
IBM z/VSE

VSE Central Functions

VSE/VSAM User’s Guide and Application

Programming

Version 7 Release 1

SC33-8246-00

���

IBM z/VSE

VSE Central Functions

VSE/VSAM User’s Guide and Application

Programming

Version 7 Release 1

SC33-8246-00

���

Note !

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

xiii.

First Edition (March 2005)

This edition, which is an update of VSE/VSAM User’s Guide and Application Programming, VSE Central Functions 6.4,

SC33-6732-00, applies to Version 7 Release 1 of IBM VSE/VSAM, which is part of VSE Central Functions, Program

Number 5686-CF7, and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM VSE/VSAM for VM (Program Number 5686-081) is no longer available as an optional product with z/VSE 3.1.

All references to it have been removed from the VSE/VSAM technical documentation. Customers having a need to

run VSE/VSAM for VM should keep a copy of VSE/VSAM User’s Guide and Application Programming, VSE Central

Functions 6.4, SC33-6732-00, and VSE/VSAM Commands, VSE Central Functions 6.4, SC33-6731-00, as well as

VSE/ESA documentation through release 2.7.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the addresses given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address

your comments to:

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com

FAX (Germany): 07031-16-3456

FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1979, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures ix

Tables xi

Notices xiii

Programming Interface Information xiii

Trademarks and Service Marks xiv

About This Book xv

Who Should Use This Book xv

How to Use This Book xv

Where to Find More Information xv

Abbreviations xvii

Summary of Changes xix

New Information xix

Device Dependencies xix

Buffer Hashing xix

IDCAMS SNAP Command xix

Changed Functionality xix

Other Changes xix

Deleted Material xx

Chapter 1. Introduction to IBM

VSE/VSAM 1

Overview 1

Advantages 1

Functions of IBM VSE/VSAM 2

Concepts of Data Organization 4

File Types 4

Elements of Organization 5

Catalogs with VSE/VSAM 6

Indexes with VSE/VSAM 7

How to Communicate with VSE/VSAM 8

IDCAMS Commands 8

VSE/VSAM Macros 10

Job Control Parameters to Access VSE/VSAM

Files 11

z/VSE Interactive Interface 11

Chapter 2. Planning Information 13

Compatibility with IBM VSE/VSAM Version 2 . . 13

Overview of Environment and Requirements . . . 13

What to Consider 13

Partition Space for Non-SVA-Eligible Routines . . 13

Device Dependencies 14

Storage for VSE/VSAM 14

Space for Running in Virtual Mode 14

Space for Running in Real Mode 14

Partition Requirement for Buffers and Control

Blocks 14

Storage for the VSE/VSAM Space Management for

SAM Function 17

SAM Access Routines 17

Space for Running in Real Mode 17

Partition Requirement for Control Blocks and

Buffers 17

Partition Virtual Storage 18

GETVIS Requirements for Managed-SAM Access

to SAM ESDS Files 18

Storage for the ISAM Interface Program (IIP) . . . 18

Storage for IDCAMS Including the VSE/VSAM

Backup/Restore Function 18

VSE/VSAM Backup/Restore Function 19

Chapter 3. Operation and Job Control 21

IPL Command Specifications for VSE/VSAM . . . 21

Assigning a Device to the Master Catalog . . . 21

Defining the Lock File 21

Specifying the Number of Supervisor Buffers for

Channel Programs 22

Volume Mounting 22

Mounting a Volume Through Job Control

Specifications 22

Mounting a Volume Through Automatic

Assignment 22

Use of z/VSE Job Control Statements for

VSE/VSAM 23

Job Control Statements for Catalogs 23

Job Control Statements for Files 25

// DLBL Statement 26

Format of the DLBL Statement 27

File Disposition 29

// EXEC Statement 36

Note to Users of the VSE/VSAM Space

Management for SAM Function 37

Format of the EXEC Statement 37

// EXTENT Statement 39

Format of the EXTENT Statement 39

Using Job Control for Catalog Definition 40

Overview of Catalogs 40

Specifying the Master Catalog 41

Specifying a User Catalog 42

Specifying a Job Catalog 42

Search Sequence of Catalogs 44

Chapter 4. Tasks under VSE/VSAM . . . 47

Data and Space Management 47

About the VSE/VSAM Catalog 47

Defining VSE/VSAM Data Spaces on a Volume 48

Defining VSE/VSAM Files 48

About Volumes and VTOCs 48

Work Files on Virtual Disk 51

Preparations for Use 51

Restrictions 52

Transporting Files between Systems 52

© Copyright IBM Corp. 1979, 2005 iii

Transporting Catalog Information 52

Transporting Files between VSE/VSAM and

DFSMSdfp VSAM or DFSMS/MVS 52

Transporting Files between VSE/VSAM and

MVS/VSAM (not DFP) 52

Transporting Files between z/VSE Systems . . . 53

Catalog and File Migration 53

Definitions for Catalog Migration 53

Migrating Catalogs 55

Migrating VSE/VSAM Files to Another Device 55

NonVSAM Migration 57

Space Allocation through Modeling 57

Using an Object as a Model 57

About the MODEL Subparameter 58

Explicit Allocation Models 58

Explicit Noallocation Models 60

Implicit NOALLOCATION Models (Default

Models) 61

How VSE/VSAM Determines Which Parameters

to Use 62

Restrictions 63

Default Volumes 65

Chapter 5. Working With Compressed

Files 67

Introduction to VSE/VSAM Compression 67

Advantages 67

Activating VSE/VSAM Data Compression . . . 67

How VSE/VSAM Data Compression Works

Internally 68

Dictionary Creation 68

Compression States 69

Data Format of Records 69

How to Define the Compression Control Data Set 70

Which Data Set Types Are Eligible 71

Restrictions 71

The VSE/VSAM Compression Prediction Tool

(IKQCPRED) 72

Using IKQPRED 72

Method of Operation 73

Interpreting IKQCPRED Results 73

Chapter 6. Device Dependencies . . . 77

VSE/VSAM Support of Large DASD 77

Making Use of the Support 77

Migrating to Large DASD Using IDCAMS

Backup/ Restore 78

Performance Considerations (KSDS Only) . . . 78

Increased Size of the Catalog Index 79

Restrictions for VSE/VSAM Support of Large

DASD 79

New or Changed Fields in LISTCAT Output . . 79

Support for FBA Disk Devices (FBA and SCSI) . . 80

Technical Considerations 80

Restrictions 81

Virtual Tapes 82

Chapter 7. Optimizing the Performance

of VSE/VSAM 83

Number of Files Defined in a Catalog 83

Data Space Classification 83

Control Area (CA) Size 85

Minimum and Maximum CA Sizes 85

Performance Implications 86

Disk Storage Sizes 86

Control Interval (CI) Size 88

How to Specify 88

Data CI and Block Sizes 88

CI Size in a Data Component 89

CI Size in an Index Component 92

Key Compression 93

I/O Buffer Space (Using Non-Shared Resources) . . 94

Considerations 95

Buffer Specification 95

Buffer Allocation 96

I/O Buffer Space (Using Local Shared Resources) . . 99

Miscellaneous Notes on Buffer Allocation (LSR) 99

LSR Buffer Hashing 100

Preventing Deadlock in Buffer Contention 101

Multiple Volume Support 102

Key Ranges 102

Space Allocation 102

Examples: Allocation of Space on Multiple

Volumes 103

Space Allocation 108

Possible Options 108

NOALLOCATION 109

Data Protection and Integrity Options 110

Distributed Free Space 111

Loading a File 111

CI/CA Splits 114

Examples: CI/CA Splits 114

Index Options 120

Number of Index Records in Virtual Storage . . 120

Index and Data on Separate Volumes 121

Consideration for ECKD Devices 121

Key Ranges 121

Performance Measurement 121

Displaying Statistics About Buffer Pools . . . 122

Chapter 8. Data Protection and Data

Recovery 125

Data Protection 125

Passwords to Authorize Access 125

User Security-Verification Routine 128

Protecting Shared Data 129

Data Integrity 132

IDCAMS Commands and Command Options

for Data Integrity 132

Using the DEFINE SPACE Command 132

Using the DEFINE CLUSTER Allocation

Subparameter 133

Using the DEFINE USERCATALOG Command 133

Protecting VSE/VSAM Files and Volumes 134

Backup Considerations 134

Relationship of Catalog Entries to VSE/VSAM

Files and Volumes 135

Creating Backup Copies of VSE/VSAM Files 135

Creating Backup Copies of Volumes 136

Protecting VSE/VSAM Catalogs 137

Creating Backup Copies of Catalogs 137

iv VSE/VSAM User’s Guide and Application Programming

Rebuilding a Catalog 138

Guide to VSE/VSAM Recovery 139

About Data Organization and Recovery . . . 139

About the Recovery Process 139

Levels of Recovery 139

Tools for Data Integrity, Backup, and Recovery . . 139

Procedures for VSE/VSAM Recovery 143

File is Not Properly Closed 143

File is Inaccessible 145

Catalog is Unusable 146

Volume is Inaccessible 148

Quick Recovery 150

Procedure for Quick Recovery 150

Chapter 9. VSE/VSAM Support for

SAM Files 151

Overview 151

About SAM ESDS Files 151

About the VSE/VSAM Space Management for

SAM Function 152

Advantages in Using SAM ESDS Files 152

Dynamic Allocation 152

Simplified Job Control 152

Default Modeling 153

Implicit File Definition 153

Device Independence 153

IDCAMS Commands 153

Security and Integrity of Data 153

Data Recovery 153

Additional Functions Available for

Managed-SAM Access 154

Planning for Files 154

Work Files 154

Disposition 155

Extending Existing SAM ESDS Files 155

Levels of Migrating Data and Programs from SAM

to VSE/VSAM Control 155

Functions Available at the Various Migration

Levels 156

Creating a SAM ESDS File 157

Setting Up a Quantity of Space 157

Defining a SAM ESDS File 158

Explicit Define Cluster (Using the DEFINE

CLUSTER Command) 158

Implicit Define Cluster 161

Resetting and Reusing a Previously-Defined File 164

Using a SAM ESDS File 165

Access to a SAM ESDS File 165

Managed-SAM Access: Differences to

(Unmanaged) SAM Access 165

Using SAM ESDS Files: Restrictions 167

VSE/VSAM Access of SAM ESDS Files:

Considerations 169

The IDCAMS Commands for a SAM ESDS File . . 170

Implicit Deletion of a SAM ESDS File 173

Sample Programs and Job Streams 174

Example 1: Load a SAM ESDS File by Way of

Managed-SAM Access 174

Example 2: Implicit Define of a SAM ESDS File 176

Example 3: Define a Default Model SAM ESDS

File 177

Example 4: Define a Dynamic SAM ESDS File

and Access 177

Differences Between VSE/VSAM ESDS and SAM

ESDS File Format 179

How CIs are Formatted into CAs 179

Relationship of Physical and Logical Layout . . 181

Chapter 10. Using VSE/VSAM Macros 183

Groups of Macros 183

Declarative VSE/VSAM macros: 183

Macros to Share Resources Between Several

Files 183

Request Macros 183

Control Block Manipulation Macros 184

OPEN/CLOSE Macros 184

Relating a Program and the Data 184

ACB: Specifying the Access Method Control

Block 184

EXLST: Specifying the Exit List 185

RPL: Specifying the Request Parameter List . . 186

GENCB: Generating Control Blocks and Lists 187

Connecting and Disconnecting a Processing

Program and a File 187

OPEN: Connecting a Processing Program to a

File 187

CLOSE: Disconnecting a Processing Program

from a File 187

TCLOSE: Securing Records Added to a File . . 188

Manipulating and Displaying the Information

Relating Program and Data 188

MODCB: Modifying the Contents of Control

Blocks and Lists 188

SHOWCB: Displaying Fields of Control Blocks

and Lists 188

TESTCB: Testing the Contents of Control Blocks

and Lists 188

Requesting Data Transfer, Positioning, and Deletion

of Records 189

Displaying Catalog Information 189

SHOWCAT: Retrieving Information from a

Catalog 189

Sharing Resources Among Files and Displaying

Catalog Information 191

Data Set Name Sharing 192

Considerations 192

Processing 193

Specifying Manipulation Macros 193

Buffers and LSR Pools above 16MB Line of Storage 193

Chapter 11. Descriptions of

VSE/VSAM Macros 195

Syntax of VSE/VSAM Macros 195

VSAM Executable Macros and Their Mode

Dependencies 196

The ACB Macro 196

Format of the ACB Macro 197

OPEN/CLOSE/TCLOSE Message Area 204

The BLDVRP Macro 207

Deciding How Big a Pool to Provide 207

Displaying Information about an Unopened File 207

Contents v

Displaying Statistics about a Buffer Pool . . . 207

Format of the BLDVRP Macro 208

Return Codes from BLDVRP 210

Connecting a File to a Resource Pool 210

Restrictions 210

The CLOSE Macro 211

Format of the CLOSE Macro 211

The DLVRP Macro 212

Format of the DLVRP Macro 212

Return Codes from DLVRP 213

The ENDREQ Macro 213

Format of the ENDREQ Macro 214

The ERASE Macro 214

Format of the ERASE Macro 214

The EXLST Macro 214

Format of the EXLST Macro 215

EODAD Exit Routine to Process End-of-File . . 216

EXCPAD Exit Routine 217

JRNAD Exit Routine to Journalize Transactions 218

LERAD Exit Routine to Analyze Logic Errors 220

SYNAD Exit Routine to Analyze Physical Errors 220

The GENCB Macro 221

Format of the GENCB Macro 222

Examples of the GENCB Macro 223

The GET Macro 224

Format of the GET Macro 224

The MODCB Macro 226

Format of the MODCB Macro 226

Examples of the MODCB Macro 227

The OPEN Macro 228

Format of the OPEN Macro 228

Return Codes from OPEN 229

The POINT Macro 229

Format of the POINT Macro 230

The PUT Macro 230

Format of the PUT Macro 231

The RPL Macro 231

Format of the RPL Macro 232

Specifying Processing Options for a Request . . 238

The SHOWCAT Macro 246

Format of the SHOWCAT Macro 246

Return Codes from SHOWCAT 249

The SHOWCB Macro 251

Format of the SHOWCB Macro 252

Keywords of the ACB, EXLST, and RPL Macros 253

Length of a Control Block or List 254

Attributes of an Open File 254

Example: The SHOWCB Macro 255

Example: Statistics on Use of LSR Buffer Pools 256

The TCLOSE Macro 257

Format of the TCLOSE Macro 257

The TESTCB Macro 257

Format of the TESTCB Macro 258

Operands of the ACB, EXLST, and RPL Macros 259

Length of a Control Block or List 259

Attributes of an Open File or Index 260

The WRTBFR Macro 262

Managing I/O Buffers 262

Deferring Write Requests 262

Relating Deferred Requests by Transaction ID 263

Writing Buffers Whose Writing Has Been

Deferred 263

Format of the WRTBFR Macro 264

Examples: ACB, EXLST, and RPL Macros 265

Specifying VSE/VSAM Control Blocks 265

JCL to Open and Process a File 266

Examples of Request Macros 267

How to Retrieve a Record: GET Macro 268

How to Position for Subsequent Sequential

Access: GET and POINT Macros 273

How to Chain Request Parameter Lists and

Terminate a Request: ENDREQ Macro 276

How to Store a Record: PUT Macro 278

How to Update a Record: GET and PUT Macros 282

How to Delete a Record: GET and ERASE

Macros 285

How to Use Extended User Buffering: GET and

PUT Macros 287

Current User Buffering Support 287

Extended User Buffering Support 288

Using Extended User Buffering 288

Errors 289

Return Codes of Request Macros 289

Return Codes from the Control Block Manipulation

Macros 291

List, Execute, and Generate Forms of the Control

Block Manipulation Macros 291

List and Execute Forms 291

Generate Form 292

Examples of the List, Execute, and Generate

Forms 292

Appendix A. Operand Notation and

Parameter Lists for VSE/VSAM

Macros 295

Operand Notation for VSE/VSAM Macros . . . 295

GENCB Macro Operands 297

MODCB Macro Operands 298

SHOWCB Macro Operands 299

TESTCB Macro Operands 300

BLDVRP Macro Operands 302

DLVRP Macro Operands 302

SHOWCAT Macro Operands 303

WRTBFR Macro Operands 303

Parameter Lists for VSE/VSAM Macros 303

The GENCB Parameter List 304

The MODCB Parameter List 306

The SHOWCB Parameter List 308

The TESTCB Parameter List 309

The BLDVRP Parameter List 312

The SHOWCAT Parameter List 313

Appendix B. Invoking IDCAMS from a

Program 315

Invoking Macro Instructions 315

Explanation 316

User I/O Routines 317

Appendix C. Advantages of the ISAM

Interface Program (IIP) 321

vi VSE/VSAM User’s Guide and Application Programming

Comparison of VSE/VSAM and ISAM 321

Differences Between ISAM and VSE/VSAM . . 321

VSE/VSAM Functions That Go Beyond ISAM 322

Preparations and Using the ISAM Interface

Program 323

Step 1: Consider Restrictions in the Use of IIP

and VSE/VSAM 324

Step 2: Define a VSE/VSAM File 324

Step 3: Load the VSE/VSAM File 325

Step 4: Changing ISAM Job Control Statements 326

What the ISAM Interface Program Does 326

Appendix D. Compatibility With Other

Products 329

Portability of VSE/VSAM Files to DFSMSdfp

VSAM 329

FBA Support 329

Dedicated VSE/VSAM Volume 329

Data Space Classification 329

Default Models 330

Default Volumes 330

Multiple Volume Ownership 330

Catalog Check Services 330

Backup/Restore 330

Device Dependency 331

VSE/VSAM Data Compression 331

Compatibility of VSE/VSAM with DFSMSdfp

VSAM 331

Similarities between VSE/VSAM and ACF/VTAM 331

Appendix E. VSE/VSAM Labels 333

Types of VSE/VSAM Labels 333

Volume Label 333

Data Space Label 333

Space Continuation Label 334

VTOC Label 334

Location of Labels 334

Volume Layouts 334

Label Information Area 335

VTOC Label Processing 335

VSE/VSAM Data Spaces 335

VSE/VSAM Files 336

VTOC Labels for FBA Devices 336

VSE/VSAM Data Space 337

VSE/VSAM Files 339

Job Stream Examples 340

Example - Define Data Spaces 341

Example - Define a File in a Catalog 343

Example - Define a Unique File 343

Example - Process a File 343

Appendix F. Diagnosis Tools 345

Catalog Check Service Aid (IKQVCHK) 345

In Case of Errors 346

How to Run a Check 346

Examples of Error Messages 346

Output of a Check 348

SNAP Dump (IKQVEDA) 350

How to Run a SNAP Dump 351

Example: SNAP Dump 0001 353

Maintaining VTOC and VOL1 Labels on Disk

(IKQVDU) 355

How to Run the IKQVDU 355

Error Message and Codes (from IKQVDU) . . 359

Glossary 363

Related IBM Manuals 371

IBM z/VSE 371

Various 371

Index 373

Contents vii

viii VSE/VSAM User’s Guide and Application Programming

Figures

 1. ESDS File Format: Records Stored as Received 4

 2. KSDS File Format: Records Stored in Key Field

Sequence 4

 3. RRDS File Format: Fixed-Length Records Stored

by Record Number 5

 4. VRDS File Format: Variable-Length Records

Stored by Record Number 5

 5. VSE/VSAM File Type Structures 6

 6. Example: Two Alternate Indexes for a

Key-Sequenced File 8

 7. Partition Requirements for Control Blocks and

Buffers (with NSR) 15

 8. Partition Requirements for Control Blocks and

Buffers (with LSR) 16

 9. How VSE/VSAM Allocates Buffers 17

10. Disposition: Values and Applicability 28

11. Disposition: Meaning of Values 29

12. VSE/VSAM Access: OPEN Disposition 31

13. Managed-SAM Access: OPEN Disposition --

OUTPUT/INPUT 32

14. Managed-SAM Access: OPEN Disposition --

WORKxxxx 33

15. VSE/VSAM Access: CLOSE Disposition 35

16. Managed-SAM Access: CLOSE Disposition 36

17. Relationship of Catalogs and Files 40

18. // DLBL Specifications and Search Sequence

of Catalogs 45

19. Explicit Allocation Model 58

20. Specifying the MODEL Parameter at the

CLUSTER Level Only 60

21. Explicit NOALLOCATION Model 61

22. Implicit NOALLOCATION Models 62

23. The Four Compression States of a Compressed

Cluster 69

24. Sample IKQCPRED Output 73

25. Classification of Data Space 84

26. How VSE/VSAM Computes Physical Block

Size 89

27. Relationship of CI Size to Physical Block Size

for Data Component 91

28. Migration from SAM Control to VSE/VSAM

Control 156

29. Valid Combinations of Access Methods and

File Types 156

30. Example of CA Format Using a VSE/VSAM

Entry-Sequenced File 180

31. Example of Non-CA Format Using a SAM

ESDS File 181

32. Comparison of a VSE/VSAM Block to a SAM

Logical Block 182

33. Relationship of Catalog Entries 190

34. GENCB Macro Examples 224

35. MODCB Macro Examples 228

36. Example of an RPL Chain Built by Specifying

the NXTRPL Operand 235

37. Summary of Processing Options for Keyed

and Addressed Access 239

38. Example of Backward Sequential Retrieval

through a Path with Non-Unique Alternate

Keys 241

39. Format of the SHOWCAT Work Area 250

40. SHOWCB Macro Example 256

41. SHOWCB Macro Example 256

42. TESTCB Macro Examples 262

43. Example of Specifying Control Blocks for a

File 265

44. Example of JCL Needed to Open and Process

a File 267

45. Request Macro Example 1: Keyed-Sequential

Retrieval 268

46. Request Macro Example 2: Skip-Sequential

Retrieval 269

47. Request Macro Example 3:

Addressed-Sequential Retrieval 270

48. Request Macro Example 4: Keyed-Direct

Retrieval 272

49. Request Macro Example 5: Addressed-Direct

Retrieval 273

50. Request Macro Example 6: Keyed Positioning

with POINT 274

51. Request Macro Example 7: Switching from

Direct to Keyed-Sequential 275

52. Request Macro Example 8: Chaining Request

Parameter Lists 276

53. Request Macro Example 9: Giving up

Positioning for Other Request 277

54. Request Macro Example 10: Keyed-Sequential

Insertion 278

55. Request Macro Example 11: Skip-Sequential

Insertion 280

56. Request Macro Example 12: Keyed-Direct

Insertion 281

57. Request Macro Example 13:

Addressed-Sequential Addition 282

58. Request Macro Example 14: Keyed-Sequential

Update 283

59. Request Macro Example 15: Keyed-Direct

Update 284

60. Request Macro Example 16:

Addressed-Sequential Update 285

61. Request Macro Example 17: Keyed-Direct

Deletion 286

62. Request Macro Example 18:

Addressed-Sequential Deletion 287

63. Examples of the List and Execute Form 292

64. Example of the Generate Form 293

65. Processor Invocation Argument List from a

Program 316

66. Arguments Passed to and from a User I/O

Routine 318

67. Using the ISAM Interface Program 327

© Copyright IBM Corp. 1979, 2005 ix

68. Volume Layouts of VSE/VSAM Files 335

69. Examples: Defining VSE/VSAM Data Spaces 342

70. Example: Defining a VSE/VSAM File

Suballocated from a Data Space 343

71. Example: Defining a Unique VSE/VSAM File

(File-ID MSTRFILE) 343

72. Example: Processing a VSE/VSAM File with

an Assembler Program 344

73. VSE/VSAM Diagnosis Tools 345

74. Example: Key-Range Names not Matching 347

75. Example: Incorrect Association Group

Occurrence 348

76. Example: Output from the Catalog Check

Service Aid (IKQVCHK) 348

77. Low-Key-Range Catalog Records and Codes 350

78. Example: SNAP Dump Output 355

79. Display of IKQVDU Functions 357

80. Explanation to IKQVDU Functions 358

x VSE/VSAM User’s Guide and Application Programming

Tables

 1. // DLBL Statement Required for Job Catalogs

and User Catalogs 25

 2. Job Control Statements Required for Files 25

 3. Modeling of DEFINE Parameters 63

 4. Minimum CI Sizes Depending on Key Length 79

 5. Minimum and Maximum CA for Generic FBA

Devices 81

 6. Disk Storage Sizes for IBM CKD Devices 87

 7. Disk Storage Sizes for IBM FBA (and SCSI)

Devices 87

 8. Register Settings on Passing Control to

Authorization Routine 129

 9. Tools for Integrity, Backup, and Recovery 140

10. VSAM Macros and Their Mode Dependencies 196

11. ERREXT Parameter List for ISAM Programs

with IIP 327

12. FilenameC with IIP when IOROUT=ADD,

RETRVE, or ADDRTR 328

13. FilenameC with IIP when IOROUT=LOAD 328

© Copyright IBM Corp. 1979, 2005 xi

xii VSE/VSAM User’s Guide and Application Programming

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of

the intellectual property rights of IBM may be used instead of the IBM product,

program, or service. The evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the

responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement. IBM accepts

no responsibility for the content or use of non-IBM Web sites specifically

mentioned in this publication or accessed through an IBM Web site that is

mentioned in this publication.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Deutschland GmbH

Department 0790

Pascalstr. 100

70569 Stuttgart

Germany

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

Programming Interface Information

This manual is intended to help the customer in efficiently using:

v The major facilities of the IBM VSE/Virtual Storage Access Method (VSE/VSAM).

v VSE/VSAM macro instructions to process data. To use the VSE/VSAM macros,

you must be familiar with the High Level Assembler for MVS & VM & VSE (see

High Level Assembler for MVS & VM & VSE Language Reference and High Level

Assembler for MVS & VM & VSE Programmer’s Guide).

It also documents intended Programming Interfaces that allow the customer to

write programs to obtain the services of VSE/Virtual Storage Access Method.

Such information is enclosed in brackets as follows:

© Copyright IBM Corp. 1979, 2005 xiii

Programming Interface Information

End of Programming Interface Information

Trademarks and Service Marks

The following terms are trademarks of International Business Machines

Corporation in the United States or other countries, or both:

ACF/VTAM

DFSMSdfp

DFSMS/MVS

ECKD

Enterprise Storage Server

Enterprise System Architecture/390

eServer

ESCON

IBM

SQL/DS

S/390

VSE/ESA

VTAM

z/Architecture

z/OS

zSeries

z/VM

xiv VSE/VSAM User’s Guide and Application Programming

About This Book

This book contains guidance information for using the functions that are available

with the IBM VSE/Virtual Storage Access Method (VSE/VSAM). It describes the major

facilities of the program and how to use them efficiently.

This book explains concepts of VSE/VSAM. Furthermore, it includes information

about:

v Planning for VSE/VSAM.

v Using various diagnosis tools.

v Using VSE/VSAM macros.

Who Should Use This Book

This book is intended for the VSE/VSAM application programmer and for the end

user.

How to Use This Book

v Conceptual Information:

If you want basic information about VSE/VSAM, refer to Chapter 1, “Introduction

to IBM VSE/VSAM,” on page 1.

v Requirements and Planning:

If you need to know about VSE/VSAM requirements, or want to plan and

calculate storage space, refer to Chapter 2, “Planning Information,” on page 13.

If you are responsible for planning the protection of data at your installation, you

should acquaint yourself with Chapter 8, “Data Protection and Data Recovery,”

on page 125.

v For information on VSE/VSAM macros:

Chapter 10, “Using VSE/VSAM Macros” describes how to use the VSE/VSAM

macros.

Chapter 11, “Descriptions of VSE/VSAM Macros” shows the format for each

VSE/VSAM macro and the meaning of each parameter.

Appendix A, “Operand Notation and Parameter Lists for VSE/VSAM Macros”

shows how to specify operands and how to use parameter lists of the various

VSE/VSAM macros.

Where to Find More Information

v VSE/VSAM Commands, SC33-8245

z/VSE is the successor to IBM’s VSE/ESA product. Many products and functions

supported on z/VSE may continue to use VSE/ESA in their names.

Please be aware that the z/VSE operating system can execute in 31-bit mode only. It

does not implement z/Architecture, and specifically does not implement 64-bit mode

capabilities. The z/VSE operating system is designed to exploit select features of IBM

eServer zSeries hardware.

© Copyright IBM Corp. 1979, 2005 xv

gives an overview of and detailed information on the IDCAMS utility program

(how to create and maintain files).

v z/VSE Messages and Codes, SC33-8226, SC33-8227, SC33-8228

lists VSE/VSAM messages and their explanations.

For a list of all the manuals mentioned in this book, refer to “Related IBM

Manuals” on page 371.

z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date

information about VSE-related products and services, new z/VSE functions,

and other items of interest to VSE users.

You can find the z/VSE home page at:

http://www.ibm.com/servers/eserver/zseries/zvse/

xvi VSE/VSAM User’s Guide and Application Programming

Abbreviations

The following abbreviations are used in this book:

ACB Access control block

ACF Advanced Communications Function

AIX Alternate index

ASA American Standards Association

ASCII American National Standard Code for Information Interchange

ASI Automated system initialization

BG Background

CA Control area

CCDS Compression control data set

CCW Channel command word

CI Control interval

CIDF Control information definition field

CKD count-key-data (device)

CP Control program

CPU Central processing unit

CRA Catalog recovery area

DFSMSdfp Data Facility Storage Management Subsystem Data Facility Product

(MVS)

DLBL Disk label

DLF Define lock file

DOS Disk Operating System

DSF Device Support Facilities

DTF Define the file

EBCDIC Extended binary coded decimal interchange code

ECKD Extended count key data

EOF End of file

EOV End of volume

ESA Enterprise Systems Architecture

ESCON Enterprise systems connection

ESS Enterprise Storage Server

ESDS Entry-sequenced data set

EXCP Execute channel program

FBA Fixed-block-architecture (device)

HALCRBA High allocated relative byte address

ICCF Interactive Computing and Control Facility

ICF Integrated Catalog Facility

ID Identifier

IIP ISAM Interface Program

IPL Initial program load

ISAM Indexed-sequential access method

ISO International Standards Organization

JCL Job control language

JIB Job information block

KB Kilobyte (1024 bytes)

KSDS Key-sequenced data set

LSR Local shared resources

LU Logical unit

MB Megabyte (1,048,576 bytes)

MSHP Maintain system history program

MVS Multiple Virtual Storage

© Copyright IBM Corp. 1979, 2005 xvii

NSR Non-shared resources

RBA Relative byte address

RDF Record definition field

RL Record length

RRDS Relative record data set

SAM Sequential Access Method

SCSI Small Computer Systems Interface

SDL System directory list

SEOF Software end-of-file

SIO Start I/O

SP System Package

SVA Shared virtual area

UPSI Use program switch indicator

VM Virtual machine

VRDS Variable-length relative-record data set

VSAM Virtual Storage Access Method

VSE Virtual Storage Extended

VTAM Virtual Telecommunications Access Method

VTOC Volume Table of Contents

XA Extended Architecture

z/VSE zSeries VSE

Abbreviations

xviii VSE/VSAM User’s Guide and Application Programming

Summary of Changes

For a complete overview of the functions that are new with z/VSE, refer to z/VSE

Planning, SC33-8221.

New Information

This section summarizes information that has been added since the previous

edition of the manual. Some of these functions were introduced in previous

VSE/ESA releases and have been documented in the respective Release Guide.

Device Dependencies

Information on support for Large DASD and SCSI disk is included in a new

chapter entitled Chapter 6, “Device Dependencies,” on page 77.

Buffer Hashing

For more information, refer to “LSR Buffer Hashing” on page 100.

IDCAMS SNAP Command

The IDCAMS SNAP command allows fast copying of a volume residing on an IBM

Enterprise Storage Server (ESS), and containing a VSE/VSAM master or user

catalog, by exploiting the ESS FlashCopy functionality. If a removable-media

backup (such as to tape) is required, this can be performed from the “snapped”

copy of the catalog, significantly reducing the time data sets are not available to

online processing. It also ensures a completely synchronized backup, since none of

the files in the catalog will be changed during the backup process. For more

information, refer to VSE/VSAM Commands.

Changed Functionality

This section summarizes information on modified functionality.

v On any device, the definition of KSDS or VRDS files with the REPLICATE

parameter, which causes each index record to be written on a track as many

times as it will fit, is no longer supported. This was originally employed to

reduce rotational delay and provide a possible performance improvement. With

the current hardware architecture and widespread use of cache, this

consideration is no longer valid. If this parameter is specified in an IDCAMS

DEFINE job, the parameter will be rejected. Files that were backed up with

IDCAMS BACKUP and defined with the REPLICATE parameter will be restored

with a replicated index. Existing files defined with the REPLICATE parameter

will continue to be supported.

Other Changes

This section summarizes miscellaneous changes:

v Update to reflect software rebranding (such as z/VSE, z/OS).

v Clarification of the DISP parameter of the // DLBL job control statement.

© Copyright IBM Corp. 1979, 2005 xix

Deleted Material

Information on the following has been deleted from this manual:

v VSE/VSAM for VM (Program Number 5686-0819), which is no longer available

as of z/VSE 3.1.

v The catalog recovery function, which is no longer supported:

– Catalog recovery area (CRA)

– IDCAMS commands

- IMPORTRA

- EXPORTRA

- RESETCAT

- LISTCRA
– RECOVERABLE parameter

v The following additional parameters, which are no longer supported:

– IMBED

– REPLICATE
v Year 2000 considerations

References continue to be made to the catalog recovery function and to the

indicated parameters with respect to existing structures originally defined using

these parameters.

xx VSE/VSAM User’s Guide and Application Programming

Chapter 1. Introduction to IBM VSE/VSAM

This Chapter ...

v Summarizes the advantages of using the IBM VSE/Virtual Storage Access

Method (VSE/VSAM).

v Highlights the use of programs and functions of VSE/VSAM.

v Provides you with conceptual information on physical file organization,

and the elements that are used in managing and processing the files.

v Gives you an outline on the various means for communicating with

VSE/VSAM.

For information on requirements and compatibility of VSE/VSAM, refer to

Chapter 2, “Planning Information,” on page 13.

Overview

IBM VSE/VSAM is an access method for the indexed or sequential processing of

records on direct access devices. Records can be of fixed-length or variable-length.

VSE/VSAM is the preferred file management system for VSE environments.

Note: If you presently have SAM or ISAM files, you can convert such files to the

VSE/VSAM format.

VSE/VSAM can handle:

v Batch and online processing

v Direct and sequential access

v Access by key, record number, or address

v Intermixed types of processing in a common data base

VSE/VSAM provides the following means of communication:

v The IDCAMS utility program. You use IDCAMS commands to create and

maintain VSE/VSAM files on disk, independently of a specific program.

v The VSE/VSAM macros. You use the macros for processing such created files

from a program.

Advantages

Central Control

You can centrally control all the VSE/VSAM files at your installation, because all

information about files and their storage space is collected in VSE/VSAM catalogs.

In the catalogs, you can define and delete files, and you can change information

about the files.

Data Protection and Integrity

You can control the access to data by assigning passwords to various objects (for

example, to files and catalogs).

© Copyright IBM Corp. 1979, 2005 1

Also, you can protect your data from accidental loss or destruction by using the

VSE/VSAM Backup/Restore Function. This function allows you to easily store data on

tape or disk and call it back.

Device Independence

You simply set aside an area of space to be used exclusively by VSE/VSAM. From

this space, VSE/VSAM selects whatever space is needed for a file when it is

defined. Space allocation is dynamic; if a file or catalog must be extended,

VSE/VSAM allocates more space to it.

Portability of Data Between Systems

VSE/VSAM uses a record format that is common to the IBM operating systems

z/VSE, z/VM, and z/OS

1. Therefore, but with some exceptions, VSE/VSAM files

are portable to MVS/VSAM. You can get full portability for files and volumes by

using only those commands, file types, devices, and programming interfaces that

are supported by all environments (z/VSE, z/VM, and z/OS). For information on

portability requirements, refer to Appendix D, “Compatibility With Other

Products,” on page 329.

To move files between different operating systems, you can use the

EXPORT/IMPORT commands of the IDCAMS utility program. Communication with

VSE/VSAM is essentially the same for the z/VSE, z/VM, and z/OS operating

systems, except for job control.

Ease of Conversion from SAM or ISAM to VSE/VSAM

To take advantage of VSE/VSAM processing capabilities, you can convert SAM

(sequential access method) files and ISAM (indexed sequential access method) files

to VSE/VSAM format:

v If you have SAM files, you can use the VSE/VSAM Space Management for SAM

Function to convert the files. Then, you can use commands of the IDCAMS utility

program to manipulate the converted files. For an overview, see below; for more

details, refer to Chapter 9, “VSE/VSAM Support for SAM Files,” on page 151.

v Your existing ISAM programs can use the ISAM Interface Program (IIP) to process

the files. For further considerations, refer to Appendix C, “Advantages of the

ISAM Interface Program (IIP),” on page 321.

Functions of IBM VSE/VSAM

With VSE/VSAM, the following functions are included:

v VSE/VSAM Space Management for SAM Function

v VSE/VSAM Backup/Restore Function

VSE/VSAM Space Management for SAM Function

You can use this function to manage your SAM files, including most system work

files.

Use the function to convert a SAM file into a SAM ESDS file by placing the SAM

ESDS file into VSE/VSAM space. Then, the SAM ESDS files can be accessed by

SAM macros as well as by VSE/VSAM macros.

The VSE/VSAM Space Management for SAM Function allows you to:

v Define and delete a SAM ESDS file in VSE/VSAM space. Use IDCAMS

commands, or define/delete implicitly at OPEN/CLOSE time.

1. The principal component of z/OS is MVS; references to MVS in this book should be understood as meaning the MVS element of

the z/OS operating system.

VSE/VSAM Overview

2 VSE/VSAM User’s Guide and Application Programming

v Access a SAM ESDS file.

For files in CI-format, use DTFSD and DTFCP with DISK=YES.

For files that are either in CI-format or non-CI-format, use DTFPH for disk with

MOUNTED=SINGLE.

SAM access is provided for all CKD and FBA devices that are supported by

VSE/VSAM.

v Allocate dynamic secondary space during creation or extension of a SAM ESDS

file.

v Access a SAM ESDS file through the VSE/VSAM macro ACB (that is, native

VSE/VSAM) for files in CI-format.

An existing VSE/VSAM program that processes a VSE/VSAM ESDS file can

access a SAM ESDS without change (except for extending the file).

VSE/VSAM Backup/Restore Function

You can use this function to back up VSE/VSAM files to magnetic tape or disk

devices, and restore the files again into a VSE/VSAM data set. You can use the two

IDCAMS commands BACKUP and RESTORE.

Use the function to:

v Write and read data sets as follows:

– Write from disk to magnetic tape or disk (BACKUP).

– Read from magnetic tape or disk to disk (RESTORE).
You can perform these operations for the following VSE/VSAM objects:

– KSDS files

– ESDS files

– RRDS files

– VRDS files

– Alternate indexes

– SAM ESDS files in CI format

– Paths
v Handle several VSE/VSAM files with a single command, either with a generic

name or as files of one catalog.

v Restore VSE/VSAM files to locations, volumes, and device types that are

different from those where the files were before.

v Exclude files from a collective back up or restore operation.

v Tune the performance of VSE/VSAM by specifying the size of the buffers in the

BACKUP command, and the number of buffers in both the BACKUP and

RESTORE commands.

Also, the VSE/VSAM Backup/Restore Function allows you to:

v Back up and restore empty objects, where an empty object may be either a:

– VSE/VSAM object defined with NOALLOCATION (such as a default model

or a dynamic file), or

– VSE/VSAM cluster that has not been loaded since being defined or reset.
v Change the allocation size for the data component of a file at restoration. You

can specify allocation size in device-independent units by using the RECORDS

parameter when the cluster is defined to facilitate restoration of objects.

v Change the index CI-size at restoration.

VSE/VSAM Overview

Chapter 1. Introduction to IBM VSE/VSAM 3

Note: You cannot process magnetic tape files that were created by the EXPORT

command with RESTORE, or magnetic tape files that were created by

BACKUP with the IMPORT command. REPRO files can only be processed

by using REPRO.

Concepts of Data Organization

The following provides you with basic information (terminology and concepts)

with which you have to be familiar to understand the information in other parts of

this book.

File Types

IBM VSE/VSAM supports four types of physical file organization:

v ESDS (Entry-sequenced data set)

v KSDS (Key-sequenced data set)

v RRDS (Relative-record data set)

v VRDS (Variable-length relative-record data set)

These files differ in the record lengths they allow and in the sequence in which

they contain the records:

 Formats of Files

The following figures show the file organization (or file format) for the different

file types:

┌─────┬───────────────────┬────────────────────────┐

│Type │ Record Length │ Sequence by │

├─────┼───────────────────┼────────────────────────┤

│ESDS │ Fixed or variable │ Entry │

│KSDS │ Fixed or variable │ Key field │

│RRDS │ Fixed only │ Record number or entry │

│VRDS │ Fixed or variable │ Record number or entry │

└─────┴───────────────────┴────────────────────────┘

┌─────────┬──────────────┬───────┬─────────┬───────┬─

│ First │ Second │ Third │ Fourth │ Fifth │....

│ Record │ Record │ Record│ Record │ Record│

└─────────┴──────────────┴───────┴─────────┴───────┴─

Figure 1. ESDS File Format: Records Stored as Received

┌─────────┬─────────┬──────────┬───────────┬─────────┬────────┐

│ │ │ │ │ │ │

│ Data │ Data │ Data │ Data │ Data │ Data │

│ │ │ │ │ │ │

├───────┐ ├───────┐ ├────────┐ ├─────────┐ ├───────┐ ├──────┐ │

│ Key │ │ Key │ │ Key │ │ Key │ │ Key │ │ Key │ │

│ Albert│ │ Charl │ │ Collin │ │ Jenny │ │ Ria │ │ Vicky│ │

└───────┴─┴───────┴─┴────────┴─┴─────────┴─┴───────┴─┴──────┴─┘

Figure 2. KSDS File Format: Records Stored in Key Field Sequence

VSE/VSAM Overview

4 VSE/VSAM User’s Guide and Application Programming

Elements of Organization

Data Space

For the data that you want to include in VSE/VSAM files, you have to define

VSE/VSAM data space. You define the space on a disk volume for exclusive use by

VSE/VSAM. From this space, VSE/VSAM selects whatever room (control area) is

needed for a file when it is defined. VSE/VSAM allocates space dynamically; that

is, if a file or a catalog must be extended, VSE/VSAM allocates the space as

required.

The VSE/VSAM data space you define is owned by a catalog. You establish the

ownership when defining a catalog or data space.

Control Area (CA)

For a definition of “control area”, refer to the “Glossary” on page 363.

A file occupies one or more control areas (CAs). Note that:

v For count-key data (CKD) devices, a CA cannot be larger than a cylinder and

not smaller than a track. For details, refer to Table 6 on page 87.

v For every type of fixed block architecture (FBA) device, specific maximum and

minimum CA-sizes exist. For details, refer to Table 7 on page 87.

VSE/VSAM determines the CA-size for a file, but you can influence it through the

space allocation parameters of the IDCAMS command DEFINE CLUSTER.

Control Interval (CI)

For a definition of “control interval”, refer to the “Glossary” on page 363.

Control intervals (CIs) are fixed-length parts of a CA. They are the unit of transfer

between processor and external storage. You specify a CI-size for the file in the

IDCAMS command DEFINE CLUSTER; however, if your specification is

inappropriate, VSE/VSAM determines the correct CI-size.

┌──────────┬──────────┬──────────┬──────────┬──────────┬──────────┐

│ Relative │ │ Relative │ Relative │ │ Relative │

│ Record 1 │ │ Record 3 │ Record 4 │ │ Record 6 │

└──────────┴──────────┴──────────┴──────────┴──────────┴──────────┘

Figure 3. RRDS File Format: Fixed-Length Records Stored by Record Number. RRDS

records are entered in one of two ways: Either you give the records a sequence number

explicitly, or you just enter them one by one and they get their sequence number

automatically.

┌─────┐ ┌─────┐ ┌─────┬─────┐ ┌─────┐

│RRN 1│ │RRN 2│ │RRN 3│RRN 4│ │RRN 5│

├─────┴─────┼─────┴──────────┼─────┼─────┴───────────┼─────┴──────┐

│ │ │ │ │ │

│ Data │ Data │Data │ Data │ Data │

│ │ │ │ │ │

└───────────┴────────────────┴─────┴─────────────────┴────────────┘

Figure 4. VRDS File Format: Variable-Length Records Stored by Record Number

VSE/VSAM Concepts

Chapter 1. Introduction to IBM VSE/VSAM 5

Spanned Records

VSE/VSAM allows records to extend across, or span, CI boundaries. Such records

are called spanned records. Spanned records can be used only in KSDS and ESDS

files.

A spanned record must always begin on a CI boundary; such a record occupies

two or more CIs within a given CA. The CI with the last portion of a spanned

record may contain unused space that can be used only to extend the spanned

record.

Clusters

Every type of VSE/VSAM file has a cluster name and a data component name; the

cluster name must be different from the data component name.

Depending on the type of file, a cluster consists of a data component and

corresponding index component, or just the data component. This is illustrated in

Figure 5:

 KSDS and VRDS Files: The file types KSDS and VRDS have two components: a

data component and an index component (as indicated in Figure 5).

The index component of KSDS and VRDS files are built and used by VSE/VSAM

to locate the records in the data component. You can either treat the data and

index components separately or together as a single unit. If you treat the two

components as a single unit, it is called a “cluster”.

ESDS and RRDS: The file types ESDS and RRDS have a data component, but no

index component (as indicated in Figure 5). Nevertheless, these file types are also

referred to as “clusters”.

Catalogs with VSE/VSAM

A catalog is a central file that holds information about data spaces and files.

VSE/VSAM uses catalogs for space and file management.

For a given environment, you have a master catalog, and you can have one or more

user catalogs. VSE/VSAM creates such catalogs from the information you provide

through IDCAMS commands.

Space Management

When you define a VSE/VSAM data space on a volume, you set up a relationship

between that data space and a catalog. The data space is owned by the catalog.

You can define other data spaces on that same or a different volume in the same

catalog.

 VSE/VSAM Cluster

 │

 ┌─────────────────┬─────────┴───────┬─────────────────┐

 KSDS VRDS ESDS RRDS

┌───────────────┐ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐

│Data component │ │Data component │ │Data component │ │Data component │

├───────────────┤ ├───────────────┤ ├───────────────┤ ├───────────────┤

│Index component│ │Index component│ │ │ │ │

└───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘

Figure 5. VSE/VSAM File Type Structures

VSE/VSAM Concepts

6 VSE/VSAM User’s Guide and Application Programming

Thus, a catalog describes where and how much data space is available, the number

and device characteristics of the volume, and other values. Whenever data space is

allocated to a file, VSE/VSAM automatically updates the data space information in

the catalog.

File Management

For each of your VSE/VSAM files, an entry must exist in a catalog. Making an

entry in a catalog for a file is called “defining the file”. Unless you have defined

the file, you cannot, for example, load records into the file.

The entry in the catalog describes the location and attributes (for example, record

size and key location) of the file.

Also kept in the catalog are dynamic statistics about the file (such as the number of

records inserted since the file was created), and the number of CIs that have been

split. This information provides you with the information you need in making a

decision to reorganize your files, or for changing the current type of processing so

as to improve performance.

Master and User Catalogs

As mentioned above, VSE/VSAM allows you to define several catalogs. This can

have significant advantages for performance as well as for data security. Every

catalog exists on a single volume; it is independent of other catalogs and controls

exclusively its own data spaces and files.

In an environment with several catalogs, one of the catalogs is the master catalog.

All other catalogs are user catalogs and are defined in the master catalog. By placing

information about your files and storage volumes into user catalogs, you

decentralize control and reduce the time required to search a given catalog. Note

that you can have only one user catalog per volume.

Using several catalogs also allows you to:

v Transfer files between the IBM operating systems z/VSE, z/VM and z/OS. You

can do so by using the EXPORT/IMPORT commands. ESDS, KSDS, and RRDS

files are compatible between these operating systems. VRDS files are

incompatible.

v Specify that one of the user catalogs is to be used as a job catalog. The job

catalog will then be used to reference all VSE/VSAM files in the current job. You

have the option of overriding the job catalog reference to a file through a

VSE/VSAM job control statement.

Indexes with VSE/VSAM

For KSDS and VRDS files, VSE/VSAM builds an index. This index is called the

prime index.

For KSDS and ESDS files, you optionally can specify that VSE/VSAM builds an

alternate index (AIX).

Alternate Indexes - Their Advantages

An alternate index provides you with another way of gaining access to the records

in a given KSDS or ESDS file. It eliminates the need for you to keep several copies

of the same information organized in different ways for different applications. For

example, you can take a KSDS payroll file that is indexed by employee name, and

using the same base data, index it according to department number or social

VSE/VSAM Concepts

Chapter 1. Introduction to IBM VSE/VSAM 7

security number (Figure 6). You can use any field in the records of the file as an

alternate-index key field, as long as the field has a fixed length and fixed position

in the record.

Paths to Base Clusters

To gain access from an alternate index to the file with its prime index (base

cluster), you must define a path to it. The path sets up an association between the

alternate index and the base cluster (Figure 6). The two alternate indexes shown

make the records of the base cluster available to you in different orders.

How to Communicate with VSE/VSAM

To make your wants known to VSE/VSAM, you use:

v Commands of the IDCAMS utility program.

v VSE/VSAM macros.

v Job control (JCL) parameters.

v Dialogs of the z/VSE Interactive Interface.

IDCAMS Commands

The IDCAMS utility program is part of IBM VSE/VSAM. Use IDCAMS commands

to define VSE/VSAM files, catalog such files, and request many other IDCAMS

functions:

v Establish catalog(s)

v Create data spaces

v Create VSE/VSAM files and load records into the files

v Build an alternate index for a file

v Create backup copies of files and their associated catalog entries

v Print, copy, or reorganize files

v Delete files, data spaces, and catalogs

v Alter file definitions and file attributes

v Print catalog entries

v Move catalogs and files from one system to another

v Convert nonVSAM files to VSE/VSAM files

v Recover from damage to files or catalogs

v Copy entire volumes to support offline backup to tape from the target volume,

for example

v Verify command syntax

v Merge two VSE/VSAM files

 ┌──────────────────────┐

┌─────────────┐ Path 1 │ Base Cluster │ Path 2 ┌─────────────────┐

│ Alternate │M──────N│ │M──────N│ Alternate │

│ Index 1 │ │ │ │ Index 2 │

│ │ │ │ │ │

│ Indexed by │ │ Indexed by │ │ Indexed by │

│ Department │ │ Employee Name │ │ Social Security │

│ Number │ ├──────────────────────┤ │ Number │

├─────────────┤ │ Adams 3247 183... │ ├─────────────────┤

│ 3235 Newton │ │ Newton 3235 299... │ │ 015... Wright │

│ 3240 Wright │ │ Wright 3240 015... │ │ 183... Adams │

│ 3247 Adams │ │ . │ │ 299... Newton │

│ . │ │ . │ │ . │

│ . │ │ . │ │ . │

│ . │ └──────────────────────┘ │ . │

└─────────────┘ └─────────────────┘

Figure 6. Example: Two Alternate Indexes for a Key-Sequenced File

VSE/VSAM Concepts

8 VSE/VSAM User’s Guide and Application Programming

For details on the IDCAMS utility program and its commands, refer to the

VSE/VSAM Commands under “The IDCAMS Utility Program.”

The IDCAMS utility program supports two types of IDCAMS commands:

v Functional commands

Used for requesting the actual work (for example, defining a file or moving a

catalog).

v Modal commands

Used for the conditional execution of functional commands.

Functional Commands

The functional IDCAMS commands can be grouped according to the following

user tasks.

To Define, Alter, and Delete Objects:

DEFINE

to define catalogs, files, clusters, alternate indexes, paths, and data spaces.

ALTER

to change previously-defined attributes of an object.

DELETE

to delete catalogs, clusters, and data spaces.

BLDINDEX

to build an alternate index for an existing file.

To Move Data:

REPRO

to copy, convert, merge, and reorganize files.

EXPORT

to create a copy of a file on tape or disk for back up, or transport to

another system.

IMPORT

to read a copy of a file into a system, and make it available for use in that

system.

BACKUP

to create a backup copy of a file.

RESTORE

to restore a file backed up via the BACKUP command.

SNAP to snap (copy) a given set of source volumes within an IBM Enterprise

Storage Server (ESS).

To Print Objects:

LISTCAT

to list entries from a catalog, or only certain information from every entry.

PRINT

to print all, or a specified range of records of a file. Several output formats

are available: every byte printed as a single character, or every byte printed

as two hexadecimal digits, or both side by side.

To Correct a Problem, To Cancel a Job or Job Step:

Commands and Macros

Chapter 1. Introduction to IBM VSE/VSAM 9

VERIFY

to prepare a file for the next access if it was not closed successfully the last

time it was processed.

CANCEL

to cancel either a job or the current job step.

Modal Commands

The modal IDCAMS commands control command execution and establish options.

IF to test a condition code and run according to the results of the test. IF is

followed by THEN and ELSE clauses which specify alternative actions.

DO, END

to denote the beginning and end of a functional command sequence

(normally within a THEN or ELSE clause).

SET to change condition codes.

PARM to specify diagnostic aids and printed output options and change input

record margins. With PARM, you can verify the syntax of your IDCAMS

commands before running them.

VSE/VSAM Macros

Once you have defined your VSE/VSAM files with IDCAMS commands, you can

load data into the files and process the records. Use VSE/VSAM macros in your

programs to process VSE/VSAM files.

You can load the data by use of any programming language. The programs can use

VSE/VSAM, SAM, or ISAM macros, but only the assembler language supports all

VSE/VSAM functions.

For details on the macros, refer to Chapter 10, “Using VSE/VSAM Macros,” on

page 183 and Chapter 11, “Descriptions of VSE/VSAM Macros,” on page 195.

To Relate the Program and the Data (Declarative Macros)

ACB specifies the file to be processed and the access type.

EXLST

specifies a list of user-supplied exit routines.

RPL specifies information for a particular request.

To Handle Declarative Macros

GENCB

specifies declarative parameters during program execution.

MODCB

changes declarative parameters.

SHOWCB

displays declarative parameters in effect.

TESTCB

checks declarative parameters (or their error codes) and sets the condition

code accordingly.

To Display Data

SHOWCAT

displays data from the catalog in a buffer you have supplied.

Commands and Macros

10 VSE/VSAM User’s Guide and Application Programming

To Connect/Disconnect a Program to/from a File

OPEN connects a program to a file.

CLOSE

prepares the separation and disconnects a program from a file.

TCLOSE

prepares the separation but leaves program and file connected.

To Share Resources Between Several Files (LSR)

BLDVRP

builds a VSE/VSAM pool of buffers, control blocks, and channel programs.

DLVRP

deletes such a resource pool.

WRTBFR

writes waiting buffer contents to satisfy a GET request.

To Handle Records

GET retrieves a record from a file for processing.

PUT inserts a record in a file.

ERASE

deletes a record in a file.

POINT

positions control to a specific address in the file.

ENDREQ

ends processing of a GET or POINT request.

Job Control Parameters to Access VSE/VSAM Files

Use job control parameters to complete or override the file information already

stored in the catalog.

As most of the information normally coded with job control statements is available

to VSE/VSAM in the catalog, you need to specify only a minimum of job control

parameters with any one job. In most cases, only the DLBL statement has to carry

VSE/VSAM information.

z/VSE Interactive Interface

The following highlights the functions and use of the z/VSE Interactive Interface as

applicable to VSE/VSAM. For more information about the “interactive interface”,

refer to the z/VSE Administration manual.

To use the interface, start with the panel entitled z/VSE Function Selection. On this

panel select:

v Resource Definition if you want to manage files or catalogs.

v Operations if you want to back up or restore VSE/VSAM objects, or transfer files.

If you select Resource Definition and then File and Catalog Management, you can

make further selections to:

v Display or process a file

v Define a new file

v Define a library

v Define an alternate index (AIX) or name

Commands and Macros

Chapter 1. Introduction to IBM VSE/VSAM 11

v Display or process a catalog, or space

v Define a new user catalog.

For example, if you select to define a new file, you can specify elements such as

the file ID and name, file organization (for example SAM ESDS organization), and

space allocation. You can then select how the job is to be run.

If you select Operations and then Backup/Restore VSE/VSAM Objects, you can make

further selections to export, import, back up, or restore VSE/VSAM files, and back

up or restore master and user catalogs.

Commands and Macros

12 VSE/VSAM User’s Guide and Application Programming

Chapter 2. Planning Information

This Chapter...

Provides information on storage requirements for IBM VSE/VSAM and

related programs and utilities. It explains how to calculate the required

partition virtual storage for your files.

Compatibility with IBM VSE/VSAM Version 2

IBM VSE/VSAM Version 7 is compatible with IBM VSE/VSAM Version 2. Files,

programs, and jobs that were created under IBM VSE/VSAM Version 2 can be

used without changes.

Overview of Environment and Requirements

IBM VSE/VSAM operates on any:

v IBM processor supported by any operating system under which it runs.

v IBM disk device supported by both VSE/VSAM and the operating system under

which it runs.

IBM VSE/VSAM, which is part of VSE Central Functions Version 7 Release 1,

5686-CF7, runs under IBM z/VSE Version 3 Release 1.

What to Consider

Before IBM VSE/VSAM is used, you should plan for the storage needs of

VSE/VSAM. Consider storage requirements for:

v IBM VSE/VSAM routines loaded automatically into the SVA during IPL. The

routines occupy about 300KB in the SVA (shared virtual area).

v Routines that are not eligible for the SVA.

See “Partition Space for Non-SVA-Eligible Routines,” below. For information on

the ISAM Interface Program, see “Storage for the ISAM Interface Program (IIP)”

on page 18.

v Running VSE/VSAM in real mode.

See “Space for Running in Real Mode” on page 14.

v VSE/VSAM buffers and control blocks.

See “Partition Requirement for Buffers and Control Blocks” on page 14.

v The IDCAMS utility program.

See “Storage for IDCAMS Including the VSE/VSAM Backup/Restore Function”

on page 18.

Partition Space for Non-SVA-Eligible Routines

Most VSE/VSAM routines are automatically loaded into the SVA during IPL.

Routines that are not reentrant are not eligible for SVA (non-SVA-eligible).

Therefore, such routines require space in the partition GETVIS area. For example,

modules of the ISAM Interface Program are non-SVA-eligible and must be loaded

into every partition where they are used.

© Copyright IBM Corp. 1979, 2005 13

The partition where the non-SVA-eligible VSE/VSAM routines are loaded must

have at least 128KB plus the partition GETVIS area. Add to this 28KB for the

IDCAMS root modules, plus the extra space for every IDCAMS command, which

varies between 2KB and 100KB depending on the command.

Device Dependencies

See Chapter 6, “Device Dependencies,” on page 77 for information on special

functions, restrictions, and exceptions when using certain devices.

Storage for VSE/VSAM

Space for Running in Virtual Mode

Many VSE/VSAM phases run in the SVA. This means that one copy of the

VSE/VSAM modules is shared by all partitions.

Space for Running in Real Mode

If you specify REAL in the // EXEC statement, the system loads VSE/VSAM

modules that normally reside in SVA into your partition. Your partition must have

sufficient storage to accommodate these VSE/VSAM SVA modules.

Running programs in real mode in one partition can degrade the performance in

other partitions. For more information, refer to “Format of the EXEC Statement” on

page 37 (see REAL).

Partition Requirement for Buffers and Control Blocks

The partition in which VSE/VSAM files are to be processed must allow for a

GETVIS area to accommodate VSE/VSAM buffers and control blocks; the user

program resides in the same partition, below the GETVIS area.

The size of the partition GETVIS area depends on the number of VSE/VSAM files

that are accessed, and on their CI sizes. The minimum requirement is 64KB.

For your files, you need to calculate the total required partition virtual storage. You

have to consider that:

v Every open catalog needs 14KB for basic buffers and control blocks.

v During open and close processing, an additional 50KB is required for open

control blocks and catalog check routines that are used in error analysis.

v Every file needs the partition virtual storage shown in:

 Figure 7 on page 15 if non-shared resources (NSR) is specified.

 Figure 8 on page 16 if local shared resources (LSR) is specified.

The following applies to both Figure 7 and Figure 8:

v To calculate the requirements for one file, add the values given in one column

(according to the applicable path/input/output conditions). Complete this

calculation for every file; then, add the individual results to obtain the total

requirements.

v The buffer space (n in the figures) depends on the CI size(s) and on the buffer

specifications. If upgrade is done, one set of buffers serves all alternate indexes

in the upgrade set. This set of buffers includes two data buffers and one index

buffer. (Buffer space can be specified in the IDCAMS command DEFINE, in the

DLBL statement, or in the VSE/VSAM macro ACB. For more information, see

“Buffer Specification” on page 95.)

Planning

14 VSE/VSAM User’s Guide and Application Programming

v If data set name sharing is used, only the first cluster of a DSN structure uses the

partition GETVIS space as calculated in Figure 7 or Figure 8.

All the subsequent opens to ACBs (for those clusters that are connected to the

existing DSN structure) need a minimum GETVIS space of 128 bytes per 28

ACBs.

If NSR is Specified

 A file may exceed minimum requirements under any of these conditions:

v If the file has key ranges associated with it.

v If the file has several extents for data or for index.

v If SHAREOPTIONS(4) is used.

v If the length of the key field is very long.

v If the ACB or RPL is not created by GENCB, with the space allocation left up to

VSE/VSAM, or if the GENCB requests are not done in the following sequence:

1. GENCB ACB, 2. GENCB RPL.

v If CCW areas are insufficient (see below).

Additional space is required for CCW areas for a) output files that use RECOVERY

mode, and b) KSDS files in case of CA split. The size can be calculated by this

formula:

 (CI/CA)÷40

 and rounded down to the next 2KB value

For example:

 CI/CA = 450

 450÷40 = 11.25

 and rounded down = 10

 That is, the required additional

 GETVIS space is 10KB.

┌─────────────────────────────┬────────────────────┬───────────────────┐

│ │ No Path Specified │ Path Specified │

│ Item ├────────┬───────────┼────────┬──────────┤

│ │ Input │ Output │ Input │ Output* │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Basic requirement (minimum) │ 7KB │ 7KB │ 9KB │ 9KB │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Upgrade set (minimum) │ 0 │ (u+1)x2KB │ 0 │ u x 2KB │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Buffers for base cluster │ n │ n │ n │ n │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Buffers for alternate index │ 0 │ 0 │ n** │ n** │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Upgrade buffers *** │ 0 │ n │ 0 │ n │

├─────────────────────────────┼────────┴───────────┼────────┴──────────┤

│ For every string │ (S - 1) x 1KB │ (S - 1) x 2KB │

├─────────────────────────────┴────────────────────┴───────────────────┤

│ * The file must be opened for output only, │

│ or for both output and input. │

│ ** Always two data buffers and one index buffer. │

│ *** If there is an upgrade set. │

│ │

│ u = Number of alternate indexes in the upgrade set. │

│ n = Buffer space. │

│ S = Number of strings. │

└──┘

Figure 7. Partition Requirements for Control Blocks and Buffers (with NSR)

Planning

Chapter 2. Planning Information 15

If LSR is Specified

If LSR is used to share control blocks among some files, the requirement for the

VSE/VSAM resource pools must be taken into account. Refer also to “The

BLDVRP Macro” on page 207.

For LSR, virtual storage is equal to the working set.

Figure 8 shows the partition virtual storage requirements when LSR is used.

 To these values, add the requirement for the LSR pool, which consists of:

 n The total space specified for buffers.

 72p The space for subpools, where p is the number of subpools.

 104b The number of Buffer Control Blocks; b = number of buffers

 s(920 + k) The space for ACB strings, where:

 s = the number of strings.

 k = the maximum key length for files

 sharing the resource pool.

 2048 Space for the channel program area. Dynamically increase

 this value by 2048 if the resource pool is very active.

Round the result to the next page boundary. If you build a large resource pool, the

VSE/VSAM working set will be somewhat reduced when resource pool activity is

light.

Buffer Allocation above the 16MB Line of Storage

To keep the use of the GETVIS space below the 16MB line as little as possible,

VSE/VSAM tries to allocate buffers above the 16MB line whenever possible.

The allocation depends on whether sufficient partition GETVIS space is available

above the line. If no partition GETVIS space is available above the line,

┌─────────────────────────────┬────────────────────┬───────────────────┐

│ │ No Path Specified │ Path Specified │

│ Item ├────────┬───────────┼────────┬──────────┤

│ │ Input │ Output │ Input │ Output* │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Basic requirement (minimum) │ 3.25KB │ 3.25KB │ 5.25KB │ 5.25KB │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Upgrade set (minimum) │ 0 │ u x 2KB │ 0 │(u-1)x2KB │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Buffers for base cluster │ 0 │ 0 │ 0 │ 0 │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Buffers for alternate index │ 0 │ 0 │ 0 │ 0 │

├─────────────────────────────┼────────┼───────────┼────────┼──────────┤

│ Upgrade buffers ** │ 0 │ 0 │ 0 │ 0 │

├─────────────────────────────┼────────┴───────────┼────────┴──────────┤

│ For every string │ (S - 1) x 1KB │ (S - 1) x 2KB │

├─────────────────────────────┴────────────────────┴───────────────────┤

│ * The file must be opened for output only, │

│ or for both output and input. │

│ ** If there is an upgrade set. │

│ │

│ u = Number of alternate indexes in the upgrade set. │

│ n = Buffer space. │

│ S = Number of strings. │

└──┘

Figure 8. Partition Requirements for Control Blocks and Buffers (with LSR)

Planning

16 VSE/VSAM User’s Guide and Application Programming

VSE/VSAM allocates all buffers below the line. This means that buffer handling in

partitions residing below the 16MB line is fully compatible with previous buffer

handling.

Figure 9 shows the buffer allocation relative to the 16MB line. If you have:

v NSR, refer to the entries for the ACB specifications.

v LSR, refer to the entries for the BLDVRP specifications.

Storage for the VSE/VSAM Space Management for SAM Function

SAM Access Routines

The working set is the same as for unmanaged-SAM access. VSE/VSAM does not

need additional work storage for managed-SAM access.

Space for Running in Real Mode

If you specify REAL in the // EXEC statement, the system loads VSE/VSAM

modules that normally reside in SVA into your partition. Your partition must have

an additional 340KB to accommodate these SVA modules.

Running programs in real mode in one partition can degrade the performance in

other partitions. For more information, refer to “Format of the EXEC Statement” on

page 37 (see REAL).

Partition Requirement for Control Blocks and Buffers

Specify additional work storage:

v 2KB for control blocks. The buffer must equal CISIZE.

The working set for DTFPH is determined by the user program.

┌──────────────────────┬────────────────────────────────────┬───────────┐

│ Specification │ │Allocation │

│ in │ Object ├─────┬─────┤

│ ACB or BLDVRP │ │Below│ ANY │

├──────────────────────┼────────────────────────────────────┼─────┼─────┤

│ ACB RMODE31=ALL │ All buffers │ │ x │

├──────────────────────┼────────────────────────────────────┼─────┼─────┤

│ ACB RMODE31=BUFF │ All buffers │ │ x │

├──────────────────────┼────────────────────────────────────┼─────┼─────┤

│ ACB RMODE31=NONE │ All cluster/path NSR data buffers │ x │ │

│ │ All cluster/path NSR index buffers*│ │ x │

│ │ All upgrade set NSR buffers *│ │ x │

├──────────────────────┼────────────────────────────────────┼─────┼─────┤

│ BLDVRP RMODE31=ALL │ All buffers │ │ x │

├──────────────────────┼────────────────────────────────────┼─────┼─────┤

│ BLDVRP RMODE31=BUFF │ All buffers │ │ x │

├──────────────────────┼────────────────────────────────────┼─────┼─────┤

│ BLDVRP RMODE=NONE │ All cluster/path NSR data buffers │ x │ │

│ │ All cluster/path NSR index buffers*│ x │ │

│ │ All upgrade set NSR buffers *│ x │ │

├──────────────────────┴────────────────────────────────────┴─────┴─────┤

│ * The buffers are not accessible by user applications. │

└───┘

Figure 9. How VSE/VSAM Allocates Buffers

Planning

Chapter 2. Planning Information 17

Partition Virtual Storage

Add to the virtual storage requirements for VSE/VSAM:

v During open processing, additional 4KB is needed for open control blocks.

v For every file, the amount of virtual storage required is equal to the working set,

except for DTFPH access, in which case the virtual storage requirement is

determined by the user program.

GETVIS Requirements for Managed-SAM Access to SAM

ESDS Files

When you run programs that issue SAM imperative macros to access

managed-SAM files, the default GETVIS size of 48KB is inadequate. For more

information, refer to “Note to Users of the VSE/VSAM Space Management for

SAM Function” on page 37.

For programs that are invoked by using the EXEC statement, you must specify the

SIZE parameter of the EXEC statement to provide adequate GETVIS storage.

For job control routines that process an INCLUDE statement when IJSYSLN has

been defined as a managed-SAM file, both the minimum partition size of 128KB

and the default GETVIS size of 48KB are too small. Proceed as follows:

1. Use the ALLOC command to adjust the partition size to provide the required

GETVIS space, plus 80KB non-GETVIS space for job control routines.

2. Set aside adequate default GETVIS space in the partition with the SIZE

command. GETVIS space for file OPEN and catalog handling is the same as for

VSE/VSAM. See “Storage for VSE/VSAM” on page 14.

Storage for the ISAM Interface Program (IIP)

IIP modules are non-SVA-eligible and must be loaded into every partition where

they are used.

To accommodate interface translation modules, add 6KB to the working set

previously determined for VSE/VSAM record management modules. Also add

approximately 6KB for the IIP phases. This is in addition to the storage required

for buffers and control blocks,

Storage for IDCAMS Including the VSE/VSAM Backup/Restore Function

IDCAMS must be used for file definitions, catalog manipulation, and other

functions. Because IDCAMS modules cannot be loaded into the SVA, their partition

requirement depends on the functions required for the current job.

The required partition GETVIS area can be provided by specifying the job control

statement:

 // EXEC IDCAMS,SIZE=AUTO ...

For more information, refer to “// EXEC Statement” on page 36.

To operate efficiently, IDCAMS needs a working set of about 72KB.

In addition to the basic allocation for VSE/VSAM, IDCAMS needs up to 256KB of

virtual storage in the partition in which it is to run.

Planning

18 VSE/VSAM User’s Guide and Application Programming

VSE/VSAM Backup/Restore Function

Note: To use the function with a user-generated supervisor, you must generate the

supervisor with the option RPS=YES.

Loading VSE/VSAM Backup/Restore into the SVA

At IPL, provide:

 10 entries in the SDL

 122KB of storage in the SVA

The VSE/VSAM Backup/Restore Function may be loaded into the SVA. Simply

store the following statements in the job control procedure for the background

partition (in procedure $0JCL):

 SET SDL

 IDCBP01,SVA

 IDCBP03,SVA

 IDCCDBP,SVA

 IDCTSBP0,SVA

 IDCRT01,SVA

 IDCCDRT,SVA

 IDCBPDNC,SVA

 IDCBPDNT,SVA

 IDCRTDDC,SVA

 IDCRTDDT,SVA

 /*

Note that you can use the skeleton SKJCL0 to update the job control procedure

$0JCL. For more information on “$0JCL and skeletons”, refer to the z/VSE

Administration manual.

Partition Virtual Storage

In addition to basic VSE/VSAM and IDCAMS virtual storage requirements, you

must provide sufficient virtual storage in the partition to accommodate the

BACKUP or RESTORE command:

 BACKUP: 42KB + n * b If COMPACT parameter is not used.

 42KB + (2n + 1) * b If COMPACT parameter is used.

 RESTORE: 52KB + n * b If restoration from a

 non-compacted backup file.

 52KB + (2n + 1) * b If restoration from a

 compacted backup file.

where: n = Number of buffers.

 b = Size of one buffer in bytes.

 A buffer size of 32KB is recommended.

 In most cases, there is no advantage

 in providing larger buffers.

Planning

Chapter 2. Planning Information 19

Planning

20 VSE/VSAM User’s Guide and Application Programming

Chapter 3. Operation and Job Control

This Chapter ...

v Describes operating procedures that are unique to VSE/VSAM. You may

also need to refer to the manual z/VSE Operation, for example, for details

on “exporting VSE/VSAM files.”

v Describes job control commands whose meaning for VSE/VSAM is

different as compared to the meaning they have with other access methods.

The information supplements the “job control” information contained in

the manual z/VSE System Control Statements.

IPL Command Specifications for VSE/VSAM

The IPL commands described here are part of the pre-defined automated system

initialization (ASI) procedure for z/VSE. The following specifications are important

for VSE/VSAM:

v Assign a device to the master catalog (DEF command).

v Define the lock file (DLF command).

v Specify the number of supervisor buffers (SYS command, BUFSIZE operand).

Assigning a Device to the Master Catalog

To assign a device to the VSE/VSAM master catalog, you must first ready the

device. Then use the IPL command DEF with the LU name of the master catalog,

which is always SYSCAT:

 DEF SYSCAT=cuu...

 where: cuu = the device number of the

 assigned disk device.

The assignment is valid until the next IPL. The DEF command must follow the

(optional) SET and precede the DPD command.

Defining the Lock File

If you are using the z/VSE DASD Sharing facility, you must define the lock file (the

cross-system communication file) by specifying the DLF command at IPL.

The number of resources that can be locked by a lock file depends on the device

type on which the lock file resides. For detail information, refer to the “DLF”

command in the manual z/VSE System Control Statements.

Lock File Requirements

VSE/VSAM determines its lock requirements according to this formula:

 n = Px(2xU+1) + 5C + (2xS3) + (3xS4) + O + P + 5

 where:

 n = number of lock table entries (optimal upper limit).

 C = number of catalogs open concurrently.

 O = number of VSE/VSAM components that are open but not

 accounted for by S3 and S4.

 P = number of partitions.

 S3 = number of share option 3 VSE/VSAM components

© Copyright IBM Corp. 1979, 2005 21

concurrently open for output.

 S4 = number of share option 4 VSE/VSAM components (for

 example, key component or data component) concurrently

 open for output.

 U = number of user catalogs open concurrently.

All these values should reflect the situation that exists when n is at its maximum

value. The value for n (calculated in the above manner) will cause sufficient space

to be reserved for the variable resources to be used. Depending on the application,

however, the number of resources actually required most of the time might be

much lower.

Note: If the value substituted for n is too small and the pool of named resources

gets exhausted, the VSE/VSAM partition is canceled and an error message

is displayed.

Specifying the Number of Supervisor Buffers for Channel

Programs

You must specify the number of supervisor buffers for channel programs. You do

this in the BUFSIZE=n operand of the IPL command SYS. For details on this

operand, see the “SYS” command in the manual z/VSE System Control Statements.

After you have determined a value, add 40 for the use by VSE/VSAM.

Volume Mounting

To access VSE/VSAM files, the appropriate volume or volumes must be mounted

on a device. There are two approaches that allow you to mount one or more

required volumes.

Mounting a Volume Through Job Control Specifications

If full job control describes the file (DLBL, EXTENT, and ASSGN statements), the

required volume must be mounted on the device specified in the job control.

If the requested volume (except for a catalog volume) is not mounted on the

requested device, VSE/VSAM issues a message to inform you; then, you can

correct the situation.

You should take advantage of job control simplification (by omitting a LU on an

EXTENT statement), because it gives VSE/VSAM greater flexibility in providing

the required volume. In this case, VSE/VSAM is free to use any device on which

the required volume (as indicated by the VSE/VSAM catalog) is mounted or can

be mounted.

Mounting a Volume Through Automatic Assignment

If the Volume is Mounted

If the required volume is already mounted on some device, VSE/VSAM attempts

to automatically assign that device (if successful, it avoids the need for operator

intervention).

For the automatic assignment to be successful, ensure that devices are up before

mounting volumes, and do not reserve devices unnecessarily. Refer to the

“DVCUP”, “FREE”, and “RESERV” commands in the manual z/VSE System Control

Statements.

Operation: IPL

22 VSE/VSAM User’s Guide and Application Programming

If the Volume is Not Mounted

If the required volume is not yet mounted, VSE/VSAM prompts you to mount it.

If possible, VSE/VSAM recommends a device and reserves it while the mount is

pending.

If you choose to use a device other than the recommended device (or if

VSE/VSAM did not recommend one), you must ensure that the device you use is

up and operational, and that mounting the required volume does not interfere

with other users in the system.

To hold a device while a mount is pending, use the RESERV command. When the

volume is mounted, the device becomes ready and the reserved status is reset to

free. Your reply to the mount message allows VSE/VSAM to verify the volume

mount and continue processing the file.

Use of z/VSE Job Control Statements for VSE/VSAM

In many jobs, you can omit from your job control the following z/VSE job control

statements: // DLBL, // EXTENT, and // ASSGN. Under certain circumstances,

however, you may have to explicitly specify EXTENT or ASSIGN statements for

the catalogs, (for example, if your program uses CHECKPOINT/RESTART).

 Table 1 on page 24 shows under which circumstances you have to specify //

DLBL statements for job catalogs and user catalogs.

 Table 2 on page 25 shows under which circumstances you have to specify job

control statements for files when you want to run VSE/VSAM applications and

want to use IDCAMS commands.

For a detailed explanation of the z/VSE “job control”, refer to the manual z/VSE

System Control Statements.

Job Control Statements for Catalogs

VSE/VSAM Application Programs

All VSE/VSAM application programs must specify a // DLBL statement for the

master catalog; no // EXTENT statement is necessary. This also applies to ISAM

programs that access VSE/VSAM through the ISAM Interface Program (IIP), and

SAM programs that access SAM ESDS files through DTFs.

The // DLBL statement may be in the job stream, or in the system or partition

standard label area.

If the program accesses a file in a user catalog, you must supply a file // DLBL

statement for the VSE/VSAM file. You can refer to the user catalog by either:

v The CAT=filename parameter pointing to that user catalog,

Or

v A job catalog // DLBL IJSYSUC statement pointing to that user catalog.

Irrespective of which way you specify, you do not need to supply // EXTENT and

// ASSGN statements.

Note that if an application program accesses files in several catalogs, you must

supply a user catalog // DLBL for all files not in the job’s default catalog.

Operation: Volume

Chapter 3. Operation and Job Control 23

IDCAMS Commands

From the job control that you specify to identify the catalog you are using, you

may omit // EXTENT and // ASSGN statements. VSE/VSAM handles the

distribution of logical units (LUs) to physical disk addresses in an optimized way.

You do not need to reserve one logical unit for every file. However, when you run

out of LUs, use // ASSGN statements, or cut the single job into several jobs.

For the master catalog (with filename IJSYSCT), you always require a // DLBL

statement. Include the statement in the job stream, or in the system or partition

standard label area.

For certain operations (for example, to alter file attributes in catalog entries), you

can omit the // DLBL statement. You can do so if you specify the name of the

catalog through IDCAMS commands. Depending on which IDCAMS command

you issue, you have to specify the CATALOG, WORKCAT, or MODEL parameter;

in the parameter, specify the name in the subparameter catname. Table 1 shows

when you must specify a // DLBL statement for a job catalog (IJSYSUC) and,

when applicable, for a user catalog (not a IJSYSUC).

 Table 1. // DLBL Statement Required for Job Catalogs and User Catalogs

ALTER No job catalog // DLBL statement is required, but you must specify CATALOG(catname) in the

command if the catalog referenced is not the master catalog, or if a password is required.

BACKUP A job catalog // DLBL (IJSYSUC) is required if the catalog to be referenced is not the master catalog.

BLD-

INDEX

 Location of

Alternate index = = >

Work file = = >

MCAT

MCAT

UCAT1

MCAT

MCAT

UCAT1

UCAT1

UCAT2

MCAT

none

UCAT

none

Specify job cat

// DLBL?

No Yes No Yes

(UCAT1)

No Yes

Specify BLDINDEX

catalog parameter?

No * Yes

(MCAT) **

Yes

(UCAT1) **

Yes

(UCAT2) **

No * No *

(*) Unless a password is required, in which case you must specify the CATALOG parameter.

(**) Specify the WORKVOLUMES parameter, because it does not require a // DLBL for the work file. If you specify

the WORKFILES parameter, you must also specify CAT= in the // DLBL statement.

Job Control

24 VSE/VSAM User’s Guide and Application Programming

CANCEL A job catalog // DLBL is not applicable.

DEFINE AIX

CLUSTER or

PATH

No job catalog // DLBL is required, but you must specify CATALOG(catname) and MODEL(catname)

(if applicable) in the command whenever the catalog to be referenced is not the master catalog, or if

a password is required.

DEFINE

NONVSAM

or SPACE

No job catalog // DLBL is required, but you must specify CATALOG(catname) in the command if the

catalog to be referenced is not the master catalog, or if a password is required.

DELETE No job catalog // DLBL is required, but you must specify CATALOG(catname) in the command if the

catalog to be referenced is not the master catalog, or if a password is required.

EXPORT A job catalog // DLBL (IJSYSUC) is required if the catalog to be referenced is not the master catalog.

IMPORT No job catalog // DLBL is required, but you must specify CATALOG(catname) in the command if the

catalog to be referenced is not the master catalog, or if a password is required.

LISTCAT No job catalog is required, but you must specify CATALOG(catname) in the command if the catalog

to be referenced is not the master catalog, or if a password is required.

PRINT INFILE in master catalog: Do not specify a user catalog // DLBL or a job

 catalog // DLBL.

INFILE in user catalog: Specify either a user catalog // DLBL (CAT=parameter)

 or a job catalog // DLBL (IJSYSUC).

INFILE is nonVSAM: A user catalog // DLBL or a job catalog // DLBL statement is

 not applicable.

REPRO INFILE and OUTFILE in same catalog:

 Master catalog: Do not specify a user catalog // DLBL or a job catalog // DLBL.

 User catalog: Specify either a user catalog // DLBL(CAT=parameter) or a job catalog

 // DLBL(IJSYSUC).

INFILE and OUTFILE in different catalogs:

 Specify a user catalog // DLBL for every catalog that is not the default catalog.

RESTORE No job catalog // DLBL is required, but you must specify CATALOG(catname) in the command if the

catalog to be referenced is not the master catalog, or if a password is required.

SNAP A job catalog // DLBL (IJSYSUC) is required if the catalog to be referenced is not the master catalog.

VERIFY A job catalog // DLBL (IJSYSUC) is required if the catalog to be referenced is not the master catalog,

or if a password is required.

Job Control Statements for Files

In specifying job control statements for user files, // DLBL, // EXTENT, and //

ASSGN statements may or may not be required. Table 2 indicates when you should

specify these statements.

 Table 2. Job Control Statements Required for Files

File Job Control

Type of Processing

DLBL

Required

EXTENT

Required

ASSGN

Required

Files to be implicitly opened. (For example, accessing a file through AIX or

path during which VSE/VSAM must open index files without user

specification.)

No No No

Files to be explicitly opened. (The // DLBL filename must match the ACB

DDNAME parameter, or the ACB name if DDNAME is omitted, and the

file-ID must be the name of the object opened.)

Yes No No

ISAM programs accessing VSE/VSAM files through the ISAM Interface

Program

Yes No No

SAM programs accessing SAM ESDS files through DTFs. (The // DLBL

filename must match the DTFxx name field.)

Yes No [1] No

Job Control

Chapter 3. Operation and Job Control 25

Table 2. Job Control Statements Required for Files (continued)

File Job Control

Type of Processing

DLBL

Required

EXTENT

Required

ASSGN

Required

IDCAMS Commands

ALTER No No No

BACKUP to tape No No Yes

BACKUP to disk Yes Yes Yes

BLDINDEX No No No

CANCEL No No No

DEFINE AIX/CLUSTER UNIQUE Yes Yes No

DEFINE AIX/CLUSTER not unique No No No

DEFINE MASTERCATALOG Yes No No

DEFINE NONVSAM/PATH/SPACE No No No

DEFINE USERCATALOG No No No

DELETE No No No

EXPORT OUTFILE (SAM file on disk) Yes Yes Yes

EXPORT all others No No No

IMPORT INFILE (SAM file on disk) Yes Yes Yes

IMPORT OBJECTS FILE UNIQUE unless predefined Yes Yes No

IMPORT all other No No No

LISTCAT No No No

PRINT VSAM file Yes No No

Print nonVSAM file (SAM or ISAM file on disk) Yes Yes Yes

Repro VSAM file Yes No No

REPRO nonVSAM file (SAM or ISAM file on disk) Yes Yes Yes

RESTORE from tape No No Yes

RESTORE from disk Yes Yes Yes

SNAP Yes No No

VERIFY No No No

Note:

 [1] Exception: An EXTENT statement is required for the implicit definition of an output or work file for which

no implicit model exists.

// DLBL Statement

To determine when you must supply a // DLBL statement, refer to “Use of z/VSE

Job Control Statements for VSE/VSAM” on page 23.

If you specify many // DLBL parameters, you may need to use a continuation

statement. If so, column 72 (on the first statement) must contain a continuation

character. The columns between the last comma and the continuation character

must be blank, and the continuation statement must start in column 16 (no // in

columns 1 and 2).

Job Control

26 VSE/VSAM User’s Guide and Application Programming

Format of the DLBL Statement

The following describes the // DLBL statement and its operands in the context of

VSE/VSAM.

NN // DLBL filename,’file-ID’,

date
 ,VSAM

,BUFSP=n

,BUFND=n
 N

N
,BUFNI=n

,CAT=filename

,DISP=disposition
 N

N
,RECORDS=n│(n1,n2)

,RECSIZE=n
 NM

filename

filename has 1-7 characters; for VSE/VSAM, the following is true:

v filename=dname of the FILE(dname) parameter in an IDCAMS

command.

v DDNAME=filename parameter of the Access Method Control Block

(ACB) in the processing program that identifies the file. If DDNAME is

omitted, the filename must be placed in the symbolic name field of the

ACB.

‘file-ID’

For VSE/VSAM, specify ‘file-ID’ when accessing a file. The file-ID is

identical to the name of the file that was specified in the DEFINE

command of IDCAMS and listed in the VSE/VSAM catalog.

 When a new VSE/VSAM data space or file is defined, the file-ID is

ignored if it is specified.

date With one exception, this parameter is ignored for VSE/VSAM; the

expiration date used is that specified in the IDCAMS DEFINE command.

 The only case in which the // DLBL date parameter applies to

VSE/VSAM is for implicit definition of managed-SAM files. VSE/VSAM

files (that have been explicitly defined) or data spaces can only be deleted

through the DELETE command, even though the expiration date has been

reached.

VSAM

Indicates a VSE/VSAM file label.

BUFSP=n

For VSE/VSAM, this parameter specifies the number of bytes of virtual

storage (0 - 9999999) to be allocated as buffer space for the file.

VSE/VSAM uses the maximum of the following:

v The BUFFERSPACE value specified in the IDCAMS command DEFINE

CLUSTER

v The BUFSP parameter specified in the ACB macro

v The BUFSP parameter specified in the DLBL statement

When you access a cluster using an alternate index, the DLBL BUFSP value

applies only to the alternate index.

BUFND=n

Specifies the number of I/O buffers to hold control intervals containing

data records. Each buffer is the size of one data control interval. This

specification overrides the value given for BUFND in the ACB macro.

Job Control: // DLBL

Chapter 3. Operation and Job Control 27

When you access a cluster using an alternate index, the DLBL BUFND

value applies to both the alternate index and the base cluster.

BUFNI=n

Specifies the number of I/O buffers to hold control intervals containing

index records. Each buffer is the size of one index control interval. This

specification overrides the value given for BUFNI in the ACB macro. When

you access a cluster using an alternate index, the DLBL BUFNI value

applies to both the alternate index and the base cluster.

CAT=filename

Specifies the file name (1 through 7 alphameric characters) of the // DLBL

statement for the catalog owning this VSE/VSAM file. The system searches

only this catalog for the file-ID when the VSE/VSAM file is to be opened.

Specify this parameter only if you want to override the system’s

assumption that the job catalog or, if there is no job catalog, that the master

catalog owns the file.

 The only IDCAMS commands that use the CAT parameter to specify a

non-default catalog are the PRINT and REPRO commands.

 Job catalogs are discussed under “Specifying a Job Catalog” on page 42.

DISP=disposition

Specifies what VSE/VSAM is to do with a reusable file during open and

close processing.

 For disposition, you can specify one of the following formats:

 d1

 (d1,d2)

 (d1,d2,d3)

If you use the parenthesis syntax, each value (but not the separating

commas) can be omitted. For example, the following three specifications

are equivalent:

 DISP=NEW

 DISP=(NEW,)

 DISP=(NEW,,)

Figure 10 shows the possible disposition values and applicability for d1,

d2, and d3. Figure 11 on page 29 shows the values and their meaning. For

exact specification, refer to “File Disposition” on page 29.

 ┌────┬────────────────────────┬────────────────────────┐

 │ dn │ The value for │ Applies when the │

 │ │ dn may be: │ file is: │

 ├────┼────────────────────────┼────────────────────────┤

 │ d1 │ NEW or OLD │ Opened │

 ├────┼────────────────────────┼────────────────────────┤

 │ d2 │ DELETE, KEEP, or DATE │ Regularly closed │

 ├────┼────────────────────────┼────────────────────────┤

 │ d3 │ DELETE or KEEP │ Abnormally terminated │

 └────┴────────────────────────┴────────────────────────┘

Figure 10. Disposition: Values and Applicability

Job Control: // DLBL

28 VSE/VSAM User’s Guide and Application Programming

RECORDS=n|(n1,n2)

This operand applies only with the VSE/VSAM Space Management for SAM

Function.

 The RECORDS (and RECSIZE) parameter is used to determine allocation

sizes for implicit file definition during open of a SAM ESDS file.

 If you specify RECORDS=n, n indicates the number of records for primary

allocation of the file. VSE/VSAM uses a value of 20% of n to indicate the

number of records for secondary allocation. Do not specify 0 for n.

 If you specify RECORDS=(n1,n2), n1 indicates the number of records for

primary allocation, and n2 indicates the number of records for secondary

allocation. If you do not specify a value for n2, 20% of n1 is used. Do not

specify 0 as a value for n1.

 If you specify the RECORDS parameter, you must also specify the

RECSIZE parameter.

RECSIZE=n

This operand applies only with the VSE/VSAM Space Management for SAM

Function.

 The RECSIZE (and RECORDS) parameter is used to determine allocation

sizes for implicit file definition during open of a SAM ESDS file.

 n indicates the average record length for the file. Do not specify 0 as a

value for n.

 If you specify RECSIZE, you must also specify the RECORDS parameter.

For details on the RECORDS and RECSIZE parameters, see “Defining a SAM ESDS

File” on page 158.

File Disposition

Programming Interface Information

Disposition processing applies to reusable files only. Implicitly defined SAM ESDS

files are always reusable.

For VSE/VSAM access, the options available at OPEN and the disposition of the file

at CLOSE depend on the DISP parameter of the // DLBL statement or the

MACRF/CLOSDSP parameters of the ACB macro. Options specified for DISP

 ┌─────────┬──┐

 │ Value │ Indicates that the: │

 ├─────────┼──┤

 │ NEW │ File is to be reset at OPEN │

 │ OLD │ File is not to be reset at OPEN │

 │ KEEP │ File is to be kept at CLOSE │

 │ DELETE │ Data is to be made inaccessible at CLOSE │

 ├─────────┼──┤

 │ DATE │ Disposition is the same as for: │

 │ │ │

 │ │ KEEP if the expiration date │

 │ │ has not been reached. │

 │ │ DELETE if the expiration date │

 │ │ has been reached. │

 └─────────┴──┘

Figure 11. Disposition: Meaning of Values

Job Control: // DLBL

Chapter 3. Operation and Job Control 29

override those specified for MACRF/CLOSDSP. The default for the DISP

parameter depends on the file opened or closed. For VSE/VSAM access, the

default is:

 DISP=(OLD,KEEP,KEEP)

 where:

 OLD is the default when the file is opened.

 The first KEEP is the default when the file is normally closed.

 The second KEEP is the default when the job is abnormally ended.

For managed-SAM access, the options available at OPEN and the disposition of the

file at CLOSE depend on the DISP parameter of the // DLBL statement and

options specified in the DTF.

Each option of the DISP parameter has a corresponding option in the

MACRF/CLOSDSP parameters that causes the same function to be performed. The

NEW, OLD, RST, and NRS options apply when the file is opened; KEEP, DELETE,

and DATE apply when the file is closed. VSE/VSAM allocates space, resets the file,

or implicitly defines a file (for managed-SAM access of a SAM ESDS file that is not

already defined in the catalog) when the ACB/DTF for the file is opened. At close,

VSE/VSAM keeps, resets, deallocates, or deletes the file, depending on which

function has been specified.

Figure 12 through Figure 16 list the VSE/VSAM actions when opening and closing

different kinds of files. The following definitions apply to the figures:

v Keep means to retain a file’s data and accessibility.

v Reset means to set a file to empty and release its secondary extents.

v Deallocate means to set a file to empty and release its primary and secondary

extents.

v Allocate means to provide primary disk space, as specified by the user at

DEFINE time.

v Define means to place information describing the file into the VSE/VSAM

catalog.

v Delete means to remove all references to the file from the catalog, and release

the file’s space.

OPEN Disposition

A file may appear in one of the following four states when it is opened for output:

Unallocated: A file is unallocated if its catalog records have no information of

suballocated space. This happens for one of two reasons. Either the file was

defined as a dynamic file (NOALLOCATION, REUSE) and it has never been

opened, or the file was defined as a dynamic file (NOALLOCATION, REUSE) and

it has been closed with DISP and/or MACRF/CLOSDSP options that caused

deallocation.

All open options cause space to be suballocated for the file, providing enough

space is available. If enough space is not available, the open fails. The ACB user is

informed by an ACB return code; the DTF user’s job is canceled.

Allocated for Native VSE/VSAM Access: The options DISP=NEW and/or

MACRF=RST cause the file to be reset to its primary allocation; its secondary

extents are released. Although the file records are not erased, the file is considered

empty. The options DISP=OLD and/or MACRF=NRS do not cause the file to be

reset to empty and allow updating and extension of the file.

Job Control: // DLBL

30 VSE/VSAM User’s Guide and Application Programming

Allocated for Managed-SAM Access of a SAM ESDS File: Same as for

“Allocated for Native VSE/VSAM Access” on page 30, above.

Undefined for Managed-SAM Access: All options of the DISP parameter cause

the file to be implicitly defined. The native VSE/VSAM user cannot implicitly

define a file.

When a file with suballocated space is opened for input, the options DISP=NEW

and/or MACRF=RST are invalid, and the options DISP=OLD and/or

MACRF=NRS cause the file to be opened without resetting the file to empty.

Figure 12 shows the action performed by VSE/VSAM when you try to open a file

that is allocated for VSE/VSAM access.

 Figure 13 on page 32 and Figure 14 on page 33 show the action performed by

VSE/VSAM when you try to open a file that is allocated for managed-SAM access.

For explanations to the “See ()” references in the two figures, refer to

“Explanations” on page 34.

┌───┐

│ Files with REUSE Attribute │

├───────┬─────────────┬───┤

│ OPEN │ File │ DISP on DLBL or MACRF on ACB │

│ (ACB) │ Status ├───────────────────────┬─────────────────────────┤

│ │ │ NEW/RST │ OLD/NRS │

├───────┼─────────────┼───────────────────────┼─────────────────────────┤

│ OUT │ Unallocated │ Allocate space │ Allocate space │

│ │ │ for the file. │ for the file. │

│ ├─────────────┼───────────────────────┼─────────────────────────┤

│ │ Allocated │ Reset the file. │ File is not reset. │

│ │ │ (DISP=NEW prevents │ Output operations allow │

│ │ │ access to any data │ updating and extension │

│ │ │ that exists prior │ of the file. │

│ │ │ to open.) │ │

│ ├─────────────┼───────────────────────┼─────────────────────────┤

│ │ Undefined │ Open fails. │ Open fails. │

├───────┼─────────────┼───────────────────────┼─────────────────────────┤

│ IN │ Allocated │ Open fails. │ File is not reset. │

│ │ │ │ If the file is already │

│ │ │ │ empty, open fails. │

└───────┴─────────────┴───────────────────────┴─────────────────────────┘

Figure 12. VSE/VSAM Access: OPEN Disposition

Job Control: // DLBL

Chapter 3. Operation and Job Control 31

┌───┐

│ Files with REUSE Attribute │

├───────┬─────────────┬──────────────┬──────────────────────────────────┤

│ │ │ │ DISP on DLBL │

│ OPEN │ File │ DISP is NOT │ See (B) │

│ (DTF) │ Status │ Specified ├────────────────┬─────────────────┤

│ │ │ See (A) │ NEW │ OLD │

├───────┼─────────────┼──────────────┼────────────────┼─────────────────┤

│ OUT- │ Unallocated │ Allocate │ Allocate │ Allocate │

│ PUT │ SAM ESDS │ space for │ space for │ space for │

│ │ file. │ the file. │ the file. │ the file. │

│ │ See (1) │ (DISP=NEW). │ │ │

│ ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Allocated │ Reset │ Reset │ File is │

│ │ for │ the file. │ the file. │ not reset. │

│ │ SAM ESDS │ Position to │ Position to │ Position to │

│ │ file. │ the beginning│ the beginning │ the end │

│ │ See (1)(2) │ of the file. │ of the file. │ of the file │

│ │ │ (DISP=NEW). │ │ for extension. │

│ │ │ See (B) │ │ │

│ ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Undefined. │ Implicitly │ Implicitly │ Implicitly │

│ │ │ define a │ define a │ define a │

│ │ │ SAM ESDS │ SAM ESDS │ SAM ESDS │

│ │ │ file. │ file. │ file. │

│ │ │ (DISP=NEW) │ │ │

├───────┼─────────────┼──────────────┼────────────────┼─────────────────┤

│ INPUT │ Allocated │ File is │ Invalid. │ File is │

│ │ for │ not reset. │ File is │ not reset. │

│ │ SAM ESDS │ Position to │ not reset. │ Position to │

│ │ file. │ the beginning│ Open fails. │ the beginning │

│ │ │ of the file │ │ of the file │

│ │ │ for input. │ │ for input. │

│ │ │ (DISP=OLD) │ │ │

└───────┴─────────────┴──────────────┴────────────────┴─────────────────┘

Figure 13. Managed-SAM Access: OPEN Disposition -- OUTPUT/INPUT

Job Control: // DLBL

32 VSE/VSAM User’s Guide and Application Programming

┌───┐

│ Files with REUSE Attribute │

├───────┬─────────────┬──────────────┬──────────────────────────────────┤

│ │ │ │ DISP on DLBL │

│ OPEN │ File │ DISP is NOT │ See (B) │

│ (DTF) │ Status │ Specified ├────────────────┬─────────────────┤

│ │ │ See (A) │ NEW │ OLD │

├───────┼─────────────┼──────────────┼────────────────┼─────────────────┤

│ WORK │ Unallocated │ Allocate │ Allocate │ Allocate │

│ │ SAM ESDS │ space for │ space for │ space for │

│ │ file. │ the file. │ the file. │ the file. │

│ │ See (1) │ (DISP=NEW). │ │ │

│ ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Allocated │ Reset │ Reset │ File is │

│ │ for │ the file. │ the file. │ not reset. │

│ │ SAM ESDS │ Position to │ Position to │ Position to │

│ │ file. │ the beginning│ the beginning │ the beginning │

│ │ See (1) │ of the file. │ of the file. │ of the file │

│ │ │ (DISP=NEW). │ │ The file may │

│ │ │ │ │ be read. │

│ ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Undefined. │ Implicitly │ Implicitly │ Implicitly │

│ │ │ define a │ define a │ define a │

│ │ │ SAM ESDS │ SAM ESDS │ SAM ESDS │

│ │ │ file. │ file. │ file. │

│ │ │ (DISP=NEW) │ │ │

├───────┼─────────────┼──────────────┼────────────────┼─────────────────┤

│ WORK- │ Unallocated │ Invalid. │ Invalid. │ Invalid. │

│ IN │ SAM ESDS │ Open fails. │ Open fails. │ Open fails. │

│ │ file. │ (DISP=OLD) │ │ │

│ See ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Allocated │ File is │ File is │ File is │

│ │ for │ not reset. │ not reset. │ not reset. │

│ │ SAM ESDS │ Position to │ Position to │ Position to │

│ │ file. │ the beginning│ the beginning │ the beginning │

│ │ │ of the file. │ of the file. │ of the file. │

│ │ │ The file │ The file │ The file │

│ │ │ may be read. │ may be read. │ may be read. │

│ │ │ (DISP=OLD) │ │ │

│ ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Undefined. │ Invalid. │ Invalid. │ Invalid. │

│ │ │ Open fails. │ Open fails. │ Open fails. │

│ │ │ (DISP=OLD) │ │ │

├───────┼─────────────┼──────────────┼────────────────┼─────────────────┤

│ WORK- │ Unallocated │ Invalid. │ Invalid. │ Invalid. │

│ INUP │ SAM ESDS │ Open fails. │ Open fails. │ Open fails. │

│ │ file. │ (DISP=NEW) │ │ │

│ See ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Allocated │ File is │ File is │ File is │

│ │ for │ not reset. │ not reset. │ not reset. │

│ │ SAM ESDS │ Position to │ Position to │ Position to │

│ │ file. │ the beginning│ the beginning │ the beginning │

│ │ │ of the file. │ of the file. │ of the file. │

│ │ │ The file │ The file │ The file │

│ │ │ may be read. │ may be read. │ may be read. │

│ │ │ (DISP=NEW) │ │ │

│ ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Undefined. │ Invalid. │ Invalid. │ Invalid. │

│ │ │ Open fails. │ Open fails. │ Open fails. │

│ │ │ (DISP=NEW) │ │ │

└───────┴─────────────┴──────────────┴────────────────┴─────────────────┘

Figure 14. Managed-SAM Access: OPEN Disposition -- WORKxxxx (Part 1 of 2)

Job Control: // DLBL

Chapter 3. Operation and Job Control 33

Explanations: In Figure 13 on page 32 and Figure 14 on page 33:

 (A) The default value is given in parentheses, for example (DISP=NEW).

 (B) Do not specify the DISP parameter for IJSYSLN (SYSLNK file).

 (1) If the characteristics of the file do not match those specified in the DTF,

open fails and the file cannot be implicitly deleted. In particular, the maximum

logical block that may be written (DTF BLKSIZE) must not be greater than the

maximum allowed in the file (DEFINE maximum RECORDSIZE). If DTFSD is

used, the file must be in CI format.

 (2) DISP=NEW prevents access to any data existing prior to open.

CLOSE Disposition

Close disposition takes effect only after the file has been successfully opened. If

you open a file but do not close it, close disposition takes effect during automatic

close at the end of the job step.

VSE/VSAM Access: If you specify DELETE as the only disposition at CLOSE,

VSE/VSAM always deletes the data by deallocation or resetting the file. The

contents of the file is lost. The next open for INPUT will fail because the file is

empty. If any other DTF (or ACB) is open for the same file, the close is completed,

but the file is not reset, deallocated, or deleted; the operator and the invoking

program are notified by a return code.

If you specify a second close disposition in the // DLBL DISP parameter, this

specification takes over the function of the first close disposition if the job is

canceled by the operator or is ended abnormally for any other reason before the

file was closed.

Note: A nonzero job return code is not an abnormal end of job. This means:

v The first close disposition will be performed.

┌───┐

│ Files with REUSE Attribute │

├───────┬─────────────┬──────────────┬──────────────────────────────────┤

│ │ │ │ DISP on DLBL │

│ OPEN │ File │ DISP is NOT │ See (B) │

│ (DTF) │ Status │ Specified ├────────────────┬─────────────────┤

│ │ │ See (A) │ NEW │ OLD │

├───────┼─────────────┼──────────────┼────────────────┼─────────────────┤

│ WORK- │ Unallocated │ Allocate │ Allocate │ Allocate │

│ MOD │ SAM ESDS │ space for │ space for │ space for │

│ │ file. │ the file. │ the file. │ the file. │

│ │ See (1) │ See (1) │ │ │

│ │ │ (DISP=NEW). │ │ │

│ ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Allocated │ Reset │ Reset │ File is │

│ │ for │ the file. │ the file. │ not reset. │

│ │ SAM ESDS │ Position to │ Position to │ Position to │

│ │ file. │ the beginning│ the beginning │ the end │

│ │ │ of the file. │ of the file. │ of the file │

│ │ │ (DISP=NEW). │ │ The file may │

│ │ │ │ │ be read. │

│ ├─────────────┼──────────────┼────────────────┼─────────────────┤

│ │ Undefined. │ Implicitly │ Implicitly │ Implicitly │

│ │ │ define a │ define a │ define a │

│ │ │ SAM ESDS │ SAM ESDS │ SAM ESDS │

│ │ │ file. │ file. │ file. │

│ │ │ (DISP=NEW) │ │ │

└───────┴─────────────┴──────────────┴────────────────┴─────────────────┘

Figure 14. Managed-SAM Access: OPEN Disposition -- WORKxxxx (Part 2 of 2)

Job Control: // DLBL

34 VSE/VSAM User’s Guide and Application Programming

v The second close disposition will not be performed.

If, for example, you open a reusable file through a // DLBL statement with the

close disposition specified as ...DELETE,KEEP then this file is only deleted if the

job comes to a normal end. In any other case the file is not deleted and you can

rerun the job without reloading the file.

