When PUN, LST, or PRT JECL statements are recognized, terminates the appropriate writer task,
builds a new queue record and data set header record, and starts the writer task again.

� Completes the job trailer record with accounting information at end of job time.

See Figure 25 on page 71 for overview of different segmentation execution flows.

Execution JECL Scan Routine (IPW$$XJ): This routine parses the JECL statements, checks
the validity of the parameters specified and updates the various VSE/POWER control blocks accordingly.

The following statements are checked - JOB, LST, PUN, SLI and DATA. The JECL RDR, CTL and EOJ
statements are ignored.

See Figure 25 on page 71 for overview of different segmentation execution flows.

 Chapter 3. Program Organization 69

Execution Writer Routine (IPW$$XWE): At entry of the execution writer routine, the execution
reader task has already reserved queue space and initialized the queue record area and data set header
record either with VSE/POWER defaults or with information obtained from the
* $$ LST|PUN statement. The data set header record is anchored to the execution writer task TCB.

Space is reserved for the data buffer for the output records. If tape spooling was requested, a tape
control block is set up by executing the IPW$OTP macro instruction. The tape control block is anchored to
the TCB of the task. If the device being spooled is a 3800, the data set header record is completed with
the defaults setup by means of the SETDF command for the appropriate 3800 device (the defaults are
extracted from the PUB2 area).

For performance reasons, a stack of up to 30 internal FCB image representations is maintained in virtual
storage. The stack can be deleted by the PDELETE FCB command in order to force stack recreation. If
an FCB name is specified in the data set header record, this stack is scanned for a matching FCB name.
If a match is found, the internal representation is copied into the TCB of the execution writer task and no
FCB image load from the library is performed.

If no match was found in the internal stack, then the FCB image is loaded from the library and converted
to the VSE/POWER internal representation which is then added to the stack in a FIFO manner.

The job header record and data set header record are then passed to the put data record routine.

If a request from the user program is found in the task list entry of the partition control block, the user
channel program is emulated. If no entry is found the task enters a wait state for further user program
requests or for a segmentation command (IPW$WFM).

Each CCW is checked for validity and user data is transferred to the data file by invoking the put data
record function.

At termination of the task, which is controlled by the execution reader task (stop code), the job trailer
record, set up by the execution reader task and anchored to the partition control block, is passed to the
put data routine and the current queue entry is added to the appropriate class chain by invoking the add
queue record function. The data buffer and all virtual storage acquired by the task are released and the
task detaches itself.

Output segmentation is driven by command (PSEGMENT or PALTER ...,SEGMENT=...) or by count (as
specified in JECL) or by the user program (via an FCB buffer load, or by issuing a SETPRT or IPWSEGM
or SEGMENT macro) and is established through formation of a new queue entry. The former queue entry
is added to the appropriate class chain.

If checkpointing is requested (indicated via the * $$ LST statement), the record number associated with a
page for LST or card for PUN output is recorded in the queue record whenever the specified checkpoint
interval is reached.

See Figure 25 on page 71 for overview of different segmentation execution flows.

Segmentation Considerations: See Figure 25 on page 71 for overview of different segmentation exe-
cution flows.

70 VSE Central Functions V7R1 VSE/POWER DRM

Execution Writer (IPW$$XWE) Segmentation via IPW$$XJ: ┌────────────────────────┐ ┌────────────────────────┐
┌──────────�│ IPW$$XW(E) │ IPW$SXJ │ IPW$$XJ │

1. Program Driven Segmentation: SEGMENT Macro │ │ 1. Point TCB(TCRW) to │ - - - - - - + - - - - - > │ -Process �$$LST/PUN │
│ │ $$BSGMNT CCW (24 bit)│ | │ -Create new output task│

User Partition ($$BSGMNT Area in SVA) │ ┌──┤ (SVA) │ | │ Old Task New Task │
│ │ ├────────────────────────┤ | ┌──�│ (Reg. 11) (Reg. 8) ├──┐

CCW Data: ──────────────────────────────┘ ┌───────�│ 2.Move IPWSEGM JECL to │ | │ └────────────────────────┘ │
┌────────────────────┐ │ │ │ Temp Buffer. Point │ | │ │
│ � $$ LST/PUN │ │ │ │ TCB(TCRW) to it. │ | │ │
└────────────────────┘ │ ├──┤ (24 bit) │ | │ TCB Area │

 │ │ └────────────────────────┘ | │ ┌───────────────────┐ │
2. Program Driven Segmentation: IPWSEGM Macro │ │ | │ │ │ │

 │ │ TCB Area | │ ├───────────────────┤ │
User Partition │ │ ┌───────────────────┐ | └───────┤ TCRW - I/O Addr/Ln│ │

 (Parameter List) ────────────────────────────┘ │ │ │ | ├───────────────────┤ │
 ┌─────┬─────┐─────────────┐ │ │ │ | ┌──────┤ TC3E │ │

│ CCB │ CCW │ ... │ � ├───────────────────┤ | │ ├───────────────────┤ │
└─────┴─┬───┴─────────────┘ ├──────�│TCRW - I/O Addr/Len│ | │ ┌───┤ TCQV │ │

│ � ├───────────────────┤ | │ │ └───────────────────┘ │
 │ │ │ │ ┌────┤TCSVSP- Temp.Buf, │ | │ │ │

└�│ � $$ LST/PUN │ │ │ └───────────────────┘ | │ │ Queue Record │
└────────────────────┘ │ │ | │ │ ┌───────────────────┐ │

(Optional JECL) │ │ │ │ | │ └──�│ QRxx │ │
│ └─�│� $$ LST/PUN ... │ | │ │ │ │

 │ └────────────────────────────┘ | │ └───────────────────┘ │
3. Program Driven Segmentation: Spool-Access Support │ (contains momentary IPWSEGM | │ │

PUT-OUTPUT-SEGMENTATION Request │ JECL statement) | │ Data Set Header Rec │
 │ | │ ┌───────────────────┐ │
 │ | └─────�│ │ │
Execution Reader (IPW$$XRE) Segmentation via IPW$$XJ: │ ┌────────────────────────┐ | │ │ │

depending on type of partition (normal,MT or Writer-Only) └──┤ IPW$$XR(E) │ | └───────────────────┘ │
(Data Driven Segmentation) │ 3. Point TCB(TCRW) to │ - - - - - - + │
4. Execution RDR Job: ─────────────────────────────────�┬─────�│ LST/PUN JECL │ │

4.1 Beginning of RDR queue entry: │ │ 4. (etc.) │ TCB Area (New) │
(� $$ JOB ... statement deleted by Logical Reader) │ │ 5. (etc.) │ ┌───────────────────┐ │
// JOB ... │ └────────────────────────┘ │ │�──┘

 /& │ ├───────────────────┤
 │ │ │

4.2 Segmentation via �$$LST/PUN statement │ ├───────────────────┤
... │ ┌──────┤ TN3E │
� $$ LST/PUN │ │ ├───────────────────┤
... │ │ ┌───┤ TNQV │

 │ │ │ └───────────────────┘
 │ │ │
 │ │ │ Queue Record

5. Normal partition or MT partition │ │ │ ┌───────────────────┐
 │ │ └──�│ QNxx │

POWER Data File DBLK ─────────────────────────────────�┤ │ │ │
 ┌────────────────────┐ │ │ └───────────────────┘

│ � $$ LST/PUN │ │ │
└────────────────────┘ │ │ Data Set Header Record

 │ │ ┌───────────────────┐
 6. Writer-Only Partition │ └─────�│ │
 CCW Data: ─────────────────────────────────�┘ └───────────────────┘
 ┌────────────────────┐

│ � $$ JOB ... │
│ � $$ LST/PUN │

 └────────────────────┘

Internal Execution Writer Segmentation (without IPW$$XJ):

7. // SETPRT statement (Data Driven Seg'n cont.) ───────────────�┐
 │ ┌─────────────────────────┐

│ │ IPW$$XW(E) │
8. Program Driven Segmentation: SETPRT Macro ────────────────────�┼─────�│ 6,7,8,9 Segment by clos-│

or LFCB Macro │ │ ing queue set(IPW$AQS) │
// EXEC │ │ and open new one │

 ... │ └─────────────────────────┘
 SETPRT ... (or LFCB) │
 ... │ ┌─────────────────────────┐

/� │ │ IPW$$XW(E) │
│ │ 1�a.Segment by writing │ N O T E:

9. Count Driven Segmentation: (� $$ LST/PUN RBS=nnn) ────────────�┤ │ trailer queue rec, │
│ │ tape mark, hdr qrec │ With tape spooling, one can combine

1�. Command Driven Segmentation: (PSEGMENT or PALTER .,SEGMENT=.) ─�┘ │ (IPWAQS,IPWRQS) │ Tape Segmentation with ALL other forms
│ 1�b, 1�c. If tape volume│ of Segmentation (e.g. SETPRT).

11. Multivolume Tape Segmentation (DISP=T): ───────────────────────────�│ full then open new │ While the data are written to tape,
a. Writing tape mark to separate output (SETPRT or LFCB) │ volume. (IPW$OTP) │ other Segmentation will cause a tape mark
b. When RBS= (Msg 1Q53I) └─────────────────────────┘ to separate the output segments.
c. When tape volume full open new tape (Msg 1Q53I)

Figure 25. Execution Segmentation Data Flow Overview

3800 Printer Considerations: Any request to alter the printer setup, either via a // SETPRT statement or
a SETPRT macro instruction, is routed to SETPRT. When SETPRT determines that the device is being
trapped by VSE/POWER, it passes the SETPRT parameter list to VSE/POWER after a basic validation.
This is done by issuing an I/O to the device with an 'FD' channel command operation code, and with the
data area address pointing to the SETPRT parameter list. The execution processor recognizes the 'FD'
operation code as a valid command for the 3800. SETPRT handling is illustrated in Figure 26.

 Chapter 3. Program Organization 71

Figure 26. SETPRT Handling

The execution processor maintains a control block, called data set header record, which contains the
current printer setup of the device being spooled. When a SETPRT parameter list is encountered by the
execution processor, the printer setup is updated, which means the new setup request is merged with the
previous one.

When the BURST, FORMS, FCB, FLASH, or copy group specifications have been changed, the output is
segmented (that is, the output entry is closed and added to the class chain according to the priority; then a
new output entry is created with the same jobname and job attributes but with a different job number, in
order to facilitate queue manipulation by the operator. The job header record and data set header record
are then written as first records in the new list queue entry.

Whenever the execution processor detects that a valid CINDX value (other than 0 or 1) was specified in
the SETPRT parameter list, it assumes that the user will manage the copy group handling by himself.

The execution processor creates a new output LIST entry with the same job attributes and sets the trans-
mission count to one.

When a SETPRT parameter list contains an FCB specification, the FCB image is loaded from the library
and the internal representation of the page format is updated. The data set header record is updated
accordingly. The FCB image is validated for accuracy. If a 3800 FCB image is invalid, a message (1Q54I)
is written to the operator and the LTAB or default LTAB (reduced in length by 6 lines equal to 1 inch) is
used. The LTAB specification is assumed as the internal representation of the FCB.

The following 3800 CCW operation codes are not accepted by VSE/POWER (execution writer) and cause
the channel program check and the unrecoverable I/O error flags in the CCB to be posted:

� Load translate table (X'83')
� Load character module WCGM (X'53')
� Load forms overlay sequence control (X'43')
� Load copy number (X'23')
� Load graphic character modification (X'25')
� Load copy modification (X'35').

If the user is prepared to accept unrecoverable errors, control is returned to him in the normal way; other-
wise, the user partition is canceled.

72 VSE Central Functions V7R1 VSE/POWER DRM

The "clear printer" (X'87') 3800 CCW operation is ignored.

Writer Tasks (List and Punch)

The writer task is executed by a physical routine (IPW$$PL or IPW$$PP) and a logical routine
(IPW$$LW). These routines pass control to each other through a logical record interface. If no next job is
available, the task places itself in a dormant state, releasing as much work space as possible.

Physical List and Punch (IPW$$PL and IPW$$PP): These routines are entered when a list
or punch task is invoked by a PSTART command. At entry, special work areas are allocated and initialized
according to the supported physical device (see Figure 23 on page 66). The physical list routine sets up
the printer when appropriate with the requested forms control buffer (FCB) and universal character set
buffer (UCSB). The requested FCB name, obtained from the Data Set Header record, or if none was
specified, the default FCB name, is compared with the one currently loaded in the printer. (This name is
saved in the printer extension area anchored to the TCB of the writer task.) If the names do not match,
asynchronous service is invoked by means of the IPW$IAS TYPE=SERVICE macro to perform the FCB
load. This is required because the load may involve waits which are not allowed by the VSE/POWER
main task. If the FCB load fails, message 1Q54I is issued and a branch is made to the task terminator
routine (IPW$$TR).

The UCSB name obtained from the data set header record is compared with the UCSB already on the
printer and the options (block/unblock data checks, fold/unfold) are also checked for any change. If a
change is found then the UCSB is loaded and message 1QA7A is issued to request the operator to mount
the proper print train. Processing is halted until re-started or terminated by the operator. If an error
occurred while loading the UCSB image, message 1Q54I is issued and a branch is made to the task
terminator routine (IPW$$TR). The work areas are released by the termination routine IPW$$TR.

Both routines perform physical output. On request, the linkage allows logical records to be received in
turn over the interface from the logical writer routine.

SETPRT processing is illustrated in Figure 27. If a SETPRT parameter list was passed by the logical
writer, the partly filled print buffer is emptied and a IPW$IAS TYPE=SERVICE macro instruction is issued
to perform the printer setup. Additionally if the DEBUG option was specified in the SETPRT parameter
list, SYSLST is temporarily assigned for the duration of the setup. Each output operation will print or
punch a number of records by means of command-chained CCWs (see "Physical Work Space"). The
output operation is performed with real addresses in the CCWs (EXCP real, System/370 mode only).

 Chapter 3. Program Organization 73

I P W S P D R

P a s s e s

S E T P R T -

r e q u e s t

A t t a c h e s

s u b t a s k

W a i t s o n

E C B p o s t i n g

A s y n c h r o n o u s

s e r v i c e

s u b t a s k

I s s u e s

S E T P R T

P o s t s E C B

i n S R B

S E T P R T -

m o d u l e

I F J S P R D V

T y p e -

S e r v i c e S E T P R T

3 8 0 0 P r i n t e r

D e t t a c h e s

s u b t a s k

C h e c k s

r e t u r n c o d e

W r i t e s

e r r o r m e s s a g e

(i f a p p l i c a b l e)

R e t u r n t o

I P W S S P L

C h a nn e l

i n t e r f a c e

C o n s o l e

I P W $ $ L W I P W $ $ P L I P W $ $ A S

I P W $ $ A S

Va l i d a t e s

S E T P R T -

r e q u e s t

B u i l d s S R B

I n v o k e s

a s y n c h r o n o u s

s e r v i c e

I P W $ $ M S
I P W $ G A M

Va l i d a t e s

S E T P R T -

r e q u e s t

B u i l d s C C W s

Figure 27. SETPRT Request Processing Flow

Logical Writer (IPW$$LW): A new queue entry is addressed by invoking the get next queue entry
function. If no queue entry is eligible, a physical writer task is placed in a wait state until a new eligible
queue entry is added or an existing queue entry becomes available. In all other cases the logical writer
routine returns to its caller with an indication that there is nothing to do.

The routine ensures that the controlled printer/punch or even remote station is set up with the requested
forms. The forms id obtained from the queue record is compared with the one in the TCB of the writer task
that specifies the actual setup. If a mismatch requires operator intervention (for 3800, a mismatch of
forms, flash or burst status), message 1Q40A or 1QA5A is issued. For a 4248, the mount forms message
is also displayed at the printer's display panel. The operator must then either perform the setup and use
the PGO command to continue processing, or else stop the writer task or flush the output via the
PSTOP/PFLUSH command respectively.

A warning message (1Q41I) is issued if a different printer/punch device is used at physical print/punch
time as was used at execution time. The operator can then decide whether to continue with the output or
to flush the output. If he decides to continue, all illegal commands passed to the physical device are
ignored and the output may contain invalid data or may lose records.

If the physical task is started as a 'VM writer' task, the following VM-CP spool command is issued at the
beginning of the queue entry processing to supply VM-CP with more descriptive information about the
output queue entry.

SPOOL cuu TO {user id|SYSTEM} CLASS c COPY nnn FORMS ffff

If the target user id is unknown in the VM-CP directory, message 1QAAI is issued, and the queue entry is
placed back in the appropriate VSE/POWER queue in 'hold' disposition.
Only one copy of the queue entry is passed to VM-CP, even so multiple copies are requested. After the
queue entry is completely processed, a VM-CP close command is issued to close the queue entry
whereby the VSE/POWER job name and number are passed as VM file name and file type respectively.
The DIST value is passed also to VM in the CLOSE command, if a DIST value was specified in the * $$
LST statement.

Start separator pages/cards are produced, if applicable at the beginning of each output and between
copies.

74 VSE Central Functions V7R1 VSE/POWER DRM

A logical record is retrieved from the data file by invoking the get data record (IPW$$GD) function.

Job header and job trailer records are ignored by the logical writer routine. If the record just obtained was
a data set header record and the device being used is a 3800 printer, the SETPRT parameter list is
extracted from the VSE/POWER section of the data set header record. If no VSE/POWER section is
present, a SETPRT parameter list is built from the information of the 3800 section of the data set header
record, if present, else a default SETPRT parameter list is built.

Note: The SETPRT parameter list is passed as a 'FD' record to the physical routine.

The logical record is passed over the interface to the physical routine. Data records with an ASA carriage
control character are divided into two records to perform the requested print/punch function.

� The ASA carriage control character is converted into the corresponding machine op-code and passed
as a control record to the physical routine.

� The data record is passed without the ASA character to the physical routine. For punch data, each
record is converted into a write, feed select stacker 1 (X'21') operation.

The general purpose byte is tested for following action to be taken:

� Normal record: Retrieve the following logical record.

� End of data record: Delete the queue entry by invoking the delete queue entry function. Additionally
for a 3800 printer an end-of-output CCW is issued to effect offset stacking. A clear printer CCW is
issued, if requested, to ensure that all data in the printer buffer are printed before the queue entry is
purged from the queue.

End separator pages/cards are produced if requested. If more copies are requested, the routine is
repeated until all copies have been produced. The next queue entry function is then invoked to
address the next queue entry, if any is available.

If restart of an output queue entry is requested by the operator by means of the PRESTART command or
via the SAS interface, the logical writer scans the DBLK groups, locating the DBLK group, which contains
the record, page or line where to restart. This is done by using the following fixpoints

1. Start of the queue entry as determined from queue record
2. Current position in certain DBLK group, when restart requested
3. End of the queue entry as determined from queue record

and by calculating the shortest way from start/current/end position to the restart target. On this way either
the DBLK group forward chain based on the Spool Environment Record (SER) or the DBLK group back-
ward chain based on the Spool Environment Header (SEH) is used. Forward reading, for example, is done
by reading the last DBLK of the DBLK group and examining the SER if the record to start with is within the
DBLK group. If not, the last DBLK of the next DBLK group, pointed to by the SER, is read in. This con-
tinues until the DBLK-group is found. Backward reading follows the SEH records and works correspond-
ingly, keeping in mind that the SER of a previous DBLK group contains the same spooling values (line,
pages, setup) as the SEH of the next DBLK group. If the target is found and the printer is a 3800, the last
'printer setup', contained in the previous SER, is re-established. For a 4248 horizontal copy is established
according the information located in the previous SER. Then the record in question is located, the
requested printer set up is performed and processing continues.

The routine provides a user exit. It enables a user-written routine to examine each record before printed or
punched, passed to a RJE workstation or passed to a DDS. The routine may change, delete records or
insert new ones. Before entry to the user exit a default switch to non-parallel (NP) mode is done to allow
for Supervisor Control Block update by the exit. If however the loading conditions of the exit specify 'PA',
this extra switch is suppressed. Upon return from the user exit an unconditional switch to parallel mode is
done. For details refer to “Multiprocessor Support” on page 111.

 Chapter 3. Program Organization 75

Offload Reader/Writer Tasks (IPW$$OF)

The offload task is entered when a reader or writer task is invoked by a POFFLOAD command. The
offload task performs one of the following functions:

 � SAVE function
 � LOAD function
 � BACKUP function
 � PICKUP function
 � SELECT function
 � BACKUPnn/SAVEnn/PICKUPnn function

SAVE Function: This function retrieves one or more spool entries in dispatchable state from the
VSE/POWER queues (RDR, LST, PUN or XMT) according to the specified class(es) and puts them on
tape.

If the SAVE ALL function has been used or a * has been specified as the class, then all classes are
searched for eligible entries. Eligibility in this case means that the SYSID, REMID, and DESTID are
ignored when considering whether an entry is eligible.

The queue records and data blocks retrieved remain unchanged (apart from SEH or SER records
removed) on tape and can later be restored to the VSE/POWER spooling files using the 'load' function.

Queue entries are separated from one another by a single tape mark so that after the function has been
performed the tape looks like an unlabeled multifile volume. Only queue entries from one specified queue
will be processed at a time, unless the SAVE ALL function was specified.

LOAD Function: This function will be used to restore queue entries, residing on tape, to the
VSE/POWER queues. Only those entries can be restored which match with the specified queue identifier
of the POFFLOAD command. If the LOAD ALL function is requested then all queue entries will be
restored from the tape. The restore function operates independently of block size, which means that dif-
ferent DBLK sizes may be used between save and load time. The queue entries will be restored
according to their class and disposition, unless the operator specifies a class.

The POFFLOAD tape format which is identical to the spool tape format is shown in Figure 28.

BACKUP Function: This function writes each queue entry of individual classes or of a given queue
on tape, regardless of what the disposition of the queue entry is. Queue entries are separated from one
another by a single tape mark. The function can be used to archive the VSE/POWER spool files. The
queue entries are not deleted from the queues after they have been written onto tape. Only one
POFFLOAD BACKUP task can run at any time since the DMB is exclusively locked for the duration of the
backup processing.

PICKUP Function: Similar to BACKUP, this function writes each queue entry of individual classes or
of a given queue on tape, regardless of what the disposition of the queue entry is. The function begins by
scanning the queue file for eligible spool entries, and setting a PICKUP flag indicating that the spool entry
will later be written to tape (if still available). The function can be used to archive the VSE/POWER spool
files. The queue entries are not deleted from the queues after they have been written onto tape. Only one
POFFLOAD PICKUP task can run at any time, but unlike BACKUP, the DMB is not exclusively locked for
the duration of the processing. Similar to SAVE, the function may run in parallel with other tasks which
require the DMB.

76 VSE Central Functions V7R1 VSE/POWER DRM

SELECT Function: This function is used to restore individual queue entries residing on tape to the
VSE/POWER queues (RDR, LST, PUN or XMT) according to selection criteria. The selection criteria are
specified by the operator in response to message 1R41D. Only queue entries with matching selection
criteria are reloaded to spool. The queue entries will be restored according to their class and disposition.

The following figure illustrates the format of valid spool entries as they would appear on physical tape.
This is true for both VSE/POWER spooling (DISP=T) and POFFLOAD tapes. If using a 9346 or 3592 tape
unit, then the tape may contain an invalid spool entry with a missing trailer queue record which is ignorred.

H E A D E R

Q U E U E

R E C O R D

H E A D E R

Q U E U E

R E C O R D

T R A I L E R

Q U E U E

R E C O R D

T R A I L E R

Q U E U E

R E C O R DD B L K D B L K D B L K D B L K D B L K

T

M

T

M

T

M

T

M

Figure 28. Internal Tape Format

Refer to “Queue Record Area (QRA)” on page 614 for the layout of the header and trailer queue record
and to “Logical Data Record Area (LDA)” on page 539 for the layout of each DBLK.

BACKUPnn/SAVEnn/PICKUPnn Functions: Performs the BACKUP or SAVE or PICKUP func-
tion, however the queue record saved to tape is in the (length) format of the indicated 'nn' release,
allowing the user to perform a LOAD or SELECT queue entry(s) on a down-level 'nn' system.

 Chapter 3. Program Organization 77

Dynamic Partition Support

Coexisting with the support for spooled static partitions, VSE/POWER offers to activate the dynamic parti-
tion scheduling task using the PLOAD DYNC command, which also loads and activates a user defined
table, called Dynamic Class Table. It contains characteristics of job classes, for which dynamic partitions
may be allocated, that process jobs of the corresponding job input class.

The dynamic partition scheduling task (DPST - with code in IPW$$DP) operates as a static 'hyper'-
execution reader task and selects a reader queue entry for - let us assume - class Q; however no partition
to process the job is available yet. Hence the dynamic partition scheduling task allocates a
partition/address space of e.g. type Q and starts an execution reader task for e.g. partition Q1, passing the
selected job entry directly to the newly started task.

Job Control residing in e.g. partition Q1 asking for the first and further job statements is then serviced by
the execution reader task, as if it was a static partition. Only when the end of the VSE/POWER job has
been reached, the dynamic attribute becomes visible again: Job Control is informed to do partition clean
up and thereafter the Q1 execution reader task de-allocates the whole partition/address space Q1 and
detaches itself. So this task is alive only for the processing period of one VSE/POWER job and has to be
revived by the permanent dynamic partition scheduling task when required.

Any dynamic class may at the same time also be a job input class of a static partition; in this case both
static and dynamic partitions compete in processing a job of this class. In the past it has been the user's
responsibility to assign input classes to the static partitions according to job and partition profile. With the
introduction of dynamic partitions, the user is given both full freedom and responsibility to decide, which
job class should be used as a dynamic and/or a static one.

For the dynamic partitions the partition control block is allocated in system GETVIS area during dynamic
partition allocation. The device entry list has space for the number of spool devices defined in the dynamic
class table.

Enabling Dynamic Partition Scheduling

Already at VSE/POWER initialization time, the dynamic partition scheduling task is attached. The task is
equipped with a dynamic partition control block (called DPCB), introduced as a new VSE/POWER
resource to control parallel accesses to the list of dynamic class-table-pointers. Next the dynamic partition
scheduling task waits for being posted by

� PEND termination, from where on dynamic partition scheduling will be deactivated
� or by the first PLOAD DYNC command issued.

When the operator desires to activate dynamic partition scheduling, he may enter the PLOAD
DYNC,ID=x,FORCE command, which results in following action steps:

� load the VSE/AF library member 'DTR$DYNx.Z' into the VSE/POWER area using VSE/AF service,
(DYNCLASS ID=GET) and run below verification for each class:
– identify 'invalid' flags set by VSE/AF consistency checking of class characteristics
– pre-check definitions of reader, printers and punch devices to be spooled for existence and validity

of device type, and set 'invalid' flags in case of failure
� move the loaded Dynamic Class Table into the Supervisor area as active Dynamic Class Table using

VSE/AF service (DYNCLASS ID=LOAD)
� set all dynamic classes enabled using VSE/AF service, (DYNCLASS ID=LOAD) provided they were

not flagged 'invalid' during the verification process
� produce a status display of the active Dynamic Class Table on the console or as a list queue entry

78 VSE Central Functions V7R1 VSE/POWER DRM

� collect all enabled classes from the Dynamic Class Table and set up the corresponding VSE/POWER
reader queue class table pointers in the DPCB, so that the dynamic partition scheduling task may find
dispatchable jobs in these reader queue classes.

� inform the dynamic partition scheduling task to take over.

Driving Dynamic Partitions

Selection by Dynamic Partition Scheduling Task (DPST): Operating as a 'hyper'-
execution reader, looking for jobs - not only in four but in up to ten classes, the dynamic partition sched-
uling task enters the VSE/POWER Get-Next-Job function, after it has been activated by the first PLOAD
DYNC command.
When no selectable job can be found, the task returns to wait for the following events:

 � PEND termination
� Add-To-Queue of a reader job
� PVARY DYNC modification of any 'enabled' class state
� PLOAD DYNC replacement of the active Dynamic Class Table
� any partition de-allocation has been done at end-of-job time

When a job is found, the Get-Next-Job function sets it 'in execution' (DISP=*) state.

Start Partition by Dynamic Partition Scheduling Task (DPST): Using VSE/AF service
ALLOCATE (passing 'class') the dynamic partition scheduling task triggers space allocation for a partition
of the requested class type.
In case the ALLOCATE service returns:

� no more partition available in requested class
� or no more allocation space at all

the 'in execution' job is returned to the reader queue with its original disposition and possible due date,
and the corresponding class is set 'suspended' for the further Get-Next-Job attempts. Then the dynamic
partition scheduling task continues to look for more dispatchable jobs in the remaining classes using the
Get-Next-Job function.
In case the ALLOCATE service returns:

� no more partition available at all

the 'in execution' job is also returned with original disposition, but all classes are set 'suspended', and the
dynamic partition scheduling task waits for any partition de-allocation or another PLOAD/PVARY or the
PEND command.

When allocation of partition space and Supervisor control blocks has been successful, the dynamic parti-
tion scheduling task obtains VSE/AF Partition Control Block Extension (PCE) information, which offers the
SYSLOG-id of the new partition, e.g. 'Q1'. Then, by the internally issued command as e.g.

PSTART Q1,Q,A,,NPC (input class Q, default output class A (unless
SET DYNOUTCL=DYNCL), and 'No Priority Check'
versus priority of VSE/POWER partition)

the dynamic partition is activated, while the selected reader queue entry and the PCE address are passed
directly to the execution reader task of the new partition. The VSE/POWER PSTART partition processor
respects the following actions for dynamic partitions:

� obtain devices to be spooled from the corresponding class table entry
� bypass spooled device verification (already done in advance)
� anchor pointer to the VSE/AF information (PCE) into the VSE/POWER partition control block

 Chapter 3. Program Organization 79

� set up 'E' stop code for the execution reader task from the very beginning, to ensure processing of
one VSE/POWER job only

� pass the selected reader queue entry to the newly created execution reader task for e.g. partition Q1,
and identify this task as 'dynamic'

� activate the dynamic partition (as for static ones) by the existing VSE/AF service: TREADY
COND=START

� inform the waiting dynamic partition scheduling task to continue for PSTART done.

Note: This service sets the partition running and prompts Job Control to do dynamic partition prepa-
ration asynchronously, while the service itself returns to the caller immediately.

Whereupon the scheduling task returns to the Get-Next-Job function, to look for more dispatchable entries.

The Execution Reader for a Dynamic Partition: The dynamic partition preparation done by
Job Control comprises allocation of partition related areas, assignment of devices, and execution of the
'profile' procedure defined in the class table. Then, as for static partitions, Job Control issues a spooled
read request, to obtain the first statement of the job.

Thereupon the VSE/POWER execution reader task is given control. It resets the VSE/AF 'initialization-
active' state, it bypasses the Get-Next-Job call and uses the pre-selected job entry instead, from where
statements are passed to Job Control. After a possibly final '/&' has been transferred, VSE/POWER
expects Job Control to continue reading (as with static partitions), so that the VSE/POWER end-of-job
condition may be found. Being initialized with the 'E' stop code, the dynamic execution reader task enters
partition termination processing and acts as follows:

� simulate read I/O completion with the 'do-cleanup' indication set for Job Control and wait for posting of
the do-deallocation-ECB. Job Control cleanup processing for dynamic partitions comprises:
– return partition resources
– de-activate partition by VSE/AF service TSTOP COND=UNBATCH
– post VSE/POWER to do partition de-allocation

� reset spooling indication of intercepted devices
� do not terminate partition with 'EOJ' code as with static partition but de-allocate the dynamic partition

using VSE/AF service ALLOCATE (passing PCE-'PIK') and respect service return codes
� upon successful de-allocation event, the dynamic partition scheduling task is informed to resume all

'suspended' classes, because a new allocation attempt might now be successful again
� bypass existing message 1Q33I (STOPPED partition-id)
� return VSE/POWER resources and detach itself.

Note: Already dynamic partition preparation might fail due to e.g. 'devices not assignable'. Then Job
Control will also inform VSE/POWER by the do-deallocation-ECB. So the dynamic partition execution
reader task should wait for both events:

� first spooled read I/O request
 � do-deallocation-ECB posted

In the latter case, the execution reader task will act as follows:

� issue msg 1Q6FI
� return job-entry to reader queue with original disposition and possible due date
� disable corresponding dynamic class using VSE/AF service DYNCLASS ID=DISABLE
� reset spooling indication of devices
� request de-allocation of partition
� return VSE/POWER resources and detach itself

80 VSE Central Functions V7R1 VSE/POWER DRM

()

Figure 29. Flow of a Dynamic Partition

 Chapter 3. Program Organization 81

Tracking Dynamic Partition Allocation

No message is issued, when allocation of a dynamic partition fails because of maximum number of active
partitions per class reached, since this limit is user specified. Allocation is resumed, as soon as any parti-
tion of the class terminates.
One of the various versions of message 1Q3FI is issued periodically, when allocation of a dynamic parti-
tion fails due to the reasons summarized in the "recovery table" of the module header of IPW$$DP.
To provide a system tuning aid for resources consumed by allocation of dynamic partitions, several sta-
tistic counts are maintained recording all events of both successful and failing allocation. Refer to the
group of:

DYNAMIC PARTITION SCHEDULING STATISTICS

of the statistics example provided by the manual: VSE/POWER Administration and Operation.

Attributes and Restrictions

Selection of Dynamic versus Static Partitions: The current implementation yields the fol-
lowing behavior: Allocation of a dynamic partition is preferred versus passing a job to static partition for
processing. That means, when a job for e.g. class C enters the system while both a dynamic class C is
enabled and a static partition started also for class C is in waiting-for-work state, then the job will be
started in a dynamic partition of class C. This can be changed if the SET DYNAL=LOW autostart state-
ment is used. With this statement the dynamic partition scheduling task has the same dispatching priority
as a local reader task.

VSE/AF Priority Relationship: VSE/POWER starts any dynamic partition internally with the 'NPC'
operand of the PSTART command. Therefore dynamic partitions may have an arbitrary partition priority
with respect to the VSE/POWER partition. Consequently the user takes full responsibility when assigning
to a dynamic class a higher priority than to the VSE/POWER partition; that might deteriorate the perform-
ance of VSE/POWER own functions as networking, remote job entry, tape processing, and writer tasks.

VSE/AF Priority Reflection: Static partitions, once started, never loose their resources. However
dynamic partitions compete dynamically in the common resources as address space and number of active
partitions.
The VSE/AF PRTY command usually takes influence on the VSE/AF dispatching mechanism only. For
dynamic partitions, where VSE/POWER triggers partition allocation, the operator determined PRTY is also
reflected in the VSE/POWER dynamic partition scheduling mechanism:

� At every PLOAD DYNC or PVARY DYNC,ENAB event the sequence of dynamic class table pointers
taking influence on the Get-Next-Job selection algorithm is re-ordered according to the existing PRTY
sequence.

� Every priority change introduced by a new PRTY command will inform VSE/POWER by setting a PCE
PRTY-change-flag. Whenever the dynamic partition scheduling task is about to (re-) enter the Get-
Next-Job function and finds the change-flag set, the sequence of the class table pointers is re-adjusted
immediately.

A group of priority balanced dynamic classes, for example C=D=E, is not reflected as such by
VSE/POWER. Instead these classes are interpreted as an ascending priority sequence.

82 VSE Central Functions V7R1 VSE/POWER DRM

Spooling Restrictions and Defaults: The class table definition and verification means will guar-
antee, that dynamic partitions always have spooled reader, printers or punches defined; that means
VSE/POWER will

� not support 'reader only' dynamic partitions
� not support 'writer only' dynamic partitions
� not support 'MT'-type dynamic partitions

Restrictions and Extensions to Existing Commands and Functions

� PALTER PARTITION,CLASS providing a new input class is not supported for dynamic partitions - any
attempt is rejected by message 1R52I.

� PSTART PARTITION,X this command will always try to start a static partition - there is no operator
means to start a dynamic partition. Any attempt is rejected by message 1R90I.

� PDISPLAY A,PART displays the currently active reader and writer tasks of all partitions on the central
operator console, while 'PDISPLAY A,PART,partition-id' shows active tasks belonging to the specified
partition. The 'PART' selection parameter may now also be:
– 'SPART' ... to display tasks of all static partitions
– 'DPART' ... to display tasks of all dynamic partitions.

The 'partition-id' selection parameter may now also be:
– 'dclass' ... to display tasks of all dynamic partitions belonging to the dynamic class 'dclass'
– SYSLOG-id of a specific dynamic partition.

� PSTOP PARTITION operator initiated partition stop does not become effective for dynamic partitions,
since they are stopped anyhow after completion of the one job, they have been started for.

� PFLUSH PARTITION will also be supported for 'partition' = SYSLOG-id of a dynamic partition. Conse-
quently the 'PCANCEL jobname' command may also be used for jobs running in a dynamic partition.

� PGO PARTITION when prompted by message 1Q57A or 1Q58A for tape mounting while spooling to
tape, this command allows to set up continuation conditions. It will also support the SYSLOG-id of a
dynamic partition.

� PAUSING OF PARTITIONS when after system breakdown VSE/POWER has been restarted with the
SET NORUN=YES autostart option and disposition X has been assigned to jobs in execution at
system failure, then autostarted static partitions finding any job eligible to run issue message 1Q36I
and are set into VSE/AF '// PAUSE' mode, so that the processing sequence of jobs may be re-
arranged.
Dynamic partitions however will not enter the PAUSE mode under the same conditions.

� PARTITION DEPENDENT SUBSTITUTION SLI inclusion from a VSE sublibrary will replace the
leading '$$' of the membername by 'c$', in case the job executes in a dynamic partition. 'c' is the
dynamic class character, that means the first character of the SYSLOG-id of the dynamic partition.

Load, Modify, and Display the Dynamic Partition Support

Load Dynamic Class Table The dynamic class table member DTR$DYNx.Z is loaded by VSE/AF
service DYNCLASS ID=GET,CLASS=ALL,AREA=DCLTCLS into VSE/POWER virtual storage for spooled
device checking, for display and for possibly even activation in Supervisor area. If no virtual storage is
obtained, the PLOAD command is terminated with message 1QA7I. Member DTR$DYNx may vary in size
due to optionally 1-23 class table entries, each of them of constant class entry length. The class table
entries have a logical END indicator (CLEOTAB). The spooled device lists of each class entry are located
at fields (CLSRDR/CLSPRT/CLSPUN). Not used spooled devices are passed as X'000000'. Expecting a
maximum DTR$DYNx.Z, VSE/POWER reserves storage in length of 23 class table entries.

The requested storage is preceded by 23*29 bytes, so that in each class one error byte is provided for
every reader/printer/punch device (1+14+14). PLOAD DYNC spooled device checking sets these error
bytes and additional summary bits in the corresponding class table entry. This technique allows to display

 Chapter 3. Program Organization 83

a VERIFY report by a totally different task (PDISPLAY DYNC called internally), which is even able to
produce a summarized error report.

Since PLOAD DYNC,VERIFY may also be processed by an internal cmd processor task (invoked by
SAS-CTL) and since the requested virt. storage is handed over to other tasks for a display and possibly
subsequent release, the permanent cmd processor is always made the owner. The storage is obtained
with WAIT=NO option, not to block up the permanent cmd processor (might be needed to clear such a
situation).

When all classes are specified correctly, processing continues depending on the option specified in the
PLOAD command.

If VERIFY, then the following is done:

1. set VERIFY request (DCL1VER) in DCLT header area for 1Q6BI3 DYNAMIC CLASS TABLE VERI-
FIED

2. display of verified DCLT by internal call of the PDISPLAY DYNC command.

If (COND and any-class-invalid) then the following is done:

1. set COND request with error (DCL1CER)
2. display of verified DCLT by internal call of the PDISPLAY DYNC command.

If COND request with all classes valid or the FORCE request with even invalid classes the following is
done:

1. Lock DPCB (and keep lock until DCLT is activated and enabled, since PDISPLAY DYNC might be
running at the same time, or the DPST or $$XRE task might operate on the class table pointers in
parallel)

2. Set DPC1CHAN to warn DPST, that enabled classes might have changed
3. make verified DCLT to active DCLT by following request:

 DYNCLASS ID=LOAD,AREA=()

with AREA pointing to DCLT within DCLT area
4. If (RF)-return-code > 0 then handle load failure
5. save reg. 1 returned address of active DCLT in DPCBACT
6. enable all valid dynamic classes by setting up the PVARY DYNC,ENABLE,ALL command in DCLT

header area and invoke internal command processor by

 IPW$ICP REQ=POWER,PASS=NOLOCK

requesting not to lock/unlock the DPCB, which is owned by the calling task itself
7. wait for $$CV command completion using IPW$WFC DPCBECBL
8. set DCL1CFOK for 1QB6I ...LOADED SUCCESSFULLY
9. Loop over all classes of active DCLT and check CLERFLG1:

a. If any class invalid
then set DCL1FER for 1QB6I1 ...LOADED - WITH INVALID CLASSES, reset DCL1CFOK again,
and leave loop.

10. End loop over all classes
11. Unlock DPCB to free permanent command processor (and even temporary) as soon as possible, and

trigger a display of the active DCLT by internal call of the PDISPLAY DYNC command.

84 VSE Central Functions V7R1 VSE/POWER DRM

VERIFY SPOOLED DEVICES, ALL CLASSES,

D C LT A R E A *RESERVE DYN. CLASS TABLE AREA

LOAD 'DTR$DYNC.Z ' TO DCLT AREA

by DYNCLASS ID=GET

SETTING CORRESPONDING ERROR BYTES

IF ('COND' & ANY CLASS ERROR)

THEN SET 'VERIFY'

ERROR BYTES FOR

SPOOLED DEVICES

CLASS TABLE

LOAD CLASS TABLE INTO SUPVR

BY DYNCLASS ID=LOAD

INTERNAL COMMAND CALL FOR

PVARY DYNC, ENAB, ALL

R E TU R N D C LT A R E A *

SPOOLED DEVICES

C LA S S TAB L E +

VERIFIED

DISPLAY

AWAIT CMD COMPLETION

UNLOCK DPCB

INTERNAL COMMAND CALL FOR

DISPLAY

DYN. CLASS

TABLE

R E TU R N D C LT A R E A *

LOCK DPCB

COND / F O R C E VERIFY

in POWER par t . GETVIS

DYNAMIC

CLASS

TABLE

ACTIVE

ACTIVE

REQUEST PER CLASS

BY DYNCLASS ID=ENABLE

PLOAD DYNC,COND/FORCE/VERIFY ,LST

PDISPLAY DYNC,ALL ,LST

TERMINATE
PDISPLAY CMD

TERMINATE
PDISPLAY CMD

TERMINATE
PLOAD CMD

Figure 30. Logic Flow of PLOAD DYNC Command

 Chapter 3. Program Organization 85

Modify Dynamic Classes in a Running System: Whenever dynamic classes have once been
enabled, they may be de-activated again by the PVARY DYNC,DISAB command (using VSE/AF service
DYNCLASS ID=DISABLE). The dynamic partition scheduling task is informed to reduce its job searching
algorithm by the just disabled classes. Any job still running in a dynamic partition belonging to a class
disabled in between, is allowed to process till end-of-job.

Whenever dynamic classes have once been disabled or have been loaded with the 'initially-disable' spec-
ification, they may be enabled again by the PVARY DYNC,ENAB command using VSE/AF service
(DYNCLASS ID=ENABLE). The dynamic partition scheduling task is informed to extend its job searching
algorithm by the just enabled class(es).

Displaying Characteristics of Dynamic Classes: To get information about predefined fea-
tures of various classes contained in the currently active Dynamic Class Table and to keep track of their
enabled/disabled/invalid state at any time when desired, the PDISPLAY DYNC command is used. Charac-
teristics of dynamic classes may be displayed on either console or may be collected in a list queue entry
instead. The following selection parameters are offered for display:

 � all classes
� enabled or disabled or invalid classes
� a selected class

Abnormal Termination with Dynamic Partitions

VSE/POWER Abnormal Termination: This condition is handled in the AB-exit of VSE/POWER.
For all spooled partitions the following actions are taken:

1. set the do-cleanup indication for job control
2. cancel partition with code 'due to subsystem request'
3. force still outstanding I/O request complete
4. remove spooling indication of devices and unassign them
5. wait for cleanup completion (do-deallocation-ECB to be posted)
6. if dynamic partition then de-allocate the dynamic partition using VSE/AF service (ALLOCATE passing

PCE-'PIK').

I/O Errors on Queue or Data File: For static and dynamic partitions the existing support handles

� READ/WRITE I/O error on Queue File, where the VSE/POWER V.2.3 repair methods make such an
event transparent to the task suffering the error (see I/O error handler tables in IPW$$TR).

� WRITE I/O error on Data File, where the output 'in creation' is lost and a new output entry is started
by segmentation.

Read I/O errors on Data File result in message 1Q6JI with job entry kept in hold disposition. Then the
task terminator performs step 1)-5) as in the AB-exit. Finally dynamic partitions are de-allocated, while
static partitions are dropped from VSE/POWER spooling control.

Failure of Dynamic Partition Support: If the interplay of VSE/POWER and VSE/AF Supervisor
by internal services results in unexpected, illogical situations, VSE/POWER will state that by messages
1QB5I and 1QZ0I RC=0022 followed by an internal IDUMP requested to the DUMP sublibrary.
VSE/POWER will ignore the failing dynamic partition request, and continue processing.

86 VSE Central Functions V7R1 VSE/POWER DRM

Interplay of Dynamic Partition Scheduling Functions

The following rules should be kept in mind:

1. PLOAD DYNC command establishes an active DCLT, calls PVARY DYNC,ENABLE to enable the
classes.

2. PVARY DYNC,ENABLE enables classes in active DCLT and posts TCEB of DPST with DPC1ENDI
indication set.
Hence DPST sets up a new $WFM list of class table pointers for classes enabled in active DCLT and
copies pointer list to suspended-ptr-area. DPST uses $WFM list for $GQS searching of next job and, if
no job found, for $WFM waiting, to get informed about new job added to a class.
When any partition allocation fails, the accessed class(es) must be suspended, namely by:
a. - remove class ptr(s) from $WFM list, so that $GQS and $WFM functions only work for still

remaining classes
b. - flag class(es) (...making 'class' lowercase) in suspended-ptr-area, to be able and keep track of

originally enabled classes.
3. When $$XRE does partition de-allocation and any class is found suspended in susp.-ptr-area, then

TCEB of DPST is posted with DPC1RESU indication set.
Hence DPST resumes all classes in suspended state (...making 'class' uppercase again), and copies
original set of enabled classes from susp.-ptr-area to $WFM list.
Advantage of keeping suspended-ptr-area:
a. - after de-allocation only CONDITIONAL re-construction of $WFM list
b. - fast re-construction of original $WFM list
c. - tracking possibility of suspended/resumed classes

4. Alteration of VSE/PRTY of dynamic classes informs VSE/POWER by PCE flag 'PCEPRTYC' to adjust
both its $WFM ptr. list and its susp.-ptr-area list, so that $GQS serves highest prty class first; DPST -
whenever about to call $GQS - respects 'PCEPRTYC' setting.

5. PVARY DYNC,DISABLE disables classes in active DCLT and informs (...as ENABLE) DPST, by
posting its TCEB with DPC1ENDI indication set. Thereupon DPST refreshes all its class table pointers.

6. Locking of DPCB is used to control parallel access to:
a. - active DCLT (DPST, PLOAD, PVARY, PDISPLAY)
b. - suspended-ptr-area (DPST, $$XR)

 Chapter 3. Program Organization 87

CAT

CADPCB

TADPST

DPST TCB

'TCB DPST'

POWER $RSW

ACTIVE DCLT

C

D

E

in SUPVR

in SYSTEM GETVIS

TCEB

DYN. PART. CTL. BLOCK

POWER $RSW

DPCATCEB

DPCACLAS

DPCBACT

'DPCB'

TCCT

L is t o f c l ass t ab le p r in t e rs
$W FM

TCB OF EXEC. PROCESSORS (XR, XW)

'TCB E'

TCR6

TCCMRG

TCF8. TCF8DY

POWER $RSW POWPCB

IJBPCEPT

PART. COMREG

in SYSTEM GETVIS

fo r par t . 'E 5 '

PCEFLAG. PCEDYNP

PCEPIK

PCECLASS

PART. PCE

PDPCE

POWER PART. CTL. BLOCK

in SYSTEM GETVIS

PDCM

CLAPCB

DYNAMIC CLASS PCB

ACTIVE COUNT

CPCBCLPT

COPY OF ACTIVE CLASS 'E '
TABLE ENTRY

Figure 31. Control Block Relationship for Dynamic Partitions

88 VSE Central Functions V7R1 VSE/POWER DRM

The Spooling Process

Queue File Organization

The queue file consists of one or more tracks or FBA blocks. Logically, the queue file is organized in
queue record blocks. The queue record block size depends on the device being used. The last queue
record block is reserved for the master record. If the master record is larger than one queue record block,
it occupies the last n queue record blocks. Each of the normal queue record blocks contains compart-
ments. The compartment size is 384 bytes. A queue record block contains 32 compartments with each
compartment containing one queue record of 368 bytes. If the queue file resides on a FBA device, the
queue record block comprises 24 FBA blocks. The queue record blocks are addressed by their relative
block number starting from 0.

 ┌─────────┬────────┬───────────┬──────────┐
│ Device │ Block │ Number of │ Blocks/ │
│ Type │ size │ Queue rec │ track │

 ├─────────┼────────┼───────────┼──────────┤
 │ 338� │ 12288 │ 32 │ 3 │
 │ 339� │ 12288 │ 32 │ 3 │
 │(as 338�)│ │ │ │
 │ 339� │ 12288 │ 32 │ 4 │

│ FBA │ 12288 │ 32 │ ─ │
 └─────────┴────────┴───────────┴──────────┘

Figure 32. Device Type - Queue Record Block Relationship

Four types of records are physically present on the queue file:

A master record resides on the last "n" queue record blocks. The master record is the main control
record on spool and contains the following information:

� Dispatchable class table
Contains all queue entries "ready to run" with disposition D or K.

� Non-dispatchable class table
This table holds all queue entries with disposition H, L or any temporary dispo-
sition A, X or Y.

� Node attached table
� Shared spooling control information
� Control fields which must be retained between the termination and initialization

of VSE/POWER.
� Defect queue record block map

This map consists of one bit for each of the 3125 queue record blocks to
house a maximum of 100,000 queue records. The bit is on, if the queue record
block is no longer accessible due to an I/O error previously occurred.

� Refresh table; the size of the refresh tab depends on the maximum number of
queue records (currently 100,000) and the total number of sharing systems
allowed in VSE/POWER. Currently this number is 9. The refresh table con-
tains a flag for each block and each sharing system indicating if a 'refresh' of
the queue record block is necessary before referencing any queue record con-
tained in this block. In a non-shared environment, the refresh table is not used
but present. A 2-byte field is used for each queue record block, whereby each
of the last 9 bits of the 2-bytes represents a SYSID.

The master record is part of the Disk Management Block (DMB).

Queue records queue identifier F, R, L, P or B

 Chapter 3. Program Organization 89

A dummy record queue identifier D. Indicates the logical end of the queue records.

An internal record queue identifier I (physically the first queue record in the first queue record block).
Contains the relative queue record block number of the master record in its first
four bytes.

Logically, by means of pointers (relative queue record number), the queue records are either a member of
the free queue record chain or one of the various class chains. The free queue record chain is shown in
Figure 33.

Records in the free queue record chain (queue identifier F) are chained by the next-in-set pointer. The
start of this chain is kept in the master record.

 Master Record
 ┌───────┐ Queue Record Queue Record Queue Record
 │ │ ┌─────�┌──────┐ ┌──�┌──────┐ ┌──�┌──────┐

│ │ │ │ │ │ │ │ │ │ │
 ├───────┤ │ │ │ │ │ │ � │ │

│MRQFRNO├───┘ │ │ │ │ │ � │ │
 ├───────┤ │ │ │ │ │ │ │ │
 │ │ ├──────┤ │ ├──────┤ │ ├──────┤

│ │ │ QRQN ├───┘ │ QRQN ├───┘ │ │
└───────┘ └──────┘ └──────┘ └──────┘

Figure 33. Free Queue Record Chain

For each queue entry of a class chain, there exists a queue record, which provides forward and backward
pointers in the class chain (see Figure 34 on page 91). The queue record addressing format consists of
a 4-byte field containing the relative queue record number.

One or more DBLK groups are associated with the queue entry. The various DBLK groups are linked
together by a

1. forward chain via the Spool Environment Record (SER), that heads the last DBLK of each DBLK
group

2. backward chain via the Spool Environment Header (SEH) record, that heads the first DBLK of each
DBLK group

The queue record contains three control fields:

� Relative DBLK number of the first DBLK in the first DBLK group.
� Relative DBLK number of the first DBLK in the last DBLK group.
� Number of allocated DBLK groups.

90 VSE Central Functions V7R1 VSE/POWER DRM

 ┌────────�┌────────────────┐
 │ │Queue Record │
 │ └──┬─────────────┘
 │ │ �
│ Queue Entry

 │ : � │ ┌─────────�┌──────────────────────┐ :
│ : ┌──────────┴─────┐ │ ┌───�│ │ :

class : │Queue Record o ┼─────┘ │ │ DBLK─GROUP │ :
table in : └──┬───────────┼─┘ │ ┌──┼─o │ :
DMB : │ � │ │ │ └──────────────────────┘
┌─┼─────┐ : │ │ │ │ └─�┌──────────────────────┐ :
│ │ │ : │ │ │ └────┼─o │ :
│ │ │ : │ │ │ ┌───�│ DBLK─GROUP │ :
├─┼─┬───┤ : │ │ │ │ ┌──┼─o │ :
│ o │ o │ : │ │ │ │ │ └──────────────────────┘ :
├───┴─┼─┤ : │ │ │ │ └─�┌──────────────────────┐ :
│ │ │ : │ │ │ └────┼─o │ :
│ │ │ : │ │ │ ┌───�│ DBLK─GROUP │ :
└─────┼─┘ : │ │ │ │ ┌──┼─o │ :
 │ : │ │ │ │ │ └──────────────────────┘ :

│ : │ │ │ │ └─�┌──────────────────────┐ :
 │ : │ │ │ └────┼─o │ :
 │ : │ │ └─────────────────�│ DBLK─GROUP │ :

│ : │ │ │ │ :
 │ : │ │ └──────────────────────┘ :
 │ :..:
 │ � │
 └────�┌──────────┴─────┐
 │Queue Record │
 └────────────────┘

Figure 34. Class Chain and Queue Entry Structure

For more details on the logic structure of DLBK groups chained to a queue entry refer to VSE/POWER
Administration and Operation, Appendix B, 'Analyzing dumps and traces'.

The master record and the queue record currently processed by a task are contained in storage. The
master record is part of the Disk Management Block (DMB) and resides in fixed storage while the queue
record resides in virtual storage.

 Chapter 3. Program Organization 91

In-Storage Queue Principles

Non-Shared Operation: At VSE/POWER start up time, all queue record blocks are read in and
placed in VIO or partition GETVIS space -- building the storage copy of the queue file. Once the queue
file is placed in storage, the following rules apply:

� All queue record read requests (via IPW$GQR macro) are fulfilled using the storage copy of the queue
file.

� All class chain changes must be recorded via the IPW$MQR macro instruction; the update is only
made in the storage copy of the queue file.

� All queue record status or attribute, such as disposition, changes must be recorded to the queue file
disk copy, too, via the IPW$WQR macro instruction. This is because such changes must be visible
after a breakdown of VSE/POWER.

At VSE/POWER termination time, all queue record blocks as well as the master record are written back to
disk, thereby committing all modifications made to queue records in the storage copy of the queue file.

When queue file recovery has to be invoked, which is done after all queue record blocks are read in, it
examines each queue record using the sequential organization of the queue file and re-builds the various
class chains and free queue record chain, thereby respecting the creation time stamp to reconstruct the
class chain in the same sequence as before the breakdown. Queue file recovery uses the get queue
record (IPW$GQR) service routine and queue management functions, thus ensuring that abnormal termi-
nation of the recovery process does not destroy the integrity of the queue file on disk. Only for the sake
of a well arranged restart all queue record blocks are written back to disk at the end of queue file
recovery.

Shared Operation: Each system maintains its own in-storage copy of the queue file. By reading
and writing periodically from/to the shared queue file on disk, each system keeps an up-to-date copy of
the queue file in its storage.

An overview of the shared spooling processing shows that there are two basic stages during a processing
cycle. The first stage, called T1, begins with a lock of the queue file to ensure exclusive control of the
queue. Next the master record is read. Then, using the refresh table in the master record, any queue
record blocks changed by other systems are read. Once a system has control of the queue file, it is free
to update it until the timer interval (T1) expires. During this stage, the system can read/write from/to the
queue file without losing its ownership. When the timer interval ends, the timer task ensures that all
changed queue record blocks are written back to disk, then unlocks the queue file, enabling the next
system to start its T1 interval. The second stage is a dormant period during which a system makes no
attempt to update the queue file and thereby allows the other system time to complete their active phase.

VSE/POWER provides a mechanism analogous to page-out. When a change is made to a queue record,
the queue record block is marked as changed, so that it will be automatically written back to disk when the
system finishes its T1 interval. Any change that is made to a queue record block is propagated to all
other systems by means of the refresh flags.

│ │ .. │ │ │ │ │ │ .. │ │
└─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘

T1f T1n─1 T1n T1n+1 T1l

Shared operation is characterized by T1 intervals. During this time the queue file is locked by the own
system thereby preventing that another system updates the queue file.

92 VSE Central Functions V7R1 VSE/POWER DRM

� During the first T1(f) interval, the queue file is read into VIO or partition GETVIS space as in non-
shared case.

� All follow on T1 intervals can be seen as a timely reduction of a non-shared operation, with a queue
file refresh at the beginning of T1 and a modification commitment on disk at the end of T1. This is
achieved by the refresh table, contained in the master record. The "write queue record" (IPW$WQR)
service routine sets the refresh flags for all possible systems (SYSID's) in the refresh table associated
with the queue record block being written. The "modify queue record" (IPW$MQR) service routine
sets the "modified" flag, which is identical to the refresh flag for the own SYSID, in the refresh table
when a queue record block is updated in the storage copy only. The "modify" flags are then examined
at the end of the T1 interval and all queue record blocks flagged as such are written back to disk.
Then the "refresh" flags for all other systems (SYSIDs) are set.

� During the last T1(l) interval, all modified queue record blocks are written back to disk and finally the
master record is updated and written to disk by the timer task itself when the last T1 interval is indi-
cated; this is done by setting the immediate termination code "S" in the TCB of the timer task.

If the VSE Access Control function is activated (security SEC=YES) during shared operation, then the
scheduling of RDR job entries for the execution RDR task (IPW$NQS) can depend on the security char-
acteristics of the job. If the job has inherited propagated security authorization from a parent job (i.e.
"authenticated") and no explicit SYSID is indicated in the * $$ JOB card for execution, then the job will be
selected to execute on that shared system which has a matching security zone (SECNODE) as the job. If
no such CPU exists, then any CPU is allowed to execute the job.

Benefits in Case of Queue File I/O Errors

Read I/O errors: Since all queue record blocks are read in at initialization time, non-readable queue
record blocks are flagged “bad” both in VIO or partition GETVIS space for later recovery and in the defect
queue record block map in the master record. According to this flag all further read/write attempts are
bypassed in order to isolate the erroneous disk area. The queue records of the “bad” queue record
block(s) are lost, but queue file recovery rebuilds the class chains from the remaining queue record blocks
- thus continuing with the subset of the queue file as long as desired.

Any master record read error results in a “master record reconstruction” attempt from generation values
followed by queue file recovery in order to rebuild the various class chains and the free queue record
chain. The operation may then continue at the loss of the free DBLK group subchains.

Write I/O errors: Whenever a queue record block or master record write fails, the most up-to-date copy
of the queue file resides in storage (VIO or partition GETVIS space). That enables VSE/POWER to
attempt a repair action by formatting the queue file (CKD only) followed by writing the storage copy back
to disk. However, if the formatting or copying back to disk fails, VSE/POWER continues to operate with
the in-storage copy and the data file on disk. The operator is then asked for soon POFFLOAD backup of
the entire queue file. A cold start is required at next start up, since the queue file on disk no longer
matches with the data file due to the in-storage operation.

 Chapter 3. Program Organization 93

Data File Organization

The space available on the data file is arranged in DBLK groups. A DBLK group is the smallest unit that
can be allocated to a VSE/POWER job. Each DBLK group contains an integer number of DBLKs. The
smallest DBLK group consists of one DBLK. The number of DBLKs comprising one DBLK group is defined
at VSE/POWER generation time by means of the DBLKGP parameter. A DBLK group can cross track,
cylinder or even extent boundaries. Logically, the entire data file is seen as a contiguous space, divided
into DBLKs, whereby a certain number of DBLKs is grouped together and referred to as DBLK group.

Each DBLK is addressed by the relative DBLK number; the 31 bits of the relative DBLK number will allow
a maximum of 2,147,483,647 DBLKs. The first DBLK has the relative DBLK number 0. The translation of
the relative DBLK number to specific device geometries is performed using device specific information
contained in the module control blocks associated with the data file.

Up to 32 data file extents can be specified, whereby all extents must reside on devices of the same type.

Each physical record (DBLK) in the data file contains one or more logical records. Each logical record
represents a unique record of the user program that is being spooled. Figure 35 shows the layout of a
physical record:

┌────┬────┬────┬─────┬─────┬───────┬──────────┬───────────//────────────┐
│ RL │ GP │ CC │ GP2 │ GP3 │ EL(R) │ data � │ binary zeros │
├────┴────┴────┴─────┴─────┴───────┴──────────┼───────────//────────────┤
│ 2 1 1 1 1 2 n │ │
│ │ │
│�─────────── logical record ────────────────�│ │
│�─────────────────────── logical data area ───────────────────────────�│

RL length of the logical record (including 8-bytes prefix)

GP general purpose byte (see also sections “Logical Reader (IPW$$LR)”
and “Logical Data Record Area (LDA)”)

CC command code associated with the user channel program

GP2 general purpose byte 2

GP3 general purpose byte 3

EL(R) extended record residual length
(for the first record extension, is equal to the total record length)

* trailing blanks are suppressed

Figure 35. Data Record

Job Header, Job Trailer, and Data Set Header Records: Each queue entry, either job, list,
or punch output, is preceded by a job header record and followed by a job trailer record. Each output
queue entry (list or punch) has in addition a data set header record following the job header record. Data
set headers may be present in a job queue entry to signify a change in record characteristics.

The job header, job trailer and data set header contain information which is required for job routing, exe-
cution, printing, punching and accounting.

Basic Header/Trailer Format: The basic organization of the job header or job trailer records is shown in
Figure 36.

94 VSE Central Functions V7R1 VSE/POWER DRM

 ┌──────────┐
│ Length │ Length of Control Record (two bytes)

 ├──────────┤
│ Flag │ Flag byte (one byte)

 ├──────────┤
│ Seq. │ Sequence count (one byte)

 ├──────────┤
 │ │

/ / General Section (always present)
 │ │
 ├──────────┤
 │ │

/ / First Subsystem Section (optional)
 │ │
 ├──────────┤

/ / Second Subsystem Section (optional)
 ├──────────┤
 │ │

/ / Last Subsystem Section (optional)
 │ │
 └──────────┘

Figure 36. Job Header, Data Set Header and Job Trailer Format

Job Header and Job Trailer: The job header record contains four types of information relating to the job
as a whole:

� Identification (job name, job number, originator's name)

� Routing Control (execution node name, default print/punch node and remote names).

� Execution Control (job class, priority)

� Accounting Information (account number)

The job trailer contains accounting information dealing with the actual execution of the job (actual print line
count, execution time, etc.).

The job header and job trailer records are built when a job first enters the system, or are already with the
job if it is received from the network. The job header record and job trailer record may be updated with
certain information by all systems on which, or through which, the job passes in the course of its trans-
mission. Both job header and job trailer records accompany the job throughout its processing whether or
not the job is processed locally or transmitted to another node.
These two records are built by the logical reader (IPW$$LR) when a job is first read in a VSE/POWER
system. The job header record is constructed from the information in the * $$ JOB statement, if present,
otherwise the VSE/POWER defaults are taken.

A job header record is also constructed, if a job is received via the network (IPW$$NR2) and the job is
destined for the local reader queue (the receiving node is the final destination) and contains a * $$ JOB
statement. The newly built job header record contains just few information out of the received job header
record (for example origin node and userid). Most of the information is retrieved out of the * $$ JOB state-
ment. If an operand is not specified in the * $$ JOB statement, VSE/POWER defaults values are used.

For more information concerning the fields in these two records, please refer to “Network Job Header
Record (JHR)” on page 559.

Data Set Header: For each output created on a VSE/POWER system a data set header record is built
from the information in the * $$ LST/PUN statement, if present, else from the defaults in the job header
supplemented by the VSE/POWER defaults.

 Chapter 3. Program Organization 95

Every data set, list or punch, must be preceded by a data set header record. There may be multiple data
set header records within the bounds of a job header and job trailer record.

Note: VSE/POWER does not create queue entries consisting of more than one data set, but they may be
received from other systems within a network.

The data set header record describes the characteristics of the output and what to do with it. It contains
three types of information:

� Identification (data set number)

� Routing Control (destination node name and remote)

� Data set characteristics (record format, record length, output class, printer setup information).

Queue File and Data File Processing

The queue and data file are maintained by the queue and data function routines:

� Reserve queue record (IPW$$RQ)
� Add queue entry (IPW$$AQ)
� Delete queue entry (IPW$$DQ)
� Free queue entry (IPW$$FQ)
� Put data record (IPW$$PD)
� Queue management services (IPW$$SQ & IPW$$Q1)
� Data management services (IPW$$DS)

Retrieval on the queue and data files is performed by the function routines:

� Get next queue entry (IPW$$NQ)
� Get data record (IPW$$GD)

Reserve Queue Record Function (IPW$$RQ): The reserve queue record routine is invoked
via macro IPW$RQS. The routine locks the DMB for the duration of the processing and obtains then the
first queue record from the free queue record chain, addressed by the master record and allocates this
queue record to the calling task. If no free queue record exists, message 1QF4I is issued and the task
then waits until a free queue record becomes available, unless the 'no wait' flag is set in which case
immediate return is made to the caller with appropriate return code set. Otherwise a test is made to
determine if the number of allocated queue records exceeds the value, defined by the SPLIM parameter. If
so, message 1QF0I is issued if the message has not been issued for at least 60 seconds.

If a free queue record was available, a DBLK group is allocated to the queue record by means of the
IPW$IQS REQ=ALLOCGP macro instruction. On return, the assigned DBLK number is stored in the
queue record and the number of used DBLK groups is set to one. If the DBLK group allocation routine
indicates that no free DBLK group is available (only done when the 'no wait' flag is set), the already allo-
cated queue record is returned to the pool of free queue records, the various counters are updated
accordingly, the DMB is unlocked and return is made to the caller with an appropriate return code. Finally,
the queue record is written back to disk by means of the IPW$WQR macro instruction.

Add Queue Entry Function (IPW$$AQ): The add queue entry function is invoked via the
IPW$AQS macro instruction. The queue entry, addressed by the calling task, is added to the appropriate
class chain. If the disposition of the queue entry is D or K, the queue entry is added into the dispatchable
class chain; if the disposition is L or H, or the queue entry is marked appendable (disposition A), or held
due to output processing failed (disposition Y) or abended (disposition X), the queue entry is added into
the non-dispatchable class chain. The queueing is performed based on priority whereby output queue
entries with the same forms identifier are grouped together. If queue file recovery is active, the queueing

96 VSE Central Functions V7R1 VSE/POWER DRM

is performed in time stamp sequence (the time stamp is saved in the queue record when the queue entry
is added to the class chain). The position of the queue entry in the class chain is determined by stepping
through the class chain in reverse sequence starting from the tail. If the 'keep' option was specified, the
queue entry, which is already added in one of the various class chains, is only written back to disk by
means of the IPW$WQR macro instruction.

If the execution node for a job (that is the system upon which the job is to be executed) or the destination
node for list or punch output is not the local node, the job or output is placed in the transmission queue
(XMT). This queue consists of two entries: One for jobs and one for output. The queueing is performed on
a priority base only.

The output-available flag is set in the line control block or logical unit control block (LUCB) when the
output is destined for a remote workstation that is currently logged on (terminal or logical unit).

When a job or output is destined for processing by a specific SYSID in a shared-spooling environment, the
SYSID class table is updated depending upon the specification of the class and SYSID.

If a job or output is destined for another node in the network, a check is made if a connection exists to the
prime route node. If so the first inactive transmitter found is posted. If no such connection exists, a check
is made if a connection exists to the alternate route node. If so, the first inactive transmitter found is
posted.

If the destination of the job or output is unknown, the local operator, and the originator if Notify was speci-
fied, are informed via message 1RA1I and the job or output is put in hold status in the XMT queue.

If the output is destined for an external device (that means the external device is eligible to process the
output queue entry), and the external device is waiting for work, an output arrived signal control record is
built and added at the tail of the order queue anchored to the external device control block (EDCB) associ-
ated with the device. The device service task is then posted to forward the signal.

When running in a shared spooling environment and a 'to' user id is specified for the queue entry being
added, the QCA is scanned and each 'waiting for work' slot, which fulfills the criteria (matching destination,
class, queue type, and system identifier) is posted.

To process the jobs with time event scheduling information, the following is done:

1. Before adding a dispatchable job with time event scheduling information which is destined for the local
reader queue, the next due date is calculated by calling the module IPW$$TQ. The interface macro
IPW$ITQ with the ADD operand is used for this purpose. When returning from IPW$$TQ the entry is
processed according to the information in the queue record:
a. if QRDG0W = OFF, the due date has expired and the queue entry is queued as today (according

to its class and priority).
b. if QRDG0W = ON, the due date has not yet expired and the queue entry is queued as the last

queue entry of the dispatchable class chain.
2. If the due date of an already queued job (of the 'wait for run' subqueue) has expired, IPW$$AQ gets

called from the TES task (IPW$$TV). In this case (TCTI="YTES") the above described call to
IPW$$TQ is not done, because the TES task itself decided already, if the job is now eligible for imme-
diate scheduling or not. A new jobnumber is assigned, if the job runs more than once, recovery is not
running and the job already executed once. The job is queued as today (according to its class and
priority).

3. Avoiding posting of a shared system, if the entry is chained into the 'wait for run' subqueue.
4. Avoiding posting of class table, if the entry is chained into the 'wait for run' subqueue.

 Chapter 3. Program Organization 97

Delete Queue Entry Function (IPW$$DQ): The function routine is invoked via macro
IPW$DQS. The routine unchains the queue entry, identified by the queue record contained in the queue
record space addressed by the requesting task's TCB, from its class chain. If purge of the queue entry
was requested (QRDI=P), the queue record disposition is forced to D. The disposition attribute of the
queue record is then examined. If the disposition is keep "K", it is reset to leave "L" and the queue entry is
added to the non-dispatchable class chain by means of the IPW$AQS macro instruction. If the disposition
is not kept the queue entry is marked as incomplete. This causes that a subsequent IPW$FQS macro call
frees the queue entry.

If the 'hold' option was specified, the queue entry is not unchained from its class chain; instead the queue
record is written back to disk by means of the IPW$WQR macro instruction with the original disposition.

To process jobs with time event scheduling information, the following is done:

1. If the job is in the 'wait for run' subqueue, it is removed from the 'wait for run' subqueue by branching
to module IPW$$TQ using the interface macro IPW$ITQ with the option DEL.

2. If the job has been executed in a partition, the macros IPW$DQS and IPW$FQS are issued by the
caller (IPW$$XRE) in this sequence to perform the deleting of the queue entry (if disposition D) or the
requeuing of the queue entry (if disposition K) into the non-dispatchable class chain. This requeuing is
done in IPW$$DQ which sets the disposition K to L and issues IPW$AQS (nested call of IPW$$QM !).
Therefore if a job with a due date should run more than once, the disposition is not changed from K to
L and the job is added to the dispatchable class chain once more. Such a job is not freed later on by
IPW$FQS.

3. If the LOCATE request has been issued by the TES task, the indication 'do not delete' is set, which is
used by the recovery module IPW$$RY to decide whether the entry should be deleted or added again
to the queue file after an abnormal termination of VSE/POWER occurred during the delete process of
this queue entry.

Free Queue Entry Function (IPW$$FQ): The function routine is called via macro IPW$FQS.
The queue entry represented by the queue record contained in the calling tasks's queue record area is to
be freed:

� if the queue record is not yet in the DELetion queue, it is added to the DELetion queue by IPW$WQR.
When no more browser is active for this queue entry, the init./termination task is posted for 'final
freeing' of the queue entry by another call of IPW$FQS.

� if the queue record is already in the DELetion queue and no more browser is found active, the queue
record is written (IPW$WQR) free and added to the free queue record chain. All DBLK groups
belonging to the queue entry are returned to the free DBLK group subchains by means of the
IPW$IQS REQ=FREEGPS,LOCK=TEMP request, which tolerates temporary UNLOCK/LOCK of the
DMB as long as SER-DBLK's are written free, because the calling tasks are well known.

If the queue entry is destined for the local reader queue, the disposition is 'K' and time event scheduling
information for more than one run exists, the queue entry is not freed.

For details see “Access to Active Queue Entry” on page 101.

Put Data Record Function (IPW$$PD): The function routine is invoked via macro IPW$PDR.
The routine moves a logical record into the data block (DBLK), also referred to as logical data area. If
necessary, the trailing blanks of the logical record are suppressed and the shortened record is moved to
the DBLK, if there is enough space. The page, line and record counts are updated accordingly. The
spool environment block (SPB), containing among others the current printer set up, is updated when the
just spooled record is a DSHR, select TRC or execute order record.

If the output remainder is not large enough to contain this logical record, the last (previous) record in the
DBLK is made an 'end of block' record and the DBLK is written to the data file as a physical record. If the

98 VSE Central Functions V7R1 VSE/POWER DRM

logical data record is a 'end of data' record, the DBLK is also written to the data file. After the DBLK is
written, the current DBLK number is incremented to address the next DBLK in the group. If, however, the
current DBLK is the last DBLK in the current group, the Spool Environment Record (SER) is completed
with the various account values, such as page, line and record counts, and information extracted from the
SPB and the DBLK is written to the data file. If the current DBLK is the first DBLK in a group, the Spool
Environment Header (SEH) record is completed with the same spooling account values as recorded in the
last SER record. The SER or SEH is used to facilitate restarting of output queue entries. A new DBLK
group is then allocated by means of the IPW$IQS REQ=ALLOCGP macro instruction and the number of
allocated DBLK groups is updated accordingly.

If the data record is larger than the DBLK size - 8 bytes, the record is split into record extensions that fit in
the data block. These records are called extended records.

For each queue entry the current position is counted in new fields QRCCNR, QRCCLC and QRCCPG to
prepare record and page counters used by “Get In Creation Queue Entry” on page 102.

Queue Management Services (IPW$$Q1): Queue management services consist of the fol-
lowing set of routines:

� DBLK group allocation
� DBLK group deallocation
� Queue file formatting

DBLK Group Allocation: A new DBLK group is allocated by means of the IPW$IQS REQ=ALLOCGP
macro instruction. The service routine examines the free DBLK group subchains for a free DBLK group. If
a DBLK group was found, the 'head' chain pointer in the master record is updated to address the next free
DBLK group, the number of free DBLK groups is decreased and the master record is written back. The
SER DBLK of the acquired group is also written to the data file marking the group no longer 'free' but used
and owned by the 'queue record number' of the caller's queue entry. The DBLK group is allocated from
the subchain containing the most free DBLK groups. Finally, a test is made to determine if the number of
allocated DBLK groups exceeds the value defined by the SPLIM parameter. If so, message 1QF0I is
issued, if the message has not been issued for at least 60 seconds.

The DMB is locked by means of the IPW$RSR macro instruction during the processing of the allocation
function. If no free DBLK group is found, the function issues message 1Q38A NO DASD SPACE AVAIL-
ABLE FOR task, cuu and releases the DMB and waits. Execution writer tasks use IPW$WFM for the Data
File ECB and the SEGMENT/CANCEL ECB, for which TCVEB is reused. Other tasks use also IPW$WFM,
although the ECB list contains only the Data File ECB.

DBLK Group Deallocation: DBLK groups are replenished in a free DBLK group subchain by means of
the IPW$IQS REQ=FREEGPS macro instruction. The routine issues the IPW$RSR macro instruction to
lock the queue file for exclusive use. The DBLK groups addressed by the calling task in registers 1 and 2
are then added at the top of the free DBLK group subchain. The SER DBLK of each returned group is
written to the data file marking the group no longer 'used' but 'free'. The DBLK groups are added to the
subchain containing the lowest number of free DBLK groups. Next, the routine posts the event control
block, indicating that at least one free DBLK group exists, writes back the master record and unlocks the
queue file by means of the IPW$RLR macro instruction.

Queue file formatting: This routine is entered at cold start time or when an I/O error occurred on the
queue file and the queue file should be re-formatted. The routine is invoked by means of the IPW$IQS
REQ=FORMAT macro instruction. The routine formats the queue file by writing count fields on the track
(CKD only). One entire track is formatted with one I/O. Any I/O error detected is reported back to the
calling routine.

 Chapter 3. Program Organization 99

Get Next Queue Entry Function (IPW$$NQ): The function is invoked via the macro IPW$NQS
instruction and acts according its invocation (see below). The routine returns the queue record of the first
eligible queue entry belonging to a class chain referenced by the calling task. Class chains related to the
calling task are identified by a task class list in the TCB. Each entry in the task class list is examined in
turn. If the class chain it addresses is not empty, the class chain is stepped through until a queue entry is
found which is eligible for processing. Typically, only the dispatchable class chains are examined and
queue entries already being 'active' (DISP=*) are not selected by the Get Next Function.

� If the requesting task is a spool access service (SAS) task, the queue entries of the specified class
chains are scanned for a queue entry with matching jobname, number and job suffix, if specified. If no
such queue entry is found, or the queue entry is either protected or already in use, appropriate return
codes are set in the function return code byte of the TCB which is translated to a return code/feedback
code passed to the SAS application program.

� If the requesting task is a Job|Output transmitter, each queue entry in the Job respectively Output
chain of the XMT queue is examined to see if it is eligible. The queue entry is eligible when the
calling transmitter is sending to the prime route node or, if no connection is established to the prime
route node, the transmitter is sending to the alternate route node. Again only the dispatchable
job/output chains are examined and queue entries already 'being processed' (DISP=*) are never
selected by this Get Next Function.

� If a direct SAS GET task requests a queue entry, it is accessed by its internal queue record number
passed by the requestor and without searching through the class chains. The queue entry must be
dispatchable and inactive (DISP=D|K) and all further specified queue entry attributes must match. If
no such queue entry is found, or the queue entry is either protected or already in use, the requestor is
informed by the function return code byte of the TCB which is translated to a return code/feedback
code/feedback2 code passed to the SAS application program.

� If a SAS GET BROWSE task requests a queue entry, each entry in the task class list is examined in
turn. If the class chain it addresses is not empty, the class chain is stepped through until a queue
entry is found which is eligible for processing. Dispatchable and non-dispatchable class chains are
examined and even queue entries already 'being processed' (DISP=*) are selectable by the Get Next
Function. More than 1 SAS GET BROWSE task may select the same queue entry, which is addi-
tionally controlled by the multiple access count (MACC). After checking the MACC, the queue entry
attributes are checked against the specification of the requestor and if no such queue entry is found or
the queue entry is protected, appropriate return codes are set in the function return code byte of the
TCB which is translated to a return code/feedback code passed to the SAS application program.

� A direct SAS GET BROWSE request combines the direct access method of the direct SAS GET
request and the removed disposition limitation of SAS GET BROWSE.

Queue access type specifications: The queue entry passed back to the caller of IPW$NQS is set to
'active', except for (direct) SAS GET BROWSE, which does only change (increase) MACC. All calling
tasks setting the queue entry to 'active' are called UPDATE tasks, SAS GET BROWSE tasks are now also
called BROWSE tasks and the command processor task, which uses its own queue selection routine and
not IPW$$NQ, is called a COMMAND task. A MODIFY task is a SAS PUT task selecting an already
completed queue entry for PUT OPEN APPEND or PUT OPEN RESTART. It removes the queue entry
from its chain, so that it looks similar to a CREATE task, which is any task creating a new queue entry.

Overview concurrent queue entry access limitations

100 VSE Central Functions V7R1 VSE/POWER DRM

+---------------+---+
| current task | access to entry requested by another task |
| processing | allowed: Yes/No ; Restricted by Resource/flag |
| a queue entry +-----------+-----------+-----------+-----------+
| | COMMAND | UPDATE | MODIFY | BROWSE |
+---------------+-----------+-----------+-----------+-----------+
| COMMAND | No ; DMB | No ; DMB | No ; DMB | No ; DMB |
+---------------+-----------+-----------+-----------+-----------+
| UPDATE | No ; '�' | No ; '�' | No ; '�' | YES; MACC |
+---------------+-----------+-----------+-----------+-----------+
| MODIFY | No ; QRQP | No ; QRQP | No ; QRQP | No ; QRQP |
+---------------+-----------+-----------+-----------+-----------+
| BROWSE | Yes; | Yes; | No ; MACC | Yes; MACC |
+---------------+-----------+-----------+-----------+-----------+
| CREATE (note) | No ; QRQP | No ; QRQP | No ; QRQP | No ; QRQP |
+---------------+-----------+-----------+-----------+-----------+

The MACC limit for parallel browsing remains the same (255 for non-shared
or 15 per shared-spooling SYSID).

Note: Output entries created by execution processors may be segmented by command and may be
browsed.

If all addressed class chains are empty or contain non-dispatchable queue entries, the routine releases the
queue record area, clears the address of the queue record area, and returns to the caller. The calling
task is then either placed in a wait state until a new queue entry is added or an existing queue entry
becomes dispatchable or detaches itself. For a GETSPOOL request, the queue records are scanned for a
matching job name, password, and class with the one supplied in the GETSPOOL SPL. In a shared
spooling environment, the class entry that is associated with the SYSID is reset when no queue entry is
found that is eligible for processing.

Only queue entries where the 'to' user id matches one of the logical destinations associated with the
device service task are eligible for processing when the calling task is a device service task.

To process jobs with time event scheduling information, the following is considered:

1. A queue record of the 'wait for run' subqueue must not be returned to an execution reader task.
2. An entry of the local reader queue with disposition D or K and time event scheduling information is

returned to a cross partition task (SAS, DST) using a GET request only if the BROWSE option is
used.

3. An entry of the local reader queue with disposition D or K and time event scheduling information is not
returned to a task which uses the old GETSPOOL interface.

4. An entry of the local reader queue with disposition D or K and time event scheduling information must
not be returned to a POFFLOAD task.

If the caller is the POFFLOAD PICKUP function, only eligible entries are returned to the caller which have
been tagged with the PICKUP flag indicating that the entry is to be backed up to tape. Both the
dispatchable and non-dispatchable class chains are scanned.

Access to Active Queue Entry: Because a (direct) SAS GET BROWSE request does no longer set a
browsed queue entry to 'active' state, even an 'active' queue entry may be selected for processing by a
BROWSE task. The concurrently accessing UPDATE task may delete the queue entry when it finishes its
processing while the SAS GET BROWSE task is still reading the queue entry.

To protect the SAS GET BROWSE against deletion of the queue entry, deletion is delayed until the last
SAS GET BROWSE task has ended. This is called 'delayed deletion' and performed by the following
steps:

 Chapter 3. Program Organization 101

� The queue entry is removed from its chain by the deleting task (IPW$DQS call).

� Then IPW$$FQ is called, which checks the MACC count and the 'delayed deletion' flag as follows:

– If MACC > 0 and the queue entry was not yet flagged being in 'delayed deletion', the queue entry
is not deleted, but flagged as being in 'delayed deletion' and the count of queue records and
DBLK groups in 'delayed deletion' is increased. This count is shown in PDISPLAY STATUS report.

– If MACC > 0 and the queue entry was already flagged being in 'delayed deletion', the queue entry
is not deleted and the 'delayed deletion' counts are not updated.

– If MACC = 0 and the queue entry was not yet flagged being in 'delayed deletion', the queue entry
is deleted without updating the 'delayed deletion' counts.

– If MACC = 0 and the queue entry was flagged being in 'delayed deletion', the queue entry is
deleted and the count of queue records and DBLK groups in 'delayed deletion' is decreased.

� Module IPW$$LW calls IPW$$DQ to decrease MACC, each time a SAS GET BROWSE task issues
its QUIT request for a queue entry in 'delayed deletion'. Afterwards MACC is checked and if zero,
IPW$$FQ is called to free the queue entry.

� Queue file recovery takes care of queue entries in 'delayed deletion' by adjusting the number of SAS
GET BROWSE tasks to zero for each system being recovered. The 'delayed deletion' counts are reset
together with all 'delayed deletion' flags, so that calling IPW$$FQ for all queue entries in 'delayed
deletion' rebuilds the correct counts and states.

Get In Creation Queue Entry: A special flavour of the direct SAS GET BROWSE request type is the
direct SAS GET BROWSE for a queue entry 'in creation'. This request selects a queue entry, which is
currently created by an execution writer task on the same system (if running shared). If the creating task
TCB and the attached queue record fulfill certain conditions, the MACC and the queue entry attributes are
checked against the specification of the requestor. If no such queue entry 'in creation' is found, the
requestor is informed by the function return code byte of the TCB which is translated to a return
code/feedback/feedback2 code passed to the SAS application program. If the queue entry is selected,
the current spooling state is commited to disk in routine NQFRZ (part of IPW$$NQ).

1. The queue record copy of the creating task is copied to the queue record copy of the requesting task
including fields QRCCNR, QRCCLC & QRCCPG (record count, line count, page count).

2. The MCB of the current spooled DBLK is locked by the requestor.

3. The DBLK in storage of the creating task is written to disk (using the DBLK area of the requestor of
I/O Write) to make all data available on disk including the last record counted by QRCCNR, QRCCLC
& QRCCPG.

4. The MCB is released.

5. The spooling state of the requestors queue record copy (QRNR, QRLC & QRPG) is updated using
QRCCNR, QRCCLC & QRCCPG. This enables function Get Data Record, to present End Of Data,
when QRCCNR or QRCCLC is reached.

Get Data Record Function (IPW$$GD): The function is invoked via the IPW$GDR macro
instruction. The routine provides the calling routine with a logical record by means of the record request
word of the TCB. If the DBLK area is exhausted a new physical record (DBLK) will be read from the data
file. If the current DBLK group is exhausted, the next DBLK group is addressed via the SER.

If the logical record consists of more than one extension record, the original record is re-constructed
before it is passed to the caller.

For each queue entry the current position is now counted in new fields QRCCNR, QRCCLC and
QRCCPG. Module IPW$$LW observes these fields in its Restart Handler. If a queue entry 'in creation' is

102 VSE Central Functions V7R1 VSE/POWER DRM

accessed, the current line/record number is compared with the number of lines/records to prevent reading
past the last record committed on disk. When the last record/line has been passed to the caller, the next
read requests will present End Of Data together with an artificial Job Trailer Record.

Time Event Scheduling

'Wait for Run' Subqueue: All queue entries of the VSE/POWER RDR queue are chained together
via a forward and a backward pointer whereby for each class two class-chains exist, a dispatchable and a
non-dispatchable class chain. In addition to these pointers exists a pointer which chains together all
dispatchable jobs with a due date that has not yet expired. This chain is called the 'wait for run' subqueue
and is built by forward pointers only, no backward pointers exist. The 'wait for run' subqueue contains
queue entries of all classes, sorted only by the next due date, not by priority nor by class.

The 'wait for run' subqueue is maintained by the module IPW$$TQ, which is called by module IPW$$QM
via IPW$ITQ whenever a queue entry is added or deleted to the local RDR queue.

The relationship and anchoring of the different queues and chains is laid out in the following Figure 37.

Note however that the 'wait for run' subqueue chains together queue entries of any class according to the
next due date. In the figure below the pointers for the 'wait for run' subqueue are chosen in that way to
keep the figure as simple as possible. Of course it may happen that the first element of the 'wait for run'
subqueue is a queue record of class n, the second element a queue record of class m, the third element a
queue record of class n, the forth element a queue record of class m, the fifth element a queue record of
class o, the sixth element a queue record of class m, and so on.

If VSE/POWER terminates abnormally and full recovery is running when VSE/POWER is restarted, all
queue entries are read in and all class chains are rebuilt. During this rebuilt the 'wait for run' subqueue is
rebuilt automatically, but without calculating a new due date. After all chains are built, the TES task is
attached and calls the INIT routine in IPW$$TQ which now examines the due date and schedules the
jobs, if the due date has expired.
Jobs with an expired due date (and which were therefore not chained in the 'wait for run' subqueue) at the
time VSE/POWER terminated abnormally, are not chained into the 'wait for run' subqueue at the time
VSE/POWER restarts, but are chained in the dispatchable class chain for immediate processing. The
same happens to jobs which have been in execution state.

 Chapter 3. Program Organization 103

 Master record within DMB:
 ┌────────┬───────────────────────────┬───────────────┬──────────┐
 │ │ │ │ │

│ │ .. Class Tables .. │ │ │
│ │ │ │ MRWFRPTR │

 │ │ n m │ │ │
 └────────┴───────┬──────────┬────────┴───────────────┴────┬─────┘
 │ │ │
 dispatchable chains: │ │ │
 │ │ │
 ┌───────────────┘ └─────────┐ │
 │ │ │
 │ │ │
�.............. normal�.............. │
 : ┌───────────┐ : dispatchable : ┌───────────┐ : │
 : │ Q─Rec │ : chains : │ Q─Rec │ : │
 : └─┬─────────┘ : : └─┬─────────┘ : │
 : │ � : : │ � : │
 : � │ : : � │ : │
 : ┌───┴───────┐ : : ┌───┴───────┐ : │
 : │ Q─Rec │ : : │ Q─Rec │ : │
 : └─┬─────────┘ : : └─┬─────────┘ : │
 :...│.�...........: :...│.�...........: │
 │ │ │ │ │
 │ │ ┌─────────────────────────────│─│────┐ │
�.│....�....... wait�.│....│....... │
 : ┌───┴───────┐ : for run : ┌───┴───────┐ : │
 : │ Q─Rec │ : chains : │ Q─Rec │ : │
 : └─┬─────────┘ : : └─┬─────────┘ : │
 : │ � │ : : │ � � : │
 : � │ � : : � │ │ : │
 : ┌───┴───────┐ : : ┌───┴────┴──┐ : │
 : │ Q─Rec │ : : │ Q─Rec │ : │
 : └───────────┘ : : └───────────┘ : │
 :.................: :..........�......: │
 │ │
 └────────────┘

'wait for run' subqueue

Figure 37. Structure of Job Queue and 'Wait For Run' Subqueue

TES Task: The time event scheduling (TES) task, is given control to make a job eligible for processing
as soon as the due date expires. Therefore a time-interval is maintained for the first entry in the 'wait for
run' subqueue. The TES task is attached during the initialization of VSE/POWER and detached during
termination of VSE/POWER. When the TES task is attached it task calls IPW$$TQI to check if the due
date of a queue entry in the 'wait for run' subqueue has expired. The TES task is attached even if the
'wait for run' subqueue is empty to avoid later on deadlocks which might occur due to storage constraints.
The code for the TES task resides in module IPW$$TV.

Shared Considerations: To maintain the 'wait for run' subqueue in a shared environment fields and
equates are used in the master record:

1. Whenever a system alters the first queue entry in the 'wait for run' subqueue, this system sets 'wait for
run subqueue changed' for all other systems in the master record.

2. Whenever a system gets control in the T1-interval, the timer task (IPW$$TI) tests its 'wait for run
subqueue changed' bit and if found, posts the TES task and resets its 'wait for run subqueue changed'
bit.

104 VSE Central Functions V7R1 VSE/POWER DRM

Maintain 'Wait For Run' Subqueue Function (IPW$$TQ): This module maintains the 'wait
for run' subqueue and is invoked by the interface macro IPW$ITQ. The 'wait for run' subqueue contains
the dispatchable queue entries of the local RDR queue with not yet expired due date which are chained by
forward pointers only. This means the 'wait for run' subqueue contains the queue entries of the 'wait for
run' chains of all classes, but sorted according to the next due date, not sorted by class and priority.
Whenever this module gets called, the DMB must be already locked. So far the following services are
offered and used by IPW$$AQ, IPW$$DQ and IPW$$TV:

1. ADD: To complete the adding of a dispatchable queue entry with time event scheduling information to
the local reader queue. If necessary, the queue entry is chained into the 'wait for run' subqueue:

a. If recovery is active and the queue entry is not chained in the 'wait for run' subqueue, return with
QRDG0W = OFF (not queued into 'wait for run' subqueue).

b. If recovery is active and the queue entry is chained in the 'wait for run' subqueue:
1) Chain queue entry into 'wait for run' subqueue according to the already existing next due date

and time stamp of job creation.
2) If first queue entry of 'wait for run' subqueue has been added:

a) Set bit 'wait for run subqueue updated' for other shared systems.
b) Post TES task to process new first 'wait for run' subqueue entry.

3) Return with QRDG0W = ON (queued into 'wait for run' subqueue).
c. If job runs more than once, calculate next due date.

(Do not calculate next due date, if command processor is running and indication is not set that the
calculation is necessary.)

d. If just a due time is specified (i.e. no absolute due date and no cycling info specified), calculate
next due date.

e. If next due date not later than current date, return with QRDG0W = OFF (not queued into 'wait for
run' subqueue).

f. If next due date later than current date:
1) Chain queue entry into 'wait for run' subqueue according to the next due date.
2) If first queue entry of 'wait for run' subqueue has been added:

a) Set bit 'wait for run subqueue updated' for other shared systems.
b) Post TES task to process new first 'wait for run' subqueue entry.

3) Return with QRDG0W = ON (queued into 'wait for run' subqueue).

2. DEL: To remove a queue entry from the 'wait for run' subqueue. The following steps have to be done:

a. Remove queue entry from 'wait for run' subqueue.
b. If first entry of 'wait for run' subqueue has been deleted:

1) Set bit 'wait for run subqueue updated' for other shared systems.
2) Post TES task to process new first 'wait for run' subqueue entry

(if this request used by TES task, do not post the TES task).
c. If the entry which should be deleted could not be found in the 'wait for run' subqueue, error

message 1QZ0I with RC=18 is issued and VSE/POWER continues its normal processing.

3. INIT: To complete the initialization of VSE/POWER. This service is used only by the TES task and
used just once, namely immediately after the TES task has been attached during the initialization of
VSE/POWER. This routine is called in any case, no matter if VSE/POWER has made a warm start,
partial or full recovery. This allows that during full recovery no new due dates are calculated, because
this is done now at initialization of the TES task. In order to move those queue entries from the 'wait
for run' chain whose next due date has expired, into the dispatchable class chain the following steps
have to be done:

a. Get current date and time using VSE/AF macro GETIME.
b. Loop through 'wait for run' subqueue

(The loop is left if 'wait for run' subqueue is empty or next due date is a date later than the current
date and time):
1) If RERUN=YES 'specified':

 Chapter 3. Program Organization 105

a) Dequeue entry from 'wait for run' chain using macro IPW$DQS with option LOCATE.
b) Add queue entry into normal dispatchable class chain using macro IPW$AQS (no need for

IPW$$AQ (TCTI="YTES") to call IPW$$TQ once more, because VSE/POWER knows at
this point already that the job has to be scheduled immediately).

2) If RERUN=NO specified and the due date is today and the due time is before or equal to the
current time:
a) Dequeue queue entry from 'wait for run' chain using macro IPW$DQS with option

LOCATE.
b) Add queue entry to normal dispatchable class chain using macro IPW$AQS.

3) If RERUN=NO specified and the due date was yesterday or earlier than yesterday:
a) If no cycling information exists:

i. Change disposition to H or L.
ii. Dequeue entry from 'wait for run' chain using macro IPW$DQS with option LOCATE.
iii. Add queue entry to non-dispatchable class chain using macro IPW$AQS.

b) If cycling information exists:
i. Do not dequeue entry from 'wait for run' chain.
ii. Calculate next due date.
iii. Chain queue entry into 'wait for run' subqueue anew.
iv. Set refresh bits for other shared systems.

Note: No lock of the DMB is necessary because this routine is called at initialization time. Only the initial-
ization task is attached at this time and the initialization task waits till it gets posted again by the
TES task.

Time Event Scheduling Function (IPW$$TV): This module is the code for the TES task and
maintains the time interval in order to move a queue entry from the 'wait for run' subqueue into the
dispatchable class chain for immediate processing as soon as the due date has expired. The TES task is
attached during the initialization of VSE/POWER and detached during the termination of VSE/POWER.
The TES task is attached even if the 'wait for run' subqueue is empty to avoid later on deadlocks which
might occur due to storage constraints.

The TES task calculates the time interval for the first entry of the 'wait for run' subqueue and waits till it
expires. If it expires, the entry is removed from the 'wait for run' subqueue and chained into the
dispatchable class chain for immediate processing.
Due to external events (PDELETE, PALTER or the execution processor of another shared system) the first
entry of the 'wait for run' subqueue might have been deleted or changed. In this case the task ECB has
been posted and a new interval is calculated. The task ECB is also posted during the termination of
VSE/POWER when the task has to stop processing.

Note that only for the first job a time interval is calculated till its next expiration date. This interval might be
a very large one. Due to the limited amount (ca. 7 hours) of the IPW$STM macro, an 'intermediate'
interval might be calculated.

Following are more details for this module:

1. Call IPW$$TQI using 'IPW$ITQ INIT' to prime the 'wait for run' subqueue in all cases of cold-, warm-,
partial or full recovery start.

2. Post initialization task for continuation.
3. Post own task ECB to enter ff loop once for first element.
4. Do forever (loop ONE)

(loop left as soon as stop code exists)
a. WAIT for task ECB to be posted

(Task ECB posted if stop code or 1st element in 'wait for run' subqueue changed by $$TQ
ADD/DEL actions or other shared system actions)
(Task ECB also posted if time interval via TQE expires)

106 VSE Central Functions V7R1 VSE/POWER DRM

1) Reset post bit of task ECB.
2) If TQE-interval outstanding, cancel it.
3) If stop code exists, leave loop (ONE)

 4) Lock DMB
5) Do forever (loop TWO)

(loop left if queue empty or job found with not yet expired due date)
a) If 'wait for run' subqueue empty, leave loop (TWO).
b) Compare due date of first entry in 'wait for run' subqueue with current date/time.
c) If due date not yet expired:

i. Set up new time interval, let task ECB be posted at expiration
(note: use minimum (VSE/AF-max, necessary interval for entry)!)

ii. Leave loop (TWO)
d) If due date already expired:

i. Remove queue entry from its 'wait for run' chain using macro IPW$DQS with option
LOCATE (thereby entry removed from 'wait for run' subqueue by nested call 'IPW$ITQ
DEL')

ii. Add queue entry into its really dispatchable class chain using macro IPW$AQS (call
from TES task, with conditional jobnumber increasing by $$AQ)

e) Repeat loop TWO with next entry.
 6) Unlock DMB

b. Continue to wait for next ECB post event (loop ONE)
5. Clean up and detach task (due to stop code 'S')

Notes:

1. Use the IPW$AQS and IPW$DQS macros with the option LOCK=NO to avoid the unlocking in
IPW$$AQ and IPW$$DQ.

2. The lock of the DMB in loop TWO is necessary to maintain the integrity of the 'wait for run' subqueue
during concurrent access of $$TQ ADD/DEL and of the TES task of the own system and/or of other
sharing systems.

 Chapter 3. Program Organization 107

Running in ESA-Mode
Note: Only ESA mode is allowed.

Usage of ESA-Mode

VSE/POWER is running in ESA-mode when running in ESA supervisor mode on ESA/370 processors.
VSE/POWER is not running in ESA-mode when running in ESA supervisor mode on XA/370 processors,
because the XA/370 processors do not support access registers. The setting of the ESA-mode is done
during the initialization of VSE/POWER (IPW$$I2).

Usage of Access Registers

When VSE/POWER is running in ESA-mode, the access registers are the only facility of the ESA-mode,
VSE/POWER makes use of. VSE/POWER uses the access registers always regardless of running in the
shared area or in private address space. The access registers are used in the following ways:

1. Modules running under the VSE/POWER task (e.g. execution tasks) use the access register to
address data (e.g. CCB, CCW) in the partition controlled by VSE/POWER.

2. VSE/POWER appendages to supervisor services which run under the task of the user partition and
not under the VSE/POWER task, use the access register to address data (e.g. main ECB of
VSE/POWER, execution TCB) in the VSE/POWER partition.

Initially all access registers are set to zero. Only the following access registers are used:

1. Access register 7 always to address the CCB.
2. Access register 8 mainly to address the CCW.
3. Access register 1 a few times to address data in a partition.
4. Access register 6 a few times to address data in a partition.
5. Access register 5 to clear an access register to zero.

Access registers 1 and 6 are reset to zero as soon as they are no longer used to address data in the
other partition.

Note that the usage of the access register is dependent on setting the access-register mode. The access-
register mode is set on and off only by the execution tasks. The access registers are not cleared when-
ever a VSE/POWER task other than an execution task gets control (performance reasons). Therefore if
such a task is running, the access registers might contain any value, but this value is never used for
addressing, because the access-register mode is always set off.

A VSE/POWER subtask too, never uses any access register and does not set the access-register mode.
Such a subtask should always have zeros in its access register (due to the initialization by the supervisor
when attaching the task).

Whenever an access register is used in the code, the abbreviation ARx (x=0,1,..,F) is used (defined in
macro IPW$EQU).

The access registers contain the ALET of the partition. The ALET is retrieved by using the VSE/SP Super-
visor GETFLD macro.

If an abnormal termination of the VSE/POWER main task or a subtask occurs, the access registers are
saved in the work area of module IPW$$AT.

108 VSE Central Functions V7R1 VSE/POWER DRM

Usage of Access Register in Modules

The following modules use the access registers in the following way:

 1. IPW$$AT
a. To save the access registers when an abend occurs.
b. To address data in a partition controlled by VSE/POWER.

 2. IPW$$TR
To address data in a partition controlled by VSE/POWER.

 3. IPW$$XJ
To address data in a partition controlled by VSE/POWER.

4. IPW$$PD (part of IPW$$DM)
To address data in a partition controlled by VSE/POWER.

 5. IPW$$NU
 a. Dispatcher routines:

1) To save (within the TCB) and restore the access registers.
2) To restore the access-register mode.
3) To store the access registers into the trace entry.

b. Validation routines for CCW to address data in a partition controlled by VSE/POWER.
c. Page Fault appendage to save the access registers and the access-register mode.
d. I/O appendage (SVC 00 and 03) to address data in the VSE/POWER partition.
e. Accounting appendage (SVC 90 and 91) to address data in the VSE/POWER partition.
f. Hot Reader appendage to address data in the VSE/POWER partition.

The above listed appendage routines within IPW$$NU use the access register only if VSE/POWER is
running in a private address space. Other appendages than listed above (e.g. the BSC appendage)
process supervisor calls which have been issued by the VSE/POWER task and all data addressed are
located within the VSE/POWER partition. Therefore there is no need to use any access register in
these appendages.

 6. IPW$$XRE, IPW$$XWE
The execution reader tasks and the execution writer tasks address data in the partition controlled by
VSE/POWER, namely the CCB, the CCW and the data addressed by the CCW.

 7. IPW$$MX
To address an (incorrect) CCB or CCW in a partition controlled by VSE/POWER for issuing the
message(s) 1R30I.

 Chapter 3. Program Organization 109

Addressing Exception in Access-Register Mode

The message 1Q2CI is issued, if VSE/POWER terminated abnormally. The PSW is displayed containing
the address of the instruction which follows the failing instruction. This might not be true if running in
ESA-mode: the address points to the failing instruction itself, because in some cases the hardware reports
an error without having updated the instruction address within the PSW. This happens, if access-register
mode is set on and an exception occurs during access-register translation (for example ASTE-sequence
exception, detailed information see chapter 6 in ESA/370 Principles of Operation, SA22-7200). Such an
exception occurs, if some of the tables maintained by the supervisor for access-register translation are
corrupted. The various program-interruption codes returned by the hardware are usually translated by the
VSE/SP supervisor into CC=20 (which means program check) and an 'addressing exception', displayed
within message 1Q2CI. The original program-interruption code might be found within a debug entry of the
supervisor.

110 VSE Central Functions V7R1 VSE/POWER DRM

 Multiprocessor Support

External Invocation and Function

For getting acquainted to definitions as 'parallel work unit' etc., for how to activate and track MP Support,
one should first read 'VSE/POWER Multiprocessor Support' as offered in VSE/POWER Administration and
Operation manual.

Internal Implementation Overview

The following text is extracted from the header of module IPW$$XRE under 'Turbo Dispatcher Mode
Usage Summary'. It reflects the support implemetentation 'as is', while a rationale for such chosen imple-
mentation is offered in subsequent 'Specification' and 'Design' chapters.

TURBO DISPATCHER SUPPORT IN VSE/POWER ...

... IS A BUNDLE OF FACILITIES THAT ALLOW PRIVATE
SUBTASKS TO OPERATE (UNDER VSE/POWER MAINTASK) AS A
PARALLEL WORK UNIT (PA) AS LONG AS POSSIBLE AND
TO SWITCH TO A NON-PARALLEL WORK UNIT (NP) FOR SOME
INSTRUCTIONS WHEN REQUIRED BY THE MULTI PROCESSOR (MP)
ARCHITECTURE TO UPDATE

- 1ST LOWCORE PAGE (SGLOWC, SYSCOM, BG-COMREG)
- SUPERVISOR CONTROL BLOCKS
- ISSUE IDUMP SVC
- ENTER VTAM, LIBRARIAN, AND TRANSIENT SERVICES

WITH THIS BEHAVIOUR VSE/POWER TRIES TO MINIMIZE THE
TIME, WHERE THE SPOOLING SYSTEM RUNS AS NP WORK UNIT.

ATTRIBUTES OF TASKS IN THE VSE/POWER PARTITION

� MAINTASK - AN ESA HYBRID TASK, BECAUSE IT HAS
PROTECTION KEY �, BUT IS ENTITLED
TO SWITCH TO A PA AND NP WORK UNIT

� VSE SUBTASKS - ATTACHED BY MAINTASK, PROPAGATING THE
PROTECTION KEY � TO THE SUBTASK, HENCE
SUBTASKS RUN AS NP WORK UNIT ONLY -
APART FROM THE TD-SUBTASK, WHICH SWITCHES
TO RUN PERMANENTLY AS PA WORK UNIT.

� PRIVATE TASKS - THEY GAIN CONTROL BY THE POWER TASK
DISPATCHER, THEN TASKS OPERATE AS
THE VSE/POWER MAINTASK

 Chapter 3. Program Organization 111

INTERFACES TO SUPERVISOR TASKS & SPOOLED PARTITION TASKS

READ THE DETAILED CODE COMMENTS FOR THE FF INTERFACES
- AB|OC|TI-EXIT HEADERS OF THE POWER MAINTASK IN

MODULE IPW$$AT.AT25�, AND
MODULE IPW$$I2.TIME4, AND
MODULE IPW$$NU.TI�� OR .STXOC���

- VARIOUS SUPERVISOR APPENDAGES IN IPW$$NU (!)
- JOB CONTROL EXIT AND ATTENTION RTN I/F IN IPW$$NU (!)

ACTIVATION OF TURBO DISPATCHER (TD) SUPPORT IN VSE/POWER

THE DESCRIBED CODE SUPPORTING MULTI PROCESSORS
- IS DRIVEN, WHENEVER 'TURBO DISPATCHER' HAS BEEN
ACTIVATED DURING IPL AND POWER MP SUPPORT HAS
BEEN ENABLED BY 'SET WORKUNIT=PA', AS RECORDED
BY PDISPLAY STATUS:

'PRESENT SESSION START (TURBO-DISP.-PA) ON ...
- BYPASSES 'TDSERV SWITCHNP/PU' REQUESTS, WHENEVER
TURBO DISPATCHER HAS NOT BEEN ACTIVATED AT IPL

- BYPASSES 'TDSERV SWITCHNP/PU' REQUESTS, WHEN TD
ACTIVATED BUT DEFAULT 'NP'-ONLY STARTUP DONE

WORK UNIT RULES FOR POWER PRIVATE TASKS

� INIT/TERM TASK - ACQUIRES PROT. KEY � AT $$I1 TIME,
CONTINUES THEN AS NP WORK UNIT,
AND NEVER GIVES UP NP MODE AGAIN

� GENERAL TASK - ATTACHED AS PARALLEL WORK UNIT,
SWITCHES BY 'IPW$TDM NP' SERVICE-
CALL TO NP MODE ONLY THEN, WHEN
PROCESSED CODE REQUIRES - RETURNS
TO PA MODE BY 'IPW$TDM PU' CALL

� EXCEPTION TASKS- ALL RJE/SNA TASKS (SEE $$SN) AND
PNET SNA CONN/DISCONN TASKS, THAT
OPERATE NON PARALLEL EXCLUSIVELY

SWITCH WORK UNIT BY 'TDSERV' MACRO - CODED IN MODULE ...

1) IPW$$NU MODE SWITCH SERVICE, ENTERED BY MACRO CALL
'IPW$TDM NP/PU' (R�,R1,R2 DESTR'D)

2) IPW$$ID LOCAL 'TDSERV SWITCHNP/PU' SVC TO AVOID
RECURSIVE SERVICE ENTRY TO IPW$$NU

3) IPW$$AT LOCAL 'TDSERV SWITCHNP' SVC, WHICH CANNOT
RELY ON ANY CODE OUTSIDE IPW$$AT

FUNCTION OF 'MODE SWITCH SERVICE' IN IPW$$NU

- DEPENDING ON IPW$TDM NP/PU REQUEST, TO CHANGE WORK
UNIT TYPE BY TDSERV SWITCHNP/PU SVC (BYPASS SVC,
IF LOWCORE SHOWS 'DESIRED MODE ALREADY ACTIVE')

- RECORD ACQUIRED WORK UNIT TYPE IN TCB BY ...
... TCF16.TCF16NP = 1, MEANING NON-PARALLEL
... TCF16.TCF16NP = �, MEANING PARALLEL

112 VSE Central Functions V7R1 VSE/POWER DRM

LIFE SPAN OF A GENERAL POWER TASK ...

- ENTERED INTO TASK DISPATCH CHAIN WITH TCF16NP=�=PA
BY IPW$$NU TASK INITIATION ($ATT) SERVICE

- $$NU.TM9� TASK DISPATCHER REQUESTS 'IPW$TDM PA' TO
GIVE CONTROL TO TASK AS DESIRED WORK UNIT

- TASK PROCESSING CODE REQUESTS 'IPW$TDM NP' WHEN
MP ARCHITECTURE REQUIRES AND RETURNS TO PA AGAIN

- WHEN TASK LOSES CONTROL BY PAGE FAULT OR ANY $WFX,
ITS RECORDED TCF16 WORK UNIT TYPE IS RE-ESTABLISHED
WHEN $$NU.TM9� DISPATCHER SELECTS TASK AGAIN

LIFE SPAN OF AN 'NP' EXCEPTION TASK

- EXCEPTION TASKS (INIT/TERM, ALL RJE/SNA, PNET SNA
CONN/DISCONN TASK) ARE COLLECTED IN 'NP-MUST' LIST

- NP-MUST TASKS ARE ENTERED INTO TASK CHAIN BY $ATT
 WITH TCF16NP=1=NP

- WHENEVER PROCESSING CODE DRIVEN BY SUCH TASKS
CALLS 'IPW$TDM PU', THEN MODE SWITCH SERVICE WILL
IGNORE SWITCH TO PARALLEL FOR NP-MUST TASK

MP RULES WHEN CALLING SERVICES OR FUNCTIONS

- IPW$$NU SERVICES DO NOT SWITCH MP MODE AT ALL,
IT IS RECOMMENDED TO CALL THEM AS PA WORK UNIT

- POWER FUNCTIONS EXPECT TO BE CALLED AS PA WORK UNIT,
THEY SWITCH TO NP WHEN REQUIRED AND RETURN PA

Internal Functional Specifications

The following extract of the Multiprocessor Support Specifications shows, which rules any VSE/POWER
code has to obey to when running generally in parallel mode, but interfaces with other services and Super-
visor appendages for VSE/POWER.

With respect to VSE/POWER the following holds for Turbo Dispatcher processing:

� During IPL either the 'Standard' or 'Turbo' Dispatcher (TD) is selectable
� TD means no change to VSE/POWER residing in either shared or private partition
� TD dispatches an entire partition to a single CPU, that means, VSE-maintask and VSE-subtasks of

same partition do not gain control in parallel
� Because the VSE/POWER Maintask acquires protection key zero (as ACF/VTAM), it is dispatched as

Non-Parallel (NP) Work Unit, but is entitled to request Parallel Mode (get dispatched as Parallel Work
Unit).

Code of Private Subtasks (Power Task): The Parallel Support (also called MP Support) of
VSE/POWER must be enabled with the autostart statement

 SET WORKUNIT=PA

Then the VSE/POWER partition maintask acquires protection key 0 during VSE/POWER initialization and
therefore enters NP state processing automatically. When starting VSE/POWER's private subtasks under
control of the maintask, these subtasks (also named 'tasks') call the VSE/POWER service IPW$TDM PU
to drive the SVC

 TDSERV FUNC=SWITCHPU

 Chapter 3. Program Organization 113

in order to enter their function code in parallel mode. Now the VSE/POWER maintask is a hybrid system
component - using protection key 0, but yet running in parallel mode. Code areas requiring non parallel
processing are identified according to the needs listed below. When a task enters and leaves an NP code
area, mode switching is requested by IPW$TDM NP/PU (resulting in corresponding TDSERV SVC) and its
mode state is recorded in the task control block (TCB). When a task loses control by a page fault or any
VSE/POWER wait condition, its recorded mode is re-established, when the task is given control back by
the VSE/POWER task dispatcher.

Code processed by a VSE/POWER task has to watch PU or NP processing according to the following
rules, which are imposed by the VSE/ESA Supervisor and Turbo Dispatcher:

1. SVC calls decide on their own, when PU or NP is needed, and the original mode is re-installed upon
return; exceptions SVC's are and must be called as NP work unit:
a. SVC 2 .. call IDUMP, Fetch B-Transient
b. SVC 43 .. DYNCLASS ID=GET, where Librarian calls are involved
c. (SVC 107 .. for SENTER/SLEAVE only, not used by POWER)

2. BALR interfaces as entry to components that rely on operating in NP mode due to using protection
key 0 (as VTAM, Librarian, or Transients, which must be entered in NP mode

3. VSE/POWER coded Supervisor exits as OC-, IT-, or AB-exit are entered with the currently active
mode of the VSE/POWER maintask (or active mode of the VSE Subtask in case of IT-exit). Exits
should be left for task continuation in the same mode

4. Prefix page (SGLOWC, SYSCOM, and BG-COMREG) changes (not reference!) must be done by NP
code to let updates become effective on other CPUs

5. Updates in other Supervisor control blocks should also be done by NP code, and not by Compare &
Swap (CS) like instructions, because counterpart code has not been implemented yet

6. Whenever parallel VSE/POWER work units overlap with NP VSE/POWER appendages, prefer CS-like
instructions versus NP switch, in order to achieve CPU serialization for critical update code

7. VSE/POWER Page Fault Handling Overlap (PHO) appendage is entered as NP unit for pre-processing
under control of POWER maintask

8. VSE/POWER Page Fault Handling Overlap (PHO) appendage is entered as NP unit for post-
processing under Page Mgr. Task control, hence may overlap with parallel POWER code.

9. Asynchronously entered routines generally operate in NP mode, and may hence overlap with parallel
POWER code. This is especially true for the VSE/POWER appendages in IPW$$NU, because they
were called by an SVC:
a. Job Control exit entered NP under spooled partition control
b. Attention I/F Routine entered NP under control of Att. rtn.
c. BSC/CTC channel end appendage entered NP under control of I/O Supervisor
d. Hot reader appendage entered NP under control of I/O Supervisor
e. SVC 0/3 appendage entered NP under control of spooled partition
f. SVC 90/91 appendage entered NP under control of spooled partition

Code of VSE Subtasks: VSE/POWER tasks attach VSE Subtasks for various internal reasons:

1. VTAM ACB Open/Close and Exit processing of PNET or RJE/SNA
2. Librarian, Dump, and Timer services
3. A bunch of so-called 'asynchronous' services
4. To provide the TCP/IP interface for the PNET TCP function
5. To provide the TCP/IP interface for the PNET SSL function

Actually attached by the partition maintask running with protection key 0, the 1) - 3) VSE Subtasks are
given control with the same key and hence in NP mode. VSE/POWER code driven by VSE Subtasks is
not heavily used. Therefore, and for reduced complexity, no switching to parallel mode is introduced in
this code. However subtasks 4) and 5), the TD-Subtask and SD-Subtask are heavily used and do not
update lowcore and Supervisor areas. To increase the total system's PA/NP share, these subtasks switch
back to PA mode.

114 VSE Central Functions V7R1 VSE/POWER DRM

Apart from the IPW$$NU exit and appendage rules, all previously given mode rules have to be respected
also in VSE Subtask code. Especially the following is true:

1. Due to Turbo Dispatcher dispatching on partition basis, VSE Subtask and VSE/POWER Maintask
code always runs serialized, and may be interrupted at any instruction. Then PU maintask code may
be dispatched, even if a higher priority NP VSE Subtask is ready to run, but waits for NP processing.

2. VSE/POWER's VTAM exit code is given control under the ACB Open/Close VSE Subtask and hence
processes as NP unit

Code Common to Private and VSE Subtasks: Even such code exists in VSE/POWER for
calling of VTAM SEND/RECEIVE requests. When given control under a VSE Subtask, the code is proc-
essed as NP unit. Upon entry and exit by a private subtask switching to NP and finally back to parallel
mode (PU) is done.

Code of User Exits or OEM Hook Code: Code of VSE/POWER user exits or VSE/POWER
Vendor hook code usually runs as VSE/POWER private subtask, for which PHO-processing and
VSE/POWER task dispatching takes place. These functions keep track of the parallel or non-parallel
mode at subtask interruption and re-dispatch time. This is only feasible, if switching of work units is not
requested by the VSE TDSERV FUNC=SWITCHNP/PU macro, but by the corresponding VSE/POWER
service macro IPW$TDM.

Internal Implemented Design

The following extract of the Multiprocessor Support design material discusses the processing rules
imposed by the Specifications and justifies the chosen and implemented design. This design however may
well be challenged for modification and extension one day!

Principles of Mode Switching for POWER Private Subtasks (Power Tasks)

General Overview: POWER tasks are generally attached in parallel mode for the code they should start
with as a PU work unit. At entry to a NP work unit mode switching is requested by IPW$TDM NP, which is
recorded by TCB flag TCF16NP=ON. At exit from the NP work unit mode switching is requested corre-
spondingly by IPW$TDM PU, which is recorded by TCF16NP=OFF.
At page fault in NP (or PU) work unit, the IPW$$NU Page Fault pre-processor (under control of failing
POWER maintask, in NP mode) puts task 'P'-bound asleep and leaves TCF16NP untouched. The
POWER maintask continues in previous mode in POWER dispatcher code and selects next task to run. At
'TM90' task dispatcher decides by TCF16NP of next task, what work unit should be continued and
requests corresponding mode switching by IPW$TDM. Using look-aside to Lowcore, the current NP/PU
mode is checked, and superfluous TDSERV FUNC=SWITCHNP/PU may be bypassed for performance
reasons.
Any call of IPW$WFx wait service also puts task asleep with current mode recorded in TCF16NP, and
task dispatch at 'TM90' re-establishes the desired NP/PU mode as discussed before.

When any other VSE/POWER service or function is called, it should be entered as parallel work unit (PU).
The called code will decide locally, when NP mode has to be entered and left again, and will always return
as PU unit to the caller.
In principle VSE/POWER should run as parallel work unit for heavily used code wherever possible.

Initiator/Terminator Task: This task drives modules $$I1-$$I7, IP, and finally $$T1. Various prefix page
and Supvr. Ctl. Block updates are done in performance uncritical code. To reduce complexity, this task
should permanently run in NP mode! Follow up how TAIT task rises:

 Chapter 3. Program Organization 115

1. VSE/POWER starts under part. maintask in POWER Loader phase as normal PU partition
2. maintask acquires prot. key 0 near IPW$$I1-'I130' and continues NP (by Supvr. decision)
3. builds initial TATM-TAOC-TAIT TCB-chain near IPW$$I2-'I230'

a. with TCF16NP=OFF for TAOC-TCB
b. and requests IPW$TDM NP to re-enter NP mode (dummy request) and set TCF16NP=ON for own

TAIT task
c. and enforce default 'non-parallel-processing' for all POWER (as if SET WORKUNIT=NP been

given later in $$I2) by setting CAT CAF4WKNP=ON
4. continues as POWER task by first IPW$WFD near IPW$$I2-'I238A'
5. may then hit a SET WORKUNIT=PA autostart statement that sets CAT CAF4WKNP=OFF!
6. for never loosing NP mode while calling any POWER service/function, extra code of $$NU-TDM

service ignores an IPW$TDM PU request, if caller is TAIT-task
7. all $$I7 born tasks are initiated by the IPW$ATT macro, which ensures TCF16NP=OFF
8. PHO is enabled not before end of $$I7

IPW$$NU-'PN10' Service: The IPW$TDM macro call enters the IPW$$NU 'NP/PU Mode Switching' (also
TDM-) Service via the CAT service branch table entry 'PN00' and acts as follows:

1) If Turbo Dispatcher not activated, ignore request.
If all session non-parallel, that means CAF4WKNP=ON,
then ignore request.

2) If Init task requests 'PU' mode, ignore request.
3) If certain PNET SNA or all RJE/SNA tasks (must always

run 'NP'!) request 'PU' mode, then ignore request.
4) If desired mode is already active, bypass TDSERV.
5) Request TDSERV FUNC= according to passed register 1 values.
6) Set TCF16NP according to desired and acquired mode.

Dispatcher Mode Switch: Irrespective of NP/PU mode the dispatcher code has operated in, while
selecting the next task, 'TM90' task selection will always call IPW$TDM service to obtain that mode for the
POWER maintask, which the task being dispatched has recorded by TCF16NP as 'mode to continue with'.

IPW$ATT Task Initiation: Certain PNET SNA and all RJE/SNA tasks (see VTAM BALR interface) must
always run in NP mode. IPW$$NU task initiation attaches all tasks of this 'NP-MUST' list with
TCF16NP=ON, what takes effect at Task Dispatch Time when task enters its function code. When this
task enters any Service/Function code that calls IPW$TDM PU, then $$NU Mode Switching Service
ignores such request.

NP Mode for Prefix Page & Supvr. Ctl. Blk. Update by POWER Task

Module List for SGLOWC Update: This first part of prefix page is only REFERENCED (not updated) by
module IPW$$NU,-LW,-CS,-CPS. Hence no change is required!

Module List for SYSCOM & COMREG Update: Modules and code areas driven by POWER Tasks
requesting such update are mentioned with 'Supvr. Ctl. Blk. Update'.

Module List for Supvr. Ctl. Blk. Update: The following modules driven by POWER Tasks are found to
do such update. Insert IPW$TDM NP before - and IPW$TDM PU after update. For performance reasons
avoid frequent switching!

1. IPW$$CE - 1 occurrance
2. IPW$$TR - 5 occurrances
3. IPW$$XJ - 11 occurrances
4. IPW$$DP - 3 occurrances
5. IPW$$CS - 2 occurrances

116 VSE Central Functions V7R1 VSE/POWER DRM

6. IPW$$XRE - 18 occurrances

NP Mode for BALR Interfaces of POWER Task

Module List BALR I/F: Branch And Link to code running NP exclusively from the POWER maintask
(with key 0 and yet running PU) confuses the called code. So we request IPW$TDM NP, or run NP exclu-
sively, when entering such BALR interface for:

� PNET SNA VTAM BALR interfaces: Fortunately Receiver and Transmitter code does not request
VTAM macros, but queues/de-queues buffers which are sent/received by the Line Driver Task in
IPW$$SR. So IPW$$NR and IPW$$NT code may run always PU. Line Manager task may process PU
in IPW$$LD and in $$LD1-$$LD5 but switch locally to NP mode in $$SR.
$$S2 and $$S3 Session Connect/Disconnect Tasks request VTAM macros. These tasks are perform-
ance uncritical and run always NP, which is guaranteed by $$NU 'Task Init' and $$NU 'Mode Switch'
that respect a list of tasks, for which NP is a MUST. So we summarize:
1. IPW$$S1 - 'ACB-Open-Close' always NP because VSE/Subtask
2. IPW$$SE - exits driven NP by VSE/Subtask
3. IPW$$SR - see extra discussion as 'Common Code Module'
4. IPW$$S2 - 'Connect Task' shall always run NP --> 'NP-MUST'
5. IPW$$S3 - 'Discon. Task' shall always run NP --> 'NP-MUST'

� RJE/SNA VTAM BALR interfaces: Unfortunately the SNA Manager ($$SN) and all its attached
POWER tasks (see IPW$$SN-'LGH'), namely
1. 1LGH - IPW$$LH logon processor 1
2. 1LGN - IPW$$LN logon processor 2
3. 1LGF - IPW$$LF logoff processor
4. 1MSG - IPW$$MP message processor
5. nRDR - IPW$$IB inbound processor
6. nLST - IPW$$OB outbound list processor
7. nPUN - IPW$$OB outbound punch processor

 ... issue VTAM macro requests spread all over the modules. Running PU and switching locally NP
makes little sense, because of the small 256-byte RU-size exchanged with VTAM. Therefore all men-
tioned tasks will run NP exclusively by entering them into the 'NP-MUST' list.
For the RJE/SNA VSE/Subtask in code part two of $$SN respect:
1. IPW$$SN - 'ACB-Open-Close' always NP because VSE/Subtask
2. IPW$$VE - exits driven NP by VSE/Subtask

� Librarian/ICCF BALR interfaces:
1. $$AS - actual SLI BALR interfaces are driven by VSE ICCF/Librarian subtask, which always runs

NP
� IPW$$LU calling non-POWER service code

1. 'LU132' - enter IJBSSYS mode PHASE after IPW$TDM NP request

NP Mode for Exception SVC's called by POWER Task

Module List Except. SVC: Some SVC's expect to be called by key 0 task with NP mode. VSE/POWER
takes mode provision when calling:

� SVC 2 - call IDUMP/BAM Transient in ...
1. IPW$$AS - Dump Subtask - runs NP because VSE Subtask
2. IPW$$ID - driven by VSE Subtask, then always NP
3. IPW$$ID - driven by $$AT call for VSE Subtask, always NP
4. IPW$$ID - driven by $$AT call for POWER Task, NP switch already done in $$AT
5. IPW$$ID - driven by POWER task with extra switch required in IPW$$ID

 Chapter 3. Program Organization 117

� DYNCLASS ID=GET in ...
1. IPW$$AS - driven as async. service request by NP subtask

Principles of Processing for VSE-Subtasks

General Overview: Attached by VSE/POWER maintask with key zero, Supervisor passes control to
VSE-subtasks with same key and as NP work unit, which is never changed by VSE/POWER code
request. The following modules are driven by the corresponding VSE-subtask and need therefore not be
checked and changed at all:

1. Asynchr. Service Subtask
a. IPW$$AS, label 'SUBTASK'-'IDUSUTA',

where also DYNCLASS ID=GET (exception) SVC is requested
 2. Dump Subtask

a. IPW$$AS, label 'IDUSUTA'-'LBSSUB'
 3. ICCF/Librarian Subtask

a. IPW$$AS, label 'LBSSUB' till module end
 4. Timer Subtask

a. IPW$$TI, part II
5. PNET SNA SUBTASK

a. IPW$$S1 (ACB Open, enable VTAM exits, ACB Close)
b. IPW$$SE (VTAM exits code)
c. IPW$$SR, Send-RPL-exit + Receive-RPL-exit

 6. RJE/SNA SUBTASK
a. IPW$$SN, part II (ACB Open, enable VTAM exits, ACB Close)
b. IPW$$VE (VTAM exits code)

7. PNET TCP (TD-) SUBTASK switching to PA mode
 a. IPW$$TD
 b. IPW$$TS

c. PNET SSL (SD-) SUBTASK switching to PA mode
 1) IPW$$SD
 2) IPW$$SS

Principles of Processing Common (VSE- and POWER subtask) Code

IPW$$AT: Actually driven as AB-exit or branched to by POWER task using IPW$CNC, this module is
entered

1. NP/PU by failing VSE-Subtask ---> to be cancelled
2. NP/PU by failing POWER task ---> to be cancelled
3. NP/PU by failing POWER task in user exit ---> to resurrect

IPW$$AT changes Supvr. Ctl. Blocks, but is performance uncritical, therefore

� at entry by maintask use TDSERV FUNC=SWITCHNP, set TCF16NP
� leaving IPW$$AT for exit recovery, let caller of user-exit switch back to PU mode

IPW$$ID: Module entered for IDUMP (SVC 2, needing NP, if POWER maintask) by

1. IPW$IDM request of VSE-SUBTASK(s) in NP mode, apart from TD-Subtask and SD-Subtask in PA
mode

2. call from IPW$$AT (VSE-subtask or POWER task) in NP mode
3. IPW$IDM of POWER task in PU mode (as defined for functions), which needs switch to NP by local

TDSERV

118 VSE Central Functions V7R1 VSE/POWER DRM

Then common code requests IDUMP SVC 2, and module is left again by three exit paths, where in case
of call by POWER task we switch back PU by TDSERV - unless task is in NP-Must list.

IPW$$SR: Module contains interlocked code to drive the VTAM Send and Receive function - each called
either by POWER LD-task or VTAM exit under ACB Open Subtask. Due to BALR I/F for SEND/RECEIVE
macro, NP mode is required, which exists for VSE-Subtask call, but must be invoked for LD-task call:

1. at IPW$$SR-'SEND', successful LD-task entry use IPW$TDM NP
2. at IPW$$SR-'SEEXIT' (common!) exit, split up exit acc. to caller, and acquire PU mode by IPW$TDM

for LD-task
3. at IPW$$SR-'RECV', successful LD-task entry use IPW$TDM NP
4. at IPW$$SR-'RECVEX' (common!) exit, split up exit acc. to caller, and acquire PU mode by IPW$TDM

for LD-task

IPW$$MX Message Modification Part: From IPW$$MX-'MXENTRY' till end-of-module, code may be
used by POWER task and VSE-Subtask (PNET|RJE/SNA). This code never requires NP mode. Therefore
NO change is required for POWER task entering this module in any mode, or VSE-subtask entering this
module in NP mode, or even PA mode if TD-Subtask for PNET TCP or SD-Subtask for PNET SSL.

Principles of Processing for STXIT Exits: These exits are entered under control of the task
that has established the exit by STXIT xx macro. Entry may be NP/PU, depending on the work unit the
task currently processes.

� when exit code does not change processing mode, EXIT xx will pass control to the point of interrupt in
original mode

� when exit code changes processing mode, it should re-establish the entry mode before EXIT

Following exits can be found in POWER:

1. AB-EXIT - for leaving exit and handling of common code see 'Common Code'-IPW$$AT
2. IT-EXIT-'CAIT' - setup by maintask in $$I2, used for posting of SETIME event in $$NU-'TI00'. No

mode switch required in this code.
3. IT-EXIT-'TIME4' - setup temporarily in $$I2 for Q-file-LOCK. Is always called in NP mode, because

driven by initial TAIT-task, which never loses NP mode.
4. IT-EXIT-'TIME4' - setup in $$TI by Timer-Subtask for Q-file-LOCK always called in NP mode. NO

change required.
5. OC-EXIT-'CASTX00' - setup in $$I2 for MSG Fx,DATA=.... to submit diagnosis display commands.

Entered NP/PU mode under any POWER Task:
a. picks up predefined TCB 'STCB', not chained in TCB chain
b. leaves old TCB still in 'R' state, unless OC-interrupt occurred during processing in $$NU task dis-

patcher
c. enters $$CM for cmd parsing
d. issues console I/O by DOS Wait (no chained TCB!)
e. PHO not handled for 'STCB' TCB
f. enters $$CD for desired display
g. returns to $$CM and back into actual OC-Exit for EXIT OC

All the processed OC-exit, $$CM, and $$CD code does not change the processing mode valid at
OC-exit entry. No change is required.

 Chapter 3. Program Organization 119

Principles of Processing for SUPVR Appendages in IPW$$NU

Such code is usually not driven by the POWER maintask but by Supervisor tasks or user partition tasks.
On uni-processor this code runs pseudo-parallel to VSE/POWER, that means, it may interrupt the POWER
maintask at any point in time (after instruction fully completed). Because of interrupts disabled and no
page fault happening, the appendage code will complete totally before giving control back to the POWER
maintask.
On multi-processor this code operates NP with interrupts disabled and no page fault happening, and if
POWER counterpart code ...

� runs PU (in parallel on other processor), then both code parts may overtake each other (depending on
processors speed). Even the instruction boundary is not guaranteed - unless 'CS' and 'TS' instructions
are used.

� runs NP, then POWER code may be interrupted at any point in time (after instruction FULLY com-
pleted). Again appendage code will complete TOTALLY before giving control back to POWER

� runs NP with 'interrupts disabled' (no page faults allowed then - POWER code to be called by SVC or
driven like appendage code), then POWER code will not lose control at all! Note, such code exists
only as few Supervisor Appendages of VSE/POWER, that run under POWER maintask.

PHO-Preprocessor (see $$NU-'PF01'): Entered NP under POWER maintask, therefore no parallelism at
all, and no code change.

PHO-Postprocessor (see $$NU-'PF03'): Entered NP under Page Mgr. Task. Sets page-fault-solved task
'D' bound, follows TCB chain for another 'P' bound TCB. At same time the POWER maintask may on
another processor modify the TCB chain by

� $$NU-'TA01' Task Init. ($ATT), which always guarantees a correct TCB forward chain
 --> no code change

� $$NU-'TD01' Task Term. ($DET), which removes e.g. TCB-x from chain and soon clears the TCB-x
storage. PHO appendage cannot trust the next TCB pointer in TCB-x, if POWER ran PU
--> in Task Term. at 'TD01A' call IPW$TDM NP to modify TCB chain as NP work unit

End-of-JOB Exit (see $$NU-'EOJ00'): Entered by Job Control during EOJ processing as NP unit under
spooled partition maintask as re-enterant code to update the POWER Part. Ctl. Block of this partition. Any
PU POWER IPW$$XRE code on other processor uses ECB wait/post logic to communicate with Job
Control of the spooled partition --> no code change

Attention I/F (see $$NU-'AI00'): Entered NP by ATTN Rtn. Task at $$NU-'AI00' for non re-entrant proc-
essing with interrupts disabled and no page fault, since all AR buffers and referenced POWER areas are
pfixed.
On uniprocessor, counterpart POWER cmd. processor can be interrupted after any completed instruction
for giving control to the ATTN I/F code, which then completes ALL its processing before cmd. processor
can continue.
On multiprocessors, while PU IPW$$CM on e.g. CPU1 is between any instruction or even instr. cycles, the
NP ATTN I/F code may run on CPU2 either partly or totally. Hence code at 'AI30-AI42' may get in trouble
with its counterpart in IPW$$CM at 'CPR970', where synchronization is established via flags of CPFG2
--> set IPW$$CM-'CPR970' NI instructions into NP mode and switch back by IPW$TDM PU. This is no
performance loss, because a central operator command appears seldom.

BSC/CTC Channel End Appendage (see $$NU-'CE00'): Entered at $$NU-'CE00' as NP unit under I/O
Supervisor task as NON re-enterant code, interrupts disabled. Task handles I/O events serialized, but
CCB Post-bit and CSW-status or Sense-info are only set in CCB, 'after' control has been returned from
appendage to Supervisor.

120 VSE Central Functions V7R1 VSE/POWER DRM

� For RJE appendage, posts TALM-TCEB, adds I/O partly completed LCB to end of TALM-CHEND
queue, posts POWER partition by TREADY
--> change code to post TALM-TCEB only after LCB chained ('CE70'), to cope with the PU work unit
of IPW$$LM-'LM15'
--> change code in Line Manger, which dequeues the oldest LCB from top(!) of TCBQ channel-end-
chain, what cannot be gated against appendage by CS (as done for PNET). Therefore set
IPW$$LM-'CHEND' de-queueing sequence into IPW$TDM NP mode and back to PU again. Thereby
the CCB traffic bit is already posted, before the CCB is getting interpreted.

� For PNET BSC or CTCA - where input buffer (belonging to partly posted CCB of NCB) is queued on
top of the PNET-Driver channel-end-queue (using CS already), where PNET Driver is posted, and
waiting Power partition dispatched by TREADY
--> no change required, since PU work unit of Line Driver IPW$$LD dequeues buffers with CS in
'LDBUFPR' routine
--> change required not to interpret CCB by Line Driver before final posting of Traffic bit. Therefore
check in BSC/CTC-IPW$$LD1 for NCB-CCB traffic bit already posted. If not, then enter IPW$WFE for
CCB-post-bit.

Hot Reader Appendage (see $$NU-'HR00'): Entered NP by serialized I/O Supvr Task for non re-
enterant processing, whenever a physical reader device presents 'device end', while no READ request
outstanding. That means, more cards have been put into the physical reader. The appendage communi-
cates with IPW$$PR-'PR64' (having requested 1Q34I/1Q35A).
The following interface changes are introduced to resolve existing and new multiprocessor problems:

1. --> remove TCDVE from TCG2. Instead use TCDVEB communication byte to get rid of OI/NI
instructions

2. --> exchange $WFI waiting in $$PR by $WFE TCEB waiting, and post Task ECB unconditionally from
Reader Appendage

3. --> run TCDVEB & $WFE sequence in $$PR ('PR70'-'PR85') as NP work unit, meaning 'serialized'
with NP Hot RDR Appendage. This is no performance impact. 1Q34I waiting event appears seldom.

SCV 0/3 Appendage (see $$NU-'SU00'): Entered NP by spooled partition task at $$NU-'SU00' with
interrupts disabled, no page fault happening.

For SVC 0 request, the POWER counterpart code in IPW$$XRE/XWE clears TLCB when current spooled
I/O CCB is handled, and only then accepts a new I/O request to be passed by the appendage. So there
is no real need for POWER code to run non parallel. However for safety and respecting, that subsequent
TREADY request enters NP mode anyhow ...
--> switch to NP at $$XRE-'XQ72' for CCB posting, TLCB clearing, and TREADY of spooled partition
--> switch to NP at $$XWE-'XX83' for the same reasons.

For SVC 3 - Quiesce request by Job Control, appendage code accepts it only, when counterpart exec.
reader has a read I/O pending, cannot select a next job (1Q34I), and has flagged itself POWWPART
(waiting for work) in spooled partition Comreg FLG1. Comreg update is done in NP mode anyhow, hence
--> no additional provisions required. Appendage will post task ECB with X'20' and $$NU Q-state proc-
essing will look aside and dispatch the exec. reader from $$XRE-'XQ16'.

SCV 90/91 Appendage (see $$NU-'SU90'): Entered NP under spooled part. task with interrupts disabled
and no page fault expected - only requested by Job Control for

1. SVC 90 from PUTACCT macro (expected to come from $JOBACCT rtn. only) with
R0->ECB|LEN|A(PUTACCT-Info) and R0 high order byte flagged X'90'

2. SVC 91 from Job Control (at end-of-job-step) with R0->ECB and R0 high order byte flagged X'91'

 Chapter 3. Program Organization 121

Appendage code passes request unconditionally to exec. reader TLCB. Explanation is, that these SVC's
may only arrive from Job Control when no spooled read I/O is outstanding, with IPW$XRE to be in $WFC
for TCEB then. This assumption will not be changed.
--> no code change required for exec. reader waiting for task ECB

Review Critical Modules for NP Work Units

IPW$$NU: All its services have been found ok, do not need NP mode. All exits and appendages
covered already.
Review of IPWSEGM I/F routine at 'SEG00' and its critical steps:

1. entered PU under spooled partition task right from macro expansion
2. may conditionally BAL to 3800 logic module, which decides on its own, if prot. key 0 (and hence NP

unit) is needed
3. at 'SEG80' get prot. key 0 for TIBFLAG5 update by OI - done automatically as NP work unit, as

required for Supvr. Ctl. Block update
4. give up prot. key 0, hence enter PU work unit again
5. return to IPWSEGM macro expansion in PU mode
6. ---> no code change required

SEGMENT Macro: Extension runs as PU work unit under user partition task, enters $$BSGMNT tran-
sient by SVC 2, gaining automatically prot. key 0 and NP, and returns from transient with key ¬= 0, hence
in PU mode, hence
--> no code change required.

122 VSE Central Functions V7R1 VSE/POWER DRM

 Services

 Resource Management

Resource management is responsible for the protection of serially-reusable resources (control blocks)
against concurrent access by more than one task. Entry to the services is made by means of the macro
instructions IPW$RSR (reserve resource) and IPW$RLR (release resource).

Reserve Resource: The reserve-resource service is entered when a VSE/POWER task issues an
IPW$RSR macro instruction.

The resource lockword (bytes 28-31 of each resource control block) is examined. If the resource is not
available (lock byte contains X'FF') the routine waits till it is available (by issuing IPW$WFL macro to task
management). Task management requires that the lockword reside in pfixed storage, otherwise task
selection might suffer a page fault. If the resource is available, ownership of the resource is established
by storing the address of the TCB of the owning task in bytes 1 to 3 of the lockword.

If the resource to be exclusively reserved is either the DMB or the ACB, and the resource is not available,
and it is a shared environment, the work-to-do ECB is posted in order to interrupt the T3 time interval.

│�────── Displacement ───────�│�──Lockword──�│
│ 28 bytes │ 4 bytes │
┌───────────────────────────────┬──┬───────────┐
│ │FF│TCB address│
│ └──┴───────────┤
│ � 1 │
│ │
│ any resource control block │
│ │
└──┘

Figure 38. Resource LOCKWORD of a VSE/POWER Control Block

Release Resource: This service is entered when a VSE/POWER task issues a IPW$RLR macro
instruction.

The resource lockword owner address is examined. If the task issuing the release request is not the
resource owner the request is ignored. Otherwise, the lock byte in the resource lockword is set to zero so
that the resource becomes available for use by any other task that may require it.

Real Storage Management

Real Storage Management controls the fixable storage area, whose maximum amount has been specified
by the SETPFIX LIMIT=nnnk value for the VSE/POWER partition. Units of real Work Space (as requested
by a task through IPW$RSW) are reserved and PFIX'd in this fixable area - and later released and
PFREE'd again, when returned to the fixable area by an IPW$RLW request.

The storage control block (SCB), with page control table (isomorphic map of all pages in fixed area) and
buffer control words (BCWs) are used to control the availability of pfixed address storage in the
VSE/POWER partition (see Figure 39). The page control table consists of a bit-map whereby each page
is represented by a bit. Bit positions with value 1 indicate that the corresponding page is fixed. Bit posi-
tions with value 0 represent pages which are either not yet fixed or explicitly freed via the PFREE macro
instruction.

The SCB is locked during handling of the reserve/release request.

 Chapter 3. Program Organization 123

At VSE/POWER initialization time, the first and last page are fixed. The first BCW is placed in the first
page at displacement X'18' and the last BCW is placed in the last two words of the last page. Each BCW
is 8 bytes long and contains the length of the preceding buffer area and the length of the following buffer
area; thus the BCWs are chained together by means of the length fields. If the buffer is in use, the length
is stored in complement form (negative value). Since real storage is acquired in multiple of 32 bytes, the
length fields contain the length divided by 32.

│�─────── Fixable Storage ─────────────────�│

Storage Control ┌───────────────────────┐ ┌────────┐
Block (SCB) │ � │ �
┌────────────┐ ┌──┴──┬───────────────────┬───┴─┬─────┬─────┐
│ │ ┌────────�│ BCW │ free │ BCW │/////│ BCW │
│ │ │ ├─────┴───────────────────┴─────┼─────┼─────┤
│ │ │ │//////////// used /////////////│ BCW │/////│
├────────────┤ │ ├───────────────────────────────┴─────┴─────┤
│Addr 1st BCW├────┘ │///////////// used ////////////////////////│
├────────────┤ ├─────────┬─────┬───────────────────────────┤
│Page Fix Map│ │/////////│ BCW │ │
└────────────┘ ├─────┬───┴─────┴──────────────┬─────┬──────┤

│ BCW │/////// used ///////////│ BCW │ │
 ├─────┴───────┬─────┬──────────┴─────┴┬─────┤

│ free │ BCW │/////// used ////│ BCW │
 ├─────────────┴─────┴─────────────────┴─────┤
 │ │
 = =
 │ free │
 │ ┌─────┤

│ │ BCW │
 └─────────────────────────────────────┴─────┘

Figure 39. Storage Management Control Blocks Relationship

Reserve Real Work Space: The reserve-work-space service is entered when a VSE/POWER task
issues a reserve work space (IPW$RSW) macro instruction. The BCW chain is scanned from the begin-
ning to determine whether the required buffer space is available. If the required buffer space is not avail-
able in the already fixed pages, new pages are fixed (PFIX) to satisfy the request. Space is then allocated
in the new page(s).

When buffer space is allocated by storage management, the BCW describing the free storage is updated
to reflect that the following buffer space is in use and a new BCW is built following the acquired buffer
area. The newly created BCW contains the address of the task requesting the buffer space and the length
of the preceding and following buffer space either free or in use. If the requested buffer space is smaller
than 4088 bytes, the buffer area is allocated in one page (no page crossing). If the system is running in
/370 mode the virtual and optionally the real address are passed to the calling routine. If the system is
running in virtual mode, the addresses passed are virtual addresses only.

If no buffer space is available and the requesting task has specified to wait, the task is put into wait state
($WFC) until work space becomes available. Additionally the operator is informed, via message 1Q59I,
that the task is waiting for real storage. At each subsequent real storage post, which is done whenever
real storage is returned to the real storage pool (by means of the IPW$RLW macro), the waiting task
regains control and attempts to reserve the requested storage. This process continues until the work
space request can be satisfied.

124 VSE Central Functions V7R1 VSE/POWER DRM

Release Real Work Space: The release-work-space service is entered when a VSE/POWER task
issues a release work space (IPW$RLW) macro instruction. The buffer is cleared (binary zero) and the
appropriate buffer control words are updated. If the page is no longer in use (all buffers are cleared) the
page is freed (PFREE). Additionally the real storage ECB is posted to show that now real storage is
available.

Real Storage Cushion: A short on storage cushion is held for authorized requestors whose func-
tion should complete even in short on real storage state. Authorized are currently:

� The PDISPLAY permanent command processor which wants to start a new task and needs therefore
a PS-TCB (print status task).

� The print status task which needs real storage for the print status work area.

� The execution reader which needs real storage to process the execution account record after SVC
90/91.

� Reserve queue record ($RQS) which needs a register save area before calling allocate DBLK group
with DMB locked already.

The cushion request is passed with IPW$RSW macro.

The real storage cushion is reserved during VSE/POWER initialization in IPW$$I7. IPW$$I7 contains a
table (REALCUSH) where the amount for each cushion buffer is defined. For each buffer a IPW$RSW is
done. The reserved real storage is marked as cushion element in the BCW and freed again via
IPW$RLW. Whereupon it is marked free but is not linked to adjacent free buffers. Instead its original
length is kept for authorized requests. Refer also to IPW$$I7 "Setup short on real storage cushion".

Exploitation of Fragmented Real/Virtual Storage: Shortcoming of releases previous to
VSE/POWER 5.1: For many SOS (Short-On-Storage) tasks only the first will be posted for sure after a
release storage request - others may continue waiting, in case the first task does not obtain its possibly
big storage amount.

Improved design: Every SOS task records the 'storage state' of its last failing reserve attempt. With every
release request the storage state (count 0-255) is incremented. Task selection of IPW$WFC will grant a
reserve request to ALL tasks on that modified storage state.

Note: Leftmost ECB byte of real/virtual storage control block is used to maintain the storage count.

Virtual Storage Management

Virtual storage management controls the GETVIS storage allocated to the VSE/POWER partition. Work
space in the GETVIS area for a task is reserved and released as requested by the calling routine.
Storage management makes use of the subpooling possibilities to control storage allocation. The smallest
unit of storage that may be reserved is 128 bytes.

Reserve Virtual Storage: The reserve-virtual-work space service is entered when a VSE/POWER
task issues a reserve virtual storage (IPW$RSV) macro instruction. The macro permits the caller to
specify a pool type with the request. According to the type, the work space is obtained from the correct
subpool within the GETVIS area. All pools are aligned on page boundary. If any subpool is empty it is
automatically released by VSE/AF so that the GETVIS storage is available for other subpools if required.

The service routine rounds up the requested length of the work space to a multiple of 128 and selects the
subpool anchor, according to the type specified by the caller. A GETVIS macro is executed to obtain the
work space from the GETVIS subpool. If the caller demanded alignment of the work space on page
boundary, the appropriate request is passed to VSE/AF.

 Chapter 3. Program Organization 125

If work space is available the routine allocates the storage area to the caller and initializes the work space
header (also referred as virtual buffer control area). The header contains control information used by
virtual storage management and precedes each acquired piece of storage.

The work space is chained as last entry in one of following queues:

� Own task queue (head and tail pointer are contained in task TCB)

� Other task queue (head and tail pointer are contained in TCB of other task)

� System queue (head and tail pointer are contained in the virtual storage control block or any other
major control block).

 │�───VBCA──�│
TCB │ │
┌────────────┐ ┌──┬──┬──┬──┼────────────────//────────────────┐
│ │ ┌──┬────�│LL│ID│FW│ │ Work Space � │
= = │ │ └──┴──┴─┬┴──┴────────────────//────────────────┘
│ │ │ └─────────────┼──┐
├────────────┤ │ ┌─────────────┘ │
│Head Pointer├──┘ │ ┌──┬──┬──┬─┴┬─────────────//───────┐
├────────────┤ ├────�│LL│ID│FW│BW│ Work Space │
│Tail Pointer├──┐ │ └──┴──┴─┬┴──┴─────────────//───────┘
├────────────┤ │ └─────────────┼──┐
│ │ ├────────────────┘ │
│ │ │ ┌──┬──┬──┬─┴┬────────────────//─────────────┐
└────────────┘ └───────�│LL│ID│ │BW│ Work Space │
 ├──┴──┴──┴──┴────────────────//─────────────┤
 │ │

│�────────── length (LL) ──────────────────�│

Note:
 LL = Length of acquired work space (rounded up to next multiple of 128)
 ID = VSE/POWER assigned subpool identifier
 FW = Forward pointer, addressing next work space in chain
 BW = Backward pointer, addressing previous work space in chain
 � = can be in different GETVIS subpools

Figure 40. Virtual Storage Relationship

The queue also determines the owner of the work space. All work space anchored to the task queue is
automatically released when the task terminates. The virtual storage queues are double-threaded. Each
header (VBCA) within the queue points to the next VBCA as well as to the previous VBCA. The queue
itself is addressed by the head and tail pointer.

If enough work space is not available and the caller had specified WAIT=YES, which is the default, the
task is put into wait state ($WFS) until work space becomes available. Additionally the operator is
informed, via message 1Q85I, that the task is waiting for virtual storage. At each subsequent virtual
storage post, which is done whenever virtual storage is returned to the GETVIS pool (by means of the
IPW$RLV macro), the waiting task regains control and attempts to reserve the requested storage. This
process continues until the work space request can be satisfied. If, however, WAIT=COND was specified
and immediate termination is posted in the caller's task TCB, return is made to the calling task. In that
case, the routine sets register 1 to zero to indicate that no work space was allocated.

If the work space request cannot be satisfied immediately and the caller did not elect to wait, the service
routine sets the GETVIS return code in R0 and R1 to zero to indicate no work space available and returns
to the caller.

126 VSE Central Functions V7R1 VSE/POWER DRM

Release Virtual Storage: The release-virtual-work space service is entered when a VSE/POWER
task issues a release virtual storage (IPW$RLV) macro instruction. The routine removes the storage area
from the virtual storage queue and frees the storage area by issuing the VSE/AF FREEVIS macro. If the
storage area to be freed is not a member of the task virtual storage queue, the head and tail address must
be provided by the caller. The routine posts the virtual storage ECB to show that storage is now available
and returns to the caller.

Unchain Virtual Storage Element: The unchain-virtual-storage service is entered when a
VSE/POWER task issues an unchain virtual storage (IPW$UNV) macro instruction. The routine performs
two functions:

1. A specific storage element, addressed by register 1, is removed from the specified virtual storage
queue and chained to another queue.

2. The first element of a specified queue, if any, is unchained and chained at the tail of the issuing task
virtual storage queue. The address of the element is returned in register 1. If the queue is empty,
register 1 is set to zero.

 Message Service

Local Message Service: See also “Message Handler Overview” on page 143 and “Message
Reference” on page 401. The local message service is invoked by:

� a IPW$WTO or IPW$WTR macro instruction issued by the calling routine. It performs a console write
operation or a write operation followed by a read operation, defined by information supplied by the
calling routine in the message request word located in the TCB. (See Figure 49 on page 136). The
message request word and reply request word contain the addresses of message and reply areas of
the calling routine.

� a IPW$GAM macro instruction, used to obtain a message from the message definition module
IPW$$MM, which contains most local and remote messages. It performs one of the following func-
tions:
– Move message into user-supplied area
– Return message address
– Write message to central operator
– Add message to remote message queue

There is a message control block (MMB), which is locked for the duration of the operation. It contains a
channel program and CCB for issuing the message if the WTO/WTOR should fail, the message output
area and the reply input area. This resource is used to serialize parts of the IPW$$MS code.

Remote Message Service: The remote message service is also used to support remote message
handling by the use of the IPW$RMS macro instruction. It performs one of the following functions:

� Add to remote message queue
� Delete from remote message queue
� Get message from remote message queue
� Get first/next ALLUSER type message
� Add message to ALLUSER type message queue
� Delete ALLUSER type message(s)

The function to be performed is indicated in the function indicator byte supplied by the caller. Similar to the
local message control block, there exists a remote message control block, which is locked for the duration
of the operation. The control block, which is set up at VSE/POWER initialization time, contains among
others, the caller's registers at entry point of the routine.

 Chapter 3. Program Organization 127

Nodal Message Service: This routine is entered when a VSE/POWER task issues a IPW$ICS
REQ=ADD macro instruction. The routine locks the remote message control block for the duration of the
operation. The routine performs one of following functions:

� Adds a message which is already in nodal message record (NMR) format at the tail of the message
queue of the appropriate node control block. The destination of the NMR is defined in the NMR itself.

Note: The NMR is used to send messages and commands within the network.

� Builds a nodal message record and adds this record to the message queue of the appropriate node
control block. The message id and the target node and remote name are supplied by the caller in the
message request word located in the TCB of the calling task.

Note: The following path determination scheme is used to transmit the nodal message record:

1. If a connection exists to the prime (adjacent) route node, the NMR is queued on this NCB.

2. If no such connection exists but a connection exists to the alternate route node, if one was specified,
the NMR is queued on this NCB.

3. Otherwise, the NAT table is examined if the prime or alternate routing node is connected to another
system, participating in the shared spooling complex. If so, the NMR is passed to the slot manager to
be forwarded across shared spool.

Notify Message Service Notify Service is entered when a task issues a notify macro (IPW$NTY)
instruction. There are two types of notify services, which can be selected by specifying or omitting the
QCM operand of the notify macro.

Specifying the QCM operand: The QCM operand of the notify macro is used to store the completion
message generated by VSE/POWER after job completion into a piece of virtual storage for later retrieval
by a user written application program. The logical address of this piece of storage is defined by the com-
bination of the XPCC application ID and the Spool-access support user ID which are specified when the
job is submitted to VSE/POWER. Later at the time of retrieval, the combination of application- and userid
ID has to be specified again by the message retrieving program. The messages can be retrieved from any
user written program by means of the GCM service of VSE/POWER's Spool-access support.

This type of notify service is applicable only to tasks which process a job which has been submitted to
VSE/POWER via the Spool-access support interface. The job must be submitted with the 'queue com-
pletion message' option (SPLGFB1 equated to SPLGF1QM) specified in the SPL.

In order to invoke the service QCM=YES must be coded in the macro. The service is used by an exe-
cution reader task.

In order to make program driven evaluation of completion messages easier the messages are stored in
fixed format. The layout of one message is given by the Spool-access support macro PWRSPL in DSECT
JCMDS. The messages may be passed over the network. Therefore a message is always converted to
nodal message record format at the time of creation. In the following such a message is called a fixed
format Nodal Message Record (f.f.NMR).

Job Generation Messages: Module IPW$$XWE generates fixed format generation messages, if the
Spool-access support user requested the generation by specifying SPLGF1QQ instead of SPLGF1QM.
Whenever a DISP=I operand is encountered in a * $$ PUN statement, and a new VSE/POWER job is
generated such a message is created. A fixed format job generation message is accessable by DSECT
JGMDS.

Job Generation Messages and Job Completion Messages are called "Job Event Messages" in this docu-
ment.

128 VSE Central Functions V7R1 VSE/POWER DRM

Local Message Queuing: If the job entered the system with with the 'queue completion message' option,
VSE/POWER flags the job with a bit (QRO2QCM) defined in the queue record. IPW$$XRE checks the flag
and decides whether the job completion message has to be issued by means of the IPW$NTY macro with
or without the 'QCM=YES' operand in order to queue the message to a specific message queue. If the
macro is issued with the QCM operand, the message is queued to a specific message queue. This
message queue is defined by the Spool-access user by the Spool-access application Id and the Spool-
access user Id when the job is submitted. Then the The macro calls the notify service of IPW$$NU, from
where IPW$$MS is called. The job completion message is converted from internal format to a fixed format
NMR and returned to IPW$$NU. Finally, if the message is destined for the local node, IPW$$NU calls
IPW$$NS where the message is queued to the the message queue (Figure 41).

 ┌──┐ ┌──┐ ┌──┐ ┌──┐
│ │job ┌───┐job │ │1Q5DI│ │NMR │ │ ff

 │LR├───�│RDR│───�│XR│─────�NU│────�NS├──────────┐
│ │ └───┘ │ │ │ │ff │ │ ┌┬┬┬┬┬�──┐
└�─┘ └──┘ └┬�┘ └──┘ └┴┴┴┴┴┴──┘
│ job 1Q5DI ││ ff XPCC-applid.userid

 ┌┴──┐ ┌───┐ ┌�┴┐nmr message queue
 │XTP│�──┤SAS│ │ │

│ │ │ │ │MS│
 └───┘ └─�─┘ │ │
 │ └──┘ ff: fixed format

┌─┴──────────┐ NMR: nodal message record
│job │ SAS: Spool-access support

 │submitting │
 │user program│
 └────────────┘

Figure 41. Local Job Submission and Notification Message Queuing

Local Shared System: In contrast to local message processing the nucleus calls IPW$$MS again rather
than passing the message to IPW$$NS after the fixed format NMR has been created. Then IPW$$MS
provides for that the fixed format NMR is added to the Queue Control Area (QCA). The timer task
(IPW$$TI) at the target system retrieves the NMR from the QCA and gives control to IPW$$MX, which
calls finally IPW$$NS. IPW$$NS queues then the message to the message queue (Figure 42).

 System A System B
 ┌───────────────────┐ ┌───────────────────────┐
 │ │ │ │

│ ┌──┐ ┌──┐ ┌──┐ │ │ ┌──┐ ┌──┐ ┌──┐ │
│ │ │ │ │ │ │NMR│ ┌───┐ │ │ │NMR │ │NMR│ │ │

 │┌─�XR├─�NU├─�MS├───┼─�QCA├─┼───┤TI├────�MX├───�NS│ │
││ │ │ │ │ │ │ff │ └───┘ │ │ │ff │ │ff │ │ │
││ └──┘ └──┘ └──┘ │ ┌───┐ │ └┬�┘ └──┘ └┬─┘ │

 ││ 1Q5DI │ │ │ │ ┌�┴┐ ┌───┘ │
││ │ │RDR│ │ │SQ│ � │

 │└──────────────────┼─┼───┼─┼─┐ │ │ ┌┬┬┬┬┬─────┐ │
│ │ │ │ │ � └──┘ └┴┴┴┴┴─────┘ │
└───────────────────┘ └───┘ └─┼─────────────────────┘

 │
 │ job
 │

Figure 42. Shared System Notify Message Queuing

 Chapter 3. Program Organization 129

Networking and Message Queuing After the f.f. NMR has been created at the message transmitting
system, the f.f. NMR is anchored in the NCB and the line driver is posted. The message is then trans-
mitted by IPW$$NT to the next node. At the receiver's side, the NMR is received by IPW$$NR, and
IPW$$NR2 respectively, where message distribution IPW$$MX is called, which either

1. passes the NMR to the nucleus, which then calls IPW$$NS to queue the message, if the final
system-id is reached (Figure 43) or

2. stores the NMR into the QCA via IPW$$SQ (build slot routine), when the message has to be passed
to another system-id which participates in the shared system complex. The timer task at the final
system passes the NMR to IPW$$NS, where the message is then queued (Figure 44 on page 131).

 ┌───┐
 │ │
 │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │

│ │ │ │ │1Q5DI │ │ff ┌───┐ff │ │ff │
 ┌────┼─�│XR├──────�NU│─────�│MS│───┤NCB├────�│NT│────┼────�────┐
│ │ │ │ │ │ │ │NMR└───┘NMR │ │NMR │ │
│ │ └──┘ └──┘ └──┘ └──┘ │ │
 │ │ │ │
 : └───┘ │
 : Node 1 (message transmitter) │
 : │
 │ │
 │ ┌───┐ │
 │ │ │ │
 └────┼───�───┼───job │
 │ │ │
 │ │ │
 │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │
 ff │ │ │ff │ │ff │ │ │ │ ┌┬┬┬┬┬┬┐ │ │
 ┌────┼──�NR├──────�MX│─────�│NU│────�│NS├───�│││││││ │ �
 │NMR │ │ │NMR │ │NMR │ │ │ │ └┴┴┴┴┴┴┘ │ │
│ │ └──┘ └──┘ └──┘ └──┘ msg queue│ │
 │ │ │ │
 │ └───┘ │
 │ node 2 (message receiver) │
 │ │
 └─────────────────────�──┘

Figure 43. Job Completion Message Queuing at Receiving System

130 VSE Central Functions V7R1 VSE/POWER DRM

Shared Receiving System

 ┌───┐
 │ │
 │System A System B │
 │┌────────────────────────┐ ┌──────────────────────────────┐│
││┌──┐ ┌──┐ ┌──┐ │ │┌──┐ ┌──┐ ┌──┐ ││
│││ │ ff │ │ ff │ │ │ ┌───┐ ││ │ff │ │ ff │ │ ││
 │││NR├─────�MX├─────�SQ├──┼─�QCA├───┼�TI├────�MX├─────�NS│ ││
 │││ │ NMR │ │ NMR │ │ │ └───┘ ││ │NMR │ │ NMR │ │ ││
││└�─┘ └──┘ └──┘ │ │└┬�┘ └──┘ └┬─┘ ││
 ││ │ │ │ ││ │ ││
 ││ │ │ │ ││ └───┐ ││
 ││ │ │ │┌�│┐ │ ││
 ││ │ │ ││ │ ┌┬┬┬┬�─────┐ ││
 ││ │ │ ││SQ│ ││││││ │ ││
 ││ � │ ││ │ └┴┴┴┴┴─────┘ ││
 ││ │ │ │└──┘ message queue││
 ││ │ │ │ ││
 ││ │ │ │ ┌─────────┐ ││
 ││ │ │ │ │ │ ││
 │└─┼──────────────────────┘ └──────────────┼─────────┼─────┘│
 └──┼───┼─────────┼──────┘
 │ ┌─────────────────┐ │ �

│ �──┘ └───� │ │
 │ f.f.NMR job │ │

└─────────�─────────── N E T W O R K �────────┘ │

 �──┐ ┌───� job
 └─────────────────┘

Figure 44. Job Completion Message Queuing at Shared Receiving System

Shared Processing System: The next scenario shows the job and completion message flow when the job
enters at node A but is processed on node B which is a shared VSE/POWER system. The job is received
on system B1 but is processed on system B2. The resulting job completion message is converted to fixed
format in IPW$$MS and stored to the QCA by means of the IPW$IQS service. The timer task of system
B1 then picks up the message from the QCA, and queues the fixed format message to the NCB by means
of the IPW$ICS service macro call. Then the message is transmitted by the network transmitter to node A.
At node A, the fixed format message is received and finally stored in the fixed format message queue
(Figure 45 on page 132).

 Chapter 3. Program Organization 131

 job
 │ Node A Node B
 ┌─┬──┴─────┬──────────────┐ ┌────────────────────┬─────────────────┐
 │ │ SAS │ │ │ System B1 │ System B2 │
 │ └──┬─────┘ │ │ │ │
│ │ ┌──┐ │ │ ┌───┐ ┌───┐ │ ┌──┐ ┌──┐ │
│ └─────────────�│ │ │ │ │ │ │ │ ┌─┴─┐ │ │job│ │ │
 │ ┌──┐ │NT├──┼───┼──�│NR ├──�|LR |─�│RDR├──�│TI├──�│XR│ │
│ │ │ ┌┬┬┬┬┬┐ │ │ │ │ │ │ │ │ └─┬─┘ │ │ │ │ │
│ │NS├───┼�│││││ └──┘ │ │ └───┘ └───┘ │ └──┘ └─┬┘ │
│ │ │ └┴┴┴┴┴┘ │ │ │ msg │ │
 │ └�─┘ message │ │ │ � │
 │ │ff NMR queue │ │ │ ┌──┐msg┌──┐ │
│ ┌┴─┐ │ │ │ │ │�──┤ │ │
│ │ │ ┌────────────────┘ │ │ │MS├──�│NU│ │
│ │NU│ │ │ │ │ │ff │ │ │
│ │ │ │ ┌──────────────────┘ │ └──┘NMR└─┬┘ │
│ └�─┘ │ │ │ │ │
 │ │ │ │ │ � │
│ ┌┴─┐ │ │ ┌──┐ ┌──┐ ┌──┐ff │ ff ┌──┐ ┌──┐ │
│ │ │ │ │ │ │IPW$ICS│ │ │ │ ┌─┴─┐ │ │ff │ │ │
│ │MX│ │ │ │NU│�──────┤MX│ │TI│�──┤QCA│�──┤SQ│�──┤MS│ │
│ │ │ │ │ │ │ff NMR │ │ │ │NMR└─┬─┘NMR│ │NMR│ │ │
│ └�─┘ │ │ └┬─┘ └──┘ └┬�┘ │ └──┘ └──┘ │
 │ │ │ │ � � ││ │ IPW$IQS │
│ ┌┴─┐ │ │ ┌──┐ ┌──┐ │ �│ │ │
│ │ │ │ │ │ │ ┌───┐ │ │ │ ┌─┴┐ │ │
 │ │NR│�─┼─┼──┤NT│�┤NCB│�┤MS│ IPW$GMS │ │ │ │
│ │ │ │ │ │ │ └───┘ │ │ └───│SQ│ │ │
│ └──┘ │ │ └──┘ ff └──┘ │ │ │ │
 │ │ │ NMR └──┘ │ │
 │ │ │ │ │
 │ │ │ │ │
 │ │ │ │ │
 └────────┘ └───────────────────────────────────────┴─────────────────┘

Figure 45. Message Flow with Shared Processing System and Network

Message Handling at Local Node and System: The following summarizes all processing of f.f.NMR at the
local VSE/POWER node and system.

132 VSE Central Functions V7R1 VSE/POWER DRM

 ┌────────────────────┐ ┌──────────────────┐ ┌─────────────────────┐
 │ IPW$$SQ │ │ IPW$XRE │ │ IPW$XWE │
 │IPW$$TI───� │ │ │ │ │ │

│ � │ │ IPW$NTY QCM=YES │ │ IPW$NTY NMR=(R1) │
 │ IPW$RLW IPW$GMS││ │ �│ │ │ �│ │
 └───────�───────────┼┘ └────────┼┼────────┘ └──────────┼┼─────────┘
 └─────── │NMR ││ ││
 ┌─────────┐ � │ │
 │IPW$$NR2 │ ┌─────� IPW$$MX │ IPW$$NU │

│ │ │ +2� │ │ │ �
 │ │ │ � │ │ │
 │ IPW$GMS─┼──┘ our node yes � │ │

│ │ �─┼── and sysid?────�└──────� NS1� �──────────┘ ┌────────────────────────┐
│ │ │ │ no � │ │IPW$$NS │
│ │ │ ┌───our node? │ � yes no │ ┌┬┬┬┬──────┐ │
│ │ │ │yes │ no │ local? ──────────other ─┬───┼────────� │││││ │ │
│ │ │ │ │ │ │ sysid? │ │ └┴┴┴┴──────┘ │
│ │ │ │ MD6�� │ │ no │ │ f.f.msg queue │
│ │ │ │ │ │ � │ │ │ │
│ │ │ │ │ │ � yes │ │ RTN �────┘ │
│ │ │RTN�────PNET exists? │ NM1� │ └────────────────────────┘
│ │ │ │ no │ │ RTN�─PNET exists? │
│ │ │ │ � │ │ yes │
│ │ │ │ IPW$ICS────────┘ � │
│ │ │RTN�─────────── NM2� �─────────────────┘ ┌────────────────────────┐
│ │ │ │ │ │IPW$$MS │
│ � │ └──�MD7�� │ │ │
│ IPW$RLV │ │our node but ├─────────────────────────┼�+2�────┐ │
│ NMR │ │other sysid │�─── │ � yes │
│ │ │ │ │ other node?───�NCB │

 └─────────┘ └───────────� SQ │ │ │
 RTN �─────────── │ │ │ other sysid?──�QCA │
 │ │ │ │ │

� � │ RTN �──┘ │
 QCA RTN └────────────────────────┘

Figure 46. Job Event Message Queuing. Sources of Fixed Format Messages and Message Distribution

Final Message Queuing: A f.f. NMR is finally stored in the GETVIS area of the VSE/POWER partition by
module IPW$$NS. The piece of virtual storage for one message is logically represented by an entry of the
- as it is called - 'fixed format message queue'. For each application- and user-ID combination one unique
message queue exists. The capacity of this message queue is defined by the SET JCMQ autostart state-
ment. A queue size in the range from 0 to 99 entries can be specified. The specified size is stored in the
Communicator Information Block 2 (CI2). One message queue is identified by an Application Commu-
nicator Information Element (ACIE), that is, for each single ACIE one fixed format message queue exists.
The ACIEs are chained. The first ACIE of the chain is pointed to by the CI2. The CI2 is created at
initialization time by the cross partition master task and is located in fixed storage. One single ACIE has
its own fixed format message queue associated. ACIEs and the fixed format message queues are located
in virtual storage (Figure 47 on page 134). The ACIE pointer of the last ACIE in chain contains X'00'.

 Chapter 3. Program Organization 133

 CAT
 ┌───────────┐ CI2 (real storage)
 X'12�'│ CACI2 ├────────────�┌─────────┐
 └───────────┘ │ │
 │ │
 ├─────────┤
 │ │
 ├─────────┤
 ┌───┤ACIE@ │
 │ ├─────────┤
 │ │ │
 │ │ │
 │ │ │
 │ │ │
 │ ├─────────┤
 │ │ │
 │ └─────────┘
 │
 │
 │ ACIE's (virtual storage)
 │ ┌─────────┐
 └───�APPLID ├┐
 ├─────────┤├┐
 │USERID │││ message queues
 ├─────────┤││ ┌┬┬┬┬┬─────┬┬┬┬┬┐
 │msg @ ├───────�││││││.....│││││├┐
 ├─────────┤││ └┼┼┼┼┼┬────┴┼┼┼┼┤├┐
 │ │││ └┼┼┼┼┼┬────┴┼┼┼┼┤│
 ├─────────┤││ └┴┴┴┴┴─────┴┴┴┴┴┘

│ │││ 1 message queue for
 │ │││ each ACIE
 └┬────────┘││

└┬────────┘│ 1 ACIE for each
 └─────────┘ XPCC-applid.Userid

Figure 47. Control Block Relationship for Communicator Information Block 2

Module IPW$$NS has the following tasks for the 'QCM' service

1. conversion of the f.f. NMR to the message queue format
2. creation of an ACIE if required, and
3. appending the converted f.f. NMR to the message queue of the relevant ACIE.
4. posting a cross partition user task waiting for job event messages.

Message passing and queuing works also for job generation messages. Such messages are generated
by an execution writer task when a new job has been created by means of a * $$ PUN DISP=I statement.

Job Completion and Job Generation Messages are called Job Event Messages in the following text.

Conversion from f.f. NMR format to message queue format is shown in Figure 48 on page 135.

134 VSE Central Functions V7R1 VSE/POWER DRM

 │ │
│ fixed format Nodal Message Record │

 │�──�│
 │ │ │
 │ │�────────────────────NMRMSG───────────────────────────�│
 │ │ │

│ 3� │ 8 8 96 2� │
 ├────────┼───────┬────────┬─────────────────────────────┬────────┤

│NMR │XPCC- │ record │ job event message │ free │
│prefix │applid │ prefix │ in fixed format │ │

 └────────┴───────┴────────┴─────────────────────────────┴────────┘
 │ │ │
 │ │ │ │ │
 │ │ │ │ │
 │ � │ � │
 │ │ │
 │ 8 │ 96 │
 fixed format ┌────────┬─────────────────────────────┐

job event │ header│ job event message │
message │ │ in fixed format │

 └────────┴─────────────────────────────┘
RECPRFIX JCMDS or JGMDS

Figure 48. Conversion from f.f. NMR to Message Queue Format

The layout of one queued message is given by the DSECTS JCMDS or JGMDS, and RECPRFIX, both
contained in VSE/POWER's PWRSPL macro.

Locking Mechanism In order to avoid uncontrolled access to the message queues by different message
queuing and de-queuing tasks a locking mechanism is established for the CI2. This is done by the
IPW$RSR macro and by the IPW$RLR macro, respectively. The nucleus IPW$$NU reserves the CI2
before the notify service (IPW$$NS) is called. After the message is queued in IPW$$NS, the task returns
to the nucleus where the CI2 is then released. Locking of the CI2 is checked by IPW$$NS when a
message is to be queued as well as by IPW$$XTM, when a message is retrieved by the Spool-access
GCM service.

Omitting the QCM operand: This routine is entered when a VSE/POWER task issues a notify
(IPW$NTY) macro instruction without specifying the QCM operand. If the message is already in NMR
format, the routine queues the message to the VSE/ICCF notify message queue. In all other cases the
routine acts as a distributor. Depending on the destination, the routine directs the messages to:

 � Local operator
� Any remote operator locally attached
� Any local VSE/ICCF user
� Any user on another node
� Any subsystem running on the local system

The message id, target node and remote name, if applicable, are supplied by the calling task in the
message request word and in register 0.

Note: No information is passed back to the calling task on whether or not the message was successfully
queued.

The variable portions of the message text are converted to indicate information pertinent to the specific
task or queue entry when combined with this message.

 Chapter 3. Program Organization 135

Figure 49. Message Service Control Block Relationship

Queue File Server

The Queue file server consists of the following set of routines:

� Get queue record
� Modify queue record
� Write back queue record to disk

Get Queue Record: The service routine is invoked by means of the IPW$GQR macro instruction.
On entry, register 1 addresses the I/O request word, supplied by the calling task. The I/O request word
defines the queue record supposed to be obtained by means of the relative queue record number and the
queue record area address. See Figure 50 on page 138 for the layout of the control block. The queue
file MCB is locked for the duration of the processing.

The routine calculates the relative address of the compartment holding the appropriate queue record by
multiplying the relative queue record number by the compartment size (currently 384). The
VIO/GETVIS-MOVE subroutine, contained in the VSE/POWER nucleus, is then called to move the queue
record into the area supplied by the calling task.

136 VSE Central Functions V7R1 VSE/POWER DRM

Modify Queue Record: The service routine is invoked by means of the IPW$MQR macro instruc-
tion. On entry, register 1 addresses the I/O request word, supplied by the calling task. The I/O request
word defines the queue record to be updated. The update of the queue record is performed only in the
storage copy of the queue file. The queue file MCB is locked for the duration of the processing.

The routine calculates the relative address of the compartment holding the appropriate queue record by
multiplying the relative queue record number by the compartment size (currently 384). The
VIO/GETVIS-MOVE subroutine is then called to move the queue record addressed by the I/O request
word into the appropriate compartment in the VIO or GETVIS space.

When running shared, the 'refresh' flag of the own SYSID is set in the DMB (refresh table) recording that
the appropriate queue record block is modified. This causes that the timer task will write back all changed
queue record blocks to disk at the end of the T1 interval.

Write Queue Record: The service routine is invoked by means of the IPW$WQR macro instruction.
On entry, register 1 addresses the I/O request word, supplied by the calling task. The I/O request word
defines the queue record to be written. The update of the queue record is done both in the storage copy
of the queue file and the queue file on disk. On the contrary to the IPW$MQR macro, the macro must be
coded when the status of a queue record has been changed. The queue file MCB is locked for the dura-
tion of the processing.

The routine calculates the relative address of the compartment holding the appropriate queue record by
multiplying the relative queue record number by the compartment size (currently 384). The
VIO/GETVIS-MOVE subroutine is then called to move the queue record, addressed by the I/O request
word, into the appropriate compartment in the VIO or GETVIS space.

The IPW$WTQ macro is issued in order to write the queue record block back to disk and if running shared
the refresh bits are set to inform the other systems that the appropriate queue record block was changed;
the 'refresh' bit representing the own system is turned off. The queue record block number is calculated
by dividing the relative queue record number by the number of queue records per block.

VIO/GETVIS-MOVE Subroutine: This subroutine is used to move data from/to the VIO or GETVIS
space, depending on where the copy of the queue file on disk actually resides in storage.

If it resides in VIO space, the routine makes use of asynchronous processing by using VIO POINT to
address the appropriate VIO block prior to moving data from/to the VIO space, which is performed in
chunks of VIO blocks. First a check is made, if the appropriate VIO block is addressable. If not, a VIO
POINT macro is issued followed by a wait (IPW$WFC) before the move is done. If the caller's supplied
length is greater than the VIO block size, the next VIO block is made addressable, the to and from
addresses are adjusted and the next piece is moved. This process continues until the entire area is
moved to/from the VIO space.

If the queue file copy resides in partition GETVIS space, the requested move RBA address is simply
added to the start address of the queue file, and the from/to move request is done with a single Move-
Long instruction. For that instruction the addressing mode is switched from Amode-24 to Amode-31 and
back again, because the Q-file may reside beyond the 16MB line (when sufficient partition ALLOC has
been provided). Any page fault occurring during execution of the MVCL is handled by the Page Fault
Pre-Processor, which records the Amode-31 using a TCB flag, so that later at re-dispatch, the task can
resume the MVCL with correct addressing mode.

Note: Any error condition returned by the supervisor as result of a VIO POINT SVC will cause
VSE/POWER to terminate abnormally with message 1QB5I. Any move request from/to a queue file entry
outside the copy in VIO or GETVIS will also cause VSE/POWER to terminate abnormally with message
1QZ0I RC=21/23.

 Chapter 3. Program Organization 137

 Disk Service

Disk service is invoked by IPWRDQ, IPWWTQ, IPW$RDD, or IPW$WTD macro instructions issued by
the calling routine. It reads or writes records to the queue file or the data file defined by the information
supplied by the calling routine in the I/O request words in the TCB. See Figure 51 on page 140.

The I/O request word contains the relative DBLK number, the virtual address of the logical data area
(LDA) and optionally, the length of the data area used. If no length is specified, the I/O will be done in the
length of a DBLK. For a queue file I/O, the I/O request word contains the relative queue record block
number and optionally the address of the storage area and its length (master record only).

 ┌───────────────┬───────────────┬───────┬───┬───┐
 │ R R R R │ A A A A │ L L │ C │ F │
 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

� 4 8 1� 11
 where:

RRRR ─ Relative queue record block or DBLK number
AAAA ─ Storage area address
LL ─ Length of area to be read/written
C ─ Read/write code for queue/data file

 F ─ Flag byte

Figure 50. I/O Request Word

There is one MCB for every queue or data file extent, which is locked for the duration of the operation. It
contains the CCB and skeleton channel program, which is appropriately initialized for each I/O operation.
Each MCB is equipped with an I/O area in the length of a queue record block or master record, whatever
is larger, for the queue file or a DBLK for the data file. This I/O area is fixed, anchored to the MCB, and
used for each I/O. If the I/O area occupies more than one page and running in /370 mode, an IDAL list is
built at VSE/POWER initialization time and the channel program is updated to reflect the IDAL list.

The disk service routine performs the following functions:

� Read/Write operation queue file:

1. For a write operation, the 'VIO/GETVIS-MOVE' subroutine is called to move the queue record
block from VIO or GETVIS space into the I/O area. The queue record block address is calculated
by multiplying the relative block number by the queue record block size. If the master record is to
be written, it is moved from the caller's provided area into the I/O buffer. If the queue record block
to be written is marked “inaccessible” in the defect queue record block map, the actual I/O opera-
tion is suppressed.

2. The seek address is calculated from the queue record block number by dividing it by the number
of blocks per track on the particular device, obtaining the relative track number within the extent
(the remainder + 1 is the relative record number on the track) and dividing the relative track
number by the number of tracks per cylinder on the particular device type. The absolute track
number is obtained by adding the begin extent track number. This value is then divided by the
number of tracks per cylinder. The remainder is the track number; the absolute cylinder number is
obtained by adding the begin extent cylinder number to the quotient. Both the number of blocks
per track and the number of tracks per cylinder are maintained in the MCB. If the queue file
resides on a FBA device, the relative FBA block number will be calculated by multiplying the rela-
tive queue record block number by the unit of transfer (number of FBA blocks per queue record
block).

3. Then the pre-built channel program is completed with seek address and set sector value, if appli-
cable. Next, the channel program is executed and a wait is performed (IPW$WFC). After com-

138 VSE Central Functions V7R1 VSE/POWER DRM

pletion tests for wrong length and unrecoverable I/O errors are performed. If such an error is
encountered, the I/O error handling routine is called.

4. For a read operation, the I/O area is moved into the VIO space by invoking the 'VIO Move' subrou-
tine. If the master record was read in, it is moved into the storage area, supplied by the caller,
instead.

If the queue record block to be read is marked “inaccessible” in the defect queue record block map,
the actual I/O operation is suppressed and the appropriate VIO or GETVIS space is initialized with "B"
signalling "bad" queue record block both in VIO/GETVIS area and for queue file recovery.

Note: When a system operates with an “in-storage” queue file only (after queue file write I/O error,
which could not be repaired), all queue record block and master record read/write I/Os will be sup-
pressed.

� Read/write operation data file:

1. The data file MCB chain is scanned to locate the MCB, the DBLK to be read in or written belongs
to. If the specified DBLK number is outside the total range

– message 1QZ0I with reason code 1 is issued and VSE/POWER is abnormally terminated, pro-
vided it is still in the initialization period.

– an IDUMP in flight is taken and the requesting task is handled by IPW$$TR as if an I/O error
had occurred on the data file, indicated by message 1Q6GA or 1Q6HA or 1Q6KA.

2. The seek address is obtained by first calculating the DBLK number relative to the begin of the
extent. The following formula is used:

relative DBLK number within extent =
DBLK number - DBLK number of first DBLK in extent

This value is then divided by the number of DBLKs per track obtaining the track number relative to
the begin of the extent. The remainder + 1 is the absolute record number on the track. The abso-
lute track number is obtained by adding the begin extent track number (this value is saved at
VSE/POWER initialization time in the MCB). The absolute track number is then divided by the
number of tracks per cylinder yielding the conventional cylinder, track and record address.

If the extent resides on an FBA device, the appropriate FBA block number is calculated by multi-
plying the relative DBLK number by the unit of transfer (number of FBA blocks per DBLK) yielding
the relative FBA block number.

3. Read Operation: The channel program is completed with seek address and the I/O is started.
After the I/O completed, the contents of the I/O buffer is moved into the logical data area, supplied
by the calling task in the length supplied by the caller. Any page faults, which might occur while
moving the data into the virtual, logical data area are handled by the VSE/POWER page fault
handler and do not impact other VSE/POWER tasks running.

Write Operation: The logical data area, supplied by the calling task is moved into the I/O area in
the length also supplied by the caller. The channel program set up at VSE/POWER initialization
time is then completed with the seek address or locate word (FBA only) and the I/O is started
using EXCP real. Once the I/O is started, immediate return is made to the caller, unless the caller
requested to wait for I/O completion. In the first case, the I/O completion is checked the next time
an I/O is done for the same data file extent.

 Chapter 3. Program Organization 139

 CAT MCB Q1
 ┌───────┐ ┌────────�┌────────┐
 │MCB │ │ │Lockword│
 │Address│ │ ├────────┤

│Table │ │ │ CCB │ MCB D2
 │┌─────┐│ │ ├────────┤ ┌───�┌────────┐
┌──�││MCB1 ├┼──┘ │ CCWs │ │ │Lockword│
│ │├─────┤│ ├────────┤ │ ├────────┤
│┌─�││MCB2 ├┼───────┐ ┌──┼───o │ │ │ CCB │
││ │├─────┤│ │ │ └────────┘ │ ├────────┤ ┌───────────┐
││ │= : =│ └─┼───────────────┘ │ CCWs │ ┌─�│ IDAL─List │
││ │├─────┤│ │ ├────────┤ │ └─┬─────────┘
││ ││MCB16││ │ │ �────┼─┘ V
││ │└─────┘│ │ ┌─────//─────┐ ├────────┤ ┌─────────//───────┐
││ └───────┘ └──�│ I/O Area │ │ �────┼───�│ I/O Area │
││ └─────//─────┘ └────────┘ └─────────//───────┘
││ TCB
││ ┌────────────────┐
││ │ I/O Request │
││ │ Word's │ ┌────────────────//───────────────┐
││ │Data File │ ┌─────�│ Logical Data Area │ (virtual)
││ │┌────┬────┬────┐│ │ └────────────────//───────────────┘
│└───┼┤ RD │ │ VA ├┼──┘
│ │└────┴────┴────┘│
│ │Queue File │
│ │┌────┬────┬────┐│ ┌─────────────────────┐
└────┼┤ RQ │ │ VA ├┼────────�│ Queue Record Area │ (virtual)
 │└────┴────┴────┘│ └─────────────────────┘
 │ │
 └────────────────┘

Note:
RD : Relative DBLK number
RQ : Relative Queue record number

 VA : Virtual address

Figure 51. Disk Management Control Blocks Relationship

 Tape Service

Tape service is invoked by IPWWTT, IPWRDT, or IPW$CTT macro instructions issued by the calling
routine. It reads or writes records to tape file, or performs a tape control operation defined by information
supplied by the calling routine in the tape control block (TBB). The TBB is associated with the tape device
and contains the skeletal channel program. See Figure 52.

TCB TBB
┌─────────────────┐ ┌───────────────┐
│ ┌────────┼────────────────�│ │
│ ┌──┬──┼──┬──┐ │ ├───────────────┤
│ │ │ o │ │ │ │ CCB │
│ └──┴─────┴──┘ │ ├───────────────┤
│ Tape Spooling │ │ CCW │
│ Control Word │ ├───────────────┤
└─────────────────┘ ┌───│ TBAV │
 │ └───────────────┘
 │
 │Input/Output Area
 │ ┌──────────────────────────────┐
 └──�│ │
 └──────────────────────────────┘

Figure 52. Tape Service Control Blocks Relationship

140 VSE Central Functions V7R1 VSE/POWER DRM

 Timer Service

Timer service is invoked by the IPW$RDC macro instruction. It issues a GETIME standard macro instruc-
tion to obtain the time of day in packed decimal format. Also, the date field in the master record is
updated with the value stored in the partition communication region.

Interval Timer Service

The Interval Timer Service provides an interface between VSE/POWER tasks and the standard VSE/AF
timer facilities. It allows multiple task intervals to be active while maintaining only one VSE/AF timer
interval through the SETIME macro. It provides notification for tasks on completion of intervals and
remaining time cancellation. The user of the VSE/POWER interval timer service must provide a unique
timer queue element (TQE) for each interval that is to be simultaneously active.

To begin an interval the VSE/POWER task executes a IPW$STM macro, which requests storage for the
TQE, if not already present, formats the TQE and then invokes the interval timer service routine. During
the interval, the TQE is chained to other TQEs in expiration time sequence. The SETIME macro is issued,
if the first TQE is not the TQE currently represented by the last executed SETIME macro, or if there is no
timer interval currently active for VSE/POWER. When the interval expires, the TQE is removed from the
TQE chain and the task is posted.

When an active interval is to be terminated, the requesting task issues a IPW$STM CANCEL macro. The
TQE is then removed from the active chain.

When VSE/AF recognizes the end of a timer interval set by VSE/POWER, control is given to the interval
timer exit routine. (Linkage to that routine has been set up at VSE/POWER initialization time.) The exit
routine records the fact that no timer interval is active and posts the VSE/POWER master ECB and sets
VSE/POWER dispatchable. Whenever the VSE/POWER task dispatcher gets control, it checks if a timer
interval is expired. If so, the interval timer routine is invoked which de-queues expired TQEs and posts
associated tasks for work.

 Validation Service

During VSE/POWER initialization in IPW$$I7 system-related boundary information (LTA boundaries,
system GETVIS start and start of shared area) are obtained from the supervisor and saved in the CAT. If
an address is found which is not within the allowed limits, boundary information is retrieved anew, because
meanwhile the storage layout may have been altered by the operator. Validation service is invoked by the
IPW$VDA macro instruction. The data address and its associated length which are provided in the user-
supplied channel command word and the address of the CCW itself are examined to ensure that they
relate to a data area that the user is allowed to access.

The user is allowed to access the user's partition, the logical transient area, and the shared virtual area,
for read, write, or control operations. This is illustrated in Figure 53. If the validation fails VSE/POWER
obtains the partition boundaries again via the EXTRACT macro to get updated information about it since it
might be possible that the operator changed the allocation for the partition while it is under control of
VSE/POWER.

 Chapter 3. Program Organization 141

 ┌────────────────┬───────────────────┬─────────────┬────────────────┐
 │ │ User Partition │ LTA │ SVA │
│ │ (including Dynamic│ │ │
│ │ Partition GETVIS │ │ │
│ │ Area) │ │ │

 ├────────────────┼───────────────────┼─────────────┼────────────────┤
│ DATA AREA │ Valid │ Valid │ valid, if write│
│ │ │ │ or control │

 ├────────────────┼───────────────────┼─────────────┼────────────────┤
│ CCB │ Valid │ Valid │ Invalid │
│ (not validated)│ │ │ │

 ├────────────────┼───────────────────┼─────────────┼────────────────┤
│ Channel │ Valid │ Valid │ Valid │
│ Program (CCW) │ │ │ │

 └────────────────┴───────────────────┴─────────────┴────────────────┘

Figure 53. Areas Checked by Validation Service

This validation routine is used only by the modules processing the execution tasks, which are IPW$$XRE
and IPW$$XWE. Note that the CCB is neither validated by this validation routine nor the calling modules.

As the validation routine accesses data in the user partition (for example the CCW operation code, the
address and length of the data), the validation routine uses access registers if running with an
ESA-supervisor. In this case, the validation routine assumes that the access-register mode is set on by the
calling routine.

The validation routine also passes an error code to the calling routine, if the CCB indicates that Format 1
CCWs are to be processed.

 Remote Service

Remote service is invoked by the IPW$SRM macro instruction. Depending on the option specified, the bit
representing the remote id is either turned on or off in the remote bit mask. The remote bit mask indicates
which remote users are signed on at any time.

Get Trace Entry

This routine is invoked by the IPW$GTE macro instruction. The routine allocates a trace entry from the
VSE/POWER trace table and returns its address in register 1 to the caller. If the current trace area is
filled, the routine swaps to the alternate trace area and if trace logging was requested, a IPW$IAS
TYPE=SERVICE macro instruction is issued to dump the filled trace area to the VSE/AF dump library,
assigned to the VSE/POWER partition. Figure 54 on page 143 shows the two trace areas and how they
are used.

142 VSE Central Functions V7R1 VSE/POWER DRM

 CAT
 ┌──────┐
 │ │
 ├──────┤ ┌───────────────�┌────────────────────────┐──────
┌───┤ CATK │ │ │////////////////////////│ A
│ ├──────┤ │ │///////// used /////////│ │
│ │ │ Current trace area │////////////////////////│ │
│ │ │ │ pointer │////////////////////////│ │
│ └──────┘ │ ┌─────────────�│ │ │
│ │ │ = AREA 1 = │
│ │ │ │ │ │
│ TIB │ │ ┌───────────�└────────────────────────┘ Total
└──�┌───────────┐ │ │ │ ┌─────────�┌────────────────────────┐ trace

│ │ │ │ │ │ │ │ area
├─────┬─────┤ │ │ │ │ │ │ │

┌───┼─── │ ───┼──┼─┘ │ │ │ │ │
│ ├─────┴─────┤ │ │ │ │ │ │
│ │ ┌────────┼──┘ │ │ = AREA 2 = │
│ ├──┼──┬─────┤ │ │ │ │ │
└──�│ � │ ───┼──────┘ │ │ │ │
 ├─────┼─────┤ │ │ │ │

│ � │ ───┼────────┼─┐ │ │ �
 └──┼──┴─────┘ │ └───────�└────────────────────────┘──────
Trace │ │
area └─────────────────┘
descriptors (start & end address)

Figure 54. Trace Service Control Block Relationship

Switch NP/PA Mode Service

This routine is called by the IPW$TDM macro request and finally entered via the CAT service branch table
entry 'PN00'. It acts upon request type NP/PU corresponding to passed R1=01/00 as follows.

1. If Turbo Dispatcher not activated, ignore request.
2. If all session non-parallel (default), that means CAF4WKNP=ON, then ignore request.
3. If INIT task requesting 'PU' mode, ignore request.
4. If selected PNET SNA or all RJE/SNA tasks (must always run 'NP') call for 'PU' mode, then ignore

request.
5. If desired mode is already active, bypass TDSERV.
6. Request TDSERV FUNC=SWITCHNP/PU according to passed R1 value.
7. Handle TDSERV failure.
8. Set TCF16NP according to desired and acquired mode.

Miscellaneous Tasks and Functions

Message Handler Overview
This phase (IPW$$MS) handles local, remote as well as nodal message requests. See also “Message
Service” on page 127 and “Message Reference” on page 401. It is called by the message service routine
in the VSE/POWER nucleus whenever an IPW$GAM or IPW$WTO or IPW$WTR macro (local), or an
IPW$RMS macro (remote), or an IPW$ICS REQ=ADD macro (nodal) is issued.

 Chapter 3. Program Organization 143

Local Message Request Information about the message to be issued is supplied by the calling
routine in the message request word of the TCB. The message length is examined and, if necessary,
truncated to the maximum of 132 characters. If the message is in NMR format, the originating node name
and/or user/remote id are put in front of the actual message. The message text is scanned to determine
whether any message modification is necessary. If so, the message text is modified in the appropriate
modification routine. This is done by issuing the IPW$GMS TYPE=SUB macro instruction, which expands
into a linkage to the IPW$$MX module. Afterwards the message text is squeezed if the text contains two
or more consecutive blanks. A console write operation (for an IPW$WTO macro), or a console write oper-
ation followed by a read operation (for an IPW$WTR macro), is then performed. For PUTSPOOL,
GETSPOOL, and CTLSPOOL processing, the first 60 characters of the message text are placed in the
user's buffer area at a displacement offset of 28 bytes.
If the message is issued by a cross-partition (SAS) task or on behalf of such a task, the message is
queued at the tail of the message queue anchored to the work area of the task concerned. These mes-
sages are then passed to the cross-partition user whenever appropriate. Certain critical messages, such
as action-type messages, are also sent to the system operator.

Local Message Request - Support for VSE Macros WTO/WTOR/DOM: Usually local
messages are issued via a VSE WTO macro (or WTOR if an immediate reply is required) and wherever
possible, the use of EXCP or SVC0 for issuing messages should be avoided. Action messages issued via
WTO are deleted from the console via the DOM macro when the operator has performed as indicated,
using the message number supplied by the WTO macro, except, for example, CICS and PSF action mes-
sages delivered via the DDS interface (message 1QZ2A) which have to be manually deleted. The utility
IPW$$DD will not use WTO/WTOR/DOM macros.

Using the WTO or WTOR macro, each message indicates:

� a "routing code"
indicating the console(s) to receive a copy of the message (see Figure 55 on page 145).

� a "descriptor code"
indicating the type of message with its corresponding color (see Figure 56 on page 146).

For an explanation of the rules for coding message routing and descriptor codes and their defaults see
“Message Reference” on page 401.

Messages issued via an EXCP or SVC0 macro receive default routing and descriptor codes assigned by
VSE (routing code "Master Console Information" and descriptor code "System
Programmer/Maintenance/Error").

144 VSE Central Functions V7R1 VSE/POWER DRM

 WTO Routing Code: Type: (IPW$GMD RT=)
 ----------------- -----------
 1 = Master Console Action MA
 2 = Master Console Information MI
 3 = Tape Pool TA
 4 = Direct Access Pool DI
(5 = Tape Library) (�)
 6 = Disk Library DK
 7 = Unit Record Pool UR
 8 = Teleprocessing control TP
 9 = System Secruity SE
 1� = System Programmer/Error/Maintenance SP
 11 = Programmer Information PG
(12 = Emulators)
(13-2� = reserved for customer use)
(21-28 = reserved for IBM/customer-defined subsystem use)
 32 = Hardcopy File only HC

where (�) = not used since POWER does not issue tape mount messages
with a volume ID

Figure 55. Local Message Routing Codes for WTO/WTOR Macro

 Chapter 3. Program Organization 145

 VSE/POWER Interpretation:
VSE/POWER: <Cmd> <-Action--> <-Info-->

 WTO Descriptor Code: Colour Type: | Cmd Deci- Act- Sys. Info
 -------------------- (IPW$GMD | Resp sion ion Fail
 DC=) |

------- ------- | ---- ---- ---- ---- ----
 1 = System Failure Red (H) SF | X
 2 = Immediate action required White(H) DA | X X (a)
(3 = Eventual action required (�)) Green |
 4 = System status " SS | X (System)
 5 = Immediate command response " CM | X (c)
 6 = Job status " JS | X (Job)
(7 = Retain Action message for " |
 life-of-task (��)) |
 (8,9,1�: not used by VSE) " |
 11 = Critical eventual action requested Red (H) AK | X (b)
 12 = Important information messages Green II | X (Important)
 (13-16 = reserved)

where (�) = not used by VSE/POWER
(��) = not used by VSE/POWER: if used then

- any start-up errors highlighted in red would be almost immediately deleted
from the screen (since VSE/POWER would immediately cancel the partiton)

- any ABEND errors highlighted in red would be deleted as soon as the dump processing
 was finished

- any other messages would remain on the screen anyway since VSE/POWER is a long
 running task

(H) = Highlighted + hold on screen
(a) = Action Messages to be Deleted by VSE/POWER
(b) = Action Error Messages to be Deleted by Operator (e.g. I/O Error)
(c) = Code is set automatically by IPW$$MS if handling AR Command.

Cannot be set via IPW$GMD.

Figure 56. Local Message Descriptor Codes for WTO/WTOR Macro

Console Response Messages. If the message is a VSE Attention Routine commands response
message, then additionally the message will be issued with:

� the console ID
� a correlation token

furnished by the VSE Attention Routine,

� and an indicator that the message is to be "connected" to other messages, causing the response
messages to be buffered together for improved readability.

Exceptions to "connected" message handling:

� system error messages (e.g. 1QB5I INTERNAL MACRO CALL FAILED) will cause the "connected"
message display to be interrupted and displayed immediately

� command response messages issued via the STXIT OC exit routine will not issue "connected" mes-
sages

Console response messages are routed by VSE to the origin console. An additional routing code is added
by VSE/POWER to the Master console if needed.

Tagging Job Related Messages with Partition ID Messages which are issued during job execution will
be displayed by VSE with a preceeding partition ID. This enables operator redisplay of partition-specific
messages including VSE/POWER messages. Decision messages (e.g. 1Q55A SPECIFY TAPE

146 VSE Central Functions V7R1 VSE/POWER DRM

ADDRESS) will however be displayed with the VSE/POWER partition ID since such messages cause
VSE/POWER to hang until the reply occurs.: The field CAAPID in the CAT will be set by the task dis-
patcher with the partition ID of the execution task, and will be read by VSE when the message descriptor
code is "Job Status" causing the message partition ID to be displayed.

Remote Message Request The function to be performed is indicated in the function indicator byte in
the Remote Message Control Block. The following functions are performed:

� Queue remote messages (BSC and SNA) to the remote message queue.
If the message is in NMR format, the originating node and/or remote/user id are put in front of the
actual message. The message is truncated to its maximum length if applicable. Message modification
is performed, if applicable by executing the IPW$GMS TYPE=SUB macro instruction. Then the
message text is examined and multiple blanks are deleted from the text. Finally the message is
anchored by means of a message index to the line control block if BSC or logical unit control block if
SNA respectively.

� Delete messages from the queue when it is completely full with pending messages.
When the remote message queue is full (255 entries) with pending messages, it is assumed that
somebody is monopolizing the queue. This can be the case when a remote printer has not been ready
for a while. All messages for that remote user are deleted and replaced by message 1R20I.

� Display ALLUSER-type messages by passing them to the command processor.

� Delete ALLUSER-type messages.

� Queue ALLUSER-type messages to the ALLUSER-type message queue. The ALLUSER type
message queue contains only a limited number of entries (15). When the queue is full, the queue
request is rejected.

� Delete BSC messages from the LCB subchain.

� Locate the first pending message for a specific BSC or SNA user.

� Delete SNA messages from the SNA delete subchain.

� Delete SNA messages temporarily by moving the entries from the SNA live subchain to the SNA
delete subchain.

� Add temporarily deleted SNA messages to the SNA live subchain.

Nodal Message Request The function to be performed is indicated in register 0. The following
functions are performed:

� Add nodal message record to appropriate node control block.
On entry, the routine acquires storage to hold the NMR to be queued. If no storage could be
obtained, the routine returns to the caller with R1=4. Otherwise the message text is copied from the
NMR to the just acquired storage area. If the NMR contains a message, originated from the local
node, message modification is invoked by issuing the IPW$GMS TYPE=SUB macro instruction. The
network definition table is scanned to find the prime and, if specified, the alternate route node name.
The NCB chain is now scanned to check if a connection is established with one of these nodes. If so,
the NMR is queued at the tail of the message queue on this NCB. The network driver is then posted,
to attach a console transmitter task, if one does not already exist. If the prime or alternate routing
node is connected to another system, sharing the same queue file, the slot manager is called to pass
the NMR across the shared spool by means of the IPW$IQS REQ=BUILDSLOT macro instruction.

� Build nodal message record and add it to appropriate node control block.
On entry, the routine locates the message to be sent in the message definition module and acquires
storage to hold the message. If no storage could be obtained, the message is discarded. Otherwise
the message text is copied into the just obtained storage area thereby formatting a NMR. The destina-
tion node name and remote/user id are set up according to the caller's specification. The local node

 Chapter 3. Program Organization 147

name is inserted as originating node. Next, the routine branches to the add function to perform
message modification and finally to queue the message to the appropriate NCB.

Message Distribution - IPW$GMS: The message distribution routine, which is part of the
IPW$$MX module is invoked by means of the IPW$GMS TYPE=DIST macro instruction. The routine is
responsible to distribute a message or command which is already in the NMR format or a message which
is passed in internal format.
Depending on the destination, the routine directs the messages to:

 � Local operator
� Any remote operator locally attached
� Any local VSE/ICCF user
� Any user on another node
� Any subsystem running on the local system, assuming a 'notify' communication path is established to

the subsystem
� Any fixed format message queue

Commands are either passed to the 'invoke command processor' routine or forwarded to the next node on
its way to the final destination.

Note: If the command is destined for the local system but in global command format, the command is
discarded and message 1Q5FI is sent back to the originator.

If the message is destined for another system, sharing the same queue file, the slot manager is called to
pass the NMR across the shared spool by means of the IPW$IQS REQ=BUILDSLOT macro instruction.

Message Distribution - SAS Local Message: Local messages generated by a spool-access
support user task will be routed to that user except for:

� the 1R88I OK message, or
� special messages which instead are routed to the central operator (see IPW$$MS, table MM38 shown

below):

148 VSE Central Functions V7R1 VSE/POWER DRM

 � THE FOLLOWING MESSAGE ID TABLE LISTS ALL MESSAGES
 � WHICH ARE NOT PASSED TO THE SAS USER.
 MM38 DC C'1Q38A ' Q-FILE DASD SOS MESSAGE @DA15�44

DC C'1QB8I ' RECOVERY COMPLETED INDICAT. @DY42689
DC C'1QF8I ' N FREE DBLKGP'S LOST @DY42689
DC C'1Q61I ' IRREC. I/O ERROR ON D-FILE @DY42689

 MM32 DC C'1Q32A ' A-FILE DASD SOS MESSAGE @KD4�385
 MM31 DC C'1Q31I ' A-FILE 8�% MESSAGE @DA15�44
 MM59 DC C'1Q59I ' WAITING FOR REAL STORAGE @D22BDWS
 MM85 DC C'1Q85I ' WAITING FOR VIRTUAL STORAGE @D22BDWS
 MMX1 DC C'1QX1I ' XPCC FUNCTION ERROR @D22BDWS
 MMX3 DC C'1QX3I ' TASK STOPPED MESSAGE @D22BDWS

DC C'1Q75I ' MULTIPLE TERMINATION OF TASK@D22BDWS
DC C'1Q76I ' VSE/POWER CAN NOT CONTINUE @D22BDWS
DC C'1QB5I ' INT MARO CALL FAILURE @D23BDWS

 MMF� DC C'1QF�I ' SPOOL FULL PERCENTAGE @D23BDWS
 MMF4 DC C'1QF4I ' NO FREE QUEUE RECORD AVAIL @D23BDWS

DC C'1QZ�I ' SEVERE INTERNAL ERROR @DA38824
DC C'1Q6GA ' INVALID DBLK NO (I/O-ERROR) @DA41998
DC C'1Q6HA ' DBLK WITH SER, BUT WITHOUT @DA41998

 � LAST DBLK FLAG (I/O-ERROR) @DA41998
DC C'1Q6JI ' I/O-ERROR DURING READ @DA41998
DC C'1Q6KA ' DBLK WITHOUT SER, BUT WITH @DA41998

 � LAST DBLK FLAG (I/O-ERROR) @DA41998
DC C'1Q6LA ' RECORD LENGTH=� (I/O-ERROR) @DA41998
DC C'1QBAI ' QUEUE FILE RECOVERY @DA41998
DC C'1QFAA ' FREE DBLK IS 'IN USE' @DA41998
DC C'1QFBA ' DBLK FREED IS ALREADY FREE @DA41998
DC C'1QFCA ' DBLK NUMBERS MISMATCH @DA41998
DC C'1QFDA ' FREE DBLK NUMBERS MISMATCH @DA41998
DC C'1Q6UA ' DBLK GROUP OWNEP MISMATCH @D67QDAT
DC C'1Q6VA ' DISPLAY 1Q6UA SEH RECORD @D67QDAT

Message Blank Compression: The message blank compression routine, which is part of the
IPW$$MX module is invoked by means of the IPW$GMS TYPE=SQUEEZE macro instruction.
The message text is scanned for duplicate blanks. If two or more consecutive blanks are found, the blank
characters are removed from the message text and the message length is adjusted accordingly. The
following table (table NOCOMPTB in IPW$$MX) lists messages which are not compressed:

 NOCOMPTB DS �H NOCOMPRESS. MSG.-TABLE @D34BDSN
 DC C'1R46' MESSAGE-ID @D34BDSN
 DC C'1Q4�' MESSAGE-ID @D34BDSN

DC C'1QB9' MESSAGE ID '1QB9' @D22DDWS
DC C'1R41' MESSAGE ID '1R41' @D23IDSW
DC C'1R47' MESSAGE ID '1R47' @D35YI38
DC C'1R48' MESSAGE ID '1R48' @D35YI38
DC C'1RB7' MESSAGE ID '1RB7' @D�3PIPH
DC C'1Q6A' MESSAGE ID '1Q6A' @D51MDAT
DC C'1R4A' MESSAGE ID '1R4A' (D EXIT) @KX41�33
DC C'1R4B' MESSAGE ID '1R4B' D CRE‘DEL @D65EDMW
DC C'1RTF' DISPLAYS TCP/IP DATA @D65CDHS

Message Modification: The message modification routine, which is part of the IPW$$MX module is
invoked by means of the IPW$GMS TYPE=SUB macro instruction.
The message text is scanned for a message modifier character and if found the appropriate modification is
done. See Figure 57.

 Chapter 3. Program Organization 149

┌────────┬──┬────────────────────────┐
│ Mod ID │ Message Modification │ Obtained from where │
├────────┼──┼────────────────────────┤
│ X'�1' │ PNET BSC trace input │ NCB and Reg. 15 │
│ X'�2' │ PNET BSC trace output │ NCB and Reg. 15 │
│ X'�3' │ PNET SNA input buffer information │ NCB and Reg. 15 │
│ X'41' │ BSC transmission count │ NCB / LCB │
│ X'42' │ BSC time out count │ NCB / LCB │
│ X'43' │ BSC error count │ NCB / LCB │
│ X'44' │ Node name │ Node control block │
│ X'62' │ Member name.member type │ SL member element │
│ X'63' │ Macro name (librarian) │ Register 15 │
│ X'64' │ Return code/feedback code (librarian) │ Register 15 │
│ X'71' │ Number of PNET SNA sends │ Node control block │
│ X'72' │ Number of PNET SNA receives │ Node control block │
│ X'73' │ From node and user id │ Queue record │
│ X'74' │ First operand │ Command control block │
│ X'75' │ Original job number │ Queue record │
│ X'76' │ From node / user │ Command control block │
│ X'77' │ First 6� bytes of operands │ Command control block │
│ X'78' │ Command operand number │ Command TCB control │
│ X'8�' │ 8─byte field │ Register 4 │
│ X'81' │ Sense information │ VTAM RPL │
│ X'82' │ CCB address │ Register 7 │
│ X'83' │ Unit address │ Task control block │
│ X'84' │ RJE identifier │ Line control block │
│ X'85' │ RTNCD,FDB2 │ VTAM RPL │
│ X'86' │ Forms id │ Queue record │
│ X'87' │ Return code, reason code │ Register 15 │
│ X'88' │ 38�� printer setup message │ Queue record │
│ X'89' │ Application id │ VTAM ACB │
│ X'8A' │ Tape address │ Tape control block │
│ X'8B' │ UCS phase name │ TCB extension area │
│ X'8C' │ Keyword in error │ Register 7 │
│ X'8D' │ File name │ Register 4 │
│ X'9�' │ Task ID bytes 2+3 │ TCB TCTI │
│ X'91' │ Job name │ Queue record │
│ X'92' │ Target node name │ Queue record │
│ X'93' │ RJE,BSC line address │ Line control block │
│ X'94' │ LU name │ LUCB │
│ X'95' │ Job number │ Queue record │
│ X'96' │ Command code │ Command control block │
│ X'97' │ SNA stop code │ WACB │
│ X'98' │ RPL request │ VTAM RPL │
│ X'99' │ RJE identifier │ Task control block │
│ X'9A' │ 5─digit number │ Register 4 │
└────────┴──┴────────────────────────┘

Figure 57 (Part 1 of 4). Message Modification Characters and Action Table

150 VSE Central Functions V7R1 VSE/POWER DRM

┌────────┬──┬────────────────────────┐
│ Mod ID │ Message Modification │ Obtained from where │
├────────┼──┼────────────────────────┤
│ X'A2' │ Local SYSID │ DMB │
│ X'A3' │ Task identifier │ Task control block │
│ X'A4' │ User information │ Queue record │
│ X'A5' │ RJE identifier │ Register � │
│ X'A6' │ BIND data │ Register 15 │
│ X'A7' │ 3─digit number │ Register 4 │
│ X'A8' │ Logon reason code │ Register 15 │
│ X'A9' │ JOB/OUT constant │ Queue record │
│ X'AA' │ Current date │ COMREG │
│ X'AB' │ Dynamic Class Table Identifier │ Register 14, byte 3 │
│ X'BA' │ Current time │ Via IPW$RDC macro │
│ X'BB' │ NJE line address │ Node control block │
│ X'BC' │ NJE node name │ Node control block │
│ X'FF' │ Second level modification id │ ─ │
├────────┼──┼────────────────────────┤
│ │ Second Level Modifiers │ │
├────────┼──┼────────────────────────┤
│ X'��' │ Diskette device address │ 354� PWS │
│ X'�1' │ Job return code │ Part. control block │
│ X'�2' │ Reason code │ Register 7 │
│ X'�3' │ Phase name │ Register 14 │
│ X'�4' │ XPCC function code │ XPCCB │
│ X'�5' │ XPCC return code │ XPCCB │
│ X'�6' │ External device name │ EDCB │
│ X'�7' │ DDS name │ EDCB │
│ X'�8' │ DDS name │ EDCB, addressed by R8 │
│ X'�9' │ Command originator │ EDCB │
│ X'�A' │ Command verb │ EDCB │
│ X'�B' │ Spool access support task token │ SAS work area │
│ X'�C' │ XPCC application & user id │ XPCCB │
│ X'�D' │ 8─bytes character string │ Register 14 │
│ X'�E' │ Queue file full percentage │ DMB │
│ X'�F' │ Data file full percentage │ DMB │
│ X'1�' │ 12─digit number │ Register 4 │
│ X'11' │ 12─bytes MCB storage descriptor │ Register 4 │
│ X'12' │ Queue type (RDR/LST/PUN/XMT) │ Queue record │
│ X'13' │ 12─digit number │ Register 7 │
│ X'14' │ 2─byte reason code │ Task control block │
│ X'15' │ Lost DBLK group percentage │ Register 4 │
│ X'16' │ CKD/FBA disk address │ MCB, addressed by R4 │
│ X'17' │ DBLK size │ DMB │
│ X'18' │ DBLK/Queue record block number │ MCB, addressed by R4 │
│ X'19' │ Account file cuu │ ACB, addressed by R4 │
│ X'1A' │ DBLK group size │ DMB │
│ X'1B' │ Job suffix number │ Queue record │
│ X'1C' │ Insert character in quotes in msg text │ rightmost byte R15 │
│ X'1D' │ Insert 4 printable chars in msg text │ Register 15 │
│ X'1E' │ Insert 2 printable chars in msg text │ Register 15 │
│ X'1F' │ DBLK size from generation table │ Generation table │
│ X'2�' │ cuu of execution writer task │ TCB for new task │
└────────┴──┴────────────────────────┘

Figure 57 (Part 2 of 4). Message Modification Characters and Action Table

 Chapter 3. Program Organization 151

┌────────┬──┬────────────────────────┐
│ Mod ID │ Message Modification │ Obtained from where │
├────────┼──┼────────────────────────┤
├────────┼──┼────────────────────────┤
│ │ Second Level Modifiers (cont.) │ │
├────────┼──┼────────────────────────┤
│ X'21' │ Insert 5 decimal digits │ Register 7 │
│ X'22' │ Insert 8 hex digit address │ Register 15 │
│ X'23' │ Insert 23 bytes of Trace table ID │ Trace Table address │
│ X'24' │ Insert 7 byte SLI Library Name │ SLDS │
│ X'25' │ Insert 5� byte SLI Lib.+Sublib.names │ SLDS │
│ X'26' │ Insert 8 byte local cpu SECNODE name │ Trace Table address │
│ X'27' │ Insert 5 byte Trace Module Ver/Mod lvl.│ CATC pointer │
│ X'28' │ Insert 8 byte Tracing buffering method │ CATCCB pointer │
│ X'29' │ Insert "LOG=NO" if specified in qrec │ TCQV │
│ X'2A' │ Insert VSE Security Userid │ PCE Security Token │
│ X'2B' │ Insert 8 byte Tracing buffer type │ CATCCB pointer │
│ X'2C' │ Insert application-id and user-id │ ACIE via R5 │
│ X'2D' │ Insert 'DUE TO EXIT FAILURE' │ TCF11 TCF15 │
│ X'2E' │ Insert 'BY OPERATOR' or see X'2D' │ TCF15 │
│ X'2F' │ Insert I/O CCB for 1R3�I │ Register 7 │
│ X'3�' │ Insert I/O CCW for 1R3�I │ Register 8 │
│ X'31' │ Insert Hex contents of Register 7 │ Register 7 │
│ X'32' │ Insert 8 bytes Console Name (CPCON) │ TCB │
│ X'33' │ Insert Hex contents of Register 8 │ Register 8 │
│ X'34' │ Insert userid │ QRTU │
│ X'35' │ Show 1 byte as bits │ Reg.15 (left byte) │
│ X'36' │ Inserts device code from QRDT │ QRDT │
│ X'37' │ Inserts device code from TCDT │ TCDT │
│ X'38' │ Inserts 'LUNAME=' if SNA task │ n/a │
│ X'39' │ Inserts LTA phase name │ XRWDS.XRWLTA │
│ X'3A' │ Inserts tape volume number or '���' │ QRDS.QRVOL │
│ X'3B' │ Inserts 3 digits │ TBDS.TB1QG�1 │
│ X'3C' │ Inserts 3 digits │ TBDS.TB1QG�2 │
│ X'3D' │ Inserts 3 half-bytes │ Reg.15 right 2 bytes │
│ X'3E' │ Inserts queue id (RDR,LST,PUN,XMT) │ (calcu'd from q-ptr) │
│ X'3F' │ Inserts queue class + x'4�' │ (calcu'd from c-ptr) │
│ X'4�' │ Inserts hex character │ Reg.15 left byte │
│ X'41' │ Insert Task Id found in TIK in XECBTAB │ Reg.15 │
│ X'42' │ Insert CUU of queue record field QRCU │ TCQV -> QRDS │
│ X'43' │ Inserts upto 85 characters, length is │ Reg.5 -> char. string │
│ │ found at 3rd position (FF43LL) │ │
│ X'44' │ Insert original I/O CCW for 1R3�I │ XRWCWDA & XRWCWCT │
│ X'45' │ Insert 32 hex characters in │ Reg.4 -> data │
│ │ blocks of 8 characters each │ Reg.� = length │
│ X'46' │ Complete 1R56I8/9 with NCB related inf.│ TCENCB │
│ X'47' │ Insert In/Outbound RUSizes │ LUCB (LUBSI/LUBSO) │
│ X'48' │ Number of DFILE Extents │ Register 14 │
│ X'49' │ DFILE Extent start,length │ Area pntr register 15 │
│ X'4A' │ Substitute 'SSL' for 'IP' in 1RTx │ Flag MMMF1SSL │
│ X'4B' │ 5 Digit number │ Register 14 │
│ X'4C' │ 9 Digit number appended by - │ Reginser 4 │
│ │ Track/Block information in MCB │ Reginser 6 │
│ X'4D' │ 11 Digit number, then bumps reg.4 by 4 │ Register 4 │
└────────┴──┴────────────────────────┘

Figure 57 (Part 3 of 4). Message Modification Characters and Action Table

152 VSE Central Functions V7R1 VSE/POWER DRM

┌────────┬──┬────────────────────────┐
│ Mod ID │ Message Modification │ Obtained from where │
├────────┼──┼────────────────────────┤
├────────┼──┼────────────────────────┤
│ │ Second Level Modifiers (cont.) │ │
├────────┼──┼────────────────────────┤
│ X'4E' │ 32 SEH bytes, returns in register 15 - │ Register 7 │
│ │ the number of bytes/4 │ │
│ X'4F' │ 8 Bytes Jobname JCA │ JCAJOBNM │
│ X'5�' │ Number of formatted Data File Exten's │ Register 4 │
│ X'51' │ Offload Type │ TCOCMDT │
│ X'52' │ 1Q5MI TRACE= data │ JCA trace bytes: │
│ │ │ JCATROF,JCATROFS, │
│ │ │ JCATRPS+4,JCATRTRO+6 │
│ X'53' │ Hex TCQW Queue Record number │ TCQW │
│ X'54' │ 3 digit number in register 14 │ Register 14 │
└────────┴──┴────────────────────────┘

Figure 57 (Part 4 of 4). Message Modification Characters and Action Table

Message Coding and Documentation Considerations: For rules concerning the coding of
local messages see “Message Reference” on page 401 for more details.

The following definitions are to be used when documenting messages in the Message Manual:

(Central) Operator For VSE/POWER, any operator other than a User Programmer, System Pro-
grammer or Remote RJE Operator.

Operator Response Indicates action to take for:

 � console/hardware operation
� hardware error correcrtion
� hardware error circumvention
� "Notify System Programmer" if:

– problem system performance
– problem system generation
– problem hardware if circumvention needed
– changes in system generation or layout

 – security problem
– indicated in Message Manual

� "Notify Programmer" if:
– offline job problem/error (eg reading job into POWER RDR queue or

LST/PUN task problems) since such errors or messages are not sent to a
user terminal or included in a job console listing.

System Programmer Response Indicates action to take for:

� system software error (generation and/or logic error)
� system generation and/or layout changes
� hardware problems causing performance degration
� aid with problem circumvention

Programmer Response Indicates action to take for:

� specific job execution problems
– sortware and JCL
– hardware (diskettes, tapes or other machine readable job input/output)

� Specific job offline problems (RDR task, LST/PUN task, POFFLOAD error)

 Chapter 3. Program Organization 153

After VSE/POWER 5.2 the developer and change team will have to consider for each new locally dis-
played message in the future:

� The message routing code (see Figure 55):

– the message routing is determined by:
 1. routing code (explicit or default)
 2. console ID (VSE/POWER AR commands)
 3. console name (not used by VSE/POWER for command message

routing - instead used for security checking)
– messages issued via EXCP/SVC 0 for VSE/POWER will have default routing codes of 2 (Master

Console Information) and 10 (System Programmer/Mainenance/Error). This includes the
IPW$$DD utility.

� The message descriptor code (see Figure 56):
(colour, highlighting and hold on screen or not):

– message descriptor determined by descriptor code (explicit or default)
– three different message colors are available for VSE depending on the descriptor code (vendors or

customers may use different rules):
 - red (code=1 or 11), highlighted and held on screen,
 - white (code=2), highlighted and held on screen,
 - and green (all other codes).

– some messages issued via EXCP for VSE/POWER will have a descriptor of 1 (System Failure:
red colour highlighted). These messages are contained in a VSE exception list (see “VSE "Excep-
tion List" Messages for VSE/POWER” on page 407)

– All decision (i.e. reply) messages are set to white highlighted by VSE. This includes the IPW$$DD
utility.

� Any message normally issued by EXCP that can't use the default routing and descriptor codes will
have to be issued by WTO/WTOR or be included in the VSE Message Exception List (see “VSE
"Exception List" Messages for VSE/POWER” on page 407)

� A command message response is different from other messages. Its routing will be to the console
that issued the command, and additionally to any other routing specified (e.g. system error messages
that should be also routed to the System console). This can only be done using the WTO/WTOR
macros (the AR Appendage Interface passes the Console ID and a correlation token (CART) for prop-
erly returning the message response).

� The saving of a message ID for later deletion by DOM macro:

– any message issued to be deleted automatically from the screen later will have to issue the WTO
macro which returns a message identifier to be saved for reference by a DOM macro to delete the
message later when the appropriate action is taken (decision messages are deleted automatically
when replied).

– the appropriate routine(s) will have to be chosen to implement and issue the DOM macro
(command e.g. PGO,PACCOUNT,PSTOP; task termination)

– task termination code may have to cleanup an action message by issuing the DOM if an error
condition occurs (e.g. disk I/O error).

� All highlighted messages (e.g. red system failure messages) should be deleted via the DOM macro if
possible, for example, when a hardware error occurs and is later corrected. This deletion will save
VSE system storage and save the operator the manual work. Note the system will not fail since VSE
will begin deleting such messages when too many occur.

Note: Some highlighted messages are not meant to be deleted by the system, rather they are to be
deleted by the operator (see Descriptor Code "AK", e.g. as with the messages 1Q6GA, 1Q6LA)

Note: Decision messages issued by WTOR are always highlighted and automatically deleted after
the operator reply.

154 VSE Central Functions V7R1 VSE/POWER DRM

� The use of chained multi-line "connected" message techinques for displays which are logically related
(e.g. status displays) must:

– Use the WTO CONNECT= parameter
– Requires saving the 1st message ID from the WTO macro and using it a s input to subsequent

WTO CONNECT=(message id) macros.
– Maximum message length is 70 bytes (WTO specs - for VSE/POWER we use 69 to conform to

old hardware specifications). Long messages will be split into two lines of 69 bytes each and the
second line will be right adjusted.

– Non-last message has linetype=D
– Ending message has linetype=DE or use a dummy message with linetype=E.
– Note - the last connected message MUST be issued to cause the VSE message buffer to be

emptied and sent to the console (see implementation hits in task termination IPW$$TR and
VSE/POWER ABEND termination IPW$$AT).

� WTO/WTOR implementation details:

– The WTO does NOT post an ECB when a message is processed as a SVC 0/EXCP would do, i.e.
if the WTO goes into a "busywait" on storage then the code can't simply call a VSE/POWER wait
macro IPW$WFx and have the task wait on posting - the task has to use nucleus timer wait facili-
ties

– The maximum single line is 125 bytes for the WTO macro (not POWER's 132 bytes) and decision
messages requiring an immediate reply have maximum 122 bytes for the WTOR macro. A WTO
messages greater than 125 bytes will be split into two lines of 69 bytes and left adjusted, unless it
is a console connected display message in which case it will be right adjusted.

– The message length for the WTO/WTOR macros is two bytes
– Job-related messages issued from some VSE/POWER task for some spooling partition are to be

"tagged" with the partiton ID (Note: VSE support for this function is only for the VSE/POWER
maintask).

Normal Message Handling: The following implementation was adopted for locally issued messages
using IPW$GAM or IPW$GAM+IPW$WTO:

1. Message definition (in macro IPW$GMM using the macro IPW$GMD):
the developer will need to specify the routing and descriptor code(s) for the individual message if the
defaults are not sufficient:

 IPW$GMD ...,RT=(route-code1,rout-code2,...),DC=desc-code

2. Issuing a single message to the operator will then require no further action if done by:

 � the macro

 IPW$GAM MSG=...,DEST=LOCAL (normal case)

� Combinations of the following IPW$GAM to obtain a message:

IPW$GAM MSG=...,DEST=RETURN (return message address in Reg.3)
IPW$GAM MSG=...,DEST=address|(Rx) (copy msg to buffer/storage)
IPW$GAM MSG=...,REQ=ADDR (copy msg addr to reg.1)

with combinations of the following to issue the message (and obtain reply):

 IPW$WTO
 IPW$WTR

For example, the Command Processor:

IPW$GAM MSG=...,DEST=MESSOUT (copy msg to workarea)

followed by the call of the subroutine:

 Chapter 3. Program Organization 155

 L RF,MSG
 BAL RE,RF (issue IPW$WTO)

The IPW$GAM macro (DEST=RETURN/address/(Reg) or REQ=ADDR) will cause the routing and
descriptor codes to be placed in the TCB (TCMRT and TCMDC) which are then used as input to the
IPW$$MS (CAMS+24) for issuing the message (the codes are then cleared).

Messages issued as above will receive the full WTO/WTOR support (e.g. the routing and descriptor
Code usage specified with the message in the Message Module IPW$$MM) and the developer will
only need to specify the message routing and descriptor codes in IPW$GMM. Futher default handling
of routing and descriptor codes occurs during issuing of the message in IPW$$MS.

Also the TCB will contain the message ID (TCMID) returned from the WTO macro which can be used
later for message deletion (DOM) if necessary (e.g. when the PGO command is issued).

3. PNET NMR and Shared QCA messages arriving for the system console:
 - PNET XMIT command response messages (e.g. PDISPLAY)
 - PBRDCST messages
 - Job Notify messages
do not issue the IPW$GAM macro in the format as directly above and therefore the message arrives
at IPW$$MS (CAMS+24) (if the local CPU is the target system) with the TCB routing and Desciptor
code fields containing zeros and will receive internal default handling:
 - default routing and descriptor codes

(routing=Master/System Console and
descriptor=System Status: green not highlighted)

 - no Connected message displays will be performed
 - any Action message will have to be deleted manually

Messages Requiring Special Handling

1. Messages issued by IPWWTO/IPWWTR not fetched by IPW$GAM, i.e. not by:

IPW$GAM MSG=...,REQ=ADDR (copy msg addr to reg.1)
IPW$GAM MSG=...,DEST=RETURN (return message address in Reg.3)
IPW$GAM MSG=...,DEST=address|(Rx) (copy msg to buffer/storage)

must store the routing and descriptor Codes to the TCB (TCMRT and TCMDC) prior to issuing the
message (if defaults not acceptable).

2. Messages issued by IPWWTO/IPWWTR after calling the IPW$GAM DEST=RETURN/address/(Reg)
or REQ=ADDR for some message A, and later the module issues a message B locally defined in the
module will have to reset the TCMRT and TCMDC fields which will contain the routing and descriptor
codes of message A.

3. Any new message being issued by EXCP (e.g. in IPW$$AT) will have to consider whether the default
EXCP routing and descritor codes are proper, and if not, then instead the message will have to be
issued by a WTO/WTOR macros or be included in the VSE Message Exception List (see “VSE
"Exception List" Messages for VSE/POWER” on page 407).

4. Command Processor considerations (IPW$$Cx):

� Any message issued by the Command Processor should use the central IPW$$CM subroutine
MSG which automatically processes Connected message without the caller being aware of it (oth-
erwise the message would not appear in the Connected message display).

� Any decision message issued by the Command Processor should set the flag
SWFLAG2.SWREPLY=on to cause the IPW$WTR macro to be issued.

� Any task attached by the Command Processor to issue command response messages (e.g.
similar to IPW$$PS) requires that the response Console ID and CART are passed to the new task

156 VSE Central Functions V7R1 VSE/POWER DRM

� If a message requires message substitution using registers 14 or 15 should use the macro:

 IPW$GAM MSG=...,DEST=MESSOUT,SUB=YES

instead of DEST=LOCAL which destroys those registers before performing message substitution.

� Error messages issued by the Command Processor (i.e. 1QB5I, 1QZ0I) should be issued directly
to the system console instead of the the origin console:

 IPW$GAM MSG=$1QB5I,DEST=LOCAL
or
 IPW$GAM MSG=$1QZ�I,DEST=LOCAL

Note: This is important, because by issuing the message with DEST=LOCAL causes a possible
connected message display to be interrupted by IPW$$MS, and the message display buffer prior
this message to be immediately displayed, followed by this error message, so that the operator
can see all messages preceeding the error condition.

5. Print Status considerations (IPW$$PS):

� Any status message issued should use the central subroutine PSMSG which automatically proc-
esses connected message without the caller being aware of it.

� Any normal message issued to the local central operator should use the central subroutine
PSMSGLOC which automatically processes connected messages.

� Error messages issued by the Command Processor (i.e. 1QB5I, 1QZ0I) should be issued directly
to the system console instead of the the origin console:

 IPW$GAM MSG=$1QB5I,DEST=LOCAL
or
 IPW$GAM MSG=$1QZ�I,DEST=LOCAL

Note: This is important, because by issuing the message with DEST=LOCAL causes a possible
connected message display to be interrupted by IPW$$MS, and the message display buffer prior
this message to be immediately displayed, followed by this error message, so that the operator
can see all messages preceeding the error condition.

6. Action message considerations.

Action messages are of types (a) and (b), where by the former has the Descriptor Code "DA" and the
latter Code "AK". For the former, the message ID must be saved for later DOM'ing, and care taken to
delete the message only when appropriate (e.g. when an incorrect reply is made to an action
message, then the message should not be deleted). The latter require manual deletion by the oper-
ator.

 Notify Processing

The Notify message routine is located in the IPW$$NS module. Whenever an IPW$NTY macro is issued
and the message is destined for

� a local VSE/ICCF user
 � VSE/DSNX
� a fixed format message queue
� any subsystem running on the local system

The Notify message routine is called by the Notify service routine in the VSE/POWER nucleus.

Depending on the recipient, the following functions are performed:

� Message destined for VSE/ICCF user:

 Chapter 3. Program Organization 157

If the message is not already in NMR format, virtual storage is acquired to build an NMR and the
message is converted into that format. If the message originated at the local VSE/POWER system, an
IPW$GMS TYPE=SUB macro instruction is issued to perform message modification. The message is
then queued at the tail of VSE/ICCF Notify message queue and the notify task is posted.

If the maximum number of messages to be held in core is exceeded, the oldest message (first
message in queue) is removed from the queue and discarded. If currently no virtual storage is avail-
able to hold the message, the message is discarded. In both cases the operator is informed via
message 1RA2I and the lost message count is updated for statistical purposes.

� Message destined for VSE/DSNX:

If the message is the job completion message 1Q5DI, virtual storage is acquired for the fixed format
message record and the message is then converted into that format. The fixed format message record
is then added at the end of the VSE/DSNX message queue and the notify task is posted to forward
the message to VSE/DSNX. All other type of messages, however, are discarded.

� Message destined for subsystem:

The communicator information element (CIE) chain is scanned to determine if a 'notify' communication
path exists to the target subsystem. If not, the message is discarded. Otherwise virtual storage is
acquired to build an internal message record, if the message is not already in that format. The
message modification routine is invoked by means of the IPW$GMS TYPE=SUB macro instruction.
The message is then queued at the tail of the appropriate subsystem message queue. Finally, the
notify task is posted to forward the message to the appropriate subsystem.

� Message destined for a fixed format message queue:

This is applicable only for messages in fixed format presentation. The message is converted from
internal format to nodal message record format. The message data within the nodal message record is
then easily accessible by application programs via DSECT JCMDS provided by the PWRSPL macro.
The message can be sent to another node, another system, or queued locally to a fixed format
message queue. The message is always routed back to the node and system where the job origi-
nated. Such messages are created by the IPW$NTY QCM=YES macro instruction, if the job was sub-
mitted via VSE/POWER's Spool-access support with the 'queue completion message' option of the
SPL.

Notify Task: The notify task is attached by the spool access service master task when the first 'notify'
communication path is established between VSE/POWER and a subsystem, like VSE/ICCF.
The VSE/AF communicator support is utilized for the exchange of messages. The message transfer is one
directional (e. g. VSE/POWER -- VSE/ICCF). Basically the notify task waits for the arrival of messages
and forwards the message then to the desired subsystem, such as VSE/ICCF. If the notify task is posted
with the indication that a message is queued for a particular subsystem, the notify task checks if message
transfer is currently in progress for the subsystem the message is destined to. If so, the routine waits until
the message transfer is completed. Otherwise the head message is unchained from the subsystem
message queue and sent to the counterpart. Once the message is successfully sent, the storage occu-
pied by the message is freed. This process continues until all messages are sent.
If, meanwhile, the connection to the subsystem breaks due to normal/abnormal termination, the notify task
prepares itself for a new 'notify' connection with the subsystem.

If a severe error is encountered while sending messages to the counterpart, the system operator is
informed via messages 1QX1I and 1Q4BI, and the 'notify' connection to the subsystem concerned is termi-
nated. The notify task continues to service other 'notify' connections and waits for a new connection
request from the subsystem facing the error.

The notify task is terminated by the spool access service master task at VSE/POWER termination time
when no other tasks than the minimum tasks are active.

158 VSE Central Functions V7R1 VSE/POWER DRM

 Asynchronous Service

The asynchronous service function of VSE/POWER handles all of the following requests:

 � SETPRT
 � LFCB
 � OPEN/EOV/CLOSE
 � LOAD
� OBTAIN SVA ENTRY POINT
� Dump particular storage areas
� Communicate with the Librarian

This is done for the following reasons:

1. Most of the called VSE/AF service routines run in the SVA under the TIK of the VSE/POWER main
task. Any page fault which occurs cannot be correctly handled by the VSE/POWER page fault overlap
processing, because the register convention used by the VSE/AF service routines do not match the
VSE/POWER requirements.

2. Any I/O done by the VSE/AF service routines would cause the complete VSE/POWER partition to be
put into the wait state until the I/O completed.

3. Any SVC-call would cause the VSE/POWER main task to wait until the service request completed.

The asynchronous service module consists of the following sections:

� ATTACH appropriate subtask

– Asynchronous service subtask
 – Dump subtask
 – Librarian subtask

� DETACH appropriate subtask

– Asynchronous service subtask
 – Dump subtask
 – Librarian subtask

� INVOKE appropriate subtask

– Asynchronous service subtask
 – Dump subtask
 – Librarian subtask

� Asynchronous service subtask

 � Dump subtask

 � Librarian subtask

The Asynchronous service subtask is attached whenever a VSE/POWER task issues an asynchronous
service request and detached when the request is processed. The Dump subtask is attached at
VSE/POWER initialization time when the corresponding UPSI bit, requesting trace logging, is set or when
the PSTART DUMPTR command is given and detached at VSE/POWER termination time. The Librarian
subtask is attached at VSE/POWER initialization time when SUBLIB= or MEMTYPE= is specified in the
VSE/POWER generation macro and is detached at VSE/POWER termination time.

 Chapter 3. Program Organization 159

Invocation of Asynchronous Service: Linkage to the asynchronous service function is estab-
lished by the IPW$IAS macro instruction.

When the function is entered the first time, storage for the asynchronous service anchor block is reserved.
The ASAB exists as long as VSE/POWER is active. The asynchronous service anchor block contains:

� Pointers to first and last entry in the various service request queues. A separate queue exists for the
DUMP and the Librarian subtask.

� Subtask communication fields.
� Address of SETPRT routine in SVA.
� Address of VSE/ICCF Librarian routine

 � Lockword.

When a DUMP or Librarian request is issued by a VSE/POWER task, the service request block (pointed to
by register 1) is chained as the last entry in the appropriate service request queue, and the corresponding
subtask is posted. The asynchronous service anchor block (ASAB) is unlocked and the task waits for the
completion of the service request. After the completion of the service request, its ECB is posted by the
subtask. The return code set by the subtask is analyzed and the appropriate action is taken.

When an asynchronous service request is issued by a VSE/POWER task, the service function reserves
virtual storage for an asynchronous service work element (ASWE) and attaches the asynchronous service
subtask. The ASWE contains among others the PSW, the register save area and the abnormal save area
for the subtask. If currently no subtask is available the VSE/POWER task will wait 5 seconds and try to
attach the subtask again. After completion of the service request the ECB in the SRB is posted by the
subtask. The ASWE is released and the subtask is detached. If the subtask terminated abnormally
IPW$$AT gets control and indicates 'request failed' in the SRB before posting the request initiator.

The asynchronous service function is serially reusable and is locked for the duration of the appropriate
function (ATTACH, DETACH, or SERVICE).

IDUMP in Flight Function

This function allows to request a formatted dump of the VSE/POWER partition and of important Supervisor
areas to the dump (sub)library assigned to the VSE/POWER partition. The function is requested through
the macro IPW$IDM, which may be placed into nearly all VSE/POWER modules. The request macro itself
and the appearance of messages accompanying an IPW$IDM request are described in detail in
VSE/POWER Administration and Operation, Appendix B.

Requesting macro IPW$IDM in any piece of VSE/POWER or user exit code should not destroy caller
registers. Therefore the macro expansion distinguishes between three types of callers and saves initially
some important registers -

1. for private VSE/POWER task in TCB location TCIE
2. for VSE Subtask of VSE/POWER in save area permanently addressed by register RC
3. for call by module IPW$$AT in local save area at AT0E

Then module IPW$$ID is called, which ensures by gating mechanisms that only one requestor of each
type 1) - 3) is allowed to enter the IPW$$ID processing code in order to build an IDUMP symptom record
in its predefined area, to request the IDUMP macro, to open the gates again, and finally to return to its
caller.

Control of IPW$IDM Expansion: In order to control the expansion of this macro, the following
predefined compile time globals are used:

160 VSE Central Functions V7R1 VSE/POWER DRM

&$MNSA
Refuses to expand the macro, but provides MNOTE instead, because the code area must
either be protected against recursive entry or it does not adhere to the VSE/POWER register
conventions.

&$ATSA
Uses local IPW$$AT save area, because all callers of this module are serialized through
locking of 'ATGATE'.

&$STSA
Uses save area permanently addressed by register RC as established at Subtask startup or at
VTAM-exit entry. The save area lies mainly in local module area, because the subtask code
need not be re-entrant (apart from asynchr. service subtask in IPW$$AS)

&$BTSA
Provides execution time decision code to follow either VSE Subtask expansion (as &$STSA) or
VSE/POWER private task expansion (as &$PWSA). Such provisions are necessary in module
IPW$$SR and IPW$$MX, which may be driven both by the PNET SNA subtask and the line
driver VSE/POWER task.

&$PWSA
Uses the VSE/POWER task TCB save area at TCIE. It represents the most common call by a
VSE/POWER private task from a general VSE/POWER module. &$PWSA is defined and set
implicitly by the IPW$DSD storage descriptor macro used in every VSE/POWER module.

&$NUSA
Operates as &$PWSA, and is used in IPW$$NU.

Meaning no global provided as typically in user exit code. The same save area is used as with
&$PWSA, because exit code should be driven by VSE/POWER private tasks only.

Apart from extra expansion code for the macro operand DO= and FAIL=, the following instructions are
generated when calling IPW$IDM:

1. Power task within VSE/POWER module

STM RE,R1,TCIE SAVE RE-R1 IN TCB
LA R1,xySD POINT TO MODULE STORAGE DESCRIPTOR
L RF,CAID GET ENTRY POINT IPW$$ID
BAL RE,16(,RF) ENTER MODULE IPW$$ID
LM RE,R1,TCIE RESTORE RE-R1 FROM TCB

Power task within user exit routine

STM RE,R1,TCIE SAVE RE-R1 IN TCB
LA R1,phasename-area POINT TO USER DEFINED NAME
ICM R1,8,�+8 SET R1 HIGH ORDER X'8�'
B �+6 BYPASS LOCAL DEFINITION
DC XL2'8���' IDENTIFY CALL FROM EXIT ROUTINE
L RF,CAID GET ENTRY POINT IPW$$ID
BAL RE,16(,RF) ENTER MODULE IPW$$ID
LM RE,R1,TCIE RESTORE RE-R1 FROM TCB

2. Subtask (base always R9)

STM RE,R2,�(RC) SAVE RE-R2 IN RC->AREA
LA R1,xySD POINT TO MODULE STORAGE DESCRIPTOR
L RF,CAID GET ENTRY POINT IPW$$ID
BAL RE,24(,RF) ENTER MODULE IPW$$ID
LM RE,R2,�(RC) RESTORE RE-R2 FROM RC->AREA

NOTE: SUBTASK MODULE USED SERIALLY

 Chapter 3. Program Organization 161

3. $$AT (base R8, R9) call (with R2 returned for 2nd IDUMP request)

STM RE,R2,AT�E SAVE RE-R2 IN LOCAL AREA
L R2,ATWASA POINT TO FAILURE SAVE AREA
L R1,ATWNAME POINT TO FAILING PHASE NAME
LA R�,ATWCCD POINT TO CANCEL CODE
L RF,CAID GET ENTRY POINT IPW$$ID
BAL RE,2�(,RF) ENTER MODULE IPW$$ID
LM RE,R1,AT�E RESTORE RE-R1 FROM LOCAL AREA

� WITH R2-->IDUMP PARM LIST
� NOTE: $$AT CODE USED SERIALLY

4. Power task or Subtask in module driven by both types (IPW$$SR/MX, respecting Subtask convention
to offer '$IDM' identifier at offset 24 in save area addressed by register RC)

CLC �+14(4),24(RC) subtask identifier found ?
BE $STnnnn ..yes, go and handle subtask
B $PTnnnn go and handle power task
DC CL4'$IDM' vse subtask identifier

$PTnnnn DS �H
STM RE,R1,TCIE SAVE RE-R1 IN TCB
LA R1,xySD POINT TO MODULE STORAGE DESCRIPTOR
L RF,CAID GET ENTRY POINT IPW$$ID
BAL RE,16(,RF) ENTER MODULE IPW$$ID
LM RE,R1,TCIE RESTORE RE-R1 FROM TCB
B $CTnnnn GO AND CONTINUE

$STnnnn DS �H
STM RE,R2,�(RC) SAVE RE-R2 IN RC->AREA
LA R1,xySD POINT TO MODULE STORAGE DESCRIPTOR
L RF,CAID GET ENTRY POINT IPW$$ID
BAL RE,24(,RF) ENTER MODULE IPW$$ID
LM RE,R2,�(RC) RESTORE RE-R2 FROM RC->AREA

$CTnnnn DS �H

Operation of module IPW$$ID: The header of module IPW$$ID provides a chart describing the
logic structure of the IDUMP processor and the function flow as described below:

1. Entry point processing for a call by ...

priv. VSE/POWER task (in NP or PA mode)
set off Page Fault Handling Overlap (PHO) not to be interruptible by another VSE/POWER
task during IPW$$ID processing and avoid any IPW$WFx call for the same reason.
Request non-parallel (NP) mode by local TDSERV request as required for later IDUMP call.
For details refer to “Multiprocessor Support” on page 111.
Address the local save and symptom record area reserved for this type of caller.

VSE Subtask (always in NP mode)
LOCK IDGATE against concurrent usage by another VSE Subtask. Address the local save
and symptom record area reserved for this type of caller.

IPW$$AT module (always in NP mode)
Respect that only one call at a time can come from IPW$$AT, because that module has
already been gated by locking of ATGATE. Address the local save and symptom record
area reserved for this type of caller.

2. Build symptom record for IDUMP to be written into the VSE/AF Dump (sub)library assigned to the
VSE/POWER partition. VSE/POWER provides a symptom string, containing information about the
cause of error, for problem determination. The symptom string is subdivided into 6 pre-defined
sections, whereby only sections 1,2,3 and 6 are used by VSE/POWER

162 VSE Central Functions V7R1 VSE/POWER DRM

Section 1: This is the environment section; it describes hardware and operating system environ-
ment. The section is completed by VSE/AF.

Section 2: This section contains offsets to and length of the succeeding sections; the base for the
offsets is byte 0 of the symptom string.

Section 3: This section contains error symptoms in structured data base format (SDB). This SDB
format is the standard format used by the level one representatives for RETAIN
searches. It contains the following VSE/POWER supplied information:

 � Cancel code
� Component identifier (5686-033-01)
� Failing phase name, if available

 � PSW/Registers difference

Section 6: This section identifies the major VSE/POWER control blocks:

� Control Address Table (CAT)
� Disk Management Block (DMB)
� Storage Control Block (SCB)
� Local Message Control Block (MMB)
� Virtual Storage Control Block (VSCB)
� Remote Message Control Block (MSCB)
� Dynamic Partition Control Block (DPCB)
� Communication Information Block (CIB)
� Communication Information Block 2 (CI2)
� Trace Information Block (TIB)
� Trace Facility Control Block (TRCB)
� Account Control Block (ACB)
� Module Control Blocks (MCB)
� Task dispatching trace if present
� PNET Master Control Block (PNCB)
� VTAM Driver Control Block for PNET (VDCB)
� RJE,SNA Master Control Block (SNCB)
� VSE/POWER Partition Control Blocks
� Task Control Block (TCB) chain
� Line Control Block (LCB) chain
� Node Control Block (NCB) chain
� External Device Control Block (EDCB) chain
� IPW$$NU with Control Address Table (CAT)

3. Request the IDUMP macro, which is an SVC 2, that must be called in NP mode. When the DUMP
library is full or not defined, issue message 1QC5I and provide also an indication via the high order bit
of register RB.

4. Return to caller processing for ...

priv. VSE/POWER task
Identify IPW$IDM request by message 1Q2JI, return to PA mode (unless task of NP-Must
list), restore locally saved registers, switch on PHO again for private task concurrency, and
return to expansion of IPW$IDM.

VSE Subtask
Identify IPW$IDM request by message 1Q2JI, restore locally saved registers, UNLOCK
IDGATE for other subtasks to enter IPW$$ID, and return to expansion of IPW$IDM.

IPW$$AT module
restore locally saved registers and return to expansion of IPW$IDM (in module IPW$$AT).

 Chapter 3. Program Organization 163

Usage of IPW$IDM: The macro is currently used at about 70 existing code locations as summarized
in the IPW$IDM reference of the IPW$$ID module header. Further APAR activity and new development
should make use if IPW$IDM whenever

� any logic failure has to be captured by a VSE/POWER dump
� the failing task or function can be recovered or terminated smoothly.

 Open/Close Tape
The module IPW$$OT performs several tape functions via the access macro IPW$OTP:

� construct tape control block
� delete the tape control block
� open tape
� close tape
� perform a BAM volume change for a continued queue record
� perform a BAM volume change for a non-continued queue record
� perform a BAM volume change for a SYSIN tape
� require the mounting of the last BAM tape volume for a given spool entry
� require the mounting of the first BAM tape volume for a given spool entry

This support is for non-accounting modules. The above functions are performed either for native tape
support (labeled or non-labeled tape) and for BAM tape support (labeled or non-labeled tape). Native tape
support is capable of reading labeled tapes only, but not writing labeled tapes. BAM tape support may
read or write labeled tapes. The module IPW$$OT prolog has a detailed description of the functions and
various tape formats.

164 VSE Central Functions V7R1 VSE/POWER DRM

 Command Processor
The command processor (IPW$$CM) will be under control either of a permanent TCB located in the first
page of the fixable area or a temporary TCB in the fixable area.

The permanent command processor task is invoked by the attention interface appendage when an oper-
ator command is received from the console.

The temporary command processor task is invoked by the IPW$ICP macro interface instruction.

On entry of the command processor the command to be analyzed and acted upon is contained in a
command processor control block (CPB), which is part of the task control block (TCB). Once the
command has beed identified, its phase entry address is obtained from the command processor table
CMNDTAB located in IPW$$NU.

On exit, the temporary command processor task detaches itself and the permanent command processor
task will place itself in inactive state. The permanent command processor has the highest priority of all
common tasks in the task selection list. It enables the operator to maintain control over the VSE/POWER
partition in extreme circumstances.

Initiation of the Permanent Command Processor Task

The attention routine will pass control to the attention interface appendage in IPW$$NU for a potential
VSE/POWER command. In the appendage routine the command is verified and stored with its operands in
fixed positions in the command processor control block (CPB). The command processor task is set
dispatchable and normal return is taken.

In the case of an invalid command or if the command processor is already active an error return is taken,
resulting in an invalid-statement message or a routine-active message, respectively.

If the attention routine is notified that the command processor is busy, then further commands will be
rejected, and the attention routine will wait for posting by the command processsor when the initial
command has been processed.