Figure 15 shows the action performed by VSE/VSAM when you try to close a file

that is allocated for VSE/VSAM access.

 Managed-SAM Access: If you specify DELETE as the only disposition at CLOSE,

VSE/VSAM always deletes the data by deallocation, resetting, or implicit deletion.

To avoid sharing-problems, however, if any other DTF (or ACB) for the same file is

open at the same time, no deletion occurs; the operator is notified by a message

with a warning return code, and close processing continues. With DELETE

specified at CLOSE, the contents of the file is lost. The next open for OUTPUT

WORK will write new data. If the file has been deallocated or reset, an OPEN for

INPUT will be successful, but the first GET will cause control to be passed to the

EOFADDR routine because the file is empty.

If you specify a second close disposition in the // DLBL DISP parameter, this

specification takes over the function of the first close disposition if the job is

canceled by the operator or is ended abnormally for any other reason before the

file was closed.

Note: A job return code of not 0 is not an abnormal end of job. That means:

v The first close disposition will be performed.

v The second close disposition will not be performed.

If, for example, you open a reusable file through a // DLBL statement with the

close disposition specified as ...DELETE,KEEP then this file is only deleted if the

job comes to a normal end. In any other case the file is not deleted and you can

rerun the job without reloading the file.

Figure 16 on page 36 shows the action performed by VSE/VSAM when you try to

close a file that is allocated for managed-SAM access.

┌───┐

│ Files with REUSE Attribute │

├────────────────────┬──┤

│ │ DISP on DLBL or MACRF on ACB │

│ CLOSE ├────────────┬────────────┬────────────────────────┤

│ (ACB) │ │ │ Date │

│ │ KEEP │ DELETE ├────────────┬───────────┤

│ │ │ │ Expired │ Unexpired │

├────────────────────┼────────────┼────────────┼────────────┼───────────┤

│ File was │ │ │ │ │

│ explicitly defined │ Keep │ Deallocate │ Deallocate │ Keep │

│ (NOALLOCATION). │ │ │ │ │

├────────────────────┼────────────┼────────────┼────────────┼───────────┤

│ Reusable │ Keep │ Reset │ Reset │ Keep │

│ (suballocated). │ │ │ │ │

├────────────────────┼────────────┼────────────┼────────────┼───────────┤

│ File was │ Keep │ Reset │ Reset │ Keep │

│ implicitly defined.│ │ │ │ │

└────────────────────┴────────────┴────────────┴────────────┴───────────┘

Figure 15. VSE/VSAM Access: CLOSE Disposition

Job Control: // DLBL

Chapter 3. Operation and Job Control 35

Additional Considerations

v Specifying DISP=NEW in the // DLBL statement overrides MACRF=NRS in the

ACB, such that the result is as if MACRF=RST were specified. Because

MACRF=RST is mutually exclusive with MACRF=IN and MACRF=LSR, open

fails if DISP=NEW is specified for a file opened through DTF TYPEFLE=INPUT,

or ACB MACRF=IN, or MACRF=LSR.

v If the close disposition specified for the file results in the resetting or

deallocation of the file, and if the file is password-protected, the ACB must

specify (or the operator will be prompted for) the update- or higher-level

password of the file at open. If the close disposition specified for the file results

in the implicit deletion of the file, there is no prompting for the entry password

because an implicitly defined file cannot be password-protected. If the catalog

itself is password-protected, the operator is prompted for the master password

of the catalog at CLOSE.

Using DISP could eliminate data inadvertently if the wrong parameter is

specified. You may want to use an entry password to protect against inadvertent

destruction of data. A catalog password may also provide protection for files

owned by the catalog. If the file is accessed through DTF, the password must be

supplied by the operator. If the file is accessed through ACB, the password may

be supplied in the ACB, by the operator, or through IDCAMS commands.

End of Programming Interface Information

// EXEC Statement

To run a job or job step, enter the EXEC command with the SIZE parameter.

┌───┐

│ Files with REUSE Attribute │

├────────────────┬────────┬───┤

│ │ DISP │ DISP on DLBL See (A) │

│ CLOSE │ not ├───────┬────────────┬────────────────────────┤

│ (DTF) │ speci- │ │ │ Date │

│ │ fied │ KEEP │ DELETE ├────────────┬───────────┤

│ │ │ │ │ Expired │ Unexpired │

├────────────────┼────────┼───────┼────────────┼────────────┼───────────┤

│ File was │ Keep │ Keep │ Deallocate │ Deallocate │ Keep │

│ explicitly │ See (1)│ │ │ │ │

│ defined │ │ │ │ │ │

│ (NOALLOCATION).│ │ │ │ │ │

├────────────────┼────────┼───────┼────────────┼────────────┼───────────┤

│ Reusable │ Keep │ Keep │ Reset │ Reset │ Keep │

│ (suballocate). │ See (1)│ │ │ │ │

├────────────────┼────────┼───────┼────────────┼────────────┼───────────┤

│ File was │ Keep │ Keep │ Delete │ Delete │ Keep │

│ implicitly │ See (1)│ │ │ │ │

│ defined. │ │ │ │ │ │

├────────────────┴────────┴───────┴────────────┴────────────┴───────────┤

│ │

│ (A) Do not specify the DISP parameter for IJSYSLN (SYSLNK file). │

│ (1) DISP is DELETE if TYPEFILE=WORK and DELETFL is specified. │

│ │

└───┘

Figure 16. Managed-SAM Access: CLOSE Disposition

Job Control: // DLBL

36 VSE/VSAM User’s Guide and Application Programming

Note to Users of the VSE/VSAM Space Management for SAM

Function

When job control routines process linkage editor control statements (such as

ACTION, ENTRY, INCLUDE, or PHASE) with IJSYSLN defined as a

managed-SAM file, both the minimum partition size of 128KB and the default

GETVIS space of 48KB are too small. Before attempting to run the linkage editor

with a managed-SAM IJSYSLN file, tell the system operator to issue the ALLOC

command to adjust partition size to provide the required GETVIS space, plus 80KB

non-GETVIS space for job control routines. The operator must then issue the SIZE

command to set aside an adequate amount of default GETVIS space in the partition.

To determine how much GETVIS space is adequate, consider the following:

v You must provide enough storage to access the catalog(s) to locate the SAM

ESDS file(s). For every catalog required, provide at least 40KB of GETVIS space.

v For every SAM ESDS file you wish to have open at any given time, you should

provide at least an additional 20KB of GETVIS space.

For example, to use 4 work files cataloged in the same user catalog, provide 40KB

(user catalog) + 40KB (master catalog) + 80KB (4 SAM ESDS files) = 160KB of

GETVIS space. This is in addition to the space for the program you intend to run

in that partition.

Format of the EXEC Statement

NN

//

 EXEC

progname

PGM=

,REAL
 N

N
,SIZE=

nK

mM

AUTO

(AUTO,

nK

)

mM

phasename

(phasename,

nK

)

mM

,GO

,PARM=’value’
 N

N
,DSPACE=

nK

mM

,TRACE
 NM

For information about parameters not described here, see “EXEC” in the z/VSE

System Control Statements.

REAL Tells the system to execute the program in real storage, without paging. In

VSE/VSAM, use of this parameter causes the system to load VSE/VSAM

modules that normally reside in the SVA into your partition. Your partition

must have an additional 300KB to accommodate these VSE/VSAM SVA

modules. To run the VSE/VSAM Space Management for SAM Function in real

mode, add another 40KB (340KB total) to your partition.

 There are only a few cases (for example, time-dependent applications) in

which VSE/VSAM should run in real mode instead of virtual mode.

Running programs in real mode in one partition can significantly degrade

performance in other partitions, so you should use real mode sparingly. Do

Job Control: // EXEC

Chapter 3. Operation and Job Control 37

not specify REAL on the // EXEC IDCAMS invoke statement, because the

partition cannot accommodate both VSE/VSAM and IDCAMS modules at

the same time.

SIZE=size

Specifies how much storage is needed for loading the specified program.

For ease of use, specifying SIZE=AUTO is recommended. This indicates

that the program size, as calculated by the system, is to be taken as the

value for SIZE. For other possible specifications of SIZE, see “EXEC” in the

z/VSE System Control Statements.

 You must specify SIZE for VSE/VSAM programs (including IDCAMS),

ISAM programs using the ISAM Interface Program (IIP), and SAM files

using the VSE/VSAM Space Management for SAM Function. SIZE specifies

the size of that part of the partition that is directly available to the

program to be executed. The remainder of the partition may be used as

GETVIS storage area.

 The non-SVA-eligible VSE/VSAM phases and IDCAMS must be

accommodated in the partition GETVIS area. The partition GETVIS area

must contain at least 40KB for VSE/VSAM buffers and control blocks for

every catalog that is open, plus 12KB for every KSDS and 10KB for every

ESDS or RRDS (assuming a CI size of 2KB or less). Additional space for

modules, buffers, and control blocks is required if you use any

non-SVA-eligible VSE/VSAM phases (for example, the ISAM Interface

Program) or IDCAMS. For exact storage requirements, see “Storage for

VSE/VSAM” on page 14.

 To invoke IDCAMS through job control, specify:

 // EXEC IDCAMS,SIZE=AUTO,PARM=‘value’

If you do not specify the SIZE parameter, IDCAMS terminates your job

immediately. When you specify SIZE=AUTO, the system determines the

amount of storage required for the IDCAMS root segment and leaves the

rest of the partition free for the GETVIS area.

PARM=‘value’

The parameter is optional. The syntax and meaning of the PARM

parameter are identical to that of the PARM IDCAMS command (modal

command) as described in the VSE/VSAM Commands under “PARM.”

 Follow IDCAMS syntax rules for coding ‘value’, but follow VSE/VSAM job

control rules for coding continuation statements. (Use a nonblank character

in column 72 and continue the statement in column 16.) The maximum

number of characters between the quotes is 100 and consists of all data in

columns 16 - 71, including blanks. IDCAMS treats this data as one

100-character line. Do not code the IDCAMS continuation dash.

 Examples:

 16 72

 | |

 V V

 // EXEC IDCAMS,SIZE=AUTO,PARM=’GRAPHICS(CHAIN) X

 MARGINS(10 80)’

 // EXEC IDCAMS,SIZE=AUTO,PARM=’TEST(TRACE FULL((IOGR 3 3) X

 (IOPR 3 3)(IOVY 4 4)))’

Job Control: // EXEC

38 VSE/VSAM User’s Guide and Application Programming

In the examples, there is a continuation character in column 72,

 and the continuation line begins in column 16.

 In the second example, the FULL dump IDs are IOGR, IOPR, and IOVY.

// EXTENT Statement

To determine when you must supply a // EXTENT statement, refer to “Use of

z/VSE Job Control Statements for VSE/VSAM” on page 23.

Format of the EXTENT Statement

NN

// EXTENT

logical_unit

,

serial_number

,
 1

type

,

N

N
sequence_number

 ,

relative_track_number

block_number

 ,

number_of_tracks

number_of_blocks

 NM

logical_unit

Specifies a six-character field indicating the logical unit (SYSxxx) of the

volume on which this extent resides. VSE/VSAM does not require this

parameter; if you do not specify a LU, VSE/VSAM will assign one.

 If you specify this parameter, you must supply full job control statements

(// DLBL, // EXTENT, and // ASSGN) for all volumes (including

candidate volumes) for the file and its associations.

serial_number

VSE/VSAM users are required to specify the serial number of the volume

this extent is on. For data integrity reasons, do not have two volumes with

the same serial number in your system (even if one of the volumes

contains no VSE/VSAM space).

type For VSE/VSAM, a value of 1 is assumed.

sequence_number

This parameter is ignored for VSE/VSAM users, but if it is specified

incorrectly, it is flagged by job control.

relative_track_number│block_number

This parameter indicates the number of the track (CKD), or number of

block (FBA) on which the extent is to begin. You must specify it when a

file with the UNIQUE option is created (DEFINE or IMPORT command).

 This parameter is not required (and is ignored) if it is specified for a

VSE/VSAM file that is created within an existing data space. In this case,

VSE/VSAM suballocates the space for the file from direct-access extents it

already owns. You are not required to specify this parameter for a

VSE/VSAM input file, because the extents are obtained from the

VSE/VSAM catalog.

 This parameter and the number of tracks│blocks parameter must either

both be present or both be omitted.

number_of_tracks│number_of_blocks

This parameter indicates the number of tracks (CKD), or number of blocks

(FBA) to be allocated to the file or space. You must specify it when a file

with the UNIQUE option is created (DEFINE or IMPORT command).

Job Control: // EXEC

Chapter 3. Operation and Job Control 39

This parameter is ignored when a VSE/VSAM file is created within an

existing data space, because VSE/VSAM suballocates the space for the file

from direct-access extents it already owns. This parameter is not required

for VSE/VSAM input files, because the extents are obtained from the

VSE/VSAM catalog.

 For an implicitly defined SAM ESDS file that does not specify RECORDS

and RECSIZE (on the // DLBL statement), VSE/VSAM uses the number of

tracks│blocks parameter to determine the primary allocation size. A

secondary allocation size equal to 20% of the primary size is used.

 This parameter and the relative track│block parameter must either both be

present or both be omitted.

Using Job Control for Catalog Definition

Overview of Catalogs

VSE/VSAM catalog(s) are central information points for files and volumes. A

catalog contains the information VSE/VSAM needs to allocate space for files,

verify authorization to gain access to files, compile use statistics on files, and relate

relative byte addresses (RBAs) to physical locations. Each VSE/VSAM catalog also

contains entries that describe the catalog itself. Figure 17 shows the relationship

between a master catalog and user catalogs, as well as their relationships with

VSE/VSAM and nonVSAM files.

 Master Catalogs

This type of catalog is mandatory. A master catalog must be defined in your

system. Defining a master catalog is the first job that needs to be done after you

have installed VSE/VSAM in your system. You can have several master catalogs at

your installation; however, only one can be connected to the system at a time.

┌───┐

│ Master Catalog │

└─┬┬┬───────────────────────────────┬─────────────────────┬───────────┘

 │││ │ │

 ────────────── ─────── ───────

 Files and Pointer Pointer

 Volume Records ─────── ───────

 ────────────── │ │

 │││ │ │

 │││ ┌─────────────┐ ┌───────┴───────┐ ┌───────┴───────┐

 ││└─┤ VSAM Files │ │ User Catalog │ │ User Catalog │

 ││ └─────────────┘ │ (Optional) │ │ (Optional) │

 ││ ┌─────────────┐ └───────┬───────┘ └───────┬───────┘

 │└──┤ VSAM Files │ │ │

 │ │ Other Files │ ─────────────── ──────────────

 │ └─────────────┘ Files and Files and

 │ ┌─────────────┐ Volume Records Volume Records

 └───┤ Other Files │ ─────────────── ──────────────

 └─────────────┘ │ │

 ┌─────┴────────┐ ┌──────────┴─────┐

 │ │ │ │

 ┌──────┴──────┐ ┌────┴─┴──────┐ ┌──────┴──────┐

 │ VSAM Files │ │ VSAM Files │ │ VSAM Files │

 │ Other Files │ └─────────────┘ └─────────────┘

 └─────────────┘

Figure 17. Relationship of Catalogs and Files

Job Control: // EXTENT

40 VSE/VSAM User’s Guide and Application Programming

The master catalog volume must always be mounted whenever a VSE/VSAM file

or catalog is to be processed. If the VSE/VSAM file to be processed is defined in a

user catalog, the user catalog volume must be mounted also.

The master catalog volume is connected to the system at IPL (initial program load)

by the DEF SYSCAT=cuu command. It is always on a LU named SYSCAT.

User Catalogs

This type of catalog is optional. A user catalog has the same structure and function

as the master catalog. If defined, a user catalog is pointed to by the master catalog.

One or more user catalogs can be defined in your system. They are used to

increase data integrity and security, improve performance, and provide volume

portability.

Files and Catalogs

All VSE/VSAM files (except implicitly defined SAM ESDS files) must be defined

(have an entry) in a catalog. To make such an entry, or to perform other actions on

a file, you do not act on the file, but on a VSE/VSAM catalog. For example: to

establish a file, you have to create an entry in a catalog by using the IDCAMS

command DEFINE; to delete a file involves removing an entry from the catalog; to

move a file from one system to another involves moving an entry from one

system’s catalog to another system’s catalog.

Note that VSE/VSAM either:

v Uses a catalog to access a file (as in the PRINT command, where VSE/VSAM

locates the file to be printed through the catalog), or

v Accesses the catalog information only and does not access a file (as in the

ALTER command, where VSE/VSAM changes an entry in the catalog).

Catalog Volumes

Several catalogs can own space on a volume, but with the restriction that only one

catalog can reside on a volume.

If a VSE/VSAM file resides on several volumes, every one of those data spaces

must be owned by the same catalog.

Note that information requests to a catalog might be answered more quickly if the

information is distributed across several catalogs. For example, if the master

catalog primarily contains pointers to user catalogs, which in turn contain entries

for most files and volumes, catalog search time can be reduced, and the effect of an

inoperative or unavailable catalog is minimized.

The following discussion (except where noted) pertains to the accessing of a file.

Specifying the Master Catalog

To define a master catalog you must supply a master catalog // DLBL statement, and

you must specify extent information, either in the form of an // EXTENT

statement or by DEFINE command parameters.

 // DLBL IJSYSCT,’VSAM.MASTER.CATALOG’,,VSAM

The // DLBL statement in the above example identifies:

v The filename: must be IJSYSCT.

v The file-ID: VSAM.MASTER.CATALOG

Job Control: CATALOGS

Chapter 3. Operation and Job Control 41

This can be any name you choose (it must match the NAME parameter in the

DEFINE MASTERCATALOG command).

v The access method.

You can omit the master catalog // DLBL statement from the job stream if you

place the statement in the system or partition standard label area. You do this by

preceding it with one of the following job control statements:

 // OPTION STDLABEL=ADD

 // OPTION PARSTD=ADD

Another way of referring to the master catalog (after its initial specification) is by

coding the CAT=filename parameter in a VSE/VSAM file’s // DLBL statement.

For further explanation to the CAT=filename parameter, see below.

Specifying a User Catalog

To define a user catalog you supply a // DLBL statement for the master catalog

only. But to access files in a user catalog, specify a user catalog // DLBL statement.

(For information on // DLBL requirements for IDCAMS commands, refer to

Table 1 on page 24.) No // EXTENT statement is required.

Specifying a Job Catalog

With VSE/VSAM, you can designate one (but only one) of your user catalogs as a

job catalog.

You specify a job catalog by coding the filename, IJSYSUC, in the // DLBL

statement that specifies the user catalog; for example:

 // DLBL IJSYSUC,‘JOBCAT’,,VSAM

When you specify a job catalog, VSE/VSAM will always use that one catalog for

all catalog and file access in the current job, unless it is specifically overridden by:

v The CAT=filename parameter of a VSE/VSAM file’s // DLBL statement.

v The CATALOG or WORKCAT parameter of an IDCAMS command.

Using a Job Catalog

The following example makes use of the REPRO command (data is to be copied

from one file to another) to show how you use a job catalog. It is assumed that the

input file, PAY, and the output file, PAYROLL, were already defined (cataloged) in

the job catalog. It is also assumed that the // DLBL statement for the master

catalog has been placed in the system or partition standard label area and so need

not be included in the example.

Example:

 // JOB Specify a job catalog

 (a) // DLBL IJSYSUC,‘USER1’,,VSAM

 (b) // DLBL VSAMIN,‘PAY’,,VSAM

 (c) // DLBL VSAMOUT,‘PAYROLL’,,VSAM

 // EXEC IDCAMS,SIZE=AUTO

 REPRO INFILE(VSAMIN) OUTFILE(VSAMOUT)

 /*

 /&

In this example, VSE/VSAM finds a // DLBL statement with a filename of

IJSYSUC (a). VSE/VSAM interprets this to mean that files PAY (b) and PAYROLL

(c) have their respective entries in the job catalog. It, therefore, searches the job

catalog to locate the entry for input file PAY and output file PAYROLL.

Job Control: CATALOGS

42 VSE/VSAM User’s Guide and Application Programming

Assume that you want to process a file, but the file is not cataloged in the job

catalog. In this case, you can override the job catalog by using either:

v The // DLBL CAT=filename parameter, or

v The CATALOG parameter of an IDCAMS command.

The following explains these two methods of explicit catalog specifications.

Explicit Catalog Specification (With a VSE/VSAM File’s // DLBL

CAT Parameter)

The following example directs VSE/VSAM to search a catalog other than the job

catalog (specified in the previous example). Assume that the input file PAY was

defined in job catalog USER1 as before, but output file PAYROLL was defined in

user catalog USER2. Also assume, as before, that the // DLBL statement for the

master catalog has been placed in the system or partition standard label area.

Example:

 // JOB USING the // DLBL CAT PARAMETER

 (a) // DLBL IJSYSUC,‘USER1’,,VSAM

 (b) // DLBL VSAMIN,‘PAY’,,VSAM

 (c) // DLBL VSAMOUT,‘PAYROLL’,,VSAM,CAT=PRIVCAT

 (d) // DLBL PRIVCAT,‘USER2’,,VSAM

 // EXEC IDCAMS,SIZE=AUTO

 REPRO INFILE(VSAMIN) OUTFILE(VSAMOUT)

 /*

 /&

VSE/VSAM encounters the filename IJSYSUC in a // DLBL statement (a), but it

also finds CAT=PRIVCAT in a file’s // DLBL statement (c). CAT=PRIVCAT directs

VSE/VSAM to search catalog (d) USER2 (rather than the job catalog) for

PAYROLL’s file entry. (Filename PRIVCAT links the CAT parameter to the

appropriate // DLBL user catalog statement.)

VSE/VSAM locates the entry of file PAY (b) in the job catalog as before because, in

this case, you have not overridden the job catalog specification.

The // DLBL CAT=filename parameter is used with the PRINT and REPRO

commands. (Each of these commands is used to access data.) The // DLBL

CAT=filename parameter can also be used for VSE/VSAM application program

access.

Explicit Catalog Specification (With the IDCAMS CATALOG

Parameter)

Master Catalog: A master catalog // DLBL statement is always required. You

may include it in the job stream or in the partition or standard label area.

User Catalog: If you specify the CATALOG parameter in an IDCAMS command,

generally no // DLBL is needed for a user catalog. Only the PRINT and REPRO

commands require a user catalog // DLBL because they are used with nonVSAM

files. For information on the requirement of // DLBL for IDCAMS commands, see

Table 1 on page 24.

The format of the CATALOG parameter is:

 CATALOG (catname/password)

Specify password only if needed.

Job Control: CATALOGS

Chapter 3. Operation and Job Control 43

Search Sequence of Catalogs

VSE/VSAM follows a certain order in searching for the catalog of a file. The

established hierarchy that determines the specific catalog to be searched is as

follows:

1. Explicitly specified user or master catalog.

This is the catalog that is specified by the IDCAMS CATALOG parameter or by

the CAT=filename parameter of a VSE/VSAM file’s // DLBL statement.

2. Job catalog.

If the above catalog is not specified, the job catalog (IJSYSUC) specified as the

filename of a // DLBL statement is searched.

3. Master catalog.

If the above catalogs are not specified, the master catalog (IJSYSCT) is searched.

Figure 18 on page 45 shows which catalog is searched, depending on your //

DLBL specification.

The default catalog is the catalog that VSE/VSAM searches if you do not specify

CAT=filename in the // DLBL statement, or if you do not use the CATALOG

parameter in an IDCAMS command.

Normally, the default catalog is specified by the // DLBL IJSYSUC statement (also

referred to as job catalog). If not specified, the default catalog is the master catalog

(// DLBL IJSYSCT).

Job Control: CATALOGS

44 VSE/VSAM User’s Guide and Application Programming

┌────────────┬──────────────────────┬────────────┬───────────────────┐

│ // DLBL │ // DLBL CAT=filename │ CATALOG │ Catalog to │

│ IJSYSUC │ │ Parameter │ be Searched │

│ Specified? │ │ Specified? │ │

│ │ │ See (1) │ │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ Yes │ None │ No │ Job Catalog │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ Yes │ Filename of │ No │ User Catalog │

│ │ User Catalog // DLBL │ │ │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ Yes │ ’IJSYSCT’ │ No │ Master Catalog │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ Yes │ ’IJSYSUC’ │ No │ Job Catalog │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ Yes │ None │ Yes │ CATALOG(catname) │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ No │ None │ No │ Master Catalog │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ No │ Filename of │ No │ User Catalog │

│ │ User Catalog // DLBL │ │ │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ No │ ’IJSYSCT’ │ No │ Master Catalog │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ No │ ’IJSYSUC’ │ No │ Master Catalog │

│ │ │ │ See (2) │

├────────────┼──────────────────────┼────────────┼───────────────────┤

│ No │ None │ Yes │ CATALOG(catname) │

└────────────┴──────────────────────┴────────────┴───────────────────┘

 (1) For more information on the CATALOG parameter,

 see Table 1 on page 24 .

 (2) If the filename for the job catalog is specified

 but not a job catalog, VSE/VSAM defaults to the master catalog.

Figure 18. // DLBL Specifications and Search Sequence of Catalogs

Job Control: CATALOGS

Chapter 3. Operation and Job Control 45

Job Control: CATALOGS

46 VSE/VSAM User’s Guide and Application Programming

Chapter 4. Tasks under VSE/VSAM

This Chapter ...

Explains the relationship between a catalog, the data space on a volume, and

VSE/VSAM files.

The chapter includes how to do information for:

v Defining data space and files, and handling ownership of space and

volumes.

v Transporting files.

v Migrating catalogs and files.

v Modeling a new object from existing definitions.

v Changing recoverability of a catalog.

Data and Space Management

About the VSE/VSAM Catalog

When you define a catalog under VSE/VSAM, the catalog is the first object

contained on a volume, and VSE/VSAM allocates a specific amount of data space

to the catalog. This data space is “owned” by the catalog, and it is managed by

VSE/VSAM. Of this data space, you can make portions available to other

VSE/VSAM objects; that is, you can suballocate space.

Information Contained in the Entries of a Catalog

The VSE/VSAM catalog is a key-sequenced file composed of a data part and an

index part. The data part of the catalog consists of:

v Cluster entries that describe files.

Cluster entries contain the information that VSE/VSAM requires to properly

access a file, verify access authorization (if required), and provide statistics on

operations performed on a file.

v Volume entries that describe direct-access volumes in terms of the allocation of

data spaces and the location of available space.

Volume entries in a catalog enable VSE/VSAM to keep track of data spaces and

free storage areas.

The index part of the catalog allows VSE/VSAM to find the cluster entry through

its 44-byte name (file-ID), and to find the volume entry through the volume serial

number.

The information contained in VSE/VSAM catalogs is sufficient to enable

VSE/VSAM to suballocate and deallocate space for files on the available volumes.

Because these volumes need not be mounted on a device of the system, file

management is less dependent on job control information, or on information

specified in processing programs. In certain cases, however, volumes must be

mounted; refer to “Volume Mounting Needs” on page 51.

Except for clusters that have been defined with the UNIQUE attribute, VSE/VSAM

can allocate and deallocate space for files on cataloged volumes that are not

mounted.

© Copyright IBM Corp. 1979, 2005 47

Defining VSE/VSAM Data Spaces on a Volume

To define VSE/VSAM data space on a volume, and to identify the volumes that

will contain the VSE/VSAM clusters, you use the IDCAMS command DEFINE

SPACE.

The space you define will be:

v Identified in the volume table of contents (VTOC) of the volume.

v Controlled entirely by the VSE/VSAM catalog in which it is defined.

Note that the volumes that will contain VSE/VSAM files must be mounted.

Defining VSE/VSAM Files

VSE/VSAM files (or clusters) are stored in VSE/VSAM data spaces. Usually, you

first define a data space, then you define the files.

All VSE/VSAM files of an installation must be cataloged in a VSE/VSAM catalog.

You catalog a file by defining it through the IDCAMS command DEFINE CLUSTER.

IDCAMS, then, enters the name of the file and other characteristics into the

catalog.

When you define VSE/VSAM files, you normally do not need any // DLBL and

// EXTENT statements. This is because VSE/VSAM automatically allocates space

for the files from existing data spaces.

When you define a file with the UNIQUE attribute (to enable the file to be

allocated a space of its own), you do not define the data space beforehand. Instead,

you provide extent information. You do this through // DLBL and // EXTENT

statements in the IDCAMS job stream that defines that file. The data space is then

set up at the same time as the entry for the file is created. The volume(s) must be

mounted, as in defining a data space.

Note that you can also identify nonVSAM files in a VSE/VSAM catalog, but you

cannot suballocate nonVSAM files within VSE/VSAM data space.

About Volumes and VTOCs

Volume Ownership

A given catalog controls (owns) any space that is defined in it. This includes the

space in which the catalog resides, as well as the VSE/VSAM data space occupied

by VSE/VSAM files.

The VSE/VSAM data space occupied by VSE/VSAM files is recorded in the volume

entries in a catalog. The ownership of the volume, and the use of VSE/VSAM data

space on a volume are indicated by label entries in the VTOC of the volume.

VSE/VSAM volume ownership does not affect nonVSAM files that reside on the

volume. NonVSAM files can exist on a volume owned by a catalog but can be

cataloged as nonVSAM entries in a catalog that does not own the volume.

(NonVSAM files do not have to be defined in a VSE/VSAM catalog.)

Label Entries in the VTOC: The data secure file bit in the format-1 VTOC

(identifier) label of every VSE/VSAM data space on the volume is set to indicate

both read and write protection.

Managing Data and Space

48 VSE/VSAM User’s Guide and Application Programming

The ownership bit in the format-4 VTOC label is set to 1 if the volume contains a

VSE/VSAM data space, or if the volume is a candidate volume for a VSE/VSAM

object. The ownership bit indicates that the volume is owned by one or more

catalogs, but does not identify the volumes.

Volume Entries in a Catalog: Every catalog contains a volume entry for every

volume it owns. The volume entry describes:

v The characteristics of the direct-access volume

v Every extent of the VSE/VSAM data space

v Every VSE/VSAM object that uses the space of the volume

Note that volumes with duplicate volume serial numbers cannot be owned by the

same catalog.

Handling Ownership

Removing Volume Ownership: To remove a volume ownership from a catalog,

you must delete all VSE/VSAM objects and data spaces owned by that catalog on

the volume.

If you cannot use the DELETE command because IDCAMS can no longer access

the volume (due to the damage that resulted from a system or hardware failure),

you can reset the ownership bit by using the IKQVDU program.

Note: Do not use IKQVDU if more than one catalog owns space on the volume.

This is because IKQVDU resets the ownership bit even if other catalogs own

space on the volume. For more information on the IKQVDU program, see

“Maintaining VTOC and VOL1 Labels on Disk (IKQVDU)” on page 355.

Releasing Space from Ownership: To release space from ownership by a catalog,

you must delete all VSE/VSAM objects that reside in that space. The catalog

contains a volume entry, which describes the volume and its VSE/VSAM data

spaces.

After deleting the VSE/VSAM objects, you must issue the DELETE SPACE

command. The DELETE SPACE command deletes the VSE/VSAM data spaces

owned by that catalog, removes the volume entry from the catalog, deletes the

format-1 label, and revises the format-4 label in the VTOC (if no other catalogs

own space on that volume).

The following fields in the format-4 VTOC label are reset only when all catalogs

have released their VSE/VSAM space on the volume:

Offset Length Description

 77 8 VSE/VSAM time stamp 1 is set to the system’s time of day

 when VSE/VSAM acquires volume ownership in a catalog. This

 time stamp is modified whenever physical space allocated to

 VSE/VSAM is acquired, either by allocation of an extent

 or any time VSE/VSAM physical space is returned to the

 VTOC by VSE/VSAM catalog management routines.

 85 1 VSE/VSAM indicators:

 Bit 0 set to 1 = One or more VSE/VSAM catalogs owns space

 on the volume.

 Bit 1 set to 1 = No significance for VSE.

 Bits 2 - 7 = Reserved (set to binary zeros).

 86-87 Not used

Managing Data and Space

Chapter 4. Tasks under VSE/VSAM 49

88 8 VSE/VSAM time stamp 2 is the VSE/VSAM-only timestamp. (Set

 only for MVS compatibility and not used by VSE.)

Recognizing VSE/VSAM Data Space Names in the VTOC

VSE/VSAM generates names for data spaces and enters the names in the VTOC of

the applicable volume. You want to be able to recognize the names that relate to

VSE/VSAM when you list the volume’s VTOC, when you reinitialize the volume,

or when you dump the volume to a magnetic tape.

The VTOC contains the:

v Name of every VSE/VSAM data space on the volume, and

v For unique files, the names for the data and index components of a cluster or

alternate index (the format-1 VTOC label is identified with the object’s entry

name).

The names generated by VSE/VSAM have the following format:

v For a data space containing suballocated VSE/VSAM objects, the

VSE/VSAM-generated name is:

 Z999999n.VSAMDSPC.Taaaaaaa.Tbbbbbbb

 where:

 n=2 if no catalog resides in the data space

 n=4 if a user catalog resides in the data space

 n=6 if the master catalog resides in the data space

 aaaaaaabbbbbbb is the time stamp value

v For a unique data space (defined as a data space that cannot contain more than

one cataloged VSE/VSAM object), the VSE/VSAM-generated name is:

 VSAMDSET.DFDyyddd.Taaaaaaa.Tbbbbbbb

 where:

 yyddd is the date (year and Julian day)

 aaaaaaabbbbbbb is the time stamp value

Relating Names Created for Unique Data Spaces

When you define a VSE/VSAM file with the UNIQUE attribute, VSE/VSAM

creates a unique data space. If you specify a name for the data and/or index

component, VSE/VSAM places the name you specify in the format-1 VTOC label

rather than generating a name.

To relate the VSE/VSAM-generated name with a VSE/VSAM cluster, alternate

index, catalog, or data space, you have to list the catalog that owns the volume.

Issue a LISTCAT command to list the content of the catalog. The LISTCAT output,

then, relates the VSE/VSAM-generated names with user-assigned entry names for

cataloged objects.

Time Stamps

Every volume owned by a catalog contains a time stamp that is written in the

VTOC when the volume is first cataloged. Both time stamps, the one in the VTOC

and the one in the volume entry in the catalog, are updated whenever the catalog

is updated in response to the following IDCAMS commands:

 DEFINE SPACE

 DEFINE CLUSTER (with UNIQUE attribute)

 DEFINE ALTERNATEINDEX (with UNIQUE attribute)

 DEFINE MASTERCATALOG

 DEFINE USERCATALOG

 DELETE SPACE

Managing Data and Space

50 VSE/VSAM User’s Guide and Application Programming

DELETE CLUSTER (with UNIQUE attribute)

 DELETE ALTERNATEINDEX (with UNIQUE attribute)

 DELETE MASTERCATALOG

 DELETE USERCATALOG

 EXPORT PERMANENT a cluster or alternate index with the UNIQUE attribute.

(The cluster or alternate index is deleted.)

 IMPORT a cluster or alternate index with the UNIQUE attribute. (Any old copy,

if present, is deleted, and a new version is defined.)

If the time stamp of the volume is earlier than the time stamp of the catalog, the

volume is considered down-level. IDCAMS will not open a file on a down-level

volume.

Volume Mounting Needs

Volumes must be mounted in the following cases:

v If it is the owning VSE/VSAM catalog.

v If a volume contains a unique file.

v If there is not enough unused data space to contain a file, you must mount one

or more volumes to allocate new data space, or you have to assign to the file

other volumes that contain unused data space.

v In all cases where files are actually accessed (for example, VSE/VSAM

application programs, PRINT, REPRO, DELETE ERASE, work files, EXPORT,

IMPORT), you have to mount the volumes.

v In all cases where a VTOC update is necessary (for example, DEFINE or

DELETE SPACE, DEFINE or DELETE a UNIQUE file, ALTER NEWNAME

NONVSAM, ALTER NEWNAME UNIQUE), you have to mount the volume(s)

for the affected VTOC(s).

Work Files on Virtual Disk

Work files may reside on real disk devices, but also on virtual disks, that is: in

virtual storage that has been reserved for z/VSE data spaces. If a work file resides

on virtual disk, data is moved to or from data space (instead of being written to or

from a real disk device).

Virtual disk processing should only be used in conjunction with temporary work

files, because the information in a z/VSE data space is lost whenever the system is

restarted.

Preparations for Use

To prepare for the use of virtual disk, in general proceed as follows:

1. At IPL time, add one or more virtual disks by using the “ADD” command,

FBAV operand.

2. Define z/VSE data space by using the “SYSDEF” command.

3. After IPL, define the layout of the virtual disk(s) by using the “VDISK”

command.

(Using the VDISK command makes the virtual disk available automatically.)

For information on the commands, refer to the manual z/VSE System Control

Statements.

To use the virtual disk support for VSE/VSAM:

Managing Data and Space

Chapter 4. Tasks under VSE/VSAM 51

1. Define one or more user catalogs on the prepared virtual disks by using the

IDCAMS command DEFINE USERCATALOG.

A catalog can own VSE/VSAM space on one or more virtual disks (up to 123

volumes).

2. Catalog the VSE/VSAM objects in the defined catalog by using the DEFINE

commands of IDCAMS.

For an example of definitions, refer to the manual VSE/VSAM Commands under

“Defining Work Files on Virtual Disk.”

Restrictions

Files residing on virtual disk are managed by VSE/VSAM as if they resided on

real devices. However, note the following restrictions:

v Master catalogs must not reside on virtual disk.

v If the user catalog resides on a:

– Virtual disk, and if defining an object on a real disk, the define will fail.

– Real device, and if defining an object on a virtual disk, the define will fail.
That is, cataloging an object to a user catalog is only successful if both - object

and catalog - are either on real volumes or virtual volumes.

v Whenever virtual disks are lost for VSE/VSAM (for example, on re-IPL or

detach), you have to EXPORT DISCONNECT the corresponding user catalog(s)

before defining a new user catalog of the same volume serial name.

Transporting Files between Systems

Transporting Catalog Information

Because all VSE/VSAM files must be cataloged, moving a file from one system (or

set of systems if in a disk sharing environment) to another requires that catalog

information be moved along with it or that the copy of the file moved be cataloged

in the receiving system. If the catalog information is copied with the file, it must be

in a format that both systems can process.

Transporting Files between VSE/VSAM and DFSMSdfp VSAM

or DFSMS/MVS

Use EXPORT and IMPORT to copy VSE/VSAM files and their catalog information

to DFSMSdfp VSAM (which uses the Integrated Catalog Facility - ICF). The only

way you can move MVS files cataloged with the new catalog format to

VSE/VSAM is to export those files to tape while running on DFSMSdfp VSAM.

Then you can import the tape files to VSE/VSAM. You cannot mount a DFSMSdfp

VSAM format volume on a z/VSE system. VSE/VSAM cannot process DFSMSdfp

ICF catalog information.

Do not use BACKUP and RESTORE to transport files from z/VSE to MVS, because

MVS does not have BACKUP and RESTORE commands.

Transporting Files between VSE/VSAM and MVS/VSAM (not

DFP)

Use EXPORT and IMPORT to transfer files and their catalog information between

systems. Files and volumes are portable between VSE/VSAM and MVS/VSAM

“old” catalog format systems.

Virtual Disk

52 VSE/VSAM User’s Guide and Application Programming

You can use BACKUP and RESTORE to back up MVS “old” catalog format files on

z/VSE and restore them on z/VSE. This procedure is recommended only for a

one-time move of files from MVS to z/VSE. The only way you could move the

files back to MVS is to use EXPORT/IMPORT, because MVS does not support

BACKUP and RESTORE.

The description under “Transporting Files between z/VSE Systems” also applies to

transferring files between z/VSE and MVS “old” catalog format systems.

Transporting Files between z/VSE Systems

You can move individual files and user catalogs from one z/VSE system to another

by using the EXPORT and IMPORT commands. When you move a user catalog

from one system (or set of systems) to another, its VSE/VSAM volume ownership

moves along with it. Thus, a VSE/VSAM volume (without compressed data sets) is

portable between systems together with all VSE/VSAM data spaces and files

contained on the volume(s). Any VSE/VSAM volume including compressed data

sets is portable between z/VSE systems.

The entire VSE/VSAM master catalog and the VSE/VSAM volumes owned by the

master catalog can be moved from one z/VSE system (or set of systems) to

another.

To use a VSE/VSAM master catalog from another system, you need only assign it

by use of the DEF SYSCAT=cuu command during initial program load. All

VSE/VSAM volumes owned by that catalog are then available to the receiving

system. In addition, a // DLBL statement for the master catalog must be provided

either in the job stream or in the label area.

Catalog and File Migration

The following explains how to proceed if you want to migrate VSE/VSAM

catalogs and files from one device type to another. This includes movement from

one CKD device type to another, one FBA device type to another, or from a CKD

device to an FBA device (and vice versa). Note that a catalog on an FBA device can

own CKD volumes (and their VSE/VSAM files), and a CKD catalog can own FBA

volumes.

There are two ways to migrate objects and their catalog information from one

device type to another. The simpler method is to use the VSE/VSAM

Backup/Restore Function, but there are some restrictions; the other way is to use a

combination of EXPORT/IMPORT and DEFINE commands. For a description of

the methods, refer to “Migrating Catalogs” on page 55.

Definitions for Catalog Migration

Defining a Catalog

The following applies to both master and user catalogs. Whenever you use

BACKUP/RESTORE or EXPORT/IMPORT for migration, you must first define the

catalog that will own the VSE/VSAM objects after migration.

VSE/VSAM defines a VSE/VSAM data space from which the catalog (and catalog

recovery area) is suballocated. This is done on CKD devices using the DEDICATE,

ORIGIN, CYLINDERS, TRACKS, or RECORDS subparameter of DEFINE

MASTERCATALOG│USERCATALOG. FBA devices require the same process,

Transporting Files

Chapter 4. Tasks under VSE/VSAM 53

except that the DEDICATE, ORIGIN, BLOCKS or RECORDS subparameter must be

specified. (CYLINDERS or TRACKS is not accepted.) Therefore, you must convert

a CYLINDERS or TRACKS value to a BLOCKS or RECORDS quantity.

If you specify DEDICATE for the CKD device, no conversion is necessary.

Convert the number of tracks or cylinders into the number of bytes, using

LISTCAT to determine the number of bytes per track and tracks per cylinder.

Divide the number of bytes by 512 to determine the BLOCKS value. Adjust it

accordingly if you want more or less space allocated.

The beginning-block-number specification in the ORIGIN parameter depends on

where you want the data space to be on the volume (VSE/VSAM always rounds it

to the next minimum CA boundary). Use the LVTOC utility program to determine

what space is available on the volume. The catalog will be located at the beginning

of the defined data space. Ín VSE/VSAM Commands, refer to

v the description of the NAME|VOLUME... parameter under “LISTCAT”

v the description for special fields BLKS/MAX-CA under “Volume Entry, Special

Fields for (V)” to the description for special fields .

You may wish to change other subparameters of MCAT or UCAT (for instance, the

volume serial number), but there are no special considerations for FBA devices.

Specify the actual space to be suballocated for your catalog using the BLOCKS or

RECORDS subparameters of DATA and INDEX. Do not try to directly convert a

CKD catalog size definition to a fixed block definition. Instead, calculate the

desired values; refer to the instructions in the manual VSE/VSAM Commands under

“Defining a Catalog.” To avoid an overly small, inefficient CA size, make the

secondary allocation value at least as large as the desired CA size.

Defining a VSE/VSAM Data Space

The considerations for data space definition are essentially the same as for catalog

definition. Differences are:

v A catalog is not suballocated from the data space.

v Both BACKUP/RESTORE and EXPORT/IMPORT assume that you have already

defined a VSE/VSAM data space on the new volume.

If CANDIDATE is specified with DEFINE SPACE, fixed block data space definition

is the same as CKD data space definition.

Defining a Non-Unique Cluster or Alternate Index

Because these files (or their components) are suballocated from VSE/VSAM data

spaces, there are no job control considerations for FBA devices. For FBA devices,

you must convert the TRACKS or CYLINDERS subparameters to BLOCKS or

RECORDS. (The RECORDS subparameter does not require conversion.) This

conversion is the same as described above for catalog conversion.

Defining a Unique Cluster or Alternate Index

If a cluster or alternate index contains both a non-unique component and a unique

component, conversion considerations for the non-unique component are as

described above.

For every unique component (data and, if present, index), you must convert

EXTENT statement parameters and the TRACKS│CYLINDERS subparameters. Both

conversions are required because a unique component occupies its own

Migrating Catalogs and Files

54 VSE/VSAM User’s Guide and Application Programming

VSE/VSAM data space. If the component is to be on more than one volume,

specify a new EXTENT statement for every volume.

Migrating Catalogs

Catalog Migration Using BACKUP/RESTORE

You cannot actually back up and restore catalogs under BACKUP/RESTORE, but

when you back up and restore objects (including empty objects), their catalog

information is backed up and restored too. This makes it possible for you to use

BACKUP and RESTORE to copy objects and their catalog information into a

different catalog. If the new catalog already contains an entry name for the object

restored, the original object is deleted, and the restored object is added to the new

catalog.

Catalog Migration Using EXPORT/IMPORT

Moving a Master Catalog to Another Volume:

1. Using EXPORT, create portable copies of all files that are to be in the new

catalog (procedure described below). For EXPORT, DISCONNECT any user

catalogs to be reconnected to the new catalog.

2. IPL with the master catalog assigned to the new volume, using the IPL DEF

SYSCAT=cuu command.

3. Define the new master catalog (procedure described above).

4. Define any VSE/VSAM data spaces required for the volumes. (You need not

delete files and catalogs belonging to another catalog.) Note that the define

catalog operation has already defined a data space on the catalog volume. Any

space to be occupied by unique files should be left unallocated.

5. Using IMPORT, copy VSE/VSAM files to volumes belonging to the new

catalog. (For considerations on moving to a different device type, refer to

“Migrating VSE/VSAM Files to Another Device.”) If IMPORT was used, you

can IMPORT CONNECT user catalogs.

Moving a User Catalog to Another Volume:

1. Using EXPORT, create portable copies of all files that are to be in the new

catalog (procedure described below).

2. Delete or disconnect the previous user catalog entry unless it is owned by a

different master catalog.

3. Define the new user catalog (procedure described above).

4. Define any VSE/VSAM data spaces required for the volumes. (You need not

delete files and catalogs belonging to another catalog.) Note that the define

catalog operation has already defined a data space on the catalog volume. Any

space to be occupied by unique files should be left unallocated.

5. Using IMPORT, copy VSE/VSAM files to volumes belonging to the new

catalog. (For considerations on moving to a different device type, refer to

“Migrating VSE/VSAM Files to Another Device.”)

Migrating VSE/VSAM Files to Another Device

File Migration Using BACKUP and RESTORE

Note: VSAM will tolerate the use of IDCAMS BACKUP/RESTORE for migration

from a non-SCSI device to a SCSI device, or vice versa. However, not every

cluster can be migrated in this manner. In these cases, IDCAMS

Migrating Catalogs and Files

Chapter 4. Tasks under VSE/VSAM 55

EXPORT/IMPORT must be used instead. EXPORT/IMPORT is the

recommended method of data migration.

The VSE/VSAM Backup/Restore Function can back up the following objects and

their catalog information onto tape or disk volumes:

v Key-sequenced data sets (KSDS)

v Entry-sequenced data sets (ESDS)

v Relative-record data sets (RRDS)

v Variable-length relative record data sets (VRDS)

v Alternate indexes (AIX)

v SAM ESDS files in CI format

Empty objects can be backed up and restored. An empty object is an object that

was defined using the NOALLOCATION parameter, an object that has never been

loaded with data, or an object that has not been loaded since reset. Although they

cannot be specified in the command, paths are backed up and restored

automatically when their respective path entry clusters are backed up or restored.

VSE/VSAM Backup/Restore supports backing up onto tape and disk, and

restoring from tape and disk; this support applies to all tape and disk devices that

are supported by z/VSE.

You can back up and restore multiple objects with a single command. If you

specify BACKUP (*), all objects defined in a specific catalog will be backed up. If

you specify RESTORE (*), all objects residing in a specific backup file are restored.

You can also specify generic names representing groups of related objects to be

backed up or restored. Because the generic specification may include objects you

do not want backed up or restored, you can exclude objects by specifying either

their entry names or other generic names. For information on the use of generic

names for back up and restore, refer to the manual VSE/VSAM Commands under:

v “Using BACKUP and RESTORE”

v “Generic Names”

To copy objects from one volume to another volume of a different device type,

specify the volser representing the new volume in the RESTORE command.

Other Methods of File Migration

In addition to Backup/Restore, there are three ways to move VSE/VSAM files

from one volume to another. They may or may not require moving from one

catalog to another.

DEFINE/REPRO:

v To move files between two volumes owned by different catalogs, DEFINE every

file on the new volume, using its old name. REPRO every file onto the new

volume, and delete it from the old one.

v To move files between two volumes owned by the same catalog, DEFINE every

file on the new volume, using a temporary name that is not already in the

catalog. REPRO every file onto the new volume, and delete it from the old

volume. Using ALTER, rename the new copy with the name the file had on the

old volume.

In both cases, alternate indexes can be copied. You must redefine all paths for the

new copy.

Migrating Catalogs and Files

56 VSE/VSAM User’s Guide and Application Programming

EXPORT/IMPORT: With EXPORT/IMPORT, every file to be migrated is first

exported to a temporary SAM file (tape or disk). For EXPORT PERMANENT, this

frees the space (and volumes if all files on them are exported) that is potentially

reusable during the IMPORT phase.

To ensure the desired space allocation, DEFINE the files importing them. If files are

imported but not defined, too much or too little space may be allocated to them.

Then IMPORT the files.

Unique files require extent values specified on an EXTENT statement. Path

definitions are implicitly transferred.

NonVSAM Migration

Catalog entries can be moved also into catalogs on FBA devices (as described

above) through DEFINE NONVSAM and DELETE, but they cannot have fixed

block specified as their device type.

Space Allocation through Modeling

If a user catalog, cluster, or alternate index migrated from one device type to

another had its space allocation defined by modeling, you should consider

changing to explicit specification, or modeling it on a catalog, cluster, or alternate

index on the new device type. Otherwise, you will allocate space based on the

track and/or cylinder capacity of the old device type rather than the new device

type. This can cause wasted space, excessive secondary allocation, and inefficient

or even invalid CA or CI sizes.

For further information about modeling, see “Using an Object as a Model.”

Using an Object as a Model

You can use the entry of an already-defined alternate index, catalog, cluster, or

path as a model for the definition of another object of the same type. When one

entry is used as a model for another, its attributes are copied as the new entry is

defined.

Modeling permits you to set your own parameter defaults to override system

defaults. Once defaults are established, you need not specify them every time you

define new objects. An explicit parameter specification, however, overrides defaults

established by you (through modeling) and by the system.

The normal IDCAMS DEFINE CLUSTER or DEFINE ALTERNATEINDEX

procedure is greatly simplified by reducing the numbers of parameters required.

This in turn can reduce the number of errors that are likely to occur, and the

number of parameters to which the user needs to be exposed. At the same time, it

permits application- and installation-associated standards.

There are three kinds of models; they are referred to as:

v Explicit Allocation (Example in Figure 19 on page 58)

v Explicit NOALLOCATION (Example in Figure 21 on page 61)

v Implicit NOALLOCATION (Example in Figure 22 on page 62)

With explicit modeling, you have to specify the name of the model you wish to use.

With implicit modeling, VSE/VSAM chooses a default model based on the kind of

object you are trying to define.

Migrating Catalogs and Files

Chapter 4. Tasks under VSE/VSAM 57

About the MODEL Subparameter

You can specify the MODEL parameter in the DEFINE commands

ALTERNATEINDEX, CLUSTER, PATH, and USERCATALOG.

Using the MODEL parameter, you can easily define files that are identical, except

for their names and security attributes. When you use the MODEL parameter,

ensure that your job is not terminated because of allocation problems when you

explicitly do any of the following:

v Specify a different type of device with the VOLUMES parameter.

v Change the length or position of the keys with the KEYS parameter.

v Change the size of records, buffer space, or CIs with the RECORDSIZE,

BUFFERSPACE, or CONTROLINTERVALSIZE parameters.

v Change the type of cluster (that is, entry-sequenced, key-sequenced, or

relative-record), the type of alternate index (that is, key-pointer or RBA-pointer),

or the allocation-type of the object (that is, unique or non-unique).

v Change the unit of allocation with the BLOCKS, TRACKS, CYLINDERS, or

RECORDS parameters.

When you explicitly specify any of the above parameters for your to-be-defined

object, you might have to make corresponding changes to other related parameters.

Explicit Allocation Models

Figure 19 shows an explicit model that occupies data space and can be used as a

normal VSE/VSAM object. You must explicitly specify the entryname subparameter

of the MODEL parameter to identify the object to be used as a model. This is the

only form of modeling that is valid for paths and user catalogs. If MODEL is

specified as a parameter of PATH:

v The attributes of the model are used for the path defined.

v Any attributes explicitly specified as parameters of the defined path are defined

and override those of the model.

 Figure 20 on page 60 shows how parameters are merged from a Model Cluster and

an Explicit Specification into New Cluster. Once the merge is completed, New Cluster

contains a new list of cluster parameters which VSE/VSAM uses to create a cluster.

In the figure, it is assumed that MODEL is specified at the cluster level in the

DEFINE CLUSTER command. It is also assumed that MODEL is not specified at

the data component level and index component level of the command.

The following explains the step numbers shown in the figure:

Establishing the Model Using the Model

 DEFINE CLUSTER DEFINE CLUSTER

 NAME (entryname)

]

 │ MODEL (entryname)

 │

 └──┘

Figure 19. Explicit Allocation Model

Modeling

58 VSE/VSAM User’s Guide and Application Programming

(1) The non-propagating cluster level attributes (entryname, passwords,

AUTHORIZATION, ATTEMPTS, CODE, OWNER, TO, FOR, and allocation

attributes) of the model are used for the defined user catalog, cluster, or

alternate index.

 (2) Any non-propagating cluster level attributes explicitly specified as parameters

of the defined object are applied to and override those of the model.

 (3) The attributes of the model are used for the data and index components of

the alternate index, cluster, or user catalog.

 (4) Attributes explicitly specified at the cluster level are propagated to the data

and index components of the cluster.

 (5) Attributes that are explicitly specified for the data and index components of

the object (that is, specified as subparameters of the DATA or INDEX

parameter) are defined.

Note that attributes specified for every step (n) override the attributes specified by

the previous step.

If MODEL is Specified in DATA or INDEX Parameter

(not applicable to a user catalog):

v Attributes explicitly specified at the cluster level are propagated to the data and

index components of the object.

v Attributes of the model specified for the data or index component are defined

(that is, the model specified with the MODEL subparameter of the DATA or

INDEX parameter).

v Attributes explicitly specified for the data and index components are defined

(that is, the attributes specified with subparameters of the DATA or INDEX

parameter).

Attributes specified for every step override the attributes specified by the previous

step.

Modeling

Chapter 4. Tasks under VSE/VSAM 59

Explicit Noallocation Models

Using explicit noallocation and default models, the defined object exists only as a

model; no space is suballocated to it. The model is represented by entries in the

VSE/VSAM catalog.

Figure 21 on page 61 is an explicit model because you must specify

MODEL(entryname) for the cluster you wish to use as a model. It is a

NOALLOCATION model because no storage is allocated to it.

 Explicit

 Model Cluster Specification

 DEFINE CLUSTER

 Cluster X Command

 ┌───────────────────┐ ┌───────────────────┐

 │ │ │ │

 │ Cluster Level │ │ Cluster Level │

 │ ┌─────────────┐ │ │ ┌──────── │

 │ │ ├──────┐ ┌────────┤ MODEL (X) │

 │ └─────────────┘ │ │ │ │ │ . │

 │ │ │ │ ┌──────┤ . │

 │ Data Component │ │ │ │ │ │ . │

 │ Level (**) │ │ │ │ │ │

 │ ┌─────────────┐ │ │ │ │ │ Data Component │

 │ │ ├────┐ │ │ │ │ Level (**) │

 │ └─────────────┘ │ │ │ │ │ │ ┌──────── │

 │ │ │ │ │ │ │ │ . │

 └───────────────────┘ │ │ │ │ ┌────┤ . │

 │ │ │ │ │ │ │ . │

 │ │ │ │ │ │ │

 (1)│ │ │ │ └───────────────────┘

 │(2) │ │ │

 │ │ (3)│ │

 │ │ New Cluster │(4)│

 │ │ ┌───────────────────┐ │ │(5)

 │ │ │ │ │ │ │

 │ │ │ Cluster Level │ │ │ │

 │ │ │ ┌─────────────┐ │ │ │ │

 │ └────N│ │M────┘ │ │ (**)

 │ │ └─────────────┘ │ │ │ The DATA and INDEX

 │ │ │ │ │ component levels have

 │ │ Data Component │ │ │ similar rules; for

 │ │ Level │ │ │ simplicity, only the

 │ │ ┌─────────────┐ │ │ │ DATA component is

 └──────N│ │M──────┘ │ shown in this figure.

 │ │ │M────────┘

 │ └─────────────┘ │

 └───────────────────┘

Figure 20. Specifying the MODEL Parameter at the CLUSTER Level Only

Modeling

60 VSE/VSAM User’s Guide and Application Programming

Implicit NOALLOCATION Models (Default Models)

In the case of an implicit model, you do not have to specify the name of the model

in order to reference it. It is a NOALLOCATION model because no storage is

suballocated to it.

The implicit model is a default model.

When you define the model, specify the entryname subparameter of the NAME

parameter as one of the following:

DEFAULT.MODEL.KSDS

(key-sequenced file)

DEFAULT.MODEL.ESDS

(VSAM entry-sequenced file)

DEFAULT.MODEL.ESDS.SAM

(managed-SAM file)

DEFAULT.MODEL.RRDS

(relative-record file)

DEFAULT.MODEL.VRDS

(variable-length relative record file)

DEFAULT.MODEL.AIX

(alternate index)

Every catalog may have six implicit models, one of every type.

As shown in Figure 22 on page 62, you need only specify INDEXED,

NONINDEXED, RECORDFORMAT(...)NONINDEXED, NUMBERED, or AIX for

VSE/VSAM to locate the appropriate model.

Establishing the Model Using the Model

 DEFINE CLUSTER DEFINE CLUSTER

 NAME (entryname)

 "]

 " │ MODEL (entryname)

 " │

 " └──┘

 "

 NOALLOCATION

Figure 21. Explicit NOALLOCATION Model

Modeling

Chapter 4. Tasks under VSE/VSAM 61

How VSE/VSAM Determines Which Parameters to Use

VSE/VSAM goes through the following sequence in determining which parameter

to use in the definition of a cluster or alternate index.

1. Did you explicitly specify a parameter in the define? If yes, VSE/VSAM uses it.

(If you explicitly specify a space allocation parameter (CYLINDERS, TRACKS,

BLOCKS, or RECORDS) at any level of DEFINE CLUSTER/AIX, the space

allocation parameter(s) in your model are ignored.)

2. Did you specify MODEL parameter in the define (refer to Figure 19 on page

58)? If yes, go to step 4, below; VSE/VSAM creates a file using the parameters

specified in MODEL(entryname).

3. Did you specify the NOALLOCATION parameter with a

DEFAULT.MODEL.xxxx in a previous DEFINE command, thereby creating a

default model (refer to Figure 22)? If yes and the file organization matches the

entryname, VSE/VSAM uses the parameters specified in the default model.

4. If none of the above apply, VSE/VSAM uses the system default (if one exists).

Establishing the Model Using the Model

 DEFINE CLUSTER DEFINE CLUSTER

 NAME (DEFAULT.MODEL.KSDS) NAME (entryname)

]

 │

 NOALLOCATION └────────────────────────────────INDEXED

 DEFINE CLUSTER DEFINE CLUSTER

 NAME (DEFAULT.MODEL.ESDS) NAME (entryname)

]

 │

 NOALLOCATION └────────────────────────────────NONINDEXED

 DEFINE CLUSTER DEFINE CLUSTER

 NAME (DEFAULT.MODEL.ESDS.SAM) NAME (entryname)

]

 │ RECORDFORMAT (...)

 │

 NOALLOCATION └────────────────────────────────NONINDEXED

 DEFINE CLUSTER DEFINE CLUSTER

 NAME (DEFAULT.MODEL.RRDS) NAME (entryname)

]

 │

 NOALLOCATION └────────────────────────────────NUMBERED

 DEFINE CLUSTER DEFINE CLUSTER

 NAME (DEFAULT.MODEL.VRDS) NAME (entryname)

]

 │

 └────────────────────────────────NUMBERED

 NOALLOCATION RECORDSIZE (a<m)

 DEFINE ALTERNATE INDEX DEFINE ALTERNATEINDEX

 NAME (DEFAULT.MODEL.AIX) NAME (entryname) │

] │

 │ │

 └──┘

 NOALLOCATION

Figure 22. Implicit NOALLOCATION Models

Modeling

62 VSE/VSAM User’s Guide and Application Programming

Restrictions

The following restrictions exist for modeling of VSE/VSAM objects.

v If you specify DEFINE CLUSTER or DEFINE ALTERNATEINDEX and the

cluster name begins with DEFAULT.MODEL., VSE/VSAM assumes that you are

establishing a model. The rest of the name must be KSDS, ESDS, ESDS.SAM,

RRDS, VRDS or AIX. It is not possible to open a file or component whose name

begins with DEFAULT.MODEL.. DEFINE CLUSTER and DEFINE

ALTERNATEINDEX ignores user-specified DATA and INDEX component names

for clusters that have the DEFAULT.MODEL. prefix. Instead, these components

are implicitly assigned a name constructed from the cluster or alternate index

name with the additional qualifier of DATA or INDEX. A message will tell you

any data/index names that have been generated in this way.

v If space parameters (CYLINDERS, TRACKS, RECORDS, or BLOCKS) are

specified at any level of DEFINE CLUSTER or DEFINE ALTERNATEINDEX,

they override any modeled defaults.

v You can model the USECLASS parameter only if one of the following is true:

– If space parameters (CYL, TRK, REC, BLK) are not specified

– If space parameters are specified at a different level
You cannot model USECLASS if both specifications, USECLASS and space

parameter, are at the same level (that is, both specifications are at cluster, data,

or index level). If you do specify the same level, VSE/VSAM cannot model from

a default model.

However, you can, for example, model the USECLASS at cluster level if space

parameters are specified at the data or the index level.

v You cannot rename (through ALTER NEWNAME or IMPORT NEWNAME) any

catalog entry such that the name is changed to or from DEFAULT.MODEL.xxxx.

An attempt to do so causes the command to terminate with an error message.

v When a file is defined implicitly (through managed-SAM access) and if you have

not provided volume information in an EXTENT statement, VSE/VSAM

attempts to construct a volume list of up to 16 volumes from the

DEFAULTVOLUMES parameter in a managed-SAM ESDS default model

(DEFAULT.MODEL.ESDS.SAM). No other parameters from the SAM ESDS

default model are used for an implicit define.

v When a VRDS has to be defined through a default model, and to indicate a

VRDS, you have to define the recordsize (a<m). If recordsize is not defined, an

RRDS is assumed.

v The use of this utility in a VSE/VSAM environment requires special

considerations, because both the volume VTOC and the catalog contain space

mapping information about the volume which has to be synchronized to insure

accessibility and to avoid damage to data.

Table 3 lists the various DEFINE parameters and shows for each one if it can be

modeled explicitly with ’MODEL(entryname)’ and implicitly with

’DEFAULT.MODEL.xxxx’.

 Table 3. Modeling of DEFINE Parameters

Parameter

Modeling

System

Default if

Parameter

Not

Modeled Notes Explicit Implicit

ATTEMPTS Yes Yes Yes Not propagated to other levels.

AUTHORIZATION Yes Yes* No Not propagated to other levels.

Modeling

Chapter 4. Tasks under VSE/VSAM 63

Table 3. Modeling of DEFINE Parameters (continued)

Parameter

Modeling

System

Default if

Parameter

Not

Modeled Notes Explicit Implicit

BLOCKS Can model only if not

explicitly specified at any

level.

No Propagated via algorithm from cluster or data

levels.

BUFFERSPACE Yes No Yes

CLASS No No Yes See USECLASS Parameter.

CODE Yes Yes* No Not propagated to other levels.

COMPRESSED n/a n/a No Must not be used with a model data set.

CONTROL INTERVALSIZE Yes No Yes

CYLINDERS Can model only if not

explicitly specified at any

level.

No Propagated via algorithm from cluster or data

levels.

DEDICATE No No No

DEFAULTVOLUMES No No Yes

ERASE Yes Yes Yes Propagated to data level only; NOERASE is

the default.

EXCEPTIONEXIT Yes Yes No

FILE No No No

FOR Yes Yes Yes Specified at cluster level only; propagated to

data or index.

FREESPACE Yes Yes Yes (0 0) is the default.

INDEXED See last

column.

No Yes KSDS is created if nothing or INDEXED is

specified.

KEYRANGES Yes Yes No

KEYS(AIX) Yes Yes Yes

KEYS (cluster) Yes Yes Yes Not specified or modeled for INDEX.

NOALLOCATION Yes No Yes SUBALLOCATION is the default.

NOERASE Yes Yes Yes NOERASE is the default.

NONINDEXED See last

column.

No Yes ESDS or SAM ESDS.

NONSPANNED Yes Yes Yes NONSPANNED is the default.

NONUNIQUEKEY Yes Yes Yes NONUNIQUEKEY is the default.

NOREUSE Yes Yes Yes NOREUSE is the default.

NOUPGRADE Yes Yes Yes UPGRADE is the default.

NOWRITECHECK Yes Yes Yes NOWRITECHECK is the default.

NUMBERED See last

column.

No Yes RRDS is created if recordsize (a=m), VRDS is

created if recordsize (a<m).

ORDERED Yes Yes Yes UNORDERED is the default.

OWNER Yes Yes No Not propagated to other levels.

Modeling

64 VSE/VSAM User’s Guide and Application Programming

Table 3. Modeling of DEFINE Parameters (continued)

Parameter

Modeling

System

Default if

Parameter

Not

Modeled Notes Explicit Implicit

Passwords Yes No No No propagation from cluster level, but lower

level password is propagated to master if no

master password is specified.

RECORDFORMAT Yes n/a Yes For SAM ESDS models only.

RECORDS Can model only if not

explicitly specified at any

level.

No. Propagated via algorithm from cluster or data

levels.

RECORDSIZE Yes No Yes

RECOVERY Yes Yes Yes

RELATE No No n/a

REUSE Yes Yes Yes NOREUSE is the default.

SHAREOPTIONS Yes Yes Yes

SPANNED Yes Yes Yes NONSPANNED is the default.

SPEED Yes Yes Yes

SUBALLOCATION Yes No. Yes SUBALLOCATION is the default.

TO Yes Yes Yes Specified at cluster level only; propagated to

data and index.

TRACKS Can model only if not

explicitly specified at any

level.

No Propagated via algorithm from cluster or data

levels.

UNIQUE Yes No Yes SUBALLOCATION is the default.

UNIQUEKEY Yes Yes Yes NONUNIQUEKEY is the default.

UNORDERED Yes Yes Yes UNORDERED is the default.

UPGRADE Yes Yes Yes UPGRADE is the default.

USECLASS Only if space parms are

specified at different

level, or if space parms

are not specified.

Yes

VOLUMES Yes Yes No

WRITECHECK Yes Yes Yes NOWRITECHECK is the default.

(*) To implicitly model this parameter, the object must be defined with at least one password, and the master

catalog password must be specified in the CATALOG parameter.

Default Volumes

Default volume lists are derived from the volumes list of a default model that is of

the same type as the object defined. For example, if a VSE/VSAM ESDS cluster is

defined without a VOLUMES parameter, an ESDS default model

(DEFAULT.MODEL.ESDS.DATA) is used to build the volumes list for the ESDS.

Because volume selection from the default volume list is done randomly for every

component, the data and index components of a KSDS or AIX could reside on

Modeling

Chapter 4. Tasks under VSE/VSAM 65

different volumes and even different device types. You can eliminate the possibility

of different device types by including devices of only one type when defining the

KSDS or AIX model.

When a file is defined implicitly (through managed-SAM) and if you have not

provided volume information in an EXTENT statement, VSE/VSAM attempts to

construct a volumes list of up to 16 volumes from a managed-SAM ESDS default

model (DEFAULT.MODEL.ESDS.SAM). No other information is used (from the

SAM ESDS default model) for an implicit define.

DEFAULTVOLUMES forces a default model to override an explicit model for

purposes of determining the volumes list. There are three sources of volumes lists:

1. Explicit specification (VOLUMES parameter)

2. Explicit model (MODEL parameter)

3. Default model (DEFAULT.MODEL.xxxx plus VOLUMES parameter)

These sources are listed in order of precedence. 1 overrides 2, and 3 takes effect if 1

and 2 are missing. If only 2 and 3 are present, however, specifying

DEFAULTVOLUMES causes the volumes list in 2 to be bypassed in favor of the

volumes list in 3. You cannot specify the DEFAULTVOLUMES parameter to bypass

2 if 3 does not exist. (At least one of these options (1, 2, or 3) must be specified or

modeled.)

DEFAULTVOLUMES cannot be explicitly modeled because it is not retained as an

attribute in the catalog. Do not try to use default volume lists with KEYRANGES,

because VSE/VSAM does not order the volumes in any way when allocating space

to them.

Modeling

66 VSE/VSAM User’s Guide and Application Programming

Chapter 5. Working With Compressed Files

This Chapter ...

v Introduces you to data compression.

v Describes how it works internally.

v Explains what you need to do to work with compressed data.

v Differentiates the files for which data compression works and under which

circumstances.

v Describes the IKQCPRED tool, which examines VSE/VSAM data for its

suitability and calculates how well it would compress.

Introduction to VSE/VSAM Compression

If a cluster is defined with the COMPRESSED attribute, VSE/VSAM attempts to

minimize the external storage needs by compressing each record written to the file.

The compression algorithm is compatible with the zSeries and ESA/390 hardware

compression facility, that is if the processor supports the CMPSC instruction, then

this hardware instruction is used to compress or expand data. The ESA/390

compression facility is further described in Enterprise Systems Architecture/390: Data

Compression SA22-7208. On processors without the ESA/390 compression facility,

an equivalent software emulation is performed. See also the Principles of Operation

manual for your processor.

The compression facility compresses and expands data using a dictionary. This

dictionary contains the information which substrings of the data are to be encoded

and how to expand the encoded strings. When data is loaded into a compressed

cluster, VSE/VSAM attempts to build a dictionary that can compress that data. As

soon as this dictionary is built, all records written to the file are compressed using

this dictionary, and all records read from the file are expanded using this

dictionary. The information on what the dictionary looks like is stored in the

VSE/VSAM Compression Control Data Set (CCDS), which needs to exist in each

catalog that holds compressed data sets.

Advantages

Working with compressed files has several advantages. The reduction in DASD

space is the most obvious one, but not the only one:

v Since records in a compressed file are smaller, the resulting relative byte address

(RBA) is smaller. While the maximum size of a VSE/VSAM data set (excluding

extended-addressed KSDS data sets) is still 4GB (x’FFFFFFFF’), more user data

can be stored within a single data set.

v More data can be stored per control interval or buffer. The advantages are:

– For sequential workloads, a new buffer is required less often. This reduces the

number of I/O requests.

– For random access workloads, the control interval size might be decreased,

which in turn might speed up the data transfer time.

Activating VSE/VSAM Data Compression

This involves the following steps:

© Copyright IBM Corp. 1979, 2005 67

1. Identify which data sets are eligible for compression and which ones you want

to have compressed.

2. Define the Compression Control Data Set (CCDS)

While the CCDS is required for those catalogs that contain compressed clusters,

it is recommended to have a CCDS defined for each catalog.

Catalogs that were newly defined using the VSE/VSAM Interactive Interface

already have a CCDS defined for them. Otherwise, see “How to Define the

Compression Control Data Set” on page 70 on how to define a CCDS or use the

skeleton SKVSAMDC in the ICCF library 59.

3. Define the cluster with the COMPRESSED attribute.

4. Load data into the file.

It is necessary to use load mode since VSE/VSAM can determine the dictionary

only during the initial load mode. You could use, for example, IDCAMS

REPRO to load the data from an existing file to DASD or tape.

How VSE/VSAM Data Compression Works Internally

As mentioned previously, the ESA/390 compression facility, as well as its software

emulation, requires a dictionary to compress and expand data. The dictionary is the

key to an effective compression.

Dictionary Creation

Unfortunately there is no dictionary that is able to compress all kinds of data

effectively. The dictionary is data-dependant and needs to be constructed by the

actual data, or, to be more precise, by a subset of data that should be

representative for the total data. On the other hand, the vast majority of data

would actually consists of certain elements that are likely to re-occur. Thinking of

an English text, such elements could be English suffices (-ion, -ing) or character

sequences such as a comma followed by a space. Of course there are many and not

just text-related elements that are likely to re-occur, and hence might be good

candidates for a compression. For each of these elements it is known how to

compress them, this information is contained in a data structure called dictionary

building block (DBB). Each DBB can be viewed as a small, very specialized

dictionary. VSE/VSAM has several hundred of them.

VSE/VSAM determines the dictionary for each compressed cluster by examining

the first set of data loaded into the cluster. This examination consists of two

phases:

1. Interrogation: In this phase VSE/VSAM examines the data written to the file

and attempts to find out which elements make up the data, that is it identifies

a number of DBBs that might be fit to compress the data.

2. Sampling: Eventually the DBBs selected in the interrogation phase are used to

compress the encountered data. Those that perform best are selected and a real

dictionary is then assembled from all the selected DBBs.

If the interrogation and sampling phase successfully ends with the creation of a

dictionary, then all records written subsequently to the file are compressed with

this dictionary. The dictionary remains associated (’mated’) with the cluster for the

lifetime of the cluster.

The information about which DBBs make up the dictionary is stored in the CCDS.

Each record in the compression control data set identifies one compressed cluster

and holds information about the compression state of the cluster, and usually

which DBBs constitute the dictionary for the cluster.

Data Compression

68 VSE/VSAM User’s Guide and Application Programming

Compression States

A compressed cluster always assumes one of four possible compression states, as

outlined in Figure 23. These states are reported in the LISTCAT output.

States Explanation

CMPPENDING

If a compressed cluster is newly defined by the IDCAMS command

DEFINE CLUSTER �1�, nothing is known about the data that will be

loaded into it. When records are loaded into the file, VSE/VSAM

interrogates the data in order to create a dictionary for it.

CMP-ACTIVE

If VSE/VSAM has successfully determined how to compress the data �2�,

the compression state changes to ACTIVE. From now on all records written

to the file are compressed.

CMP-REJECT

If VSE/VSAM cannot compress the data, the compression state is changed

to REJECTED �3�. You can access a cluster in this state just like any other

compressed cluster; the only difference is that the records are not

compressed. Possible reasons for rejection are:

v The data is already in some compressed format.

v You closed the file before the interrogation phase completed, that is you

did not write enough data during the initial load mode.

CMP-UNDET

If the information how to compress and expand a cluster is lost �4�, then

the compression state is undeterminable. In this case the compression

control data set might be deleted or become inaccessible.

 Data Format of Records

In general, the format of data records in compressed and nocompressed format is

very similar. The control area and the RDF (record descriptor field) in the control

interval is identical. However, the record as stored within the control interval has a

different format. Each record can consist of the following parts:

Figure 23. The Four Compression States of a Compressed Cluster

Data Compression

Chapter 5. Working With Compressed Files 69

1. The compressed record prefix. This prefix has a length of 3 bytes for

nonspanned records, and a length of 5 bytes for spanned records. Its format is:

 Offset

Dec Hex Bytes

Hex

Digit Description

0 0 1 Flags

 X'40' Record is compressed

1 1 2 Length of expanded record (nonspanned)

1 1 4 Length of expanded record (spanned)

1. The non-compressed part of the record. This applies only to files with a key, it

is the first part of the record, up to (and including) the prime key.

2. The compressed part of the record.

How to Define the Compression Control Data Set

The VSE/VSAM Compression Control Data Set (CCDS) is an indexed cluster called

VSAM.COMPRESS.CONTROL. A cluster with this name is always used as a CCDS, hence

no other data set of this name must exist in any catalog. The compression control

data set must be defined for each catalog into which compressed clusters are

defined. It is recommended, however, to define a compression control data set for

every catalog.

The ″Define a New User Catalog″ dialog of the z/VSE Interactive Interface defines

a CCDS for each newly defined catalog.

You can also define a CCDS manually using the IDCAMS DEFINE CLUSTER

command, as outlined below. Once the compression control data set is defined,

compressed clusters can be defined or restored.

 DEFINE CLUSTER -

 (NAME(VSAM.COMPRESS.CONTROL) - �1�

 VOLUME(volser) - �2�

 RECORDS(200 100) - �3�

 KEYS(44 0) -

 RECSZ(128 500)-

 SHR(4 4) - �4�

 NOREUSE -

) -

 DATA (NAME(VSAM.COMPRESS.CONTROL.@D@)) -

 INDEX(NAME(VSAM.COMPRESS.CONTROL.@I@)) -

 CAT(catalog.id) �5�

Explanation:

�1� The name identifies this cluster as a compression control data set.

�2� The compression control data set should reside on the same volume as the

catalog to which it is defined.

�3� The compression control data set contains one record per compressed

cluster. Specify a number that is sufficiently large to accommodate the

number of compressed files you anticipate.

�4� The CCDS is always defined with the SHAREOPTIONS(4 4) attribute.

�5� Specify the name of the catalog for which you want to define the CCDS.

Alternatively, you could identify the catalog using a DLBL IJSYSUC

statement.

Data Compression

70 VSE/VSAM User’s Guide and Application Programming

Which Data Set Types Are Eligible

The following types of data sets can be defined with the COMPRESSED attribute:

v KSDS files, that is clusters with the INDEXED attribute, under the following

conditions:

– The maximum record length must be greater than the sum of key offset, key

length, and 40: record_length - (key_offset + key_length) > 40

v ESDS files, that is clusters with the NONINDEXED attribute, under the

following conditions:

– The maximum record length must be greater than 40.

– The RECORDFORMAT attribute must not be specified (this implies that SAM

files in VSE/VSAM-managed space cannot be compressed).

– The file is not defined for use as a virtual tape.
v VRDS files, that is clusters with the NUMBERED attribute, under the following

conditions:

– The average record size is not equal to the maximum record size.

– The maximum record length must be greater than 40.

The following types of data sets cannot be defined with the COMPRESSED

attribute:

v Alternate index files

v Relative Record Data Sets (RRDS)

If you would like to use VSE/VSAM data compression with your existing

relative record data sets, you could attempt the following approach: change the

DEFINE CLUSTER for the RRDS to specify a maximum record size that is larger

than the average record size. This actually defines a VRDS rather than a RRDS,

but the VRDS is eligible for data compression and offers a user interface that is

almost identical to the user interface of a RRDS.

v SAM ESDS files

v ESDS files defined for use as virtual tapes.

Restrictions

The following restrictions apply to compressed data sets:

1. In a compressed file, you cannot update existing records using addressed access

(RPL OPTCD=ADR). This implies that records of an entry-sequenced file

cannot be replaced.

2. An application must not compute record positions (RBA) itself. Rather use

SHOWCB RPL=...,FIELDS=(RBA),... instead.

3. A compressed file cannot be opened in control interval mode (MACRF=CNV in

the ACB), except if the ACB also specifies MACRF=CMP. In this case all data

passed to the application and expected from the application is in compressed

(not expanded) format.

4. The data or index component of a compressed cluster cannot be opened by

itself. VSE/VSAM would allow, however, an input open of a compressed data

component.

Data Compression

Chapter 5. Working With Compressed Files 71

The VSE/VSAM Compression Prediction Tool (IKQCPRED)

Before you compress data, you may want to know which of your VSE/VSAM data

sets are suitable candidates for compression. IKQCPRED is a program that

examines VSE/VSAM data and calculates how well it would compress.

A measure for compressibility is the compression ratio, which is the ratio of the

length of the data in uncompressed format to the length in compressed format.

IKQCPRED can compute the anticipated compression ratio for one or more data

sets residing in the same VSE/VSAM catalog on a z/VSE or VSE/ESA Version 2

system.

Using IKQPRED

Invoke IKQCPRED with the following JCL statement:

NN // EXEC IKQCPRED

,SIZE=IKQCPRED
 ,PARM= N

N
 (1)

’catalog_id/cluster_specification

’

/LIMIT=

m

NM

Notes:

1 The last or only character of cluster_specification can be the wild-card character

*, indicating all clusters with a matching name up to the asterisk.

The parameters for IKQCPRED are specified on the PARM parameter of the

EXEC IKQCPRED statement, and are separated by slashes(/):

v The first parameter is the target catalog name. This is mandatory, and must be

fully qualified.

v The second parameter is the cluster specification. You can specify cluster names

generically with an asterisk (*). IKQCPRED can process up to 400 clusters.

v The third, optional parameter LIMIT=m, where m is an integer greater than 0,

specifies an upper limit (in megabytes) to the amount of data to be examined

per cluster.

Where m is 0, no upper limit is set, and each cluster is examined completely.

For performance reasons, IKQCPRED should be run in a relatively large partition.

2MB GETVIS(any) should be sufficient. Specifying SIZE=IKQCPRED on the EXEC

statement allows for maximum use of the partition GETVIS.

IKQCPRED Examples

Here are some typical uses for IKQCPRED, with examples of the control

statements you could use, and a short description of what these statements would

result in:

v Examine all files in a catalog

// JOB IKQCPRED PREDICT VSAM DATA COMPRESSION RATIO

// EXEC IKQCPRED,PARM=’VSESP.USER.CATALOG/*/LIMIT=2’

/&

IKQCPRED scans all the data sets in catalog VSESP.USER.CATALOG. Up to 2

megabytes of data per cluster are scanned.

Compression Prediction Tool

72 VSE/VSAM User’s Guide and Application Programming

v Examine a group of files in a catalog

// JOB IKQCPRED PREDICT VSAM DATA COMPRESSION RATIO

// EXEC IKQCPRED,SIZE=IKQCPRED,PARM=’VSESP.USER.CATALOG/TST*’

/&

IKQCPRED scans all data sets in catalog VSESP.USER.CATALOG whose names

begin with ’TST’.

v Examine a single file

// JOB IKQCPRED PREDICT VSAM DATA COMPRESSION RATIO

// EXEC IKQCPRED,PARM=’VSESP.USER.CATALOG/TST.KSDS3/LIMIT=8’

/&

IKQCPRED scans only the cluster TST.KSDS3 in catalog VSESP.USER.CATALOG.

A maximum of 8 megabytes of data is scanned.

Method of Operation

IKQCPRED works internally in three phases:

1. IKQCPRED searches the specified catalog, and selects all cluster entries

matching the specification on the PARM statement.

2. Clusters with inappropriate data-set attributes, such as NOCIFORMAT files

(VSE libraries), are excluded from examination.

3. Each of the remaining data sets is opened, and each record fed into the

VSE/VSAM data compression routines for interrogation and compression. The

process ends at the end of a data set, or when the threshold specified in

LIMIT=m is exceeded.

The length of time required for this step depends on the amount of data to be

scanned.

IKQCPRED prints the results for each examined cluster to SYSLST. The output is

described in “Interpreting IKQCPRED Results.”

Interpreting IKQCPRED Results

This section explains the output of the IKQCPRED program with reference to the

sample output in Figure 24:

// EXEC IKQCPRED,PARM=’VSESP.USER.CATALOG/TST.*/LIMIT=5’

 VSE/VSAM Data Compression Prediction - (Copyright IBM , 1995, 1996)

IKQ5000I Computing compression ratios for files in catalog VSESP.USER.CATALOG 07/16/96

IKQ5003I This processor supports hardware data compression

Cluster Name Type CmpStatus Ratio AvgLRECL # Records Open FDBK Close (HU-)RBA

TST.KSDS1 KSDS CmpActive 1.38 256 3949 00/00 000000 00/00 0024C000

TST.SAM.ESDS1 SAMESDS CmpActive 7.88 256 12067 00/00 000000 00/00 0035E000

TST.ESDS1 ESDS CmpActive 1.01 256 300 00/00 000000 00/00 00015800

TST.ESDS2 ESDS CmpActive 7.42 256 12067 00/00 000000 00/00 0035E000

TST.ESDS3 ESDS-CMP CmpActive 8.69 256 12107 00/00 000000 00/00 00056000

TST.ESDS4 ESDS CmpReject .92 80 875 00/00 000000 00/00 00011800

TST.KSDS2 KSDS-CMP CmpActive 1.30 256 1236 00/00 000000 00/00 00150000

TST.SAM.ESDS.IMPLICIT SAMESDS CmpActive 2.69 256 120 00/00 000000 00/00 00009000

TST.VRDS VRDS CmpActive 12.36 256 * 00/00 000000 00/00 00E38000

1S55I LAST RETURN CODE WAS 0000

EOJ CMPRATIO MAX.RETURN CODE=0000 DATE 07/16/96,CLOCK 09/56/06,DURATION 00/00/41

Figure 24. Sample IKQCPRED Output

Compression Prediction Tool

Chapter 5. Working With Compressed Files 73

Message IKQ5000I tells you which catalog was examined. Message IKQ5003I, as

shown in the example, states that the processor supports the CMPSC instruction

(hardware data compression).

If the processor does not support this instruction, you will see the message:

IKQ50004I This processor does not support hardware data compression

This indicates that software emulation has been used instead of hardware data

compression. Performance is slower than on a processor that supports hardware

data compression.

The results of the data compression prediction tool, arranged into several columns,

show:

Cluster Name

The names of the clusters that were examined. Only cluster entries can be

examined; other objects, such as AIXs, are not eligible for VSE/VSAM data

compression.

Type The type of the data set being examined. The following types may appear:

Type Remarks

ESDS Entry sequenced (flat) file. ESDS files are eligible for VSE/VSAM

data compression, but with one restriction: Existing records must

not be updated. When you have compressed an ESDS, you can

only append new records to it.

KSDS Key sequenced (indexed) file. Only the part of the record following

the prime key can be compressed, and only if it has a length of at

least 40 bytes. Consequently, placing the key near the beginning of

the record allows optimum compression.

RSDS Relative record (numbered) file. RSDS files are NOT eligible for

VSE/VSAM data compression. IKQCPRED examines them because

it might be possible to define them as VRDS files, which can be

compressed.

SAMESDS

CIFORMAT SAM file in VSE/VSAM managed space. SAMESDS

files are NOT eligible for VSE/VSAM data compression.

IKQCPRED examines them because it might be possible to define

them as native ESDS files, which can be compressed.

VRDS Variable length relative record file. Only records longer than 40

bytes can be compressed.

-CMP The suffix -CMP indicates that the examined file was already

defined with the COMPRESSED attribute.

CmpStatus

The compression status anticipated for the file:

CmpActive

Actual compression will achieve a significant result.

Pending

There is not enough data in the file to determine whether

compression will achieve results. If possible, load more data into

the file and rerun IKQCPRED.

Compression Prediction Tool

74 VSE/VSAM User’s Guide and Application Programming

CmpReject

The data set is expected to be compression-rejected, because the

data is not suited for VSE/VSAM data compression.

Ratio The compression ratio. IKQCPRED computes the approximate

compression ratio as:

 (sum of lengths of uncompressed data records)

Ratio = ---

 (sum of lengths of compressed data records)

The larger the value of Ratio, the better the file will compress. In other

words, the file is expected to shrink to 1⁄Ratio of the size of the

uncompressed file.

 Because of rounding effects and the way the records happen to fit into the

control intervals, the computed compression ratio may differ from the

compression ratio that could actually be achieved. However, this effect

should be significant only for SPANNED data sets with relatively short

records. Each record in a spanned data set begins in a new control interval.

AvgLRECL

The average record length of the file. This is the actual average record

length, not the value specified on the DEFINE CLUSTER command.

Records

The number of records in the data set. This column shows an asterisk (*) if

data interrogation ended at the threshold specified by LIMIT=m.

Open The VSE/VSAM return and reason code, if an OPEN error occurred. It

would be normal to see some errors in this column. For example, 08/6E

would indicate that this cluster is empty, or 08/A8 would indicate that the

cluster cannot be opened because it has been opened from another

partition.

FDBK The VSE/VSAM feedback information, if a record management error

occurred while reading the data set. Under certain circumstances, record

management errors can be tolerated when processing SAM files in

VSE/VSAM managed space. This is the case when, for example, the SAM

files have been written using non-VSAM (that is, DTFSD) access.

Close The VSE/VSAM return and reason codes, if a CLOSE error occurred

(HU-)RBA

This column normally shows the hexadecimal number of bytes in the

high-used-RBA of the data set. However, if a record management error

occurred, it shows the current RBA for which the error indicated in the

FDBK column was posted.

The IKQCPRED return code is the highest return code encountered during

processing. If, for example, one or more data sets could not be examined because

they were empty, the return code would be 4.

Compression Prediction Tool

Chapter 5. Working With Compressed Files 75

76 VSE/VSAM User’s Guide and Application Programming

Chapter 6. Device Dependencies

This chapter discusses special functionality, restrictions, and exceptions applying to

specific types of devices.

VSE/VSAM Support of Large DASD

VSE/VSAM supports DASD with a capacity exceeding 65535 (64K) tracks, referred

to in this manual as large DASD. (Accordingly, DASD with a capacity of 64K tracks

or less is referred to as small DASD.) This support applies up to a capacity of 10017

cylinders (150255 tracks), which corresponds to the capacity of an IBM 3390 Model

9.

If you try to define a VSE/VSAM catalog or space on a DASD volume that exceeds

this limit of 10017 cylinders, you will receive the following message:

IDC0055I VOLUME SPACE EXCEEDS MAXIMUM VSAM CAPABILITY. MAXIMUM WILL BE USED.

Large DASD implementation does not change the mapping of free and used tracks

of the space map in the catalog. However, using large DASD the number of space

map segments and catalog records used will increase. One catalog record can hold

one segment of the space map, which describes 3520 tracks. For small DASD, the

maximum number of space map segments is 19 (this means that 19 catalog records

are required to map 65535 tracks on one disk. For the IBM 3390 Model 9, which

has 10017 cylinders and 150255 tracks, the catalog will map the tracks of this disk

device type within 43 catalog records.

Making Use of the Support

The following IDCAMS DEFINE commands can be used for defining space

allocation:

 DEFINE MASTERCATALOG

 DEFINE USERCATALOG

 DEFINE SPACE

 DEFINE CLUSTER UNIQUE

 DEFINE ALTERNATEINDEX UNIQUE

The above commands internally check the disk capacity. They use either:

v Up to 65535 tracks of the disk (the support before large DASD) when:

– the disk does not have more than 65535 tracks, or

– the current catalog owns VSAM space on that disk that was defined before

VSE/ESA 2.6.
v Up to 10017 cylinders of the disk (the support introduced with large DASD)

when:

– the disk has more than 65535 tracks, and

– the current catalog does not own VSAM space on that disk that was defined

before VSE/ESA 2.6.

For an IBM 3390-9 or other large DASD, this means that either:

v VSAM space was already allocated on this disk for the current catalog from a

previous VSE/ESA release. The disk will therefore not have large DASD

support, and will only be supported as a “64K track disk”.

© Copyright IBM Corp. 1979, 2005 77

v The VSAM space was not used by VSE/VSAM before VSE/ESA 2.6. The disk

will therefore have large DASD support, and a new flag bit in the Catalog

Volume Record will indicate a “Large DASD”.

In addition, for an IBM 3390-9 or other large DASD:

v Where possible, allocations other than CYLINDERS (for example, TRACKS or

RECORDS) will be translated internally to multiples of CYLINDERS. Or, if track

allocation is required by VSE/VSAM for Large DASD, allocations of tracks or

records (for example) will be translated internally to multiples of

tracks-per-cylinder. For example, a VSE/VSAM cluster with a primary (and

secondary) allocation of one track will have a primary (and secondary) allocation

of one cylinder. Direct allocation in CYLINDERS is recommended.

v Track boundaries of extents will be rounded to cylinder boundaries.

v If a catalog resides on a large DASD, the minimum allocation for the catalog is 5

cylinders (4 cylinders for the data component plus 1 cylinder for the index

component).

Migrating to Large DASD Using IDCAMS Backup/ Restore

Most files that have been defined using a CI size of 512 cannot be migrated using

IDCAMS Backup /Restore to a large DASD device (this is due to internal

restrictions). Backup/Restore is intended to transfer files with high performance,

and is based on the CI Size.

Any file defined with IMBED option cannot be restored to or defined on a large

DASD.

If you want to use files that have been defined with a CI size of 512 on a large

DASD, you must follow these general steps:

1. Restore the files that have a CI size of 512, to a previously supported small

DASD type. You use the IDCAMS RESTORE command to do this.

2. Export the files from the previously supported small DASD type using the

IDCAMS EXPORT command.

3. Import the files to a large DASD using the IDCAMS IMPORT command.

For further details about using the above IDCAMS commands, refer to VSE/VSAM

Commands, SC33-8245.

Performance Considerations (KSDS Only)

The performance of KSDS access may change if the data control area size (data

CA) changes. One index control interval (index CI) controls one data control area.

The larger the data control area together with a large index control interval, the

better the keyed access performance. This is because less index I/O is required for

keyed-direct and keyed-sequential access. VSE/VSAM calculates the control area

size from the smaller of the primary or secondary allocation. The minimum is one

track, and the maximum is one cylinder (15 tracks).

Note: A control area size of one cylinder is recommended.

Where possible, a VSE/VSAM KSDS on a large DASD will have a control area size

of one cylinder. Primary and secondary allocations are rounded up to cylinder

multiples and cylinder boundaries, even if they have been defined as TRACKS or

RECORDS. To also get a control area size of one cylinder for long keys (up to 255

bytes), VSE/VSAM calculates the minimum data control interval size (CI size) of a

Device Dependencies

78 VSE/VSAM User’s Guide and Application Programming

KSDS and increases it where required. The following key lengths require the

following minimum control interval sizes:

 Table 4. Minimum CI Sizes Depending on Key Length

Key Length in Bytes Minimum CI Size

7 - 35 1024

36 - 55 2048

> 55 4096

BUFFERSPACE Parameter

The BUFFERSPACE parameter could force a smaller data control area size, and

must have a size that is at least two data control intervals plus one index control

interval. It is recommended not to use this parameter with DEFINE CLUSTER.

Large DASD support ensures that the BUFFERSPACE parameter will not reduce

the CA size.

Increased Size of the Catalog Index

As a result of large DASD support, the index primary allocation of a catalog on all

DASD (large or small) will be at least 4% of the primary catalog data allocation.

The catalog index secondary allocation will have the same size as the index

primary allocation.

Restrictions for VSE/VSAM Support of Large DASD

The following restrictions apply when using large DASD with VSE/VSAM:

v No support for imbedded indices:

– The definition of imbedded indices for catalogs, alternate indices, and clusters

is not supported. If the keyword IMBED is used in existing IDCAMS DEFINE

jobs, it will be ignored or rejected with an error message.
v The catalog default is NOIMBED:

– For large DASD support, the default value for DEFINE MASTERCATALOG

and DEFINE USERCATALOG is NOIMBED.

– Newly defined catalogs (MASTERCATALOG and USERCATALOG) will never

have an imbedded index.
v No CRA on Large DASD:

– There is no support for the CRA (Catalog Recovery Area) keyword

RECOVERABLE on large DASD.

– Existing recoverable catalogs and CRAs on small DASD will be accepted and

supported.

– New CRAs can be defined on small DASD, but no CRA can be defined on a

large DASD.

– Recoverable catalogs cannot reside on a large DASD and cannot own space

on a large DASD.

New or Changed Fields in LISTCAT Output

Large DASD support is reflected in LISTCAT output as follows:

v The field DEVTYPE has the prefix “BIG-” for a large DASD (for example,

DEVTYPE-----BIG-3390). The prefix “BIG-” is used either in the Volume Group

(DATA, INDEX) or in the Volume Entry.

v The field TRACKS in the Volume Group (DATA, INDEX) is replaced by

CYLINDERS for a large DASD.

Device Dependencies

Chapter 6. Device Dependencies 79

v The field SPACE-MAP in the Volume Entry is replaced by CYL-SPC-MAP, which

indicates cylinder mapping instead of track mapping for a large DASD.

Support for FBA Disk Devices (FBA and SCSI)

z/VSE 3.1 is designed to allow IBM eServer zSeries servers to attach

industry-standard Small Computer System Interface (SCSI) disk devices via zSeries

Fibre Channel Protocol (FCP) channels.

User-written programs use VSE’s existing Fixed Block Architecture (FBA) support

(512 byte blocks) to access SCSI disks. User programs cannot use SCSI commands

directly. z/VSE 3.1 is designed to support SCSI disk volume sizes from 8 MB to 24

GB. Because z/VSE itself uses the first 4 MB for internal purposes, the available

user space is equal to the defined size of the disk minus 4 MB. z/VSE 3.1 limits

VSE/VSAM to the first 16 GB of any SCSI volume.

Special migration considerations apply:

v It is not possible to use the Fast Service Upgrade (FSU) process to move from a

VSE/ESA 2.6 or 2.7 system to a z/VSE 3.1 system with SCSI system residence

disks.

v Not every cluster can be migrated using Backup/Restore. In some cases,

Export/Import must be used.

Similar restrictions apply to FBA to SCSI migration.

z/VSE SCSI-FCP disk support complements SCSI support in z/VM Version 5 and

Linux for zSeries. The individual z/VSE maximum SCSI volume size limits do not

apply to z/VM minidisks backed by SCSI disks. When operating as a guest under

z/VM (using SCSI disks not directly attached to z/VSE), z/VM presents SCSI

disks as 9336-20 FBA disks. In this case, z/VSE sees them as FBA, not SCSI disks.

The maximum size of a z/VSE 3.1 FBA volume is 2 GB. Of course, multiple 2 GB

minidisks can be assigned within the limits of a single physical SCSI disk volume

controlled by z/VM. For SCSI disks directly attached to z/VSE under z/VM, the

normal z/VSE limits described above apply.

Technical Considerations

VSE/VSAM extends the existing FBA logic to support SCSI disks. VSAM

implements a SCSI disk as a generic FBA device and uses its own ″virtual

characteristics″ for mapping and building channel programs for optimized VSAM

performance and space utilization.

Except as noted, all commands, parameters, and requirements for FBA devices are

valid for SCSI as well.

Several FBA configurations are supported. The generic FBA model is used to:

v simulate an FBA device in virtual storage; for example, the user can defined in

CP:

CP DEF VFB-512 AS 152 BLK 100000

This virtual disk will be presented to the user under VSE as an FBA disk after

the initialization with ICKDSF:

Device Dependencies

80 VSE/VSAM User’s Guide and Application Programming

volume 152

AR 0015 CUU CODE DEV.-TYP VOLID USAGE SHARED STATUS CAPACITY

AR 0015 152 90 9336-10 FBA001 UNUSED 99960 BLK

AR 0015 1I40I READY

The upper limit for VM to address the storage is 2 GB, which agrees with the

supported size of VSE/VSAM.

v access a VM minidisk (as part of a real SCSI device). VSAM can address only 2

GB. (z/VM 5.1 allows defining VM FBA minidisks with a larger size, but

VSE/VSAM can only handle a 2 GB FBA disk in this case.)

The nature of this 2 GB limit can be explained as follows: VSE/VSAM supports

so-called Generic FBA Devices with a virtual FBA disk device characteristic of 64

FBA blocks per track and 15 tracks per cylinder, that is: 960 FBA blocks per

cylinder = 491,520 bytes per cylinder.

A space map in the catalog maps each track of a particular disk device with 1 bit

(0 = track used, 1 = track free). Additional catalog fields and control blocks map

the number of tracks and the start/end track of data spaces and data set extents

in 2-byte-fields, which limits the maximum capacity of one DASD device to

X’FFFF’ = 65,535 tracks (64K - 1).

Therefore, the current maximum FBA disk capacity is 65,535 tracks * 64 FBA

blocks = 491,520 FBA blocks = 2,147,450,880 bytes = 2 gigabytes.

v directly access the SCSI device as an FBA-SCSI device (via FCP). The limit for an

FBA-SCSI device is 24 GB, and VSAM can use up to 16 GB on this device by

using a different device model (different min-CA and max-CA) as shown in the

following table:

 Table 5. Minimum and Maximum CA for Generic FBA Devices

FBA Device

Blocks per

Minimum CA

Minimum CA per

Maximum CA

Blocks per

Maximum CA

Generic Virtual FBA 64 15 960

Generic FBA as VM

Minidisk

64 15 960

FBA-SCSI 512 60 30720

The new device model for SCSI significantly improves the performance (due to

fewer CI/CA splits, for example) but requires the system programmers to review,

re-calculate, and possibly adapt the space definitions of the JCLs (for example, the

minimum size for a catalog (6 min-CAs) and the size for space sub-allocation are

different).

Restrictions

The following notes and restrictions apply to VSAM structures on SCSI disks:

v The minimum CA (min CA) is 512 blocks, which implies that the minimum file

size for VSAM on such a device is 512 blocks. Space specifications will be

rounded up to a multiple of 512 blocks (for example, 10000000 blocks will

effectively become 10000384).

Note: Due to different rounding values (different min CA values on FBA and

SCSI), it is not guaranteed that the same JCLs will run on generic FBA

and SCSI devices.

v The absolute minimum space specified for primary allocation is 2561 blocks,

which is rounded to 3072.

Device Dependencies

Chapter 6. Device Dependencies 81

v If the ORIGIN option is used during cluster definition, the minimum specified

must be 3072, because rounding will not be performed in this case.

v The maximum CA (max CA) on a SCSI disk is 30720 (60*512) blocks, i.e., the

min CA per max CA is 60.

v Any cluster defined in blocks with a key length >38 requires a minimum CISIZE

of 1024.

v If no key length is specified, the default will be used, which in most cases is 64.

In this case, any cluster definition with a CISIZE of 512 (smallest possible value

under VSAM) will be rejected by VSAM with a corresponding error code

v Migration to any cluster defined on a SCSI device must be done using REPRO

or EXPORT/IMPORT. The use of IDCAMS BACKUP/RESTORE is not

recommended for long-term recovery or data migration and is not supported.

v VSAM data can be transferred to SCSI using IDCAMS BACKUP/RESTORE. For

certain files that cannot be restored with IDCAMS RESTORE because of file

definition restrictions for SCSI, IDCAMS REPRO should be used. This includes,

but is not limited to, all files defined with the SPANNED option and some files

defined with very small allocations or CI sizes.

v The parameters IMBED, REPLICATE, and RECOVERABLE are no longer

supported and are either ignored or rejected with an error message.

Migration of older clusters defined with any of these options should be

performed using IDCAMS REPRO.

v The entire SCSI device can be made available to VSAM if SPACE is defined with

option DEDICATE. Otherwise, up to X’FFFFFF’ (16,777,215) blocks can be

specifed (this is the same restriction as for the current RECORDS parameter).

v The hardware architecture of large DASD and SCSI devices imposes minimum

allocation requirements in VSAM device support (1 cylinder, 512 block minimum

CA size).

VSAM detects and reports the SCSI disk as device type ’FBA’ on LISTCAT output:

 CHARACTERISTICS

 BLKS/MIN-CA----------512 DEVTYPE---------FBA

 BLKS/MAX-CA--------30720 VOLUME-TIMESTAMP:

IUI dialogs for FILE AND CATALOG MANAGEMENT under RESOURCE

DEFINITION assist the user in generating the JCLs for IDCAMS jobs to support

SCSI devices.

Virtual Tapes

Local virtual tapes are implemented as standard VSAM ESDS files. One restriction,

however, is that they must not be compressed. Information on using virtual tapes

is provided in z/VSE Planning.

Device Dependencies

82 VSE/VSAM User’s Guide and Application Programming

Chapter 7. Optimizing the Performance of VSE/VSAM

This chapter ...

Explains the following VSE/VSAM options that affect performance:

v “Data Space Classification”

v “Control Area (CA) Size” on page 85

v “Control Interval (CI) Size” on page 88

v “I/O Buffer Space (Using Non-Shared Resources)” on page 94

v “I/O Buffer Space (Using Local Shared Resources)” on page 99

v “Multiple Volume Support” on page 102

v “Space Allocation” on page 108

v “Data Protection and Integrity Options” on page 110

v “Distributed Free Space” on page 111

v “Index Options” on page 120

For an outline on file statistics that are available to you for evaluating

possible performance improvements, refer to “Performance Measurement” on

page 121.

Most of the options are specified in the IDCAMS command DEFINE when

creating a file, and in the VSE/VSAM macros ACB and GENCB when a

processing program prepares to open a file.

Because of the great number of variables, not everything presented in this

chapter is true for all installations and under all conditions.

Number of Files Defined in a Catalog

The number of files defined in a catalog can have a direct impact on the

performance of most VSE/VSAM activities. Generally, it is recommended that files

on a single volume be defined in a unique user catalog.

A large number of files in a single catalog (for example, a thousand files) can

significantly increase the run time for most IDCAMS functions. This includes

DEFINE, DELETE, and LISTCAT functions. It also impacts open and close

performance.

The exact number of files at which the impact on performance becomes noticeable

depends on several factors (for example, DASD access speed and file name

pattern). As the number of files in a single catalog increases, you should carefully

monitor the performance of the indicated IDCAMS functions.

Data Space Classification

To direct the suballocation of data space to VSE/VSAM objects, you can assign a

class value to VSE/VSAM data space; it allows you to optimize performance.