Initiation of the Temporary Command Processor Task

The VSE/POWER routine that wants to invoke the command processor for processing of a VSE/POWER
command issues a IPW$ICP macro instruction. Processing control is then given to phase IPW$$IC.

This phase builds and attaches a temporary command processor TCB, with the command and its oper-
ands in fixed positions in its CPB. When called with the WAIT=NO option, IPW$$IC will return to the
caller in case no real storage can be obtained for the temporary command processor TCB.
Commands received from another node are contained in the nodal message record (NMR). If a command
is in NMR format, the originating node name and remote/user id are saved in the CPB. The network
definition table is then scanned to check if the originating node is defined in the local system. If no entry is
found, the command is thrown away. Otherwise command authority information are extracted from the
network definition table entry of the node concerned.

 Chapter 3. Program Organization 165

Command Processor Organization

The VSE/POWER Command Processor is created by a single assembly of each subprocessor and main
processor and a subsequent LINKEDT step. The main module (IPW$$CM), also called root phase, con-
tains the entry point, the command formatting routine and all other subroutines.

At VSE/POWER initialization time all applicable command processor phases are loaded and their entry
point addresses stored in the command table located in the command processor root phase.

Command Authorization Verification

Command authority check is made for each command either received from

 � Local operator
 � Remote operator
 � CTLSPOOL user
� Another node, regardless of source
� Spool access service user (cross-partition user)

Any attempt to enter a VSE/POWER command without the correct authority results in message 1R85I or
1RA7I being issued and rejection of the command.

Command Processing Routines

In IPW$$CM, the command code contained in CPB is used to enter the appropriate command processing
routine. Commands being entered from a connected remote station are first analyzed by the physical
remote reader routine (IPW$$IB for SNA, or IPW$$BR for BSC) before it is passed to the command
processor. There are some commands which do not affect the command processor task and, therefore,
will be processed by the reader itself.

The following commands are processed by the IPW$$IB inbound processor:

 � FLUSH
 � GO
 � RESTART
 � SETUP
 � SIGNOFF
 � START
 � STOP

The following commands are processed for BSC by the IPW$$BR BSC reader:

 � SIGNON
 � SIGNOFF
 � START
 � STOP
 � GO
 � SETUP

The remaining commands are given to IPW$$CM for processing. The main processor is responsible for
de-coding each command and performing the processing necessary to cause appropriate action to the
operator's request. Upon entry, a CP work area is acquired for a temporary command processor task.
The CP work area is the primary work area for the task. The work area is initialized with the entry point
addresses of the various command processor subroutines. To ensure that the permanent command

166 VSE Central Functions V7R1 VSE/POWER DRM

processor task is not put in wait state due to virtual storage shortage, the first page of the pageable area
is reserved at VSE/POWER initialization time as CP work area.

The command is then broken into its operands and each operand in turn is examined and edited; this is
done by calling the FORMAT subroutine. A command table, containing the long and short form of the
command verb, is used to determine the subprocessor to be entered. If the end of table is encountered or
no subprocessor entry point address is present, the command is considered to be invalid.
Each entry in the table may have restriction indicators as follows:

� Command not allowed during VSE/POWER shutdown period
� Command not allowed at autostart time

If one of the conditions is true, the command is rejected. After processing the command, the caller's ECB,
if present, is posted and the CP work area is released (temporary command processor only). A temporary
command processor task is detached but the permanent command processor task is placed in inactive
task. Control is then returned to task management service.

The following is a description of the various command processor subroutines.

MSG - subroutine: This subroutine writes a message to the central operator, places a message into the
remote message queue or sends a message in nodal message record format to another node. If some
value must be added to the message text, flag SWFLAG3 must have been previously set to indicate that
register 5 contains the address of that TCB from which this value is to be fetched.

The following functions are provided by the subroutine:

� Write message to system operator, and perform "connected message" processing using the WTO
macro for messages to the local operator

� Write message to system operator and wait for his reply.
� Put message into remote (RJE) message queue.
� Handle AUTOSTART messages.
� Queue message destined for another node to appropriate node control block (NCB).

VERAUTH - subroutine: This subroutine checks if the issuer of the command is authorized or not. If the
issuer has not enough authorization, message 1R85I or 1RA7I is issued.

The routine is called by means of the IPW$VCA macro instruction. The macro expansion has set up
register 0 with a function code, describing the command to be executed. The function code is used as an
index into appropriate tables which define for each command the authorization level required.

TCBSCAN - subroutine: This subroutine scans the TCB chain to locate a TCB that meets 1 - 4 criteria
set up by the calling routine. Criteria might be any of the following in any combination:

 � Task id
 � Device address
� Remote id (binary)
� Remote id (decimal)

A criterion is met if the argument field matches the corresponding field in the TCB or the argument field
contains zero.

The field CPWTCBPT will contain the address of the TCB which meets the criteria or is zero if the scan
was not successful. When continuation of the scan is requested by the calling routine, CPWTCBPT is
assumed to contain the address of the TCB where the previous scan stopped. CPWTAFLG must be set if
scanning at the next TCB in chain is requested.

 Chapter 3. Program Organization 167

ATTACH - subroutine: This subroutine attaches a new VSE/POWER task. The task may be:

� Physical reader/writer task
� Execution reader task
� RJE/BSC line manager task
� RJE/SNA manager task
� Save account task

The TCB must have been previously set up by the calling routine in the dummy TCB located in the CP
work area.

ASSIGN - subroutine: This subroutine updates the LUB/PUB tables of the VSE/POWER partition. The
following actions are performed:

1. Locate the physical unit block (PUB) for a given physical device and establish partition ownership.
2. Validate if device is supported by VSE/POWER.
3. Locate a free logical unit block within the LUB table of VSE/POWER partition and assign it to the

given physical device.

The subroutine calls the IPW$$LU routine by means of the IPW$ULP macro instruction.

UNASSIGN - subroutine: This subroutine resets the LUB assignment made for a task which cannot be
attached due to a severe error. The subroutine calls the IPW$$LU routine by means of the IPW$ULP
macro instruction.

INVDEV - subroutine: This subroutine checks if the device obtained from the PUB is consistent with the
task. If the device is not supported by VSE/POWER or invalid, a flag is set in 'SWFLAG3'. On entry field
"CPWASDEV" contains the type of task and "CPWASDTY" the PUB device type.

The following device type categories are supported:

 � Tape devices
 � Reader devices
 � Punch devices
 � Printer devices
 � Diskette devices
� RJE control units
� PNET control units

QRINSPCT - subroutine: This subroutine determines whether the queue record of a queue entry meets
the criteria set up by the calling routine. If so, the queue entry is marked eligible for modifying, deleting,
releasing or holding.
Arguments may be:

 � Class
� Jobname and jobnumber
� Job suffix number

 � Generic jobname
� Binary RJE user id
� Local user id

 � Password
� Current disposition, priority, forms id, system id, user id
� Originator destination and user id
� 'to' destination and user id

 � Creation date
� Existence of time event scheduling information

168 VSE Central Functions V7R1 VSE/POWER DRM

A criterion is met if the argument field matches the corresponding field in the queue record or the argu-
ment field contains zero. Upon exit from the subroutine register 15 contains following return code:

0 Queue entry meets criteria.
4 Queue entry does not meet criteria.

BINTODEC - subroutine: This subroutine converts a binary number into printable decimal format. Upon
exit from this routine, field CONVDEC contains the decimal number in printable format, left-justified.

VQUEUEID - subroutine: This subroutine checks if the operand addressed by register 4 is a valid queue
identifier. Valid queue identifiers are LST, PRT, RDR, PUN and XMT. Upon return field CLASSPTR con-
tains the address of the class table associated to the specified queue or is zero when the operand is not a
valid queue identifier. Field CLASSPCB contains the internal class type and field CLASSLC contains the
maximum number of classes for the particular queue.

VTASKID - subroutine: This subroutine checks if the operand addressed by register 4 is a valid task
identifier. Valid task identifiers are LST, PRT, RDR and PUN. Upon return, register 15 contains the return
code:

0 Valid task identifier
4 Invalid task identifier

VPARTID - subroutine: This subroutine checks if the operand addressed by register 4 is a valid VSE/AF
partition identifier. The GETFLD FIELD=PCEPTR returns for a valid partition identifier the PCE address in
R1 and saves it into OTHPCE to be used by the calling command processor. If OTHPCE is zero the
partition identifier is invalid. For a dynamic partition the GETFLD service is skipped because the PCE
address is already in the command processor area of the TCB.

VERKEYOP - subroutine: This subroutine checks if the operand addressed by register 4, is one of the
following keywords and that the keyword value is properly specified. Valid keywords are:

 � CCLASS
 � CDISP
 � CDUE
 � CFNO
 � CPRI
 � CQNUM
 � CRDATE
 � CSYSID
 � CUSER
 � FNODE
 � FULL
 � FUSER
 � LTAPE
 � OUT
 � REW
 � TAPE
 � TLBL
 � TNODE
 � TUSER
 � XMTID
 � CPAGES
 � CCARDS
 � LIMIT
 � HOLD
 � LOG

 Chapter 3. Program Organization 169

If the operand is none of above keywords, message 1R52I cccccccc OPERAND ## NOT SPECIFIED AS
VALID KEYWORD is issued. If the keyword value is wrong, message 1R52I cccccccc INVALID SPECIFI-
CATION FOR KEYWORD is issued. If the various keywords are inconsistent, message 1R52I
cccccccc OPERANDS ARE INCONSISTENT is issued.
The subroutine returns with a displacement of 0, when an error has been detected (either keyword or
keyword value wrong) or with a displacement of 4 when the operand is correct. If the keyword value is
valid, the appropriate argument list contained in the CP work area is updated accordingly.

CLASS - subroutine: This subroutine checks if the class(es) specified in the argument list in the CP
work area is (are) valid. If so, this subroutine places in the TCB, addressed by the field CPWTCBPT,
pointers to master class table entries. Each character of field ''CPWCLAS'' is checked until a blank char-
acter is found. If the maximum number of characters allowed is processed, message 1R87I cccccccc
TOO MANY CLASSES, FIRST n PROCESSED is issued. If the character is invalid according to the task
type, message 1R54I cccccccc CLASS x INVALID is issued. Upon return, register 15 contains the return
code:

0 Valid class specification
4 Invalid class specification

FORMAT - subroutine: This subroutine edits and breaks out the operands of a VSE/POWER command.
The positional operands are collected from the command control block associated with the command
processor task and placed in the fixed format command area of the CP work area. This fixed format area
is then used by the individual command processor routines. Each operand in turn is checked if alpha-
meric and/or decimal. If so, appropriate flags are set. Decimal and hexadecimal operands are converted
into binary format. Double quotation marks are replaced by single quotation marks. Keyword operands
are split into keyword and keyword value. If the operand is embedded in quotes, the quotes are stripped
off and an appropriate flag is set. If the operand is specified in hex notation, this is stripped off. Any +, - or
* character preceding the operand is removed and the operand is flagged accordingly.

When an error is detected while processing the operands, one of the following messages is issued: 1R91I,
1R81I or 1R52I.

Upon return, register 15 contains the return code:

0 No error detected
4 Error detected during formatting

QRDISPCT - subroutine: This subroutine determines whether the queue record of a queue entry meets
the criteria provided by the calling routine within the command processor work area or not. The command
processor work area contains a queue record number identifying a queue record which is read by this
routine. Once this queue record is read, the following fields of this queue record are compared with the
values provided within the command processor work area:

 � Queue id
 � Jobname
 � Jobnumber
� Job suffix number

 � Password
 � User id

The queue entry meets the criteria, if the following fields match to each other:

 � Queue id
 � Jobname
 � Jobnumber
� Job suffix number (if not zero)

170 VSE Central Functions V7R1 VSE/POWER DRM

If the passwords do not match, the password within the work area must be a master password providing
access authority. The user id specified within the work area must provide access authority: either it must
match the to user id or/and the from user id or be a 'master user id' (hexadecimal zeros).

Upon exit from the subroutine register 15 contains following return code:

0 Queue entry meets the criteria.
4 Queue entry does not meet the criteria.

The entry point address of each subroutine is stored in the CP work area, thus it is available to all other
command processor phases.

The following text describes the functions of the various command routines (phases) and its role in the
overall command processor function:

PACCOUNT
This command is used to save the account file on tape, disk or cards or to empty the account
file.

The operands are examined and a TCB for a 'save account' task is built. The TCB contains
information about the medium where to save the account file. If the account file should be
saved onto tape, the specified tape unit is assigned to the VSE/POWER partition. If a 'save
account' task is already active, the command is rejected. Otherwise the save account task is
attached.

PACT
The command is used to activate a drained transmitter or receiver task.

The operands are examined and saved into the CP work area. If no networking is supported
or no connection exists to the specified node, the command is rejected. Otherwise the NCB is
examined if the appropriate transmitter or receiver can be started. If the task is not in drained
status, the command is rejected. Otherwise the drained flag is turned off in the appropriate
NCB task entry and the PNET Driver is posted to create the transmitter/receiver task con-
cerned.

PALTER Queue
This command is used to change one or more attributes of a job or job group.

The operands are examined and the QRINSPCT parameter list is built in the CP work area.
The specified queue is then scanned for queue entries meeting the specified criteria. If such a
queue entry is found, the queue entry is removed from the class chain, if necessary (only when
class, priority, target destination, disposition, or forms id is to be altered) by means of the
IPW$DQS macro instruction. If a non-dispatchable reader queue entry gets changed to a
dispatchable one or the destination of a job in the transmission queue is changed in such a
way that the entry gets queued into the local reader queue, indicate that change in the TCB for
IPW$$TQ in order to calculate a new due date.
If a queue entry gets chained from the local queue (rdr, lst or pun) to the transmit queue, save
the original disposition (meant for local processing) and set QRDP to the 'transmission disposi-
tion D'. Also save the original priority (meant for local processing) and set QRPY (transmission
priority) to the same value.
If a queue entry gets chained from the transmit queue to the local queue (rdr, lst or pun),
restore the original disposition meant for local processing, and restore the local processing pri-
ority.
The queue record is then updated and the queue entry is returned to the appropriate class
chain by means of the IPW$AQS macro instruction when the queue entry was previously
removed from the class chain. Otherwise the queue record is written back to disk by means of
the IPW$AQS KEEP macro instruction. The following is a list of attributes which can be
changed:

 Chapter 3. Program Organization 171

 � Class
 � Priority
 � Disposition
� Target remote id

 � Target destination
� Target user id
� Number of copies
� Compaction table name
� Due date information
� VM Distribution Code

 � Forms Number
� Shared Processing SYSID

 � User Information

PALTER LST|PUN,jobname,jobnumber,CQNUM=q-rec-number,SEGMENT=...
This command is used to segment job output by command.

The operands are examined and the QRINSPCT parameter list is built in the CP work area. If
such a queue entry is found, the creating execution writer task is searched and if found, it is
informed that the output must be segmented either on the next CARD or PAGE boundary or
immediately. Information is passed by using TCVEB for posting and flags. The execution
writer is then enabled for 1 DBLKGP from the DBLKGP cushion to allow segmentation in case
of data file full (1Q38A).

PALTER Partition
This command is used to change the classes associated with a VSE/POWER controlled parti-
tion without stopping the partition concerned.

The operands are examined and the specified classes are checked for validity. The task
selection list is then scanned to locate the execution reader task of the partition concerned. If
found, the task class list table, contained in the TCB, is updated to reflect the new classes.

PBRDCST
This command is used to send a message to the specified recipient.

The operands are extracted and a nodal message record (NMR) is built in the CP work area.
This NMR is then passed to the message distributor by means of the IPW$GMS TYPE=DIST
macro instruction or in case of an ALLUSERS type message to the ALLUSERS message
queue (via IPW$RMS). Depending on the return code given back an appropriate
error/information message is issued.

PCANCEL
This command is used to terminate the printing of a VSE/POWER queue display or to cancel
the execution of a VSE/POWER job currently running.

If 'STATUS' was specified, the TCB selection list is scanned for a matching 'print status' task. If
found, the termination code 'S' is set in the TCB of the located task; otherwise the command is
rejected.

If the first operand is a 'jobname', the TCB selection list is scanned for the task which proc-
esses the specified job. If found, the 'F' termination code is set in the TCB. The task is set
dispatchable, if operator bound (waiting for operator reactivation). If the task is an execution
reader task, all subordinary execution writer tasks are examined if operator bound. If so, the
execution writer task is set dispatchable. All execution writers are enabled for 1 DBLKGP from
the DBLKGP cushion to allow cancellation in case of data file full (1Q38A).

PDELETE Queue
This command is used to delete the specified job or job group.

The operands are examined and the QRINSPCT parameter list is built in the CP work area.

172 VSE Central Functions V7R1 VSE/POWER DRM

The specified queue is then scanned for queue entries meeting the specified criteria. If such a
queue entry is found, the queue entry is deleted from the class chain by means of the
IPW$DQS and IPW$FQS macro instructions.

PDELETE FCB
This command is used to delete VSE/POWER's FCB table.

The command processor root phase calls the PDELETE command processor where a vali-
dation check is performed. Then the command is checked for overspecification. If any error
occurs an appropriate message is issued and control is returned to the command processor
root phase. Otherwise the FCB table is locked by means of the IPW$RSR macro call and all 30
entries are reset to X'00'. Then the table is released by means of the IPW$RLR macro. Finally
control is returned to the command processor root phase.

The address of the FCB table is located in CAT field CAFCTAB.

PDELETE MSG
This command is used to delete one or more messages from the ALLUSERS message queue.

The IPW$RMS macro instruction is called to delete the specified ALLUSERS message from
the queue. If the command issuer is not authorized, the command is ignored.

PDISPLAY Queue
This command is used to display information on queued jobs.

The operands are extracted and the 'print status' parameter list is built in the CP work area. A
'print status' TCB is created and the parameter list is moved into it. If the queue display output
should be printed on a printer, the specified printer device is assigned to the VSE/POWER
partition. Finally the 'print status' task is attached.

The print status task will then scan the class chain(s) for the specified queue(s) and extract the
status information required for a report to be printed on SYSLOG, passed to the remote ter-
minal or node, or on the specified printer.

For a display of the CREATE queue or the DELETION queue the complete queue file is
scanned to extract the status information.

The 'print status display' task displaying the BIGGEST queue entries requires a virtual storage
'collection area' to house the LIMIT number of queue records, in which they are gathered in
descending order of used DBLKGP's from scanning the whole queue file (from queue record
number 1 to MRQ#MAX). Finally each gathered record is displayed.

PDISPLAY PNET
This command is used to display information about the currently loaded network definition table
(NDT).

The operands are extracted and the 'print status' parameter list is built in the CP work area. A
'print status' TCB is created and the parameter list is moved into the TCB. The print status task
is then attached. The print status task will scan the network definition table and according the
specified options, extract information from it to be either displayed on the system console,
passed back to a remote node, or printed on the specified printer.

PDISPLAY VIO/QFL
This command is used to display the storage copy of the queue file residing in VIO or in parti-
tion GETVIS space.

PDISPLAY A
This command is used to display all active local, execution, RJE and networking tasks. One
display line is shown for each such task.

 Chapter 3. Program Organization 173

The task selection list is scanned and each TCB in turn is examined if it is one of above men-
tioned tasks. If so, the task id, associated classes, information about the queue entry among
others are displayed.

PDISPLAY EXIT
This command is used to display status information of VSE/POWER's currently loaded user
exits.

The command attaches a display status task, which displays exit status information like name,
type, size, load point and work area size.

The address of the exit table is located in the CAT field CAEXTAB. The exit table additionally
contains the exits entry point address too, which is not reflected by the display.

PDISPLAY Q
This command is used to display the number of free queue records, the number of free DBLK
groups and the account file full percentage.

PDISPLAY T
This command is used to display the time, date, pages fixed, SYSID, nodeid, and number of
tasks.

PDISPLAY M
This command is used to display all tasks which are waiting for operator action.

The task selection list is scanned and each task in turn is examined whether the task is oper-
ator bound. If so, the task id and the reason why the message is waiting for operator action is
displayed.

PDISPLAY MSG
This command is used to display all messages in the ALLUSERS message queue.

The IPW$RMS macro is used to obtain the first and subsequent messages from the
ALLUSERS message queue. The message is then displayed as is.

PDISPLAY TRINFO
This command is used to display information of the

� telecommunication trace and
 � task trace

PDISPLAY STATUS
This command is used to display the statistics status report about the current VSE/POWER
session.

PDISPLAY DYNC
This command is used to display characteristics of classed contained in the currently active
dynamic class table.

The operands are extracted and the 'print status' parameter list is built in the CP work area. A
'print status' TCB is created and the parameter list is moved into it. Finally the 'print status'
task is attached. The print status task will then scan the dynamic class table, extract the infor-
mation of the required classes and passes the information to SYSLOG, the requested user or
builds a queue entry in the VSE/POWER LST queue.

PDISPLAY AUSTMT
This command is used to display the autostart statements, even if valid or invalid. If the
FORMAT= statement was missing or invalid, the reply to message 1Q11D is also displayed
(even if no autostart statement was read).

174 VSE Central Functions V7R1 VSE/POWER DRM

The autostart statements (and the reply to message 1Q11D) have been saved in IPW$$I2 and
IPW$$I7: for each statement virtual storage has been reserved containing one statement and
the eyecatcher 'AUTOSTMT:'. If not enough storage is available, the initialization is canceled.

PDISPLAY SPDEV(T)
This command is used to display the spooled devices for one or more partitions. If the operand
SPDEVT is used, the device type used at IPL time and the device type in the PUB are dis-
played as well.

In order to display the device type used at IPL time, a translation table is used which is locally
defined in IPW$$CD (DEVTYPTB).

PDISPLAY TASKS
This command is used to display information about all VSE/POWER tasks. Opposite to the
PDISPLAY A command, the displayed information is 'internal' and thought to be helpful for
VSE/POWER developper to solve VSE/POWER problems. Therefore feel free as
VSE/POWER developper to adapt the displayed information whenever it is useful to improve
debugging.

The additional operands for the operand A may be specified also for the operand TASKS.
Therefore to process these additional operands the same code is used. The only difference is
that per default all tasks are displayed for operand TASKS, even the so called 'internal tasks'
like for example the PNET line driver, the cross partition master task and so on (see table
TCBIDINT in IPW$$CD). To display only these 'internal' tasks the operand 'INT' may be used
together with the TASKS operand.

To scan the TCB chain and to decide whether the TCB has to be displayed or not, the same
code is used for the operands A and TASKS with a few special lines for the operand TASKS.

PDRAIN
This command is used to drain the transmitters or receivers specified and make them unavail-
able for further network activity until reactivated by a PACT command.

The operands are examined and saved into the CP work area. If no networking is supported
or no connection exists to the specified node, the command is rejected. Otherwise the specified
transmitter/receiver is addressed using the NCB task entry table and termination code 'E' or 'S'
is set in the TCB. The NCB task table entry is flagged that the task is going to be drained.

PEND
This command is used to shutdown VSE/POWER.

The initiator TCB is changed to the terminator TCB, the termination type 'E' or 'S' is set in all
existing TCBs and under certain conditions the task is set dispatchable. If a printer device is
specified, SYSLST is assigned to the VSE/POWER partition.

In case of PEND or PEND cuu the following happens. The LCB chain is scanned and each
signed-on remote operator is informed via message 1R99I that VSE/POWER is in shutdown. If
RJE,SNA is active, the stop code is set in the SNCB and the SNA manager is posted to termi-
nate. If networking is active, stop code 'E' is set in all NCBs and the PNET driver task, the
TD-Subtask and the SD-Subtask are informed for shutdown. Next, the EDCB chain is scanned
and a 'stop device' order record is built and queued at the tail of the order queue associated
with each external device. The corresponding device service task is then posted to forward the
order.

In case of PEND IMM or PEND IMM,cuu the following happens. The LCB chain is scanned
and each signed-on remote workstation is stopped using the same stop codes as for the
PSTOP FORCE command. If RJE,SNA is active, the same stop code as for the PSTOP SNA
command without the EOJ operand is set in the SNCB and the SNA manager is posted to
terminate. If networking is active, stop code 'S' is set in all NCBs and the PNET driver task,
the TD-Subtask and the SD-Subtask are informed for shutdown. Next, the EDCB chain is

 Chapter 3. Program Organization 175

scanned and the stop code is set: 'PSTOP with the FORCE operand' has been issued. The
corresponding device service task is then posted to process the stop code.

In case of PEND FORCE, an IPW$CNC macro is issued without posting any termination type
and thereby scheduling the VSE/POWER abnormal-end exit.

The following command hierarchy is used. Once PEND or PEND cuu has been entered, it may
take its time till VSE/POWER comes to its end. Probably there is enough time to enter some
more VSE/POWER commands, e.g. another PEND command. If another PEND is given, the
message 1R88I OK is issued, although nothing else is done than the syntax checking (no new
stop codes are set anywhere, no new posting of any task is done). Therefore the following
happens:

1. If PEND has been issued and PEND IMM is issued as a 'second' PEND command, no
special message is issued and the PEND IMM command is processed.

2. If PEND IMM has been issued and PEND is issued as a 'second' PEND command, no
special message is issued and the PEND command is just syntax checked, no further proc-
essing occurs.

3. If PEND IMM has been issued and PEND IMM is issued as a 'second' PEND command, no
special message is issued and the PEND IMM command is just syntax checked, no further
processing occurs.

PFLUSH
This command is used to cancel the current activity on a device, locally or remotely attached,
the execution of a job running in a VSE/POWER controlled partition, or the current
transmission/receipt on a networking line.

The operands are examined if they specify a valid unit record device, partition, RJE task or
transmitter/receiver task. If so, one of the following termination codes is set in the TCB:

'F' current queue entry to be deleted

'H' current queue entry to be bypassed, but not to be deleted.

The command is rejected, when the task is already at job boundary. In an execution reader is
flushed, all subordinary execution writers are enabled for 1 DBLKGP from the DBLKGP cushion
to allow flushing in case of data file full (1Q38A).

PGO
This command is used to reactivate a task which was waiting for operator response (task
status 'O').

The task selection list is scanned for the task matching the specified operands. If found, the
task status byte is examined. If the task in question is not operator bound, the command is
rejected; otherwise the task is set dispatchable.

If the task is a device service task, a 'reactivate device' order record is built and queued at the
tail of the order queue anchored to the EDCB which is associated with the task. The device
service task is then posted to forward the order.

PHOLD
This command is used to take one or more VSE/POWER jobs out of the dispatchable state
and put them in the hold/leave state.

The operands are examined and the QRINSPCT parameter list is built in the CP work area.
The specified queue is then scanned for queue entries meeting the specified criteria. If such a
queue entry is found, the queue entry is unchained from its class chain by means of the
IPW$DQS macro instruction, the disposition in the queue record is changed from D to H and K
to L; the queue record is then added back to the non-dispatchable class chain via the
IPW$AQS macro instruction.

176 VSE Central Functions V7R1 VSE/POWER DRM

PINQUIRE
This command is used to display status information for RJE lines/sessions, external devices,
and the network status:

The LCB (for RJE,BSC), SUCB/LUCB (for RJE,SNA), EDCB (for external devices) and/or the
NCB (for networking) chains are scanned depending on the specified operands and status
information is extracted.

� Not supported (no line table entry exits)
� Not initiated (no line control block or SNA control block exists)
� Inactive (no sign-on)
� Processing RJE-ID (sign-on)
� Status of each connection to other node
� Status of PNET TCP interface to IP partition at local node
� Status of PNET SSL interface to IP partition at local node

� Status of each transmitter/receiver
 – active
 – inactive
 – drained
– halting (in process of closing down)

� Status of external device
 – active
– waiting for work
– waiting for operator reactivation

 – inactive
– setup in progress

PLOAD NDT
This command is used to load the specified network definition table.

For a currently loaded network definition table the following checks are performed:

 � Storage descriptor
� Local node name must match node name defined in master record
� 'own' node entry must be present in table
� Prime and alternate routing nodes must be defined
� VTAM application ids must be uniquely defined

If networking is not supported, the command is rejected. The command is also rejected when a
severe error is detected while examining the NDT. When the NDT is correct, asynchronous
service is used to perform the load operation. When at least one TCP node is defined, the
'PSTART TCPIP' command is triggered internally. When at least one SSL node is defined, the
'PSTART TCPSSL' command is triggered internally.

PLOAD EXIT
This command is used to load the specified user exit routine from the VSE/AF library.

The address of the loaded exit routine is saved in the CAT or PNCB, and the exit is set
enabled. The possible specified length for a work area is anchored in the DMB or PNCB.

If networking is not supported but a NETEXIT/XMTEXIT should be loaded the command is
rejected.

PLOAD DYNC
This command is used to load the library member DTR$DYNx.Z into the VSE/POWER partition
for verification and optionally creation of the active dynamic class table with classes enabled for
dynamic scheduling of partitions.

 Chapter 3. Program Organization 177

POFFLOAD
This command is used to save or re-load queue entries to tape or from tape.

The operands are examined and storage for the POFFLOAD task is acquired and initialized.
The POFFLOAD parameter list is built in the TCB and the specified tape device is assigned to
the VSE/POWER partition. The task is then attached by means of the IPW$ATT macro
instruction.

PRELEASE
This command is used to take one or more VSE/POWER jobs out of the non-dispatchable
state and put them in the dispatchable/keep state. If a reader queue entry gets released, indi-
cate in the TCB for IPW$$TQ to calculate a new due date.

The operands are examined and the QRINSPCT parameter list is built in the CP work area.
The specified queue is then scanned for queue entries meeting the specified criteria. If such a
queue entry is found, the queue entry is unchained from its class chain and the disposition in
the queue record is changed as follows:

� Disposition H (hold) to D (dispatch)
� Disposition L (leave) to K (keep)

The queue record is then added back to the dispatchable class chain. If a RDR queue entry is
released which already once executed, a new VSE/POWER job number is assigned to that
entry.

PRESET
This command is used to reset the in-execution flag for all jobs or output belonging to the
SYSID that was specified in the command.

The command is also used to delete all NMR slots in the QCA belonging to the SYSID that
was specified in the command.

PRESTART
This command is used to back or forward space a printer or punch device by the specified
number of pages/cards.

The operands are examined and internal flags are set in the CP work area. The TCB chain is
scanned to locate the task associated with the specified device. If found, the number of records
to be skipped, and in the case of a 3800 Printer also the new copy group index to be used, is
stored in the TCB of the local or remote writer task according to the operand specifications.
The following index (type of skip) is set:

X'04' Restart processing of the queue entry with specified record number.
X'08' Skip as many records forward as specified.
X'0C' Skip as many records back as specified.

If the task is a device service task, a 'restart device' order record is built and queued at the tail
of the order queue anchored to the EDCB which is associated with the task. The device
service task is then posted to forward the order.

PSEGMENT partition,cuu,...
This command is used to segment job output by command.

The addressed execution writer task is searched and if found, it is informed that the output
must be segmented either on the next CARD or PAGE boundary or immediately. Information
is passed by using TCVEB for posting and flags. The execution writer is then enabled for 1
DBLKGP from the DBLKGP cushion to allow segmentation in case of data file full (1Q38A).

PSETUP
This command is used to print one or more pages of list output with all printable characters
replaced by 'X'.

178 VSE Central Functions V7R1 VSE/POWER DRM

The number of pages to be printed is stored in the TCB for the list task according to operand
specifications. The task is posted dispatchable. The command is ignored when no list task
exists or when the list task is not waiting for operator action.

If the task is a device service task, a 'setup device' order record is built and queued at the tail
of the order queue anchored to the EDCB which is associated with the task. The device
service task is then posted to forward the order.

PSTART
This command is used to create a TCB according to the operand specifications in the
command (except for RJE,BSC lines or PNET). It attaches an execution reader task or a phys-
ical reader or writer task or RJE,SNA task or a PNET node to the network.

In case of a partition start it prompts the operator or the initiator task (if AUTOSTART) to
supply the addresses of the devices to be spooled and builds the partition control block.

In case of a RJE,BSC start, the Line Control Block (LCB) is created and initiated. The activity
byte is set to indicate line start for the Line Manager.

In case of a PNET, nodeid start, a node control block is created and formatted. If this is the
first node being started, the PNET Driver task is created.
If this is the first SNA node being started, the VDCB is built and the PNET Driver is informed to
open the interface to VTAM.

In case of the PSTART DEV command, a device service task is created and attached. The
device service task is equipped with an external device control block (EDCB), which is chained
as first element in the EDCB chain. A 'start device' order record is then built and queued at the
tail of the order queue anchored to the EDCB which is associated with the task. The device
service task is then posted to forward the order.

In case of PSTART TCPIP (accepted only by internal call), the PSTART task ensures by PNCB
locking, that no previous same task is pending. Using the ATTACH communication TDCBSECB
it verfies, that the TD-Subtask is not yet active and then it calls the ATTACH macro to give
control to the TD-Subtask for entry into module IPW$$TD.

In case of PSTART TCPSSL (accepted only by internal call), the PSTART task ensures by
PNCB locking, that no previous same task is pending. Using the ATTACH communication
TDCBSECB in SDCB it verfies, that the SD-Subtask is not yet active and then it calls the
ATTACH macro to give control to the SD-Subtask for entry into module IPW$$SD.

PSTOP
This command is used to stop either a partition controlled by VSE/POWER, a local reader or
writer task, a networking or RJE,BSC line, or a SNA session.

In case of a partition stop, the TCB chain is scanned to locate the appropriate execution reader
task. If found, stop code 'S' or 'E' is set in the TCB depending on the specified operands. If the
task is not in L, M or C state, it is set dispatchable.

In case of a local reader/writer task, the appropriate termination code is set in the TCB of the
task specified in the first operand of the command:

'S' stop immediately
'E' stop after processing of current queue entry

If the operands specify a PNET line, the termination code is set in the NCB and the PNET
Driver is posted.

If the task is a device service task, a 'stop device' order record is built and queued at the tail of
the order queue anchored to the EDCB which is associated with the task. The device service
task is then posted to forward the order.

 Chapter 3. Program Organization 179

In case of PSTOP TCPIP (EOJ), the TD-Subtask is informed via TDCBACT1 flag to DETACH,
when the last TCP node has stopped. In case of PSTOP TCPIP,FORCE, TD-Subtask cancel-
lation (for entry into AB-Exit) is requested by the TREADY macro with cancel code X'08'. Thus
IPW$$AT is informed about the reason of failure, namely 'due to PSTOP'.

In case of PSTOP TCPSSL (EOJ), the SD-Subtask is informed via TDCBACT1 flag (in SDCB)
to request DETACH, when the last SSL node has stopped. In case of PSTOP
TCPSSL,FORCE, SD-Subtask cancellation (for entry into AB-Exit) is requested by the TREADY
macro with cancel code X'08'. Thus IPW$$AT is informed about the reason of failure, namely
'due to PSTOP'.

This command can also be used to 'unassign' a device (but only a printer, punch or tape
device) which is assigned to VSE/POWER. This function has been made available, because it
often happens at a customer's site that due to some software or hardware error a device is
assigned to VSE/POWER but can not be unassigned by no means at all (except by issuing an
IPL).

Two situations are processed differently:

1. If a VSE/POWER task does not exist which uses the device, the operand UNASSGN may
be used to force an 'unassgn' of the device. Note that the specified cuu may be in two
different places within a TCB, one due to the ccu1, the other due to the cuu2 according to
the command
PSTART LST,cuu1,X'cuu2'
where the cuu1 is used for the printer and cuu2 for the tape from which the queue entry is
read before it is printed. Therefore the scan for an existing task is not done by using the
subroutine TCBSCAN in IPW$$CM, but by a routine within IPW$$CP. The 'unassign' is
done by using subroutines in IPW$$LU.

2. If a VSE/POWER task does exist which uses the device (the scan is done as described
above), the operand FORCE may be used to force an 'unassgn' of the device. This situ-
ation is processed like an 'immediate' stop condition. But only in 'special wait' situations
this operand can be used, because it is assumed that for other 'normal' situations the
'normal' PSTOP command can be used. The 'special wait' situations are the following
ones:

a. waiting for virtual storage
b. waiting for real storage
c. waiting for operator reply
d. waiting for tape, printer, punch I/O
e. waiting for locked resource

IPW$$CP posts the task dispatchable and sets indications within the TCB for the task dis-
patcher routine in IPW$$NU. The task dispatcher routine does not return to the caller, but
gives control to IPW$$TR passing some indications within the TCB.

IPW$$TR terminates as 'usual' the VSE/POWER subtask. 'Usual' means with the exception
of issuing some messages and not releasing the storage area the address of which is
passed within the TCB. The storage area not to be released is usually the area which
contains the CCB (for unforeseen posting of the supervisor).

The address of the storage area is updated by the routines which issue the I/O request:
IPW$$PL, IPW$$PP, and tape I/O routine in IPW$$NU.

PVARY exit
This command is used to change the status (enable/disable) of a loaded exit routine or the
status of the task trace.

If networking is not supported but a NETEXIT is concerned the command is rejected.

180 VSE Central Functions V7R1 VSE/POWER DRM

PVARY TASKTR
This command is used to enable/disable the VSE/POWER task trace for running.

PVARY DYNC
This command is used to disable or enable dynamic classes.

PVARY MSG
This command is used to influence the routing of VSE/POWER "I"nformational messages to
'hardcopy file only' (NOCONS) or to re-establish default routing (CONS), namely both to the
console and hardcopy file.

PVARY MAXSAS
This command is used to increase/decrease the maximum (default=250) number of concurrent
Spool Access Support (SAS) tasks allowed concurrently in a running system.

PXMIT
This command is used to route a command to another node in the network or to pass the
command as is to the device driving system serving the external device specified in the
command.

The operands are extracted and a nodal message record (NMR) is built in the CP work area.
This NMR is then passed to nodal message service by means of the IPW$ICS REQ=ADD
macro instruction. If the NMR forwarding failed (no connection established), appropriate error
messages are issued.

If the command is destined for a device driving system, an 'xmit device' order record is built
and queued at the tail of the order queue anchored to the EDCB which is associated with the
task. The device service task is then posted to forward the order.

Command Processing Due to Operator Communication
Commands may be passed to VSE/POWER via the operator communication (OC) routine. This can be
achieved by using the attention routine command MSG part,DATA=VSE/POWER command. The
command specified after the operand DATA= is sent to the program running in the partition identified by
part. In order to get such commands, the program must issue the VSE/AF macro STXIT together with the
operand OC (operator communication).

VSE/POWER issues the STXIT macro in IPW$$I2. If the MSG command is issued before VSE/POWER
has issued the STXIT macro, the message
1P60I NO ROUTINE LINKAGE is issued by VSE/AF.

VSE/POWER issues the STXIT macro with the following operands:

1. MSGPARM=YES to allow the passing of a VSE/POWER command after the DATA= operand of the
MSG command

2. R1 containing the address of the OC-routine
3. R2 containing the address of the save area.

Both above addresses are pointing into the nucleus (IPW$$NU). This is done due to the following
reasons.

This OC message facility should mainly be used whenever a problem occurs with VSE/POWER's proc-
essing. Therefore this support should

1. not alter any control blocks used by normal processing
2. not use those VSE/POWER macros which alter control blocks.

Thus the OC-routine does his own writing to the console (in IPW$$CM), and therefore uses its own buffer
area (and CCB and CCW in error situations).

 Chapter 3. Program Organization 181

In order to avoid a lot of duplicate code, the commands which may be passed by the OC interface are the
same as 'normal' VSE/POWER commands and these commands are processed by the same code (in
IPW$$CM and IPW$$CD) as far as possible. In order to simplify the reuse of this code and have enough
fields available for processing, the OC-routine has its own TCB which, however, is not chained into the
normal task chain.

All these control blocks (TCB, CCB, CCW, and I/O buffer) must be pfixed and are defined in IPW$$NU,
which is fixed, whereas both modules IPW$$CM and IPW$$CD are not pfixed.

The OC-routine in IPW$$NU just initializes some registers and branches to IPW$$CM. When returning
from there, the VSE/AF macro EXIT with the operand OC is used to tell the VSE/AF supervisor that
normal processing may continue.

Notes:

1. While the OC-routine is processing, the maintask of VSE/POWER is suspended. Even if for the
OC-routine a page-fault occurs and the maintask is ready to run, the maintask does not receive
control.

2. If for the OC-routine a page-fault occurs, the page-fault is passed to the page-fault appendage routine
of VSE/POWER. In the page-fault appendage routine exists already code which omits the page-fault
processing if register B points to an area not starting with 'TCB' (because of VTAM exit routines).
Therefore the TCB of the OC-routine starts with 'STCB'.

3. Due to the fact that no control blocks should be altered and therefore most of the VSE/POWER
macros should not be used, not all VSE/POWER commands can be issued via the message interface,
but only those mentioned in table CPSTXOP defined in module IPW$$CM.

The reply messages to a PDISPLAY command are issued in a subroutine MSG000 in IPW$$CM. This
subroutine MSG000 checks whether the TCB is used for the OC-routine and if yes, branches to routine
CPSTXS00 in to order to isssue the reply messages.

Before processing a command, a dynamic workarea is retrieved (CPR000) and released (CPR960) in
IPW$$CM, which is not done when the OC-routine is running: this workarea is allocated in module
IPW$$CM in order to avoid the usage of a IPW$RSV and IPW$RLV macro. The setting of the pointers to
this workarea and to other control blocks occurs in routine CPSTX000 in IPW$$CM, which also does the
syntax checking of the command passed after the DATA= operand of the attention routine command
MSG.

182 VSE Central Functions V7R1 VSE/POWER DRM

VSE/POWER Job Accounting

Account File Processing

Operations on the account file are performed by three functional routines:

� The build account record function (IPW$$BA), invoked by an IPW$PAR macro instruction,

� The put account function (IPW$$PA for C-K-D devices, or IPW$$PF for FBA devices) invoked by an
IPW$PAR macro instruction,

� The get account function (IPW$$GA for C-K-D devices, or IPW$$GF for FBA devices) invoked by an
IPWOAF, IPWGAR, or IPW$CAF macro instruction.

The build account record routine is called by the logical interface routines (IPW$$LO, IPW$$LR and
IPW$$LW) to construct a LST, PUN, RDR or SPOOL account record from the information extracted from
the queue record and associated work area. The account record is then passed to the put account record
routine for writing to the account file.

The put account function routine will accept account records for the VSE/POWER partition and the parti-
tions running under control of VSE/POWER (see Figure 58 on page 184). The account records
(VARUNB format) will be written to the VSE/POWER account file under control of the account control
block (ACB). The remaining file capacity is checked against a 20% limit. A warning message (1Q31I) is
issued if the limit is exceeded. The message is issued in a fixed time interval of 60 seconds.

If the remaining capacity of the account file does not allow to store a presented record, message 1Q32A is
issued and the operator is asked to save or to delete the account file and the task concerned is placed in
a wait state (wait for ECB posting in account control block), until the account file is emptied by the save
account task.

If a stop code 'S' (due to a PEND IMM command) has been set, the message 1Q81I is issued and the
account processing is stopped immediately.

 Chapter 3. Program Organization 183

V S E / P O W E R p a r t i t i o n U s e r p a r t i t i o n

Figure 58. Relationship Between VSE/POWER and VSE/AF Job Accounting

184 VSE Central Functions V7R1 VSE/POWER DRM

The get account function routine, as used by the save account function, is broken down into three oper-
ations:

� Open account file for get mode processing, invoked by IPW$OAF macro instruction. This function is
not supported for FBA devices.

� Get account record to retrieve the next sequential record from the account file, invoked by IPW$GAR
macro instruction. This function is not supported for FBA devices.

� Close account file to restore the mode for put account record processing, invoked by the IPW$CAF
macro instruction. For FBA devices, this function writes an SEOF (software end of file) to the account
file.

Open Account File: The account control block is initialized for read operations (get mode) to
retrieve the first record of the account file. During initialization, the account file is processed by the
recovery routine, which seeks the last track written. There the last record is determined, and the next
record is recorded as the location of the next available account record. If the system is running with a
shared account file, then the next available account record is always updated and passed to the other
shared systems via the master record.

Close Account File: The account file records are erased by writing EOF records on each track for
C-K-D devices or on the first block for FBA devices. The account control block is initialized to start on the
first record in the account file. The task(s) waiting for posting of the ECB in the account control block are
now allowed to continue processing.

Save Account Task: The save account task is attached by the command processor after a
PACCOUNT command is given. The save account routine, IPW$$SA for C-K-D devices or IPW$$SF for
FBA devices, is entered when the task gets control. Its purpose is to empty the account file, erase it, or
save it on another storage medium (disk, tape, or punch queue).

User Specified Account Records: The system administrator can specify its own set of account
record types by means of the POWER generation macro. This sets up a 16 bit field (field GNACI and field
IPW$POWX), where each bit represents one specific type of account record. The account record types
are arranged in ascending alphabetical order, that is the first bit at the left defines an account record of
type 'A'(AFP), the next bit defines an account record of type 'C' (Spool-access-connect) and so on, and
finally bit 12 defines the 'X'-type account record (Spool-access-operation account record. An exception is
bit 13, which, if switched on, prevents creation of spool-access-operation account records which result
from temporarily built $SPLnnnn queue entries. Bits 14, 15 and 16 are free for future account record
types. The 16 bit table is defined the POWER macro and in VSE/POWER's generation table, whose layout
is defined in macro IPW$DGN.

The 16 bit table has its equivalent in a 16 byte long character table (VGNACI, defined in IPW$$DT), in
which the different id's of account records types are stored, that is, bit position 0 corresponds to byte 0 ('A)
of this character table, bit position 1 corresponds to byte position 1 and so on. The relevant character is
used to compute the offset of a byte in a translate table. This byte is then switched from X'00' to X'FF'.
For example a '1' in bit position 0 selects byte position 0 in field VGNACI, which contains the character 'A'.
The EBCDIC code for the character 'A' is hex 'C1' which points to offset 'C1' in the translate table. This
byte is then switched from X'00' to X'FF' (Figure 59 on page 186).

Later when the decision is made whether or not a specific account record is to be written, the account
record ID, obtained from field ACIDEN of the account record is checked against the corresponding location
of the translate table. If X'FF' is found, the account record is written to IJAFILE.

 Chapter 3. Program Organization 185

A C E L M N P R S T V X Y - - - Account record ID's (ACIDEN)
 ┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
 │�│1│2│3│4│5│6│7│8│9│A│B│C│D│E│F│

├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤ 16 bit field GNACI/IPW$POWX
│││1│�│�│�│1│�│1│�│.│.│.│.│�│�│││ set up in IPW$DGN/POWER macro

 └┼┴┼┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴┼┘
 │ │ │
 │ └─────────────┐ └────//────┐
 │ │ │
 │ │ │
 � � �
 ┌───────────────┬───────────────┬───//───┬───────────────┐
 │ byte � │ byte 1 │ │ byte 15 │
 ├───────────────┼───────────────┼───//───┼───────────────┤
 │ A (X'C1) │ C (X'C3) │ │ blank │
 └───────────────┴────────┬──────┴───//───┴───────────────┘
 │

X'C3' 16 byte field VGNACI
│ def'd in IPW$$DT

 IPW$$DT │
table DTTRACC │ points to corresponding location in

┌──┬──┬──┬──┬──//───┐ │ translate table DTTRACC.
│ │ │ │ │ │ │
│ │ │ │ │ │ │ Contents switched from X'��' to
: : : : : : │ X'FF', when bit is 'on' in field GNACI.
: : : : : : │ Def'd in IPW$$DT. During Initialization.
│ │ │ │ │ │ │
│ │ │ │ │ │ │
│ │ │ │ │ │ │
│ │ │ │ │ │ │
│ │ │ │ │ │ │
│ │ │ │ │ │ │

 ├──┼──┼──┼──┼──//───┤ │
│ │��│��│ │ │ │
├──┼──┼──┼──┼──//───┤ │ X'FF' signals that 'C'-type

 C │ │��│��│FF�───────┼──────┘ account records are to be written
 ├──┼──┼──┼──┼──//───┤

│ │ │ │ │ │
│ │ │ │ │ │

 └──┴──┴──┴──┴──//───┘
 3

Figure 59. User Specified Account Records, Data Relationship

186 VSE Central Functions V7R1 VSE/POWER DRM

VSE/POWER Networking Function

The VSE/POWER networking function, referred to in other parts of this manual as PNET, gives the user
the ability to transmit jobs, output, messages or commands to other nodes in a network consisting of
systems which support the network job interface (NJI).

A network is made up of one or more interconnected systems, called nodes. Each node in the network
must have an image of the complete network obtained by means of the network definition table generated
by the PNODE macro. The number of nodes that can communicate with each other is unlimited.

The transmission can be via binary-synchronous communication (BSC) lines or via a virtual channel-to-
channel adapter (CTC) when running under VM or via a synchronous data line control (SDLC) line or via a
TCP/IP link or via a TCP/IP SSL link. These types of connection are supported by one VSE/POWER
PNET. Therefore, a network can consist of a node-A with BSC/CTC lines only communicating through a
node-B with both BSC and SDLC lines to a node-C with only SDLC lines.

PNET TCP or PNET SSL support have been implemented such that they employ the PNET Line Driver
function for native CTC communication passing CTC CCW-operations to the TCP/IP Driver Subtask (also
called TD Subtask) or to the TCP/IP SSL Driver Subtask (also called SD Subtask), which provide the
actual TCP/IP communication layer.

The VSE/POWER networking support is performed by following phases:

 � IPW$$BS Buffer management
 � IPW$$IN PNET Initialization
 � IPW$$LD PNET Driver
� IPW$$LD1 PNET Driver BSC buffer processing
� IPW$$LD2 PNET Driver SNA buffer processing
� IPW$$LD3 PNET Driver Node activity control
� IPW$$LD4 PNET Driver VTAM activity control
� IPW$$LD5 PNET Driver subroutines

 � IPW$$NC Composer
 � IPW$$NK Compression/Decompression Routine
� IPW$$NM BSC I/O Manager

 � IPW$$NP Presentation service
� IPW$$NR Receiver part 1
� IPW$$NR2 Receiver part 2

 � IPW$$NT Transmitter
 � IPW$$SE VTAM Exits
� IPW$$SR SNA Send/Receive Manager
� IPW$$S1 OPEN/CLOSE VTAM subtask
� IPW$$S2 Session establishment routine
� IPW$$S3 Session termination routine
� IPW$$TD TCP/IP Driver Subtask
� IPW$$TS TCP/IP Socket Support
� IPW$$SD TCP/IP SSL Driver Subtask
� IPW$$SS TCP/IP SSL Socket Support

 Chapter 3. Program Organization 187

 PNET Initialization

If PNET= is specified in the POWER macro, the VSE/POWER initialization processor calls the PNET
Initialization phase (IPW$$IN). This module

� Sets up the PNET master control block (PNCB) and stores its address in the CAT (CAPN).

� Sets up the TCP/IP master control Block (TDCB) and stores its address in the PNCB (PNCDTDCB).

� Sets up the TCP/IP SSL master control Block (SDCB) and stores its address in the PNCB
(PNCDSDCB). Note, that throughout all VSE/POWER code, SDCB fields are addressed via the
TDCB-DSECT!

� Loads all PNET phases in the pageable area after the last loaded phase for the local part.

� Loads after the PNET phases the user written XMTEXIT and/or NETEXIT if specified in the POWER
macro and saves load address and possible work area length in PNCB.

� Loads the network definition table, in the GETVIS area, by invoking internally the PLOAD PNET
command processor (IPW$$CLD), and waits for the completion of the following PLOAD actions:

– load the NDT from the phase search chain
– verify version '06.0' assembled under at least VSE/ESA 2.6
– check and verify attributes of PNODE entries
– pass TCP/IP related information from NDT to the TDCB
– pass TCP/IP SSL related information from NDT to the SDCB
– anchor new NDT in the PNCB (PNCBNDTN)
– if at least one valid TCP node has been found in NDT, then invoke an internal command

processor for 'PSTART TCPIP', which will (independent from PLOAD continuation) attach the TD
Subtask as a VSE subtask to drive the interface from VSE/POWER to 'TCP/IP for VSE' from
module IPW$$TD.

– if at least one valid SSL node has been found in the NDT, then invoke an internal command
processor for 'PSTART TCPSSL', which will (independent from PLOAD continuation) attach the
SD Subtask as a VSE subtask to drive the interface from VSE/POWER to 'TCP/IP for VSE' for an
SSL connection from module IPW$$SD.

� Acquires virtual storage for the temporary Node Attached Table (NAT) (in case running shared). This
table is used as interface between the PNET driver and the timer task and contains entries for each
node which was signed-on or signed-off since the last time interval. The timer task updates the
NAT-table contained in the master record according to the entries found in the temporary NAT-table.

If an error occurs during PNET initialization, the appropriate error message is written to the system
console operator and VSE/POWER is initialized without networking. If a problem with the exit routines
occurred, PNET initialization continues, since the exit routines can be loaded dynamically later on with the
PLOAD command.

 PNET Driver

The PNET driver is the central control routine for the networking support in VSE/POWER. It schedules all
SVC 0 communication requests for PNET BSC and CTC, passes PNET TCP requests to the TD Subtask
or passes PNET SSL requests to the SD Subtask, handles communication error recovery and interfaces
with VTAM for synchronous data link control (SDLC) communication. It controls all activity related to a
node, like startup of the node, stopping of the node, etc., and controls the interface to VTAM. Nodes are
identified by field NCBTYP whether they can be reached via a

� BSC link (no flag at all)
� CTC link (NCBCTCA flag)
� SNA link (NCBSNA flag)
� TCP link (NCBTCP and (!) NCBCTCA flag)

188 VSE Central Functions V7R1 VSE/POWER DRM

� SSL link (NCBSSL and (!) NCBCTCA flag)

Due to double flagging of TCP nodes the PNET Driver activities mentioned for PNET CTC also come true
for TCP and SSL nodes (unless stated otherwise). The PNET driver is both event and time driven and
contains several logic routines as described in the following.

PNET Driver Mainline (IPW$$LD): The PNET driver is attached by the first PSTART command
entered for a remote node. It scans all existing nodes to determine what actions are to be performed,
then executes the actions by invoking other routines. When all requested actions are completed it places
itself into a VSE/POWER wait until posted by other VSE/POWER processors when there is more work to
do.

First it checks if there have been buffers queued by either the VSE/POWER BSC/CTC channel-end
appendage or by the TD Subtask emulating channel-end for PNET TCP or by the SD Subtask emulating
channel-end for PNET SSL or by VTAM Send or Receive Exits, all on the buffer queue anchored to the
PNET driver TCB. If so, the buffers are re-ordered from LIFO to FIFO sequence. Each buffer is then
processed by IPW$$LD1, for BSC/CTC/TCP/SSL nodes, or IPW$$LD2, for SNA nodes.

When all buffers are processed, a check is made for the presence of VTAM related events and IPW$$LD4
is called to process them. Looping through the nodes (as represented by the chain of node control
blocks), checks are made for actions requested for a node and if found the request is passed to module
IPW$$LD3. A further check is then made for buffers to process before testing if the VTAM Interface may
be closed in IPW$$LD4. The PNET driver waits to be posted for work to do and when dispatched con-
tinues the loop.

The PNET driver detaches itself when there are no active nodes any more and the VTAM interface is
closed.

BSC/CTC/TCP/SSL Buffer Processing (IPW$$LD1): This module handles all buffers sent
and received when the nodes are connected via a BSC line or CTC adapter or a TCP/IP link or TCP/IP
SSL link. A multi-leaving (MLI) line discipline is used to control the line. Each buffer completed is
checked for errors.

If the buffer is found to be in error or contains information that the remote node found an error, recovery is
attempted. If the error is found to be unrecoverable or cannot be recovered within the retry limits, the
node is flagged for termination.

If the buffer is found to be error free, it is analyzed to see if it contains data records or NJE stream control
information. Data buffers are queued to the proper receiver.

If the buffer contained NJE stream control information then the proper actions, like flagging a receiver
creation or flagging and posting of transmitters and receivers, etc., is performed.

The module then invokes the BSC I/O manager to execute the next Write-Read operation.

SNA Buffer Processing (IPW$$LD2): This module handles all buffers sent and received within
an SNA session (established by module IPW$$S2 when the node was started). For SNA, a buffer also
contains the RPL used to send or receive the data, which is then checked for an error and if found the
node is flagged for termination and the buffer is freed.

If a SEND completes without error the buffer is freed after effecting any status change for transmitters or
receivers as indicated in the buffer.

 Chapter 3. Program Organization 189

If a RECEIVE completes without error, the RPL is first analyzed for VTAM commands and if any is found
then the node is flagged for termination. Non-command buffers are then analyzed in the same way as in
IPW$$LD1.

Note: An SNA response may be sent when requested in the RPL.

Node Activity Control (IPW$$LD3): This module handles all events required for a node. An
event is represented by an indication in the node's activity list. One or more events may be present at the
same time and are processed in the following sequence:

� Timer Event for Node
� Notification of Transmitter/Receiver Detach
� Transmitter/Receiver Flow Control Event (SNA node)
� Delayed Buffer Processing (SNA node)
� Request to invoke VTAM Receive Manager (SNA node)
� Request to invoke VTAM Send Manager (SNA node)
� Request for Node Signon
� Request for Transmitter/Receiver Creation
� Request to Terminate Node
� Request to Signoff Remote Node
� Request to Terminate Session/Line
� Notification of Session Termination (SNA node)
� Request for Node Startup

The actions corresponding to these events are executed when the event is found to be present. The
activity request is set up again for later execution when it cannot be currently executed because of
resource shortage.

PNET - VTAM Interface Processing (IPW$$LD4): This module handles all events related to
VTAM. More specifically it handles:

� Request to open VTAM interface (Open PNET ACB)
� Notification of VTAM OPEN Completion (End of Open PNET ACB)
� Notification of VTAM Termination by Operator or VTAM abend
� Request for Session by Remote Nodes
� Request to Quiesce Remote Node Session Request (SETLOGON QUIESCE)
� Request to end VTAM Interface (Close PNET ACB)

The module is called before activity request for individual nodes are processed and again after all activity
for nodes are processed.

Note: The VTAM Interface is closed when no SNA nodes are active anymore and no VTAM related
events pending anymore.

PNET Driver Common Subroutines (IPW$$LD5): This module is a collection of subroutines
used by the modules above. It contains the following subroutines:

� Validation of Buffers Received (NJE Control Byte Validation)
� Error Logging on SYSREC
� Request Termination of Transmitters and Receivers
� Delete a Node from Node Attached Table (NAT)
� Attach a VSE/POWER Task for Session Creation/Termination
� Request Timer Events from Timer Services

190 VSE Central Functions V7R1 VSE/POWER DRM

PNET Node Operations

Starting PNET Nodes: This is requested by the PSTART PNET,node-id command, which - for SNA
or TCP or SSL nodes - has to specify the remote node name only, and for BSC or CTC nodes the line
address in addition. Hence the PSTART PNET command processor (IPW$$CPS) checks the currently
loaded Network Definition Table (NDT) for the specified remote node name, creates a Node Control Block
(NCB), and initiates node and link information in the NCB. Then the PNCB is locked to add the new Node
Control Block to the NCB chain and the PNET driver task (if already attached) is alerted to start the initial
link related processing for the chained NCB to achieve the 'signed on' state.

Starting a BSC Connection: If a BSC line is started, the PNET driver requests the Startup CCW
Sequence (Disable, Setmode, Enable, Write SOH ENQ, Read) to be issued against the BSC line. The
detailed flow of control when a BSC connection to another node is established, is shown in Figure 60 on
page 193.

Starting a CTC Connection: If a CTCA line is started, the PNET driver issues a "stand-alone"
SENSE-Commandcode CCW to determine the status of the adapter. At Sense I/O completion, the results
are analyzed. If the sensed commandcode is zero, the CTC at the other end has not been started yet.
VSE/POWER issues a CONTROL-READ CCW sequence and informs the system operator via message
1RC6I that the connection is pending. The CONTROL remains outstanding until the other side is started
and issues its "stand-alone" SENSE. This process is designed to ensure that the two CTCAs will be syn-
chronized with sense completing control, and read completing write. If the sensed commandcode indi-
cates that a CONTROL is pending at the other side, VSE/POWER writes an SOH ENQ chained by a
CONTROL-READ CCW. If, however, the sensed commandcode shows X'01' (write pending), a READ is
issued to clear the adapter.

Starting a TCP Connection: The start of a TCP node is only accepted, if the TCP/IP interface (repres-
ented by the TD Subtask) is starting or already active. Only then the NDT is checked and the NCB is built
with

� line = TCP
� NCBTYP = NCBTCP & NCBCTCA (!)
� a pointer to the related NDT entry
� the IP-address or pointer to the IP-name within the NDT
� an extra TCP/IP RECEIVE-ahead buffer of PNODE BUFSIZE

and the PNET driver task is posted. It handles the new NCB according to CTCA type and sets up a
stand-alone SENSE-Commandcode CCW. According to TCP type, the called PNET I/O Manager module
IPW$$NM does not request an SVC 0, but POST's the TCP/IP interface layer, represented by the TD
Subtask. That attempts to

� CONNECT to the IP-host of the remote node,
� send the OPEN control record of the NJE TCP protocol,
� and obtain an ACK control record from the remote node.

Only then the TD Subtask alerts the PNET driver (of the CTC function layer) for completion of the stand-
alone SENSE I/O with a sensed commandcode, as if CONTROL were pending at the other side. From
now on processing continues as follows: initiated from the line driver (CTC layer), performed by the TD
Subtask (TCP/IP interface layer), completion returned to the line driver, and so forth. For details on the
TCP/IP interface processing refer to “TCP/IP Driver Subtask (TD Subtask)” on page 199.

Starting an SSL Connection: The start of an SSL node is only accepted, if the TCP/IP SSL interface
(represented by the SD Subtask) is starting or already active. Only then the NDT is checked and the NCB
is built with

� line = SSL

 Chapter 3. Program Organization 191

� NCBTYP = NCBSSL & NCBCTCA (!)
� a pointer to the related NDT entry
� the IP-address or pointer to the IP-name within the NDT entry
� an extra TCP/IP SSL RECEIVE-ahead buffer of PNODE BUFSIZE

and the PNET driver task is posted. It handles the new NCB according to CTCA type and sets up a
stand-alone SENSE-Commandcode CCW. According to SSL type, the called PNET I/O Manager module
IPW$$NM does not request an SVC 0, but POST's the TCP/IP SSL interface layer, represented by the SD
Subtask. That attempts to

� CONNECT to the IP-host of the remote node,
� send the OPEN control record of the NJE TCP protocol,
� and obtain an ACK control record from the remote node.

Only then the SD Subtask alerts the PNET driver (of the CTC function layer) for completion of the stand-
alone SENSE I/O with a sensed commandcode, as if CONTROL were pending at the other side. From
now on processing continues as follows: initiated from the line driver (CTC layer), performed by the SD
Subtask (TCP/IP SSL interface layer), completion returned to the line driver, and so forth. For details on
the TCP/IP interface processing refer to “TCP/SSL Driver Subtask (SD Subtask)” on page 223.

192 VSE Central Functions V7R1 VSE/POWER DRM

Figure 60. Starting a PNET Connection - Shown for a BSC Link

Stopping PNET Nodes

Stopping a Node Connection: The control flow within VSE/POWER when a connection (of any link
type) to another node is terminated, is shown in Figure 61 on page 194.

 Chapter 3. Program Organization 193

 ┌──────────────────────────────────┐
 PSTOP PNET,nodeid ├──────�│ CMD─PROCESSOR │
 or ├──────────────────────────────────┤

PEND │ 1. Set stop request into NCB │
│ 2. Post PNET driver ECB. │

 └───────────────┬──────────────────┘
 │
 ┌─────────────────────┐ │
 │ Sign─off record │ V
 │ received. │ ┌──────────────────────────────────┐
 │ Severe line─error ├──────�│ PNET DRIVER │
 │ occurred. │ ├──────────────────────────────────┤
 ├─────────────────────┤ │ 1. Propagate stop─code into │
 │ Action byte in NCB │ │ TCBs of all active job/out │
 └─────────────────────┘ │ transmitters/receivers │

│ If PSTOP EOJ or PEND has │
│ been entered, the console │

 │ transmitter/receiver are │
│ not stopped until all job/out │

 │ transmitters/receivers have │
│ finished their transmission. │
│ 2. If PSTOP or PEND │
│ send sign─off record. │
│ 3. Purge output buffers from all │
│ transmitters and receivers. │
│ 4. If all transmitters and │
│ receivers are stopped: │
│ dechain NCB from chain, │

 Message 1RB�I �───────────────┤ issue sign─off message, │
 Message 1R�3I �───────────────┤ and statistics message, │

│ write account record (if line │
│ is initialized), write │
│ end─of─day record onto SYSREC,│
│ release all commands and │
│ messages, release all input │
│ and output buffers, write last│
│ I/O on line (and wait till │
│ finished), unassign logical │
│ unit, release NCB space, start│
│ alternate routes if possible. │

 │ │
│ �� If no more nodes are to be │
│ processed, the PNET driver │
│ detaches himself and resets │
│ some fields within the │
│ PNCB to zero. │

 │ │
 └──────────────────────────────────┘

Figure 61. Control Flow when Stopping a PNET Connection

194 VSE Central Functions V7R1 VSE/POWER DRM

PNET BSC/CTC/TCP/SSL I/O Manager

The I/O manager is responsible for issuing all I/O's for a PNET BSC or CTCA line and for passing PNET
TCP or PNET SSL communication requests from the CTC layer to the TD Subtask (operating in
IPW$$TD) or to the SD Subtask (operating in IPW$$SD). Whenever an I/O is to be initiated, the PNET
driver requests this by indicating the type of request in the node control block (NCB) addressed by register
1.

Depending on the request code a channel program is constructed in the node control block and the I/O is
started via either a direct SVC 0 (BSC/CTC) or via alerting the TD or SD Subtask by POST'ing the
TDCBECB in the TDCB or SDCB. In addition the block control byte (BCB) sequence count is updated
accordingly and the just sent buffer is completed with the current FCS bytes. No wait is performed after
the SVC 0 and immediate return is made to the PNET driver.

The request code consists of a main request (first four bits) and a sub request (last four bits). Figure 62
shows the various CCW sequences that can be built by the I/O manager.

 Chapter 3. Program Organization 195

X'01' startup sequence

 � Disable
 � Setmode
 � Enable
� Write SOH ENQ
� Read response into PNET driver input buffer

For CTC, the CCW sequence consists of:

 � Sense
� Write SOH ENQ

 � Control
� Read response into PNET driver input buffer

X'02' retry startup sequence

 � Sense

 � NOP

 � Enable

� Write SOH ENQ

� Read response into PNET driver input buffer

For CTC, the CCW sequence consists of:

 � Sense
� Write SOH ENQ

 � Control
� Read response into PNET driver input buffer

X'03' CTC read only sequence

 � Read

X'04' disable sequence

 � Disable

X'05' retry sequence

� The last issued channel program is re-issued, if the last
request was a NAK, the last non NAK is issued instead.

X'06' CTC stand-alone read sequence

 � Control
 � Read response

X'07' read only sequence

� The last issued channel program is scanned for a
READ CCW. If found the READ CCW is moved up to the
first position of the channel
program and is re-issued (without chaining).

Figure 62 (Part 1 of 2). PNET BSC and CTC CCW Sequences

196 VSE Central Functions V7R1 VSE/POWER DRM

X'08' expedited flow sequence

� Write text from PNET driver output buffer
� Write DLE ETB
� Read response / text

If a free input buffer is available or a new buffer
can be obtained from the VSE/POWER storage pool
this buffer is used as input buffer and the READ CCW
is updated accordingly. Otherwise, the PNET driver
input buffer is used and the wait-a-bit flag is set.

X'09' CTC sense only sequence

 � Sense

X'10' write - read sequence

� Write text / empty buffer
� Write DLE ETB
� Read response / text

The current status of the to-be-sent output queue is examined and depending on its condition
either an empty buffer is sent, the next output buffer transmitted or an 1,5 second delay initi-
ated. If a wait-a-bit was just received an empty buffer is sent to acknowledge the received
input buffer. If a free input buffer is available or a new buffer can be obtained from the
VSE/POWER storage pool this buffer is used as input buffer and the READ CCW is updated
accordingly. Otherwise, the PNET driver input buffer is used and the wait-a-bit flag is set.

A stand-alone write request is forced when the sign-off record is to be sent for a CTC.

X'15' CTC stand-alone write sequence

 � Sense
 � Write text

X'20' NAK sequence

 � Write NAK
� Read response / text

If a free input buffer is available or a new buffer can be obtained from the VSE/POWER
storage pool this buffer is used as input buffer and the READ CCW is updated accordingly.
Otherwise the PNET driver input buffer is used.

X'21' ACK0 sequence

 � Write ACK0
� Read response / text

If a free input buffer is available or a new buffer can be obtained from the VSE/POWER
storage pool, this buffer is used as input buffer and the READ CCW is updated. Otherwise the
PNET driver input buffer is used.

Figure 62 (Part 2 of 2). PNET BSC and CTC CCW Sequences

 Chapter 3. Program Organization 197

PNET TCP Interface to TCP/IP

Establishing the Interface to TCP/IP: At PNET initialization by IPW$$IN, when the internal
PLOAD PNET command is launched, or at any later time, when an operator requests (re)-loading of the
Network Definition Table by the PLOAD command, module IPW$$CLD checks the new NDT for at least
one valid TCP node and invokes then the PSTART TCPIP command. The IPW$$CS command processor
accepts this startup attempt for the TD Subtask (representing the TCP/IP interface) only by a
VSE/POWER internal request and does the following:

1. Lock/unlock the PNCB to record the temporary PSTART command task in TDCBATCB as a serial
resource, which intends to attach the TD Subtask. When another PSTART TCPIP task is pending,
new attempts are rejected.

2. Check the VSE ATTACH/DETACH communication TDCBSECB of the TD Subtask for subtask still
down or already alive. If the subtask has been started previously and no stop code is pending, then
terminate the PSTART task. If subtask is active, but stop codes are pending in TDCBSTA1 or
TDCBACT1, then the PSTART task checks periodically until the TD Subtask has terminated in order
to attempt a new attach request.

3. Use VSE ATTACH to give control to the TD Subtask for module IPW$$TD.
4. Finally lock/unlock the PNCB to clear the PSTART task pointer in TDCBATCB and terminate this

command processor.

The TD Subtask is attached with the following processing attributes, which outline the subtask's embed-
ding within the surrounding VSE/POWER functions and services. The TD Subtask

� calculates its entry point into module IPW$$TD after
1. the VSE/POWER storage descriptor,
2. the VSE subtask save area,
3. the Subtask-id 'IPW$$TD', and
4. the Subtask abnormal termination save area

� uses VSE/POWER maintask's ABEXIT in IPW$$AT
� drops protection key 0 (established during attach) in order to run in parallel mode
� provides local save area for requesting Idumps in flight using VSE/POWER's IPW$IDM support for a

VSE Subtask
� provides local Message Control Block for requesting IPW$$MX message modification for IPW$$MM

defined messages
� uses macro IPW$GTO to request message support from TCP/IP Service Module IPW$$TS
� uses macro IPW$TTM to request STXIT timer interval support from TCP/IP Service Module IPW$$TS
� uses macro IPW$ITP to request EZASMI Socket calls from TCP/IP Service Module IPW$$TS
� uses VSE macro WAIT TDCBECB to be activated by the PNET Driver from the VSE/POWER CTC

layer
� uses VSE macro POST PAEB (with Line Driver task ecb posted additionally) to activate the

VSE/POWER CTC layer from the TCP/IP interface layer
� uses Test-and-Set instruction to lock the PNCB for sharing the NCB chain with the Line Driver task,

the SD Subtask, and the PSTART PNET command processor task - marking PNCB lockword with
'TCP', when owned by TD Subtask

� uses Compare-and-Swap instruction to add an 'I/O completed' CTC input buffer to the Line Driver
Channel End Queue for sharing this resource with the Line Driver task, the SD Subtask, and the I/O
Supervisor Task

� cannot use macro IPW$GTE to reserve an entry of the telecommunication trace area or to call trace
area dumping, instead ...

� uses Test-and-Set instruction to lock the Trace Information Block (TIB) for sharing line trace entries
with the PNET Line Driver task, the SD Subtask, and the RJE Line Manager task - marking TIB
lockword with 'TCP', when owned by TD Subtask

198 VSE Central Functions V7R1 VSE/POWER DRM

� uses Test-and-Set instruction to lock the Asynchronous Service Anchor Block (ASAB) when sharing
trace area dumping with the PNET Line Driver task, the SD Subtask, and the RJE Line Manager task -
marking ASAB lockword with 'TCP', when owned by TD Subtask

� calls macro IPW$IAS to invoke the Dump Subtask of IPW$$AS for trace area dumping. Selected parts
of this module have been made sensitive on 'being called by VSE/POWER task or by TD Subtask'

Controlling the TCP/IP Interface: Once the TD Subtask has been attached (see message
1RTMI) it remains active, even when another NDT is loaded lateron without any remote TCP node. The
'active' state can be interrogated by either command

� STATUS F1 (assuming VSE/POWER in F1), presenting the 'IPW$$TD' subtask of F1
� PINQUIRE NODE=local-node, presenting '1R56I TCP/IP: ...' information.

The TD Subtask is only terminated by external request

� at normal VSE/POWER session termination time through the PEND command, which sets TDCBACT1
flags. Then, after all TCP nodes have been stopped, the TD Subtask requests DETACH. When
however all (non core) VSE/POWER tasks have terminated and the termination processor IPW$$T1
still finds the TD Subtask communication TDCBSECB with 'alive' indication, there is safety code, so
that the termination task requests DETACH for the TD Subtask.

� during a VSE/POWER session through
– the PSTOP TCPIP (EOJ) command, which informs the TD Subtask for termination processing as if

PEND were given.
– the PSTOP TCPIP,FORCE command. This format is only intended for halting the TD Subtask

abruptly, in case it seems to 'hang'. Hence the IPW$$CP stop command processor requests
subtask cancellation by the TREADY call (with cancel code X'08' = 'due to PSTOP), which leads
to AB-Exit processing in IPW$$AT.

– an abnormal Subtask termination (e.g. program check) leading to AB-Exit processing in IPW$$AT,
which has as well standard VSE subtask tidy-up steps (message 1Q2CI and Idump) as a subtask
type specific step. For the TD Subtask the TCP/IP related tidy-up routine is called, which is
located in module IPW$$TD, and which terminates all TCP node processing and the interface to
TCP/IP for VSE. Upon return to IPW$$AT the TD Subtask finally requests DETACH.

TCP/IP Driver Subtask (TD Subtask)

Overview: The TCP/IP Driver subtask or TD Subtask processes as a VSE/ESA subtask using the
modules IPW$$TD and IPW$$TS. IPW$$TD is the main routine and calls IPW$$TS for following pur-
poses:

1. Issue a socket call
2. Test the returncode of a socket call
3. Issue a message
4. Use timer services:

a. Initialize timer services
b. Set up a timer interval
c. Process expired timer intervals
d. Cancel a timer interval
e. Wait a bit

In addition following modules, which are used mainly by the VSE/POWER maintask, are used by the TD
Subtask as well:

IPW$$AT Process abnormal termination

IPW$$AS Write storage trace entries to dump libraries

 Chapter 3. Program Organization 199

The TD Subtask starts its processing after it has been attached by the VSE/POWER maintask when a
network definition table is loaded with at least one TCP node.

The TD Subtask ends its processing

1. In normal situations due to any PSTOP or PEND command by detaching itself using the VSE/ESA
macro DETACH

2. In abnormal situations by returning to IPW$$AT after some cleanup processing

The main purpose of the TD Subtask is to process requests concerning a TCP node:

1. Translate an I/O request consisting of several CCW's (built according to the CTC protocol) into socket
calls and call the TCP/IP layer by using the macro EZASMI

2. Process the completion of a socket call
3. Pass the received data of a socket call into the buffer of a read CCW and queue this buffer to the

channel-end-queue which is processed by the PNET Driver
4. Process any normal or abnormal stop condition

Interfaces and Operation Layers: The TD Subtask translates an I/O request (which has been
built by the PNET Driver) into socket calls. To issue the socket call, the TD Subtask communicates with
the product TCP/IP for VSE/ESA parts of which run in its own partition (usually F7). Figure 63 shows the
three layers involved in this communication.

 NODE A NODE B

 I II III (IV) III II I

 PNET TCP TCP/IP TCP/IP PNET/TCP
 Line Driver <---> TD Subtask <---> part.--INTERNET--part. <---> TD-Subtask <---> Line Driver

|---P O W E R ---PARTITION----| |TCP-PART| |TCP-PART| |---P O W E R----PARTITION-----|

Figure 63. TD Subtask - Three Operation Layers for PNET TCP support.

The TD Subtask, however, does not communicate directly with TCP/IP for VSE. Instead, it communicates
with the LE/VSE C socket interface, which directly communicates with TCP/IP for VSE. To address the
LE/VSE C socket interface, VSE/POWER uses an application interface (EZASMI macro) which has been
introduced with VSE/ESA 2.5. Some routines of these three components are loaded into the
VSE/POWER partition, some into the SVA.

The communication between the VSE/POWER partition and the TCP/IP partition (F7 in the system setup
distributed by VSE/ESA) is done by routines of the product TCP/IP for VSE/ESA which uses the VSE/ESA
XPCC interface.

Posting Events: The TD Subtask gets posted by the

1. Command processor (IPW$$CPS) to start its processing (when being attached)
2. VSE/ESA Supervisor due to an expired timer interval set up by the TD Subtask itself
3. PNET Driver (IPW$$NM) to translate an I/O request
4. PNET buffer services (IPW$$BS) to complete an outstanding I/O request because an output buffer

has been put into an empty buffer queue. This can be caused by one of the following tasks:
a. by a transmitter task (even by a console transmitter)
b. by a receiver task (queuing a PGR, NPGR, or EOT record)
c. by the PNET Driver task (queuing a network control record, for example a SIGNON or SIGNOFF

record)
5. Command processor (IPW$$CP) to terminate its own processing (due to a PSTOP TCPIP command).

200 VSE Central Functions V7R1 VSE/POWER DRM

Note however:

1. If a PSTOP PNET,nodeid command without the FORCE operand has been entered, the connection to
a node is terminated properly by sending a SIGNOFF record to the remote node, which means the TD
Subtask gets posted by the PNET Driver (IPW$$NM) due to a new I/O request.

2. If the command PSTOP PNET,nodeid,FORCE (with the FORCE operand) has been entered, the
PNET Driver is posted but not the TD Subtask. The connection is terminated unproperly, no
SIGNOFF record is sent to the remote node. The TD Subtask processes the immediate stop request,
when posted due to its own timer services.

3. If the command PSTOP TCPIP,FORCE (with the FORCE operand) has been entered, the TD
Subtask is cancelled for entering the abnormal termination routine IPW$$AT.

4. If the PSTOP TCPIP command without the FORCE operand has been entered, the TD Subtask waits
till all nodes are stopped:
a. If a node is signed-on, the node must be stopped explicitly by issuing a PSTOP PNET,nodeid

command.
b. If a node is not signed-on, the connection is terminated unproperly, no SIGNOFF record is sent to

the remote node.

Addressing Mode: The TD Subtask runs usually in 24-bit addressing mode. Running within module
IPW$$TD, the TD Subtask runs for a few instruction in 31-bit addressing mode when addressing data
received by following socket calls:

GETHOSTBYADDR receiving a logical hostname according to the received binary IP-address via a
socket call CONNECT.

GETHOSTBYNAME receiving a binary IP-address according to the logical hostname specified in the
network definition table (NDT)

Running within module IPW$$TS, the TD Subtask runs in 31-bit addressing mode when issuing a socket
call.

Processing as Server and Client: Within a TCP/IP network, an application may run as a client
or server. The client is the application which issues a CONNECT request, the server is the application
which issues the socket calls BIND, LISTEN and ACCEPT and processes a CONNECT request of another
client. The client is said to run in 'active mode', whereas the server is said to run in 'passive mode'.
The TD Subtask processes as a server and as a client. Whenever a PSTART command for a node has
been entered, the TD Subtask issues a CONNECT request and acts as a client. If the remote node does
not answer or rejects the CONNECT request, the TD Subtask suspends its active mode for a while
(usually 2 minutes). During this time a CONNECT request can be received from the remote node, and the
TD Subtask acts then as a server. In order to process incoming CONNECT requests from remote nodes,
the TD Subtask issues an ACCEPT request at the beginning of its processing. Whenever the ACCEPT
request signals an incoming CONNECT request, the TD Subtask processes this request and thereafter
issues a new ACCEPT request for more CONNECT requests. As soon as a connection to a remote node
has been established successfully, all connections are internally flagged as processing in 'active mode'.

Processing the 'Initial Contact': The usage of a TCP/IP network as a physical layer for a logical
NJE network has been first implemented by RSCS. Hence VSE/POWER implemented the same rules:

1. A connection is established according to the CTC protocol, which means at the beginning of the con-
nection the BSC characters SOH-ENQ and DLE-ACK0 are exchanged.

2. All data exchanged according to the CTC protocol are blocked into a TCP/IP block using the following
structure:

TTB 8 bytes describing a block of NJE data

TTR 4 bytes describing a record of NJE data

 Chapter 3. Program Organization 201

-- n bytes containing NJE data

TTR-EOB 4 bytes describing the end of a block of NJE data

At this point, however, one TCP/IP block contains only one record of NJE data

3. Before starting to exchange data according to the CTC protocol, an 'initial contact' is established,
namely two control records, an OPEN and an ACK or NAK control record, are exchanged to verify that
the two nodes adhere to the NJE protocol. The OPEN control record is exchanged first, whereas the
ACK or NAK control record is sent as response to the OPEN control record. The ACK is sent as a
positive acknowledgement to continue with the connection, whereas the NAK is sent as a negative
acknowledgement to stop the connection. All control records contain the following 33 bytes:

a. 8 bytes describing the type of the control record
b. 8 bytes describing the FROM NJE nodename
c. 4 bytes describing the FROM IP-address
d. 8 bytes describing the TO NJE nodename
e. 4 bytes describing the TO IP-address
f. 1 byte describing a return-code, which is used only for a NAK control record

Details about the TCP/IP frames and control records are described in the macro IPW$DTP, starting at the
lables TCPTTB, TCPTTR and TCPCTRL.

Processing I/O Requests: The I/O requests processed by the TD Subtask are built according to
the CTC protocol by the PNET Driver (IPW$$NM). Instead of issuing a START I/O request, the PNET
Driver updates the status 'I/O request to be processed' (NCBTPS3S) and posts the TD Subtask. When
the TD Subtask gets control, it loops through the NCB-chain and finds the I/O request to be processed
(NCBTPS3S). To flag the I/O request 'complete', the TD Subtask updates the CCB and queues a buffer
to the channel-end-queue anchored in the PNET Driver TCB (TCBQ) using Compare-and-swap (like the
Channel-End-Appendage routine for BSC- and CTC-nodes, and the SD Subtask). The TD Subtask
updates the CCB always with channel and device end, which means the PNET Driver will never issue any
special I/O request for recovery purposes. If any error occurs, the TD Subtask informs the PNET Driver
(IPW$$LD1) by setting NCBTPS1E, which causes the node to be stopped on the NJE layer.

The PNET Driver issues only the following CTC I/O requests for a TCP node:

1. Stand-alone SENSE CCW

The I/O request consists of one SENSE CCW only. This request is issued only as the first request
when starting the connection for a node. It is used to synchronize the I/O requests with the remote
node. The input for a SENSE CCW is one byte, the command code pending on the remote node.
The TD Subtask returns only two different command codes:

a. X'07' (CTC Control), if the remote node did not yet issue an I/O request. The PNET Driver issues
as response to this sense byte an I/O request containing four CCWs, a SENSE, WRITE,
CONTROL and READ CCW. The WRITE CCW sends an SOH-ENQ to the remote node and the
READ CCW should receive an DLE-ACK0 from the remote node.

b. X'00', if the remote node issued already an I/O request. The PNET Driver issues as response an
I/O request containing two CCWs, a CONTROL and READ CCW. The READ CCW should
receive an DLE-ACK0 from the remote node.

Although for a CTC line other values than these two may be returned for a SENSE CCW, the TD
Subtask restricts itself to these values which are sufficient to handle the two different events, whether
the remote node issued already an I/O request or not.

2. A READ only request

202 VSE Central Functions V7R1 VSE/POWER DRM

The I/O request consists of two CCWs, a CONTROL and READ CCW. This I/O request is issued only
as a response to X'00' received by a stand-alone SENSE CCW. The READ CCW should receive an
SOH-ENQ from the remote node.

3. A WRITE only request

The I/O request consists of two CCWs, a SENSE and WRITE CCW. This I/O request is issued only
when the connection to the remote node has to be stopped according to the NJE protocol: a
SIGNOFF record is sent to the remote node without waiting for any response.

4. A WRITE/READ request

The I/O request consists of four CCWs, a SENSE, WRITE, CONTROL and READ CCW. This I/O
request is issued in all cases except the three cases described above.

The TD Subtask performs following actions for the above described I/O requests:

1. Stand-alone SENSE CCW

This I/O request is not completed before the initial contact (see “Processing as Server and Client” on
page 201) has been done successfully, which means the OPEN and ACK control records have been
exchanged. Once a PSTART command has been entered, the TD Subtask issues a CONNECT
request to start a TCP/IP connection in active mode. If the CONNECT request fails or a NAK control
record is received instead of an ACK control record, the TD Subtask retries the the CONNECT
request, usually every 2 minutes, or completes the initial contact via the passive mode in case the
remote node started the connection with a CONNECT request.
This means that the PNET Driver (IPW$$LD3) has been changed:

a. The stand-alone SENSE is never retried for TCP node as it is for a CTC node.
b. No immediate wait for the completion of the stand-alone SENSE is done within IPW$$LD3. The

completion of the stand-alone SENSE is processed via a queued buffer in IPW$$LD1.
c. A new status byte NCBTPEND is used to issue the message

1RC6I CONNECTION PENDING FOR NODE
every 12 minutes in case the connection of the two nodes is not yet completely established (the
initial and response SIGNON records have not yet been exchanged).

Thus the stand-alone SENSE results in following socket calls:

SOCKET To allocate the necessary control blocks to start a new TCP/IP connection.

GETHOSTBYNAME To get a binary IP-address for the remote node. This socket call is issued only,
if a logical hostname has been used in the PNODE macro.

CONNECT To start a TCP/IP connection to the remote IP-address.

SEND To send a 33-byte OPEN control record according to the NJE protocol.

RECV To receive a 33-byte ACK (or NAK) control record according to the NJE pro-
tocol.

CLOSE To stop the TCP/IP connection in case the CONNECT has failed or a 33-byte
NAK control record has been received or any other error occurred.

2. READ only request

The READ only request results in only one socket call:

RECV To receive NJE data (SOH ENQ)

3. A WRITE only request

The WRITE only request results in following socket calls:

SEND To send NJE data (SIGNOFF record)

 Chapter 3. Program Organization 203

CANCEL To stop an outstanding receive request. This socket call is issued only if there is a socket
call RECV outstanding, but which will be the usual case.

CLOSE To stop the TCP/IP connection.

Once the TCP/IP connection has been closed, the status bit NCBTPS1F is set to signal the PNET
Driver (IPW$$LD3) that the TCP/IP connection has been closed and that the final stop activities
(remove the NCB out of the NCB chain and release NCB storage) can be performed or that the node
can be restarted by the PNET Driver by issuing a new stand-alone SENSE request. The TD Subtask
updates the status bits NCBTPS22 or NCBTPS2R, if the TCP/IP error conditions allow a restart.

4. A WRITE/READ request

This I/O request consists of four CCWs, a SENSE, WRITE, CONTROL and READ CCW. The sense
byte for the SENSE CCW is always udated with X'07'. For the CONTROL CCW nothing is done. The
WRITE CCW is usually translated to a socket call SEND and the READ CCW to a socket call RECV.
The socket calls SEND and RECV are started simultaneously and are completed independently from
each other.

The socket call SEND is issued with the length supplied in the WRITE CCW plus the length of the
TCP/IP starting and ending frames. With the currently used product TCP/IP for VSE/ESA the SEND is
posted complete only when all data has been sent to the remote node. Theoretically, it may happen
that the SEND is posted complete and the returncode signals that just part of the data have been sent
to the remote node, in which case the socket call SEND is issued once more with the remaining length
of the data to be sent. The socket call SEND uses the same buffer which is used by the WRITE
CCW, which means an I/O request with a WRITE CCW can not be flagged complete before the socket
call SEND has completed.

The socket call RECV is issued using a TCP/IP buffer (different from the buffer used in the READ
CCW) with the length equal to the buffersize (which is the value of BUFSIZE used in the PNODE
macro) plus some extra bytes to contain the TCP/IP starting and ending frames, because one does
not know in advance how many bytes the remote node may send to the local node. The returncode of
the RECV contains the number of bytes which have been received. Usually one socket call RECV
receives all the data sent by one socket call SEND of the remote node. But as the TCP/IP network
does not know anything about a logical TCP/IP block of data, it may happen depending on the per-
formance of the network:

a. that more than one socket call RECV is necessary to receive all data for one TCP/IP block
b. that more than one TCP/IP block has been received by one socket call RECV

If the remote node is an RSCS node, it may often occur that more than one socket call RECV is
necessary to receive all data for one TCP/IP block, because RSCS issues three socket calls to send
one TCP/IP block of data:

a. The first SEND for the starting frame (TTB, TTR)
b. The second SEND for the NJE data
c. The third SEND for the ending frame (TTR-EOB)

As soon as one block of NJE data has been received, the NJE data is moved from the TCP/IP buffer
to the READ CCW buffer.

All buffers (any SEND or RECV buffers) used for a TCP node are buffers allocated in virtual storage,
not in real storage, as the I/O request never ends up in an EXCP REAL request.

204 VSE Central Functions V7R1 VSE/POWER DRM

Sending Empty Buffers via the TCP/IP Network: If no data has to be sent from one node to
another, empty buffers are sent via a CTC line in order to give the other node a chance to start trans-
mission of data. Sending empty buffers is not necessary for TCP nodes, because each node has a socket
call RECV outstanding and is therefore ready to receive data from the other node at any time.

Each CTC buffer, even an empty buffer contains:

1. a starting frame (DLE-STX)
2. a block sequence count
3. two function control sequence (FCS) bytes

Processing FCS Bytes The two function control sequence (FCS) bytes control the inbound flow:

1. one bit for each of the eight inbound streams to hold or enable the stream
2. one bit to hold or enable all inbound streams

The FCS bytes are sent via the TCP/IP connection as received via the CTC buffer signaling the remote
note to hold or enable the sending of data via its transmitters. If the FCS bytes within the current CTC
buffer are different from the FCS bytes within the last CTC buffer, the FCS bytes are sent to the remote
node, even via an empty record.

The FCS bytes are set:

1. to hold a stream by the buffer services (IPW$$BS) when the the maximum of queued receive buffers
for a stream is reached

2. to hold all streams by the network manager (IPW$$NM), when no buffer can be allocated. The reason
could be:
a. the maximum of receive buffers for the node is allocated
b. no storage is available

The FCS bytes are set to enable a stream by the buffer services (IPW$$BS) every time a receive buffer is
freed. At this point the status for the TCP node is updated to leave the idling state.

Posting an I/O Request Complete: For a CTC node every 1.5 second an I/O request is started,
either to send data or an empty buffer. As it is not necessary to send empty buffers via the TCP/IP
connection, the CTC I/O request is posted complete only in the following situations.

1. a socket call SEND completed (NJE data has been sent to the remote node)
2. a socket call RECV completed (NJE data has been received from the remote node)
3. both socket calls SEND and RECV completed
4. an 'idling state' must be left (see below)

If a socket call SEND is completed, but the RECV is not complete, the I/O request is posted complete and
the READ CCW buffer is updated to contain an empty buffer to acknowledge the sent data of the WRITE
CCW.

If a socket call SEND is not complete, but the RECV is complete, the I/O request is not posted complete
causing the the CTC write buffer to be freed. Since the CTC write buffer is used as TCP/IP send buffer,
the CTC write buffer can not be freed before the socket call SEND is completed.

Idling State: If no data has to be sent to the remote node and the socket call RECV did not complete,
the node enters the 'idling state' (NCBTPS3I). This means on the NJE layer the PNET Driver has started
an I/O request which remains outstanding, because the TCP/IP layer did not yet complete the I/O request.
The idling state is left, if:

1. The outstanding socket call RECV is completed (NJE data has been received from the remote node)

 Chapter 3. Program Organization 205

2. The local node has some data to send to the remote node which has been queued by PNET buffer
services (IPW$$BS) as the first buffer into one of the to-be-sent-queues (the normal queue or the
priority queue). In this case the PNET Driver (IPW$$BS) sets the status bit NCBTPS3L. Next time,
when the TD Subtask scans through the NCB-chain, the TD Subtask posts the I/O request complete
and the READ CCW buffer is updated to contain an empty buffer. Thus the PNET Driver gets a
chance to issue a new I/O request to send some data to the remote node. This happens for example
if the PNET line driver sends
a. a RIF record to start sending data to the remote node
b. a PGR record to acknowledge the RIF record of the remote node (or NPGR record as negative

acknowledgement)
c. an EOT record to acknowledge the reception of a whole queue entry
d. messages or commands via the console transmitter
e. a SIGNOFF record

3. The FCS bytes of the local node have been changed by the PNET Driver and have to be sent to the
remote node (see “Processing FCS Bytes” on page 205).

BCB Processing: The block control byte (BCB) is contained within the starting BSC frame for any
record, even an empty block. The BCB contains a counter with values from 0 to 15 which starts again
with 0 after 15. This counter is used to detect and correct sequence errors. There exists a BCB for the
input buffers and another BCB for the output buffers.

Allthough the TCP/IP protocol has probably its own sequence checking, VSE/POWER maintains BCB's
within the buffers sent and received via the TCP/IP connection. As usually no empty buffers are sent via
the TCP/IP connection, the BCB within the TCP/IP buffers is different from the BCB contained in the
current CTC buffers. Therefore VSE/POWER maintains BCB's for the CTC buffer (maintained by the
PNET driver) and additional BCB's for the TCP/IP buffers (maintained by the TD Subtask).

The BCB for the TCP/IP send buffer is updated and sent to the remote node without any further proc-
essing.

The BCB for the TCP/IP receive buffer is checked for correctness and if invalid, an incorrect BCB is
moved into the CTC buffer which causes the PNET driver:

1. to send a "BCB sequence error" record
2. to stop the node
3. to restart the node, if not suppressed by the NR option of the PSTART command.

The TD Subtask does not check the BCB within the CTC send buffer. Since the CTC buffer is used as
the TCP/IP send buffer, the BCB within the CTC buffer is temporarily updated with the BCB for TCP/IP.
When the CTC I/O is posted complete, the BCB of the CTC send buffer is reset to its original value.

The TD Subtask updates the BCB within the CTC read buffer with the expected value (NCBEBCB)
updated by the PNET driver. Only if the TD Subtask detected a BCB error within the BCB of the TCP/IP
receive buffer, the BCB of the CTC read buffer is updated with a value which causes a BCB error (proc-
essed by the PNET driver, see above).

If a BCB within the TCP/IP receive buffer indicates "reset BCB", the the BCB for TCP/IP send buffer is
updated to the recived value, the BCB's of the CTC buffers remain undisturbed.

 Control Flows:

Flow of I/O Processing: The Figure 64 on page 207 shows the modules and components involved in
processing an I/O request and its corresponding socket calls after a PSTART command has been entered.

206 VSE Central Functions V7R1 VSE/POWER DRM

Figure 64. TD-Subtask - Flow of I/O after PSTART

Flow of Processing when Starting First Node: After the TD Subtask has been attached at PNET
intialization on both nodes A and B, see Figure 65 on page 208, the subtasks on both nodes prepare
themselves to ACCEPT a CONNECT request from the other side. The CONNECT request is triggered by
the PSTART PNET,NODEA command entered on NODE B. But the TD Subtask on NODE A rejects the
connection, because the corresponding PSTART PNET,NODEB command has not yet been entered at
NODE A. The SA-SENSE at node B is not yet posted complete.

 Chapter 3. Program Organization 207

 NODE A NODE B

PLOAD TD Subtask TD-Subtask PLOAD
PNET cmd TD-Driver/ TD-Driver/ PNET cmd

 � TS-Socket TS-Socket -----
 | |
 +----ATTACH-Subtask---> INITAPI � � � �

S�:=SOCKET | � T �
BIND(S�) to local port A | � C �

+ | � P �
LISTEN(S�) INITAPI <-----ATTACH-Subtask--------+ � � �

 + B�:=SOCKET |
S1:=ACCEPT(S�) BIND(B�) to local port B � � �
wait A-ECB + � L �

 + LISTEN(B�) � I �
+ + � S �

 + ACCEPT(B�) � T �
 + wait A-ECB � E �

+ + PNET � N �
+ + LD-Driver � � �
+ + enter cmd --|--
+ + + PSTART PNET,NODEA |

 + + | |
+ + C1:=SOCKET <---------SA-SENSE cmd-code � � �
+ + CONNECT(C1) to A � T �
� :<-----post-A-ECB-for-S1------------ . � C �
:-------post-C-ECB-----------> + wait C-ECB . � P �
RECEIVE(S1) + : . � � �

 wait R-ECB(S1) + : . |
: <---post-R-ECB(S1) + SEND(C1) OPEN-CTL-rec . � � �
verify OPEN-CTL versus TCP- + : . � I �
PNODE entries of local NDT + : . � N �
and started TCP-nodes (NCB) + RECEIVE(C1) . � N �

>>>> assume 'no PSTART yet' + wait R-ECB(C1) . � I �
CLOSE(S1)-post-R-ECB(C1) + : . � T �

with data-len=�----> + : . � � �
refresh ... S2:=ACCEPT(S�) + RC=-1,ERRNO=1124 or recv-len=� |

wait A-ECB + : . => 1RC6I CONNECT |
1RTHI NODE B AWAITING <===== + + PENDING |
 CONNECTION + + |

Figure 65. TD Subtask - Startup and First PSTART Command

Flow of Processing when Starting Second Node: With the first connection attempt rejected in
Figure 65, and NODE B in 'CONNECTION PENDING FOR NODE A' state, the scenario continues with
Figure 66 on page 209, when finally the missing PSTART PNET,NODEB command is entered on NODE
A side.

208 VSE Central Functions V7R1 VSE/POWER DRM

 NODE A NODE B

 PNET TD Subtask TD-Subtask PNET
 LD-Driver TD-Driver/ TD-Driver/ LD-Driver
 TS-Socket TS-Socket

(for entry, see precedeing figure 'Startup TD Subtask - Incoming CONNECT Request')
 + + |

(wait Accept-ECB outstanding) (wait Accept-ECB outstanding) |
+ + . � � �

 enter cmd + + . � T �
 PSTART PNET,NODEB + + . � C �

| + + . � P �
SA-SENSE cmd-code-------> + C2:=SOCKET + . � � �

. + CONNECT(C2) to B -post-A-ECB B1--> B1:=ACCEPT(B�) . |

. + wait C-ECB <---post-C-ECB------ : . � � �

. + : RECEIVE(B1) . � I �

. + SEND(C2) OPEN-CTL-rec ----> wait R-ECB(B1) . � N �

. + RECEIVE (C2) : . � I �

. + wait R-ECB(C2) : . � T �

. + : <-ACK-CTL-rec------ SEND(B1) . � � �

. + : refresh ACCEPT(B�) . |
 |<---'�7'----for CTL-+ : wait A-ECB . |
 . + : + : ----for-no-cmd--'��'--> | |
 . + : + : CONTROL |
 . + : + : READ |

 >>>>> . >>>>>>>>>>> all subsequent DATA exchange with TTB|TTR|DATA|TTR-EOB format only <<<< . <<<<<<<<<<<<< |
 . + : + : . |
 ����� + : + : . -----
 SENSE + : + |

WRITE SOH ENQ ------->-+--: + RECEIVE (B1) . |
. + 'C2' socket related + wait R-ECB . |
. + SEND -SOH-ENQ-buffer----> + : . |
. + : + : --------SOH ENQ ----- > | � � �
. + : + : ����� � C �
. + RECEIVE + : SENSE � T �
. + wait R-ECB + : <-------DLE ACK�------ WRITE � C �

CONTROL + : <---DLE-ACK�-from--- + SEND . � � �
READ <------DLE ACK�---+- : + : . |
����� + : + : . � � �

>>> from now on the DATA in TTB|TTR|DATA|.... has NJE-CTC buffer format: DLE|STX|BCB|FCS|FCS|RCB.... <<<<<< � I �
. + : + RECEIVE . � N �

SENSE + : + wait R-ECB CONTROL � I �
WRITE 'I' signon rec->-+--: + : . � T �
. + SEND 'I'-signon-rec-----> + : . � � �
. + : + : --------'I'-signon rec->-READ |
. + : + : ���=> MSG 1RB3I SIGNED ON

 . + : + : SENSE |
 . + RECEIVE + : . |

. + wait R-ECB + : <------'J' signon resp- WRITE |
CONTROL + : <-'J'-signon response- +-SEND . |
READ <-'J'-signon resp-+--: + : . |

1RB3I<=����� + : + : . |
SIGNED ON + : + : . |

----------------- N O D E S -------- A R E -------- S I G N E D ---------- O N ------------------------------------

Figure 66. TD Subtask - Second PSTART Command and Signon Complete

Flow of Processing the Idling State

The idling state is entered, if both nodes issued a CTC I/O request to send an empty buffer. Since empty
buffers are not sent via the TCP/IP connection, both CTC I/O requests are not posted complete, and the
nodes are set into "idling state".

If node A wants to send a record (containing a message for example) to node B, the record is queued as
first buffer in the to-be-sent-queue and the status in the NCB is updated to leave the idling state. Next
time, the TD Subtask is posted due to its own timer interval, the TD Subtask processes the new status of

 Chapter 3. Program Organization 209

the NCB. Since no data has been received via the TCP/IP communication, the TD Subtask completes the
CTC I/O and passes back an empty buffer. Thereafter the PNET driver starts a CTC I/O request to send
the record to node B. The TD Subtask processes the CTC I/O request and issues a socket call SEND to
send the record via the TCP/IP communication. The TD Subtask completes the CTC I/O request imme-
diately and passes back an empty buffer, in order to let the PNET driver send some more data.

 NODE A NODE B

 PNET TD Subtask TD-Subtask PNET
 LD-Driver TD-Driver/ TD-Driver/ LD-Driver
 TS-Socket TS-Socket

 + : + : �����
 + : + : SENSE

+ : + : <--- empty buffer ----- WRITE
+ : + no SEND for empty bfr |-- .

 + : + RECEIVE .
+ : + wait R-ECB wait for I/O completion

 ����� + : + : .
 SENSE + : + : .

WRITE -- empty buffer --->no SEND for empty bfr | + : .
 . + + : .
wait for I/O completion + still wait R-ECB + : .
 . + : + : .
 . + : + : .

. --------- Idling state: both CTC I/O not yet complete ------- .
 . + : + : .
 . + : + : .
'message to be sent'==| + : + : .

. |========> update NCB status + : .
 CONTROL + : + : .

READ <--'empty buffer'----complete I/O + : .
 ����� + : + : .
 SENSE + : + : .

WRITE --- message ------->: + : .
. + SEND --- message --------| + : .

 . + RECEIVE | + : .
 CONTROL + wait R-ECB | + : .

READ <-- empty buffer ----complete I/O (may be .. | + : .
����� + : ..more data to send) | + : .

 SENSE + : | + : .
WRITE -- empty buffer --->no SEND for empty bfr| | + : .

 . + : | + : .
wait for I/O completion + still wait R-ECB | + : .

. + : |---> + R-ECB posted by TCP/IP .
 . + : + : CONTROL

. + : + : --- message -----------> READ
 . + : + : �����
 . + : + : SENSE

. + : + : <--- empty buffer ----- WRITE

. + : + no SEND for empty bfr| .
 . + : + RECEIVE .

. + : + wait R-ECB wait for I/O completion
 . + : + : .

. --------- Idling state: both CTC I/O not yet complete ------- .

Figure 67. TD Subtask - Processing the Idling State

TCP/IP Driver Subtask Mainline (IPW$$TD):

Overview: The module IPW$$TD consists of following parts:

TDCS Initialization after being attached

TDMAIN Loops forever untill a stopcode is set. Following processing occurs within this loop:

210 VSE Central Functions V7R1 VSE/POWER DRM

TDTERM Terminates TCP/IP interface if necessary

TDINITAP Initializes TCP/IP interface if necessary

TDPASSOK Processes as server in "passive mode"

TDNBLPIN Loops through the NCB-chain to process all TCP-nodes (in 'active mode')

TDPOSLDR Posts PNET Driver if necessary

TDDETACH Detach itself (the TD Subtask) if necessary

TDTIMSET Issues timer interval using TQE within subtask control block (TDCB)

TDWAITDS Issues VSE/ESA wait macro
If posted, starts loop from the beginning

TDSBATDY Tidy-up routine in case of abnormal termination, called by IPW$$AT.

TDCS - Initialization

The part TDCS performs following initialization steps after being attached:

1. Initialize base register
2. Initialize register for save area
3. Initialize register for save area used by macro IPW$IDM
4. Drop protection key zero in order to run in parallel mode, if multiprocessor support is available
5. Initialize areas for the timer services within TDCB
6. Initialize TCP/IP workareas within TDCB

a. Clear TCP/IP workarea for passive mode
b. Clear workarea within module IPW$$TD
c. Clear local IP-address which is updated later on by the socket call GETHOSTID
d. Set trace option on for socket calls issued during initialization
e. Set request 'initialize interface to TCP/IP'

7. Update task identifiers (name and VSE/ESA subtask identifier) in TDCB
8. Anchor address of tidy-up routine TDSBATDY in TDCB, which is used for abnormal termination in

IPW$$AT
9. Initialize timer services (use macro IPW$TTM with operand STXIT=YES)

TDMAIN - Mainloop

Overview: The part TDMAIN contains the mainloop of the TD Subtask, which is left only if some stop
conditions cause the detach of the TD Subtask. In case of an abnormal termination this loop is not
entered, but the tidy-up routine TDSBATDY is entered directly from IPW$$AT. At the end of the mainloop,
the VSE/ESA WAIT macro is issued using as ECB the field TDCBECB within the TDCB. TDCBECB is
posted due to the events described above (see “Posting Events” on page 200). When the TD Subtask is
posted, the mainloop is started again at label TDMAIN. At the beginning of the mainloop following steps
are performed:

1. Clear the ECB (TDCBECB)
2. Call timer services to process expired timer intervals (use macro IPW$TTM with operand

PROCESS=YES)

Following steps are part of the mainloop:

TDTERM: The interface to TCP/IP is terminated by issuing the socket call TERMAPI. It is terminated
according to the stop condition: if the interface has to be terminated immediately, the socket call
TERMAPI is issued at once. In all other cases, the TERMAPI is postponed untill all TCP nodes
(TDCBNONU must contain 0) have been stopped and the passive connection has been stopped. In case

 Chapter 3. Program Organization 211

the initialization (socket call INITAPI) has failed, no socket call TERMAPI is issued. In any case, any
outstanding message of type A (anchored in TDCBMSGD) is deleted via macro IPW$GTO using the
operand DOM. Thereafter a terminating message, either 1RT8I or 1RTSI, is issued via macro IPW$GTO
with the operand MSG.

TDINITAP: The interface to TCP/IP is initialized by issuing the socket call INITAPI, but only if no stop
condition is set. In addition the status "issue startup-message" (TDCBS1SM) is set. The startup-message
1RT7I is issued once for each initial socket call (SOCKET, GETHOSTID, BIND, LISTEN). Thereafter the
initialzation process for the passive mode is entered by entering the routine TDINIGSC directly.

TDPASSOK: The part TDPASSOK contains the code for the TD Subtask to run as a server in passive
mode. Following steps are performed:

1. If the interface to TCP/IP is not available or the passive mode has been stopped, passive mode proc-
essing is bypassed and processing continues with searching through the NCB-chain.

2. If the passive mode has to be stopped, processing continues with closing the passive connection
(TDPASCLS)

3. If the passive mode has been started (a CONNECT request from a remote node has been received),
but the initial contact (the exchange of the OPEN and ACK or NAK control records) did not complete
in time, the processing continues with closing the passive connection (TDPASTIO)

4. If a special event (TDNTPS4P) has to be processed, processing continues with the routine for this
event (TDNTPWPO). At this point only one event may happen:
a. When receiving a CONNECT, the NCB chain had to be scanned for matching definitions. For this

purpose the PNCB had to be locked. If the locking of the PNCB had failed, the status
(TDNTPS4P) is updated to reenter the routine (TDPASVLF) to lock the PNCB.

5. In all other cases processing continues with the routine to issue a socket call (TDSBSOCK).

When routine TDSBSOCK is entered, register 1 points to the parameter area (TDNTPDS) which contains
all necessary information to issue a socket call, namely:

1. the type of socket call (TDNTPSC)
2. the return addresses (TDNTPS00, TDNTPS04, TDNTPS08, TDNTPS0C) for the routine TDSBSOCK

according to the returncode (0,4,8,12) set by the service routine (IPW$$TS)

The parameters are set by the routines initializing the socket call before entering the routine TDPASSOK.
This means the routine TDPASSOK is entered directly by subroutines to issuing a socket call and there-
after, once the socket call has been issued, by the mainline to check for the completion of the socket call.

Following socket calls are issued in passive mode

1. The first sequence of socket calls is issued to prepare the passive mode.

The return address (TDNTPS00) for the returncode 0 is set in each routine before the socket call is
issued. The return addresses (TDNTPS04, TDNTPS08, TDNTPS0C) for the error conditions are set
just once and have been initialized in routine TDINITAP before issueing the socket call INITAPI.
TDINITAP passes control to routine TDINIGSC to start the initial sequence of socket calls.

Following routines are involved in preparing passive mode processing:

TDINIGSC Issue the socket call SOCKET to allocate the necessary control blocks for the passive
mode. The parameter area is initialized with the port number (TDNSCBPT) out of the
NDT and the family type (TDNSCBFM) is set to 2. Returned is the socket descriptor
(TDNSCRC), a number which is saved into TDNSCSOD, because it must be referenced
by all following socket calls. In addition the status "TCP/IP interface available"
(TDCBS1IA) is set, because the socket call SOCKET was the first, which has been
passed through all the TCP/IP layers. If this socket calls fails, the type A message
1RTJA is issued, which will be deleted if the interface has been established successfully

212 VSE Central Functions V7R1 VSE/POWER DRM

or the TD Subtask is stopped. If the returncode makes a retry meaningful, the socket
call is retried every 20 seconds.

TDINIGIP Issue the socket call GETHOSTID to get the binary IP-address of the local node and
update TDCBSCIR with the readable IP-address.

TDINIBID Issue the socket call BIND to link the socket with a port number.

TDINILIS Issue the socket call LISTEN to prepare the socket for the next socket call ACCEPT.
The status "issue startup-message" (TDCBS1SM) is reset and any outstanding message
of type A (anchored in TDCBMSGD) is deleted via macro IPW$GTO using the operand
DOM.

2. The next sequence of socket calls is issued to process incoming CONNECT request from remote
nodes and complete the initial contact (see “Processing as Server and Client” on page 201) The
return addresses (TDNTPS00, TDNTPS04, TDNTPS08, TDNTPS0C) are set in the routines to the
appropriate values.

Following routines are involved in passive mode processing:

TDPASACC Issue the socket call ACCEPT to get posted whenever a CONNECT request is
received. The posted ACCEPT returns a new socket descriptor (TDNSCSOD), because
new control blocks have been allocated by the TCP/IP layers when the CONNECT has
been received. This new socket descriptor is now used for all following socket calls.
The socket descriptor used for the socket call ACCEPT has been saved into
TDSVSCSD in routine TDINIGSC and is used for all new ACCEPT socket calls. The
received binary IP-address of the remote node is translated into readable format and
put into TDNTPIPC.

In addition a timer interval is set for 5 minutes. Within this time limit the initial contact
must be completed, otherwise the local node stops the connection by issuing a socket
call CLOSE and message 1RTGI. This avoids that a hanging connection prevents that
other connections can not be established, because one CONNECT request after the
other is processed sequentially.

TDPASGHN Issue the socket call GETHOSTBYADDR to get a logical hostname. The previously
posted ACCEPT returned just a binary IP-address, but no logical host name. When
checking the network definition table (NDT) both IP-addresses, the binary IP-address
and the logical hostname, are used to check whether a node has been defined for one
of these addresses.

If no matching node has been found in the NDT, the message 1RT3I is issued. If a
logical hostname was found for the received binary IP-address, the message 1RTBI is
issued in addition.

TDPASRCV Issue the socket call RECV to receive an OPEN control record.

Following error messages are issued:

1RT4I The control record was not of type OPEN. The connection is stopped by
issuing a socket call CLOSE. No NAK control record is sent.

1RT5I The control record contained invalid information, which might be the FROM
node-id or FROM IP-address or the TO node-id or TO IP-address. The con-
nection is stopped by issuing a socket call CLOSE after a NAK control record
with RC=1 has been sent.

1RTEI The binary IP-address was not used for the node-id found in the NDT
according to the binary IP-address received by the CONNECT request. The
new connection is stopped by sending a NAK control record with RC=1 and
issuing a socket call CLOSE.

 Chapter 3. Program Organization 213

1RTBI The logical hostname found due to the binary IP-address of the CONNECT
request was not used for the node-id found in the NDT. The new connection is
stopped by sending a NAK control record with RC=1 and issuing a socket call
CLOSE.

1RTHI A PSTART command has not yet been issued for the node-id. The new con-
nection is stopped by issuing a socket call CLOSE without sending a NAK
control record.

1RTVI A PSTART command has already been issued for the node-id. One of the
following situation has occurred:

a. The TD Subtask is just starting a connection for this node-id in active
mode. Therefore the new connection, started by the passive mode, is
stopped by sending a NAK control record with RC=3 and issuing a socket
call CLOSE. The status of the connection starting in active mode is not
changed at all and continues its normal flow.

b. The TCP/IP connection for the node-id has been established some time
ago successfully. Therefore the new connection, started by the passive
mode, is stopped by sending a NAK control record with RC=2 and issuing
a socket call CLOSE. The already active connection is stopped as well by
setting the stopcode to line-error.

1RTFI The received control record is displayed in hexadecimal format. This message
is displayed in addition to one of the previous messages (1RT4I or 1RT5I).

TDPASSND Issue the socket call SEND to send the ACK or NAK control record. If an ACK control
record has been sent, the status bytes within the NCB are updated to continue proc-
essing for this node (in active mode) using the TCP/IP connection established in
passive mode. If a NAK control record has been sent, the passive connection is closed
by issuing a socket call CLOSE. In both cases the workarea for the passive connection
within the TDCB is cleared to process new incoming CONNECT requests. Processing
continues in routine TDPASACC with issuing a socket call ACCEPT.

TDNBLPIN: The part TDNBLPIN contains the code for the TD Subtask to run as a client in active mode.
Following steps are performed (for more details see “TDNBLPIN - Loop through NCB-Chain (Details)” on
page 215):

TDNBLPIN Init search through NCB chain

TDNBLPNX For each TCP node in NCB chain:

TDNBCLOS Close connection if necessary

TDNBINIT Start initial contact if necessary

TDNBWAIT Process next NCB if processing for current NCB is postponed

TDNBIOST Start processing of CTC I/O request: translate CCW's

TDNBIOSN Process SENSE CCW

TDNBIOWR Process WRITE CCW

TDNBIOCL Process CONTROL CCW

TDNBIORD Process READ CCW

TDNBFCSW Init wait timer interval if FCS signals "hold stream(s)"

TDNBIDLG Leave idling state if necessary

TDNBIOZ0 Complete I/O if necessary

214 VSE Central Functions V7R1 VSE/POWER DRM

TDNBTIME Init timer interval for this NCB if necessary

TDPOSLDR: If the status "post PNET Driver" (TDCBA3PL) is set, the ECB (TCEB) of the PNET Driver is
updated and the main-ECB (PAEB within the CAT) of the VSE/POWER maintask is posted by using the
VSE/ESA macro POST. TDCBA3PL has been set, if an I/O request for a node has been completed and
an input buffer has been queued to the PNET Driver TCB in routine TDNBIOZ0.

TDDETACH: If the status "detach task" (TDCBA1DT) has been set in routine TDTERM after the socket
call TERMAPI has been issued, the TD Subtask is now detached by issuing the VSE/ESA macro
DETACH. The TD Subtask can not be detached immediately in routine TDTERM, because in case of
immediate termination of the TD Subtask, the status bytes for the TCP nodes have to be set first by
entering routine TDNBLPIN. Before detaching the TD Subtask, the timer service is called by using the
macro IPW$TTM with the operand CANCEL to cancel an outstanding timer interval using the TQE within
the TDCB.

TDTIMSET: First the timer service is called by using the macro IPW$TTM with the operand CANCEL to
cancel an outstanding timer interval using the TQE within the TDCB. Thereafter the timer service is called
by using the macro IPW$TTM with the operand TIME to issue a new timer interval using the TQE within
the TDCB.

TDWAITDS: If the status "omit WAIT" (TDCBS2NW) is not set, the VSE/ESA macro WAIT is issued using
the ECB (TDCBECB) within the TDCB. TDCBS1NW is set in case the TCP/IP interface is no longer
available in error routines TDINITII and TDPASSTI. In these cases a WAIT is not necessary, the
mainloop is directly reentered at label TDMAIN to terminate and detach the TD Subtask.

TDNBLPIN - Loop through NCB-Chain (Details)

Following steps are processed for each NCB of the NCB chain.

TDNBLPIN: Before searching through the NCB chain for a TCP node, the PNCB is locked using the test
and set (TS) instruction. If the locking is successful, the lockword is updated with "TCP" to identify the TD
Subtask as owner of the PNCB. If the locking is unsuccessful, the TD Subtask waits for 1 second using
the macro IPW$TTM with the operand "REACTIVATE" before retrying to lock the PNCB.

The PNCB is unlocked, if the end of the PNCB chain is reached or if a TCP node is found for which the
TCP/IP connection has not yet been closed (NCBTPS1F).

TDNBCLOS: Before a socket call CLOSE is issued, a socket call CANCEL is issued for an outstanding
SEND and/or RECV socket call. Depending on the status bytes within the NCB (NCBTPSTx):

1. A message is issued explaining the reason why the the TCP connection has been closed
2. If a SIGNOFF record has been received, processing continues at TDNBTIME to terminate the TCP/IP

connection
3. If TCP/IP connection to be restarted:

a. Clear TCP/IP workarea (starting at NCBTPDS)
b. Processing continues at TDNBTIME to init timer interval before restarting

4. In all other cases, processing continues to complete I/O (TDNBIOZ0)

TDNBINIT: The routine TDNBINGS (for more details see “TDNBINGS - Establish Initial Contact (Details)”
on page 218) to establish the initial contact is entered:

1. If the initial contact is not yet complete
2. And if no wait is issued
3. And if a wait has expired in case a wait has been iussed earlier
4. And if a connect request from the remote node is not processed by the passive mode
5. And if the TCP/IP interface is available

 Chapter 3. Program Organization 215

TDNBWAIT: If a timer interval has been set and is not yet expired, processing continues with the next
NCB. If a timer interval has been set and has expired:
if received or transmitted FCS bytes of CTC buffers still hold a stream, status "complete I/O" is set to give
the PNET driver a chance to update FCS bytes (see “TDNBFCSW” on page 217).

TDNBIOST: If status is "start I/O processing", initialize address of last CCW processed and issue trace
message containing CCW-chain, if console trace is started.

TDNBIOSN - Loop through CCW-Chain

Start processing of CCW-chain, if TCP/IP connection not closed:

1. If stand-alone SENSE CCW, continue to finish CCW processing (TDNBIOLC).
2. Otherwise update sense byte with op-code CONTROL and continue processing with next CCW

(TDNBIONC).

TDNBIOWR: If WRITE CCW:

1. If socket call SEND started, continue with checking for completion of SEND socket call.
2. If CTC I/O already once processed, continue processing next CCW (meaningful if CTC buffer con-

tained empty buffer)
3. If signon complete, FCS bytes did not change and CTC buffer contains empty buffer, omit socket call

SEND and continue processing next CCW (TDNBIONC)
4. Update BCB in TCP/IP send buffer (as the CTC write buffer is part of the TCP/IP send buffer, the BCB

of the CTC buffer is first saved)
5. FCS bytes of CTC write buffer remain unchanged in TCP/IP send buffer
6. Update TTB, starting TTR and TTR-EOB in TCP/IP send buffer
7. Update address and length of data and return addresses according to the return code of the socket

call
8. Call subroutine to issue send request
9. If socket call SEND completed:

a. If not all bytes sent, update address and length of data and continue processing with subroutine
call to issue send request

b. Restore BCB in CTC write buffer
c. If SOH-ENQ or ACK sent, do not update status "complete CTC I/O", but wait till SIGNON record

has been received
d. If SIGNOFF record sent, continue processing with closing the TCP/IP connection (TDNBCLOS)
e. In all other cases update status "complete CTC I/O" and continue processing next CCW

(TDNBIONC)

TDNBIOCL: If CONTROL CCW, continue processing next CCW (TDNBIONC).

TDNBIORD: If READ CCW:

1. If CTC I/O not yet processed once and FCS bytes hold at least one strean and console trace is
started, issue trace mesage with FCS bytes of CTC write buffer.

2. If FCS bytes hold all streams, omit socket call RECV (if FCS bytes hold just one stream, we trust
remote node and assume the received buffer will never be for the suspended stream. RSCS proc-
esses the FCS bytes too late and sends buffer even for a suspended stream, but the PNET driver
ignores this protocol violation and continues processing without any error indication)

3. If socket call RECV started, continue with checking for completion of RECV socket call.
4. If no data left over from last socket call RECV, continue with starting socket call RECV
5. If received data in TCP/IP receive buffer contains all bytes for a CTC read buffer (without TTB and

TTR):
a. Move data from TCP/IP receive buffer to CTC read buffer

216 VSE Central Functions V7R1 VSE/POWER DRM

b. If BCB of TCP/IP receive buffer is invalid, update BCB of CTC read buffer to an invalid value
which forces a BCB sequence error issued by the PNET driver (node is stopped and restarted)

c. If console trace is started, issue message displaying TTR and first 12 bytes of CTC read buffer
d. If socket call SEND started and not yet complete, omit setting of status "complete CTC I/O"
e. Continue processing next CCW (TDNBIONC).

6. Start processing of socket call RECV
a. If any bytes left after having moved some data from TCP/IP receive buffer into CTC read buffer,

move left data to begin of TCP/IP receive buffer and display data via trace message, if console
trace started

b. Update address and length of data and return addresses according to the return code of the
socket call

c. Call subroutine to issue receive request
d. If socket call RECV completed:

1) If no bytes received, continue processing with closing the TCP/IP connection
2) Continue processing above with checking, if all bytes for a CTC read buffer (without TTB and

TTR) have been received
e. If socket call RECV should be retried (return code = 4 of socket call):

1) If signon not yet complete, continue processing with next CCW (and wait till all data received)
2) If CTC I/O to be completed (send socket call completed), continue processing with next CCW

(and do not wait till receive complete)
3) If no data received and if no send socket call outstanding, set status "idling"
4) Continue processing next CCW (TDNBIONC).

TDNBIONC - processing next CCW: If CCW is not last CCW, update address of last CCW processed
(NCBLCCW) and continue to process the CCW (TDNBIOSN)

If CCW is last CCW, update status "I/O once processed".

TDNBFCSW: If signon is complete (FCS bytes are contained within CTC buffers) and received or trans-
mitted FCS bytes hold at least one stream and the CTC I/O can not be completed, continue processing to
initiate wait for a timer interval of 20 seconds to suspend processing for this node (see “TDNBWAIT” on
page 216).

TDNBIDLG: If status is "leave idling state" and "idling", set status "complete I/O".

TDNBIOZ0: To complete the CTC I/O, following steps are performed:

1. If status is not "line busy" and not "close line", issue IDUMP macro and message 1RTLI.
2. Update address of last processed CCW (NCBLCCW) to point after last processed CCW
3. Update CCB status with "channel and device end"
4. If no data received via TCP/IP connection, build empty buffer
5. Update residual count in CCB
6. If console trace started, issue trace message to display CCB, address of last processed CCW, and

some status bytes
7. Queue buffer to channel end queue of PNET driver via compare and swap instruction
8. If SIGNOFF record received, continue processing with closing the TCP/IP connection (TDNBCLOS)
9. If TCP/IP connection closed and to be restarted, init timer interval for restart

10. If TCP/IP connection closed and not to be restarted, set status "terminate connection"

TDNBTIME: If status is "terminate connection":

1. Cancel any outstanding TQE for this NCB and update status "TCP/IP connection finished"
(NCBTPS1F, used by PNET driver to start final node clean up).

2. If no SIGNOFF record received nor sent, update status with TCP/IP error.
3. Continue processing next NCB (TDNBNEXT).

 Chapter 3. Program Organization 217

If timer interval to set, initiate timer interval using value (in NCBTPTIV) previously set and update status
"waiting for expiration of timer interval" (NCBTPS4W).

TDNBINGS - Establish Initial Contact (Details)

The TD Subtask performs following steps to establish the initial contact as a client in active mode:

TDNBINGS Issue the socket call SOCKET to allocate the necessary control blocks for a connection in
active mode.

TDNBINGH If a logical IP address has been specified for the NCB, issue the socket call
GETHOSTBYNAME to get a binary IP address.

TDNBINCO Issue the socket call CONNECT to send a connect request to the remote node.

TDNBINSR If CONNECT completed successfully, issue the socket call SEND to send an OPEN control
record to the remote node.

TDNBINRR If SEND completed successfully, issue the socket call RECV to receive an ACK control
record from the remote node.

If no ACK nor NAK control record has been received, issue messages 1RTDI and 1RTFI,
and continue processing to close the TCP/IP connection.

If the ACK or NAK control record contains incorrect values, issue messages 1RT5I and
1RTFI, and continue processing to close the TCP/IP connection.

If a NAK control record has been received, issue message 1RT6I and continue processing to
close the TCP/IP connection. If a NAK control record with RC=3 has been received, update
status "restart TCP/IP connection" (NCBTPS1R).

If an ACK control record has been received:

1. Set status "initial contact complete"
2. Set status "complete I/O"
3. Update sense bytes with CCW op-code CONTROL
4. Continue processing with process CTC I/O (TDNBIOST).

IPW$$TD - Tidy-up Routine - TDSBATDY: This routine is called by module IPW$$AT in case
of an abnormal termination of the TD Subtask. Following steps are performed:

1. The timer service of the VSE/ESA supervisor is terminated by issuing the VSE/ESA macro STXIT with
the operand IT. This terminates any timer service established by one of the TCP/IP layers which have
been called when a socket call is issued.

2. The anchor point (TDCBTQEA) for the timer service is cleared.
3. The following resources are unlocked by clearing the lockword:

TIBLCK The trace information block which might have been locked because trace entries have
been written into the storage trace area

CAAB The asynchronous service anchor block which might have been locked because the filled
up storage trace area had to be written to disk

4. The main-ECB (PAEB within the CAT) of the VSE/POWER maintask is posted by using the VSE/ESA
macro POST in order to resume processing of any task waiting for one of the above resources.

5. Any outstanding message of type A (anchored in TDCBMSGD) is deleted via macro IPW$GTO using
the operand DOM.

6. In order to stop all TCP nodes the PNCB is locked. If the PNCB can not be locked, a wait for a
second is issued by using the macro IPW$TTM with the operand REACTIVATE to be posted after 1
second

7. In order to stop all TCP nodes as fast as possible the following information is set

218 VSE Central Functions V7R1 VSE/POWER DRM

a. NCBTPS4C - Socket call CLOSE has been issued
b. NCBTPS1F - TCP/IP connection is finished
c. NCBF1BY - No I/O request outstanding
d. NCBTTCL - Line error
e. NCBLNSR - Close line, used by the activity-process of the PNET Driver (IPW$$LD3)
f. The post bit within the ECB (TCEB) of the PNET Driver is set.

8. The PNCB is unlocked and the main-ECB (PAEB within the CAT) of the VSE/POWER maintask is
posted by using the VSE/ESA macro POST.

9. If the TCP/IP interface was available, the socket call TERMAPI is issued.
10. Reset status "interface available" and status "interface once available", other status information is

reset when entering the initialization process (TDCS).
11. Issue message 1RT8I TCP/IP: INTERFACE NOT AVAILABLE
12. Reload saved registers and return to caller (IPW$$AT).

TCP/IP Driver Subtask Services Interface Macros (IPW$$TS): In order to separate
subtask service functions from the TCP/IP driver subtask mainline, the following services are provided
(see Appendix C, “VSE/POWER Internal Macros” on page 747 for more details):

1. EZASMI Socketcall Support
 2. Message Support
3. Timer Interval Interrupt Supprt
4. EZASMI Socketcall Error Checking Support

In addition, the Service Support module has its own internal tracing.

Subtask EZASMI Socketcall Support (IPW$ITP Macro): Using the IPW$ITP macro, the
subtask may invoke the EZASMI API and check for error conditions afterwards.

IPW$ITP PARMS=socketcall: Using the IPW$ITP macro, the subtask may invoke the EZASMI API for
the following socketcalls:

 � ACCEPT
 � BIND
 � CANCEL
 � CLOSE
 � CONNECT
 � INITAPI
 � GETHOSTID
 � GETHOSTBYADDR
 � GETHOSTBYNAME
 � LISTEN
 � RECEIVE
 � SEND
 � SOCKET
 � TERMAPI

The EZASMI interface is invoked in 31-bit mode.

Internally the IPW$$TS module will invoke the IPW$ITP CKRC=YES macro to check the EZASMI
socketcall for any immediate error return.

IPW$ITP CKRC=YES: This macro is called internally in the IPW$$TS module to check for immediately
returned EZASMI API access errors, and also by the IPW$$TD module to check for errors following
EZASMI API ECB posting.

 Chapter 3. Program Organization 219

Subtask Message Support (IPW$GTO Macro): Since a VSE/POWER subtask cannot use the
messaging support available to the maintask, the following functions are provided with their own access
macro.

IPW$GTO MSG=msgid: This access macro allows the caller to specify the message equate "msgid" of a
message defined by the IPW$GMM macro in the IPW$$MM module. The message will be issued in the
same way as for the maintask, using the WTO macro and providing message substitution and message
squeezing via the IPW$$MX module.

IPW$GTO MSG=TRACE: This access macro allows the caller to issue a PNET Driver Subtask trace
message (1RTTI).

IPW$GTO DOM=(R1): This access macro allows the caller to delete a console message issued previ-
ously by the IPW$GTO MSG= macro.

Subtask Timer Interval Interrupt Support (IPW$TTM Macro): The are various support
access macros:

IPW$TTM STXIT=YES: This access macro initializes the VSE Timer STXIT interface for the SETIME
macro used for the other support macros.

IPW$TTM TIME=(Rx),TQE=: This access macro allows the caller to indicate a timer interval in tenths of
a second following which an ECB is posted in the indicated TQE element and the Driver Subtask is also
posted.

IPW$TTM CANCEL=YES,TQE=: The caller indicates that a previous IPW$TTM TIME= request is to be
cancelled.

IPW$TTM PROCESS=YES: This access macro is called by the Driver Subtask following posting.

IPW$TTM WAIT=(Rx): This access macro allows the Driver Subtask to indicate it wishes to go into a
wait state until it is posted by either the expiration of a SETIME interval request for the WAIT= interval (in
tenths of a second), or by any other event which may occur sooner, with the register Rx containing the
interval value.

IPW$TTM WAIT=(Rx,REACTIVATE): This access macro allows the Driver Subtask to indicate it wishes
to go into a wait state as for the IPW$TTM WAIT(Rx) macro, and additionally the macros IPW$TTM
STXIT=YES and IPW$TTM PROCESS=YES are called immediately following.

Subtask Support Internal Trace: The support module IPW$$TS has its own internal tracing
area. Each module entry and exit is recorded in the trace area with an eye catcher and register contents.
At the end of the IPW$$TS module, beginning at the eye catcher "LAST ENTRY =" lies the trace area.
The layout area is:

� eye catcher "LAST ENTRY="
� address of the last trace entry that was recorded (4 bytes)
� eye catcher "LAST BRANCH="
� address to which the module last exited
� (80 byte entries) with the layout:

– eye catcher describing the entry (16 bytes)
– contents of the registers 0 to 15

� eye catcher "$$STBUF END"

220 VSE Central Functions V7R1 VSE/POWER DRM

PNET SSL Interface to TCP/IP

Establishing the Interface to TCP/IP SSL: At PNET initialization by IPW$$IN, when the
internal PLOAD PNET command is launched, or at any later time, when an operator requests (re)-loading
of the Network Definition Table by the PLOAD command, module IPW$$CLD checks the new NDT for at
least one valid SSL node and invokes then the PSTART TCPSSL command. The IPW$$CS command
processor accepts this startup attempt for the SD Subtask (representing the TCP/IP interface) only by a
VSE/POWER internal request and does the following:

1. Lock/Unlock the PNCB to record the temporary PSTART command task in TDCBATCB (of SDCB) as
a serial resource, which intends to attach the SD Subtask. When another PSTART TCPSSL task is
pending, new attempts are rejected.

2. Check the VSE ATTACH/DETACH communication TDCBSECB (within SDCB) of the SD Subtask for
subtask still down or already alive. If the subtask has been started previously and no stop code is
pending, then terminate the PSTART task. If subtask is active, but stop codes are pending in
TDCBSTA1 or TDCBACT1, then the PSTART task checks periodically until the SD Subtask has termi-
nated in order to attempt a new attach request.

3. Use VSE ATTACH to give control to the SD Subtask for module IPW$$SD.
4. Finally lock/unlock the PNCB to clear the PSTART task pointer in TDCBATCB (of SDCB) and termi-

nate this command processor.

The SD Subtask is attached with the following processing attributes, which outline the subtask's embed-
ding within the surrounding VSE/POWER functions and services. The SD Subtask

� calculates its entry point into module IPW$$SD after
1. the VSE/POWER storage descriptor,
2. the VSE subtask save area,
3. the Subtask-id 'IPW$$SD', and
4. the Subtask abnormal termination save area

� uses VSE/POWER maintask's ABEXIT in IPW$$AT
� drops protection key 0 (established during attach) in order to run in parallel mode
� provides local save area for requesting Idumps in flight using VSE/POWER's IPW$IDM support for a

VSE Subtask
� provides local Message Control Block for requesting IPW$$MX message modification for IPW$$MM

defined messages
� uses macro IPW$GTS to request message support from TCP/IP Service Module IPW$$SS
� uses macro IPW$TTS to request STXIT timer interval support from TCP/IP Service Module IPW$$SS
� uses macro IPW$ITS to request EZASMI Socket calls from TCP/IP Service Module IPW$$SS
� uses VSE macro WAIT TDCBECB (in SDCB) to be activated by the PNET Driver from the

VSE/POWER CTC layer
� uses VSE macro POST PAEB (with Line Driver task ecb posted additionally) to activate the

VSE/POWER CTC layer from the TCP/IP interface layer
� uses Test-and-Set instruction to lock the PNCB for sharing the NCB chain with the Line Driver task,

the TD Subtask, and the PSTART PNET command processor task - marking PNCB lockword with
'SSL', when owned by SD Subtask

� uses Compare-and-Swap instruction to add an 'I/O completed' CTC input buffer to the Line Driver
Channel End Queue for sharing this resource with the Line Driver task, the TD Subtask and the I/O
Supervisor Task

� cannot use macro IPW$GTE to reserve an entry of the telecommunication trace area or to call trace
area dumping, instead ...

� uses Test-and-Set instruction to lock the Trace Information Block (TIB) for sharing line trace entries
with the PNET Line Driver task, the TD Subtask, and the RJE Line Manager task - marking TIB
lockword with 'SSL', when owned by SD Subtask

 Chapter 3. Program Organization 221

� uses Test-and-Set instruction to lock the Asynchronous Service Anchor Block (ASAB) when sharing
trace area dumping with the PNET Line Driver task, the TD Subtask, and the RJE Line Manager task -
marking ASAB lockword with 'SSL', when owned by SD Subtask

� calls macro IPW$IAS to invoke the Dump Subtask of IPW$$AS for trace area dumping. Selected parts
of this module have been made sensitive on 'being called by VSE/POWER task or by SD Subtask'

Controlling the TCP/IP SSL Interface: Once the SD Subtask has been attached (see message
1RVMI) it remains active, even when another NDT is loaded lateron without any remote SSL node. The
'active' state can be interrogated by either command

� STATUS F1 (assuming VSE/POWER in F1), presenting the 'IPW$$SD' subtask of F1
� PINQUIRE NODE=local-node, presenting '1R56I TCP SSL: ...' information.

The SD Subtask is only terminated by external request

� at normal VSE/POWER session termination time through the PEND command, which sets TDCBACT1
flags in the SDCB. Then, after all SSL nodes have been stopped, the SD Subtask requests DETACH.
When however all (non core) VSE/POWER tasks have terminated and the termination processor
IPW$$T1 still finds the SD Subtask communication TDCBSECB with 'alive' indication, there is safety
code, so that the termination task requests DETACH for the SD Subtask.

� during a VSE/POWER session through
– the PSTOP TCPSSL (EOJ) command, which informs the SD Subtask for termination processing

as if PEND were given.
– the PSTOP TCPSSL,FORCE command. This format is only intended for halting the SD Subtask

abruptly, in case it seems to 'hang'. Hence the IPW$$CP stop command processor requests
subtask cancellation by the TREADY call (with cancel code X'08' = 'due to PSTOP), which leads
to AB-Exit processing in IPW$$AT.

– an abnormal Subtask termination (e.g. program check) leading to AB-Exit processing in IPW$$AT,
which has as well standard VSE subtask tidy-up steps (message 1Q2CI and Idump) as a subtask
type specific step. For the SD Subtask the TCP/IP related tidy-up routine is called, which is
located in module IPW$$SD, and which terminates all SSL node processing and the interface to
TCP/IP for VSE. Upon return to IPW$$AT the SD Subtask finally requests DETACH.

222 VSE Central Functions V7R1 VSE/POWER DRM

TCP/SSL Driver Subtask (SD Subtask)

Overview: The TCP/SSL Driver subtask or SD Subtask processes as a VSE/ESA subtask using the
modules IPW$$SD and IPW$$SS. IPW$$SD is the main routine and calls IPW$$SS for following pur-
poses:

1. Issue a socket call
2. Test the returncode of a socket call
3. Issue a message
4. Use timer services:

a. Initialize timer services
b. Set up a timer interval
c. Process expired timer intervals
d. Cancel a timer interval
e. Wait a bit

In addition following modules, which are used mainly by the VSE/POWER maintask, are used by the SD
Subtask as well:

IPW$$AT Process abnormal termination

IPW$$AS Write storage trace entries to dump libraries

The SD Subtask starts its processing after it has been attached by the VSE/POWER maintask when a
network definition table is loaded with at least one SSL node.

The SD Subtask ends its processing

1. In normal situations due to any PSTOP or PEND command by detaching itself using the VSE/ESA
macro DETACH

2. In abnormal situations by returning to IPW$$AT after some cleanup processing

The main purpose of the SD Subtask is to process requests concerning a SSL node:

1. Translate an I/O request consisting of several CCW's (built according to the CTC protocol) into socket
calls and call the TCP/IP layer by using the macro EZASMI

2. Process the completion of a socket call
3. Pass the received data of a socket call into the buffer of a read CCW and queue this buffer to the

channel-end-queue which is processed by the PNET Driver
4. Process any normal or abnormal stop condition

TCP/SSL and TCP/IP Driver Subtasks (TD and SD Subtasks): The TCP/SSL Driver
subtask or SD Subtask processes as a VSE/ESA subtask all nodes using a TCP/IP connection together
with SSL feature, whereas the TCP/IP Driver subtask or TD Subtask processes as a VSE/ESA subtask all
nodes using a TCP/IP connection without SSL feature. The SD Subtask uses the modules IPW$$SD and
IPW$$SS, the TD Subtask uses the modules IPW$$TD and IPW$$TS. Since the processing of the SD
Subtask and the TD Subtask is very similar, the modules IPW$$SD and IPW$$SS are a copy of the
modules IPW$$TD and IPW$$TS with following adaptions:

1. After the initial contact for a node has been established, the SSL feature is used to send data to or
receive data from a remote node. Following socket calls of the SSL feature are used:

GSKINIT
to initialize once the SSL for VSE/ESA environment for the VSE/POWER partition

GSKUNINIT
to remove the current overall settings for the SSL environment

GSKGETCIPHINF
to request cipher related information for SSL for VSE/ESA

 Chapter 3. Program Organization 223

GSKSSOCINIT
to initialize the data areas necessary for SSL for VSE/ESA to initiate or accept a secure
socket connection

GSKSSOCREAD
to receive data on a secure socket connection

GSKSSOCWRITE
to send data on a secure socket connection

GSKSSOCCLOSE
to close a secure socket connection and free all SSL for VSE/ESA resources for that con-
nection

GSKGETDNBYLAB
to get the label for a key in a key database file

GSKFREEMEM
to free memory that was passed to the application on a previous call to an SSL function.

2. Since the socket calls GSKSSOCREAD and GSKSSOCWRITE are processed synchronously, whereas
the socket calls RECV and WRITE of the TD Subtask are processed asynchronously, the SD subtask
uses following socket calls:

IOCTL to set nonblocking mode for a subsequent socket call CONNECT
IOCTL to set blocking mode after a previously issued socket call CONNECT
SELECT to test if a socket is ready for a subsequent ACCEPT, READ or GSKSSOCREAD, SEND or

GSKSSOCWRITE.

3. Since all socket calls are processed synchronously, the socket call CANCEL to terminate an out-
standing socket call (for example WRITE or RECV) is not used by the SD Subtask.

To establish a connection between two nodes using the SSL feature, some socket calls are used which
are the same as for a a connection between two nodes not using the SSL feature. Once the 'initial
contact' for a connection has been established, the SSL feature is used to exchange data (jobs, list or
punch output, messages and commands, network control records). The 'initial contact' is complete, if the
socket call CONNECT completed successfully and the client sent an 'OPEN control record' and received
an 'ACK control record'.

Before issuing any SSL socket call destined for a connection, the overall SSL environment must be estab-
lished by using the GSKINIT which must be issued just once, whereas the GSKSSOCINIT must be issued
once for each connection.

At the end of processing the overall SSL environment is freed by using the GSKUNINIT.

In order to initialize the SSL feature for a socket, the GSKGETDNBYLAB is used, the output of which is
used as input for the GSKSSOCINIT. To initialize the appropriate ciphers, the GSKGETCIPHINF is used,
the output of which is also used as input for the GSKSSOCINIT.

224 VSE Central Functions V7R1 VSE/POWER DRM

 CLIENT SERVER

 initapi<-----------------------

 gsk_initialize <-------------

 socket <-----------------------
 bind <-----------------------
 listen <-----------------------
 accept <-----------------------
 -------------------> initapi

 ------> gsk_initialize

 -------------------> socket
 -------------------> connect

 -------------------> send 'OPEN'
receive 'OPEN' <---------------
send 'ACK ' <---------------

-------------------> recv 'ACK '

 ------> gsk_get_dn_by_label gsk_get_dn_by_label <-------
 ------> gsk_get_cipher_info gsk_get_cipher_info <-------

 ------> gsk_secure_soc_init gsk_secure_soc_init <-------

 ------> gsk_secure_soc_write
 gsk_secure_soc_read <-------
 gsk_secure_soc_write <-------
 ------> gsk_secure_soc_read

 ------> gsk_secure_soc_close gsk_secure_soc_close <-------

 -------------------> close close <------------------------

 ------> gsk_uninitialize
 -------------------> termapi
 gsk_uninitialize <-----------
 termapi<-----------------------

Figure 68. Socket Calls Used

The GSKSSOCINIT requires as input parameters pointers to

1. a routine SKWRITE which is called to send data
2. a routine SKREAD which is called to receive data

These routines are called by

1. the GSKSSOCINIT during the establishing of a secured connection to exchange information con-
cerning the algorithms used for encryption and certification.

2. the GSKSSOCWRRITE after the data to be sent has been encrypted
3. the GSKSSOCREAD to receive data which is thereafter decrypted

These routines issue the 'normal' synchronous send and receive socket calls. PNET SSL does not specify
any routines, but uses the default send and receive routines distributed by VSE/ESA.

 Chapter 3. Program Organization 225

 CLIENT SERVER

 accept <---------------------
 -------------------> socket
 -------------------> connect
 -------------------> send 'OPEN'

receive 'OPEN' <-------------
send 'ACK ' <-------------

-------------------> recv 'ACK '

 ------> gsk_secure_soc_init gsk_secure_soc_init <-------
 (SKWRITE,SKREAD) (SKWRITE,SKREAD)
 -------> write
 read <------
 write <------
 -------> read
 -------> write
 read <------
 write <------
 -------> read

 ------> gsk_secure_soc_write
 -------> write
 gsk_secure_soc_read <-------
 read <------

 gsk_secure_soc_write <-------
 write <------
 ------> gsk_secure_soc_read
 -------> read

 ------> gsk_secure_soc_close gsk_secure_soc_close <-------

 -------------------> close close <------------------------

Figure 69. Synchronous Socket Calls Read and Write Used Implicitly

During the initiailization of the secure connection via the GSKSSOCINIT usually more than one write and
read socket call are issued by both nodes.

Interfaces and Operation Layers: The SD Subtask translates an I/O request (which has been
built by the PNET Driver) into socket calls. To issue the socket call, the SD Subtask communicates with
the product TCP/IP for VSE/ESA parts of which run in its own partition (usually F7). Figure 70 shows the
three layers involved in this communication.

 NODE A NODE B

 I II III (IV) III II I

 PNET SSL TCP/IP TCP/IP PNET SSL
 Line Driver <---> SD Subtask <---> part.--INTERNET--part. <---> SD Subtask <---> Line Driver

|---P O W E R ---PARTITION----| |TCP-PART| |TCP-PART| |---P O W E R----PARTITION-----|

Figure 70. SD Subtask - Three Operation Layers for PNET SSL support.

226 VSE Central Functions V7R1 VSE/POWER DRM

The SD Subtask, however, does not communicate directly with TCP/IP for VSE. Instead, it communicates
with the LE/VSE C socket interface, which directly communicates with TCP/IP for VSE. To address the
LE/VSE C socket interface, VSE/POWER uses an application interface (EZASMI macro) which has been
introduced with VSE/ESA 2.5. Some routines of these three components are loaded into the
VSE/POWER partition, some into the SVA.

The communication between the VSE/POWER partition and the TCP/IP partition (F7 in the system setup
distributed by VSE/ESA) is done by routines of the product TCP/IP for VSE/ESA which uses the VSE/ESA
XPCC interface.

Posting Events: The SD Subtask gets posted by the

1. Command processor (IPW$$CPS) to start its processing (when being attached)
2. VSE/ESA Supervisor due to an expired timer interval set up by the SD Subtask itself
3. PNET Driver (IPW$$NM) to translate an I/O request
4. PNET buffer services (IPW$$BS) to complete an outstanding I/O request because an output buffer

has been put into an empty buffer queue. This can be caused by one of the following tasks:
a. by a transmitter task (even by a console transmitter)
b. by a receiver task (queuing a PGR, NPGR, or EOT record)
c. by the PNET Driver task (queuing a network control record, for example a SIGNON or SIGNOFF

record)
5. Command processor (IPW$$CP) to terminate its own processing (due to a PSTOP TCPSSL

command).

Note however:

1. If a PSTOP PNET,nodeid command without the FORCE operand has been entered, the connection to
a node is terminated properly by sending a SIGNOFF record to the remote node, which means the SD
Subtask gets posted by the PNET Driver (IPW$$NM) due to a new I/O request.

2. If the command PSTOP PNET,nodeid,FORCE (with the FORCE operand) has been entered, the
PNET Driver is posted but not the SD Subtask. The connection is terminated unproperly, no
SIGNOFF record is sent to the remote node. The SD Subtask processes the immediate stop request,
when posted due to its own timer services.

3. If the command PSTOP TCPSSL,FORCE (with the FORCE operand) has been entered, the SD
Subtask is cancelled for entering the abnormal termination routine IPW$$AT.

4. If the PSTOP TCPSSL command without the FORCE operand has been entered, the SD Subtask
waits till all nodes are stopped:
a. If a node is signed-on, the node must be stopped explicitly by issuing a PSTOP PNET,nodeid

command.
b. If a node is not signed-on, the connection is terminated unproperly, no SIGNOFF record is sent to

the remote node.

Addressing Mode: The SD Subtask runs usually in 24-bit addressing mode. Running within module
IPW$$SD, the SD Subtask runs for a few instruction in 31-bit addressing mode when addressing data
received by following socket calls:

GETHOSTBYADDR receiving a logical hostname according to the received binary IP-address via a
socket call CONNECT.

GETHOSTBYNAME receiving a binary IP-address according to the logical hostname specified in the
network definition table (NDT)

Running within module IPW$$SS, the SD Subtask runs in 31-bit addressing mode when issuing a socket
call.

 Chapter 3. Program Organization 227

Processing as Server and Client: Within a TCP/IP network, an application may run as a client
or server. The client is the application which issues a CONNECT request, the server is the application
which issues the socket calls BIND, LISTEN and ACCEPT and processes a CONNECT request of another
client. The client is said to run in 'active mode', whereas the server is said to run in 'passive mode'.
The SD Subtask processes as a server and as a client. Whenever a PSTART command for a node has
been entered, the SD Subtask issues a CONNECT request and acts as a client. If the remote node does
not answer or rejects the CONNECT request, the SD Subtask suspends its active mode for a while
(usually 2 minutes). During this time a CONNECT request can be received from the remote node, and the
SD Subtask acts then as a server. In order to process incoming CONNECT requests from remote nodes,
the SD Subtask issues an ACCEPT request at the beginning of its processing. Whenever the ACCEPT
request signals an incoming CONNECT request, the SD Subtask processes this request and thereafter
issues a new ACCEPT request for more CONNECT requests. As soon as a connection to a remote node
has been established successfully, all connections are internally flagged as processing in 'active mode'.

Processing Socket Calls Synchronously: Since the socket calls GSKSSOCREAD and
GSKSSOCWRITE used for the SSL feature are processed synchronously, the SD Subtask has to process
all socket calls synchronously, including the socket calls CONNECT and ACCEPT. To prevent any
blocking of the SD Subtask processing, the socket call SELECT is issued to test if a subsequent socket
call ACCEPT, READ or WRITE completes immediately.

Before issuing a socket call CONNECT the socket call IOCTL is issued to set the connection to non-
blocking mode. Thus the socket call CONNECT completes immediately and a subsequent socket call
SELECT will indicate whether the CONNECT completes successfully or not. After the socket call
CONNECT the socket call IOCTL is issued once more to reset the connection back to blocking mode.

Processing the Socket Call SELECT: The socket call SELECT is used to avoid that the SD
Subtask hangs when issuing a synchronous socket call which can not complete immediately. Following
socket calls are used:

SELECT using the "read array"
to test if a socket is ready for a subsequent ACCEPT, RECV or GSKSSOCREAD. A mask in
the read array is set on whenever a new socket has been allocated (either by a socket call
SOCKET or ACCEPT). A mask in the read array is set off whenever a socket has been deallo-
cated (by a socket call CLOSE). The socket call is issued in the mainline after the TD Subtask
has been posted ready by the VSE/AF supervisor.

SELECT using the "write and exception array"
to test if a socket is ready for a subsequent SEND or GSKSSOCWRITE. The socket call is
issued in the subroutine before the SEND or GSKSSOCWRITE is issued. A mask in the write
and exception array is set on right before and set off right after the SEND or GSKSSOCWRITE
is issued.

To keep the two modules IPW$$SD and IPW$$TD as similar as possible the socket call SELECT is
issued in following routines:

TDWAITDS is part of the mainline where the socket call SELECT is issued after the SD Subtask has been
posted ready by the VSE/AF supervisor to test if a socket is ready for a subsequent ACCEPT,
RECV or GSKSSOCREAD. The socket call SELECT uses only the read array. A mask in the
read array is set on whenever a new socket has been allocated (either by a socket call
SOCKET or ACCEPT). A mask in the read array is set off whenever a socket has been
deallocated (by a socket call CLOSE). If the socket call SELECT completes unsuccessfully,
the read array is cleared to zero and a mask is set on again as described below.

TDSBSOCK is the subroutine which is called to issue a socket request.
1. Whenever a socket call ACCEPT, RECV or GSKSSOCREAD is issued, a test is done, if

the mask for the currently processed connection is set on. If the mask is off (because the

228 VSE Central Functions V7R1 VSE/POWER DRM

SELECT at label TDWAITDS failed), the mask is set on for this connection and a socket
call SELECT with the updated read array is issued. If the mask is on, the socket call
SELECT is omitted to improve the overall performance of the system and not to seize the
system by the SD Subtask.

2. Whenever a socket call SEND or GSKSSOCWRITE is issued, the mask is set on for this
connection in the write and exception array and a socket call SELECT is issued. After the
socket call SEND or GSKSSOCWRITE has been issued, the mask is set off for this con-
nection in the write and exception array.

Processing the 'Initial Contact': The usage of a TCP/IP network as a physical layer for a logical
NJE network has been first implemented by RSCS. Hence VSE/POWER implemented the same rules:

1. A connection is established according to the CTC protocol, which means at the beginning of the con-
nection the BSC characters SOH-ENQ and DLE-ACK0 are exchanged.

2. All data exchanged according to the CTC protocol are blocked into a TCP/IP block using the following
structure:

TTB 8 bytes describing a block of NJE data

TTR 4 bytes describing a record of NJE data

-- n bytes containing NJE data

TTR-EOB 4 bytes describing the end of a block of NJE data

At this point, however, one TCP/IP block contains only one record of NJE data

3. Before starting to exchange data according to the CTC protocol, an 'initial contact' is established,
namely two control records, an OPEN and an ACK or NAK control record, are exchanged to verify that
the two nodes adhere to the NJE protocol. The OPEN control record is exchanged first, whereas the
ACK or NAK control record is sent as response to the OPEN control record. The ACK is sent as a
positive acknowledgement to continue with the connection, whereas the NAK is sent as a negative
acknowledgement to stop the connection. All control records contain the following 33 bytes:

a. 8 bytes describing the type of the control record
b. 8 bytes describing the FROM NJE nodename
c. 4 bytes describing the FROM IP-address
d. 8 bytes describing the TO NJE nodename
e. 4 bytes describing the TO IP-address
f. 1 byte describing a return-code, which is used only for a NAK control record

To differentiate between SSL and TCP nodes, the type of the OPEN control record is initialized with
"OPEN SSL".

If an SSL node receives an OPEN control record of type "OPEN " (without the characters SSL), the
SSL node sends a NAK control record of type "NAK SSL", to indicate to the remote node, that the
SSL feature must be used. If A NAK control record of type "NAK " and return-code 4 (indicating
SSL feature not used) would be sent to RSCS which does not yet support the SSL feature, RSCS
would try forever to start the connection.

Details about the TCP/IP frames and control records are described in the macro IPW$DTP, starting at the
lables TCPTTB, TCPTTR and TCPCTRL.

During the initial contact no socket calls of the SSL feature are used due to the following reasons:

1. If a TCP node (not using the SSL feature) tries to connect to an SSL node (using SSL feature), the
TCP node would receive encrypted data which would not result in meaningful error messages.

2. If the passive connection (due to received CONNECT request from a remote started node) and the
active connection (due to PSTART command on the local node) are processing the same remote

 Chapter 3. Program Organization 229

node, the socket call GSKSSOCINIT would result in a contention situation which can not be solved
due to the synchronous socket call GSKSSOCINIT.

After the initial contact has been completed successfully, following socket calls of the SSL feature are
issued:

1. GSKGETCIPHINF to get the cipher related information due to the value specified in the operand
ENCRYPT of the PNODE macro.

2. GSKSSOCINIT to initialize the SSL feature for the connection.
3. GSKSSOCREAD to receive data.
4. GSKSSOCWRITE to send data.

Processing I/O Requests: The I/O requests processed by the SD Subtask are built according to
the CTC protocol by the PNET Driver (IPW$$NM). Instead of issuing a START I/O request, the PNET
Driver updates the status 'I/O request to be processed' (NCBTPS3S) and posts the SD Subtask. When
the SD Subtask gets control, it loops through the NCB-chain and finds the I/O request to be processed
(NCBTPS3S). To flag the I/O request 'complete', the SD Subtask updates the CCB and queues a buffer
to the channel-end-queue anchored in the PNET Driver TCB (TCBQ) using Compare-and-swap (like the
Channel-End-Appendage routine for BSC- and CTC-nodes and TD Subtask). The SD Subtask updates
the CCB always with channel and device end, which means the PNET Driver will never issue any special
I/O request for recovery purposes. If any error occurs, the SD Subtask informs the PNET Driver
(IPW$$LD1) by setting NCBTPS1E, which causes the node to be stopped on the NJE layer.

The PNET Driver issues only the following CTC I/O requests for a SSL node:

1. Stand-alone SENSE CCW

The I/O request consists of one SENSE CCW only. This request is issued only as the first request
when starting the connection for a node. It is used to synchronize the I/O requests with the remote
node. The input for a SENSE CCW is one byte, the command code pending on the remote node.
The SD Subtask returns only two different command codes:

a. X'07' (CTC Control), if the remote node did not yet issue an I/O request. The PNET Driver issues
as response to this sense byte an I/O request containing four CCWs, a SENSE, WRITE,
CONTROL and READ CCW. The WRITE CCW sends an SOH-ENQ to the remote node and the
READ CCW should receive an DLE-ACK0 from the remote node.

b. X'00', if the remote node issued already an I/O request. The PNET Driver issues as response an
I/O request containing two CCWs, a CONTROL and READ CCW. The READ CCW should
receive an DLE-ACK0 from the remote node.

Although for a CTC line other values than these two may be returned for a SENSE CCW, the SD
Subtask restricts itself to these values which are sufficient to handle the two different events, whether
the remote node issued already an I/O request or not.

2. A READ only request

The I/O request consists of two CCWs, a CONTROL and READ CCW. This I/O request is issued only
as a response to X'00' received by a stand-alone SENSE CCW. The READ CCW should receive an
SOH-ENQ from the remote node.

3. A WRITE only request

The I/O request consists of two CCWs, a SENSE and WRITE CCW. This I/O request is issued only
when the connection to the remote node has to be stopped according to the NJE protocol: a
SIGNOFF record is sent to the remote node without waiting for any response.

4. A WRITE/READ request

230 VSE Central Functions V7R1 VSE/POWER DRM

The I/O request consists of four CCWs, a SENSE, WRITE, CONTROL and READ CCW. This I/O
request is issued in all cases except the three cases described above.

The SD Subtask performs following actions for the above described I/O requests:

1. Stand-alone SENSE CCW

This I/O request is not completed before the initial contact (see “Processing as Server and Client” on
page 228) has been done successfully, which means the OPEN and ACK control records have been
exchanged. Once a PSTART command has been entered, the SD Subtask issues a CONNECT
request to start a TCP/IP connection in active mode. If the CONNECT request fails or a NAK control
record is received instead of an ACK control record, the SD Subtask retries the the CONNECT
request, usually every 2 minutes, or completes the initial contact via the passive mode in case the
remote node started the connection with a CONNECT request.
This means that the PNET Driver (IPW$$LD3) has been changed:

a. The stand-alone SENSE is never retried for SSL node as it is for a CTC node.
b. No immediate wait for the completion of the stand-alone SENSE is done within IPW$$LD3. The

completion of the stand-alone SENSE is processed via a queued buffer in IPW$$LD1.
c. A new status byte NCBTPEND is used to issue the message

1RC6I CONNECTION PENDING FOR NODE
every 12 minutes in case the connection of the two nodes is not yet completely established (the
initial and response SIGNON records have not yet been exchanged).

Thus the stand-alone SENSE results in following socket calls:

SOCKET to allocate the necessary control blocks to start a new TCP/IP connection.

GETHOSTBYNAME to get a binary IP-address for the remote node. This socket call is issued only,
if a logical hostname has been used in the PNODE macro.

IOCTL to set nonblocking mode for the connection to avoid that the subsequent
CONNECT blocks the connection in case the remote node does not reply to the
CONNECT request

CONNECT to start a TCP/IP connection to the remote IP-address.

IOCTL to set blocking mode again for the connection which is needed for all subse-
quent socket calls (SEND, RECV, GSKSSOCWRITE,..).

SELECT using the write and exception array to test if the socket is ready for a subse-
quent SEND to avoid that the SD Subtask hangs in case the SEND can not be
completed immediately.

SEND to send a 33-byte OPEN control record according to the NJE protocol.

SELECT using the read array to test if the socket is ready for a subsequent RECV to
avoid that the SD Subtasks hangs in case the remote node did not sent any
data.

RECV to receive a 33-byte ACK (or NAK) control record according to the NJE protocol.

CLOSE to stop the TCP/IP connection in case the CONNECT has failed or a 33-byte
NAK control record has been received or any other error occurred.

2. READ only request

The READ only request results in following socket calls:

SELECT using the read array to test if the socket is ready for a subsequent GSKSSOCREAD to
avoid that the SD Subtasks hangs in case the remote node did not sent any data.

GSKSSOCREAD To receive NJE data (SOH ENQ)

 Chapter 3. Program Organization 231

3. A WRITE only request

The WRITE only request results in following socket calls:

SELECT using the write and exception array to test if the socket is ready for a subse-
quent GSKSSOCWRITE to avoid that the SD Subtask hangs in case the
GSKSSOCWRITE can not be completed immediately.

GSKSSOCWRITE to send NJE data (SIGNOFF record)

CLOSE to stop the TCP/IP connection.

Once the TCP/IP connection has been closed, the status bit NCBTPS1F is set to signal the PNET
Driver (IPW$$LD3) that the TCP/IP connection has been closed and that the final stop activities
(remove the NCB out of the NCB chain and release NCB storage) can be performed or that the node
can be restarted by the PNET Driver by issuing a new stand-alone SENSE request. The SD Subtask
updates the status bits NCBTPS22 or NCBTPS2R, if the TCP/IP error conditions allow a restart.

4. A WRITE/READ request

This I/O request consists of four CCWs, a SENSE, WRITE, CONTROL and READ CCW. The sense
byte for the SENSE CCW is always udated with X'07'. For the CONTROL CCW nothing is done. The
WRITE CCW is usually translated to a socket call GSKSSOCWRITE and the READ CCW to a socket
call GSKSSOCREAD. The socket calls GSKSSOCWRITE and GSKSSOCREAD are started only, if a
previously issued socket call SELECT has indicated that the socket is ready for the socket call.

The socket call GSKSSOCWRITE is issued with the length supplied in the WRITE CCW plus the
length of the TCP/IP starting and ending frames. With the currently used product TCP/IP for VSE/ESA
the GSKSSOCWRITE is posted complete only when all data has been sent to the remote node. The-
oretically, it may happen that the GSKSSOCWRITE is posted complete and the returncode signals
that just part of the data have been sent to the remote node, in which case the socket call
GSKSSOCWRITE is issued once more with the remaining length of the data to be sent. The socket
call GSKSSOCWRITE uses the same buffer which is used by the WRITE CCW, which means an I/O
request with a WRITE CCW can not be flagged complete before the socket call GSKSSOCWRITE has
completed.

The socket call GSKSSOCREAD is issued using a TCP/IP buffer (different from the buffer used in the
READ CCW) with the length equal to the buffersize (which is the value of BUFSIZE used in the
PNODE macro) plus some extra bytes to contain the TCP/IP starting and ending frames, because one
does not know in advance how many bytes the remote node may send to the local node. The return
code of the GSKSSOCREAD contains the number of bytes which have been received. Usually one
socket call GSKSSOCREAD receives all the data sent by one socket call GSKSSOCWRITE of the
remote node. But as the TCP/IP network does not know anything about a logical TCP/IP block of
data, it may (depending on the performance of the network) happen:

a. that more than one socket call GSKSSOCREAD is necessary to receive all data for one TCP/IP
block

b. that more than one TCP/IP block has been received by one socket call GSKSSOCREAD

If the buffersize is larger than 16K, the current implementation of TCP/IP for VSE/ESA requires more
than one socket call GSKSSOCREAD to receive all data for one TCP/IP block, because the
GSKSSOCWRITE sends at most 16K in one buffer and therefore splits data larger than 16K.

As soon as one block of NJE data has been received, the NJE data is moved from the TCP/IP buffer
to the READ CCW buffer.

All send and receive buffers used for an SSL node are buffers allocated in virtual storage, not in
SETPFIX LIMIT storage, as the I/O request never ends up in an EXCP REAL request.

232 VSE Central Functions V7R1 VSE/POWER DRM

Sending Empty Buffers via the TCP/IP Network: If no data has to be sent from one node to
another, empty buffers are sent via a CTC line in order to give the other node a chance to start trans-
mission of data. Sending empty buffers is not necessary for SSL nodes, because each node issues
always a SELECT using the read array to test if the socket is ready to receive data from the other node at
any time.

Each CTC buffer, even an empty buffer contains:

1. a starting frame (DLE-STX)
2. a block sequence count
3. two function control sequence (FCS) bytes

Processing FCS Bytes The two function control sequence (FCS) bytes control the inbound flow:

1. one bit for each of the eight inbound streams to hold or enable the stream
2. one bit to hold or enable all inbound streams

The FCS bytes are sent via the TCP/IP connection as received via the CTC buffer signaling the remote
note to hold or enable the sending of data via its transmitters. If the FCS bytes within the current CTC
buffer are different from the FCS bytes within the last CTC buffer, the FCS bytes are sent to the remote
node, even via an empty record.

The FCS bytes are set:

1. to hold a stream by the buffer services (IPW$$BS) when the the maximum of queued receive buffers
for a stream is reached

2. to hold all streams by the network manager (IPW$$NM), when no buffer can be allocated. The reason
could be:
a. the maximum of receive buffers for the node is allocated
b. no storage is available

The FCS bytes are set to enable a stream by the buffer services (IPW$$BS) every time a receive buffer is
freed. At this point the status for the SSL node is updated to leave the idling state.

Posting an I/O Request Complete: For a CTC node every 1.5 second an I/O request is started,
either to send data or an empty buffer. As it is not necessary to send empty buffers via the TCP/IP
connection, the CTC I/O request is posted complete only in the following situations.

1. a socket call GSKSSOCWRITE completed (NJE data has been sent to the remote node)
2. a socket call GSKSSOCREAD completed (NJE data has been received from the remote node)
3. both socket calls GSKSSOCWRITE and GSKSSOCREAD completed
4. an 'idling state' must be left (see below)

If a socket call GSKSSOCWRITE is completed, but the GSKSSOCREAD is not complete, the I/O request
is posted complete and the READ CCW buffer is updated to contain an empty buffer to acknowledge the
sent data of the WRITE CCW.

If a socket call GSKSSOCWRITE is not complete, but the GSKSSOCREAD is complete, the I/O request is
not posted complete causing the the CTC write buffer to be freed. Since the CTC write buffer is used as
TCP/IP send buffer, the CTC write buffer can not be freed before the socket call GSKSSOCWRITE is
completed.

Idling State: If no data has to be sent to the remote node and the socket call GSKSSOCREAD did not
complete, the node enters the 'idling state' (NCBTPS3I). This means on the NJE layer the PNET Driver
has started an I/O request which remains outstanding, because the TCP/IP layer did not yet complete the
I/O request. The idling state is left, if:

 Chapter 3. Program Organization 233

1. The outstanding socket call GSKSSOCREAD is completed (NJE data has been received from the
remote node)

2. The local node has some data to send to the remote node which has been queued by PNET buffer
services (IPW$$BS) as the first buffer into one of the to-be-sent-queues (the normal queue or the
priority queue). In this case the PNET Driver (IPW$$BS) sets the status bit NCBTPS3L. Next time,
when the SD Subtask scans through the NCB-chain, the SD Subtask posts the I/O request complete
and the READ CCW buffer is updated to contain an empty buffer. Thus the PNET Driver gets a
chance to issue a new I/O request to send some data to the remote node. This happens for example
if the PNET line driver sends
a. a RIF record to start sending data to the remote node
b. a PGR record to acknowledge the RIF record of the remote node (or NPGR record as negative

acknowledgement)
c. an EOT record to acknowledge the reception of a whole queue entry
d. messages or commands via the console transmitter
e. a SIGNOFF record

3. The FCS bytes of the local node have been changed by the PNET Driver and have to be sent to the
remote node (see “Processing FCS Bytes” on page 233).

BCB Processing: The block control byte (BCB) is contained within the starting BSC frame for any
record, even an empty block. The BCB contains a counter with values from 0 to 15 which starts again
with 0 after 15. This counter is used to detect and correct sequence errors. There exists a BCB for the
input buffers and another BCB for the output buffers.

Allthough the TCP/IP protocol has probably its own sequence checking, VSE/POWER maintains BCB's
within the buffers sent and received via the TCP/IP connection. As usually no empty buffers are sent via
the TCP/IP connection, the BCB within the TCP/IP buffers is different from the BCB contained in the
current CTC buffers. Therefore VSE/POWER maintains BCB's for the CTC buffer (maintained by the
PNET driver) and additional BCB's for the TCP/IP buffers (maintained by the SD Subtask).

The BCB for the TCP/IP send buffer is updated and sent to the remote node without any further proc-
essing.

The BCB for the TCP/IP receive buffer is checked for correctness and if invalid, an incorrect BCB is
moved into the CTC buffer which causes the PNET driver:

1. to send a "BCB sequence error" record
2. to stop the node
3. to restart the node, if not suppressed by the NR option of the PSTART command.

The SD Subtask does not check the BCB within the CTC send buffer. Since the CTC buffer is used as
the TCP/IP send buffer, the BCB within the CTC buffer is temporarily updated with the BCB for TCP/IP.
When the CTC I/O is posted complete, the BCB of the CTC send buffer is reset to its original value.

The SD Subtask updates the BCB within the CTC read buffer with the expected value (NCBEBCB)
updated by the PNET driver. Only if the SD Subtask detected a BCB error within the BCB of the TCP/IP
receive buffer, the BCB of the CTC read buffer is updated with a value which causes a BCB error (proc-
essed by the PNET driver, see above).

If a BCB within the TCP/IP receive buffer indicates "reset BCB", the the BCB for TCP/IP send buffer is
updated to the recived value, the BCB's of the CTC buffers remain undisturbed.

234 VSE Central Functions V7R1 VSE/POWER DRM

 Control Flows:

Flow of I/O Processing: Referring to Figure 64 on page 207 which shows the modules and compo-
nents involved in processing an I/O request and its corresponding socket calls after a PSTART command
has been entered for the PNET TCP TD-subtask and its support module IPW$$TS, the SD-subtask and its
support module IPW$$SS act in a similar manner.

Flow of Processing when Starting First Node: After the SD Subtask has been attached at PNET
intialization on both nodes A and B, see Figure 71, the subtasks on both nodes prepare themselves to
ACCEPT a CONNECT request from the other side. The CONNECT request is triggered by the PSTART
PNET,NODEA command entered on NODE B. But the SD Subtask on NODE A rejects the connection,
because the corresponding PSTART PNET,NODEB command has not yet been entered at NODE A. The
SA-SENSE at node B is not yet posted complete.

 NODE A NODE B
PLOAD SD Subtask SD Subtask PLOAD
PNET cmd SD-Driver/ SD-Driver/ PNET cmd

 � SS-Socket SS-Socket -----
 | |
 +----ATTACH-Subtask---> INITAPI � � � �
 GSKINIT | � �

S�:=SOCKET | � T �
BIND(S�) to local port A | � C �

+ | � P �
LISTEN(S�) INITAPI <-----ATTACH-Subtask--------+ � � �

 + GSKINIT |
SELECT read array + S� B�:=SOCKET |

 + BIND(B�) to local port B � � �
+ + � L �

 + LISTEN(B�) � I �
+ + � S �

 + SELECT read array +B� � T �
+ + � E �
+ + PNET � N �
+ + LD-Driver � � �
+ + enter cmd --|--
+ + + PSTART PNET,NODEA |

 + + | |
+ + C1:=SOCKET <---------SA-SENSE cmd-code � � �

 + + IOCTL(C1) � �
+ + CONNECT(C1) to A � T �
� :<-----post-read-array-for-S�------- . � C �
S1:=ACCEPT(S�) + IOCTL T(C1) � P �
:---post-read-array-for-C1--> + SELECT read array + C1 . � � �

SELECT read array + S1 + |
+ SELECT write array + C1 . |

: <--post-read-array-for S1-- + SEND(C1) OPEN-CTL-rec . |
 RECV (S1) + : . |

verify OPEN-CTL versus TCP- + : . � � �
PNODE entries of local NDT + : . � I �
and started TCP-nodes (NCB) + . � N �

>>>> assume 'no PSTART yet' + SELECT read array C1 . � I �
 CLOSE(S1) + : . � T �

| --post-read-array-for-C1-> + : . � �
with data-len=�----> + RECV(C1) returns: . � � �

+ + RC=-1,ERRNO=1124 or recv-len=� |
SELECT read array S� (- S1) + : . => 1RC6I CONNECT |

1RTHI NODE B AWAITING <===== + + PENDING |
 CONNECTION + + |

Figure 71. SD Subtask - Startup and First PSTART Command

 Chapter 3. Program Organization 235

Flow of Processing when Starting Second Node: With the first connection attempt rejected in
Figure 71, and NODE B in 'CONNECTION PENDING FOR NODE A' state, the scenario continues with
Figure 72 on page 237, when finally the missing PSTART PNET,NODEB command is entered on NODE
A side.

236 VSE Central Functions V7R1 VSE/POWER DRM

 NODE A NODE B

 PNET SD Subtask SD Subtask PNET
 LD-Driver SD-Driver/ SD-Driver/ LD-Driver
 SS-Socket SS-Socket

(for entry, see precedeing figure 'Startup SD Subtask - Incoming CONNECT Request')
 + + |

(SELECT read array incl ACCEPT sok) (SELECT read array incl ACCEPT sok) |
+ + . � � �

 enter cmd + + . � T �
 PSTART PNET,NODEB + + . � C �

| + + . � P �
SA-SENSE cmd-code-------> + C2:=SOCKET + . � � �

 . + IOCTL(C2) + . |
 . + CONNECT(C2) + . |
 . + --post-read-array-for-B�-> + . |
 . + IOCTL(C2) + . |

. + SELECT read array + C2 + . |

. + <--post-read-array-for-C2 B1:=ACCEPT(B�) . � � �

. + SELECT write array + C2 SELECT read array + B1 . � �

. + SEND(C2) OPEN-CTL-rec ----> : . � I �

. + : --post-read-array-for B1--> : . � N �

. + RECV(B1) . � I �

. + SELECT read array incl C2 SELECT write array + B1 . � T �

. + : <-ACK-CTL-rec------ SEND(B1) . � � �
 . + : <--post-read-array-for-C2 : . |
 . + RECV + : . |

|<---'�7'----for CTL-+ : SELECT read array incl B1 . |
. + : + : ----for-no-cmd--'��'--> CONTROL |

 . + : + : READ |
. + GSKGETCIPHINF GSKGETCIPHINF . |
. + GSKGETDNBYLAB GSKGETDNBYLAB . |
. + GSKSSOCINIT GSKSSOCINIT . |

 >>>>> . >>>>>>>>>>> all subsequent DATA exchange with TTB|TTR|DATA|TTR-EOB format only <<<< . <<<<<<<<<<<<< |
 . + : + : . |

 >>>>> . >>>>>>>>>>> from now on the SELECT socket calls are not displayed any more <<<< . <<<<<<<<<<<<< |
 . + : + : . |
 ����� + : + : . -----
 SENSE + : + |

WRITE SOH ENQ ------->-+--: + . |
. + GSKSSOCWRITE -SOH-ENQ-buffer--> + GSKSSOCREAD . |
. + : + : --------SOH ENQ ----- > | � � �
. + : + : ����� � C �
. + : + : SENSE � T �
. + : + : <-------DLE ACK�------ WRITE � C �

+ : <---DLE-ACK�-from--- + GSKSSOCWRITE . � � �
 CONTROL GSKSSOCREAD + : . |

READ <------DLE ACK�---+- : + : . |
����� + : + : . � � �

 . + : + : . � �
>>> from now on the DATA in TTB|TTR|DATA|.... has NJE-CTC buffer format: DLE|STX|BCB|FCS|FCS|RCB.... <<<<<< � I �

. + : + : . � N �
SENSE + : + : CONTROL � I �
WRITE 'I' signon rec->-+--: + : . � T �
. + GSKSSOCWRITE 'I'-signon-rec--> + GSKSSOCREAD . � � �
. + : + : --------'I'-signon rec->-READ |
. + : + : ���=> MSG 1RB3I SIGNED ON

 . + : + : SENSE |
 . + + : <------'J' signon resp- WRITE |

+ : <-'J'-signon response- +-GSKSSOCWRITE . |
 + GSKSSOCREAD . |
 CONTROL + . |

READ <-'J'-signon resp-+--: + : . |
1RB3I<=����� + : + : . |
SIGNED ON + : + : . |

----------------- N O D E S -------- A R E -------- S I G N E D ---------- O N ------------------------------------

Figure 72. SD Subtask - Second PSTART Command and Signon Complete

 Chapter 3. Program Organization 237

Flow of Processing the Idling State

The idling state is entered, if both nodes issued a CTC I/O request to send an empty buffer. Since empty
buffers are not sent via the TCP/IP connection, both CTC I/O requests are not posted complete, and the
nodes are set into "idling state".

If node A wants to send a record (containing a message for example) to node B, the record is queued as
first buffer in the to-be-sent-queue and the status in the NCB is updated to leave the idling state. Next
time, the SD Subtask is posted due to its own timer interval, the SD Subtask processes the new status of
the NCB. Since no data has been received via the TCP/IP communication, the SD Subtask completes the
CTC I/O and passes back an empty buffer. Thereafter the PNET driver starts a CTC I/O request to send
the record to node B. The SD Subtask processes the CTC I/O request and issues a socket call
GSKSSOCWRITE to send the record via the TCP/IP communication. The SD Subtask completes the CTC
I/O request immediately and passes back an empty buffer, in order to let the PNET driver send some
more data.

238 VSE Central Functions V7R1 VSE/POWER DRM

 NODE A NODE B

 PNET SD Subtask SD Subtask PNET
 LD-Driver SD-Driver/ SD-Driver/ LD-Driver
 SS-Socket SS-Socket

 + : + :
 >>>>> . >>>>>>>>>>> the SELECT socket calls are not displayed in this figure <<<< . <<<<<<<<<<<<<
 + : + : �����
 + : + : SENSE

+ : + : <--- empty buffer ----- WRITE
+ : + no GSKSSOCWRITE of empty bfr .

 + : + : .
+ : + : wait for I/O completion

 ����� + : + : .
 SENSE + : + : .

WRITE -- empty buffer --->no GSKSSOCWRITE of empty bfr | + : .
 . + + : .
wait for I/O completion + : + : .
 . + : + : .
 . + : + : .

. --------- Idling state: both CTC I/O not yet complete ------- .
 . + : + : .
 . + : + : .
'message to be sent'==| + : + : .

. |========> update NCB status + : .
 CONTROL + : + : .

READ <--'empty buffer'----complete I/O + : .
 ����� + : + : .
 SENSE + : + : .

WRITE --- message ------->: + : .
. + GSKSSOCWRITE message ----| + : .

 . + :--post-read-array-------| + : .
 CONTROL + : | + : .

READ <-- empty buffer ----complete I/O (may be .. | + : .
����� + : ..more data to send) | + : .

 SENSE + : | + : .
WRITE -- empty buffer --->no GSKSSOCWRITE of empty | bfr + : .

 . + : | + : .
wait for I/O completion + : | + : .
 . + : |---> + GSKSSOCREAD .
 . + : + : CONTROL

. + : + : --- message -----------> READ
 . + : + : �����
 . + : + : SENSE

. + : + : <--- empty buffer ----- WRITE

. + : + no GSKSSOCWRITE of empty bfr .
 . + : + : .

. + : + : wait for I/O completion
 . + : + : .

. --------- Idling state: both CTC I/O not yet complete ------- .

Figure 73. SD Subtask - Processing the Idling State

TCP/IP Driver Subtask Mainline (IPW$$SD):

Overview: The module IPW$$SD is a copy of module IPW$$TD, which has been adapted to process
SSL nodes. Labels of common routines have not been changed, which means IPW$$SD contains a lot of
labels starting with the characters TD. Similarly, IPW$$SD addresses a SD Subtask specific control block,
the SDCB which is a copy of the control block used by the TD Subtask. Although the control block is
called SDCB, the fields of the SDCB start with the characters TDCB. The module IPW$$SD consists of
following parts:

SDCS Initialization after being attached

TDMAIN Loops forever untill a stopcode is set. Following processing occurs within this loop:

 Chapter 3. Program Organization 239

TDTERM Terminates TCP/IP interface and SSL feature if necessary

TDINITAP Initializes TCP/IP interface and SSL feature if necessary

TDPASSOK Processes as server in "passive mode"

TDNBLPIN Loops through the NCB-chain to process all TCP-nodes (in 'active mode')

TDPOSLDR Posts PNET Driver if necessary

TDDETACH Detach itself (the SD Subtask) if necessary

TDTIMSET Issues timer interval using TQE within subtask control block (SDCB)

TDWAITDS Issues VSE/ESA wait macro
If posted, starts loop from the beginning

TDSBATDY Tidy-up routine in case of abnormal termination, called by IPW$$AT.

SDCS - Initialization

The part SDCS performs following initialization steps after being attached:

1. Initialize base register
2. Initialize register for save area
3. Initialize register for save area used by macro IPW$IDM
4. Drop protection key zero in order to run in parallel mode, if multiprocessor support is available
5. Initialize areas for the timer services within SDCB
6. Initialize TCP/IP workareas within SDCB

a. Clear workarea within module IPW$$SD
b. Clear ITP workarea for passive mode
c. Clear local IP-address which is updated later on by the socket call GETHOSTID
d. Clear SSL workareas
e. Set trace option on for socket calls issued during initialization
f. Set request 'initialize interface to TCP/IP'

7. Update task identifiers (name and VSE/ESA subtask identifier) in SDCB
8. Anchor address of tidy-up routine TDSBATDY in SDCB, which is used for abnormal termination in

IPW$$AT
9. Initialize timer services (use macro IPW$TTS with operand STXIT=YES)

10. Initialize maximum socket number which can be used for SSL nodes

TDMAIN - Mainloop

Overview: The part TDMAIN contains the mainloop of the SD Subtask, which is left only if some stop
conditions cause the detach of the SD Subtask. In case of an abnormal termination this loop is not
entered, but the tidy-up routine TDSBATDY is entered directly from IPW$$AT. At the end of the mainloop,
the VSE/ESA WAIT macro is issued using as ECB the field TDCBECB within the SDCB. TDCBECB is
posted due to the events described above (see “Posting Events” on page 227). When the SD Subtask is
posted, the mainloop is started again at label TDMAIN. At the beginning of the mainloop following steps
are performed:

1. Clear the ECB (TDCBECB)
2. Call timer services to process expired timer intervals (use macro IPW$TTS with operand

PROCESS=YES)

Following steps are part of the mainloop:

240 VSE Central Functions V7R1 VSE/POWER DRM

TDTERM: The SSL feature is terminated by issuing the socket call GSKUNINIT, if once the socket call
GSKINIT completed successfully. The interface to TCP/IP is terminated by issuing the socket call
TERMAPI, if once the socket call INITAPI completed successfully. It is terminated according to the stop
condition: if the interface has to be terminated immediately, the socket call TERMAPI is issued at once.
In all other cases, the TERMAPI is postponed untill all SSL nodes (TDCBNONU must contain 0) have
been stopped and the passive connection has been stopped. In case the initialization (socket call
INITAPI) has failed, no socket call TERMAPI is issued. In any case, any outstanding message of type A
(anchored in TDCBMSGD) is deleted via macro IPW$GTS using the operand DOM. Thereafter a termi-
nating message, either 1RT8I or 1RTSI, is issued via macro IPW$GTS with the operand MSG.

TDINITAP: The interface to TCP/IP is initialized by issuing the socket call INITAPI, as well as the SSL
feature by issuing the socket call GSKINIT, but only if no stop condition is set. In addition the status
"issue startup-message" (TDCBS1SM) is set. The startup-message 1RT7I is issued once for each initial
socket call (SOCKET, GETHOSTID, BIND, LISTEN). Thereafter the initialzation process for the passive
mode is entered by entering the routine TDINIGSC directly.

TDPASSOK: The part TDPASSOK contains the code for the SD Subtask to run as a server in passive
mode. Following steps are performed:

1. If the interface to TCP/IP is not available or the passive mode has been stopped, passive mode proc-
essing is bypassed and processing continues with searching through the NCB-chain.

2. If the passive mode has to be stopped, processing continues with closing the passive connection
(TDPASCLS)

3. If the passive mode has been started (a CONNECT request from a remote node has been received),
but the initial contact (the exchange of the OPEN and ACK or NAK control records) did not complete
in time, the processing continues with closing the passive connection (TDPASTIO)

4. If a special event (TDNTPS4P) has to be processed, processing continues with the routine for this
event (TDNTPWPO). At this point only one event may happen:
a. When receiving a CONNECT, the NCB chain had to be scanned for matching definitions. For this

purpose the PNCB had to be locked. If the locking of the PNCB had failed, the status
(TDNTPS4P) is updated to reenter the routine (TDPASVLF) to lock the PNCB.

5. In all other cases processing continues with the routine to issue a socket call (TDSBSOCK).

When routine TDSBSOCK is entered, register 1 points to the parameter area (TDNTPDS) which contains
all necessary information to issue a socket call, namely:

1. the type of socket call (TDNTPSC)
2. the return addresses (TDNTPS00, TDNTPS04, TDNTPS08, TDNTPS0C) for the routine TDSBSOCK

according to the returncode (0,4,8,12) set by the service routine (IPW$$SS)

The parameters are set by the routines initializing the socket call before entering the routine TDPASSOK.
This means the routine TDPASSOK is entered directly by subroutines to issuing a socket call and there-
after, once the socket call has been issued, by the mainline to check for the completion of the socket call.

Following socket calls are issued in passive mode

1. The first sequence of socket calls is issued to prepare the passive mode.

The return address (TDNTPS00) for the returncode 0 is set in each routine before the socket call is
issued. The return addresses (TDNTPS04, TDNTPS08, TDNTPS0C) for the error conditions are set
just once and have been initialized in routine TDINITAP before issueing the socket call INITAPI.
TDINITAP passes control to routine TDINIGSC to start the initial sequence of socket calls.

Following routines are involved in preparing passive mode processing:

TDINIGSC Issue the socket call SOCKET to allocate the necessary control blocks for the passive
mode. The parameter area is initialized with the port number (TDNSCBPT) out of the
NDT and the family type (TDNSCBFM) is set to 2. Returned is the socket descriptor

 Chapter 3. Program Organization 241

(TDNSCRC), a number which is saved into TDNSCSOD, because it must be referenced
by all following socket calls. In addition the status "TCP/IP interface available"
(TDCBS1IA) is set, because the socket call SOCKET was the first, which has been
passed through all the TCP/IP layers. If this socket calls fails, the type A message
1RTJA is issued, which will be deleted if the interface has been established successfully
or the SD Subtask is stopped. If the returncode makes a retry meaningful, the socket
call is retried every 20 seconds.

TDINIGIP Issue the socket call GETHOSTID to get the binary IP-address of the local node and
update TDCBSCIR with the readable IP-address.

TDINIBID Issue the socket call BIND to link the socket with a port number.

TDINILIS Issue the socket call LISTEN to prepare the socket for the next socket call ACCEPT.
The status "issue startup-message" (TDCBS1SM) is reset and any outstanding message
of type A (anchored in TDCBMSGD) is deleted via macro IPW$GTS using the operand
DOM.

2. The next sequence of socket calls is issued to process incoming CONNECT request from remote
nodes and complete the initial contact (see “Processing as Server and Client” on page 228) The
return addresses (TDNTPS00, TDNTPS04, TDNTPS08, TDNTPS0C) are set in the routines to the
appropriate values.

Following routines are involved in passive mode processing:

TDPASACC Issue the socket call ACCEPT to get posted whenever a CONNECT request is
received. The posted ACCEPT returns a new socket descriptor (TDNSCSOD), because
new control blocks have been allocated by the TCP/IP layers when the CONNECT has
been received. This new socket descriptor is now used for all following socket calls.
The socket descriptor used for the socket call ACCEPT has been saved into
TDSVSCSD in routine TDINIGSC and is used for all new ACCEPT socket calls. The
received binary IP-address of the remote node is translated into readable format and
put into TDNTPIPC.

In addition a timer interval is set for 5 minutes. Within this time limit the initial contact
must be completed, otherwise the local node stops the connection by issuing a socket
call CLOSE and message 1RTGI. This avoids that a hanging connection prevents that
other connections can not be established, because one CONNECT request after the
other is processed sequentially.

TDPASGHN Issue the socket call GETHOSTBYADDR to get a logical hostname. The previously
posted ACCEPT returned just a binary IP-address, but no node name. When checking
the network definition table (NDT) both IP-addresses, the binary IP-address and the
logical hostname, are used to check whether a node has been defined for one of these
addresses.

If no matching node has been found in the NDT, the message 1RT3I is issued. If a
logical hostname was found for the received binary IP-address, the message 1RTBI is
issued in addition.

TDPASRCV Issue the socket call RECV to receive an OPEN control record.

Following error messages are issued:

1RT4I The control record was not of type OPEN. The connection is stopped by
issuing a socket call CLOSE. No NAK control record is sent.

1RT5I The control record contained invalid information, which might be the FROM
node-id or FROM IP-address or the TO node-id or TO IP-address. The con-
nection is stopped by issuing a socket call CLOSE after a NAK control record
with RC=1 has been sent.

242 VSE Central Functions V7R1 VSE/POWER DRM

1RTEI The binary IP-address was not used for the node-id found in the NDT
according to the binary IP-address received by the CONNECT request. The
new connection is stopped by sending a NAK control record with RC=1 and
issuing a socket call CLOSE.

1RTBI The logical hostname found due to the binary IP-address of the CONNECT
request was not used for the node-id found in the NDT. The new connection is
stopped by sending a NAK control record with RC=1 and issuing a socket call
CLOSE.

1RTHI A PSTART command has not yet been issued for the node-id. The new con-
nection is stopped by issuing a socket call CLOSE without sending a NAK
control record.

1RTVI A PSTART command has already been issued for the node-id. One of the
following situation has occurred:

a. The SD Subtask is just starting a connection for this node-id in active
mode. Therefore the new connection, started by the passive mode, is
stopped by sending a NAK control record with RC=3 and issuing a socket
call CLOSE. The status of the connection starting in active mode is not
changed at all and continues its normal flow.

b. The TCP/IP connection for the node-id has been established some time
ago successfully. Therefore the new connection, started by the passive
mode, is stopped by sending a NAK control record with RC=2 and issuing
a socket call CLOSE. The already active connection is stopped as well by
setting the stopcode to line-error.

1RTFI The received control record is displayed in hexadecimal format. This message
is displayed in addition to one of the previous messages (1RT4I or 1RT5I).

1RV3I The remote node does not use the SSL feature (a control record with type
"OPEN " instead of "OPEN SSL" has been received). The connection is
stopped by issuing a socket call CLOSE after a NAK control record with type
"NAK SSL" and RC=1 has been sent.

TDPASSND Issue the socket call SEND to send the ACK or NAK control record. If an ACK control
record has been sent, the status bytes within the NCB are updated to continue proc-
essing for this node (in active mode) using the TCP/IP connection established in
passive mode. If a NAK control record has been sent, the passive connection is closed
by issuing a socket call CLOSE. In both cases the workarea for the passive connection
within the SDCB is cleared to process new incoming CONNECT requests. Processing
continues in routine TDPASACC with issuing a socket call ACCEPT.

TDNBLPIN: The part TDNBLPIN contains the code for the SD Subtask to run as a client in active mode.
Following steps are performed (for more details see “TDNBLPIN - Loop through NCB-Chain (Details)” on
page 244):

TDNBLPIN Init search through NCB chain

TDNBLPNX For each SSL node in NCB chain:

TDNBCLOS Close connection if necessary

TDNBINIT Start initial contact if necessary

TDNBSSLI Initialize SSL feature for this connection

TDNBWAIT Process next NCB if processing for current NCB is postponed

TDNBIOST Start processing of CTC I/O request: translate CCW's

 Chapter 3. Program Organization 243

TDNBIOSN Process SENSE CCW

TDNBIOWR Process WRITE CCW

TDNBIOCL Process CONTROL CCW

TDNBIORD Process READ CCW

TDNBFCSW Init wait timer interval if FCS signals "hold stream(s)"

TDNBIDLG Leave idling state if necessary

TDNBIOZ0 Complete I/O if necessary

TDNBTIME Init timer interval for this NCB if necessary

TDPOSLDR: If the status "post PNET Driver" (TDCBA3PL) is set, the ECB (TCEB) of the PNET Driver is
updated and the main-ECB (PAEB within the CAT) of the VSE/POWER maintask is posted by using the
VSE/ESA macro POST. TDCBA3PL has been set, if an I/O request for a node has been completed and
an input buffer has been queued to the PNET Driver TCB in routine TDNBIOZ0.

TDDETACH: If the status "detach task" (TDCBA1DT) has been set in routine TDTERM after the socket
call TERMAPI has been issued, the SD Subtask is now detached by issuing the VSE/ESA macro
DETACH. The SD Subtask can not be detached immediately in routine TDTERM, because in case of
immediate termination of the SD Subtask, the status bytes for the SSL nodes have to be set first by
entering routine TDNBLPIN. Before detaching the SD Subtask, the timer service is called by using the
macro IPW$TTS with the operand CANCEL to cancel an outstanding timer interval using the TQE within
the SDCB.

TDTIMSET: First the timer service is called by using the macro IPW$TTS with the operand CANCEL to
cancel an outstanding timer interval using the TQE within the SDCB. Thereafter the timer service is called
by using the macro IPW$TTS with the operand TIME to issue a new timer interval using the TQE within
the SDCB.

TDWAITDS: If the status "omit WAIT" (TDCBS2NW) is not set, the VSE/ESA macro WAIT is issued using
the ECB (TDCBECB) within the SDCB. TDCBS1NW is set in case the TCP/IP interface is no longer
available in error routines TDINITII and TDPASSTI. In these cases a WAIT is not necessary, the
mainloop is directly reentered at label TDMAIN to terminate and detach the SD Subtask.

TDNBLPIN - Loop through NCB-Chain (Details)

Following steps are processed for each NCB of the NCB chain.

TDNBLPIN: Before searching through the NCB chain for a SSL node, the PNCB is locked using the test
and set (TS) instruction. If the locking is successful, the lockword is updated with "SSL" to identify the SD
Subtask as owner of the PNCB. If the locking is unsuccessful, the SD Subtask waits for 1 second using
the macro IPW$TTS with the operand "REACTIVATE" before retrying to lock the PNCB.

The PNCB is unlocked, if the end of the PNCB chain is reached or if a SSL node is found for which the
TCP/IP connection has not yet been closed (NCBTPS1F).

TDNBCLOS: Call routine TDSBSTST to terminate the SSL feature, which issues the socket calls, if nec-
essary:

GSKFREEMEM
to free memory that was passed to the application on a previous call to an SSL function.

GSKSSOCCLOSE
to close secure socket connection and free all SSL for VSE/ESA resources for that connection.

244 VSE Central Functions V7R1 VSE/POWER DRM

Depending on the status bytes within the NCB (NCBTPSTx):

1. A message is issued explaining the reason why the the SSL connection has been closed
2. If a SIGNOFF record has been received, processing continues at TDNBTIME to terminate the TCP/IP

connection
3. If TCP/IP connection to be restarted:

a. Clear the TCP/IP workarea (starting at NCBTPDS)
b. Processing continues at TDNBTIME to init timer interval before restarting

4. In all other cases, processing continues to complete I/O (TDNBIOZ0)

TDNBINIT: The routine TDNBINGS (for more details see “TDNBINGS - Establish Initial Contact (Details)”
on page 247) to establish the initial contact is entered:

1. If the initial contact is not yet complete
2. And if no wait is issued
3. And if a wait has expired in case a wait has been iussed earlier
4. And if a connect request from the remote node is not processed by the passive mode
5. And if the TCP/IP interface is available

TDNBSSLI: Call routine TDNBSSL0 to initialize the SSL feature, which issues the socket calls:

GSKGETCIPHINF
to request cipher related information for SSL for VSE/ESA.

GSKGETDNBYLAB
to get the label for a key in a key database file. application on a previous call to an SSL
function.

GSKSSOCINIT
to initialize the data areas necessary for SSL for VSE/ESA to initiate or accept a secure socket
connection.

TDNBWAIT: If a timer interval has been set and is not yet expired, processing continues with the next
NCB. If a timer interval has been set and has expired:
if received or transmitted FCS bytes of CTC buffers still hold a stream, status "complete I/O" is set to give
the PNET driver a chance to update FCS bytes (see “TDNBFCSW” on page 247).

TDNBIOST: If status is "start I/O processing", initialize address of last CCW processed and issue trace
message containing CCW-chain, if console trace is started.

TDNBIOSN - Loop through CCW-Chain

Start processing of CCW-chain, if TCP/IP connection not closed:

1. If stand-alone SENSE CCW, continue to finish CCW processing (TDNBIOLC).
2. Otherwise update sense byte with op-code CONTROL and continue processing with next CCW

(TDNBIONC).

TDNBIOWR: If WRITE CCW:

1. If CTC I/O already once processed, continue processing next CCW (meaningful if CTC buffer con-
tained empty buffer).

2. If signon complete, FCS bytes did not change and CTC buffer contains empty buffer, omit socket call
GSKSOCWRITE and continue processing next CCW (TDNBIONC).

3. Update BCB in TCP/IP send buffer (as the CTC write buffer is part of the TCP/IP send buffer, the BCB
of the CTC buffer is first saved)

4. FCS bytes of CTC write buffer remain unchanged in TCP/IP send buffer
5. Update TTB, starting TTR and TTR-EOB in TCP/IP send buffer

 Chapter 3. Program Organization 245

6. Update address and length of data and return addresses according to the return code of the socket
call

7. Call subroutine to issue send request
8. If socket call GSKSSOCWRITE completed:

a. If not all bytes sent, update address and length of data and continue processing with subroutine
call to issue send request

b. Restore BCB in CTC write buffer
c. If SOH-ENQ or ACK sent, do not update status "complete CTC I/O", but wait till SIGNON record

has been received
d. If SIGNOFF record sent, continue processing with closing the TCP/IP connection (TDNBCLOS)
e. In all other cases update status "complete CTC I/O" and continue processing next CCW

(TDNBIONC)

TDNBIOCL: If CONTROL CCW, continue processing next CCW (TDNBIONC).

TDNBIORD: If READ CCW:

1. If CTC I/O not yet processed once and FCS bytes hold at least one strean and console trace is
started, issue trace mesage with FCS bytes of CTC write buffer.

2. If FCS bytes hold all streams, omit socket call GSKSSOCREAD (if FCS bytes hold just one stream,
we trust remote node and assume the received buffer will never be for the suspended stream. RSCS
processes the FCS bytes too late and sends buffer even for a suspended stream, but the PNET driver
ignores this protocol violation and continues processing without any error indication)

3. If no data left over from last socket call GSKSSOCREAD, continue with starting socket call
GSKSSOCREAD

4. If received data in TCP/IP receive buffer contains all bytes for a CTC read buffer (without TTB and
TTR):
a. Move data from TCP/IP receive buffer to CTC read buffer
b. If BCB of TCP/IP receive buffer is invalid, update BCB of CTC read buffer to an invalid value

which forces a BCB sequence error issued by the PNET driver (node is stopped and restarted)
c. If console trace is started, issue message displaying TTR and first 12 bytes of CTC read buffer
d. If socket call GSKSSOCWRITE started and not yet complete, omit setting of status "complete CTC

I/O"
e. Continue processing next CCW (TDNBIONC).

5. Start processing of socket call GSKSSOCREAD
a. If any bytes left after having moved some data from TCP/IP receive buffer into CTC read buffer,

move left data to begin of TCP/IP receive buffer and display data via trace message, if console
trace started

b. Update address and length of data and return addresses according to the return code of the
socket call

c. Call subroutine to issue receive request
d. If socket call GSKSSOCREAD completed:

1) If no bytes received, continue processing with closing the TCP/IP connection
2) Continue processing above with checking, if all bytes for a CTC read buffer (without TTB and

TTR) have been received
e. If socket call GSKSSOCREAD should be retried (return code = 4 of socket call):

1) If signon not yet complete, continue processing with next CCW (and wait till all data received)
2) If CTC I/O to be completed (send socket call completed), continue processing with next CCW

(and do not wait till receive complete)
3) If no data received and if no send socket call outstanding, set status "idling"
4) Continue processing next CCW (TDNBIONC).

246 VSE Central Functions V7R1 VSE/POWER DRM

TDNBIONC - processing next CCW: If CCW is not last CCW, update address of last CCW processed
(NCBLCCW) and continue to process the CCW (TDNBIOSN)

If CCW is last CCW, update status "I/O once processed".

TDNBFCSW: If signon is complete (FCS bytes are contained within CTC buffers) and received or trans-
mitted FCS bytes hold at least one stream and the CTC I/O can not be completed, continue processing to
initiate wait for a timer interval of 20 seconds to suspend processing for this node (see “TDNBWAIT” on
page 245).

TDNBIDLG: If status is "leave idling state" and "idling", set status "complete I/O".

TDNBIOZ0: To complete the CTC I/O, following steps are performed:

1. If status is not "line busy" and not "close line", issue IDUMP macro and message 1RTLI.
2. Update address of last processed CCW (NCBLCCW) to point after last processed CCW
3. Update CCB status with "channel and device end"
4. If no data received via TCP/IP connection, build empty buffer
5. Update residual count in CCB
6. If console trace started, issue trace message to display CCB, address of last processed CCW, and

some status bytes
7. Queue buffer to channel end queue of PNET driver via compare and swap instruction
8. If SIGNOFF record received, continue processing with closing the TCP/IP connection (TDNBCLOS)
9. If TCP/IP connection closed and to be restarted, init timer interval for restart

10. If TCP/IP connection closed and not to be restarted, set status "terminate connection"

TDNBTIME: If status is "terminate connection":

1. Cancel any outstanding TQE for this NCB and update status "TCP/IP connection finished"
(NCBTPS1F, used by PNET driver to start final node clean up).

2. If no SIGNOFF record received nor sent, update status with TCP/IP error.
3. Continue processing next NCB (TDNBNEXT).

If timer interval to set, initiate timer interval using value (in NCBTPTIV) previously set and update status
"waiting for expiration of timer interval" (NCBTPS4W).

TDNBINGS - Establish Initial Contact (Details)

The SD Subtask performs following steps to establish the initial contact as a client in active mode:

TDNBINGS Issue the socket call SOCKET to allocate the necessary control blocks for a connection in
active mode.

TDNBINGH If a logical IP address has been specified for the NCB, issue the socket call
GETHOSTBYNAME to get a binary IP address.

TDNBINIO Issue the socket call IOCTL to set nonblocking mode for connection.

TDNBINCO Issue the socket call CONNECT to send a connect request

TDNBINIO Issue the socket call IOCTL to set blocking mode again for connection.

TDNBINSR If CONNECT completed successfully, issue the socket call GSKSSOCWRITE to send an
OPEN control record to the remote node.

TDNBINRR If GSKSSOCWRITE completed successfully, issue the socket call GSKSSOCREAD to
receive an ACK control record from the remote node.

If no ACK nor NAK control record has been received, issue messages 1RTDI and 1RTFI,
and continue processing to close the TCP/IP connection.

 Chapter 3. Program Organization 247

If the ACK or NAK control record contains incorrect values, issue messages 1RT5I and
1RTFI, and continue processing to close the TCP/IP connection.

If a NAK control record has been received, issue message 1RT6I and continue processing to
close the TCP/IP connection. If a NAK control record with RC=3 has been received, update
status "restart TCP/IP connection" (NCBTPS1R).

If an ACK control record has been received:

1. Set status "initial contact complete"
2. Set status "complete I/O"
3. Update sense bytes with CCW op-code CONTROL
4. Continue processing with process CTC I/O (TDNBIOST).

IPW$$SD - Tidy-up Routine - TDSBATDY: This routine is called by module IPW$$AT in case
of an abnormal termination of the SD Subtask. Following steps are performed:

1. The timer service of the VSE/ESA supervisor is terminated by issuing the VSE/ESA macro STXIT with
the operand IT. This terminates any timer service established by one of the TCP/IP layers which have
been called when a socket call is issued.

2. The anchor point (TDCBTQEA) for the timer service is cleared.
3. The following resources are unlocked by clearing the lockword:

TIBLCK The trace information block which might have been locked because trace entries have
been written into the storage trace area

CAAB The asynchronous service anchor block which might have been locked because the filled
up storage trace area had to be written to disk

4. The main-ECB (PAEB within the CAT) of the VSE/POWER maintask is posted by using the VSE/ESA
macro POST in order to resume processing of any task waiting for one of the above resources.

5. Any outstanding message of type A (anchored in TDCBMSGD) is deleted via macro IPW$GTS using
the operand DOM.

6. In order to stop all SSL nodes the PNCB is locked. If the PNCB can not be locked, a wait for a
second is issued by using the macro IPW$TTS with the operand REACTIVATE to be posted after 1
second

7. In order to stop all SSL nodes as fast as possible the following information is set
a. NCBTPS4C - Socket call CLOSE has been issued
b. NCBTPS1F - TCP/IP connection is finished
c. NCBF1BY - No I/O request outstanding
d. NCBTTCL - Line error
e. NCBLNSR - Close line, used by the activity-process of the PNET Driver (IPW$$LD3)
f. The post bit within the ECB (TCEB) of the PNET Driver is set.

8. The PNCB is unlocked and the main-ECB (PAEB within the CAT) of the VSE/POWER maintask is
posted by using the VSE/ESA macro POST.

9. If the SSL feature was initialized, the socket call GSKUNINIT is issued.
10. If the TCP/IP interface was available, the socket call TERMAPI is issued.
11. Issue message 1RT8I TCP/IP: INTERFACE NOT AVAILABLE
12. Reset status "SSL feature initialized", "interface available" and "interface once available", other status

information is reset when entering the initialization process (SDCS).
13. Reload saved registers and return to caller (IPW$$AT).

248 VSE Central Functions V7R1 VSE/POWER DRM

TCP/SSL Driver Subtask Services Interface Macros (IPW$$SS): In order to separate
subtask service functions from the TCP/SSL driver subtask mainline, the following services are provided
(see Appendix C, “VSE/POWER Internal Macros” on page 747 for more details):

1. EZASMI Socketcall Support
 2. Message Support
3. Timer Interval Interrupt Supprt
4. EZASMI Socketcall Error Checking Support

In addition, the Service Support module has its own internal tracing.

Subtask EZASMI Socketcall Support (IPW$ITS Macro): Using the IPW$ITS macro, the
subtask may invoke the EZASMI API and check for error conditions afterwards.

IPW$ITS PARMS=socketcall: Using the IPW$ITS macro, the subtask may invoke the EZASMI API for
the following socketcalls:

 � ACCEPT
 � BIND
 � CANCEL
 � CLOSE
 � CONNECT
 � GETHOSTID
 � GETHOSTBYADDR
 � GETHOSTBYNAME
 � GSKINIT
 � GSKUNINIT
 � GSKGETDNBYLAB
 � GSKFREEMEM
 � GSKSSOCINIT
 � GSKSSOCREAD
 � GSKSSOCWRITE
 � GSKSSOCCLOSE
 � GSKSSOCRESET
 � GSKGETCIPHINF
 � INITAPI
 � IOCTL
 � LISTEN
 � RECEIVE
 � SELECT(Read)
 � SELECT(Write)
 � SEND
 � SOCKET
 � TERMAPI

The EZASMI interface is invoked in 31-bit mode.

Internally the IPW$$SS module will invoke the IPW$ITS CKRC=YES macro to check the EZASMI
socketcall for any immediate error return.

IPW$ITS CKRC=YES: This macro is called internally in the IPW$$SS module to check for immediately
returned EZASMI API access errors, and also by the IPW$$SD module to check for errors following
EZASMI API ECB posting.

 Chapter 3. Program Organization 249

Subtask Message Support (IPW$GTS Macro): Since a VSE/POWER subtask cannot use the
messaging support available to the maintask, the following functions are provided with their own access
macro.

IPW$GTS MSG=msgid: This access macro allows the caller to specify the message equate "msgid" of a
message defined by the IPW$GMM macro in the IPW$$MM module. The message will be issued in the
same way as for the maintask, using the WTO macro and providing message substitution and message
squeezing via the IPW$$MX module.

IPW$GTS MSG=TRACE: This access macro allows the caller to issue a PNET Driver Subtask trace
message (1RTTI).

IPW$GTS DOM=(R1): This access macro allows the caller to delete a console message issued previ-
ously by the IPW$GTS MSG= macro.

Subtask Timer Interval Interrupt Support (IPW$TTS Macro): The are various support
access macros:

IPW$TTS STXIT=YES: This access macro initializes the VSE Timer STXIT interface for the SETIME
macro used for the other support macros.

IPW$TTS TIME=(Rx),TQE=: This access macro allows the caller to indicate a timer interval in tenths of a
second following which an ECB is posted in the indicated TQE element and the Driver Subtask is also
posted.

IPW$TTS CANCEL=YES,TQE=: The caller indicates that a previous IPW$TTS TIME= request is to be
cancelled.

IPW$TTS PROCESS=YES: This access macro is called by the Driver Subtask following posting.

IPW$TTS WAIT=(Rx): This access macro allows the Driver Subtask to indicate it wishes to go into a wait
state until it is posted by either the expiration of a SETIME interval request for the WAIT= interval (in
tenths of a second), or by any other event which may occur sooner, with the register Rx containing the
interval value.

IPW$TTS WAIT=(Rx,REACTIVATE): This access macro allows the Driver Subtask to indicate it wishes
to go into a wait state as for the IPW$TTS WAIT(Rx) macro, and additionally the macros IPW$TTS
STXIT=YES and IPW$TTS PROCESS=YES are called immediately following.

Subtask Support Internal Trace: The support module IPW$$SS has its own internal tracing
area. Each module entry and exit is recorded in the trace area with an eye catcher and register contents.
At the end of the IPW$$SS module, beginning at the eye catcher "LAST ENTRY =" lies the trace area.
The layout area is:

� eye catcher "LAST ACCESS="
� address of the last trace entry that was recorded (4 bytes)
� eye catcher "LAST BRANCH="
� address to which the module last exited
� (80 byte entries) with the layout:

– eye catcher describing the entry (16 bytes)
– contents of the registers 0 to 15

� eye catcher "$$SSBUF END"

250 VSE Central Functions V7R1 VSE/POWER DRM

PNET SNA Interface to VTAM

Opening the VTAM Interface: The interface is opened when the operator enters a PSTART
PNET,nodeid command. If the VTAM interface has not yet been opened (first PSTART command), the
PNET driver attaches the routine IPW$$S1 as a VSE/AF subtask.

PNET VTAM OPEN/CLOSE Subtask: The IPW$$S1 routine is invoked in order to identify
VSE/POWER to VTAM as an application program. It is attached as an independent VSE subtask by the
PNET driver and remains active until the network is shutdown.

The IPW$$S1 routine performs following functions:

� Identifies VSE/POWER as an application program to VTAM by issuing the VTAM OPEN request. The
IPW$$S1 routine builds an VTAM ACB in the VDCB. An VTAM ACB model has been predefined in
the routines CSECT. The address of the own APPLID (located in the PNCB) as well as the address
of the VTAM Exit Routines definition (VTAM macro EXLST, defined in routine IPW$$SE) are stored
into the VTAM ACB.

� Enables the necessary VTAM Exit Routines so that session requests can be received from remote
nodes. This is done by issuing the VTAM SETLOGON START request.

� Disables the VTAM Exit Routines before shutting down the network by issuing the VTAM SETLOGON
QUIESCE request.

� Dissociates VSE/POWER from VTAM by closing the VTAM interface (VTAM CLOSE).

If the VTAM interface could not be opened, error message 1RD2I (including the reason code) is issued.
The reason code is taken from the VTAM ACB Error Field. The PNET driver ECB as well as the
VSE/POWER Master ECB are posted and the subtask is detached from VSE/AF.

Enable VTAM SCIP Exit: VSE/POWER is known to VTAM as an application program after the
VTAM interface has been opened successfully. VSE/POWER can now act as a primary application
program, i.e. it can send session requests to other nodes. The SETLOGON OPTCD=START request is
issued so that VSE/POWER can receive session requests from other nodes and thus can act as a sec-
ondary application program.

If an error occurs during the SETLOGON processing, then VSE/POWER cannot act as a secondary appli-
cation program, i.e. no session requests issued by remote nodes can be received. Error message 1RD3I
is issued including the reason codes causing the failure. The reason codes are taken from the VTAM RPL
RTNCD and FDBK2 fields. The VTAM interface is closed, the PNET driver ECB is posted and the
subtask is detached from VSE.

The VSE subtask IPW$$S1 posts the PNET driver ECB and issues a VSE/AF WAIT. The subtask remains
in the WAIT until it is posted by the PNET driver to perform the disabling of the SCIP exit and to close
down the VTAM interface.

Disabling the VTAM SCIP Exit: The VTAM SCIP Exit is quiesced when no more session
requests originating from remote nodes can be accepted, for example after a PEND has been issued by
the operator.

The VTAM SETLOGON QUIESCE request is issued and the subtask IPW$$S1 enters a wait state again
until it is posted in order to perform the CLOSE request.

If VSE/POWER could not quiesce the VTAM SCIP exit, i. e. session requests issued by remote nodes can
still be received, error message 1RD4I is issued including the reason codes causing the failure. The

 Chapter 3. Program Organization 251

reason codes are taken from the VTAM RPL RTNCD and FDBK2 fields. The VTAM interface is closed
and the PNET driver ECB is posted and the subtask is detached from VSE.

Closing the VTAM Interface: The subtask IPW$$S1 is posted by the PNET driver in order to
close down the VTAM interface by means of the VTAM CLOSE macro. Message 1RE1I is issued after
successful completion of the CLOSE request indicating that no more PNET SNA functions can be per-
formed.

If the VTAM interface could not be closed properly error message 1RD5I (including the reason code) is
issued. The reason code is taken from the VTAM ACB Error Field. The PNET driver ECB as well as the
VSE/POWER Master ECB are posted and the subtask is detached from VSE.

PNET SNA Session Establishment

The IPW$$S2 routine is invoked in order to establish a session between the local and the remote node
either on behalf of a primary or of a secondary application program. It is attached as a VSE/POWER task
by the PNET driver.

The IPW$$S2 routine performs following functions:

1. The connect task establishes a session on behalf of a primary application program by issuing the
VTAM OPNDST request in order to send a BIND command to the remote application program.

2. The connect task establishes a session on behalf of a secondary application program by issuing the
VTAM OPNSEC request in order to accept a session request issued by the primary application
program.

3. The connect task receives the session request from the primary application program but does not
wish to accept it, so it issues the VTAM SESSIONC request.

Primary Application Program Establishes a Session: This routine is entered when the
operator enters a PSTART PNET,nodeid command. The general logic flow is shown in the case of the
first PSTART in Figure 74 on page 254 and in the case of subsequent PSTART commands in Figure 75
on page 255.

The command processor routine (IPW$$CM) builds a Node Control Block (NCB) which is passed to the
PNET driver. The PNET driver attaches the connect task and passes the NCB address in R6 to it.

The connect task checks whether a session has already been established or is being established (caused
by the session request of a remote node) and if so the PSTART command is ignored (without error
message).

The SNA Session Control Block (SSCB) which contains all necessary VTAM control blocks as well as
save areas and I/O areas as follows is then built.

The contents of the SSCB are as follows:

Save Areas used for VTAM requests by connect task and the SEND/RECEIVE module IPW$$SR.

VTAM RPL used for all VTAM requests by IPW$$S2 and IPW$$S3 as well as by all other PNET
modules. (Except for SESSIONC.)

VTAM NIB used for all VTAM requests by IPW$$S2 and IPW$$S3 as well as by all other PNET
modules. (Except for SESSIONC.)

BIND image used by connect task for OPNDST.

I/O Areas used by IPW$$S2 for sending and receiving the NJE Type 4 FM Header.

252 VSE Central Functions V7R1 VSE/POWER DRM

The IPW$$S2 routine will wait for storage in the case that no storage is available.

After building the SSCB, the VTAM OPNDST is issued. A BIND command is sent to the secondary appli-
cation program and is handled as described below.

The session is established after successful completion of the OPNDST request.

Both nodes have to agree on the buffer size used during data transfer between the two nodes and the
process is as follows:

� The node with the higher node name sends the NJE Type 4 FM Header which contains the buffer size
as defined in the NCB.

� The node with the lower node name receives the NJE Type 4 FM Header and sends its own FM
Header including the buffer size as defined in its NCB.

� The node with higher node name receives the NJE Type 4 FM Header.

� Both nodes compare their own buffer size with the remote buffer size and the smaller of the two
values is used for data transfer between the two nodes.

The connect task is detached after successful exchange of the buffer sizes.

 Chapter 3. Program Organization 253

Figure 74. PNET SNA Session Establishment - for First Node

254 VSE Central Functions V7R1 VSE/POWER DRM

Figure 75. PNET SNA Session Establishment. For non-first node.

VTAM OPNDST Error: Two cases have to be distinguished:

1. The NCB will be kept, which means that the local PNET system will be able to receive a session
request from this node. Error message 1RD8I is displayed indicating the reason code and message
1RC6I is displayed indicating that the local node remains in a pending status.

2. The NCB will not be kept, which means that an unrecoverable error has occurred. Error message
1RD8I is displayed indicating the reason of the OPNDST failure.

SEND/RECEIVE Error During FM Header Exchange: Two cases have to be distinguished:

1. An VTAM error has occurred which means that the exchange of the FM Headers has not been suc-
cessful. Error message 1RD8I is displayed indicating the reason code and the session has to be
terminated by the disconnect task.

2. Invalid data (incorrect or no FM Header) has been received. Error message 1RD8I is displayed indi-
cating the reason of the failure. The session has to be terminated by the disconnect task.

 Chapter 3. Program Organization 255

Secondary Application Program Accepts Session Request: This routine is entered if the
operator at the remote node has entered a PSTART PNET,nodeid command or an equivalent command
from another supported system. The general logic flow for this case is shown in Figure 76 on page 257.

The PNET driver attaches the connect task and passes the SRQE address in register 6.

The connect task checks whether a session has already been established or is being established (caused
by a PSTART command at the local console) and if so the session request is ignored (without error
message).

The SNA Session Control Block (SSCB) is built as described above.

After building the SSCB, the VTAM OPNSEC is issued. This means a positive response to the BIND
command is sent to the primary application program.

The session is established after successful completion of the OPNSEC request.

Both nodes have to agree on the buffer size used during data transfer between the two nodes. The same
mechanism is used as described above.

The connect task is detached after successful exchange of the buffer sizes.

If an error occurred while processing the OPNSEC macro, the NCB is not kept which means that an unre-
coverable error has occurred. Error message 1RD8I is displayed indicating the reason of the OPNSEC
failure.

A VARY NET,INACT,SID=applid,TYPE=FORCE should be entered in order to terminate the session.

256 VSE Central Functions V7R1 VSE/POWER DRM

Figure 76. PNET SNA Remote Initiated Session

 Chapter 3. Program Organization 257

Secondary Application Program Rejects Session Request: The operator at the remote
console has entered the

PSTART PNET,nodeid[,nodepassword]

command.

The VTAM SCIP Exit routine (IPW$$SE) has been scheduled with the indication that a BIND command
has been received. The IPW$$SE routine builds a Session Request Element (SRQE) which is passed to
the PNET driver. The PNET driver attaches the connect task and passes the SRQE address in register 6
to it.

The IPW$$S2 routine checks whether the session request represented by the SRQE can be accepted or
not.

The session request is rejected when one of the following situations are encountered:

1. The APPLID contained in the BIND image (which is contained in the SRQE) is not defined in the local
network definition table (NDT). Error message 1RD6I is displayed at the local console.

2. The local operator has not yet entered a PSTART PNET,nodeid command for the remote node. Error
message 1RC7I is displayed at the local console.

3. The BIND image which has been received contains specifications (bytes 0-2) which do not agree with
the specifications PNET is using. Error message 1RE2I is displayed at the local console.

4. The local operator has entered a PSTOP command for the remote node or VTAM has terminated or is
going to terminate. No error message is displayed at the local console.

5. A primary session is being established or has already been established. No error message is dis-
played at the local console.

6. No virtual storage could be acquired to build the required VTAM control blocks. No error message is
displayed at the local console.

An VTAM SESSIONC request is issued in order to send a negative reply to the OPNDST issued by the
primary application program located at the remote node.

The necessary VTAM RPL and NIB control blocks are contained in the SRQE itself and have been pre-
pared by the VTAM SCIP Exit routine IPW$$SE.

System sense information as well as system sense modifier information are sent to the primary application
program to inform it about the reason for the session request rejection.

The following sense code are set (always SENSEO=RR (X'08')):

SSENSMO=X'05' Session limit exceeded.

SSENSMO=X'0F' End user not authorized.

SSENSMO=X'12' Insufficient resources.

SSENSMO=X'15' Function already active.

SSENSMO=X'21' Invalid session parameters.

This system sense information is displayed at the remote console with error message 1RD8I.

The connect task detaches itself from VSE/POWER after successful completion of the SESSIONC
request. No session has been established.

258 VSE Central Functions V7R1 VSE/POWER DRM

Error message 1RD8I is displayed in case of SESSIONC failure. The still outstanding session request
should be terminated by entering VARY NET,INACT,SID=nnnnnnnn,TYPE=FORCE.

PNET SNA Session Termination

The IPW$$S3 routine is invoked in order to terminate a session which has been established by the
connect task. It is attached as a VSE/POWER task by the PNET driver.

The IPW$$S3 routine performs following functions:

1. Terminates a session in behalf of a primary application program by issuing the VTAM CLSDST
request.

2. Terminates a session in behalf of a secondary application program by issuing the VTAM TERMSESS
request.

3. Receives the session termination request from the primary application program and acts on behalf of a
secondary application program. The IPW$$S3 routine receives the UNBIND command.

4. Receives the session termination request from the secondary application program and acts on behalf
of a primary application program. The IPW$$S3 routine receives the LOSTERM RC=20 condition.

Primary Application Program Terminates the Session: The operator at the local console
enters a PSTOP PNET,nodeid command or another condition (like VTAM Halt) leads to a termination
request. The general logic flow is shown in Figure 77 on page 260.

The PNET driver attaches the disconnect task which then waits for the completion of the connect task
which has established or which is just establishing the session. The necessary ECB is located in the NCB
representing the session.

The VTAM request CLSDST is issued to disconnect the application programs located on the local and
remote node. The CLSDST request causes an UNBIND command to be sent to the remote secondary
application program (via the VTAM SCIP Exit) thus informing the secondary application program about
session termination. The NCB is flagged to indicate that it can be freed by the PNET driver. The PNET
driver ECB is posted and the disconnect task detaches itself from VSE/POWER. The SNA Session
Control Block (SSCB) is freed later by the PNET driver.

 Chapter 3. Program Organization 259

Figure 77. PNET SNA Primary Initiated Stop

260 VSE Central Functions V7R1 VSE/POWER DRM

Secondary Application Program Terminates the Session: The operator at the local
console enters the PSTOP PNET,nodeid command or another condition (like VTAM Halt) leads to a termi-
nation request.

The PNET driver attaches the disconnect task which then waits for the completion of the connect task
which has established or which is just establishing the session. The necessary ECB is located in the NCB
representing the session.

The VTAM request TERMSESS is issued to request session termination from the primary application
program. The TERMSESS request causes the VTAM LOSTERM Exit to be scheduled for the remote
primary application program (via the VTAM LOSTERM Exit with Reason Code 20) thus informing the
primary application program about the session termination request.

The primary application program has to issue an VTAM CLSDST request so that the session is termi-
nated. The secondary application program receives an UNBIND command for which it has waited after
issuing the TERMSESS request.

The NCB is flagged that it can be freed by the PNET driver. The PNET driver ECB is posted and the
disconnect task detaches itself from VSE/POWER. The SNA Session Control Block (SSCB) is freed later
by the PNET driver.

Primary Application Program Receives Session Termination Request: The operator
at the remote console enters PSTOP PNET,nodeid command or another condition (like VTAM Halt) leads
to a termination request. The general flow is shown in Figure 78 on page 262.

The PNET driver attaches the disconnect task which then waits for the completion of the connect task
which has established or which is just establishing the session. The necessary ECB is located in the NCB
representing the session.

LOSTERM condition with reason code 20 has been passed to PNET through the VTAM LOSTERM Exit.
A CLSDST request (as described above) has to be issued in order to terminate properly the session. The
CLSDST request causes an UNBIND command to be sent to the remote secondary application program
(via the VTAM SCIP Exit) thus informing the secondary application program about session termination.
The NCB is flagged that it can be freed by the PNET driver. The PNET driver ECB is posted and the
disconnect task detaches itself from VSE/POWER. The SNA Session Control Block (SSCB) is freed later
by the PNET driver.

 Chapter 3. Program Organization 261

Figure 78. PNET SNA Secondary Initiated Stop

262 VSE Central Functions V7R1 VSE/POWER DRM

Secondary Application Program Receives Session Termination Request: The oper-
ator at the remote console enters the

PSTOP PNET,nodeid

command or another condition (like VTAM Halt) leads to a termination request. The PNET driver attaches
the disconnect task which then waits for the completion of the connect task which has established or
which is just establishing the session. The necessary ECB is located in the NCB representing the
session.

The VTAM request CLSDST has been issued by the primary application program. This request causes an
UNBIND command to be sent to the remote secondary application program (via the VTAM SCIP Exit)
thus informing the secondary application program about session termination. The NCB is flagged that it
can be freed by the PNET driver. The PNET driver ECB is posted and the disconnect task detaches itself
from VSE/AF. The SNA Session Control Block (SSCB) is freed later by the PNET driver.

In case an VTAM error has been encountered during execution of the CLSDST or TERMSESS request,
error message 1RD8I is issued including the reason code (which consists of the RPL RTNCD and FDBK2
codes. Error message 1RC4I will be displayed when VTAM suffers from temporary storage shortage and
cannot perform the requested function.

The console operator should try to cancel the still existing session by using the VARY
NET,INACT,SID=xxxxxxxx,TYPE=FORCE.

PNET SNA VTAM Exits

The module IPW$$SE contains the VTAM Exit Routines for the PNET SNA Support. The following exits
are supported:

 SCIP
 NSEXIT
 LOSTERM
 TPEND

The exits are required to handle the special events scheduled by VTAM.

The exit routines run under control of the VSE/AF subtask under which the VTAM OPEN was performed.
During OPEN time the exits are enabled to VTAM via the SETLOGON command issued by module
IPW$$S1.

Because the exits run under the control of the VSE/AF subtask and cannot share VSE/POWER resources,
all events which cause an exit to be scheduled are passed to the PNET driver by setting various indi-
cations in control blocks. The following exit routines are supported and perform the following functions.

SCIP Exit: The SCIP exit is scheduled in the following circumstances:

� BIND Request Unit

As part of the session establishment an OPNDST command is executed which triggers the sending of
a BIND-RU to the other end of the session. The received BIND-RU causes VTAM to schedule the
SCIP-Exit with a parameter list containing the address of the received BIND-RU.

The BIND-RU is used to form a Session Request Element (SRQE) in the GETVIS space of the
VSE/POWER partition. The SRQE is chained to the PNET master control block (PNCB) and the PNET
driver is informed that a remote session request has arrived.

 Chapter 3. Program Organization 263

If no GETVIS storage is available the BIND-RU is rejected via a SESSIONC command which triggers
the completion of the OPNDST with error. The operator is informed that the session request has been
rejected.

 � UNBIND Command

As part of the session termination process the primary application program executes the CLSDST
command, which triggers VTAM to send an UNBIND command to the secondary application program.

If the secondary initiates the termination and executes the TERMSESS command, VTAM on the
primary side triggers the LOSTERM exit but sends an UNBIND command back to the secondary end.

In both cases, a received UNBIND command forces VTAM to schedule the SCIP Exit with a read-only
RPL, which contains, in its session control field, the indication 'UNBIND received'. The exit propa-
gates this event to the PNET driver to stop session communication.

� Start Data Traffic (SDT) Command

At the beginning of a session, an SDT command is sent from the primary end to inform the secondary
end that flow of data requests, data flow control commands, and responses may be started. The exit
informs the connect task, which is waiting on this event, that data traffic can now be started.

 � CLEAR Command

The CLEAR command is sent by the primary application when the flow of data requests, data flow
commands, and responses is to be stopped, either because the primary application is terminating or
needs to take some recovery action.

A CLEAR command forces VTAM to schedule the SCIP exit with a read-only RPL which contains, in
its session control field, the indication 'CLEAR received'. The exit propagates this event to the PNET
driver to stop the session communication.

� Other Session Control Commands

RQR and STSN As part of the session recovery, these commands are used to cleanup the session.
Both commands are not supported by VSE/POWER but when received from other
components they lead to termination of the session.

DFASY Asynchronous data flow request are handled by the PNET driver via the receive func-
tion.

LOSTERM Exit: Various situations lead to the triggering of the LOSTERM exit. VTAM schedules the
exit by identifying the situations via the reason lost code, which is passed in the parameter list.

The following situations cause the LOSTERM exit to be scheduled:

20 The secondary end issued a TERMSESS... TYPE=UNCOND command to terminate the
session. VTAM at the primary side schedules the exit. In this case, the exit informs the PNET
driver to terminate the session immediately.

32 Network operator initiated conditional terminate.

This event causes the PNET driver to be informed that a conditional terminate should take
place, which implies that all transmitter and receiver tasks may continue until end-of-job, before
the session is terminated.

12 Network operator initiated VTAM HALT.

This event causes an immediate termination of VTAM. The PNET driver is informed that VTAM
is terminating immediately and propagates an immediate termination to all PNET SNA ses-
sions.

264 VSE Central Functions V7R1 VSE/POWER DRM

36 VTAM buffer limit exceeded.

If the buffer limit defined by the NCP Generation is exceeded, the exit is scheduled. This event
causes immediate termination of the session and the PNET driver is informed about this event.

The operator is informed with message 1RD7I that the LOSTERM exit has been scheduled.

NSEXIT Exit: The CLEANUP-RU is the only type of RU which is supported in this exit. A
CLEANUP-RU is created by VTAM under the following circumstances: The general flow is shown in
Figure 79 on page 266.

Operator initiated command:
 VARY NET,INACT.....

VARY NET,TERM,SID=nnnnnn,TYPE=FORCE or
Unexpected CLOSE issued from application.

The received CLEANUP-RU leads to an immediate termination of the session. The exit informs the PNET
driver about this situation.

 Chapter 3. Program Organization 265

Figure 79. PNET SNA Abnormal Termination

266 VSE Central Functions V7R1 VSE/POWER DRM

TPEND Exit: VTAM schedules the TPEND exit if the network operator is halting VTAM via the HALT
command. Three conditions which inform the application are supported:

HALT NET (normal shutdown)
HALT NET,QUICK (Immediate termination)
VTAM ABNORMAL TERMINATION

VTAM schedules the TPEND exit with a reason code as defined below.

0 HALT NET was issued to shutdown VTAM in a normal fashion. The PNET driver is informed to
shutdown all sessions in a normal way.

4 HALT NET,QUICK was issued to terminate VTAM immediately. The PNET driver is informed to ter-
minate all sessions without waiting for end-of-job conditions.

8 VTAM ABNORMAL TERMINATION has taken place. The PNET driver is informed to terminate all
sessions without waiting for end-of-job conditions.

PNET SNA SEND/RECEIVE Function

The SEND and RECEIVE functions of the PNET-SNA support are located in the module IPW$$SR. This
module also contains the SEND/RECEIVE exit routines for asynchronous processing. The functions are
called either:

� By the PNET driver, in which case the routines run under control of the calling task TCB acting as a
function module.

– The PNET driver calls the SEND function by means of the IPW$IOM macro instruction when at
least one output buffer has been queued by the PNET driver into the 'TO-BE-SENT AHEAD'
queue and no SEND is currently in progress.

– The PNET driver calls the RECEIVE function by means of the IPW$IOM macro when at least one
input buffer has been queued by the PNET driver to the 'FREE INPUT AHEAD' queue and no
RECEIVE is currently in progress.

� By the SEND/RECEIVE exit routines, which are scheduled by VTAM after final completion of the
request, by means of the IPW$IOM macro instruction.

Note: Both the exits as well as the invoked SEND/RECEIVE functions run under control of the PNET
SNA subtask (IPW$$S1).

The following technique is used to prevent concurrent SEND/RECEIVE being executed:

If the SEND or RECEIVE functions are called from the PNET driver, the function gates are locked and
remain locked until no more buffers are available to send or to receive requests or responses. Due to
asynchronous processing, the SEND/RECEIVE exits are scheduled by VTAM at final completion time. The
currently held input or output buffer is queued to the PNET driver 'BUFFER QUEUE' for later processing.
The SEND or RECEIVE exit then initiates a new SEND or RECEIVE request by executing the IPW$IOM
macro. The appropriate function gate remains locked unless an error is detected or no buffer can be sent
or received.

Two additional queues are introduced, for performance reasons, in the SNA processing:

� To be sent ahead queue
� Free input ahead queue

The queues provide the capability to initiate another SEND/RECEIVE from the appropriate exit which runs
under the TIK of the PNET SNA subtask. The normal input/output buffer queues are maintained by buffer
service using the VSE/POWER resource management which is not available when running as VSE/AF
subtask.

 Chapter 3. Program Organization 267

The 'ahead' queues are filled by the PNET driver on demand of the SEND/RECEIVE function invoked by
the exits. Once a SEND/RECEIVE has been initiated by the PNET driver, the next SEND/RECEIVE is
automatically issued by the exit when the previous has finally completed. This process continues until no
buffers are available or an error has been encountered.

The following queues are used by the SNA processing routines:

TO-BE-SENT-AHEAD Queue This buffer queue is updated by the PNET driver when a 'SEND-REQUEST'
is indicated in the appropriate node control block (NCB). The output buffers
from the 'TO-BE-SENT QUEUE' are chained at the tail of the
'TO-BE-SENT-AHEAD' queue.

FREE-INPUT AHEAD Queue This buffer queue is updated by the PNET driver when a
'RECEIVE-REQUEST' is indicated in the NCB. The input buffers from the
'FREE INPUT QUEUE' are chained on top of the 'FREE-INPUT-AHEAD'
queue.

PNET driver BUFFER Queue This queue contains all input and output buffers, which were either sent or
received by the SEND/RECEIVE function, for further processing by the PNET
driver. At final completion time of a SEND/RECEIVE, or at initial completion
time in the case of a failure, the buffer with its associated RPL is queued on
top of the queue. The queue is anchored to the PNET driver task TCB and is
re-ordered to the correct sequence (first-in, first-out) by the PNET driver.

SEND Function: The SEND-function checks the SEND-gate and returns to the caller with return
code X'FF' in register 15 if the gate is already locked. Otherwise the gate is locked to prevent an addi-
tional SEND being executed and the TO-BE-SENT-AHEAD queue is scanned to find a buffer which is
eligible to send. Each output buffer in turn is examined for eligibility for transmission. This is necessary
because any receiver on the other node may temporarily stop transmission by sending a “suspend” control
record. The stream can be resumed by sending a “resume” stream control record.

Output buffers may contain either Request-Units (Data-RUs) or Response-Units (Response-RUs).
Response-RUs are always sent, even when the particular data-stream is suspended. If the output buffer
is owned by the PNET driver, then that buffer is also sent. If no buffer is ready to send, the PNET driver
is informed by setting the 'SEND-Request' in the NCB, the gate is opened and return is made to the caller.
If, however, an output buffer is eligible for transmission, the RPL, contained in the buffer, is modified
according to the data in the buffer and the SEND macro is executed. If no RPL is present, the pre-
generated RPL of the SNA Session Control Block (SSCB) is used as a skeleton and modified accordingly.

The initial return code is checked and, if no error is indicated, return is made to the caller. If the initial
completion fails, the output buffer causing the error is chained to the PNET driver buffer queue, the gate is
unlocked, and return is made to the caller.

The flow in the SEND exit is shown in Figure 80 on page 269.

268 VSE Central Functions V7R1 VSE/POWER DRM

Figure 80. PNET SEND Function

 Chapter 3. Program Organization 269

RECEIVE Function: The RECEIVE-function checks the RECEIVE-gate and returns to the caller with
return code X'FF' in register 15 if the gate is already locked. Otherwise the gate is locked to prevent more
than one RECEIVE being executed at a time. The FREE-INPUT AHEAD queue is examined for a free
buffer. If no buffer is available, the PNET driver is informed by setting the 'RECEIVE-Request' in the NCB,
the gate is opened and return is made to the caller. Input buffers may contain a pre-generated RPL which
is modified when executing the RECEIVE macro. If no RPL is available, the pre-generated RPL of the
SSCB is moved into the buffer and modified when executing the RECEIVE macro.

The initial return code is checked and if no error is indicated return is made to the caller. If the initial
completion fails, the input buffer is chained to the PNET driver buffer queue for further processing, the
gate is unlocked, and return is made to the caller.

The general flow is shown in Figure 81 on page 271.

270 VSE Central Functions V7R1 VSE/POWER DRM

Figure 81. PNET RECEIVE Function

 Chapter 3. Program Organization 271

SEND Exit: The exit is scheduled by VTAM at final completion of the SEND request. The RPL is freed
from VTAM use via the CHECK macro. The output buffer is then chained to the PNET driver buffer queue
for further processing. If any error was detected during the CHECK, or if a session error was indicated in
the NCB, immediate return to VTAM is made without initiating another SEND. If no error was detected,
the SEND function is called by means of the IPW$IOM macro instruction to send another output buffer.
The gate remains locked until no more buffers can be sent or an error was detected. In all cases, the
PNET driver task is posted to perform the required actions for the queued buffer(s).

RECEIVE Exit: The exit is scheduled by VTAM when the actual RECEIVE completes finally. The RPL
is freed from VTAM use via the CHECK macro. The current buffer is than chained to the PNET driver
buffer queue for processing. If any error was detected during the CHECK or if a session error was indi-
cated in the NCB, immediate return to VTAM is made without initiating a new RECEIVE. If no error was
detected, the 'FREE-INPUT AHEAD QUEUE' is examined for a free buffer and if one is available the
RECEIVE-function is called, from the exit, to start another RECEIVE. The gate remains locked until any
error is detected or until no input buffer is available. In all cases, the PNET driver task is posted to
perform the required actions for the queued buffer.

272 VSE Central Functions V7R1 VSE/POWER DRM

 PNET Transmitter

The PNET transmitter (IPW$$NT) consists of two different transmitters, the job or output transmitter and
the console transmitter.

Job/Output Transmitter: The PNET transmitter is responsible for transmitting jobs or output to
other nodes in the network. For each active transmitter there must be an active receiver on the other end
of the line. See Figure 82.

Figure 82. General Transmission Flow - Shown for BSC Link

 Chapter 3. Program Organization 273

Each transmitter is associated with a node. If other non-adjacent nodes are reachable via the node to
which a direct connection exists, as specified via the ROUTE1 and ROUTE2 parameter of the appropriate
PNODE macro, the transmitter is said to be eligible for these nodes, too. Each node currently active is
described by a Node Control Block (NCB). Activation of a transmitter task is initiated by requesting task
creation in the appropriate task entry, contained in the NCB, and posting the PNET driver.

A transmitter task is attached by the PNET driver in the following cases:

1. Initially when the connection between the two nodes is established and sign-on processing completed,
then one job and one output transmitter are attached.

2. When a job or output eligible for transmission is put into the XMT queue and the final destination is
reachable via this connected node.

3. When a PACT command is issued for the transmitter.

4. When a job or output is returned to the XMT-queue with its original disposition by means of the
IPW$DQS HOLD macro. The transmitter going to be drained checks if there are other inactive trans-
mitters of the same type and if so attaches one.

5. When a connection between two nodes is broken, then the first inactive transmitter for an alternate
route node is attached.

Before attaching the transmitter the PNET driver ensures that the connection is not drained (either done
by PSTOP PNET,nodeid,EOJ or PEND command given by the central operator) and equips the transmitter
with a work area.

When the job or output transmitter is initially entered, the work area previously acquired by the PNET
driver is initialized. The IPW$GQS macro is then executed to obtain the next eligible queue entry (job or
output, dependent on the type of transmitter). The 'Get Next Queue Set' routine scans the XMT queue for
a job or output which the transmitter can send and selects the oldest highest-priority job or output queue
entry which is destined to, or routed via, the node which the transmitter is serving.

A particular transmitter may be eligible to send to only a few of the nodes in the network. Eligibility is
determined by the 'Get Next Queue Set' routine, which determines the best path to reach any node.

If the 'Get Next Queue Set' routine returns to the transmitter without selecting a queue entry, the trans-
mitter frees the storage area used as work space, informs the PNET driver about the termination and
detaches itself. If however, a queue entry was selected, the transmitter initializes the account record with
the transmission start time, date and information extracted from the queue record. If the previous trans-
mission of a job or output was aborted, the IPW$STM macro is issued to allow the receiver on the other
end of the line to do its cleanup processing before the next request for transmission (RIF) is sent.

The get data record routine is invoked via macro IPW$GDR to obtain the first data record (the job header
record). The composer is called to generate a request for permission to transmit (RIF) and to schedule
the buffer for transmission.

If permission is not granted (the PNET driver has set the immediate stop code in the TCB on receipt of the
negative permission) the transmitter informs the central operator via message 1RA9I and the IPW$DQS
HOLD macro is issued to return the queue entry to the XMT queue with its original disposition.

The transmitter task entry table, contained in the associated NCB, is scanned for any inactive transmitter
of the same type. If found, the PNET driver is posted to attach that transmitter in order to attempt to
transmit the just re-queued queue entry. All acquired storage areas are released and the transmitter is
detached.

If permission is granted (the receiver on the other node is prepared to accept the transmission), the job
header record is completed with information from the queue record (class, target destination, user-id,

274 VSE Central Functions V7R1 VSE/POWER DRM

system-id, time event scheduling information, disposition for local processing, etc.) and the composer is
called to transmit the record. After sending the job header record, the transmitter issues the IPW$GDR
macro to get the records from the data file and to pass them to the composer one at a time.

When the transmitter encounters a data set header record, the record is updated with information
extracted from the queue record (class, target destination, user-id, no. of copies, disposition for local proc-
essing, etc.) and the composer is called to prepare the record for transmission.

After the job trailer has been passed to the composer to be scheduled for transmission, the composer is
again called to send an end-of-file indicator to the receiver. The composer then waits for acknowledge-
ment of the end-of-file. If positive acknowledgement is received, the responsibility for the transmitted job or
output has been accepted by the receiver and the transmitter removes the queue entry from the XMT
queue by issuing the IPW$DQS macro, or keeps the queue entry in the queue according to the disposi-
tion.

The central operator and, if Notify was requested, the originator are informed via message 1RA0I that the
transmission successfully completed. The account record is completed with the transmission stop time
and the IPW$PAR macro is issued to write the account record. The queue record area and the logical
data area are released and the transmitter is prepared to start with the next queue entry.

Normal Termination: A transmitter task remains active as long as there are entries in the XMT queue
which are eligible to be transmitted by this task. If there are no further eligible entries in the XMT queue,
the task is detached and will be attached again under above circumstances.

Abnormal Termination: If at any time the transmitter encounters an error code, this routine is entered
and the transmission is aborted.

Error codes are set after the operator has entered a PSTOP, PDRAIN, or PFLUSH command, or in the
case that the communication line has broken, or that the connected node has indicated that it does not
have a corresponding receiver available to receive data from this transmitter. An error code is also set
when an I/O error occurred while accessing the spool files and in this case the task terminator routine
(IPW$$TR) branches directly to this routine after cleaning up the queue and data files.

On entry to the routine the current stop state is saved as only this stop state is required for the various
abnormal termination activities. The 'to-be-sent' queue is cleared and the composer is called to send an
'ABORT' to the receiver. No 'ABORT' is sent in case of receipt of an NPGR, in case of a broken line
(irrecoverable I/O error, SIGNOFF received), in case that the task termination routine was invoked prior to
sending a RIF and in case that the stop state occurred after having sent the EOF signal to the receiving
node.
The composer on behalf of the transmitter waits then for an acknowledgement (receiver cancel from the
other side).

The cancel code is stored in the account record. The operator is informed via message 1RA9I, and in the
case that the transmitter will also be drained, via message 1RA8I. The queue entry is returned to the XMT
queue with a disposition requested by the saved stop state. If the transmitter is to be drained, then the
PNET driver is requested to start another not drained transmitter. If applicable, additional information is
written into the account record. The logical data area and queue record area are then released.

If the saved stop state does not require an immediate and unconditional termination of the transmitter task,
any subsequent transmission will start again from the beginning.

 Chapter 3. Program Organization 275

Console Transmitter: The console transmitter associated with a node is responsible for sending
messages and commands, in the NMR format, to that node. The task is attached by the PNET driver
when a message/command is put in the message/command queue of the node concerned.

When the console transmitter is initially entered, the routine initializes the work area which was acquired
by the PNET driver. The IPW$ICS REQ=GET macro is then issued to obtain the first message/command
from the queue. The NMR is then passed to the composer which converts the record into the form
required for transmission, including compression and blocking. After passing the record, the storage area
occupied by the NMR is released by means of the IPW$ICS REQ=DEL macro instruction.

This process continues until all messages/commands are scheduled for transmission. When the
message/command queue is empty, the composer is called to schedule the partially filled buffer for trans-
mission. The composer returns to the transmitter when the last buffer has been transmitted. If, mean-
while, another message/command was put into the queue associated with the node, the console
transmitter starts the whole process again. Otherwise the routine informs the PNET driver about the termi-
nation and, after releasing all prior acquired work area, detaches itself.

 PNET Composer

The composer (IPW$$NC) runs under the control of the calling task and acts as a function module. It is
responsible:

� To set up an MLI control record (eg. RIF, PGR) and to schedule the record for transmission.

� To prepare all records (e. g. data records, nodal message records, job header records etc.), with the
exception of topology records, in the format required for transmission. Framing the records with RCB
and SRCB for BSC/CTC or RID for SNA respectively, compressing the record and blocking.

� To queue the current buffer, if any, to the 'to-be-sent' queue.

The type of request is passed to the composer as a parameter list.

Normal Record and Nodal Message Record Processing: The routine expands the record with trailing
blanks, if necessary, and compresses the records one at a time and puts the result in the output buffer. If
the record does not fit into the output buffer, the buffer is scheduled for transmission by issuing the
IPW$BUF MODE=OUT, TYPE=QUEUE macro instruction. After the buffer is queued, a new output buffer
is obtained, if possible, by issuing the IPW$BUF MODE=OUT,TYPE=GET macro instruction. If a buffer is
available, record compression continues. If, however, no buffer is currently in the free output queue and
no buffer can be obtained from the VSE/POWER storage pool, the routine waits until an output buffer is
returned to the free output queue by the PNET driver.

Normal data records (not segmented) are not spanned across buffers.

Data records are broken up into segments of a maximum length of 256 bytes. Segments belonging to one
data record may reside in different output buffers, but segments always reside completely in one output
buffer, i. e. segments do not span buffers. The format of output records is shown in Figure 83 on
page 277.

276 VSE Central Functions V7R1 VSE/POWER DRM

Normal Record (Not spanned)

│�───────── RECL ─────────────────�│
 │ │
 ┌──────┼───────┬──────────────────────────┤

│ RECL │ CCTL� │ Data │
 └──────┴───────┴──────────────────────────┘
 Length: 1 byte 1 byte

Spanned Record

 │�───────── SEGL1─────────────────�│
 │ │
 ┌───────┬───────┼───────┬──────────────────────────┤

│ TRECL │ SEGL1 │ CCTL� │ Data │
 └───────┴───────┴───────┴──────────────────────────┘
 Length: 2 bytes 1 byte

 │�───────── SEGL2─────────────────�│
 │ │
 ┌───────┼──────────────────────────────────┤

│ SEGL2 │ Data │
 └───────┴──────────────────────────────────┘
 Length: 1 byte

RECL Length of data in unspanned record

CCTL Command code

TRECL Total data length of segmented record

TRECL=SEGL1+SEGL2+.....SEGLn

SEGL Length of data in segment

* means that this field is optional.

Figure 83. Format of Output Records

Network Control Record Processing: Network control records are segmented into records with a
maximum length of 256 bytes. Each segment is provided with a 4-byte header containing a sequence
count and a continuation indicator. The first segment of each network control record must be the first
record in the output buffer. The buffer may then contain other records after the control record.

MLI Control Record Processing: All MLI control records, with the exception of ABORT, are built in
small output buffers of fixed length and of a size capable of holding any type of MLI record. The buffers
are obtained by means of

IPW$BUF MODE=OUT,TYPE=CNTRL

In the case of a request for an ABORT, a check is made to see whether an output buffer still exists which
is not yet queued to the 'to-be-sent' queue. If so the ABORT is indicated in the first RCB/SRCB of this
buffer, otherwise a control record is used.

The data transmission buffer status, after it has been written, is set into the output buffer header. The
PNET driver reads this status and, after the buffer has been successfully transmitted, stores it into the task
TCB for later action.

PGR, NPGR, Transmission Complete, ABORT, and Receiver Cancel, do not require a response from the
receiving system. To ensure proper synchronization between the sending and receiving nodes, the
BUFPOST bit is set in the output buffer, which causes the PNET driver to post the composer after trans-

 Chapter 3. Program Organization 277

mitting one of these records and a wait is established. Since a RIF and EOF synchronize with
PGR/NPGR respectively transmission complete, a wait must also be issued for these MLI records.

The composer is re-activated by the PNET driver when:

� A PGR, NPGR, Transmitter Cancel, Receiver Cancel, or ABORT has been received from another
node.

� Sending a PGR, NPGR, Transmitter Cancel, or Receiver Cancel, and the MLI buffer has been trans-
mitted.

� The local operator has entered a PSTOP or PDRAIN command, or a SIGNOFF has been received, or
an unrecoverable I/O error has occurred, or a transmission sequence error has occurred.

Note: MLI control records are not compressed in BSC mode. In SNA mode, each MLI record is
regarded as a complete request unit (RU) and as such is compressed.

 PNET Receiver

The PNET receiver (IPW$$NR and IPW$$NR2) consists of two different receivers, the job or output
receiver and the console receiver. The code for both kinds of transmitters is in the two modules IPW$$NR
and IPW$$NR2. Each of the two modules contains part of the following function, separated just because
the code was too much for one module.

Job/Output Receiver: The receiver is responsible for receiving either jobs or output transmitted
from another node, and writing them to the VSE/POWER spool files according to their queue identifiers.
VSE/POWER supports up to eight receivers concurrently active. The eight receivers may be a mixture of
job and output receivers, however the maximum number of one type is 7.

For each active receiver there must be an active transmitter on the other end of the line.

The receiver calls the presentation service routine, which is responsible for obtaining physical buffers from
the received input queue pertaining to the receiver, de-blocking and de-compressing each record and
passing the logical record, on demand, to the receiver.

The receiver is attached by the PNET driver when the corresponding transmitter on the other end of the
line requests permission to transmit by sending a 'request to initiate a function' (RIF) control record. If,
however, either VSE/POWER is in shutdown period or the node is to be terminated, the PNET driver
rejects that request by sending a negative permission (NPGR) control record.

When the receiver is initially entered, the work area already acquired by the PNET driver is initialized.
The receiver then checks if any termination code has been set in the TCB (for example the operator has
drained the receiver) and if so, the receiver terminates by calling the composer in order to send a negative
permission to the corresponding transmitter. Otherwise the composer is called to prepare a 'permission
granted' (PGR) control record and to schedule the record for transmission. After the buffer has been
successfully sent, the composer returns to the receiver which then calls presentation service in order to
obtain the first logical record.

If presentation service returns with a bad return code, the receiver aborts the current data stream. Other-
wise the record control byte (RCB) and subrecord control byte (SRCB) which are returned by presentation
service, are checked to determine what type of record was received (job header, job trailer, data set
header, end-of-file, abort, normal data record, or nodal message record). The layout of the RCB can be
found in Figure 88 on page 287 and that of the SRCB in Figure 89 on page 288.

The received record type is checked against the record type associated with the receiver; only records
pertaining to the receiver and nodal message records are expected. If the received record was not
expected, the receiver aborts the transmission.

278 VSE Central Functions V7R1 VSE/POWER DRM

If a network user exit is present, any network control records (job header, job trailer and data set header)
as well as any JECL and JCL statement are passed to the exit before the appropriate routine is called
which handles the type of record that was received. Before entry to the user exit a default switch to
non-parallel (NP) mode is done to allow for Supervisor Control Block update by the exit. If however the
loading conditions of the exit specify 'PA', this extra switch is suppressed. Upon return from the user exit
an unconditional switch to parallel mode is done. For details refer to 'Multiprocessor Support'. If, however,
the user exit indicates that deletion of the record is required, then the receiver branches to obtain the next
record from presentation service.

Note: Network control records may not be deleted by the user exit.

Job Header Record Processing: A job header record is expected only once per job and must be the
first record received. If such a record is received in the middle of a transmission, the receiver aborts the
transmission.

When a job header record is received, the receiver prepares to receive the job/output.

� The IPW$RQS macro is issued to reserve a queue record and data file space.

� Storage for a data block is obtained by issuing the IPW$RSV macro instruction.

� The queue record is constructed from the information in the job header record (general section and if
present VSE/POWER section).

� Work area is reserved to hold a copy of the job header record in storage. This is necessary because
at any point within the transmission a new queue entry might be created and the first record that must
be spooled has to be the job header record.

When output is being received, both the queue record and the data block are anchored to a new control
block, referred to as the data set control block (DSCB). The DSCB contains, besides the anchors, informa-
tion about the characteristics of the output data set (forms, class, priority, FCB, etc.).

If all output data sets for a job have the same routing and all require the same forms, FCB, UCB train,
etc., and all have the same class and priority and the data stream sections, if present, are identical then
only one queue entry is created to represent all of the data sets. If any of the output data sets differ from
one another in class, destination, type, etc, then multiple queue entries are created.

A new VSE/POWER job number, which is used only during the time the job/output is resident on this
node, is then assigned to the queue record. The original job number which was assigned to the job when
it entered the network, remains unchanged in the job header record. If the received data set is a "spin off"
data set or a segmented output queue entry, the original job number, obtained from the job header record
is used to facilitate easier queue manipulation.

The account record, located in the receiver work area, is initialized with the transmission start time, date
and information extracted from the queue record.

The priority obtained from the job header record is converted into the VSE/POWER priority range
according to following table. See Figure 84.

┌──────────────┬──┐
│ NJE Priority │ � 1 2 3 4 5 6 7 8 9 1� 11 12 13 14 15 │
│ VSE/POWER │ 1 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 │
└──────────────┴──┘

Figure 84. JES2 to VSE/POWER Priority Conversion Table

If any on the initialization functions fails, the receiver branches to abort the transmission. When the
receiver has completed initialization for the job/output, the job header record is written to spool. Next the
GET record main loop is entered to get the next record from presentation service.

 Chapter 3. Program Organization 279

Data Set Header Record Processing: When a data set header record is received, the receiver performs
the initialization required before receiving the job or output. When receiving a job, the data set header
record consists only of a record characteristics change section, defining a different record length and/or
format (other than 80). The record length is copied from the data set header record to the queue record. If
a VSE/POWER section is present, the 3540 cuu address is also copied into the queue record and the
TCB is flagged that now 3540 data records follow.

The JES2 output transmitter may send more than one data set header record before sending the data
records. In this case, each data set header record may indicate a different destination for the same data
set. The receiver splits each data set into multiple queue entries (data sets) - one for each destination.
This means that when the data stream is transmitted again, it is sent as multiple streams, each containing
the data set and each independent of the other.

For every data set header record so received, a data set control block (DSCB) is built, including queue
record allocation and reserving of data block space. The DSCB is placed in the active DSCB chain. Each
subsequent data record is now spooled for each queue entry in the active DSCB chain. The DSCB con-
tains all required spooling information for the queue and data file.

If another data set header record is received after data has been received, then the receiver suspends the
spooling of all queue entries currently in the active DSCB chain by writing the current DBLK with the end
of block indication and releasing the data block buffer afterwards. All data sets in the active DSCB chain
are then placed in the suspended DSCB chain.

The suspended DSCB chain is then scanned for a match with the new data set header record. A match is
found when the output characteristics such as forms id, FCB, destination, etc., the output class and priority
are identical.

If such a DSCB is found, which means that there already exists an incomplete queue entry which can be
further used, the DSCB is removed from the suspended DSCB chain and put into the active DSCB chain.
Additionally, buffer space for the data block is reserved and anchored to the DSCB.

If no DSCB is found, a new DSCB is created and initialized with the information from the job header
record and the just received data set header record. A new queue record is reserved by means of the
IPW$RQS macro and storage for the data block is obtained. Both the queue record and the data block
are anchored to the DSCB being built. The job header record and the data set header record are then
written as first records on spool.

Data Record Processing: When receiving a job, the record is written on spool by issuing the IPW$PDR
macro. The account information is updated accordingly. The record is spooled for each queue entry
described by a DSCB entry in the active DSCB chain. The account record is updated accordingly.

Nodal Message Record Processing: The record is passed to the message distributor for further proc-
essing by issuing the IPW$GMS TYPE=DIST macro instruction.

Job Trailer Record Processing: After all data has been transmitted, the transmitter sends the job trailer
record. When the receiver receives the job trailer record it starts termination processing of the job or
output. The job trailer is written, with the end of data indicator set, to spool. Any DSCB entry currently in
the suspended DSCB chain is placed in the active DSCB chain. After the job trailer is written, the data
block is released and returned to the VSE/POWER storage pool. The receiver turns off the job boundary
flag to indicate that the next record should be end-of-file.

End-of-File Record Processing: When end-of-file is received, each queue entry, described by a DSCB
in the active DSCB chain, is added to the queue according to its class and priority by means of the
IPW$AQS macro instruction. If, however, the end-of-file record was not preceded by a job trailer record,
the receiver discards any queue entry by branching to abort the transmission.

280 VSE Central Functions V7R1 VSE/POWER DRM

When a job or output queue entry is added to the class chain it appears as if it had been read in, or
completed execution, on the receivers system.

Next the receiver checks to see if any of the received data sets are destined for printing or punching on
this node. If so, and the job header contains a NOTIFY user/remote id, the receiver issues message
1RB5I via the IPW$NTY macro to inform the user or the remote id that output has arrived. The queue
record area and the data block buffer are released and returned to the storage pool. This process is
repeated for each queue entry in the active DSCB chain. Finally the account record is completed with the
transmission stop time and then it is written by issuing the IPW$PAR macro instruction.

Normal Termination Processing: The receiver calls the composer in order to send a positive acknowl-
edgement. The composer returns to the receiver after the record has been successfully sent. The receiver
then releases the storage occupied by the job header record, alternate presentation buffer area and user
record area, if any still exists. Finally the PNET driver is informed that the receiver is going to be
detached.

Abnormal Termination: If at any time the receiver encounters an error code as posted by the PNET
driver indicating that the communication line has been broken or that the transmitter sent an abort record
to abort its job or output transmission this routine is entered.

The transmission is also aborted if an error is detected in any of the received job header, job trailer or
data set header records, if records are received out of sequence (an unexpected record received), if the
operator terminated the transmission by means of the PSTOP, PDRAIN or PFLUSH command, or if an I/O
error occurred while writing either a data block or queue record to spool. In the latter case, the task
termination routine (IPW$$TR) branches immediately to this routine after cleaning up the queue and data
file. In general the task terminator routine has already removed the bad queue entry causing the I/O error
from the class chain.

The operator is informed about the unsuccessful transmission via message 1RB6I. Any DSCB currently in
the suspended DSCB chain is put in the active chain. Each spool space, allocated by the incomplete
queue entry is then freed via the IPW$DQS and IPW$FQS macro instructions and its associated storage
areas are released. Depending on the actual status the transmission is aborted by calling the composer
to send either a negative permission or a receiver cancel record.

When a receiver cancel record is sent, the receiver enters a data stream loop, waiting for an abort or
end-of-file record from the transmitter. Each record received while in this condition is purged, unless it is a
nodal message record which is passed to the message distributor via the IPW$GMS TYPE=DIST macro
instruction. The purge loop is left when either the PNET driver encounters a line error or a sign-off record
is sent or received. In this case the PNET driver propagates the error condition to the receiver. Any work
space previously acquired, such as the job header record area or the alternate presentation buffer area,
are released and returned to the VSE/POWER storage pool.

If applicable, message 1RA8I is issued to inform the operator that the receiver is now drained. Any buffer
still in the receiver input buffer queue is released and its storage returned to the VSE/POWER storage
pool. Finally the account record is completed with the transmission stop time and the account record is
written by means of the IPW$PAR macro instruction. The cancel code is set to X'50'. The PNET driver is
informed that the receiver is going to be detached.

JECL Scanner at Receive Time: If a job for the local reader queue is received, the received records are
scanned for * $$ JOB statements. The syntax checking is done by calling IPW$$SC using the interface
macro IPW$SRJ. The consistency checking for time event scheduling operands is done by calling
IPW$$LR using the entry address CALR within the CAT. The parameters (input and output) are passed to
IPW$$LR using the mapping macro IPW$DLW. If an error has been found, IPW$$SC does not issue any
error message. IPW$$NR2 issues the appropriate error message to the local operator as well as to the

 Chapter 3. Program Organization 281

originator or to the user at the node defined by the notify parameters. If an error has been found during
the consistency check, IPW$$LR issues the error message to the local operator and IPW$$NR2 sends the
error message to the originator or to the user at the node defined by the notify parameters.
In order to minimize the number of extra fields in work areas and support the ability to receive more than
one VSE/POWER job in one network job, the DSCBs, so far used only for the output receivers, are used
for a job receiver as well. Thus the following fields are used for the job receiver, sometimes in a little
different way than for an output receiver:

1. NRDSSUSP contains the address of a DSCB in which pointers are saved for
a. the job header record of the network job in DSOPTBAD
b. the queue record initiated with values out of the job header record of the network job in

DSTCBQV.
These fields are only used, if an * $$ JOB statement has been found.

2. NRDSACT contains the address of a DSCB which is the first element of a DSCB chain, each DSCB
element corresponds to one VSE/POWER job within the received network job.
This field is only used, if several VSE/POWER jobs have to be spooled.

3. NRDSINIT is used as before and contains the address of a DSCB which belongs to the VSE/POWER
job just being received. The fields in the DSCB are set at the time the DSCB is chained to the active
DSCB chain, i.e. another VSE/POWER job has to be created.

In order to waste not too much storage, the storage for the DBLK area is reused, if more than one
VSE/POWER job is received within one network job.

The first record to be received is a job header record. If the job is a reader job and destined for this node,
the job header record is not yet written. As soon as the next record is received, the type of the record is
checked. If it is no * $$ JOB statement, the job header record is written and thereafter the just received
data record. If it is an * $$ JOB statement, the * $$ JOB statement is processed and a new job header
record is built using the specified parameters of the * $$ JOB statement or the VSE/POWER defaults. If
necessary any continuation statements are processed. When processing an * $$ JOB statement, this
statement is translated to uppercase. Even the old positional format of an * $$ JOB statement is
accepted, although it is no longer described in the documentation. As soon as the end of an * $$ JOB
statement has been detected the job header record is written to the spool file. If once an * $$ JOB
statement has been found and now another * $$ JOB statement is received (i.e. without having received
an * $$ EOJ statement before), the so far received job is written to the spool file and a new job is
created.

When receiving a job trailer record:

1. If NRDSACT (active DSCB entry) is zero, i.e. just one VSE/POWER job has been received, the job
trailer record is written to the spool file.

2. If NRDSACT (active DSCB entry) is not zero, i.e. more than one VSE/POWER job has been received,
the DSCB pointed to by NRDSINIT is added to the active DSCB chain and the job trailer record is
written to the spool file.

3. Note: if more than one VSE/POWER job is received within one network job, each time a new
VSE/POWER job is created, the job trailer record is written for the previous VSE/POWER job.

When receiving the end of file record, the job is added to the spool file:

1. If NRDSACT (active DSCB entry) is zero, i.e. just one VSE/POWER job has been received, this job is
added to the spool file right now.

2. If for a job receiver a suspended DSCB exists, release storage for saved job header record of the
network job, queue record and DSCB entry, if necessary (once an * $$ JOB statement has been
found). The field NRDSSUSP has been used to save the DSCB address. The field DSOPTBAD has
been used to save the address of the job header record of the network job and add all active entries
to the spool file.

282 VSE Central Functions V7R1 VSE/POWER DRM

PNET Presentation Service

The IPW$$NP routine is responsible for obtaining physical buffers from the 'received input queue' and
passing decompressed logical records one at a time to the receiver. The presentation service routine runs
as a function module under the TCB of the calling task.

The logical record is decompressed in the presentation buffer appended to the presentation service work
area passed by the caller. The decompression routine in the IPW$$NK module is used for the decom-
pression of the records.

For SNA, each data record or segment in the buffer (RU) is preceded by the record identification field
(RID) during compression at the transmitting node. The RID identifies the type of record and contains the
length of the decompressed data record. Since the RID has undergone compression at the transmitting
node, it must go through decompression at the receiving node. Thus the decompression routine is called
to decompress a RID into a 3-byte work area in the buffer header. If the record is not an abort or end-of-
file record, the length is obtained from the RID and the decompression routine is invoked again to decom-
press that many bytes from the buffer into the presentation buffer.

All records passed to the receiver have the following format:

 ┌─────┬──────┬────────┬──────────────────┐
│ RCB │ SRCB │ Length │ Data │

 └─────┴──────┴────────┴──────────────────┘
 Length: 1 1 2 n

RCB - Record control byte
SRCB - Subrecord control byte
Length - length of original record
data - actual record

Figure 85. PNET Internal Record Format

When no buffer is currently in process or the buffer has been emptied, a new buffer from the received
input queue associated with the task is obtained by issuing the IPW$BUF MODE=IN,TYPE=GET macro
instruction. The macro expands into a linkage to the buffer service routine which de-queues the first buffer
from the received input queue and passes its address back to the caller. If the received input queue is
empty, the buffer service routine waits until a buffer arrives or an error condition occurs, resulting in an
immediate termination of the receiver. (The PNET driver posts the task after an input buffer for the task is
received.)

Three types of record may be received:

 1. Data records

2. Network control records (job header, job trailer, etc.)

3. Normal or abnormal end-of-file (data)

When a data record is received, the routine checks to see whether it is a spanned record and if no it is
passed to the caller. The maximum length of a record may be 32.767 bytes which requires that the trans-
mitter breaks the record up into pieces, no larger than 256 bytes, and transmits each piece as a single
logical record. This routine re-constructs the record, from the received pieces, into the original record
format.

If the presentation buffer is not large enough to hold the entire data record, an alternate presentation
buffer in the length of the total record plus some control bytes is acquired. The alternate presentation

 Chapter 3. Program Organization 283

buffer is released the next time the routine is entered. Each piece is decompressed in the presentation
buffer and the 4 control bytes are removed. (See Figure 85 for details.) If an error is encountered, a
return code is passed to the caller.

Since there is no restriction on the length of a job header, job trailer or data set header record, they may
require more than one logical record (limited to
256 byes in length) for transmission. If the header/trailer record occupies more than one logical record,
the presentation service routine rebuilds the entire header/trailer before passing it to the receiver. As each
piece is received its sequence number is verified and if an error is encountered a return code is passed to
the caller.

Additionally, the general, VSE/POWER and 3800 sections are checked for the minimum required length. If
the section is too short, the routine expands it to the required length by moving down any data following
the general section and padding the section with binary zeros. If the section is expanded, both the overall
length and the section length are updated. This is necessary, because the section may be enlarged from
one release to another and not all nodes within a network may have the same release level.

If normal or abnormal end-of-file is received, appropriate flags are set in the TCB of the calling receiver
and immediate return to the caller is made.

If the buffer is processed (all logical records have been passed to the receiver), the buffer is returned to
the free input queue by issuing the IPW$BUF MODE=IN,TYPE=FREE macro instruction.

PNET Buffer Service

The IPW$$BS routine is responsible for queuing all incoming buffers to the 'received input queue', to
queue all outgoing buffers in the 'to-be-sent queue', and to supply buffers for both the transmitters and
receivers. The buffer service routine runs under control of the calling task and acts as a function module.
The routine is called by means of the IPW$BUF macro instruction.

The buffers required to process BSC or CTC nodes are provided from real storage, while those required to
process SNA or TCP or SSL nodes are provided from virtual storage (GETVIS-24).

For a detail description of the functions provided, see Appendix C, “VSE/POWER Internal Macros” -
“IPW$BUF - Invoke PNET Buffer Service” on page 749.

 PNET Compression/Decompression

The PNET compression function (IPW$$NK) is used to condense duplicate character strings to reduce
tele-processing transmission volume and thus transmission time. the string is replaced with two In the
case of three or more duplicate non-blank characters, bytes: a 'String Control Byte' (SCB) followed by the
character itself. Two or more duplicate blank (X'40') characters require only the SCB indicating the char-
acter string length. Strings of non-duplicate characters are also preceded by a SCB to indicate the length.
The decompression function uses the SCBs to reconstruct the original data.

The SCBs and the method of compression/decompression differ according to the caller's indicated TP line
discipline (BSC/CTC/TCP/SSL or SNA). For compressed BSC/CTC/TCP/SSL data only, each record ends
with a special end-of-record SCB. Therefore BSC/CTC/TCP/SSL compression appends this SCB to each
compressed data string offered as input.

BSC/CTC/TCP/SSL decompression begins with the location specified in an input parameter list, and stops
when the end-of-record SCB occurs. SNA decompression begins with the location defined in a parameter
list but continues until the given length (in RID) of output is obtained or all input is processed. If the SNA
input buffer requires more output space than available for decompression, then the input is modified to

284 VSE Central Functions V7R1 VSE/POWER DRM

insert an SCB at the input location where the next decompression is to take place and a pointer is passed
to the caller specifying where the next decompression should begin.

SNA decompression has a further function enabling the caller to 'sneek-a-peek', i.e. the caller may specify
a small output buffer (e.g. 3 bytes), and the decompression routine will fill as much of the output buffer as
possible before closing and returning to the caller without modification of the input. This enables the
PNET driver to decompress the received record identifier (RID) in order to determine the stream control
action for the node being processed before the data is actually decompressed. Likewise the PNET SNA
presentation service can determine the length of the record following the RID, (the length is in the second
byte of the SRCB), that should be decompressed to obtain the complete record.

The SNA decompression routine also performs decompaction, if the input data stream contains compacted
data and a Compaction Table Block (CMPT) is available. A Compaction Table Block is only built at
session establishment, if VSE/POWER receives a valid Function Management Header 3 (FMH3), con-
taining the compactable characters (master and non-master characters).

The SCBs are described in Figure 86.

SCB Byte Codes: SCB Function:
 SNA: BSC:
 --
 N/A 0000-0000 End-of-record indicator.

00cc-cccc 11cc-cccc Non duplicate character string.
'cccccc' is the number of characters
in the string. The string of characters
immediately follows this SCB.

 01ee-eeee N/A Compacted character string.
'eeeeee' is the number of characters
in the string to be decompacted.

11dd-dddd 101d-dddd Duplicate character string.
The character following the SCB was
duplicated 'ddddd' times.

 10bb-bbbb 100b-bbbb Blank string.
'bbbbb' is the number of blank characters
in the string.

01aa-aaaa ------ Compacted character string.
'aaaaaa' is the number of compacted bytes
following the SCB.

Figure 86. SCB Byte Codes

The input parameter list that is required when calling the routine as well as the possible error return codes,
are described in the layout of the compression work area (see “Network Compression Work Area” on
page 552).

 Chapter 3. Program Organization 285

PNET Multi-Leaving Format

The basic element for multi-leaving transmission is the character string. One or more character strings are
formed from the smallest external element of transmission - the logical record. For efficiency in trans-
mission, each record is reduced to a series of character strings of two basic types:

� A variable length non-identical series of characters
� A variable number of identical characters

Because of the frequent occurrence of blank characters, a special case is made for identical characters
when the duplication character is a blank. A 1-byte control field, called a string control byte (SCB), pre-
cedes each character string to identify the type and length of the string. Thus a string of non-identical
characters is represented by an SCB followed by the non-duplicate characters. A string of consecutive,
duplicate, non-blank characters is represented by an SCB and a single character. The SCB indicates the
duplication count and the character following indicates the character to be duplicated. In the case of an
all-blank character string, only an SCB is required to indicate both the type and number of blank charac-
ters. Figure 87 describes the supported SCBs.

┌────────────┬───┐
│ Binary │ Meaning │
├────────────┼───┤
│ ���� ���� │ End-of-record │
│ │ If first SCB, this also indicates end-of-file. │
│ �1�� ���� │ Abort transmission │
│ 1��b bbbb │ "bbbbb" blanks are to be inserted. │
│ 1�1d dddd │ The single character following this SCB is to be │
│ │ duplicated "ddddd" times. │
│ 11cc cccc │ The "cccccc" characters following this SCB are to │
│ │ be inserted. │
└────────────┴───┘

Figure 87. String Control Byte (SCB) for BSC/CTC/TCP/SSL communication

A data record to be transmitted is, therefore, segmented by the transmitting program into the optimum
number of characters to take full advantage of the identical character compression. A special SCB is uti-
lized to indicate the grouping of character strings which compose the original logical record. The receiving
program can then re-construct the original record for processing.

In order to group logical records together in a single transmission block, an additional 1-byte control field
precedes the group of character strings representing the original logical record. This field, the record
control byte (RCB), identifies the general type and function of the logical record (input stream, print
stream). A particular RCB type has been designated to pass control information between the various
systems. To provide for simultaneous transmission of similar functions (such as multiple input streams), a
stream identification code is included in the RCB. Figure 88 on page 287 shows the various supported
RCBs.

286 VSE Central Functions V7R1 VSE/POWER DRM

┌───────────┬───────┬──┐
│ Binary │ Hex │ Meaning │
├───────────┼───────┼──┤
│ ���� ���� │ �� │ End-of-Block │
│ riii tttt │ �1-7F │ Reserved for future use │
│ 1�� ���� │ 8� │ Reserved │
│ 1��1 ���� │ 9� │ Request to initiate function (RIF) │
│ │ │ (SRCB=RCB of function) │
│ 1�1� ���� │ A� │ Permission to initiate function (PGR) │
│ │ │ (SRCB=RCB of function) │
│ 1�11 ���� │ B� │ Negative permission or receiver cancel (NPGR) │
│ │ │ (SRCB=RCB of function) │
│ 11�� ���� │ C� │ Acknowledge transmission complete (ACT) │
│ │ │ (SRCB=RCB of function) │
│ 11�1 ���� │ D� │ Inform receiver initiated │
│ │ │ (SRCB=RCB of stream) │
│ 111� ���� │ E� │ BCB sequence error │
│ 1111 ���� │ F� │ General control record │
│ 1��1 ���1 │ 91 │ RJE console message │
│ 1iii ���1 │ A1-F1 │ Reserved for future use │
│ 1��1 ��1� │ 92 │ RJE operator command │
│ 1iii ��1� │ A2-F2 │ Reserved for future use │
│ 1iii ��11 │ 93-F3 │ RJE input record │
│ 1iii �1�� │ 94-F4 │ RJE print record │
│ 1iii �1�1 │ 95-F5 │ RJE punch record │
│ 1iii �11� │ 96-F6 │ Data set record │
│ 1iii �111 │ 97-F7 │ Terminal message routing request │
│ 1iii 1��� │ 98-F8 │ NJE input record (98/A8/... job xmt/rcv) │
│ 1iii 1��1 │ 99-F9 │ NJE SYSOUT record (99/A9/... output xmt/rcv) │
│ 1��1 1�1� │ 9A │ NJE operator command/NJE console message │
│ 1iii 1�1� │ AA-FA │ Reserved for future use │
│ 1��1 1�11 │ 9B │ Reserved │
│ 1iii 1�11 │ AB-FB │ Reserved for future use │
│ 1iii 11�� │ 9C-FC │ Reserved for future use │
│ 1iii 11�1 │ 9D-FD │ Not Used │
│ 1iii 111� │ 9E-FE │ Not Used │
│ 1iii 1111 │ 9F-FF │ Not Used │
└───────────┴───────┴──┘

Figure 88. Record Control Byte (RCB)

A second 1-byte field, the subrecord control byte (SRCB) is included immediately following the RCB. This
field supplies additional information concerning the record to the receiving program, for example, in the
transmission of data to be printed, the SRCB can carry carriage control information. Figure 89 on
page 288 shows the layout of the supported SRCBs.

 Chapter 3. Program Organization 287

┌─────────┬──┐
│ RCB │ SRCB │
├─────────┼──┤
│ �� │ None │
│ 9� │ RCB of function to be initiated │
│ A� │ RCB of function to be initiated │
│ B� │ RCB of function to be canceled │
│ C� │ RCB of function which is complete │
│ D� │ RCB of initiated receiver │
│ E� │ Expected count (received count is in BCB) │
│ F� │ An identification character as follows: │
│ │ A = Initial RJE SIGN-ON │
│ │ B = Final RJE SIGN-OFF │
│ │ C = Print initialization record │
│ │ D = Punch initialization record │
│ │ E = Input initialization record │
│ │ F = Data set transmission initialization │
│ │ G = System configuration status │
│ │ H = Diagnostic control record │
│ │ I = Initial network SIGN-ON │
│ │ J = Response to initial network SIGN-ON │
│ │ K = Reset network SIGN-ON │
│ │ L = Accept (concurrence) network SIGN-ON │
│ │ M = Add network connection │
│ │ N = Delete network connection │
│ │ O-Z = Reserved for future use │
│ 91 │ 1��� ���� (X'8�') │
│ 92 │ 1��� ���� (X'8�') │
│ 93-F3 │ 1��� ���� (X'8�') │
│ 94-F4 │ Carriage control information as follows: │
│ │ 1�1� ��nn - Space immediately "nn" spaces │
│ │ 1�11 cccc - Skip immediately to channel "cccc" │
│ │ 1��� ��nn - Space "nn" lines after print │
│ │ 1��� 11�� - Load printer FCB image │
│ │ 1��1 cccc - Skip to channel "cccc" after print │
│ │ 1��� ���� - Print and suppress space │
│ 95-F5 │ 1��� 1111 (X'8F') │
│ 96-F6 │ Undefined │
│ 97-F7 │ Undefined │
│ 98-F8 │ NJE input control information as follows: │
│ │ 1��� ���� - Normal input record │
│ │ 11�� ���� - Job header │
│ │ 111� ���� - Data set header │
│ │ 11�1 ���� - Job trailer │
│ │ 1111 ���� - Data set trailer (not used) │
│ 99-F9 │ NJE SYSOUT control information as follows: │
│ │ 1�cc ���� - Carriage control type as follows: │
│ │ 1��� ���� - No carriage control │
│ │ 1��1 ���� - Machine carriage control │
│ │ 1�1� ���� - ASA carriage control │
│ │ 1�11 ���� - CPDS record │
│ │ 11cc ���� - Control record as follows: │
│ │ 11�� ���� - Job header │
│ │ 111� ���� - Data set header │
│ │ 11�1 ���� - Job trailer │
│ │ 1111 ���� - Data set trailer (not used) │
│ │ 1�cc ss�� - Spanned record control as follows: │
│ │ 1��� ..�� - No carriage control │
│ │ 1��1 ..�� - Machine carriage control │
│ │ 1�1� ..�� - ASA carriage control │
│ │ 1�11 ..�� - CPDS record │
│ │ 1�.. ���� - Normal record (not spanned) │
│ │ 1�.. 1��� - First segment of spanned record│
│ │ 1�.. �1�� - Middle segment │
│ │ 1�.. 11�� - Last segment │
│ 9A │ 1��� ���� (X'8�') │
│ 9B │ 1��� ���� (X'8�') │
└─────────┴──┘

Figure 89. Subrecord Control Byte (SRCB)

For multi-leaving transmission, a variable number of records may be combined into a variable block size,
as indicated previously, (that is, RCB,SRCB,SCB1,SCB2,....SCBn,RCB,SRCB,SCB1,... etc.).

The multi-leaving design provides for two or more systems to exchange transmissions blocks containing
multiple data streams in an interleaved fashion. To allow optimum use of this capability, however, a
system must have the capability to control the flow of a particular data stream while continuing normal

288 VSE Central Functions V7R1 VSE/POWER DRM

transmission of all others. For example, during the simultaneous transmission of two data streams to a
system for immediate transcription to I/O devices of different speeds, such as print streams. To meter the
flow of individual data streams, a function control sequence (FCS) is added to each transmission block.
The FCS is a sequence of bits, each of which represents a particular transmission stream. The receiver of
several data streams can temporarily stop transmission of a particular stream by setting the corresponding
FCS bit off in the next transmission to the sender of that stream. The stream can subsequently be
resumed by setting the bit on. The layout of the FCS can be found in Figure 90.

┌─────────────────────────┬──┐
│ Binary │ Meaning │
├─────────────────────────┼──┤
│ r... r... │ Reserved (must be 1... 1...) │
│ .�.. │ Normal state │
│ .1.. │ Suspend all stream transmission │
│ ..rrrr │ Reserved for future use │
│1.. │ Remote console stream identifier │
│ 1... │ Function stream identifier for: │
│ │ NJE job transmission stream number 1 │
├─────────────────────────┼──┤
│1.. │ Function stream identifier for: │
│ │ NJE job transmission stream number 2 │
│ │ NJE SYSOUT transmission stream number 7 │
├─────────────────────────┼──┤
│1. │ Function stream identifier for: │
│ │ NJE job transmission stream number 3 │
│ │ NJE SYSOUT transmission stream number 6 │
├─────────────────────────┼──┤
│1 │ Function stream identifier for: │
│ │ NJE job transmission stream number 4 │
│ │ NJE SYSOUT transmission stream number 5 │
├─────────────────────────┼──┤
│ 1... │ Function stream identifier for: │
│ │ NJE job transmission stream number 5 │
│ │ NJE SYSOUT transmission stream number 4 │
├─────────────────────────┼──┤
│1.. │ Function stream identifier for: │
│ │ NJE job transmission stream number 6 │
│ │ NJE SYSOUT transmission stream number 3 │
├─────────────────────────┼──┤
│1. │ Function stream identifier for: │
│ │ NJE job transmission stream number 7 │
│ │ NJE SYSOUT transmission stream number 2 │
├─────────────────────────┼──┤
│1 │ Function stream identifier for: │
│ │ NJE SYSOUT transmission stream number 1 │
└─────────────────────────┴──┘

Figure 90. Function Control Sequence (FCS)

For error detection and correction purposes, a block control byte (BCB) is added as first character of each
block transmitted. The BCB, in addition to control information, contains a modulo 16-block sequence
count. This count is maintained and verified by both the sending and receiving systems to prevent lost or
duplicated transmission blocks. The layout of the BCB can be found in Figure 91 on page 290.

 Chapter 3. Program Organization 289

┌────────────────┬───┐
│ Binary │ Meaning │
├────────────────┼───┤
│ r... │ Reserved (must be 1) │
│ .xxx │ Control information as follows: │
│ │ .��� - Normal block │
│ │ .��1 - Bypass sequence count validation │
│ │ .�1� cccc - Reset expected block sequence count │
│ │ to "cccc" │
│ │ .�11 - Reserved for future use │
│ │ .1�� - Reserved for future use │
│ │ .1�1 - Not Used │
│ │ .11� - Not Used │
│ │ .111 - Reserved for future use │
│ cccc │ Modulo 16-block sequence count │
└────────────────┴───┘

Figure 91. Block Control Byte (BCB)

In addition to the normal binary synchronous text control characters (STX,ETB, etc.), multi-leaving uses
two of the BSC control characters, ACK0 and NAK. ACK0 is used as filler to maintain communication
when data is not available for transmission. However, VSE/POWER PNET sends always an empty block
instead of an ACK0. NAK is used as the only negative response and indicates that the previous trans-
mission was not successfully received.

Figure 92 indicates the format for an SNA transmission block:

Buffer Meaning of Field in Buffer Length of Field

┌────────────┐
│ RID │ SNA NJE Record Identifier 3 bytes
├────────────┤
│ Data │ Logical Record Max. 256 bytes
├────────────┤
│ RID │ SNA NJE Record Identifier 3 bytes
├────────────┤
│ Data │ Logical Record Max. 256 bytes
├────────────┤
│ RID │ SNA NJE Record Identifier 3 bytes
├────────────┤
│ Data │ Logical Record Max. 256 bytes
└────────────┘

Figure 92. Multi-Leaving Buffer Format for SNA Communication

Note: Record identifiers (RID) are 3-byte headers which are required on every logical record sent or
received. The RID consists of RCB - 1 byte, SRCB - 1 byte, Length(uncompressed data) - 1 byte.

An RU consists of as many logical record identifiers and corresponding logical records as will fit in the
specified RU size as specified by the BUFSZ parameter. No logical record may be larger than 256 bytes
plus 3 bytes for the record identifier(RID). PNET sends only one type of record (network topology, stream
control or data record) within a SNA RU. PNET compresses an entire RU, i.e. everything from the begin-
ning to the end of the RU, without regard to record identifiers.

Figure 93 on page 291 indicates the format of a typical multi-leaving transmission block for
BSC/CTC/TCP/SSL:

290 VSE Central Functions V7R1 VSE/POWER DRM

┌──────┐
│ DLE │ BSC Control Character, X'1�'
├──────┤
│ STX │ BSC Control Character, X'�2'
├──────┤
│ BCB │ Block Control Byte
├──────┤
│ FCS │ Function Control Sequence
├──────┤
│ FCS │ Function Control Sequence (Continued)
├──────┤
│ RCB │ Record Control Byte for Record 1, X'��' for null buffer
├──────┤
│ SRCB │ Subrecord Control Byte for Record 1
├──────┤
│ SCB │ String Control Byte for Record 1
├──────┤
│ data │ Character string
├──────┤
│ SCB │ String Control Byte for Record 1
├──────┤
│ data │ Character string
├──────┤
│ SCB │ Terminating SCB for Record 1 (end-of-record), X'��'
├──────┤
│ RCB │ Record Control Byte for Record 2
├──────┤
│ SRCB │ Subrecord Control Byte for Record 2
├──────┤
│ SCB │ String Control Byte for Record 2
├──────┤
│ │
├──────┤
│ SCB │ Terminating SCB for last record, X'��'
├──────┤
│ RCB │ Transmission Block Terminator (end-of-block), X'��'
├──────┤
│ DLE │ BSC Control Character, X'1�' (not used for CTC/TCP/SSL)
├──────┤
│ ETB │ BSC Control Character, X'26' (not used for CTC/TCP/SSL)
└──────┘

Figure 93. Multi-Leaving Buffer Format for BSC/CTC/TCP/SSL

 Chapter 3. Program Organization 291

//

Figure 94. PNET BSC/TCP/SSL Control Block Relationship

292 VSE Central Functions V7R1 VSE/POWER DRM

Figure 95. PNET BSC/CTC/TCP Buffer Relationship and Queuing

 Chapter 3. Program Organization 293

Figure 96. PNET SNA Control Block Relationship

294 VSE Central Functions V7R1 VSE/POWER DRM

Figure 97. PNET SNA Buffer Relationship and Queuing

 Chapter 3. Program Organization 295

Remote Job Entry (RJE) Function

 RJE,BSC

The VSE/POWER,BSC operations are performed by the following phases:

� IPW$$LM RJE BSC Line manager
� IPW$$BR RJE BSC Reader
� IPW$$BW RJE BSC Writer
� IPW$$BM RJE BSC I/O Monitor

At VSE/POWER initialization time, IPW$$I1 checks if RJE,BSC support is required, and if so, it saves the
RJE part of the generation table.

Figure 98 on page 297 shows the relationship between the RJE,BSC tasks described in the following
paragraphs.

296 VSE Central Functions V7R1 VSE/POWER DRM

Figure 98. RJE,BSC Relationship

 Chapter 3. Program Organization 297

RJE,BSC Line Manager: The line manager task consists of three major functional areas:

1. Channel end processing

including read,write, and control mode

 2. Activity control

including line initialization
line start
line close
task creation
task stop
remote signoff processing

3. Line error handling with recovery

including unit check recovery
unit exception handling
disastrous error handling

The task is activated, first by the command processor when the line is started or stopped, second from the
RJE Channel End Appendage in the nucleus when the channel program completes by VSE/AF, or third by
the RJE-BSC reader or writer task when the final signoff process should be initiated.

When the line manager is called it may test for any channel end which may have occurred while it was in
the dormant state, or it may scan all LCBs of the system for any activity to be done. See Figure 99.

Figure 99. LCB Activity Checking and Channel End Processing

298 VSE Central Functions V7R1 VSE/POWER DRM

When a line start request is detected during LCB activity checking, two initial CCW chains are set up.

� Leased line - DISABLE
 - SET MODE
 - ENABLE
 - PREP
 - READ

� Switched line - DISABLE
 - SET MODE
 - ENABLE
 - NOP
 - READ

For leased line and switched line, the line is prepared to receive a response from the remote terminal and
the line manager puts itself into the dormant state.

When a line stop/signoff request is detected during LCB activity checking, the line situation is tested for
sending a remote message, a disconnect CCW chain is set up, and a decision to start the line again is
made (see Figure 100).

┌─────────────────┬───────────────┬──────────────┐
│LCB Indication │ Switched Line │ Leased Line │
├─────────────────┼───────────────┼──────────────┤
│STOP │ Line Stop │ Line Stop │
│SIGNOFF │ Line Start │ Line Start │
└─────────────────┴───────────────┴──────────────┘

Figure 100. Line Action

The channel end routine consists of four sections:

� Control mode routine

� Receive mode routine

� Transmit mode routine

 � Error routine

The Control Mode routine handles line initiation and line turnarounds from read to write mode or vice
versa.

The Receive Mode routine checks the received data for valid BSC control characters or correct BSC
framing control characters (start of text/ end of text/ end of block) and posts the appropriate reader task to
process the received data. It calls the RJE,BSC Monitor to start another I/O request or to set a timer
interval, waiting on a free buffer.

The Transmit Mode routine checks the acknowledgement or rejection response, frees the buffer if the
buffer was acknowledged and posts the appropriate writer task. If the buffer was rejected, a retry is issued
to send the buffer again.

When a line error is detected, this routine writes counter overflow records, unit check records, and
end-of-day records to the VSE/AF recorder file on disk, and tries to recover from the error situation.

The line manager detaches itself only when a PEND command is given, and after all LCBs have been
released.

 Chapter 3. Program Organization 299

RJE,BSC Reader: An RJE,BSC reader task is dynamically attached by the line manager when the
terminal bids for the line by sending an ENQ. The task puts itself in the BSC wait state until it is posted
by the line manager when the first block has been received. The data records are deblocked and
expanded. An RJE,BSC command, read at job boundary is either processed by the RJE,BSC command
processor routine or a temporary command processor is attached. Logical data records are passed to the
logical reader. After the last record of the buffer received has been processed, the buffer will be made
available to the line. If no software EOJ or hardware EOT has been read in the meantime, the task will
wait for it. The next received block will be processed like the first one. After EOT on job boundary, the
task detaches itself. If EOT is not detected on job boundary the task puts itself in the BSC wait state,
waiting for real end-of-job.

RJE,BSC reader flow is illustrated in Figure 101.

Figure 101. RJE,BSC Reader Flow

300 VSE Central Functions V7R1 VSE/POWER DRM

RJE,BSC Writer: An RJE,BSC writer task is dynamically attached by the line manager when

1. the remote operator has given the * .. START LST/PUN command.
2. LST/PUN output is available or becomes available and becomes ready for processing, and the * ..

START LST/PUN command was previously issued by the remote operator.
3. One or more messages have been queued in the remote message queue.

If any messages are to be transmitted, the BSC writer task is called as a message task and no logical
interface is opened.

If there is list or punch output to be transmitted, the logical interface to the logical writer is opened. Either
logical data records from the logical writer or messages from the remote message queue are obtained and
are grouped into physical data groups, after a positive response (ACK0) has been received to a line bid
being sent by the line manager on behalf of the BSC writer task.

When grouped, the data is written out to the terminal by the BSC I/O Monitor at the time the next I/O
operation is performed. At end-of-job the logical writer is again called to delete the queue entry from the
queue according to its disposition. Then the BSC writer task detaches itself allowing the line manager to
terminate the transmission by sending a EOT, if line turnaround was generated. The BSC writer task will
then be re-attached, if output is still available.

If no more queue entry is available, the writer task indicates that an EOT has to be sent by the line
manager after the last buffer has been sent.

When a forms change is required, the RJE,BSC writer task puts itself in the inactive state (IPW$WFO)
awaiting remote operator response (SETUP or GO command) after the forms mount message is success-
fully transmitted to the remote station via a separate message task.

A BSC writer task detaches itself either at the end of a queue entry, or when all queue entries of the
specified class(es) have been transmitted.

RJE,BSC writer flow is illustrated in Figure 102 on page 302.

 Chapter 3. Program Organization 301

Figure 102. RJE,BSC Writer Flow

302 VSE Central Functions V7R1 VSE/POWER DRM

RJE,BSC I/O Monitor: The BSC I/O Monitor handles the requests initiated for BSC line operations
from the various BSC modules. Whenever an I/O operation is to be initiated, the Line Manager requests
this by indicating the type of activity in the line control block and linking to the I/O Monitor.

On entrance, the request code being set is analyzed by dividing it into main and subrequest. The request
code used to start I/O operations via SVC 0 is divided into the following categories:

� Line preparation and initiation
� Line turnaround from read to write mode and vice versa

 � Read sequence
 � Abnormal requests
 � Write sequence
� Read only requests

 � Retry

If the analysis results in a valid subrequest, the channel command words used to fulfill the request are
created in the related line control block (LCB) and the I/O operation is started via SVC 0.

No WAIT is performed after SVC 0. Control is given back to the Line Manager immediately, which waits
for I/O completion or processes asynchronous line activities.

The RJE,BSC I/O Monitor runs under control of the caller's TCB acting as a function module.

 RJE,SNA

VSE/POWER RJE,SNA provides support for the SNA terminals that use Synchronous Data Link Control
(SDLC). The communication with the SNA logical units is accomplished by using the VTAM access
method. VSE/POWER controls the SNA work stations through a logical connection. All physical con-
nections within the logical path are controlled by VTAM and NCP. Since VTAM does some of its proc-
essing under the TIK of the VSE/AF application task, the VSE/AF supervisor handles VTAM page faults as
if they were VSE/POWER page faults. In order to minimize the effect of these page faults on non-RJE
tasks, VSE/POWER attaches a VSE/AF subtask under whose PIB VTAM processing can be executed.

The VSE/POWER RJE,SNA operations are performed by the following phases:

� IPW$$SN (SNA manager)
� IPW$$LH (SNA logon processor 1)
� IPW$$LN (SNA logon processor 2)
� IPW$$IB (SNA inbound processor)
� IPW$$OB (SNA outbound processor)
� IPW$$OC (SNA outbound compaction manager)
� IPW$$MP (SNA message processor)
� IPW$$LF (SNA logoff processor)
� IPW$$VE (VTAM exit routines)

Figure 103 shows the VSE/POWER RJE,SNA interrelationship.

 Chapter 3. Program Organization 303

Figure 103. RJE,SNA Interrelationship

304 VSE Central Functions V7R1 VSE/POWER DRM

Initialization: When the central operator issues the PSTART command for SNA, the VSE/POWER
SNA manager is attached to the TCB chain and controls on demand the activation of any inbound or
outbound process related to a work station and its associated sessions. The SNA manager attaches a
VSE/AF subtask to the VSE/POWER maintask in which the VSE/POWER application opens the interface
with the VTAM access method by issuing the OPEN ACB macro. The ACB points to an EXLST control
block, which defines the asynchronous exit structure within the VSE/POWER system to VTAM and con-
sists of LOGON, LOSTERM, TPEND and DFASY exits. After the interface to VTAM is opened any logon
request to VSE/POWER will be queued by VTAM. After the OPEN ACB request has been completed
successfully VSE/POWER issues a SETLOGON START macro to enable VTAM to schedule the
VSE/POWER LOGON exit routine.

Logon Processing: VTAM schedules the LOGON exit when a LOGON command is received from a
logical unit. The LOGON exit routine queues the request.

In a Multiple Logical Unit (MLU) environment, VTAM and NCP do not associate sessions within a work
station concept. VTAM and NCP only see individual sessions between VSE/POWER and the physical
terminals. Hence, VSE/POWER is responsible for associating sessions with work stations according to
the DATA operand of the LOGON command.

The first LOGON routine (IPW$$LH) in VSE/POWER processes all LOGON requests in the LOGON
queue. For each LOGON request the routine performs the following functions:

� Utilizing a LOGON work area, it requests the user DATA and BIND parameters from VTAM issuing the
INQUIRE SESSPARM macro.

� It performs syntax checking of the REMID and verifies its existence as specified in the PRMT macro.

� It checks the corresponding password if specified.

� It moves the 16 bytes of user information of the data into the session account record without validity
checking.

� It verifies that the logical unit is authorized to log on with this REMID, provided that an LU=(name,...)
parameter has been specified in the PRMT macro.

� It validates the BIND parameters.

In turn, the IPW$$LH routine checks whether or not any logical unit has been logged on with the same
REMID. If no logical unit has as yet logged on with the same REMID, i.e., this work station is logging on
its first session, the routine initializes all relevant work station and session related control blocks for this
REMID.

If any logical unit has already logged on with the same REMID the routine verifies that this current
LOGON request does not exceed the SESSLIM according to the specification in the PRMT macro. The
routine initializes the relevant session-related control block, if SESSLIM is not exceeded. Else it rejects
the LOGON request.

When the control blocks have been initialized the routine causes the second LOGON routine (IPW$$LN)
to be attached, and it processes the next LOGON request from the queue.

The IPW$$LN routine completes processing the LOGON request for this session. It issues the OPNDST
ACCEPT and SESSIONC SDT macros to VTAM and issues messages to the remote and central opera-
tors.

The LOGON request may be rejected for several reasons:

� Invalid user LOGON parameters, whereby VTAM sends a message to the central operator.

 Chapter 3. Program Organization 305

� System error (non-zero return code from VTAM).

� The BIND parameters are not accepted.

� The number of LOGON commands for a given work station exceeds the number specified by the
SESSLIM parameter in the PRMT generation macro.

� The name of the logical unit logging on with a given REMID is not associated with the REMID speci-
fied in the PRMT macro.

Note: This correlation of LU name and REMID is tested if and only if at least one LU name has been
specified.

� The INQUIRE or OPNDST macro to VTAM was not successful.

� A GETVIS failed.

� The LOGON request provides an invalid REMID or password.

VSE/POWER then issues a CLSDST to VTAM resulting in a network procedure error being sent to the
work station. Messages are sent to the central operator giving a LOGON reject reason code:

'1V06I UNABLE TO LOGON luname RC=' or

'1V26I INVALID REMID, PASSWORD, OR LUNAME RC='

The BIND Format: The BIND parameters exchanged between VSE/POWER and SNA terminals are
detailed in Figure 104 on page 307. If presentation services (PRSVC) are not provided by VTAM (byte
14=0), default values for bytes 14-26 will be forced. VSE/POWER is flexible in its BIND requirements.
Each BIND parameter affords one of the following characteristics:

� Ignored parameter (I)
� Enforced parameter (E)
� Mandatory parameter (M)
� Variable parameter (V).

Ignored parameters are neither tested nor modified by VSE/POWER. Enforced parameters are dictated
by VSE/POWER on the secondary logical unit. Mandatory parameters are tested, and if incorrect, the
LOGON request is rejected. The variable parameters are copied and affect processing. For a coding
example, refer to Appendix A in the VSE/POWER Remote Job Entry , which describes LOGON Mode
Table and BIND parameter requirements.

306 VSE Central Functions V7R1 VSE/POWER DRM

┌───────┬───────┬───────────┬───┐
│ Bytes │Bits │Content │Description │
├───────┼───────┼───────────┼───┤
│ � │�─7 │X'31' │BIND RU code │
├───────┼───────┼───────────┼───┤
│ 1 │�─3 │B'����' │Format: � (M) │
│ │4─7 │B'���1' │Bind type non─negotiable. (E) │
├───────┼───────┼───────────┼───┤
│ 2 │ │X'�3' │FM profile 3. (M) │
│ │ │ │ (i.e. Immedicate Resp. Mode ...) │
├───────┼───────┼───────────┼───┤
│ 3 │ │X'�3' │TS profile 3. (M) │
├───────┴───────┴───────────┴───┤
│ Primary NAU Protocol │
├───────┬───────┬───────────┬───┤
│ 4 │� │B'1' │Multiple RU per chain. (M) │
│ │1 │B'�' │Immediate request mode. (M) │
│ │2─3 │B'1�' │Definite response chains. (M) │
│ │4─5 │B'��' │Reserved. (E) │
│ │6 │B'�'│B'1' │Compression may not be │ may be used. (V)│
│ │7 │B'1' │Primary may send EB. (M) │
├───────┴───────┴───────────┴───┤
│ Secondary NAU Protocol │
├───────┬───────┬───────────┬───┤
│ 5 │� │B'1' │Multiple RU per chain. (I) │
│ │1 │B'�' │Immediate request mode. (M) │
│ │2─3 │B'1�' │Definite response chains. (M) │
│ │4─5 │B'��' │Reserved. (E) │
│ │6 │B'�' │Compression may not be used. (E) │
│ │7 │B'1' │Secondary may send EB. (M) │
├───────┴───────┴───────────┴───┤
│ Common LU Protocol │
├───────┬───────┬───────────┬───┤
│ 6 │� │B'�' │Reserved. (E) │
│ │1 │B'1' │FM headers may be used. (M) │
│ │2 │B'1' │Brackets are used for PLU and SLU. (M) │
│ │3 │B'1' │Bracket termination rule 1. (M) │
│ │4 │B'�'│B'1' │Alternate code may not be used │ may be │
│ │ │ │used (ASCII). (V) │
│ │5─7 │B'���' │Reserved. (E) │
└───────┴───────┴───────────┴───┘

Figure 104 (Part 1 of 3). BIND Format

 Chapter 3. Program Organization 307

┌───────┬───────┬───────────┬──┐
│ Bytes │Bits │Content │Description │
├───────┼───────┼───────────┼──┤
│ 7 │�─1 │B'1�' │HDX flip─flop. (M) │
│ │2 │B'�' │Primary responsible for ERP. (M) │
│ │3 │B'�' │Secondary is first speaker. (M) │
│ │ │ │(Contention winner) │
│ │4─6 │B'���' │Reserved. (E) │
│ │7 │B'�' │Reserved. (E) │
├───────┴───────┴───────────┴──│
│ TS Usage (TSU) │
├───────┬───────┬───────────┬──│
│ 8 │� │B'�' │Staging indicator ─ 1 stage enforced (E) │
│ │1 │B'�' │Reserved. (E) │
│ │2─7 │B'������' │SLU send pacing count. (I) │
├───────┼───────┼───────────┼──┤
│ 9 │�─1 │B'��' │Reserved. (E) │
│ │2─7 │B'������' │SLU receive pacing count. (I) │
├───────┼───────┼───────────┼──┤
│ 1� │ │X'85' │SLU max RU size (256 bytes). (E) │
├───────┼───────┼───────────┼──┤
│ 11 │ │X'85' │PLU max RU size (256 bytes). (E) │
├───────┼───────┼───────────┼──┤
│ 12 │� │B'�' │ B'1'│Staging indicator (1 stage │ 2 stage) (I) │
│ │1 │B'�' │Reserved. (E) │
│ │2─7 │B'������' │PLU send pacing count. (I) │
│ │ │ │ │
│ 13 │�─1 │B'��' │Reserved. (E) │
│ │2─7 │B'������' │PLU receive pacing count. (I) │
├───────┴───────┴───────────┴──┤
│ Presentation Services (PRSVC) │
├───────┬───────┬───────────┬──┤
│ 14 │ │X'�1' │LU session type (if = ��, set default = �1; │
│ │ │ │if ” ��, M = �1) │
│ │ │ │ │
│ 15 │�─3 │X'1' │FMH header set = 1 (E) │
│ │4─7 │X'�' │SCS Basic. (E) │
├───────┴───────┴───────────┴──┤
│ PLU Usage Indication (Outbound) │
├───────┬───────┬───────────┬──┤
│ 16 │� │B'�' │Interrupt (no. of levels). (I, def. =B'�') │
│ │1 │B'�'│B'1' │No compaction │ compact. (V, def. =B'�') │
│ │2 │B'�'│B'1' │No PDIR │ PDIR. (V, default =B'�') │
│ │3─7 │B'�����' │Reserved. (E) │
├───────┼───────┼───────────┼──┤
│ 17 │ │X'��' │Reserved. (E) │
└───────┴───────┴───────────┴──┘

Figure 104 (Part 2 of 3). BIND Format

308 VSE Central Functions V7R1 VSE/POWER DRM

┌───────┬───────┬───────────┬──┐
│ Bytes │Bits │Content │Description │
├───────┼───────┼───────────┼──┤
│ 18 │� │B'1' │BS, CR, INP, ENP, LF, HT, VT allowed. (M) │
│ │1 │B'1' │SHF allowed. (M) │
│ │2 │B'1' │SVF allowed. (M) │
│ │3 │B'1' │SVF, SEL allowed. (M) │
│ │4─6 │B'���' │Reserved. (E) │
│ │7 │B'1' │TRN, IRS allowed. (M) │
├───────┼───────┼───────────┼──┤
│ 19 │ │X'��' │Reserved. (E) │
├───────┼───────┼───────────┼──┤
│ 2� │� │B'�'│B'1' │Document output not allowed │ allowed. │
│ │ │ │(V, default = B'1') │
│ │1 │B'�'│B'1' │Card format not allowed │ allowed. │
│ │ │ │(V, default = B'1') │
│ │2 │B'�' │Exchange media not allowed. (E) │
│ │3 │B'�' │Disk, data management not allowed. (E) │
│ │4─7 │X'�' │Reserved. (E) │
├───────┴───────┴───────────┴──┤
│ SLU Usage Indication (Inbound) │
├───────┬───────┬───────────┬──┤
│ 21 │� │B'�' │Interrupt (number of levels). (E) │
│ │1 │B'�' │No compaction. (E) │
│ │2 │B'�' │No PDIR. (E) │
│ │3─7 │B'�����' │Reserved. (E) │
├───────┼───────┼───────────┼──┤
│ 22 │ │X'��' │Reserved. (E) │
│ 23 │� │B'�' │BS, CR, INP, ENP, LF, HT, VT not allowed. │
│ │ │ (E) │
│ │1 │B'�' │SHF not allowed. (E) │
│ │2 │B'�' │SVF not allowed. (E) │
│ │3 │B'�' │SVF, SEL not allowed. (E) │
│ │4─6 │B'���' │Reserved. (E) │
│ │7 │B'1' │TRN, IRS allowed. (I, default = B'1') │
├───────┼───────┼───────────┼──┤
│ 24 │ │X'��' │Reserved. (E) │
├───────┼───────┼───────────┼──┤
│ 25 │� │B'�' │Document output not allowed. (E) │
│ │1 │B'1'│B'�' │Card fmt allowed │ not alld. (V,def.=B'1') │
│ │2 │B'�'│B'1' │Exchange media not allowed │ allowed (V) │
│ │3 │B'�' │Disk, data management not allowed. (E) │
│ │4─7 │X'�' │Reserved. (E) │
├───────┼───────┼───────────┼──┤
│ 26 │ │X'��' │Reserved. (E) │
└───────┴───────┴───────────┴──┘

Figure 104 (Part 3 of 3). BIND Format

 Chapter 3. Program Organization 309

Host Workstation Communication: Logical records are grouped into RUs which are logically
grouped into chains. Output related to one VSE/POWER queue entry (job or segment) is sent as one
chain unless interrupted by an inbound flow or an outbound message. An outbound job is always sent as
a DS (data stream). Messages are sent as an only-chain.

Input related to one VSE/POWER queue is not related to a chain by VSE/POWER. VSE/POWER only
identifies job boundaries according to VSE/POWER JECL or VSE/AF JCL statements with the exception
that an end bracket forces End of JOB (EOJ), if no valid VSE/POWER job delimiter was found. It is the
option of the work station to associate jobs and chains if this association simplifies ERP (error recovery
procedures) at the work station.

VSE/POWER supports all three SNA function management headers for outbound, that is, FMH1, FMH2
and FMH3, but only FMH1 for inbound. Concatenation of FMHs is not supported. If VSE/POWER
receives an FMH with the concatenation bit on, it returns an exception response.

Function Management Header Type 1 (FMH1): VSE/POWER supports the standard 6-byte FMH1 for
device selection and delimiting data set operations. Refer to Figure 105 on page 311 for details of the
FMH1 format layout.

310 VSE Central Functions V7R1 VSE/POWER DRM

┌───────┬────┬──────────┬───────────┬──────────────────────────────────┐
│ Bytes │Bits│Name │ Content │ Description │
├───────┼────┼──────────┼───────────┼──────────────────────────────────┤
│ � │�─7 │ │ X'�6' │ Length of FMH1 │
├───────┼────┼──────────┼───────────┼──────────────────────────────────┤
│ 1 │� │FMHC │ B'�' │ Concatenation not supported │
│ │1─7 │TYPE │ B'������1'│ Type 1 FMH │
├───────┼────┼──────────┼───────────┼──────────────────────────────────┤
│ 2 │� │DEMAND │ │ │
│ │ │SELECT │ B'�' │ Ignored │
│ │1─3 │MEDIA │ B'���' │ CONSOLE │
│ │ │ │ B'��1' │ EXCHANGE MEDIA (only inbound) │
│ │ │ │ B'�1�' │ CARD │
│ │ │ │ B'�11' │ PRINT │
│ │ │ │ │ All other codes not supported. │
│ │4─7 │LOGICAL │ X'�' │ 1st logical device │
│ │ │ADDRESS │ X'1' │ 2nd logical device for print │
│ │ │ │ X'2' │ 3rd logical device data only │
├───────┼────┼──────────┼───────────┼──────────────────────────────────┤
│ 3 │� │STACKREF │ │ Stack reference indicator │
│ │ │ │ B'�' │ Refers to DS begun by sender │
│ │ │ │ B'1' │ Refers to DS begun by receiver │
│ │1─3 │ │ B'���' │ Reserved │
│ │4─7 │ │ B'����' │ Data Stream Profile (DSP) │
│ │ │ │ │ X'���'=default implied by Media │
│ │ │ │ │ (byte 2) │
├───────┼────┼──────────┼───────────┼──────────────────────────────────┤
│ 4 │ │PROPERTY │ │ │
│ │�─2 │ │ (See Note)│ DS selection │
│ │3 │DST │ B'�' │ Basic exchange not supported │
│ │ │ │ B'1' │ Basic exchange supported │
│ │ │ │ │ (inbound only) │
│ │4 │ │ B'�' │ Reserved │
│ │5 │CMI │ B'�' │ No compression │
│ │ │ │ B'1' │ Compression (outbound print only)│
│ │6 │CPI │ B'�' │ No compaction │
│ │ │ │ B'1' │ Compaction (outbound print only) │
│ │7 │ │ B'�' │ Reserved │
├───────┼────┼──────────┼───────────┼──────────────────────────────────┤
│ 5 │�─7 │ERCL │ X'��' │ Basic exchange record length must│
│ │ │ │ │ be �= 128 │
├───────┼────┼──────────┼───────────┼──────────────────────────────────┤
│ 6─n │ │ │ │ DSNAME which is defined by archi─│
│ │ │ │ │ tecture in bytes 6─n is not │
│ │ │ │ │ supported by VSE/POWER. │
└───────┴────┴──────────┴───────────┴──────────────────────────────────┘

Figure 105. FMH1 Format

Note: The data stream selection bits are used in combination. The valid combinations are:

B'000' - Resume suspended data stream (RDS)
B'001' - End current data stream (EDS)
B'010' - Begin data stream (BDS)
B'011' - Begin and end data stream (BEDS)
B'100' - Suspend current data stream (SDS)
B'101' - Abort (abnormally end) current data stream (ADS)
B'110' - Reserved
B'111' - Reserved.

 Chapter 3. Program Organization 311

The following should be noted:

1. With the resumption of a suspended outbound data stream, VSE/POWER will not change any of the
FMH options selected in the original FMH.

2. An FMH may exist in an RU only at first-of-chain (FC) or only-chain (OC). The presence of an FMH is
signaled by the format indicator bit in the request header. If data is received with no FMH where an
FMH is expected, the default FMH applies as in Figure 106.

3. When the data stream selection bits are set to B'011' the entire data stream is being sent within one
chain, including the FMH. Print and card media output data are initiated by only-chain FMHs indi-
cating BDS, followed by chain(s) of data, and terminated by an only-chain FMH indicating EDS.

4. An FMH1 (BDS) is sent prior to, and an FMH1 (EDS) after, each job output or segment. FMH1 (BDS)
is sent after FMH3.

┌──────┬────┬──────────┬───────────┬───────────────────────────────────┐
│Bytes │Bits│Name │ Content │ Description │
├──────┼────┼──────────┼───────────┼───────────────────────────────────┤
│� │�─7 │Length │ X'�6' │ Length of FMH1 │
├──────┼────┼──────────┼───────────┼───────────────────────────────────┤
│1 │� │FMHC │ B'�' │ Concatenation not support │
│ │1 │reserved │ B'�' │ │
│ │2─7 │TYPE │ B'�����1' │ Type 1 FMH │
├──────┼────┼──────────┼───────────┼───────────────────────────────────┤
│2 │� │DEMAND │ │ │
│ │ │SELECT │ B'�' │ Ignored │
│ │1─3 │MEDIA │ B'���' │ CONSOLE │
│ │4─7 │LOGICAL │ X'�' │ 1st console │
│ │ │ADDRESS │ │ │
├──────┼────┼──────────┼───────────┼───────────────────────────────────┤
│3 │� │STACKREF │ B'�' │ Stack reference indicator │
│ │1─7 │ │ B'�������'│ │
├──────┼────┼──────────┼───────────┼───────────────────────────────────┤
│4 │�─2 │DS sel. │ B'�11' │ Begin and end of data stream │
│ │3 │DST │ B'�' │ Basic exchange not supported │
│ │4 │reserved │ B'�' │ │
│ │5 │CMI │ B'�' │ No compression │
│ │6 │CPI │ B'�' │ Compaction not supported │
│ │7 │reserved │ B'�' │ │
├──────┼────┼──────────┼───────────┼───────────────────────────────────┤
│5 │�─7 │ERCL │ X'��' │ Basic exchange record length │
└──────┴────┴──────────┴───────────┴───────────────────────────────────┘

Figure 106. Default FMH1

Function Management Header Type 2 (FMH2): The FMH2 represents the peripheral data set informa-
tion record (PDIR). It carries information relative to the destination selected by FMH1. VSE/POWER only
supports FMH2 outbound, but not inbound.

The format of the FMH2 is shown in Figure 107.

312 VSE Central Functions V7R1 VSE/POWER DRM

┌───────┬────┬──────────┬────────────┬────────────────────────────────────┐
│ Bytes │Bits│Name │ Content │Description │
├───────┼────┼──────────┼────────────┼────────────────────────────────────┤
│ � │�─7 │Length │ X'44' │Length of FMH2 │
│ 1 │� │FMHC │ B'�' │No concatenation │
│ │1 │ │ │Reserved │
│ │2─7 │TYPE │ B'����1�' │FMH type 2 │
│ 2 │ │CODE │ X'�1' │PDIR │
│ 3 │�─7 │Identif. │ X'��' │Ordinary data set │
│ 4─11 │ │DATE │ MM/DD/YY │Date of queue entry creation in the │
│ │ │ │ │form MM/DD/YY. │
├───────┼────┼──────────┼────────────┼────────────────────────────────────┤
│ 12─19 │ │TIME │ HH.MM.SS │Time of queue entry creation in the │
│ │ │ │ │form HH.MM.SS. │
├───────┼────┼──────────┼────────────┼────────────────────────────────────┤
│ 2�─27 │ │FORMS │ C'ccccbbbb'│Forms name in the form C'ccccbbbb' │
│ │ │ │ │Default is all blanks. The forms │
│ │ │ │ │can be provided by the � $$ LST │
│ │ │ │ │FNO= parameter, by the LFCB macro, │
│ │ │ │ │or by the SEGMENT macro, JECL= │
│ │ │ │ │operand, where an � $$ LST FNO= │
│ │ │ │ │is specified. │
├───────┼────┼──────────┼────────────┼────────────────────────────────────┤
│ 28─35 │ │FCB │ C'cccccccc'│FCB name (1─8 characters)in the │
│ │ │ │ │form C'cccccccc' left justified. │
│ │ │ │ │Default is all blanks. The FCB │
│ │ │ │ │can be provided by the � $$ LST │
│ │ │ │ │FCB= parameter, by the LFCB macro, │
│ │ │ │ │or by the SEGMENT macro, JECL= │
│ │ │ │ │operand, where an � $$ LST FCB= │
│ │ │ │ │is specified. │
├───────┼────┼──────────┼────────────┼────────────────────────────────────┤
│ 36─43 │ │TRAIN │ C'bbbbbbbb'│Not supported │
├───────┼────┼──────────┼────────────┼────────────────────────────────────┤
│ 44─51 │ │COPIES │ C'cccccccc'│Copies (1─8 characters). Indicates │
│ │ │ │ │the number of additional copies, │
│ │ │ │ │i.e., zero means one copy. EBCDIC │
│ │ │ │ │characters (digits), right justi─ │
│ │ │ │ │fied, without leading zeroes, │
│ │ │ │ │except low order digit. The maxi─ │
│ │ │ │ │mum number allowed is 98. The │
│ │ │ │ │The number of additional copies │
│ │ │ │ │plus one can be provided by │
│ │ │ │ │means of the PALTER command, or it │
│ │ │ │ │can be provided by the � $$ LST │
│ │ │ │ │COPY= parameter, or by the SEGMENT │
│ │ │ │ │macro, JECL= operand, where a │
│ │ │ │ │� $$ LST COPY= is specified. │
├───────┼────┼──────────┼────────────┼────────────────────────────────────┤
│ 52─59 │ │VOLIO │ C'cccccccc'│Volume of I/O in the form │
│ │ │ │ │C'cccccccc' right justified with │
│ │ │ │ │leading zeros suppressed. If │
│ │ │ │ │printer selected the field │
│ │ │ │ │indicates the number of expected │
│ │ │ │ │print lines. │
├───────┼────┼──────────┼────────────┼────────────────────────────────────┤
│ 6�─67 │ │JOB NAME │ C'cccccccc'│Job name in the form C'cccccccc' │
│ │ │ │ │left justified. The job name can │
│ │ │ │ │be provided by the � $$ JOB JECL │
│ │ │ │ │statement. Default is AUTONAME. │
└───────┴────┴──────────┴────────────┴────────────────────────────────────┘

Figure 107. FMH2 Format

 Chapter 3. Program Organization 313

The FMH2 is sent as an only-chain in DS state after FMH1 has been sent, provided that the PDIR bit in
the BIND parameters was turned on at logon time of the session. If the PDIR bit is off the SETUP/GO
procedure will be performed.

The PDIR is always sent if the BIND indicates so, regardless of whether or not forms change is required.
Without PDIR indicated in BIND the SETUP/GO procedure is performed only if forms change is required.

Function Management Header Type 3 (FMH3): The FMH3 carries information relative to the entire
session. Type 3 information applies to all destinations reached through this session. The FMH3 is sent
as only-in-chain and it is not chained with another FMH, nor does the RU contain any other data.
VSE/POWER supports only outbound FMH3. If VSE/POWER receives an inbound FMH3 it returns an
exception response.

The format of the FMH3 is shown in Figure 108.

┌──────┬──────┬──────────┬────────────┬──────────────────────────────┐
│ Byte │ Bits │Name │ Content │ Description │
├──────┼──────┼──────────┼────────────┼──────────────────────────────┤
│ � │ �─7 │Length │ (See Note) │ Length of FMH3 │
│ 1 │ � │FMHC │ B'�' │ No concatenation │
│ 1 │ 1 │Reserved │ │ │
│ 1 │ 2─7 │TYPE │ B'����11' │ Type 3 FMH │
│ 2 │ �─7 │FUNCTION │ X'�2' │ Compaction table │
│ 3 │ �─7 │MASTER NO │ 3─16 │ No. of master characters │
│ 4─n │ │TABLE │ (See Note) │ Compaction table characters │
└──────┴──────┴──────────┴────────────┴──────────────────────────────┘

Figure 108. FMH3 Format

Note: Length is dependent on length of the compaction table. It can be calculated by:

length = 4 + 256 - (m x m) for m < 16
length = 4 + 16 for m = 16

where m is the number of master characters.

The FMH3 including length indication is generated by the PCPTAB macro.

An FMH3 is sent to the secondary logical unit whenever a job is to be transmitted outbound in compacted
form using a compaction table other than the one currently valid for the session. The FMH3 is always sent
as only-chain, without data, and between DS state. The FMH3 RU may or may not indicate begin bracket
depending on whether or not the session is already in bracket state.

Initiation of Data Processing

Data Inbound Processing: An inbound processor task is attached for a given session by the SNA
manager in the following cases:

� A VTAM RECEIVE ANY is satisfied: The SNA manager determines the session on which an inbound
flow is to be expected by means of a pointer in the user field of the RPL. It then attaches an inbound
processor, and reissues RECEIVE ANY to allow input from other sessions to be accepted.

� An inbound flow is interrupted for an inbound message: The inbound processor being interrupted posts
the SNA manager which attaches a second inbound processor for this session.

� An outbound flow is interrupted for an inbound flow or message: The outbound processor being inter-
rupted posts the SNA manager which attaches an inbound processor for this session and reissues
RECEIVE ANY.

314 VSE Central Functions V7R1 VSE/POWER DRM

In all three cases the inbound processor issues RECEIVE SPECIFIC. It verifies whether or not the device
(RDR1 or console) selected by FMH1 (implicitly or explicitly) is already in use. If in use it rejects the
inbound flow.

Data Outbound Processing: An outbound processor task is attached for a given session by the SNA
manager in the following cases:

� Outbound Data. When a job is available in an output queue (list or punch) of a given class with a
given REMID, the queue management (IPW$$AQ) routine of VSE/POWER scans the control blocks
for a match of the REMID. When the REMID is found the routine scans the classes of all outbound
devices for this REMID. These classes are assigned to the devices by means of the START
command. When a match is found, and if the device has been started, the routine flags the device
and posts the SNA manager.

The SNA manager finds the flagged device and searches for a free session. If a free session is found
the SNA manager attaches an outbound processor which starts processing the job output until the
output queue is empty. When the queue is empty the outbound processor resets the device flag,
posts the SNA manager and detaches itself.

The SNA manager does not take further action if no free session is found. It will repeat the attempt
when it is posted again, for example, when a processor is detached.

� Outbound Message. Outbound messages are queued by the message service routine (IPW$$MS).
Whenever the routine queues a message for a given REMID it posts the SNA manager. The SNA
manager searches a free session to the work station identified by the REMID. If a free session is
found the SNA manager attaches the message processor which sends the message to the work
station.

If no free session is found the SNA manager searches a session involved in an outbound flow. The
search begins for a session which is waiting for a GO command or RESTART following intervention
required. If not found, then the search continues for some session which is transmitting. If found, it
flags the associated control block which causes the outbound processor to suspend. Upon suspen-
sion the SNA manager attaches the message processor.

No action is taken by the SNA manager if no session involved in an outbound flow is found. The SNA
manager will repeat the attempt when it is posted again, for example, when a processor is detached.

Once attached, the message processor transmits all messages queued for a given REMID and detaches.

Interruption of Data Processing

Interruption of Data Outbound: The interruption of the outbound processor can be caused by the fol-
lowing conditions:

� A SIGNAL from the work station has been received.

The outbound processor forces the termination of the current chain, sends an FMH1 with suspend DS
and a change direction indication to the logical unit. It then posts the SNA manager.

� A message is pending.

The outbound processor forces the termination of the current chain, sends an FMH1 with suspend DS
to the logical unit, and posts the SNA manager which attaches the message processor.

Interruption of Data Inbound: Interruption of an inbound processor receiving card data is accepted
anytime when the logical unit has a message to send.

The interruption must be indicated to the inbound processor by an inbound FMH1 with suspend DS. The
suspended inbound processor will then post the SNA manager which will attach a second inbound

 Chapter 3. Program Organization 315

processor to receive messages. These messages are treated as commands. Upon reception of an FMH1
with resume DS, the interrupting inbound processor will detach, the suspended inbound processor will
resume the DS, and normal inbound flow can continue.

Inbound interruptions for outbound data are not supported.

Protocols: Half-duplex, flip-flop mode protocols are employed. Only one data stream at a time is
allowed per session and contention is resolved by the use of SNA brackets.

 Termination

Session Termination: The termination of a session is requested by the remote operator either by issuing
the LOGOFF request through VTAM, or by submitting a SIGNOFF command (from card or via the
console) in the inbound data flow. The LOGOFF request may be an unconditional LOGOFF in which
VTAM breaks the session and notifies VSE/POWER through the LOSTERM exit. If the remote operator
issues a conditional LOGOFF VTAM notifies VSE/POWER also through the LOSTERM exit, but VTAM
does not break the session. The SIGNOFF command is passed via the normal inbound data stream
directly to VSE/POWER where it is handled as a conditional LOGOFF request for all sessions of a given
work station.

The work station may log off any individual session within the MLU concept. The LOGOFF may be condi-
tional or unconditional. The SIGNOFF command causes LOGOFF of all sessions of the work station con-
ditionally.

VSE/POWER handles the unconditional LOGOFF as an emergency stop which means that the termination
routines are entered without checking any internal job boundary state. In this case the current reader job
entry will not be added to the queue. The conditional LOGOFF will be interpreted as a request for an
orderly deactivation of the current session. In this case the termination routines will be entered only at job
boundaries, that is, when processing of the current job entry is completed.

After the active processors have been terminated, either normally or abnormally, the SNA manager acti-
vates the LOGOFF processor which sends a message to the work station and finally issues a CLSDST to
terminate the session. In an MLU environment a SIGNOFF causes termination session-by-session at job
boundary times.

Session termination can be caused by the central operator either by means of the PSTOP command or, in
case of emergency, by issuing the VARY NET,INACT,I,ID=luname command. VTAM notifies VSE/POWER
in the LOSTERM exit. Because VTAM does not allow any I/O request to be issued, VSE/POWER handles
this termination type similar to an unconditional LOGOFF.

Application Termination: The central operator may cause RJE,SNA shutdown either through
VSE/POWER central operator commands (for example, PSTOP or PEND) or through VTAM operator com-
mands (for example, HALT). Refer to VSE/POWER Installation and Operations Guide.

RJE,SNA Routines: Figure 109 on page 317 briefly describes each of the routines used to support
RJE,SNA. Figure 110 on page 320 further describes the control blocks and work areas used to aid exe-
cution. In addition, Figure 112 on page 330 illustrates the scheme of chaining the control blocks.

An overview of the sequence of routine execution and events is provided by Figure 111 on page 321.
This figure should be used along with Figure 109 on page 317 to understand the RJE,SNA architecture.

316 VSE Central Functions V7R1 VSE/POWER DRM

┌──────────┬───────────┬───────────┬───────────────────────────────────┐
│Routine │Called/ │Returns to │Function or Notes │
│ │Attached by│ │ │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$IB │IPW$$SN │IPW$$NU │Issues RECEIVE Specific request to │
│Inbound │ │ │VTAM to receive data and then de─ │
│Processor │ │ │blocks the data for spooling by │
│ │ │ │IPW$$LR. │
│ │ │ │ │
│ │ │ │Processes remote operator commands:│
│ │ │ │� START │
│ │ │ │� STOP │
│ │ │ │� FLUSH │
│ │ │ │� RESTART │
│ │ │ │� SETUP │
│ │ │ │� GO │
│ │ │ │� SIGNOFF │
│ │ │ │and transfers all other commands to│
│ │ │ │IPW$$CM for processing. │
│ │ │ │ │
│ │ │ │Posts the outbound processor │
│ │ │ │command following GO, or RESTART │
│ │ │ │when intervention is required. │
│ │ │ │Posts the SNA manager and detaches.│
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$LF │IPW$$SN │IPW$$NU │Logs off a logical unit using the │
│Logoff │ │ │VTAM macros SESSIONC and CLSDST. │
│Processor │ │ │ │
│ │ │ │Sends message "1V12I" to the remote│
│ │ │ │terminal and then sends the central│
│ │ │ │operator the message "1V11I". │
│ │ │ │Posts the SNA manager and detaches.│
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$LH │IPW$$SN │ │Establishes SNA control block │
│Logon Pro─│ │ │construction (SUCB, LUCB and WACB).│
│cessor 1 │ │ │ │
│ │ │ │Checks LOGON request and LU BIND │
│ │ │ │parameters for validity. │
│ │ │ │ │
│ │ │ │Sets an indicator for IPW$$SN to │
│ │ │ │attach logon processor No. 2 │
│ │ │ │Posts the SNA manager and detaches.│
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$LN │IPW$$SN │IPW$$NU │Establishes SNA session and starts │
│Logon Pro─│ │ │data traffic with VTAM macros │
│cessor 2 │ │ │OPNDST and SESSIONC. │
│ │ │ │ │
│ │ │ │Prints message "1V�9I REMOTE rrr │
│ │ │ │LOGGED ON TO POWER ON luname" at │
│ │ │ │central operator console and then │
│ │ │ │queues the same message for the │
│ │ │ │remote terminal to be sent by the │
│ │ │ │message processor (IPW$$MP). │
│ │ │ │ │
│ │ │ │Posts the SNA manager and detaches.│
└──────────┴───────────┴───────────┴───────────────────────────────────┘

Figure 109 (Part 1 of 3). Description of RJE,SNA Routines

 Chapter 3. Program Organization 317

┌──────────┬───────────┬───────────┬───────────────────────────────────┐
│Routine │Called/ │Returns to │Function or Notes │
│ │Attached by│ │ │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$MP │IPW$$SN │IPW$$NU │Transmits messages in message queue│
│Message │ │ │using VTAM macro SEND. │
│Processor │ │ │ │
│ │ │ │Posts the SNA manager and detaches.│
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$OB │IPW$$SN as │IPW$$NU │Obtains job output data from spool │
│Outbound │LSTN or PUN│ │file and transmits data to the LU │
│Processor │task │ │using the VTAM macro SEND. The │
│ │ │ │following intermediate steps occur:│
│ │ │ │ │
│ │ │ │� Obtain spool file through │
│ │ │ │ IPW$$LW. │
│ │ │ │� Create Function Management │
│ │ │ │ Headers (FMH). │
│ │ │ │� Compress and compact if required│
│ │ │ │� Pack data into request units(RU)│
│ │ │ │ │
│ │ │ │Waits on GO posting from IPW$$IB if│
│ │ │ │SETUP remote command issued. │
│ │ │ │ │
│ │ │ │Posts the SNA manager and detaches.│
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$OC │IPW$$OB │IPW$$OB │Creates and updates COCB(s) and │
│Outbound │ │ │loads compaction table phases into │
│Compaction│ │ │GETVIS area. │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$SN │IPW$$CP │IPW$$NU │Sets up following ECBs in the TCB │
│SNA │ │ │of IPW$$SN: │
│Manager │ │ │� VTAM RECEIVE ANY ECB │
│ │ │ │� Work ECB for RJE,SNA posting of │
│ │ │ │ IPW$$SN. │
│ │ │ │ │
│ │ │ │Attaches a VSE subtask. Issues VTAM│
│ │ │ │"RECEIVE ANY" macro. Prints central│
│ │ │ │operator message "1V�4I" and waits │
│ │ │ │on ECB posting. │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$SN │IPW$$SN │DOS/VS │When called the first time at │
│Segment │INIT │ │RJE,SNA startup time, it calls the │
│SUBTASK │ │ │IPW$$VE─Segment INIT and enables │
│ │ │ │communication through VTAM with │
│ │ │ │SETLOGON macro. Then posts IPW$$SN│
│ │ │ │ECB and VSE/POWER master ECB, and │
│ │ │ │waits on posting by IPW$$SN. │
│ │ │ │ │
│ │ │ │At termination time, the VTAM macro│
│ │ │ │SETLOGON QUIESCE is called to halt │
│ │ │ │further LOGON requests. │
└──────────┴───────────┴───────────┴───────────────────────────────────┘

Figure 109 (Part 2 of 3). Description of RJE,SNA Routines

318 VSE Central Functions V7R1 VSE/POWER DRM

┌──────────┬───────────┬───────────┬───────────────────────────────────┐
│Routine │Called/ │Returns to │Function or Notes │
│ │Attached by│ │ │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$SN │Posted by: │IPW$$NU │After VTAM posting due to SNA line │
│Segment │� VTAM due │ │activity, a RDR task is attached │
│MAIN │ to: │ │which causes IPW$$IB to execute. │
│ │ RECEIVE │ │ │
│ │ ANY input│ │After posting from other VSE/POWER │
│ │ via VTAM │ │routines, a scan of the work │
│ │ exit │ │station control blocks (SUCBs) and │
│ │� VSE/POWER│ │logical unit control blocks (LUCBs)│
│ │ routines:│ │is made. If any found to be │
│ │ IPW$$AQ │ │active, the appropriate processor │
│ │ IPW$$CM │ │tasks are attached: │
│ │ IPW$$IB │ │� LST or PUN tasks (IPW$$OB) │
│ │ IPW$$LH │ │� Messages (IPW$$MP) │
│ │ IPW$$LN │ │� Logon/logoff tasks │
│ │ IPW$$MS │ │ │
│ │ IPW$$OB │ │Then a loop back is made to wait on│
│ │ │ │further posting. │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$SN │IPW$$SN │IPW$$NU │Frees certain work areas and │
│Segment │MAIN │ │control blocks. │
│TERM │ │ │ │
│ │ │ │Prints message "1V�5I". │
│ │ │ │Detaches IPW$$SN task. │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$VE │VTAM │VTAM │Creates and chains control blocks, │
│Segment │ │ │used at logon time. │
│LOGON │ │ │ │
│ │ │ │Posts IPW$$SN work ECB and │
│ │ │ │VSE/POWER master ECB. │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$VE │IPW$$SN │IPW$$SN │Inserts addresses of VTAM exits in │
│Segment │SUBTASK │SUBTASK │the ACB exit list. │
│INIT │ │ │ │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$VE │VTAM │VTAM │If request to interrupt data flow, │
│Segment │ │ │then the signal received indicator │
│DFASY │ │ │is set in the LUCB of the LU. │
│ │ │ │ │
│ │ │ │If request to shutdown, then stop │
│ │ │ │session indicator is set. │
│ │ │ │ │
│ │ │ │Posts IPW$$SN work ECB and │
│ │ │ │VSE/POWER master ECB. │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$VE │VTAM │VTAM │Sets SNA stop code in SNCB. │
│Segment │ │ │ │
│TPEND │ │ │Posts IPW$$SN work ECB and │
│ │ │ │VSE/POWER master ECB. │
├──────────┼───────────┼───────────┼───────────────────────────────────┤
│IPW$$VE │VTAM │VTAM │Sets on the stop session indicator │
│Segment │ │ │in the LUCB of the LU. │
│LOSTERM │ │ │ │
│ │ │ │Posts IPW$$SN work ECB and │
│ │ │ │VSE/POWER master ECB. │
└──────────┴───────────┴───────────┴───────────────────────────────────┘

Figure 109 (Part 3 of 3). Description of RJE,SNA Routines

 Chapter 3. Program Organization 319

Figure 110. Description of RJE,SNA Control Blocks and Work Areas

320 VSE Central Functions V7R1 VSE/POWER DRM

Figure 111 (Part 1 of 9). RJE,SNA Execution Flow

 Chapter 3. Program Organization 321

Figure 111 (Part 2 of 9). RJE,SNA Execution Flow

322 VSE Central Functions V7R1 VSE/POWER DRM

Figure 111 (Part 3 of 9). RJE,SNA Execution Flow

 Chapter 3. Program Organization 323

Figure 111 (Part 4 of 9). RJE,SNA Execution Flow

324 VSE Central Functions V7R1 VSE/POWER DRM

Figure 111 (Part 5 of 9). RJE,SNA Execution Flow

 Chapter 3. Program Organization 325

Figure 111 (Part 6 of 9). RJE,SNA Execution Flow

326 VSE Central Functions V7R1 VSE/POWER DRM

Figure 111 (Part 7 of 9). RJE,SNA Execution Flow

 Chapter 3. Program Organization 327

Figure 111 (Part 8 of 9). RJE,SNA Execution Flow

328 VSE Central Functions V7R1 VSE/POWER DRM

Figure 111 (Part 9 of 9). RJE,SNA Execution Flow

 Chapter 3. Program Organization 329

Figure 112. RJE,SNA Control Block and Work Area Chaining

330 VSE Central Functions V7R1 VSE/POWER DRM

 Appendages

Page Fault Appendage

If a page fault occurs, normally the partition is placed in a wait state, until the processing of the page fault
is completed.

When a page fault overlap appendage linkage is established, the partition remains dispatchable in order to
enable selection of another private task (within the partition) under control of its private multi-tasking
routine.

The appendage routine for the VSE/POWER partition is entered from the page manager routine in the
supervisor on two conditions:

� The partition sustains a page fault (pre-processor)

� Handling of a page fault is completed (post-processor).

The page fault pre-processor (always entered in Amode-24), will take the following actions:

1. Check if page fault address lies within VSE/POWER partition. If not, return to supervisor with indi-
cation that the page fault must be resolved by VSE/AF.

2. Save the task status, address of instruction from PSW, and general registers (taken from the partition
save area), in the TCB, because of page handling overlap by the supervisor later on.

If the task has operated in Amode-31 (currently only valid for MVCL in the Getvis Move Routine) as
retrieved from the stored PSW, then preserve the Amode indication in the TCB.

If the task uses access registers, the access-register mode (retrieved from the PSW stored in the
partition save area) and the current values of the access registers are saved.

3. Simulate a IPW$WFP macro instruction (put TCB in P state). This action is transparent to the task
management routine.

4. Change the address of the next sequential instruction in the PSW to the entry of VSE/POWER task
management, because of page handling overlap by supervisor later on.

5. Queue the page fault request within an internal queue (in TCB chain), unless no page fault is being
currently handled for the VSE/POWER partition.

6. If no page fault is currently handled the request is returned directly to the page manager routine in the
supervisor. If a page fault is currently handled, a request of zero is returned to the page manager.

The page fault post-processor will take the following actions:

1. Post the task, for which the page fault handling is completed, dispatchable (in TCB reset P state).

2. Post the partition dispatchable, because the partition may be SVC 7 bound if all tasks were waiting.

3. Clear page fault request.

4. Examine the internal page fault queue (in TCB chain).

If another page fault is found, it is passed to the page manager routine in the supervisor. If no other
request is found, a page request of zero is returned to the page manager.

Note: The page fault currently handled for this partition and the address of the related TCB are
saved in the appendage routine itself.

 Chapter 3. Program Organization 331

Attention Interface Appendage

Refer to “Initiation of the Permanent Command Processor Task” on page 165.

RJE,BSC and PNET,BSC/CTC Channel End Appendage

During VSE/POWER initialization a modification is made to the PIB of the VSE/POWER partition in order
to allow for a channel end appendage used for all RJE,BSC and PNET,BSC/CTC I/O operations. All
RJE,BSC and PNET,BSC/CTC CCBs contain the address of the same channel end appendage routine,
which is located in the VSE/POWER nucleus.

The appendage routine gets control from the VSE/AF I/O interrupt handler whenever an interrupt is
received from a BSC line or channel-to-channel adapter. It then performs the following functions:

� If the line is an RJE line:

1. It queues the LCB to an LCB chain that will be processed by the line manager.

2. It posts the line manager ECB, the VSE/POWER master ECB, and sets the VSE/POWER partition
dispatchable.

� If the line is a PNET line or CTCA:

1. It queues the input/output buffer to the buffer queue anchored to the TCB of the PNET driver.

2. It posts the PNET driver ECB, the VSE/POWER master ECB, and sets the VSE/POWER partition
dispatchable.

Control is then returned to the next sequential instruction in the VSE/AF supervisor.

Hot Reader Appendage

The supervisor passes control to this appendage whenever an unsolicited device end interrupt for a unit-
record device is recognized.

The reader TCBs are scanned on cuu number to locate the task concerned with the interrupt. If the
matching task is inactive, it is posted dispatchable. The VSE/POWER partition is set dispatchable. In all
other cases, no action is taken.

SVC 0/3 Appendage

When the SVC 0 supervisor routine determined that the I/O request is for a spool device, this appendage
is entered. Control is also passed to this routine to quiesce an I/O request whenever the “Quiesce I/O
Supervisor” routine detects that an I/O request for a spooled device is still outstanding.

First the appropriate task list entry in the partition control block is located. If not found, return is made to
the supervisor indicating that the I/O request should be handled by the supervisor. If a previous I/O is still
being handled, return is made to the supervisor indicating that the I/O request should be queued for
re-SVC.

The following actions are taken for an SVC 0:

� The address of the CCB is stored in the task list entry of the partition control block.

� The related execution processor task ECB is posted to let the task simulate the request.

� The VSE/POWER master ECB is posted (in CAT) after selection later on.

� The VSE/POWER partition is set dispatchable.

332 VSE Central Functions V7R1 VSE/POWER DRM

The following actions are taken for an SVC 3:

� If the quiesce request is not for a device intercepted by an execution reader task, return is made to
the supervisor.

� Otherwise the quiesce request is propagated to the execution reader and the execution reader task is
posted. The user task is put “VSE/POWER service bound” until the I/O request is completed.

� The VSE/POWER partition is set dispatchable.

Then control is returned to the supervisor with appropriate return code set in register 15.

SVC 90/91 Appendage

The supervisor passes control to this appendage whenever an SVC 90 or SVC 91 interrupt is recognized.
The address of the account information is stored in the reader entry of the partition control block. The
execution reader task ECB is posted. The VSE/POWER partition is set dispatchable for task selection by
the supervisor.

Interval Timer Appendage

The supervisor passes control to this appendage whenever the interval timer expires. The routine sets a
flag in the CAT, recording that the timer interval expired and posts the VSE/POWER Master ECB. The
VSE/POWER partition is set dispatchable. Return is made to VSE/AF to the instruction that follows the
interrupt.

JCL End-of-Job Appendage

This routine is invoked by Job Control at end-of-job time to pass the last and the highest return code of
the job in printable format to VSE/POWER. The return codes are passed in registers 0 or 1, respectively,
and stored in the partition control block of the partition concerned. The routine returns then to the caller.

 Appendage Summary

A summary of the appendages is given in Figure 113.

 Chapter 3. Program Organization 333

┌──────────────┬───────────────┬───────────────────────────────┬───────┐
│Event │Appendage │Task Selection Action │Control│
│ │ │ │Blocks │
├──────────────┼───────────────┼───────────────────────────────┼───────┤
│Page fault │Page Fault │Place current task in wait │TCB │
│occurred │(pre─processor)│state, reenter task selection. │ │
│ │ │ │ │
│Page fault │Page Fault │Make task dispatchable, │TCB │
│completed │(post─ │activate partition. │ │
│ │processor) │ │ │
│ │ │ │ │
│Attention │Attention │Make CP task dispatchable, │TCB,CPB│
│interrupt │Interface │activate partition. │ │
│ │ │ │ │
│Unsolicited │Hot Reader │Set RDR task dispatchable, │TCB │
│device end │ │activate partition. │ │
│ │ │ │ │
│BSC channel │Channel END │Set RJE,BSC line manager (LM)/ │TCB,LCB│
│end │ │PNET driver (LD) dispatchable, │NCB │
│ │ │activate VSE/POWER partition │ │
│ │ │ │ │
│SVC � inter─ │SVC � │Set XR/XW task dispatchable, │TCB,PDB│
│cepted │ │activate partition. │ │
│ │ │ │ │
│SVC 3 │SVC 3 │Set XR task dispatchable, │TCB │
│ │ │activate partition. │ │
│ │ │ │ │
│SVC 9�/SVC 91 │SVC 9�/SVC 91 │Set XR task dispatchable, │TCB,PDB│
│interrupt │ │activate partition. │ │
│ │ │ │ │
│Expiry of │Interval Timer │Set VSE/POWER partition │CAT │
│interval timer│ │dispatchable │ │
│ │ │ │ │
│End─of job │JCL End─of─Job │Save highest return code in │PDB │
│step │ │partition control block │ │
└──────────────┴───────────────┴───────────────────────────────┴───────┘

Figure 113. Appendage Summary

334 VSE Central Functions V7R1 VSE/POWER DRM

VSE/POWER Shared Spooling Function

The VSE/POWER Shared Spooling function causes a new VSE/POWER task, called the timer task, to be
attached. The timer task attaches a VSE/AF subtask.

The timer task provides a time-slicing mechanism for the sharing of the VSE/POWER queue file, data file,
and account file among several VSE/AF systems. The VSE/AF subtask receives timer interrupts from
VSE/AF.

When a VSE/POWER system issues a LOCK request for access to the shared files mentioned above, a
time interval is set when the LOCK request is honored. The timer task regains control when the time
interval expires and issues an UNLOCK request for the shared files. To prevent any updating of the queue
file without it being locked, the timer task locks the DMB until a new LOCK request is completed success-
fully.

 Timer Task

The timer task maintains time intervals with exclusive write access to one shared queue file and data file,
and, if applicable, one shared account file. The shared spooling environment is controlled by four time
intervals which are referred to as T1, T2, T3, and T4.

A B C A
|--- T1 ---| T2 |---- T3 ----|

One specific processor may have successfully obtained a lock on the queue file (point A in the diagram).
At point A, a time interval of T1 seconds is set by the timer task. T1 is the maximum time this processor
has exclusive write access to the queue file and the data file. When T1 has expired (point B), or earlier if
there was no work to do, the timer task issues an unlock for the queue file.

Time interval T2 is then set up as a means to control the operation of processors of different internal
speeds. During this time interval, VSE/POWER tasks run normally except for the fact that the timer task
has the DMB reserved. When time interval T2 has elapsed (point C), the timer task checks to see if any
task has made a reserve request for the DMB. If so, the timer task issues a lock request for the queue file
and enters the cycle again (point A). If no request is outstanding, the timer task sets up time interval T3
and enters a wait for its expiration or for a task to issue a reserve request for the DMB. At this point the
timer task issues a lock and reenters the cycle (point A) to ensure that nothing has entered the queue that
should be processed.

The fourth time interval, T4, is used as a control to check for system abnormalities whenever a lock
request is sent to VSE/AF. It can happen that the lock request is not fulfilled; there are several reasons
for this:

� Another system could be recovering and thus has the queue file locked for a period of minutes.

� Another system could be saving the account file, which must also complete before control can be
released.

� Another system could be performing a POFFLOAD BACKUP function.

� Another system could be performing a PDISPLAY VIO command.

� Another system could not re-build the queue file after a write I/O error, issued message 1QF7A and
continued with the storage copy of the queue file, thereby not giving up the queue file lock.

� Another processor that has locked the queue file may have a job that is both in a higher priority parti-
tion than VSE/POWER and in a loop; thus it cannot issue an UNLOCK.

 Chapter 3. Program Organization 335

If one of these cases occurs and the time interval T4 expires, a warning message (1QB6I) will be sent to
the operator and VSE/POWER will set up time interval T4 again.

The timer task performs its time slicing and LOCK/UNLOCK within a VSE/AF subtask. This ensures that
the VSE/POWER main task and its internal subtasks do not enter wait state.

After the timer task has obtained the queue file in update mode it examines the 'queue owning sysid' field.
If the previous system abnormally terminated all queue record blocks are read in by means of the
IPW$RDQ macro instruction and queue file recovery is invoked via IPW$IRY REQ=QUEUE macro. All
queue record blocks are written back to disk after recovery is performed; the appropriate refresh bits are
set to indicate other shared systems, that the queue record blocks in storage are obsolete.

Otherwise, the timer task routine examines each entry in the refresh table if the appropriate queue record
block must be refreshed and if so, the queue record block is read, moved into VIO space via the
IPW$RDQ macro instruction and the refresh flag is turned off. This operation will be performed in a loop,
one queue record block at a time, until the entire refresh table is processed.

If a PRESET command was given by the system operator, queue file recovery is invoked by means of the
IPW$IRY REQ=QUEUE macro instruction in order to perform partial recovery for the system(s) specified in
the command.

When the timer interval (T1) ends, the timer task will make its final update to the queue file and then
release the 'queue file' lock. All the write operations performed by the timer task use the same general
algorithm. As for the read, each entry in the refresh table, representing a queue record block, is examined
for any change by the own processor indicated by the “modified” flags. If so, the appropriate queue record
block is written back to disk by means of the IPW$WTQ macro instruction and the modified flag is reset,
while the refresh flag will be set for all other systems.

If PNET is used in conjunction with shared spooling, then an additional table, called node attached table
(NAT), is initialized in the DMB. This table is used to communicate between sharing systems those adja-
cent nodes that are currently attached for networking. Whenever a node is signed on an entry is made in
the NAT. When the node is terminated then the entry is removed.

Whenever a job or output is destined for a node which is not directly attached to this sharing system, the
add-to-queue function checks the NAT for the required node name. If an entry is found then the job or
output available bit is set to inform any other sharing systems that something has been placed in the
transmission queue.

The NAT is part of the master record and thus is written to disk and read from disk by the timer task
(IPW$$TI) during every time slice.

There is also another table in the DMB, called the 'Shared Remote-Id Table' (SRT), which is used in a
similar way to the node attached table. Every time output becomes available for a remote work station
which is not attached to the system producing the output, a bit is set on for the corresponding remote-id in
the SRT. This informs the other sharing systems that there is output in the queue for them. This table is
also controlled by the timer task (IPW$$TI).

If the first element of the 'wait for run' subqueue has changed, the TES task is posted. That the 'wait for
run' subqueue has changed is indicated by a bit in the DMB and is set on for all CPU ids (by IPW$$TQ),
whenever a system updates the address of the first element of the 'wait for run' subqueue.

336 VSE Central Functions V7R1 VSE/POWER DRM

Queue Control Area (QCA)

VSE/POWER maintains an additional area, called Queue Control Area (QCA), to carry information across
shared spool to other systems participating in the shared spooling environment. The QCA contains infor-
mation about each external device which is waiting for work and messages which are destined for one of
the systems sharing the same queue/data file.

In addition the QCA contains information about checkpoints taken for queue entries. Whenever a check-
point with extended checkpoint information has been recorded for a queue entry (using the spool-access
support), this extended checkpoint information is written to the QCA. Therefore the QCA may exist also
on a non-shared VSE/POWER system.

The QCA is part of the data file and consists of one or more DBLK groups. The area is taken, when
necessary, from the free DBLK group subchains and returned to them when no longer needed. Each
DBLK group is divided into DBLKs, whereby each DBLK contains an integer number of compartments,
called slots. In front of each DBLK is a DBLK-header, which contains information about the number of
used slots within the DBLK as well as free space information. The slots have variable length. The fol-
lowing slot types are supported:

� Waiting for work (WFW) slot
� Nodal message record (NMR) slot.
� Checkpoint (CKP) slot.

Each slot consists of a slot header, also referred to as prefix, and the slot body. The slot header will be
identical for all slot types, while the slot body differs from one slot type to the other. The slot header is
four bytes long and contains information about the slot owning system (SYSID), slot type and the slot body
length. The slot body of the waiting for work slot, contains among others the four classes and the logical
destination names the external device is supposed to process. The slot body of a nodal message record
slot is the NMR itself.

The slot body of a checkpoint slot contains among other information the checkpoint response control
record. Whereas a WFW or NMR slot is owned by one specific system, the CKP slot is owned by a
queue entry, which might be available for processing by each of the various systems. An 'artificial' owning
system of X'0A' is defined for a CKP slot, in order to keep the code changes for CKP slots as small as
possible (mainly because a DBLK of the QCA is freed, if the numbers of slots/SYSID within the
DBLK-header is zero). Figure 114 on page 338 illustrates the slot DBLK structure.

The slot DBLKs are double-threaded. Each slot DBLK points to the next slot DBLK as well as to the
previous slot DBLK by means of relative DBLK numbers. The address of the first slot DBLK is contained
in the master record.

 Chapter 3. Program Organization 337

 ┌────┬────┬────┬────────────────┬─────┬─────┬──//────┬─────┬───┐
┌─�│NEXT│ � │ │# of slots/SYSID│slot1│slot2│ │slotn│ │
│ └─┬──┴────┴────┴────────────────┴─────┴─────┴──//────┴─────┴───┘
└────│────┐
 │ │
 V │
 ┌────┬─┼──┬────┬────────────────┬─────┬─────┬──//────┬─────┬───┐
┌─�│NEXT│PREV│ │# of slots/SYSID│slot1│slot2│ │slotn│ │
│ └─┼──┴────┴────┴────────────────┴─────┴─────┴──//────┴─────┴───┘
└────│────┐

│ │ │�────── free space ────�│
 V │ │ │
 ┌────┬─┼──┬────┬────────────────┬─────┬──────//────────────────┐

│ � │PREV│ │# of slots/SYSID│slot1│ │
 └────┴────┴────┴────────────────┴─────┴──────//────────────────┘
 . .
 . .

┌───┬───┬───┬─ ──┬───┬───┐ Number of slots/SYSID
│ # │ # │ # │ │ # │ # │

 └───┴───┴───┴─ ──┴───┴───┘
� 1 2 9 1�

Slot ─ Layout
 ┌─────┬──────┬────────┬────────────────//────────────────┐

│SYSID│ type │ length │ slot body │
 └─────┴──────┴────────┴────────────────//────────────────┘
 │ 1 1 2 │

│�───── header ──────�│

Figure 114. Slot-DBLK Structure

The following function routines make up the slot manager, which is part of the IPW$$SQ module.

� Build slot routine
� Delete slot routine
� Post slot routine
� Process slot routine
� Clear slot routine
� Read slot routine
� Free entire Queue Control Area (QCA)

Build Slot Routine: The build slot routine is entered in response to a IPW$IQS REQ=BUILDSLOT
macro instruction issued by a VSE/POWER task. The macro expansion has loaded the slot type identifier
in register 0. The routine builds one of the following slots:

1. 'waiting for work' (WFW) slot
2. 'nodal message record' (NMR) slot
3. 'checkpoint' (CKP) slot.

On entry, the routine acquires virtual storage for the slot DBLK area, if not already present. The slot
DBLKs are then scanned to find a slot DBLK with enough free space to accommodate the new slot to be
built. If found, the slot, consisting of header and body, is created and the slot DBLK is written back to
disk.

Otherwise a new slot DBLK is acquired and chained as last entry in the slot DBLK chain. If no QCA
exists or the current allocated DBLK group is exhausted, an attempt is made to allocate a new DBLK
group from the data file. If successfully obtained, the first DBLK of the just allocated DBLK group is initial-

338 VSE Central Functions V7R1 VSE/POWER DRM

ized and the slot is constructed in this slot DBLK. The slot DBLK is then written back to disk and chained
as last element of the slot DBLK chain.

If, however, no free DBLK group is available, the operator is informed about the spool space shortage via
message 1Q38A and the task is placed in wait state until spool file space becomes available.

The build slot routine is invoked in following cases:

1. Whenever the get next queue entry function routine (IPW$$NQ) finds no queue entry eligible for proc-
essing by a device service task.

2. Whenever the message distributor routine (IPW$$MX) detects that the nodal message record to be
forwarded is destined for another system sharing the same queue/date file.

3. When the message handler (IPW$$MS) detects that the nodal message record to be forwarded is
destined for remote node which is attached to another system sharing the same queue/data file.

4. When the spool-access support task (IPW$$XTG) receives a checkpoint control record with extended
information and passes this request to the logical writer (IPW$$LW) which issues the macro IPW$IQS.
If already a checkpoint slot exists for this queue entry, the already existing checkpoint slot is searched.
If the new checkpoint slot fits into the same DBLK containing the old checkpoint slot, the new check-
point slot is written into this DBLK. If the new checkpoint slot does not fit into the same DBLK con-
taining the old checkpoint slot, the old checkpoint slot is deleted not before the new checkpoint slot
has been successfully written into another DLBK.

Delete Slot Routine: The delete slot routine is entered in response to a IPW$IQS REQ=DELSLOT
macro instruction issued by a VSE/POWER task. The routine deletes one of the following slots:

1. A 'waiting for work' slot, owned by the local system and matching device name. The device name is
contained in the external device control block (EDCB) pointed to by register 1.

2. A 'checkpoint' slot identified by the queue record addressed by TCBQV and the queue record number
contained in TCBQW.

On entry, the routine acquires virtual storage for the slot DBLK area, if not already present. The slot
DBLKs are then scanned to find the slot in question. If found, the slot is removed from the slot DBLK and
the slot DBLK header and the master record are updated; The number of WFW-slots in the master record
is decremented by one, if the WFW-slot was not yet posted and the number of active slots/SYSID is dec-
remented.

The delete slot routine is invoked in the following cases:

1. Whenever the get next queue entry function routine (IPW$$NQ) finds a queue entry eligible for proc-
essing by the calling device service task and the task was waiting for work.

2. Whenever the device service task is forced to stop immediately, but was waiting for work; in other
words a 'waiting for work' slot was built for the task.

3. When the spool-access support task (IPW$$XTC) receives a 'delete checkpoint information' request
and passes this request to the command processing routine (IPW$$CL) which issues the macro
IPW$IQS. If a checkpoint slot exists for this queue entry, the existing checkpoint slot is deleted as
well as the checkpoint information (record number and copy number) within the queue record.

4. When the spool-access support task (IPW$$XTG) receives a checkpoint control record without
extended information and passes this request to the logical writer (IPW$$LW). If already a checkpoint
slot exists for this queue entry, the logical writer (IPW$$LW) issues the macro IPW$IQS to delete the
existing checkpoint slot. The new checkpoint information (record number and copy number) is just
recorded within the queue record.

 Chapter 3. Program Organization 339

Post Slot Routine: The post slot routine is entered in response to a IPW$IQS REQ=POSTSLOT
macro instruction issued by a VSE/POWER task whenever the add queue entry routine (IPW$$AQ) adds
a queue entry in the LST/PUN queue where a 'to=' userid is specified. On entry, the routine acquires
virtual storage for the slot DBLK area, if not already present. The slot DBLKs are then scanned for a
'waiting for work' slot which is not owned by the local system and the 'to' userid of the just added queue
entry matches one of the logical destinations defined in the slot body of the WFW slot. If such a WFW
slot is found, the output available flag is set, the number of WFW slots in the master record is decre-
mented and the number of active slots/SYSID is incremented. The following conditions must be fulfilled
before the waiting for work slot is posted:

� The slot itself must be unposted (no output available flag set)
� The 'to' userid in the queue record must match one of the logical destinations defined in the slot.
� The class in the queue record must match one of the classes defined in the slot.
� The queue record id must match the queue type defined in the slot.
� The target system id, if one is specified in the queue record, must match the SYSID of the WFW slot

owning system.

Process Slot Routine: The process slot routine is entered in response to a IPW$IQS
REQ=PROCSLOT macro instruction issued by the timer task at the beginning of the T1 time interval. On
entry, the routine acquires virtual storage for the slot DBLK area, if not already present. The slot DBLK
chain is then scanned for posted 'waiting for work' slots, owned by the local system, or message slots
destined for the local system. In both cases the slot is processed and then removed from the slot DBLK.

The routine performs the following functions:

� For a NMR slot, the nodal message record is passed to the message distributor for further forwarding
by means of the IPW$GMS TYPE=DIST macro instruction.

� For a WFW slot, the EDCB chain is scanned to locate the EDCB associated with the external device.
An output arrived signal record is then built, added at the tail of the corresponding order queue, if not
already done once, and the associated device service task is posted to forward the signal to the DDS.

Such processed slots are then removed from the slot DBLKs. If the last slot DBLK becomes empty, the
DBLK is dequeued from the chain. DBLK groups which are no longer occupied by removed slots are
returned to the free DBLK group chain. If the QCA becomes empty, the QCA is deleted and the storage
used for the slot DBLK area is returned to the virtual storage pool.

Clear Slot Routine: The clear slot routine is entered in response to a IPW$IQS REQ=CLEARSLOT
macro instruction issued by a VSE/POWER task. The slot DBLK chain is scanned and each slot in turn is
examined if it is a WFW slot owned by the system(s) or a NMR slot destined for the system(s) to be
cleaned up. If so, the slot is removed from the slot DBLK and the control information in the slot header
and master record are updated accordingly.

The routine is invoked in following cases:

� At VSE/POWER initialization time whenever abnormal warm start is being performed.
� By the timer task at the beginning of the T1 time interval when the master record indicated that the

system which had the queue/data file exclusively, abnormally terminated.
� By the command processor task as result of a PRESET QCA command.

340 VSE Central Functions V7R1 VSE/POWER DRM

Read Slot Routine: The read slot routine is entered in response to a IPW$IQS REQ=READSLOT
macro instruction issued by a VSE/POWER task. The routine reads so far just a checkpoint slot identified
by the queue record addressed by TCBQV and the queue record number contained in TCBQW. On entry,
the routine acquires virtual storage for the slot DBLK area, if not already present. The slot DBLKs are then
scanned to find the slot in question. If found, the slot is passed in a virtual storage area allocated by the
slot manager. The address of the storage area is contained in TCBXCKPA. The checkpoint remains in the
QCA. During this process the DMB is reserved and released. The calling routine has to release the
passed storage area, which contains the checkpoint slot, and the address of which is contained in
TCBXCKPA.

The read slot routine is invoked in the following cases:

1. When the spool-access support task (IPW$$XTG) receives a a GET request for a queue entry for
which a checkpoint slot exists (QRECCKI in the queue record). IPW$$XTG issues the the macro
IPW$IQS during the 'open process' of the queue entry.

2. When the spool-access support task receives a request 'retrieve extended checkpoint information'
(during GET processing only). IPW$$XTG issues the macro IPW$IQS to get the checkpoint informa-
tion.

Free QCA Routine: The free QCA routine is entered in response to a IPW$IQS REQ=FREEQCA
macro instruction issued by a VSE/POWER task whenever an I/O occurred while accessing the queue
control area. The queue control area is deleted, but the DBLK group constituting the QCA are not returned
to the free data file space. The virtual storage used for slot DBLK area is returned to the virtual storage
pool.

Command/Message Passing Between Sharing Systems

Systems sharing common VSE/POWER queue/data file must by definition appear as one networking
node, since it is the common queue file which actually represents the node. Hence central operators on
the different SYSID's cannot use networking services to exchange commands or messages. They may
display and manipulate the entries of the commonly shared queue file, but they cannot influence any task
operating on another sharing system.

Command Passing (PXMIT): The PXMIT command allows to specify a target SYSID to where the
enclosed command is to be passed via the QCA for execution. The command format looks as follows:

 PXMIT SYSID=n,power-command

SYSID=n For n specify the identification (1-9) of a sharing VSE/POWER system to where the
command should be delivered for execution.
The command is rejected for the own SYSID and is rejected in general on non-shared
running systems.

power-command Specify any VSE/POWER command as you would enter it from the central operator
console. Find allowed/disallowed commands in the 'NET' column of the "Authorization
Table for the Central Op. of a Remote Node" in the VSE/POWER Networking manual.
Any therein mentioned "(1)" job access limitation is not effective for VSE/POWER com-
mands passed via the QCA using the 'PXMIT SYSID=...' command.

 Chapter 3. Program Organization 341

Example 1: assuming SYSID=1 central operator wants to trigger a
PDISPLAY of the VSE/POWER queues on the central operator
console of SYSID=3, then he would enter:

X SYSID=3,D ALL

Example 2: assuming SYSID=1 central operator wants to flush
job RUNXXX (with jobnumber 17) just executing
on SYSID=3, then he would use the PCANCEL command

 and enter:

X SYSID=3,C RUNXXX,17

resulting in following messages on the central operator
console of SYSID=3:

1R59I FOR SYSID=1 , EXECUTING COMMAND: C RUNXXX,17
�V16I JOB RUNXXX CANCELED. REQUEST FROM VSE/POWER.
1S78I JOB TERMINATED DUE TO OPERATOR CANCEL.

This version of the PXMIT command may be submitted by the central operator and by RJE users as well
as by X-partition users (CTLSPOOL an SAS-CTL) without any restriction.
Independent on the type of submitter, commands will be accepted on the other SYSID according to the
'NET' column of the "Authorization Table for the Central Op. of a Remote Node" in the VSE/POWER Net-
working manual. Any command received via the QCA will be stated on the central op. console by
message 1R59I (see example 2).
Any console display lines resulting from execution of an accepted command do not travel back to the
command originator (as with PNET), but they appear on the central operator console of the executing
system.

Any command rejected for execution (as e.g. the PEND command) is stated by message 1RA7I (this
message too does not travel back to the command originator):

1RA7I PEND COMMAND NOT ALLOWED ON NODE POWSHR

A received command on any SYSID from e.g. SYSID=1 will identify the originating SYSID (thereby over-
writing the originating node name, which is the same for all sharing PNET systems) by message:

1R59I FOR SYSID=1 , EXECUTING

When the command originator is an X-partition user with user-id 'XTOOL', message 1R59I will appear as:

1R59I FOR SYSID=1(XTOOL), EXECUTING

Message Passing (PBRDCST): The PBRDCST command allows to specify a target SYSID to
where the message is to be passed via the QCA. The command format looks as follows:

 PBRDCST nodeid,userid,SYSID=n,'message-text'

nodeid For nodeid specify the destination node, if your message is to be sent to another node in
the network.
Specify an asterisk (*), if the message is directed to a user at your own node, or if net-
working is not supported on your system at all.

userid For userid specify 0 or R0 to reach the central operator, specify R1 - R250 to reach an
RJE operator, specify another userid according to definition in the Administration and
Operation to reach an IUI user.

342 VSE Central Functions V7R1 VSE/POWER DRM

SYSID=n For n specify the identification (1-9) of a sharing VSE/POWER system to where the
message should be delivered, when the final 'nodeid' has been reached. SYSID may be
seen as a sub-qualification of 'nodeid'.

Example 1: assuming both PNET or NON-PNET shared systems;
you may send a message from SYSID=1
to central operator of SYSID=3 by

B �,�,SYSID=3,'MESSAGE FROM SYSID1'

Example 2: assuming PNET link between node POW1 and shared
node POWSHR with SYSID=1 and SYSID=3 connected

 as follows:
 POW1-----pnet-----POWSHR(1)-Q-POWSHR(3)

you may send a message from POW1 to central
operator of SYSID=3 - which has actually
no PNET link - by:

B POWSHR,�,SYSID=3,'MESSAGE FROM POW1'

The extended version of the broadcast command may be submitted by the central operator and by RJE
users as well as by X-partition users (CTLSPOOL an SAS-CTL) without any restriction.

Restrictions: Commands/messages directed to sharing SYSIDs currently not initialized (started) are
kept in the QCA and are delivered immediately at VSE/POWER startup. When such preserved
commands/messages for e.g. SYSID=5 should be removed from the QCA, then use the following
command:

 PRESET QCA,5

When commands/messages are directed to idling systems, they will not be read out before the t3 interval
elapses (default t3=60 sec). Prompt delivery may be enforced with minimal performance impact by speci-
fying e.g. t3=2 sec (see TIME=operand of the POWER macro).

Note: Being in test mode on an idling SYSID awaiting commands/messages to be read out from the
QCA, you may trigger write access to the shared queue file by entering e.g. 'PDISPLAY Q'. This
command locks the DMB (Master Record), i.e. asks for queue file write access.

This support will not be documented officially, since:
First there is no guarantee for immediate delivery of messages/commands to another sharing system -
namely when the recipient idles. Then no VSE/POWER task wants to access the shared queue file in
write mode until after t3=60 sec(s) (default) the recipient is forced to look into the shared queue file for any
passed message or command.
Secondly, when many messages/commands are passed to another sharing system, it may happen that
they are not received in the same sequence as they were entered at the sending system.

 Chapter 3. Program Organization 343

VSE/POWER Spool-Access Support Interface

The Spool Access Support interface, referred to in other parts of the manual as SAS, gives a user in a
partition other than the VSE/POWER partition the capability to:

� Submit a job to the VSE/POWER RDR queue for later execution in a partition controlled by
VSE/POWER or to the XMT queue for transmission to another node in the network.

� Spool list or punch data to the output queues (LST/PUN/XMT).

� Retrieve data from the RDR, LST, or PUN queue.

� Manipulate either the local queues or any queues in another system assuming that the user has suffi-
cient authority.

� Process other VSE/POWER commands, such as the PBRDCST command.

� Process other spool-access-support requests, such as recording, retrieving, or deleting checkpoint
information.

� Retrieve job completion messages of jobs submitted via the Spool-access support

The VSE/AF XPCC support is utilized for communication between VSE/POWER and the other partition.

The Spool Access Support function is performed by the following phases:

� IPW$$XM - Master task processing routine
� IPW$$XT - User task mainline routine
� IPW$$XTC - CTL function processing routine
� IPW$$XTG - GET function processing routine
� IPW$$XTP - PUT function processing routine
� IPW$$XTM - GCM function processing routine
� IPW$$XTS - Subroutines
� IPW$$LO - Logical output spooler
� IPW$$PC - Parameter checking routine

Spool Access Support Master Task

The spool access support master task is attached as a VSE/POWER task at VSE/POWER initialization
time. No generation option is required for the spool access support.

The task is terminated at VSE/POWER shutdown time, when no other tasks, except the command
processor and terminator tasks, exist.

First, the task acquires storage for and initializes the Communicator Information Block (CIB) and the Com-
municator Information Block 2 (CI2). The CIB and the CI2 are anchored to the CAT and contain the
anchor points for the various message queues. If no storage is available, message 1Q08I is issued and
the task is terminated. Otherwise, a XPCCB control block is initialized and chained off the CIB.
Figure 115 on page 346and Figure 47 on page 134 illustrate the control block relationship. The task
then identifies VSE/POWER as user of the XPCC interface by means of the XPCC FUNC=IDENT macro
instruction. If an error occurs, message 1QX1I is issued and the task is terminated. The SUBSID macro
is used to decide whether the system runs unattended or not. Next, a 'connect any' is done by issuing the
XPCC FUNC=CONNECT macro instruction. Again, if an error occurs, message 1QX1I is issued and the
task is terminated.

The task then waits for a connection request from an SAS user or for a signal passed by the PEND
command processor. The command processor sets termination code 'E' in the TCB and posts the SAS

344 VSE Central Functions V7R1 VSE/POWER DRM

master task when PEND was entered. This causes the task to inform VSE/AF that new connection
requests are no longer accepted by means of the XPCC FUNC=TERMQSCE macro instruction.

If a new connection is established (connect ECB of XPCCB posted), storage is acquired for an SAS user
task TCB and work area. The SAS user task is then attached with the used XPCCB passed.

If, however, the connection is a 'notify' connection, the VSE/POWER notify task is attached if not already
present. If the counterpart of the 'notify' connection is neither VSE/ICCF nor VSE/DSNX, a Communicator
Information Element (CIE) is built and chained to the CIE-queue anchored to the CIB. The CIE contains
head and tail pointer of the appropriate message queue and status information concerning the 'notify' com-
munication path.

If, however, the connection is a 'heartbeat' connection, the VSE/POWER heartbeat task is attached, if not
already present. If already present, this connection is stopped with the appropriate return codes within the
XPCCB by issuing the macro XPCC with the function DISCPRG.

A new XPCCB is then built and a new 'connect any' request is established. This process continues until
the PEND command is entered.

At VSE/POWER termination time, the SAS master task informs the notify task, if present, to terminate and
waits till the notify task is detached. Thereafter the SAS master task informs the heartbeat task, if present,
to terminate and waits till the heartbeat task is detached.

Then VSE/AF is informed that the XPCC facilities are no longer used by means of the XPCC
FUNC=TERMPRG macro instruction. Before detaching itself, the termination task is posted.

 Chapter 3. Program Organization 345

 CAT
 ┌─────────┐ SAS Master Notify task
 │ │ task TCB TCB
 ├─────────┤ ┌──────�┌────────────┐ ┌───�┌────────────┐
┌───┤ CACI │ │ │ │ │ │ │
│ ├─────────┤ │ │ │ │ │ │
│ │ │ │ └────────────┘ │ └────────────┘
 │ │ │ │ │
│ └─────────┘ │ ┌──────────────────────┘
 │ │ │
 │ CIB │ │
 └──�┌─────────┐ │ │ Connect any VSE/ICCF VSE/DSNX

│ │ │ │ XPCCB XPCCB XPCCB
 ├─────────┤ │ │ ┌─�┌────────┐ ┌──�┌────────┐ ┌─�┌────────┐

│ CIBMXPT ├───┘ │ │ │ │ │ │ │ │ │ │
├─────────┤ │ │ └────────┘ │ └────────┘ │ └────────┘
│ CIBNTCB ├──────┘ │ │ │

 ├─────────┤ │ │ │
 │ CIBMXPCC├────────┘ │ │
 ├─────────┤ │ │
 │ CIBIXPCC├────────────────────────┘ │
 ├─────────┤ │
 │ CIBDXPCC├──┘
 ├─────────┤ VSE/ICCF Notify

│ CIBIMSG ├───┐ message queue
 ├─────────┤ │ ┌──────────┐
 ┌───┤ CIBFCIE │ │ ┌─┴────────┐ │
│ └─────────┘ └────�┌─┴────────┐ ├─┘
 │ │ ├─┘
 │ ┌─────────┐ └──────────┘
 │CIE ┌─┴───────┐ │
 └──�┌─┴───────┐ │ │ XPCCB ┌──────────┐

│ CIEXPCC ├─┼─┼──�┌──────────┐ ┌──�┌─┴────────┐ │
├─────────┤ │ │ │ │ │ │ ├─┘

 ┌───┤ CIEHEAD │ │ │ └──────────┘ │ └──────────┘
 │ ├─────────┤ ├─┘ │ Subsystem Message
 │ │ │─┘ │ Queue
 │ └─────────┘ │
 └─────────────────────────────────────┘

Figure 115. SAS Master Task Control Block Relationship

SAS User Task

The SAS user task is attached by the SAS master master task when a new connection request is
honored. The SAS master task has already equipped the task with a work area. The function of the task
is to:

� Spool jobs to the VSE/POWER reader or XMIT queue.

� Spool list/punch output to the appropriate queue.

� Retrieve job/output data from the various local VSE/POWER queues.

� Manipulate queue entries in the various VSE/POWER queues.

� Process other VSE/POWER commands and return of results (e.g. PDISPLAY).

� Retrieve job event messages of jobs submitted via Spool-access suppo

346 VSE Central Functions V7R1 VSE/POWER DRM

After initial house-keeping is done, the task waits for the first data sent from the cross partition user via the
new path. VSE/POWER expects that the first buffer received contains a Spool Parameter List (SPL). If
this is not the case, the request is rejected and the task then waits for another request.

All messages issued by the SAS user task or on behalf of the SAS user task are collected by message
service and passed to the cross partition user.

The communication path is discontinued by the SAS user task either at the end of the function currently
performed when the system operator has entered the PEND command (stop code 'E' set in the TCB) or
immediately by means of the XPCC FUNC=DISCPRG macro instruction when the operator has entered
the appropriate PSTOP SAS command.

It might be possible that the SAS user task encounters a wait condition. Possible wait conditions are:

� No real/virtual storage available to handle request
� No disk space available when spooling job/output data
� Account file full when writing account record
� Resource(s) locked by any other VSE/POWER task.

In all of these situations the SAS user task waits until either disk or storage space becomes available or
until the resource is unlocked, unless the "no wait" option was set in the SPL and either a no spool space
or account file space condition occurred. In this case, the SAS user task returns to the user indicating the
shortage.

 ┌────────────┐ ┌──────────────┐ ┌────────────────┐
 │ │ │ │ IPW$GLR │ │
 │ │�──�│ GET Function │�==============�│ Logical Writer │
 │ │ │ IPW$$XTG │ IPW$PLR │ IPW$$LW │
│ │ │ │ │ │
 │ │ └──────────────┘ └────────────────┘
 │ │
 │ │
 │ │
 │ │ ┌──────────────┐ ┌────────────────┐
 │IPW$$XT │ │ │ IPW$GLR │ │
 │ │�──�│ PUT Function │�==============�│ Logical Reader │
 │─ Mainline │ │ IPW$$XTP │ IPW$PLR │ output spooler │
 │─ Message │ │ │ │ IPW$$LR/LO │
 │ Processing│ └──────────────┘ └────────────────┘
 │ │
 │ │
 │ │
 │ │ ┌──────────────┐ ┌────────────────┐
 │ │ │ │ IPW$ICP │ Invoke temporal│
 │ │�──�│ CTL Function │�==============�│ command proc. │
│ │ │ IPW$$XTC │ │ │
 │ │ │ │ │ IPW$$IC │
 │ │ └──────────────┘ └────────────────┘
 │ │
 │ │
 │ │ ┌──────────────┐
 │ │ │ │
 │ │�──�│ GCM Function │
 │ │ │ IPW$$XTM │
 │ │ │ │
 └────────────┘ └──────────────┘

Figure 116. SAS User Task Module Structure

 Chapter 3. Program Organization 347

 SAS Protocol

The VSE/AF cross partition communication facility (XPCC) is used for data transmission between
VSE/POWER and the spool access support user.

The spool parameter list (SPL) interface is used for all general requests and determines which function is
to be processed.

The basic method of communication between VSE/POWER and a SAS user consists of exchanging data
buffers in both directions. Associated with each buffer are 8-bytes of user data. The user data indicates
what type of buffer is sent and which action should be performed by VSE/POWER. The action bytes in
the user data define what to do with the passed data buffer. The data buffer may also contain a control
record. Only one control record is allowed in a buffer. In general, the SAS user starts the communication
by sending a request to VSE/POWER via the XPCC FUNC=SENDR facility. VSE/POWER analyzes the
request, performs the necessary actions and passes the result of the request back to the SAS user. The
result can be either:

� Return/feedback code, provided by VSE/POWER. The return and feedback codes tell the requestor
what happened.

� A data buffer.
 � Message(s).

Four types of functions are supported by VSE/POWER:

 � GET function
� GET BROWSE function

 � PUT function
 � CTL function
 � GCM function

Each function consists of a set of requests. The possible requests are outlined separately for each func-
tion in Figure 117 to Figure 121.

348 VSE Central Functions V7R1 VSE/POWER DRM

┌──────────────┬───┐
│ Request: │ Definition │
│(User->POWER) │ │
├──────────────┼───┤
│OPEN │Access queue entry, described in SPL │
│ │(initialize GET function) │
├──────────────┼───┤
│DIRECT OPEN │Access queue entry, described in SPL │
│ │(initialize GET function) by queue record number │
├──────────────┼───┤
│OPEN-GENERIC │Access queue entry(ies), according │
│ │to specified class(es) │
│ │(initialize GET function). │
│ │Queue entry must be dispatchable. │
├──────────────┼───┤
│GETRQ │Obtain one or more data records. │
├──────────────┼───┤
│QUIT │Release accessed queue entry and return │
│ │to queue with original disposition. │
├──────────────┼───┤
│CLOSE │Release accessed queue entry and return │
│ │queue entry to queue according to │
│ │VSE/POWER disposition rules ('K' ->'L'). │
├──────────────┼───┤
│CHECKPOINT │Save current copy number and record │
│ │number as supplied by user, and extended information, │
│ │if specified. │
├──────────────┼───┤
│RESTART │Restart at a specified record number and copy number. │
├──────────────┼───┤
│PURGE │Terminate access to queue entry and delete the entry. │
├──────────────┼───┤
│FLUSH-HOLD │Terminate access to queue entry and put back in queue │
│ │with disposition 'H' if original disposition was 'D', │
│ (Note) │or with disposition 'L' if original disposition was 'K'. │
├──────────────┼───┤
│QUIT │Release accessed queue entry and return │
│and LOCK │to queue with temporary disposition 'Y'. │
├──────────────┼───┤
│GET OPTB │Get one or entire OPTB structure associated with │
│ │accessed queue entry. │
├──────────────┼───┤
│MODIFY OPTB │Modify one OPTB. │
└──────────────┴───┘

Figure 117. Possible Requests within GET Function

Note: Only applicable for DDS (Device Driving System)

 Chapter 3. Program Organization 349

┌──────────────┬───┐
│ Request: │ Definition │
│(User->POWER) │ │
├──────────────┼───┤
│OPEN-BROWSE │Access queue entry, described in SPL │
│ │(initialize GET function). │
│ │Queue entry can be in any disposition │
│ │(D, K, H, L, X, A, Y, �) │
├──────────────┼───┤
│DIRECT │Access queue entry, described in SPL │
│OPEN-BROWSE │(initialize GET function) by queue record number. │
│ │Queue entry can be in any disposition │
│ │(D, K, H, L, X, A, Y, �) and even 'in creation' │
│ │(SPLGOGIC=ON for DIRECT OPEN-BROWSE for in creation) │
├──────────────┼───┤
│GETRQ │Obtain one or more data records. │
├──────────────┼───┤
│QUIT │Release accessed queue entry and return │
│ │to queue with original disposition. │
├──────────────┼───┤
│RESTART │Restart at a specified record number and copy number. │
├──────────────┼───┤
│GET OPTB │Get one or entire OPTB structure associated with │
│ │accessed queue entry. │
└──────────────┴───┘

Figure 118. Possible Requests within GET BROWSE Function

350 VSE Central Functions V7R1 VSE/POWER DRM

┌─────────────┬──────────┬──┐
│ Request: │Applicable│ Definition │
│(User-&POWER)│ for │ │
│ │Job │ Out │ │
├─────────────┼────┼─────┼──┤
│OPEN │ Y │ Y │Initialize PUT function with SPL values │
├─────────────┼────┼─────┼──┤
│OPEN-APPEND │ │ Y │Initialize PUT function with SPL values │
│ │ │ │ for "appendable" Output data. │
├─────────────┼────┼─────┼──┤
│OPEN-RESTART │ │ Y │Initialize PUT function with SPL │
│ │ │ │ values for an Output data set whose │
│ │ │ │ spooling was abnormally terminated. │
├─────────────┼────┼─────┼──┤
│PUTRQ │ Y │ Y │Spool data to the VSE/POWER Job or Output file. │
├─────────────┼────┼─────┼──┤
│PUTRQ+SEGMENT│ │ Y │Spool Output data and Segment. │
├─────────────┼────┼─────┼──┤
│PUTRQ+CHKPT │ │ Y │Spool data, save to the disk file, and │
│ │ │ │ reply to user with a unique checkpoint id. │
├─────────────┼────┼─────┼──┤
│PUTRQ+CLOSE │ Y │ Y │Spool data + Close the PUT function. │
├─────────────┼────┼─────┼──┤
│PUTRQ+CLOSE │ │ Y │Spool data + Close the PUT function │
│ + UPDATE │ │ │with updated SPL values. │
├─────────────┼────┼─────┼──┤
│CHECKPOINT │ │ Y │Save any buffered data to the disk file and │
│ │ │ │ reply to user with a unique checkpoint id. │
├─────────────┼────┼─────┼──┤
│RESTART │ │ Y │Restart at a specified record number. │
├─────────────┼────┼─────┼──┤
│SEGMENT │ │ Y │Segment any spooled Output data. │
├─────────────┼────┼─────┼──┤
│SEGMENT+UPDT │ │ Y │Segment with updated SPL values. │
├─────────────┼────┼─────┼──┤
│CLOSE │ Y │ Y │Close PUT data function. │
├─────────────┼────┼─────┼──┤
│CLOSE+APPEND │ │ Y │Close for "Append" Output data. │
├─────────────┼────┼─────┼──┤
│CLOSE+UPDATE │ │ Y │Close PUT data with updated SPL. │
├─────────────┼────┼─────┼──┤
│CLOSE+UPDATE │ │ Y │Close with update SPL for "Append" Output data. │
│ + APPEND │ │ │ │
├─────────────┼────┼─────┼──┤
│QUIT │ Y │ Y │Flush the data set being spooled. │
├─────────────┼────┼─────┼──┤
│GET-MSG │ Y │ Y │Obtain the next n message(s). │
├─────────────┼────┼─────┼──┤
│GET OPTB │ │ Y │Get one or entire OPTB structure of queue entry.│
├─────────────┼────┼─────┼──┤
│MODIFY OPTB │ │ Y │Modify one OPTB. │
└─────────────┴────┴─────┴──┘

Figure 119. Possible Requests within PUT Function

 Chapter 3. Program Organization 351

┌─────────────┬───┐
│ Request: │ Definition │
│(User-&POWER)│ │
├─────────────┼───┤
│COMMAND │ Pass command to VSE/POWER │
├─────────────┼───┤
│GET-MSG │ Get next n messages. │
├─────────────┼───┤
│QUIT │ Flush receiving of queued messages. │
└─────────────┴───┘

Figure 120. Possible Requests within CTL Function

┌─────────────┬───┐
│ Request: │ Definition │
│(User-&POWER)│ │
├─────────────┼───┤
│OPEN-KEEP │ Begin the request and get copy of fixed format messages. │
│ │ Retrieved messages may be retrieved again later. │
├─────────────┼───┤
│OPEN-DELETE │ Begin the request and get fixed format messages. │
│ │ Retrieved messages are deleted by VSE/POWER and cannot │
│ │ be retrieved again. │
├─────────────┼───┤
│OPEN-REMOVE │ Begin the request and remove all already retrieved │
│ │ messages in the addressed message queue. │
├─────────────┼───┤
│OPEN-PURGE │ Begin the request and remove all messages contained in │
│ │ the addressed message queue. │
├─────────────┼───┤
│MORE │ retrieve more messages │
├─────────────┼───┤
│REMOVE │ remove already retrieved messages. │
└─────────────┴───┘

Figure 121. Possible Requests within GCM Function

CTL Function: If an SPL, requesting a CTL function, is sent by the cross partition user, the SAS user
task, calls the SPL parameter checker by means of the IPW$SSJ macro instruction. The parameter
checker examines each applicable field contained in the SPL for correctness. If an invalid or missing spec-
ification is detected, return is made to the SAS user task with the appropriate return/feedback code set.
This code is then passed to the cross partition user and the CTL request is rejected.

If a VSE/POWER command was passed, the invoke command processor routine is called via the
IPW$ICP macro instruction and the SAS user task then waits for completion of the command. If, however,
a command request is passed in the SPL, the appropriate VSE/POWER command is built and passed to
the 'invoke command processor' routine. One of the following commands is built:

 � PALTER jobname[,jobnumber[,jobsuffix]][,CCLASS=c],attribute=xxxx
 � PCANCEL jobname[,jobnumber]
 � PRELEASE jobname[,jobnumber[,jobsuffix]][,CCLASS=c]
 � PHOLD jobname[,jobnumber[,jobsuffix]][,CCLASS=c]
 � PDELETE jobname[,jobnumber[,jobsuffix]][,CCLASS=c]
 � PDISPLAY jobname[,jobnumber][,CCLASS=c]

If messages were queued as a result of the command, the SAS user task builds a message buffer and
sends it to the cross-partition user by means of the XPCC FUNC=REPLY macro instruction. VSE/POWER
attempts to buffer the messages. The buffer size is the length of the reply area specified by the cross-

352 VSE Central Functions V7R1 VSE/POWER DRM

partition user at SENDR time. If all messages fit into the reply message buffer, the buffer is sent to the
cross-partition user with return/feedback code indicating end of message(s).

In the case of a queue display command, VSE/POWER takes a snapshot of the queue(s) and places the
result of the snapshot as a LST queue entry in a specific class chain. This queue entry is then accessed
by the SAS user task and all messages, describing the current queue contents, are passed to the user
without that the user is aware that a LST queue entry is built by VSE/POWER.

In addition, if the passed command is PALTER, PDELETE, PDISPLAY, PHOLD, or PRELEASE, and
SPLGO2QN specifies to 'use the direct queue entry number' as passed in SPLXQNUM, the following
takes place:

1. Macro IPW$ICP with PASS=QEN is used to hand over the 'direct' option to the desired command
processor module.

2. The queue manipulation commands (A|L|H|R) process the request in their corresponding 'direct'
routine, from where the 'direct inspect (QRDISPCT)' routine of IPW$$CM is called to determine the
eligibility of the queue entry accessed by its number. When not found, that is RC/FB=04/01, then
PXPFBKC2 provides detailed information, why not found.

3. The PDISPLAY command uses the direct lookup routine (PSDQLU00) of IPW$$PS, which in turn calls
the direct selection routine of IPW$$PS1 by means of IPW$IIS REQ=DIREL. When not found, that is
RC/FB=04/0B, then PXPFBKC2 provides detailed information, why not found. When found, the display
of only one queue entry is not placed into a snapshot list queue entry, but passed by virtual storage
message buffers to save disk I/O time.

If the checkpoint information is to be deleted, the following takes place:

1. The following command is built.
PDELETE jobname[,jobnumber[,jobsuffix]]
Note that the operand CCLASS is not used.

2. The IPW$ICP macro instruction is used with the option PASS=DCK to pass the information 'delete
checkpoint information' to the command processor.

 Chapter 3. Program Organization 353

 USER VSE/POWER
 │ │
COMMAND: wait (RECB)
 send command: │

SENDR (SPL) ───────────────────> │
 │ RECEIVE SPL
 wait (SECB) � check SPL

│ � construct command
│ � invoke command processor

 │ │
│ wait till cmd processor finished
│ � get first message(s)
│ <──(user data=EOM,if no more msg)──── REPLY
│ + message buffer, if any │

 │ │
 if more messages are queued: │
 │ <...
 │ │ .
GET_MSG: wait (RECB) .
 request next msg: │ .

SENDR ──(user data=get next msg)────> │ .
 │ │ .
 wait (SECB) � get next message .

│ � fill up buffer .
 │ │ .

│ <──(user data=EOM,if no more msg) ── REPLY .
│ + message buffer, if any │ .

 │ │ .
│ Loop till end of messages │ .

 ..
 │ │
 │ wait (RECB)

│ � wait for next SPL
... wait for any other activity

Figure 122. CTL Function Control and Data Flow

GET Function: The SAS user requests obtaining data from the VSE/POWER queues by setting up
and sending a Spool Parameter List (SPL). The SPL defines the job name, the job number and job suffix
number (optional), class, and queue type of the job/output to be retrieved.

When the SAS user task receives an SPL, it invokes the SPL parameter checker by means of the
IPW$SSJ macro instruction to check the SPL for correct specification. If an invalid or missing specification
is detected, the SAS user task rejects the GET function and passes back appropriate return and feedback
code information.

Otherwise the interface to the logical writer is opened by means of the IPW$OLI macro instruction and the
first data record is requested via the IPW$GLR macro instruction. This causes the logical writer to scan
the specified queue in order to locate the queue entry addressed by job name, number, suffix and class. If
no such queue entry exists or the queue entry is protected (password mismatch), return code with appro-
priate feedback information are set in the user data field of the XPCCB and a null buffer is sent back. In
order to access a queue entry, the appropriate queue entry must be in dispatchable state, which means
the disposition must be either 'D' or 'K' and the cross-partition user must be either the originator or owner
of the job/output queue entry. Queue entries with a 'to' destination of 'ANY' can be retrieved by any
cross-partition user.

If the standard GET-OPEN request specifies also SPLGO2QN to 'use the direct queue entry number' as
passed in SPLXQNUM, the following takes place:

354 VSE Central Functions V7R1 VSE/POWER DRM

1. The communication with the logical writer is opened as for standard GET-OPEN requests, and the
logical writer enters the Get Next Queue Set function .

2. IPW$$NQ does not start to search class chains, but reads the queue record by its internal number
provided in SPLXQNUM.

3. The direct selection routine 'NQA1' checks, if the retrieved queue record matches the standard
GET-OPEN selection criteria as described before. When not eligible, meaning not found, that is
RC/FB=04/01, then PXPFBKC2 provides detailed information, why not found. When found, 'direct' and
'non direct' GET access behave the same.

If found, the logical writer passes the job header record and, if present, the data set header record to the
SAS user task. These records together with the information extracted from the queue record are used to
build an 'extended' SPL, which contains all descriptive information, such as FCB name, UCB name, record
format and maximum record length, about the queue entry being obtained. The SAS user task then sends
the 'extended' SPL to the cross-partition user by means of the XPCC FUNC=REPLY macro instruction.
The cross-partition user may analyze the SPL and take appropriate actions. After the SPL is sent, the
SAS user task waits for the next request from the cross-partition user.

If the cross-partition user requests the next record(s), buffer storage is acquired (IPW$RSV) in the length
specified as reply buffer size by the cross-partition user or in the max. length supported by VSE/POWER
(curr. 64K), whatever is less. The acquired buffer is then filled with data records, which are obtained via
the IPW$GLR macro instruction. If the buffer is full or the logical writer has indicated 'end-of-data', the
buffer is sent to the cross-partition user by means of the XPCC FUNC=REPLY macro instruction. Records
are passed sequentially from the beginning of the queue entry.

Each record in the returned buffer is preceded by a eight-bytes prefix. Associated with each record,
VSE/POWER provides an internal number in the following referred to as record number; this number must
be specified in the restart control record when requesting to restart at that particular record.

If the 'CTLREC' option is specified in the SPL the SAS user task returns all records including immediate
control commands to the user. Control commands are passed as one byte records, whereby the content of
the byte is either blank or hex zero. The command code associated with the record is passed in the
record prefix.

An output queue entry, in particular a LST queue entry may consist of multiple data sets; this is especially
true when the job executed on a MVS system. The start of a new output data set or the change of one of
the characteristics of a data set is recorded by VSE/POWER via a data set header record which precedes
each data set. Since VSE/POWER attempts to keep all output data sets, produced by one job, together,
multiple data set header records can appear in an output queue entry. Each data set header record
encountered by the SAS user task is converted to a spool parameter list and passed as such to the cross-
partition user.

If the cross-partition user indicated to 'quit' processing of the queue entry, the SAS user task, sets the
appropriate cancel code in the XT-work area and calls the logical writer by means of the IPW$GLR macro
instruction. This causes the logical writer to re-queue the queue entry with its original disposition, to write
an spool account record and to free all acquired work spaces. The SAS user task then closes the logical
interface by means of the IPW$CLI macro instruction and waits for further requests from the cross-partition
user.

 Chapter 3. Program Organization 355

 USER VSE/POWER
 │ │
OPEN: wait (RECB)
 request to access queue entry: │
SENDR (SPL) ───────────────────> │

 │ RECEIVE SPL
│ � check SPL
│ � open logical interface
│ � locate queue entry
│ � get JHR + DSHR and fill

 │ up SPL
 wait (SECB) │

│ <──────────(extended SPL)───── REPLY
 │ │
 │ <..
 │ │ .
GETRQ: wait (RECB) .
 request next buffer: │ .
 SENDR ──(user data)──────────────> │ .
 │ │ .
 wait (SECB) � check buffer size .

│ � acquire buffer space.
│ � fill up buffer .

 │ <─────(data buffer)────────── REPLY .
 │ │ .

│ Loop till end of data (EOD in FDBK code) .
 ..
 │ │
 any finishing request: │
 SENDR ──────────────────────────> │
 │ RECEIVE request
 wait (SECB) │
 │ <─────────────────(ok)────── REPLY

│ � return queue entry
│ � perform accounting
│ � close log. interface

 │ │
 │ wait (RECB)

│ � wait for next SPL
 │ │
 any other activities

Figure 123. GET Data/Control Flow

If the cross-partition user indicated to 'purge' the queue entry being accessed, the SAS user task, sets the
appropriate cancel code in the XT-work area and calls the logical writer by means of the IPW$GLR macro
instruction. This causes the logical writer to issue the IPW$DQS macro instruction with the purge indicator
set, to write an spool account record and to free all acquired work spaces. The SAS user task then waits
for further requests from the cross-partition user.

Likewise if 'close' of the queue entry is requested by the cross partition user, the SAS user task calls the
logical writer to finish up that queue entry.

If the cross-partition user indicated that output processing failed, the SAS user task sets the appropriate
cancel code in the XT-work area and calls the logical writer. The logical writer re-queues the queue entry
with disposition "Y", writes an account record and frees all resources. This disposition prohibits the file
from being processed by other tasks.

356 VSE Central Functions V7R1 VSE/POWER DRM

If the communication path is broken either intentionally or accidentally, the SAS user task returns the
queue entry currently being processed to its class chain with its original disposition, closes the logical
interface, performs accounting and detaches itself.

Restarting: While in the middle of receiving data from VSE/POWER, the cross-partition user can reposi-
tion at any record. If requested the restart function of the logical writer is utilized to locate the appropriate
record. The restart can be based on records, lines or pages.

Checkpointing: A cross-partition user can request that checkpoint information be recorded for the queue
entry currently in process. If such a checkpoint request is received by the SAS user task, the request is
forwarded to the logical writer. The logical writer saves the user specified record number and copy number
into the queue record. The queue record is then written back to disk.

Checkpointing with Extended Information: If the checkpoint information contains extended checkpoint
information, the extended information is passed to the logical writer, as well. The logical writer writes the
extended information to the queue control area.

During the 'open-process' for a queue entry the extended checkpoint information is retrieved from the
queue control area using the macro IPW$IQS in order to pass the length of the extended information
within the extended SPL to the cross-partition user. The retrieved extended information is held in storage
till the next valid request comes from the cross-partition user, as it is assumed that usually the cross-
partition user asks for the extended information after having received the extended SPL.

While in the middle of receiving data from VSE/POWER, the cross-partition user can retrieve the extended
information. The macro IPW$IQS is used to read the extended information from the queue control area.

Obtaining OPTBs: A cross-partition user can request to get the OPTB structure associated by the queue
entry currently in access. The request, passed to VSE/POWER via a control record, can be given at any
time while accessing (GET function) a particular queue entry or while spooling output data (PUT function).
If OPTBs are present in the data set header record, the SPL contains the total length of all OPTBs. If a
'get OPTB' control record is received by the SAS user task, the IPW$OPI FUNC=OPGET macro instruc-
tion is issued in order to get the wanted OPTBs. If an OPTB id is specified in the control record only this
OPTB is moved into the cross-partitions user reply area. If, however, no OPTB id is specified,
VSE/POWER moves all OPTBs into the requestor's area.

Modifying an OPTB: If a modify OPTB control record is received by the GET or PUT function routine,
the "OPMOD" routine in IPW$$OP, is called by means of the IPW$OPI FUNC=OPMOD macro instruction
to verify that the OPTB is correct. If so, the DBLK containing the data set header record is read in and the
output processing section of the DSHR is updated with the new OPTB.

GET BROWSE Function: The SAS user requests obtaining data from the VSE/POWER queues by
setting up and sending a Spool Parameter List (SPL) as described in “GET Function.” The following differ-
ences between GET and GET BROWSE exist:

1. GET BROWSE may access all queue entries regardless of their disposition, even queue entries
'active' or 'in creation' may be browsed.

2. The set of functions allowed for GET BROWSE is limited to

� GET more data
 � RESTART
 � Obtain OPTBs
 � QUIT

 Chapter 3. Program Organization 357

Direct GET BROWSE for In Creation: Accessing a queue entry in creation is limited to job output. The
spool Access Support application must set up a request as described in VSE/POWER 6.5 Application
Programming , SC33-6736-01 . For further information see “Get In Creation Queue Entry” on page 102.

Restarting to active record: Compared with GET an additional RESTART option (PXRSOPAR = Restart
to active record) is available for GET BROWSE.

This request will reposition the cross-partition user at the last record passed by IPW$$GD to an UPDATE
task, which processes currently the same queue entry. The request uses the fields QRCCNR, QRCCLC
and QRCCPG of the queue record copy belonging to the UPDATE task to set up a restart request
depending of the queue entry type. For output a restart to lines/cards is build using the value of
QRCCLC. For jobs a restart to record is set up using the value of QRCCNR. The modified restart
request is then passed to the restart function of the logical writer which is utilized to locate the appropriate
record. In return either a return/feedback code will inform the requestor that no appropriate UPDATE task
is active (on the same system) or a data buffer will be returned starting with the active record, which is
followed by the subsequent records.

Note: The 4-byte data record number (QRCCLC for LST|PUN and QRCCNR for RDR type entries) is
returned in 2 2-byte fields in the XPCCB (PXPLC12 & PXPLC34) for programs doing their own data record
counting like ICCF.

PUT Function to RDR/XMT Queue: To start spooling a job into the VSE/POWER RDR or XMT
queue an SPL must be sent to VSE/POWER specifying that job data follows.

Only the queue id 'R' has to be specified in the SPL. If the SAS user task receives an SPL, it calls the
SPL parameter checker in order to check if the requesting userid is properly specified. If not, the appro-
priate return/feedback code is passed back and subsequently sent to the cross-partition user by means of
the XPCC FUNC=REPLY macro instruction.

Otherwise the interface to the logical reader is opened via the IPW$OLI macro instruction. Each received
data record in turn is then passed to the logical reader.

The SAS user task accepts records of any size, that means trailing blanks can be truncated by the cross-
partition user before passing them to VSE/POWER. However, the SAS user task assumes that the logical
record size is 80 bytes. If the user wishes to pass records larger than 80 bytes, the maximum record
length must be specified in the SPL prior to passing the first record. The maximum record length sup-
ported by VSE/POWER is 128 bytes and the minimum record length is 80 bytes.

If the record is larger than the maximum length, specified in the SPL, the record is truncated. If a received
record is smaller than the size, specified as maximum record length in the SPL, it is expanded into that
length.

If the EOD indication is passed by the cross-partition user, the SAS user task invokes the logical reader to
add the queue entry to the class chain according to its priority and to write a spool account record. When
the job is not already at job boundary, which means the last record passed was not a job delimiter state-
ment (neither * $$ EOJ nor /&), the SAS user task automatically adds the missing job delimiter depending
on the input mode. When the queue entry is successfully queued in the queue, the SAS user task replies
with an SPL, containing descriptive information about the job, such as defaults and job number assigned
by VSE/POWER. When the final SPL is received by the user, it is the indication that VSE/POWER has
taken full responsibility for the just submitted job stream.

If the spooled job is destined for a node which is not the LOCAL node, then it is queued in the XMT queue
and not in the RDR queue. Figure 124 on page 359 illustrates the various steps done by VSE/POWER.

358 VSE Central Functions V7R1 VSE/POWER DRM

Note: When multiple VSE/POWER jobs are passed within one PUT function, the final SPL, sent back by
VSE/POWER, reflects only the characteristics of the last job.

Note: VSE/POWER offers the user an option in the SPL to specify whether the job event message of the
submitted job is to be queued by VSE/POWER rather than issued on the system console. For that
purpose function byte SPLGFB1 has to be set up with SPLGF1QM (for generation of f.f. job completion
messages), or SPLGF1QQ (for generation of job event messages, which are both f.f job completion and
job generation messages). The submitted job is then flagged by VSE/POWER in its queue record and in
the VSE/POWER section of the job header record. The job processing VSE/POWER system inspects
these flags after the job finished its processing, and builds a Nodal Message Record from the resulting job
completion message or as soon as the job has been created in IPW$$XWE.

With the information contained in the record prefix of the nodal message the final message retrieving
VSE/POWER system then decides whether the message has to be queued or not.

The messages can then later be retrieved by the GCM Function of the Spool-access support.

There exist some options that can be specified within the PUT-OPEN SPL, for example, additional private
information, queue type (COMMON queue or single userid queue). For these options consult the manual
VSE/POWER Application Progamming.

 USER VSE/POWER
 │ │
OPEN: wait (RECB)
SENDR (SPL,user data)───────────> │

 │ RECEIVE SPL
│ � check SPL
│ � open logical I/F

 wait (SECB) │
 │ <───────────────(SPL,user data) REPLY
 │ │
 │ <...
PUTRQ: │ .
 SENDR (first/next buffer, user data)─& wait (RECB) .
 │ │ .

│ � obtain buffer space .
 │ RECEIVE buffer .

│ � de─block buffer .
│ ─ pass each record to .

 wait (SECB) logical I/F .
 │ <──────────────(ok)───────────REPLY .

│ � release buffer space .
 │ │ .
 │ │ .
 . fill up next buffer │ .
 │ │ .

│ loop until all data passed .
 │..
 │ │
CLOSE: wait (RECB)
SENDR (user data=EOD)──────────────────>│
│ � pass end of file record
│ to logical I/F
│ � close logical I/F
│ � perform accounting

 wait (SECB) │
 │ <────────────(SPL,user data)───REPLY
 │ │

Figure 124. PUT Function Control/Data Flow

 Chapter 3. Program Organization 359

PUT Function to LST/PUN or XMT Queue: To start spooling output (list or punch) into the
VSE/POWER LST/PUN queue, an SPL, describing the attributes of the output, must be sent to
VSE/POWER by issuing the XPCC FUNC=SENDR macro instruction before any data transfer. The output
format may be ASA, machine control code, SCS print, 3270 data stream or escape. Special formatting,
such as graphics, is catered by the escape mapping, which allows the user his own output formatting.

If the SAS user task receives an SPL, requesting spool output service, it calls the SPL parameter checker
to verify that all specified fields in the SPL are valid. If an invalid or missing specification is detected, the
SAS user task rejects the request and passes appropriate return and feedback codes back to the cross-
partition user.

If the SPL was correct, the interface to the logical output spooler is opened by means of the IPW$OLI
macro instruction. The logical routine is then called via the IPW$PLR macro instruction to acquire spool
space and work areas used for the job header and data set header record. Next, the job header record
and data set header record are constructed from the information extracted from the SPL and written to
disk. The data set header record consists of the general and VSE/POWER section. If 3200/3800 param-
eters are defined in the SPL, a 3800 section is appended to the data set header record.

If an OPTB area, consisting of one or more output parameter text blocks, is appended to the SPL, the
VSE/POWER SAS user task calls the 'OPPUT' routine by means of the IPW$OPI FUNC=OPPUT macro
instruction to check if the OPTBs are properly built. Furthermore, all OPTBs which are defined in the
OPDE chain are examined for correct specification. An OPTB representing a keyword which is not defined
within VSE/POWER is taken as is. If an OPTB area is present and all OPTBs are valid, an output proc-
essing section is built and included in the data set header record.

If the OPTB area, appended to the SPL consists of keyword OPTBs the VSE/POWER SAS user task calls
the 'OPANAL' routine by means of the IPW$$OPI FUNC=OPANAL macro instruction. For each keyword
OPTB an output parameter text block is built according the specifications of the corresponding DEFINE
statement. The keyword value is check and if correct the output parameter text block is included into the
data set header record. Invalid keywords are not included into the data set header record instead the
request is terminated with return/feedback code.

The OPTB is structured as a sequence of text units. The number of and sequencing of text units is arbi-
trary. Text units are identified by a 2-byte id that is registered and unique within job networking protocols.
Each text unit is defined to include a specific type and maximum number of data elements that represent
keyword parameter values. The number of these data elements included in the text unit is specified in a
2-byte count field that follows the id and precedes the data elements. The figure below illustrates this
structure.

 ┌─────┬────┬────┬──────────────┬────┬──────────────┬──//─────┐
│ ID │ CC │ LL │ data element │ LL │ data element │ │

 └─────┴────┴────┴──────────────┴────┴──────────────┴──//─────┘
Bytes: 2 2 2 n 2 n

where:
ID ─ registered keyword identifier
CC ─ number of data elements
LL ─ length of data element

Figure 125. Output Parameter Text Block Structure

VSE/POWER assigns a new job number to the output queue entry. This number is returned in the SPL.
The 'verification' SPL is then returned to the cross-partition user by means of the XPCC FUNC=REPLY
macro instruction. The SAS user task waits then for output data to arrive from the cross-partition user.

360 VSE Central Functions V7R1 VSE/POWER DRM

As VSE/POWER receives each buffer, checks are made to ensure that the buffer size does not exceed
the VSE/POWER limited maximum length of 64K and that each individual record does not exceed the
maximum length of 32K - 1. If the maximum buffer length is exceeded, appropriate return and feedback
codes are set and the communication path is unconditionally terminated via the XPCC FUNC=DISCPRG
macro. Records may be sent as one record per buffer or as multiple records per buffer.

The SAS user task does not check the validity of any carriage control character which might be associated
with a data record. The specification of a carriage control character for BMS, 3270, SCS or escape mode
is ignored. The X'FF', X'FE' and X'FD' carriage control character are reserved for VSE/POWER usage
only and can therefore not be used by a cross partition user.

Each record in turn is passed to the logical output spooler. As VSE/POWER spools each record, page
and line counts are maintained. Page breaks are determined from the carriage control character associ-
ated with each record passed. The meaning of the carriage control character (either MCC or ASA) is
defined at 'open' time in the SPL. The line count is updated according to the carriage control character.
For BMS or 3270 mapping, each record is assumed to be a page. For escape and SCS data stream, the
page count is meaningless and therefore set to zero. The line count is also undetermined, but set to the
current spooled record number.

If a CPDS data record should be spooled, it must be indicated as such in the identification byte of the
record prefix.

┌────────────────┬──────────────────┬────────────────────┐
│ Record Format │ Line Count │ Page Count │
├────────────────┼──────────────────┼────────────────────┤
│MCC │Updated according │Updated according │
│ │to carriage cntl │to carriage cntl │
│ │character. │character. │
├────────────────┼──────────────────┼────────────────────┤
│ASA │Incremented for │Updated according │
│ │each record. │to carriage cntl │
│ │ │character. │
├────────────────┼──────────────────┼────────────────────┤
│BMS mapping │Incremented for │Incremented for │
│ │each record. │each record. │
├────────────────┼──────────────────┼────────────────────┤
│327� mapping │Incremented for │Incremented for │
│ │each record. │each record. │
├────────────────┼──────────────────┼────────────────────┤
│Ecape mode ESC │Incremented for │ Set to zero. │
│ │each record. │ │
├────────────────┼──────────────────┼────────────────────┤
│SCS mode │Incremented for │ Set to zero. │
│ │each record. │ │
├────────────────┼──────────────────┼────────────────────┤
│CPDS mode │Incremented for │ - │
│ │each record. │ │
├────────────────┼──────────────────┼────────────────────┤
│CPDS records │Incremented for │Updated according │
│intermixed with │each see MCC, │ASA/MCC carriage │
│ASA/MCC records │ASA record. │cntl character │
└────────────────┴──────────────────┴────────────────────┘

Any invalid request or conflicting requests, as indicated in the action bytes of the passed user data of the
XPCCB, cause appropriate return/feedback code to be set, and the request to be ignored.

 Chapter 3. Program Organization 361

If the EOD indication is passed by the cross-partition user, the SAS user task invokes the logical output
spooler to add the queue set to the class chain according to its priority and forms number and to write a
spool account record.

If together with the EOD indicator an SPL is sent by the cross partition user, certain fields in the SPl are
used to update some characteristics of the output which has just been spooled. If the output is destined
for a remote node, it is queued into the XMT queue, otherwise in one of the local queues (LST or PUN).
The logical interface is then closed via the IPW$CLI macro instruction. When the queue entry is success-
fully queued, the SAS user task replies with an SPL, containing final information such as job and job suffix
number. If messages are queued by VSE/POWER, the SAS user task sets also the 'message queued'
flag in the information byte of the user data of the XPCCB. The cross-partition user can then retrieve the
messages. If, however, a 'quit' request is received, the current queue entry being built is purged, its
already used spool space is returned to the free data file space, the logical interface is closed and the
SAS user task waits then for new requests from the cross-partition user.

Output Segmentation: At any time while spooling output, a segment request may be submitted to
VSE/POWER either with a null buffer or together with data.

When such a request is received the SAS user task processes the data received with the segmentation
request, if any, then adds the queue entry to the class chain according to the normal priority rules. After
the queue entry is added new spool space is reserved in order to accept further spool requests for the
same output. All queue entries for this output will have the same job number but a different job suffix.

RESTART during PUT request for output: While spooling output, the user may request to re-position at
a previous spooled record and to continue spooling from that point. This is done by sending a restart
control record to VSE/POWER. The restart control record contains the logical record number from where
to begin.

Checkpoint processing for output spooling: For the situations of:

 � User Abend
 � VSE/POWER Abend
 � System Abend

the "checkpoint" PUT function is offered.

While spooling Output, the cross-partition user may request the "checkpoint" function to occur. The
records held in storage are written to disk and a "checkpoint" ID is passed back. The queue record is
updated with the number of the last record written to the data file. This number becomes the "checkpoint"
ID.

When a checkpoint request is sent together with a data buffer, the data buffer is processed before proc-
essing of the checkpoint request.

When a checkpoint is successfully recorded, the SAS user task sends back a checkpoint response record.

If the user abnormally terminates the connection during the PUT function or the SAS user task is
PSTOPed, then the Output data set is closed with a job trailer record being added, if possible, to the end
of the data and given the disposition "X" and written to disk and placed in the class chain as for a com-
plete file. This disposition prohibits the file from being processed by other tasks. When the user has
resumed operation he may then access the data with the "restart" PUT function, specifying the "check-
point" ID which indicates to VSE/POWER where the spooling is to resume.

If VSE/POWER or VSE/AF abends, then during recovery at startup time, VSE/POWER will search the
queue file for incomplete queue entries. If found and the queue entry was checkpointed previously, then
VSE/POWER will reposition the queue entry at the last checkpoint record and then attempt to write a job

362 VSE Central Functions V7R1 VSE/POWER DRM

trailer record. If no spool space is available to write the job trailer record, just an end-of-data flag is set.
The data set disposition is set to "X" and written to disk to be placed in the class chain later. Then the
user may perform the "restart" step as above. Any DBLK group in the queue entry following the new
end-of-data record is unchained and placed in the free DBLK group chain.

 GCM Function

Overview VSE/POWER's GCM Function of the Spool-access support is used to retrieve job event mes-
sages of jobs by a user written application program, provided that the jobs have been submitted via the
Spool-access support function PUT and function byte SPLGFB1 has been set up with SPLGF1QM or
SPLF1QQ. The GCM function offers the user various requests and subrequests for

� retrieving job event messages and
� manipulating the contents of the fixed format message queues

For the storage location of the message queues and the data relationship see Figure 47 on page 134.

Each request - in the following referred to as GCM-OPEN request -, uses an SPL to pass information to
VSE/POWER. All following subrequests use also this information, which is for example:

� The XPCC application ID and the PWRSPL user-id to address the message
� The message selection criteria specified by job name and job number in the PWRSPL.
� The request type specified in SPL-function byte SPLGFB1.
� Several optional specifications in the SPL (e.g. SPLXWAIT).

Retrieving Job Event Messages: In order to retrieve job event messages two requests types are offered:

1. GCM-OPEN-KEEP with the GCM-MORE and the GCM-REMOVE subrequests
2. GCM-OPEN-DELETE with the GCM-MORE subrequest

These GCM-OPEN requests may also be specified along with a wait interval in field SPLXWAIT. The
request will then wait at most so many seconds as specied or will return with the message, if available. A
value from 0 to 27962 seconds can be specified. If the specified value is greater, the request will wait for
ever. If the message is available, the application is then posted.

GCM-OPEN-KEEP: This requests a copy of the messages queued at the addressed message queue. All
retrieved messages may later be retrieved again.

GCM-OPEN-DELETE: This request type retrieves messages queued at the relevant message queue. All
retrieved messages are deleted at the moment of retrieval.

Manipulating the Contents of the Message Queues: In order to delete messages from a queue the
GCM-OPEN-REMOVE or the GCM-OPEN-PURGE requests can be used. These requests offer a wider
range of possibilities to delete job event messages than the GCM-REMOVE subrequst provides. Because
the request is issued together with an SPL, the user may

� alter the user-ID and the XPCC application-ID
� change the selection criteria

In contrast to the GCM-REMOVE subrequest this request will delete all job event messages which have
already been retrieved by any preceding GCM-OPEN-KEEP request(s) and which match the selection
criteria.

Function Logic: The overall program logic of the GCM function is shown in Figure 126 on page 364.
Function module IPW$$XTM is called by the cross partition user task, when a new SPL is received. After
pointers and work areas have been established, the parameter checker IPW$$PC is called. If any error
has been detected by IPW$$PC, an XPCC SENDR request is issued to inform the user about the incor-

 Chapter 3. Program Organization 363

rect specified SPL. The task-to-stop indicator is set up and control is returned to IPW$$XT. Otherwise the
specified GCM request is processed. The GCM request is terminated if

� a new SPL occurs
� the user issued XPCC DISCPRG
� an error occurred

The reply buffer is then released and control is returned to IPW$$XT (Figure 126).

 ┌───────────┐
 │ IPW$$XT │
 ├───────────┤
 │ │
 │ │ ┌──┐
 │ │ ┌─┼� IPW$$XTM mainline │
│ │ │ ├──┤
│ │ │ │ define pointer and work areas │
│ │ │ │ │
│ │ │ │ initialize work fields │
│ │ │ │ CALL SPL parameter checker │
│ │ │ │ check return codes of parameter checker │
├───────────┤ │ │ IF (error detected) THEN │

 │ ──────┼─┘ │ send reply │
├───────────┤ │ signal task to stop │

 │ �─────┼─┐ │ ELSE │
├───────────┤ │ │ SELECT (GCM request type) │
│ │ │ │ WHEN (GCM-OPEN-KEEP) process GCM-OPEN-KEEP │
│ │ │ │ WHEN (GCM-OPEN-DELETE) process GCM-OPEN-KEEP │
│ │ │ │ WHEN (GCM-OPEN-REMOVE) process GCM-OPEN-KEEP │
│ │ │ │ WHEN (GCM-OPEN-PURGE) process GCM-OPEN-PURGE │
│ │ │ │ OTHERWISE; │
│ │ │ │ │
│ │ │ │ IF (user buffer still in use) THEN │
│ │ │ │ release buffer │
│ │ │ │ ELSE; │
│ │ │ ├──┤
│ │ └─┼─ return to caller │

 │ │ └──┘
 │ │
 │ │
 └───────────┘

Figure 126. GCM Function Program Logic

 Flagging Mechanism

GCM-OPEN-KEEP and GCM-MORE/GCM-REMOVE: At the beginning of a GCM-OPEN request, all flag
2's of the relevant message queue are removed. Then the specified request type is processed, which is in
this case a GCM-OPEN_KEEP request. Any retrieved message is copied from the message queue to the
user's reply buffer and marked at the point of retrieval with two flags, flag 1 and flag 2 (Figure 127 on
page 365 a). Flags of type 1 are never removed, flags of type 2, however are removed with the begin-
ning of the next GCM-OPEN request. A flag of type 1 is relevant for a later GCM-OPEN-REMOVE
request, a flag of type 2 is relevant for GCM-MORE and GCM-REMOVE subrequests.

Any new GCM-MORE request scans the message queue from the beginning of the queue whereby all
relevant messages are skipped which are flagged with flag 2 (Figure 127 on page 365 b).

Any relevant unflagged message is flagged with flag 1 and flag 2 and copied to the user' s reply buffer
until all relevant messages are retrieved or the user's reply buffer is full (Figure 127 on page 365 c).

364 VSE Central Functions V7R1 VSE/POWER DRM

Finally, when all relevant messages are retrieved, a final GCM-REMOVE subrequest can be issued by the
application which then removes all messages flagged with flag2 (Figure 127 on page 365 d).

 GCM-OPEN-KEEP
delete all flag 2 msgs

 GCM-MORE
1 2 (flags) 1 2 │

 ┌─┬─┬───────────┐ ┌─┬─┬─┼─────────┐
│1│1│ │ │1│1�─┤ │flag 2 msg? - yes, skip

 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤
│1│1│ │ │1│1�─┤ │flag 2 msg? - yes, skip

 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤
│ │ │ │ │ │ �─┘ │next unflagged msg
│ │ │ │ ├─┼─┼───────────┤
│ │ │ │ next │ │ │ │
│ │ │ │ ─────� │ │ │ │
│ │ │ │ step │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │

 └─┴─┴───────────┘ └─┴─┴───────────┘
 a) next b) │
 ┌────────────────────────┘
 � step │ GCM-REMOVE
 ┌─┬─┬───────────┐ ┌─┬─┬─┼─────────┐

│1│1│ │ │1│1�─┤ │flag 2 msg? - yes, delete
 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤

│1│1│ │ │1│1�─┤ │flag 2 msg? - yes, delete
 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤

│1│1│ │ │1│1�─┘ │flag 2 msg? - yes, delete
 ├─┼─┼───────────┤ ├─┼─┼───────────┤

│ │ │ │ │ │ │ │
│ │ │ │ next │ │ │ │
│ │ │ │ ───────� │ │ │ │
│ │ │ │ step │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │

 └─┴─┴───────────┘ └─┴─┴───────────┘
 c) d)

Figure 127. Processing GCM-OPEN-KEEP Followed by GCM-MORE and GCM-REMOVE

Flagging Mechanism with GCM-OPEN-KEEP and GCM-OPEN-REMOVE: Flag 1's are never removed.
This means that more and more messages of a specific message queue are flagged with flag 1 during the
processing of several GCM-OPEN-KEEP requests. Messages flagged by the current GCM-OPEN-KEEP
request are marked with 'A', messages retrieved by a preceding GCM-OPEN-KEEP request are marked
with 'B' in Figure 128 on page 366. A GCM-OPEN-REMOVE request scans the message queue for rele-
vant messages flagged with flag 1 and removes all of them (Figure 128 on page 366 d)) in contrast to the
GCM-REMOVE request, which only deletes messages of request A.

 Chapter 3. Program Organization 365

 GCM-OPEN-KEEP
delete all flag 2 msgs

 GCM-MORE
 1 2 1 2 │
 ┌─┬─┬───────────┐ ┌─┬─┬─┼─────────┐

A │1│1│ │ A │1│1�─┤ │flag 2 msg? - yes, skip
 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤

A │1│1│ │ A │1│1�─┤ │flag 2 msg? - yes, skip
 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤

│ │ │ │ │ │ �─┘ │next unflagged msg
│ │ │ │ ├─┼─┼───────────┤
│ │ │ │ │ │ │ │
│ │ │ │ ─────� │ │ │ │
│ │ │ │ │ │ │ │

 ├─┼─┼───────────┤ ├─┼─┼───────────┤
B │1│ │ │ B │1│ │ │

 ├─┼─┼───────────┤ ├─┼─┼───────────┤
B │1│ │ │ B │1│ │ │

 ├─┼─┼───────────┤ ├─┼─┼───────────┤
 └─┴─┴───────────┘ └─┴─┴───────────┘
 a) b) │
 ┌────────────────────────┘

� │ GCM-OPEN-REMOVE (new select'n
 ┌─┬─┬───────────┐ ┌─┬─┬─┼─────────┐ criteria)

A │1│1│ │ A │1�1┼─┤ │ flag 1 msg? - yes, delete
 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤

A │1│1│ │ A │1�1┼─┤ │ flag 1 msg? - yes, delete
 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤

A │1│1│ │ A │1�1┼─┤ │ flag 1 msg? - yes, delete
 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤

│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ ───────� │ │ │ │ │
│ │ │ │ │ │ │ │ │

 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤
B │1│ │ │ B │1�─┼─┤ │ flag 1 msg? - yes, delete

 ├─┼─┼───────────┤ ├─┼─┼─┼─────────┤
B │1│ │ │ B │1�─┼─┘ │ flag 1 msg? - yes, delete

 ├─┼─┼───────────┤ ├─┼─┼───────────┤
 └─┴─┴───────────┘ └─┴─┴───────────┘
 c) d)

Figure 128. Processing GCM-OPEN-KEEP Followed by GCM-OPEN-REMOVE

GCM-OPEN-PURGE Request: The request deletes all messages from one or more fixed format message
queues.

Depending on the user's specifications in fields SPLGUS and IJBXTOAP, the request will operate on one
ore more queues. If field SPLGUS contains 8 blank characters as generic userid, all queues with the
same contents in field ACIEAPPL and which match also the specification in field IJBXTOAP, will be proc-
essed.

If field SPLGUS contains any other alphameric value, only a specific queue will be processed.

A 'blank' SPLGUS userid may only be specified for a GCM-OPEN-PURGE request.

Any wait specification in field SPLXWAIT is ignored for this request.

366 VSE Central Functions V7R1 VSE/POWER DRM

Interaction Between User Program and VSE/POWER

 USER VSE/POWER
 ───
 │ │
 │ WAIT (RECB)
 │ │
 GCM: request = │

SENDR (SPL) ─────────────────────�│
 │ keep/delete/remove │
 │ RECEIVE (SPL)
 │ │
 WAIT(SECB) │
 │ │
 │ │

│ address XPCC-applid.userid msg
│ queue, get all available msg's,
│ flag/delete them in their queue and
│ collect them into the buffer.
│ IF (all msgs fit in buffer) THEN
│ indicate RC/FDBK OK/EOD (��/�1)
│ ELSE indicate RC/FDBK OK/OK (��/��)

 │ │
│ (user data=EOD, if no more │

 │�─────────────────────────────REPLY
│ msg) + msg buffer, if any │

 │ │
IF (more messages are queued) THEN │

 │ │
 │�...
 │ │ .

│ WAIT(RECB) for retrieve .
│ │ more message request .

 GCM-MORE: │ .
request more msg's │ .

 │ │ .
│ (user data = PXUATGCM+ │ .

 SENDR────────────────────────────�│ .
 │ null buffer │ .

│ get more messages, flag/delete .
│ them in their message queue, and .
│ collect them into buffer. .

 │ │ .
│ (user data=EOD, if all msg's │ .

 │�─────────────────────────────REPLY .
│ fit into buffer + msg buffer,│ .
│ if any messages in buffer │ .

 │ │ .
 │ │ .

loop till all msg's are retrieved.................................
 ELSE; │
 │ │
 │ WAIT(RECB)

│ wait for any other action
 │ │

IF (retrieved msgs can now │
│be deleted) THEN │

 GCM-REMOVE: │
 │ (user data=PXUATDEL+ │
 SENDR────────────────────────────�│
 │ null buffer) │

WAIT(SECB) delete all retrieved msg's
│ in addressed message queue
│ user data=��/�� + │

 │�─────────────────────────────REPLY
 ELSE; null buffer │
 │ │
 │ │
 │ │

.... process any other activity

Figure 129. GCM Function Control/Data Flow

Specification of Wait Intervals - Posting:

 Chapter 3. Program Organization 367

Waiting GCM user task Message generating task
──────────────────────────────────┬──

│ - execution reader task
│ - execution writer task
│ - timer task
│ - network receiver task

 │
│ currently queuing the fixed format message
│ to the message queue in IPW$$NS

 │
 ┌─┐

TCB �────────────┐ ACIE │ │ current f.f. msg
 ┌───────────┐ │ ┌───────────┐ └┬┘
 │ │ │ │ │ │
 ├───────────┤ │ ├───────────┤ ┌─┬─┬─┬─┬�────────┐

│TCEB+2 �─┼───┐ │ │ ─────┼───────�│ │ │ │ │ │
├───────────┤ │ │ ├───────────┤ └─┴─┴─┴─┴─────────┘
│ : │ │ │ │ │ 1. The CI2 has been locked previously
├───────────┤ │ │ ├───────────┤ 2. the message is queued
│TCF13 �─┼─┐ │ └──┤ACIETCB │ 3. the waiting user task, if existing,
├───────────┤ │ │ ├───────────┤ is addressed by field ACIETCB
│ │ │ │ │ │ 4. the message event is indicated in TCF13
└───────────┘ │ │ └───────────┘ ┌─────5. TCEB of user task is posted │

│ │ │ 6 the CI2 is unlocked │
 │ └──────────────────────┘ │
 │ │
 └──┘
o When the waiting user task is
terminated, the address of its
TCB is cleared in the ACIE in

 field ACIETCB.
Access serialization is controlled
by locking and unlocking the

 CI2.

o POWER main task:
As soon as the posted TCEB is detected by the VSE/POWER task dispatcher,
the user task is dispatched and the event is analysed (in IPW$$XTS, IPW$$XTM):

IF a message is queued:
- the wait interval is cleared
- the message is passed to the user
-a wait is set up for the next request.
IF other event is detected:
- analyse event and handle
accordingly (PEND, PSTOP,..)

Figure 130. GCM Function Control/Data Flow (cont.)

Issue Job Completion Message Due to PRELEASE.: It may occur that jobs are in the reader queue
which have been submitted without the option 'issue completion message'. For example jobs read in via
the local reader or received from non-VSE/POWER nodes do not have this option, because the option
'issue completion message' can be used only, if jobs are submitted via the spool-access-support. In order
to get a completion message even for this kind of jobs, an option can be used when a PRELEASE
command is issued via the spool-access-support. This option is the same option which can be used when
a job is submitted to the reader queue using the PUT service of the spool-access support.

Main Rules For Issuing Completion Messages To The Releaser

1. A completion message for the releaser has the same layout as a completion message for the sub-
mitter. No indication is set whether the completion message has been issued for a releaser or a
submitter.

But a completion message for a releaser contains always the original jobnumber (JCMFONUM) which
is the number of the job at the time the PRELEASE command has been issued. This original
jobnumber is useful if a job is sent to another node for execution, because usually a job gets a new
jobnumber on another node. If the job is executed at the same node where the PRELEASE command
has been issued, the original jobnumber(JCMFONUM) is the same as the jobnumber (JCMFNUM).

368 VSE Central Functions V7R1 VSE/POWER DRM

2. A completion message for the releaser is issued no matter if a completion message for the submitter
has to be issued or not.

3. A completion message for the releaser is issued in addition to a completion message for the submitter.

4. If the releaser is the same as the submitter, only one completion message is issued.

In this case the completion message issued is the message for the submitter, which means it may
contain an original jobnumber (JCMFONUM) or not, depending on the option used at the time the job
was submitted.

The releaser is the same as the submitter, if both use the same application-id and user-id, and if both
are running on the same system, which means node-id and system-id (of a shared complex) are the
same.

5. A completion message for the releaser is issued only if the PRELEASE command was processed
'successfully'.
If the message 1R88I NOTHING TO RELEASE has been issued, the PRELEASE command was proc-
essed unsuccessfully, which means a completion message for the releaser is not issued.
The message 1R88I NOTHING TO RELEASE is issued for example, if the job to be released has
already a disposition of D or K.

6. The attribute 'issue a completion message for the releaser' can not be reset, neither by a PALTER nor
a PHOLD nor any other command.

7. If more than one PRELEASE command with the indication 'issue a completion message to the
releaser' is used, only one completion message to the releaser is issued using the application-id and
user-id of the last successful PRELEASE command. Note that this may happen only in special situ-
ations, for example if a PHOLD or PALTER command has been issued to set the job in non-
dispatchable state before the job has been executed.

8. The attribute 'issue a completion message for the releaser' is a temporary one.

a. It is no longer available, if the job has been executed.
b. It is no longer available, if the POFFLOAD command is used, to write the job to tape.
c. It is not inherited to a child job which has been created by a parent job (for example when a job is

created by using the DISP=I operand within the * $$ PUN statement when a job submits another
job using the spool-access-support).

9. In a shared environment a completion message for the releaser is routed back to the system on which
the PRELEASE command was issued.

If the PRELEASE command was issued twice, although on different systems, only one completion
message for the releaser is issued, namely to that system which issued the last 'successful' PRE-
LEASE command.

10. In a network a completion message for the releaser is routed back to the node on which the PRE-
LEASE command was issued.

Rules for jobs within a network:

a. The attribute 'issue a completion message for the releaser' is sent together with a job through a
network.

If a job is sent from node A to node B, the completion message for the releaser is sent back from
node B to node A, if a PRELEASE command was issued on node A as long as the job was on
node A.

This completion message for the releaser is sent back from node B to node A only once. If the job
is executed on node B once more, no second completion message for the releaser is sent back to
node A.

 Chapter 3. Program Organization 369

b. The attribute 'issue a completion message for the releaser' is not sent together with the PRE-
LEASE command through a network.

A completion message for the releaser is not sent back from node B to node A, if the job has
been sent from node A to node B and thereafter the PRELEASE command is sent from node A to
node B and the PRELEASE is executed on node B.

c. Only one occurrence of the attribute 'issue a completion message for the releaser' is sent together
with a job through a network.

Consider the following example: a PRELEASE command is issued on node A and thereafter the
job is sent to node B. Another PRELEASE command is issued on node B and thereafter the job
is sent to node C. If the job is executed on node C, a completion message for the releaser is sent
to node B which is the last node where the PRELEASE command was issued before the job was
sent to another node.

d. Two 'completion messages for the releaser' may be issued:
1) one 'completion messages for the releaser' for the local node
2) one 'completion messages for the releaser' for the sending node

This happens in the following case:
A PRELEASE command is issued on node A and thereafter the job is sent to node B. Another
PRELEASE command is issued on node B and thereafter the job is executed on node B. A com-
pletion message for the releaser is sent to node A and is also issued for the releaser on the local
node B.

Only one completion message for the releaser is issued, if the job is sent back from node B to
node A, and on node A another PRELEASE command is successfully processed. The completion
message for the releaser is issued due to the last PRELEASE command which means the original
jobnumber(JCMFONUM) is the same as the jobnumber (JCMFNUM).

e. If a job is sent to another node for execution and is written to tape using the POFFLOAD
command and read in later on again using the POFFLOAD command, the attribute 'issue a com-
pletion message for the releaser' has been lost, and no 'completion message for the releaser' is
issued. This happens for any completion message: no message is issued for a releaser on the
local node and no message is issued for a releaser on a remote node. This happens always, no
matter on which node the job has been written to tape: either on the original node or the execution
node or any intermediate node.

Rules concerning the original jobnumber:

a. If a job is sent to another node and back to the 'original' node where the PRELEASE command
has been issued and is now executed on the 'original' node, the original jobnumber (JCMFONUM)
is usually not the same as the current jobnumber (JCMFNUM), because sending jobs to other
nodes usually assigns new jobnumbers.

b. It may occur that the original jobnumber (JCMFONUM) of a message for a submitter is not the
same as the original jobnumber (JCMFONUM) of a message for a releaser, if the job was sub-
mitted on node A, sent to a node B and has been released on node B. The original jobnumber of
a message for a submitter is the jobnumber on node A where the job has been submitted. The
original jobnumber of a message for a releaser is the jobnumber on node B where the job has
been released.

Special Situations For Completion Messages: The following describes a few 'special' situations.

1. The attribute 'issue a completion message for the releaser' is a temporary one and is lost as soon as
the job has been executed completely.

a. If a job runs several times due to DUEDAY operands, a completion message for the releaser is
issued only once, if a PRELEASE command was successfully issued once.

2. The attribute 'issue a completion message for the releaser' stays until the job has been executed com-
pletely. No completion message for the releaser is issued and the attribute is not changed:

370 VSE Central Functions V7R1 VSE/POWER DRM

a. If the job's execution has not yet started and
1) If VSE/POWER is terminated normally (via the PEND command) or abnormally (for example

due to a program check).
2) If the PALTER command is used to change the disposition to H or L and later on back again

to D or K.
3) If the PALTER command is used to change the disposition to H or L and if later on the PRE-

LEASE command is used without the indication 'issue message to releaser'.
b. If the job's execution has started and

1) If VSE/POWER is terminated abnormally.
2) If recovery is done for the processing system using the PRESET comand.

3. Details for jobs within a network:

The completion messages are sent back from the execution node to the original node. But the com-
pletion messages is issued only if

a. the execution node is a VSE/POWER node
b. the execution node has the 'correct level' of VSE/POWER (version 6.1 and later, which means

VSE/ESA 2.1 and later).
c. the path via the network is available, which means all the nodes concerned with passing the

message must be 'signed on'.

Interaction A completion message for the releaser is issued, if:

1. a PRELEASE command (free fromat or not) is sent via the CTL-service
2. the field SPLGFB2 is set to SPLGF2MR
3. the field SPLGFB1 is set to SPLGF1QM

The destination of a completion message is defined by:

1. the XPCC-application-id of the CTL-service
2. the user-id of the CTL-service
3. in addition without having to be specified by the user

a. the system-id in an shared environment
b. the node-id in a network

A completion message for the releaser may be retrieved using the GCM-service the same way which is
used to retrieve a completion message for the submitter.

SPLGF2MR can not be set using the FUNC operand of the PWRSPL macro.

SPLGF1QQ, which causes to issue job event messages, is not supported.

Messages and Codes No special messages or codes exists:

1. Validation of XPCC-application-id is done as for all other cases.

2. Validation of user-id is done as for all other cases.

3. Validation of function byte is done as for all other cases.
SPLGFB2 is not validated (if set during a GET- or PUT-service).

4. layout of a completion message for the releaser is the same layout of a completion message for the
submitter (with the exception of the original jobnumber, see above 'Main Rules For Issuing Completion
Messages To The Releaser').

Documentation This support is for 'internal use' only, which means it is only to be used by REXX. It is
described only in the VSE/POWER Diagnosis Reference Manual. It is not described in the VSE/POWER
Application Programming.

 Chapter 3. Program Organization 371

Implementation CAF-code used is @D61IDHS and @KXA1255.

PWRSPL: The function code SPLGF2MR is defined to issue completion message to the user who issued
PRELEASE command.

There is no support to validate SPLGF2MR, neither if it is set for any other (GET,PUT,GCM) service
(where it is just ignored) nor if this bit is set and SPLGF1.. is missing or invalid (also no completion
message to the releaser will be issued).

No validation is done neither by IPW$$PC nor by IPW$$XTC. Only IPW$$CR tests for SPLGF2MR, and
expands its meaning into the queue record.

IPW$DQR and IPW$DQC.

1. Following fields are defined to identify the releaser:

a. QRMRSI containing system_id (for shared)
b. QRMRUS containing user_id
c. QRMRAP containing application_id

2. QR-OP2 contains O2MR indicating 'issue completion message to releaser'

3. QR-OP2 contains O2MQ indicating 'issue completion message to releaser using info out of queue-
record', because info out of job header record has been used 'once' and should not be used a second
time.

This indication is used in the following cases:

a. Job J is 'PRELEASED' at node A and sent to node B and at node B the job J is 'PRELEASED'
twice, but only for the first PRELEASE a message is sent back to A to be consistent with local
function.

b. Job J is 'PRELEASED' at node A and sent to node B and at node B the job J is written to tape. If
the job J is spooled back to the reader queue from the tape and executed, no completion
message should be issued in order to be consistent with 'local message issuing'. In order to avoid
lots of code to clear the information in the job header record, the bit QRO2MQ is used.

IPW$DNR Following fields are defined to identify the releaser:

1. NJHPMRAP containing application_id
2. NJHPMRUS containing user_id
3. NJHPMRND containing node_id
4. NJHPMRSI containing system_id (for shared)
5. NJHPMRON containing original jobnumber

IPW$DTC A interface bit between IPW$XRE and IPW$$MS is defined to use correct application_id when
building a completion message for the releaser.

IPW$$CR: The function codes SPLGF1QM and SPLGF2MR are processed near label PRELS20: If both
used, update queue-record

1. with indication 'issue completion msg due to PRELEASE'
2. with user-id out of SPL
3. with appl-id out of XTWAREA
4. with system-id out of DMB

If just one of the 2 function codes SPLGF1QM and SPLGF2MR is used, no completion message is issued
and no error return code is set.

372 VSE Central Functions V7R1 VSE/POWER DRM

IPW$XRE: The completion message for a releaser is issued just once. Once a completion message for
a releaser is issued, the information thereabout must be updated and written to the queue file. Therefore
the completion message for a releaser is issued before a queue record is written back to the queue file
using the macros IPW$$DQ and IPW$$FQ near label XQ94 and not at the label where the completion
message for a submitter is issued.

If a completion message for the releaser has to be issued, use existing macro IPW$NTY with existing
parameter 'GCM' to issue completion message but pass appropriate information for user_id, node_id, and
system_id:

1. If information for issuer can be found in queue-record, take the information out of the queue-record.
2. If information for issuer can be found in job header record take the information out of the job header

record.

The application_id for the completion message is chosen by module IPW$$MS which builds the com-
pletion message. Use new parameter TC15MR to signal IPW$$MS to retrieve the application_id for the
releaser.

If information for a releaser can be found in the job header record and the queue record, make sure the
completion message is sent to both releasers, one to the other node and one to the local node. Set
indication that information out of job header record has been used to issue completion message to avoid a
second completion message in the case the job is executed a second time. This indication is set in the
queue record, because the job header record can not re-written to the spool file.

Having issued a completion message due to the information in the queue record, reset information in
queue record (unconditionally).

If the releaser and the submitter are the same (same user_id, same application_id, same node_id, same
system_id), omit message for the releaser, but issue only the message for the submitter.

IPW$$MS: When a completion message is built near label MSNMR04 TC15MR and QRO2MR are used
to retrieve the appropriate application_id for the completion message. Both indications are set in
IPW$XRE.

IPW$$NT: The information about completion message in job header record is updated with information
out of queue record (in routine NTPRCJB after having updated the due date information).

IPW$$OF: The information about completion message in the queue record is updated before writing the
queue record to tape (near label SQW0). Set indication in queue record that information out of job header
is not to be used to issue a completion message for the releaser, because it is too difficult to update the
job header record and write the updated job header to tape.

External Device Support

The external device support interface, also referred to as Device Serving Support (DSS) is the general
interface for all components residing in another partition to perform as VSE/POWER LST/PUN tasks. The
VSE/POWER DSS supports any devices by providing a standard interface which allows the designers of
the device to design their own specialized device support. Any IBM subsystem or component using the
device serving support (DSS) is called Device Driving System (DDS).

� The external device support consists of a set of interfaces, controls and capabilities which permit
moving certain functions from VSE/POWER into another partition. In this case, the functions moved
are accessing the VSE/POWER spool files and driving the device.

� The external device continues to appear to the operator as a VSE/POWER controlled device. This
concept is referred to in the following design as 'single system image'.

 Chapter 3. Program Organization 373

� Output scheduling remains under control of VSE/POWER.

The VSE/AF XPCC support is utilized for communication between the DSS (VSE/POWER) and the DDS.

 │
 ┌─────────────────┐ XPCC ┌───────────────┐ ┌──────┐
 │ V │ DST │<────│────>│ │<─────>│ DEV1 │
│ S │──────│ . │ │ └──────┘
 │ E │ DST │<────│────>│ DDS 1 │<──┐
│ / └──────│ XPCC │ │ │ ┌──────┐
│ P : │ │ │ │ └──>│ DEV2 │
 │ O ┌──────│ XPCC └───────────────┘ └──────┘
 │ W │ DST │<────│──┐
│ E ┌──────│ . │
│ R │ DST │<──┐ │ │ ┌───────────────┐ ┌──────┐
 └─────────────────┘ │ . └─>│ │<─────>│ DEV3 │
 └──────>│ DDS 2 │ └──────┘
 XPCC │ │<──┐ ┌──────┐

│ └───────────────┘ └──>│ DEV4 │
 . └──────┘
 │
 .
Device Serving Support──>│<────Device Driving System (DDS)────
 (DSS) .
DST = Device Service Task

Figure 131. Device Serving Support - Device Driving System Overview

Device Service Task (DST)

The device service task performs all of the functions necessary to support a external device running under
the control of a DDS in another partition. It provides the interface between the DDS and the rest of the
VSE/POWER functions. It sends any order to the DDS and processes any order responses as well as the
GET or CTL function of the SAS interface.

Starting an External Device: When the PSTART DEV command is entered by the operator, the
VSE/POWER command processor attaches a device service task. The DST attempts first to establish a
communication path to the corresponding DDS. The XPCC application id is the DDS name as specified in
the PSTART command. VSE/POWER assumes that the DDS is started when a PSTART command is
given by the operator and that the DDS has the 'connect any' request outstanding in order to satisfy a
connection request from VSE/POWER.

The DST then issues a two-minute timer event and waits for the connection completion. If the timer
expires before the communication path is established, message 1QY0I is issued to the device owning
operator (person who issued the PSTART command), indicating that the DDS needed to support the
device either failed or is not yet started. The message is to convey to the operator that there might be a
problem with the DDS and that some sort of intervention may be required. The operator in turn may
decide either to let the DST wait until the connection completes or to stop the terminal printer by means of
the PSTOP DEV command.

If the operator issues a command to the terminal printer prior to the successful start of the device, the
command is rejected by the VSE/POWER command processor during this phase of initialization. If,
however, the command is a PSTOP DEV command, the command processor informs the DST to abandon
the connection attempt.

374 VSE Central Functions V7R1 VSE/POWER DRM

When the connection completes, VSE/POWER expects that the DDS requests the transmission of the
'start device' order. If the first request from the DDS is not a 'return order' request, VSE/POWER discon-
tinues the communication path by issuing the XPCC FUNC=DISCPRG macro instruction. The 'start
device' order allows the DDS to perform its device specific startup process. It is the responsibility of the
DDS to respond to VSE/POWER, indicating if the device is ready or not. If the device cannot be started,
the DDS indicates the reason in the response order record. Following reasons are seen so far:

 � Device unknown
� Device in use (busy)
� Device out of service
� Device start rejected
� Invalid parameters passed
� Start of device not accepted due to lack of resources

The 'start device' order control record contains among others PSTART command parameters in fixed
format. VSE/POWER allows to specify device related information via the PARM operand on the PSTART
command. The PARM operand is not checked by VSE/POWER and the unaltered command is passed to
the DDS in the 'start device' order control record.

If the DDS responds saying that the device could not be started due to one of above mentioned condi-
tions, the DST issues message 1QY1I to the command originator, telling him why the device is not started
and discontinues the communication path. The DST then detaches itself after cleaning up of all acquired
resources.

If the 'start device' order response is received by the DST and the DDS indicated that the device is
started, message 1QY3I is displayed on the system console and also sent to the device owner. The
external device control block (EDCB) is marked that the device is started. The DST is then ready to
accept GET/CTL requests from the DDS. Prior to requesting the first output queue entry, the DDS can
send a 'set logical destination' order to VSE/POWER. This order must be sent, when the external device
should process output queue entries which are destined for a destination other than the external device
name. Up to 8 logical destinations can be specified in the 'set logical destination' order, thereby over-
writing the default logical destination name which is the PSTART device name; the latter must still be used
to address the external device by means of the DEV commands.

 Chapter 3. Program Organization 375

 DDS VSE/POWER

 IDENTIFY (XPCC FUNC=IDENT) │
 │ │
 CONNECT any ─(XPCC FUNC=CONNECT)───> │
 │ │
 wait (CECB) │

│ <──────────────────── CONNECT with DDS─id
 │ wait (CECB)
 │ wait (RECB)
 get 'start device' order: │
 SENDR:─(return order)────────────────> │
 │ RECEIVE
 wait (SECB) � pass 'start device' order
 │ <───(order control record)──── REPLY
 │ │
 respond to order: │
SENDR:─(order reponse record)────────> │

 │ RECEIVE
 wait (SECB) � process response
 │ <───────────────(ok)────────── REPLY
 │ │
 │ wait (RECB)
 set logical destinations: │
SENDR:─(set log. destination order)──> │

 │ RECEIVE
 wait (SECB) � save log. destinations
 │ in EDCB
 │ <───(order response record)─── REPLY
 │ │
 get output (generic GET): │
 SENDR: ───(SPL)───────────────> │
 │ RECEIVE
 wait (SECB) │
 │ <───(SPL, describing output)── REPLY
 │ │
 :

Figure 132. Normal Protocol to Start a Communication

Processing of Output Queue Entries: If the DDS is ready for work, it should issue a generic
GET request in order to retrieve the first eligible output queue entry destined for the terminal printer. The
device service task scans the specified class chains for a queue entry either in disposition 'D' or 'K' and
destined for the device, which means the 'to' userid of the queue entry concerned must match one of the
logical destination names assigned to the external device.

Note: The logical destination “LOCAL” will offer output entries to the DDS with either a "to" userid of
“LOCAL” or which are destined for local processing.

Since the DDS is seen as a logical extension of VSE/POWER, no password checking is done, that means
that all output queue entries destined for the terminal printer are passed to the DDS, regardless if a pass-
word is associated with the queue entry or not.

If no output queue entry can be selected, the device service task informs the operator via message 1QY2I,
that the device is waiting for work and the GET request is returned, indicating that no queue entry is
available. The DST then waits for another request from the DDS, a VSE/POWER operator command or for
the arrival of an output queue entry destined for the terminal printer.

Note: A wait for order/signal request can only be given, after VSE/POWER has responded to a generic
GET request, saying that no queue entry is eligible for processing.

376 VSE Central Functions V7R1 VSE/POWER DRM

After the DDS received the 'no queue entry available' indication it can either terminate the communication
path, change the logical destination names by means of the set logical destination order, or wait until a
queue entry becomes available or an order is queued. The device service task responds to the 'waiting
for order/signal' request with either:

� An order control record
� A signal control record, indicating that a queue entry is placed in the local queues, ready for proc-

essing.

The DDS must react to the order according to the protocol, when an order is passed back by
VSE/POWER and then redo the 'waiting for order/signal' request if necessary.

If a queue entry is added to the VSE/POWER output queues destined for a logical destination, the
VSE/POWER add queue entry function routine scans the External Device Control Block (EDCB) queue for
a matching device which is waiting for work for that class. If such an entry is found, the 'output arrived'
signal control record is built and added at the tail of the order queue anchored to the EDCB and the DST
is posted to forward the signal to the DDS. When the 'output arrived' signal is received by the DDS, the
DDS can then re-issue the GET request.

Even if an 'output arrived' signal is passed to the DDS, VSE/POWER does not guarantee that an output
queue entry is available when the DDS does a generic GET the next time. The queue entry might already
been deleted, modified by the system operator or accessed by another DDS.

If, however, the DDS decides not to wait, it can terminate the communication path by issuing the XPCC
FUNC=DISCONN or DISCPRG macro. In this case VSE/POWER informs the system operator as well as
the device owner via message 1QY5I, frees all resources occupied by the DST, unchains the EDCB from
the EDCB chain and detaches the DST.

If, however, an eligible queue entry is found, the DST passes information, describing the characteristics of
the queue entry, such as FCB name, forms-id etc., to the DDS. The DDS may now decide if a setup is
necessary or not. This, however, is the responsibility of the DDS. If a setup is required (e.g. forms or flash
change), the DDS must send a 'send message' order control record to VSE/POWER. The 'send message'
order contains information to whom VSE/POWER should send the message as well as the free format
message itself (see “Orders from the DDS (Inbound)” on page 383 for more details on how to send mes-
sages to VSE/POWER). The DDS then waits for re-activation by the operator (PGO). VSE/POWER for-
wards the unaltered message to the specified operator. If requested, the DST holds a copy of the
message in storage, so that the central operator can interrogate by means of the DM command why the
task is operator bound. This is helpful, in the case where the 'device preparation' message does not reach
its destination.

After the send message order is sent, the DDS must send a 'waiting for order/signal' request to
VSE/POWER. This causes that VSE/POWER passes the first queued order or signal to the DDS. When,
however, no order or signal is queued, the DST waits until an order or signal will be queued. If the
returned order is not a reactive or setup device order, the DDS must reissue the 'waiting for order/signal'
request until it received one of above orders.

If the operator enters the PGO DEV command, indicating that the intervention has been satisfied, the
VSE/POWER command processor builds a 'reactivate device' order control record, anchors the order at
the tail of the order queue of the appropriate DST and posts the DST to forward the order to the DDS.
After the DDS received the 'reactivate device' order, it can continue processing. Figure 133 on page 378
shows the details about the necessary steps. The DDS can then retrieve logical records from the previ-
ously acquired queue entry using the GETRQ request of the SAS interface after it has responded to the
'reactivate device' order with an order response control record.

 Chapter 3. Program Organization 377

 DDS VSE/POWER
 :
 │ │
 get output (generic GET) │
 SENDR: ──(SPL)────────────────> │
 │ RECEIVE SPL

│ � check SPL
 wait (SECB) � find eligible queue entry

│ � fill up SPL
 │ │
 │ <──(SPL, describing output)─── REPLY:
 │ wait (RECB)
 send message order: │
 SENDR ───────────────────────────> │
 │ RECEIVE
 wait (SECB) � process order

│ ─ inform operator
 │ <────(order response record)─── REPLY
 │ wait (RECB)
 │ │
 wait for order/signal: │
 SENDR: ───(wait for order/signal)───> │
 │ RECEIVE
 wait (SECB) │
 :
 :

│ <────(reactivate order)───── REPLY
 │ │
 │ wait (RECB)
 respond to order: │
SENDR:─(order reponse record)────────> │

 │ RECEIVE
 wait (SECB) � process response
 │ <───────────────(ok)────────── REPLY
 │ │
 │ wait (RECB)
 GETRQ: │
request first/next records │

 SENDR──────────────────────────────> │
 │ │
 :

Figure 133. External Device Reactivation Protocol

When the operator (device owner) enters the PSETUP DEV command in order to verify the just processed
printer setup or to manually adjust the forms alignment, the VSE/POWER command processor builds a
'setup device' order control record, anchors the record at the end of the order queue of the DST con-
cerned and posts the DST to forward the order to the DDS. After the DDS has received the 'setup device'
order, it can either reject the order or handle the order accordingly. If the 'setup device' order is rejected
by the DDS as indicated in the order response control record, the DST issues message 1QY6I to inform
the command issuer.

If the DDS accepts the 'setup device' order, it must request the first n records composing the operator
wanted number of pages from VSE/POWER. This is done by using the GETRQ request of the SAS inter-
face. Furthermore the DDS is responsible for changing all alphabetic characters to 'X' and all numeric
characters to '9', if required, before printing the page on the external device. When the number of
requested pages is processed, the DDS must send a 'setup processed' signal to VSE/POWER. If the DST
receives such a signal, it automatically re-positions the queue entry at the beginning and waits for reacti-

378 VSE Central Functions V7R1 VSE/POWER DRM

vation by the operator (device owner) by means of the PGO DEV command. The DDS must then send a
'waiting for order/signal' request in order to get the reactivate device order or any other order.

After end-of-data is detected by the DDS and the DDS has ensured that all data is printed out, the DDS
notifies VSE/POWER to close the queue entry. Depending on the disposition, the queue entry is either
purged from the output queue or returned to the queue with disposition 'L'.

After the DDS has processed a queue entry it can ask for new work by issuing another generic GET
request.

At any time while retrieving data records for a queue entry, the DDS may 'quit' processing and free the
queue entry. VSE/POWER considers the queue entry as not being processed completely and re-queues
the queue entry with its original disposition for output selection by other DDSs.

Flushing an Output Queue Entry: If the operator enters the PFLUSH DEV command, requesting
to flush printing of the current queue entry, the VSE/POWER command processor builds a 'flush' order
control record and anchors the order at the end of the order queue associated with the DST concerned
and posts the DST to forward the order. After the DDS has received the order, it can still continue
printing; for example, the DDS may request more data records from VSE/POWER by means of the
GETRQ request. It is the responsibility of the DDS to decide when the flush should take place. The
queue entry is flushed by sending a 'close queue entry' request to VSE/POWER. After the DST has
responded to the close request, the DDS can request a new output queue entry.

If flush with HOLD is requested, the DDS must continue printing until the end of the current page is
reached. This in fact could require that the DDS asks for the next n records of the queue entry to be
flushed. When the end of the page (or any other reasonable boundary) is reached as determined by the
DDS, the DDS can take a checkpoint before flushing the queue entry.

 Chapter 3. Program Organization 379

 DDS VSE/POWER
 :
 return order: wait (RECB)
 SENDR: ───(return order)─────────> │
 │ RECEIVE
 │ │
 wait (SECB) │

│ <────(flush order)────────── REPLY
 │ │
 respond to order: │
SENDR:─(order reponse record)────────> │

 │ RECEIVE
 wait (SECB) � process response
 │ <───────────────(ok)────────── REPLY
 │ │
 GETRQ: │ <──────┐
request next records wait (RECB) │

 SENDR──────────────────────────────> │ repeat until
 │ │ page boundary
 wait (SECB) │ reached
 │ <───────(data buffer)───────── REPLY │
 │ │ ─────────────┘
 :
 . empty device pipeline │
 │ wait (RECB)
CHECKPOINT: │
 take checkpoint │
 SENDR ───checkpoint control record────> │
 │ RECEIVE

│ � perform checkpointing
 wait (SECB) │
 │ <──(checkpoint response rec)── REPLY
 │ │
FLUSH─HOLD │
 flush current queue entry │
 SENDR ─(user data='flush─hold')───────> │

│ � re─queue queue entry
 wait (SECB) if applicable
 │ <─────────────────(ok)──────── REPLY
 │ │
 :

Figure 134. Flush HOLD Protocol

Restarting an Active Output Queue Entry: If the operator enters the PRESTART DEV
command, the VSE/POWER command processor builds a 'restart device' order control record and queues
this record at the end of the order chain. The order is then passed to the DDS by the DST. It is the
responsibility of the DDS to decide when the restart should take place. The DDS must calculate the logical
record number associated with the page or line from where to begin and send a 'restart control record' to
VSE/POWER. VSE/POWER then re-positions at the record specified in the restart control record and
passes the next n records back to the DDS. If the specified record number is outside of the valid range,
appropriate return and feedback code is setup and returned to the DDS.

380 VSE Central Functions V7R1 VSE/POWER DRM

Termination of an External Device: An external device is stopped when the operator enters the
PSTOP DEV command or at VSE/POWER shutdown time when the operator has given the PEND
command. The VSE/POWER command processor builds a 'stop device' order control record and adds it to
the order chain of the appropriate DST. The DST is then posted to forward the order to the DDS. After
the 'stop device' order has been sent, the DST waits for the response from the DDS. When an active
external device is stopped, the DDS must quiesce its output processing by completing the current queue
entry selected for the external device. This allows the DDS to drain the device pipeline. If the pipeline is
emptied, the DDS can stop the external device and signal the DST, that the device is stopped. When the
device stopped signal is received, the DST informs the device owner and the command issuer via
message 1QY4I and terminates the communication path. The DST then detaches itself after cleaning up
and releasing of all resources.

However, the operator (device owner) can request to stop the external device immediately. In this case,
the DDS should purge the data already buffered in the external device, if possible, and free the queue
entry. The DST re-queues the queue entry with its original disposition.

 DDS VSE/POWER
 :
 return order: wait (RECB)
 SENDR: ───(return order)─────────> │
 │ RECEIVE
 │ │
 wait (SECB) │

│ <────(stop device order)──── REPLY
 │ │
 respond to order: │
SENDR:─(order reponse record)────────> │

 │ RECEIVE
 wait (SECB) � process response
 │ <───────────────(ok)────────── REPLY
 │ │
 finish up current queue entry │
 GETRQ: │ <──────┐
request next records wait (RECB) │

 SENDR──────────────────────────────> │ repeat until
 │ │ end─of─data
 wait (SECB) │ reached
 │ <───────(data buffer)───────── REPLY │
 │ │ ───────┘
 :
 │ wait (RECB)
 . empty printer pipeline │
 . stop printer │
 │ │
 SENDR ─(SIGNAL: 'device stopped'────> │

│ � process signal
│ � inform operator

 │ <────(null buffer)──────────── REPLY
 . check VSE reason code │
 │ � discontinue
 DISCONNECT ──────────────────> communication path
 │ <─────────────────────── DISCONNECT

│ � detach DST

Figure 135. External Device Termination Protocol

When stop with RESTART is requested, the DDS must continue printing until the end of the current page
or any other reasonable boundary is reached. If the boundary is reached as detected by the DDS, a
checkpoint should be taken. This is done by sending a checkpoint control record to VSE/POWER. After

 Chapter 3. Program Organization 381

the checkpoint is performed the DDS must return the queue entry currently being printed to the
VSE/POWER spool file. The queue entry is then returned to the spool file with its original disposition so
that it can be processed at a later time.

Abnormal Termination: If the DST determines that it has reached an abend situation (usually
caused by a protocol violation of the DDS) it cannot recover from, it issues a XPCC FUNC=DISCPRG
macro instruction at the level of failure occurred. The output queue entry currently being processed by the
DDS is returned to the class chain with its original disposition.

If the DDS detects an unrecoverable error it can either abend, in which case VSE/AF notifies
VSE/POWER about the situation or it can discontinue the communication path by issuing the XPCC
FUNC=DISCPRG macro. In both cases, VSE/POWER informs the system operator and the device owner
via message 1QY5I about the abnormal termination of the DDS, performs the necessary accounting, re-
queues the queue entry being processed in the class chain and detaches the DST.

If VSE/POWER abends, the VSE/AF XPCC support informs the DDS about the abnormal termination of
VSE/POWER. The DDS can empty the printer pipeline and save the last processed record number. This
number can then be used by the DDS to resume processing of the queue entry from the point in the
queue entry represented by the record number.

Note: Associated with each record VSE/POWER passes an internal record number. This number may
be used to request restarting at that particular record.

When VSE/POWER is brought up again, all queue entries marked active are put back in the class chain
with the original disposition, so that they can be processed by any other output task capable of processing
them.

Checkpoint information associated with a queue entry is returned by VSE/POWER when a DDS starts
accessing the queue entry (GET function). The DDS can then decide if it wants to continue from the last
checkpoint, or from the record number saved by the DDS at the point when VSE/POWER abnormally
terminated, or from the beginning. This can be used to resume processing of an output queue entry at a
later time from the point in the output queue entry represented by the last checkpoint.

Whenever a problem occurs during output processing, the DDS may issue a “quit and lock” request for the
current queue entry. This causes VSE/POWER to re-queue the queue entry with a temporary disposition
of “Y” hinders any VSE/POWER task from accessing this queue entry until its disposition is changed via
the PALTER command. Disposition “Y” is also forced when the XPCC communication path is discontinued
and the queue entry was flagged to be held because of output processing failure, also called protect
option.

Orders from VSE/POWER (Outbound)

Any operator command which either affects the DDS or needs information from the DDS is sent as an
order to the DDS for processing. Each command is parsed and converted into an order. These orders
are then passed to the DDS. The following orders are passed from VSE/POWER:

 � Start device (PSTART)
 � Stop device (PSTOP)
 � Restart device (PRESTART)
 � Reactivate device (PGO)
 � Setup device (PSETUP)
� Flush current processing (PFLUSH)
� DDS defined command (PXMIT)

382 VSE Central Functions V7R1 VSE/POWER DRM

Orders are processed on a 'FIFO' basis. No attempt will be done by VSE/POWER to re-arrange the orders
depending on an importance level. New orders will be still accepted, even if the PSTOP DEV command
was given.

Each order contains in its header section the userid and the node name of the command originator. If the
command is entered by the central system operator the userid will be blank and the node name is the
local node name, if one is present, or blank.

VSE/POWER requires that the DDS immediately analyses the order and answers with the order response
control record, indicating if the order is accepted or what type of error condition occurred. If the order is
not accepted by the DDS or the DDS indicated some other error, message 1QY6I is issued to the
command submitter. The DDS might pass a message as part of the order response control record to
VSE/POWER. This message is sent further to the specified person. The actual order, however, can be
processed by the DDS whenever appropriate. For example, the DDS can take a checkpoint after an
immediate stop order was received. The exception to above ground-rule is the 'start device' order. This
order must be immediately processed by the DDS and the result returned in the order response control
record.

All responses from the command, which result in a message either built by VSE/POWER or passed from
the DDS with the order response control record, are forwarded to the command originator by
VSE/POWER, unless overridden by the DDS.

Orders from the DDS (Inbound)

The following orders can be sent from the DDS to VSE/POWER for processing:

� Send message order
� Set logical destination order
� Advanced Function Printing (AFP) account record order

All orders from a DDS must be sent to VSE/POWER by issuing the XPCC FUNC=SENDR macro instruc-
tion. The buffer type flag in the user data of the XPCCB must indicate that the buffer contains a control
record. The buffer can only contain one order control record. VSE/POWER replies to the order with the
order response control record by issuing of the XPCC FUNC=REPLY macro instruction. The DDS can
send an order at any point of time.

If VSE/POWER receives a 'send message' order, and the message is for the local central operator, then
VSE/POWER issues the message and returns the message id to the caller. This enables the caller to
issue an action message and later delete the message from the display screen using the DOM macro.

If VSE/POWER receives a 'set logical destination' order, it updates the External Device Control Block
(EDCB) of the external device concerned by replacing the old logical destination names, if any, with the
new ones. The new destination names are of effect when the next generic GET is done.

 Heartbeat Task
The heartbeat task is used for a heartbeat connection to VSE/OCCF by means of an XPCC connection
which is not used for any data transfer, but just to signal VSE/POWER that VSE/OCCF is running properly
and vice versa to signal VSE/OCCF that VSE/POWER is running properly. Whenever VSE/OCCF termi-
nates abnormally, VSE/POWER gets the appropriate return code by means of this XPCC connection.
Thereupon VSE/POWER generates internally a PEND IMM command and issues the REIPL macro at the
end of its own terminating process.

In order to establish the heartbeat connection, VSE/OCCF has to identify itself during the CONNECT with
the application-id 'SYSOCCF' and to specify in the user field of the XPCCB the constant 'ALIVE' and a

 Chapter 3. Program Organization 383

time-limit. No other data is allowed to be sent or received via this special XPCC connection. Whenever
VSE/OCCF terminates abnormally, the supervisor posts this XPCC connection and VSE/POWER gener-
ates internally a PEND IMM command. This command stops immediately all activities of the VSE/POWER
tasks. At the end of its termination processing, VSE/POWER issues the REIPL macro in order to auto-
mate the re-initialization of the whole system.

VSE/POWER establishes the heartbeat connection, if the XPCCB contains at connect time the following
information:

IJBXTOAP (the requested application) must contain as application-id 'SYSOCCF ' (SYSOCCF padded at
the right with one blank).

IJBXRUSR (the received user data) must contain the constant 'ALIVE ' (ALIVE padded at the right with
one blank) and in the last two bytes the termination time-limit in minutes.

Whenever VSE/OCCF terminates abnormally, the VSE supervisor posts VSE/POWER and passes the
reasoncode IJBXABDC in the field IJBXREAS. Thereupon VSE/POWER generates internally a PEND
IMM command to terminate all activities. The termination time-limit specified in the last two bytes of the
user data describes in minutes how long VSE/POWER has to wait before the REIPL macro can be issued
in order to give the partitions controlled by VSE/POWER enough time to terminate. If the partitions do not
terminate within the time-limit, a PEND FORCE command is simulated.

Once this connection has been established, VSE/POWER will never try to send any data via this con-
nection, but just waits on the connect ECB (IJBXCECB) which gets posted if the other side issues a dis-
connect or terminates its processing (abnormally or normally). If the other side tries to send data,
VSE/POWER will never recognize this, because VSE/POWER does not wait on the receive ECB
(IJBXRECB) and never checks the appropriate fields signalling data transfer.

If the other side terminates the connection normally (e.g. by issuing a DISCPRG), VSE/POWER termi-
nates also its connection by issuing a DISCPRG, but does not stop any other processing. On the contrary
due to an always outstanding CONNECT ANY, VSE/OCCF can establish a new heartbeat task whenever
it wants. Thereby it is possible to stop the unattended environment for a while to do some maintenance or
testing by an operator in an 'attended' environment.

VSE/POWER may be terminating its processing due to

1. the PEND command without any operand or the PEND IMM command. In these cases VSE/POWER
starts to finish its activities but keeps the heartbeat connection alive as long as possible, because it
might take its time till all partitions have finished their job. At the end of VSE/POWER shutdown
VSE/POWER stops the heartbeat connection by issuing a DISCPRG.

2. the PEND command with the FORCE operand or an abnormal situation. In both cases VSE/POWER
does nothing concerning the heartbeat connection, but the VSE supervisor will post VSE/OCCF using
the reasoncode IJBXABDC in the field IJBXREAS to indicate the failure of VSE/POWER to
VSE/OCCF.

If VSE/OCCF terminates abnormally, VSE/POWER is going to shutdown the system. VSE/POWER waits
according to the specified time-limit till all partitions have terminated before issuing the REIPL macro. If all
partitions are unbatched before the time limit has exceeded, the REIPL macro is issued at the moment the
last partition is unbatched. The end of task routine within the supervisor posts VSE/POWER every time a
partition gets unbatched. If during the shutdown VSE/POWER terminates abnormally due to a program
error (e.g. program check), VSE/POWER does not wait till all partitions have terminated, but issues the
REIPL macro at once.

If VSE/POWER runs in an unattended environment, VSE/POWER acts differently in the following ways in
order to automate the processing in an environment without operator:

384 VSE Central Functions V7R1 VSE/POWER DRM

1. If VSE/POWER stops a partition, the partition gets unbatched by VSE/AF. Within the partition comreg
POWUNBCH is set for JCL and POWUNBTS for the end of task routine of the supervisor.

2. If VSE/POWER decides to terminate a job in a partition, VSE/POWER suppresses the dump of this
partition by setting IJBNDUMP within the partition comreg.

3. If VSE/POWER tries to start a partition and this partition is not available, VSE/POWER issues
message 1R68I and cancels itself. This may happen, if during the termination of VSE/POWER a
partition did not terminate and VSE/OCCF tries to restart VSE/POWER. If in this case VSE/POWER
cancels itself, VSE/OCCF will decide after some unsuccessful retries to re-ipl the whole system. After
re-ipl all partitions will be available to be started by VSE/POWER.

4. If the heartbeat connection terminates abnormally, VSE/POWER will never provide a dump, even if
VSE/POWER itself terminates abnormally.

Codes using REIPL Macro

Whenever the REIPL macro is issued, the options DEVICE=CURRENT and ACTION=ERROR are used.
The symptom record has the layout of the section 3 of the symptom record used by the IDUMP macro.
Sofar the following return codes are provided by the appropriate phase due to the described situation:

0001 IPW$$XH: VSE/OCCF terminated abnormally, time limit not exceeded

0002 IPW$$XH: VSE/OCCF terminated abnormally, time limit exceeded

0003 IPW$$XH: VSE/OCCF terminated abnormally, time limit was 0

0004 IPW$$AT: VSE/OCCF terminated abnormally, thereafter POWER terminated abnormally

If no dump has been produced, the constant 'NONE' is used as parameter for the REIPL macro.

The heartbeat connection is a special kind of XPCC connection which means no data can be sent in either
direction. Only the connect and disconnect functions of the XPPC macro should be used and only the
return codes concerning the existence of the connection have to be checked.

If VSE/OCCF tries to build a second heartbeat connection, although a heartbeat connection exists already,
VSE/POWER terminates a connection by issuing the XPCC macro with the parameter FUNC=DISCPRG
and passing PXPRCNOC in PXPRETCD and PXP10CAA in PXPFBKCD, which are two bytes (return and
feedback code) within the user data located in IJBXSUSR of the XPCCB.

 The VSE/POWER heartbeat task, serves as a kind of watchman to keep track whether the other side
(VSE/OCCF) is still alive or not. The task-id is XHBT which forces the chaining of the heartbeat task into
the group of the cross-partition user tasks. The heartbeat task is attached by the cross-partition master
task. The heartbeat task is 'normally' detached at the end of VSE/POWER shutdown by the cross-partition
master task. The heartbeat task is also detached whenever the other side terminates the communication
(either normally or abnormally). The code for the heartbeat task is just within one module, the module
IPW$$XH:

As soon as the heartbeat task is attached, the following is done:

1. Save termination time-limit.
2. Get virtual storage with option WAIT=YES for the symptom information, anchor the storage in the CAT

and initialize the symptom information for the REIPL macro.
3. If communication not yet terminated, reset posted connect ECB.
4. Do multiple wait (IPW$WFM) on:

a. Task ECB (POWER event).
b. Connect ECB (XPCC event)

 or time interval ECB.

 Chapter 3. Program Organization 385

Whenever the heartbeat task gets posted, the following events are tested as exclusive events:

1. If task ECB posted (by cross-partition master task in IPW$$XM during VSE/POWER shutdown right
before the XPCC macro with FUNC=TERMPRG is issued):
a. If necessary, cancel timer interval.
b. If XPCCB storage still available:

 1) Issue DISCPRG.
2) Test return codes of DISCPRG and issue message if necessary.
3) If other side of the heartbeat connection did terminate abnormally, indicate REIPL necessary.
4) Release storage of XPCCB.

c. Reset heartbeat connection exists.
d. Post cross-partition master task.

 e. Detach task
2. If timer interval ECB posted:

a. Update symptom information for REIPL macro.
b. Indicate forced cancel.
c. The VSE/POWER macro IPW$CNC is issued to stop VSE/POWER immediately (simulating a

PEND FORCE command, the terminating message 1R99I has been issued already when proc-
essing the PEND IMM command).

3. If connect ECB of XPCC support and OCCF has terminated abnormally:
a. Reset post bit of Connect ECB.
b. Remove connect ECB from ECB list.

 c. Issue DISCPRG.
d. Test return codes of DISCPRG and issue message if necessary.
e. Release storage of XPCCB.
f. Indicate REIPL necessary.
g. If task ECB not yet posted by IPW$$XM (i.e. temporary command processor will still be invoked):

1) Update ECB list:
a) Invoke temporary command processor (IPW$ICP macro with parameters avoid authority

checking and use for PEND IMM command a constant field of 72 bytes) and wait till
command completed.

b) If termination time-limit not zero:
i. Update ECB list with timer interval ECB.
ii. Issue timer interval with time-limit.

c) If termination time-limit is zero:
(If OCCF issued the DISCONNECT very fast after the CONNECT, the user data might
have been destroyed. this should never happen)

i. Update symptom information for REIPL macro.
ii. Indicate forced cancel.
iii. Cancel VSE/POWER using macro IPW$CNC.

h. Wait on ECB-list till it gets posted, either at the end of the timer interval or at the end of POWER
shutdown by IPW$$XM.

4. If connect ECB of XPCC support and OCCF has terminated normally:
 a. Issue DISCPRG
b. Test return codes of DISCPRG and issue message if necessary
c. Release storage of XPCCB

 d. Detach task.

386 VSE Central Functions V7R1 VSE/POWER DRM

 Chapter 4. Directory

The names listed in the column "Module/Microfiche Name" are the names of the respective microfiche
cards.

� Determine the type of name of any program identifier (phase, module, control section, macro, or
segment).

� Determine the phase with which that name is associated.

� If the name is a linkage macro, determine the invoked phase.

� If the name is a definition macro (control block, or data block), locate the matching data area by using
Figure 11 on page 36 as a reference.

A reference list of messages is also included in this chapter. It relates a message with the issuing phase.

© Copyright IBM Corp. 1979, 2006 387

CSECT and Control Block Name List

Usually the names appearing below can be found in a dump, e.g. the CSECT name appearing at the
beginning of a phase, and some may occur more than once, e.g. the name of a control block.

Name Type Phase Module
 Microfiche
 Name
--
ACCB Storage descriptor of control block.
ACIE Storage descriptor of control block
AQCS CSECT IPW$$AQ IPW$$QM
ASCS CSECT IPW$$AS IPW$$AS
ASWS Storage descriptor of control block.
ATCS CSECT IPW$$AT IPW$$AT
BACS CSECT IPW$$BA IPW$$BA
BMCS CSECT IPW$$BM IPW$$BM
BRCS CSECT IPW$$BR IPW$$BR
BSCS CSECT IPW$$BS IPW$$BS
BWCS CSECT IPW$$BW IPW$$BW
CACS CSECT IPW$$CA IPW$$CA
CBCS CSECT IPW$$CB IPW$$CB
CCCS CSECT IPW$$CC IPW$$CC
CDCS CSECT IPW$$CD IPW$$CD
CECS CSECT IPW$$CE IPW$$CE
CFCS CSECT IPW$$CF IPW$$CF
CGCS CSECT IPW$$CG IPW$$CG
CHCS CSECT IPW$$CH IPW$$CH
CIB Storage descriptor of control block
CICS CSECT IPW$$CI IPW$$CI
CIE Storage descriptor of control block
CI2 Storage descriptor of control block
CJCS CSECT IPW$$CJ IPW$$CJ
CLCS CSECT IPW$$CL IPW$$CL
CLDCS CSECT IPW$$CLD IPW$$CLD
CMCS CSECT IPW$$CM IPW$$CM
CNCS CSECT IPW$$CN IPW$$CN
COCB Storage descriptor of control block
COCS CSECT IPW$$CO IPW$$CO
CPCS CSECT IPW$$CP IPW$$CP
CPFCS CSECT IPW$$CPF IPW$$CPF
CPSCS CSECT IPW$$CPS IPW$$CPS
CRCS CSECT IPW$$CR IPW$$CR
CRECS CSECT IPW$$CRE IPW$$CRE
CSCS CSECT IPW$$CS IPW$$CS
CSGCS CSECT IPW$$CSG IPW$$CSG
CTCS CSECT IPW$$CT IPW$$CT
CUCS CSECT IPW$$CU IPW$$CU
CVCS CSECT IPW$$CV IPW$$CV
CXCS CSECT IPW$$CX IPW$$CX
CYCS CSECT IPW$$CY IPW$$CY
CAT Storage descriptor of control block.
CIB Storage descriptor of control block.
COCB Storage descriptor of control block.
CPB Storage descriptor of control block.
DDCS CSECT IPW$$DD IPW$$DD
DMB Storage descriptor of control block.

388 VSE Central Functions V7R1 VSE/POWER DRM

DPCB Storage descriptor of control block.
DPCS CSECT IPW$$DP IPW$$DP
DQCS CSECT IPW$$DQ IPW$$QM
DSCS CSECT IPW$$DS IPW$$DM
DTCS CSECT IPW$$DT IPW$$DT
EDCB Storage descriptor of control block.
ERCS CSECT IPW$$ER IPW$$ER
FCBCB Storage descriptor of control block.
FQCS CSECT IPW$$FQ IPW$$QM
GACS CSECT IPW$$GA IPW$$AM
GDCS CSECT IPW$$GD IPW$$DM
GFCS CSECT IPW$$GF IPW$$GF
GNCB Storage descriptor of control block.
IBCS CSECT IPW$$IB IPW$$IB
ICCS CSECT IPW$$IC IPW$$CM
INCS CSECT IPW$$IN IPW$$IN
IPCS CSECT IPW$$IP IPW$$IP
IDCS CSECT IPW$$ID IPW$$ID
I1CS CSECT IPW$$I1 IPW$$I1
I2CS CSECT IPW$$I2 IPW$$I2
I3CS CSECT IPW$$I3 IPW$$I3
I4CS CSECT IPW$$I4 IPW$$I4
I5CS CSECT IPW$$I5 IPW$$I5
I7CS CSECT IPW$$I7 IPW$$I7
JCA Storage descriptor of control block.
LDCS CSECT IPW$$LD IPW$$LD
LDCS1 CSECT IPW$$LD1 IPW$$LD1
LDCS2 CSECT IPW$$LD2 IPW$$LD2
LDCS3 CSECT IPW$$LD3 IPW$$LD3
LDCS4 CSECT IPW$$LD4 IPW$$LD4
LDCS5 CSECT IPW$$LD5 IPW$$LD5
LFCS CSECT IPW$$LF IPW$$LF
LHCS CSECT IPW$$LH IPW$$LH
LMCS CSECT IPW$$LM IPW$$LM
LOCS CSECT IPW$$LO IPW$$LO
LNCS CSECT IPW$$SN IPW$$LN
LRCB Storage descriptor of control block.
LRCS CSECT IPW$$LR IPW$$LR
LUCB Storage descriptor of control block.
LUCS CSECT IPW$$LU IPW$$LU
LWCS CSECT IPW$$LW IPW$$LW
MCB Storage descriptor of control block.
MDCS CSECT IPW$$MD IPW$$MD
MECB Storage descriptor of control block.
MMCS CSECT IPW$$MM IPW$$MM
MMB Storage descriptor of control block.
MPCS CSECT IPW$$MP IPW$$MP
MSCB Storage descriptor of control block.
MSCS CSECT IPW$$MS IPW$$MS
MXCS CSECT IPW$$MX IPW$$MX
NCB Storage descriptor of control block.
NCCS CSECT IPW$$NC IPW$$NC
NDT Storage descriptor of control block.
NKCS CSECT IPW$$NK IPW$$NK
NMCS CSECT IPW$$NM IPW$$NM
NPCS CSECT IPW$$NP IPW$$NP
NQCS CSECT IPW$$NQ IPW$$QM
NRCS CSECT IPW$$NR IPW$$NR

 Chapter 4. Directory 389

NR2CS CSECT IPW$$NR2 IPW$$NR2
NSCS CSECT IPW$$NS IPW$$NS
NTCS CSECT IPW$$NT IPW$$NT
OBCS CSECT IPW$$OB IPW$$OB
OCCS CSECT IPW$$OC IPW$$OC
OECS CSECT IPW$$OE IPW$$OE
OFCS CSECT IPW$$OF IPW$$OF
OPCS CSECT IPW$$OP IPW$$OP
OTCS CSECT IPW$$OT IPW$$OT
PACS CSECT IPW$$PA IPW$$AM
PCCS CSECT IPW$$PC IPW$$PC
PDB Storage descriptor of control block.
PDCS CSECT IPW$$PD IPW$$DM
PFCS CSECT IPW$$PF IPW$$PF
PNCB Storage descriptor of control block.
PLCS CSECT IPW$$PL IPW$$PL
PPCS CSECT IPW$$PP IPW$$PP
PRCS CSECT IPW$$PR IPW$$PR
PSCS CSECT IPW$$PS IPW$$PS
PS1CS CSECT IPW$$PS1 IPW$$PS1
Q1CS CSECT IPW$$Q1 IPW$$QM
RMCB Storage descriptor of control block.
RQCS CSECT IPW$$RQ IPW$$QM
RYCS CSECT IPW$$RY IPW$$RY
SACS CSECT IPW$$SA IPW$$AM
SCB Storage descriptor of control block.
SSCB Storage descriptor of control block.
SCCS CSECT IPW$$SC IPW$$SC
SDCB Storage descriptor of control block.
SDCS CSECT IPW$$SD IPW$$SD
SER Storage descriptor of control block.
SFCS CSECT IPW$$SF IPW$$SF
SLCS CSECT IPW$$SL IPW$$SL
SMCS CSECT IPW$$SM IPW$$SM
SNCB Storage descriptor of control block.
SNCS CSECT IPW$$SN IPW$$SN
SPB Storage descriptor of control block.
SQCS CSECT IPW$$SQ IPW$$QM
SRCS CSECT IPW$$SR IPW$$SR
SRQE Storage descriptor of control block.
SSCS CSECT IPW$$SS IPW$$SS
SUCB Storage descriptor of control block.
SXCS CSECT IPW$$SX IPW$$SX
SYCS CSECT IPW$$SY IPW$$SY
S1CS CSECT IPW$$S1 IPW$$S1
S2CS CSECT IPW$$S2 IPW$$S2
S3CS CSECT IPW$$S3 IPW$$S3
TBB Storage descriptor of control block.
TCB Storage descriptor of control block.
TCCS CSECT IPW$$TC IPW$$TC
TDCB Storage descriptor of control block.
TDCS CSECT IPW$$TD IPW$$TD
TSCS CSECT IPW$$TS IPW$$TS
TIB Storage descriptor of control block.
TICS CSECT IPW$$TI IPW$$TI
TQCS CSECT IPW$$TQ IPW$$TQ
TRCS CSECT IPW$$TR IPW$$TR
TSCS CSECT IPW$$TS IPW$$TI

390 VSE Central Functions V7R1 VSE/POWER DRM

TVCS CSECT IPW$$TV IPW$$TV
T1CS CSECT IPW$$T1 IPW$$T1
VDCB Storage descriptor of control block.
VECS CSECT IPW$$VE IPW$$VE
VSB Storage descriptor of control block.
VSCB Storage descriptor of control block.
WACB Storage descriptor of control block.
WCB Storage descriptor of control block.
XHCS CSECT IPW$$XH IPW$$XH
XMCS CSECT IPW$$XM IPW$$XM
XJCS CSECT IPW$$XJ IPW$$XJ
XRECS CSECT IPW$$XRE IPW$$XRE
XTCS CSECT IPW$$XT IPW$$XT
XTCCS CSECT IPW$$XTC IPW$$XTC
XTGCS CSECT IPW$$XTG IPW$$XTG
XTMCS CSECT IPW$$XTM IPW$$XTM
XTPCS CSECT IPW$$XTP IPW$$XTP
XTSCS CSECT IPW$$XTS IPW$$XTS
XTWALLAR Storage descriptor of control block.
XTWAREA Storage descriptor of control block.
XTWFUNAR Storage descriptor of control block.
XTWSUBAR Storage descriptor of control block.
XWECS CSECT IPW$$XWE IPW$$XWE

 Chapter 4. Directory 391

PHASE Name List

Name Type Phase Module
 Microfiche
 Name

IPW$$AM MODULE
IPW$$AQ PHASE IPW$$AQ IPW$$QM
IPW$$AS PHASE IPW$$AS IPW$$DM
IPW$$AT PHASE IPW$$AT IPW$$AT
IPW$$BA PHASE IPW$$BA IPW$$BA
IPW$$BM PHASE IPW$$BM IPW$$BM
IPW$$BR PHASE IPW$$BR IPW$$BR
IPW$$BS PHASE IPW$$BS IPW$$BS
IPW$$BW PHASE IPW$$BW IPW$$BW
IPW$$CA PHASE IPW$$CA IPW$$CA
IPW$$CAC PHASE IPW$$CAC IPW$$CAC
IPW$$CB PHASE IPW$$CB IPW$$CB
IPW$$CC PHASE IPW$$CC IPW$$CC
IPW$$CD PHASE IPW$$CD IPW$$CD
IPW$$CE PHASE IPW$$CE IPW$$CE
IPW$$CF PHASE IPW$$CF IPW$$CF
IPW$$CG PHASE IPW$$CG IPW$$CG
IPW$$CH PHASE IPW$$CH IPW$$CH
IPW$$CI PHASE IPW$$CI IPW$$CI
IPW$$CJ PHASE IPW$$CJ IPW$$CJ
IPW$$CL PHASE IPW$$CL IPW$$CL
IPW$$CLD PHASE IPW$$CLD IPW$$CLD
IPW$$CM PHASE IPW$$CM IPW$$CM
IPW$$CN PHASE IPW$$CN IPW$$CN
IPW$$CO PHASE IPW$$CO IPW$$CO
IPW$$CP PHASE IPW$$CP IPW$$CP
IPW$$CPF PHASE IPW$$CPF IPW$$CPF
IPW$$CPS PHASE IPW$$CPS IPW$$CPS
IPW$$CR PHASE IPW$$CR IPW$$CR
IPW$$CRE PHASE IPW$$CRE IPW$$CRE
IPW$$CS PHASE IPW$$CS IPW$$CS
IPW$$CSG PHASE IPW$$CSG IPW$$CSG
IPW$$CT PHASE IPW$$CT IPW$$CT
IPW$$CU PHASE IPW$$CU IPW$$CU
IPW$$CV PHASE IPW$$CV IPW$$CV
IPW$$CX PHASE IPW$$CX IPW$$CX
IPW$$CY PHASE IPW$$CSG IPW$$CSG
IPW$$DD PHASE IPW$$DD IPW$$DD
IPW$$DM MODULE
IPW$$DP PHASE IPW$$DP IPW$$DP
IPW$$DQ PHASE IPW$$DQ IPW$$QM
IPW$$DS PHASE IPW$$DS IPW$$DM
IPW$$DT PHASE IPW$$DT IPW$$DT
IPW$$ER PHASE IPW$$ER IPW$$ER
IPW$$FQ PHASE IPW$$FQ IPW$$QM
IPW$$GA PHASE IPW$$GA IPW$$AM
IPW$$GD PHASE IPW$$GD IPW$$DM
IPW$$GF PHASE IPW$$GF IPW$$GF
IPW$$IB PHASE IPW$$IB IPW$$IB
IPW$$IC PHASE IPW$$IC IPW$$CM
IPW$$ID PHASE IPW$$ID IPW$$ID

392 VSE Central Functions V7R1 VSE/POWER DRM

IPW$$IP PHASE IPW$$IP IPW$$IP
IPW$$I1 PHASE IPW$$I1 IPW$$I1
IPW$$I2 PHASE IPW$$I2 IPW$$I2
IPW$$I3 PHASE IPW$$I3 IPW$$I3
IPW$$I4 PHASE IPW$$I4 IPW$$I4
IPW$$I5 PHASE IPW$$I5 IPW$$I5
IPW$$I7 PHASE IPW$$I7 IPW$$I7
IPW$$IN PHASE IPW$$IN IPW$$IN
IPW$$LD PHASE IPW$$LD IPW$$LD
IPW$$LD1 PHASE IPW$$LD1 IPW$$LD1
IPW$$LD2 PHASE IPW$$LD2 IPW$$LD2
IPW$$LD3 PHASE IPW$$LD3 IPW$$LD3
IPW$$LD4 PHASE IPW$$LD4 IPW$$LD4
IPW$$LD5 PHASE IPW$$LD5 IPW$$LD5
IPW$$LF PHASE IPW$$LF IPW$$LF
IPW$$LH PHASE IPW$$LH IPW$$LH
IPW$$LM PHASE IPW$$LM IPW$$LM
IPW$$LN PHASE IPW$$LN IPW$$LN
IPW$$LO PHASE IPW$$LO IPW$$LO
IPW$$LR PHASE IPW$$LR IPW$$LR
IPW$$LU PHASE IPW$$LU IPW$$LU
IPW$$LW PHASE IPW$$LW IPW$$LW
IPW$$MM PHASE IPW$$MM IPW$$MM
IPW$$MP PHASE IPW$$MP IPW$$MP
IPW$$MS PHASE IPW$$MS IPW$$MS
IPW$$MX PHASE IPW$$MX IPW$$MX
IPW$$NC PHASE IPW$$NC IPW$$NC
IPW$$NK PHASE IPW$$NK IPW$$NK
IPW$$NM PHASE IPW$$NM IPW$$NM
IPW$$NP PHASE IPW$$NP IPW$$NP
IPW$$NQ PHASE IPW$$NQ IPW$$QM
IPW$$NU PHASE IPW$$NU IPW$$NU
IPW$$NR PHASE IPW$$NR IPW$$NR
IPW$$NR2 PHASE IPW$$NR2 IPW$$NR2
IPW$$NS PHASE IPW$$NS IPW$$NS
IPW$$NT PHASE IPW$$NT IPW$$NT
IPW$$OB PHASE IPW$$OB IPW$$OB
IPW$$OC PHASE IPW$$OC IPW$$OC
IPW$$OE PHASE IPW$$OE IPW$$OE
IPW$$OF PHASE IPW$$OF IPW$$OF
IPW$$OT PHASE IPW$$OT IPW$$OT
IPW$$PA PHASE IPW$$PA IPW$$AM
IPW$$PC PHASE IPW$$PC IPW$$PC
IPW$$PD PHASE IPW$$PD IPW$$DM
IPW$$PF PHASE IPW$$PF IPW$$PF
IPW$$PL PHASE IPW$$PL IPW$$PL
IPW$$PP PHASE IPW$$PP IPW$$PP
IPW$$PR PHASE IPW$$PR IPW$$PR
IPW$$PS PHASE IPW$$PS IPW$$PS
IPW$$PS1 PHASE IPW$$PS1 IPW$$PS1
IPW$$OP PHASE IPW$$OP IPW$$OP
IPW$$QM MODULE
IPW$$Q1 PHASE IPW$$Q1 IPW$$QM
IPW$$RQ PHASE IPW$$RQ IPW$$QM
IPW$$RY PHASE IPW$$RY IPW$$RY
IPW$$SA PHASE IPW$$SA IPW$$AM
IPW$$SC PHASE IPW$$SC IPW$$SC
IPW$$SD PHASE IPW$$SD IPW$$SD

 Chapter 4. Directory 393

IPW$$SE PHASE IPW$$SE IPW$$SE
IPW$$SF PHASE IPW$$SF IPW$$SF
IPW$$SL PHASE IPW$$SL IPW$$SL
IPW$$SM PHASE IPW$$SM IPW$$SM
IPW$$SN PHASE IPW$$SN IPW$$SN
IPW$$SQ PHASE IPW$$SQ IPW$$QM
IPW$$SR PHASE IPW$$SR IPW$$SR
IPW$$SS PHASE IPW$$SS IPW$$SS
IPW$$SY PHASE IPW$$SY IPW$$SY
IPW$$S1 PHASE IPW$$S1 IPW$$S1
IPW$$S2 PHASE IPW$$S2 IPW$$S2
IPW$$S3 PHASE IPW$$S3 IPW$$S3
IPW$$TC PHASE IPW$$TC IPW$$TC
IPW$$TD PHASE IPW$$TD IPW$$TD
IPW$$TI PHASE IPW$$TI IPW$$TI
IPW$$TQ PHASE IPW$$TQ IPW$$TQ
IPW$$TR PHASE IPW$$TR IPW$$TR
IPW$$TS PHASE IPW$$TS IPW$$TS
IPW$$TV PHASE IPW$$TV IPW$$TV
IPW$$T1 PHASE IPW$$T1 IPW$$T1
IPW$$VE PHASE IPW$$VE IPW$$VE
IPW$$XH PHASE IPW$$XH IPW$$XH
IPW$$XJ PHASE IPW$$XJ IPW$$XJ
IPW$$XM PHASE IPW$$XM IPW$$XM
IPW$$XRE PHASE IPW$$XRE IPW$$XRE
IPW$$XT PHASE IPW$$XT IPW$$XT
IPW$$XTC PHASE IPW$$XTC IPW$$XTC
IPW$$XTG PHASE IPW$$XTG IPW$$XTG
IPW$$XTM PHASE IPW$$XTM IPW$$XTM
IPW$$XTP PHASE IPW$$XTP IPW$$XTP
IPW$$XTS PHASE IPW$$XTS IPW$$XTS
IPW$$XWE PHASE IPW$$XWE IPW$$XWE

394 VSE Central Functions V7R1 VSE/POWER DRM

 Macro List

Macro Type Phase

CTLSPOOL LINKAGE IPW$$SM
GETSPOOL LINKAGE IPW$$SM
IPW$AJ# SERVICE
IPW$AQS LINKAGE IPW$$AQ
IPW$ATT LINKAGE IPW$$NU
IPW$BUF LINKAGE IPW$$BS
IPW$CAF LINKAGE IPW$$GA
IPW$CLI LINKAGE Note 1
IPW$CNC LINKAGE
IPW$CPY COPYRIGHT
IPW$CTT LINKAGE IPW$$NU
IPW$DAB DEFINITION
IPW$DAC DEFINITION
IPW$DBA DEFINITION
IPW$DBC DEFINITION
IPW$DCB DEFINITION
IPW$DCI DEFINITION
IPW$DCM DEFINITION
IPW$DCO DEFINITION
IPW$DCP DEFINITION
IPW$DCM DEFINITION
IPW$DCW DEFINITION
IPW$DCT DEFINITION
IPW$DDE DEFINITION
IPW$DDR DEFINITION
IPW$DED DEFINITION
IPW$DEF DEFINITION
IPW$DET LINKAGE IPW$$NU
IPW$DFC DEFINITION
IPW$DGN DEFINITION
IPW$DJK DEFINITION
IPW$DKA DEFINITION
IPW$DLC DEFINITION
IPW$DLR DEFINITION
IPW$DLU DEFINITION
IPW$DLW DEFINITION
IPW$DMC DEFINITION
IPW$DMD DEFINITION
IPW$DMM DEFINITION
IPW$DMS DEFINITION
IPW$DNC DEFINITION
IPW$DNR DEFINITION
IPW$DOP DEFINITION
IPW$DPA DEFINITION
IPW$DPD DEFINITION
IPW$DPN DEFINITION
IPW$DPW DEFINITION
IPW$DQC DEFINITION
IPW$DQR DEFINITION
IPW$DQS LINKAGE IPW$$DQ
IPW$DRM DEFINITION
IPW$DRQ DEFINITION
IPW$DSA DEFINITION

 Chapter 4. Directory 395

IPW$DSC DEFINITION
IPW$DSD DEFINITION
IPW$DSL DEFINITION
IPW$DSN DEFINITION
IPW$DSP DEFINITION
IPW$DSR DEFINITION
IPW$DSS DEFINITION
IPW$DSU DEFINITION
IPW$DSV DEFINITION
IPW$DTB DEFINITION
IPW$DTC DEFINITION
IPW$DTE DEFINITION
IPW$DTI DEFINITION
IPW$DTX DEFINITION
IPW$DVC DEFINITION
IPW$DVD DEFINITION
IPW$DVP DEFINITION
IPW$DVS DEFINITION
IPW$DWA DEFINITION
IPW$DWC DEFINITION
IPW$DWG DEFINITION
IPW$DWN DEFINITION
IPW$DWP DEFINITION
IPW$DXE DEFINITION
IPW$DXW DEFINITION
IPW$EQU DEFINITION
IPW$FQS LINKAGE IPW$$FQ
IPW$GAM LINKAGE IPW$$NU
IPW$GAR LINKAGE IPW$$GA/GF
IPW$GDR LINKAGE IPW$$GD
IPW$GLR LINKAGE Note 1
IPW$GMD DEFINITION
IPW$GMM DEFINITION
IPW$GMS LINKAGE IPW$$MS
IPW$GQR LINKAGE IPW$$NU
IPW$GQS LINKAGE IPW$$NQ
IPW$GSL LINKAGE IPW$$SL
IPW$GTE SERVICE IPW$$NU
IPW$GTO LINKAGE IPW$$TS
IPW$GTS LINKAGE IPW$$SS
IPW$IAS LINKAGE IPW$$AS
IPW$ICP LINKAGE IPW$$IC
IPW$ICS SERVICE IPW$$NU
IPW$IDM LINKAGE IPW$$ID
IPW$IDS LINKAGE IPW$$DS
IPW$IIS LINKAGE IPW$$PS1
IPW$ITP LINKAGE IPW$$TS
IPW$IOC LINKAGE IPW$$OB
IPW$IOM LINKAGE IPW$$BM/NM/SR
IPW$IOR DEFINITION
IPW$IQS LINKAGE IPW$$SQ
IPW$IPS LINKAGE IPW$$LD1/LD2/LD3/LD4/LD5
IPW$IRY LINKAGE IPW$$RY
IPW$ITQ LINKAGE IPW$$TQ
IPW$ITS LINKAGE IPW$$SS
IPW$IXS LINKAGE IPW$$XTS
IPW$MXD DEFINITION
IPW$MQR LINKAGE IPW$$NU

396 VSE Central Functions V7R1 VSE/POWER DRM

IPW$NTY SERVICE IPW$$NU
IPW$OAF LINKAGE IPW$$GA/GF
IPW$OEF LINKAGE IPW$$OE
IPW$OLI LINKAGE Note 1
IPW$OPI LINKAGE IPW$$OP
IPW$OTP LINKAGE IPW$$OT
IPW$PAR LINKAGE IPW$$PA/PF
IPW$PDR LINKAGE IPW$$PD
IPW$PLR LINKAGE Note 1
IPW$RDC LINKAGE IPW$$NU
IPW$RDD LINKAGE IPW$$NU
IPW$RDQ LINKAGE IPW$$NU
IPW$RDT LINKAGE IPW$$NU
IPW$RET LINKAGE Note 2
IPW$RLR LINKAGE IPW$$NU
IPW$RLV LINKAGE IPW$$NU
IPW$RLW LINKAGE IPW$$NU
IPW$RMS LINKAGE IPW$$NU
IPW$RQS LINKAGE IPW$$RQ
IPW$RSR LINKAGE IPW$$NU
IPW$RSV LINKAGE IPW$$NU
IPW$RSW LINKAGE IPW$$NU
IPW$SAV LINKAGE Note 2
IPW$SRJ LINKAGE IPW$$SC
IPW$SSJ LINKAGE IPW$$PC
IPW$STM LINKAGE IPW$$NU
IPW$SXJ LINKAGE IPW$$XJ
IPW$TDM SERVICE IPW$$NU
IPW$TTM LINKAGE IPW$$TS
IPW$TTS LINKAGE IPW$$SS
IPW$TRC DEF+LINKAGE IPW$$NU
IPW$ULP LINKAGE IPW$$LU
IPW$UNV LINKAGE IPW$$NU
IPW$VCA LINKAGE IPW$$CM
IPW$VDA LINKAGE IPW$$NU
IPW$WFB LINKAGE
IPW$WFC LINKAGE IPW$$NU
IPW$WFD LINKAGE IPW$$NU
IPW$WFE LINKAGE IPW$$NU
IPW$WFI LINKAGE IPW$$NU
IPW$WFL LINKAGE IPW$$NU
IPW$WFM LINKAGE IPW$$NU
IPW$WFO LINKAGE IPW$$NU
IPW$WFQ LINKAGE IPW$$NU
IPW$WFS LINKAGE IPW$$NU
IPW$WFX LINKAGE IPW$$NU
IPW$WQR LINKAGE IPW$$NU
IPW$WTD LINKAGE IPW$$NU
IPW$WTO LINKAGE IPW$$NU
IPW$WTQ LINKAGE IPW$$NU
IPW$WTR LINKAGE IPW$$NU
IPW$WTT LINKAGE IPW$$NU
IPWSEGM LINKAGE IPW$$NU
PACCNT GENERATION
PCPTAB GENERATION
PLINE GENERATION
PNODE GENERATION (User-specified phase name)
POWER GENERATION (User-specified phase name)

 Chapter 4. Directory 397

PRMT GENERATION
PUTACCT LINKAGE IPW$$NU
PUTSPOOL LINKAGE IPW$$SM
PWRSPL DEFINITION
SEGMENT LINKAGE IPW$$NU
SPL DEFINITION

Notes:

1. Refer to “Interface Linkage” on page 21.

2. Refer to “Function Linkage” on page 21. For linkage conventions and register saving conventions,
refer to the appropriate sections of the TCB, which is described in Chapter 5, “Storage Layout and
Data Areas” on page 433 of this book.