Specify the value in the CLASS(value) parameter of the command DEFINE SPACE,

DEFINE MASTERCATALOG, or DEFINE USERCATALOG. You can specify a value

from 0 to 7.

© Copyright IBM Corp. 1979, 2005 83

After you have assigned a value to a data space, you can request that it will be

available for suballocation to an alternate index or cluster (or their components).

Make the request in the USECLASS parameter of the command DEFINE

CLUSTER, DEFINE ALTERNATEINDEX, or IMPORT.

The class values and their meaning are:

0 General use and default. (Data spaces defined under MVS/VSAM are

treated as class-0.)

1 High performance (specifically suggested for fixed-head areas).

2-7 User-defined classes (for example, data space in the middle of a volume).

Figure 25 illustrates the classification of data space and the use of classified data

space.

 The definition of VSE/VSAM catalogs involves the implicit allocation of data space

and the suballocation of some (or all) of that data space to the catalog itself.

Because of this, you need only specify the CLASS parameter if you want to assign

a catalog’s data space to a certain performance class. You do not have the option of

 DEFINE CLUSTER(─

 NAME(CLUST1)─

 VOLUME (222222)─

 .

 .

 .

 Volume 222222

 ┌─ ┌─────────────────┐ ─┐ (3) DATA(─

 │ │ │ │ USECLASS(1)─

 (1) DEFINE SPACE─ │ │ Class─1 Space │ │ .

 VOLUME(222222)─ │ │ │ │ .

 CLASS(1) │ ├─ ─ ─ ─ ─ ─ ─ ─ ─┤ ─┘ .

 . │ │ │

 . └─ ├─────────────────┤

 . │ │

 │ │

 │ │

 ┌─ ├─────────────────┤ ─┐ (4) INDEX(─

 │ │ │ │ USECLASS(7)─

 (2) DEFINE SPACE─ │ │ Class─7 Space │ │ .

 VOLUME(222222)─ │ │ │ │ .

 CLASS(7) │ ├─ ─ ─ ─ ─ ─ ─ ─ ─┤ ─┘ .

 . │ │ │

 . └─ ├─────────────────┤

 . │ │ (5) DEFINE CLUSTER(─

 │ │ NAME(CLUST1)─

 │ │ VOLUME (222222)─

 └─────────────────┘

 no USECLASS specified

 Explanation:

 (1) Class─1 data space defined

 (2) Class─7 data space defined

 (3) Class─1 data space suballocated to the data component of CLUST1

 (4) Class─7 data space suballocated to the index component of CLUST1

 (5) This DEFINE command fails, because the default class (0)

 is not available on volume 222222

Figure 25. Classification of Data Space

Performance: Data Space Class

84 VSE/VSAM User’s Guide and Application Programming

specifying the USECLASS parameter. The catalog is automatically suballocated

from the same data space and the same performance class.

You can request a new class through the USECLASS parameter in the IMPORT

command when an object is implicitly defined through this command.

The following restriction applies:

v Classes other than 0 are not permitted for unique objects.

For the DEFINE command, you must specify USECLASS concurrently (at the same

level) with the space parameters (TRACKS, BLOCKS, and so on). For example, if

you specify USECLASS in DEFINE CLUSTER at the data level, you must also

specify CYLINDERS, TRACKS, BLOCKS, or RECORDS at the data level. If you do

not do so, the USECLASS specification will be ineffective. The following are the

three possible combinations of levels at which space may be specified for DEFINE

CLUSTER or DEFINE ALTERNATEINDEX:

 (a) Cluster level only or alternate index level only

 (b) Data component level only

 (c) Data component and index component levels

Therefore, these are also the levels that are effective for USECLASS.

In case (a), the USECLASS specified (or defaulted to) is also applied to the data

and index components.

In case (b), the USECLASS specified, defaulted to, or modeled for the data

component level is also applied to the index component level. This permits you to

apply the same class of data space to both components while leaving the

calculation of the index allocation to VSE/VSAM.

In case (c), the data and index components may be assigned (or modeled or

defaulted) to a separate or to the same class of data space, depending on the

values chosen.

For information on assigning classes of data space, refer to the USECLASS

parameter in the index of the manual VSE/VSAM Commands, for example, for the

“DEFINE ALTERNATEINDEX” command.

Control Area (CA) Size

Minimum and Maximum CA Sizes

The terms minimum control area size (min CA) and maximum control area size (max

CA) are device independent terms. For CKD devices, the term:

v minimum CA relates to track size

v maximum CA relates to cylinder size

For FBA devices, however, the terms tracks and cylinders (as used for CKD) are not

meaningful, because FBA devices store data on fixed-size blocks (where the blocks

are not associated with tracks or cylinders).

The terms of minimum CA and maximum CA, however, are common to both CKD

and FBA devices.

For applicable values for the various IBM CKD and FBA devices, refer to Table 6

on page 87 and Table 7 on page 87.

Performance: Data Space Class

Chapter 7. Optimizing the Performance of VSE/VSAM 85

For CKD devices, the CA allocation limits depend on the:

v Index CI size you indicate, if the BUFFERSPACE parameter prevents an increase

of the index CI size.

v Primary or secondary allocation.

Note: If VSE/VSAM runs in an environment where simulated devices are used ,

VSE/VSAM depends on the characteristics provided by the simulating

system. These device characteristics may be different from those of the

simulated device type. Therefore, VSE/VSAM may use unexpected device

characteristics.

Performance Implications

In the case of a key-sequenced file, the size of a CA can affect the size of the CI of

the index component. If there is not enough room for index entries in the sequence

set record, VSE/VSAM increases the CI size to accommodate more entries.

CA size has significant performance implications. When a whole number of CAs

occupies a maximum CA (cylinder), performance is better than when CAs cross

maximum CA (cylinder) boundaries. If you allocate space in a DEFINE command

using the CYLINDERS parameter, or if a CKD file is defined as unique (that is, the

file is the only one in its data space), IDCAMS sets the CA size to one maximum

CA (cylinder). If a CA is smaller than a maximum CA (cylinder), its size will be an

integral multiple of minimum CAs (tracks), and it can cross maximum CA

(cylinder) boundaries. However, a CA can never cross the extent boundaries of a

file; that is, an extent of a file is made up of a whole number of CAs.

Aside from specifying space in terms of maximum CAs (cylinders) or defining a

CKD file as unique, you do not have a direct way of specifying that a whole

number of CAs will occupy a maximum CA (cylinder). But, you can provide

values in the DEFINE command that will influence the CA size as computed by

IDCAMS.

IDCAMS checks the smaller of the primary and secondary space values against the

maximum CA (cylinder) size of the specified device. If the smaller space quantity

is less than or equal to the device’s maximum CA (cylinder) size, the size of the

CA is set equal to the smaller space quantity. If the smaller space quantity is

greater than the device’s maximum CA (cylinder) size, the CA size is set equal to

the maximum CA (cylinder) size.

You specify space in number of tracks, cylinders, blocks, or records; the system

then preformats space in CAs (except for DEFINE CLUSTER/AIX SPEED). By

calculating the size of a CA as it does, IDCAMS is able to meet your primary and

secondary space requirements without over committing space for this file.

An index record must be large enough to address all of the CIs in a CA. The more

CIs an index record addresses, the fewer reads for index records are required for

sequential access. Generally, the greater the size of the CA, the better the

performance and space utilization.

Disk Storage Sizes

Table 6 on page 87 lists values for cylinders, tracks, and other capacities for IBM

CKD devices.

Performance: CA Size

86 VSE/VSAM User’s Guide and Application Programming

Table 6. Disk Storage Sizes for IBM CKD Devices

IBM CKD

Device

Cylinders (Max

CA) per Volume

Tracks (Min CA)

per Cylinder

Bytes per Track

(1)

Maximum Total

Capacity (Bytes)

3375 959 12 19,456 -33,280 382,986,240

3380 ADJ 885 15 23,552 - 45,056 570,931,200

3380 E 1770 15 23,552 - 45,056 1,141,862,400

3380 K 2655 15 23,552 - 45,056 1,712,793,600

3390-1 1113 15 25,088 - 55,296 846,236,160

3390-2 2226 15 25,088 - 55,296 1,692,472,320

3390-3 3339 15 25,088 - 55,296 2,538,708,480

3390-1 (2) 1113 15 23,552 - 45,056 718,018,560

3390-2 (2) 2226 15 23,552 - 45,056 1,436,037,120

3390-3 (2) 3339 15 23,552 - 45,056 2,154,055,680

3390-9 (3) 10017 15 56,664 8,514,049,320

Notes:

1. Depending on the physical block size (see Figure 27 on page 91)

2. When in 3380 track compatibility mode.

3. Large DASD

VSE/VSAM treats the IBM 3995 Model 151 Optical Library Dataserver as an IBM 3390

Model 2 direct access storage device.

An Enterprise Storage Server (ESS) is reflected as a 3390-3 or 3390-9 depending on the

number of cylinders available.

Table 7 lists values for minimum and maximum CA, and 512-byte blocks for IBM

FBA devices.

 Table 7. Disk Storage Sizes for IBM FBA (and SCSI) Devices

IBM FBA

Device

Max CA per

Volume

Min CA per

Max CA

Blocks* per

Min CA

Blocks* per

Max CA Total Blocks

0671 See (1) 8 63 504 See (1)

3370-1 750 12 62 744 558,000

3370-1 958 712,752

9332-1 (2) 1,233 4 73 292 360,036

9332-2 (3) 1,900 4 73 554,817

9335 1,890 6 71 426 805,140

Other FBA (4) See (1) 15 64 960 See (1)

SCSI (5) See (1) 60 512 30720 See (1)

Notes:

1. Configuration or device dependent.

2. Models 200, 400, 402.

3. Models 300, 600, 602.

4. For example, IBM 9336 and virtual disk.

5. Appears as device type FBA.

(*) 1 block = 512 bytes.

Performance: CA Size

Chapter 7. Optimizing the Performance of VSE/VSAM 87

Control Interval (CI) Size

How to Specify

You can let IDCAMS select the size of a CI for a data or index component, or you

can specify CI size in the DEFINE command. CI size should be specified at both

DATA and INDEX levels. If the CI size is specified at the CLUSTER or

ALTERNATEINDEX level, this size applies to the data component and also to the

index component.

The CI size you specify is checked for being within acceptable limits. IDCAMS tries

to modify an unacceptable value. If it cannot, the DEFINE fails. If you specify a CI

size that is not a proper multiple, IDCAMS increases it to the next multiple. For

example, 2050 is increased to 2560.

Data CI and Block Sizes

The limits (mentioned above) depend on the maximum (nonspanned) or average

(spanned) record size that you specify in the RECORDSIZE parameter of the

DEFINE command.

Note that a CI is always a multiple of the physical block size.

Physical Block Size for Data Component

A physical block (or physical record) is any multiple of:

v 512 bytes up to 8,192 bytes

v 2048 bytes from 8,193 bytes to 30,720 bytes

Figure 26 on page 89 shows how VSE/VSAM computes physical block size, using

DEFINE attributes and device type. The following explains the numbers shown in

the figure:

 (1) Maximum record size can be specified as 1 through 32761; the default is

4089 bytes.

 (2) The CONTROLINTERVAL size of the data component can be specified as

512 through 32768; the default is:

 2048 bytes if RECORDSIZE is specified

 4096 bytes if RECORDSIZE is not specified
 (3) The control area size chosen by VSE/VSAM is never larger than one max

CA (cylinder).

 (4) BUFFERSPACE(size) must provide enough space to accommodate:

 two control intervals, and

 one index control interval if the file is key-sequenced.

 This is also the default. If you specify less than the default, the command is

terminated.

 (5) The physical block size chosen by VSE/VSAM depends on the device

type that is being used, and on the size of the control interval. The physical

block size chosen by VSE/VSAM is:

 For CKD devices:

v 512 bytes up to 8,192 bytes

v 2048 bytes from 8,193 bytes to 30,720 bytes
 For FBA devices: always 512 bytes.

Performance: CA Size

88 VSE/VSAM User’s Guide and Application Programming

CI Size in a Data Component

The size of a CI in the data component can be any multiple of 512, up to 32,768. If

it is over 8,192 bytes, it must be a multiple of 2048.

For nonspanned records, the CI must be at least seven bytes larger than the largest

record in the data component.

For spanned records, the CI must be at least ten bytes larger than the average

record in the data component.

Average and largest record are specified in the RECORDSIZE parameter.

 ┌──┐

 │ │

 │ VSE/VSAM picks the smallest nonzero value │

 │ of the values v1, v2, and v3 to │

 │ choose the "control area (CA) size": │

 │ │

 │ ┌───────────┬─────────────────────┐ │

 │ │ BLOCKS │ │ Max CA of Device │

 │ │ CYLINDERS │ (primary,secondary) │ (cylinder size) │

 │ │ RECORDS │ ───┬─── ────┬──── │ ──────┬────── │

 │ │ TRACKS │ │ │ │ │ │

 │ └───────────┴─────│────────│──────┘ │ │

 │ │ │ │ │

 │ │v1 │v2 │v3 │

 │ │ │ │ │

 │ d d d │

 │ ────────────────────────────────── │

 │ │

 └──┘

 ┌──┐

 │ │

 │ The three values (1), (2), and (3) │

 │ determine the "control interval (CI) size": │

 │ │

 │ ┌───────────────────┐│

 │ RECORDSIZE CONTROLINTERVALSIZE │ Control Area Size ││

 │ (average,maximum) (size) └────┬──────────────┘│

 │ ───┬─── ──┬─ │ │

 │ │ │ │ │

 │ (1)│ (2)│ (3)│ │

 │ │ │ │ │

 │ d d d │

 │ ┌──┐ │

 │ │ Control Interval Size (for the data component) │ │

 │ └───────────┬────────────────────────────────────┘ │

 │ │ │

 │ │ │

 │ BUFFERSPACE │ │

 │ (size) │ Device Type │

 │ ──┬─ │ ─────┬───── │

 │ (4)│ │ │ │

 │ d d d │

 │ ┌───────────────────────┐ ┌───────────────────────┐ │

 │ │ Space for I/O Buffers │ (5)│ Physical Block Size │ │

 │ └───────────────────────┘ └───────────────────────┘ │

 │ │

 └──┘

Figure 26. How VSE/VSAM Computes Physical Block Size

Performance: CI Size

Chapter 7. Optimizing the Performance of VSE/VSAM 89

CI size affects space utilization because of the way VSE/VSAM chooses physical

block sizes on CKD devices. (There are no similar considerations for FBA devices.)

For a given CI size, VSE/VSAM chooses the physical block size that results in the

most efficient use of track capacity.

Note: A file with a data physical block size or index CI size other than .5, 1, 2, or

4KB cannot be directly processed by MVS. (File portability between

VSE/VSAM and MVS via EXPORT/IMPORT is not impacted by data

physical block size, but it does require an MVS-compatible CI size.)

Figure 27 on page 91 shows the physical block size that VSE/VSAM uses for a

data CI, and the number of KB (kilobyte) of user data that can be accommodated

on the track (the values depend on the specified CI size and the device that is

used). For example, given a CI size of 6KB on a 3380, VSE/VSAM chooses a

physical block size of 6KB that results in 42KB (plus overhead) of data on a

43008-byte track.

VSE/VSAM treats the IBM 3995 Model 151 Optical Library Dataserver as an IBM

3390 Model 2 direct access storage device.

Performance: CI Size

90 VSE/VSAM User’s Guide and Application Programming

┌─────┬──────────────────────┬───────────────────────┐

│ │ Physical Block │ Track Space │

│ │ Size (in KB) │ Used (in KB) │

│CI ├─────┬─────┬─────┬────┼──────┬─────┬─────┬────┤

│Size │3375 │3380 │3390 │9345│ 3375 │3380 │3390 │9345│

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 0.5 │ 0.5 │ 0.5 │ 0.5 │ 0.5│ 20 │23 │24.5 │20.5│

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 1 │ 1 │ 1 │ 1 │ 1 │ 25 │31 │33 │28 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 1.5 │ 1.5 │ 1.5 │ 1.5 │ 1.5│ 27 │34.5 │39 │31.5│

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 2 │ 2 │ 2 │ 2 │ 2 │ 28 │36 │42 │34 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 2.5 │ 2.5 │ 2.5 │ 2.5 │ 2.5│ 30 │37.5 │42.5 │35 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 3 │ 3 │ 3 │ 3 │ 3 │ 30 │39 │45 │36 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 3.5 │ 3.5 │ 3.5 │ 3.5 │ 3.5│ 31.5 │38.5 │45.5 │38.5│

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 4 │ 4 │ 4 │ 4 │ 4 │ 32 │40 │48 │40 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 4.5 │ 4.5 │ 4.5 │ 4.5 │ 4.5│ 31.5 │40.5 │45 │36 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 5 │ 5 │ 5 │ 5 │ 5 │ 30 │40 │45 │40 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 5.5 │ 5.5 │ 5.5 │ 5.5 │ 5.5│ 27.5 │38.5 │49.5 │38.5│

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 6 │ 6 │ 6 │ 6 │ 6 │ 30 │42 │48 │36 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 6.5 │ 6.5 │ 6.5 │ 6.5 │ 6.5│ 32.5 │39 │45.5 │39 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 7 │ 3.5 │ 7 │ 7 │ 7 │ 31.5 │42 │49 │42 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 7.5 │ 7.5 │ 7.5 │ 7.5 │ 7.5│ 30 │37.5 │45 │37.5│

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 8 │ 8 │ 8 │ 8 │ 8 │ 32 │40 │48 │40 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 10 │ 5 │ 10 │ 10 │ 10 │ 30 │40 │50 │40 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 12 │ 4 │ 6 │ 12 │ 4 │ 32 │42 │48 │40 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 14 │ 3.5 │ 14 │ 7 │ 14 │ 31.5 │42 │49 │42 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 16 │ 16 │ 8 │ 16 │ 8 │ 32 │40 │48 │40 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 18 │ 4.5 │ 6 │ 18 │ 18 │ 31.5 │42 │54 │36 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 20 │ 4 │ 20 │ 10 │ 20 │ 32 │40 │50 │40 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 22 │ 2 │ 22 │ 5.5 │ 22 │ 28 │44 │49.5 │44 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 24 │ 8 │ 6 │ 24 │ 8 │ 32 │42 │48 │40 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 26 │ 6.5 │ 6.5 │ 26 │ 6.5│ 32.5 │39 │52 │39 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 28 │ 4 │ 14 │ 7 │ 14 │ 32 │42 │49 │42 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 30 │ 7.5 │ 6 │ 10 │ 10 │ 30 │42 │50 │40 │

├─────┼─────┼─────┼─────┼────┼──────┼─────┼─────┼────┤

│ 32 │ 16 │ 8 │ 16 │ 8 │ 32 │40 │48 │40 │

└───────────┴─────┴─────┴────┴──────┴─────┴─────┴────┘

Figure 27. Relationship of CI Size to Physical Block Size for Data Component

Performance: CI Size

Chapter 7. Optimizing the Performance of VSE/VSAM 91

Performance Considerations

For performance improvement, consider the following rules.

v The larger the data CI, the better the sequential performance. EXPORT and

IMPORT are sequential applications.

v As the size of your nonspanned data records increases, you may need larger data

CIs.

v As data and index CI size increases and record size remains unchanged, more

buffer space is required in storage for every CI.

v Free space will probably be used more efficiently as data CI size increases

relative to data record size, especially with variable-length records.

Free space in a nonspanned data CI is not used if there is not enough free space

for a complete data record. In any event, free space in the last CI of a spanned

record is never used for any other record, even if there is room enough to hold a

complete data record.

v Direct processing is less sensitive to data CI size. But smaller data CIs generally

improve performance.

v When you process input that already has been sorted, on the other hand, large

data CIs may be better.

v If you have a choice between a large index CI or a large data CI for direct

processing, choose the combination that yields the smallest buffer space value.

This combination needs the least active storage and the least data transfer time.

CI Size in an Index Component

The CI size in the index component can be any multiple of 512, up to 8,192 bytes.

Generally a 512-byte index CI is adequate if:

v The number of data CIs per CA is small,

v The full key size is not too large, and

v The key compresses well (usually when the data CI is 4KB or greater).

IDCAMS might adjust your specifications. To find the values actually set in a

defined file, you can issue the IDCAMS LISTCAT command or, while your

program is executed, the SHOWCB macro.

Considerations

Generally, you should specify the smallest index CI size that still is adequate.

You may want to specify the smallest value, that is 512. To find out if a 512-byte

index CI size is adequate, do the following experiment:

v Use your chosen data CI size and a 512-byte index CI.

v Do not allow free space.

v Load enough records to equal one CA.

v At the end of the run, perform a LISTCAT.

If there is only one level of index, a 512-byte index CI is large enough. For n

CAs, there should be two levels of index with the number of index CIs equal to

n + 1.

A smaller data CI may require a large index CI. The sequence set index CI contains

pointers to the data CIs in a CA. If the data CI is made smaller (when the CA stays

the same size), there will be more data CIs per CA, and therefore more entries in

the sequence set. As an example, assume a one cylinder CA size on an IBM 3380.

Performance: CI Size

92 VSE/VSAM User’s Guide and Application Programming

Using 4096-byte data CIs, one CA can contain 150 data CIs. If the data CI size were

changed to 1024 bytes, the CA could contain 465 data CIs. The sequence set would

now require 465 pointers instead of 150.

What IDCAMS Calculates and Adjusts

For a key-sequenced file, after CI size has been set, IDCAMS determines the

number of bytes to be reserved for free space, if any. For example, if the CI size is

4096, and the percentage of free space in a CI is twenty, 820 bytes are reserved

(4096 x 20% = 820.)

If you do not specify a size for:

v Data CIs, IDCAMS uses 2048, if possible.

v Index CIs, IDCAMS uses 512, if possible.

To determine a suitable index CI size, IDCAMS uses the following formula:

 (DCI x AES) + (2 x 'DCI) + 31

 where:

 DCI = number of data CIs per CA

 AES = average entry size:

 ┌──────────────────┬───────────────────────┐

 │ If Key Length is │ Then AES is │

 ├──────────────────┼───────────────────────┤

 │ > 64 │ 28 │

 │ 30─64 │ 3 + (key length/3) │

 │ 10─29 │ 13 │

 │ 0─9 │ 3 + key length │

 └──────────────────┴───────────────────────┘

If the result of the calculation is an odd value, VSE/VSAM rounds it to the next

higher even value.

After IDCAMS determines the number of CIs in a CA (see “Control Area (CA)

Size” on page 85), it estimates whether one index CI is large enough to handle all

of the data CIs in a CA. If the index CI is not large enough, its size is increased, if

possible. If not possible, the number of CIs in a CA is decreased. This calculation

may result in IDCAMS overriding the specified index CI size. For example, for a

file without an index, if CI size space is not specified and the maximum record

size is specified to be 200 bytes, IDCAMS sets the data CI size to 2048 bytes. For a

key-sequenced file, IDCAMS additionally sets the index CI size to 512 bytes.

If spanning is not specified and the maximum data record size specified in

RECORDSIZE is 2500 bytes, and 2500 is also specified for the data CI size, the

system adjusts the 2500-byte CI size to the next higher multiple of 512: 2560.

Key Compression

The following information relates to the KEYRANGES parameter/subparameter of

the IDCAMS commands DEFINE and IMPORT.

VSE/VSAM increases the number of entries that an index record can hold by key

compression. Compression makes an index smaller by reducing the size of the keys

in the index entries. VSE/VSAM eliminates from the front and back of a key those

characters that are not needed to distinguish it from the adjacent keys. For

example, the keys in the sequence 1110, 1230, 1450 would compress to 11, 23, 45

respectively.

Performance: CI Size

Chapter 7. Optimizing the Performance of VSE/VSAM 93

Front compression works best when the keys of the last records of every CI run in a

series (for example, 100, 101, 102, 106). When several high keys have the same

leading characters, those characters can be compressed.

Rear compression works best when adjacent keys have large differences at the back

of the key.

If keys compress poorly, more room is required in the index CI to store the

compressed key. The index CI may be too small for the data. If it is too small,

more CAs are needed. When VSE/VSAM has no more room to insert compressed

keys from the data CIs into the index CI, it continues to load data into the next

CA, using its associated sequence set CI. The previous CA contain fewer “filled”

data CIs than if the index CI had been adequate.

Poor key compression can occur under the following conditions:

v The key is comprised of multiple fields.

v Changes occur in the front of the key and the back of the key, but not in the

middle.

v If the number of keys in a group is less than the number of keys in a data CI,

the high key in every data CI does not repeat the high-order characters.

Therefore, front compression is almost non-existent.

v If the last field of the key is long and very dense, poor rear compression results.

Single field keys do compress well. Larger keys (20 - 30 bytes) can compress to 8 or

9 bytes (including control information). Smaller keys (5 - 15 bytes) can compress to

3 - 5 bytes (including control information).

Example of a Key that Compresses Poorly

 NNN0000000000SS

 where: NNN -- changes every 4 or 5 records; there are more

 than 4 or 5 records per data CI.

 0000000000 -- changes rarely.

 SS -- changes in every record.

The key would compress well if:

v NNN changed every 20 - 25 records;

v SS is seldom changed;

v SS were located next to NNN (NNNSS0000000000) and changed frequently; or

v The entire key were one field and the bytes changed randomly.

I/O Buffer Space (Using Non-Shared Resources)

VSE/VSAM transmits the contents of a CI to a buffer in main or virtual storage.

Therefore, the CI size affects the use and size of I/O buffers, and the amount of

storage space for I/O buffers.

If you do not specify buffer space, VSE/VSAM allocates buffer space for two data

CIs and (if the file is indexed) one index CI. You may not specify less space, but to

optimize performance, you may want to provide additional buffer space.

If you specify a buffer space that is not large enough to contain:

 Two data CIs, and

 One index CI for KSDS and for VRDS,

the DEFINE command terminates.

Performance: CI Size

94 VSE/VSAM User’s Guide and Application Programming

Considerations

Sequential Processing

Increasing the space to hold three or more data CIs generally improves

performance due to I/O command chaining. More than four or five data buffers

may cause excessive paging.

If there is an index component, the buffer space must be large enough to hold an

index CI also.

Direct Processing

Any remaining buffer space beyond that required for two data CIs is used for

index CIs. To optimize performance, specify enough buffer space to accommodate

one index CI for every level of index. If the index CI size or the number of index

levels is not known, specify 2KB of buffer space for the index (default

BUFFERSPACE, which rounds to a 2KB boundary, may in some cases accomplish

this for you), and check the result with LISTCAT output. Make adjustments with

ALTER, if necessary.

Buffer Specification

You can specify buffer space through the:

v IDCAMS command DEFINE,

v ACB macro, or

v // DLBL statement.

The buffer space entry in the catalog was either specified or defaulted to when the

cluster was defined or modified with the ALTER command.

Specifying through DEFINE Command

Using DEFINE, you can specify the BUFFERSPACE parameter at the cluster or

data level, but not both. The default buffer space allocation is two data buffers and

one index buffer (key-sequenced data sets only). For ESDS and RRDS, the default

is two data buffers.

Specifying through ACB Macro

Programming Interface Information

You can specify buffer space values or cause a default buffer space through the

ACB macro:

 ACB .

 .

 .

 BUFSP=n

 BUFNI=n

 BUFND=n

To use the ACB buffer space, the value selected must be larger than the catalog

entry buffer space. The use of ACB parameters is explained under “Buffer

Allocation” on page 96.

End of Programming Interface Information

Performance: Buffer Space NSR

Chapter 7. Optimizing the Performance of VSE/VSAM 95

Specifying through // DLBL

At run time, you may require more than the buffer space specified in the catalog

or ACB. The minimum requirements for run time buffers are as follows (default

STRNO=1):

 Data buffers = ACB STRNO + 1

 Index buffers = ACB STRNO

If STRNO = 2 (that is, you require concurrent file positioning), the minimum buffer

space required for output is three data CIs and two index CIs.

Example: Specifying Buffer Space: You can specify buffer space through the use

of the // DLBL statement:

 // DLBL filename,’file-ID’,,VSAM,BUFSP=size

To be effective, the value specified for the DLBL buffer space must be larger than

the catalog entry buffer space.

VSE/VSAM rounds the buffer space value (obtained from the DLBL, ACB, or

DEFINE) so that it is a multiple of either the index CI size or the data CI size,

whichever is smaller.

If the amount of buffer space specified is greater than the minimum required,

VSE/VSAM uses the remainder for additional index buffers (direct processing) or

additional data buffers (sequential or skip sequential processing).

Example: Specifying Number of Buffers: You can specify the number of buffers

through the use of the // DLBL statement:

 // DLBL filename,’file-ID’,,VSAM,BUFND=m,BUFNI=n

Note that BUFND and BUFNI represent the total number of buffers, independent

of the number of strings. That is, if the value for BUFND, respectively BUFNI, is

lower than the required minimum, the default values are used.

Buffer Allocation

The following explains how VSE/VSAM allocates buffer space according to ACB

specification. The following ACB parameters relate to buffer allocation:

 ACB MACRF=(IN│OUT,SEQ│DIR│SKP)

 STRNO=n

 BUFSP=n

 BUFND=n

 BUFNI=n

Minimum Buffer Allocation

Data Buffers: If you specify:

 MACRF=(...,IN,...)

then, the number of data buffers for:

 ESDS and RRDS is the greater of BUFND or STRNO.

 KSDS is the greater of BUFND or STRNO + 1.

If you specify:

 MACRF=(...,OUT,...)

then, the number of data buffers is the greater of BUFND or STRNO + 1.

Performance: Buffer Space NSR

96 VSE/VSAM User’s Guide and Application Programming

Index Buffers: If the number of index buffers is the greater of BUFNI or STRNO,

then OPEN calculates the remainder as follows:

 Remainder = BUFSP - ((NDB*DCI) + (NIB*ICI))

 where: NDB = number of data buffers

 DCI = size of a data CI

 NIB = number of index buffers

 ICI = size of an index CI

 If the remainder ≤ 0, then OPEN allocates the number of data buffers and index

buffers and increases BUFSP to hold them.

 If the remainder > 0, and to calculate additional buffers, refer to “If Remainder

> 0,” below.

Note that you get no indication if the BUFSP used for the minimum allocation is

greater than that specified in DEFINE, DLBL, or ACB.

If Remainder > 0:

1. MACRF=(...,SEQ,OUT,...)

VSE/VSAM allocates data buffers until there is a remainder that is less than the

data CI size; then it allocates more index buffers. (This is only possible when

the index CI size is less than the data CI size. If the index CI size is larger, see

item 2 below.)

Example:

 BUFSP=13824

 data CI size=4096

 index CI size=512

 STRNO=1

 MACRF=(...,SEQ,OUT,...)

 ┌──┬─────────────┐

 │ Allocation │ Cumulative │

 │ │ Totals │

 ├──┼─────────────┤

 │ Minimum = 2 data buffers 8192 │ │

 │ 1 index buffer 512 │ 8704 │

 │ Additional = 1 data buffer 4096 │ 12800 │

 │ 2 index buffers 1024 * │ 13824 │

 │ │ │

 │ * Resulting from MACRF specification. │ │

 └──┴─────────────┘

2. MACRF=(...,DIR,OUT,...)

VSE/VSAM allocates more index buffers until there is a remainder that is less

than the size of one index CI; then it allocates more data buffers. (This is

possible only when the data CI size is less than the index CI size.)

Example:

 BUFSP=13824

 data CI size=4096

 index CI size=512

 STRNO=1

 MACRF=(...,DIR,OUT,...)

Performance: Buffer Space NSR

Chapter 7. Optimizing the Performance of VSE/VSAM 97

┌──┬─────────────┐

 │ Allocation │ Cumulative │

 │ │ Totals │

 ├──┼─────────────┤

 │ Minimum = 2 data buffers 8192 │ │

 │ 1 index buffer 512 │ 8704 │

 │ Additional = 10 index buffers 5120 * │ 13824 │

 │ │ │

 │ * Resulting from MACRF specification.. │ │

 └──┴─────────────┘

3. MACRF=(...,SEQ,DIR,OUT,...)

VSE/VSAM increases the number of index buffers to twice STRNO. (If this is

not possible, VSE/VSAM uses the procedure described in item 2 above.) If

there is still a remainder, VSE/VSAM uses the procedure described in item 1

above to allocate the remainder.

Example:

 BUFSP=13824

 data CI size=4096

 index CI size=512

 STRNO=1

 MACRF=(...,SEQ,DIR,OUT,...)

 ┌──┬─────────────┐

 │ Allocation │ Cumulative │

 │ │ Totals │

 ├──┼─────────────┤

 │ Minimum = 2 data buffers 8192 │ │

 │ 1 index buffer 512 │ 8704 │

 │ Additional* = 1 index buffer 512 │ 9216 │

 │ = 1 data buffer 4096 * │ 13312 │

 │ = 1 index buffer 512 * │ 13824 │

 │ │ │

 │ * Resulting from MACRF specification. │ │

 └──┴─────────────┘

Later modifications of RPLs do not change buffer allocations.

Buffer Allocation for a Path

Path Entry for Alternate Index (AIX): If the path entry is not a member of the

upgrade set, buffers are allocated in the same manner as for a normal KSDS. Your

ACB is used for the path entry.

If the path entry is a member of the upgrade set, then buffers are allocated as for a

normal KSDS, but minimum allocations are increased by one for both the number

of data buffers and the number of index buffers. Your ACB is used for the path

entry.

Buffer Allocation for Path Entry when the Base Cluster is a KSDS: Buffers are

allocated in the same manner as for a normal KSDS with the following ACB

specifications:

 BUFND=0

 BUFNI=0

 STRNO=number of strings specified in the ACB

You can influence buffer allocation only through the BUFFERSPACE parameter of

DEFINE CLUSTER or through DLBL BUFSP= ,BUFND= ,BUFNI=.

If you open the path for input only, the base cluster uses MACRF=(...,DIR,IN,...). If

you open the path for output, the base cluster uses MACRF=(...,DIR,OUT,...).

Performance: Buffer Space NSR

98 VSE/VSAM User’s Guide and Application Programming

Buffer Allocation for a Base Cluster of an Alternate Index: You can influence

buffer allocation through the path DLBL BUFND=, BUFNI=. If the base cluster is a

KSDS, the minimum index buffer allocation is one buffer per index level per string.

Buffer Allocation for an Upgrade Set: The buffer allocation is always two data

buffers and one index buffer. You cannot influence buffer allocation for the

upgrade set.

Miscellaneous Notes on Buffer Allocation (NSR)

v Data and index buffers are acquired and allocated only at OPEN time. Buffer

space is freed at CLOSE time.

v Buffer space is aligned on page boundaries. Data buffers are allocated first, then

the index buffers.

v Writing a buffer does not free buffer space. The CI is still in storage, so if you

again reference that CI, VSE/VSAM does not reread the CI. Because VSE/VSAM

checks to see if the CI is in storage, processing directly in a limited key range

may increase throughput if extra data buffers are provided.

v The POINT macro does not cause read ahead because its purpose is to position

for subsequent sequential retrieval. It fills only one data buffer.

v When processing directly, VSE/VSAM reads only one data CI. It does not reread

data or index CIs if they reside in storage, except when SHAREOPTIONS(4) is

specified. VSE/VSAM will immediately write a data buffer if PUT (UPD,DIR) or

PUT (NUP,DIR) was issued. VSE/VSAM will write immediately for a sequential

PUT if PUT (SEQ) follows GET (DIR) for the same RBA.

v Although VSE/VSAM does not read index buffers ahead, the effect is similar.

Index buffers are loaded when referenced. If multiple index buffers are

provided, index CIs are not reread because there is room for the CIs in storage.

VSE/VSAM reuses buffers on a least-recently-used basis.

v For SHAREOPTIONS(4) processing, VSE/VSAM usually reads data and

sequence-set CIs on every request. Exceptions are:

– Consecutive retrievals, not for update, from the same CI do not cause a

reread in sequential or skip-sequential mode.

– Consecutive inserts or retrievals for update, in sequential or skip-sequential

mode, do not cause rereads, unless the SHAREOPTIONS(4) lock has been

held for a period longer than about 0.5 seconds. (The SHAREOPTIONS(4)

lock is for a CA.)
High-level index CIs are not reread unless they are out of date.

Read-ahead is not done under SHAREOPTIONS(4); therefore extra data buffers

are of no benefit.

I/O Buffer Space (Using Local Shared Resources)

Using the Shared Resources facility of VSE/VSAM, you can manage I/O buffers.

This includes:

v Deferring write operations for direct PUT requests.

v Correlating deferred requests by transaction ID.

v Writing out buffers whose writing has been deferred.

For more information, refer to “Sharing Resources Among Files and Displaying

Catalog Information” on page 191.

Miscellaneous Notes on Buffer Allocation (LSR)

v Read-ahead is not done under LSR. Therefore, extra buffers are of no advantage.

Performance: Buffer Space NSR

Chapter 7. Optimizing the Performance of VSE/VSAM 99

v Writing a buffer does not free buffer space. The CI is still in storage, so if you

again reference that CI, VSE/VSAM does not reread the CI. Because VSE/VSAM

checks to see if the CI is in storage, processing directly in a limited key range

may increase throughput if extra data buffers are provided.

v When processing directly, VSE/VSAM reads only one data CI. It does not reread

data or index CIs if they reside in storage, except when SHAREOPTIONS(4) is

specified. VSE/VSAM will immediately write a data buffer if PUT (UPD,DIR) or

PUT (NUP,DIR) was issued. VSE/VSAM will write immediately for a sequential

PUT if PUT (SEQ) follows GET (DIR) for the same RBA.

v Although VSE/VSAM does not read index buffers ahead, the effect is similar.

Index buffers are loaded when referenced. If multiple index buffers are

provided, index CIs are not reread because there is room for the CIs in storage.

VSE/VSAM reuses buffers on a least-recently-used basis.

v For SHAREOPTIONS(4) processing, VSE/VSAM usually reads data and

sequence-set CIs on every request. Exceptions are:

– Consecutive retrievals, not for update, from the same CI do not cause a

reread in sequential or skip-sequential mode.

– Consecutive inserts or retrievals for update, in sequential or skip-sequential

mode, do not cause rereads, unless the SHAREOPTIONS(4) lock has been

held for a period longer than about 0.5 seconds. (The SHAREOPTIONS(4)

lock is for a CA.)
High-level index CIs are not reread unless they are out of date.

LSR Buffer Hashing

Large VSAM LSR buffer pools can improve response time and reduce I/O

operations. However, searching the pool to find the right buffer takes time. Benefits

were often reduced due to the increased CPU time needed to search large buffer

pools. To overcome this reduction in performance, VSAM buffer hashing has been

implemented, in which a VSAM hashing algorithm allows direct access to the

required buffer. Using VSAM buffer hashing, you can take advantage of very large

buffer pools without the disadvantage of additional processor load. VSAM buffer

hashing is a function introduced with VSE/ESA 2.5. This buffer management

technique provides the following improvements over the existing sequential buffer

management:

v The time required to perform buffer searches is reduced, since the need to do

sequential searches through the buffer pool is removed. The search technique

uses a hashing algorithm. Using this hashing algorithm, the path length of the

search is significantly shortened. The I/O rate is therefore reduced.

v The path length does not depend upon the number of buffers (therefore the

search time is independent of the buffer pool size).

How Does Buffer Hashing Work?

Using VSAM buffer hashing, you can take advantage of using very large buffer

pools, without the disadvantage of additional processor load.

VSAM Buffer Hashing uses a:

v Hash Table – A table in main storage in which each table entry is used as a

pointer to a BCB (Buffer Control Block). A BCB contains the address of the

buffer (for data or index), and information about the buffer itself. There is one

BCB for each buffer in the LSR buffer pool.

v Synonym – When using a hashing technique, synonyms may occur when two or

more entities hash to the same anchor point. In VSAM Buffer Hashing,

Performance: Buffer Space LSR

100 VSE/VSAM User’s Guide and Application Programming

synonyms are chained together in the BCB. However, the possibility that

synonyms occur is very small, and the chain is usually very short.

v Hash Algorithm, which is calculated as follows:

 X = remainder of (RBA/2 + DSID1/2 + DSID2/2) / DIM

where:

X The remainder of the above calculation, and is used as the index to

the hash table.

RBA The Relative Byte Address, used by VSAM to identify a certain buffer

in the LSR buffer pool.

DSID1 and DSID2

The Data Set Identifiers (DSIs), which are unique identifications of a

certain opened VSAM data set component, either a data or an index

component.

DIM The number of entries in the Hash Table. DIM = (2N-1).

N The number of buffers in the subpool.

Here is a ″simple″ example:

″Simple″ in this case means that the values of this example were simplified to

decimal values (not hexadecimal) to give a better understanding of the technique.

1. Let us assume that we have an LSR pool with 10 buffers. The Hash Table will

have (2 * 10 -1) = 19 entries. Therefore:

DIM = 19

2. A VSAM GET operation reads a data record from a certain VSAM data set with

the internal data set identifications DSD1 and DSD2 into a data buffer.

Therefore:

DSID1 = 220, DSID2 = 32

The BCB pointing to that data buffer is at storage location ’640000’. The RBA

(Relative Byte Address) of the VSAM data buffer is 800. Therefore:

RBA = 800

3. The hash algorithm X = remainder of (RBA/2 + DSID1/2 + DSID2/2) / DIM

therefore calculates the following index for the hash table:

(800/2 + 220/2 + 32/2) /19 = 27, remainder = 13 = X

″13″ will be used as index into the hash table.

4. The BCB pointer ’640000’ will be stored in the 13th position of the hash table.

5. Whenever another request is searching for a data buffer with RBA 800 from this

certain dataset, the hash algorithm can calculate easily the index of 13 into the

hash table and use the BCB at address ’640000’ and its related data buffer

without a long pool search. This hashing technique also works, of course, with

very large buffer pools (for example, 32767 buffers).

Preventing Deadlock in Buffer Contention

Contention for VSE/VSAM data (the contents of a CI) can lead to deadlocks, in

which a processing program is stopped because its request for data cannot be

satisfied.

Your processing program gets exclusive control of a buffer (CI) whenever you issue

a GET for update (RPL option OPTCD=UPD) to retrieve a record from that buffer.

Performance: Buffer Space LSR

Chapter 7. Optimizing the Performance of VSE/VSAM 101

You are responsible for preventing a deadlock by releasing as soon as possible the

buffer for which another request may be waiting. Two requests, for example, A and

B, may engage in four different contests:

1. A wants exclusive control, but B has exclusive control (OPTCD=UPD).

VSE/VSAM refuses A’s request. A must either do without the data or retry its

request.

2. A wants exclusive control, but B has read-only access to the data

(OPTCD=NUP). VSE/VSAM gives A a separate copy of the data.

3. A wants read-only access to the data (NUP), but B has exclusive control.

VSE/VSAM refuses A’s request. A must either do without the data or retry its

request.

4. A has read-only access to the data, and B has read-only access. VSE/VSAM

gives A a separate copy of the data.

VSE/VSAM’s action in a contest for data rests on the assumptions that, if a

processing program has exclusive control of the data (OPTCD=UPD), it will (or at

least might) update or delete it and that, if a processing program is updating or

deleting the data, it has exclusive control of it.

In contests 1 and 3, B is responsible for giving up exclusive control of a CI by way

of an ENDREQ or a request for access to a different CI. (The RPL that defines the

ENDREQ or request is the one that was used to acquire exclusive control in the

first place.)

Multiple Volume Support

Key Ranges

The records of a key-sequenced file, including alternate indexes, can be grouped on

volumes according to key ranges. A payroll file, for example, could have employee

records beginning with A, B, C, and D on one volume, with E, F, G, H, and I on a

second volume, and so on. Every portion of a multivolume file can be on a

separate volume. Every key range of a file, as well as the end of the file, is

preformatted. Multiple volume support is affected by the following DEFINE

parameters: VOLUMES, ORDERED│UNORDERED, CYLINDERS│RECORDS│

TRACKS│BLOCKS, and KEYRANGES.

The first allocation made on every volume is always the primary allocation. To

place the index and data on separate volumes, specify the VOLUMES parameter

for both data and index components.

Your CLASS specification in the DEFINE command can affect suballocation. For

further information, see “Data Space Classification” on page 83.

Space Allocation

Space Allocation without Key Range Specified

Primary space is acquired from the first volume at define time. If VSE/VSAM

needs more space during loading or processing of the file, and if secondary

allocation was specified, VSE/VSAM uses the secondary extents on the first

volume. When VSE/VSAM has acquired all the secondary space it can on the first

volume and still needs more space, then primary space from the second volume is

acquired, even if no secondary allocation was specified. If more space is needed,

secondary space is acquired on the second volume.

Performance: Buffer Space LSR

102 VSE/VSAM User’s Guide and Application Programming

Space Allocation with Key Range Specified

Primary space is acquired from every volume at define time. Every key range is

assigned to a volume. There is a primary allocation for every key range. If there

are fewer volumes than key ranges, the extra key ranges are grouped together on

the last volume. If there are more volumes than the number of key ranges, the

excess volumes become overflow volumes. A key range is associated with the

primary allocation volume and can extend to any overflow volumes.

A key range is extended first by acquiring secondary extents on its volume of

primary allocation, next by acquiring primary allocation on the first overflow

volume, then secondary extents on the first overflow volume. Primary allocation is

then acquired on the second overflow volume, followed by acquiring secondary

extents on the second overflow volume. If there is not enough room on an

overflow volume to acquire primary space for that key range, VSE/VSAM does

not acquire any secondary space for that key range. VSE/VSAM just skips that

overflow volume and goes to the next overflow volume to try to obtain primary

space.

VSE/VSAM searches for space on volumes in the order they were specified in the

VOLUMES parameter. This does not mean that the volumes are allocated or

suballocated in that order. Allocation depends on whether ORDERED or

UNORDERED was specified.

Unordered Space Allocation

If no Key Range was Specified: UNORDERED means VSE/VSAM must find a

primary allocation (or the DEFINE command will fail), but not necessarily on the

first volume listed in the VOLUMES parameter. If there is no room for a primary

allocation on the first volume, successive volumes are checked for primary space.

If Key Range was Specified: UNORDERED means that VSE/VSAM must find

room for a primary allocation for every key range, but not necessarily the first key

range on the first volume, the second key range on the second volume, and so on.

Ordered Space Allocation

ORDERED means VSE/VSAM must suballocate space on the volumes in the order

in which the volumes are listed in the VOLUMES parameter.

If secondary allocation is specified, space for a component can be expanded to

include a maximum of 123 extents. Every primary and every secondary allocation

can be made up of up to five non-contiguous areas (extents).

Examples: Allocation of Space on Multiple Volumes

The following examples show various combinations of ORDERED and

UNORDERED space allocation, VOLUMES, and primary versus secondary

allocations.

Example 1

 VOLUMES(A B C)

 ORDERED

 CYLINDERS(50 5)

 SUBALLOCATION

Performance: Multiple Volume Support

Chapter 7. Optimizing the Performance of VSE/VSAM 103

Volume A is the primary volume; volumes B and C are overflow volumes. Fifty

cylinders of primary space must be available on volume A, or the DEFINE

command will fail.

If the file is extended, a 5-cylinder secondary allocation is made on volume A,

providing volume A has enough available VSE/VSAM space of the required class.

Otherwise, an allocation of 50 cylinders (primary amount) is made on volume B. If

volume B does not have enough data space for this allocation, the request for

extension is rejected.

If volume B has 50 cylinders for allocation (primary amount) and the file needs to

be extended further, secondary allocations are made from volume B. Volume B

must have enough space available of the required class. Otherwise, a 50-cylinder

allocation is made on volume C.

Example 2

 VOLUMES(A B C)

 UNORDERED

 CYLINDERS(50 5)

 SUBALLOCATION

 Fifty cylinders of primary allocation must be made on one volume. It may be

volume A, B, or C. If it is not possible to allocate all 50 cylinders a single volume,

the DEFINE fails.

Volumes are searched in the order they are specified. If both A and B have 50

cylinders available, allocation is made on A because it was specified first.

┌──┐

│ │

│ Volume A Volume B Volume C │

│ │

│ ┌─────────┐ ┌─────────┐ ┐ ┌─────────┐ ┐ │

│ │ 50 │ │ 50 │ │ │ 50 │ │ │

│ │ │ │ │ │ │ │ │ │

│ ├─────────┤ ┐ ├─────────┤ │ ├─────────┤ * │

│ │ 5 │ │ │ 5 │ │ │ 5 │ │ │

│ ├─────────┤ * ├─────────┤ * ├─────────┤ │ │

│ │ 5 │ │ │ 5 │ │ │ 5 │ │ │

│ ├─────────┤ ┘ ├─────────┤ │ ├─────────┤ ┘ │

│ │ │ │ 5 │ │ │ │ │

│ └─────────┘ └─────────┘ ┘ └─────────┘ │

│ │

│ * means extended at execution time │

└──┘

┌──┐

│ │

│ A, B, or C A, B, or C A, B, or C │

│ │

│ ┌─────────┐ ┌─────────┐ ┐ ┌─────────┐ ┐ │

│ │ 50 │ │ 50 │ │ │ 50 │ │ │

│ │ │ │ │ │ │ │ │ │

│ ├─────────┤ ┐ ├─────────┤ * ├─────────┤ * │

│ │ 5 │ │ │ 5 │ │ │ 5 │ │ │

│ ├─────────┤ * ├─────────┤ ┘ ├─────────┤ ┘ │

│ │ 5 │ │ │ │ │ │ │

│ └─────────┘ ┘ └─────────┘ └─────────┘ │

│ │

│ * means extended at execution time │

└──┘

Performance: Multiple Volume Support

104 VSE/VSAM User’s Guide and Application Programming

When the file is extended, VSE/VSAM attempts to make the 5-cylinder secondary

allocations on the same volume the primary allocation was made on. This

continues until all data space of the required class is used.

To further extend the file, VSE/VSAM searches the volumes for space in the same

order specified for primary allocation. If VSE/VSAM cannot acquire the primary

amount of space (50 cylinders), an error code is issued.

Example 3

 VOLUMES(A B C)

 KEYRANGES((00 30) (31 65) (66 99))

 ORDERED

 CYLINDERS(50 5)

 SUBALLOCATION

 A primary allocation of 50 cylinders is made for every key range. The first key

range is on volume A, the second on volume B, the third on volume C. If 50

cylinders cannot be allocated on every volume, the DEFINE fails. The 5-cylinder

secondary allocations are made as needed.

A key range can be extended only on the volume it occupies or on an overflow

volume. If volume D were added to the VOLUMES list, all key ranges would be

extended on volume D if the volume initially assigned to the key range became

full: first a primary allocation amount of 50 cylinders for a key range on volume D,

then secondary allocations of 5 cylinders.

Example 4

 VOLUMES(A B)

 KEYRANGES((00 30) (31 65) (66 99))

 ORDERED

 CYLINDERS(50 5)

 SUBALLOCATION

┌──┐

│ │

│ 00─30 │

│ 31─65 │

│ 00─30 31─65 66─99 66─99 │

│ │

│ A B C D │

│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┐ │

│ │ 50 │ │ 50 │ │ 50 │ │ 50 │ │ │

│ │ │ │ │ │ │ │ │ │ │

│ ├─────────┤ ┐ ├─────────┤ ┐ ├─────────┤ ┐ ├─────────┤ │ │

│ │ 5 │ │ │ 5 │ * │ 5 │ * │ 5 │ │ │

│ ├─────────┤ │ ├─────────┤ ┘ ├─────────┤ ┘ ├─────────┤ │ │

│ │ 5 │ │ │ │ │ │ │ 50 │ * │

│ ├─────────┤ │ │ │ │ │ ├─────────┤ │ │

│ │ 5 │ * │ │ │ │ │ 5 │ │ │

│ ├─────────┤ │ │ │ │ │ ├─────────┤ │ │

│ │ 5 │ │ │ │ │ │ │ │ │ │

│ ├─────────┤ ┘ │ │ │ │ │ 50 │ │ │

│ │ │ │ │ │ │ │ │ │ │

│ └─────────┘ └─────────┘ └─────────┘ └─────────┘ ┘ │

│ │

│ * means extended at execution time │

└──┘

Performance: Multiple Volume Support

Chapter 7. Optimizing the Performance of VSE/VSAM 105

If only volumes A and B are specified, the first key range is allocated on volume A,

and the second and third key ranges are allocated on volume B. Volume A has one

50-cylinder primary allocation, and volume B has two 50-cylinder primary

allocations. This can occur only for a file with the SUBALLOCATION attribute

specified. If both UNIQUE and KEYRANGES are specified, every key range must

reside on a separate volume.

Example 5

 VOLUMES(A B A)

 KEYRANGES((00 30) (31 65) (66 99))

 ORDERED

 CYLINDERS(50 5)

 SUBALLOCATION

 A primary allocation of 50 cylinders is made for every key range. The second key

range is on volume B; the first and third key ranges are on volume A. This can

occur only for a file with the SUBALLOCATION attributed specified. If both

UNIQUE and KEYRANGES are specified, every key range must reside on a

separate volume.

┌──┐

│ │

│ 31─65 │

│ 00─30 66─99 │

│ │

│ A B │

│ ┌─────────┐ ┌─────────┐ │

│ │ 50 │ │ 50 │ │

│ ├─────────┤ ┐ ├─────────┤ │

│ │ 5 │ │ │ 50 │ │

│ ├─────────┤ * ├─────────┤ ┐ │

│ │ 5 │ │ │ 5 │ │ │

│ ├─────────┤ ┘ ├─────────┤ * │

│ │ │ │ 5 │ │ │

│ └─────────┘ └─────────┘ ┘ │

│ │

│ * means extended at execution time │

└──┘

┌──┐

│ │

│ 00─30 │

│ 66─99 31─65 │

│ │

│ A B │

│ ┌─────────┐ ┌─────────┐ │

│ │ 50 │ │ 50 │ │

│ ├─────────┤ ┐ ├─────────┤ ┐ │

│ │ 5 │ * │ 5 │ │ │

│ ├─────────┤ ┘ ├─────────┤ * │

│ │ 50 │ │ 5 │ │ │

│ ├─────────┤ ┐ ├─────────┤ ┘ │

│ │ 5 │ * │ │ │

│ └─────────┘ ┘ └─────────┘ │

│ │

│ * means extended at execution time │

└──┘

Performance: Multiple Volume Support

106 VSE/VSAM User’s Guide and Application Programming

Example 6

 VOLUMES(A B C)

 KEYRANGES((00 30) (31 65) (66 99))

 UNORDERED

 CYLINDERS(50 5)

 SUBALLOCATION

 A primary allocation of 50 cylinders is made for every key range. VSE/VSAM

attempts to put one key range on every volume. If volume A does not have 50

cylinders available, the first key range is put on volume B, and the second and

third key ranges are put on volume C. If neither A nor B has 50 cylinders, all three

key ranges are placed on volume C.

VSE/VSAM first extends a key range on the volume it is on before trying to

extend it on any overflow volume. If volume D were added to the VOLUMES list,

every key range would be extended on volume D, if no more spaces were available

on the volume of its primary allocation.

If volume D were listed in the VOLUMES parameter, it would not necessarily be

an overflow volume. If 50 cylinders of primary allocation were available on A, B,

and C, then D would be an overflow volume. If volume A does not have 50

cylinders available, but B, C, and D have 50 cylinders each, the first key range is

put on volume B, the second on volume C, and the third on volume D. Volume A

becomes the overflow volume.

An Exercise

Assume that you have a 600-cylinder file that you want to have reside on two

volumes: 400 cylinders on volume A, and 200 cylinders on volume B. How would

you specify this allocation requirement in the DEFINE command?

Do not specify:

 VOL(A B)

 CYL(600)

┌──┐

│ │

│ 00─30 │

│ 31─65 │

│ 00─30 31─65 66─99 66─99 │

│ │

│ A, B, C, A, B, C, A, B, C, A, B, C, │

│ or D or D or D or D │

│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┐ │

│ │ 50 │ │ 50 │ │ 50 │ │ 50 │ │ │

│ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ ├─────────┤ │ │

│ │ │ │ │ │ │ │ 5 │ │ │

│ ├─────────┤ ┐ ├─────────┤ ┐ ├─────────┤ ┐ ├─────────┤ │ │

│ │ 5 │ * │ 5 │ * │ 5 │ │ │ 50 │ * │

│ ├─────────┤ │ ├─────────┤ ┘ ├─────────┤ * ├─────────┤ │ │

│ │ 5 │ │ │ │ │ 5 │ │ │ 50 │ │ │

│ ├─────────┤ ┘ │ │ ├─────────┤ ┘ ├─────────┤ │ │

│ │ │ │ │ │ │ │ 5 │ │ │

│ └─────────┘ └─────────┘ └─────────┘ └─────────┘ ┘ │

│ │

│ * means extended at execution time │

└──┘

Performance: Multiple Volume Support

Chapter 7. Optimizing the Performance of VSE/VSAM 107

This request would be rejected because the amount of primary space to be

allocated on every volume is greater than that available on one volume.

Do not specify:

 VOL(A B)

 CYL(400,200)

This request would obtain 400 cylinders of primary allocation on volume A and

400 cylinders of primary allocation on volume B.

Do specify:

 VOL(A B)

 CYL(200,200)

This request obtains:

 200 cylinders primary allocation on volume A,

 200 cylinders secondary allocation on volume A, and

 200 cylinders primary allocation on volume B.

The mounting requirements with multiple volumes are simple. All volumes must

be mounted (except with sequential KSDS, ESDS, and RRDS). A primary allocation

amount will be acquired on every volume.

Space Allocation

Possible Options

The CYLINDERS│RECORDS│TRACKS│BLOCKS parameters of the DEFINE

command determine how VSE/VSAM allocates space. You may specify allocation

at the CLUSTER/AIX level, DATA level, DATA and INDEX levels, and

CLUSTER/AIX and DATA levels. Considerations in choosing allocation parameters

are:

v If you specify allocation at the CLUSTER/AIX level only, the amount needed for

the index is subtracted from the specified amount. The remainder of the

specified amount is assigned to data.

v If you specify allocation at the DATA level only, the specified amount is assigned

to data. The amount needed for the index is in addition to the specified amount.

v If you specify allocation at both the DATA and INDEX levels, the specified data

amount is assigned to data, and the specified index amount is assigned to the

index.

v If you specify secondary allocation at the DATA level, secondary allocation must

be specified at the INDEX level unless you specify allocation at the CLUSTER

level.

v A CA can never cross an extent boundary. A cluster extent consists of a whole

number of CAs.

v A CA is never larger than one cylinder (CKD) or one maximum CA (FBA).

Optimum performance is obtained when an integral number of CAs occupy a

cylinder (or maximum CA).

v IDCAMS checks the smaller of primary and secondary space allocation values

against the specified device’s cylinder (or maximum CA for FBA devices) size. If

the smaller quantity is greater than the device’s cylinder (or maximum CA) size,

the CA is set equal to the cylinder (or maximum CA) size. If the smaller

quantity is less than or equal to the device’s cylinder (or maximum CA) size, the

Performance: Multiple Volume Support

108 VSE/VSAM User’s Guide and Application Programming

size of the CA is set equal to the smaller space quantity. For FBA, this value is

then rounded up to a multiple of minimum CA size.

For example:

 CYL(5 10) results in a 1-cylinder CA

 TRK(100 3) results in a 3-track CA

 REC(2000 5) results in a 1-track CA (assuming 10 records

 per track - minimum CA is 1 track)

 TRK(3 100) results in a 3-track CA

For a device with 64 blocks per minimum CA and 960 blocks per maximum CA:

 BLK(1100 1000) results in a 960-block CA

 BLK(900 400) results in a 448-block CA

 BLK(100 40) results in a 64-block CA

For CKD to force IDCAMS to select cylinder CAs, specify CYLINDERS or

UNIQUE. When defining through the RECORDS│TRACKS parameters, specify the

smaller of primary or secondary allocation as a value of at least one cylinder.

v If you specify secondary allocation, space for a component can be expanded to a

maximum of 123 extents (if there is sufficient data space) with a limit of 16

extents per volume if REUSE is specified.

v A UNIQUE file can have a maximum of 16 extents per volume, but it can not be

extended; no secondary allocations are permitted for UNIQUE files.

v A spanned record cannot be longer than a CA minus the control information (10

bytes per CI). Do not specify large spanned records with small primary or

secondary allocation.

v VSE/VSAM acquires space in increments of CAs. For example, if the allocation

amount is 20 tracks and the device is an IBM 3380, the CA size is one cylinder.

Two cylinders of space (two CAs) are allocated, because a 3380 has 15 tracks per

cylinder.

v LISTCAT gives information in increments of CA size. If you specify either

TRACKS or RECORDS and the allocation is less than one cylinder, LISTCAT

reflects the allocation as TRACKS. If the specification results in a one-cylinder

CA, LISTCAT reflects the allocation as CYLINDERS. If you specify BLOCKS, the

allocation is given in multiples of blocks.

NOALLOCATION

NOALLOCATION allows you to define a file into a catalog without suballocating

any space to it. This parameter can be useful in two ways:

v Creating default models. (For a discussion of default models, see “Using an

Object as a Model” on page 57.)

v Creating dynamic files for which space is not actually suballocated until the file

is opened.

Dynamic Files

Formerly, files that were used for brief periods of time (for example, work files)

occupied disk space from the time they were defined until they were deleted. If

they were required again, they had to be redefined.

Using the DEFINE CLUSTER command with NOALLOCATION and REUSE

parameters makes it possible to define a file for which no space is suballocated

until the file is to be opened; this file is called a dynamic file. The catalog entry for

a dynamic file contains only the allocation size specified at define. Information

about the suballocated space is added to the catalog when the file is opened.

Performance: Space Allocation

Chapter 7. Optimizing the Performance of VSE/VSAM 109

When you try to delete a dynamic file, VSE/VSAM determines if space is currently

allocated to it. If it is, VSE/VSAM deletes it as if it were a normal VSE/VSAM

cluster. If space is not allocated, only the catalog entry of the file is removed.

Dynamic files may be entry-sequenced (including SAM ESDS supported by the

VSE/VSAM Space Management for SAM Function), key-sequenced, or relative-record

files.

Dynamic File Restrictions: The following restrictions apply to dynamic files:

v A path (but not an alternate index) may be built over a dynamic file, except for

a SAM ESDS file.

v A dynamic file that does not have space allocated to it cannot be printed

(PRINT), copied (REPRO), or exported through EXPORT. EXPORT only supports

non-empty dynamic files

v A default model cannot be opened. If you specify NOALLOCATION, you must

also specify REUSE if you plan to open the file.

v Normally, parameters such as CYLINDERS, TRACKS, and USECLASS control

space allocation. However, for noallocation models (other than reusable files),

these attributes are recorded only for modeling purposes.

v If you specify the VOLUMES parameter when you define a file as

NOALLOCATION, VSE/VSAM records those volumes in the catalog as

candidate volumes.

v The NOALLOCATION attribute exists in the catalog entry, but it cannot be

implicitly modeled. It can be explicitly modeled (MODEL parameter of DEFINE).

v You cannot specify NOALLOCATION on the ALTER command.

v You cannot ALTER REMOVEVOLUMES for the last existing volume on the

candidate list for NOALLOCATION files.

Data Protection and Integrity Options

When considering performance, you must also consider the data protection and

integrity options you are using. VSE/VSAM performance is affected by the

following:

v Share options.

For more information, see “Protecting Shared Data” on page 129.

v Write check.

If you specify WRITECHECK in the DEFINE command, it means you wish to

have your records checked as they are written. After a record is written, it is

then read without data transfer to test for a data check condition. If applicable,

VSE/VSAM uses the bypass cache option when writing to write check files. If

NOWRITECHECK is specified (and this is the default), a record is written but

no checking occurs. That is, you will get better performance with the

NOWRITECHECK option.

v Recovery versus Speed.

The RECOVERY and SPEED parameters in the DEFINE command control the

preformatting of CAs before records are inserted. RECOVERY|SPEED applies

only to initial loading. Specifying RECOVERY means that space allocated to the

data component is preformatted. Specifying SPEED means that space will not be

preformatted.

Specifying SPEED gives you better performance, whereas specifying RECOVERY

enables you to recover from certain system failures.

Consider the following:

Performance: Space Allocation

110 VSE/VSAM User’s Guide and Application Programming

– If you specify SPEED in a file’s DEFINE command, and a system failure

occurs, the file must be deleted, redefined, and reloaded. RECOVERY is only

useful if you have a recovery procedure that allows you to resume loading

the file after a system failure. RECOVERY formats every CA before loading

records into it. It allows you to find the software end-of-file if an abnormal

termination occurs during initial creation. After the initial creation of the file,

RECOVERY is always in effect.

– RECOVERY works in conjunction with the IDCAMS VERIFY command. If a

system failure occurs before a file is closed (CLOSE or TCLOSE), VERIFY can

prevent your having to reload the file by updating the catalog with the

current high RBA. This ensures that your data will not be overwritten

inadvertently at a later time, and that you may continue the load at the point

of interruption (load-extend). If the SPEED option was in effect while the file

was loaded, VERIFY cannot help because no preformatting was done and no

high RBA exists until the file is closed.

Distributed Free Space

Free space can occur in files as a result of:

v your FREESPACE specifications in the commands DEFINE ALTERNATEINDEX

and DEFINE CLUSTER, or

v CI/CA splits.

For more information and examples on CI and CA splits that result from record

inserts during direct and sequential processing, refer to “CI/CA Splits” on page

114.

You can specify free space only for key-sequenced data sets (KSDSs),

variable-length relative-record data sets (VRDSs), or alternate indexes. The CI free

space should be as large as the design insertion level. Determine the free space

required by estimating the percentage of additions to be made between file

reorganizations. Also, consider the size of your records. If there are to be no

additions, or if records will not be lengthened, there is no need for free space.

Loading a File

Specifying Free Space

You specify free space for both the CI and the CA as a percentage of the total space

for the respective unit. For example:

 FREESPACE (20 10)

indicates that:

 20% of every CI is to be initially empty, and

 10% of every CA is to be initially empty.

If you specify the minimum CA free space of 1%, free space for one CI in every

CA will be provided. The system default for free space is (0 0).

Altering Free Space

You can change the free space after the file is loaded. To take full advantage of

mass insertion, specify FREESPACE(0 0) in the ALTER command after the file has

been loaded.

Considerations for Loading a File

v If additions occur only in a specific part of the file:

Performance: Protection

Chapter 7. Optimizing the Performance of VSE/VSAM 111

Load those parts that will have no additions with a free space specification of (0

0). Alter the free space to (n n) to load those parts of the file that will receive the

additions.

If SPEED is specified, it is in effect for loading the initial portion only. Any

subsequent portions are loaded with RECOVERY, regardless of the DEFINE

specification.

v If additions occur throughout the file, but are unevenly distributed:

Specify a small amount of free space when you define the file. Then, increase the

percentage after loading the file. As new CIs and CAs are required, they are

created with the increased free space specification.

Additional splits (after the first split) in the part of the file with the most growth

will be minimized. CIs that have little or no growth will contain only a small

amount of unneeded free space.

v If there are few additions to the file:

Consider a free space specification of (0 0) for loading the file and subsequent

processing.

When records are added, new CAs are created to provide room for additional

insertions. In this case, unused free space is not provided.

v For direct insertions:

Make the CI free space larger than the CA free space, unless the frequency of

insertions is very low. In that case, zero CI free space and average CA free space

might be indicated.

v For sequential processing:

The greater the free space specification, the more disk space is required.

For sequential processing, more I/O operations (with more system overhead) are

required to process the same number of records. A bad combination of

CI-size/record-size/free-space can cause poor sequential performance if much of

the free space is unusable.

Performance with Too Much or Too Little Free Space

Too much free space could increase the number of index levels, which could

increase run time for direct processing.

Too little free space can cause an excess of (time-consuming) CI/CA splits:

v For sequential processing - and after a split occurred - extra time is required

because the records are not in physical sequence.

v For direct processing, CA splits can increase seek time.

Another factor is the additional VSE/VSAM overhead to do the split. (If insertions

are truly random, ideally all CAs would split at approximately the same time.) It is

recommended to monitor CA splits and to reorganize the file when the splits

become prevalent. To monitor CA splits, use LISTCAT or the ACB JRNAD exit.

Where VSE/VSAM Places the Records

Records are loaded or mass inserted at the end of a CI until the free space

threshold is passed. The free space threshold is the point at which free space

becomes less than the amount specified in the DEFINE command.

VSE/VSAM ensures that at least one record (or one segment of a spanned record)

is placed into a CI. Also, if the CA free space specified in the DEFINE command is

not zero but is less than one CI, the result is one free CI in the CA.

Performance: Free Space

112 VSE/VSAM User’s Guide and Application Programming

Specifying Free Space in a CI and CA

You specify free space in a CI as a percentage of bytes in the CI. Generally you

should specify a value equal to at least one record, because VSE/VSAM does not

round up the free space to hold a whole number of records.

The amount of unused space in the CI, however, may be more than the free space

you requested. For example:

 If you specify (33 0) free space, you are in effect telling VSE/VSAM to put as

many records as possible into 67% of the CI. If the CI can contain four logical

records, the first two records will fit into 50% of the CI. This leaves 17%

unallocated space. The unallocated space is added to the 33% free space, for a

total of 50% free space available for allocation. In this case, where the amount

of unused space is greater than the amount of requested free space, the value

you requested is stored in the catalog.

For this same CI, if you specify (25 0) free space, the CI would contain three logical

records and 25% free space. If (20 0) free space is specified, the result is three

logical records and 25% free space. If (80 0) free space is specified, the result is one

logical record and 75% free space. Specifying free space in a CA is somewhat

different. If you specify any value greater than zero, VSE/VSAM will round up the

value so that you get at least 1 free CI per CA. As in CI free space allocation,

however, you may get additional space due to the combination of requested free

space plus unallocated space.

Notes:

1. Remember that a CI contains logical records, free space, and control

information (CIDF and RDF). A 4KB CI cannot contain four 1KB logical records.

A 4KB CI with (25 0) free space specified will contain at least 1KB of free space;

only two 1KB fixed length logical records could be loaded into the CI. Only one

more 1KB logical record could be added before a CI and/or CA split would be

required.

2. If you specify FREESPACE(100 100), the CIs and CAs are not left empty.

VSE/VSAM writes one record per CI and one CI per CA; the rest is free space.

3. If ten CIs fit into one CA and (0 5) free space is specified, the CA will have one

free CI.

Reclaiming Space

You can use the ERASE macro to delete records. The space that was occupied by

the deleted record is returned to the free space.

If a CI is emptied by ERASE, it can be reclaimed later as a free CI if it is needed.

Note: Space that becomes free within a CI because of records deleted or shortened

may remain unused even though the space is available. This situation occurs

when new records to be added to the file do not have key-field values that

match the range of the freed area within the CI. For example:

 A record with key-field value 250 cannot be inserted between records

with key-field values 22 and 70.

Depending on the amount of unusable space, you may want to reorganize the file

(using EXPORT and IMPORT) to make the available free space useable.

The same problem can exist on a CA level. If all records in all CIs (in one CA) are

deleted, the CA is not reused unless space is required in its key range. To reclaim

unused CAs, use BACKUP and RESTORE to reorganize the file.

Performance: Free Space

Chapter 7. Optimizing the Performance of VSE/VSAM 113

CI/CA Splits

The following explains the rules for CI and CA splits.

Sequential Processing

CI Split: If the insert is in the middle of the CI, the records with higher keys are

moved to the free CI. The insert and the records with lower keys remain in the old

CI. If the insert is at the logical end of the CI, the inserted record goes to the free

CI.

CA Split: If the insert is not in the last logical CI, all CIs after the split CI are

moved to the new CA. If the insert is within the last logical CI, that CI is moved to

the new CA. If the insert is at the end of the last logical CI, the inserted record is

placed into the new CA.

Direct Processing

CI Split: Half the records (those with the higher keys) in the CI are moved into

the new CI. The new record is inserted (in key sequence) into the CI to which it

belongs.

CA Split: Half the CIs (those with the higher keys) are moved to the new CA.

Insertion then occurs through regular CI split processing, using the newly-created

free space CIs.

Updates can cause CI/CA splits when:

v The record length is increased, and there is not enough free space in the CI, or

v The record length is decreased and additional RDFs are required. If the space

required for the RDFs is more than the amount by which the record is

shortened, and there is insufficient free space, the CI must be split.

Examples: CI/CA Splits

In the examples:

 HK means High Key

 FS means Free Space

Example 1

shows the CA after direct and sequential insertion of records 025 and 101.

Performance: Free Space

114 VSE/VSAM User’s Guide and Application Programming

Example 2

shows the CA after direct insertion of record 026, causing a CI split.

┌───┐

│ │

│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │

│ │ │ 040 │ │ 175 │ │ HK │ │ FS │ │ │

│ └─┴─────┴──┴─────┴──┴─────┴──┴─────┴─┘ │

│ Sequence Set (before) │

│ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 010 │ │ 015 │ │ 020 │ │ 040 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴───────────┘ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 099 │ │ 100 │ │ 150 │ │ 175 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴───────────┘ │

│ ┌──────┐ ┌──────┐ │

│ │ │ 190 │ │ 200 │ │ │

│ └─┴──────┴──┴──────┴───────────────────────────────┘ │

│ │

│ │ │ │

│ └──┘ │

│ Control Area (before) │

│ │

│ │

│ │

│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │

│ │ │ 040 │ │ 175 │ │ HK │ │ FS │ │ │

│ └─┴─────┴──┴─────┴──┴─────┴──┴─────┴─┘ │

│ Sequence Set (after) │

│ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 010 │ │ 015 │ │ 020 │ │ 025 │ │ 040 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴──┴──────┴─┘ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 099 │ │ 100 │ │ 101 │ │ 150 │ │ 175 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴──┴──────┴─┘ │

│ ┌──────┐ ┌──────┐ │

│ │ │ 190 │ │ 200 │ │ │

│ └─┴──────┴──┴──────┴───────────────────────────────┘ │

│ │

│ │ │ │

│ └──┘ │

│ Control Area (after) │

│ │

└───┘

Performance: Free Space

Chapter 7. Optimizing the Performance of VSE/VSAM 115

Example 3

shows a CA split and CI split caused by the direct insertion of record 168.

┌───┐

│ │

│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │

│ │ │ 040 │ │ 175 │ │ HK │ │ FS │ │ │

│ └─┴─────┴──┴─────┴──┴─────┴──┴─────┴─┘ │

│ Sequence Set (before) │

│ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 010 │ │ 015 │ │ 020 │ │ 025 │ │ 040 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴──┴──────┴─┘ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 099 │ │ 100 │ │ 101 │ │ 150 │ │ 175 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴──┴──────┴─┘ │

│ ┌──────┐ ┌──────┐ │

│ │ │ 190 │ │ 200 │ │ │

│ └─┴──────┴──┴──────┴───────────────────────────────┘ │

│ │

│ │ │ │

│ └──┘ │

│ Control Area (before) │

│ │

│ │

│ │

│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │

│ │ │ 020 │ │ 040 │ │ 175 │ │ HK │ │ │

│ └─┴─────┴──┴─────┴──┴─────┴──┴─────┴─┘ │

│ Sequence Set (after) │

│ │

│ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 010 │ │ 015 │ │ 020 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴─────────────────────┘ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 099 │ │ 100 │ │ 101 │ │ 150 │ │ 175 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴──┴──────┴─┘ │

│ ┌──────┐ ┌──────┐ │

│ │ │ 190 │ │ 200 │ │ │

│ └─┴──────┴──┴──────┴───────────────────────────────┘ │

│ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 025 │ │ 026 │ │ 040 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴─────────────────────┘ │

│ Control Area (after) │

│ │

└───┘

Performance: Free Space

116 VSE/VSAM User’s Guide and Application Programming

Example 4

shows the CA after sequential insertion of records 12, 13, and 14. Record 12 causes

a new CI split. Note that the key associated with the old CI is one number less

than the low key in the new CI. This permits mass insertion to take advantage of

the newly-created free space.

┌──┐

│ │

│ ┌───┐┌───┐┌───┐┌───┐ │

│ ││020││040││175││HK ││ │

│ └┴───┴┴───┴┴───┴┴───┴┘ │

│ Sequence Set (before) │

│ │

│ ┌───┐┌───┐┌───┐ │

│ ││010││015││020│ │ │

│ └┴───┴┴───┴┴───┴──────────┘ │

│ ┌───┐┌───┐┌───┐┌───┐┌───┐ │

│ ││099││100││101││150││175││ │

│ └┴───┴┴───┴┴───┴┴───┴┴───┴┘ │

│ ┌───┐┌───┐ │

│ ││190││200│ │ │

│ └┴───┴┴───┴───────────────┘ │

│ ┌───┐┌───┐┌───┐ │

│ ││025││026││040│ │ │

│ └┴───┴┴───┴┴───┴──────────┘ │

│ │

│ │

│ ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐ │

│ ││020││040││FS ││FS ││ ││101││175││HK ││FS ││ │

│ └┴───┴┴───┴┴───┴┴───┴┘ └┴───┴┴───┴┴───┴┴───┴┘ │

│ Sequence Set (after) Sequence Set │

│ │

│ ┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐ │

│ ││010││015││020│ │ ││099││100││101│ │ │

│ └┴───┴┴───┴┴───┴──────────┘ └┴───┴┴───┴┴───┴──────────┘ │

│ ┌───┐┌───┐ │

│ │ │ ││190││200│ │ │

│ └─────────────────────────┘ └┴───┴┴───┴───────────────┘ │

│ ┌───┐┌───┐┌───┐ │

│ │ │ ││150││168││175│ │ │

│ └─────────────────────────┘ └┴───┴┴───┴┴───┴──────────┘ │

│ ┌───┐┌───┐┌───┐ │

│ ││025││026││040│ │ │ │ │

│ └┴───┴┴───┴┴───┴──────────┘ └─────────────────────────┘ │

│ Control Area 1 (after) Control Area 2 │

│ │

└──┘

Performance: Free Space

Chapter 7. Optimizing the Performance of VSE/VSAM 117

Example 5

shows a CA split and CI split caused by the sequential insertion of record 144.

Note that the key associated with the old CI is one less than the low key in the

new CI. This permits mass insertion into the newly-created free space.

┌───┐

│ │

│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │

│ │ │ 060 │ │ 175 │ │ HK │ │ FS │ │ │

│ └─┴─────┴──┴─────┴──┴─────┴──┴─────┴─┘ │

│ Sequence Set (before) │

│ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 010 │ │ 019 │ │ 020 │ │ 025 │ │ 060 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴──┴──────┴─┘ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 099 │ │ 100 │ │ 101 │ │ 147 │ │ 175 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴──┴──────┴─┘ │

│ ┌──────┐ ┌──────┐ │

│ │ │ 191 │ │ 200 │ │ │

│ └─┴──────┴──┴──────┴───────────────────────────────┘ │

│ │

│ │ │ │

│ └──┘ │

│ Control Area (before) │

│ │

│ │

│ │

│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │

│ │ │ 14 │ │ 60 │ │ 175 │ │ HK │ │ │

│ └─┴─────┴──┴─────┴──┴─────┴──┴─────┴─┘ │

│ Sequence Set (after) │

│ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 010 │ │ 012 │ │ 013 │ │ 014 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴───────────┘ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 099 │ │ 100 │ │ 101 │ │ 147 │ │ 175 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴──┴──────┴─┘ │

│ ┌──────┐ ┌──────┐ │

│ │ │ 191 │ │ 200 │ │ │

│ └─┴──────┴──┴──────┴───────────────────────────────┘ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 019 │ │ 020 │ │ 025 │ │ 060 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴───────────┘ │

│ Control Area (after) │

│ │

└───┘

Performance: Free Space

118 VSE/VSAM User’s Guide and Application Programming

Example 6

shows a CA after a sequential insertion of records 205, 210, 223, and 228, during

load extend processing. Note that the free space is preserved.

┌──┐

│ │

│ ┌───┐┌───┐┌───┐┌───┐ │

│ ││ 14││ 60││175││HK ││ │

│ └┴───┴┴───┴┴───┴┴───┴┘ │

│ Sequence Set (before) │

│ │

│ ┌───┐┌───┐┌───┐┌───┐ │

│ ││ 10││ 12││ 13││ 14│ │ │

│ └┴───┴┴───┴┴───┴┴───┴─────┘ │

│ ┌───┐┌───┐┌───┐┌───┐┌───┐ │

│ ││ 99││100││101││147││175││ │

│ └┴───┴┴───┴┴───┴┴───┴┴───┴┘ │

│ ┌───┐┌───┐ │

│ ││191││200│ │ │

│ └┴───┴┴───┴───────────────┘ │

│ ┌───┐┌───┐┌───┐┌───┐ │

│ ││019││ 20││ 25││ 60│ │ │

│ └┴───┴┴───┴┴───┴┴───┴─────┘ │

│ │

│ │

│ ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐ │

│ ││014││ 60││144││175││ ││HK ││FS ││FS ││FS ││ │

│ └┴───┴┴───┴┴───┴┴───┴┘ └┴───┴┴───┴┴───┴┴───┴┘ │

│ Sequence Set (after) Sequence Set │

│ │

│ ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐ │

│ ││ 10││ 12││ 13││ 14│ │ ││191││200│ │ │

│ └┴───┴┴───┴┴───┴┴───┴─────┘ └┴───┴┴───┴───────────────┘ │

│ ┌───┐┌───┐┌───┐┌───┐ │

│ ││ 99││100││101││144│ │ │ │ │

│ └┴───┴┴───┴┴───┴┴───┴─────┘ └─────────────────────────┘ │

│ ┌───┐┌───┐ │

│ ││147││175│ │ │ │ │

│ └┴───┴┴───┴───────────────┘ └─────────────────────────┘ │

│ ┌───┐┌───┐┌───┐┌───┐ │

│ ││ 19││ 20││ 25││ 60│ │ │ │ │

│ └┴───┴┴───┴┴───┴┴───┴─────┘ └─────────────────────────┘ │

│ Control Area 1 (after) Control Area 2 │

│ │

└──┘

Performance: Free Space

Chapter 7. Optimizing the Performance of VSE/VSAM 119

Index Options

The following options influence performance and storage requirements for the use

of the index of a key-sequenced file or alternate index:

v Number of index records in virtual storage

v Index and data on separate volumes

v Sequence set records adjacent to CAs

v Replication of index records

Number of Index Records in Virtual Storage

For keyed access, VSE/VSAM needs to examine the index of a file. Performance

improves if a large number of index records can be held in virtual storage.

Before the processing program begins to process the file, it must specify, either

explicitly or by default, the amount of space VSE/VSAM can use to buffer index

records. Enough space for one index record is the minimum. However, when the

space is large enough for only one or two index records, an index record may be

continually deleted from virtual storage to make room for another and then

retrieved again later when it is required anew. Ample space in which to buffer

┌───┐

│ │

│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │

│ │ │ HK │ │ FS │ │ FS │ │ FS │ │ │

│ └─┴─────┴──┴─────┴──┴─────┴──┴─────┴─┘ │

│ Sequence Set (before) │

│ │

│ ┌──────┐ ┌──────┐ │

│ │ │ 191 │ │ 200 │ │ │

│ └─┴──────┴──┴──────┴───────────────────────────────┘ │

│ │

│ │ │ │

│ └──┘ │

│ │

│ │ │ │

│ └──┘ │

│ │

│ │ │ │

│ └──┘ │

│ Control Area (before) │

│ │

│ │

│ │

│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │

│ │ │ 210 │ │ HK │ │ FS │ │ FS │ │ │

│ └─┴─────┴──┴─────┴──┴─────┴──┴─────┴─┘ │

│ Sequence Set (after) │

│ │

│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │

│ │ │ 191 │ │ 200 │ │ 205 │ │ 210 │ │ │

│ └─┴──────┴──┴──────┴──┴──────┴──┴──────┴───────────┘ │

│ ┌──────┐ ┌──────┐ │

│ │ │ 223 │ │ 228 │ │ │

│ └─┴──────┴──┴──────┴───────────────────────────────┘ │

│ │

│ │ │ │

│ └──┘ │

│ │

│ │ │ │

│ └──┘ │

│ Control Area (after) │

│ │

└───┘

Performance: Index Options

120 VSE/VSAM User’s Guide and Application Programming

index records can improve performance by preventing this situation, provided that

the buffer allocation does not cause excessive paging by z/VSE. Remember that

VSE/VSAM searches only the sequence set for sequential access but every index

level for direct access.

You can ensure that an acceptable number of index records is in virtual storage by

specifying enough space for I/O buffers for index records through one of the

following parameters when you open the file:

v BUFFERSPACE parameter of the DEFINE CLUSTER command for a file

v BUFNI and BUFSP parameters of the ACB macro

v BUFNI and BUFSP parameter of the DLBL statement

VSE/VSAM keeps as many index set records in virtual storage as the space will

hold. Whenever an index record must be retrieved to locate a record, VSE/VSAM

makes room for it by deleting another index record from the space.

Index and Data on Separate Volumes

When you define a key-sequenced file or alternate index, you can place the entire

index on a separate volume from the data, either on the same or on a different

type of storage device. The data and the index of a cluster (file) are defined

separately; the volume that is to contain the data and the volume that is to contain

the index are specified in the VOLUMES parameter of the DEFINE command.

Using different volumes enables VSE/VSAM to gain access to an index and to data

at the same time. Additionally, the smaller amount of space required for an index

makes it economical to use a faster storage device for it than for the data.

Consideration for ECKD Devices

For extended count key data (ECKD) devices (such as the IBM 3390), special

considerations apply. Especially in conjunction with cached devices, performance

will usually be best if the index is as compact as possible.

Key Ranges

The records of a key-sequenced file and an alternate index can be grouped on

different volumes according to key ranges. For example, a payroll file could have

employee records beginning with A, B, C, and D on one volume, with E, F, G, H,

and I on a second volume, and so on. You can then process the records of every

volume, or you can process as many volumes together as your program(s)

requires. For more information and examples, refer to “Multiple Volume Support”

on page 102.

Performance Measurement

VSE/VSAM keeps statistical information about a file in its catalog record. Some

statistics, such as number of extents in a file, number of records retrieved, added,

deleted, and updated, and number of CI splits, can help you decide when to take

action to improve performance. Appropriate actions could be, for example,

reorganizing a file or altering the type of processing.

You can list the entire catalog record, the statistics, and the parameters selected

when the file was defined, by using the LISTCAT command. For an explanation of

the output produced by the LISTCAT command, refer to the manual VSE/VSAM

Commands under “Interpreting LISTCAT Output.” You can use the SHOWCB and

Performance: Index Options

Chapter 7. Optimizing the Performance of VSE/VSAM 121

TESTCB macros in a processing program to display or test one or more file

statistics and parameters. These statistics and parameters include:

v CI size

v Percentage of free CIs per CA

v Number of bytes of available space at the end of the file

v Length and displacement of the key

v Maximum record length

v Number of buffers

v Usage of LSR buffer pools

v Number of records See Note 1, below.

v Password

v A time stamp that indicates if either the data or the index has been processed

separately

v Number of levels in the index

v Number of extents

v Number of records retrieved, inserted, deleted, and updated See Note 1, below.

v Number of CI splits in the data and in the sequence set of the index

v Number of EXCPs that VSE/VSAM has issued for access to a file

Notes:

1. VSE/VSAM does not update these statistics when a file is processed in control

interval access (that is, MACRF=CNV is specified in the ACB macro).

2. When a cluster or alternate index is exported, that is, named in an EXPORT

command, the statistics are reset in the exported catalog record due to the

redefinition of the imported cluster or alternate index in another catalog.

3. SAM ESDS statistics are not updated when the file is accessed via DTF.

Displaying Statistics About Buffer Pools

You can use the SHOWCB macro to obtain statistics about the use of buffer pools.

These statistics help you to determine how to improve both a previous definition

of a resource pool and a mix of data sets that use it.

The statistics are available through an ACB that describes an open data set that is

using the buffer pool. They reflect the use of the buffer pool from the time it was

built to the time SHOWCB is issued. All but one of the statistics are for a single

buffer pool (subpool). To get statistics for the whole resource pool, issue SHOWCB

for each of its buffer pools.

The statistics cannot be used to redefine the resource pool while it is in use. You

have to make adjustments the next time you build the resource pool.

For information on the use of SHOWCB, refer to “The SHOWCB Macro” on page

251.

For buffer pool statistics, the keywords described below are specified in the

FIELDS operand. These fields may be displayed only after the data set described

by the ACB is opened. Each field requires one fullword in the display work area.

Performance: Measurement

122 VSE/VSAM User’s Guide and Application Programming

┌──┐

│ Field Description │

│ │

│ BFRFND The number of requests for retrieval that could be satisfied│

│ without an I/O operation (the data was found in a buffer). │

│ │

│ BUFRDS The number of I/O operations to bring data into a buffer. │

│ │

│ NUIW The number of nonuser─initiated writes. │

│ Applies only for DFR. │

│ Writes that VSE/VSAM was forced to do because no │

│ buffers were available for reading. │

│ │

│ STRMAX The maximum number of place holders currently active for │

│ the resource pool (for the whole resource pool). │

│ │

│ UIW The number of user─initiated writes. For DFR only. │

└──┘

Performance: Measurement

Chapter 7. Optimizing the Performance of VSE/VSAM 123

Performance: Measurement

124 VSE/VSAM User’s Guide and Application Programming

Chapter 8. Data Protection and Data Recovery

This Chapter ...

v Explains which VSE/VSAM options and z/VSE utilities you can use to

protect your data. Data protection includes:

– data security, the safety of data from theft or intentional destruction.

– data integrity, the safety of data from accidental loss or destruction.
v Includes procedures to analyze problems with files, catalogs, and volumes,

and shows how to recover from error conditions.

For an overview of available tools, refer to “Tools for Data Integrity, Backup,

and Recovery” on page 139.

Data Protection

VSE/VSAM provides options to protect files against unauthorized use and loss of

data. These options allow you to specify passwords and the use of a user

security-verification routine (USVR), and allow you to control file sharing and data

set name sharing. Using IDCAMS commands, you specify the options when you

define a file or catalog.

Passwords to Authorize Access

Password Levels

You can optionally define passwords for clusters, alternate indexes, components

(data and index), paths, and catalogs. To gain access to password-protected objects,

a program or the operator must provide the appropriate password. Password

levels differ for various degrees of security. These levels are (from low to high):

v Read access (READPW parameter). This is the read-only password, which allows

you to retrieve data records and catalog entries, but not to add, update, or delete

them, nor to see password information in a catalog entry.

v Update access (UPDATEPW parameter). This password authorizes you to

retrieve, update, add, or delete records in a file. Specifying a catalog’s update

password authorizes you to define files in it.

v CI access (CONTROLPW parameter). This password authorizes you to retrieve

and store the contents of an entire CI (rather than a logical record).

v Full access (MASTERPW parameter). This is the master password, which allows

you to perform all operations (retrieving, updating, adding, and deleting) on a

file and on the catalog entry or any index associated with it. Using this

password to gain access to a catalog entry allows you to delete an entire file and

to alter any catalog information (including passwords) about data, index, or

catalog. The master password allows all operations and bypasses any additional

verification checking by a user security-verification routine (USVR).

Every higher-level password allows all operations permitted by lower levels. Any

level may be null (not specified), but if a low-level password is specified, the

master level password must also exist. The DEFINE and ALTER commands

accomplish this by propagating the value of the highest password specified to all

the higher password levels. For example, if you specify only a read-level password,

that password becomes the update, control-interval, and master level passwords as

© Copyright IBM Corp. 1979, 2005 125

well. If you specify a read password and a control-interval password, the

control-interval password becomes the master level password as well. However,

the update level password is not affected (it remains null).

Password Submission

A password, if required, is normally supplied by the processing program in a field

pointed to by the ACB or through IDCAMS parameters. If neither of these are

supplied, the password must be supplied by the operator. VSE/VSAM prompts the

operator for every entry password.

Two options can be specified in the DEFINE command for use when the operator

supplies a password: the ATTEMPTS option and the CODE option.

v The ATTEMPTS option specifies how many times, 0 through 7, the operator can

attempt to supply the correct password. If 0 is specified, passwords cannot be

supplied by the operator. If ATTEMPTS is not specified in the DEFINE

command, the default (2) allows the operator to attempt to supply the password

twice.

v The CODE option specifies a one-to-eight character name, other than the name

(file-ID) of the file, to which the operator responds with a password. This

prompting code helps keep data secure by not allowing the operator to know both

the name of the file and its password. If the CODE option is not specified, the

name of the job and the name (file-ID) of the file are supplied to the operator.

If the processing program omits the password or supplies the wrong password,

and the operator cannot supply the correct password in the allowed number of

attempts, OPEN is terminated. An error code is set in the ACB indicating that the

file cannot be opened because the correct password was not supplied.

Password Relationships

Catalogs may have passwords. If you define passwords for any files in a catalog,

you must also define passwords for the catalog so that the file passwords can take

effect. If you do not define passwords for the catalog, no password checking takes

place during operations on the file’s catalog entry. For some operations (for

example, listing all of a catalog’s entries with their passwords, or deleting catalog

entries), the password of the catalog may be used instead of the password of the

file’s catalog entry. Thus, if the master catalog is protected, its update or

higher-level password is required when defining a user catalog because all user

catalogs have an entry in the master catalog. When deleting a protected user

catalog, the user catalog’s master password must be specified.

Password Checking

VSE/VSAM does password checking only for files that are password-protected.

Operations on a catalog may be authorized by the catalog’s appropriate password

or, in some cases, by the appropriate password of the file whose definition in the

catalog is operated on. For example:

v If you want to delete a protected file from a password-protected catalog, you

must specify the catalog’s or file’s master password.

v If you want to alter a file definition in a password-protected catalog, and if the

file is password-protected also, you must specify the catalog’s or the file’s master

password.

v If you want to list a file’s catalog definition in a password-protected catalog,

and if the file is password-protected also, you must specify the catalog’s or the

file’s read (or higher) password. If you want to list the passwords themselves,

you must provide the master password.

Protect

126 VSE/VSAM User’s Guide and Application Programming

v If you want to list a file’s catalog definition in a password-protected catalog, and

if the file is not password-protected, you do not have to specify a password.

Because a user catalog defines itself, it may be password-protected without the

master catalog being password-protected. To delete an empty user catalog, you

must give its master password, whether the master catalog is password-protected

or not.

Passwords and IDCAMS Operations

Some IDCAMS operations may involve more than one password authorization. For

example, importing a file involves defining the file and loading records into it. If

the catalog into which the file is imported is password-protected, its update (or

higher) password is required for the definition; if the file is password-protected, its

update (or higher) password is required for the load. In these cases, the master

password of the catalog satisfies both requirements.

Every VSE/VSAM file is represented in a catalog by two or more entries: a cluster

entry and a data entry or, if the file is a key-sequenced file, a cluster entry, a data

entry, and an index entry. Of the entries, the cluster entry is the controlling entry.

Each entry can have its own set of four passwords; the passwords you assign need

have no relationship to one another. One reason for this separate

password-protection is to prevent access to the index of a key-sequenced file

(because an index can be opened independently of the cluster). For example, if you

password-protect a cluster but do not password-protect the cluster’s data

component, another user could issue LISTCAT to determine the name of your

cluster’s data component, then open the data component and access records in it

even if the cluster itself is password-protected.

The following protection considerations and precautions should be observed when

using IDCAMS commands that refer to a catalog without using the files defined by

the catalog:

v To gain access to passwords in a catalog (for example to list or change

passwords), you must specify the master password of either the entry or the

catalog. If both the password of the entry and the password of the catalog are

supplied, the password of the catalog is used. Similarly, a master password must

be specified with the DEFINE command if you want to model the entry’s

passwords (with the MODEL parameter).

v To delete a protected file entry from a catalog requires the master password of

the entry or the master password of the catalog containing the entry. To delete a

non-empty VSE/VSAM data space, the master password of the catalog is

required, if the catalog is password-protected; to delete an empty VSE/VSAM

data space, the update password of the catalog is sufficient. When a catalog

entry is created (with a DEFINE command), the catalog’s update or higher-level

password is required.

v You can list catalog entries that are password-protected by specifying the read

passwords of the entries or the catalog’s read password. You can list unprotected

entries without specifying the catalog’s read password. If you wish to list the

passwords associated with a catalog entry, you must specify either the master

password of the entry or the master password of the catalog.

v If the proper password is not specified with an IDCAMS command, a password

prompt occurs. Unless you have specified the CODE parameter on either the

DEFINE or ALTER command, the prompt includes the file-ID of the file; if you

specify CODE, the prompt includes the code name you specified.

In some circumstances, more than one prompt occurs. For example, when an

ALTER or DELETE request is processed, the catalog must be referred to twice,

Protect

Chapter 8. Data Protection and Data Recovery 127

once to locate the information, and again to perform the requested function.

Again, incorrect password specification when you want to list catalog entries

may cause numerous prompts. To avoid unnecessary prompts, specify the

catalog’s master password, which allows access to all entries contained in that

catalog.

An unprotected file can be deleted without a password, even if the catalog is

protected. This is important during IMPORT and RESTORE processing, because

the old, unprotected version of the file is deleted, but a new version is not

defined.

v Specification of a password where none is required is always ignored.

The following protection considerations and precautions should be observed when

using commands that cause access to a VSE/VSAM file:

v To access a VSE/VSAM file by using its cluster name instead of a data or index

name, you must specify the proper level of password for the cluster. The proper

level password for the cluster is required even if the data or index passwords

are null (that is, no password was assigned).

v To access a VSE/VSAM file by using its data or index name instead of its cluster

name, you must specify the proper level data or index password. If cluster

passwords are defined, however, the master password of the cluster may be

specified instead of the proper data or index password.

v If a cluster is not password-protected, you can access the file by using the cluster

name without specifying passwords. This is true even if the data and index

entries of the cluster have passwords defined. This allows unrestricted access to

the VSE/VSAM file as a whole, but protects against unauthorized modification

of the data or index as separate components.

v An update password is required at OPEN for MACRF=IN files when DLBL

DISP or ACB CLOSDSP is: DELETE or DATE.

User Security-Verification Routine

Programming Interface Information

If you specify password-protection when you define a file or catalog, you can also

supply your own routine to double-check the authority of a processing program to

access the file. To use this routine, specify the name of your user

security-verification routine (USVR) in the AUTHORIZATION parameter of the

DEFINE or ALTER command.

The verification routine must be a phase residing in the library (LIBDEF=).

VSE/VSAM transfers control to the verification routine only after the program that

tries to open the file gives a correct password other than the master password.

(The verification routine is always bypassed whenever a correct master password

is specified.) The authorization option can also include a maximum of 255 bytes of

information which will be passed to the authorization routine when it is called.

The verification routine receives control in AMODE24. Therefore, the routine must

reside below the 16MB line of address space. When the authorization routine gets

control from VSE/VSAM, the registers are set as shown in Table 8 on page 129.

Protect

128 VSE/VSAM User’s Guide and Application Programming

Table 8. Register Settings on Passing Control to Authorization Routine

Register Content

0 Unpredictable.

1 Address of a parameter list with the following format:

 44 bytes: File-ID.

 8 bytes: Prompting code (specified by the CODE

 parameter), or zero.

 8 bytes: Owner-ID (specified by the OWNER parameter),

 or zero.

 8 bytes: Password that has already been verified.

 2 bytes: Length of the authorization string (next field).

 Up to 255 bytes: Authorization string (specified in the

 AUTHORIZATION parameter) of DEFINE or ALTER.

2-12 Unpredictable.

13 Address of save area. Note: This address must not be destroyed by the USVR.

14 Return address to VSE/VSAM.

15 Entry point to verification routine.

The USVR should not issue any VSE/VSAM macros because they will cause

VSE/VSAM to loop. The USVR should return control to the program for any

VSE/VSAM requests.

When the authorization routine returns to VSE/VSAM, register 15 should be set to

zero if the processing program is authorized to access the file or catalog. If register

15 is not zero, VSE/VSAM does not allow the processing program to open the file.

End of Programming Interface Information

Protecting Shared Data

Files can be shared among partitions, among tasks in a partition, or among z/VSE

systems. File sharing is controlled by the use of the SHAREOPTIONS parameter in

the DEFINE command, and the type of processing (input or output) for which the

file was opened.

For sharing among systems, you must establish the DASD sharing environment

through the correct system generation and IPL commands. You are also responsible

for ensuring that the volume containing the file is mounted on a shared device.

In determining the level of sharing you intend to allow, you must evaluate the

consequences of a loss of read integrity (reading the correct information) to the

processing program, and a loss of write integrity (writing the correct information) to

the file owner.

The degree of sharing to be allowed for the file is specified, when the file is

defined, in the SHAREOPTIONS parameter of the DEFINE command. The

SHAREOPTIONS parameter can be changed by the ALTER command (if the file is

not concurrently open for another program). A file cannot be deleted or reset if it is

currently open for another program, regardless of the share option specified.

Protect

Chapter 8. Data Protection and Data Recovery 129

During the initial load of a file (and regardless of the share option values

specified), VSE/VSAM treats the share option specification as if it were share option

1 (see below). After the file is loaded and successfully closed, VSE/VSAM uses the

specified share option value.

One of the following file share options can be specified, where every open ACB

counts as one request:

v Share option 1: The file may be opened by any number of requests for input

processing (retrieve records), or it can be opened by one request for output

processing (update or add records). This option ensures full (read and write)

integrity. Every open ACB counts as one request.

v Share option 2: The file may be opened by more than one request for input

processing and, at the same time, it may be opened by one request for output

processing. This option ensures write integrity but, because the file might be

modified while records are retrieved from it, read integrity must be ensured

individually by every user.

v Share option 3: The file can be opened by any number of requests (ACBs) for

both input and output processing. VSE/VSAM does nothing to ensure either the

integrity of information written in the file or the integrity of the data retrieved

from the file. VSE/VSAM does ensure, however, that an open file is not deleted

or reset.

v Share option 4: A key-sequenced or relative-record file can be opened by any

number of requests (ACBs) for both input and output processing by users in the

first system requesting output to the file. Once a file has been opened for output

by one system, VSE/VSAM accepts only open for input requests from another

system.

VSE/VSAM ensures write integrity by using the z/VSE LOCK facility. Read

integrity is ensured by VSE/VSAM only when records are retrieved for update.

If records are not retrieved for update, VSE/VSAM may miss or skip some of

the records in CIs that are updated concurrently by more than one program. In

this case, read integrity is not ensured, because every program might retrieve a

different copy of the CI. If one task makes multiple GET/PUT requests (through

two or more ACBs) to the same file, VSE/VSAM cannot resolve the integrity

conflict and issues an error code. The requestor must resolve the conflict and

retry the request.

Note: If you specify share option 4 for an ESDS file, VSE/VSAM treats the

specification as if it were share option 2.

If a file cannot be shared for the type of processing you specify, your request to

open a file is denied.

If a file is fully sharable (share options 3 and 4), more than one request can open it

at the same time to update or add records. If the file is not sharable, only one

request at a time can open it to update or add records. With share options 2, 3, or

4, any number of requests can retrieve records from the file regardless of whether

it is sharable or not. With share option 1, data retrieval is prevented by the OPEN

macro if the file is already opened for output.

If an alternate index is defined with the UPGRADE attribute and share option 1 or

2, keep in mind the restrictions on the number of requests that can open it for

input and/or output processing. For example, if you specify share option 2 for an

alternate index that is a member of an upgrade set, you cannot open another

update path over the base cluster, or the base cluster itself, for output. This is

because share option 2 does not allow a file to be opened twice for output.

Protect

130 VSE/VSAM User’s Guide and Application Programming

Cross-Systems Sharing

VSE/VSAM allows the sharing of catalogs and files across z/VSE systems. To this

end, the catalogs and files must reside on shared devices that have been defined to

the supervisor at IPL.

You do not specifically invoke cross-system sharing when opening catalogs and

files, because:

v Catalogs are automatically shared if they reside on shared devices.

v Files are automatically shared if they are owned by a shared catalog.

To ensure data protection, the degree of file sharing that is to be allowed can be

specified in the SHAREOPTIONS parameter of the IDCAMS commands: ALTER,

DEFINE CLUSTER, and DEFINE ALTERNATEINDEX. The following explains

various options and their results.

Specifying SHAREOPTIONS(4): This specification provides:

v Input OPEN function for all the systems that participate in cross-system sharing,

and

v Output OPEN function only for the first system that requests it.

If you ignore this restriction, VSE/VSAM issues an OPEN error message with the

error code 168 (X’A8’). The error code means that the file is already open for

output from another processor, and that only one processor may write output to

the file at a time.

Specifying SHAREOPTIONS(4 4): This specification provides OPEN functions

for input and output processing for all the systems that participate in cross-system

sharing. It provides full read and write integrity for a file that is accessed from:

v Different partitions of a particular CPU, or

v Different CPUs.

Note: With SHAREOPTIONS(4 4) specified, the lock file activity (with regard to

z/VSE DASD sharing) increases. This may have an effect on performance.

Defining Shared User Catalogs: You may wish to have a non-shared master

catalog on every system, and shared user catalog(s) that connect to every master

catalog as illustrated in the following diagram:

 ┌─ System A ────────┐ ┌─── System B ─────────────────┐

 ┌───────────────────┐ ┌────────────────────┐

 │ Master Catalog A │ │ Master Catalog B │

 └───────────────────┘ └────────────────────┘

]]]]]]

 │ │ │ │ │ │

 │ │ d │ d d

 │ │ ┌─────────┐ │ ┌─────────┐┌─────────┐

 │ │ │ User │ M──────┘ │ User ││ User │

 │ │ │ Catalog │ │ Catalog ││ Catalog │

 │ │ └─────────┘ └─────────┘└─────────┘

 │ │]]

 │ └────────────────────────────┘ │

 └───┘

To do this, define the user catalog under one master catalog, then IMPORT

CONNECT the user catalog to another master catalog. The shared (user) catalog(s)

must contain entries for all shared files.