398 VSE Central Functions V7R1 VSE/POWER DRM

Macro Shipables' List

This list indicates the macros that will be shipped and whether optional or not.

Macro Type Note

CTLSPOOL LINKAGE Required
GETSPOOL LINKAGE Required
IPW$CPY COPYRIGHT Optional
IPW$DDE DEFINITION Optional
IPW$DEF DEFINITION Optional
IPW$DLW DEFINITION Optional
IPW$DNC DEFINITION Optional
IPW$DNR DEFINITION Optional
IPW$DPA DEFINITION Optional
IPW$DPD DEFINITION Optional
IPW$DPN DEFINITION Optional
IPW$DQC DEFINITION Optional
IPW$DQR DEFINITION Optional
IPW$DSD DEFINITION Optional
IPW$DTC DEFINITION Optional
IPW$DTX DEFINITION Optional
IPW$DXE DEFINITION Required
IPW$EQU DEFINITION Optional
IPW$GQR LINKAGE Optional
IPW$IDM LINKAGE Required
IPW$MXD DEFINITION Required
IPW$NTY SERVICE Optional
IPW$RLV LINKAGE Optional
IPW$RSV LINKAGE Optional
IPW$TDM SERVICE Optional
IPW$TRC DEF+LINKAGE Optional
IPW$WTO LINKAGE Optional
IPWSEGM LINKAGE Required
PACCNT GENERATION Required
PCPTAB GENERATION Required
PLINE GENERATION Required
PNODE GENERATION Required
POWER GENERATION Required
PRMT GENERATION Required
PUTACCT LINKAGE Required
PUTSPOOL LINKAGE Required
PUTSPOOL LINKAGE Required
PWRSPL DEFINITION Required
SEGMENT LINKAGE Required
SPL DEFINITION Required

 Chapter 4. Directory 399

Programming Example Shipables' List

This list indicates the programming examples that will be shipped.

Example Location

JOBEXAMP.A PRD1.MACLIB
NETEXAMP.A PRD1.MACLIB
OUTEXAMP.A PRD1.MACLIB
XMTEXAMP.A PRD1.MACLIB
PWREXAMP.A PRD1.MACLIB
GCMEXAPM.Z IJSYSRS.SYSLIB

400 VSE Central Functions V7R1 VSE/POWER DRM

 Message Reference

See also “Message Service” on page 127 and “Message Handler Overview” on page 143.

Refer to “Message Coding and Documentation Considerations” on page 153 for considerations in coding
VSE/POWER messages.

This chapter describes individual VSE/POWER messages and rules for their coding:

� routing code (*)
� descriptor code (*)
� VSE message color (*)
� whether command response message (*)
� whether message is DOM'ed (deleted from screen via DOM macro) (*)

 � issuing macro
� message text, including indicators for:

 – message number
– message equate suffix
– whether message is to central operator, RJE or both
– whether message is locally defined in module

 � issuing module

(*) - central operator messages only.

The routing and descriptor codes can be found in Figure 55 on page 145 and Figure 56 on page 146.

The routing and descriptor codes are either:

� explicitly coded using the message definition macro IPW$GDM operands RT= or DC=, in the macro
IPW$GMM which contains most VSE/POWER message definitions, for issuing/fetching the message
via IPW$GAM, or

� set in the task TCB fields (TCMRT and TCMDC respectively) prior to issuing the IPW$WTO macro.

Message Routing Code: The developer should consider the following when deciding on how to
code a message routing code (for an overview of the routing codes see Figure 55 on page 145):

Explicit Routing Code Needed:

1. when the default is inadequate, or the message should be routed:
� to the central operator besides the Command origin (Command Response message)
� to the central operator besides the User console (User Job message)

e.g. It is important to specify a routing code for short-on-resource and error messages that can
occur during processing of:
– AR Command response
– User job (Execution Reader and Writer) since without a routing code other than the default

console (i.e. origin AR console or the programmer/User console) the message may not be
routed to the central operator (unless the origin happens to be the central operator).

MI (2 = Master Console Information) (RT=MI)
SP (10 = System Programmer/Error/Maintenance) (RT=SP)

2. for special Consoles:
SE (9 = Security Console) (RT=SE)
TA (3 = Tape Pool) if not POFFLOAD (RT=TA)

is needed only for messages for which the tape operator has a
"need to know", i.e. 1Q55A,1Q56I,1Q57A,1Q5CI,1QB9A.
Examples of messages not needed by tape operator:

 Chapter 4. Directory 401

i.e. 1R35I, 1R41D, 1R41I, 1Q5CI(1).
3. negative routing: when routing is not to occur to a console (NRT=): indicated by minus (-) routing,

e.g. "-PG".

Routing Codes Set Automatically by the following routines:

1. VSE/POWER local message module interface IPW$$MS (CAMS+24):
� for decision message i.e. reply messages (IPW$WTR):

MA (1 = Master Console Action) indicated by "(MA)"
� all AR Command Response messages will be routed to origin console (routing to origin

console indicated by "(or)")
� all messages EXCEPT if message is a AR command response or reply/decision msg:

MI (2 = Master Console Information) indicated by "(MI)"

Note: - it is important that all messages also go the central operator, e.g. 1Q51I (Execution
JECL Error) causes display of bad JECL + 1R33D CORRECT JECL, which have ALL to be
displayed at the Master console at execution time since the System operator must see all
mesaages in order to correct JECL. Otherwise only the User console (ECHO=) might see the
messages.

a. if DC=DA (decision message) then RT=MA (route to Master Action console) is set
b. if RT=MA (Master Action console) then a possible RT=MI is reset
c. if RT=MI (Master console) then a possible RT=MA is reset

2. The following routing codes will be set automatically by the running task or by the starting command
(PSTART, POFFLOAD) when starting the task in the TCB default Routing code field TCMRTDF:

TA (3 = Tape Pool):
 + POFFLOAD

UR (7 = Unit Record Pool):
+ PSTART for all tasks with LST or PUN processing

TP (8 = Teleprocessing Control):
+ PSTART for all RJE and PNET tasks
+ all RJE tasks started by IPW$$LM
+ all RJE tasks started by IPW$$SN
+ all PNET tasks started by IPW$$LD3,IPW$$LD4

PG (11 = Programmer console):
+ PSTART partition (all IPW$$XRE and attached IPW$$XWE tasks,

i.e. all messages from IPW$$XRE,IPW$$XWE,IPW$$XJ,IPW$$OP
3. Task termination IPW$$TR routine will set for all its messages the default routing code:

MI (2 = Master Console Information) indicated by "(MI)*" in the TCB default routing code field
TCMRTDF to insure that if the message is for an executing job (i.e. RT=PG has been set by
IPW$$XRE/IPW$$XWE) which may be routed a User console (ECHO support), then a termination
error message will also be routed to the Master console.

4. VSE Default EXCP/SVC0 Interface: Messages issued via EXCP/SVC0 will receive the following
default handling: (except for messages in the "Exception List"):

 Message
 Number: Routing:
 ------- ----------------------
 "nnnnI" Master Console(Info)
 "nnnnD" Master Console(Action)
 "nnnnA" Master Console(Action)

5. Default WTO/WTOR routing codes enforced at execution time by module IPW$$MS:

402 VSE Central Functions V7R1 VSE/POWER DRM

 DECISION
 COMMAND MESSAGE

TCMRT RESPONSE (IPW$WTR) >>ROUTING CODE<<
 +=====+===========+=========+====================+

| � | NO | NO | MI |
| | | |MASTER CONSOLE INFO |

 +-----+-----------+---------+--------------------+
| � | NO | YES | MA |
| | | |MASTER CONSOLE ACTIO|

 +-----+-----------+---------+--------------------+
| � | YES | NO |(ROUTING TO ORIGIN) |

 +-----+-----------+---------+--------------------+
�	YES	YES	(ROUTING TO ORIGIN)
			+ MA
			MASTER CONSOLE ACTIO

 +-----+-----------+---------+--------------------+
NNNN	NO	NO	(ROUTING SPECIFIED)
			+ MI
			MASTER CONSOLE info

 +-----+-----------+---------+--------------------+
NNNN	NO	YES	(ROUTING SPECIFIED)
			+ MA
			MASTER CONSOLE ACTIO

 +-----+-----------+---------+--------------------+
| NNNN| YES | NO |(ROUTING TO ORIGIN) |

 | | | |+(ROUTING SPECIFIED)|
 +-----+-----------+---------+--------------------+

| NNNN| YES | YES |(ROUTING TO ORIGIN) |
 | | | |+(ROUTING SPECIFIED)|

| | | | + MA |
| | | |MASTER CONSOLE ACTIO|

 +-----+-----------+---------+--------------------+
|NOTE: RT=MI AND RT=MA ARE MUTUALLY EXCLUSIVE |

 +-----+-----------+---------+--------------------+

NOTE: FOR CONNECTED COMMAND RESPONSE MESSAGES(EXCEPT
FOR THE FIRST MESSAGE) INDIVIDUAL MESSAGE
ROUTING CODES ARE IGNORED.

Descriptor Code and Color:: The developer should consider the following when deciding on how
to code a message descriptor code (for an overview of the descriptor codes see Figure 56 on page 146):

Explicit Descriptor Code Needed:

� (Red:) SF (1 = System Failure)
i.e. Hardware errors, Software logic and generation errors

� (Red:) AK (11 = Action(type b) Error Message (not DOM'd))
� (White:) DA (2 = Action(type a: DOM'd) Message)
� (Green:) II (12 = Important Information Message) e.g. TP errors

Descriptor Codes Set Automatically: The following descriptor Codes will be automatically indicated by
IPW$$MS CAMS+24:)

� (Green:) CM (5 = Command Response) will be set if VSE Attention Command
� (Green:) JS (6 = Job Status) will be set if RT=PG (Programmer Info)

Note: JS causes the message to receive the execution partition ID from VSE.

 Chapter 4. Directory 403

The VSE/POWER task dispatcher stores the partition ID of an execution processor in the CAT when-
ever it is dispatched, which is read by the supervisor console message support everytime a message
is issued from VSE/POWER with the Discriptor Code = JS, causing the partition ID to be displayed
with the message.

� (White:) DA (2 = decision/action) will be set if reply expected (IPW$WTR)
� (Green:) SS (4 = System Status) will be set if nothing else is indicated

(The White color is automaticlly set by VSE for all Reply messages WTOR)

Default WTO/WTOR descriptor codes enforced at execution time by module IPW$$MS:

 DECISION- HELD
 CMD MSG: ON

TCMDC RSP:($WTR >>DESCRIPTOR CODE<< COLOR TUBE
 +=====+====+====+====================+=======+====+

| � | NO | NO | SS |GREEN |NO |
| | | | SYSTEM STATUS | | |

 +-----+----+----+--------------------+-------+----+
| � | NO |YES | DA |WHITE |YES |
| | | | DECISION OR ACTION |HI-LITE| |

 +-----+----+----+--------------------+-------+----+
| � |YES | NO | CM |GREEN |NO |
| | | | COMMAND RESPONSE | | |

 +-----+----+----+--------------------+-------+----+
�	YES	YES	DA + CM	WHITE	YES
			DECISION OR ACTION	HI-LITE	
			(NOTE 2)		

 +-----+----+----+--------------------+-------+----+
| NN | NO | NO |(AS SPECIFIED) NOTE1|(AS |<-- |
| | | | |SPEC'D)| |

 +-----+----+----+--------------------+-------+----+
| NN | NO |YES | DA |WHITE |YES |
| | | | DECISION OR ACTION |HI-LITE| |

 +-----+----+----+--------------------+-------+----+
NN	YES	NO	(AS SPECIFIED) NOTE2	(NOTE2)	<--
			+ CM		
			COMMAND RESPONSE		

 +-----+----+----+--------------------+-------+----+
NN	YES	YES	DA + CM (NOTE2)	WHITE	YES
			DECISION OR ACTION	HI-LITE	
			+COMMAND RESPONSE		

 +-----+----+----+--------------------+-------+----+
| NN |YES |(NA)| CM + CRITICAL EVENT|RED |YES |
| | | |(ACTON TYPE B)(NOTE3) | |

 +-----+----+----+--------------------+-------+----+
NOTE: FOR CONNECTED COMMAND RESPONSE MESSAGES(EXCEPT

FOR THE FIRST MESSAGE) INDIVIDUAL MESSAGE
DESCRIPTOR CODES ARE IGNORED.

NOTE1: DC=CM MAY NOT BE SPECIFIED
 (SET AUTOMATICALLY:

DC=CM SET WHEN COMMAND PROCESSOR OR
PRINT STATUS TASK IPW$$PS)

NOTE2: WHEN MULTIPLE DESCRIPTOR CODES ARE SPECIFIED
THEN THE LOWEST CODE IS RECOGNIZED

NOTE3: WHEN COMMAND RESPONSE OCCURS WITH ACTION
TYPE B MSG (CRITICAL EVENT) THEN COMMAND
RESPONSE CODE IS DROPPED.

404 VSE Central Functions V7R1 VSE/POWER DRM

VSE Default EXCP/SVC0 Interface:: Messages issued via EXCP will receive the following default han-
dling (except for messages in the "Exception List"):

 Message
 Number: Descriptor Code: Colour: Hold:

------- ---------------------- ------ -----
"nnnnI" System Status (4) green no hold on screen
"nnnnD" decision/action (2) WHITE (hi-lite) hold on screen
"nnnnA" decision/action (2) WHITE (hi-lite) hold on screen

Corelation between Routing and Descriptor Codes
 +---+

| IF ROUTING CODE = PROGRAMMER INFO (RT=PG) |
| DESCRIPTOR CODE SET TO JOB STATUS (DC=SS) |

 +---+
| IF DESCRIPTOR CODE = IMMED ACTION (DC=DA) THEN |
| ROUTING CODE SET TO MASTER ACTION (RT=MA) |

 +---+

Command Response (AR):: Any message returned from a command module IPW$$Cxx or
IPW$$PS to origin console in response to an Attention Routine command, except for system errors
(1QB5I,1QZ0I) which should be routed to both central operator (IPW$GAM DEST=LOCAL) and origin.

DOM'ed: Indicates if a message is deleted from the console screen via the DOM macro.

Issued Via:: For many messages it is indicated which macro is used to issue the macro, especially if
it is issued via EXCP/SVC0, WTO/WTOR or IPWWTO/IPWWTOR. This table should be maintained
accurately for all new messages.

The table uses the following abbreviations:

LOC = Remote message text locally defined in module IPW$$MS
 EXCP LOC = Issued via EXCP with message text locally defined in module
 EXCP REQ = Issued via EXCP with message retrieved via IPW$GAM REQ=ADDR
 EXCP REQ�= Issued via EXCP with message retrieved via simulated IPW$GAM REQ=ADDR
 EXCP $$I7= Issued via EXCP with message retrieved from DMB pointer constructed by IPW$$I7
 WTO1 LOC = Issued via WTO in module with message locally defined
 WTO1 LOC�= Issued via WTO in module in IPW$$I1

with message text locally defined in same module
 WTO1 LIP�= Issued via WTO in module in IPW$$I1

with message text defined in module IPW$$IP
 $GAM D=L = Issued via IPW$GAM DEST=LOCAL or IPW$GAM DEST=(Rx) to local operator
 $GAM+$WTO= Issued via IPW$GAM DEST=RETURN/address or IPW$GAM REQ=ADDR

followed by IPW$WTO to central operator
 $GAM+$WTR= Issued via IPW$GAM DEST=RETURN/address/(Rx) or IPW$GAM REQ=ADDR

followed by IPW$WTR to central operator
 $GTO = Issued via IPW$GTO with WTO macro issued in IPW$$TS
 $GTS = Issued via IPW$GTS with WTO macro issued in IPW$$SS
 $NTY = Issued via IPW$NTY
 $WTO LOC = Issued via IPW$WTO with message text locally defined in same module
 $WTO LIP�= Issued via IPW$WTO with message text defined in module IPW$$IP
 $WTO LCI�= Issued via IPW$WTO with message text defined in module IPW$$CI
 $WTO LCD�= Issued via IPW$WTO with message text defined in module IPW$$CD

Different Message Types: The following table illustrates the different message types issued to the
central operator. It serves as an example of how to select a message type for a new message.

 Chapter 4. Directory 405

 ========+==========+=====+=+===+=========+==+=+=====
 RT= |DC= |Color|C|DOM|Issued | |

xx xx xx|xx xx xx | |d| | | |
 +=======+==========+=====+=+===+=========+==+=+=====
1. >VSE Exception Msg<|RED | | - |EXCP --- | 1xxxI EXCP message | |
2. >VSE EXCP Default <|WHITE| | - |EXCP LOC | 1xxxD/1xxxA EXCP decision/action message | |
3. >VSE EXCP Default <|green| | - |EXCP LOC | 1xxxI EXCP Information message | |

 4.(MI)SP �|SF +|RED | | - |$GAM/$WTO| Error Message | |
5. MA SP �|AK +|RED | | - |$GAM/$WTO| Action (type b) message (1QF7A) (Note 1) | |
6.(MA) �| (DA) +|WHITE| | / |$GAM/$WTR| 1xxxD decision message | |
7. MA �| DA +|WHITE| |Yes|$GAM/$WTO| Action (type a) message (Note 1) | |

 8.(MI)SP �| II +|green| | - |$GAM/$WTO| Important Info message for System Programmer(e.g. 1Q�BI,1QF4I) | |
 9.(MI)SP �| +|green| | - |$GAM/$WTO| Important Note for System Programmer (1Q66I) | |
 1�.(MI) �| II +|green| | - |$GAM/$WTO| Important Info message (e.g. 1QF�I and TP errors) | |
 11.(MI) �| +|green| | - |$GAM/$WTO| Normal Info message (e.g. 1Q12I) | |
 12.(MA) �|(DA)(CM) +|WHITE|x| - |$GAM/$WTR| Command Response message requiring Reply | |
 13. �| (CM) +|green|x| - |$GAM/$WTO| Normal Command Response message | |
 | |

| +------- "+" = additional descriptor code may be added:
| - explicitedly by IPW$GMD DC=xx
| - or by IPW$$MS default enforcement

 |
+------------------ "�" = additonal routing may be added:

- explicitedly by IPW$GMD RT=xx,
- or by IPW$$MS default enforcement
- or during execution by the task or PSTART command setting the default TCMRTDF

Note 1 : Because Type A and B Action messages are not issued via IPW$WTR (ie not a decision message) then
the routing code must be indicated explicitedly (=MA).

Type B are RED because DC=AK specified. For Type A, DC=DA causes the WHITE colour.

Special Message Types (central operator only):

Note: these messages should always have a non-default routing code:

 1. Short-on-resource message
� Reason: to insure that message is routed to Master console or System Programmer Console in

circumstances where a task has some default routing in effect which would cause the SOS
message not to be routed to the central operator. (e.g. Execution Processor uses default routing
RT=PG causing IPW$$MS to set the descriptor code DC=JS causing job execution messages to
be routed to the User console by default when *$$JOB ECHO= is specified).

 � Exceptions:
– decision/reply messages, which always get RT=MA enforced
– Command response messages

Reason:
- one can assume that the person issuing the command will note the response message

immediately, whereas system error messages might get lost
- commands SHOULD fail gracefully and not cause the system to hang

� RT=(default) which get RT=MI per default if MA enforced

406 VSE Central Functions V7R1 VSE/POWER DRM

 ==========+========+=====+=+===+=========+==+=+=========+
RT= |DC= |Color|C|DOM|Issued | (+) Module has IPW$GMM msg EQUATE $1xxxx ---+| |

| | |m|'ed| via: |Message: (o) Module has locally defined message || Module: |
| | |n| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |

xx xx xx |xx xx xx| |d| | | v v| |
 +=========+========+=====+=+===+=========+==+=+=========+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q�3I INSUFFICIENT REAL/PFIXED STORAGE ALLOCATED |o|IPW$$I1 |
MI SP |SF |RED | | - |WTO1 LOC�| 1Q�5I PAGEABLE AREA nnnK TOO SMALL |o|IPW$$I1 |
MI SP |SF |RED | | - |WTO1 LOC�| 1Q1BI GETVIS MACRO CALL FAILED, RC=NNNN, AREA NNK TOO SMALL |o|IPW$$I1 |
MI SP |SF |RED | | - |$GAM D=L | 1Q1DI INSUFFICIENT GETVIS SPACE FOR QUEUE FILE, NEEDED ... |+|IPW$$I3 |
MI SP |SF |RED | | - |WTO1 LOC�| 1Q26I GETVIS AREA TOO SMALL |o|IPW$$I1 |
MI | II|green| | - | | 1Q31I ACCOUNT FILE (IJAFILE) MORE THAN 8�% FULL |+|IPW$$AM |
MA | DA |WHITE| |Yes| | 1Q32A NO MORE ACCOUNT FILE (IJAFILE) SPACE FOR task,cuu |+|IPW$$PF |
MA SP |AK |red | |Yes| | 1Q38A NO DASD SPACE AVAILABLE FOR task,cuu |+|IPW$$QM |

SP (or)| (CM)II|green|x| - | | 1Q7AI commandcode NO VIRTUAL STORAGE AVAILABLE |+|IPW$$CB |
MI SP | II|green| | - | | 1Q78I(�)NO REAL/PFIXED STORAGE AVAILABLE FOR task,cuu |+|IPW$$AM |
MI SP (or)| (CM)II|green|X| - | | 1Q7BI commandcode NO REAL/PFIXED STORAGE AVAILABLE |+|IPW$$CD |

 >VSE EXCP Default < |green| | - |EXCP LOC | 1Q85I task,cuu WAITING FOR VIRTUAL STORAGE |o|IPW$$NU |
MI SP | II|green| | - | | 1QA6I(�)NO STORAGE AVAILABLE FOR ttttt, cuu |+|IPW$$AS |
MI SP | II|green| | - | | 1QF�I DATA FILE nnn% FULL - QUEUE FILE nnn% FULL |+|IPW$$QM |
MI SP | II|green| | - | | 1QF4I NO FREE QUEUE RECORD AVAILABLE FOR task,cuu |+|IPW$$QM |
MI SP | II|green| | - | | 1V�1I NO SUBTASK AVAILABLE FOR RJE/SNA (C)|+|IPW$$SN |
MI SP | II|green| | - | | 1V16I NO STORAGE AVAILABLE FOR task FOR luname remid (C)|+|IPW$$OB |
MI (or)| (CM)II|green| | - | | 1QT9I TRACE FACILITY TABLE LOAD IGNORED, |+|IPW$$TC |

| | | | - | | SUBTASK FAILURE | | |
 A
 |

+---- Note: to have the above messages issued with the RED color requires:
- issuing DOM later to delete messages since then can occur often and should be
be deleted automatically by VSE/POWER. This requires that 1Q85I EXCP macro
be replaced with WTO and DOM macros.

2. Severe Error Messages 1QB5I,1QZ0I
Reason:
To insure that a message is routed to Master console or System Programmer console in circum-
stances where a command response message is being issued which is normally returned to the origin
console and not routed to the central operator (to route to both the Master/System console and origin
console then the message must be issued twice since the descriptor codes SF + CM are mutually
exclusive).

 ==========+========+=====+=+===+=========+==+=+=========+
RT= |DC= |Color|C|DOM|Issued | (+) Module has IPW$GMM msg EQUATE $1xxxx ---+| |

| | |m|'ed| via: |Message: (o) Module has locally defined message || Module: |
| | |n| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |

xx xx xx |xx xx xx| |d| | | v v| |
 +=========+========+=====+=+===+=========+==+=+=========+
 (or) SP |SF |RED | | - |$GAM D=L | 1QB5I INTERNAL MACRO CALL FAILED IN PHASE=xxxxxxxx, RC=rrmm | | |
 (or)SP -PG |SF |RED | | - |$GAM D=L | 1QZ�I SEVERE LOGIC ERROR OCCURRED IN PHASE=nnnnnnnn, RC=xxxx | | |

Special Message Notes

VSE "Exception List" Messages for VSE/POWER: VSE maintains a list of VSE/POWER messages
(module IJBCSS00) that require special handling when issued via EXCP/SVC0 (the descriptor code is set
to "system failure"):

 Chapter 4. Directory 407

 Issuing
 Message: Text: Modules: Handling:
 ------- ---------------------- ------- --------
1Q�5I PAGEABLE AREA nnnK TOO SMALL IPW$$IN Color: Red, Delete: Manually
1Q15I PHASE phasename NOT FOUND IPW$$IP " "
1Q2CI PSW=xxxxxxxx, CC= (prog.check) IPW$$AT " "
1Q2DI VSE/POWER CANCELLED DUE TO ... IPW$$AT " "
1QB5I INTERNAL MACRO CALL FAILED ... IPW$$TI " "
 " IPW$$MS " "
 " IPW$$I1 " "
 " IPW$$CM " "
1RTUI TCP/IP INTERFACE .. TERMINATED .. IPW$$AT " "
1RVUI TCP/SSL INTERFACE QUESTIONABLE .. IPW$$AT " "

Command Response Messages (IPW$$Cx, IPW$$PS) To support connected message function use
central routine normally to issue message

� subroutine MSG in IPW$$CM
� subroutine PSMSG in IPW$$PS for display message
� subroutine PSMSGLOC in IPW$$PS for central operator message
� use IPW$GAM DEST=LOCAL for error messages 1QB5I, IQZ0I

Message Reference Table (having Message Number)

Note: Whenever the field "task" appears in a message, the same text in the code listing appears as "ttttt"
which is replaced by the task-ID before printing.

Figure 136 (Page 1 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

MI SP |SF |RED | | - |WTO1 LOC�| 1Q�1I VSE/POWER CANNOT RUN IN REAL MODE |L|IPW$$I1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q�2I VSE/POWER CANNOT RUN AS A SUBTASK |L|IPW$$I1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q�3I INSUFFICIENT REAL/PFIXED STORAGE ALLOCATED |L|IPW$$I1 |

 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$I2 |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$I3 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I4 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I5 |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$I7 |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$IP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q�4I QUEUE/DATA FILE MISMATCH |E|IPW$$I3 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q�5I PAGEABLE AREA nnnK TOO SMALL |L|IPW$$I1 |

 >VSE Exception Msg< |RED | | - |EXCP LOC | |L|IPW$$IN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q�6I nnn SET OR DEFINE STATEMENT(s) IGNORED |E|IPW$$I7 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q�7I INVALID LOGICAL UNIT filename |E|IPW$$IP |
 (MI)SP |SF |RED | | - | | |E|IPW$$I3 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I4 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I5 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q�8I(�)UNABLE TO INITIALIZE CROSS PARTITION SUPPORT, RC=NNNN |E|IPW$$XM |
 (MI)SP |SF |RED | | - |$GAM D=L | (1)UNABLE TO INITIALIZE NETWORKING FUNCTION, RC=NNNN |E|IPW$$IN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q�9I INVALID DEFINE STATEMENT, RC=nnnn |E|IPW$$I2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$WTO LOC | 1Q�AI USE PLOAD COMMAND TO LOAD (JOBEXIT|NETEXIT ... |L|IPW$$IN |
MI SP |SF |RED | | - |WTO1 LOC�| |L|IPW$$I1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1Q�BI DATA FILE TOO LARGE |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q�CI IJQFILE TOO LARGE, nnnnn QUEUE RECORDS UNUSED |E|IPW$$I3 |

408 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 2 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q�DI ACCOUNT FILE TOO SMALL, REQUIRED BLOCKS=nnn |E|IPW$$I5 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q�EI ACCOUNT SUPPORT NOT AVAILABLE |E|IPW$$I2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q�FI DATA FILE SPECIFICATION ERROR, RC=nnnn |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA |DA |WHITE| | - |WTO1 LOC�| 1Q�GA Current LEVEL v.rm OF VSE/POWER INCOMPATIBLE ... |L|IPW$$I1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA)SP |SF |RED | | - |$GAM+$WTR| 1Q�HD IF SPOOL FILE MIGRATION TO |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |GREEN| | - |$GAM D=L | 1Q�HI CURRENT LEVEL OF VSE/POWER |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| | - |$GAM D=L | 1Q�JA SPOOL FILE MIGRATION FAILED DUE TO |E|IPW$$I3 |

 ----------+--------+-----+-+---+---------+--+-+---------+
(MI) | |GREEN| | - |$GAM D=L | 1Q�KI(�)DATA FILE EXTENT NO. ... AS EXTRACTED |E|IPW$$I4 |
(MI) | |GREEN| | - |$GAM D=L | (1)DATA FILE EXTENT NO. ... AS PRESERVED |E|IPW$$I4 |

 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q1�I SUPERVISOR WITHOUT ACCOUNTING SUPPORT |L|IPW$$I1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) | (DA) |WHITE| | - |$GAM+$WTR| 1Q11D FORMAT QUEUES= |E|IPW$$I2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM+$WTO| 1Q12I VSE/POWER 7.1.� INITIATION COMPLETED (FOR SYSID n) |E|IPW$$I7 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q13I ERRONEOUS AUTOSTART CARD(S) READ |E|IPW$$I2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q14I NO MATCHING PUB FOR cuu |L|IPW$$I1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$WTO LIP�| 1Q15I PHASE phasename NOT FOUND |L|IPW$$IN |
MI SP |SF |RED | | - |WTO1 LIP�| (Message locally defined in IPW$$IP) |L|IPW$$I1 |

 >VSE Exception Msg< |RED | | - |EXCP LOC | |L|IPW$$IP |
 (or) | (CM) |green|x| - |$GAM+$WTO| 1Q15I(1)commandcode PHASE phasename NOT FOUND |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$WTO LOC | 1Q15I UNABLE TO LOAD xxxxxxxx xxxxxxxx RC= |L|IPW$$CLD |
 (MI)SP |SF |RED | | - |$WTO LIP�| (Message locally defined in IPW$$IP and IPW$$CLD) |L|IPW$$IN |
MI SP |SF |RED | | - |WTO1 LIP�| |L|IPW$$I1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q16I INVALID PUN|LST ROUTING FOR REMID |L|IPW$$I1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q17I QUEUE FILE TOO SMALL |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q18I TOO MANY DATA FILE EXTENTS |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q19I INVALID DATA FILE EXTENT, RC=NNNN |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q1AI INVALID DEVICE SPECIFICATION CUU, RC=NNNN |E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q1BI GETVIS MACRO CALL FAILED, RC=NNNN, AREA NNK TOO SMALL |L|IPW$$I1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q1CI DBLK SIZE MISMATCH: DATA FILE=XXXX, POWER MACRO=NNNN |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |$GAM D=L | 1Q1DI INSUFFICIENT GETVIS SPACE FOR QUEUE FILE, NEEDED ... |E|IPW$$I3 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GAM D=L | 1Q1EI ATTEMPTING TO PLACE QUEUE FILE INTO PARTITION GETVIS . |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q1FI DBLK GROUP MISMATCH: DATA FILE=..., POWER MACRO=... |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q2�I AUTOSTART IN PROGRESS |E|IPW$$I7 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GAM D=L | 1Q21I VSE/POWER HAS BEEN TERMINATED |E|IPW$$T1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q22I VSE/POWER ALREADY ACTIVE |L|IPW$$I1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q23I LTA CANCEL IN PHASE=xxxxxxxx |E|IPW$$I2 |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$I3 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I4 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I5 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GAM D=L | 1Q24I ATTEMPTING TO PLACE QUEUE FILE INTO VIO AREA |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |Yes|$GAM+$WTO| 1Q25A partition-id IN STOP STATE |E|IPW$$T1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (VSE EXCP Default < |WHITE| | - |EXCP LOC | 1Q25D SUGGEST TO TAKE STAND ALONE DUMP NOW ... |L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+

 Chapter 4. Directory 409

Figure 136 (Page 3 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 >VSE EXCP Default < |green| | - |EXCP LOC | 1Q25I CLEANUP PENDING FOR |E|IPW$$AT |
 >VSE EXCP Default < |green| | - |EXCP LOC | HANDLE OUTSTANDING REQUESTS |E|IPW$$AT |
 >VSE EXCP Default < |green| | - |EXCP LOC | RECURSIVE ENTRY OF TERMINATION |E|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |SF |RED | | - |WTO1 LOC�| 1Q26I GETVIS AREA TOO SMALL |L|IPW$$I1 |

 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$I2 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I4 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I5 |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$I7 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q27I UNABLE TO INITIALIZE SPOOL MANAGEMENT |E|IPW$$I7 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q28I END OF VOLUME ON cuu |E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q29I END OF INPUT ON cuu |E|IPW$$SY |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q2AI OFFLOADING SUCCESSFULLY COMPLETED ON cuu |E|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q2BI(�)NOTHING TO SAVE ON cuu, RC= |E|IPW$$OF |
 (MI) | |green| | - |$GAM D=L | (1)NOTHING TO SELECT ON cuu, RC= |E|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE Exception Msg< |RED | | - |EXCP LOC | 1Q2CI PSW=XXXXXXXXXXXXXXXX, CC=yy -progr. check desc. |L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE Exception Msg< |RED | | - |EXCP LOC | 1Q2DI VSE/POWER CANCELED DUE TO PROGRAM REQUEST IN PHASE=xxx |L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |WHITE| | - |EXCP LOC | 1Q2ED SPECIFY PRINTER OR TAPE FOR VIO STORAGE COPY OF |L|IPW$$AT |
 >VSE EXCP Default < |WHITE| | - |EXCP LOC | INVALID PRINTER/TAPE, RE-ENTER |L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP LOC | 1Q2FI VIO POINT PROCESSING FAILED RC=nn |L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP LOC | 1Q2GI NORMAL TERMINATION OF QUEUE FILE DUMP |L|IPW$$AT |
(or) | (CM) |green|x| - |$GAM+$WTO| (�)NORMAL TERMINATION OF QUEUE FILE DUMP |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (1)QUEUE FILE DUMP PROCESSING CANCELED BY OPERATOR |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (2)NORMAL TERMINATION OF QUEUE DUMP, SEE LIST ENTRY $VIO |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (3)NORMAL TERMINATION OF QUEUE DUMP, SEE LIST ENTRY $QFL |E|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP LOC | 1Q2HI <JOB|NET|OUT|XMTEXIT>=phasename PUT INTO FAILED STATE |L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP LOC | 1Q2JI IDUMP REQUEST FROM X'ADDRESS' BY ... |L|IPW$$ID |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP LOC | 1Q2KI VSE/POWER RECOVERING FROM FAILURE OF USER EXIT |L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | |green| | - |$GAM D=L | 1Q2LI POFFLOAD ON cuu HAS DETECTED AN INCORRECT SPOOL ENTRY..|E|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$WTO LOC | 1Q2MI PDISPLAY BIGGEST DETECTED QUEUE RECORD WITH INVALID... |L|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |WHITE| | - |EXCP LOC | 1Q3�D ABNORMAL VSE/POWER TERMINATION, DUMP REQUIRED ?(YES/NO)|L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI | II|green| | - | | 1Q31I ACCOUNT FILE (IJAFILE) MORE THAN 8�% FULL |E|IPW$$AM |

 (MI) | II|green| | - | | |E|IPW$$PF |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP | DA |WHITE| |Yes| | 1Q32A NO MORE ACCOUNT FILE (IJAFILE) SPACE FOR task,cuu |E|IPW$$PF |
MA SP | DA |WHITE| |Yes| | |E|IPW$$AM |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q33I(�)STOPPED partition-id |E|IPW$$XRE |
 (MI)� | |green| | - |$GAM+$WTO| (1)STOPPED task,cuu |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |Yes| | 1Q34A partition-id WAITING FOR INPUT ON cuu |E|IPW$$XRE |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q34I(�)partition-id WAITING FOR WORK |E|IPW$$XRE |
 (MI) | |green| | - | | (1)task WAITING FOR WORK ON cuu |E|IPW$$LW |
 (MI) | |green| | - | | |E|IPW$$PR |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |Yes| | 1Q35A UNEXPECTED EOF ON cuu |E|IPW$$PR |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II| | | - | | 1Q36I DISP=X JOB(S) IN VSE/POWER READER QUEUE AFTER ABEND |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q37I JECL STATEMENT INCORRECT NEAR COLUMN n |E|IPW$$LR |
 (MI) | |green| | - |$GAM D=L | |E|IPW$$NR2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |red | | - | | 1Q38A NO DASD SPACE AVAILABLE FOR task,cuu |E|IPW$$QM |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q39I queue jobname FLUSHED BY THE OPERATOR, VSE/POWER OR USER |E|IPW$$LO |
 (MI) | |green| | - |$GAM D=L | |E|IPW$$LR |

410 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 4 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 (MI) | |green| | - | | |E|IPW$$LW |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q3AI ERROR WHILE PROCESSING ACCOUNT RECORD, RC=xxx |E|IPW$$PF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q3BI DBLK SIZE SET TO TRACK CAPACITY OF |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q3CI INVALID BLOCKSIZE FOR filename |E|IPW$$SF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA)SP |SF |RED | | - | | 1Q3DI INVALID CI-SIZE FOR filename |E|IPW$$SF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q3EI DYNAMIC CLASS class WAITING FOR WORK |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GAM D=L | 1Q3FI(�)DYNAMIC CLASS(ES) SUSPENDED - NO ALLOCATION SPACE |E|IPW$$DP |
 (MI)SP | II|green| | - |$GAM D=L | (1)DYNAMIC CLASS(ES) SUSPENDED - NO MORE PARTITIONS AT ALL|E|IPW$$DP |
 (MI)SP | II|green| | - |$GAM D=L | (2)DYNAMIC CLASS(ES) SUSPENDED - NO SYSTEM GETVIS SPACE |E|IPW$$DP |
 (MI)SP | II|green| | - |$GAM D=L | (3)DYNAMIC CLASS(ES) SUSPENDED - NO VSE/POWER SETPFIX SP |E|IPW$$DP |
 (MI)SP | II|green| | - |$GAM D=L | (4)DYNAMIC CLASS(ES) SUSPENDED - NO VSE/POWER GETVIS SP-24|E|IPW$$DP |
 (MI)SP | II|green| | - |$GAM D=L | (5)DYNAMIC CLASS(ES) SUSPENDED - NO PFIXED SYSTEM GETVIS |E|IPW$$DP |
 (MI)SP | II|green| | - |$WTO LOC | DYNAMIC CLASS(ES) SUSPENDED - ALLOC SPACE RUUING OUT |L|IPW$$DP |
 (MI)SP | II|green| | - |$WTO LOC | DYNAMIC CLASS(ES) SUSPENDED - POWER GETVIS-24 RUNNG OUT|L|IPW$$DP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$WTO LOC | 1Q3GI RESTRICTED ALLOCATION OF DYN.PART.cn - NO SYSTEM ... |L|IPW$$DP |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | |Yes|$GAM D=L | 1Q3JA NEW SAS=cccc TASK REJECTED DUE TO .. UBCHAIN |E|IPW$$XM |

 ----------+--------+-----+-+---+---------+--+-+---------+
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |Yes| | 1Q4�A(�)ON taskid FORMS ffff NEEDED FOR jobname jobnumber (R)|E|IPW$$LW |
MA | DA |WHITE| |Yes| | (1)ON cuu FORMS ffff NEEDED FOR jobname jobnumber |E|IPW$$LW |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q41I MISMATCHING PRINTER|PUNCH TYPE FOR jobnm jobno ON .. |E|IPW$$LW |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q42I(�)PAGE/CARD COUNT EXCEEDS END OF QUEUE ENTRY FOR cuu |E|IPW$$LW |
 (MI) | |green| | - | | (1)PAGE/CARD COUNT EXCEEDS END OF QUEUE ENTRY FOR taskid |E|IPW$$LW |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | |green| | - |$GAM D=L | 1Q43I END-OF-FILE ON TAPE FOR task,cuu |E|IPW$$QM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q44I INVALID OR INCOMPLETE PARAMETER COMBINATION taskid |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q45I SLI STATEMENT NOT SUPPORTED partition-id |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q46I DISP FORCED TO D FOR jobname jobnumber |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q47I partition-id jobname jobnumber FROM node/user TIME=.. |E|IPW$$XJ |
 (MI) | |green| | - | | |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q48I NO MATCHING SPOOL DEVICE partition-id |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q49I INVALID DELIMITER partition-id |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1Q4AI(�)MESSAGE DISCARDED, RC=nnnn |E|IPW$$NS |
 (MI)SP | II|green| | - | | 1Q4AI(1)MESSAGE DISCARDED, RC=nnnn APPLID USESRID |E|IPW$$NS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q4BI NOTIFY SUPPORT CANCELED FOR nnnnnnnn |E|IPW$$NS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1Q4CI UNABLE TO START VSE/POWER - NOT RUNNING IN SHARED ADDR |E|IPW$$I2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q4DI JOB jobname jobnumber FINISHED PROCESSING IN PART..... |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) SE | |green| | - | | 1Q4EI JOB jobname jobnumber pid NOT AUTH'ZED TO EXECUTE RC=. |E|IPW$$XRE |
 (MI) SE | |green| | - |$GAM D=L | |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q4FI JOB jobname jobno pid FLUSHED BY '� $$ FLS' STATEMENT |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q4GI cuu OUTPUT NOT PURGED FOR jobname jobnumb IN PARTITION |E|IPW$$XWE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) SE | |green| | - | | 1Q4HI JOB jobname jobnumber pid RUNNING IN WRONG SEC ZONE,.. |E|IPW$$XRE |
 (MI) SE | |green| | - |$GAM D=L | |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) SE | |green| | - | | 1Q4JI JOB jobname jobnumber pid SECURITY USERID NOT AUTH'ZED.|E|IPW$$XRE |
 (MI) SE | |green| | - |$GAM D=L | |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q4KI nnnnn RECORDS IGNORED FOR jobname ...(msg about remote)|E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q4LI nnnnn RECORDS IGNORED FOR jobname ...(msg about local) |E|IPW$$LM |

 Chapter 4. Directory 411

Figure 136 (Page 5 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q5�I UNKNOWN KEYWORD partition-id |E|IPW$$XJ |
 (MI) | |green| | - | | |E|IPW$$OP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q51I INVALID paraname PARAMETER partition-id |E|IPW$$XJ |
 (MI) | |green| | - | | |E|IPW$$OP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q52I OUTPUT LIMIT EXCEEDED FOR jobname jobnumber part-id,cuu|E|IPW$$XWE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q53I OUTPUT SEGMENTED FOR jobname jobnumber part-id,cuu |E|IPW$$XWE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA) | |WHITE| | - | | 1Q54A FCB ERROR FOR jobname jobnumber task,cuu PHASE=....... |E|IPW$$AS |
 (MA) | |WHITE| | - | | |E|IPW$$XWE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q54I UCS ERROR FOR jobname jobnumber task,cuu PHASE=....... |E|IPW$$PL |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) TA | (DA) |WHITE| | - |$GAM+WTR | 1Q55A(�)SPECIFY TAPE ADDRESS FOR jobname jobnumber part-id,cuu |E|IPW$$OT |
(MA) TA | (DA) |WHITE| | - |$GAM+WTR | (1)SPECIFY TAPE ADDRESS FOR task,cuu |E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | |green| | - |$GAM D=L | 1Q56I INVALID TAPE ADDRESS/MODE SET task |E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA TA | DA |WHITE| |Yes|$GAM D=L | 1Q57A(�)PLEASE REMOVE WRITE PROTECTION ON dev FOR task,cuu |E|IPW$$OT |
MA TA | DA |WHITE| |Yes|$GAM D=L | (1)PLEASE REMOVE WRITE PROTECTION ON dev FOR task,cuu |E|IPW$$OT |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA TA | DA |WHITE| |Yes|$GAM+$WTO| 1Q58A(�)MOUNT TAPE ON dev FOR jobname jobnumber task,cuu |E|IPW$$OT |
MA TA | DA |WHITE| |Yes|$GAM+$WTO| (1)MOUNT TAPE ON dev FOR task |E|IPW$$OT |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1Q59I task,cuu WAITING FOR REAL/PFIXED STORAGE |E|IPW$$NU |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | |WHITE| | - |$GAM D=L | 1Q5AI INVALID TAPE MOUNTED ON dev FOR task,cuu RC=nnnn |E|IPW$$OT |
 (MI) TA | |WHITE| | - | | |E|IPW$$SY |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | |green| | - |$GAM D=L | 1Q5BI NO TRAILER LABEL FOUND ON dev FOR task |E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) (TA) | (CM) |green|x| - | | 1Q5CI(�)commandcode MODE VERIFICATION FAILED,CURRENT MODE TAKEN|E|IPW$$CO |
(or) | (CM) |green|x| - | | |E|IPW$$CJ |
 (MI) TA | |green| | - |$GAM D=L | (1)MODE VERIFICATION FAILED, CURRENT MODE TAKEN FOR ... |E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q5DI(�)EXECUTION COMPLETED FOR jobname jobnumber ON nodeid .. |E|IPW$$XRE |
 (MI) | |green| | - | | |E|IPW$$NS |
 (MI) | |green| | - | | (1)EXECUTION COMPLETED FOR jobname jobnumber, RC=nnnn, .. |E|IPW$$NS |
 (MI) | |green| | - | | |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1Q5EI DTR$DYNx.Z INTERNAL PLOAD DYNC FAILURE, RC/FB=.... |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$NTY+$WTO| 1Q5FI FORMATTED COMMAND PROCESSING NOT SUPPORTED |E|IPW$$MX |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q5GI INVALID STATEMENT FROM IPWSEGM MACRO, COL=...RC=nnnn |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | - |$NTY | 1Q5HI >.... fixed format job generation message ... < < | |IPW$XWE |
| | | | | | (never displayed on console) . < | | |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$WTO LOC | 1Q5JI / 5� bytes invalid JECL / |L|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP TA | II|green| | - |$GAM D=L | 1Q5KI(�)TAPE SPOOLING FORCED TO DISK DUE TO BLOCKED LTA ... |E|IPW$$XWE |
 (MI) | |green| | - |$GAM D=L | 1Q5KI(1)TAPE SPOOLING FORCED TO DISK ... |E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI | II|green| | - |$GAM D=L | 1Q5LI(�)VSE/POWER OFFLOAD TERMINATED FOR -- |E|IPW$$OF |
MI | II|green| | - |$GAM D=L | 1Q5LI(1)VSE/POWER OFFLOAD TERMINATED FOR -- |E|IPW$$TR |

 ----------+--------+-----+-+---+---------+--+-+---------+
MI |SF |RED | | - |$GAM D=L | 1Q5MI(�)POFFLOAD cccccccc JOURNALING ON ... |E|IPW$$OF |

 | | | | | | |E|IPW$$TR |
MI |SF |RED | | - |$GAM D=L | 1Q5MI(�)POFFLOAD cccccccc JOURNALING ON ... |E|IPW$$CO |

 ----------+--------+-----+-+---+---------+--+-+---------+
MI |SF |RED | | - |$GAM D=L | 1Q5NI OFFLOADING ERRON ON cuu,task, JOURNAL ... |E|IPW$$TR |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)TA | |green| | - |$GAM D=L | 1Q5OI(�)CARTRIDGE ON cuu ALREADY WRITTEN ONCE ... |E|IPW$$OT |
 (MI)TA | |green| | - |$GAM D=L | 1Q5OI(�)CARTRIDGE ON cuu ALREADY WRITTEN ONCE ... |E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1Q6�I OPEN FAILURE ON PACCOUNT OUTPUT DEVICE |E|IPW$$AM |
 (MI)SP | II|green| | - | | |E|IPW$$SF |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA)SP | (DA) |RED | | - |$GAM+$WTR| 1Q61A UNRECOVERABLE I/O ERROR ON dev-des (READ|WRITE) I/O ERR|E|IPW$$PL |
(MA)SP | (DA) |RED | | - |$GAM+$WTR| |E|IPW$$PP |

412 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 6 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP |SF |RED | | - |$GAM+$WTO| 1Q61I(�)READ I/O ERROR ON dev, seek address or block number... |E|IPW$$TR |
 (MI)�SP |SF |RED | | - |$GAM D=L | |E|IPW$$RY |
 (MI)�SP |SF |RED | | - |$GAM+$WTO| (1)UNRECOVERABLE I/O ERROR ON ACCOUNT FILE cuu |E|IPW$$TR |
 (MI)�SP |SF |RED | | - |$GAM+$WTO| (2)UNRECOVERABLE I/O ERROR ON PACCOUNT OUPUT DEVICE |E|IPW$$TR |
 (MI)�SP |SF |RED | | - |$GAM+$WTO| (3)UNRECOVERABLE I/O ERROR ON tape |E|IPW$$TR |
 (MI)�SP |SF |RED | | - |$GAM+$WTO| (4)UNRECOVERABLE I/O ERROR ON cuu |E|IPW$$TR |
 (MI)�SP |SF |RED | | - |$GAM+$WTO| (5)WRITE I/O ERROR ON dev, seek address or block number.. |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP |SF |RED | | - |$GAM+$WTO| 1Q62I QUEUE CONTROL AREA UNACCESSABLE, RC=... |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP |SF |RED | | - |$GAM+$WTO| 1Q63I PERM I/O ERROR WRITING/READING QUEUE FILE MASTER RECORD|E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP |SF |RED | | - |$GAM+$WTO| 1Q64I(�)JOB jobname jobnumber queue ENTRY DELETED - nnnn DBLK. |E|IPW$$TR |
 (MI)�SP |SF |RED | | - |$GAM+$WTO| (1)JOB jobname jobnumber queue ENTRY DELETED |E|IPW$$TR |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP |SF |RED | | - |$GAM+$WTO| 1Q65I JOB jobnam jobnu suf q ERRONEOUS, OPERATOR SHOULD DELET|E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP | |green| | - |$GAM D=L | 1Q66I ACCOUNT FILE KEPT |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1Q67I NO EXIT ROUTINE CURRENTLY LOADED |E|IPW$$CV |
(or) | (CM) |green|x| - | | |E|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)� | |green| | - |$GAM+$WTO| 1Q68I SEGMENTATION FORCED FOR jobname jobnumber part-id,cuu |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)� | |green| | - |$GAM+$WTO| 1Q69I DEFAULT OPTIONS TAKEN FOR jobname jobnumber part-id,cuu +|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q6AI(�)�� DISPLAY OF ACTIVE DYNAMIC CLASS TABLE DTR$DYNx.Z �� |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (1)�� DISPLAY OF VERIFIED DYNAMIC CLASS TABLE DTR4DYNx.Z��|E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (2)CLS STATE ACT/MAX ALLOC SIZE SP-GETV PROFILE LUBS|E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (3)NO MATCHING DYNAMIC CLASS FOUND |E|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LOC | (------------- display line PDISPLAY DYNC ------) |L|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q6BI(�)DYNAMIC CLASS TABLE LOADED SUCCESSFULLY |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (1)DYNAMIC CLASS TABLE LOADED WITH INVALID CLASSES |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (2)DYNAMIC CLASS TABLE NOT LOADED |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (3)DYNAMIC CLASS TABLE VERIFIED |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM D=L | (4)DYNAMIC CLASS TABLE DISPLAYED IN LIST ENTRY $DYD.... |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (5)DYNAMIC CLASS TABLE NOT LOADED - ACTIVE CLAS MISSING |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (6)DYNAMIC CLASS TABLE NOT LOADED - NO DYN PARTITION DEFN |E|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1Q6CI commandcode NO ACTIVE DYNAMIC CLASS TABLE LOADED |E|IPW$$CD |
(or) | (CM) |green|x| - | | |E|IPW$$CV |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | | - |$GAM D=L | 1Q6DA RESERVED GETVIS SUBPOOL-ID IJBPxx ALREADY USED |E|IPW$$DP |

 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1Q6EI CLASS class NOT DEFINED IN ACTIVE DYNAMIC CLASS TABLE |E|IPW$$CV |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | | - |$GAM D=L | 1Q6FA BRING UP OF DYNAMIC PARTITION partid HAS FAILED, RC=xx |E|IPW$$DP |
MA SP |AK |RED | | - | | |E|IPW$$XRE |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP(MI)�|AK |RED | | - |$WTO LOC | 1Q6GA FAILING R/W-I/O REQUEST FOR UNDEFINED DBLK=... |L|IPW$$TR |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP(MI)�|AK |RED | | - |$WTO LOC | 1Q6HA FAILING R/W-I/O REQUEST FOR NON-SER DBLK=... |L|IPW$$TR |

 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP(MI)�|AK |green| | - |$WTO LOC | 1Q6JI JOB jobname jobnumb qid ENTRY KEPT WITH HOLD DISP .. |L|IPW$$TR |

 (MI)SP TA | |green| | - |$GAM D=L | |E|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP(MI)�|AK |RED | | - |$WTO LOC | 1Q6KA FAILING R/W-I/O REQUEST: NO SER IN SER DBLK=... |L|IPW$$TR |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | | - |$GAM D=L | 1Q6LA INVALID LOGICAL RECORD LENGTH FOUND IN DBLK, TASK TERM |E|IPW$$DM |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$WTO LOC | 1Q6MI taskid, cuu INVALID LOGICAL RECORD LENGTH ... |L|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | |green| | - |$GAM D=L | 1Q6NI POFFLOAD PICKUP HAS SCHEDULED nnnn SPOOL ENTRIES .. |E|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | |green| | - |$GAM D=L | 1Q6PI POFFLOAD PICKUP PROCEEDING WITH mmmm OUT OF nnnn .. |E|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP |AK |RED | | - |$GAM D=L | 1Q6QI JOB jobname jobno ENTRY KEPT IN CLASS 'A' WITH HOLD .. |E|IPW$$AQ |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA) SP | (CM) |RED |x| - |$GAM+$WTO| 1Q6SA TOO MANY CLASS ENTRIES FOUND - SURPLES IGNONRED |E|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA) SP | (CM) |RED |x| - |$GAM+$WTO| 1Q6TA DUPLICATE CLASS ENTIRES - FIRST ACCEPTED , DUPLICATES..|E|IPW$$PS |

 Chapter 4. Directory 413

Figure 136 (Page 7 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP | |RED | | - |$GAM D=L | 1Q6UA DBLK GROUP OWNERSHIP MISMATCH FOR QUEUE ENTRY ... |E|IPW$$GD |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP | |RED | | - |$GAM D=L | 1Q6VA SEH= |E|IPW$$GD |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)� | |green| | - |$GAM D=L | 1Q7�I TASK FAILURE, STOPPED partition-id |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)� | |green| | - |$GAM+$WTO| 1Q71I task, cuu TERMINATED |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)� | |green| | - |$GAM D=L | 1Q72I PACCOUNT TERMINATED |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)� | |green| | - |$GAM+$WTO| 1Q73I(�)STATUS DISPLAY TERMINATED |E|IPW$$TR |
 (MI)� | |green| | - |$GAM+$WTO| (1)TAPE STATUS DISPLAY TERMINATED |E|IPW$$TR |
 (MI)� | |green| | - |$GAM D=L | (2)STATUS DISPLAY TERMINATED (INCREASE DEFAULT ..|E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP |SF |RED | | - |$GAM+$WTO| 1Q74A ACCOUNT SUPPORT FUNCTIONS TERMINATED |E|IPW$$TR |
 | | | | | | |E|IPW$$RY |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)� | |green| | - |$GAM+$WTO| 1Q75I MULTIPLE TERMINATION OF TASK, task,cuu TERMINATED |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP |SF |RED | | - |$GAM+$WTO| 1Q76I VSE/POWER CANNOT CONTINUE, RC=nnnn |E|IPW$$TR |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$I3 |
 (MI) SP |SF |RED | | - | | |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) TA | (CM) |green|x| - | | 1Q77I(�)INVALID ENTRY ON SPOOL TAPE ON dev FOR task,cuu, RC=n..|E|IPW$$CS |
 (MI) TA | |green| | - |$GAM D=L | |E|IPW$$DM |
(or) TA | (CM) |green|x| - |$GAM D=L | |E|IPW$$PS |
 (MI) TA | |green| | - |$GAM D=L | |E|IPW$$OF |
 (MI) TA | |green| | - |$GAM D=L | |E|IPW$$OT |
 (MI) TA | |green| | - | | |E|IPW$$QM |
(or) TA | (CM) |green|x| - |$GAM D=L | 1Q77I(1)INVALID ENTRY ON SPOOL TAPE ON dev ..., SUGGEST SELECT.|E|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP | II|green| | - | | 1Q78I(�)NO REAL/PFIXED STORAGE AVAILABLE FOR task,cuu |E|IPW$$AM |

 (or)SP | (CM)II|green|X| - | | |E|IPW$$CS |
MI SP | II|green| | - | | |E|IPW$$LM |
MI SP | II|green| | - | | |E|IPW$$SF |

 (or)SP | (CM)II|green|X| - | | 1Q78I(1)NO REAL/PFIXED STORAGE AVAILABLE FOR task,tapeaddr |E|IPW$$CPS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q79I ACCOUNT FILE SAVED |E|IPW$$AM |
 (MI) | |green| | - | | |E|IPW$$SF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (or)SP | (CM)II|green|x| - | | 1Q7AI commandcode NO GETVIS-24 STORAGE AVAILABLE |E|IPW$$CB |
 (or)SP | (CM)II|green|x| - | | |E|IPW$$CD |
 (or)SP | (CM)II|green|x| - | | |E|IPW$$CF |
 (or)SP | (CM)II|green|x| - | | |E|IPW$$CG |
 (or)SP | (CM)II|green|x| - |$GAM D=L | |E|IPW$$CLD |
 (or)SP(TA) | (CM)II|green|x| - | | |E|IPW$$CO |
 (or)SP | (CM)II|green|x| - | | |E|IPW$$CP |
 (or)SP | (CM)II|green|x| - | | |E|IPW$$CPS |
 (or)SP | (CM)II|green|x| - | | |E|IPW$$CS |
 (or)SP | (CM)II|green|x| - | | |E|IPW$$CT |
 (or)SP | (CM)II|green|x| - | | |E|IPW$$CU |
 (or)SP | (CM)II|green|x| - | | |E|IPW$$CX |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (or)SP | (CM)II|green|X| - | | 1Q7BI commandcode NO REAL/PFIXED STORAGE AVAILABLE |E|IPW$$CD |
 (or)SP | (CM)II|green|X| - |$GAM D=L | |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP TA | II|green| | - |$GAM D=L | 1Q7CI TAPE SPOOLING FORCED TO SKIP FILE CLOSE DUE TO ... |E|IPW$$XWE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | II|green| | - |$GAM D=L | 1Q7DI(�)TAPE BEGINS WITH INCOMPLETE SPOOL ENTRY. SKIPPING ... |E|IPW$$NQ |
 (MI) TA | II|green| | - |$GAM D=L | 1Q7DI(1)TAPE BEGINS WITH INCOMPLETE SPOOL ENTRY. SKIPPING ... |E|IPW$$QM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA |AK |RED | | - |$GAM D=L | 1Q7EA POFFLOAD SKIPPED ENTRY jobnm jobno qid DUE TO INSUFF.. |E|IPW$$OF |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q7FI WRITER TASK REJECTED FOR 9346/3592 TAPE ON cuu, RC=n..|E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q8�I ACCOUNT FILE ERASED |E|IPW$$AM |
 (MI) | |green| | - | | |E|IPW$$SF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q81I filename EXTENT TOO SMALL, COMMAND NOT EXECUTED |E|IPW$$AM |
 (MI) | |green| | - | | |E|IPW$$SF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q82I PACCOUNT PROCESSING CANCELED BY COMMAND |E|IPW$$AM |
 (MI) | |green| | - | | |E|IPW$$SF |

414 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 8 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 (MI)� | |green| | - |$GAM D=L | |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q83I ACCOUNT FILE NOTHING TO SAVE |E|IPW$$AM |
 (MI) | |green| | - | | |E|IPW$$SF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1Q84I ACCOUNT INCOMPLETE FOR jobname jobnumber |E|IPW$$AM |
 (MI)SP |SF |RED | | - | | |E|IPW$$PF |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP LOC | 1Q85I task,cuu WAITING FOR GETVIS-24 STORAGE |L|IPW$$NU |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA DK | DA |WHITE| |YES|$GAM D=L | 1Q86A DISKETTE REQUIRED ON cuu, FOR jobname jobnumber, HDR1. |E|IPW$$ER |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q87I cuu EOJ ADDED FOR jobname jobnumber |E|IPW$$ER |
 (MI) | |green| | - | | |E|IPW$$SY |
 (MI) | |green| | - | | |E|IPW$$XTP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q88I INVALID 354� UNIT FOR partition-id cuu |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q89I PROGRAM OUT OF SEQUENCE IN partition-id |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1Q8AI TASK TRACE NOT YET STARTED |E|IPW$$CV |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1Q8BI STATISTICS STATUS REPORT DISPLAYED IN LIST ENTRY $STA. |E|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q8CI(�)DEFAULT OUTPUT VALUES USED FOR jobnam jobnu, ON nodeid |E|IPW$$XRE |
 (MI) | |green| | - | | (1)DEFAULT OUTPUT VALUES USED FOR jobnam jobnu, SPOOLED . |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1Q8DI INVALID CLASS class NOT ACCESSIBLE TO PVARY COMMAND |E|IPW$$CV |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1Q8EI ALL CLASSES FLAGGED INVALID IN ACTIVE DYNAMIC CLASS TBL|E|IPW$$CV |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1Q8FI VSE/SAM TAPE SPOOLING VIA SEGMENT MACRO PROHIBITED,... |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q8GI STATUS REPORT DISPLAXED IN LIST ENTRY ... $DYNx.Z � |E|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q8HI(�)MESSAGE mmmmI BEEN ENABLED , NOW DISABBLED..$DYNx.Z �. |E|IPW$$CV |
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q8HI(1)MESSAGE mmmmI BEEN ENABLED , NOW ENABLED ...$DYNx.Z �. |E|IPW$$CV |
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q8HI(2)MESSAGE mmmmI BEEN ENABLED , NOW DISABBLED..$DYNx.Z �. |E|IPW$$CV |
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q8HI(3)MESSAGE mmmmI BEEN ENABLED , NOW ENABLED ...$DYNx.Z �. |E|IPW$$CV |
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q8HI(4)MESSAGE mmmmI IS DISABLED $DYNx.Z � |E|IPW$$CV |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q8JI(�)MESSAGE mmmmI NOT ACCEPTED $DYNx.Z � |E|IPW$$CV |
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q8JI(1)MESSAGE mmmmI NOT VALID $DYNx.Z � |E|IPW$$CV |
(or) | (CM) |green|x| - |$GAM+$WTO| 1Q8JI(2)MESSAGE mmmmI CANNOT BE PROCESSED $DYNx.Z � |E|IPW$$CV |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q8KI(�)OUTPUT jobname jobnu PASSED TO PRINT ... |E|IPW$$LW |
 (MI) | |green| | - |$GAM D=L | 1Q8KI(1)OUTPUT jobname jobnu PASSED TO PRINT ... |E|IPW$$LW |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1Q9�I(�)� $$ RDR STATEMENT NOT ALLOWED, JOB FLUSHED |E|IPW$$LR |
 (MI) DK | |green| | - |$GAM D=L | (1)� $$ RDR STATEMENT NOT PROCESSED, JOB FLUSHED |E|IPW$$ER |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D cuu NON-COMPATIBLE DISKETTE FOR RDR,cuu2 |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D VOL1 LABEL ERROR OR NOT FOUND R= |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D NON-BASIC EXCHANGE DISKETTE TYPE R= |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D NON-BASIC EXCHANGE FFFFFFFF FILE R= |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D FFFFFFFF BYPASS REQUIRED R= |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D LABEL STANDARD VERSION VIOLATION R= |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D MULTIVOLUME IND NOT C, L, OR BLANK R= |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D FFFFFFFF END XTNT BELOW BEGIN XTNT R= |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D FFFFFFFF EOD ADDR BELOW BEGIN XTNT R= |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D VOL SEQ NO. |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D BLOCKLENGTH |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D BEGINEXTENT ERR IN HDR1 LABEL (NNNNN) R= |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D END EXTENT |L|IPW$$OE |
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q91D END-OF-DATA |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q92D cuu NO HDR1 FOR fileid, RDR,cuu2 R= |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q93D cuu SECURED VOLUME/FILE FOR RDR,cuu2 R= |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q94D cuu EXPECT VOL nn, NOT mm, RDR,cuu2 R= |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q95D cuu NON-VERIFIED fileid, RDR,cuu2 R= |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+

 Chapter 4. Directory 415

Figure 136 (Page 9 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 (MI) DK | |green| | - |$WTO LOC | 1Q96I cuu fileid IS EMPTY FILE FOR RDR,cuu2 |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q97D cuu PREMATURE LAST VOL FOR RDR,cuu2 R= |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q98D cuu fileid TOO MANY VOLS RDR,cuu2 R= |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q9nD INVALID RESPONSE R= |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) DK | (DA) |WHITE| | - |$WTR LOC | 1Q9nD NO PRECEEDING VOL, INCONSIST RESP R= |L|IPW$$OE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MI)SP | (CM) |green| | - |$GAM+$WTO| 1Q9GI BIGGEST SORTED DISPLAYED IN LIST ENTRY ... |E|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1QA�I NO SUBTASK AVAILABLE FOR task,cuu |E|IPW$$AS |
 (MI)SP |SF |RED | | - | | |E|IPW$$LD4 |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$TI |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1QA1I SETPRT ROUTINE NOT FOUND IN SVA task,cuu |E|IPW$$AS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | |green| | - |$GAM D=L | 1QA2I VSE/POWER MULTI-VOLUME TAPE COMPLETE FOR jobname ... |E|IPW$$OF |
 (MI) TA | |green| | - |$GAM D=L | |E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1QA3I SETPRT ERROR FOR jobname jobnumber task,cuu |E|IPW$$AS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1QA4I OUTPUT PROCESSING STOPPED FOR jobname jobnumber task |E|I PW$$AS |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |Yes| | 1QA5A cuu SETUP REQUIRED jobname FORM=ffff FLASH=hhhh THREAD.|E|IPW$$LW |

 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP | II|green| | - | | 1QA6I(�)NO STORAGE AVAILABLE FOR ttttt, cuu |E|IPW$$AS |

 (MI)SP |SF |RED | | - |$GAM D=L | (1) |E|IPW$$I7 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |Yes|$GAM D=L | 1QA7A MOUNT TRAIN FOR UCS=uuuuuuuu jobname jobnumber task,cuu|E|IPW$$PL |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1QA8I ON cuu BAND bandid NEEDED FOR jobname jobnumber |E|IPW$$PL |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |Yes| | 1QA9A task,cuu WAITING FOR OPERATOR REACTIVATION |E|IPW$$LW |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1QAAI USERID userid UNKNOWN TO VM, ... |E|IPW$$LW |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green| | - |$GAM+$WTO| 1QABI TASK task,tcuu ACTIVE USING cuu, COMMAND IGNORED |E|IPW$$CP |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green| | - |$GAM+$WTO| 1QACI cuu IS NOT ASSIGNED TO VSE/POWER, COMMAND IGNORED |E|IPW$$CP |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green| | - |$GAM+$WTO| 1QADI cuu IS NEITHER A PRINT NOR A PUNCH ... COMMAND IGNORED |E|IPW$$CP |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green| | - |$GAM+$WTO| 1QAEI TASK task,cuu IN STATE WHERE ... COMMAND IGNORED |E|IPW$$CP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1QAFI SHARING SYSTEM SYSID=xxxxxxxx ...,COMMAND IGNORED |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1QAGI PSTOP 'DBLKTR' OBSOLETE - |E|IPW$$CP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA) | |WHITE| | - |$GAM D=L | 1QAFD IF SYSID=xxxxxxxx CURRENTLY INACTIVE, ALLOW WARM START?|E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1QB�I SUPERVISOR WITHOUT DASD SHARING FEATURE |E|IPW$$I2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1QB1I filename NOT ON SHARED DEVICE |E|IPW$$I2 |
 (MI)SP |SF |RED | | - | | |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) | (DA) |WHITE| | - |$GAM+$WTR| 1QB2D IS ANY OTHER VSE/POWER SYSTEM ALREADY INITIALIZED ? |E|IPW$$I2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$WTO LOC | 1QB3A(�)SHARED PHASE=pppppppp REQUESTING WARM START. . |E|IPW$$I3 |
 (MI) | |green| | - |$WTO LOC | (1)NON SHARED PHASE=pppppppp REQZESTUBG WARN ST A.|E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) | (DA) |WHITE| | - |$GAM+$WTR| 1QB3D(�)IF SWITCH FROM NON SHARED TO SHARED PROCESS. . |E|IPW$$I3 |
(MA) | (DA) |WHITE| | - |$GAM+$WTR| (1)IF SWITCH FROM SHARED TO NON SHARED PROCESS. . |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ | 1QB4I LOCK TABLE SPACE EXHAUSTED |E|IPW$$TI |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) SP |SF |RED | | - |$GAM D=L | 1QB5I INTERNAL MACRO CALL FAILED IN PHASE=xxxxxxxx, RC=rrmm |E|IPW$$AS |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$CLD |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$CS |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$CV |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$DP |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$IP |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$I2 |

416 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 10 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$I3 |
 (MI) SP |SF |RED | | - | | |E|IPW$$I4 |
 (MI) SP |SF |RED | | - | | |E|IPW$$I5 |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$I7 |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$LD4 |DY42713
 (MI) SP |SF |RED | | - | | |E|IPW$$LU |
 (MI) SP |SF |RED | | - | | |E|IPW$$LW |
 (MI) SP |SF |RED | | - | | |E|IPW$$NU |
 (MI) SP |SF |RED | | - | | |E|IPW$$SM |
 (MI)�SP |SF |RED | | - |$GAM D=L | |E|IPW$$TR |
 (MI) SP |SF |RED | | - |$GAM D=L | |E|IPW$$T1 |
 (MI) SP |SF |RED | | - | | |E|IPW$$XRE |
 (MI) SP |SF |RED | | - | | |E|IPW$$XWE |
 >VSE Exception Msg< |RED | | - |EXCP LOC | INTERNAL MACRO CALL FAILED IN PHASE=IPW$$AT, RC=rr26 |L|IPW$$AT |
 >VSE Excpetion Msg< |RED | | - |EXCP LOC | INTERNAL MACRO CALL FAILED IN PHASE=IPW$$CM, RC=rr28 |L|IPW$$CM |
 >VSE Excpetion Msg< |RED | | - |EXCP LOC | INTERNAL MACRO CALL FAILED IN PHASE=IPW$$IP, RC=rr27 |L|IPW$$IP |
 >VSE Exception Msg< |RED | | - |EXCP LOC | INTERNAL MACRO CALL FAILED IN PHASE=IPW$$MS, RC=rrmm |L|IPW$$MS |
 >VSE Exception Msg< |RED | | - |EXCP REQ | INTERNAL MACRO CALL FAILED IN PHASE=IPW$$TI, RC=rrmm |E|IPW$$TI |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ | 1QB6I QUEUE FILE LOCKED BY ANOTHER SYSTEM |E|IPW$$TI |
 (MI) | |green| | - |$GAM D=L | |E|IPW$$I2 |
 ----------+--------+-----+-+---+---------+--+-+---------+

.* 6.6 rc 6 on
 (MI) | |green| | - |$GAM+$WTO| 1QB7I PARTIAL QUEUE FILE RECOVERY IN PROGRESS <FOR SYSID n1..|E|IPW$$RY |

.* 6.6 rc 6 off
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1QB8I QUEUE FILE RECOVERY COMPLETED |E|IPW$$RY |
 (MI) | |green| | - | | |E|IPW$$QM |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA TA | DA |WHITE| |Yes|$WTO LOC | 1QB9A cuu, HEADER= filelabel creation date |L|IPW$$OT |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1QBAI QUEUE FILE RECOVERY IN PROGRESS FOR FREE QUEUE RECORD. |E|IPW$$RQ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) TA | |green| | - |$GAM D=L | 1QBBI RESTART/SETUP OF SPOOL TAPE PROCESSING REQUESTED AT .. |E|IPW$$LW |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GAM D=L | 1QBCI QUEUE FILE RECOVERY DETECTED NEW DISP=X JOB(S) IN... |E|IPW$$RY |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ | 1QBDI PREVIOUS CONSOLE DISPLAY MESSAGE(S) HAS BEEN LOST ... |E|IPW$$MS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1QBEI INTERNAL MACRP CALL 'CPCOM' FAILED IN PHASE= ... |E|IPW$$LW |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |II |RED | | - |$GAM D=L | 1QBFI $IJBXPCA ERROR FOR PARTITION pid ... |E|IPW$$AS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) | (DA) |WHITE| | - |$GAM+$WTR| 1QBGD(�)NON SHARED VSE/POWER SYSTEM FOUND. IF STILL ..|E|IPW$$I3 |
(MA) | (DA) |WHITE| | - |$GAM+$WTR| (1)SHARED VSE/POWER SYSID(S)=nnnnnnnn FOUND - ..|E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | |green| | - | | 1QC�I SLI STATEMENT REJECTED, JOB jobname jobnum FLUSHED.... |E|IPW$$SL |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | |green| | - | | 1QC1I UNABLE TO PROCESS MEMBER member.tp JOB FLUSHED RC=.. |E|IPW$$AS |
 (MI)SP SE | |green| | - | | 1QC1I UNABLE TO PROCESS MEMBER member.tp JOB FLUSHED RC=���4 |E|IPW$$AS |

| | | | | | ==> (RC=���4 will be captured in IPW$$MS) | | |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QC2I SLI NESTING ERROR FOR MEMBER member.type, JOB......... |E|IPW$$SL |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QC3I(�)MEMBER member.type NOT FOUND, JOB jobname jobnum...... |E|IPW$$AS |
 (MI) | |green| | - | | (1)MEMBER member.type NOT FOUND IN lib.sublib,JOB jobnam. |E|IPW$$AS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1QC4I macroname MACRO FAILED, RC/FDK=nn,nn JOB jobname...... |E|IPW$$AS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |WHITE| | - |EXCP LOC | 1QC5D TO DUMP TO PRINTER OR TAPE, SPECIFY ... |L|IPW$$AT |
 >VSE EXCP Default < |WHITE| | - |EXCP LOC | PRINTER/TAPE TYPE INVALID OR NOT FREE ... |L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP LOC | 1QC5I DUMP PROCESSING FAILED, RC=NN |L|IPW$$ID |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QC6I LIBRARY libname NOT FOUND, JOB jobname jobnumb FLUSHED |E|IPW$$AS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QC7I part-id jobname jobnumber FROM ... COMPLETE ... |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| | - |$GAM D=L | 1QD1A TOO MANY EXTENTS (mm) FOR DATA FILE EXTENSION RC=..... |E|IPW$$I4 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM+$WTR| 1QD2D DATA FILE EXTEND NO. nn - FOR FORMATTING REPN RC=....Y.|E|IPW$$I4 |
 (MI) | |green| | - |$GAM D=L | 1QD2I EXISTING DATE FILE EXTENT NO. nn FOUND IN ..N RC=......|E|IPW$$I4 |

 Chapter 4. Directory 417

Figure 136 (Page 11 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| | - |$GAM D=L | 1QD3A DATA FILE EXTENSION FAILED FOR EXTENT mm RC= ... |E|IPW$$I4 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1QD4I VERIFYING LOCATION OF ADDITIONAL DATA FILE EXTENT mm |E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1QD5I LOCATION OF ADDITIONAL DATA FILE EXTENT mm VERIFIED SUC|E|IPW$$I4 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 SP |SF |RED | |Yes|$GAM D=L | 1QD6I(�)FORMATTING OF NEW DATA FILE EXTENT NO: nn ST STARTED AR|E|IPW$$T1 |
 SP |SF |RED | |Yes|$GAM D=L | 1QD6I(1)FORMATTING OF NEW DATA FILE EXTENT NO: nn CO STARTED MP|E|IPW$$T1 |
 SP |SF |RED | |Yes|$GAM D=L | 1QD6I(2)FORMATTING OF NEW DATA FILE EXTENT NO: nn DE STARTED CT|E|IPW$$T1 |
 SP |SF |RED | | - |$GAM D=L | 1QD6I(3)FORMATTING OF NEW DATA FILE EXTENT NO: nn FA FAILED .IL|E|IPW$$T1 |
 SP |SF |RED | | - |$GAM D=L | 1QD6I(4)FORMATTING OF NEW DATA FILE EXTENT NO: nn PO FAILED .ST|E|IPW$$T1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |Yes|$GAM D=L | 1QD7A ADDITIONAL EXTENT(S) FOUND FOR EXTENSION OF FAILED ...|E|IPW$$I4 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | |$GAM D=L | 1QE1I RE-ALLOCATION PROCESS STARTED FOR VSE/POWER QUEUE FILE |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| | |$GAM D=L | 1QE2A(�)RE-ALLOCATION OF QUEUE FILE FAILED, RC=...CONTINUED |+|IPW$$I3 |
MA | DA |WHITE| | |$GAM D=L | 1QE2A(1)RE-ALLOCATION OF QUEUE FILE FAILED, RC=...TERMINATED |+|IPW$$I3 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | |$GAM+$WTR| 1QE3D CONFIRM QUEUE FILE RE-ALLOCATION FROM IJQFOLD TO |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | |$GAM D=L | 1QE3I(�)IJQFOLD: // EXTENT SYS�34, |E|IPW$$I3 |
 (MI) | |green| | |$GAM D=L | 1QE3I(1)IJQFILE: // EXTENT SYS�34, |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | |$GAM D=L | 1QE4I VERIFYING LOCATION OF NEW QUEUE FILE IJQFILE BY OPEN ..|E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | |$GAM D=L | 1QE5I LOCATION OF NEW QUEUE FILE IJQFILE VERIFIED SUCCESSFUL |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP | DA |WHITE| | |$GAM D=L | 1QE6A CONFIRM QUEUE FILE RE-ALLOCATION FROM IJQFOLD TO |E|IPW$$I3 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | |$GAM D=L | 1QE7I DELETION OF IJQFILE FAILED, REMOVE FILE-ID |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP | DA |WHITE| | |$GAM D=L | 1QE8A IJQFILE (// EXTENT SYS��1 ... MISMATCH WITH ... |E|IPW$$I3 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1QF�I DATA FILE nnn% FULL - QUEUE FILE nnn% FULL |E|IPW$$QM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1QF1I UNABLE TO PLACE ENTIRE QUEUE FILE IN STORAGE, nnnnn K .|E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP(MI)�|AK |RED | | - |$GAM+$WTO| 1QF2A PEND FORCE REQUIRED TO TERMINATE VSE/POWER |E|IPW$$TR |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1QF3I VSE/POWER CONTINUES WITH A SUBSET OF QUEUE FILE - QUEUE|E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP | II|green| | - | | 1QF4I NO FREE QUEUE RECORD AVAILABLE FOR task,cuu |E|IPW$$QM |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP | II|green| | - |$GAM+$WTO| 1QF5I QUEUE FILE IS BEING RE-BUILT |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP | II|green| | - |$GAM+$WTO| 1QF6I QUEUE FILE SUCCESSFULLY RE-BUILT |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP |AK |RED | | - |$GAM+$WTO| 1QF7A QUEUE FILE DAMAGED - COLD START REQUIRED AFTER |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1QF8I(�)nnnn FREE DBLK GROUPS (ABOUT xx%) LOST |E|IPW$$QM |
 (MI)SP |SF |RED | | - |$GAM D=L | 1QF8I(1)nnnn FREE DBLK GROUPS OF A SUBCHAIN (ABOUT . . |E|IPW$$QM |
 (MI)�SP |SF |RED | | - |$GAM+$WTO| |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) | (DA) |WHITE| | - |$GAM+$WTR| 1QF9D ANY OTHER VSE/POWER SYSTEM STILL RUNNING ? (REPLY: ... |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | | - |$GAM D=L | 1QFAA USED DBLK GROUP FOUND IN A FREE DBLK GROUP SUBCHAIN |E|IPW$$Q1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | | - |$GAM D=L | 1QFBA FREE DBLK GROUP FOUND IN RETURNED QUEUE ENTRY |E|IPW$$Q1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | | - |$GAM D=L | 1QFCA MISMATCH OF GROUP COUNT AND ACTUAL NUMBER OF DBLK GROUP|E|IPW$$Q1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | | - |$GAM D=L | 1QFDA MISMATCH OF SUBCHAIN COUND AND ACTUAL NUMBER OF FREE GP|E|IPW$$Q1 |

 ----------+--------+-----+-+---+---------+--+-+---------+
(MA)SP | (DA) |WHITE| | - |$WTR LOC | 1QFED VSE/POWER GEN SECNODE VALUE xxxx DOESN'T MATCH |L|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MA)SP | (DA) |WHITE| | - |$WTR LOC | 1QFFD VSE/POWER WARMSTART AND VSE ACCESS CONTROL NOT ACTIVATED|L|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 ----------+--------+-----+-+---+---------+--+-+---------+
MA TA | DA |WHITE| | - |$GAM D=L | 1QG�A(�)WRONG SPOOL TAPE MOUNTED VOLUME=nnn, PLEASE MOUNT ... |E|IPW$$OT |
MA TA | DA |WHITE| | - |$GAM D=L | 1QG�A(1)WRONG SPOOL TAPE MOUNTED RC=nnn, PLEASE MOUNT ... |E|IPW$$OT |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - |$GAM D=L | 1QH�I RE-ATTEMPT WARMSTART WHEN NO FURTHER VSE/PWR SYSTEM UP |E|IPW$$I3 |

418 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 12 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) | (DA) |WHITE| | - |$GAM+$WTR| 1QH1D COLDSTART REQUESTED BY ANY SHARED SYSTEM ? (REPLY: ... |E|IPW$$I3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1QH2I IMMEDIATE TERMINATION ENTERED FOR SYSID x, RC=nnnn |E|IPW$$TI |
 (MI)�SP |SF |RED | | - |$GAM+$WTO| |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1QH3I nnnnn OF mmmmmm DBLK GROUPS LOST |E|IPW$$RY |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)�SP |SF |RED | | - |$GAM+$WTO| 1QH4I CHECKPOINT OPTION WITHDRAWN FOR jobname jobnumber |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II |green| | - |$GAM D=L | 1QH5I ENTERING QUEUE FILE REPAIR PHASE, TIME=..... |E|IPW$$TI |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II |green| | - |$GAM D=L | 1QH6I SUCCESSFUL EXIT OF QUEUE FILE REPAIR PHASE |E|IPW$$TI |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | | - |$GAM D=L | 1QH7A REAL/PFIXED STORATE CORRUPTED - SHUTDOWN SYSTEM AND RE.|E|IPW$$NU |

 ----------+--------+-----+-+---+---------+--+-+---------+
 >Dummy: Not Printed<| |x| - |$GAM D=L | 1QLSC >... last connected command response message ...< |E|IPW$$CM |
 >Dummy: Not Printed<| |x| - |$GAM D=L | |E|IPW$$PS |
 >Dummy: Not Printed<| |x| - |$GAM D=L | |E|IPW$$TR |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1QTxx >> Internal Trace Facility messages << | | |
| | | | | | (See Trace Manual) | | |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1QX1I XPCC FUNC=ffffffff FAILED IN PHASE=xxxxxxxx, RC=nn ... |E|IPW$$NS |
 (MI)SP |SF |RED | | - | | |E|IPW$$XM |
 (MI)SP |SF |RED | | - | | |E|IPW$$XT |
 (MI)SP |SF |RED | | - | | |E|IPW$$XTS |
 (MI)SP |SF |RED | | - | | |E|IPW$$XH |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1QX2I UNABLE TO CONTINUE CROSS-PARTITION SUPPORT |E|IPW$$XM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QX3I CROSS-PARTITION TASK taskid SERVING SAS=applid STOPPED |E|IPW$$XT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QY�I START-UP FOR DEVICE devname UNSUCCESSFUL, DDS=ddsname |E|IPW$$XT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QY1I DEVICE devname UNAVAILABLE, DDS=ddsname, RC=xxxx |E|IPW$$XTS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QY2I DEVICE devname WAITING FOR WORK, DDS=ddsname |E|IPW$$XTG |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QY3I DEVICE devname STARTED, DDS=ddsname, TIME=..... |E|IPW$$XTS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QY4I(�)DEVICE devname STOPPED BY OPERATOR userid, DDS=ddsname |E|IPW$$XT |
 (MI)SP |SF |RED | | - | | (1)DEVICE devname STOPPED BY VSE/POWER, DDS=ddsname |E|IPW$$XT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QY5I TERMINATION OF DDS ddsname FOR DEVICE devname, RC=xxxx |E|IPW$$XT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QY6I commandcode COMMAND NOT ACCEPTED BY DDS ddsname, RC=.. |E|IPW$$XTS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1QY7I DEVICE devname ALREADY STARTED |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1QY8I DEVICE devname UNKNOWN OR NOT YET STARTED |E|IPW$$CF |
(or) | (CM) |green|x| - | | |E|IPW$$CG |
(or) | (CM) |green|x| - | | |E|IPW$$CI |
(or) | (CM) |green|x| - | | |E|IPW$$CP |
(or) | (CM) |green|x| - | | |E|IPW$$CT |
(or) | (CM) |green|x| - | | |E|IPW$$CU |
(or) | (CM) |green|x| - | | |E|IPW$$CX |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QY9I UNABLE TO START DEVICE devname, DDS=ddsname IN SHUTDOWN|E|IPW$$XT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP -PG |SF |RED | | - |$GAM D=L | 1QZ�I SEVERE LOGIC ERROR OCCURRED IN PHASE=nnnnnnnn, RC=xxxx |E|IPW$$CLD |
 (MI)SP -PG |SF |RED | | - |$GAM D=L | |E|IPW$$CV |
 (MI)SP -PG |SF |RED | | - | | |E|IPW$$DM |
 (MI)SP -PG |SF |RED | | - |$GAM D=L | |E|IPW$$DP |
 (MI)SP -PG |SF |RED | | - | | |E|IPW$$LO |
 (MI)SP -PG |SF |RED | | - | | |E|IPW$$LU |
 (MI)SP -PG |SF |RED | | - |$GAM D=L | |E|IPW$$LW |
 (MI)SP -PG |SF |RED | | - | | |E|IPW$$NU |
 (MI)SP -PG |SF |RED | | - | | |E|IPW$$PC |
 (MI)SP -PG |SF |RED | | - |$GAM D=L | |E|IPW$$PS |
 (MI)SP -PG |SF |RED | | - | | |E|IPW$$QM |
 (MI)SP -PG |SF |RED | | - | | |E|IPW$$RY |
 (MI)SP -PG |SF |RED | | - | | |E|IPW$$SC |
 (MI)SP -PG |SF |RED | | - |$GAM D=L | |E|IPW$$T1 |

 Chapter 4. Directory 419

Figure 136 (Page 13 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 (MI)SP -PG |SF |RED | | - |$GAM D=L | |E|IPW$$TR |
 (MI)SP -PG |SF |RED | | - | | |E|IPW$$TQ |
 (MI)SP -PG |SF |RED | | - |$GAM D=L | |E|IPW$$XJ |
 (MI)SP -PG |SF |RED | | - |$GAM D=L | |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA) |(DA)(CM)|WHITE|x| - |$GAM+$WTR| 1QZ1D SUBSYSTEM RUNNING IN PARTITION xx - REPLY 'YES' TO ... |E|IPW$$CF |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| | - | | 1QZ2A (prefix of messages received from PSF or CICS Spooler)|L|IPW$$MS |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1QZ2I (prefix of messages received from PSF or CICS Spooler)|L|IPW$$MS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM+$WTR| 1QZ3D PROCESS '...cmd...'? CONFIRM WITH 'YES', ELSE 'NO' |E|IPW$$CP |
 (MI) | |green| | - |$GAM+$WTR| |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R�2I LINE cuu STOPPED, TIME=...... |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R�3I TRANSM xxxxx, TIMEOUTS xxxxx, ERRORS xxxxx |E|IPW$$LD3 |
 (MI) | |green| | - | | |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R�4I LINE cuu FORCED TO STOP BY PSTOP FORCE COMMAND, TIME=. |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R�5I SENT xxxxx RECEIVED xxxxx |E|IPW$$LD3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R�6I LINE cuu NOT TRANSPARENT |E|IPW$$CPS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1R�7I TIMEOUT LIMIT IS EXCEEDED FOR switch|leased LINE cuu ..|E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R�8I LINE cuu WAITING FOR SIGNON, TIME=....... |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1R�9I LINE ERROR OCCURRED ON LINE cuu |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R1�I INVALID SETUP COMMAND |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R11I INVALID STOP COMMAND |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R12I(�)INVALID CLASS SPECIFICATION |E|IPW$$BR |
 (MI) | |green| | - | | (1)INVALID OPTION SPECIFICATION |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | - | | 1R13I INVALID TASK SPECIFICATION (R)|E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | - | | 1R14I EOF ON THE READER (R)|E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R15I REMOTE remid SIGNED-ON ON LINE cuu, TIME=............. |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R16I REMOTE remid SIGNED OFF, TIME=........ |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R17I LINE cuu IS IN SHUTDOWN, TIME=......... |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R18I REMOTE remid FORCED TO SIGNOFF, TIME=...... |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R19I FIRST CARD MUST BE SIGNON CARD,READER FLUSHED |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | LOC | 1R2�I nnn MESSAGES DELETED (R)|E|IPW$$MS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R21I SIGNON IGNORED, INVALID REMOTE-ID |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R22I SIGNON IGNORED, INVALID PASSWORD |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R23I REMOTE remid ALREADY SIGNED ON |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R24I commandcode COMMAND OUT OF SEQUENCE |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1R25I REMOTE remid RECORD FORMAT ERROR ON LINE cuu |E|IPW$$BR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1R26I FOR jobnm jobno RECORD EXCEEDS SPECIFIED LIST/PUN VALUE|E|IPW$$BW |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1R27I REMOTE remid COMPONENT SELECT ERROR ON cuu |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1R28I DISABLE FOR LINE cuu FAILED, POWER OFF MODEM MANUALLY |E|IPW$$LM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1R3�I(�)INVALID CCW - CCB ADDR X'aaaaaa' jobname jobnumber, .. |E|IPW$$XWE |
 (MI) | |green| | - | | |E|IPW$$XRE |
 (MI) | |green| | - | | 1R3�I(1)CCB=xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx, ADDR= pid |E|IPW$$XWE |
 (MI) | |green| | - | | |E|IPW$$XRE |

420 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 14 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 (MI) | |green| | - | | 1R3�I(2)CCW=xxxxxxxx xxxxxxxx, ADDR= pid |E|IPW$$XWE |
 (MI) | |green| | - | | |E|IPW$$XRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1R31I UNABLE TO LOG TRACE AREA, RC=nnnn |E|IPW$$NU |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1R32I OUTPUT EXIT INTERFACE INCORRECT, RC=nnnn, PROCESSING |E|IPW$$LW |

| | | | | | jobname jobnumber, TASK task-id cuu STOPPED | | |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP |AK |RED | | - |$GAM D=L | 1R33A(�)WRONG JECL FROM SPOOL|SEGMENT, JOB jobnm jobno part ...|E|IPW$$XJ |
MA SP |AK |RED | | - |$GAM D=L | (1)WRONG JECL FROM SPOOL|SEGMENT IGNORED FOR JOB jobnm ...|E|IPW$$XJ |

 ----------+--------+-----+-+---+---------+--+-+---------+
(MA) | (DA) |WHITE| | - |$GAM+$WTR| 1R33D CORRECT FULL STATEMENT task |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1R33I NO VALID CORRECTION task |E|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R34I commandcode OPERAND nn NO MEANINGFUL FOR LST OR PUN Q |E|IPW$$CA |
(or) | (CM) |green|x| - | | |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R35I WRUN NOT APPLICABLE FOR TAPE DISPLAY |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1R36I jobname jobnumber WITH INCOMPLETE OR CONFLICTING ... |E|IPW$$LR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1R37I jobname jobnumber WITH IMPROBABLE YEAR SPECIFICATION |E|IPW$$LR |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA) (TA) | (CM)|WHITE|x| - |$GAM+$WTR| 1R4�D POFFLOAD WITH 'NOJNO' SPECIFIED FOR OLDNODE - OK? |E|IPW$$CO |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA) (TA) |(DA)(CM)|WHITE|x| - |$GAM+$WTR| 1R41D SPECIFY TAPE SELECTION CRITERIA OR ENTER TO QUIT |E|IPW$$CO |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1R41I(4)TAPE STATUS REPORT CANCELED BY OPERATOR |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (5-8)queue QUEUE P D C |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (9-12)queue NOTHING TO DISPLAY |E|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LOC | (---------------- display line --------------------) |L|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R42I commandcode OPERAND ## INCORRECT |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R43I SHARED SPOOLING NOT ACTIVE |E|IPW$$CRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R44I SYSID n IS OWN SYSID OR UNKNOWN |E|IPW$$CRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R45I commandcode OPERAND ## TOO LONG |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R46I(�)TIME IS XX/XX/XX, DATE IS XX/XX/XXXX |E|IPW$$CD |
(or) | (CM) |green|x| - | | (1)XXX PAGES FIXED, XXX CURRENT TASKS |E|IPW$$CD |
(or) | (CM) |green|x| - | | (2)NOTHING TO DISPLAY |E|IPW$$CD |
(or) | (CM) |green|x| - | | |E|IPW$$CI |
(or) | (CM) |green|x| - | | (3)SYSID=n,NODEID=nodename,SECNODE=seczone |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (4)STATUS REPORT CANCELED BY OPERATOR |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (5)queue QUEUE P D C S CARDS B |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (6-8)queue QUEUE P D C S PAGES CC FORM B |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (9-12)queue NOTHING TO DISPLAY |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (13)queue QUEUE P D C S CARDS B (WAIT FOR RUN SUBQUEUE) |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (14)queue NOTHING TO DISPLAY |E|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LCD�| NON-LOCAL SYSID=n SECNODE=yyyyyyyy |L|IPW$$CD |
(or) | (CM) |green|x| - |$WTO LOC | (----- queue entry display line -------------------) |L|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LOC | VSE/POWER STATUS REPORT |L|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LOC | (--- status report display line -------------------) |L|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LCD�| (--- trace information PDISPLAY TRINFO -----------) |L|IPW$$CD |

| | | | | | STXIT OC Exit messages (response to MSG F1,DATA=cmd): | | |
(or) | (CM) |green|x| - |WTO1 LOC | NO COMMAND PASSED VIA MSG INTERVACE |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | COMMAND cccccccc NOT SUPPORTED VIA MSG INTERFACE |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | (------- display line MSG F1,DATA=PDISPLAY A ------) |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | ��� BEGIN OF DISPLAYING VSE/POWER TCB'S ��� |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | TID ,CUU,TCBADR,T,PHASE(ADDR),REG12 ,STATE(RX) |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | (------- display line MSG F1,DATA=PDISPLAY TASKS ---) |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | ��� END OF DISPLAYING VSE/POWER TCB'S ��� |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | ��1 �� BEGIN OF DISPLAYING SPOOLED DEVICES �� |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | ��2 PARTITION,DEV-CLASS: CUU,CUU,... |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | (------- display line MSG F1,DATA=PDISPLAY SPDEV ---) |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | nnn �� END OF DISPLAYING SPOOLED DEVICES �� |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | ��1 �� BEGIN OF DISPLAYING SPOOLED DEVICE WITH DEV ... |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | ��2 PARTITION,DEV-CLASS: CUU(PUB-CODE,DEV-TYPE),CUU(.. |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | (------- display line MSG F1,DATA=PDISPLAY SPDEVT --) |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | nnn �� END OF DISPLAYING SPOOLED DEVICE WITH DEV... |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | ��1 ��� BEGIN OF AUTOSTART INFORMATION ��� |L|IPW$$CM |

 Chapter 4. Directory 421

Figure 136 (Page 15 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

(or) | (CM) |green|x| - |WTO1 LOC | ��2 NO AUTOSTART STATEMENTS PROCESSED |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | nnn REPLY TO MSG '1Q11D FORMAT QUEUES=': (=NO AS ... |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | (------- display line MSG F1,DATA=PDISPLAY AUSTMT --) |L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | nnn ��� END OF AUTOSTART INFORMATION ��� |L|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$WTO LCD�| 1R47I (--- task,cuu messages pending PDISPLAY M ---) |L|IPW$$CD |
(or) | (CM) |green|x| - | | NO MESSAGES PENDING |E|IPW$$CD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$WTO LCD�| 1R48I (--- task,cuu,class,num. buff,jobname,... PDISPLAY A--)|L|IPW$$CD |
(or) | (CM) |green|x| - | | (�)NO READER OR WRITER TASK CURRENTLY ACTIVE |E|IPW$$CD |
(or) | (CM) |green|x| - |WTO1 LOC | NO COMMAND PASSED VIA MSG INTERFACE (OC-Exit)|L|IPW$$CM |
(or) | (CM) |green|x| - |WTO1 LOC | COMMAND cccccccc NOT SUPPORTED VIA MSG INTERF (OC-Exit)|L|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1R49I(�)NO ACCOUNTING SUPPORT |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (1)nnnn FREE QUEUE RECORDS - QUEUE FILE nn% FULL |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (2)nnnnnnnn FREE DBLK GROUPS - DATA FILE nn% FULL |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (3)ACCOUNT FILE xx% FULL |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (4)CURRENT DBLK SIZE=nnnn, DBLK GROUP SIZE=nnnnn |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (5)ACCOUNT FILE EXTENT ON CKD-cuu SYS... |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (6)QUEUE FILE EXTENT ON CKD-cuu SYS... |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (7)DATA FILE EXTENT n ON CKD-cuu SYS... |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (8)DATA FILE EXTENT n ON CKD-cuu SYS... |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (9)ACCOUNT FILE EXTENT ON FBA-cuu SYS... |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (1�)QUEUE FILE EXTENT ON FBA-cuu SYS... |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (11)DATA FILE EXTENT n ON FBA-cuu SYS... |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (12)DATA FILE EXTENT n ON FBA-cuu SYS... |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (13)USED QUEUE RECORDS ... CRE-Q ... DEL-Q ... |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM+$WTO| (14RDR-Q ... LST-Q ... PUN-Q ... XMT-Q |E|IPW$$CD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1R4AI EXITTYPE STATE NAME WA-SIZE ADDRESS EXITSIZE WU|E|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LOC | (---------------- display line PDISPLAY EXIT ----) |L|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1R4BI(�)DELETION QUEUE P D C I LINES B |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (1)DELETION QUEUE NOTHING TO DISPLAY |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (2)CREATE QUEUE C I LINES B DBGP QNUM TASK OWNER |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (3)CREATE QUEUE NOTHING TO DISPLAY |E|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LOC | (---------------- Queue Entry Display Line --------) |L|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LOC | (4)nn BIGGEST SORTED C I CARD/LINE DBGP QNUM SUF PAGES |L|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (5)BIGGEST ENTRIES - NOTHING TO DISPLAY |E|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA) |(DA)(CM)|WHITE|x| - |$GAM+$WTO| 1R5�D(�)partition-id READER= |E|IPW$$CS |
 (MA) |(DA)(CM)|WHITE|x| - |$GAM+$WTO| (1)partition-id PRINTERS= |E|IPW$$CS |
 (MA) |(DA)(CM)|WHITE|x| - |$GAM+$WTO| (2)partition-id PUNCHES= |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R51I(�)commandcode NO STATUS REPORT IN PROGRESS |E|IPW$$CC |
(or) | (CM) |green|x| - | | (1)commandcode OPERAND n DESIGNATES NON-EXISTING TASK |E|IPW$$CA |
(or) | (CM) |green|x| - | | |E|IPW$$CP |
(or) | (CM) |green|x| - | | |E|IPW$$CT |
(or) | (CM) |green|x| - | | (2)commandcode NON-EXISTING TASK DESIGNATED |E|IPW$$CF |
(or) | (CM) |green|x| - | | |E|IPW$$CPF |
(or) | (CM) |green|x| - | | |E|IPW$$CG |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R52I(�)commandcode LAST OPERAND INVALID |E|IPW$$CM |
(or) | (CM) |green|x| - | | (1)commandcode INVALID DESTINATION SPECIFIED |E|IPW$$CB |
(or) | (CM) |green|x| - | | (2)commandcode OPERAND ## INVALID OR NON-EXISTING PART'N |E|IPW$$CD |
(or) | (CM) |green|x| - | | (3)commandcode OPERAND ## INVALID |E|IPW$$CD |
(or) | (CM) |green|x| - | | |E|IPW$$CE |
(or) | (CM) |green|x| - | | |E|IPW$$CF |
(or) | (CM) |green|x| - | | |E|IPW$$CG |
(or) | (CM) |green|x| - | | |E|IPW$$CL |
(or) | (CM) |green|x| - | | |E|IPW$$CLD |
(or) | (CM) |green|x| - | | |E|IPW$$CM |
(or) | (CM) |green|x| - | | |E|IPW$$CP |
(or) | (CM) |green|x| - | | |E|IPW$$CS |
(or) | (CM) |green|x| - | | |E|IPW$$CT |
(or) | (CM) |green|x| - | | |E|IPW$$CU |
(or) | (CM) |green|x| - | | |E|IPW$$CV |
(or) | (CM) |green|x| - | | |E|IPW$$CX |
(or) | (CM) |green|x| - | | (4)commandcode OPERAND ## MISSING OR INVALID |E|IPW$$CA |
(or) | (CM) |green|x| - | | |E|IPW$$CAC |
(or) | (CM) |green|x| - | | |E|IPW$$CB |
(or) | (CM) |green|x| - | | |E|IPW$$CC |
(or) | (CM) |green|x| - | | |E|IPW$$CD |
(or) | (CM) |green|x| - | | |E|IPW$$CG |

422 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 16 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

(or) | (CM) |green|x| - | | |E|IPW$$CH |
(or) | (CM) |green|x| - | | |E|IPW$$CI |
(or) | (CM) |green|x| - | | |E|IPW$$CJ |
(or) | (CM) |green|x| - | | |E|IPW$$CL |
(or) | (CM) |green|x| - |$GAM D=L | |E|IPW$$CLD |
(or) | (CM) |green|x| - | | |E|IPW$$CN |
(or) (TA) | (CM) |green|x| - | | |E|IPW$$CO |
(or) | (CM) |green|x| - | | |E|IPW$$CP |
(or) | (CM) |green|x| - | | |E|IPW$$CPF |
(or) | (CM) |green|x| - | | |E|IPW$$CPS |
(or) | (CM) |green|x| - | | |E|IPW$$CR |
(or) | (CM) |green|x| - | | |E|IPW$$CRE |
(or) | (CM) |green|x| - | | |E|IPW$$CS |
(or) | (CM) |green|x| - | | |E|IPW$$CT |
(or) | (CM) |green|x| - | | |E|IPW$$CU |
(or) | (CM) |green|x| - | | |E|IPW$$CV |
(or) | (CM) |green|x| - | | |E|IPW$$CX |
(or) | (CM) |green|x| - | | (5)commandcode OPERAND ## NO VALID QUEUE |E|IPW$$CD |
(or) | (CM) |green|x| - | | |E|IPW$$CH |
(or) | (CM) |green|x| - | | |E|IPW$$CL |
(or) (TA) | (CM) |green|x| - | | |E|IPW$$CO |
(or) | (CM) |green|x| - | | |E|IPW$$CR |
(or) | (CM) |green|x| - | | (6)commandcode INVALID SPECIFICATION FOR KEYWORD |E|IPW$$CA |
(or) | (CM) |green|x| - |$GAM D=L | |E|IPW$$CLD |
(or) | (CM) |green|x| - | | |E|IPW$$CM |
(or) | (CM) |green|x| - |$GAM+$WTO| |E|IPW$$CD |
(or) | (CM) |green|x| - | | (7)commandcode OPERAND ## NOT SPECIFIED AS VALID KEYWORD |E|IPW$$CA |
(or) | (CM) |green|x| - |$GAM D=L | |E|IPW$$CLD |
(or) | (CM) |green|x| - | | |E|IPW$$CM |
(or) | (CM) |green|x| - | | (8)commandcode NO SEARCH TYPE OPERAND SPECIFIED |E|IPW$$CA |
(or) | (CM) |green|x| - | | (9)commandcode INVALID BUFFER SPECIFICATION |E|IPW$$CS |
(or) | (CM) |green|x| - | | (1�)commandcode OPERAND ## NO DEVICE ADDRESS |E|IPW$$CG |
(or) | (CM) |green|x| - | | (11)commandcode OPERANDS ARE INCONSISTENT |E|IPW$$CD |
(or) | (CM) |green|x| - | | |E|IPW$$CM |
(or) | (CM) |green|x| - | | (12)comandcode OPERAND CPAGES AND CCARDS MUTUALLY EXCLUSIVE|E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R53I commandcode INVALID DENSITY |E|IPW$$CJ |
(or) (TA) | (CM) |green|x| - | | |E|IPW$$CO |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R54I commandcode CLASS c INVALID |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R55I commandcode INVALID FILENAME |E|IPW$$CJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R56I(�)lineaddr NOT INITIATED |E|IPW$$CI |
(or) | (CM) |green|x| - | | (1)luname PROCESSING remid |E|IPW$$CI |
(or) | (CM) |green|x| - | | (2)lineaddr INACTIVE |E|IPW$$CI |
(or) | (CM) |green|x| - | | (3)NO LOGICAL UNIT LOGGED ON |E|IPW$$CI |
(or) | (CM) |green|x| - | | (4)lineaddr PROCESSING remid |E|IPW$$CI |
(or) | (CM) |green|x| - | | (5)luname LOGGED ON |E|IPW$$CI |
(or) | (CM) |green|x| - | | (6)luname NOT LOGGED ON |E|IPW$$CI |
(or) | (CM) |green|x| - | | (7)luname LOGGING ON |E|IPW$$CI |
(or) | (CM) |green|x| - | | (8)cuu PROCESSING NODE nodeid |E|IPW$$CI |
(or) | (CM) |green|x| - | | (9)cuu NODE nodeid SESSION PENDING |E|IPW$$CI |
(or) | (CM) |green|x| - | | (1�)NODE nodeid INACTIVE OR UNKNOWN |E|IPW$$CI |

(or) | (CM) |green|x| - |$WTO LCI�| JOB-TRANSMITTER 1=A 2=I...... |L|IPW$$CI |
(or) | (CM) |green|x| - |$WTO LCI�| OUT-TRANSMITTER 1=A 2=I...... |L|IPW$$CI |
(or) | (CM) |green|x| - |$WTO LCI�| JOB-RECEIVER 1=A 2=I..... |L|IPW$$CI |
(or) | (CM) |green|x| - |$WTO LCI�| OUT-RECEIVER 1=A 2=I..... |L|IPW$$CI |
(or) | (CM) |green|x| - |$WTO LCI�| LOCAL NODE ACTING AS SERVER|CLIENT, CIPHER= |L|IPW$$CI |
(or) | (CM) |green|x| - |$WTO LCI�| TRANSMISSION SUSPENDED, RFCS=.. |L|IPW$$CI |
(or) | (CM) |green|x| - |$WTO LCI�| RECEIVING SUSPENDED, TFCS=... |L|IPW$$CI |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R57I(�)commandcode COMMAND IGNORED, TASK IS AT JOB BOUNDARY |E|IPW$$CT |
(or) | (CM) |green|x| - | | |E|IPW$$CF |
 (MI) | |green|x| - |$GAM D=L | (1)JOBEXIT FLUSH IGNORED, TASK IS AT JOB BOUNDARY |E|IPW$$LR |
 (MI)SP |SF |RED |x| - |$GAM D=L | (2)JOBEXIT RETURN CODE INCORRECT, TASK taskid,cuu FLUSHED |E|IPW$$LR |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R58I(�)commandcode DEVICE cuu IS NOT KNOWN |E|IPW$$CJ |
(or) | (CM) |green|x| - | | |E|IPW$$CM |
(or) (TA) | (CM) |green|x| - | | |E|IPW$$CO |
(or) | (CM) |green|x| - | | |E|IPW$$CS |
(or) | (CM) |green|x| - | | (1)commandcode DEVICE cuu IN USE |E|IPW$$CM |
(or) | (CM) |green|x| - | | (2)commandcode DEVICE cuu IS DOWN |E|IPW$$CM |

 Chapter 4. Directory 423

Figure 136 (Page 17 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1R59I FOR nodeid,userid EXECUTING COMMAND: command operand |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R5AI FLUSH IGNORED, TASK IS IN STOP STATE |E|IPW$$CC |
(or) | (CM) |green|x| - | | |E|IPW$$CF |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R5BI commandcode COMMAND IGNORED, RC=nnnn |E|IPW$$CF |
(or) | (CM) |green|x| - | | |E|IPW$$CM |
(or) (TA) | (CM) |green|x| - | | |E|IPW$$CO |
(or) | (CM) |green|x| - | | |E|IPW$$CRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1R5CI PHASE TO BE LOADED UNSUITABLE FOR CURRENT ENVIRONMENT |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R5DI commandcode COMMAND IGNORED, TRACING COULD NOT BE ... |E|IPW$$CP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MA) |(DA)(CM)|WHITE|x| - |$GAM+$WTR| 1R6�D CONFIRM PRESET COMMAND FOR SYSID ... |E|IPW$$CRE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R61I commandcode INVALID FOR WRITER-ONLY PARTITION |E|IPW$$CF |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R62I commandcode INVALID RJE PASSWORD |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R63I commandcode partition-id PRIORITY TOO HIGH |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R64I(�)commandcode NO FREE LUB AVAILABLE |E|IPW$$CM |
 (MI) | |green| | - |$GAM D=L | |E|IPW$$OT |
(or) | (CM) |green|x| - | | (1)commandcode SYSLST LUB NOT AVAILABLE |E|IPW$$CM |
 (MI) | |green| | - |$GAM D=L | (2)SYSLST LUB NOT AVAILABLE task,cuu |E|IPW$$PL |
 (MI) | |green| | - |$GAM D=L | (3)NO LUB AVAILABLE, DISP FORCED TO D jobname jobnum part.|E|IPW$$OT |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R65I(�)commandcode RJE,SNA NOT SUPPORTED |E|IPW$$CP |
(or) | (CM) |green|x| - | | (1)commandcode RJE,SNA ALREADY STARTED |E|IPW$$CS |
(or) | (CM) |green|x| - | | (2)commandcode RJE,BSC NOT SUPPORTED |E|IPW$$CS |
(or) | (CM) |green|x| - | | (3)commandcode RJE NOT SUPPORTED |E|IPW$$CB |
(or) | (CM) |green|x| - | | |E|IPW$$CD |
(or) | (CM) |green|x| - | | (4)RJE OR PNET NOT SUPPORTED |E|IPW$$CI |
(or) | (CM) |green|x| - | | (5)commandcode RJE,SNA NOT STARTED |E|IPW$$CP |
(or) | (CM) |green|x| - |$GAM D=L | (6)commandcode DYNAMIC PARTITION SCHEDULING NOT SUPPORTED |E|IPW$$CD |
(or) | (CM) |green|x| - | | |E|IPW$$CLD |
(or) | (CM) |green|x| - | | |E|IPW$$CV |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R66I(�)commandcode cuu LIST WRITER TASK DOES NOT EXIST |E|IPW$$CU |
(or) | (CM) |green|x| - | | (1)commandcode NO WRITER TASK SPECIFIED |E|IPW$$CT |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R67I commandcode OPERAND ## REDUCED TO 99 |E|IPW$$CU |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R68I(�)commandcode partition-id PARTITION NOT AVAILABLE |E|IPW$$CS |
(or) | (CM) |green|x| - | | (1)commandcode partition-id IS VSE/POWER PARTITION |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R69I(�)commandcode NO ACCOUNTING SUPPORT |E|IPW$$CJ |
(or) | (CM) |green|x| - | | (1)commandcode COMMAND REJECTED,SAVE ACCOUNT ALREADY ACTIV|E|IPW$$CJ |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R7�I commandcode NO DEVICE ADDRESS SPECIFIED |E|IPW$$CT |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R71I commandcode OPERAND ## IS NOT A VALID device-type |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R72I commandcode VIRTUAL STORAGE FOR part SMALLER THAN 128K |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R73I commandcode INVALID DEVICE TYPE FOR task |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+++---------+
(or) | (CM) |green|x| - | | 1R74I(�)commandcode NO PRINTER ADDRESS SPECIFIED |E|IPW$$CU |
(or) | (CM) |green|x| - | | (1)commandcode INVALID LINE ADDRESS |E|IPW$$CS |
(or) | (CM) |green|x| - | | |E|IPW$$CPS |
(or) | (CM) |green|x| - | | (2)commandcode INVALID DEVICE SPECIFICATION |E|IPW$$CJ |
(or) (TA) | (CM) |green|x| - | | |E|IPW$$CO |
(or) | (CM) |green|x| - | | |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R75I partition-id AUTOSTARTED |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R76I commandcode NUMBER OF PAGES NOT DECIMAL |E|IPW$$CU |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R77I commandcode TASK NOT WAITING FOR OPERATOR |E|IPW$$CG |
(or) | (CM) |green|x| - | | |E|IPW$$CU |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R78I(�)DEVICE devname CONNECTION PENDING, DDS=ddsname |E|IPW$$CI |

424 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 18 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

(or) | (CM) |green|x| - | | (1)DEVICE devname STARTING |E|IPW$$CI |
(or) | (CM) |green|x| - | | (2)DEVICE devname WAITING FOR WORK |E|IPW$$CI |
(or) | (CM) |green|x| - | | (3)DEVICE devname WAITING FOR OPERATOR REACTIVATION |E|IPW$$CI |
(or) | (CM) |green|x| - | | (4)DEVICE devname ACTIVE |E|IPW$$CI |
 | | | | | | (5)<doesn't exist> | | |
(or) | (CM) |green|x| - | | (6)DEVICE devname INACTIVE |E|IPW$$CI |
(or) | (CM) |green|x| - | | (7)DEVICE devname SETUP IN PROGRESS |E|IPW$$CI |
(or) | (CM) |green|x| - |$WTO LCI�| CLASSES: xxxx,<QUEUE:y><STATUS: HALTING> |L|IPW$$CI |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R79I commandcode ERRONEOUS AUTOSTART CARD(S) READ' |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R7AI PSTART READERS|PRINTERSE|PUNCHES EXPECTED BUT NOT ... |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R8�I commandcode OPTIONAL OPERANDS OF COMMAND IGNORED |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R81I(�)commandcode MESSAGE/OPERAND DOES NOT START WITH QUOTE |E|IPW$$CM |
(or) | (CM) |green|x| - | | (1)commandcode OPERAND TOO LONG OR NO CLOSING QUOTE |E|IPW$$CM |
(or) | (CM) |green|x| - | | (2)commandcode MESSAGE TEXT WILL BE TRUNCATED |E|IPW$$CB |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R82I commandcode 'PSETUP' OR 'PRESTART' IN PROGRESS |E|IPW$$CT |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R83I PINQUIRE OPERAND NEITHER 'ALL' NOR LINE ADDRESS |E|IPW$$CI |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R84I commandcode DELETION NOT ALLOWED OR IMPOSSIBLE |E|IPW$$CL |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R85I(�)commandcode COMMAND NOT ALLOWED FOR REMOTE OPERATOR |E|IPW$$CM |
(or) | (CM) |green|x| - | | (1)commandcode COMMAND NOT ALLOWED FOR X-PART / USER CONS |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R86I PLEASE SPECIFY DEVICES TO BE SPOOLED |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R87I commandcode TOO MANY CLASSES, FIRST n PROCESSED |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R88I(�)OK |E|IPW$$CA |
(or) | (CM) |green|x| - | | |E|IPW$$CAC |
(or) | (CM) |green|x| - | | |E|IPW$$CH |
(or) | (CM) |green|x| - | | |E|IPW$$CL |
(or) | (CM) |green|x| - | | |E|IPW$$CN |
(or) | (CM) |green|x| - | | |E|IPW$$CP |
(or) | (CM) |green|x| - | | |E|IPW$$CR |
(or) | (CM) |green|x| - | | |E|IPW$$CRE |
(or) | (CM) |green|x| - | | |E|IPW$$CS |
(or) | (CM) |green|x| - |$GAM D=L | |E|IPW$$CLD |
(or) | (CM) |green|x| - | | |E|IPW$$CV |
(or) | (CM) |green|x| - |$GAM D=L | |E|IPW$$PS |
(or) | (CM) |green|x| - | | (1)NOTHING TO HOLD |E|IPW$$CH |
(or) | (CM) |green|x| - | | (2)NOTHING TO RELEASE |E|IPW$$CR |
(or) | (CM) |green|x| - | | (3)NOTHING TO DELETE |E|IPW$$CL |
(or) | (CM) |green|x| - | | (4)NOTHING TO ALTER |E|IPW$$CA |
(or) | (CM) |green|x| - | | (5)JOB jobname jobnumber CANNOT BE ALTERED |E|IPW$$CA |
(or) | (CM) |green|x| - | | (6)NOTHING TO CANCEL |E|IPW$$CC |
(or) | (CM) |green|x| - | | (7)NOTHING TO SEGMENT |E|IPW$$CSG |
(or) | (CM) |green|x| - | | (8)NOTHING TO COPY |E|IPW$$CY |
(or) | (CM) |green|x| - | | (9)JOB jobname jobno CANNOT BE COPIED |E|IPW$$CY |
(or) | (CM) |green|x| - | | (9)JOB jobname jobno CANNOT BE COPIED |E|IPW$$CY |
(or) | (CM) |green|x| - |$GAM+$WTO| (1�)OK : NNNNN ENTRY PROCESSED BY cccccccc |E|IPW$$CA |
(or) | (CM) |green|x| - |$GAM+$WTO| |E|IPW$$CH |
(or) | (CM) |green|x| - |$GAM+$WTO| |E|IPW$$CL |
(or) | (CM) |green|x| - |$GAM+$WTO| |E|IPW$$CR |
(or) | (CM) |green|x| - |$GAM+$WTO| (11)OK : NNNNN ENTRIES PROCESSED BY cccccccc |E|IPW$$CA |
(or) | (CM) |green|x| - |$GAM+$WTO| |E|IPW$$CH |
(or) | (CM) |green|x| - |$GAM+$WTO| |E|IPW$$CL |
(or) | (CM) |green|x| - |$GAM+$WTO| |E|IPW$$CR |
(or) | (CM) |green|x| - |$GAM+$WTO| (12)OK : WORK AREA SHOULD BE VERIFIED IN ... |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R89I PEND VSE/POWER INITIATION NOT COMPLETE |E|IPW$$CE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R9�I commandcode INVALID TASK SPECIFICATION operand |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R91I(�)commandcode TOO MANY OPERANDS, COMMAND REJECTED |E|IPW$$CM |
(or) | (CM) |green|x| - | | (1)commandcode TOO MANY OPERANDS, FIRST n PROCESSED |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R92I ALLUSER MESSAGE QUEUE IS FULL |E|IPW$$CB |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R93I(�)commandcode REMOTE remid CURRENTLY NOT SIGNED ON |E|IPW$$CB |

 Chapter 4. Directory 425

Figure 136 (Page 19 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

(or) | (CM) |green|x| - | | (1)commandcode NO SESSION ESTABLISHED FOR lunamexx |E|IPW$$CP |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R94I INVALID DEVICE DUPLICATION |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R95I commandcode LINE cuu NOT SUPPORTED |E|IPW$$CI |
(or) | (CM) |green|x| - | | |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R96I commandcode INCORRECT OPERAND nn OF COMMAND IGNORRED |E|IPW$$CI |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R97I commandcode COMMAND INVALID DURING SHUTDOWN |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R98I commandcode INVALID VSE/POWER COMMAND |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R99I(�)VSE/POWER HAS BEEN TERMINATED |E|IPW$$CE |
(or) | (CM) |green|x| - | | (1)VSE/POWER IS IN SHUTDOWN |E|IPW$$CE |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R9AI SHORT COMMAND 'commandcode' UNSUPPORTED DUE TO ... |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1R9BI(�)commandcode SEGMENT REQUEST IGNORED FOR DISP=I |E|IPW$$CA |
(or) | (CM) |green|x| - | | |E|IPW$$CSG |
(or) | (CM) |green|x| - | | (1)commandcode SEGMENT REQUEST IGNORED DUE TO EMPTY DBLKGP|E|IPW$$CA |
(or) | (CM) |green|x| - | | |E|IPW$$CSG |
(or) | (CM) |green|x| - | | (2)commandcode SEGMENT REQUEST IGNORED FOR DISP=T |E|IPW$$CA |
(or) | (CM) |green|x| - | | |E|IPW$$CSG |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1RA�I JOB/OUTPUT jobname jobnum TRANSMITTED TO nodeid... |E|IPW$$NT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1RA1I JOB/OUTPUT jobname jobnum NODE nodeid UNKNOWN |E|IPW$$QM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$NTY | 1RA2I(�)COMMAND FOR NODE node1 IGNORED, NODE name NOT CONNECTED|E|IPW$$MX |
 (MI) | |green| | - |$NTY | (1)NODE nodeid UNKNOWN |E|IPW$$MX |

					(IPW$NTY messages will have following RT=,DC=:		
					- when arriving via PNET will have default RT=�,DC=�		
					- when routing to local node, will have IPW$GMM dflt)		

 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RA3I commandcode VSE/POWER NETWORKING NOT SUPPORTED |E|IPW$$CAC |
(or) | (CM) |green|x| - | | |E|IPW$$CB |
(or) | (CM) |green|x| - | | |E|IPW$$CD |
(or) | (CM) |green|x| - | | |E|IPW$$CF |
(or) | (CM) |green|x| - | | |E|IPW$$CI |
(or) | (CM) |green|x| - |$GAM D=L | |E|IPW$$CLD |
(or) | (CM) |green|x| - | | |E|IPW$$CN |
(or) | (CM) |green|x| - | | |E|IPW$$CP |
(or) | (CM) |green|x| - | | |E|IPW$$CS |
(or) | (CM) |green|x| - | | |E|IPW$$CV |
(or) | (CM) |green|x| - | | |E|IPW$$CX |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RA4I commandcode INVALID NODEID nodeid RC=xxxx |E|IPW$$CA |
(or) | (CM) |green|x| - | | |E|IPW$$CD |
(or) | (CM) |green|x| - |$GAM D=L | |E|IPW$$CLD |
(or) | (CM) |green|x| - | | |E|IPW$$CP |
(or) | (CM) |green|x| - | | |E|IPW$$CPS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1RA5I commandocde INVALID NETWORK DEFINITION TABLE ndtname |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1RA6I UNABLE TO ESTABLISH CONNECTION TO NODE nodeid RC=nnnn |E|IPW$$LD3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RA7I commandcode COMMAND NOT ALLOWED ON NODE nodeid |E|IPW$$CM |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1RA8I task TASK HAS BEEN DRAINED FOR NODE nodeid |E|IPW$$NR |
 (MI) | |green| | - | | |E|IPW$$NR2 |
 (MI) | |green| | - | | |E|IPW$$NT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1RA9I TRANSMISSION OF JOB/OUTPUT jobname jobnum ..CANCELLED. |E|IPW$$NT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1RB�I(�)NODE nodeid SIGNED-OFF ON LINK cuu RC=nnnn, TIME=hh... |E|IPW$$LD3 |
 (MI) | |green| | - | | (1)NODE nodeid STOPPED, RC=nnnn, TIME=hh/mm/ss |E|IPW$$LD3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RB1I NODE UNKNOWN OR NO PATH ESTABLISHED TO NODE nodeid |E|IPW$$CAC |
(or) | (CM) |green|x| - | | |E|IPW$$CB |
(or) | (CM) |green|x| - | | |E|IPW$$CN |
(or) | (CM) |green|x| - | | |E|IPW$$CPF |
(or) | (CM) |green|x| - | | |E|IPW$$CX |
 ----------+--------+-----+-+---+---------+--+-+---------+

426 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 20 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 (MI) | II|green| | - | | 1RB2I INVALID SIGNON RECEIVED FROM NODE nodeid, RC=nnnn |E|IPW$$LD3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1RB3I NODE nodeid SIGNED-ON ON LINK cuu, BSIZE=nnn, TIME=hh. |E|IPW$$LD3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1RB4I commandcode NETWORK DEFINITION TABLE ndtname LOADED |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1RB5I job/output jobname jobnum RECEIVED FROM nodeid FOR ... |E|IPW$$NR |
 (MI) | |green| | - | | |E|IPW$$NR2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1RB6I(�)job/output jobname jobnum FROM nodeid CANCELED, RC=nnnn +|IPW$$NR |
 (MI) | II|green| | - | | |E|IPW$$NR2 |
 (MI) | II|green| | - | | (1)CONSOLE DATA FROM nodeid CANCELED, RC=nnnn |E|IPW$$NR |
 (MI) | II|green| | - | | |E|IPW$$NR2 |
 (MI) | II|green| | - | | (2)RECEIVER FOR nodeid CANCELED, RC=nnnn |E|IPW$$NR |
 (MI)SP |SF |RED | | - | | |E|IPW$$NR2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1RB7I(�)NODE ROUTE1 ROUTE2 AUTH BSIZ APPLID APPLID/IPADDR|E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (1)commandcode NOTHING TO DISPLAY |E|IPW$$PS |
(or) | (CM) |green|x| - |$GAM+$WTO| (2)����� NDT NAME = xxxxxxxx ����� |E|IPW$$PS |
(or) | (CM) |green|x| - |$WTO LOC | (---------- NDT display line --------------------) |L|IPW$$PS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1RB8I(�)NODE nodeid HAS RESTARTED |E|IPW$$LD1 |
 (MI) | |green| | - | | (�)AUTOMATIC RESTART OF CONNECTION TO NODE nodeid IN PROGR +|IPW$$LD3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - | | 1RB9I NODE ATTACHED TABLE FULL OR CONTAINS ERROR ENTRIES ... |E|IPW$$LD3 |
 (MI)SP |SF |RED | | - | | |E|IPW$$LD5 |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$TI |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA SP(TP) |AK |RED | | - |$GAM D=L | 1QBAA UNACCEPTABLE PARALLEL SESSION REQUEST OCCURRED FOR ... |E|IPW$$S2 |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - |$GAM D=L | 1RC�I BUFFER(S) LOST ON LINK WITH NODE nodeid, RC=nnnn |E|IPW$$LD1 |
 (MI) | II|green| | - |$GAM D=L | |E|IPW$$LD2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1RC1I NETWORK PROTOCOL ERROR FOR NODE nodeid, RC=nnnn |E|IPW$$LD1 |
 (MI) | |green| | - |$GAM D=L | |E|IPW$$LD2 |
 (MI) | |green| | - | | |E|IPW$$LD3 |
 (MI)SP |SF |RED | | - | | |E|IPW$$S2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RC2I commandcode TRANSMITTER CANNOT BE ACTIVATED |E|IPW$$CAC |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RC3I commandcode COMMAND REJECTED, NODE nodeid IN SHUTDOWN |E|IPW$$CAC |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1RC4I UNABLE TO SHUTDOWN SESSION WITH NODE nodeid |E|IPW$$S3 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$GAM D=L | 1RC6I CONNECTION PENDING FOR NODE nodeid, TIME=hh/mm/ss |E|IPW$$LD1 |
 (MI) | |green| | - | | |E|IPW$$LD3 |
 (MI) | II|green| | - | | CONNECTION PENDING FOR NODE nodeid, TIME=hh/mm/ss, RC=.|E|IPW$$S2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1RC7I NODE nodeid AWAITING CONNECTION, TIME=...... |E|IPW$$S2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RC8I PSTART COMMAND IGNORED, INVALID CTCA SPECIFIED |E|IPW$$CPS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RD�I PSTART COMMAND IGNORED, VTAM TERMINATING |E|IPW$$CPS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RD1I commandcode NODE nodeid ALREADY STARTED |E|IPW$$CPS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ�| 1RD2I VTAM OPEN FAILED, RC=nnnn |E|IPW$$S1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ�| 1RD3I VTAM SETLOGON FAILED, RC/FDB2=nn,nn |E|IPW$$S1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ�| 1RD4I VTAM SETLOGON QUIESCE FAILED, RC/FDB2=nn,nn |E|IPW$$S1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ�| 1RD5I VTAM CLOSE FAILED, RC=nnnn |E|IPW$$S1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - |$GAM D=L | 1RD6I APPLID applid NOT DEFINED IN NETWORK DEFINITION TBL |E|IPW$$S2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ�| 1RD7I LOSTERM EXIT SCHEDULED FOR NODE nodeid, REASON LOST. |E|IPW$$SE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ�| 1RD8I VTAM macroname FAILED, RC/FDB2=nn,nn |E|IPW$$SE |
 (MI) | II|green| | - |$GAM D=L | |E|IPW$$S2 |
 (MI) | II|green| | - |$GAM D=L | |E|IPW$$S3 |
 (MI) | II|green| | - |$GAM D=L | |E|IPW$$LD2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - |$GAM D=L | 1RE�I VTAM NOT STARTED OR INACTIVE |E|IPW$$LD4 |

 Chapter 4. Directory 427

Figure 136 (Page 21 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ�| 1RE1I VTAM INTERFACE CLOSED FOR NETWORKING |E|IPW$$S1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE EXCP Default < |green| | - |EXCP REQ�| 1RE2I SESSION REQUEST FROM NODE nodeid REJECTED, RC=nnnn |E|IPW$$SE |
 (MI) | II|green| | - |$GAM D=L | |E|IPW$$S2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1RE3I APPLID FOR NODE nodeid ALREADY DEFINED IN NDT |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1RE4I IP-ADDRESS WITH PORT FOR NODE nodeid ALREADY DEFINED ..|E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1RE5I NETWORK DEFINITION TABLE ... FOUND WITH NEW LOCAL NODE.|E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTR| 1RE6D CONFIRM CHANGE OF LOCAL NODE NAME FROM ... TO ... |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1RE7I CHANGE OF LCOAL NODE NAME FROM ... IN PROGRESS |E|IPW$$CLD |
(or) | (CM) |green|x| - |$GAM D=L | 1RE7I CHANGE OF LCOAL NODE NAME FROM ... COMPLETED |E|IPW$$CLD |
(or) | (CM) |green|x| - |$GAM+$WTR| 1RE7I CHANGE OF LCOAL NODE NAME FROM ...RE-INITIATED |E|IPW$$CLD |
(or) | (CM) |green|x| - |$GAM+$WTR| 1RE7I CHANGE OF LCOAL NODE NAME FROM ...INTERRUPTED |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTR| 1RE8I CHANGE OF LOCAL NODE NAME FAILED, ACTIVE SYSIDS FOUND |E|IPW$$CLD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1RE9I queue jobname jobno jobsuffix KEPT WITH HOLD .. RC=.. |E|IPW$$I7 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1REAI CHANGE OF LOCALNODE NAME FROM.. TO .. INCOMPLETE ... |E|IPW$$I7 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |EXCP $$I7| 1REBI LAST QUEUE ENTRY PROCESSED SUCCESSFULLY BY LOCAL ... |L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM D=L | 1RECI STATUS REPORT $LSTNNNN BEING CREATED DUE .. NODE NAME..|E|IPW$$I7 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (or) (TA) | (CM) |green|x| - |$GAM D=L | 1RF�I commandcode OPERAND nn CURRENT DBLK SIZE mmmmm TOO BIG.|E|IPW$$CO |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP |SF |RED | | - |$GAM D=L | 1RF1A task,cuu EITHER ENCOUNTERED A PROBLEM WITH P39� OR ... |E|IPW$$PL |
 (MI)SP |SF |RED | | - |$GAM D=L | |E|IPW$$PP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) SP |SF |RED | | - |$GAM D=L | 1RF2A SWITCH DEBUG ON TO SUPPORT TASK TRACE WITH OPTION 'FULL'|E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$GAM+$WTO| 1RT1I UNABLE TO ATTACH TCP/IP SUBTASK, RC=nnnn |E|IPW$$CLD |
(or) | (CM) |green|x| - |$GAM+$WTO| |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO D=L | 1RT2I TCP/IP: EZASMI MACRO-REQUEST req-type FAILED RC= ... |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RT3I TCP/IP: CONNECT REQUEST RECEIVED FROM UNKNOWN NODE ... |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |YES|$GTO | 1RT4A TCP/IP: NO OPEN CONTROL RECORD RECEIVED FROM nodeed |E|IPW$$TD |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |YES|$GTO | 1RT5A TCP/IP: OPEN|ACK|NAK CONTROL RECORD RECEIVED FROM node |E|IPW$$TD |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RT6I TCP/IP: NAK CONTROL RECORD RECEIVED FROM NODE nodeid |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RT7I TCP/IP: INTERFACE STARTING, SOCKET CALL socketcall ... |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |YES|$GTO | 1RT8A TCP/IP: INTERFACE NOT AVAILABLE |E|IPW$$TD |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RT9I TCP/IP: INTERFACE NOT STARTED AT ALL |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTAI TCP/IP: INTERFACE NOTIFIED FOR TERMINATION, RC=nnnn |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTBI TCP/IP: ERROR FOR HOSTNAME ip-name |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |YES|$GTO | 1RTCA TCP/IP: NODE nodeid WITH UNKNOWN HOSTNAME ip-name |E|IPW$$TD |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTDI TCP/IP: NO ACK/NAC CONTROL RECORD RECEIVED FROM ... |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTEI TCP/IP: CONNECTION CLOSED FOR UNKNOWN IP-ADDRESS=ip-add|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |YES|$GTO | 1RTFA TCP/IP: DATA FROM NODE|IP-ADDRESS = ... |E|IPW$$TD |

 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |YES|$GTO | 1RTGA TCP/IP: NO OPEN CONTROL RECORD RECEIVED IN TIME FROM ..|E|IPW$$TD |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTHI TCP/IP: NODE nodeid AWAITING CONNECTION |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
MA | DA |WHITE| |YES|$GTO | 1RTJA TCP/IP: INITIALIZATION OF INTERFACE UNSUCCESSFUL, ... |E|IPW$$TD |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTK1 TCP/IP: INTERNAL ERROR FOR NODE nodid, CCW=data |E|IPW$$TD |

428 VSE Central Functions V7R1 VSE/POWER DRM

Figure 136 (Page 22 of 22). Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTL1 TCP/IP: INTERNAL POSTING FOR NODE nodeid FAILED |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - | | 1RTMI(�)TCP/IP: SUBTASK ATTACHED |E|IPW$$CS |
 (MI)SP | II|green| | - |$GTO | (1)TCP/IP: SUBTASK ALREADY STARTED |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTN1 TCP/IP: CONNECTION CLOSED FOR NODE nodeid DUE TO STOP..|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTO1 TCP/IP: CONNECTION ATTEMPT REJECTED BY NODE nodeid|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTP1 TCP/IP: CONNECTION CLOSED FOR NODE nodid DUE TO INVAL..|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTQ1 TCP/IP: CONNECTION CLOSED FOR NODE nodid DUE TO FAILIN.|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTR1 TCP/IP: CONNECTION CLOSED FOR NODE nodid DUE TO INTERN.|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTS1 TCP/IP: INTERFACE TO TCP/IP TERMINATED DUE TO ... |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |WTO1 LOC | 1RTT1 (PNET console trace information) |E|IPW$$TD |
 (MI) | |green| | - |WTO1 LOC | |E|IPW$$LD1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
>VSE Exception Msg< |RED | | - |EXCP LOC || 1RTUA TCP/IP INTERFACE QUESTIONABLE DUE TO FAILURE IN TIDY...|L|IPW$$AT |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTV1 TCP/IP: NEW CONNECTION REQUEST REJECTED FOR NODE nodeid|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTW1 TCP/IP: CONNECTION CLOSED FOR NODE nodeid DUE TO NEW...|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTX1 TCP/IP: DATA FROM NODE|IP-ADDRESS ... |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTY1 TCP/IP: NEW CONNECTION REQUESTS FROM REMOTE NODES CAN..|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - |$GTO | 1RTZ1 TCP/IP: CONNECTION CLOSED FOR NODE nodid DUE TO CLOSE..|E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (or)SP | (CM)II|green| | - |$GAM+$WTO| 1RV11 UNABLE TO ATTACH TCP SSL SUBTASK, RC=.. |E|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | |$GTS | 1RV21 TCP SSL: TOO MANY SOCKETS IN USE (... |E|IPW$$SD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | |$GTS | 1RV31 TCP SSL: RECEIVED CONNECT REQUEST .. NOT USING SSL .. |E|IPW$$SD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | |$GTO | 1RV41 TCP/IP: RECEIVED CONNECT REQUEST .. IS USING SSL .. |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | |$GTS | 1RV51 TCP SSL: CONNECT REQUEST REJECTED .. NOT USING SSL .. |E|IPW$$SD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | |$GTO | 1RV61 TCP/IP: CONNECT REQUEST REJECTED .. IS USING SSL .. |E|IPW$$TD |
 ----------+--------+-----+-+---+---------+--+-+---------+
(MI)SP | II|green| | |$GTS | 1RV71 TCP... WRONG NODE TYPE; REMONTE NODE ... |E|IPW$$SD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (or)SP | (CM)II|green| | - |$GAM+$WTO| 1RV91 cccccccc TCP SSL INTERFACE NOT STARTED AT ALL |E|IPW$$CP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (or)SP | (CM)II|green| | - |$GAM+$WTO| 1RVA1 cccccccc TCP SSL INTERFACE NOTIFIED FOR TERMINATION RC=|E|IPW$$CP |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | |$GTS | 1RVB1 TCP SSL: CONNECTION COLOSED FOR .. DUE TO WRONG CIPHER.|E|IPW$$SD |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (or)SP | (CM)II|green| | - |$GAM+$WTO| 1RVM1(�)TCP SSL SUBTASK ATTACHED |+|IPW$$CS |
 (or)SP | (CM)II|green| | - |$GAM+$WTO| (1)TCP SSL SUBTASK ALREADY ATTACHED |+|IPW$$CS |
 ----------+--------+-----+-+---+---------+--+-+---------+
 >VSE Exception Msg< |RED | | - |EXCP LOC | 1RVUA TCP SSL INTERFACE QUESTIONABLE DUE TO FAILURE TIDY-UP..|L|IPW$$AT |

 Chapter 4. Directory 429

Message Reference Table (1Vxxx Messages Only)

Figure 137. Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | (C)=Central Operator Msg(default),(R)=RJE Only,(B)=Both-+ || |
| | | | | | +--- Msg equate suffix $1xxx(n) if multiple messages | || |

xx xx xx |xx xx xx| | | | | v v v| |

MI SP | II|green| | - | | 1V�1I NO SUBTASK AVAILABLE FOR RJE/SNA (C)|E|IPW$$SN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1V�2I VTAM OPEN FAILURE RTNCD=nnnn (C)|E|IPW$$SN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI)SP | II|green| | - | | 1V�3I ERROR ON rplrequest RTNCD,FDB2=nn,nn SENSE=yyyy (C)|E|IPW$$SN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1V�4I RJE,SNA STARTED (C)|E|IPW$$SN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1V�5I RJE,SNA TERMINATED (C)|E|IPW$$SN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - |$GAM D=L | 1V�6I UNABLE TO LOGON luname RC=nnnn MACRO=mname (C)|E|IPW$$LH |
 (MI) | II|green| | - |$GAM D=L | (C)|E|IPW$$LN |
 >VSE EXCP Default < |green| | - |EXCP REQ | (C)|E|IPW$$VE |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1V�7I ERROR ON rplrequest RTNCD,FDB2=nn,nn SENSE=xxx ON ..(C)|E|IPW$$IB |
 (MI) | II|green| | - | | (C)|E|IPW$$LH |
 (MI) | II|green| | - | | (C)|E|IPW$$LN |
 (MI) | II|green| | - | | (C)|E|IPW$$MP |
 (MI) | II|green| | - | | (C)|E|IPW$$OB |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1V�8I luname BIND PARAMETERS INVALID (C)|E|IPW$$LH |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1V�9I REMOTE remid LOGGED ON TO applid ON luname TIME=....(B)|E|IPW$$LN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1V1�I RJE,SNA IS IN SHUTDOWN, TIME=....... (B)|E|IPW$$SN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1V11I REMOTE remid LOGGED OFF FROM applid ON luname, TIME=(C)|E|IPW$$LF |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V12I LOGOFF COMPLETED, TIME=...... (R)|E|IPW$$LF |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V13I LOGOFF FORCED, TIME=..... (R)|E|IPW$$LF |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V14I SESSION IS IN SHUTDOWN, TIME=....... (R)|E|IPW$$SN |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V15I NO STORAGE AVAILABLE FOR task (R)|E|IPW$$OB |
 ----------+--------+-----+-+---+---------+--+-+---------+
MI SP | II|green| | - | | 1V16I NO STORAGE AVAILABLE FOR task FOR luname remid (C)|E|IPW$$OB |

 ----------+--------+-----+-+---+---------+--+-+---------+
| | | | | | 1V17A task SUSPENDED FOR FORMS MOUNT (R)|E|IPW$$OB |

 ----------+--------+-----+-+---+---------+--+-+---------+
| | | | | | 1V18A REPLY WITH RESTART ON INTERVENTION REQUIRED task (R)|E|IPW$$OB |

 ----------+--------+-----+-+---+---------+--+-+---------+
| | | | | | 1V22I INVALID commandcode COMMAND (R)|E|IPW$$IB |

 ----------+--------+-----+-+---+---------+--+-+---------+
| | | | | | 1V23I commandcode OUT OF SEQUENCE (R)|E|IPW$$IB |

 ----------+--------+-----+-+---+---------+--+-+---------+
| | | | | | 1V24I task TERMINATED, REASON=nnnn FOR luname (R)|E|IPW$$IB |

 | | | | | | (R)|E|IPW$$OB |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V25I EOJ ADDED FOR jobname jobnumber (R)|E|IPW$$IB |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1V26I INVALID REMOTE ID, PASSWORD OR LUNAME RC=yy (C)|E|IPW$$LH |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - | | 1V27I REMID remid EXCEEDS SESSLIM (C)|E|IPW$$LH |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V28I JOB jobname jobnumber GETVIS FOR COCB FAILED (R)|E|IPW$$OC |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V29I JOB jobname jobnumber GETVIS FOR COMPACTION TBL FAIL(R)|E|IPW$$OC |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V3�I JOB jobname jobnumber COMPACTION TABLE NOT FOUND (R)|E|IPW$$OC |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V31I JOB jobname jobnumber NO SPACE AVAIL. IN CMPT POOL (R)|E|IPW$$OC |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V32I JOB jobname jobnumber INVALID COMPACTION TABLE (R)|E|IPW$$OC |
 ----------+--------+-----+-+---+---------+--+-+---------+

| | | | | | 1V33I REMOTE remid OUTPUT FOR NONWRITER WORKSTATION (R)|E|IPW$$SN |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | II|green| | - | | 1V34I display of bind parameters (C)|E|IPW$$LH |
 ----------+--------+-----+-+---+---------+--+-+---------+

430 VSE Central Functions V7R1 VSE/POWER DRM

Message Reference Table (without Message Number)

Figure 138. Message Reference

Routing |Descrip-|Color|C|DOM|Issued |Message: | Module: |
Code |tor Code| |m|'ed| via: | (E) Module has IPW$GMM msg EQUATE $1xxxx ----------------+|(where |
RT= |DC= | |n| | | (L) Module has locally defined message || issued) |

| | |d| | | +--- Msg equate suffix $1xxx(n) if multiple messages || |
xx xx xx |xx xx xx| | | | | v v| |

 (MI) | |green| | - |$WTO LOC | (--Invalid DEFINE statement--------------------------) |L|IPW$$I2 |
 (MI) | |green| | - |$WTO LOC | (--Invalid SET statement--------------------------) |L|IPW$$I2 |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$WTO LOC | (--Incorrect JECL statement--------------------------) |L|IPW$$LR |
 (MI) | |green| | - |$WTO LOC | (--Incorrect JECL statement--------------------------) |L|IPW$$XJ |
 ----------+--------+-----+-+---+---------+--+-+---------+
 (MI) | |green| | - |$WTO LOC | (--Trace of PNET BSC/CTC Input/Output Buffers-------) |L|IPW$$LD1 |
 (MI) | |green| | - |$WTO LOC | (--Display of invalid PNET CTC buffer contents-------) |L|IPW$$LD1 |
 (MI) | |green| | - |$WTO LOC | (--Display of invalid MLI character display buffer---) |L|IPW$$LD1 |
 ----------+--------+-----+-+---+---------+--+-+---------+
(or) | (CM) |green|x| - |$WTO LOC | (--VIO dump (to printer/LST entry)-------------------) |L|IPW$$PS |

 Chapter 4. Directory 431

432 VSE Central Functions V7R1 VSE/POWER DRM

Chapter 5. Storage Layout and Data Areas

This chapter describes the storage layout of the VSE/POWER partition and the layout of the SVA part
which is PFIXed by VSE/POWER. Additional it describes the control blocks, buffer areas, save areas and
work spaces required by VSE/POWER.

Most VSE/POWER control blocks and many sections of VSE/POWER code are equipped with storage
descriptors which serve to rapidly locate and identify important values within a storage dump. A storage
descriptor is a 16-byte alphameric character string with line alignment. Where appropriate, storage
descriptors may also be addressed by internal programming. For instance, the storage descriptors of
some TCBs are modified dynamically to reflect the function that the TCB is performing at any given time.
For example, a storage descriptor of

TCBb1RDR.�3�.���

indicates the start of a task control block for an RJE reader task on RJE line number 30 invoked by the
central operator. Thus, a storage descriptor identified in a dump constitutes a debugging aid.

The Layout of the SVA Part of VSE/POWER

The SVA part of VSE/POWER holds the Control Address Table (CAT), the VSE/POWER Nucleus with 3
control blocks and the VSE/POWER partition control blocks for 11 (maximum) static partitions. The SVA
part of VSE/POWER is shown in Figure 139.

Sto rage descr ip to r CAT

VSE/POWER master ECB

System and VSE/POWER

p a r t i t i o n b o u n d a r y

Ex te rna l i n te r face add resses

C ros s pa r t i t i o n co n t ro l

in format ion

Tim e r s e r v i c e c o n t r o l

in format ion

Resource lockword tab le

Resou rce con t ro l b lock

addresses

Modu le c on t ro l b lock

addresses

Task s ta te va lues

Permanent TCB addresses

Task con t ro l address tab le

Modu le load add resses

S erv i c e ro u t i ne b ranc h tab le

Non- re loca tab le cons tan t s

Stat is t ica l in fo rmat ion

Genera l cons tan ts

Trans la te tab les

Con t ro l add ress tab le

and Constants (CAT)

VSE/POWER

nucleus rout ines

Wa i t con t ro l b l ock

S t o rage con t ro l b lock

M es s a g e c o n t r o l b l oc k

11 par t i t i on con t ro l

b locks fo r

s ta t i c pa r t i t i o n s

SVA

Def in i t ion macro: IPW$DPA

labe l PADS

VSE/POWER

p a r t

Figure 139. Control Blocks in the SVA Part of VSE/POWER

© Copyright IBM Corp. 1979, 2006 433

How to Locate the CAT

Since register 10 always points to the CAT, the pointer to the CAT can be found in the VSE/POWER
partition save area. That is register 10 is saved at offset X'14' of the VSE/POWER partition. It also can be
found at offset X'5C' (IJBPWR) of the system communication region.

The Storage Layout of the VSE/POWER Partition

The storage layout of the VSE/POWER partition is illustrated in Figure 140.

434 VSE Central Functions V7R1 VSE/POWER DRM

 VSE/AF VSE/POWER
Terminology Terminology
──────────────┬───────────────────────────────┐ ───┬────┬─ ───
� � � │ Partition save area │ � � │ Start of
│ │ │ │ │ │ │ │
│ │X"2��" ├───────────────────────────────┤ │ │ │
│ │ � │ Copyright │ │ │ │
 │ │ ───── ├───────────────────────────────┤ │ │ │ Partition
│ Real │ IPW$$BM - RJE I/O Monitor │ │ │ │
│ storage │ (optional) │ RSIZE │ │
│ (SETPFIX) ├───────────────────────────────┤ │ │ │
│ │ │ : │ │ │ │
 │ │ │ Remainder of real storage │ │ │ Fixable storage
│ � │ │ � │ | max=2�48K
│ ────── ├───────────────────────────────┤ ────── │ ───
 │ � | Dynamic storage for | | |
 │ │ │ permanent command processor │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$IP - Initiator/Terminator│ │ │
│ │ │ � IPW$$Ix, IPW$$T1 │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$CM - Command processor │ │ │
│ │ │ � IPW$$CS - PSTART │ │ │
│ │ │ � IPW$$CA - PALTER │ │ │
│ │ │ � IPW$$CD - PDISPLAY │ │ │
│ │ │ � IPW$$CF - PFLUSH │ │ │
│ │ │ � IPW$$CL - PDELETE │ │ │
│ │ │ � IPW$$CH - PHOLD │ │ │
│ │ │ � IPW$$CR - PRELEASE │ │ │
│ │ │ � IPW$$CT - PRESTART │ │ │
│ │ � IPW$$CO - POFFLOAD │ │ VSIZE
Virtual │ � IPW$$CP - PSTOP │ │ │
Partition │ � IPW$$CU - PSETUP │ │ │
(ALLOC) │ � IPW$$CE - PEND │ │ │
│ │ � IPW$$CG - PGO │ │ │
│ │ │ � IPW$$CC - PCANCEL │ │ │
│ │ │ � IPW$$CJ - PACCOUNT │ │ │
│ │ │ � IPW$$CB - PBRDCST │ │ │
│ │ │ � IPW$$CI - PINQUIRE │ │ │
│ │ │ � IPW$$CX - PXMIT │ Pageable
│ Virtual │ � IPW$$CLD - PLOAD │ Storage
│ Storage │ � IPW$$CN - PDRAIN │ (min 896K)
 │ │ │ � IPW$$CAC - PACT │ │ │
 │ │ │ � IPW$$CRE - PRESET │ │ │
│ │ │ � IPW$$CV - PVARY │ │ │
 │ │ │ � IPW$$CSG - PSEGMENT │ │ │
│ │ │ � IPW$$CY - PCOPY │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$PD - Put Data │ │ │
 │ │ │ IPW$$LR - Logical Reader │ │ │
 │ │ │ IPW$$PR - Physical Reader │ │ │
 │ │ │ IPW$$SC - JECL Scanner │ │ │
│ │ └───────────────────────────────┘ │ │

 (cont).

Figure 140 (Part 1 of 4). Storage Layout of VSE/POWER Partition

 Chapter 5. Storage Layout and Data Areas 435

 ┌───────────────────────────────┐
 │ │ │ IPW$$PP - Physical Punch │ │ │
 │ │ │ IPW$$PL - Physical List │ │ │
 │ │ │ IPW$$GD - Get Data │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$LW - Logical Writer │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$XJ - Exec JECL Scanner │ │ │
 │ │ │ IPW$$XRE- Execution Reader │ │ │
 │ │ │ IPW$$XWE- Execution Writer │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$DQ - Delete Queue Set │ │ │
 │ │ │ IPW$$AQ - Add Queue Set │ │ │
 │ │ │ IPW$$NQ - Get next Queue Set │ │ │
 │ │ │ IPW$$RQ - Reserve Queue Rec. │ │ │
 │ │ │ IPW$$FQ - Free Queue Set │ │ │
 │ │ │ IPW$$SQ - Queue Services 1 │ │ │
 │ │ │ IPW$$Q1 - Queue Services 2 │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$LU - LUB/PUB Update │ │ │
 │ │ │ IPW$$AS - Asynchronous Service│ │ │
 │ │ │ IPW$$TR - Task Terminator │ │ │
 │ │ │ IPW$$OT - Open Tape │ │ │
 │ │ │ IPW$$OF - Offloading Queues │ │ │
│ Virtual ├───────────────────────────────┤ │ │
 │ Storage │ IPW$$ER - 354� Physical Reader│ │ │
 │ (cont.) │ IPW$$OE - Open 354� Device │ │ VSIZE
 │ │ ├───────────────────────────────┤ │ (cont.)
 │ │ │ IPW$$SY - Tape Reader │ │ │
 │ │ │ IPW$$PS - Print Queue Status │ │ │
 │ │ │ IPW$$PS1- Print Status Service│ │ │
 │ │ │ IPW$$IC - Invoke Command Proc.│ │ │
Virtual │ IPW$$RY - Queue file Recovery │ Pageable
Partition │ IPW$$AT - Abnormal Termination│ Storage
(cont.) ├───────────────────────────────┤ (cont.)
 │ │ │ IPW$$LO - Logical Output Rtn │ │ │
 │ │ │ IPW$$DT - Defaults & Tables │ │ │
 │ │ │ IPW$$PC - Parameter Checker │ │ │
 │ │ │ IPW$$DS - Data Management Serv│ │ │
 │ │ │ IPW$$OP - Output Parameter │ │ │
 │ │ │ IPW$$DP - Dynamic Partition │ │ │
 │ │ │ IPW$$ID - IDUMP Processor │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$MS - Message Handler 1 │ │ │
 │ │ │ IPW$$MX - Message Handler 2 │ │ │
 │ │ │ IPW$$MM - Message Definition │ │ │
│ │ └───────────────────────────────┘ │ │

 (cont).

Figure 140 (Part 2 of 4). Storage Layout of VSE/POWER Partition

436 VSE Central Functions V7R1 VSE/POWER DRM

 ┌───────────────────────────────┐
 │ │ │ IPW$$XM - SAS Master Routine │ │ │
 │ │ │ IPW$$XT - SAS Request Process │ │ │
 │ │ │ IPW$$XTG - SAS GET Function │ │ │
 │ │ │ IPW$$XTC - SAS CTL Function │ │ │
 │ │ │ IPW$$XTP - SAS PUT Function │ │ │
 │ │ │ IPW$$XTM - SAS GCM Function │ │ │
 │ │ │ IPW$$XTS - SAS Subroutines │ │ │
 │ │ │ IPW$$NS - Notify Support │ │ │
 │ │ │ IPW$$XTM - SAS Comp.Msg.Sup. │ │ │
 │ │ │ IPW$$XH - Heartbeat task │ │ │
 │ │ │ IPW$$TQ - Wait for run subq. │ │ │
 │ │ │ IPW$$TV - Time interval TES │ │ │

───────── Optional Support ──────────

│ │ ┌───────────────────────────────┐ │ │
 │ │ │ IPW$$SM - Spool Manager (XECB)│ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$PA - Write Account Record│ │ │
 │ │ │ IPW$$GA - Get Account Record │ │ │
 │ │ │ IPW$$SA - Save Account File │ │ │
 │ │ │ IPW$$BA - Build Account Record│ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$SL - SLI Support │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$LM - RJE,BSC Line Manager│ │ │
 │ │ │ IPW$$BR - RJE,BSC Reader │ │ │
 │ │ │ IPW$$BW - RJE,BSC Writer │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ IPW$$SN - RJE,SNA Manager │ │ VSIZE
 │ │ │ IPW$$MP - SNA Msg Processor │ │ (cont.)
 │ │ │ IPW$$IB - Inbound Processor │ │ │
 │ │ │ IPW$$OB - Outbound Processor │ │ │
Virtual │ IPW$$VE - VTAM Exit Routines │ Pageable
Partition │ IPW$$LH - Logon Processor 1 │ Storage
(cont.) │ IPW$$LF - Logoff Processor │ (cont.)
 │ │ │ IPW$$LN - Logon Processor 2 │ │ │
 │ │ │ IPW$$OC - Outbound Compaction │ │ │
│ Virtual ├───────────────────────────────┤ │ │
 │ Storage │ IPW$$TI - Timer Task Routine │ │ │
│ (cont.) ├───────────────────────────────┤ │ │
│ │ │ : │ │ │
│ │ │ Trace area │ │ │
│ │ │ : │ │ │
│ │ ├───────────────────────────────┤ │ │
 │ │ │ Job Exit Routine │ │ │
 │ │ │ Output Exit Routine │ │ │
│ │ └───────────────────────────────┘ │ │

 (cont).

Figure 140 (Part 3 of 4). Storage Layout of VSE/POWER Partition

 Chapter 5. Storage Layout and Data Areas 437

 ┌───────────────────────────────┐
 │ │ │ IPW$$LD - PNET Driver (Main) │ │ │
 │ │ │ IPW$$LD1 - PNET Driver 1 │ │ │
 │ │ │ IPW$$LD2 - PNET Driver 2 │ │ │
 │ │ │ IPW$$LD3 - PNET Driver 3 │ │ │
 │ │ │ IPW$$LD4 - PNET Driver 4 │ │ │
 │ │ │ IPW$$LD5 - PNET Driver 5 │ │ │
 │ │ │ IPW$$NM - PNET BSC I/O Manager│ │ │
 │ │ │ IPW$$NR - PNET Receiver Part 1│ │ │
 │ │ │ IPW$$NR2- PNET Receiver Part 2│ │ │
 │ │ │ IPW$$NP - Presentation Service│ │ │
 │ │ │ IPW$$NT - PNET Transmitter │ │ │
 │ │ │ IPW$$NC - PNET Composer │ │ │
 │ │ │ IPW$$NK - Compression/Decompr.│ │ │
│ Virtual ├───────────────────────────────┤ │ │
 │ Storage │ IPW$$S1 - PNET SNA Subtask │ │ │
 │ │ │ IPW$$SE - PNET SNA Exists │ │ │
Virtual│ │ IPW$$SR - PNET SNA SEND/RECEIV│ │ │
Partition │ IPW$$S2 - PNET SNA Connect Rtn│ │ │
(cont.) │ IPW$$S3 - PNET SNA Disconn Rtn│ │ │
 │ │ │ IPW$$BS - PNET Buffering │ │ │
│ │ │ IPW$$TD - TD-Subtask │ │ │
 │ │ │ IPW$$TS - TD-Subtask Support │ │ │
│ │ │ IPW$$SD - SD-Subtask │ │ │
 │ │ │ IPW$$SS - SD-Subtask Support │ │ │
 │ │ │ IPW$$CPS - PNET PSTART Command│ │ │
 │ │ │ IPW$$CPF - PNET PFLUSH Command│ │ VSIZE
 │ │ ├───────────────────────────────┤ │ (cont.)
 │ │ │ Network Receiver Exit Routine │ │ │
 │ │ │ Network Transmitter Exit Rtn. │ │ │
│ │ └───────────────────────────────┘ │ │
 │ │ │
 │ │ │
 │ │ ┌───────────────────────────────┐
│ │ │ │ � │
 │ │ │ GETVIS Area │ │ │
 │ │ │ � Queue File storage copy │ │ │
│ │ │ � (POWER in Private part.)│ │ │
│ │ │ � Logical Data Areas │ │ │
 │ │ │ � RJE,SNA Work Areas │ GETVIS │
│ │ │ � SAS Task Work Areas │ │ │
 │ │ │ � PNET Task Work Areas │ │ │
 │ │ │ � Various exit phases │ │ │
 │ │ │ � Exit work areas │ │ │
 │ │ │ � (Phases loaded by PLOAD) │ │ │
� � │ │ � �
───────────── └───────────────────────────────┘ ─────────
 End of
 Partition

Figure 140 (Part 4 of 4). Storage Layout of VSE/POWER Partition

438 VSE Central Functions V7R1 VSE/POWER DRM

The Permanent Area

The permanent area consists only of the RJE/BSC manager (IPW$$BM) if VSE/POWER was generated
with RJE/BSC. If RJE/BSC is not generated the area is added to the fixable area.

The Fixable Area

The fixable area consists of the following control blocks:

┌───────────────────────────────────┬────────────┐
│ Description of Use │ Storage │
│ │ Descriptor │
├───────────────────────────────────┼────────────┤
│ Initiator/Terminator TCB │ I IT │
├───────────────────────────────────┼────────────┤
│ Disk Management Block │ DMB │
│ - Resource Control Fields │ │
│ - Record Control Fields │ │
│ - Master Record Area │ │
│ - Auxiliary Queue Record Area │ │
├───────────────────────────────────┼────────────┤
│ Command Processor TCB │ O CP │
├───────────────────────────────────┼────────────┤
│ Virtual Storage Control Block │ VSCB │
├───────────────────────────────────┼────────────┤
│ Module Control Block (Q) │ MCB QFILE │
│ Module Control Block (D) │ MCB DFILE │
├───────────────────────────────────┼────────────┤
│ I/O Buffer Area (Q-file) │ │
│ I/O Buffer Area (D-file) │ │
├───────────────────────────────────┼────────────┤
│ Communicator Information Block │ CIB │
├───────────────────────────────────┼────────────┤
│ Communicator Information Block 2 │ CI2 │
├───────────────────────────────────┼────────────┤
│ Dynamic Partition Scheduling │ DPCB │
│ Control Block │ │
├───────────────────────────────────┼────────────┤
│ Asynchronous Service Work Space │ ASWS │
├───────────────────────────────────┼────────────┤
│ EXIT Table │ │
├───────────────────────────────────┼────────────┤
│ Account Control Block (optional) │ ACCB │
├───────────────────────────────────┼────────────┤
│ Master External Device Control │ MEDCB │
│ Block │ │
└───────────────────────────────────┴────────────┘

Figure 141. Control Blocks Permanently Allocated in the Fixable Area

These control blocks (Figure 141) are initialized at VSE/POWER startup time (IPW$$IP) and remain in the
fixable area until VSE/POWER is terminated. The location of each block is kept in the CAT. Each block
has a storage descriptor enabling easy identification in a storage dump.

These blocks (Figure 142 on page 440) are dynamically constructed, depending on the tasks required at
any given time. The organization of the blocks relative to each other and the start of the fixable area
cannot be truly illustrated. The figure, however, lists those blocks that are eligible to be in the fixable area.

 Chapter 5. Storage Layout and Data Areas 439

┌───────────────────────────────────┬────────────┐
│ Description of Use │ Storage │
│ │ Descriptor │
├───────────────────────────────────┼────────────┤
│ Task Control Block │ TCB │
│ - Task Management Fields │ │
│ - Task Register Save Area │ │
│ - General Task Work Area │ │
│ - Linkage Register Save Area │ │
│ - File Control Words │ │
│ - Command Processor Control Block │ CPB │
├───────────────────────────────────┼────────────┤
│ Communicator Information Element │ CIE │
├───────────────────────────────────┼────────────┤
│ Communicator Information Block │ CI2 │
│ for Job Comp. Message Retrieval │ │
├───────────────────────────────────┼────────────┤
│ Linkage Register Save Area │ None │
├───────────────────────────────────┼────────────┤
│ Physical Work Space │ None │
├───────────────────────────────────┼────────────┤
│ Physical Data Buffer │ None │
├───────────────────────────────────┼────────────┤
│ Tape Control Block │ TBB │
├───────────────────────────────────┼────────────┤
│ Buffer Control Block │ None │
├───────────────────────────────────┼────────────┤
│ Queue Record Area │ None │
├───────────────────────────────────┼────────────┤
│ Account Control Block │ ACCB │
├───────────────────────────────────┼────────────┤
│ Account Work Space │ None │
├───────────────────────────────────┼────────────┤
│ Account Records │ None │
│ - Execution Account Record │ │
│ - RJE,BSC Line Account Record │ │
│ - RJE,SNA Session Account Record │ │
└───────────────────────────────────┴────────────┘

Figure 142 (Part 1 of 2). Control Blocks Dynamically Allocated in the Fixable Area

440 VSE Central Functions V7R1 VSE/POWER DRM

┌───────────────────────────────────┬────────────┐
│ Description of Use │ Storage │
│ │ Descriptor │
├───────────────────────────────────┼────────────┤
│ RJE/BSC Line Control Block │ LCB │
├───────────────────────────────────┼────────────┤
│ RJE/SNA Control Block │ SNCB │
├───────────────────────────────────┼────────────┤
│ Remote Message Control Block │ MSCB │
├───────────────────────────────────┼────────────┤
│ CCB │ None │
├───────────────────────────────────┼────────────┤
│ CCW │ None │
├───────────────────────────────────┼────────────┤
│ Diskette Work Space │ OEWS │
├───────────────────────────────────┼────────────┤
│ Asynchronous Service Anchor Block │ ASAB │
├───────────────────────────────────┼────────────┤
│ Service Request Block │ None │
├───────────────────────────────────┼────────────┤
│ Assign/Unassign Work Space │ LUWS │
├───────────────────────────────────┼────────────┤
│ TCB Extension Area │ None │
├───────────────────────────────────┼────────────┤
│ Print Status Work Area │ None │
├───────────────────────────────────┼────────────┤
│ PNET Master Control Block │ PNCB │
├───────────────────────────────────┼────────────┤
│ PNET BSC Transmission Buffer │ None │
├───────────────────────────────────┼────────────┤
│ PNET SSL Driver Control Block │ SDCB │
├───────────────────────────────────┼────────────┤
│ PNET TCP Driver Control Block │ TDCB │
├───────────────────────────────────┼────────────┤
│ Node Control Block │ NCB │
├───────────────────────────────────┼────────────┤
│ Trace Information Block │ TIB │
├───────────────────────────────────┼────────────┤
│ Exit data table │ none │
├───────────────────────────────────┼────────────┤
│ VTAM Driver Control Block │ VDCB │
└───────────────────────────────────┴────────────┘

Figure 142 (Part 2 of 2). Control Blocks Dynamically Allocated in the Fixable Area

 Chapter 5. Storage Layout and Data Areas 441

The GETVIS Area

The GETVIS area is an extension of the pageable area and is used in its Getvis-24 part for the following
purposes:

� Queue File Storage Copy (if no Getvis-31 part is allocated)
 � RJE,SNA operation
� 3200/3800 printer setup processing
� Logical data areas associated with each task
� Input buffer for SYSIN tape support
� PNET SNA transmission buffers

 � Message queue(s)
� Input/Output buffer for Accounting (FBA only)
� Work area for the various PNET tasks
� Work area for the SAS user task
� Work areas for various exit routines
� Exit phases (loaded via PLOAD)
� VSE/POWER phases (loaded via PLOAD)

and is used in its Getvis-31 part for:

� Queue File Storage Copy, that may even stretch over the 16MB line

The areas (apart from Queue File Storage copy) are allocated by the appropriate tasks when needed and
freed when the tasks terminate or when no longer needed.

The GETVIS area is divided into the following pools:

 � General pool
 � Message pool
 � PNET pool
 � RJE,SNA pool
� RJE,SNA WACB and compaction table pool

Each pool is aligned at page boundary and consists of an integer number of pages. If a page within a pool
becomes empty it is automatically freed by VSE/AF so that the GETVIS storage is available for other
pools.

The control blocks which are allocated in the GETVIS area are shown in Figure 143 on page 443.

442 VSE Central Functions V7R1 VSE/POWER DRM

┌────────────────────────────────────┬───────────┐
│ Description of Area │Storage │
│ │Descriptor │
├────────────────────────────────────┼───────────┤
│ Storage Copy of Queue File on Disk │ None │
├────────────────────────────────────┼───────────┤
│ Account Records │ None │
│ - Reader Account Record │ │
│ - List Account Record │ │
│ - Punch Account Record │ │
│ - Execution Account Record │ │
│ - RJE,BSC Line Account Record │ │
│ - Startup Account Record │ │
│ - Transmitter Account Record │ │
│ - Receiver Account Record │ │
│ - Spool Account Record │ │
│ - SAS Connection Account Record │ │
├────────────────────────────────────┼───────────┤
│ Communicator Information Element │ ACIE │
│ for Job Comp.Msg. Retrieval │ │
├────────────────────────────────────┼───────────┤
│ FCB Table │ │
├────────────────────────────────────┼───────────┤
│ RJE,SNA Session Control Block │ SUCB │
├────────────────────────────────────┼───────────┤
│ RJE,SNA Logical Unit Control Block │ LUCB │
├────────────────────────────────────┼───────────┤
│ RJE,SNA Logon Request Control Block│ LRCB │
├────────────────────────────────────┼───────────┤
│ RJE,SNA Work Area │ WACB │
├────────────────────────────────────┼───────────┤
│ RJE,SNA Remote Control Block │ RMCB │
├────────────────────────────────────┼───────────┤
│ Network Definition Table │ NDT │
├────────────────────────────────────┼───────────┤
│ Network Receiver Work Area │ None │
├────────────────────────────────────┼───────────┤
│ Receiver Presentation Work Area │ NPWA │
├────────────────────────────────────┼───────────┤
│ Network Transmitter Work Area │ None │
├────────────────────────────────────┼───────────┤
│ Composer Work Area │ NCWA │
├────────────────────────────────────┼───────────┤
│ PNET Account Record │ None │
├────────────────────────────────────┼───────────┤
│ SNA Session Control Block │ SSCB │
├────────────────────────────────────┼───────────┤
│ SNA Request Queue Element │ SRQE │
├────────────────────────────────────┼───────────┤
│ Command Processor Work Area │ ---- │
├────────────────────────────────────┼───────────┤
│ Spool Environment Block │ SPB │
├────────────────────────────────────┼───────────┤
│ SL - Work Area │ SLWA │
├────────────────────────────────────┼───────────┤
│ SL - Member Element │ None │
├────────────────────────────────────┼───────────┤
│ XT - Work Area │ XTWAREA │
├────────────────────────────────────┼───────────┤
│ External Device Control Block │ EDCB │
├────────────────────────────────────┼───────────┤
│ Logical Data Area │ None │
├────────────────────────────────────┼───────────┤
│ FCB Table │ FCBCB │
├────────────────────────────────────┼───────────┤
│ Application Commun. Info Element │ ACIE │
├────────────────────────────────────┼───────────┤
│ Asynchronous Service Work Element │ ASWE │
└────────────────────────────────────┴───────────┘

Figure 143. Control Blocks Dynamically Allocated in the GETVIS Area

 Chapter 5. Storage Layout and Data Areas 443

Account Control Block (ACCB)

Definition Macro: IPW$DAC

The ACCB is used only by job accounting support. It is used to control account records contained on the
account file 'IJAFILE' (SYS000).

The ACCB is initialized for PUT mode. The mode is changed into GET mode when the save account task
issues a IPW$OAF macro. The format of the block as printed in a dump is as follows:

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ACCOUNT CONTROL BLOCK (CKD)

(0) 0 CHAR-
ACTER

16 ACSD SECTION DESCRIPTOR

(10) 16 BITSTRING 4 ACEB EVENT CONTROL BLOCK
(14) 20 BITSTRING 4 ACLO EXTENT LOWER LIMIT
(18) 24 BITSTRING 4 ACHI EXTENT UPPER LIMIT
(1C) 28 BITSTRING 4 ACLW LOCKWORD
(20) 32 BITSTRING 4 ACQ32ID 1Q32A MESSAGE ID FOR DOM
(24) 36 BITSTRING 4 UNUSED, KEEP CCW DW ALIGNED

COMMAND CONTROL BLOCK

(28) 40 BITSTRING 16 ACCB (0) COMMAND CONTROL BLOCK
(28) 40 BITSTRING 2 ACCT RESIDUAL COUNT
(2A) 42 BITSTRING 2 ACCM COMMUNICATION BYTES
(2C) 44 BITSTRING 2 ACST DEVICE STATUS
(2E) 46 BITSTRING 2 ACLU LOGICAL UNIT
(30) 48 BITSTRING 1 RESERVED FOR LIOCS
(31) 49 BITSTRING 3 ACCA CCW REAL-ADDRESS
(34) 52 BITSTRING 1 RESERVED FOR PIOCS
(35) 53 BITSTRING 3 ACCS CCW ADDRESS IN CSW
(38) 56 ADDRESS 4 ACTB SAVE ACCOUNT TCB ADDRESS
(3C) 60 BITSTRING 1 ACPB PUB DEVICE TYPE CODE
(3D) 61 BITSTRING 1 ACDT DTFPH DEVICE TYPE CODE
(3E) 62 BITSTRING 2 FLAG BYTE 1 & 2
(40) 64 CHAR-

ACTER
8 ACPR BLOCK AND RECORD LENGTH

This area consists of the eight-byte control field described
below together with the first part of the account record, which
describes the VSE/POWER supplied standard prefix.
It is used to contain the block length and record length of the
account record to be written. Thus account records are for-
matted as standard variable length records.

VSE/POWER PREFIX FOR ACCOUNT RECORDS (OPTIONAL)

(48) 72 CHAR-
ACTER

16 ACPRF (0) ACCOUNT RECORD PREFIX

(48) 72 CHAR-
ACTER

1 ACPID SYSTEM ID

(49) 73 CHAR-
ACTER

1 ACPRT RECORD TYPE

(4A) 74 BITSTRING 1 VERSION LEVEL
(4B) 75 CHAR-

ACTER
8 ACCMP COMPONENT ID

(53) 83 CHAR-
ACTER

5 RESERVED

DEVICE INFORMATION AND CHARACTERISTICS

(58) 88 BITSTRING 7 ACSA CURRENT SEEK ADDR BBCCHHR
(5F) 95 BITSTRING 1 RESERVED
(60) 96 BITSTRING 8 ACCF COUNT FIELD
(68) 104 BITSTRING 4 ACMC MAX. ACCOUNT FILE CAPACITY
(6C) 108 BITSTRING 4 ACEC 20 % LIMIT RESIDUAL CAPACITY

444 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(70) 112 BITSTRING 4 ACAC CURRENT RESIDUAL CAPACITY
(74) 116 BITSTRING 4 ACMT MAXIMUM TRACK CAPACITY
(78) 120 BITSTRING 4 ACLC RESID CAP ON CURRENT TRACK
(7C) 124 BITSTRING 4 AC#T NUMBER TRACKS/CYLINDER
(80) 128 BITSTRING 2 ACSE SECTOR VALUES
(82) 130 BITSTRING 2 ACUH UPPER HEAD
(84) 132 BITSTRING 2 ACDL TOTAL ACCOUNT RECORD LENGTH
(86) 134 BITSTRING 2 ACPRL LNGTH OF BLOCK FIELD & PRFX

 CHANNEL PROGRAM

(88) 136 CHAR-
ACTER

56 ACCH (0) CHANNEL PROGRAM

(88) 136 BITSTRING 8 ACSK SEEK CCW
(90) 144 BITSTRING 8 ACSS SET SECTOR OR TIC +8 CCW
(98) 152 BITSTRING 8 ACSH SEARCH ID.EQUAL CCW
(A0) 160 BITSTRING 8 ACTI TIC -8 CCW
(A8) 168 BITSTRING ACRW (0) WCKD CCW'S
(A8) 168 BITSTRING 8 ACWC .. WRITE COUNT
(B0) 176 BITSTRING 8 ACWD .. WRITE ACCOUNT DATA

 1.1. 1... ACRDD "ACWC" .. RESPECIFY FOR READ DATA
 1.11 ACRCT "ACWD" .. RESPECIFY FOR READ COUNT

(B8) 184 BITSTRING 8 ACRS READ SECTOR OR NOT USED
(C0) 192 BITSTRING 16 ACPM CHAN.PROG MODIFIERS RDATA AND RCOUNT CCW'S
(D0) 208 BITSTRING 4 ACWA VIRT ADDR WORKSP BUFFER
(D4) 212 BITSTRING 11 UNUSED
(DF) 223 BITSTRING 1 ACFFLG1 FLAG BYTE 1

 1... ACF1M32A "X'80'" ..MSG 1Q32A ISSUED
 X'40' ..RESERVED FOR FUTURE USE
 X'20' ..RESERVED FOR FUTURE USE
 X'10' ..RESERVED FOR FUTURE USE
 X'08' ..RESERVED FOR FUTURE USE
 X'04' ..RESERVED FOR FUTURE USE
 X'02' ..RESERVED FOR FUTURE USE
 X'01' ..RESERVED FOR FUTURE USE

(E0) 224 BITSTRING 24 ACAFTI TIMER ELEMENT FOR 1Q31I
SIGNED ACMRL "2008" .. MAX. ACCOUNT RECORD SIZE

(F8) 248 ADDRESS 1
 1111 1... ACLN "*-ACDS" LENGTH

Account File on an FBA Device

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ACCOUNT CONTROL BLOCK (FBA)

(0) 0 CHAR-
ACTER

16 AFSDF SECTION DESCRIPTOR

(10) 16 SIGNED 4 AFEBF EVENT CONTROL BLOCK
(14) 20 SIGNED 4 AFLOF LOWER LIMIT (BLOCK NBR)
(18) 24 SIGNED 4 AFHIF UPPER LIMIT (BLOCK NBR)
(1C) 28 SIGNED 4 AFLWF LOCKWORD
(20) 32 BITSTRING 4 AFQ32ID 1Q32A MESSAGE ID FOR DOM
(24) 36 BITSTRING 4 UNUSED, KEEP CCW DW ALIGNED

COMMAND CONTROL BLOCK

(28) 40 BITSTRING 16 AFCBF (0) COMMAND CONTROL BLOCK
(28) 40 BITSTRING 2 AFCTF RESIDUAL COUNT
(2A) 42 BITSTRING 2 AFCMF COMMUNICATION BYTES
(2C) 44 BITSTRING 2 AFSTF DEVICE STATUS
(2E) 46 BITSTRING 2 AFLUF EXCP REAL PLUS LUB INDEX
(30) 48 BITSTRING 1
(31) 49 ADDRESS 3 AFCAF CCW ADDRESS
(34) 52 BITSTRING 1

 Chapter 5. Storage Layout and Data Areas 445

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(35) 53 ADDRESS 3 AFLAF CCW ADDRESS IN CSW
(38) 56 ADDRESS 4 AFTCB SAVE ACCOUNT TCB ADDRESS
(3C) 60 BITSTRING 1 AFPBF PUB DEVICE TYPE CODE
(3D) 61 BITSTRING 1 AFDTF DTF DEVICE TYPE CODE

CHAR-
ACTER

AFFDF "C'F'" ...FBA DEVICE

(3E) 62 BITSTRING 1 AFSTATUS PROCESSING STATUS BYTE
 1... AFSTOLD "X'80'" PROCESS CURRENT CI
 .1.. AFACTIV "X'40'" IPW$$PF WAIT ON FULL FILE
 ..1. AFSFWAIT "X'20'" IPW$$SF IS IN WFI-STATE
 1. AFCOLD "X'02'" IPW$$IR COLDSTART ACC.FILE
 1 AF80AFF "X'01'" 80% OF ACCOUNT FILE FULL

(3F) 63 BITSTRING 1 RESERVED
(40) 64 CHAR-

ACTER
8 AFPR BLOCK AND RECORD LENGTH

This area consists of the eight-byte control field described
below together with the first part of the account record, which
describes the VSE/POWER supplied standard prefix.
It is used to contain the block length and record length of the
account record to be written. Thus account records are for-
matted as standard variable length records.

VSE/POWER PREFIX FOR ACCOUNT RECORDS (OPTIONAL)

(48) 72 CHAR-
ACTER

16 AFPRF (0) ACCOUNT RECORD PREFIX

(48) 72 CHAR-
ACTER

1 AFPID SYSTEM ID

(49) 73 CHAR-
ACTER

1 AFPRT RECORD TYPE

(4A) 74 BITSTRING 1 VERSION LEVEL
(4B) 75 CHAR-

ACTER
8 AFCOMP COMPONENT ID

(53) 83 CHAR-
ACTER

5 RESERVED

(58) 88 BITSTRING 1 RESERVED

 Current Address

(59) 89 BITSTRING 7 AFSAF (0) CURRENT ADDRESS BRRNNNN
(59) 89 BITSTRING 1 AFSAFB RESERVED
(5A) 90 BITSTRING 2 AFSAFR RECORD NUMBER
(5C) 92 BITSTRING 4 AFSAFN BLOCK NUMBER
(60) 96 SIGNED 4 AFSIC FREE SPACE IN CURRENT CI
(64) 100 SIGNED 2 AFBPC NO. OF FBA BLOCKS PER CI
(66) 102 BITSTRING 2 RESERVED
(68) 104 SIGNED 4 AFMCF MAX. ACCOUNT FILE CAPACITY
(6C) 108 SIGNED 4 AFECF 80% LIMIT, IF REACHED, MSG
(70) 112 SIGNED 4 AFACF CURRENT RESIDUAL CAPACITY

 CI Description

(74) 116 BITSTRING 12 AFCIFI (0) CI DESCRIPTION
(74) 116 BITSTRING 4 AFCIF LENGTH 1 CONTROL INTERVAL
(78) 120 ADDRESS 4 AFWAF VIRTUAL ADDR. OF WORKSPACE
(7C) 124 ADDRESS 4 RESERVED
(80) 128 ADDRESS 4 AFWASA VIRT-AD CI-AREA SAVE-ACC
(84) 132 SIGNED 4 AFSACB

SAVE-ACCOUNT
CURRENT
BLOCK

Account Record Parameter

(88) 136 BITSTRING 8 AFPARM (0) ACCOUNT RECORD PARAMETERS
(88) 136 SIGNED 4 AFPARML LENGTH
(8C) 140 ADDRESS 4 AFPARMA ADDRESS
(90) 144 SIGNED 2 AFBLF FBA BLOCKSIZE

SIGNED AFCISZ "2048" .. ACCOUNT FILE CI SIZE
(92) 146 SIGNED 2 RESERVED

446 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(94) 148 SIGNED 4 RESERVED

LOCATE CONTROL WORD

(98) 152 BITSTRING 8 AFLMF (0) LOCATE CONTROL WORD
(98) 152 BITSTRING 1 AFOBF OPERATION BYTE

 1 AFWOF "X'01'" .. WRITE DATA
 11. AFROF "X'06'" .. READ DATA

(99) 153 BITSTRING 1 AFRCF NOT USED
(9A) 154 SIGNED 2 AF#BF NBR OF BLOCKS TO PROCESS
(9C) 156 SIGNED 4 AFRDF REL. DISPL. OF BLOCK

EXTENT DESCRIPTION BLOCK

(A0) 160 BITSTRING 16 AFEDF (0) EXTENT DESCRIPTION BLOCK
(A0) 160 BITSTRING 1 AFMBF MASK BYTE

 11.. AFPWF "X'C0'" ...PERMIT ALL WRITE CMMD
 1.. AFPDF "X'04'" ...PERMIT DIAGNOSTIC CMMD
 .1.. AFIWC "X'40'" ...INHIBIT WRITE CMNDS

(A1) 161 BITSTRING 3 RESERVED MUST BE ZERO
(A4) 164 SIGNED 4 AFBBF PHYS. ADDR. FIRST BLOCK
(A8) 168 SIGNED 4 AFFBF REL. DISPL. FIRST BLOCK
(AC) 172 SIGNED 4 AFLBF REL. DISPL. LAST BLOCK
(B0) 176 BITSTRING 8 RESERVED FOR FUTURE USE

CHANNEL COMMAND WORD

(B8) 184 BITSTRING 24 AFCHF (0) CHANNEL PROGRAM
(B8) 184 BITSTRING 8 AFDFF (0) DEFINE EXTENT CCW
(B8) 184 BITSTRING 1 DEFINE EXTENT COMMAND CODE
(B9) 185 ADDRESS 3 EXTENT DESCRIPTION ADDR.
(BC) 188 BITSTRING 2 FLAGS
(BE) 190 SIGNED 2 COUNT
(C0) 192 BITSTRING 8 AFLCF (0) LOCATE CCW
(C0) 192 BITSTRING 1 LOCATE COMMAND CODE
(C1) 193 ADDRESS 3 LOCATE WORD ADDR.
(C4) 196 BITSTRING 2 FLAGS
(C6) 198 SIGNED 2 COUNT
(C8) 200 BITSTRING 8 AFRWF (0) READ OR WRITE CCW
(C8) 200 BITSTRING 1 AFRWFO OPERATION CODE
(C9) 201 ADDRESS 3 AFRWFA DATA-ADDRESS
(CC) 204 BITSTRING 1 AFRWFF FLAGS
(CD) 205 BITSTRING 1 RESERVED
(CE) 206 BITSTRING 2 AFRWFL DATA LENGTH

 .1.. ...1 AFWRITE "X'41'" CCW WRITE COMMAND
 .1.. ..1. AFREAD "X'42'" CCW READ COMMAND CODE
 .11. .1.. AFRDCO "X'64'" READ DEVICE CHARACTERISTIC
 .1.. ..11 AFLOCO "X'43'" LOCATE OP-CODE
 .11. ..11 AFDEFO "X'63'" DEFINE EXTENT OPCODE

(D0) 208 BITSTRING 7 UNUSED
(D7) 215 BITSTRING 1 AFFFLG1 FLAG BYTE 1

 1... AFF1M32A "X'80'" ..MSG 1Q32A ISSUED
 X'40' ..RESERVED FOR FUTURE USE
 X'20' ..RESERVED FOR FUTURE USE
 X'10' ..RESERVED FOR FUTURE USE
 X'08' ..RESERVED FOR FUTURE USE
 X'04' ..RESERVED FOR FUTURE USE
 X'02' ..RESERVED FOR FUTURE USE
 X'01' ..RESERVED FOR FUTURE USE

(D8) 216 BITSTRING 24 AFAFTI TIMER ELEMET FOR 1Q31I
(F0) 240 ADDRESS 1

 1111 1... AFLNF "*-AFSDF" LENGTH DESCRIPTOR

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 447

Accounting Record Layouts
The various account records layouts:

� Account Record - Execution
� Account Record - List
� Account Record - Network
� Account Record - Punch
� Account Record - Reader
� Account Record - Receiver
� Account Record - RJE/BSC
� Account Record - RJE/SNA
� Account Record - System Startup
� Account Record - Transmitter
� Account Record - Spool Access Support
� Account Record - Spool Account Record

are to be found in the VSE/POWER Application Programming Guide.

448 VSE Central Functions V7R1 VSE/POWER DRM

Assign/Unassign Work Space

DSECTname: LUWKDS

The work space is primarily used as a register save area and to contain the address to the SETPRT
parameter list when a 3800 printer is being unassigned and asynchronous service is invoked to set up the
printer with the system/hardware defaults.
The DSECT is defined in IPW$$LU.

Bytes Label
Hex. of Field Description/Function

��-�1 LUWKPIK PIK of partition concerned
�2-�3 LUWKPHY Physical unit number (PUB index)
�4-�5 LUWKCHN Channel unit number
�6-�7 LUWKLOG Logical unit number (CCB format)
�8 LUWKMAC Failing macro id
�9-�B Reserved for future use
�C-�D LUWKPUB PUB index save area
�E-�F Reserved for future use
1�-13 LUWKSLU Pointer to system LUB
14-17 LUWKPLU Pointer to programmer LUB
18-1F LUWKGR Save area for registers 14-15. Used

when another function is invoked.
2�-57 LUWKSV Temporary register save area for the

interface between functions.
58-5B LUWKSP Address to SETPRT parameter list

 Chapter 5. Storage Layout and Data Areas 449

Asynchronous Service Anchor Block (ASAB)

Definition Macro: IPW$DAB

The asynchronous service anchor block contains the queue pointers for all service requests to be per-
formed by the service subtask. Storage for the anchor block is acquired the first time a VSE/POWER
initialization task issues the ATTACH request. The anchor block exists as long as VSE/POWER is active.

Bytes Label
Hex. of Field Description/Function

��-�F ABSD Storage descriptor (ASWS)
1�-13 ABADR1 Address of SETPRT routine (IJVSRPDV)
 in SVA
14-1B Reserved for future use
1C-1F ABLCK Lock word

� The following fields are used by the IDUMP service

2�-23 ABDECB IDUMP subtask ECB
24-27 ABCECB IDUMP communication ECB
28-2B ABDPFR Address of first request in queue
2C-2F ABCPLR Address of last request in queue
3�-33 ABDSAP Address of active SRB
34-37 Reserved for future use

� The following fields are used by the library access service

38-3B ABRECB Library access subtask ECB
3C-3F ABRECB2 Library access subtask termination ECB
4�-43 ABRPHD pointer to first request in queue
44-47 ABRPTL pointer to last request in queue
48-4B ABLSAP Address of active SRB
4C ABLFLG1 Pointer to active SRB

ABLF1DIP X'8�' - LS Subtask Detach in Process
4D-4F Reserved for future use
5�-53 ABICCF Entry point address of VSE/ICCF LIB module
54-55 ABRPBL VSE/ICCF process buffer length
56 ABRFL1 Flag byte 1

ABRIOP X'4�' - VSE/ICCF open done
57 ABRFL2 Flag byte 2

ABRPNF X'2�' - VSE/ICCF module not found
58-59 ABLIBTK TIK of Libr Subtask
5A-5B Reserved for future use

ABLN Length of control block

450 VSE Central Functions V7R1 VSE/POWER DRM

Asynchronous Service Control Section (ASCB)

Definition Macro: IPW$DAB

The asynchronous control section consists of the TQE (timer queue element), the wait-for-multiple-list and
the asynchronous service ecb, which is posted by a supervisor detach. The asynchronous work section is
located within real storage to be able to use the VSE/POWER macros.

Offset
Hex

Type Len Name (Dim) Description

(0) BITSTRING 24 ASCTQE TQE FOR ASYNCHR. SERVICE
(18) BITSTRING 4 ASCECB ASYNCHR. SERVICE ECB
(1C) SIGNED 2 ASCMLST (0) WAIT-FOR-MULTIPLE-LIST
(1C) BITSTRING 4 ASCTQECB ..ADDRESS OF TQE ECB
(20) BITSTRING 4 ASCASECB ..ADDRESS OF AS. SERV. ECB
(24) BITSTRING 1 ASCENDL ..END OF WFM-LIST
(25) BITSTRING 3 RESERVED FOR FUTURE USE

 ..1. 1... ASCLN "*-ASCDS" LENGTH OF CONTROL SECTION

How to Locate: The address of this control block is located in the field ASWEECB of the Asynchronous
Service Work Element

 Chapter 5. Storage Layout and Data Areas 451

Asynchronous Service Work Element (ASWE)

Definition macro: IPW$DAB

The asynchronous service work element is acquired and formatted by the asynchronous service function
routine. One element exits for each asynchronous service subtask currently active. The element contains
important information for the subtask, such as the register save area.

Offset
Hex

Type Len Name (Dim) Description

ASYNCHRONOUS SERVICE WORK ELEMENT

(0) CHAR-
ACTER

8 ASWENAM SUBTASK NAME, ALWAYS IPW$$AS

(8) DBL WORD 8 ASWEREG
(14)

SUBTASK'S REGISTERS

(78) CHAR-
ACTER

8 ASWENAM2 SUBTASK NAME, ALWAYS IPW$$AS

(80) BITSTRING 216 ASWEABN PSW & ABN REGISTER SAVEAREA
(158) ADDRESS 4 ASWEECB POINTER TO ASCS
(15C) ADDRESS 4 ASWESRB ADDRESS OF ASSOCIATED SRB
(160) ADDRESS 4 ASWETCB ADDRESS OF ASSOCIATED TCB
(164) BITSTRING 1 ASWEFLG FLAG BYTE 1

 1... ASWEFMI "X'80'" .. 1QA0I MSG ALREADY ISSUED
 .1.. ASWEDUMP "X'40'" .. $AT IN DUMP PROCESSING

(165) BITSTRING 3 RESERVED FOR FUTURE USE
(168) SIGNED 2 ASWEGDL LIST LENGTH
(16A) CHAR-

ACTER
8 PHASENAME

(172) BITSTRING 3
(175) ADDRESS 1 N
(176) BITSTRING 1 PHASE INFORMATION

LOCAL SAVE AREA FOR IPW$IDM REQUESTS

(194) SIGNED 4 ASWST0E REGISTER RE SAVE AREA
(198) SIGNED 4 ASWST0F REGISTER RF SAVE AREA
(19C) SIGNED 4 ASWST00 REGISTER R0 SAVE AREA
(1A0) SIGNED 4 ASWST01 REGISTER R1 SAVE AREA
(1A4) SIGNED 4 ASWST02 REGISTER R2 SAVE AREA
(1A8) SIGNED 4 ASWSTID POINT TO SUBTASK IDENTIFIC.
(1AC) BITSTRING 4 UNUSED
(1B0) BITSTRING 16 ASWECCB CCB AREA FOR NOP
(1E0) BITSTRING 8 ASWECCW CCW AREA FOR NOP
(1E8) BITSTRING 64 ASWEAMFG WORK AREA FOR LOAD/GETVCE

EXPRESSION ASWELEN "*-ASWEDS" LENGTH OF WORK ELEMENT

452 VSE Central Functions V7R1 VSE/POWER DRM

Buffer Control Word (BCW)

The buffer control words are used to describe each piece of real storage acquired by real storage man-
agement. A buffer control word precedes the storage area, which can be either in use or free, and con-
tains the length of the following storage area and the storage owner, if applicable.

Bytes Label
Hex. of Field Description/Function
--
��-�1 BCWPRV Length of previous buffer. This halfword

contains the binary length divided by 32 of the
immediately-preceding storage buffer. If the
buffer is in use its length is stored in two
complement forms. If the buffer is not in use
its length is stored in normal form. If the
present buffer is the first in the fixable
area the word is set to binary zeros.

�2-�3 BCWCUR Length of next buffer. This halfword contains
the binary length divided by 32 of the
present storage buffer, that is, the buffer
which immediately follows this buffer control
word in storage. If the buffer is in use its
length is stored in two complement forms. If
the buffer is not in use its length is stored
in normal form. If the preceding buffer is the
last in the fixable area the word is set
to binary zeros.

�4-�7 BCWOWN Owner (TCB virtual address) of next buffer.
This fullword contains the address of the TCB
belonging to the task which issued the request
for buffer space. If the field contains zeros,
the storage is owned by the VSE/POWER system.
If a TCB is contained in the buffer, the owner
address is that of the task which built the TCB.

 Chapter 5. Storage Layout and Data Areas 453

 Buffer Layout

The control of buffers for PNET is done by buffer management. The layout of the buffers as provided by
the function is shown below.

Definition Macro: IPW$DVD BUF=YES

Bytes Label
Hex. of Field Description/Function

� Buffer Header Common Part

���-��3 BUFNEXT Next buffer in chain
��4-��7 BUFREAL Real (pfixed) address of buffer (BSC)
��8-��B BUFOWN Address of related TCB
��C-��F BUFNCBA Address of related NCB
�1�-�11 BUFDATL Count of bytes to send or received
�12-�13 BUFSZ Buffer size (excluding header)
�14 BUFSTAT Status flag

BUFFREE X'8�' - Release buffer on send complete
BUFPOST X'4�' - Post task when buffer sent
BUFRRPL X'2�' - Buffer contains response RPL (SNA)
BUFBCBI X'1�' - Send 'ignore BCB' (BSC)
BUFTERM X'�8' - Terminating buffer (BSC)
BUFSTCH X'�4' - Status change requested
BUFQPRI X'�2' - Place buffer in priority queue

�15 BUFEST1 Data stream status
BUFRIF X'8�' - RIF sent/received
BUFPGR X'4�' - PGR sent/received or

receiver cancel sent/received
BUFPRJ X'2�' - NPGR sent/received
BUFEOF X'1�' - EOF sent/received
BUFADS X'�8' - Abort transmission
BUFCMC X'�4' - EOT sent/received

�16-�17 Reserved

� Data Portion BSC

�18-�2� BUFDATA Data portion of BSC TP buffer
�18-�19 BUFSTRT Transmission control bytes
�1A BUFBCB Block control byte

BUFMLIC X'8�' - MLI control bit
BUFBRES X'2�' - Reset expected block sequence CNT
BUFBBYB X'1�' - Bypass block sequence validation

�1B-�1C BUFFCS Function control sequence
�1D BUFRCB Record control byte
�1E BUFSRCB Subrecord control byte
�1F BUFSCB String control byte
�2� BUFEOB End-of-block RCB
�16-�17 Reserved

454 VSE Central Functions V7R1 VSE/POWER DRM

� Data Portion SNA

�18-�1A BUFRIDD Decompressed RID of 1st record
�1B Unused
�1B-�83 BUFRPL Space for VTAM RPL
�84-�87 BUFDATAS Data portion of buffer SNA
�84 BUFSCBS SCB
�85 BUFRCBS RCB
�86 BUFSRCBS SRCB
�87 BUFRIDL Length
�88 BUFEOBS End of RU SCB (may be beyond RU)

 Chapter 5. Storage Layout and Data Areas 455

Cancel Codes of VSE/POWER

Figure 144 shows the VSE/POWER cancel codes that appear in several VSE/POWER records.

┌──┐
│ Cancel Code │ Condition │
├─────────────│──┤
│ X'1�' │ Normal end of VSE/POWER job or task (see Note 1). │
│ X'2�' │ PCANCEL was issued. │
│ X'3�' │ PSTOP command was issued (see Note 2). │
│ X'4�' │ PFLUSH command was issued. │
│ X'5�' │ PDELETE was issued. │
│ X'6�' │ VSE/POWER job was flushed via RDREXIT. │
│ X'7�' │ VSE/POWER job canceled due to I/O error. │
│ X'8�' │ Job or output transmission canceled due to cancelling │
│ │ of PNET network receiver. │
│ X'9�' │ SAS quit request │
│ X'A�' │ Processing was canceled due to severe error (SAS only) │
│ X'B�' │ SAS GET close request. │
│ X'C�' │ Processing was terminated due to SOD condition (SAS). │
│ X'D�' │ Processing was terminated due to printing/punching │
│ │ failed. │
└─────────────┴──┘

Figure 144. Cancel Codes of VSE/POWER

Notes:

1. Although no abnormal VSE/POWER termination occurred, the VSE/AF jobs associated with the queue
entry could have been canceled via VSE/AF.

2. The PSTOP cancel code is not stored in an account record if the EOJ option was specified in the
PSTOP command.

456 VSE Central Functions V7R1 VSE/POWER DRM

Channel Command Word (CCW)

Definition Macro: IPW$DCW

The layout of a Channel Command Word is shown below.

Bytes Label
Hex. of Field Description/Function
--
�� CWCC Command code
�1-�3 CWDA Data address
�4 CWFL Chain byte

DC X'8�' = Data chaining
CC X'4�' = Command chaining
SLI X'2�' = Suppress incorrect length

�5 CWRE Reserved
�6-�7 CWCT Data length field

� General Flags

NOP X'�3' = NOP command
PSKP X'8B' = Skip to channel-one-flag
EOPR X'FE' = End of page reached (internal)

 Chapter 5. Storage Layout and Data Areas 457

Command Control Block (CCB)

Definition Macro: IPW$DCB

The layout of a Command Control Block is shown below.

Bytes Label
Hex. of Field Description/Function
--
��-�1 CBCT Residual count
�2 CBC1 First communication byte

UIO X'2�' = unrecoverable I/O error
AUIO X'1�' = accept unrecoverable I/O error
RODC X'�8' = return on data check
WDE X'�4' = wait for device end

�3 CBC2 Second communication byte
CCR X'�1' = command chain retry option
CHN9 X'�2' = channel 9 overflow

�4 CBSD Device status byte
X'8�' = attention
X'1�' = busy
X'�8' = channel end
X'�4' = device end

UNCK X'�2' = unit check
UE X'�1' = unit exception

�5 CBSC Channel status byte
�6 CBLC LUB class

EXR X'8�' = EXCP real
PRU X'�1' = programmer unit

�7 CBLN LUB number within class
�8 CBLI LIOCS communication byte
�9-�B CBCA CCW address
�C CBPI PIOCS communication byte

X'�1' = CCW Format 1 is used
�D-�F CBCS CCW address in CSW
1� CBNX First entry outside CCB

� General Flags

SID X'2�' = sense information desired

458 VSE Central Functions V7R1 VSE/POWER DRM

Command Processor Work Area (CPWA)

This area contains addresses and information that are used in communication among the various
command-processing modules and the root phase. Each command processor task is equipped with such
a work area. The work area for the permanent command processor is placed in the first part of the
pageable area while the work area for a temporary command processor task is dynamically acquired when
needed by means of the IPW$RSV macro instruction.

Definition Macro: IPW$DCP

How to Locate: The permanent command processor task work area is located in the 1st page of the
pageable storage (PAVA). Refer to Figure 15 on page 40.
A temporary command processor task work area storage location is stored register 6 of the task.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 COMMAND PROCESSOR WORK AREA (CPWA)

(0) 0 STRUC-
TURE

0 CPWADS DUMMY SECTION WORKAREA

(0) 0 CHAR-
ACTER

32 CPWSD (0) STORAGE DESCRIPTOR

(0) 0 CHAR-
ACTER

28

(1C) 28 ADDRESS 4 CPWTPTR POINTER TO TCB OWNING CP WORKAREA

SUBROUTINE ADDRESS TABLE
THE FOLLOWING TABLE CONTAINS ADDRESSES TO SUBROUTINES
USED BY VARIOUS COMMAND PROCESSORS.

(20) 32 ADDRESS 4 MSG ENTRY POINT ADDRESS OF MSG RTN
(24) 36 ADDRESS 4 RELTOABS ENTRY POINT ADDRESS OF CONVERT RTN
(28) 40 ADDRESS 4 TCBSCAN EP ADDRESS OF TCBSCAN SUBROUTINE
(2C) 44 ADDRESS 4 BINTODEC EP ADDRESS OF CONVERT TO BINARY RTN
(30) 48 ADDRESS 4 VPARTID EP ADDR OF VERIFY PARTITION ID RTN
(34) 52 ADDRESS 4 VTASKID EP ADDR OF VERIFY TASK ID RTN
(38) 56 ADDRESS 4 VQUEUEID EP ADDR OF VERIFY QUEUE ID RTN
(3C) 60 ADDRESS 4 QRINSPCT EP ADDR OF QUEUE REC INSPECT RTN
(40) 64 ADDRESS 4 ATTACH EP ADDR OF ATTACH SUBROUTINE
(44) 68 ADDRESS 4 ASSIGN EP ADDR OF ASSIGN SUBROUTINE
(48) 72 ADDRESS 4 INVDEV EP ADDR OF INVDEV SUBROUTINE
(4C) 76 ADDRESS 4 CLASS EP ADDR OF CLASS SUBROUTINE
(50) 80 ADDRESS 4 FORMAT EP ADDR OF FORMAT OPERAND RTN
(54) 84 ADDRESS 4 UNASSGN EP ADDR OF UNASSGN SUBROUTINE
(58) 88 ADDRESS 4 VERCAUTH EP ADDR OF VER CMND AUTHOR
(5C) 92 ADDRESS 4 VERKYWOP EP ADDR OF VER KEYWORD OP'S
(60) 96 ADDRESS 4 AOPCHK EP ADDR OF "AOPCHK" ROUTINE SCHUPPEN
(64) 100 ADDRESS 4 QRDISPCT EP ADDR OF DIRECT INSPECTION
(68) 104 ADDRESS 4 (2) RESERVED FOR FUTURE USE SCHUPPEN
(70) 112 ADDRESS 4 CPCLTAB ADDR OF INDEX TABLE FOR CLASS ENTRY

C O M M U N I C A T I O N A R E A

(74) 116 CHAR-
ACTER

8 SWITCHES (0) SWITCHES USED BY VARIOUS PROCESSORS

(74) 116 BITSTRING 1 SWFLAG1 FLAG BYTE 1
 1... SWSUPPR "X'80'" .. TURNED ON BY CALLER OF 'BINTODEC' SUB-

ROUTINE TO INDICATE THAT SUPPRESSION OF
LEADING ZEROS IS RE- QUESTED.

 .1.. SWFOUND "X'40'" .. TURNED ON BY VARIOUS COMMAND
PROCESSORS WHEN THEY FOUND A TCB OR QUEUE
RECORD OF THE KIND THEY ARE LOOKING FOR

 ..1. SWSTART "X'20'" .. TURNED ON BY THE PSTART PROCESSOR
WHEN A DORMANT PARTITION SHOULD REACTIVATED

(75) 117 BITSTRING 1 SWFLAG2 FLAG BYTE 2

 Chapter 5. Storage Layout and Data Areas 459

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... SWREPLY "X'80'" .. TURNED ON BY CALLER OF MESSAGE ROUTINE
TO INDICATE ANSWER REQUIRED

 .1.. SWAUTOST "X'40'" .. TURNED ON TO INDICATE THAT THE INITIATOR
TASK MUST BE PROMPTED TO SUPPLY DEVICE ADDR
TO BE SPOOLED

 ..1. SWERROR "X'20'" .. TURNED ON WHEN AN ERROR MESSAGE
SHOULD BE ISSUED TO CENTRAL OPERATOR EVEN
WHEN AUTOSTART IS IN PROGRESS

 ...1 SWPOALL "X'10'" .. TURNED ON BY THE POFFLOAD PROC. WHEN
EITHER THE ENTIRE XMIT QUEUE OR ALL QUEUES
SHOULD BE OFFLOADED

 1... SWIGNORE "X'08'" .. TURNED ON BY CALLER OF "CHECK ADDI-
TIONAL OPERANDS" TO INDICATE TYPE OF MESSAGE
TO BE ISSUED

 1.. SWF2TST "X'04'" .. TURNED ON BY IPW$$CD TO SUPPRESS MSG
1R91I IN ADD. OPERANDS CHECK RTN.

(76) 118 BITSTRING 1 SWFLAG3 FLAG BYTE 3
 1... SWINDEV "X'80'" .. INDICATES THAT DEVICE TYPE DESIGNATED IN

PSTART COMMAND IS IN- CONSISTENT WITH TASK
TYPE.

 .1.. SWDELAY "X'40'" .. INDICATES THAT A WARNING MESSAGE MUST
BE DELAYED, TO AVOID DIS- APPEARING OF THE
APPROPRITATE TCB

 ..1. SWDEL "X'20'" .. TURNED ON BY PALTER PROCESSOR WHEN
QUEUE SET TO BE ALTERED MUST BE DELETED AND
ADDED LATER ON TO CLASS CHAIN RATHER THAN RE-
WRITING OF THE QUEUE RECORD.

 ...1 SWNOCCO "X'10'" .. TURNED ON BY PALTER PROCESSOR WHEN
OTHER ATTRIBUTES THAN # OF COPIES SHOULD BE
CHANGED.

 1... SWUSER5 "X'08'" .. TURNED ON BY CALLING ROUTINE TO INDICATE
THAT REG 5 SHOULD BE USED AS TCB POINTER.

 1.. SWF3CNC "X'04'" .. TURNED ON BY IPW$$CS MSG FORCES
IPW$CNC IN UNATTENDED SYSTEM

(77) 119 BITSTRING 1 SWFLAG4 FLAG BYTE 4
 1... SWMSG "X'80'" .. TURNED ON BY PDISPLAY PROCESSOR IF MES-

SAGES ARE TO BE SUPRESSED
 .1.. SWPBCST "X'40'" .. TURNED ON BY PBRDCST PROCESSOR IF MES-

SAGES HAVE TO BE TRUNCATED
 ..1. SWF4ALL "X'20'" .. TURNED ON BY PINQUIRE/PSTOP IF 'ALL' IS

SPECIFIED OR IF A GROUP OF SIMILAR RESOURCES IS
INQUIRED: PNET(BSC|CTC|SNA|TCP) OR RJE(BSC|CTC)
OR DEVICES

 ...1 SWF4NOTH "X'10'" .. TURNED ON BY PINQUIRE PROCESSOR IF
NOTHING TO DISPLAY

 1... SWF4NMM "X'08'" .. TURNED ON BY PDISPLAY PROCESSOR IF MSG
NOT TO BE MODIFIED

 1.. SWF4DNC "X'04'" .. TURNED ON BY PDISPLAY PROCESSOR IF MSG
NOT TO BE COMPR'ED

(78) 120 BITSTRING 1 SWFLAG5 FLAG BYTE 5
 1... SWF5PBSC "X'80'" .. TURNED ON BY PINQUIRE ALL OR PINQUIRE

PNET OR PINQUIRE PNETBSC
 .1.. SWF5PCTC "X'40'" .. TURNED ON BY PINQUIRE ALL OR PINQUIRE

PNET OR PINQUIRE PNETCTC
 ..1. SWF5PSNA "X'20'" .. TURNED ON BY PINQUIRE ALL OR PINQUIRE

PNET OR PINQUIRE PNETSNA
 ...1 SWF5PTCP "X'10'" .. TURNED ON BY PINQUIRE ALL OR PINQUIRE

PNET OR PINQUIRE PNETTCP
 1... SWF5RBSC "X'08'" .. TURNED ON BY PINQUIRE ALL OR PINQUIRE

RJE OR PINQUIRE RJEBSC
 1.. SWF5RSNA "X'04'" .. TURNED ON BY PINQUIRE ALL OR PINQUIRE

RJE OR PINQUIRE RJESNA
 1. SWF5DEV "X'02'" .. TURNED ON BY PINQUIRE ALL OR PINQUIRE

DEVICES

460 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1 SWF5PSSL "X'01'" .. TURNED ON BY PINQUIRE ALL OR PINQUIRE
PNET OR PINQUIRE PNETSSL

(79) 121 CHAR-
ACTER

3 RESERVED FOR FUTURE USE

R E G I S T E R S A V E A R E A S

(7C) 124 SIGNED 4 CPWRRS (12) REGISTER SAVEAREA FOR ROOTPHASE
(AC) 172 SIGNED 4 CPWCRS (12) REGISTER SAVE AREA FOR COMMAND PROC
(DC) 220 SIGNED 4 CPWSRS (12) REGISTER SAVE AREA FOR SUBROUTINES
(10C) 268 SIGNED 4 CPWFRS (12) REGISTER SAVE AREA FOR FORMAT SUBROUTINE

RE-R9 ALSO USED BY SPDEV-ROUTINE
(13C) 316 SIGNED 4 CPWMRS (12) REGISTER SAVE AREA FOR MESSAGE SUBROUTINE

RE-R9

G E N E R AL W O R K - A R E A
THE FOLLOWING SIXTY FOUR BYTES ARE USED AS GENERAL PURPOSE
WORKAREA, WHICH MAY BE BROKEN DOWN INTO FIELDS AS IS REQUIRED

(16C) 364 CHAR-
ACTER

32 CPWGW1 WORKAREA 1

(18C) 396 CHAR-
ACTER

32 CPWGW2 WORKAREA 2

MESSAGE OUTPUT AREA

(1AC) 428 CHAR-
ACTER

30 MESSNMR NODAL MESSAGE OUTPUT AREA

(1CA) 458 CHAR-
ACTER

132 MESSOUT (0) MESSAGE OUTPUT/MODIFICATION AREA

(1CA) 458 BITSTRING 1 MESSLEN LENGTH OF MESSAGE
(1CB) 459 CHAR-

ACTER
131 MESSAGE (0) MESSAGE AREA

(1CB) 459 CHAR-
ACTER

7 MESSID MESSAGE IDENTIFIER

(1D2) 466 CHAR-
ACTER

123 MESSTXT MESSAGE TEXT

(24D) 589 CHAR-
ACTER

1 USED FOR ALIGNMENT

FIXED FORMAT OPERAND AREA

(24D) 589 0 OPAREA "*" BEGIN OF FIXED FORMAT OPERAND AREA
(24E) 590 CHAR-

ACTER
34 OP1 (0) OPERAND 1

(24E) 590 BITSTRING 1 OPLEN1 LENGTH OF OPERAND CONTENTS
(24F) 591 BITSTRING 1 OPSW1 FLAG BYTE
(250) 592 BITSTRING 1 FLAG BYTE 2
(251) 593 BITSTRING 1 MASK BYTE
(252) 594 CHAR-

ACTER
24 OPERAND

(26A) 618 BITSTRING 2 OP1HEX HEXADECIMAL VALUE OF OPERAND
(26C) 620 BITSTRING 4 OP1DEC DECIMAL VALUE OF OPERAND
(270) 624 CHAR-

ACTER
34 OP2 (0) OPERAND 2

(270) 624 BITSTRING 1 OPLEN2 LENGTH OF OPERAND CONTENTS
(271) 625 BITSTRING 1 OPSW2 FLAG BYTE
(272) 626 BITSTRING 1 FLAG BYTE 2
(273) 627 BITSTRING 1 MASK BYTE
(274) 628 CHAR-

ACTER
24 OPERAND

(28C) 652 BITSTRING 2 OP2HEX HEXADECIMAL VALUE OF OPERAND
(28E) 654 BITSTRING 4 OP2DEC DECIMAL VALUE OF OPERAND
(292) 658 CHAR-

ACTER
34 OP3 (0) OPERAND 3

(292) 658 BITSTRING 1 OPLEN3 LENGTH OF OPERAND CONTENTS
(293) 659 BITSTRING 1 OPSW3 FLAG BYTE
(294) 660 BITSTRING 1 FLAG BYTE 2
(295) 661 BITSTRING 1 MASK BYTE

 Chapter 5. Storage Layout and Data Areas 461

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(296) 662 CHAR-
ACTER

24 OPERAND

(2AE) 686 BITSTRING 2 OP3HEX HEXADECIMAL VALUE OF OPERAND
(2B0) 688 BITSTRING 4 OP3DEC DECIMAL VALUE OF OPERAND
(2B4) 692 CHAR-

ACTER
34 OP4 (0) OPERAND 4

(2B4) 692 BITSTRING 1 OPLEN4 LENGTH OF OPERAND CONTENTS
(2B5) 693 BITSTRING 1 OPSW4 FLAG BYTE
(2B6) 694 BITSTRING 1 FLAG BYTE 2
(2B7) 695 BITSTRING 1 MASK BYTE
(2B8) 696 CHAR-

ACTER
24 OPERAND

(2D0) 720 BITSTRING 2 OP4HEX HEXADECIMAL VALUE OF OPERAND
(2D2) 722 BITSTRING 4 OP4DEC DECIMAL VALUE OF OPERAND
(2D6) 726 CHAR-

ACTER
34 OP5 (0) OPERAND 5

(2D6) 726 BITSTRING 1 OPLEN5 LENGTH OF OPERAND CONTENTS
(2D7) 727 BITSTRING 1 OPSW5 FLAG BYTE
(2D8) 728 BITSTRING 1 FLAG BYTE 2
(2D9) 729 BITSTRING 1 MASK BYTE
(2DA) 730 CHAR-

ACTER
24 OPERAND

(2F2) 754 BITSTRING 2 OP5HEX HEXADECIMAL VALUE OF OPERAND
(2F4) 756 BITSTRING 4 OP5DEC DECIMAL VALUE OF OPERAND
(2F8) 760 CHAR-

ACTER
34 OP6 (0) OPERAND 6

(2F8) 760 BITSTRING 1 OPLEN6 LENGTH OF OPERAND CONTENTS
(2F9) 761 BITSTRING 1 OPSW6 FLAG BYTE
(2FA) 762 BITSTRING 1 FLAG BYTE 2
(2FB) 763 BITSTRING 1 MASK BYTE
(2FC) 764 CHAR-

ACTER
24 OPERAND

(314) 788 BITSTRING 2 OP6HEX HEXADECIMAL VALUE OF OPERAND
(316) 790 BITSTRING 4 OP6DEC DECIMAL VALUE OF OPERAND
(31A) 794 CHAR-

ACTER
34 OP7 (0) OPERAND 7

(31A) 794 BITSTRING 1 OPLEN7 LENGTH OF OPERAND CONTENTS
(31B) 795 BITSTRING 1 OPSW7 FLAG BYTE
(31C) 796 BITSTRING 1 FLAG BYTE 2
(31D) 797 BITSTRING 1 MASK BYTE
(31E) 798 CHAR-

ACTER
24 OPERAND

(336) 822 BITSTRING 2 OP7HEX HEXADECIMAL VALUE OF OPERAND
(338) 824 BITSTRING 4 OP7DEC DECIMAL VALUE OF OPERAND
(33C) 828 CHAR-

ACTER
34 OP8 (0) OPERAND 8

(33C) 828 BITSTRING 1 OPLEN8 LENGTH OF OPERAND CONTENTS
(33D) 829 BITSTRING 1 OPSW8 FLAG BYTE
(33E) 830 BITSTRING 1 FLAG BYTE 2
(33F) 831 BITSTRING 1 MASK BYTE
(340) 832 CHAR-

ACTER
24 OPERAND

(358) 856 BITSTRING 2 OP8HEX HEXADECIMAL VALUE OF OPERAND
(35A) 858 BITSTRING 4 OP8DEC DECIMAL VALUE OF OPERAND
(35E) 862 CHAR-

ACTER
34 OP9 (0) OPERAND 9

(35E) 862 BITSTRING 1 OPLEN9 LENGTH OF OPERAND CONTENTS
(35F) 863 BITSTRING 1 OPSW9 FLAG BYTE
(360) 864 BITSTRING 1 FLAG BYTE 2
(361) 865 BITSTRING 1 MASK BYTE
(362) 866 CHAR-

ACTER
24 OPERAND

(37A) 890 BITSTRING 2 OP9HEX HEXADECIMAL VALUE OF OPERAND
(37C) 892 BITSTRING 4 OP9DEC DECIMAL VALUE OF OPERAND

462 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(380) 896 CHAR-
ACTER

34 OP10 (0) OPERAND 10

(380) 896 BITSTRING 1 OPLEN10 LENGTH OF OPERAND CONTENTS
(381) 897 BITSTRING 1 OPSW10 FLAG BYTE
(382) 898 BITSTRING 1 FLAG BYTE 2
(383) 899 BITSTRING 1 MASK BYTE
(384) 900 CHAR-

ACTER
24 OPERAND

(39C) 924 BITSTRING 2 OP10HEX HEXADECIMAL VALUE OF OPERAND
(39E) 926 BITSTRING 4 OP10DEC DECIMAL VALUE OF OPERAND
(3A2) 930 CHAR-

ACTER
34 OP11 (0) OPERAND 11

(3A2) 930 BITSTRING 1 OPLEN11 LENGTH OF OPERAND CONTENTS
(3A3) 931 BITSTRING 1 OPSW11 FLAG BYTE
(3A4) 932 BITSTRING 1 FLAG BYTE 2
(3A5) 933 BITSTRING 1 MASK BYTE
(3A6) 934 CHAR-

ACTER
24 OPERAND

(3BE) 958 BITSTRING 2 OP11HEX HEXADECIMAL VALUE OF OPERAND
(3C0) 960 BITSTRING 4 OP11DEC DECIMAL VALUE OF OPERAND
(3C4) 964 CHAR-

ACTER
34 OP12 (0) OPERAND 12

(3C4) 964 BITSTRING 1 OPLEN12 LENGTH OF OPERAND CONTENTS
(3C5) 965 BITSTRING 1 OPSW12 FLAG BYTE
(3C6) 966 BITSTRING 1 FLAG BYTE 2
(3C7) 967 BITSTRING 1 MASK BYTE
(3C8) 968 CHAR-

ACTER
24 OPERAND

(3E0) 992 BITSTRING 2 OP12HEX HEXADECIMAL VALUE OF OPERAND
(3E2) 994 BITSTRING 4 OP12DEC DECIMAL VALUE OF OPERAND
(3E6) 998 CHAR-

ACTER
34 OP13 (0) OPERAND 13

(3E6) 998 BITSTRING 1 OPLEN13 LENGTH OF OPERAND CONTENTS
(3E7) 999 BITSTRING 1 OPSW13 FLAG BYTE
(3E8) 1000 BITSTRING 1 FLAG BYTE 2
(3E9) 1001 BITSTRING 1 MASK BYTE
(3EA) 1002 CHAR-

ACTER
24 OPERAND

(402) 1026 BITSTRING 2 OP13HEX HEXADECIMAL VALUE OF OPERAND
(404) 1028 BITSTRING 4 OP13DEC DECIMAL VALUE OF OPERAND
(408) 1032 CHAR-

ACTER
34 OP14 (0) OPERAND 14

(408) 1032 BITSTRING 1 OPLEN14 LENGTH OF OPERAND CONTENTS
(409) 1033 BITSTRING 1 OPSW14 FLAG BYTE
(40A) 1034 BITSTRING 1 FLAG BYTE 2
(40B) 1035 BITSTRING 1 MASK BYTE
(40C) 1036 CHAR-

ACTER
24 OPERAND

(424) 1060 BITSTRING 2 OP14HEX HEXADECIMAL VALUE OF OPERAND
(426) 1062 BITSTRING 4 OP14DEC DECIMAL VALUE OF OPERAND
(42A) 1066 CHAR-

ACTER
34 OP15 (0) OPERAND 15

(42A) 1066 BITSTRING 1 OPLEN15 LENGTH OF OPERAND CONTENTS
(42B) 1067 BITSTRING 1 OPSW15 FLAG BYTE
(42C) 1068 BITSTRING 1 FLAG BYTE 2
(42D) 1069 BITSTRING 1 MASK BYTE
(42E) 1070 CHAR-

ACTER
24 OPERAND

(446) 1094 BITSTRING 2 OP15HEX HEXADECIMAL VALUE OF OPERAND
(448) 1096 BITSTRING 4 OP15DEC DECIMAL VALUE OF OPERAND

 1111 OPARNO "(*-OPAREA)/(OP2-OP1)" MAX. NUMBER OF OPERANDS

DUMMY LAST OPERAND TO PREVENT ROUTINES FROM
CHECKING BEYOND THE ABOVE LAST VALID OPERAND.

 Chapter 5. Storage Layout and Data Areas 463

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(44C) 1100 CHAR-
ACTER

34 (0) DUMMY LAST OPERAND

(44C) 1100 BITSTRING 1 LENGTH OF OPERAND CONTENTS
(44D) 1101 BITSTRING 1 FLAG BYTE
(44E) 1102 BITSTRING 1 FLAG BYTE 2
(44F) 1103 BITSTRING 1 MASK BYTE
(450) 1104 CHAR-

ACTER
24 OPERAND

(468) 1128 BITSTRING 2 HEXADECIMAL VALUE OF OPERAND
(46A) 1130 BITSTRING 4 DECIMAL VALUE OF OPERAND
(46A) 1130 0 OPNEXT "*" END OF FORMAT OPERAND AREA
(46A) 1130 0 OPARLN "*-OPAREA" LENGTH OF FORMATTED OPERAND AREA

D U M M Y T C B D E F I N I T I O N

(470) 1136 DBL WORD 8 (0) FORCE DOUBLE WORD ALIGNMENT

THE FOLLOWING FIELDS DEFINE THE IDENTITY OF THE TASK,
ESTABLISH ITS POSITION IN THE TASK LIST, RECORD PAGE
FAULTS PENDING, AND DEFINE THE TASK STATE AT ANY POINT

 IN TIME.

(470) 1136 CHAR-
ACTER

16 DYSD (0) STORAGE DESCRIPTOR

(470) 1136 CHAR-
ACTER

4 DYBI BLOCK IDENTIFIER

(474) 1140 CHAR-
ACTER

4 DYTI TASK IDENTIFIER C'O CP' - COMMAND PROCESSOR
TASK C'I IT' - INITIATOR TASK C'T TT' - TERMINATOR
TASK C'T TI' - TIMER TASK C'RRDR' - LOCAL RDR TASK
OR OFFLOAD C'WLST' - LOCAL PRT TASK OR OFFLOAD
C'WPUN' - LOCAL PUN TASK C'E XX' - EXECUTION
PROCESSOR TASK. XX SPECIFIES THE PARTITION
REQUESTING THE TASK. C'1'-C'5 ' TCB BELONGS TO
RJE TASK IN THIS CASE THREE REMAINING BYTES WILL
INDICATE THE TYPE OF TASK. (RDR, LST, PUN, LGN,
LGF, OR MSG.) C'LRLM' - LINE MANAGER TASK C'P PS' -
PRINT STATUS TASK C' ACT' - ACCOUNT TASK C'J ' -
SPOOL MANAGER TASK. THE THREE REMAINING BYTES
IND THE TYPE OF TASK.(RDR,LST,OR SPM.) C'LSNA' -
SNA TASK C'NTFY' - NOTIFY TASK C'LLDR' - PNET
DRIVER C'NRVN' - NETWORK RECEIVER TASK N
(N=BLANK FOR CONSOLE TASK) C'NTRN' - NETWORK
TRANSMITTER N (N=BLANK FOR CONSOLE TASK) C'NCT
' - PNET SESSION EST'D C'NDT ' - PNET SESSION DIS-
CONNECT C'XMAS' - SAS MASTER TASK C'XSAS' - SAS
USER TASK C'XDEV' - DEVICE SERVICE TASK C'YTES' -
TIME EVENT SCHEDULING C'DPST' - DYNAMIC
PART.SCHEDULING

(478) 1144 CHAR-
ACTER

4 DYCU PHYSICAL DEVICE IDENTIFIER

(47C) 1148 CHAR-
ACTER

4 DYRI (0) RJE-ID/TAPE CUU/RCV-TSM TYPE

(47C) 1148 BITSTRING 1 DYFL BINARY FORMAT
(47D) 1149 CHAR-

ACTER
3 DYRM CHARACTER FORMAT

(480) 1152 ADDRESS 4 DYTP ADDRESS OF PREVIOUS TASK TCB
(484) 1156 ADDRESS 4 DYTN ADDRESS OF NEXT TASK TCB
(488) 1160 SIGNED 4 DYPF PAGE FAULT REQUEST WORD
(48C) 1164 SIGNED 4 DYSF (0) TASK SELECTION FIELD
(48C) 1164 BITSTRING 1 .. TASK STATE (SEE BELOW)
(48D) 1165 ADDRESS 3 .. NUCLEUS TASK ROUT. ADDR
(490) 1168 SIGNED 4 DYCT (4) TASK CLASS LIST

 1.. DY#C "(*-DYCT)/4" .. NUMBER OF CLASS ENTRIES
(4A0) 1184 SIGNED 4 (0) THE FOLLOWING TWO BYTES MUST BEGIN FULL WORD

BOUNDARY |
(4A0) 1184 BITSTRING 1 DYFF LIST DELIMITER | |

464 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 |
TERMINATION TYPE |

 |
 |

(4A1) 1185 BITSTRING 1 DYTT TERMINATION TYPE (BELOW) V
(4A2) 1186 BITSTRING 1 DYJB JOB BOUNDARY SWITCH

EQU X'FF' ..JOB IN PROCESS
OVERLAY AREA USED BY X-PARTITION SPOOL MANAGER TASKS

(494) 1172 BITSTRING 1 SPOOL MGMT LIST DELIM'TER
(495) 1173 ADDRESS 3 DYEWA ADDR. OF WS FOR EXTRACT
(498) 1176 BITSTRING 1 DYIQ SPOOL MGMT QUEUE ID
(499) 1177 BITSTRING 1 UNUSED
(49A) 1178 BITSTRING 1 DYSG SPOOL MG GEN PURPOSE BYTE

 1. DY1T "X'02'" .. 1ST TIME BUFF'ED GETSP

EQU X'01' .. PUTSPOOL DASD SOS MSG

(49B) 1179 CHAR-
ACTER

1 DYSS SPOOL MANAGEMENT SWITCH

 11.. 1..1 DYIW "C'I'" ..LOGICAL WRITER INITIALIZED
 11.1 .11. DYOW "C'O'" ..OPEN LOGICAL WRITER
 11.. ..11 DYCW "C'C'" ..CLOSE LOGICAL WRITER

(49C) 1180 SIGNED 4 DYER ADDR(USER X-PART XECB)

FUNCTION TRACE INDICATOR

(4A3) 1187 BITSTRING 1 DYFT FUNCTION TRACE INDICATOR

TASK ECB AND OTHER CONTROL FLAGS

(4A4) 1188 SIGNED 4 DYEB (0) EVENT CONTROL BLOCK
(4A4) 1188 BITSTRING 1 DYDB DOUBLE BUFFER INDICATOR
(4A5) 1189 BITSTRING 1 DYCB FUNCTION COMMUNICATION BYTE
(4A6) 1190 BITSTRING 1 DYEP EVENT POST BYTE

 1... DYEO "X'80'" EVENT POST BIT ON SETTING
 .1.. DYBSCLV "X'40'" EVENT BIT BSC-WAIT 'B'
 ..1. DYQRDR "X'20'" POST BIT FOR QUIESCE RDR I/O

(4A7) 1191 BITSTRING 1 DYSI SPOOLING INDICATOR
(4A8) 1192 ADDRESS 4 UNUSED
(4AC) 1196 ADDRESS 4 UNUSED

TASK REGISTER SAVE AREA
THE FOLLOWING FIELDS RECORD THE CONTENTS OF THE GENERAL
PURPOSE REGISTERS 12 THROUGH 9 WHENEVER ENTRY IS MADE TO
TASK SELECTION. IF THE TASK STATE IS SET TO 'R' (RUNNING)
THE VALUES IN THE FIELDS RECORD THE CONTENTS OF THE
REGISTERS WHEN THE TASK WAS GIVEN CONTROL. IF THE TASK STATE
IS SET TO ANY OTHER VALUE THE FIELDS CONTAIN THE ACTUAL
CONTENTS OF THE REGISTERS ASSOCIATED WITH THE TASK.

(4B0) 1200 CHAR-
ACTER

56 DYTR (0) TASK REGISTER SAVE AREA

(4B0) 1200 SIGNED 4 DYRC TASK REGISTER 12
(4B4) 1204 SIGNED 4 DYRD TASK REGISTER 13
(4B8) 1208 SIGNED 4 DYRE TASK REGISTER 14
(4BC) 1212 SIGNED 4 DYRF TASK REGISTER 15
(4C0) 1216 SIGNED 4 DYR0 TASK REGISTER 0
(4C4) 1220 SIGNED 4 DYR1 TASK REGISTER 1
(4C8) 1224 SIGNED 4 DYR2 TASK REGISTER 2
(4CC) 1228 SIGNED 4 DYR3 TASK REGISTER 3
(4D0) 1232 SIGNED 4 DYR4 TASK REGISTER 4
(4D4) 1236 SIGNED 4 DYR5 TASK REGISTER 5
(4D8) 1240 SIGNED 4 DYR6 TASK REGISTER 6
(4DC) 1244 SIGNED 4 DYR7 TASK REGISTER 7
(4E0) 1248 SIGNED 4 DYR8 TASK REGISTER 8
(4E4) 1252 SIGNED 4 DYR9 TASK REGISTER 9

 Chapter 5. Storage Layout and Data Areas 465

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

VARIOUS CONTROL FIELDS

(4E8) 1256 SIGNED 4 DYRS (0) RESTART INFORMATION
(4E8) 1256 SIGNED 4 (0) TASK TERMINATOR WORK AREA
(4E8) 1256 SIGNED 4 (0) IPW$$XTC ECB FOR DISPLAY SPOOL LST
(4E8) 1256 BITSTRING 1 DYRX RESTART FUNCTION INDEX

EQU X'04' ..RESTART REQUESTED,NO SIGN
EQU X'08' ..RESTART REQUESTED, + SIGN
EQU X'0C' ..RESTART REQUESTED, - SIGN

 ...1 DYSP "X'10'" ..SETUP REQUESTED
 ...1 1... DYCKP "X'18'" ..CHECKPOINT REQUEST
 ...1 11.. DYPAE "X'1C'" ..POSITION AT END IF ERROR

(4E9) 1257 ADDRESS 3 RESERVED FOR FUTURE USE
(4E9) 1257 BITSTRING 1 DYCTRC CURRENT TRC COMMAND CODE
(4EA) 1258 SIGNED 2 DYBL BUFFER LENGTH
(4E8) 1256 BITSTRING 1 DYRYFRB FUNCT. REQ. BYTE OF CALLER
(4E9) 1257 BITSTRING 1 DYRYTD HELP FIELD USED BY RECOVERY
(4EC) 1260 BITSTRING 1 DYDT DEVICE TYPE CODE
(4ED) 1261 BITSTRING 1 DYAT ACCOUNT TRACE INDICATOR
(4EE) 1262 BITSTRING 2 DYDE PACKED DEVICE ADDRESS
(4F0) 1264 SIGNED 4 DYRG SAVE AREA FOR SERV. RTNS
(4F4) 1268 SIGNED 4 DYRH SAVE AREA FOR SERV RTNS
(4F8) 1272 SIGNED 4 DY15 2ND BASE REG. SAVE AREA

WHENEVER A VSE/POWER SERVICE FUNCTION IS CALLED (EXCEPT
TASK MANAGEMENT) REGISTER 9 IS SAVED IN TC09. REGISTER 9
IS THEN USED AS 2ND BASE REGISTER BY THE NUCLEUS ROUTINES.
REGISTER 8 IS SAVED IN TC08 TO BE USED AS 3RD BASE.

(4FC) 1276 SIGNED 4 DY08 REGISTER 8 SAVE AREA
(500) 1280 SIGNED 4 DY09 REGISTER 9 SAVE AREA

LINKAGE REGISTER SAVE AREA
THE FOLLOWING FIELDS RECORD THE CONTENTS OF THE GENERAL
PURPOSE REGISTERS 14 THROUGH 9 WHENEVER ENTRY IS MADE BY
THE TASK TO A VSE/POWER FUNCTION.

(504) 1284 CHAR-
ACTER

56 DYSV (0) REGISTER SAVE AREA

(504) 1284 SIGNED 4 TASK CONTROL ADDRESS
(508) 1288 SIGNED 4 PREVIOUS SAVE AREA ADDRESS
(50C) 1292 SIGNED 4 SAVED REGISTER 14
(510) 1296 SIGNED 4 SAVED REGISTER 15
(514) 1300 SIGNED 4 SAVED REGISTER 0
(518) 1304 SIGNED 4 SAVED REGISTER 1
(51C) 1308 SIGNED 4 SAVED REGISTER 2
(520) 1312 SIGNED 4 SAVED REGISTER 3
(524) 1316 SIGNED 4 SAVED REGISTER 4
(528) 1320 SIGNED 4 SAVED REGISTER 5
(52C) 1324 SIGNED 4 SAVED REGISTER 6
(530) 1328 SIGNED 4 SAVED REGISTER 7
(534) 1332 SIGNED 4 SAVED REGISTER 8
(538) 1336 SIGNED 4 SAVED REGISTER 9

TRACE FACILITY SAVE AREA

(53C) 1340 SIGNED 4 DYTCWKP TASK TRACE WORKAREA PNTR
(540) 1344 CHAR-

ACTER
0 DYTCR (0) TASK TRACE REG SAVEAREA

(540) 1344 SIGNED 4 DYTCRD TASK TRACE REG 13
(544) 1348 SIGNED 4 DYTCRE TASK TRACE REG 14
(548) 1352 SIGNED 4 DYTCRF TASK TRACE REG 15
(54C) 1356 SIGNED 4 DYTCR0 TASK TRACE REG 0
(550) 1360 SIGNED 4 DYTCR1 TASK TRACE REG 1
(554) 1364 SIGNED 4 DYTCR2 TASK TRACE REG 2
(558) 1368 SIGNED 4 DYTCR3 TASK TRACE REG 3
(55C) 1372 SIGNED 4 DYTCR4 TASK TRACE REG 4

466 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(560) 1376 SIGNED 4 DYTCR5 TASK TRACE REG 5
(564) 1380 SIGNED 4 DYTCR6 TASK TRACE REG 6
(568) 1384 SIGNED 4 DYTCR7 TASK TRACE REG 7
(56C) 1388 SIGNED 4 DYTCR8 TASK TRACE REG 8
(570) 1392 SIGNED 4 DYTCR9 TASK TRACE REG 9

IDUMP SAVE AREA
WHENEVER THE IDUMP FUNCTION IS REQUESTED BY IPW$IDM,
CALLER REGISTERS RE-R1 ARE SAVED IN TCIE-TCI1

NOTE: THIS AREA IS REUSED AS ECB LIST FOR IPW$WFM CALLS BY
IPW$$QM(Q1), IPW$$T1, IPW$$XWE.
IN $WFM STATE IDUMP IS NOT POSSIBLE EXCEPT DISPATCHER
DETECTS DESTROYED TCB AND TERMINATES POWER.

(574) 1396 SIGNED 4 DYIE REGISTER E SAVE AREA
(578) 1400 SIGNED 4 DYIF REGISTER F SAVE AREA
(57C) 1404 SIGNED 4 DYI0 REGISTER 0 SAVE AREA
(580) 1408 SIGNED 4 DYI1 REGISTER 1 SAVE AREA

TASK MESSAGE INTERFACE

(584) 1412 ADDRESS 4 DYMW ADDRESS OF MESSAGE TO BE ISSUED

EQU X'80' .. HOLD MESSAGE CONTROL BLOCK
EQU X'40' .. REGISTER 5 CONTAINS TCB ADDRESS
EQU X'20' .. MESSAGE IS IN NMR FORMAT

(588) 1416 ADDRESS 4 DYAW ADDRESS OF CALLERS REPLY AREA

 WTO/WTOR/DOM INTERFACE
 WTO/WTOR OUTPUT

(58C) 1420 BITSTRING 4 DYMID MESSAGE ID
(590) 1424 ADDRESS 4 DYMRECB WTOR REPLY ECB

WTO/WTOR/DOM INPUT - SET BY POWER:

(594) 1428 BITSTRING 4 DYMRT MESSAGE ROUTING CODE
(598) 1432 BITSTRING 2 DYMDC MESSAGE DESCRIPTOR CODE
(59A) 1434 BITSTRING 1 DYF18 FLAG BYTE 18
(59B) 1435 BITSTRING 1 DYF19 FLAG BYTE 19
(59C) 1436 BITSTRING 4 DYMNRT NEG ROUTING CODE(DON"T WANT)@D61CDSW
(5A0) 1440 BITSTRING 4 DYMRTDF DEFAULT MSG ROUTING CODE
(5A4) 1444 ADDRESS 4 DYMDOM DOM MESSAGE ID
(5A8) 1448 ADDRESS 4 DYMCID COMMAND CONNECT MESSAGE ID

AR COMMAND OUTPUT(INPUT TO WTO/WTOR IF CMD RESP)

(5AC) 1452 BITSTRING 8 DYMCART AR MESSAGE TOKEN (CART)
(5B4) 1460 BITSTRING 4 DYMCOID AR CONSOLE ID

 MISCELLANEOUS

(5B8) 1464 BITSTRING 2 DYMPID PARTITION ID
(5BA) 1466 BITSTRING 1 DYMFLG MESSAGE FLAGS

 1... DYMFAR "X'80'" .. VSE/AF CMD
 .1.. DYMFUR "X'40'" .. VSE/AF CMD USER CONSOLE
 ..1. DYMFCUP "X'20'" .. CLOSE UP CONN'D MSGS
 ...1 DYMFCFM "X'10'" .. ISSUE 1ST CONN'D MESSAGE
 1... DYMFICM "X'08'" .. ISSUE CONNECTED MESSAGE
 1.. DYMFCEX "X'04'" .. CONNECTED MSG EXISTS

(5BB) 1467 BITSTRING 1 UNUSED
(5BC) 1468 ADDRESS 4 DYVD SAVED PTR(LINK-REG-SV-AREA)
(5C0) 1472 ADDRESS 4 DY1Q40 MSG 1Q40A MSG ID FOR DOM
(5C0) 1472 ADDRESS 4 DY1Q38 MSG 1Q38A MSG ID FOR DOM
(5C0) 1472 ADDRESS 4 DY1QD6 MSG 1QD6I MSG ID FOR DOM
(5C0) 1472 ADDRESS 4 DY1QE6 MSG 1QE6I MSG ID FOR DOM
(5C0) 1472 ADDRESS 4 DY1QD7 MSG 1QD7I MSG ID FOR DOM
(5C4) 1476 ADDRESS 4 UNUSED
(5C8) 1480 ADDRESS 4 DYPFTWA TAPE-WORKAREA NOT TO REL.
(5CC) 1484 ADDRESS 4 DYPFPWA PRT/PUN-WA NOT TO RELEASE
(5D0) 1488 SIGNED 2 DYPFCU CUU OF PSTOP FORCE CMD

 Chapter 5. Storage Layout and Data Areas 467

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(5D2) 1490 SIGNED 2 DYPFRC RC OF PSTOP FORCE CMD

DATA FILE CONTROL WORDS
INPUT/OUTPUT REQUEST WORD

(5D4) 1492 ADDRESS 4 DYDW RELATIVE DBLK NUMBER
(5D8) 1496 ADDRESS 4 DYDV VIRTUAL DATA AREA ADDRESS
(5DC) 1500 ADDRESS 2 DYDL DATA AREA LENGTH
(5DE) 1502 BITSTRING 1 OPERATION CODE
(5DF) 1503 BITSTRING 1 RESERVED

BLOCKING CONTROL WORDS

(5E0) 1504 SIGNED 4 DYBC RESIDUAL BLOCK COUNT
(5E4) 1508 ADDRESS 4 DYPR PREVIOUS/NEXT RECORD ADDRESS
(5E8) 1512 ADDRESS 4 DYASPB ADDR OF SPOOL BLOCK

RECORD CONTROL WORD (RCW)

(5EC) 1516 CHAR-
ACTER

8 DYRW (0) RECORD CONTROL WORD

(5EC) 1516 BITSTRING 1 DYCC RECORD COMMAND CODE X'FF' .. CONTROL RECORD
X'FE' .. NEW FORMS

(5ED) 1517 ADDRESS 3 DYRV RECORD ADDRESS (VIRTUAL)
(5F0) 1520 BITSTRING 1 DYGP GENERAL PURPOSE BYTE
(5F1) 1521 BITSTRING 1 DYG2 GENERAL PURPOSE BYTE TWO
(5F2) 1522 SIGNED 2 DYRL RECORD LENGTH
(5F4) 1524 BITSTRING 1 DYG3 GENERAL PURPOSE BYTE THREE
(5F5) 1525 BITSTRING 1 DYG4 GENERAL PURPOSE BYTE FOUR
(5F6) 1526 BITSTRING 1 DYDVEB 'DEVICE END' OCCURRED ('FF')
(5F7) 1527 BITSTRING 1 RESERVED FOR FUTURE USE
(5F8) 1528 SIGNED 4 DYLRNO LOGICAL RECORD NUMBER

QUEUE FILE CONTROL WORDS

(5FC) 1532 ADDRESS 4 DYQW RELATIVE QUEUE REC NUMBER
(600) 1536 ADDRESS 4 DYQV VIRTUAL SPACE ADDRESS
(604) 1540 ADDRESS 2 QUEUE REC LENGTH - NOT USED
(606) 1542 BITSTRING 1 OPERATION CODE
(607) 1543 BITSTRING 1 RESERVED

TAPE SPOOLING CONTROL INFORMATION

(608) 1544 BITSTRING 8 DYTS (0) TAPE REQUEST WORD
(608) 1544 BITSTRING 1 DYTF FUNCTION BYTE USED FOR TAPE
(609) 1545 ADDRESS 3 DYTA ADDRESS OF TAPE CTRL BLOCK
(60C) 1548 BITSTRING 4 DYTDES (0) TAPE UNIT DESCRIPTORS
(60C) 1548 BITSTRING 1 DYTM INDICATE TAPE MODE (DENS.)
(60D) 1549 BITSTRING 1 DYTDT TAPE DEVICE TYPE
(60E) 1550 CHAR-

ACTER
2 DYTU TAPE PROG.LOGICAL UNIT(PUU)

(610) 1552 SIGNED 4 DYPU PHYS.UNIT OR PUB ENTRY ADDR.

VARIOUS CONTROL FIELDS

(614) 1556 BITSTRING 1 DYF2 FLAG BYTE 2
(615) 1557 BITSTRING 1 DYF3 FLAG BYTE 3
(616) 1558 BITSTRING 1 DYF4 FLAG BYTE 4
(617) 1559 BITSTRING 1 DYF5 FLAG BYTE 5
(618) 1560 BITSTRING 1 DYF6 FLAG BYTE 6
(619) 1561 BITSTRING 1 DYF7 FLAG BYTE 7
(61A) 1562 BITSTRING 1 DYF8 FLAG BYTE 8
(61B) 1563 BITSTRING 1 DYF9 FLAG BYTE 9
(61C) 1564 BITSTRING 1 DYF10 FLAG BYTE 10
(61D) 1565 BITSTRING 1 DYF11 FLAG BYTE 11
(61E) 1566 BITSTRING 1 DYF12 FLAG BYTE 12
(61F) 1567 BITSTRING 1 DYF13 FLAG BYTE 13 (RES.FOR GCM)
(620) 1568 BITSTRING 1 DYF14 FLAG BYTE 14
(621) 1569 BITSTRING 1 DYF15 FLAG BYTE 15
(622) 1570 BITSTRING 1 DYF16 FLAG BYTE 16
(623) 1571 BITSTRING 1 DYF17 FLAG BYTE 17

468 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(624) 1572 BITSTRING 1 DYF20 FLAG BYTE 20
(625) 1573 BITSTRING 1 DYF21 FLAG BYTE 21
(626) 1574 BITSTRING 1 DYF22 FLAG BYTE 22
(627) 1575 BITSTRING 1 DYF23 FLAG BYTE 23
(628) 1576 BITSTRING 4 .. UNUSED
(62C) 1580 SIGNED 4 DYVEB (0) ECB FOR VTAM REQUESTS

ALSO USED BY $$CA TO INDICATE EXEC. WRITER TO SEGMENT

 1... DYVEBPG "X'80'" .. SEGMENT PAGE REQ. EX.WTR
 .1.. DYVEBIM "X'40'" .. SEGMENT IMM. REQ. EX.WTR
 ..1. DYVEBIF "X'20'" .. IMM. SEGMENTATION FORCED

(62C) 1580 BITSTRING 2 RESERVED - DO NOT USE !
(62E) 1582 BITSTRING 1 DYVEP EVENT POST BYTE FOR VTAM

 1... DYVEO "X'80'" ..EVENT POST BIT ON
(62F) 1583 BITSTRING 1 RESERVED - DO NOT USE !
(62C) 1580 SIGNED 4 DYFEB (0) ECB FOR FORMAT DATA FILE

AREA REUSED TO POST REQUEST FROM $$I4/$$RY TO $$T1

(62C) 1580 BITSTRING 2 RESERVED - DO NOT USE !
(62E) 1582 BITSTRING 1 DYFEP EVENT POST BYTE FOR VTAM

 1... DYFEO "X'80'" ..EVENT POST BIT ON
(62F) 1583 BITSTRING 1 RESERVED - DO NOT USE !
(630) 1584 ADDRESS 4 DYGDS ADDR OF GENERATED DSHR
(634) 1588 ADDRESS 4 DYCMRG COMREG ADDR IF EXEC TASK
(634) 1588 SIGNED 4 DYDEB 'CLEAN DELETION QUEUE' ECB

USED TO POST INIT/TERMIN. TASK FROM $$FQ AND $$PS

(638) 1592 SIGNED 4 DY3E ADDR OF TCB EXTENSION AREA OR ADDR OF WORK
SPACE OR DSHR

(63C) 1596 SIGNED 4 DYHD HEAD PTR VIRT STORAGE CHAIN
(640) 1600 SIGNED 4 TAIL PTR VIRT STORAGE CHAIN
(644) 1604 ADDRESS 4 DY3W POINTER 3540 WORKSPACE
(648) 1608 SIGNED 4 DYXWA ADDRESS TO EXIT WORK AREA
(64C) 1612 SIGNED 4 DYJHR PTR TO JHR (USED BY $LR)
(650) 1616 SIGNED 2 DYXWAL LENGTH OF EXIT WORK AREA
(652) 1618 SIGNED 2 DYQCQW QUEUE REC. OF QC.. USED BY $SQ IN CASE OF SOD

FOR QCA
(654) 1620 SIGNED 4 DYLRWA LOGICAL READER WORK AREA
(658) 1624 SIGNED 4 DYRVAL RESTART PAGE/LINE/RECORD CNT
(65C) 1628 SIGNED 4 DY0EEX RETURN ADDRESS OF USER EXIT
(660) 1632 SIGNED 4 DYNR2W PTR TO NR2 WORKAREA

LOGICAL I/F AND FUNCTION REQUEST BYTES

(664) 1636 BITSTRING 1 DYLIFB LOG. INTERFACE FUNCTION BYTE
 1 DYLIOP "X'01'" .. PRE-OPEN OUTPUT QUEUE
 1. DYLIOF "X'02'" .. FINAL OPEN OUTPUT QUEUE
 11 DYLILO "X'03'" .. LOCATE QUEUE ENTRY
 1.. DYLIOR "X'04'" .. OPEN-RESTART QUEUE ENTRY
 1.1 DYLIRS "X'05'" .. RESTART QUEUE ENTRY
 11. DYLISG "X'06'" .. SEGMENT OUTPUT Q' ENTRY
 111 DYLIFL "X'07'" .. FLUSH OUTPUT QUEUE ENTRY
 1... DYLICH "X'08'" .. CHECKPOINT QUEUE ENTRY
 1..1 DYLICL "X'09'" .. CLOSE OUTPUT QUEUE ENTRY
 1.1. DYLISP "X'0A'" .. SPOOL RECORD
 1.11 DYLIAQ "X'0B'" .. ADD TO CLASS CHAIN
 11.. DYLICO "X'0C'" .. CLOSE WITHOUT JTR
 11.1 DYLIRL "X'0D'" .. READ LOCATED DATA
 111. DYLIOFJ "X'0E'" .. FINAL OPEN OUTPUT QUEUE WITH JOBNUMBER

SUPPLIED
 1111 DYLIFLW "X'0F'" .. FLUSH OUTPUT QUEUE ENTRY WITHOUT

MESSAGE
 ...1 DYLIOFB "X'10'" .. FINAL OPEN OUTPUT QUEUE WITH JOBNUMBER

SUPPLIED, NO BLANK TRUNCATION
(665) 1637 BITSTRING 1 DYLIRC LOG. INTERFACE RETURN CODE
(666) 1638 BITSTRING 1 DYLISR 2ND LOG. INTERFACE RC

 Chapter 5. Storage Layout and Data Areas 469

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

FUNCTION REQUEST BYTE 1 & 2 TRANSPORT INFORMATION TO THE
CALLED FUNCTION, WHERE THEY ARE CLEARED.
THIS ENABLES THE CALLED FUNCTION TO CALL ANOTHER FUNCTION
AND USE THE FUNCTION BYTES FOR ITS PURPOSES.

(667) 1639 BITSTRING 1 DYFRB1 FUNCTION REQUEST BYTE 1
(668) 1640 BITSTRING 1 DYFRCT FUNCTION RETURN CODE
(669) 1641 BITSTRING 1 DYFRB2 FUNCTION REQUEST BYTE 2

CONTINUATION OF VARIOUS CONTROL FIELDS

(66A) 1642 BITSTRING 1 DYRSCO REMAINING COPY NUMBER

THE FOLLOWING FIELD IS USED BY THE EXECUTION PROCESSOR
ROUTINES (IPW$$XR & IPW$$XW) TO INDICATE THE DETAIL
REASON CODE FOR MESSAGE 1R30I.

(66B) 1643 BITSTRING 1 DYLRRL JOB REC LEN, 1ST SYSRDR DEV
(66C) 1644 SIGNED 4 DYPL ADDR(SPOOL MGMT PARM LST)

EQU X'FF' .. SPOOL MGR SPL PRESENT

(670) 1648 CHAR-
ACTER

8 DYSECAU SECURITY OWNING USERID

(678) 1656 BITSTRING 1 DYSECFG SECURITY FLAGS
(679) 1657 BITSTRING 1 DYDMREP TESTED BY IPW$$DS IN IPW$$DM TO REPLACE JOB OR

DATA SET HEADERS, SET BY IPW$$I7 OR IPW$$OP
(67A) 1658 BITSTRING 2 UNUSED
(67C) 1660 SIGNED 4 DYDHD HEAD PTR VIRT STORAGE CHAIN OF DUPL. Q-ENTRIS IN

CREAT.
(680) 1664 SIGNED 4 DYDTL TAIL PTR VIRT STORAGE CHAIN
(684) 1668 ADDRESS 4 (3) UNUSED

GENERAL TASK WORK AREA
THE FOLLOWING 32+16+16+16+72+64 = 216 BYTES
ARE USED AS A GENERAL-PURPOSE WORK AREA,
WHICH MAY BE BROKEN INTO FIELDS AS REQUIRED
BY EACH SPECIFIC TASK.

(690) 1680 SIGNED 4 (0)
(690) 1680 BITSTRING 32 DYGW WORK AREA - USED BY LOGICAL ROUTINES, MAY NOT

BE REUSED BY ANY TASK USING LOG. RTNS
(6B0) 1712 SIGNED 4 DYW1 WORK WORD 1
(6B4) 1716 SIGNED 4 DYW2 WORK WORD 2
(6B8) 1720 SIGNED 4 DYW3 WORK FULLWORD 3
(6BC) 1724 SIGNED 4 DYW4 WORK FULLWORD 4
(6C0) 1728 SIGNED 4 (4) RESERVED
(6D0) 1744 BITSTRING 16 DYGW2 WORK AREA 2
(6E0) 1760 BITSTRING 72 DYGW3 WORK AREA 3
(728) 1832 BITSTRING 64 DYGW4 WORK AREA 4

EXECUTION READER RE-DEFINITION

(690) 1680 BITSTRING 8 USED FOR OTHER PURPOSES
(698) 1688 ADDRESS 4 DYXAAR ADDRESS OF ACCOUNT RECORD
(69C) 1692 CHAR-

ACTER
1 DYXACL CLASS

(69D) 1693 BITSTRING 1 DYXFLG FLAG BYTE
 1 DYXRDO "X'01'" .. READ ONLY SWITCH

(69E) 1694 BITSTRING 2 UNUSED
(6A0) 1696 ADDRESS 4 DYXPDB ADDRESS OF PART CNTL BLOCK
(6A4) 1700 BITSTRING 8 DYXJTD JOB START TOD CLOCK
(6AC) 1708 ADDRESS 4 DYXWF0 EXEC. RDR. WORK FIELD 0
(6B0) 1712 ADDRESS 4 DYXWF1 EXEC. RDR. WORK FIELD 1
(6B4) 1716 ADDRESS 4 DYXWF2 EXEC. RDR. WORK FIELD 2
(6B8) 1720 ADDRESS 4 DYEBXR XRE ECB DURING BAM OPEN

NOTE- THIS SECTION MAY NOT OVERWRITE TCGW2

EXECUTION WRITER RE-DEFINITION

470 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(690) 1680 BITSTRING 8 USED FOR OTHER PURPOSES
(698) 1688 ADDRESS 4 DYMTJH MT PARTITION JHR POINTER
(69C) 1692 ADDRESS 4 DYMTJT MT PARTITION JTR POINTER
(6A0) 1696 BITSTRING 16 DYLTAB CARRIAGE CONTROL TABLE
(6B0) 1712 CHAR-

ACTER
8 DYSECU VSE SECURITY USERID SAVEAREA

(6B8) 1720 CHAR-
ACTER

8 DYSECN VSE SECURITY SECNODE " @KX40618

(6C0) 1728 ADDRESS 4 DYXWPDB ADDRESS OF PART CNTL BLOCK

NOTE- THIS SECTION MAY NOT OVERWRITE TCGW2

EXECUTION READER AND WRITER RE-DEFINITION
NOTE: OVERLAYS WORK AREA 2 AND WORK AREA 3 AND WORK AREA 4

(6D0) 1744 SIGNED 4 DYXJS6 $$XJ SUBROUTINES BASE REG.
(6D4) 1748 SIGNED 4 DYJGM EX. WRITER MESSAGE ADDR.
(6D8) 1752 SIGNED 4 DYPURC EX. WRITER 'PURGE' RET-CODE
(6DC) 1756 ADDRESS 4 DYXRWA EX. PROCESSOR WORK AREA
(6E0) 1760 SIGNED 4 DYALET ALET FOR PARTITION
(6E4) 1764 BITSTRING 16 DYAAR (0) SAVED ACC REG 1,6 - 8
(6E4) 1764 ADDRESS 4 DYAR1 SAVED ACC REG 1
(6E8) 1768 BITSTRING 12 DYARS (0) SAVED ACC REG 6 - 8
(6E8) 1768 SIGNED 4 DYAR6 SAVED ACC REG 6
(6EC) 1772 SIGNED 4 DYAR7 SAVED ACC REG 7
(6F0) 1776 SIGNED 4 DYAR8 SAVED ACC REG 8
(6F4) 1780 SIGNED 4 DYAR2 SAVED ACC REG 2
(6F8) 1784 SIGNED 4 DYSVSP TEMP STORAGE POINTER
(6FC) 1788 ADDRESS 4 DYXJNP IPW$$XJ NEW TASK ADDR
(700) 1792 ADDRESS 2 DYSVSPL LENGTH OF TCSVSP BUF
(702) 1794 ADDRESS 2 DYRRC IPW$$XJ ERROR RETURN CODE
(704) 1796 SIGNED 4 DYSR4 SAVED REG.4 (EX.WRITER)
(708) 1800 ADDRESS 4 DYJGM2 COPY OF F.F. JOB GEN. MSG
(70C) 1804 SIGNED 4 DYQ25ID MSG 1Q25A ID FROM IPW$$T1
(710) 1808 CHAR-

ACTER
7 DYXTLBL IPW$$XJ BAM DTFNAME (LABEL)

(717) 1815 BITSTRING 1 DYXWFG FLAGS
 1... DYXFTLBL "X'80'" .. IPW$$XJ TLBL= SPEC'D
 .1.. DYXFLTPY "X'40'" .. IPW$$XJ LTAPE=YES SPEC'D
 ..1. DYXFLTPN "X'20'" .. IPW$$XJ LTAPE=NO SPEC'D
 ...1 DYXFIPC "X'10'" .. IPW$$XWE SAVED PG-INCRM.

(718) 1816 SIGNED 4 DYXXJIW ADDR OF IPW$$XJ INTERFACE WA
(71C) 1820 SIGNED 4 DYXXJSG (3) SAVED REG. TEMP BY IPW$$XJ

NOTE- THIS SECTION MAY NOT EXTEND BEYOND TCGW4

WORK AREA FOR PLOAD COMMAND PROCESSOR

(6E0) 1760 CHAR-
ACTER

1 DYEXTY EXIT TYPE

 11.1 ...1 DYEXJO "C'J'" ..JOB EXIT
 11.1 .11. DYEXOU "C'O'" ..OUT EXIT
 11.1 .1.1 DYEXNE "C'N'" ..NET EXIT
 111. .111 DYEXXM "C'X'" ..XMT EXIT

(6E1) 1761 BITSTRING 3 RESERVED FOR FUTURE USE
(6E4) 1764 CHAR-

ACTER
8 DYEXNA EXIT NAME

(6EC) 1772 SIGNED 4 DYEXSI EXIT SIZE
(6F0) 1776 SIGNED 4 DYEXAD EXIT LOAD POINT ADDRESS
(6F4) 1780 SIGNED 4 DYEXEP EXIT ENTRY POINT ADDRESS

 ...1 1... DYEXLE "*-DYEXTY" ..LENGTH OF WA

POFFLOAD TASK RE-DEFINITION

(6B0) 1712 CHAR-
ACTER

8 DYOONN OLD NODE NAME

(6B8) 1720 BITSTRING 1 DYOFLG FLAG BYTE
(6B9) 1721 BITSTRING 1 DYOSW1 SWITCH BYTE 1

 Chapter 5. Storage Layout and Data Areas 471

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(6BA) 1722 BITSTRING 1 DYORC SAVE AREA FOR RETURN CODE
(6BB) 1723 BITSTRING 1 DYOFL2 FLAG BYTE 2
(6BC) 1724 ADDRESS 4 DYOSAL SELECT QUEUE ARGUMENT LIST
(6C0) 1728 CHAR-

ACTER
7 DYOTLBL BAM DTF NAME (LABEL)

(6C7) 1735 CHAR-
ACTER

1 DYTBQI POFFLOAD QUEUE ID 33

(6C8) 1736 SIGNED 2 DYOQRL QRA LENGTH FOR PREVIOUS REL.
(6CA) 1738 BITSTRING 2 UNUSED
(6CC) 1740 SIGNED 4 DYPSHT PICKUP TOT SCHEDULED ENTRIES
(6D0) 1744 SIGNED 4 DYPSAT PICKUP TOT SAVED ENTRIES
(6D4) 1748 BITSTRING 8 DYPMSG PICKUP MSG 1Q6PI TIMESTAMP
(6DC) 1756 BITSTRING 8 DYPTMP PICKUP TEMP WORKAREA
(6E4) 1764 BITSTRING 17 DYPCLA PICKUP SAVE OF TCCT
(6F5) 1781 BITSTRING 3 UNUSED
(6F8) 1784 ADDRESS 4 DYOFJCA POFFLOAD JOURNALING JCA PNTR
(6FC) 1788 ADDRESS 4 DYOFJRD POFFLOAD JOURNALING REG.13
(700) 1792 ADDRESS 4 DYOFJRD1 POFFLOAD JOURNALING REG.13
(704) 1796 CHAR-

ACTER
6 DYOCMDT POFFLOAD CMD TYPE

(70A) 1802 SIGNED 2 DYOFTAP POFFLOAD TAPE NO. NOW OFTAP=
(70C) 1804 ADDRESS 4 DYQRQN NEXT QUEUE REC ADDR 20
(710) 1808 ADDRESS 4 DYOFNUM TAPE ENTRY DEC SEQ NO.OFNUM=
(714) 1812 CHAR-

ACTER
4 DYO$OFJ JOURNAL ID NNNN ($OFJNNNN)

(718) 1816 CHAR-
ACTER

8 DYOCRWK CRDAYS WORKAREA

(720) 1824 CHAR-
ACTER

8 DYOCRDA CRDAYS=

(728) 1832 BITSTRING 1 DYOCRMK CRDAYS BRANCH MASK
(729) 1833 BITSTRING 2 UNUSED
(72B) 1835 BITSTRING 1 DYOMDUP SAVE DUPLICATE COUNT
(72C) 1836 ADDRESS 4 DYOMNUM SAVE MASTER NUMBER

SPOOL MANAGER WORK AREA (X-PARTITION I/F)

(6B0) 1712 CHAR-
ACTER

8 DYJN SPOOL MANAGEMENT JOB NAME

(6B8) 1720 BITSTRING 2 DYJ# SPOOL MANAGEMENT JOB NO
(6BA) 1722 BITSTRING 1 DYFG FLAG BYTE COPIED FROM PIB

 1... DYVM "X'80'" .. VIRTUAL MODE
(6BB) 1723 BITSTRING 1 DYSW SWITCH BYTE
(6BC) 1724 SIGNED 4 DYXA TASK ERR EXIT RTN ADDR

XPCC CROSS PARTITION USER TASK RE-DEFINITION

(6B0) 1712 ADDRESS 4 DYXTIML TIME LIMIT
(6B4) 1716 ADDRESS 4 DYXXPCC ADDRESS OF XPCCB BEING USED
(6B8) 1720 ADDRESS 4 DYXWRKA ADDRESS OF WORKAREA
(6BC) 1724 ADDRESS 4 DYXEDCB ADDRESS OF ASSOCIATED EDCB
(6D0) 1744 ADDRESS 4 DYXCKPA ADDR OF EXT CKP INFO
(6D4) 1748 SIGNED 2 DYXCKPL LENGTH OF EXT CKP INFO
(6D6) 1750 SIGNED 2 UNUSED
(6D8) 1752 ADDRESS 4 DYACIET $$XTM: ADDR. OF TMP. ACIE
(6DC) 1756 ADDRESS 4 DYACITQ $$XTM: ADDR. OF TQE
(66C) 1644 ADDRESS 4 DYXSPL ADDRESS OF ASSOCIATED SPL

 1111 111. DYXSID "X'FE'" .. XPCC SPL PRESENT

LOGICAL OUTPUT SPOOLER RE-DEFINITION

(690) 1680 ADDRESS 4 DYOSNR SAVED RECORD COUNT
(694) 1684 ADDRESS 4 DYOSLC SAVED LINE/CARD COUNT
(698) 1688 SIGNED 4 DYOSPC SAVED PAGE COUNT
(69C) 1692 SIGNED 2 DYOSNT SAVED NO OF TRACKS/BLOCKS

PRINT STATUS TASK RE-DEFINITION (QUEUE DISPLAY)

(6B0) 1712 ADDRESS 4 DYPSQN NEXT QUEUE SET NUMBER
(6B0) 1712 ADDRESS 4 DYPSJCA POFFLOAD JOURNALING JCA PNTR

472 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(6B4) 1716 ADDRESS 4 DYPSWA ADDRESS OF PS WORKAREA
(6B8) 1720 BITSTRING 1 DYPSFG FLAG BYTE
(6B9) 1721 CHAR-

ACTER
7 DYPSLB BAM LABEL IF ANY

(6C0) 1728 SIGNED 2 DYPSOFTP PDISPLAY TAPE OFTAP=
(6C2) 1730 BITSTRING 2 UNUSED
(6C4) 1732 SIGNED 4 UNUSED 21
(6C8) 1736 BITSTRING 4 UNUSED

PSTART RDR/LST/PUN TAPE TASK DEFINITION

(6B0) 1712 CHAR-
ACTER

7 DYTKLB BAM LABEL IF ANY

(6B7) 1719 BITSTRING 1 UNUSED

RJE,BSC TASK RE-DEFINITION

(6C0) 1728 0 DYBQ "DYRS" BSC APPENDAGE CHAIN PTR
(6C0) 1728 0 DYLRQ "DYCT+8" LCB-TO-RELEASE-QUEUE
(6B0) 1712 ADDRESS 4 DYBS1S LINKAGE-REG SAVE AREA
(6B4) 1716 ADDRESS 4 DYBS2S 2ND LINKAGE-REG SAVE AREA
(6B8) 1720 ADDRESS 4 DYBS3S 3.RD LEVEL LINKAGE SAVE
(5D4) 1492 ADDRESS 4 DYSR SYSREC HEADER

INITIALIZATION TASK RE-DEFINITION

(6E0) 1760 ADDRESS 4 DYI4RTN RETURN ADDRESS USED BY $$AT IF $$I4 OPEN IJDTEST
FAILS

(6E0) 1760 ADDRESS 4 DYI3RTN RETURN ADDRESS USED BY $$AT IF $$I3 OPEN IJQFILE
AND IJQTEST FAILS. SAME ADDR. ALLOWS REUSE OF
$$AT CODE.

(768) 1896 0 DYEN "*" END OF STANDARD TCB
(768) 1896 0 DYLN "*-DYSD" LENGTH OF TCB

TCB-EXPANSION FOR SAVE-ACCOUNT TASK

(768) 1896 CHAR-
ACTER

7 DYSAFN TAPE/DASD FILE NAME

(76F) 1903 CHAR-
ACTER

1 DYSADY TAPE DENSITYREFER ALSO TO TCF8MS

(770) 1904 CHAR-
ACTER

4 DYSADV DEVICE WHERE TO SAVE

(774) 1908 ADDRESS 4 DYSAPB PUB-ADDR DEV WHERE TO SAVE
(778) 1912 ADDRESS 4 DYSAR1 DEVICE DATA PASSED FROM CP
(77C) 1916 ADDRESS 4 DYSART LINKAGE-REG SAVE AREA
(780) 1920 ADDRESS 4 DYSARN 2ND LINKAGE-REG SAVE AREA
(784) 1924 ADDRESS 4 DYSADP DTF-POINTER
(784) 1924 0 DYLN1 "*-DYSD" LENGTH TCB INCL. SAVE-ACC.

 ..1. DYLN2 "*-DYSAFN" LENGTH OF EXPANSION

OVERLAY FOR PNET TASKS

(690) 1680 ADDRESS 4 DYENCB ADDRESS OF NODE CTRL BLOCK
(694) 1684 ADDRESS 4 DYENTE ADDR OF NCB TASK ENTRY
(698) 1688 BITSTRING 1 DYERCB RCB OF TASK CONCERNED
(699) 1689 BITSTRING 1 DYETTC TERMINATION CONDITION BYTE

 1... DYETSO "X'80'" .. SIGNOFF RECORD SENT/REC
 .1.. DYETLC "X'40'" .. LINE ERROR STOP

(69A) 1690 BITSTRING 2 DYEFCS FCS BYTES
(69C) 1692 ADDRESS 4 DYEWKA ADDRESS OF WORKAREA
(6A0) 1696 BITSTRING 1 DYEST1 STATUS BYTE 1

 1... DYERIF "X'80'" .. RIF SENT/RECEIVED
 .1.. DYEPGR "X'40'" .. PERMISSION GRANTED SENT/RECEIVED
 ..1. DYEPRJ "X'20'" .. PERMISSION REJECTED SENT/RECEIVED
 ..1. DYERCS "X'20'" .. RECEIVER CANCEL SENT/RECEIVED
 ...1 DYEEOF "X'10'" .. EOF SENT/RECEIVED
 1... DYEADS "X'08'" .. ABORT TRANSMISSION SENT/RECEIVED
 1.. DYECMC "X'04'" .. TRANSMISSION COMPLETE SENT/RECEIV

(6A1) 1697 BITSTRING 1 DYEST2 STATUS BYTE 2
 1... DYEWIB "X'80'" .. WAITING FOR INPUT BUFFER

 Chapter 5. Storage Layout and Data Areas 473

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 .1.. DYECRTL "X'40'" .. COMPRESSION ERROR
 ..1. DYENOP "X'20'" .. DON'T POST THIS TASK
 ...1 DYESPD "X'10'" .. TASK SUSPENDED
 1... DYEPBO "X'08'" .. POST ONLY AFTER BUFFER SENT
 1.. DYERCA "X'04'" .. RECEIVER CANCEL AFTER ABORT SENT
 1. DYERAB "X'02'" .. RELEASE OF ALL BUFFERS REQUESTED
 1 DYESOB "X'01'" .. SHORT ON BUFFER CONDITION

(6A2) 1698 BITSTRING 2 UNUSED

PART FOR RECEIVER TASK

(6A4) 1700 ADDRESS 4 DYERHD ADDR OF RECEIVED INPUT BUFFER QUEUE
(6A8) 1704 ADDRESS 4 DYERTL TAIL PTR RECEIVED INPUT BUFFER QUEUE
(6AC) 1708 BITSTRING 1 DYENRB NUMBER OF RECEIVED BUFFERS
(6AD) 1709 BITSTRING 3 UNUSED
(6B0) 1712 BITSTRING 4 UNUSED
(6B0) 1712 0 DYELN "*-DYSD" LENGTH EXTENDED TCB FOR PNET

OVERLAY FOR TRANSMITTER TASK

(6A4) 1700 ADDRESS 4 DYEFOB ADDR OF FREE OUTPUT BUFFER QUEUE
(6A8) 1704 BITSTRING 1 DYENAB NUMBER OF ACQUIRED BUFFERS
(6A9) 1705 BITSTRING 3 UNUSED
(6AC) 1708 SIGNED 4 DYETL# TOTAL LINE NUMBER
(6B0) 1712 SIGNED 4 DYECL# CURRENT LINE NUMBER

M I S C E L L A N E O U S

(788) 1928 SIGNED 2 OURPIK VSE/POWER PIK
(78A) 1930 SIGNED 2 OTHPIK PIK OF PARTITION CONTROLLED BY VSE/P
(78C) 1932 ADDRESS 4 OTHPCE POINTER TO PCE OF PARTITION

VARIABLES USED FOR SUBROUTINE 'BINTODEC'

(790) 1936 DBL WORD 8 DBLWRD DOUBLE WORD USED FOR CONVERSION
(798) 1944 SIGNED 4 CONVBIN CONTAINS BINARY # TO BE CONVERTED
(79C) 1948 CHAR-

ACTER
10 CONVDEC CONTAINS DECIMAL NUMBER IN PRINTABLE FORMAT

(7A6) 1958 CHAR-
ACTER

2 RESERVED FOR FUTURE USE

VARIABLES USED FOR SUBROUTINE 'INVDEV' OR 'PASSIGN' OR 'VPARTID'

(7A8) 1960 CHAR-
ACTER

4 CPWASDEV KIND OF DEVICE WANTED

(7AC) 1964 BITSTRING 1 CPWASDTY PUB DEVICE TYPE CODE
(7AD) 1965 BITSTRING 2 CPWASCUU CUU OF DEV IN BIN(PACKED) FORMAT
(7AF) 1967 BITSTRING 1 CPWASFB1 ARGUMENT FLAG BYTE 1

 111. ..11 DEVTAPE "C'T'" .. TAPE SPOOLING REQUESTED
(7B0) 1968 ADDRESS 4 CPWASPBP ADDR OF DEVICE PUB ENTRY
(7B4) 1972 BITSTRING 1 CPWASLUN LOGICAL UNIT NUMBER INDEX
(7B5) 1973 BITSTRING 1 CPWAMODE TAPE MODE FOR ASSIGN RTN.
(7B6) 1974 BITSTRING 2 CPWASAVE SAVE FIELD FOR ALTERN. DEVICE
(7B8) 1976 BITSTRING 2 CPWVPSLG SYSLOG ID OF PARTITION
(7BA) 1978 BITSTRING 2 RESERVED FOR FUTURE USE

VARIABLES USED FOR SUBROUTINE 'TCBSCAN'

(7BC) 1980 ADDRESS 4 CPWTCBPT CURRENT TCB POINTER

THE FOLLOWING ARGUMENTS ARE SET UP BY THE CALLING ROUTINE
IN ORDER TO LOCATE THE TCB MEETING ALL APPLICABLE CRITERIA.
WHEN AN ARGUMENT CONTAINS HEX ZEROS, IT IS ASSUMED TO BE NOT
IMPORTANT AND WILL BE NOT CHECKED.

(7C0) 1984 CHAR-
ACTER

16 CPWTARG (0) ARGUMENT LIST

(7C0) 1984 CHAR-
ACTER

1 RESERVED

(7C1) 1985 CHAR-
ACTER

3 CPWTACU DEVICE ADDRESS 'CUU'

474 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(7C4) 1988 CHAR-
ACTER

4 CPWTATI TASK IDENTIFIER

(7C8) 1992 BITSTRING 1 CPWTABIN BINARY RJE USER-ID
(7C9) 1993 CHAR-

ACTER
3 CPWTADEC PRINTABLE DECIMAL RJE USER-ID

(7CC) 1996 BITSTRING 1 CPWTAFLG ARGUMENT SWITCH BYTE
 1... CPWTACNT "X'80'" .. INDICATES THAT THE SCAN SHOULD NOT BE

STARTED AT THE BEGINNING OF THE TCB-CHAIN, BUT
AT THE POINT WHERE THE PREVIOUS SCAN STOPPED.

(7CD) 1997 BITSTRING 3 RESERVED FOR FUTURE USE

VARIABLES USED FOR SUBROUTINE 'CLASS'
THE FOLLOWING ARGUMENTS ARE SET UP BY THE CALLING ROUTINE
IN ORDER TO BUILD THE CLASS POINTER'S IN THE DUMMY TCB AREA

(7D0) 2000 CHAR-
ACTER

12 CPWCLAR (0) ARGUMENT LIST

(7D0) 2000 CHAR-
ACTER

6 CPWCLAS CLASS(ES) UP TO 4 CLASSES

(7D6) 2006 BITSTRING 1 CPWCLIX USED FOR TRANSLATION OF CLASS CHAR.
(7D7) 2007 BITSTRING 1 CPWCL#C MAX. NUMBER OF VALID CLASSES - 4 FOR EXECUTION

READER TASKS - 4 FOR PHYSICAL WRITER TASKS - 1
FOR PHYSICAL READER TASKS

(7D8) 2008 CHAR-
ACTER

3 CPWCLTI TASK TYPE ('LST', 'RDR' OR 'PUN')

(7DB) 2011 BITSTRING 1 CPWCLDF DEFAULT CLASS

VARIABLES USED FOR SUBROUTINE 'QRINSPCT'
THE FOLLOWING ARGUMENTS ARE SET UP BY THE CALLING ROUTINE
IN ORDER TO DETERMINE IF A QUEUE SET MEETS ALL APPLICABLE

 CRITERIA.
WHEN AN ARGUMENT CONTAINS HEX ZEROS, IT IS ASSUMED TO BE NOT
IMPORTANT AND WILL BE NOT CHECKED.

(7DC) 2012 CHAR-
ACTER

170 CPWQARG ARGUMENT LIST

(7DC) 2012 CHAR-
ACTER

8 CPWQAJN JOB NAME

(7E4) 2020 ADDRESS 2 CPWQAJ# JOB NUMBER
(7E6) 2022 BITSTRING 1 CPWQACL CLASS ASSOCIATED TO QUEUE SET
(7E7) 2023 BITSTRING 1 CPWQAF1 FLAG BYTE 1

 1... CPWQAF1S "X'80'" ..JOB SUFFIX MUST BE THERE
 .1.. CPWQAF1C "X'40'" ..C-TYPE PARAMETER SPECIF'D
 ..1. CPWQAF1D "X'20'" ..CDUE=* SPECIFIED

(7E8) 2024 BITSTRING 1 CPWQABIN BINARY RJE USER-ID (0 FOR CENTRAL OP
(7E9) 2025 CHAR-

ACTER
3 CPWQADEC PRINTABLE DECIMAL RJE USER-ID

(7EC) 2028 CHAR-
ACTER

8 CPWQAGJN GENERIC JOB NAME

(7F4) 2036 BITSTRING 1 CPWQAGLN LENGTH OF GENERIC SUPPLIED JOBNAME
(7F5) 2037 BITSTRING 1 CPWQAPCB QUEUE PROCESSING FLAGS
(7F6) 2038 ADDRESS 4 CPWQQNUM QUEUE ENTRY NUMBER
(7FA) 2042 BITSTRING 2 RESERVED FOR FUTURE USE
(7FC) 2044 CHAR-

ACTER
3 CPWQACT1

(0)
C-TYPE OPERANDS 1

(7FC) 2044 CHAR-
ACTER

1 CPWQACDP CURRENT DISPOSITION

(7FD) 2045 CHAR-
ACTER

1 CPWQACPY CURRENT PRIORITY

(7FE) 2046 CHAR-
ACTER

1 CPWQACSY CURRENT SYSID

(7FF) 2047 BITSTRING 1 CPWQAJSF JOB SUFFIX NUMBER
(800) 2048 CHAR-

ACTER
36 CPWQACT2

(0)
C-TYPE OPERANDS 2

(800) 2048 CHAR-
ACTER

8 CPWQACNN CURRENT 'TO' NODE NAME

 Chapter 5. Storage Layout and Data Areas 475

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(808) 2056 CHAR-
ACTER

8 CPWQACUS CURRENT 'TO' USER ID

(810) 2064 CHAR-
ACTER

4 CPWQACFI CURRENT FORMS ID (FNO)

(814) 2068 CHAR-
ACTER

8 CPWQAFNN 'FROM' NODE NAME

(81C) 2076 CHAR-
ACTER

8 CPWQAFUS 'FROM' USER ID

(824) 2084 CHAR-
ACTER

8 CPWQAWRK WORK FIELD

(82C) 2092 CHAR-
ACTER

8 CPWQADTE CURRENT DATE 'CCYYMMDD'

(834) 2100 BITSTRING 1 CPWQAMSK BRANCH MASK
(835) 2101 CHAR-

ACTER
8 CPWQUSER 'FROM' OR 'TO' USER ID

(83D) 2109 BITSTRING 1 CPWQCIX PDISPLAY CLASS INDEX
(83E) 2110 CHAR-

ACTER
1 CPWQXSBQ XMT SUBQUEUE, USED BY $$CA, $$CL, $$CR, $$CH

CMD'S
(83F) 2111 BITSTRING 1 RESERVED FOR FUTURE USE
(840) 2112 BITSTRING 16 CPWQACUI CURRENT USER INFO
(850) 2128 BITSTRING 4 CPWQ#QE NUMBER OF QUEUE ENTRIES ADDRESSED BY

COMMAND
(854) 2132 BITSTRING 8 RESERVED
(85C) 2140 BITSTRING 4 CPWQACPG CPAGES LIMIT VALUE
(860) 2144 BITSTRING 4 CPWQACCD CCARDS LIMIT VALUE
(864) 2148 BITSTRING 1 CPWQAPMS CPAGES BRANCH MASK
(865) 2149 BITSTRING 1 CPWQACMS CCARDS BRANCH MASK
(866) 2150 BITSTRING 32 RESERVED

FOR ANY FURTHER EXTENSION, UPDATE LENGTH OF 'CPWQARG'
AND RE-COMPILE IPW$$CM TO CLEAR PERM. CMD. WORK-AREA
RE-COMPILE ALL CP MODULES ACCESSING CP WORK AREA
VARIABLES USED FOR SUBROUTINE 'VQEUEID'

(888) 2184 ADDRESS 4 QCLASPTR BEGIN OF CLASS TABLE
(88C) 2188 ADDRESS 4 CLASSPTR POINTS TO ACTUAL CLASS
(890) 2192 SIGNED 2 CLASSLC NUMBER OF SCANS TO BE PERFORMED
(892) 2194 CHAR-

ACTER
1 CLASSQID QUEUE RECORD IDENTIFIER

(893) 2195 CHAR-
ACTER

1 CLASSPCB QUEUE PROCESSING FLAGS

VARIABLES USED BY OPERAND FORMATTING ROUTINE

(894) 2196 ADDRESS 4 CMNDPTR POINTS TO COMMAND TABLE ENTRY
(898) 2200 ADDRESS 4 DELIMPTR ADDRESS OF CURRENT DELIMITER
(89C) 2204 BITSTRING 256 TRTTAB TRANSLATE AND TEST TABLE
(99C) 2460 SIGNED 2 MAXOP MAX NUMBER OF OPERANDS ALLOWED
(99E) 2462 SIGNED 2 OPNUM CURRENT # OF OPERAND IN PROCESS
(9A0) 2464 CHAR-

ACTER
8 SVEOP OPERAND SAVE FIELD

VARIABLES USED FOR QUEUE MANIPULATION

(9A8) 2472 ADDRESS 4 CPWQMSA SAVE FIELD
(9AC) 2476 ADDRESS 4 RESERVED
(9B0) 2480 BITSTRING 1 CPWQFLG FLAG BYTE

 1... CPWQFND "X'80'" PROCESSING NON-DISP CHAIN
(9B1) 2481 BITSTRING 3 UNUSED

VARIABLES USED BY PSTART COMMAND PROCESSOR
THE FOLLOWING FIELDS ARE USED TO BUILD THE PARTITION CONTROL

 BLOCK.

(9B4) 2484 0 CPWSTRT "*"
(9B4) 2484 CHAR-

ACTER
1 CPWPDOC DEFAULT OUTPUT CLASS

(9B5) 2485 BITSTRING 1 CPWPDMT MULTI TASK INDICATOR
(9B6) 2486 BITSTRING 2 RESERVED, UNUSED

476 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(9B8) 2488 ADDRESS 4 CPWSPCE CURRENT TEMPORARY SPOOL ENTRY
(9BC) 2492 SIGNED 2 CPWSP#E NUMBER OF ENTRIES IN SPOOL TABLE
(9BE) 2494 SIGNED 2 CPWSP#O OLD NUMBER OF ENTRIES
(9C0) 2496 ADDRESS 4 CPWSPCO OLD SPOOL TABLE POINTER
(9C4) 2500 BITSTRING 1 CPWSPF1 FLAG BYTE 1

 1... CPWSPGE "X'80'" .. READER ENTRY GENERATED (WRITER ONLY
PARTITION)

 .1.. CPWSNPC "X'40'" .. "NPC" OPTION SPECIFIED
(9C5) 2501 BITSTRING 1 RESERVED FOR FUTURE USE
(9C6) 2502 BITSTRING 58 CPWSPDE TEMPORARY SPOOL TABLE (CONTAINING TWO BYTE

PUB TABLE INDECES)
(A00) 2560 BITSTRING 1 RESERVED FOR FUTURE USE
(A04) 2564 ADDRESS 4 CPWSPRE SAVE AREA FOR CALLER'S RETURN ADDR
(A08) 2568 ADDRESS 4 CPWSTPN ADDRESS TO PHASE NAME SUFFIX
(A0C) 2572 BITSTRING 4 CPWSTRF MACRO ID AND RETURN CODE

MAP OF PARTITION BOUNDARY INFORMATION

(A10) 2576 ADDRESS 4 CPWPAVB VIRTUAL PARTITION BEGIN ADDRESS
(A14) 2580 ADDRESS 4 CPWPAGB VIRTUAL GETVIS AREA START ADDRESS
(A18) 2584 ADDRESS 4 CPWPAVE VIRTUAL PARTITION END ADDRESS
(A1C) 2588 ADDRESS 4 CPWPARB REAL PARTITION START ADDRESS
(A20) 2592 ADDRESS 4 CPWPARE REAL PARTITION END ADDRESS

 ...1 .1.. CPWPALN "*-CPWPAVB" LENGTH OF BOUNDARY INFORMATION

SAVE AREAS FOR PSTART/PNET OPERANDS

(9B4) 2484 0 CPWSN "*"
(9B4) 2484 CHAR-

ACTER
3 CPWSLADR LINE ADDRESS AS CUU

(9B7) 2487 CHAR-
ACTER

8 CPWSLPAS LINE PASSWORD

(9BF) 2495 CHAR-
ACTER

8 CPWSNDID NODE ID

(9C7) 2503 CHAR-
ACTER

8 CPWSNDPW NODE PASSWORD

(9CF) 2511 BITSTRING 1 CPWTRFLG TRACE FLAG
 1. CPWTRFL1 "X'02'" TRACE ACTIVE

(9D0) 2512 BITSTRING 1 CPWSNAFG SNA NODE FLAG
(9D1) 2513 BITSTRING 1 CPWTYPF UPDATES NCBTYP (BSC,CTC,RES)

 ...1 111. CPWSNL "*-CPWSN" LENGTH OF WORKAREA

VARIABLES USED BY - PSTART/PSTOP TASKTR AND TRACE FACILITY
- PVARY COMMAND

(9B4) 2484 ADDRESS 4 CPWTTSIZ TRACE AREA SIZE IN BYTES
(9B8) 2488 ADDRESS 4 CPWTFCS COMPARE-AND-SWAP WORKAREA
(9BC) 2492 BITSTRING 1 CPWTTFLG FLAG BYTE

 1... CPWTTFEN "X'80'" .. TASK TRACING ENABLED
 .1.. CPWTTTTR "X'40'" .. TASK TRACE SPECIFIED
 ..1. CPWTTTEN "X'20'" .. TRANSMITTER EXIT ENABLED
 ...1 CPWTTOEN "X'10'" .. OUTPUT EXIT SPECIFIED
 1... CPWTTREN "X'08'" .. JOB EXIT SPECIFIED
 1.. CPWTTPEN "X'04'" .. PNET EXIT SPECIFIED
 1. CPWTTXEN "X'02'" .. EXIT/IGNREC ENABLE WANT'D
 1 CPWTTIGN "X'01'" .. IGNORE RECORDING REQUEST

(9BD) 2493 BITSTRING 1 CPWTTFG2 FLAG BYTE 2
 1... CPWTT2TF "X'80'" ..TRACE FACILITY SPECIFIED
 .1.. CPWTT2FT "X'40'" ..FULL TASK TRACING

(9BE) 2494 BITSTRING 1 CPWTVFLG PVARY DYNC FLAG BYTE
 1... CPWTVFVD "X'80'" DYNC VARIATION DONE
 .1.. CPWTVFEN "X'40'" ENABLE DYNAMIC CLASSES
 ..1. CPWTVFDI "X'20'" DISABLE DYNAMIC CLASSES
 ...1 CPWTVFAL "X'10'" ADDRESS ALL CLASSES
 1... CPWTVFCL "X'08'" ADDRESS SELECTED CLASSES
 1.. CPWTVMGI "X'04'" 'INVALID' MESSAGE ISSUED
 1. CPWTVALI "X'02'" ALL CLASSES FOUND INVALID

(9BF) 2495 BITSTRING 23 CPWTVCOL PVARY ALL CLASS COLLECTION

 Chapter 5. Storage Layout and Data Areas 477

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(9D6) 2518 BITSTRING 1 CPWTVCOE CLASS COLLECTION END INDIC.
(9D7) 2519 CHAR-

ACTER
7 CPWTFTBL PSTART TRACE TABLE=NAME

VARIABLES USED BY PLOAD COMMAND

(9B4) 2484 ADDRESS 4 CPWY012 (3) SAVE AREA FOR REG. 0,1,2
(9C0) 2496 SIGNED 2 CPWXSIZE WORK AREA SIZE FOR EXIT
(9C2) 2498 BITSTRING 1 CPWYOPT PLOAD DYNCTAB OPTIONS

 1... CPWYOCO "X'80'" .. PLOAD DYNCTAB COND
 .1.. CPWYOFO "X'40'" .. PLOAD DYNCTAB FORCE
 ..1. CPWYOVE "X'20'" .. PLOAD DYNCTAB VERIFY
 ...1 CPWYOLT "X'10'" .. PLOAD DYNCTAB,,LST
 1... CPWYXPU "X'08'" .. RUN EXIT AS 'PA' WORKUNIT

(9C3) 2499 CHAR-
ACTER

1 CPWYCLC DYNAMIC CLASS TABLE INDEX

VARIABLES USED BY PSTOP, PFLUSH, PFLUSH/PNET COMMAND PROCESSOR

(9B4) 2484 CHAR-
ACTER

1 CPWTTC STOP CODE

(9B5) 2485 CHAR-
ACTER

3 RESERVED FOR FUTURE USE

(9B8) 2488 CHAR-
ACTER

8 CPWLUNM LOGICAL UNIT NAME

(9C0) 2496 CHAR-
ACTER

3 CPWRVTRL TRANSMITTER/RECEIVER LINE #

(9C3) 2499 CHAR-
ACTER

1 NOT USED

(9C4) 2500 CHAR-
ACTER

8 CPWFNOD NODE ID

VARIABLES USED BY PSTART/PSTOP ... DEV COMMAND

(9B4) 2484 CHAR-
ACTER

8 CPWXDEV DEVICE NAME

(9BC) 2492 CHAR-
ACTER

8 CPWXDDS DDS NAME

(9C4) 2500 CHAR-
ACTER

1 CPWXTTC TERMINATION CODE

(9C5) 2501 BITSTRING 1 CPWXFLG LENGTH OF PARM FIELD
(9C6) 2502 BITSTRING 2 RESERVED
(9C8) 2504 CHAR-

ACTER
60 CPWXPARM PARAMETER FIELD

IPW$DCP CPW=NO,PSWKSP=YES GENERATE PDISPLAY ARG LIST
P D I S P L A Y A R G U M E N T L I S T
THE FOLLOWING FIELDS REPRESENT THE ARGUMENT LIST WHICH WILL BE
PASSED TO THE PRINT STATUS TASK TO PERFORM THE APPROPRIATE

 DISPLAY FUNCTIONS.
THE FIRST 28 BYTES ARE USED AS COMMOM PART BY PDISPLAY XX
AS WELL AS BY PDISPLAY PNET OR DYNC.

(9B4) 2484 SIGNED 4 CPWDARGL
(0)

ARGUMENT LIST

(9B4) 2484 CHAR-
ACTER

1 CPWDID PARAMETER LIST FLAG BYTE

 11.. .1.. CPWDDID "C'D'" .. ID FOR DEFAULT DISPLAY
 11.1 .111 CPWDPID "C'P'" .. ID FOR PNET DISPLAY
 11.1 1... CPWDVID "C'Q'" .. ID FOR CORE COPY DISPLAY
 111. ..11 CPWDTID "C'T'" .. ID FOR TAPE DISPLAY
 111. 1... CPWDYID "C'Y'" .. ID FOR DYNC DISPLAY
 111. ..1. CPWDSID "C'S'" .. ID FOR STATISTICS DISPLAY
 11.. .1.1 CPWDEID "C'E'" .. ID FOR EXIT DISPLAY
 11.1 ...1 CPWDJID "C'J'" .. ID FOR POFFLOAD JOURNAL @*

(9B5) 2485 BITSTRING 1 CPWDTOID DESTINATION OF REPORT
(9B6) 2486 BITSTRING 2 CPWDLU LOGICAL UNIT # OF PRINTER
(9B8) 2488 ADDRESS 4 CPWDECB ECB ADDRESS
(9BC) 2492 ADDRESS 4 CPWDTCB ADDR OF REQUESTING TASK TCB

478 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(9C0) 2496 CHAR-
ACTER

1 CPWDCCL DYN.CLASS FOR PDISPLAY CRE

(9C0) 2496 CHAR-
ACTER

2 CPWDCPI PART.ID FOR PDISPLAY CRE

(9C2) 2498 BITSTRING 1 CPWDFLG1 FLAG1 BITS:
 1... CPWD1DUE "X'80'" - PDISPLAY CDUE=*
 .1.. CPWD1FRR "X'40'" - PDISPLAY RDR,FREER
 ..1. CPWDDEX "X'20'" - PDISPLAY EXIT DATA FND
 ...1 CPWD1PAR "X'10'" - PDISPLAY CRE,PART
 1... CPWD1CPI "X'08'" - PDISPLAY CRE,PART,PID
 1.. CPWD1CCL "X'04'" - PDISPLAY CRE,PART,CLS
 1. CPWD1ALL "X'02'" - PDISPLAY CRE,ALLSYS

(9C3) 2499 BITSTRING 1 CPWDFLG FLAG BITS:
 1... CPWDREM "X'80'" - PDISPLAY RJE
 .1.. CPWDHLD "X'40'" - PDISPLAY HOLD
 ..1. CPWDFRE "X'20'" - PDISPLAY FREE
 ...1 CPWDLOC "X'10'" - PDISPLAY LOCAL
 1... CPWDCON "X'08'" - DISPLAY TARGET = CON
 1.. CPWDPRT "X'04'" - DISPLAY TARGET = PRT
 1. CPWDLST "X'02'" - DISPLAY TARGET = SPOOL LST QUEUE ENTRY
 1 CPWDFUL "X'01'" - PDISPLAY ..FULL=YES

(9C4) 2500 CHAR-
ACTER

9 CPWDFNM (0) FROM NODE NAME + SYSID

(9C4) 2500 CHAR-
ACTER

8 CPWDFNMN .. FROM NODE NAME

(9CC) 2508 CHAR-
ACTER

1 CPWDFNMS .. FROM SYSID

(9CD) 2509 CHAR-
ACTER

8 CPWDUID FROM USER/REMOTE ID

(9D5) 2517 BITSTRING 1 CPWDNMRF FLAG BYTE FROM NMR
(9D6) 2518 BITSTRING 1 CPWDFG2 COPY OF CPFG2 FLAG BYTE
(9D7) 2519 BITSTRING 1 RESERVED
(9D8) 2520 SIGNED 4 CPWDPPA COPY OF $ICP PASS VALUE
(9DC) 2524 ADDRESS 4 CPWDBS BEGIN SCAN INDICATOR
(9E0) 2528 BITSTRING 1 CPWDQID QUEUE PROCESSING FLAGS

 1... CPWDQIDR "X'80'" .. RDR QUEUE DISPLAY @*
 .1.. CPWDQIDL "X'40'" .. LST QUEUE DISPLAY @*
 ..1. CPWDQIDP "X'20'" .. PUN QUEUE DISPLAY @*
 ...1 CPWDQIDX "X'10'" .. XMT QUEUE DISPLAY @*
 1... CPWDQIDW "X'08'" .. WFR SUBQUEUE DISPLAY
 1.. CPWDQIDD "X'04'" .. DELAYED DELETE DISPLAY
 1. CPWDQIDC "X'02'" .. CREATE QUEUE DISPLAY
 1 CPWDQIDB "X'01'" .. BIGGEST QUEUE DISPLAY

(9E1) 2529 BITSTRING 2 CPWDJN JOBNUMBER
(9E3) 2531 BITSTRING 1 CPWDBIN REMOTE ID (BINARY FORMAT)
(9E4) 2532 BITSTRING 1 CPWDGJL LENGTH OF GENERIC JOBNAME
(9E5) 2533 CHAR-

ACTER
8 CPWDGJN GENERIC JOBNAME

(9ED) 2541 CHAR-
ACTER

8 CPWDJOB JOBNAME

(9F5) 2549 BITSTRING 8 CPWDTNN TARGET NODE NAME
(9FD) 2557 BITSTRING 1 CPWDCDP CURRENT DISPOSITION
(9FE) 2558 BITSTRING 1 CPWDCPY CURRENT PRIORITY
(9FF) 2559 BITSTRING 1 CPWDCSY CURRENT SYSTEM ID
(A00) 2560 CHAR-

ACTER
4 CPWDCFI CURRENT FORMS ID (FNO)

(A04) 2564 CHAR-
ACTER

8 CPWDTUS CURRENT 'TO' USER ID

(A0C) 2572 CHAR-
ACTER

8 CPWDFNN 'FROM' NODE NAME

(A14) 2580 CHAR-
ACTER

8 CPWDFUS 'FROM' USER ID

(A1C) 2588 CHAR-
ACTER

1 CPWDCLS JOBCLASS

(A1D) 2589 BITSTRING 1 CPWDCIX PDISPLAY CLASS INDEX

 Chapter 5. Storage Layout and Data Areas 479

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(A1E) 2590 BITSTRING 2 RESERVED
(A20) 2592 CHAR-

ACTER
8 CPWDWRK WORK FIELD

(A28) 2600 CHAR-
ACTER

8 CPWDDTE CURRENT DATE 'CCYYMMDD'

(A30) 2608 BITSTRING 1 CPWDMSK BRANCH MASK
(A31) 2609 CHAR-

ACTER
8 CPWDUSER 'FROM' OR 'TO' USER ID

(A39) 2617 BITSTRING 1 CPWDCQID CURRENT PROCESSED QUEUE $$PS
(A3A) 2618 BITSTRING 2 RESERVED
(A3C) 2620 ADDRESS 4 CPWDTPUB TAPE UNIT PUB ENTRY ADDR
(A40) 2624 SIGNED 2 CPWDTPUU TAPE UNIT PROG.LOG.NUMBER
(A42) 2626 CHAR-

ACTER
3 CPWDTCUU TAPE UNIT CUU (EBCDIC)

(A45) 2629 BITSTRING 3 RESERVED
(A48) 2632 ADDRESS 4 CPWDPPUB PRT UNIT PUB ENTRY ADDR
(A4C) 2636 SIGNED 2 CPWDPPUU PRT UNIT PROG.LOG.NUMBER
(A4E) 2638 CHAR-

ACTER
3 CPWDPCUU PRT UNIT CUU (EBCDIC)

(A51) 2641 BITSTRING 3 RESERVED
(A54) 2644 ADDRESS 4 CPWSDSPY SAVE ADDRESS DST BLOCKS
(A58) 2648 CHAR-

ACTER
16 CPWDCUIN CURRENT USER INFO

(A68) 2664 BITSTRING 4 CPWDCPG CPAGES LIMIT VALUE
(A6C) 2668 BITSTRING 4 CPWDCCD CCARDS LIMIT VALUE
(A70) 2672 BITSTRING 1 CPWDPMS CPAGES BRANCH MASK
(A71) 2673 BITSTRING 1 CPWDCMS CCARDS BRANCH MASK
(A72) 2674 BITSTRING 2 CPWDLIMT PDISPLAY LIMIT VALUE
(A74) 2676 BITSTRING 2 CPWDLIMA ACCUMULATED LIMIT VALUE
(A76) 2678 BITSTRING 28 RESERVED

 11.1 111. CPWDARLN "*-CPWDARGL" ARGUMENT LIST LENGTH

THE FOLLOWING ARE WORK FIELDS FOR PDISPLAY PARAMETERS
WHICH REQUIRE CONTEXT CHECKING BEFORE FINAL

 PROCESSING

DEVICES STAGE 1 - SYNTAX CHECKING

(A94) 2708 SIGNED 4 (0) ALLIGNMENT
(A94) 2708 SIGNED 2 CPS1TCUX POSSIBLE CUU(PACKED) OF TAPE
(A96) 2710 CHAR-

ACTER
3 CPS1TCUU POSSIBLE CUU(EBCDIC) OF TAPE

(A99) 2713 BITSTRING 1 RESERVED
(A9A) 2714 SIGNED 2 CPS1PCUX POSSIBLE CUU(PACKED) OF PRT
(A9C) 2716 CHAR-

ACTER
3 CPS1PCUU POSSIBLE CUU(EBCDIC) OF PRT

(A9F) 2719 BITSTRING 1 CPS1FLG POSSIBLE FLAGS
 1... CPS1FGNW "X'80'" .. TAPE REWIND=NO SPEC'D
 .1.. CPS1FGRW "X'40'" .. TAPE REWIND=YES SPED'D

DEVICES STAGE 2 - RESOURCE ASSIGNMENTS

(AA0) 2720 ADDRESS 4 CPS2TPUB POSSIBLE PUB ADDR OF TAPE
(AA4) 2724 CHAR-

ACTER
3 CPS2TCUU POSSIBLE CUU(EBCDIC) OF TAPE

(AA7) 2727 BITSTRING 1 RESERVED
(AA8) 2728 SIGNED 2 CPS2TPUU POSSIBLE PUU OF TAPE UNIT
(AAA) 2730 SIGNED 2 RESERVED
(AAC) 2732 CHAR-

ACTER
3 CPS2PCUU POSSIBLE CUU(EBCDIC) OF PRT

(AAF) 2735 BITSTRING 1 RESERVED
(AB0) 2736 SIGNED 2 CPS2PPUU POSSIBLE PUU OF PRINTER
(AB2) 2738 SIGNED 2 RESERVED

DISPLAY TARGET SPECIFICATION

(AB4) 2740 CHAR-
ACTER

1 CPS1TGSP PDISPLAY TARGET - SPECIFIED

480 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... CPS1TSC "X'80'" .. CONSOLE
 .1.. CPS1TSP "X'40'" .. PRINTER
 ..1. CPS1TSL "X'20'" .. LST SPOOL ENTRY

(AB5) 2741 CHAR-
ACTER

1 CPS1TGDF PDISPLAY TARGET - DEFAULT

(AB5) 2741 0 CPWDTRLN "*-CPWDARGL" PDISPLAY TOTAL WORK AREA LENGTH
==NOTE== MUST BE < 513

VARIABLES USED BY PDISPLAY PNET COMMAND
THE FOLLOWING FIELDS TOGETHER WITH THE COMMON PART OF THE
ARGUMENT LIST IS PASSED TO THE PRINT STATUS TASK TO PERFORM
THE PDISPLAY PNET FUNCTIONS.

(9DC) 2524 SIGNED 4 CPWDPPTR POINTER TO SPECIFIED NODEID
(9E0) 2528 BITSTRING 1 CPWPFLG1 FLAG BYTE1

 1... CPWDPOWN "X'80'" .. OWN NODE DISPLAY REQUEST
 .1.. CPWDPLIN "X'40'" .. LINK DISPLAY REQUEST
 ..1. CPWDPNID "X'20'" .. SPECIFIC NODE DISPL.REQ
 ...1 CPWDPALL "X'10'" .. ALL NODES DISPLAY REQUEST

(9E1) 2529 BITSTRING 1 RESERVED
(9E2) 2530 CHAR-

ACTER
8 CPWNODID NAME OF NODE ID

VARIABLES USED BY PDISPLAY DYNC/STATUS COMMAND
 AT

THE FOLLOWING FIELDS TOGETHER WITH THE COMMON PART OF THE
ARGUMENT LIST IS PASSED TO THE PRINT STATUS TASK TO PERFORM
THE 'PDISPLAY DYNAMIC CLASS TABLE' OR
THE 'PDISPLAY STATISTICS STATUS' FUNCTIONS

(9DC) 2524 SIGNED 4 CPWDDPPA POINTER TO DCLT AREA
(9E0) 2528 SIGNED 4 CPWDDNUM JOB NO. OF LIST-Q ENTRY
(9E4) 2532 SIGNED 4 CPWDDLMG NO. OF TERMINATION MESSAGE
(9E8) 2536 BITSTRING 1 CPWDDFL1 FLAG BYTE WITH CPFG SETTING
(9E9) 2537 BITSTRING 1 CPWDDFL2 FLAG BYTE 2

 1... CPWD2ALL "X'80'" DISPLAY ALL
 .1.. CPWD2ENA "X'40'" DISPLAY ALL ENABLED
 ..1. CPWD2DIS "X'20'" DISPLAY ALL DISABLED
 ...1 CPWD2INV "X'10'" DISPLAY ALL INVALID
 1... CPWD2CLS "X'08'" DISPLAY A SINGLE CLASS
 1.. CPWD2ACT "X'04'" DISPLAY ACTIVE DCLT
 1. CPWD2ONE "X'02'" ONE LINE DISPLAYED
 1 CPWD2HED "X'01'" HEAD LINE ALREADY DISPLAYED

(9EA) 2538 BITSTRING 1 CPWDDFL3 FLAG BYTE 3
 1... CPWD3SUS "X'80'" DISPLAY SUSPENDED

(9EB) 2539 BITSTRING 1 CPWDDCLS CLASS TO BE DISPLAYED
 ...1 CPWDDLEN "*-CPWDDPPA" LENGTH OF 'DYNC' VARIABLES

VARIABLES USED BY PDISPLAY A COMMAND

(9B4) 2484 CHAR-
ACTER

12 CPWDAARG
(0)

DISPLAY ACTIVE ARGUMENT LIST

(9B4) 2484 BITSTRING 1 CPWDAFLG FLAG BYTE
 1... CPWDAFPN "X'80'" .. DISPLAY PNET TASKS
 .1.. CPWDAFPA "X'40'" .. DISPLAY EXECUTION TASKS
 ..1. CPWDAFLO "X'20'" .. DISPLAY LOCAL TASKS
 ...1 CPWDAFRJ "X'10'" .. DISPLAY RJE TASKS
 1... CPWDAFXT "X'08'" .. DISPLAY X-PARTITION TASKS
 1.. CPWDAFEX "X'04'" .. DISPLAY DEV SERVICE TASKS
 1. CPWDAFIN "X'02'" .. DISPLAY INTERNAL TASKS

(9B5) 2485 BITSTRING 1 RESERVED
(9B6) 2486 CHAR-

ACTER
2 CPWDAPID PARTITION ID

(9B8) 2488 CHAR-
ACTER

8 CPWDANID NODE NAME

(9C0) 2496 BITSTRING 1 CPWDATYP FLAG BYTE FOR EXEC. TASKS
 11.. .1.. CPWDATYD "C'D'" .. DISPLAY DYAMIC TASKS
 111. ..1. CPWDATYS "C'S'" .. DISPLAY STATIC TASKS

 Chapter 5. Storage Layout and Data Areas 481

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(9C1) 2497 CHAR-
ACTER

1 CPWDAPIC DYNAMIC CLASS SELECTED

VARIABLES USED BY PALTER COMMAND PROCESSOR
VARIABLE CPWALTSG USED BY PSEGMENT COMMAND PROCESSOR

THE FOLLOWING FIELDS CONTAIN THE NEW KEYWORD VALUES
SPECIFIED IN THE PALTER COMMAND.
WHEN A FIELD CONTAINS HEX ZEROS, IT IS ASSUMED THAT NO CHANGE
OF THE APPROPRIATE FIELD IN THE QUEUE RECORD SHOULD BE DONE

(9B4) 2484 CHAR-
ACTER

64 CPWALTER
(0)

ARGUMENT LIST

(9B4) 2484 CHAR-
ACTER

8 CPWALTTN NEW TARGET NODE NAME

(9BC) 2492 CHAR-
ACTER

8 CPWALTTU NEW TARGET USER ID

(9C4) 2500 BITSTRING 1 CPWALTPY NEW PRIORITY, IF NOT HEX ZERO
(9C5) 2501 CHAR-

ACTER
1 CPWALTDP NEW DISPOSITION, IF NOT HEX ZERO

(9C6) 2502 CHAR-
ACTER

1 CPWALTCL NEW CLASS, IF NOT HEX ZERO

(9C7) 2503 BITSTRING 1 CPWALTNC NEW COPY NUMBER, IF NOT HEZ ZERO
(9C8) 2504 CHAR-

ACTER
4 CPWALTCP NEW COMPACTION TABLE NAME, IF NOT HEX ZERO

(9CC) 2508 BITSTRING 1 CPWALTTJ NEW DESTINATION (RJE USER-ID)
(9CD) 2509 BITSTRING 1 CPWALTID NEW SYSID
(9CE) 2510 BITSTRING 1 CPWALTF1 FLAG BYTE 1

 1... CPWALTAD "X'80'" ..ALTER DESTINATION (USER-ID)
 .1.. CPWALTAS "X'40'" ..ALTER SYSID
 ..1. CPWALTAN "X'20'" ..ALTER TARGET NODE NAME
 ...1 CPWALTAU "X'10'" ..ALTER TARGET USER ID
 1... CPWALTRD "X'08'" ..RESET TEMP DISPOSITION
 1.. CPWALTDT "X'04'" ..RESET DUE TIME/INFO

(9CF) 2511 BITSTRING 1 CPWALTSG NEW SEGMENT REQUEST
 11.. ..11 CPWALTSC "C'C'" ..SEGMENT ON CARD BOUNDARY
 11.1 .111 CPWALTSP "C'P'" ..SEGMENT ON PAGE BOUNDARY
 11.. 1..1 CPWALTSI "C'I'" ..SEGMENT IMMEDIATELY

(9D0) 2512 CHAR-
ACTER

4 CPWALTFN NEW FORMS ID

(9D4) 2516 CHAR-
ACTER

8 CPWALTDS NEW DISTRIBUTION CODE

(9DC) 2524 CHAR-
ACTER

16 CPWALTUI NEW USER INFO

(9EC) 2540 BITSTRING 8 RESERVED FOR FUTURE USE
(9F4) 2548 BITSTRING 1 CPWAFL1 PALTER FLAG BYTE 1

 1... CPWA1SEA "X'80'" ..SEARCH OPERAND PRESENT

VARIABLES USED BY POFFLOAD (SELECT) COMMAND PROCESSOR

(AB8) 2744 SIGNED 4 CPWOFFCT ADDR OF @SELECT ENTRY IN THE COMMAND CODE
TABLE

VARIABLES USED BY TLBL= AND LTAPE= KEYWORDS
(BAM TAPE PROCESSING)

<CLEARED BEFORE EACH COMMAND>

(ABC) 2748 0 CPWLABBG "*" WORKAREA BEGIN
(ABC) 2748 CHAR-

ACTER
7 CPWLABNM LABEL DTF NAME

(AC3) 2755 BITSTRING 1 CPWLABFG FLAG BYTE
 1... CPWTLBL "X'80'" ..TLBL= SPECIFIED (BAM LABELED TAPE)
 .1.. CPWLTAPY "X'40'" ..LTAPE=YES SPECIFIED (BAM LABELED TAPE)
 ..1. CPWLTAPN "X'20'" ..LTAPE=NO SPECIFIED (BAM LABELED TAPE)
 ...1 CPWOP5ON "X'10'" ..5TH OPER.SPEC'D FOR L/P/R

(AC4) 2756 1 CPWOP# KEYWORD COUNTER

VARIABLES USED BY POFFLOAD JOURNAL=LST KEYWORD

(AC5) 2757 BITSTRING 1 CPWOFJOU JOURNAL=LST SPEC'D(X'FF')

482 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(AC6) 2758 BITSTRING 1 (3) RESERVED
(ACC) 2764 ADDRESS 4 (15) RESERVED

 .1.. 11.. CPWLABLN "*-CPWLABBG" WORKAREA LEN

WORK AREA USED BY COMMAND CONFIRMATION

(B08) 2824 CHAR-
ACTER

9 CPWERPLA
(0)

REPLY AREA FOR CONFIRMATION

(B08) 2824 CHAR-
ACTER

1 CPWERPLL LENGTH OF REPLY AREA

(B09) 2825 CHAR-
ACTER

8 CPWERPLY REPLY AREA

ALIGN TO LINE BOUNDARY AND FILL UP WITH ZEROS M

(B11) 2833 ADDRESS 1 (0)
(B11) 2833 0 CPWALN "*-CPWADS" LENGTH OF CP WORKAREA

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

MAP OF COMMAND CODE TABLE ENTRY

(0) 0 STRUC-
TURE

0 COMMAND , DEFINE DUMMY SECTION

(0) 0 CHAR-
ACTER

7 COMLONG LONG FORMAT OF COMMAND

(7) 7 CHAR-
ACTER

1 COMSHORT SHORT FORMAT OF COMMAND

(8) 8 ADDRESS 4 COMADDR ENTRY POINT ADDR OF COMMAND PROCESS
(C) 12 ADDRESS 1 COMMAXOP MAX # OF OPERANDS ALLOWED PER CMND
(D) 13 CHAR-

ACTER
1 COMPFLG1 PERMISSION FLAG 1 (SHUTDOWN)

 111. 1... COMYES "C'Y'" .. INDICATES THAT COMMAND IS ALLOWED
 11.1 .1.1 COMNO "C'N'" .. IND THAT COMMAND IS NOT ALLOWED

(E) 14 CHAR-
ACTER

1 COMPFLG2 PERMISSION FLAG 2 (AUTOSTART)

(F) 15 BITSTRING 1 COMLDFLG LOAD FLAG (IND TO WHICH AREA COMMAND BELONGS).
 1... COMLBASE "X'80'" .. BASE COMMAND
 .1.. COMLRJE "X'40'" .. RJE COMMAND (BSC/SNA)
 ..1. COMLSHR "X'20'" .. SHARED COMMAND
 ...1 COMLNET "X'10'" .. NETWORKING COMMAND (PNET)
 1... COMLDEL "X'08'" .. DISABLE SHORT CMD FORM
 1.. COMLCONF "X'04'" .. CONFIRM COMMAND
 1. COMLCON1 "X'02'" .. CONFIRM PSTOP,PART

.. CONFIRM PRELEASE,Q,ALL
 ...1 CMNDLN "*-COMMAND" LENGTH OF COMMAND TABLE ENTRY

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

LAYOUT OF ONE OPERAND AFTER CONVERSION TO FIXED FORMAT

(0) 0 STRUC-
TURE

0 OPERAND , DEFINE DUMMY SECTION

IF OPERAND LAYOUT CHANGES IPW$DLW MUST BE IN SYNC

(0) 0 BITSTRING 1 OPLEN LENGTH OF 'ORIGINAL' OR 'KEYOP'
(1) 1 BITSTRING 1 OPSWITCH FLAG BYTE

 1... OPSWHEX "X'80'" ..INDICATES THAT 'OPHEX' CONTAINS THE
BINARY REPRESENTATION OF THE OPERAND INTER-
PRETED AS HEXADECIMAL

 .1.. OPSWDEC "X'40'" ..INDICATES THAT 'OPDEC' CONTAINS THE
DECIMAL REPRESENTATION OF THE OPERAND INTER-
PRETED AS A DEC. TERM

 Chapter 5. Storage Layout and Data Areas 483

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. OPSWX "X'20'" ..INDICATES THAT X'---' HAS BEEN STRIPPED OFF,
SO DON'T TRY DECIMAL CONVERSION.

 ...1 OPSWALFM "X'10'" .. VALID ALPHAMERIC TERM FOUND
 1... OPSWKEY "X'08'" .. KEYWORD OPERAND
 1.. OPSWSTAR "X'04'" .. '*' PRECEDED OPERAND
 1. OPSWMIN "X'02'" .. '-' PRECEDED OPERAND
 1 OPSWPLUS "X'01'" .. '+' PRECEDED OPERAND

(2) 2 BITSTRING 1 OPFLAG2 FLAG BYTE 2
 1... OPSWCAL "X'80'" .. INDICATES THAT THE FIRST CHAR IS ALPHA-

BETIC, REST IS ALPHAMERIC (A - Z, #, $, @, 0 - 9)
 .1.. OPSWQUO "X'40'" .. OP WAS EMBEDDED BY QUOTES
 ..1. OPSWPAR "X'20'" .. INDICATES THAT THE OPERAND WAS PRE-

CEDED BY 'PARM=' AND EMBEDDED IN QUOTES
 ...1 OPSWLXO "X'10'" .. LAST PXMIT OPERAND

(3) 3 BITSTRING 1 OPMASKB MASK BYTE USED FOR COMPARI'N
(4) 4 CHAR-

ACTER
24 ORIGINAL (0) ORIGINAL OPERAND PADDED BLNK

(4) 4 CHAR-
ACTER

16 OPKEYOP KEYWORD OPERAND PADDED BLANK

(14) 20 CHAR-
ACTER

8 OPKEYWRD KEYWORD, PADDED WITH BLANKS

(1C) 28 BITSTRING 2 OPHEX ZONED HEXADECIMAL INPUT CONVERTED TO BINARY
(1E) 30 BITSTRING 4 OPDEC ZONED DECIMAL INPUT CONVERTED TO BINARY

 ..1. ..1. OPERLEN "*-OPERAND" LENGTH OF FIXED FORMAT OPERAND
AREA

VSE/POWER COMMAND CODE ABREVIATIONS

 11.1 ...1 PACCOUNT "C'J'" VALID ABBRE. FOR PACCOUNT CMND
 11.. ...1 PALTER "C'A'" VALID ABBRE. FOR PALTER CMND
 11.. ..1. PBRDCST "C'B'" VALID ABBRE. FOR PBRDCST CMND
 11.. ..11 PCANCEL "C'C'" VALID ABBRE. FOR PCANCEL CMND
 111. 1... PCOPY "C'Y'" VALID ABBRE. FOR PCOPY
 11.1 ..11 PDELETE "C'L' VALID ABBRE. FOR PDELETE CMND "
 11.. .1.. PDISPLAY "C'D'" VALID ABBRE. FOR PDISPLAY CMND
 11.. .11. PFLUSH "C'F'" VALID ABBRE. FOR PFLUSH CMND
 11.. .111 PGOX "C'G'" VALID ABBRE. FOR PGO CM
 11.. 1... PHOLD "C'H'" VALID ABBRE. FOR PHOLD CMND
 11.. 1..1 PINQUIRE "C'I'" VALID ABBRE. FOR PINQUIRE CMND
 11.1 .1.1 PDRAIN "C'N'" VALID ABBRE. FOR PDRAIN COMMAND
 11.1 .11. POFFLOAD "C'O'" VALID ABBRE. FOR POFFLOAD CMND
 11.1 1..1 PRELEASE "C'R'" VALID ABBRE. FOR PRELEASE CMND
 111. ..11 PRESTART "C'T'" VALID ABBRE. FOR PRESTART CMND
 11.1 .1.. PSEGMENT "C'M'" VALID ABBRE. PSEGMENT
 111. .1.. PSETUP "C'U'" VALID ABBRE. FOR PSETUP CMND
 111. ..1. PSTART "C'S'" VALID ABBRE. FOR PSTART CMND
 11.1 .111 PSTOP "C'P'" VALID ABBRE. FOR PSTOP COMMAND
 111. .111 PXMIT "C'X'" VALID ABBRE. FOR PXMIT COMMAND
 111. .1.1 PVARY "C'V'" VALID ABBRE. PVARY
 PRESET "X'00'" INTERNAL ABBREV. FOR PRESET COMMAND
 11 PLOAD "X'03'" INTERNAL ABBREV. FOR PLOAD COMMAND
 1.. PACT "X'04'" INTERNAL ABBREV. FOR PACT COMMAND
 1.1 @SELECT "X'05'" INTERNAL ABBREV. FOR SIMULATED POFFLOAD

'SELECT' OPERATOR INP. TO HAVE CORRECTLY FOR-
MATTED

GENERAL USED EQUATES

 .111 11.1 QUOTE "X'7D'" USED TO TEST FOR QUOTE CHARACTER
 .111 111. EQUAL "C'='" USED TO TEST FOR EQUAL SIGN
 .11. 1.11 COMMA "C','" USED TO TEST FOR COMMA SIGN
 .1.. BLANK "C' '" USED TO TEST FOR BLANK CHARACTER
 .1.1 11.. STAR "C'*'" USED TO TEST FOR ASTERIK SIGN
 .1.. 111. PLUS "C'+'" USED TO TEST FOR PLUS SIGN
 .11. MINUS "C'-'" USED TO TEST FOR MINUS SIGN
 .1.. 1.11 PERIOD "C'.'" USED TO TEST FOR PERIOD

484 VSE Central Functions V7R1 VSE/POWER DRM

Communicator Information Block (CIB)

The communicator information block controls all access to the Notify message queue. It is created by the
Spool access service master task at VSE/POWER initialization time.

It is addressed by field CACI in the CAT.

Definition Macro: IPW$DCI

Offset
Hex

Type Len Name (Dim) Description

COMMUNICATOR INFORMATION BLOCK

(0) CHAR-
ACTER

16 CIBSD SECTION DESCRIPTOR

(10) DBL WORD 8 CIBWW WORK AREA
(18) SIGNED 4 RESERVED
(1C) SIGNED 4 CIBLW LOCKWORD
(20) CHAR-

ACTER
48 CIBSV (0) REGISTER SAVE AREA

(20) SIGNED 4 CIBRE REGISTER 14
(24) SIGNED 4 CIBRF REGISTER 15
(28) SIGNED 4 CIBR0 REGISTER 0
(2C) SIGNED 4 CIBR1 REGISTER 1
(30) SIGNED 4 CIBR2 REGISTER 2
(34) SIGNED 4 CIBR3 REGISTER 3
(38) SIGNED 4 CIBR4 REGISTER 4
(3C) SIGNED 4 CIBR5 REGISTER 5
(40) SIGNED 4 CIBR6 REGISTER 6
(44) SIGNED 4 CIBR7 REGISTER 7
(48) SIGNED 4 CIBR8 REGISTER 8
(4C) SIGNED 4 CIBR9 REGISTER 9

GENERAL NOTIFY SECTION

(50) ADDRESS 4 CIBNTCB ADDR OF NOTIFY TASK TCB
(54) SIGNED 2 CIBMM# MAX NUMBER OF MESSAGES IN QUEUE
(56) SIGNED 2 CIBLMC LOST MESSAGE COUNT
(58) BITSTRING 1 CIBNACT NOTIFY ACTION BYTE

 1... CIBNASI "X'80'" .. START SENDING TO ICCF
 .1.. CIBNASD "X'40'" .. START SENDING TO DSNX
 ..1. CIBNACM "X'20'" .. MSG ADDED FOR SUBSYSTEM
 ...1 CIBNANS "X'10'" .. SUBSYS CONNECTION ESTABL

(59) BITSTRING 3 RESERVED
(5C) ADDRESS 4 CIBFCIE 1ST ENTRY IN CIE-CHAIN

VSE/ICCF SUBSYSTEM SECTION

(60) ADDRESS 4 CIBIMSG ADDRESS OF 1ST MESSAGE IN QUEUE
(64) ADDRESS 4 CIBIMTL *- TAIL POINTER (MSG QUEUE)
(68) ADDRESS 4 CIBIMBS ADDR OF MESSAGE BEING SENT
(6C) ADDRESS 4 CIBICM# CURRENT NO. OF MESSAGES IN QUEUE
(70) BITSTRING 1 CIBIFLG FLAG BYTE 1

 1... CIBISIP "X'80'" .. SEND IN PROGRESS
 .1.. CIBICON "X'40'" .. CONNECTION COMPLETED
 1 CIBIQNE "X'01'" .. MESSAGE ADDED TO QUEUE

(71) BITSTRING 3 RESERVED FOR FUTURE USE
(74) ADDRESS 4 CIBIXPCC ADDR OF USED XPCCB

VSE/DSNX SUBSYSTEM SECTION

(78) ADDRESS 4 CIBDMSG ADDR 1ST MSG REC IN QUEUE
(7C) ADDRESS 4 ADDR LAST MSG REC IN QUEUE
(80) ADDRESS 4 CIBDMBS ADDR OF MSG REC BEING SENT
(84) BITSTRING 1 CIBDFLG FLAG BYTE 1

 1... CIBDSIP "X'80'" .. SEND IN PROGRESS
 .1.. CIBDCON "X'40'" .. CONNECTION COMPLETED

 Chapter 5. Storage Layout and Data Areas 485

Offset
Hex

Type Len Name (Dim) Description

 1 CIBDQNE "X'01'" .. MESSAGE ADDED TO QUEUE
(85) BITSTRING 3 RESERVED FOR FUTURE USE
(88) ADDRESS 4 CIBDXPCC ADDRESS OF USED XPCCB

CROSS PARTITION SUPPORT SECTION

(8C) BITSTRING 1 CIBACT ACTION BYTE
 1... CIBASTP "X'80'" .. TERMINATE MASTER TASK

(8D) BITSTRING 1 CIBMSTAT STATUS BYTE
 1... CIBMINT "X'80'" .. MASTER TASK INITIALIZED
 .1.. CIBMXPE "X'40'" .. WRONG XPCCB
 ..1. CIBMTERM "X'20'" .. TERMQUIESCE ISSUED

(8E) BITSTRING 2 CIBUTOK TOKEN OF X-PART. USER TASK
(90) ADDRESS 4 CIBMXPT ADDR OF X-PART. MASTER TCB
(94) ADDRESS 4 CIBMXPCC ADDR OF CONNECT ANY XPCCB
(98) CHAR-

ACTER
8 CIBMXIDK IDENTIFY TOKEN

(A0) CHAR-
ACTER

8 CIBMXIDD IDENTIFY TOKEN OF DST POWER

VSE/OCCF HEARTBEAT SECTION

(A8) ADDRESS 4 CIBHTCB ADDR OF HEARTBEAT TASK
(AC) ADDRESS 4 RESERVED

 1.11 CIBLN "*-CIBDS" LENGTH OF CONTROL BLOCK

486 VSE Central Functions V7R1 VSE/POWER DRM

Class Table Entry

When a queue entry is added to the master record class table, it is chained to some class table entry
described here, contained in either the RDR, LST, PUN or XMT queues which make up the class table.

Definition Macro: IPW$DCT

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

CLASS TABLE ENTRY

(0) 0 STRUC-
TURE

0 CTDS , DUMMY SECTION DEFINITION

(0) 0 SIGNED 4 CTQF FIRST IN CLASS ADDRESS
(4) 4 SIGNED 4 CTQL LAST IN CLASS ADDRESS

 1... CTLN "*-CTDS" LENGTH DESCRIPTOR

 Chapter 5. Storage Layout and Data Areas 487

Communicator Information Block 2 (CI2)

Definition Macro: IPW$DCI

The Communicator Information Block 2 (CI2) controls all access to the job completion message queue. It
contains the address of the first ACIE entry of the ACIE queue. It is created at initialization time by the
cross partition master task. The CI2 is addressed by an address in the permanent area (CAT, field
CACI2).

Offset
Hex

Type Len Name (Dim) Description

THE COMMUNICATOR INFORMATION BLOCK 2 (CIB2)

(0) CHAR-
ACTER

16 CI2SD SECTION DESCRIPTOR

(10) DBL WORD 8 CI2WW WORK AREA
(18) SIGNED 4 RESERVED
(1C) SIGNED 4 CI2LW LOCKWORD
(20) CHAR-

ACTER
48 CI2SV (0) REGISTER SAVE AREA

(20) SIGNED 4 CI2RE REGISTER 14
(24) SIGNED 4 CI2RF REGISTER 15
(28) SIGNED 4 CI2R0 REGISTER 0
(2C) SIGNED 4 CI2R1 REGISTER 1
(30) SIGNED 4 CI2R2 REGISTER 2
(34) SIGNED 4 CI2R3 REGISTER 3
(38) SIGNED 4 CI2R4 REGISTER 4
(3C) SIGNED 4 CI2R5 REGISTER 5
(40) SIGNED 4 CI2R6 REGISTER 6
(44) SIGNED 4 CI2R7 REGISTER 7
(48) SIGNED 4 CI2R8 REGISTER 8
(4C) SIGNED 4 CI2R9 REGISTER 9
(50) SIGNED 2 CI2MM# MAX. # OF POSSIBLE JCM MSGS
(52) SIGNED 2 CI2LMC MAX. # OF LOST JCM MSGS
(54) BITSTRING 4 RESERVED
(58) ADDRESS 4 CI2FCIE ADDRESS OF BCA OF 1ST ACIE
(5C) ADDRESS 4 CI2LCIE ADDRESS OF BCA OF LAST ACIE
(60) ADDRESS 4 CI2CIE ADDRESS OF 1ST ACIE
(64) BITSTRING 24 CI2TQE TIMER QUEUE ELEMENT
(7C) BITSTRING 8 CRITICAL XPCC APPLICATION
(84) BITSTRING 8 CRITICAL SAS USER

 1... 11.. CI2LN "*-CI2DS" LENGTH OF CONTROL BLOCK

488 VSE Central Functions V7R1 VSE/POWER DRM

Communicator Information Element (CIE)

The communicator information element is built by the spool access service master task when a 'notify'
communication path is established with a VSE/AF subsystem, such as CICS/VS. One CIE exists for each
established 'notify' communication path. The CIEs are chained off the CIB.

Definition Macro: IPW$DCI

Offset
Hex

Type Len Name (Dim) Description

COMMUNICATOR INFORMATION ELEMENT

(0) CHAR-
ACTER

16 CIESD SECTION DESCRIPTOR

(10) CHAR-
ACTER

8 CIEAPPL SUBSYSTEM NAME

(18) ADDRESS 4 CIENEXT ADDRESS OF NEXT CIE OR 0
(1C) ADDRESS 4 CIEXPCC ADDRESS OF XPCCB
(20) ADDRESS 4 CIEHEAD ADDRESS OF 1ST MESSAGE
(24) ADDRESS 4 CIETAIL ADDRESS OF LAST MESSAGE
(28) ADDRESS 4 CIEAMBS ADDR OF MESSAGE BEING SENT
(2C) BITSTRING 1 CIESTAT STATUS BYTE

 1... CIESIPR "X'80'" .. SEND IN PROGRESS
 .1.. CIEEADD "X'40'" .. MESSAGE ADDED TO QUEUE
 ..1. CIEECBL "X'20'" .. ECB WAIT LIST UPDATED

(2D) BITSTRING 1 RESERVED
(2E) SIGNED 2 RESERVED

 ..11 CIELEN "*-CIEDS" LENGTH OF CONTROL BLOCK

 Chapter 5. Storage Layout and Data Areas 489

Application Communicator Information Element (ACIE)

The Application Communicator Information Element is built by

� Execution reader task
� Network receiver task

 � Timer task

when a fixed format job completion message contained in a nodal message record (NMR) reached its final
destination for later retrieval by an application program. Such an ACIE is created for each pair of XPCC
application-ID and Spool-Access support user-id contained in the NMR.

Definition Macro: IPW$DCI

Offset
Hex

Type Len Name (Dim) Description

COMMUNICATOR INFORMATION ELEMENT FOR JCM RETRIEVAL (ACIE)

(0) CHAR-
ACTER

16 ACIESD SECTION DESCRIPTOR

(10) CHAR-
ACTER

8 ACIEAPPL XPCC-APPLICATION IDENTIFIER

(18) CHAR-
ACTER

8 ACIEUSER USER-ID

(20) ADDRESS 4 ACIENEXT ADDRESS OF NEXT ACIE
(24) SIGNED 4 RESERVED FOR FUTURE USE
(28) ADDRESS 4 ACIEHEAD ADDR. OF BCA OF 1ST MSG
(2C) ADDRESS 4 ACIETAIL ADDR. OF BCA OF LAST MSG
(30) ADDRESS 4 ACIECMSG ADDR. OF BCA OF CUR'NT MSG
(34) SIGNED 4 RESERVED FOR FUTURE USE
(38) SIGNED 2 ACIELMC # OF LOST MSG IN THIS QUEUE
(3A) SIGNED 2 ACIECM# CURRENT MESSAGE NUMBER
(3C) SIGNED 4 RESERVED FOR FUTURE USE

 .1.. ACIELN "*-ACIEDS" LENGTH OF CONTROL BLOCK

490 VSE Central Functions V7R1 VSE/POWER DRM

Control Address Table (CAT)

Definition macro: IPW$DPA

The control address table consists of a set of tables, addresses, and constants, used to link the compo-
nent routines of the VSE/POWER subsystem during execution. The control address table is located in the
SVA part fixed by VSE/POWER. A pointer to it can be found at offset X'14' from the VSE/POWER parti-
tion (partition save area register 10) or in field IJBPWR of the system communication region. Its format as
it is printed in a dump is shown below.

Register 10 always points to the beginning of the CAT. The fields in the CAT may be found by using
register 10 as base register.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

CONTROL ADDRESS TABLE (CAT)

THE FOLLOWING DUMMY SECTION DESCRIBES THE FORMAT AND
ORGANIZATION OF THE CONTROL ADDRESS TABLE WHICH
RESIDES IN THE SVA AS THE FIRST PART OF THE NUCLEUS.
FIELDS USED BY VSE/AF ARE FLAGGED WITH '(AF)'.

(0) 0 STRUC-
TURE

PADS (AF) CONTROL ADDRESS TABLE

(0) 0 CHAR-
ACTER

16 PASD STORAGE DESCRIPTOR

(10) 16 CHAR-
ACTER

37 PACOPY

(35) 53 CHAR-
ACTER

7

 ..1. 11.. PACOPYL "*-PACOPY"
(3C) 60 CHAR-

ACTER
4 RES FOR FUTURE LAYOUT

THE FOLLOWING EVENT CONTROL BLOCK IS USED TO SIGNAL
TO VSE/POWER THAT IT HAS WORK TO DO.

(40) 64 SIGNED 4 PAEB (AF) VSE/POWER MASTER ECB

THE FOLLOWING FIELDS DEFINE THE KEY BOUNDARIES
WITHIN THE VIRTUAL ADDRESS SPACE OF THE VSE/POWER
PARTITION, DIVIDING IT INTO THE PERMANENT AREA,
THE FIXABLE AREA, AND THE PAGEABLE AREA.

(44) 68 ADDRESS 4 PAPA START OF VSE/POWER PARTITION
(48) 72 ADDRESS 4 PAFA START OF FIXABLE AREA
(4C) 76 ADDRESS 4 PAVA START OF PAGEABLE AREA
(50) 80 ADDRESS 4 PAEN END OF VSE/POWER PARTITION

THE FOLLOWING FIELDS DEFINE THE BOUNDARIES OF THE
SYSTEM LOGICAL TRANSIENT AREA.

(54) 84 ADDRESS 4 PALS START OF LTA
(58) 88 ADDRESS 4 PALE END OF LTA +1

THE FOLLOWING FIELDS CONTAIN THE BEGIN/END ADDRESS OF
THE SYSTEM GETVIS AREA AND THE SHARED VIRTUAL AREA.
THESE FIELDS ARE USED BY THE NUCLEUS DATA AREA

 VALIDATION ROUTINE.

(5C) 92 ADDRESS 4 PAESVA ADDR LAST BYTE SVA
(60) 96 ADDRESS 4 PASVA ADDR FIRST BYTE SVA

THE FOLLOWING FIELDS CONTAIN THE ALET OF THE POWER
PARTITION, THE ADDRESS OF THE PCE
AND THE TIK OF THE VSE/POWER PARTITION. THESE FIELDS
ARE USED BY THE APPENDAGE ROUTINES TO ACTIVATE THE VSE/POWER
PARTITION WHEN APPROPRIATE.

 Chapter 5. Storage Layout and Data Areas 491

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(64) 100 SIGNED 4 CAPALET ALET OF POWER PARTITION
(68) 104 ADDRESS 4 CAPCE (AF) ADDRESS OF POWER PCE
(6C) 108 SIGNED 2 CATI (AF) VSE/POWER TASK ID
(6E) 110 SIGNED 2 CATS TASK ID OF TIMER SUBTASK

EXTERNAL INTERFACE ADDRESSES
THE FOLLOWING ADDRESS CONSTANTS REPRESENT THE ADDRESSES
OF APPENDAGE ROUTINES LOCATED WITHIN THE VSE/POWER
NUCLEUS AND ARE USED TO ESTABLISH ENTRY TO THE ROUTINES
FROM THE DOS/VSE SUPERVISOR AND THE ATTENTION ROUTINE
AND THE JCL/VSE.

(70) 112 ADDRESS 4 CAAI (AF) ATTENTION INTERFACE
(74) 116 ADDRESS 4 CAPF PAGE FAULT APPENDAGE
(78) 120 ADDRESS 4 CAHR (AF) HOT READER ROUTINE
(7C) 124 ADDRESS 4 CACE RJE CE APPENDAGE
(80) 128 ADDRESS 4 CA00 (AF) SVC 0 ROUTINE
(84) 132 ADDRESS 4 CA90 (AF) SVC90/SVC91 APPENDAGE
(88) 136 ADDRESS 4 CAEOJ (AF) END OF JOB EXIT ROUTINE
(8C) 140 ADDRESS 4 CASEGMI IPWSEGM INTERFACE ROUTINE

$MXSEGMI EQU X'8C' CAT OFFSET OF 'CASEGMI' ...
AS DEFINED IN IPW$MXD, ..
AND USED IN IPWSEGM !!!!!

(90) 144 ADDRESS 4 CAFTTR00 FULL TASK TRACE ROUTINE
(94) 148 ADDRESS 4 (2) UNUSED

ADDRESS OF EXTERNALLY SPECIFIED GENERATION TABLE

(9C) 156 ADDRESS 4 CAGEN ADDRESS OF POWER GENER. TBLE

EXTERNAL ADDRESS(ES) FOR RJE,BSC

(A0) 160 ADDRESS 4 CABM BSC FUNCTION ENTRY POINT

CROSS-PARTITION CONTROL INFORMATION
THE FOLLOWING ARE USED BY SPOOL MANAGEMENT IN MAINTAINING
CROSS-PARTITION XECB INFORMATION.

IN-CORE READER CROSS-PARTITION XECB

(A4) 164 SIGNED 4 ICXP IN-CORE READER XECB
(A8) 168 BITSTRING 1 UNUSED
(A9) 169 ADDRESS 3 ICTA XECBTAB ADDR OF ICR XECB

SPOOL/COMMAND MANAGER CROSS-PARTITION XECB

(AC) 172 SIGNED 4 SMXP SPOOL/COMMAND MGR XECB
(B0) 176 BITSTRING 1 UNUSED
(B1) 177 ADDRESS 3 SMTA XECBTAB ADDR OF SPM XECB

THE FOLLOWING TWO FIELDS CONTAIN THE PIK OF SPOOL/COMMAND
MANAGER AS WELL AS WELL AS THE PIK OF THE INCORE READER

 IF APPLICABLE.

(B4) 180 SIGNED 2 IPIK IN-CORE RDR USER'S PIK
(B6) 182 SIGNED 2 SPIK SPOOL/COMMAND MGR USER'S PIK

XECB WAITM LIST USED BY SPOOL MANAGER MASTER TCB FOR SELECTING
THE IN-CORE RDR TASK AND/OR THE SPOOL/COMMAND MANAGER TASK.

(B8) 184 ADDRESS 4 ICWL ADDR(ICXP)
(BC) 188 ADDRESS 4 SPWL ADDR(SMXP)
(C0) 192 BITSTRING 1 WAITM LIST DELIMITER

WAIT TIME FOR OPNDST IN MINUTES USED BY IPW$$S2

(C1) 193 BITSTRING 1 CAOPNDST OPNDST TIME INTERVAL IN MIN
(C2) 194 BITSTRING 1 UNUSED

 MISCELLANEOUS

(C3) 195 ADDRESS 1 UNUSED
(C4) 196 SIGNED 4 CAUNBECB (AF) ECB, POSTED IF PART UNBATCH
(C8) 200 SIGNED 4 CAUNBCTS NO OF PART. UNBATCH ISSUED

492 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(CC) 204 SIGNED 4 CAUNBCTP (AF) NO OF PART. UNBATCH PROCES.
(D0) 208 CHAR-

ACTER
2 CAAPID (AF) ACTIVE PARTITION ID (PID)

(D2) 210 SIGNED 2 UNUSED

 COMMAND PROCESSOR:

(D4) 212 ADDRESS 4 CACMTBL ADDRESS OF COMMAND TABLE
(D8) 216 ADDRESS 4 CAARECB ATTENTION ROUTINE ECB
(DC) 220 ADDRESS 4 CACMT@S ADDR POFFLOAD DUMMY ENTRY
(E0) 224 SIGNED 4 UNUSED

TIMER SERVICE CONTROL INFORMATION

(E4) 228 BITSTRING 1 CATF FLAG BYTE
 1... CATV "X'80'" .. TIMER EXPIRED
 .1.. CATF40 "X'40'" .. ***** UNUSED *****
 ..1. CATMSOFF "X'20'" .. SUPPRESS 1QZ2A
 ...1 CATF10 "X'10'" .. ***** UNUSED *****
 1... CATDLOW "X'08'" .. USE LOW DPST PRIORITY
 1.. CATFCKCW "X'04'" .. ISSUE 1R30I AND CANCEL
 1. CATFNSLI "X'02'" .. RESTRICT SLI FOR 'FROM'
 1 CATFALBD "X'01'" .. PALTER CHANGES BOTH DISP

(E5) 229 BITSTRING 1 CATF2 FLAG BYTE 2
 1... CATF2ISP "X'80'" .. USE ISEP FOR LST TASKS
 .1.. CATF2NC9 "X'40'" .. NO CHANNEL 9/12 POSTING
 ..1. CATF2DLS "X'20'" .. USE DLSEP FOR LST TASKS
 ...1 CATF2SPF "X'10'" .. FORCE SEPARATOR PAGE FOR

SET DLSEP AND SET ISEP
 1... CATFSISP "X'08'" .. USE ISEPSAS FOR SAS TASK
 1.. CATFSDLS "X'04'" .. USE DLSEPSAS FOR SAS TASK
 1. CATFSSPF "X'02'" .. FORCE SEPARATOR PAGE FOR

SET ISEPSAS AND DLSEPSAS
(E6) 230 BITSTRING 2 CATF3 FLAG BYTE 3

 1... CATF3UIP "X'80'" .. UPDATE IN PROGRESS FOR
TCB OR BCW CHAIN

(E7) 231 BITSTRING 1 UNUSED
(E8) 232 ADDRESS 4 CATQ ADDR OF FIRST TQE IN CHAIN
(EC) 236 ADDRESS 4 CAIT TIMER INTERVAL EXIT ROUTINE
(F0) 240 SIGNED 4 CASE TIMER DOS/VSE SUBTASK ECB
(F4) 244 ADDRESS 4 UNUSED
(F8) 248 ADDRESS 4 UNUSED
(FC) 252 ADDRESS 4 UNUSED

RESOURCE LOCKWORD TABLE
IN CASE OF TASK TERMINATION THE TERMINATOR (IPW$$TR) WILL
SCAN THE RESOURCE LOCKWORD TABLE

(100) 256 ADDRESS 4 CAFT FCB TABLE LOCKWORD
(104) 260 ADDRESS 4 CBLW RJE BSC LOCKWORD

 1. CA#L "(*-CAFT)/4" # OF LOCKWORDS
(108) 264 ADDRESS 4 UNUSED

RESOURCE CONTROL BLOCK ADDRESSES
THE FOLLOWING ADDRESS CONSTANTS REPRESENT THE ADDRESSES OF
MAJOR VSE/POWER CONTROL BLOCKS. EACH BLOCK IS FORMATTED AS
A RESOURCE CONTROL BLOCK AND CONTAINS A LOCKWORD IN ITS
EIGHTH FULL WORD.

(10C) 268 ADDRESS 4 CAQC DISK MANAGEMENT BLOCK
(110) 272 ADDRESS 4 CAAC ACCOUNT CONTROL BLOCK
(114) 276 ADDRESS 4 CASC STORAGE CONTROL BLOCK
(118) 280 ADDRESS 4 CAMM MESSAGE CONTROL BLK - LOCAL
(11C) 284 ADDRESS 4 CARM MESSAGE CONTROL BLK - RMOTE
(120) 288 ADDRESS 4 CASM SNA CONTROL BLOCK ADDRESS
(124) 292 ADDRESS 4 CAGP GENERAL PURPOSE WORK AREA
(128) 296 ADDRESS 4 CAAB ASYN SERVICE ANCHOR BLOCK
(12C) 300 ADDRESS 4 CATK PTR TRACE INFORMATION BLOCK
(130) 304 ADDRESS 4 CAPN PTR TO PNET CONTROL BLOCK

 Chapter 5. Storage Layout and Data Areas 493

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(134) 308 ADDRESS 4 CACI PTR COMMUNICATOR INF BLOCK
(138) 312 ADDRESS 4 CAEDCB MASTER EXTERNAL DEVICE CB
(13C) 316 ADDRESS 4 CADPCB DYNAMIC PARTITION CTL BLOCK
(140) 320 ADDRESS 4 CAVS VIRTUAL STORAGE CONTROL BLCK
(144) 324 ADDRESS 4 CACI2 PTR TO 2ND COMM. INF. BLOCK
(148) 328 ADDRESS 4 UNUSED

MODULE CONTROL BLOCK (MCB) ADDRESS TABLE
THE FOLLOWING ADDRESS CONSTANTS REPRESENT THE ADDRESSES OF
THE MODULE CONTROL BLOCKS WHICH ARE ASSOCIATED WITH EACH
EXTENT OF DISK STORAGE SPECIFIED TO THE VSE/POWER SYSTEM
AS INTERMEDIATE STORAGE.
MODULE CONTROL BLOCKS ARE RESOURCE CONTROL BLOCKS AND
PROCESSED AS SUCH BY VSE/POWER.

(14C) 332 ADDRESS 4 CAA0 RESERVED
(150) 336 ADDRESS 4 CAQ1 MCB QUEUE FILE
(154) 340 ADDRESS 4 CAD2 MCB DATA FILE - MODULE 1
(158) 344 ADDRESS 4 CAD3 MCB DATA FILE - MODULE 2
(15C) 348 ADDRESS 4 CAD4 MCB DATA FILE - MODULE 3
(160) 352 ADDRESS 4 CAD5 MCB DATA FILE - MODULE 4
(164) 356 ADDRESS 4 CAD6 MCB DATA FILE - MODULE 5
(168) 360 ADDRESS 4 CAD7 MCB DATA FILE - MODULE 6
(16C) 364 ADDRESS 4 CAD8 MCB DATA FILE - MODULE 7
(170) 368 ADDRESS 4 CAD9 MCB DATA FILE - MODULE 8
(174) 372 ADDRESS 4 CAD10 MCB DATA FILE - MODULE 9
(178) 376 ADDRESS 4 CAD11 MCB DATA FILE - MODULE 10
(17C) 380 ADDRESS 4 CAD12 MCB DATA FILE - MODULE 11
(180) 384 ADDRESS 4 CAD13 MCB DATA FILE - MODULE 12
(184) 388 ADDRESS 4 CAD14 MCB DATA FILE - MODULE 13
(188) 392 ADDRESS 4 CAD15 MCB DATA FILE - MODULE 14
(18C) 396 ADDRESS 4 CAD16 MCB DATA FILE - MODULE 15
(190) 400 ADDRESS 4 CAD17 MCB DATA FILE - MODULE 16
(194) 404 ADDRESS 4 CAD18 MCB DATA FILE - MODULE 17
(198) 408 ADDRESS 4 CAD19 MCB DATA FILE - MODULE 18
(19C) 412 ADDRESS 4 CAD20 MCB DATA FILE - MODULE 19
(1A0) 416 ADDRESS 4 CAD21 MCB DATA FILE - MODULE 20
(1A4) 420 ADDRESS 4 CAD22 MCB DATA FILE - MODULE 21
(1A8) 424 ADDRESS 4 CAD23 MCB DATA FILE - MODULE 22
(1AC) 428 ADDRESS 4 CAD24 MCB DATA FILE - MODULE 23
(1B0) 432 ADDRESS 4 CAD25 MCB DATA FILE - MODULE 24
(1B4) 436 ADDRESS 4 CAD26 MCB DATA FILE - MODULE 25
(1B8) 440 ADDRESS 4 CAD27 MCB DATA FILE - MODULE 26
(1BC) 444 ADDRESS 4 CAD28 MCB DATA FILE - MODULE 27
(1C0) 448 ADDRESS 4 CAD29 MCB DATA FILE - MODULE 28
(1C4) 452 ADDRESS 4 CAD30 MCB DATA FILE - MODULE 29
(1C8) 456 ADDRESS 4 CAD31 MCB DATA FILE - MODULE 30
(1CC) 460 ADDRESS 4 CAD32 MCB DATA FILE - MODULE 31
(1D0) 464 ADDRESS 4 CAD33 MCB DATA FILE - MODULE 32

 ..1. CA#DFE "(*-CAD2)/4" NUMBER OF DATA FILE EXTENTS
 ..11 ..1. CA#R "(*-CAQC)/4" NUMBER OF RESOURCES

(1D4) 468 ADDRESS 4 END OF LIST IDENTIFIER
(1D8) 472 ADDRESS 4 UNUSED

THE ABOVE VALUE IS USED BY THE TASK TERMINATOR ROUTINE
TO DETERMINE THE NUMBER OF RESOURCES TO BE SCANNED.

TASK STATE VALUES
THE FOLLOWING CONSTANTS ARE USED BY THE TASK MANAGEMENT
MACRO INSTRUCTIONS TO SET VALUES WITHIN THE TASK SELECTION
FIELDS OF THE TASK CONTROL BLOCK CORRESPONDING TO THE
INDIVIDUAL TASK STATES THAT THEY IDENTIFY.

(1DC) 476 CHAR-
ACTER

1 TMCI THE TASK IS INACTIVE

(1DD) 477 ADDRESS 3 DO NOT SELECT THE TASK
(1E0) 480 CHAR-

ACTER
1 TMCP PAGE FAULT IN PROCESS

494 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(1E1) 481 ADDRESS 3 DO NOT SELECT THE TASK
(1E4) 484 CHAR-

ACTER
1 TMCO WAIT FOR OPERATOR

(1E5) 485 ADDRESS 3 DO NOT SELECT THE TASK
(1E8) 488 CHAR-

ACTER
53 TMCL

(1E9) 489 ADDRESS 3 TEST LOCKWORD
(1EC) 492 CHAR-

ACTER
1 TMCM WAIT ON MULTIPLE POSTING

(1ED) 493 ADDRESS 3 TEST CONTROL BLOCKS
(1F0) 496 CHAR-

ACTER
1 TMCQ WAIT ON CLASS TABLE POSTING

(1F1) 497 ADDRESS 3 TEST CONTROL BLOCKS
(1F4) 500 CHAR-

ACTER
1 TMCC WAIT ON SINGLE POSTING

(1F5) 501 ADDRESS 3 TEST CONTROL BLOCK, CHECK I/O TOO
(1F8) 504 CHAR-

ACTER
1 TMCS WAIT ON SPACE POSTING

(1F9) 505 ADDRESS 3 TEST CONTROL BLOCK, CHECK I/O TOO
(1FC) 508 CHAR-

ACTER
1 TMCD IMMEDIATE DISPATCH

(1FD) 509 ADDRESS 3 DISPATCH THE TASK
(200) 512 CHAR-

ACTER
1 TMCW WAIT STATE

(201) 513 ADDRESS 3 WAIT ROUTINE
(204) 516 CHAR-

ACTER
1 TMCR THE TASK IS RUNNING

(205) 517 ADDRESS 3 RE-SELECTION ADDRESS
(208) 520 CHAR-

ACTER
1 TMCB WAIT ON RJE,BSC - PNET EVENT

(209) 521 ADDRESS 3 TEST TECB FOR RJE EVENT
(20C) 524 CHAR-

ACTER
1 TMCE WAIT ON SINGLE ECB POSTING

(20D) 525 ADDRESS 3 TEST ECB POST BIT
(210) 524 CHAR-

ACTER
1 TMCX WAIT ON MIXED POSTING

(211) 525 ADDRESS 3 TEST ECB POST BIT

PERMANENT TASK CONTROL BLOCKS
THE FOLLOWING TABLE CONTAINS THE ADDRESSES OF THE VSE/POWER
TASK CONTROL BLOCKS WHICH ARE PERMANENTLY PRESENT IN FIXED

 STORAGE.
THE FIRST PART OF THE TABLE IS USED BY THE INITIATOR
ROUTINE IPW$$I2 TO ESTABLISH THE INITIAL TASK LIST.

(214) 532 ADDRESS 4 TATM WAIT CONTROL BLOCK
(218) 536 CHAR-

ACTER
4 TAOC AR ROUTINE COMMAND PROC TCB

(21C) 540 CHAR-
ACTER

4 TAIT INITIALIZATION/TERMINATION

(220) 544 ADDRESS 4 TALM LINE MANAGER
(224) 548 ADDRESS 4 TASP SPOOL MANAGER
(228) 552 ADDRESS 4 TATES TIME EVENT SCHEDULING TASK
(22C) 556 ADDRESS 4 TADPST DYNAMIC PART. SCHED. TASK
(230) 560 ADDRESS 4 UNUSED
(234) 564 ADDRESS 4 UNUSED

 Chapter 5. Storage Layout and Data Areas 495

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

TASK CONTROL ADDRESS TABLE
THE FOLLOWING TABLE IS USED BY THE TASK INITIATION AND
TERMINATION ROUTINES TO DETERMINE THE POSITION IN THE TASK
LIST AT WHICH A NEW TASK OF A GIVEN TYPE IS TO BE INSERTED.
THE FIRST BYTE OF EACH ENTRY CONTAINS AN ALPHAMERIC
CHARACTER IDENTIFYING THE TYPE OF TASK TO WHICH THE ENTRY
RELATES. THE REMAINING THREE BYTES CONTAIN THE ADDRESS OF
THE TASK CONTROL BLOCK FOR THE MOST RECENTLY-ATTACHED TASK
OF THAT TYPE. IF NO SUCH TASK EXISTS THE ADDRESS CONTAINED
IN THE ENTRY IS THAT OF THE TASK CONTROL BLOCK OF THE
CURRENTLY-ATTACHED TASK WHICH MUST PRECEDE ANY NEW TASK OF
THE DESIGNATED TYPE.
NOTE, THAT THE FOLLOWING FIELDS: CAOP,CARJ,CAMP,CARW,CAEX,
AND CARR GET THE ADDRESS OF THE COMMAND PROCESSOR TCB
AT INITIALIZATION (IPW$$I2) TIME.
THE ATTACH SCHEME BELOW MAY BE OVERRULED AS FOLLOWS:
1) WRITER TASK ('W') STARTED WITH OPTION 'VM'/'SP'

IS CHAINED WITH LOWER PRIORITY THAN EXEC. PROC'S
AMONST THE READER ('R') TASKS.

2) WRITER TASK ('W') STARTED WITH OPTION 'HP'
IS CHAINED WITH HIGHER PRIORITY AMONGST THE
X-PARTITION SAS TASKS.

3) DYN. PART. SCHED. TASK ('D') WITH AUTOSTART
 SET DYNAL=LOW

IS CHAINED WITH LOWER PRIORITY THAN EXISTING
STATIC AND DYNAMIC PARTITIONS AS THE FIRST
READER ('R') TASK.

(238) 568 CHAR-
ACTER

1 CATRT TASK IDENTIFYING PREFIX

(239) 569 ADDRESS 3 ADDR OF TRACE MONITOR TASK
(23C) 572 CHAR-

ACTER
53 CALM

(23D) 573 ADDRESS 3 ADDRESS OF LINE OR SNA MANAGER
(240) 576 CHAR-

ACTER
1 TASK IDENTIFYING PREFIX

(241) 577 ADDRESS 3 ADDR OF TIMER TASK
(244) 580 CHAR-

ACTER
1 TASK IDENTIFYING PREFIX

(245) 581 ADDRESS 3 ADDR OF TIME EVENT SCHEDULER
(248) 584 CHAR-

ACTER
1 TASK IDENTIFYING PREFIX

(249) 585 ADDRESS 3 ADDRESS OF XPART OR DST TASK
(24C) 588 CHAR-

ACTER
1 CASP TASK IDENTIFYING PREFIX

(24D) 589 ADDRESS 3 ADDRESS OF SPOOL MANAGER
(250) 592 CHAR-

ACTER
1 CAOP TASK IDENTIFYING PREFIX

(251) 593 ADDRESS 3 ADDR. OF CMD PROCESSOR TCB
(254) 596 CHAR-

ACTER
1 CARJ TASK IDENTIFYING PREFIX

(255) 597 ADDRESS 3 ADDRESS OF LAST RJE TASK
(258) 600 CHAR-

ACTER
1 CAMP TASK IDENTIFYING PREFIX

(259) 601 ADDRESS 3 ADDRESS OF DYN. PART. SCHED.
(25C) 604 CHAR-

ACTER
1 CARW TASK IDENTIFYING PREFIX

(25D) 605 ADDRESS 3 ADDRESS OF LAST WRITER TASK
(260) 608 CHAR-

ACTER
1 CAEX TASK IDENTIFYING PREFIX

(261) 609 ADDRESS 3 ADDRESS OF LAST EXP TASK
(264) 612 CHAR-

ACTER
1 CARR TASK IDENTIFYING PREFIX

(265) 613 ADDRESS 3 ADDRESS OF LAST READER TASK, OR WRITER TASK
STARTED WITH THE 'VM' OR 'SP' OPTION

496 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(268) 616 BITSTRING 1 CALD END OF INDEX TABLE
(26C) 620 ADDRESS 4 UNUSED

VSE/POWER FLAG BYTES

(270) 624 BITSTRING 1 CAFLG1 FLAG BYTE 1
 1... CAFHLD "X'80'" ..PLACE PARTITIONS IN PAUSE
 .1.. CAFOFFB "X'40'" ..POFFLOAD BACKUP RUNNING
 ..1. CAFTTR "X'20'" ..TASK TRACE ENABLED
 ...1 CAFHLDX "X'10'" ..PAUSE PARTITION AT DISP=X
 1... CAFLOX "X'08'" ..OUTPUT EXIT ENABLED
 1.. CAFLRX "X'04'" ..JOB EXIT ENABLED
 1. CAFLPX "X'02'" ..PNET EXIT ENABLED
 1 CAFLAB "X'01'" ..ABN TERMINATION IN PROC.

(271) 625 BITSTRING 1 CAFLG2 FLAG BYTE 2
 1... CAF2PIM "X'80'" ..PEND IMM ISSUED
 .1.. CAF2NOP "X'40'" ..DO NOT POST TERMINATION
 ..1. CAF2RIP "X'20'" ..ISSUE RE-IPL MACRO
 ...1 CAF2RIC "X'10'" ..$$XH ISSUED IPW$CNC
 1... CAF2TRX "X'08'" ..TRANSMITTER EXIT ENABLED
 1.. CAF2PES "X'04'" ..POWER IN PRIVATE ADDRESS ..SPACE AND IN

ESA/370 MODE
 1. CAF2ESA "X'02'" ..POWER IN ESA/370 MODE
 1 CAF2MDS "X'01'" ..NEW DEVICE STRUCTURE

(272) 626 BITSTRING 1 CAFLG3 FLAG BYTE 3
 1... CAF3LGIG "X'80'" ..IGNORE THE 'LOG=NO' OPTION
 .1.. CAF3QPRT "X'40'" ..QUEUE FILE IN PART. GETVIS
 ..1. CAF3OUT0 "X'20'" ..NO ZERO PAGE LST ENTRY
 ...1 CAF3Q30D "X'10'" ..ISSUE 1Q30D AT ABN. TERMN.
 1... CAF3PHON "X'08'" ..IDENTIFY 'PHO ESTABLISHED'
 1.. CAF3NRSX "X'04'" ..NO REAL STOR. FOR CI2
 1. CAF3Q53I "X'02'" ..ISSUE 1Q53I WHEN SEG'N
 1 CAF3Q41I "X'01'" ..SUPPRESS 1Q41I

(273) 627 BITSTRING 1 CAFLG4 FLAG BYTE 4
 1... CAF4DFCB "X'80'" ..USE DEFAULT FCB
 .1.. CAF4IGN "X'40'" .. SET Q-RECS WITH IGN. RECS TO DISP=Y
 ..1. CAF4SECK "X'20'" .. ENABLE SEGMENTATION BY SPOOLING NOOP
 ...1 CAF4CCW1 "X'10'" ..DO NOT ISSUE CCW X'01'
 1... CAF4WKNP "X'08'" ..RUN NON-PARALLEL WORKUNIT
 1.. CAF4QVIO "X'04'" ..ENFORCE QFILE IN VIO
 1. CAF4PIK "X'02'" ..PREVENT QUEUE MANIPULATION COMMAND

DURING PICKUP OF ACT ENTRY
 1 CAF4Q31 "X'01'" ..ALLOW QFILE BEYOND 16MB

(274) 627 BITSTRING 1 CAFLG5 FLAG BYTE 5
 1... CAF5X80 "X'80'" ..USED BY HIGHER RELEASE
 .1.. CAF5OES "X'40'" ..ALLOW OUTEXIT FOR SAS GET
 ..1. CAF5ANF "X'20'" ..FLUSH AUTONAME JOBS
 ...1 CAF5ANH "X'10'" ..HOLD AUTONAME JOBS
 1... CAF5OCL "X'08'" ..OUTDYNCL=DYNCL
 1.. CAF5DST "X'04'" ..RSCSROOM=DIST
 1. CAF5IFL "X'02'" ..INTFLUSH=OPER
 1 CAF5FTTR "X'01'" ..FULL TASK TRACE

(275) 629 CHAR-
ACTER

2 CADFCBSF PRT1 FCB SUFFIX,SET BY $I2, DEFAULT: 2 BLANKS

(277) 631 BITSTRING 1 CAFLG6 FLAG BYTE 6
 1... CAF6R3F "X'80'" ..1R33D=FLUSH
 .1.. CAF6R31 "X'40'" ..1R33D=IGNORE
 ..1. CAF6IS31 "X'20'" ..INCLUDE SVA-31 IN DUMP
 ...1 CAF6PDMP "X'10'" ..NO SETPRT SEGMENT PDUMP
 1... CAF6MAIP "X'08'" ..PAUSING FOR MAXCL=1 PART.

(278) 632 BITSTRING 1 CAFLG7 FLAG BYTE 7
 1... CAF7PTB "X'80'" ..TRACE BSC NODES
 .1.. CAF7PTC "X'40'" ..TRACE CTC NODES
 ..1. CAF7PTT "X'20'" ..TRACE TCP NODES
 ...1 CAF7PTS "X'10'" ..TRACE SLL NODES

(279) 633 BITSTRING 3 (3) RESERVED

 Chapter 5. Storage Layout and Data Areas 497

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

MODULE LOAD ADDRESSES
TWO TABLES OF MODULE ADDRESSES ARE MAINTAINED BY VSE/POWER.
THE FIRST TABLE ADDRESSES THOSE MODULES WHICH ARE ALWAYS
LOADED BY THE SYSTEM. THE SECOND ADDRESSES THOSE MODULES
WHICH FORM OPTIONAL FUNCTIONS OF THE SYSTEM.
THE FIRST TABLE ACTS BOTH AS A 'LOAD LIST' FOR THE INITIATOR
TASK AND AS AN 'ADDRESS LIST' FOR USE IN MODULE LINKAGE.
THE TABLE IS INITIALISED SO THAT EACH FULL WORD ENTRY
CONTAINS THE 2- OR 3-CHARACTER SYLLABLE WHICH IDENTIFIES THE
PHASE TO WHICH THE ENTRY RELATES. IT SHOULD BE NOTED THAT
THE ORDER IN WHICH THE ENTRIES APPEAR IN THE LIST DETERMINES
THE ORDER IN WHICH THE CORRESPONDING PHASES ARE LOADED IN
THE VSE/POWER PAGEABLE AREA.
AS THE INITIATOR PHASE 1 (IPW$$I1) LOADS EACH PHASE INTO
STORAGE, IT RE-INITIALISES THE TABLE ENTRY TO CONTAIN THE
VIRTUAL ADDRESS OF THE FIRST BYTE OF THE PHASE.
IF RUNNING ON ESA/370, THIS TABLE IS UPDATED WITH
THE NAMES OF 'ESA-MODULES' BY IPW$$I1.
ALL PHASES ARE LOADED ON X'100' BOUNDARY.
THE TABLE CAN THEN BE USED TO EFFECT LINKAGE FROM ONE
VSE/POWER PHASE TO ANOTHER.

(27C) 636 SIGNED 4 CAFM (0) ALIGNMENT
(27C) 636 CHAR-

ACTER
4 CACP COMMAND PROCESSOR

READER TASK PHASES

(280) 640 CHAR-
ACTER

4 CAPD PUT DATA RECORD

(284) 644 CHAR-
ACTER

4 CALR LOGICAL READER

(288) 648 CHAR-
ACTER

4 CAPR PHYSICAL READER

(28C) 652 CHAR-
ACTER

4 CASN SCAN AND CHECK PARAMETER

WRITER TASK PHASES

(290) 656 CHAR-
ACTER

4 CAPP PHYSICAL PUNCH

(294) 660 CHAR-
ACTER

4 CAPL PHYSICAL LIST

(298) 664 CHAR-
ACTER

4 CAGD GET DATA RECORD

(29C) 668 CHAR-
ACTER

4 CALW LOGICAL WRITER

EXECUTION PROCESSOR PHASES

(2A0) 672 CHAR-
ACTER

4 CAXJ JECL ANALYSIS

(2A4) 676 CHAR-
ACTER

4 CAXR EXECUTION READER

(2A8) 680 CHAR-
ACTER

4 CAXW EXECUTION WRITER

QUEUE MANAGEMENT PHASES

(2AC) 684 CHAR-
ACTER

4 CADQ DELETE FROM QUEUE CHAIN

(2B0) 688 CHAR-
ACTER

4 CAAQ ADD TO QUEUE

(2B4) 692 CHAR-
ACTER

4 CANQ GET NEXT FROM QUEUE

(2B8) 696 CHAR-
ACTER

4 CARQ RESERVE QUEUE

(2BC) 700 CHAR-
ACTER

4 CAFQ FREE QUEUE

498 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(2C0) 704 CHAR-
ACTER

4 CASQ SERVICE RTN'S FOR QUEUE FILE

(2C4) 708 CHAR-
ACTER

4 CA1Q GENERAL SERVICE ROUTINES

 MISCELLANEOUS PHASES

(2C8) 712 CHAR-
ACTER

4 CALU LUB/PUB UPDATE FUNCTION

(2CC) 716 CHAR-
ACTER

4 CAAS ASYNCHRONOUS SERVICE RTN

(2D0) 720 CHAR-
ACTER

4 CATR TASK TERMINATOR

(2D4) 724 CHAR-
ACTER

4 CAOT OPEN TAPE ROUTINE

(2D8) 728 CHAR-
ACTER

4 CAOF OFFLOAD MODULE

(2DC) 732 CHAR-
ACTER

4 CAER 3540 PHYSICAL READER

(2E0) 736 CHAR-
ACTER

4 CAOE 3540 OPEN ROUTINE

(2E4) 740 CHAR-
ACTER

4 CASY SYSIN TAPE SUPPORT

(2E8) 744 CHAR-
ACTER

4 CAPS PRINT STATUS REPORT

(2EC) 748 CHAR-
ACTER

4 CAPS1 PRINT STATUS SERVICE

(2F0) 752 CHAR-
ACTER

4 CAIC INVOKE CP FUNCTION

(2F4) 756 CHAR-
ACTER

4 CARY QUEUE FILE RECOVERY

(2F8) 760 CHAR-
ACTER

4 CAAT ABNORMAL TERMINATION PROGRAM

(2FC) 764 CHAR-
ACTER

4 CALO LOGICAL OUTPUT ROUTINE

(300) 768 CHAR-
ACTER

4 CADT DEFINE TABLES & CNTL RECORDS

(304) 772 CHAR-
ACTER

4 CAPC PARAMETER CHECKING RTN

(308) 776 CHAR-
ACTER

4 CADS DATA MANAGEMENT SERVICES

(30C) 780 CHAR-
ACTER

4 CA$OP OUTPUT PARAMETER ROUTINE

(310) 784 CHAR-
ACTER

4 CADP DYNAMIC PART. SCHEDULER

(314) 788 CHAR-
ACTER

4 CAID IDUMP IN FLIGHT ROUTINE

MESSAGE PROCESSING PHASES

(318) 792 CHAR-
ACTER

4 CAMS MESSAGE HANDLER

(31C) 796 CHAR-
ACTER

4 CAMX MESSSAGE DISTRIBUTOR

(320) 800 CHAR-
ACTER

4 CA$M MESSAGE DEFINITION MODULE

CROSS PARTITION COMMUNICATION PROCESSING PHASES

(324) 804 CHAR-
ACTER

4 CAXM X-PARTITION MASTER ROUTINE

(328) 808 CHAR-
ACTER

4 CAXT X-PARTITION USER MAIN RTN

(32C) 812 CHAR-
ACTER

4 CAXTG X-PARTITION GET FUNCTION RTN

(330) 816 CHAR-
ACTER

4 CAXTC X-PARTITION CTL FUNCTION RTN

 Chapter 5. Storage Layout and Data Areas 499

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(334) 820 CHAR-
ACTER

4 CAXTP X-PARTITION PUT FUNCTION RTN

(338) 824 CHAR-
ACTER

4 CAXTS X-PARTITION SUBROUTINES

(33C) 828 CHAR-
ACTER

4 CANY NOTIFY SUPPORT

(340) 832 CHAR-
ACTER

4 CAXTM X-PARTITION GCM FUNCTION DUMMY LOAD OF XTS

MISCELLANEOUS PHASES FOR UNATTENDED NODE

(344) 836 CHAR-
ACTER

4 CAXH X-PARTITION HEARTBEAT RTN

(348) 840 CHAR-
ACTER

4 CATQM SUPP. WAIT FOR RUN SUBQUEUE

(34C) 844 CHAR-
ACTER

4 CATVM SUPPORT TIME INTERVAL

 ..11 .1.1 CANM "(*-CAFM)/4" NUMBER OF MODULES

SPOOL MANAGEMENT (OPTIONAL)

(350) 848 CHAR-
ACTER

4 CASF SPOOL MANAGER

ACCOUNTING SUPPORT (OPTIONAL)
FOR THE ACCOUNTING OPTION, UPDATED BY IPW$$I1 EITHER FOR
C-K-D OR FBA.

(354) 852 CHAR-
ACTER

4 CAPA PUT ACCOUNT RTN (PF - FBA)

(358) 856 CHAR-
ACTER

4 CAGA GET ACCOUNT RTN (GF - FBA)

(35C) 860 CHAR-
ACTER

4 CASA PACCOUNT ROUTINE (SF - FBA)

(360) 864 CHAR-
ACTER

4 CABA BUILD ACCOUNT RECORD RTN

 1.. CAAM "(*-CAPA)/4" NUMBER OF ACCOUNT MODULES

SOURCE STATEMENT LIBRARY INCLUSION (OPTIONAL)

(364) 868 CHAR-
ACTER

4 CASL GET SLB STATEMENT

REMOTE JOB ENTRY - RJE,BSC (OPTIONAL)

(368) 872 CHAR-
ACTER

4 CATM BSC LINE MANAGER ADDRESS

(36C) 876 CHAR-
ACTER

4 CABR BSC RJE READER

(370) 880 CHAR-
ACTER

4 CABW BSC RJE WRITER

 11 CANB "(*-CATM)/4" NUMBER OF RJE,BSC MODULES

REMOTE JOB ENTRY - RJE,SNA (OPTIONAL)

(374) 884 CHAR-
ACTER

4 CAS0 SNA MANAGER - SN

(378) 888 CHAR-
ACTER

4 CAS3 MESSAGE PROCESSOR - MP

(37C) 892 CHAR-
ACTER

4 CAS5 INBOUND PROCESSOR - IB

(380) 896 CHAR-
ACTER

4 CAS6 OUTBOUND PROCESSOR - OB

(384) 900 CHAR-
ACTER

4 CAS7 VTAM EXIT MODULE - VE

(388) 904 CHAR-
ACTER

4 CAS8 LOGON PROCESSOR(1) - LH

(38C) 908 CHAR-
ACTER

4 CAS2 LOGOFF PROCESSOR - LF

(390) 912 CHAR-
ACTER

4 CAS9 LOGON PROCESSOR(2) - LN

500 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(394) 916 CHAR-
ACTER

4 CAS10 OUTBOUND COMPACTION - OC

 1..1 CANS "(*-CAS0)/4" NUMBER OF SNA MODULES

SHARED SPOOLING FEATURE (OPTIONAL)

(398) 920 CHAR-
ACTER

4 CATT TIMER TASK MODULE

 .1.. 1... CANU "(*-CAFM)/4" NUMBER OF POWER MODULES WITHOUT
RDR EXIT

READER EXIT (OPTIONAL)

(39C) 924 CHAR-
ACTER

4 CARE RDREXIT ADDRESS

OUTPUT EXIT (OPTIONAL)

(3A0) 928 CHAR-
ACTER

4 CAOEX OUTPUT EXIT ADDRESS

TRACE FACILITY (OPTIONAL)

(3A4) 932 ADDRESS 4 CATC ADDR OF TRACE FACILITY MOD

 TRACING FACILITY

(3A8) 936 SIGNED 4 CATCS (0) TRACE CONTROL/STATE
(3A8) 936 BITSTRING 2 CATCCT (0) TRACE CONTROL (VERB)
(3A8) 936 BITSTRING 1 CATCCT1 TRACE CONTROL BYTES 1

 1... CATCCSIM "X'80'" ..STOP SHUTDOWN: IMMED +
 .1.. CATCCIMC "X'40'" .. " DUE TO PSTOP CMND * @D52TDSW
 ...1 CATCCIMI "X'10'" .. " DUE TO INTERN ERR * @D52TDSW
 1... CATCCSPE "X'08'" ..STOP PEND *
 1.. CATCCSOJ "X'04'" ..STOP EOJ *
 1. CATCCSPA "X'02'" ..STOP PAUSE: PSTOP CMD *
 1 CATCCSON "X'01'" ..STOP PAUSE: ONCE BUF FUL+
 ..1. CATCCIMD "X'20'" ..STOP PAUSE: IDUMP ERR * * = ALREADY PROC-

ESSED INDICATOR + = INDICATED BEFORE PROC-
ESSING

(3A9) 937 BITSTRING 1 CATCCT2 TRACE CONTROL BYTE 2
 1... CATCC2QB "X'80'" ..QUIESCE BUFFERS
 .1.. CATCCION "X'40'" ..STOP ONCE BUF FULL *

(3AA) 938 BITSTRING 1 UNUSED
(3AB) 939 BITSTRING 1 CATCST TRACE STATE INDICATOR (TESTED BY 'CLI' INST)

 1... 1111 CATCSSTP "X'8F'" ..TRACE STOPPING (SEE ABOVE)
 111. CATCSRUN "X'0E'" ..TRACE RUNNING ENABLED
 11.1 CATCSRUD "X'0D'" ..TRACE RUNNING DISABLED
 1... 1.11 CATCSQBU "X'8B'" ..TRACE QUIESCING BUFFERS
 1... 1..1 CATCSQID "X'89'" ..TRACE QUIESCING IDUMP
 111 CATCSINB "X'07'" ..TRACE RESETING BUFFERS
 1.1 CATCSINI "X'05'" ..TRACE INITIAL(IZING)/PAUSE
 1... ..11 CATCSPRS "X'83'" ..TRACE PREPARED + STOPPING
 11 CATCSPRE "X'03'" ..TRACE PREPARED
 1. CATCSSTR "X'02'" ..TRACE STARTED
 1 CATCSDOR "X'01'" ..TRACE DORMANT (STOPPED)
 CATCSDWN "X'00'" ..TRACE DOWN (NEVER STARTED)

(3AC) 940 SIGNED 4 (0) TRACE CONFIGURATION/MODE
(3AC) 940 BITSTRING 1 CATCFIG (0)
(3AC) 940 BITSTRING 1 CATCFIG1

 1... CATCFBWR "X'80'" ..TRACE BUFFERING WRAPPED
 .1.. CATCFBID "X'40'" ..TRACE BUFFERING IDUMP
 ..1. CATCFBON "X'20'" ..TRACE BUFFERING ONCE
 ...1 CATCFBUR "X'10'" ..TRACE BUF REAL (VIRT=OFF)
 1... CATCFBPR "X'08'" ..TRACE BUFFERING PSEUDO REAL (NO PG FLT

HANDL'G>>FUTURE<<
 1. CATCFLOD "X'02'" ..TRACE PHASES LOADED
 1 CATCFTVD "X'01'" ..TRACE TABLE VALID

(3AD) 941 BITSTRING 1 CATCFIG2
 1... CATCF2WM "X'80'" ..ISSUE WRAP BUF FULL MSG

 Chapter 5. Storage Layout and Data Areas 501

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 .1.. CATCF2ST "X'40'" ..MAINTAIN TRACE STATISTICS
 ..1. CATCF2XC "X'20'" ..ACTIVATE XPCC RCV/RP TRACE

(3AE) 942 BITSTRING 2 UNUSED
(3B0) 944 SIGNED 4 (0) MISCELLANEOUS
(3B0) 944 ADDRESS 4 CATCCB ADDR OF CONTROL BLOCK(TRCB)
(3B4) 948 ADDRESS 4 USUSED
(3B8) 952 ADDRESS 4 CATCSELT ADDR OF SELECTION TABLE
(3BC) 956 ADDRESS 4 CATCBUF1 BUFFER 1 ADDRESS
(3C0) 960 ADDRESS 4 CATCBUN1 BUFFER 1 APPROX NEXT ENTRY
(3C4) 964 ADDRESS 4 CATCBUF2 BUFFER 2 ADDRESS
(3C8) 968 ADDRESS 4 CATCBUN2 BUFFER 2 APPROX NEXT ENTRY
(3CC) 972 ADDRESS 4 CATCBUF3 (BUFFER 3 ADDRESS)
(3D0) 976 ADDRESS 4 CATCBUN3 (BUFFER 3 NEXT ENTRY)
(3D4) 980 SIGNED 2 CATCSELZ SIZE OF SELECTION TBL AREA
(3D6) 982 SIGNED 2 CATCMODZ SIZE OF MODULE PFIXED AREA
(3D8) 984 ADDRESS 4 CATCCMLK TRACE COMMAND LOCKWORD:

 X'80000000' ..RESOURCE 'LIVE' BIT
 X'00FFFFFF' ..LAST USER'S ADDRESS (GATES ALL
TRACE COMMANDS EXCEPT "PSTOP IMMEDIATE")

(3DC) 988 ADDRESS 4 (4) UNUSED
(3DC) 988 BITSTRING CATCTBLN "X'1400'" MIN SIZE OF TRACE SELEC TBL
(3DC) 988 BITSTRING CATCLOAD "X'4800'+CATCTBLN" SIZE OF TRACE IPW$$TC +

SELECTION TBL IPWSTBL FOR INIT CHECK
 ...1 .11. CATCENTR "X'16'" IPW$$TC ENTRY DISP: TRACING
 1... CATCRTND "X'08'" IPW$$TC TRACING RETURN TO CALLER DISP I.E.

RETURN R4 + DISP
 ..11 CATCVER "X'30'" IPW$$TC VER/MOD LOCATION
 ...1 ...1 CATCSLVM "X'11'" SELECTION TABLE VER/MOD LOC

LENGTH OF NUCLEUS

(3EC) 1004 SIGNED 4 CANULN LENGTH OF NUCLEUS
(3F0) 1008 ADDRESS 4 CAEXTAB ADDRESS OF EXIT DATA TABLE
(3F4) 1012 ADDRESS 4 CAFCTAB ADDRESS OF FCB TABLE

 MISCELLANEOUS

(3F8) 1016 ADDRESS 4 CAPFCF ADDR(CURRENT PAGE FAULT REQ)
(3FC) 1020 ADDRESS 4 CANUCS ADDR(NUCS 15C DY.....)

502 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

SERVICE ROUTINE BRANCH TABLE
THE FOLLOWING TABLE IS USED TO ESTABLISH THE ENTRY POINTS
OF THE VSE/POWER TASK MANAGEMENT ROUTINE CONTAINED IN THE
VSE/POWER NUCLEUS PHASE. SINCE ALL SERVICES HAVE DIRECT
ADDRESSABILITY BY MEANS OF REG. 10 THE TABLE CONSISTS OF
A SET OF BRANCH INSTRUCTIONS.
EACH VSE/POWER TASK MANAGEMENT SERVICE MACRO INSTRUCTION
GENERATES A BRANCH AND LINK TO THE APPROPRIATE ENTRY
WITHIN THIS BRANCH TABLE. TASK MANAGEMENT SERVICES
HAVE NO ADDRESSABILITY INTO THE R9 AND R8 BASE
REGISTER AREA OF IPW$$NU!
THE FOLLOWING BRANCH TABLE ALLOWS NUCLEUS SERVICE ROUTINES
TO RESIDE OUTSIDE THE FIRST 4K OF THE NUCLEUS AS ADDRESSED
VIA REGISTER 10. THESE ROUTINES (IF CALLED FROM OUTSIDE
THE NUCLEUS) WILL SAVE REGISTER 9 IN THE FIELD 'TC09'
AND REGISTER 8 IN FIELD TC08 OF THE CALLER'S TCB AND
WILL SET UP REGISTER 9,8 AS THE SECOND AND THIRD BASE
REGISTER FOR THE VSE/POWER NUCLEUS. UPON EXIT FROM
NUCLEUS, R9 AND R8 ARE AGAIN RESTORED FOR TASK USE.
WHEN CALLED FROM WITHIN THE NUCLEUS, REGISTER 9 AND 8
ARE NEITHER SAVED NOR RELOADED AT EXIT, BECAUSE THEY
CONTAIN ALREADY THE CORRECT BASE ADDRESSES. THIS
DETERMINATION IS MADE BASED ON THE LINK REGISTER
(R0, OR R2). IF THE LINK IS VIA BRANCH AND LINK
THEN THE HIGH-ORDER BYTE OF THE LINK REGISTER IS NOT ZERO.
THE VSE/POWER MACROS EXPAND TO BRANCH AND LINK FOR
CALLS FROM OUTSIDE NUCLEUS. THE GLOBAL '&NUSA' IS SET
ON NUCLEUS ASSEMBLY AND THE VSE/POWER NUCLEUS CALLS
THEN EXPAND TO SET LINK REGISTER VIA 'LOAD ADDRESS'
INSTRUCTION. THIS INSURES THAT THE HIGH-ORDER
BYTE OF THE LINK REGISTER IS ZERO, THEREBY GIVING US
A SWITCH BY WHICH TO DETERMINE FROM WHERE WE WERE CALLED.
THE ADDRESS CONSTANTS ARE RELOCATED BY THE VSE LOADER.

(410) 1040 SIGNED 4 (0) ALIGNMENT
(414) 1044 ADDRESS 4 RESERVE RESOURCE
(41C) 1052 ADDRESS 4 RELEASE RESOURCE
(424) 1060 ADDRESS 4 RESERVE WORK SPACE
(42C) 1068 ADDRESS 4 RELEASE WORK SPACE
(434) 1076 ADDRESS 4 MESSAGE SERVICE LOCAL
(43C) 1084 ADDRESS 4 MESSAGE SERVICE REMOTE
(444) 1092 ADDRESS 4 TIMER INTERVAL SERVICE RTN
(44C) 1100 ADDRESS 4 NODAL MESSAGE SERVICE RTN
(454) 1108 ADDRESS 4 DISK SERVICE
(45C) 1116 ADDRESS 4 NOTIFY MESSAGE SERVICE
(464) 1124 ADDRESS 4 TAPE SERVICE
(46C) 1132 ADDRESS 4 TIMER SERVICE
(474) 1140 ADDRESS 4 VALIDATE DATA AREA ADDRESS
(47C) 1148 ADDRESS 4 RETRIEVE MESSAGE TEXT
(484) 1156 ADDRESS 4 RESERVE VIRTUAL STORAGE
(48C) 1164 ADDRESS 4 RELEASE VIRTUAL STORAGE
(494) 1172 ADDRESS 4 UNCHAIN ELEMENT
(49C) 1180 ADDRESS 4 SET REMOTE MASK ROUTINE
(4A4) 1188 ADDRESS 4 GET TRACE ENTRY ROUTINE
(4AC) 1196 ADDRESS 4 QUEUE FILE SERVER
(4BC) 1212 ADDRESS 4 (3) RESERVED FOR TRACE FACILITY
(4CC) 1228 ADDRESS 4 NP/PU MODE SWITCH SERVICE
(4D4) 1236 ADDRESS 4 DOM MESSAGE SERVICE

 STATISTICAL INFORMATION
THE FOLLOWING FIELDS ARE USED TO MAINTAIN THE STATISTICAL
INFORMATION FOR INCORPORATION IN THE STATUS REPORT PRODUCED
AT SHUT-DOWN TIME.

(4D8) 1240 SIGNED 2 NRRE HIGHEST BSC REMID
(4DA) 1242 SIGNED 2 NRLI NUMBER OF BSC LINES

 Chapter 5. Storage Layout and Data Areas 503

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(4DC) 1244 SIGNED 4 NRTR TOTAL NR OF TRACKS DATA FILE
(4DC) 1244 SIGNED 4 NBLK TOTAL NR OF BLOCKS
(4E0) 1248 SIGNED 4 NRTW TIMES WAITING FOR REAL STORAGE
(4E4) 1252 SIGNED 4 NRTV TIMES WAITING FOR VIRT.STORG
(4E8) 1256 SIGNED 4 NRPG TOTAL NR OF PAGES ALLOCATED
(4EC) 1260 SIGNED 4 NRPC CURRENT NR OF PAGES ALLOCATED
(4F0) 1264 SIGNED 4 NRPM MAXIMUM NR OF PAGES ALLOCATED
(4F4) 1268 SIGNED 4 NRTC CURRENT NR OF TASKS
(4F8) 1272 SIGNED 4 NRTH MAXIMUM NR OF TASKS
(4FC) 1276 SIGNED 4 NRSET PRESENT SESSION START TIME
(500) 1280 CHAR-

ACTER
8 NRSED PRESENT SESSION START DATE

(508) 1288 SIGNED 2 NRSVA SYSTEM GETVIS STORAGE
(50A) 1290 CHAR-

ACTER
2 NRCEN CENTURY OF PRESENT SESSION

(50C) 1292 ADDRESS 2 NRMSAS MAX. NO.SAS TASKS ALLOWED,OVERWRITE BY 'PVARY
MAXSAS'

(50E) 1294 SIGNED 2 NRCSAS CURR.NO.SAS TASKS ACTIVE
(510) 1296 ADDRESS 4 NRSASDOM DOM-ID FOR MSG 1Q3JA

 MISCELLANEOUS DEFINITIONS
THE FOLLOWING 2 WORDS ARE USED TO IDENTITY THE SIZE OF
WORKSPACE REQUIRED TO ACCOMODATE PHYSICAL AND LOGICAL

 DATA AREAS.

(514) 1300 SIGNED 4 CABLBF PHYSICAL DATA BUFFER SIZE
(518) 1304 SIGNED 4 CABLDB LOGICAL DATA BUFFER SIZE
(51C) 1308 ADDRESS 4 CAOPDE ADDRESS OF 1ST OPDE IF ANY
(520) 1312 ADDRESS 4 CATTRA ADDRESS OF TASK TRACE AREA
(524) 1316 CHAR-

ACTER
8 CAMPWD ENC/DEC SYSDATE

RJE,BSC CONTROL BLOCK ADDRESSES

(52C) 1324 ADDRESS 4 CALC FIRST LINE CONTROL BLOCK ADDRESS
(530) 1328 ADDRESS 4 CART BSC REMOTE TABLE ADDRESS
(534) 1332 ADDRESS 4 CALT BSC LINE TABLE ADDRESS

DEBUG SWITCH BYTE
SET NORUN SWITCH BYTE

VSE/POWER PHASE IPW$$I1 COPIES THE UPSI BYTE INTO THE CAT
TO MAKE IT EASY ADDRESSABLE FOR EVERY VSE/POWER ROUTINE.
ACTIVATION OF SET NORUN=YES WITH VSE JCL CARD
// UPSI 1 IN VSE/POWER STARTUP DECK OR BY AR

 COMMAND PAUSE.

(538) 1336 BITSTRING 1 CAUP COPY OF UPSI BYTE (P.COMRG)
 1... CAU1 "X'80'" SET NORUN=YES ACTIVE

IF SWITCH IS ON SET NORUN=YES WILL BE ACTIVATED
 IN IPW$$I1

 .1.. CAU2 "X'40'" LOG PNET I/O ON CONSOLE

IF SWITCH IS ON, ALL I/OS FOR A PNET BSC LINE WHICH HAS
BEEN STARTED WITH THE TRACE OPTION, ARE DISPLAYED ON
THE SYSTEM CONSOLE.

 ..1. CAU3 "X'20'" DUMP TRACE AREA IF FILLED UP

IF SWITCH IS ON, THE TRACE AREA IS DUMPED TO THE SYSTEM
 DUMP FILE.

 ...1 CAU4 "X'10'" TRACE SAS & DST TASK EVENTS

IF SWITCH IS ON, ALL CROSS PARTITION EVENTS, SUCH
AS A RECEIVE OR REPLY ARE TRACED

 1... CAU5 "X'08'" LOAD INTERNAL TRACE FACILITY

504 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

IF SWITCH IS ON, THEN THE TRACE MODULE IPW$$TC AND THE
TRACE DEFAULT SELECTION TABLE IPW$TBL IS LOADED TO THE
PFIXED AREA ALLOWING THE INTERNAL TRACE FACILITY TO RUN.

(539) 1337 BITSTRING 1 CAMD HARDWARE MACHINE MODE
C' ' .. /370 MODE OR ESA MODE

 11.. .1.1 EMOD "X'C5'" .. E MODE
(53A) 1338 CHAR-

ACTER
6 CAVOL QUEUE FILE DISK VOLID

(540) 1344 ADDRESS 2 CABLK MAXIMUM DBLK VALUE
(542) 1346 BITSTRING 2 CACAS CURRENT ADDRESS SPACE ID
(544) 1348 ADDRESS 4 CASYMP ADDR FOR SYMPTOM RECORD
(548) 1352 CHAR-

ACTER
4 CAUNALST SYSLST ASSIGNMENT BEFORE POWER UNASSIGNS IT

(54C) 1356 ADDRESS 4 CAPRPBG 1ST BYTE OF PRIV ADDR SPACE
(550) 1360 CHAR-

ACTER
1 CAHOLDC SET 'HOLDCL=CLASS' VALUE

(551) 1361 ADDRESS 3 RESERVED FOR FUTURE USE
(554) 1364 ADDRESS 4 CASTXOC ADDR OF STXIT OC ROUTINE
(554) 1364 CATLN1 "*" END OF CONTROL PART OF CAT

 EQUATE STATEMENTS
THE FOLLOWING EQUATE STATEMENTS PROVIDE NECESSARY RESOLUTION
FOR UNDEFINED SYMBOLS WITHIN THE PADS DUMMY SECTION

 AI00 "0" ATTENTION INTERFACE
 PF00 "0" PAGE FAULT APPENDAGE
 HR00 "0" HOT READER ROUTINE
 CE00 "0" RJE CE ROUTINE
 SU00 "0" SVC 0 INTERFACE
 SU00ES "0" SVC 0 INTERFACE IN ESA MODE
 SU90 "0" SVC 90 INTERFACE
 EOJ00 "0" JCL END OF JOB EXIT ROUTINE
 SEG00 "0" IPWSEGM INTERFACE ROUTINE
 FTTR00 "0" FULL TASK TRACE ROUTINE
 TI00 "0" INTERVAL TIMER ROUTINE
 STXOC000 "0" STXIT OC ROUTINE
 CMNDTAB "0" ADDRESS OF COMMAND TABLE
 CMND@SEL "0" ADDRESS OF COMMAND TABLE
 SCBD "0" STORAGE CONTROL BLOCK
 MMBD "0" MESSAGE CONTROL BLOCK
 TM10 "0" TASK MANAGEMENT
 TM30 "0" TASK MANAGEMENT
 TM40 "0" TASK MANAGEMENT
 TM50 "0" TASK MANAGEMENT
 TM55 "0" TASK MANAGEMENT
 TM60 "0" TASK MANAGEMENT
 TM80 "0" TASK MANAGEMENT
 TM90 "0" TASK MANAGEMENT
 TM20 "0" TASK MANAGEMENT
 TMB0 "0" TASK MANAGEMENT
 TMT0 "0" TASK MANAGEMENT
 TMTC "0" WAIT CONTROL BLOCK
 ITTC "0" INITIATOR TCB
 TM02 "0" TASK MANAGEMENT
 TA01 "0" ATTACH TASK
 TD01 "0" DETACH TASK
 TM01 "0" TASK SELECTION
 RM01 "0" RESERVE RESOURCE
 RM51 "0" RELEASE RESOURCE
 SM01 "0" RESERVE WORK SPACE
 SM51 "0" RELEASE WORK SPACE
 MM01 "0" MESSAGE MANAGEMENT LOCAL
 MM51 "0" MESSAGE MANAGEMENT REMOTE
 DM20 "0" DISK SERVICE
 TP20 "0" TAPE SERVICE

 Chapter 5. Storage Layout and Data Areas 505

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 TR01 "0" TIMER SERVICE
 VA01 "0" VALIDATE DATA AREA ADDRESS
 GM10 "0" RETRIEVE MESSAGE TEXT
 COM0 "0" COMMON R0 ENTRY POINT
 COM2 "0" COMMON R2 ENTRY POINT
 SR10 "0" SET REMOTE MASK ENTRY
 NS10 "0" NOTIFY MESSAGE SERVICE
 NM10 "0" NODAL MESSAGE SERVICE
 TS25 "0" TIMER INTERVAL SERVICE
 VS01 "0" RESERVE VIRTUAL STORAGE
 VS51 "0" RELEASE VIRTUAL STORAGE
 VS91 "0" UNCHAIN ELEMENT
 TZ10 "0" GET TRACE ENTRY
 QF10 "0" QUEUE FILE SERVER
 PFCF "0" CURRENT PAGE FAULT REQUEST
 MD10 "0" DOM MESSAGE SERVICE
 PN10 "0" NP/PU MODE SWITCH SERVICE
 CATCXX "0" TRACE FACILITY LBL FOR CATC
 VSCN2 "0" ADDRESS NUCS EYE CATCHER

 GENERAL CONSTANTS

(558) 1368 SIGNED 4 CF01
(55C) 1372 SIGNED 4 CF04
(560) 1376 SIGNED 4 CF08
(564) 1380 SIGNED 4 CF10
(568) 1384 SIGNED 4 CF24

 TRANSLATION TABLES
THE FOLLOWING TRANSLATION TABLE IS USED TO SCAN SEQUENCES
OF BLANK CHARACTERS FOR THE FIRST NON-BLANK CHARACTER.

(56C) 1388 BITSTRING 16 TRTB
(57C) 1404 BITSTRING 16
(58C) 1420 BITSTRING 16
(59C) 1436 BITSTRING 16
(5AC) 1452 BITSTRING 16
(5BC) 1468 BITSTRING 16
(5CC) 1484 BITSTRING 16
(5DC) 1500 BITSTRING 16
(5EC) 1516 BITSTRING 16
(5FC) 1532 BITSTRING 16
(60C) 1548 BITSTRING 16
(61C) 1564 BITSTRING 16
(62C) 1580 BITSTRING 16
(63C) 1596 BITSTRING 16
(64C) 1612 BITSTRING 16
(65C) 1628 BITSTRING 16

THE FOREGOING TABLE IS ALSO USED AS A SOURCE OF BLANK
CHARACTERS FOR VARIOUS PROGRAM PURPOSES.

(5AD) 1453 CHAR-
ACTER

128 BLNK (0) IDENTIFY BLANK SOURCE

THE FOLLOWING TRANSLATION TABLE IS USED TO SCAN SEQUENCES
OF NON-BLANK CHARACTERS FOR THE FIRST BLANK CHARACTER

(66C) 1644 BITSTRING 16 TRTC
(67C) 1660 BITSTRING 16
(68C) 1676 BITSTRING 16
(69C) 1692 BITSTRING 16
(6AC) 1708 BITSTRING 16
(6BC) 1724 BITSTRING 16
(6CC) 1740 BITSTRING 16
(6DC) 1756 BITSTRING 16
(6EC) 1772 BITSTRING 16
(6FC) 1788 BITSTRING 16
(70C) 1804 BITSTRING 16

506 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(71C) 1820 BITSTRING 16
(72C) 1836 BITSTRING 16
(73C) 1852 BITSTRING 16
(74C) 1868 BITSTRING 16
(75C) 1884 BITSTRING 16

THE FOREGOING TABLE IS ALSO USED AS A SOURCE OF ZERO
CHARACTERS FOR VARIOUS PROGRAM PURPOSES.

(6EC) 1772 CHAR-
ACTER

128 ZERO IDENTIFY ZERO SOURCE

REMOTE TERMINAL/WORKSTATION CONNECT TABLE
THE CONTENT OF THE FOLLOWING TABLE REPRESENTS THE REMOTE IS'S
OF ALL TERMINALS CURRENTLY LOGGED ON AT THIS SYSTEM. IT IS
USED AS A MASK FOR THE REMOTE TABLE OF THE DISK MANAGEMENT
BLOCK (DMB) TO SELECT ONLY THOSE REMOTE ID'S WHICH ARE
RELEVANT FOR THIS CPU.
EACH REMOTE ID IS REPRESENTED BY A BIT. THE BIT IS ON IF
THE TERMINAL/WORKSTATION IS LOGGED ON.

(76C) 1900 BITSTRING 1 RIDTAB (32) REMOTE ID TABLE (0-255)
(78C) 1932 BITSTRING 1 (32) SPACE RESERVED (256-511)
(7AC) 1964 ADDRESS 4 (12) RESERVED

How to Locate: Refer to Figure 151 on page 730 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 507

Data Set Control Block

The data set control block is created by the network receiver for each queue entry to be allocated. Its
contents are:

1. Spool control information
2. Queue entry characteristics

Bytes Label
Hex. of Field Description/Function
--
���-��F DSDESCR Storage descriptor
�1�-�13 DSNEXT Address next DSCB entry
�14-�2B DSTCDAST Data file status field
�14-�17 DSTCBDW � Relative DBLK number
�18-�1B DSTCBDV � Address logical data buffer
�1C-�1D � Data area length
�1E-�1F � Flag/Operation byte
�2�-�23 DSTCBBC � Residual block count
�24-�27 DSTCBPR � Previous record address
�28-�2B DSTCBAS � Address of Spool Environment Block
�2C-�37 DSTCQFST Queue file status fields
�2C-�2F DSTCBQW � Relative queue record number
�3�-�33 DSTCBQV � Queue space address
�34-�35 � Data area length
�36-�37 � Flag/Operation byte
�38-�6F DSQREC DSCB characteristics field
�38-�39 � Not used
�3A DSQRPY � Job priority
�3B DSQRQI � Queue record identifier
�3C DSQRDP � Disposition
�3D DSQRCL � Class
�3E DSQRNC � Number of copies
�3F-�42 DSQRFI � Forms ID
�43-�46 DSQRCP � Compaction table name
�47-�54 DSQR38�� � 38�� characteristics
�47-�4A DSQRFL � Forms-overlay identifier
�4B-�52 DSQRCG � 8 copy groups
�53 DSQRGI � Copy group index
�54 DSQRPS � Burst mode indicator
�55-�5C DSQRTN � Target node name
�5D-�64 DSQRTU � Target user ID
�65-�6C DSFCB � FCB name
�6D-�6F
�7�-�75 DSOPTB Output processing fields
�7�-�73 DSOPTBAD � Address of OPTB structure
�74-�75 DSOPTBLN � Length of OPTB structure

508 VSE Central Functions V7R1 VSE/POWER DRM

Compaction Table Block (CMPT)

Definition Macro: IPW$DVD CMPT=YES

The compaction table block is initialized in IPW$$LD2 whenever a valid Function Management Header 3 is
received. The compaction table is built using the master and nonmaster characters from the Function
Management Header 3.

Bytes Label
Hex. of Field Description/Function

���-113 CMPTDS Compaction Table Block
���-��F CMPTSD Storage descriptor (CMPT)
�1� CMPTMAST Number of master characters
�11-�13 Reserved for future use
�14-113 CMPTTAB1 Compaction Table

 Chapter 5. Storage Layout and Data Areas 509

Disk Management Block (DMB)

Definition Macro: IPW$DQC

The disk management block area is used to control access to the VSE/POWER queue and data file. It
consists of a set of areas which collectively describe the current state of the VSE/POWER queues. The
disk management block is initialized at VSE/POWER startup time (IPW$$I3) and located in the fixable
area.

The disk management block is divided into the following areas:

� Resource control fields
� Record control fields
� VSE/POWER communication area
� Auxiliary queue record area
� Master record area
� Master class table area.

The format of the disk management block is shown below.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

DISK MANAGEMENT BLOCK (DMB)

(0) 0 CHAR-
ACTER

16 QCSD SECTION DESCRIPTOR

(10) 16 BITSTRING 12 RESERVED
(1C) 28 SIGNED 4 QCLK LOCK WORD

 RECORD CONTROL FIELDS
THE FOLLOWING FIELDS CONTAIN THE INFORMATION USED TO READ
AND WRITE RECORDS TO AND FROM THE MASTER RECORD AREA,
THE AUXILARY QUEUE RECORD AREA AND THE QUEUE CONTROL AREA.

MASTER RECORD I/O REQUEST WORD

(20) 32 ADDRESS 4 QCMW REL NUMBER OF MASTER RECORD
(24) 36 ADDRESS 4 VIRT ADDRESS OF MASTER REC
(28) 40 ADDRESS 2 LENGTH AND OPERATION BYTES

AUXILIARY QUEUE RECORD I/O REQUEST WORD

(2C) 44 ADDRESS 4 QCQW REL NUMBER OF QUEUE RECORD
(30) 48 ADDRESS 4 VIRT ADDRESS OF AUX Q-REC
(34) 52 ADDRESS 2 LENGTH AND OPERATION BYTES

I/O REQUEST WORD FOR DATA FILE ACCESS

(38) 56 ADDRESS 4 QCDW REL NUMBER OF DATA BLOCK
(3C) 60 ADDRESS 4 VIRT ADDRESS OF SER
(40) 64 ADDRESS 2 LENGTH AND OPERATION BYTES
(44) 68 ADDRESS 4 QCADW CURR SLOT DBLK NUMBER
(48) 72 ADDRESS 4 QCADV VIRTUAL SLOT DBLK ADDRESS
(4C) 76 ADDRESS 2 LENGTH AND OPERATION BYTES
(50) 80 BITSTRING 1 QCAFLG FLAG BYTE

 1... QCAFWN "X'80'" .. ACTIVITY CHANGE, WRITE IT
 .1.. QCAFDR "X'40'" .. 1ST SLOT-DBLK IN STORAGE
 ..1. QCAFDW "X'20'" .. DO NOT WRITE BACK DBLK
 ...1 QCAFDS "X'10'" .. DELETE SLOT

(51) 81 BITSTRING 3 UNUSED
(54) 84 ADDRESS 4 QCAVIO ADDRESS OF VIORB
(54) 84 ADDRESS 4 QCAPART Q-FILE ADDR. IN PART. GETVIS

 VSE/POWER COMMUNICATION AREA

510 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(58) 88 CHAR-
ACTER

8 MRDY DATE (CURRENT SYSTEM FORMAT)

(60) 96 SIGNED 4 MRST VSE/POWER START TIME

OPTION SWITCH FIELDS
THE FOLLOWING SWITCH BYTES PRESERVE THE OPTIONS ESTABLISHED
BY THE VSE/POWER USER AT THE TIME AT WHICH HE GENERATED HIS
VERSION OF THE SYSTEM.

(64) 100 CHAR-
ACTER

1 MRSL SOURCE LIBRARY SWITCH
This byte contains a single alphabetic character representing
the source sublibrary to be searched.

(65) 101 CHAR-
ACTER

1 MRJA ACCOUNTING SWITCH
This byte contains a single alphabetic character The character
A indicates that VSE/POWER job accounting is required; a
blank character indicates that VSE/POWER accounting is not
required.

(66) 102 CHAR-
ACTER

1 MRPP PAUSE PUNCH SWITCH

(67) 103 CHAR-
ACTER

1 MRLG JOB LOGGING SWITCH

(68) 104 CHAR-
ACTER

1 UNUSED

(69) 105 BITSTRING 1 MROP GENERAL OPTION BYTE 1
 1... MRCP "X'80'" .. CLEAR PRINT AT EOJ
 .1.. MRMF "X'40'" .. MARK FORM FOR SEP PAGES
 ..1. MRNS "X'20'" .. NO SEP PAGES BTWN COPIES

 X'10' ..(USED IN QUEUE RECORD)
 X'08' .. RESERVED
 X'04' .. RESERVED

 1. MRCH "X'02'" .. CHANNEL 12 OPTION
 1 MRFD "X'01'" .. FEED OPTION 3540

(6A) 106 BITSTRING 2 UNUSED

STANDARD DEFAULT FIELDS
THE FOLLOWING FIELDS CONTAIN STANDARD VSE/POWER
DEFAULT VALUES USED IN CREATION OF NEW RECORDS.

(6C) 108 CHAR-
ACTER

8 MRNM DEFAULT JOB NAME
These 8 bytes contain the character string 'AUTONAME' used
as a default job name.

(74) 116 CHAR-
ACTER

1 MRCL DEFAULT CLASS ATTRIBUTE
This byte contains the alphabetic character A representing the
class attribute to be given by default to each RDR queue
entry created within VSE/POWER.

(75) 117 CHAR-
ACTER

1 MRPY DEFAULT PRIORITY ATTRIBUTE
This byte contains numeric character 3 which defines the pri-
ority attribute to be given by default to each queue entry
created by VSE/POWER.

(76) 118 CHAR-
ACTER

2 MRDYC CENTURY OF CURRENT DATE

MASTER LINE TABLE
The next 16-byte field contains the master line table, consisting of system default values used to analyze
space and skip operations during printer control carriage simulation.

(78) 120 CHAR-
ACTER

16 MRLT (0) LINE TABLE

(78) 120 SIGNED 2 RESERVED
(7A) 122 SIGNED 2 DEFAULT PAGE SIZE
(7C) 124 SIGNED 1 SKIP TO CHANNEL ONE
(7D) 125 SIGNED 1 SKIP TO CHANNEL TWO
(7E) 126 SIGNED 1 SKIP TO CHANNEL THREE
(7F) 127 SIGNED 1 SKIP TO CHANNEL FOUR
(80) 128 SIGNED 1 SKIP TO CHANNEL FIVE
(81) 129 SIGNED 1 SKIP TO CHANNEL SIX
(82) 130 SIGNED 1 SKIP TO CHANNEL SEVEN
(83) 131 SIGNED 1 SKIP TO CHANNEL EIGHT

 Chapter 5. Storage Layout and Data Areas 511

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(84) 132 SIGNED 1 SKIP TO CHANNEL NINE
(85) 133 SIGNED 1 SKIP TO CHANNEL TEN
(86) 134 SIGNED 1 SKIP TO CHANNEL ELEVEN
(87) 135 SIGNED 1 SKIP TO CHANNEL TWELVE

MASTER LIST VALUES
The next 16 bytes contain the master list values, which will be inser ted by default in list queue records,
unless overridden by a JECL LST statement. Values are set by IPW$$IP using those specified by user
during VSE/POWER generation (for example: JSEP=, RBS=, STDLINE=).

(88) 136 CHAR-
ACTER

16 MRLV (0) MASTER LIST VALUES

(88) 136 BITSTRING 1 LV#PERF NO. OF PERFORMATION LINES
(89) 137 BITSTRING 1 RESERVED
(8A) 138 BITSTRING 1 LVFLG FLAG BYTE

 1... LVSKIPIN "X'80'" ..SKIP TO CH1 INSERTION REQ.
(8B) 139 SIGNED 1 LVSP NUMBER OF SEPARATORS
(8C) 140 SIGNED 4 LVBS RECORDS BEFORE SEGMENTATION
(90) 144 SIGNED 4 LVBM RECORDS BEFORE MESSAGE
(94) 148 SIGNED 4 LVBN RECORDS BEFORE NEXT MESSAGE

MASTER PUNCH VALUES
The next 16 bytes contain the master punch values, which will be inserted by default in punch queue records,
unless overridden by a JECL PUN statement. Values set by IPW$$IP using those specified by user during
VSE/POWER generation (JSEP=, RBS=, STDCARD=).

(98) 152 CHAR-
ACTER

16 MRPV (0) MASTER PUNCH VALUES

(98) 152 SIGNED 3 RESERVED
(9B) 155 SIGNED 1 PVSP NUMBER OF SEPARATORS
(9C) 156 SIGNED 4 PVBS RECORDS BEFORE SEGMENTATION
(A0) 160 SIGNED 4 PVBM RECORDS BEFORE MESSAGE
(A4) 164 SIGNED 4 PVBN RECORDS BEFORE NEXT MESSAGE

TIMER TASK VALUES (SHARED SPOOLING)

(A8) 168 ADDRESS 4 MREB SHARED SPOOLING SUBTASK ECB
(AC) 172 CHAR-

ACTER
8 MRTI (0) TIMER INTERVAL VALUES

(AC) 172 SIGNED 2 MRT1 INTERVAL T1 (TIME SLICE)
(AE) 174 SIGNED 2 MRT2 INTERVAL T2
(B0) 176 SIGNED 2 MRT3 INTERVAL T3 (POLLING TIME)
(B2) 178 SIGNED 2 MRT4 INTERVAL T4
(B4) 180 BITSTRING 2 MRSMSK SHARED SPOOLING SYSID MASK
(B6) 182 BITSTRING 2 MRSNEG COMPLEMENT SYSID MASK
(B8) 184 BITSTRING 4 RESERVED
(BC) 188 BITSTRING 1 MRTFLG TIMER TASK FLAG

 1... MRTFDLIM "X'80'" .. RECALCULATE QCDLIM WHEN
DFILE EXTENSION FINISHED

(BD) 189 BITSTRING 1 MRSY SYS-ID OF OUR SYSTEM
(BE) 190 BITSTRING 1 MRSO SHARED SPOOLING OPTION BYTE
(BF) 191 BITSTRING 1 MRSO2 SHARED SPOOL. OPTION BYTE 2

 1... MRSO2T5 "X'80'" .. WAIT T5 OPTION FLAG

GENERATION DEFAULTS & SETTINGS

(C0) 192 SIGNED 4 QCDLIM DBLK GROUP LIMIT NUMBER
(C4) 196 SIGNED 4 QCQLIM QUEUE FILE LIMIT VALUE
(C8) 200 ADDRESS 4 QCTIME TIME WHEN MSG LAST ISSUED
(CC) 204 CHAR-

ACTER
8 QCMT MEMBER TYPE DEFAULT

(D4) 212 CHAR-
ACTER

4 QCJECL ALTERNATE JECL PREFIX

(D8) 216 SIGNED 2 QCOEXWA OUTPUT EXIT WORK AREA SIZE
(DA) 218 SIGNED 2 QCREXWA READER EXIT WORK AREA SIZE
(DC) 220 SIGNED 4 QCQUSES MAX Q-REC USED IN SESSION
(E0) 224 CHAR-

ACTER
8 QCMPWD MASTER PASSWORD

512 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(E8) 232 CHAR-
ACTER

8 MRSECN LOCAL SECURITY NODEID

(F0) 240 CHAR-
ACTER

1 MRSECAC SECURITY ACCESS CONTROL MODE

 11.. 1... MRSECOY C"Y"=SPOOL ACCESS PROT.ACTIVE
 11.1 .1.1 MRSECON "C'N'" WHERE 'N' MEANS SPOOL ACCESS PROTECT

(F1) 241 BITSTRING 3 UNUSED
(F4) 244 ADDRESS 4 QCDBUSES MAX. DBLK-GP'S IN SESS.
(F8) 248 BITSTRING 8 UNUSED

(100) 256 BITSTRING 128 RESERVED

AUXILIARY QUEUE RECORD AREA
Auxiliary queue record area. This area is required as work space for an additional queue record, used by the
various queue management functions. The body fields of the queue record contain information pertinent to
this particular queue entry and the user job which created it. The control fields of the queue record contain
information relating to the status of the queue record and to its position within the VSE/POWER queues. See
also the description of the Queue Record Area (QRA).

(180) 384 CHAR-
ACTER

368 QCQR (0) AUXILIARY QUEUE REC. AREA

(180) 384 CHAR-
ACTER

256 QCPT1 (0) QUEUE RECORD PART 1

(180) 384 CHAR-
ACTER

136 QCBF (0) BODY FIELDS

(180) 384 CHAR-
ACTER

8 QCDY DATE (CREATING SYST. FORMAT)

(188) 392 CHAR-
ACTER

35 QCSA (0) INTERNAL REFERENCE FIELD

(188) 392 CHAR-
ACTER

4 QCST OPERATION START TIME

(18C) 396 CHAR-
ACTER

4 QCET OPERATION END TIME

(190) 400 CHAR-
ACTER

16 QCUI USER INFORMATION

(1A0) 416 CHAR-
ACTER

8 QCNM JOB NAME

(1A8) 424 SIGNED 2 QCJNO JOB NUMBER
(1AA) 426 BITSTRING 1 QCQI QUEUE RECORD IDENTIFIER
(1AB) 427 BITSTRING 1 QCCN VSE/POWER CANCEL CODE
(1AC) 428 BITSTRING 1 QCRJ LINE IDENTIFIER
(1AC) 428 QCDT "QCRJ" DEVICE TYPE
(1AD) 429 CHAR-

ACTER
3 QCCU CHANNEL AND UNIT (LINE ADDRESS)

(1B0) 432 BITSTRING 1 QCFJ FROM TERMINAL IDENTIFIER
(1B1) 433 BITSTRING 1 QCTJ TO TERMINAL IDENTIFIER
(1B2) 434 CHAR-

ACTER
1 QCCL CLASS

(1B3) 435 CHAR-
ACTER

1 QCPY PRIORITY

(1B4) 436 SIGNED 4 QCNR RECORD COUNT
(1B8) 440 BITSTRING 1 QCPYSL PRIORITY - SAVED LOCAL
(1B9) 441 BITSTRING 1 QCUEX USER EXIT WORK BYTE, MUST NOT BE USED BY

POWER.
(1BA) 442 BITSTRING 1 QCSN JOB SUFFIX NUMBER

 1... QCSNLA "X'80'" .. LAST SEGMENT INDICATOR
(1BB) 443 SIGNED 1 QCNC NUMBER OF COPIES
(1BC) 444 CHAR-

ACTER
4 QCFI FORMS IDENTIFIER

(1C0) 448 SIGNED 4 QCCREC CHECKPOINT RECORD NUMBER
(1C4) 452 CHAR-

ACTER
2 QCDYC CENTURY OF CREATION DATE

(1C6) 454 ADDRESS 1 QCCCPY CHECKPOINT COPY NUMBER
(1C7) 455 BITSTRING 1 QCDGP0 DUE DATE GENERAL BYTE 0

 1... QCDG0X "X'80'" DUE DATE INFO EXISTS
 .1.. QCDG0W "X'40'" ENTRY QUEUED IN WFR-SQ

(1C8) 456 SIGNED 4 QCLC LINE/CARD COUNTER

 Chapter 5. Storage Layout and Data Areas 513

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(1CC) 460 SIGNED 4 QCRR RESTART PAGE COUNT
(1D0) 464 SIGNED 1 QCCR COPIES REMAINING
(1D1) 465 CHAR-

ACTER
1 QCDI NEW DISP OR PURGE/FLUSH IND

(1D2) 466 CHAR-
ACTER

1 QCDP DISPOSITION

(1D3) 467 SIGNED 1 QCSP NUMBER OF SEPARATORS
(1D4) 468 SIGNED 4 QCBS NUMBER OF RECORDS BEFORE SPLIT
(1D8) 472 SIGNED 4 QCBM MAXIMUM VALUE OF COUNT
(1DC) 476 SIGNED 4 QCBN ADDITIONAL COUNT VALUE
(1E0) 480 BITSTRING 2 QCER 3540 UNIT SPECIFICATION

FOR OUTPUT QUEUE ENTRIES FROM XW, THE ABOVE
FIELD IS USED TO SAVE THE PAGE LENGTH.

(1E2) 482 SIGNED 2 QCJ# SAVE JOB NUMBER FOR ACCNT
(1E4) 484 CHAR-

ACTER
4 QCCP COMPACTION TABLE NAME

3800 PRINTER CONTROL INFORMATION
OVERLAYED BY DUE DATE INFO (ONLY FOR RDR POSSIBLE)

(1E8) 488 CHAR-
ACTER

4 QCFL FORMS OVERLAY IDENTIFIER

(1EC) 492 BITSTRING 8 QCCG COPY GROUPS
(1F4) 500 BITSTRING 1 QCTC TRANSMISSION COUNT
(1F5) 501 BITSTRING 1 QCCI COPY GROUP INDEX
(1F6) 502 BITSTRING 1 QCPS PAPER STATUS

CONTINUATION OF GENERAL SECTION

(1F7) 503 BITSTRING 1 QCOP GENERAL OPTION BYTE 1
(1F8) 504 CHAR-

ACTER
8 QCPW PASSWORD

(200) 512 ADDRESS 2 QCOJ# ORIGINAL JOB NUMBER
(202) 514 CHAR-

ACTER
1 QCSID SYSID OF TARGET CPU

(203) 515 CHAR-
ACTER

1 QCODP ORIGINAL DISPOSITION

(204) 516 ADDRESS 2 QCRL MAX RECORD LENGTH
(206) 518 BITSTRING 1 QCRCFM RECORD FORMAT
(207) 519 BITSTRING 1 QCVOL Q-ENTRY LABELED TAPE FLAG

 1... QCVLAST "X'80'" .. LAST MULTI-VOLUME
"X'7F'" .. (VOLUME NUMBER)

THE MAX VOLUME NUMBER IS 126.
ANY VALUE OVER 126 MEANS GREATER OR

EQUAL 127.

 CONTROL SECTION
THE CONTROL PORTION OF THE QUEUE RECORD CONTAINS INFORMATION
RELATING TO THE STATUS OF THE QUEUE RECORD AND TO ITS
POSITION WITHIN THE VSE/POWER QUEUES.
NOTE: POFFLOAD LOAD/SELECT WILL COPY CERTAIN BYTES OF

THIS SECTION. OTHER BYTES ARE NOT MAINTAINED.

(208) 520 CHAR-
ACTER

48 QCCF (0) CONTROL FIELDS

(208) 520 CHAR-
ACTER

1 QCXS EXECUTION SWITCH
 C'X' ..ENTRY BEING PROCESSED

(209) 521 BITSTRING 1 RESERVED
(20A) 522 BITSTRING 1 QCRX RESTART FUNCTION INDEX
(20B) 523 BITSTRING 1 QCSY SYSTEM ID PROCESSING QR
(20C) 524 BITSTRING 1 QCS1 CONTROL FLAG BYTE 1
(20D) 525 BITSTRING 1 QCS2 CONTROL FLAG BYTE 2
(20E) 526 BITSTRING 1 QCS3 CONTROL FLAG BYTE 3
(20F) 527 BITSTRING 1 QCACN1 NON SHARED BROWSE COUNT OR SHARED SYS 1+2

BROWSE COUNT
(210) 528 ADDRESS 4 QCCRCT PUT CHECKPOINT REC NUMBER
(214) 532 ADDRESS 4 QCRBC CARDS/PAGES BEFORE CHKPT

514 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(218) 536 BITSTRING 4 QCAC39 SHARED SYSID 3-9 BROWSE CNT.
(21C) 540 BITSTRING 8 QCADD ADD 'STCK' STAMP
(224) 548 ADDRESS 4 QCQP PREVIOUS SET IN QUEUE
(228) 552 ADDRESS 4 QCQN NEXT SET IN QUEUE
(22C) 556 ADDRESS 4 QCDF 1ST DBLK NO OF 1ST DBLK GP
(230) 560 ADDRESS 4 QCLDF 1ST DBLK NO OF LAST DBLK GP
(234) 564 ADDRESS 4 QCNB NO OF DBLK GROUPS USED

EXTENSION OF THE BODY FIELDS

(238) 568 CHAR-
ACTER

72 QCB2 (0) BODY FIELDS EXTENSION

(238) 568 CHAR-
ACTER

8 QCTN TARGET NODE NAME

(240) 576 CHAR-
ACTER

8 QCTU TARGET USER ID

(248) 584 CHAR-
ACTER

8 QCON ORIGINATOR NODE NAME

(250) 592 CHAR-
ACTER

8 QCOU ORIGINATOR USER NAME

(258) 600 ADDRESS 4 QCWFRN PTR TO NEXT WFR SUBQ ENTRY

OVERLAY SECTION 1
(DIFFERENT USAGE FOR INPUT AND OUTPUT QUEUE ENTRIES)
USED FOR OUTPUT QUEUE ENTRIES

(25C) 604 CHAR-
ACTER

8 QCOUT1 (0) OUTPUT RELATED FIELD

(25C) 604 CHAR-
ACTER

8 QCDIST DISTRIBUTION CODE

USED FOR INPUT QUEUE ENTRIES

(25C) 604 CHAR-
ACTER

8 QCSECN SECURITY NODEID

CONTINUATION OF GENERAL SECTION

(264) 612 BITSTRING 1 QCOP2 GENERAL OPTION BYTE 2
 1... QCO2BT "X'80'" IGNORE BLANK TRUNCATION
 .1.. QCO2MSG "X'40'" ISSUE MESSAGE 1Q4DI
 ..1. QCO2LGNO "X'20'" LOG=NO SPECIFIED
 ...1 QCO2XXXX "X'10'" UNUSED
 1... QCO2QCM "X'08'" QUEUE COMPLETION MESSAGE
 1.. QCO2MR "X'04'" GCM R-MSG FOR PRELEASE
 1. QCO2MQ "X'02'" GCM R-MSG ACC. TO Q-RECORD

(265) 613 BITSTRING 1 QCFLGO FLAG BYTE FOR IN- & OUTPUT
 1... QCCKI "X'80'" .. CKP INFO EXISTS
 .1.. QCCKE "X'40'" .. CKP INFO NOT AVAILABLE
 ..1. QCSAN "X'20'" .. NOT SPOOL ACCESS PROTECTD

OVERLAY SECTION 2
(DIFFERENT USAGE FOR INPUT AND OUTPUT QUEUE ENTRIES)
USED FOR OUTPUT QUEUE ENTRIES

(266) 614 CHAR-
ACTER

18 QCOUT (0) OUTPUT RELATED FIELDS

(266) 614 BITSTRING 1 QCOTF1 OUTPUT FLAG BYTE 1
 1... QCOF1X80 "X'80'" UNUSED
 .1.. QCOF1X40 "X'40'" UNUSED
 ..1. QCOF1X20 "X'20'" UNUSED
 ...1 QCOF1X10 "X'10'" UNUSED
 1... QCOF1LM "X'08'" LINE-MODE STATE
 1.. QCOF1LMI "X'04'" LINE-MODE-IDM/IMM STATE
 1. QCOF1PM "X'02'" PAGE-MODE STATE
 1 QCOF1PM8 "X'01'" PAGE-MODE STATE

(267) 615 BITSTRING 1 RESERVED FOR FUTURE USE
(268) 616 SIGNED 4 QCPGN PAGE COUNT
(26C) 620 SIGNED 2 QCRLLM PRESERVE SPLDLREC PUT-APPEND
(26E) 622 SIGNED 2 RESERVED FOR FUTURE USE

 Chapter 5. Storage Layout and Data Areas 515

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(270) 624 BITSTRING 8 RESERVED FOR FUTURE USE

USED FOR INPUT QUEUE ENTRIES
USE 'DS' INSTRUCTION TO KEEP DEFAULT VALUES
OF ABOVE DEFINITIONS

(266) 614 CHAR-
ACTER

18 QCINP (0) INPUT RELATED FIELDS

(266) 614 BITSTRING 1 RESERVED FOR FUTURE USE
(267) 615 BITSTRING 17 QCMRIN (0) GCM R-MSG FOR PRELEASE
(267) 615 BITSTRING 1 QCMRSI SYSID FOR GCM R-MSG
(268) 616 CHAR-

ACTER
8 QCMRAP APPL FOR GCM R-MSG

(270) 624 CHAR-
ACTER

8 QCMRUS USER FOR GCM R-MSG

CONTINUATION OF GENERAL SECTION

(278) 632 CHAR-
ACTER

1 QCTDP TRANSMISSION DISPOSITION

(279) 633 BITSTRING 7 RESERVED FOR FUTURE USE

Q-RECORD PART 2

(280) 640 CHAR-
ACTER

112 QCPT2 (0) QUEUE RECORD PART 2

EXTENSION -A OF THE CONTROL SECTION
X'100' --> CONTROL SECTION PART 2 --> X'11F'

CLEARED BY IPW$RQS
THE CONTROL PORTION OF THE QUEUE RECORD CONTAINS INFORMATION
RELATING TO THE STATUS OF THE QUEUE RECORD AND TO ITS
POSITION WITHIN THE VSE/POWER QUEUES.

(280) 640 CHAR-
ACTER

32 QCC2 (0) CONTROL FIELDS EXTENSION-A

RESTART TO ACTIVE RECORD CONTROL AREA

(280) 640 ADDRESS 4 QCOTC ADDRESS OF OWNING TCB OF UPDATE OR CREATE
TASK

(284) 644 BITSTRING 12 QCCC (0) CUR. RECORD COUNTS MAINT'ED BY $$GD FOR
UPDATE/BROWSE BY $$PD FOR CREATE TASK

(284) 644 BITSTRING 4 QCCCNR INTERNAL RECORD COUNT
(288) 648 BITSTRING 4 QCCCLC DATA RECORD COUNT
(28C) 652 BITSTRING 4 QCCCPG PAGE COUNT (USED BY $$PD)
(290) 656 BITSTRING 16 RESERVED FOR FUTURE USE

EXTENSION -B OF THE BODY FIELDS
X'120' --> BODY FIELDS PART 3 --> X'16F'

(2A0) 672 CHAR-
ACTER

80 QCB3 (0) BODY FIELDS EXTENSION -B

(2A0) 672 BITSTRING 80 RESERVED FOR FUTURE USE
(2A0) 672 0 QCEND "*" END OF QUEUE RECORD

DUE DATE INFORMATION
OVERLAYS: 3800 PRINTER CONTROL INFORMATION

(1E8) 488 CHAR-
ACTER

15 QCDD (0) START OF INFO

(1E8) 488 BITSTRING 1 QCDGP1 GENERAL PURPOSE BYTE 1
 1... QCDG1R "X'80'" RERUN=NO SPECIFIED
 .1.. "X'40'" RESERVED
 ..1. "X'20'" RESERVED
 ...1 QCDG1F "X'10'" DUEFRQ SPECIFIED
 1... QCDG1T "X'08'" DAILY SPECIFIED
 1.. QCDG1W "X'04'" WEEKDAYS SPECIFIED
 1. QCDG1D "X'02'" DAYS WITHIN MONTH
 1 QCDG1M "X'01'" MONTHS SPECIFIED
 111. QCDG1C "QCDG1T+QCDG1W+QCDG1D" CYCLING INFO ?

(1E9) 489 BITSTRING 1 QCDGP2 GENERAL PURPOSE BYTE 2

516 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... QCDG2F "X'80'" 1ST TIME, NO NUMBER CHANGE
(1EA) 490 CHAR-

ACTER
6 QCDCY (0) START OF CYCLING INFO

(1EA) 490 BITSTRING 2 QCDMY MONTHS WITHIN YEAR LEFT ALIGNED: 80=JAN, 40=FEB,
20=MAR, ...

(1EC) 492 BITSTRING 4 QCDDM DAYS WITHIN MONTH LEFT ALIGNED: 80=1ST, 40=2ND,
20=3RD, ...

(1F0) 496 CHAR-
ACTER

6 QCDN (0) START OF NEXT DUE DATE PACKED DECIMAL WITHOUT
SIGN

(1F0) 496 CHAR-
ACTER

4 QCDNDT (0) NEXT DUE DATE (W/O TIME)

(1F0) 496 BITSTRING 2 QCDNY YEAR (1988-2087)
(1F2) 498 BITSTRING 1 QCDNM MONTH (1-12)
(1F3) 499 BITSTRING 1 QCDND DAY (1-31)
(1F4) 500 CHAR-

ACTER
2 QCDNT (0) START OF NEXT DUE TIME

(1F4) 500 BITSTRING 1 QCDNTH HOUR (0-23)
(1F5) 501 BITSTRING 1 QCDNTM MINUTES (0-59)
(1F6) 502 BITSTRING 1 QCDFQM MINUTES (0-59) OF DUEFRQ

 1111 QCDLEN "*-QCDD" LENGTH OF DUE DATE
(1EC) 492 BITSTRING 1 QCDDW WEEKDAYS

 1... QCDWMO "X'80'" MONDAY
 .1.. QCDWTU "X'40'" TUESDAY
 ..1. QCDWWE "X'20'" WEDNESDAY
 ...1 QCDWTH "X'10'" THURSDAY
 1... QCDWFR "X'08'" FRIDAY
 1.. QCDWSA "X'04'" SATURDAY
 1. QCDWSU "X'02'" SUNDAY

(1EA) 490 CHAR-
ACTER

2 QCDFT (0) START OF FIRST TIME

(1EA) 490 BITSTRING 1 QCDFTH HOUR (0-23)
(1EB) 491 BITSTRING 1 QCDFTM MINUTE (0-59)
(1EC) 492 BITSTRING 1 USED FOR WEEKDAYS
(1ED) 493 CHAR-

ACTER
2 QCDLT (0) START OF LAST TIME

(1ED) 493 BITSTRING 1 QCDLTH HOUR (0-23)
(1EE) 494 BITSTRING 1 QCDLTM MINUTE (0-59)
(1EF) 495 BITSTRING 1 QCDFQH HOURS (0-23) OF DUEFRQ

SOME DISPLACEMENTS FOR THE OLD VERSION OF THE
QUEUE RECORD, I.E. VERSION 5.1 AND PREVIOUS ONES

 .1.. .1.. QCOVNP "X'44'" PAGE NO, 2 BYTES ONLY

FIRST PART OF SPOOL ENVIRONMENT RECORD

(2F0) 752 BITSTRING 16 QCSER SPOOL ENVIRONMENT RECORD
(300) 768 BITSTRING 16 RESERVED FOR SER EXTENSION
(310) 784 BITSTRING 16 UNUSED
(310) 784 0 QCFLN "(*-QCSD)" LENGTH OF FIRST PART OF DMB

MASTER RECORD AREA
The master record is written as the last physical record within the queue file extent. During VSE/POWER
execution a copy of the master record is maintained in this area. Whenever this copy is updated a replace-
ment master record is at once written to the queue file so that, in the event of a failure of the system, warm
start information can be recovered from the direct access device in question.

(320) 800 SIGNED 4 QCMR (0) MASTER RECORD AREA
(320) 800 CHAR-

ACTER
4 MRVM QUEUE VERSION LEVEL

(324) 804 SIGNED 2 MRNO MASTER JOB NUMBER
(326) 806 SIGNED 2 MRUC USE-COUNT
(328) 808 BITSTRING 8 MRCODY DATE (CURR. SYS. FORMAT)

OF LAST VSE/POWER COLD START

QUEUE FILE INFORMATION

(330) 816 SIGNED 4 MRQECB EVENT CONTROL BLOCK
(334) 820 ADDRESS 4 MRQFRNO FIRST RECORD IN FREE QUEUE

 Chapter 5. Storage Layout and Data Areas 517

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(338) 824 SIGNED 4 MRQ#MAX TOTAL NO OF USABLE QUEUE REC
 1. NRQRO "2" NO OF OVERHEAD QUEUE REC'S

(33C) 828 SIGNED 4 MRQFREE NR OF FREE QUEUE RECORDS
(340) 832 SIGNED 4 MRQUSED MAXIMUM NO OF QUEUE REC USED
(344) 836 SIGNED 4 MRQRBAD NUMBER OF BAD QUEUE RECORDS
(348) 840 SIGNED 2 MRQRBLK TOTAL NO OF QUEUE REC BLOCKS
(34A) 842 SIGNED 2 MRQRBLN QUEUE RECORD BLOCK SIZE
(34C) 844 SIGNED 2 MRQRRCN NO QUEUE RECORDS PER BLOCK
(34E) 846 SIGNED 2 MRQRCSZ QUEUE REC COMPARTMENT SIZE
(350) 848 BITSTRING 4 MRQRDEL NUMBER OF DELAYED Q-RECORDS

POFFLOAD PICKUP FLAG (SHARED OR NON-SHARED QFILE)

(354) 852 BITSTRING 1 MRPKUP POFFLOAD PICKUP RUNNING IND
X'40'- RUNNING NON-SHARED
C'N' - RUNNING SHARED(SYSID)

(355) 853 BITSTRING 3 UNUSED
(358) 856 BITSTRING 8 UNUSED

DATA FILE INFORMATION

(360) 864 SIGNED 4 MRDB DATA BLOCK SIZE (DBLK)
(364) 868 SIGNED 4 MRDBGP DBLK GROUP SIZE
(368) 872 SIGNED 4 MRDBMAX NUMBER OF TOTAL DBLK GROUPS
(36C) 876 SIGNED 4 MRDBFRE NUMBER OF FREE DBLK GROUPS
(370) 880 SIGNED 4 MRDBUSE MAX NO OF DBLK GROUPS USED
(374) 884 SIGNED 4 MRDBBAD NUMBER OF BAD DBLK GROUPS
(378) 888 SIGNED 4 MRDECB EVENT CONTROL BLOCK
(37C) 892 BITSTRING 1 MR#E NO OF DATAFILE EXTENTS
(37D) 893 BITSTRING 1 MRDFLAG DATA FILE FLAG BYTE

 1... MRDBLKTR "X'80'" .. DBLKGP TRACE ENABLED
 .1.. MRDF2BIL "X'40'" .. MORE 2,147,483,647 DBLKS
 ..1. MRDFEXTP "X'20'" .. DFILE EXTENSION PLANNED
 ...1 MRDFEXTF "X'10'" .. DFILE EXTENSION FAILED

(37E) 894 BITSTRING 1 MRDEXTSY SYSID OF ADD. DFILE EXTENT FORMATTING SYSTEM
(37F) 895 BITSTRING 1 MRDFPUBC DATA FILE PUB DEV.TYPE CODE
(380) 896 BITSTRING 4 MRDBDEL NUMBER OF DELAYED DBLKGP'S
(384) 900 SIGNED 4 MRDBEMAX EXT. NUMBER OF TOTAL DBLKGPS

EXTENT SPECIFICATION TABLE
THE FOLLOWING TABLE DESCRIBES EACH DATA FILE EXTENT
BY ITS LOGICAL UNIT, START POINT (CKD TRACKS|FBA BLKS)
AND LENGTH (CKD TRACKS|FBA BLKS). THIS TABLE IS SET
IN IPW$$I4 AT DX20/DXF10 FOR COLD START OR EXTENSION

 WARMSTART.

(388) 904 BITSTRING 9 MRDFEXT
(32)

32 SLOTS, 9 BYTE PER EXTENT LOG.UNIT, START &
LENGTH

FREE DBLK GROUP SUBCHAINS
THE FOLLOWING TABLE CONSISTS OF 8 ENTRIES. EACH ENTRY
DESCRIBES A FREE DBLK GROUP SUBCHAIN.

(4A8) 1192 SIGNED 4 MR$1NO ADDR OF 1ST FREE DBLK GROUP
(4AC) 1196 SIGNED 4 MR$1CT NUMBER OF FREE DBLK GROUPS

 1... MR$1LEN "*-MR$1NO" LENGTH OF ONE ENTRY
(4B0) 1200 BITSTRING 8 (7) ENTRIES 2 - 8

 1... MRDBSUB "(*-MR$1NO)/MR$1LEN" NUMBER OF SUBCHAINS
(4E8) 1256 SIGNED 1 MRFMT#E NO. FORMATTED DFILE EXT'S
(4E9) 1257 BITSTRING 15 UNUSED

QUEUE CONTROL AREA INFORMATION USED BY SLOT MANAGER

(4F8) 1272 ADDRESS 2 QCASNGP NO OF DBLK GROUPS USED
(4FA) 1274 SIGNED 2 QCASNWS NO OF WAITING FOR WORK SLOTS
(4FC) 1276 BITSTRING 1 QCASSWI SWITCH BYTE

 .1.. QCASSEX "X'40'" ..QCA PRESENT
(4FD) 1277 BITSTRING 1 UNUSED
(4FE) 1278 BITSTRING 2 UNUSED
(500) 1280 ADDRESS 4 QCASDSA REL. NUMBER OF 1ST DBLK

518 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(504) 1284 BITSTRING 4 QCASSYS (0) CNTL INFO FOR ONE SYSTEM
(504) 1284 ADDRESS 2 QCASNOS NO OF ACTIVE SLOTS/SYSID
(506) 1286 BITSTRING 1 QCASFLG FLAG BYTE

 1... QCASFAC "X'80'" ..1ST SLOT-DBLK MODIFIED
(507) 1287 BITSTRING 1 RESERVED FOR FUTURE USE
(508) 1288 BITSTRING 4 (9) ENTRIES FOR SYSID 1 - 9
(52C) 1324 BITSTRING 4 SYSID = 10 FOR CKP SLOTS

 1.11 QCASNOE "(*-QCASSYS)/L'QCASSYS" NO OF ENTRIES OF QCASSYS

ACCOUNT FILE VALUES

(530) 1328 BITSTRING 8 MRAS LAST RECORD ADDRESS IJAFILE
(538) 1336 BITSTRING 2 MRSE SECTOR VALUES
(53A) 1338 BITSTRING 2 RESERVED FOR FUTURE USE
(53C) 1340 SIGNED 4 MRCF FREE SPACE IN CURRENT CI OR RESIDUAL CAP

CURRENT TRACK
(540) 1344 SIGNED 4 MRCC CURRENT RESIDUAL CAPACITY
(544) 1348 BITSTRING 12 UNUSED

MASTER CLASS TABLE AREA
THE FOLLOWING PART OF THE CONTROL BLOCK CONTAINS THE THREE
SYMMETRICAL CLASS TABLES WHICH DEFINE THE STATUS OF THE
VSE/POWER QUEUES. ONE TABLE IS MAINTAINED FOR READER
INPUT CLASSES, ONE FOR LIST OUTPUT CLASSES, AND ONE FOR
PUNCH OUTPUT CLASSES. EACH TABLE COMPRISES 37 ENTRIES,
WHERE ENTRY REPRESENTS A FOUR BYTE 'FIRST-IN-QUEUE'
AND A FOUR BYTE 'LAST-IN-QUEUE' RECORD NUMBER FOR THE

 FOLLOWING CLASSES:
X'FA' -> 1 INTERNAL USE, E.G. $SPLNNNN DISP. ENTRY
0 - 9 -> 10 NUMERIC CLASSES
A - Z -> 26 ALPHABETIC CLASSES

NOTE, THAT THE LEFTMOST (HIGH ORDER BIT) OF THE 'LAST-
IN-QUEUE' RECORD NUMBER IS USED AS 'ADD-TO-CLASS'
POST BIT, WHERE TASKS WAIT UPON BY THE IPW$WFQ MACRO.
THE XMIT QUEUE AREA WHICH FOLLOWS THE READER/LIST/PUNCH
CLASS AREA CONSISTS OF 2 ENTRIES, ONE FOR READER QUEUE
ENTRIES, AND ONE FOR OUTPUT (LIST/PUNCH) QUEUE ENTRIES.

(550) 1360 CHAR-
ACTER

888 QCCT (0) RDR/LST/PUN CLASS ANCHORS, WITHOUT THE 2 XMT
ANCHORS

(550) 1360 CHAR-
ACTER

296 CTRT (0) RDR CLASS AREA

(550) 1360 BITSTRING 88 RDR CLASS AREA - PART 1
(5A8) 1448 BITSTRING 208 RDR CLASS AREA - PART 2
(678) 1656 CHAR-

ACTER
296 CTLT (0) LST CLASS AREA

(678) 1656 BITSTRING 88 LST CLASS AREA - PART 1
(6D0) 1744 BITSTRING 208 LST CLASS AREA - PART 2
(7A0) 1952 CHAR-

ACTER
296 CTPT (0) PUN CLASS AREA

(7A0) 1952 BITSTRING 88 PUN CLASS AREA - PART 1
(7F8) 2040 BITSTRING 208 PUN CLASS AREA - PART 2
(8C8) 2248 BITSTRING 1 CTXT XMT QUEUE CLASS ANCHORS 1 ANCHOR FOR RDR

ENTRIES 1 ANCHOR FOR LST & PUN ENTR.
(8C8) 2248 0 QCCTLN "*-QCCT" LENGTH OF DISP. CLASS TABLE

THE FOLLOWING TABLES CONTAIN THE CLASS ANCHORS FOR
NON-DISPATCHABLE QUEUE ENTRIES IN THE RDR, LST, PUN AND
XMT QUEUE. THE TABLES ARE SYMMETRICAL TO THE DISPATCHABLE

 CLASS TABLES.

(8D8) 2264 BITSTRING 88 QCCTNDP NON-DISP. RDR QUEUE, PART 1
(930) 2352 BITSTRING 208 NON-DISP. RDR QUEUE, PART 2
(A00) 2560 BITSTRING 88 NON-DISP. LST QUEUE, PART 1
(A58) 2648 BITSTRING 208 NON-DISP. LST QUEUE, PART 2
(B28) 2856 BITSTRING 88 NON-DISP. PUN QUEUE, PART 1
(B80) 2944 BITSTRING 208 NON-DISP. PUN QUEUE, PART 2
(C50) 3152 BITSTRING 1 NON-DISP. XMT QUEUE

 Chapter 5. Storage Layout and Data Areas 519

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

WAIT FOR RUN SUBQUEUE INFO

(C60) 3168 ADDRESS 4 MRWFRPT PTR TO 1ST WFR SUBQUEUE ENT
(C64) 3172 BITSTRING 2 MRWFRRF REFRESH BITS FOR SYSID 1-9
(C66) 3174 BITSTRING 2 UNUSED

SHARED SPOOLING CONTROL INFORMATION

(C68) 3176 BITSTRING 1 SSID SYSTEM-ID OWNING Q-FILE
(C69) 3177 BITSTRING 1 SSF1 FLAG BYTE 1

 1... SSQS "X'80'" .. QUEUE FILE SHARED
 .1.. SSAS "X'40'" .. ACCOUNT FILE SHARED

(C6A) 3178 BITSTRING 1 SSF2 FLAG BYTE 2
(C6B) 3179 BITSTRING 1 SSAC SYSTEM-ID OWNING ACCT FILE
(C6C) 3180 BITSTRING 4 SSWK WORK TO DO ECB
(C70) 3184 BITSTRING 4 SSNW NO-WORK TO DO ECB
(C74) 3188 BITSTRING 10 SSCT SYS-ID BUCKET
(C7E) 3198 BITSTRING 80 SSCPT CPU-ID BUCKET
(CCE) 3278 BITSTRING 1 SSMSW MASTER SWITCH

 1... SSMQD "X'80'" .. QUEUE FILE DAMAGED
 .1.. SSMUC "X'40'" .. USE CORE COPY OF Q-FILE

(CCF) 3279 BITSTRING 9 UNUSED

SHARED REMOTE-ID TABLE
THE FOLLOWING TABLE INDICATES FOR EACH REMID OF A SHARED
CONFIGURATION IF OUTPUT IS AVAILABLE. AN INDICATION IS
SET IF THE REQUIRED REMOTE TERMINAL IS NOT ATTACHED TO THE
SYSTEM THAT PRODUCED THE OUTPUT. FOR EACH REMID STANDS A
SINGLE BIT, WHICH IS SET TO INDICATE THAT AT LEAST ONE
OUTPUT ENTRY IS ELIGIABLE TO BE PROCESSED BY THE SYSTEM
WITH THE GIVEN REMOTE TERMINAL.

(CD8) 3288 BITSTRING 32 SSRT REMOTE TABLE

SYSID CLASS TABLE
THE FOLLOWING TABLE INDICATES FOR EACH SYSID IF JOBS ARE IN
ONE OF THE VSE/POWER QUEUES.
EACH CLASS IN THE QUEUE IS REPRESENTED BY A BIT. IF THE
BIT IS ON, IT INDICATES THAT AT LEAST ONE JOB IS IN THE
CLASS QUEUE, ELIGIABLE TO BE PROCESSED BY THE SYSTEM
FOR THIS PARTICULAR SYSID.
ON THE OTHER SIDE THE 'GET NEXT QUEUE SET' FUNCTION TURNS
OFF THE BIT, WHEN IT DETECTS THAT THERE IS NO JOB IN THE
CLASS QUEUE, ELIGIABLE TO BE PROCESSED BY THE SYSTEM,
FOR THE GIVEN SYSID.

(CF8) 3320 CHAR-
ACTER

1 SSST ENTRY FOR SYSID '1'

(CF9) 3321 BITSTRING 5 SSRS RDR QUEUE ENTRY
(CFE) 3326 BITSTRING 5 SSLS LST QUEUE ENTRY
(D03) 3331 BITSTRING 5 SSPS PUN QUEUE ENTRY

 ...1 SSSL "*-SSST" LENGTH OF ONE ENTRY
(D08) 3336 CHAR-

ACTER
25 ENTRY FOR SYSID '2'

(D18) 3352 CHAR-
ACTER

25 ENTRY FOR SYSID '3'

(D28) 3368 CHAR-
ACTER

25 ENTRY FOR SYSID '4'

(D38) 3384 CHAR-
ACTER

25 ENTRY FOR SYSID '5'

(D48) 3400 CHAR-
ACTER

25 ENTRY FOR SYSID '6'

(D58) 3416 CHAR-
ACTER

25 ENTRY FOR SYSID '7'

(D68) 3432 CHAR-
ACTER

25 ENTRY FOR SYSID '8'

(D78) 3448 CHAR-
ACTER

25 ENTRY FOR SYSID '9'

520 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(D88) 3464 BITSTRING 8 UNUSED

 SECURITY NODEID(S)

(D90) 3472 CHAR-
ACTER

8 MRSECNNS NON-SHR'D WARMSTART SECNODE

THE FOLLOWING TABLE INDICATES FOR EACH SYSID THE
SECURITY NODEID (IF ANY) SPECIFIED FOR THE (SHARED)
CPU IN THE POWER GENERATION MACRO.

(D90) 3472 0 SSSECN "*"
(D98) 3480 CHAR-

ACTER
8 SECURITY NODEID FOR SYSID'1'

(DA0) 3488 CHAR-
ACTER

8 SECURITY NODEID FOR SYSID'2'

(DA8) 3496 CHAR-
ACTER

8 SECURITY NODEID FOR SYSID'3'

(DB0) 3504 CHAR-
ACTER

8 SECURITY NODEID FOR SYSID'4'

(DB8) 3512 CHAR-
ACTER

8 SECURITY NODEID FOR SYSID'5'

(DC0) 3520 CHAR-
ACTER

8 SECURITY NODEID FOR SYSID'6'

(DC8) 3528 CHAR-
ACTER

8 SECURITY NODEID FOR SYSID'7'

(DD0) 3536 CHAR-
ACTER

8 SECURITY NODEID FOR SYSID'8'

(DD8) 3544 CHAR-
ACTER

8 SECURITY NODEID FOR SYSID'9'

MASTER RECORD SPOOL ACCESS PROTECTION STORE
THE FOLLOWING TABLE INDICATES FOR A NON-SHARED SYSTEM
THE SPOOL ACCESS PROTECTION MODE.

(DE0) 3552 BITSTRING 1 MRSECACN NON-SHR'D SPOOL ACCESS PROT MODE

THE FOLLOWING TABLE INDICATES FOR EACH SYSID THE
SPOOL ACCESS PROTECTION MODE.F

(DE1) 3553 BITSTRING 1 MRSECACS SPOOL ACCESS PROT MODE SYSID'1'
(DE2) 3554 BITSTRING 1 SPOOL ACCESS PROT MODE SYSID'2'
(DE3) 3555 BITSTRING 1 SPOOL ACCESS PROT MODE SYSID'3'
(DE4) 3556 BITSTRING 1 SPOOL ACCESS PROT MODE SYSID'4'
(DE5) 3557 BITSTRING 1 SPOOL ACCESS PROT MODE SYSID'5'
(DE6) 3558 BITSTRING 1 SPOOL ACCESS PROT MODE SYSID'6'
(DE7) 3559 BITSTRING 1 SPOOL ACCESS PROT MODE SYSID'7'
(DE8) 3560 BITSTRING 1 SPOOL ACCESS PROT MODE SYSID'8'
(DE9) 3561 BITSTRING 1 SPOOL ACCESS PROT MODE SYSID'9'
(DEA) 3562 BITSTRING 6 UNUSED

DEFECT QUEUE RECORD BLOCK MAP

(DF0) 3568 BITSTRING 1 MRDQBMAP
(135)

DEFECT QUEUE REC BLOCK MAP, ONE BIT FOR EACH
OF THE 3125 QUEUE RECORD BLOCKS - (NOTE 100,000 :
32 = 3125)

(F77) 3959 BITSTRING 1 UNUSED

NETWORKING CONTROL INFORMATION

(F78) 3960 BITSTRING 8 MRNNEW NEW LOCAL NODE NAME
(F80) 3968 CHAR-

ACTER
9 MROQ (0) OWN NODE NAME AND QUALIFIER

(F80) 3968 CHAR-
ACTER

8 MRNN NODE NAME OF OUR SYSTEM

(F88) 3976 BITSTRING 1 MRNNQ NODE QUALIFIER
(F89) 3977 BITSTRING 7 UNUSED

GENERAL INFORMATION AND UNUSED AREA

(F90) 3984 ADDRESS 4 MRRFOFF OFFSET TO START REFRESH TBL.
(F94) 3988 BITSTRING 92 UNUSED

 Chapter 5. Storage Layout and Data Areas 521

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

NODE ATTACHED TABLE (NAT)

(FF0) 4080 CHAR-
ACTER

800 MNAT (0) 80 ENTRIES NAT

(FF0) 4080 BITSTRING 200 EACH ENTRY HAS 10 BYTES
(10B8) 4280 BITSTRING 200 IN LENGTH
(1180) 4480 BITSTRING 200
(1248) 4680 BITSTRING 1

 REFRESH TABLE
THE REMAINDER OF THE CONTROL BLOCK CONTAINS THE REFRESH
TABLE. ALTHOUGH ONLY REQUIRED FOR A SHARED SPOOLING
ENVIRONMENT, THE REFRESH TABLE IS ALWAYS APPENDED TO
THE MASTER RECORD, SO THAT WARM START IS POSSIBLE
BETWEEN NON-SHARED AND SHARED VSE/POWER SYSTEMS.
THE TABLE CONSISTS OF 2-BYTES ENTRIES, ONE FOR EACH
QUEUE RECORD BLOCK, PROVIDING SPACE FOR 3125 BLOCKS,
WHICH ARE REQUIRED FOR A MAXIMUM QUEUE FILE OF 100,000
QUEUE RECORDS (32 RECORDS RESIDING IN A BLOCK).
BY CORRESPONDING SYSID FLAG (1-9) BIT THE ENTRY INDICATES,
IF THE APPROPRIATE QUEUE RECORD BLOCK MUST BE REFRESHED
BY THE TIMER TASK (OF THE CORRESPONDING SYSID) BEFORE
REFERENCING ITS QUEUE RECORDS.

(1310) 4880 BITSTRING 1 MRRFTAB
(106)

REFRESH TABLE

 1. MRRFELN "2" .. REFR. TABLE ENTRY LENGTH
(1310) 4880 0 MRULN "(*-QCMR)" LENGTH OF USED MASTER REC.
(2B7A) 11130 0 MRTLN "(*-QCMR)" LENGTH OF TOTAL MASTER REC., MUST NOT

EXCEED 12288 BYTES I.E. X'3000' BYTES OF Q-BLK.

How to Locate: Refer to Figure 151 on page 730 in Chapter 6, “Diagnostic Aids.”

522 VSE Central Functions V7R1 VSE/POWER DRM

DSECTS for Accounting (A-FILE ON FBA)

Definition Macro: IPW$DJK

This macro maps 4 DSECTs:

� Sequential file header
� Control interval definition field (CIDF)
� Record definition field (RDF)
� I/O area for read device characteristics

The formats are as follows:

Bytes Label
Hex. of Field Description/Function

� Sequential File Header

��-�1 HEADBL Block descriptor. Contains length of
the physical block, including its own length.

�2-�3 Reserved
�4-�5 HEADRL Record descriptor. Contains length of

the logical record, including its own length
�6-�7 Reserved

� Control Interval Definition Field

��-�1 CIDFA Start address of the free space in the
 control interval
�2-�3 CIDFL Length of free space in the control interval

� Record Definition Field

�� RDFF Flags (always zero)
�1-�2 RDFL Contains the length of the corresponding record

� I/O-Area for Read Device Characteristics

�� Operation mode
�1 Features
�2 Device class
�3 Unit type
�4-�5 RDCBLOCK Physical record size
�6-�9 No. of blocks
�A-1F Reserved

 Chapter 5. Storage Layout and Data Areas 523

Dynamic Partition Control Block

Definition macro: IPW$DEF DPCB=YES

The dynamic partition control block (DPCB) is built during VSE/POWER initialization by IPW$$I7, provided
the system is operating in /370 or ESA mode. It is never released during VSE/POWER operation. Being
the main control block of the dynamic partition scheduling task (DPST) it contains a list of up to ten
pointers to the table of classes, for which the DPST will schedule jobs for execution in a dynamic partition.
The DPCB also contains the address of the currently active dynamic class table (DCLT) located in the
supervisor area.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

16 DPCBHD SECTION DESCRIPTOR

(10) BITSTRING 4 UNUSED
(14) ADDRESS 4 DPCBECB ECB USED BY DPST
(18) ADDRESS 4 DPCBECBL ECB USED WHEN DPCB LOCKED
(1C) ADDRESS 4 DPCBLW LOCK WORD
(20) CHAR-

ACTER
48 DPCPTLST (0) $WFM LIST OF ECB POINTERS

(20) ADDRESS 4 DPCATCEB TCEB ADDRESS OF DPST
(24) ADDRESS 4 DPCACLAS

(10)
UP TO TEN CLASS TABLE PTRS.

(4C) ADDRESS 4 DPCAEND LIST END INDICATOR
(50) CHAR-

ACTER
44 DPCPSUAR

(0)
POINTER SUSPENDED AREA

(50) ADDRESS 4 DPCACLSU
(11)

PTR. TO POSSIBLY SUSP. CLS.

(7C) CHAR-
ACTER

44 DPCPREAR
(0)

POINTER RE-ARRANGE AREA

(7C) ADDRESS 4 DPCACLRA
(11)

POINTERS TO CLASS TABLE

(A8) ADDRESS 4 DPCBACT ADDRESS OF ACTIVE DCLT
(AC) ADDRESS 4 DPCBDPCE ADDRESS OF DYN. PART. PCE
(B0) SIGNED 4 DPCBSAL SUCCESSFUL ALLOC. COUNT
(B4) SIGNED 4 DPCBFAL FAILING SPACE ALLOC. COUNT
(B8) SIGNED 4 DPCBFNP FAILING NO PARTITION COUNT
(BC) SIGNED 4 DPCBFSG FAILING SYSTEM GETV. COUNT
(C0) SIGNED 4 DPCBFPR FAILING POWER REAL COUNT
(C4) SIGNED 4 DPCBFPV FAILING POWER VIRT. COUNT
(C8) BITSTRING 24 DPCBTAL TIMER ELEMENT ALLOC MSG
(E0) BITSTRING 24 DPCBTNP TIMER ELEMENT NO PART. MSG
(F8) BITSTRING 24 DPCBTSG TIMER ELEMENT SYST. GETV.

(110) BITSTRING 24 DPCBTPR TIMER ELEMENT PWR REAL MSG
(128) BITSTRING 24 DPCBTPV TIMER ELEMENT PWR VIRT MSG
(140) BITSTRING 24 DPCBTRS TIMER ELEMENT FOR RESUME
(158) BITSTRING 24 DPCBTPG TIMER ELEMENT PFIXED S-GETV
(170) BITSTRING 1 DPCBFL1 DPCB FLAG BYTE 1

 1... DPC1ENDI "X'80'" CLASS BEEN ENABLED/DISABLED
 .1.. DPC1RESU "X'40'" RESUME SUSPENDED CLASS
 ..1. DPC1CHAN "X'20'" ENABLED CLASS MIGHT CHANGE
 ...1 DPC1CSFL "X'10'" PSTART DYN. PARTITION FAILS

(171) BITSTRING 3 UNUSED
(174) BITSTRING 4 UNUSED
(178) BITSTRING 24 DPCBTRO TIMER ELEMENT REAL RUN OUT
(190) BITSTRING 24 DPCBTVO TIMER ELEMENT VIRT. RUN OUT
(1A8) SIGNED 4 DPCBPUP NUMBER PART. 'UP' TILL $$XW

EXPRESSION DPCBLN "*-DPCBDS" LENGTH OF DPCB CTL. BLOCK

524 VSE Central Functions V7R1 VSE/POWER DRM

Execution Processor Work Area

Definition Macro: IPW$DEF XRWA=YES

The execution processor work area is reserved at execution reader/writer task initialization and used
during validation of CCW and data address to hold the partition/system information retrieved via the
EXTRACT macro.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 STRUC-
TURE

XRWDS ,

(0) 0 ADDRESS 4 XRWVPBA VIRTUAL PART. BEGIN ADDR.
(4) 4 ADDRESS 4 XRWVEND VIRT PART END (W/O GETVIS)
(8) 8 ADDRESS 4 XRWVPEA VIRTUAL PART END ADDRESS
(C) 12 ADDRESS 4 XRWRPBA REAL PART. BEGIN ADDRESS

(10) 16 ADDRESS 4 XRWRPEA REAL PARTITION END ADDRESS
 ...1 .1.. XRWPPALN "*-XRWDS" LENGTH FOR EXTRACT MACRO

(14) 20 SIGNED 4 XRWEXPA (5) EXTRACT MACRO PARM LIST
(28) 40 SIGNED 4 XRWSAV2 SAVE AREA R2
(2C) 44 SIGNED 4 XRWSAV3 SAVE AREA R3
(30) 48 BITSTRING 1 XRWFLG FLAG BYTE

 1... XRWFEX "X'80'" .. EXTRACT DONE
 .1.. XRWFST "X'40'" .. INITIAL ENTRY OF EX WRIT
 ..1. XRWSAN "X'20'" .. ENTRY NOT SPOOL ACCESS PROTECTED

(31) 49 BITSTRING 3 XRWTKP ADDR OF WAITING WRITER TASK
(34) 52 SIGNED 4 XRWTEMP TEMP WORKAREA
(38) 56 CHAR-

ACTER
8 XRWSID DEFAULT VSE SECURITY USERID

(40) 64 CHAR-
ACTER

8 XRWSPW DEFAULT VSE SECURITY PASSWD

(48) 72 CHAR-
ACTER

8 XRWSECN DEFAULT VSE SECURITY SECNODE

(50) 80 CHAR-
ACTER

8 XRWLTA LTA PHASE NAME

(58) 88 CHAR-
ACTER

8 UNUSED

(60) 96 CHAR-
ACTER

8 UNUSED

(68) 104 CHAR-
ACTER

8 UNUSED

(70) 112 CHAR-
ACTER

8 UNUSED

 .111 1... XRWLEN "*-XRWDS" LENGTH OF WORK AREA

 Chapter 5. Storage Layout and Data Areas 525

External Device Control Block (EDCB)

Definition Macro: IPW$DED

The external device control block (EDCB) is created by the VSE/POWER command processor when a
PSTART for an external device is given. The control block contains DDS and device-related information
used by the device service task. The EDCBs are chained off the master external device control block.

Bytes Hex. Label of Field Description/Function

00 EDCBDS Start of DSECT
00-0F EDCBHEAD Storage descriptor
10-17 EDCBDDSN Name of Device Driving System (DDS)
18-1B EDCBATCB Address of device service task TCB
1C-1F EDCBNEXT Address of next EDCB in chain
20-27 EDCBNAME Device name
28-67 EDCBLOGN Logical destination names, 8 bytes each
68-6B EDCBCLSS Class list
6C EDCBSTAT Status byte 1
 EDCBSTCC X'80' - connection completed
 EDCBSTDS X'40' - device started
 EDCBSTWW X'20' - Device waiting for work
 EDCBSTWR X'10' - Device waiting for reactivation
 EDCBSTSS X'08' - 'Stop device order' sent
 EDCBSTSU X'04' - 'Setup' in progress
 EDCBSTSR X'02' - 'Device stopped' signal received
 EDCBSTSL X'01' - 'Waiting for work' slot built
6D EDCBSTA2 Status byte 2
 EDCBS2SQ X'80' - 'output arrived' signal queued
 EDCBS2SO X'40' - 'start device' order sent
 EDCBS2PO X'20' - 'stop device' order sent
6E EDCBTCOD Termination code
 EDCBTTCE X'80' - PSTOP EOJ given
 EDCBTTCI X'40' - PSTOP IMM given
 EDCBTTCR X'20' - PSTOP RESTART given
 EDCBTTCK X'10' - PSTOP FORCE given
 EDCBTTCN X'08' - PEND given
6F EDCBQUID Processing queue identifier (L or P)
70-73 EDCBAORD Address of first order in queue, if any
74-77 Address of last order in queue, if any
78-7B EDCBWRMS Address of message, placing task operator bound
7C EDCBORTP Last sent order type
7D-87 Reserved for future use
88-9F EDCBDSTU Device owner information
88-8F EDCBAPPL Subsystem identifier of device owner
90-97 EDCBNODE Node name of device owner
98-9F EDCBUSER User id of device owner
A0-B7 EDCBDSTC Destination information of person who stopped device
A0-A7 EDCBSTAP Subsystem name of person stopping device
A8-AF EDCBSTNO Node name of person stopping device
B0-B7 EDCBSTUA User identifier of person stopping device

526 VSE Central Functions V7R1 VSE/POWER DRM

FCB Table (FCBCB)

Definition Macro: IPW$DEF FCTAB=YES

The FCB table is anchored in VSE/POWER's Control Address Table in field CAFCTAB. The table consists
of two sections. The first section describes the table header containing the section descriptor, a register
save area and the length of the . total FCB table including this first section. The second section provides
FCB related data, such as name of FCB, its line table presentation, the printer page size and the length of
the total table without section 1.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

16 FCBSD SECTION DESCRIPTOR

(10) SIGNED 4 FCBSAVR (4) REGISTER SAVE AREA
 ..1. FCBHDRL "*-FCBTDS" ..LENGTH OF HEADER

(20) CHAR-
ACTER

1 FCBDUM SPACE FOR 1 ENTRY

 ...1 111. FCBNUMT "30" ..# OF TABLE ENTRIES
 ...1 1.1. FCBENTL "L'FCBNAM+L'FCLTAB+L'FCPSIZ"..LENGTH OF ENTRY

EXPRESSION FCBTABL "(FCNUMT*FCENTL)+FCBHDRL" ..LENGTH OF TOTAL TAB.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

8 FCBNAM NAME OF FCB

(8) CHAR-
ACTER

16 FCLTAB CONVERTED LTAB

(18) SIGNED 2 FCPSIZ PAGE SIZE
 ...1 111. FCNUMT "30" ..NUMBER OF TABLE ENTRIES
 ...1 1.1. FCENTL "L'FCBNAM+L'FCLTAB+L'FCPSIZ"..LENGTH OF ENTRY

EXPRESSION FCTABL "FCNUMT*FCENTL" ..LENGTH OF TABLE

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 527

Function Management Header 3

Definition Macro: IPW$DVD

The DSECT is used to reference the fields of a PNET TP buffer which contains a Function Management
Header 3.

Bytes Label
Hex. of Field Description/Function

�� FMH3DS Start of Function Management 3
�� FMH3LN Length of header
�1 FMH3TY Type of header

FMH3TYP3 X'�3' - Header type 3
�2 FMH3FLG Flag byte

FMH3FLCO X'�2' - Compaction table follows
�3 FMH3MAST Number of master characters
�4 FMH3CMPT Start of compactable characters

528 VSE Central Functions V7R1 VSE/POWER DRM

Generation Table (GNB) for VSE/POWER

Definition Macro: IPW$DGN

The load routine required to load IPW$$I1 and a generation table with VSE/POWER default options are
supplied to the user cataloged in the system library together with all VSE/POWER phases. It is located in
the initialization-processor root phase.

Should the user require other than default options, a new generation table must be assembled, and cata-
loged to the system library.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

16 GNSD STORAGE DESCRIPTOR

(10) CHAR-
ACTER

4 GNVR VERSION/RELEASE/MOD LEVEL

(14) CHAR-
ACTER

1 GNMP1 MASTER PASSWORD

(15) BITSTRING 1 GNGFL GENERAL FLAG BYTE
 1... GNGQPART "X'80'" .. Q-FILE IN PART. GETVIS
 .1.. GNGJEPU "X'40'" .. JOBEXIT PARALLEL W-UNIT
 ..1. GNGOEPU "X'20'" .. OUTEXIT PARALLEL W-UNIT
 ...1 GNGNEPU "X'10'" .. NETEXIT PARALLEL W-UNIT
 1... GNGXEPU "X'08'" .. XMTEXIT PARALLEL W-UNIT

(16) BITSTRING 2 GNACI ACCOUNTING INFORMATION
BITSTRING GNACIA "B'1000000000000000'" ..AFP ACCOUNT RECORD
BITSTRING GNACIC "B'0100000000000000'" ..SAS CONNECT ACCNT RECORD
BITSTRING GNACIE "B'0010000000000000'" ..EXECUTION ACCNT RECORD
BITSTRING GNACIL "B'0001000000000000'" ..LIST ACCOUNT RECORD
BITSTRING GNACIM "B'0000100000000000'" ..PNET XMITTER ACCNT REC.
BITSTRING GNACIN "B'0000010000000000'" ..NETWORK ACCOUNT RECORD
BITSTRING GNACIP "B'0000001000000000'" ..PUNCH ACCOUNT RECORD
BITSTRING GNACIR "B'0000000100000000'" ..READER ACCOUNT RECORD

 1... GNACIS "B'0000000010000000'" ..RJE SNA ACCNT RECORD
 .1.. GNACIT "B'0000000001000000'" ..RJE BSC ACCNT RECORD
 ..1. GNACIV "B'0000000000100000'" ..PNET RECEIVER ACCNT REC.
 ...1 GNACIX "B'0000000000010000'" ..SAS OPERATION ACCNT REC.
 1... GNACIY "B'0000000000001000'" ..RED. SAS OPER. ACCNT REC
 1.. GNACI1 "B'0000000000000100'" ..RESERVED FOR FUTURE
 1. GNACI2 "B'0000000000000010'" ..RESERVED FOR FUTURE
 1 GNACI3 "B'0000000000000001'" ..RESERVED FOR FUTURE

(18) CHAR-
ACTER

8 GNSECNID SECURITY NODEID

(20) CHAR-
ACTER

1 GNSECAC Security Access Control Mode

(21) CHAR-
ACTER

23 UNUSED

(38) CHAR-
ACTER

1 UNUSED

(39) CHAR-
ACTER

1 GNMP2 MASTER PASSWORD

(3A) CHAR-
ACTER

1 GNMP3 MASTER PASSWORD

(3B) CHAR-
ACTER

1 GNMP4 MASTER PASSWORD

(3C) CHAR-
ACTER

4 GNPTEL XMTEXIT WORK AREA LENGTH

(40) CHAR-
ACTER

8 GNPT NAME OF XMTEXIT

(48) CHAR-
ACTER

8 GNOE OUTPUT EXIT PHASE NAME

 Chapter 5. Storage Layout and Data Areas 529

Offset
Hex

Type Len Name (Dim) Description

(50) CHAR-
ACTER

4 GNOEL OUTPUT EXIT WORK AREA SIZE

(54) CHAR-
ACTER

4 GNREL READER EXIT WORK AREA SIZE

(58) CHAR-
ACTER

4 GNPEL PNET EXIT WORK AREA SIZE

(5C) CHAR-
ACTER

4 GNJECL ALTERNATE JECL PREFIX

(60) CHAR-
ACTER

4 GNDB DBLK VALUE

(64) CHAR-
ACTER

2 GNDBNO DBLK GROUP VALUE

(66) CHAR-
ACTER

2 GNTL TABEL LENGTH(+BSC)

(68) CHAR-
ACTER

1 GNSL SUBLIB

(69) CHAR-
ACTER

1 GNJA ACCOUNT SWITCH
This byte contains a single alphabetic character; the character 'A' indi-
cates that VSE/POWER job accounting is required; a blank character
indicates that VSE/POWER accounting is not required.

(6A) CHAR-
ACTER

1 GNPP PAUSE PUNCH SWITCH

(6B) CHAR-
ACTER

1 GNLG LOG OPTION
This byte contains a single alphabetic character; the character 'L' indi-
cates that the JECL job statement is to be logged; a blank character
indicates the opposite.

(6C) CHAR-
ACTER

1 GNPY DEFAULT PRI

(6D) CHAR-
ACTER

1 GNNL NUMBER OF BSC LINES

(6E) CHAR-
ACTER

1 GNNR NUMBER OF BSC REMOTES

(6F) CHAR-
ACTER

1 GNSP SPOOL MGMT SPECIFICATION

(70) BITSTRING 1 GNOP OPTION BYTE
 1... GNCP "X'80'" .. CLEAR PRINT AT EOJ
 .1.. GNMF "X'40'" .. MARK FORM FOR SEP PAGES
 ..1. GNNS "X'20'" .. NO SEP PAGES BTWN COPIES

 X'10' (USED IN QUEUE RECORD)
 X'08' .. RESERVED FOR FUTURE USE
 X'04' .. RESERVED FOR FUTURE USE

 1. GNCH "X'02'" .. CHANNEL 12
 1 GNFD "X'01'" .. FEED FOR 3540

(71) CHAR-
ACTER

1 GNTS BSC TRACE AREA SIZE IN KB

(72) CHAR-
ACTER

1 GNMP5 MASTER PASSWORD

(73) CHAR-
ACTER

1 GNSPLIM SPLIM VALUE

(74) CHAR-
ACTER

8 GNTI TIMER INTERVALS

(7C) CHAR-
ACTER

1 GNSO SHARED SPOOLING OPTIONS

(7D) CHAR-
ACTER

1 GNSY SYSTEM-ID

(7E) CHAR-
ACTER

1 GNMP6 MASTER PASSWORD

(7F) CHAR-
ACTER

1 GNMP7 MASTER PASSWORD

(80) CHAR-
ACTER

16 GNLV (0) MASTER LIST VALUES

(80) CHAR-
ACTER

1 GN#PERF NO. PERFORATION LINES FOR $$I2 PROCESS SET **LINE=N

(81) CHAR-
ACTER

1 RESERVED

530 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Type Len Name (Dim) Description

(82) CHAR-
ACTER

1 GNFLG FLAG BYTE EQUATES DEFINED IN THE DMB

(83) CHAR-
ACTER

1 GNJL JSEP LIST

(84) CHAR-
ACTER

4 GNRL RBS LIST

(88) CHAR-
ACTER

4 GNL1 STDLINE FIRST

(8C) CHAR-
ACTER

4 GNL2 STDLINE SECOND

(90) CHAR-
ACTER

16 GNPV (0) MASTER PUNCH VALUES

(90) CHAR-
ACTER

3 RESERVED

(93) CHAR-
ACTER

1 GNJP JSEP PUNCH

(94) CHAR-
ACTER

4 GNRP RBS PUNCH

(98) CHAR-
ACTER

4 GNC1 STDCARD FIRST

(9C) CHAR-
ACTER

4 GNC2 STDCARD SECOND

(A0) CHAR-
ACTER

8 GNRE RDREXIT NAME

(A8) SIGNED 2 GN#M MAX NO MSG IN NTFY-QUEUE
(AA) CHAR-

ACTER
8 GNNT NETWORK TABLE NAME

(B2) CHAR-
ACTER

8 GNPR PNET USER RDR-EXIT

(BA) CHAR-
ACTER

1 GNRJ RJEBSC SPECIFICATION

(BB) CHAR-
ACTER

8 GNMT MEMBER TYPE SPECIFICATION

(C3) CHAR-
ACTER

1 GNMP8 MASTER PASSWORD

WORK AREA FOR EXTRACT MACRO
Referred to by label GNWE. The EXTRACT macro (SVC98) will be issued from the VSE/POWER load
routine which loads IPW$$IP. Information about the VSE/POWER partition will be saved in following fields.

(C4) CHAR-
ACTER

20 GNWE (0)

(C4) SIGNED 4 GNPB PARTITION BEGIN ADDRESS
(C8) SIGNED 4 GNPE VIRT. PART. END GETVIS EXCL
(CC) SIGNED 4 GNPG VIRT PART END GETVIS INCLUD.
(D0) SIGNED 4 GNFX PFIX LIMIT IN K-BYTES
(D4) SIGNED 4 GNFC PFIX COUNT IN NR OF PAGES
(D8) SIGNED 4 GNGB GETVIS AREA BEGIN ADDRESS
(DC) SIGNED 4 GNGE GETVIS AREA END ADDRESS
(E0) CHAR-

ACTER
8 GNIN 'IPW$$IP' PHASE NAME

During initialization the IPW$$IP phase name is overlaid by the following fields:

(E0) SIGNED 4 GNRM ADDR REMOTE CONTROL BLOCK
(E4) SIGNED 4 GNSS ADDR SUCB SPACE
(E8) CHAR-

ACTER
13 GNLT LTAB

(F5) ADDRESS 3 GNLU LENGTH OF LU TABLE
 SNA Information

(F8) CHAR-
ACTER

32 SNA INFORMATION

(F8) CHAR-
ACTER

2 GNTT TOTAL TBL LENGTH(+SNA+BSC)

(FA) CHAR-
ACTER

1 RESERVED

 Chapter 5. Storage Layout and Data Areas 531

Offset
Hex

Type Len Name (Dim) Description

(FB) CHAR-
ACTER

1 GNAL LENGTH ACB PASSWORD

(FC) CHAR-
ACTER

8 GNAP ACB PASSWORD

(104) CHAR-
ACTER

1 GNSU MAX NR OF SNA WORKSTATIONS
GNSU will be overlaid by GNSR during initialization if the number of
SNA remotes is smaller than the maximum number of SNA logical
units.

(105) CHAR-
ACTER

1 GNSR NR OF SNA REMOTES

(106) CHAR-
ACTER

1 GNFR FIRST SNA REMOTE ID

(107) CHAR-
ACTER

1 GNHR LAST SNA REMOTE ID

(108) ADDRESS 1 GNVA LENGTH,APPLID FOR VTAM
(111) CHAR-

ACTER
3 RESERVED

(114) ADDRESS 4 GNLA ADDR OF FIRST LINE BLOCK
EXPRESSION GNEN "*" END OF TABLE
EXPRESSION GNLN "GNEN-GNDS" LENGTH OF TABLE ASM H V 02 15.31

532 VSE Central Functions V7R1 VSE/POWER DRM

Initialization Processor Work Area (IP)

Definition Macro: IPW$DEF IWK=MAP

This area contains addresses and information that are used in communication among the initialization root
phase and various initialization phases. It is located in the initialization-processor work phase (IPW$$IP).

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

INITIALIZATION PROCESSOR WORKAREA

(0) 0 STRUC-
TURE

0 IWKDS , IP WORKAREA LAYOUT

(0) 0 SIGNED 4 IWKRSA (12) REGISTER SAVE AREA
(30) 48 ADDRESS 4 IWIPSA START ADDRESS OF ROOTPHASE
(34) 52 ADDRESS 4 IWIPEA END ADDR OF ROOTPHASE
(38) 56 ADDRESS 4 IWPPEA END ADDR OF LAST PHASE
(3C) 60 ADDRESS 4 IWMAXA MAX ADDRESS FOR IPLOAD
(40) 64 ADDRESS 4 IWRDRS JOB EXIT SIZE
(44) 68 ADDRESS 4 IWOUTS OUT EXIT SIZE
(48) 72 ADDRESS 2 IWLALN LENGTH OF OVERLAY AREA
(4A) 74 CHAR-

ACTER
80 IWMSGAR MESSAGE I/O AREA

 .1.. .111 IWMSGLN "71" .. MSG LENGTH (SHORT FORM)
(9A) 154 CHAR-

ACTER
80 IWCDIN CARD READ IN AREA

(EA) 234 ADDRESS 1 IWABSW ABNORMAL WARMSTART SWITCH
 .1.. IWABOK "C' '" .. NO RECOVERY NEEDED
 11.. ...1 IWABST "C'A'" .. FULL RECOVERY NEEDED
 11.1 .111 IWABPA "C'P'" .. PARTIAL RECOVERY NEEDED

(EB) 235 BITSTRING 1 IWFLG1 IP FLAG BYTE 1
 1... IWOSUP "X'80'" .. OTHER SYSTEM UP IND
 1 IWREQT "X'01'" .. REQUEST TERMINATION
 1. IWSIPH "X'02'" .. SINGLE LOAD AFFECTED
 1.. IWCANCEL "X'04'" .. LOAD ROUTINE CANCELLED
 1... IWSHORT "X'08'" .. AREA TO SMALL (IPLOAD)
 ...1 IWFEAT "X'10'" .. FEATURE TO BE LOADED
 ..1. IWNORUN "X'20'" .. DISP=X FOR EXECUT. Q-SET
 .1.. IWNOTIT "X'40'" .. NO TIMER TASK EXISTS

(EC) 236 BITSTRING 1 IWFLG2 IP FLAG BYTE 2
 1... IWIOMR "X'80'" .. MASTER RECORD I/O ERROR
 .1.. IWIOQRB "X'40'" .. I/O ERROR QUEUE REC BLOCK
 ..1. IWEXIT "X'20'" .. JOBEXIT PROCESSING ACTIVE
 ...1 IWPSVA "X'10'" .. PHASE IS LOADED IN SVA
 1... IWF2NSW "X'08'" .. SWITCH TO NON SHARED SYS

(ED) 237 BITSTRING 1 IWJCMQ JCM QUEUE SIZE
(EE) 238 BITSTRING 2 IWMSP MISSING SPACE SAVE FIELD
(F0) 240 ADDRESS 4 IWGENA ADDRESS ORIGINAL GEN TABLE

DTF ADDRESS TABLE PART #1

(F4) 244 ADDRESS 4 IWQFILE ADDRESS OF QUEUE FILE DTF
(F8) 248 ADDRESS 4 IWDFILE ADDRESS OF DATA FILE DTF
(FC) 252 ADDRESS 4 IWAFILE ADDRESS OF ACCOUNT FILE DTF
(100) 256 ADDRESS 4 IWINPTF ADDRESS OF SYSIPT DTF
(104) 260 ADDRESS 4 IWPWRLK ADDR OF QUEUE FILE DTF CB

SUBROUTINE ADDRESS TABLE PART #1

(108) 264 ADDRESS 4 IWIDAL ADDR OF IDAL BUILD ROUTINE
(10C) 268 ADDRESS 4 IWSUPH ADDR SET UP DTFPH ROUTINE
(110) 272 ADDRESS 4 IWPRST ADDR PRINT STATUS REPORT RTN
(114) 276 ADDRESS 4 IWFMCB ADDR FORMAT MCB RTN
(118) 280 ADDRESS 4 IWCOLD ADDR OF COMMON LOAD
(11C) 284 ADDRESS 4 IWCMSG ADDR OF COMMON MSG ROUTINE
(120) 288 ADDRESS 4 IWGENT ADDRESS VSE/POWER GEN TABLE

 Chapter 5. Storage Layout and Data Areas 533

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(124) 292 ADDRESS 4 IWMCBC ADDR OF SKELETON MCB (C-K-D)
(128) 296 ADDRESS 4 IWMCBF ADDR OF SKELETON MCB (FBA)

TEMPORARY TRACE ADDRESS TABLE

(12C) 300 ADDRESS 4 IWTBA TRACE BEGIN ADDRESS (TEMP)
(130) 304 ADDRESS 4 IWTEA TRACE END ADDRESS (TEMP)

ADDRESS OF EBCDIC/ASCII TABLES

(134) 308 ADDRESS 4 IWEBAS EBCDIC/ASCII TABLE BEGIN

ADDRESS OF USER EXITS

(138) 312 ADDRESS 4 IWRXEP RDR EXIT ENTRY POINT ADDR
(13C) 316 ADDRESS 4 IWOXEP OUT EXIT ENTRY POINT ADDR
(140) 320 ADDRESS 4 IWNXEP NET EXIT ENTRY POINT ADDR
(144) 324 ADDRESS 4 IWXXEP XMT EXIT ENTRY POINT ADDR
(148) 328 ADDRESS 4 IWRXLP RDR EXIT LOAD POINT ADDR
(14C) 332 ADDRESS 4 IWOXLP OUT EXIT LOAD POINT ADDR
(150) 336 ADDRESS 4 IWNXLP NET EXIT LOAD POINT ADDR
(154) 340 ADDRESS 4 IWXXLP XMT EXIT LOAD POINT ADDR

 MISCELLANEOUS FIELDS

(158) 344 BITSTRING 1 IWJMQM JOB EVENT QUEUE MULTIPLIER
(159) 345 BITSTRING 3 FREE FOR FUTURE USE
(15C) 348 BITSTRING 4 IWMRT MESSAGE ROUTING CODE
(160) 352 BITSTRING 2 IWMDC MESSAGE DESCRIPTOR CODE
(162) 354 BITSTRING 8 IWCPUID CPUID OBTAINED BY EXTRACT

SUBROUTINE ADDRESS TABLE PART #2

(16C) 364 ADDRESS 4 IWFD00 ADDR FORMAT DATA FILE RTN
(170) 368 ADDRESS 4 RESERVED
(174) 372 ADDRESS 4 RESERVED
(178) 376 ADDRESS 4 RESERVED

DTF ADDRESS TABLE PART #2

(17C) 380 ADDRESS 4 IWDTEST ADDRESS OF TEST FILE DTF
(180) 384 ADDRESS 4 IWQFOLD ADDRESS OF OLD Q-FILE DTF
(184) 388 ADDRESS 4 IWQTEST ADDRESS OF TEST Q-FILE DTF
(188) 392 ADDRESS 4 IWPWRL2 ADDRESS DTF OF OLD Q-FILE

 EQUATE STATEMENTS
THE FOLLOWING EQUATE STATEMENTS PROVIDE NECESSARY RESOLUTION
FOR UNDEFINED SYMBOLS WITHIN THE DUMMY SECTION DEFINITION.

 IPCS "0" START ADDRESS OF IP MAIN RTN
 IPEND "0" END ADDRESS OF IP ROOTPHASE
 IPLDARLN "0" LENGTH OF OVERLAY LOAD AREA
 IJQFILE "0" QUEUE FILE DTF
 IJDFILE "0" DATA FILE DTF
 IJAFILE "0" ACCOUNT FILE DTF
 IJSYSIN "0" SYSIPT DTF
 IPDTLQF "0" QUEUE FILE DTL
 IDA00 "0" BUILD IDAL ROUTINE
 SD00 "0" SET UP DTFPH ROUTINE
 PS00 "0" PRINT STATUS REPORT RTN
 FM00 "0" FORMAT MCB QUEUE/DATA FILE
 IPLOAD "0" COMMON LOAD ROUTINE
 IPLMSG "0" COMMON MESSAGE ROUTINE
 FD00 "0" FORMAT DATA FILE
 IJDTEST "0" TEST FILE DTF
 IJQFOLD "0" OLD QFILE DTF
 IJQTEST "0" TEST QFILE DTF
 IJDTLQ2 "0" 2ND QFILE LOCK DTL
 GNCB "0" ADDR VSE/POWER GEN TABLE
 D1SD "0" C-K-D MCB SKELETON
 F1SD "0" FBA MCB SKELETON
 EBAS "0" EBCDIC-ASCII TABLE

534 VSE Central Functions V7R1 VSE/POWER DRM

Journal Communication Area (JCA)

Definition Macro: IPW$DEF JCA=YES

This area is used to communicate between the POFFLOAD BACKUP|SAVE|PICKUP task and the Jour-
naling task (running as a Print Status task).

The POFFLOAD task messages are written to the JCA which are then read by the Journaling task and
then written to the $OFJnnnn LST entry. The JCA also has trace information for error determination and
task status indicators.

 Chapter 5. Storage Layout and Data Areas 535

 ==
JOURNAL COMMUNICATION AREA (JCA)

 ==

 OFFSET OFFSET
 DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
 � (�) STRUCTURE � JCADS POFFLOAD JOURNALING
 COMMUNICATION AREA

� (�) CHARACTER 8 JCAEYE EYECATCHER = 'JCA'
8 (8) BITSTRING 2 JCATROF $$OF TRACE BYTE STATE/REQ (OF)
1� (A) BITSTRING 2 JCATROFS $$OF SUBR TRACE BYTE STATE/REQ

 (OFS)
12 (C) BITSTRING 6 JCATRPS $$PS TRACE BYTE STATE/REQ

 (OF+OFS+PS)
18 (12) BITSTRING 8 JCATRTRO $$TR TRACE BYTE:$$OF

 CALL(OF+OFS+PS+TR)
26 (1A) BITSTRING 8 JCATRTRP $$TR TRACE BYTE:$$PS

 CALL(OF+OFS+PS+TR)
34 (22) BITSTRING 2 JCATROUT $$PS TIMEOUT TRACE BYTES (FOR

 1Q5MI)
 36 (24) BITSTRING 1 JCAFLG FLAG BYTE

1... JCAF1Q2A "X'8�'" -$$TR TO ISSUE JOURNAL
VERSION OF 1Q2AI

.1.. JCAF1Q5L "X'4�'" -$$TR TO ISSUE JOURNAL
VERSION OF 1Q5LI

..1. JCAFMSG "X'2�'" -$$OF TO ISSUE JOURNAL
MSG IN JCATEXT

...1 JCAFIOPS "X'1�'" -$$TR CALLED FOR
Q/DFILE I/O FOR $$PS

.... 1... JCAFIOOF "X'�8'" -$$TR CALLED FOR
Q/DFILE I/O FOR $$OF18

.... .1.. JCAFNOUP "X'�4'" -$$OF IND FOR $$PS-NO
INCRE ENTRY NUM36

37 (25) CHARACTER 1 JCAREQPS $$OF JOURNALING REQUEST TO $$PS
 11.. 1..1 JCAREQI "C'I'" -'I'=INITIATE

11.1 .11. JCAREQP "C'O'" -'P'=WRITE REST OF
 PROLOG

11.. .11. JCAREQF "C'F'" -'F'=FORMAT AND WRITE
 QREC,

111. .1.1 JCAREQV "C'V'" -'V'=WRITE BEGIN NEW
 VOLUME LINE

111. .111 JCAREQX "C'X'" -'X'=WRITE TEXT LINE IN
 JCATEXT

11.. ..11 JCAREQC "C'C'" -'C'=CLOSE-WRITE EPILOG
 LINES EOJ

111. ..11 JCAREQT "C'T'" -'T'=TERMINATE (IN
 IPW$$TR)

38 (26) CHARACTER 1 JCARUNAO ACTUAL RUNNING STATE $$OF
 JOURNALING

11.. 1... JCARUNOH "C'H'" -'H'=ATTACHING, TASK TO
 BE ATTACHED
 11.. 1..1 JCARUNOI "C'I'" -'I'=INITIALIZING,TASK
 ATTACHED

11.1 1..1 JCARUNOR "C'R'" -'R'=RUNNING $$PS
 RUNNING

536 VSE Central Functions V7R1 VSE/POWER DRM

 11.. ..11 JCARUNOC "C'C'" -'C'=CLOSED
11.. .1.1 JCARUNOE "C'E'" -'E'=CLOSE_ERR ($$PS

ERR+$$PS TERM OK)
 11.1 .111 JCARUNOP "C'P'" -'P'=CLOSE_STOP'G
 (CLOSE+$$PS
 111. ..1. JCARUNOS "C'S'" -'S'=STOPPING

($$PS NO TERM)
 11.. ...1 JCARUNOA "C'A'" -'A'=ABEND
 (CRAZY SITUATION)

39 (27) CHARACTER 1 JCARUNAP ACTUAL RUNNING STATE $$PS
11.. 1... JCARUNPH "C'H'" -'H'=ATTACHING, TASK TO

 BE ATTACHED
 11.. 1..1 JCARUNPI "C'I'" -'I'=INITIALIZING,TASK
 ATTACHED

11.1 1..1 JCARUNPR "C'R'" -'R'=RUNNING TASK
 RUNNING

11.. ..11 JCARUNPC "C'C'" -'C'=CLOSED LST CLOSED
11.. .111 JCARUNPG "C'G'" -'G'=TERMINATING TASK

 TERMINATING
111. ..11 JCARUNPT "C'T'" -'T'=TERMINATED TASK

 TERMINATED
11.. ..1. JCARUNPA "C'B'" -'A'=ABENDING TASK

 INTERNAL ERROR
4� (28) BITSTRING 2 JCAPSRC TERMINATION RETURN CODE $$PS
42 (2A) BITSTRING 1 JCARUNPS RUNNING STATE $$PS SAVED AT

$$TR BGN 23
43 (2B) CHARACTER 5 JCAJOBNO JOURNALING OUTPUT JOBNUMBER
48 (3�) CHARACTER 8 JCAJOBNM JOURNALING OUTPUT JOBNAME

 '$OFJNNNN'
56 (38) ADDRESS 4 JCATCBOP $$OF TASK TCB ADDR
6� (3C) ADDRESS 4 JCATCBPP $$PS TASK TCB ADDR

 64 (4�) ADDRESS 4 JCATEMP TEMP WORKAREA
68 (44) CHARACTER 16 JCATCBOD $$OF TCB DESCRIPTOR
84 (54) CHARACTER 16 JCATCBPD $$PS TCB DESCRIPTOR

 1�� (64) ADDRESS 4 JCAECBOF $$OF ECB
 1�4 (68) ADDRESS 4 JCAECBPS $$PS ECB

1�8 (6C) ADDRESS 4 JCAECBTQ $$OF TIMER INTERRUPT ECB
112 (7�) SIGNED 2 JCAECBL(�) MULTIPLE-WAIT LIST FOR IPW$WFM

 MACRO
112 (7�) ADDRESS 4 JCAECBLT -TIMER ELEMENT ECB
116 (74) ADDRESS 4 JCAECBLO -$$OF ECB: JCAECBOF
12� (78) ADDRESS 4 JCAECBLE X'FF' - END OF MULTIPLE-WAIT

 LIST
124 (7C) CHARACTER 8 JCABGDA BEGIN DATE 'MM/DD/YY'(CREATING

 SYS FMT)
132 (84) 4 JCABGTI BEGIN TIME PACKED (�HHMMSSF)
136 (88) ADDRESS 4 JCAITEMN RUNNING JOURNAL ITEM =NNNNNN
14� (8C) BITSTRING 2 JCAVOLN RUNNING VOL. COUNT VOL=NNNNN
142 (8E) CHARACTER 1 JCAQID QUEUE ID BEING DISPLAYED 32
143 (8F) BITSTRING 1 JCATEXTL JOURNALING TEXT MSG LENGTH

(SET BY IPW$GAM DEST=JCATEXTL
 OR $$PS)

144 (9�) CHARACTER 132 JCATEXT JOURNAL DISPLAY TEXT 25
(132 BYTES FOR $GAM SUB=YES) 25

 Chapter 5. Storage Layout and Data Areas 537

276 (114) CHARACTER 8� JCAVOL1 LABELED TAPE VOL1
356 (164) CHARACTER 8� JCAHDR1 LABELED TAPE HDR1
436 (1B4) CHARACTER 13� JCACMD �POFFLOAD OPERATOR COMMAND

 566 (236) CHARACTER 8 JCACMDT �POFFLOAD TYPE
574 (23E) CHARACTER 132 JCA1Q4C COPY OF MSG 1Q4CI 'DATE BEGIN

 ...'
 7�8 (2C4) ADDRESS 4 �(�)
 7�8 (2C4) BITSTRING 24 JCATQEO TQE ELEMENT
 732 (2DC) ADDRESS 4 �(�)
 732 (2DC) BITSTRING 624 � UNUSED 27

1356 (54C) ADDRESS 4 JCATRRD IPW$$TR REG. R13 FOR JOURSUB
136� (55�) ADDRESS 4 JCAOFRD IPW$$OF REG. R13 FOR JOURSUB

 1364 (554) ADDRESS 4 �(12) UNUSED 27
1412 (584) ADDRESS 4 JCAREGS2(12) REGISTER SAVE AREA 2 $$OF
146� (5B4) ADDRESS 4 JCAREGSM(12) REGISTER SAVE AREA 3 $$OF $GAM

 15�8 (5E4) ADDRESS 4 �(12) UNUSED 27
 1556 (614) ADDRESS 4 �(12) UNUSED 27

16�4 (644) ADDRESS 4 JCAREGT2(12) REGISTER SAVE AREA 2 $$TR
1652 (674) ADDRESS 4 JCAREGTM(12) REGISTER SAVE AREA 3 $$TR $GAM
17�� (6A4) ADDRESS 4 JCAREGTW(12) REGISTER SAVE AREA 3 $$TR $WTO

 1748 (6D4) ADDRESS 4 �(12) UNUSED 27
 1796 (7�4) ADDRESS 4 �(12) UNUSED 27

1844 (734) ADDRESS 4 JCAREGTF(�) REGISTER SAVE AREA FOR FUNCTION
 CALL

19�� (76C) CHARACTER 4 JCATCCU POFFLOAD TCB TCUU
19�4 (77�) ADDRESS 4 JCAWAITX $$PS WAIT MAX (FROM OFJOUSTM)
19�4 (77�) JCADSLEN "�-JCADS" LENGTH OF INTERFACE WA

538 VSE Central Functions V7R1 VSE/POWER DRM

Logical Data Record Area (LDA)

Definition Macro: IPW$DDR

This area is used to hold data which is to be written to the data file (write operation) and read from the
data file (read operation). Its size is set by the DBLK parameter.

Records are transferred to the LDA one at a time from the PDA for read and for write operations. When
the LDA is full, or there is no more room for a complete record, the information is written to or read from
the data file. It is addressed via the I/O request word in the TCB, and each record is addressed via the
channel program in the MCB for the data file.

The format of a logical data record is as follows.

Bytes Label
Hex. of Field Description/Function
--

DRDS Definition of this dummy section
��-�1 DRRL Logical record length.

This field contains the length of the
data-record text with preceding fields like
DRRL, DRGP, DRGP2, DRGP3, and DRCC.

�2 DRGP General purpose byte:
X'��' normal record
X'�1' line print/card move data
X'�2' 354� data record
X'�4' end of data
X'�8' reserved - must not be used
X'1�' end of block
X'2�' end of 354� data
X'4�' extended record

�3 DRCC Command code.
Indicates command code for output
list/punch device or �� when input
record or spooled-account record.

 Special types:
X'FF' .. CONTROL RECORD
X'FE' .. NEW FORMS

�4 DRG2 General purpose byte 2
X'8�' job header record
X'4�' job trailer record
X'2�' data set header record
X'1�' CPDS data record

 X'�8' Unused
X'�4' Fixed format message record

 X'�2' ASA data record
�5 DRG3 General purpose byte 3

X'8�' extended record begin
X'4�' extended record middle
X'2�' extended record end

�6-�7 DREL Extended record residual length not including DRDL
DRDL Length of descriptor = addr(� - DRRL)
DRDT Text of data record

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 539

Logical Reader Work Area

Definition Macro: IPW$DLW

The logical reader work area is used by IPW$$SC, IPW$$LR and IPW$$NR during checking of the time
event scheduling parameters of the * $$ JOB statement.

The format of a logical reader work area is as follows.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

LOGICAL READER WORK AREA

(0) 0 CHAR-
ACTER

144 LRDS1 (0) 1 ST SAVE AREA

(0) 0 CHAR-
ACTER

15 LRDD (0) START OF INFO

(0) 0 BITSTRING 1 LRDDGP1 GENERAL PURPOSE BYTE 1
 1... LRDDGP1R "X'80'" RERUN=NO SPECIFIED
 .1.. LRDDGP1R X'40' RESERVED
 ..1. LRDDGP1R EQU X'20' RESERVED
 ...1 LRDDGP1F "X'10'" DUEFRQ SPECIFIED
 1... LRDDGP1T "X'08'" DAILY SPECIFIED
 1.. LRDDGP1W "X'04'" WEEKDAYS SPECIFIED
 1. LRDDGP1D "X'02'" DAYS WITHIN MONTH
 1 LRDDGP1M "X'01'" MONTH WITHIN YEAR

(1) 1 BITSTRING 1 LRDDGP2 GENERAL PURPOSE BYTE 2
 (EQUATES DEFINED IN QUEUE RECORD)

(2) 2 BITSTRING 2 LRDDMY MONTHS WITHIN YEAR
(4) 4 BITSTRING 4 LRDDDM DAYS WITHIN MONTH
(8) 8 CHAR-

ACTER
4 LRDDN (0) START OF NEXT DUE DATE PACKED DECIMAL WITHOUT

SIGN
(8) 8 BITSTRING 2 LRDDNY YEAR (1988-2087)
(A) 10 BITSTRING 1 LRDDNM MONTH (1-12)
(B) 11 BITSTRING 1 LRDDND DAY (1-31)
(C) 12 BITSTRING 2 LRDDNT NEXT DUE TIME
(E) 14 BITSTRING 1 LRDDFQM MINUTES (0-59) OF DUEFRQ

 1111 LRSEC "*"
(4) 4 BITSTRING 1 LRDDDW DAYS WITHIN A WEEK
(2) 2 CHAR-

ACTER
2 LRDDFT (0) START OF FIRST TIME

(2) 2 BITSTRING 1 LRDDFH HOUR (0-23)
(3) 3 BITSTRING 1 LRDDFM MINUTE (0-59)
(4) 4 BITSTRING 1 USED FOR WEEKDAYS
(5) 5 CHAR-

ACTER
2 LRDDLT (0) START OF LAST TIME

(5) 5 BITSTRING 1 LRDDLH HOUR (0-23)
(6) 6 BITSTRING 1 LRDDLM MINUTE (0-59)
(7) 7 BITSTRING 1 LRDDFQH HOURS (0-23) OF DUEFRQ

 (EQUATES DEFINED IN QUEUE RECORD)

ADDITIONAL WORK FIELDS

(F) 15 BITSTRING 1 LRFLG1 FLAG BYTE 1
 1... LRF1DDM "X'80'" .. DDMMYY FORMAT
 .1.. LRF1DAS "X'40'" .. RANGE VALUE SPECIFIED
 ..1. LRF1NU "X'20'" .. NUMERIC OPERAND
 ...1 LRF1FTSW "X'10'" .. FIRST TIME SWITCH

(10) 16 BITSTRING 1 LRFLG2 FLAG BYTE2
 1... LRF2DISP "X'80'" .. DISPOSITION SPECIFIED
 .1.. LRF2D "X'40'" .. DUE TIME PRESENT
 ..1. LRF2DD1 "X'20'" .. DUE DATE PRESENT
 ...1 LRF2R "X'10'" .. RERUN SPECIFIED
 1... LRF2TESP "X'08'" .. TIME EVENT SCHEDULING PRESENT
 1.. LRF2DIV "X'04'" .. DUE INTERVAL PRESENT

540 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(14) 20 SIGNED 4 RESERVED FOR FUTURE USE
(18) 24 SIGNED 4 LRSVRE SAVE AREA FOR RETURN REGISTER
(1C) 28 SIGNED 2 LRSTRT WORK FIELD FOR COMBINED FORMAT
(1E) 30 SIGNED 2 LRSTOP WORK FIELD FOR COMBINED FORMAT
(20) 32 SIGNED 4 LRW1 FOR PACK PURPOSES
(24) 36 SIGNED 4 LRW2 FOR PACK PURPOSES
(28) 40 SIGNED 4 LRW3 WORK FIELD
(2C) 44 BITSTRING 1 LROFF SAVE OFFSET OF BIT SETTING
(2D) 45 BITSTRING 3 RESERVED FOR FUTURE USE
(30) 48 SIGNED 4 LROFFMD OFFSET INTO MONTH/DAY TABLE
(34) 52 SIGNED 4 LRSY SAVE SPECIFIED YEAR
(38) 56 SIGNED 4 LRSDADDR AREA TO SAVE DELIM ADDRESS
(3C) 60 SIGNED 4 LRWAMSK AREA TO SAVE BIT MASK

OPERAND AREA USED BY FORMAT ROUTINE IN $SC

(40) 64 CHAR-
ACTER

34 LROP1 (0) OPERAND VALUE 1

(40) 64 BITSTRING 1 LROP1LEN LENGTH OF OPERAND CONTENTS
(41) 65 BITSTRING 1 LROP1SW FLAG BYTE
(42) 66 BITSTRING 1 FLAG BYTE 2
(43) 67 BITSTRING 1 MASK BYTE
(44) 68 CHAR-

ACTER
24 OPERAND VALUE

(5C) 92 BITSTRING 2 LROP1HEX HEXADECIMAL VALUE OF OPERAND
(5E) 94 BITSTRING 4 LROP1DEC DECIMAL VALUE OF OPERAND
(62) 98 CHAR-

ACTER
34 LROP2 (0) OPERAND VALUE 2

(62) 98 BITSTRING 1 LROP2LEN LENGTH OF OPERAND CONTENTS
(63) 99 BITSTRING 1 LROP2SW FLAG BYTE
(64) 100 BITSTRING 1 FLAG BYTE 2
(65) 101 BITSTRING 1 MASK BYTE
(66) 102 CHAR-

ACTER
24 OPERAND VALUE

(7E) 126 BITSTRING 2 LROP2HEX HEXADECIMAL VALUE OF OPERAND
(80) 128 BITSTRING 4 LROP2DEC DECIMAL VALUE OF OPERAND

 1... .1.. LRWALN1 "*-LRDS" LENGTH OF WORK AREA TO CLEAR
(84) 132 SIGNED 4 LRRCM RETURN MESSAGE
(88) 136 SIGNED 4 LRRCC RETURN ERROR CODE
(8C) 140 SIGNED 4 LRNRBREG SAVE BASE REG FOR $$NR
(90) 144 CHAR-

ACTER
4 LRDS2 (0) 2 ND SAVE AREA

(90) 144 SIGNED 4 LRSAVRD SAVE AREA FOR R13 IN $$LR
 1..1 .1.. LRWALN "*-LRDS" LENGTH OF WORK AREA

 Chapter 5. Storage Layout and Data Areas 541

Logical Writer Work Space

Definition Macro: IPW$DEF ACCT=YES

The logical writer work space contains counters used for accounting purposes and control fields for the
logical writer (IPW$$LW). The work area is acquired by the logical writer routine at the beginning of a job
and released at end-of-job processing.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

LOGICAL WRITER WORK AREA

(0) 0 STRUC-
TURE

0 LADS

COUNTERS FOR ACCOUNTING PURPOSES

(0) 0 SIGNED 4 LATL TOTAL LINE OR CARD COUNT (R7)
(4) 4 SIGNED 4 LAEL EXTRA LINES/CARDS
(8) 8 SIGNED 4 LACL CURRENT LINE/CARD
(C) 12 SIGNED 4 LARL RESTART CURRENT PAGE/CARD

(10) 16 SIGNED 4 LAEP EXTRA PAGES
(14) 20 SIGNED 4 LATP TOTAL PAGES FROM DATA FILE
(18) 24 SIGNED 4 LACP CURRENT PAGE
(1C) 28 SIGNED 4 LARP RESTART PAGE COUNT
(20) 32 SIGNED 4 LATR# TOTAL RECORDS
(24) 36 SIGNED 4 LACR# CURRENT RECORD NUMBER
(28) 40 SIGNED 4 LAER# EXTRA RECORD NUMBER
(2C) 44 SIGNED 4 LARR# RESTART CURRENT RECORD NUMBER
(30) 48 SIGNED 4 LAST TASK START TIME (0HHMMSSF)
(34) 52 BITSTRING 1 LASR START AFTER PSTOP CUU,RESTART INDIC.
(35) 53 BITSTRING 1 LAWS WORKFIELD FOR COPY COUNT
(36) 54 BITSTRING 1 LWTRU TYPE OF RESTART UNIT (L/P/R)
(37) 55 BITSTRING 3 UNUSED

LOGICAL WRITER CONTROL INFORMATION
THE FOLLOWING FIELDS ARE USED BY THE LOGICAL WRITER.
THEY ARE USED TO CONTROL PRINTING OF DATA WITHOUT MACHINE
CONTROL CHARACTER. EACH DATA RECORD IS WRITTEN WITH THE
'WRITE AND SPACE' OP CODE.
FURTHERMORE SOME HELP FIELDS ARE HERE DEFINED TO SAVE
INFORMATION DURING PROCESSING OF A QUEUE ENTRY.