Protect

Chapter 8. Data Protection and Data Recovery 131

Data Integrity

To protect your VSE/VSAM data from accidental loss or destruction, you can use

the IDCAMS commands and command options listed below, and you can use the

following IBM utility programs:

v VSE/Fast Copy

The use of this utility in a VSE/VSAM environment requires special

considerations, because both the volume VTOC and the catalog contain space

mapping information about the volume which has to be synchronized to insure

accessibility and to avoid damage to data.

With VSE/VSAM, data can be flexibly distributed among many DASD volumes

(minidisks) of different device types and capacity. However, some rules need to

be followed:

– A catalog resides on a single volume.

– Only one catalog can exist per volume.

– A catalog may own space on any number of DASDs of different device types,

sizes, and architectures.

– Several catalogs can own space on the same volume, but then the recovery

may become quite complex.

– Each component of a cluster must reside on the same DASD type. The

DASDs can have different sizes.
v VSE/VSAM VTOC Utility (IKQVDU)

For brief explanations on when to use which command, option, or utility, refer to

Table 9 on page 140. The figure also shows where to find more detailed

explanations and procedures.

IDCAMS Commands and Command Options for Data Integrity

 BACKUP/RESTORE commands

 DEFINE CLUSTER allocation option (See Note)

 DEFINE CLUSTER RECOVERY│SPEED option

 DEFINE CLUSTER DATA WRITECHECK option

 DEFINE CLUSTER WRITECHECK option

 DEFINE USERCATALOG command (See Note)

 DEFINE SPACE command (See Note)

 DELETE SPACE FORCE option

 EXPORT/IMPORT commands

 LISTCAT command

 REPRO command

 SNAP command

 VERIFY command

Note: Though not specifically designed for the purpose of data integrity, the

commands and options DEFINE SPACE, DEFINE CLUSTER, and DEFINE

USERCATALOG can be used for that purpose as explained below.

Using the DEFINE SPACE Command

The DEFINE SPACE command and its DEDICATE parameter can be used to easily

dedicate an entire volume to VSE/VSAM by defining a space that occupies the

whole volume. Other volumes can be used exclusively for nonVSAM files. This

allows recovery on a volume basis to be strictly VSAM or nonVSAM. If the

volumes are mixed, two different approaches are needed for integrity. For example,

a copy of the data on tape is needed to back up the nonVSAM data, but several

Protect

132 VSE/VSAM User’s Guide and Application Programming

exports may be all that is necessary for VSE/VSAM files. Both a COPY run with

VSE/Fast Copy and the EXPORT command are necessary on the mixed volumes. If

the volumes are segregated, only one of the integrity measures is necessary.

Using the DEFINE CLUSTER Allocation Subparameter

Secondary allocation that occurs after the last catalog backup results in new catalog

records that are not available to the backup catalog. The allocation subparameter of

the DEFINE CLUSTER command can be used to improve file integrity and reduce

this exposure by eliminating or minimizing secondary allocation. An

entry-sequenced file is extended only by adding new CAs to the end of the file.

Thus, the effect of addition is predictable and the problem is eased. If it is

impractical to allocate enough primary space to accommodate additions, the

secondary allocation quantity should be large enough so that extension is

infrequent.

When secondary allocation is done, a new back up of the catalog or file (or both)

can be made. By monitoring the file statistics in the catalog, either by way of a

LISTCAT command or by way of a SHOWCB macro against an open ACB (to

inspect the number of bytes of available space), you can predict when secondary

allocation will occur. You can determine if a secondary allocation took place with a

SHOWCB or TESTCB for the RPL feedback information after every PUT request.

For a key-sequenced file the problem is much more complicated. If existing records

are not lengthened and all additions are made to the logical end of the file, the

situation is similar to that of an entry-sequenced file, except that the index must

also be checked. The other patterns of insert and update activity are limitless.

Some of them are specific and dictate specific back up strategies, but discussion

here assumes a random distribution of activity against the file.

There are reasons, other than recovery, to design a key-sequenced file to minimize

extensions. A control-area split takes a relatively long time. For many online

systems this can be a serious disruption. A characteristic of key-sequenced files is

that, assuming a random insert pattern, all CAs tend to split at roughly the same

time. Because every split results in two CAs created from the original one, the file’s

physical size doubles in a short period of time.

For these reasons it is advisable to design free-space percentages to minimize the

probability of a split for a given insert level, rather than to allow extra primary

allocation for expansion. The file should be reloaded (reorganized) when its insert

level approaches the design point. For further information, see “Distributed Free

Space” on page 111.

Using the DEFINE USERCATALOG Command

The DEFINE USERCATALOG command can be used to create many user catalogs

(as many as one per volume) and reduce the number of files per catalog. If a

catalog becomes unusable and has, for example, only ten files cataloged in it,

access to only those ten files has to be recovered.

Note that once a catalog has been destroyed, the data it controls can no longer be

accessed. Thus, if a system contains only one (master) catalog and that catalog is

destroyed, the resources of the whole system are lost and must be restored by the

use of backup copies.

Protect

Chapter 8. Data Protection and Data Recovery 133

Catalogs with only nonVSAM entries can be backed up with VSE/Fast Copy. After

the volume is restored, only those jobs that updated the files since the backup was

made would have to be rerun.

When several user catalogs are involved, only the resources controlled by the

destroyed catalog are affected, and it can be rebuilt while processing on other data

continues. Because user catalogs (like the master catalog) are self-describing, you

need only rebuild the master catalog and the resources directly connected to it.

This applies even if the master catalog has been destroyed. No files in a user

catalog connected to that master catalog can be accessed until the user catalog is

again connected to a master catalog.

Protecting VSE/VSAM Files and Volumes

You must plan in advance how much and what kind of protection you need. You

need to consider questions such as:

v Does it take less time, effort, or expense to recreate lost data than it does to

maintain backup copies?

v Should I segregate VSAM and nonVSAM files and make maximum use of

recoverability, or is it sufficient to use VSE/Fast Copy plus the file update reruns

necessary to make the file current?

The following explanations should help you answer such questions.

Backup Considerations

In choosing methods of back up and recovery, you need to consider the physical

matters of accomplishing the work, and the need for back up, operational

characteristics, and security and integrity of the backup medium.

v Necessity for Back Up: If the file can be recreated from the original input or from

records or journals you kept, perhaps there is no need for back up. Considering

the time required for regular backup procedures and the relative infrequency of

recovery, many files may fit into this category.

v Operational Factors: You should consider frequency of back up and possible

frequency of recovery, time required for back up and recovery, and the ease or

difficulty of the backup and recovery technique used.

v Frequency Factors: In deciding for the best method for back up and recovery, you

have to find a good balance between the frequency of, and the time required for

making back ups and recoveries. You may find some methods are considerably

easier to use than others but may require more time to accomplish. Thus, a

method that might be suitable for one file because of its relative infrequency of

backing up might be unacceptable for another file that must be backed up

frequently.

v Time Required Factor: The time required for back up and recovery may be a

deciding factor in the choice of method, particularly for real-time systems where

recovery must be accomplished quickly. A method that takes longer may have

other characteristics that are more desirable. Time required for recovery may also

necessitate that a backup technique be used that takes longer.

v Ease of Use: The alternatives for back up and recovery vary widely in relative

ease of use. Complicated methods that are difficult to use may cause errors,

which makes recovery much more time consuming than estimated. If recovery is

infrequent, a difficult method may require more time to reason out than another

method would require to do the actual recovery.

v Physical Security and Integrity: Security and integrity of the backup medium are

often neglected. Measures used while data is on the system are of no use for a

Protect

134 VSE/VSAM User’s Guide and Application Programming

backup copy that is stored elsewhere. Security and integrity factors may also

need to be reviewed as the nature of data changes in an installation.

Relationship of Catalog Entries to VSE/VSAM Files and

Volumes

The VSE/VSAM catalog contains information essential to accessing and controlling

its files and volumes. Note the following:

v All VSE/VSAM files must be cataloged. Because the physical and logical

description of a file is contained in its catalog entries, VSE/VSAM requires

up-to-date catalog entries to be able to access files.

v For multivolume files, the same catalog must own space on all current and

candidate volumes.

v Logical and physical mapping information is contained in the catalog entries.

For files defined in nonunique VSE/VSAM data spaces, the catalog contains the

only record of the physical extents allocated to the file. For unique files, entries

in the VTOC also contain a record of physical extents. In both cases, only the

catalog contains the logical-to-physical mapping information (the relationship of

the RBA ranges of the file to the physical extents).

All other types of data access must use catalog information.

Creating Backup Copies of VSE/VSAM Files

Several methods of back up and recovery can be used for VSE/VSAM files.

Usually, it is not possible to use only one method for all files in an installation. You

should consider individual files or groups of files, and then determine the most

suitable method for each.

v Use the BACKUP command to create a copy of the file on tape or disk. The

command backs up empty objects, including catalog entries.

Note: The file you are backing up must be available for an INPUT OPEN. The

OPEN might fail if the file is currently opened for input or output by

another partition or system. Because the OPEN might not always fail, it is

strongly recommended that the file which is being backed up should not

be opened for output by any other partition or system. Otherwise, the

resulting backup copy might not represent the actual state of the original

file.

Use the RESTORE command to create - from the backup copy - an object that is

equivalent to the original one. You can also use the RESTORE command to move

the files to a different disk device type, or to increase the allocation size of a file.

You can back up (or restore) all the objects owned by one catalog (or contained

on the backup file) with a single command. Generic names let you include or

exclude subsets of objects from the backup or restore operation.

Note that the format of the file produced by BACKUP is different from the

format produced by EXPORT. Therefore:

– RESTORE cannot process files created by EXPORT, and

– IMPORT cannot process files created by BACKUP.
Recommendation: Because of their performance advantage, BACKUP and

RESTORE should be used for regular back up of files, with restoration as

necessary. EXPORT and IMPORT should be used for migration between

VSE/VSAM and MVS, and for reorganization on record-level or CI-level. For

Protect

Chapter 8. Data Protection and Data Recovery 135

optimum performance a COMPRESSED file is stored by BACKUP. A compressed file

can only be restored on a system with support for VSE/VSAM data compression

(that is VSE/VSAM Version 2 or later).

v Use the EXPORT command to create an unloaded, portable copy of the file. The

operation is simple. There are options that offer protection, and most catalog

information is exported along with the data, easing the problem of redefinition.

You can prevent the exported file from being updated until the IMPORT

command reestablishes its accessibility. A COMPRESSED file is backed up by

EXPORT in an uncompressed format, hence the IMPORT can be done by any

system supporting the IMPORT command. IMPORT defines the file as a

NOCOMPRESS file, unless the target file is a pre-defined, empty file with the

COMPRESS attribute.

For more information and examples, refer to the manual VSE/VSAM Commands

under “Using EXPORT/IMPORT for Transporting or Backing Up Files.”

v Use the REPRO command to create either a SAM file, or a duplicate

VSE/VSAM file for back up. The advantage in using REPRO (instead of

EXPORT) is the accessibility of the backup copy. A DEFINE command is

required before reloading, but this is a relatively minor inconvenience,

particularly if the original DEFINE statements can be used. A COMPRESSED file

is copied by REPRO in an uncompressed format.

For more information and examples, refer to the manual VSE/VSAM Commands

under “Loading Records into a File.”

v User-written programs for back up are usually appropriate when the data has

some characteristic that does not allow you to take advantage of a generalized

backup method. Files for which not all records have to be saved for back up

might fit into this category. Also, keyed sequential files which have to be

processed sequentially on a regular basis could be backed up by creating a

sequential file as a by-product.

You must keep in mind that any backup procedure that does not involve an image

copy of the file (for example, the BACKUP, EXPORT, and REPRO commands do

not provide an image copy of the file) will result in data reorganization and the

re-creation of the index for a key-sequenced file. Therefore, any absolute references

by way of RBA may become invalid.

Creating Backup Copies of Volumes

You can use VSE/Fast Copy to create a backup copy of an entire volume and to

restore that copy on a volume. However, the use of this utility in a VSE/VSAM

environment requires special considerations, because both the volume VTOC and

the catalog contain space mapping information about the volume that has to be

synchronized to ensure accessibility and to avoid damage to data. Therefore, it is

generally recommend that every volume should have its own user catalog. This

can make the problem of synchronizing data and catalog information much

simpler.

For details on how to use “VSE/Fast Copy”, refer to the manual z/VSE System

Utilities.

For information on how to solve problems relating to catalogs and volumes, refer

to “Procedures for VSE/VSAM Recovery” on page 143.

Protect

136 VSE/VSAM User’s Guide and Application Programming

Protecting VSE/VSAM Catalogs

Because of the importance of the VSE/VSAM catalog, you should consider to back

up catalogs as well as files and volumes. If all of the files owned by a catalog are

backed up individually, it is possible to recover from destruction of the catalog by

carrying out recovery procedures for every file. The probability of losing an entire

catalog is very low. However, to speed recovery or minimize exposure in the case

of catalog damage or destruction, three backup methods are available:

v Use the REPRO command to create a backup copy of either a master catalog or

user catalog, and to reestablish that backup copy as a catalog. Use the command

to unload the catalog to a VSAM or nonVSAM file.

This set of functions is referred to as catalog unload and reload. The REPRO

command requires no special parameters to perform the function. The unload

function is triggered when the REPRO source is a catalog. The reload function is

triggered when the REPRO target is a catalog. When a new catalog is defined,

an unloaded catalog file may be reloaded into the newly defined catalog, or the

unloaded catalog can be reloaded into a version or the original catalog.

Before using REPRO unload/reload as the method for catalog recovery, refer to the

manual VSE/VSAM Commands under “Using REPRO for Catalog Backup and

File Reorganization.”

v Use VSE/Fast Copy to back up the entire catalog volume.

The following explains how to proceed if integrity problems occur with catalogs,

files, or volumes.

Creating Backup Copies of Catalogs

You should protect catalogs by backup procedures against:

v Loss of data.

v Unusable catalog.

Protect Against Loss of Data, and Recover

The only way to safeguard against loss of data is to have a copy of the data in

another form or place. The usual method of doing this is to use the BACKUP

command of the VSE/VSAM Backup/Restore Function to copy the volume to tape

or to another disk volume.

If you have lost a file and if you do have a backup copy, use the RESTORE or

IMPORT command to copy the volume to disk. Then reprocess any updates made

since the backup copy was made. If you do not have a backup copy of the file, you

must recreate the file by redefining, loading, and updating the file.

Before you restore a volume, consider the following:

v If the information on the restored volume is downlevel, (your original volume

has been updated since the back up was made), you must apply the updates to

the restored level of the volume to bring it to the level of the original volume.

v If the volume is not the catalog volume, you have information about the volume

in the catalog that may not match what is actually on the volume. It would be

helpful to have a LISTCAT listing of the catalog at the time you created the

backup copy to compare with a present listing. The data spaces and file extents

may be different if any file updates have been made since the back up was

made. See “Volume is Inaccessible” on page 148 for a complete recovery

procedure.

v If the volume is the catalog volume, all of the volumes owned by the catalog

may have file and data space extents that do not match the catalog information.

Protect

Chapter 8. Data Protection and Data Recovery 137

Again, LISTCAT listings of the backup copy and the original catalog can be of

help. Every volume must be handled as if the volume was just restored. See

“Volume is Inaccessible” on page 148.

Protect Against Unusable Catalog, and Recover

If there is no loss of data, but the catalog is partially or totally unusable, you can

use (depending on prevailing conditions) one or the other of the following

methods:

v If REPRO has been used to periodically copy your catalog, perform the

following steps:

1. BACKUP or EXPORT those files that have been updated (and that can still

be accessed through the catalog) since the catalog copy was made.

2. Reload the catalog using the catalog REPRO copy.

3. RESTORE or IMPORT the files copied in step 1.

4. If there are files that were updated but could not be copied by BACKUP or

EXPORT, recreate the files from back level copies by reprocessing updates.
If you do not have a REPRO unload copy, you have to restore a volume backup

as explained under “Volume is Inaccessible” on page 148.

v If you do not have a copy of the catalog, perform the following steps:

1. BACKUP or EXPORT those files that have been updated (and that can still

be accessed through the catalog) since the last backup.

2. Delete the data spaces from the volume.

3. Redefine the catalog and data spaces.

4. RESTORE or IMPORT the files copied in step 1.

5. RESTORE or IMPORT the files not copied in step 1 from the backup tape.

6. If there are files that could not be processed in step 1, recreate them from

back level copies by reprocessing updates.

Rebuilding a Catalog

You may have to rebuild your catalog if it gets damaged. Use the following

procedure:

1. Run a LISTCAT command to determine which files own space on the volume.

Assuming that you want to save the contents of these files, determine if an

acceptable back level copy exists of each. If not, save the contents of these files

by running either BACKUP or REPRO.

The BACKUP command is preferable, because it automatically saves any

alternate indexes built over the cluster backed up. (If REPRO is used, you must

rebuild these alternate indexes at restoration.) If there is catalog damage, it may

not be possible to recover all files.

2. Issue a DELETE command for every object in the catalog. (alternate indexes

and paths associated with the file are automatically deleted.)

3. Issue a DELETE SPACE command for all volumes owned by the catalog.

4. Delete the catalog itself.

5. Define the catalog.

6. Issue a DEFINE SPACE command for any volumes on which the catalog will

own space.

7. Define a compression control data set.

8. If any files (and associated alternate indexes or paths) were deleted in step 1,

reintroduce them into the catalog in one of the following ways:

Protect

138 VSE/VSAM User’s Guide and Application Programming

v If you used BACKUP in step 1, use the RESTORE command to define and

restore objects saved in step 1.

v If you used REPRO in step 1, DEFINE every object that was deleted in step

2. Then use REPRO to restore the objects saved in step 1. Also DEFINE any

alternate indexes or paths deleted in step 2. Recreate any associated alternate

indexes using the BLDINDEX command.

Guide to VSE/VSAM Recovery

About Data Organization and Recovery

Questions and considerations on VSE/VSAM recovery have a very close relationship

to how you organize the VSE/VSAM data so that it can be recovered more easily,

and on how you provide for backup data. For information on these topics, refer to:

 “Data Integrity” on page 132

 “Protecting VSE/VSAM Files and Volumes” on page 134

 “Protecting VSE/VSAM Catalogs” on page 137

If the time required for recovery is the governing factor, follow the preparation and

recovery steps explained under “Quick Recovery” on page 150.

About the Recovery Process

VSE/VSAM recovery is the process of regaining access to lost VSE/VSAM data. To

regain access to lost data, you can use a combination of functions from

VSE/VSAM, IDCAMS, and z/VSE system utilities.

Levels of Recovery

The types of VSE/VSAM data recovery, in terms of the currency of the recovered

data, are: current and downlevel.

The current type of data recovery operation restores addressability and access to

the most recent version of the data. Operations that recover current data are

generally used to correct problems such as read and write errors associated with

the data itself or with the data description.

The downlevel type of data recovery operation restores addressability and access to

a version of the data other than the most recent. Operations that recover downlevel

data are generally used to correct logical problems such as a programming error or

faulty transactions. This is the most common type of recovery, probably because of

the types of problems encountered and the level of data available for recovery. An

example of a downlevel recovery is the restore of a volume.

Note: Some of the utilities (listed in Table 9 on page 140) can only recover data

that currently is not downlevel. Further processing is necessary to make the

file, volume, or catalog current.

Tools for Data Integrity, Backup, and Recovery

Table 9 lists the integrity options, backup programs and commands, and recovery

tools. In the figure, the column headings that are not self-explanatory have the

following meaning:

Protect

Chapter 8. Data Protection and Data Recovery 139

TOOL TYPE indicates where the tool is supported: in VSE/VSAM, in IDCAMS, or

in z/VSE. For more information on current and downlevel, refer to “Levels of

Recovery” on page 139.

FILE TYPE indicates what is recovered:

 FILE means VSE/VSAM file.

 VOL means volume.

 CAT means VSE/VSAM catalog.

TOOL CLASS indicates the command or program class:

 INT is any tool that is a VSE/VSAM integrity option.

 BKP is a backup command or program other than recovery, and other than

recovery-type tools.

(X) in the last column means that you have to refer to the manual VSE/VSAM

Commands. There, you find the discussion under the quoted title.

 Table 9. Tools for Integrity, Backup, and Recovery

Tool Name Tool Type

File

Type

Tool

Class Application Where Discussed

VSE/Fast

Copy

z/VSE

Utility

VOL BKP Use the VSE/Fast Copy system

utility to create a backup copy

of an entire volume and to

restore that copy on a volume.

The use of this utility in a

VSE/VSAM environment

requires special considerations,

because both the volume

VTOC and the catalog contain

space mapping information

about the volume which has to

be synchronized to insure

accessibility and to avoid

damage to data.

v “VSE/Fast Copy” in the manual

z/VSE System Utilities.

BACKUP/

RESTORE

IDCAMS CAT or

FILE

BKP Use BACKUP and RESTORE

for high-speed data recovery

operations, or to move files to

a different disk device type, or

to change the allocation size of

the file.

v (X) “Using BACKUP and

RESTORE” in the VSE/VSAM

Commands.

v “Creating Backup Copies of

VSE/VSAM Files” on page 135, and

“Creating Backup Copies of

Catalogs” on page 137.

EXPORT/

IMPORT

IDCAMS FILE BKP Use the EXPORT command to

create backup copies of data

and associated catalog entries.

The catalog entries can be

reestablished in the catalog

from which they were

extracted or into a different

catalog using IMPORT

command. The data file is

reestablished by IMPORT

without redefining it.

v (X) “Using EXPORT/IMPORT for

Transporting or Backing Up Files” in

the VSE/VSAM Commands.

v “Creating Backup Copies of

VSE/VSAM Files” on page 135, and

“Creating Backup Copies of

Catalogs” on page 137.

Protect and Recover: Tools

140 VSE/VSAM User’s Guide and Application Programming

Table 9. Tools for Integrity, Backup, and Recovery (continued)

Tool Name Tool Type

File

Type

Tool

Class Application Where Discussed

LISTCAT IDCAMS FILE,

VOL,

CAT

REC Use the LISTCAT command to

list the contents of a catalog

after a recovery operation.

Visually compare this list with

a copy of the LISTCAT list

most recently done before the

recovery. For a description of

the out-of-synchronization

condition you may find, see

“Catalog Entry Mismatches”

on page 147.

v (X) “Listing Catalog Entries” in

VSE/VSAM Commands.

v “Catalog Entry Mismatches” on

page 147.

REPRO IDCAMS CAT BKP The REPRO command is used

to create a backup copy of

catalog. The unloaded or

backup copy can be reloaded

into a newly defined catalog

or a version of the original if

the backed up catalog becomes

unusable.

v (X) “Using REPRO for Catalog

Backup and File Reorganization” in

VSE/VSAM Commands.

v “Creating Backup Copies of

Catalogs” on page 137.

SNAP IDCAMS VOL BKP Use the SNAP command to

copy entire ESS volumes so

that a backup operation can be

performed on the target

volumes involved.

v (X) SNAP command in VSE/VSAM

Commands.

VERIFY IDCAMS FILE INT Use the VERIFY command if

you want to compare the file’s

catalog information with the

EOF indicator in the file.

v (X) “Verifying a File’s Accessibility”

in the VSE/VSAM Commands.

VTOC

Utility

(IKQVDU)

VSE/VSAM

Utility

Program

VOL BKP Use the VSE/VSAM VTOC

utility program IKQVDU to

initialize a VSE/VSAM-owned

volume when the owning

catalog is not available.

VSE/VSAM volume

ownership can be given up

and VSE/VSAM space can be

returned to the VTOC as

available space. All data in

that space is lost. Caution. The

owning catalog is not

modified.

v “Maintaining VTOC and VOL1

Labels on Disk (IKQVDU)” on page

355.

DEFINE

SPACE

IDCAMS VOL,

CAT

INT Use the DEFINE SPACE

command to dedicate use of

volumes for VSE/VSAM files

in order to segregate

VSE/VSAM and

non-VSE/VSAM recovery. You

can dedicate a volume by

defining a VSE/VSAM data

space that occupies the whole

volume, or by specifying the

DEDICATE parameter.

v (X) “Defining a VSE/VSAM Data

Space” in the VSE/VSAM Commands.

v “Data Integrity” on page 132.

Protect and Recover: Tools

Chapter 8. Data Protection and Data Recovery 141

Table 9. Tools for Integrity, Backup, and Recovery (continued)

Tool Name Tool Type

File

Type

Tool

Class Application Where Discussed

DEFINE

USER-

CATALOG

IDCAMS VOL,

CAT

INT Use the DEFINE

USERCATALOG command to

maximize the use of user

catalogs and to limit the use of

the master catalog. Compare

the effect of the loss of a

catalog when 10 files are

cataloged and 50 files are

cataloged in every of two

catalogs. The fewer the

catalogs the greater the

disruption of daily operations

in the event of loss of a

catalog.

v (X) “Defining Objects in a Catalog”

in the VSE/VSAM Commands.

DEFINE

option

WRITE-

CHECK

IDCAMS FILE INT Use the optional

WRITECHECK parameter of

the DEFINE command to

verify every write operation

when writing data to auxiliary

storage. (See the

WRITECHECK parameter for

an explanation.)

v (X) “Defining a VSE/VSAM File

(Cluster)” in the VSE/VSAM

Commands.

v (X) “DEFINE CLUSTER” in the

VSE/VSAM Commands.

DELETE

SPACE

FORCE

IDCAMS VOL INT Use the DELETE SPACE

FORCE command to remove

information from both the

VTOC and the catalog. When

space is deleted by using

FORCE option, the VTOC’s

VSE/VSAM volume

ownership is given up (if no

other catalogs own space on

that volume), the catalog’s

VSE/VSAM space is returned

to the VTOC, the space

definition in the catalog for

that volume is deleted, and

VSE/VSAM files on that

volume are marked as

unusable in the catalog. If you

want to redefine the files, you

must first delete them.

v (X) “Altering Catalog Entries” in

the VSE/VSAM Commands.

Protect and Recover: Tools

142 VSE/VSAM User’s Guide and Application Programming

Table 9. Tools for Integrity, Backup, and Recovery (continued)

Tool Name Tool Type

File

Type

Tool

Class Application Where Discussed

DEFINE

CLUSTER

RECOVERY

SPEED

IDCAMS FILE INT When you define a cluster,

you can indicate that

VSE/VSAM is to preformat

every CA as records are

loaded into the cluster

(RECOVERY) or is not to

preformat them in interest of

performance (SPEED). As

records are loaded into a

preformatted area there is

always a following end-of-file

indicator that indicates how

far loading has progressed. If

an error occurs that prevents

loading from continuing, you

can readily identify the last

successfully loaded record and

resume loading from that

point.

v (X) “Defining a VSE/VSAM File

(Cluster)” in the VSE/VSAM

Commands.

v “Data Protection and Integrity

Options” on page 110.

DEFINE

CLUSTER

ALLO-

CATION

IDCAMS FILE INT Minimize or eliminate

secondary allocations for files

to overcome the difficulty in

catalog recovery stemming

from secondary extents.

v “Using the DEFINE CLUSTER

Allocation Subparameter” on page

133.

Procedures for VSE/VSAM Recovery

You can use the following procedures to analyze and to recover from the following

conditions:

v “File is Not Properly Closed,” below

v “File is Inaccessible” on page 145

v “Catalog is Unusable” on page 146

v “Volume is Inaccessible” on page 148

Because the two activities backup and recovery overlap, read also the explanations

under:

 “Creating Backup Copies of VSE/VSAM Files” on page 135

 “Creating Backup Copies of Volumes” on page 136

 “Creating Backup Copies of Catalogs” on page 137

Several of the following procedures use volume restore. If this is indicated, one or

the other of the following must be true:

v The volume restored does not contain multivolume files.

v If a volume does contain a portion of a multivolume file, all volumes that

contain portions of those multivolume files are treated as a single unit. That is, if

a volume is required, the entire set is restored.

File is Not Properly Closed

Cause of Failure

VSE/VSAM files are not properly closed when they are opened for output and a

system failure occurred, or automatic CLOSE was not activated. This condition is

Protect and Recover: Tools

Chapter 8. Data Protection and Data Recovery 143

reflected in the catalog and is communicated to the next program that does an

OPEN of the file. There is a possibility that the failure occurred after the load or

update of the file was complete. In this case, the file itself and the file’s catalog

entry are correct.

Error Conditions:

v Incorrect high RBA in catalog

v Incomplete write to direct access device

v Duplicate data

Overview

The warning “file not properly closed” may indicate an error in a VSE/VSAM file.

This condition can generally be corrected by using the VERIFY command. If other

errors are encountered or suspected, they can generally be corrected by using

either the IMPORT command or the REPRO command.

Recovery for Incorrect High RBA in Catalog

This is the error most likely to occur. If you are running in RECOVERY mode, all

you need to do is reopen the file, and the automatic VERIFY function of

VSE/VSAM will correct the error and update the catalog with the correct high

RBA. However, VSE/VSAM cannot correct the following:

v If an ESDS file opened for control interval (CI) access.

v If a SAM ESDS file is in non-CI format.

v If a SAM ESDS file is in CI format. VSE/VSAM cannot update the EOF

indicator, because the file is always loaded and extended in SPEED mode.

Recovery for Incomplete Write to a Disk Device

The file must be restored from a backup copy. You can use either an exported or

sequential backup copy created by the REPRO command.

Use the IMPORT command to put a previously exported copy into the catalog, or:

1. Delete the file that failed.

2. Redefine the file with the DEFINE command.

3. Load the new file with the sequential backup file by using the REPRO

command.

The restored file is downlevel and all updates since the back up was made must be

reapplied to make the file current.

Recovery for Duplicate Data in a Key-Sequenced File, Alternate

Index, or Catalog

This can result from a failure during a CI or CA split. One of two possible

situations can exist for a duplicate data error conditions, depending on the type of

processing done.

For addressed or control interval (CI) processing, you correct the error condition by

using the REPRO command to copy the current version of data to a temporary file

and then copy it back into the original file. This gives you a reorganized file

without duplicate data.

For keyed or sequential processing, VSE/VSAM automatically detects and corrects

the duplicate data condition. (VSE/VSAM erases the original versions of the

copied records.) Duplicate records caused by a failure during a CI split may cause

an error if the file is processed by z/VSE.

Recover

144 VSE/VSAM User’s Guide and Application Programming

File is Inaccessible

Cause of Failure

A VSE/VSAM file may become inaccessible due to damage to the file itself,

damage to related information in the catalog, or both. Depending on the extent of

damage and prior actions, it may be possible to gain access to either the current or

a downlevel version of the data.

Error Conditions:

v The file cannot be opened

v The file is partially unreadable (but can be opened)

v The file is totally unreadable (but can be opened)

v The compression status of the file is CMP-UNDET

Overview

The inaccessibility of a VSE/VSAM file can be analyzed by using the LISTCAT

command, and the extent of file damage can be determined. Based on the analysis,

you can recover the data by using BACKUP/RESTORE, EXPORT/IMPORT, and

REPRO.

Recovery for a File that Cannot Be Opened

The problem is probably due to catalog damage. Determine the extent of this

damage. If the damage is relatively minor (that is, relatively few catalog file entries

are affected):

1. Use the analysis tool LISTCAT to determine the extent of damage. This can be

done by comparing a previous LISTCAT list with one of the damaged catalog.

2. For a catalog, if a back level copy of the file is available, you can RESTORE or

IMPORT the file to gain access to the file.

Recovery for a File that is Partially Unreadable

The problem is either confined to the file itself, or to an entire physical extent of

the file.

1. Use an analysis tool as outlined in “Recovery for a File that Cannot Be

Opened” to determine if there is a mismatch in the number of extents. If the

catalog indicates one or more extents than there are on the volume, it may be

caused by a volume restored independent of the catalog.

2. For a catalog, you can import a previously exported copy. See “Recovery for a

File that Cannot Be Opened” for use of these tools.

3. If there is no catalog mismatch, a backup copy of the file must be restored,

using BACKUP/RESTORE, EXPORT/IMPORT, or REPRO.

Recovery for a File that is Completely Unreadable

Either the file has been destroyed, or the catalog and volume are not synchronized.

1. Analyze the catalog with LISTCAT to determine if the damage is in the file or

in the catalog.

2. Regain access to data

v If the damage is to the file or a catalog, use IMPORT or REPRO to restore the

file. This gives you access to a downlevel copy of the data.

v If the file has a CMP-UNDET compression status, the backup copy of the file

must be restored, using BACKUP/RESTORE, EXPORT/IMPORT, or REPRO.

Recover

Chapter 8. Data Protection and Data Recovery 145

Catalog is Unusable

Cause of Failure

A catalog may become unusable because of physical damage to the catalog.

Depending on the extent of the damage and prior actions, it may be possible to

gain access to current level catalog entries or to downlevel catalog entries.

Error Conditions:

v Catalog can be opened, but many VSE/VSAM files cannot be opened.

v The catalog cannot be opened.

v The catalog volume is unusable.

Overview

An unusable catalog can be reestablished, provided certain backup procedures

made possible by the system copy utility and the REPRO command are followed.

This provides a downlevel version recovery when a file or volume is damaged or

unusable.

Recovery for a Catalog that Can Be Opened, but Many

VSE/VSAM Files Cannot Be Opened

A problem with the catalog probably exists. This can be determined by using an

analysis tool. If I/O errors are encountered or mismatches are detected, some form

of catalog recovery is required. If not, the problem is confined to the files

themselves and the procedures given for “Recovery for a File that Cannot Be

Opened” on page 145 can be used.

1. Use the analysis tool LISTCAT to determine if a problem exists in the catalog.

This can be done by comparing a previous LISTCAT list with one of the

suspect catalog.

2. If the problem is with the catalog, recovery depends on the availability of

backup copies of the catalog, volumes, and files.

Proceed as follows:

a. Delete each VSE/VSAM file that cannot be opened.

b. Redefine these files in the catalog, or use the IMPORT command to load

backup copies created by the EXPORT command.

c. If backup copies created by the EXPORT command are not available, load

the files with backup REPRO copies, if available.

Recovery for a Catalog that Cannot Be Opened

You must have either:

v Backups of all data sets of this damaged catalog, or

v A copy of the whole volume.

For catalogs, proceed as follows:

1. As applicable:

v Reload the backups of the data sets into a newly defined catalog.

v Restore the copy of the whole volume.
2. Use LISTCAT listings of backup files and current files to determine if there are

mismatches. If entry mismatches are detected, see “Catalog Entry Mismatches”

on page 147.

3. For those files with other than an RBA or general mismatch, delete the file and

reestablish with a backup copy of the file created by the IMPORT command or

the REPRO command.

Recover

146 VSE/VSAM User’s Guide and Application Programming

Recovery for a Catalog Volume that is Unusable

v See the procedure “Recovery for a Catalog that Cannot Be Opened” on page 146.

Catalog Entry Mismatches

Whenever a catalog is used out of synchronization with the volumes it owns, there

is the possibility that the information in the catalog does not match the physical

characteristics of the volumes or files that it describes. Catalog entry mismatches

may indicate that the data is inaccessible, partially accessible or completely

accessible.

The descriptions of catalog mismatches are meant to guide you through a

comparison of two LISTCAT listings that you have produced:

 One listing of a catalog taken before the catalog is restored.

 One listing of a catalog taken after the catalog is restored.

If you notice a difference in the entries of the two listings:

1. For the description of LISTCAT keyword fields, consult the manual VSE/VSAM

Commands in “Interpreting LISTCAT Output.”

2. Determine what mismatch has occurred by following the descriptions given

under “Determination of Mismatches” below.

This method is for the analysis of catalogs for out of synchronization conditions

that may occur when the catalog is restored to a previous level.

Determination of Mismatches: By comparing the LISTCAT runs that were made

when the catalog was backed up with those when the catalog is restored, critical

changes can be detected.

Volume Mismatches:

Mismatched Space Map: This mismatch indicates that the catalog does not correctly

reflect the tracks (Min CAs) on the volume occupied by its VSE/VSAM files. Files

wholly contained in space correctly indicated as allocated can be accessed if their

file descriptions in the catalog are correct.

Mismatched Data Space Group: This mismatch shows that the catalog does not

correctly reflect the VSE/VSAM files that it owns on the volume. Files wholly

contained within data spaces that are accurately described are accessible if their file

descriptions in the catalog are correct.

Mismatched File Directory: This mismatch shows that the catalog does not correctly

reflect the files it owns on the volume. Files known from the file directory are

accessible if their descriptions are correct.

File Mismatches:

Mismatched Statistics: These mismatches do not affect accessing of a file.

Mismatched High RBA: This mismatch indicates that the catalog does not correctly

reflect the end of data in a file. Correct this condition by reopening the file, which

causes automatic VERIFY to reset the high RBA.

Mismatched Extents: This mismatch indicates that the file has acquired additional

extents that are not reflected in the catalog. The data contained in the extents that

Recover

Chapter 8. Data Protection and Data Recovery 147

are correctly identified may be accessed. For a key-sequenced file it may be

necessary to treat the data portion as an entry-sequenced file 0n order to access the

data.

Mismatched Volume or Key Range: This mismatch indicates that the file:

v Was extended to a volume which is unknown to the catalog’s file record, or

v On the volume has the same name as the catalog, but it is not the same file that

is described in the catalog.

If the file was extended to a volume not known in its catalog record, the extents of

the file on that volume are not accessible. The extents of the file on known

volumes may be accessible.

Actions that Cause Catalog Mismatches: There are several actions that cause

mismatches from a backup catalog. Some of these are overt actions such as the use

of the DEFINE and DELETE commands to create files or data spaces. Others are

automatic system actions, such as acquiring additional extents.

Define/Delete/Extend Data Space: Any of these actions cause the data space group

set of fields for a data space to be invalid in a backup catalog.

Define/Delete Files: Either of these actions cause the file directory in the volume

record and some of the file entries to be invalid in a backup catalog. The use of the

EXPORT command may cause a deletion. The use of the IMPORT command

always causes an entry definition.

Add/Remove Volumes: The ALTER ADDVOLUMES command is used to add a

volume to a file as a candidate. The ALTER REMOVEVOLUMES command is used

to remove a volume from a file as a candidate.

File Extension through Suballocation: Extension causes the volume space map in the

backup catalog to be invalid as well as the entry for the file.

Minimization of Catalog Mismatches: The possible catalog mismatches described

above, which cause files to be wholly or partially inaccessible, are all caused by the

DEFINE, DELETE, and ALTER commands, or by the extension of VSE/VSAM files

or data spaces. Because DEFINE, DELETE, and ALTER are always known to you, a

backup copy of the catalog can be made every time one of these commands is

used. Therefore, the only action that invalidates a backup catalog without you

being aware is the extension of space. Thus, the minimization of space extension

tends to minimize critical catalog changes. To prevent any VSE/VSAM object from

extending, you can define VSE/VSAM objects with no secondary extent value. As

long as a VSE/VSAM object does not extend, it remains totally accessible from a

backup copy of the catalog.

Volume is Inaccessible

Cause of Failure

A given volume may become wholly or partially unusable because of physical

damage to the volume, or because the catalog that owns the volume was restored

to a state that is not synchronized with the volume.

If the problem is because of a catalog restore operation, the procedure outlined

under “Catalog is Unusable” on page 146 can be used to correct the condition.

Recover

148 VSE/VSAM User’s Guide and Application Programming

If the problem is because of physical damage to the volume, recovery depends on

the availability of backup copies of the catalogs, volumes, and files.

Error Conditions

v Volume is totally unusable.

v Volume is partially unusable.

Overview

A given volume that is wholly or partially unusable can be reestablished if backup

copies of the data are available. In certain cases, the current version of the data can

be extracted from the unusable volume and reestablished in the system.

Recovery for Volume that is Totally Unusable

You can recover only if you have a volume backup and a catalog volume backup

created at the same time (that is, at the same level), or if you have copies of the

files created by the REPRO command or by the EXPORT command.

If you have backup volumes:

1. Restore the damaged volume(s).

2. Compare the LISTCAT listing from the backup level with the current LISTCAT

listing for possible mismatches.

3. Use the EXPORT command or the REPRO command to move the downlevel

copies recovered to temporary files.

4. Initialize the volume and reestablish nonVSAM files.

5. If there is a volume mismatch which requires the use of the EXPORT command

or the REPRO command, use the DELETE command with the FORCE option to

clean up the volume and to remove the volume entry from the catalog (file

entries are marked unusable); then, define space on the volume.

6. Use the IMPORT command or the REPRO command to reestablish the files.

These files are downlevel and any update applied after the backup was made

has to be reapplied to make the file current.

7. If reestablished nonVSAM files are cataloged, delete and redefine the

nonVSAM entries.

If you do not have volume backup, but you do have a file backup:

1. Initialize the volume and reestablish the nonVSAM files.

2. Use DELETE FORCE to clean up the volume of VSE/VSAM ownership and

data spaces. This will also remove the volume entry from the catalog and mark

file entries unusable.

3. Reestablish files

v If copies created by the EXPORT command of VSE/VSAM files are available,

use the IMPORT command to reestablish them.

v If backup files created by the REPRO command exist, delete the unusable

files and redefine them using the DEFINE command and then load the

backup copies into the newly created files with the REPRO command.

v If reestablished nonVSAM files were cataloged, delete and redefine the

nonVSAM entries.

Recovery for Volume that is Partially Unusable

If the VSE/VSAM files are partially or totally unusable, but the nonVSAM files are

accessible, use the above procedure. If the VSE/VSAM files are accessible, but the

nonVSAM files are not, proceed as follows:

1. Recover the VSE/VSAM files on the volume using the EXPORT command.

Recover

Chapter 8. Data Protection and Data Recovery 149

2. Initialize the volume and reestablish the nonVSAM files.

3. Using the IMPORT command, reestablish the VSE/VSAM files.

4. If the reestablished nonVSAM files were cataloged, delete and redefine the

nonVSAM entries.

Quick Recovery

There are some applications (such as online teleprocessing systems) which require

that file recovery be done as quickly as possible. In this type of situation, normal

VSE/VSAM recovery procedures may be too time consuming to be of much use.

For quick recovery, you have to:

v Implement certain “restrictions”.

v Ensure data integrity.

v Recover lost objects.

Procedure for Quick Recovery

1. Implement “restrictions”:

v Define all files so that they cannot acquire additional extents.

v Allocate sufficient extents (overallocate).

These definitions ensure that the backup catalog stays in synchronization with

the files that the catalog controls.

Explanation to “overallocate extents”: The restriction that files cannot acquire

additional extents does not mean that CA splits will not be allowed. As long as

there is sufficient unused space in the current extent, CA splits can still occur.

To provide sufficient space for CA splits, overallocate your extents. For

example, an overallocation of 20 cylinders for any VSE/VSAM file allows that

at least 20 CA splits may occur.

Note: Overallocate for the index also, because at least one new index record

will be created whenever a CA split occurs.

2. Create a backup of the catalog whenever any file is defined, deleted, or altered.

To do so, use the REPRO command.

3. Create a backup of the compression control data set whenever a compressed file

is defined, deleted, altered, or loaded. To do so, use the REPRO command.

4. Recover objects:

If the catalog controlling the files is lost, do the following:

a. REPRO the backup catalog into the existing catalog.

b. Run VERIFY against all files controlled by the catalog.
If a volume is lost, do the following:

a. Restore the backup copy of the lost volume.

b. If the volume is the catalog volume, REPRO the corresponding backup

catalog into the existing catalog, and if applicable, REPRO the

corresponding backup of the compression control data set into the existing

CCDS.

c. Run VERIFY against all files on this volume. (The files may also belong to

other catalogs.)

If the volume is a catalog volume, also run VERIFY against all files of this

catalog (where the files may reside also on other volumes).

d. Update restored files from journaled records.

Recover

150 VSE/VSAM User’s Guide and Application Programming

Chapter 9. VSE/VSAM Support for SAM Files

This Chapter ...

Explains how you can prepare your existing SAM files and programs so as

to take advantage of the functions provided by VSE/VSAM.

The chapter highlights the optional and required steps and definitions, and

includes examples for loading and defining SAM ESDS files.

Overview

About SAM ESDS Files

A SAM file that can be processed within VSE/VSAM data space is called a SAM

ESDS file.

You can move/convert your SAM files to:

v SAM ESDS files, or

v VSE/VSAM ESDS files.

Notes:

1. A SAM ESDS file is not identical to a VSE/VSAM ESDS file. For more

information, refer to “Differences Between VSE/VSAM ESDS and SAM ESDS

File Format” on page 179.

2. SAM ESDS files can only be created and used if the VSE/VSAM Space

Management for SAM Function is effective. This is always true for the z/VSE

environment.

SAM files that have been converted can take full advantage of the processing

capabilities of VSE/VSAM. You can use SAM with VSE/VSAM for data and work

files, and you can move data and programs from SAM control to VSE/VSAM

control.

The full conversion of SAM files involves the three steps explained under “Levels

of Migrating Data and Programs from SAM to VSE/VSAM Control” on page 155.

You have the option to stop at any level of the conversion. Depending on the level

that you implement, you can use specific VSE/VSAM functions and capabilities for

processing the files.

To indicate a SAM ESDS file and provide SAM record format information, specify

the RECORDFORMAT parameter in the IDCAMS DEFINE CLUSTER command for

a NONINDEXED (ESDS file). During VSE/VSAM access of a SAM ESDS file, SAM

records are processed according to your specifications in the RECORDFORMAT

parameter. To the VSE/VSAM program, a SAM ESDS file appears as though it is in

VSE/VSAM ESDS file format.

SAM ESDS files can be accessed by VSE/VSAM (ACB) access if the files are

formatted with control intervals (CIs).

© Copyright IBM Corp. 1979, 2005 151

About the VSE/VSAM Space Management for SAM Function

VSE/VSAM offers the VSE/VSAM Space Management for SAM Function. The

function allows you to:

v Define and process your SAM files within VSE/VSAM data space.

v Request quantities of disk space rather than absolute locations.

To define and process your SAM files in VSE/VSAM data space, you use a DTF,

and SAM imperative macros (for example, OPEN, GET, PUT). You indicate your

intention to use a SAM file in VSE/VSAM data space by opening a DTF that

specifies a file name described in a VSE/VSAM DLBL statement. This tells OPEN

that the file to be accessed is a SAM ESDS file. Then, managed-SAM OPEN

retrieves file information from the VSE/VSAM catalog rather than from the VTOC.

Data is written in a format similar to a VSE/VSAM ESDS file. The control interval

(CI) format is used; where the CI is the basic unit of information that is

transmitted to or from a direct-access device. This format allows:

v VSE/VSAM access (through ACB) to SAM files in VSE/VSAM data space.

v Disk independence (for example, maximum DTF BLKSIZE is not limited to disk

track size, but only to CI size minus 7).

You need not specify absolute extent limits for the file, because VSE/VSAM

determines the location of the file.

Advantages in Using SAM ESDS Files

If you move unmanaged-SAM files into SAM ESDS files, you can take advantage

of many of the functions available in VSE/VSAM, including IDCAMS commands.

The following are the functions that are available after you complete the first step

explained under “Levels of Migrating Data and Programs from SAM to

VSE/VSAM Control” on page 155.

Dynamic Allocation

With VSE/VSAM managing your space, you can take advantage of VSE/VSAM’s

dynamic allocation. The allocation of file space is simpler because you do not have

to specify extent limits. You need only request a quantity of space. This space is

allocated when it is needed. If more space is subsequently needed, a secondary

quantity is allocated.

VSE/VSAM’s dynamic file capability allows you to define a file in the VSE/VSAM

catalog without allocating space for it. Space is allocated at OPEN and deleted at

CLOSE under control of the DLBL DISP parameter. This dynamic file capability

applies to SAM ESDS files.

Simplified Job Control

This improvement is available to the SAM user through the VSE/VSAM Space

Management for SAM Function. The information required by the system to check the

location and characteristics of files is stored in the VSE/VSAM catalog. The need

for DLBL statements is also removed for many of the IDCAMS commands. Because

VSE/VSAM user catalogs are programmer logical units, they too are eligible for

automatic assignment. Operator communications are also simplified because the

operator may mount a requested volume on an available drive without the need to

assign the drive.

SAM ESDS: Overview

152 VSE/VSAM User’s Guide and Application Programming

Default Modeling

Default modeling allows you to select your own parameter defaults in place of the

usual system defaults during explicit define. The ability to specify default

parameters for the IDCAMS DEFINE CLUSTER command through default

modeling is available for SAM ESDS files as well as for VSE/VSAM files.

Implicit File Definition

SAM ESDS files do not have to be explicitly defined (by way of the IDCAMS

DEFINE command) prior to the time they are opened. An implicit define of a

reusable SAM ESDS file occurs during managed-SAM OPEN if the file has not yet

been explicitly defined.

Generally, when a file is implicitly defined, it may be implicitly deleted during

managed-SAM CLOSE. This depends on the disposition parameters specified on

the DTF or DLBL statement. For more information, refer to “Implicit Deletion of a

SAM ESDS File” on page 173.

Device Independence

You do not have to be concerned with different track and cylinder sizes for various

types of devices. (The DTF DEVICE and DEVADDR parameters are ignored by

managed-SAM OPEN so that the file may reside on any disk device type.)

Allocation sizes may be requested in terms of number of records and average

record length rather than tracks and cylinders, which are device-dependent. This

may be specified in the DEFINE CLUSTER command for explicitly defined files, or

in the DLBL RECORDS and RECSIZE parameters for implicitly defined files. For

implicitly defined files, a default secondary allocation size of twenty percent of the

primary allocation size (rounded up) is assumed if none is specified.

The control interval (CI) is the basic unit of information that VSE/VSAM transmits

to or from a direct-access device. Because the CI size has no relation to the track

and cylinder size of a particular device, this makes the processing of files disk

independent.

IDCAMS Commands

You do not need to use different utility programs to manipulate files. With the

VSE/VSAM Space Management for SAM Function effective, you can use IDCAMS

commands to print, copy, alter, delete, and move files from one system to another.

For special considerations in using the commands, refer to “The IDCAMS

Commands for a SAM ESDS File” on page 170.

Security and Integrity of Data

VSE/VSAM ensures the security and integrity of data through a combination of

VSE/VSAM facilities:

v The share options support for SAM ESDS files.

v Password-protection to prevent unauthorized access.

v Automatic CLOSE facility for files not closed before the end of job.

Data Recovery

Data recovery is supported for a SAM ESDS file through various IDCAMS

commands. As a basis for reconstruction (if the original file becomes inaccessible),

you can use the EXPORT and IMPORT commands in the same way as for a

SAM ESDS: Advantages

Chapter 9. VSE/VSAM Support for SAM Files 153

VSE/VSAM file. That is, you can create a portable copy of a SAM ESDS file by

using the EXPORT command, and introduce the copy of the file into the system by

using the IMPORT command

Additional Functions Available for Managed-SAM Access

In addition to the specific functions mentioned above, the following additional

functions are available to facilitate processing of SAM ESDS files:

v Multiple extents and multiple volumes are supported, unless:

– During definition of the file there was no secondary allocation size specified,

or a single volume was specified, or

– The program accessing the file does not support multiple extents (for

example, DTFPH with EXCP access).
v A SAM ESDS file can be extended through the request in the DISP parameter of

the DLBL statement.

Planning for Files

Note that all the functions described in this chapter apply also to work files, but

you may find some of them as being inappropriate (for example,

password-protection and data recovery).

Work Files

Automatic Space Management

Work files may need varying amounts of space for different jobs. For some jobs

only a small quantity of space is needed. At other times, a great deal of space is

needed.

VSE/VSAM provides automatic space management. That is, you do not need to:

v Ensure that enough space is available for jobs that require large quantities of

space.

v Keep large amounts of space tied up. The space needed for work files can be

smaller.

You can think in terms of the average size of space needed rather than the

maximum size needed. This is because VSE/VSAM provides dynamic secondary

allocation. You can make your primary allocation nearer to the average size of space

needed; if more is needed, VSE/VSAM gets the necessary space by using the

secondary allocation. In addition to dynamic secondary allocation, VSE/VSAM

provides dynamic primary allocation. This allows you to define a file that does not

need space until it is opened. (A file defined in this way is called a dynamic file.)

When a dynamic file is opened, the needed space is provided by VSE/VSAM. The

options available at OPEN and the disposition of the files at CLOSE depend on

what you code in the DISP parameter of the DLBL statement, or what is specified

in the DTF (for example: DELETFL=NO).

Partition/Processor Independence

VSE/VSAM provides for partition/processor independence through the implicit

define or explicit define with the dynamic data set capability. This VSE/VSAM

support eliminates the tasks of:

v Assigning different work files to different disk locations for every partition.

v Specifying those disk locations in your job control statements.

SAM ESDS: Advantages

154 VSE/VSAM User’s Guide and Application Programming

The file-ID is chosen according to the partition in which the job is running, and

space is assigned as needed. Work-space can also be shared between processors.

The same job can be processed in any partition of a number of different processors

without conflict in the catalog. When the file is closed, it may be deleted or

deallocated. The space the file occupied is reclaimed and made available for use by

other files.

Disposition

The disposition of a reusable file (REUSE) can be controlled through the DLBL

DISP parameter. A file can be allocated, reset, or implicitly defined at OPEN

according to these specifications. Whatever you specify in the DLBL DISP

parameter overrides whatever was specified in the DTF. Pertinent information from

the disposition parameters and the DTF is saved for closing of the file. At that

time, the file is kept, reset, deallocated, or deleted according to the disposition that

is specified in the DTF and DLBL statement. When you do not specify the DISP

parameter, a default is chosen according to the type of file opened or closed. The

default disposition is the same as would occur for unmanaged-SAM files. For

example, the default disposition for:

v DTFSD OUTPUT data file is DISP=(NEW,KEEP)

v DTFSD INPUT data file is DISP=(OLD,KEEP)

v DTFSD work file is DISP=(NEW,DELETE).

If DELETFL=NO, then DISP=(NEW,KEEP).

For disposition parameter specifications and their results, see Figure 13 on page 32

and Figure 15 on page 35. Disposition processing for VSE/VSAM (ACB) access of a

SAM ESDS file is the same as for a VSE/VSAM ESDS file.

Extending Existing SAM ESDS Files

With VSE/VSAM support you can also extend existing SAM ESDS files through

the use of the DLBL DISP parameter. For example, to extend a SAM ESDS file

during output processing using SAM access, DISP=OLD would position the file to

end-of-file to allow for extension. Refer also to Figure 13 on page 32.

Space for extension of a file is allocated (if necessary) according to the secondary

space allocation specified at definition time. SAM ESDS files are always extended

in SPEED mode. See “Example 4: Define a Dynamic SAM ESDS File and Access”

on page 177.

This support is not provided for SAM ESDS work file access.

Levels of Migrating Data and Programs from SAM to VSE/VSAM

Control

Moving from SAM-control to VSE/VSAM-control consists of up to three steps:

 Step 1: Move unmanaged-SAM data (files) into SAM ESDS files.

This allows managed-SAM access.

v Step 2: Change managed-SAM access programs to VSE/VSAM access programs.

SAM ESDS files are accessible by VSE/VSAM.

v Step 3: Convert data (files) from SAM ESDS files to VSE/VSAM ESDS files.

Files are accessible by VSE/VSAM only.

SAM ESDS: Work Files

Chapter 9. VSE/VSAM Support for SAM Files 155

Depending on the VSE/VSAM functions you want to be able to use, you can

simply implement only the first step, or you can complete the other steps as well.

Figure 28 illustrates the relationship of the migration levels and steps.

 Figure 29 lists the valid combinations of access modes and file types that can be

used when the VSE/VSAM Space Management for SAM Function is effective.

Functions Available at the Various Migration Levels

Step 1: Move SAM Files to SAM ESDS Files

After you completed this step, you get all the functions described under

“Advantages in Using SAM ESDS Files” on page 152.

Before you can move your SAM files, you have to create SAM ESDS files as

explained under “Creating a SAM ESDS File” on page 157.

Step 2: Change Managed-SAM Access Programs to VSE/VSAM

Programs

After you completed this step, you get the following additional access functions

(they are provided by VSE/VSAM access):

v VSE/VSAM provides a single ACB/RPL format and a single set of request

macros for all file types. You can generate the ACB or the RPL by specifying the

GENCB macro.

v The file can be accessed in a direct manner through access by RBAs.

v The file can be processed in a skip sequential manner or sequentially backwards.

v Access statistics are maintained; they can be displayed through LISTCAT.

 ┌──── Step 2 ─────┐

 │ │

 │ d

┌───────────────┐ ┌───────┴───────┐ ┌───────────────┐ ┌───────────────┐

│ Unmanaged-SAM │ │ Managed-SAM │ │ VSE/VSAM │ │ VSE/VSAM │

│ Access │ │ Access │ │ Access │ │ Access │

└───────┬───────┘ └───────┬───────┘ └───────┬───────┘ └───────┬───────┘

 │ │ │ │

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

│ SAM │ │ SAM ESDS │ │ SAM ESDS │ │ VSE/VSAM ESDS │

│ Files │ │ Files │ │ Files │ │ Files │

└───────┬───────┘ └───────────────┘ └───────┬───────┘ └───────────────┘

 │] │]

 │ │ │ │

 └─── Step 1 ────┘ └─── Step 3 ────┘

Figure 28. Migration from SAM Control to VSE/VSAM Control

┌───────────────┬──────────────────────────┐

│ │ Access Mode │

│ File Type ├────────────┬─────────────┤

│ │ VSE/VSAM │ Managed-SAM │

│ │ Access │ Access │

├───────────────┼────────────┼─────────────┤

│ SAM ESDS │ Valid │ Valid │

├───────────────┼────────────┼─────────────┤

│ VSE/VSAM ESDS │ Valid │ Invalid │

└───────────────┴────────────┴─────────────┘

Figure 29. Valid Combinations of Access Methods and File Types

SAM ESDS: Migration Levels

156 VSE/VSAM User’s Guide and Application Programming

v Multiple (CI) buffers may be used in support of VSE/VSAM’s read-ahead

capability.

v A password may be specified in the ACB so that the operator is not involved

with passwords.

v The job is not canceled due to logical or physical errors as is done in SAM.

Rather, a return code and error code are passed back to the user to allow

diagnosis of the failure within the user’s program.

v Multiple strings and chained RPL support are provided by VSE/VSAM.

Step 3: Convert SAM ESDS Files to VSE/VSAM ESDS Files

After you completed this step, you get the following additional capabilities:

v You can build alternate indexes or paths. It allows you other ways of gaining

access to your files, thereby eliminating the need to keep multiple copies of the

same information sorted differently for different applications.

v You can specify RECOVERY in the DEFINE CLUSTER statement. This parameter

will help ensure data integrity by preformatting every CA before records are

loaded into it. In case of load or extend failure, the IDCAMS VERIFY command

can be used to recover data written, and your program may resume writing data

from the last correctly-written data record.

v Records can be spanned (SPANNED) records, eliminating the need for very large

CIs.

v You might be able to define the file with the COMPRESSED attribute to save

DASD space.

v Generally, a VSE/VSAM ESDS file is portable to MVS and can be accessed by

way of MVS/VSAM. See Appendix D, “Compatibility With Other Products,” on

page 329 for specific cases when files are not portable.

To copy data from SAM ESDS files to VSE/VSAM ESDS files, you can use the

IDCAMS command REPRO; refer to page 172.

Creating a SAM ESDS File

To create a SAM ESDS file, you have to:

1. Set up a quantity of space (see below).

2. Define a SAM ESDS file (see below).

After you created a SAM ESDS file, you can:

v Access the file by using:

– DTF and SAM imperative macros with VSE/VSAM DLBL

– ACB and VSE/VSAM imperative macros with VSE/VSAM DLBL

– IDCAMS commands with VSE/VSAM DLBL
For explanations, refer to “Access to a SAM ESDS File” on page 165.

v Delete the file either:

– Explicitly (through IDCAMS), or

– Implicitly (through managed-SAM CLOSE).

For explanations, refer to “Implicit Deletion of a SAM ESDS File” on page

173.

Setting Up a Quantity of Space

Space for a SAM ESDS file may be suballocated by VSE/VSAM from data space

that was previously defined for VSE/VSAM files. You need not assign separate

space for SAM ESDS files. The size and boundaries of the suballocated space are

SAM ESDS: Migration Levels

Chapter 9. VSE/VSAM Support for SAM Files 157

communicated to the managed-SAM access routines at OPEN and secondary

allocation time. You define this space (ideally entire volumes) in the usual way by

using one or more of the following IDCAMS commands:

v “DEFINE MASTERCATALOG”

v “DEFINE SPACE”

v “DEFINE USERCATALOG”

These commands are described in the manual VSE/VSAM Commands.

Defining a SAM ESDS File

After sufficient space is defined, you can define a SAM ESDS file in one of two

ways:

v Explicitly. That is, by using the IDCAMS command DEFINE CLUSTER.

v Implicitly. That is, by providing the required file information in the job control

statements so that the file can be defined at managed-SAM OPEN.

Besides these defines, you can do the following with a file that already has been

explicitly or implicitly defined and used:

 extend it, or

 reset it to empty, or

 reuse it.

Note: If the catalog is password-protected, implicit define will request the update

or higher level password of the catalog, and implicit delete will request the

master password of the catalog.

The following explains explicit and implicit define.

Explicit Define Cluster (Using the DEFINE CLUSTER

Command)

You define a SAM ESDS file explicitly by specifying parameters in the IDCAMS

command DEFINE CLUSTER.

The following is not a complete list of the parameters that are eligible to be

specified. However, for SAM ESDS files, you need to evaluate the applicability of

these particular parameters:

v NAME -- Cluster level (Required parameter)

v NAME -- Data component level (Optional parameter unless you wish to request

single extent primary allocation, in which case it is required)

v NONINDEXED -- (Required parameter)

v RECORDFORMAT -- (Required parameter)

v RECORDSIZE -- (Required parameter if RECORDFORMAT is in fixed format;

for example, FIXUNB or FIXBLK. Optional for V, VB, or U format.)

v RECORDS or

TRACKS or

CYLINDERS or

BLOCKS

(One of these parameters is required unless a default model exists for a SAM

ESDS file.)

v VOLUMES -- (Required parameter unless a default model exists for a SAM

ESDS file.)

SAM ESDS: Creating

158 VSE/VSAM User’s Guide and Application Programming

DEFINE CLUSTER Command -- Explanations of Parameters

NAME(entryname)

Specifies the file-ID of the SAM ESDS file.

 For a single extent primary allocation you must specify both the cluster

name and the data component name. (See “Single Extent Primary

Allocation” on page 161.) Otherwise, the data component name is optional

and if specified, can be any name.

 Also, you can specify that a file be partition independent, or both partition

independent and processor independent (see “Partition/Processor

Independence Specification” on page 161.) Specifying file names at both

levels (cluster and data) gives you the capability to access data under two

different file IDs.

NONINDEXED

Specifies that the file defined is an ESDS file.

RECORDFORMAT(format)

Establishes a NONINDEXED file as a SAM ESDS file.

Note: This parameter is required to explicitly define a SAM ESDS file. You

can specify it either at the cluster level or data component level.

format For format, substitute one of the following values:

 FIXUNB, FIXBLK(logicalrecordsize), VARUNB, VARBLK, and UNDEF

indicate that data records are stored in CI format and therefore are

accessible and managed by VSE/VSAM.

 NOCIFORMAT indicates that data is not stored in CI (VSE/VSAM) format.

Therefore, DTFPH with physical I/O (EXCP) must be used to access the

data records. (Do not use managed-SAM access or VSE/VSAM access.) The

DTFPH method of access should only be used for local (work) files. Other

SAM programs will not be able to read or write to the file (except for other

programs that have been written specifically for NOCIFORMAT access; for

example, EXCP). You cannot specify NOCIFORMAT together with any of

the following parameters: CONTROLINTERVALSIZE, ERASE,

BUFFERSPACE, EXCEPTIONEXIT, or WRITECHECK.

 logicalrecordsize indicates the length of the SAM logical record. This value

must always be specified when using FIXBLK format.

RECORDSIZE(average maximum) and RECORDS(primary)

When you specify the RECORDFORMAT parameter with the FIXUNB or

FIXBLK subparameter, you must specify the maximum SAM logical block

size in the RECORDSIZE(maximum) parameter.

Format Abbreviation Meaning Type of Access

FIXUNB F Fixed, unblocked Managed-SAM/VSAM

FIXBLK FB Fixed, blocked Managed-SAM/VSAM

VARUNB V Variable, unblocked Managed-SAM/VSAM

VARBLK VB Variable, blocked Managed-SAM/VSAM

UNDEF U Undefined Managed-SAM/VSAM

NOCIFORMAT NCIF See below See below

SAM ESDS: Creating

Chapter 9. VSE/VSAM Support for SAM Files 159

Note: This parameter specifies the largest SAM logical block size that may

be used. If a DTF is opened for OUTPUT or WORK and specifies a

BLKSIZE larger than the maximum SAM logical block size allowable

in the file, the OPEN fails and the job is canceled. You must be

careful to specify the maximum RECORDSIZE that a system

program or program product will use during explicit define of the

file. If multiple system programs or program products are to use the

same (work) file, the maximum RECORDSIZE should be equal to

the largest record that any of the programs will use.

If the RECORDFORMAT parameter is specified as VARUNB, VARBLK, or

UNDEF and the RECORDSIZE parameter is omitted, the RECORDSIZE

defaults to 4089 for the average and 4089 for the maximum (that is,

RECORDSIZE (4089 4089)). (Note that RECORDSIZE(maximum) is used in

calculating the CI size and therefore has no meaning when NOCIFORMAT

is specified.)

 Whether or not you specify the NOCIFORMAT subparameter, you can use

the RECORDSIZE(average) and RECORDS parameters for the suballocation

of space. When using the RECORDSIZE and RECORDS parameters

together, they must be consistent in units of reference (either both refer to

SAM logical records or both refer to SAM logical blocks). Note that both

the average and maximum record size must be specified in the

RECORDSIZE parameter when one is specified.

 For V, VB, or U records, the RECORDSIZE parameter is optional. For F or

FB records, the RECORDSIZE parameter is required. For FB records, the

RECORDSIZE must be a multiple of the SAM logical record size specified

in the RECORDFORMAT parameter. For V or VB records, the maximum

RECORDSIZE parameter must include room for the control information for

variable length records (the record length field is four bytes and the block

length field is four bytes) because the control information is part of the

SAM logical block.

TRACKS|CYLINDERS|BLOCKS(primary)

The rules involved in the use of these parameters are the same for a SAM

ESDS file as for a VSE/VSAM file. For information concerning the

TRACKS, CYLINDERS, and BLOCKS parameters, search the index of the

manual VSE/VSAM Commands; they exist, for example, for the “DEFINE

ALTERNATEINDEX” command.

VOLUMES(volser)

Specifies the volume(s) to contain the SAM ESDS file. Every volume that

you specify must be owned by the catalog that is to own the SAM ESDS

file. If not specified during define of a SAM ESDS file, VSE/VSAM picks a

set of volumes for you if you have a default model

(DEFAULT.MODEL.ESDS.SAM) defined. For information on the

VOLUMES parameter, search the index of the manual VSE/VSAM

Commands; they exist, for example, for the “DEFINE ALTERNATEINDEX”

command.

Additional Considerations

v The RECORDFORMAT attributes can be modeled by means of the MODEL

parameter.

v You should specify REUSE when a SAM ESDS file is used mainly for work

files. You should additionally specify NOALLOCATION in the DEFINE

CLUSTER command to provide the dynamic file capability to work files.

SAM ESDS: Creating

160 VSE/VSAM User’s Guide and Application Programming

v Do not specify RECOVERY. (VSE/VSAM defaults to SPEED for a SAM ESDS

file.) You cannot build an alternate index or define a path over a SAM ESDS file.

Note: For work files, a zero retention period is the default and is normally

appropriate to avoid operator communications during a subsequent OPEN if

the file was not deleted at CLOSE.

Single Extent Primary Allocation

NAME(DOS.WORKFILE.SYSentryname) - data component level

Some programs that access data through DTFPH with EXCP may require that disk

space for the file be allocated as a single extent. You can specify that you want the

primary space allocated as a single extent by specifying the data component name

as above. (Normally, VSE/VSAM may obtain an allocation in as many as five

extents.) The cluster name is still chosen in the same manner as before, but

DOS.WORKFILE.SYS must prefix the data component name to ensure that space is

allocated within a single extent.

VSE/VSAM will deny the allocation request if it cannot obtain the primary

allocation in a single extent.

Partition/Processor Independence Specification

NAME(%entryname) - Partition independent file-ID.

You specify a partition-unique file-ID by using the prefix “%” in the cluster name

parameter of the DEFINE CLUSTER command. (The file-ID is limited to

twenty-seven characters in this case.)

If your system also has the Interactive Computing and Control Facility (ICCF)

installed, you are allowed only one partition-independent file for every ICCF

real-partition. (ICCF pseudo-partitions do not have unique partition IDs, so there

can be only one partition-independent file per partition.)

NAME(%%entryname) - Partition and processor independent file-ID.

To specify both a partition-unique and processor-unique file-ID together with a

single extent primary allocation, the cluster name must be prefixed with “%%” (the

file-ID is limited to twenty-seven characters in this case) and the data component

name must be prefixed with “%%DOS.WORKFILE.SYS” (the file-ID is limited to an

additional eleven characters in this case).

Implicit Define Cluster

Programming Interface Information

A SAM ESDS file can be defined implicitly through managed-SAM OPEN when

TYPEFLE=OUTPUT or TYPEFLE=WORK is specified in the DTF. An implicit

define cluster occurs as a result of the following two conditions:

v The SAM ESDS file (to be opened through the DTF and written to) is currently

undefined in the VSE/VSAM catalog, or the characteristics of the file were not

compatible with the DTF and the file has been implicitly deleted by OPEN.

v Enough information has been provided for the implicit define to occur.

VSE/VSAM gathers the necessary information from three sources:

– It makes several assumptions about the file.

– It extracts information from the DTF specifications.

SAM ESDS: Creating

Chapter 9. VSE/VSAM Support for SAM Files 161

– It extracts information from the job control statements.
The following explains the assumptions made by VSE/VSAM, and the

information gathered by VSE/VSAM from the DTF and from job control

statements.

Assumptions Made by VSE/VSAM

For an implicit define, VSE/VSAM always makes the following assumptions:

Parameter

Assumption

NONINDEXED

An ESDS file is defined.

NONSPANNED

The maximum length of a SAM logical block must not be greater than the

CI size minus 7.

NOWRITECHECK

VSE/VSAM access will not check for correct data transfer for records

written to the file. (In managed-SAM access, checking for correct data

transfer is controlled by the DTF VERIFY=YES or NO parameters. The

NOWRITECHECK specification has no meaning for the managed-SAM

user. It is used only during VSE/VSAM access.)

REUSE

It is possible for a user to reset an already existing file back to empty and

reuse it.

SHAREOPTIONS(1 3)

Either any number of users are permitted for input processing, or one user

is permitted for output processing.

SPEED

Direct access storage is not preformatted.

SUBALLOCATION

VSE/VSAM data space for the file was previously defined and a primary

allocation is suballocated at define.

UNORDERED

The volumes need not be used in the order specified in the EXTENT job

control statements or the default model if EXTENT statements are omitted.

USECLASS(0 P)

The file occupies class-0 data space.

Information Obtained from the DTF

VSE/VSAM extracts information either from the:

v DTFSD or

v DTFPH MOUNTED=SINGLE

to determine the following:

v CI size.

v Length of the maximum VSE/VSAM logical record (SAM logical block).

v Record format of the records in the file.

v SAM logical record size for FIXBLK.

From DTFSD Specifications (for Data files):

v CI size — derived from the CISIZE=nnnnn parameter. VSE/VSAM rounds this

value up to a valid CISIZE before defining the file. If zero or no value was

specified, VSE/VSAM chooses a CI size. If IOAREA2 is specified and CI size is

not specified, VSE/VSAM attempts to choose a CI size that ensures that at least

2 logical blocks will fit into a CI. If no CI size was specified, VSE/VSAM

computes the size on the base of the maximum record size.

SAM ESDS: Creating

162 VSE/VSAM User’s Guide and Application Programming

v Maximum record size — derived from the BLKSIZE=nnnn parameter. This value

(minus 8 for data OUTPUT DTFs) specifies the file’s maximum RECORDSIZE.

v Record format — derived from the RECFORM=xxxxxx parameter. Specifies the

RECORDFORMAT of the file. If the RECFORM=FIXBLK, the SAM logical record

size is derived from the DTF RECSIZE=nnnnn parameter.

From DTFSD Specifications (for Work Files):

v CI size — derived from the CISIZE=nnnnn parameter. VSE/VSAM rounds this

value up to a valid CISIZE before defining the file. If zero or no value was

specified, VSE/VSAM chooses a CI size. If no CI size was specified, VSE/VSAM

computes the size on the base of the maximum record size.

v Maximum record size — derived from the BLKSIZE=nnnn parameter. This value

specifies the file’s maximum RECORDSIZE.

v Record format — derived from the RECFORM=xxxxxx parameter. Specifies the

RECORDFORMAT of the file; FIXUNB and UNDEF are the only valid

subparameters that you can specify for work files.

From DTFPH MOUNTED=SINGLE (for Disk):

v CI size — derived from the CISIZE=nnnnn parameter If a non-zero value is

specified, VSE/VSAM rounds this value up to a valid CISIZE before defining

the file. Specifying zero is the same as not specifying a CI size. In this case,

VSE/VSAM indicates that the file is non-CI format; it is accessible only by EXCP

(not by VSE/VSAM or managed-SAM).

v Maximum record size —

– If CI format, maximum equals the DTF CISIZE minus 7.

– If non-CI format, this parameter does not apply.
v Record format —

– If CI format, the RECORDFORMAT is UNDEF.

– If non-CI format, the RECORDFORMAT is NOCIFORMAT.

Note: DTFPH (with a CISIZE of zero specified or no CISIZE specified) is the only

possible way you can implicitly define a non-CI format file. Also, if a

nonzero value is specified for the CISIZE parameter, it must be greater than

seven in order to choose a valid maximum record size.

Information Obtained from the Job Control Statements

Programming Interface Information

Certain parameters in the VSE/VSAM DLBL and EXTENT job control statements

provide the information that VSE/VSAM needs to implicitly define a file.

Information from the DLBL Statement: The DLBL statement provides the

following information for implicit define:

v file-ID — This parameter provides the unique name associated with the file.

To request single extent allocation through an implicit define,

DOS.WORKFILE.SYS must prefix the file-ID.

A partition/processor unique file-ID may also be specified. In this case the DLBL

file-ID must be specified with a prefix of “%” (partition-unique) or “%%”

(partition- and processor-unique) with a limit of twenty-seven characters. For

both partition/processor uniqueness and single extent primary allocation, the

DLBL file-ID prefix may be specified as “%%DOS.WORKFILE.SYS” (with a limit

of eleven additional characters).

SAM ESDS: Creating

Chapter 9. VSE/VSAM Support for SAM Files 163

If your system also has Interactive Computing and Control Facility (ICCF)

installed, you are allowed only one partition-independent file for every ICCF

real-partition. ICCF pseudo-partitions do not have unique partition IDs, so there

can be only one partition-independent file per partition.

v date — This parameter indicates either the retention period in days or the actual

expiration date. If this parameter is not present the normal default applies.

Note: For work files, specify a zero (retention period) to avoid operator

communications during a subsequent OPEN if the file was not deleted at

CLOSE.

v CAT=filename — This parameter indicates the catalog that owns the file. If this

parameter is not present the normal default applies.

v RECORDS=(primary,secondary) — This parameter designates the number of

SAM logical records for allocation purposes. This parameter must be specified if

the “number of tracks or blocks” parameter is omitted from the EXTENT

statement. If no secondary amount is specified, twenty percent of the primary

allocation is assumed. Zero may be specified for the secondary amount. If

RECORDS is specified, RECSIZE=n must also be specified.

v RECSIZE=n — This parameter indicates the average SAM logical record size; it

must be specified together with the RECORDS=(primary,secondary) parameter.

The value n is only used for space calculation; it does not influence the CI size.

Note: You may alternatively specify the average SAM logical block size in the

RECSIZE parameter. If you do this, you should also specify the number of

SAM logical blocks in the RECORDS parameter.

Information from the EXTENT Statement: The EXTENT statement provides the

following information for implicit define:

v Volume serial number — This indicates the volume that this file resides on.

There must be one EXTENT statement for every volume that the file is eligible

to reside on. If EXTENT statements are specified, this parameter is required on

every EXTENT statement.

v Number of tracks or blocks (specified in the first EXTENT statement if multiple

EXTENT statements are specified) — This indicates the number of tracks (CKD)

or blocks (FBA) to be allocated to this file. A secondary allocation size of twenty

percent of the primary allocation size (rounded up) is assumed. Whether it is

tracks or blocks is determined by the device type of the volume serial number

specified. This parameter is ignored on subsequent EXTENT statements, or if the

RECORDS/RECSIZE parameters are specified in the DLBL.

Note: The EXTENT statement is not required for implicit define if a default model

for a SAM ESDS file was previously defined (providing VOLUME

information) and RECORDS/RECSIZE are specified in the DLBL statement

(providing allocation information). When an implicit DEFINE is done, only

the VOLUMES parameter is allowed to be modeled.

End of Programming Interface Information

Resetting and Reusing a Previously-Defined File

You can specify that a file is to be reset and reused by specifying the

NOALLOCATION parameter together with the REUSE parameter in the DEFINE

CLUSTER command. This specification indicates that data space is not to be

suballocated to the file at DEFINE, but that it is to be suballocated as needed. This

type of file is called a dynamic file.

SAM ESDS: Creating

164 VSE/VSAM User’s Guide and Application Programming

A file may be implicitly defined at OPEN and implicitly deleted at CLOSE.

However, performance is not as good as for an explicitly defined dynamic file.

Using a SAM ESDS File

Access to a SAM ESDS File

Managed-SAM access to a SAM ESDS file is provided so that you can:

v Open it through DTF

v Access it through the SAM imperative macros

v Close it through DTF

Support is also provided for DTFPH and EXCP access; in this case, it is space

management support only. The data formats that can be written and read by the

EXCP program are entirely under control of the EXCP program itself.

Dynamic secondary allocation is supported according to the access method or

EXCP program’s constraints and the allocation sizes for the file contained in the

VSE/VSAM catalog.

Managed-SAM Access: Differences to (Unmanaged) SAM

Access

Considerations Relating to DEFINE CLUSTER Specifications

RECORDSIZE

If the SAM ESDS file is defined explicitly, the maximum RECORDSIZE

parameter is an important consideration. At OPEN, this maximum record

size is compared to the BLKSIZE parameter in the DTF (for

TYPEFLE=OUTPUT or WORK only). If the DTF BLKSIZE (minus eight for

output) is greater than the maximum record size in the file’s catalog entry,

VSE/VSAM denies the OPEN and cancels the job. VSE/VSAM does not

allow you to write a larger SAM logical block than the maximum

VSE/VSAM record size specified during definition. If the SAM ESDS file is

defined implicitly, the maximum VSE/VSAM record size for define is

determined from the DTF BLKSIZE parameter so that the file’s catalog

entry is consistent.

 If the DLBL RECORDS/RECSIZE parameters are used for allocation

parameters (during implicit define), the RECSIZE parameter specifies the

average record size in the file’s catalog entry. VSE/VSAM DEFINE does

not allow the average record size (from the DLBL RECSIZE parameter) to

be greater than the maximum record size (from the DTF BLKSIZE

parameter). Therefore, if the average record size is larger than the

maximum record size, a VSE/VSAM implicit define sets the average

RECSIZE equal to the maximum RECSIZE, and the RECORDS value is

increased by the same factor that the RECSIZE was decreased by.

RECORDFORMAT

The record format specified during the explicit define of a SAM ESDS file

need not match the DTF RECFORM specification. The only exception is

that VSE/VSAM does not allow a non-DTFSD to access a NOCIFORMAT

SAM ESDS file. Either the file is implicitly redefined or the job is canceled.

VOLUMES

The volume(s) specified during define determine the candidates eligible for

file allocation. If EXTENT statements are specified with symbolic units

SAM ESDS: Creating

Chapter 9. VSE/VSAM Support for SAM Files 165

during access to the file, there must be an EXTENT statement and a

corresponding ASSGN statement for every volume specified during define,

even if all of the volumes are not written to or read from. However,

EXTENT statements with symbolic units are not required and should not

be specified.

SHAREOPTIONS

The share options specified during define affect the sharing characteristics

of the file. For example, if SHAREOPTIONS(1) is specified for a SAM

ESDS file (allowing one output or many input users), and if you are

updating the file and then want to open the file for input to read it back

in, you must close the file. Otherwise, the INPUT OPEN will be denied

due to the SHAREOPTIONS specification.

 If you want to allow multiple INPUT with UPDATE users to access a SAM

ESDS file (in conjunction with the DTF HOLD=YES parameter, for

example), explicitly define the file with SHAREOPTIONS(3) to allow

concurrent OPENs for update (that is, OUTPUT). VSE/VSAM does not

support SHAREOPTIONS(4) for an ESDS (SHAREOPTIONS(4) is treated as

SHAREOPTIONS(2) during OPEN).

 Regardless of the SHAREOPTIONS specification, if you have a file open

for load or extension, all other attempts to open that file are denied for

reasons of data integrity. Conversely, you would be denied access if you

attempted to open a file for load or extension and another user had

already opened that file. (A software end-of-file - SEOF - does not normally

exist until a file is closed. If concurrent access was not denied there would

be a chance that an input user would read past the end of the file.)

Considerations for Access to Files

Considerations for all Types of Files: Many of the considerations on CI format

that relate to unmanaged-SAM on FBA devices are also considerations for

managed-SAM access (on both FBA and CKD devices). For example, if an I/O

error occurs during access, it concerns an entire CI of information rather than a

single logical block. Also, logical blocks are not necessarily written to a device until

a CI is full (refer also to the description of the PWRITE parameter of the “DTFSD”

macro in the manual z/VSE System Macros Reference.

Empty Files: VSE/VSAM does not distinguish between a file that:

v Has just been defined (empty and never written to),

v Has been opened and closed with no records written into it, or

v Has been loaded but deallocated or reset at CLOSE.

A file in any of these states is considered empty (that is, the high-used RBA is

zero). In any of these cases, if the file is opened for input through DTFSD

TYPEFLE=INPUT, the OPEN will be successful and control will be passed to the

EOFADDR on the first GET. This DTF OPEN is actually simulated because

VSE/VSAM OPEN (ACB) will not open an empty file for input. However, this is

transparent to the DTFSD user.

If other DTF types (such as DTFPH) are opened for INPUT on an empty file,

VSE/VSAM cannot simulate the end of file condition. This OPEN cannot be

allowed because the file has not been opened by VSE/VSAM and the file extents

have not been located. (The file may not even be allocated in the case of a dynamic

file.) Therefore, such an OPEN will be cancelled if the file is empty.

SAM ESDS: Using

166 VSE/VSAM User’s Guide and Application Programming

Assignments and Files Ignored: If EXTENT statements with symbolic units and

ASSGN statements are used, and if any one (or more) of the assignments is

ignored (IGN), then the entire file is ignored. That is, the DTF is not opened and

DTF+X‘10’, bit 2 (X‘20’) will be set.

Disk-Independence: In general, you should attempt to be as disk-independent as

possible. You should make no assumptions about the track size (or CI size), the

size or the number of extents or even the number of volumes that the file will

reside on. You should not attempt to choose a BLKSIZE that will maximize disk

utilization because CI format is used and also, your program cannot know what

disk device type will be used for the file before OPEN. It is better to use a smaller

BLKSIZE that will be reasonable for any disk device type -- it enables to process on

any disk device type. You should not assume that a particular symbolic unit will

be used. This will allow you to take advantage of VSE/VSAM’s job control

simplifications. Note that (unmanaged) SAM now provides for disk independence

by ignoring the DTF DEVICE= parameter during OPEN.

GETVIS Space: Sufficient GETVIS space must be provided for managed-SAM

access; enter the specifications in the SIZE parameter of the EXEC job control

statement, or in the SIZE job control command. The partition GETVIS area must

contain at least 40KB for the VSE/VSAM catalog, plus 10KB for every SAM ESDS

file, plus storage for the CI buffer for every SAM ESDS file.

Work Files:

v The format of NOTE/POINT IDs for a managed-SAM CKD file is similar to

unmanaged SAM FBA NOTE/POINT ID format. That is, for all devices, the

managed-SAM NOTE/POINT ID format is CCCN rather than (as for

unmanaged SAM) CCHR for CKD and CCCN for FBA. Therefore, you should

not generate or modify a NOTE/POINT ID. Also, do not move or modify the

DTF between OPEN and CLOSE.

v The DELETFL=NO parameter of DTFSD TYPEFLE=WORK is determined at

OPEN. Modifying this indicator after OPEN will have no effect on the CLOSE

disposition. Note that DLBL DISP specification overrides the DTF DELETFL

indicator. If there are any other DTFs or ACBs currently open for this file at

CLOSE, the file is not deleted. If the DTF is not closed by the end of job step,

automatic CLOSE attempts to close the file.

v Files accessed through DTFSD TYPEFLE=WORK are normally reset at OPEN. If

you wish to read a file using a work file DTF, specify DISP=OLD in the DLBL to

avoid losing the data due to reset.

Using SAM ESDS Files: Restrictions

Device-Dependent SAM Functions

The following device-dependent SAM functions are not supported:

v Split cylinders

v FEOVD (ignored)

v CNTRL (ignored)

v Subsetting of the input file through EXTENT statement specifications.

SAM ESDS Files

The following restrictions apply:

v SAM ESDS files are limited to 16 extents per volume, unless they are explicitly

defined as non-reusable (NOREUSE).

v DSF (data secured file) is not supported (it is ignored) in the VSE/VSAM DLBL

control statement. (VSE/VSAM password-protection may be used.)

SAM ESDS: Using

Chapter 9. VSE/VSAM Support for SAM Files 167

v SAM ESDS files are not portable and cannot be imported (through IMPORT) to

MVS SAM or VSE/VSAM.

v IJSYSxx file restrictions:

– The only system data file that is supported is SYSLNK (IJSYSLN). The job is

canceled if any other system data files are specified at OPEN.

– System work files (IJSYSnn) are supported unless restricted by the program

accessing the system work file.
v Some system programs or program products may have restrictions on the use

of managed-SAM files. (For example, the files may be limited to a single extent,

or managed-SAM files may not be supported.) Please consult the appropriate

VSE/VSAM or Program Product publication for planning and support

considerations.

DTF Specifications

Programming Interface Information

The following restrictions apply to specifications in the DTF:

v User labels are not supported. The LABADDR specification of the DTF is

ignored.

v CISIZE or BLKSIZE override of the DTF is not supported in the VSE/VSAM

DLBL job control statement (although the VSE/VSAM catalog entry CISIZE does

override the DTF).

v Because managed-SAM records are in CI format, SAM spanned records are not

supported. VSE/VSAM maximum record size (32KB minus 7) is not limited by

the device track size. The job is canceled if RECFORM=SPNUNB or

RECFORM=SPNBLK is specified in the DTF.

End of Programming Interface Information

DTFPH Specifications

Programming Interface Information

The following restrictions apply to the use of DTFPH:

v A file created with DTFPH with CISIZE=0 is not supported by managed-SAM

request macros (GET,PUT, and so on). That is, the file can only be read with

DTFPH and EXCP. The managed-SAM request macro routines support CI format

only. The job is canceled if a non-DTFPH OPEN is issued against a

NOCIFORMAT SAM ESDS file (unless the file can be implicitly deleted and

defined by OPEN).

v Conversely, if a file is created with DTFSD and is to be read through DTFPH

with EXCP, the EXCP routine must support it in CI format. If the DTFPH is a

“version 3 DTF”, OPEN stores the CISIZE in the version 3 extension and the

OPEN is successful. You must reference this CISIZE when you read the file. If

the DTFPH is not a version 3 DTF, OPEN has no means of indicating the CISIZE

and the job is canceled.

v There is no way to restrict a DTFPH EXCP user from opening a

password-protected SAM ESDS file for input (requiring a read password) and

then writing to the file. A DTFPH user may also violate SHAREOPTIONS

integrity protection in this same manner.

SAM ESDS: Using

168 VSE/VSAM User’s Guide and Application Programming

End of Programming Interface Information

VSE/VSAM Access of SAM ESDS Files: Considerations

Programming Interface Information

VSE/VSAM access of a SAM ESDS file processes SAM logical records. It uses the

RECORDFORMAT information in the catalog to block SAM logical records into

SAM logical blocks and de-block SAM logical blocks into SAM logical records.

Therefore, it is important that the RECORDFORMAT information in the catalog

matches the actual SAM record format of the data.

The valid SAM logical record formats are:

v Fixed unblocked

v Fixed blocked (logical record size)

v Variable unblocked

v Variable blocked

v Undefined

SAM access (through DTF) of V or VB records returns the RL (record length field)

at the beginning of the record. VSE/VSAM access (through ACB) does not return

it. Correspondingly, for a PUT for V or VB records, no RL should be at the

beginning of the record when it is passed to VSE/VSAM because VSE/VSAM

prefixes the RL. A program using VSE/VSAM access (through ACB) for sequential

processing can process a VSE/VSAM ESDS file or a SAM ESDS file.

Differences between the VSE/VSAM access of a VSE/VSAM ESDS file and the

VSE/VSAM access of a SAM ESDS file are:

v VSE/VSAM always loads and extends a SAM ESDS file in SPEED mode.

v VSE/VSAM does not build an alternate index over a SAM ESDS file.

v VSE/VSAM does not support path entries over a SAM ESDS file.

v VSE/VSAM does not support VSE/VSAM SPANNED records for a SAM ESDS

file.

The following applies to VSE/VSAM access of a SAM ESDS file:

v TCLOSE and ENDREQ do not imply TRUNC or RELSE. VSE/VSAM continues

processing from the last SAM logical record.

v For direct requests or POINT, the ARG parameter of the RPL always specifies

the RBA (relative byte address) of the SAM logical record. The RL (record

length) and the BL (block length) fields are not included; however, they are

accounted for by VSE/VSAM. On a direct retrieval, you must supply to

VSE/VSAM the same RBA as returned during a VSE/VSAM load of a SAM

ESDS file.

v For both the RPL and control block manipulation macros, RECLEN is always the

SAM logical record length. It is not the SAM block length (that is, VSE/VSAM

record length), and does not include any RL or BL fields.

v When issuing a SHOWCB or TESTCB macro, the following apply:

– NLOGR refers to logical records. For blocked record files, NLOGR could be

greater than the number of VSE/VSAM records.

– NRETR and NUPDR have similar meanings; they are the number of retrieved

and updated SAM logical records, respectively.

When a SAM ESDS file is extended through managed-SAM access, managed-SAM

always starts with a new CI. When a SAM ESDS file is extended through

SAM ESDS: Using

Chapter 9. VSE/VSAM Support for SAM Files 169

VSE/VSAM access, VSE/VSAM attempts to continue storing records into the last

CI of the file. Additionally, the number and method of blocking records in a SAM

logical block may differ between managed-SAM access and VSE/VSAM access.

The following parameters will cause differences:

v Logical record size comes from the LRECL in “RECORDFORMAT”.

v Block size comes from the maximum record size in “RECORDSIZE”.

v Average record size in “RECORDSIZE” is only used together with the

“RECORDS” parameter.

End of Programming Interface Information

The IDCAMS Commands for a SAM ESDS File

The following lists only those commands (and parameters) that need special

consideration when used with the VSE/VSAM Space Management for SAM Function.

The commands are listed in alphabetical order. For the complete set of the

parameters available with the commands, see the manual VSE/VSAM Commands.

ALTER Command

 entryname/password

 BUFFERSPACE(size)

 ERASE|NOERASE

 EXCEPTIONEXIT(mname)

 WRITECHECK|NOWRITECHECK

The ALTER command is used to change attributes in catalog entries. The

subparameters and their use for a SAM ESDS file are explained here.

entryname/password

is a required parameter that names the SAM ESDS file to be altered and

supplies its master password if it is password-protected. For a

NOCIFORMAT SAM ESDS file, the specification of BUFFERSPACE,

ERASE, EXCEPTIONEXIT (except as a subparameter of NULLIFY), or

WRITECHECK causes the ALTER command to terminate.

BUFFERSPACE(size)

specifies the minimum space to be provided for buffers. For a

NOCIFORMAT SAM ESDS file, the specification of BUFFERSPACE causes

the ALTER command to terminate.

ERASE|NOERASE

specifies whether the SAM ESDS file is to be erased when its entry in the

catalog is deleted. For a NOCIFORMAT SAM ESDS file, the specification of

ERASE causes the ALTER command to terminate.

EXCEPTIONEXIT(mname)

specifies the name of the user module to be given control when an

exception occurs during the processing of the SAM ESDS whose entry is

altered. For a NOCIFORMAT SAM ESDS file, the specification of

EXCEPTIONEXIT causes the ALTER command to terminate.

(EXCEPTIONEXIT can be specified as a subparameter of NULLIFY.)

WRITECHECK|NOWRITECHECK

specifies whether to check the data transfer of records written in the SAM

ESDS through VSE/VSAM (ACB) access. For a NOCIFORMAT SAM ESDS

file, the specification of WRITECHECK causes the ALTER command to

terminate.

SAM ESDS: Using

170 VSE/VSAM User’s Guide and Application Programming

DEFINE CLUSTER Command

For the applicable DEFINE CLUSTER parameters, see “Explicit Define Cluster

(Using the DEFINE CLUSTER Command)” on page 158.

DELETE Command

You can use the DELETE command as described in the manual VSE/VSAM

Commands, except that the ERASE parameter is not valid for a NOCIFORMAT

SAM ESDS file.

An implicitly defined SAM ESDS file may be deleted by way of the DELETE

command in the same manner as an explicitly defined SAM ESDS file. Refer also

to “Implicit Deletion of a SAM ESDS File” on page 173.

EXPORT Command

If you are exporting a CI-format SAM ESDS file, VSE/VSAM treats it as an ESDS

file. If you attempt to export a NOCIFORMAT SAM ESDS file, VSE/VSAM issues

an error message and terminates the command.

You cannot use a SAM ESDS file as the portable file (OUTFILE parameter).

IMPORT Command

IMPORT provides full import support for those SAM ESDS files which can be

exported. When attempting to import a SAM ESDS file into a predefined empty

file, IMPORT ensures that the exported file and the predefined file have fully

consistent RECORDFORMAT parameter values and that the maximum record size

of the predefined file is not less than that of the file originally exported. Any

mismatch causes an error message and command termination.

LISTCAT Command

You can display space for a SAM ESDS file by specifying LISTCAT SPACE. You

can display all files that have been defined for a particular catalog by using the

LISTCAT command; this includes all SAM ESDS files defined either explicitly or

implicitly.

The ATTRIBUTES portion of LISTCAT output is modified as follows for ESDS:

v CISIZE indicates 0 if RECORDFORMAT(NOCIFORMAT) was specified on either

an explicit or implicit define.

v CI/CA indicates 0 if RECORDFORMAT was specified on either an explicit or

implicit define.

v SAMLRECL indicates the SAM logical record length (listed for SAM ESDS files

only). This value is the user-supplied record length for FIXBLK SAM files and is

zero for all other record format SAM files.

v RECORDFORMAT indicates the SAM record format (listed for SAM ESDS files

only). FIXBLK, FIXUNBLK, VARBLK, VARUNBLK, UNDEFINED, or NOCIFMT

are the possible values for this attribute.

v IMP-DEFINE is listed if the SAM ESDS file has been implicitly defined;

otherwise EXP-DEFINE is listed (applies to SAM ESDS files only).

v SAMDATASET is listed if the ESDS is a managed-SAM file; otherwise

VSE/VSAMDATASET is listed.

SAM ESDS: IDCAMS Commands

Chapter 9. VSE/VSAM Support for SAM Files 171

The Statistics Group (data) is listed for a SAM ESDS file. However, it should be

noted that these statistics are maintained during VSE/VSAM access only and not

during managed-SAM access. For more information on the statistics, refer to the

manual VSE/VSAM Commands under “Interpreting LISTCAT and LISTCRA

Output.”

PRINT Command

You can print a CI-format SAM ESDS file by way of managed-SAM access or

VSE/VSAM access. The output is always SAM logical records. You cannot print a

NOCIFORMAT ESDS file through either managed-SAM or VSE/VSAM access.

For managed-SAM access:

v Specify the ENVIRONMENT parameter.

v The output format is the same as unmanaged SAM (no RBA display, record

length field at the beginning of the record for format V and VB).

v The SKIP and COUNT parameters can be used and the value always indicates

the number of SAM logical records to be skipped or listed.

(For an example of printing a SAM ESDS file by retrieving the SAM logical records

with managed-SAM, see “Example 4: Define a Dynamic SAM ESDS File and

Access” on page 177.)

For VSE/VSAM access:

v Omit the ENVIRONMENT parameter.

v The output format is a VSE/VSAM ESDS file (RBA display, no record length

field at the beginning of format V and VB RECORDS. VSE/VSAM uses the

RECORDFORMAT information recorded in the catalog to determine the SAM

record format for access). Note that the record or block size and format has not

been changed through DTF-ACCESS.

v The SKIP and COUNT parameters can be used and the value always indicates

the number of SAM logical records to be skipped or listed.

v The FROMADDRESS and TOADDRESS parameters can be used. (The RBA value

for FROMADDRESS must be the exact beginning of a SAM logical record.)

REPRO Command

CI-format SAM ESDS files can be used as input or output files in a REPRO

command wherever SAM files or VSE/VSAM ESDS files are currently allowed.

(Do not specify a NOCIFORMAT SAM ESDS as an input or output file.) You can

use the REPRO command to convert an unmanaged-SAM file to a SAM ESDS file

by using the following specifications:

v INFILE(dname,ENVIRONMENT(subparameters))

Indicates the unmanaged SAM file to be used as the input file.

v OUTFILE(dname/password ENVIRONMENT(subparameters))

Indicates the CI-format SAM ESDS to be used as the output file. If the output

file is a managed-SAM file that is to be created by way of managed-SAM access,

and it has not been previously defined, it will be implicitly defined if the job

control statements meet the requirements of implicit define.

– For both the INFILE and OUTFILE parameters, dname specifies the filename of

the DLBL job control statement that identifies the file to be copied. The

ENVIRONMENT parameter is not always required. Coding the

ENVIRONMENT (...) parameter instructs IDCAMS to use SAM access, that is,

SAM ESDS: IDCAMS Commands

172 VSE/VSAM User’s Guide and Application Programming

access through a DTF control block. Without the ENVIRONMENT parameter

VSAM access will be used (ACB). The ENVIRONMENT parameter is required

in one of the following cases:

- To access an unmanaged SAM file

- To allow an implicit definition of an output file
password is not allowed for SAM access.

v FROMADDRESS(address) TOADDRESS(address)

You can specify FROMADDRESS and TOADDRESS for VSE/VSAM access (not

managed-SAM access). The RBA value for FROMADDRESS must be the exact

beginning of a SAM logical record.

v SKIP(count) COUNT(count)

You can specify SKIP and COUNT (for both VSE/VSAM and managed-SAM

access) and the value always indicates the number of SAM logical records to be

skipped or copied.

VERIFY Command

If the VERIFY command is executed on a CI-format SAM ESDS file, you can

discover whether the file was successfully closed (warning messages are issued),

but you cannot cause the end-of-file indicator in the catalog entry to be updated.

This is because a SAM ESDS file is always loaded and extended in SPEED mode.

A SAM ESDS file cannot be accessed for input by VSE/VSAM unless it was

successfully closed after initially loaded. (If the file is accessed for input by

managed-SAM without closed, an OPEN in a subsequent job step will be

successful and the first GET will cause the user to be sent to the EOFADDR

routine.) The file can only be accessed by VSE/VSAM up to the data written by

the last successful CLOSE if extended. After extension, a SAM ESDS file can be

accessed by managed-SAM even if the CLOSE was unsuccessful; however, the file

may not terminate with an SEOF.

The VERIFY command terminates due to an OPEN error if it is executed on a

NOCIFORMAT SAM ESDS file.

Implicit Deletion of a SAM ESDS File

Programming Interface Information

An implicitly defined SAM ESDS file may be deleted by way of the DELETE

command in the same manner as an explicitly defined SAM ESDS file.

You can use the “DELETE” command as described in the manual VSE/VSAM

Commands, except that the ERASE parameter is not valid for a NOCIFORMAT

SAM ESDS file.

An implicit delete of a SAM ESDS file occurs if all the following conditions are

true for any of the following cases:

Case 1

During OPEN of DTF (implicit delete followed by implicit define)

v The catalog entry has been implicitly defined.

v The DTFSD maximum logical block size exceeds the VSE/VSAM catalog

maximum RECORDSIZE of the SAM ESDS file or the RECORDFORMAT of the

file is NOCIFORMAT.

SAM ESDS: IDCAMS Commands

Chapter 9. VSE/VSAM Support for SAM Files 173

v DTFSD TYPEFLE=OUTPUT, WORK, or WORKMOD.

v The file is unexpired and the operator has responded “delete” to message 4233A

EQUAL FILE-ID IN CATALOG, or the file is expired.

v DISP=OLD is not specified.

Case 2

During CLOSE of DTF

v The catalog entry has been implicitly defined.

v DISP=(,delete)

Note: The job control statement overrides the DTF.

Case 3

During CLOSE of DTF

v The catalog entry has been implicitly defined.

v DISP=(,date)

Note: The job control statement overrides the DTF.

v The expiration date has passed.

In all cases, if another user has the same file open for access, the file is not deleted.

End of Programming Interface Information

Sample Programs and Job Streams

v Example 1 loads a SAM ESDS file by way of managed-SAM access (source

code).

v Examples 2, 3, and 4 use this program assuming that it is cataloged under the

phase name SDOUTPUT.

Example 1: Load a SAM ESDS File by Way of Managed-SAM

Access

SAM ESDS: IDCAMS Commands

174 VSE/VSAM User’s Guide and Application Programming

Col. Col. Col. Col.

1 10 16 72

SDOUTPUT START X‘200078’

 BALR 2,0

 USING *,2

 OPEN SDOUT,PRINT

 LA 5,1 INITIAL COUNT TO 1

 L 6,MAXRCDS LOAD NO. OF RECORDS TO WRITE

LOOP CR 5,6 WRITTEN LAST RECORD YET

 BH CLOSE YES

STORE ST 5,RECNO NO, STORE RECORD NUMBER

 CVD 5,DWB CONVERT KEY TO DECIMAL

 UNPK NUM(15),DWB(8) UNPACK KEY

 TM UNPKSIGN,X’10’ SEE IF NUMBER WAS NEGATIVE

 BO NEG1 YES, NEGATIVE

 MVI SIGN,C’+’ MAKE OUTPUT SHOW POSITIVE

 B CONTINUE

NEG1 MVI SIGN,C’-’ MAKE OUTPUT SHOW NEGATIVE

CONTINUE OI UNPKSIGN,X’F0’ MAKE LAST BYTE A NUMBER

 PUT PRINT PRINT KEY

 PUT SDOUT,WORKAREA PUT FROM WORKAREA

 LA 5,1(5) INCR RECORD NO.

 B LOOP GO BACK

CLOSE CLOSE SDOUT,PRINT CLOSE THE FILE

 EOJ

 EJECT

*

SDOUT DTFSD BLKSIZE=2008,1 X

 DEVADDR=SYS007,2 X

 IOAREA1=OUTPUT1, X

 DEVICE=2314,3 X

 RECFORM=FIXBLK,4 X

 RECSIZE=80, X

 TYPEFLE=OUTPUT,5 X

 WORKA=YES

 EJECT

PRINT DTFDI DEVADDR=SYSLST, X

 IOAREA1=IOAREA, X

 RECSIZE=17

*

 EJECT

DWB DC D’0’ USED TO CVD INTO

*

IOAREA DC 0CL17’ ’

 DC C’ ’ PRINT CONTROL

OUT DC 0CL16’ ’

SIGN DC C’ ’ PRINTED SIGN

NUM DC 0CL15’ ’ PRINTED KEY

 DC CL14’ ’

UNPKSIGN DC C’ ’ LAST BYTE OF UNPACKED NUMBER

*

MAXRCDS DC F’400’ NO. OF RECORDS TO WRITE

*

WORKAREA DC 0CL80’ ’

RECNO DC F’0’ CURRENT RECORD NO.

 DC CL76’ ’

OUTPUT1 DC CL8’ ’ AREA FOR COUNT

 DC 25CL80’ ’

 EJECT

* SDMODFOB6

 DIMOD TYPEFLE=OUTPUT

 END SDOUTPUT

SAM ESDS: Examples

Chapter 9. VSE/VSAM Support for SAM Files 175

Explanations for Example 1:

1 The BLKSIZE specifies the logical block size of the SAM file. The extra

eight bytes specified include the count area required for DTFSD OUTPUT

data files.

2 This symbolic unit is ignored. The symbolic unit either comes from the

EXTENT statement or is dynamically chosen by VSE/VSAM.

3 The device type specified is ignored. VSE/VSAM determines the device

type from the volume serial of the volume that the file resides on. The

volume serial is specified either in the EXTENT statement during implicit

define, or in the VOLUMES parameter of the DEFINE CLUSTER

command, or is chosen by VSE/VSAM from a default model during

explicit or implicit define.