(3A) 58 ADDRESS 1 LWILNCT DEFAULT LINE COUNT (PAGE SIZE)
 1111 1111 LWINOCT "X'FF'" .. CAUSES NOT TO COUNT LINES

(3B) 59 ADDRESS 1 LWICLCT CURRENT LINE COUNT
(3C) 60 BITSTRING 1 LWIFLG1 FLAG BYTE 1

 1... LWIF1FT "X'80'" ..FIRST TIME SWITCH
 .1.. LWIF1IN "X'40'" ..INSERT SKIP TO CH 1 IN PROGR
 ..1. LWIF1EOD "X'20'" ..EOD TO PASS
 ...1 LWIF1OV "X'10'" ..PRINT OVERFLOV INDICATOR
 1... LWIF1PE "X'08'" ..POSITION AT END OF Q-ENTRY
 1.. LWIF1SPM "X'04'" ..SPOOLING POINTERS MODIFIED
 1. LWIF1IAR "X'02'" ..ASA CONVERSION IN PROGRESS
 1 LWIF1NSP "X'01'" ..NO SEPERATORS PRODUCED

(3D) 61 BITSTRING 1 LWIFLG2 FLAG BYTE 2
 1... LWIF2EOD "X'80'" ..EOD RECORD PASSED
 .1.. LWIF2SQE "X'40'" ..START QUEUE ENTRY
 ..1. LWIF2SNC "X'20'" ..START NEXT COPY
 ...1 LWIF2FCB "X'10'" ..CALCULATE LINES/PAGE
 1... LWIF2SSP "X'08'" ..SUPPRESS SEPERATOR PAGE TEST

(3E) 62 ADDRESS 2 LWISVRL SAVED ORIGINAL RECORD LENGTH
(40) 64 ADDRESS 4 LWSERWKA PTR TO WORKAREA CONTAINING SER RECORD FOR

PRINTER SETUP
(44) 68 BITSTRING 8 LWTCRW AREA TO SAVE TCRW
(4C) 76 SIGNED 4 LWRE SAVE RE

542 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(50) 80 SIGNED 4 LWRF SAVE RF

SEPARATOR PAGE CONTROL INFORMATION

(54) 84 CHAR-
ACTER

2 LWIPART PARTITION IDENTIFIER

(56) 86 CHAR-
ACTER

1 LWISYSID VSE/POWER SYSTEM ID

(57) 87 BITSTRING 1 RESERVED
(58) 88 ADDRESS 4 LWIWRKA PTR WORKAREA FOR SEPARATOR RTN
(5C) 92 CHAR-

ACTER
8 LWINACCT NETWORK ACCOUNT NUMBER

(64) 100 CHAR-
ACTER

8 LWIEXNOD EXECUTION NODE NAME

(6C) 108 CHAR-
ACTER

20 LWIPGRNM PROGRAMMER NAME

(80) 128 CHAR-
ACTER

8 LWIBLDG# BUILDING NUMBER

(88) 136 CHAR-
ACTER

8 LWIROOM# ROOM NUMBER

(90) 144 CHAR-
ACTER

8 LWIDEPT# DEPARTMENT NUMBER

(98) 152 CHAR-
ACTER

8 LWIFCBNM FCBNAME FOR SAS

(A0) 160 SIGNED 2 UNUSED

OUTPUT EXIT WORK AREA

(A2) 162 BITSTRING 16 LWOTCRW AREA TO SAVE TCRW
(B4) 180 SIGNED 4 LWOINSR NUMBER OF INSERTED RECORDS
(B8) 184 SIGNED 4 LWODELR NUMBER OF DELETED RECORDS
(BC) 188 SIGNED 4 LWOR13 AREA TO SAVE R13
(C0) 192 SIGNED 4 LWOR14 AREA TO SAVE R14
(C4) 196 SIGNED 4 LWOR15 AREA TO SAVE R15
(C8) 200 BITSTRING 24 LWOSAVE SAVE AREA FOR CALLER'S REGS.
(E0) 224 SIGNED 4 LWOXWA ADDRESS TO EXIT WORK AREA
(E4) 228 SIGNED 2 LWOXWAL LENGTH OF EXIT WORK AREA
(E6) 230 BITSTRING 2 RESERVED FOR FUTURE USE
(E8) 232 BITSTRING 20 LWOEXPL OUTPUT EXIT PARAMETER LIST

LOGICAL/PHYSICAL WRITER COMMUNICATION INFO @DY43589

(FC) 252 BITSTRING 4 LWAOUTLN POINTER TO OUTPUT LINE
(100) 256 BITSTRING 2 LWNOIGNR NUMBER OF IGNORED RECORDS
(100) 256 0 LWILN "*-LADS" LENGTH OF CONTROL BLOCK

 Chapter 5. Storage Layout and Data Areas 543

Message Control Block (MMB)

Definition Macro: IPW$DMM

This block provides support for the macros IPW$WTO and IPW$WTR. A routine issuing one of these
macros will invoke message services. A message to be printed on SYSLOG will be passed to the MMB
by means of the message request word in the TCB. The MMB also contains the channel program (CCB
and CCW) to execute the I/O to the console. If a reply is necessary the channel program in the MMB will
execute the necessary I/O. The message service will move the reply to an area addressed by the reply
request word in the TCB for the task using the routine that issued the IPW$WTR macro. (See also
TCMW and TCAW fields in the TCB.)

How to Locate: Refer to Figure 151 on page 730 in Chapter 6, “Diagnostic Aids.”

The format of this block as it is printed in a dump is as follows.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 MESSAGE CONTROL BLOCK (MMB)

(0) 0 CHAR-
ACTER

16 MMSD SECTION DESCRIPTOR

(10) 16 DBL WORD 8 ALLIGNMENT
(10) 16 BITSTRING 9 MMWW WORK AREA
(19) 25 BITSTRING 3 UNUSED
(1C) 28 SIGNED 4 MMLK LOCK WORD
(20) 32 CHAR-

ACTER
48 MMSV (0) REGISTER SAVE AREA

(20) 32 SIGNED 4 MMRE SAVED REGISTER 14
(24) 36 SIGNED 4 MMRF SAVED REGISTER 15
(28) 40 SIGNED 4 MMR0 SAVED REGISTER 0
(2C) 44 SIGNED 4 MMR1 SAVED REGISTER 1
(30) 48 SIGNED 4 MMR2 SAVED REGISTER 2
(34) 52 SIGNED 4 MMR3 SAVED REGISTER 3
(38) 56 SIGNED 4 MMR4 SAVED REGISTER 4
(3C) 60 SIGNED 4 MMR5 SAVED REGISTER 5
(40) 64 SIGNED 4 MMR6 SAVED REGISTER 6
(44) 68 SIGNED 4 MMR7 SAVED REGISTER 7
(48) 72 SIGNED 4 MMR8 SAVED REGISTER 8
(4C) 76 SIGNED 4 MMR9 SAVED REGISTER 9
(50) 80 CHAR-

ACTER
16 MMCB (0) COMMAND CONTROL BLOCK

(50) 80 SIGNED 2 MMCT RESIDUAL COUNT
(52) 82 BITSTRING 2 MMCM COMMUNICATION BYTES
(54) 84 BITSTRING 2 MMST STATUS BYTES
(56) 86 BITSTRING 2 MMLU LUB IDENTIFIER
(58) 88 BITSTRING 1 MMCA FLAGS
(59) 89 ADDRESS 3 CHANNEL PROGRAM ADDRESS
(5C) 92 BITSTRING 4 DOS/VSE INTERNAL USE
(60) 96 CHAR-

ACTER
16 MMCH (0) CHANNEL PROGRAM

(60) 96 CHAR-
ACTER

8 MMWT (0) WRITE CCW

(60) 96 BITSTRING 1 WRITE COMMAND CODE
(61) 97 ADDRESS 3 DATA AREA ADDRESS
(64) 100 BITSTRING 2 FLAGS
(66) 102 ADDRESS 2 COUNT
(68) 104 CHAR-

ACTER
8 MMRD (0) READ CCW

(68) 104 BITSTRING 1 READ COMMAND CODE
(69) 105 ADDRESS 3 DATA AREA ADDRESS
(6C) 108 BITSTRING 2 FLAGS

544 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(6E) 110 ADDRESS 2 COUNT
(70) 112 ADDRESS 2 MMMAL MESSAGE LENGTH 1 FOR WTO
(72) 114 CHAR-

ACTER
256 MMMA MESSAGE OUTPUT AREA 1

(172) 370 CHAR-
ACTER

72 MMMI REPLY INPUT AREA

(1BA) 442 CHAR-
ACTER

12 ??? RESERVED

(1C8) 456 SIGNED 4 MMMSRET RET'N REG. FOR IPW$$MS
(1CC) 460 ADDRESS 2 MMMBL MESSAGE LENGTH 2 FOR WTO
(1CE) 462 CHAR-

ACTER
70 MMMB MESSAGE OUTPUT AREA 2

(214) 532 BITSTRING 1 MMTQE (0) TIMER ELEMENT
(22C) 556 SIGNED 4 MMSRE SAVEAREA FOR MMRE
(230) 560 SIGNED 4 MMSRF SAVEAREA FOR MMRF
(234) 564 SIGNED 4 MMMSV (14) FUNCTION SAVEAREA

EXPRESSION MMLN "*-MMSD" LENGTH DESCRIPTOR

 Chapter 5. Storage Layout and Data Areas 545

Master External Device Control Block

Definition Macro: IPW$DED

This control block is built at VSE/POWER initialization time and is used as anchor point for the external
device control block (EDCB) chain. The control block is pointed to by field 'CAEDCB'. The format is as
follows:

Bytes Label
Hex. of Field Description/Function
--
�� MEDCBDS Start of DSECT
��-�F MEDCBHD Storage descriptor
1�-13 MEDCBFEL Address of first EDCB in chain
14-1B Reserved for future use
1C-1F MEDCBLW Lockword

546 VSE Central Functions V7R1 VSE/POWER DRM

Module Control Block (MCB)

Definition Macro: IPW$DMC

Each module (an extent, always 1 for queue file and at least 1 for the data file) requires an MCB. The
format and type of information contained in any MCB is identical.

The format of a module control block as it is printed in a dump is as follows.

Module Control Block for CKD Devices
Bytes Label
Hex. of Field Description/Function
--
��-�F MCSD� Storage descriptor MCB
1�-17 MCSA Module seek address (MBBCCHHR) (See Notes�.
18 MCDT Device type of file

� = CKD device
19 Reserved for future use
1A-1B MCQBM Number of queue record blocks used for the
 Master Record
1C-1F MCLK Lockword

MCCB Command control block
2�-21 MCCT Residual count
22-23 MCCM Communication bytes
24-25 MCST Device status
26-27 MCLU EXCP real plus LUB index (logical unit)
28-2B MCCA CCW address
2C-2F CCW address in CSW
 MCXT Extent information
3�-33 MCLO Low limit (CCHH)
34-37 MCHI High limit (CCHH)
38-3B MCFDB Relative number of first DBLK in extent
3C-3F MCLDB Relative number of last DBLK in extent
4� MCSE Sector value
41-43 Reserved for future use
44-47 MCSX Sector table address
48-49 MC#R Number of records per track
4A-4B MC#T Number of tracks per cylinder
4C-4F Reserved for future use
 MCCH Channel program
5�-57 MCSK Seek CCW
58-5F MCSS Set sector or TIC CCW
6�-67 MCSH Search CCW
68-6B MCTI TIC CCW
6C-6F MCTV Virtual address of buffer
7�-77 MCRW Read or write CCW
78-7B MC$T Owner of I/O request
7C-7F MC$1 Save area for register 1 of current request
8�-83 MCPNO Queue record block number of previous I/O request
84-87 MCBF Saved register 15 for disk service

 Chapter 5. Storage Layout and Data Areas 547

Bytes Label
Hex. of Field Description/Function
--
88-8B MCDA Virtual address of I/O area
8C-8F MCVI Virtual address of IDAL list
9�-9F MCSV Temporary save area

� The following area is used by the queue file server and the VIO move subroutine.

A�-AB MCIOW I/O request word
AC-B7 MCPRM VIO move parameter list
AC-AF MCPRB Relative byte address in VIO
B�-B3 MCPVA Address of storage area
B4-B5 MCPLL Length of move operation
B6 MCPOP Flag byte

MCPIN X'8�' - move into VIO space
MCPOU X'4�' - move out from VIO space

B7 Reserved for future use

Module Control Block for FBA Devices
��-�F MFSD� Storage descriptor MCB
1�-17 MFLW Locate word
18 MFDT Device type of file

F = FBA device
19 Reserved for future use
1A-1B MFQBM Number of queue record blocks used for the
 Master Record
1C-1F MFLK Lockword
2�-2F MFCB Command control block
2�-21 MFCT Residual count
22-23 MFCM Communication bytes
24-26 MFST Device status
26-27 MFLU EXCP real plus LUB index (logical unit)
28-2B MFCA CCW address
2C-2F CCW address in CSW
 MFXT Extent information
3�-33 MFLO Low limit (starting physical block

number of extent)
34-37 MFHI High limit (ending physical block

number of extent)
38-3B MFFDB Relative number of first DBLK in extent
3C-3F MFLDB Relative number of last DBLK in extent
4�-43 MFSI Default block size for FBA devices
44-45 MFUT Unit of transfer
46-47 Reserved for future use

MFED Extent description block

548 VSE Central Functions V7R1 VSE/POWER DRM

Bytes Label
Hex. of Field Description/Function
--
48 MFMB Mask byte

C� = Permit all write commands
�4 = Permit all diagnostic commands
4� = Inhibit all write commands
44 = Inhibit all write commands and

permit all diagnostic commands
49-4B Reserved, must be zero
4C-4F MFBB Physical address of first block of extent

5�-53 MFFB Relative displacement of first block of extent
54-57 MFLB Relative displacement of last block of extent
 MFCH Channel program
58-5F MFDF Define extent CCW
6�-67 MFLC Locate CCW
68-6B MFTI TIC CCW
6C-6F MFTV Virtual address of buffer
7�-77 MFRW Read or write CCW
78-7B MF$T Owner of this I/O request
7C-7F MF$1 Saved register 1 of current request
8�-83 MFPNO Queue record block number of previous I/O request
84-87 MFBF Saved register 15 for disk service
88-8B MFDA Virtual address of data I/O area
8C-8F MFVI Virtual address of IDAL list
9�-9F MFSV Temporary save area

Notes:

1. The labels in this control block vary according to the generated DSECT or declaration. The first char-
acters are Q1 for the queue file MCB, D2 for the DFILE2 MCB, and MC for all other MCBs.

2. Seek and search address required by the channel program. Whenever an input or output operation is
to be performed, this field is updated by the seek address evaluated from the relative data block or
queue record number in the I/O request word.

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 549

Network Composer Work Area

Definition Macro: IPW$DWC

This work area is used by the composer to build records which it has received from the transmitter, into a
transmission block.

Bytes Label
Hex. of Field Description/Function
--
���-�7F PLS dynamic data area
�8�-�83 NCWAHDR Work area header
�84-�87 NCWTCB Points to task control block
�88-�95 NCWAPUT Parameter area for PUT macro
�88 NCWACOCO TCB command code for current REC
�89-�8B NCWARA Address of record
�8C NCWAGP Copied TCB gen. purpose byte
�8D NCWAG2 Copied TCB gen. purpose byte 2

NCWAGJHR X'8�' - Job header record
NCWAGJTR X'4�' - Job trailer record
NCWAGDHR X'2�' - Dataset header record
NCWAGPRI X'1�' - CPDS record(page record)
NCWAGASA X'�2' - Record contains ASA control character

�8E-�8F NCWARL Length of record
�9�-�91 NCWARLM Maximum record length
�92 NCWART Record type passed over
�93 NCWAMLI MLI request
�94 NCWRCB RCB of task
�95 NCWAIND Various indications

NCWAFXD X'8�' - Fixed format record indication
NCWANOCC X'4�' - Record without carriage control

�96 NCWFLAGS Composer flag bits
NCWLSEG X'8�' - Last segment indicator
NCWSYSIN X'4�' - Input record indicator
NCWSYSOU X'2�' - Output record indicator
NCWNOCMP X'1�' - Do not compress indicator
NCWASPR - Spanned record indicators

 (indicates first/middle/last
segment or UNSP)

NCWFDSG X'�2' - First data segment indicator
NCWEXP X'�1' - Blank expansion indicator

�97 Reserved
�98-�9B NCWWPTR Points to first free byte in segment area work
 field
�9C-�9F NCWNCROF Offset pointer into NCR
�A�-�A3 NCWNCREA Points to last byte of NCR
�A4-�A7 NCWSGPTR Points to segment area NCWSGAR

(initialized by transmitter)
�A8-�AB NCWSGC Segment counter
�AC-�AD NCWSGLEN Length of segment area

(initialized by transmitter)
�AE NCWRLTB Length of blank string to be added to current
 record
�AF Reserved

550 VSE Central Functions V7R1 VSE/POWER DRM

Bytes Label
Hex. of Field Description/Function
--
�B�-�B1 NCW#BLNK No. of blanks to be expanded
�B2-�B3 NCWTBLEN Length of NJE transmission block
�B4-�B5 NCWRED Reduction variable for XMIT block size
�B6-�B7 NCWRCL Length of preprec input record
�B8-�BB NCWRCA Addr. of preprec input record
�BC-�BF NCWINA Addr. of DATBUF input record
�C�-�C1 NCWINL Length of DATBUF input record
�C2-�C3 Reserved
�C4-�C7 NCWBUFA Address of output buffer
�C8-�CB NCWBUFOF Offset in output buffer
�CC-�CD NCWBUFRL Residual output buffer length
�CE-�CF NCWOUTRL Length of complete record to be put into output

buffer (incl. RCB, SRCB, etc., EOB-RCB)
�D�-�D2 NCWGETBF Operand field of GETBUF call
�D3 Reserved
�D4-�D7 NCWSRCBP Pointer to actual SRCB field
�D8-�DB NCWKOPTR Points to compression output area

(initialized by transmitter)
�DC-�DD NCWKOL Length of compression output area

(initialized by transmitter)
�DE NCWSTAT Saves compression error status
�DF Reserved
�E�-�E3 NCWHDR Data record header
�E�-�E1 NCWHDR1 If first segment: total length of spanned record

else: length of segment
�E� NCWHDR11 If unspanned record: length of record
�E1 NCWHDR12 If unspanned record: command code
�E2 NCWHDR2 First segment: Length of segment
�E3 NCWHDR3 First segment: command code
�E4 NCWHDRL Length of record header
�E5 Reserved
�E6-�E7 NCWRESL Part of DATREC not yet processed
�E8-11F NCWFSVE Composer save area
12�-143 NCDKABLK Storage for compression work area

 Chapter 5. Storage Layout and Data Areas 551

Network Compression Work Area

Definition Macro: IPW$DKA

This work area is used by the compression routine when it is compressing records before building them
into a transmission buffer. It is also used by the decompression routine when it decompresses buffers
which it has received from the PNET driver.

Offset
Hex

Type Len Name (Dim) Description

(0) ADDRESS 4 DKAINFA ADDR. OF INPUT FIELD (STRING)
(4) ADDRESS 4 DKAINFEA INPUT FIELD END ADDRESS + 1
(8) ADDRESS 4 DKAOUFA ADDRESS OF OUTPUT FIELD
(C) SIGNED 2 DKAOUFLN LENGTH OF OUTPUT FIELD
(E) SIGNED 2 DKAOULN OUTPUT STRING LENGTH

(10) ADDRESS 4 DKAOUFEA ADDR. LAST BYTE OF OUTPUT FIELD + 1
(14) BITSTRING 1 DKAREQ REQUEST BYTE:

 DKABCR "X'00'" - COMPRESSION, BSC MODE
 1.. DKABDCR "X'04'" - DECOMPRESSION, BSC MODE
 ...1 DKASCR "X'10'" - COMPRESSION, SNA MODE
 ...1 .1.. DKASDCR "X'14'" - DECOMPRESSION INCLUDING DECOMPACTION, SNA

MODE
 ...1 1... DKASNEEK "X'18'" - DECOMPRESSION, SNA MODE(SNEEK-A-PEEK)

(15) BITSTRING 1 DKASTAT OUTPUT STATUS BYTE:
 DKASTAT0 "X'00'" - NO ERROR OCCURRED
 1 DKAERR01 "X'01'" - OUTPUT STRING EXCEEDS OUTPUT AREA
 1. DKAERR02 "X'02'" - SCB ERROR. LENGTH EXCEEDS INPUT AREA.
 11 DKAERR03 "X'03'" - INVALID REQUEST CODE
 1.. DKAERR04 "X'04'" - LENGTH OF INPUT STRING <= 0.
 1.1 DKAERR05 "X'05'" - LENGTH OF OUTPUT FIELD <= 0.
 11. DKAERR06 "X'06'" - INVALID SCB ENCOUNTERED
 111 DKAERR07 "X'07'" - ERROR, SCB COUNT = 0
 1..1 DKAERR09 "X'09'" - OUTPUT LENGTH EXCEEDS OUTPUT BNDY
 1.1. DKAERR0A "X'0A'" - SNA DECOMP.: END OF INPUT OCCURRED, BEFORE

REQUESTED OUTPUT LNGTH REACHED
 1.11 DKAERR0B "X'0B'" - NO COMPACTION TABLE AVAIL.

(16) BITSTRING 1 DKAFLAG FLAG BYTE
 1... DKAHALF "X'80'" HALF BYTE DECOMPACTED

(17) CHAR-
ACTER

1 RESERVED

(18) ADDRESS 4 DKANSCB POINT TO START SCB (SNA ONLY)
(1C) ADDRESS 4 DKAINPOS POINTS TO FIRST BYTE, NOT YET PROCESSED, IN INPUT STRING
(20) SIGNED 2 DKAINFLN LENGTH OF INPUT FIELD (STRING)
(22) SIGNED 2 DKAREQL SNA OUTPUT BUFFER LENGTH (BYTES)
(24) ADDRESS 4 DKACMPT ADDR. OF COMPACTION TABLE BLOCK (SNA ONLY)

552 VSE Central Functions V7R1 VSE/POWER DRM

Network Definition Table (NDT)

Definition Macro: PNODE DSECT=YES

The Network Definition Table (NDT) is used to define the network environment to PNET. It is generated
from user definitions made with the PNODE macro. There must be one entry in the table for every node
which must be known by the node on which this table will be used. The table is loaded into the PNET
environment by use of the PLOAD PNET= command, or is automatically done during initialization, if
PNET= was specified in the POWER generation.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

NETWORK DEFINITION TABLE: HEADER

(0) 0 STRUC-
TURE

0 NTHDS , HEADER DEFINITION DSECT

(0) 0 CHAR-
ACTER

16 NTHSD STORAGE DESCRIPTOR

(10) 16 ADDRESS 4 NTHFE ADDRESS OF FIRST ENTRY IN TABLE
(14) 20 SIGNED 2 NTHNE NUMBER OF ENTRIES IN TABLE
(16) 22 SIGNED 2 NTHMX MAX. # TCP/IP SOCKET CALLS
(18) 24 ADDRESS 4 NTHOE ADDRESS OF OWN ENTRY IN TABLE
(1C) 28 CHAR-

ACTER
4 NTHVM NETWORK DEF. TABLE VERS. ID

(20) 32 BITSTRING 2 RESERVED FOR FUTURE USE
(22) 34 CHAR-

ACTER
44 COPYRIGHT INFORMATION

(4E) 78 BITSTRING 50 RESERVED FOR FUTURE USE
 1... NTHLN "*-NTHDS" LENGTH OF HEADER

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

NETWORK DEFINITION TABLE: ENTRIES

(0) 0 STRUC-
TURE

0 NDTDS , NETWORK DEFINITION TABLE DSECT

(0) 0 CHAR-
ACTER

8 NDTNM NODE NAME

(8) 8 CHAR-
ACTER

8 NDTPW PASSWORD

(10) 16 BITSTRING 1 NDTAF AUTHORITY FLAGS
 1111 NDTAS "X'F0'" .. NODE IS 'SYSTEM' AUTHORIZED
 .1.1 NDTAN "X'50'" .. NODE IS 'NETWORK' AUTHORIZED
 ..1. NDTNU "X'20'" .. NOT USED
 ...1 NDTAJ "X'10'" .. NODE IS 'JOB' AUTHORIZED
 NDTAE "X'00'" .. NODE IS NOT AUTHORIZED AT ALL

(11) 17 BITSTRING 2 RESERVED FOR FUTURE USE
(13) 19 BITSTRING 1 NDTF1 FLAG BYTE 1

 1... NDTLI "X'80'" .. ADJACENT BSC/CTC NODE
 .1.. NDTVA "X'40'" .. SNA TYPE NODE MAY BE SET FOR OWN NODE!
 ..1. NDTF1IA "X'20'" .. INVALID SNA APPLID
 ...1 NDTPA "X'10'" .. TCP TYPE NODE
 1... NDTF1IP "X'08'" .. INVALID TCP ADDRESS
 1.. NDTSA "X'04'" .. SSL TYPE NODE

(14) 20 CHAR-
ACTER

8 NDTPR PRIME ROUTE FOR BSC/CTC, OR APPLICATION ID FOR
SNA, OR '*ATP ', IF TCP IPHOSTAD '*ATP ', IF SSL
ISHOSTAD '*NTP ', IF TCP IPHOSTNM '*NTP ', IF SSL
ISHOSTNM

(1C) 28 CHAR-
ACTER

8 NDTSR ALTERNATE ROUTE

(24) 36 ADDRESS 2 NDTBS PNET BUFFERSIZE
(26) 38 ADDRESS 1 NDTNI MAX. NO OF INPUT BUFFERS

 Chapter 5. Storage Layout and Data Areas 553

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(27) 39 ADDRESS 1 NDTNO MAX. NO OUTPUT BUFFERS
(28) 40 ADDRESS 2 NDTPT TCP/IP PORT NUMBER FOR ... 'CONNECT', IF REMOTE

NODE OR 'LISTEN', IF OWN NODE
(2A) 42 ADDRESS 2 NDTSPT TCP/IP SSL PORT NUMBER FOR.. 'CONNECT', IF

REMOTE NODE OR 'LISTEN', IF OWN NODE
(2C) 44 ADDRESS 4 NDTHML TCP, LENGTH OF NDTHM VALUE
(30) 48 SIGNED 4 NDTIPAD (0) BINARY IP ADDRESS
(30) 48 ADDRESS 1 NDTIPA1 BINARY IPADDR BYTE 1| FOR...
(31) 49 ADDRESS 1 NDTIPA2 BINARY IPADDR BYTE 2| DOTTED
(32) 50 ADDRESS 1 NDTIPA3 BINARY IPADDR BYTE 3| DECIM.
(33) 51 ADDRESS 1 NDTIPA4 BINARY IPADDR BYTE 4| VALUE
(34) 52 CHAR-

ACTER
255 NDTHM TCP/IP HOST NAME ... FOR OWN NODE 'UNUSED', FOR

REMOTE NODE ... DOTTED DECIMAL (NDTPR=*ATP)
SYMBOLIC NAME, (NDTPR=*NTP)

(133) 307 BITSTRING 1 NDTF2 FLAG BYTE 2
 1... NDT2CRL "X'80'" .. ENCRYPT = LOW
 .1.. NDT2CRH "X'40'" .. ENCRYPT = HIGH

(134) 308 SIGNED 4 NDTMSGTM TIME STAMP FOR MSG 1RC6
(138) 312 SIGNED 4 NDTMSGDI DOM-ID FOR A-TYPE MSG
(13C) 316 SIGNED 4 RESERVED FOR FUTURE USE
(140) 320 CHAR-

ACTER
8 NDTSSLT SSL TYPE OF SECURITY PROTOC.

(148) 328 CHAR-
ACTER

16 NDTKEYR LIB.SUBLIB SSL KEY DATABASE

(158) 344 CHAR-
ACTER

8 NDTKEYM KEY MEMBER IN KEY DATABASE

(160) 352 SIGNED 4 (7) RESERVED FOR FUTURE USE
(160) 352 0 NDTLN "*-NDTDS" LENGTH OF ENTRY

554 VSE Central Functions V7R1 VSE/POWER DRM

Network Data Set Header Record (DSHR)

Definition Macro: IPW$DNR DHR=YES

The data set header record is a control record which is normally only present on output data sets (list or
punch). It contains information relevant to the output, e.g. forms number, output class. A short form of the
record, the record characteristics change section, may also be present on input jobs, if the record length of
the data set is not 80 bytes.

The layout of the first four bytes of every header record is identical. Bytes 0 and 1 are the length of the
entire block. Individual records must not be greater than 256 bytes long, so if the total record is longer it
must be segmented. Byte 2 is a flag byte that is zero. Byte 3 is the transmission sequence indicator and
is used to indicate that a header has been segmented. The high order bit (X'1...') indicates that there
are more parts to come, and the other bits are a sequence counter of the blocks for this record. For
example, if the header had to be split into three parts then the sequence indicators in the three blocks
would be as follows:- X'80', X'81', and X'02'.

The layout of the first four bytes of all sections is always identical. The section flags are to be found in the
description of the job header record (refer to “Network Job Header Record (JHR)” on page 559).

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 Network Data Set Header Record (DSHR)

(0) 0 STRUC-
TURE

NDHDSECT NETWORK DATA SET HEADER RECORD

BLOCK CONTROL INFORMATION

(0) 0 ADDRESS 2 NDHLEN LENGTH OF ENTIRE BLOCK
(2) 2 BITSTRING 1 NDHFLAGS FLAGS
(3) 3 BITSTRING NDHSEQ TRANSMISSION SEQUENCE INDICATOR

 1.. NDHLBCI "*-NDHDSECT" LENGTH OF BLOCK CONTROL INFORMAT

 GENERAL SECTION

(4) 4 SIGNED 4 NDHG (0) START OF GENERAL SECTION
(4) 4 ADDRESS 2 NDHGLEN LENGTH OF GENERAL SECTION
(6) 6 BITSTRING 2 NDHGFLGS

(0)
SECTION TYPE FLAGS

(6) 6 ADDRESS 1 NDHGTYPE ID FOR GENERAL SECTION
(7) 7 ADDRESS 1 NDHGMOD MODIFIER

 NDHG$MOD "B'00000000'" .. VALUE OF MODIFIER
(8) 8 CHAR-

ACTER
8 NDHGNODE DESTINATION NODE NAME

(10) 16 CHAR-
ACTER

8 NDHGRMT DESTINATION REMOTE NAME

(18) 24 CHAR-
ACTER

8 NDHGPROC PROC INVOCATION NAME

(20) 32 CHAR-
ACTER

8 NDHGSTEP STEP NAME

(28) 40 CHAR-
ACTER

8 NDHGDD DD NAME

(30) 48 SIGNED 2 NDHGDSNO DATA SET NUMBER
(32) 50 ADDRESS 1 RESERVED
(33) 51 CHAR-

ACTER
1 NDHGCLAS OUTPUT CLASS

(34) 52 SIGNED 4 NDHGNREC RECORD COUNT
(38) 56 BITSTRING 1 NDHGFLG1 FLAGS

 1... NDHGF1SP "B'10000000'" .. SPIN DATA SET (SEGMENTED)
 .1.. NDHGF1HD "B'01000000'" .. HOLD DATA SET AT DESTINATION
 ..1. NDHGF1LG "B'00100000'" .. JOB LOG INDICATOR
 ...1 NDHGF1OV "B'00010000'" .. PAGE OVERFLOW INDICATOR

 Chapter 5. Storage Layout and Data Areas 555

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... NDHGF1IN "B'00001000'" .. PUNCH INTERPRET INDICATOR
(39) 57 BITSTRING 1 NDHGRCFM RECFM

 11.. NDHGRCUN "B'11000000'" .. UNDEFINED FORMAT
 1... NDHGRCFF "B'10000000'" .. FIXED FORMAT
 .1.. NDHGRCVF "B'01000000'" .. VARIABLE FORMAT
 1.. NDHGRCAS "B'00000100'" .. ASA CONTROL CHARACTERS
 1. NDHGRCMC "B'00000010'" .. MACHINE CNTRL CHARACTER

(3A) 58 SIGNED 2 NDHGLREC MAX LOGICAL RECORD LENGTH
(3C) 60 ADDRESS 1 NDHGDSCT DATA SET COPY COUNT
(3D) 61 ADDRESS 1 NDHGFCBI 3211 FCB INDEX
(3E) 62 ADDRESS 1 NDHGLNCT DEFAULT LINES PER PAGE
(3F) 63 BITSTRING 1 RESERVED
(40) 64 CHAR-

ACTER
8 NDHGFORM FORMS ID

(48) 72 CHAR-
ACTER

8 NDHGFCB FCB ID

(50) 80 CHAR-
ACTER

8 NDHGUCS UCS ID

(58) 88 CHAR-
ACTER

8 NDHGXWTR EXTERNAL WRITER ID

(60) 96 CHAR-
ACTER

8 RESERVED

(68) 104 BITSTRING 1 NDHGFLG2 SECOND FLAG BYTE
 1... NDHGF2PR "X'80'" .. DATASET IS TO BE PRINTED
 .1.. NDHGF2PU "X'40'" .. DATASET IS TO BE PUNCHED
 ..1. NDHGF2HB "X'20'" .. HOLD DATASET BEFORE
 ...1 NDHGF2HA "X'10'" .. HOLD DATASET AFTER

(69) 105 BITSTRING 1 NDHGUCSO UCS OPTION BYTE
 1... NDHGUCSD "X'80'" .. UCS DATA CHECK OPTION
 .1.. NDHGUCSF "X'40'" .. UCS FOLDING REQUESTED OPTION

(6A) 106 BITSTRING 2 RESERVED
(6C) 108 CHAR-

ACTER
8 NDHGPMDE PROCESS MODE

(74) 116 SIGNED 4 NDHGEND (0) END OF GENERAL SECTION
 .111 NDHGLLEN "*-NDHG" LENGTH OF GENERAL SECTION

VSE/POWER SUBSYSTEM SECTION (LONG FORM)

(74) 116 SIGNED 4 NDHP (0) START OF VSE/POWER SECTION
(74) 116 ADDRESS 2 NDHPLEN LENGTH OF VSE/POWER SECTION
(76) 118 BITSTRING 2 NDHPFLGS

(0)
SECTION TYPE FLAGS

(76) 118 ADDRESS 1 NDHPTYPE ID FOR VSE/POWER SECTION
(77) 119 ADDRESS 1 NDHPMOD MODIFIER

 NDHP$MOD "B'00000000'" .. VALUE OF MODIFIER
 1 NDHP$MD1 "B'00000001'" .. VALUE OF MODIFIER SHORT FORM

(78) 120 BITSTRING 1 NDHPFLG1 FLAGS
 1... NDHPF1AC "X'80'" .. CREATED BY CMD 'J PUN'

(79) 121 BITSTRING 1 NDHPIDEV DOS/VSE DEVICE TYPE
(7A) 122 CHAR-

ACTER
1 NDHPPRIO OUTPUT PRIORITY

(7B) 123 CHAR-
ACTER

1 NDHPDISP OUTPUT DISPOSITION

(7C) 124 CHAR-
ACTER

16 NDHPUSER USER INFORMATION

(8C) 140 BITSTRING 1 NDHPJBSF JOB SUFFIX
 1... NDHPJBLA "X'80'" .. LAST SEGMENT INDICATOR

(NOTE: BITS 1 - 7 ARE THE JOB SUFFIX NUMBER(1 - 127)
IF ANY)

(8D) 141 CHAR-
ACTER

1 NDHPSYID SYSTEM ID

(8E) 142 ADDRESS 1 NDHPNSEP NUMBER OF SEPARATOR PAGES
(8F) 143 BITSTRING 1 NDHPOPTN GENERAL OPTION BYTE 1

(NOTE - BITS ARE DEFINED IN DMB AND IN QUEUE
RECORD)

 ..1. NDHPCSUP "X'20'" .. NO SEP PAGES BTWN COPIES

556 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ...1 NDHPOPHP "X'10'" .. HOLD IF PRT/PUN FAILS
(90) 144 CHAR-

ACTER
2 NDHPPART DOS/VSE PARTITION ID

(92) 146 ADDRESS 2 RESERVED
(94) 148 BITSTRING 1 NDHPRCFM SPECIAL RECORD FORMAT

 1... NDHPRCSC "X'80'" .. SCS PRINT FORMAT
 .1.. NDHPRCBM "X'40'" .. BMS MAPPING FORMAT
 ..1. NDHPRC32 "X'20'" .. 3270 RECORD FORMAT
 ...1 NDHPRCAP "X'10'" .. APA DATA FORMAT (CPDS)
 1... NDHPRCES "X'08'" .. ESCAPE MODE FORMAT
 1.. NDHPRCAS "X'04'" .. ASA CARRIAGE CONTROL
 1. NDHPRCMC "X'02'" .. MACHINE CARRIAGE CNTRL.

(95) 149 CHAR-
ACTER

1 UNUSED

(96) 150 ADDRESS 2 NDHPJNUM JOB NO OF OUTPUT SEGMENT
(98) 152 CHAR-

ACTER
4 NDHPCOMP COMPACTION TABLE NAME

(9C) 156 CHAR-
ACTER

8 NDHPPASS PASSWORD

(A4) 164 CHAR-
ACTER

68 NDHPSETP SETPRT PARAMETER LIST

(E8) 232 SIGNED 8 NDHPSTRT START TIME/DATE FOR JTR
(F0) 240 SIGNED 4 NDHPEND (0) END OF VSE/POWER SECTION

 .111 11.. NDHPLLEN "*-NDHP" LENGTH OF VSE/POWER SECTION

VSE/POWER SUBSYSTEM SECTION (SHORT FORM)
This form is used only on input, whenever data is read from a IBM 3540 diskette device.

(79) 121 BITSTRING 1 UNUSED
(7A) 122 BITSTRING 2 NDHPCUU 3540 CUU

 1... NDHPCLEN "*-NDHP" LENGTH OF SHORT VSE/POWER SECTION

3800 PRINTER CHARACTERISTICS GENERAL SECTION (OPTIONAL)

(F0) 240 SIGNED 4 NDHA (0) START OF 3800 CHAR SECTION
(F0) 240 ADDRESS 2 NDHALEN LENGTH OF 3800 CHAR SECTION
(F2) 242 BITSTRING 2 NDHAFLGS

(0)
FLAGS AND MODIFIER

(F2) 242 ADDRESS 1 NDHATYPE ID FOR GENERAL SECTION
(F3) 243 ADDRESS 1 NDHAMOD MODIFIER

 1... NDHA$MOD "B'10000000'" .. VALUE OF MODIFIER (3800 CHAR)
(F4) 244 BITSTRING 1 NDHAFLG1 FLAGS

 1... NDHAF1J "B'10000000'" .. 'OPTCD=J' SPECIFIED
 .1.. NDHAF1BR "B'01000000'" .. 'BURST=YES' SPECIFIED
 ..1. NDHAF1BN "B'00100000'" .. 'BURST=NO' SPECIFIED

(F5) 245 ADDRESS 1 NDHAFLCT FLASH COUNT
(F6) 246 BITSTRING 1 NDHATREF TABLE REFERENCE CHARACTER
(F7) 247 BITSTRING 1 RESERVED
(F8) 248 CHAR-

ACTER
8 NDHATAB1 TRANSLATE TABLE 1

(100) 256 CHAR-
ACTER

8 NDHATAB2 TRANSLATE TABLE 2

(108) 264 CHAR-
ACTER

8 NDHATAB3 TRANSLATE TABLE 3

(110) 272 CHAR-
ACTER

8 NDHATAB4 TRANSLATE TABLE 4

(118) 280 CHAR-
ACTER

8 NDHAFLSH FLASH CARTRIDGE ID

(120) 288 CHAR-
ACTER

8 NDHAMODF COPY MODIFICATION ID

(128) 296 BITSTRING 8 NDHACPYG COPY GROUPS
(130) 304 SIGNED 4 NDHAEND (0) END OF 3800 CHAR SECTION

 .1.. NDHALLEN "*-NDHA" LENGTH OF 3800 CHAR SECTION
(130) 304 NDHLLEN "*-NDHDSECT" LENGTH OF ENTIRE BLOCK

RECORD CHARACTERISTICS CHANGE GENERAL SECTION
This section is used only within an input data stream when the record length is not 80 bytes.

 Chapter 5. Storage Layout and Data Areas 557

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(130) 304 SIGNED 4 NDHC (0) START OF CHAR CHANGE GENERAL SECTI
(130) 304 ADDRESS 2 NDHCLEN LENGTH OF CHAR CHANGE GEN SECT
(132) 306 BITSTRING 2 NDHCFLGS

(0)
SECTION TYPE FLAGS

(132) 306 ADDRESS 1 NDHCTYPE ID FOR GENERAL SECTION
(133) 307 ADDRESS 1 NDHCMOD MODIFIER

 .1.. NDHC$MOD "B'01000000'" .. VALUE OF MODIFIER (CHAR CHANG
(134) 308 BITSTRING 1 NDHCFLG1 FLAGS
(135) 309 BITSTRING 1 NDHCRCFM RECFM
(136) 310 ADDRESS 2 NDHCLREC MAXIMUM LRECL
(138) 312 SIGNED 4 NDHCEND (0) END OF CHAR CHANGE GENERAL SECT

 1... NDHCLLEN "*-NDHC" LENGTH OF CHAR CHANGE GEN SECT

�VSE/POWER Output Processing Section

This section is built whenever Output Parameters must be processed by VSE/POWER.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 Output Processing Section

(0) 0 STRUC-
TURE

NDHS , START OUTPUT PROC SECTION

(0) 0 ADDRESS 2 NDHSLEN LENGTH OF SECTION
(2) 2 BITSTRING 2 NDHSFLGS

(0)
FLAGS AND MODIFIER

(2) 2 ADDRESS 1 NDHSTYPE - ID FOR GENERAL SECTION
(3) 3 ADDRESS 1 NDHSMOD - MODIFIER

 NDHS$OUT "B'00000000'" .. MODIFIER (OUTPUT)
(4) 4 ADDRESS 2 NDHSFLEN SUBSECTION FIXED LENGTH
(6) 6 BITSTRING 1 NDHSFLG1 DATA STREAM FLAGS

 1... NDHSCPDS "B'10000000'" ..DATASET HAS CPDS RECORDS
(7) 7 BITSTRING 1 RESERVED
(8) 8 BITSTRING 8 NDHSJDVT JDVT NAME

(10) 16 BITSTRING 4 NDHSNSTR PAGE DATA SET PAGE COUNT
(14) 20 CHAR-

ACTER
8 NDHSGPID OUTPUT GROUP NAME

 ...1 11.. NDHSLEN2 "*-NDHS" LENGTH OF FIXED PART
(1C) 28 SIGNED 2 NDHSOPTB

(0)
START OF OPTB DATA

(1C) 28 CHAR-
ACTER

4 NDHSPRID PREFIX IDENTIFIER

(20) 32 ADDRESS 1 NDHSVERS PREFIX VERSION LEVEL
(21) 33 ADDRESS 1 NDHSPLEN LENGTH OF PREFIX
(22) 34 ADDRESS 2 NDHSDLEN DATA LENGTH FOLLOWING PRFX
(24) 36 CHAR-

ACTER
8 NDHSVERB 'OUTPUT' CONSTANT

(2C) 44 CHAR-
ACTER

8 NDHSVRBL

(34) 52 BITSTRING 1 NDHSFLG2 FLAG BYTE
 1... NDHSCONT "X'80'" .. OTHER OPTB STRUC EXISTS

(35) 53 ADDRESS 1 NDHSPARM NO OF PARAMETERS PROCESSED
(36) 54 BITSTRING 2 NDHSRSV1 RESERVED
(38) 56 CHAR-

ACTER
1 NDHSTEXT

(0)
START OF OPTB TEXT

 ..11 1... NDHSLEN1 "*-NDHS" LENGTH OUTPUT PROC SECTION

558 VSE Central Functions V7R1 VSE/POWER DRM

Network Job Header Record (JHR)

Definition Macro: IPW$DNR JHR=YES

The Job Header record (JHR) is a control record which, together with the job trailer record, is used as the
'bounds' for jobs or output which are to be transmitted via the network. It contains several different
sections and only those relevant to VSE/POWER are described here.

The layout of the first four bytes of every header record is identical. Bytes 0 and 1 are the length of the
entire block. Individual records must not be greater than 256 bytes long, so if the total record is longer it
must be segmented. Byte 2 is a flag byte that is zero. Byte 3 is the transmission sequence indicator and
is used to indicate that a header has been segmented. The high order bit (X'1...') indicates that there
are more parts to come, and the other bits are a sequence counter of the blocks for this record. For
example, if the header had to be split into three parts then the sequence indicators in the three blocks
would be as follows:- X'80', X'81', and X'02'.

The layout of the first four bytes of all sections is always identical, so that it is easy to bypass sections for
which there is no interest.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 NJE JOB HEADER RECORD

BLOCK CONTROL INFORMATION

(0) 0 ADDRESS 2 NJHLEN LENGTH OF ENTIRE BLOCK
(2) 2 BITSTRING 1 NJHFLAGS FLAGS
(3) 3 BITSTRING NJHSEQ TRANSMISSION SEQUENCE INDICATOR

 1.. NJHLBCI "*-NJHDSECT" LENGTH OF BLOCK CONTROL INFORMAT

 GENERAL SECTION

(4) 4 SIGNED 4 NJHG (0) START OF GENERAL SECTION
(4) 4 ADDRESS 2 NJHGLEN LENGTH OF GENERAL SECTION
(6) 6 BITSTRING 2 NJHGFLGS (0) SECTION TYPE FLAGS
(6) 6 ADDRESS 1 NJHGTYPE ID FOR GENERAL SECTION
(7) 7 ADDRESS 1 NJHGMOD MODIFIER

 NJHG$MOD "B'00000000'" .. VALUE OF MODIFIER
(8) 8 ADDRESS 2 NJHGJID JOB IDENTIFIER (NUMBER)
(A) 10 CHAR-

ACTER
1 NJHGJCLS JOB CLASS

(B) 11 CHAR-
ACTER

1 NJHGMCLS MESSAGE CLASS

(C) 12 BITSTRING 1 NJHGFLG1 FLAGS
 1... NJHGF1PR "B'10000000'" .. DO NOT RECOMPUTE PRIORITY

(D) 13 ADDRESS 1 NJHGPRIO SELECTION PRIORITY
(E) 14 ADDRESS 1 NJHGORGQ ORIGIN NODE SYSTEM QUALIFIER
(F) 15 ADDRESS 1 NJHGJCPY JOB COPY COUNT

(10) 16 ADDRESS 1 NJHGLNCT JOB LINE COUNT
(11) 17 BITSTRING 3 RESERVED
(14) 20 CHAR-

ACTER
8 NJHGACCT NETWORKING ACCOUNT NUMBER

(1C) 28 CHAR-
ACTER

8 NJHGJNAM JOB NAME

(24) 36 CHAR-
ACTER

8 NJHGUSID USER ID (TSO, VM, ICCF) FOR NTFY

(2C) 44 CHAR-
ACTER

8 NJHGPASS PASSWORD

(34) 52 SIGNED 8 NJHGNPAS NEW PASSWORD
(3C) 60 SIGNED 8 NJHGETS ENTRY TIME/DATE STAMP
(44) 68 CHAR-

ACTER
8 NJHGORGN ORIGIN NODE NAME

 Chapter 5. Storage Layout and Data Areas 559

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(4C) 76 CHAR-
ACTER

8 NJHGORGR ORIGIN REMOTE NAME

(54) 84 CHAR-
ACTER

8 NJHGXEQN EXECUTION NODE NAME

(5C) 92 CHAR-
ACTER

8 NJHGXEQU EXECUTION USER ID(VM/370)

(64) 100 CHAR-
ACTER

8 NJHGPRTN DEFAULT PRINT NODE NAME

(6C) 108 CHAR-
ACTER

8 NJHGPRTR DEFAULT PRINT REMOTE NAME

(74) 116 CHAR-
ACTER

8 NJHGPUNN DEFAULT PUNCH NODE NAME

(7C) 124 CHAR-
ACTER

8 NJHGPUNR DEFAULT PUNCH REMOTE NAME

(84) 132 CHAR-
ACTER

8 NJHGFORM JOB FORMS

(8C) 140 SIGNED 4 NJHGICRD INPUT CARD COUNT
(90) 144 SIGNED 4 NJHGETIM ESTIMATED EXECUTION TIME
(94) 148 SIGNED 4 NJHGELIN ESTIMATED OUTPUT LINES
(98) 152 SIGNED 4 NJHGECRD ESTIMATED OUTPUT CARDS
(9C) 156 CHAR-

ACTER
20 NJHGPRGN PROGRAMMERS NAME

(B0) 176 CHAR-
ACTER

8 NJHGROOM PROGRAMMERS ROOM NUMBER

(B8) 184 CHAR-
ACTER

8 NJHGDEPT PROGRAMMERS DEPT NUMBER

(C0) 192 CHAR-
ACTER

8 NJHGBLDG PROGRAMMERS BLDG NUMBER

(C8) 200 SIGNED 4 NJHGNREC RECORD COUNT ON OUTPUT XMISSION
(CC) 204 SIGNED 4 NJHGJNO JOB NUMBER IF > 64K
(D0) 208 CHAR-

ACTER
8 NJHGNTYN NOTIFY NODE NAME

(D8) 216 SIGNED 4 NJHGEND (0) END OF GENERAL SECTION
 11.1 .1.. NJHGLLEN "*-NJHG" LENGTH OF GENERAL SECTION

VSE/POWER SUBSYSTEM SECTION

(D8) 216 SIGNED 4 NJHP (0) START OF VSE/POWER SECTION
(D8) 216 ADDRESS 2 NJHPLEN LENGTH OF VSE/POWER SECTION
(DA) 218 BITSTRING 2 NJHPFLGS (0) SECTION TYPE FLAGS
(DA) 218 ADDRESS 1 NJHPTYPE ID FOR VSE/POWER SECTION
(DB) 219 ADDRESS 1 NJHPMOD MODIFIER

 NJHP$MOD "B'00000000'" .. VALUE OF MODIFIER
(DC) 220 BITSTRING 1 NJHPFLG1 FLAGS
(DD) 221 CHAR-

ACTER
1 NJHPDISP JOB DISPOSITION

(DE) 222 BITSTRING 1 RESERVED
(DF) 223 CHAR-

ACTER
1 NJHPSYID TARGET SYSTEM IDENTIFIER

(E0) 224 CHAR-
ACTER

16 NJHPUSER ORIGINATORS USER INFORMATION

(F0) 240 BITSTRING 2 NJHPDSKT 3540 SYSIN CUU
(F2) 242 BITSTRING 2 UNUSED
(F4) 244 BITSTRING 15 NJHPDD (0) DUE DATE INFORMATION
(F4) 244 BITSTRING 1 NJHPDGP1 GENERAL PURPOSE BYTE1

 1... NJHPDG1R "X'80'" RERUN=YES SPECIFIED
 X'40' RESERVED FOR DUE INFO
 X'20' RESERVED FOR DUE INFO
 X'10' RESERVED FOR DUE INFO

 1... NJHPDG1T "X'08'" DAILY SPECIFIED
 1.. NJHPDG1W "X'04'" WEEKDAYS SPECIFIED
 1. NJHPDG1D "X'02'" DAYS SPECIFIED

 X'01' RESERVED FOR DUE INFO
(F5) 245 BITSTRING 1 NJHPDGP2 GENERAL PURPOSE BYTE2

 1... NJHPD280 "X'80'" RESERVED FOR DUE INFO
 .1.. NJHPD240 "X'40'" RESERVED FOR DUE INFO

560 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. NJHPD220 "X'20'" RESERVED FOR DUE INFO
 ...1 NJHPD210 "X'10'" RESERVED FOR DUE INFO
 1... NJHPD208 "X'08'" RESERVED FOR DUE INFO
 1.. NJHPD204 "X'04'" RESERVED FOR DUE INFO
 1. NJHPD202 "X'02'" RESERVED FOR DUE INFO
 1 NJHPDG2X "X'01'" DUE DATE INFO EXISTS

(F6) 246 BITSTRING 6 NJHPDCY (0) START OF CYCLING INFO
(F6) 246 BITSTRING 2 NJHPDMY MONTHS WITHIN YEAR

X'80' LEFT ALIGNED: 80=JAN
X'40' 40=FEB, 20=MAR, ...

(F8) 248 BITSTRING 4 NJHPDDM DAYS WITHIN MONTH BR;X'80' LEFT ALIGNED: 80=1ST
BR;X'40' 40=2ND, 20=3RD, ...

(FC) 252 BITSTRING 6 NJHPDN (0) NEXT DUE DATE/TIME IN PACKED DEC WITHOUT SIGN
(FC) 252 BITSTRING 4 NJHPDNDT

(0)
NEXT DUE DATE (W/O TIME)

(FC) 252 BITSTRING 2 NJHPDNY YEAR (1988-2087)
(FE) 254 BITSTRING 1 NJHPDNM MONTH (1-12)
(FF) 255 BITSTRING 1 NJHPDND DAY (1-31)

(100) 256 BITSTRING 2 NJHPDNT (0) TIME
(100) 256 BITSTRING 1 NJHPDNTH HOURS (0-23)
(101) 257 BITSTRING 1 NJHPDNTM MINUTES (0-59)
(102) 258 BITSTRING 1 RESERVED FOR DUE INFO
(103) 259 BITSTRING 1 NJHPDGP3 GENERAL PURPOSE BYTE3

 1... NJHPDG3G "X'80'" LOG=NO SPECIFIED
 .1.. NJHPDG3M "X'40'" 'EOJMSG WANTED' OPTION
 ..1. NJHPDG3Q "X'20'" QUEUE FIX F. JOB CMPL MSG
 ...1 NJHPDG3F "X'10'" USER VALUE BY 'FROM=' OP.
 1... NJHPDG3J "X'08'" QUEUE FIX F. JOB GEN MSG
 1.. NJHPDG3C "X'04'" QUEUE MSG TO COMM. QUEUE
 1. NJHPDG3D "X'02'" QUEUE MSG DOUBLE
 1 NJHPDG3R "X'01'" *$$ JOB NORUN=IGN

(104) 260 CHAR-
ACTER

8 NJHPDIST DISTRIBUTION CODE

(10C) 268 SIGNED 4 NJHPONUM JOB NUMBER OF ORIG. JOB
(110) 272 CHAR-

ACTER
25 NJHPJSIN (0) GCM SUBMIT-MSG INFO

(110) 272 CHAR-
ACTER

8 NJHPDAPL JOB SUBMITTER'S APPLID

(118) 280 CHAR-
ACTER

8 NJHPDUID JOB SUBMITTER'S USERID

(120) 288 CHAR-
ACTER

8 NJHPONOD JOB SUBMITTER'S NODE NAME

(128) 296 BITSTRING 1 NJHPOQUL JOB SUBMITTER'S SYSID/QUL
(129) 297 BITSTRING 2 RESERVED FOR FUTURE
(12B) 299 BITSTRING 1 NJHPDGP4 GENERAL PURPOSE BYTE 4

 1... NJHPDG4A "X'80'" .. JOB ECHO=ALL
 .1.. NJHPDG4R "X'40'" .. JOB ECHO=REPLY
 ..1. NJHPDG4M "X'20'" .. GCM R-MSG WANTED
 ...1 NJHPDG4O "X'10'" .. JOB ECHO=ONLY
 1... NJHPD4LM "X'08'" .. LINE MODE STATE
 1.. NJHPD4LI "X'04'" .. LINE MODE IMM/IDM
 1. NJHPD4PM "X'02'" .. PAGE MODE STATE
 1 NJHPD4P8 "X'01'" .. PAGE MODE-B STATE

(12C) 300 CHAR-
ACTER

8 NJHPSID SECURITY USERID

(134) 308 BITSTRING 8 NJHPSPW SECURITY PASSWORD
(13C) 316 CHAR-

ACTER
8 NJHPSECN SECURITY NODEID

(144) 324 BITSTRING 8 NJHPPRIV USER'S PRIVATE INFORM'N
(14C) 332 CHAR-

ACTER
8 NJHPECHO JOB ECHO USERID

(154) 340 CHAR-
ACTER

25 NJHPMRIN (0) GCM R-MSG INFO

(154) 340 CHAR-
ACTER

8 NJHPMRAP GCM R-MSG APPL. ID

 Chapter 5. Storage Layout and Data Areas 561

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(15C) 348 CHAR-
ACTER

8 NJHPMRUS GCM R-MSG USERID

(164) 356 CHAR-
ACTER

8 NJHPMRND GCM R-MSG NODEID

(16C) 364 BITSTRING 1 NJHPMRSI GCM R-MSG SYSTEMID
(16D) 365 CHAR-

ACTER
1 NJHPDGP5 GENERAL PURPOSE BYTE 5

 1... NJHPDG5S "X'80'" .. ENTRY NOTE SPOOL ACCESS PROTECTED
(16E) 366 CHAR-

ACTER
1 RESERVED FOR FUTURE USE

(16F) 367 BITSTRING 1 NJHPRQUL SYSID WHERE JOB RECVED
(170) 368 SIGNED 4 NJHPMRON GCM R-MSG ORIGINAL JOBNO
(174) 372 CHAR-

ACTER
32 RESERVED FOR FUTURE USE

(194) 404 SIGNED 4 NJHPEND (0) END OF VSE/POWER SECTION
 1.11 11.. NJHPLLEN "*-NJHP" LENGTH OF VSE/POWER SECTION

EXPRESSION NJHLLEN "*-NJHDSECT" LENGTH OF ENTIRE BLOCK

SECTION TYPE FLAGS
These flags are used by other operating systems which could be present within the network. The layouts of
the sections used by these systems can be found in the appropriate operating system manual. Because a
subsystem appears in this list of section type flags does not mean that IBM supports this subsystem as part
of the network.

 NTYPGEN "B'00000000'" GENERAL SECTION
 1... NTYPSUB "B'10000000'" SUB SYSTEM SECTION
 1... 1..1 NTYPGDS "B'10001001'" OUTPUT PROCESSING SECTION
 1... 1.1. NTYPGJS "B'10001010'" JOB SCHEDULING SECTION
 1... ...1 NTYPASP "B'10000001'" ASP SUBSYSTEM SECTION
 1... ..1. NTYPHASP "B'10000010'" HASP SUBSYSTEM SECTION
 1... ..11 NTYPJES1 "B'10000011'" JES/RES SUBSYSTEM SECTION
 1... .1.. NTYPJES2 "B'10000100'" JES2 SUBSYSTEM SECTION
 1... .1.1 NTYPJES3 "B'10000101'" JES3 SUBSYSTEM SECTION
 1... .11. NTYPPOWR "B'10000110'" VSE/POWER SUBSYSTEM SECTION
 1... .111 NTYPVNET "B'10000111'" VM/370 SUBSYSTEM SECTION
 11.. NTYPUSER "B'11000000'" USER SECTION

562 VSE Central Functions V7R1 VSE/POWER DRM

Network Job Trailer Record (JTR)

Definition Macro: IPW$DNR JTR=YES

The Job Trailer record (JTR) is a control record which, together with the job header record, is used as the
'bounds' for jobs or output which are to be transmitted via the network. It contains several different
sections and only those relevant to VSE/POWER are described in the following DSECT.

The layout of the first four bytes of every trailer record is identical. Bytes 0 and 1 are the length of the
entire block. Individual records must not be greater than 256 bytes long, so if the total record is longer it
must be segmented. Byte 2 is a flag byte that is zero. Byte 3 is the transmission sequence indicator and
is used to indicate that a header has been segmented. The high order bit (X'1...') indicates that there
are more parts to come, and the other bits are a sequence counter of the blocks for this record. For
example, if the trailer had to be split into three parts then the sequence indicators in the three blocks
would be as follows:- X'80', X'81', and X'02'.

The layout of the first four bytes of all sections is always identical. The section flags are to be found in the
description of the job header record (refer to “Network Job Header Record (JHR)” on page 559).

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 Network Job Trailer Record (JTR)

(0) 0 STRUC-
TURE

NJTDSECT

BLOCK CONTROL INFORMATION

(0) 0 ADDRESS 2 NJTLEN LENGTH OF ENTIRE BLOCK
(2) 2 BITSTRING 1 NJTFLAGS FLAGS
(3) 3 BITSTRING NJTSEQ TRANSMISSION SEQUENCE INDICATOR

 1.. NJTLBCI "*-NJTDSECT" LENGTH OF BLOCK CONTROL INFORMAT

 GENERAL SECTION

(4) 4 SIGNED 4 NJTG (0) START OF GENERAL SECTION
(4) 4 ADDRESS 2 NJTGLEN LENGTH OF GENERAL SECTION
(6) 6 BITSTRING 2 NJTGFLGS (0) SECTION TYPE FLAGS
(6) 6 ADDRESS 1 NJTGTYPE ID FOR GENERAL SECTION
(7) 7 ADDRESS 1 NJTGMOD MODIFIER

 NJTG$MOD "B'00000000'" .. VALUE OF MODIFIER
(8) 8 BITSTRING 1 NJTGFLG1 FLAGS
(9) 9 CHAR-

ACTER
1 NJTGXCLS ACTUAL EXECUTION CLASS

(A) 10 BITSTRING 2 RESERVED
(C) 12 SIGNED 8 NJTGSTRT EXECUTION START TIME/DATE

(14) 20 SIGNED 8 NJTGSTOP EXECUTION STOP TIME/DATE
(1C) 28 SIGNED 4 NJTGACPU ACTUAL CPU TIME
(20) 32 SIGNED 4 NJTGALIN ACTUAL OUTPUT LINES
(24) 36 SIGNED 4 NJTGACRD ACTUAL OUTPUT CARDS
(28) 40 SIGNED 4 NJTGEXCP EXCP COUNT
(2C) 44 ADDRESS 1 NJTGIXPR INITIAL XEQ SELECTION PRIORITY
(2D) 45 ADDRESS 1 NJTGAXPR ACTUAL XEQ SELECTION PRIORITY
(2E) 46 ADDRESS 1 NJTGIOPR INITIAL OUTPUT SELECTION PRIORITY
(2F) 47 ADDRESS 1 NJTGAOPR ACTUAL OUTPUT SELECTION PRIORITY
(30) 48 SIGNED 4 NJTGEND (0) END OF GENERAL SECTION

 ..1. 11.. NJTGLLEN "*-NJTG" LENGTH OF GENERAL SECTION
 ..11 NJTLLEN "*-NJTDSECT" LENGTH OF ENTIRE BLOCK

 Chapter 5. Storage Layout and Data Areas 563

Network Presentation Work Area

Definition Macro: IPW$DWP

This work area is used by the receiver. Presentation services is responsible for taking a transmission
block, decompressing it and passing individual records to the receiver.

Offset
Hex

Type Len Name (Dim) Description

(0) STRUC-
TURE

264 NPWA RECORD PRESENTATION WORKAREA

(0) CHAR-
ACTER

128 NPWDYNA PLS DYNAMIC DATA AREA

(80) CHAR-
ACTER

4 NPWDSD LITTLE STORAGE DESCRIPTOR

(84) BITSTRING 1 NPWRC RETURN CODE PRESENTATION SERVICE
(85) CHAR-

ACTER
3 * RESERVED

(88) ADDRESS 4 NPWBUPRO POINTER TO PROCESS BUFFER
(8C) ADDRESS 4 NPWRCDPT ADDRESS OF PHYSICAL RECORD IN NORMAL OR ALTERNATE

PRES. BUFFER
(90) ADDRESS 4 NPWHDRPT PTR TO HEAD ACCUMULATED RCD
(94) ADDRESS 4 NPWPRBUF PTR TO PRESENTATION BUFFER
(98) ADDRESS 4 NPWALBUF PTR TO ALTERNATE PRES BUFFER
(9C) UNSIGNED 2 NPWTRCL ACCUMULATED LENGTH OF SEGMENTS
(9E) UNSIGNED 2 NPWFSGTL TOTAL LENGTH OF SPANNED RECORD AS INDICATED IN FIRST

SEGMENT
(A0) UNSIGNED 2 NPWPRBLN LENGTH OFF PRESENTATION BUFFER
(A2) UNSIGNED 2 NPWALBLN LENGTH ALTERNATE PRES BUFFER
(A4) SIGNED 2 NPWALUSE USE COUNT ALTERNATE BUFFER
(A6) CHAR-

ACTER
1 NPWLPREQ RESERVED

 1... NPWSPAN REQ ACCUMULATE RECORD SEGMENTS
 .1.. NPWNXTSG REQ ACCUMULATE HEADER SEGMENTS
 ..11 1111 * RESERVED

(A7) CHAR-
ACTER

1 * RESERVED

(A8) CHAR-
ACTER

56 NPWFSVE FUNCTION SAVE AREA IMPLICIT LENGTH DEFINITION

(E0) CHAR-
ACTER

40 NPWDKA DECOMPRESSION WORK AREA IMPLICIT LENGTH DEFINITION

(108) CHAR-
ACTER

NPWAEND END OF PRESENTATION WORK AREA

564 VSE Central Functions V7R1 VSE/POWER DRM

Network Receiver Work Area

Definition Macro: IPW$DWG

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 Network Receiver Workarea

(0) 0 STRUC-
TURE

1248 NRWA RECEIVER WORKAREA

(0) 0 CHAR-
ACTER

80 NRDYNA PLS DYNAMIC DATA AREA

(50) 80 CHAR-
ACTER

1168 NRWAP1E 2ND PART OF WORKAREA

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 (2nd part of receiver workarea)

(0) 0 STRUC-
TURE

1168 NRWAP2 RCV WORKAREA PART 2

(0) 0 CHAR-
ACTER

256 NR2DYNA PLS DYN DATA AREA FOR $$NR2

(100) 256 CHAR-
ACTER

56 NR2SFSV

SAVE AREA OF $$NR2

(138) 312 CHAR-
ACTER

16 NRDSD NRWA STORAGE DESCRIPTOR

(148) 328 ADDRESS 4 NRTCB POINTER TO RECEIVER TCB
(14C) 332 UNSIGNED 1 NRSECTRC RETURN CODE FIND POWER SECT RTN
(14D) 333 UNSIGNED 1 NRSTATUE STATUS BYTE USER EXIT RTN

 1... NRUSREXT USER EXIT RTN LOADED
 .1.. NRUSBTRN USER REQ NO BLANK TRUNCATION@DA43344
 ..11 1111 * RESERVED

(14E) 334 BITSTRING 1 * RESERVED
(14F) 335 UNSIGNED 1 NRDSRC RETURN CODE DS-HEADER SCAN
(150) 336 UNSIGNED 1 NRALLCRC RETURN CODE CB-ALLOCATION RTN
(151) 337 BITSTRING 1 NRRQALLC ALLOCATION REQUEST BYTE

 1... NRRQQREC REQUEST FOR QUEUE RECORD
 .1.. NRRQDBLK REQUEST FOR DBLK AREA
 ..1. NRRQDSCB REQUEST FOR DSCB ENTRY
 ...1 NRRQINDS REQUEST FOR DSCB INITIALIZATION
 1... NRRQQRNO REQ FOR NO JOB NUMBER
 1.. NRRQQRPW REQ TO USE POWER DEFAULTS
 11 * RESERVED

(152) 338 UNSIGNED 2 NRUSRRC RETURN CODE USER EXIT RTN
(152) 338 UNSIGNED 1 NRUSRRC2 RETURN CODE 2 USER EXIT RTN

 1... NRUSRCBT USER REQ NO BLANK TRUNCATION@DA43344
 .111 1111 * RESERVED

(153) 339 UNSIGNED 1 NRUSRRC1 RETURN CODE 1 USER EXIT RTN
(154) 340 SIGNED 2 NRREASON TERMINATION REASON CODE
(156) 342 SIGNED 2 NR#SPREQ NBR OF OUTPUT SPOOL REQUESTS
(158) 344 ADDRESS 4 NRJHDR PTR TO JOB HEADER
(15C) 348 CHAR-

ACTER
8 NRTCBRW (2) RECORD CONTROL WORD LIST

(15C) 348 BITSTRING 1 NRTCBCC COMMAND CODE
(15D) 349 ADDRESS 3 NRTCBRV RECORD ADDRESS
(160) 352 BITSTRING 1 NRTCBGP GENERAL PURPOSE BYTE 1 (SEE TCB)

 1... * RESERVED
 .1.. NRGPBSR SEGMENTED/EXTENDED RECORD
 ..1. NRGPBDE END OF 3540 RECORD
 ...1 NRGPBEB END OF BLOCK

 Chapter 5. Storage Layout and Data Areas 565

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... * RESERVED
 1.. NRGPBED END OF DATA
 1. NRGPBRD 3540 DATA RECORD
 1 NRGPBDR LINE PRINT/CARD MOVE

(161) 353 BITSTRING 1 NRTCBG2 GENERAL PURPOSE BYTE 2
 1... NRTCBJHR JOB HEADER RECORD
 .1.. NRTCBJTR JOB TRAILER RECORD
 ..1. NRTCBDHR DATA SET HEADER RECORD
 ...1 NRTCBPRI PAGE RECORD IDENTIFIER
 11.. * UNUSED BY RECEIVER
 1. NRTCBASA ASA DATA RECORD INDICATOR
 1 * UNUSED BY RECEIVER

(162) 354 SIGNED 2 NRTCBRL RECORD LENGTH
(16C) 364 ADDRESS 4 NRDSINIT PTR TO INITIAL DSCB ENTRY
(170) 368 ADDRESS 4 NRDSNEW PTR TO NEW DSCB ENTRY
(174) 372 ADDRESS 4 NRDSSRCH PTR TO SCAN ALONG DSCB CHAINS
(178) 376 ADDRESS 4 NRDSCUR PTR TO CURRENT DSCB IN ACT CHAIN
(17C) 380 ADDRESS 4 NRDSACT PTR TO ACTIVE DISTR CHAIN
(180) 384 ADDRESS 4 NRDSSUSP PTR TO SUSPENDED DISTR CHAIN
(184) 388 ADDRESS 4 NRPRBUF PTR TO PRESENTATION BUFFER
(188) 392 ADDRESS 4 NRLR PTR TO LOGICAL RECORD
(18C) 396 ADDRESS 4 NRUSRRCD PTR TO USER RECORD
(190) 400 SIGNED 2 NRUSRLEN LENGTH USER RECORD
(192) 402 SIGNED 2 NRUSRBLN LENGTH INTERMEDIATE DATA BUFFER
(194) 404 ADDRESS 4 NRUSRBUF PTR TO INTERMEDIATE DATA BUFFER
(198) 408 ADDRESS 4 NRRCDSAV PTR TO SAVED CURRENT RECORD
(19C) 412 ADDRESS 4 * UNUSED
(1A0) 416 BITSTRING 1 NRPRSRCB SRCB CHAR PRECEDING RECORD
(1A1) 417 BITSTRING 1 NRSTAT1 STATUS BYTE 1

 1... NRST1JJ SEARCH FOR $$ JOB
 .1.. NRST1JF ONCE A $$ JOB FOUND
 ..1. NRST1JC CONTINUATION TO PROC
 ...1 NRST1JW WRITE JOB HDR RECORD
 1... NRST1JE ERROR FOUND
 1.. NRST1JR RCVED $$ JOB
 1. NRST1PD PROPAGATE DATASET HDR
 1 NRST1DD DON'T SPOOL DSHR

(1A2) 418 BITSTRING 1 * FREE FOR FUTURE USE
(1A3) 419 BITSTRING 1 * FREE FOR FUTURE USE
(1A4) 420 SIGNED 4 NRSAVRD R13-SAVE AREA IN $$NR2
(1A8) 424 BITSTRING 1 NRORGQ ORIGINATOR NODE QUALIFIER, USED FOR NOTIFICA-

TION.
(1A9) 425 CHAR-

ACTER
22 * RESERVED

(1BF) 447 CHAR-
ACTER

BITSTRINGNRSTAT2 STATUS BYTE 2

 1... NRST2RR DSHR RCCS RECEIVED

FUNCTION WORK AREAS

(1C0) 448 CHAR-
ACTER

128 NRACOUNT RECEIVER ACCOUNT AREA

(240) 576 CHAR-
ACTER

264 NRPWA PRESENTATION WORK AREA

(348) 840 CHAR-
ACTER

328 NRCWA COMPOSER WORK AREA

(490) 1168 CHAR-
ACTER

NRWAEND START OF PRESENTATION BUFFER

566 VSE Central Functions V7R1 VSE/POWER DRM

Network Transmitter Work Area

Definition Macro: IPW$DWG

Offset
Hex

Type Len Name (Dim) Description

(0) STRUC-
TURE

1267 NTWA TRANSMITTER WORKAREA

(0) CHAR-
ACTER

128 NTDYNA PLS DYNAMIC DATA AREA

(80) CHAR-
ACTER

16 NTDSD NTWA STORAGE DESCRIPTOR

(90) ADDRESS 4 NTTCB PTR TO TASK CONTROL BLOCK
(94) ADDRESS 4 NTANCWA PTR TO COMPOSER WORK AREA
(98) ADDRESS 4 NTANMR PTR TO CURRENT NODAL MESSAGE RECORD
(9C) ADDRESS 4 NTTCBRV PTR TO POWER RECORD
(A0) ADDRESS 4 NTSCTPTR POINTER TO HEADER SECTION
(A4) ADDRESS 4 NTCNTEND POINTER TO END OF CONTROL RECORD
(A8) ADDRESS 4 NTLPTR LOOP CONTROL POINTER IN ABTERM
(AC) ADDRESS 4 NTNCBPTR POINTER TO NCB
(B0) BITSTRING 1 NTIND INDICATOR BYTE

 1... NTABRT ABORT INDICATOR
 .1.. NTNOJB NO JOB AVAILABLE
 ..1. NTNFY SEND NTFY-MSG. INDICATOR
 ...1 NTSS INTERN. STOPSTATE INDICATOR
 1... NTEMERGE INTERN. LINE ERROR/SIGNOFF IND.
 1.. NTJOBRUN LOOP CONTROL VARIABLE .
 11 * RESERVED

(B1) BITSTRING 1 NTSAVST SAVED STOP STATE ??
(B2) BITSTRING 1 NTREASON REASON CODE FOR MESSAGES
(B3) UNSIGNED 1 NTSECTRC RETURN CODE FIND POWER SECTION ROUTINE
(B4) CHAR-

ACTER
8 NTUSID ORIGINATOR NODE USER ID

(BC) CHAR-
ACTER

8 NTORGN ORIGINATOR NODE NAME, USED FOR NOTIFICATION

(C4) BITSTRING 1 NTORGQ ORIGINATOR NODE QUALIFIER, USED FOR NOTIFICATION.
(C5) CHAR-

ACTER
23 * UNUSED

(DC) CHAR-
ACTER

20 NTEXDS XMTEXIT PARAMETER LIST

(DC) ADDRESS 4 NTEXRV RECORD ADDRESS
(E0) UNSIGNED 4 NTEXRL RECORD LENGTH
(E4) BITSTRING 1 NTEXCC OPERATION CODE
(E5) BITSTRING 1 NTEXRT RECORD TYPE
(E6) BITSTRING 1 NTEXDT DATA/CONTROL REC TYPE
(E7) BITSTRING 1 NTEXOT DATA STREAM INDICATOR
(E8) ADDRESS 4 NTEXWA ADDR. OF EXIT WORK AREA
(EC) BITSTRING 1 NTEXRC RETURN CODE FROM EXIT
(ED) CHAR-

ACTER
3 NTEXDU RESERVED FOR FUTURE

(F0) ADDRESS 4 NTUEXWA PTR TO XMTEXIT WORK AREA
(F4) UNSIGNED 4 NTUEXWAL LENGTH OF XMTEXIT W.A.
(F8) CHAR-

ACTER
8 NTRCWSA SAVE AREA FOR TCBRW

(100) ADDRESS 4 NTSAVD SAVE FIELD FOR R13
(104) ADDRESS 4 NTSVJTR WORK AREA FOR DEF. JTR
(108) BITSTRING 1 NTHDLFLG XMTEXIT HANDLER FLAG
(109) BITSTRING 1 NTEHDLRC RECORD DELETE INDICATOR
(10A) CHAR-

ACTER
2 * FULLWORD ALIGNMENT

(10C) CHAR-
ACTER

12 NTNDHC DATASET HEADER BLOCK.. CNTL INFO + CHANGE SECTION

(118) CHAR-
ACTER

8 NTTCBRW SAVE AREA FOR TCBRW

 Chapter 5. Storage Layout and Data Areas 567

Offset
Hex

Type Len Name (Dim) Description

(120) CHAR-
ACTER

128 NTNACT STORAGE FOR ACCOUNT RECORD

(1A0) CHAR-
ACTER

328 NTNCWA STORAGE FOR COMPOSER WORK AREA

(2E8) CHAR-
ACTER

259 NCSGAR STORAGE FOR COMPOSER SEGMENT AREA: TP BUFFER-SIZE +
SNA-RID-LENGTH

(3EB) CHAR-
ACTER

264 NCKOUT STORAGE FOR COMPRESSION OUTP. AREA

(4F3) CHAR-
ACTER

NTEND

568 VSE Central Functions V7R1 VSE/POWER DRM

Network Transmitter Exit Parameter List

Definition Macro: IPW$DTX

This macro is used to produce a DSECT for the Transmitter Exit Parameter List. The format is as follows:

Bytes Hex. Label of Field Description/Function

00 TEXDS Start of DSECT
00-03 TEXRV Record address of statement passed
04-07 TEXRL Length of statement passed
08 TEXCC Operation code
09 TEXRT Record type
 TERNCD X'00' - Normal data or control record
 TERJHR X'80' - Job header record
 TERJTR X'40' - Job trailer record
 TERDSHR X'20' - Data set header record
0A TEXDT Type of data stream
 TEDJRNC X'00' - not defined
 TEDCPDS X'10' - CPDS record
 TEDASA X'02' - ASA record
 TEDLPCM X'01' - Line print/card move record
0B TEXOT Various information
 TEOLST X'80' - Output from list queue
 TEOPUN X'40' - Output from punch queue
 TEOJOB X'20' - Job data
0C-0F TEXWA Pointer to exit work area
10 TEXRC Return codes
 TEROK X'00' - Process record
 TERDEL X'04' - Delete this record
 TERINS X'08' - Insert new record
 TERFLS X'10' - Flush queue entry
 TERMOD X'14' - Process modified network control record
 TERFLSH X'18' - Flush queue entry with HOLD
11-13 Reserved for future use

 Chapter 5. Storage Layout and Data Areas 569

Nodal Message Record (NMR)

Definition Macro: IPW$DNR NMR=YES

The Nodal message record (NMR) is the record format used to transmit all messages and commands
throughout the network.

Bytes Label
Hex. of Field Description/Function
--
�� NMRFLAG Flag byte

NMRFLAGC X'8�' - NMRMSG contains a command
NMRFLAGW X'4�' - NMROUT has VSE/POWER remote number
NMRFLAGT X'2�' - NMROUT has a ICCF/CMS userid
NMRFLAGU X'1�' - NMROUT has UCMID information

� The next four flag settings are
� not used by VSE/POWER.

NMRFLAGR X'�8' - Console is only remote authorized
NMRFLAGJ X'�4' - Console is not job authorized
NMRFLAGD X'�2' - Console is not device authorized
NMRFLAGS X'�1' - Console is not system authorized
NMRFLAGN X'�F' - Non-trusted user

�1 NMRLEVEL Importance level (high 4 bits)
NMRPRIO Output priority (low 4 bits)

�2 NMRTYPE Type byte
NMRTYPEO X'8�' - Operator Authority
NMRTYPEX X'6�' - Reserved
NMRTYPE5 X'1�' - Message contains Application ID
NMRTYPE4 X'�8' - Message text contains control information
NMRTYPET X'�4' - Message text only in NMRMSG
NMRTYPEF X'�2' - Formatted command in NMRMSG
NMRTYPED X'�1' - 'DOM' (not supported)

�3 NMRML Message length
�4-�C NMRTO Target node
�4-�B NMRTONOD Target node name
�C NMRTOQUL Target node qualifier
�D-14 NMROUT Local output information
15-1D NMRFM Originator node
15-1C NMRFMNOD Originator node name
1D NMRFMQUL Originator node qualifier
1E-A2 NMRMSG Message

570 VSE Central Functions V7R1 VSE/POWER DRM

Node Control Block (NCB)

Definition Macro: IPW$DNC

The Node Control Block (NCB) is used in the PNET environment to control all actions concerned with a
connection to another node in the network. It is created whenever a PSTART PNET,nodeid.... is given by
the operator and is deleted after the connection is terminated. The address of the first NCB is found from
the PNCB, label PNCBNCB.

 Chapter 5. Storage Layout and Data Areas 571

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

NODE CONTROL BLOCK
A NODE CONTROL BLOCK (NCB) IS CREATED FOR EACH NODE TO
BE STARTED. ALL NCB ARE CHAINED TOGETHER.
THE POINTER TO THE FIRST NCB IS CONTAINED IN THE PNCB

NETWORK DEFINITION TABLE HEADER

(0) 0 STRUC-
TURE

0 NCBDS , DEFINE DUMMY SECTION

(0) 0 CHAR-
ACTER

16 NCBSD SECTION DESCRIPTOR

(10) 16 CHAR-
ACTER

8 NCBNAME NODE NAME

(18) 24 ADDRESS 4 NCBNEXT ADDRESS OF NEXT NCB IN CHAIN
(1C) 28 ADDRESS 4 RESERVED FOR LOCKWORD
(20) 32 BITSTRING 1 NCBTYP NODE TYPE

 1... NCBSNA "X'80'" .. SNA NODE, IF OFF = BSC NODE
 .1.. NCBCTCA "X'40'" .. CTC ADAPTER
 ..1. NCBTCP "X'20'" .. TCP/IP NODE - FOR THIS .. TYPE 'NCBCTCA' IS

SET TOO
 ...1 NCBSSL "X'10'" .. TCP/IP NODE WITH SSL TYPE 'NCBCTCA' IS SET

TOO TYPE 'NCBTCP ' IS NOT SET
 1... NCBRSTR "X'08'" .. ON IF NO RESTART AFTER TIME-OUTS

(21) 33 BITSTRING 2 NCBACTB (0) ACTION BYTES
(21) 33 BITSTRING 1 NCBACT1 ACTION BYTE 1

 1... NCBDTCH "X'80'" .. TASK DETACH REQUESTED
 .1.. NCBTCRQ "X'40'" .. TASK CREATION REQUESTED
 ..1. NCBLNSR "X'20'" .. LINE STOP REQUESTED
 ...1 NCBFREE "X'10'" .. NCB FREE REQUESTED (SNA)
 1... NCBINIT "X'08'" .. LINE START REQUESTED
 1.. NCBIPEND "X'04'" .. INIT PENDING CTCA ONLY
 1. NCBREACT "X'02'" .. RESTART ACTIVITY
 1 NCBTPEND "X'01'" .. INIT PENDING TCP/IP ONLY

(22) 34 BITSTRING 1 NCBACT2 ACTION BYTE 2
 1... NCBSGNR "X'80'" .. SIGNON PROCEDURE REQUESTED
 .1.. NCBSOFR "X'40'" .. SIGNOFF PROCESSING RQSTD
 ..1. NCBLCLS "X'20'" .. LINE CLOSE PROCESSING REQUEST.
 ...1 NCBSOFR X'10' .. NOT USED
 1... NCBSEND "X'08'" .. BUFFER READY TO SEND
 1.. NCBSOFR X'04' .. NOT USED
 1. NCBRCVR "X'02'" .. RECEIVE REQUESTED (SNA)
 1 X'01' .. RESERVED

(23) 35 BITSTRING 1 NCBPROC PROCESS BYTE
 1... NCBPSGN "X'80'" .. SIGNON IN PROCESS
 .1.. NCBPRST "X'40'" .. AUTOMATIC RESTART IN PROCESS
 ...1 X'20' .. NOT USED
 ...1 NCBTRCE "X'10'" .. LINE TRACE MODE
 1... X'08' .. RESERVED
 1.. NCBDLAY "X'04'" .. DELAYED RESPONSE IN PROCESS

(24) 36 BITSTRING 1 NCBFLG1 STATUS BYTE 1 (NODE)
 1... NCBSGNOC "X'80'" .. SIGNON COMPLETED
 .1.. NCBSGOP1 "X'40'" .. PART1 OF SIGN-ON PROCESS FINISHED
 ..1. NCBSGNOS "X'20'" .. SIGNON RECORD OUT OF SEQUENCE
 1... NCBSGNR1 "X'08'" .. SIGNON PROCEDURE 1
 1.. NCBSGNR2 "X'04'" .. SIGNON PROCEDURE 2
 1. NCBSGOP2 "X'02'" .. PART2 OF SIGN-ON FINISHD

(25) 37 BITSTRING 1 NCBFLG2 STATUS BYTE 2
 1... NCBNSCLN "X'08'" .. NSEXIT DRIVEN (CLEANUP)
 1.. NCBCTCR "X'04'" CTC RESTART FLAG
 1. NCBWRDI "X'02'" RESTART BECAUSE WRONG MEMBER DIALED
 1 NCBWACT "X'01'" WRITE STATISTIC AND ACCOUNT RECORD .. NOT

USED
(26) 38 BITSTRING 1 NCBLTTC .. NOT USED
(27) 39 BITSTRING 1 NCBTTC TERMINATION CODE

 1... NCBTTCV "X'80'" .. STOP DUE TO VTAM ABEND (SNA)
 .1.. NCBTTCL "X'40'" .. STOP DUE TO LINE/SESSION ERROR

572 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. NCBTTCO "X'20'" .. STOP DUE TO SIGNOFF RCVD (BSC)
 ...1 NCBTTCS "X'10'" .. STOP IMMEDIATE
 1... NCBTTCE "X'08'" .. STOP AT EOJ
 1.. NCBTTCF "X'04'" .. STOP IMMEDIATE,FORCE
 1. NCBTTCC "X'02'" .. STOP DUE CTCA COLISION

(28) 40 BITSTRING 1 NCBTTCDE ERROR SUB-CODE
(29) 41 BITSTRING 1 NCBTTSTQ STOP QUALIFIER FOR NCBTTCS/NCBTTCE

 1... NCBPHALT "X'80'" .. PNET HALTS NODE DUE TO ERROR
 .1.. NCBVHALT "X'40'" .. VTAM REQUESTED NODE STOP AT EOJ
 ..1. NCBRHALT "X'20'" .. REMOTE VTAM NODE REQUESTED EOJ
 ...1 NCBOHALT "X'10'" .. OPERATOR STOP PSTOP/PEND
 1... NCBSHALT "X'08'" .. HALT - SEVERE LOGIC ERROR

(2A) 42 ADDRESS 2 NCBCNRV CURR. NUMBER OF RECEIVERS ACTIVE
(2C) 44 ADDRESS 2 NCBCNTR CURR. NUMBER OF TRANSMITTERS ACTIVE

 111 NCBMNRV "7" .. MAX NUMBER OF RECEIVERS
 111 NCBMNTR "7" .. MAX NUMBER OF TRANSMITTERS

(2E) 46 ADDRESS 2 PADDING BYTES

THE FOLLOWING TABLE DEFINES THE TASK ENTRIES FOR THE
COMMAND / MESSAGE TRANSMITTER RECEIVER (CONSOLE TR/RV)
ALL TABLES MUST BE ADJACENT .

(30) 48 BITSTRING 8 NCBCONST CONSOLE TRANSMITTER TASK
(38) 56 BITSTRING 8 NCBCONSR CONSOLE RECEIVER TASK

THE FOLLOWING TABLES DEFINE THE TASK ENTRIES FOR THE
 TRANSMITTERS.

(40) 64 BITSTRING 56 NCBJTTB JOB TRANSMITTER TABLE
(78) 120 BITSTRING 1 NCBOTTB OUTPUT TRANSMITTER TABLE

THE FOLLOWING TWO TABLES DEFINE THE VARIOUS TASK ENTRIES
FOR THE RECEIVERS.

(B0) 176 BITSTRING 56 NCBJRTB JOB RECEIVER TABLE
(E8) 232 BITSTRING 56 NCBORTB OUTPUT RECEIVER TABLE

(120) 288 ADDRESS 4 NCBMSGA POINTER TO FIRST MSG/CMND IN QUEUE
(124) 292 ADDRESS 4 NCBMSGT MSG/CMND QUEUE TAIL POINTER
(128) 296 ADDRESS 4 NCBNBFRQ PTR TO SIGNON RECORD RECEIVED

BUFFER CONTROL FIELDS

(12C) 300 ADDRESS 4 NCBIFRE ADDR OF FREE INPUT BUFFER QUEUE
(130) 304 ADDRESS 4 NCBOTBS ADDR TO-BE-SENT QUEUE (NO PRIORITY)
(134) 308 ADDRESS 4 NCBOBTL TAIL PTR TO-BE-SENT QUEUE (NO PRI.)
(138) 312 ADDRESS 4 NCBOTBP HEAD PTR PRIORITY BUFFER Q
(13C) 316 ADDRESS 4 NCBOBTP TAIL PTR PRIORITY OUTPUT Q
(140) 320 ADDRESS 4 NCBLBFI LINE DRIVER BUFFER (BSC/CTC)
(144) 324 ADDRESS 4 NCBLBFO LINE DRIVER BUFFER (BSC/CTC)
(148) 328 ADDRESS 2 NCBBFSZ PNET BUFFER SIZE
(14A) 330 ADDRESS 1 NCBMNIB MAX. NO OF INPUT BUFFERS
(14B) 331 ADDRESS 1 NCBMNJB MAX. NO OF JOB/OUT XMIT BUFFERS
(14C) 332 ADDRESS 2 NCBNIBU NUMBER OF ACQUIRED INPUT BUFFERS
(14E) 334 ADDRESS 2 PADDING BYTES

I/O AND SEND/RECEIVE MANAGER FIELDS

(150) 336 ADDRESS 4 NCBIBUF ADDR OF NON-LINE I-BFR (BSC/CTC)
(154) 340 ADDRESS 4 NCBOBUF ADDR OF NON-LINE O-BFR (BSC/CTC)
(158) 344 ADDRESS 4 NCBCBFI ADDR OF BUFFER FOR ACTUAL RECEIVE
(15C) 348 ADDRESS 4 NCBCBFO ADDR OF BUFFER FOR ACTUAL SEND
(160) 352 BITSTRING 2 NCBRFCS REMOTE HELD/RELEASED STREAM STATUS
(162) 354 BITSTRING 2 NCBTFCS NEW HELD/RELEASED STREAM STATUS

 .1.. NCBFCSWB "X'40'" WAIT-A-BIT .. (SUSPENDED ALL STREAMS)

QUEUE HEADER FOR 'PARKED' BUFFERS

(164) 356 ADDRESS 4 NCBPBFRQ HEADER OF SUSPENDED BUFFERS
(168) 360 ADDRESS 4 NCBNDTEN ADDR OF NDT ENTRY
(16C) 364 ADDRESS 4 RESERVED
(170) 368 ADDRESS 4 RESERVED

 Chapter 5. Storage Layout and Data Areas 573

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(174) 372 ADDRESS 4 RESERVED *

START OF BSC/CTC SECTION
LINE AND SESSION RELATED FIELDS

THE FIELDS CONTAIN THE INFORMATION ON THE STATUS OF THE LINK
BEING USED FOR SEND/RECEIVE, I.E. THE SNA SESSION RESPECTIVELY
THE BSC LINE. AS A NODE CAN BE ONE OR THE OTHER THIS FIELD IS

 AN OVERLAY.

(178) 376 DBL WORD 8 NCBLCB (0) START OF CONTROL BLOCK OVERLAY

BSC CTC LINE CONTROL INFORMATION

(178) 376 ADDRESS 4 NCBPUBA ADDR OF RELATED PUB ENTRY FOR CUU
(17C) 380 BITSTRING 1 NCBEBCB EXPECTED BCB (BSC)
(17D) 381 BITSTRING 1 NCBTBCB TRANSMITTED BCB (BSC)
(17E) 382 BITSTRING 1 NCBREQF REQUEST FIELD FOR I/O MANAGER
(17F) 383 BITSTRING 1 NCBLREQ LAST SENT REQUEST
(180) 384 BITSTRING 1 NCBNNAK LAST SENT NON NAK REQUEST
(181) 385 BITSTRING 1 NCBLDRQ LAST REQUEST BY LINE-DRIVER
(182) 386 BITSTRING 1 NCBIOF1 FLAG BYTE FOR I/O MGR/LDR COMMUN.

 1... NCBIOBF "X'80'" .. BUFFER TO ACKNOWLEDGE
 .1.. NCBTERM "X'40'" .. STOP I/O FOR LINE
 ..1. NCBBCBL "X'20'" .. BCB NOT TO BE UPDATED

(183) 387 BITSTRING 1 NCBTOCT TIMEOUT COUNT FOR SWITCHED LINES (PRE-SIGNON)
(184) 388 BITSTRING 1 NCBRTRY RETRY COUNT FOR UNIT CHECK (MAX 30)
(185) 389 BITSTRING 1 NCBRCNT RETRY COUNT
(186) 390 BITSTRING 1 NCBTIMC TIME OUT COUNT
(187) 391 BITSTRING 1 NCBLFB1 FLAG BYTE 1

 1... NCBF1BY "X'80'" .. LINE BUSY
 .1.. NCBF1SEC "X'40'" .. REMOTE NODE IS SECONDARY
 ..1. NCBF1CON "X'20'" .. CONTENTION DETECTED
 ...1 NCBF1CUE "X'10'" .. CONTENTION DETECTED BY UNIT EXCEPTION

HANDLER.
 1... NCBF1FPR "X'08'" .. FORCE PRIMARY

(188) 392 BITSTRING 1 NCBLFB2 FLAG BYTE 2
 1... NCBF2IN "X'80'" .. LINE INITIALIZED

(189) 393 BITSTRING 2 (0) ALIGN
(189) 393 BITSTRING 1 UNUSED
(18A) 394 BITSTRING 1 NCBINTC CTCT INIT NO OF 1.5 MIN TIME .. OUTS
(18B) 395 BITSTRING 1 NCBCTCCB CTC COMMAND BYTE

THE FOLLOWING FIELDS REPRESENT THE LINE BLOCK ENTRY
AS SPECIFIED IN THE PLINE MACRO FOR THE ASSOCIATED CUU.

(18C) 396 SIGNED 4 NCBPLINE (0)

VSE/POWER - PLINE - 5686-066-03

(18C) 396 ADDRESS 2 NCBLPU PHYSICAL UNIT ADDRESS
(18E) 398 ADDRESS 2 NCBTLIM TIME OUT LIMIT(SECONDS) LINE FEATURES
(190) 400 ADDRESS 1 NCBFEA1 DUAL MODE
(191) 401 ADDRESS 1 NCBLDM

 11. NCBL1 "*-NCBLPU" LENGTH WITHOUT PASSWORD
(192) 402 CHAR-

ACTER
8 NCBLPW LINE PASSWORD

(19A) 410 BITSTRING 2 UNUSED
 ...1 NCBL "*-NCBLPU" LENGTH OF LINE TAB ENTRY

(19A) 410 0 NCBNXT "*" NEXT LINE TAB ENTRY

CCB AND CCW'S AND TEMPORARY WORKAREA

(19C) 412 BITSTRING 4 ALIGN
(1A0) 416 BITSTRING 24 NCBCCB NJE CCB
(1B8) 440 DBL WORD 8 NCBCCW (5) CHANNEL PROGRAM
(1E0) 480 SIGNED 4 NCBLCCW ADDRESS OF LAST EXECUTED CCW
(1E4) 484 SIGNED 4 NCBDISP DISPL BETWEEN REAL - VIRTUAL OF NCB
(1E8) 488 BITSTRING 2 NCBSENS (0) SENSE BYTES
(1E8) 488 BITSTRING 1 NCBSNS1 FIRST SENSE BYTE
(1E9) 489 BITSTRING 1 NCBSNS2 SECOND SENSE BYTE

574 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(1EA) 490 BITSTRING 2 NCBSNSLA SENSE BYTES OF LAST I/O
(1EA) 490 0 NCBBSCE "*" END OF BSC PART

SNA SESSION CONTROL INFORMATION

(178) 376 CHAR-
ACTER

8 NCBAPLID APPL-ID OF REMOTE NODE

(180) 384 ADDRESS 4 NCBSSCB ADDRESS OF SSCB
(184) 388 ADDRESS 4 NCBSRQE ADDRESS OF SRQE
(188) 392 ADDRESS 4 NCBCTCB1 ADDR. CONNECT SESSION TCB LOCAL
(18C) 396 ADDRESS 4 NCBCTCB2 ADDR. CONNECT SESSION TCB REMOTE
(190) 400 ADDRESS 4 NCBDTCB ADDRESS OF DISCONNECT SESSION TCB
(194) 404 ADDRESS 4 NCBDECB ECB OF DISCONNECT TASK
(198) 408 ADDRESS 4 NCBIFREX ADDR 'RECEIVE-AHEAD' IPT BFR QUEUE
(19C) 412 ADDRESS 4 NCBOTBSX ADDR 'SEND-AHEAD' OUTPUR BFR QUEUE
(1A0) 416 ADDRESS 4 NCBOBTLX TAIL PTR 'SEND-AHEAD' OUTPUT BFR Q
(1A4) 420 ADDRESS 4 NCBWRKA ADDR WORK AREA FOR DE-COM/COMPRESS
(1A8) 424 ADDRESS 1 NCBSGTE GATE FOR SEND PER NODE
(1A9) 425 ADDRESS 1 NCBRGTE GATE FOR RECEIVE PER NODE

 1111 1111 NCBGTIPR "255" GATE IN PROGRESS (RETURN-CODE)

 SESSION STATUS

(1AA) 426 BITSTRING 1 NCBSFL1 PRIMARY AP
 1... NCBF11 "X'80'" .. PRIMARY IN PROGRESS
 .1.. NCBF12 "X'40'" .. PRIMARY PERMIT GIVEN
 ..1. NCBF13 "X'20'" .. OPNDST IN PROGRESS
 ...1 NCBF14 "X'10'" .. OPNDST COMPLETE
 1... NCBF15 "X'08'" .. PRIMARY COMPLETE
 1 NCBF18 "X'01'" .. PRIMARY AP ERROR

(1AB) 427 BITSTRING 1 NCBSFL2 SECONDARY AP
 1... NCBF21 "X'80'" .. SECONDARY IN PROGRESS
 .1.. NCBF22 "X'40'" .. SECONDARY PERMIT GIVEN
 ..1. NCBF23 "X'20'" .. OPNSEC IN PROGRESS
 ...1 NCBF24 "X'10'" .. OPNSEC COMPLETE
 1... NCBF25 "X'08'" .. SECONDARY COMPLETE
 1.. NCBF26 "X'04'" .. SESSION IN PROGRESS
 1. NCBSEOK "X'02'" .. DISCONNECT REQUIRED
 1 NCBF28 "X'01'" .. SECONDARY AP ERROR

(1AC) 428 BITSTRING 1 NCBSFL3 TYPE OF SESSION
EQU X'FF' .. SECONDARY HALF SESSION
EQU X'00' .. PRIMARY HALF SESSION

(1AD) 429 BITSTRING 1 NCBSFL4 FLAG BYTE 4 :
 1... NCBRSHTS "X'80'" .. RSHUTD SENT
 .1.. NCBRSHTR "X'40'" .. RSHUTD RECEIVED

(1AE) 430 BITSTRING 1 NCBSEST SESSION STATUS BYTE :
 1... NCBSSUB "X'80'" .. UNBIND RECEIVED
 .1.. NCBSSTS "X'40'" .. TERMSESS IS WAITING
 ..1. NCBWSDT "X'20'" .. WAIT FOR SDT
 ...1 NCBSSSD "X'10'" .. SDT RECEIVED
 1... NCBSSCL "X'08'" .. CLEAR RECEIVED
 1.. NCBSHTC "X'04'" .. WAIT FOR SHUTC

(1AF) 431 BITSTRING 1 NCBSSCT SESSION RETRY COUNTER
 1. NCBSSCTL "X'02'" 20 MINUTES LIMIT COUNT

(1B0) 432 BITSTRING 1 NCBSSF1 SESSION FLAG BYTE
 1... NCBSSF1W "X'80'" .. ISSUE WAIT
 .1.. NCBSSF1R "X'40'" .. USE RC/FD FOR MSG

(1B1) 433 BITSTRING 3 NOT USED
(1B4) 436 ADDRESS 4 NCBCMPT COMPACTION TABLE BLOCK ADDR.

END SNA OVERLAY

(1EC) 492 CHAR-
ACTER

8 NCBCPWD PASSWORD FOR LOCAL NODE (OUTGOING)

(1F4) 500 CHAR-
ACTER

8 NCBCLPW PASSWORD FOR LINE (OUTGOING)

 .1.. NCBLCTL "64" LENGTH OF LINE/CTL BUFFERS

 Chapter 5. Storage Layout and Data Areas 575

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ACCOUNT RECORD

(1FC) 508 SIGNED 4 NCBACCT (0) PNET ACCOUNT RECORD
(1FC) 508 CHAR-

ACTER
8 NCBDATE SYSTEM DATE

(204) 516 CHAR-
ACTER

4 NCBSION SIGNON TIME (0HHMMSSF) PACKED

(208) 520 CHAR-
ACTER

4 NCBSIOF SIGNOFF TIME (0HHMMSSF) PACKED

(20C) 524 CHAR-
ACTER

24 NCBUSER (0) USER INFORMATION

(20C) 524 CHAR-
ACTER

8 NCBANME NODE NAME FOR ACCOUNT RECORD

(214) 532 CHAR-
ACTER

8 NCBPWRD NODE PASSWORD

(21C) 540 CHAR-
ACTER

8 NCBPSWD LINE PASSWORD

(224) 548 SIGNED 2 NCBICNT INVALID RESPONSES PER SESSION
(226) 550 CHAR-

ACTER
1 NCBRCID PNET ACCOUNT RECORD IDENTIFIER

(227) 551 BITSTRING 1 NCBSCOD SIGNOFF CODE
EQU X'80' .. SIGNOFF BY OPERATOR
EQU X'40' .. SIGNOFF BY REMOTE NODE
EQU X'20' .. SIGNOFF DUE TO TIMEOUT
EQU X'10' .. SIGNOFF DUE TO LINK ERROR/SESSION
EQU X'08' .. SIGNOFF DUE TO INTERNAL ERROR
EQU X'04' .. SIGNOFF DUE VTAM TERMINATION
EQU X'02' .. SIGNOFF DUE VTAM HALTED BY OPER.
EQU X'01' .. YEAR NCBSFDT IS 20YY

(228) 552 BITSTRING 1 NCBTERR ERROR COUNT
(229) 553 CHAR-

ACTER
3 NCBDVAD DEV ADDR/'SNA'/'TCP'/'SSL'

(22C) 556 ADDRESS 4 NCBXCNT TRANSMISSION COUNT
(230) 560 SIGNED 2 NCBTCNT TIMEOUT COUNT
(232) 562 SIGNED 2 NCBECNT ERROR COUNT
(230) 560 ADDRESS 4 NCBYCNT RECEIVE COUNT
(234) 564 CHAR-

ACTER
8 NCBSFDT SIGNOFF DATE

 .1.. NCBACLN "*-NCBACCT" LENGTH OF ACCOUNT RECORD

TIMER QUEUE ELEMENT

(23C) 572 BITSTRING 24 NCBTQE (0) TIMER QUEUE ELEMENT
(23C) 572 BITSTRING 12 NOT REFERENCED
(248) 584 BITSTRING 4 NCBEB POST BYTES
(24C) 588 BITSTRING 8 NOT REFERENCED

EBCDIC / USASCII CODE TABLE

(254) 596 BITSTRING 2 NCBSOHS SOH ENQ SEQUENCE
(256) 598 BITSTRING 2 NCBSOTS START OF TEXT SEQUENCE
(258) 600 BITSTRING 2 NCBACKS POSITIVE ACKNOWLEDGEMENT SEQUENCE
(25A) 602 BITSTRING 2 NCBETBS (0) DLE ETB SEQUENCE
(25A) 602 BITSTRING 1 NCBEDLE DLE
(25B) 603 BITSTRING 1 NCBEETB ETB
(25C) 604 BITSTRING 1 NCBNAKS NEGATIVE ACKNOWLEDGEMENT SEQUENCE
(25D) 605 BITSTRING 3 NOT USED

FEATURE FLAGS USED FOR SIGNON CONCURRENCE

(260) 608 BITSTRING 4 NCBIFEAT (0) NEW FEATURE FLAGS
(260) 608 BITSTRING 1 NCBIFE1 NEW FEATURE FLAG 1

 1... NCBIPREP "X'80'" .. PREPARE MODE
 .1.. NCBITRM "X'40'" .. SNA TERMINATION EXTENS.

(261) 609 BITSTRING 1 NCBIFE2 NEW FEATURE FLAG 2
(262) 610 BITSTRING 1 NCBIFE3 NEW FEATURE FLAG 3
(263) 611 BITSTRING 1 NCBIFE4 NEW FEATURE FLAG 4
(264) 612 BITSTRING 4 NCBPFEAT WORKING FEATURE FLAGS

576 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(268) 616 BITSTRING 4 NCBRFEAT RECEIVED FEATURE FLAGS
(26C) 620 BITSTRING 4 NCBSFEAT SENT FEATURE FLAGS
(270) 624 DBL WORD 8 NCBIOT CTC/BSC TIME OF LAST I/O

TCP/IP WORKAREA ONLY USED WITHIN NCB

(278) 632 SIGNED 2 NCBTCPDS
(0)

AREAS USED FOR TCP/IP

(278) 632 ADDRESS 4 NCBTPBF1 ADDR OF RECV BUFFER 1
(27C) 636 SIGNED 4 NCBTPBL1 LENGTH OF BUFFER 1
(280) 640 SIGNED 4 NCBTPTIS TIMESTAMP TCP/IP PENDING
(284) 644 SIGNED 4 NCBTPTER TIMESTAMP OF LAST ERROR
(288) 648 SIGNED 4 NCBTPTSC TIMESTAMP FOR START CONTACT
(28C) 652 SIGNED 4 RESERVED

TCP/IP WORKAREA USED WITHIN NCB AND TDCB

(290) 656 SIGNED 2 NCBTPDS (0)
(290) 656 CHAR-

ACTER
15 NCBTPIPC IP-ADDR IN READABLE FORMAT

(29F) 671 CHAR-
ACTER

1 NCBTPTYP TYPE OF ITP WORKAREA

 NCBTPTYA "C'A'" .. A = ACTIVE = NCB
 NCBTPTYT "C'P'" .. P = PASSIVE = TDCB
 NCBTPTYC "C'C'" .. C = CLIENT, WA IN NCB
 NCBTPTYS "C'X'" .. S = SERVER, WA IN NCB

START OF AREA-1 TO BE TRACED

(2A0) 672 BITSTRING 36 NCBTPTC1 (0) START OF TRACED INFO 1
(2A0) 672 BITSTRING 1 NCBTPST1 TCP/IP STATUS BYTE 1:

GENERAL TCP/IP STATUS, SOCKETCALL STATUS

 1... NCBTPS1T "X'80'" .. TCP/IP INIT CONTACT COMPL
 .1.. NCBTPS1F "X'40'" .. TCP/IP CONN. CLOSED
 ..1. NCBTPS1R "X'20'" .. TCP/IP RESTART: NAK-3
 ...1 NCBTPS1E "X'10'" .. TCP/IP LINE ERROR
 1... NCBTPS1A "X'08'" .. PROCESSING ACTIVE MODE
 1.. NCBTPS1I "X'04'" .. 1.SOCKETCALL ISSUED
 1. NCBTPS1L "X'02'" .. SSL FEATURE INITIATED
 1 NCBTPS1S "X'01'" .. STOP CONNECTION

(2A1) 673 BITSTRING 1 NCBTPST2 TCP/IP STATUS BYTE 2

GENERAL NODE STATUS

 1... NCBTPS2I "X'80'" .. CTC I/O ONCE PROCESSED
 .1.. NCBTPS2R "X'40'" .. RESTART TCP/IP PV010222
 ..1. NCBTPS2B "X'20'" .. FIRST COMES TTB
 ...1 NCBTPS2C "X'10'" .. CLOSE CONNECTION
 1... NCBTPS2O "X'08'" .. OPEN-CTRL-REC. RECEIVED
 1.. NCBTPS2A "X'04'" .. ACK-CTRL-REC. SENT
 1. NCBTPS22 "X'02'" .. NAK WITH RC=2 SENT
 1 NCBTPS2W "X'01'" .. WAIT THAT REMOTE ISSUES CONNECT

(2A2) 674 BITSTRING 1 NCBTPST3 TCP/IP STATUS BYTE 3

STATUS: CTC I/O

 1... NCBTPS3S "X'80'" .. CTC I/O STARTED
 .1.. NCBTPS3C "X'40'" .. CTC I/O TO BE COMPLETED
 ..1. NCBTPS3Z "X'20'" .. CCW-WRITE DATA SENT
 ...1 NCBTPS3Y "X'10'" .. CCW-READ DATA RECVED
 1... NCBTPS3B "X'08'" .. CTC I/O WITHOUT BUFFER
 1.. NCBTPS3N "X'04'" .. TCP BLOCK PARTLY RCVED
 1. NCBTPS3L "X'02'" .. LEAVE IDLING STATE
 1 NCBTPS3I "X'01'" .. IDLING(NOTHING SENT/RCV)

(2A3) 675 BITSTRING 1 NCBTPST4 TCP/IP STATUS BYTE 4

 STATUS: MISCELLANEOUS

 1... NCBTPS4P "X'80'" .. WAIT FOR POSTED ECB
 .1.. NCBTPS4C "X'40'" .. CONNECTION CLOSED

 Chapter 5. Storage Layout and Data Areas 577

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. NCBTPS4T "X'20'" .. TERMINATE LINE
 ...1 NCBTPS4W "X'10'" .. WAIT TILL TIME EXPIRED
 1... NCBTPS4A "X'08'" .. CANCEL ISSUED
 1.. NCBTPS4L "X'04'" .. CLOSE ISSUED
 1. NCBTPS4N "X'02'" .. SOK NUMBER TOO HIGH (SSL)
 1 NCBTPS4E "X'01'" .. SEND EMPTY BUFFER

(2A4) 676 BITSTRING 1 NCBTPST5 TCP/IP STATUS BYTE 5:

CLOSING CODES, CLOSED DUE TO:

 1... NCBTPS5U "X'80'" .. SIGNOFF REC. SEND
 .1.. NCBTPS5R "X'40'" .. SIGNOFF REC. RECEIVED
 ..1. NCBTPS5A "X'20'" .. INVALID DEFINITION
 ...1 NCBTPS5N "X'10'" .. TCP NJE NAK RECEIVED
 1... NCBTPS58 "X'08'" .. CAUSED BY TCP/IP RC=8
 1.. NCBTPS5C "X'04'" .. CAUSED BY TCP/IP RC=12
 1. NCBTPS5I "X'02'" .. POWER INTERNAL ERROR
 1 NCBTPS5S "X'01'" .. CAUSED BY REMOTE CLOSED

(2A5) 677 BITSTRING 1 NCBTPST6 TCP/IP STATUS BYTE 6:
 1... NCBTPS6T "X'80'" .. TRACE SOCKETCALL
 .1.. NCBTPS6I "X'40'" .. INIT TIME INTERVAL
 ..1. NCBTPS6C "X'20'" .. SSL-SOK-INIT: CIPH WRONG

(2A6) 678 BITSTRING 1 NCBTPRV1 RESERVED
(2A7) 679 BITSTRING 1 NCBTPRV2 RESERVED

RETURN ADDRESSES FOR SOCKETCALL ROUTINE

(2A8) 680 ADDRESS 4 NCBTPSO0 SOCKETCALL SUCCESSFUL
(2AC) 684 ADDRESS 4 NCBTPSO4 SOCKETCALL SHOULD BE RETRIED
(2B0) 688 ADDRESS 4 NCBTPSO8 CONNECTION TO BE STOPPED
(2B4) 692 ADDRESS 4 NCBTPSOC INTERFACE TO BE TERMINATED

INTERFACE AREA BETWEEN IPW$$TD AND IPW$$TS
RESPECTIVELY BETWEEN IPW$$SD AND IPW$$SS

(2B8) 696 SIGNED 4 NCBTPR1 RETURN CODE FROM $TS
 NCBTPR10 "0" .. OK
 1.. NCBTPR14 "4" .. RETRY NECESSARY/POSSIBLE
 1... NCBTPR18 "8" .. TERMINATE CONNECTION
 11.. NCBTPR1C "12" .. TERMINATE INTERFACE
 1. NCBTPR1R "2" .. RETRY DUE TO IPW$$SD

(2BC) 700 BITSTRING 1 NCBTPSC SOCKETCALL REQUESTED
 1 NCBTPIA "1" .. INITAPI
 1. NCBTPTA "2" .. TERMAPI
 11 NCBTPGL "3" .. GETHOSTID
 1.. NCBTPLI "4" .. LISTEN
 1.1 NCBTPAC "5" .. ACCEPT
 11. NCBTPSD "6" .. SEND
 111 NCBTPRV "7" .. RECEIVE
 1... NCBTPCL "8" .. CLOSE
 1..1 NCBTPCN "9" .. CANCEL
 1.1. NCBTPGA "10" .. GETHOSTBYADDR
 1.11 NCBTPGN "11" .. GETHOSTBYNAME
 11.. NCBTPGS "12" .. GET SOCKET
 11.1 NCBTPBI "13" .. BIND
 111. NCBTPCO "14" .. CONNECT
 1111 NCBTPSR "15" .. SELECT USING READ-ARRAY
 ...1 NCBTPSW "16" .. SELECT USING WRITE-ARRAY

SOME SSL SOCKET CALLS:

 ...1 ...1 NCBSSLIN "17" .. SSL INITIALIZE
 ...1 ..1. NCBSSLUN "18" .. SSL UNINITIALIZE
 ...1 ..11 NCBSSLGN "19" .. SSL GET DNAME IN DB
 ...1 .1.. NCBSSLFM "20" .. SSL FREE MEMORY
 ...1 .1.1 NCBSSLSI "21" .. SSL SOCKET INITIALIZE
 ...1 .11. NCBSSLSR "22" .. SSL SOCKET READ
 ...1 .111 NCBSSLSW "23" .. SSL SOCKET WRITE
 ...1 1... NCBSSLSC "24" .. SSL SOCKET CLOSE

578 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ...1 1..1 NCBSSLRS "25" .. SSL SOCKET RESET
 ...1 1.1. NCBSSLGC "26" .. SSL GET CIPHER INFO
 ...1 1.11 NCBTPIOC "27" .. IOCTL=SET NONBLOCKING

(2BD) 701 BITSTRING 1 UNUSED
(2BE) 702 BITSTRING 2 NCBTPRYC RETRY COUNTER
(2C0) 704 SIGNED 4 NCBTPTIV TIMER INTERVAL TO BE SET

 ..1. .1.. NCBTPTE1 "*-NCBTPTC1" LENGTH OF TRACED INFO 1
(2C4) 708 BITSTRING 24 NCBTPTQE

(0)
TIMER QUEUE ELEMENT

(2C4) 708 BITSTRING 12 NOT REFERENCED
(2D0) 720 BITSTRING 4 NCBTPTEB POST BYTES
(2D4) 724 BITSTRING 5 NOT REFERENCED
(2D9) 729 CHAR-

ACTER
3 NCBTPTQY EYECATCHER

AREAS USED FOR SOCKET CALLS
AREAS USED FOR SEVERAL SOCKET CALLS
START OF AREA-2 TO BE TRACED

(2DC) 732 ADDRESS 4 (0) ALIGN
(2DC) 732 BITSTRING 20 NCBTPTC2 (0) START OF TRACED INFO 2
(2DC) 732 SIGNED 2 NCBSCSOD SOCKET DESCRIPTOR
(2DE) 734 SIGNED 2 RESERVED

AREAS USED FOR SOCKET CALLS: BIND, ACCEPT, CONNECT

(2E0) 736 BITSTRING 16 NCBSCDNM
(0)

(2E0) 736 SIGNED 2 NCBSCBFM ADDRESSING FAMILY
(2E2) 738 SIGNED 2 NCBSCBPT PORT NUMBER
(2E4) 740 SIGNED 4 NCBSCDIP IP-ADDRESS
(2E8) 744 BITSTRING 4 RESERVED FOR SOCKETCALL
(2EC) 748 BITSTRING 4 RESERVED FOR SOCKETCALL

 ...1 .1.. NCBTPTE2 "*-NCBTPTC2" LENGTH OF TRACED INFO 2

AREAS USED FOR SEVERAL SOCKET CALLS
EXCEPT SEND AND CANCEL

(2F0) 752 ADDRESS 4 (0) ALIGN
(2F0) 752 BITSTRING 1 NCBSCST1 STATUS OF SOCKETCALL

 1... NCBSCS1S "X'80'" .. SOCKETCALL STARTED
 .1.. NCBSCS1B "X'40'" .. NO BUFFER AVAILABLE

(2F1) 753 BITSTRING 1 RESERVED
(2F2) 754 SIGNED 2 NCBSCCNT RETRY COUNTER
(2F4) 756 ADDRESS 4 NCBSCBUF BUFFER FOR RECV
(2F8) 760 ADDRESS 4 NCBSCNBY NO OF BYTES FOR RECV
(2FC) 764 SIGNED 4 NCBSCRC RETURN CODE FROM SOCKETCALL
(300) 768 SIGNED 4 NCBSCERN ERROR NUMBER
(304) 772 BITSTRING 164 NCBSCDCB

(0)
(304) 772 ADDRESS 4 NCBSCECB

(0)
ECB

(304) 772 BITSTRING 2 .. UNREFERENCED
(306) 774 BITSTRING 1 NCBSCECP .. POSTED BYTE

 1... NCBSCECI "X'80'" .. POST BIT
(307) 775 BITSTRING 1 .. UNREFERENCED
(308) 776 BITSTRING 160 NCBSCRQ WORKAREA FOR EZASMI

AREAS USED FOR SOCKET CALL : INITAPI, LISTEN
 SEE TDCB

AREAS USED FOR SOCKET CALLS: GETHOSTBYADDR

(3A8) 936 ADDRESS 4 NCBSCHST ADDR. OF HOSTNAME STRUCTURE

AREAS USED FOR SOCKET CALL : GETHOSTBYNAME
AND AREA ..SCHST, SEE SOCKET CALL GETHOSTBYADDR

(3AC) 940 SIGNED 4 NCBSCHNL LENGTH OF HOSTNAME
(3B0) 944 ADDRESS 4 NCBSCHNM ADDRESS OF HOSTNAME

 Chapter 5. Storage Layout and Data Areas 579

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

AREAS USED FOR SOCKET CALL: SEND

(3B4) 948 ADDRESS 4 (0) ALIGN
(3B4) 948 BITSTRING 8 NCBTPTC3 (0) START OF TRACED INFO 3
(3B4) 948 BITSTRING 1 NCBSCSS1 STATUS OF SOCKETCALL

 1... NCBSCD1S "X'80'" .. SOCKETCALL STARTED
 .1.. NCBSCD1B "X'40'" .. NO BUFFER AVAILABLE

(3B5) 949 BITSTRING 1 RESERVED
(3B6) 950 SIGNED 2 NCBSCSCT RETRY COUNTER
(3B8) 952 ADDRESS 4 NCBSCBUS SOCKETCALL TO BE CANCELLED
(3BC) 956 ADDRESS 4 NCBSCNBS UNREFERENCED
(3C0) 960 SIGNED 4 NCBSCSAC RETURN CODE
(3C4) 964 SIGNED 4 NCBSCSAE ERROR NUMBER

 ...1 .1.. NCBTPTE3 "*-NCBTPTC3" LENGTH OF TRACED INFO 3
(3C8) 968 BITSTRING 164 NCBSCSAL

(0)
(3C8) 968 ADDRESS 4 NCBSCSAB

(0)
ECB

(3C8) 968 BITSTRING 2 .. UNREFERENCED
(3CA) 970 BITSTRING 1 NCBSCSAP .. POSTED BYTE
(3CB) 971 BITSTRING 1 .. UNREFERENCED
(3CC) 972 BITSTRING 160 NCBSCSAR WORKAREA FOR EZASMI

AREAS USED FOR SOCKET CALL: CANCEL
PARTLY RE-USED FOR SOCKET CALL: GET CIPHER INFO

(46C) 1132 ADDRESS 4 (0) ALIGN
(46C) 1132 BITSTRING 1 NCBSCCS1 STATUS OF SOCKETCALL

 1... NCBSCC1S "X'80'" .. SOK CALL STARTED, UNUSED
 .1.. NCBSCC1B "X'40'" .. NO BFR AVAILABLE, UNUSED

(46D) 1133 BITSTRING 1 RESERVED
(46E) 1134 SIGNED 2 NCBSCCCT RETRY COUNTER
(470) 1136 ADDRESS 4 NCBSCBUC SOCKETCALL TO BE CANCELLED
(474) 1140 ADDRESS 4 NCBSCNBC UNREFERENCED
(478) 1144 SIGNED 4 NCBSCCAC RETURN CODE
(47C) 1148 SIGNED 4 NCBSCCAE ERROR NUMBER
(480) 1152 BITSTRING 164 NCBSCCAL

(0)
(480) 1152 ADDRESS 4 NCBSCCAB

(0)
ECB

(480) 1152 BITSTRING 2 .. UNREFERENCED
(482) 1154 BITSTRING 1 NCBSCCAP .. POSTED BYTE
(483) 1155 BITSTRING 1 .. UNREFERENCED
(484) 1156 BITSTRING 160 NCBSCCAR WORKAREA FOR EZASMI

PARTLY RE-USED FOR SOCKET CALL: GET-CIPHER-INFO

(480) 1152 BITSTRING 104 NCBSSLCO
(0)

OUTPUT OF GET-CIPHER-INFO

(480) 1152 SIGNED 4 SYSTEM SSL VERSION
(484) 1156 BITSTRING 64 NCBSSLCC SPECS OF GET-CIPHER-INFO
(4C4) 1220 BITSTRING 30 INPUT FOR SSL-SOK-INIT
(4E2) 1250 CHAR-

ACTER
6 ENCRYPTION IN CHARACTERS

(524) 1316 SIGNED 4 RESERVED

NO SPECIAL AREAS FOR SOCKET CALLS: CLOSE, SOCKET,
 GETHOSTID, TERMAPI

SEE AREAS USED FOR SEVERAL SOCKET CALLS
AREAS USED FOR SSL SOCKET CALLS

(528) 1320 ADDRESS 4 NCBSSLCB ADDR OF SSL CONTROL BLOCK RETURNED BY
SSL-SOCK-INIT

(52C) 1324 SIGNED 4 NCBSSLRC REASON-CODE OF SOCK-INIT
(530) 1328 ADDRESS 4 NCBSSLDN ADDR OF DISTINGUISHED NAME RETURNED BY

SSL-GETDNBYLAB INPUT FOR SSL-FREEMEM
(534) 1332 ADDRESS 4 NCBSSLCF ADDR OF CLIENT-CERTIFICATE UPDATED BY

SSL-SOCK-INIT

580 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(538) 1336 ADDRESS 4 NCBSSLST ADDR OF CLIENT-CERTIFICATE UPDATED BY
SSL-SOCK-INIT

(53C) 1340 SIGNED 2 NCBSSLCS 2 BYTES OF SELECTED CIPHERS IS PART WITHIN
---SLCPO

(53E) 1342 SIGNED 2 RESERVED
(540) 1344 SIGNED 4 NCBIOCMD MODE FOR IOCTL

 NCBIOCBL "0" .. BLOCKING MODE
 1 NCBIOCNB "1" .. NONBLOCKING MODE

(544) 1348 SIGNED 4 RESERVED
(548) 1352 SIGNED 4 RESERVED
(54C) 1356 SIGNED 4 RESERVED
(550) 1360 SIGNED 4 RESERVED
(554) 1364 SIGNED 4 RESERVED
(558) 1368 SIGNED 4 RESERVED
(55C) 1372 SIGNED 4 RESERVED
(560) 1376 SIGNED 4 RESERVED
(564) 1380 SIGNED 4 RESERVED
(568) 1384 SIGNED 4 RESERVED
(56C) 1388 SIGNED 4 RESERVED

WORKAREA FOR IPW$$TD, RESPECTIVELY IPW$$SD

(570) 1392 SIGNED 4 NCBTPNOB NO OF BYTES SEND/RCVED
(574) 1396 BITSTRING 33 NCBTPCTB BUFFER FOR CTRL-RECORD
(595) 1429 BITSTRING 3 NCBTPCR1 RESERVED
(598) 1432 SIGNED 4 NCBTPBR1 BYTES RCVED VIA SOCKETCALL
(59C) 1436 SIGNED 4 NCBTPBP1 BYTES PROCESSED BY IPW$$TD, RESP. IPW$$SD
(5A0) 1440 ADDRESS 4 NCBTPWPO ADDRESS: WAIT FOR POST ECB
(5A4) 1444 ADDRESS 4 NCBTPNCB ADDRESS OF NCB
(5A8) 1448 BITSTRING 2 RESERVED
(5AA) 1450 BITSTRING 2 NCBTPFCS FCS SAVED FROM CTC I/O
(5AC) 1452 BITSTRING 1 RESERVED
(5AD) 1453 BITSTRING 1 NCBTPBCS BCB SAVED FROM CTC I/O
(5AE) 1454 BITSTRING 1 NCBTPBCI BCB FOR INCOMING BUFFER
(5AF) 1455 BITSTRING 1 NCBTPBCO BCB FOR OUTGOING BUFFER
(5B0) 1456 SIGNED 4 RESERVED
(5B4) 1460 SIGNED 4 RESERVED
(5B8) 1464 SIGNED 4 RESERVED
(5BC) 1468 SIGNED 4 RESERVED
(5C0) 1472 SIGNED 4 RESERVED
(5C4) 1476 SIGNED 4 RESERVED
(5C8) 1480 SIGNED 4 RESERVED
(5CC) 1484 SIGNED 4 RESERVED
(5CC) 1484 0 NCBTPLST "*" END OF WORKAREA
(5CC) 1484 0 NCBTPLN "*-NCBTPDS" LENGTH OF WORKAREA

AREA NOT TO BE CLEARED AFTER SOCKET CALL CLOSE

(5D0) 1488 SIGNED 4 NCBSSLDS
(0)

' START OF SSL WORKAREA

(5D0) 1488 CHAR-
ACTER

8 NCBSSLKY MEMBER IN SUBLIB

(5D8) 1496 BITSTRING 1 END DELIMITER FOR DNAME
(5D9) 1497 BITSTRING 1 RESERVED FOR FUTURE USE
(5DA) 1498 SIGNED 2 RESERVED FOR FUTURE USE
(5DC) 1500 SIGNED 4 NCBSSLHK HANDSHAKE TYPE

 NCBSSLHC "0" HANDSHAKE TYPE: CLIENT
 1 NCBSSLHS "1" HANDSHAKE TYPE: SERVER
 1. NCBSSLHA "2" HANDSHAKE TYPE: CLIENT AUTH
 11 NCBSSLHN "3" HANDSHAKE TYPE: NO CLI AUTH

(5E0) 1504 SIGNED 4 NCBSSLCP CIPHER LEVEL
 1 NCBSSLCL "1" CIPHER LEVEL: WEAK
 1. NCBSSLCH "2" CIPHER LEVEL: STRONG
 11 NCBSSLEV "3" CIPHER LEVEL: NORMAL

(5E4) 1508 ADDRESS 4 RESERVED FOR FUTURE USE
(5E8) 1512 ADDRESS 4 RESERVED FOR FUTURE USE
(5EC) 1516 ADDRESS 4 RESERVED FOR FUTURE USE

 Chapter 5. Storage Layout and Data Areas 581

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(5F0) 1520 ADDRESS 4 RESERVED FOR FUTURE USE
(5F4) 1524 ADDRESS 4 RESERVED FOR FUTURE USE
(5F8) 1528 ADDRESS 4 RESERVED FOR FUTURE USE
(5FC) 1532 ADDRESS 4 RESERVED FOR FUTURE USE

 ..11 NCBSSLDL "*-NCBSSLDS" LENGTH OF WORKAREA
(5FC) 1532 0 NCBLN "*-NCBDS" LENGTH OF CONTROL BLOCK

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

NODE CONTROL BLOCK TASK ENTRY

(0) 0 STRUC-
TURE

0 NCBEDS , DUMMY SECTION DEFINITION

(0) 0 BITSTRING 1 NCBERCB RCB OF TASK CONCERNED
(1) 1 BITSTRING 1 NCBEST1 STATUS/ACTION BYTE

 1... NCBTDRN "X'80'" .. TASK DRAINED
 .1.. NCBTLVE "X'40'" .. TASK LIVE
 ..1. NCBDETE "X'20'" .. DEQUEUE & DELETE NCB TASK ENTRY
 ...1 NCBTCRE "X'10'" .. TASK CREATION REQUESTED

(2) 2 BITSTRING 1 NCBESTS TASK STOP STATE (DUPLICATE TO TCB)
(3) 3 BITSTRING 1 NCBETYP TASK TYPE

 1... NCBETYPT "X'80'" .. TRANSMITTER TASK
 .1.. NCBETYPR "X'40'" .. RECEIVER TASK
 ..1. NCBETYPC "X'20'" .. CONSOLE TASK
 1... NCBETYPJ "X'08'" .. JOB PROCESSING
 1.. NCBETYPO "X'04'" .. OUTPUT (LST,PUN) PROCESSING

(4) 4 ADDRESS 4 NCBETCB TCB ADDRESS OF TASK
 1... NCBELN "*-NCBEDS" LENGTH OF ONE ENTRY

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

PASSED PARAMETERS TO IPW$$LD5 DUE TO RESTRUCTERING OF PHASES

(0) 0 STRUC-
TURE

0 PASPARD , DUMMY SECTION DEFINITION

(0) 0 BITSTRING 12 PASPAR5 PARAMETERS FOR IPW$$LD5
(C) 12 BITSTRING 1 PASTIME TIME PARAMETER
(D) 13 BITSTRING 2 NOT USED
(F) 15 BITSTRING 1 PASFCT5 FUNCTION FOR IPW$$LD5

EQU X'01' TEST RCB OF RIF
EQU X'02' TEST RCB FOR TRANSMITTER
EQU X'03' TEST RCB FOR RECEIVER
EQU X'04' TEST LOG ERROR ON SYSREC
EQU X'05' TEST CANCEL TASKS
EQU X'06' TEST CREATE TASK
EQU X'07' TEST UPDATE NAT
EQU X'08' TEST SET TIMER-INTERVAL

 ...1 PASPLN "*-PASPARD" LENGTH OF ONE ENTRY

582 VSE Central Functions V7R1 VSE/POWER DRM

Node Control Block Task Entry

Definition Macro: IPW$DNC

(see NCB)

 Chapter 5. Storage Layout and Data Areas 583

Open 3540 Diskette Work Space

DSECTname: OEWS (Module IPW$$OE)

This work area is used during the opening of 3540 diskette files.

Bytes Label
Hex. of Field Description/Function
--
��-�F Storage descriptor 'OEWS REL cuu'

OECB 354� command control block
1�-11 OECT Residual count
12-13 OECM Communications bytes
14-15 OEST Device status
16-17 OELU Device type and logical unit
18 Reserved for LIOCS
19-1B OECA First CCW
1C Reserved for PIOCS
1D-1F OECW CCW address in CSW
2�-57 OESV Temporary register save area for the

interface between functions
58-5F OECV Conversion work space

OECP 354� channel program
6�-67 OEDO Define operations or NOP
68-6F OESK Seek
7�-77 OERD Read label
78-7B OESM Mode setting argument
7C-7F OESA Seek argument (��CCHHRR)
8�-CF OELB 354� input area and label test area
 (see below)

� Message Buffers and Work Areas

D� OML1 Message length of first line
OMS1 First line of message output area

D1-D7 OMT1 Message identity
D8-1�7 OMT1 Message text of first line
1�8 OML2 Message length of second line

OMS2 Second line of message output area
1�9 OMI2 Message identity
11�-13F OMT2 Message text of second line
14� Not used
141 OERL Reply length
142-147 OERP Reply input area
148 OECC Cylinder number save area

� Physical reader information indicators. The following indicators are copied from the physical work
space to prevent them from being destroyed should the OPEN be unsuccessful. On a successful
OPEN, the indicators in the physical work space are overwritten by these updated indicators. On an
unsuccessful OPEN, only the OPEN indicator 'PEOC' will be updated with the stop code 'S'. (See
"Physical Work Space" in this chapter.)

584 VSE Central Functions V7R1 VSE/POWER DRM

Bytes Label
Hex. of Field Description/Function
--
14A-14B WERL Record length (copy of PERL)

WESI Sequence ID (copy of PESI)
14C WEMI Multi-volume identification (copy of PEMI)
14D WESN Volume sequence number (copy of PESN)
14E WEOD Number of opened diskettes (copy of PEOD)
14F WEND Number of diskettes to be read (copy of PEND)
15�-157 Not used

� 354� Volume 1 Label Layout in Label Test Area (OELB)

VOLL Diskette volume 1 label
8�-83 VLID Volume label ID and number
84-89 VLSN Volume serial number
8A VLAI Volume access indicator
8B-A4 Reserved
A5-B2 VLDI Volume owner identity
B3-CA Reserved
CB VLPL Physical record length
CC-CD VLRS Physical record sequence code
CE Reserved
CF VLST Label standard version (W)

� 354� Header 1 Label Layout in Label Test Area (OELB)

HDRL Diskette header 1 label
8�-83 HDID Header label ID and number
84 Reserved
85-8C HDFI File identifier
8D-95 Reserved
96-9A HDBL Block length of data record
9B Reserved
9C-A� HDLO Begin of extent (CCHRR)
A1 Reserved
A2-A6 HDHI End of extent (CCHRR)
A7 Reserved
A8 HDBI Bypass indicator (B)
A9 HDFS File security indicator (S)
AA HDWP File write protection indicator (P)
AB HDEI Basic exchange indicator (,E)
AC HDMV Multi-volume indicator (,C,L)
AD-AE HDSN Volume sequence number
AF-B4 HDCR Creation date
B5-C1 Reserved
C2-C7 HDEX Expiration date
C8 HDVI Verify indicator (,V)
C9 Reserved
CA-CE HDED End of data address (CCHRR)
CF Reserved

 Chapter 5. Storage Layout and Data Areas 585

Output Exit Parameter List

Definition Macro: IPW$DXE

This macro is used to produce a DSECT for the Output Exit Parameter List. The format is as follows:

Bytes Hex. Label of Field Description/Function

00 OEXDS Start of DSECT
00-03 OEXRV Record address of statement passed
04-07 OEXRL Length of statement passed
08 OEXCC Operation code
09 OEXRT Record type
 OERNCD X'00' - Normal data or control record
 OERJHR X'80' - Job header record
 OERJTR X'40' - Job trailer record
 OERDSHR X'20' - Data set header record
 OERSEP X'08' - Record of start separator page
 OERESEP X'04' - Record of end separator page
0A OEXTT Task type
 OETLST X'80' - List task
 OETPUN X'40' - Punch task
 OETRJE X'20' - RJE task
 OETDST X'02' - Device service task
0B OEXOT Various information
 OEOLST X'80' - Output from list queue
 OEOPUN X'40' - Output from punch queue
 OEOSQE X'20' - Start of queue entry
 OEOSNC X'10' - Start next copy
 OEOQEP X'08' - Queue entry processed
 OEOSPA X'04' - PSETUP command active
0C-0F OEXWA Pointer to exit work area
10 OEXRC Return codes
 OEROK X'00' - Normal processing
 OERDEL X'04' - Delete this record
 OERINS X'08' - Insert new record
 OERFLS X'10' - Flush queue entry
 OERFLH X'18' - Flush hold queue entry
 OERSTP X'1C' - Stop task
11-13 Reserved for future use

586 VSE Central Functions V7R1 VSE/POWER DRM

Output Parameter Definition Entry

Definition Macro: IPW$DOP OPDE=YES

This macro is used to produce a DSECT for the Output Parameter Definition Entry. The format is as
follows:

Bytes Hex. Label of Field Description/Function

00 OPDEDS Start of DSECT
00-03 OPNXT Pointer to next OPDE in chain
04-05 OPDI Registered keyword identifier
06 OPCAR Carrier type
 OPCARLST C'L' - Carrier is LST statement
 OPCARPUN C'P' - Carrier is PUN statement
07 OPKWLN Length of keyword
08-0F OPKW Keyword (output parameter)
10-11 OPREPEAT Maximun repeat (=number of subparameters)
12-13 OPVALLNT Maximum length of keyword value
14-16 Reserved for future use
17 OPVALTYP Type of keyword value
 OPVTANY C'*' - Any character allowed
 OPVTALPH C'A' - Alphabetic value
 OPVTCHAR C'C' - Alphameric value
 OPVTNUM C'N' - Numeric value
 OPVTHEX C'H' - Hexadecimal value
 OPVTBIN C'B' - Binary value
18-1B OPMINVAL Minimum value for a binary value
1C-1F OPMAXVAL Maximum value for a binary value

 Chapter 5. Storage Layout and Data Areas 587

Output Parameter Text Block

Definition Macro: IPW$DOP OPTB=YES

This macro is used to produce a DSECT for the Output Parameter Text Block. The format is as follows:

Bytes Hex. Label of Field Description/Function

00 OPTBHDS DSECT for OPTB header
00-01 OPTBID Registered keyword identifier
02-03 OPTBCNT Number of data elements
00 OPTBDDS DSECT for OPTB data element
00-01 OPTBDLEN Length of data element
02 OPTBDVAL Start of data element value

588 VSE Central Functions V7R1 VSE/POWER DRM

Output Parameter Processing Interface List

Definition Macro: IPW$DOP OPI=YES

This macro is used to produce a DSECT for the Output Parameter Processing Interface List. The format
is as follows:

Bytes Hex. Label of Field Description/Function

� OPI General
Section
00 OPIDS Start of DSECT
00-17F OPIDWA Dynamic work area for IPW$$OP
180 OPIFUNC Function key
 OPIFBLD X'01' - Build OPDE chain
 OPIFANAL X'02' - Analyze output parameter
 OPIFPUT X'03' - Specify OPTBs
 OPIFGET X'04' - Retrieve OPTBs
 OPIFMOD X'05' - Modify one OPTB
181 OPIRC Return codes set by IPW$$OP
 OPIRCOK X'00' - Ok, no error occurred
 OPIRCIDF X'01' - Invalid parameter in DEFINE statement
 OPIRCJER X'02' - JECL error
 OPIRCIOP X'03' - Invalid OPTB
 OPIRCDOP X'04' - Duplicate OPTB
 OPIRCONF X'05' - OPTB not found
 OPIRCRTS X'06' - Return area too small
 OPIRCOLM X'07' - OPTB length mismatch
 OPIRCOTL X'08' - Specified OPTBs too long
 OPIRCIDH X'09' - Invalid Data Set Header Record
 OPIRCNST X'10' - No storage available
 OPIRCINK X'11' - Keyword syntax invalid
 OPIRCNDK X'12' - No DEFINE statement found for keyword
 OPIRCIDV X'13' - Keyword value invalid
182-183 Reserved for future use
184 OPIGEND End of general section
� OPDEBLD
Interface
Section
184-187 OPBDEFIN Address if area with DEFINE statement
188 OPBMSGRC Reason code for message 1Q09I
 OPBMOK X'00' - No reason code required
 OPBMCAR X'01' - Invalid carrier type
 OPBMKW X'02' - Invalid keyword
 OPBMDUKW X'03' - Duplicate keyword
 OPBMID X'04' - Invalid identifier
 OPBMDUID X'05' - Duplicate identifier
 OPBMREP X'06' - Invalid repeat factor
 OPBMLN X'07' - Invalid length specification
 OPBMTYPE X'08' - Invalid type specification
 OPBMNAPP X'09' - Minimum/Maximum value not applicable
 OPBMMIN X'10' - Invalid minimum value specified
 OPBMMAX X'11' - Invalid maximum specified
 OPBMMIMA X'12' - Minimum greater than maximum
 OPBMTOOM X'13' - Too many parameters specified
 OPBMDLIM X'14' - Invalid statement delimiter
 OPBMCONT X'15' - Continuation not allowed

 Chapter 5. Storage Layout and Data Areas 589

Bytes Hex. Label of Field Description/Function

� OPANAL
Interface
Section
184-187 OPADSHR Address of Data Set Header record
188-18B OPAPARA Address of parameter string to be analyzed
18C-18F OPASTRT Start address of JECL statement
190-193 OPAEND End address of JECL statement
194-197 OPAOWNER TCB address of task owning DSHR
198 OPACAR Carrier type
199 Reserved for future use
19A-19B OPAMSG Message indicator ($1Q50I,$1Q51I)
19C-19F OPAMSGKW Address of keyword to be included into message 1Q51I
1A0-1A3 OPADELIM Pointer to delimiter of parameter string
� OPPUT
Interface
Section
184-187 OPPDSHR Address of Data Set Header
188-18B OPPCDPT Address of code point area containing OPTBs to be added
18C-18D OPPCDLEN Length of code point area
18E OPPCAR Carrier type
 OPPCPUN C'P' - Punch queue entry
 OPPCLST C'L' - List queue entry
� OPGET
Interface
Section
184-187 OPGDSHR Address of Data Set Header, if storage copy exists
188-18B OPGRETAD Address of area where OPTBs should be returned
18C-18D OPGRETLN Length of return area
18E-18F OPGKWID Keyword identifier of OPTB
190-191 OPGACTLN Actual length of returned OPTB(s)
� OPMOD
Interface
Section
184-187 OPMDSHR Address of Data Set Header, if storage copy exists
188-18B OPMNEWAD Address of new version of OPTB to be replaced
18C-18D OPMNEWLN Length of new OPTB
18E OPMCAR Carrier type
 OPMCPUN C'P' - Punch queue entry
 OPMCLST C'L' - List queue entry

590 VSE Central Functions V7R1 VSE/POWER DRM

Partition Control Block (PDB)

Definition Macro: IPW$DPD

A partition control block is created for each partition to be controlled by VSE/POWER. In addition to
general partition information, the block contains an entry for each device that is to be spooled. The format
of these entries is described by the IPW$DDE macro. The partition control blocks for static partitions are
located just behind the Nucleus in the SVA part of VSE/POWER and are allocated during initialization of
VSE/POWER. Each contains place for 29 (maximum) spool devices.

The partition control blocks for the dynamic partitions are also located in the SVA and allocated during
partition allocation. Each contain placeholders for the number of spool devices specified in the dynamic
class table.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 PARTITION CONTROL BLOCK (PDB)

THE FIRST PART OF THE BLOCK CONTAINS GENERAL PARTITION
INFORMATION, STATISTICAL INFORMATION DESTINED FOR THE
EXECUTION ACCOUNT RECORD AND OTHER CONTROL INFORMATION.

(0) 0 CHAR-
ACTER

16 PSSD STORAGE DESCRIPTOR

(10) 16 CHAR-
ACTER

2 RESERVED

(12) 18 CHAR-
ACTER

2 PDPI PARTITION SYSLOG ID

(14) 20 SIGNED 4 PDNE NUMBER OF ENTRIES
(18) 24 ADDRESS 4 PDCM PARTITION COMREG
(1C) 28 ADDRESS 4 PDPCE PCE ADDRESS
(20) 32 ADDRESS 4 PDPA FIRST ENTRY ADDRESS
(24) 36 ADDRESS 4 PDBA PARTITION VIRT.BEGIN ADDR.
(28) 40 ADDRESS 4 PDEA PARTITION VIRT.END ADDR.
(2C) 44 ADDRESS 4 PDRL PARTITION REAL BEGIN ADDR.
(30) 48 ADDRESS 4 PDRH PARTITION REAL END ADDR.
(34) 52 BITSTRING 2 PDJN LST/PUN JOB NR INDICATORS
(36) 54 BITSTRING 1 PDTT TERMINATION CODE
(37) 55 BITSTRING 1 PDFLG FLAG BYTE 1

 1... PDFHLDI "X'80'" 'PAUSE' REQUEST FROM INIT.
 .1.. PDFHLDX "X'40'" 'PAUSE' REQUEST FOR DISP=X
 ..1. PDFHLDD "X'20'" ENTRY FOUND BY $$NQ DRY RUN
 ...1 PDFLFC "X'10'" PFLUSH/PCANCEL BY OPERATOR
 1... PDFLFD "X'08'" PFLUSH PARTLY DONE BY $$XR
 1.. PDFSGMNT "X'04'" ..SEGMENT REQUEST
 1. PDFXWUP "X'02'" DYN. EXEC. WRITER IS UP NOW

(38) 56 ADDRESS 4 PDJH PTR TO JOB HEADER RECORD
(3C) 60 ADDRESS 4 PDJT PTR TO JOB TRAILER RECORD

Statistical Information.
This information is destined for the
execution account record and there is a pointer to the SLI work area.

(40) 64 ADDRESS 4 PDSL PTR TO SLI WORKAREA
(44) 68 SIGNED 4 PD#L NR OF LINES SPOOLED
(48) 72 SIGNED 4 PD#C NR OF CARDS SPOOLED
(4C) 76 SIGNED 2 PD#P NR OF PAGES SPOOLED
(4E) 78 CHAR-

ACTER
1 PDOC DEFAULT OUTPUT CLASS

(4F) 79 BITSTRING 1 PDMT MULTTASK INDICATOR
CHAR-
ACTER

PDMTI "C'M'" .. MULTI-TASK PARTITION ID

(50) 80 CHAR-
ACTER

4 PDMRC MAX. RETURN CODE

 Chapter 5. Storage Layout and Data Areas 591

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(54) 84 CHAR-
ACTER

4 PDLRC LAST RETURN CODE

(58) 88 SIGNED 4 PD#PG NR OF PAGES SPOOLED TOTALLY
(5C) 92 BITSTRING 1 PDFLG2 FLAG BYTE 2

 1... PDFHWFW "X'80'" ..WFW MESSAGE DESIRED
(5D) 93 BITSTRING 1 PDFLG7 JCL FLAG 7
(5E) 94 BITSTRING 1 PDFLG8 JCL FLAG 8
(5F) 95 BITSTRING 1 RES. FOR FUTURE

3540 Spool Device Entry (same format as RDR device entry)

THE FOLLOWING TWO SIXTEEN BYTES FIELDS ARE USED
TO GENERATE 3540 DEVICE LIST ENTRIES WHEN 3540
DATA IS TO BE SPOOLED. THE FORMAT OF THE ENTRY
IS DESCRIBED BY THE IPW$DDE MACRO INSTRUCTION.

(60) 96 SIGNED 4 PDER1 (4) FIRST 3540 SPOOL ENTRY
(70) 112 SIGNED 4 PDER2 (4) SECOND 3540 SPOOL ENTRY

 1... PDLN "*-PDDS" BASIC LENGTH OF CTRL BLOCK
 1 PDMAXSR "1" MAX NUMBER OF SPOOLED RDR
 111. PDMAXSO "14" MAX NUMBER OF SPOOLED OUT

THE REMAINDER OF THE BLOCK CONTAINS THE PARTITION
DEVICE LIST, CONSISTING OF ONE OR MORE SIXTEEN-BYTE
ENTRIES, EACH ONE OF WHICH DESCRIBES ONE OF THE
SPOOL DEVICES ASSOCIATED WITH THE PARTITION. THE
FORMAT OF EACH ENTRY IS DESCRIBED BY THE IPW$DDE

 MACRO INSTRUCTION.
THERE CAN EXIST AT MOST 30 ENTRIES:
AT MOST 1 RDR ENTRY
AT MOST 14 LST ENTRIES
AT MOST 14 PUN ENTRIES
1 DUMMY ENTRY AS END OF LIST INDICATOR

THE FOLLOWING STATEMENTS PROVIDE ADDITIONAL
DESCRIPTION OF THE FIRST OF THESE ENTRIES - THAT
FOR THE PARTITION READER DEVICE.

592 VSE Central Functions V7R1 VSE/POWER DRM

Bytes Label
Hex. of Field Description/Function

� RDR Device Entry (maximum = 1)

8�-83 PDPU Address of entry in the VSE/AF
PUB for a card reader device

84-87 PDTC Address of execution reader TCB
88-8B PDCB CCB address.

The first byte of this field is the SVC code:
X'��'=SVC �: I/O request by user program
X'9�'=SVC 9�: accounting request by PA
X'91'=SVC 91: accounting request by JCL

8C PDDT Device type code
8D PDCL Device class code

can be R = normal reader,
or C = console

8E-8F PDRQ Requestor ID

� LST Device Entry (maximum = 14) (Definition Macro IPW$DDE)

��-�3 TLPU Address of entry in the VSE/AF
PUB for a printer device

�4-�7 TLTC Address of the execution list TCB
.. X'�4" - Identify IPWSEGM Request

�8-�B TLCB CCB address
�C TLDT Device type code
�D TLCL For list device entry this can be

L = device is being spooled,
N = device is not being spooled.

�E-�F TLRQ Requestor ID

 � PUN Device Entry (maximum = 14). Same format as LST device entry.
The addresses depend on the number of LST entries.
(Definition Macro IPW$DDE)

TLPU Address of entry in the VSE/Advanced Functions
PUB for a punch device

TLTC Address of the execution punch TCB
 TLCB CCB address

TLDT Device type code
TLCL For punch device entry this can be

P = device is being spooled,
N = device is not being spooled.

 TLRQ Requestor ID

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 593

Physical Data Record Area (PDA)

Space for this area is reserved during the execution of a physical reader/writer routine. The size of the
area depends on the specifications in the DBLK parameter. It consists of a CCB and a CCW string which
constitutes the channel program, followed by areas that contain the input or output data records.

Note: For an RJE task the CCB and the channel program is in the LCB. During a read operation the
area is initialized by calculating the amount of data records and their CCWs that will fit in the area. Then
an SVC 0 is issued to commence the I/O operation to read cards or 80 byte records into it. When it is full,
the data is transferred to the logical data area by the function IPW$PLR and is ready for output to the
spooling device assigned as the data file. Queue records are constructed on the queue file to record the
seek addresses of the data on the data file.

During a write operation, the reverse occurs. Data is read from the spooling device to the LDA from
where it is transferred to this PDA ready for the physical routine to print or punch the data.

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

594 VSE Central Functions V7R1 VSE/POWER DRM

Physical Work Space (PWS)

Definition Macro: IPW$DPW

The physical work space is used to address and save the information necessary for reentrance of the
physical reader/writer. The area for PWS is reserved by the physical routine. It records information that
points to a physical data area.

Note: There is no PWS for an RJE task; it is replaced by information contained in the LCB or
SUCB/LUCB, respectively.

Bytes Label
Hex. of Field Description/Function
--
��-�3 PBV1 Virtual address of the first PDA
�4-�7 PBR1 Real address of the first PDA
�8-�B PBV2 Virtual address of the second PDA
�C-�F PBR2 Real address of the second PDA
1�-13 PWVE Virtual address of the active PDA
14-17 PWRE Real address of the active PDA
18-19 PWLC Displacement of last CCW in string

from beginning of PDA
1A-1B PWRL Physical record length: to update

the record pointer in the deblock routine
1C-1F PWDI Device type information

PWDB X'�2' - Double buffer indicator
1D PWDT Device type of unit record device
1E-1F PWLU LUB number
2�-23 PWDV Virtual address of end of PDA
24-27 PWDA Real address of end of PDA
28-2B PWCA Real address of the first CCW
2C PWOT Operation byte

PWWC X'8�' - wait for completion request
2D PWML Message reply length
2E-35 PWRA Message reply area
36-37 PWFS Standard FCB name suffix

 Chapter 5. Storage Layout and Data Areas 595

3540 Physical Work Space

Definition Macro: IPW$DPW E3540=YES

The 3540 physical work space is used to address and save the information necessary for diskette proc-
essing. The work space is either reserved by the physical routine (IPW$$PR) in case of alternate diskette
processing, by the process diskette record routine (IPW$$ER) in case of primary diskette processing or by
the logical reader routine (IPW$$LR) for dynamic * $$ RDR processing. The address of the 3540 physical
work space currently in use is stored in the TCB field 'TC3W'.

Bytes Label
Hex. of Field Description/Function

��-�3 PERA Real address of the physical work space
�4-�7 PEDI Device type indication.
�4 Reserved.
�5 PEDT Device type.
�6-�7 PELU Programmer logical unit.
�8-�B PECU device address of diskette unit ('cuu')
�C-�F PEHA address of higher level 354� PWS
1�-1F PEDP Diskette parameters from PSTART.
1�-17 PEFI File identification.
18-1B PEPS PSTART parameters.
18 PEOP Option byte feed for 354�.

PEFD X'�1' - Feed 354�
19 PEND Number of diskettes to be read.
1A PESC Sequence check required.
1B PEVE Verify requested.
1C-1F PECD Displacement between real and

virtual CCB addresses.
2�-23 PECV Address of 354� CCB or physical data area
24-27 PEDV Virtual address of first 354� data buffer
28-2B PEDA Real address of first 354� data buffer
2C-2F PEVN Virtual address of second data buffer.
3�-33 PERN Real address of second data buffer.
34-37 PEBS Real address of forced pre-SEEK CCW.
38-3B PESK Seek address (��CCHHRR).
3C-3F PESO Overlap seek address (��CCHHRR).
4�-43 PELO Extent lower limit (��CCHHRR).
44-47 PEED Next sector address (��CCHHRR).
48-49 PERL Record length.
4A-4B PENN No. of buffers allocated in 2nd data buffer.
4C-4D PESI Sequence identification.
4C PEMI Multi-volume identification.
4D PESN Volume sequence number.
4E PEOC Open return code.
4F PEOD Number of opened diskettes.
5�-57 PEDW Double word for conversion purposes.

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

596 VSE Central Functions V7R1 VSE/POWER DRM

PNET Control Block (PNCB)

Definition Macro: IPW$DPN

This macro is used to define the master control block for the PNET function. The PNCB is created at
initialization time if the PNET parameter is specified at VSE/POWER generation time. Its address can be
found in the CAT at label 'CAPN'.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

PNET MASTER CONTROL BLOCK
THE PNET CONTROL BLOCK (PNCB) IS CREATED AT VSE/POWER
INITIALIZATION, IF THE PNET FEATURE IS INSTALLED.
THE POINTER TO THE PNCB IS ANCHORED IN THE CAT LABEL 'CAPN'

NETWORK DEFINITION TABLE HEADER

(0) 0 STRUC-
TURE

0 PNCBDS

(0) 0 CHAR-
ACTER

16 PNCBSD SECTION DESCRIPTOR

(10) 16 ADDRESS 4 PNCBNCB ADDR. OF FIRST NCB
(14) 20 ADDRESS 4 PNCBTLD ADDRESS OF LINE DRIVER TCB
(18) 24 ADDRESS 4 PNCBNDT ADDR. OF NETWORK DEFINITION TABLE
(1C) 28 ADDRESS 4 PNCBLKW RESERVED FOR LOCKWORD
(20) 32 ADDRESS 4 PNCBVDCB ADDR. OF SNA CONTROL BLOCK
(24) 36 ADDRESS 4 PNCBTNT PTR TEMPORARY NAT TABLE
(28) 40 ADDRESS 4 PNCBTDCB ADDR. OF TD-SUBTASK C-BLOCK
(2C) 44 ADDRESS 4 PNCBSDCB ADDR. OF SD-SUBTASK C-BLOCK
(30) 48 ADDRESS 4 PNCBSTCB CNSLTR SYSLST TRACE CCB ADDR
(34) 52 BITSTRING 1 PNCBTRTA FLAG - SYSLST TRACE ACT(LOCK
(35) 53 BITSTRING 1 PNCBSTDT SYSLST PUB DEVICE TYPE
(36) 54 BITSTRING 1 PNCBTRST FLAG - SYSLST ASSIGNED
(37) 55 BITSTRING 1 PNCBTRSI FLAG - SYSLST INITIALIZED
(38) 56 ADDRESS 4 RESERVED FOR FUTURE USE
(3C) 60 ADDRESS 4 RESERVED FOR FUTURE USE

LOAD ADDRESS LIST FOR PNET PHASES

(40) 64 CHAR-
ACTER

4 PNCBALD LINE DRIVER IPW$$LD

(44) 68 CHAR-
ACTER

4 PNCBALD1 LINE DRIVER IPW$$LD1

(48) 72 CHAR-
ACTER

4 PNCBALD2 LINE DRIVER IPW$$LD2

(4C) 76 CHAR-
ACTER

4 PNCBALD3 LINE DRIVER IPW$$LD3

(50) 80 CHAR-
ACTER

4 PNCBALD4 LINE DRIVER IPW$$LD4

(54) 84 CHAR-
ACTER

4 PNCBALD5 LINE DRIVER IPW$$LD5

(58) 88 CHAR-
ACTER

4 PNCBANM I/O MANAGER

(5C) 92 CHAR-
ACTER

4 PNCBANR RECEIVER

(60) 96 CHAR-
ACTER

4 PNCBANR2 RECEIVER PART 2

(64) 100 CHAR-
ACTER

4 PNCBANP PRESENTATION SERVICE

(68) 104 CHAR-
ACTER

4 PNCBANT TRANSMITTER

(6C) 108 CHAR-
ACTER

4 PNCBANC COMPOSER

(70) 112 CHAR-
ACTER

4 PNCBANK COMPRESSION ROUTINE

 Chapter 5. Storage Layout and Data Areas 597

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(74) 116 CHAR-
ACTER

4 PNCBAOP VTAM SUBTASK ENTRY POINT

(78) 120 CHAR-
ACTER

4 PNCBASE SNA EXIT ROUTINES

(7C) 124 CHAR-
ACTER

4 PNCBASR SNA SEND/RECEIVE FUNCTION AND EXIT

(80) 128 CHAR-
ACTER

4 PNCBACT SNA SESSION BUILD (CONNECT)

(84) 132 CHAR-
ACTER

4 PNCBADT SNA SESSION TERMINATE (DISCONNECT)

(88) 136 CHAR-
ACTER

4 PNCBABS PHASE ADDR. OF BUFFER SERVICE

(8C) 140 CHAR-
ACTER

4 PNCBATD PHASE ADDR.(TCP/IP DRIVER)

(90) 144 CHAR-
ACTER

4 PNCBATS PHASE ADDR.(IP SOCKET PROC.)

(94) 148 CHAR-
ACTER

4 PNCBASD PHASE ADDR.(SSL DRIVER)

(98) 152 CHAR-
ACTER

4 PNCBASS PHASE ADDR.(SSL SOCKET PROC)

(9C) 156 CHAR-
ACTER

4 PNCBCPS PHASE ADDR. OF PSTART CMD PROCESSOR

(A0) 160 CHAR-
ACTER

4 PNCBCPF PHASE ADDR. OF PFLUSH CMD PROCESSOR

 ...1 1..1 PNCBHNR "(*-PNCBALD)/4" NUMBER OF PHASES

THE FOLLOWING TWO ADDRESSES CONTAIN THE POINTER TO THE ERROR
EXIT ROUTINES FOR BOTH THE TRANSMITTER AND RECEIVER.

(A4) 164 ADDRESS 4 PNCBERNR ERROR EXIT ROUTINE OF RECEIVER
(A8) 168 ADDRESS 4 PNCBERNT ERROR EXIT ROUTINE OF TRANSMITTER
(AC) 172 ADDRESS 4 PNCBAUE USER READER EXIT
(B0) 176 SIGNED 2 PNCBAUEL PNET EXIT WOR AREA SIZE
(B2) 178 SIGNED 2 PNCBTUEL LENGTH OF XMTEXIT WORK AREA
(B4) 180 ADDRESS 4 PNCBTUE ADDRESS OF XMTEXIT
(B8) 184 BITSTRING 2 RESERVED FOR FUTURE USE
(BA) 186 BITSTRING 1 PNCBST1 STATUS BYTE ONE

 1... PNCB1DPS "X'80'" .. DELAY PSTART PNET FOR SNA
(BB) 187 BITSTRING 3 RESERVED

OWN NODE INFORMATION

(BE) 190 CHAR-
ACTER

8 PNCBONN NODE NAME OF OUR SYSTEM

(C6) 198 CHAR-
ACTER

1 PNCBONQ .. QUALIFIER

(C7) 199 CHAR-
ACTER

8 PNCBNDTN NDT PHASE NAME

(CF) 207 CHAR-
ACTER

9 PNCBAPPL (0) OUR NODE'S APPL-ID PARAMETER

(CF) 207 BITSTRING 1 PNCBALTH LENGTH OF APPLID (PNET USES DEFAULT OF 8)
(D0) 208 CHAR-

ACTER
8 PNCBAPID OUR NODE'S APPL-ID

(D8) 216 ADDRESS 4 PNCBSECB SUBTASK-ECB FOR VTAM
(DC) 220 ADDRESS 4 RESERVED FOR FUTURE USE

DC (((-&PR.SD-1+8)/32+1) 32-(-&PR.SD+8))AL1(0)

 111. PNCBLN "*-PNCBSD" LENGTH OF CONTROL BLOCK

598 VSE Central Functions V7R1 VSE/POWER DRM

PNET TCP Driver Control Block (TDCB) and PNET SSL Driver Control
Block (SDCB)

Definition Macro: IPW$DTP

This macro is used to define the master control block of the PNET TCP/IP interface (represented by the
TD-Subtask) for the PNET TCP function and the PNET SSL interface (represented by the SD-Subtask)
for the PNET SSL function. The TDCB/SDCB is created at ititialization time immediately after the PNCB
creation. Its address can be found in the PNCB at label 'PNCBTDCB' respectively 'PNCBSDCB'. Both
control blocks are created by the same macro.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

TDCP CONTROL BLOCK

(0) 0 STRUC-
TURE

0 TDCBDS START OF DSECT

(0) 0 CHAR-
ACTER

16 TDCBSD SECTION DESCRIPTOR

(10) 16 ADDRESS 4 TDCBECB PNET TCP/IP EVENT CONTROL BLOCK
(14) 20 SIGNED 4 TDCBGTIV GENRAL TIMER INTERVAL
(18) 24 ADDRESS 4 TDCBNDTE POINTER TO LOCAL NDT ENTRY
(1C) 28 BITSTRING 24 TDCBTIME RESERVED FOR TIMER ELEMENT
(34) 52 ADDRESS 4 TDCBSECB TD-SUBTASK ALIVE(0) OR DOWN(1) ECB
(38) 56 ADDRESS 4 TDCBATCB POINTER TO 'PSTART TCPIP' TASK TDCB POINTER TO

'PSTART TCPSSL' TASK SDCB

TDCB GENERAL CONTROL FIELDS

(3C) 60 BITSTRING 8 TDCBTRC1 (0) START OF TRACED INFO
(3C) 60 SIGNED 2 TDCBNONU NUMBER OF STARTED TCP/IP NODES
(3E) 62 BITSTRING 1 TDCBACT1 TDCB DETACH ACTIVITY FLAG BYTE 1

 .1.. TDCBA1TI "X'40'" .. TERMINATE IMMEDIATELY (ERROR)
 ..1. TDCBA1TE "X'20'" .. TERMINATE AT EOJ (PEND)
 1... TDCBA1PE "X'08'" .. PSTOP TCP/IP AT EOJ
 1.. TDCBA1PI "X'04'" .. PSTOP TCP/IP IMM (NOT YET USED)
 1. TDCBA1DT "X'02'" .. DETACH TCP/IP SUBTASK

(3F) 63 BITSTRING 1 TDCBACT2 TDCB ACTIVITY FLAG BYTE 2
 1... TDCBA2CL "X'80'" .. CLOSE PASSIVE MODE
 .1.. TDCBA2TR "X'40'" .. TRACE SOCKETCALL OF PASSIVE MODE
 1... TDCBA2AF "X'08'" .. ACCEPT FAILED ONCE
 1.. TDCBA2AX "X'04'" .. ACCEPT FAILED TWICE IN A ROW
 1. TDCBA2RP "X'02'" .. RESTART PASSIVE CONN

(40) 64 BITSTRING 1 TDCBACT3 TDCB ACTIVITY FLAG BYTE 3
 ...1 TDCBA3PL "X'10'" .. POST PNET LINE DRIVER
 1... TDCBA3IV "X'08'" .. AT LEAST 1 TQE-ECB POSTED

(41) 65 BITSTRING 1 TDCBSTA1 TCP/IP STATUS BYTE
 1... TDCBS1IA "X'80'" .. API INTERFACE AVAILABLE SET IF 1ST

SOCKETCALL SOCKET OK RESET IF TERMAPI ISSUED
 .1.. TDCBS1DP "X'40'" .. SUBTASK IN $$AT BEFORE DETACH
 ..1. TDCBS1SM "X'20'" .. ISSUE START-UP MSG ON CONSOLE
 ...1 TDCBS1RC "X'10'" .. RECURSIVE FLAG: BEEN IN $$AT
 1... TDCBS1PS "X'08'" .. PASSIVE SOCKET NOT USABLE
 1.. TDCBS1IT "X'04'" .. SOK INITAPI SUCESSFUL
 1. TDCBS1P1 "X'02'" .. PASSIVE SOCKET ONCE SUCC

(42) 66 BITSTRING 1 TDCBSTA2 TCP/IP STATUS BYTE
 1... TDCBS2NW "X'80'" .. NO WAIT WITHIN MAINLINE

(43) 67 BITSTRING 1 TDCBTTC TCP/IP-TERMINATION CODE
 1... TDCBTTCV "X'80'" .. TCP/IP TERMINATED
 1... TDCBTRE1 "*-TDCBTRC1" LENGTH OF TRACED INFO

(44) 68 BITSTRING 1 TDCBTTCQ TERMINATION QUALIFIER
(45) 69 BITSTRING 1 TDCBRCNT RETRY COUNTER
(46) 70 BITSTRING 1 TDCBPROC PROCESS BYTE

 ...1 TDCBTRCE "X'10'" .. TRACE SOCKETCALL

 Chapter 5. Storage Layout and Data Areas 599

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(47) 71 CHAR-
ACTER

1 FILLER FOR ALIGNMENT

FIELDS USED BY SD-SUBTASK

(48) 72 BITSTRING 1 TDCBSLS1 TCP/IP STATUS BYTE
 1... TDCBSL1I "X'80'" .. SSL INTERFACE AVAILABLE

(49) 73 CHAR-
ACTER

1 RESERVED FOR FUTURE USE

(4A) 74 CHAR-
ACTER

1 RESERVED FOR FUTURE USE

(4B) 75 CHAR-
ACTER

1 RESERVED FOR FUTURE USE

(4C) 76 SIGNED 2 RESERVED FOR FUTURE USE
(4E) 78 CHAR-

ACTER
1 RESERVED FOR FUTURE USE

(4F) 79 CHAR-
ACTER

8 TDCBSECT SECURITY PROTOCOL

(57) 87 BITSTRING 1 END DELIMITER FOR SEC PROT
(58) 88 CHAR-

ACTER
16 TDCBKEYR LIB.SUBLIB NAME

(68) 104 BITSTRING 1 END DELIMITER FOR KEYRING
(69) 105 CHAR-

ACTER
1 RESERVED FOR FUTURE USE

(6A) 106 SIGNED 2 RESERVED FOR FUTURE USE
(6C) 108 SIGNED 4 TDCBTOUT TIMEOUT FOR SSL
(70) 112 SIGNED 4 TDCBSXRN NUMBER OF SOK DESCRIPTORS USED BY SELECTEX

FOR READ
(74) 116 SIGNED 4 TDCBSXWN NUMBER OF SOK DESCRIPTORS USED BY SELECTEX

FOR WRITE
(78) 120 DBL WORD 8 TDCBSXTI TIME TO WAIT TILL POSTED USED BY SELECTEX FOR

WRITE

AREAS USED FOR SOCKET CALL : INITAPI

(80) 128 SIGNED 2 TDCBSCAT API TYPE
(82) 130 SIGNED 2 TDCBSCMX MAXIMUM NUMBER OF SOCKETS
(84) 132 SIGNED 4 TDCBSCMN MAXIMUM DESCRIPTOR NUMBER
(88) 136 CHAR-

ACTER
8 TDCBSCSI SUBTASK IDENTIFIER

(90) 144 ADDRESS 4 RESERVED FOR FUTURE USE
(94) 148 ADDRESS 4 TDCBSCIP IP-ADDRESS IN BINARY FORMAT
(98) 152 CHAR-

ACTER
15 TDCBSCIR IP-ADDRESS IN READABLE FORMAT

(A7) 167 CHAR-
ACTER

1 FILLER FOR ALIGNMENT

(A8) 168 BITSTRING 24 TDCBPTQE
(0)

TQE-ELEMENT: TIME LIMIT AFTER WHICH PASSIVE CON-
NECTION COMPLETED

(A8) 168 BITSTRING 12 NOT REFERENCED
(B4) 180 BITSTRING 4 TDCBPTQP ECB TO BE POSTED
(B8) 184 BITSTRING 5 NOT REFERENCED
(BD) 189 CHAR-

ACTER
3 TDCBPTQY EYE-CATCHER

(C0) 192 ADDRESS 4 TDCBATDY ADDRESS OF TIDY-UP ROUTINE OF IPW$$TD, RESP.
IPW$$SD

(C4) 196 SIGNED 2 TDCBSTIK TIK OF SUBTASK
(C6) 198 BITSTRING 1 RESERVED FOR FUTURE USE
(C7) 199 BITSTRING 1 RESERVED
(C8) 200 ADDRESS 4 TDCBTQEA ANCHOR OF TQE CHAIN
(CC) 204 ADDRESS 4 RESERVED
(D0) 208 ADDRESS 4 TDCBMSGD DOM-ID OF MSG
(D4) 212 BITSTRING 1 RESERVED
(D5) 213 BITSTRING 1 RESERVED
(D6) 214 BITSTRING 1 RESERVED
(D7) 215 BITSTRING 1 RESERVED FOR FUTURE USE
(D8) 216 ADDRESS 4 TDCBTPER ERROR TIME USED FOR RESTART
(DC) 220 ADDRESS 4 TDCBAMRT RESERVED FOR FUTURE USE

600 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(E0) 224 SIGNED 4 TDCBFION PARA FOR IOCTL QOCKET CALL
(E4) 228 ADDRESS 4 RESERVED FOR FUTURE USE
(E8) 232 ADDRESS 4 RESERVED FOR FUTURE USE
(EC) 236 ADDRESS 4 RESERVED FOR FUTURE USE
(F0) 240 ADDRESS 4 RESERVED FOR FUTURE USE
(F4) 244 ADDRESS 4 RESERVED FOR FUTURE USE
(F8) 248 ADDRESS 4 RESERVED FOR FUTURE USE
(FC) 252 ADDRESS 4 RESERVED FOR FUTURE USE

AREAS USED FOR SOCKET CALL : LISTEN
BACKLOG NUMBER = MAXIMUM NUMBER OF SOCKETS USED IN
SOCKETCALL INITAPI (TDCBSCMX)
TCP/IP WORKAREA USED WITHIN NCB AND TDCB

(100) 256 SIGNED 2 TDNTPDS (0)
(100) 256 CHAR-

ACTER
15 TDNTPIPC IP-ADDR IN READABLE FORMAT

(10F) 271 CHAR-
ACTER

1 TDNTPTYP TYPE OF ITP WORKAREA

 11.. ...1 TDNTPTYA "C'A'" .. A = ACTIVE = NCB
 11.1 .111 TDNTPTYT "C'P'" .. P = PASSIVE = TDCB

START OF AREA-1 TO BE TRACED

(110) 272 BITSTRING 36 TDNTPTC1 (0) START OF TRACED INFO 1
(110) 272 BITSTRING 1 TDNTPST1 TCP/IP STATUS BYTE 1:

GENERAL TCP/IP STATUS, SOCKETCALL STATUS

 1... TDNTPS1T "X'80'" .. TCP/IP INIT CONTACT COMPL
 .1.. TDNTPS1F "X'40'" .. TCP/IP CONN. CLOSED
 ..1. TDNTPS1R "X'20'" .. TCP/IP RESTART: NAK-3
 ...1 TDNTPS1E "X'10'" .. TCP/IP LINE ERROR
 1... TDNTPS1A "X'08'" .. PROCESSING ACTIVE MODE
 1.. TDNTPS1I "X'04'" .. 1.SOCKETCALL ISSUED
 1. TDNTPS1L "X'02'" .. SSL FEATURE INITIATED
 1 TDNTPS1S "X'01'" .. STOP CONNECTION

(111) 273 BITSTRING 1 TDNTPST2 TCP/IP STATUS BYTE 2

GENERAL NODE STATUS

 1... TDNTPS2I "X'80'" .. CTC I/O ONCE PROCESSED
 .1.. TDNTPS2R "X'40'" .. RESTART TCP/IP PV010222
 ..1. TDNTPS2B "X'20'" .. FIRST COMES TTB
 ...1 TDNTPS2C "X'10'" .. CLOSE CONNECTION
 1... TDNTPS2O "X'08'" .. OPEN-CTRL-REC. RECEIVED
 1.. TDNTPS2A "X'04'" .. ACK-CTRL-REC. SENT
 1. TDNTPS22 "X'02'" .. NAK WITH RC=2 SENT
 1 TDNTPS2W "X'01'" .. WAIT THAT REMOTE ISSUES CONNECT

(112) 274 BITSTRING 1 TDNTPST3 TCP/IP STATUS BYTE 3

STATUS: CTC I/O

 1... TDNTPS3S "X'80'" .. CTC I/O STARTED
 .1.. TDNTPS3C "X'40'" .. CTC I/O TO BE COMPLETED
 ..1. TDNTPS3Z "X'20'" .. CCW-WRITE DATA SENT
 ...1 TDNTPS3Y "X'10'" .. CCW-READ DATA RECVED
 1... TDNTPS3B "X'08'" .. CTC I/O WITHOUT BUFFER
 1.. TDNTPS3N "X'04'" .. TCP BLOCK PARTLY RCVED
 1. TDNTPS3L "X'02'" .. LEAVE IDLING STATE
 1 TDNTPS3I "X'01'" .. IDLING(NOTHING SENT/RCV)

(113) 275 BITSTRING 1 TDNTPST4 TCP/IP STATUS BYTE 4

 STATUS: MISCELLANEOUS

 1... TDNTPS4P "X'80'" .. WAIT FOR POSTED ECB
 .1.. TDNTPS4C "X'40'" .. CONNECTION CLOSED
 ..1. TDNTPS4T "X'20'" .. TERMINATE LINE
 ...1 TDNTPS4W "X'10'" .. WAIT TILL TIME EXPIRED
 1... TDNTPS4A "X'08'" .. CANCEL ISSUED
 1.. TDNTPS4L "X'04'" .. CLOSE ISSUED

 Chapter 5. Storage Layout and Data Areas 601

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1. TDNTPS4N "X'02'" .. SOK NUMBER TOO HIGH (SSL)
(114) 276 BITSTRING 1 TDNTPST5 TCP/IP STATUS BYTE 5:

CLOSING CODES, CLOSED DUE TO:

 1... TDNTPS5U "X'80'" .. SIGNOFF REC. SEND
 .1.. TDNTPS5R "X'40'" .. SIGNOFF REC. RECEIVED
 ..1. TDNTPS5A "X'20'" .. INVALID DEFINITION
 ...1 TDNTPS5N "X'10'" .. TCP NJE NAK RECEIVED
 1... TDNTPS58 "X'08'" .. CAUSED BY TCP/IP RC=8
 1.. TDNTPS5C "X'04'" .. CAUSED BY TCP/IP RC=12
 1. TDNTPS5I "X'02'" .. POWER INTERNAL ERROR
 1 TDNTPS5S "X'01'" .. CAUSED BY REMOTE CLOSED

(115) 277 BITSTRING 1 TDNTPST6 TCP/IP STATUS BYTE 6:
 1... TDNTPS6T "X'80'" .. TRACE SOCKETCALL
 .1.. TDNTPS6I "X'40'" .. INIT TIME INTERVAL
 1111 111. TDNTPPEV "X'FE'" .. SPECIAL EVENT HUSTEST
 TDNTPS6Y "X'00'" .. SPECIAL RETRY HUSTEST

(116) 278 BITSTRING 1 TDNTPRV1 RESERVED
(117) 279 BITSTRING 1 TDNTPRV2 RESERVED

RETURN ADDRESSES FOR SOCKETCALL ROUTINE

(118) 280 ADDRESS 4 TDNTPSO0 SOCKETCALL SUCCESSFUL
(11C) 284 ADDRESS 4 TDNTPSO4 SOCKETCALL SHOULD BE RETRIED
(120) 288 ADDRESS 4 TDNTPSO8 CONNECTION TO BE STOPPED
(124) 292 ADDRESS 4 TDNTPSOC INTERFACE TO BE TERMINATED

INTERFACE AREA BETWEEN IPW$$TD AND IPW$$TS
RESPECTIVELY BETWEEN IPW$$SD AND IPW$$SS

(128) 296 SIGNED 4 TDNTPR1 RETURN CODE FROM $TS
 TDNTPR10 "0" .. OK
 1.. TDNTPR14 "4" .. RETRY NECESSARY/POSSIBLE
 1... TDNTPR18 "8" .. TERMINATE CONNECTION
 11.. TDNTPR1C "12" .. TERMINATE INTERFACE
 1. TDNTPR1R "2" .. RETRY DUE TO IPW$$SD

(12C) 300 BITSTRING 1 TDNTPSC SOCKETCALL REQUESTED
 1 TDNTPIA "1" .. INITAPI
 1. TDNTPTA "2" .. TERMAPI
 11 TDNTPGL "3" .. GETHOSTID
 1.. TDNTPLI "4" .. LISTEN
 1.1 TDNTPAC "5" .. ACCEPT
 11. TDNTPSD "6" .. SEND
 111 TDNTPRV "7" .. RECEIVE
 1... TDNTPCL "8" .. CLOSE
 1..1 TDNTPCN "9" .. CANCEL
 1.1. TDNTPGA "10" .. GETHOSTBYADDR
 1.11 TDNTPGN "11" .. GETHOSTBYNAME
 11.. TDNTPGS "12" .. GET SOCKET
 11.1 TDNTPBI "13" .. BIND
 111. TDNTPCO "14" .. CONNECT
 1111 TDNTPSR "15" .. SELECT USING READ-ARRAY
 ...1 TDNTPSW "16" .. SELECT USING WRITE-ARRAY

SOME SSL SOCKET CALLS:

 ...1 ...1 TDNSSLIN "17" .. SSL INITIALIZE
 ...1 ..1. TDNSSLUN "18" .. SSL UNINITIALIZE
 ...1 ..11 TDNSSLGN "19" .. SSL GET DNAME IN DB
 ...1 .1.. TDNSSLFM "20" .. SSL FREE MEMORY
 ...1 .1.1 TDNSSLSI "21" .. SSL SOCKET INITIALIZE
 ...1 .11. TDNSSLSR "22" .. SSL SOCKET READ
 ...1 .111 TDNSSLSW "23" .. SSL SOCKET WRITE
 ...1 1... TDNSSLSC "24" .. SSL SOCKET CLOSE
 ...1 1..1 TDNSSLRS "25" .. SSL SOCKET RESET
 ...1 1.1. TDNSSLGC "26" .. SSL GET CIPHER INFO
 ...1 1.11 TDNTPIOC "27" .. IOCTL=SET NONBLOCKING

(12D) 301 BITSTRING 1 UNUSED

602 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(12E) 302 BITSTRING 2 TDNTPRYC RETRY COUNTER
(130) 304 SIGNED 4 TDNTPTIV TIMER INTERVAL TO BE SET

 ..1. .1.. TDNTPTE1 "*-TDNTPTC1" LENGTH OF TRACED INFO 1
(134) 308 BITSTRING 24 TDNTPTQE

(0)
TIMER QUEUE ELEMENT

(134) 308 BITSTRING 12 NOT REFERENCED
(140) 320 BITSTRING 4 TDNTPTEB POST BYTES
(144) 324 BITSTRING 5 NOT REFERENCED
(149) 329 CHAR-

ACTER
3 TDNTPTQY EYECATCHER

AREAS USED FOR SOCKET CALLS
AREAS USED FOR SEVERAL SOCKET CALLS
START OF AREA-2 TO BE TRACED

(14C) 332 ADDRESS 4 (0) ALIGN
(14C) 332 BITSTRING 20 TDNTPTC2 (0) START OF TRACED INFO 2
(14C) 332 SIGNED 2 TDNSCSOD SOCKET DESCRIPTOR
(14E) 334 SIGNED 2 RESERVED

AREAS USED FOR SOCKET CALLS: BIND, ACCEPT, CONNECT

(150) 336 BITSTRING 16 TDNSCDNM
(0)

(150) 336 SIGNED 2 TDNSCBFM ADDRESSING FAMILY
(152) 338 SIGNED 2 TDNSCBPT PORT NUMBER
(154) 340 SIGNED 4 TDNSCDIP IP-ADDRESS
(158) 344 BITSTRING 4 RESERVED FOR SOCKETCALL
(15C) 348 BITSTRING 4 RESERVED FOR SOCKETCALL

 ...1 .1.. TDNTPTE2 "*-TDNTPTC2" LENGTH OF TRACED INFO 2

AREAS USED FOR SEVERAL SOCKET CALLS
EXCEPT SEND AND CANCEL

(160) 352 ADDRESS 4 (0) ALIGN
(160) 352 BITSTRING 1 TDNSCST1 STATUS OF SOCKETCALL

 1... TDNSCS1S "X'80'" .. SOCKETCALL STARTED
 .1.. TDNSCS1B "X'40'" .. NO BUFFER AVAILABLE

(161) 353 BITSTRING 1 RESERVED
(162) 354 SIGNED 2 TDNSCCNT RETRY COUNTER
(164) 356 ADDRESS 4 TDNSCBUF BUFFER FOR RECV
(168) 360 ADDRESS 4 TDNSCNBY NO OF BYTES FOR RECV
(16C) 364 SIGNED 4 TDNSCRC RETURN CODE FROM SOCKETCALL
(170) 368 SIGNED 4 TDNSCERN ERROR NUMBER
(174) 372 BITSTRING 164 TDNSCDCB

(0)
(174) 372 ADDRESS 4 TDNSCECB

(0)
ECB

(174) 372 BITSTRING 2 .. UNREFERENCED
(176) 374 BITSTRING 1 TDNSCECP .. POSTED BYTE

 1... TDNSCECI "X'80'" .. POST BIT
(177) 375 BITSTRING 1 .. UNREFERENCED
(178) 376 BITSTRING 160 TDNSCRQ WORKAREA FOR EZASMI

AREAS USED FOR SOCKET CALL : INITAPI, LISTEN
 SEE TDCB

AREAS USED FOR SOCKET CALLS: GETHOSTBYADDR

(218) 536 ADDRESS 4 TDNSCHST ADDR. OF HOSTNAME STRUCTURE

AREAS USED FOR SOCKET CALL : GETHOSTBYNAME
AND AREA ..SCHST, SEE SOCKET CALL GETHOSTBYADDR

(21C) 540 SIGNED 4 TDNSCHNL LENGTH OF HOSTNAME
(220) 544 ADDRESS 4 TDNSCHNM ADDRESS OF HOSTNAME

AREAS USED FOR SOCKET CALL: SEND

(224) 548 ADDRESS 4 (0) ALIGN
(224) 548 BITSTRING 8 TDNTPTC3 (0) START OF TRACED INFO 3
(224) 548 BITSTRING 1 TDNSCSS1 STATUS OF SOCKETCALL

 Chapter 5. Storage Layout and Data Areas 603

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... TDNSCD1S "X'80'" .. SOCKETCALL STARTED
 .1.. TDNSCD1B "X'40'" .. NO BUFFER AVAILABLE

(225) 549 BITSTRING 1 RESERVED
(226) 550 SIGNED 2 TDNSCSCT RETRY COUNTER
(228) 552 ADDRESS 4 TDNSCBUS SOCKETCALL TO BE CANCELLED
(22C) 556 ADDRESS 4 TDNSCNBS UNREFERENCED
(230) 560 SIGNED 4 TDNSCSAC RETURN CODE
(234) 564 SIGNED 4 TDNSCSAE ERROR NUMBER

 ...1 .1.. TDNTPTE3 "*-TDNTPTC3" LENGTH OF TRACED INFO 3
(238) 568 BITSTRING 164 TDNSCSAL (0)
(238) 568 ADDRESS 4 TDNSCSAB

(0)
ECB

(238) 568 BITSTRING 2 .. UNREFERENCED
(23A) 570 BITSTRING 1 TDNSCSAP .. POSTED BYTE
(23B) 571 BITSTRING 1 .. UNREFERENCED
(23C) 572 BITSTRING 160 TDNSCSAR WORKAREA FOR EZASMI

AREAS USED FOR SOCKET CALL: CANCEL
PARTLY RE-USED FOR SOCKET CALL: GET CIPHER INFO

(2DC) 732 ADDRESS 4 (0) ALIGN
(2DC) 732 BITSTRING 1 TDNSCCS1 STATUS OF SOCKETCALL

 1... TDNSCC1S "X'80'" .. SOK CALL STARTED, UNUSED
 .1.. TDNSCC1B "X'40'" .. NO BFR AVAILABLE, UNUSED

(2DD) 733 BITSTRING 1 RESERVED
(2DE) 734 SIGNED 2 TDNSCCCT RETRY COUNTER
(2E0) 736 ADDRESS 4 TDNSCBUC SOCKETCALL TO BE CANCELLED
(2E4) 740 ADDRESS 4 TDNSCNBC UNREFERENCED
(2E8) 744 SIGNED 4 TDNSCCAC RETURN CODE
(2EC) 748 SIGNED 4 TDNSCCAE ERROR NUMBER
(2F0) 752 BITSTRING 164 TDNSCCAL

(0)
(2F0) 752 ADDRESS 4 TDNSCCAB

(0)
ECB

(2F0) 752 BITSTRING 2 .. UNREFERENCED
(2F2) 754 BITSTRING 1 TDNSCCAP .. POSTED BYTE
(2F3) 755 BITSTRING 1 .. UNREFERENCED
(2F4) 756 BITSTRING 160 TDNSCCAR WORKAREA FOR EZASMI

PARTLY RE-USED FOR SOCKET CALL: GET-CIPHER-INFO

(2F0) 752 BITSTRING 104 TDNSSLCO
(0)

OUTPUT OF GET-CIPHER-INFO

(2F0) 752 SIGNED 4 SYSTEM SSL VERSION
(2F4) 756 BITSTRING 64 TDNSSLCC SPECS OF GET-CIPHER-INFO
(334) 820 BITSTRING 32 UNREFERENCED
(354) 852 BITSTRING 4 UNREFERENCED
(394) 916 SIGNED 4 RESERVED

NO SPECIAL AREAS FOR SOCKET CALLS: CLOSE, SOCKET,
 GETHOSTID, TERMAPI

SEE AREAS USED FOR SEVERAL SOCKET CALLS
AREAS USED FOR SSL SOCKET CALLS

(398) 920 ADDRESS 4 TDNSSLCB ADDR OF SSL CONTROL BLOCK RETURNED BY
SSL-SOCK-INIT

(39C) 924 SIGNED 4 TDNSSLRC REASON-CODE OF SOCK-INIT
(3A0) 928 ADDRESS 4 TDNSSLDN ADDR OF DISTINGUISHED NAME RETURNED BY

SSL-GETDNBYLAB INPUT FOR SSL-FREEMEM
(3A4) 932 ADDRESS 4 TDNSSLCF ADDR OF CLIENT-CERTIFICATE UPDATED BY

SSL-SOCK-INIT
(3A8) 936 ADDRESS 4 TDNSSLST ADDR OF CLIENT-CERTIFICATE UPDATED BY

SSL-SOCK-INIT
(3AC) 940 SIGNED 2 TDNSSLCS 2 BYTES OF SELECTED CIPHERS IS PART WITHIN

---SLCPO
(3AE) 942 SIGNED 2 RESERVED
(3B0) 944 SIGNED 4 TDNIOCMD MODE FOR IOCTL

 TDNIOCBL "0" .. BLOCKING MODE

604 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1 TDNIOCNB "1" .. NONBLOCKING MODE
(3B4) 948 SIGNED 4 RESERVED
(3B8) 952 SIGNED 4 RESERVED
(3BC) 956 SIGNED 4 RESERVED
(3C0) 960 SIGNED 4 RESERVED
(3C4) 964 SIGNED 4 RESERVED
(3C8) 968 SIGNED 4 RESERVED
(3CC) 972 SIGNED 4 RESERVED
(3D0) 976 SIGNED 4 RESERVED
(3D4) 980 SIGNED 4 RESERVED
(3D8) 984 SIGNED 4 RESERVED
(3DC) 988 SIGNED 4 RESERVED

WORKAREA FOR IPW$$TD, RESPECTIVELY IPW$$SD

(3E0) 992 SIGNED 4 TDNTPNOB NO OF BYTES SEND/RCVED
(3E4) 996 BITSTRING 33 TDNTPCTB BUFFER FOR CTRL-RECORD
(405) 1029 BITSTRING 3 TDNTPCR1 RESERVED
(408) 1032 SIGNED 4 TDNTPBR1 BYTES RCVED VIA SOCKETCALL
(40C) 1036 SIGNED 4 TDNTPBP1 BYTES PROCESSED BY IPW$$TD, RESP. IPW$$SD
(410) 1040 ADDRESS 4 TDNTPWPO ADDRESS: WAIT FOR POST ECB
(414) 1044 ADDRESS 4 TDNTPNCB ADDRESS OF NCB
(418) 1048 BITSTRING 2 RESERVED
(41A) 1050 BITSTRING 2 TDNTPFCS FCS SAVED FROM CTC I/O
(41C) 1052 BITSTRING 1 RESERVED
(41D) 1053 BITSTRING 1 TDNTPBCS BCB SAVED FROM CTC I/O
(41E) 1054 BITSTRING 1 TDNTPBCI BCB FOR INCOMING BUFFER
(41F) 1055 BITSTRING 1 TDNTPBCO BCB FOR OUTGOING BUFFER
(420) 1056 SIGNED 4 RESERVED
(424) 1060 SIGNED 4 RESERVED
(428) 1064 SIGNED 4 RESERVED
(42C) 1068 SIGNED 4 RESERVED
(430) 1072 SIGNED 4 RESERVED
(434) 1076 SIGNED 4 RESERVED
(438) 1080 SIGNED 4 RESERVED
(43C) 1084 SIGNED 4 RESERVED
(43C) 1084 0 TDNTPLST "*" END OF WORKAREA
(43C) 1084 0 TDNTPLN "*-TDNTPDS" LENGTH OF WORKAREA

AREA NOT TO BE CLEARED AFTER SOCKET CALL CLOSE

(440) 1088 SIGNED 4 TDNSSLDS (0) ' START OF SSL WORKAREA
(440) 1088 CHAR-

ACTER
8 TDNSSLKY MEMBER IN SUBLIB

(448) 1096 BITSTRING 1 END DELIMITER FOR DNAME
(449) 1097 BITSTRING 1 RESERVED FOR FUTURE USE
(44A) 1098 SIGNED 2 RESERVED FOR FUTURE USE
(44C) 1100 SIGNED 4 TDNSSLHK HANDSHAKE TYPE

 TDNSSLHC "0" HANDSHAKE TYPE: CLIENT
 1 TDNSSLHS "1" HANDSHAKE TYPE: SERVER
 1. TDNSSLHA "2" HANDSHAKE TYPE: CLIENT AUTH
 11 TDNSSLHN "3" HANDSHAKE TYPE: NO CLI AUTH

(450) 1104 SIGNED 4 TDNSSLCP CIPHER LEVEL
 1 TDNSSLCL "1" CIPHER LEVEL: WEAK
 1. TDNSSLCH "2" CIPHER LEVEL: STRONG

(454) 1108 ADDRESS 4 RESERVED FOR FUTURE USE
(458) 1112 ADDRESS 4 RESERVED FOR FUTURE USE
(45C) 1116 ADDRESS 4 RESERVED FOR FUTURE USE
(460) 1120 ADDRESS 4 RESERVED FOR FUTURE USE
(464) 1124 ADDRESS 4 RESERVED FOR FUTURE USE
(468) 1128 ADDRESS 4 RESERVED FOR FUTURE USE
(46C) 1132 ADDRESS 4 RESERVED FOR FUTURE USE

 ..11 TDNSSLDL "*-TDNSSLDS" LENGTH OF WORKAREA

AREAS USED FOR SOCKET CALL : SELECTEX
LIST OF SOCKET DESCRIPTORS TO BE PROCESSED

 Chapter 5. Storage Layout and Data Areas 605

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(470) 1136 ADDRESS 4 TDCBSXRI
(21)

READLIST: INPUT

(4C4) 1220 ADDRESS 4 TDCBSXRO
(21)

READLIST: OUTPUT

(518) 1304 ADDRESS 4 TDCBSXWI
(21)

WRITELIST: INPUT

(56C) 1388 ADDRESS 4 TDCBSXWO
(21)

WRITELIST: OUTPUT

(5C0) 1472 ADDRESS 4 TDCBSXXI
(21)

EXCEPTION: INPUT

(614) 1556 ADDRESS 4 TDCBSXXO
(21)

EXCEPTION: OUTPUT

(614) 1556 0 TDCBSXAL "(*-TDCBSXRI)" LENGTH OF BIT ARRAYS
(614) 1556 0 TDCBLN "(*-TDCBSD)" LENGTH OF TDCB/SDCB

EQUATES FOR CALLING MODULES IPW$$TS, IPW$$SS

 INTFTSMS "0" CALL SERVICE FOR MESSAGE PROCESSING
 1.. INTFTSSO "4" CALL SERVICE FOR SOCKET CALLS
 1... INTFTSTX "8" CALL SERVICE FOR TIMER INTERVAL - STXIT= HAN-

DLING
 11.. INTFTSTT "12" CALL SERVICE FOR TIMER INTERVAL - TIME= HAN-

DLING
 ...1 INTFTSTC "16" CALL SERVICE FOR TIMER INTERVAL -

CANCEL=HANDLING
 ...1 .1.. INTFTSTP "20" CALL SERVICE FOR TIMER INTERVAL -

PROCESS=HANDLING
 ...1 1... INTFTSRC "24" CALL SERVICE FOR SOCKET RC CHECKING

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

TCP/IP CONTROL RECORD

(0) 0 STRUC-
TURE

0 TCPCTRL , DUMMY SECTION DEFINITION

(0) 0 CHAR-
ACTER

8 TCPCTTY TYPE OF CONTROL RECORD

(8) 8 CHAR-
ACTER

8 TCPCTRH FROM NJE NODENAME

(10) 16 BITSTRING 4 TCPCTRI FROM IP ADDRESS
(14) 20 CHAR-

ACTER
8 TCPCTOH TO NJE NODENAME

(1C) 28 BITSTRING 4 TCPCTOI TO IP ADDRESS
(20) 32 BITSTRING 1 TCPCTRC REASON CODE

 ..1. ...1 TCPCTRLN "*-TCPCTRL" LENGTH OF CONTROL RECORD

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

TCP/IP BLOCK HEADER

(0) 0 STRUC-
TURE

0 TCPTTB , DUMMY SECTION DEFINITION

(0) 0 BITSTRING 1 TCPTTBF FLAG BYTE
(1) 1 BITSTRING 1 TCPTTBU UNUSED
(2) 2 BITSTRING 2 TCPTTBLN LENGTH (INCL. TTB, TTR, TTREOB)
(4) 4 BITSTRING 4 UNUSED

 1... TCPTTBLL "*-TCPTTB" LENGTH OF TTB

606 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

TCP/IP BLOCK RECORD HEADER

(0) 0 STRUC-
TURE

0 TCPTTR , DUMMY SECTION DEFINITION

(0) 0 BITSTRING 1 TCPTTRF FLAG BYTE
(1) 1 BITSTRING 1 TCPTTRU UNUSED
(2) 2 BITSTRING 2 TCPTTRLN LENGTH (TTR NOT INCLUDED)

 1.. TCPTTRLL "*-TCPTTR" LENGTH OF TTR

 Chapter 5. Storage Layout and Data Areas 607

Print Status Processor Work Area

Definition Macro: IPW$DEF PSWRKA=YES

This work area is used to pass information from the command processor to the print status processor, and
to control the processing of the print status task.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 PRINT STATUS PROCESSOR WORKAREA

(0) 0 CHAR-
ACTER

32 PSWSD (0) STORAGE DESCRIPTOR

(0) 0 CHAR-
ACTER

28

(1C) 28 ADDRESS 4 PSWTPTR POINTER TO TCB OWNING PS WORKAREA

C O M M U N I C A T I O N A R E A

(20) 32 CHAR-
ACTER

2 PSWFLGS (0) VARIOUS SWITCHES

(20) 32 BITSTRING 1 PSWFLG1 FLAG BYTE 1
 1... PSWSUPR "X'80'" .. TURNED ON BY CALLER OF 'BINTODEC' SUB-

ROUTINE TO INDICATE THAT SUPPRESSION OF
LEADING ZEROS IS RE- QUESTED.

 .1.. PSWFND "X'40'" .. TURNED ON WHEN A QUEUE RECORD IS
FOUND WHICH IS ELIGIBLE TO BE DISPLAYED

 ..1. PSWPRNT "X'20'" .. TURNED ON WHEN THE OUTPUT IS DESTINED
FOR A PRINTER DEVICE

 ...1 PSWSPOOL "X'10'" .. TURNED ON IF THE OUPUT IS SUPPOSED TO BE
SPOOLED TO DISK AS LST QUEUE ENTRY.

 1... PSWCTRL "X'08'" .. TURNED ON WHEN THE OP CODE IN THE CCW
REPRESENTS AN IMMEDIATE CMND

 1.. PSWRMTT "X'04'" .. TURNED ON WHEN THE ISSUER OF THE
PDISPLAY COMMAND IS A REMOTE OP HOOKED UP TP
A REMOTE SYSTEM.

 1. PSWFMSG "X'02'" .. TURNED ON WHEN THE QUEUE DISPLAY
SHOULD RETURN FIXED FORMAT MSG"S

 1 PSWONE "X'01'" .. TURNED ON WHEN AT LEAST ONE QUEUE
ENTRY IS DISPLAYED

(21) 33 BITSTRING 1 PSWFLG2 FLAG BYTE 2
 1... PSW2NCC "X'80'" .. DO NOT GENERATE CNTL CMD
 .1.. PSWPEF "X'40'" .. PNET ENTRY FOUND INDICATION
 ..1. PSWCLR "X'20'" .. CTLSPOOL LOOK UP REQUEST
 ...1 PSWF2FT "X'10'" .. FIRST TIME SWITCH TURNED ON AFTER THE

1ST TAPE ENTRY IS DISPLAYED
 1.. PSWDUE5 "X'04'" .. 5TH FULL=YES LINE TO DO
 1. PSWDUEC "X'02'" .. DUE LIST IN CONTIN. MODE
 1 PSWCS "X'01'" .. CHANNEL CMD ALREADY SET

P D I S P L A Y A R G U M E N T L I S T
THE FOLLOWING FIELDS REPRESENT THE ARGUMENT LIST WHICH WILL BE
PASSED TO THE PRINT STATUS TASK TO PERFORM THE APPROPRIATE

 DISPLAY FUNCTIONS.
THE FIRST 28 BYTES ARE USED AS COMMOM PART BY PDISPLAY XX
AS WELL AS BY PDISPLAY PNET OR DYNC.

(24) 36 SIGNED 4 PSWDARGL
(0)

ARGUMENT LIST

(24) 36 CHAR-
ACTER

1 PSWDID PARAMETER LIST FLAG BYTE

CHAR-
ACTER

PSWDDID "C'D'" .. ID FOR DEFAULT DISPLAY

CHAR-
ACTER

PSWDPID "C'P'" .. ID FOR PNET DISPLAY

608 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

CHAR-
ACTER

PSWDVID "C'Q'" .. ID FOR CORE COPY DISPLAY

CHAR-
ACTER

PSWDTID "C'T'" .. ID FOR TAPE DISPLAY

CHAR-
ACTER

PSWDYID "C'Y'" .. ID FOR DYNC DISPLAY

CHAR-
ACTER

PSWDSID "C'S'" .. ID FOR STATISTICS DISPLAY

CHAR-
ACTER

PSWDEID "C'E'" .. ID FOR EXIT DISPLAY

(25) 37 BITSTRING 1 PSWDTOID DESTINATION OF REPORT
(26) 38 BITSTRING 2 PSWDLU LOGICAL UNIT # OF PRINTER
(28) 40 ADDRESS 4 PSWDECB ECB ADDRESS
(2C) 44 ADDRESS 4 PSWDTCB ADDR OF REQUESTING TASK TCB
(30) 48 BITSTRING 2 RESERVED
(32) 50 BITSTRING 1 PSWDFLG1 FLAG1 BITS:

 1... PSWD1DUE "X'80'" - PDISPLAY CDUE=
 .1.. PSWD1FRR "X'40'" - PDISPLAY RDR,FREER
 ..1. PSWDDEX "X'20'" - PDISPLAY EXIT DATA FND

(33) 51 BITSTRING 1 PSWDFLG FLAG BITS:
 1... PSWDREM "X'80'" - PDISPLAY RJE
 .1.. PSWDHLD "X'40'" - PDISPLAY HOLD
 ..1. PSWDFRE "X'20'" - PDISPLAY FREE
 ...1 PSWDLOC "X'10'" - PDISPLAY LOCAL
 1... PSWDCON "X'08'" - DISPLAY TARGET = CON
 1.. PSWDPRT "X'04'" - DISPLAY TARGET = PRT
 1. PSWDLST "X'02'" - DISPLAY TARGET = SPOOL LST QUEUE ENTRY
 1 PSWDFUL "X'01'" - PDISPLAY ..FULL=YES

(34) 52 CHAR-
ACTER

9 PSWDFNM (0) FROM NODE NAME + SYSID

(34) 52 CHAR-
ACTER

8 PSWDFNMN .. FROM NODE NAME

(3C) 60 CHAR-
ACTER

1 PSWDFNMS .. FROM SYSID

(3D) 61 CHAR-
ACTER

8 PSWDUID FROM USER/REMOTE ID

(45) 69 BITSTRING 1 PSWDNMRF FLAG BYTE FROM NMR
(46) 70 BITSTRING 1 PSWDFG2 COPY OF CPFG2 FLAG BYTE
(47) 71 BITSTRING 1 RESERVED
(48) 72 SIGNED 4 PSWDPPA COPY OF $ICP PASS VALUE
(4C) 76 ADDRESS 4 PSWDBS BEGIN SCAN INDICATOR
(50) 80 BITSTRING 1 PSWDQID QUEUE PROCESSING FLAGS

X'80' .. RDR QUEUE DISPLAY
X'40' .. LST QUEUE DISPLAY
X'20' .. PUN QUEUE DISPLAY
X'10' .. XMT QUEUE DISPLAY

 1... PSWDQIDW "X'08'" .. WFR SUBQUEUE DISPLAY
(51) 81 BITSTRING 2 PSWDJN JOBNUMBER
(53) 83 BITSTRING 1 PSWDBIN REMOTE ID (BINARY FORMAT)
(54) 84 BITSTRING 1 PSWDGJL LENGTH OF GENERIC JOBNAME
(55) 85 CHAR-

ACTER
8 PSWDGJN GENERIC JOBNAME

(5D) 93 CHAR-
ACTER

8 PSWDJOB JOBNAME

(65) 101 BITSTRING 8 PSWDTNN TARGET NODE NAME
(6D) 109 BITSTRING 1 PSWDCDP CURRENT DISPOSITION
(6E) 110 BITSTRING 1 PSWDCPY CURRENT PRIORITY
(6F) 111 BITSTRING 1 PSWDCSY CURRENT SYSTEM ID
(70) 112 CHAR-

ACTER
4 PSWDCFI CURRENT FORMS ID (FNO)

(74) 116 CHAR-
ACTER

8 PSWDTUS CURRENT 'TO' USER ID

(7C) 124 CHAR-
ACTER

8 PSWDFNN 'FROM' NODE NAME

 Chapter 5. Storage Layout and Data Areas 609

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(84) 132 CHAR-
ACTER

8 PSWDFUS 'FROM' USER ID

(8C) 140 CHAR-
ACTER

1 PSWDCLS JOBCLASS

(8D) 141 BITSTRING 1 PSWDCIX PDISPLAY CLASS INDEX
(8E) 142 BITSTRING 2 RESERVED
(90) 144 CHAR-

ACTER
8 PSWDWRK WORK FIELD

(98) 152 CHAR-
ACTER

8 PSWDDTE CURRENT DATE 'CCYYMMDD'

(A0) 160 BITSTRING 1 PSWDMSK BRANCH MASK
(A1) 161 CHAR-

ACTER
8 PSWDUSER 'FROM' OR 'TO' USER ID

(A9) 169 BITSTRING 1 PSWDCQID CURRENT PROCESSED QUEUE $$PS
(AA) 170 BITSTRING 2 RESERVED
(AC) 172 ADDRESS 4 PSWDTPUB TAPE UNIT PUB ENTRY ADDR
(B0) 176 SIGNED 2 PSWDTPUU TAPE UNIT PROG.LOG.NUMBER
(B2) 178 CHAR-

ACTER
3 PSWDTCUU TAPE UNIT CUU (EBCDIC)

(B5) 181 BITSTRING 3 RESERVED
(B8) 184 ADDRESS 4 PSWDPPUB PRT UNIT PUB ENTRY ADDR
(BC) 188 SIGNED 2 PSWDPPUU PRT UNIT PROG.LOG.NUMBER
(BE) 190 CHAR-

ACTER
3 PSWDPCUU PRT UNIT CUU (EBCDIC)

(C1) 193 BITSTRING 3 RESERVED
(C4) 196 ADDRESS 4 PSWSDSPY SAVE ADDRESS DST BLOCKS
(C8) 200 CHAR-

ACTER
16 PSWDCUIN CURRENT USER INFO

 1.11 .1.. PSWDARLN "*-PSWDARGL" ARGUMENT LIST LENGTH

REGISTER SAVE AREA USED BY IPW$$PS1

(D8) 216 SIGNED 4 PSWREGS1
(15)

IPW$$PS1 REG SAV AREA R0-RE

(114) 276 0 PSWKHDLN "*-PSWADS" LENGTH OF COM. AREA+ARG.LIST

VARIABLES USED BY PDISPLAY PNET COMMAND
THE FOLLOWING FIELDS TOGETHER WITH THE COMMON PART OF THE
ARGUMENT LIST REPRESENT THE ARGUMENT LIST AS IT IS PASSED
TO THE PRINT STATUS TASK TO PERFORM THE PNET DISPLAY

 FUNCTIONS.
NOTE: THE SECTION MUST BE MAINTAINED TOGETHER WITH THE
APPROPRIATE SECTION IN THE CP WORKAREA.

(4C) 76 SIGNED 4 PSWDPPTR POINTER TO THE SPECIFIED NODE ID
(50) 80 BITSTRING 1 PSWPFLG1 FLAG BYTE1

 1... PSWDPOWN "X'80'" .. OWN NODE DISPLAY REQUEST
 .1.. PSWDPLIN "X'40'" .. LINK DISPLAY REQUEST
 ..1. PSWDPNID "X'20'" .. SPECIFIES NODE DISPLAY REQUEST
 ...1 PSWDPALL "X'10'" .. ALL NODES DISPLAY REQUEST

(51) 81 BITSTRING 1 UNUSED
(52) 82 CHAR-

ACTER
8 PSWNODID NAME OF NODEID

VARIABLES USED BY PDISPLAY DYNC/STATUS COMMAND
THE FOLLOWING FIELDS TOGETHER WITH THE COMMON PART OF THE
ARGUMENT LIST REPRESENT THE ARGUMENT LIST AS IT IS PASSED
TO THE PRINT STATUS TASK TO PERFORM THE DYNC DISPLAY
OR THE STATISTICS DISPLAY FUNCTIONS.
NOTE: THE SECTION MUST BE MAINTAINED TOGETHER WITH THE
APPROPRIATE SECTION IN THE CP WORKAREA.

(4C) 76 SIGNED 4 PSWDDPPA POINTER TO DCLT AREA
(50) 80 SIGNED 4 PSWDDNUM JOB NO. OF LIST QUEUE ENTRY
(54) 84 SIGNED 4 PSWDDLMG NO. OF TERMINATING MESSAGE
(58) 88 BITSTRING 1 PSWDDFL1 FLAG BYTE WITH CPFG SETTING
(59) 89 BITSTRING 1 PSWDDFL2 FLAG BYTE 2

610 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... PSWD2ALL "X'80'" DISPLAY ALL
 .1.. PSWD2ENA "X'40'" DISPLAY ALL ENABLED
 ..1. PSWD2DIS "X'20'" DISPLAY ALL DISABLED
 ...1 PSWD2INV "X'10'" DISPLAY ALL INVALID
 1... PSWD2CLS "X'08'" DISPLAY SINGLE CLASS
 1.. PSWD2ACT "X'04'" DISPLAY ACTIVE DCLT
 1. PSWD2ONE "X'02'" ONE LINE DISPLAYED
 1 PSWD2HED "X'01'" HEAD LINE ALREADY DISPLAYED

(5A) 90 BITSTRING 1 PSWDDFL3 FLAG BYTE 3
(5B) 91 BITSTRING 1 PSWDDCLS CLASS TO BE DISPLAYED
(5C) 92 SIGNED 4 PSWDLIMB MSG LIMIT POSITION
(60) 96 BITSTRING 1 PSWDTYPI DEVICE TYPE INDICATOR

REGISTER SAVE AREA USED BY SUBROUTINES

(114) 276 SIGNED 4 PSWREG (12) REG SAVE AREA RE-R5 FOR SUBR.
(144) 324 SIGNED 4 PSWREGMG

(14)
REG SAVE AREA RE-R7 FOR PSMSG SUBROUTINE

(17C) 380 SIGNED 4 PSWREGQL
(14)

REG SAVE AREA RE-R7 FOR PSQLU00 SUBROUTINE

(1B4) 436 SIGNED 4 PSWSRE SAVE AREA FOR REGISTER 14
(1B8) 440 SIGNED 4 PSWSRTN SAVE AREA FOR REGISTER 14 (MSG RTN)
(1BC) 444 SIGNED 4 PSWDUEF SAVE AREA RETURN REG. 15
(1C0) 448 SIGNED 4 PSWDUE9 SAVE AREA $$PS 1ST BASE REG.

INTERFACE AREA FOR LOGICAL OUTPUT

(1C4) 452 SIGNED 3 PSWLOPL (0) LOGICAL OUTPUT PARAMETER LST
(1C4) 452 SIGNED 4 PSWLOJHR ..JOB HEADER RECORD
(1C8) 456 SIGNED 4 PSWLODHR ..DATA SET HEADER REC
(1CC) 460 SIGNED 4 PSWLOJTR ..JOB TRAILER REC (=ZERO)

CCB AND CCW

(1D0) 464 DBL WORD 8 (0) FORCE DOUBLEWORD ALIGNMENT
(1D0) 464 BITSTRING 16 PSWCCB PRINT CCB
(1E0) 480 BITSTRING 8 PSWCCW PRINT CCW

VARIABLES USED FOR SUBROUTINE 'BINTODEC'

(1E8) 488 DBL WORD 8 PSWDBLW DOUBLE WORD USED FOR CONVERSION
(1F0) 496 CHAR-

ACTER
10 PSWVDEC CONTAINS DECIMAL NUMBER IN PRINTABLE FORMAT

(1FA) 506 CHAR-
ACTER

2 RESERVED FOR FUTURE USE

VARIABLES USED FOR PRINTING DUE TIME INFORMATION

(1FC) 508 CHAR-
ACTER

3 PSFPACK (0) AREA TO BE UNPACKED

(1FC) 508 CHAR-
ACTER

1 PSFPK1 DATA BYTE 1 TO BE UNPACKED

(1FD) 509 CHAR-
ACTER

1 PSFPK2 DATA BYTE 2 TO BE UNPACKED

(1FE) 510 CHAR-
ACTER

1 PSFPK3 SIGN BYTE TO BE UNPACKED

(1FF) 511 BITSTRING 1 RESERVED FOR FUTURE USE
(200) 512 SIGNED 4 PSWDMAX TO SAVE LIST-LENGTH PLUS 1

NODAL MESSAGE RECORD (NMR)

(204) 516 CHAR-
ACTER

2 USED FOR ALIGNMENT

(206) 518 BITSTRING 1 PSWNMR (0) NODAL MESSAGE RECORD
(206) 518 BITSTRING 30 SYSTEM PREFIX
(224) 548 CHAR-

ACTER
88 PSWPMSG (0) MESSAGE OUTPUT/MODIFICATION AREA

(224) 548 BITSTRING 1 PSWMLN LENGTH OF MESSAGE
(225) 549 CHAR-

ACTER
87 PSWMSG (0) MESSAGE AREA

 Chapter 5. Storage Layout and Data Areas 611

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(225) 549 CHAR-
ACTER

7 MESSAGE IDENT. (BE EVEN 6)

(22C) 556 CHAR-
ACTER

80 PSWTXT MESSAGE TEXT

(27C) 636 CHAR-
ACTER

80 (PSWTXTJ) - (MESSAGE TEXT FOR JOURNAL)
- TO BUILD FIX FORMAT MSG EX1

(2CC) 716 CHAR-
ACTER

80 TO BUILD FIX FORMAT MSG EX2

TAPE DISPLAY WORK AREA

(31C) 796 BITSTRING 1 PSWTQID IND OF QUEUES-TO-PROCESS ON TAPE (SAME FLAGS
AS FOR PSWDQID)

(31D) 797 BITSTRING 1 PSWTQNFN IND OF QUEUE FOR WHICH 'NOT FOUND' MESSAGE
MUST BE ISSUED

(31E) 798 BITSTRING 1 PSWTQFN INDICATOR FOR 'QUEUES FOUND' OR FOR 'MSG
NOT-FOUND ALREADY ISSUED' (SAME FLAGS AS FOR
PSWDQID)

(31F) 799 BITSTRING 1 PSWTWK WORK FIELD

POFFLOAD JOURNAL WORK AREA

(31E) 798 BITSTRING 1 PSWJQFN INDICATOR FOR 'QUEUES FOUND' (SAME FLAGS AS FOR
PSWDQID)

(31F) 799 BITSTRING 1 PSWJWK WORK FIELD

 MISCELLANEOUS

(320) 800 ADDRESS 4 PSWCPTR POINTS TO BEGIN OF CLASS TABLE
(324) 804 SIGNED 2 PSWCLLC NUMBER OF SCANS TO BE PERFORMED
(326) 806 SIGNED 2 PSWLCNT LINE COUNT
(328) 808 BITSTRING 1 PSWSLDT UNIT TYPE OF SYSLOG DEVICE
(329) 809 BITSTRING 3 UNUSED
(32C) 812 ADDRESS 4 PSWRDCL POINTS TO Q-REC COLLECTION
(330) 816 BITSTRING 8 UNUSED

VARIABLES USED BY QUEUE RECORD DUMP ROUTINE

(338) 824 CHAR-
ACTER

12 PSWIOR (0) IO-REQUEST WORD

(338) 824 SIGNED 4 PSWQCW REL. QUEUE REC. NUMBER
(33C) 828 SIGNED 4 PSWAQR QUEUE RECORD AREA ADDRESS
(340) 832 SIGNED 2 AREA LENGTH
(342) 834 CHAR-

ACTER
1 READ/WRITE CODE QUEUE FILE

(343) 835 BITSTRING 1 FLAG BYTE
(344) 836 SIGNED 2 PSWQRB REL.QUEUEREC.-BLOCKNUMBER
(348) 840 ADDRESS 4 PSWAIND POINTER TO ADDR. OF SLICE
(34C) 844 SIGNED 2 PSWQMB NUMBER OF RECORDS PER FORM
(34E) 846 SIGNED 2 PSWQPR NUMBER OF PRINTED RECORDS
(350) 848 SIGNED 2 PSWREM NUMBER OF BYTES EDITED AND PRINTED * AT A TIME
(352) 850 SIGNED 2 PSWPG PAGE NUMBER
(354) 852 CHAR-

ACTER
5 PSWUPF UNPACK FIELD

(35A) 858 SIGNED 2 PSWH USED TO CALC. DISPLACEMENT

ALIGN TO LINE BOUNDARY AND FILL UP WITH ZEROS

612 VSE Central Functions V7R1 VSE/POWER DRM

Printer TCB Extension Area

Definition Macro: IPW$DTE

This control block is constructed:

� At job execution time whenever a printer device is being spooled.

� At print time.

Like the TCB, the printer TCB extension area exists as long as the task exists. The control block contains
device status information of the current or new printer setup. The TCB extension is pointed to by the TC3E
field in the TCB.

Bytes Label
Hex. of Field Description/Function
--
��-�7 PTEFCBN FCB phase name, loaded on the printer
�8-�F PTEUCSN UCS buffer phase name
1� PTEUCSO UCS option byte

PTEUCSOC X'8�' - UCS data check option
PTEUCSOF X'4�' - UCS fold option

11 PTEFLAG Status byte
PTECLRPR X'8�' - Clear printer at end of job
PTE38��x X'�1' - 32�� printer
PTE4248 X'4�' - Horizontal copy requested
PTEBAND X'2�' - Band id check requested

12-15 Reserved
16-17 PTEDEV Logical unit number or device address
18-1A Reserved

� 38�� Printer Control Information

1B PTE3CTRC Current TRC command
1C PTE3RQB Pending request byte

PTE3SRI X'8�' - SETPRT required indicator
PTE3TRC X'�1' - OPTCD=J specified

1D PTE3CGI Current copy group index
1E PTE3CSTT Current translate table op. code
1F PTE3NTRC New TRC indicator

� General Work Area

2�-3F PTEGWA General work area

� SETPRT Parameter List

4�-83 PTELIST SETPRT parameter list as generated by the
 SPLIST macro.

PTELN Length of printer extension area

 Chapter 5. Storage Layout and Data Areas 613

Queue Record Area (QRA)

Definition Macro: IPW$DQR

This area is used in conjunction with the auxiliary queue record area in the disk management block. Each
task that processes a queue record acquires a QRA to contain the record.

The format as it is printed in a dump is as follows.

Refer to the Disk Management Block (DMB) auxiliary queue record area for a fuller description of the
individual entries.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 QUEUE RECORD AREA (QRA)

THE BODY OF THE QUEUE RECORD
CONTAINS INFORMATION PERTINENT TO THIS PARTICULAR QUEUE ENTRY
AND THE USER JOB WHICH CREATED IT.
>>> NOTE: THE PLS CODE IS DUPLICATED IN IPW$DQC. BE SURE TO

MAINTAIN BOTH COPIES.

(0) 0 CHAR-
ACTER

256 QRPT1 (0) QUEUE RECORD PART 1

(0) 0 CHAR-
ACTER

136 QRBF (0) BODY FIELDS

(0) 0 CHAR-
ACTER

8 QRDY DATE (CREATING SYST. FORMAT)

(8) 8 CHAR-
ACTER

35 QRSA (0) INTERNAL REFERENCE FIELD

(8) 8 CHAR-
ACTER

4 QRST OPERATION START TIME

(C) 12 CHAR-
ACTER

4 QRET OPERATION END TIME

(10) 16 CHAR-
ACTER

16 QRUI USER INFORMATION

(20) 32 CHAR-
ACTER

8 QRNM JOB NAME

(28) 40 SIGNED 2 QRJNO JOB NUMBER
(2A) 42 BITSTRING 1 QRQI QUEUE RECORD IDENTIFIER

CHAR-
ACTER

QRIR "C'R'" ..RDR IDENTIFIER

CHAR-
ACTER

QRIL "C'L' ..LST IDENTIFIER @D35BIQI

CHAR-
ACTER

QRIP "C'P'" ..PUN IDENTIFIER

CHAR-
ACTER

QRIC "C'C'" ..CONSOLE IDENT(WRITER-ONLY)

CHAR-
ACTER

QRIF "C'F'" ..QUEUE REC IS MARKED FREE

CHAR-
ACTER

QRID "C'D'" ..QUEUE REC IS MARKED LAST

CHAR-
ACTER

QRII "C'I'" ..QUEUE REC IS MARKED INTERN

CHAR-
ACTER

QRIB "C'B'" ..QUEUE REC IS MARKED BAD

(2B) 43 BITSTRING 1 QRCN VSE/POWER CANCEL CODE
 ...1 QRCNM "X'10'" .. NORMAL END OF JOB
 ..1. QRCCC "X'20'" .. PCANCEL WAS ISSUED
 ..11 QRCSP "X'30'" .. PSTOP COMMAND ISSUED
 .1.. QRCFL "X'40'" .. PFLUSH COMMAND ISSUED
 .1.1 QRCDL "X'50'" .. PDELETE OR PURGE ISSUED
 .11. QRCRX "X'60'" .. FLUSHED VIA READER EXIT
 .111 QRCIO "X'70'" .. CANCELED DUE TO I/O ERROR

614 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... QRCRC "X'80'" .. PNET RECEIVER CANCEL
 1..1 QRCQT "X'90'" .. QUIT REQUEST FROM X-PART
 1.1. QRCSE "X'A0'" .. CANCELED DUE TO SEV ERROR
 1.11 QRCCL "X'B0'" .. GET_CLOSE REQ FROM X-PART
 11.. QRCSR "X'C0'" .. CANCELED DUE TO SOD
 11.1 QRCPF "X'D0'" .. PRINTING/PUNCHING FAILED

(2C) 44 BITSTRING 1 QRRJ LINE IDENTIFIER
 ..1. 11.. QRDT "QRRJ" DEVICE TYPE

(2D) 45 CHAR-
ACTER

3 QRCU CHANNEL AND UNIT (LINE ADDRESS)

(30) 48 BITSTRING 1 QRFJ FROM TERMINAL IDENTIFIER
(31) 49 BITSTRING 1 QRTJ TO TERMINAL IDENTIFIER
(32) 50 CHAR-

ACTER
1 QRCL CLASS

(33) 51 CHAR-
ACTER

1 QRPY PRIORITY

(34) 52 SIGNED 4 QRNR RECORD COUNT
(38) 56 SIGNED 1 QRPYSL PRIORITY - SAVED LOCAL
(39) 57 SIGNED 1 QRUEX USER EXIT WORK BYTE - MUST NOT BE USED BY

VSE/POWER
(3A) 58 BITSTRING 1 QRSN JOB SUFFIX NUMBER

 1... QRSNLA "X'80'" .. LAST SEGMENT INDICATOR
(3B) 59 SIGNED 1 QRNC NUMBER OF COPIES
(3C) 60 CHAR-

ACTER
4 QRFI FORMS IDENTIFIER

(40) 64 SIGNED 4 QRCREC CHECKPOINT RECORD NUMBER
(44) 68 CHAR-

ACTER
2 QRDYC CENTURY OF CREATION DATE

(46) 70 ADDRESS 1 QRCCPY CHECKPOINT COPY NUMBER
(47) 71 BITSTRING 1 QRDGP0 DUE DATE GENERAL BYTE 0

 1... QRDG0X "X'80'" DUE DATE INFO EXISTS
 .1.. QRDG0W "X'40'" ENTRY QUEUED IN WFR-SQ

(48) 72 SIGNED 4 QRLC LINE/CARD COUNTER
(4C) 76 SIGNED 4 QRRR RESTART PAGE COUNT
(50) 80 SIGNED 1 QRCR COPIES REMAINING
(51) 81 CHAR-

ACTER
1 QRDI NEW DISP OR PURGE/FLUSH IND

CHAR-
ACTER

QRDIP "C'P'" ..PURGE/FLUSH QREC

CHAR-
ACTER

QRDIH "C'H'" ..'HOLD' QUEUE SET FLAG

(52) 82 CHAR-
ACTER

1 QRDP DISPOSITION

CHAR-
ACTER

QRDPD "C'D'" .. DISPATCHABLE DISPOSITION

CHAR-
ACTER

QRDPK "C'K'" .. 'KEEP' DISPOSITION

CHAR-
ACTER

QRDPL "C'L' .. 'LEAVE' DISPOSITION

CHAR-
ACTER

QRDPH "C'H'" .. 'HOLD' DISPOSITION

CHAR-
ACTER

QRDPN "C'N'" .. 'NO SPOOLING' DISP
C'T' .. SPOOL TAPE

(53) 83 SIGNED 1 QRSP NUMBER OF SEPARATORS
(54) 84 SIGNED 4 QRBS NUMBER OF RECORDS BEFORE SPLIT
(58) 88 SIGNED 4 QRBM MAXIMUM VALUE OF COUNT
(5C) 92 SIGNED 4 QRBN ADDITIONAL COUNT VALUE
(60) 96 BITSTRING 2 QRER 3540 UNIT SPECIFICATION

 FOR OUTPUT QUEUE ENTRIES FROM XW, THE ABOVE
 FIELD IS USED TO SAVE THE PAGE LENGTH.

(62) 98 SIGNED 2 QRJ# SAVE JOB NUMBER FOR ACCNT
(64) 100 CHAR-

ACTER
4 QRCP COMPACTION TABLE NAME

 Chapter 5. Storage Layout and Data Areas 615

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

3800 PRINTER CONTROL INFORMATION
OVERLAYED BY DUE DATE INFO (ONLY FOR RDR POSSIBLE)

(68) 104 CHAR-
ACTER

4 QRFL FORMS OVERLAY IDENTIFIER

(6C) 108 BITSTRING 8 QRCG COPY GROUPS
(74) 116 BITSTRING 1 QRTC TRANSMISSION COUNT
(75) 117 BITSTRING 1 QRCI COPY GROUP INDEX
(76) 118 BITSTRING 1 QRPS PAPER STATUS

CHAR-
ACTER

QRBR "C'B'" .. BURST REQUEST

CONTINUATION OF GENERAL SECTION

(77) 119 BITSTRING 1 QROP GENERAL OPTION BYTE 1
 (NOTE - MOST BITS ARE DEFINED IN THE DMB FIELD
MROP)

X'80' ..(CLEAR PRINT AT EOJ)
X'40' ..(MARK FORM FOR SEP PAGES)

 ..1. QRCS "X'20'" .. NO SEP PAGES BTWN COPY
 ...1 QROHP "X'10'" .. HOLD WHEN PRT/PUN FAILS

 X'08' .. RESERVED
 X'04' .. RESERVED
 X'02' ..(CHANNEL 12 OPTION)
 X'01' ..(FEED OPTION 3540)

(78) 120 CHAR-
ACTER

8 QRPW PASSWORD

(80) 128 ADDRESS 2 QROJ# ORIGINAL JOB NUMBER
(82) 130 CHAR-

ACTER
1 QRSID SYSID OF TARGET CPU

(83) 131 CHAR-
ACTER

1 QRODP ORIGINAL DISPOSITION

(84) 132 ADDRESS 2 QRRL MAX RECORD LENGTH
(86) 134 BITSTRING 1 QRRCFM RECORD FORMAT

 1... QRRSCS "X'80'" .. SCS PRINT
 .1.. QRRBMS "X'40'" .. BMS MAPPING
 ..1. QR3270 "X'20'" .. 3270 FORMAT
 ...1 QRRAPA "X'10'" .. APA DATA FORMAT (CPDS)
 1... QRRESC "X'08'" .. ESCAPE MODE
 1.. QRRASA "X'04'" .. ASA CARRIAGE CONTROL CHAR
 1. QRRMCC "X'02'" .. MACHINE CARRIAGE CONTROL

(87) 135 BITSTRING 1 QRVOL Q-ENTRY LABELED TAPE FLAG
 1... QRVLAST "X'80'" .. LAST MULTI-VOLUME
 .111 1111 ------- .. (VOLUME NUMBER)

THE MAXIMUM VOLUME NUMBER IS 126.
ANY VALUE OVER 126 MEANS GREATER OR EQUAL 127.

 CONTROL SECTION
THE CONTROL PORTION OF THE QUEUE RECORD CONTAINS INFORMATION
RELATING TO THE STATUS OF THE QUEUE RECORD AND TO ITS
POSITION WITHIN THE VSE/POWER QUEUES.
NOTE: POFFLOAD LOAD/SELECT WILL COPY CERTAIN BYTES OF

THIS SECTION. OTHER BYTES ARE NOT MAINTAINED.

(88) 136 CHAR-
ACTER

48 QRCF (0) CONTROL FIELDS

(88) 136 CHAR-
ACTER

1 QRXS EXECUTION SWITCH
 C'X' ..ENTRY BEING PROCESSED

(89) 137 BITSTRING 1 RESERVED
(8A) 138 BITSTRING 1 QRRX RESTART FUNCTION INDEX
(8B) 139 BITSTRING 1 QRSY SYSTEM ID PROCESSING QR
(8C) 140 BITSTRING 1 QRS1 CONTROL FLAG BYTE 1

 NOTE: POFFLOAD LOAD/SELECT WILL COPY QRS1. BE
CAREFUL
 THAT "EXECUTION-ONLY" FLAGS ARE TURNED OFF.

 1... QRXQ "X'80'" ..QUEUE SET IN XMIT QUEUE
 .1.. QR1AB "X'40'" ..ABENDED ENTRY, DISP=X

616 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. QR1AP "X'20'" ..APPENDABLE ENTRY, DISP=A
 ...1 QR1CK "X'10'" ..CHECKPOINTED CRE-ENTRY
 1... QR1PF "X'08'" ..PRT/PUN FAILED ENTRY, D=YD
 1.. QR1NO "X'04'" NT MUST NOT UPDATE NDHGLREC
 1. QR1DD "X'02'" ..DO NOT DELETE QUEUE ENTRY
 1 QR1NJN "X'01'" ..ASSIGN NEW JOB NUMBER

(8D) 141 BITSTRING 1 QRS2 CONTROL FLAG BYTE 2
 NOTE: POFFLOAD LOAD/SELECT WILL COPY QRS2.
 BE CAREFUL THAT "EXECUTION-ONLY" FLAGS
 ARE TURNED OFF.

 1... QR2NP "X'80'" ..JOB FROM NON-PNET NODE
 .1.. QR2EP "X'40'" ..IN EXEC. PREPARATION PHASE
 ..1. QR2NNR "X'20'" .. DO NOT UPDATE NDHGNREC
 ...1 QR2UFR "X'10'" .. ORIGIN USER BY 'FROM'
 1... QR2BTO "X'08'" .. IGNORE BLANK TRUN.(VER.2)
 1.. QR2XRD "X'04'" ..BEING PROCESSED BY EX.RDR
 1. QR2RUN "X'02'" ..JOB IGNORE SET NORUN

(8E) 142 BITSTRING 1 QRS3 CONTROL FLAG BYTE 3
 1... QR3PSH "X'80'" ..POFFLOAD PICKUP SCHEDULED FOR ENTRY
 .1.. QR3DEL "X'40'" ..QE IN DELAYED DELETE
 ..1. QR3NNC "X'20'" ..I/O ERROR DURING NODE CHG

(8F) 143 BITSTRING 1 QRACN1 NON SHARED BROWSE COUNT OR SHARED SYS 1+2
BROWSE COUNT

(90) 144 ADDRESS 4 QRCRCT PUT CHECKPOINT REC NUMBER
(94) 148 ADDRESS 4 QRRBC CARDS/PAGES BEFORE CHKPT
(98) 152 BITSTRING 4 QRAC39 SHARED SYSID 3-9 BROWSE CNT.
(9C) 156 BITSTRING 8 QRADD ADD 'STCK' STAMP
(A4) 164 ADDRESS 4 QRQP PREVIOUS SET IN QUEUE
(A8) 168 ADDRESS 4 QRQN NEXT SET IN QUEUE
(AC) 172 ADDRESS 4 QRDF 1ST DBLK NO OF 1ST DBLK GP
(B0) 176 ADDRESS 4 QRLDF 1ST DBLK NO OF LAST DBLK GP
(B4) 180 ADDRESS 4 QRNB NO OF DBLK GROUPS USED

 1.11 1... QR2L

EXTENSION -A OF THE BODY FIELDS
X'B8' --> BODY FIELDS OF PART 2 --> X'FF'

(B8) 184 CHAR-
ACTER

72 QRB2 (0) BODY FIELDS EXTENSION -A

(B8) 184 CHAR-
ACTER

8 QRTN TARGET NODE NAME

(C0) 192 CHAR-
ACTER

8 QRTU TARGET USER ID

(C8) 200 CHAR-
ACTER

8 QRON ORIGINATOR NODE NAME

(D0) 208 CHAR-
ACTER

8 QROU ORIGINATOR USER NAME

 11.1 1... QRV2L "*-QRDS" RECORD LENGTH OF VERSION 2
(D8) 216 ADDRESS 4 QRWFRN PTR TO NEXT WFR SUBQ ENTRY

OVERLAY SECTION 1
(DIFFERENT USAGE FOR INPUT AND OUTPUT QUEUE ENTRIES)
USED FOR OUTPUT QUEUE ENTRIES

(DC) 220 CHAR-
ACTER

8 QROUT1 (0) OUTPUT RELATED FIELD

(DC) 220 CHAR-
ACTER

8 QRDIST DISTRIBUTION CODE

USED FOR INPUT QUEUE ENTRIES

(DC) 220 CHAR-
ACTER

8 QRSECN SECURITY NODEID

CONTINUATION OF GENERAL SECTION

(E4) 228 BITSTRING 1 QROP2 GENERAL OPTION BYTE 2
 1... QRO2BT "X'80'" IGNORE BLANK TRUNCATION
 .1.. QRO2MSG "X'40'" ISSUE MESSAGE 1Q4DI

 Chapter 5. Storage Layout and Data Areas 617

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. QRO2LGNO "X'20'" LOG=NO SPECIFIED
 ...1 QRO2XXXX "X'10'" UNUSED
 1... QRO2QCM "X'08'" QUEUE COMPLETION MESSAGE
 1.. QRO2MR "X'04'" GCM R-MSG FOR PRELEASE
 1. QRO2MQ "X'02'" GCM R-MSG ACC. TO Q-RECORD

(E5) 229 BITSTRING 1 QRFLGO FLAG BYTE FOR IN- & OUTPUT
 1... QRCKI "X'80'" .. CKP INFO EXISTS
 .1.. QRCKE "X'40'" .. CKP INFO NOT AVAILABLE
 ..1. QRSAN "X'20'" .. NOT SPOOL ACCESS PROTECTED

OVERLAY SECTION 2
(DIFFERENT USAGE FOR INPUT AND OUTPUT QUEUE ENTRIES)
USED FOR OUTPUT QUEUE ENTRIES

(E6) 230 CHAR-
ACTER

18 QROUT (0) OUTPUT RELATED FIELDS

(E6) 230 BITSTRING 1 QROTF1 OUTPUT FLAG BYTE 1
 1111 UNUSED
 1... QR1LM "X'08'" LINE-MODE STATE
 1.. QR1LMI "X'04'" LINE-MODE-IDM/IMM STATE
 1. QR1PM "X'02'" PAGE-MODE STATE
 1 QR1PM8 "X'01'" PAGE-MODE STATE

(E7) 231 BITSTRING 1 RESERVED FOR FUTURE USE
(E8) 232 SIGNED 4 QRPGN PAGE COUNT
(EC) 236 SIGNED 2 PRESERVE SPLDLREC PUT-APPEND
(EE) 238 SIGNED 2 RESERVED FOR FUTURE USE
(F0) 240 BITSTRING 8 RESERVED FOR FUTURE USE

USED FOR INPUT QUEUE ENTRIES

(E6) 230 CHAR-
ACTER

18 QRINP (0) INPUT RELATED FIELDS

(E6) 230 BITSTRING 1 RESERVED FOR FUTURE USE
(E7) 231 BITSTRING 17 QRMRIN (0) GCM R-MSG FOR PRELEASE
(E7) 231 BITSTRING 1 QRMRSI SYSID FOR GCM R-MSG
(E8) 232 CHAR-

ACTER
8 QRMRAP APPL FOR GCM R-MSG

(F0) 240 CHAR-
ACTER

8 QRMRUS USER FOR GCM R-MSG

 1111 QRV4L "*-QRDS" RECORD LENGTH OF V4.X.,5.1.

CONTINUATION OF GENERAL SECTION

(F8) 248 CHAR-
ACTER

1 QRTDP TRANSMISSION DISPOSITION

(F9) 249 BITSTRING 7 RESERVED FOR FUTURE USE

Q - R E C O R D P A R T 2
EXTENSION -A OF THE CONTROL SECTION
X'100'--> CONTROL SECTION PART 2 --> x'11F'
CLEARED BY IPW$RQS

THE CONTROL PORTION OF THE QUEUE RECORD CONTAINS INFORMATION
RELATING TO THE STATUS OF THE QUEUE RECORDS AND TO ITS
POSITION WITHIN THE VSE/POWER QUEUES

(100) 256 BITSTRING 32 QRC2 (0) CONTROL FIELDS EXTENSION-A
RESTART TO ACTIVE RECORD CONTROL AREA

(100) 256 ADDRESS 4 QROTC ADDRESS OF OWNING TCB OF UPDATE OR CREATE
TASK

(104) 260 BITSTRING 12 QRCC (0) CURRENT RECORD COUNTS MANTAINED BY $$GD FOR
UPDATE/BROWSE, BY $$PD FOR CR

(104) 260 BITSTRING 4 QRCCNR INTERNAL RECORD COUNT
(108) 264 BITSTRING 4 QRCCLC DATA RECORD COUNT
(10C) 268 BITSTRING 4 QRCCPG PAGE COUNT (USED BY $$PD)
(110) 272 BITSTRING 16 RESERVED FOR FUTURE USE

618 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

EXTENSION -B OF THE CONTROL SECTION
X'120'--> BODY FIELDS PART 3 --> x'16F'

(120) 288 BITSTRING 80 QRB3 (0) BODY FIELDS EXTENSION -B
(120) 288 BITSTRING 80 RESERVED FOR FUTURE USE

 DUE DATE INFORMATION
OVERLAYS: 3800 PRINTER CONTROL INFORMATION

(68) 104 CHAR-
ACTER

15 QRDD (0) START OF INFO

(68) 104 BITSTRING 1 QRDGP1 GENERAL PURPOSE BYTE 1
 1... QRDG1R "X'80'" RERUN=NO SPECIFIED

 X'40' RESERVED
 X'20' RESERVED
 X'10' RESERVED

 1... QRDG1T "X'08'" DAILY SPECIFIED
 1.. QRDG1W "X'04'" WEEKDAYS SPECIFIED
 1. QRDG1D "X'02'" DAYS WITHIN MONTH
 1 QRDG1M "X'01'" MONTHS SPECIFIED
 111. QRDG1C "QRDG1T+QRDG1W+QRDG1D" CYCLING INFO ?

(69) 105 BITSTRING 1 QRDGP2 GENERAL PURPOSE BYTE 2
 1... QRDG2F "X'80'" 1ST TIME, NO NUMBER CHANGE

(6A) 106 CHAR-
ACTER

6 QRDCY (0) START OF CYCLING INFO

(6A) 106 BITSTRING 2 QRDMY MONTHS WITHIN YEAR LEFT ALIGNED: 80=JAN, 40=FEB,
20=MAR, ...

(6C) 108 BITSTRING 4 QRDDM DAYS WITHIN MONTH LEFT ALIGNED: 80=1ST, 40=2ND,
20=3RD, ...

(70) 112 CHAR-
ACTER

6 QRDN (0) START OF NEXT DUE DATE PACKED DECIMAL WITHOUT
SIGN

(70) 112 CHAR-
ACTER

4 QRDNDT (0) NEXT DUE DATE (W/O TIME)

(70) 112 BITSTRING 2 QRDNY YEAR (1988-2087)
(72) 114 BITSTRING 1 QRDNM MONTH (1-12)
(73) 115 BITSTRING 1 QRDND DAY (1-31)
(74) 116 CHAR-

ACTER
2 QRDNT (0) START OF NEXT DUE TIME

(74) 116 BITSTRING 1 QRDNTH HOUR (0-23)
(75) 117 BITSTRING 1 QRDNTM MINUTES (0-59)
(76) 118 BITSTRING 1 RESERVED

 1111 QRDLEN "*-QRDD" LENGTH OF DUE DATE
(6C) 108 BITSTRING 1 QRDDW WEEKDAYS

 1... QRDWMO "X'80'" MONDAY
 .1.. QRDWTU "X'40'" TUESDAY
 ..1. QRDWWE "X'20'" WEDNESDAY
 ...1 QRDWTH "X'10'" THURSDAY
 1... QRDWFR "X'08'" FRIDAY
 1.. QRDWSA "X'04'" SATURDAY
 1. QRDWSU "X'02'" SUNDAY

SOME DISPLACEMENTS FOR THE OLD VERSION OF THE
QUEUE RECORD, I.E. VERSION 5.1 AND PREVIOUS ONES

 .1.. .1.. QROVNP "X'44'" PAGE NO, 2 BYTES ONLY

Note: The labels in a queue record vary according to the generated DSECT. The first two characters are
queue record in a present queue record, QN in a "next" queue record, and QP in a "previous" queue
record. In PL/S listing these characters are replaced by QREC.

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 619

Remote Message Control Block (MSCB)

Definition Macro: IPW$DMS

The remote message control block controls all access to the remote message queue. The block is
created by the VSE/POWER initialization routine (IPW$$I7) if RJE processing (BSC and/or SNA) has been
specified in the VSE/POWER generation macros.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

16 MSSD SECTION DESCRIPTOR

(10) DBL WORD 8 MSWW WORK AREA
(18) BITSTRING 1 MSFC FREE CHAIN INDEX
(19) BITSTRING 1 MSFI FUNCTION INDICATOR
(1A) BITSTRING 1 MSCI CURRENT INDEX
(1B) CHAR-

ACTER
1 RESERVED

(1C) SIGNED 4 MSLW LOCKWORD
(20) CHAR-

ACTER
48 MSSV (0) REGISTER SAVE AREA

(20) SIGNED 4 MSRE REGISTER 14
(24) SIGNED 4 MSRF REGISTER 15
(28) SIGNED 4 MSR0 REGISTER 0
(2C) SIGNED 4 MSR1 REGISTER 1
(30) SIGNED 4 MSR2 REGISTER 2
(34) SIGNED 4 MSR3 REGISTER 3
(38) SIGNED 4 MSR4 REGISTER 4
(3C) SIGNED 4 MSR5 REGISTER 5
(40) SIGNED 4 MSR6 REGISTER 6
(44) SIGNED 4 MSR7 REGISTER 7
(48) SIGNED 4 MSR8 REGISTER 8
(4C) SIGNED 4 MSR9 REGISTER 9
(50) CHAR-

ACTER
8 RESERVED

(58) SIGNED 4 MSMSRET RETURN REGISTER FOR IPW$$MS
 .1.1 11.. MSLN "*-MSDS" LENGTH OF CONTROL BLOCK

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

620 VSE Central Functions V7R1 VSE/POWER DRM

RJE Line Control Block (LCB)

Definition Macro: IPW$DLC

The line control block describes the line and its status. It contains an entire line account record, which is
completed and written to the account file at SIGNOFF time. It also contains the terminal characteristics
that are copied from the remote table in virtual storage at SIGNON time.

When the line is started by the central operator, an LCB is built for that line in real storage. It is not
released before the line is stopped. One LCB always corresponds to each active line, independent of the
number of reader and writer tasks operating on the line.

The format of an LCB as printed in a dump is defined below. The line control block also contains the
CCB, a CCW string, and other information used to perform a line operation, such as mode bytes and
sense information.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

8 LCBHEAD LCB HEADER

Line Account Record

(8) SIGNED 2 LCBACCT (0) LINE ACCOUNT RECORD
(8) CHAR-

ACTER
8 LCBDATE SYSTEM DATE

(10) CHAR-
ACTER

4 LCBSION SIGNON TIME (0HHMMSSF) PACKED

(14) CHAR-
ACTER

4 LCBSIOF SIGNOFF TIME (0HHMMSSF) PACKED

(18) CHAR-
ACTER

16 LCBUSER USER INFORMATION

(28) CHAR-
ACTER

8 LCBPSWD LINE PASSWORD

(30) SIGNED 2 LCBICNT INVALID RESPONSES PER SESSION
(32) CHAR-

ACTER
1 LCBRCID LINE ACCOUNT RECORD IDENTIFIER

(33) CHAR-
ACTER

1 LCBSCOD SIGNOFF CODE

 1 SIGNOP "X'01'" SIGNOFF BY REMOTE OPERATOR
 1. SIGNCS "X'02'" STOP LINE DUE TO CENTRAL STOP (PSTOP CUU)
 1.. SIGNTO "X'04'" SIGNOFF DUE TO TIMEOUT
 1... SIGNLE "X'08'" SIGNOFF DUE TO LINE ERROR
 ...1 SIGNEOJ "X'10'" STOP LINE AT EOJ (PEND OR PSTOP ,EOJ)
 ..1. SIGNTCF "X'20'" SIGNOFF BY NO REAL SPACE
 .1.. SIGNKILL "X'40'" STOP LINE WITH KILL FUNCTION
 1... SIGNLL "X'80'" STOP LINE AT LAST I/O

(34) CHAR-
ACTER

1 LCBTERR TERMINAL ERROR COUNT IF COUNT REACHES 10 A SYSREC
RECORD IS WRITTEN

(35) CHAR-
ACTER

3 LCBDVAD LINE ADDRESS 'CUU'

(38) BITSTRING 1 LCBRMID REMOTE IDENTIFIER BINARY
(39) BITSTRING 1 LCBDLCT DISABLE LOOP COUNTER

 ..11 1.1. LCBSEDA "*" SESSION DATA
(3A) SIGNED 2 LCBXCNT TRANSMISSION COUNT PER SESSION
(3C) SIGNED 2 LCBTCNT TIMEOUT COUNT PER SESSION
(3E) SIGNED 2 LCBECNT ERROR COUNT PER SESSION
(40) CHAR-

ACTER
6 LCBSFDT SIGNOFF DATE (MMDDYY)

 11.. LCBSELN "*-LCBSEDA" LENGTH OF SESSION DATA
 ..11 111. LCBACLG "*-LCBACCT" LENGTH OF LINE ACCOUNT RECORD

(46) BITSTRING 1 LCBLREQ LAST SENT REQUEST
(47) BITSTRING 1 LCBREQF REQUEST FIELD FOR I/O MONITOR

 Chapter 5. Storage Layout and Data Areas 621

Offset
Hex

Type Len Name (Dim) Description

(48) SIGNED 4 LCBNEXT LCB CHAIN POINTER, LAST = ZERO
(4C) SIGNED 4 LCBRCPT POINTER TO NEXT RECORD IN BUFFER

 .1.. 11.. LCBTBRP "LCBRCPT" TO BE RELEASED POINTER
(50) SIGNED 2 LCBPUBA ADDR. OF RELATED PUB ENTRY
(52) SIGNED 2 LCBLRCL LENGTH OF LOGICAL RECORD
(54) SIGNED 2 LCBTIMC TIME OUT COUNTER

This field contains the number of timeouts (1 every 3 seconds) as long
as the terminal is idle (no data transfer). When information is trans-
mitted on the line it is set to zero. The count is compared with the
timeout limit specified in the PLINE macro.

(56) BITSTRING 1 LCBRECD:
1st HALFBYTE: RC FOR 1R09I
2nd HALFBYTE: RC FOR 1R07I

(57) BITSTRING 1 LCBTOCT TIMEOUTCOUNT FOR PRE-SIGNON AND SWITCHED LINE. IF
LIMIT REACHED - FORCE SIGNOFF
Count for:- 5 retries of Enable, Nop, Read

response CCW sequence if line is in
control state before trying to send ENQ.

or:- 5 retries of Enable, Nop, Read
response CCW sequence if line is in
switched mode, not signed on, control
state and timed out.

(58) BITSTRING 1 LCBRTRY RETRY COUNT FOR UNIT CHECK (MAX 30)
Retry count for unit check (max 30). If line is in data transfer mode and
received unit check, it is reset at SYSREC writing.

(59) BITSTRING 1 LCBMSGI MSG INDEX IN VIRT. MSG QUEUE
(5A) BITSTRING 1 LCBLIMO LINE MODE

 1... LCBMREC "X'80'" RECEIVE MODE
 .1.. LCBMXMT "X'40'" TRANSMIT MODE
 ..1. LCBDOUT "X'20'" DISCONTINUED OUTPUT MODE
 1... LCBTRDR "X'08'" RDR TASK INDICATION
 1.. LCBTLST "X'04'" LST TASK INDICATION
 1. LCBTPUN "X'02'" PUN TASK INDICATION
 1 LCBTMSG "X'01'" MSG TASK INDICATION
 111 LCBTOUT "X'07'" OUTPUT TASK INDICATION

(5B) BITSTRING 1 LCBOUSW LIST/PUNCH OUTPUT INDICATOR
 1... LCBOUL1 "X'80'" X'80' LIST OUTPUT QUEUED FOR LST1
 1... LCBOUP1 "X'08'" X'08' PUNCH OUTPUT

(5C) BITSTRING 1 LCBACT ACTIVITY CONTROL BYTE
 1... LCBATCR "X'80'" TASK CREATION
 .1.. LCBASHD "X'40'" SHUTDOWN
 ..1. LCBATSTP "X'20'" TASK STOP
 ...1 LCBASGF "X'10'" FINAL SIGNOFF
 1... LCBALSTP "X'08'" LINE STOP
 1.. LCBALSTR "X'04'" LINE START
 1. LCBALIN "X'02'" LINE INITIALIZATION
 1 LCBAKILL "X'01'" LINE STOP (PSTOP CUU,KILL
 1111 1111 LCBAANY "X'FF'" ANY ACTIVITY FOR THIS LCB

(5D) BITSTRING 1 LCBTRACE LINE TRACE INDICATION X'FF'
(5E) SIGNED 2 LCBNORC NUMBER OF RECORDS IN BUFFER
(60) SIGNED 2 LCBMSG# NUMBER OF REMOTE MESSAGES
(62) BITSTRING 1 LCBSTMSG 3741-STATUS MSG
(63) BITSTRING 1 LCBTSKEJ LAST TASK WHICH SET TURNEOJ
(64) BITSTRING 24 LCBTQE SPACE FOR TIMER ELEMENT
(7C) SIGNED 2

 PLINE Fields

(7C) ADDRESS 2 LCBLPU PHYSICAL UNIT ADDRESS
(7E) ADDRESS 2 LCBTLIM TIME OUT LIMIT(SECONDS) LINE FEATURES
(80) ADDRESS 1 LCBFEA1 DUAL MODE

 1... F1ASCII "X'80'" USASCII
 .1.. F1TRANS "X'40'" TRANSPARENCY FOR THIS LINE
 ..1. F1SWITC "X'20'" SWITCHED LINE

(81) ADDRESS 1 LCBLDM
 ..1. DUABIFB "X'20'" BASIC INTERFACE B SELECTED

622 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Type Len Name (Dim) Description

 1... DUATRMB "X'08'" TRANSMISSION MODE B SELECTED
 1.. DUAIRRM "X'04'" INTRRUPT MODE REQUESTED
 11. LCBL1 "*-LCBLPU" LENGTH WITHOUT PASSWORD

 PRMT Fields

 1... ..1. LCBDRM "*"
(82) CHAR-

ACTER
3 LCBREMI REMOTE IDENTIFIER CHAR. FORM

(85) CHAR-
ACTER

2 LCBROUT (0) ROUTING TARGETS

(85) ADDRESS 1 LCBPUR PUNCH ROUTING
(86) ADDRESS 1 LCBLIR LIST ROUTING

 1... .111 LCBRCH "*" CHARACTERISTICS OF REMOTE
(87) ADDRESS 1 LCBRPD NUMBER OF PRINT DEVICES

 1... .111 LCBREMX "LCBRPD" ALSO USED FOR INDICATION
 1111 1111 LCBREME "X'FF'" ERROR PRMT ENTRY
 1111 111. LCBREMR "X'FE'" REFERENCE ENTRY

(88) ADDRESS 2 LCBBFSZ REMOTE TERMINAL BUFFER SIZE
(8A) ADDRESS 1 LCBNRPB MAX.NR. OF REC'S PER BLOCK
(8B) ADDRESS 1 LCBTYP TERMINAL TYPES SUPPORTED

 1... 1.11 LCBREF "LCBTYP" ALSO USED AS REFERNECE
 TYP0 "0" DUMMY
 1.1. TYP2770 "10" 2770
 ...1 .1.. TYP2780 "20" 2780
 ...1 111. TYP3741 "30" 3741
 ..11 ..1. TYP3780 "50" 3780

(8C) ADDRESS 1 LCBCSAL COMPONENT SELECT LIST
(8D) ADDRESS 1 LCBCSAP COMPONENT SELECT PUNCH
(8E) ADDRESS 1 LCBCSAM COMPONENT SELECT MESSAGE

 ...1 ...1 FEACSDC1 "X'11'" DC1
 ...1 ..1. FEACSDC2 "X'12'" DC2
 ...1 ..11 FEACSDC3 "X'13'" DC3
 .1.1 11.1 FEACS5D "X'5D'")
 FEACS0 "X'00'" NO COMPONENT SELECT

(8F) BITSTRING 1 RESERVED
(90) ADDRESS 2 LCB1LLN 1LST PRINT-LENGTH
(92) ADDRESS 2 LCB1PLN 1PUN
(94) ADDRESS 2 LCB1MLN 1MSG

 REMOTE FEATURES

(96) ADDRESS 1 LCBFEA2
 ..1. F2LTURN "X'20'" LINE TURNAROUND BY EOJ

(97) ADDRESS 1 LCBFEA3
 .1.. F3TR2H1T "X'40'" 2-HEADING 1-TRAILING BYTE IN RECORD ON TRANSPAR-

ENCY.
(98) ADDRESS 1 LCBFEA4

 1... F4TRANS "X'80'" TRANSPARENCY FOR THIS REMOTE
 .1.. F4MULRC "X'40'" MULTIPLE-LOG./PHYS.RECORD (I.E. 3741

EXP.COMMUNICATION)
 ..1. F4HORFC "X'20'" HORIZONTAL FORMAT CONTROL
 ...1 F4BLSCE "X'10'" SPACE COMPRESSION EXPANSION
 1... F4COMSL "X'08'" COMPONENT SELECT
 1.. F4VARLG "X'04'" VARIABLE LENGTH RECORDC
 1. F4NOFC "X'02'" NO FORMCHANGE SUPPORTED

(99) ADDRESS 1 LCBFEA5
 1... F5TNL "X'80'" NL CHARACTER ON END OF HT
 ..1. F5EJECT "X'20'" EJECT BEFORE MESSAGES
 ...1 F5SPACE "X'10'" TERMINAL REQU.SPACE 3 AFTER RECORD I.E. 2770
 1... F5T3741 "X'08'" TRANSL.TABLE WITH 3741 CTRL
 1.. F5L2780 "X'04'" TERM LIKE 2780

 ...1 ..11 LCBRCHL "*-LCBRCH" CHARACTERISTICS LENGTH
 ...1 1... LCBDRMLN "*-LCBDRM" REMOTE- ENTRY LENGTH
 1..1 1.1. LCBNXT "*" NEXT REMOTE TABLE ENTRY

(9A) BITSTRING 1 LCBFLG1 LCB FLAG BYTE 1

 Chapter 5. Storage Layout and Data Areas 623

Offset
Hex

Type Len Name (Dim) Description

 1... LF1CHEND "X'80'" LCBSCAN CALLED FROM CHEND
 .1.. LF1TERM "X'40'" TERMINATE SESSION
 ..1. LF1RVIS "X'20'" RVI SENT
 ...1 LF1SIGN "X'10'" REMOTE SIGNED ON
 1... LF1SOMQ "X'08'" SIGNOFF-MSG QUEUED TO REMOTE
 1.. LF1ACWR "X'04'" ACCOUNT RECORD WRITTEN
 1. LF1TOMSG "X'02'" TIMEOUT MESSAGE QUEUED
 1 LF1EOTR "X'01'" EOT RECEIVED FOR WRITER

(9B) BITSTRING 1 LCBFLG2 LCBFLAG BYTE 2
 1... LF2TIME "X'80'" TIMER IS SET
 .1.. LF2SETX "X'40'" ETX TO SEND, NO TASK ACTIVE
 ..1. LF2MSOK "X'20'" SENDING OF MESSAGES DISABLED
 ...1 LF2SENQ "X'10'" ENQ TO BE SENT
 1... LF2BUSY "X'08'" LINE BUSY
 1.. LF2PKMSG "X'04'" PSTOP KILL MSG QUEUED
 1. LF2PMOFF "X'02'" STOP MSG FOR SIGNOFF
 1 LF2SFRC "X'01'" FORMS CHANGE IN PROGRESS

(9C) BITSTRING 1 LCBFLG3 LCBFLAG BYTE 3
 1... LF3LSCN "X'80'" TRACE ENTRY FOR ACTIVITY
 .1.. LF3SOFF "X'40'" SIGNOFF READ BY IPW$$BR
 ..1. LF3MR17 "X'20'" MSG 1R17I ALREADY QUEUED
 ...1 LF3EOTR "X'10'" EOT RECEIVED FOR READER
 1... LF3EOTS "X'08'" EOT TO SEND TO RESET TERM
 1.. LF3TCRF "X'04'" TASK CREATION FAILED
 1. LF3EODR "X'02'" WRITE END-OF-DAY RECORD
 1 LF3TEOJ "X'01'" TURNAROUND INDICATION

(9D) BITSTRING 1 LCBRCNT RETRY COUNT
 1..1 111. BSCCODE "*" EBCDIC/USASCII CODE TABLE

(9E) BITSTRING 2 MSOHSEQ (0) MULTI-LEAVING SIGN-ON SEQUENCE
(9E) BITSTRING 1 MBSCSOH SOH BSC CHARACTER
(9F) BITSTRING 1 MBSCENQ ENQ BSC CHARACTER
(A0) BITSTRING 2 MDLESTX (0) START OF TEXT SEQUENCE
(A1) BITSTRING 1 MBSCSTX STX BSC CHARACTER
(A2) BITSTRING 2 METBSEQ (0) END OF TEXT BLOCK SEQUENCE
(A3) BITSTRING 1 MBSCETB END OF TEXT BLOCK CHARACTER
(A4) BITSTRING 2 METXSEQ (0) END OF TEXT SEQUENCE
(A5) BITSTRING 1 MBSCETX ETX BSC CHARACTER
(A6) BITSTRING 2 MACK0SEQ

(0)
EVEN ACKNOWLEDGEMENT SEQUENCE

(A7) BITSTRING 1 MBSCACK0 EVEN ACKNOWLEDGEMENT CHARACTER
(A8) BITSTRING 2 MACK1SEQ

(0)
ODD ACKNOWLEDGEMENT SEQUENCE

(A9) BITSTRING 1 MBSCACK1 ODD ACKNOWLEDGEMENT CHARACTER
(AA) BITSTRING 2 MNAKSEQ (0) NEGATIVE ACKNOWLEDGEMENT SEQUENCE
(AB) BITSTRING 1 MBSCNAK NEGATIVE ACKNOWLEDGEMENT CHARACTER
(AC) BITSTRING 1 MBSCACKX ACKNOWLEDGEMENT CONVERSION CHARACTER
(AD) BITSTRING 1 MBSCCWCH CCW CHAINING CHARACTER
(AE) BITSTRING 2 MWACKSEQ

(0)
WACK SEQUENCE

(AF) BITSTRING 1 MBSCWACK WAIT BEFORE TRANSMIT
(B0) BITSTRING 2 MEOTSEQ (0) DLE/EOT SEQUENCE
(B1) BITSTRING 1 MBSCEOT EOT BSC CHARACTER
(B2) BITSTRING 2 MDLEETB DLE/ETB SEQUENCE
(B4) BITSTRING 2 MTTDSEQ STX/ENQ = TTD SEQUENCE
(B6) BITSTRING 1 MBSCESC ESCAPE BSC CHARACTER
(B7) BITSTRING 1 MBSCSYN SYN BSC CHARACTER
(B8) BITSTRING 2 MDLEETX DLE/ETX SEQUENCE
(BA) BITSTRING 2 MDLERVI DLE/RVI SEQUENCE

 ...1 111. MBSCLN "*-BSCCODE"

TABLE OF BSC CONTROL CHARACTERS

 1. MBCDSTX "X'02'" START OF TEXT
 1.1 MBCDHT "X'05'" HORIZONTAL TAB
 ...1 MBCDDLE "X'10'" DATA LINK ESCAPE
 ...1 .1.1 MBCDNL "X'15'" NEW LINE

624 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Type Len Name (Dim) Description

 ...1 1..1 MBCDEM "X'19'" END OF MEDIA
 ...1 11.1 MBCDIGS "X'1D'" INTER-GROUP SEPARATOR
 ...1 111. MBCDIRS "X'1E'" INTER-RECORD SEPARATOR
 ...1 1111 MBCDIUS "X'1F'" INTER-UNIT SEPARATOR
 ..1. .111 MBCDESC "X'27'" ESCAPE
 ..11 ..1. MBCDSYN "X'32'" SYNCHRONOUS IDLE

(BC) BITSTRING 1 LCBFLG4 LCBFLAG BYTE 4
 1... LF4POUT "X'80'" OUTPUT TASK TO POST
 .1.. LF4UEXC "X'40'" UE RECEIVED FOR WRITE ACK
 ..1. LF4LEMSG "X'20'" LINE ERROR MSG QUEUED
 ...1 LF4KPXMT "X'10'" KEEP TRANSMIT MODE
 1... LF4VDISC "X'08'" VALID DISCONNECT RECEIVED
 1.. LF4BYFAB "X'04'" BYPASS FORWARD ABORT
 1. LF4TRANP "X'02'" REMEMBER TRANSP. PUNCH TASK
 1 LF4DPD "X'01'" DISABLE PENDING

(BD) BITSTRING 1 LCBFLG5 LCBFLAG BYTE 5
 1... LF5TTDR1 "X'80'" TTD RECOVERY INDICATION
 .1.. LF5XXXX2 "X'40'" UNUSED
 ..1. LF5XXXX3 "X'20'" UNUSED
 ...1 LF5XXXX4 "X'10'" UNUSED
 1... LF5XXXX5 "X'08'" UNUSED
 1.. LF5XXXX6 "X'04'" UNUSED
 1. LF5XXXX7 "X'02'" UNUSED
 1 LF5XXXX8 "X'01'" UNUSED

(BE) BITSTRING 1 LCBLRQS LAST REQUEST SAVED
(BF) BITSTRING 1 RESERVED

DEFINE BUFFER CONTROL AREA

(C0) DBL WORD 8
(C0) CHAR-

ACTER
24 IOBCCB (0) RJE CCB

(C0) SIGNED 2 CCBRCNT RESIDUAL COUNT
(C2) CHAR-

ACTER
1 CCBCOM1 COMMUNICATION BYTE

(C3) CHAR-
ACTER

1 CCBCOM2 COMMUNICATION BYTE

(C4) SIGNED 2 CCBSTAT STATUS BYTES FROM CSW
(C6) SIGNED 2 CCBLUBN LOGICAL UNIT NUMBER
(C8) SIGNED 4 IOBSTRT FIRST CCW ADDRESS
(CC) CHAR-

ACTER
1 CCBCOM3 (0) COMMUNICATION BYTE

(CC) SIGNED 4 CCBAPPA CHANNEL APPENDAGE ADDRESS
(D0) DBL WORD 8 IOBSCCW RJE SENSE CCW

RJE CCW String, set up by IPW$$BM
These CCW fields constitute various channel programs that depend upon the operation required. For
example, channel end received a data block with correct BSC characters, the response has to be an
acknowledgement ACK0/ACK1. IPW$$LM sets up a request in the field LCBREQF, calls IPW$$BM which
creates a CCW string based on the request in LCRREQF.

(D8) DBL WORD 8 IOBCCW1 RJE
(E0) DBL WORD 8 IOBCCW2
(E8) DBL WORD 8 IOBCCW3 CHANNEL
(F0) DBL WORD 8 IOBCCW4
(F8) DBL WORD 8 IOBCCW5 PROGRAM

(100) DBL WORD 8 IOBCCW6

Other RJE Information

(108) SIGNED 4 IOBRSTR RESTART ADDRESS OF CHANNEL PROGRAM
(10C) SIGNED 4 IOBNEXT ADDR OF NEXT I/O BUFFER IN CHANNEL
(110) SIGNED 4 IOBLCCW ADDR. OF LAST EXECUTED CCW+8
(114) SIGNED 2 IOBTACK ACK TRANSMITTED
(116) SIGNED 2 IOBEACK ACK EXPECTED
(118) SIGNED 4 IOBDISP DISP BETWEEN REAL AND VIRTUAL
(11C) CHAR-

ACTER
6 IOBRESP (0) REMOTE RESPONSE CONTROL BLOCK

 Chapter 5. Storage Layout and Data Areas 625

Offset
Hex

Type Len Name (Dim) Description

(11C) CHAR-
ACTER

2 IOBNOID NO ID FEATURE

(11E) CHAR-
ACTER

2 IOBFILL WITH IOBNOID = 3741 ID

(120) CHAR-
ACTER

2 IOB3741 RESPONSEFIELD 3741 WITH ID FEATURE

(122) CHAR-
ACTER

1 IOBSNS0 FIRST SENSE BYTE

(123) CHAR-
ACTER

1 IOBSNS1 SECOND SENSE BYTE

(124) BITSTRING 1 IOBFLG1 IOB FLAG BYTE 1
(125) BITSTRING 1 IOBFLG2 IOB FLAG BYTE 2

 .11. .11. IOBLGTH "*-IOBCCB" LENGTH OF CHANNEL PROG
(126) BITSTRING 2 UNUSED

DEVICE CONTROL TABLE (DCT) WITHIN LCB: OUTPUT DCT'S
List DCT

(128) SIGNED 4 DCT1LST (0) 1LST DCT SECTION
(128) CHAR-

ACTER
4 DCT1LID LST TASK IDENTIFIER

(12C) ADDRESS 4 DCT1LTCB TCB ADDRESS OF TASK
(130) BITSTRING 1 DCT1LST1 STATUS BYTE 1 (see Reader DCT)
(131) BITSTRING 1 DCT1LST2 STATUS BYTE 2 (see Reader DCT)
(132) BITSTRING 1 DCT1LST3 STATUS BYTE 3 (see Reader DCT)
(133) BITSTRING 3 UNUSED
(136) BITSTRING 1 DCT1LFLG FLAG BYTE

 .1.. DCTPMSG "X'40'" STOP ACT.MSG TASK DUE TO COMMAND
 ..1. DCTSKIP "X'20'" SKIP TO CH1 INSERTION REQ.
 ...1 DCTSIGN "X'10'" SHOW IGN. RECORDS REQUESTED

(137) BITSTRING 1 DCT1LIDI HEX IDENTIFIER(AS LCBOUSW)
(138) BITSTRING 4 DCT1LCLS LST CLASSES
(13C) SIGNED 2 DCT1LPLN LENGTH OF PRINT LINE
(13E) BITSTRING 1 DCT1LNRC NUMBER OF REC/BUFFER
(13F) BITSTRING 1 DCT1LIDH HEX IDENTIFIER(INV.LCBOUSW)
(140) BITSTRING 1 DCT1LSCT SPACE 3 LINE COUNT
(141) BITSTRING 1 DCT1LCSC COMPONENT SELECT CHAR
(142) BITSTRING 4 DCT1LFRM FORMS IDENTIFIER
(146) BITSTRING 1 DCT1LPRC PREVIOUS COMMAND CODE
(147) BITSTRING 1 DCT1LBST BUFFER STATUS FLAGS
(148) SIGNED 4 FW-BOUNDARY

 ..1. DCT1LLI "*-DCT1LID" LENGTH OF 1LST DCT
Punch DCT

(148) SIGNED 4 DCT1PUN (0) 1PUN DCT SECTION
(148) CHAR-

ACTER
4 DCT1PID PUN TASK IDENTIFIER

(14C) ADDRESS 4 DCT1PTCB TCB ADDRESS OF TASK
(150) BITSTRING 1 DCT1PST1 STATUS BYTE 1 (see Reader DCT)
(151) BITSTRING 1 DCT1PST2 STATUS BYTE 2 (see Reader DCT)
(152) BITSTRING 1 DCT1PST3 STATUS BYTE 3 (see Reader DCT)
(153) BITSTRING 3 UNUSED
(156) BITSTRING 1 DCT1PFLG FLAG BYTE
(157) BITSTRING 1 DCT1PIDI HEX IDENTIFIER(AS LCBOUSW)
(158) BITSTRING 4 DCT1PCLS LST CLASSES
(15C) SIGNED 2 DCT1PPLN LENGTH OF PRINT LINE
(15E) BITSTRING 1 DCT1PNRC NUMBER OF REC/BUFFER
(15F) BITSTRING 1 DCT1PIDH HEX IDENTIFIER(INV.LCBOUSW)
(160) BITSTRING 1 DCT1PSCT SPACE 3 LINE COUNT
(161) BITSTRING 1 DCT1PCSC COMPONENT SELECT CHAR
(162) BITSTRING 4 DCT1PFRM FORMS IDENTIFIER
(166) BITSTRING 1 DCT1PPRC PREVIOUS COMMAND CODE
(167) BITSTRING 1 DCT1PBST BUFFER STATUS FLAGS
(168) SIGNED 4 FW-BOUNDARY

 ..1. DCT1PLI "*-DCT1PID" LENGTH OF 1PUN DCT
Message Task DCT

626 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Type Len Name (Dim) Description

(168) SIGNED 4 DCT1MSG (0) 1MSG DCT SECTION
(168) CHAR-

ACTER
4 DCT1MID MSG TASK IDENTIFIER

(16C) ADDRESS 4 DCT1MTCB TCB ADDRESS OF TASK
(170) BITSTRING 1 DCT1MST1 STATUS BYTE 1 (see Reader DCT)
(171) BITSTRING 1 DCT1MST2 STATUS BYTE 2 (see Reader DCT)
(172) BITSTRING 1 DCT1MST3 STATUS BYTE 3 (see Reader DCT)
(173) BITSTRING 3 UNUSED
(176) BITSTRING 1 DCT1MFLG FLAG BYTE
(177) BITSTRING 1 RESERVED
(178) BITSTRING 4 DCT1MCLS NOT APPLICABLE
(17C) SIGNED 2 DCT1MPLN LENGTH OF PRINT LINE
(17E) BITSTRING 1 DCT1MNRC NUMBER OF REC/BUFFER
(17F) BITSTRING 1 DCT1MIDH NOT APPLICABLE
(180) BITSTRING 1 DCT1MSCT SPACE 3 LINE COUNT
(181) BITSTRING 1 DCT1MCSC COMPONENT SELECT CHAR
(182) BITSTRING 4 DCT1MFRM NOT APPLICABLE
(186) BITSTRING 1 DCT1MPRC PREVIOUS COMMAND CODE
(187) BITSTRING 1 DCT1MBST BUFFER STATUS FLAGS
(188) SIGNED 4 FW-BOUNDARY

 ..1. DCT1MLI "*-DCT1MID" LENGTH OF 1MSG DCT
 11 DCTLCTR "3" NUMBER OF OUTPUT DCT'S

 Reader DCT

(188) SIGNED 4 DCT1RDR (0) 1RDR DCT SECTION
(188) CHAR-

ACTER
4 DCT1RID RDR TASK IDENTIFIER

(18C) ADDRESS 4 DCT1RTCB TCB ADDRESS OF TASK
(190) BITSTRING 1 DCT1RST1 STATUS BYTE 1

 1... DCTSOLI "X'80'" LOGICAL INTERFACE OPENED
 .1.. DCTLERR "X'40'" WRONG RECORD LENGTH
 ..1. DCTINTB "X'20'" BUFFER TO INITIALIZE
 ...1 DCTINIT "X'10'" START COMMAND RECEIVED
 1... DCTSDET "X'08'" DETACH REQUESTED
 1.. DCTEOFR "X'04'" END OF FILE RECEIVED ON RDR
 1. DCTSENQ "X'02'" TASK IS READY TO SENT
 1 DCTSTRT "X'01'" START THIS TASK

(191) BITSTRING 1 DCT1RST2 STATUS BYTE 2
 1... DCTEOFD "X'80'" END-OF-FILE DETECTED
 .1.. DCTEOJD "X'40'" END-OF-JOB DETECTED
 ..1. DCTOPDO "X'20'" OPEN PROCEDURE PERFORMED
 ...1 DCTMSIP "X'10'" MESSAGE IN PROCESS
 1... DCTMSGT "X'08'" TEMPORARY MESSAGE TASK
 1.. DCTSFRC "X'04'" FORMS CHANGE NEEDED
 1. DCTEOBD "X'02'" END OF BLOCK DETECTED
 1 DCTMFRSI "X'01'" STOP IMM IN MOUNT FORMS

(192) BITSTRING 1 DCT1RST3 STATUS BYTE 3
 1... DCTLCSP "X'80'" LAST COMMAND WAS SPACE
 .1.. DCTLCEJ "X'40'" LAST COMMAND WAS AN EJECT
 ..1. DCTCSIP "X'20'" COMPONENT SELECT IN PROCESS
 ...1 DCTTRANS "X'10'" TRANSPARENCY FOR THIS TASK
 1... DCT1R19I "X'08'" MSG 1R19I ALREADY SENT (BR)
 1.. DCTCSF "X'04'" COMPONENT SELECT FAILED
 1. DCTMDEL "X'02'" MSG TO DELETE
 1 DCTSETU "X'01'" SETUP COMMAND PROCESSING

(193) BITSTRING 1 RESERVED
(194) BITSTRING 1 DCT1RCLS RDR CLASS
(195) BITSTRING 3 UNUSED
(198) SIGNED 4 FW-BOUNDARY

 ...1 DCT1RLI "*-DCT1RID" LENGTH OF 1RDR DCT
(198) SIGNED 4 ALIGN TO FULLWORD BOUNDARY

TRANSMISSION BUFFERS + Work Areas

(198) CHAR-
ACTER

528 LCBRECBF (0) DEFINE RECEIVE BUFFER

 Chapter 5. Storage Layout and Data Areas 627

Offset
Hex

Type Len Name (Dim) Description

(198) SIGNED 4 LCBRBFAR REAL ADDRESS OF RECEIVE BUFF
(19C) BITSTRING 1 LCBRBFST RECEIVE BUFFER STATUS BYTE

 1... LCBBUSE "X'80'" BUFFER IN USE
 .1.. LCBTDET "X'40'" TASK TO BE DETACHED
 ..1. LCBBSETX "X'20'" ETX SENT
 ...1 LCBBREOT "X'10'" EOT RECEIVED

(19D) BITSTRING 1 LCBRRFLD RECEIVE BUFFER REQUEST FIELD
(19E) SIGNED 2 LCBRDATL RECEIVE BUFFER DATA LENGTH
(1A0) SIGNED 4 LCBREOBA RECEIVE BUFFER END ADDRESS
(1A4) CHAR-

ACTER
516 LCBRBUF RECEIVE BUFFER

(3A8) CHAR-
ACTER

532 LCBWRTBF
(0)

DEFINE TRANSMIT BUFFER

(3A8) SIGNED 4 LCBWBFAR REAL ADDRESS TRANSMIT BUFFER
(3AC) BITSTRING 1 LCBWBFST TRANSMIT BUFFER STATUS BYTE

 (see LCBRBFST for definitions)
(3AD) BITSTRING 1 LCBWRFLD TRANSMIT BUFFER REQU FIELD
(3AE) SIGNED 2 LCBWDATL TRANSMIT BUFFER DATA LENGTH
(3B0) SIGNED 4 LCBWEOBA TRANSMIT BUFFER CURR. RECORD
(3B4) CHAR-

ACTER
520 LCBWBUF TRANSMIT BUFFER

(5BC) CHAR-
ACTER

186 LCBLWAW (0) WORKAREA FOR WRITER

(5BC) SIGNED 4 LCBLCCA LAST RECORD CARR.CTRL ADDR.
(5C0) SIGNED 2 LCBWADL DATA LENGTH IN WORK AREA
(5C2) BITSTRING 1 LCBWACE ESCAPE CHARACTER FOR LISTOUT
(5C3) BITSTRING 1 LCBWACC CARRIAGE CONTROL FOR LISTOUT
(5C4) CHAR-

ACTER
178 LCBWADA DATA AREA

 1.11 .1.. LCBWALG "*-LCBWACE" LENGTH OF WORK AREA USED
(676) CHAR-

ACTER
200 LCBLWAR WORKAREA FOR READER

EXPRESSION LCBTLG "*-LCBHEAD" TOTAL LENGTH OF LCB

628 VSE Central Functions V7R1 VSE/POWER DRM

Segment Macro Parameter List

Definition Macro: IPW$MXD

The segment macro parameter list is generated by the macro IPW$MXD for use by the user when calling
the IPWSEGM macro. It creates a workarea for storing data and a CCB/CCW which will be created in the
workarea when the IPWSEGM processing is completed by code in IPW$$NU.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 Segment Macro Parameter List

(0) 0 DBL WORD 8 REFLECT ACTUAL DOUBLE WORD ALIGNMENT
(0) 0 BITSTRING 16 $MXCCB COMMAND CONTROL BLOCK

(10) 16 DBL WORD 8 $MXCCW CHANNEL COMMAND WORD
(18) 24 SIGNED 4 $MXRSV (13) SAVE AREA REGISTER 2 - 14
(4C) 76 BITSTRING 9 $MXDJA DEFAULT JECL STATEMENT AREA
(55) 85 BITSTRING 3 UNUSED
(58) 88 BITSTRING 24 $MXINP (0) INPUT AREA TO VSE/POWER
(58) 88 BITSTRING 4 $MXVRS VERSION OF PARAMETER AREA
(5C) 92 BITSTRING 4 $MXUNA (0) LOGICAL UNIT ADDRESS
(5C) 92 BITSTRING 1 $MXCLS LOGICAL UNIT CLASS
(5D) 93 BITSTRING 1 $MXNUM LOGICAL UNIT NUMBER
(5E) 94 BITSTRING 2 LOG. UNIT ADDRESS BYTE 2+3
(60) 96 BITSTRING 4 $MXJCL ADDRESS OF JECL STATEMENT
(64) 100 BITSTRING 4 $MXJCN LENGTH OF JECL STATEMENT
(68) 104 BITSTRING 1 $MXOP1 INPUT OPTION BYTE 1

 1... $MX1UA "X'80'" .. LOG. UNIT BY ADDRESS
 .1.. $MX1PJ "X'40'" .. PASSED JECL OF USER
 ..1. $MX1KP "X'20'" .. KEEP OPTION SPECIFIED

(69) 105 BITSTRING 7 $MXRDI RESERVED INPUT AREA
(70) 112 BITSTRING 28 $MXRET (0) RETURN AREA TO USER PROGRAM
(70) 112 CHAR-

ACTER
1 $MXSQI QUEUE-ID OF CREATED SEGMENT (R|L|P|X)

(71) 113 CHAR-
ACTER

1 $MXSCL JOB CLASS OF CREATED SEGMENT (0-9,A-Z)

(72) 114 BITSTRING 1 $MXJSF OUTPUT SUFFIX, IF 'RBS=' USED
 1... $MXJSFL "X'80'" .. 'LAST RBS SEGMENT' FLAG

X'7F' .. RBS SEGMENT SUFFIX NUMBER (BINARY)
(73) 115 BITSTRING 1 UNUSED
(74) 116 CHAR-

ACTER
8 $MXJNM JOB NAME OF CREATED SEGMENT

(7C) 124 BITSTRING 4 $MXJNB JOB NUMBER OF CREATED SEGMENT (BINARY)
(80) 128 BITSTRING 4 $MXQNB BIN. Q-ENTRY NUMBER OF CREATED SEGMENT
(84) 132 BITSTRING 2 $MXRRF (0) REGISTER 15 RETURN/FEEDBACK CODES
(84) 132 BITSTRING 1 $MXRRC RETURN CODE

 $MXR00 "X'00'" .. OK, NO ERROR (PERHAPS WARNING)
 1.. $MXR04 "X'04'" .. INITIALIZATION ERROR
 1... $MXR08 "X'08'" .. SPECIFICATION INCONSISTENCIES
 11.. $MXR0C "X'0C'" .. EXECUTION PROCESSING ERROR

(85) 133 BITSTRING 1 $MXRFB FEEDBACK CODE
 $MX00OK "X'00'" .. OK
 1.. $MX00IG "X'04'" .. NOTHING SPOOLED

 X'08' .. UNUSED
 11.. $MX00PU "X'0C'" .. OUTPUT PURGED
 ...1 $MX00NK "X'10'" .. DISP=N OK, SPOOLING STOPS
 ...1 .1.. $MX00NE "X'14'" .. DISP=N ERROR, SET DISP=D
 1.. $MX04PNA "X'04'" .. VSE/POWER NOT ACTIVE
 1.. $MX08NPC "X'04'" .. PARTITION NOT POWER CONTROLLED
 1... $MX08NSY "X'08'" .. DEVADDR NOT STARTING 'SYS...'
 11.. $MX08ILU "X'0C'" .. INCORRECT LOGICAL UNIT 'SYSXXX', NEITHER

'XXX' = 000-255 NOR 'XXX' = PCH|LST
 ...1 $MX08IPD "X'10'" .. INVALID PUB DEVICE FOR 'SYSXXX', NEITHER

PRINTER NOR PUNCH TYPE

 Chapter 5. Storage Layout and Data Areas 629

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ...1 .1.. $MX08NPS "X'14'" .. 'SYSXXX' NO POWER SPOOLED DEVICE
 ...1 1... $MX08UNA "X'18'" .. 'SYSXXX' UNASSIGNED OR IGNORE
 ...1 11.. $MX08IVR "X'1C'" .. 'SYSXXX' INTERNAL ERROR, CALL IBM
 ..1. $MX08CDN "X'20'" .. 'SYSXXX' CURRENTLY DISP=N SPOOLED
 ..1. .1.. $MX08PWW "X'24'" .. PARTITION JUST 'WAITING FOR WORK', WITH

NO VSE/POWER JOB ACTIVE
 ..1. 1... $MX08IJL "X'28'" .. INCORRECT JECL LENGTH, JECLN NOT WITHIN

LIMITS 9 - 1024
 ..1. 11.. $MX08IJS "X'2C'" .. INCORRECT JECL STATEMENT, NOT STARTING '

$$ LST ' OR ' $$ PUN '
 ..11 $MX08NMD "X'30'" .. NO MATCHING DEVICE TYPE OF 'SYSXXX'

VERSUS ' $$ LST/PUN'
 ..11 .1.. $MX08FCD "X'34'" .. CDLOAD 3800-IJDANCHX FAILS DUE TO

RESOURCE SHORTAGE
 ..11 1... $MX08PNF "X'38'" .. CDLOAD 3800-IJDANCHX FAILS DUE TO PHASE

NOT FOUND
 ..11 11.. $MX08UGF "X'3C'" .. 'GETFLD' UNEXPECTED RETURN CODE
 .1.. $MX08UCD "X'40'" .. 'CDLOAD' UNEXPECTED RETURN CODE
 .1.. .1.. $MX08CSP "X'44'" .. CONTRADICTION 'GETFLD' VERSUS DEVICE

ENTRY SCAN, CALL IBM

NOTE IBM - MOST OF THE FOLLOWING ARE RETURN CODES FROM
IPW$$XJ. BE SURE TO CO-ORDINATE ANY CHANGES.

 1.. $MX0CNOM "X'04'" .. NO MATCHING SPOOL DEVICE
 1... $MX0CDEL "X'08'" .. INVALID OPERAND DELIMITER
 11.. $MX0CUNK "X'0C'" .. UNKNOWN KEYWORD
 ...1 $MX0CINV "X'10'" .. INVALID OPERAND VALUE
 ...1 .1.. $MX0CSTP "X'14'" .. OPERATOR CANCELLED TAPE
 ...1 1... $MX0CINE "X'18'" .. INTERNAL POWER ERROR
 ...1 11.. $MX0CINA "X'1C'" .. INVALID 'JECL' ADDRESS (FOLLOWING ARE IBM

INTERNAL)
 ..1. $MX0CINS "X'20'" .. RESERVED (FOR IPW$$XJ)
 ..1. .1.. $MX0CIGN "X'24'" .. RESERVED (FOR IPW$$XJ)
 ..1. 1... $MX0COPF "X'28'" .. RESERVED (FOR IPW$$XJ)
 ..1. 11.. $MX0CUNJ "X'2C'" .. RESERVED (FOR IPW$$XJ)
 ..11 $MX0CSEG "X'30'" .. RESERVED (FOR IPW$$XJ)
 ..11 .1.. $MX0CSEM "X'34'" .. RESERVED (FOR IPW$$XJ)

(86) 134 BITSTRING 6 $MXRDR RESERVED RETURN AREA
(8C) 140 BITSTRING 8 $MXALN DOUBLE WORD ALIGNMENT BUFFER

 1... 11.. $MXSEGMI "X'8C'" VSE/POWER CAT OFFSET TO 'CASEGMI'
 1..1 .1.. $MXLEN "*-$MXDS" LENGTH OF PARAMETER AREA (MAX 256)

ASM H V 02 12.45

630 VSE Central Functions V7R1 VSE/POWER DRM

Shared System Slot Communication (SLOT)

Definition Macro: IPW$DEF SLOT=YES

Shared VSE/POWER systems communicate via slots, whose layouts are below.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

S L O T L A Y O U T

(0) 0 STRUC-
TURE

0 SLOTDS , SLOT LAYOUT

(0) 0 CHAR-
ACTER

4 SLOTHDR (0) SLOT HEADER

(0) 0 BITSTRING 1 SLOTSID SYSTEM IDENTIFIER
(1) 1 BITSTRING 1 SLOTTYPE SLOT TYPE

 1 SLOTTWFW "X'01'" .. WAITING FOR WORK SLOT
 1. SLOTTNMR "X'02'" .. MESSAGE/COMMAND SLOT
 11 SLOTTCKP "X'03'" .. CHECKPOINT SLOT

(2) 2 ADDRESS 2 SLOTBLEN LENGTH OF SLOT BODY
(4) 4 CHAR-

ACTER
1 SLOTBODY

(0)
BEGIN OF SLOT BODY

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

WAITING-FOR-WORK SLOT BODY

(0) 0 STRUC-
TURE

0 WFWSDS , WAITING FOR WORK SLOT BODY

(0) 0 CHAR-
ACTER

8 WFWSDEV DEVICE NAME

(8) 8 CHAR-
ACTER

4 WFWSCLS CLASS(ES)

(C) 12 CHAR-
ACTER

1 WFWSTYPE QUEUE TYPE TO BE PROCESSED

(D) 13 BITSTRING 1 WFWSFLG NOTIFICATION FLAG BYTE
 1... WFWSFLVE "X'80'" .. OUTPUT AVAILABLE

(E) 14 CHAR-
ACTER

8 WFWSDEST
(8)

LOG. DESTINATION NAMES

 .1.. 111. WFWSLEN "*-WFWSDS" LENGTH OF WFW SLOT BODY

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

CHECKPOINT SLOT BODY

(0) 0 STRUC-
TURE

0 SLOCKPDS , CHECKPOINT SLOT BODY

(0) 0 SIGNED 2 SLOCKPLN LENGTH OF BODY + VARIABLE
(2) 2 BITSTRING 1 SLOCKPQI QUEUE ID
(3) 3 BITSTRING 1 SLOCKPFG FLAG BYTE 1

 1... SLOCKPFD "X'80'" .. SLOT TO BE DELETED
 .1.. SLOCKPFR "X'40'" .. SLOT RECOVERY TRIED

(4) 4 CHAR-
ACTER

8 SLOCKPJN JOBNAME

(C) 12 SIGNED 2 SLOCKPJO JOBNUMBER
(E) 14 BITSTRING 1 SLOCKPJS JOBSUFFIX
(F) 15 BITSTRING 1 SLOCKPCP COPY NUMBER

(10) 16 SIGNED 4 SLOCKPRN RECORD NUMBER
(14) 20 SIGNED 4 SLOCKPQN QUEUE RECORD NUMBER
(18) 24 SIGNED 4 RESERVED FOR FUTURE USE

 ...1 11.. SLOCKPFL "*-SLOCKPDS" LENGTH OF CKP FIXED PART

 Chapter 5. Storage Layout and Data Areas 631

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(1C) 28 CHAR-
ACTER

1 SLOCKPXI (0) START OF EXTENDED CKP INFO LENGTH IS VARIABLE !

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

SLOT DBLK LAYOUT

(0) 0 STRUC-
TURE

0 SDBLKDS , LAYOUT OF SLOT-DBLK

(0) 0 CHAR-
ACTER

32 SDBHSER FIRST PART OF SER RECORD

(20) 32 ADDRESS 4 SDBHPREV ADDRESS OF PREVIOUS DBLK
(24) 36 ADDRESS 4 SDBHNEXT ADDRESS OF NEXT SLOT DBLK
(28) 40 BITSTRING 1 SDBHFLAG FLAG BYTE

 1... SDBHF1ST "X'80'" ..FIRST DBLK IN DBLK GROUP
 .1.. SDBHFNXT "X'40'" ..NEXT DBLK PRESENT
 ..1. SDBHFPRV "X'20'" ..PREV DBLK IN CHAIN EXISTS

(29) 41 BITSTRING 1 RESERVED FOR FUTURE
(2A) 42 ADDRESS 2 SDBHDISP OFFSET TO FREE SPACE IN DBLK
(2C) 44 ADDRESS 2 SDBHNOFB NUMBER OF FREE BYTES IN DBLK
(2E) 46 ADDRESS 2 SDBHBUCK

(11)
NO OF SLOTS/SYSID SYSID=10 FOR CKP SLOTS

(44) 68 CHAR-
ACTER

1 SDBLKSLO (0) BEGIN OF SLOT ENTRIES

632 VSE Central Functions V7R1 VSE/POWER DRM

Service Request Block (SRB)

Definition Macro: IPW$DSR

A service request block is created whenever a service request is passed to asynchronous service for proc-
essing.

During the time asynchronous service is performing the service request, the SRBs are chained together.

Asynchronous service handles the request on a 'first-in, first-out' basis.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 SERVICE REQUEST BLOCK (SRB)

(0) 0 ADDRESS 4 SRBNEXT PTR TO NEXT SRB IN CHAIN
(4) 4 BITSTRING 1 SRBREQ REQUEST CODE

CHAR-
ACTER

SRBFCB "C'B'" .. LOAD FCB REQUEST

CHAR-
ACTER

SRBFND "C'C'" .. FIND MEMBER REQUEST D03PILR

CHAR-
ACTER

SRBDIS "C'D'" .. DISCONNECT MEMBER REQUEST

CHAR-
ACTER

SRBFEOV "C'E'" .. CALL BAM FEOV REQUEST

CHAR-
ACTER

SRBFT "C'F'" .. CALL TRANSIENT REQUEST

CHAR-
ACTER

SRBGVCE "C'G'" .. CALL TRANSIENT REQUEST

CHAR-
ACTER

SRBIDR "C'I'" .. IDUMP REQUEST

CHAR-
ACTER

SRBLD "C'L' .. LOAD REQUEST

CHAR-
ACTER

SRBFNDV "C'M'" .. FIND MEM NON-PWR LIBDEF (LBRACCES BUILD
CHAIN)

CHAR-
ACTER

SRBNTE "C'N'" .. 'NOTE' REQUEST

CHAR-
ACTER

SRBOPN "C'O'" .. OPEN ICCF INTERFACE

CHAR-
ACTER

SRBPNT "C'P'" .. 'POINT' REQUEST

CHAR-
ACTER

SRBGRC "C'R'" .. GET RECORD REQUEST

CHAR-
ACTER

SRBSPR "C'S'" .. SETPRT REQUEST

CHAR-
ACTER

SRBDISV "C'T'" .. DISC MEM NON-PWR LIBDEF

CHAR-
ACTER

SRBLDV "C'V'" .. GET SVA ENTRY POINT

CHAR-
ACTER

SRBFNDV1 "C'W'" .. FIND MEM NON-PWR LIBDEF (INLMFIND FIND
MEMBER)

CHAR-
ACTER

SRBIJBX "C'X'" .. INVOKE IJBXPCA FOR XECB

CHAR-
ACTER

SRBLDY "C'Y'" .. LOAD DYNAMIC CLASS TABLE

(5) 5 BITSTRING 1 SRBRTC RETURN CODE
 1111 111. SRBRFE "X'FE'" .. IJBXPCA NOT AVAILABLE
 1111 1111 SRBRFF "X'FF'" .. REQUEST FAILED, TERMIN.
 1... SRBPSVA "X'80'" .. PHASE LOCATED IN SVA
 1... SRBPTL "X'08'" .. PHASE TOO LARGE
 1.. SRBPNF "X'04'" .. PHASE NOT FOUND
 1. SRBATCAN "X'02'" .. CANCEL PASSED VIA $AT
 1 SRBATLIO "X'01'" .. LIOCS FAILED

(6) 6 BITSTRING 1 SRBRTCAF AF SECHECK MACRO RET CODE (SEE SGACF MACRO)

 Chapter 5. Storage Layout and Data Areas 633

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(7) 7 BITSTRING 1 SRBOPT OPTION BYTE
 1... SRBCSVA "X'80'" .. CHECK IF PHASE IN SVA

(8) 8 SIGNED 4 SRBECB EVENT CONTROL BLOCK
(C) 12 CHAR-

ACTER
2 SRBPID PARTITION ID OF REQUESTOR

(E) 14 BITSTRING 1 SRBFLG SRB FLAG BYTE
 1... SRBFATF "X'80'" .. ATTACH DUMP SUBT. FAILED

(F) 15 BITSTRING 1 UNUSED

 SETPRT Request

(10) 16 SIGNED 4 SRBPARM (4) REQUEST PARAMETER LIST

THE FOLLOWING RE-DEFINITIONS ARE USED FOR THE LOAD REQUEST

(10) 16 ADDRESS 4 SRBAPN ADDRESS OF PHASE NAME
(14) 20 ADDRESS 4 SRBLDA ADDR WHERE TO LOAD PHASE
(18) 24 SIGNED 4 SRBPSZ LENGTH OF PHASE IN BYTES
(18) 24 SIGNED 4 SRBABC ADDRESS OF CCB FOR LFCB REQUEST
(1C) 28 ADDRESS 4 SRBEDA PHASE ENTRY POINT ADDR

THE FOLLOWING RE-DEFINITIONS ARE USED FOR IDUMP SERVICE

(10) 16 ADDRESS 4 SRBTSA TRACE START ADDRESS
(14) 20 ADDRESS 4 SRBTEA TRACE END ADDRESS

THE FOLLOWING RE-DEF'S ARE USED FOR DYNCLASS ID=YES

(10) 16 ADDRESS 4 SRBCLS ADDR. OF CLASS TABLE AREA
(14) 20 ADDRESS 4 SRBCRF DYNCLASS ID=GET RF RET.CODE
(18) 24 ADDRESS 4 SRBCR0 DYNCLASS ID=GET R0 RET.CODE

THE FOLLOWING REDEFINITIONS ARE USED FOR SLI SUPPORT

(10) 16 ADDRESS 4 SRBSLWA ADDRESS OF SL WORK AREA
(14) 20 ADDRESS 4 SRBSLME ADDR OF SL MEMBER ELEMENT
(18) 24 ADDRESS 4 SRBSLPD ADDR OF PARTITION CNTRL BLK

THE FOLLOWING REDEFINITIONS ARE USED FOR GETVCE

(10) 16 ADDRESS 4 SRBAVR POINTER TO AVR LIST
(14) 20 BITSTRING 2 SRBPHLU LOGICAL UNIT
(16) 22 BITSTRING 1 SRBMACID SERVICE MACRO ID

THE FOLLOWING REDEFINITIONS ARE USED FOR IJBXPCA

(10) 16 BITSTRING 4 SRBXU1 XECB USERID BYTES 0-3
(14) 20 BITSTRING 4 SRBXU2 XECB USERID BYTES 4-7
(18) 24 BITSTRING 1 SRBXFG SECURITY FLAG

 MISCELLANEOUS
SRBRTC AND SRBRTCF ARE BOTH FILLED ON RETURN FROM
SETPRT (IPW$$AS) WHEREBY SRBRTC AND SRBRTCF+3 ARE
IDENTICAL. USUALLY SRBRTC WOULD BE A REDEFINITION
OF SRBRTCF BUT HAS NOT BEEN CHANGED TO MAINTAIN
COMPATIBILITY TO OTHER SOFTWARE (OEM).

(20) 32 BITSTRING 4 SRBRTCF FOUR BYTE RETURN CODE FROM SETPRT
(24) 36 BITSTRING 2 UNUSED

 ..1. .!!. SRBLN "*-SRBDS" LENGTH OF CONTROL BLOCK ASM H V 02
19.22

634 VSE Central Functions V7R1 VSE/POWER DRM

SNA Session Control Block for PNET (SSCB)

Definition Macro: IPW$DSS

A SNA session control block is created is a SNA session is established to another node in the network.
The SSCB is anchored to the appropriate node control block (NCB).

Bytes Label
Hex. of Field Description/Function
--
��-�F SSCBSD Storage descriptor

� Function Save Areas

1�-3F SSCBFUSS Function save area for SEND exit
4�-6F SSCBFUSR Function save area for RECEIVE exit

� Save Areas for VTAM Macro Calls

7�-73 SSCBLS13 Reg 13 save area on SEND, PNET Driver
74-BB SSCBVSS1 Save area used for SEND macro
BC-BF SSCBES13 Reg 13 save area on SEND, SEND EXIT
C�-1�7 SSCBVSS2 Save area used for CHECK/SEND, SEND EXIT
1�8-1�B SSCBLR13 Caller's reg 13 save area if RECEIVE
1�C-153 SSCBVSR1 Save area used for RECEIVE macro
154-157 SSCBER13 Caller's reg 13 save area, RECEIVE EXIT
158-19F SSCBVSR2 Save area used for RECEIVE macro, RECEIVE exit

1A�-1E7 SSCBVDSA Save area used by disconnect task
1E8-1EB SSCBR14S VTAM return address, SEND exit
1EC-1EF SSCBR14R VTAM return address, RECEIVE exit

� Save Area for Individual Addresses/Pointers

1F�-1F3 SSCBSRQE Connect SRQE address
1F4-1F7 SSCBNCB Connect Node control block address
1F8-1FB SSCBS2P Connect save area PAP
1FC-1FF SSCBS2S Connect save area SAP
2��-2�3 SSCBS3 Disconnect save area

2�4-267 SSCBSRPL RPL skeleton
268-2A7 SSCBNIB NIB skeleton

� BIND Image and FM-Headers

2A8-2CB SSCBBIND Bind RU
2CC-2D3 SSCBFMHO FM header (output)
2D4-2DB SSCBFMHI FM header (input)

 Chapter 5. Storage Layout and Data Areas 635

SNA Compaction Table Control Block (COCB)

Definition Macro: IPW$DCO

The address (COAD) in a COCB entry will be used for retrieving the FMH3, and fetching the compaction
table for use in the compaction algorithm.

The format of this block is as follows:

Bytes Label
Hex. of Field Description/Function
--
��-�F COSD Storage descriptor (COCB)
1�-13 CONX Address next COCB
14-15 CONE Number of entries in COCB
16-17 COTG Maximum number of GETVIS table

entries (1K each)
18-19 COAG Actual number of GETVIS
1A-1F Reserved

2�-2F First Compaction Table Entry

2�-23 CONA Compaction table name
24-27 COAD Compaction table address
28 COID Compaction table identifier
29 Reserved
2A-2B COUS Compaction table use counter
2C-2D COLN Compaction table length
2E-2F Reserved

3�-3FF Remaining Table Entries

636 VSE Central Functions V7R1 VSE/POWER DRM

SNA Control Block (SNCB)

Definition Macro: IPW$DSN

The SNA control block contains general information that is required in real storage for RJE,SNA proc-
essing.

Bytes Label
Hex. of Field Description/Function
--
��-�F SNSD Storage descriptor (SNCB)
1� SNTT SNA termination type
11 SNTX Termination type set by SNA exit
 routines
12 SNFL Flag byte:

SNSS X'8�' - SNA stop requested
SNKS X'4�' - Kill SNA requested
SNST X'2�' - Subtask detach requested
SNRQ X'1�' - Subtask quiesce requested
SNTPN X'�8' - TPEND Exit Driven - Normal
SNTPQ X'�4' - TPEND Exit Driven - Quick
SNTPA X'�2' - TPEND Exit Driven - Abend
SNVA X'�1' - VTAM abended

13 SNSU Maximum number of logical units
14-17 SNFS Address of first active SNA unit control
 block (SUCB)
18-1B SNTC Address of SNA manager TCB
1C-1F SNLW SNA control block lockword
2�-23 SNRM Address of SNA remote control block (RMCB)
24-27 SNRL Lockword for general purpose work space

(RMGP) in SNA remote control block
28-2B SNSB Subtask ECB
2C-2F SNEB SNA manager work ECB
2C-2D Unused
2E Post byte

SNEP X'8�' - post bit
2F Unused
3�-37 Reserved for future use
38-3B SNLR Address first logon request control
 block (LRCB)
3C-3F SNWS Address logon SUCB
4�-43 SNCA Address of compaction table
44-47 SNEC LRCB chain - lockword 1
48-4B SNFC LRCB chain - lockword 2
4C-4F SNCL Compaction table lockword
5� SNLS IPW$$LH process byte

SNLP X'8�' - Request for IPW$$LH
SNHA X'4�' - IPW$$LH is active

51 SNCW Numner of active workstations
52 SNS1 Status Byte 1

SNS1STA X'8�' - RJE,SNA SUBTASK ATTACHED
SNS1VTA X'4�' - VTAM ACTIVE DETECTED BY SUBTASK

53 Reserved
54- SNAC VTAM ACB (the ACB is copied from the skeleton

ACB as defined in IPW$$I7)

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 637

SNA Logical Unit Control Block (LUCB)

Definition Macro: IPW$DLU

A logical unit control block (LUCB) is created for each logical unit logged on to the VSE/POWER applica-
tion.

The LUCB space is allocated together with the SUCB space by the VTAM LOGON exit (IPW$$VE) when
the first workstation LU attempts to log on t o VSE/POWER. The number of LUCBs for which storage is
reserved depends on the SESSLIM parameter (macro PRMT) of the corresponding remote ID. The LUCB
is initiated by the LOGON processors 1 and 2 (IPW$$LH and IPW$$LN).

The LUCB storage is freed together with the SUCB space by IPW$$LF until the last or only LU of a
workstation has logged off.

All logical unit control blocks within one workstation are chained together. The pointer to the first LUCB
within one workstation is contained in the SUCB, which describes this workstation.

The format of a logical unit control block is as follows.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 STRUC-
TURE

LUDS DEFINE DUMMY SECTION

(0) 0 CHAR-
ACTER

16 LUSD SECTION DESCRIPTOR

(10) 16 ADDRESS 4 LUPR ADDRESS PREVIOUS LUCB
(14) 20 ADDRESS 4 LUNX ADDRESS NEXT LUCB
(18) 24 ADDRESS 4 LUSU ADDRESS OF SUCB
(1C) 28 ADDRESS 4 LULWA ADDRESS OF LUCB LOCKWORD

 ..1. LUBAS "*-LUDS" LENGTH OF STORAGE DESCRIPTOR PLUS
CHAIN POINTERS

(20) 32 CHAR-
ACTER

1 LUSL SELECT INDIC, S = SELECT

(21) 33 CHAR-
ACTER

1 LUTT TERM. TYPE; S = IMMEDIATE

(22) 34 CHAR-
ACTER

1 LUTX TERM. TYPE; SET BY EXITS

(23) 35 BITSTRING 1 LUFS FREE SESSION INDICATOR
 1... LUF1 "X'80'" SESSION IS IN USE

(24) 36 ADDRESS 4 LUW1 RDR 1 WORKSPACE ADDRESS
(28) 40 ADDRESS 4 LUW2 RDR 2 WORKSPACE ADDRESS, OBTAINED FROM SUCB
(2C) 44 SIGNED 4 LUCD VTAM CID

SESSION ACCOUNT INFORMATION

(30) 48 CHAR-
ACTER

48 LUAR (0) SESSION ACCOUNT RECORD

(30) 48 CHAR-
ACTER

8 LUDY DATE = C'MM/DD/YY'

(38) 56 CHAR-
ACTER

4 LUST SIGNON TIME = X'0HHMMSSF'

(3C) 60 CHAR-
ACTER

4 LUET SIGNOFF TIME = X'0HHMMSSF'

(40) 64 CHAR-
ACTER

16 LUUI USER INFORMATION

(50) 80 CHAR-
ACTER

8 LULU LOGICAL UNIT NAME

(58) 88 BITSTRING 1 LUCF1 LUCB ACCOUNT FLAG BYTE 1
 1... LUCE20 "X'80'" LUDY DATE IS 20YY CENTURY

(59) 89 CHAR-
ACTER

1 RESERVED

638 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(5A) 90 CHAR-
ACTER

1 LUAI IDENTIFIER FOR ACCT RECORD

(5B) 91 BITSTRING 1 LUCN SESSION TERMINATION CODE
 1. LUAL "X'02'" ABNORMAL TERMINATION
 1 LUNL "X'01'" NORMAL (SIGNOFF OR LOGOFF)

(5C) 92 CHAR-
ACTER

4 LURI (0) REMOTE IDENTIFIER

(5C) 92 BITSTRING 1 LURB BINARY FORMAT
(5D) 93 CHAR-

ACTER
3 LURC CHARACTER FORMAT

 RESTART INFORMATION

(60) 96 SIGNED 4 LURS (0) RESTART INFORMATION
(60) 96 BITSTRING 1 LURX RESTART FUNCTION INDEX
(61) 97 BITSTRING 3 LURP RESTART PAGE COUNT

LIST AND PUNCH CHARACTERISTICS

(64) 100 ADDRESS 4 LUPH PTR TO DEVICE IN SUCB
(68) 104 BITSTRING 1 LULO LIST OUTPUT SUPPORT

 1... LULAS "X'80'" ASCII
 .1.. LULCM "X'40'" COMPRESSION
 ..1. LULTR "X'20'" TRANSPARENCY
 ...1 LULSP "X'10'" SPANNING
 1... LULIR "X'08'" INTER-RECORD SEPARATOR
 1.. LULXL "X'04'" XLATION OF CHAR BELOW BLANK
 1 LULCP "X'01'" COMPACTION

(69) 105 BITSTRING 1 LUPO PUNCH OUTPUT SUPPORT
 1... LUPAS "X'80'" ASCII
 .1.. LUPCM "X'40'" COMPRESSION
 ..1. LUPTR "X'20'" TRANSPARENCY
 ...1 LUPSP "X'10'" SPANNING
 1... LUPIR "X'08'" INTER-RECORD SEPARATOR
 1 LUPCP "X'01'" COMPACTION

(6A) 106 BITSTRING 1 LUPD PDIR INFORMATION BYTE
 1... LUPS "X'80'" PDIR OUTBOUND ALLOWED

(6B) 107 BITSTRING 1 LUAD CARD/DOCUMENT FLOW
 1... LUACI "X'80'" CARD INBOUND ALLOWED
 .1.. LUACO "X'40'" CARD OUTBOUND ALLOWED
 ..1. LUAXI "X'20'" BASIC EX MEDIA IB ALLOWED
 1... LUALI "X'08'" DOCUMENT INBOUND ALLOWED
 1.. LUALO "X'04'" DOCUMENT OUTBOUND ALLOWED

(6C) 108 SIGNED 4 (0) FULLWORD-BOUNDARY
(6C) 108 CHAR-

ACTER
8 LUOC (0) ACT. COMPACT. TABLE OUT

(6C) 108 CHAR-
ACTER

4 LUO1 COMPACTION TABLE NAME

(70) 112 ADDRESS 4 LUO2 POINTER TO COCB ENTRY

PROCESS CONTROL SECTION

(74) 116 ADDRESS 4 LUTC (0) START OF TCBS FOR LU
(74) 116 ADDRESS 4 LURT RDR|LGN|LGF TCB ADDRESS
(78) 120 ADDRESS 4 LULT LST|PUN TCB ADDRESS
(7C) 124 ADDRESS 4 LUMT MSG TCB ADDRESS
(80) 128 ADDRESS 4 LUTI RDR2 TCB ADDRESS
(84) 132 ADDRESS 4 LUTH LGH TCB ADDRESS

 1.1 LUTL "(*-LUTC)/4" NUMBER OF TCBS
(88) 136 BITSTRING 1 LUA1 ACTION BYTE

 1... LURO "X'80'" REQUEST LOGON
 .1.. LURR "X'40'" REQUEST START READER
 ..1. LUSG "X'20'" REQUEST INTERRUPT LST|PUN ON SIGNAL
 ...1 LUMR "X'10'" REQUEST INTERRUPT LST|PUN FOR OUTBOUND

MESSAGE
 1... LUII "X'08'" REQUEST INTERRUPT INBOUND FOR INBOUND
 1.. LUSS "X'04'" REQUEST STOP SESSION
 1. LUGO "X'02'" REQ GO/SETUP CMND,OR NEW FORMS

 Chapter 5. Storage Layout and Data Areas 639

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1 LUCR "X'01'" REQUEST FOR RESTART CMND
(89) 137 BITSTRING 1 LUP1 PROCESS BYTE

 1... LUPF "X'80'" LOGOFF IN PROCESS
 .1.. LUSRD "X'40'" START READER SWITCH
 ..1. LUPS2 "X'20'" PROCESS SUSPEND2
 ...1 LUP1RL "X'10'" RELEASE LUCB AFTER SEND RPL

(8A) 138 BITSTRING 1 LUS1 STATUS BYTE ONE
 1... LUBB "X'80'" BB REJECT INDICATOR
 .1.. LUSO "X'40'" LOGON COMPLETED
 ..1. LUBBC "X'20'" CONTENTION FOUND BY IB
 ...1 LUS1XX4 "X'10'" RESERVED
 1... LUS1XX5 "X'08'" RESERVED
 1.. LUS1XX6 "X'04'" RESERVED
 1 LUBBO "X'01'" 1 - BB REJECT BY $OB 0 - BB REJECT BY $MP

(8B) 139 BITSTRING 1 LUS2 STATUS BYTE 2
 1... LUBC "X'80'" CHANGE DIRECTION
 .1.. LUOO "X'40'" LST/PUN SUSPENDED FOR MSG
 ..1. LUOI "X'20'" LST/PUN SUSPENDED FOR INBOUND
 ...1 LUIS "X'10'" INBOUND SUSPENDED FOR INBOUND
 1... LUWL "X'08'" WAITING FOR LUSTATUS
 1.. LUS2XX6 "X'04'" RESERVED
 1. LUS2XX7 "X'02'" RESERVED
 1 LUS2XX8 "X'01'" RESERVED

(8C) 140 BITSTRING 1 LUBR BRACKET STATE
(8D) 141 BITSTRING 1 UNUSED
(8E) 142 SIGNED 2 LUBS BUFFER SIZE
(90) 144 SIGNED 2 LUBSL BUFFER SIZE LOGON PROCESS
(92) 146 SIGNED 2 LUSEQNO LAST RECEIVED SEQ NUMBER
(94) 148 SIGNED 4 LUSR SAVE LOSTERM REASON CODE
(98) 152 SIGNED 2 LUBSI INBOUND RU BUF SIZE
(9A) 154 SIGNED 2 LUBSO OUTBOUND RU BUF SIZE
(9C) 156 SIGNED 2 LUBSAO ACT OUTBOUND RU BUF SIZE

ALIGN TO LINE-BOUNDARY AND FILL WITH ZEROS

(9E) 158 ADDRESS 1 (0)
 1.1. LULN "*-LUDS" LENGTH OF CONTROL BLOCK

640 VSE Central Functions V7R1 VSE/POWER DRM

SNA Logon Request Control Block (LRCB)

Definition Macro: IPW$DLR

A LOGON request control block contains information for 6 LOGON requests to the VSE/POWER applica-
tion. All LOGON request control blocks are chained. The pointer to the first LRCB is contained in the
SNA control block (SNCB).

Information about LOGON requests are stored in the LRCB by the LOGON exit of the SNA manager. The
LOGON processor processes the LOGON requests to build SUCB/LUCBs.

The format of a LOGON request control block is as follows.

Bytes Label
Hex. of Field Description/Function
--
��-�F LRSD Storage descriptor (LRCB)
1�-13 LRNX Pointer to next LRCB
14-17 Reserved
18 LRLC Length of one LRCB
19 LRLB Length of one LRUB
1A LRAL No. of total LRUBs in LRCB
1B LRUS No. of active LRUBs in LRCB
1C-1F Reserved
2�-7F LRAU Space for six LRUBs
2�-2F First LRUB entry
2�-23 LRAC ACB address
24-2B LRLU LU-name
2C LRST Status (X'�1' indicates active entry)
2D-2F LRLM Length of LOGON message

 Chapter 5. Storage Layout and Data Areas 641

SNA Remote Control Block (RMCB)

Definition Macro: IPW$DRM

The SNA remote control block consists of:

� General information that is not required in real storage for RJE,SNA processing.

� A general work space to be used by any SNA routine that cannot obtain virtual storage via the
VSE/AF GETVIS macro.

� Translate tables to convert EBCDIC characters to ASCII and vice versa.

� Remote entries for each remote ID specified in the PRMT macro at VSE/POWER generation.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

16 RMSD SECTION DESCRIPTOR

(10) SIGNED 4 RESERVED
(14) CHAR-

ACTER
3 RESERVED

(17) ADDRESS 1 RMAL ACB PASSWORD LENGTH
(18) CHAR-

ACTER
8 RMAP ACB PASSWORD

(20) CHAR-
ACTER

2048 RMGP GENERAL PURPOSE WORKSPACE
This area is serially accessible by SNA tasks that cannot obtain virtual
storage via the VSE/Advanced Functions GETVIS macro. Access is
regulated by a lockword (SNRL) located in the SNA control block
(SNCB).

THE FOLLOWING TRANSLATE TABLES ARE USED TO CONVERT
EBCDIC CHARACTERS TO ASCII AND VICE VERSA.

(820) CHAR-
ACTER

256 RMEA EBCDIC TO ASCII

(920) CHAR-
ACTER

128 RMAE ASCII TO EBCDIC

FOLLOWING SAVE AREAS ARE FOR THE SNA MANGER

(9A0) DBL WORD 8
(9A0) CHAR-

ACTER
128 RMSNSS (0) SUBTASK SAVE AREA

(9A0) CHAR-
ACTER

8 RMSNSN SUBTASK NAME

(9A8) BITSTRING 120 RMSNSR REGISTER SAVE AREA
(A20) CHAR-

ACTER
8 RMSNAN SUBTASK NAME

(A28) BITSTRING 1 RMSNAS AB REGISTER SAVE AREA
(B00) BITSTRING 72 RMSNRA RECEIVE ANY VTAM SAVE AREA
(B48) BITSTRING 72 RMSNST SETLOGON VTAM SAVE AREA

FOLLOWING ARE THE REMOTE ENTRIES FOR EACH SNA REMID
SPECIFIED BY THE PRMT MACRO AT GENERATION TIME.

(B90) BITSTRING 1 RMSR NR OF SNA REMOTES ENTRIES
(B91) BITSTRING 1 RMFR FIRST SNA REMOTE ID
(B92) BITSTRING 1 RMHR LAST SNA REMOTE ID
(B93) BITSTRING 1 RMNC NUMBER 1K BLOCKS - CMPACT

EXPRESSION RMLN "*-RMDS" LENGTH REMOTE CTL BLK LESS ENTRIES
(B94) CHAR-

ACTER
32 RMRM (0) REMOTE ENTRIES

The number of remote entries, which are 32 bytes long, depends on the
number of SNA remote units specified in the PRMT macro at
VSE/POWER generation.

The following is a layout of a remote entry

642 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Type Len Name (Dim) Description

(B94) CHAR-
ACTER

1 RMPR PUNCH ROUTING REMOTE ID

(B95) CHAR-
ACTER

1 RMLR LIST ROUTING REMOTE ID

(B96) CHAR-
ACTER

30 RMRI (0) REMOTE REFERENCE INFO

(B96) CHAR-
ACTER

2 RMBS BUFFER SIZE

(B98) CHAR-
ACTER

1 RMTT TERMINAL TYPE

(B99) CHAR-
ACTER

1 RMTF TERMINAL FEATURES

 1... RMCS "X'80'" ..CONSOLE SPECIFIED
 .1.. RMXL "X'40'" ..TRANSLATION REQUESTED

(B9A) CHAR-
ACTER

1 RESERVED

(B9B) CHAR-
ACTER

1 RMPL PASSWORD LENGTH

(B9C) CHAR-
ACTER

8 RMPW PASSWORD

EXPRESSION RMRF "RMPL" IF REF SPECIFIED IN PRMT MACRO, FIELD = 'FF'X
EXPRESSION RMRN "RMBS+1" IF REF SPECIFIED IN PRMT MACRO, FIELD = REFER-

ENCED REMID
(BA4) CHAR-

ACTER
4 RMCN COMPACT NAME

(BA8) ADDRESS 4 RMLU (0) LU ADDRESS FIELD
(BA8) BITSTRING 1 RMNL NUMBER OF LU NAMES
(BA9) ADDRESS 3 RMLA ADDRESS OF FIRST LU NAME
(BAC) SIGNED 2 RMSL SESSION LIMIT
(BAE) SIGNED 2 RMML MAX RECORD SIZE FOR LIST
(BB0) BITSTRING 4 RESERVED
(BB4) EXPRESSION RMNX "*" END OF REMOTE ENTRY

END OF RMCB IS FORCED TO NEXT PAGE BOUNDARY BY INITIALIZATION

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 643

SNA Session Request Queue (SRQE)

Definition Macro: IPW$DRQ

Bytes Label
Hex. of Field Description/Function
--
���-��F SRQESD Section descriptor
�1�-�11 SRQETLGF SRQE length (multiple 128)
�12-�13 Reserved
�14-�17 SRQENPTR Next in chain pointer
�18-�1B SRQETPTR Task pointer belonging to
�1C-�1F SRQEANCB Address of node control block
�2�-�21 SRQEALEN Actual length of BIND-RU

� Status:

�22 SRQESTA SRQE status byte
�23 SRQERC Reason code used in NSEXIT
�24-�25 SRQESSMO Sense modifier

� This part will contain the BIND-RU.

�26-�49 SRQEBDRU Reserved for BIND-RU
�26-�3F SRQEBIND BIND-RU area
�4� SRQEPLUL PLU-name length
�41-�48 SRQEPLU PLU-name
�49

� This part contains the VTAM emergency save area.

�4A-�4B Unused
�4C-�93 SRQESAVE Reserved for VTAM save area
�94-�97 SRQESR13 Save reg. 13, if VTAM-macro
�98-�9B Reserved

� This part contains the RPL after a BIND-RU has been received.

�9C-�FF SRQERPL RPL area

� This part contains the NIB after a BIND-RU has been received.

1��-13F SRQENIB NIB area

644 VSE Central Functions V7R1 VSE/POWER DRM

SNA Unit Control Block (SUCB)

Definition Macro: IPW$DSU

An SNA unit control block is created for each workstation that is logged on to the VSE/POWER application
with one logical unit. All SNA unit control blocks are chained together.

The SUCB is allocated from the VTAM LOGON exit (IPW$$VE) when the first workstation LU attempts to
log on to VSE/POWER. It is initialized by the LOGON processor 1 (IPW$$LH). The SUCB storage is
freed by IPW$$LF until the last or only LU of a workstation has logged off.

Bytes Label
Hex. of Field Description/Function
--
��-�F SUSD Storage descriptor (SUCB)
1�-13 SUNX Address of next SUCB

� General Accounting Information

14-1F SUAR General Information
14-1B SUDY Date = C'MM/DD/YY'
1�-1F SURI Remote Identifier
1C SURB - Binary format
1D-1F SURC - Character format

� List, Punch and Reader Device Characteristics

2� SULR List routing remid
21 SUPR Punch routing remid

Device status values for the following
 devices:

SUHS X'8�' - Device started
SUHU X'4�' - Device available
SUHO X'2�' - Output available
SUSKIP X'1�' - Skip to channel 1 requested

22-23 Reserved
24-27 SUL1P Printer 1 - C'LST1'
28 SUL1S Device status
29-2B SUL1L Pointer to LUCB
2C-2F SUL1F Forms ID
3�-33 SUL1C List output classes
34-37 SUL2P Printer 2 - C'LST2'
38 SUL2S Device status
39-3B SUL2L Pointer to LUCB
3�-3F SUL2F Forms ID
4�-43 SUL2C List output classes
44-47 SUL3P Printer 3 - C'LST3'
48 SUL3S Device status
49-4B SUL3L Pointer to LUCB
4�-4F SUL3F Forms ID
5�-53 SUL3C List output classes
54-57 SUP1P Punch - C'PUN1'
58 SUP1S Device status
59-5B SUP1L Pointer to LUCB
5C-5F SUP1F Forms ID
6�-63 SUP1C Punch output classes
64-67 SUR1P Reader - C'RDR1'

 Chapter 5. Storage Layout and Data Areas 645

Bytes Label
Hex. of Field Description/Function
--
68 SUR1S Device status
69-6B SUR1L Pointer to LUCB
6C-6F SUR1F Forms ID (not used by reader)
7�-73 SUR1C Reader class - C'A' (initialized by IPW$$IB)
74-77 SUX1P Exchange media reader - 'RDR2'
78 SUX1S Device status
79-7B SUX1L Pointer to LUCB
7C-7F SUX1F Forms ID (not used by reader)
8�-83 SUX1C Reader class - C'A' (initialized by IPW$$IB)
84-87 SUC1P Console - C'CON1'
88 SUC1S Device status
89-8B SUC1L Pointer to LUCB
8C-8F SUC1C Forms ID (not used by console)
9�-93 SUC1C Console class - C'A' (initialized by IPW$$IB)
94 SUHD Device List delimiter
95-96 Reserved
97 SUDLS Device select indicator

� Compaction Table Information for Outbound (referred to by SOOC)

98-9B SUO1 Name of default table
9C-9F SUO2 Address of default table virtual
A� SUAD Card/document flow

X'8�' - Card inbound allowed
X'4�' - Card outbound allowed
X'�8' - Document inbound allowed
X'�4' - Document outbound allowed

� Message Control Section

A1 SUMR Message request status
X'8�' - Message processor for work

station is active
X'4�' - Request to interrupt IPW$$OB

for outbound message was issued
A2-A4 SUMRL Pointer to the LUCB with the
 suspending IPW$$OB
A5 Unused
A6-A7 SUMN No. of messages
A8 SUMC Subchain index
A9 SUMD Temporary delete chain index
AA SUTY Terminal type
AB SUTF Terminal features

X'8�' - Console specified

� Miscellaneous

AC-AF SUWLW Address of workstation lockword
B�-B3 SULKA Address of Lockword Table
B4-B7 SUW1 Inbound work space address
B8 Reserved
B9-BB SUWSL Pointer to LUCB. If set then work space

is in use by the LUCB being pointed to.
BC-BF SUPL Pointer to first LUCB
C�-C1 SUN1 No. of attached LUCBs
C2-C3 SUN2 No. of active LUCBs
C4-C5 SURUSZ MAX RU BUF SIZE FROM PRMT

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

646 VSE Central Functions V7R1 VSE/POWER DRM

SNA Work Area (WACB)

Definition Macro: IPW$DWA

This work space is reserved for and used by each logical unit processing routine (RDR, LST, PUN, and
MSG).

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 STRUC-
TURE

WADS , DEFINE DUMMY SECTION WADA MOVED FROM BEHIND
WASV

(0) 0 CHAR-
ACTER

256 WADA PLS DYNAMIC AREA

(100) 256 CHAR-
ACTER

16 WASD SECTION DESCRIPTOR

(110) 272 CHAR-
ACTER

16 WABC (0) BUFFER CONTROL FIELDS

(110) 272 SIGNED 4 WARC RESIDUAL COUNT IN BUFFER
(114) 276 ADDRESS 4 WACR CURRENT POSISTION IN BUFFER
(118) 280 ADDRESS 4 WABI ADDRESS BUFFER TO SEND/RECEIVE
(11C) 284 ADDRESS 4 WABP ADDRESS BUFFER IN PROCESS (FILL)
(120) 288 SIGNED 2 WARL LOGICAL RECORD LENGTH
(122) 290 SIGNED 2 RESERVED FOR MSG SERVICE AND COMPRESSION
(124) 292 CHAR-

ACTER
1 WALR (136) LOGICAL RECORD

(1AC) 428 ADDRESS 4 WALR2A LOGICAL RECORD 2 ADDRESS
(1B0) 432 SIGNED 2 WALR2L LOGICAL RECORD 2 LENGTH
(1B2) 434 BITSTRING 2 RESERVED

16 BYTES RESERVED FOR RU SIZE EXCEEDING 256 BYTES

(1B4) 436 ADDRESS 4 WARU1P RU 1 POINTER
(1B8) 440 ADDRESS 4 WARU2P RU 2 POINTER
(1BC) 444 SIGNED 2 WARUBL RU BUFFER LENGTH $RSV
(1BE) 446 SIGNED 2 WARUSZ RU SIZE
(1C0) 448 ADDRESS 4 RESERVED

PROCESSING SWITCH AND STATUS BYTES

(1C4) 452 BITSTRING 1 WASW PROCESSING SWITCHES BITS 0-5 REDEFINED
 1. WACE "X'02'" END OF FILE
 1 WALI "X'01'" LOGICAL INTERFACE OPEN

(1C5) 453 BITSTRING 1 WAST STATUS BYTE
(1C6) 454 BITSTRING 1 WASS DATA STREAM STATE
(1C7) 455 BITSTRING 1 WACS CHAIN STATE
(1C8) 456 BITSTRING 1 WAPR PROCESS OPTIONS IN EFFECT

 1... WAAS "X'80'" ASCII SUPPORT
 .1.. WACM "X'40'" COMPRESSION SUPPORT
 ..1. WATR "X'20'" TRN SUPPORT
 ...1 WASP "X'10'" SPANNING SUPPORT
 1... WARS "X'08'" IRS SUPPORT
 1.. WAXL "X'04'" TRANSLATION REQUESTED
 1 WACP "X'01'" COMPACTION SUPPORT

(1C9) 457 BITSTRING 1 WACI COMPACTION INDICATOR
 1... WAUI "X'80'" IF ON, USE COUNT INCREASED
 .1.. WACF "X'40'" COMPACTION TABLE FOUND

(1CA) 458 BITSTRING 2 RESERVED
(1CC) 460 SIGNED 4 WAPH SAVE AREA FOR LUPH FOR INTERRUPTING

PROCESSORS
(1D0) 464 SIGNED 4 WASN ERROR SENSE BYTES
(1D4) 468 ADDRESS 2 WAMN ERROR MESSAGE NUMBER
(1D6) 470 CHAR-

ACTER
2 RESERVED

(1D8) 472 SIGNED 4 WAER ERROR ROUTINE ADDRESS
(1DC) 476 CHAR-

ACTER
112 WARP RPL + 12 BYTES FOR FUTURE EXPANSION

 Chapter 5. Storage Layout and Data Areas 647

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(24C) 588 CHAR-
ACTER

72 WASV REGISTER SAVE AREA

(294) 660 CHAR-
ACTER

12 RESERVED

(2A0) 672 CHAR-
ACTER

8 WAFM FUNCTION MANAGEMENT HEADER +2 BYTES

(2A0) 672 WALN "*-WADS" LENGTH OF WADS WITHOUT BUFFERS
(2A0) 672 WABF "*" TWO BUFFERS

 CONSTANTS

(2A0) 672 SIGNED WABL "256" NORMAL SNA BUFFER SIZE
(2A0) 672 SIGNED WABM "512" MAXIMUM SNA BUFFER SIZE

 1... WABS "B'10000000'" BETWEEN STATE SETTING
 .1.. WAIN "B'01000000'" IN STATE SETTING
 ..1. WAEP "B'00100000'" END STATE PENDING SETTING
 ...1 WASA "B'00010000'" ABORT STATE SETTING
 1... WASH "B'00001000'" SUSPEND STATE SETTING

PROCESSING SWITCHES AS USED BY PROCESSORS

(2A0) 672 WAIS "WASW" PROCESSING SWITCHES AS USED BY IB
 1... WAIC "X'80'" PROCESSING CONSOLE
 .1.. WAIR "X'40'" PROCESSING READER
 ..1. WAUB "X'20'" UNCONDITIONAL END BRACKET
 ...1 WATI "X'10'" IMM. TERMINATION REQUIRED
 1... WASR "X'08'" RESUME REQUESTED X'02' END OF FILE X'01'

LOGIC. INTERFACE OPEN
(2A0) 672 WAOS "WASW" PROCESSING SWITCHES AS USED BY OB

 1... WAOF "X'80'" EOF REACHED
 .1.. WAOJ "X'40'" EOJ OR CHAIN REACHED
 ..1. WAOL "X'20'" END OF LOGICAL RECORD REACHED
 ...1 WAOR "X'10'" END OF RU REACHED
 1... WAOU "X'08'" SETUP/GO IN PROCESS
 1.. WAF3 "X'04'" FMH3 SEND INDICATOR X'02' END OF FILE X'01'

LOGIC. INTERFACE OPEN
(2A0) 672 WAMS "WASW" PROCESSING SWITCHES AS USED BY MP

 ..1. WAMC "X'20'" COMPONENT NOT AVAILABLE
 ...1 WAMR "X'10'" END OF RU REACHED

RECORD AREAS AS USED BY PROCESSORS

(124) 292 BITSTRING 7 WABD LOGON PROCESSOR FOR BIND IMAGE
(2A8) 680 WANB "*" NIB AND BIND-AREA
(2A0) 672 CHAR-

ACTER
6 FMH (0) FUNCTION MANAGEMENT HEADER IN DWA

(2A0) 672 BITSTRING 1 FMHLN FMH LENGTH BYTE
(2A1) 673 BITSTRING 1 FMHTYP FMH TYPE BYTE

 1... FMHC "X'80'" CONCATENATION
 ..11 1111 FMHTYPE "B'00111111'" FMH TYPE 1

(2A2) 674 BITSTRING 1 FMHSEL FMH SELECT BYTE
 1... FMHDS "B'10000000'" DEMAND SELECT
 .111 FMHMEDIA "B'01110000'" DEVICE SELECT
 FMHCNS "B'00000000'" CONSOLE
 ..1. FMHCRD "B'00100000'" CARD READER
 ..11 FMHPRT "B'00110000'" PRINTER
 1111 FMHLOGAD "B'00001111'" LOGICAL ADDRESS

(2A3) 675 BITSTRING 1 FMHFLAG FMH FLAG BYTE
 1... FMHSTACK "X'80'" ADS SEND BY RECEIVER

(2A4) 676 BITSTRING 1 FMHPROP FMH PROPERTIES BYTE
 111. FMHDSS "B'11100000'" DATA STREAM STATE
 FMHRDS "B'00000000'" DATA STREAM RESUME
 ..1. FMHEDS "B'00100000'" DATA STREAM END
 .1.. FMHBDS "B'01000000'" DATA STREAM BEGIN
 .11. FMHBEDS "B'01100000'" DATA STREAM BEGIN AND END
 1... FMHIDS "B'10000000'" DATA STREAM INTERRUPT(SUSPEND=SDS)
 1.1. FMHADS "B'10100000'" DATA STREAM ABORT
 ...1 1111 FMHDSC "B'00011111'" DATA STREAM CHARACTERISTICS

648 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ...1 FMHDST "B'00010000'" BASIC EXCHANGE
 1.. FMHCMI "B'00000100'" COMPRESSION
 1. FMHCPI "B'00000010'" COMPACTION

(2A5) 677 BITSTRING 1 FMHERCL FMH BASIC EXCHANGE LENGTH BYTE

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 649

Source Library Member Element (SLME)

Definition Macro: IPW$DSL SLME=YES

A source statement library member element is reserved by IPW$$SL for each book. The SMLEs are
chained together whereby the top SLME represents the deepest nesting level. The SLMEs are anchored
to the SLWA.

Offset
Hex

Type Len Name (Dim) Description

(0) ADDRESS 4 SLMNXT NEXT SLME IN CHAIN
(4) BITSTRING 1 SLMFL1 FLAG BYTE 1

 1... SLMPRQ "X'80'" ..POINT REQUIRED
 .1.. SLMEOM "X'40'" ..END OF MEMBER

(5) BITSTRING 1 SLMFL2 FLAG BYTE 2
 1... SLICCF "X'80'" ..SLME IN ICCF FORMAT
 .1.. SLVSESL "X'40'" ..SLME FOR PRIVATE LIB CHAIN
 ..1. SLDISLIB "X'20'" ..DON'T DISCONNECT LIBR
 ...1 SLDISSEC "X'10'" ..DO DISCONNECT SECURITY

(6) BITSTRING 1 SLRTRC FIND RETRY COUNTER (ICCF)
 1.1. SLRTMX "10" ..MAXIMUM NUMBER OF RETRIES

(7) BITSTRING 1 RESERVED
(8) SIGNED 2 SLGP GEN. PURPOSE BYTE SAVE AREA
(A) BITSTRING 2 RESERVED

 11.. SLMARG "*" LIBR ARG / ICCF SUBBLOCK

LAYOUT OF LIBRARIAN MEMBER ARGUMENT LIST

(C) CHAR-
ACTER

8 RESERVED

(14) CHAR-
ACTER

8 LARGMTYP MEMBER TYPE

(1C) CHAR-
ACTER

8 LARGNAM MEMBER NAME

(24) CHAR-
ACTER

12 SLMNOPO NOTE/POINT ARGUMENT FIELD

LAYOUT OF ARGUMENT SUBBLOCK FOR ICCF

(C) CHAR-
ACTER

8 SLMNAME MEMBER NAME

(14) CHAR-
ACTER

8 SLMPWRD MEMBER PASSWORD

(1C) CHAR-
ACTER

8 SLMUSID USERID OF ORIGINATOR

(24) SIGNED 2 SLMLIBN (3) BINARY SUBLIB NUMBERS
(2A) BITSTRING 18 SLMICARG ICCF THIRD WORKSPACE

 ..11 11.. SLMELN "*-SLMEDS" LENGTH OF CONTROL BLOCK

650 VSE Central Functions V7R1 VSE/POWER DRM

Source Library Work Area (SLWA)

Definition Macro: IPW$DSL SLWA=YES

This work space is reserved and used by phase IPW$$SL and provides storage to read records from a
source statement library. The work space is anchored to the partition control block of the partition con-
cerned.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

16 SLWASD STORAGE DESCRIPTOR

 COMMUNICATION SWITCHES

(10) CHAR-
ACTER

1 SLRS READ SSL SWITCH
 C'R' ..READ REQUEST

(11) CHAR-
ACTER

1 SLRR READ RDR SWITCH
 C'R' ..READ REQUEST
 C'I' ..IGNORE RDR RECORD

(12) BITSTRING 1 SLF1 FLAG BYTE 1
 1... SLEOM "X'80'" ..END OF MEMBER
 .1.. SLFPVT "X'40'" ..PRIVATE LIBDEF CHAIN
 1... SLNCNT "X'08'" ..IGNORE CONTINUATION CARD (NOT $$SLI)

(13) CHAR-
ACTER

1 RESERVED FOR FUTURE USE

BUFFER CONTROL INFORMATION

(14) ADDRESS 4 SLCREC CURRENT RECORD ADDRESS
(18) ADDRESS 4 SLLREC ADDR OF LAST REC IN BUFFER

 .1.1 SLRLEN "80" ..SSL RECORD LENGTH
(1C) CHAR-

ACTER
80 SLRBUF (10) BUFFER AREA

EXPRESSION SLRBLN "*-SLRBUF" ..BUFFER AREA LENGTH

POINTERS AND SAVE AREAS

(33C) ADDRESS 4 SLAPDB ADDR OR PART CNTRL BLK
(340) ADDRESS 4 SLASRB ADDR OF SERVICE REQUEST BLK
(344) ADDRESS 4 SLSLME ADDR OF CURR SL-MEMBER ELEM
(348) ADDRESS 4 SLIBUF ADDR OF ICCF PROCESS BUFFER
(34C) ADDRESS 4 SLSAVA (14) SAVE AREA USED BY ASYN SERV
(384) ADDRESS 4 SLDALN DATA NAME LENGTH SAVE AREA
(388) ADDRESS 4 SLDAPL VSE SECURITY APL AREA PNTR
(38C) ADDRESS 4 SLLBAER ADDR OF BAD LIB.SUBLIB NAME

NON-VSE/POWER LIBDEF CHAIN: LIBRARY AND SUBLIBRARY SEARCH NAMES

(390) CHAR-
ACTER

7 SLMLIB1 LIBRARY 1 NAME

(397) CHAR-
ACTER

8 SLMSUB1 SUBLIBRARY 1 NAME

(39F) CHAR-
ACTER

7 SLMLIB2 LIBRARY 2 NAME

(3A6) CHAR-
ACTER

8 SLMSUB2 SUBLIBRARY 2 NAME

(3AE) CHAR-
ACTER

7 SLMLIB3 LIBRARY 3 NAME

(3B5) CHAR-
ACTER

8 SLMSUB3 SUBLIBRARY 3 NAME

 ..1. 11.1 SLSERLN "*-SLMLIB1" LENGTH OF LIST
(3BD) CHAR-

ACTER
3 UNUSED

(3C0) CHAR-
ACTER

8 SLMSCNM LIBDEF CHAIN NAME

(3C8) SIGNED 4 ALIGNMENT

 Chapter 5. Storage Layout and Data Areas 651

Offset
Hex

Type Len Name (Dim) Description

(3C8) BITSTRING SLMSCVEC
(0)

LIBINFO VECTORS

(3C8) ADDRESS 4 LIBINFO VECTORS

AF LIBRARIAN ACCESS CONTROL BLOCK USED FOR PRIVATE SUBLIBRARY CHAIN

(3D8) SIGNED 4 SLWLACB (0)
(3D8) SIGNED 4 LIBINFO
(3DC) SIGNED 4
(3E0) SIGNED 4
(3E4) ADDRESS 4 LOCK TABLE ENTRY
(3E8) SIGNED 4 LAMB
(3EC) BITSTRING 1 MAIN FUNCTION
(3ED) BITSTRING 1 LIBTYPE
(3EE) BITSTRING 1 LIBUSE
(3EF) ADDRESS 1 CHAIN
(3F0) BITSTRING 1
(3F1) ADDRESS 1 DEFAULT
(3F2) BITSTRING 2 LOGICAL UNIT
(3F4) BITSTRING 4 START ADDRESS OF EDT
(3F8) BITSTRING 4 FOR INTERNAL USE ONLY
(3FC) BITSTRING 4 FOR INTERNAL USE ONLY
(400) ADDRESS 1 DEFINE
(401) ADDRESS 1 LEVEL
(402) ADDRESS 1 REPLACE=NO
(403) BITSTRING 1 LBR API OPTION
(404) BITSTRING 4 MOFIFICATION LEVEL
(408) BITSTRING 36 LIBRARY DEFINITION TABLE ENTRY
(42C) BITSTRING 44 SDT ENTRY
(458) ADDRESS 4
(45C) BITSTRING 4
(460) BITSTRING 2 PID
(462) BITSTRING 18 FOR FURTHER USE
(474) SIGNED 2 LBRD0009 LENGTH OF DTL
(476) ADDRESS 1 TYPE OF CONTROL
(477) ADDRESS 1 JC AND VSAM FLAGS
(478) CHAR-

ACTER
12 RESOURCE NAME

(484) CHAR-
ACTER

6 VOLUME ID

(48A) BITSTRING 1 ECB OF ERQUESTING TASK
(48B) BITSTRING 1 RETURN CODE OF THE REQUEST
(48C) BITSTRING 1 FLAG TO POST THE TASK
(48D) BITSTRING 1 BYTE 3 OF ECB
(48E) BITSTRING 1 RESERVED
(48F) BITSTRING 1 RESERVED
(490) BITSTRING 1 RESERVED
(491) BITSTRING 1 RESERVED

RPL AND BUFFER USED BY LIBRARIAN

(494) SIGNED 4
(494) ADDRESS 1 RPL ID FIELD
(495) BITSTRING 1 . RPL SUBTYPE FIELD
(496) ADDRESS 2 RPL LENGTH
(498) BITSTRING 4 . RBA
(49C) ADDRESS 4 . SEARCH ARGUMENT PTR
(4A0) ADDRESS 4 . USER I/O AREA
(4A4) ADDRESS 4 . RECORD LENGTH
(4A8) ADDRESS 4 . I/O AREA LENGTH
(4AC) ADDRESS 4 . ACB POINTER
(4B0) BITSTRING 1 . STRING ID
(4B1) BITSTRING 1 REQUEST TYPE
(4B2) ADDRESS 2 . KEY LENGTH
(4B4) BITSTRING 1 OPTCD BYTE 1
(4B5) BITSTRING 1 OPTCD BYTE 2
(4B6) ADDRESS 1 . RESERVED

652 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Type Len Name (Dim) Description

(4B7) ADDRESS 1 . TEST AND SET BYTE
(4B8) BITSTRING 1 . FLAG BYTE
(4B9) BITSTRING 3 FEEDBACK CODES
(4BC) ADDRESS 4 . POINTER TO NEXT RPL
(4C0) BITSTRING 1 . AIX FLAG BYTE
(4C1) ADDRESS 1 . RESERVED
(4C2) BITSTRING 2 NUMBER OF POINTERS
(4C4) ADDRESS 1 . TRANSACTION ID
(4C5) ADDRESS 3 . RESERVED
(4C8) BITSTRING 128 SLRPL REQUEST PARAMETER LIST AREA
(548) CHAR-

ACTER
1540 SLBUF PROCESS BUFFER AREA

EXPRESSION SLPBSZ "*-SLBUF" LENGTH OF PROCESS BUFFER
(B4C) BITSTRING 1 SLLBMSGL LIBRARIAN MESSAGE BUFFER LENGTH
(B4D) CHAR-

ACTER
121 SLLBMSG LIBRARIAN MESSAGE BUFFER

(C26) CHAR-
ACTER

1 SUPERFLUOS MESSAGE BYTE

(C27) EXPRESSION SLWALN "*-SLDS" LENGTH OF SLWA

 Chapter 5. Storage Layout and Data Areas 653

Spool Parameter List (SPL)

Definition Macro: SPL TYPE=MAP

The SPL is the means of cross-partition communication between VSE/POWER and another program using
the PUTSPOOL, GETSPOOL, or CTLSPOOL interface. When VSE/POWER receives control, the SPL
address is located at the user's XECB+5, and spool management initializes the address in the TCB
(TCPL) for use by VSE/POWER. The external interface is described in the VSE/Advanced Functions
Macro Reference.

Bytes Label
Hex. of Field Description/Function
--
�� SPLB Length of spool parameter list
�1-�3 SPHD SPL header ('SPL')
�4-�B SPJB Unique VSE/POWER job name
�C-�D SPJN VSE/POWER job number
�E-15 SPPW Password
16-1D SPUS Userid of issuer
1E SPER Error feedback

SPIA X'8�' - Invalid address
SPLA X'88' - Invalid SPL address
SPPA X'84' - Invalid POWER buffer address
SPBA X'82' - Invalid data buffer chain
SPPP X'4�' - Diagnostic logged by VSE/POWER
SPFP X'49' - Task is waiting for queue/account file

space. This value will not appear when
the PUTSPOOL/GETSPOOL user receives
control back from VSE/POWER.
The feedback is changed before return
to X'�9'. The feedback X'49' can only
be tested for by users running

 asynchronously.
SPSP X'48' - During PUTSPOOL processing
SPLP X'44' - During GETSPOOL processing
SPCP X'42' - During CTLSPOOL processing
SPAP X'41' - VSE/POWER terminated
SPUE X'2�' - Processing error
SPLE X'28' - Invalid CTLSPOOL request
SPBE X'24' - Loop in PUTSPOOL buffer chain; or, more

than 4�96 buffers used per request
SPPE X'22' - GETSPOOL was unable to locate output

file by specified job name, job class,
and dispatchable VSE/POWER disposition;
or, requested output file is in use

SPSE X'21' - Buffer area too small (88-byte minimum)
SPPI X'1�' - Invalid parameter
SPJI X'18' - Invalid job name
SPPWI X'17' - Invalid password
SPQI X'16' - Invalid queue id
SPCI X'14' - Invalid class
SPDI X'12' - Invalid disposition
SPOI X'11' - Invalid command
SPNR X'��' - Normal return
SPLR X'�8' - End-of-data on GETSPOOL
SPFR X'�9' - Warning: Task had to wait for queue/

account file space.

654 VSE Central Functions V7R1 VSE/POWER DRM

Bytes Label
Hex. of Field Description/Function
--
1F SPER2 Error-feedback byte 2

SPAI X'8�' - Access inhibited (wrong password)
SPME X'�1' - Multiple queue entries found

2� SPR1 PUTSPOOL request type
SPEJ X'4�' - The last data record for internal

reader job is contained in this
 PUTSPOOL request
21 SPR2 CTLSPOOL request type

SPRP X'�1' - Route to new priority
SPRD X'�2' - Route to new disposition
SPRC X'�4' - Route to new class
SPRJ X'�8' - Route to new remote ID
SPCX X'1�' - Cancel from RDR queue
SPSC X'2�' - Scratch from LST queue
SPST X'4�' - Display job status
SPPC X'8�' - User-supplied POWER command

22 SPR3 GETSPOOL request type
SPLD X'�1' - GETSPOOL request
SPPO X'�2' - Position on Q-record
SPBR X'�4' - Position on line number
SPCO X'�8' - Return control characters

23 SPBG X'1�' - Buffered GETSPOOL
SPR4 CTLSPOOL request-byte 2
SPOO X'8�' - Spool queue display
SPQR X'2�' - Queue lookup request

24-2B SPXR PUTSPOOL user's XECB name
2C-33 SPXL GETSPOOL/CTLSPOOL user's XECB name
34-37 SPCB Address current PUTSPOOL buffer area
38-3B SPPB Address user-supplied buffer area for VSE/POWER

SPMO X'1C' - Message displacement in
buffer from byte �

3C-3F SPBL Data buffer area length
4�-43 SPRL Data record length
 SPRS Browse control
44 SPSN Signed browse start control
45-47 SPCT Browse start line number
48 SPCL LST output class
49 SPDP LST output disposition
4A SPCC Print/POWER control character
4B SPSQ Display job status return

C'N' - Not on VSE/POWER queues
C'R' - On RDR queue
C'L' - On LST queue
C'P' - On PUN queue
C'X' - On XMT queue

4C SPQD Job disposition on RDR/LST queue
4D-4E Unused
4F SPNV CTLSPOOL new value
 PRI=
 DISP=
 CLASS=
 REMOTE=
5�-53 SPLC Number of lines/cards
54-57 Reserved for future use

 Chapter 5. Storage Layout and Data Areas 655

Spool Access Support Parameter List (PWRSPL)

Definition Macro: PWRSPL TYPE=MAP

This macro is used to produce a DSECT for the Spool Access Support (SAS). The format is as follows:

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 Spool Access Support Parameter List (PWRSPL)

(0) 0 SIGNED 4 SPLDS (0) START OF SPOOL PARAMETER LIST
(0) 0 CHAR-

ACTER
3 SPLGHD STORAGE DESCRIPTOR SPL

(3) 3 ADDRESS 1 SPLGVM VERSION AND MOD LEVEL
 ...1 SPLGVM1 "X'10'" .. VERSION AND MODIFICATION LVL 10
 ..1. SPLGVM2 "X'20'" .. VERSION AND MOD. LVL 20
 ..11 SPLGVM3 "X'30'" .. VERSION AND MOD. LVL 30

(4) 4 CHAR-
ACTER

8 SPLGJB JOB NAME

(C) 12 ADDRESS 2 SPLGJN JOB NUMBER
(E) 14 BITSTRING 1 SPLGJS JOB SUFFIX NUMBER

 1... SPLGJSLA "X'80'" .. LAST SEGMENT INDICATOR
(NOTE: BITS 1 - 7 ARE THE JOB SUFFIX NUMBER(1 - 127)
IF ANY)

(F) 15 CHAR-
ACTER

1 SPLGCL JOB CLASS

(10) 16 CHAR-
ACTER

8 SPLGPW PASSWORD

(18) 24 CHAR-
ACTER

8 SPLGUS USER ID OF REQUESTOR

(20) 32 CHAR-
ACTER

1 SPLGQI QUEUE IDENTIFIER

CHAR-
ACTER

SPLGQIR "C'R'" .. RDR QUEUE IDENTIFIER

CHAR-
ACTER

SPLGQIL "C'L' .. LST QUEUE IDENTIFIER

CHAR-
ACTER

SPLGQIP "C'P'" .. PUN QUEUE IDENTIFIER

CHAR-
ACTER

SPLGQIX "C'X'" .. XMT QUEUE IDENTIFIER

(21) 33 BITSTRING 1 SPLGFLG FLAG BYTE

THE FOLLOWING FIELDS DEFINE THE REQUEST TYPES. CONTENTS OF
SUBREQUEST BYTE AND FUNCTION BYTES DEPEND ON THE REQUEST

 TYPE.

(22) 34 BITSTRING 1 SPLGRQB REQUEST BYTE
 1 SPLGRPUT "X'01'" .. PUT REQUEST
 1. SPLGRGET "X'02'" .. GET REQUEST
 11 SPLGRCTL "X'03'" .. CTL REQUEST
 1.. SPLGRGCM "X'04'" .. GCM REQUEST

(23) 35 BITSTRING 1 SPLGSRB SUBREQUEST BYTE
 1 SPLGSRDY "X'01'" .. DISPLAY JOB / OUTPUT QUEUE ENTRY
 1. SPLGSRCN "X'02'" .. CANCEL JOB
 11 SPLGSRRL "X'03'" .. RELEASE JOB / OUTPUT QUEUE ENTRY
 1.. SPLGSRHD "X'04'" .. HOLD JOB / OUTPUT QUEUE ENTRY
 1.1 SPLGSRDL "X'05'" .. DELETE JOB / OUTPUT QUEUE ENTRY
 11. SPLGSRAL "X'06'" .. ALTER JOB / OUTPUT QUEUE ENTRY
 111 SPLGSRCM "X'07'" .. VSE/POWER COMMAND
 1... SPLGSRDC "X'08'" .. DELETE CHECKPOINT INFO

(24) 36 BITSTRING 1 SPLGFB1 FUNCTION BYTE 1
 1 SPLGF1AP "X'01'" .. APPEND OF INCOMPLETE QUEUE ENTRY
 1. SPLGF1RS "X'02'" .. RESTART OF QUEUE ENTRY
 11 SPLGF1BR "X'03'" .. BROWSING OF QUEUE ENTRY
 1.. SPLGF1GG "X'04'" .. GENERIC GET REQUEST
 1.1 SPLGF1QM "X'05'" .. PUT:QUEUE COMPLETION MSG

656 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 11. SPLGF1KM "X'06'" .. GCM:RETR. AND KEEP MSG
 111 SPLGF1DM "X'07'" .. GCM:RETR. AND DELETE MSG
 1... SPLGF1RM "X'08'" .. GCM:REMOVE FLAGGED MSG
 1..1 SPLGF1QQ "X'09'" .. PUT:QUEUE JOB EVENT MSG
 1.1. SPLGF1PM "X'0A'" .. GCM:PURGE MESSAGE QUEUE

(25) 37 BITSTRING 1 SPLGFB2 FUNCTION BYTE 2
 1 SPLGF2CL "X'01'" .. ALTER CLASS
 1. SPLGF2DP "X'02'" .. ALTER DISPOSITION
 11 SPLGF2CP "X'03'" .. ALTER COPY NUMBER
 1.. SPLGF2CM "X'04'" .. ALTER COMPACTION TABLE NAME
 1.1 SPLGF2RE "X'05'" .. ALTER REMOTE ID
 11. SPLGF2PR "X'06'" .. ALTER PRIORITY
 111 SPLGF2SY "X'07'" .. ALTER SYSTEM IDENTIFIER
 1... SPLGF2TN "X'08'" .. ALTER DESTINATION NODE NAME
 1..1 SPLGF2TU "X'09'" .. ALTER DESTINATION USER ID
 1.1. SPLGF2MR "X'0A'" .. RELEASE GETS COMPL. MSG

(26) 38 CHAR-
ACTER

8 SPLGNV FIELD CONTAINING NEW VALUE FOR ALTER OR EXTRA
CLASSES

(26) 38 CHAR-
ACTER

3 SPLGACLS EXTRA CLASSES FOR GENERIC GET

(2E) 46 ADDRESS 1 SPLGOPT OPTION BYTE 1
 1... SPLGOSEP "X'80'" .. RETURN SEPARATOR PAGES/CARDS
 .1.. SPLGOFCC "X'40'" .. FEED BACK IMMEDIATE COMMANDS
 ..1. SPLGOALL "X'20'" .. PASS ALL COPIES OF QUEUE ENTRY
 ...1 SPLGOFIX "X'10'" .. RETURN FIXED FORMAT QUEUE DISPLAY
 1... SPLGONOW "X'08'" .. NOWAIT OPTION
 1.. SPLGOACL "X'04'" .. UP TO 3 EXTRA CLASSES SPECIFIED

OPTION BYTE 2 USAGE INFORMATION:
...GO2OJ: THE SUBMITTED JOB MAY GET ANOTHER JOB NUMBER

WHEN TRANSMITTED TO ANOTHER NODE. NORMALLY THIS JOB
NUMBER IS RETURNED TO THE JOB ORIGINATOR NODE. HOWEVER,
IF THIS BIT IS SET IN THE PUT REQUEST, THE NUMBER AT
THE NODE THE JOB ENTERED THE SYSTEM INITIALLY IS

 RETURNED INSTEAD.
THE BIT MUST THEN AGAIN BE SPECIFIED IN THE GCM REQUEST.

...GO2CD: JOB GENERATION MESSAGES CONTAIN THE ID'S, THAT IS,
JOB NAME AND JOB NUMBER OF THE GENERATING AND THE
GENERATED JOB. NORMALLY THE ID OF THE GENERATING JOB IS
USED AS SEARCH CRITERIA FOR THE GCM REQUEST. IF THIS
BIT IS SET, THE ID OF THE GENERATED JOB IS USED.

...GO2WP: IF PEND IS ISSUED WHILE THIS GCM WAIT IS BEING PROCESSED,
ANOTHER GCM-WAIT MAY BE SPECIFIED DURING THE PEND PERIOD,
IF THIS BIT IS SPECIFIED AGAIN.

(2F) 47 BITSTRING 1 SPLGOPT2 OPTION BYTE 2
 1... SPLGO2AC "X'80'" .. CONVERT ASA TO MACHINE CONTROL
 .1.. SPLGO2HU "X'40'" .. REQ.MATCH TO-UID FOR GEN GET
 ..1. SPLGO2BT "X'20'" .. IGNORE BLANK TRUNCATION
 ...1 SPLGO2QN "X'10'" .. USE QUEUE RECORD NUMBER
 1... SPLGO2FE "X'08'" .. ALLOW TO PUT FE-RECORDS
 1.. SPLGO2OJ "X'04'" .. PUT: PASS ORG JOB# IN JEM .. GCM: PASS ORG

JOB# IN SPL
 1. SPLGO2CD "X'02'" .. GCM: USE GENER'D JOB ID
 1 SPLGO2WP "X'01'" .. GCM: NEW WAIT AFTER PEND

(30) 48 BITSTRING 1 SPLGEND (0) SERVES AS ORG POINT FOR OVERLAY
 ..11 SPLGSLEN "*-SPLDS" LENGTH OF GENERAL SECTION

GENERAL SECTION - PART 2
THE FOLLOWING FIELDS CONTAIN DESCRIPTIVE INFORMATION ABOUT
THE QUEUE ENTRY EITHER BUILT OR ACCESSED.

(30) 48 CHAR-
ACTER

1 SPLDDP DISPOSITION OF QUEUE ENTRY

(31) 49 CHAR-
ACTER

1 SPLDPR PRIORITY OF QUEUE ENTRY

(32) 50 ADDRESS 2 SPLDOJ# ORIGINAL JOB NUMBER

 Chapter 5. Storage Layout and Data Areas 657

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(34) 52 CHAR-
ACTER

1 SPLDSID SYSTEM IDENTIFIER

(35) 53 BITSTRING 1 SPLDMOP GENERAL OPTION BYTE 1
(NOTE - BITS ARE DEFINED IN DMB AND QUEUE
RECORD)

 ..1. SPLDMNCS "X'20'" ..NO COPY SEPARATOR PAGES
 ...1 SPLDMOHP "X'10'" ..HOLD WHEN PRT/PUNCH FAILS

(36) 54 BITSTRING 1 SPLDFLG GENERAL FLAG BYTE
 1... SPLDFVSE "X'80'" ..OUTPUT GENERATED BY VSE SYSTEM
 .1.. SPLDFCKI "X'40'" ..EXT CKP INFO EXISTS
 ..1. SPLDFCKE "X'20'" ..EXT CKP INFO NOT AVAILABLE (LOST DUE TO I/O

ERROR)
 ...1 SPLDSKIP "X'10'" ..SET SKIP=YES IN AUTOSTART
 1... SPLDFRUN "X'08'" ..*$$ JOB NORUN=IGN

(37) 55 ADDRESS 1 SPLDCCPY CHECKPOINT COPY NUMBER
(38) 56 ADDRESS 4 SPLDRCT TOTAL RECORD COUNT
(3C) 60 ADDRESS 4 SPLDPCT TOTAL PAGE COUNT (LST ONLY)
(40) 64 ADDRESS 4 SPLDLCT CARD/LINE COUNT (LST/PUN ONLY)
(44) 68 ADDRESS 4 SPLDCREC CHECKPOINT RECORD NUMBER OR

PUT-OPEN-RESTART RECORD NUMBER
(48) 72 CHAR-

ACTER
16 SPLDUI USER INFORMATION

(58) 88 CHAR-
ACTER

8 SPLDONN ORIGINATOR NODE NAME

(60) 96 CHAR-
ACTER

8 SPLDOUID ORIGINATOR USER/REMOTE IDENTIFIER

(68) 104 CHAR-
ACTER

8 SPLDTNN TARGET NODE NAME

(70) 112 CHAR-
ACTER

8 SPLDTUID TARGET USER/REMOTE IDENTIFIER

(78) 120 CHAR-
ACTER

20 SPLDPRGN PROGRAMMER NAME

(8C) 140 CHAR-
ACTER

8 SPLDROOM ROOM NUMBER

(94) 148 CHAR-
ACTER

8 SPLDDEPT DEPARTMENT NUMBER

(9C) 156 CHAR-
ACTER

8 SPLDBLDG BUILDING NUMBER

(A4) 164 ADDRESS 2 SPLDLREC MAXIMUM RECORD LENGTH

 OUTPUT SECTION
THE FOLLOWING FIELDS ARE ONLY APPLICABLE FOR EITHER SPOOLING
OR RETRIEVING OUTPUT TO/FROM THE LST OR PUN QUEUE.

(A6) 166 BITSTRING 1 SPLORCFM RECORD FORMAT
 1... SPLORSCS "X'80'" .. SCS PRINT
 .1.. SPLORBMS "X'40'" .. BMS MAPPING
 ..1. SPLOR327 "X'20'" .. 3270 FORMAT
 ...1 SPLORAPA "X'10'" .. CPDS DATA STREAM (APA DATA)
 1... SPLORESC "X'08'" .. ESCAPE MODE
 1.. SPLORASA "X'04'" .. ASA CONTROL CHARACTER
 1. SPLORMCC "X'02'" .. MACHINE CONTROL CHARACTER

(A7) 167 BITSTRING 1 SPLONCPY NUMBER OF COPIES = 1
(A8) 168 CHAR-

ACTER
4 SPLOCOMP COMPACTION TABLE NAME (RJE,SNA ONLY)

(AC) 172 CHAR-
ACTER

8 SPLOFORM FORMS IDENTIFIER (FNO)

(B4) 180 CHAR-
ACTER

8 SPLOEWTR SUBSYSTEM NAME

(BC) 188 CHAR-
ACTER

8 SPLOFCB FCB NAME

(C4) 196 CHAR-
ACTER

8 SPLOUCB UCB NAME

(CC) 204 BITSTRING 1 SPLOUCBO UCB OPTION BYTE
 1... SPLOUCBD "X'80'" .. BLOCK DATA CHECK OPTION
 .1.. SPLOUCBF "X'40'" .. FOLD OPTION

658 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(CD) 205 BITSTRING 1 SPLONSEP NUMBER OF SEPARATOR PAGES/CARDS
(CE) 206 BITSTRING 2 UNUSED

 3800 SECTION
THE FOLLOWING FIELDS ARE ONLY APPLICABLE FOR 3800 OUTPUT

(D0) 208 CHAR-
ACTER

16 SPL3TAB (0) CHARACTER ARRANGEMENT TABLES

(D0) 208 CHAR-
ACTER

4 SPL3TAB1 CHARACTER ARRANGEMENT TABLE 1

(D4) 212 CHAR-
ACTER

4 SPL3TAB2 CHARACTER ARRANGEMENT TABLE 2

(D8) 216 CHAR-
ACTER

4 SPL3TAB3 CHARACTER ARRANGEMENT TABLE 3

(DC) 220 CHAR-
ACTER

4 SPL3TAB4 CHARACTER ARRANGEMENT TABLE 4

(E0) 224 CHAR-
ACTER

4 SPL3MODF COPY MODIFICATION NAME

(E4) 228 CHAR-
ACTER

4 SPL3CCHR CHAR ARRANGEMENT TABLE FOR COPY MOD

(E8) 232 BITSTRING 8 SPL3CPYG (0) COPY GROUPINGS
(E8) 232 BITSTRING 1 SPL3CPG1 COPY GROUP 1
(E9) 233 BITSTRING 1 SPL3CPG2 COPY GROUP 2
(EA) 234 BITSTRING 1 SPL3CPG3 COPY GROUP 3
(EB) 235 BITSTRING 1 SPL3CPG4 COPY GROUP 4
(EC) 236 BITSTRING 1 SPL3CPG5 COPY GROUP 5
(ED) 237 BITSTRING 1 SPL3CPG6 COPY GROUP 6
(EE) 238 BITSTRING 1 SPL3CPG7 COPY GROUP 7
(EF) 239 BITSTRING 1 SPL3CPG8 COPY GROUP 8
(F0) 240 CHAR-

ACTER
4 SPL3FLSH FLASH IDENTIFIER

(F4) 244 ADDRESS 1 SPL3FLCT FLASH COUNT = 255
(F5) 245 BITSTRING 1 SPL3FLG1 FLAG BYTE 1

 1... SPL3F1BR "X'80'" .. BURST IS REQUESTED
 .1.. SPL3F1TR "X'40'" .. 1ST BYTE CONTAINS TRC CHARACTER
 ..1. SPL3F138 "X'20'" .. 3800 SECTION PRESENT

(F6) 246 BITSTRING 2 UNUSED

EXTENDED SECTION FOR SPL VERSION 2

(F8) 248 ADDRESS 2 SPLEOPOF OFFSET TO START OF OPTBS
(FA) 250 ADDRESS 2 SPLEOPLN LENGTH OF SPECIFIED OPTBS

EXTENDED SECTION FOR SPL VERSION 3
 IR

(FC) 252 CHAR-
ACTER

8 SPLXDIST DISTRIBUTION CODE

(104) 260 ADDRESS 2 SPLXQRJ# ORIGINAL RDR JOB NUMBER
(106) 262 ADDRESS 2 SPLXCKIL EXT CKP INFO LENGTH
(108) 264 ADDRESS 4 SPLXQNUM QUEUE ENTRY NUMBER
(10C) 268 BITSTRING 1 SPLXFLG1 EXTENDED FLAG BYTE 1

 1... SPLX1LGN "X'80'" .. LOG=NO SPECIFIED
 .1.. SPLX1EMG "X'40'" .. EOJMSG=YES SPECIFIED
 ..1. SPLX1ACE "X'20'" .. ENTRY CREATED BY J PUN

(10D) 269 BITSTRING 1 SPLXOB1 EXTENDED OPTION BYTE 1
 1 SPLXO1CQ "X'01'" .. PUT:JEM TO COM.QUEUE
 1. SPLXO1DQ "X'02'" .. PUT:JEM TO COM+USR.QUEUE

(10E) 270 BITSTRING 2 SPLXWAIT GCM: WAIT TIME (0..27962 S)
BITSTRING SPLXWETR "X'FFFF'" .. GCM: WAIT INDEFINITELY

(110) 272 CHAR-
ACTER

8 SPLXSID SECURITY USERID

(118) 280 CHAR-
ACTER

8 SPLXSPW SECURITY PASSWORD

(120) 288 CHAR-
ACTER

8 SPLXPMDE PROCESSING MODE (PRMODE)

(128) 296 BITSTRING 8 SPLXPRIV PUT:PRIVATE USER INFO

 Chapter 5. Storage Layout and Data Areas 659

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(130) 304 CHAR-
ACTER

12 FREE FOR FUTURE USE

EXPRESSION SPLEOPST "*-SPLDS" POSSIBLE START OF OPTBS
EXPRESSION SPLTLEN "*-SPLDS" TOTAL LENGTH OF SPL

 OPTB AREA

(13C) 316 CHAR-
ACTER

1 SPLEOPTB (0) START OF OPTB AREA

VSE/POWER COMMAND SECTION
THE FOLLOWING SECTION IS AN OVERLAY OF THE LAST 3 SECTIONS
AND DEFINES THE COMMAND AREA USED WHEN PASSING A VSE/POWER

 COMMAND.

(30) 48 CHAR-
ACTER

72 SPLCFLD COMMAND FIELD

EXPRESSION SPLGLEN "*-SPLDS" LENGTH OF CONTROL BLOCK

�User Data in XPCCB Changed by POWER

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 BITSTRING 1 PXPBTYP BUFFER TYPE
 1 PXPBTSPL "X'01'" .. SPOOL PARAMETER LIST
 1. PXPBTNDB "X'02'" .. NORMAL DATA BUFFER
 11 PXPBTMSG "X'03'" .. MESSAGE BUFFER
 1.. PXPBTCTL "X'04'" .. CONTROL RECORD BUFFER
 1.1 PXPBTOPT "X'05'" .. BUFFER WITH OUTPUT PARAMETER TEXT

BLOCK(S)
(1) 1 BITSTRING 1 PXPACT1 ACTION TYPE 1
(2) 2 BITSTRING 1 RESERVED
(3) 3 BITSTRING 1 PXPINFO USER INFORMATION BYTE

 1... PXPIMSG "X'80'" .. MESSAGE(S) QUEUED
 .1.. PXPIORD "X'40'" .. ORDER PENDING
 ..1. PXPIPSH "X'20'" .. VSE/POWER IN SHUTDOWN

(4) 4 BITSTRING 1 PXPRETCD RETURN CODE
 PXPRCOK "X'00'" .. OK, NO ERROR
 1.. PXPRCOKF "X'04'" .. REQUEST NOT HANDLED
 1... PXPRCERR "X'08'" .. REQUEST REJECTED
 11.. PXPRCPVL "X'0C'" .. PROTOCOL VIOLATED OR SEVERE ERROR
 ...1 PXPRCNOC "X'10'" .. CONNECTION TERMINATED

(5) 5 BITSTRING 1 PXPFBKCD FEEDBACK CODE
 PXP00OK "X'00'" .. OK, NO ERROR
 1 PXP00EOD "X'01'" .. END OF DATA
 1. PXP00NJB "X'02'" .. JOB NOT ON JOB BOUNDARY
 11 PXP00NRS "X'03'" .. NO RECORD SPOOLED
 1.. PXP00RTR "X'04'" .. RECORD EXCEEDS SPEC. MAX. LENGTH
 1.1 PXP00ZBF "X'05'" .. ZERO DATA BUFFER
 11. PXP00CIA "X'06'" .. CHECKPOINT ID ALTERED
 111 PXP00NCM "X'07'" .. NO JOB CMPL.MS.RETR.(PUT)
 1... PXP00LCM "X'08'" .. 2..5 CMPL.MSG'S (PUT)
 1..1 PXP00OCM "X'09'" .. 0..1 CMPL.MSG'S (PUT)
 1 PXP04NOF "X'01'" .. JOB/OUTPUT NOT FOUND, FIND REASONS IN

PXPFBKC2
 1. PXP04JOP "X'02'" .. JOB/OUTPUT PROTECTED
 11 PXP04BSY "X'03'" .. JOB/OUTPUT MARKED ACTIVE (BUSY)
 1.. PXP04NDS "X'04'" .. JOB/OUTPUT NOT DISPATCHABLE
 1.1 PXP04IDP "X'05'" .. APPEND ERROR, INVALID DISPOSITION
 11. PXP04RER "X'06'" .. RESTART ERROR, OUTSIDE RANGE
 111 PXP04CER "X'07'" .. CHECKPOINT ERROR, OUTSIDE RANGE
 1... PXP04SOD "X'08'" .. SHORT ON SPOOL FILE SPACE (SOD)
 1..1 PXP04SOA "X'09'" .. SHORT ON ACCOUNT FILE SPACE (SOA)
 1.1. PXP04BER "X'0A'" .. REQUEST PROHIBITED IN BROWSE MODE
 1.11 PXP04DNF "X'0B'" .. NOTHING TO DISPLAY IN QUEUE(S) FIND

REASONS IN PXPFBKC2

660 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 11.. PXP04TQN "X'0C'" .. TEMP QUEUE SET NOT FOUND
 11.1 PXP04NMU "X'0D'" .. NO MATCHING USER ID
 111. PXP04WDP "X'0E'" .. RESTART DISP NOT D,H,K,L OR X
 1111 PXP04JSR "X'0F'" .. JOB SUFFIX NUMBER MANDATORY
 ...1 PXP04NOQ "X'10'" .. NO ORDER/SIGNAL QUEUED
 ...1 ...1 PXP04ONF "X'11'" .. OPTB(S) NOT FOUND
 ...1 ..1. PXP04NJC "X'12'" .. NO JOB CMPL.MS.RETR.(GCM)
 ...1 ..11 PXP04CKN "X'13'" .. NO EXTENDED CKP INFO EX.
 ...1 .1.. PXP04CKE "X'14'" .. NO EXTENDED CKP INFO AVAILABLE (LOST DUE

TO I/O-ERROR)
 ...1 .1.1 PXP04NCK "X'15'" .. NO CKP INFO EXISTS (NO RECORD/COPY

NUMBER/ EXTENDED INFO)
 ...1 .11. PXP04NMF "X'16'" .. NO JOB CMPL.MS.FOUND(GCM)
 1 PXP08SPL "X'01'" .. INVALID SPL
 1. PXP08REQ "X'02'" .. UNKOWN REQUEST TYPE
 11 PXP08SRQ "X'03'" .. UNKOWN SUB-REQUEST TYPE
 1.. PXP08FB2 "X'04'" .. UNKOWN FUNCTION BYTE 2
 1.1 PXP08JNM "X'05'" .. INVALID JOB NAME
 11. PXP08QID "X'06'" .. INVALID QUEUE IDENTIFIER
 111 PXP08CLS "X'07'" .. INVALID CLASS
 1... PXP08PWD "X'08'" .. INVALID PASSWORD
 1..1 PXP08UID "X'09'" .. INVALID USER/REMOTE-ID
 1.1. PXP08RFM "X'0A'" .. INVALID RECORD FORMAT
 1.11 PXP08DSP "X'0B'" .. INVALID DISPOSITION
 11.. PXP08PRY "X'0C'" .. INVALID PRIORITY
 11.1 PXP08SID "X'0D'" .. INVALID SYTEM IDENTIFIER
 111. PXP08TNN "X'0E'" .. INVALID DESTINATION NODE
 1111 PXP08TUN "X'0F'" .. INVALID DEST. USER/REMOTE
 ...1 PXP08FNO "X'10'" .. INVALID FORMS IDENTIFIER
 ...1 ...1 PXP08FCB "X'11'" .. INVALID FCB NAME
 ...1 ..1. PXP08UCB "X'12'" .. INVALID UCB NAME
 ...1 .1.. PXP08FLH "X'14'" .. INVALID FLASH IDENTIFIER
 ...1 .1.1 PXP08CPT "X'15'" .. INV. COMPACTION TABLE NAME
 ...1 .11. PXP08CGP "X'16'" .. INVALID COPY GROUPINGS
 ...1 .111 PXP08CHR "X'17'" .. INVALID CHAR TABLE(S)
 ...1 1... PXP08MOD "X'18'" .. INV. COPY MODIFICATION NAME
 ...1 1..1 PXP08CCR "X'19'" .. INVALID CHAR FOR COPY MOD
 ...1 1.1. PXP08BTS "X'1A'" .. BUFFER TOO SMALL
 ...1 1.11 PXP08IAO "X'1B'" .. WRONG SPEC. OF APPEND/RESTART OPT
 ...1 11.. PXP08IAB "X'1C'" .. INVALID ACTION REQUEST
 ...1 11.1 PXP08ICR "X'1D'" .. INVALID CONTROL RECORD
 ...1 111. PXP08PRG "X'1E'" .. INVALID PROGRAMMER NAME
 ...1 1111 PXP08ROO "X'1F'" .. INVALID ROOM NUMBER
 ..1. PXP08DPT "X'20'" .. INVALID DEPARTMENT NUMBER
 ..1. ...1 PXP08BLD "X'21'" .. INVALID BUILDING NUMBER
 ..1. ..1. PXP08CON "X'22'" .. CONFLICTING SPECIFICATIONS
 ..1. ..11 PXP08ROL "X'23'" .. RECEIVED RECORD TOO LARGE
 ..1. .1.. PXP08IBT "X'24'" .. INVALID BUFFER TYPE
 ..1. .1.1 PXP08ROS "X'25'" .. REQUEST OUT OF SEQUENCE
 ..1. .11. PXP08SOS "X'26'" .. SPL RECEIVED OUT OF SEQUENCE
 ..1. .111 PXP08BOS "X'27'" .. RECEIVED BUFFER OUT OF SEQUENCE
 ..1. 1... PXP08RPH "X'28'" .. REQUEST PROHIBITED
 ..1. 1..1 PXP08ISS "X'29'" .. INVALID SIGNAL SPECIFICATION OR SIGNAL

OUT OF SEQUENCE
 ..1. 1.1. PXP08RPW "X'2A'" .. RECORD PREFIX WRONG
 ..1. 1.11 PXP08FB1 "X'2B'" .. UNKOWN FUNCTION BYTE 1
 ..1. 11.. PXP08IML "X'2C'" .. INVALID MAX. RECORD LENGTH IN SPL
 ..1. 11.1 PXP08IEX "X'2D'" .. INVALID SUBSYSTEM NAME
 ..1. 111. PXP08SPA "X'2E'" .. COMPLETE RECORD NOT IN BUFFER
 ..1. 1111 PXP08ICC "X'2F'" .. INVALID CARRIAGE CONTROL CHAR
 ..11 PXP08IOR "X'30'" .. INVALID ORDER
 ..11 ...1 PXP08JNO "X'31'" .. INVALID JOB NUMBER(=0)
 ..11 ..1. PXP08JSF "X'32'" .. INVALID JOB SUFFIX NO (>127)
 ..11 ..11 PXP08IUI "X'33'" .. INVALID USER INFORMATION

 Chapter 5. Storage Layout and Data Areas 661

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..11 .1.. PXP08IPD "X'34'" .. GET-SPL FROM RDR QUEUE OR PUT-SPL NOT
ALLOWED FOR DST

 ..11 .1.1 PXP08UXR "X'35'" .. UNEXPECTED RESPONSE RECEIVED
 ..11 .11. PXP08WOS "X'36'" .. WAIT FOR ORDER OUT OF SEQUENCE
 ..11 .111 PXP08NSP "X'37'" .. INVALID SEPARATOR PAGES/CARDS
 ..11 1... PXP08IRR "X'38'" .. INVALID REQUEST FOR RDR
 ..11 1..1 PXP08IOP "X'39'" .. INVALID OPTB SPECIFIED
 ..11 1.1. PXP08OLM "X'3A'" .. OPTB LENGTH MISMATCH
 ..11 1.11 PXP08DOP "X'3B'" .. DUPLICATE OPTBS SPEC.
 ..11 11.. PXP08OTL "X'3C'" .. SPECIFIED OPTBS TOO LONG
 ..11 11.1 PXP08IDH "X'3D'" .. INVALID DSHR FOUND
 ..11 111. PXP08DIS "X'3E'" .. INVALID DISTRIBUTION CODE
 ..11 1111 PXP08INK "X'3F'" .. INVALID KEYWORD (SYNTAX)
 .1.. PXP08NDK "X'40'" .. DEFINE MISS. FOR KEYWORD
 .1.. ...1 PXP08IDV "X'41'" .. INVALID KEYWORD VALUE
 .1.. ..1. PXP08CKZ "X'42'" .. EXT. CKP INFO LENGTH = 0
 .1.. ..11 PXP08CKL "X'43'" .. EXT. CKP INFO TOO LARGE
 .1.. .1.. PXP08IQN "X'44'" .. QUEUE RECORD NO INVALID
 .1.. .1.1 PXP08GJN "X'45'" .. GENERIC JOBNAME
 .1.. .11. PXP08SEU "X'46'" .. INVALID SECURITY USERID
 .1.. .111 PXP08SEP "X'47'" .. INVALID SECURITY PASSWD
 .1.. 1... PXP08IPM "X'48'" .. INVALID PROCESSING MODE
 1 PXP0CINS "X'01'" .. SEND ISSUED, BUT SENDR REQUIRED
 1. PXP0CIXF "X'02'" .. USED XPCC FCT NOT SUPPORTED
 11 PXP0CBTL "X'03'" .. BUFFER TOO LARGE
 1.. PXP0CPER "X'04'" .. PROTOCOL ERROR
 1.1 PXP0CPVD "X'05'" .. PROTOCOL VIOLATION BY DDS (ORDER

QUEUED FLAG NOT HONORED)
 111 PXP0CIOE "X'07'" .. I/O ERROR ON QUEUE/DATA/ACCOUNT FILE

 X'01' .. RESERVED FOR FUTURE USE
 11 PXP10CAA "X'03'" .. CONNECTION ALREADY ACTIVE
 1.1 PXP10PSP "X'05'" .. PSTOP GIVEN BY OPERATOR
 11. PXP10SIE "X'06'" .. SEVERE INTERNAL ERROR

(6) 6 BITSTRING 2 PXPROFF OFFSET TO INVALID RECORD
(6) 6 BITSTRING 2 PXPRBLN REQUIRED BUFFER LENGTH
(6) 6 BITSTRING 2 PXPLEMC COUNT OF LOST JOB EVNT MSG'S
(6) 6 BITSTRING 1 PXPFBKC2 FEEDBACK CODE 2:

----- part 1 ---------
 Following valid only with:
- PXPRCOKF = PXP04NOF
- PXPRCOKF = PXP04DNF

 PXPC2OK "X'00'" .. ALL-CMDS, NO ERROR
 1 PXPC2TEM "X'01'" .. R|H-CMD NO ACCESS TO DISP=X|A|Y
 1. PXPC2NOH "X'02'" .. H-CMD HOLD ONLY FOR DISP=D|K
 11 PXPC2NOR "X'03'" .. R-CMD RELEASE ONLY FOR DISP=H|L
 1.. PXPC2NTA "X'04'" .. A-CMD WARNING NOTHING TO CHANGE
 1.1 PXPC2CPO "X'05'" .. A-CMD COPY CHANGE FOR ' ' ENTRY BUT ADDI-

TIONAL OPERANDS GIVEN
 11. PXPC2CDI "X'06'" .. A-CMD COPY CHANGE FOR ' ' ENTRY BUT 'PDIR'

OUTBOUND TASK FOUND
 111 PXPC2CNT "X'07'" .. A-CMD COPY CHANGE FOR ' ' ENTRY NO SUIT-

ABLE ACTIVE TASK FOUND
 1... PXPC2BAD "X'08'" .. ALL-CMDS|GET, QUEUE RECORD NOT ACCES-

SIBLE DUE TO I/O ERROR
 1..1 PXPC2FRE "X'09'" .. ALL-CMDS|GET, QUEUE REC. EMPTY, ALREADY

IN FREE Q-RECORD CHAIN
 1.1. PXPC2MQU "X'0A'" .. ALL-CMDS|GET, MISMATCH QUEUE
 1.11 PXPC2MJM "X'0B'" .. ALL-CMDS|GET, MISMATCH JOB NAME
 11.. PXPC2MJB "X'0C'" .. ALL-CMDS|GET, MISMATCH JOB NUMB
 11.1 PXPC2IPW "X'0D'" .. A|H|L|R-CMD, SPL SPECIFIED USER PASSWORD

MISMATCHING Q-REC PWD
 111. PXPC2BPW "X'0E'" .. A|H|L|R-CMD, DEFAULT SPL PWD NO MATCH TO

Q-RECORD PASSWORD
 1111 PXPC2JFR "X'0F'" .. A|H|L|R-CMD JOB ONLY, FROM-NODE OR

FROM-USER NOT MATCHING OWN

662 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ...1 PXPC2OT1 "X'10'" .. A|H|L|R-CMD,OUTPUT ONLY,TO-USER NOT
MATCHING TO OWN USER-ID

 ...1 ...1 PXPC2OT2 "X'11'" .. A|H|L|R-CMD, SIMILAR PXPC2OT1
 ...1 ..1. PXPC2OT3 "X'12'" .. A|H|L|R-CMD, SIMILAR PXPC2OT1
 ...1 ..11 PXPC2OTN "X'13'" .. A|H|L|R-CMD OUTPUT ONLY,TO-NODE NOT

MATCHING TO OWN NODE NAME
 ...1 .1.. PXPC2MJS "X'14'" .. A|H|L|R-CMD|GET, MISMATCHING JOB(OUTPUT)

SUFFIX
 ...1 .1.1 PXPC2MCL "X'15'" .. GET-RQ, MISMATCHING JOB CLASS
 ...1 .11. PXPC2MSY "X'16'" .. GET-RQ, MISMATCH TARGET SYSID
 ...1 .111 PXPC2MFU "X'17'" .. GET-RQ. USERID NOT MATCHING TO

'FROM'-USERID OF JOB ENTRY
 ...1 1... PXPC2MFT "X'18'" .. GET-RQ. USERID NOT MATCHING TO

FROM|TO-USERID OF OUTPUT ENTRY
----- part 2 ---------
 Following valid only with:
- PXPRCOKF = PXP08CON

 1 PXPC222A "X'01'" .. BUFFER LENGTH=0, BUT BUFFER TYPE IS SET
 1. PXPC222B "X'02'" .. BUFFER LENGTH=0, BUT NO ACTION IS SET
 11 PXPC222C "X'03'" .. BUFFER LENGTH=0, BUT NO ACTION AND NO

SIGNAL IS SET, DST TASK
 1.. PXPC222D "X'04'" .. BUFFER LENGTH=¬0, BUT NO BUFFER TYPE IS

SET
 1.1 PXPC222E "X'05'" .. BUFFER LENGTH=¬0, BUT SIGNAL IS SET, DST

TASK
 11. PXPC222F "X'06'" .. BUFFER LENGTH=¬0, BUT BUFFER TYPE AND

ACTION ARE SET, NO SERVICE IN PROGRESS
 111 PXPC222G "X'07'" .. BUFFER LENGTH=¬0, BUT BUFFER TYPE AND

ACTION ARE SET,GET/CTL/GCM SERVICE IN PROGRESS
 1... PXPC222H "X'08'" .. PUT-CLOSE REQUEST, INVALID BUFFER TYPE
 1..1 PXPC222I "X'09'" .. PUT-SEGMENT REQUEST, INVALID BUFFER

TYPE
 1.1. PXPC222J "X'0A'" .. PUT-APPEND REQUEST, INVALID BUFFER TYPE
 1.11 PXPC222K "X'0B'" .. PUT-CHECKPOINT REQUEST, INVALID BUFFER

TYPE
 11.. PXPC222L "X'0C'" .. PUT-QUIT REQUEST, INVALID BUFFER TYPE

----- part 3 ---------
 Following valid only with:
- PXPRCOKF = PXP08ROS

 1 PXPC225A "X'01'" .. BUFFER LENGTH=0, BUT NOT SERVICE AND NO
MSG IN PROGRESS, NO VALID REQUEST, NO SIGNAL
(DST TASK)

 1. PXPC225B "X'02'" .. GET-SERVICE, SEND DATA REQUEST UBT NO
MORE DATA AVAILABLE

 11 PXPC225C "X'03'" .. MSG-SERVICE, GET MSG REQUEST BUT NO
MORE MESSAGES AVAILABLE

 1.. PXPC225D "X'04'" .. GCM-SERVICE HAS FINISHED< BUT NO NEW
SPL RECEIVED

 1.1 PXPC225E "X'05'" .. GCM-OPEN-KEEP IN PROGRESS, NO GCM-MORE
& NO GCM-REMOVE REQUEST

 11. PXPC225F "X'06'" .. GCM-OPEN-DELETE IN PROGRESS, NO
GCM-MORE REQUEST

 111 PXPC225G "X'07'" .. GCM-OPEN-REMOVE OR PURGE IN PROGRESS:
ANY REQUEST RECEIVED

 1... PXPUSLN "*-PXPUSER" LENGTH OF CONTROL BLOCK

�User Data in XPCCB Changed by User

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 BITSTRING 1 PXUBTYP BUFFER TYPE
 1 PXUBTSPL "X'01'" .. SPOOL PARAMETER LIST
 1. PXUBTNDB "X'02'" .. NORMAL DATA BUFFER

 Chapter 5. Storage Layout and Data Areas 663

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1.. PXUBTCTL "X'04'" .. CONTROL RECORD BUFFER
(1) 1 BITSTRING 1 PXUACT1 ACTION TYPE 1

 1 PXUATEOD "X'01'" .. END OF DATA (PUT-FCT)
 1. PXUATRQS "X'02'" .. CLOSE QUEUE ENTRY (GET-FCT)
 11 PXUATABR "X'03'" .. QUIT-REQUEST
 1.. PXUATSGM "X'04'" .. SEGMENTATION REQUEST
 1.1 PXUATROE "X'05'" .. EOD FOR APPENDABLE OUTPUT
 11. PXUATPRG "X'06'" .. PURGE QUEUE ENTRY RESQUEST
 111 PXUATCHK "X'07'" .. CHECKPOINT REQUEST
 1... PXUATRMR "X'08'" .. RETURN MESSAGE REQUEST
 1..1 PXUATSDR "X'09'" .. SEND DATA REQUEST
 1.1. PXUATFLH "X'0A'" .. FLUSH HOLD REQUEST
 1.11 PXUATROR "X'0B'" .. RETURN ORDER/SIGNAL IMMEDIATELY
 11.. PXUATWFR "X'0C'" .. WAIT TILL ORDER/SIGNAL TO RETURN
 11.1 PXUAT1PF "X'0D'" .. PRINTING/PUNCHING FAILED
 111. PXUATCKR "X'0E'" .. RETRIEVE EXT CKP INFO
 ...1 PXUATDEL "X'10'" .. DELETE RETR. MSG'S (GCM)
 ...1 ...1 PXUATGCM "X'11'" .. RETR. MORE MSG'S (GCM)

(2) 2 BITSTRING 1 RESERVED
(3) 3 BITSTRING 1 PXUINFO USER INFORMATION BYTE
(4) 4 BITSTRING 1 PXURETCD RETURN CODE
(5) 5 BITSTRING 1 PXUFBKCD FEEDBACK CODE
(6) 6 BITSTRING 1 PXUSIGNL SIGNAL BYTE

 1 PXUSDSTP "X'01'" .. DEVICE STOPPED
 1. PXUSSET "X'02'" .. SETUP PROCESSED

(7) 7 BITSTRING 1 RESERVED
 1... PXUUSLN "*-PXUUSER" LENGTH OF CONTROL BLOCK

�VSE/POWER General Constants

The following statements define some constatns used for the cross partition communication.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..11 SPLMINSZ "SPLGSLEN" MINIMAL SPL LENGTH
SIGNED SPLMAXBS "64*1024" MAXIMAL BUFFER SIZE FOR POWER

�VSE/POWER Record Prefix Layout

The following statements define the genreal format of each logical data record within a buffer.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 BITSTRING 1 RECCCODE COMMAND CODE
(1) 1 BITSTRING 1 RECTYPE RECORD TYPE

 RECTNORM "X'00'" .. NORMAL DATA RECORD
 1 RECTSPL "X'01'" .. RECORD IS SPOOL PARAMETER LIST
 1. RECTFIXM "X'02'" .. FIXED FORMAT MESSAGE
 11 RECTSEPR "X'03'" .. SEPARATOR PAGE/CARD RECORD
 1.. RECT3540 "X'04'" .. 3540 DATA RECORD
 1.1 RECTCCR "X'05'" .. CONTROL COMMAND RECORD
 11. RECTCPDS "X'06'" .. CPDS DATA RECORD (APA)
 111 RECTESEP "X'07'" .. END SEPARATOR PAGE/CARD RECORD
 1... RECTEOC "X'08'" .. END OF COPY
 1..1 RECTFJCM "X'09'" .. FIX. FORM. JOB CMPL MSG
 1.1. RECTFJGM "X'0A'" .. FIX. FORM. JOB MESSAGE

(2) 2 SIGNED 2 RECLNGTH LOGICAL RECORD LENGTH
(4) 4 ADDRESS 4 RECLOGNO LOGICAL RECORD NUMBER

 1... RECPRFXL "*-RECPRFIX" LENGTH OF PREFIX
 1... RECDATA "*" DATA RECORD TEXT

664 VSE Central Functions V7R1 VSE/POWER DRM

�VSE/POWER Fixed Format Queue Display Record

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PXFMRLEN RECORD LENGTH
(2) 2 BITSTRING 1 PXFMTYPE RECORD TYPE

 1 PXFMTQDI "X'01'" .. FIXED FORMAT QUEUE DISPLAY
(3) 3 BITSTRING 1 PXFMVOL TAPE BAM VOLUME NUMBER

 1... PXFMVOLA "X'80'" .. LAST VOLUME FLAG
 .111 1111 "X'7f'" .. (volume number)

 (127 means 127 or more)
(4) 4 CHAR-

ACTER
8 PXFMDATE DATE

(C) 12 CHAR-
ACTER

4 PXFMSTRT START TIME (0HHMMSSF)

(10) 16 CHAR-
ACTER

4 PXFMSTOP STOP TIME (0HHMMSSF)

(14) 20 CHAR-
ACTER

16 PXFMUSER USER INFORMATION

(24) 36 CHAR-
ACTER

8 PXFMNAME JOB NAME

(2C) 44 ADDRESS 2 PXFMJNUM JOB NUMBER
(2E) 46 BITSTRING 1 PXFMJSUF JOB SUFFIX NUMBER

 1... PXFMJSLA "X'80'" .. LAST SEGMENT INDICATOR
(NOTE: BITS 1 - 7 ARE THE JOB SUFFIX NUMBER(1 - 127)
IF ANY)

(2F) 47 CHAR-
ACTER

1 PXFMQUID QUEUE IDENTIFIER (R, L, P)

(30) 48 CHAR-
ACTER

1 PXFMCLSS CLASS

(31) 49 CHAR-
ACTER

1 PXFMPRIO PRIORITY

(32) 50 CHAR-
ACTER

1 PXFMDISP DISPOSITION (' '..IN EXEC.)

(33) 51 ADDRESS 1 PXFMCOPY NUMBER OF COPIES
(34) 52 BITSTRING 1 PXFMFLG1 CONTROL FLAG 1

 1... PXFMF1XQ "X'80'" .. QUEUE SET RESIDES IN XMIT QUEUE
 .1.. PXFMF1AB "X'40'" .. ABENDED EMTRY, DISP=X
 ..1. PXFMF1AP "X'20'" .. APPENDABLE ENTRY, DISP=A
 ...1 PXFMF1CP "X'10'" .. CHECKPOINTED CRE-ENTRY
 1... PXFMF1PF "X'08'" .. PRT/PUN FAILED ENTRY, D=Y
 111 PXFMF107 "X'04'+X'02'+X'01'" .. RESETS NON-APPLICABLE FLAGS

FOR QUEUE RECORD QRS1
 1.. PXFMF1EX "X'04'" .. DUE DATE EXPIRED
 1. PXFMF1SE "X'02'" .. SECNODE PRESENT

(35) 53 BITSTRING 1 PXFMRCFM RECORD FORMAT
(36) 54 CHAR-

ACTER
1 PXFMSTAT PAPER STATUS BYTE

 C'B' .. BURST REQUESTED
(37) 55 CHAR-

ACTER
1 PXFMSYID SYSTEM ID. (TARGET/PROCESS.) OR 'M', IF PARALLEL

USERS EXIST ON > 1 SHARING CPU
(38) 56 ADDRESS 4 PXFMREC# NUMBER OF RECORDS SPOOLED
(3C) 60 ADDRESS 4 PXFMPGE# NUMBER OF PAGES SPOOLED
(40) 64 ADDRESS 4 PXFMLNE# NUMBER OF LINES/CARDS SPOOLED
(44) 68 CHAR-

ACTER
4 PXFMFLSH FLASH IDENTIFIER

(48) 72 CHAR-
ACTER

8 PXFMFORM FORMS IDENTIFIER

(50) 80 BITSTRING 8 PXFMCPYG COPY GROUPINGS
(58) 88 BITSTRING 1 PXFMFLG2 CONTROL FLAG 2

FLAGS REFER TO THE EXECUTION CLASS OF THE
SUBJECT JOB
FLAGS X'80' - X'04' ARE ONLY SET FOR READER QUEUE
ENTRIES, THAT ARE NEITHER IN EXECUTION PREPARA-
TION PHASE NOR IN DISPOSITION = ' ' STATE

 1... PXFM2SDF "X'80'" .. CLASS DEFINED AS STATIC
 .1.. PXFM2SRN "X'40'" .. STATIC CLASS RUNNING

 Chapter 5. Storage Layout and Data Areas 665

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. PXFM2SWW "X'20'" .. ST. CL. WAITING FOR WORK
 ...1 PXFM2DDF "X'10'" .. CLASS DEFINED AS DYNAMIC
 1... PXFM2DSP "X'08'" .. DYNAMIC CLASS SUSPENDED
 1.. PXFM2DEN "X'04'" .. DYNAMIC CLASS ENABLED
 1. PXFM2PRP "X'02'" .. IN EXECUTION PREP. PHASE
 1 PXFM2RUN "X'01'" .. *$$ JOB NORUN=IGN

(59) 89 ADDRESS 1 PXFMNSEP NUMBER OF SEP. PAGES / CARDS
(5A) 90 ADDRESS 2 PXFMJBO# ORIGINAL JOB NUMBER
(5C) 92 CHAR-

ACTER
4 PXFMCMPT COMPACTION TABLE NAME

(60) 96 CHAR-
ACTER

8 PXFMNODE TARGET DESTINATION NODE NAME

(68) 104 CHAR-
ACTER

8 PXFMUSID TARGET DESTINATION USER/REMOTE ID

(70) 112 CHAR-
ACTER

8 PXFMORGN ORIGINATING NODE NAME

(78) 120 CHAR-
ACTER

8 PXFMORGU ORIGINATING USER/REMOTE ID

(80) 128 CHAR-
ACTER

8 PXFMSUBS SUBSYSTEM NAME (EXTERNAL WRITER ID)

(88) 136 CHAR-
ACTER

5 PXFMDDND
(0)

NEXT DUE DATE
 IF NO TES INFO EXISTS OR LST/PUN OUTPUT: ZEROS

(88) 136 CHAR-
ACTER

2 PXFMDDN1 DAY OR MONTH

(8A) 138 CHAR-
ACTER

1 PXFMDDS1 SEPARATOR /

(8B) 139 CHAR-
ACTER

2 PXFMDDN2 DAY OR MONTH

(8D) 141 CHAR-
ACTER

5 PXFMDDNT
(0)

NEXT DUE TIME
IF NO TES INFO EXISTS OR LST/PUN OUTPUT: ZEROS
IF RDR NON-DISPATCHABLE: 2 DASHES (--) AND HEX
ZEROS

(8D) 141 CHAR-
ACTER

2 PXFMDDNH HOURS

(8F) 143 CHAR-
ACTER

1 PXFMDDS2 SEPARATOR :

(90) 144 CHAR-
ACTER

2 PXFMDDNM MINUTES

(92) 146 CHAR-
ACTER

2 PXFMDATC CENTURY OF CREATION DATE

(94) 148 ADDRESS 4 PXFMQNUM QUEUE ENTRY NUMBER
(98) 152 CHAR-

ACTER
8 PXFMSECN QUEUE ENTRY SECURITY ZONE (SECNODE)

(A0) 160 CHAR-
ACTER

8 PXFMDIST OUTPUT DISTRIBUTION CODE

(A8) 168 BITSTRING 10 PXFMMACC
(0)

MULT. BROWSE ACCESS COUNTS:

(A8) 168 BITSTRING 1 PXFMMACN .. NON SHARED ACCESS COUNT
(A9) 169 BITSTRING 1 PXFMMAC1 .. SHARED SYSID 1 ACC. CNT.
(AA) 170 BITSTRING 1 PXFMMAC2 .. SHARED SYSID 2 ACC. CNT.
(AB) 171 BITSTRING 1 PXFMMAC3 .. SHARED SYSID 3 ACC. CNT.
(AC) 172 BITSTRING 1 PXFMMAC4 .. SHARED SYSID 4 ACC. CNT.
(AD) 173 BITSTRING 1 PXFMMAC5 .. SHARED SYSID 5 ACC. CNT.
(AE) 174 BITSTRING 1 PXFMMAC6 .. SHARED SYSID 6 ACC. CNT.
(AF) 175 BITSTRING 1 PXFMMAC7 .. SHARED SYSID 7 ACC. CNT.
(B0) 176 BITSTRING 1 PXFMMAC8 .. SHARED SYSID 8 ACC. CNT.
(B1) 177 BITSTRING 1 PXFMMAC9 .. SHARED SYSID 9 ACC. CNT.

 1.11 ..1. PXFMLENG "*-PXFMDSCT" LENGTH OF CONTROL RECORD

�VSE/POWER Restart Control Record

666 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PXRSRLEN RECORD LENGTH
(2) 2 BITSTRING 1 PXRSTYPE RECORD TYPE

 1. PXRSTRST "X'02'" .. RESTART CONTROL RECORD
(3) 3 BITSTRING 1 RESERVED FOR FUTURE USE
(4) 4 ADDRESS 4 PXRSRECN LOG. RECORD NO FROM WHERE TO BEGIN
(8) 8 ADDRESS 1 PXRSRCPY ASSOCIATED COPY NUMBER
(9) 9 BITSTRING 1 PXRSOPT OPTION BYTE

 1... PXRSOPOL "X'80'" .. POSITIONING ON LINES WANTED
 .1.. PXRSOPAE "X'40'" .. POSITION AT END OF QUEUE ENTRY, IF

REC-NUMB > MAXIMUM
 ..1. PXRSOPOP "X'20'" .. POSITION ON PAGE WANTED

(A) 10 BITSTRING 2 UNUSED
 11.. PXRSLENG "*-PXRSDSCT" LENGTH OF RESTART CONTROL RECORD

�VSE/POWER Checkpoint Control Record

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PXCPRLEN RECORD LENGTH
(2) 2 BITSTRING 1 PXCPTYPE RECORD TYPE

 11 PXCPTCHK "X'03'" .. CHECKPOINT CONTROL RECORD
(3) 3 BITSTRING 1 PXCPFLAG FLAG BYTE

 1... PXCPFXIE "X'80'" .. EXTENDED INFO EXISTS
(4) 4 ADDRESS 4 PXCPRECN LOG. RECORD NUMBER
(8) 8 ADDRESS 1 PXCPRCPY ASSOCIATED NUMBER OF COPY
(9) 9 BITSTRING 3 UNUSED

 11.. PXCPLENG "*-PXCPDSCT" LENGTH OF CHECKPOINT CONTROL
RECORD

(C) 12 CHAR-
ACTER

1 PXCPSTXI (0) START OF EXTENDED INFO

�VSE/POWER Checkpoint Response Control Record

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PXCRRLEN RECORD LENGTH
(2) 2 BITSTRING 1 PXCRTYPE RECORD TYPE

 1.. PXCRTCRS "X'04'" .. CHECKPOINT RESPONSE CONTROL REC.
(3) 3 BITSTRING 1 PXCRFLAG FLAG BYTE

 1... PXCRFXIE "X'80'" .. EXTENDED INFO EXISTS
 .1.. PXCRFXIS "X'40'" .. EXTENDED INFO SAVED

(4) 4 CHAR-
ACTER

8 PXCRJNAM JOB NAME

(C) 12 ADDRESS 2 PXCRJNUM JOB NUMBER
(E) 14 BITSTRING 1 PXCRJSUF JOB SUFFIX NUMBER

 1... PXCRJSLA "X'80'" .. LAST SEGMENT INDICATOR
(NOTE: BITS 1 - 7 ARE THE JOB SUFFIX NUMBER(1 - 127)
IF ANY)

(F) 15 ADDRESS 1 PXCRRCPY ASSOCIATED COPY NUMBER
(10) 16 ADDRESS 4 PXCRRECN LOG. RECORD NUMBER ASSOCIATED WITH CHECK-

POINT
(14) 20 ADDRESS 4 PXCRQNUM QUEUE RECORD NUMBER
(18) 24 ADDRESS 4 RES. FOR FUTURE @D52BDHS

 ...1 11.. PXCRLENG "*-PXCRDSCT" LENGTH OF CHECKPOINT RESPONSE
REC.

(1C) 28 CHAR-
ACTER

1 PXCRSTXI (0) START OF EXTENDED INFO

�VSE/POWER GET_OPTB Control Record

 Chapter 5. Storage Layout and Data Areas 667

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PXGORLEN RECORD LENGTH
(2) 2 BITSTRING 1 PXGOTYPE RECORD TYPE

 1... PXGOTGOP "X'08'" .. GET_OPTB CONTROL RECORD
(3) 3 BITSTRING 1 RESERVED FOR FUTURE USE
(4) 4 ADDRESS 2 PXGOID OPTB IDENTIFIER (0 FOR ALL)

 11. PXGOLENG "*-PXGODSCT" LENGTH OF GET_OPTB CTL REC.

�VSE/POWER MODIFY_OPTB Control Record

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PXMORLEN RECORD LENGTH
(2) 2 BITSTRING 1 PXMOTYPE RECORD TYPE

 1..1 PXMOTMOP "X'09'" .. MODIFY_OPTB CONTROL REC.
(3) 3 BITSTRING 1 RESERVED FOR FUTURE USE
(4) 4 BITSTRING 4 RESERVED FOR PIPELINING

 1... PXMOHDRL "*-PXMODSCT" LENGTH OF FIXED HEADER
(8) 8 CHAR-

ACTER
1 PXMOOPTB

(0)
OUTPUT PARAMETER TEXT BLOCK

�DSECT for Old Version SPL's

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 CHAR-
ACTER

48 XTSGSECT GENERAL SECTION PART 1

(30) 48 CHAR-
ACTER

118 XTSDSECT GENERAL SECTION PART 2

(A6) 166 CHAR-
ACTER

42 XTSOSECT OUTPUT SECTION

(D0) 208 CHAR-
ACTER

40 XTS3SECT 3800 SECTION

(F8) 248 CHAR-
ACTER

4 XTSESECT (0) OPTB EXTENSION @D52QDHS

(F8) 248 ADDRESS 2 XTSOPOF OFFSET OF OPTBS
(FA) 250 ADDRESS 2 XTSOPLN LENGTH OF OPTBS

 1111 11.. XTSEOPST "*" POSSIBLE START OF OPTBS
(FC) 252 CHAR-

ACTER
1 XTSEOPTB (0) START OF OPTBS

�VSE/POWER Order Control Records

The Order Control Record consists of two sections:
- Header Section
- Variable Order Data Section

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PORDRLEN RECORD LENGTH
(2) 2 BITSTRING 1 PORDTYPE RECORD TYPE

 1.1 PORDREC "X'05'" .. ORDER CONTROL RECORD
(3) 3 BITSTRING 1 PORDMOD ORDER REQUEST TYPE

 1 PORDMSTR "X'01'" .. START DEVICE ORDER
 1. PORDMSTP "X'02'" .. STOP DEVICE ORDER
 11 PORDMRST "X'03'" .. RESTART DEVICE ORDER
 1.. PORDMPGO "X'04'" .. REACTIVATE DEVICE ORDER
 1.1 PORDMSET "X'05'" .. SETUP DEVICE ORDER
 11. PORDMFLH "X'06'" .. FLUSH DEVICE ORDER
 111 PORDMXMT "X'07'" .. USER DEFINED ORDER
 ...1 PORDMSND "X'10'" .. SEND MESSAGE ORDER

668 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ...1 ...1 PORDMSLD "X'11'" .. SET LOGICAL DESTINATION ORDER
 ...1 ..1. PORDMPAO "X'12'" .. ACCOUNT RECORD ORDER

(4) 4 BITSTRING 1 PORDFLAG FLAG BYTE
 1... PORDFQFD "X'80'" .. QUEUE FOR DISPLAY

(5) 5 ADDRESS 1 PORDMSGL LENGTH OF MESSAGE
(6) 6 BITSTRING 2 PORDAFPL LENGTH OF ADVANCED FUNCTION PRINTING ACCOUNT

RECORD
(8) 8 CHAR-

ACTER
24 PORDDEST

(0)
DESTINATION

(8) 8 CHAR-
ACTER

8 PORDSUBS REQUESTING SUBSYSTEM ID

(10) 16 CHAR-
ACTER

8 PORDNODE REQUESTING NODE NAME

(18) 24 CHAR-
ACTER

8 PORDUSER REQUESTING USER IDENTIFIER

 ..1. PORDHLEN "*-PORDER" LENGTH OF HEADER SECTION
(20) 32 BITSTRING 1 PORDSTRT

(0)
SERVES AS ORG POINT FOR OVERLAY

START DEVICE ORDER SECTION

(20) 32 CHAR-
ACTER

8 PORDSDEV DEVICE NAME

(28) 40 CHAR-
ACTER

4 PORDSCLS CLASS(ES)

(2C) 44 BITSTRING 2 RESERVED FOR FUTURE USE
(2E) 46 BITSTRING 2 PORDSFLG FLAG BYTE

 1... PORDSSKP "X'80'" .. PSTART WITH SKIP=YES
(2F) 47 ADDRESS 1 PORDSPSL LENGTH OF PARAMETER STRING
(30) 48 CHAR-

ACTER
60 PORDSPRM PARAMETER STRING

 .11. 11.. PORDSLEN "*-PORDER" LENGTH OF START DEVICE ORDER

STOP DEVICE ORDER SECTION

(20) 32 BITSTRING 1 PORDPTRB TERMINATION REQUEST BYTE
 1... PORDPEOJ "X'80'" .. TERMINATE AT END-OF-JOB
 .1.. PORDPIMM "X'40'" .. TERMINATE IMMEDIATELY
 ..1. PORDPRST "X'20'" .. TERMINATE WITH RESTART

(21) 33 BITSTRING 2 RESERVED FOR FUTURE USE
(23) 35 ADDRESS 1 PORDPPSL LENGTH OF PARAMETER STRING
(24) 36 CHAR-

ACTER
60 PORDPPRM PARAMETER STRING

 .11. PORDPLEN "*-PORDER" LENGTH OF STOP DEVICE ORDER

SETUP DEVICE ORDER SECTION

(20) 32 ADDRESS 4 PORDUPGE NUMBER OF PAGES
(24) 36 BITSTRING 11 RESERVED FOR FUTURE USE
(2F) 47 ADDRESS 1 PORDUPSL LENGTH OF PARAMETER STRING
(30) 48 CHAR-

ACTER
60 PORDUPRM PARAMETER STRING

 .11. 11.. PORDULEN "*-PORDER" LENGTH OF SETUP DEVICE ORDER

REACTIVATE DEVICE ORDER SECTION

(20) 32 BITSTRING 3 RESERVED FOR FUTURE USE
(23) 35 ADDRESS 1 PORDGPSL LENGTH OF PARAMETER STRING
(24) 36 CHAR-

ACTER
60 PORDGPRM PARAMETER STRING

 .11. PORDGLEN "*-PORDER" LENGTH OF REACTIVATE DEVICE SECTION

RESTART DEVICE ORDER SECTION

(20) 32 BITSTRING 1 PORDTFLG FLAG BYTE
 1... PORDTPOS "X'80'" .. POSITIVE DISPLACEMENT
 .1.. PORDTMIN "X'40'" .. NEGATIVE DISPLACEMENT
 ..1. PORDTABS "X'20'" .. DISPLACEMENT FROM BEGIN

(21) 33 BITSTRING 3 RESERVED FOR FUTURE USE
(24) 36 ADDRESS 4 PORDTPGE NUMBER OF PAGES / LINES

 Chapter 5. Storage Layout and Data Areas 669

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(28) 40 BITSTRING 7 RESERVED FOR FUTURE USE
(2F) 47 ADDRESS 1 PORDTPSL LENGTH OF PARAMETER STRING
(30) 48 CHAR-

ACTER
60 PORDTPRM PARAMETER STRING

 .11. 11.. PORDTLEN "*-PORDER" LENGTH OF RESTART DEVICE SECTION

FLUSH DEVICE ORDER SECTION

(20) 32 BITSTRING 1 PORDFFLG FLAG BYTE
 1... PORDFHLD "X'80'" .. FLUSH HOLD REQUESTED

(21) 33 BITSTRING 2 RESERVED FOR FUTURE USE
(23) 35 ADDRESS 1 PORDFPSL LENGTH OF PARAMETER STRING
(24) 36 CHAR-

ACTER
60 PORDFPRM PARAMETER STRING

 .11. PORDFLEN "*-PORDER" LENGTH OF FLUSH DEVICE SECTION

XMIT DEVICE ORDER SECTION

(20) 32 ADDRESS 1 PORDXPSL LENGTH OF COMMAND
(21) 33 CHAR-

ACTER
132 PORDXPRM USER DEFINED COMMAND

 1.1. .1.1 PORDXLEN "*-PORDER" LENGTH OF XMIT DEVICE SECTION
 1.1. .1.1 PORDERMX "PORDXLEN" MAXIMAL ORDER LENGTH

SEND MESSAGE ORDER SECTION (INBOUND)

(20) 32 CHAR-
ACTER

120 PORDMMSG MESSAGE TEXT

 1..1 1... PORDMLEN "*-PORDER" LENGTH OF SEND MESSAGE ORDER
SECTION

SET LOGICAL DESTINATION ORDER SECTION (INBOUND)

(20) 32 CHAR-
ACTER

64 PORDLOG8
(0)

8 LOGICAL DESTINATION NAMES

(20) 32 CHAR-
ACTER

8 PORDDLOG
(8)

LOGICAL DESTINATION NAME

 .11. PORDDLEN "*-PORDER" LENGTH OF SET LOG. DEST. SECTION

PUT ACCOUNT RECORD ORDER (INBOUND)

(20) 32 BITSTRING 1 PORDAFPA
(0)

ADVANCED FUNCTION PRINTING ACCOUNT RECORD

�VSE/POWER Order Response Control Record

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PORSRLEN RECORD LENGTH
(2) 2 BITSTRING 1 PORSTYPE RECORD TYPE

 11. PORSREC "X'06'" .. ORDER RESPONSE CONTROL RECORD
(3) 3 BITSTRING 1 PORSMOD ORDER REQUEST TYPE SEE ORDER RECORD FOR DEFI-

NITIONS
(4) 4 BITSTRING 1 PORSFLAG FLAG BYTE

 1... PORSFMID "X'80'" .. TEXT CONTAINS MSG ID(DOM)
(5) 5 ADDRESS 1 PORSMSGL LENGTH OF MESSAGE
(6) 6 BITSTRING 2 PORSRCFC

(0)
RETURN- AND FEEDBACK CODE

(6) 6 BITSTRING 1 PORSRETC ORDER RESPONSE RETURN CODE
 PORSROK "X'00'" .. ORDER ACCEPTED
 1.. PORSROKF "X'04'" .. ORDER ACCEPTED BUT REQ. CAN NOT BE

HANDLED
 1... PORSRINV "X'08'" .. ORDER INVALID OR NOT ACCEPTED

(7) 7 BITSTRING 1 PORSFDBK ORDER RESPONSE FEEDBACK CODE
 PORSFOK "X'00'" .. OK FEEDBACKCODE FROM USER TO POWER
 1 PORSFPAR "X'01'" .. PARM STRING MISSING OR INVALID
 1. PORSFONA "X'02'" .. ORDER NOT ACCEPTED
 11 PORSFDUN "X'03'" .. PSTART - DEVICE UNKNOWN
 1.. PORSFDBS "X'04'" .. PSTART - DEVICE BUSY

670 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1.1 PORSFDOS "X'05'" .. PSTART - DEVICE OUT OF SERVICE
 11. PORSFDRJ "X'06'" .. PSTART - REJECTED FEEDBACKCODE FROM

POWER TO USER
 1 PORSFNAC "X'01'" .. ACCNTING NOT INITIALIZED
 1 PORSFINV "X'01'" .. INVALID OR UNKNOWN ORDER
 1. PORSFOTS "X'02'" .. ORDER TOO SHORT
 11 PORSFMSG "X'03'" .. MSG LENGTH TOO LARGE
 1.. PORSFSLD "X'04'" .. SLD WITH INVALID DESTINATIONS
 1.1 PORSFPAC "X'05'" .. LENGTH FIELDS MISMATCH
 11. PORSFRTL "X'06'" .. ACCNT REC TOO SMALL/LG

(8) 8 CHAR-
ACTER

24 PORSDEST
(0)

DESTINATION

(8) 8 CHAR-
ACTER

8 PORSSUBS DESTINATION SUBSYSTEM ID

(10) 16 CHAR-
ACTER

8 PORSNODE DESTINATION NODE NAME

(18) 24 CHAR-
ACTER

8 PORSUSER DESTINATION USER IDENTIFIER

 ..1. PORSHLEN "*-PORDRESP" LENGTH OF HEADER SECTION
(20) 32 CHAR-

ACTER
120 PORSMSG MESSAGE TEXT

(20) 32 BITSTRING 4 PORSMID MESSAGE ID FOR DOM
 ..1. .1.. PORSMLEN "*-PORDRESP" LENGTH OF SHORT RECORD
 1..1 1... PORSTLEN "*-PORDRESP" LENGTH OF TOTAL RECORD

�VSE/POWER Signal Control Record

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PSGNRLEN RECORD LENGTH
(2) 2 BITSTRING 1 PSGNLTYP RECORD TYPE

 111 PSGNLREC "X'07'" .. SIGNAL CONTROL RECORD
(3) 3 BITSTRING 1 PSGNLMOD SIGNAL TYPE

 1 PSGNLTOA "X'01'" .. OUTPUT ARRIVED SIGNAL
(4) 4 BITSTRING 4 RESERVED

 1... PSGNLLEN "*-PSIGNAL" LENGTH OF TOTAL RECORD

�VSE/POWER Message Control Record

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PMSGRLEN RECORD LENGTH
(2) 2 BITSTRING 1 PMSGTYPE RECORD TYPE

 1... PMSGTREC "X'80'" .. MESSAGE CONTROL RECORD
(3) 3 BITSTRING 1 RESERVED
(4) 4 BITSTRING 1 PMSGFLAG FLAG BYTE
(5) 5 ADDRESS 1 PMSGTXTL MESSAGE LENGTH
(6) 6 BITSTRING 2 RESERVED FOR FUTURE USE
(8) 8 CHAR-

ACTER
8 PMSGSUBS DESTINATION SUBSYSTEM ID

(10) 16 CHAR-
ACTER

8 PMSGNODE DESTINATION NODE NAME

(18) 24 CHAR-
ACTER

8 PMSGUSER DESTINATION USER IDENTIFIER

 ..1. PMSGHLEN "*-PMSGREC" LENGTH OF HEADER SECTION
(20) 32 CHAR-

ACTER
120 PMSGTEXT MESSAGE TEXT

 1..1 1... PMSGTLEN "*-PMSGREC" LENGTH OF TOTAL RECORD

�VSE/POWER Notify Control Record

 Chapter 5. Storage Layout and Data Areas 671

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 ADDRESS 2 PNTYRLEN RECORD LENGTH
(2) 2 BITSTRING 1 PNTYTYPE RECORD TYPE

 1... ...1 PNTYTREC "X'81'" .. NOTIFY CONTROL RECORD
(3) 3 BITSTRING 1 RESERVED
(4) 4 BITSTRING 1 PNTYFLAG FLAG BYTE
(5) 5 BITSTRING 3 RESERVED FOR FUTURE USE
(8) 8 CHAR-

ACTER
8 PNTYJNAM JOB NAME

(10) 16 ADDRESS 2 PNTYJNUM JOB NUMBER
(12) 18 BITSTRING 1 PNTYJSUF JOB SUFFIX

 1... PNTYJSLA "X'80'" .. LAST SEGMENT INDICATOR
(NOTE: BITS 1 - 7 ARE THE JOB SUFFIX NUMBER(1 - 127)
IF ANY)

(13) 19 CHAR-
ACTER

1 PNTYJCLA CLASS

(14) 20 CHAR-
ACTER

8 PNTYDEST TARGET USER IDENTIFIER

 ...1 11.. PNTYLEN "*-PNTYREC" LENGTH OF CONTROL RECORD

�Class of Job Event Messages: Fixed Format Job Completion Message Record (JCM Record)

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 CHAR-
ACTER

5 JCMID MESSAGE IDENTIFIER (1Q5DI)

(5) 5 CHAR-
ACTER

2 RESERVED FOR FUTURE USE

(7) 7 BITSTRING 1 JCMFLT SYSTEM CONFIG INFO (COMREG)
 1... JCMFDD "X'80'" ..DATE FORMAT IS DDMMYY

(8) 8 CHAR-
ACTER

8 JCMFNAM JOB NAME

(10) 16 BITSTRING 4 JCMFNUM JOB NUMBER (JOB NUM)
(14) 20 BITSTRING 4 JCMFONUM GENERAT'G JOB NUM (ORG.JOB)
(18) 24 CHAR-

ACTER
8 JCMFNOD PROCESSING NODE NAME

(20) 32 CHAR-
ACTER

8 JCMFECT PROCESSING COMPLETION TIME

(28) 40 CHAR-
ACTER

4 JCMFLRC LAST RETURN CODE

(2C) 44 CHAR-
ACTER

4 JCMFMRC HIGHEST RETURN CODE

(30) 48 CHAR-
ACTER

8 JCMFECD PROCESSING COMPLETION DATE

(38) 56 BITSTRING 1 JCMFJC7 JOB CNTROL FLAG 7 (JCSW7)
 1... JCMFJ7CA "X'80'" ..OPERATOR CANCEL PENDING
 1. JCMFJ7JC "X'02'" ..JOB CONTROL CANCEL

(39) 57 BITSTRING 1 JCMFJC8 JOB CNTROL FLAG 8 (JCSW8)
 1... JCMFJ8AB "X'08'" ..ABNORMAL TERMINATION

(3A) 58 CHAR-
ACTER

10 JCMFDUR JOB DURATION HHHH/MM/SS

(44) 68 CHAR-
ACTER

2 JCMFECDC CENTURY OF PROC. COMPLETION

(46) 70 CHAR-
ACTER

10 RESERVED FOR FUTURE USE

(50) 80 BITSTRING 8 JCMFPRIV DATA FROM SPLXPRIV
(58) 88 CHAR-

ACTER
8 JCMFUSID USERID FROM SPLGUS

 .11. JCMFLEN "*-JCMDS" LENGTH OF JCM RECORD

�Class of Job Event Messages: Fixed Format Job Generation Message Record (JGM Record)

672 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 CHAR-
ACTER

5 JGMID MESSAGE IDENTIFIER (1Q5HI)

(5) 5 CHAR-
ACTER

3 RESERVED FOR FUTURE USE

(8) 8 CHAR-
ACTER

8 JGMFNAM GENERATING JOB NAME

(10) 16 BITSTRING 4 JGMFNUM GENERATING JOB NUMBER
(14) 20 CHAR-

ACTER
8 JGMFNNAM GENERATED JOB NAME

(1C) 28 BITSTRING 4 JGMFNNUM GENERATED JOB NUMBER
(20) 32 CHAR-

ACTER
44 RESERVED FOR FUTURE USE

(4C) 76 BITSTRING 4 JGMF1NUM ORIGINAL GEN'TING JOB NUMB
(50) 80 BITSTRING 8 JGMFPRIV DATA FROM SPLXPRIV
(58) 88 CHAR-

ACTER
8 JGMFUSID USERID FROM SPLGUS

 .11. JGMFLEN "*-JGMDS" LENGTH OF JGM RECORD ASM H V 02 11.32

 Chapter 5. Storage Layout and Data Areas 673

SPL Checking Parameter List

Definition Macro: IPW$SSJ DSECT

The parameter list is used by the parameter checking routine (IPW$$PC).

Bytes Hex. Label of Field Description/Function

00 PCPLDS Start of DSECT
00-03 PCPLISPL Address of SPL to be checked
04-05 Reserved for future use
06 PCPLRETC Return code
07 PCPLFBKC Feedback code
08-0B PCPLWSPL Address of work SPL to be updated
0C-0F PCPLQREC Address of queue record to be updated
10-13 PCPLJHR Address of JHR to be updated
14-17 PCPLDHR Address of DSHR to be updated
18-19 Unused
1A-1B PCPLSSJC Save area for carrier subtype
� Work Area
1C-1D PCPLSTYP Work Area to check carrier type
1E PCPLCTX Context constellation flags
 PCPLCTCG X'80' - 3800 copy groupings present
 PCPLCTMC X'40' - 3800 copy modification CAT present
 PCPLCTMC X'20' - Security Userid present
 PCPLCTMC X'10' - Security Password present
1F PCPLWKF Work area flags
 PCPLWKF3 X'80' - 3800 section present in SPL
 PCPLWKFH X'40' - Disposition equal 'H' or 'L'
20 PCPLCTYP Carrier type
21 PCPLWCGN Number of 3800 copy groups
22-23 Reserved for future use
24-27 PCPLFFWA Address of first fixed format work area (FFWA)
28-2B PCPLWK1 Work area 1
2C-33 PCPLWK2 Work area 2
34-37 PCPLWKJP Address of VSE/POWER section in JHR
38-3B PCPLWKDP Address of VSE/POWER section in DSHR
3C-3F PCPLWKD3 Address of 3800 section in DSHR
40-43 PCPLWKS1 Link register save area 1
44-47 PCPLWKS2 Link register save area 2
48-4B PCPLWKS3 Link register save area 3

674 VSE Central Functions V7R1 VSE/POWER DRM

Spool Access Support Task Work Area

Definition Macro: IPW$DXW

This macro is used to produce a DSECT for the Spool Access Support (SAS) task work area. The work
area is retrieved by the SAS master task and released by its user, the SAS task. The work area is
anchored into the TCB at label TCBXWRKA. The format is as follows:

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 Spool Access Support Task Workarea

(0) 0 DBL WORD 8 XTWAREA (0) WORK AREA
(0) 0 CHAR-

ACTER
48 XTWDD DYNAMIC DATA DUE TO REENTRANCY FOR MAINLINE

MODULE IPW$$XT
(30) 48 CHAR-

ACTER
16 XTWSD SECTION DESCRIPTOR

(40) 64 ADDRESS 4 XTWTCB ADDRESS OF OWNING TASK
(44) 68 SIGNED 2 XTWTOKEN TOKEN OF TASK
(46) 70 BITSTRING 1 XTWSECFG VSE SECURITY FLAG
(47) 71 BITSTRING 1 XTWSECF2 VSE SECURITY TOKEN FLAG

 1... XTWSECFT "X'08'" .. SECURITY TOKEN FG TOKTRST
(48) 72 ADDRESS 4 XTWSPARD SAVED SPOOL ACCOUNT RECORD
(4C) 76 SIGNED 2 XTWSPARL LENGTH OF SAVED SPOOL ACCOUNT RECORD
(4E) 78 SIGNED 2 NOT USED
(50) 80 BITSTRING 8 XTWUUSER SAVED RECEIVED USER DATA FROM XPCCB
(58) 88 CHAR-

ACTER
8 XTWSECUR VSE SECURITY USERID

(60) 96 ADDRESS 4 NOT USED
(64) 100 ADDRESS 4 NOT USED
(68) 104 ADDRESS 4 NOT USED
(6C) 108 ADDRESS 4 NOT USED

WORKAREA FOR A FUNCTION MODULE
(IPW$$XTC, IPW$$XTG, IPW$$XTP, IPW$$XTM)

(70) 112 CHAR-
ACTER

380 XTWFAUTD DYNAMIC DATA DUE TO REENTRANCY FOR
IPW$$XTC/G/P/M @D61LDTR

(1EC) 492 CHAR-
ACTER

16 XTWFSD SECTION DESCRIPTOR

(1FC) 508 BITSTRING 1 XTWSTAF1 STATUS BYTE 1
 1... XTWSF1LO "X'80'" .. LOGICAL INTERFACE OPENED
 .1.. XTWSF1QP "X'40'" .. QUEUE ENTRY PROCESSING
 ..1. XTWSF1ED "X'20'" .. END OF DATA ENCOUNTERED
 ...1 XTWSF1LR "X'10'" .. EOD, BUT STILL 1 REC TO PROCESS
 1... XTWSF1ER "X'08'" .. ERROR FOUND
 1.. XTWSF1NR "X'04'" .. BUFFER NOR RE-USABLE FOR RECEIVE
 1. XTWSF1IE "X'02'" .. INITIAL END OF DATA

(1FD) 509 BITSTRING 1 XTWSTAF2 STATUS BYTE 2
 1... XTWSF2PC "X'80'" .. PUT-REQUEST CHECKPOINTED OUTPUT
 .1.. XTWSF2PL "X'40'" .. PUT-REQUEST LOCATED QUEUE SET

(1FE) 510 BITSTRING 1 XTWFUNRC RETURN CODE OF FUNCTION ROUTINE
 XTWFROK "X'00'" .. NO ERROR OCCURRED
 1... XTWFRST "X'80'" .. STOP TASK
 .1.. XTWFRER "X'40'" .. END OF REQUEST
 ..1. XTWFRSOA "X'20'" .. SHORT ON ACCOUNT SITUATION
 1... XTWFROPN "X'08'" .. REQUEST OPEN ERROR
 1.. XTWFRMER "X'04'" .. REQUEST SOD ERROR DURING PUT
 1. XTWFRSUB "X'02'" .. SUBREQUEST ERROR

(1FF) 511 BITSTRING 1 XTWACCSP CANCEL CODE FOR GET
(200) 512 ADDRESS 4 XTWPLIR0 LOGICAL INTERFACE REG 0
(204) 516 ADDRESS 4 XTWPLIR1 LOGICAL INTERFACE REG 1
(208) 520 SIGNED 4 XTWPUTCK PUT CHECKPOINT ID
(20C) 524 ADDRESS 4 XTWOPIAD ADDRESS OF OPI PARALIST
(210) 528 ADDRESS 4 NOT USED

 Chapter 5. Storage Layout and Data Areas 675

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(214) 532 ADDRESS 4 XTWFFSV (14) SAVE AREA FOR TCB, REGD, REGE - 9

OVERLAY STRUCTURE OF STATUS BYTE 1 FOR MODULE IPW$$XTM

(1FC) 508 BITSTRING 1 XTWMSTAT DEFINE XTM STATUS BYTE
 1 XTWMSKF2 "X'01'" .. SKIP FLAG2 MESSAGES
 1. XTWMRTF1 "X'02'" .. RETURN FLAG1 MESSAGE
 11 XTWMRTF2 "X'03'" .. RETURN FLAG2 MESSAGE
 1.. XTWMRTAL "X'04'" .. RETURN MESSAGE
 1.1 XTWMDLF2 "X'05'" .. SWITCH OFF FLAG2 MSGS

OVERLAY STRUCTURE OF STATUS BYTE 2 FOR MODULE IPW$$XTM

(1FD) 509 BITSTRING 1 XTWMTOK DEFINE XTM TOKEN
 1 XTWMTGM "X'01'" .. GCM-MORE TOKEN
 1. XTWMTGR "X'02'" .. GCM-REMOVE TOKEN
 11 XTWMTGK "X'03'" .. GCM-OPEN-KEEP TOKEN

OVERLAY STRUCTURE OF CANCEL CODE BYTE XTWACCSP FOR IPW$$XTM

(1FF) 511 BITSTRING 1 XTWMFL DEFINE FLAG BYTE
 1... XTWMMSR "X'80'" .. ONE MSG RETRIEVED SO FAR
 .1.. XTWMACI "X'40'" .. ACIE FOUND
 ..1. XTWMFOU "X'20'" .. JC MESSAGE FOUND
 ...1 XTWMRAF "X'10'" .. REMOVE ACIE FLAG
 1... XTWMUTR "X'08'" .. SPLGUS TRANLATED IN XTM
 1.. XTWMDNF "X'04'" .. DO NOT FLAG ACIE (PURGE)
 1. XTWDUM2 "X'02'" .. RESERVED FOR FUTURE
 1 XTWDUM1 "X'01'" .. RESERVED FOR FUTURE

WORKAREA FOR SUBROUTINE MODULE IPW$$XTS

(24C) 588 CHAR-
ACTER

96 XTWSAUTD DYNAMIC DATA DUE TO REENTRANCY FOR SUBROU-
TINE MODULE IPW$$XTS

(2AC) 684 CHAR-
ACTER

16 XTWSSD SECTION DESCRIPTOR

(2BC) 700 BITSTRING 1 XTWSUB REQUEST FOR SUBROUTINE MODULE
 1 XTWSUBWE "X'01'" .. WAIT FOR NEXT EVENT
 1. XTWSUBRV "X'02'" .. PROCESS POSTED RECEIVE ECB
 11 XTWSUBRP "X'03'" .. SEND REPLY
 1.. XTWSUBXE "X'04'" .. TEST XPCC ERROR
 1.1 XTWSUBSM "X'05'" .. SEND MESSAGE FOR DST TASK
 11. XTWSUBJH "X'06'" .. PROCESS JOB HEADER RECORD
 111 XTWSUBDH "X'07'" .. PROCESS DATASET HEADER RECORD

(2BD) 701 BITSTRING 1 XTWSUBRC RETURN CODE OF SUBROUTINE
 XTWSROK "X'00'" .. NO ERROR OCCURRED
 1... XTWSRST "X'80'" .. STOP TASK
 .1.. XTWSRPE "X'40'" .. PROTOCOL ERROR
 ..1. XTWSRRE "X'20'" .. REQUEST ERROR
 ...1 XTWSRBY "X'10'" .. LINE BUSY

(2BE) 702 BITSTRING 1 XTWSTAS1 STATUS BYTE 1 FOR SUBROUTINE
 1... XTWSS1ST "X'80'" .. STOP DUE TO DST TASK
 .1.. XTWSS1OR "X'40'" .. WAITING FOR ORDER RESPONSE
 ..1. XTWSS1WR "X'20'" .. WAITING FOR REPLY/REACTIVATION
 ...1 XTWSS1OQ "X'10'" .. RECEIVED ORDER QUEUED

(2BF) 703 BITSTRING 1 XTWSTAS2 STATUS BYTE 2 FOR SUBROUTINE
 1... XTWSS2SF "X'80'" .. SECTION FOUND IN CONTROL RECORD

(2C0) 704 BITSTRING 1 XTWSOVER VERSION OF OLD SPL
(2C1) 705 BITSTRING 1 NOT USED
(2C2) 706 BITSTRING 1 NOT USED
(2C3) 707 BITSTRING 1 NOT USED
(2C4) 708 ADDRESS 4 XTWSCTP POINTER TO FOUND SECTION
(2C8) 712 ADDRESS 4 XTWRIORD REPLY AREA FOR INBOUND ORDER
(2CC) 716 ADDRESS 4 XTWREPPA ADDRESS OF REPLY PARAMETERS
(2D0) 720 CHAR-

ACTER
8 XTWREPA (0) REPLY BUFFER FOR SENDR MACRO

(2D0) 720 ADDRESS 4 XTWRADR ADDRESS OF REPLY AREA
(2D4) 724 ADDRESS 4 XTWRLNG LENGTH OF REPLY AREA
(2D8) 728 ADDRESS 4 NOT USED

676 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(2DC) 732 ADDRESS 4 XTWSMSGA MESSAGE TO SEND FOR DST TASK
(2E0) 736 ADDRESS 4 XTWSMSGR REASON CODE FOR MESSAGE
(2E4) 740 ADDRESS 4 XTWSMSGD DESTINATION FOR MESSAGE
(2E8) 744 ADDRESS 4 XTWSOSPL ADDRESS OF OLD VERSION SPL
(2EC) 748 ADDRESS 4 XTWSTFWA TRACE FACILITY WORK AREA
(2F0) 752 ADDRESS 4 NOT USED
(2F4) 756 ADDRESS 4 XTWSFSV

(14)
SAVE AREA FOR TCB, REGD, REGE - 9

WORKAREA FOR ALL IPW$$XT- MODULES

(32C) 812 CHAR-
ACTER

16 XTWASD SECTION DESCRIPTOR

(33C) 828 BITSTRING 1 XTWACT ACTION BYTE
 1... XTWAREP "X'80'" .. REPLY TO SEND
 .1.. XTWASPL "X'40'" .. SPL TO PROCESS
 ..1. XTWARST "X'20'" .. PERFORM RESTART
 ...1 XTWASOA "X'10'" .. SOA-SITUATION TO PROCESS

(33D) 829 BITSTRING 1 XTWSTAT1 STATUS BYTE
 1... XTWST1CL "X'80'" .. LST-QUEUE ENTRY FOR D-CMD
 .1.. XTWST1DN "X'40'" .. NOTHING TO DISPLAY
 ..1. XTWST1MP "X'20'" .. MESSAGE PROCESSING
 ...1 XTWST1RP "X'10'" .. SPL REQUEST PROCESSING
 1... XTWST1PM "X'08'" .. 1ST TIME FOR PUT MESSAGE
 1.. XTWST1MR "X'04'" .. RESTART FOR MESSAGE PROCESSING
 1. XTWST1MS "X'02'" .. SEND REPLY FOR MSG PROCESSING
 1 XTWST1SD "X'01'" .. SHORT ON DASD OCCURRED DURING CTL

(33E) 830 BITSTRING 1 XTWSTAT2 STATUS BYTE
 1... XTWST2NR "X'80'" .. NEW RECORD TO RETRIEVE
 .1.. XTWST2TR "X'40'" .. TRACE WANTED
 ..1. XTWST2CT "X'20'" .. LOGICAL I/F CLOSED BY TR

(33F) 831 BITSTRING 1 XTWTRACF TRACE FUNCTION
 1 XTWTRRCV "X'01'" .. TRACE XPCC RECEIVE
 1. XTWTRREP "X'02'" .. TRACE XPCC REPLY

(340) 832 ADDRESS 4 XTWSSPL SPL SAVED DURING PUT REQUEST
(344) 836 8 XTWINT1 USED BY $XTC FOR CVD @D61QDTR
(34C) 844 ADDRESS 4 XTWPUTAR ADDRESS OF TEMPORARY WORKAREA
(350) 848 ADDRESS 4 XTWLOPL (3) PARAMETER LIST FOR IPW$$LO

A(0) ADDRESS OF JOB HEADER WORKAREA
A(0) ADDRESS OF DATASET HEADER WORKAREA
A(0) ADDRESS OF JOB TRAILER WORKAREA

(35C) 860 ADDRESS 4 XTWFMSG ADDRESS OF FIRST MESSAGE
(360) 864 ADDRESS 4 XTWLMSG ADDRESS OF LAST MESSAGE
(364) 868 ADDRESS 4 XTWTEMPA TEMPORARY ADDRESS
(368) 872 SIGNED 4 XTWTEMPL TEMPORARY LENGTH
(36C) 876 BITSTRING 8 XTWBUF (0) BUFFER-VALUES
(36C) 876 BITSTRING 1 XTWBUFI USAGE OF BUFFER

 1... XTWBUF1 "X'80'" .. USE 1 BUFFER ONLY
(36D) 877 ADDRESS 3 XTWBUFAD ADDRESS OF BUFFER
(370) 880 SIGNED 4 XTWBUFLN LENGTH OF BUFFER
(374) 884 SIGNED 4 XTWBUFUS USED BYTES IN BUFFER
(378) 888 SIGNED 4 XTWBUFWT LENGTH OF BUFFER TO BE RETRIEVED
(37C) 892 SIGNED 4 XTWBUFGT LENGTH OF BUFFER USED BY IPW$$XTG
(380) 896 CHAR-

ACTER
8 XTWEOJ BUFFER FOR DOS OR PWR EOJ

(388) 904 SIGNED 4 XTWACIE ADDR. OF ACIE USED BY $XTM
(38C) 908 CHAR-

ACTER
71 XTWACCNT

(0)
INTERFACE ACCOUNT RECORD

(38C) 908 CHAR-
ACTER

8 XTWACDT DATE IN SYSGEN FORM

(394) 916 SIGNED 4 XTWACST CONNECTION START TIME
(398) 920 SIGNED 4 XTWACSP CONNECTION STOP TIME
(39C) 924 CHAR-

ACTER
8 XTWACAP APPLICATION ID

(3A4) 932 SIGNED 4 XTWACMSG NUMBER OF PROCESSED MSGES
(3A8) 936 SIGNED 4 XTWACCTL NUMBER OF PROCESSED CTL'S

 Chapter 5. Storage Layout and Data Areas 677

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(3AC) 940 BITSTRING 1 XTWACTC TERMINATION CODE
 .1.. XTWACTSE "X'40'" .. SEVERE SYSTEM OR POWER ERROR
 ..1. XTWACTKL "X'20'" .. TERMINATION DUE TO PSTOP KILL
 ...1 XTWACTUE "X'10'" .. SEVERE USER ERROR
 1... XTWACTAT "X'08'" .. ABNORMAL USER TERMINATION
 1.. XTWACTPP "X'04'" .. TERMINATION DUE TO PSTOP
 1. XTWACTPD "X'02'" .. TERMINATION DUE TO PEND
 1 XTWACTOK "X'01'" .. NORMAL USER TERMINATION

(3AD) 941 BITSTRING 1 XTWACF1 XTW ACCOUNT FLAG BYTE 1
 1... XTWCE20 "X'80'" .. XWTACDT IS 20YY CENTURY

(3AE) 942 CHAR-
ACTER

8 XTWACDEV DEVICE NAME, IF DST TASK

(3B6) 950 CHAR-
ACTER

1 XTWACID IDENTIFIER = C

 ..1. 1.11 XTWACLN "*-XTWACCNT" LENGTH OF INTERFACE ACCOUNT
RECORD

(3B7) 951 BITSTRING 3 XTWARCFB
(0)

RETURN AND FEEDBACK CODES

(3B7) 951 BITSTRING 1 XTWARC RETURN CODE
(3B8) 952 BITSTRING 1 XTWAFB FEEDBACK CODE
(3B9) 953 BITSTRING 1 XTWAF2 FEEDBACK CODE 2
(3BA) 954 BITSTRING 2 NOT USED

EXPRESSION XTWLN "*-XTWDS" LENGTH OF CONTROL BLOCK
EXPRESSION XTWPCAR "*" CARRIER FOR IPW$SSJ MACRO ASM H V 02 09.44

678 VSE Central Functions V7R1 VSE/POWER DRM

Spool Environment Block

Definition Macro: IPW$DSP SPB=YES

This control block contains the current printer setup (SETPRT parameter list) and the TRC value. The
control block is built by Data Management (IPW$$PD) and will be released by Data Management when
the Job Trailer Record of the current spooled entry is successfully written to disk. Each spooled record is
examined if it causes a change of the current environment. If so, the spool environment block is updated
accordingly. The format is as follows:

Bytes Hex. Label of Field Description/Function

00 SPBDS Start of DSECT
00-0B SPBSD Storage descriptor of SPB
0C-0F SPBATCB Address of owning task TCB
10 SPBTRC Current TRC value
11 SPBFLAG Flag byte
12-13 Reserved for future use
14-57 SPBSETP SETPRT parameter list
58-5F Reserved for future use

 Chapter 5. Storage Layout and Data Areas 679

Spool Environment Header (SEH)

Definition Macro: IPW$DSP SEH=YES

This record is only present as first record in the first DBLK of a DBLK group and is used to provide a
backward chain within the DBLK groups that belong to a certain queue entry. The record is built by Data
Management (IPW$$PD) when the first DBLK within a DBLK group is allocated. Besides the relative
number of the first DBLK of the previous DBLK group it contains an environment section where the
various account values (page/record/line count) and the current printer setup is held, as accumulated for
the previous DBLK group. The format is as follows:

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

SPOOL ENVIRONMENT HEADER (SEH)

(0) 0 STRUC-
TURE

0 SEHDS LAYOUT OF SPOOL ENVIRONM. HEADER = HEADER OF
FIRST DBLK IN DBLKGP

(0) 0 ADDRESS 2 SEHLEN LENGTH OF SEH RECORD
(2) 2 BITSTRING 2 RESERVED
(4) 4 CHAR-

ACTER
4 SEHSD STORAGE IDENTIFIER, EYECATCHER

(8) 8 ADDRESS 4 SEHDBLK DBLK NUMBER OF 1ST DBLK OF PREV. DBLK GROUP,
BACKWARD CHAIN PTR., RANGING FROM 0 TO N -->
'F..F' IN FIRST DBLK OF A Q-ENTRY --> 'F..F' IN FREE
DBLKGP SUBCHAIN RIGHT AFTER COLD START -->
UNDEF. IN FREE DBLKGP SUBCHAIN AFTER BEEN USED
ONCE --> '0..0' FOR ALL DBLK'S OF QCA !!

(C) 12 SIGNED 2 SEHDBSZ DBLK SIZE
(E) 14 SIGNED 2 SEHDBGP DBLK GROUP SIZE

(10) 16 ADDRESS 4 SEHOWNE OWNER OF DBLK GROUP, MAY BE ... --> 'F..F' - IN FREE
DBLKGP SUBCHAIN AFTER D-FILE FORMATTING --> '?..?'
- IN FREE DBLKGP SUBCHAIN AFTER BEEN USED ONCE
--> '0..0' - OWNED BY QCA (SLOT MGR) --> 'N..N' - OWNED
BY Q-REC-# 'NNNN'

(14) 20 BITSTRING 8 SEHSTCK STORE CLOCK VALUE
(1C) 28 BITSTRING 1 SEHSTFG STORE CLOCK STATE FLAG

 11.. .11. SEHFGF "C'F'" .. STCK SET BY D-FILE FORMAT .. STCK NOT SET
BY $$Q1 ALLOC GP.

 11.1 .111 SEHFGP "C'P'" .. STCK SET BY $$PD PUT DATA
 11.1 1... SEHFGQ "C'Q'" .. STCK SET BY $$SQ QCA SLOT MGR. .. STCK

NOT SET BY $$Q1 DE-ALL-GP
(1D) 29 BITSTRING 3 RESERVED

 ..1. SEHSLN "*-SEHDS" LENGTH OF SKELETON SEH-RECORD ALL
X=FIELDS: SPOOLING INFO BEING --> 0 - IN FREE
DBLKGP SUBCHAIN RIGHT AFTER COLD START -->
UNDEF. IN FREE DBLKGP SUBCHAIN AFTER BEEN USED
ONCE --> 0 - IN 1ST DBLKGP OF A Q-ENTRY --> VALID IN
GROUPS 2-M OF A Q-ENTRY WHICH OWNS M DBLK
GROUPS (INFO COLLECTED UP TO ENTRY OF CURRENT
DBLKGP, EQUAL TO EXIT OF PREVIOUS GROUP) --> NOT
PRESENT FOR ALL QCA DBLK'S

(20) 32 ADDRESS 4 SEHPAGE X=CURRENT PAGE NUMBER
(24) 36 ADDRESS 4 SEHLINE X=CURRENT LINE NUMBER
(28) 40 ADDRESS 4 SEHRECD X=CURRENT RECORD NUMBER
(2C) 44 ADDRESS 4 SEHGPNO DBLK GROUP NUMBER WITHIN Q-ENTRY --> 0 - IN FREE

DBLKGP SUBCHAIN RIGHT AFTER COLD START -->
UNDEF. - IN FREE DBLKGP SUBCHAIN AFTER BEEN
USED ONCE --> 1-M - IF GROUP BELONGS TO Q-ENTRY
WHICH OWNS M DBLK GROUPS

(30) 48 BITSTRING 1 SEHTRC X=TRC VALUE
(31) 49 BITSTRING 1 SEHFLAG X=FLAG BYTE

 1... SEHFHCPY "X'80'" .. HORIZONTAL COPY ON 4 FLAGS FOR PAGE
COUNTING STATE:

680 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... SEHFLM "X'08'" .. LINE MODE (DEFAULT)
 1.. SEHFLMI "X'04'" .. LINE MODE IDM/IMM RECEIVED
 1. SEHFPM "X'02'" .. PAGE MODE
 1 SEHFPM8 "X'01'" .. PAGE MODE '8B' RECEIVED

(32) 50 BITSTRING 2 UNUSED
(34) 52 BITSTRING 68 SEHSETP X=SETPRT PARAMETER LIST
(78) 120 BITSTRING 8 RESERVED
(80) 128 BITSTRING 64 RESERVED

 11.. SEHLN "*-SEHDS" LENGTH OF RECORD

 Chapter 5. Storage Layout and Data Areas 681

Spool Environment Record (SER)

Definition Macro: IPW$DSP SER=YES

This record is only present as first record in the last DBLK of a DBLK group and is used to chain the
DBLK groups together. The record is built by Data Management (IPW$$PD) when the last DBLK within a
DBLK group is allocated. Besides the relative number of the first DBLK in the next DBLK group it contains
an environment section where the various account values (page/record/line count) and the current printer
setup is held. The format is as follows:

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

SPOOL ENVIRONMENT RECORD (SER)

(0) 0 STRUC-
TURE

0 SERDS LAYOUT OF SPOOL ENVIRONMENT RECORD ... =
HEADER OF LAST DBLK IN DBLKGP

(0) 0 ADDRESS 2 SERLEN LENGTH OF SER RECORD
(2) 2 BITSTRING 2 RESERVED
(4) 4 CHAR-

ACTER
4 SERSD STORAGE IDENTIFIER, EYECATCHER

(8) 8 ADDRESS 4 SERDBLK DBLK NUMBER OF 1ST DBLK OF NEXT.. DBLK GROUP,
FORWARD CHAIN PTR., RANGING FROM 0 TO N
--> 'F..F' IN LAST DBLK OF A Q-ENTRY
--> 'F..F' IN LAST DBLK-FREE-SUBCHAIN
--> '0..0' FOR ALL DBLK'S OF QCA !!

(C) 12 SIGNED 2 SERDBSZ DBLK SIZE
(E) 14 SIGNED 2 SERDBGP DBLK GROUP SIZE

(10) 16 ADDRESS 4 SEROWNE OWNER OF DBLK GROUP, MAY BE ...
--> 'F..F' - IN FREE DBLKGP SUBCHAIN AFTER D-FILE
FORMATTING
--> 'F..F' - IN FREE DBLKGP SUBCHAIN WHEN DBLKGP
TRACING ON
--> '?..?' - IN FREE DBLKGP SUBCHAIN WHEN DBLKGP
TRACING OFF
--> '0..0' - OWNED BY QCA (SLOT MGR)
--> 'N..N' - OWNED BY Q-REC-# 'N..N'

(14) 20 BITSTRING 8 SERSTCK STORE CLOCK VALUE
(1C) 28 BITSTRING 1 SERSTFG STORE CLOCK STATE FLAG

 11.. .11. SERFGF "C'F'" .. STCK SET BY D-FILE FORMAT
 11.. ...1 SERFGA "C'A'" .. STCK SET BY $$Q1 ALLOC GROUP
 11.1 .111 SERFGP "C'P'" .. STCK SET BY $$PD PUT DATA
 11.1 1... SERFGQ "C'Q'" .. STCK SET BY $$SQ QCA SLOT MGR.
 11.. .1.. SERFGD "C'D'" .. STCK SET BY $$Q1 DE-ALLOC GRP.

(1D) 29 BITSTRING 3 RESERVED
 ..1. SERSLN "*-SERDS" LENGTH OF SKELETON SER-RECORD ALL

X=FIELDS: SPOOLING INFO BEING
--> 0 - IN FREE DBLKGP SUBCHAIN
--> VALID IN GROUP 1-(M-1) OF Q-ENTRY WHICH OWNS
M DBLK GROUPS (INFO COLLECTED UP TO END OF
CURRENT DBLKGP)
--> 0 - IN GROUP M(LAST) OF Q-ENTRY
--> NOT PRESENT FOR ALL QCA DBLK'S

(20) 32 ADDRESS 4 SERPAGE X=CURRENT PAGE NUMBER
(24) 36 ADDRESS 4 SERLINE X=CURRENT LINE NUMBER
(28) 40 ADDRESS 4 SERRECD X=CURRENT RECORD NUMBER
(2C) 44 ADDRESS 4 SERGPNO DBLK GROUP NUMBER WITHIN Q-ENTRY

--> 0 - IN FREE DBLKGP SUBCHAIN
--> 1-M - IF GROUP BELONGS TO Q-ENTRY WHICH OWNS
M DBLK GROUPS, AND SPOOLED DATA IN DBLK 0 - BUT
NO SPOOLED DATA IN DBLK

(30) 48 BITSTRING 1 SERTRC X=TRC VALUE
(31) 49 BITSTRING 1 SERFLAG X=FLAG BYTE

 1... SERFHCPY "X'80'" .. HORIZONTAL COPY ON 4 FLAGS FOR PAGE
COUNTING STATE:

682 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1... SERFLM "X'08'" .. LINE MODE (DEFAULT)
 1.. SERFLMI "X'04'" .. LINE MODE IDM/IMM RECEIVED
 1. SERFPM "X'02'" .. PAGE MODE
 1 SERFPM8 "X'01'" .. PAGE MODE '8B' RECEIVED

(32) 50 BITSTRING 2 UNUSED
(34) 52 BITSTRING 68 SERSETP X=SETPRT PARAMETER LIST
(78) 120 BITSTRING 8 RESERVED
(80) 128 BITSTRING 64 RESERVED

 11.. SERLN "*-SERDS" LENGTH OF RECORD

 Chapter 5. Storage Layout and Data Areas 683

Storage Control Block (SCB)

Definition Macro: IPW$DSC

The storage control block is used to control access to the storage management routines and to allocate
storage pages as required by the routines. The format of the storage control block is as follows:

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

16 SCSD SECTION DESCRIPTOR

(10) ADDRESS 4 SCFP FIRST FIXED PAGE
(14) ADDRESS 4 SCFBCW START OF FIRST BUFFER
(18) BITSTRING 4 SCEB EVENT CONTROL BLOCK
(1C) SIGNED 4 SCLK LOCK WORD

SHIFT VALUE AND PAGE SIZE ARE COPIED DURING INITIALIZATION
FROM THE PAGE MANAGEMENT COMAREA OF THE SYSTEM INTO THE

 FOLLOWING FIELDS:

(20) SIGNED 2 SCADPN SHIFT AMOUNT ADDR TO PAGE#
(22) SIGNED 2 SCCUSH REAL STORAGE CUSHION SIZE
(24) SIGNED 4 SCPGSIZE PAGE SIZE IN BYTES

SINCE THE STORAGE MANAGEMENT ROUTINES ARE USED TO PROVIDE
REGISTER SAVE AREAS FOR TASK USE THE STORAGE CONTROL BLOCK
MUST ITSELF CONTAIN A REGISTER SAVE AREA FOR USE BY THE
STORAGE MANAGEMENT ROUTINES.

(28) CHAR-
ACTER

40 SCTR (0) REGISTER SAVE AREA

(28) SIGNED 4 SCRE TASK REGISTER 14
(2C) SIGNED 4 SCRF TASK REGISTER 15
(30) SIGNED 4 SCR0 TASK REGISTER 0
(34) SIGNED 4 SCR1 TASK REGISTER 1
(38) SIGNED 4 SCR2 TASK REGISTER 2
(3C) SIGNED 4 SCR3 TASK REGISTER 3
(40) SIGNED 4 SCR4 TASK REGISTER 4
(44) SIGNED 4 SCR5 TASK REGISTER 5
(48) SIGNED 4 SCR6 TASK REGISTER 6
(4C) SIGNED 4 SCR7 TASK REGISTER 7

THE STORAGE MANAGEMENT PAGE CONTROL TABLE ACTS AS AN
ISOMORPHIC MAP OF THE FIXABLE AREA WITHIN THE POWER ADDRESS
SPACE IN WHICH EACH PAGE CONTROL BIT REPRESENTS A SINGLE
PAGE OF ADDRESS SPACE. BIT POSITIONS WITH VALUE 1 REPRESENT
PAGES WHICH ARE FIXED IN REAL STORAGE VIA PFIX MACRO. BIT
POSITIONS WITH VALUE 0 REPRESENT PAGES WHICH ARE NOT YET
FIXED OR WHICH ARE EXPLICITLY FREED VIA PFREE MACRO.
THE PAGE CONTROL TABLE IS DEFINED WITH ALL PAGES NOT FIXED
AND IS PROPERLY INITIALIZED BY THE POWER START-UP ROUTINES
WHICH FIX THE FIRST AND LAST PAGE OF STORAGE AVAILABLE TO THE
VSE/POWER PARTITION AT THAT TIME AND WHICH INSERT A FIRST
AND LAST BUFFER CONTROL WORD (BCW) INTO THESE PAGES.

(50) BITSTRING 64 SCBT PAGE CONTROL TABLE

WORKAREA REQUIRED BY THE STORAGE MANAGEMENT ROUTINES DURING
 PFIX/PFREE REQUESTS.

(90) CHAR-
ACTER

12 SCPF (0) PAGE FIX/FREE WORK AREA

(90) SIGNED 4 PAGE VIRTUAL ADDRESS
(94) SIGNED 4 PAGE LENGTH (-1)
(98) BITSTRING 4 END OF LIST INDICATOR
(9C) SIGNED 4 SCCUR CURRENT # OF BYTES $RSW'D(+)
(A0) BITSTRING 1 SCFLG FLAG BYTE

 1... SCNBDY "X'80'" ..DON'T CROSS PAGE BOUNDARY

684 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Type Len Name (Dim) Description

(A1) BITSTRING 1 SCCOBY COPY OF PAGE-BIT BYTE
(A2) BITSTRING 2 UNUSED

 1.1. .1.. SCLN "*-SCDS" LENGTH OF CONTROL BLOCK

Notes:

1. Since the storage management routines are used to provide register save areas for task use, the
storage control block must contain a register save area for use by the storage management routines.

2. The storage assignment table is like a map of the fixable area within the VSE/POWER address space
in which each bit represents a single page of address space. The bit is on, if the page is fixed.

The storage assignment table is defined with all pages free and is properly initialized by the
VSE/POWER startup routines to reflect the amount of real storage available to the VSE/POWER parti-
tion at that time.

3. Three fullwords used as a work area by the page-fix and page-free routines. The first word is used to
contain the address of the first byte of the page to be fixed or freed; the second word contains binary
2047 (page size minus one); and the third word contains X'FF' in its high-order byte to act as a list
terminator.

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 685

System Information Area (SIA)

Definition Macro: IPW$DEF PSYS=YES

The system information area is used by a user program to access VSE/POWER generation and configura-
tion information.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

8 PSYSNODE VSE/POWER PNET NODE NAME

(8) CHAR-
ACTER

1 PSYSSID VSE/POWER SHARED SYSID 1-9
X'00' - VSE/POWER IS DOWN
X'40' - VSE/POWER NON-SHARED IS UP
C'1'-C'9' - VSE/POWER SHARED SYSID IS UP

(9) BITSTRING 1 PSYSFLG1 VSE/POWER SYSTEM INFO FLAG BYTE
 1... PSF1SKP "X'80'" .. 'SET SKIP=YES' ACTIVE

(A) CHAR-
ACTER

6 UNUSED

How to Locate: The access to the SIA is granted by either the GETFLD FIELD=POWSYS macro or the
SYSCOM.IJBPSYSI byte of the VSE system communication area.

686 VSE Central Functions V7R1 VSE/POWER DRM

Tape Control Block (TBB)

Definition Macro: IPW$DTB

This control block dynamically created to satisfy requirements of VSE/POWER tasks utilizing tape as inter-
mediate storage. Its format as it is printed in a dump is as follows:

The IPW$DTB macro is issued by VSE/POWER phases IPW$$OF, IPW$$OT and IPW$$SY.

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(0) 0 STRUC-
TURE

TBDS , DEFINE DUMMY SECTION

(0) 0 CHAR-
ACTER

4 TBSD STORAGE DESCRIPTOR

(4) 4 SIGNED 4 TBPB PHYSICAL UNIT BLOCK ADDRESS
(8) 8 BITSTRING 1 TBFU FUNCTION CONTROL BYTE

 1... FBTB "X'80'" .. BUILD TBB REQUEST
 .1.. FOPT "X'40'" .. OPEN TAPE REQUEST
 ..1. FCLT "X'20'" .. CLOSE TAPE RQUEST
 ...1 FCON "X'10'" .. CONTINUATION REQUESTED
 1... FEOVC "X'08'" .. BAM EOV,CONTINUED QREC
 1.. FEOVN "X'04'" .. BAM EOV,NON-CONT. QREC
 1. FINP "X'02'" .. INPUT PROCESSING
 1 FOUT "X'01'" .. OUTPUT PROCESSING

 FBTB +FCLT = DELETE TBB REQUEST
 FEOVC+FCLT = MOUNT 1ST VOL REQUEST
 FEOVC+FOPT = MOUNT LAST VOL REQUEST
 FEOVN+FCLT = SYSIN FEOV REQUEST

(9) 9 BITSTRING 1 TBFG TBB FLAG BYTE 1
 1... TEOF "X'80'" .. EOF INDICATED
 .1.. TEOV "X'40'" .. EOV INDICATED
 ..1. TDMD "X'20'" .. DATA MODE,NOT LABEL OPERATION
 ...1 TBLK "X'10'" .. BLOCKED DATA
 1... TUNL "X'08'" .. UNLABELLED TAPE
 1.. TMVF "X'04'" .. MULTI-VOLUME-FILE
 1. TMFI "X'02'" .. MULTI-FILE-VOLUME
 1 TTWA "X'01'" .. TEMPORARY WORKAREA AVAILABLE

(A) 10 BITSTRING 1 TBFG2 TBB FLAG BYTE 2
 1... TBFND "X'80'" .. NON DISP.QUEUE PROCESS'G
 .1.. TBSFN "X'40'" .. SELECT ENTRY FOUND
 ..1. TBSAL "X'20'" .. SELECT ALL QUEUE ENTRIES
 ...1 TBFTS "X'10'" .. TAPE SPOOLING READ ENTRY
 1... TB1QS "X'08'" .. AT LEAST 1 QSET ON LAB TP
 1.. TBPDMB "X'04'" .. PICKUP ALREADY OWNS DMB

 X'02' .. UNUSED
 X'01' .. UNUSED

(B) 11 BITSTRING 1 TBFG3 TBB FLAG BYTE 3
 1... TBCARTE X'80' .. CARTRIDGE LABEL TAPE EDF
 .1.. TBSKFSF X'40'.. SKIP FSF(CACHING TP UNIT)
 .1.. TB3490F X'40'.. (No longer used)
 ..1. TBIGNDR X'20' .. PGO IGNORE REPLY
 ...1 TBRCEMP X'10' .. 1Q2BI QUEUES/TAPE EMPTY
 1... TBRCPNF X'08' .. 1Q2BI PICKUP NOTHING FOUND

(C) 12 BITSTRING 1 TBSM SPECIFIED MODE SETTING REFER ALSO TO
TCF8MS

(D) 13 CHAR-
ACTER

1 TBDT DEVICE IDENTIFIER

(E) 14 ADDRESS 3 TBCU PHYSICAL UNIT NUMBER (CUU)

CHANNEL PROGRAM (CCB & CCW'S)

(18) 24 DBL WORD 8 (0) FORCE DOUBLE-WORD ALIGNMENT
(18) 24 CHAR-

ACTER
16 TBCB (0) COMMAND CONTROL BLOCK

 Chapter 5. Storage Layout and Data Areas 687

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(18) 24 BITSTRING 2 TBRS RESIDUAL COUNT
(1A) 26 BITSTRING 2 TBCM COMMUNICATION BYTES

 1..1 111. TCOM "B'10011110'" ..CCB COMM. BYTE (X'9E')
(1C) 28 BITSTRING 1 TBCS CHANNEL AND DEVICE STATUS
(1D) 29 BITSTRING 1 TBC1 CHANNEL AND DEVICE STATUS
(1E) 30 BITSTRING 2 TBLU LUB INDEX
(20) 32 ADDRESS 4 TBCA CCW ADDRESS
(24) 36 ADDRESS 4 CCW ADDRESS IN CSW
(28) 40 DBL WORD 8 TBCW (0) CHANNEL COMMAND WORD
(28) 40 BITSTRING 1 TBCC WRITE COMMAND CODE
(29) 41 ADDRESS 3 TBRA DATA ADDRESS
(2C) 44 BITSTRING 2 TBWS FLAGS
(2E) 46 SIGNED 2 TBCT COUNT

 1... TLNC "*-TBCW" CCW-LENGTH

 MULTI-PURPOSE WORKAREA

(30) 48 CHAR-
ACTER

17 TBLA LABEL............ FILE LABEL SAVE AREA

THE FOLLOWING AREA IS USED DURING
 OPERATOR INTERVENTION

(41) 65 CHAR-
ACTER

13 TBWA (0) TBB WORKAREA

(41) 65 CHAR-
ACTER

1 TBWR LENGTH OF REPLY AREA

(42) 66 CHAR-
ACTER

12 TBW1 REPLY AREA

VARIOUS OTHER CONTROL FIELDS

(4E) 78 BITSTRING 1 TBRC REASON CODE
(4F) 79 BITSTRING 1 NOT USED
(50) 80 SIGNED 2 TBCN NUMBER OF CCW IN I/O-AREA
(52) 82 BITSTRING 2 NOT USED
(54) 84 SIGNED 4 TBAR REAL ADDRESS OF I/O AREA
(58) 88 SIGNED 4 TBAV VIRTUAL ADDRESS OF I/O AREA
(5C) 92 SIGNED 4 TBIO ADDRESS OF CCW IN TBB
(60) 96 SIGNED 2 TBDL LENGTH OF DATA REC (SYSIN)
(62) 98 SIGNED 2 TBRL LOGICAL RECORD LENGTH
(64) 100 BITSTRING 1 TBBF BLOCK FACTOR
(65) 101 BITSTRING 1 TBQI USED TO SAVE Q-ID FOR OFFLOAD
(66) 102 BITSTRING 1 TBSS SENSE BYTE 1
(67) 103 BITSTRING 1 TBSI INDICATION OF SUCCESS

 TTSI "X'00'" .. NOTHING TO SAVE INDICATION
 .1.. TB40 "X'40'" .. NORMAL - CONTINUE EXECUTION

(68) 104 BITSTRING 1 TBSQF POFFLOAD SEARCH QUEUE FOUND
(69) 105 BITSTRING 1 (3) NOT USED

BAM PROCESSING ADDITIONS

(6C) 108 SIGNED 4 TBLNKR7 LINKAGE REGISTER SAVE AREA
(70) 112 SIGNED 4 TBLNKR9 LINKAGE REGISTER SAVE AREA
(74) 116 SIGNED 4 TBLNK1 LINKAGE REG SAVEAREA 1
(78) 120 SIGNED 4 TBDTFWA DTFMT WORKAREA
(7C) 124 SIGNED 4 TBDTFMT DTFMT POINTER
(80) 128 SIGNED 4 TBDTFMTC DTFMT COPY
(84) 132 SIGNED 4 TBDTFMTL DTFMT LENGTH
(88) 136 BITSTRING 1 TB1Q5A MSG 1Q5AI RETURN CODE
(89) 137 BITSTRING 1 TBTEMP TEMP SAVE AREA
(8A) 138 BITSTRING 1 TBTMRC TEMP RETURN CODE
(8B) 139 BITSTRING 1 TBSUBRC SUBROUTINE RETURN CODE QUEUE RECORD BEING

PROCESSED
(8C) 140 CHAR-

ACTER
8 TBQRDY .. DATE

(94) 148 CHAR-
ACTER

35 TBQRSA .. TIMES,USERINFO, ETC.

(B7) 183 BITSTRING 1 TBQRSN .. SUFFIX

688 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(B8) 184 BITSTRING 1 RESERVED
(B9) 185 BITSTRING 7 TBBAMLB BAM LABEL FILENAME
(C0) 192 SIGNED 2 TBDBLK LENGTH OF DBLK
(C2) 194 SIGNED 2 TBQREC LENGTH OF QREC
(C4) 196 BITSTRING 1 TB1QG01 MESSAGE 1QGOA FIELD 1
(C5) 197 BITSTRING 1 TB1QG02 MESSAGE 1QGOA FIELD 2
(C6) 198 SIGNED 2 UNUSED
(C8) 200 SIGNED 4 TBAVQREC TEMP QREC WORKAREA
(CC) 204 SIGNED 4 TBRASAVE SAVE AREA FOR TBRA
(D0) 208 SIGNED 4 UNUSED

 11.1 .1.. TBLN "*-TBDS" LENGTH OF CONTROL BLOCK

TAPE SPECIFIC INDICATORS

 1 TUEX "X'01'" UNIT EXCEPTION (EOV/EOF)
 ...1 TSDT "X'10'" 'SUPPRESS DATA TRANSFER'
 ..1. TSLI "X'20'" SLI SET ON IN CCW
 .1.. CCBSLI "X'40'" INCORRECT LENGTH IND. IN CCB
 1.11 1111 TBER "X'FF'-CCBSLI" CATASTROPHICAL TAPE ERROR

How to Locate: Refer to Figure 152 on page 731 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 689

Task Control Block (TCB)

Definition Macro: IPW$DTC

Each VSE/POWER task is equipped with a task control block which is created in fixed storage and is used
to establish the identity of the task and to preserve its status when it is not in active control of the central
processor.

The TCB is divided into the following main areas:

 � Task state
� Task management fields
� Task register save area
� Linkage register save area
� General task work area and Task extensions fields

When the TCB belongs to a command processor task, the general task work area is replaced by
command processor control fields. Refer to the "Command Processor Control Block" paragraph in this
chapter.

Note: The first characters of the labels in the control block vary according to the generated DSECT or
declaration (PL/S).

TC Current TCB

IT Initiator/terminator TCB

OC Operator command processor

TN Used to address a TCB other than the task's own TCB. (To enable a task to address the
TCB of another task.)

TP Used to address a TCB other than the task's own TCB. (To enable a task to address the
TCB of another task.)

TCB Used to address a TCB other than the task's own TCB in the PL/S listings.

690 VSE Central Functions V7R1 VSE/POWER DRM

 TCB State
At any time, each task within the VSE/POWER must be in one or another of a set of task states. The state
of each task is defined by the single alphameric character in byte 28 of the associated task control block,
and this in turn determines what action the task management routines must take when the task is exam-
ined for dispatch. Task states are normally set by the task itself whenever one of the task management
macros is issued. The task management routines, the command processing task and the execution
reader tasks are privileged, however, in that they may modify the task state of tasks other than them-
selves.

Note: Task states can also be set by the page fault appendage routine.

Task States Char. Task Condition Routine

Not I Task is inactive TM1�
dispatchable P Page fault in process TM1�

O Waiting for operator response TM1�

Conditionally L Waiting for locked resource TM3�
dispatchable X Wait for mixed ECB and class anchors TM4�

M Wait on multiple CCB or ECB posting TM5�
Q As for M state, except event

may never occur
C Wait on single CCB or ECB posting
E Wait on single ECB posting
S As for C state, except event

may never occur
B Wait on RJE,BSC or networking event TMB�

Immediately D Dispatch task immediately TM9�
dispatchable

Running R Task is running N/A

Partition wait W Waiting for dispatch from supervisor TM2�

TCB Task Register Save Area (TRSA)

The fields in this area in a TCB record the contents of registers 12 through 9 whenever entry is made to
task selection. If the task state is set to R (running) the values in the fields record the contents of the
registers when the task was most recently given control. If the task state is set to any other value the
fields contain the current contents of the registers associated with the task. The format of a TCB is as
follows:

Label of Field Description/Function

TCTR Register 12 - asynchronous address register ('task PSW'). R12 contains the address of the
first instruction to be executed when the task is dispatched. The first byte contains the
condition code and the program mask bits in the form in which they are loaded by BAL
instructions. This is also true when the information is provided by the page fault appendage
routine.

TCRD Register 13 - save area register which may contain the address of either the first (or only)
or second linkage register save area depending on the hierarchy level of the caller.

TCRE Register 14 - linkage register is used to contain the linkage address, that is, the address to
which return is to be made when an exit linkage is next performed. When not required for
this purpose the register is available for general use.

 Chapter 5. Storage Layout and Data Areas 691

Label of Field Description/Function

TCRF Register 15 - entry point register is used to address the entry point of the routine to be
entered when an entry linkage is performed. This address is normally that of the storage
descriptor which precedes the routine to be executed. The register may be conveniently
used as the base register for the function to be executed. When not required for this
purpose the register is available for general use.

TCRO Register 0 - parameter and work register is used to pass parameters to and from invoked
routines. When not required for this purpose the register is available for general use.

TCR1 Register 1 - parameter and work register may address a control block or control block list
on which the task is at present waiting. For a task in C or S state it will point to a conven-
tional VSE CCB for a VSE/POWER ECB. For a task in M or Q state, it will point to an ECB
or CCB list.

TCR2 Register 2 - linkage and work register is used by service routines to retain the return
address of the requesting task. It also has machine usage when a translate and test
instruction is executed. When not required for these purposes the register is available for
general task use.

TCR3 Register 3 - resource address register may contain the address of a resource control block
on which the task is at present waiting (task in L state). When not required for this purpose
the register is available for general task use.

TCR4 Register 4 - work register
TCR5 Register 5 - work register. If the task owns queue space, this register will address the

queue record.
TCR6 Work register (may address the DMB). In an execution processor task, it addresses the

partition control block.
TCR7 Work register. In an execution processor task this register addresses the user CCB.
TCR8 Work register. In an execution processor task this register addresses current channel

command. In a physical routine, it points to PWS.
TCR9 Base register for highest level of code used by task.

692 VSE Central Functions V7R1 VSE/POWER DRM

 TCB

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

TASK CONTROL BLOCK (TCB)

TASK MANAGEMENT FIELDS
THE FOLLOWING FIELDS DEFINE THE IDENTITY OF THE TASK,
ESTABLISH ITS POSITION IN THE TASK LIST, RECORD PAGE
FAULTS PENDING, AND DEFINE THE TASK STATE AT ANY POINT

 IN TIME.

(0) 0 CHAR-
ACTER

16 TCSD (0) STORAGE DESCRIPTOR

(0) 0 CHAR-
ACTER

4 TCBI BLOCK IDENTIFIER

(4) 4 CHAR-
ACTER

4 TCTI TASK IDENTIFIER:
C'O CP' - COMMAND PROCESSOR TASK
C'I IT' - INITIATOR TASK
C'T TT' - TERMINATOR TASK
C'T TI' - TIMER TASK
C'RRDR' - LOCAL READER TASK
C'WLST' - LOCAL PRINTER TASK
C'WPUN' - LOCAL PUNCH TASK
C'E XX' - EXECUTION PROCESSOR TASK.

XX SPECIFIES THE PARTITION
REQUESTING THE TASK.

C'1'-C'5 ' TCB BELONGS TO RJE TASK
IN THIS CASE THREE REMAINING BYTES
WILL INDICATE THE TYPE OF TASK.
(RDR, LST, PUN, LGN, LGF, OR MSG.)

C'LRLM' - LINE MANAGER TASK
C'P PS' - PRINT STATUS TASK
C' ACT' - ACCOUNT TASK
C'J ' - SPOOL MANAGER TASK.

THE THREE REMAINING BYTES IND
THE TYPE OF TASK.(RDR,LST,OR SPM.)

C'LSNA' - SNA TASK
C'NTFY' - NOTIFY TASK
C'LLDR' - PNET DRIVER
C'NRVN' - NETWORK RECEIVER TASK N

(N=BLANK FOR CONSOLE TASK)
C'NTRN' - NETWORK TRANSMITTER N

(N=BLANK FOR CONSOLE TASK)
C'NCT ' - PNET SESSION EST'D
C'NDT ' - PNET SESSION DISCONNECT
C'XHBT' - OCCF HEARTBEAT TASK
C'XMAS' - SAS MASTER TASK
C'XSAS' - SAS USER TASK
C'XDEV' - DEVICE SERVICE TASK
C'YTES' - TIME EVENT SCHEDULING
C'DPST' - DYNAMIC PART.SCHEDULING

(8) 8 CHAR-
ACTER

4 TCCU PHYSICAL DEVICE IDENTIFIER
Physical device address. If byte 0 of the task ID field = '1' - '9',
then TCCU contains the RJE line number, or 'SNA' for all
RJE,SNA TCBs. 'PSP' (for RDR task) and 'GSP' (for LST
task) are used for PUTSPOOL and GETSPOOL, CTLSPOOL
and Spool Access Support processing

(C) 12 CHAR-
ACTER

4 TCRI (0) RJE-ID/TAPE CUU/RCV-TSM TYPE

(C) 12 BITSTRING 1 TCFL BINARY FORMAT

 Chapter 5. Storage Layout and Data Areas 693

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(D) 13 CHAR-
ACTER

3 TCRM CHARACTER FORMAT
Identifies the terminal ID requiring the task. If TCRI = X'00'
then task started as result of command invoked by the central
operator.
For PNET RCV/TSM task following subspecification is pre-
sented:
'CON' = console task
'JOB' = job receiver/transmitter
'OUT' = output receiver/transmitter

(10) 16 ADDRESS 4 TCTP ADDRESS OF PREVIOUS TASK TCB
(14) 20 ADDRESS 4 TCTN ADDRESS OF NEXT TASK TCB

 If the present is the last TCB in the chain, the address in
TCTN is that of the wait control block (WCB).

(18) 24 SIGNED 4 TCPF PAGE FAULT REQUEST WORD
 Contains page fault request information resulting from a page
fault interrupt. Contents of R13, passed from VSE/Advanced
Functions supervisor and saved for page management in the
event of a page fault occurring during execution of the task.
The field is set to binary zeros when no page fault request
condition is present; hence, it will contain binary zeros during
the time that the task is in control of the central processor.

(1C) 28 SIGNED 4 TCSF (0) TASK SELECTION FIELD
(1C) 28 BITSTRING 1 .. TASK STATE (SEE BELOW)

TASK STATE VALUES
'B' = X'C2' TASK WAITS ON RJE,BSC OR PNET EVENT
'C' = X'C3' TASK WAITS ON SINGLE CCB/ECB POSTING

AND CHECKS UNRECOVERABLE I/O ERROR
'D' = X'C4' TASK DISPATCHABLE
'E' = X'C5' TASK WAITS ON SINGLE ECB POSTING
'I' = X'C9' TASK INACTIVE
'L' = X'D3' TASK WAITING ON LOCKED RESOURCE
'M' = X'D4' TASK WAITING ON MULTIPLE CCB/ECB

 POSTING
'O' = X'D6' TASK WAITING ON OPERATOR RESPONSE
'P' = X'D7' TASK PAGE FAULT IN PROCESS
'Q' = X'D8' TASK WAITING ON MULTIPLE CCB/ECB

POSTING, BUT MAY NEVER OCCUR
'R' = X'D9' TASK IS RUNNING (ONLY ONE TASK)
'S' = X'E2' TASK WAITING ON SINGLE CCB/ECB

POSTING, BUT MAY NEVER OCCUR,
AND CHECKS UNRECOVERABLE I/O ERROR

(1D) 29 ADDRESS 3 .. NUCLEUS TASK ROUT. ADDR
(20) 32 SIGNED 4 TCCT (4) TASK CLASS LIST

 1.. TC#C "(*-TCCT)/4" .. NUMBER OF CLASS ENTRIES
Up to four different classes can be specified simultaneously
for any task, except RDR task. For each class identifying
character an entry is made in the TCCT field in the TCB for
that task. The first byte of each entry contains the class, and
the remaining three bytes contain an address of an ECB in
the master class table area (in DMB). The task class list is
shown in Figure 145 on page 712.

(30) 48 BITSTRING 1 LIST DELIMITER

OVERLAY AREA USED BY X-PARTITION SPOOL MANAGER TASKS

(24) 36 BITSTRING 1 SPOOL MGMT LIST DELIM'TER
(25) 37 ADDRESS 3 TCEWA ADDR. OF WS FOR EXTRACT
(28) 40 BITSTRING 1 TCIQ SPOOL MGMT QUEUE ID
(29) 41 BITSTRING 1 UNUSED
(2A) 42 BITSTRING 1 TCSG SPOOL MG GEN PURPOSE BYTE

 1. TC1T "X'02'" .. 1ST TIME BUFF'ED GETSP
 X'01' .. PUTSPOOL DASD SOS MSG

(2B) 43 CHAR-
ACTER

1 TCSS SPOOL MANAGEMENT SWITCH

694 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

CHAR-
ACTER

TCIW "C'I'" ..LOGICAL WRITER INITIALIZED

CHAR-
ACTER

TCOW "C'O'" ..OPEN LOGICAL WRITER

CHAR-
ACTER

TCCW "C'C'" ..CLOSE LOGICAL WRITER

(2C) 44 SIGNED 4 TCER ADDR(USER X-PART XECB)

 TERMINATION TYPE

(31) 49 BITSTRING 1 TCTT TERMINATION TYPE - SEE BELOW
CHAR-
ACTER

TT40 "C' '" ..NORMAL - CONTINUE EXECUTION

CHAR-
ACTER

TTCU "C'U'" ..UNRECOVERABLE I/O ERROR

CHAR-
ACTER

TTCX "C'X'" ..TASK CANCEL CONDITION

CHAR-
ACTER

TTCC "C'C'" ..PCANCEL COMMAND ISSUED

CHAR-
ACTER

TTCF "C'F'" ..PFLUSH COMMAND ISSUED

CHAR-
ACTER

TTCE "C'E'" ..STOP AT END OF JOB

CHAR-
ACTER

TTCS "C'S'" ..STOP IMMEDIATELY

CHAR-
ACTER

TTCH "C'H'" ..PFLUSH WITH HOLD ISSUED

CHAR-
ACTER

TTCR "C'R'" ..STOP IMMEDIATELY AND RESTART

CHAR-
ACTER

TTCB "C'B'" ..STOP WITH 'BAD 9346 ENTRY

CHAR-
ACTER

TTNT "C'N'" ..'NEWTAP' INDICATION

CHAR-
ACTER

TTIG "C'I'" ..'IGNORE' INDICATION

CHAR-
ACTER

TTIO "C'Y'" ..QUEUE/DATA FILE I/O ERROR

CHAR-
ACTER

TTCL "C'L' ..STOP WITH QUEUE ENTRY DUE TO INVALID
RECORD LENGTH.

(32) 50 BITSTRING 1 TCJB JOB BOUNDARY SWITCH
 X'FF' ..JOB IN PROCESS

FUNCTION TRACE INDICATOR

(33) 51 BITSTRING 1 TCFT FUNCTION TRACE INDICATOR

 INPUT PROCESSING
CHAR-
ACTER

FTNQ "C'N'" ..GET NEXT SET FROM QUEUE

CHAR-
ACTER

FTDQ "C'D'" ..DELETE SET FROM QUEUE

CHAR-
ACTER

FTFQ "C'F'" ..FREE QUEUE SET IN PROCESS

CHAR-
ACTER

FTQN "C'S'" ..GET NEXT QUEUE RECORD

CHAR-
ACTER

FTGD "C'G'" ..GET DATA RECORD IN PROCESS

CHAR-
ACTER

FTRI "C'I'" ..SPOOL FILE READY FOR INPUT

 OUTPUT PROCESSING

CHAR-
ACTER

FTRQ "C'R'" ..RESERVE QUEUE RECORD

CHAR-
ACTER

FTAQ "C'A'" ..ADD TO QUEUE IN PROCESS

CHAR-
ACTER

FTPD "C'P'" ..PUT DATA RECORD IN PROCESS

 Chapter 5. Storage Layout and Data Areas 695

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

CHAR-
ACTER

FTRO "C'O'" ..SPOOL FILE READY FOR O/P

 GENERAL EQUATES

CHAR-
ACTER

FTCH "C'U'" ..SET DELETED BUT NOT FREED

CHAR-
ACTER

FTES "C'E'" ..END OF QUEUE SET PROCESS

CHAR-
ACTER

FTPA "C'L' ..PUT ACCOUNT REC IN PROCESS

CHAR-
ACTER

FTSM "C'Z'" ..SLOT MANAGER ACTIVE

 FT00 "X'00'" ..TCB JUST INITIALIZED
 .1.. FT40 "X'40'" ..PROCESSING COMPLETE

CHAR-
ACTER

FTTT "C'T'" .. TIMER TASK ACTIVE

CHAR-
ACTER

FTIN "C'X'" .. INITIALIZATION ACTIVE

CHAR-
ACTER

FTBC "C'B'" .. COLD START PROCESSING

CHAR-
ACTER

FTTP "C'Y'" .. TERMINATION PROC ACTIVE

CHAR-
ACTER

FTQM "C'M'" .. DBLK GROUP ALLOC/DE-ALLOC

CHAR-
ACTER

FTQQ "C'Q'" .. DBLK GROUP DE-ALLOC-READ

CHAR-
ACTER

FTE1 "C'1'" .. D-FILE EXTENSION I/O

CHAR-
ACTER

FTE2 "C'2'" .. D-FILE EXTENSION I/O FAILED

TASK ECB AND OTHER CONTROL FLAGS

(34) 52 SIGNED 4 TCEB (0) EVENT CONTROL BLOCK
(34) 52 BITSTRING 1 TCDB DOUBLE BUFFER INDICATOR

CHAR-
ACTER

TCB2 "C'2'" .. DOUBLE BUFFER FLAG
C'N' .. DON'T CLEAR DOUBLE BUFFER

(35) 53 BITSTRING 1 TCCB FUNCTION COMMUNICATION BYTE
 ...1 TCCA "X'10'" .. ANCHOR ADDR SPECIFIED
 ..1. TCVR "X'20'" .. VTAM REQUEST PENDING
 .1.. TCNR "X'40'" .. NODAL MESSAGE RECORD
 1... TCKP "X'80'" .. LEAVE IN QUEUE
 1... TCRAS "X'08'" .. RELEASE ALL VIRT STORAGE
 1.. TCSSM "X'04'" .. MSG DESTINED FOR SUBSYS
 1. TCNP "X'02'" .. DON'T BUILD STORAGE PRFX
 1 TCAE "X'01'" .. TASK ACCEPTS I/O ERORS

(36) 54 BITSTRING 1 TCEP EVENT POST BYTE
 1... TCEO "X'80'" EVENT POST BIT ON SETTING
 .1.. TCBSCLV "X'40'" EVENT BIT BSC-WAIT 'B'
 ..1. TCQRDR "X'20'" POST BIT FOR QUIESCE RDR I/O

(37) 55 BITSTRING 1 TCSI SPOOLING INDICATOR
CHAR-
ACTER

TCTSP "C'T'" .. IF SPOOLING TO TAPE
 C'N' .. 'NATIVE' TAPE TASK - UNIT ASSGN'DX
 C'F' .. TASK BRING UP 'FAILED'

(38) 56 ADDRESS 4 UNUSED
(3C) 60 ADDRESS 4 UNUSED

TASK REGISTER SAVE AREA
THE FOLLOWING FIELDS RECORD THE CONTENTS OF THE GENERAL
PURPOSE REGISTERS 12 THROUGH 9 WHENEVER ENTRY IS MADE TO
TASK SELECTION. IF THE TASK STATE IS SET TO 'R' (RUNNING)
THE VALUES IN THE FIELDS RECORD THE CONTENTS OF THE
REGISTERS WHEN THE TASK WAS GIVEN CONTROL. IF THE TASK STATE
IS SET TO ANY OTHER VALUE THE FIELDS CONTAIN THE ACTUAL
CONTENTS OF THE REGISTERS ASSOCIATED WITH THE TASK.

696 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(40) 64 CHAR-
ACTER

56 TCTR (0) TASK REGISTER SAVE AREA

(40) 64 SIGNED 4 TCRC TASK REGISTER 12
(44) 68 SIGNED 4 TCRD TASK REGISTER 13
(48) 72 SIGNED 4 TCRE TASK REGISTER 14
(4C) 76 SIGNED 4 TCRF TASK REGISTER 15
(50) 80 SIGNED 4 TCR0 TASK REGISTER 0
(54) 84 SIGNED 4 TCR1 TASK REGISTER 1
(58) 88 SIGNED 4 TCR2 TASK REGISTER 2
(5C) 92 SIGNED 4 TCR3 TASK REGISTER 3
(60) 96 SIGNED 4 TCR4 TASK REGISTER 4
(64) 100 SIGNED 4 TCR5 TASK REGISTER 5
(68) 104 SIGNED 4 TCR6 TASK REGISTER 6
(6C) 108 SIGNED 4 TCR7 TASK REGISTER 7
(70) 112 SIGNED 4 TCR8 TASK REGISTER 8
(74) 116 SIGNED 4 TCR9 TASK REGISTER 9

VARIOUS CONTROL FIELDS

(78) 120 SIGNED 4 TCRS (0) RESTART INFORMATION
(78) 120 SIGNED 4 TASK TERMINATOR WORK AREA
(78) 120 SIGNED 4 IPW$$XTC ECB FOR DISPLAY SPOOL LST
(78) 120 BITSTRING 1 TCRX RESTART FUNCTION INDEX

 ...1 TCSP "X'10'" ..SETUP REQUESTED
 ...1 1... TCCKP "X'18'" ..CHECKPOINT REQUEST
 ...1 11.. TCPAE "X'1C'" ..POSITION AT END IF ERROR

(79) 121 ADDRESS 3 RESERVED FOR FUTURE USE
(79) 121 BITSTRING 1 TCCTRC CURRENT TRC COMMAND CODE
(7A) 122 SIGNED 2 TCBL BUFFER LENGTH
(78) 120 BITSTRING 1 TCRYFRB FUNCT. REQ. BYTE OF CALLER
(79) 121 BITSTRING 1 TCRYTD HELP FIELD USED BY RECOVERY
(7C) 124 BITSTRING 1 TCDT DEVICE TYPE CODE
(7D) 125 BITSTRING 1 TCAT ACCOUNT TRACE INDICATOR

Used by the task terminator (TR) to determine the appro-
priate action in case of an I/O error on the account file. It can
contain the following:

 .1.. TCJKB "X'40'" .. PUT-ACCOUNT COMPLETE
CHAR-
ACTER

TCJKL "C'L' .. PUT-ACCOUNT ACTIVE @D35DI01

CHAR-
ACTER

TCJKA "C'A'" .. CALLER ACTIVE

CHAR-
ACTER

TCJKC "C'C'" .. CLOSE GET-MODE

CHAR-
ACTER

TCJKE "C'E'" .. ERASE ACCOUNT FILE

CHAR-
ACTER

TCJKG "C'G'" .. GET MODE

CHAR-
ACTER

TCJKK "C'K'" .. KEEP ACCOUNT FILE

CHAR-
ACTER

TCJKO "C'O'" .. OPEN GET-MODE

(7E) 126 BITSTRING 2 TCDE PACKED DEVICE ADDRESS
(80) 128 SIGNED 4 TCRG SAVE AREA FOR SERV. RTNS
(84) 132 SIGNED 4 TCRH SAVE AREA FOR SERV RTNS
(88) 136 SIGNED 4 TC15 2ND BASE REG. SAVE AREA

WHENEVER A VSE/POWER SERVICE FUNCTION IS CALLED (EXCEPT
TASK MANAGEMENT) REGISTER 9 IS SAVED IN TC09. REGISTER 9
IS THEN USED AS 2ND BASE REGISTER BY THE NUCLEUS ROUTINES.
REGISTER 8 IS SAVED IN TC08 TO BE USED AS 3RD BASE.

(8C) 140 SIGNED 4 TC08 REGISTER 8 SAVE AREA
(90) 144 SIGNED 4 TC09 REGISTER 9 SAVE AREA

LINKAGE REGISTER SAVE AREA

 Chapter 5. Storage Layout and Data Areas 697

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

THE FOLLOWING FIELDS RECORD THE CONTENTS OF THE GENERAL
PURPOSE REGISTERS 14 THROUGH 9 WHENEVER ENTRY IS MADE BY
THE TASK TO A VSE/POWER FUNCTION.

(94) 148 CHAR-
ACTER

56 TCSV (0) REGISTER SAVE AREA

(94) 148 SIGNED 4 TASK CONTROL ADDRESS
(98) 152 SIGNED 4 PREVIOUS SAVE AREA ADDRESS
(9C) 156 SIGNED 4 SAVED REGISTER 14
(A0) 160 SIGNED 4 SAVED REGISTER 15
(A4) 164 SIGNED 4 SAVED REGISTER 0
(A8) 168 SIGNED 4 SAVED REGISTER 1
(AC) 172 SIGNED 4 SAVED REGISTER 2
(B0) 176 SIGNED 4 SAVED REGISTER 3
(B4) 180 SIGNED 4 SAVED REGISTER 4
(B8) 184 SIGNED 4 SAVED REGISTER 5
(BC) 188 SIGNED 4 SAVED REGISTER 6
(C0) 192 SIGNED 4 SAVED REGISTER 7
(C4) 196 SIGNED 4 SAVED REGISTER 8
(C8) 200 SIGNED 4 SAVED REGISTER 9

TRACE FACILITY SAVE AREA

(CC) 204 SIGNED 4 TCTCWKP TASK TRACE WORKAREA PNTR
(D0) 208 CHAR-

ACTER
TCTCR (0) TASK TRACE REG SAVEAREA

(D0) 208 SIGNED 4 TCTCRD TASK TRACE REG 13
(D4) 212 SIGNED 4 TCTCRE TASK TRACE REG 14
(D8) 216 SIGNED 4 TCTCRF TASK TRACE REG 15
(DC) 220 SIGNED 4 TCTCR0 TASK TRACE REG 0
(E0) 224 SIGNED 4 TCTCR1 TASK TRACE REG 1
(E4) 228 SIGNED 4 TCTCR2 TASK TRACE REG 2
(E8) 232 SIGNED 4 TCTCR3 TASK TRACE REG 3
(EC) 236 SIGNED 4 TCTCR4 TASK TRACE REG 4
(F0) 240 SIGNED 4 TCTCR5 TASK TRACE REG 5
(F4) 244 SIGNED 4 TCTCR6 TASK TRACE REG 6
(F8) 248 SIGNED 4 TCTCR7 TASK TRACE REG 7
(FC) 252 SIGNED 4 TCTCR8 TASK TRACE REG 8
(100) 256 SIGNED 4 TCTCR9 TASK TRACE REG 9

IDUMP SAVE AREA
WHENEVER THE IDUMP FUNCTION IS REQUESTED BY IPW$IDM,
CALLER REGISTERS RE-R1 ARE SAVED IN TCIE-TCI1
NOTE - THIS AREA IS REUSED AS ECB LIST FOR IPW$WFM CALLS BY
IPW$$QM(Q1), IPW$$T1, IPW$$XWE.
IN $WFM STATE IDUMP IS NOT POSSIBLE EXCEPT DISPATCHER
DETECTS DESTROYED TCB AND TERMINATES POWER

(104) 260 SIGNED 4 TCIE REGISTER E SAVE AREA
(108) 264 SIGNED 4 TCIF REGISTER F SAVE AREA
(10C) 268 SIGNED 4 TCI0 REGISTER 0 SAVE AREA
(110) 272 SIGNED 4 TCI1 REGISTER 1 SAVE AREA

TASK MESSAGE INTERFACE

(114) 276 ADDRESS 4 TCMW ADDRESS OF MESSAGE TO BE ISSUED
 Consists of four bytes. The first byte contains the flag byte.
The remaining three bytes contain the message address. The
message address field contains the virtual address of the
message control byte, that is, the byte that immediately pre-
cedes the text of the message to be output.
 X'80' .. HOLD MESSAGE CONTROL BLOCK
 X'40' .. REGISTER 5 CONTAINS TCB ADDRESS
 X'20' .. MESSAGE IS IN NMR FORMAT

 ...1 TCDNCM "X'10'" .. DO NOT COMPRESS MESSAGE
 1... TCPCOP "X'08'" .. PASS TO CENTRAL OPERATOR
 1.. TCDNMM "X'04'" .. DO NOT MODIFY MESSAGE

(118) 280 ADDRESS 4 TCAW ADDRESS OF CALLERS REPLY AREA

698 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

WTO/WTOR/DOM INTERFACE: WTO/WTOR OUTPUT

(11C) 284 BITSTRING 4 TCMID MESSAGE ID
(120) 288 ADDRESS 4 TCMRECB WTOR REPLY ECB

WTO/WTOR/DOM INTERFACE: WTO/WTOR/DOM INPUT - SET BY POWER:

(124) 292 BITSTRING 4 TCMRT MESSAGE ROUTING CODE
(128) 296 BITSTRING 2 TCMDC MESSAGE DESCRIPTOR CODE
(12A) 298 BITSTRING 1 TCF18 FLAG BYTE 18

 1... TCF1863 "X'80'" .. TAPE FROM VERS. 5.2-6.3
 .1.. TCF18WW "X'40'" .. $$XW WAIT ON SEG. POSTING

.. $$XW POST WAITING $$XW
 ..1. TCF18CE "X'20'" .. CONNECTED MSG ERROR
 ...1 TCF18I1 "X'10'" .. DO IDUMP ONCE PER TCB

(12B) 299 BITSTRING 1 TCF19 FLAG BYTE 19
(12C) 300 BITSTRING 4 TCMNRT NEG ROUTING CODE(DON"T WANT)@D61CDSW
(130) 304 BITSTRING 4 TCMRTDF DEFAULT MSG ROUTING CODE
(134) 308 ADDRESS 4 TCMDOM DOM MESSAGE ID
(138) 312 ADDRESS 4 TCMCID COMMAND CONNECT MESSAGE ID

AR COMMAND OUTPUT(INPUT TO WTO/WTOR IF CMD RESP)

(13C) 316 BITSTRING 8 TCMCART AR MESSAGE TOKEN (CART)
(144) 324 BITSTRING 4 TCMCOID AR CONSOLE ID

 MISCELLANEOUS

(148) 328 BITSTRING 2 TCMPID PARTITION ID
(14A) 330 BITSTRING 1 TCMFLG MESSAGE FLAGS

 1... TCMFAR "X'80'" .. VSE/AF CMD
 .1.. TCMFUR "X'40'" .. VSE/AF CMD USER CONSOLE
 ..1. TCMFCUP "X'20'" .. CLOSE UP CONN'D MSGS
 ...1 TCMFCFM "X'10'" .. ISSUE 1ST CONN'D MESSAGE
 1... TCMFICM "X'08'" .. ISSUE CONNECTED MESSAGE
 1.. TCMFCEX "X'04'" .. CONNECTED MSG EXISTS

(14B) 331 BITSTRING 1 UNUSED
(14C) 332 ADDRESS 4 TCVD SAVED PTR(LINK-REG-SV-AREA)
(150) 336 ADDRESS 4 TC1Q40 MSG 1Q40A MSG ID FOR DOM
(150) 336 ADDRESS 4 TC1Q38 MSG 1Q38A MSG ID FOR DOM
(150) 336 ADDRESS 4 TC1QD6 MSG 1QD6I MSG ID FOR DOM
(154) 340 ADDRESS 4 UNUSED
(158) 344 ADDRESS 4 TCPFTWA TAPE-WORKAREA NOT TO REL.
(15C) 348 ADDRESS 4 TCPFPWA PRT/PUN-WA NOT TO RELEASE
(160) 352 SIGNED 2 TCPFCU CUU OF PSTOP FORCE CMD
(162) 354 SIGNED 2 TCPFRC RC OF PSTOP FORCE CMD

DATA FILE CONTROL WORDS
INPUT/OUTPUT REQUEST WORD

(164) 356 ADDRESS 4 TCDW RELATIVE DBLK NUMBER
(168) 360 ADDRESS 4 TCDV VIRTUAL DATA AREA ADDRESS
(16C) 364 ADDRESS 2 TCDL DATA AREA LENGTH
(16E) 366 BITSTRING 1 OPERATION CODE
(16F) 367 BITSTRING 1 RESERVED

BLOCKING CONTROL WORDS

(170) 368 SIGNED 4 TCBC RESIDUAL BLOCK COUNT
(174) 372 ADDRESS 4 TCPR PREVIOUS/NEXT RECORD ADDRESS
(178) 376 ADDRESS 4 TCASPB ADDR OF SPOOL BLOCK

RECORD CONTROL WORD (RCW)

(17C) 380 CHAR-
ACTER

8 TCRW (0) RECORD CONTROL WORD

(17C) 380 BITSTRING 1 TCCC RECORD COMMAND CODE X'FF' .. CONTROL RECORD
X'FE' .. NEW FORMS

(17D) 381 ADDRESS 3 TCRV RECORD ADDRESS (VIRTUAL)
(180) 384 BITSTRING 1 TCGP GENERAL PURPOSE BYTE

 GPNR "X'00'" .. NORMAL RECORD
 .1.. GPER "X'40'" .. EXTENDED RECORD

 Chapter 5. Storage Layout and Data Areas 699

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. GPDE "X'20'" .. END OF 3540 DATA
 ...1 GPEB "X'10'" .. END OF BLOCK

 X'08' .. >>NOT USABLE<< (OLD GPBR FIELD. X
 1.. GPED "X'04'" .. END OF DATA (=EOF)
 1. GPRD "X'02'" .. 3540 DATA RECORD
 1 GPDR "X'01'" .. LINE PRINT/CARD MOVE/DATA

(181) 385 BITSTRING 1 TCG2 GENERAL PURPOSE BYTE TWO
 1... TCGJ "X'80'" .. JOB HEADER RECORD
 .1.. TCGT "X'40'" .. JOB TRAILER RECORD
 ..1. TCGD "X'20'" .. DATASET HEADER RECORD
 ...1 TCSMR "X'10'" .. STREAM MODE RECORD (CPDS)
 1... TCG08 "X'08'" .. UNUSED
 1.. TCFFM "X'04'" .. FIXED FORMAT MESSAGE REC
 1. TCASA "X'02'" .. ASA DATA RECORD

(182) 386 SIGNED 2 TCRL RECORD LENGTH
(184) 388 BITSTRING 1 TCG3 GENERAL PURPOSE BYTE THREE

 1... TCSEP "X'80'" .. SEPARATOR PAGE/CARD REC
 .1.. TCESEP "X'40'" .. END SEP. PAGE/CARD REC
 ..1. TCEOC "X'20'" .. END OF COPY RECORD
 ...1 TCNRI "X'10'" .. NO RECORD INCREMENT

(185) 389 BITSTRING 1 TCG4 GENERAL PURPOSE BYTE FOUR
 1... TCILC "X'80'" .. LINE COUNT TO BE INCRE"D @D23CDWS
 .1.. TCIPC "X'40'" .. PAGE COUNT TO BE INCRE"D @D23CDWS
 ..1. TCSGN "X'20'" .. SUPRESS GET NEXT CCW

(186) 390 BITSTRING 1 TCDVEB 'DEVICE END' OCCURRED ('FF')
(187) 391 BITSTRING 1 RESERVED FOR FUTURE USE
(188) 392 SIGNED 4 TCLRNO LOGICAL RECORD NUMBER

QUEUE FILE CONTROL WORDS

(18C) 396 ADDRESS 4 TCQW RELATIVE QUEUE REC NUMBER
(190) 400 ADDRESS 4 TCQV VIRTUAL SPACE ADDRESS
(194) 404 ADDRESS 2 QUEUE REC LENGTH - NOT USED
(196) 406 BITSTRING 1 OPERATION CODE
(197) 407 BITSTRING 1 RESERVED

TAPE SPOOLING CONTROL INFORMATION

(198) 408 BITSTRING 8 TCTS (0) TAPE REQUEST WORD
(198) 408 BITSTRING 1 TCTF FUNCTION BYTE USED FOR TAPE
(199) 409 ADDRESS 3 TCTA ADDRESS OF TAPE CTRL BLOCK
(19C) 412 BITSTRING 4 TCTDES (0) TAPE UNIT DESCRIPTORS
(19C) 412 BITSTRING 1 TCTM INDICATE TAPE MODE (DENS.)
(19D) 413 BITSTRING 1 TCTDT TAPE DEVICE TYPE
(19E) 414 CHAR-

ACTER
2 TCTU TAPE PROG.LOGICAL UNIT(PUU)

(1A0) 416 SIGNED 4 TCPU PHYS.UNIT OR PUB ENTRY ADDR.