4 The RECFORM along with the BLKSIZE and RECSIZE information is used

to determine the record format and size characteristics of the file to be

written. In addition, if the file is implicitly defined, this information is

stored into the VSE/VSAM catalog to be used if the file is accessed

through VSE/VSAM (ACB).

5 An output file normally implies reset. That is, the file is set to empty

before the records are written into the file. This may be overridden by the

DLBL DISP parameter. If DISP=OLD is specified, the file will not be reset

and an existing file will have this data added to the end of the file. (If the

file does not exist or is empty, DISP=OLD or NEW has no effect.)

6 No SD logic module needs to be assembled or included. (Note that it is a

comment.)

Note: If IOAREA2 is specified in the DTFSD (in combination with either IOREG or

WORKA) and implicit define occurs, VSE/VSAM will attempt to choose a

CI size that will hold at least two SAM logical blocks.

Example 2: Implicit Define of a SAM ESDS File

A job that loads a SAM ESDS file through managed-SAM access (execution). This

job implicitly defines a SAM ESDS file.

// JOB LOAD A MANAGED SAM FILE (400 RECORDS)

// DLBL SDOUT,’MANAGED.SAM.FILE1’,0,VSAM,RECORDS=400,RECSIZE=801

// EXTENT ,VSER011

// EXEC SDOUTPUT,SIZE=AUTO2

/&

Explanations for Example 2:

1 The information from the DLBL and the EXTENT statement (together with

the DTF information) provides the information to do an implicit define.

— The DLBL specifies VSE/VSAM indicating that the SAM file is to

be a SAM ESDS file.

— A retention period of 0 indicates that the file can be deleted at any

time (assuming it is not in use).

— RECORDS and RECSIZE specify that the primary allocation size

should be large enough to hold four hundred records of eighty

bytes each. The secondary allocation size is assumed to be twenty

percent of the primary allocation size.

SAM ESDS: Examples

176 VSE/VSAM User’s Guide and Application Programming

— The default disposition for an OUTPUT DTFSD data file is

(NEW,KEEP).

— The EXTENT statement specifies that the file is to reside on

volume VSER01 and that the logical unit is to be dynamically

assigned by VSE/VSAM. (This assumes, of course, that there is

VSE/VSAM data space available on volume VSER01.)
2 A SAM ESDS file needs about 52KB of GETVIS space for access (12KB for

the file and CI buffers, and a one-time requirement of 40KB for the

catalog). SIZE=AUTO will ensure that the maximum GETVIS space is

available to VSE/VSAM.

Example 3: Define a Default Model SAM ESDS File

A job stream that loads a SAM ESDS file through SAM access (execution). This job

stream defines a default model for a SAM ESDS file and then implicitly defines a

SAM ESDS file, using the default model to obtain a volume list (to allow

elimination of the EXTENT statement).

// JOB DEFINE DEFAULT MODEL FOR SAM ESDS FILE

// EXEC IDCAMS,SIZE=AUTO

 DEFINE CLUSTER -

 (NAME(DEFAULT.MODEL.ESDS.SAM) -1

 VOLUMES(VSER02) -2

 RECORDS(100 25) -

 RECORDSIZE(2000 2000) -

 RECORDFORMAT(UNDEF) -

 REUSE -

 NOALLOCATION -3

 NONINDEXED)

 LISTCAT -

 ENTRIES(DEFAULT.MODEL.ESDS.SAM) -

 ALL

/*

/&

// JOB LOAD A MANAGED SAM FILE (400 RECORDS)

// DLBL SDOUT,’MANAGED.SAM.FILE2’,0,VSAM,RECORDS=400,RECSIZE=804

// EXEC SDOUTPUT,SIZE=AUTO

/&

Explanations for Example 3:

1 This is the required file-ID for a default model for a SAM ESDS file.

2 This is the volume that will be used for any SAM ESDS file implicitly

defined with no EXTENT statement specified (or explicitly defined with no

VOLUMES parameter specified).

3 NOALLOCATION is required for default model.

4 The same DLBL information is specified as in Example 2, but the volume

that the file is to reside on is retrieved from the default model rather than

an EXTENT statement. (The file will reside on VSER02.) Also, the symbolic

unit is dynamically chosen and assigned by VSE/VSAM. Note that

allocation size and retention period are still obtained from the DLBL

statement. The only information retrieved from the default model during

implicit define is the volume list.

Example 4: Define a Dynamic SAM ESDS File and Access

A job stream that loads a SAM ESDS file through managed-SAM access

(execution). This job stream defines a dynamic SAM ESDS and then accesses the

defined file allowing elimination of the EXTENT statement.

SAM ESDS: Examples

Chapter 9. VSE/VSAM Support for SAM Files 177

// JOB ESDS DEFINE FOR SAM ESDS FILE

// EXEC IDCAMS,SIZE=AUTO

 DEFINE CLUSTER -

 (NAME(MANAGED.SAM.FILE3) -

 VOLUMES(VSER03) -

 RECORDS(16 4) -1

 RECORDSIZE(2000 2000) -2

 RECORDFORMAT(FIXBLK(80)) -3

 REUSE -4

 NOALLOCATION -

 NONINDEXED)5

 LISTCAT -

 ENTRIES(MANAGED.SAM.FILE3) -

 ALL

/*

/&

// JOB LOAD A MANAGED SAM FILE (400 RECORDS)

// DLBL SDOUT,’MANAGED.SAM.FILE3’,,VSAM,DISP=(NEW,KEEP)6

// EXEC SDOUTPUT,SIZE=AUTO

/&

// JOB EXTEND A MANAGED SAM FILE (ANOTHER 400 RECORDS)

// DLBL SDOUT,’MANAGED.SAM.FILE3’,,VSAM,DISP=(OLD,KEEP)7

// EXEC SDOUTPUT,SIZE=AUTO

/&

// JOB ESDS PRINT A MANAGED FILE WITH SAM

// DLBL ESD1,’MANAGED.SAM.FILE3’,,VSAM,DISP=(OLD,DELETE)8

// EXEC IDCAMS,SIZE=AUTO

 PRINT INFILE(ESDS1 -

 ENVIRONMENT -9

 (BLOCKSIZE(2000) -

 RECORDFORMAT(FIXBLK) -

 RECORDSIZE(80)))

/*

/&

Explanations for Example 4:

1 This specifies the number of VSE/VSAM logical records (SAM logical

blocks) for primary and secondary allocation. Sixteen is specified for the

primary allocation since sixteen 2000-byte logical blocks will be written to

hold four hundred 80-byte SAM logical records.

2 This specifies the average and maximum VSE/VSAM logical record size

(SAM logical block size) for the file.

3 This specifies the SAM logical record size for the file.

4 REUSE in connection with NOALLOCATION makes the file a dynamic

file.

5 NONINDEXED is required for a SAM ESDS file.

6 The DISP parameter specifies that the file is to be reset at OPEN, and kept

at CLOSE. The file resides on volume VSER03 as specified in the define

cluster. A symbolic unit will be dynamically assigned.

7 The DISP parameter specifies that the file is not to be reset at OPEN, that

is, the file will be extended with the records written by JOB EXTEND. The

file is to be kept at CLOSE.

8 The DISP parameter specifies that the file is not to be reset at OPEN. (A

specification of DISP=NEW would be an error in this case since the file

will be opened for input.) When the file is closed, it will be deleted (that is,

deallocated since this file was defined as a dynamic file).

9 The file is read by way of managed-SAM access by way of the

SAM ESDS: Examples

178 VSE/VSAM User’s Guide and Application Programming

ENVIRONMENT parameter. The ENVIRONMENT subparameters specify

the information required to generate a DTF. The file may be accessed

through VSE/VSAM by omitting the ENVIRONMENT parameter. In that

case, VSE/VSAM gets the SAM file characteristics from the VSE/VSAM

catalog entry for the file.

Differences Between VSE/VSAM ESDS and SAM ESDS File Format

How CIs are Formatted into CAs

Figure 30 on page 180 and Figure 31 on page 181 illustrate the way in which CIs

are physically formatted into CAs for VSE/VSAM ESDS files as compared to SAM

ESDS files.

For values for CI size and tracks, refer to Figure 27 on page 91.

VSE/VSAM ESDS Files

A VSE/VSAM ESDS file formats CIs into CAs in CA format. This means that CIs

cannot be written across CA boundaries. If there is not sufficient space at the end

of a CA to write a complete CI, an area of unusable space is left and the CI to be

formatted is written at the beginning of the next CA. This is illustrated in Figure 30

on page 180.

Assumptions::

 Device type=3390

 Allocation specified=TRK(3 1)

 CI size=14KB

 Physical block size=7KB

 1 track=7 blocks (PR)

 11 CIs of data are written

 CA=Min (primary (3 TRKs), secondary (1 TRK), Max-CA(1 CYL))

Therefore: CA=1 track

SAM ESDS: Examples

Chapter 9. VSE/VSAM Support for SAM Files 179

SAM ESDS Files

A SAM ESDS file formats CIs into CAs in non-CA format. This means that a CI

can be written across a CA boundary (tracks 2 and 3) but not across an extent

boundary. If there is not sufficient space at the end of the CA to write a complete

CI, the CI will be written across a CA boundary causing the CI to have part of its

contents in one CA and the rest of its contents in another. This is illustrated in

Figure 31 on page 181.

Assumptions:

 Device type=3390

 Allocation specified=TRK(3 1)

 CI size=14KB

 Physical block size=7KB

 1 track=7 blocks (PR)

 11 CIs of data are written

 CA=Min (primary (3 TRKs), secondary (1 TRK), Max-CA(1 CYL))

Therefore: CA=1 track

 VSE/VSAM ESDS File

 ┌──┐

 │ . │

 .

 .

 ┌─ ├──┤

 │ │ ┌─────CI─────┐┌─────CI─────┐┌─────CI─────┐ │ T

 │ C│ │ ┌───┐┌───┐ ││ ┌───┐┌───┐ ││ ┌───┐┌───┐ │ Unusable│ R

 │ A│ │ │P R││P R│ ││ │P R││P R│ ││ │P R││P R│ │ Space │ K

 │ │ │ └───┘└───┘ ││ └───┘└───┘ ││ └───┘└───┘ │ │ 2

 │ │ └────────────┘└────────────┘└────────────┘ │

E │ ├──┤

x │ │ ┌─────CI─────┐┌─────CI─────┐┌─────CI─────┐ │ T

t │ C│ │ ┌───┐┌───┐ ││ ┌───┐┌───┐ ││ ┌───┐┌───┐ │ Unusable│ R

e │ A│ │ │P R││P R│ ││ │P R││P R│ ││ │P R││P R│ │ Space │ K

n │ │ │ └───┘└───┘ ││ └───┘└───┘ ││ └───┘└───┘ │ │ 3

t │ │ └────────────┘└────────────┘└────────────┘ │

 │ ├──┤

 │ │ ┌─────CI─────┐┌─────CI─────┐┌─────CI─────┐ │ T

 │ C│ │ ┌───┐┌───┐ ││ ┌───┐┌───┐ ││ ┌───┐┌───┐ │ Unusable│ R

 │ A│ │ │P R││P R│ ││ │P R││P R│ ││ │P R││P R│ │ Space │ K

 │ │ │ └───┘└───┘ ││ └───┘└───┘ ││ └───┘└───┘ │ │ 4

 │ │ └────────────┘└────────────┘└────────────┘ ───┬─── │

 └─ ├───│────┤

 . │

 . ┌──────────────────────────────────────┘

 . │

E ┌─ ├─────── d ──┤

x │ │ ┌─────CI─────┐┌─────CI─────┐ │ T

t │ C│ │ ┌───┐┌───┐ ││ ┌───┐┌───┐ │ Unusable Space │ R

e │ A│ │ │P R││P R│ ││ │P R││P R│ │ or │ K

n │ │ │ └───┘└───┘ ││ └───┘└───┘ │ Secondary Extent │ 7

t │ │ └────────────┘└────────────┘ │

 └─ └──┘

Figure 30. Example of CA Format Using a VSE/VSAM Entry-Sequenced File

SAM ESDS: File Formats

180 VSE/VSAM User’s Guide and Application Programming

Relationship of Physical and Logical Layout

Figure 32 on page 182 shows the construction of a CI and how records are

physically and logically laid out for a VSE/VSAM ESDS file and a SAM ESDS file.

It explains the relationship between VSE/VSAM logical records and SAM logical

blocks.

When you have defined a VSE/VSAM ESDS file, the CI is made up of VSE/VSAM

logical records and their related control information. When you define a SAM

ESDS file, the VSE/VSAM logical records become SAM logical blocks. The CI size

is a multiple of the VSE/VSAM block size and normally determined by

VSE/VSAM, not by you, at DEFINE time. Control information in a CI consists of a

CIDF and RDFs. There is an RDF for every SAM logical block (VSE/VSAM logical

record) indicating its length, except in the case of consecutive logical blocks of

equal length, in which case the first RDF (right-most of the pair) describes the

length of the logical blocks and the second RDF (left-most of the pair) tells how

many logical blocks the first RDF describes.

The SAM logical block consists of SAM logical records. In the case of VB format,

every logical record is prefixed with an RL (record length) field which indicates the

length of the record. The SAM logical block begins with a BL (block length) field

which indicates the length of the block. During managed-SAM (DTF) access of V

or VB records, the RL is returned at the beginning of the record. For VSE/VSAM

 SAM ESDS File

 ┌──┐

 │ . │

 .

 .

 ┌─ ├──┤

 │ │ ┌─────CI─────┐┌─────CI─────┐┌─────CI─────┐┌─────C │ T

 │ C│ │ ┌───┐┌───┐ ││ ┌───┐┌───┐ ││ ┌───┐┌───┐ ││ ┌───┐ │ R

 │ A│ │ │P R││P R│ ││ │P R││P R│ ││ │P R││P R│ ││ │P R│ │ K

 │ │ │ └───┘└───┘ ││ └───┘└───┘ ││ └───┘└───┘ ││ └───┘ │ 2

 │ │ └────────────┘└────────────┘└────────────┘└────── │

E │ ├──┤

x │ │ I─────┐┌─────CI─────┐┌─────CI─────┐┌─────CI─────┐ │ T

t │ C│ ┌───┐ ││ ┌───┐┌───┐ ││ ┌───┐┌───┐ ││ ┌───┐┌───┐ │ │ R

e │ A│ │P R│ ││ │P R││P R│ ││ │P R││P R│ ││ │P R││P R│ │ │ K

n │ │ └───┘ ││ └───┘└───┘ ││ └───┘└───┘ ││ └───┘└───┘ │ │ 3

t │ │ ──────┘└────────────┘└────────────┘└────────────┘ │

 │ ├──┤

 │ │ ┌─────CI─────┐┌─────CI─────┐┌─────CI─────┐ │ T

 │ C│ │ ┌───┐┌───┐ ││ ┌───┐┌───┐ ││ ┌───┐┌───┐ │ Unusable│ R

 │ A│ │ │P R││P R│ ││ │P R││P R│ ││ │P R││P R│ │ Space │ K

 │ │ │ └───┘└───┘ ││ └───┘└───┘ ││ └───┘└───┘ │ │ 4

 │ │ └────────────┘└────────────┘└────────────┘ ───┬── │

 └─ ├───│────┤

 . │

 . ┌──────────────────────────────────────┘

 . │

E ┌─ ├─────── d ──┤

x │ │ ┌─────CI─────┐ │ T

t │ C│ │ ┌───┐┌───┐ │ │ R

e │ A│ │ │P R││P R│ │ Unusable Space or Secondary Extent │ K

n │ │ │ └───┘└───┘ │ │ 7

t │ │ └────────────┘ │

 └─ └──┘

Figure 31. Example of Non-CA Format Using a SAM ESDS File

SAM ESDS: File Formats

Chapter 9. VSE/VSAM Support for SAM Files 181

(ACB) access, it is not. A program using VSE/VSAM (ACB) access for sequential

processing can process a SAM ESDS file or a VSE/VSAM ESDS file.

┌──────────────────────── Control Interval (CI) ──────────────────────┐

┌──────────────────────┬───────────────────────┬──────────────────────┐

│ Physical Record │ Physical Record │ Physical Record │

└──────────────────────┴───────────────────────┴──────────────────────┘

 Defining a VSE/VSAM ESDS (file):

 NAME(entryname)

 NONINDEXED

 .

 .

 .

┌────────────────┬─────────────────┬─────────────────┬────────┬─┬─┬─┬─┐

│ │ │ │ │R│R│R│C│

│ VSAM LREC 1 │ VSAM LREC 2 │ VSAM LREC 3 │ Unused │D│D│D│I│

│ │ │ │ Space │F│F│F│D│

│ │ │ │ │3│2│1│F│

└────────────────┴─────────────────┴─────────────────┴────────┴─┴─┴─┴─┘

 Defining a SAM ESDS (file):

 NAME(entryname) │ │

 NONINDEXED │Control│

 RECORDFORMAT (VB) │Infor- │

 . │mation │

 . │ │

 .

┌────────────────┬─────────────────┬─────────────────┬────────┬─┬─┬─┬─┐

│ │ │ │ │R│R│R│C│

│ SAM LBLOCK 1 │ SAM LBLOCK 2 │ SAM LBLOCK 3 │ Unused │D│D│D│I│

│ │ │ │ Space │F│F│F│D│

│ See (1) │ │ │ │3│2│1│F│

└────────────────┴─────────────────┴─────────────────┴────────┴─┴─┴─┴─┘

│ │

│ └──────────────────────────────────────┐

│ │

┌─┬─┬───────────────┬─┬───────────────┬─┬───────────────┐

│B│R│ Record │R│ Record │R│ Record │

│L│L│ │L│ │L│ │

└─┴─────────────────┴─┴───────────────┴─┴───────────────┘

 │ │ │ │

 │ SAM Logical │ │ SAM Logical │

 │ Record │ │ Record │

 │ (SAM Access) │ │ (VSAM Access) │

 See (2)

 (1) The SAM LOGICAL BLOCK size is what you specify in the

 RECORDSIZE parameter when you DEFINE a SAM ESDS file,

 and define in the BLKSIZE parameter of the DTF.

 (2) The SAM LOGICAL RECORD size is what you specify in the

 SIZE parameter of the DTF.

Figure 32. Comparison of a VSE/VSAM Block to a SAM Logical Block

SAM ESDS: File Formats

182 VSE/VSAM User’s Guide and Application Programming

Chapter 10. Using VSE/VSAM Macros

This Chapter ...

v Documents Programming Interface information. See “Notices” on page xiii.

v Explains the use of the VSE/VSAM macros. VSE/VSAM macro instructions

are coded in an assembler program to access the data.

v Assigns the macros to various tasks, there are macros for:

– Relating a program to the data. They identify the file and describe the

kind of processing to be done. They are ACB, EXLST, RPL, and GENCB.

– Connecting and disconnecting the program to the file. They are OPEN,

CLOSE, and TCLOSE.

– Displaying and changing the information relating a program to the data

and thus changing the type of processing. They are SHOWCB, TESTCB,

and MODCB.

– Initiating transfer of data between disk storage and processor storage,

positioning within the file, or deletion of records. They are GET, PUT,

POINT, ERASE, WRTBFR, and ENDREQ.

– Sharing I/O Buffers and control blocks among files, and to write out

buffers. They are BLDVRP, DLVRP, and again WRTBFR. Also ACB, RPL,

and the macros of the second group have been extended for sharing

resources and managing I/O buffers.

– Displaying catalog information: SHOWCAT.

Groups of Macros

The VSE/VSAM macros can be grouped according to main tasks and the

relationship between the various macros. The following shows the groups and

outlines the purpose of the individual macro.

Declarative VSE/VSAM macros:

v ACB specifies the file to be processed and the access type.

v EXLST specifies a list of user-supplied exit routines.

v RPL specifies information for a request to access a particular record.

Macros to Share Resources Between Several Files

v BLDVRP builds a VSE/VSAM pool of buffers, control blocks, and channel

programs.

v DLVRP deletes such a resource pool.

v WRTBFR writes waiting buffer contents to satisfy a GET request.

Request Macros

v GET retrieves a record from a file for processing.

v PUT inserts a record in a file.

v POINT positions control on a specific address in the file.

v ERASE deletes a record in a file.

v ENDREQ ends processing of a GET or POINT request.

© Copyright IBM Corp. 1979, 2005 183

Control Block Manipulation Macros

v GENCB specifies declarative parameters, but during execution of a program.

v MODCB changes declarative parameters.

v SHOWCB displays declarative parameters in effect.

v TESTCB checks declarative parameters (or their error codes) and branches

accordingly.

v SHOWCAT displays data from the catalog in a buffer you have supplied.

OPEN/CLOSE Macros

v OPEN connects a program to a file.

v CLOSE prepares the separation and disconnects a program from a file.

v TCLOSE prepares the separation but leaves program and file connected.

Relating a Program and the Data

The ACB macro specifies the file to be processed and the types of access you want

to use.

The EXLST macro specifies a list of user-supplied exit routines.

The RPL macro specifies information for a request to access a particular record in

the file.

These declarative macros are used while assembling or compiling an assembler

program.

The GENCB macro can be used in place of the ACB, EXLST, or RPL macros to

generate processing specifications while the processing program is running.

ACB: Specifying the Access Method Control Block

Every VSE/VSAM file has an ACB (Access Control Block) that contains

information about it. The file name of the DLBL job control statement that

describes the file is included, so that the Open routine can connect a program to

the data.

The other information that you specify enables OPEN to prepare the kind of

processing to be done by your program.

Exit Routines

The address of a list of exit-routine names that you supply (EXLST parameter). You

use the EXLST macro, described next, to construct the list.

I/O Buffers

The amount of space for I/O buffers (BUFSP parameter) and the number of I/O

buffers (BUFND and BUFNI parameters) that VSE/VSAM will use to process data

and index records. The minimum number of buffers allowed depends on how

much buffer space is allocated, the number of concurrent requests to be allowed,

and whether processing will be direct or sequential.

Password

The password, if required, indicates the level of authorization to access the file:

read, read and update, and so on (PASSWD parameter).

Using VSE/VSAM Macros

184 VSE/VSAM User’s Guide and Application Programming

Processing Options

The processing options to be used (MACRF parameter): keyed or addressed access,

or both; sequential, direct, or skip sequential processing, or a combination;

retrieval, storage, or update (including deletion), or a combination; whether to use

the shared resource pool and to defer the writing of updated records.

Concurrent Requests

For processing concurrent requests (STRNO parameter), the number of requests

that are defined for processing the file (see the discussion of the RPL macro

following EXLST).

Error Messages

Address and length of an area for error messages from OPEN, CLOSE, or TCLOSE

(MAREA and MLEN parameters).

EXLST: Specifying the Exit List

The EXLST macro specifies the addresses of optional exit routines that you can

supply for analyzing physical errors and logic errors, for end-of-file processing, for

overlapping I/O operations, and for writing a journal. Any number of ACBs in a

program can indicate the same exit list, and an exit routine can be used for several

files.

Analyzing Physical Errors (SYNAD)

When VSE/VSAM encounters an error in an I/O operation that the z/VSE error

recovery routines cannot correct, it exits to the physical-error analysis (SYNAD)

routine. VSE/VSAM sets a code in the RPL to indicate whether the I/O error

occurred during reading or writing the data or the index.

Analyzing Logic Errors (LERAD)

Errors not directly associated with an I/O operation, such as an invalid request,

cause VSE/VSAM to exit to the logic error analysis (LERAD) routine. VSE/VSAM

sets a code in the RPL that indicates the type of logic error.

End-of-File Processing (EODAD)

When your program requests a record beyond the last record in the file during

sequential access, your end-of-file (EODAD) routine is given control. The last

record is the highest-addressed record for addressed or control-interval access or

the highest-keyed record for keyed access. If an EODAD exit routine is not

available, control is given to the LERAD exit routine.

Overlapping I/O Operations (EXCPAD)

When VSE/VSAM starts an I/O operation caused by a request macro, the

execute-channel-program (EXCPAD) exit routine is given control. The EXCPAD

routine must return control to VSE/VSAM, which continues your mainline routine

at the instruction following the request macro. The EXCPAD exit is intended for

use by programmers of utilities and systems.

Writing a Journal (JRNAD)

You can use the JRNAD routine to journalize the transactions made against your

file and to keep track of RBA changes.

For recording transactions, VSE/VSAM exits to the JRNAD routine every time

your processing program issues a GET, PUT, or ERASE. For keeping track of RBA

changes, VSE/VSAM takes the JRNAD exit every time data is shifted within a CI

or moved to another CI. To process a key-sequenced file with addressed access,

you need to know whether any RBAs have changed during keyed processing.

Using VSE/VSAM Macros

Chapter 10. Using VSE/VSAM Macros 185

VSE/VSAM takes the JRNAD exit before transmitting to direct-access storage the

contents of a CI in which there was an RBA change.

RPL: Specifying the Request Parameter List

The RPL macro produces a Request Parameter List (RPL) which contains all the

information needed by a request macro to access a record in the file. The request

macros are GET, PUT, POINT, ERASE, and WRTBFR. The RPL identifies the file to

which the request is directed by naming the ACB of the file.

You can use a single RPL to define parameters that apply to several requests. With

the MODCB macro (described below) you can modify some of the parameters to

change the type of processing, such as from direct to sequential or from update to

non-update.

For concurrent requests, which require VSE/VSAM to keep track of more than one

position in a file, any number of RPL macros may be used asynchronously by a

processing program or its subtasks to process a file. The requests can be sequential

or direct or both, and they can be for records in the same part or different parts of

the file. You need specify only the RPL parameters appropriate to a given request,

as follows:

Processing Options for a Request (OPTCD)

A request is for keyed, addressed, or control-interval access. The processing can be

sequential, skip sequential (keyed access only), or direct. For keyed and addressed

access and for sequential or direct processing, records may be retrieved in

backward direction. A request may be for updating or not updating a record. A

non-update direct request to retrieve a record can optionally cause positioning at

the following record for subsequent sequential access.

For a keyed request, you specify either a generic key or a full key to which the key

field of the record is to be matched. A generic key can match several records while

a full key matches only one record. You can also specify that, if the key does not

match the key of any record in the file, the record with the next greater key will be

processed.

For retrieval, a request is either for a data record to be placed in a work area in the

processing program (move mode) or for the address of the record within

VSE/VSAM’s I/O buffer to be passed to the processing program (locate mode).

Address of the Work Area for, or Pointer to, a Data Record

(AREA)

For retrieval, update, insertion, or addition of a record, you must provide a work

area in which the record is to be processed (move mode). For retrieval, you can

have VSE/VSAM give you the address of the record within VSE/VSAM’s I/O

buffer (locate mode) in this field.

Size of the Work Area for a Data Record (AREALEN)

This parameter specifies either the length of the work area in which a record is

placed (for move mode) or the four-byte address of the record in VSE/VSAM’s

I/O buffer (for locate mode). Having a work area that is too small is considered a

logic error.

Length of the Data Record Being Processed (RECLEN)

For storage, your processing program indicates the length to VSE/VSAM; for

retrieval, VSE/VSAM indicates it to your program.

Using VSE/VSAM Macros

186 VSE/VSAM User’s Guide and Application Programming

Length of the Key (KEYLEN)

This parameter is required only for processing by generic key. For ordinary keyed

access, the full key length is available from the catalog.

Address of the Area Containing the Search Argument (ARG)

The search argument is either a key (including a relative-record number) or an

RBA. If the OPTCD parameter indicates a generic key, the KEYLEN parameter tells

how many high-order (leftmost) bytes of the search argument will be used.

Address of the Next RPL in a Chain (NXTRPL)

You can process several records with a single GET, PUT, or ERASE by chaining

RPLs together. For example, every RPL in a chain could contain a unique search

argument and point to a unique work area. A single GET macro would retrieve a

record for every RPL in the chain. A chain of RPLs is processed as a single request.

(Chaining RPLs is not the same as issuing concurrent requests that require

VSE/VSAM to keep track of multiple positions in a file.)

Transaction-ID (TRANSID)

With this parameter you can create a logical relationship between I/O requests

issued for different VSE/VSAM files.

GENCB: Generating Control Blocks and Lists

You can use the GENCB macro to generate an ACB, EXLST, or RPL during the

execution of your processing program, rather than to assemble it with the

corresponding macro. GENCB is coded in the same way as the other macros, but it

generates one or more copies of a control block or list and allows you to code

parameter values in more ways.

Connecting and Disconnecting a Processing Program and a File

OPEN connects a processing program to a file, so that VSE/VSAM can satisfy the

program’s request for data. CLOSE completes processing and frees resources that

were obtained by the Open routine. TCLOSE causes buffers to be written out and

the catalog to be updated.

OPEN: Connecting a Processing Program to a File

The OPEN macro calls the Open routine, which verifies that the processing

program has authority to process the file, constructs VSE/VSAM control blocks

and establishes linkages to VSE/VSAM routines. By examining the DLBL statement

indicated by the DDNAME operand in the ACB macro and the volume

information in the catalog, Open verifies that the necessary volumes have been

mounted. When you are opening a key-sequenced file or an alternate index,

VSE/VSAM issues an error code to warn you if the data has been updated

separately from its index.

CLOSE: Disconnecting a Processing Program from a File

The Close routine completes any I/O operations that are outstanding when a

processing program issues a CLOSE macro for a file. It writes any output buffers

that have not been stored.

Close updates the catalog entries for any changes in the attributes of a file; it also

updates the statistics on file processing (such as number of records inserted). The

addition of records to a file may cause its end-of-file indicator to change, in which

case Close updates the end-of-file indicator in the catalog. These end-of-file

Using VSE/VSAM Macros

Chapter 10. Using VSE/VSAM Macros 187

indicators help ensure that the entire file is accessible. If an error prevents

VSE/VSAM from updating the indicators, the file is flagged as not properly closed.

When a processing program subsequently issues an OPEN macro, it is given an

error code indicating the failure.

Because it is essential for the integrity of a file that it is closed properly, z/VSE

automatically attempts to close all open VSE/VSAM files within the partition at

both normal and abnormal termination of a job step. If any control blocks for a file

have been destroyed through an error in your program, this file cannot be closed

and a message is issued to the operator. EXLST routines are not entered during

automatic CLOSE.

Close restores control blocks to the status that they had before the file was opened,

and frees the virtual storage space that Open used to construct VSE/VSAM control

blocks.

TCLOSE: Securing Records Added to a File

The TCLOSE macro performs the functions of CLOSE, except that it leaves the

program and the file connected so that you can continue processing without

reopening the file. You can use the TCLOSE macro to protect data while the file is

loaded or extended. Positioning is lost when a TCLOSE is issued.

Manipulating and Displaying the Information Relating Program and

Data

The MODCB, SHOWCB, and TESTCB macros are used for modifying, displaying,

and testing the contents of an ACB, EXLST, or RPL.

MODCB: Modifying the Contents of Control Blocks and Lists

The MODCB macro is used to specify new values for fields in an ACB, EXLST, or

RPL. For example, to use a single RPL to retrieve directly the first record having a

certain generic key and then to retrieve sequentially the rest of the records having

that generic key, you would use MODCB to alter the RPL to change from direct to

sequential access.

SHOWCB: Displaying Fields of Control Blocks and Lists

SHOWCB allows you to examine the contents of fields in an ACB, EXLST, or RPL.

VSE/VSAM displays the requested fields in an area you provide. You can also

display fields in addition to those defined in the macros. For example, when a file

is open, you can display various counts, such as number of CI splits, number of

deleted records, and number of index levels. The RBA of the last record accessed

and the error codes set in the ACB or RPL after macro execution can also be

displayed.

TESTCB: Testing the Contents of Control Blocks and Lists

The TESTCB macro enables you to test the contents of a field or combination of

fields in an ACB, EXLST, or RPL for a particular value and to alter the sequence of

your processing steps as a result of the test. Thus, TESTCB is similar to a branch

instruction. You can test the error codes set in the ACB or the RPL, for instance, or

the attributes of a file, such as record length.

Using VSE/VSAM Macros

188 VSE/VSAM User’s Guide and Application Programming

Requesting Data Transfer, Positioning, and Deletion of Records

All of the preceding macros prepare to process a file. The request macros (GET,

PUT, POINT, ERASE, and WRTBFR) initiate an access to data. Another request

macro, ENDREQ, is provided to (1) terminate processing of a request when

completion is not required, or (2) free VSE/VSAM from having to keep track of a

position in the file. Each of these macros is associated with an RPL (or chain of

RPLs) that fully defines the request. The only parameter that is needed with a

request macro is the address of the RPL that defines the request.

Displaying Catalog Information

SHOWCAT: Retrieving Information from a Catalog

With the SHOWCAT macro, you can retrieve information from a catalog about any

non-open file defined in the catalog.

The entries in a catalog are related. Several entries are required to describe an

object and its associated objects (for example, a cluster and its data and index

components); one entry points to one or more other entries, which point to yet

others. Figure 33 on page 190 shows the relationship of entries that describe the

following types of objects:

v Alternate index (G)

v Cluster (C)

v Data component (D)

v Index component (I)

v Path (R)

v Upgrade set (Y)

Using VSE/VSAM Macros

Chapter 10. Using VSE/VSAM Macros 189

For example, an alternate index entry points to the entries of its data and index

components, its base cluster, and its path. SHOWCAT enables you to follow the

arrows pictured in Figure 33. You first issue SHOWCAT by specifying the name of

the object you want to display. The information VSE/VSAM returns to you (only if

EXTOPT is not specified) includes the CI numbers of the catalog entries that

describe any associated objects. You then issue subsequent SHOWCATs to retrieve

information from these associated entries by specifying the CI numbers that

VSE/VSAM has returned. The first time you issue SHOWCAT, VSE/VSAM

searches catalogs (in the following order) to locate the entry that describes the

object to be displayed:

1. The catalog identified by the SHOWCAT CATDSN parameter, if specified.

2. The catalog identified by the DLBL CAT parameter for the VSE/VSAM file.

3. The job catalog identified by the IJSYSUC DLBL statement, if supplied.

4. The master catalog (IJSYSCT).

You must provide DLBL cards for:

v The master catalog – if the entry is in the master catalog.

v The master and the job catalogs – if the entry is in the job catalog.

v The master catalog – if the entry is in a user catalog specified by either the

SHOWCAT CATDSN parameter or the DLBL CAT parameter for the

VSE/VSAM file.

 ┌───┐

 │ │

 │ ┌──────────┐ ┌────┴─────┐

 │ ┌────┤ Path ├────┐ ┌─────────────────┤ Path ├───┐

 │ │ │ (R) │ │ │ ┌─────┤ (R) │ │

 │ │ └──────────┘ │ │ │ └──────────┘ │

 │ │ │ │ │ │

 │ │ │ │ │ │

 │ │ ┌────────────┐ │ │ │ ┌────────────┐ │

 │ │ │ Cluster │M────────────────────N│ Alternate │ │

 │ │ │ (C) │ │ │ │ │ Index │ │

 │ │ └────────────┘ │ │ │ │ (G) │ │

 │ │]] │ │ │ └────────────┘ │

 │ │ │ │ │ │ │]] │

 │ │ │ │ │ │ │ │ │ │

 d d d d d d d d d d

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐

│ Data │ │ Index │ │ Data │ │ Index │

│Component│ │Component│ │Component│ │Component│

│ (D) │ │ (I) │ │ (D) │ │ (I) │

└────┬────┘ └─────────┘ └─────────┘ └─────────┘

 │]]

 │ │ │

 │ ┌────┴────┐ │

 └──────────────────────────────N│ Upgrade ├─────────┘

 │ Set │

 │ (Y) │

 └─────────┘

 ────N Indicates a pointer

 from one entry to another

Figure 33. Relationship of Catalog Entries

Using VSE/VSAM Macros

190 VSE/VSAM User’s Guide and Application Programming

VSE/VSAM returns to you the address of the ACB that defines the catalog

containing the entry to be displayed. The subsequent times you issue SHOWCAT,

you can specify that address, which causes VSE/VSAM to search only the

corresponding catalog.

Sharing Resources Among Files and Displaying Catalog Information

Normally, buffers and control blocks are allocated statically to a file at the time the

file is opened; they are freed when the file is closed. As long as the file is open,

these buffers and control blocks cannot be used by any other file.

The Shared Resources facility, however, allows you to share buffers, I/O control

blocks, and channel programs among several VSE/VSAM files within a partition,

and to manage I/O buffers. These buffers and control blocks are allocated out of a

common resource pool at the time you issue an I/O request for a file. When the

request is satisfied, the same buffers and control blocks can be assigned to another

file (for direct requests).

Sharing these resources optimizes their use and also reduces the amount of virtual

storage required (the working set) per partition. The facility is especially useful in

an environment in which (a) many VSE/VSAM files are open and it is therefore

difficult to predict the amount of activity that will occur at a given time, or (b)

every transaction may refer to several files.

Managing I/O buffers includes:

v Deferring write operations for direct PUT requests, thus reducing the number of

I/O operations.

v Correlating deferred requests by a transaction ID.

v Writing out buffers whose writing has been deferred.

Managing I/O buffers should enable you to speed up direct processing of

VSE/VSAM files whose activity is unpredictable.

When you share resources for sequential access, you have to establish positioning

before you can issue your initial retrieval request, because with shared resources

VSE/VSAM does not automatically position itself at the beginning of a file opened

for sequential access. Also note that you may not use shared resources to load

records into an empty file.

The macros you use to share resources and write I/O buffers are:

v BLDVRP (build VSE/VSAM resource pool)

v DLVRP (delete VSE/VSAM resource pool)

v WRTBFR (write buffer)

In addition, the SHOWCAT macro is provided to display, for non-open files, the

catalog information needed for the proper specification of some of the BLDVRP

operands.

The ACB, RPL, SHOWCB, MODCB, and TESTCB macros have been extended to

provide for sharing resources and managing I/O buffers.

Using VSE/VSAM Macros

Chapter 10. Using VSE/VSAM Macros 191

Data Set Name Sharing

Normally, VSE/VSAM handles data sets that are opened through different access

method control blocks (ACBs) always as different data sets; this applies even if

such ACBs point to the same data set. Thus, when a file is opened through

different ACBs, the read integrity may be impaired. Also, for non-shared resources

(NSR), individual buffers with different copies of the same data and index records

are in virtual storage, but cannot be shared. This results in unnecessary

input/output operations, and negatively affects read/write integrity.

VSE/VSAM provides the processing option data set name sharing. Using this option:

v Improves data integrity when opening a file through different ACBs.

v Does not violate data integrity when writing to base clusters directly, or when

writing through paths or alternate indexes simultaneously.

v Allows local shared resources (LSR) or non-shared resources (NSR) to share I/O

buffers and control blocks of a file that has been opened through different ACBs.

ACBs that are created by VSE/VSAM internally can also access shared buffers;

this, however, does not apply to catalogs.

To use Data Set Name Sharing, you essentially have to make entries in the ACB

macro; in the:

v MACRF operand -- you have to specify DSN and DDN.

v BSTRNO operand -- you have to consider additional requirements for handling

the base cluster of an alternate index (AIX).

The VSE/VSAM control block (CB) manipulation macros GENCB, MODCB,

SHOWCB, and TESTCB are available to manipulate the ACB.

The following ACB specifications are MVS compatible:

 MACRF=(DDN|DSN) and BSTRNO=number

Considerations

If you use Data Set Name Sharing, note that:

v The first opening ACB has to define the total number of strings for the first and

all following ACBs. (This is similar to processing LSR resource pools.)

v All buffers have to be defined with the first ACB.

v All ACBs that are to be opened for a specific file must use the same resource

pool. That is, you have to specify the same SHRPOOL number in each ACB.

v VSE/VSAM ignores the definition of STRNO, BSTRNO, BUFSP, BUFNI and

BUFND for the second and further data set name shared ACBs.

v VSE/VSAM rejects an open to a reusable data set if ACB

MACRF=(....DSN,RST...) is specified.

v VSE/VSAM rejects an open if ACB MACRF=(....DSN,UBF...) is specified.

v Before issuing TCLOSE, issue ENDREQ to the ACB-related RPLs. This avoids

unpredictable results that could be caused by outstanding input/output

processing.

v For DSN shared ACBs, VSE/VSAM ignores the share option specified in the

IDCAMS commands ALTER and DEFINE. That is, if you specify data set name

sharing, and whenever VSE/VSAM has opened a file, all data integrity within

the DSN structure is handled internally by VSE/VSAM without the z/VSE

LOCK facility. Additional OPENs to this file without data set name sharing are

handled by VSE/VSAM depending on the specifications in the share option.

Using VSE/VSAM Macros

192 VSE/VSAM User’s Guide and Application Programming

v It is not possible to share a path through an alternate index and a single alternate

index (either opened as a key sequenced file, or opened through a path specified

wit ACB MACRF=(AIX)). The reason for this is: there is a possibility that buffers

containing base cluster records and alternate index records are mixed.

Processing

The sharing of buffers and control blocks of a data set is initiated at OPEN time

through the operands MACRF=(DSN) and BSTRNO=number.

If a mix-up of input/output ACBs occurs, VSE/VSAM issues a warning message;

nevertheless, opening of the file will be successful. VSE/VSAM handles a mix-up

as follows:

v The first opening ACB designates whether the whole structure is for input or

output. After the first open, you cannot change the structure anymore.

v If the first ACB is opened with MACRF=(...OUT,DSN...), and if one of the

following ACBs is opened with MACRF=(...IN,DSN...), each insert/update request

through such following ACB is rejected.

v If the first ACB is opened with MACRF=(...IN,DSN...), each insert/update

request through this or each following ACB is rejected, even if the following

ACB has been opened with MACRF=(...OUT,DSN).

Specifying Manipulation Macros

The VSE/VSAM control-block manipulation macros GENCB, MODCB, SHOWCB,

and TESTCB are available to manipulate the ACB.

The following outlines the use of MACRF operand and the BSTRNO value:

GENCB ACB

 ,MACRF=(..,DSN),BSTRNO=number ...

This generates an ACB with MACRF=DSN, and sets the ACB field

BSTRNO to the additional base cluster string number.

MODCB ACB

 ,MACRF=(..,DDN|DSN),BSTRNO=number ...

This modifies the ACB to MACRF=DSN or DDN, and sets the ACB field

BSTRNO to the additional base cluster string number.

SHOWCB ACB

 ,FIELDS=(BSTRNO) ...

This shows the value of the ACB field BSTRNO.

TESTCB ACB

 ,MACRF=(..,DDN|DSN) ...

 ,BSTRNO=number ...

This tests the ACB for MACRF=DDN or DSN, and tests for the value of

the ACB field BSTRNO.

Buffers and LSR Pools above 16MB Line of Storage

VSE/VSAM allows to allocate virtual storage for I/O buffers and for multiple local

shared resources (LSR) pools above or below the 16MB line of address space.

Using VSE/VSAM Macros

Chapter 10. Using VSE/VSAM Macros 193

The option can be specified through the parameter RMODE31 that is available in

the macros ACB and BLDVRP. Refer to “The ACB Macro” on page 196 and “The

BLDVRP Macro” on page 207. For information on how VSE/VSAM allocates

buffers, refer to “Buffer Allocation above the 16MB Line of Storage” on page 16.

Note that a program check may occur if:

v A program uses a 24-bit address and if you attempt to reference control blocks,

I/O data buffers, or LSR pools that are located above the 16MB line of storage.

v You attempt to use LOCATE mode:

 While in 24-bit mode, and

 RMODE31=ALL was specified.

When you use 31-bit addresses in your programs, note the following:

v All VSE/VSAM control blocks that have fields defined as 31-bit addresses must

contain 31-bit addresses.

Do not use the high-order byte of a 31-bit address field as a user-defined flag

field. This applies to 24-bit and 31-bit addressing.

v You may obtain I/O data buffers from above or below the 16MB line as follows:

– Below the 16MB line by taking the default (=NONE) in the ACB or BLDVRP

macro.

– Above the 16MB line by specifying RMODE31=ALL in the ACB or BLDVRP

macro.
v The parameter list that is passed to your exit routine resides below the 16MB

line.

v You must recompile the portion of your program that contains the ACB,

BLDVRP, and DLVRP macro specifications, including control block manipulation

requests.

Using VSE/VSAM Macros

194 VSE/VSAM User’s Guide and Application Programming

Chapter 11. Descriptions of VSE/VSAM Macros

This Chapter ...

v Documents Programming Interface information. See “Notices” on page xiii.

v Describes the macros in alphabetical order. For each macro, you find an

explanation of the format and operands, and other related details. When

details apply to macro groups, the information is organized as follows:

– Declarative Macros (ACB, EXLST, RPL):

- “Examples: ACB, EXLST, and RPL Macros” on page 265.
– Request Macros (GET, PUT, and so on):

- “Examples of Request Macros” on page 267.

- “Return Codes of Request Macros” on page 289.
– Control Block Manipulation Macros (GENCB, MODCB, and so on):

- “List, Execute, and Generate Forms of the Control Block Manipulation

Macros” on page 291.

- “Return Codes from the Control Block Manipulation Macros” on page

291.
– OPEN/CLOSE Macros:

- “OPEN/CLOSE/TCLOSE Message Area” on page 204.
v For information on the various macro groups, refer to Chapter 10, “Using

VSE/VSAM Macros,” on page 183.

Syntax of VSE/VSAM Macros

For the general command description conventions, refer to the manual VSE/VSAM

Commands under “Understanding Syntax Diagrams.”

In the VSE/VSAM macros, you can code address as a symbolic name. Except for

the ACB, EXLST, and RPL macros, you can also code an address as a register,

using either ordinary register notation (with registers 2 through 12) or, if shown in

the format description as a decimal number in parentheses, special register

notation. For example:

 RPL=address│(1)

means that you can specify either a symbolic address, any of the registers 2 to 12,

or Register 1.

The use of Registers 0, 1, 13, 14, and 15 is the same as for z/VSE macros.

VSE/VSAM does not save the contents of registers 0, 1, 14, 15 before using them.

The highest order part of register 13 can be changed, depending on the caller’s

AMODE. If you use these registers, you must either save their contents yourself

(and reload them later) or finish with them before VSE/VSAM uses them. For

additional information about the use of registers, see the z/VSE System Macros

Reference.

You can code a value (number) as any absolute expression, except for a

self-defining character term. You can code a name according to the rules of the

© Copyright IBM Corp. 1979, 2005 195

assembler. The control block manipulation macros (GENCB, SHOWCB, MODCB,

and TESTCB) can be coded in even more ways as shown in “Operand Notation for

VSE/VSAM Macros” on page 295.

Some operands of the VSE/VSAM macros can have more than one parameter.

These operands are shown with parentheses around the parameters (for example,

the MACRF operand of the ACB macro). This means that you can code the

operand, if it has only one parameter, with or without parentheses around the

parameter:

 MACRF=option

 MACRF=(option)

However, if the operand is coded with two or more parameters, enclosing

parentheses are required:

 MACRF=(option,option)

VSAM Executable Macros and Their Mode Dependencies

 Table 10. VSAM Macros and Their Mode Dependencies

Macro AMODE RMODE Comment

CLOSE ANY 24 ACB has to be allocated below 16MB

OPEN ANY 24 ACB has to be allocated below 16MB

TCLOSE ANY 24 ACB has to be allocated below 16MB

GET (RPL) ANY ANY RPL has to be allocated below 16MB

PUT(RPL) ANY ANY RPL has to be allocated below 16MB

ENDREQ ANY ANY RPL has to be allocated below 16MB

POINT ANY ANY RPL has to be allocated below 16MB

GENCB ANY ANY ACB,RPL,EXLST,and WAREA must be allocated

below 16MB

SHOWCB ANY ANY ACB,RPL,EXLST must be allocated below 16MB

MODCB ANY ANY ACB,RPL,EXLST must be allocated below 16MB

TESTCB ANY ANY ACB,RPL,EXLST must be allocated below 16MB

SHOWCAT ANY 24 all parameters must be allocated below 16MB

BLDVRP ANY ANY

DLVRP ANY ANY

WRTBFR ANY ANY

The ACB Macro

You specify most information (such as key length or record format) about the file

in the DEFINE command of IDCAMS. That information then resides in the

VSE/VSAM catalog and is brought into virtual storage when the ACB is opened.

You code the values for the ACB macro operands as absolute numeric expressions,

character strings, codes, and expressions that generate valid relocatable A-type

address constants. Ordinary register notation cannot be used for address.

VSE/VSAM Macros: Descriptions

196 VSE/VSAM User’s Guide and Application Programming

Format of the ACB Macro

NN

name

ACB
 AM=VSAM

,BSTRNO=number

,BUFND=number

N

N
,BUFNI=number

,BUFSP=number

,DDNAME=filename
 N

N

,EXLST=address

,

Macfg

,MAREA=address

 ,MLEN=0

,MLEN=number

N

N

f

,

,PARMS=(

)

KEEP

CLOSDSP=(

)

DELETE

,KEEP

DATE

,DELETE

DSNAME=address

 N

N

,PASSWD=address

NONE

,RMODE31=

ALL

BUFF

CB

 ,SHRPOOL=0

,SHRPOOL=number

N

N
 ,STRNO=1

,STRNO=number

NM

Macfg:

MACRF=(

ADR

,CNV

 ,KEY ,DDN

,DSN

 ,NDF

,DFR

,DIR

N

N
 ,SEQ

,SKP

 ,IN

,OUT

 ,NCM

,CMP

 ,NRM

,AIX

 ,NRS

,RST

N

N
 ,NSR

,LSR

 ,NUB

,UBF

)

name

one through eight characters that provide a symbolic address for the ACB that

is assembled. If you omit the DDNAME parameter, the specified name serves

as the file name that you must specify in the DLBL JCL statement. In that case,

the name you use must not exceed seven characters, and its first character

must be a letter (A - Z).

ACB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 197

AM=VSAM

specifies that this is a VSE/VSAM control block. You may want to specify this

operand for documentation purposes if your installation also uses VTAM.

BSTRNO=number

specifies additional buffers and strings that are required whenever a path is

opened to handle the base cluster of an alternate index (AIX). It specifies the

number of strings that VSE/VSAM is to allocate internally for access to the

base cluster of a path.

 BSTRNO applies only in conjunction with data set name sharing.

 If you omit the operand or specify BSTRNO=0, the number of internally

created strings is twice that specified in STRNO.

 No dynamic increase of string numbers is possible under VSE/VSAM.

 If the value specified in BSTRNO is insufficient, requests could fail. BSTRNO is

accepted if the sum of the values in STRNO and BSTRNO does not exceed 255;

this applies even if the opened ACB does not belong to the path.

 It is important to define a reasonable value with the first ACB that opens for

data set name (DSN) sharing. This is necessary, because VSE/VSAM ignores

the BSTRNO values of subsequently opened ACBs with DSN sharing to the

same data set.

 For further information and considerations, refer to “Data Set Name Sharing”

on page 192.

BUFND=number

specifies the number of I/O buffers to be used to hold CIs containing data

records. Every buffer is the size of one data CI. The allowable minimum

specification (and also the default) is the number specified for STRNO, plus

one. (The default for STRNO is one.) If you specify the BUFND operand, but

your specification is less than the minimum, VSE/VSAM overrides your

specification and uses the minimum. However, VSE/VSAM issues no message

to inform you of this.

 VSE/VSAM increases the number of data buffers you specify if the amount of

virtual storage available for buffers differs from the storage requirements

indicated by the BUFND and BUFNI operands. See the BUFSP operand for an

explanation. For examples of BUFND use, see “Buffer Specification” on page

95.

BUFNI=number

specifies the number of I/O buffers to be used to hold index CIs (index

records). Every buffer is the size of one index CI. The minimum number you

can specify is the number specified for the STRNO operand. (If you omit

STRNO, BUFNI must be at least one, because the default for STRNO is one.) If

BUFNI is omitted, the default is the number specified for STRNO, because the

smallest number of index buffers allowed is one for every string. If you specify

the BUFNI operand, but your specification is less than the minimum,

VSE/VSAM overrides your specification and uses the minimum. However,

VSE/VSAM issues no message to inform you of this.

 VSE/VSAM increases the number of index buffers you specify if the amount of

virtual storage available for buffers differs from the storage requirements

indicated by the BUFND and BUFNI operands. See the BUFSP operand for an

explanation. For examples of BUFNI use, see “Buffer Specification” on page 95.

BUFSP=number

specifies the size, in bytes, of an area for data and index I/O buffers.

ACB Macro

198 VSE/VSAM User’s Guide and Application Programming

VSE/VSAM issues a GETVIS macro to obtain the buffer area in your

processing partition. It must be at least as large as the buffer space size

recorded in the catalog entry for the file. If your specification is too small,

VSE/VSAM overrides it and uses the value recorded in the catalog for buffer

space size. However, VSE/VSAM issues no message to inform you of this.

 If you do not specify the BUFSP operand, the buffer space size will be the

larger of (1) the size recorded in the catalog or (2) the size determined from the

values specified for BUFND and BUFNI. (The size recorded in the catalog was

specified by the BUFFERSPACE parameter in the DEFINE command of

IDCAMS. If that parameter was omitted when the file was defined, a default

value was set in the catalog. This default value, the minimum amount of buffer

space allowed by VSE/VSAM, is enough space for two data CIs and one index

CI.)

 You can also specify buffer space by means of the BUFSP=number operand on

the DLBL statement that identifies the file to be processed. This value overrides

the BUFSP operand in the ACB macro. It also overrides the BUFFERSPACE

parameter in the DEFINE command if it is greater than the BUFFERSPACE

parameter value.

 If the values you code for BUFND, BUFNI, and BUFSP are not consistent with

each other, VSE/VSAM increases the number of buffers to conform to the size

of the buffer area.

 If BUFSP is greater than the minimum requirements and greater than the

BUFND and BUFNI requirements, the extra space will be allocated between

data and index buffers as follows:

v If the ACB MACRF operand indicates direct processing only:

First, BUFND and BUFNI are allocated as specified. Then, all additional

space is allocated to index buffers.

v If the ACB MACRF operand indicates sequential processing:

First, BUFND and BUFNI are allocated as specified. Then, one additional

buffer is allocated to the index and the remaining space is allocated to data

buffers. Any space remaining, but insufficient for a single data buffer, is

allocated to an index buffer.

 If BUFSP is greater than the minimum requirements, but less than the BUFND

and BUFNI requirements, the buffer space will be changed to conform to the

BUFND and BUFNI requirements.

 If you provide your own pool of I/O buffers for CI (CNV) access

(MACRF=UBF), the BUFND, BUFNI, and BUFSP operands have no effect. The

AREA and AREALEN parameters in the RPL macro then define the area for

user buffers.

 For examples of BUFSP use, see “Buffer Specification” on page 95.

DDNAME=filename

specifies a character string of up to seven bytes and is the same as the filename

parameter specified in the DLBL statement that identifies the VSE/VSAM file

or path to be processed.

 If the ‘file ID’ in the DLBL statement indicates a path, but you want to process

only the alternate index of the path, you must specify MACRF=AIX (see the

discussion of the MACRF operand). If the file ID does not indicate a path, the

AIX option is ignored.

ACB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 199

If you omit the DDNAME operand, you must specify the DLBL filename as the

name (label) of the ACB macro.

EXLST=address

specifies the address of a list of user exit-routine addresses. The list is

generated by the EXLST macro (or the GENCB macro). If you use the EXLST

macro, you can specify its name (label) here as the address of the exit list. If

you use the GENCB macro, you can specify the address of the EXLST returned

by GENCB in Register 1. Omitting this operand indicates that you have no

user exit routines.

MACRF=

specifies the kind(s) of processing you will do with the file. The options must

be meaningful for the file. For example, if you specify keyed access for an

entry-sequenced file, you will not be able to open the file. You must specify all

of the types of access you are going to use, whether you use them concurrently

or by switching from one to the other.

 For information on the interaction between the DLBL DISP parameter and the

ACB MACRF specification when a file is opened, refer to “File Disposition” on

page 29.

 Mutually exclusive options are:

 AIX and NRM NDF and DFR

 IN and RST LSR and UBF

 NRS and RST LSR and RST

 NUB and UBF NSR and DFR

 NSR and LSR NCM and CMP

The following restrictions apply to a SHAREOPTIONS 4 key-sequenced output

file:

v One ACB cannot specify both KEY and ADR (or both KEY and CNV).

Attempts to do this result in an OPEN failure.

v If the file is open for output under one ACB for keyed access, an attempt to

open it under another ACB with MACRF=(OUT,ADR) or

MACRF=(OUT,CNV) will fail.

v If the file is open for output under one ACB for addressed or CI access, an

attempt to open it under another ACB with MACRF=(OUT,KEY) will fail.

Options of the MACRF Parameter

The following explains the MACRF parameter options. The options are arranged in

groups, where every group has a default value (highlighted). You can specify

options in any order. You may specify both DIR and SEQ; with keyed access, you

may specify SKP as well. If you specify OUT and want simply to retrieve some

records as well as update, delete, or insert others, you need not also specify IN.

You may specify both ADR and KEY to process a key-sequenced file.

ADR

Addressed access (for key-sequenced and entry-sequenced files).

CNV

CI access.

KEY

Keyed access (for key-sequenced or relative-record files).

DDN

specifies to open the data set according to the DDNAME specification.

ACB Macro

200 VSE/VSAM User’s Guide and Application Programming

DSN

specifies that VSE/VSAM handles the first ACB that is opened as if you

specified DDN. However, VSE/VSAM also:

v Remembers that a DSN structure was built.

v Connects the second and all following ACBs that open the first data set to

the structure of the first ACB.

If DSN is specified, VSE/VSAM shares control blocks and I/O buffers.

 For further information and considerations, refer to “Data Set Name Sharing”

on page 192.

DFR

Write operations are to be deferred when possible.

NDF

Write operations are not to be deferred.

DIR

Direct processing.

SEQ

Sequential processing.

SKP

Skip sequential processing (for key-sequenced or relative-record files).

IN Retrieve records only.

OUT

Retrieve, insert, add-to-end, or update records (keyed access); retrieve, update,

or add-to-end (addressed access).

NCM

All data records exchanged between VSE/VSAM and the application are in

uncompressed (expanded) format. If the file is in COMPRESSED format,

MACRF=CNV must not be specified.

CMP

If the file is in COMPRESSED format, all data (records or control intervals)

exchanged between VSE/VSAM and the application are in compressed format.

The record includes the compressed record prefix (see “Data Format of

Records” on page 69). SHOWCB and TESTCB also take the prefix length into

account for the LRECL, RKP, and RECLEN keywords, if MACRF=CMP is

specified.

NRM

The file (or path) named in the DDNAME operand or in the DLBL statement is

to be processed.

AIX

The alternate index of the path specified in the DDNAME operand is to be

processed. If no path is specified there, this option is ignored. The AIX option

causes the path restrictions (that is, the restrictions limiting the access through

a path) to be ignored so that the alternate index can be processed like a

key-sequenced file. The alternate index of the path can be opened for input

(IN), output (OUT), or it can be reset (RST), provided it was defined with the

REUSE attribute (in the DEFINE ALTERNATEINDEX command).

NRS

The Open routine does not reset the file to ‘empty’. Output operations will

cause updating or extension of the existing record. DISP=OLD on the DLBL

statement is equivalent to MACRF=NRS and will override MACRF=RST.

ACB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 201

RST

The Open routine resets the catalog information about the file (cluster or

alternate index) to its original status, that is, to the status it had before it was

opened for the first time. The file must have been defined with the REUSE

attribute for RST to be effective. Although the file is not erased, you can handle

it like a new file and use it as a work file. After the Open routine has

performed the reset operation, the RST option is equivalent to the OUT option.

DISP=NEW on the DLBL statement is equivalent to MACRF=RST and will

override MACRF=NRS.

NSR

Non-shared resources (normal operation).

LSR

Local shared resources (LSR).

 When you specify LSR in the ACB, VSE/VSAM ignores the BUFND, BUFNI,

BUFSP, and STRNO operands, because it uses the BUFFERS and STRNO

values specified in the BLDVRP macro.

 For more information, see “Sharing Resources Among Files and Displaying

Catalog Information” on page 191.

NUB

No user buffers; VSE/VSAM supplies buffers for I/O operations (KEY, ADR,

and CNV access).

UBF

User buffers (only CNV access can be specified). VSE/VSAM will read and

write CIs in a buffer you supply. It is pointed to by the AREA parameter of the

RPL.

MAREA=address

specifies the address of an optional OPEN/CLOSE/TCLOSE message area.

(See “OPEN/CLOSE/TCLOSE Message Area” on page 204.)

MLEN=number

specifies the length of an optional OPEN/CLOSE/TCLOSE message area. The

default is 0, the maximum value can be 32,768 bytes.

PARMS=(CLOSDSP=options DSNAME=address)

CLOSDSP=options

specifies the CLOSE disposition for a reusable file. Options specified in the

DLBLs DISP=(,option) JCL statement override the options specified in this

parameter.

 If a second option (either KEEP or DELETE) is specified, this indicates

whether the file should be kept or deleted if it was opened during a job

that ended abnormally. For example, if you open a file with

PARMS=(CLOSDSP=(DELETE,KEEP)) specified, then this file is deleted

only if the job comes to a normal end. In any other case, the file is kept so

that you can rerun the job without reloading the file.

 KEEP

indicates that the file and its contents are to be preserved.

DISP=(,KEEP) on the DLBL statement is equivalent to

PARMS=(CLOSDSP=KEEP) and will override any CLOSDSP specified

in the ACB.

DELETE

indicates that the file and its contents need not be preserved.

ACB Macro

202 VSE/VSAM User’s Guide and Application Programming

VSE/VSAM is free to release resources associated with the file.

DISP=(,DELETE) on the DLBL statement is equivalent to

PARMS=(CLOSDSP=DELETE) and will override any CLOSDSP

specified in the ACB.

DATE

indicates that disposition depends on the current system date and the

file’s expiration date. If the expiration date is yet future relative to the

system date, the file is treated as though KEEP were specified.

Otherwise the file is treated as though DELETE were specified.

DISP=(,DATE) on the DLBL statement is equivalent to

PARMS=(CLOSDSP=DATE) and will override any CLOSDSP specified

in the ACB.

 If disposition parameters indicate that file resources can be freed,

VSE/VSAM releases as many resources as allowed by the sharing status

and by the characteristics defined for the file. For details, refer to “File

Disposition” on page 29.

DSNAME=address

specifies the address of a 88 byte area that contains the data set names of

the cluster and the catalog that contains the data set. The DSNAME

operand allows to open a file without referring to a matching label (DLBL).

The format of the area pointed to by address is:

 Offset

Dec Hex Bytes Description

0 0 44 Entry name of cluster or component to be used

44 2C 44 Entry name of the catalog

 PASSWD=address

specifies the address of a field that contains the highest-level password

required for the type(s) of access indicated by the MACRF operand. The first

byte of the field pointed to contains the length (in binary) of the password

(maximum of 8 bytes). A zero in the length byte indicates that no password is

supplied. If the file is password-protected and you do not supply a required

password in the ACB, VSE/VSAM gives the console operator the opportunity

to supply it when opening the file.

RMODE31=ALL│BUFF│CB│NONE

specifies whether VSE/VSAM OPEN is to obtain virtual storage for I/O

buffers above or below the 16MB line of address space. The default is NONE.

Note: The internal VSE/VSAM buffers and control blocks are not affected by

the RMODE31 parameter. If possible, VSE/VSAM places such buffers

and control blocks above the 16MB line.

(Internal VSE/VSAM buffers are, for example, NSR index buffers, path buffers,

and upgrade set buffers.)

ALL│BUFF specifies that VSE/VSAM I/O buffers may to be obtained from

above the 16MB line.

 CB│NONE specifies that VSE/VSAM I/O buffers must be obtained from below

the 16MB line.

 ALL and CB are allowed for reasons of DFSMSdfp compatibility.

SHRPOOL=number

identifies which LSR pool is to be connected to the ACB. This parameter is

ACB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 203

only valid when MACRF=LSR is also specified. For number specify the

identification number of the shared pool; it can be a number from 0 through

15. The default is 0.

STRNO=number

indicates how many concurrent active requests VSE/VSAM is to handle. The

maximum value is 255. The default is one.

 During initial load of a file, VSE/VSAM ignores your specification and sets the

value to one because a file can be loaded by one string only. After the file is

loaded and successfully closed, it can be reopened and processed by as many

strings as specified under STRNO.

 Several requests, with the corresponding RPLs pointing to the same ACB, can

be active at the same time. Thus, you can access simultaneously (a) different

parts of a file, and (b) in different modes of operation (sequential and direct, or

keyed and addressed, for example). You may, for example, process one part of

a file sequentially (forward or backward) and intermix sequential processing

with direct requests to any part of the file, without affecting the sequential

positioning.

 Every request is activated by its own RPL and action (GET, PUT, etc.) macro.

Positioning information is maintained separately for every RPL, so that every

request can be processed independently from all other requests.

 A request is defined either by a single RPL or by a chain of RPLs (see “RPL:

Specifying the Request Parameter List” on page 186). Specify for STRNO the

total number of RPLs or chains of RPLs that you will use to define requests.

For a chain of RPLs VSE/VSAM needs to remember only one position.

However, every position beyond the minimum number that VSE/VSAM needs

to remember requires additional virtual-storage space for:

v A minimum of one data I/O buffer and, for keyed access, one index I/O

buffer (the size of an I/O buffer is the CI size of a file).

v Internal control blocks and other areas.

 VSE/VSAM remembers its position in the file for any sequential or update

request. For example, sequential access depends on VSE/VSAM being able to

determine the location of the next record from the location of the present

record. Updating or deleting a record depends on VSE/VSAM remembering its

location after you retrieve it. Also, processing a record in the I/O buffer

requires VSE/VSAM to remember its location in the buffer.

Note: If the number of concurrent requests (RPLs or chain of RPLs) exceeds

the number you have specified in the ACB STRNO operand, you must

disconnect a request from its RPL by means of the ENDREQ macro

before you can issue another concurrent request. The ENDREQ macro is

discussed under “The ENDREQ Macro” on page 213.

OPEN/CLOSE/TCLOSE Message Area

Providing the Area

After you have issued an OPEN, CLOSE, or TCLOSE macro, the ACB error code is

either zero, indicating that the files were opened or closed successfully, or

non-zero, indicating that a warning or error condition occurred. You can examine

this code by specifying the ERROR keyword in the SHOWCB or TESTCB macro.

However, during an OPEN, CLOSE, or TCLOSE more than one warning or error

condition may be detected, in which case the error code which you get when you

specify the ERROR keyword reflects only the warning or error condition which

ACB Macro

204 VSE/VSAM User’s Guide and Application Programming

occurred last. The error code does not indicate any other (earlier) conditions which

might have occurred during the OPEN, CLOSE, or TCLOSE.

In order to save such multiple warning or error conditions, you can provide a

message area in which those conditions are to be stored, together with additional

information. This message area is connected to the ACB when you specify the

following parameters in the ACB macro:

 MAREA=address,MLEN=length

MAREA must be allocated below 16MB. If MAREA or MLEN are not specified or a

length of zero has been specified for MLEN, no area is provided and the ACB error

code is then the only indication for errors or warnings which occurred during

OPEN, CLOSE, or TCLOSE. If you have specified both MAREA and MLEN (with a

non-zero value) and error or warning conditions are detected, appropriate

messages are stored into the message area.

The OPEN/CLOSE/TCLOSE message area is also used by VSE/VSAM record

management if resources such as buffers and control blocks are shared among files.

If a GET request is issued for a file using the common resource pool, it can happen

that (owing to deferred write operations for PUT requests) the resource pool is

filled up with modified buffers forcing VSE/VSAM to write a buffer for another

file before it can satisfy the GET request. If an error occurs in writing out such a

buffer, this is indicated in the message area, together with the ACB name of the

affected file.

The message information provided by VSE/VSAM consists of the message area

header and the message list.

The message area header contains statistical, pointer, and general information. Its

contents are unrelated to the individual messages.

Format of the Message Area Header

The format of the message area header is:

Byte Meaning

0 Flag byte

Bit 0=1:

At least one warning or error condition has occurred and the

complete header is stored.

Bit 0=0:

Either no warning or error condition has occurred or the message

area is too short for the complete header. No further header

information and no messages are stored.

Bits 1-7

Reserved (set to binary zero)

1-2 Length of message area header

3 Request type code:

X‘01’ OPEN

X‘02’ CLOSE

X‘03’ TCLOSE

X‘04’ GET (for shared resources only)

4-11 Filename used for ACB

OPEN/CLOSE/TCLOSE Message Area

Chapter 11. Descriptions of VSE/VSAM Macros 205

12-13 Total number of error or warning conditions issued by OPEN, CLOSE,

TCLOSE, or (for shared resources only) by record management

14-15 Number of messages stored into message area

16-19 Address of message list, that is, of first message in the message area

Apart from the flag byte, message area header information is stored only when a

warning or error condition was detected (the ACB or RPL error code is non-zero)

and the length of the message area (MLEN) is large enough to accommodate the

full message area header. Thus, before accessing bytes 1-19 of the message header

information, you should test byte 0 to see whether further information was stored

at all.

The message list contains the individual messages corresponding to the warning or

error conditions detected. It is pointed to by bytes 16-19 of the message area

header. Within the message list, the individual messages are stored continuously

one after another in the form of variable-length records. The number of messages

stored is contained in the message area header (bytes 14-15). Before investigating

the message list, you should check whether the stored-message count is zero or

greater than zero. The format of a message is as follows:

Byte Contents

0-1 Total length of message (including length bytes).

2 ACB error code corresponding to error or warning condition represented

by this message, or (for shared resources) RPL error code indicating write

error.

3 Function-type code (indicates the component which produced the error or

warning condition and the state of the upgrade set):

X‘00’ Condition occurred during accessing the base cluster. Upgrade set

is correct.

X‘01’ Condition occurred during accessing the base cluster. Upgrade set

may be incorrect as a consequence of this request.

X‘02’ Condition occurred during accessing the AIX over a base cluster.

Upgrade set is correct.

X‘03’ Condition occurred during accessing the AIX over a base cluster.

Upgrade set may be incorrect as a consequence of this request.

X‘04’ Condition occurred during upgrade processing. Upgrade set is

correct.

X‘05’ Condition occurred during upgrade processing. Upgrade set may

be incorrect as a consequence of this request.

X‘06’ Condition occurred during writing of a buffer which does not

belong to the file for which the GET request was issued (for shared

resources only).

4-nn File ID of the component indicated by the function-type code (up to 44

bytes), or (for shared resources) name of the ACB identifying the file for

which the buffer write error occurred.

Exceptional Conditions for the Message Area

v Message area (MLEN) is too small to contain the complete message area header:

 Byte 0, bit 0=0: The whole message area is overwritten with binary zeros.
v Message area is too small to contain a complete message:

OPEN/CLOSE/TCLOSE Message Area

206 VSE/VSAM User’s Guide and Application Programming

Byte 0, bit 0=1: The header exists.

 Bytes 12-13 not equal to 0: Warning or error conditions have occurred.

 Bytes 14-15=0: No message stored.
v Message area is too small to contain all messages:

 Byte 0, bit 0=1: The header exists.

 Bytes 12-13 not equal to 0: Warning or error conditions have occurred.

 Bytes 14-15 not equal to 0: If the value in bytes 14-15 is lower than in bytes

12-13, then not all messages have been stored.

The BLDVRP Macro

To share resources, you must provide a resource pool which you build by issuing

the BLDVRP (build the VSE/VSAM resource pool) macro. Issuing BLDVRP causes

VSE/VSAM to share the I/O buffers, I/O control blocks, and channel programs of

those files whose ACBs indicate the local shared resource (LSR) option. Control

blocks and channel programs are shared automatically; you can control the sharing

of buffers.

When issuing BLDVRP, you must specify one or more buffer pools within the

resource pool, and also the size and number of buffers in every buffer pool. A file

uses the buffer pool whose buffer size exactly matches the file’s CI size or, if this

CI size is not available, the buffer pool with the next-larger buffer size. The file

uses only the one buffer pool.

To share resources, you must do all of the following:

v Issue the BLDVRP macro to build a resource pool.

v Code the LSR option in the MACRF operand in the ACBs of your files.

v Issue OPEN to connect these files to the resource pool.

When you issue a BLDVRP macro, Register 13 must contain the address of a

72-byte save area that you are providing. When you issue a BLDVRP macro from

within one of your exit routines such as LERAD or SYNAD, your program must

provide a second 72-byte save area for use by VSE/VSAM, because the original

save area is still in use by the external VSE/VSAM routine.

Deciding How Big a Pool to Provide

You have to provide a resource pool before any clusters or alternate indexes are

opened to use it. Specifying the BUFFERS, KEYLEN, and STRNO operands of the

BLDVRP macro requires knowledge of the size of the CIs, data records (if

spanned), and key fields in the components that will use the resource pool and

knowledge about the way the components are processed.

Displaying Information about an Unopened File

The SHOWCAT macro enables you to get information about a component before

its cluster or alternate index is opened. The program that is to issue BLDVRP can

issue SHOWCAT on all of the components to find out the sizes of CIs, records, and

keys. This information enables the program to calculate values for the BUFFERS

and KEYLEN operands of BLDVRP.

Displaying Statistics about a Buffer Pool

You can get statistics about the use of buffer pools to determine how you could

improve a previous definition of a resource pool and the mix of files that use it.

The SHOWCB macro enables you to get statistics about a buffer pool. The statistics

are available from an ACB that describes an open file that is using the buffer pool.

OPEN/CLOSE/TCLOSE Message Area

Chapter 11. Descriptions of VSE/VSAM Macros 207

They reflect the use of the buffer pool from the time it was built to the time

SHOWCB is issued. All of the statistics except one are for a single buffer pool. To

get statistics for the whole resource pool, issue SHOWCB for every buffer pool in

it.

The statistics cannot be used to redefine the resource pool while it is in use. You

have to make adjustments the next time you build it.

Format of the BLDVRP Macro

NN

name

BLDVRP BUFFERS=(

f

 ,

size(number)

),STRNO=number

N

N
 ,KEYLEN=255

,KEYLEN=length

 ,MF=L

,MF=

L

(E,

address

)

(1)

 ,RMODE31=NONE

,RMODE31=

ALL

BUFF

CB

N

N
 ,SHRPOOL=0

,SHRPOOL=number

 ,TYPE=LSR

,TYPE=LSR,

DATA

INDEX

NM

name

one to eight characters that provide a symbolic name.

BUFFERS=size(number)

specifies the size and the number of buffers in every buffer in the resource

pool. The number of buffer pools in the resource pool is implied by the

number of size(number) pairs you specify. The buffer sizes should normally be

set equal to the CI sizes of the files to be processed. (You can find out the CI

size of a file by issuing the SHOWCAT macro for that file.) If you do not

specify the exact buffer(=CI)size for a file, VSE/VSAM will use buffers from

the buffer pool with the next larger buffer size.

 When you process a key-sequenced file, the index component, as well as the

data component, shares the buffers of a buffer pool. When you use an alternate

index to process a base cluster, the components of the alternate index and the

base cluster share buffers. The components of alternate indexes in an upgrade

set share buffers. Buffers of the appropriate size and number must be provided

for all of these components, each of which uses the buffer pool whose buffers

are exactly the right size or the next-larger size.

 size is 512, 1024, 2048, 4096, or so on in increments of 4096 to a maximum of

32KB.

 number is at least 3 but must not exceed 32767.

KEYLEN=length

specifies the maximum key length of the files that are to share the resource

pool. The default is 255.

BLDVRP Macro

208 VSE/VSAM User’s Guide and Application Programming

The keys whose lengths must be provided for are the prime key of every KSDS

and the alternate key of every alternate index that is used for processing or is

upgraded. The key length (relative record number) of a relative record file is 4.

If the buffer pool is to contain for entry-sequenced files only, specify

KEYLEN=0. (You can find out the key length of a file by issuing the

SHOWCAT macro for that file.)

MF=L

indicates that this is the list form of BLDVRP. The list form builds a parameter

list when the macro is assembled. It is not executable. If you do not specify

STRNO in the list form of BLDVRP, you must specify it in the execute form.

 The list form of the BLDVRP macro is especially useful when the buffer sizes

of the VSE/VSAM files are not known. In that case you can first retrieve from

the VSE/VSAM catalog the CI sizes of the files to be processed via the

SHOWCAT macro and then enter these values in the BLDVRP parameter list.

 The format of the BLDVRP parameter list is described in “The BLDVRP

Parameter List” on page 312.

MF=(E)

indicates that this is the execute form of BLDVRP. address is the address of the

parameter list built by the list form of BLDVRP.

 If you use register notation, you may use Register 1, as well as any register

from 2 through 12. The execute form puts the address of the parameter list in

Register 1 and passes control to VSE/VSAM to process the list. You may,

however, first change the values for STRNO and/or KEYLEN (which are both

optional in the execute form of BLDVRP). BUFFERS may not be specified in

the execute form of BLDVRP, because this operand affects the length of the

parameter list.

 If the MF operand is omitted, the standard form of the BLDVRP macro is

assumed, which builds a parameter list, puts its address in Register 1, and

passes control to VSE/VSAM to process the list.

RMODE31=ALL│BUFF│CB│NONE

specifies where the I/O buffers for the LSR pool are to reside. (The pools are

identified in the SHRPOOL keyword.) The default is NONE.

 ALL│BUFF specifies that the buffers may reside above the 16MB line.

 CB│NONE specifies that the buffers must reside below the 16MB line.

 ALL and CB are allowed for reasons of DFSMSdfp compatibility.

SHRPOOL=number

specifies the identification number of a shared resources pool that is to be

build. Specify a number from 0 through 15. The default is 0.

STRNO=number

specifies the maximum number of requests that may be issued concurrently for

all of the files that are to share the resource pool. The number must be at least

one and no more than 255.

 If you want to find out how effectively your resource pool is utilized during

execution, you can display the maximum number of requests which were

concurrently active because the resource pool was built by issuing a SHOWCB

ACB=...,FIELDS=(STRMAX) in your processing program. Depending on the

result, you may want to redefine STRNO=number the next time you build

your resource pool. (You cannot redefine the pool while it is in use.)

BLDVRP Macro

Chapter 11. Descriptions of VSE/VSAM Macros 209

The ACB specified in the SHOWCB macro can be any ACB that describes an

open file that is using the resource pool.

TYPE=LSR(,DATA│INDEX)

Allows definition of separate LSR pools for data and index. If only LSR is

specified, there is one LSR pool for both data and index. Definition of an

INDEX LSR pool requires a previous definition of a DATA LSR pool. The form

″TYPE=LSR″ is implemented for compatibility with z/OS (DFSMSdfp). No

type other than LSR (such as GSR on z/OS) is accepted by VSE/VSAM.

Return Codes from BLDVRP

When VSE/VSAM returns to your processing program after a BLDVRP request,

Register 15 contains one of the following return codes:

 Return Dec Code Hex Meaning

0 X‘00’ VSE/VSAM completed the request.

4 X‘04’ The resource pool already exists in the partition.

 No new

pool was

build.

12 X‘0C’ The request was not executed because an error

 was encountered while VSE/VSAM routines were

 loaded (for example, CDLOAD failed), or

 there was insufficient GETVIS space for the

 partition that uses the BLDVRP macro.

20 X‘14’ STRNO is less than one or greater than 255.

24 X‘18’ BUFFERS is specified incorrectly: size or

 number is invalid.

28 X‘1C’ SHRPOOL is less than 0 or greater than 15.

36 X‘24’ BLDVRP was issued to build an index resource pool, but the

required corresponding data resource pool does not exist.

Connecting a File to a Resource Pool

After having built a resource pool, you cause a file to use that pool by specifying

the SHRPOOL=number and MACRF=(LSR) operands of the file’s ACB before you

open the file, thus:

 ACB SHRPOOL=number,MACRF=(LSR)

When you have specified LSR in the ACB, VSE/VSAM ignores the BUFND,

BUFNI, BUFSP, and STRNO operands, because it uses the BUFFERS and STRNO

values that you have specified in the BLDVRP macro.

Restrictions

UBF (user buffering) may not be specified together with LSR. LSR may not be

specified in the ACB of an empty file (which implies that the file is to be loaded).

Apart from the standard error codes from the Open routine, you may get

additional error codes in the ACB ERROR field when you try to open a file with

the LSR option. These error codes are listed in the “VSE/VSAM return and error

codes” section of the z/VSE Messages and Codes.

BLDVRP Macro

210 VSE/VSAM User’s Guide and Application Programming

The CLOSE Macro

After your last request for access to the file, you will normally issue a CLOSE

macro to complete processing of that file and disconnect your program from the

file. If you have not issued a CLOSE macro before end-of-job or if your job

terminates abnormally, your file might not be closed properly and subsequent

processing of that file might cause errors.

Because it is essential for the integrity of a file that it is closed properly, z/VSE

automatically attempts to close all open VSE/VSAM files in the partition at both

normal and abnormal termination of a job step. If any control blocks for a file have

been destroyed through an error in your program, this file cannot be closed and a

message is given to the operator. EXLST routines are not entered during an

automatic CLOSE.

The TCLOSE macro performs the functions of CLOSE, except that it leaves the

program and the file connected so that you can continue processing without

reopening the file.

The Close routine completes any I/O operations that are outstanding when a

processing program issues a CLOSE macro for a file. It writes any output buffers

that have not been stored.

The Close routine updates the catalog entries of the file, including pointers to the

end of the file and statistics on file processing (such as number of records

inserted). If the file was loaded and the SPEED option was specified (in the

DEFINE command), the Close routine formats the last CA in the file to ensure that

the entire file is accessible.

The Close routine restores the ACB to the status that it had before the file was

opened and frees the virtual storage that the Open routine used to construct

VSE/VSAM control blocks.

You must specify a CLOSE macro to change from loading a file to retrieving

records from that file in the same run.

Format of the CLOSE Macro

NN

name

CLOSE

f

 ,

address

NM

name

one through eight characters that provide a symbolic name.

address

specifies up to 16 addresses of ACBs and DTFs that define the file(s) to be

closed. You can specify address:

v In register notation, using a register from 1 through 12. Specify within

parentheses.

Or

v With an expression that generates a valid relocatable A-type address

constant.

CLOSE Macro

Chapter 11. Descriptions of VSE/VSAM Macros 211

A return code is set in Register 15 to indicate whether the ACBs were closed

successfully. ACBs should be coded together (following the DTFs) to apply to all of

them. If, for example, you coded:

 CLOSE ACB1,DTF1,ACB2

the return code will apply to ACB2 only. If ACB2 closed successfully and ACB1 did

not, the return code will still be X‘00’. (The Close routine sets Register 15 to zero

when it receives control after a DTF has been closed.) To ensure that the return

code is valid and applies to both ACBs, write the macro in the following way:

 CLOSE DTF1,ACB1,ACB2

The Close routine sets one of the following return codes in Register 15:

Return Code

Meaning

X‘00’ All ACBs were closed successfully.

X‘04’ One or more ACBs were not closed successfully.

X‘08’ One or more Close routines could not be loaded because there was not

enough virtual storage space, or the modules could not be found.

Processing cannot continue.

If Register 15 contains X‘04’, an error code is set in one or more ACBs. You can use

the ERROR keyword of the SHOWCB or TESTCB macro to examine the error code.

For an explanation of the VSE/VSAM CLOSE (and TCLOSE) error codes, see the

“VSE/VSAM return and error codes” in the z/VSE Messages and Codes.

The DLVRP Macro

After all the files using the resource pool have been closed, you must delete the

resource pool by issuing the DLVRP (delete VSE/VSAM resource pool) macro.

If you do not delete the resource pool with the DLVRP macro, it will automatically

be deleted at the end of the job step, because it resides in virtual storage, which is

invalidated at the end of a job step.

When you issue a DLVRP macro, Register 13 must contain the address of a 72-byte

save area that you are providing. When you issue a DLVRP macro from within one

of your exit routines such as LERAD or SYNAD, your program must provide a

second 72-byte save area for use by VSE/VSAM, because the original save area is

still in use by the external VSE/VSAM routine.

Format of the DLVRP Macro

NN

name

DLVRP
 SHRPOOL=0

SHRPOOL=number

TYPE=LSR

NM

name

one to eight characters that provide a symbolic name.

SHRPOOL=number

specifies the identification number of a shared resources pool that is to be

deleted. Specify a number from 0 through 15. The default is 0.

CLOSE Macro

212 VSE/VSAM User’s Guide and Application Programming

TYPE=LSR

This parameter is accepted by VSE/VSAM for compatibility with zOS. It is

ignored, however, since no type other than LSR is available under VSE/VSAM.

See also BLDVRP. Separate deletion of data and index LSR pools is not

possible because they form a unit and must not be deleted individually.

Return Codes from DLVRP

When VSE/VSAM returns to your processing program after a DLVRP request,

following return codes:

 Return Dec Code Hex Meaning

0 X‘00’ VSE/VSAM completed the request.

4 X‘04’ There is no resource pool to be deleted.

8 X‘08’ There is at least one other open file using

 the resource pool.

12 X‘0C’ The request was not executed because an error

 was encountered while VSE/VSAM routines were

 loaded (for example, CDLOAD failed).

28 X‘1C’ SHRPOOL is less than 0 or

 greater than 15.

The ENDREQ Macro

When you issue an ENDREQ macro, Register 13 must contain the address of a

72-byte save area that you are providing. When you issue the macro from within

one of your exit routines such as LERAD or SYNAD, you must provide a second

72-byte save area for use by VSE/VSAM.

This macro causes VSE/VSAM to end a request, that is, to forget its position for

the specified RPL and to release its associated buffers for use by another RPL.

Before you can issue a request specifying an RPL for which an ENDREQ macro

was executed, you have to reposition VSE/VSAM.

An ENDREQ macro is required in your program whenever you have already

issued as many concurrent active requests as you have specified for STRNO

operand of the ACB and you want to issue yet another request. (Refer to the

discussion under “VSE/VSAM is Not Yet Positioned” on page 225.)

If an I/O operation was started, it will be allowed to complete. Also, I/O

operations required to maintain the integrity of the file will be performed.

If the request involves a chain of RPLs, all records specified by the request may

not be processed. For example, two RPLs are chained in a PUT request to add two

new records to the file and an ENDREQ is issued after VSE/VSAM started the I/O

operation to add the first record. That I/O operation will be completed and, if it

causes a CI split, subsequent I/O operations will be performed to complete the

split and update the index. However, VSE/VSAM will then return control to the

processing program without adding the second record.

The ENDREQ macro causes VSE/VSAM to cancel the position in the file

established for that request and also invalidates data and index buffers to force

refreshing of all requests subsequent to the end request. There is, however, no

buffer invalidation for:

v SHAREOPTION 1 files

v SHAREOPTION 2 files opened for output

DLVRP Macro

Chapter 11. Descriptions of VSE/VSAM Macros 213

v Higher level index buffers (only sequence set invalidation).

Format of the ENDREQ Macro

NN

name

 ENDREQ RPL= address

(1)
 NM

name

one through eight characters that provide a symbolic name.

RPL=address│(1)

specifies the address of the RPL (or first RPL in a chain of RPLs) that defines

the request to be terminated. You can specify address:

v In register notation, using a register from 2 through 12. Specify within

parentheses, or

v With an expression that generates a valid relocatable A-type address

constant.

The ERASE Macro

When you issue an ERASE macro, Register 13 must contain the address of a

72-byte save area that you are providing. When you issue the macro from within

one of your exit routines such as LERAD or SYNAD, you must provide a second

72-byte save area for use by VSE/VSAM.

This macro deletes the record previously retrieved for update (with the GET

macro, OPTCD=UPD). You can delete records in a key-sequenced file by keyed or

addressed access, but you cannot delete records in an entry-sequenced file. You can

delete records in a relative-record file by keyed access. You cannot delete CIs

(OPTCD=CNV).

Format of the ERASE Macro

NN

name

 ERASE RPL= address

(1)
 NM

name

one through eight characters that provide a symbolic name.

RPL=address│(1)

specifies the address of the RPL (or the first RPL in a chain of RPLs) that

defines the ERASE request. You can specify address:

v In register notation, using a register from 2 through 12. Specify within

parentheses.

Or

v With an expression that generates a valid relocatable A-type address

constant.

The EXLST Macro

Assembly of the EXLST (exit list) macro produces an optional list of addresses of

user exit routines. An exit routine is entered when VSE/VSAM detects the

condition (such as an I/O error) that the routine is supposed to handle. The exit

list is associated with an ACB by the EXLST operand of the ACB macro. Two or

more ACBs can refer to the same exit list.

ENDREQ Macro

214 VSE/VSAM User’s Guide and Application Programming

The number of exit addresses in a list is variable and depends on the number of

operands you code. You cannot add addresses to the list after it is generated, but

you can change an address or the indication of whether or not an exit is active

(with the MODCB macro).

Values for EXLST macro operands can be specified as codes and expressions that

generate valid relocatable A-type address constants. Do not use register notation.

Format of the EXLST Macro

NN

name

EXLST
 AM=VSAM

,A

,EODAD=(address

)

,N

,L

N

N
,A

,EXCPAD=(address

)

,N

,L

,A

,JRNAD=(address

)

,N

,L

 N

N
,A

,LERAD=(address

)

,N

,L

,A

,SYNAD=(address

)

,N

,L

 NM

name

one through eight characters that provide a symbolic address for the exit list

that is established.

AM=VSAM

specifies that this is a VSE/VSAM control block. You may want to specify this

operand for documentation purposes if your installation also uses VTAM.

EODAD

specifies that an exit is provided for special processing when the end of a file

is reached by sequential or skip sequential access.

EXCPAD

specifies that an exit is provided to receive control from VSE/VSAM when an

I/O operation is started.

JRNAD

specifies that an exit is provided for journalizing as you process data records.

LERAD

specifies that an exit is provided for analyzing logic errors.

SYNAD

specifies that an exit is provided for analyzing physical errors.

address

is the address of a user-supplied exit routine. The address must always be

specified first.

A│N

specifies that the exit routine is active (A) or not active (N). VSE/VSAM does

not enter a routine whose exit is marked not active.

EXLST Macro

Chapter 11. Descriptions of VSE/VSAM Macros 215

L specifies that the address is the address of an eight-byte field that contains the

name of a phase that VSE/VSAM is to load for exit processing. If L is omitted,

the address gives the entry point of the exit routine in virtual storage. L can

precede or follow the A or N specification.

EODAD Exit Routine to Process End-of-File

An EODAD routine finishes the processing of a file when VSE/VSAM reaches the

end of the file. VSE/VSAM exits to this routine when: (1) you attempt to

sequentially retrieve or point to a record beyond the last record in the file, that is,

the record with the highest key or the highest relative-record number (for keyed

access), or with the highest RBA (for addressed access); (2) during sequential

backward retrieval when the records in reverse sequence are exhausted or; (3)

when you have specified CI access and user buffers and there is no more data after

a GET request or a PUT for update request.

If your program retrieves records sequentially with a request defined by a chain of

RPLs, your EODAD routine must determine whether the end of the file was

reached for the first RPL in the chain. If not, then one or more records have been

retrieved but not yet processed by your program.

If you do not have this exit routine, VSE/VSAM exits to the routine for analyzing

logic errors (see the LERAD operand). If you do not have the LERAD exit routine,

VSE/VSAM returns to your processing program at the instruction following the

last executed instruction. In that case, Register 15 contains X‘08’, and register 1

contains the address of the RPL. Your program can examine the feedback field in

the RPL with the SHOWCB or TESTCB macro to see whether VSE/VSAM has

reached the end of the file.

When the exit receives control, it is in the same AMODE that was in effect when

the request was issued.

When VSE/VSAM exits to the EODAD routine, the contents of the registers (Reg)

are as follows:

Reg Contents

0 Unpredictable.

1 Address of the request parameter list that defines the request that

occasioned VSE/VSAM’s reaching the end of the file. The register must

contain this address if you return to VSE/VSAM.

2-13 Same as when the request macro was issued. Register 13, by convention,

contains the address of your processing program’s 72-byte save area, which

may not be used as a save area by the EODAD routine if it returns control

to VSE/VSAM.

14 Return address to VSE/VSAM.

15 Entry address to the EODAD routine.

If the EODAD exit routine returns to VSE/VSAM and you issue another GET

macro, VSE/VSAM enters the EODAD exit routine again. This can cause your

program to loop. If, however, you reach end-of-file during keyed access and then

change to addressed access, additional records may be retrieved provided they are

physically after the last record in key sequence (because of a CI or control-area

split).

EXLST Macro

216 VSE/VSAM User’s Guide and Application Programming

EXCPAD Exit Routine

An EXCPAD routine receives control from VSE/VSAM when an I/O operation is

started. By supplying an EXCPAD exit routine, you can overlap VSE/VSAM I/O

operations with the execution of your processing program.

The exit routine must return to VSE/VSAM, so that VSE/VSAM can return to your

processing program at the instruction following the I/O request macro.

When the exit receives control, it is in the same AMODE that was in effect when

the request was issued.

When VSE/VSAM exits to the EXCPAD routine, the contents of the registers (Reg)

are as follows:

Reg Contents

0 Unpredictable.

1 Address of a parameter list with the following contents:

Offset

X‘00’ Address of the RPL.

X‘04’ Address of the IORB.

X‘08’ EXCPAD lock word.

X‘0C’ 116 bytes available to the user.

2-13 Same as when the request macro was issued. Register 13, by convention,

contains the address of the user’s 72-byte save area, which must not be

used as a save area by the EXCPAD routine (because EXCPAD must return

control to VSE/VSAM).

14 Return address to VSE/VSAM.

15 Address of EXCPAD routine.

If the exit routine uses Register 1, it must restore that register with the

parameter-list address before returning to VSE/VSAM. (The routine must return

for completion of the request that caused VSE/VSAM to exit.)

The EXCPAD routine may test the traffic bit of the IORB to determine whether the

VSE/VSAM I/O operation has been completed. However, the routine must not

change the contents of the IORB because the IORB is used by VSE/VSAM.

The EXCPAD lock word normally contains zero, in which case the routine may

issue any other VSE/VSAM request with another RPL to the same file, except a

CLOSE. When a CI split, control-area split or spanned record update occurs, the

lock word contains the address of the RPL for the request. In that case, the

EXCPAD routine must either complete the request because a second (simultaneous)

request in the same file results in a system deadlock, or issue a request against

another file. A split or spanned record update may occur during UPGRADE

processing of an AIX. If this happens, no other UPGRADE request may be issued

through any path to the same base cluster.

The EXCPAD exit routine may be entered more than once for a VSE/VSAM

request because a request may require more than one I/O operation. The EXCPAD

routine is not entered in the following cases:

v When the I/O operation completes before VSE/VSAM is ready to wait on it.

v During processing to complete pending I/O at CLOSE time.

v During Upgrade processing.

EXLST Macro

Chapter 11. Descriptions of VSE/VSAM Macros 217

v When VSE/VSAM is forced to do a PUT because of insufficient buffers available

(that is, when VSE/VSAM writes a buffer to be able to use this buffer for other

data).

JRNAD Exit Routine to Journalize Transactions

A JRNAD routine records transactions made against a file and keeps track of RBA

changes. VSE/VSAM exits to this routine every time the processing program issues

a GET, PUT, or ERASE and every time data is shifted right or left in a CI or is

moved to another CI (because one or more records have been inserted, deleted,

shortened, or lengthened). VSE/VSAM takes the JRNAD exit before transmitting to

direct-access storage the contents of a CI in which there was an RBA change. (You

need to know whether RBAs have changed during keyed processing if later on you

want to process your key-sequenced file with addressed access.)

VSE/VSAM also takes the JRNAD exit whenever a segment of a spanned record is

transmitted to or from direct-access storage. This allows you to keep track of the

CIs occupied by a spanned record.

The JRNAD exit must return to VSE/VSAM for completion of the request that

caused VSE/VSAM to exit.

When the exit receives control, it is in the same AMODE that was in effect when

the request was issued.

When VSE/VSAM exits to the JRNAD routine, the contents of the registers (Reg)

are as follows:

Reg Contents

0 Unpredictable.

1 Address of a parameter list with the following format:

4 bytes

Address of RPL of the request that caused the exit.

4 bytes

Address of a field:

v 4 bytes: address of ACB in RPL of request that caused the

JRNAD exit.

v 1 byte : reserved.
4 bytes

For RBA changes, the RBA of the first byte of data that is shifted or

moved. For a GET or PUT request against a spanned record

segment, the RBA of the first byte of the segment.

4 bytes

For RBA changes, the number of bytes of data that is shifted or

moved. (The number of bytes does not include free space (if any),

or control information - except for a control-area split, when the

whole contents of a CI are moved to a new CI).

 For a GET or PUT request against a spanned record segment, the

number of bytes in the segment.

4 bytes

For RBA changes only, the RBA of the first byte to which data is

shifted or moved.

1 byte Indication of the reason VSE/VSAM exited to the JRNAD routine:

X‘00’ GET request

X‘04’ PUT request

EXLST Macro

218 VSE/VSAM User’s Guide and Application Programming

X‘08’ ERASE request

X‘0C’ RBA request

X‘10’ GET request against a spanned record segment

X‘14’ PUT request against a spanned record segment

X‘18’ Reserved

X‘1C’ Reserved
1 byte Reserved

2-13 Unpredictable,

14 Return address to VSE/VSAM.

15 Entry address to the JRNAD routine.

If, in your exit routine, you intend to issue the GENCB, MODCB, SHOWCB, or

TESTCB macros, make sure that you save the contents of Register 14 before you

issue the macro and restore these contents in Register 14 before your exit routine

returns to VSE/VSAM. The same applies accordingly if, in your exit routine, you

intend to use registers. Your exit routine must return to VSE/VSAM for completion

of the request that caused VSE/VSAM to exit.

For journalizing transactions (when VSE/VSAM exits because of a GET, PUT, or

ERASE), you can use the SHOWCB macro, for example, to display information in

the RPL about the record that was retrieved, stored, or deleted by specifying:

 FIELDS=(AREA,KEYLEN,RBA,RECLEN)

You can also use the TESTCB macro to determine whether a GET or a PUT was for

update (OPTCD=UPD).

You cannot use the keywords RBA or RECLEN to display the RBA or length,

respectively, of a spanned record segment retrieved or stored. Instead, this

information is given in the parameter list at offsets 8 and 12, respectively.

For recording RBA changes, you must calculate how many records there are in the

data shifted or moved, so you can keep track of the new RBA for every one. With

fixed-length records, you calculate the number by dividing the record length into

the number of bytes of data shifted. With variable-length records, you could

calculate the number by using a table that not only identifies the records (by

associating a record’s key with its RBA), but also gives their lengths.

Some CI splits cause data to be moved to two new CIs, and control-area splits

normally cause the contents of many CIs to be moved. In these cases, VSE/VSAM

exits to the JRNAD routine for every separate movement of data to a new CI.

If your JRNAD routine only journals transactions, it should ignore calls with the

reason code X‘0C’ and return to VSE/VSAM; conversely, if it only records RBA

changes, it should ignore all calls with reason codes other than X‘0C’.

The only journaling you can do during processing of a path is to record

transactions made against the base cluster; access to the alternate index during

retrieval of a base record or during upgrading cannot be journaled. Journaling for

path processing is triggered by the specification of the JRNAD exit in the EXLST of

the ACB identifying the base cluster.

The JRNAD exit must be indicated as active before the file for which the exit is to

be used is opened, and the exit must not be made inactive during processing. If

EXLST Macro

Chapter 11. Descriptions of VSE/VSAM Macros 219

you define more than one ACB for a file and if you want to have a JRNAD

routine, the first ACB you open for the file must specify the exit list that identifies

the routine.

LERAD Exit Routine to Analyze Logic Errors

A LERAD routine analyzes logic errors and all other error conditions except I/O

errors encountered by VSE/VSAM during execution of a GET, PUT, POINT,

ENDREQ or ERASE macro. The routine determines what error has occurred by

issuing a SHOWCB or TESTCB macro to examine the feedback (FDBK) field in the

RPL. The contents of FDBK will be 0000xx, where xx is the error code indicating

the type of error.

If the routine cannot correct the error, it should either:

v Close the file, or

v Return to VSE/VSAM (which will return to your processing program at the

instruction following the last executed instruction).

If you do not have the LERAD exit routine and VSE/VSAM encounters a logic

error, VSE/VSAM returns to your processing program at the instruction following

the last executed instruction. Register 15 then contains X‘08’, and Register 1

contains the address of the RPL. Your program can examine the feedback field in

the RPL with the SHOWCB or TESTCB macro to identify the logic error.

When the exit receives control, it is in the same AMODE that was in effect when

the request was issued.

When VSE/VSAM exits to the LERAD routine, the contents of the registers are:

Register

Contents

0 Unpredictable.

1 Address of the RPL that contains the feedback field the routine should

examine. The register must contain this address if you return to

VSE/VSAM.

2-13 Same as when the request macro was issued. Register 13, by convention,

contains the address of your processing program’s 72-byte save area, which

may not be used as a save area by the LERAD routine if the routine

returns control to VSE/VSAM.

14 Return address to VSE/VSAM.

15 Entry address to the LERAD routine. The register does not contain the

logical-error indicator.

SYNAD Exit Routine to Analyze Physical Errors

A SYNAD routine can analyze physical I/O errors that were detected by

VSE/VSAM during execution of a GET, ENDREQ, PUT, POINT, ERASE, or CLOSE

macro and that the system error routine was unable to correct. The exit routine

determines what error has occurred (reading or writing either the data or the index

component) by issuing a SHOWCB or TESTCB macro to examine the feedback

(FDBK) field in the RPL. The contents of FDBK will be 0000xx, where xx is the

error code indicating the type of error.

EXLST Macro

220 VSE/VSAM User’s Guide and Application Programming

If your exit routine cannot correct or bypass the error, it is recommended that the

routine (1) issues the PDUMP macro to obtain a dump of the contents of all

pertinent control blocks, including the IORB involved in the failing I/O operation;

(2) closes the files used by your program; and (3) ends the job. If the error

occurred while VSE/VSAM was closing the file or index, and if another error

occurs after the exit routine issues a CLOSE macro, VSE/VSAM does not exit to

the routine a second time.

If the exit routine returns to VSE/VSAM, whether the error was corrected or the

file closed, VSE/VSAM drops the request and returns to your processing program

at the instruction following the last executed instruction.

If you do not have this exit routine and VSE/VSAM detects a physical error,

VSE/VSAM returns to your processing program at the instruction following the

last executed instruction. Register 15 then contains X‘0C’, and Register 1 contains

the address of the RPL. Your program can examine the feedback field in the RPL

with the SHOWCB or TESTCB macro to identify the physical error.

An I/O error that occurs when processing a data CI during the execution of a

sequential GET request positions VSE/VSAM at the next CI in key sequence for

keyed access or in entry sequence for addressed access. The next GET after the

error will return the first record from the CI following the index CI, VSE/VSAM is

not positioned at the next index control in further.

Errors that occur while VSE/VSAM writes a CI cause the loss of positioning.

When the exit receives control, it is in the same AMODE that was in effect when

the request was issued.

When VSE/VSAM exits to the SYNAD routine, the contents of the registers are:

Register

Contents

0 Unpredictable.

1 Address of the RPL that contains a feedback return code and the address

of a message area, if any. If you issued a request macro, the RPL is the one

pointed to by the request macro; if you issued a CLOSE macro, the RPL

was built by VSE/VSAM to process the close request. Register 1 must

contain this address if the SYNAD routine returns to VSE/VSAM

2-13 Same as when the request macro or CLOSE macro was issued. Register 13,

by convention, contains the address of your processing program’s 72-byte

save area, which may not be used by the SYNAD routine if it returns

control to VSE/VSAM.

14 Return address to VSE/VSAM.

15 Entry address to the SYNAD routine. The register does not contain the

physical-error indicator.

The GENCB Macro

The GENCB macro generates an ACB, an EXLST, or an RPL when it is executed.

You can use it in place of the ACB, EXLST, and RPL macros to avoid (1)

reassembling your programs should the format or length of the control block or list

change, and (2) generating more than one copy of a control block or list.

EXLST Macro

Chapter 11. Descriptions of VSE/VSAM Macros 221

VSE/VSAM returns, in Register 1, the address of the first (or only) control block

and, in Register 0, the total length of the control block(s) built. You can find out the

length of every control block by dividing the length of the area by the number of

copies. The address of every control block can then be calculated by this offset

from the address in Register 1.

GENCB generates the control block(s) or list(s) either in an area you specify or, if

you do not specify an area, in an area obtained by VSE/VSAM in your partition.

The area obtained by VSE/VSAM can contain other control blocks too. It will not

be freed at closing time but at end-of-job or end-of-job step only.

When you issue a GENCB macro, Register 13 must contain the address of a

72-byte save area that you are providing. When you issue a GENCB macro from

within one of your exit routines (such as LERAD or SYNAD), your program must

provide a second 72-byte save area for use by VSE/VSAM, because the original

save area is still in use by the external VSE/VSAM routine.

The operands of the GENCB macro are specified as absolute numeric expressions,

as character strings, as codes, as expressions that generate valid relocatable A-type

address constants, in register notation, as S-type address constants, and as indirect

S-type address constants. “Operand Notation for VSE/VSAM Macros” on page 295

gives all the ways of coding every operand for the macros that work at execution.

If you use register notation to specify specific addresses in your GENCB macro, be

sure that these registers contain the correct addresses before you issue the GENCB

macro. This is necessary because the assembler-generated instructions for this

macro store the addresses contained in the specified registers in the appropriate

control fields.

Format of the GENCB Macro

NN

name

GENCB BLK=

ACB

EXLST

RPL

 ,AM=VSAM

,COPIES=number

N

N

,keyword=value

,LENGTH=number

 ,MF=L

,MF=

L

(E,

address

)

(1)

N

N
,WAREA=address

 NM

name

one through eight characters that provide a symbolic name.