VARIOUS CONTROL FIELDS

(1A4) 420 BITSTRING 1 TCF2 FLAG BYTE 2
 1... TCT2S "X'80'" .. 2.ND TIME SWITCH IPW$$TR
 .1.. TCERT "X'40'" .. EXECUTION READER TASK ID
 ..1. TCWOP "X'20'" .. WRITER-ONLY PARTITION ID
 ...1 TCOFF "X'10'" .. POFFLOAD TASK
 1... TCSLI "X'08'" .. SLI IN PROCESS
 1.. TCJBP "X'04'" .. JOB STMT PROCESSING
 1. TCLTP "X'02'" .. LST STMT PROCESSING
 1 TCPUP "X'01'" .. PUN STMT PROCESSING

(1A5) 421 BITSTRING 1 TCF3 FLAG BYTE 3
 1... TCHCPY "X'80'" .. HORIZONTAL COPY IND
 .1.. TCSGM "X'40'" .. SEGMENTATION REQUIRED
 ..1. TCDFT "X'20'" .. DEFAULT REQUIRED FOR 3800
 ...1 TCIDH "X'10'" .. INSERT DATASET HDR REC
 1... TCUNN "X'08'" .. Q REC WITH UNKNOWN NODEID
 1.. TCOTV "X'04'" .. OLD TAPE VERSION 1
 1. TCNRW "X'02'" .. NO REWIND REQUESTED
 1 TCSIN "X'01'" .. SYSIN MODE REQUESTED

700 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(1A6) 422 BITSTRING 1 TCF4 FLAG BYTE 4
 1... TCCSF "X'80'" .. DOS STMT CONTINUED (1ST)
 .1.. TCCSC "X'40'" .. DOS STMT CONTINUED
 ..1. TCCSJ "X'20'" .. JECL STMT CONTINUED ERROR
 ...1 TCPGEP "X'10'" .. PAGE POSITIONING WANTED
 1... TCDSHR "X'08'" .. DSHR RECORD BUILT
 1.. TCVMW "X'04'" .. VM WRITER TASK
 1. TCDST "X'02'" .. DEVICE SERVICE TASK
 1 TCXPT "X'01'" .. CROSS PARTITION USER TASK

(1A7) 423 BITSTRING 1 TCF5 FLAG BYTE 5
 1... TCDNA "X'80'" .. DO NOT WRITE ACCOUNT REC
 .1.. TCDNS "X'40'" .. DO NOT SPOOL RECORD
 ..1. TCIQM "X'20'" .. IGNORE QUEUE MANAGEMENT
 ...1 TCIQJ "X'10'" .. IGNORE FOLLOWING JOBS
 1... TCFRNW "X'08'" .. NO-WAIT WANTED
 1.. TCLPOS "X'04'" .. LINE POSITIONING WANTED
 1. TCCAR "X'02'" .. ASA CONVERSION REQUESTED
 1 TCSPW "X'01'" .. SPOOLED WRITER TASK IND.

(1A8) 424 BITSTRING 1 TCF6 FLAG BYTE 6
 1... TCFEW "X'80'" .. 'FE' RECORD WRITTEN
 .1.. TCFRY "X'40'" .. QUEUE FILE RECOVERY ACTIV
 ..1. TCFIOH "X'20'" .. I/O ERROR HANDLER ACTIVE
 ...1 TCFSEP "X'10'" .. SEP PAGES/CARDS WANTED
 1... TCFNOS "X'08'" .. NO SEP PAGES/CARDS WANTED
 1.. TCFIOD "X'04'" .. DATA FILE I/O ERROR PROC
 1. TCFNSC "X'02'" .. Q-ENTRY: NO STATUS CHANGE
 1 TCFDCD "X'01'" .. DO NOT ALTER DISPOSITION

(1A9) 425 BITSTRING 1 TCF7 FLAG BYTE 7
 1... TCFUQE "X'80'" .. UNCHAIN QUEUE ENTRY
 .1.. TCCLNU "X'40'" .. CNTL BLOCK LOCKED BY $$NU
 ..1. TCFSKP "X'20'" .. SKIP TO CH1 INSERTION
 ...1 TCRLCK "X'10'" .. REVERSE LOCKING ORDER
 1... TCVS2 "X'08'" .. TAPE, POWER VERSION 2
 1.. TCXLR "X'04'" .. JOBEXIT WORK AREA RESER.
 1. TCFMSG "X'02'" .. SEND SIGNAL ATTENTION
 1 TCFNOF "X'01'" .. DON'T FLUSH JOB

(1AA) 426 BITSTRING 1 TCF8 FLAG BYTE 8
 1... TCF8NM "X'80'" .. NO MESSAGE MODIFICATION
 .1.. TCF8WXW "X'40'" .. XR IS WAITING FOR XW
 ..1. TCF8NW "X'20'" .. NO REAL STORAGE WAIT OPT. .. NO WORK-

SPACE OBTAINED
 ...1 TCF8DY "X'10'" .. DYNAMIC EXEC. PROCESSOR
 1... TCF8DS "X'08'" .. DYNAMIC READER STARTING
 1.. TCF8LO "X'04'" .. LOAD MACRO RC INDICATOR
 1. TCF8MS "X'02'" .. MODE SET/REQUEST DONE
 1 TCF8HP "X'01'" .. HIGH PERFORMANCE OPTION

(1AB) 427 BITSTRING 1 TCF9 FLAG BYTE 9
 1... TCF9TA "X'80'" .. TASK MAY USE ACC REG
 .1.. TCF9UA "X'40'" .. ACCESS REG ARE USED
 ..1. TCF9AM "X'20'" .. ACCESS-REG MODE SET ON
 ...1 TCF9CO "X'10'" .. $$PS CALL BY CENT. OP.
 1... TCF9WA "X'08'" .. DST: WAIT IF SOA
 1.. TCF9SD "X'04'" .. INVALID SER DBLK DETECTED
 1. TCF9NM "X'02'" .. NO MSG MODIFICATION
 1 TCF9RQ "X'01'" .. QUEUE SET RESERVED

(1AC) 428 BITSTRING 1 TCF10 FLAG BYTE 10
 1... TCF10V4 "X'80'" .. TAPE FROM 4.X. OR 5.1
 .1.. TCF10UI "X'40'" .. USER INFO IN MSG
 ..1. TCF10RX "X'20'" .. RUNNING TASK DETECTED BY TPEND EXIT,

TESTED BY $$SN.
 ...1 TCF10QC "X'10'" .. QCM SUPPPORT EXISTS
 1... TCF10FN "X'08'" .. F.F. NMR BUILT
 1.. TCF10DL "X'04'" .. DROP LAST SEPARATOR PAGE
 1. TCF10WR "X'02'" .. WRITE OCCURED IN XW/XWE
 1 TCF10IS "X'01'" .. USE IDENTICAL SEP. PAGES

 Chapter 5. Storage Layout and Data Areas 701

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(1AD) 429 BITSTRING 1 TCF11 FLAG BYTE 11
 1... TCF11NL "X'80'" .. NO VSCB LOCKING ($UNV)
 .1.. TCF11XF "X'40'" .. USER EXIT FAILED
 ..1. TCF11JC "X'20'" .. CONT JCL MODE - SKIP JECL
 ...1 TCF11NT "X'10'" .. TRACING NOT ALLOWED
 1... TCF11TR "X'08'" .. TRACING WORKAREA REAL
 1.. TCF11SP "X'04'" .. STOP POST-SLOT PROCESS
 1. TCF11SI "X'02'" .. SHOW IGNORED RECORDS
 1 TCF11SF "X'01'" .. SEGMENTATION FAILED

(1AE) 430 BITSTRING 1 TCF12 FLAG BYTE 12
 1... TCF12SD "X'80'" .. REG 13 SAVED IN $MS
 .1.. TCF12DI "X'40'" .. ISSUE DUMMY I/O TO JCL
 ..1. TCF12FF "X'20'" .. FIXED FORMAT MSG QUEUED
 ...1 TCF12DF "X'10'" .. DEFAULT FCB USED ($XWE)
 1... TCF12LP "X'08'" .. LTAB IN * $$ LST ($XWE)
 1.. TCF12NE "X'04'" .. DO NOT PASS TO RDR-EXIT
 1. TCF12R1R "X'02'" .. READ 1 RECORD FOR PHYSRDR
 1 TCF12JOB "X'01'" .. // JOB ACTIVE IN LR JOBXT

(1AF) 431 BITSTRING 1 TCF13 FLAG BYTE 13 (RES.FOR GCM)
 1... TCF13QQ "X'80'" .. QUEUE FIX FORM MSG REQ.
 .1.. TCF13GP "X'40'" .. TASK IN GCM-WAIT-PEND ST.
 ..1. TCF13CQ "X'20'" .. TASK IN COM.QU. STATE
 ...1 TCF13DQ "X'10'" .. TASK IN DOUBL. QU. STATE
 1.. TCF13GE "X'04'" .. GCM-WAIT PEND TERM STATE
 1. TCF13ME "X'02'" .. GCM-WAIT MSG EVENT
 1 TCF13KP "X'01'" .. KEEP GCM WAIT IF PEND

(1B0) 432 BITSTRING 1 TCF14 FLAG BYTE 14
 1... TCF14KN "X'80'" .. IPWSEGM KEEP=NO PROCESS
 .1.. TCF14KY "X'40'" .. IPWSEGM KEEP=YES PROCESS
 ..1. TCF14PL "X'20'" .. OUTPUT IGNORED (LST0DAT)
 ...1 TCF14PI "X'10'" .. OUTPUT IGNORRED
 1... TCF14PP "X'08'" .. OUTPUT PURGED
 1.. TCF14Q5 "X'04'" .. $$XW TO ISSUE DEBUG 1Q53I
 1. TCF1452 "X'02'" .. $$XWE 1Q52I ISSUED ONCE

(1B1) 433 BITSTRING 1 TCF15 FLAG BYTE 15
 1... TCF15US "X'80'" .. USER EXIT SET STOPCODE S
 .1.. TCF15IG "X'40'" .. IGNORE 1ST SEGMENT I/O
 ..1. TCF15DU "X'20'" .. DYNAM PARTITION WAS UP
 ...1 TCF15SU "X'10'" .. IPW$GAM SUB=YES CALLED
 1... TCF15MR "X'08'" .. C-MSG FOR PRELEASE
 1.. TCF15PF "X'04'" .. PSTOP FORCE ISSUED
 1. TCF15PN "X'02'" .. PSTOP FORCE I/F $CP/$NU

(1B2) 434 BITSTRING 1 TCF16 FLAG BYTE 16
 1... TCF16TI "X'80'" .. TAPE I/O BUSY
 .1.. TCF16PI "X'40'" .. PRT/PUN I/O BUSY
 ..1. TCF16NP "X'20'" .. NON-PARALLEL MODE ACTIVE
 ...1 TCF16P3 "X'10'" .. WLST/WPUN TASK FOR P390 4 FLAGS FOR

PAGE COUNT STATE:
 1... TCF16LM "X'08'" .. LINE MODE (DEFAULT)
 1.. TCF16LMI "X'04'" .. LINE MODE IDM/IMM RECV'D
 1. TCF16PM "X'02'" .. PAGE MODE
 1 TCF16PM8 "X'01'" .. PAGE MODE '8B' RECEIVED

(1B3) 435 BITSTRING 1 TCF17 FLAG BYTE 17
 1... TCF17TBL "X'80'" .. BAM LABELED TAPE
 .1.. TCF17TBN "X'40'" .. BAM UNLABELED TAPE
 ..1. TCF17TBW "X'20'" .. BAM WRITE MODE
 ...1 TCF17TMS "X'10'" .. TMS TAPE HANDLG(RESERVED)
 1... TCF17PA "X'08'" .. PICKUP HAS ACTIVE ENTRY
 1.. TCF17LTA "X'04'" .. BAM HOLDS LTA DURING REQ.
 1. TCF17WFW "X'02'" .. $$XR WAITING ON BAM OPEN
 1 TCF17A31 "X'01'" .. PAGE FAULT IN AMODE 31

(1B4) 436 BITSTRING 1 TCF20 FLAG BYTE 20
 1... TCF20BC "X'80'" .. SAS BROWSE IN CREATION
 .1.. TCF20DT "X'40'" .. OPEN IJDTEST IN PROGRESS
 ..1. TCF20FMT "X'20'" .. FORMATTING ADD. EXTEMT

702 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ...1 TCF201ST "X'10'" .. OPEN IJDTEST ERR.1ST TIME
(1B5) 437 BITSTRING 1 TCF21 FLAG BYTE 21

 1... TCF21XXX "X'80'" .. UNUSED
(1B6) 438 BITSTRING 6 .. UNUSED
(1BC) 444 SIGNED 4 TCVEB (0) ECB FOR VTAM REQUESTS
(1BC) 444 SIGNED 4 TCFEB (0) ECB FOR FORMAT DATA FILE
(1BC) 444 BITSTRING 2 RESERVED - DO NOT USE !
(1BE) 446 BITSTRING 1 TCVEP EVENT POST BYTE FOR VTAM
(1BE) 446 BITSTRING 1 TCFEP EVENT POST BYTE FOR FORMAT DFILE

 1... TCVEO "X'80'" ..EVENT POST BIT ON
 1... TCFEO "X'80'" ..EVENT POST BIT ON

(1BF) 447 BITSTRING 1 RESERVED - DO NOT USE !
(1C0) 448 ADDRESS 4 TCGDS ADDR OF GENERATED DSHR
(1C4) 452 ADDRESS 4 TCCMRG COMREG ADDR IF EXEC TASK
(1C8) 456 SIGNED 4 TC3E ADDR OF TCB EXTENSION AREA OR ADDR OF WORK

SPACE OR DSHR
(1CC) 460 SIGNED 4 TCHD HEAD PTR VIRT STORAGE CHAIN
(1D0) 464 SIGNED 4 TAIL PTR VIRT STORAGE CHAIN
(1D4) 468 ADDRESS 4 TC3W POINTER 3540 WORKSPACE
(1D8) 472 SIGNED 4 TCXWA ADDRESS TO EXIT WORK AREA
(1DC) 476 SIGNED 4 TCJHR PTR TO JHR (USED BY $LR)
(1E0) 480 SIGNED 2 TCXWAL LENGTH OF EXIT WORK AREA
(1E2) 482 SIGNED 2 TCQCQW QUEUE REC. OF QC.. USED BY $SQ IN CASE OF SOD

FOR QCA
(1E4) 484 SIGNED 4 TCLRWA LOGICAL READER WORK AREA
(1E8) 488 SIGNED 4 TCRVAL RESTART PAGE/LINE/RECORD CNT
(1EC) 492 SIGNED 4 TC0EEX RETURN ADDRESS OF USER EXIT
(1F0) 496 SIGNED 4 TCNR2W PTR TO NR2 WORKAREA

LOGICAL I/F AND FUNCTION REQUEST BYTES

(1F4) 500 BITSTRING 1 TCLIFB LOG. INTERFACE FUNCTION BYTE
 1 TCLIOP "X'01'" .. PRE-OPEN OUTPUT QUEUE
 1. TCLIOF "X'02'" .. FINAL OPEN OUTPUT QUEUE
 11 TCLILO "X'03'" .. LOCATE QUEUE ENTRY
 1.. TCLIOR "X'04'" .. OPEN-RESTART QUEUE ENTRY
 1.1 TCLIRS "X'05'" .. RESTART QUEUE ENTRY
 11. TCLISG "X'06'" .. SEGMENT OUTPUT Q' ENTRY
 111 TCLIFL "X'07'" .. FLUSH OUTPUT QUEUE ENTRY
 1... TCLICH "X'08'" .. CHECKPOINT QUEUE ENTRY
 1..1 TCLICL "X'09'" .. CLOSE OUTPUT QUEUE ENTRY
 1.1. TCLISP "X'0A'" .. SPOOL RECORD
 1.11 TCLIAQ "X'0B'" .. ADD TO CLASS CHAIN
 11.. TCLICO "X'0C'" .. CLOSE WITHOUT JTR
 11.1 TCLIRL "X'0D'" .. READ LOCATED DATA
 111. TCLIOFJ "X'0E'" .. FINAL OPEN OUTPUT QUEUE WITH JOBNUMBER

SUPPLIED
 1111 TCLIFLW "X'0F'" .. FLUSH OUTPUT QUEUE ENTRY WITHOUT

MESSAGE
 ...1 TCLIOFB "X'10'" .. FINAL OPEN OUTPUT QUEUE WITH JOBNUMBER

SUPPLIED, NO BLANK TRUNCATION
(1F5) 501 BITSTRING 1 TCLIRC LOG. INTERFACE RETURN CODE

 TCLROK "X'00'" .. OK
 1 TCLRWS "X'01'" .. WARNING-SPOOL CC,IGNORED
 1. TCLRLO "X'02'" .. ERROR - LOCATE FAILED
 11 TCLRRR "X'03'" .. RESTART ERROR, WRONG REC
 1.1 TCLRCF "X'05'" .. CHECKPOINTING FAILED
 11. TCLRSE "X'06'" .. SPOOLING ERROR (QUALIFIER IN 2ND BYTE)
 111 TCLRSDA "X'07'" .. SPOOLING ERROR (SOD+SOA)
 1... TCLROR "X'08'" .. OPEN RESTART ERROR
 1..1 TCLRWC "X'09'" .. CHECKPOINT OD ALTERED

(1F6) 502 BITSTRING 1 TCLISR 2ND LOG. INTERFACE RC
(1F7) 503 BITSTRING 1 TCFRB1 FUNCTION REQUEST BYTE 1

 1 "X'01'" .. UNUSED

 ------------ SET BY $$DS -----------------------------------

 Chapter 5. Storage Layout and Data Areas 703

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1. TCFRBR "X'02'" .. RESTART QUEUE SET SPOOL'G
 11 TCFRBU "X'03'" .. UPDATE SPOOL ENV BLOCK
 1.. "X'04'" .. UNUSED
 1.1 TCFRBP "X'05'" .. RESET SPOOLING POINTERS

 ------------ SET BY $$CS -------------------------

 11. TCFRQS "X'06'" .. SCAN CLASS CHAIN (IGNORE LIVE BIT SETTING)

 ------------ SET BY $$I4/$$TI ------------------------------

 111 TCFFUL "X'07'" .. PERFORM FULL RECOVERY

 ------------ SET BY $IQS/$AQS/$DQS/$FQS --------------------

 1... TCFNOL "X'08'" .. DO NOT UNLOCK DMB

 ------------ SET BY $ICP -----------------------------------

 1..1 TCFRIC "X'09'" .. DO NO AUTHORITY CHECK
(1F8) 504 BITSTRING 1 TCFRCT FUNCTION RETURN CODE

 ------------ SET BY $$PA/$$PF, $$PD AND $$RQ --------------

 1 TCFSOD "X'01'" .. SHORT-ON-DASD SPACE (SOD)
 1. TCFSOA "X'02'" .. SHORT-ON-ACCOUNT FILE

 ------------ SET BY $$NQ (GET NEXT QUEUE SET) -------------

 11 TCFRNF "X'03'" .. QUEUE SET NOT FOUND
 1.. TCFRBY "X'04'" .. QUEUE SET MARKED ACTIVE
 1.1 TCFRQP "X'05'" .. QUEUE SET PROTECTED
 11. TCFRNE "X'06'" .. QUEUE SET NOT ELIGIBLE
 111 TCFRSM "X'07'" .. FOUND, BUT JOB SUFF MISS
 1.11 TCFRQN "X'0B'" .. INVALID Q-RECORD NUMBER
 11.. TCFRSA "X'0C'" .. SECURITY ACCESS VIOLATION

 ------------ SET BY $$DS (DATA MANAGEMENT SERVICES) --------

 1... TCFRIR "X'08'" .. INCORRECT RECORD (CC)
 1..1 TCFRRS "X'09'" .. INC. RESTART RECORD NO.

 ------------ SET BY $$NQ (GET NEXT QUEUE SET) -------------

 1.1. TCFRUM "X'0A'" .. QUEUE SET USER MISMATCH
(1F9) 505 BITSTRING 1 TCFRB2 FUNCTION REQUEST BYTE 2

 ------------ SET BY $ICP -----------------------------------

 1 TCFPCE "X'01'" .. PASS PCE
 1. TCFVER "X'02'" .. PASS VERIFIED CLASS TABLE
 11 TCFNLK "X'03'" .. DO NOT LOCK DPCB
 11.1 TCFOCP "X'0D'" .. PASS CMD FROM PERM. CP

 ------------ SET BY $ITQ -----------------------------------

 1.. TCFAWF "X'04'" .. ADD TO WFR-SUBQUEUE
 1.1 TCFDWF "X'05'" .. DEL FROM WFR-SUBQUEUE
 11. TCFIWF "X'06'" .. INIT THE WFR-SUBQUEUE

 ------------ SET BY $$XTG FOR $$LW ------------------------

 111 TCFCKI "X'07'" .. EXTENDED CKP INFO PASSED

 ------------ SET BY $ICP -----------------------------------

 1... TCFDCK "X'08'" .. DELETE CKP INFO
 1..1 TCFDQN "X'09'" .. PASS DIRECT Q-REC NUMBER

 ------------ SET BY $IIS -----------------------------------

 1.1. TCFDEL "X'0A'" .. 'DIRECT' ELIGIB. CHECK

 ------------ SET BY $$LO -----------------------------------

 1.11 TCFRBL "X'0B'" .. LOCATE QUEUE SET
 11.. TCFSCT "X'0C'" .. INFORM $$DQ TO SET QROTC

CONTINUATION OF VARIOUS CONTROL FIELDS

704 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(1FA) 506 BITSTRING 1 TCRSCO REMAINING COPY NUMBER

THE FOLLOWING FIELD IS USED BY THE EXECUTION PROCESSOR
ROUTINES (IPW$$XR & IPW$$XW) TO INDICATE THE DETAIL
REASON CODE FOR MESSAGE 1R30I.

(1FA) 506 BITSTRING 1 TCERC DETAIL REASON CODE
 1 TCERCE "X'01'" .. CCW WITH DC, IDAL
 1. TCERCI "X'02'" .. INVALID CCW OP CODE
 11 TCERCO "X'03'" .. CCW OUTSIDE OF PARTITION
 1.. TCERCD "X'04'" .. DATA AREA OUTSIDE OF PART
 1.1 TCERCZ "X'05'" .. WRONG RECORD LENGTH
 11. TCERCW "X'06'" .. CCW ¬ ON D-WORD BOUNDARY
 111 TCERC3 "X'07'" .. 3540 READ OUT OF SEQUENCE
 1... TCERCU "X'08'" .. UNKNOWN CHANNEL SPECIFIED
 1..1 TCERCF "X'09'" .. WRONG FCB IMAGE
 ...1 TCERCJ "X'10'" .. WRONG JECL STATEMENT
 ...1 ...1 TCERCT "X'11'" .. MORE THAN 255 TIC'S
 ...1 ..1. TCERF1 "X'12'" .. FORMAT 1 CCW USED
 ...1 ..11 TCERCR "X'13'" .. CCB INDICATES EXCP REAL

THE FOLLOWING DEFINITIONS ARE USED BY THE EXECUTION
PROCESSOR ROUTINE (IPW$$XW) TO INDICATE THE DETAIL
REASON CODE FOR MESSAGE 1Q54I.

 1 TCERCN "X'01'" .. PHASE NOT FOUND
 1. TCERCL "X'02'" .. INCORRECT PHASE LENGTH
 11 TCERCP "X'03'" .. INVALID FCB PHASE NAME PREFIX (3800)
 1.. TCERCC "X'04'" .. INVALID CHANNEL
 1.1 TCERCV "X'05'" .. INVALID FCB END COND.
 11. TCERCG "X'06'" .. WRONG LINE/PAGE FLAG 3800
 111 TCERNF "X'07'" .. LOADING NEW FORMAT FCB ON A NON D/T4248.

(1FB) 507 BITSTRING 1 TCLRRL JOB REC LEN, 1ST SYSRDR DEV
(1FC) 508 SIGNED 4 TCPL ADDR(SPOOL MGMT PARM LST)

X'FF' .. SPOOL MGR SPL PRESENT
(200) 512 CHAR-

ACTER
8 TCSECAU SECURITY OWNING USERID

(208) 520 BITSTRING 1 TCSECFG SECURITY FLAGS
(209) 521 BITSTRING 3 UNUSED
(20C) 524 ADDRESS 4 (5) RESERVED

GENERAL TASK WORK AREA
THE FOLLOWING 88 BYTES ARE USED AS A GENERAL-
PURPOSE WORK AREA, WHICH MAY BE BROKEN INTO FIELDS AS
IS REQUIRED BY EACH SPECIFIC TASK.

(220) 544 SIGNED 4 (0)
(220) 544 BITSTRING 32 TCGW WORK AREA - USED BY LOGICAL ROUTINES, MAY NOT

BE REUSED BY ANY TASK USING LOG. RTNS
(240) 576 SIGNED 4 TCW1 WORK WORD 1
(244) 580 SIGNED 4 TCW2 WORK WORD 2
(248) 584 SIGNED 4 TCW3 WORK FULLWORD 3
(24C) 588 SIGNED 4 TCW4 WORK FULLWORD 4
(250) 592 SIGNED 4 (4) RESERVED
(260) 608 BITSTRING 16 TCGW2 WORK AREA 2
(270) 624 BITSTRING 72 TCGW3 WORK AREA 3

LOGICAL WRITER RE-DEFINITION

(220) 544 SIGNED 4 LWFI FORMS IDENTIFICATION
(224) 548 BITSTRING 1 LWNC COPY/TRANSMISSION COUNTER
(225) 549 ADDRESS 1 LWCSNO CURR NUMBER FOR SEP PAGES
(226) 550 BITSTRING 1 LWFLG LOG. WRITER FLAG BYTE

 1... LWFEJ "X'80'" ..RESTART EOJ INDICATOR
 .1.. LWRBA "X'40'" ..RESTART BACKWARDS ACTIVE
 ..1. LWLRR "X'20'" ..LOCATE RESTART RECORD ACT
 ...1 LWTEO "X'10'" ..UPD EXTRA AND TOTAL ONLY
 1... LWJHR "X'08'" .. JHR ALREADY PASSED

 Chapter 5. Storage Layout and Data Areas 705

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 1.. LWHCPY "X'04'" .. HORIZONTAL COPY ON SET
(227) 551 BITSTRING 1 LWFT START SEPARATION SWITCH
(228) 552 SIGNED 4 LWAW ACCOUNT COUNTER WS PTR
(22C) 556 BITSTRING 1 LWLC (0) LAST COMMAND CODE
(22C) 556 ADDRESS 4 LWAD ADDRESS OF BUFFER FOR SEP
(230) 560 BITSTRING 1 LWIO USED FOR SEP PAGES PROC
(231) 561 BITSTRING 1 LWSW LOGICAL WRITER SWITCHES

 1... LWFISW "X'80'" .. DEFAULT FORMS ID SET
 .1.. LWFLSW "X'40'" .. DEFAULT FLASH ID SET
 ..1. LWPSSW "X'20'" .. DEFAULT BURST SET

(232) 562 BITSTRING 1 PPEB EMPTY BLOCK INDICATOR $$PP
(233) 563 BITSTRING 1 LWPS PAPER STATUS (3800 ONLY)
(234) 564 CHAR-

ACTER
4 LWFH FLASH IDENTIFICATION

(238) 568 SIGNED 4 LWQRR POSSIBLE RESTART INFO
(23C) 572 BITSTRING 1 LWQRX RESTART FUNCTION INDEX
(23D) 573 BITSTRING 3 RESERVED FOR FUTURE USE
(270) 624 SIGNED 4 LWGW3 (0) OVERLAY FOR WORK AREA 3
(270) 624 ADDRESS 4 LWCOSDN DBKL NUMBER OF OLD CKP SLOT
(274) 628 BITSTRING 1 LWFLG2 FLAG BYTE 2

 1... LWF2CDO "X'80'" DELETE CKP SLOT
(275) 629 BITSTRING 3 UNUSED
(278) 632 ADDRESS 4 LW13 SAVE-AREA RD USED IN PL
(27C) 636 ADDRESS 4 LW14 SAVE-AREA RE USED IN PL
(280) 640 ADDRESS 4 LW15 SAVE-AREA RF USED IN PL

LOGICAL READER RE-DEFINITION

(260) 608 SIGNED 4 USCC (2) SAVE AREA FOR INSERTED RECORD
(268) 616 BITSTRING 6 LWPB (0) SWITCH BYTES
(268) 616 BITSTRING 1 LWPI PARAMETER ID BYTE 1
(269) 617 BITSTRING 1 LWPI2 PARAMETER ID BYTE 2

 1 PIJC "X'01'" .. JC DOS JOB CARD READ
 1. PIJECL "X'02'" .. JECL MODE INDICATOR

(26A) 618 BITSTRING 1 UNUSED
(26B) 619 BITSTRING 1 LWOC OP CODE IDENTIFIER
(26C) 620 BITSTRING 1 LWBI PARAMETER BRANCH INDEX
(26D) 621 CHAR-

ACTER
1 LWFS FORM SWITCH

C' ' .. NORMAL RECORD
C'=' .. JECL STMT REC (KEYWORD FORMAT)
C',' .. JECL STMT REC (POSITIONAL FORMAT)

(26E) 622 BITSTRING 1 LWER 3540 COMMUNICATION BYTE
 1 LWERALT "X'01'" ..CARD RDR+3540 (ALTERNATE)
 1. LWERRD "X'02'" ..READING FROM SECONDARY 3540, I.E. ALTER-

NATE OR DYNAMIC
 1.. LWERDA "X'04'" ..3540 DATA FILE PROCESSING
 1... LWERPRI "X'08'" ..PRIMARY DISKETTE PROCESS
 ...1 LWERLH "X'10'" ..LAST DISKETTE / HOLD JOB
 ..1. LWERCB "X'20'" ..DSHR REC CHG.SECT.BUILT BECAUSE 3540 REC

LEN¬= 1ST SYSRDR
 .1.. LWERUE "X'40'" ..UNIT EXCEPTION ON RDR
 1... LWERDYM "X'80'" ..DYNAMIC DISKETTE PROCESS

(26F) 623 BITSTRING 1 LWUJ UNEXPECTED JOB INDICATOR

EXECUTION READER RE-DEFINITION

(220) 544 BITSTRING 8 USED FOR OTHER PURPOSES
(228) 552 ADDRESS 4 TCXAAR ADDRESS OF ACCOUNT RECORD
(22C) 556 CHAR-

ACTER
1 TCXACL CLASS

(22D) 557 BITSTRING 1 TCXFLG FLAG BYTE
 1 TCXRDO "X'01'" .. READ ONLY SWITCH

(22E) 558 BITSTRING 2 UNUSED
(230) 560 ADDRESS 4 TCXPDB ADDRESS OF PART CNTL BLOCK
(234) 564 BITSTRING 8 TCXJTD JOB START TOD CLOCK
(23C) 572 ADDRESS 4 TCXWF0 EXEC. RDR. WORK FIELD 0
(240) 576 ADDRESS 4 TCXWF1 EXEC. RDR. WORK FIELD 1

706 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(244) 580 ADDRESS 4 TCXWF2 EXEC. RDR. WORK FIELD 2
(248) 584 ADDRESS 4 TCEBXR XRE ECB DURING BAM OPEN

EXECUTION WRITER RE-DEFINITION

(220) 544 BITSTRING 8 USED FOR OTHER PURPOSES
(228) 552 ADDRESS 4 TCMTJH MT PARTITION JHR POINTER
(22C) 556 ADDRESS 4 TCMTJT MT PARTITION JTR POINTER
(230) 560 BITSTRING 16 TCLTAB CARRIAGE CONTROL TABLE
(240) 576 CHAR-

ACTER
8 TCSECU VSE SECURITY USERID SAVEAREA

(248) 584 CHAR-
ACTER

8 TCSECN VSE SECURITY SECNODE " @KX40618

EXECUTION READER AND WRITER RE-DEFINITION
NOTE: OVERLAYS WORK AREA 2 AND WORK AREA 3!

(260) 608 SIGNED 4 RESERVED FOR FUTURE USE
(264) 612 SIGNED 4 TCJGM EX. WRITER MESSAGE ADDR.
(268) 616 SIGNED 4 TCPURC EX. WRITER 'PURGE' RET-CODE
(26C) 620 ADDRESS 4 TCXRWA EX. PROCESSOR WORK AREA
(270) 624 SIGNED 4 TCALET ALET FOR PARTITION
(274) 628 BITSTRING 16 TCAAR (0) SAVED ACC REG 1,6 - 8
(274) 628 ADDRESS 4 TCAR1 SAVED ACC REG 1
(278) 632 BITSTRING 12 TCARS (0) SAVED ACC REG 6 - 8
(278) 632 SIGNED 4 TCAR6 SAVED ACC REG 6
(27C) 636 SIGNED 4 TCAR7 SAVED ACC REG 7
(280) 640 SIGNED 4 TCAR8 SAVED ACC REG 8
(284) 644 SIGNED 4 TCAR2 SAVED ACC REG 2
(288) 648 SIGNED 4 TCSVSP TEMP STORAGE POINTER
(28C) 652 ADDRESS 4 TCXJNP IPW$$XJ NEW TASK ADDR
(290) 656 ADDRESS 2 TCSVSPL LENGTH OF TCSVSP BUF
(292) 658 ADDRESS 2 TCRRC IPW$$XJ ERROR RETURN CODE
(294) 660 SIGNED 4 TCSR4 SAVED REG.4 (EX.WRITER)
(298) 664 ADDRESS 4 TCJGM2 COPY OF F.F. JOB GEN. MSG
(29C) 668 SIGNED 4 TCQ25ID MSG 1Q25A ID FROM IPW$$T1
(2A0) 672 CHAR-

ACTER
7 TCXTLBL IPW$$XJ BAM DTFNAME (LABEL)

(2A7) 679 BITSTRING 1 TCXWFG FLAGS
 1... TCXFTLBL "X'80'" .. IPW$$XJ TLBL= SPEC'D
 .1.. TCXFLTPY "X'40'" .. IPW$$XJ LTAPE=YES SPEC'D
 ..1. TCXFLTPN "X'20'" .. IPW$$XJ LTAPE=NO SPEC'D
 ...1 TCXFIPC "X'10'" .. IPW$$XWE SAVED PG-INCRM.

(2A8) 680 SIGNED 4 UNUSED
(2AC) 684 SIGNED 4 (3) UNUSED

WORK AREA FOR PLOAD COMMAND PROCESSOR

(270) 624 CHAR-
ACTER

1 TCEXTY EXIT TYPE

 11.1 ...1 TCEXJO "C'J'" ..JOB EXIT
 11.1 .11. TCEXOU "C'O'" ..OUT EXIT
 11.1 .1.1 TCEXNE "C'N'" ..NET EXIT
 111. .111 TCEXXM "C'X'" ..XMT EXIT

(271) 625 BITSTRING 3 RESERVED FOR FUTURE USE
(274) 628 CHAR-

ACTER
8 TCEXNA EXIT NAME

(27C) 636 SIGNED 4 TCEXSI EXIT SIZE
(280) 640 SIGNED 4 TCEXAD EXIT LOAD POINT ADDRESS
(284) 644 SIGNED 4 TCEXEP EXIT ENTRY POINT ADDRESS

 ...1 1... TCEXLE "*-TCEXTY" ..LENGTH OF WA

POFFLOAD TASK RE-DEFINITION

(240) 576 CHAR-
ACTER

8 TCOONN OLD NODE NAME

(248) 584 BITSTRING 1 TCOFLG FLAG BYTE
 1... TCONFT "X'80'" .. 1ST TIME THROUGH SWITCH
 .1.. TCODKT "X'40'" .. BUILD VSE/POWER SECTION

 Chapter 5. Storage Layout and Data Areas 707

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. TCOCON "X'20'" .. CONTINUATION FLAG
 ...1 TCONNN "X'10'" .. DON'T ASSIGN NEW JOB NBR
 1... TCOADD "X'08'" .. AT LEAST 1 Q-ENTRY ADDED
 1.. TCOSEL "X'04'" .. PERFORM SELECT FUNCTION
 1. TCOBUP "X'02'" .. PERFORM BACKUP FUNCTION
 1 TCOR2T "X'01'" .. 1ST TIME THROUGH SWITCH

(249) 585 BITSTRING 1 TCOSW1 SWITCH BYTE 1
 1... TCOSER "X'80'" .. LAST DBLK IN DBLK GROUP
 .1.. TCOSOP "X'40'" .. LOGICAL INTERFACE OPENED
 ..1. TCOSPI "X'20'" .. POFFLOAD PICKUP TASK

(24A) 586 BITSTRING 1 TCORC SAVE AREA FOR RETURN CODE
(24B) 587 BITSTRING 1 UNUSED
(24C) 588 ADDRESS 4 TCOSAL SELECT QUEUE ARGUMENT LIST
(250) 592 CHAR-

ACTER
7 TCOTLBL BAM DTF NAME (LABEL)

(257) 599 BITSTRING 1 UNUSED
(258) 600 SIGNED 2 TCOQRL QRA LENGTH FOR PREVIOUS REL.
(25A) 602 SIGNED 2 TCPSHT PICKUP TOT SCHEDULED ENTRIES
(25C) 604 SIGNED 2 TCPSAT PICKUP TOT SAVED ENTRIES
(25E) 606 BITSTRING 8 TCPMSG PICKUP MSG 1Q6PI TIMESTAMP
(266) 614 BITSTRING 8 TCPTMP PICKUP TEMP WORKAREA
(26E) 622 BITSTRING 17 TCPCLA PICKUP SAVE OF TCCT
(27F) 639 BITSTRING 1 UNUSED

SPOOL MANAGER WORK AREA (X-PARTITION I/F)

(240) 576 CHAR-
ACTER

8 TCJN SPOOL MANAGEMENT JOB NAME

(248) 584 BITSTRING 2 TCJ# SPOOL MANAGEMENT JOB NO
(24A) 586 BITSTRING 1 TCFG FLAG BYTE COPIED FROM PIB

 1... TCVM "X'80'" .. VIRTUAL MODE
(24B) 587 BITSTRING 1 TCSW SWITCH BYTE
(24C) 588 SIGNED 4 TCXA TASK ERR EXIT RTN ADDR

XPCC CROSS PARTITION USER TASK RE-DEFINITION

(240) 576 ADDRESS 4 TCXTIML TIME LIMIT
(244) 580 ADDRESS 4 TCXXPCC ADDRESS OF XPCCB BEING USED
(248) 584 ADDRESS 4 TCXWRKA ADDRESS OF WORKAREA
(24C) 588 ADDRESS 4 TCXEDCB ADDRESS OF ASSOCIATED EDCB
(260) 608 ADDRESS 4 TCXCKPA ADDR OF EXT CKP INFO
(264) 612 SIGNED 2 TCXCKPL LENGTH OF EXT CKP INFO
(266) 614 SIGNED 2 UNUSED
(268) 616 ADDRESS 4 TCACIET $$XTM: ADDR. OF TMP. ACIE
(26C) 620 ADDRESS 4 TCACITQ $$XTM: ADDR. OF TQE
(1FC) 508 ADDRESS 4 TCXSPL ADDRESS OF ASSOCIATED SPL

 1111 111. TCXSID "X'FE'" .. XPCC SPL PRESENT

LOGICAL OUTPUT SPOOLER RE-DEFINITION

(220) 544 ADDRESS 4 TCOSNR SAVED RECORD COUNT
(224) 548 ADDRESS 4 TCOSLC SAVED LINE/CARD COUNT
(228) 552 SIGNED 4 TCOSPC SAVED PAGE COUNT
(22C) 556 SIGNED 2 TCOSNT SAVED NO OF TRACKS/BLOCKS

PRINT STATUS TASK RE-DEFINITION (QUEUE DISPLAY)

(240) 576 ADDRESS 4 TCPSQN NEXT QUEUE SET NUMBER
(244) 580 ADDRESS 4 TCPSWA ADDRESS OF PS WORKAREA
(248) 584 BITSTRING 1 TCPSFG FLAG BYTE

 1... TCPSND "X'80'" PROC NON-DISP CLASS CHAIN
(249) 585 CHAR-

ACTER
7 TCPSLB BAM LABEL IF ANY

PSTART RDR/LST/PUN TAPE TASK DEFINITION

(240) 576 CHAR-
ACTER

7 TCTKLB BAM LABEL IF ANY

(247) 583 BITSTRING 1 UNUSED

708 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

RJE,BSC TASK RE-DEFINITION

 .111 1... TCBQ "TCRS" BSC APPENDAGE CHAIN PTR
 ..1. 1... TCLRQ "TCCT+8" LCB-TO-RELEASE-QUEUE

(240) 576 ADDRESS 4 TCBS1S LINKAGE-REG SAVE AREA
(244) 580 ADDRESS 4 TCBS2S 2ND LINKAGE-REG SAVE AREA
(248) 584 ADDRESS 4 TCBS3S 3.RD LEVEL LINKAGE SAVE
(164) 356 ADDRESS 4 TCSR SYSREC HEADER

INITIALIZATION TASK RE-DEFINITION

(270) 624 ADDRESS 4 TCI4RTN RETURN ADDRESS USED BY $$AT
IF $$I4 OPEN IJDTEST FAILS

(168) 360 TCEN "*" END OF STANDARD TCB
(168) 360 TCLN "*-TCSD" LENGTH OF TCB

EXTENSION AREA FOR 2ND DATA BLOCK BUFFER

If a local printer task is started with the double buffering option, the
task is equipped with an expanded TCB to save specific information
required. The TCB is enlarged to the next multiple of 32 bytes.

(2B8) 696 CHAR-
ACTER

12 TC2SD (0)

(2B8) 696 ADDRESS 4 TC2DW 2ND DATA BLOCK NUMBER
(2BC) 700 ADDRESS 4 TC2DV VIRT ADDRESS OF 2ND BUFFER
(2C0) 704 ADDRESS 2 I/O OPERATION LENGTH
(2C2) 706 BITSTRING 1 OPERATION CODE
(2C3) 707 BITSTRING 1 RESERVED
(2C4) 708 BITSTRING 20 RESERVED FOR FUTURE
(2C4) 708 TC2LN "(*-TCSD)" EXTENDED LENGTH OF TCB

TCB-EXPANSION FOR SAVE-ACCOUNT TASK
A SAVE account task is equipped with an expanded TCB to save specific information required. The TCB is
enlarged to the next multiple of 32 bytes.

(2B8) 696 CHAR-
ACTER

7 TCSAFN TAPE/DASD FILE NAME

(2BF) 703 CHAR-
ACTER

1 TCSADY TAPE DENSITYREFER ALSO TO TCF8MS

(2C0) 704 CHAR-
ACTER

4 TCSADV DEVICE WHERE TO SAVE

(2C4) 708 ADDRESS 4 TCSAPB PUB-ADDR DEV WHERE TO SAVE
(2C8) 712 ADDRESS 4 TCSAR1 DEVICE DATA PASSED FROM CP
(2CC) 716 ADDRESS 4 TCSART LINKAGE-REG SAVE AREA
(2D0) 720 ADDRESS 4 TCSARN 2ND LINKAGE-REG SAVE AREA
(2D4) 724 ADDRESS 4 TCSADP DTF-POINTER
(2D4) 724 TCLN1 "*-TCSD" LENGTH TCB INCL. SAVE-ACC.

 ..1. TCLN2 "*-TCSAFN" LENGTH OF EXPANSION

COMMAND PROCESSOR CONTROL FIELDS

THE FOLLOWING IS A RE-DEFINITION OF THE AREA FROM THE
GENERAL PURPOSE WORK AREA TO THE END OF THE TCB AS USED
BY THE COMMAND PROCESSOR.

(220) 544 CHAR-
ACTER

16 CPDS SECTION DESCRIPTOR

(230) 560 SIGNED 1 CPID RJE-USERID (0 FOR LOCAL)
(231) 561 CHAR-

ACTER
7 CPCM COMMAND CODE

(238) 568 CHAR-
ACTER

8 CPNO SEQUENCE # (RJE ONLY)

(240) 576 ADDRESS 4 CPEA ADDRESS OF CALLER ECB
(244) 580 CHAR-

ACTER
8 CPFN FROM NODE ID

(24C) 588 CHAR-
ACTER

1 CPFQ FROM NODE QUALIFIER (SYSID)

(24D) 589 BITSTRING 1 CPFL FLAG BYTE FROM NMR

 Chapter 5. Storage Layout and Data Areas 709

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

(24E) 590 CHAR-
ACTER

8 CPRT (0) REMOTE ID | USER ID

(24E) 590 CHAR-
ACTER

4 CPR2 ORIGINATORS REMOTE ID

(252) 594 CHAR-
ACTER

4 *

(256) 598 BITSTRING 1 CPAB AUTHORIZATION FLAGS
(257) 599 BITSTRING 1 CPFG GENERAL FLAG BYTE

 1... CPFP "X'80'" ..'P'-CHAR STRIPPED OFF
 .1.. CPFC "X'40'" ..INTERNAL CMD REQUEST
 ..1. CPFCD "X'20'" ..CALCULATE DUE DATE
 ...1 CPFSH "X'10'" ..SHARED COMMAND VIA QCA
 1... CPPCE "X'08'" ..PCE PASSED IN CPPA
 1.. CPVER "X'04'" ..VERIFIED DCLT IN CPPA
 1. CPNLK "X'02'" ..DO NOT LOCK DPCB
 1 CPDCK "X'01'" ..DELETE CKP INFO

(258) 600 BITSTRING 1 CPFG2 GENERAL FLAG BYTE 2
 1... CP2QN "X'80'" ..USE DIRECT Q-REC NUMBER
 .1.. CP2PA "X'40'" ..POST ATTENTION ROUTINE
 ..1. CP2BU "X'20'" ..POWER CMD PROCESSOR BUSY
 ...1 CP2OA "X'10'" ..CMD HAS OPERATOR AUTHORITY
 1... CP2SE "X'08'" ..ENTRY NOT SPOOL ACC PROT"D@KXD0337

(259) 601 2 CPO# CURRENT OPERAND NUMBER
(25B) 603 BITSTRING 1 CPRL REPLY LENGTH
(25C) 604 CHAR-

ACTER
72 CPOP OPERANDS (FREE FORMAT)

(2A4) 676 CHAR-
ACTER

58 EXTRA OPERANDS

 1... ..1. CPOPL "*-CPOP" NEW OPERAND LENGTH
(2DE) 734 CHAR-

ACTER
2 RESERVED

(2E0) 736 CHAR-
ACTER

8 CPPW PASSWORD OF ISSUER

(2E8) 744 ADDRESS 4 CPOR OWNER OF REQUEST (0 FOR AR ROUTINE COMMAND
PROCESSOR)

(2EC) 748 CHAR-
ACTER

8 CPXA XPCC APPLICATION ID

(2F4) 756 SIGNED 4 CPPA 'PASS' VALUE FROM IPW$ICP
(2F8) 760 BITSTRING 2 CPTIK AR ROUTINE TIK
(2FA) 762 CHAR-

ACTER
2 RESERVED FOR FUTURE USE

(2FC) 764 CHAR-
ACTER

8 CPCON AR CONSOLE NAME

(304) 772 CHAR-
ACTER

8 CPSUS USERID FROM PWRSPL/SPL

(30C) 780 CHAR-
ACTER

8 CPRTU USERID FOR AUTHORIZATION CK

(314) 788 CHAR-
ACTER

36 RESERVED FOR FUT @KXC0192

(314) 788 CPLN "(*-CPDS)" LENGTH OF CMND CNTRL FIELDS
(314) 788 TCCL "*-TCSD" LENGTH OF EXTENDED TCB AREA

OVERLAY FOR PNET TASKS

(220) 544 ADDRESS 4 TCENCB ADDRESS OF NODE CTRL BLOCK
(224) 548 ADDRESS 4 TCENTE ADDR OF NCB TASK ENTRY
(228) 552 BITSTRING 1 TCERCB RCB OF TASK CONCERNED
(229) 553 BITSTRING 1 TCETTC TERMINATION CONDITION BYTE

 1... TCETSO "X'80'" .. SIGNOFF RECORD SENT/REC
 .1.. TCETLC "X'40'" .. LINE ERROR STOP

(22A) 554 BITSTRING 2 TCEFCS FCS BYTES
(22C) 556 ADDRESS 4 TCEWKA ADDRESS OF WORKAREA
(230) 560 BITSTRING 1 TCEST1 STATUS BYTE 1

 1... TCERIF "X'80'" .. RIF SENT/RECEIVED
 .1.. TCEPGR "X'40'" .. PERMISSION GRANTED SENT/RECEIVED
 ..1. TCEPRJ "X'20'" .. PERMISSION REJECTED SENT/RECEIVED

710 VSE Central Functions V7R1 VSE/POWER DRM

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 ..1. TCERCS "X'20'" .. RECEIVER CANCEL SENT/RECEIVED
 ...1 TCEEOF "X'10'" .. EOF SENT/RECEIVED
 1... TCEADS "X'08'" .. ABORT TRANSMISSION SENT/RECEIVED
 1.. TCECMC "X'04'" .. TRANSMISSION COMPLETE SENT/RECEIV

(231) 561 BITSTRING 1 TCEST2 STATUS BYTE 2
 1... TCEWIB "X'80'" .. WAITING FOR INPUT BUFFER
 .1.. TCECRTL "X'40'" .. COMPRESSION ERROR
 ..1. TCENOP "X'20'" .. DON'T POST THIS TASK
 ...1 TCESPD "X'10'" .. TASK SUSPENDED
 1... TCEPBO "X'08'" .. POST ONLY AFTER BUFFER SENT
 1.. TCERCA "X'04'" .. RECEIVER CANCEL AFTER ABORT SENT
 1. TCERAB "X'02'" .. RELEASE OF ALL BUFFERS REQUESTED
 1 TCESOB "X'01'" .. SHORT ON BUFFER CONDITION

(232) 562 BITSTRING 2 UNUSED

PART FOR RECEIVER TASK

(234) 564 ADDRESS 4 TCERHD ADDR OF RECEIVED INPUT BUFFER QUEUE
(238) 568 ADDRESS 4 TCERTL TAIL PTR RECEIVED INPUT BUFFER QUEUE
(23C) 572 BITSTRING 1 TCENRB NUMBER OF RECEIVED BUFFERS
(23D) 573 BITSTRING 3 UNUSED
(23D) 573 TCELN "*-TCSD" LENGTH EXTENDED TCB FOR PNET

OVERLAY FOR TRANSMITTER TASK

(234) 564 ADDRESS 4 TCEFOB ADDR OF FREE OUTPUT BUFFER QUEUE
(238) 568 BITSTRING 1 TCENAB NUMBER OF ACQUIRED BUFFERS
(239) 569 SIGNED 3 TCETL# TOTAL LINE NUMBER
(23C) 572 SIGNED 4 TCECL# CURRENT LINE NUMBER

SNA MANAGER CONTROL FIELDS
THE FOLLOWING IS A RE-DEFINITION OF THE GENERAL WORK AREA
USED BY THE SNA MANAGER.
THE FOLLOWING LIST CONTAINS THE ECB ADDRESSES ON WHICH THE
SNA MANAGER ISSUES A MULTIPLE WAIT.

(220) 544 CHAR-
ACTER

12 TCEL (0) WAIT ECB LIST

(220) 544 ADDRESS 4 TCE1 RECEIVE ANY ECB ADDR
(224) 548 ADDRESS 4 TCE2 WORK ECB ADDR
(228) 552 BITSTRING 1 TCED END OF LIST
(229) 553 CHAR-

ACTER
3 NOT USED

(22C) 556 SIGNED 4 RESERVED
(240) 576 ADDRESS 4 TCLU ADDRESS OF LUCB
(244) 580 ADDRESS 4 TCWA ADDRESS OF WORK AREA
(248) 584 ADDRESS 4 TC13 SAVE AREA FOR R13
(24C) 588 ADDRESS 4 TCRPL ADDRESS OF RECEIVE ANY RPL

OUTBOUND (OB) PROCESSOR CONTROL FIELDS
THE FOLLOWING IS A RE-DEFINITION OF A PART OF THE GENERAL
WORK AREA FOR THE OUTBOUND PROCESSOR.

(24C) 588 SIGNED 4 TCRO ECB FOR COMMANDS (E.G SETUP)
(24C) 588 TCROEL "TCRO+2" REACT OB EVENT LIVE BYTE

 1... TCROL "X'80'" .. REACT OB LIVE BIT

 Chapter 5. Storage Layout and Data Areas 711

Figure 145. Task Class List

712 VSE Central Functions V7R1 VSE/POWER DRM

Figure 146. Summary of Linkage Register Save Areas

 Chapter 5. Storage Layout and Data Areas 713

Command Processor Control Block (CPB)

This block replaces part of a command processor TCB, when a command is entered via the console key-
board by the central operator, and of its associated temporary command processor TCB when linkage is
made via the IPW$ICP macro.

Definition Macro: IPW$DTC CP=YES

The CPB replaces the general task work area of standard TCB. The contents of the CPB are described in
the Task Control Block (TCB) "Command Processor Control Fields" (see “Task Control Block (TCB)” on
page 690).

714 VSE Central Functions V7R1 VSE/POWER DRM

Additional Linkage Register Save Area (LRSA)

Included by definition macro IPW$DSV for the save area.

The linkage register save area of the TCB is required by each routine in order to save the registers if the
routine needs a function. See Figure 147.

┌────────── Register 13 in task register
TCB │ save area (TRSA)

┌───────────�┌─────────┼───────────────────────────────────────┐
│ │ � │
│ │┌─────┬─────┬───────────────────────────────────┐│
│ ┌──────────┼┼─────┼──o │ ││ Task register
│ │ ││ └─────┘ ││ save area
│ │ ││ ┌──────────── contains binary zeros ││
│ │ Register │└────────┼──────────────────────────────────────┘│
│ │ 13 │ │ │
│ └─────────�│┌─────┬──┼──┬─────┬─────┬─────┬─────┬─────┬─────┐│
└────────────┼┼──o │ � │ 14 │ 15 │ � │ 1 │ 2 │ 3 ││ Linkage register
Address of │├─────┼─────┼─────┼─────┼─────┼─────┼─────┴─────┤│ save area
TCB owning ││ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ ││
the LRSA │└─────┴─────┴─────┴─────┴─────┴─────┴───────────┘│
 └───┘

Figure 147. Linkage from a Physical Routine to a Function Routine

An additional linkage register save area is required by some tasks to link routines within the tasks; in
particular this is necessary when one function routine invokes another function routine. This LRSA has
the same format as the LRSA described in the TCB. A new linkage register save area is built by acquiring
storage for the save area by means of the IPW$RSW macro instruction and chaining the new save area,
whereby making the current save area to the previous and the new save area to the current one. Register
13 points always to the current save area. The first fullword of the save area is initialized to address the
TCB of the issuing task. The second fullword of the save area is initialized to address the previous save
area.

 Chapter 5. Storage Layout and Data Areas 715

┌────────── Register 13 in task register
TCB │ save area (TRSA)

┌───────────�┌─────────┼───────────────────────────────────────┐
│ │ � │
│ │┌─────┬─────┬───────────────────────────────────┐│
│ ┌──────────┼┼─────┼──o │ ││ Task register
│ │ ││ └─────┘ ││ save area
│ │ ││ ┌──────────── contains binary zeros ││
│ │ Register │└────────┼──────────────────────────────────────┘│
│ │ 13 │ │ │
│ ├─────────�│┌─────┬──┼──┬─────┬─────┬─────┬─────┬─────┬─────┐│
├─┼──────────┼┼──o │ � │ 14 │ 15 │ � │ 1 │ 2 │ 3 ││ Linkage register
│ │ │├─────┼─────┼─────┼─────┼─────┼─────┼─────┴─────┤│ save area
│ │ ││ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ ││ (LRSA)
│ │ │└─────┴─────┴─────┴─────┴─────┴─────┴───────────┘│
│ │ └───┘
│ │
│ │
│ └────────────────────┐ Pointer to previous
│ │ save area
│ ┌─────┬──┼──┬─────┬─────┬─────┬─────┬─────┬─────┐
└─────────────┼──o │ o │ 14 │ 15 │ � │ 1 │ 2 │ 3 │ Additional linkage
Address of ├─────┼─────┼─────┼─────┼─────┼─────┼─────┴─────┤ register
TCB that owns │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ │ save area
the LRSA └─────┴─────┴─────┴─────┴─────┴─────┴───────────┘

Figure 148. Linkage from One Function Routine to Another Function Routine

Linkage from a Physical Routine to a Logical Routine: Execution of the IPW$OLI macro
instruction causes the creation of a second LRSA. The first LRSA is associated with the physical routine
issuing the macro instruction (physical save), and the second LRSA is associated with the logical routine
invoked by the macro instruction (logical save). The linkage register save areas are double-threaded. The
first fullword of the save area associated with the physical routine contains the address of the save area
associated with the logical routine. The second fullword contains the address of any previous save area.
The first fullword of the save area associated with the logical routine contains the address of the TCB of
the issuing task while the second fullword addresses the previous save area. The address of the logical
routine entry point is stored in the third word of the linkage register save area.

This is referred to as double linkage register save area (DLRSA). Linkage between the two LRSAs in a
DLRSA is shown in Figure 149 on page 717 and Figure 150 on page 718.

Double Linkage Register Save Area (DLRSA): Case 1, where the task is executing in the
physical routines (PR, PL, PP), is shown in Figure 149.

Case 2, where the task is executing in the logical routines (LR, LW), is shown in Figure 150 on page 718.

716 VSE Central Functions V7R1 VSE/POWER DRM

┌────────── Register 13 in task register
TCB │ save area (TRSA)

┌───────────�┌─────────┼───────────────────────────────────────┐
│ │ � │
│ │┌─────┬─────┬───────────────────────────────────┐│
│ ┌──────────┼┼─────┼──o │ ││ Task register
│ │ ││ └─────┘ ││ save area
│ │ ││ ┌──────────── contains binary zeros ││
│ │ Register │└────────┼──────────────────────────────────────┘│
│ │ 13 │ │ │
│ ├─────────�│┌─────┬──┼──┬─────┬─────┬─────┬─────┬─────┬─────┐│
│ │ ┌────────┼┼──o │ � │ 14 │ 15 │ � │ 1 │ 2 │ 3 ││ Linkage register
│ │ │Address │├─────┼─────┼─────┼─────┼─────┼─────┼─────┴─────┤│ save area
│ │ │of next ││ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ ││ (LRSA)
│ │ │LRSA │└─────┴─────┴─────┴─────┴─────┴─────┴───────────┘│
│ │ │ └───┘
│ │ │
│ └────────────────────┐Address of
│ │ │ previous
│ │ │save area
│ └────────�┌─────┬──┼──┬─────┬─────┬─────┬─────┬─────┬─────┐
└─────────────┼──o │ o │ 14 │ 15 │ � │ 1 │ 2 │ 3 │ Additional linkage
Address of ├─────┼─────┼─────┼─────┼─────┼─────┼─────┴─────┤ register
TCB that owns │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ │ save area
the LRSA └─────┴─────┴─────┴─────┴─────┴─────┴───────────┘

Figure 149. Linkage Between the Two LRSAs in a Double Linkage Register Save Area (Case 1)

 Chapter 5. Storage Layout and Data Areas 717

┌────────── Register 13 in task register
TCB │ save area (TRSA)

┌───────────�┌─────────┼───────────────────────────────────────┐
│ │ � │
│ │┌─────┬─────┬───────────────────────────────────┐│
│ ┌──────────┼┼─────┼──o │ ││ Task register
│ │Register ││ └─────┘ ││ save area
│ │ 13 ││ ┌──────────── contains binary zeros ││
│ │ │└────────┼──────────────────────────────────────┘│
│ │ │ │ │
│ │ ┌───────�│┌─────┬──┼──┬─────┬─────┬─────┬─────┬─────┬─────┐│
│ │ │ ┌──────┼┼──o │ � │ 14 │ 15 │ � │ 1 │ 2 │ 3 ││ Linkage register
│ │ │ │ │├─────┼─────┼─────┼─────┼─────┼─────┼─────┴─────┤│ save area
│ │ │ │ ││ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ ││ (LRSA)
│ │ │ │ │└─────┴─────┴─────┴─────┴─────┴─────┴───────────┘│
│ │ │ │ └───┘
│ │ │ │Address of
│ │ │ │next LRSA Address of previous
│ │ └──────────────────┐ save area
│ │ │ │
│ └───┴──────�┌─────┬──┼──┬─────┬─────┬─────┬─────┬─────┬─────┐
└─────────────┼──o │ o │ 14 │ 15 │ � │ 1 │ 2 │ 3 │ Additional linkage
Address of ├─────┼─────┼─────┼─────┼─────┼─────┼─────┴─────┤ register
TCB that owns │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ │ save area
the LRSA └─────┴─────┴─────┴─────┴─────┴─────┴───────────┘

Figure 150. Linkage Between the Two LRSAs in a Double Linkage Register Save Area (Case 2)

Execution of the IPW$CLI macro instruction causes destruction of the interface linkage previously estab-
lished by the IPW$OLI macro instruction and release of the additional LRSA acquired by that instruction.
Once the IPW$CLI macro instruction has been issued no further IPW$GLR or IPW$PLR macro
instructions may be issued until the next IPW$OLI macro instruction is issued.

Linkage from a Physical/Logical Routine to a Function: Each VSE/POWER function is
coded as a unique control section. The first sixteen bytes of each control section consist of an alphameric
control section descriptor. A fullword address constant containing the address of each control section is
contained in the control address table (CAT).

Linkage to a function is achieved by loading register 15 with the address of the appropriate control section
and then executing a Branch and Link instruction in the form BAL 14,16(15). Thus, entry is made to the
control section at the first byte following the control section descriptor, the task return address being pre-
served in register 14.

Immediately upon entry the contents of registers 14 through 9 are saved in words 3 through 14 of the
LRSA provided by the calling routine and addressed by register 13.

On return from a function, registers 14 through 9 are restored from the LRSA addressed by register 13. A
branch is then made to the return address now contained in register 14.

718 VSE Central Functions V7R1 VSE/POWER DRM

Linkage to a Service: No registers are saved, other than in the TCB, when going from one of the
following:

� External routine to a service.
� Internal routine to a service.
� Function to a service, except in the case of calling storage management, when registers 14 through 7

are stored in the SCB, and in the case of calling message service when register 5 is stored in the
MMB.

Note: Any service may use registers 0 through 3 destructively.

 Chapter 5. Storage Layout and Data Areas 719

Task Dispatch Trace Area

Definition Macro: IPW$DEF TTRACE=YES

The Task Dispatch Trace area resides in real storage and shows history about the last 'n' dispatched
tasks and what the task's status at dispatch time was. Each trace entry is X'80' bytes long.

Bytes Label
Hex. of Field Description/Function

� Task Dispatch Trace Area Header

��-�F TTRHSD Storage descriptor
1�-13 TTRHBEG Address of first entry
14-17 TTRHEND Address of last entry
18-1B TTRHUSE Address of last used entry
1C-1F TTRHSIZ Total size of trace area header

TTRHLEN Length of trace area header

� Task Dispatch Trace Area Entry

��-�7 TTRTID Task identifier and cuu
�8-�B TTRADDR Address of TCB of task
�C TTRFT Task function trace indication
�D TTRTT Task termination byte
�E TTRSFB First byte of task selection field
�F Reserved for future use
1�-18 TTRF�21� Task flag bytes 2-1�
19-1F TTRINT Task interface and function request bytes
2�-57 TTRTR Task registers 12-9
58-5F TTRSTCK Time stamp in STCK format
6�-63 TTRTRAC1 Task Access Register 1
64-6F TTRTRAC6 Task Access Registers 6, 7 and 8
7�-76 TTRF1117 Task Flag Bytes 11-17
77-7F Reserved for future use

TTRLENG Length of trace entry

720 VSE Central Functions V7R1 VSE/POWER DRM

Timer Queue Element (TQE)

This control block is used to control timer intervals set up by a VSE/POWER task. One timer queue
element (TQE) exists for each interval currently setup.

Definition Macro: IPW$DEF TQE=YES

Bytes Label
Hex. of Field Description/Function

��-�3 TQENE Address of next TQE in chain
�4-�B TQETI Interval end time (TOD units)
�C-�F TQEECBP ECB or address of ECB
1�-13 TQEOTCB Requestor's TCB address
14 TQEFLG Flag byte

TQEECB X'8�' - ECB within timer queue element
TQECAN X'4�' - Cancel of TQE requested
TQEACT X'2�' - TQE active

15-17 Reserved for future use

 Chapter 5. Storage Layout and Data Areas 721

Trace Information Block (TIB)

This control block is used to control the internal trace facilities of RJE/BSC and PNET if the TRACE func-
tion has been requested on the PSTART of the line or node.

Definition Macro: IPW$DEF TIB=YES

Offset
Hex

Offset
Dec

Type Len Name (Dim) Description

 TRACE INFORMATION BLOCK (TIB)

(0) 0 CHAR-
ACTER

16 TIBSD SECTION DESCRIPTOR

(10) 16 BITSTRING 1 TIBFLG1 TIB FLAGBYTE 1
 1... TIBDSB "X'80'" .. DUMP SUBTASK BUSY

(11) 17 BITSTRING 3 UNUSED
(14) 20 ADDRESS 4 TIBPTRC POINTER TO AREA IN USE
(18) 24 BITSTRING 4 RESERVED
(1C) 28 SIGNED 4 TIBLCK LOCK-WORD
(20) 32 CHAR-

ACTER
48 TIBRSA (0) REGISTER SAVE AREA

(20) 32 SIGNED 4 TIBRE REGISTER 14
(24) 36 SIGNED 4 TIBRF REGISTER 15
(28) 40 SIGNED 4 TIBR0 REGISTER 0
(2C) 44 SIGNED 4 TIBR1 REGISTER 1
(30) 48 SIGNED 4 TIBR2 REGISTER 2
(34) 52 SIGNED 4 TIBR3 REGISTER 3
(38) 56 SIGNED 4 TIBR4 REGISTER 4
(3C) 60 SIGNED 4 TIBR5 REGISTER 5
(40) 64 SIGNED 4 TIBR6 REGISTER 6
(44) 68 SIGNED 4 TIBR7 REGISTER 7
(48) 72 SIGNED 4 TIBR8 REGISTER 8
(4C) 76 SIGNED 4 TIBR9 REGISTER 9
(50) 80 ADDRESS 4 TIBCFTE CURRENT FREE TRACE ENTRY

THE FOLLOWING TWO FIELDS ADDRESS THE PRIMARY TRACE AREA

(54) 84 ADDRESS 4 TIBPTRB PRIME TRACE AREA BEGIN
(58) 88 ADDRESS 4 TIBPTRE PRIME TRACE AREA END

THE FOLLOWING TWO FIELDS ADDRESS THE ALTERNATE TRACE AREA

(5C) 92 ADDRESS 4 TIBATRB ALTERNATE TRACE AREA BEGIN
(60) 96 ADDRESS 4 TIBATRE ALTERNATE TRACE AREA END
(64) 100 BITSTRING 24 TIBSRB FOR SERVICE REQUEST BLOCK

LINKAGE REGISTER SAVE AREA
THE FOLLOWING AREA CONTAINS THE POINTER TO THE
PREVIOUS SAVE AREA WHENEVER IPW$$AS IS CALLED.

(7C) 124 CHAR-
ACTER

56 TIBSV REGISTER SAVE AREA

(B4) 180 ADDRESS 1
 1.11 1... TIBLN "*-TIBDS" LENGTH OF CONTROL BLOCK

722 VSE Central Functions V7R1 VSE/POWER DRM

User Exit Data Table

Definition Macro: IPW$DEF EXTAB=YES

The user exit table is anchored in VSE/POWER's Control Address Table in field CAEXTAB. The table
contains data about the currently loaded VSE/POWER user exits. For each single exit a table entry exists.
An empty table entry is flagged with X'00' in the first byte of an entry. EXTBNUM specifies the maximum
number of table entries including the logical end indicator X'FF'.

Offset
Hex

Type Len Name (Dim) Description

(0) CHAR-
ACTER

1 EXTYPE EXIT TYPE

CHAR-
ACTER

EXJOB "C'J'" ..JOB (RDR) EXIT

CHAR-
ACTER

EXOUT "C'O'" ..OUTPUT EXIT

CHAR-
ACTER

EXNET "C'N'" ..PNET RECEIVER EXIT

CHAR-
ACTER

EXXMT "C'X'" ..PNET TRANSMITER EXIT

 1111 1111 EXTBEND "X'FF'" ..LOGICAL END INDICATOR
 EXEMPTY "X'00'" ..EMPTY ENTRY INDICATOR

(1) CHAR-
ACTER

1 EXSTAT EXIT STATUS

CHAR-
ACTER

EXENAB "C'E'" ..EXIT ENABLED

CHAR-
ACTER

EXDISAB "C'D'" ..EXIT DISABLED

CHAR-
ACTER

EXFAIL "C'F'" ..EXIT FAILED

(2) BITSTRING 1 EXIT ENTRY FLAG BYTE 1
 1... EXF1PU "X'80'" .. RUN AS PARALLEL WORKUNIT

(3) CHAR-
ACTER

1 RESERVED FOR FUTURE USE

(4) CHAR-
ACTER

8 EXNAME EXIT NAME

(C) SIGNED 4 EXADDR EXIT ADDRESS
(10) SIGNED 4 EXSIZE LENGTH OF EXIT
(14) ADDRESS 2 EXWAL LENGTH OF EXIT WORK AREA
(16) SIGNED 2 RESERVED FOR FUTURE USE
(18) SIGNED 4 EXEPAD EXIT ENTRY POINT
(1C) SIGNED 4 RESERVED FOR FUTURE USE

 1.1 EXTBNUM "5" NUMBER OF TABLE ENTRIES
 ..1. EXTBELN "*-EXTYPE" LENGTH OF A TABLE ENTRY
 1.1. EXTBLN "EXTBELN*EXTBNUM" LENGTH OF TABLE

How to Locate: Refer to Figure 151 on page 730 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 723

Virtual Buffer Control Area (Prefix)

Definition Macro: IPW$DBA

When virtual storage (GETVIS) is required by a VSE/POWER task, storage management precedes each
storage area with a buffer control area, which indicates to which pool the storage area belongs.

Bytes Label
Hex. of Field Description/Function

��-�3 BCABL Length of storage area reserved
�4 BCAPID Pool identifier
�5-�7 BCATCB TCB address of owning task
�8-�B BCAFWD Pointer to next storage element
�C-�F BCABWD Pointer to previous storage element

724 VSE Central Functions V7R1 VSE/POWER DRM

VTAM Driver Control Block (VDCB)

Definition Macro: IPW$DVC

This control block is created by the command processor when the first connection to a node using SNA is
started. Its address can be found in the PNCB at label 'PNCBVDCB'.

Bytes Label
Hex. of Field Description/Function

��-�F VDCBSD Storage descriptor
1�-13 VDCBECB PNET SNA event control block (ECB)
14-17 VDCBPSRQ Pointer to SRQE chain
18-1B VDCBPLDQ Pointer to parked SRQEs by PNET driver
1C-33 VDCBTIME Timer queue element

� Activity / Communication / Status Bytes

34-35 VDCBASES Number of active sessions
36 VDCBACT1 Activity flag byte 1

VDCBSSUP X'8�' - SNA start up request
VDCBOPRT X'2�' - Successful SNA open done
VDCBSSTP X'1�' - SNA stop request set by TPEND
VDCBCON X'�8' - Connect request
VDCBPEND X'�4' - PEND given by operator

37 VDCBACT2 Activity flag byte 2
38 VDCBCOMS Communication byte

VDCBLGQ X'8�' - SETLOGON quiesce request
VDCBSCL X'4�' - VTAM close request
VDCBMSG X'�1' - Suppress warning message 1RE�I

39 VDCBSTA1 SNA intertask status byte
VDCBOPEN X'8�' - SNA open successful
VDCBOPNF X'4�' - SNA open failed
VDCBLOGF X'2�' - SNA setlogon failed
VDCBOPNP X'�4' - SNA open pending
VDCBNPWR X'�2' - NO VSE/POWER termination request allowed

3A VDCBTTC SNA termination code
VDCBTTCV X'8�' - VTAM abend or HALT quick
VDCBTTCE X'2�' - Normal shutdown request

3B VDCBTTCQ Termination code qualifier
VDCBVEOJ X'��' - VTAM HALT NET
VDCBHALT X'�4' - VTAM HALT IMM (HALT QUICK)
VDCBVTAB X'AB' - VTAM abend

3C VDCBRCNT Retry counter
3D-3F Reserved for future use

� The following part is used for the VTAM ACB:

4�-77 VDCBACB ACB for VTAM

 Chapter 5. Storage Layout and Data Areas 725

Virtual Storage Control Block (VSCB)

The virtual storage control block is used to control access to the virtual storage management routines.

Definition Macro: IPW$DVS

Bytes Label
Hex. of Field Description/Function

��-�F VSSD Section descriptor (VSB)
1�-13 VSAN Anchor for system queue
14-17 Tail pointer for system queue
18-1B VSEB ECB
1C-1F VSLK Lockword
2�-4F VSTR Register save area
5�-53 VSMAX Maximum number of bytes allocated
54-57 VSCUR Current number of bytes allocated

� Subpool Section

58-5D VSGN General pool (IPWGEN)
5E-5F Pool id assigned by VSE/AF
6�-65 VSMG Message/command pool (IPWMSG)
66-67 Pool id assigned by VSE/AF
68-6D VSPN Network pool (IPWNET)
6E-6F Pool id assigned by VSE/AF
7�-75 VSSNA RJE, SNA pool (IPWSNA)
76-77 Pool id assigned by VSE/AF
78-7D VSSNA2 RJE, SNA WACB + COCB pool (IPWWAC)
7E-7F Pool id assigned by VSE/AF
8�-A8 Reserved for GETVIS counts

726 VSE Central Functions V7R1 VSE/POWER DRM

Wait Control Block (WCB)

Definition Macro: (None - located in IPW$$NU)

The wait control block is a skeleton task control block used to delimit the task selection list. The wait
control block occupies locations in the permanent area of the VSE/POWER partition. The format of the
wait control is as follows.

Bytes Label
Hex. of Field Description/Function

��-�F TMSD Storage descriptor (WCB)
1�-13 Reserved
14-17 TMTN Address of TCB belonging to task with

highest priority in TSL
18-1B TMPF Page fault request word - always zero
1C-1F TMSF Task selection field
1D - 1F Address of routine that tests if a

VSE/POWER event is posted in main ECB.
If not, it places the VSE/POWER
partition in wait state by issuing an

 SVC7.

How to Locate: Refer to Figure 151 on page 730 in Chapter 6, “Diagnostic Aids.”

 Chapter 5. Storage Layout and Data Areas 727

728 VSE Central Functions V7R1 VSE/POWER DRM

 Chapter 6. Diagnostic Aids

This section consists of hints and suggestions about where and what to look for in a dump containing the
VSE/POWER partition and the SVA part of VSE/POWER. The section begins with general debugging
hints, a list of which follows.

� The stand-alone dump (DOSVSDMP)
� Identifying the VSE/POWER partition (the partition in which VSE/POWER is initialized)
� Identifying the SVA part of VSE/POWER
� Identifying pages belonging to the fixable area
� Identifying the start of the pageable area
� Locating and identifying control blocks, tables and areas
� Identifying the start of a CSECT
� Establishing the "level" of a CSECT
� Determining the active routine and analyzing the register save areas.
� Analyzing event control blocks
� Using the buffer control words

 � Analyzing TCBs
� RJE,BSC and PNET trace facility
� PNET BSC I/O logging on console
� VSE/POWER file dump program
� Establishing the last command issued
� An aid to eliminate components
� Problems related to VTAM.

General Debugging Hints

 Stand-alone Dump

It is recommended that the user generates a stand-alone dump tape using DOSVSDMP.

This dump should always be used when a stand-alone dump is required. Later printing may be done for
total dump tapes using DOSVSDMP or for selected area with the INFO/ANALYSIS tool.

Identifying the VSE/POWER Partition

The start of the VSE/POWER partition can be easily identified in the translated portion of any dump by the
name given to the POWER macro. A copyright statement with product number 5686-066 follows at offset
X'80'.

Identifying the SVA Part of VSE/POWER

The characters CAT, followed by the copyright statement with product number 5686-066, identify the
control address table in the SVA and so the beginning of the SVA part of VSE/POWER.

Identifying Fixed Pages

The address of the first page in the fixable area is contained in bytes X'48-4B' (PAFA) of the SVA part of
VSE/POWER. Since each page is 4K bytes, the start of other pages in the fixable area can be calculated.
Also, by following the BCW chain and examining the contents of the buffer control words the amount of
pages and usage of each page can be established.

© Copyright IBM Corp. 1979, 2006 729

Identifying the Start of the Pageable Area

The address of the pageable area is contained in bytes X'4C-4F' (PAVA) of the SVA part of VSE/POWER.

Locating and Identifying Control Blocks, Tables, and Areas

In the SVA Part Control blocks, tables, and areas in the SVA part area can be found by reference to
Figure 151.

Figure 151. Locating and Identifying Control Blocks, Tables and Areas in the SVA Part

Abbreviated *
Mnemonic of Table or Area

Pointer to or Address of the
Table/Area

Identifier in
Translated Dump

CAT X'5C'(IJBPWR) of SYSCOM or
X'14' of VSE/POWER partition

CAT and ver/mod level

Real storage control block X'114'(CASC) of CAT SCB
Local message control blk. X'118'(CAMM) of CAT MMB
Wait control block (WCB) X'214'(TATM) of CAT WCB
Partition control block X'A0'(POWPCB) of partition COMREG

X'230'(TCXPDB) of EX RDR TCB
PART.CONTR.BLOCK

* Refer to “List of Abbreviations” on page 799.

In the Permanent Area: There are no control blocks in the permanent area. The permanent area
consists of the RJE/BSC manager if RJE is generated. If not, no permanent area exists. The page belongs
then to the fixable area.

In the Fixable Area: Control blocks, tables, and areas in the fixable area can be found in
Figure 152 on page 731. Actual tables present depend on task requirements.

730 VSE Central Functions V7R1 VSE/POWER DRM

Figure 152 (Page 1 of 3). Locating and Identifying Control Blocks, Tables, and Areas in the Fixable Area

Abbreviated *
Mnemonic of Table or Area

Pointer to or Address of the
Table/Area

Identifier in
Translated Dump

Disk management block DMB X'10C' of CAT (CAQC) DMB
Master class table (MLTA) X'39C' - X'723' of DMB (QCCT)
Master line table (MLT) X'78' - X'87' of DMB (MRLT)
SYSID class table X'8E0' - X'96F' of DMB (SSST)
Node attached table (NAT) X'970' - X'C8F' of DMB (MNAT)
Master record area (MRA) X'300' - X'FE7' of DMB (fixed

part)(QCMR)

 X'FE8' start of variable part
Queue control area info X'C9A' - X'CCF' of DMB (QCASNGP)
Relative DBLK number of current slot X'44'-X'47' of DMB (QCADW)
Relative DBLK number of first slot X'CA0-X'CA3' of DMB (QCASDSA)
Virtual addr of slot DBLK X'48'-X'4B' of DMB (QCADV)
Account file seek address last record X'388' - X'38F' of DMB (MRAS)
Account control block X'110' of CAT (CAAC)
Auxiliary Queue record address X'30' of DMB (QCQW+4)
Perm cmd processor TCB X'218' of CAT (TAOC) TCB O CP
Cmd proc. control fields X'220' of the CP TCB (TCGW) CPB
End address of VSE/POWER partition X'50' of CAT (PAEN)
First fixed page X'10' of SCB (SCFP)
INIT/TERM TCB X'21C' of CAT (TAIT) TCBbIbIT
Address of first LCB X'52C' of CAT (CALC)
Logical data area LDA X'168' of a TCB (TCDV) (only if appli-

cable)
Virtual address

LRSA (linkage reg save area) X'94' - X'CB' of a TCB for an RDR, LST,
PUN, or XP task (TCSV)

This LRSA saves R14-R9
used by the physical rou-
tines

MCB for Q file X'150' of CAT (CAQ1) MCB QFILE 01
MCB data file 1 X'154 of CAT (CAD2) MCB DFILE 02
MCB data file 2 X'158' of CAT (CAD3) MCB DFILE 03
MCB data file 3 X'15C' of CAT (CAD4) MCB DFILE 04
MCB data file 4 X'160' of CAT (CAD5) MCB DFILE 05
MCB data file 5 X'164' of CAT (CAD6) MCB DFILE 06
MCB data file 6 X'168' of CAT (CAD7) MCB DFILE 07
MCB data file 7 X'16C' of CAT (CAD8) MCB DFILE 08
MCB data file 8 X'170' of CAT (CAD9) MCB DFILE 09
MCB data file 9 X'174' of CAT (CAD10) MCB DFILE 10
MCB data file 10 X'178' of CAT (CAD11) MCB DFILE 11
MCB data file 11 X'17C' of CAT (CAD12) MCB DFILE 12
MCB data file 12 X'180' of CAT (CAD13) MCB DFILE 13
MCB data file 13 X'184' of CAT (CAD14) MCB DFILE 14
MCB data file 14 X'188' of CAT (CAD15) MCB DFILE 15
MCB data file 15 X'18C' of CAT (CAD16) MCB DFILE 16
MCB data file 16 X'190' of CAT (CAD17) MCB DFILE 17
MCB data file 17 X'194' of CAT (CAD18) MCB DFILE 18
MCB data file 18 X'198' of CAT (CAD19) MCB DFILE 19
MCB data file 19 X'19C' of CAT (CAD20) MCB DFILE 20
MCB data file 20 X'1A0' of CAT (CAD21) MCB DFILE 21
MCB data file 21 X'1A4' of CAT (CAD22) MCB DFILE 22
MCB data file 22 X'1A8' of CAT (CAD23) MCB DFILE 23
MCB data file 23 X'1AC' of CAT (CAD24) MCB DFILE 24
MCB data file 24 X'1B0' of CAT (CAD25) MCB DFILE 25
MCB data file 25 X'1B4' of CAT (CAD26) MCB DFILE 26
MCB data file 26 X'1B8' of CAT (CAD27) MCB DFILE 27
MCB data file 27 X'1BC' of CAT (CAD28) MCB DFILE 28
MCB data file 28 X'1C0' of CAT (CAD29) MCB DFILE 29
MCB data file 29 X'1C4' of CAT (CAD30) MCB DFILE 30

 Chapter 6. Diagnostic Aids 731

Figure 152 (Page 2 of 3). Locating and Identifying Control Blocks, Tables, and Areas in the Fixable Area

Abbreviated *
Mnemonic of Table or Area

Pointer to or Address of the
Table/Area

Identifier in
Translated Dump

MCB data file 30 X'1C8' of CAT (CAD31) MCB DFILE 31
MCB data file 31 X'1CC' of CAT (CAD32) MCB DFILE 32
MCB data file 32 X'1D0' of CAT (CAD33) MCB DFILE 33
Remote message contr. blk. X'11C' of CAT (CARM) MSCB
Master external device control
 block (MEDCB)

X'138' of CAT (CAEDCB) MEDCB

Communicator info block X'134' of CAT (CACI) CIB
Communicator info block 2 X'144' of CAT (CACI2) CI2
Physical work space (PWS) R8 in a TCB for a task in a physical

routine

Physical data area X'00' of a PWS
X'04' of a PWS

Virtual address
Real address

Relative number of current queue record X'18C' - X'18F' of TCB (TCQW)
Queue record area X'190'-X'193' of a TCB (TCQV) Virtual address
Queue record identifier X'2A' of a queue record (QRQI) R,L,P,F,D,B,I
Size of phys. data buffer X'514' of CAT (CABLBF)
Size of log. data buffer X'518' of CAT (CABLDB)
Relative queue record number of
 master record

X'20' - X'23' of DMB (QCMW)

Relative queue record no. of next free
 queue record

X'30C' - X'30F' of DMB (MRQFRNO)

SLI work space (SLWA) X'40' of PART.CONTR.BLOCK (PDSL)
SNA control block X'120' of CAT (CASM) SNCB
PNET master control block X'130' of CAT (CAPN) PNCB
Asyn service anchor block X'128' of CAT (CAAB) ASWS
Virt. storage control blck X'140' of CAT (CAVS) VSCB
Dyn. part. control clock X'13C' of CAT (CADPCB) DPCB
Trace information block X'12C' of CAT (CATK) TIB
Curr trace area descriptor X'14' of TIB (TIBPTRC)
Free trace area entry X'50' of TIB (TIBCFTE)
First node control block X'10' of PNCB (PNCBNCB) NCB
TCB of PNET Driver X'14' of PNCB (PNCBTLD)
VTAM Driver control block X'20' of PNCB (PNCBVDCB) VDCB
PNET TCP Driver control block X'28' of PNCB (PNCBTDCB) TDCB
PNET SSL Driver control block X'2C' of PNCB (PNCBSDCB) SDCB
Start of fixable area X'48' of CAT (PAFA)
Start of pageable area X'4C' of CAT (PAVA)
Start of task select. list X'14' of WCB (TMTN of IPW$$NU)
Tape control block X'199' of TCB. (TCTA) TBB
TCB of last attached auxiliary
 command proc.

X'24C' of CAT (CAOP) If none exist, addr. of perm.
command proc.

TCB of last attached execution
 processor task

X'260' of CAT (CAEX)

TCB of highest priority task in
task selection list

X'14' - X'17' of WCB (TMTN of IPW$$NU)

TCB of RJE,BSC line or SNA manager
or PNET driver

X'23C' of CAT (CALM) If not present then WCB
addr.

TCB for most recently attached writer
 task

X'25C' of CAT (CARW)

TCB for most recently attached RJE
 task

X'254' of CAT (CARJ)

TCB for most recently attached reader
 task

X'264' of CAT (CARR)

Task register save area X'40' - X'77' in any TCB (TCTR)

732 VSE Central Functions V7R1 VSE/POWER DRM

Figure 152 (Page 3 of 3). Locating and Identifying Control Blocks, Tables, and Areas in the Fixable Area

Abbreviated *
Mnemonic of Table or Area

Pointer to or Address of the
Table/Area

Identifier in
Translated Dump

Task selection list X'14' - X'17' of WCB; then
X'14' - X'17' of each TCB (TCTN) until
return to WCB

Recognize each
TCB by its descriptor.

* Refer to “List of Abbreviations” on page 799.

 Chapter 6. Diagnostic Aids 733

In the VSE/AF GETVIS Area: Control blocks, tables, and areas in the VSE/AF GETVIS area can
be found by reference to Figure 153.

Figure 153. Locating and Identifying Control Blocks, Tables and Areas in the VSE/AF GETVIS Area

Abbreviated *
Mnemonic of Table or Area

Pointer to or Address of the
Table/Area

Identification in the
Translated Dump Output

COCB X'40' - X'43' of SNCB (SNCA) COCB
LRCB X'38' - X'3B' of SNCB (SNLR) LRCB
LUCB X'29' - X'2B' of SUCB (SUL1L) LUCB
 X'39' - X'3B' of SUCB (SUL2L)
 X'49' - X'4B' of SUCB (SUL3L)
 X'59' - X'5B' of SUCB (SUP1L) Only if
 X'69' - X'6B' of SUCB (SUR1L) appropriate
 X'79' - X'7B' of SUCB (SUX1L) device is
 X'89' - X'8B' of SUCB (SUC1L) processing
SUCB X'14' - X'17' of SNCB (SNFS)
RMCB X'20' - X'23' of SNCB (SNRM)
CI Put-Account X'78' - X'7B' of ACB (AFWAF) CI FBA P/A
CI Save-Account X'7C' - X'7F' of ACB (AFWASA) CI FBA S/A
Network definition table X'18' of PNCB (PNCBNDT) NDT
Temporary NAT table X'24' of PNCB (PNCBTNT)
External device cntl block

(1st in chain)
X'10' of MEDCB (MEDCBFEL) EDCB

Communicator info element
(1st in chain)

X'5C' of CIB (CIBFCIE) CIE

* Refer to “List of Abbreviations” on page 799.

Identifying the Start of a CSECT

Each control section within the VSE/POWER code is identified by a 16-byte control section descriptor in
the following format.

� The alphameric name assigned to the control section

� The level identifier for this release or modification level

� The date of the last compilation for this phase or last applied APAR number.

734 VSE Central Functions V7R1 VSE/POWER DRM

Establishing the Level of a CSECT

The level of a routine (Physical, Logical, Execution, Function, Service) can be established by the first
two/three characters of its CSECT name identified in a dump. For example, if the contents of register 12
in a TCB points to an address within CSECT name AQCS, the calling routine (AQCS) is at FUNCTION
level.

Determining the Active Routine and Analyzing Register Save Areas

It is important to know the routine in which a task is executing in order to be able to analyze the meaning
of the contents of the registers saved.

The contents of R12 in the TRSA in a TCB belonging to a task that is not in R state will address the
instruction that will be next executed when the task is given control. The routine or CSECT in which this
instruction is located can be identified in a dump by means of the storage descriptor.

Figure 147 on page 715 to Figure 150 on page 718 show the relationship between the LRSA in TCB and
the DLRSA or second LRSA, which depends on the calling sequence of VSE/POWER routines.

Analyzing Event Control Blocks (ECBs)

Several control blocks are equipped with ECBs, the condition of which may be important to problem anal-
ysis. The possible conditions are:

� Posted - bit 16 on (1)

� Unposted - bit 16 off (0). See Appendix B, “Summary of ECB Usage (4 and 8-Byte).”

Using Buffer Control Words

The four bytes immediately in front of any area contain the address of the task control block of the task
which reserved the area.

 Analyzing TCBS

Figure 154 on page 736 and Figure 155 on page 737 are for quick reference only.

 Chapter 6. Diagnostic Aids 735

Figure 154. General Meaning of the Task Management Fields

736 VSE Central Functions V7R1 VSE/POWER DRM

p o i n t s t o f i r s t i n s t r u c t i o n t o b e e x e c u t e d w h e n t a s k

i s n e x t d i s p a t c h e d

p o i n t s t o a n L R S A

p o i n t s t o i n s t r u c t i o n t o b e e x e c u t e d n e x t a f t e r

c o m p l e t i o n o f c u r r e n t o r l a s t f u n c t i o n

p o i n t s t o C S E C T o f l a s t o r c u r r e n t f u n c t i o n u s e d b y

t a s k . S h o w s t h e l a s t o r c u r r e n t f u n c t i o n

p o i n t s t o a C C B o r E C B i f T C B i s i n C , o r S s t a t e t o

a n E C B a d d r e s s l i s t i f t a s k s i s i n M o r Q s t a t e

T C B

T R S A

Figure 155. General Meaning of Fields in the TRSA

RJE,BSC and PNET Telecommunication Trace Facility

The following provides a combined I/O and buffer content trace description (and is duplicated in the
VSE/POWER Networking, SC33-6735 publication).

The trace is a useful tool which aids the user in problem determination. It also is a debugging aid that
enables the system programmer or an IBM program system representative to locate the cause of an
failure.
With the operator's console log and a dump, the output from the trace area provides enough information to
locate internal PNET or RJE,BSC problems more easily and permits the re-construction of I/O sequences.

 Chapter 6. Diagnostic Aids 737

A trace record is written in following events:

RJE,BSC I/O completed
PNET BSC/CTC I/O completed
PNET SNA SEND or RECEIVE request completed
PNET SNA RECEIVE request completed
PNET TCP (any) socketcall started, tested or completed

The trace records generated by VSE/POWER are recorded in wrap-around fashion in main storage. The
amount of storage allocated for the trace table is specified in the TRACESZ=xxx parameter of the POWER
macro at generation time. The value specified for TRACESZ should ensure that information is not
destroyed because to the wrapping in the trace table. The value should also reflect the amount of storage
available.

The operator activates the trace recording for a RJE,BSC or PNET line by specifying the TRACE operand
in the PSTART command. The trace recording keeps active until the RJE,BSC line or the connection to
the other node is stopped.

Each trace record is 256 bytes long. The following is a list of possible types of trace records:

� RJE,BSC trace record
The format of the trace record is described in “RJE,BSC Trace Record”

� PNET BSC/CTC trace record
The format of the trace record is described in “PNET BSC/CTC Trace Record”

� PNET SNA SEND/RECEIVE trace record
The format of the trace record is described in “PNET SNA Trace Record”

� PNET TCP trace record
The format of the trace record is described in “PNET TCP Trace Record”

� PNET SSL trace record
The format of the trace record is described in “PNET SSL Trace Record”

The trace records can be examined by displaying or taking a dump of the main storage location containing
the trace area.

Optionally whenever the trace area is full it is written onto the VSE/AF DUMP library. The operator is
informed when a trace area is successfully written into the user defined DUMP library. The various dump
members can then be printed out by the appropriate VSE/AF utility. Trace logging is requested by means
of UPSI 001 at VSE/POWER start-up time or can be dynamically requested while VSE/POWER is running
by entering the PSTART DUMPTR commend.

The trace area is divided into two parts, referred as primary and alternate trace area. Both trace areas
have the same size (integer number of page). When the primary trace area is full, VSE/POWER automat-
ically swaps to the alternate trace area and starts filling that up. If now the alternate trace area is filled up,
the primary trace area is addressed again and used for recording.

The trace area can be found by first locating the trace information block (TIB). The trace information block
contains among others a pointer to a two-word trace area descriptor of the trace area currently in use at
displacement X'14'. The first word of the trace area descriptor contains the trace area begin address while
the second word contains the end address. The pointer to the next free trace area entry is stored at
displacement X'50' of the TIB. The PDISPLAY TRINFO command can be used to get the start and end
address of the entire trace area as well as the current free trace area address. See Figure 54 on
page 143 for the control block structure.

738 VSE Central Functions V7R1 VSE/POWER DRM

RJE,BSC Trace Record

(refer to the Appencix D of the VSE/POWER Remote Job Entry, SC33-6734 publication)
(The DSECT 'TRACEDS' is found in the module IPW$$LM)

PNET BSC/CTC Trace Record

(refer to the Appencix D of the VSE/POWER Networking, SC33-6735 publication)
(The DSECT 'TRACENT' is found in the module IPW$$LD1)

PNET SNA Trace Record

(refer to the Appencix D of the VSE/POWER Networking, SC33-6735 publication)
(The DSECT 'TRACENT' is found in the module IPW$$LD2)

PNET TCP Trace Record

(refer to the Appencix D of the VSE/POWER Networking, SC33-6735 publication)
(The DSECT 'TRCENTRY' is found in the module IPW$$TD)

PNET SSL Trace Record

(refer to the Appencix D of the VSE/POWER Networking, SC33-6735 publication)
(The DSECT 'TRCENTRY' is found in the module IPW$$SD)

 Chapter 6. Diagnostic Aids 739

PNET BSC/CTC/TCP I/O Logging on Console
(refer to the Appencix D of the VSE/POWER Networking, SC33-6735 publication)

Hardware Error Recording

Error recording is part of ERP processing. The error data is placed in the system error recorder file
(SYSREC) for subsequent editing and printing. Error recording takes place under following conditions:

� BSC RJE Line

– Permanent errors -- errors that are either unrecoverable or errors from which VSE/POWER error
recovery processing failed to recover.

– Counter overflow -- written whenever the SIO (START I/O) counter, the temporary error counter,
or one of the device statistics table counters is about to overflow.

– End-of-day -- written whenever a BSC line is stopped.

� BSC/CTC PNET Line

A unit check record is written onto SYSREC whenever:

– A channel program, channel protection, channel data, channel control, channel interface, or
channel chaining check occurs,

– A command reject or CCW chain does not end on a read CCW,

– A recoverable line error (other than time out) occurs,

– A remote or local node detects a sequence error.

VSE/POWER Disk Dump Program

This program enables any of the VSE/POWER files (account, queue, data) to be dumped on a line printer
or tape assigned to SYSLST. An option is also provided to dump a specific queue record with its associ-
ated DBLK groups. In a shared-spooling environment the queue-control area could also be dumped.

For more information and how to execute the VSE/POWER disk dump program refer to VSE/POWER
Administration and Operation.

Establishing the Last Command Issued

The last command issued by the central operator can be seen printed in the translated part of a dump
within the permanent command processor task control block, recognized by the storage descriptor CPB.

An Aid to Eliminate Functions

It may be useful to have several different generation tables cataloged in the library with at least a default
version as originally supplied to the user. The various versions act as a debugging aid to eliminate the
various optional functions. (e.g. Source Library Inclusion is only present if SUBLIB= or MEMTYPE= was
specified in the POWER generation).

Problems Related to VTAM

If a problem occurs where VTAM is involved, please consult the appropriate VTAM diagnostic manuals.

740 VSE Central Functions V7R1 VSE/POWER DRM

System Dump Containing the VSE/POWER Partition

For a full description of a system dump, refer to VSE/ESA Diagnosis Tools, SC33-6614. See Figure 140
on page 435 for a pictorial representation of the VSE/POWER partition.

 Chapter 6. Diagnostic Aids 741

742 VSE Central Functions V7R1 VSE/POWER DRM

Appendix A. VSE/POWER Status Bytes in the VSE/AF
Supervisor

SYSCOM*

Location X'42' (IJBFLG03) contains a flag byte:

X'�4' (IJBPOWA) = VSE/POWER initialized

Location X'5C' - X'5F' (IJBPWR) contains the address to the VSE/POWER control address table, which is
included in the VSE/POWER nucleus (IPW$$NU) if VSE/POWER is initiated.

Location X'154' - X'157' (IJBPSYSI) contains the address to the VSE/POWER information (SYSID and
PNET node name). Set up during VSE/POWER initialization.

Location X'163' (IJBFLG09) contains a flag byte:

X'�1' (IJBPOWMP)= VSE/POWER Multiprocessor Support enabled (SET WORKUNIT =PA)

Partition COMREGS*

Location X'A0' - X'A3' (POWPCB) contains the address of the VSE/POWER partition control block (0 if no
partition control block exists for this partition).

Location X'A4' (POWFLG1) contains VSE/POWER flags:

X'8�' (POWACT) = VSE/POWER accounting support
X'4�' (POWUPART) = This partition under control of VSE/POWER
X'2�' (POWPART) = This partition is the VSE/POWER partition
X'1�' (POWPDORM) = Partition is dormant
X'�8' (POWWPART) = Partition waiting for work state
X'�4' (POWBAM) = Used for BAM TRC interface to VSE/POWER
X'�2' (POWHIGH) = VSE/POWER has lower priority
X'�1' (POWSPERR) = Write error on VSE/POWER data file

Location X'A5' (POWFLG2) contains VSE/POWER flags:

X'8�' (POWUNBCH) = VSE/POWER automatic unbatch indication
X'4�' (POWUNBTS) = Feedback for TSTOP
X'2�' (POWINTER) = VSE/POWER in termination
X'1�' (POWINTFL) = VSE/POWER internal flush
X'�8' (POWPFRC) = VSE/POWER PEND FORCE
X'�4' (POWIGLOG) = VSE/POWER LOG=NO option
X'�2' (POWWRONL) = VSE/POWER Writer-only partition
X'�1' (POWDREC) = VSE/POWER Dummy Record

Partition Control Block Extension (PCE)*

Almost the complete PCE (about 36 bytes) is used as an interface between VSE/AF and VSE/POWER.

* Refer to VSE/ESA Diagnosis Tools, for a full description and locations of the above VSE/AF Supervisor
control areas.

© Copyright IBM Corp. 1979, 2006 743

744 VSE Central Functions V7R1 VSE/POWER DRM

Appendix B. Summary of ECB Usage (4 and 8-Byte)

4-Byte ECB usage: is summarized in Figure 156

Figure 156. Summary of ECB Usage

ECB in: Posted by: (Phase) Unposted by: Use when posted:

ACB IPW$$GA/IPW$$SF IPW$$PA/PF Account file is empty
CAT Appendage Task select. Indicates work-to-do for

VSE/POWER.
SCB IPW$RLW IPW$RSW Work space is avail.
VSCB IPW$RLV IPW$RSV Virtual storage avail.
DMB IPW$$FQ IPW$$RQ, Queue space is avail.
 IPW$$PD
TCB (CP) IPW$$I7 IPW$$CM Indicates that IPW$$I7 has

sent information to IPW$$CM.
TCB (LD) all PNET tasks

IPW$$AQ, IPW$$MS,
IPW$$CPS, IPW$$CP

IPW$$LD If work is to do for PNET
driver.

TCB (LMGR) � Channel End Appendage
� line start
� line stop

IPW$$LM Work-to-do for line manager.

TCB (OB) IPW$$IB, IPW$$MP, IPW$$SN IPW$$OB Indicates that trans. to SNA
terminal which was previously
suspended is to continue.

TCB (SN) VTAM at completion of a
RECEIVE ANY

IPW$$SN Indicates that IPW$$SN must
attach IPW$$IB.

TCB (SN) IPW$$SN, IPW$$LN, IPW$$IB,
IPW$$OB, IPW$$MP, IPW$$LF,
IPW$$VE, IPW$$LH, IPW$$MS

IPW$$SN Indicates work-to-do for
IPW$$SN.

SRB IPW$$AS (Subtask) Indicates that service request
is processed.

ASAB IPW$$AS IPW$$AS (Subtask) Indicates that service request
is waiting to be processed.

DPCB IPW$$CS IPW$$DP Indicates that PSTART
command for dynamic parti-
tion is processed.

8-Byte ECB usage: an entry in the master class table area can be used as an 8-byte ECB. In that case
the address of the entry is contained in the task class list (ECB list) in the TCB. When the ECBs in the
RDR, LST, or PUN class are posted (by IPW$$AQ), they indicate that an active entry exists in the class
chain represented by this class table entry. These ECBs are unposted by IPW$$NQ.

For example, assume a TCB for a LST task in the queue state as shown in Figure 157.

© Copyright IBM Corp. 1979, 2006 745

Figure 157. Relationship Between Classes in the TCB and the Master Class Table in the DMB

746 VSE Central Functions V7R1 VSE/POWER DRM

Appendix C. VSE/POWER Internal Macros

VSE/POWER provides a comprehensive set of services which aid the VSE/POWER tasks in performing
their respective tasks in a efficient manner without burdening the programmer with needless details. These
services are requested by the VSE/POWER tasks through the use of macros and should not be used in
code outside the control of the VSE/POWER dispatcher.

Some of the services are provided by inline code expansion wherever the macro instruction is used. The
remaining services are provided by routines which are either part of the VSE/POWER nucleus (IPW$$NU)
or other modules. These routines are linked to by code generated wherever the macro instruction is used.
At execution time the macro expansion passes information to the routine to specify the exact nature of the
service to be performed. This information is broken down into parameters and, in general, passed to the
routine through general purpose registers called parameter registers.

The VSE/POWER macros are presented in this section by means of macro instruction description, each of
which contains an illustration of the macro format. Parameters are specified by operands in the macro
instruction. Operands are of two types, positional operands and keyword operands. Keyword operands can
be written in any order, but they must be written to the right of any positional operand in the macro instruc-
tion.

 Coding Aids

The symbols [], { }, and _ are used in this publication to help define the macro instructions. These
symbols are not coded; they are only to indicate how a macro instruction is to be written; their general
definitions are given below:

[] indicates optional operands. The operand enclosed in the brackets may or may not be coded,
depending on whether or not the associated option is desired.

{ } indicates that a choice must be made. One of the operands within the braces must be coded,
depending on which of the associated services/functions is desired.

_ an underlined parameter indicates the default if the parameter is not coded.

 Macro Notation

The VSE/POWER macros are written in the assembler language and, as such, are subject to the rules
contained in OS/VS - DOS/VS - VM/370 Assembler language.

The following describes the meaning of each notation used:

(reg) When this notation is shown, a general register must be coded. It is assumed that designated
register contains the address or value.

(Rx) When this notation is used, it is assumed that the general register x already contains the
address or value, unless otherwise specified in the description of the macro.

© Copyright IBM Corp. 1979, 2006 747

Format of Internal Macros

IPW$ALN - Align to Storage Boundary

The IPW$ALN macro causes to align the storage to the specified boundary and to fill the storage with
X'FF'. In most cases, the macro is used to generate a patch area at the end of the module.

[name] IPW$ALN boundary

boundary specifies the requested storage boundary as one of the following:

LINE causes to align to next x'20' boundary

PARA causes to align to next x'100' boundary

PAGE causes to align to next x'800' boundary

address causes to align to the specified storage address. The address can be specified in hex
notation or as decimal value.

IPW$AJ# - Assign New VSE/POWER Job Number

The IPW$AJ# macro assigns a new VSE/POWER job number. The macro expansion generates inline
code.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$AJ# address|(reg)[,LOCK=YES|NO]

address specifies the address of a 2-byte field to hold the job number assigned by VSE/POWER. If
register notation is used the designated register must point to a 2-byte field.

LOCK YES causes the macro expansion to lock the DMB for exclusive use before updating the
VSE/POWER job number.

NO means that the issuing routine already owns the DMB and that therefore no lock of the
DMB is necessary.

IPW$AQS - Add Queue Entry to Class Chain

The IPW$AQS macro is used to add a queue entry, pointed to by the TCB, to the appropriate class chain
according to its priority. Depending on the queue record id, contained in the queue record area, the
queue entry is added to the RDR, LST or PUN queue. If the queue entry is destined for a remote node in
the network, the queue entry is automatically added to the XMT queue.

Any VSE/POWER task waiting for work is posted when the added queue entry meets its processing cri-
teria.

Registers 14 and 15 are used as linkage registers.

748 VSE Central Functions V7R1 VSE/POWER DRM

[name] IPW$AQS [KEEP][,LOCK=YES|NO]

KEEP specifies that the queue entry is already queued in one of the class chains. It causes to write
back the queue record of the queue entry addressed by the TCB.

LOCK YES specifies that the add queue entry routine performs a DMB release operation after proc-
essing the requested function; this is the default.

NO means that the calling task already owns the DMB and that the DMB should not be
released.

IPW$ATT - Attach VSE/POWER Task

The IPW$ATT macro is used to attach a new VSE/POWER task. Register 1 must address the TCB of the
task to be attached; the service routine assumes that the TCB is properly built.

Registers 0 - 3 are destroyed by execution of the macro instruction.

[name] IPW$ATT [R1][,symbol]

symbol specifies the name of the VSE/POWER phase to which control is given when the task begins
its execution. This is the name of the phase as defined in the CAT with the first two characters
stripped off. If the parameter is omitted, register 3 must have previously loaded with the
address of the phase.

IPW$BUF - Invoke PNET Buffer Service

The IPW$BUF macro is used to obtain, queue, release or purge a TP buffer used by PNET. The macro
expands into a linkage to the buffer service routine (IPW$$BS).

A set of buffer service routines are provided to queue any incoming TP-buffer in the 'received queue', to
queue any output buffer in the 'to-be-sent queue', and to supply buffers for both transmitters and receivers.

The buffers required to process BSC nodes are provided from real storage, while those required to
process SNA nodes are provided from virtual storage (GETVIS).

Registers 14 and 15 are used as linkage registers; registers 0 and 1 are destroyed by execution of the
macro instruction.

[name] IPW$BUF MODE=IN|OUT[,REG=(reg)][,WAIT=YES|NO]
 ,TYPE=GET|RELEASE|FREE|QUEUE|CNTRL|PURNT|PURNR|MSG

REG specifies the address of the buffer that is to be referenced. If not specified then the address
from the NCB will be used. This keyword is only valid for TYPE=QUEUE,MODE=OUT.

WAIT specifies whether the task wants to wait if there is either insufficient storage to satisfy the
request or no TP buffer in the 'received input queue'.

YES specifies that the task wants to be placed in the wait state until a buffer is available.
YES is the default if the parameter is omitted.

 Appendix C. VSE/POWER Internal Macros 749

NO means that control will be returned directly to the calling task, with or without a buffer
being available.

MODE=IN specifies that the buffer to be processed is a input buffer.

FREE causes the TP buffer addressed by register 1 to be queued as first entry in the
'free input chain'. The calling task's FCS bit is set in order to resume a data
stream which has been suspended, prior to receiving the maximum number of
buffers.

Note: This function is invoked by the PNET driver and the receiver.

GET causes the buffer addressed by the head pointer of the 'received queue' to be
dequeued and its address to be returned in register 1. If the 'received queue' is
empty and WAIT=NO is specified, then a return is made to the user with register
1 containing zero to indicate that no buffer was available. If the 'received queue'
was empty and WAIT=YES is specified, then the task is put into a wait for a
BSC/PNET event.

Note: This function is only invoked by the receiver.

QUEUE causes the input buffer being received, addressed by register 1, to be queued as
last entry in the 'received input queue' for the task, checks the number of buffers
in the queue against the maximum value specified in the MAXBUF parameter for
the node, and if the maximum is reached sets a suspend for this task.

Note: This function is invoked only by the PNET driver when an input buffer is
received successfully.

RELEASE causes all buffers up to the maximum specified by MAXBUF, to be freed from the
'free input queue' and to be returned to the VSE/POWER storage pool. If the
number of buffers in the 'free input queue' is less than MAXBUF then all are freed
except for one.

Note: This function is only invoked by the PNET driver.

MODE=OUT specifies that the buffer to be processed is an output buffer.

CNTRL causes a small TP buffer used for a NJE control record to be reserved and its
address to be placed in register 1, upon return. The buffer is marked to be freed
after successful transmission. If WAIT=NO is specified or defaulted and insuffi-
cient storage is available to fulfill the requirement then return is made to the user
with register 1 as zero. If WAIT=YES is specified, the task is put into wait until
space becomes available.

FREE causes the output buffer currently being sent, addressed by register 1, to be
queued as first entry in the 'free output queue' of the related NCB task entry.

If one of the following conditions arises then the buffer is released and its storage
returned to the VSE/POWER storage pool.

� If the 'release-after-sent' flag is set in the buffer header.
� If the buffer owner is the PNET driver.
� SIGNOFF is in process or a line error has occurred.

If the 'short-on-buffer' condition is set in the NCB task entry (NCBEST2 =
NCBESOB) then the task must also be posted.

Note: This function is only invoked by the PNET driver after a buffer has been
successfully sent.

750 VSE Central Functions V7R1 VSE/POWER DRM

GET causes a TP-buffer to be allocated from the 'free output queue' and its address to
be returned in register 1. If no buffer is in the 'free output chain' and the
maximum number of acquired output buffers is not exceeded for the calling task,
a new TP-buffer is acquired and the number of buffers in use is increased.

If no buffer is available in the 'free output chain' and the number of output buffers
for this task has not reached the maximum value, an attempt to acquire another
buffer from the VSE/POWER storage pool is made.

If no storage is available and this is not the first buffer, then a wait is made for a
buffer to be freed by the FREE option of the IPW$BUF macro.

If this was the first buffer to be acquired, then the reserve work space is made
with the WAIT option.

If the maximum number of buffers have already been acquired then the task is
put into wait for a buffer to be freed by the FREE option of the IPW$BUF macro.

MSG is the same as CNTRL but provides larger buffers to be used for messages.

PURNR causes buffers queued for transmission, by the receiver, to be removed from the
'to-be-sent-queue' dependent on the following conditions:

� Register 1 is zero, then ALL buffers are removed from the queue.
� Register 1 is non-zero, then only buffers belonging to this task are removed

from the queue.

If the buffer has the 'release-after-sent' flag set then the buffer is returned to the
VSE/POWER storage pool. All other buffers are queued into the 'free output
queue'.

PURNT causes buffers queued for transmission, by the transmitter, to be removed from
the 'to-be-sent-queue' dependent on the following conditions:

� Register 1 is zero, then ALL buffers are removed from the queue.
� Register 1 is non-zero, then only buffers belonging to this task are removed

from the queue.

If the buffer has the 'release-after-sent' flag set then the buffer is returned to the
VSE/POWER storage pool. All other buffers are queued into the 'free output
queue'.

QUEUE causes the TP-output buffer, addressed by register 1, to be queued as the last
entry in the 'to-be-sent chain'. If the buffer just queued is the first in the queue,
then the PNET driver is posted.

If a line error has been detected or a 'SIGN-OFF' record has been received, then
the buffer is added to the 'free output queue'.

RELEASE causes all TP-buffers in the 'free output chain' (anchored to this NCB task entry),
to be released and returned to the VSE/POWER storage pool.

IPW$CAF - Close Account File

The IPW$CAF macro is used to close the account file and prepare the account file for write operation.

Note: The account file must have been previously opened via the IPW$OAF macro instruction otherwise
the action of the IPW$CAF macro instruction is unpredictable.

Registers 14 and 15 are used as linkage registers.

 Appendix C. VSE/POWER Internal Macros 751

[name] IPW$CAF {CLOSE|ERASE|KEEP}

CLOSE specifies to close the account file and to prepare the account file again for write operation.

ERASE specifies to erase the account file. An EOF record is written as first record on each track
(CKD), or when the account file resides on a FBA device an EOF CI is written as first CI of the
account file.

KEEP specifies to return the account file for write operation.

IPW$CLI - Close Logical Interface

The IPW$CLI macro is used to close the interface to the logical routine (IPW$$LO, IPW$$LR, IPW$$LW).
It returns the additional save area, obtained by means of the IPW$OLI macro when the interface was
opened, to the VSE/POWER storage pool.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$CLI [LO]

LO specifies that the interface to the logical output spooler (IPW$$LO) should be closed and the
save area appendix storage, if present, released.

Note: NO operand should be specified when 'closing' the interface to the logical reader or writer.

IPW$CPY - Provide Copyright

This macro generates an object code readable copyright constant by the following inclusions:

1. a branch instruction to bypass the subsequent copyright constant
2. a 44 byte copyright constant of the following layout:

'5686-�66 (C) COPYRIGHT IBM CORP. 19xx, 19yy '

where '19xx' is the year of first availability
and '19yy' is the year of availability since the code was changed last.

3. OR a 44 byte copyright constant of the following layout:

'5686-�66 (C) COPYRIGHT IBM CORP. 19xx '

where '19xx' is the year of first availability for modules new in this Version/Release.

The program number generated by the macro has to be updated with every new version of VSE/POWER.
The macro should be placed into the first 300 bytes of every VSE/POWER module. Care must be taken,
that the module has established base register addressability already.

No registers are destroyed by the macro.

 IPW$CPY YB=nnnn,[YC=mmmm][BRANCH=YES|NO]

YB specifies the year of birth (general availability) of the subject module. This operand is manda-
tory.

752 VSE Central Functions V7R1 VSE/POWER DRM

YC specifies the year of latest change (general availability) of the subject module. This operand
should not be used for modules, which are new in the current Version/Release.

BRANCH=YES|NO specify 'NO', if no branch instruction should be generated to bypass the copyright con-
stant. This may be desirable, if the copyright constant is placed within a constant area.
Specify 'YES', if the bypass branch instruction should be generated. 'YES' is the default.

IPW$CNC - Cancel VSE/POWER or VSE/POWER Task

The IPW$CNC macro is used to cancel either VSE/POWER or a VSE/POWER task. The macro expands
into a linkage to the VSE/POWER task terminator (IPW$$TR) when a task is to be terminated or in a
linkage to the VSE/POWER AB-exit when VSE/POWER is to be abnormally terminated.

[name] IPW$CNC CANCEL[,TYPE=POWER],PHASE=addr|(reg)

 or

[name] IPW$CNC TYPE=TASK

CANCEL specifies to pass a cancel code of 255 (x'FF') to the AB-exit when abnormally terminated
VSE/POWER. This parameter is applicable only when terminating VSE/POWER.

TYPE specifies the scope of termination

POWER causes to cancel the VSE/POWER partition by invoking the AB-exit. If this parameter
is not specified, it is taken as default.

TASK causes to invoke the VSE/POWER task terminator routine in order to perform clean-up
processing for the task concerned.

PHASE specifies the storage descriptor of the module causing the cancellation. If register notation is
used, the designated register must have been previously loaded with the address of the
module storage descriptor. The parameter is required when canceling VSE/POWER.

IPW$CTT - Perform Tape Control Operation

The IPW$CTT macro is used to perform a tape control operation, such as rewind or forward space file.
The task must be equipped with a tape control block (TBB), which is pointed to by the TCB of the
requesting task.

Registers 0 - 2 are destroyed by execution of the macro instruction.

[name] IPW$CTT {WTM|SNS|BSF|FSF|BSR|FSR|REW|RUN|SET|NOP}

BSF specifies to perform a 'backspace file' operation.

BSR specifies to backspace one record.

FSF specifies to perform a 'forward space file' operation.

FSR specifies to forward space one record.

NOP specifies to force device selection by a NOP req., CCW length to be 1

REW specifies to rewind the tape.

 Appendix C. VSE/POWER Internal Macros 753

RUN specifies to rewind and unload the tape.

SNS specifies to sense the tape.

WTM specifies to write a tape mark.

Register 1 must have been previously loaded with the appropriate CCW length.

IPW$DQS - Delete Queue Entry from Class Chain

The IPW$DQS macro is used to delete a queue entry, pointed to by the TCB of the task, from the class
chain if the disposition of the queue entry is 'D' or 'H'. If, however, the disposition is 'K', the queue entry is
re-queued with leave ('L') disposition.

Note: The specified queue entry must have been previously obtained with a IPW$GQS macro instruction
or otherwise properly addressed, else the action of the IPW$DQS macro call is unpredictable.

Registers 14 and 15 are used as linkage registers.

[name] IPW$DQS [HOLD|LOCATE][,LOCK=YES|NO]

HOLD causes to return the queue entry with its original disposition to its class chain for later proc-
essing; no eligibility posting is performed.

LOCATE causes to unchain the queue entry from the class chain it belonged to.

LOCK YES specifies that the delete queue entry routine performs a DMB release operation after proc-
essing the requested function; this is the default.

NO means that the calling task already owns the DMB and that the DMB should not be
released.

IPW$DET - Detach VSE/POWER Task

The IPW$DET macro is used to detach the requesting task. The TCB is removed from the task selection
list and the storage occupied by the TCB is returned to the VSE/POWER storage pool. The control is then
given to the first eligible task in the task selection list.

[name] IPW$DET [RB][,ecb-addr]

ecb-addr specifies the address of an 4-bytes field, used as ECB, being posted when the task has been
detached.

IPW$DSD - Define Storage Descriptor

The IPW$DSD macro is used to define a storage descriptor heading each VSE/POWER phase or control
block. In most cases, the macro is used to generate a 16-bytes constant, containing the name and either
the compile date of the phase or the last applied APAR.

[name] IPW$DSD [SECT=symbol][,REL=BASE|PNET|RJE][,APAR=number]

754 VSE Central Functions V7R1 VSE/POWER DRM

APAR specifies the name of the last integrated APAR. The parameter is not used during develop-
ment.

REL BASE/PNET/RJE specifies that the phase belongs to the base product. The parameter must
be coded when defining the storage descriptor of a VSE/POWER phase.

SECT specifies the name of the control block. The parameter need not be coded when defining the
storage descriptor of a VSE/POWER phase. The macro uses the CSECT name of the phase
as section name.

IPW$FQS - Free Queue Entry

The IPW$FQS macro is used to free the queue entry, pointed to by the TCB of the requesting task, and to
return the DBLK group(s) occupied by the queue entry to one of the free DBLK group subchains, unless
the queue entry is being accessed by another sas browse task (then it is added to the deletion queue if
not already done so). Otherwise it is freed if:

� the disposition of the queue entry is either 'D' nor 'K'
� the disposition of the queue entry is either 'H' nor 'L' and the caller is the command processor
� the queue entry is in the deletion queue

Note: The queue entry must have been previously removed from the appropriate class chain by means
of the IPW$DQS macro instruction.

Registers 14 and 15 are used as linkage registers.

[name] IPW$FQS LOCK=YES|NO]

LOCK YES specifies that the free queue entry routine performs a DMB release operation after proc-
essing the requested function; this is the default.

NO means that the calling task already owns the DMB and that the DMB should not be
released.

IPW$GAM - Get Message and Send to Designated Person

The IPW$GAM macro is used to

� Write a message to the system or any remote operator
� Return the address of a particular message in the message definition module
� Copy the message into the caller's supplied area.

Registers 0 - 3 are destroyed by execution of the macro.

 Appendix C. VSE/POWER Internal Macros 755

[name] IPW$GAM MSG=$mmmmm|(reg)
 ,DEST=LOCAL|REMOTE|RETURN|address|(reg)
 [,DESTID=(reg)]
 [,REQ=ADDR[,RTDC=YES|NO]]

[name] IPW$GAM MSG=$mmmmm|(reg)
 ,DEST=address|(reg),SUB=YES

[name] IPW$GAM MSG=�
 ,DEST=address|(reg),SUB=YES

[name] IPW$GAM DOM=(R1)

MSG specifies the message identifier including its suffix; $mmmmm is the actual message number
as defined in the message definition module, preceded with '$'. If register notation is used, the
designated register must have been previously loaded with the message number.
If MSG=0 is specified, then this indicates only message substitution is to be done (requires
SUB=YES and DEST=address|(reg)).

DEST specifies the destination of the message

LOCAL specifies to send the message to the system operator.

REMOTE specifies to send the message to the remote operator addressed via the DESTID
parameter.

RETURN specifies to return the address of the message in register 1.

address specifies the address of an area to hold the copy of the message. The area must be
large enough to accommodate the message text. If register notation is used, the des-
ignated register must have been previously loaded with the address of the area. If
SUB=YES then an area of 132 bytes is required.

REQ ADDR specifies to return the address of the message in register 1. Upon return, register 0 is
destroyed.

This macro is primarily used by VSE/POWER routines, which are not controlled by the
VSE/POWER dispatcher, such as VTAM exits or subtasks.

DESTID specifies the target remote id. The parameter is only applicable when DEST=REMOTE is speci-
fied. If register notation is used, the designated register must have been previously loaded with
the binary remote id number in its low order byte.

SUB=YES specifies that the message is to be fetched and message substitution is to be performed. It is
allowed to use Registers 14 and 15 to contain data for message substitution. This operand
requires DEST=address|(reg). An area of 132 bytes is required.

DOM=(R1) specifies that the message whose message ID is contained in register 1 is to be deleted from
the console screen via the DOM macro. The message ID was obtained earlier from the TCB
field TCMID after being issued by the IPW$GAM DEST=LOCAL or IPW$WTO macros.

RTDC=YES|NO Allowed only with the REQ=ADDR operand and requires a base register for the task
control block(TCB). It specifies that the TCB is to be initialized with the message routing and
descriptor codes as given in the IPW$GMM message description for passing on to the WTO
(WTOR) macro when the message is issued.

756 VSE Central Functions V7R1 VSE/POWER DRM

IPW$GAR - Get Account Record

The IPW$GAR macro is used to get the first/next record from the account file. The account file must have
been previously prepared for read operation by means of the IPW$OAF macro instruction.

Upon return, register 0 contains the length of the account record or is zero when an EOF record has been
encountered. Register 1 contains the address of the account record.

Registers 14 and 15 are used as linkage registers.

[name] IPW$GAR

IPW$GDR - Get Data Record

The IPW$GDR macro is used to get the first/next logical record from spool. Upon return, the record
control word contained in the TCB of the requesting task contains the address, length and associated flags
of the record.

Registers 14 and 15 are used as linkage registers.

[name] IPW$GDR

IPW$GLR - Get Logical Record

The IPW$GLR macro is used to get the next record over the logical interface from the counterpart routine.
Upon return, register 0 contains the address of the record and register 1 contains its length.

Register 14 is used as linkage register.

[name] IPW$GLR [RTN=LR|LO]

RTN LR or LO specifies that the logical routine acquires the next record from the physical routine.

If the parameter is omitted, the macro assumes that a physical routine acquires the next record
from its corresponding logical routine.

IPW$GMS - Call General Message Service

The IPW$GMS macro is used to invoke the general message service function to perform one of the fol-
lowing:

� to route message and commands to the correct node and user,
� to perform message substitution,
� to remove two or more contiguous blanks from the message text.

Registers 14 and 15 are used as linkage registers.

 Appendix C. VSE/POWER Internal Macros 757

[name] IPW$GMS TYPE=SUB|SQUEEZE

 or

[name] IPW$GMS TYPE=DIST[,NMR=(reg)][,INTREC=(reg)]

TYPE specifies the type of function to be performed.

SUB causes to perform message modification. All message modification characters, con-
tained in the message addressed by register 1 are replaced by the appropriate vari-
ables defined by the modification character. No other parameter is applicable.

Following registers must have been set up before execution of the macro instruction.

R0 message length - 1.
R1 address of message.
R4 address of local/remote message control block.
R5 TCB address to be used for message modification.

SQUEEZE causes to compress the passed message text whenever two or more contiguous
blanks are found. No other parameter is required.

Following registers must have been set up before execution of the macro instruction.

R0 message length.
R1 address of message.

Upon return, register 0 contains the new (reduced) message length.

DIST causes to route the message or command to the designated node/user. Depending
on the addressee, the message is sent to:

� Local system operator
� Any remote terminal operator
� Any VSE/ICCF user
� Any other SAS, assumed that a 'notify' communication path exists to that user.
� remote system (node)

NMR specifies the address of the nodal message record to be distributed. Register 1 is used to
pass the address NMR record to the message service routine.

INTREC specifies that the message is in an internal format. Register 1 is used to pass the address of
the internal message record to the message service routine.

IPW$GQR - Get Queue Record

The IPW$GQR macro is used to obtain the queue record, addressed by the I/O request word, from the
storage copy of the queue file. Register 1 must point to the I/O request word.

Registers 0 - 3 are destroyed by the execution of the macro instruction.

[name] IPW$GQR {address|(reg)}

address specifies the address of the I/O request word containing the relative queue record number
and the address of the storage area to accommodate the queue record in question.

758 VSE Central Functions V7R1 VSE/POWER DRM

(reg) specifies that the address of the I/O request word is contained in the designated register.

Note: Length in "I/O request word" need not be set, Q-F-server always operates at length of Q-record.

IPW$GQS - Get Next Queue Entry

The IPW$GQS macro is used to obtain the next eligible queue entry from the specified class chains, con-
tained in the task class list of the TCB, and to place the queue record of the queue entry in the queue
record work area, pointed to by the TCB.

Upon return, the address of the queue record work area (TCQV) is zero if no queue entry is eligible.
Furthermore, one of the following return codes is set in the function return code field of the TCB:

� No queue entry found
� Queue entry protected (password mismatch)
� Queue entry marked active
� Queue entry not in dispatchable state

Registers 14 and 15 are used as linkage registers.

[name] IPW$GQS [LOCK=YES|NO]

LOCK If "YES" is specified (the default value) then the DMB is released after processing the
requested function. Otherwise it is assumed that the caller already owns the DMB and it should
not be released.

IPW$GSL - GET SLI Record

The IPW$GSL macro is used to establish a linkage to the SLI processing routine (IPW$$SL) in order to
perform one of the following functions:

� Locate specified member in the source statement library
� Get next member record
� Disconnect member / terminate SLI processing.

Registers 14 and 15 are used as linkage registers; register 0 is destroyed by execution of the macro
instruction.

[name] IPW$GSL {FIND|GETR|PURGE}

FIND specifies to locate the member, specified in the parameter list, addressed by register 1.

GETR specifies to get the next record from the SLI member. Upon return, register 0 addresses the
record and register 1 contains its length.

PURGE causes to terminate processing of the current SLI member or to terminate the entire SLI proc-
essing for the partition concerned when the termination code 'S' is set in the TCB.

 Appendix C. VSE/POWER Internal Macros 759

IPW$GTE - Get Trace Entry

The IPW$GTE macro is used to allocate a trace area entry of the specified length in the active trace area.
Upon return, register 1 contains the address of the trace area entry and register 0 contains its length.

Registers 2 and 3 are destroyed by execution of the macro instruction.

Note: The macro instruction can only be issued when either RJE or PNET is generated.

[name] IPW$GTE LENGTH=nnn|(reg)

LENGTH nnn specifies the length in bytes of the trace area entry to be allocated. If register notation is
used, the designated register must have been previously loaded with the length.

IPW$GTO - Issue TD-Subtask Message

This access macro is for the message support of the TD-subtask.

It allows the caller to specify the message equate "msgid" of a message defined by the IPW$GMM macro
in the IPW$$MM module. The message will be issued in the same way as for the maintask message
support (IPW$GAM), using the WTO macro and providing message substitution and message squeezing
via the IPW$$MX module. The message is issued to the console, and if the PSTART CNSLTR command
has been issued specifying that internal tracing is to be performed with tracing message output being
directed to SYSLST, then the message will be additionally issued to SYSLST.

[name] IPW$GTO MSG=msgid

[name] IPW$GTO MSG=TRACE

[name] IPW$GTO DOM=(R1)

MSG specifies the message identifier including its suffix; $mmmmm is the actual message number
as defined in the message definition module, preceded with '$'. The WTO message id is
returned to the caller in register 1 for later use in issuing the DOM macro with the IPW$GTO
DOM=(R1) interface macro.

If MSG=TRACE is specified, this allows the caller to issue a PNET Driver Subtask trace
message (1RTTI). The caller specifies in register 2 the length and in register 0 the address of a
message containing the message number. The message is issued as is, without modification,
either to the console or to SYSLST depending on the command PSTART CNSLTR.

DOM This access macro allows the caller to delete a console message issued previously by the
IPW$GTO MSG= macro. The caller loads register 1 with the WTO message id returned by
IPW$GTO MSG=.

IPW$GTS - Issue SD-Subtask Message

This access macro is for the message support of the SD-subtask.

It allows the caller to specify the message equate "msgid" of a message defined by the IPW$GMM macro
in the IPW$$MM module. The message will be issued in the same way as for the maintask message
support (IPW$GAM), using the WTO macro and providing message substitution and message squeezing

760 VSE Central Functions V7R1 VSE/POWER DRM

via the IPW$$MX module. The message is issued to the console, and if the PSTART CNSLTR command
has been issued specifying that internal tracing is to be performed with tracing message output being
directed to SYSLST, then the message will be additionally issued to SYSLST.

[name] IPW$GTS MSG=msgid

[name] IPW$GTS MSG=TRACE

[name] IPW$GTS DOM=(R1)

MSG specifies the message identifier including its suffix; $mmmmm is the actual message number
as defined in the message definition module, preceded with '$'. The WTO message id is
returned to the caller in register 1 for later use in issuing the DOM macro with the IPW$GTS
DOM=(R1) interface macro.

If MSG=TRACE is specified, this allows the caller to issue a PNET Driver Subtask trace
message (1RTTI). The caller specifies in register 2 the length and in register 0 the address of a
message containing the message number. The message is issued as is, without modification,
either to the console or to SYSLST depending on the command PSTART CNSLTR.

DOM This access macro allows the caller to delete a console message issued previously by the
IPW$GTS MSG= macro. The caller loads register 1 with the WTO message id returned by
IPW$GTS MSG=.

IPW$IAS - Invoke Asynchronous Service

The IPW$IAS macro is used to attach, detach or request service from a VSE/POWER subtask. The
following subtasks exist:

� Asynchronous service subtask
 � Dump subtask
 � Librarian subtask

Registers 14 and 15 are used as linkage registers; register 0 is destroyed by execution of the macro
instruction.

[name] IPW$IAS TYPE=ATTACH|DETACH|SERVICE[,TASK=DUMP|LIBR]

TYPE specifies the type of request to be performed.

ATTACH causes to attach the subtask described by the TASK parameter.

DETACH causes to detach the subtask described by the TASK parameter.

SERVICE causes to pass a 'service' request to the associated subtask. Register 1 must point
to a service request block (SRB), describing the requested service.

TASK specifies the name of the subtask. If the parameter is omitted, the asynchronous service
subtask is assumed.

DUMP specifies that the request is for the dump subtask.

LIBR specifies that the request is for the librarian subtask.

 Appendix C. VSE/POWER Internal Macros 761

IPW$ICP - Invoke VSE/POWER Command Processor

The IPW$ICP macro is used to pass a command to the VSE/POWER command processor. A temporary
command processor task is built and attached.

Register 0 must either address an ECB, which is posted when the command is processed, or be zero.

Registers 14 and 15 are used as linkage registers.

[name] IPW$ICP [NMR=YES|NO] [,REQ=POWER]
 [,PASS=PCE|VDCLT|NOLOCK|DCK|QEN|INIT][,WAIT=NO]

NMR specifies whether the command, addressed by register 1, is in nodal message record (NMR)
format or not.

YES specifies that the command is in NMR format. The length of the command is contained
in the NMR header.

NO specifies that register 1 points to a 72-bytes area containing the 'free format' command.
The command must be passed in uppercase characters. NO is the default if the param-
eter is omitted.

REQ=POWER specifies that for the passed command no authority check will be done.

PASS specifies that the contents of register 2 should be passed to the temporary command processor
task within TCB field 'CPPA', and that its logical meaning is expressed by an indication within
TCB flag 'CPFG' or 'CPFG2'.
For certain values the operand merely passes an informational flag with register 2 not
respected.

PCE specifies that the passed field should be interpreted (see 'CPFG') as the Partition
Control Block Extension (PCE) address of a dynamic partition to be PSTART'ed.

VDCLT specifies that the passed field should be interpreted (see 'CPFG') as a pointer to the
$RSV dynamic class table area, which amongst others contains the verified dynamic
class table.

NOLOCK specifies that the invoked command processor task should not lock/unlock the DPCB
(see 'CPFG'); contents of register 2 is not passed.

DCK specifies that the invoked command processor task should just delete the checkpoint
information for the passed queue entry (see 'CPFG').

QEN specifies that the passed field should be interpreted (see 'CPFG2') as the internal
queue record number of the queue entry to be addressed by the command.

INIT specifies that the invoked command processor task should allow a node name change.

The macro IPW$ICP propagates the PASS= indication to the new TCFRB2 field in the TCB.

WAIT=NO This option sets the TCF8 flag TCF8NW. It specifies not to set the task into wait state, when no
real/PFIXED storage is currently available to create a temp. cmd. processor TCB. Instead
control will return to the caller with TCF8NW still set. The caller should test TCF8NW, clear it
on its own, and take corrective action.
When real/pfixed storage is available to create a temp. cmd. TCB, TCF8NW is reset by
IPW$$IC before return to the caller.
NOTE: The default WAIT= option is 'YES', and TCF8NW is unconditionally reset to zero. The
option means, the calling task should be put into wait state, if no storage is available.

762 VSE Central Functions V7R1 VSE/POWER DRM

NOTE: When $ICP is called both with WAIT=NO and R0¬=0, to wait for the final completion of
the invoked command, then TCF8NW setting is propagated into the temp.cmd.proc. TCB,
which in turn may then avoid $RSW/$RSV storage waits but signal shortage to the caller in the
R0-ECB post byte by

� X'02' (use EQU NOREAL), in case $RSW failed

� X'01' (use EQU NOVIRT), in case $RSV failed.

The X'80' posted caller should check and clear the same byte for additional '02'/'01' settings
and take action.

IPW$ICS - Invoke Common Services

The IPW$ICS macro is used to add, delete or obtain a message or command, in NMR format, from the
message/command queue anchored in the NCB.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$ICS REQ=ADD|GET|DEL[,NMR=(reg)][,TCB=(reg)]

REQ specifies the request to be performed.

ADD causes a message or command in NMR format addressed by the register specified in
the NMR parameter or contained in register 1, if the NMR parameter is omitted, to be
added as the last entry of the message/command queue.

DEL causes the storage occupied by the nodal message to be returned to the VSE/POWER
storage pool. If the NMR parameter is not coded, register 1 must contain the address of
the NMR to be deleted.

GET specifies to return the address of the first record in the message/command queue in
register 1. The message or command will be unchained from the queue. If there are no
entries in the queue then register 1 will contain zero. Register 1 must have been previ-
ously loaded with the address of the associated node control block (NCB).

NMR specifies the address of the nodal message or command to be added or deleted from the
appropriate queue.

TCB specifies the address of the TCB which should be used for message modification. If not speci-
fied then the own TCB will be used. If a register other than register 5 is used then the contents
will be loaded into register 5 and its contents will be destroyed on exit.

IPW$IDM - Invoke IDUMP of the VSE/POWER Partition

The IPW$IDM macro is used to call the IDUMP processor module IPW$$ID. For details refer to the
VSE/POWER "Administration and Operation" Guide, "Appendix B. VSE/POWER Diagnostics and Service
Aids".

 Appendix C. VSE/POWER Internal Macros 763

IPW$IDS - Invoke Data Management Service Routines

The IPW$IDS macro is used to establish a linkage to the data management service routines to perform
one of the following functions:

� Position spooling pointers at specified record (restart).
� Spool and update record/line and page counts.
� Set EOD flag in last spooled record.
� Replace data set header record on spool by new data set header record of same length.
� Replace job header record on spool by new job header record of same length.
� Adjust page-count-increment for CDPS record.

Registers 14 and 15 are used as linkage registers.

 [name] IPW$IDS REQ=RESTART|SETEOD|SPOOL|REPLDSHR|REPLJHR|COUNTPG[,LOCK=YES|NO]

REQ specifies the request to be performed.

COUNTPG causes the IPW$$DS routine to be called to adjust the caller's passed page count
increment depending on the current page-count-state and the current record to be
processed.

RESTART causes to restart the spooling process and resetting the spooling pointers to the
specified record. Register 1 must contain the record number + 1 from where to
restart.

SPOOL causes to check the carriage control character associated with the data record (TCCC)
and optionally to spool the record.

SETEOD causes to set the EOD indicator to the last written data record for the queue entry
addressed by the TCB.

REPLDSHR causes to replace the data set header record on spool by the data set header
record, addressed by the record control word of the calling task.

REPLJHR causes to replace the job header record on spool by the job header record
addressed by the record control word of the calling task.

COUNTPG causes the pre-evaluated TCG4.TCIPC 'page increment indication' to be adjusted
for CPDS records according to the current page count state and the current CPDS
record type.

LOCK YES specifies that the called routine performs a DMB release operation after processing the
requested function; this is the default.

NO specifies that the calling routine already owns the DMB and that the DMB should not be
released. Only applicable for REQ=RESTART.

IPW$IIS - Invoke Print Status Processing Service

The IPW$IIS macro calls the print status service module IPW$$PS1 to perform the eligibility checking of a
queue record according to the criteria in a print status work area passed by the caller.

Register 1 points to the queue record to be checked.

Register 2 points to the print status work area (header) containing the checking criteria.

Registers 14 and 15 are used as linkage registers.

764 VSE Central Functions V7R1 VSE/POWER DRM

 [name] IPW$IIS [REQ=DIREL]

REQ specifies (setting TCFRB2) non standard requests to be performed.

DIREL causes to address the 'direct' instead of 'normal' eligibility checking routine of
IPW$$PS1 to be entered, and expects register 4 to point to the XT-workarea of the
calling SAS task.

IPW$IOM - Invoke I/O Monitor or SNA Send/Receive Routine

The IPW$IOM macro is used to call the RJE BSC, PNET BSC or PNET SNA I/O manager.

Registers 14 and 15 are used as linkage registers.

[name] IPW$IOM [TYPE=SEND|SENDX|RECEIVE|RECEIVEX][,NCB=(reg)]

NCB specifies the address of the node control block (NCB) to be used for the I/O operation. The
parameter is only applicable for the PNET BSC or SNA I/O manager.

TYPE specifies the type of PNET,SNA I/O operation to be performed.

SEND causes to perform de-queueing of the 'head' SNA output buffer from the 'to-be-sent'
queue and to send the buffer by means of the SEND macro instruction.

RECEIVE causes to de-queue the first buffer from the free input queue and to issue a VTAM
RECEIVE macro.

SENDX causes to free the RPL by means of the CHECK macro. The macro is only appli-
cable for the SEND exit. The buffer is queued at the head of the 'channel end'
queue.

RECEIVEX causes to free the RPL by means of the CHECK macro. The macro is only appli-
cable for the RECEIVE exit. The input buffer is queued at the tail of the received
input buffer queue.

IPW$IOC - Invoke Compaction Processing

The IPW$IOC macro is used to load a new compaction table in the VSE/POWER GETVIS area, if the
compaction table is not yet present. The macro expands into a linkage to the compaction processing
routine IPW$$OC.

Registers 14 and 15 are used as linkage registers.

[name] IPW$IOC

IPW$IPS - Invoke PNET Driver Routines

The IPW$IPS macro provides an interface between the PNET driver modules (IPW$$LDn). The IPW$IPS
macro also provides an interface between the PNET receiver modules (IPW$$NRn).

Registers 14 and 15 are used as linkage registers.

 Appendix C. VSE/POWER Internal Macros 765

[name] IPW$IPS [MOD=LD1|LD2|LD3|LD4|NR2]
 [,FCT=RIFRCB|TRNRCB|RCVRCB|LOGERR|CNLTSK|
 CRETSK|UPDNAT|SETTIM]

MOD specifies a short name of the module to be called.

FCT specifies the function to be provided by a subroutine which is located in IPW$$LD5.

RIFRCB causes to validate the SRCB of a buffer containing an RIF.

TRNRCB causes to validate the SRCB of a buffer containing an MLI-control record for a trans-
mitter.

RCVRCB causes to validate the SRCB of a buffer containing an MLI-control record for a
receiver.

LOGERR causes to write an error-record onto the SYSREC file using the SVC 44.

CNLTSK causes to propagate a stop-code for transmitters and/or receivers.

CRETSK causes to create a VSE/POWER subtask to initiate or complete a SNA session.

UPDNAT causes to update the NAT, i.e. delete a node.

SETTIM causes to set up a variable timer interval of n/10th seconds, as passed in field
PASTIME.

Notes:

1. Register R6 must point to the NCB. The fields PNCBALDn and PNCBDS are referenced.

2. If FCT specified, the field NCBFCT5 is changed and the field NCBDS is referenced. Depending on
the function, any parameters up to the length of 12 bytes may be passed in NCBPAR5 to IPW$$LD5
or returned by IPW$$LD5.

IPW$IQS - Invoke Queue Management Service Routines

The IPW$IQS macro is used to establish a linkage to the queue management service routines (IPW$$SQ
and IPW$$Q1).

Registers 14 and 15 are used as linkage registers.

[name] IPW$IQS REQ=ALLOCGP|FREEGPS[,LOCK=YES|NO]

 or

[name] IPW$IQS REQ=FORMAT|CLTAB

 or

[name] IPW$IQS REQ=BUILDSLOT|DELSLOT|POSTSLOT|PROCSLOT|CLEARSLOT|READSLOT|FREEQCA
 [,TYPE=NMR|WFW|CKP]
 [,SYSID=sysid]

REQ defines the type of request to be performed by the queue service routines or the slot manager,
which is part of the queue service routines.

766 VSE Central Functions V7R1 VSE/POWER DRM

CLTAB causes to build the class table pointers in the class list, contained in the task control
block (TCB) of the task concerned. Up to 4 classes can be specified. The classes
must be specified in the high-order byte of the 4-bytes class table pointer field. The
end of the class list is indicated by X'FF'. Register 1 must contain the address of
the TCB for which the class table pointers should be built. Register 0 must contain
in its low order byte, the queue type, either 'L' for LST queue, 'P' for PUN queue or
'R' for RDR queue.

BUILDSLOT causes to construct either a waiting for work slot, if TYPE=WFW is specified or a
message/command slot, if TYPE=NMR is specified or a checkpoint slot, if
TYPE=CKP is specified and to place the slot in the shared queue control area.
Register 1 contains the address of the external device control block (EDCB), if
WFW slot to build or the address of the nodal message record, if a NMR slot to
build, or the address of the checkpoint control record, if a CKP slot to build. The
macro expansion sets up register 0 with the slot type identifier.

DELSLOT causes to delete a waiting for work slot, named by the external device name or a
checkpoint slot, identified by the queue record from the shared queue control area.
Register 1 addresses the external device control block concerned.

POSTSLOT Causes to scan the shared queue control area in order to post all waiting for work
slots which can process the queue entry just added in the class chain. Register 1
addresses the queue record of the queue entry added.

PROCSLOT causes to scan the shared queue control area in order to process all
message/command slots destined for the local system and all posted waiting for
work slots owned by the local system.

CLEARSLOT causes to remove all slots in the shared queue control area which are either
destined to or owned by the system(s) to be recovered.

READSLOT causes to retrieve a checkpoint slot from the queue control area. The checkpoint
slot is selected according the jobname, jobnumber, jobsuffix, and queue id specified
in the queue record addressed by TCBQV, and the record number specified in
TCBQW.

FREEQCA causes to free the entire QCA after an I/O error.

ALLOCGP causes to unchain the first DBLK group from one of the free DBLK group subchains
and to return the relative DBLK number of the first DBLK in that DBLK group in
register 1.

FREEGPS causes to return the DBLK group(s) on top of one of the free DBLK group sub-
chains. Register 1 must contain the relative DBLK number of the first DBLK in the
first DBLK group, register 2 must contain the relative DBLK number of the first
DBLK in the last DBLK group and register 3 must contain the number of DBLK
groups to be released.

FORMAT causes to format the queue file, if the file resides on CKD device. All device spe-
cific information are extracted from the queue file MCB and the DMB.

Upon return, register 15 contains 0 if the formatting was successful. Register 15
contains 4 if the queue file formatting failed.

LOCK YES specifies that the called routine performs a DMB release operation after proc-
essing the requested function; this is the default.

NO means that the calling task already owns the DMB and that the DMB should not
be released.

TYPE defines the type of slot to be built or deleted.

 Appendix C. VSE/POWER Internal Macros 767

NMR indicates message/command slot.

WFW indicates 'waiting for work' slot.

CKP indicates checkpoint slot.

SYSID specifies the name of a one-byte field containing the node qualifier (=System Id) of the local
target system, to which - for example -, the nodal message record is to be routed.

IPW$IRY - Invoke Queue File / Account File Recovery

The IPW$IRY macro is used to establish a linkage to the queue/account file recovery routines.

Registers 14 and 15 are used as linkage registers.

[name] IPW$IRY REQ=QUEUE|ACCOUNT[,PARM=address|(reg)]

REQ specifies the type of recovery action to be done.

QUEUE specifies that queue file recovery is performed. In a shared spooling environ-
ment register 0 must address a parameter list containing the 1-byte SYSIDs of
the systems to be recovered. The parameter list must be delimited by X'FF'.

ACCOUNT specifies that account file recovery is performed. The EOF record on the
account file is located and the remaining capacity is calculated and saved in the
account control block.

PARM specifies the parameter list containing the 1-byte SYSIDs of the systems to be recovered
(shared spooling only). Register 0 is used to point to the parameter list.

address specifies the address of the parameter list.

(reg) specifies that the address of the parameter list is contained in the designated
register.

IPW$ITP - TD-Subtask EZASMI Interface

This access macro is to support the TD-subtask for issuing EZASMI API socket call requests.

The caller specifies via the PARMS= operand the EZASMI socketcall desired. The return code is found in
the field TPWTPR1.

[name] IPW$ITP PARMS=(R1)

[name] IPW$ITP PARMS=(R1),CKRC=YES

PARMS Using the IPW$ITP macro, the subtask may invoke the EZASMI API for the following
socketcalls. The socketcall request is speicifed in register 1 with the socketcall value:

� 05 = ACCEPT
� 13 = BIND
� 09 = CANCEL
� 08 = CLOSE
� 14 = CONNECT
� 01 = INITAPI

768 VSE Central Functions V7R1 VSE/POWER DRM

� 03 = GETHOSTID
� 10 = GETHOSTBYADDR
� 11 = GETHOSTBYNAME
� 04 = LISTEN
� 07 = RECEIVE
� 06 = SEND
� 12 = SOCKET
� 02 = TERMAPI

The EZASMI interface is invoked in 31-bit mode. Internally the IPW$$TS module will invoke
the IPW$ITP CKRC=YES macro (see below) to check the EZASMI socketcall for any imme-
diate error return. If required, an IDUMP may be taken for the individual error situation and
connection.

CKRC This macro checks for errors returned by the EZASMI API. Besides setting the final return
code in the the field TPWTPR1, it also issues the IDUMP macro if needed for any given error
return code. The caller is notified of the final result with either of the return codes:

� 0 = OK (TPWTPR10)
� 4 = RETRY REQUEST (TPWTPR14)
� 8 = DISCONNECT LINE (TPWTPR18)
� 12 = SHUTDOWN TCPIP (TPWTPR1C)

IPW$ITS - SD-Subtask EZASMI Interface

This access macro is to support the SD-subtask for issuing EZASMI API TCP/IP SSL call requests.

The caller specifies via the PARMS= operand the EZASMI socketcall desired. The return code is found in
the field TPWTPR1.

[name] IPW$ITS PARMS=(R1)

[name] IPW$ITS PARMS=(R1),CKRC=YES

PARMS Using the IPW$ITS macro, the subtask may invoke the EZASMI API for the following socket
and SSL calls. The request is speicifed in register 1 for the call value:

� 05 = ACCEPT
� 13 = BIND
� 09 = CANCEL
� 08 = CLOSE
� 14 = CONNECT
� 03 = GETHOSTID
� 10 = GETHOSTBYADDR
� 11 = GETHOSTBYNAME
� 17 = GSKINIT
� 18 = GSKUNINIT
� 19 = GSKGETDNBYLAB
� 20 = GSKFREEMEM
� 21 = GSKSSOCINIT
� 22 = GSKSSOCREAD
� 23 = GSKSSOCWRITE
� 24 = GSKSSOCCLOSE
� 25 = GSKSSOCRESET

 Appendix C. VSE/POWER Internal Macros 769

� 26 = GSKGETCIPHINF
� 01 = INITAPI
� 27 = IOCTL
� 04 = LISTEN
� 07 = RECEIVE
� 15 = SELECT(Read)
� 16 = SELECT(Write)
� 06 = SEND
� 12 = SOCKET
� 02 = TERMAPI

The EZASMI interface is invoked in 31-bit mode. Internally the IPW$$SS module will invoke
the IPW$ITS CKRC=YES macro (see below) to check the EZASMI call for any immediate error
return. If required, an IDUMP may be taken for the individual error situation and connection.

CKRC This macro checks for errors returned by the EZASMI API. Besides setting the final return
code in the the field TPWTPR1, it also issues the IDUMP macro if needed for any given error
return code. The caller is notified of the final result with either of the return codes:

� 0 = OK (TPWTPR10)
� 4 = RETRY REQUEST (TPWTPR14)
� 8 = DISCONNECT LINE (TPWTPR18)
� 12 = SHUTDOWN TCPIP (TPWTPR1C)

IPW$ITQ - Invoke Maintain Wait for Run Subqueue

The IPW$ITQ macro is used to establish a linkage to the wait for run subqueue routines located in
IPW$$TQ.

Registers 2 and 1 are used as linkage registers.

[name] IPW$ITQ ADD|DEL|INIT

ADD specifies that IPW$$TQ calculates the due date for the queue entry and if necessary adds it
to the wait for run subqueue.

DEL specifies that IPW$$TQ deletes the queue entry from the wait for run subqueue.

INIT specifies that IPW$$TQ scans the wait for run subqueue for queue entries with expired due
dates. These queue entries are added to the really dispatchable chain.

IPW$IXS - Invoke Cross-Partition Services

The IPW$IXS macro provides an interface between the spool access interface routines (IPW$$XTn).

[name] IPW$IXS FCT=CTL|GET|PUT|SUB
 [,REQ=WEV|RCV|REP|XPE|SMD|JHR|DSH]

FCT specifies the function to be provided.

CTL causes to process the CTL request by invoking the IPW$$XTC module.

GET causes to process the GET request by invoking the IPW$$XTG module.

770 VSE Central Functions V7R1 VSE/POWER DRM

PUT causes to process the PUT request by invoking the IPW$$XTP module.

SUB causes to process a request which is specified in the REQ parameter by invoking the
IPW$$XTS module.

REQ specifies the request to be provided, if SUB has been specified for the FCT parameter.

WEV causes to wait till the next event has been posted, which may be either the posting of
the Receive-ECB for the XPCC-support or the posting of the own task ECB.

RCV causes to issue the XPCC macro with FUNC=RECEIVE and do a testing of the return
codes and prechecking of the user data (containing the action bytes, buffer values, etc.)
and some of the SPL-parameters.

REP causes to issue the XPCC macro with FUNC=REPLY and do a testing of the return
codes.

XPE causes to test the return codes after the XPCC macro has been issued with
FUNC=RECEIVE or REPLY.

SMD causes to send a message for a device service task (DST). The receiver of the
message is passed within the XTWAREA.

JHR causes to update the SPL (addressed by TCBXSPL) with the information out of the job
header record (addressed by TCBRV) and queue record (address in TCBQV).

DSH causes to update the SPL (addressed by TCBXSPL) with the information out of the
data set header record (addressed by TCBRV).

Notes:

1. The registers R14 and R15 are changed.

2. If FCT=SUB specified, register R1 and the field XTWSUB are changed and the field XTWSUBM1 is
referenced, i.e. in PLS code the field XTWSUB should be specified in the SETS option and
XTWSUBM1 in the REFS option in at least one GEN statement. The registers R1, R14 and R15 are
changed.

IPW$MQR - Modify Queue Record

The IPW$MQR macro is used to modify the queue record, addressed by the I/O request word, in the
storage copy of the queue file only. Register 1 must point to the I/O request word.

Registers 0 - 3 are destroyed by the execution of the macro instruction.

[name] IPW$MQR {address|(reg)}

address specifies the address of the I/O request word containing the relative queue record number
and the address of the storage area which holds the new version of the queue record.

(reg) specifies that the address of the I/O request word is contained in the designated register.

Note: Length in "I/O request word" need not be set, Q-F-server always operates at length of Q-record.

 Appendix C. VSE/POWER Internal Macros 771

IPW$NTY - Notify User

The IPW$NTY macro is used to send a message, which is not in the NMR message format, to either a
remote operator attached to the own node, to a user on another node, to the central operator, or to an
ICCF user.

The macro can also be used to add a message, already in NMR format or internal message record format,
to the tail of the appropriate Notify message queue, or to add a message to a message queue for later
retrieval by an application program via VSE/POWER's Spool-access support.

Registers 0 - 3 are destroyed by execution of the macro. If QCM=YES is specified, register 4 is destroyed
too.

[name] IPW$NTY MSG=$nnnnn|(reg)[,USER=(reg)]
 [,QUAL=qualifier]
 [,QCM=YES]
 {[,NODE=(reg)]|[,APPL=(reg)]}

 or

[name] IPW$NTY {NMR=(reg)|INTREC=(reg)}

NMR specifies the address of the nodal message record which must be queued in the appropriate
Notify queue. If a register other than register 1 is specified then the NMR address will be
loaded into register 1.

INTREC specifies the address of an internal message record (VSE/POWER message order control
record) to be queued at the tail of the appropriate subsystem 'notify' queue.

MSG $nnnnn is the actual message number as obtained from the message definition module pre-
fixed with $. If register notation is used, the designated register must have been previously
loaded with the message number.

NODE specifies the address of an eight byte field containing the target node name. If not specified the
local node is assumed to be the required destination.

QUAL specifies the name of a one-byte field containing the node qualifier.

QCM specifies that any generated job completion message is added to a fixed format message
queue for later retrieval by an application program. Register 0..4 are destroyed after execution.
Specification of USER, QUAL and NODE is required. This operand is only sensible for an exe-
cution reader, network receiver or timer task processing the macro.

USER specifies the address of an eight byte field containing the target userid, either a remote id in the
form 'Rnnn' or an ICCF, TSO, or CMS userid. If not specified, the message is routed to the
local console of the specified node.

APPL specifies the address of an eight byte field containing the subsystem name. The parameter is
mutually exclusive with the NODE parameter.

IPW$OAF - Open Account File for Read Mode

The IPW$OAF macro is used to open the account file for read operation. The current write CCW-chain is
modified into a read CCW-chain.

Registers 14 and 15 are used as linkage registers.

772 VSE Central Functions V7R1 VSE/POWER DRM

[name] IPW$OAF

IPW$OEF - Open 3540 Diskette File

The IPW$OEF macro is used to open a 3540 diskette file. The task must be equipped with a 3540 phys-
ical work space pointed to by the TCB of the calling task. The 3540 physical work space contains device
specific information, such as device address, and the name of the file to be opened. Upon return, the
physical work space contains extent information and the record length.

Registers 14 and 15 are used as linkage registers.

[name] IPW$OEF

IPW$OLI - Open Logical Interface

The IPW$OLI macro is used to open the interface to the logical reader (IPW$$LR), logical writer
(IPW$$LW), or the logical output spooler (IPW$$LO). The macro expansion obtains a new register save
area and saves the entry point address of the logical routine in the new save area.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$OLI [lrtn|(reg)]

lrtn specifies the name of the logical routine to be opened. If register notation is used, the address
of the logical routine must have been loaded in the designated register before execution of this
macro instruction; registers 0 - 3 cannot be used.

LR logical reader (IPW$$LR)
LW logical writer (IPW$$LW)
LO logical output spooler (IPW$$LO)

IPW$OPI - Invoke Output Parameter Processing Routine

The macro IPW$OPI is used to invoke "user defined" output parameter processing routine.

Registers 14 and 15 are used as linkage registers. Register 1 contains the address of the passed param-
eter list.

 [name] IPW$OPI FUNC=OPDEBLD|OPANAL|OPPUT|OPGET|OPMOD,
 PARM=(reg)

FUNC specifies the function to be performed:

OPDEBLD parses the DEFINE statement pointed to by the parameter list, builds an Output
Parameter Definition Entry (OPDE), if the DEFINE statement is valid and adds the
built OPDE to the OPDE-chain.

 Appendix C. VSE/POWER Internal Macros 773

OPANAL analyzes the user defined output parameter pointed to by the parameter list and
builds an Output Parameter Text Block (OPTB), if the parameter corresponds to the
definition in the appropriate OPDE and appends the OPTB to the output processing
section of the data set header.

OPPUT analyses the output parameter text blocks in the code point area pointed to by the
parameter list and appends the OPTB(s) to the output processing section of the
data set header, if the (all) OPTB(s) is (are) valid.

OPGET Retrieves one specific OPTB or all OPTBs from the output processing section of the
data set header.

OPMOD Modifies one specific OPTB in the output processing section of the data set header
by replacing it with a new one, which must be equal in length to the old one.

PARM specifies the register, which contains the pointer to the required parameter list. The layout of
the parameter list depends on the function to be performed.

IPW$OTP - Open Tape Processing

The IPW$OTP macro is used to create a tape control block (TBB) used for subsequent tape processing,
open, or close tape processing. The macro expands into a linkage to the 'open tape' routine (IPW$$OT).

Registers 14 and 15 are used as linkage registers.

[name] IPW$OTP {BC|DB|OT|CT|FEOVC|FEOVN|FEOVS|MLAST|MVOL1},{RD|WR}

For the 1st positional operand:

BC specifies to build a tape control block and anchor the TBB to the TCB of the requesting task.

DB specifies to delete the tape control block

FEOVC specifies to perform a BAM volume change for a continued queue record

FEOVN specifies to perform a BAM volume change for a non-continued queue record

FEOVS specifies to perform a BAM volume change for a SYSIN tape

MLAST specifies to require the mounting of the last BAM tape volume for a given spool entry

MVOL1 specifies to require the mounting of the first BAM tape volume for a given spool entry

OT specifies to open the tape either in write or read mode.

CT specifies to close the tape.

For the 2nd positional operand:

WR specifies that the tape is being used in 'write' mode.

RD specifies that the tape is being used in 'read' mode.

IPW$PAR - Write Account Record

The IPW$PAR macro is used either to build and write an account record or just to write the account
record to the account file.

Registers 14 and 15 are used as linkage registers; registers 0 and 1 are used as interface registers.

774 VSE Central Functions V7R1 VSE/POWER DRM

[name] IPW$PAR [REC=RDR|OUT|SPOOL]

REC specifies the type of account record to be built and written. If the parameter is omitted, the
macro expands into a linkage to the 'write account record' routine (IPW$$PA/IPW$$PF). In this
case, registers 0 and 1 must contain the length or address of the account record, respectively.

RDR specifies to build a reader account record bases on the information supplied by the
calling task (queue record). If the calling task is a SAS task, a spool account record is
built instead.

OUT specifies to build either a list or punch account record, depending on the information
supplied by the calling task. A spool account record is built instead of a list/punch
account record when the calling task is a SAS task.

SPOOL specifies to build a spool account record.

IPW$PDR - Put Data Record

The IPW$PDR macro is used to pass a logical record, described by the record control word in the TCB of
the requesting task (TCRW), to data management for subsequent spooling. The record is buffered in a
DBLK.

Registers 14 and 15 are used as linkage registers.

[name] IPW$PDR

IPW$PLR - Put Logical Record

The IPW$PLR macro is used to pass a record over the logical interface to the counterpart routine. Reg-
ister 0 must contain the address of the record and register 1 must contain its length.

Register 14 is used as linkage register.

[name] IPW$PLR [RTN=LW]

RTN LW specifies that the logical writer routine passes a record to the physical routine.

If the parameter is omitted, the macro assumes that a physical routine passes a record to its
corresponding logical routine.

IPW$RDC - Get Time of Day (Read Clock)

The IPW$RDC macro obtains the time of day and updates the date field in the disk management block
(DMB) with the current date. The time is returned in register 1 as a packed decimal quantity of the form
0HHMMSSC, where C is a 4-bit sign character that allows the time to be unpacked and printed.

Note: The time returned is the time of day based on a 24-hour clock.

Registers 0, 2 and 3 are destroyed by execution of the macro.

 Appendix C. VSE/POWER Internal Macros 775

[name] IPW$RDC

IPW$RDD - Read Data Block from Disk

The IPW$RDD macro is used to read the data block, addressed by the I/O request word, from the
VSE/POWER data file. The I/O request word consists of a 12-bytes parameter list, containing the relative
DBLK number of the DBLK to be read in and the address where to read the record in storage.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$RDD {address|(R1)}[,IO=YES|NO][,WAIT=FORCE]

address specifies the address of the I/O request word used for the read operation.

(R1) specifies that the address of the I/O request word (12 bytes), used for the read operation, is
contained in register 1.

IO specifies whether or not to perform the read operation.

YES specifies to perform the read operation; this is the default, if the parameter is omitted.

NO specifies not to perform the read operation. The parameter is used to ensure that the
previous read for the DBLK addressed in the I/O request word has been completed (only
applicable when using double data file buffering).

WAIT FORCE specifies that the disk service routine must wait for the I/O completion regardless of
any 'double buffering' flag set.

Note: The I/O request word provided length field will be used, if specified - both for reading a DBLK or a
SER record only; if specified = 0, then disk service operates with the constant "DBLK length".

IPW$RDQ - Read Queue Record from Disk

The IPW$RDQ macro is used to read the queue record block or master record, addressed by the I/O
request word, from the VSE/POWER queue file.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$RDQ {address|(R1)}[,LOCK=YES|NO]

address specifies the address of the I/O request word used for the read operation.

(R1) specifies that the address of the I/O request word (12 bytes), used for the read operation, is
contained in register 1.

LOCK YES specifies that the disk service routine, contained in the VSE/POWER nucleus performs a
MCB release operation after processing the requested function; this is the default.

NO means that the calling task already owns the MCB and that the MCB will not be released at
completion of the I/O.

Note: The I/O request word provided length field will be used, if the Q-record-block number is the block
number of the master record; if not, then disk service will operate with the constant "queue record block
length".

776 VSE Central Functions V7R1 VSE/POWER DRM

IPW$RDT - Read Tape Record

The IPW$RDT macro is used to read a record from tape, described by the tape control block (TBB), which
is pointed to by the TCB of the requesting task.

Registers 0 - 2 are destroyed by execution of the macro instruction.

[name] IPW$RDT {TCQW|TCDW|(R1)}

TCQW specifies to read the queue record from tape. The queue record is read in the area, addressed
by field TCQW.

TCDW specifies to read a data block (DBLK) from tape. The data block is read in the area, addressed
by field TCDW.

(R1) specifies to read a record from tape into the area addressed by register 1. The length of the
record must have been stored in the TBB before execution of the macro instruction.

IPW$RET - Return to Caller

The IPW$RET macro is used to restore the registers 14, 15, and 0 through 12 from the current save area,
addressed by register 13, and to return to the calling routine by branching to the location addressed by
register 14.

[name] IPW$RET [RETCODE=nn]

RETCODE nn specifies a numeric return code to be returned in register 15. If the operand is not speci-
fied, no return code is set.

IPW$RLR - Release Resource

The IPW$RLR macro is used to unlock a VSE/POWER resource (control block).

Register 2 is destroyed by execution of the macro instruction and register 3 contains the address of the
control block concerned.

[name] IPW$RLR symbol|(reg)

symbol specifies the name of the control block to be released. This is the name of the field containing
the address of the control block, as defined in the CAT, with the first two characters stripped
off. If register notation is used, the designated register have been previously loaded with the
address of the control block concerned.

 Appendix C. VSE/POWER Internal Macros 777

IPW$RLV - Release GETVIS Storage

The IPW$RLV macro is used to release GETVIS storage previously acquired with the IPW$RSV macro
instruction. The storage is returned to the appropriate pool and is available for other tasks. All tasks
waiting for storage are again posted in an attempt to satisfy the requirements.

Registers 0 - 3 are destroyed by execution of the macro instruction.

[name] IPW$RLV {ALL|ADDR=(reg)}
 [,OWNER=(reg)][,ANCHOR=(reg)]
 [,LENGTH=nnnnn|(reg)][,PREFIX=YES|NO]

ADDR specifies the address of the GETVIS storage area to be released. The length of the storage
area is found from the storage prefix. The parameter is not required when 'ALL' is specified.
Register 0 can be used as parameter register.

ALL specifies to release all storage areas belonging to the task or to a particular storage chain.

OWNER specifies the address of the TCB of the task that is to be used as owner for this storage. If not
specified the issuing task will be considered as owner. The 'head' pointer will be taken from the
owners TCB. Must NOT be specified if ANCHOR is specified.

ANCHOR specifies the address of a double word containing the head and tail pointer of the storage
chain. The parameter is mutually exclusive with the OWNER parameter.

PREFIX specifies whether or not the storage area to be returned is preceded by a VSE/POWER system
prefix.

YES specifies that a prefix, containing the length of the storage precedes the storage area.
This is the default when the parameter is omitted.

NO specifies that no prefix precedes the storage area. If 'NO' is specified, also the LENGTH
parameter must be coded.

LENGTH specifies the length in bytes of the storage area to be returned to the GETVIS pool. The
parameter is only applicable together with the PREFIX=NO specification. Register 1 cannot be
used as parameter register.

IPW$RLW - Release Fixed (Real) Storage

The IPW$RLW macro is used to release a storage area, which was previously obtained by means of the
IPW$RSW macro instruction, and return the storage to the VSE/POWER real storage pool.

All VSE/POWER tasks waiting for real storage are again be posted in an attempt to satisfy the require-
ments.

[name] IPW$RLW (R1)

The address of the storage to be freed must have been previously loaded in register 1. Upon return regis-
ters 0 and 1 contain hex. zero; registers 2 and 3 are destroyed.

778 VSE Central Functions V7R1 VSE/POWER DRM

IPW$RMS - Remote Message Service

The IPW$RMS macro is used to queue a message to the ALLUSERS queue or to the message queue
associated with the remote id, to obtain the first/next message from the specified queue, or to delete a
particular message from the remote message queue or ALLUSERS queue.

Registers 0 - 3 are destroyed by execution of the macro instruction.

[name] IPW$RMS {ADDNRM|GETBSC|DELBSC|DISALL|ADDALL|DELALL|
 GETSNA|DELSNA|DELTMP}
 [,msg-addr][,R5][,NMR=YES]

ADDNRM specifies to add the message pointed to by field 'TCMW' at the tail of the remote message
queue of the remote id, specified in the low order byte of register 0. The message can be
either in nodal message record format or in normal VSE/POWER format. In the last case, the
first byte must contain the length of the message text.

GETSNA specifies to return the address of the 'head' message queued for the remote id, which is speci-
fied in the LUCB pointed to by register 8. Upon return, register 1 addresses the message or
contains zero if no message is queued.

DELTMP specifies to remove the 'head' message from the message queue of the remote id, which is
specified in the LUCB pointed to by register 8. The message is then added at the tail of the
temporary 'delete' queue.

DELSNA specifies to delete all messages which are currently in the temporary delete queue of the
remote id described by the LUCB pointed to by register 8.

ADDDEL specifies to add all messages currently in the temporary delete message queue of the remote
id, addressed by the LUCB pointed to by register 8. The messages are added at the top of the
remote message queue. Upon return, register 1 contains zero in case of an empty temporary
delete queue. All message slots are freed.

DELBSC specifies to de-queue the message addressed by register 1 from the remote message queue of
the remote id, contained in the LCB, addressed by register 9. The message slot is freed.

GETBSC specifies to return the address of the 'head' message from the message queue of the remote
id, contained in the LCB, pointed to by
register 9. Upon return, register 1 addresses the message or if no message is queued, register
1 is zero.

ADDALL specifies to add the message addressed by field 'TCMW' to the ALLUSERS message queue.
The message can be either in nodal message record format or in normal VSE/POWER format.
In the last case, the first byte must contain the length of the message text. The maximum
message length is 59 bytes. Register 0 must contain the originating remote id in its high-order
byte.

Upon return, register 1 contains zero if the ALLUSERS message queue is full.

DELALL specifies to delete either a specific or all ALLUSERS messages. Register must contain the
binary remote id number in its low order byte and register 1 must contain the message number
supposed to be deleted. If register 1 is zero, all messages are deleted.

If an attempt is made to delete a message but the requestor (remote id) is not entitled to do so,
register 1 is set to zero, upon return.

 Appendix C. VSE/POWER Internal Macros 779

DISALL specifies to return the address of first/next message in the ALLUSERS message queue. Reg-
ister 1 must be zero for the first macro call. Upon return, register 1 contains the address of the
first/next message. When all messages have been returned or the ALLUSERS message queue
is empty, register 1 is set to zero.

msgaddr specifies the address of the message to be queued. The first byte of the message must contain
the length of the message text (VSE/POWER format).

R5 specifies that register 5 contains the address of the TCB to be used for message modification.
If omitted, the TCB of the requesting task is used for message modification.

NMR specifies whether the message to be written is in nodal message record (NMR) format or not.

YES specifies that the message is in NMR format.

NO specifies that the message is not in NMR format. This is the default if the parameter is
omitted.

IPW$RQS - Reserve Queue Record

The IPW$RQS macro is used to allocate a queue record from the free queue record chain and a DBLK
group from the free DBLK group chain.

Registers 14 and 15 are used as linkage registers.

[name] IPW$RQS

IPW$RSR - Reserve Resource

The IPW$RSR macro is used to get exclusive use of a VSE/POWER resource, (for example DMB, MCB)
and to lock the control block against concurrent use by other VSE/POWER tasks. If the macro call is
unsuccessful then the task waits on the resource.

Register 2 is destroyed by execution of the macro instruction and register 3 contains the address of the
control block concerned.

[name] IPW$RSR {symbol|(reg)}

symbol specifies the name of the control block to be reserved. This is the name of the field containing
the address of the control block, as defined in the CAT, with the first two characters stripped
off. If register notation is used, the designated register must have been previously loaded with
the address of the control block concerned.

IPW$RSV - Reserve GETVIS Storage

The IPW$RSV macro is used to obtain the specified amount of storage from the GETVIS pool and to
reserve this for use by the requesting task.

Registers 2 and 3 are destroyed by execution of the macro instruction.
Register 4 is destroyed when either ANCHOR or OWNER was specified.

780 VSE Central Functions V7R1 VSE/POWER DRM

Upon return, register 0 contains the return code as passed by GETVIS if WAIT=NO|COND was specified.
In all other cases it will be zero. Register 1 contains the address of the requested user area or zero if no
storage was available.

[name] IPW$RSV LENGTH=nnnnn|(reg)
 [,POOL=GEN|MSG|NET|SNA|WACB|COCB]
 [,WAIT=YES|NO|COND]
 [,BDY=PAGE|NO]
 [,OWNER=(reg)][,ANCHOR=(reg)]
 [,PREFIX=YES|NO]

LENGTH nnnnn specifies the length in bytes of the storage. If register notation is used, the designated
register must have been previously loaded with the length. 16 bytes will be added to the value
specified to allow for the buffer control area. The length can range from 1 to (16M-16) bytes
and is automatically rounded up to the next multiple of 128 bytes.

POOL specifies one of the VSE/POWER supported pool types. The types supported at the moment
are MSG, GEN, SNA, NET, WACB, and COCB. The default is GEN.

WAIT specifies whether the task wants to wait if there is insufficient storage to satisfy the request or
not.

YES is default and specifies that the task will wait until storage becomes available.

NO means that control will be returned to the task when no storage is available.

COND means that the task will wait until either storage becomes available or the task is forced
to stop (termination code 'S' set in TCB).

Note: Only when no storage was available (the task does a wait IPW$WFC on the
virtual storage control block) and the task is posted because storage has been freed by
some task, is there a check for the 'S' code condition, upon which the task returns to the
caller with register 1 = 0.

BDY PAGE specifies that the storage must be aligned on a page boundary. If not specified then the
storage will be obtained in the first free space available for that POOL.

OWNER specifies the address of the TCB of the task that is to be used as owner for this storage. If not
specified the issuing task will be considered as owner. Must NOT be specified if ANCHOR is
specified.

ANCHOR specifies that the storage area is to be chained as the last entry in the queue whose head
pointer is addressed by a doubleword pointed to by the designated register. Must NOT be
specified if OWNER is specified.

PREFIX specifies whether or not if the storage area to be obtained is preceded by a VSE/POWER
system prefix.

YES specifies to precede the storage area with a VSE/POWER system prefix, containing the
length. This is the default when the parameter is omitted.

NO specifies that no prefix precedes the storage area.

Note: Even if WAIT=COND was specified, R1 must be checked to see if storage became available. It
may happen that the task is posted again because of some abnormal condition, or a termination condition,
and will then return without having acquired the storage.

 Appendix C. VSE/POWER Internal Macros 781

IPW$RSW - Reserve Fixed (Real) Storage

The IPW$RSW macro is used to obtain an area of contiguous fixed storage. Upon return, register 0 con-
tains:

� the real address, if desired,
� or zero if no storage available

and register 1 contains:

� the virtual address of the obtained storage area
� or the address of the storage control block ECB which is posted when storage is avaiable.

Registers 2 and 3 are destroyed by execution of the macro instruction.

[name] IPW$RSW size,[WAIT][,OWNER=SYS][,REALAD=YES|NO]
 [,REQ=CUSH]

size specifies the number of bytes of storage to obtain. The parameter can be specified as any
decimal digit up to the maximum allowed length. If register notation is used, the designated
register must have been loaded with the length of the storage. If 'BF' is specified, storage is
reserved in the length of the physical unit record buffer size (max. 2032 bytes).

WAIT specifies that the macro processing routine is to wait until storage becomes available. If the
option is omitted and no storage is available, register 0 is set to zero and register 1 addresses
an ECB which will be posted when storage becomes available. This may be used by the calling
task if it is desired to wait until storage becomes available.

OWNER SYS specifies, that VSE/POWER is the owner of the acquired storage area rather than the task
obtaining the storage. If the parameter is omitted, the task acquiring the storage, is registered
as owner.

REALAD specifies either to return the real or virtual address of the storage in register 0.

YES specifies to return the real address of the obtained storage area. YES is the default if the
parameter is omitted.

NO specifies to return the virtual address of the storage area.

REQ=CUSH specifies, that the storage area may be obtained from the real storage cushion. This param-
eter should be specified only for important functions that should work even in short on real
storage state. For a list of currently identified important functions see module IPW$$I7 'SET UP
REAL STORAGE CUSHION'.

IPW$SAV - Save Caller's Registers

The IPW$SAV macro saves registers 14, 15 and 0 through 12 in the save area addressed by register 13.
No registers are destroyed by execution of the macro.

[name] IPW$SAV

782 VSE Central Functions V7R1 VSE/POWER DRM

IPW$SRJ - Scan Reader JECL Statement

The IPW$SRJ macro is used to invoke the reader JECL processing routine in order to syntax check the
JECL statement. The macro expansion establishes a linkage to the IPW$$SC routine.

Registers 0 and 1 must be setup as follows:

R0 address of column 72 of the JECL statement to be checked.
R1 address of the parameter to be checked.

Upon return, registers 0 and 1 are passed as follows:

R0 address of the parameter value, if valid, or negative address if the parameter is invalid.
R1 address of the next parameter delimiter.

Switch 'LWPI' is set on if the present parameter is also the last parameter.

Registers 14 and 15 are used as linkage registers.

[name] IPW$SRJ

IPW$SRM - Set Remote Mask

The IPW$SRM macro is used to indicate in a shared spooling environment that a remote work station
either logged on or logged off. Register 1 must contain the binary remote id number in its low order byte.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$SRM TYPE=LOGON|LOGOFF

LOGON specifies that the remote work station, named by register 1, logged on.

LOGOFF specifies that the remote work station, named by register 1, logged off.

IPW$SSJ - Call Parameter Checking Routine

The IPW$SSJ macro provides the linkage to the parameter checking routine (IPW$$PC).

Registers 14 and 15 are used as linkage registers.

[name] IPW$SSJ {DSECT|CARRIER=subtype}

 or

[name] IPW$SSJ PWR=(field,[subchar],para,format,[flag],[fb],
 [flgpara])

CARRIER generates a call to the IPW$$PC module. The 'subtype' defines the carrrier of the parameter(s)
to be checked. 'subtype' is the name of the appropriate equate defined in the parameter list
DSECT. Register 1 must address the PC parameter list. Register 0 is used to contain the
carrier type. If the CARRIER is omitted, the macro assumes that the carrier type is already
contained in register 0. Registers 14 and 15 are used as linkage registers.

 Appendix C. VSE/POWER Internal Macros 783

DSECT causes the generation of the parameter list DSECT used as interface for the parameter
checking routine.

PWR specifies to generate an entry of the syntax checking driver table of the spool parameter list
(PWRSPL).

field specifies the PWRSPL field label where the parameter is to be found.

subchar specifies the substitution character, if any

para specifies the parameter definition table entry label

format specifies the parameter format, where

E means EBCDIC characters
T means EBCDIC text (imbedded blanks are allowed)
B means binary
F means flag bit
O means other

flag specifies the flag bit equate, if FORMAT=F.

fb specifies the feedback code to be returned when the parameter is wrong.

flgpara indicates that the presence of the parameter is controlled by a PWRSPL flag.

IPW$STM - Set Timer Interval

The IPW$STM macro is used to setup a timer interval the task wants to wait on or to cancel a previously
set up timer interval.

Upon return, registers 0 - 3 are destroyed.

[name] IPW$STM TIME=ttt|(reg)[,WAIT=YES|NO]
 [,TQE=(reg)][,ECB=(reg)]

 or

[name] IPW$STM CANCEL=YES,TQE=(reg)

ECB specifies the address of a 4-bytes field, used as ECB, which is posted when the time interval
expires. Registers 1 - 3 cannot be used when the TQE parameter is omitted. R1 cannot be
used when TQE parameter is specified.

TIME ttt is the time interval in tenths of a second. If register notation is used, the designated register
must have been previously loaded with the time interval. R1 cannot be used at all.

TQE specifies the address of a previously acquired TQE. If the parameter is omitted, storage for the
TQE is reserved and register 1 is used as pointer register. The TQE must be in real storage.

WAIT specifies whether the requesting task wants to wait or not.

YES means that the macro expands into a wait and the TQE storage is automatically
released. YES is default.

NO means that no wait is automatically generated.

CANCEL YES specifies to delete a time interval which has been already setup. TQE= must also be
specified.

784 VSE Central Functions V7R1 VSE/POWER DRM

IPW$SXJ - Scan Execution JECL Statement

The IPW$SXJ macro is used to invoke the execution JECL processing routine in order to syntax check the
JECL statement. The macro expansion establishes a linkage to the IPW$$XJ routine.

The address of the JECL statement to be processed must have been previously stored in 'TCRV' of the
TCB and its length in 'TCRL'.

Upon return, register 15 contains the return code:

0 ok, JECL statement processed.
4 error occurred; no valid JECL statement.

Registers 14 and 15 are used as linkage registers.

[name] IPW$SXJ

IPW$TDM - Switch Turbo Dispatcher Mode

The IPW$TDM macro is used to let processing of the VSE/POWER Maintask continue either as a parallel
(PU) work unit or as a non-parallel (NP) work unit - in other words, to request switching to parallel or
non-parallel processing mode.

Register 0, 1, and 2 are destroyed by execution of this macro instruction. The acquired processing mode
is recorded by the tasks's TCF16NP flag.

Mode switching is ignored by the called service, when

� the Turbo Dispatcher is not activated (Standard Dispatcher instead)
� VSE/POWER has not been started with the SET WORKUNIT=PA autostart option, that means when

VSE/POWER operates NP exclusively (default)

Mode switching is not actually requested, when the desired processing mode is already active.

[name] IPW$TDM {NP|PU}

NP specifies to enter a non-parallel work unit for the calling VSE/POWER subtask

PU specifies to enter a parallel work unit for the calling VSE/POWER subtask

IPW$TTM - TD-Subtask Timer Interval Support

This access macro is to support the TD-subtask with timer interval support.

 Appendix C. VSE/POWER Internal Macros 785

[name] IPW$TTM STXIT=YES

[name] IPW$TTM TIME=(Rx),TQE=address

[name] IPW$TTM CANCEL=YES,TQE=address

[name] IPW$TTM PROCESS=YES

[name] IPW$TTM WAIT=(Rx)
[name] IPW$TTM WAIT=(Rx,REACTIVATE)

STXIT initializes the VSE Timer STXIT interface for the SETIME macro used for the other support
macros.

TIME allows the caller to indicate a timer interval in tenths of a second following which an ECB is
posted in the indicated TQE element and the Driver Subtask is also posted. The timer interval
is contained in the register Rx. For the first request or any following request whose interrupt is
to occur sooner in time then the previous open requests, a SETIME macro is issued to cause
the internal TSIM routine to be executed which posts the Driver Subtask.

CANCEL the caller indicates that a previous IPW$TTM TIME= request is to be cancelled.

TQE specifies the address of a previously acquired TQE.

PROCESS called by the Driver Subtask following posting. It searches for any expired requests and, if any,
reissues the SETIME macro for the soonest of any remaining requests.

WAIT allows the Driver Subtask to indicate it wishes to go into a wait state until it is posted by either
the expiration of a SETIME interval request for the WAIT= interval (in tenths of a second), or by
any other event which may occur sooner, with the register Rx containing the interval value.

REACTIVATE allows the Driver Subtask to indicate it wishes to go into a wait state as for the IPW$TTM
WAIT=(Rx) macro, and additionally the macros IPW$TTM STXIT=YES and IPW$TTM
PROCESS=YES are called immediately following.

IPW$TTS - SD-Subtask Timer Interval Support

This access macro is to support the SD-subtask with timer interval support.

[name] IPW$TTS STXIT=YES

[name] IPW$TTS TIME=(Rx),TQE=address

[name] IPW$TTS CANCEL=YES,TQE=address

[name] IPW$TTS PROCESS=YES

[name] IPW$TTS WAIT=(Rx)
[name] IPW$TTS WAIT=(Rx,REACTIVATE)

STXIT initializes the VSE Timer STXIT interface for the SETIME macro used for the other support
macros.

786 VSE Central Functions V7R1 VSE/POWER DRM

TIME allows the caller to indicate a timer interval in tenths of a second following which an ECB is
posted in the indicated TQE element and the Driver Subtask is also posted. The timer interval
is contained in the register Rx. For the first request or any following request whose interrupt is
to occur sooner in time then the previous open requests, a SETIME macro is issued to cause
the internal TSIM routine to be executed which posts the Driver Subtask.

CANCEL the caller indicates that a previous IPW$TTS TIME= request is to be cancelled.

TQE specifies the address of a previously acquired TQE.

PROCESS called by the Driver Subtask following posting. It searches for any expired requests and, if any,
reissues the SETIME macro for the soonest of any remaining requests.

WAIT allows the Driver Subtask to indicate it wishes to go into a wait state until it is posted by either
the expiration of a SETIME interval request for the WAIT= interval (in tenths of a second), or by
any other event which may occur sooner, with the register Rx containing the interval value.

REACTIVATE allows the Driver Subtask to indicate it wishes to go into a wait state as for the IPW$TTS
WAIT=(Rx) macro, and additionally the macros IPW$TTS STXIT=YES and IPW$TTS
PROCESS=YES are called immediately following.

IPW$ULP - Update LUB/PUB Tables

The IPW$ULP macro is used to invoke the LUB/PUB update routine to perform one of the following:

� To release the assignment for a given logical unit and to release ownership.
� To locate the PUB entry for a physical device to establish ownership.
� To locate a free LUB entry and to assign it to a given physical unit.
� To release all logical assignments to a given physical device.
� To release ownership of a physical device.
� To identify the physical device corresponding to a given logical unit (SYSxxx).
� To assign SYSLST to a given physical device.
� To unassign SYSLST from a given physical device.
� To assign a free LUB to a given physical device.
� To inform the supervisor about devices being spooled by VSE/POWER.
� To inform the supervisor about devices which are no longer spooled by VSE/POWER.

Registers 0 - 3 are used as parameter registers.

Registers 14 and 15 are used as linkage registers.

[name] IPW$ULP

IPW$UNV - Unchain Virtual Storage Element

The IPW$UNV macro is used to unchain a specific element of a specified queue of virtual storage ele-
ments and to chain it to another queue. The address of the data part of the unchained element is returned
in register 1. The element may be directly addressed or if no address is given then the first element of the
queue is unchained.

Upon return, registers 0 - 3 are destroyed. If TO= was specified then
register 4 is also destroyed.

If register 1 is zero after the return, then unchain has failed.

 Appendix C. VSE/POWER Internal Macros 787

[name] IPW$UNV [ADDR=(reg)][,FROM=(reg)][,TO=(reg)][,LOCK=NO]

ADDR specifies the address of the data part of the element to be unchained. This parameter is
optional and if not specified, or the register contains zero, then the first element of the queue
specified by the FROM field is unchained and its address is returned in register 1. If register 1
is zero, no element could be found, i.e. neither the specified element nor any other element
could be found in the chain.

FROM specifies the address of the head/tail pointer of the queue (TCHD) from which the element
must be unchained. This parameter is only required when the first element is to be unchained,
i.e. ADDR is NOT specified. If not specified, the virtual storage chain of the issuing task is
considered as the FROM queue.

TO specifies the address of the head/tail pointer of the queue (TCHD) to which this unchained
element must be chained at the end of the queue. If not specified, the issuing task with its
virtual storage chain is considered as the TO queue.

LOCK Use of this operand means that no implicit locking of the virtual storage control block (VSCB)
will be done. Specify LOCK=NO only if concurrent access to the relevant queues is controlled
by reservation of another resource before the subject macro is used; the task linkage register
save area is used to store registers 0 to 9, and 14 to 15!

Note: Head and tail pointers addressed by the 'FROM' or 'TO' operands both point to the virtual storage
header part of the first or last element of a queue.

IPW$VCA - Validate Command Authorization

The IPW$VCA macro is used to examine if the command issuer is authorized to execute the command or
not.

Return is made with a displacement of zero when the issuer is not authorized and with a displacement of
four if the command issuer has enough authority.

Registers 14 and 15 are used as linkage registers; register 0 is destroyed by execution of the macro
instruction.

Note: The macro is only applicable for the VSE/POWER command processor.

[name] IPW$VCA command[,type]

command specifies the command to be processed (e. g. PSTART or PSTOP).

type specifies the type of command to be processed. The following types are supported: PART,
JOB, RJE, DEV, XTASK, INT, TASK, PNET, MSG, A, Q, M, CUU or VIO.

IPW$VDA - Validate Data Area Address

The IPW$VDA macro is used to validate if the CCW and associated data area lie in the user's partition or
any other area the user is allowed to access (LTA, SVA, dynamic partition GETVIS area). In addition, the
CCB is validated not to specify the usage of Format 1 CCW.

Register 8 must point to the CCB in question, register 6 must address the partition control block of the

788 VSE Central Functions V7R1 VSE/POWER DRM

partition concerned and register 4 must address the spool entry with the partition control block. If running
with an ESA supervisor, the access-register mode must be set on.

Registers 1 - 3 are destroyed by execution of the macro. Upon return, register 0 contains one of the
following codes:

00 validation ok
04 error occurred: CCW or data area outside of allowed area, or Format 1 CCW specified. TCERC con-

tains a more specific error code.

[name] IPW$VDA [VD=YES|NO]

VD specifies whether to validate the CCW only or also the associated data area.

YES causes to validate both CCW and data area.

NO causes to validate the CCW only.

IPW$WF[x] - Wait for VSE/POWER Event

The IPW$WF[x] macros are used to place the task in a VSE/POWER wait condition. 'x' specifies the event
for which the task is waiting.

[name] IPW$WF[x] [ecbname|(r1)]

x specifies the event for which the task is to wait as one of the following:

C specifies that the task is waiting for posting of the traffic bit (bit X'80' of ECB byte 2) of the
ECB addressed by register 1. The posting must eventually occur. This service should be
used to wait for I/O completion, because bit X'20' or ECB byte 2 is also checked for unre-
coverable I/O error whereupon task specific action is taken.

S specifies that the task is waiting for posting of the traffic bit (bit X'80' of ECB byte 2) of the
ECB addressed by register 1. The posting need not necessarily occur at all. This service
should be used to wait for I/O completion, because bit X'20' or ECB byte 2 is also checked
for unrecoverable I/O error whereupon task specific action is taken.

E specifies that the task is waiting for posting of the traffic bit (bit X'80' of ECB byte 2) of the
ECB addressed by register 1. The posting must eventually occur.

[name] IPW$WF[y] [ecblistname|(r1)]

y specifies the event for which the task is to wait as one of the following:

M specifies that the task is doing a multiple wait for posting of the traffic bit (bit 16) of any of
a set of control blocks. The addresses of the relevant control blocks are contained in a
sequential list addressed by register 1 and delimited by X'FF'. The posting must occur.

Q specifies that the task is doing a multiple wait for posting of the traffic bit (bit 32) of any of
a set of control blocks. The addresses of the relevant control blocks are contained in a
sequential list addressed by register 1 and delimited by X'FF'.

 Appendix C. VSE/POWER Internal Macros 789

Note: The relevant control blocks are typically class anchors of the VSE/POWER
RDR/LST/PUN/XMT queues, therefore IPW$WFQ stands for 'queue' posting. 'Q' state
implies that none of the conditions need occur.

X specifies that the task (typically the dynamic partition scheduling task) is doing a multiple
wait for posting of the ECB traffic bit (bit 16) of a simple (first) control block and/or for
posting of the traffic bit (bit 32) of any of a set of control blocks. The addresses of the
relevant control blocks are contained in a sequential list addressed by register 1 and delim-
ited by x'FF'.

[name] IPW$WF[z]

z specifies the event for which the task is to wait as one of the following:

B specifies that the task is waiting for posting of RJE,BSC or PNET event.

D specifies that the task is waiting for immediate dispatch. The macro instruction is used to
enter the VSE/POWER dispatcher in order to give other higher-priority tasks the chance to
get control.

I specifies that the task is inactive and waiting for initiation.

L specifies that the task is waiting for a resource which is presently locked against concur-
rent use. Register 3 addresses the resource the task is waiting on.

O specifies that the task is operator bound and waits for a PGO/PSETUP command.

IPW$WQR - Write Queue Record

The IPW$WQR macro is used to update the queue record, addressed by the I/O request word, in the
storage copy of the queue file and to write the queue record block, containing the updated queue record,
back to disk. Register 1 must point to the I/O request word. This macro must be issued when the status
or attributes of a particular queue record have been changed rather than just some chaining pointers.

Registers 0 - 3 are destroyed by the execution of the macro instruction.

[name] IPW$WQR {address|(reg)}

address specifies the address of the I/O request word containing the relative queue record number
and the address of the storage area which holds the queue record to be written back to disk.

(reg) specifies that the address of the I/O request word is contained in the designated register.

Note: Length in "I/O request word" need not be set, Q-F-server always operates at length of Q-record.

IPW$WTD - Write Data Block to Disk

The IPW$WTD macro is used to write the data block, addressed by the I/O request word, to the
VSE/POWER data file.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$WTD {address|(R1)}[,WAIT=FORCE]

790 VSE Central Functions V7R1 VSE/POWER DRM

address specifies the address of the I/O request word used for the write operation.

(R1) specifies that the address of the I/O request word (12 bytes) is contained in register 1.

WAIT FORCE specifies that the disk service routine must wait for the I/O completion regardless of
any 'double buffering' flag set.

Note: The I/O request word provided length field will be used by disk service as specified, to copy the
virtual DBLK area to the real I/O area - and pad it with x'00', if specified length is smaller than the DBLK
size.

IPW$WTO - Write to Operator

The IPW$WTO macro is used to write a message to the system operator, or to a spool-access user, if the
task uses the spool-access support.

To write a message to the system operator even if a task uses the spool-access support, TCPCOP should
be set on in TCMW.

The message should contain only uppercase characters. If a user written exit routine writes a
non-VSE/POWER message:

� TCDNMM must be set on in TCMW in order to avoid the modification of the message by VSE/POWER
(and then afterwards reset),

� TCPCOP must be set on in TCMW in order to insure that the message is routed to the central oper-
ator if desired (and then afterwards reset), and

� the message routing and descriptor codes may optionally be set in the TCB (fields TCMRT and
TCMDC, automatically reset).

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$WTO {TCMW|msgaddr|RC=YES}[,HOLD][,R5][,NMR=YES|NO]

msgaddr specifies the address of the message to be issued. The first byte of the message must contain
the length of the message text (VSE/POWER format). The message text must not exceed 120
bytes.

TCMW specifies that the address of the message to be issued is present in the message control word
of the TCB (TCMW).

HOLD specifies to keep the lock for the local/remote message control block. The appropriate message
control block must be explicitly released when no longer needed.

R5 specifies that register 5 contains the address of the TCB to be used for message modification.
If omitted, the TCB of the requesting task is used for message modification.

NMR specifies whether the message to be written is in nodal message record (NMR) format or not.

YES specifies that the message is in NMR format.

NO specifies that the message is not in NMR format. This is the default if the parameter is
omitted.

RC YES specifies that the address of the message (VSE/POWER format) is contained in register 1
and the return code to be inserted into the message is in register 0.

 Appendix C. VSE/POWER Internal Macros 791

IPW$WTQ - Write Queue Record Block to Disk

The IPW$WTQ macro is used to write the queue record block, addressed by the I/O request word, to the
VSE/POWER queue file.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$WTQ {address|(R1)} [,LOCK=YES|NO][,ERROR=IGN]

address specifies the address of the I/O request word used for the write operation.

(R1) specifies that the address of the I/O request word (12 bytes) is contained in register 1.

LOCK YES specifies that the disk service routine, contained in the VSE/POWER nucleus performs a
MCB release operation after processing the requested function; this is the default.

NO means that the calling task already owns the MCB and that the MCB will not be released at
completion of the I/O.

ERROR IGN causes the disk service to return to the caller after an I/O error occurred. The I/O error will
then not be handled by the I/O error handler. This is only applicable when writing the master
record back to disk. It also causes to attempt to write the master record even so the 'queue file
damaged' flag is set in the master record.

Note: The I/O request word provided length field will be used, if the Q-record-block number is the block
number of the master record; if not, then disk service will operate with the constant "queue record block
length".

IPW$WTR - Write to Operator with Reply

The IPW$WTR macro is used to write a message to the system operator and to wait for his reply.

Registers 0 - 3 are destroyed by execution of the macro.

[name] IPW$WTR TCMW|{msgaddr,repaddr}[,R5]

TCMW specifies that the address of the message to be issued as well as the address of the reply area
are present in the message control word of the TCB (TCMW and TCAW). The first byte of the
reply area must contain the length of the reply area.

msgaddr specifies the address of the message to be issued. The first byte of the message must contain
the length of the message text. The message text must not exceed 120 bytes.

repaddr specifies the address of the reply area to be used for the reply from the operator. The first byte
must contain the length of the reply area. The operator's reply is automatically translated to
uppercase characters.

R5 specifies that register 5 contains the address of the TCB to be used for message modification.
If omitted, the TCB of the requesting task is used for message modification.

792 VSE Central Functions V7R1 VSE/POWER DRM

IPW$WTT - Write Tape Record

The IPW$WTT macro is used to write a record to tape, described by the tape control block (TBB), which is
pointed to by the TCB of the requesting task.

Registers 0 - 2 are destroyed by execution of the macro instruction.

[name] IPW$WTT {TCQW[,PREL]|TCDW|(R1)}

PREL specifies to write a queue record to tape using the length of a Previous RELease

TCQW specifies to write the queue record, addressed by the TCB (field TCQW), onto tape with the
following length:

1. 'current systems queue-record length',if PREL not specified, or if PREL specified and TCB
field TCOQRL contains zero.

2. 'length as specified in TCOQRL', if PREL is specified and TCB field TCOQRL contains a
non-zero value which typically specifies the queue record length of a previous
VSE/POWER release - for details refer to the POFFLOAD BACKUPnn/SAVEnn command.

TCDW specifies to write the data block (DBLK), addressed by the TCB (field TCDW) onto tape.

(R1) specifies to write the record, addressed by register 1 onto tape. The length of the record must
have been stored in the TBB before execution of the macro instruction.

 Appendix C. VSE/POWER Internal Macros 793

794 VSE Central Functions V7R1 VSE/POWER DRM

Appendix D. VSE/POWER Storage Requirements for Release
6.1

The following was formally located in the VSE/POWER Administration and Guide manual.

Note: The following table is correct only for the Version 6.1 of VSE/POWER.

© Copyright IBM Corp. 1979, 2006 795

Figure 158. Values for Calculating IBM VSE/POWER's Fixable and Getvis Areas

VSE/POWER Component or Task Fixable Area
(bytes)

Getvis Area
(bytes)

Dynamic control blocks (always required) 26,000 (see Note)

Every further data file extent D

PNET control blocks for networking 192 S+V+Z

SNA control block for RJE,SNA support 192

Every local writer task
With one buffer
With two buffers
With four buffers

928+P+A
928+2P+A
928+2P+A

512+N
512+N
512+2N

Every local punch task 928+P+A 256+N

Every local card reader task
With one input buffer
With two input buffers
Diskette I/O unit connected

680+P
680+2P
928+P+E

256+F+N
256+F+N
256+F+N

Every local 3540 reader task 928+E 256+F+N

Every print status task attached
. by temporary command processor
. by permanent command processor

550
1500

960

Every temporary command processor task 608 2,240

Every local tape reader task 608 4,352+N

Every off-load task
Save (backup) function

 Load function
 Select function

544
544
544

256+N
12,544
12,800

Cross-partition support
Reader task (PUTSPOOL)
Writer task (GETSPOOL)
Control task (CTLSPOOL)

740
740
640

256+F+N
256+F+N

Every device-service task 680 1110+N+J

Every spool-access-support connection
 CTL function
 GET function
 PUT function
 GCM function

640
704
704
640

780+J
1,024+N+J
1,024+N+J
780+J

RJE,SNA tasks
Every reader task
Every writer task

640
640

256+F+N
256+N

RJE,BSC tasks
Every reader task
Every writer task

640
640

256+F+N
256+N

Every execution reader (one per partition) 604 832+N+X+Y

Every execution writer (up to 28 per partition)
First RJE,BSC line
Every additional RJE,BSC line
Every job/output transmitter
Every console transmitter
Every job/output receiver
Every session (PNET,BSC)
Every session (PNET,SNA)
Task trace (if ever required), default

604+C
352+1,856
1,856
544
544
544
1,152+G
960
2,048

660+N

1,536+N
1,280
2,560+N
2,176
3,200+H

Note: The above numbers may in reality vary slightly from those shown.

Note: A certain part of this storage depends on the number of queue records. The value given here assumes a queue file of 1000 records.
Every additional 1000 records (up to 32,767) require an additional 130 bytes. Likewise, this storage is calculated under the assumption of one
data file extent with a DBLK size of 4080. Furthermore, this storage contains a real storage cushion of 4,5KB.

796 VSE Central Functions V7R1 VSE/POWER DRM

Legend for Figure 158 on page 796 :

A = 96 if printing/punching from spool tape; otherwise A = �

C = 96 if spooling to tape; otherwise C = �

DBLK + 39
D = 32 x n where n = --------- (rounded to the next higher integer)
 32

(R+8) x 26
E = 32 x e where e = ---------- (rounded to the next higher integer)
 32

R = logical record length as specified for the
diskette I/O unit

F = 256 (needed only for building control records)

G = ((1 + tr x bt) + (1 + rv x br)) x bs

H = ((1 + tr x bt) + (1 + rv x br)) x bs
where for G and H:
tr = Number of active job/output transmitters
bt = Number of buffers per active job/output transmitter
rv = Number of active job/output receivers
br = Number of buffers per active job/output receiver
bs = For G: Buffer size + 28 (rounded up to next multiple of 32)
bs = For H: Buffer size + 128 (rounded up to next multiple of 128)

J = Size of the spool-access support buffer as defined for a specific
function request (up to a maximum of 65,536 bytes)

N = DBLK + 16 rounded up to the next multiple of 128 bytes
where DBLK = The value specified in DBLK=n of the POWER generation

 macro

DBLK + 39
P = 32 x n where n = --------- (rounded to the next higher integer,

32 but not to exceed 4�96)

S = 256 if shared spooling is specified, otherwise S = �
V = 256 if any connection is started using SDLC line discipline;

otherwise V = �

X = 32�� if SLI statements are to be processed; otherwise X = �

Y = 128 for every additional SLI nesting level; otherwise Y = �

Z = n x 4� + 116 (rounded up to the next multiple of 128)
where n = Number of nodes defined in the network definition table

 Appendix D. VSE/POWER Storage Requirements for Release 6.1 797

798 VSE Central Functions V7R1 VSE/POWER DRM

List of Abbreviations

ACC Account control block
ACB Access method control block
AQRA Auxiliary queue record area
ASAB Asynchronous service anchor block
BCA Buffer control area
BCW Buffer control word
CAT Control address table, or Permanent

area.
CB Control block
CCB Command control block
CI Control interval for FBA
CIB Communicator information block
CIE Communicator information element
CIDF CI description field
COCB Compaction table control block
CP Command processor
CPCB Command processor control block
DLRSA Double linkage register save area
DMB Disk management block
DSHR Data set header record
DRW Disk request word also called I/O

request word
DPCB Dynamic partition control block
DPST Dynamic partition scheduling task
EAR Execution account record
EDCB External device control block
ECB Event control block
ETX End of text
FBA Fixed block architecture
FCB Forms control buffer
FCS Function control byte
GNB Generation table
INIT/TERM Initiator/Terminator
JAI Job Accounting Interface
JECL Job entry control language
JHR Job header record
JTR Job trailer record
LCB Line control block
LDA Logical data record area
LK Lockword
LL Logical list
LMF Line manager field
LMGR Line manager
LRCB Logon request control block
LRSA Linkage register save area
LST List
LTA Logical transient area in the VSE

supervisor
LUCB Logical unit control block
LW Logical writer
MCB Module control block
MCTA Master class table area
MECB Master (main) event control block
MEDCB Master external device control block
MLI Multi-leaving
MLT Master line table

MMB Message control block
MR Master record
MRA Master record area
MSCB Remote message control block
NAT Node attached table
NCB Node control block
NDT Network definition table
NMR Nodal message record
NPGR Negative permission granted record
NQ Get next from queue
OPDE Output parameter definition entry
OPTB Output parameter text block
PDB Partition control block
PDA Physical data record area
PGR Permission granted record
PNCB PNET master control block
PSA Partition save area
PUN Punch
PWS Physical work space
QRA Queue record area
RCF Record control field
RDF Record description field for FBA

device
RDR Reader
RE User reader exit routine
RIF Request to initiate a function
RJE Remote job entry
RMCB SNA remote control block
RPL Request parameter list
RTAM Remote terminal access method
SAM Sequential access method
SAS Spool Access Support
SCB Storage control block or string

control byte
SDA Single data adapter
SDCB PNET SSL Driver Control Block
SEH Spool environment header
SER Spool environment record
SKAD Seek address
SLA Separator line area
SLW SLI work space
SNCB SNA control block
SPB Spool environment block
SPL Spool parameter list
SPM Spool management
SRB Service request block
SRCB String record control byte
SUCB SNA unit control block
TBB Tape control block
TCB Task control block
TDCB PNET TCP Driver Control Block
TMF Task management field
TMS Task management service
TR Task terminator
TRSA Task register save area
TSL Task selection list

© Copyright IBM Corp. 1979, 2006 799

VSCB Virtual storage control block
VTAM Virtual telecommunications access

method

WACB SNA work space
WCB Wait control block
WTR Writer

800 VSE Central Functions V7R1 VSE/POWER DRM

 Bibliography

To use this manual effectively, you should be familiar
with the concepts and facilities of VSE/AF described in
the following manuals:

VSE/ESA:

� VSE/ESA Planning, SC33-6703

� VSE/ESA Installation, SC33-6704

� VSE/ESA Guide to System Functions, SC33-6711

� VSE/ESA Operation, SC33-6706

� VSE/ESA System Control Statements, SC33-6713

� VSE/ESA Diagnosis Tools, SC33-6614

� VSE/ESA Quick Reference, GX33-9026

RJE,SNA users should also be familiar with VTAM con-
cepts and facilities as described in:

� Planning for NetView, NCP, and VTAM, SC31-7122

� VTAM Programming, SC31-6496

Other VSE/POWER publications are:

� VSE/POWER Administration and Operation,
SC33-6733

� VSE/POWER Application Programming, SC33-6736

� VSE/POWER Remote Job Entry, SC33-6734

� VSE/POWER Networking, SC33-6735

PNET users should also be familiar with the NJE proto-
cols as described in:

� Network Job Entry Formats and Protocols.,
SC23-0070

© Copyright IBM Corp. 1979, 2006 801

802 VSE Central Functions V7R1 VSE/POWER DRM

 Glossary

Following is a definition of some of the terminology
used in this manual.

Adjacent Node. Adjacent nodes are any nodes which
are directly connected with one another by a BSC con-
nection or an SDLC session.

Alternate Route. It is possible to define for any desti-
nation an alternate path that may be used in the case
that the main path, defined by the ROUTE1 parameter
in the PNODE macro, is not available. This second
route is called an alternate route. It may be specified
by the ROUTE2 parameter in the PNODE generation
when defining the destination node. It does not need to
be a path using the same line discipline. It is NOT
used as a 'load levelling' mechanism.

Command Switching. Command switching is the
transmission of a command which has been received
from the network to the next destination on its way to its
final destination.

Compression. Compressing a data stream replaces
two or more consecutive blanks by a one byte control
character containing information as to how many blanks
have been compressed. If three or more consecutive
like non-blank characters are found then they are
replaced by two bytes, the first control byte containing
information as to how many occurrences of the char-
acter have been compressed, and the second byte con-
taining the actual character.

Compression is very widely used to reduce the size of
the data stream before transmitting it via a teleproc-
essing system.

Decompression. Decompression takes a compressed
data string and expands it again to its original size by
replacing the compression control bytes by the specified
number of characters or blanks.

Direct Link. A direct link is defined as a connection
between two adjacent nodes which is physically accom-
plished by a BSC line between the two nodes.

End Node. The end node refers to that node which is
designated as the final destination for the job or output.
This can be the local node or any other node that is
reachable within the network.

Execution Node. The execution node is the end node
for jobs. It is that node on which the job will be exe-
cuted. It may be another VSE/POWER node or any
other node supporting the networking protocol used by
VSE/POWER PNET, and reachable from the local
node.

Final Destination. Same as end node.

Intermediate Node. An intermediate node is any node
which is not an end node. It is used as a temporary
store for jobs or output which are destined for another
node to which there was no direct path established from
the originating node.

Local Node. The local node is that node of the
network at which the user (or reader of the specifica-
tions) is assumed to be sitting. It is that name defined in
the PNODE macro with the LOCAL=YES parameter
specified.

Message Switching. Message switching is the trans-
mission of a message which has been received from
the network to the next destination on its way to its final
destination. If there is no link active to the next required
node then the message is thrown away.

Network Control Records. A network control record
in PNET is one of the following record types:

� Job header record

� Data set header record

� Job trailer record

For a description of the various record types, please
refer to the index for the appropriate record.

Nodeid. A nodeid is a 1-8 byte alphanumeric identifier,
the first character of which must be alphabetic, which is
used to identify the node within the network.

Originating Node. The originating node is that node
within the network where a job was entered into the
system, or where output was produced. It may be the
same as the end node, in which case it means that the
job or output is never transmitted via the network.

Primary Route. This is the route which will always be
taken to reach a final destination if the link or session is
active and signed-on. It is specified by the ROUTE1
parameter in the PNODE macro.

Segmentation. A record or data set is segmented if it
is split into two or more parts. Records are often seg-
mented because they exceed an allowed maximum
value. Each segment is preceded by control informa-
tion specifying the length of the segment and perhaps
whether this is first, middle, or last segment.

A data set may be segmented to reduce the amount of
working storage required to hold that data set or in the
case of VSE/POWER output segmentation, to reduce
the size of the output data set being produced and to

© Copyright IBM Corp. 1979, 2006 803

allow this to be printed or punched before the complete
job is finished.

Spanned Records. Spanned data records may occur
when a logical data record is larger than the physical
data record, or when the logical record is too large for
the remaining space in a buffer. In this case it is pos-
sible to say that the records will be 'spanned' between
blocks. That means that a part of the logical record will
be put into the first block and the remainder of it will be
placed at the start of the next block. Spanning may take
place over any number of physical data records. To
recover the logical record more than one physical
record will have to be read.

Session. A session can exist between any two nodes
in the network. A session is established by use of
VTAM.

Store-and-Forward Node. Same as an intermediate
node.

Topology Record. Topology records are written by
JES2 NJE to dynamically describe the network.
Records are sent whenever a node is started or
stopped. These records are ignored by VSE/POWER.

Userid. The userid is a 1-8 byte alphanumeric identi-
fier which may be used to identify the user who has
submitted, or is to receive, the job or output.

804 VSE Central Functions V7R1 VSE/POWER DRM

 Index

Numerics
3540 diskette work space 584
3540 physical work space 596

A
abbreviation list 799
abnormal termination of VSE/POWER

See termination of VSE/POWER, abnormal
ACCB 444
access registers 41

initialization 41
usage 108

account file
close 185
open 185
processing 183
save 185

account record
execution 448

ACIE 133, 490
appendages

attention interface 332
hot reader 332
interval timer 333
JCL End-of-Job 333
page fault 331
PNET/BSC/CTC channel end 332
RJE/BSC channel end 332
SUMMARY 333
SVC 0 332
SVC 3 332
SVC 90/91 333

application communicator information element (CIE)
DSECT layout 490

ASAB 450
ASCB

how to locate 451
assign/unassign work space DSECT 449
ASWE 452
asynchronous service 159

anchor block 450
invocation of 160
request 159

asynchronous service work element 452

B
BCB 289

layout 290
BCW 453

BIND RU in SCIP exit 263
buffer control word 453
buffer layout 454

C
cancel codes of VSE/POWER 456
CAT 491

how to locate 434, 507
layout 433

CCB 458
CCW 457
CCW sequences - networking 197
channel command word 457
CI2 133, 488
CIB 485
CIE 489
class table entry

DSECT layout 487
CMPT 509
COCB 636
code organization of VSE/POWER

appendages 32
external macros 28
external routines 27
functions 29
internal routines 29
macros 32
macros - definition 37
macros - function 33
macros - interface 32
macros - miscellaneous 37
macros - PNET SSL SD-Subtask Support 38
macros - PNET TCP TD-Subtask Support 38
macros - service 35
services 31
structure 27

cold start 45
warm start 46

command control block 458
command processor 3

command descriptions 171
due to operator communication (OC) 181
initiation of permanent 165
initiation of temporary 165
overview 3, 165
work area 459

command processor control block (CPB) 714
commands processed by RJE/BSC 166
commands processed by RJE/SNA 166
communicator information block (CIB)

DSECT layout 485

© Copyright IBM Corp. 1979, 2006 805

Communicator Information Block 2 133
Communicator Information Block 2 (CI2)

DSECT layout 488
communicator information element (CIE)

DSECT layout 489
compaction table block (CMPT) 509
composer work area 550
compression for PNET 284
Control Address Table 434
control address table (CAT)

DSECT layout 491
control blocks and data areas

3540 diskette work space 584
3540 physical work space 596
account control block (ACCB) 444
accounting DSECTs for FBA 523
ACIE 490
assign/unassign work space 449
asynchronous service anchor block 450
asynchronous service work element 452
buffer control word 453
buffer layout 454
CAT 491
channel command word 457
CI2 488
CIB 485
CIE 489
command control block 458
command processor 459
command processor control block 714
compaction table block 509
compaction table control block 636
composer work area 550
CTDS 487
data set control block 508
data set header record 555
disk management block 510
execution account record 448
execution processor work area 525
external device control block (EDCB) 526
function management header 3 528
generation table 529
initialization work area 533
job header record 559
job trailer record 563
line control block 621
list account record 448
logical data record area 535, 539
logical reader work area 540
logical writer work space 542
master external device control block 546
message control block 544
module control block 547
network account record 448
network compression work area 552
network definition table 553

control blocks and data areas (continued)
nodal message record 570
node control block (NCB) 571
node control block task entry 583
output exit parameter list 586
output parameter definition entry 587
output parameter processing interface list 589
output parameter text block 588
partition control block 591
physical data record area 594
physical work space 595
PNET node control block 597
PNET SSL driver control block 599
PNET TCP driver control block 599
presentation work area 564
print status work Area 608
punch account record 448
PWRSPL TYPE=MAP 656
queue record area 614
reader account record 448
receiver account record 448
receiver work area 565
Remote message control block 620
RJE/BSC account record 448
RJE/SNA account record 448
service request block 633
slot 631
slot: checkpoint 631
slot: DBLK layout 631
slot: waiting-for-work 631
SNA control block 637
SNA logical unit control block (LUCB) 638
SNA logon request control block 641
SNA remote control block 642
SNA session control blockfor PNET 635
SNA session request queue 644
SNA unit control block 645
SNA work area 647
source library member element 650
source library work area 651
SPL checking parameter list 674
spool access parameter list 656
spool access support connection account

record 448
spool access work area 675
spool account record 448
spool environment block (SEB) 679
spool environment block (SER) 682
spool environment header (SEH) 680
spool parameter list 654
storage control block 684
system startup account record 448
tape control block 687
task control block 690
task dispatch trace area 720
timer queue element 721

806 VSE Central Functions V7R1 VSE/POWER DRM

control blocks and data areas (continued)
trace information block 722
transmitter account record 448
transmitter work area 567
virtual buffer control area 724
virtual storage control block 726
VTAM Driver control block 725
wait control block 727

CPB 714
CPWA 459

how to locate 459
cross partition communication

spool parameter list (SPL) 654

D
data file

DBLK group 94
get data 102
organization 94
overview 94
processing 96
put data 98

data record
layout 94

data set control block 508
data set header processing

See networking, data set header processing
data set header record (DSHR) 555
debugging

an aid to eliminate functions 740
analyzing event control blocks 735
analyzing register save areas 735
analyzing TCBs 735
determining the active routine 735
establishing last command issued 740
establishing the CSECT level 735
identifying fixed pages 729
identifying the CSECT start 734
identifying the start of the pageable area 730
identifying the SVA part 729
identifying the VSE/POWER partition 729
locating control blocks, tables, and areas 730

in fixable area 730
in GETVIS area 734
in permanent area 730

PNET BSC/CTC/TCP I/O logging 740
RJE/BSC I/O trace 737
stand-alone dump 729
using buffer control words 735
VSE/POWER disk dump program 740
VTAM related problems 740

decompression for PNET 284
devices supported by VSE/Adv. Funct.

printers 16
punches 16

devices supported by VSE/Adv. Funct. (continued)
readers 16
RJE,SNA 17
spooling 16
terminals 16
TP Control units 16

disk management block (DMB) 510
disk service 138
distribution code 144
DMB 510
DOM Macro 144
DSHR 555
dummy record 90
dump of VSE/POWER partition 741
dynamic class table 83

overview 89
dynamic control blocks 439
dynamic partition 78

abnormal termination 86
allocation of 80
allocation tracking 82
attributes 82
execution reader of 80
priority 82
restrictions 82
restrictions to commands 83
spooling restrictions 83
start of 79
support of 78
termination of 80

dynamic partition control block 524
dynamic partition scheduling task 6, 78, 79

E
EDCB 526
ESA-Mode 108

usage of ESA-Mode 108
Examples (programming)

shipables' list 400
execution processors

jecl - overview 69
list - overview 4
overview 68
punch - overview 4
reader - overview 4, 69
SETPRT handling 71
writer - overview 70

Exit table 174
External Device Support

device service task 374
Orders from VSE/POWER 382
overview 373
starting of 374

 Index 807

F
f.f.NMR 128
FCB table 173
FCBCB 527

FCB table 527
FCS 289

layout 289
fixable area 439
fixed format Job Event Messages 134
fixed format Job Generation Messages 134
fixed format NMR 128
fixed format Nodal Message Record 134
FM header exchange 253, 255

error during 255
FMH1 Format 310, 311

default 312
FMH2 format 312, 313
FMH3 528
FMH3 format 314
function management header 3 (FMH3) 528

G
GCM Function 363
general debugging hints 729
generation table (GNB) 529
get queue record 136
GETVIS area

usage - overview 26
GNB 523, 529

H
Hardware error recording 740

I
i/o manager for PNET 195

CCW sequences 197
Idump in flight 160

general function 160
macro expansion 160
module flow 162

initialization of VSE/POWER
general overview 39
IPW$$I1 overview 41
IPW$$I2 overview 41
IPW$$I3 overview 42
IPW$$I4 overview 43
IPW$$I5 overview 43
IPW$$I7 overview 44
IPW$$IP services 40

initialization work area 533
internal macro format.

IPW$AJ# 748
IPW$ALN 748

internal macro format. (continued)
IPW$AQS 748
IPW$ATT 749
IPW$BUF 749
IPW$CAF 751
IPW$CLI 752
IPW$CNC 753
IPW$CPY 752
IPW$CTT 753
IPW$DET 754
IPW$DQS 754
IPW$DSD 754
IPW$FQS 755
IPW$GAM 755
IPW$GAR 757
IPW$GDR 757
IPW$GLR 757
IPW$GMS 757
IPW$GQR 758
IPW$GQS 759
IPW$GSL 759
IPW$GTE 760
IPW$GTO 760
IPW$GTS 760
IPW$IAS 761
IPW$ICP 762
IPW$ICS 763
IPW$IDM 763
IPW$IDS 764
IPW$IIS 764
IPW$IOC 765
IPW$IOM 765
IPW$IPS 765
IPW$IQS 766
IPW$IRY 768
IPW$ITP 768
IPW$ITQ 770
IPW$ITS 769
IPW$IXS 770
IPW$MQR 771
IPW$NTY 772
IPW$OAF 772
IPW$OEF 773
IPW$OLI 773
IPW$OPI 773
IPW$OTP 774
IPW$PAR 774
IPW$PDR 775
IPW$PLR 775
IPW$RDC 775
IPW$RDD 776
IPW$RDQ 776
IPW$RDT 777
IPW$RET 777
IPW$RLR 777
IPW$RLV 778

808 VSE Central Functions V7R1 VSE/POWER DRM

internal macro format. (continued)
IPW$RMS 779
IPW$RQS 780
IPW$RSR 780
IPW$RSV 780
IPW$RSW 782
IPW$SAV 782
IPW$SRJ 783
IPW$SRM 783
IPW$SSJ 783
IPW$STM 784
IPW$SXJ 785
IPW$TDM 785
IPW$TTM 785
IPW$TTS 786
IPW$ULP 787
IPW$UNV 787
IPW$VCA 788
IPW$VDA 788
IPW$WQR 790
IPW$WTD 790
IPW$WTO 791
IPW$WTQ 792
IPW$WTR 792
IPW$WTT 793

internal record 90
interval timer service 141
IPW$$AQ 96
IPW$$AS 159
IPW$$AT 55
IPW$$CM 165
IPW$$DQ 98
IPW$$ER 67
IPW$$FQ 98
IPW$$GD 102
IPW$$I1 41
IPW$$I2 41
IPW$$I3 42
IPW$$I4 43
IPW$$I5 43
IPW$$I7 44
IPW$$IC 165
IPW$$ID 160
IPW$$IP 39
IPW$$LR 67
IPW$$LW 74
IPW$$MS 143
IPW$$NQ 100
IPW$$NS 157
IPW$$OF 76
IPW$$OT 164
IPW$$PD 98
IPW$$PL 73
IPW$$PP 73
IPW$$PR 66

IPW$$Q1 99
IPW$$RQ 96
IPW$$SD 239
IPW$$SS 249
IPW$$SY 66
IPW$$T1 55
IPW$$TD 210
IPW$$TQ 105
IPW$$TS 219
IPW$$TV 106
IPW$$XJ 69
IPW$$XTC 344
IPW$$XTG 344
IPW$$XTM 344
IPW$$XTP 344
IPW$$XTS 344
IPW$DAB 450, 451
IPW$DAC 444
IPW$DBA 724
IPW$DCB 458
IPW$DCI 485, 488
IPW$DCO 636
IPW$DCP 459
IPW$DCT 487
IPW$DCW 457
IPW$DDR 539
IPW$DED 526, 546
IPW$DEF ACCT=YES 542
IPW$DEF DPCB=YES 524
IPW$DEF EXTAB=YES 723
IPW$DEF FCTAB=YES 527
IPW$DEF IWK=MAP 533
IPW$DEF JCA=YES 535
IPW$DEF PSWRKA=YES 608
IPW$DEF PSYS=YES 686
IPW$DEF SLOT=YES 631
IPW$DEF TIB=YES 722
IPW$DEF TQE=YES 721
IPW$DEF TTRACE=YES 720
IPW$DEF XRWA=YES 525
IPW$DGN 529
IPW$DJK 523
IPW$DKA 552
IPW$DLC 621
IPW$DLR 641
IPW$DLU 638
IPW$DLW 540
IPW$DMC 547
IPW$DMM 544
IPW$DMS 620
IPW$DNC 571
IPW$DNR DHR=YES 555
IPW$DNR JHR=YES 559
IPW$DNR JTR=YES 563
IPW$DNR NMR=YES 570

 Index 809

IPW$DOP OPDE=YES 587
IPW$DOP OPI=YES 589
IPW$DOP OPTB=YES 588
IPW$DPA 491
IPW$DPD 591
IPW$DPN 597
IPW$DPW 595
IPW$DPW E3540=YES 596
IPW$DQC 510
IPW$DQR 614
IPW$DRM 642
IPW$DRQ 644
IPW$DSC 684
IPW$DSL SLME=YES 650
IPW$DSL SLWA=YES 651
IPW$DSN 637
IPW$DSP SEH=YES 680
IPW$DSP SER=YES 682
IPW$DSP SPB=YES 679
IPW$DSR 633
IPW$DSS 635
IPW$DSU 645
IPW$DTB 687
IPW$DTC 690
IPW$DTE 613
IPW$DTP 599
IPW$DTX 569
IPW$DVC 725
IPW$DVD 528
IPW$DVD BUF=YES 454
IPW$DVD CMPT=YES 509
IPW$DVS 726
IPW$DWA 647
IPW$DWC 550
IPW$DWG 565, 567
IPW$DWP 564
IPW$DXE 586
IPW$DXW 675
IPW$IDM 160
IPW$MXD 629
IPW$NTY 128
IPW$SSJ 674

J
JCA 535
JCM (Job Completion Message) 672
JECL

overview 9
 Scanner 281

JHR 559
Job Event Messages 134
Job Generation Messages 128
job header processing

See networking, job header processing

job header record (JHR) 559
job trailer record 280, 563
journal communication area (JCA) 535
JTR 563

L
LCB 621
LDA 539
logical data record area (LDA) 539
logical reader work area 540
logical writer work space 542
LRCB 641
LUCB 638

M
macros - VSE/POWER

internal - definition 37
internal - function 33
internal - interface 32
internal - miscellaneous 37
internal - PNET SSL SD-Subtask Support 38
internal - PNET TCP TD-Subtask Support 38
internal - service 35
macros, list of 395
shipables' list 399
VSE/POWER internal 32

master record 89
MCB 547
message control block (MMB) 544
message handler 143

message blank compression 149
message distribution - IPW$GMS 148
message distribution - SAS Local Message 148
message distribution code 144
message modification 149
message routing code 144

message service 127
MMB 544
modify queue record 137
module control block 547
Modules

Module phase name(s) 392
Phase name in storage(dump)' 388

MSCB 620
multi-leaving

BCB 289
buffer format for SNA 290
FCS 289
format 286
RCB 286
record, processing by composer 277
SCB 286
SRCB 287

810 VSE Central Functions V7R1 VSE/POWER DRM

multi-leaving buffer format for BSC/CTC/TCP/SSL 291
multiprocessor support 111

external invocation 111
internal overview 111
internal specifications 113

multitasking
attaching a task 61
overview 58
task detaching 64
task initiation 60
task selection - list 62
task selection - overview 62
task termination 64

N
NAT 336
NCB 571
NDT 553
network compression work area 552
network control record

processing 277
network control records

basic header/trailer format 95
data set header 95
data set header record 555
job header 95
job header record 559
job trailer 95
job trailer record 563
nodal message record 570
overview 94

network definition table (NDT) 553
networking

abnormal termination 266
BSC/CTC start, flow 193
BSC/CTC stop, flow 194
buffer queueing, BSC 293
buffer queueing, SNA 295
buffer relationship, BSC 293
buffer relationship, SNA 295
Buffer service routine 284
buffer size transfer 253
composer 276
compression 284
console transmitter 276
control block relationship, BSC 292
control block relationship, SNA 294
data record processing 280
data set header processing 280
decompression 284
disabling SCIP exit 251
enabling the SCIP exit 251
end-of-file record processing 280
I/O Manager 195
internal record format 283

networking (continued)
job header processing 279
job receiver 278
job trailer record 280
job transmitter 273
MLI records 277
network control records 277
NMR records 276
nodal message record 280
normal records 276
output receiver 278
output transmitter 273
overview 187
PNET driver 188
presentation service 283
priority conversion table 279
receiver - abnormal termination 281
receiver - normal termination 281
SEND function 269
SEND/RECEIVE 267
session establishment 252
session establishment, SNA 254, 255
session termination 259
SNA primary stop 260
SNA remote initiated session 257
SNA secondary stop 262
transmitter 273

NMR 570
nodal message record

processing by composer 276
processing by receiver 280
transmission of 276

node attached table 336
node control block (NCB) 571
node control block task entry 583
Notify

Task 158
Notify Service 128

O
OFFLOAD task

BACKUP function 76
internal tape format 77
LOAD function 76
PICKUP function 76
SAVE function 76
SELECT function 77

OPTB 357
Get OPTB 357
Modify OPTB 357
QCM option 359

 Index 811

P
partition control block (PDB) 591
PDA 594
PDB 591
permanent area
Phase (see under Module)

dump - name in storage 388
physical data record area (PDA) 594
physical work space (PWS) 595
PLOAD command 78, 79, 82, 83
PNCB 597
PNET

See networking
PNET BSC/CTC trace record 739
PNET node control block (PNCB) 597
PNET session establishment

by primary application 252
by secondary application 256
overview 252

PNET SNA trace record 739
PNET SSL driver control block (SDCB) 599
PNET SSL trace record 739
PNET TCP driver control block (TDCB) 599
PNET TCP trace record 739
PNODE DSECT=YES 553
presentation work area 564
priority conversion table 279
PVARY command 78, 79, 82
PWRSPL 656
PWS 595

Q
QCA 129
QCM 128
QRA 614
Queue control area (QCA) 337

Slot manager 338
queue file

access to active queue entry 101
add queue 96
browse task 100
class chain 91
command task 100
create task 100
delayed deletion 101
delete queue 98
free queue 98
free queue record chain 90
get in creation queue entry 102
get next queue entry 100
modify task 100
recovery 47
reserve queue 96
services 99

DBLK group allocation 99

queue file (continued)
services (continued)

DBLK group deallocation 99
Queue file formatting 99

update task 100
queue file server

get queue record 136
modify queue record 137
write queue record 137

queue record area 614

R
RCB 286

layout 287
reader task

logical 67
overview 66
physical 66
physical 3540 diskette 67
SYSIN tape 66

real storage cushion 125
virtual storage management 125

release 127
reserve 125
unchain 127

real storage management 123
receiver

abnormal termination 281
console 278
end of file processing 280
job 278
job trailer processing 280
normal termination 281
output 278
presentation service 283
processing of NMR records 280
spanned records 283

receiver work area 565
release real storage 125
release resource 123
release virtual storage 127
remote service

See services, remote
reserve real storage 124
reserve resource 123
reserve virtual storage 125
RJE,BSC trace record 739
RJE,SNA BIND format

See RJE/SNA, BIND format
RJE/BSC

I/O trace 737
LCB activity checking 298
line action 299
line control block (LCB) 621
line manager 298

812 VSE Central Functions V7R1 VSE/POWER DRM

RJE/BSC (continued)
list task - overview 4
monitor 303
overview 296
punch task - overview 4
reader 300
reader flow 300
writer 301
writer flow 302

RJE/SNA
application termination 316
BIND format 306, 309
compaction table control block (COCB) 636
control block chaining 330
control blocks and work areas 320
execution flow 329
host-workstation 310
inbound processing 314
initialization 305
interrelationship 304
interruption of data inbound 315
interruption of data outbound 315
list task - overview 4
logon processing 305
outbound processing 315
overview 303
protocols 316
punch task - overview 4
routines 316
session termination 316
SNA control block (SNCB) 637
SNA logical unit control block (LUCB) 638
SNA logon request control block (LRCB) 641
SNA message control block (MSCB) 620
SNA remote control block (RMCB) 642
SNA session request queue (SRQE) 644
SNA unit control block (SUCB) 645
SNA work area (WACB) 647
work area chaining 330

RMCB 642
routing code 144

S
SAS

See Spool Access Support
SCB 284, 684

byte codes 285
compression 284
decompression 284
layout 286

SDCB 599
SDT in SCIP exit 264
segment macro parameter list 629
Segmentation of spool output

command driven segmentation
PALTER ..SEGMENT= command 70

Segmentation of spool output (continued)
command driven segmentation (continued)

PSEGMENT command 70
count driven segmentation

* $$ LST/PUN RBS= 70
data driven segmentation

// SETPRT statement 70
* $$ JOB statement 70
* $$ LSTPUN statement 70

overview of execution writer segmentation 70
program driven segmentation

IPWSEGM macro 70
LFCB macro 70
SAS PUT Output Service segmentation

request 70
SEGMENT macro 122
SETPRT macro 70

tape spoling segmentation DISP=T
thru RBS= 70
thru SETPRT or LFCB macro 70
thru tape volume full 70

SEND/RECEIVE for PNET 267
service request block (SRB) 633
services

disk 138
get trace entry 142
interval timer service 141
message 127
queue file server 136
real storage management 123

real storage cushion 125
release 125
reserve 124

release resource 123
remote 142
reserve resource 123
resource management 123
tape 140
timer 141
validation 141, 142

session termination
by primary application 261
by secondary application 261, 263

SETPRT handling 73
shared remote table 336
shared system slot communication 631
SIA 686
SLOT 631
SNA session control block (SSCB) 635
SNCB 637
source library member element 650
source library work area 651
spanned record 277

layout 277
spanned records 283

network control records 284

 Index 813

spanned records (continued)
receiver handling 283

SPL 654
Spool Access Support

CTL function 352
GCM Function 363
GET BROWSE function 357

direct GET BROWSE in creation 358
restarting to active record 358

GET function 354
checkpointing 357
Get OPTB 357
Modify OPTB 357
Restarting 357

master task 344
overview 344
protocol 348
PUT function 358—363

checkpointing 362
restarting 362
segmentation 362

SAS user task 346
spool files of VSE/POWER

disk devices used for 8
Spool tape format

See also internal tape format
BACKUPnn/SAVEnn/PICKUPnn functions 77

SRB 633
SRCB 287

layout 288
SRQE 644
SSCB 635
storage

code organization of VSE/POWER 26
fixable area 26
organization 14
pageable area 26
partition layout 434
permanent area 26
requirements

real 15
virtual 14

structure 26
SVA part 26
SVA part of VSE/POWER 15

overview 15
storage control block (SCB) 684
storage requirements for VSE/POWER 6.1 795
SUCB 645
support of 3800

SETPRT handling 71
SVA part 15
system information area (SIA) 686

T
tape control block 687
tape functions

access macro IPW$OTP 164
BAM EOV processing 164
BAM labeled/unlabeled tape processing 164
open/close tape 164

tape service 140
task

conditionally dispatchable 63
detaching 64
execution processor 68
non-dispatchable 63
selection list 62
states 62
termination 64
unconditionally dispatchable 63

task control block (TCB) 690
task dispatch trace area 720
TBB 687
TCB 690

extension area for printers 613
task register save area 691

TCP/IP - PNET SSL Interface 221
TCP/IP - PNET TCP Interface 198
TD-Subtask

IDUMP support 118
IPW$$MX message modification 119
mainline 210
multiprocessor support 114, 118
overview 199
PEND command 175
PSTART command 179
PSTOP command 179

TD-Subtask Services
interface macros 219, 249
multiprocessor support 118
overview 199

TDCB 599
termination of VSE/POWER

abnormal 55
processing of 55

overview 54
transmitter 275

TIB 722, 723
time event scheduling 103, 106

wait for run subqueue 103
time event scheduling task (TES) 104
timer queue element 721
timer service 141
timer task

overview 335
time intervals 335

TQE 721

814 VSE Central Functions V7R1 VSE/POWER DRM

trace
overview 737
PNET BSC/CTC trace record 739
PNET BSC/CTC/TCP I/O logging 740
PNET SNA trace record 739
PNET SSL trace record 739
PNET TCP trace record 739
RJE,BSC trace record 739

trace information block 722
transmitter

abnormal termination 275
composer 276
console 276
job 273
normal termination 275
output 273
work area 567

U
UNBIND in SCIP exit 264
unchain virtual storage 127
user exit data table 723

V
validation service 141
validation services

See services, validation
VBCA 724
VDCB 725
virtual buffer control area 724
virtual storage control block 726
virtual storage management 125
VSCB 726
VSE/POWER

system dump of partition 741
VSE/POWER cancel codes 456
VSE/POWER disk dump program

overview 740
VSE/POWER private subtasks 2

overview 2
VSE/POWER Shared Spooling

command passing 341
message passing 341
overview 335
time intervals 335
timer task 335

VSE/POWER tasks 6
VTAM CLOSE

failure 252
PNET interface 252
subtask 251

VTAM CLSDST 259, 261, 264
failure 263

VTAM driver control block 725
VTAM exits

LOSTERM 264
NSEXIT 265
SCIP 263
TPEND 267
use by PNET 263

VTAM LOSTERM 261, 264
VTAM NSEXIT 265
VTAM OPEN

failure 251
subtask 251

VTAM OPNDST 252, 263
error 255

VTAM OPNSEC 252, 256
error 258

VTAM RECEIVE 270
VTAM SCIP exit 258, 263, 264

disabling 251
enable 251
successful enabling 251

VTAM SEND 268, 269
VTAM SEND exit 272
VTAM SESSIONC 252, 258, 264
VTAM SETLOGON

failure 251
START 251

VTAM SETLOGON QUIESCE
failure 251
request 251

VTAM TERMSESS 259, 261, 264
failure 263

VTAM TPEND exit 267
reason codes 267

W
WACB 647
wait control block (WCB) 727
WCB 727
write queue record 137
writer tasks

logical writer 74
overview 73
physical list and punch 73

WTO Macro 144
WTOR Macro 144

 Index 815

IBM®

File Number: S/370 9370-37
Program Number: 5686-CF7

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-6322-�7

	Notices
	Programming Interface Information
	Trademarks and Service Marks

	Preface
	Chapter 1. Introduction
	Purposes of VSE/POWER
	VSE/POWER Private Subtasks
	VSE/POWER Direct Access Files

	Communication with VSE/POWER
	VSE/POWER Operator Commands
	Job Entry Control Language
	Format of VSE/POWER Operator Messages

	Environmental Requirements
	Programming Requirements

	Storage Requirements and Allocations
	Virtual Storage
	Real Storage

	Hardware Supported
	Machine Requirements
	Devices Supported

	Chapter 2. Method of Operation
	VSE/POWER Linkage Conventions
	Register Conventions
	Interface Linkage
	Function Linkage
	Service Linkage

	Chapter 3. Program Organization
	Code Organization
	Storage Structure
	Code Structure
	Internal Macro Instructions

	Initialization and Termination
	Initialization of VSE/POWER
	VSE/POWER Startup
	Termination of VSE/POWER
	VSE/POWER Multitasking
	Task Initiation
	Task Selection
	Task Termination

	Reader, Execution Processor, and Writer Tasks
	Reader Tasks
	Execution Processor Tasks
	Writer Tasks (List and Punch)
	Offload Reader/Writer Tasks (IPW$$OF)

	Dynamic Partition Support
	Enabling Dynamic Partition Scheduling
	Driving Dynamic Partitions
	Tracking Dynamic Partition Allocation
	Attributes and Restrictions
	Load, Modify, and Display the Dynamic Partition Support
	Abnormal Termination with Dynamic Partitions
	Interplay of Dynamic Partition Scheduling Functions

	The Spooling Process
	Queue File Organization
	In-Storage Queue Principles
	Data File Organization
	Queue File and Data File Processing
	Time Event Scheduling

	Running in ESA-Mode
	Usage of ESA-Mode
	Usage of Access Registers
	Usage of Access Register in Modules
	Addressing Exception in Access-Register Mode

	Multiprocessor Support
	External Invocation and Function
	Internal Implementation Overview
	Internal Functional Specifications
	Internal Implemented Design

	Services
	Resource Management
	Real Storage Management
	Virtual Storage Management
	Message Service
	Queue File Server
	Disk Service
	Tape Service
	Timer Service
	Interval Timer Service
	Validation Service
	Remote Service
	Get Trace Entry
	Switch NP/PA Mode Service

	Miscellaneous Tasks and Functions
	Message Handler Overview
	Notify Processing
	Asynchronous Service
	IDUMP in Flight Function
	Open/Close Tape

	Command Processor
	Initiation of the Permanent Command Processor Task
	Initiation of the Temporary Command Processor Task
	Command Processor Organization
	Command Authorization Verification
	Command Processing Routines
	Command Processing Due to Operator Communication

	VSE/POWER Job Accounting
	Account File Processing

	VSE/POWER Networking Function
	PNET Initialization
	PNET Driver
	PNET Node Operations
	PNET BSC/CTC/TCP/SSL I/O Manager
	PNET TCP Interface to TCP/IP
	TCP/IP Driver Subtask (TD Subtask)
	PNET SSL Interface to TCP/IP
	TCP/SSL Driver Subtask (SD Subtask)
	PNET SNA Interface to VTAM
	PNET SNA Session Establishment
	PNET SNA Session Termination
	PNET SNA VTAM Exits
	PNET SNA SEND/RECEIVE Function
	PNET Transmitter
	PNET Composer
	PNET Receiver
	PNET Presentation Service
	PNET Buffer Service
	PNET Compression/Decompression
	PNET Multi-Leaving Format

	Remote Job Entry (RJE) Function
	RJE,BSC
	RJE,SNA

	Appendages
	Page Fault Appendage
	Attention Interface Appendage
	RJE,BSC and PNET,BSC/CTC Channel End Appendage
	Hot Reader Appendage
	SVC 0/3 Appendage
	SVC 90/91 Appendage
	Interval Timer Appendage
	JCL End-of-Job Appendage
	Appendage Summary

	VSE/POWER Shared Spooling Function
	Timer Task
	Queue Control Area (QCA)
	Command/Message Passing Between Sharing Systems

	VSE/POWER Spool-Access Support Interface
	Spool Access Support Master Task
	SAS User Task
	SAS Protocol

	External Device Support
	Device Service Task (DST)
	Orders from VSE/POWER (Outbound)
	Orders from the DDS (Inbound)

	Heartbeat Task
	Codes using REIPL Macro

	Chapter 4. Directory
	CSECT and Control Block Name List
	PHASE Name List
	Macro List
	Macro Shipables' List
	Programming Example Shipables' List

	Message Reference

	Chapter 5. Storage Layout and Data Areas
	The Layout of the SVA Part of VSE/POWER
	How to Locate the CAT

	The Storage Layout of the VSE/POWER Partition
	The Permanent Area
	The Fixable Area
	The GETVIS Area

	Account Control Block (ACCB)
	Accounting Record Layouts
	Assign/Unassign Work Space
	Asynchronous Service Anchor Block (ASAB)
	Asynchronous Service Control Section (ASCB)
	Asynchronous Service Work Element (ASWE)
	Buffer Control Word (BCW)
	Buffer Layout
	Cancel Codes of VSE/POWER
	Channel Command Word (CCW)
	Command Control Block (CCB)
	Command Processor Work Area (CPWA)
	Communicator Information Block (CIB)
	Class Table Entry
	Communicator Information Block 2 (CI2)
	Communicator Information Element (CIE)
	Application Communicator Information Element (ACIE)
	Control Address Table (CAT)
	Data Set Control Block
	Compaction Table Block (CMPT)
	Disk Management Block (DMB)
	DSECTS for Accounting (A-FILE ON FBA)
	Dynamic Partition Control Block
	Execution Processor Work Area
	External Device Control Block (EDCB)
	FCB Table (FCBCB)
	Function Management Header 3
	Generation Table (GNB) for VSE/POWER
	Initialization Processor Work Area (IP)
	Journal Communication Area (JCA)
	Logical Data Record Area (LDA)
	Logical Reader Work Area
	Logical Writer Work Space
	Message Control Block (MMB)
	Master External Device Control Block
	Module Control Block (MCB)
	Network Composer Work Area
	Network Compression Work Area
	Network Definition Table (NDT)
	Network Data Set Header Record (DSHR)
	Network Job Header Record (JHR)
	Network Job Trailer Record (JTR)
	Network Presentation Work Area
	Network Receiver Work Area
	Network Transmitter Work Area
	Network Transmitter Exit Parameter List
	Nodal Message Record (NMR)
	Node Control Block (NCB)
	Node Control Block Task Entry
	Open 3540 Diskette Work Space
	Output Exit Parameter List
	Output Parameter Definition Entry
	Output Parameter Text Block
	Output Parameter Processing Interface List
	Partition Control Block (PDB)
	Physical Data Record Area (PDA)
	Physical Work Space (PWS)
	3540 Physical Work Space
	PNET Control Block (PNCB)
	PNET TCP Driver Control Block (TDCB) and PNET SSL Driver Control Block (SDCB)
	Print Status Processor Work Area
	Printer TCB Extension Area
	Queue Record Area (QRA)
	Remote Message Control Block (MSCB)
	RJE Line Control Block (LCB)
	Segment Macro Parameter List
	Shared System Slot Communication (SLOT)
	Service Request Block (SRB)
	SNA Session Control Block for PNET (SSCB)
	SNA Compaction Table Control Block (COCB)
	SNA Control Block (SNCB)
	SNA Logical Unit Control Block (LUCB)
	SNA Logon Request Control Block (LRCB)
	SNA Remote Control Block (RMCB)
	SNA Session Request Queue (SRQE)
	SNA Unit Control Block (SUCB)
	SNA Work Area (WACB)
	Source Library Member Element (SLME)
	Source Library Work Area (SLWA)
	Spool Parameter List (SPL)
	Spool Access Support Parameter List (PWRSPL)
	SPL Checking Parameter List
	Spool Access Support Task Work Area
	Spool Environment Block
	Spool Environment Header (SEH)
	Spool Environment Record (SER)
	Storage Control Block (SCB)
	System Information Area (SIA)
	Tape Control Block (TBB)
	Task Control Block (TCB)
	TCB State
	TCB Task Register Save Area (TRSA)
	TCB
	Command Processor Control Block (CPB)
	Additional Linkage Register Save Area (LRSA)

	Task Dispatch Trace Area
	Timer Queue Element (TQE)
	Trace Information Block (TIB)
	User Exit Data Table
	Virtual Buffer Control Area (Prefix)
	VTAM Driver Control Block (VDCB)
	Virtual Storage Control Block (VSCB)
	Wait Control Block (WCB)

	Chapter 6. Diagnostic Aids
	General Debugging Hints
	Stand-alone Dump
	Identifying the VSE/POWER Partition
	Identifying the SVA Part of VSE/POWER
	Identifying Fixed Pages
	Identifying the Start of the Pageable Area
	Locating and Identifying Control Blocks, Tables, and Areas
	Identifying the Start of a CSECT
	Establishing the Level of a CSECT
	Determining the Active Routine and Analyzing Register Save Areas
	Analyzing Event Control Blocks (ECBs)
	Using Buffer Control Words
	Analyzing TCBS
	RJE,BSC and PNET Telecommunication Trace Facility
	PNET BSC/CTC/TCP I/O Logging on Console
	Hardware Error Recording
	VSE/POWER Disk Dump Program
	Establishing the Last Command Issued
	An Aid to Eliminate Functions
	Problems Related to VTAM

	System Dump Containing the VSE/POWER Partition

	Appendix A. VSE/POWER Status Bytes in the VSE/AF Supervisor
	Appendix B. Summary of ECB Usage (4 and 8-Byte)
	Appendix C. VSE/POWER Internal Macros
	Coding Aids
	Macro Notation
	Format of Internal Macros
	IPW$ALN - Align to Storage Boundary
	IPW$AJ# - Assign New VSE/POWER Job Number
	IPW$AQS - Add Queue Entry to Class Chain
	IPW$ATT - Attach VSE/POWER Task
	IPW$BUF - Invoke PNET Buffer Service
	IPW$CAF - Close Account File
	IPW$CLI - Close Logical Interface
	IPW$CPY - Provide Copyright
	IPW$CNC - Cancel VSE/POWER or VSE/POWER Task
	IPW$CTT - Perform Tape Control Operation
	IPW$DQS - Delete Queue Entry from Class Chain
	IPW$DET - Detach VSE/POWER Task
	IPW$DSD - Define Storage Descriptor
	IPW$FQS - Free Queue Entry
	IPW$GAM - Get Message and Send to Designated Person
	IPW$GAR - Get Account Record
	IPW$GDR - Get Data Record
	IPW$GLR - Get Logical Record
	IPW$GMS - Call General Message Service
	IPW$GQR - Get Queue Record
	IPW$GQS - Get Next Queue Entry
	IPW$GSL - GET SLI Record
	IPW$GTE - Get Trace Entry
	IPW$GTO - Issue TD-Subtask Message
	IPW$GTS - Issue SD-Subtask Message
	IPW$IAS - Invoke Asynchronous Service
	IPW$ICP - Invoke VSE/POWER Command Processor
	IPW$ICS - Invoke Common Services
	IPW$IDM - Invoke IDUMP of the VSE/POWER Partition
	IPW$IDS - Invoke Data Management Service Routines
	IPW$IIS - Invoke Print Status Processing Service
	IPW$IOM - Invoke I/O Monitor or SNA Send/Receive Routine
	IPW$IOC - Invoke Compaction Processing
	IPW$IPS - Invoke PNET Driver Routines
	IPW$IQS - Invoke Queue Management Service Routines
	IPW$IRY - Invoke Queue File / Account File Recovery
	IPW$ITP - TD-Subtask EZASMI Interface
	IPW$ITS - SD-Subtask EZASMI Interface
	IPW$ITQ - Invoke Maintain Wait for Run Subqueue
	IPW$IXS - Invoke Cross-Partition Services
	IPW$MQR - Modify Queue Record
	IPW$NTY - Notify User
	IPW$OAF - Open Account File for Read Mode
	IPW$OEF - Open 3540 Diskette File
	IPW$OLI - Open Logical Interface
	IPW$OPI - Invoke Output Parameter Processing Routine
	IPW$OTP - Open Tape Processing
	IPW$PAR - Write Account Record
	IPW$PDR - Put Data Record
	IPW$PLR - Put Logical Record
	IPW$RDC - Get Time of Day (Read Clock)
	IPW$RDD - Read Data Block from Disk
	IPW$RDQ - Read Queue Record from Disk
	IPW$RDT - Read Tape Record
	IPW$RET - Return to Caller
	IPW$RLR - Release Resource
	IPW$RLV - Release GETVIS Storage
	IPW$RLW - Release Fixed (Real) Storage
	IPW$RMS - Remote Message Service
	IPW$RQS - Reserve Queue Record
	IPW$RSR - Reserve Resource
	IPW$RSV - Reserve GETVIS Storage
	IPW$RSW - Reserve Fixed (Real) Storage
	IPW$SAV - Save Caller's Registers
	IPW$SRJ - Scan Reader JECL Statement
	IPW$SRM - Set Remote Mask
	IPW$SSJ - Call Parameter Checking Routine
	IPW$STM - Set Timer Interval
	IPW$SXJ - Scan Execution JECL Statement
	IPW$TDM - Switch Turbo Dispatcher Mode
	IPW$TTM - TD-Subtask Timer Interval Support
	IPW$TTS - SD-Subtask Timer Interval Support
	IPW$ULP - Update LUB/PUB Tables
	IPW$UNV - Unchain Virtual Storage Element
	IPW$VCA - Validate Command Authorization
	IPW$VDA - Validate Data Area Address
	IPW$WF[x] - Wait for VSE/POWER Event
	IPW$WQR - Write Queue Record
	IPW$WTD - Write Data Block to Disk
	IPW$WTO - Write to Operator
	IPW$WTQ - Write Queue Record Block to Disk
	IPW$WTR - Write to Operator with Reply
	IPW$WTT - Write Tape Record

	Appendix D. VSE/POWER Storage Requirements for Release 6.1
	List of Abbreviations
	Bibliography
	Glossary
	Index