AM=VSAM

specifies that this is a VSE/VSAM control block. You may want to specify this

operand for documentation purposes if your installation also uses VTAM.

BLK=ACB│EXLST│RPL

specifies whether you want to generate an ACB, an EXLST, or an RPL.

COPIES=number

specifies the number of control blocks or lists you want VSE/VSAM to

GENCB Macro

222 VSE/VSAM User’s Guide and Application Programming

generate. The default is 1. If you generate two or more, they are generated next

to each other. They are identical, so you must use MODCB to tailor them for a

particular file or request.

 VSE/VSAM returns, in Register 1, the address of the first (or only) control

block and, in Register 0, the total length of the control block(s) built. You can

find out the length of every control block by dividing the length of the area by

the number of copies. The address of every control block can then be

calculated by this offset from the address in Register 1.

keyword=value

The operands you code are identical to those of the ACB, EXLST, and RPL

macros, except that you can code them in more ways, as described in

“Operand Notation for VSE/VSAM Macros” on page 295. If you do not code

any operands, VSE/VSAM builds:

v For BLK=ACB, an ACB with default values provided by VSE/VSAM when

you open the file. You must supply the DDNAME=filename operand before

the file is opened.

v For BLK=EXLST, a complete EXLST with zeros for addresses and all entries

flagged inactive.

v For BLK=RPL, an RPL with default values.

LENGTH=number

specifies the length of the area, if any, you provided by the WAREA operand.

You can determine the length required for a control block or list by using the

SHOWCB macro.

MF=

For information on specifying this operand, refer to “List, Execute, and

Generate Forms of the Control Block Manipulation Macros” on page 291.

WAREA=address

specifies the address of an area in which you want VSE/VSAM to generate the

control block(s) or list(s). The area must begin on a fullword boundary. If

WAREA is specified, the LENGTH operand must also be specified. If you do

not specify WAREA, VSE/VSAM obtains an area in your processing partition

in which to generate the control block(s) or list(s). When control is returned to

you, Register 1 contains the address of the control block or list and Register 0

contains the total length of the control block(s) or list(s).

Examples of the GENCB Macro

Figure 34 shows examples of how to specify VSE/VSAM control blocks by using

the GENCB macro. With GENCB, the control blocks are created dynamically

during execution of the program. The same parameters are specified in this

example as are specified in the example of ACB, EXLST, and RPL macros shown in

Figure 43 on page 265. VSE/VSAM obtains space for every control block in your

partition. The address of every control block is set in Register 1 after the GENCB is

executed.

GENCB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 223

The GET Macro

When your program issues a request macro, its processing does not continue until

VSE/VSAM completes the request. At that time, VSE/VSAM sets a return code in

Register 15. If end-of-file is reached or an error or other special condition occurs

during the request, VSE/VSAM sets a code containing additional information in

the feedback (FDBK) field of the RPL and takes any required exit. The return codes

and codes set in the feedback field of the RPL are described later in this section.

Format of the GET Macro

NN

name

 GET RPL= address

(1)
 NM

name

one through eight characters that provide a symbolic name.

RPL=address│(1)

specifies the address of the RPL (or the first RPL in a chain of RPLs) that

defines the GET request.

 You may specify the address in register notation (using a register from 1

through 12, enclosed in parentheses) or specify it with an expression that

generates a valid relocatable A-type address constant.

* GENERATE VSE/VSAM CONTROL BLOCKS

 GENCB BLK=EXLST,EODAD=(ENDUP,N),

 LERAD=LOGERR,

 SYNAD=(IOERR,L)

 LTR 15,15 GENCB successful?

 BNZ GENERR No, go to error routine

 LR 3,1 Yes, save EXLST address

 GENCB BLK=ACB,EXLST=(3),PASSWD=PASS,

 BUFND=4,BUFNI=3,BUFSP=11064,

 MACRF=(KEY,SEQ,DIR,OUT),

 DDNAME=VFILENM

 LTR 15,15 GENCB successful?

 BNZ GENERR No, go to error routine

 LR 2,1 Yes, save ACB address

*

*

 GENCB BLK=RPL,AREA=WORK,

 AREALEN=125,OPTCD=(DIR,NSP),

 ARG=SEARCH,ACB=(2)

 LTR 15,15 GENCB successful?

 BNZ GENERR No, go to error routine

 LR 4,1 Yes, save RPL address

*

* PROCESSING ROUTINES

*

 GET RPL=(4)

*

* CONSTANTS AND WORK AREAS

*

PASS DC FL1’6’,C’CHANGE’

WORK DS CL125

SEARCH DS CL4

Note: The continuation characters required in column 72 are not shown.

Figure 34. GENCB Macro Examples

GET Macro

224 VSE/VSAM User’s Guide and Application Programming

When you issue a GET macro, Register 13 must contain the address of a

72-byte save area that you are providing. When you issue the macro from

within one of your exit routines such as LERAD or SYNAD, you must provide

a second 72-byte save area for use by VSE/VSAM.

 This macro retrieves the next record in key sequence or the record with the

next higher relative-record number with RPL operand OPTCD=(KEY,SEQ), and

the next record in entry sequence with OPTCD=(ADR,SEQ). It retrieves the

record specified by the key or relative record number in the search-argument

field with OPTCD=(KEY,SKP) or OPTCD=(KEY,DIR), and by the RBA in the

search-argument field with OPTCD=(ADR,DIR). With skip sequential retrieval,

every key or relative-record number that you specify must be greater by

number or alphabet than the key or relative-record number of the previous

record retrieved.

 GET retrieves the next CI with OPTCD=(CNV,SEQ) and the CI specified by the

RBA in the search-argument field with OPTCD=(CNV,DIR).

 You must issue a GET with OPTCD=UPD to update (PUT with OPTCD=UPD)

or to delete (ERASE) a record. You can have the record moved to your work

area (OPTCD=MVE) or you can have VSE/VSAM leave the record in its I/O

buffer and pass you the address of the record (OPTCD=LOC). The AREA

operand of the RPL macro points to your work area or to a field in which

VSE/VSAM will place a record address.

 You can also keep VSE/VSAM positioned for subsequent sequential or skip

sequential processing when you issue a direct GET request with

OPTCD=(DIR,NSP) or OPTCD=(DIR,UPD). With OPTCD=(DIR,UPD) however,

positioning is canceled when you issue a PUT for update or an ERASE

following the GET for update.

VSE/VSAM is Not Yet Positioned

If VSE/VSAM does not already have positioning for the RPL (or chain of RPLs) for

which the GET request is to be issued, then you may have to issue an ENDREQ

macro for a different RPL. An ENDREQ must be issued to free a position if the

number of positions that VSE/VSAM must remember is already the same as the

value specified in the STRNO=number operand of the pertinent ACB macro. At

any particular time, VSE/VSAM will remember positions for any request macro in

process by VSE/VSAM, and for a succeeding request for any RPL (or chain of

RPLs) for which the preceding request was one of the following:

 GET DIR,LOC

GET DIR,MVE,NSP

GET DIR,MVE,UPD

GET SEQ

GET SKP

POINT any

PUT DIR,NSP

PUT SEQ

PUT SKP

ERASE SEQ

ERASE SKP

GET Macro

Chapter 11. Descriptions of VSE/VSAM Macros 225

The MODCB Macro

The MODCB macro modifies the addresses, values, options, and names that you

can establish with the ACB, EXLST, RPL, and GENCB macros in an ACB, EXLST,

or RPL.

The operands of the MODCB macro are specified as absolute numeric expressions,

as character strings, as codes, as expressions that generate relocatable A-type

address constants, in ordinary z/VSE register notation, as S-type address constants,

and as indirect S-type address constants. “Operand Notation for VSE/VSAM

Macros” on page 295 gives all the ways of coding every operand for the macros

that work at execution.

When you issue a standard MODCB macro (not the short form described below),

Register 13 must contain the address of a 72-byte save area that you are providing.

When you issue a MODCB macro from within one of your exit routines such as

LERAD or SYNAD, your program must provide a second 72-byte save area for use

by VSE/VSAM because the original save area is still in use by VSE/VSAM.

If you want to modify only the length of a data record (the value of the RECLEN

field of the corresponding RPL), you can do so without any call to a VSE/VSAM

routine by issuing the MODCB macro in the following short form: MODCB

RPL=(1),RECLEN=(0)

The address of the RPL must be contained in Register 1 (short form only). The

record length, stored in Register 0, will be placed into the RPL. No parameter list

is created. For other MODCB functions, you must use the standard form of the

MODCB macro.

Format of the MODCB Macro

NN

name

MODCB

ACB

EXLST

RPL

=address,keyword=value
 ,AM=VSAM

N

N
 ,MF=L

,MF=

L

(E,

address

)

(1)

NM

name

one to eight characters that provide a symbolic name.

AM=VSAM

specifies that this is a VSE/VSAM control block. You may want to specify this

operand for documentation purposes if your installation uses also VTAM.

ACB│EXLST│RPL=address

specifies whether you want to modify an ACB, an EXLST, or an RPL and

specifies its address. Do not use the MODCB macro to:

v Modify an open ACB

v Activate or deactivate a JRNAD exit if the ACB to which the EXLST is

connected is already open. (See the discussion of JRNAD in the EXLST

macro.)

MODCB Macro

226 VSE/VSAM User’s Guide and Application Programming

v Add entries to or delete entries from a field in an EXLST. (You can modify a

field in an EXLST at any time.)

v Modify an active RPL, that is, one that defines a request that has been issued

but not completed.

With the execute form of MODCB, you can change the address of the block or

list to be modified, but not the type.

keyword=value

The operands you code are identical to those for the ACB, EXLST, and RPL

macros, except that:

v You can code them in more ways, as shown in “Operand Notation for

VSE/VSAM Macros” on page 295.

v There are no defaults for the options of the ACB MACRF operand or the

RPL OPTCD operand. With OPTCD, when you set on a new option with the

MODCB macro, the old option is automatically turned off, because you can

specify only one option in every one of its groups (see “The RPL Macro” on

page 231).

v You can make an address in an EXLST active or not active without

specifying the address by coding: keyword=(,A│N).

v When you specify an address for an entry in an EXLST that previously

contained zeros (possible if you generated a default list with the GENCB

macro), you must code keyword=(addr,A) to make the address active,

because A is not a default for the MODCB macro.

MF=

For information on specifying this operand, refer to “List, Execute, and

Generate Forms of the Control Block Manipulation Macros” on page 291.

The MODCB macro cannot be used to reset a MACRF option which was set in an

ACB unless this option is mutually exclusive with the new intended option. For

example, if the options

 KEY,SEQ,OUT

were set and you wish to have the options

 ADR,SEQ,OUT

instead, then specifying MACRF=ADR in a MODCB macro results in options

 KEY,ADR,SEQ,OUT

being set in the pertinent ACB.

Examples of the MODCB Macro

Figure 35 on page 228 shows two examples of modifying VSE/VSAM control

blocks by using the MODCB macro.

MODCB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 227

The OPEN Macro

The information you have specified in the ACB and EXLST macros must be

connected with the file to be processed so that you can gain access to the data. To

this purpose, you must supply, in the job stream, job control statements defining

the file and issue, in your program, an OPEN macro for the ACB you have set up

for the file.

The OPEN macro calls the Open routine, which verifies that the processing

program has authority to process the file. The Open routine constructs VSE/VSAM

control blocks and establishes linkages to those VSE/VSAM routines that are

needed to process your file(s).

By examining the DLBL statement indicated by the DDNAME operand in the ACB

macro and the volume information in the catalog, the Open routine verifies that

the necessary volumes have been mounted. If a key-sequenced file is opened,

VSE/VSAM issues an error code to warn you if the data has been updated

separately from its index.

Format of the OPEN Macro

NN

name

OPEN

f

 ,

address

NM

name

one through eight characters that provide a symbolic name.

address

specifies the address of the ACB or DTF for the file(s) to be opened. You can

specify address:

v In register notation, using a register from 1 through 12. Specify within

parentheses.

Or

v With an expression that generates a valid relocatable A-type address

constant.

You can specify up to 16 addresses of ACBs and DTFs that define the files to

be opened.

The MODCB (short form) is used to place the length of a record in the

RPL when variable-length records are added to a file:

 MODCB RPL=(1),RECLEN=(0) Current length in register 0

 LTR 15,15 MODCB successful?

 BNZ MODERR No, go to error routine

 PUT RPL=(1) Yes, write record

The MODCB is used to activate the EODAD exit specified in the GENCB

example of Figure 34 on page 224.

 MODCB EXLST=(3),EODAD=(,A)

 LTR 15,15 MODCB successful?

 BNZ MODERR No, go to error routine

Figure 35. MODCB Macro Examples

OPEN Macro

228 VSE/VSAM User’s Guide and Application Programming

Return Codes from OPEN

A return code is set in Register 15 to indicate whether the ACBs were opened

successfully. ACBs should be coded together to ensure that the return code will

apply to all of them. If, for example, you coded:

 OPEN ACB1,DTF1,ACB2

the return code will apply to ACB2 only. If ACB2 opened successfully and ACB1

did not, the return code will still be X‘00’. (The Open routine sets Register 15 to

zero when it receives control after a DTF has been opened.) To ensure that the

return code is valid and applies to both ACBs, the macro should be coded in the

following way:

 OPEN DTF1,ACB1,ACB2

The Open routine sets one of the following return codes in Register 15:

Return Code

Meaning

X‘00’ All ACBs were opened successfully.

X‘04’ All ACBs opened successfully, but one or more ACBs had a warning

message.

X‘08’ One or more ACBs were not opened successfully. The entries with errors

are restored to their pre-open status.

If Register 15 contains X‘04’, an error code is set in one or more ACBs to indicate a

warning message. All ACBs are open and, unless you prevent it, processing will

continue on the file that the message applies to. You can use the ERROR keyword

of the SHOWCB or TESTCB macro to examine the code.

If Register 15 contains X‘08’, an error code is set in one or more ACBs. Again, you

can use the ERROR keyword of the SHOWCB or TESTCB macro to examine the

code. Note that Register 15 contains the maximum (worst) return code encountered

while opening a list of ACBs. This means that some of the ACBs in the list may

have been opened successfully, even though Register 15 contains X‘04’ or X‘08’.

For an explanation of the VSE/VSAM OPEN error codes, see the “VSE/VSAM

return and error codes” in the z/VSE Messages and Codes.

The POINT Macro

When you issue a POINT macro, Register 13 must contain the address of a 72-byte

save area that you are providing. When you issue the macro from within one of

your exit routines such as LERAD or SYNAD, you must provide a second 72-byte

save area for use by VSE/VSAM.

When OPTCD=KEY was specified in the pertinent RPL, this macro positions

VSE/VSAM at the record whose key or relative-record number you specify in the

search argument field. You can use the macro to position VSE/VSAM for

subsequent sequential or skip sequential processing, either forward or backward in

the file.

When OPTCD=ADR or OPTCD=CNV was specified in the pertinent RPL, the

POINT macro positions VSE/VSAM at the record or CI whose RBA you specify in

the search argument field. You can cause the macro to position VSE/VSAM for

subsequent sequential processing, either forward or backward in the file.

OPEN Macro

Chapter 11. Descriptions of VSE/VSAM Macros 229

Note: You cannot issue the POINT macro in one mode of access, change to another

mode of access, and then request VSE/VSAM to continue processing the file

sequentially. This will result in termination of the request with an error. For

example, you cannot change from the mode OPTCD=ADR to another mode

such as OPTCD=KEY.

VSE/VSAM can also be positioned for sequential processing by either a direct GET

or a direct PUT as described in the preceding sections on the GET and PUT

macros.

You may have to issue an ENDREQ macro before you can issue a POINT request

in your program. Information about this possible requirement is given at the end

of the discussion of the GET macro.

Format of the POINT Macro

NN

name

 POINT RPL= (1)

address
 NM

name

one through eight characters that provide a symbolic name.

RPL=address│(1)

specifies the address of the RPL (or the first RPL in a chain of RPLs) that

defines the POINT request. You can specify address:

v In register notation, using a register from 2 through 12. Specify within

parentheses.

Or

v With an expression that generates a valid relocatable A-type address

constant.

The PUT Macro

When you issue a PUT macro, Register 13 must contain the address of a 72-byte

save area that you are providing. When you issue the macro from within one of

your exit routines such as LERAD or SYNAD, you must provide a second 72-byte

save area for use by VSE/VSAM.

This macro stores a new record in key sequence or relative-record sequence if one

of the following combinations of options is set in the RPL:

 OPTCD=(KEY,DIR,NSP)

 OPTCD=(KEY,SKP,NUP)

 OPTCD=(KEY,DIR,NUP)

 OPTCD=(KEY,SEQ,NUP)

 OPTCD=(KEY,SEQ,NSP)

If you specify OPTCD=(KEY,DIR,NSP), VSE/VSAM is kept positioned at the next

record in key sequence or relative-record sequence for subsequent sequential

processing.

PUT stores a new record at the end of an entry-sequenced file with OTPCD=ADR.

(You cannot store a new record in a key-sequenced file with addressed access.)

POINT Macro

230 VSE/VSAM User’s Guide and Application Programming

With skip sequential storage, OPTCD=(KEY,SKP), the key or relative-record

number of every record that you store must be greater by number or alphabet than

the key or relative-record number of the previous record stored.

With CI access, OPTCD=(CNV,NUP), PUT stores a new CI at the end of an entry

sequenced file.

When loading or extending a file with the PUT macro, you must specify sequential

or skip sequential processing (OPTCD=SEQ or OPTCD=SKP).

To store a changed record or CI, you must have previously retrieved it with option

OPTCD=UPD set in the RPL for both the GET and the PUT. You cannot change the

length of a record in either a relative record file or an entry-sequenced file.

The record to be added or updated with a PUT macro must be in your work area

(OPTCD=MVE); you cannot use OPTCD=LOC with the PUT macro. The AREA

operand of the RPL macro points to your work area.

You may have to write an ENDREQ macro before you can issue a PUT NUP or

PUT NSP request in your program. Information about this possible requirement is

given at the end of the discussion of the GET macro.

Format of the PUT Macro

NN

name

 PUT RPL= (1)

address
 NM

name

one through eight characters that provide a symbolic name.

RPL=address│(1)

specifies the address of the RPL (or the first RPL in a chain of RPLs) that

defines the PUT request. You can specify address:

v In register notation, using a register from 2 through 12. Specify within

parentheses.

Or

v With an expression that generates a valid relocatable A-type address

constant.

The RPL Macro

You define a request with the RPL macro, which produces a ‘request parameter

list’ (RPL). Every request macro (GET, PUT, POINT, ERASE, and ENDREQ) has

one and only one operand, the address of the request parameter list that defines

the request. Thus, the information a request macro needs to access a record in a file

(such as the ACB of the file to which the request is directed, or the search

argument for the record) is always in the RPL instead of in the request macro itself.

The RPL does not indicate a specific request, such as GET or PUT, for example;

you can use a single RPL, without modification, for several requests. However, if

you want to use the same RPL for different types of processing (for both direct and

sequential processing, for example), you must modify the RPL (with the MODCB

macro) every time you change from one type of processing to another.

PUT Macro

Chapter 11. Descriptions of VSE/VSAM Macros 231

As was pointed out in the discussion of the STRNO operand of the ACB macro,

several requests, with the corresponding RPLs pointing to the same ACB, can be

active at the same time. You may specify any number of RPLs for requests

requiring concurrent positioning, provided you do not exceed the maximum

number of concurrent active requests you have specified in the STRNO operand.

The requests can be for sequential or direct retrieval or both, and they can be for

records in the same part of the file or in different parts.

Values for RPL macro operands can be specified as absolute numeric expressions,

character strings, codes, and expressions that generate valid relocatable A-type

address constants. Register notation cannot be used for addresses.

Format of the RPL Macro

NN

name RPL

ACB=address

 ,AM=VSAM

,AREA=address

N

N
,AREALEN=number

,ARG=address

,KEYLEN=number
 N

N
,NXTRPL=address

,

Optcd

,RECLEN=number
 N

N
,TRANSID=number

 NM

Optcd:

OPTCD=(
 KEY

ADR

CNV

 ,SEQ

,DIR

,SKP

 ,ARD

,LRD

 ,FWD

,BWD

 ,NUP

,NSP

,UPD

 ,KEQ

,KGE

N

N
 ,FKS

,GEN

 ,MVE

,LOC

 ,NBF

,XBF

)

name

one through eight characters that provide a symbolic address for the request

parameter list that is generated. You can use it in the request macros to give

the address of the list. You can also use it in the NXTRPL operand of the RPL

macro, when you are chaining request parameter lists, to indicate the address

of the next list.

ACB=address

specifies the address of the access method control block that identifies the file

to which access will be requested. If you used the ACB macro to generate the

control block, you can specify the label of that macro for the address. If you

omit this operand you must issue a MODCB macro to specify the address of

the file’s ACB before you can issue a request against the RPL.

RPL Macro

232 VSE/VSAM User’s Guide and Application Programming

AM=VSAM

specifies that this is a VSE/VSAM control block. You may want to specify this

operand for documentation purposes if your installation also uses VTAM.

AREA=address

specifies the address of your I/O work area to and from which VSE/VSAM

moves the record (OPTCD=MVE) for GET and PUT requests. You process the

record in this work area. If you process the records in VSE/VSAM’s I/O buffer

(OPTCD=LOC), VSE/VSAM puts into this work area the address of the record

in the I/O buffer (GET only).

 If you omit this operand you must issue a MODCB macro to specify the

address of the request against the RPL.

 When you specify user buffers (MACRF=UBF in the ACB) for CI (CNV) access,

AREA specifies the address of a single I/O buffer. VSE/VSAM uses the buffer

to read and write CIs.

AREALEN=number

specifies the length, in bytes, of the work area. For OPTCD=MVE, the work

area must be large enough to contain the largest record in the file. For

OPTCD=LOC, the work area must be at least 4 bytes long to contain the

address of the record in the I/O buffer. For OPTCD=CNV, the work area must

be at least the size of a CI.

 If you omit this operand, you must issue a MODCB macro to specify the

length of the request against the RPL.

ARG=address

specifies the address of a field that contains the search argument for:

v Direct or skip sequential retrieval (GET)

v Sequential positioning (POINT)

v Direct or skip sequential storage (PUT) for a relative-record file

For keyed access (OPTCD=KEY), the search argument may be a:

v Full key (OPTCD=FKS)

v Generic key (OPTCD=GEN) In this case you must also indicate its size in the

KEYLEN operand.

v Relative-record number (which is treated as a key of 4 bytes length)

 For addressed access (OPTCD=ADR), the search argument is always an RBA

(relative byte address of a length of 4 bytes). To determine the RBA of a record

to which you have gained access sequentially or directly by key, you can use

the SHOWCB macro to display the RBA of the last record processed. (See “The

SHOWCB Macro” on page 251).

 Note: Addressed access is not available with an extended-addressed KSDS,

and an RBA does not apply.

For CI access with user buffering and user-supplied RBA, the record is written

only to this RBA if positioning is not established by a previous request.

 When records are inserted (sequentially or directly) into a key-sequenced file,

VSE/VSAM obtains the key from the record itself. When records are

sequentially inserted into, or retrieved from, a relative-record file, VSE/VSAM

returns the assigned relative-record number in the ARG field (as a four-byte

binary number).

RPL Macro

Chapter 11. Descriptions of VSE/VSAM Macros 233

KEYLEN=number

When a generic key is used as a search argument (OPTCD=GEN), this operand

specifies the length of the generic key in number of bytes. KEYLEN can be any

value from 1 to 255.

 If, for example, the full key is 50 bytes long and KEYLEN=10 is specified,

VSE/VSAM uses the leftmost 10 bytes of the 50-byte key field for comparison

with the search argument. The length of the full key is in the catalog. It can be

obtained through the KEYLEN parameter of the SHOWCB macro. You place

the key (full or generic) in a field pointed to by the ARG parameter.

NXTRPL=address

indicates the address of the next RPL in a chain of RPLs; it is required when

you chain several RPLs together.

 The standard request for access to a file retrieves, stores, or deletes a single

record by means of one RPL specified in the request macro. If you want to

retrieve or store more than one record with a single GET or PUT, you can

chain several RPLs together so that every RPL indicates a different data record.

For example, every RPL in the chain could contain a unique search argument

and point to a unique work area. For a GET against such a chain of RPLs,

VSE/VSAM retrieves a record for every RPL in the chain.

 The positioning information, normally maintained for every RPL, is maintained

only once for the total chain, so a chain of RPLs is processed as a single

request. (Chaining RPLs is not the same as processing concurrent requests,

where every request requires that VSE/VSAM keep track of a position in the

file.) See the discussion of the STRNO operand under “The ACB Macro” on

page 196.

 Figure 36 on page 235 shows how to build a chain of RPLs by specifying the

NXTRPL operand. When you issue a request that is defined by a chain of

RPLs, specify in the request macro the address of the first RPL in the chain.

This request macro determines the request type for the whole chain, and the

same major operation, GET for example, is performed for all RPLs in the chain.

However, other options such as the request options, which you specify in the

OPTCD operand of the RPL macro, may vary from one RPL to another. Thus,

an RPL with the option SEQ may be followed by an RPL with the option DIR.

RPL Macro

234 VSE/VSAM User’s Guide and Application Programming

Except for the last RPL in a chain of RPLs, you cannot update or delete

records, only retrieve records or store new records. Also you cannot process

records in VSE/VSAM’s I/O buffer with chained RPLs. So OPTCD=UPD and

OPTCD=LOC are invalid for chained RPLs (except for the last RPL in a chain).

 With chained RPLs, the following types of requests cause VSE/VSAM to

position itself at the record following the one identified by the last RPL in the

chain:

v POINT

v Sequential or skip sequential GET

v Direct GET with positioning requested (OPTCD=NSP)

NN

OPTCD=(
 KEY

ADR│CNV│

SEQ

,DIR│

│SKP

ARD

,

│LRD

N

N
FWD

,

│BWD

NUP

,NSP│

│UPD

KEQ

,

│KGE

 N

N
FKS

,

│GEN

MVE

,LOC│

NBF

,XBF│

) NM

specifies the type of access to be gained to the file through the requests defined

by this RPL. Options are arranged in groups, and every group has a default

value. You can specify only one option in every group; therefore, if your ACB

indicates both sequential and direct processing for example, you must modify

the RPL when you switch from one to the other. In other words you can use

┌───┐

│ │

│ Specification in Program Generated RPL Chain │

│ │

│ │

│ RPL1 RPL ... RPL1 │

│ NXTRPL=RPL2 ┌─────────┐ │

│ ... │ │ │

│ │ │ │

│ └─────┬───┘ │

│ │ │

│ RPL2 RPL ... │ │

│ NXTRPL=RPL3 RPL2 d │

│ ... ┌─────────┐ │

│ │ │ │

│ │ │ │

│ RPL3 RPL ... └─────┬───┘ │

│ │ │

│ │ │

│ RPL3 d │

│ Note: ┌─────────┐ │

│ In the RPL macro for the last │ │ │

│ RPL in the chain, the NXTRPL │ │ │

│ operand must be omitted. └─────────┘ │

│ │

└───┘

Figure 36. Example of an RPL Chain Built by Specifying the NXTRPL Operand

RPL Macro

Chapter 11. Descriptions of VSE/VSAM Macros 235

the same RPL for different types of request (GET, PUT, POINT, for example) by

modifying the RPL. Because VSE/VSAM ignores inapplicable option groups,

there is no need for you to zero out options that are not required before you go

from one type of request to another. For more information about modifying an

RPL, see “The MODCB Macro” on page 226. The following list gives the

options; they are arranged in groups, and every group has a default value

(indicated by underlining):

KEY

Keyed access (for key-sequenced and relative-record files). For a

key-sequenced file, you can change from keyed to addressed access

without positioning. If you change from keyed to CI access, the results are

unpredictable and no error code will be issued.

ADR

Addressed access (for key-sequenced and entry-sequenced files, not for

relative-record files). If you change from addressed to keyed access, you

must reestablish positioning or the request will terminate with an error. If

you change from addressed to CI access, the results are unpredictable and

no error code will be issued.

Note: Addressed access is not available for extended-addressed KSDS files.

For more information, see “Extended-Addressed KSDS Files” in

VSE/VSAM Commands.

CNV

CI access (provided for special applications such as utilities). If you change

from CI to keyed access, you must reestablish positioning or the request

will terminate with an error. If you change from CI to addressed access,

the results are unpredictable and no error code will be issued.

Note: CI access is not available for extended-addressed KSDS files. For

more information, see “Extended-Addressed KSDS Files” in

VSE/VSAM Commands.

SEQ

Sequential processing.

DIR

Direct processing.

SKP

Skip sequential processing (for keyed access only).

FWD

Forward processing of a file.

BWD

Backward processing of a file (see “Specifying Processing Options for a

Request” on page 238). Backward processing is only allowed for keyed

(KEY) or addressed (ADR) access and for sequential (SEQ) or direct (DIR)

processing.

ARD

The search argument given in your argument (ARG) field determines the

record to be located, retrieved, or stored.

LRD

The last record of the file is to be located (POINT) or retrieved (GET

direct). LRD can only be used in conjunction with OPTCD=BWD.

RPL Macro

236 VSE/VSAM User’s Guide and Application Programming

NUP

Request is not for update (you will not update or delete a record you are

retrieving; a record you are storing is new). For a direct request,

positioning will be released.

NSP

For direct processing only, request is not for update, and VSE/VSAM will

be positioned at the next record for subsequent sequential processing.

UPD

Request is for update; you must issue a GET for update before you can

issue a PUT for update or an ERASE. However, if you supply your own

buffers for CI access, you can issue a PUT for update without a preceding

GET.

KEQ

The search argument must equal the key of the data record (for keyed

direct or skip sequential retrieval or keyed sequential pointing).

KGE

If the search argument does not equal the key of a record the request

applies to the record with the next greater key (for keyed direct or skip

sequential retrieval or keyed sequential pointing). If the search argument is

a relative-record number, KEQ and KGE apply to a POINT request only.

KGE is ignored if BWD is specified.

FKS

The entire key is to be used for a search argument (for keyed direct or skip

sequential retrieval or keyed sequential pointing).

GEN

A generic key is to be used for a search argument (for keyed direct or skip

sequential retrieval or keyed sequential pointing). You must specify the

length of the generic key in the KEYLEN operand. GEN is ignored for

relative-record files and if BWD is specified.

MVE

For retrieval and storage, VSE/VSAM moves a data record between the

I/O buffer and your work area. MVE must also be specified when you

supply your own buffers for CI access.

LOC

For retrieval, you can process the record in VSE/VSAM’s I/O buffer.

VSE/VSAM will pass you a pointer to the record in the buffer. If you want

to update the record, you will have to move it to your work area before

issuing a PUT macro (OPTCD=MVE). Do not specify LOC when

processing spanned records.

NBF

Normal user buffering.

 Each request as identified by an RPL is executed serially and

independently. This is the conventional processing of user buffering and

remains the default.

XBF

Extended user buffering.

 VSE/VSAM will execute the chain of RPLs as a single request, thereby

attempting to execute the requests with as few I/O requests as possible.

All control intervals residing in the same control area will usually be

RPL Macro

Chapter 11. Descriptions of VSE/VSAM Macros 237

processed in a single I/O. For a description of extended user buffering see

“How to Use Extended User Buffering: GET and PUT Macros” on page

287.

 For more details on the options you can specify in the OPTCD operand of the

RPL macro, refer to “Specifying Processing Options for a Request.”

RECLEN=number

specifies the length, in bytes, of a data record stored by a PUT request. For

fixed length records, the length need only be set once. For GET requests,

VSE/VSAM indicates the length of the record in this field. To process a file

with records of different lengths you can examine the field with the SHOWCB

or TESTCB macro and modify it with the MODCB macro.

TRANSID=number

specifies a number that relates modified buffers in a buffer pool for a

subsequent write operation (with the WRTBFR macro). It is used in shared

resource applications and is described under “Sharing Resources Among Files

and Displaying Catalog Information” on page 191.

Specifying Processing Options for a Request

The following deals mainly with keyed and addressed access as applied to the

different types of processing (sequential, skip sequential, direct) and types of files.

CI access and move/locate mode are described at the end of this section. See also

“Examples of Request Macros” on page 267.

Keyed and Addressed Access

You can gain access to a record in:

v A KSDS file by keyed or addressed access.

Note: Access to an extended-addressed KSDS file (> 4 GB) is keyed only. For

more information, see “Extended-Addressed KSDS Files” in VSE/VSAM

Commands.

v An RRDS file only by keyed access.

v An ESDS file only by addressed access.

v A VRDS file only by keyed access.

An alternate index or a path is treated like a KSDS, except that addressed access is

not allowed for an alternate-index path. All key references in the RPL are to the

alternate key (instead of the base cluster’s prime key).

You can process spanned records in a KSDS by keyed (direct or sequential) access,

and in an ESDS by addressed (direct or sequential) access. In either case, the entire

record is returned. You cannot process spanned records in a KSDS file by

addressed access, because the CIs that contain the spanned record may not be

physically contiguous. You may process a file in backward direction by keyed or

addressed access.

Figure 37 on page 239 summarizes the use of keyed and addressed access to

retrieve, add (insert), update, or erase records in KSDS, ESDS, RRDS, and VRDS

files. Sequential BWD means that the previous, instead of the next record in

sequence (FWD) is to be accessed (see the BWD option of the OPTCD operand).

Direct backward (BWD) is mainly used to prepare for a following GET sequential

backward.

RPL Macro

238 VSE/VSAM User’s Guide and Application Programming

Sequential and Direct Processing

VSE/VSAM allows both sequential and direct processing for every of its types of

files.

Sequential processing of a record depends on the position, with respect to the key,

relative-record number, or address of the previously processed record; direct

processing does not. With sequential access, records retrieved by key are in key

sequence, records retrieved by relative-record number are in numerical order, and

records retrieved by address are in entry (RBA) sequence. To retrieve or store

records sequentially after initial positioning, you do not need to specify a key,

relative-record number, or RBA. VSE/VSAM automatically retrieves or stores the

next record in order. Apart from OPEN’s positioning to the first record of a file,

initial positioning can be established by:

v Pointing to the desired record, or

v Inserting a record into the file (keyed access with FWD only), or

v Using direct processing and:

– Retrieving a record for update (UPD) or

– Specifying OPTCD=NSP.

A variation of normal sequential retrieval is sequential backward processing.

Instead of retrieving the next record in relation to current positioning in the file,

the previous record is retrieved. Sequential backward processing is available for

keyed and addressed access.

┌───────────┬─────────┬─────────────────────┬───────────────────────────────┐

│ Type of │ Type of │ Type of │ Records │

│ File │ Access │ Processing ├────────┬────────┬──────┬──────┤

│ │ │ │Retrieve│ Add │Update│Delete│

├───────────┼─────────┼─────────────────────┼────────┼────────┼──────┼──────┤

│ key │ keyed │ sequential FWD │ yes │ yes │ yes │ yes │

│ sequenced │ │ sequential BWD │ yes │ no │ yes │ yes │

│ │ │ skip sequential │ yes │ yes │ yes │ yes │

│ │ │ direct (FWD or BWD) │ yes │ yes** │ yes │ yes │

│ ├─────────┼─────────────────────┼────────┼────────┼──────┼──────┤

│ │ addr*** │ sequential FWD │ yes │ no │ yes* │ yes │

│ │ │ sequential BWD │ yes │ no │ yes* │ yes │

│ │ │ direct (FWD or BWD) │ yes │ no │ yes* │ yes │

├───────────┼─────────┼─────────────────────┼────────┼────────┼──────┼──────┤

│ entry │ addr │ sequential FWD │ yes │to end │ yes* │ no │

│ sequenced │ │ sequential BWD │ yes │no │ yes* │ no │

│ │ │ direct (FWD or BWD) │ yes │to end**│ yes* │ no │

├───────────┼─────────┼─────────────────────┼────────┼────────┼──────┼──────┤

│ relative │ keyed │ sequential FWD │ yes │ yes │ yes* │ yes │

│ record │ │ sequential BWD │ yes │ no │ yes* │ yes │

│ │ │ skip sequential │ yes │ yes │ yes* │ yes │

│ │ │ direct (FWD or BWD) │ yes │ yes** │ yes* │ yes │

├───────────┼─────────┼─────────────────────┼────────┼────────┼──────┼──────┤

│ variable │ keyed │ sequential FWD │ yes │ yes │ yes │ yes │

│ relative │ │ sequential BWD │ yes │ no │ yes │ yes │

│ record │ │ skip sequential │ yes │ yes │ yes │ yes │

│ │ │ direct (FWD or BWD) │ yes │ yes** │ yes │ yes │

├───────────┴─────────┴─────────────────────┴────────┴────────┴──────┴──────┤

│ * The length of the record cannot be changed. │

│ ** ’no’ for backward (BWD) processing. │

│ *** Not available for extended-addressed KSDS files (> 4 GB) │

└───┘

Figure 37. Summary of Processing Options for Keyed and Addressed Access

RPL Macro

Chapter 11. Descriptions of VSE/VSAM Macros 239

With direct processing, the retrieval or storage of a record is not dependent on the

key, relative-record number, or address of any previously retrieved record. You

must identify the record to be retrieved by key, or relative-record number, or RBA.

Keyed Access: Keyed access is for key-sequenced and relative-record files. The

relative-record numbers of the records in a relative-record file are treated as keys.

Keys or relative-record numbers are specified and returned in the area pointed to

by the ARG operand of the RPL macro.

Keyed access provides for retrieval, update (including lengthening or shortening a

record in a key-sequenced file, as well as altering its contents, except for the key),

insertion, addition, and deletion. Each of these actions can be sequential, skip

sequential, or direct.

With sequential processing, records are retrieved or stored in ascending key or

relative-record sequence, starting from the beginning of the file or another position

that you select. You do not have to supply a search argument for VSE/VSAM to

process the records.

When you specify SEQ and BWD in the OPTCD operand of the RPL macro,

VSE/VSAM returns the previous, instead of the next record in the file (in relation

to current positioning). The previous record is the one which has the next lower

key (or relative-record number). With the SEQ and BWD options, you can retrieve,

update, or erase records, but you cannot insert or add records.

With direct processing, records are retrieved by the search argument (key or

relative-record number) you supply. Records can be processed in any order,

without regard to the sequence of records processed before or after.

With skip sequential processing, records are retrieved by search argument, but in

ascending key or relative-record sequence (no backward processing). Thus, skip

sequential combines functions of both sequential and direct processing.

The subject is discussed below in more detail for keyed retrieval, storage, and

deletion.

Sequential (SEQ) Retrieval: If you specify KEY and SEQ for a key-sequenced file,

the record to be retrieved depends on where VSE/VSAM is positioned in the file.

When your program opens the file, VSE/VSAM is positioned at the first record in

the file to begin sequential processing. However, if sequential processing is not to

begin with the first record of the file, you can issue a POINT macro to position

VSE/VSAM at the record whose key you specify. (If the specified key is generic,

that is, a leading portion of the key field, then VSE/VSAM is positioned to the first

of the records that have the same generic key.) A subsequent GET macro retrieves

the record VSE/VSAM is positioned at and, at the same time, positions

VSE/VSAM at the record with the next higher key. In the POINT macro you can

also indicate the direction in which the file is to be processed subsequently, by

specifying either FWD or BWD.

When you are accessing a base cluster through a path, records from the base cluster

are returned according to ascending or, if you are retrieving the previous record,

descending alternate key values. If several records contain the same (non-unique)

alternate key, these records are retrieved in the order in which they were entered

into the alternate index (even if BWD was specified). In addition, although Register

15 contains X‘00’, a warning code (duplicate key) is set in the FDBK field of the

RPL if there is at least one more data record with the same alternate key value. For

RPL Macro

240 VSE/VSAM User’s Guide and Application Programming

example, if there are three data records with the alternate key “1234”, the error

code would be set during the retrieval of records one and two, and would be reset

during retrieval of the third record.

Besides the error code, a function code is set in the RPL indicating whether the

condition occurred during accessing the alternate index or the base cluster of a

path or during upgrade processing (for a description of the function code, see

“Return Codes of Request Macros” on page 289).

If a base cluster is accessed in a partition, once using a path and once not using a

path, “a no record found” or “duplicate key error” can occur. These errors can be

avoided by using Local Shared Resources (LSR).

The example in Figure 38 illustrates backward sequential retrieval through a path

with non-unique alternate keys.

 Keyed sequential retrieval for a relative-record file causes the records to be returned

in ascending or, if you are retrieving the previous record, descending numerical

order, based on the positioning for the file. Positioning is established in the same

way as for a key-sequenced file, the relative-record number always treated as a full

4-byte key. If one or more empty slots are encountered during sequential retrieval,

they are skipped and the next (or previous) record is retrieved. The relative-record

number of the retrieved record is returned in the ARG field of the RPL.

Sequential Backward (SEQ BWD) Retrieval: To process a file in backward

direction or to switch from forward to backward processing or vice versa, you

must position VSE/VSAM and, at the same time, indicate the direction of

subsequent processing. Open always establishes forward processing direction so

that a GET sequential backward immediately after Open results in a positioning

error.

To position VSE/VSAM to the end of the file, issue a POINT macro with

OPTCD=(BWD,LRD) specified in the RPL. A subsequent GET sequential backward

retrieves the last record of the file. To locate and retrieve any other record in the

file and establish backward processing direction at the same time, issue a POINT

with OPTCD=(BWD,ARD) and a subsequent GET sequential backward (or a direct

GET with OPTCD=(BWD,NSP)).

A read error during a GET with:

 ┌───┐

 │ Alternate Index Pointer Record │

 ├───┤

 │ CI 1: Alternate Key 10 1 T │

 │ 2 U │

 │ 3 E │

 ├───┤

 │ CI 2: Alternate Key 20 1 S │

 │ 2 D │

 │ 3 A │

 │ 4 Y │

 ├───┤

 │ Backward sequential retrieval result in │

 │ the sequence: S, D, A, Y, T, U, E │

 └───┘

Figure 38. Example of Backward Sequential Retrieval through a Path with Non-Unique

Alternate Keys

RPL Macro

Chapter 11. Descriptions of VSE/VSAM Macros 241

OPTCD=(SEQ,BWD)

does not cause the positioning to be lost. An immediately following GET with

OPTCD=(SEQ,BWD) will cause VSE/VSAM to skip the next logical record in

backward direction that can be retrieved without a read error.

Direct (DIR) Retrieval: Keyed direct retrieval for a key-sequenced file does not

depend on previous positioning; VSE/VSAM searches the index from the highest

level down to the sequence set to retrieve a record. You must specify the record to

be retrieved by supplying, in the ARG field of the RPL, one of the following:

v The exact key of the record (OPTCD=KEQ)

v A key less than or equal to the key field of the record (OPTCD=KGE)

v A leading portion of the key, or generic key (OPTCD=GEN)

You can specify OPTCD=KGE when you do not know the exact key. If a record

actually has the specified key, VSE/VSAM retrieves it; otherwise, it retrieves the

record with the next higher key. Generic-key specification for direct processing

causes VSE/VSAM to retrieve the first record with a key whose leading portion is

identical with the key in the ARG field. If you want to retrieve all the records with

the generic key, specify NSP for your direct request, which causes VSE/VSAM to

position itself at the next record in key sequence. You can then retrieve the

remaining records with the same generic key sequentially.

If you use generic keys in conjunction with direct requests there is an additional

aspect to consider. VSE/VSAM has to read a data CI to determine that it is empty.

So the performance of direct requests with a generic key will decrease if you have

many deleted records that match your generic key and precede the first existing

record.

To retrieve a record in the file and indicate backward processing direction for a

subsequent GET sequential backward, issue a direct GET with

OPTCD=(BWD,NSP,ARD), or LRD instead of ARD if you want to retrieve the last

record in the file. The search argument must always be a full key (FKS) and must

be the same as that of the data record (KEQ); KGE and GEN are ignored. A direct

GET or a POINT with OPTCD=(BWD,LRD) against an empty file results in a

no-record-found condition.

When you are accessing a base cluster through a path with direct access, a record

from the base cluster is returned according to the alternate key value you have

specified in the ARG field of the RPL macro. If the alternate key is not unique, the

record which was first entered with that alternate key is returned and a warning

code (duplicate key) is set in the FDBK field of the RPL. To retrieve the remaining

records with the same alternate key, specify the NSP option when retrieving the

first record and then change to sequential processing.

If a base cluster is accessed in a partition, once using a path and once not using a

path, a “no record found” or “duplicate key” error can occur. These errors can be

avoided by using Local Shared Resources (LSR).

When you are processing a relative-record file with direct access, you must supply

the 4-byte relative record number of the desired record in the ARG field of the RPL

macro. If you request a deleted or non-existent record, the request will result in a

no-record-found condition.

RPL Macro

242 VSE/VSAM User’s Guide and Application Programming

Skip Sequential (SKP) Retrieval: For skip sequential retrieval for a key-sequenced

file, when you indicate the key of the next record to be retrieved, VSE/VSAM skips

to its index entry by using horizontal pointers in the sequence set to get to the

appropriate sequence-set index record to scan its entries. SKP is similar to direct

processing, except that the key of the next record must always be higher in

sequence than the key of the preceding record.

A relative-record file has no index. When you indicate the number of the next record

to be retrieved, VSE/VSAM calculates the CI containing the requested record and

the position of the requested record within that CI. As for a key-sequenced file, the

relative-record numbers you specify must be ascending sequence for skip

sequential retrieval.

For a path, skip sequential access is the same as direct access, except that the

alternate key values have to be in ascending sequence. If a base cluster is accessed

in a partition, once using a path and once not using a path, a “no record found” or

“duplicate key” error can occur. These errors can be avoided by using Local Shared

Resources (LSR).

Backward processing is not allowed for skip sequential retrieval.

Keyed Insertion: VSE/VSAM stores a record whenever you issue a PUT request

against an RPL. A PUT request for update following a GET for update stores the

record that the GET retrieved. To update a record, you must previously have

retrieved it for update.

When you store records sequentially beyond the highest key in the file,

VSE/VSAM automatically extends the file as though you were continuing to load

records. VSE/VSAM does not use distributed free space for these records, but

establishes new control areas at the end of the file. Free space is left in the new

control areas and CIs according to the file’s FREESPACE specification in the

catalog.

To store records in key (or relative-record) sequence throughout the file, you can

use sequential, skip sequential, or direct access.

When you insert records into a key-sequenced file, you never have to specify a

search argument; VSE/VSAM always obtains the key from the record itself. With

sequential insertion or skip sequential insertion of consecutive records, VSE/VSAM

creates new CIs and control areas and free space is left in them according to the

file’s FREESPACE specification in the catalog. With direct insertion or skip

sequential insertion of non-consecutive records, VSE/VSAM uses the free space.

For a relative-record file, sequential insertion causes a record to be inserted into the

next slot (provided it is empty). The slot number is returned in the ARG field of

the RPL. If the slot is not empty, a duplicate-record error condition will occur.

Direct or skip sequential insertion of a record into a relative-record file causes the

record to be placed as specified by the relative-record number in the ARG field.

You must insert the record into a slot which does not contain a record; otherwise, a

duplicate-record error condition will occur.

If you insert a record after the current end-of-file of a relative-record file, the file is

preformatted from the current end-of-file up to and including the control area that

is to contain the inserted record. Preformatting mainly consists of inserting control

information in the control areas and indicating that the slots are empty.

RPL Macro

Chapter 11. Descriptions of VSE/VSAM Macros 243

You can update and insert base data records via a path, provided the PUT request

does not result in non-unique alternate-key values in an alternate index (in the

upgrade set) which you have defined with the UNIQUEKEY parameter. The

alternate indexes in the upgrade set are modified automatically when you insert or

update a data record in the base cluster. When you update a previously retrieved

base record via a path, you must not change the alternate key by which that record

was retrieved or its prime key. If the updating of the alternate index results in an

alternate index record with no pointers to the base cluster, that alternate index

record is erased.

PUT insert requests with OPTCD=NUP or NSP are not allowed in backward

direction.

Keyed Deletion: An ERASE macro instruction following a GET for update deletes

the record that the GET retrieved. A record is physically erased in the file when

you delete it. The space the record occupied is then available as free space.

You can erase a record from the base cluster of a path only if the base cluster is a

key-sequenced file. The alternate indexes of the upgrade set are modified

automatically when you erase a record. If the alternate key value of the erased

record is unique, the alternate index data record with that alternate key is also

deleted.

You can erase a record from a relative-record file after you have retrieved it for

update. The record will be set to binary zeros and the control information for the

slot will be updated to indicate an empty slot. You can reuse the vacated space by

inserting another record of the same length in that location.

Addressed Access: Addressed access is the only form of access for an

entry-sequenced file, using the RBA determined for a record when it was stored in

the file. This form of access is also allowed for a key-sequenced file, but not for a

path or for a relative-record file. For both key-sequenced and entry-sequenced files,

addressed access allows processing in backward direction (by specifying

OPTCD=BWD in the RPL macro). Positioning is established as for keyed retrieval.

You cannot add or insert records in backward direction.

Addressed access can be either sequential or direct for both key-sequenced and

entry-sequenced files, but the processing allowed for a key-sequenced file is

different from that allowed for an entry-sequenced file.

With a key-sequenced file, addressed access can be used to retrieve records, update

their contents, and delete records, but the length of a record and the contents of its

key field cannot be changed. Records cannot be added because VSE/VSAM does

not allow changes to the file which could cause the index to change. With an

entry-sequenced file, addressed access can be used to retrieve records and to

update their contents, but not to change their lengths. New records can be added

to the end of the file. Records cannot be physically deleted because that would

change the entry sequence of the records in the file (the RBAs of the records).

Keyed insertion, deletion, or update (length changing) of records can change the

RBAs of these records. Therefore, to use addressed access to process a

key-sequenced file, you may have to keep track of RBA changes. For this purpose

VSE/VSAM passes back the RBA of every record retrieved, added, updated, or

deleted. (See also “JRNAD Exit Routine to Journalize Transactions” on page 218.)

RPL Macro

244 VSE/VSAM User’s Guide and Application Programming

Note: Addressed access is not available for extended-addressed KSDS files (> 4

GB). For more information, see “Extended-Addressed KSDS Files” in

VSE/VSAM Commands.

Addressed Retrieval: Positioning for addressed sequential retrieval is done by

RBA rather than by key. When a processing program opens a file for addressed

access, VSE/VSAM is positioned at the first record in the file in entry sequence to

begin addressed sequential processing. A POINT positions VSE/VSAM for

sequential access beginning at the record whose RBA you have indicated. A

sequential GET causes VSE/VSAM to retrieve the data record at which it is

positioned and positions VSE/VSAM at the next or previous record in entry

sequence depending on whether you have specified forward (FWD) or backward

(BWD) processing in the RPL. If you use addressed sequential retrieval for a

key-sequenced file, records will not be in their key sequence if there have been CI

or control-area splits.

Addressed direct retrieval requires that the RBA of every individual record be

specified, because previous positioning is not applicable. The address specified for

a GET or a POINT must correspond to the beginning of a data record; otherwise,

the request is invalid.

With direct processing, you may optionally specify that GET position VSE/VSAM

at the next record in forward (FWD,NSP) or backward (BWD,NSP) sequence. Your

program can then process the following or preceding records sequentially.

Addressed Deletion: You can use the ERASE macro with a key-sequenced file to

delete a record that you have previously retrieved for update.

With an entry-sequenced file, you are responsible for marking a record you want

to delete. In other words, as far as VSE/VSAM is concerned, the record is not

deleted. You can reuse the space occupied by a record marked for deletion by

retrieving the record for update and storing in its place a new record of the same

length.

Addressed Insertion: VSE/VSAM does not insert new records into the middle of

an entry-sequenced file, but adds them at the end. With addressed access of a

key-sequenced file, VSE/VSAM does not insert or add new records. You cannot

add or insert new records in backward direction.

When you store records sequentially beyond the highest key in the file,

VSE/VSAM automatically extends the file as though you were continuing to load

records.

A PUT macro instruction stores a record. A PUT for update following a GET for

update stores the record that the GET retrieved. To update a record, you must

previously have retrieved it for update. You can update the contents of a record

with addressed access, but you cannot alter the record’s length. Neither can you

alter the key field of a record in a key-sequenced file. To change the length of a

record in an entry-sequenced file, you must store it either at the end of the file (as

a new record) or in the place of a deleted record of the same length (as an update).

You are responsible for marking the old version of the record as deleted.

CI Access

VSE/VSAM provides programmers of utilities and systems with CI access. They

retrieve and store the contents of a CI, rather than a single record, by specifying CI

access in the macros and (for direct processing) giving the RBA of the CI. They are

RPL Macro

Chapter 11. Descriptions of VSE/VSAM Macros 245

responsible for maintaining the control information at the end of the CI. The

format of this information may change in future releases of VSE/VSAM.

CI access is allowed for relative-record files, provided the size of the file is not

changed by insertions or additions. CI access is not allowed when you process an

alternate-index path or access records in backward direction (with the BWD

option).

Note: CI access is not available for extended-addressed KSDS files. For more

information, see “Extended-Addressed KSDS Files” in VSE/VSAM

Commands.

Processing a Record in a Work Area or in a Buffer: When your processing

program retrieves a record, VSE/VSAM reads into virtual storage the contents of

the entire CI in which the record is stored. VSE/VSAM de-blocks the records and

either places the requested record in your program’s work area (OPTCD=MVE) or

leaves the record in VSE/VSAM’s I/O buffer and gives you, in the AREA field, the

address of the record in the buffer (OPTCD=LOC). VSE/VSAM indicates the

length of the record to your program (in the RECLEN field) in both move mode

and locate mode. You need not concern yourself with any physical attributes of

stored records. Spanned records cannot be accessed in locate mode.

The SHOWCAT Macro

With the SHOWCAT macro, you can retrieve information from a catalog about any

non-open file defined in the catalog.

For explanations on the relationship of the information that you can retrieve, refer

to “Displaying Catalog Information” on page 189 (Figure 33 on page 190).

Format of the SHOWCAT Macro

When you issue a SHOWCAT macro, Register 13 must contain the address of a

72-byte save area that you are providing. When you issue a SHOWCAT macro

from within one of your exit routines, such as LERAD or SYNAD, your program

must provide a second 72-byte save area for use by VSE/VSAM, because the

original save area is still in use by the external VSE/VSAM routine.

The SHOWCAT macro has the following format:

NN

name

 SHOWCAT DDNAME=address

NAME=address

CI=address

 ,AREA=address

,ACB=address
 N

N
,CATDSN=address

,CATFIL=address

,EXTOPT=

VOLSER

HARBADS

 N

N
,MF=L

,MF=(

E

,

address

)

B

(1)

 NM

name

one to eight characters that provide a symbolic name.

RPL Macro

246 VSE/VSAM User’s Guide and Application Programming

DDNAME│NAME│CI=address

specifies the address of an area that identifies the catalog entry that contains

the desired information.

DDNAME=address

specifies the address of a seven-byte area containing the file name of the object

to be displayed. The object can be a cluster (C), an alternate index (G), or a

path (R). Using the indicated file name, SHOWCAT first retrieves the

corresponding name (file ID) of the object from the label cylinder and then the

desired information from the catalog.

 Either this parameter or the NAME or CI parameter must be provided.

However, when issuing the first SHOWCAT for an object, specify DDNAME or

NAME. VSE/VSAM then supplies the CI numbers of any associated objects for

subsequent SHOWCATs (in the work area supplied through the AREA

operand). See Figure 39 on page 250.

NAME=address

specifies the address of a 44-byte area containing the name (file ID) of the

object to be displayed. The name is left-justified and padded with blanks on

the right. The type of object named must be C, G, R, D, or I.

 Either this parameter or the DDNAME or CI parameter must be specified.

However, when issuing the first SHOWCAT for an object, specify DDNAME or

NAME. VSE/VSAM then supplies the CI numbers of any associated objects for

subsequent SHOWCATs (in the work area supplied through the AREA

operand). See Figure 39 on page 250.

CI=address

specifies the address of a three-byte area that contains the CI number of the

catalog entry for the object to be displayed. The entry type of the object must

be C, G, R, D, I, or Y. (Y can only be retrieved via CI).

 Either this parameter or the DDNAME or NAME parameter must be specified.

However, when you have already issued a SHOWCAT request for an object

(with the DDNAME or NAME parameter), you then issue any subsequent

SHOWCATs for its associated objects by specifying their CI numbers (as

returned to you via the previous SHOWCAT DDNAME or NAME request).

 The three-byte area must be separate from the work area specified by the

AREA operand, even though VSE/VSAM returns a CI number in the work

area.

AREA=address

specifies the address of a work area in which the catalog information is to be

displayed. The first two bytes of this area must contain the length of the area,

including these two length bytes.

 The minimum size of the area is 64 bytes, unless EXTOPT is specified. With

EXTOPT, the minimum size is 28 bytes. If it is smaller than the minimum size,

you get a return code of 4 in Register 15 and you can reissue the SHOWCAT

macro with a larger size. The format of the work area is described in Figure 39

on page 250.

ACB=address

specifies the address of the ACB that defines the catalog containing the entry

to be displayed. You issue the first SHOWCAT without ACB specified;

VSE/VSAM searches for the specified objects and returns to you (in the work

area supplied through the AREA operand) the address of the ACB that defines

the correct catalog. The catalogs are searched in the following order: the

catalog specified by the CATDSN parameter, the catalog specified by the CAT

SHOWCAT Macro

Chapter 11. Descriptions of VSE/VSAM Macros 247

parameter of the VSE/VSAM file, the job catalog, or if none of these exist, the

master catalog. When you subsequently issue SHOWCAT, you can specify that

ACB address, which causes VSE/VSAM to go directly to the correct catalog

without searching other catalogs first. You should always include the ACB

parameter when you specify CI instead of NAME.

CATDSN=address and CATFIL=address

CATDSN specifies the address of a 44-byte area containing the name (file ID)

of the catalog to be searched.

 CATFIL specifies the address of an 8-byte area containing the file name of the

catalog to be searched. File ID and file name must be the same as those

specified in the DLBL statement (if one is provided) for the catalog. CATDSN

must always be specified if CATFIL is specified. CATFIL is always optional.

You use these parameters to override the established order in which catalogs

are searched. (VSE/VSAM always searches only one catalog for a specific

entry.) That is, you must specify CATDSN if the object to be displayed is (1)

not specified by the CAT parameter on the DLBL statement for the file, (2) not

in the job or master catalog, or (3) in the master catalog and not the job catalog

(if IJSYSUC and IJSYSCT are both specified).

EXTOPT=VOLSER│HARBADS

indicates that either the volume serial number of the file’s primary allocation

volume (VOLSER) or the high allocated RBA for the file (HARBADS) is to be

returned to you. This operand can only be issued for a D or I type catalog

record.

 The data returned for the EXTOPT operand replaces the associated object

information in the user return area. If you need the associated object

information as well as the EXTOPT data, you must issue separate SHOWCAT

macros.

MF=L

specifies that the list form of the SHOWCAT macro is required. The list form

builds a parameter list when the macro is assembled; it is not executable.

AREA and DDNAME│CI│NAME are optional in the list form; if you do not

specify them in the list form they must be specified in the execute form. In the

list form, the operand addresses cannot be expressed in register notation. The

format of the SHOWCAT parameter list is described in “Parameter Lists for

VSE/VSAM Macros” on page 303.

MF=(E│B,address│(1))

specifies that the execute form of the SHOWCAT macro is required.

 E indicates that the parameter list, whose address is given in address or in a

register, is to be passed to VSE/VSAM for processing.

 B indicates that the parameter list is to be built or modified, but is not to be

passed to VSE/VSAM. This form of the macro is similar to the list form, except

that it works at execution time and can modify a parameter list, as well as

build it.

 To build a parameter list, first issue SHOWCAT with only MF=(B) specified, to

zero out the area in which it will be built.

 address gives the address of the parameter list. If you use register notation,

you may use Register 1, as well as a register from 2 through 12. Register 1 is

used to pass the parameter list to VSE/VSAM (if MF=E).

SHOWCAT Macro

248 VSE/VSAM User’s Guide and Application Programming

If the MF operand is omitted, the standard form of the SHOWCAT macro is

assumed, which builds the parameter list, puts its address in Register 1, and

passes control to VSE/VSAM to process the list.

Return Codes from SHOWCAT

When VSE/VSAM returns to your processing program after a SHOWCAT request,

Register 15 contains one of the following return codes:

Return Code Meaning

0 (0) VSE/VSAM completed the request.

4 (4) The area specified in the AREA operand is less than the minimum

required (64 bytes) or is too small to display all associated objects

(as many objects as possible are displayed).

8 (8) Either the ACB address is invalid or the VSE/VSAM master

catalog does not exist or could not be opened.

12 (0C) The request was not executed because an error was found while

VSE/VSAM routines were loaded (see Note).

20 (14) The named object or CI does not exist (see Note).

24 (18) An I/O error occurred in gaining access to the catalog (see Note).

28 (1C) The specified CI number is invalid.

32 (20) The specified object is not a C, D, G, I, R, or Y type (see Note).

36 (24) The information in the catalog is at a different level than that in

the CRA.

40 (28) An unexpected error code was returned from catalog management

to the SHOWCAT processor (see Note).

44 (2C) An error occurred in searching the label area for the file ID

corresponding to the specified file name (See Note).

48 (30) EXTOPT field name is not valid for SHOWCAT.

52 (34) EXTOPT specified, but record type not D or I.

If a return code of 0 was passed in Register 15, the requested catalog information is

returned in the work area which you have supplied through the AREA operand.

The format is shown in Figure 39 on page 250.

Note: In case the SHOWCAT return code in Register 15 is 12, 20, 24, 28, 36, 40, 44,

or 52, the work area contains the return code and reason code issued by

VSE/VSAM catalog management as well as the module ID of the catalog

management module in which the error was detected. The format of the

work area is then as follows:

 Offset Length Description

0 2 Length of work area

2 2 VSE/VSAM catalog return code1 or (for

 return code 44) VSE/VSAM error code

4 2 VSE/VSAM catalog reason code1

6 2 VSE/VSAM catalog management module ID

1 For the codes, see the “VSE/VSAM return and error codes” in the z/VSE Messages

and Codes.

SHOWCAT Macro

Chapter 11. Descriptions of VSE/VSAM Macros 249

Offset Length

Description

0(0) 2 Length of the work area, including the length of this field (provided by you).

2(2) 2 Length of the work area actually used by VSE/VSAM, including the length of this field and the preceding

field.

4(4) 4 The address of the ACB that defined the catalog that contains the entry which is to be displayed.

8(8) 1 Type of object about which information is returned:

C Cluster

D Data component

G Alternate index

I Index

R Path

Y Upgrade set

The following fields contain one set of information for C, G, R, and Y types, and another set for D and I

types.

 For C, G, R, and Y types:

9(9) 1 For Y type: Reserved. For C type:

x... The SHOWCAT output for the D type record will provide the VSAM file type (1).

.xxx xxxx

Reserved

For G types:

x... The alternate index might (1) or might not (0) be a member of an upgrade set. The way to find out

for sure is to display information for the upgrade set of the base cluster and check whether it

contains CI numbers of entries that describe the components of the alternate index. Figure 33 on

page 190 shows you how to get from the alternate index’s catalog entry to the entries that describe

its components (G to C to D to Y to D and I).

.xxx xxxx

Reserved.

For R type:

x... The path is (1) or is not (0) defined with the UPDATE attribute (for upgrading alternate indexes).

.xxx xxxx

Reserved.
10(A) 2 The number of pairs of fields that follow. Every pair of fields identifies another catalog entry that describes

an object associated with this C, G, R or Y object. The possible types of associated objects are:

With C: D, G, I, R.

With G: C, D, I, R.

With R: C, D, G, I.

With Y: D, I.

Figure 33 on page 190 shows how the catalog entries for all these objects are related.

12(C) 1 Type of associated object the entry describes.

13(D) 3 The CI number of its first record.

16(10) Next pair of fields, and so on. If the area is too small to display a pair of fields for every associated object,

VSE/VSAM displays as many pairs as possible and returns a code of 4 in Register 15.

 Every pair of fields occupies 4 bytes, except Y-type entries which require 8 bytes (4 for the data component

and 4 for the index component of the alternate index in the upgrade set).

Figure 39. Format of the SHOWCAT Work Area (Part 1 of 2)

SHOWCAT Macro

250 VSE/VSAM User’s Guide and Application Programming

The SHOWCB Macro

The SHOWCB macro displays fields in an ACB, EXLST or RPL. VSE/VSAM places

these fields in an area that you provide. They are independent of the format of the

control block or list you are displaying. The fields are displayed in the order that

you specify the keywords for them.

The operands of the SHOWCB macro are specified as absolute numeric

expressions, as character strings, as codes, as expressions that generate valid

relocatable A-type address constants, in ordinary z/VSE register notation, as S-type

address constants, and as indirect S-type address constants. “Operand Notation for

VSE/VSAM Macros” on page 295 gives all the ways of coding every operand for

the macros that work at execution.

When you issue a standard SHOWCB macro (not the short form described below),

Register 13 must contain the address of a 72-byte save area that you are providing.

When you issue a SHOWCB macro from within one of your exit routines such as

LERAD or SYNAD, your program must provide a second 72-byte save area for use

by VSE/VSAM because the original save area is still in use by the external

VSE/VSAM routine.

For D and I types:

9(9) 1 For I type: Reserved. For D type:

..xx 1x. -> The file is a SAM file (NOCIFORMAT data set, DTFPH access only). .01. -> The file is a SAM

ESDS file (ACB access allowed). .00. -> The file is a native VSAM file, defined as:

.x00 x... 0000 -> ESDS (Entry-Sequenced Data Set) 1000 -> KSDS (Key-Sequenced Data Set) 0001 -> RRDS

(Relative Record Data Set) 1001 -> VRDS (Variable-length Relative Record Data Set)

For SAM ESDS (invalid for native VSE/VSAM file):

x... File definition by implicit (1) or explicit (0) DEFINE

.... .x.. The SAM record format is blocked (1)

.... ..x. The SAM record format is variable records (1)

.... ...x The SAM record format is fixed records (1)
10(A) 2 Relative position of the prime key in records in the data component. For the data component of an

entry-sequenced or a relative record file there is no prime key, and this field is 0.

12(C) 2 Length of the prime key, or length of logical record for fixed-blocked SAM files.

14(E) 4 CI size of the data or index component.

18(12) 4

Maximum record size of the data or index component, or block size for blocked SAM files.

22(16) 2

The number of pairs for fields that follow. Every pair of fields identifies another catalog entry that describes

an object associated with this D or I object. The possible types of associated objects are:

With D: C, G, Y.

With I : C, G.

Figure 33 on page 190 shows how the catalog entries for all these objects are related.

24(18) 1

Type of associated object the entry describes.

25(19) 3

The CI number of its first record.

28(1C) Next pair of fields, and so on. Fields for all associated objects can always be displayed (with the minimum

AREA size specified).

Figure 39. Format of the SHOWCAT Work Area (Part 2 of 2)

SHOWCB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 251

If you want to display only the length of a data record (the RECLEN field of the

corresponding RPL), you can do so without any call to a VSE/VSAM routine by

issuing the SHOWCB macro in the following short form:

SHOWCB RPL=(1),RECLEN=(0)

The address of the RPL must be contained in Register 1. The record length will be

put into Register 0. No parameter list is created. For other SHOWCB functions, you

must use the standard form of the SHOWCB macro.

Format of the SHOWCB Macro

NN

name

SHOWCB

ACB

=address,

EXLST

RPL

 AM=VSAM,

N

N

AREA=address,FIELDS=(

f

 ,

keyword

),LENGTH=number

N

N
 ,MF=L

,MF=

L

(E,

address

)

(1)

 ,OBJECT=DATA

,OBJECT=INDEX

NM

name

one to eight characters that provide a symbolic name.

ACB│EXLST│RPL=address

This operand specifies whether you want to display an ACB, an EXLST, or an

RPL and specifies its address.

 In the standard and list forms of SHOWCB, you can omit this operand if you

are displaying only the standard length of a control block or list (see “Length

of a Control Block or List” on page 254). With the execute form of SHOWCB,

you can change the address of the block or list to be displayed, but not the

type.

AM=VSAM

specifies that this is a VSE/VSAM control block. You may want to specify this

operand for documentation purposes if your installation also uses VTAM.

AREA=address

specifies the address of the area in virtual storage that you are providing for

VSE/VSAM to display the items you specify in the FIELDS operand. The items

are in the area in the order you specify the keywords. The area must begin on

a fullword boundary.

FIELDS=(keywords)

There are three groups of keywords you can code for the FIELDS operand of

the ACB.

v The keywords that you can code with the ACB, EXLST, RPL, and GENCB

macros.

v The length of an ACB, RPL, or EXLST.

SHOWCB Macro

252 VSE/VSAM User’s Guide and Application Programming

v The attributes of an open file or index indicated by the ACB.

For details, refer to:

v “Keywords of the ACB, EXLST, and RPL Macros”

v “Length of a Control Block or List” on page 254

v “Attributes of an Open File” on page 254

 LENGTH=number

specifies the length of the display area you are providing (by way of the AREA

operand). Every field in the ACB and RPL takes a fullword, except for

DDNAME and STMST in the ACB, which take two fullwords. Every EXLST

operand takes only one fullword, because you cannot display the codes A, N,

and L.

MF=

For information on specifying this operand, refer to “List, Execute, and

Generate Forms of the Control Block Manipulation Macros” on page 291.

OBJECT=DATA│INDEX

specifies, for the open ACB of a key-sequenced file, whether the fields

displayed are for the data or the index. VSE/VSAM will display the same

values for KEYLEN regardless of your specification in the OBJECT operand.

The same is true for field RKP.

 If you specify INDEX, VSE/VSAM’s display is all zeros for the following

fields:

 FS NINSR NUPDR

 NCIS NRETR

 NDELR NSSS

Keywords of the ACB, EXLST, and RPL Macros

The keywords in this group require one fullword every for display, except

DDNAME which requires two fullwords. The keywords are identical to those of

the ACB, EXLST, and RPL macros, except that:

v You can code the operands in more ways, as shown in “Operand Notation for

VSE/VSAM Macros” on page 295.

v You do not code the address, value, option, or name to which the keyword is

equal.

v In relation to the ACB macro, you cannot display the MACRF options and the

RMODE31 keyword.

With the keyword ERROR, you can display the error code (in the rightmost byte

of the display word) from the Open or Close routine (see the OPEN and CLOSE

macros); you can test the MACRF options with the TESTCB macro.

Also in relation to the ACB macro, you cannot display the ABEND CLOSE

disposition, that is, the second KEEP or DELETE keyword of the PARMS=

parameter.

v In relation to the EXLST macro, you cannot display the codes that indicate

whether an exit address is active or not active or is the address of the name of a

routine to be loaded; you can test them with the TESTCB macro.

v In relation to the RPL macro, you cannot display the OPTCD options, but you

can code the keyword FDBK to display error codes (in the rightmost byte of the

display word) from the request macros and the keyword RBA to display the

relative byte address of the last record processed; you can test the OPTCD

options with the TESTCB macro.

SHOWCB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 253

You can code the keyword AIXPC to display the number of key or RBA pointers

in the most recently processed alternate index record.

You can code the keyword FTNCD to display, after a logical or physical error,

the function code which indicates whether the respective condition occurred

during processing of the base cluster or the alternate index of a path or during

upgrade processing. (For details, see “Return Codes of Request Macros” on page

289.)

Length of a Control Block or List

You can code the keyword ACBLEN, EXLLEN, or RPLLEN to display either the

standard length of an ACB, EXLST, or RPL, or the actual length of a particular

block or list. You display a standard length by omitting the ACB│EXLST│RPL

operand and coding only one (or more) of these length keywords and no other

keywords. You display the actual length of a block or list by specifying the

ACB│EXLST│RPL operand and the corresponding length keyword.

Attributes of an Open File

After a file is opened, the ACB contains information that it does not contain before

it is opened or after it is closed. Whether you are displaying the attributes of the

data or the index of a key-sequenced file is determined by the OBJECT operand.

Every item displayed requires one fullword in your work area, except STMST

which requires two fullwords. You can display the following items:

Attribute

Meaning

AVSPAC

Number of bytes of available space in the data or index component.

BFRFND

Number of requests for retrieval that could be satisfied without an I/O

operation; that is, the data was found in the buffer. Applies for LSR only.

BUFNO

Number of buffers used for the data or index component.

BUFRDS

Number of requests for retrieval that require I/O operation; that is, the

data was not found in the buffer. Applies for LSR only.

CINV Size of a CI in the data or index component.

ENDRBA

Ending RBA of the space used by the data component or the index

component.

FS Percent of free CIs in every data CA of a key-sequenced file.

HALCRBA

High allocated RBA. The relative byte address (1 fullword) of the end of

the data component (OBJECT=DATA) or the index component

(OBJECT=INDEX) of the cluster opened by the related ACB.

KEYLEN

Full length of the prime key or alternate key field in every logical record

(depending on whether or not you access the base cluster via a path).

LRECL

Maximum length of a logical record, or for an index, the index CI size

minus seven bytes.

SHOWCB Macro

254 VSE/VSAM User’s Guide and Application Programming

NCIS Number of CI splits in the file.

NDELR

Number of data records deleted from the file.

NEXCP

Number of times EXCP was issued by VSE/VSAM I/O routines.

NEXT Number of logical extents, data spaces, or portions of data spaces, now

allocated to the data or index component.

NINSR

Number of data records inserted into the file. For a relative-record file,

number of valid records (non-empty slots in the file). For a key-sequenced

file, number of records inserted between the records, not records initially

loaded or added to the end of the file.

NIXL Number of levels in the index of a key-sequenced file.

NLOGR

Number of data records in the file. For a relative-record file, total number

of slots (empty or non-empty) in the used CIs.

NRETR

Number of data records retrieved from the file.

NSSS Number of data control-area splits in a key-sequenced file.

NUIW Number of write requests that VSE/VSAM was forced to do because

buffers were not available for reading the contents of a control interval

(CI). (NUIW is the number of write requests that were not initiated by the

user.) Applies for LSR with DFR only.

NUPDR

Number of data records updated in the file.

RKP Displacement of the prime key or alternate key field from the beginning of

a data record (depending on whether or not you access the base cluster via

a path); the same value is displayed whether the object is index or data.

STMST

System time stamp; the time and day (in microseconds) when the data or

index component was last closed. Bits 52 through 63 of the field are

unused.

STRMAX

Maximum number of requests which were concurrently active since the

resource pool was built. Used in shared resource applications (see “The

BLDVRP Macro” on page 207).

UIW Number of all other write requests (those that are not counted in NUIW).

Applies for LSR only.

Example: The SHOWCB Macro

Figure 40 on page 256 is an example of how to display information from

VSE/VSAM control blocks using the SHOWCB macro. Continuation characters

required in column 72 are not shown in the example.

SHOWCB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 255

Example: Statistics on Use of LSR Buffer Pools

This example shows what to specify in SHOWCB to obtain statistics about the

usage of buffer pools for local shared resources (LSR). The information can help

you to determine how to improve both, a previous definition of a resource pool,

and the mix of data sets that use a pool.

The statistics:

v Are available through an ACB that describes an open data set that uses a buffer

pool.

v Reflect the use of the buffer subpool from the time it was built up to the time

you issue SHOWCB.

v Are for a single buffer subpool. To get statistics for all buffer subpools, issue a

SHOWCB for each of the subpools.

The example specifications for displaying the statistics are:

 where:

v R6 must point to an ACB for an open data set.

v SHOW must be 16 bytes long. After processing of SHOWCB, the field SHOW

will contain all four counters (each being four bytes long).

v INDEX specifies that the statistics are to be taken from the LSR sub-pool that is

used by the index component of the data set.

The SHOWCB macro is used to display statistics about an open file:

 SHOWCB ACB=(2),AREA=DISPLAY,LENGTH=12, *

 FIELDS=(KEYLEN,LRECL,RKP)

 LTR 15,15 SHOWCB successful?

 BNZ SHOWERR No, go to error routine

 .

 .

DISPLAY DS 0F Align on fullword boundary

KEYLEN DS F

LRECL DS F

RKP DS F

The SHOWCB macro is used to display the length and RBA of a record that has been

retrieved:

 GET RPL=(4)

 LTR 15,15

 GNZ GETRR

 SHOWCB RPL=(4),AREA=DISPLAY,LENGTH=8, *

 FIELDS=(RECLEN,RBA)

 LTR 15,15 SHOWCB successful?

 BNZ SHOWERR No, go to error routine

 .

 .

DISPLAY DS 0F Align on fullword boundary

RECLEN DS F

RBA DS F

Figure 40. SHOWCB Macro Example

 SHOWCB ACB=(R6),AREA=SHOW,FIELDS=(BFRFND,BUFRDS,NUIW,UIW), *

 LENGTH=16,OBJECT=INDEX

Figure 41. SHOWCB Macro Example

SHOWCB Macro

256 VSE/VSAM User’s Guide and Application Programming

The TCLOSE Macro

A TCLOSE macro completes outstanding I/O operations and updates the catalog.

Processing can continue without reopening the file. You use the TCLOSE macro to

protect data while the file is loaded or extended and the SPEED option was

specified when the file was defined. When TCLOSE is issued, the close routine

formats the last CA in the file to ensure that all of the data that has been loaded is

accessible.

The TCLOSE macro cannot be used to change the processing mode for a file from

sequential load to retrieve in the same run.

The TCLOSE macro has no effect when the local shared resources (LSR) option is

in the ACB macro together with DFR (deferred write).

The return codes and error codes are identical to those of the CLOSE macro.

Format of the TCLOSE Macro

NN

name

TCLOSE

f

 ,

(1)

address

NM

name

one through eight characters that provide a symbolic name.

address

specifies up to 16 addresses of ACBs. You can specify address:

v In register notation, using a register from 1 through 12. Specify within

parentheses.

Or

v With an expression that generates a valid relocatable A-type address

constant.

You cannot specify the address of DTFs with TCLOSE.

The TESTCB Macro

The TESTCB macro tests values in an ACB, EXLST, or RPL against values that you

specify in the macro.

You can examine the condition code after issuing a TESTCB macro and examining

the return code in Register 15. For keywords specified as an option (such as A for

an operand of the EXLST macro), a test is for an equal or unequal comparison; for

keywords specified as an address or value, a test is for an equal, unequal, high,

low, not-high, or not-low comparison. In the comparison, A to B, B is the address,

value, or option that you specify in the TESTCB macro. For example, if you test for

a value in an ACB, a high comparison means the value in the block is higher than

the value you specified in the TESTCB macro.

When you issue a TESTCB macro, Register 13 must contain the address of a

72-byte save area that you are providing. When you issue a TESTCB macro from

within one of your exit routines such as LERAD or SYNAD, your program must

provide a second 72-byte save area for use by VSE/VSAM because the original

save area is still in use by the external VSE/VSAM routine.

TCLOSE Macro

Chapter 11. Descriptions of VSE/VSAM Macros 257

Format of the TESTCB Macro

NN

name

TESTCB

ACB

=address,

EXLST

RPL

 AM=VSAM,

N

N

ERET=address,

keyword=value
 ,MF=L

,MF=

L

(E,

address

)

(1)

,OBJECT=DATA

,OBJECT=INDEX

NM

name

one to eight characters that provide a symbolic name.

ACB│EXLST│RPL=address

This operand specifies whether you want to test an ACB, an EXLST, or an RPL

and specifies its address.

 In the standard and list forms of TESTCB, you can omit this operand if you are

testing only the standard length of a control block or list (see “Length of a

Control Block or List” on page 259). With the execute form of TESTCB, you can

change the address of the block or list to be tested, but not the type.

AM=VSAM

specifies that this is a VSE/VSAM control block. You may want to specify this

operand for documentation purposes if your installation also uses VTAM.

ERET=address

specifies the address of a user-written routine that VSE/VSAM gives control if,

because of an error, it is unable to test for the condition you specified (return

code in Register 15 is not X‘00’). When the ERET routine receives control, it

should inspect the return code. If the return code is X‘04’, an error code will be

tested in Register 0. See “Return Codes from the Control Block Manipulation

Macros” on page 291 for the error codes that can be tested by TESTCB.

 After completing its processing, the ERET routine can terminate the job or pass

control to a point in the processing program that it determines. It cannot return

to VSE/VSAM.

keyword=value

specifies a field and a value. The contents of the field are compared with the

value and the condition code is set. You can specify only one keyword at a

time. There are THREE groups of operands that you can code with the

TESTCB macro:

v The addresses, values, options, and names that you can code with the ACB,

EXLST, RPL, and GENCB macros

v The length of a control block or list

v The attributes of an open file or index indicated by the ACB.

If you code more than one operand, every one of them must compare equal to

the corresponding value in the block or list for you to get an equal condition.

 For details, refer to:

TESTCB Macro

258 VSE/VSAM User’s Guide and Application Programming

v “Operands of the ACB, EXLST, and RPL Macros”

v “Length of a Control Block or List”

v “Attributes of an Open File or Index” on page 260

 MF=

For information on specifying this operand, refer to “List, Execute, and

Generate Forms of the Control Block Manipulation Macros” on page 291.

OBJECT=DATA│INDEX

specifies, for the open ACB of a key-sequenced file, whether the field tested is

for the data or the index. KEYLEN and RKP will contain the same value, no

matter whether the data or the index is tested. FS, NCIS, NDELR, NINSR,

NIXL, NLOGR, NRETR, NSSS, and NUPDR will contain zeros if the index is

tested.

Operands of the ACB, EXLST, and RPL Macros

The operands in this group are identical to those of the ACB, EXLST, and RPL

macros.

v You can code the operands in more ways, as shown “Operand Notation for

VSE/VSAM Macros” on page 295.

v In relation to the ACB macro, you can test for error codes from the Open and

Close routines by coding ERROR=code (as any absolute expression, except for a

self-defining character term). When an ACB is opened for a path, the base

cluster ACB is tested. However, you can test the alternate index ACB by

specifying MACRF=AIX in the ACB macro. For the ACB, you cannot test the

RMODE31.

v In relation to the EXLST macro, you can test whether an EXLST has an exit of a

certain type by coding keyword=0.

v In relation to the EXLST macro, you can test whether an address in an EXLST is

active or not active or is the address of the name of a routine to be loaded by

coding: keyword=,A│N or keyword=,A│N,L.

v In relation to the RPL macro, you can code the operand FDBK=code (as any

absolute expression, except for a self-defining character term) to test for error

codes from the request macros (see “Return Codes of Request Macros” on page

289). You can code the operand RBA=number to test the relative byte address of

the last record processed.

v In relation to the RPL macro, you can code the operand AIXPC=number to find

out the number of key or RBA pointers in the most recently processed alternate

index record.

v You can code the operand AIXFLAG=AIXPKP to test whether the alternate

index record just processed contains prime key pointers (or, if not, RBA

pointers).

v You can code the operand FTNCD=number to test (after a logical or physical

error) the function code. The function code indicates whether the respective

condition occurred during processing of the base cluster or the alternate index of

a path or during upgrade processing. (For details, see “Return Codes of Request

Macros” on page 289.)

Length of a Control Block or List

You can code the operand EXLLEN=length, ACBLEN=length, or RPLLEN=length

to test either the standard length of an EXLST, ACB, or RPL; or the actual length of

a particular ACB, RPL, or EXLST. You test for a standard length by omitting the

ACB│EXLST│RPL operand and coding only one (or more) of these length operands

TESTCB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 259

and no other operands. You can test the actual length of a control block or list by

specifying the ACB│EXLST│RPL operand and the corresponding length operand.

Attributes of an Open File or Index

After a file is opened, the ACB contains information that it does not contain before

it is opened or after it is closed. Whether you are testing for the attributes of the

data or the index of a key-sequenced file is determined by the OBJECT operand.

By coding OFLAGS=OPEN, you can test whether the file is open.

You can test the following fields:

Attribute

Meaning

AVSPAC

Number of bytes of available space in the data or index component

BUFNO

Number of buffers used for the data or index component

CINV Size of a CI in the data or index component

ENDRBA

Ending RBA of the space used by the data component or the index

component.

FS Percent of free CIs in every data CA of a key-sequenced file

KEYLEN

Full length of the prime key or alternate key field in every logical record

(depending on whether or not you access the base cluster via a path)

LRECL

Maximum length of a logical record or, for an index, the index CI size

minus seven bytes

NCIS Number of CI splits in the file

NDELR

Number of data records deleted from the file

NEXCP

Number of EXCP commands issued since the data or the index was

opened

NEXT Number of logical extents, data spaces or portions of data spaces, now

allocated to the data or index component

NINSR

Number of records inserted into the file. For a relative-record file, number

of valid records, that is, non-empty slots in the file.

NIXL Number of levels in the index of a key-sequenced file

NLOGR

Number of data records in the file. For a relative-record file, total number

of slots (empty or non-empty) in the used CIs.

NRETR

Number of data records retrieved from the file

NSSS Number of control-area splits in a key-sequenced file

TESTCB Macro

260 VSE/VSAM User’s Guide and Application Programming

NUPDR

Number of data records updated in the file

RKP Displacement of the prime key or alternate key field from the beginning of

a data record (depending on whether or not you access the base cluster via

a path); the same value is displayed whether the object is index or data.

STMST

System time stamp; the time and day (in microseconds) when the data or

index component was last closed. Bits 52 through 63 of the fields are

unused.

You can also test for these attributes:

Specification

Meaning

ATRB=COMP

File is defined with the COMPRESSED attribute

ATRB=ESDS

Entry-sequenced file

ATRB=KSDS

Key-sequenced file

ATRB=RRDS

Relative-record file

ATRB=VRDS

Variable-length Relative record Data Sets

ATRB=WCK

VSE/VSAM is verifying write operations

ATRB=SSWD

Sequence set of the index is adjacent to the file

ATRB=REPL

Index records are replicated

ATRB=SPAN

File contains spanned records

ATRB=UNQ

Unique alternate keys in alternate index

ATRB=XLKSDS

Extended-addressed KSDS

Furthermore, you can determine whether the opened object is a path, a base

cluster, or an alternate index by coding:

OPENOBJ=PATH

Alternate index/base cluster pair (path)

OPENOBJ=BASE

Base cluster

OPENOBJ=AIX

Alternate index

Examples of the TESTCB Macro

Figure 42 on page 262 shows examples of how the TESTCB macro can be used to

test values in a VSE/VSAM control block.

Continuation characters required in column 72 are not shown in the example.

TESTCB Macro

Chapter 11. Descriptions of VSE/VSAM Macros 261

The WRTBFR Macro

Managing I/O Buffers

Managing I/O buffers includes:

v Deferring writes for direct PUT requests, which reduces the number of I/O

operations

v Writing buffers that have been modified by related requests.

v Writing out buffers whose writing has been deferred.

Deferring Write Requests

VSE/VSAM normally writes out the contents of a buffer immediately for direct

PUT requests. With shared resources, however, you can cause write operations for

direct PUT requests to be deferred. Buffers are finally written out:

v When you issue the WRTBFR macro.

v When VSE/VSAM needs a buffer to satisfy a GET request.

v When a file using a buffer pool is closed. (Temporary CLOSE is ineffective

against a file that is sharing buffers; nor does ENDREQ cause buffers in a

resource pool to be written.)

Deferring writes saves I/O operations in cases where subsequent requests can be

satisfied by the data in the buffer pool. Processing speed improves if CIs are

updated several times.

You indicate that writes are to be deferred by coding the MACRF DFR option in

the ACB, along with MACRF=LSR:

 ACB MACRF=(LSR,DFR,...)

NDF, the default, indicates that writes are not to be deferred for direct PUTs.

Example 1: Uses TESTCB to determine whether or not a file is open.

 TESTCB ACB=(2),OFLAGS=OPEN,

 ERET=TESTERR

 BE OPEN

 B UNOPEN

 .

 .

 TESTERR

Example 1: Uses TESTCB to determine whether the LERAD exit routine was entered

because of an end-of-file condition or a processing error. (The example assumes that no

EODAD exit routine was provided.)

 LOGERR TESTCB RPL=(4),FDBK=4,

 ERET=TESTERR

 BE EODATA

 B ERROR

 .

 .

 TESTERR

Figure 42. TESTCB Macro Examples

WRTBFR Macro

262 VSE/VSAM User’s Guide and Application Programming

The DFR option is incompatible with SHAREOPTIONS(4). (SHAREOPTIONS is a

parameter of the IDCAMS command DEFINE.) A request to open a file with

SHAREOPTIONS(4) for deferred writes is rejected.

Relating Deferred Requests by Transaction ID

You can relate action requests (GET, PUT, etc.) according to transaction by

specifying the same ID in the RPLs that define the requests.

The purpose of relating the requests that belong to a transaction is to enable

WRTBFR to cause all of the modified buffers used for this transaction to be written

out together. When the WRTBFR request is complete, the transaction is physically

complete. To relate requests, specify:

 RPL TRANSID=number

TRANSID=number

specifies a number from 0 to 31. A number from 1 to 31 relates the

request(s) defined by this RPL to the requests defined by other RPLs with

the same transaction ID. The number 0, which is the default, indicates that

the request defined by this RPL is not associated with other requests.

 You can find out what transaction ID an RPL has by issuing

 SHOWCB or TESTCB:

 SHOWCB FIELDS=(TRANSID)

TRANSID requires one fullword in the display work area.

 TESTCB TRANSID=number

You can also change the transaction ID of an RPL by issuing the MODCB

macro:

 MODCB TRANSID=number

Writing Buffers Whose Writing Has Been Deferred

If DFR is specified in the ACB of any file that is using a resource pool, you can use

the WRTBFR (write buffer) macro to write:

v All modified buffers for a given file

v All modified buffers in the resource pool

v The least recently used modified buffers in every buffer pool in the resource

pool

v All buffers that have been modified by requests with the same transaction ID.

(See “Relating Deferred Requests by Transaction ID”).

You can specify the DFR option in an ACB without using the WRTBFR to write

buffers. A buffer will be written when VSE/VSAM needs one to satisfy a GET

request, or all modified buffers will be written when the last of the files that uses

them is closed.

Using WRTBFR can improve performance, if you schedule WRTBFR to overlap

other processing.

VSE/VSAM notifies the processing program when there are no more unmodified

buffers into which to read the contents of a CI. (VSE/VSAM would be forced to

write buffers when another GET or PUT request required an I/O operation.)

VSE/VSAM sets Register 15 to 0 and puts 12 (X‘0C’) in the feedback (FDBK) field

of the RPL that defines the request that detects the condition.

WRTBFR Macro

Chapter 11. Descriptions of VSE/VSAM Macros 263

VSE/VSAM also notifies the processing program when there are no buffers

available to process your request. This is a logic error. Register 15 contains 8,

unless an exit is taken to a LERAD routine. The feedback (FDBK) field in the RPL

contains 152 (X‘98’). You may retry the request and it will get a buffer if one has

been freed.

In addition, VSE/VSAM will notify the processing program when the number of

active requests exceeds the STRNO value specified in the BLDVRP macro (Register

15=X‘08’; RPL FDBK=X‘40’).

Format of the WRTBFR Macro

When you issue a WRTBFR macro, Register 13 must contain the address of a

72-byte save area that you are providing. When you issue a WRTBFR macro from

within one of your exit routines such as LERAD or SYNAD, your program must

provide a second 72-byte save area for use by VSE/VSAM, because the original

save area is still in use by the external VSE/VSAM routine.

NN

name

 WRTBFR RPL=address,TYPE= ALL

DS

LRU(percent)

TRN

 NM

name

one to eight characters that provide a symbolic name.

RPL=address

specifies the address of the request parameter list that defines the WRTBFR

request. An RPL need not be built especially for the WRTBFR; WRTBFR may

use an inactive RPL that defines other request(s) (GET, PUT, etc.) for a file that

is using the resource pool.

 Only the ACB and the TRANSID operands of the RPL are meaningful for

WRTBFR; all other RPL operands are ignored. Unlike the other action macros

(GET, PUT, etc.), WRTBFR assumes that RPLs are not chained.

TYPE=ALL│DS│LRU(percent)│TRN

specifies what buffers are to be written.

ALL

specifies that all modified buffers in every buffer pool in the resource pool

are to be written. (Closing all of the files that use a resource pool has the

same effect.)

DS

specifies that, for the file defined by the ACB to which the WRTBFRs RPL

is related all modified buffers are to be written.

LRU(percent)

specifies the percentage of the total number of buffers in every buffer pool

in the resource pool that are to be examined for possible writing. The least

recently used buffers are examined. (If percent is coded in register

notation, only Registers 1 and 13 may not be used.)

 When using the DFR option it is possible for the buffer pool to become

filled with modified buffers. VSE/VSAM would then be forced to write out

a buffer before satisfying any other GET or PUT request. To ensure that

buffers are always available for GET or PUT requests (without having to

wait for buffers to be written) you can periodically force out the least

recently used part of every buffer pool through the LRU option. To help

WRTBFR Macro

264 VSE/VSAM User’s Guide and Application Programming

determine when to do this, VSE/VSAM sets a non-error return code of 12

(X‘0C’) in the FDBK field of the RPL whenever it is forced to write out a

deferred buffer because of insufficient free buffers.

TRN

specifies that all buffers in a buffer pool are to be written that have been

modified by requests with the same transaction ID as the one specified in

the WRTBFR’s RPL. Transaction IDs are no longer associated with these

buffers.

Examples: ACB, EXLST, and RPL Macros

Specifying VSE/VSAM Control Blocks

Figure 43 shows an example of how you can specify VSE/VSAM control blocks by

using the ACB, EXLST, and RPL macros. These control blocks are generated during

assembly of your program. Default values will be provided for those parameters

that are omitted.

 Explanations to Figure 43:

ACB Macro

Because the DDNAME operand is not specified, VSE/VSAM uses the name,

ACBADR, of the ACB as the name (file name) of the associated file.

 ACBADR ACB EXLST=EXISTS,

 PASSWD=PASS,

 BUFND=4,BUFNI=3,

 BUFSP=11264,

 MACRF=(KEY,SEQ,

 DIR,OUT),

 STRNO=2

 EXITS EXLST EODAD=(ENDUP,N),

 LERAD=LOGERR,

 SYNAD=(IOERR,L),

 EXCPAD=(OVERLP,A)

 RETRVE RPL ACB=ACBADR,

 AREA=WORK

 ARG=SEARCH,

 AREALEN=125,

 OPTCD=(DIR,NSP)

 .

 .

 PASS DC FL1’6’,C’CHANGE’

 WORK DS CL125

 SEARCH DS CL4

 IOERR DC C’PHYSICAL’

 ENDUP End-of-file routine

 .

 .

 LOGERR Logical-error routine

 .

 .

 OVERLP I/O-overlap routine

 .

 .

Figure 43. Example of Specifying Control Blocks for a File

WRTBFR Macro

Chapter 11. Descriptions of VSE/VSAM Macros 265

BUFND:

Four I/O buffers for data CIs.

BUFNI:

Three I/O buffers for index CIs.

BUFSP:

The size of the buffer space is sufficient to accommodate four data control

intervals of 2048 bytes each and three index CIs of 1024 bytes each.

EXLST:

Specifies that the label of the exit list associated with this ACB is named

EXITS.

PASSWD:

Specifies the location of the password. The DC at PASS gives the

password’s length in the first byte and the password itself in the

subsequent six bytes.

MACRF:

Specifies keyed-sequential and keyed-direct processing for both insertion

and update.

STRNO:

Specifies that two requests will require concurrent positioning.

EXLST Macro

EODAD:

The end-of-file routine is located at ENDUP and is not active.

LERAD:

The logic error routine is located at LOGERR and is active.

SYNAD:

The physical I/O error routine's name is located at IOERR.

EXCPAD:

The I/O-overlap routine is located at OVERLP and is active.

RPL Macro

ACB: Associates the RPL with the ACB named ACBADR.

AREA:

Address of work area is WORK.

AREALEN:

Length of work area is 125 bytes.

ARG: The search argument is defined at SEARCH. Because the KEYLEN operand

is omitted, VSE/VSAM uses the full key as search argument.

OPTCD:

Specifies direct processing with positioning at the next record for

subsequent sequential processing.

JCL to Open and Process a File

Figure 44 on page 267 shows the JCL needed to open and process a file identified

in an ACB macro (file ACBADR in the example). Continuation characters required

in column 72 are not shown in the example.

Examples: ACB EXLST RPL

266 VSE/VSAM User’s Guide and Application Programming

Examples of Request Macros

The following examples show the essential macros and operands required to

perform the operations indicated in the headings of the examples. The examples

illustrate the relationship between the ACB MACRF operand, the RPL OPTCD

operand, and the request macros themselves. They show how to use the other

operands as required by the assumptions for every example.

For your convenience in reading them, the examples show macros that generate

control blocks at assembly (ACB, EXLST, and RPL) at the beginning of the example

rather than at the end where they would normally be placed with program

constants. Every example assumes that the file has been opened and that it will be

closed. Only nominal checks for errors are shown. Exit routines to analyze errors

are not indicated.

Note: The continuation characters required in column 72 are not shown in the

examples, nor are the asterisks required in column 1 of the comment cards

shown.

The examples relate to:

v “How to Retrieve a Record: GET Macro” on page 268

v “How to Position for Subsequent Sequential Access: GET and POINT Macros”

on page 273

v “How to Chain Request Parameter Lists and Terminate a Request: ENDREQ

Macro” on page 276

v “How to Store a Record: PUT Macro” on page 278

v “How to Update a Record: GET and PUT Macros” on page 282

v “How to Delete a Record: GET and ERASE Macros” on page 285

 // JOB

 // DLBL IJSYSCT,’AMASTCAT’,,VSAM

 // DLBL ACBADR,’FILE1’,,VSAM

 // EXEC progname,SIZE=AUTO

 .

 .

 .

 OPEN ACBADR

 .

 .

 .

 GET RPL=RETRVE

 .

 .

 .

 CLOSE ACBADR

 .

 .

 .

 /*

 /&

FILE1 is the name of the file under which it is entered in the VSE/VSAM master catalog.

Figure 44. Example of JCL Needed to Open and Process a File

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 267

How to Retrieve a Record: GET Macro

Examples 1, 2, 3, 4, and 5 illustrate keyed and addressed, direct sequential, and

skip sequential retrieval.

Example 1: Keyed-Sequential Retrieval

Assumptions: Records moved to a work area. Fixed-length records, 100 bytes.

Control blocks generated at assembly.

 Discussion: The records are retrieved in key sequence. No search argument has to

be specified; VSE/VSAM is positioned at the first record in key sequence when the

file is opened, and the next record is retrieved automatically as every GET is

issued. The branch to ERROR will also be taken if the end of the file is reached.

Example 2: Skip-Sequential Retrieval

Assumptions: Variable-length records: they are processed in the I/O buffer. The

search argument is a full key, compared greater than or equal. Control blocks are

generated at the time of execution. Key length is eight bytes.

INPUT ACB MACRF=(KEY,SEQ,IN) All MACRF and OPTCD options

 specified are defaults and

 could have been omitted.

RETRVE RPL ACB=INPUT,

 AREA=IN,AREALEN=100,

 OPTCD=(KEY,SEQ,NUP,MVE)

 .

 .

 .

LOOP GET RPL=RETRVE This GET or identical GETs

 can be issued, with no change

 in the request parameter list,

 to retrieve subsequent records

 in key sequence.

 LTR 15,15

 BNZ ERROR

 .

 .

 .

 B LOOP

ERROR ... Request was not accepted or

 . failed.

 .

 .

IN DS CL100 IN contains a data record

 after GET is completed.

Figure 45. Request Macro Example 1: Keyed-Sequential Retrieval

Examples: Request Macros

268 VSE/VSAM User’s Guide and Application Programming

Discussion: The records are retrieved in key sequence, but some records are

skipped. Skip sequential retrieval is very similar to keyed direct retrieval (see

Example 4), except that you must retrieve records in ascending sequence (with

skips) rather than in a random sequence.

Internally, with skip sequential retrieval, VSE/VSAM uses only the sequence set of

the index to skip ahead; with direct retrieval it searches the index from top to

bottom to locate a record.

 GENCB BLK=ACB, VSE/VSAM gets an area in virtual

 DDNAME=INPUT, storage to generate the

 MACRF=(KEY,SKP,IN) access method control block

 and returns the address in

 Register 1.

 LTR 15,15

 BNZ CHECKO

 LR 2,1 Address of ACB

 GENCB BLK=RPL,ACB=(2),

 AREA=RCDADDR,AREALEN=4,

 ARG=SCRHKEY,

 OPTCD=(KEY,SKP,NUP,KGE,FKS,LOC)

 LTR 15,15

 BNZ CHECK0

 LR 3,1 Address of the request

 . parameter list.

 .

 .

LOOP MVC SRCHKEY,table Search argument for

 retrieval, moved in from

 a table or a

 transaction record.

 GET RPL=(3)

 LTR 15,15

 BNZ ERROR

 LR 1,3 Put RPL address in Register 1.

 SHOWCB RPL=(1), Display the length of the

 RECLEN=(0) record.

 LTR 15,15

 BNZ CHECK0

 ST 0,RCDLEN Save the record length.

 .

 .

 .

 B LOOP

ERROR ... Request was not accepted

 or failed.

CHECKO ... Generation or display failed

 .

 .

 .

RCDADDR DS F Work area into which VSE/VSAM

 puts the address of a data

 record within the I/O buffer

 (OPTCD=LOC).

SRCHKEY DS CL8 Search argument for

 retrieval.

RCDLEN DS F For retrieving variable

 record lengths.

Figure 46. Request Macro Example 2: Skip-Sequential Retrieval

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 269

Example 3: Addressed-Sequential Retrieval

Assumptions: Many records are retrieved with one GET request. Records are

moved to work areas (only option); they are of fixed length, 20 bytes long. Chain

of RPLs is generated during execution.

BLOCK ACB DDNAME=INPUT,

 MACRF=(ADR,SEQ,IN)

 .

 .

 .

 GENCB BLK=RPL,

 COPIES=10,

 ACB=BLOCK,

 OPTCD=(ADR,SEQ,NUP,MVE)

 LTR 15,15

 BNZ CHECKO

 LA 5,WORKAREA Address of the first

 work area.

 LA 3,10 Number of lists(10).

 LR 2,1 Address of the first list.

 LR 1,0 Length of all of the lists.

 Registers 0 and 1 contain

 length and address of the

 generated control blocks when

 VSE/VSAM returns control after

 GENCB.

 SR 0,0 Prepare for following

 division.

 DR 0,3 Divide number of lists into

 length of all the lists.

 LR 3,1 Save the resulting length of a

 sing le list for an offset.

 LR 4,2 Save address of the first list.

Figure 47. Request Macro Example 3: Addressed-Sequential Retrieval (Part 1 of 2)

Examples: Request Macros

270 VSE/VSAM User’s Guide and Application Programming

Discussion: The records are retrieved in entry sequence. In a key-sequenced file

that has had CI or control-area splits, it is likely that the entry sequence of the

records is no longer the same as their key sequence. Each of the ten RPLs in the

chain identifies a record to be retrieved by the GET. VSE/VSAM moves every

record into the work area provided for the request parameter list that identifies the

record.

If an error occurred for one of the RPLs in the chain and you have supplied error

analysis routines, VSE/VSAM takes a LERAD or SYNAD exit before returning to

your program. Register 15 indicates the status of the request. A code of 0 indicates

that no error was associated with any of the RPLs. Any other code indicates that

an error occurred for one of the RPLs. Issue a SHOWCB for every RPL in the chain

to find out which one had an error. VSE/VSAM does not process any of the RPLs

beyond the one with an error.

Example 4: Keyed-Direct Retrieval

Assumptions: Fixed-length records are processed in the I/O buffer. Key length is

15 bytes. The search argument is a 5-byte generic key, compared equal. Control

blocks are generated during assembly.

Do the following 6 instructions 10 times to set up all of the request parameter lists. The

tenth time register 4 must be set to 0 to indicate the last request parameter list in the chain.

 AR 4,3 Address of the next list.

 MODCB RPL=(2), In every request parameter

 NXTRPL=(4), list, indicate the address

 AREA=(5),AREALEN=20 of the next list and the

 address and length of the

 work area.

 LTR 15,15

 BNZ CHECKO

 AR 2,3 Address the next line.

 LA 5,20(5) Address the next work area.

 . Restore Register 2 to address

 . the first list before

 . continuing to process.

LOOP GET RPL=(2)

 LTR 15,15

 BNZ ERROR

 . Process the ten records that

 . have been retrieved by the

 . GET.

 B LOOP

CHECKO ...

ERROR ... Display the feedback field

 (FIELDS=FDBK) of every

 request parameter list to

 find out which one had an

 error.

WORKAREA DS CL200 Space for a work area for

 each of the 10 request

 parameter lists.

Figure 47. Request Macro Example 3: Addressed-Sequential Retrieval (Part 2 of 2)

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 271

Discussion: The generic key specifies a class of records. For example, if you

search on the first third of employee number, you get the first of presumably

several records that start with the specified characters. To retrieve all of the records

in that class, either switch to sequential access (see Example 7) or to a full-key

search with greater-than-or-equal comparison (Example 2), increasing the key of

every record you retrieve to the next possible key value.

Example 5: Addressed-Direct Retrieval

Assumptions: Fixed-length records, 20 bytes long, are moved to a work area.

INPUT ACB MACRF=(KEY,DIR,IN)

RETRVE RPL ACB=INPUT, You specify all parameters

 AREA=IN,AREALEN=4 for the request in the RPL

 OPTCD=(KEY,DIR, macro.

 NUP,KEQ,GEN,LOC),

 ARG=KEYAREA,KEYLEN=5

 .

 .

 .

LOOP MVC KEYAREA,table Search argument for retrieval,

 moved in from a table or a

 transaction record.

 GET RPL=RETRVE This GET or identical GETs can

 be issued with no change in the

 RPL: just specify every new

 search argument in the field

 KEYAREA.

 LTR 15,15

 BNZ ERROR

 .

 . Process the record.

 .

 B LOOP

ERROR ... Request was not accepted

 . or failed.

 .

 .

IN DS CL4 VSE/VSAM stores the address

 . of the record here.

 .

 .

KEYAREA DS CL5 You specify the search

 argument here.

Figure 48. Request Macro Example 4: Keyed-Direct Retrieval

Examples: Request Macros

272 VSE/VSAM User’s Guide and Application Programming

Discussion: The RBA provided for a search argument must match the RBA of a

record. Keyed insertion and deletion of records in a key-sequenced file will

probably cause the RBAs of some records to change. Therefore, if you process a

key-sequenced file by addressed direct access (or by addressed sequential access

using POINT), you need to keep track of changes. You can use the JRNAD exit for

this purpose.

How to Position for Subsequent Sequential Access: GET and

POINT Macros

Examples 6 and 7 illustrate positioning both with the POINT macro and with

direct access followed by sequential access.

Example 6: Keyed Positioning with POINT

Assumptions: Sequential access. The search argument (for positioning) is a full

key of 5 bytes, compared equal. Records are 50 bytes long. Control blocks are

generated during assembly.

BLOCK ACB DDNAME=INPUT, Access-method control block

 MACRF=(ADR,DIR,IN) generated at assembly.

 GENCB BLK=RPL,COPIES=1, Request parameter list

 ACB=BLOCK, generated at execution.

 OPTCD=(ADR,DIR,

 NUP,MVE),

 ARG=SRCHADR,

 AREA=IN,AREALEN=20

 LTR 15,15

 BNZ CHECKO

 LR 2,1 Address of the list.

 .

 .

 .

LOOP MVC SRCHADR,table Search argument for retrieval,

 calculated or moved in from a

 table or a transaction record.

 GET RPL=(2)

 LTR 15,15

 BNZ ERROR

 .

 . Process the record.

 .

 B LOOP

CHECKO ... Generation failed.

ERROR ... Request was not accepted

 . or failed.

 .

 .

IN DS CL20 VSE/VSAM puts a record here

 for every GET request.

SRCHADR DS CL4 You specify the RBA search

 argument here for every request.

Figure 49. Request Macro Example 5: Addressed-Direct Retrieval

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 273

Discussion: No access is gained to a record with POINT. POINT causes

VSE/VSAM to be positioned ahead or back to the specified record for a

subsequent sequential GET request, which retrieves the record. If, after positioning,

you issue a direct request by way of the same RPL, VSE/VSAM does not

remember the position established by the POINT. VSE/VSAM would then either

be positioned somewhere else or not positioned at all, depending on whether

OPTCD=NSP or UPD was specified or OPTCD=NUP (see Example 7).

Positioning by address is identical to positioning by key, except that the search

argument is an RBA, which must match with the RBA of a record in the file.

Example 7: Switching from Direct to Keyed-Sequential Retrieval

Assumptions: Records are moved to a work area. The search argument (for the

direct request preceding sequential requests) is a generic key, 8 bytes long,

compared equal. Records are of fixed-length, 100 bytes long. Positioning is

requested for direct requests. Control blocks are generated during assembly.

BLOCK ACB DDNAME=10 Default MACRF options

 sufficient.

POSITION RPL ACB=BLOCK, ARG operand and KEQ and

 AREA=WORK,AREALEN=50, FKS OPTCD options define

 ARG=SRCHKEY, the POINT request.

 OPTCD=(KEY,SEQ,

 KEQ,FKS)

 .

 .

 .

LOOP MVC SRCHKEY,table Search argument for

 positioning, moved in from a

 table or transaction record.

 POINT RPL=POSITION

 LTR 15,15

 BNZ ERROR

LOOP1 GET RPL=POSITION

 LTR 15,15

 BNZ ERROR

 . Process the record. Decide

 . whether to skip another

 . position (forward or

 backward).

 BE LOOP Yes, skip.

 B LOOP1 No, continue in consecutive

 sequence.

ERROR ... Request was not accepted or

 . failed.

 .

 .

SRCHKEY DS CL5 Search-argument field for

 POINT request.

WORK DS CL50 VSE/VSAM puts a record here

 for every GET request.

Figure 50. Request Macro Example 6: Keyed Positioning with POINT

Examples: Request Macros

274 VSE/VSAM User’s Guide and Application Programming

Discussion: Positioning is associated with an RPL; thus to switch from direct to

sequential access without independently establishing positioning for the sequential

access, modify a single RPL that alternately defines requests for both types of

access rather than use a different RPL for every type.

With direct retrieval, VSE/VSAM does not remember its position for subsequent

retrieval unless you explicitly requested this (OPTCD=NSP). After a direct GET for

update (OPTCD=UPD), VSE/VSAM is positioned for a subsequent PUT,ERASE, or

sequential GET (if you modify OPTCD(DIR,UPD) to OPTCD=(SEQ,UPD)). If you

modify OPTCD=(DIR,NUP) to OPTCD=SEQ, you must issue a POINT to get

VSE/VSAM positioned for sequential retrieval, as NUP indicates that no

positioning is desired with a direct GET.

INPUT ACB MACRF=(KEY,DIR, Both direct and sequential

 SEQ,IN) access specified.

RETRVE RPL ACB=INPUT,

 AREA=IN,AREALEN=100,

 OPTCD=(KEY,DIR,

 NSP,KEQ,GEN,MVE), NSP specifies that VSE/VSAM is

 ARG=KEYAREA,KEYLEN=8 to remember its position.

 .

 .

 .

LOOP MVC KEYAREA,table Search argument for direct

 retrieval, moved in from a

 table or transaction record.

LOOP1 GET RPL=RETRVE

 LTR 15,15

 BNZ ERROR

 . Decide whether to switch from

 . one type of access to the

 . other. If now sequential:

 To remain sequential, branch

 to LOOP1

 To switch to direct, branch

 to DIR

 If now direct:

 To remain direct, branch

 to LOOP

 To switch to sequential,

 branch to SEQ

SEQ MODCB RPL=RETRVE, Alter request parameter list

 OPTCD=SEQ for sequential access.

 LTR 15,15

 BNZ CHECKO

 B LOOP1 No search argument required.

DIR MODCB RPL=RETRVE, Alter request parameter list

 OPTCD=DIR for direct access.

 LTR 15,15

 BNZ CHECK0

 B LOOP Prepare new search argument.

ERROR ... Request was not accepted or

 failed.

CHECKO ... Modification failed.

 .

 .

 .

IN DS CL100 VSE/VSAM puts retrieved records

 here.

KEYAREA DS CL8 Specify the generic key for

 a direct request here.

Figure 51. Request Macro Example 7: Switching from Direct to Keyed-Sequential

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 275

If you have chained many RPLs together, one position is remembered for the

whole chain. For example, if you issue a GET that gives the address of the first

RPL in the chain, the position of VSE/VSAM when the GET request is complete is

at the record following the one defined by the last RPL in the chain. Therefore,

modifying OPTCD=(DIR,NSP) in every RPL in a chain to OPTCD=SEQ implies

continuing with sequential access relative to the last of the direct RPLs.

How to Chain Request Parameter Lists and Terminate a

Request: ENDREQ Macro

Example 8 illustrates how to chain RPLs. Example 9 illustrates the use of ENDREQ

to cause VSE/VSAM to give up its position for a request to be able to remember

its position for another request.

Example 8: Chaining Request Parameter Lists

Assumptions: Records are 50 bytes long. Retrieved records are moved to a work

area. Three RPLs are chained.

 Discussion: If an error occurred for one of the RPLs in the chain and you have

supplied error-analysis routines, VSE/VSAM takes a LERAD or SYNAD exit before

it returns control to your program. Register 15 is set to indicate the status of the

request. A code of 0 indicates that no error was associated with any of the RPLs.

Any other code indicates that an error occurred for one of the RPLs. You should

issue a SHOWCB macro for every RPL in the chain to find out which one had an

error. VSE/VSAM does not process any of the RPLs beyond the one with an error.

FIRST RPL ACB=BLOCK,

 AREA=AREA1,AREALEN=50,

 NXTRPL=SECOND

SECOND RPL ACB=BLOCK,

 AREA=AREA2,AREALEN=50,

 NXTRPL=THIRD

THIRD RPL ACB=BLOCK Last list does not indicate

 AREALEN=50 a next list.

 AREALEN=50

 .

 .

 .

LOOP GET RPL=FIRST Request gives the address of

 the first request parameter

 list.

 LTR 15,15

 BNZ ERROR

 . Process the three records

 . retrieved by the GET.

 .

 B LOOP

ERROR ... Display the feedback field

 (FIELD=FDBK) of every request

 parameter list to find out

 which one had an error.

AREA1 DS CL50 A single GET request causes

 VSE/VSAM to put a record in

 each one of AREA1, AREA2,

 and AREA3.

AREA2 DS CL50

AREA3 DS CL50

Figure 52. Request Macro Example 8: Chaining Request Parameter Lists

Examples: Request Macros

276 VSE/VSAM User’s Guide and Application Programming

Example 9: Giving up Positioning for Another Request

Assumptions: There are three RPLs, all of which require VSE/VSAM to

remember its position, one only temporarily and two until VSE/VSAM is explicitly

requested to forget its position. VSE/VSAM can remember only two positions

concurrently (STRNO=2).

Discussion: The use of ENDREQ illustrated here is to cause VSE/VSAM to forget

its position for one RPL so a request defined by another RPL can be issued. When

PUT is issued after a GET RPL=DIRUPD request, ENDREQ need not be issued,

because PUT causes VSE/VSAM to forget its position (the next GET with

RPL=DIRUPD does not depend on VSE/VSAM’s remembering its position). You

need to cause VSE/VSAM to forget its position when you have issued requests for

as many RPLs requiring concurrent positioning as the number you specified for

STRNO (in the ACB macro) and you want to issue a request for yet another RPL.

BLOCK ACB MACRF=(SEQ,DIR),

 STRNO=2

SEQ RPL ACB=BLOCK, VSE/VSAM must remember its

 OPTCD=SEQ position.

DIRUPD RPL ACB=BLOCK, VSE/VSAM must remember its

 OPTCD=(DIR,UPD) position until explicitly

 requested to forget it by

 PUT or ENDREQ.

DIRNUP RPL ACB=BLOCK, VSE/VSAM must be able to

 OPTCD=(DIR,NUP) temporarily remember its

 . position.

 .

 .

LOOP GET RPL=SEQ VSE/VSAM now remembers its

 position for this request.

 LTR 15,15

 BNZ ERROR

 GET RPL=DIRNUP VSE/VSAM remembers its position

 for this request only while

 it is processing the request.

 LTR 15,15

 BNZ ERROR

 GET RPL=DIRUPD VSE/VSAM can therefore remember

 its position for this request,

 even that STRNO=2.

 LTR 15,15

 BNZ ERROR

 .

 . Decide whether to update the

 . record.

 BE UPDATE

 B FORGET No.

UPDATE PUT RPL=DIRUPD Yes, update the record,

 causing VSE/VSAM to forget its

 position for DIRUPD.

 LTR 15,15

 BNZ ERROR

 B LOOP

FORGET ENDREQ RPL=DIRUPD Cause VSE/VSAM to forget its

 position for DIRUPD.

 LTR 15,15

 BNZ ERROR

 B LOOP

ERROR ... Request was not

 accepted or failed.

Figure 53. Request Macro Example 9: Giving up Positioning for Other Request

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 277

In the example, a GET with RPL=DIRNUP cannot be reissued unless VSE/VSAM

is freed from remembering its position for either SEQ or DIRNUP. VSE/VSAM

must be allowed to remember its position for SEQ because requests against this

RPL are sequential and depend on VSE/VSAM’s remembering its position.

To cause VSE/VSAM to give up its position associated with a chain of RPLs,

specify the first RPL in the chain in your ENDREQ macro.

Because VSE/VSAM remembers its position after a direct GET with OPTCD=UPD,

if no PUT or ENDREQ follows, you can switch to sequential access

(OPTCD=(SEQ,UPD) or OPTCD=SEQ) and use the positioning for a GET.

How to Store a Record: PUT Macro

Examples 10, 11, 12, and 13 illustrate the storage of records: keyed and addressed,

sequential, skip sequential, and direct.

Example 10: Keyed-Sequential Insertion

Assumptions: Records of variable length are moved from a work area (only

option). These records are up to 250 bytes long. Key length is 15 bytes. Some

records are inserted between existing records, others are added at the end of the

file.

 Discussion: Sequential insertion does not require VSE/VSAM to be positioned at

the point of insertion. VSE/VSAM automatically skips ahead (never back) to that

point, as though you were using skip sequential insertion (see Example 11). The

difference between sequential and skip sequential insertion is that sequential

insertion leaves free space in CIs and CAs according to the file’s FREESPACE

specification in the catalog (which is entered by the IDCAMS command DEFINE).

Skip sequential insertion (and direct insertion) uses the free space.

BLOCK ACB DDNAME=OUTPUT,

 MACRF=(KEY,SEQ,OUT)

LIST RPL ACB=BLOCK,

 AREA=BUILDRCD,AREALEN=250,

 OPTCD=(KEY,SEQ,NUP,MVE)

 .

 .

LOOP L 0,length Put length of record to be

 inserted into Register 0.

 LA 1,LIST Put RPL address into Register 1.

 MODCB RPL=(1), Modify record length in

 RECLEN=(0) request parameter list.

 LTR 15,15

 BNZ CHECKO

 PUT RPL=LIST

 LTR 15,15

 BNZ ERROR

 B LOOP

CHECKO ... Modification failed.

ERROR ... Request was not accepted

 . or failed.

 .

 .

BUILDRCD DS CL250 Work area for building record.

Figure 54. Request Macro Example 10: Keyed-Sequential Insertion

Examples: Request Macros

278 VSE/VSAM User’s Guide and Application Programming

You must use sequential storage (as opposed to skip sequential or direct storage)

when you load records into a file for the first time. Thereafter, you may use skip

sequential and direct storage, but you should use sequential storage when you are

inserting large numbers of records between two existing records or at the end of

the file.

When you store records sequentially beyond the highest key in the file,

VSE/VSAM automatically extends the file as though you were continuing to load

records. VSE/VSAM does not use distributed free space for these records, but

establishes new CAs at the end of the file.

Example 11: Skip-Sequential Insertion

Assumptions: Several records are inserted with one PUT request. The records are

moved from a work area (only option). They are fixed-length, 100 bytes long.

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 279

Discussion: You give no search argument for storage. VSE/VSAM knows the

position of the key field in every record and extracts the key from it. Skip

sequential insertion differs from keyed direct insertion in the sequence in which

records may be inserted (ascending non-consecutive sequence versus random

sequence) and in performance. With skip sequential insertion, VSE/VSAM uses

only the sequence set of the index to find the point of insertion; with keyed direct

insertion, VSE/VSAM searches from the top level of the index down to the

sequence set.

With skip sequential insertion, if you insert two or more records into a CI,

VSE/VSAM does not write the contents of the buffer to direct-access storage until

you have inserted all records. With direct insertion, VSE/VSAM writes the contents

of the buffer after you have inserted each record.

OUTPUT ACB MACRF=(KEY,SKP,OUT)

 .

 .

 .

 GENCB BLK=RPL,COPIES=5, Generate 5 request parameter

 ACB=OUTPUT, lists at execution.

 AREALEN=100,

 OPTCD=(KEY,SKP,NUP,MVE)

 LTR 15,15

 BNZ CHECKO

 Calculate the length of every list and use register notation with the MODCB macro to

complete each list. See Example 3.

 MODCB RPL=(2),

 AREA=(3),

 NXTRPL=(4)

 LTR 15,15

 BNZ CHECKO

 Increase the value in every register and repeat the MODCB until all five requests have

been completed. The last time, Register 4 must be set to 0.

 .

 .

 .

LOOP ... Restore address of first list

 Register 2. Build 5 records

 in WORK.

 PUT RPL=(2) Register 2 points to the first

 request parameter list in the

 chain. The five records in

 WORK are stored with this one

 PUT request.

 LTR 15,15

 BNZ ERROR

 .

 .

 .

 B LOOP

CHECKO ... Generation or modification

 failed.

ERROR ... Display the feedback field

 in every request parameter

 list to find out if it had

 an error (see discussion

 for Example 8).

WORK DS CL500 Contains 5 100-byte work

 areas.

Figure 55. Request Macro Example 11: Skip-Sequential Insertion

Examples: Request Macros

280 VSE/VSAM User’s Guide and Application Programming

Example 12: Keyed-Direct Insertion

Assumptions: Records are moved from a work area (only option.) They have a

fixed length of 100 bytes.

 Discussion: VSE/VSAM extracts the key from every record’s key field. You give

no search argument. Using keyed direct access is very similar to using skip

sequential access. About the only differences are specifying DIR instead of SKP in

the MACRF and OPTCD operands and being able to process records randomly

instead of in ascending key sequence (with skips).

Example 13: Addressed-Sequential Addition

Assumptions: Records are moved from work area (only option). They are of

variable-length, up to 100 bytes long.

OUTPUT ACB MACRF=(KEY,DIR,OUT)

DIRECT RPL ACB=OUTPUT,

 AREA=WORK,AREALEN=100,

 OPTCD=(KEY,DIR,NUP,MVE),

 RECLEN=100

 .

 .

 .

LOOP PUT RPL=DIRECT

 LTR 15,15

 BNZ ERROR

 .

 .

 .

 B LOOP

ERROR ... Request failed

 .

 .

 .

WORK DS CL100 Work area

Figure 56. Request Macro Example 12: Keyed-Direct Insertion

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 281

Discussion: With addressed access, you cannot insert records into or add records

to a key-sequenced file, because the index is not used and VSE/VSAM cannot

locate the CI into which to insert the record. You can add records to, but not insert

records into, an entry sequenced-file. Every record is stored in the next position

after the last record in the file. You do not have to specify an RBA or do any

explicit positioning (with the POINT macro). Addressed addition of records is

always identical to loading a file. When the last CA is filled up, VSE/VSAM

extends the file and establish new CAs.

Actually, there is no difference between addressed sequential and addressed direct

addition. Every method stores a record in the next position after the last record in

the file. However, you cannot use direct processing to load records into a file for

the first time; you must use sequential processing.

How to Update a Record: GET and PUT Macros

Examples 14, 15, and 16 illustrate updating a record by first retrieving it and then

storing it back with changes. (You cannot update a record without first retrieving it

for update.)

Example 14: Keyed-Sequential Update

Assumptions: Records are updated in a work area (only option). They are

fixed-length, 50 bytes long. Not every record retrieved is also updated.

BLOCK ACB MACRF=(ADR,SEQ,OUT)

LIST RPL ACB=BLOCK,

 AREA=NEWRCD,AREALEN=100,

 OPTCD=(ADR,SEQ,MVE)

 .

 .

 .

LOOP ... Build the record.

 L 0,length Put the length of the record

 into Register 0.

 LA 1,LIST Put RPL address into Register 1.

 MODCB RPL=(1), Indicate length of new record.

 RECLEN=(0)

 LTR 15,15

 BNZ CHECKO

 PUT RPL=LIST

 LTR 15,15

 BNZ ERROR

 B LOOP

CHECKO ... Modification failed.

ERROR ... Request was not accepted

 . or failed.

 .

 .

NEWCRD DS CL100 Build record in this work

 area.

Figure 57. Request Macro Example 13: Addressed-Sequential Addition

Examples: Request Macros

282 VSE/VSAM User’s Guide and Application Programming

Discussion: A GET update (OPTCD=UPD) must precede a PUT for update.

Besides retrieving the record to be updated, GET positions VSE/VSAM at the

record retrieved in anticipation of the succeeding update (or deletion). It is not

necessary to store back (or delete) the record that you retrieved for update.

VSE/VSAM’s position at the record previously retrieved allows you to issue

another GET to retrieve the following record (OPTCD=(SEQ,UPD) or

OPTCD=SEQ). Then, however, the position for update was not maintained because

of the following GET.

This example requires the use of a work area because you cannot update a record

in the I/O buffer. Skip sequential retrieval (with OPTCD=UPD) can be used to

update. Compare this example with Example 2.

Example 15: Keyed-Direct Update

Assumptions: Records are moved to and from a work area (only option). They

are of variable-length, up to 120 bytes (with some lengths changed by update). The

search argument is a full key of five bytes, compared equal.

UPDATA ACB MACRF=(KEY,SEQ,OUT)

LIST RPL ACB=UPDATA, UPD indicates the record

 AREA=WORK,AREALEN=50, may be stored back(or

 OPTCD=(KEY,SEQ, deleted).

 UPD,MVE)

 .

 .

 .

LOOP GET RPL=LIST

 LTR 15,15

 BNZ ERROR

 . Decide whether to update

 . the record.

 .

 BE UPDATE

 B LOOP Do not update it; retrieve

 another.

UPDATE . Update the record and store

 . it back.

 .

 PUT RPL=LIST

 LTR 15,15

 BNZ ERROR

 B LOOP

ERROR ... Request was not accepted

 . or failed.

 .

 .

 .

WORK DS CL50 VSE/VSAM places the retrieved

 record here.

Figure 58. Request Macro Example 14: Keyed-Sequential Update

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 283

Discussion: You cannot update records in the I/O buffer. A direct GET for update

positions VSE/VSAM at the record retrieved, in anticipation of storing back (or

deleting) the record. This positioning also allows you to switch to sequential access

to retrieve the next record.

You do not have to store back a record that you retrieve for update, but if you do

another retrieval, (using the same RPL). Or else, use two RPLs with STRNO=2.

One RPL is used solely for GET DIR with UPD.

INPUT ACB MACRF=(KEY,DIR,OUT)

UPDATE RPL ACB=INPUT, UPD indicates the record

 AREA=IN,AREALEN=120, may be stored back (or

 OPTCD=(KEY,DIR, deleted).

 UPD,KEQ,FKS,MVE),

 ARG=KEYAREA,KEYLEN=5

 .

 .

 .

LOOP GET RPL=UPDATE

 LTR 15,15

 BNZ ERROR

 LA 1,UPDATE Put RPL address in Register 1.

 SHOWCB RPL=(1), Display the length of the

 RECLEN=(0) record.

 LTR 15,15

 BNZ CHECKO

 ST 0,RLNGTH Save the record length.

 . Update the record. Does the

 . update change the record’s

 . length?

 B STORE No, length not changed.

 L 0,length Yes, load new length into

 Register 0.

 LA 1,UPDATE Put RPL address in Register 1.

 MODCB RPL=(1), Modify length indication in

 RECLEN=(0) the request parameter list.

 LTR 15,15

 BNZ CHECKO

STORE PUT RPL=UPDATE

 LTR 15,15

 BNZ ERROR

 B LOOP

ERROR ... Request was not accepted

 or failed.

CHECKO ... Display or modification

 . failed.

 .

 .

IN DS CL120 Work area for retrieving,

 updating, and storing a

 record

KEYAREA DS CL5 Search argument for

 retrieving a record.

RLNGTH DS F Area for displaying the

 length of a retrieved record.

Figure 59. Request Macro Example 15: Keyed-Direct Update

Examples: Request Macros

284 VSE/VSAM User’s Guide and Application Programming

Example 16: Addressed-Sequential Update

Assumptions: Entry-sequenced file. Records are processed in a work area. They

are of variable-length, up to 200 bytes long (lengths are not changed by updates;

the length of a record can never be changed if addressed access is used).

 Discussion: The RBAs of records in an entry-sequenced file are fixed and free

space is not distributed. Therefore, it is not possible to change the length of records

in an entry-sequenced file.

If you have inactive records in your entry-sequenced file, you may reuse the space

they occupy by retrieving the records for update and restoring a new record in

their place.

With a key-sequenced file, it is also impossible to change the length of records by

addressed update because the index is not used and VSE/VSAM could not split a

CI if required because of changing record length.

Addressed direct update differs from sequential update in the specification of an

RBA for a search argument.

How to Delete a Record: GET and ERASE Macros

Examples 17 and 18 illustrate deleting a record from a key-sequenced file.

ENTRY ACB MACRF=(ADR,SEQ,OUT)

ADRUPD RPL ACB=ENTRY, UPD indicates update

 AREA=WORK, (or deletion).

 AREALEN=200,

 OPTCD=(ADR,SEQ,UPD,MVE)

 .

 .

 .

LOOP GET RPL=ADRUPD

 LTR 15,15

 BNZ ERROR

 LA 1,ADRUPD Put RPL address in Register 1.

 SHOWCB RPL=(1), Find out how long the record is.

 RECLEN=(0)

 LTR 15,15

 BNZ CHECKO

 ST 0,RLNGTH Save the record length.

 PUT RPL=ADRUPD

 LTR 15,15

 BNZ ERROR

 B LOOP

ERROR ... Request was not accepted

 or failed.

CHECKO ... Display failed.

 .

 .

 .

WORK DS CL200 Record-processing work area.

RLNGTH DS F Display area for length of

 records.

Figure 60. Request Macro Example 16: Addressed-Sequential Update

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 285

Example 17: Keyed-Direct Deletion

Assumptions: Records are processed in a work area (only option). They are

fixed-length, 50 bytes long. Not every record retrieved for deletion is deleted. The

search argument is a full key, 5 bytes long, compared equal.

 Discussion: When you retrieve a record for deletion (OPTCD=UPD, same as

retrieval for update), VSE/VSAM is positioned at the record retrieved, in

anticipation of a following ERASE (or PUT) request for that record. You are not

required to issue such a request, however. Another GET request nullifies any

previous positioning for deletion or update.

Keyed sequential retrieval for deletion varies from direct in not using a search

argument (except for possible use of the POINT macro). Skip sequential retrieval

for deletion (OPTCD=(SKP,UPD) has the same effect as direct, but it is faster or

slower depending on the number of CIs separating the records to be retrieved.

Example 18: Addressed-Sequential Deletion

Assumptions: Records are processed in a work area. They are fixed-length, 100

bytes long. Not every record that is retrieved is deleted. Skipping is effected by

issuing the POINT macro.

DELETE ACB MACRF=(KEY,DIR,OUT)

LIST RPL ACB=DELETE, UPD indicates deletion.

 AREA=WORK,AREALEN=50,

 ARG=KEYFIELD,

 OPTCD=(KEY,DIR,UPD,MVE,FKS,KEQ)

 .

 .

 .

LOOP MVC KEYFIELD,table Search argument for retrieval,

 from a table or transaction

 record.

 GET RPL=LIST

 LTR 15,15

 BNZ ERROR

 .

 .

 . Decide whether to delete

 the record.

 BE DELET

 B LOOP No, retrieve the next record.

DELET ERASE RPL=LIST Yes, delete the record.

 LTR 15,15

 BNZ ERROR

 B LOOP

ERROR ... Request was not accepted

 or failed.

WORK DS CL50 Examine the data record here.

KEYFIELD DS CL5 Search argument.

Figure 61. Request Macro Example 17: Keyed-Direct Deletion

Examples: Request Macros

286 VSE/VSAM User’s Guide and Application Programming

Discussion: Addressed deletion is allowed only for a key-sequenced file. The

records of an entry-sequenced file are fixed, both in their existence and in their

location.

How to Use Extended User Buffering: GET and PUT Macros

User buffering is mostly used by database systems such as DL/I and SQL/DS.

Extended user buffering reduces the number of I/O requests and contributes to an

increase in performance. Extended user buffering is provided for VSE/VSAM

ESDS files and can be requested via the VSE/VSAM RPL control block. The

support became available for the first time with VSE/ESA 2.1.2.

Current User Buffering Support

User buffering is only possible in conjunction with the control interval mode, that is,

the ACB specifies: MACRF=(CNV,UBF,MVE,FWD). With user buffering, the RPL

identifies the buffer address via the AREA= parameter and, in case of direct access,

the RBA of the control interval to be read or written via the RPL ARG= parameter.

DELETE ACB MACRF=(ADR,SEQ,OUT)

REQUEST RPL ACB=DELETE, UPD indicates deletion.

 AREA=WORK,

 AREALEN=100,

 ARG=ADDR,

 OPTCD=(ADR,SEQ,UPD,MVE)

 .

 .

 .

LOOP ... Decide whether you need to

 skip to another position

 (forward or backward).

 B RETRIEVE No, bypass the POINT.

 MVC ADDR,RBA value Yes, move search argument for

 POINT into search-argument

 field.

 POINT RPL=REQUEST Position VSE/VSAM to the record

 to be retrieved next.

 LTR 15,15

 BNZ ERROR

RETRIEVE GET RPL=REQUEST

 LTR 15,15

 BNZ ERROR

 .

 .

 . Decide whether to delete

 the record.

 BE DELET

 B LOOP No, skip ERASE.

DELET ERASE RPL=REQUEST Yes, delete the record.

 LTR 15,15

 BNZ ERROR

 B LOOP

ERROR ... Request was not accepted

 . or failed.

 .

 .

ADDR DS F RBA search argument for

 POINT.

WORK DS CL100 Work area.

Figure 62. Request Macro Example 18: Addressed-Sequential Deletion

Examples: Request Macros

Chapter 11. Descriptions of VSE/VSAM Macros 287

Since a READ request needs to be processed immediately and (on a PUT request)

the buffer cannot be copied from the user buffer, each VSE/VSAM request with

user buffering results in an immediate I/O for each single control interval.

If several RPLs are chained via the NXTRPL= option of the RPL, the situation is

unchanged, because each request as identified via each RPL is executed

independently. In addition, certain restrictions exist for use with RPL chaining.

Extended User Buffering Support

Extended user buffering improves performance by handling related I/O requests,

as far as possible, as a single I/O request. This reduces the number of I/O

requests required by a factor that is usually the number of buffers per extended

user buffering request.

To support extended user buffering, the options NBF and XBF are added to the

RPL macro OPTCD options:

 OPTCD=(...,NBF,...)

 OPTCD=(...,XBF,...)

NBF and XBF are also added as operands to the macros GENCB, MODCB, and

TESTCB.

OPTCD

Meaning

NBF Normal user buffering.

 Each request as identified by an RPL is executed serially and

independently. This is the conventional processing of user buffering and

remains the default.

XBF Extended user buffering.

 VSE/VSAM will execute the chain of RPLs as a single request, thereby

attempting to execute the requests with as few I/O requests as possible.

All control intervals residing in the same control area will usually be

processed in a single I/O.

Using Extended User Buffering

When using extended user buffering, the following must be observed:

1. OPTCD=UBF and OPTCD=XBF can be used interchangeably.

2. To perform an actual request, an application must:

a. Set up a chain of as many RPLs as control intervals are to be read or

written.

b. Store the RBA and buffer address (AREA, AREALEN) information for each

control interval into the associated RPL.

c. Execute the appropriate request macro against the first RPL of the chain.
3. With OPTCD=XBF, the following request macros are valid:

 GET

 PUT
4. All requests will be executed as if OPTCD=(DIR,NUP,MVE) were specified.

OPTCD=SEQ is allowed but it would only affect the cache handling (DEFINE

EXTENT, global attributes) for ECKD devices. OPTCD=SEQ should only be set for

an application that has to process large portions of data sequentially in forward

direction.

VSE/VSAM User Buffering

288 VSE/VSAM User’s Guide and Application Programming

5. There is no exclusive control handling. The consequences are:

v It is possible to update a control interval without having it read previously.

v There is no protection by VSE/VSAM that different strings update a control

interval concurrently.
6. With OPTCD=XBF, it is not possible to extend a data set. Hence pre-formatting

would still need to be done with either OPTCD=NBF, or with VSE/VSAM

buffering (MACRF=NUB).

Errors

If extended user buffering was incorrectly used the request will be rejected as

logical error (R15=8) with error code 106 (X’6A’).

Return Codes of Request Macros

When VSE/VSAM returns to your processing program, a return code in Register

15 indicates what happened. If an error occurred, the RPL contains additional

information. Your processing program can examine the feedback field of the RPL

with the SHOWCB or TESTCB macro. Register 1 contains the address of the RPL

which defines the request that caused the error.

Control is returned to the instruction following your action macro when:

1. The request was completed normally

2. The request was not accepted because another request was using the RPL

3. An error occurred and you did not have an active exit routine

4. An error occurred and you had an active exit routine.

The routine returns control to VSE/VSAM after processing the error.

VSE/VSAM then returns control to the instruction following the action macro.

When you gain control after a request, Register 15 contains one of the following

return codes:

Return Code

Meaning

X‘00’ Request completed successfully; the RPL might contain additional

(non-error) information about the request.

X‘04’ The request was not accepted because a request from another task is active

on the same RPL; no additional information is in the RPL.

X‘08’ Logic error; the error code in the RPL identifies the specific error.

End-of-file is considered a logic error (error code X’04’).

X‘0C’ Uncorrectable I/O error; the error code in the RPL identifies the specific

error.

Note: For information on return and error codes, refer to see the “VSE/VSAM

return and error codes” in the z/VSE Messages and Codes.

As applicable, also refer to the descriptions of the request macros (GET,

PUT, POINT, ERASE, and ENDREQ).

Depending on the return code in Register 15 and your specification in the EXLST

macro, VSE/VSAM takes one of the following actions:

v When the RPL is in use (return code X’04’), retry the request.

VSE/VSAM User Buffering

Chapter 11. Descriptions of VSE/VSAM Macros 289

v If the request is completed with a logic error (return code X’08’) other than

end-of-file, your LERAD exit routine is entered if you specified the LERAD exit

in the EXLST and if it is active. If no LERAD exit routine is specified or if it is

inactive, control is returned to the instruction following the request macro that

raised the logic error condition with return code X’08’ set.

When you reach end-of-file, your request completes with a logic error (return

code X’08’ and error code X’04’) and your EODAD exit routine is entered. If you

have no EODAD exit routine or if it is inactive, your LERAD exit routine is

entered. If no LERAD exit routine is specified or if it is inactive, control is

returned to the instruction following the request macro that raised the end-of-file

condition with return code X’08’ set. Note, too, that if the EODAD exit is taken,

the LERAD exit is not.

v If the request completed with an I/O (physical) error (return code X’0C’), your

SYNAD exit routine is entered if you specified the SYNAD exit in the EXLST

and if it is active. If no SYNAD exit routine is specified or if it is inactive,

control is returned to the instruction following the request macro that raised the

I/O error condition with return code X’0C’ set.

After your EODAD, LERAD, or SYNAD exit returns to VSE/VSAM, VSE/VSAM

returns control to the instruction following the request macro that raised the error

condition with a non-zero return code set.

The feedback field in the RPL (FDBK operand in SHOWCB and TESTCB) is a

three-byte field with the following format:

0000xx

where:

xx is an error code that describes the error or, if the return code is zero,

additional information about the request.

Besides the return code (set in Register 15) and the error code (which you may

obtain by specifying FDBK in the SHOWCB macro) a function code is provided for

alternate-index processing. This function code is set on logical or physical errors

detected by VSE/VSAM and indicates whether the respective error condition

occurred during accessing the base cluster or the alternate index. In addition, the

function code indicates whether or not the upgrade set is still correct after the

request that failed. The function codes and their meanings are:

Function Code

Meaning

X‘00’ Condition occurred during accessing the base cluster. Upgrade set is

correct.

X‘01’ Condition occurred during accessing the base cluster. Upgrade set may be

incorrect as a consequence of this request.

X‘02’ Condition occurred during accessing the AIX over a base cluster. Upgrade

set is correct.

X‘03’ Condition occurred during accessing the AIX over a base cluster. Upgrade

set may be incorrect as a consequence of this request.

X‘04’ Condition occurred during upgrade processing. Upgrade set is correct.

X‘05’ Condition occurred during upgrade processing. Upgrade set may be

incorrect as a result as a consequence of this request.

Return Codes

290 VSE/VSAM User’s Guide and Application Programming

You can display or test the function code by specifying the keyword FTNCD in the

SHOWCB or TESTCB macro, respectively.

Return Codes from the Control Block Manipulation Macros

When VSE/VSAM returns to your processing program after a GENCB, MODCB,

SHOWCB, or TESTCB request, Register 15 contains one of the following return

codes:

Return Code

Meaning

X‘00’ Operation successfully completed.

X‘04’ An error occurred.

X‘08’ The execute form of the macro was used in an attempt to change a

non-existent entry in the referenced parameter list.

X‘0C’ Request was not executed because an error was encountered while

VSE/VSAM routines were loaded.

If Register 15 contains X‘04’, an error code is set in Register 0, which indicates the

type of error. Make sure that, before issuing the macro, you save the contents of

Register 0 if you want to use its contents later on. For an explanation of the error

codes, see the “VSE/VSAM return and error codes” in the z/VSE Messages and

Codes.

List, Execute, and Generate Forms of the Control Block Manipulation

Macros

The list and execute forms of the control block manipulation macros (GENCB,

MODCB, SHOWCB, and TESTCB) allow you to save virtual storage by using one

parameter list for two or more macros. You can also make your program

reenterable, that is, executable by more than one task at a time. While the generate

form of the macros enables you to make programs reenterable it does not allow

shared parameter lists.

List and Execute Forms

The list form of GENCB, MODCB, SHOWCB, and TESTCB has the same

parameters as the standard form, except that it includes the parameter MF=L or

MF=(L,adress...).

The parameter list of the macro is created inline when MF=L is coded. This version

is not reenterable and register notation cannot be used for macro parameter

addresses.

When MF=(L,address...) is coded, the parameter list of the macro is created in the

area specified by address. This form is reenterable. You must supply the area by a

GETVIS macro when your program is executed. You can determine the size of the

parameter list by coding the third operand label. VSE/VSAM equates label to the

length of the list.

The execute form produces the executable code of the macros. The execute form is

also identical to the standard form, except that it includes the operand

MF=(E,address), where address points to the parameter list created by the list form

of the macro. All of the other operands of the macro are optional and are coded

Return Codes

Chapter 11. Descriptions of VSE/VSAM Macros 291

only to change entries in the parameter list before the list is used. However, you

cannot use the execute form to add or delete entries from the parameter list or to

change the type of list.

Generate Form

The generate form of the macros allows you to make your program reenterable,

but it does not create shared parameter lists. The generate form is the same as the

standard form, except that you code MF=(G,address...). The parameter list is

created in an area pointed to by address. To ensure that the parameter list is

reenterable, address should be coded in register notation. You must obtain this area

by a GETVIS macro when the program is executed. You can determine the size of

the parameter list by coding the third operand label. VSE/VSAM equates label to

the length of the list.

Examples of the List, Execute, and Generate Forms

Figure 63 and Figure 64 show the use of the list, execute, and generate forms of the

control block manipulation macros.

In Figure 63, MODCB is used to place the length of a record in the RPL before the

record is written. The list and execute forms are used so that only one parameter

list is created (though the macro is issued several times). This list form is not

reenterable.

In Figure 64, the generate form is used to create an ACB. It is reenterable because

both the ACB itself and the parameter list of the GENCB macro are created in

areas obtained through a GETVIS macro.

Continuation characters required in column 72 are not shown in the examples.

 MODCB MF=(E,LENMOD),RECLEN=(7) Current length in register 7

 LTR 15,15 MODCB successful?

 BNZ MODERR No, go to error routine

 PUT RPL=LIST Yes, write record

 .

 .

 .

 MODCB MF=(E,LENMOD) Length is 100 bytes

 LTR 15,15 MODCB successful?

 BNZ MODERR No, go to error routine

 PUT RPL=LIST Yes, write record

 .

 .

 .

LENMOD MODCB RPL=LIST,RECLEN=100,MF=L List form has default

Figure 63. Examples of the List and Execute Form

Forms of CB Macros

292 VSE/VSAM User’s Guide and Application Programming

LA 10,PARMLEN Load length for GETVIS

 GETVIS ADDRESS=(8),LENGTH=(10) Get area for parm, list

 LTR 15,15 GETVIS successful?

 BNZ VISERR No, go to error routine

 GENCB BLK=ACB,MF=(G,(8),PARMLEN),

 EXLST=(3),BUFND=4,BUFNI=3,

 DDNAME=VFILENM,

 MACRF=(KEY,SEQ,DIR,OUT),

 PASSWD=PASS

 LTR 15,15 GENCB successful?

 BNZ GENERR No, go to error routine

 LR 2,1 Yes, save ACB address

 .

 .

 .

PASS DC FL1’6’,C’CHANGE’

Figure 64. Example of the Generate Form

Chapter 11. Descriptions of VSE/VSAM Macros 293

294 VSE/VSAM User’s Guide and Application Programming

Appendix A. Operand Notation and Parameter Lists for

VSE/VSAM Macros

This Appendix...

v Documents Programming Interface information. For a definition of this

category of interface information refer to “Notices” on page xiii.

v Lists the macro operands and parameter lists for VSE/VSAM macros.

Operand Notation for VSE/VSAM Macros

The addresses, names, numbers, and options required with operands in GENCB,

MODCB, SHOWCB, TESTCB, BLDVRP, WRTBFR, and SHOWCAT can be

expressed in a variety of ways:

v An absolute numeric expression, for example, RECLEN=400, as in the following

sample job stream:

┌──┐

│ LA 1,RPL Set RPL address in register 1. │

│ MODCB RPL=(1),RECLEN=400 Set record length field in │

│ * RPL to value of 400. │

└──┘

v A character string, for example, DDNAME=DATASET

v A code or a list of codes separated by commas and enclosed in parentheses, for

example, OPTCD=KEY or OPTCD=(KEY,DIR,IN)

v A register from 2 through 12 that contains an address or numeric value. Equated

labels can be used to designate a register, for example, SYNAD=(ERR), where

the following equate statement has been included in the program: ERR EQU 3

Example of register notation for an operand taking numeric value:

┌──┐

│ LA 6,400 Set length desired in register 6.│

│ MODCB RPL=RPL,RECLEN=(6) Set record length field in RPL │

│ * to value specified in register 6.│

└──┘

Example of register notation for an operand that takes an address value:

┌──┐

│ LA 2,RCDAREA Set address of record area in │

│ * register 2. │

│ MODCB RPL=RPL,AREA=(2) Set area operand in RPL according │

│ * to contents of register 2. │

│ . │

│ . │

│ . │

│ RCDAREA DS CL400 │

└──┘

v An expression of the form (S,scon), where scon is any expression valid for an

S-type address constant, including the base-displacement form.

The use of the S-type notation for numeric-value operands is usually equivalent

to either absolute-numeric-expression notation or register notation (see the

following example).

Example of S-type address notation for an operand that takes a numeric value:

© Copyright IBM Corp. 1979, 2005 295

┌──┐

│ MODCB RPL=RPL,RECLEN=(S,400) Set record length field │

│ * in RPL to value of 400. │

└──┘

Example of S-type address notation for an operand that takes an address value:

┌──┐

│ MODCB RPL=RPL,AREA=(S,RCDAREA1) Set area operand in RPL │

│ * to address of RCDAREA1. │

│ . │

│ . │

│ . │

│ RCDAREA1 DS CL400 │

└──┘

v An expression of the form (*,scon); where scon is any expression valid for an

S-type address constant, including the base-displacement form. The address

specified by scon is indirect, that is, it points to the location that contains the

value of the keyword.

If indirect S-type address notation is used, the value it points to must meet

either of the following criteria:

– If the value is a numeric quantity, a bit string representing codes, or a pointer,

it must occupy a fullword of storage.

– If the value is an alphameric character string, it must occupy two words of

storage, be left aligned, and be padded on the right with blanks, if necessary.
Example of indirect S-type address notation for an operand that takes a numeric

value:

┌──┐

│ MODCB RPL=RPL,RECLEN=(*,RECLEN1) Set record length field │

│ * in RPL to value specified│

│ * in the fullword RECLEN1. │

│ . │

│ . │

│ . │

│ RECLEN1 DC F’400’ │

└──┘

Example of indirect S-type address notation for an operand that takes a name

value:

┌──┐

│ MODCB ACB=ACB,DDNAME=(*,DDNAME1) Set ddname field in ACB │

│ * to value specified in the│

│ * 8-byte field DDNAME1. │

│ . │

│ . │

│ . │

│ DDNAME1 DC CL8’FILENAME’ │

└──┘

Example of indirect S-type notation for an operand that takes an address value:

┌──┐

│ MODCB RPL=RPL,AREA=(*,ARCDAREA) Set area operand in RPL │

│ * to the address pointed to │

│ * by the pointer ARCDAREA. │

│ . │

│ . │

│ . │

│ ARCDAREA DC A(RCDAREA1) │

└──┘

Example of an expression valid for a relocatable A-type address constant:

Macro Operands

296 VSE/VSAM User’s Guide and Application Programming

┌──┐

│ MODCB RPL=RPL,AREA=RCDAREA Set area operand in RPL │

│ * to address of RCDAREA. │

│ │

└──┘

The expressions that can be used depend on the keyword specified. Register and

S-type address notations cannot be used when MF=L is specified.

GENCB Macro Operands

GENCB Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ AM │ - x - - │ - - - │

│ BLK │ - x - - │ - - - │

│ COPIES │ x - - x │ x x - │

│ LENGTH │ x - - x │ x x - │

│ WAREA │ - - - x │ x x x │

└─────────┴──────────────────────────────────────┴──────────────────────┘

ACB Keywords (BLK=ACB)

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ BSTRNO │ x - - x │ x x - │

│ BUFND │ x - - x │ x x - │

│ BUFNI │ x - - x │ x x - │

│ BUFSP │ x - - x │ x x - │

│ DDNAME │ - - x - │ - x - │

│ EXLST │ - - - x │ x x x │

│ MACRF │ - x - - │ - - - │

│ MAREA │ - - - x │ x x x │

│ MLEN │ x - - x │ x x - │

│ PARMS=CLOSDSP- x - - │ - - - │

│ PASSWD │ - - - x │ x x x │

│ RMODE31 │ - x - - │ - - - │

│ SHRPOOL │ x - - x │ x x - │

│ STRNO │ x - - x │ x x - │

└─────────┴──────────────────────────────────────┴──────────────────────┘

EXLST Keywords (BLK=EXLST)

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ EODAD │ - - - x │ x x x │

│ EXCPAD │ - - - x │ x x x │

│ JRNAD │ - - - x │ x x x │

│ LERAD │ - - - x │ x x x │

│ SYNAD │ - - - x │ x x x │

└─────────┴──────────────────────────────────────┴──────────────────────┘

Macro Operands

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 297

RPL Keywords (BLK=RPL)

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ ACB │ - - - x │ x x x │

│ AREA │ - - - x │ x x x │

│ AREALEN │ x - - x │ x x - │

│ ARG │ - - - x │ x x x │

│ KEYLEN │ x - - x │ x x - │

│ NXTRPL │ - - - x │ x x x │

│ OPTCD │ - x - - │ - - - │

│ RECLEN │ x - - x │ x x - │

│ TRANSID │ x - - x │ x x - │

└─────────┴──────────────────────────────────────┴──────────────────────┘

MODCB Macro Operands

MODCB Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ ACB │ - - - x │ x x x │

│ AM │ - x - - │ - - - │

│ EXLST │ - - - x │ x x x │

│ RPL │ - - - x │ x x x │

└─────────┴──────────────────────────────────────┴──────────────────────┘

ACB Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ BSTRNO │ x - - x │ x x - │

│ BUFND │ x - - x │ x x - │

│ BUFND │ x - - x │ x x - │

│ BUFNI │ x - - x │ x x - │

│ BUFSP │ x - - x │ x x - │

│ DDNAME │ - - x - │ - x - │

│ EXLST │ - - - x │ x x x │

│ MACRF │ - x - - │ - - - │

│ MAREA │ - - - x │ x x x │

│ MLEN │ x - - x │ x x - │

│ PARMS=CLOSDSP- x - - │ - - - │

│ PASSWD │ - - - x │ x x x │

│ RMODE31 │ - x - - │ - - - │

│ SHRPOOL │ x - - x │ x x - │

│ STRNO │ x - - x │ x x - │

└─────────┴──────────────────────────────────────┴──────────────────────┘

GENCB Macro Operands

298 VSE/VSAM User’s Guide and Application Programming

EXLST Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ EODAD │ - - - x │ x x x │

│ EXCPAD │ - - - x │ x x x │

│ JRNAD │ - - - x │ x x x │

│ LERAD │ - - - x │ x x x │

│ SYNAD │ - - - x │ x x x │

└─────────┴──────────────────────────────────────┴──────────────────────┘

RPL Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ ACB │ - - - x │ x x x │

│ AREA │ - - - x │ x x x │

│ AREALEN │ x - - x │ x x - │

│ ARG │ - - - x │ x x x │

│ KEYLEN │ x - - x │ x x - │

│ NXTRPL │ - - - x │ x x x │

│ OPTCD │ - x - - │ - - - │

│ RECLEN │ x - - x │ x x - │

│ TRANSID │ x - - x │ x x - │

└─────────┴──────────────────────────────────────┴──────────────────────┘

SHOWCB Macro Operands

SHOWCB Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ ACB │ - - - x │ x x x │

│ AM │ - x - - │ - - - │

│ AREA │ - - - x │ x x x │

│ EXLST │ - - - x │ x x x │

│ FIELDS* │ - x - - │ - - - │

│ LENGTH │ x - - x │ x x - │

│ OBJECT │ - x - - │ - - - │

│ RPL │ - - - x │ x x x │

└─────────┴──────────────────────────────────────┴──────────────────────┘

* For a list of the operands you can specify in the FIELDS parameter, see “The

SHOWCB Parameter List” on page 308.

MODCB Macro Operands

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 299

TESTCB Macro Operands

TESTCB Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ ACB │ - - - x │ x x x │

│ AM │ - x - - │ - - - │

│ ERET │ - - - x │ x x x │

│ EXLST │ - - - x │ x x x │

│ OBJECT │ - x - - │ - - - │

│ RPL │ - - - x │ x x x │

└─────────┴──────────────────────────────────────┴──────────────────────┘

ACB Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ ACBLEN │ x - - x │ x x - │

│ ATRB │ - x - - │ - - - │

│ AVSPAC │ x - - x │ x x - │

│ BSTRNO │ x - - x │ x x - │

│ BUFND │ x - - x │ x x - │

│ BUFNI │ x - - x │ x x - │

│ BUFNO │ x - - x │ x x - │

│ BUFSP │ x - - x │ x x - │

│ CINCV │ x - - x │ x x - │

│ DDNAME │ - - x - │ - - - │

│ ERROR │ x - - x │ x x - │

│ EXLST │ - - - x │ x x x │

│ FS │ x - - x │ x x - │

│ KEYLEN │ x - - x │ x x - │

│ LRECL │ x - - x │ x x - │

│ MACRF │ - x - - │ - - - │

│ MAREA │ - - - x │ x x x │

│ MLEN │ x - - x │ x x - │

│ NCIS │ x - - x │ x x - │

│ NDELR │ x - - x │ x x - │

│ NEXCP │ x - - x │ x x - │

│ NEXT │ x - - x │ x x - │

│ NINSR │ x - - x │ x x - │

│ NIXL │ x - - x │ x x - │

│ NLOGR │ x - - x │ x x - │

│ NRETR │ x - - x │ x x - │

│ NSSS │ x - - x │ x x - │

│ NUPDR │ x - - x │ x x - │

│ OFLAGS │ - x - - │ - - - │

│ OPENOBJ │ - x - - │ - - - │

│ PARMS=CLOSDSP- x - - │ - - - │

│ PASSWD │ - - - x │ x x x │

│ RKP │ x - - x │ x x - │

│ SHRPOOL │ x - - x │ x x - │

│ STMST │ - - - - │ - x - │

│ STRNO │ x - - x │ x x - │

└─────────┴──────────────────────────────────────┴──────────────────────┘

TESTCB Macro Operands

300 VSE/VSAM User’s Guide and Application Programming

EXLST Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ EODAD │ - - - x │ x x x │

│ EXCPAD │ - - - x │ x x x │

│ EXLLEN │ x - - x │ x x - │

│ JRNAD │ - - - x │ x x x │

│ LERAD │ - - - x │ x x x │

│ SYNAD │ - - - x │ x x x │

└─────────┴──────────────────────────────────────┴──────────────────────┘

TESTCB Macro Operands

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 301

RPL Keywords

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ ACB │ - - - x │ x x x │

│ AIXFLAG │ x - - - │ - - - │

│ AIXPC │ x - - x │ x x - │

│ AREA │ - - - x │ x x x │

│ AREALEN │ x - - x │ x x - │

│ ARG │ - - - x │ x x x │

│ FDBK │ x - - x │ x x - │

│ FTNCD │ x - - x │ x x - │

│ KEYLEN │ x - - x │ x x - │

│ NXTRPL │ - - - x │ x x x │

│ OPTCD │ - x - - │ - - - │

│ RBA │ x - - x │ x x - │

│ RECLEN │ x - - x │ x x - │

│ RPLLEN │ x - - x │ x x - │

│ TRANSID │ x - - x │ x x - │

└─────────┴──────────────────────────────────────┴──────────────────────┘

BLDVRP Macro Operands

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ BUFFERS │ x - - x │ - - - │

│ KEYLEN │ x - - x │ - - - │

│ RMODE31 │ x - - │ - - - │

│ SHRPOOL │ x - - x │ - - - │

│ STRNO │ x - - x │ - - - │

│ TYPE │ - x - - │ - - - │

└─────────┴──────────────────────────────────────┴──────────────────────┘

DLVRP Macro Operands

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ Keyword │ Absolute Character ├──────────────────────┤

│ │ Numeric Code String Register │S-Type Indirect A-Type│

│ │ │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ SHRPOOL │ X - - X │ - - - │

│ TYPE │ - X - - │ - - - │

└─────────┴──────────────────────────────────────┴──────────────────────┘

TESTCB Macro Operands

302 VSE/VSAM User’s Guide and Application Programming

SHOWCAT Macro Operands

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ ACB │ - - - x │ - - x │

│ AREA │ - - - x │ - - x │

│ CI │ - - - x │ - - x │

│ CATDSN │ - - - x │ - - x │

│ CATFIL │ - - - x │ - - x │

│ DDNAME │ - - - x │ - - x │

│ NAME │ - - - x │ - - x │

└─────────┴──────────────────────────────────────┴──────────────────────┘

WRTBFR Macro Operands

┌─────────┬──────────────────────────────────────┬──────────────────────┐

│ │ │ Address │

│ │ ├──────────────────────┤

│ Keyword │ Absolute Character │S-Type Indirect A-Type│

│ │ Numeric Code String Register │ S-Type │

├─────────┼──────────────────────────────────────┼──────────────────────┤

│ percent │ x - - x │ - - - │

│ RPL │ - - - x │ - - x │

│ TYPE=ALL│ - x - - │ - - - │

│ TYPE=DS │ - x - - │ - - - │

│ TYPE=LRU│ - x - - │ - - - │

│ TYPE=TRN│ - x - - │ - - - │

└─────────┴──────────────────────────────────────┴──────────────────────┘

Parameter Lists for VSE/VSAM Macros

The VSE/VSAM control block (CB) manipulation macros (GENCB, MODCB,

SHOWCB, and TESTCB) use an internal parameter list to describe the actions that

you specify when you code the macros. The BLDVRP macro (for building a

VSE/VSAM resource pool) and the SHOWCAT macro (which displays catalog

information) also use an internal parameter list to indicate the addresses and

values that you specify when you code the macros.

Depending on the form of the macro, the internal parameter list is built as follows:

v The standard form of these macros builds a parameter list in-line and processes

it.

v The list form builds a parameter list in an area you specified.

v The execute form processes a previously built parameter list.

v The generate form (not for BLDVRP and SHOWCAT) builds a parameter list in

an area you specify and also processes it.

(Use of the different forms are discussed under “List, Execute, and Generate Forms

of the Control Block Manipulation Macros” on page 291.)

For special purposes, such as developing high-level programming languages, you

may want to build and process parameter lists without using the macros. The

following describes the format of the parameter lists and gives the codes used for

the operands of each of the macros. The formats and codes are fixed, so that you

can build and alter them by your own methods. For the control block

manipulation macros, a parameter list contains a variable number of entries of

three types:

SHOWCAT Macro Operands

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 303

Type 1: At the beginning of the list, addresses of entries of Type 2 and Type 3.

The addresses are fullwords, and the high-order bit of the last fullword is 1.

 Type 2: A header entry containing general information about the block or list that

you want to generate, modify, display or test.

 Type 3: At the end of the list, keyword entries describing each field that you want

to generate, modify, display, or test.

In the following, entries of Type 2 and Type 3 are described separately for GENCB,

MODCB, SHOWCB, and TESTCB. When VSE/VSAM receives control, register 1

must point to your parameter list.

The format of the BLDVRP and SHOWCAT parameter lists is different from the

above scheme. Refer to “The BLDVRP Parameter List” on page 312 and “The

SHOWCAT Parameter List” on page 313.

The GENCB Parameter List

Header Entry

Keyword Entries

The parameter list for GENCB contains no keyword entries if you are generating a

default ACB, EXLST, or RPL.

 (1) keyword code explanation: Defined by AL2(value).

 Offset 0 1 2

Dec (HEX) ┌────────────────────┬───────────┬────────────────────────┐

 0 (0) │ Block or list │ X’01’ │ Number of copies │

 │ See "(1) list" │ │ │

 ├────────────────────┴───────────┴────────────────────────┤

 4 (4) │ Address of the area you are providing, or zeros │

 ├────────────────────────────────┬────────────────────────┤

 8 (8) │ Length of the area, or zeros │ (reserved) │

 └────────────────────────────────┴────────────────────────┘

(1) list explanation:

 X‘A0’ indicates ACB

 X‘B0’ indicates EXLST

 X‘C0’ indicates RPL

 Offset 0 2

Dec (HEX) ┌────────────────────────────────┬────────────────────────┐

 0 (0) │ Keyword code │ (reserved) │

 │ See "(1) keyword code" │ │

 ├────────────────────────────────┴────────────────────────┤

 4 (4) │ (value|address|option|name) of the keyword │

 │ See "(2) option" │

 ├───┤

 8 (8) │ (Required for some keywords) │

 │ See "(3) keywords" │

 └───┘

Parameter Lists

304 VSE/VSAM User’s Guide and Application Programming

(2) option explanation: Indicates the options for MACRF, MACRF3, OPTCD, and

CLOSDSP with a 1 in a bit of the fullword:

 (3) keywords explanation: The third fullword is required for the ACB operand

DDNAME, and for all of the EXLST operands, for which the third fullword

indicates A, N, and L:

 ┌────────────────┬────────────────┬────────────────┐

 │ For an ACB │ For an EXLST │ For an RPL │

 ├────────────────┼────────────────┼────────────────┤

 │ Keyword Value │ Keyword Value │ Keyword Value │

 ├────────────────┼────────────────┼────────────────┤

 │ BUFND 4 │ EODAD 37 │ ACB 43 │

 │ BUFNI 5 │ EXCPAD 38 │ AREA 44 │

 │ BUFSP 7 │ JRNAD 39 │ AREALEN 45 │

 │ DDNAME 9 │ LERAD 40 │ ARG 46 │

 │ EXLST 12 │ SYNAD 41 │ KEYLEN 48 │

 │ MAREA 14 │ │ NXTRPL 51 │

 │ MLEN 15 │ │ OPTCD 52 │

 │ MACRF 18 │ │ RECLEN 53 │

 │ PASSWD 30 │ │ TRANSID 95 │

 │ STRNO 32 │ │ │

 │ BSTRNO 36 │ │ │

 │ SHRPOOL 129 │ │ │

 │ CLOSDSP 151 │ │ │

 │ MACRF3 163 │ │ │

 └────────────────┴────────────────┴────────────────┘

 ┌──────────────┬──────────────┬──────────────┬──────────────┐

 │ MACRF Bit │ MACRF3 Bit │ OPTCD Bit │ CLOSDSP Bit │

 │ Option │ Option │ Option │ Option │

 ├──────────────┼──────────────┼──────────────┼──────────────┤

 │ KEY 0 │ DDN 0 │ KEY 0 │ │

 │ ADR 1 │ DSN 1 │ ADR 1 │ First │

 │ CNV 2 │ NCM 8 │ CNV 2 │ CLOSDSP │

 │ SEQ 3 │ CMP 9 │ SEQ 3 │ Option: │

 │ SKP 4 │ RMODE31 15 │ DIR 4 │ │

 │ DIR 5 │ │ SKP 5 │ KEEP 0 │

 │ IN 6 │ │ NUP 8 │ DELETE 1 │

 │ OUT 7 │ │ UPD 9 │ DATE 2 │

 │ NUB 8 │ │ NSP 10 │ │

 │ UBF 9 │ │ KEQ 11 ├──────────────┤

 │ NRM 15 │ │ KGE 12 │ │

 │ AIX 16 │ │ FKS 13 │ │

 │ NSR 17 │ │ GEN 14 │ Second │

 │ LSR 18 │ │ MVE 15 │ CLOSDSP │

 │ NDF 22 │ │ LOC 16 │ Option: │

 │ DFR 23 │ │ FWD 17 │ │

 │ RST 28 │ │ BWD 18 │ KEEP 3 │

 │ NRS 29 │ │ ARD 19 │ DELETE 4 │

 │ NFY 30 │ │ LRD 20 │ │

 │ VFY 31 │ │ │ │

 └──────────────┴──────────────┴──────────────┴──────────────┘

Parameter List: GENCB

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 305

The MODCB Parameter List

Header Entry

Keyword Entries

 (1) keyword code explanation: Defined by AL2(value):

 ┌───────┬──┐

 │ Bit │ Meaning when Set to 1 │

 ├───────┼──┤

 │ 0 │ Address is active (A). │

 │ 1 │ Address is not active (N). │

 │ 2 │ Address is of a field containing the │

 │ │ name of an exit routine to be loaded (L). │

 │ 3 │ Address is specified in the │

 │ │ preceding fullword of this entry. │

 │ 4-31 │ Unused. │

 └───────┴──┘

 Offset 0 1 2

Dec (HEX) ┌────────────────────┬───────────┬────────────────────────┐

 0 (0) │ Block or list │ X’02’ │ (reserved) │

 │ See "(1) list" │ │ │

 ├────────────────────┴───────────┴────────────────────────┤

 4 (4) │ Address of the block or list to be modified │

 └───┘

(1) list explanation:

 X‘A0’ indicates ACB

 X‘B0’ indicates EXLST

 X‘C0’ indicates RPL

 Offset 0 2

Dec (HEX) ┌────────────────────────────────┬────────────────────────┐

 0 (0) │ Keyword code │ (reserved) │

 │ See "(1) keyword code" │ │

 ├────────────────────────────────┴────────────────────────┤

 4 (4) │ (value|address|option|name) of the keyword │

 │ See "(2) option" │

 ├───┤

 8 (8) │ (Required for some keywords) │

 │ See "(3) keywords" │

 │ │

 └───┘

Parameter List: MODCB

306 VSE/VSAM User’s Guide and Application Programming

(2) option explanation: Indicates the options for MACRF, MACRF3, OPTCD, and

CLOSDSP with a 1 in a bit of the fullword:

 With the MODCB macro, there are no defaults for these options. When you code a

bit for the OPTCD operand, the contrary bit that was previously set is turned off.

For example, if KEY was previously set, and you set ADR, KEY is turned off,

because a request parameter list can be set for only one type of access.

(3) keywords explanation: The third fullword is required for the ACB operand

DDNAME, and for all of the EXLST operands, for which the third fullword

indicates A, N, and L:

 ┌────────────────┬────────────────┬────────────────┐

 │ For an ACB │ For an EXLST │ For an RPL │

 ├────────────────┼────────────────┼────────────────┤

 │ Keyword Value │ Keyword Value │ Keyword Value │

 ├────────────────┼────────────────┼────────────────┤

 │ BUFND 4 │ EODAD 37 │ ACB 43 │

 │ BUFNI 5 │ EXCPAD 38 │ AREA 44 │

 │ BUFSP 7 │ JRNAD 39 │ AREALEN 45 │

 │ DDNAME 9 │ LERAD 40 │ ARG 46 │

 │ EXLST 12 │ SYNAD 41 │ KEYLEN 48 │

 │ MAREA 14 │ │ NXTRPL 51 │

 │ MLEN 15 │ │ OPTCD 52 │

 │ MACRF 18 │ │ RECLEN 53 │

 │ PASSWD 30 │ │ TRANSID 95 │

 │ STRNO 32 │ │ │

 │ BSTRNO 36 │ │ │

 │ SHRPOOL 129 │ │ │

 │ CLOSDSP 151 │ │ │

 │ MACRF3 163 │ │ │

 └────────────────┴────────────────┴────────────────┘

 ┌──────────────┬──────────────┬──────────────┬──────────────┐

 │ MACRF Bit │ MACRF3 Bit │ OPTCD Bit │ CLOSDSP Bit │

 │ Option │ Option │ Option │ Option │

 ├──────────────┼──────────────┼──────────────┼──────────────┤

 │ KEY 0 │ DDN 0 │ KEY 0 │ │

 │ ADR 1 │ DSN 1 │ ADR 1 │ First │

 │ CNV 2 │ NCM 8 │ CNV 2 │ CLOSDSP │

 │ SEQ 3 │ CMP 9 │ SEQ 3 │ Option: │

 │ SKP 4 │ RMODE31 15 │ DIR 4 │ │

 │ DIR 5 │ │ SKP 5 │ KEEP 0 │

 │ IN 6 │ │ NUP 8 │ DELETE 1 │

 │ OUT 7 │ │ UPD 9 │ DATE 2 │

 │ NUB 8 │ │ NSP 10 │ │

 │ UBF 9 │ │ KEQ 11 ├──────────────┤

 │ NRM 15 │ │ KGE 12 │ │

 │ AIX 16 │ │ FKS 13 │ │

 │ NSR 17 │ │ GEN 14 │ Second │

 │ LSR 18 │ │ MVE 15 │ CLOSDSP │

 │ NDF 22 │ │ LOC 16 │ Option: │

 │ DFR 23 │ │ FWD 17 │ │

 │ RST 28 │ │ BWD 18 │ KEEP 3 │

 │ NRS 29 │ │ ARD 19 │ DELETE 4 │

 │ NFY 30 │ │ LRD 20 │ │

 │ VFY 31 │ │ │ │

 └──────────────┴──────────────┴──────────────┴──────────────┘

Parameter List: MODCB

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 307

The SHOWCB Parameter List

Header Entry

Keyword Entries

 (1) keyword code explanation: Defined by AL2(value):

 ┌───────┬──┐

 │ Bit │ Meaning when Set to 1 │

 ├───────┼──┤

 │ 0 │ Address is active (A). │

 │ 1 │ Address is not active (N). │

 │ 2 │ Address is of a field containing the │

 │ │ name of an exit routine to be loaded (L). │

 │ 3 │ Address is specified in the │

 │ │ preceding fullword of this entry. │

 │ 4-31 │ Unused. │

 └───────┴──┘

 Offset 0 1 2

Dec (HEX) ┌────────────────────┬───────────┬────────────────────────┐

 0 (0) │ Block or list │ X’03’ │ Type of object │

 │ See "(1) list" │ │ to be displayed │

 │ │ │ See "(2) displayed" │

 ├────────────────────┴───────────┴────────────────────────┤

 4 (4) │ Address of the block or list to be displayed │

 ├───┤

 │ Address of the display area you are providing │

 ├────────────────────────────────┬────────────────────────┤

 8 (8) │ Length of the display area │ (reserved) │

 └────────────────────────────────┴────────────────────────┘

(1) list explanation:

 X‘00’ indicates that no block or list is specified

 to display the standard length of the block(s)

 or list(s) specified by the keywords

 ACBLEN, EXLLEN, or RPLLEN

 X‘A0’ indicates ACB

 X‘B0’ indicates EXLST

 X‘C0’ indicates RPL

(2) displayed:

 AL2(0) indicates the data of a file

 AL2(1) indicates the index of a file

 Offset 0 2

Dec (HEX) ┌────────────────────────────────┬────────────────────────┐

 0 (0) │ Keyword code │ (reserved) │

 │ See "(1) keyword code" │ │

 └────────────────────────────────┴────────────────────────┘

Parameter List: SHOWCB

308 VSE/VSAM User’s Guide and Application Programming

The TESTCB Parameter List

Header Entry

 ┌─────────────────────────────────┬────────────────┬────────────────┐

 │ For an ACB │ For an EXLST │ For an RPL │

 ├────────────────┬────────────────┼────────────────┼────────────────┤

 │ Keyword Value │ Keyword Value │ Keyword Value │ Keyword Value │

 ├────────────────┼────────────────┼────────────────┼────────────────┤

 │ AVSPAC 2 │ NEXT 22 │ EODAD 37 │ ACB 43 │

 │ ACBLEN 3 │ NINSR 23 │ EXCPAD 38 │ AREA 44 │

 │ BUFND 4 │ NIXL 24 │ JRNAD 39 │ AREALEN 45 │

 │ BUFNI 5 │ NLOGR 25 │ LERAD 40 │ ARG 46 │

 │ BUFNO 6 │ NRETR 26 │ SYNAD 41 │ KEYLEN 48 │

 │ BUFSP 7 │ NSSS 27 │ EXLLEN 42 │ NXTRPL 51 │

 │ CINV 8 │ NUPDR 28 │ │ RECLEN 53 │

 │ DDNAME 9 │ PASSWD 30 │ │ RPLLEN 55 │

 │ ENDRBA 10 │ RKP 31 │ │ FDBK 56 │

 │ ERROR 11 │ STRNO 32 │ │ FDBK 56 │

 │ EXLST 12 │ STMSG 35 │ │ RBA 57 │

 │ FS 13 │ BSTRNO 36 │ │ AIXPC 58 │

 │ MAREA 14 │ BFRFND 124 │ │ TRANSID 95 │

 │ MLEN 15 │ BFRNDS 125 │ │ FTNCD 99 │

 │ KEYLEN 16 │ NUIW 126 │ │ │

 │ LRECL 17 │ UIW 127 │ │ │

 │ NCIS 19 │ STRMAX 128 │ │ │

 │ NDELR 20 │ SHRPOOL 129 │ │ │

 │ NEXCP 21 │ HALCRBA 148 │ │ │

 │ │ │ │ │

 └────────────────┴────────────────┴────────────────┴────────────────┘

 Offset 0 1 2

Dec (HEX) ┌────────────────────┬───────────┬────────────────────────┐

 0 (0) │ Block or list │ X’04’ │ Type of object │

 │ See "(1) list" │ │ to be tested │

 │ │ │ See "(2) tested" │

 ├────────────────────┴───────────┴────────────────────────┤

 4 (4) │ Address of the block or list to be tested │

 ├───┤

 8 (8) │ Address or the routine to return to │

 │ from unequal comparisons, or zeros │

 ├───┤

12 (C) │ (reserved) │

 └───┘

(1) list explanation:

 X‘00’ indicates that no block or list is specified

 to test the standard length of the block(s)

 or list(s) specified by the keywords

 ACBLEN, EXLLEN, or RPLLEN

 X‘A0’ indicates ACB

 X‘B0’ indicates EXLST

 X‘C0’ indicates RPL

(2) tested explanation:

 AL2(0) indicates the data of a file

 AL2(1) indicates the index of a file

Parameter List: TESTCB

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 309

Keyword Entries

*) Option bits 0 to 7 only (see (2)).

**) Option bits 8 to 15 only (see (2)).

(2) option explanation: Indicate the options for MACRF, MACRF3 OPTCD,

CLOSDSP, ATRB, OFLAGS, AIXFLAG, and OPENOBJ: with a 1 in a bit of the

fullword:

 Offset 0 2 -->

Dec (HEX) ┌────────────────────────────────┬────────────────────────┐

 0 (0) │ Keyword code │ (reserved) │

 │ See "(1) keyword code" │ │

 ├────────────────────────────────┴────────────────────────┤

 4 (4) │ (value|address|option|name) of the keyword │

 │ See "(2) option" │

 │ See "(3) code" │

 ├───┤

 8 (8) │ (Required for some keywords) │

 │ See "(4) keywords" │

 │ │

 └───┘

(1) keyword code explanation: Defined by AL2(value):

 ┌─────────────────────────────────┬────────────────┬────────────────┐

 │ For an ACB │ For an EXLST │ For an RPL │

 ├────────────────┬────────────────┼────────────────┼────────────────┤

 │ Keyword Value │ Keyword Value │ Keyword Value │ Keyword Value │

 ├────────────────┼────────────────┼────────────────┼────────────────┤

 │ ATRB 1* │ NEXT 22 │ EODAD 37 │ ACB 43 │

 │ ATRB 162** │ NINSR 23 │ EXCPAD 38 │ AREA 44 │

 │ AVSPAC 2 │ NIXL 24 │ JRNAD 39 │ AREALEN 45 │

 │ ACBLEN 3 │ NLOGR 25 │ LERAD 40 │ ARG 46 │

 │ BUFND 4 │ NRETR 26 │ SYNAD 41 │ KEYLEN 48 │

 │ BUFNI 5 │ NSSS 27 │ EXLLEN 42 │ NXTRPL 51 │

 │ BUFNO 6 │ NUPDR 28 │ │ OPTCD 52 │

 │ BUFSP 7 │ OFLAGS 29 │ │ RECLEN 53 │

 │ CINV 8 │ PASSWD 30 │ │ RPLLEN 55 │

 │ DDNAME 9 │ RKP 31 │ │ FDBK 56 │

 │ ERROR 11 │ STRNO 32 │ │ RBA 57 │

 │ EXLST 12 │ OPENOBJ 33 │ │ AIXPC 58 │

 │ FS 13 │ STMST 35 │ │ AIXFLAG 59 │

 │ MAREA 14 │ BSTRNO 36 │ │ FTNCD 99 │

 │ MLEN 15 │ SHRPOOL 129 │ │ │

 │ KEYLEN 16 │ CLOSDSP 151 │ │ │

 │ LRECL 17 │ MACRF3 163 │ │ │

 │ MACRF 18 │ │ │ │

 │ NCIS 19 │ │ │ │

 │ NDELR 20 │ │ │ │

 │ NEXCP 21 │ │ │ │

 │ │ │ │ │

 └────────────────┴────────────────┴────────────────┴────────────────┘

Parameter List: TESTCB

310 VSE/VSAM User’s Guide and Application Programming

(3) code explanation: The codes for ERROR and for FDBK are documented with

the appropriate macro instructions. (4) keywords explanation: The third fullword is

required for the ACB operands DDNAME and STMST, and for all of the EXLST

operands, for which the third fullword indicates A, N, and L:

 ┌──────────────┬──────────────┬──────────────┬──────────────┐

 │ MACRF Bit │ MACRF3 Bit │ OPTCD Bit │ CLOSDSP Bit │

 │ Option │ Option │ Option │ Option │

 ├──────────────┼──────────────┼──────────────┼──────────────┤

 │ KEY 0 │ DDN 0 │ KEY 0 │ │

 │ ADR 1 │ DSN 1 │ ADR 1 │ First │

 │ CNV 2 │ NCM 8 │ CNV 2 │ CLOSDSP │

 │ SEQ 3 │ CMP 9 │ SEQ 3 │ Option: │

 │ SKP 4 │ RMODE31 15 │ DIR 4 │ │

 │ DIR 5 │ │ SKP 5 │ KEEP 0 │

 │ IN 6 │ │ NUP 8 │ DELETE 1 │

 │ OUT 7 │ │ UPD 9 │ DATE 2 │

 │ NUB 8 │ │ NSP 10 │ │

 │ UBF 9 │ │ KEQ 11 ├──────────────┤

 │ NRM 15 │ │ KGE 12 │ │

 │ AIX 16 │ │ FKS 13 │ │

 │ NSR 17 │ │ GEN 14 │ Second │

 │ LSR 18 │ │ MVE 15 │ CLOSDSP │

 │ NDF 22 │ │ LOC 16 │ Option: │

 │ DFR 23 │ │ FWD 17 │ │

 │ RST 28 │ │ BWD 18 │ KEEP 3 │

 │ NRS 29 │ │ ARD 19 │ DELETE 4 │

 │ NFY 30 │ │ LRD 20 │ │

 │ VFY 31 │ │ │ │

 └──────────────┴──────────────┴──────────────┴──────────────┘

 ┌──────────────┬──────────────┬──────────────┬──────────────┐

 │ ATRB Bit │ OFLAGS Bit │ AIXFLAG Bit │ OPENOBJ Bit │

 │ Option │ Option │ Option │ Option │

 ├──────────────┼──────────────┼──────────────┼──────────────┤

 │ KSDS 0 │ OPEN 0 │ AIXPKP 0 │ AIX 0 │

 │ ESDS 1 │ │ │ PATH 1 │

 │ WCK 2 │ │ │ BASE 2 │

 │ SSWD 3 │ │ │ │

 │ REPL 4 │ │ │ │

 │ RRDS 5 │ │ │ │

 │ SPAN 6 │ │ │ │

 │ UNQ 7 │ │ │ │

 │ COMP 8 │ │ │ │

 │ XLKSDS 11 │ │ │ │

 │ VRDS 14 │ │ │ │

 └──────────────┴──────────────┴──────────────┴──────────────┘

 ┌───────┬──┐

 │ Bit │ Meaning when Set to 1 │

 ├───────┼──┤

 │ 0 │ Address is active (A). │

 │ 1 │ Address is not active (N). │

 │ 2 │ Address is of a field containing the │

 │ │ name of an exit routine to be loaded (L). │

 │ 3 │ Address is specified in the │

 │ │ preceding fullword of this entry. │

 │ 4-31 │ Unused. │

 └───────┴──┘

Parameter List: TESTCB

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 311

The BLDVRP Parameter List

 0 1 2 3

 | | | |

 ┌───┐

 │ │

 ┌───┼ Pointer to beginning of buffer pool list (*+12) │

 │ │ │

 │ 4├────────────┬────────────┬───────┬───────┬───────────┤

 │ │ KEYLEN │ STRNO │ X’D0’ RMODE31│ SHRPOOL │

 │ │ value │ value │ flags │ number │

 │ 8├────────────┴────────────┴───────┴───────┴───────────┤

 │ │ (Reserved) │

 └──N├───┤ ┐

 12│ │ │

 │ buffersize 1 (beginning of buffer pool list) │ buffer

 │ │ pool 1

 16├─────────────────────────┬───────────────────────────┤ │

 │ X’0000’ │ buffercount 1 │ ┘

 20├─────────────────────────┴───────────────────────────┤ ┐

 │ │ │

 │ buffersize 2 │ buffer

 │ │ pool 2

 24├─────────────────────────┬───────────────────────────┤ │

 │ X’0000’ │ buffercount 2 │ ┘

 28├─────────────────────────┴───────────────────────────┤

 │ . │

 .

 │ . │

 ├───┤ ┐

 │ │ │

 │ buffersize n │ last

 │ │ buffer

 ├─────────────────────────┬───────────────────────────┤ pool (n)

 │ X’8000’ │ buffercount n │ │

 │ (indicates the │ │ │

 │ last buffer pool) │ │ ┘

 └─────────────────────────┴───────────────────────────┘

Parameter List: BLDVRP

312 VSE/VSAM User’s Guide and Application Programming

The SHOWCAT Parameter List

Header Entry

 (1) entry explanation:

 X‘80’ = The field at offset X’04’ points to a 44-byte file ID

 X‘40’ = The field at offset ’X04’ points to a 7-byte file name

 X‘00’ = The field at offset X’04’ points to a 3-byte CI number

 Dec (HEX) ┌────────────────────┬───────────┬────────────────────────┐

 0 (0) │ Type of entry │ X’80’ = │ X’0000’ │

 │ See "(1) entry" │EXTOPT spec│ │

 ├────────────────────┴───────────┴────────────────────────┤

 4 (4) │ Address of filename, file-ID, or CI │

 │ that identifies the catalog entry to be displayed │

 ├───┤

 │ Address of catalog ACB (or zero) │

 ├───┤

 │ Address of return area in which │

 │ catalog information will be displayed │

 ├───┤

 │ Address of 44-byte catalog file-ID │

 ├───┤

 │ Address of 7-byte catalog file name │

 ├───┤

 │ Name of EXTOPT field │

 └───┘

Parameter List: SHOWCAT

Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros 313

Parameter List: SHOWCAT

314 VSE/VSAM User’s Guide and Application Programming

Appendix B. Invoking IDCAMS from a Program

This Appendix...

Shows how IDCAMS can be invoked by a program through the use of the

CDLOAD macro instruction.

Describes how the dynamic invocation of IDCAMS enables re-specification of

selected processing defaults as well as the ability to manage input/output

operations for selected files.

Invoking Macro Instructions

IDCAMS may be invoked from a program by loading the root segment of

IDCAMS into virtual storage and then doing a branch entry to the module. To load

IDCAMS, the program should be invoked with the SIZE=AUTO parameter on the

EXEC statement, and should issue a CDLOAD macro of the form:

 ┌────────┬───────────┐

 │ CDLOAD │ address │

 └────────┴───────────┘

 where: address

 specifies the address of an 8-byte,

 left justified character string ’IDCAMS’.

CDLOAD returns the starting address of the module in Register 1.

The invoking program should branch to the address returned by CDLOAD plus 6.

Because IDCAMS uses MVS linkage conventions, the invoking program must

provide an 18 fullword area to be used as a save area by IDCAMS. On entry to

IDCAMS, Register:

v 1 should point to the argument list described in Figure 65 on page 316.

v 13 should point to the save area.

v 14 must contain the return address.

v 15 must contain the address of IDCAMS plus 6.

On return, all registers except Register 15 are restored by IDCAMS. Register 15

contains the final return code from the processor. The following table contains the

possible values of Register 15:

Code Meaning

0 The function was executed as directed and expected. Informational

messages may have been issued.

4 Some disturbance in executing the complete function was met, but it was

possible to continue. The results might not be exactly what the user wants,

but no permanent harm appears to have been done by continuing. A

warning message was issued.

8 A function could not perform all that was asked of it. The function was

completed, but specific details were bypassed.

12 The entire function could not be performed.

© Copyright IBM Corp. 1979, 2005 315

16 Severe problem encountered. Remainder of command stream is not flushed

but processor returns code 16 to the system.

Figure 65 describes the argument list as it exists in the user’s area that is passed to

the IDCAMS processor.

 Explanation

The following explains Figure 65.

(A) The Argument List

A maximum of four fullword addresses pointing to the various arguments. The

high-order bit of the last address must be set to one. Any argument you do not

wish to specify that precedes an argument you are specifying must be an address

pointing to a half word of binary zeros. If you do not specify IOLIST, turn on the

high-order bit in PAGE NUMBER.

(B) The Page Number List

 LENGTH: Halfword that specifies the number of bytes in the PAGE NUMBER

field.

 PAGE NUMBER; Optional: Provides a way to specify the starting page number

for system output listing. If you do not wish to specify a starting page number,

you must set the length field to binary zeros.

PAGE NUMBER is a 1-4 byte character string that may specify the starting page

number of system output listing. This value is reset to the current page number

upon completion of the present invocation of the IDCAMS processor.

 ┌───────┐ ARGUMENT LIST (A)

 │ REG 1 ├─────────────N┌───────────────┐ OPTIONS LIST (D)

 └───────┘ │] OPTIONS ├────N┌────────────────────┐

 ├───────────────┤ │ LENGTH OPTIONS │

 │] DNAMES ├─┐ └────────────────────┘

 ├───────────────┤ │

 ┌───┤] PAGE NUMBER │ │ DNAMES LIST (E)

 │ ├───────────────│ └──N┌────────────┐

 ┌──────────────────────┤] IOLIST │ │ LENGTH │

 │ │ └───────────────┘ └────────────┘

 d I/O LIST (C) │

 ┌─────────────┐ │ PAGE NUMBER LIST (B)

 │ n │ └──N┌───────────────┐

 ├─────────────┤ │ LENGTH │

 │] DNAME │ ├───────────────┤

 ├─────────────┤ │ PAGE NUMBER │

 │] IOROUTINE │ └───────────────┘

 ├─────────────┤

 │] USER DATA ├────┐ USER DATA AREA (F)

 ├─────────────┤ │ ┌───────────────┐

 │ . │ └──N│ EXTRACT │ Before call

 │ . │ └───────────────┘

 │ . │ | |

 ├─────────────┤ ┌───────────────┐

 │] DNAME │ │ FFxx FFyy │ After call

 ├─────────────┤ └───────────────┘

 │] IOROUTINE │

 ├─────────────┤

 │] USER DATA │

 └─────────────┘

Figure 65. Processor Invocation Argument List from a Program

Invoking IDCAMS

316 VSE/VSAM User’s Guide and Application Programming

(C) The Input/Output List

Optional. Provides the means of identifying those files for which the invoker

wishes to manage all I/O operations.

 n: A fullword that specifies the number of groups of three fields that follows.

Every group consists of a DNAME address, an IOROUTINE address, and a

USER DATA address.

 DNAME: Address of a character string that identifies a file that causes the

invocation of the associated IOROUTINE for all I/O operations (including

OPEN and CLOSE) against the file. The character string identifies the data set

as follows: A 10-byte character string, the first two characters are ’DD’, the next

8 characters are the DNAME field left-justified (padded with blanks if

necessary), which may appear in the FILE, INFILE, or OUTFILE parameters of

any IDCAMS command. The SYSIPT (DDSYSIPT) and SYSLST (DDTSYSLST)

DLBL names may also appear if the Invoker wishes to manage these files.

 IOROUTINE: Address of the program that is to be invoked to process I/O

operations upon the file associated with DNAME. This routine, instead of the

processor, is invoked for all operations against the file. For information on

linkage and interface conventions between the IOROUTINE and IDCAMS, see

“User I/O Routines,” below.

 USER DATA: Address of a data area that the user may use for any purpose.

(D) The Options List

Required. Provides a way to specify processing options. If you do not wish to

specify any options, you must set the length field to binary zeros.

LENGTH: Halfword that specifies the number of bytes in the options field.

OPTIONS: Character string that contains the processing options of the Access

Method Services (AMS) PARM command. The options must comply to the

parameter syntax of the IDCAMS PARM command.

(E) The DNAMES List

Optional. This value must be a halfword of binary zeros.

(F) USER DATA AREA

As long as no return or reason codes are inserted, the user data area (8 bytes)

contains the character string EXTRACT.

If return or reason codes are inserted, the meaning is as follows:

 FF = Valid return or reason code follows.

 xx = Catalog return code in hexadecimals.

 yy = Catalog reason code in hexadecimals.

User I/O Routines

User I/O routines enable a user to perform all I/O operations for a file that would

normally be handled by the IDCAMS processor. This makes it possible, for

instance, to control the command input stream by providing an I/O routine for

SYSIPT.

A user I/O routine is invoked by IDCAMS for all operations against the selected

files. The identification of the files and their associated I/O routines is via the

Input/Output list of the processor invocation parameter list (Figure 65).

When writing a user I/O routine, the user must be aware of three things. First, the

processor handles the user file as if it were a nonVSAM file that contains

undefined records (maximum record length is 32760 bytes) with a physical

Invoking IDCAMS

Appendix B. Invoking IDCAMS from a Program 317

sequential organization. The processor does not test for the existence of the file.

Second, the user must know the data format so that the user’s routine can be

coded to handle the correct type of input and format the correct type of output.

Third, every user routine must handle errors encountered for files it is managing

and provide to the processor a return code in register 15. The processor uses the

return code to determine what to do next.

The permissible return codes are:

v 0 – operation successful

v 4 – end of data for a GET operation

v 8 – error encountered during GET/PUT operation, but continue processing

v 12 – do not allow any further calls (except CLOSE) to this routine

Figure 66 shows the argument list used in communication between the user I/O

routine and the IDCAMS processor. The user I/O routine is invoked by the

processor for OPEN, CLOSE, GET and PUT routines. The type of operation to be

performed is indicated via the IOFLAGS. The IOINFO field indicates, for OPEN

and CLOSE operations, the filename of the DLBL or TLBL statements for the file.

For GET and PUT operations, the IOINFO field is used to communicate the record

length and address.

 Explanation

The following explains Figure 66.

(A) Register 1: When IDCAMS gives control to the PUT I/O routine pointed to

by the IOROUTINE, Register 1 points to an IDCAMS argument list. Refer to

Figure 65 on page 316.

(B) User Data: The user data pointer is obtained from the input/output list of the

processor invocation parameter list. The user data area contains the character string

EXTRACT, or return or reason codes. Refer to Figure 65 on page 316.

┌───────┐

│ REG 1 │ (A)

└───┬───┘

 │ ┌────────────────┐

 └────────────N│] USER DATA │ (B)

 ├────────────────┤

 │] IOFLAGS │ ┌────────────────┐

 ├────────────────┼───────N│ FLAGS │ (C)

 ┌───────┤ │ └────────────────┘

 │ │] IOINFO ├─────┐ CLOSE

 │ │ ├──┐ │ ┌────────────────┐

 │ └────────────────┘ │ └─N│ DSNAME │ (D)

 │ │ └────────────────┘

 │ │

 │ │ OPEN

 GET │ │ ┌────────────────┐

 or │ └────N│ DNAME │ (E)

 PUT d └────────────────┘

┌───────────────────┐

│] RECORD │

├───────────────────┤ (F)

│ RECORD LENGTH │

└───────────────────┘

Figure 66. Arguments Passed to and from a User I/O Routine

Invoking IDCAMS

318 VSE/VSAM User’s Guide and Application Programming

(C) Flags: The following explains the fullword of FLAGS:

 (D) DSNAME: A 44-byte field, left justified, and padded with blanks if necessary.

It contains the name of the data set to be closed.

(E) DNAME: An 8-byte field, left justified, and padded with blanks if necessary. It

contains the DLBL or TLBL file name.

(F) RECORD and RECORD LENGTH:

v For a GET: The information is returned to the processor by the user’s I/O

routine in the 8-byte area passed to the routine. Where:

 RECORD: Address of the retrieved record.

 RECORD LENGTH: Fullword length of the retrieved record.
v For a PUT: The processor gives the information to the user’s I/O routine. Where:

 RECORD: Address of the record to be written.

 RECORD LENGTH: Fullword length of record to be written.

┌───────────────┬─────────────┬───────────────────────────────────────┐

│ │ Value or │ │

│ Byte │ Bit Pattern │ Meaning │

├───────────────┼─────────────┼───────────────────────────────────────┤

│ 1 (1)│ 0 │ OPEN │

│ │ 4 │ CLOSE │

│ │ 8 │ GET │

│ │ 12 │ PUT │

├───────────────┼─────────────┼───────────────────────────────────────┤

│ 2 │ 1..... │ OPEN for Input │

│ │ .1.... │ OPEN for Output │

│ │ ..1... │ On OPEN, indicates that IOINFO │

│ │ │ contains the address of a DLBL │

│ │ │ or TLBL file name. │

├───────────────┼─────────────┼───────────────────────────────────────┤

│ 3, 4 (2)│ 0 │ A normal data record is to be written.│

│ │ n │ If an IDC message is to be written, │

│ │ │ the message serial number converted │

│ │ │ to binary. │

└───────────────┴─────────────┴───────────────────────────────────────┘

 (1) Operation only.

 (2) Record type for PUT only.

Invoking IDCAMS

Appendix B. Invoking IDCAMS from a Program 319

Invoking IDCAMS

320 VSE/VSAM User’s Guide and Application Programming

Appendix C. Advantages of the ISAM Interface Program (IIP)

This Appendix ...

Is for users of ISAM who want to convert from ISAM to VSE/VSAM.

The information helps you to decide whether your existing ISAM processing

programs can use the ISAM Interface Program (IIP) to process files that have

been converted from ISAM format to VSE/VSAM format.

The IIP minimizes your conversion costs and scheduling problems by

permitting ISAM programs to process VSE/VSAM files. Also, through IIP,

ISAM programs can process ISAM files and VSE/VSAM files concurrently.

Comparison of VSE/VSAM and ISAM

In most cases, you can get better performance with VSE/VSAM while achieving

essentially the same results that can be achieved with ISAM. Furthermore,

VSE/VSAM can achieve results that cannot be achieved with ISAM.

The extent to which you can use your existing ISAM processing programs to

process key-sequenced files relates to the similarities between ISAM and

VSE/VSAM, as well as to limitations of the IIP.

The following describes the similarities and differences between VSE/VSAM and

ISAM in the areas that you are familiar with from using ISAM, and outlines the

functions of VSE/VSAM that have no counterpart in ISAM.

Differences Between ISAM and VSE/VSAM

A number of things that ISAM does are done differently or not at all by

VSE/VSAM, even though similar results are achieved. The following describes the

areas in which VSE/VSAM and ISAM differ.

Index Structure

Both a VSE/VSAM key-sequenced file and an indexed-sequential file have an

index that consists of levels, with a higher level controlling a lower level. In ISAM,

either all or none of the index records of a higher level can be kept in storage.

VSE/VSAM keeps individual index records in storage during processing, the

number depending on the amount of buffer space provided.

Relation of Index to Data

The relation of a VSE/VSAM index to the direct access storage space whose

records it controls is quite different from the corresponding relation for ISAM, in

particular with regard to overflow areas for record insertion.

ISAM keeps a two-part index entry for every primary track on which a file is

stored. The first part of the entry indicates the highest-keyed record on the primary

track. The second part indicates the highest-keyed record from that primary track

that is in the overflow area, and gives the physical location in the overflow area of

the lowest-keyed overflow record from that primary track. All the records in the

overflow area from a primary track are chained together, from the lowest-keyed to

© Copyright IBM Corp. 1979, 2005 321

the highest-keyed, by pointers that ISAM follows to locate an overflow record.

Overflow records are unblocked, even if primary records are blocked.

VSE/VSAM does not distinguish between primary and overflow areas. A control

interval (CI), whether used or free, has an entry in the sequence set, and after

records are stored in a free CI, it is processed in exactly the same way as other

used CIs. Data records are blocked in all CIs and addressed, without chaining, by

way of an index entry that contains the key (in compressed form) of the

highest-keyed record in a CI.

Defining and Loading a File

All VSE/VSAM files are defined in a catalog. Records are loaded into a file with

IDCAMS or with the processing program, in one execution or in stages. When

loading new records into an empty key-sequenced file, the index is built

automatically. IDCAMS does not merge input files. For a key-sequenced file,

however, input records are merged in key sequence with existing records of the

output file.

Deletion of Records

With ISAM, records cannot be deleted until the file is reorganized; you must mark

the records you want to delete.

VSE/VSAM automatically reclaims the space in a key-sequenced file and combines

it with any existing free space in the affected CI. VSE/VSAM’s use of distributed

free space for insertions and deletions requires less file reorganization than ISAM

does.

VSE/VSAM Functions That Go Beyond ISAM

VSE/VSAM Functions Available through IIP

Secondary Allocation of Storage Space: When you define a VSE/VSAM file, you

can specify the amount of direct access storage space that is to be allocated

automatically, when required, beyond the primary space allocation. You can specify

the amount of secondary space in number of data records, or in number of blocks

(for FBA), or tracks or cylinders (for CKD).

Automatic File Reorganization: VSE/VSAM partially reorganizes a

key-sequenced file by splitting a control area (CA) when it has no more free

control intervals (CIs) and if one is needed to insert a record. VSE/VSAM allocates

a new CA and gives it the contents of approximately half of the CIs of the old CA;

about half of the CIs of every CA are then free.

Key Range Allocation: With a multiple volume key-sequenced file, you can

assign data to various volumes according to the ranges of key values in the data

records. For example, for a file that resides on three volumes, you might assign

keys A-E to the first volume, F-M to the second volume, and N-Z to the third.

Automatic CLOSE: Because it is essential for the integrity of a file that it be

closed properly, VSE/VSAM attempts to close all open VSE/VSAM files within the

partition at both normal or abnormal termination of the job step. It also restores

control blocks to their status before the file was opened, and it frees storage that

open routines used for VSE/VSAM control blocks.

ISAM Interface Program

322 VSE/VSAM User’s Guide and Application Programming

Job Control: ASSGN or EXTENT statements are not required for file access. The

IIP supports disposition processing (DISP parameter on DLBL statement) for

reusable and dynamic files.

VSE/VSAM Functions Requiring Conversion from ISAM

If you convert your ISAM programs to VSE/VSAM, the following additional

VSE/VSAM functions become available to you.

Addressed Sequential Access: With VSE/VSAM, you can retrieve and store the

records of a key-sequenced file by relative byte address (RBA), as well as by key.

With ISAM you can position by physical address, but you must retrieve in a

separate request.

Direct Retrieval by Generic Key: With VSE/VSAM, you can retrieve a record

directly, not only with a full-key search argument, but also with a generic search

argument. ISAM can only position a record by generic argument; you must retrieve

the record separately.

Concurrent Request Processing: A processing program can issue concurrent

requests for a single ACB. The requests can be sequential or direct, or both, for the

same part or different parts of the file. VSE/VSAM maintains a position in the file

for every concurrent request.

No Abnormal Terminations by OPEN: The VSE/VSAM OPEN routine does not

abnormally terminate the user program, but returns an explanatory message in all

cases where it cannot carry out a request to open a file.

Alternate Indexes for Key-Sequenced and Entry-Sequenced Files: Instead of

only one index, you can build several indexes (called alternate indexes) for a single

data file. Every index can access the file in a different way so that you need not

keep multiple copies of the same information organized differently for different

applications.

Variable-Length and Spanned Records: In addition to fixed-length records,

VSE/VSAM supports variable-length and spanned records.

Skip Sequential Access: You can process a key-sequenced file sequentially and

skip records automatically, as though you were using direct access.

Preparations and Using the ISAM Interface Program

Programming Interface Information

Before you can use the IIP, you have to:

v Consider restrictions in the use of the IIP and VSE/VSAM

v Convert ISAM files to VSE/VSAM files, that is:

– Define a VSE/VSAM file

– Load ISAM files into the VSE/VSAM file

For a summary on converting files and processing them, refer to Figure 67 on

page 327.

v Change ISAM job control statements

ISAM Interface Program

Appendix C. Advantages of the ISAM Interface Program (IIP) 323

Step 1: Consider Restrictions in the Use of IIP and VSE/VSAM

Most programs that use ISAM require little or no modification for using the IIP to

process VSE/VSAM files. It is suggested that you evaluate your existing ISAM

programs in terms of your requirements, and in terms of their suitability to use the

IIP.

The following lists prerequisites for using the IIP, and those ISAM functions for

which there is no VSE/VSAM equivalent or which cannot be simulated by the IIP.

v The program must run successfully under ISAM. IIP does not check for

parameters that are invalid for ISAM.

v The program must use standard ISAM interfaces.

v Record ID processing of ISAM cannot be used because VSE/VSAM does not use

the record ID functions.

v VSE/VSAM does not return device-dependent information or the storage or disk

address of the record containing the error in the ERREXT parameter list.

v VSE/VSAM always assumes EXTEND mode when loading a file. If you try to

reload an existing file, VSE/VSAM returns a sequence error code to you. You

must DELETE and DEFINE the file (or specify DISP=NEW to reset a reusable

file) before reloading it.

v The ISAM program cannot open a DTF while another ISAM DTF or VSE/VSAM

ACB is already open for output processing for the same file unless VSE/VSAM

SHAREOPTIONS(3) was specified for the file. If you select SHAREOPTIONS (3),

you must accept the responsibility of maintaining file integrity.

SHAREOPTIONS(4) may also be valid if the records accessed concurrently are

not in the same CA.

v Files defined with SHAREOPTIONS(4) cannot be shared between IIP users in

different systems because IIP always opens a file for output. Note that another

system can open the file for input using native VSE/VSAM access.

Ensure that your existing ISAM programs comply with the restrictions described

above. If they comply, there is no need to assemble or link-edit these programs

again.

Step 2: Define a VSE/VSAM File

Define a key-sequenced VSE/VSAM file by using the IDCAMS command

“DEFINE CLUSTER”, described in the book VSE/VSAM Commands. Note the

following information for specifying the command:

Data Space

You may define the file on a volume that already contains enough free VSE/VSAM

data space for it, or you may define data space when you define the file (unique

file).

Buffer Space

The BUFFERSPACE parameter in the DEFINE command specifies how much space

VSE/VSAM will have for I/O buffers. If you do not specify the BUFFERSPACE

parameter, the default is at least two data buffers and one index buffer. For better

performance, however, you can specify space for more than two data buffers and

one index buffer.

ISAM Interface Program

324 VSE/VSAM User’s Guide and Application Programming

Reusable File

If you have a file that requires rebuilding, initially specify the REUSE parameter in

the DEFINE command. When reloading the file, specify DISP=NEW in the DLBL

statement.

DTFIS Parameters and DEFINE Command Relationship

For VSE/VSAM, some of the information given in the DTFIS parameters must be

specified correctly in the DEFINE command, because the value specified in the

command overrides the DTF. These parameters and the corresponding DEFINE

command options are:

 ┌─────────────────┬──┐

 │ DTFIS Parameter │ DEFINE Option │

 ├─────────────────┼──┤

 │ HOLD=YES │ SHAREOPTIONS(4). │

 ├─────────────────┼──┤

 │ KEYLEN=n and │ KEYS (length, offset) │

 │ KEYLOC=n │ o length should always be set to KEYLEN. │

 │ │ o offset should be set to: │

 │ │ KEYLOC-1 if DTFIS RECFORM=FIXBLK │

 │ │ 0 if RECFORM=FIXUNB │

 ├─────────────────┼──┤

 │ RECSIZE=n │ RECORDSIZE (average, maximum) │

 │ │ The average and maximum values must be equal.│

 │ │ │

 │ │ If (in the DTFIS): │

 │ │ o RECFORM=FIXBLK, you should set │

 │ │ RECORDSIZE to RECSIZE. │

 │ │ o RECFORM=FIXUNB, you should set │

 │ │ RECORDSIZE to RECSIZE + KEYLEN. │

 ├─────────────────┼──┤

 │ VERIFY=YES │ WRITECHECK. │

 └─────────────────┴──┘

The IIP uses the following DTFIS parameters (all other parameters are ignored):

 ERREXT=YES (for a description of the ERREXT parameter

 with IIP, see

Table 11 on page 327)

 IOAREAL=name (used when IOROUT=LOAD)

 IOAREAS=name (used if SETL BOF is issued)

 IOREG=(r)

 IOROUT=LOAD, ADD, RETRVE, ADDRTR

 KEYARG=name

 RECFORM=FIXUNB, FIXBLK

 WORKL=name

 WORKR=name

 WORKS=YES

Step 3: Load the VSE/VSAM File

After you have defined the VSE/VSAM file, load the file by copying your existing

ISAM file into it. To do so, you may use one of the following:

v Your ISAM load program, by way of the IIP

v The IDCAMS command “REPRO”, described in the book VSE/VSAM Commands.

Notes:

1. Do not move files from ISAM to tape and then from tape to VSE/VSAM.

2. The REPRO procedure must be from disk to disk.

3. If you have records marked for deletion in the ISAM file and do not want them

copied into the VSE/VSAM file, you should use your ISAM load program,

because the REPRO command copies all records from the ISAM file, including

those marked for deletion.

ISAM Interface Program

Appendix C. Advantages of the ISAM Interface Program (IIP) 325

4. REPRO of a fixed, unblocked ISAM file creates records consisting of the

original record preceded by its key. The IIP strips this leading key when a

program that specifies fixed unblocked ISAM is executed, and returns only the

original record to you. The leading key is returned with the record, however,

when the file is accessed in native VSE/VSAM mode.

Step 4: Changing ISAM Job Control Statements

To satisfy the requirements of VSE/VSAM, you have to replace the job control

statements for ISAM by job control statements for VSE/VSAM.

The following is an example of VSE/VSAM job control statements used with an

ISAM program:

 // JOB PROCESS A VSE/VSAM FILE

 // DLBL IFN,’MSTRFILE’,,VSAM

 // EXEC ISAMPGM,SIZE=nK

 .

 . SYSIPT data for the program ISAMPGM

 .

 /*

 /&

One DLBL statement is required for the file; it connects the ISAM filename (IFN) to

the VSE/VSAM cluster name (MSTRFILE) stored in the catalog. The DLBL type

code parameter (VSAM) causes the ISAM Interface Program to be called. The same

VSE/VSAM job control statements are required regardless of the type of ISAM

program.

End of Programming Interface Information

What the ISAM Interface Program Does

Programming Interface Information

When a processing program that uses ISAM opens a VSE/VSAM file, the VSE

open routine detects the need for the IIP by the type code “VSAM” specified in the

DLBL statement. The processing program calls the IIP OPEN routine to:

v Build control blocks required by VSE/VSAM

v Load the ISAM command processor

v Flag the DTFIS for the IIP to intercept ISAM requests

Figure 67 on page 327 summarizes the steps required to convert indexed sequential

files to key-sequenced files and processing them either with programs that have

been converted from ISAM to VSE/VSAM, or with programs that still use ISAM.

Most existing processing programs that use ISAM can process VSE/VSAM files

through the ISAM Interface Program (IIP) with little or no change.

ISAM Interface Program

326 VSE/VSAM User’s Guide and Application Programming

The IIP intercepts every subsequent ISAM request, analyzes it to determine the

equivalent keyed VSE/VSAM request, which it defines in the RPL constructed by

OPEN, and then initiates the request.

The IIP interprets VSE/VSAM’s return codes and, if the VSE/VSAM condition

corresponds to an ISAM condition, turns on the respective bit in the filenameC

byte in the DTFIS. For irrecoverable errors that cannot be posted in the filenameC

byte, the IIP prints a message, closes the VSE/VSAM file (by the VSE/VSAM

CLOSE routine), and ends the job. If a physical I/O error occurs and ERREXT=YES

was specified in the DTFIS, the IIP transfers additional error information to the

processing program. Table 11 shows the format of the ERREXT parameter list.

Table 12 and Table 13 show the formats of the filenameC byte for ISAM processing

through the IIP.

 Table 11. ERREXT Parameter List for ISAM Programs with IIP

Bytes Bits Contents

0-3 - DTF address

4-15 - Not supported by the IIP

16 0 Data

1 VSE/VSAM sequence set

2 VSE/VSAM index set

3-5 Not used

6 Read operation

7 Write operation

17 - Not supported by the IIP

 ┌──────── Files ─────────┐ ┌─ IIP and VSE/VSAM ─┐ ┌── ISAM Programs ─┐

 │ │ │ │ │ │

 ┌───────────────┐ ┌───────────┐ ┌──────────────┐

 │ Indexed │ │ ISAM │ ACCESS │ │

 │ Sequential │ │ Interface │M──────N│ Unmodified │

 │ Files │ │ Program │M───┐ │ │

 └───────┬───────┘ └───────────┘ │ └──────────────┘

 │] │ ┌──────────────┐

 │ │ └──N│ Modified │

 Convert Interpret │ to │

 Files each │ Satisfy │

 │ Request │ Restrictions │

 │ │ └──────────────┘

 │ │

 d d

 New ┌───────────────┐ ┌───────────┐ ┌───────────────┐

 Files │ Key-Sequenced │ ACCESS │ │ ACCESS │ ISAM Programs │

 ─────N│ Files │M──────N│ VSE/VSAM │M──────N│ Converted to │

 │ with Indexes │ │ │ │ VSE/VSAM │

 └───────────────┘ └───────────┘ │ Programs (1)│

 └───────────────┘

 (1) Converted to take advantage of

 additional VSE/VSAM functions.

Figure 67. Using the ISAM Interface Program

ISAM Interface Program

Appendix C. Advantages of the ISAM Interface Program (IIP) 327

Table 12. FilenameC with IIP when IOROUT=ADD, RETRVE, or ADDRTR

Bit Cause in ISAM Cause in IIP/VSAM

0 Disk error Disk error

1 Wrong length record Not set

2 End of file End of file

3 No record found No record found

4 Illegal ID specified Not supported by IIP

5 Duplicate record Duplicate record

6 Overflow area full No more VSE/VSAM data space available

7 Overflow Not set

 Table 13. FilenameC with IIP when IOROUT=LOAD

Bit Cause in ISAM Cause in IIP/VSAM

0 Disk error Disk error

1 Wrong length record Not set

2 Prime data area full No more VSE/VSAM data space

3 Cylinder index area full No more VSE/VSAM data space

4 Master index full No more VSE/VSAM data space

5 Duplicate record Duplicate record

6 Sequence check Sequence check

7 Prime data area overflow Not set

Note: If there is no more VSE/VSAM data

space, bits 2 through 4 are set.

End of Programming Interface Information

ISAM Interface Program

328 VSE/VSAM User’s Guide and Application Programming

Appendix D. Compatibility With Other Products

This Appendix...

Describes what to avoid so as not to endanger the portability of VSE/VSAM

files to other systems.

Describes similarities between VSE/VSAM and ACF/VTAM.

Portability of VSE/VSAM Files to DFSMSdfp VSAM

You can port files and volumes to MVS if you avoid the use of device types, file

types, and functions that are not supported by MVS.

The following functions are not supported by DFSMSdfp VSAM:

v VSE/VSAM Space Management for SAM Function

v EXTOPT parameter of the SHOWCAT macro

v IDCAMS CANCEL command

v SYNCHK parameter of the PARM command

v IGNOREERROR parameter of the DELETE command

v %%-function in the NAME parameter of the DEFINE CLUSTER command that

gives a certain partition- or processor independence to the cluster.

Other critical functions are listed below and explained afterwards.

v FBA support

v Dedicated VSE/VSAM volume

v Data space classification

v Default models

v Default volumes

v Multiple volume ownership

v Catalog check services

v VSE/VSAM Backup/Restore Function

v Device Dependency

v VSE/VSAM data compression

FBA Support

Files on an FBA device cannot be processed by MVS. This does not affect the

processing of catalog entries or files for a CKD device.

Files on an FBA device can be transferred (through EXPORT and IMPORT) from

VSE/VSAM to a CKD device on an MVS system and vice versa.

Dedicated VSE/VSAM Volume

The DEDICATE parameter in the DEFINE commands is not supported by MVS.

However, a volume allocated to VSE/VSAM with the DEDICATE parameter can be

processed by MVS.

Data Space Classification

Space class specifications are not supported by MVS, but a file, data space, or

volume with space classes under VSE/VSAM can be processed by MVS/VSAM.

© Copyright IBM Corp. 1979, 2005 329

MVS/VSAM files can be transported to VSE/VSAM volumes defined with classes.

Default Models

They allow users of IDCAMS to choose their own parameter defaults. Default

models are not supported by MVS/VSAM; however, the resultant file and catalog

data can be processed by MVS.

Default Volumes

They allow users to omit explicit volume lists in the DEFINE CLUSTER and

DEFINE ALTERNATEINDEX commands. Also, the parameter DEFAULTVOLUMES

is provided in the IMPORT command to allow users to override the exported

volumes list. The required volumes are selected from the volumes list associated

with the default model.

The command functions are not supported by MVS; however, the resulting file and

catalog data can be processed by MVS.

Multiple Volume Ownership

Multiple catalogs can own space on the same disk volume, providing that only one

catalog resides on that volume.

After you use VSE/VSAM to define, on one volume, several spaces belonging to

different catalogs, you can perform the following activities while running on MVS:

v Define or delete a file in the space belonging to any one of the catalogs.

v Access any file.

v Define additional space belonging to any one of the catalogs.

v Define a UNIQUE file belonging to any one of the catalogs.

v Delete a UNIQUE file.

Do not issue a DELETE SPACE, DELETE MASTERCATALOG, or DELETE

USERCATALOG whenever spaces belonging to different catalogs reside on the

volume. If you were to do this, the spaces belonging to other catalogs would be

deleted from the volume, but their catalog entries would remain.

Catalog Check Services

Automatic Catalog Check

This service examines VSE/VSAM catalogs containing DFSMSdfp files (alias and

generation data group), but it can validate only their horizontal and vertical

extension chains. It does not check associations or volume information for

DFSMSdfp files.

Backup/Restore

Backup/Restore first verifies that an MVS/VSAM file to be backed up can be

successfully restored. In cases where restoration is not possible, VSE/VSAM

ignores the backup request and, instead, issues a message.

The IDCAMS commands BACKUP and RESTORE are not supported by IDCAMS

under MVS/VSAM.

Compatibility

330 VSE/VSAM User’s Guide and Application Programming

Device Dependency

VSE/VSAM treats the IBM 3995 Model 151 Optical Library Dataserver as an IBM

3390 Model 2 direct access storage device. However, a VSE/VSAM catalog that

resides on an IBM 3995 Model 151 Optical Library Dataserver cannot be shared

with a DFSMSdfp system.

VSE/VSAM Data Compression

VSE/VSAM compressed files can be ported to an MVS system using the EXPORT

and IMPORT or REPRO functions. The portable data set will be in uncompressed

format.

Compatibility of VSE/VSAM with DFSMSdfp VSAM

ICF catalogs created under DFSMSdfp VSAM are incompatible with the

VSE/VSAM catalog, and VSE/VSAM cannot process them. Compatibility of files,

IDCAMS job streams, and VSE/VSAM user programs is unchanged.

Similarities between VSE/VSAM and ACF/VTAM

IBM VTAM is an access method for teleprocessing. There is considerable similarity

between the two access methods (VSE/VSAM and ACF/VTAM) regarding control

block names and fields, control block manipulation, and general approach to

request handling.

Both access methods use an ACB. The VSE/VSAM ACB represents the file. In

VTAM, however, the ACB essentially represents an application program. Both

types of ACBs are objects of the OPEN macro instruction, and VSE/VSAM and

VTAM ACBs can be opened with one macro instruction.

Both types of ACBs can contain pointers to an exit list. Both VSE/VSAM and

VTAM exit lists contain addresses of routines to be entered when error conditions

occur (LERAD and SYNAD exit routines) and addresses of routines to be entered

when special situations occur.

Both access methods follow the same general I/O-request procedure. An I/O

macro instruction is issued that indicates an RPL. The RPL in turn contains

information about the request, such as the location of the I/O work area or

whether the request is to be handled synchronously or asynchronously.

Finally, both access methods use the same macro instructions (GENCB, MODCB,

TESTCB, and SHOWCB) to generate and manipulate their respective ACB, EXLST,

and RPL control blocks.

To make control blocks unique, a special parameter is used when the control block

is generated. By specifying AM=VTAM on the ACB, EXLST, or RPL macro

instruction, the control block is generated in VTAM form. Omitting this parameter

causes a VSE/VSAM control block to be built. A VSE/VSAM control block will

also be built if AM=VSAM is specified. If an installation uses both of these access

methods, it may be desirable to have AM=VSAM specified in VSE/VSAM

programs for documentation purposes.

Compatibility

Appendix D. Compatibility With Other Products 331

332 VSE/VSAM User’s Guide and Application Programming

Appendix E. VSE/VSAM Labels

This Appendix ...

Provides conceptual information on the labels that are used with VSE/VSAM

for identifying volumes, data space, and files. It explains how the labels are

processed, and includes definition examples relating to job control and

IDCAMS commands.

Types of VSE/VSAM Labels

VSE/VSAM maintains identifying information for its files in a central location

called the VSE/VSAM catalog. Volumes that contain VSE/VSAM files have the

same internal labels as other volumes. Most of the identifying information for

VSE/VSAM files, however, is in the VSE/VSAM catalog.

VSE/VSAM uses a:

v Volume label (VOL1)

v Data space label and its continuation (format-1 and format-3)

v VTOC label (format-4)

User-standard labels are not supported. Neither is the F-5 label, but space is

reserved for it on the VTOC for the purpose of MVS/SP compatibility.

Volume Label

The volume label (VOL1) is generally written during initialization. At that time, a

permanent volume number is written on the volume as part of the label to give the

volume a permanent ID.

Data Space Label

The VSE/VSAM format-1 VTOC label describes direct access space; the

characteristics of the logical files that occupy that space are described in the

VSE/VSAM catalog.

There is a format-1 label for every VSE/VSAM data space that is on the volume.

Every data space consists of one or more separate extents:

v Up to three extents are described in the format-1 label.

v Extents additional to the first three extents are described in a format-3 label; the

format-3 label is pointed to by the format-1 label. (Refer to “Space Continuation

Label” on page 334.)

Usually, you do not name a VSE/VSAM data space, because VSE/VSAM

automatically assigns a name to the data space. This name is placed into byte 1

through 44 of the key area (called the 44-byte key area). However, if you allocate a

data space to contain the data or the index of only one specific VSE/VSAM file

(called a unique file), the 44-byte key area will contain the name given to the data

or the index when you define it.

© Copyright IBM Corp. 1979, 2005 333

When a new VSE/VSAM data space is created (IDCAMS command DEFINE),

existing format-1 and format-3 labels are read and checked, and new labels are

created by the catalog and space management routines.

Space Continuation Label

A format-3 VTOC label is written whenever a VSE/VSAM data space occupies more

than three separate areas (extents) of a volume. It is used to supply the limits

(starting and ending addresses) of the additional extents. Thirteen separate extents

can be defined by one format-3 label. This label is pointed to by the format-1 label.

VTOC Label

A format-4 VTOC label defines the volume table of contents (VTOC). Also, if a volume

contains VSE/VSAM spaces, the label defines the volume as a VSE/VSAM volume.

The format-4 label is always the first record in the VTOC. The record is written

when you initialize your disk pack by using the IBM Device Support Facilities

(ICKDSF). For details, refer to the manual Device Support Facilities User’s Guide and

Reference.

The OPEN/CLOSE routines refer to the format-4 label to determine the extent of

the VTOC.

The format-1 and format-3 labels are stored in the VTOC and are processed as

described under “VTOC Label Processing” on page 335.

Location of Labels

Volume Layouts

Each volume has a VTOC that contains labels for the data spaces.

Figure 68 on page 335 shows two volumes that contain VSE/VSAM data spaces (1,

2, and 3). The figure illustrates the relationship between volumes, VSE/VSAM data

spaces, and labels in the VTOC. Specifically:

v The two volumes contain the VSE/VSAM data spaces 1, 2, and 3. Each volume

has a VTOC that describes the data spaces owned by VSE/VSAM. The files are

described in the VSE/VSAM catalog.

v Data Space 2 is occupied by File A; this file is assumed to be a unique file. If a

unique file occupies a data space, no other file can be suballocated in the data

space, and File A cannot be extended to any other data space.

v The 44-byte name field of the label for Data Space 2 contains the name (the

file-ID) of file A. The 44-byte name fields of the other data spaces contain the

data space name that is automatically generated by VSE/VSAM

Labels: Types

334 VSE/VSAM User’s Guide and Application Programming

Label Information Area

VSE/VSAM file label information, and standard labels for a user catalog, can be

submitted following // OPTION STDLABEL=ADD or // OPTION

PARSTD=ADD. VSE/VSAM searches the partition temporary user label area

(USRLABEL), the partition standard label area (PARSTD), and the system standard

label area (STDLABEL), in that order. Thus, it is possible to override permanent

label sets for a single job by submitting the new label set under

// OPTION USRLABEL. The default is // OPTION USRLABEL and can be

omitted.

VTOC Label Processing

VSE/VSAM Data Spaces

The format-1 and format-3 VTOC labels describe VSE/VSAM data spaces. A data

space consists of one or more extents on a single volume allocated to VSE/VSAM

and controlled by a VSE/VSAM catalog. VSE/VSAM files are written in data

spaces.

 Volume 1 Volume 2

 ┌ ┌──────┬────────────┐ ┌ ┌──────┬────────────┐

 │ │ VTOC │ │ │ │ VTOC │ │

 ┌─────┤ ├──────┘ │ ┌─────┤ ├──────┘ │

 │ │ │ File B │ │ │ │ File D │

 │ ├───────────────────┤ │ │ │

 Data │ │ File C │ Data │ ├───────────────────┤

 Space 1 └ ├───────────────────┤ Space 3 │ │ File Extent 1 │

 │ VSE/VSAM Catalog │ └ ├───────────────────┤

 │ ┌ ├───────────────────┤ │ │ SD File │

 └─────┤ │ Unallocated │ │ ├───────────────────┤

 └ ├───────────────────┤ │ │ DA File │

 ┌ │ │ │ ┌ ├───────────────────┤

 Data │ │ File A │ │ │ │ │

 Space 2 │ │ Unique) │ └─────┤ │ File Extent 2 │

 │ │ │ │ │ │

 └ └───────────────────┘ └ └───────────────────┘

 Labels in VTOC of Volume 1 Labels in VTOC of Volume 2

 ┌───┬───┬───┬───┬───┬── ┌───┬───┬───┬───┬───┬──

 │F-4│F-5│F-1│F-1│F-1│ │F-4│F-5│F-1│F-1│F-1│

 └───┴───┴───┴───┴───┴─── └───┴───┴───┴───┴───┴───

]]]]]]]]

 │ │ │ │ │ │ │ │

 (*) │ │ (*) │ │

 │ │ Data Space 2 │ │ SD File

 │ │ (File A, Unique) │

 │ │ DA File

 │ Data Space 1

 │ (2 Extents) Data Space 3

 (2 Extents)

 VSE/VSAM Catalog

(*) VSE/VSAM does not use the format-5 VTOC label,

 but space is reserved for the label for reasons

 of DFSMSdfp compatibility.

Figure 68. Volume Layouts of VSE/VSAM Files

Location of Labels

Appendix E. VSE/VSAM Labels 335

Even if it does not contain any files, a data space is owned by VSE/VSAM and is

not available for files of other access methods.

Label processing is done when data spaces (including catalogs and unique files)

are created or deleted, and during ALTER NEWNAME for unique files.

The format-1 and (if needed) format-3 VTOC labels are created and checked (for

overlap or duplicate name) only when data spaces are created (including data

spaces for unique files). If data spaces are deleted, their format-1 and format-3

labels are removed from the VTOC. Labels are also altered during RESETCAT

processing if the data in the label and the catalog do not agree. When VSE/VSAM

files are processed, the VSE/VSAM catalog is used for checking the location and

characteristics of the files.

VSE/VSAM Files

VTOC label processing takes place only for unique VSE/VSAM files that are

defined, deleted, or renamed.

VSE/VSAM files are normally defined after data spaces have been defined. The

direct access space for the files is suballocated by VSE/VSAM from one or more

data spaces. You may select the volume or volumes the file will reside on. You tell

VSE/VSAM how much space to suballocate to the file initially and, optionally,

how much additional space to suballocate when the file must be extended.

VSE/VSAM decides which data spaces or portions of data spaces to suballocate to

a file.

You can, however, specify the size and exact location of the file when you define it.

In this case, the file is called unique and occupies its own data space which is

defined when the file is defined. No other files can occupy that data space. If the

file extends across more than one volume, it occupies one data space on every

volume. The format-1 and format-3 labels still describe the data space(s) occupied

by the unique file. A key-sequenced unique file requires separate data spaces for

the data and the index components.

The file-ID parameter of the // DLBL statement (if specified) indicates the file you

want to process. It is the same as the name of the file, stored in the catalog, which

was specified in the NAME(entryname) parameter of the DEFINE statement. For

VSE/VSAM data spaces, the format-1 label contains a data space name that is

generated by VSE/VSAM.

VTOC Labels for FBA Devices

The physical block is the basic unit of storage on an FBA device. A disk address is

a physical block number relative to the beginning of the volume.

A VTOC for an FBA is divided into control intervals (CIs) of the VSE/VSAM

relative record format; the VTOC labels reside in these CIs. There is a slot for the

VTOC label and its corresponding RDF in the CI. The CI size is a multiple of FBA

block size; a CI always starts on a block boundary. Specify VTOC size through the

DSF program.

The VOL1 label contains the VTOC CI size, the number of blocks per CI, and the

number of labels per CI. VTOC labels are referenced according to relative record

number (beginning with 1).

Labels: VTOC Processing

336 VSE/VSAM User’s Guide and Application Programming

VSE/VSAM Data Space

VOL1 Label Processing

The VSE/VSAM VOL1 label fields are the same as for the other access methods.

The standard volume label (VOL1) must be located as follows:

v For CKD: on cylinder 0, track 0, record 3 (CKD).

v For FBA: in physical block 1.

This block is called the volume label block.

If the VOL1 label is not located correctly, the job is cancelled.

The VOL1 label, written by the IBM Device Support Facilities (ICKDSF) program,

contains a permanent volume number.

If any additional volume labels follow the VOL1 label, VSE/VSAM ignores them.

From the VOL1 label, VSE/VSAM determines the location of the VTOC.

Format-1 VTOC Label Processing for Unique Files

You must supply one // DLBL statement when creating a unique file and one //

EXTENT statement for every separate extent on the volume that the data space

will occupy. A multivolume unique file requires only one // DLBL statement, even

though it occupies a data space on every volume.

// DLBL Statement: The // DLBL statement for defining a data space under

VSE/VSAM requires only the filename parameter and the VSE/VSAM code. The

// DLBL filename is identical to the dname specified in the FILE parameter of the

DEFINE command.

The file-ID parameter is not required and is ignored if you specify it. The date

parameter can be specified, but it has no real function. VSE/VSAM data spaces

and files can be deleted only by using the DELETE command of IDCAMS.

// EXTENT Statement: An // EXTENT statement defines a continuous extent of

the volume that is to be allocated to VSE/VSAM. There can be up to 16 extents in

a data space, and a data space is contained entirely on one volume.

The // EXTENT statement provides the starting address (relative address) and the

number of tracks (CKD) or blocks (FBA), which indirectly give the ending address.

The // EXTENT statement also provides the order in which this extent should be

processed in a multiple-extent unique file.

VSE/VSAM validates the // EXTENT specifications by checking the extent limits

against the limits of the format-4 label, and every format-1 and format-3 label

already written in the VTOC. If the new extent overlaps an existing extent,

VSE/VSAM issues a message to the operator. If the overlapped extent is part of a

file of another access method (expired or unexpired), the operator can delete the

file or terminate the job. If the overlapped extent is part of a VSE/VSAM data

space (or unique file), the operator can only cancel the job. VSE/VSAM data spaces

or files (expired or unexpired) can only be deleted through the IDCAMS command

DELETE.

If all extents of the new unique file are valid, VSE/VSAM writes one (or two, for a

KSDS) format-1 label, and (if necessary) the format-3 label into an available

location in the VTOC.

Labels: VTOC Processing

Appendix E. VSE/VSAM Labels 337

For the data or the index of a unique file, you may specify a data space name in

the DEFINE command. If specified, this name is entered in the catalog and in the

label. Remember that even though the name of a unique file is entered in the labels

of the data space it occupies, the information describing the file is in the catalog.

Bytes 45-60, 63-75, 83-84, and 94 are written in the format-1 label for VSE/VSAM.

This information is for compatibility with the format-1 labels of other access

methods; during processing, VSE/VSAM uses the catalog, rather than using

information from the VTOC.

Bytes 106-115 define the first (or only) extent allocated to the unique file

component. If there is more than one extent, bytes 116-125 define the second

extent, and bytes 126-135 define the third extent. These fields are written from the

// EXTENT statements you supply.

If you have included more than three // EXTENT statements, VSE/VSAM writes a

format-3 label and writes the address of that label in the pointer field (bytes

136-140) of the format-1 label.

If the unique file is deleted, the format-1 label (and if present, the format-3 label) is

removed from the VTOC.

Format-3 VTOC Label Processing

The VSE/VSAM format-3 label fields are the same as for the other access methods,

but a VSE/VSAM data space can have only one format-3 label.

If more than three extents are required for the data space (or unique file),

VSE/VSAM sets up a format-3 label for the additional extents. A data space can

consist of up to 16 extents, so only one format-3 label is allowed. VSE/VSAM

processes the extent fields of the format-3 labels in the same manner as those of

the format-1 label.

If the data space is deleted, the format-3 label is removed from the VTOC, along

with the format-1 label.

Format-4 VTOC Label Processing

The format-4 label describes the VTOC (it does not describe the files or data spaces

of individual access methods). However, a VSE/VSAM indicator field (bytes 77-87)

is written in the format-4 label of any volume that contains VSE/VSAM data

spaces or unique files. This field (volume time stamp) indicates the date and time

the most recent VSE/VSAM data space was added to or deleted from the volume.

For MVS compatibility reasons, this time stamp is repeated in bytes 88-95.

The same date and time are entered in the catalog. VSE/VSAM OPEN routines

check if the volume time stamp matches the time stamp for it in the catalog. If

they do not match, processing continues, but an error code is issued to indicate

that the VTOC might not agree with the data space information in the volume’s

catalog entry.

Bit 0 of byte 85 indicates that this volume is owned by a VSE/VSAM catalog.

Either VSE/VSAM space was defined on the volume, or the volume was listed as a

CANDIDATE volume in the DEFINE SPACE command.

If all VSE/VSAM data space is deleted from a volume, the VSE/VSAM indicator

field (bytes 77-87) is erased. The deleted space can be used by other z/VSE access

methods.

Labels: VTOC Processing

338 VSE/VSAM User’s Guide and Application Programming

VSE/VSAM Files

Defining a File: Suballocating Data Space (Non-Unique Files)

When a non-unique file is defined, the space for it can be suballocated from one or

more existing data spaces on one or more volumes. This is illustrated in Figure 70

on page 343. VTOC label processing is not performed for the following reasons:

v Information needed to set up the file is in the DEFINE command.

v Information about data spaces to be suballocated to the file is in the VSE/VSAM

catalog.

The resulting description of the file is entered in the catalog. The // DLBL and //

EXTENT statements are not required; they are ignored if specified for a catalog.

You indicate the volume(s) on which the file will reside, the amount of space to be

initially suballocated to the file and, optionally, the amount of space to be

suballocated if the file must be extended. VSE/VSAM selects the extent(s) on the

volume on which to write the file. If you specify more volumes than necessary for

the primary space, the additional volumes can be used when the file is extended, if

they contain free data space.

If none of the volumes contains free data space, new data spaces must be defined,

or volumes with free data space can be made available to the file through the

IDCAMS command ALTER. You can indicate in which order the volumes should

be used. You can also decide to place certain portions of the file (key ranges) on

certain volumes. If the file must be extended, VSE/VSAM can use only the

volumes you indicated. For further information, refer to “Multiple Volume

Support” on page 102.

Volume Mounting: The volume containing the catalog must be mounted, but the

volumes on which the file is defined need not be mounted. Additional information

about volume mounting requirements appears in “Using an Object as a Model” on

page 57.

File Loading: Loading a file is a separate step from defining it. Records can be

loaded into a file by a VSE/VSAM processing program by using the PUT macro,

or the IDCAMS command REPRO.

Defining a File: Unique

A unique file occupies space described in the VTOC through // DLBL and //

EXTENT statements (all this is similar to unique files with other access methods).

Defining a unique file is illustrated in Figure 71 on page 343.

The data space for a unique file is defined (implicitly) in the same DEFINE

command as the file itself. Characteristics of the file (such as logical record length)

are specified in the command, just as with a suballocated file. Space information is

taken from // DLBL and // EXTENT statements instead of from the DEFINE

command.

The data and index of a unique key-sequenced file or alternate index require

separate data spaces, and hence, separate // DLBL and // EXTENT statements.

A unique file cannot be extended. The extents of the file are the same as the

extents of the data spaces and, because they are described in the VTOC, cannot be

changed without deleting the file.

Labels: VTOC Processing

Appendix E. VSE/VSAM Labels 339

Label processing is performed for the data spaces of a unique file as described

under “VSE/VSAM Data Space” on page 337. The only difference is that the

44-byte names of the data and index are placed in the labels and in the file’s

catalog entry. The data spaces of unique files are described in the VSE/VSAM

catalog as well as in the VTOC.

Processing a File

When a previously defined file is processed by a VSE/VSAM application program

or by a PRINT or REPRO command, a // DLBL statement is required for the file.

The statement is retrieved by VSE/VSAM OPEN from the label area. OPEN

obtains the // DLBL statement from the file name specified in the IDCAMS macro

ACB in the processing program. All the information required to process the file is

in the VSE/VSAM catalog or the label area; no VTOC processing is performed (see

Figure 72 on page 344).

// DLBL Statement: The // DLBL statement is used to find the 44-byte name of

the file in the catalog. The 44-byte name matches the file-ID parameter. For PRINT

and REPRO and VSE/VSAM application programs, the CAT parameter is required

only if you want to override the system’s assumption that the job catalog, or, if

there is none, the master catalog, owns the file. The function of the job catalog is

explained under “Specifying a Job Catalog” on page 42.

Volume Mounting: If the volumes allocated to the file are not mounted, messages

are issued to the operator to mount the required volumes or cancel the job. A file

can span a maximum of 16 volumes. If a multivolume file is opened for direct or

keyed-sequential processing, all volumes must be mounted. If it is opened for

addressed-sequential processing, only one volume at a time need be mounted.

The first allocation made on every volume is always the primary allocation.

VSE/VSAM extends a suballocated file if:

v Secondary space allocation was specified when the file was defined.

v No secondary space allocation was specified, but overflow volumes are specified

in the VOLUMES parameter of the DEFINE CLUSTER command. In that case,

the primary allocation is taken.

v A volume that contains or can contain part of the file has unused data space of

the required class.

Use the IDCAMS command ALTER to make more volumes available to the file

after it has been defined.

The VOL1 label is checked to verify that the correct volume is mounted (volume

serial number), and the format-4 label is checked to verify that the catalog is at the

proper level (volume time stamp). Processing for these labels is described under

“VSE/VSAM Data Space” on page 337.

Job Stream Examples

In the following, Figure 69 through Figure 72 show examples of the job streams

you must supply to:

v Define a data space

v Define a file in a catalog

v Define a unique file

v Process a file

Labels: VTOC Processing

340 VSE/VSAM User’s Guide and Application Programming

Notes:

1. In Figure 70 through Figure 71, further parameters are required in the DEFINE

command to specify the characteristics (such as logical record length) of the

VSE/VSAM file. These parameters are not shown, because they do not affect

space allocation and label processing.

2. For the description of the IDCAMS command “DEFINE”, refer to the manual

VSE/VSAM Commands. More information about the job control statements

required for VSE/VSAM is in “Use of z/VSE Job Control Statements for

VSE/VSAM” on page 23.

Example - Define Data Spaces

Figure 69 on page 342 shows “samples” of the job streams you must supply to

define data spaces. The figure shows allocation of an entire volume to VSE/VSAM

(as a single data space), and allocation of a data space that is smaller than a single

volume.

“Sample 3” and “Sample 6” show allocation of data spaces on different volumes of

the same device type.

DEFINE command parameters supply the data space information.

For the master catalog, a // DLBL statement is required. In the samples, assume

that the statement is in the label information area.

Job Stream Examples

Appendix E. VSE/VSAM Labels 341

==== Sample 1: ===

 // JOB ALLOCATE A VOLUME TO VSE/VSAM

 * VOLUME IS OWNED BY MASTER CATALOG

 * ALL UNALLOCATED SPACE IS GIVEN TO VSE/VSAM

 // EXEC IDCAMS,SIZE=AUTO

 DEFINE SPACE(DEDICATE-

 VOLUMES(PAY001))

 /*

 /&

==== Sample 2: ===

 // JOB DEFINE A VSE/VSAM DATA SPACE

 * SPACE IS OWNED BY MASTER CATALOG

 // EXEC IDCAMS,SIZE=AUTO

 DEFINE SPACE(ORIGIN(760) TRACKS(570)-

 VOLUMES(PAY002))

 /*

 /&

==== Sample 3: ===

 // JOB DEFINE VSE/VSAM DATA SPACES ON SEVERAL VOLUMES

 * SPACES ARE OWNED BY USER CATALOG MYUCAT

 // DLBL IJSYSUC,‘MYUCAT’,,VSAM

 * DEFAULT ORIGIN USED FOR DATA SPACE ALLOCATION

 // EXEC IDCAMS,SIZE=AUTO

 DEFINE SPACE(TRACKS(190)-

 VOLUMES(PAY003,PAY004))

 /*

 /&

==== Sample 4: ===

 // JOB ALLOCATE A VOLUME TO VSE/VSAM

 * VOLUME IS OWNED BY MASTER CATALOG

 * ALL UNALLOCATED SPACE IS GIVEN TO VSE/VSAM

 // EXEC IDCAMS,SIZE=AUTO

 DEFINE SPACE(DEDICATE-

 VOLUMES(INV001))

 /*

 /&

==== Sample 5: ===

 // JOB DEFINE A VSE/VSAM DATA SPACE ON A VOLUME

 * SPACE IS OWNED BY MASTER CATALOG

 // EXEC IDCAMS,SIZE=AUTO

 DEFINE SPACE(ORIGIN(960) BLOCKS(2240)-

 VOLUMES(INV002))

 /*

 /&

==== Sample 6: ===

 // JOB DEFINE VSE/VSAM DATA SPACES ON SEVERAL VOLUMES

 * SPACES ARE OWNED BY USER CATALOG MYUCAT

 // DLBL IJSYSUC,‘MYUCAT’,,VSAM

 * DEFAULT ORIGIN USED FOR DATA SPACE ALLOCATION

 // EXEC IDCAMS,SIZE=AUTO

 DEFINE SPACE(BLOCKS(3100)-

 VOLUMES(DEV001,DEV002))

 /*

 /&

==== Sample 7: ===

 // JOB DEFINE SPACES ON A VOLUME BELONGING TO TWO CATALOGS

 // EXEC IDCAMS,SIZE=AUTO

 DEFINE SPACE(VOLUMES(SCRTC1) /* SPACE BELONGING TO MASTER CATALOG */-

 CYLINDERS(40) ORIGIN(171)) /* CYLINDERS 9-48 */

 DEFINE SPACE(VOLUMES(SCRTC1) /* SPACE BELONGING TO USER CATALOG */-

 DEDICATE) /* THE REST OF THE SPACE AVAILABLE */-

 CATALOG (MYUCAT)

 /*

 /&

Figure 69. Examples: Defining VSE/VSAM Data Spaces

Job Stream Examples

342 VSE/VSAM User’s Guide and Application Programming

Example - Define a File in a Catalog

Figure 70 shows the job stream you must submit to define a file that is

suballocated from an existing data space. This file is recorded in the master

catalog.

 Example - Define a Unique File

Figure 71 shows the job stream for defining a unique file. The data space

information is supplied in // EXTENT statements. IDCAMS requires the

VOLUMES and CYLINDERS (BLOCKS, TRACKS, or RECORDS) parameters in the

DEFINE command if no MODEL is used.

 Example - Process a File

Figure 72 shows the job stream for processing a VSE/VSAM file. The CAT

parameter of the // DLBL statement indicates the file name of the user catalog in

which the file is recorded. The CAT parameter is written into the label information

area. For details on the use of this parameter, see “Use of z/VSE Job Control

Statements for VSE/VSAM” on page 23.

// JOB SUB-ALLOCATE VSE/VSAM FILE

// EXEC IDCAMS,SIZE=AUTO

 DEFINE CLUSTER-

 NAME(MSTRFIL1)-

 VOLUME(PAY002)TRACKS(285 19))

/*

/&

Figure 70. Example: Defining a VSE/VSAM File Suballocated from a Data Space

// JOB ALLOCATE A UNIQUE VSE/VSAM FILE

// DLBL VDATANM,,,VSAM

// EXTENT ,338002,1,,1330,380

// DLBL VINDXNM,,,VSAM

// EXTENT ,338002,1,,1710,190

// EXEC IDCAMS,SIZE=AUTO

 DEFINE CLUSTER(NAME(MSTRFIL3)UNIQUE)-

 DATA(FILE(VDATANM)VOLUMES(PAY002)CYLINDERS(20))-

 INDEX(FILE(VINDXNM)VOLUMES(PAY002)CYLINDERS(10))

/*

/&

Figure 71. Example: Defining a Unique VSE/VSAM File (File-ID MSTRFILE)

Job Stream Examples

Appendix E. VSE/VSAM Labels 343

// JOB PROCESS A VSE/VSAM FILE

// DLBL VFILENM,‘MSTRFILE’,,VSAM,CAT=PRIVCAT

 (for the file)

// DLBL PRIVCAT,‘MYUCAT’,,VSAM

// EXEC USERPGM,SIZE=20K

 CSECT

 .

 .

 .

 ACB DDNAME=VFILENM,...

 .

 .

 .

 END

/*

/&

Figure 72. Example: Processing a VSE/VSAM File with an Assembler Program

344 VSE/VSAM User’s Guide and Application Programming

Appendix F. Diagnosis Tools

This Chapter ...

Contains Diagnosis, Modification, or Tuning Information.

Describes the VSE/VSAM tools summarized in Figure 73, below. The

information is primarily for system administrators. The descriptions

emphasize running the tools, rather than interpreting the output.

Under certain conditions, the IBM support representative might ask you to

supply the output of diagnosis tools.

 For information on other diagnosis tools available in the z/VSE environment (for

example, for producing various types of “dumps”), refer to the manual z/VSE

Guide for Solving Problems.

Catalog Check Service Aid (IKQVCHK)

The Catalog Check Service Aid (IKQVCHK) helps you to determine whether a

catalog has been damaged and, if damaged, the type and extent of the damage.

IKQVCHK is called under the following circumstances:

v If a file was not closed on a previous OPEN for update. In this case, VSE/VSAM

OPEN tries to VERIFY the file before opening it. If the VERIFY is successful,

VSE/VSAM calls IKQVCHK to examine the catalog records that describe the

file. Note that only the records pertaining to that file are checked. The rest of the

catalog is not examined.

OPEN error codes might tell you to run IKQVCHK yourself for additional

information.

v If the DELETE command with IGNOREERROR specified is issued. In this case,

IDCAMS calls IKQVCHK, and the entire catalog is checked to ensure catalog

integrity.

Furthermore, you should run IKQVCHK to assess catalog integrity in the following

circumstances:

┌─────────────────┬──┐

│ Tool │ Purpose │

├─────────────────┼──┤

│ Catalog Check │ To identify erroneous catalog records. │

│ Service Aid │ Under certain conditions, VSE/VSAM automatically │

│ (IKQVCHK) │ invokes the tool, or you can invoke it yourself. │

├─────────────────┼──┤

│ SNAP Dump │ To print an error symptom string at the console. │

│ Facility │ You can invoke a SNAP dump to provide an error │

│ (IKQVEDA) │ code trace during program processing. │

├─────────────────┼──┤

│ Maintain VTOC │ To assists you in maintaining the VTOC and VOL1 │

│ and VOL1 Utility│ labels on disk devices. │

│ (IKQVDU) │ │

└─────────────────┴──┘

Figure 73. VSE/VSAM Diagnosis Tools

© Copyright IBM Corp. 1979, 2005 345

v After a system failure.

v When a file or catalog does not behave as expected.

v As part of regular system maintenance.

In Case of Errors

IKQVCHK issues error messages that identify missing or inconsistent information.

Perform the corrective action documented under the “IKQ-Prefixes” in the z/VSE

Messages and Codes. Take the action before contacting IBM for support. If the

problem persists, report it. Make IKQVCHK output available so that the system

administrator or your IBM support representative can assess the extent of catalog

damage and how much rebuilding is required.

How to Run a Check

Issue the following job control statement:

 // EXEC IKQVCHK,SIZE=AUTO,PARM=’aaaa...a/bbbbbbbb’

where:

 aaaa is the name (up to 44 characters) of

 the catalog that is to be checked.

 The entire catalog is checked.

 bbbbbbbb is the master, control, or update password of

 the catalog that is to be checked.

If you omit the PARM parameter, the default catalog is checked. (The default

catalog is the job catalog if the IJSYSUC DLBL statement is specified. Otherwise, it

is the master catalog.)

Examples of Error Messages

The following examples show a few of the problems that IKQVCHK can diagnose

and the kinds of error messages that it produces. These examples are for users who

want a deeper understanding of IKQVCHK.

Catalog errors are difficult to understand, because they involve internal catalog

records, data, and control blocks which most users do not see. The programmer

action associated with every message, however, does not require a full knowledge

of the error condition. Similarly, you do not have to understand the listing of

catalog records and the 512-byte catalog record dump that accompany the

messages.

For the full documentation of all error messages issued by IKQVCHK, see the

“IKQ-Prefixes” in the z/VSE Messages and Codes.

Example: Key-Range Names Not Matching

Figure 74 on page 347 shows the output associated with message IKQ0016I. In this

example, the problem is that the low-key-range name for a particular object does

not match the high-key-range name for that object, where the:

v Low-key-range name is XXXS1.INDEX

v High-key-range name is KSDS1.INDEX (identified by the submessage

ASSOCIATED HKR REC FOLLOWS)

To correct this problem, run a DELETE command, specifying IGNOREERROR for

KSDS1.INDEX. VSE/VSAM will delete the name KSDS1.INDEX from the catalog.

Diagnosis: Catalog Check

346 VSE/VSAM User’s Guide and Application Programming

Example: Erroneous Association Group Occurrence

Figure 75 on page 348 shows a problem in which two error messages are produced,

IKQ0027I and IKQ0028I. The first hex dump shows the association group

occurrence at X‘08B’. The third byte of the association group occurrence indicates

the record type (D).

The contents of CI 2 are printed just below the submessage ASSOC WITH

UNEQUAL TYPE. Field X‘2C’ of a catalog record always tells what type of catalog

record it is. In this case, the record type is X‘C3’ or C, meaning a cluster record,

which does not match the record type (D) in the group occurrence (the first

record).

To correct this error, issue a DELETE IGNOREERROR command for KSDS2

(specified in NAME).

IKQ0016I DATA SET NAME NOT SAME IN HIGH AND LOW KEY RANGE RECORDS

LKR REC WITH INVALID DATA :

0000 0000002E 01000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0020 00000000 00000000 00000000 C9015700 8FE7E7E7 E2F14BC9 D5C4C5E7 40404040 *............I....XXXS1.INDEX *

0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40FFFFFF * ...*

0060 FFFFFFFF FF92057F 00000F20 F000FFFF FFFF0000 01000001 80000010 000000A0 *............0...................*

0080 00FFFFFF FF0000FF FFFFFFFF FFFFFF00 00000000 05000000 C0000000 00010100 *................................*

00A0 00620201 00006803 01000000 44010062 60000060 00040000 000A0000 000A0000 *................................*

00C0 00000000 00001000 00000FF9 00000000 00000000 00000000 00000000 00000000 *...........9....................*

00E0 A54E6475 B838FE02 00010001 00000001 00000000 00000000 00000000 00000000 *................................*

0100 00009000 00000000 00000000 0000000F 0006C300 002C0327 3010200E F1F1F1F1 *..................C.........1111*

0120 F1F10000 80010000 00000000 10000000 A0000000 1000000A 00010000 02000000 *11..............................*

0140 00001400 11000000 01000000 01000100 00000000 009FFF00 00000000 00000000 *................................*

0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

01A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

01C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

01E0 00000000 00000000 00000000 00000000 00000000 00000000 000001F9 01F90000 *...........................9.9..*

ASSOCIATED HKR REC FOLLOWS:

NAME = KSDS1.INDEX CI = 00002E

Figure 74. Example: Key-Range Names not Matching

Diagnosis: Catalog Check

Appendix F. Diagnosis Tools 347

Output of a Check

Figure 76 shows catalog data that was produced by a run of IKQVCHK against a

catalog named VSAM.MCAT.

IKQ0027I RECORD TYPE IN ASSOCIATION GROUP OCCURRENCE NOT EQUAL TO RECORD TYPE IN RECORD IT REFERENCES

IKQ0028I AFFECTED GROUP OCCURRENCE AT DISPLACEMENT 135 (X’087’)

REC WITH ERRONEOUS GO FOLLOWS:

0000 0000002F 01000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0020 00000000 00000000 00000000 C3008D00 6CD2E2C4 E2F24040 40404040 40404040 *............C....KSDS2 *

0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40FFFFFF * ...*

0060 FFFFFFFF FF92057F 00000F00 00000000 00030000 00020100 00060202 00000044 *................................*

0080 010006C4 00003000 06C90000 31000000 00000000 00000000 00000000 00000000 *...D.....I......................*

00A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

00C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

00E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0140 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

01A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

01C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

01E0 00000000 00000000 00000000 00000000 00000000 00000000 000001F9 01F90000 *...........................9.9..*

ASSOC REC WITH UNEQUAL TYPE:

0000 00000031 01000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0020 00000000 00000000 00000000 C3015700 8FD2E2C4 E2F24BC9 D5C4C5E7 40404040 *............C....KSDS2.INDEX *

0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40FFFFFF * ...*

0060 FFFFFFFF FF92057F 00000F00 6000FFFF FFFF0000 03000003 80000008 000001B0 *................................*

0080 00FFFFFF FF0000FF FFFFFFFF FFFFFF00 00000000 05000000 C0000000 00010100 *................................*

00A0 00620201 00006803 01000000 44010062 60080060 000C0000 000A0000 00120000 *................................*

00C0 00000000 00000800 000007F9 00000000 00000000 00000000 00000000 00000000 *...........9....................*

00E0 A54E6DEF 570E8C04 00010001 00000001 00000000 00000000 00000000 00000000 *................................*

0100 0001A800 00000000 00000000 00000005 0006C300 002F0327 3010200E F1F1F1F1 *..................C.........1111*

0120 F1F10000 80010000 00000000 08000001 B0000000 08000012 00010000 02000000 *11..............................*

0140 00001400 01000100 01000100 03000300 00000000 01AFFF00 00000000 00000000 *................................*

0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

01A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

01C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

01E0 00000000 00000000 00000000 00000000 00000000 00000000 000001F9 01F90000 *...........................9.9..*

ASSOCIATED HKR REC FOLLOWS:

NAME = KSDS2 CI = 00002F

Figure 75. Example: Incorrect Association Group Occurrence

 DATA ABOUT VSAM CATALOG - VSAM.MCAT

 ==

 THIS CATALOG CONTAINS USED HKR-RECORDS 60 See 1.

 FORMATTED RECORDS 87 See 2.

 - CCR RECORDS L 1

 - FREE RECORDS F 2

 - GDG BASE ENTRIES B 0

 - CLUSTER RECORDS C 14

 - INDEX RECORDS I 11

 - DATA RECORDS D 21

 - VOLUME RECORDS V 1

 - VOLUME EXT. RECORDS W 4

 - NONVSAM RECORDS A 0

 - EXTENSION RECORDS E 14

 - AIX RECORDS G 7

 - PATH RECORDS R 7

 - ALIAS RECORDS X 0

 - UPGRADE RECORDS Y 4

 - USER-CAT RECORDS U 1

 - UNAVAILABLE RECORDS * 0

 ==

 NO ERRORS WERE FOUND IN THIS CATALOG See 3.

Figure 76. Example: Output from the Catalog Check Service Aid (IKQVCHK)

Diagnosis: Catalog Check

348 VSE/VSAM User’s Guide and Application Programming

Notes:

1. High-Key-Range Catalog Records

Each USED HKR-RECORD is a 47-byte “true name record”. It relates the

NAME (as specified in DEFINE CLUSTER or AIX), or the volume number (as

specified in DEFINE SPACE) to the CI number of the catalog record that

describes the object.

2. Low-Key-Range Catalog Records

The output line FORMATTED RECORDS shows the sum of formatted records

in the low-key range of the catalog (it equals the total of all fields below the

output line). Every low-key-range record occupies a full CI.For explanations to

the formatted records, refer to Figure 77 on page 350.

3. Depending on the circumstances, one of the following summary statements

appears at the bottom of the catalog data:

 NO ERRORS WERE FOUND IN THIS CATALOG

 MINOR ERRORS WERE FOUND AND CORRECTED IN THIS CATALOG

 SERIOUS ERRORS WERE FOUND IN THIS CATALOG

The statement is preceded by messages that identify the catalog errors that

were found.

Record Types and Catalog Identifiers

In the output of IKQVCHK (shown in Figure 76 on page 348), every record type is

followed by its one-letter catalog ID.

Diagnosis: Catalog Check

Appendix F. Diagnosis Tools 349

SNAP Dump (IKQVEDA)

The IBM support representative may ask you to run a SNAP dump to provide

information for problem diagnosis. You can enable any of the following types of

SNAP dump:

Type: Enables:

 Record Type Code Description

CCR RECORDS L Catalog control records keep track of which CIs are allocated. When VSE/VSAM

needs space for a catalog record, the CCR indicates that space will be taken from

the unformatted section or from a list of CIs that are no longer in use.

FREE RECORDS F Free record; the CI in which it resides can be reused by another kind of catalog

record on subsequent DEFINEs. Free records are records that have been used

and made available again. Records that have not yet been used are not free

records.

GDG BASE ENTRIES B Generation data group; applies to MVS objects only.

CLUSTER RECORDS C There is one cluster record for every cluster defined in the catalog.

INDEX RECORDS I An index record describes the index component of a cluster or AIX. There is one

index record for every KSDS cluster or AIX defined in the catalog.

DATA RECORDS D A data record describes the data component of a cluster or AIX. There is one

data record for every cluster or AIX defined in the catalog. The number of data

records should equal the number of cluster records (C) plus the number of AIX

(G) records.

VOLUME RECORDS V A volume record describes the following:

v VSE/VSAM data space on the volume;

v Every component residing in VSE/VSAM data space on the volume;

v Any available space in that data space.

There is one volume record for every volume owned by the catalog.

VOLUME EXTENSION

RECORDS

W A volume extension record provides the same data as a volume record. When a

volume record becomes full, a volume extension record is created for it. There

are as many volume extension records as necessary to contain overflow

information.

NONVSAM RECORDS A A nonVSAM record describes a nonVSAM file. There is one nonVSAM record

for every nonVSAM file defined in the catalog.

EXTENSION RECORDS E An extension record contains overflow information from another catalog record

(except type V or F). There are as many extension records as necessary to

contain overflow information.

AIX RECORDS G An AIX record describes an alternate index. There is one AIX record for every

alternate index defined in the catalog.

PATH RECORDS R A path record describes a path. There is one path record for every path defined

in the catalog.

ALIAS RECORDS X Alias; applies to DFSMSdfp objects only.

UPGRADE RECORDS Y An upgrade record describes a set of alternate indexes that are to be upgraded

(kept up to date) when their base cluster is modified.

USER-CAT RECORDS U A user cat record describes a user catalog. The master catalog contains one user

cat record for every user catalog defined in it.

UNAVAILABLE

RECORDS

An unavailable record is one that exists but is inaccessible because one or more

pointers to it were destroyed.

Figure 77. Low-Key-Range Catalog Records and Codes

Diagnosis: SNAP Dump

350 VSE/VSAM User’s Guide and Application Programming

0001

v Catalog management error code trace

v Compression control services trace

v Compression management services trace for OPEN and CLOSE

0002 Buffer manager trace

0003 CLOSE control block dump (at the beginning of CLOSE processing)

0004 VSE/VSAM I/O trace

0005 I/O error trace

0006 OPEN control block dump (when OPEN processing is complete)

0007 OPEN error trace (prints control blocks if an error occurs during OPEN

processing)

0008 Catalog management I/O trace (prints all I/O operations done by

VSE/VSAM catalog management)

0009 Record management error trace (prints control blocks for any error

detected by VSE/VSAM record management)

0010 Automatic CLOSE.

 VSE/VSAM is shipped with this SNAP enabled. To disable automatic

CLOSE, disable this SNAP.

0011 Managed-SAM control block trace

0012 SHAREOPTIONS(4) z/VSE locking activity trace

0013 In-core wrap trace for the last sixty file access activities for a file

0015 Compression management services control block trace

0016 Compression management services trace

 With the MSHP PATCH command, the trace output can be limited to specific

elements. Your IBM support representative can give you further details.

How to Run a SNAP Dump

Activating a SNAP Dump

To activate IKQVEDA from the system console (SYSLOG) or SYSRDR, enter:

 // EXEC IKQVEDA,PARM=’SYSnnn’

where SYSnnn specifies the LU from which the SNAP commands are entered:

┌───────────────┬───────────────┐

│ SNAP Dump │ Output │

│ Number │ │

├───────────────┼───────────────┤

│ 0001 │ To SYSLOG │

│ 0002 - 0009 │ To SYSLST │

│ 0010 │ No Output │

│ 0011 │ To SYSLST │

│ 0012 │ To SYSLST │

│ 0013 │ In-Core │

│ 0015 │ To SYSLST │

│ 0016 │ To SYSLOG │

└───────────────┴───────────────┘

Diagnosis: SNAP Dump

Appendix F. Diagnosis Tools 351

SYSLOG - SNAP commands are entered from the system console

 (this is the default if PARM is omitted)

 SYSIPT - SNAP commands are read from SYSIPT

PARM is optional. If the input is to be entered from the console, the system

responds with:

 ENTER FUNCTION ENABLE │ DISABLE │ END │ HELP

Enabling a SNAP Dump

To enable the SNAP dump, enter:

 ENABLE SNAP=00nn,PART=yy

where yy is the partition (BG or Fn) in which the SNAP is to be enabled. If PART

is omitted, the SNAP is enabled for the issuing partition.

Note that the SNAP dump becomes effective immediately (without re-IPL), and

only for the partition which you have specified (or defaulted).

Then the system prints:

 SNAP 00nn ENABLED IN PARTITION yy

 ENTER FUNCTION ENABLE │ DISABLE │ END │ HELP

To keep the SNAP option that you just selected (ENABLE) in effect, and to go on

to run your program, enter:

 END

If you want to activate the HELP function (which produces explanatory messages

on the console), enter:

 HELP

Note that for a dynamic partition, the trace must be enabled while the

VSE/POWER job that is to be traced is already active. At the end of the

VSE/POWER job, the SNAP traces will be lost.

Notes:

1. Input from SYSIPT: If the input is to be read from SYSIPT, you must prepare

your input records in advance and place them on SYSIPT before the EXEC

command is entered (either on SYSLOG or SYSRDR). The format of these

records must be the same as described above for the console input. The last

command must be END. All messages are issued on SYSLOG.

2. After enabling or disabling a SNAP dump, the message IKQ0082I is issued. The

message lists all SNAP dumps that are currently enabled for the partition.

3. If you attempt to disable SNAP dump 0010, a warning message is issued.

SNAP dump 0010 is used to control VSE/VSAM automatic CLOSE processing.

It should only be disabled after discussion with your IBM support

representative.

Disabling a SNAP Dump

1. To disable the SNAP dump after the program is finished, enter:

 // EXEC IKQVEDA,PARM=’SYSnnn’

where SYSnnn is either SYSLOG (default) or SYSIPT. PARM is optional.

The system responds with:

 ENTER FUNCTION ENABLE │ DISABLE │ DISABLE │ END │ HELP

2. Enter:

Diagnosis: SNAP Dump

352 VSE/VSAM User’s Guide and Application Programming

DISABLE SNAP=00nn,PART=yy

PART is optional. The system responds with:

 SNAP 00nn DISABLED IN PARTITION yy

 ENTER FUNCTION ENABLE │ DISABLE │ END │ HELP

3. Enter:

 END

Example: SNAP Dump 0001

The following example shows the use of IKQVEDA to enable SNAP 0001 as a

batch job in the BG partition.

Input (from SYSIN):

 // JOB EXAMPLE

 // EXEC IKQVEDA,PARM=’SYSIPT’

 ENABLE SNAP=01

 END

 /*

 /&

Output (on SYSLOG):

 // JOB EXAMPLE ...

 IKQ0082I SNAP 0001 ENABLED IN PARTITION BG

 EOJ EXAMPLE ...

Activating

You must now activate SNAP 0001 in your program. Do this by including one of

three UPSI statements in your job stream.

The UPSI job control statement specifies under which conditions the SNAP code

should be executed. Because user programs can also use the UPSI byte, make sure

that there is no conflict between the UPSI setting for SNAP and the UPSI

requirements for any program running in the same partition. Using UPSI, you can

specify that the error symptom message be printed under one of the following

conditions. If you do not specify an UPSI value, 00000000 is the default.

// UPSI 0

When the catalog management return code is not 0, 40, 68, or 160, or if

LISTCAT issued a return code not equal to 8. (These codes occur during

normal processing.)

// UPSI 1

When the catalog management return code is not zero.

// UPSI 11

For all catalog management return codes, including zero.

// UPSI 01

Same as 1 but with operator reply required.

// UPSI 011

Same as 11 but with operator reply required.

// UPSI 0111

Same as 0 but with operator reply required.

// UPSI 00001

Compression control services trace requires operator reply when a request

failed.

Diagnosis: SNAP Dump

Appendix F. Diagnosis Tools 353

// UPSI 000011

Compression control services trace requires operator reply.

SNAP 0001 Output

SNAP 0001 prints the following error symptom string at the console (SYSLOG):

 nnn,mn,rrr,ffff,ccc

The error symptom string is preceded by the partition identifier (for example, BG,

F1, F2).

The meaning of the string elements:

nnn Is the Catalog Management return code (decimal).

mn Are the last two characters of the name of the module that encountered the

error (IGG0CLmn).

rrr Is the Catalog Management reason code (decimal). The return and reason

codes are documented under the “IDCAMS Codes” in the z/VSE Messages

and Codes.

ffff Indicates which of the following functions was processed:

ALT - alter

DEF - define VSE/VSAM object

DEFA - define nonVSAM file

DEFC - define catalog

DEFS - define space

DEL - delete VSE/VSAM object or nonVSAM file

DELC - delete catalog

DELS - delete space

LOC - locate

LSTC - list catalog

UPD - update or update-extend

ccc Is one of the following:

v The number of the CI associated with the function (decimal)

v The object name, full length

v The volume number in EBCDIC

Figure 78 on page 355 is an example of the console listing for a job in which a

cluster and two alternate indexes are defined:

Diagnosis: SNAP Dump

354 VSE/VSAM User’s Guide and Application Programming

Maintaining VTOC and VOL1 Labels on Disk (IKQVDU)

The utility IKQVDU assists in maintaining the VTOC and VOL1 labels on disk

devices.

Note: This utility changes information in the VTOC only; it does not change

catalog entries. If you want to redefine a VSE/VSAM data space or

UNIQUE file, you must first issue a DELETE command to erase the file’s

catalog information.

If you want conceptual information on labels, refer to Appendix E, “VSE/VSAM

Labels,” on page 333.

How to Run the IKQVDU

The following procedures should be followed to use IKQVDU at the system console

for such maintenance. The key difference in the three procedures is the presence or

absence of a // UPSI job control statement.

 Control Statement Meaning

 ==

 // UPSI 11000000 Print error symptom string for all VSE/VSAM

 return codes.

 // EXEC IDCAMS,SIZE=AUTO

 Error Symptom String Meaning

 ==

 BG 000, ,000,LOC ,000000 Locate for CI 000000.

 BG 000, ,000,LOC ,MASTER Locate for master catalog volume.

 BG 000, ,000,LOC ,000001 Locate for CI 000001.

 BG 000, ,000,LOC ,000001

 BG 008,CG,006,DEL ,V3V003.KSDS Before defining V3V003.KSDS, user

 issues a DELETE to make sure that the

 object does not already exist (it doesn’t).

 BG 008,CG,006,LOC ,DEFAULT.MODEL.KSDS Before attempting to define the new

 cluster, VSE/VSAM looks for an optional

 default model. No default model exists.

 BG 000, ,000,DEF ,V3V003.KSDS VSAM defines the new cluster.

 BG 008,CG,006,LOC ,DEFAULT.MODEL.AIX Before attempting to define the new AIX,

 VSE/VSAM looks for an optional

 default model. No default model exists.

 BG 000, ,000,DEF ,V3V003.KSDS.AIX1 VSAM defines the first AIX.

 BG 008,CG,006,LOC ,DEFAULT.MODEL.AIX

 BG 000, ,000,DEF ,V3V003.KSDS.AIX2 VSAM defines the second AIX.

Figure 78. Example: SNAP Dump Output

Maintenance: VTOC and VOL1

Appendix F. Diagnosis Tools 355

PROCEDURE 1

Type in the following, then press

ENTER Explanation

1. // ASSGN SYS000,X’cuu’ For cuu, type in the address of the disk drive whose

volume is to be accessed.

2. // UPSI 1 This job control statement is optional. If it is

included, the following events take place on the

volume that was assigned to SYS000:

v The VSE/VSAM volume ownership bit and catalog

recovery area (CRA) pointer in the F4 VTOC label

are reset. The ownership bit is reset regardless of

how many catalogs own space on the volume.

v The entire VTOC is scratched, that is, empty VTOC

labels are written over existing F1, F2, and F3

labels, except for labels that have names starting

with the characters “DOS.”, “VSE.”, or “PAGE”.

v An operator authorization prompt is issued if the

VTOC label to be scratched is security protected.

3. // EXEC IKQVDU,SIZE=AUTO Start execution of the IKQVDU phase. Then run an

IDCAMS DELETE SPACE command to delete the

catalog information for the volume you just

scratched. Specify the FORCE parameter if necessary.

 PROCEDURE 2

Type in the following, then press

ENTER Explanation

1. // ASSGN SYS000,X’cuu’ For cuu, type in the address of the disk drive whose

volume is to be accessed.

2. // UPSI 11 This job control statement is optional. If it is

included, the following events take place on the

volume that was assigned to SYS000:

v The VSE/VSAM volume ownership bit and CRA

pointer in the F4 label are reset. The ownership bit

is reset regardless of how many catalogs own

space on the volume.

v The entire VTOC is scratched, that is, F0 labels are

written over existing F1, F2, and F3 labels, except

for labels that have names starting with the

characters “DOS.”, “VSE.”, or “PAGE”.

3. // EXEC IKQVDU,SIZE=AUTO Start execution of the IKQVDU phase. Then run an

IDCAMS DELETE SPACE command to delete the

catalog information for the volume you just

scratched. Specify the FORCE parameter if necessary.

Maintenance: VTOC and VOL1

356 VSE/VSAM User’s Guide and Application Programming

PROCEDURE 3

Type in the following, then press

ENTER Explanation

1. // ASSGN SYS000,X’cuu’ For cuu, type in the address of the disk drive whose

volume is to be accessed.

2. // EXEC IKQVDU,SIZE=AUTO Start execution of the IKQVDU phase.

SPECIFY FUNCTION OR REPLY ’?’

FOR OPTIONS READY

v You can specify the functions listed in Figure 80 on

page 358. If you specify a function, the list shown

in Figure 79 is not displayed.

v You can enter the character ? This displays (at the

system console) a list of the functions that

IKQVDU can perform; refer to Figure 79.

TO SET THE VOLUME OWNERSHIP FLAG REPLY ’SET OWNERSHIP’

TO SET THE CRA POINTER REPLY ’SET OWNERSHIP’

TO RESET THE VOLUME OWNERSHIP FLAG AND CRA POINTER REPLY

 ’RESET OWNERSHIP’ OR ’RESET CRA’

TO SET THE SECURITY FLAG IN A F1 LABEL REPLY ’SET

 SECURITY’

TO RESET THE SECURITY FLAG IN A F1 LABEL REPLY ’RESET

 SECURITY’

TO REMOVE A LABEL FROM THE VTOC REPLY ’SCRATCH’

TO RENAME A LABEL REPLY ’RENAME’

TO ALLOCATE A LABEL REPLY ’ALLOCATE’

TO REINITIATE PROCESSING REPLY ’RESTART’

TO ALTER OR DISPLAY A disk VOL1 LABEL

REPLY ’CLIP LABEL=SER=N..N’ OR ’CLIP LABEL=DISPLAY’

TO TERMINATE PROCESSING REPLY ’END’

READY

Figure 79. Display of IKQVDU Functions

Maintenance: VTOC and VOL1

Appendix F. Diagnosis Tools 357

Function

Enter one of the following,

then press ENTER Explanation

SET OWNERSHIP Causes the VSE/VSAM ownership bit to be set in the F4 VTOC label and optionally

allows the user to set the CRA pointer.

RESET CRA or RESET

OWNERSHIP

Causes the VSE/VSAM ownership bit and CRA pointer to be reset in the F4 VTOC

label. The ownership bit is reset regardless of how many catalogs own space on the

volume.

SET SECURITY Causes the security bit to be set in the F1 VTOC label.

When the console responds with ENTER DSN, reply with the data set name of the

VTOC label to be modified.

RESET SECURITY Causes the security bit in the F1 label to be reset.

When the console responds with ENTER DSN, reply with the data set name of the

VTOC label to be modified.

SCRATCH DSN=dsname Causes the VTOC label with the specified file name to be scratched. If the file is a

VSE/VSAM data space or a UNIQUE VSE/VSAM file, run an IDCAMS DELETE

SPACE or DELETE CLUSTER command to delete the catalog information for the

object(s) you just scratched. Specify the FORCE parameter if necessary.

SCRATCH VTOC Causes the entire VTOC to be scratched except for file names starting with the

characters “DOS.”, “VSE.”, and “PAGE”. In addition, an operator-authorization

prompt will be issued if the VTOC label is security-protected or describes a catalog.

If the VTOC contained VSE/VSAM data spaces, run an IDCAMS DELETE SPACE

command to delete the catalog information for the volume you just scratched.

Specify the FORCE parameter if necessary.

RENAME Causes the DSNAME portion of the F1 VTOC label to be changed.

When the console responds with ENTER OLD DSN, reply with the file name of the

VTOC label to be changed. Be sure to enter the correct OLD DSN. No error checking

is performed if an invalid name is specified.

When the console responds with ENTER NEW DSN, reply with the new file name.

Figure 80. Explanation to IKQVDU Functions (Part 1 of 2)

Maintenance: VTOC and VOL1

358 VSE/VSAM User’s Guide and Application Programming

Error Message and Codes (from IKQVDU)

If an error occurs during execution of IKQVDU, a message of the following format

is displayed at the system console:

 ERROR** DADSM RETURN CODE IS nnn condition

 where:

 nnn is the code (for example: 020)

 condition describes the problem (for example: VTOC FULL)

The following shows the code (nnn), the associated condition, and the action

required to correct the condition.

004 I/O ERROR WHILE READING VOLUME LABEL

Action: If the problem was not caused by a hardware error, restore the

volume.

008 VOLUME NOT MOUNTED

Action: Mount the correct volume.

012 I/O ERROR ON VTOC

Action: If the problem was not caused by a hardware error, restore the

volume.

016 DUPLICATE NAME ON VOLUME

Action: Choose another file name or scratch the original file from the

volume. If duplication is because of key ranges, ensure every UNIQUE key

range is on a separate volume.

020 VTOC FULL

Action: Delete any nonVSAM files or VSE/VSAM data spaces no longer

needed from the volume to make additional Format 1 labels available, or

reinitialize the volume with a larger VTOC.

024 EXTENT OVERLAPS EXPIRED FILE

Action: Examine the VTOC listing to determine where the overlap

 Function

Enter one of the following,

then press ENTER Explanation

ALLOCATE Causes a new label to be created and written in the VTOC. To use this function, a

DLBL/EXTENT job control statement must be provided.

When the console responds with ENTER FILENAME, reply with the same file name

as that in the DLBL statement referred to above.

When the console responds with ENTER NEW DSN, reply with the file name of the

file to be created.

When the console responds with DO YOU WISH TO SECURITY PROTECT THIS

DATA SET? reply YES or NO. A reply of YES causes the data security bit to be set in

the F1 VTOC label. A reply of NO causes the data security bit to be reset.

RESTART Causes processing to be reinitiated with a READY prompt. This keyword can be

used as a response to any operator prompt.

CLIP LABEL=DISPLAY Causes the volume serial number to be displayed on the system console.

CLIP LABEL=SER=n..n Causes the existing volume serial number to be changed to the one specified as n..n.

END Causes processing to terminate.

Figure 80. Explanation to IKQVDU Functions (Part 2 of 2)

Maintenance: VTOC and VOL1

Appendix F. Diagnosis Tools 359

occurred. Correct the EXTENT statement causing the error. To delete the

expired file, open a DTF using the same file-ID as that of the expired file,

and instruct the operator to reply DELETE to message 4n33A when it is

issued.

028 EXTENT OVERLAPS UNEXPIRED FILE

Action: Compare the high and low extent limits on the EXTENT statement

or LSERV output with the file or data space limits on the VTOC display. If

the extents overlap, correct the EXTENT statement in error.

032 EXTENT OVERLAPS PROTECTED UNEXPIRED FILE

Action: Examine the VTOC to determine where the overlap occurred.

Correct the EXTENT statement causing the error. If necessary, use another

volume.

036 EXTENT OVERLAPS VTOC

Action: Execute LVTOC. The Format 4 label (the first label in the VTOC

display) contains the extent limits of the VTOC. If the program executed

uses a temporary label set and overlaps the VTOC, correct the EXTENT

statements that overlap. If the job uses standard or partition standard

labels, use the LSERV output to correct the extents of the overlapping file,

VSE/VSAM data space, or UNIQUE VSE/VSAM file. Then rebuild the

appropriate label tracks.

040 REQUIRED EXTENTS MISSING

Action: If temporary labels were used, match the extents on the incoming

EXTENT card with the extents in the LVTOC output. If standard

(permanent) labels were used, match the extents in the LSERV output with

those in the LVTOC output.

044 LABEL NOT FOUND

Action: Use the LVTOC output to check for all file labels used in OPEN

macros. If the file has been destroyed, it was probably because of deletion

of overlapping extents on an unexpired file, and the file must be rebuilt.

048 INVALID LABEL ADDRESS

Action: Examine the VTOC for a label having an invalid forward chain

pointer, and delete it. If no invalid labels are found, just rerun the job.

056 EXTENT OVERLAPS PROTECTED EXPIRED FILE

Action: Examine the VTOC listing to determine where the overlap

occurred. Correct the EXTENT statement causing the error. If it is not

necessary to save the expired file, open a DTF using the same file-ID as

that of the expired file, and instruct the operator to reply DELETE to

message 4n33A when it is issued.

064 GETVIS FAILURE ENCOUNTERED

Action: Allocate GETVIS area. If VSE/VSAM is running in the SVA, re-IPL

and specify a new value for SET SVA. If VSE/VSAM is running in a

partition, rerun the job in a larger partition.

072 CDLOAD FAILURE ENCOUNTERED

Action: Either the CDLOAD directory or the GETVIS area is full. Allocate

more space.

080 OVERLAP AMONG NEW EXTENTS

Action: If DLBL and EXTENT statements are included in the program,

determine the conflicting extents and correct them. If a standard label set is

used, use the LSERV output to locate and correct the conflicting file

extents, and rebuild the standard label tracks.

Maintenance: VTOC and VOL1

360 VSE/VSAM User’s Guide and Application Programming

088 FORMAT 4 LABEL NOT FOUND

Action: Reinitialize the VTOC to create a format-4 label.

092 VOL1 LABEL NOT FOUND

Action: Reinitialize the volume to create a VOL1 label.

096 JIB PROCESSING FAILURE

Action: Rerun the job when more JIBs are available.

Maintenance: VTOC and VOL1

Appendix F. Diagnosis Tools 361

Maintenance: VTOC and VOL1

362 VSE/VSAM User’s Guide and Application Programming

Glossary

ir This glossary includes terms and definitions

related primarily to VSE/VSAM. If you do not

find the term you are looking for, refer to the

index of this book, or to the IBM Dictionary of

Computing , SC20-1699.

The glossary includes definitions with:

v Symbol * where there is a one-to-one copy from

the IBM Dictionary of Computing

v Symbol (A) from the American National

Dictionary for Information Processing Systems

copyright 1982 by the Computer and Business

Equipment Manufacturers Association

(CBEMA). Copies may be purchased from the

American National Standards Institute, 1430

Broadway, New York, New York 10018.

Definitions are identified by symbol (A) after

definition.

v Symbols (I) or (T) from the ISO Vocabulary -

Information Processing and the ISO Vocabulary -

Office Machines developed by the International

Organization for Standardization, Technical

Committee 97, Subcommittee 1. Definitions of

published sections of the vocabularies are

identified by symbol (I) after the definition;

definitions from draft international standards,

draft proposals, and working papers in

development by the ISO/TC97/SC1 vocabulary

subcommittee are identified by symbol (T) after

the definition, indicating final agreement has

not yet been reached among participating

members.

The part of speech being defined is indicated by

the opening words of the descriptive phrase: “To

...” indicates a verb and “Pertaining to ...”

indicates a modifier. Any other wording indicates

a noun or noun phrase.

Numerics

31-bit addressing. Provides addressability for address

spaces of up to 2 gigabytes.

A

access method. A program (such as VSE/VSAM or

VTAM) that allows the user to define files and

addresses, and to move data to and from them. It is a

technique for moving data between main storage and

input/output devices.

address. 1. The location in the storage of a computer

where data are stored.

 2. In data communication, the unique code assigned to

every device or work station connected to a network.

addressing mode (AMODE). A program attribute that

refers to the address length that a program is prepared

to handle on entry. Addresses may be either 24 bits or

31 bits in length. In 24-bit addressing mode, the

processor treats all virtual addresses as 24-bit values; in

31-bit addressing mode, the processor treats all virtual

addresses as 31-bit values.

address space. A range of up to two gigabytes of

contiguous virtual storage addresses that the system

creates for a user. Unlike a data space, an address space

contains user data and programs, as well as system

data and programs, some of which are common to all

address spaces. Instructions execute in an address space

(not a data space).

AIX. See alternate index.

alternate index (AIX). In systems with VSE/VSAM,

the index entries of a given base cluster organized by

an alternate key, that is, a key other than the prime key

of the base cluster. For example, a personnel file

primarily ordered by names can be indexed also by

department number.

* alternate tape. A tape drive to which the operating

system switches automatically for tape read or write

operations if the end of the volume has been reached

on the originally used tape drive.

alternate track. On a direct access storage device, a

track designated to contain data in place of a defective

track.

AMODE. See addressing mode.

application program. A program written for or by a

user that applies to the user’s work, such as a program

that does inventory control or payroll.

ASI. See automated system initialization.

assemble. To translate a program from assembler

language into object code.

assembler. A computer program that converts

assembly language instructions into object code.

© Copyright IBM Corp. 1979, 2005 363

* assembler language. A source language that

includes symbolic machine language statements in

which there is a on-to-one correspondence with the

instruction formats and data formats of the computer.

* automated system initialization (ASI). A function

that allows control information for system startup to be

cataloged for automatic retrieval during system startup.

* autostart. In z/VSE, a facility that starts-up

VSE/POWER with little or no operator involvement.

* auxiliary storage. All addressable storage, other than

main storage, that can be accessed by an input/output

channel; for example, storage on magnetic tape or

direct access storage devices. Synonymous with

external storage and with secondary storage.

B

* backup copy. A copy of information or data that is

kept in case the original is changed or destroyed.

batch processing. 1. Serial processing of computer

programs. 2. Pertaining to the technique of processing a

set of computer programs in such a way that each is

completed before the next program of the set is started.

(A)

batch program. A program that is processed in series

with other programs and therefore normally processes

data without user interaction.

block. Usually, a block consists of several records of a

file that are transmitted as a unit. But if records are

very large, a block can also be part of a record only. On

an FBA disk, a block is a string of 512 bytes of data. In

the (E)CKD environment, blocks are called records. See

also control block.

buffer. An area of storage temporarily reserved for

input or output operations; an area into which data is

read or from which data is written. Synonymous with

I/O area.

byte. Eight adjacent binary digits that are operated

upon as a unit and that constitute the smallest

addressable unit of information within a computer

system. Normally, it represents a stored character.

C

catalog. A directory of files and libraries, with

reference to their locations. A catalog may contain other

information such as the types of devices in which the

files are stored, passwords, and blocking factors. (I) (A)

 See also VSE/VSAM master catalog.

catalog recovery area (CRA). In systems with

VSE/VSAM, an entry-sequenced data set that exists on

each volume owned by a recoverable catalog, including

the catalog volume itself. The CRA contains copies of

the catalog records and can be used to recover a

damaged or invalid catalog. As of z/VSE 3.1, the CRA

is no longer supported.

channel program. One or more channel command

words that control a sequence of data channel

operations. Execution of this sequence is initiated by a

single start I/O (SIO) instruction.

CA. See control area.

CI. See control interval.

CKD. See count-key-data (CKD) device.

close. The function that ends the connection between a

file and a program, and ends the processing. Contrast

with open.

cluster. In systems with VSE/VSAM, a named

structure consisting of a group of related components;

for example, a data component with its index

component.

component. 1. Hardware or software that is part of a

computer system. 2. A functional part of an operating

system, for example: job control program,

VSE/POWER. 3. In VSE/VSAM, a named, cataloged

group of stored records, such as the data component or

index component of a key-sequenced file or alternate

index.

conditional job control. The capability of the job

control program to process or to skip one or more

statements based on a condition that is tested by the

program.

configuration. The devices and programs that make

up a system, subsystem, or network.

control area (CA). In VSE/VSAM, a group of control

intervals (CIs) used as a unit for formatting a data set

before adding records to it. Also, in a key-sequenced

data set, the set of control intervals pointed to by a

sequence-set index record (which, for example, is used

by VSE/VSAM for distributing free space).

control block. An area within a program or a routine

defined for the purpose of storing and maintaining

control information.

control interval (CI). A fixed length area of disk

storage where VSE/VSAM stores records and creates

distributes free space. It is the unit of information that

VSE/VSAM transfers to or from disk storage.

count-key-data (CKD) device. A disk storage device

that stores data in the record format: count field, key

field, data field. The count field contains, among others,

the address of the record in the format: cylinder, head

(track), record number and the length of the data field.

The key field, if present, contains the record’s key

364 VSE/VSAM User’s Guide and Application Programming

(search argument). CKD disk space is allocated by

tracks and cylinders. Contrast with

fixed-block-architecture (FBA) device.

CRA. See catalog recovery area.

D

DASD. See direct access storage device.

Data Facility Product (DFP). See DFSMSdfp.

data import. The process of reformatting data that was

used under one operating system (for example, IBM

System/3) such that it can subsequently be used under

a different operating system (for example, the IBM

z/VSE system).

data management. A major function of the operating

system. It involves organizing, storing, locating, and

retrieving data.

data set. The major unit of data storage and retrieval,

consisting of a collection of data in one or several

prescribed arrangements and described by control

information to which the system has access.

 See also file.

* default value. A value assumed when no value has

been specified. Synonymous with assumed value.

device. A hardware component of a computer system

with a specific purpose.

device address. 1. The identification of an

input/output device by its channel and unit number. 2.

In data communication, the identification of any device

to which data can be sent or from which data can be

received.

* device class. The generic name for a group of device

types, for example, all display stations belong to the

same device class. Contrast with device type.

* device type. The name of a particular kind of

device; for example, 9345 (IBM DASD module), 3420

(IBM magnetic tape unit). Contrast with device class.

DFP. See DFSMSdfp.

DFSMSdfp. DFSMSdfp (formerly known as DFP)

provides data management, device support, program

library management, utility functions, and support for

the z/OS operating system.

direct access. Accessing data on a storage device using

their address and not their sequence. This is the typical

access on disk devices as opposed to magnetic tapes.

Contrast with sequential access.

* direct access storage. A storage device that provides

direct access to data. (1)

* direct access storage device (DASD). A device in

which access time is effectively independent of the

location of the data. See also fixed-block-architecture

(FBA) device.

directory. 1. A table of identifiers and references to the

corresponding items of data. (I) (A) 2. In z/VSE, an

index that is used by the system to locate one or more

sequential blocks of program information that are

stored on direct access storage.

disk. Synonymous for magnetic disk.

diskette. A thin, flexible magnetic disk and a

semi-rigid protective jacket, in which the disk is

permanently enclosed.

disk sharing. An option that lets independently

operating computer systems to jointly use common

data residing on shared disk devices.

dump. 1. To record, at a particular instant, the

contents of all or part of one storage device in another

storage device. Dumping is usually for the purpose of

debugging. (T) 2. Data that has been dumped. (T) 3. To

copy data in a readable format from main or auxiliary

storage onto an external medium such as tape, diskette,

or printer. 4. To copy the contents of all or part of

virtual storage for the purpose of collecting error

information.

E

Enterprise Storage Server (ESS). An IBM disk storage

system designed for performance, automation,

integration, and continuous data availability. It

supports advanced copy functions, which can be

critical for increasing data availability by providing

important disaster recovery and backup protection.

* entry-sequenced file. A VSE/VSAM file whose

records are loaded without respect to their contents and

whose relative byte addresses cannot change. Records

are retrieved and stored by addressed access, and new

records are added to the end of the file.

entry-sequenced data set (ESDS). An entry-sequenced

file under VSE/VSAM. Its records are loaded without

respect to their contents, and whose relative byte

addresses cannot change. Records are retrieved and

stored by addressed access, and new records are added

to the end of the file. See also SAM ESDS file.

exit. 1. To execute an instruction within a portion of a

computer program in order to terminate the execution

of that portion. 2. See user exit routine.

exit routine. 1. Either of two types of routines:

installation exit routines or user exit routines.

Synonymous with exit program. 2. See user exit routine.

Glossary 365

extended-addressed KSDS. A KSDS exceeding 4 GB

in size.

extent. Continuous space on a disk or diskette that is

occupied by or reserved for a particular file or

VSE/VSAM data space.

* external storage. Storage that is accessible to a

processor only through input-output channels. An

external storage may sometimes be considered as

peripheral equipment. Synonymous with auxiliary

storage. (T)

F

FBA. See fixed-block-architecture (FBA) device.

FBA block. A unit of data that is transported as a unit

on FBA disk devices.

Fibre Channel Protocol (FCP). A combination of

hardware and software conforming to the Fibre

Channel standards and allowing system and peripheral

connections via FICON and FICON Express feature

cards on IBM zSeries processors. In z/VSE, zSeries FCP

is employed to access industry-standard SCSI disk

devices.

file. A named set of records stored or processed as a

unit. (T) Synonymous with data set.

fixed-block-architecture (FBA) device. A disk storage

device that stores data in blocks of fixed size. These

blocks are addressed by block number relative to the

beginning of the particular file. Contrast with

count-key-data (CKD) device.

G

generation. See macrogeneration.

generic name. The initial characters common to

names, that can be used to identify a group of items. A

generic name usually ends with an *; for example,

ORD* identifies all items whose names begin with the

characters ORD.

I

index. 1. A table used to locate records in an indexed

sequential data set or an indexed file. 2. In VSE/VSAM,

an ordered collection of pairs, each consisting of a key

and a pointer, used by VSE/VSAM to sequence and

locate the records of a key-sequenced data set or file; it

is organized in levels of index records. See also alternate

index.

initial program load (IPL). The process of loading

system programs and preparing the system to run jobs.

input. 1. Pertaining to a functional unit or channel

involved in an input process, or to the data involved in

such process. 2. Loosely, input data, input process. 3.

Information or data to be processed.

input/output (I/O). See input and output.

IPL. See initial program load.

J

JCL. See job control language.

job. One program, or a group of related programs

called job steps, complete with the JCL statements

necessary for a particular run. A job is identified in the

job stream by a JOB statement followed by one EXEC

statement for each of the programs or job steps.

job catalog. A catalog made available for a job by

using the file name IJSYSUC in the respective DLBL

statement.

job control language (JCL). A language that serves to

prepare a job or each job step of a job to be run. Some

of its functions are: to identify the job, to determine the

I/O devices to be used, set switches for program use,

log (or print) its own statements, and fetch the first

phase of each job step.

job control statement. A particular statement of JCL.

job step. One of a group of related programs complete

with the JCL statements necessary for a particular run.

Every job step is identified in the job stream by an

EXEC statement under one JOB statement for the entire

job.

job stream. The sequence of jobs as submitted to an

operating system.

K

* KB (kilobyte). 1024 bytes of storage.

key. In VSE/VSAM, one or several characters taken

from a certain field (key field) in data records for

identification and sequence of index entries or of the

records themselves.

key sequence. The collating sequence of either records

themselves or of their keys in the index, or the collating

sequence of records and keys. The key-sequence is

alphanumeric.

key-sequenced data set (KSDS). Under VSE/VSAM, a

key-sequenced file. See key-sequenced file.

key-sequenced file. A VSE/VSAM file whose records

are loaded in key sequence and controlled by an index.

366 VSE/VSAM User’s Guide and Application Programming

Records are retrieved and stored by keyed access or by

addressed access, and new records are inserted in the

file in key sequence.

KSDS. See key-sequenced data set.

L

* label. A record that identifies a volume on tape,

disk, or diskette, or that identifies a file on the volume.

large DASD. A DASD device that (1) has a capacity

exceeding 64K tracks and (2) does not have VSAM

space created prior to VSE/ESA 2.6 that is owned by a

catalog.

local shared resources (LSR). 1. An option for sharing

I/O buffers, I/O-related control blocks, and channel

programs among VSE/VSAM data sets in a resource

pool that serves one partition or address space. 2. A

VSE/VSAM option activated by the macros BLDVRP,

DLVRP, and WRTBFR to share control blocks among

files.

logical record. A user record, normally pertaining to a

single subject and processed by data management as a

unit. Contrast with physical record which may be

larger or smaller.

LSR. See local shared resources.

M

macro. See macroinstruction.

macrodefinition. A set of statements and instructions

that defines the name of, format of, and conditions for

generating a sequence of assembler statements and

machine instructions from a single source statement.

macroexpansion. See macrogeneration.

macrogeneration. An operation in which an assembler

produces a sequence of assembler language statements

by processing a macrodefinition called by a

macroinstruction. Macrogeneration takes place before

assembly. Synonymous with macroexpansion.

macroinstruction. In assembler programming, an

assembler language statement that causes the assembler

to process a predefined set of statements called a

macrodefinition. The statements normally produced

from the macrodefinition replace the macroinstruction

in the program.

magnetic tape. A tape with a magnetizable layer on

which data can be stored. (T)

maximum (max) CA. A unit of allocation equivalent

to the maximum control area size on a count-key-data

or fixed-block device. On a CKD device, the max CA is

equal to one cylinder.

* MB (megabyte). One megabyte equals 1,048,576

bytes.

message. In z/VSE, a communication sent from a

program to the operator or user. It can appear on a

console, a display terminal, or in a printout.

* migrate. To move to a changed operating

environment, usually to a new release or version of a

system.

minimum (min) CA. A unit of allocation equivalent to

the minimum control area size on a count-key-data or

fixed-block device. On a CKD device, the min CA is

equal to one track.

module. A program unit that is discrete and

identifiable with respect to compiling, combining with

other units, and loading; for example, the input to, or

output from an assembler, compiler, linkage editor, or

executive routine. (A)

O

online processing. Processing by which the input data

enters the computer directly from a display station and

the output data is transmitted directly to the display

station.

open. To connect a file or a library to a program for

processing. Contrast with close.

* operating system. Software that controls the

execution of programs and that may provide services

such as resource allocation, scheduling, input/output

control, and data management. Although operating

systems are predominantly software, partial hardware

implementations are possible. (T)

* operator command. A statement to a control

program, issued via a console or terminal. It causes the

control program to provide requested information, alter

normal operations, initiate new operations, or end

existing operations.

output. 1. Pertaining to a functional unit or channel

involved in an output process, or to the data involved

in such process. 2. Loosely, output data, output process.

3. Information or data that has been processed.

P

* partition. In z/VSE, a division of the virtual address

area that is available for program execution.

* password. In computer security, a string of

characters known to the computer system and a user.

The user must specify it to gain full or limited access to

the system and to the data stored in it.

path. 1. In ACF/VTAM, the intervening nodes and

data links connecting a terminal and an application

Glossary 367

program in the host processor. 2. In VSE/VSAM, a

named logical entity providing access to the records of

a base cluster either directly or through an alternate

index.

* physical record. The amount of data transferred to

or from auxiliary storage. Synonymous with block.

processor. The hardware component that interprets

and executes instructions.

* processor storage. 1. The storage provided by one or

more processing units. 2. In virtual storage systems,

synonymous with real storage.

R

* random processing. 1. The treatment of data without

respect to its location in external storage, and in an

arbitrary sequence governed by the input against which

it is to be processed. 2. The processing of records in an

order other than the order in which they exist in a file.

* read. To acquire or interpret data from a storage

device, from a data medium, or from another source. (I)

(A)

* real storage. The main storage in a virtual system.

Physically, real storage and main storage are identical.

Conceptually however, real storage represents only part

of the range of addresses available to the user of a

virtual storage system. Traditionally, the total range of

addresses available to the user was provided by the

main storage. (I) (A)

record. A collection of related data or words, treated

as a unit. See logical record and physical record.

* recover. After an execution failure, to establish a

previous or new status from which execution can be

resumed. (T)

relative-record data set (RRDS). A VSE/VSAM file

whose records are loaded into fixed-length slots and

accessed by the relative-record numbers of these slots.

residency mode (RMODE). A program attribute that

refers to the location where a program is expected to

reside in virtual storage.

restore. To write back on disk data that was

previously written from disk to an intermediate storage

medium such as tape.

RMODE. See residency mode.

routine. A program, or part of a program, that may

have some general or frequent use. (T)

* RPG II. A commercially oriented programming

language suitable specifically designed for writing

application programs intended for business data

processing.

RRDS. See relative-record data set.

run. 1. A performance of one or more jobs or

programs. (I) (A) 2. To cause a program, utility, or other

machine function to be performed.

S

SAM. See sequential access method.

SAM ESDS file. A SAM file managed in VSE/VSAM

space, so it can be accessed by both SAM and

VSE/VSAM macros.

SCSI. A peripheral interface originally introduced for

small computers. IBM Enterprise Storage Server (ESS)

disks can be accessed via a SCSI interface implemented

via zSeries Fibre Channel Protocol (FCP) channels.

SDL. See system directory list.

sequential access. The serial retrieval of records in

their entry sequence or serial storage of records with or

without a premeditated order. Contrast with direct

access.

sequential access method (SAM). A data access

method that writes to and reads from an I/O device

record after record (or block after block). On request,

the support performs device control operations such as

line spacing or page ejects on a printer, or skip a

certain number of tape marks on a tape drive.

sequential file. A file in which records are processed

in the order in which they are entered and stored.

service program. A program in general support of

computer processes, for example, a diagnostic program,

a trace program, or a sort program. (T)

* shared virtual area (SVA). In z/VSE, a high address

area of virtual storage that contains a system directory

list (SDL) of frequently used phases, resident programs

that can be shared between partitions, and an area for

system support.

* spanned record. A logical record contained in more

than one block.

split. To double a specified unit of storage space (CI

or CA) dynamically when the specified minimum of

free space gets used up by new records.

* standard label. A fixed-format record that identifies

a volume of data such as a tape reel or a file that is

part of a volume of data.

startup. The process of performing IPL of the

operating system and of getting all subsystems and

application programs ready for operation.

368 VSE/VSAM User’s Guide and Application Programming

storage. A device, or part of a device, that can retain

data. See also auxiliary storage, processor storage, virtual

storage.

* suballocated file. A VSE/VSAM file that occupies a

portion of an already defined data space. The data

space may contain other files. Contrast with unique file.

SVA. See shared virtual area.

system directory list (SDL). A list containing directory

entries of frequently-used phases and of all phases

resident in the SVA. The list resides in the SVA.

T

track. A circular path on the surface of a disk or

diskette. Smallest unit of physical disk space.

U

* unique file. A VSE/VSAM file that occupies a data

space of its own. The data space is defined at the same

time as the file and cannot contain any other file.

Contrast with suballocated file.

unit of transfer. The amount of data that can be

transferred between virtual storage and an I/O device

in response to a read or write request.

user exit routine. A user-written routine that receives

control at predefined user exit points.

* utility program. 1. A computer program in general

support of computer processes; for example, a

diagnostic program, a trace program, or a sort program.

(T) Synonymous with service program. 2. A program

that performs an everyday task such as copying data

from one storage device to another.

V

variable-length relative-record data set (VRDS). A

VSE/VSAM relative-record data set with

variable-length records. See also relative-record data set.

* virtual address. The address of a location in virtual

storage. A virtual address must be translated into a real

address in order to process the data in processor

storage.

* virtual address area. The area available as a

program address range.

virtual address space. In z/VSE, a subdivision of the

virtual address area available to the user for the

allocation of private, non-shared partitions.

virtual disk. A range of up to two gigabytes of

contiguous virtual storage addresses that a program

can use as workspace. Although the virtual disk exists

in storage, it appears as a real FBA disk device to the

user program. All I/O operations directed to a virtual

disk are intercepted and the data to be written to, or

read from, the disk is moved to or from a data space.

 Like a data space, a virtual disk can hold only user

data; it does not contain shared areas, system data or

programs. Unlike an address space or a data space,

data is not directly addressable on a virtual disk. To

manipulate data on a virtual disk, the program has to

perform I/O operations.

virtual storage. Addressable space image for the user

from which instructions and data are mapped into

processor storage locations.

virtual storage access method (VSAM). An access

method for indexed or sequential processing of fixed

and variable length records on direct access devices.

The records in a VSE/VSAM data set or file can be

organized: in logical sequence using a key field (key

sequence); in physical sequence in which they are

written on the data set or file (entry sequence); by

using relative record numbers.

 These and other functions are provided by the IBM

product VSE/VSAM.

volume. A data carrier mounted and demounted as a

unit; for example, a reel of magnetic tape, a disk pack.

(I) Some disk units have no demountable packs. In that

case, a volume is the portion available to one

read/write mechanism.

volume identifier. The volume serial number, which

is a number in a volume label assigned when a volume

is prepared for use by the system. See volume serial

number.

* volume serial number. A number in a volume label

assigned when a volume is prepared for use in a

system.

volume table of contents (VTOC). A table on a disk

volume that describes every file on it.

VRDS. See variable-length relative-record data set.

VSE/VSAM. Virtual Storage Extended/Virtual Storage

Access Method. See virtual storage access method.

VSAM. See virtual storage access method.

* VSE/VSAM managed space. A user-defined space

on disk that is under the control of VSE/VSAM.

* VSE/VSAM master catalog. A key-sequenced data

set or file with an index containing extensive data set

and volume information that VSE/VSAM requires to

locate data sets or files, allocate and deallocate storage

space, verify the authorization of a program or operator

to gain access to a data set or file, and to accumulate

use statistics for data sets or files.

Glossary 369

* VSE/VSAM recoverable catalog. A VSE/VSAM

catalog defined with the recoverable attribute, causing

duplicate catalog entries to be placed into catalog

recovery for recovery in the event of a catalog failure.

* VSE/VSAM user catalog. An optional VSE/VSAM

catalog used in the same way as the master catalog and

pointed to by the master catalog. Use of user catalogs

lessens the contention for the master catalog and

facilitates volume portability.

VSE. Virtual Storage Extended. 1. Synonym for

VSE/Advanced Functions. 2. An operating system that

is an extension of Disk Operating System/Virtual

Storage (DOS/VSE).

VSE/Advanced Functions. The basic operating

support needed for a VSE-controlled installation.

Synonymous with VSE.

VTOC. See volume table of contents.

W

work file. A file used to for temporary storage of data

being processed.

370 VSE/VSAM User’s Guide and Application Programming

Related IBM Manuals

The following lists the manuals referred to in this book.

IBM z/VSE

VSE/VSAM Commands, SC33-8245

z/VSE Planning, SC33-8221

z/VSE System Control Statements, SC33-8225

z/VSE Administration, SC33-8224

z/VSE Operation, SC33-8239

z/VSE Messages and Codes, SC33-8226, SC33-8227, SC33-8228

z/VSE Guide for Solving Problems, SC33-8232

z/VSE Guide to System Functions, SC33-8233

z/VSE System Control Statements, SC33-8225

z/VSE System Macros Reference, SC33-8230

z/VSE System Utilities, SC33-8234

Various

Device Support Facilities User’s Guide and Reference, GC35-0033

IBM Dictionary of Computing, SC20-1699

American National Dictionary for Information Processing Systems

ISO Vocabulary - Information Processing

ISO Vocabulary - Office Machines

© Copyright IBM Corp. 1979, 2005 371

Related Manuals

372 VSE/VSAM User’s Guide and Application Programming

Index

Special characters
// DLBL job control statement

(VSE/VSAM) 26

// DLBL statement, when required 23

// EXEC IDCAMS statement 18

// EXEC job control statement

(VSE/VSAM) 18, 36

// EXEC PARM 39

// EXTENT job control statement

(VSE/VSAM) 39

// UPSI statement (with maintain

VTOC/VOL1 labels) 355

// UPSI statement (with SNAP

dump) 353

Numerics
16MB line of storage, buffers above 16

3390-9 disk device 77

3995-151 Optical Library Server

support 90

3995-151, catalog on 331

A
abbreviations, list of xvii

abnormal
end with reusable file, default for 30

end-of-job disposition (managed-SAM

access) 35

end-of-job disposition (VSE/VSAM

access) 34

termination, find end-of-file at 111

abnormal end of job 202

ACB (VSE/VSAM macro)
access to SAM ESDS files 151

buffer space allocation 96

buffer space for index records 121

buffer space size 95

data set name sharing 192

DDNAME (file name) parameter 27

password, supplying 126

relationship to FILE(dname) 27

VTAM compatibility 331

ACB JRNAD exit (monitoring CA

splits) 112

ACB macro 196

See access method control block macro

(ACB)

ACB macro format 197

access method control block (ACB) 184

access method control block macro (ACB)
activation of requests 204

active requests 232

operand notations for macros 295

parameter lists for macros 303

positioning information 204

access method services
See IDCAMS utility program

access modes valid for SAM ESDS

files 156

access modes valid for VSE/VSAM ESDS

files 156

access passwords in a catalog 126

ACF/VTAM similarities with

VSE/VSAM 331

activating VSE/VSAM data

compression 67

adding records to a file 111

addition, addressed sequential 281

addressed access 233, 236, 238, 244, 287

addressed-direct retrieval 272

addressed-sequential retrieval 270

allocate buffer space
above the 16MB line 16

ACB macro specification 96

for file 27

for path 98

minimum 96

performance considerations 99

preventing deadlock in exclusive

control 101

supervisor buffers, specifying number

of 22

allocate file implicitly
primary allocation (SAM ESDS) 29

RECORD parameter (SAM ESDS) 29

RECSIZE parameter 29

secondary allocation 29

secondary allocation (SAM ESDS) 29

allocation limits of control area for CKD

devices 86

ALTER (IDCAMS command)
catalog entries (SAM ESDS) 170

free space, changing values 111

using with SAM ESDS files 170

alter file definitions in

password-protected catalog 126

altering VSE/VSAM control blocks 226

alternate index
access to 8

advantage of 7

example 8

path to 8

suballocating data space 84

UPGRADE attribute and share

options 130

upgrade record, what it is 350

AMS
See IDCAMS utility program

assign
device to master catalog 21

device to volume 22

audience of this book xv

authorization verification routine 128

authorize access to resources 125

automated system initialization (ASI)
IPL commands, specifying 21

B
back up

considerations (catalogs) 137

considerations (files) 134, 135

considerations (volumes) 134, 136

dialog for 12

generic names, using 56

tools 139

BACKUP command
migration to large DASD 78

migration to SCSI disk 55

overview 3

use of 135

Backup/Restore Function
loading into SVA 19

protection of resources, use in 137

storage requirements 19

use of 3

use with user-generated

supervisor 19

backward reading of a VSE/VSAM

file 241

base cluster, paths to 8

basic information on VSE/VSAM
advantages of VSE/VSAM 1

alternate index, advantage of 7

authorize access to resources 125

buffer allocation above 16MB line 16

buffer space for CIs (with LSR) 99

buffer space for CIs (with NSR) 94

catalog check program

(IKQVCHK) 345

catalog, defining files in 41

catalogs supported 6

catalogs, advantages of 7

catalogs, defining through job

control 40

catalogs, moving from device to

device 53

central control of files 1

cluster 6

commands of IDCAMS, overview

of 8

communicate with VSE/VSAM 8

compatibility VSE/VSAM Version 2

and 7 13

compatibility with other

products 329

control area (CA) 5

control area size 85

control interval (CI) 5

control interval size 88

data integrity 125

data management 47

data organization concepts 4

data protection 1, 125

data space 5

data space classification 83

defining data space 48

defining files 48

device independence 2

© Copyright IBM Corp. 1979, 2005 373

basic information on VSE/VSAM

(continued)
diagnosis tools, overview 345

dialog, overview of 11

distributed free space 111

dynamic space allocation 2

environments, applicable 13

file organization 4

file types supported 4

files control 1

files, defining 48

files, move from device to device 53

files, transporting between

systems 52

functions of VSE/VSAM 2

IDCAMS commands (overview) 8

IDCAMS utility program, use of 8

index options and performance 120

indexes supported 7

integrity of resources 132

interactive interface for users 11

introduction 1

ISAM files, support for 321

ISAM Interface Program 321

ISAM Interface Program, use of 2

ISAM to VSE/VSAM, convert 2

job catalog 7

job control requirements 23

job control to access VSE/VSAM

files 11

labels used with VSE/VSAM 333

macros of VSE/VSAM 10

maintain VTOC/VOL1 labels

(IKQVDU) 355

master catalog 7

modeling 57

operation, IPL commands 21

organization elements 5

overview 1

ownership of data space 47

password checking 126

password-protected objects, operating

on 126

passwords 1

performance considerations 67, 83

planning for VSE/VSAM 13

portability of data 2

protection of resources 125

protection of resources, tools for 139

real mode operation 14

SAM ESDS file, purpose of 2

SAM ESDS files explained 151

SAM files, support for 151

SAM to VSE/VSAM, convert 2

scope of VSE/VSAM 1

SNAP dump program

(IKQVEDA) 350

space allocation 108

space management 47

statistics on files 121

storage required for VSE/VSAM 13

use of VSE/VSAM 1

user catalogs 7

virtual disk support 51

virtual mode operation 14

VSE/VSAM Backup/Restore Function,

use of 3

basic information on VSE/VSAM

(continued)
VSE/VSAM Space Management for

SAM Function, use of 2

BLDVRP macro
See resource pool build macro

(BLDVRP)

BLDVRP macro format 208

block size related to CI size (for data

component) 90

blocks per max CA (FBA devices) 87

blocks per min CA (FBA devices) 87

book, about this xv

boundaries of CAs and performance 86

buffer allocation, miscellaneous notes 99

buffer hashing 100

buffer pools (LSR), statistics on use 256

buffer pools, statistics on LSR 122

buffer space, I/O
additional (for CIs) 94

allocation (per ACB macro

specification) 96

allocation parameters in ACB

macro 96

control intervals (SAM ESDS) 167

default 88

direct processing considerations 95

for a file, specifying 27

for index records 120

minimum data buffers 96

minimum index buffers 97

performance considerations 95

preventing deadlock in exclusive

control 101

sequential processing

considerations 95

specifying 27

specifying for index records 121

specifying through ACB macro 95

specifying through BUFFERSPACE

parameter 95

specifying through DLBL

statement 96

specifying, methods of 95

supervisor buffers, specifying number

of 22

buffer write macro (WRTBFR)
operand notation 303

buffer writing 263

buffering, extended 237, 287

buffering, normal 237

buffers for VSE/VSAM use (ACB

macro) 198

buffers, specifying number of 27

BUFFERSPACE parameter 95, 121

effect on CA size with large

DASD 79

BUFND parameter
in // DLBL 27, 96

in ACB macro 95

BUFNI parameter
in // DLBL 28, 96, 121

in ACB macro 95, 121

BUFSIZE operand (IPL) 22

BUFSIZE parameter
in IPL command 22

supervisor buffers, specifying 22

BUFSP parameter
in // DLBL 27, 96, 121

in ACB macro 95, 121

bytes per track (CKD devices) 86

C
CA

See control area (CA)

capacities of disk storage devices 86

CAT=filename specification 28

catalog
// DLBL required 24

See also catalog (job)

See also catalog (master)

See also catalog (notrecoverable)

See also catalog (recoverable)

See also catalog (user)

accessing passwords, hierarchy

of 127

advantages of 7

assigning data space to performance

class 84

authorization verification routine 128

back up considerations/methods 137

buffers for control blocks 38

check program (IKQVCHK), purpose

of 345

content relating to files/volumes 135

cross-system sharing 131

damaged, rebuilding if 138

data output from catalog check 348

data space ownership 47

data space ownership, releasing 49

default, explained 44

defining files in 41

defining through job control 40

DFSMSdfp VSAM, compatibility of

ICF catalogs 331

entries for cluster, purpose of 47

entries for files, purpose of 47

entries for files/volumes 135

entries for volumes, purpose of 47

entries for volumes, scope of 49

explicit specification 43

file name, specifying 28

file ownership, overriding 28

files in, performance

considerations 83

high-key-range records 349

IDCAMS commands and job

control 24

indicator of volume ownership 49

job catalog 7

job control requirements 23

listing entries 127

listing file definitions 126

low-key-range records 349

management, dialog for 11

master catalogs 7

migrating from device to device 53

migration 55

mounting requirements for

volume 41

name, specifying through

IDCAMS 24

374 VSE/VSAM User’s Guide and Application Programming

catalog (continued)
name, specifying through job

control 23

ownership of space on volume

(restrictions) 41

password protection (user and master

catalog) 126

performance on information

requests 41

protection considerations 137

recover from catalog cannot be

opened 146

recover from catalog volume

unusable 147

recover from files cannot be

opened 146

recover from inaccessible volume 148

recover from unusable catalog 146

recovering a 137

recovery considerations 137

relationship to files 40

reload function and REPRO 137

required 40

restore considerations 137

search order 44

search order and // DLBL

specification 44

sharing across systems 131

space ownership 48

space ownership on volume

(restrictions) 41

supported 6

transporting between VSE/VSAM

systems 53

types supported 6

unload function and REPRO 137

unload to VSAM or nonVSAM

file 137

user catalogs 7

volume ownership, removing 49

catalog (job)
// DLBL required 24

define through job control, how

to 42

purpose 7

relationship to user catalog 7

use of 42

catalog (master)
// DLBL required 24

assigning device to 21

back up, creating a 137

define through job control, how

to 41

file-ID 41

job control requirements 23

multiple 40

name of 41

not shared across systems 131

password protection 127

relationship to user catalogs 7

catalog (notrecoverable)
recover from loss of data 137

recover from unusable catalog 138

steps in protecting and

recovering 137

what it is 137

catalog (user)
// DLBL required 24

advantages of 7

back up, creating a 137

define through job control, how

to 42

deleting empty 127

multiple 41

password protection 127

relationship to master catalog 7

shared across systems 131

catalog check program (IKQVCHK)
actions on error discovery 346

examples 346

output of 348

purpose 345

running 346

when to use 345

catalog display macro (SHOWCAT)
operand notation 303

parameter list 313

catalog mismatch
actions and causes 148

data space group 147

entries do not match description of

volumes 147

extents 147

file directory 147

files 147

guide to solving problems 147

high RBA 147

key range 148

minimization 148

recovery procedures 143

space map 147

statistics 147

volume entry 147

volume information 148

catalog protection
back up considerations/methods 137

backup copy, creating a 137

REPRO command, use of 137

VSE/Fast Copy utility, use of 137

catalog recovery area (CRA)
content of 135

listing content of 143

maintaining 355

not sharable 192

procedures for recovery 143

size (catalog migration) 54

catalog restore considerations 137

catalog space
GETVIS requirements 38

multiple volume ownership

(MVS) 330

ownership 48

ownership bit 49

cataloging files 48

catalogs supported 6

catalogs, back up of
See catalog protection

CCDS 67

CCDS, how to define it 70

CDLOAD macro 315

chain of RPLs, positioning information

for 234

chaining I/O requests 234

chaining request parameter lists 276

change catalog entries (SAM ESDS) 170

changes in this book xix

changing VSE/VSAM control blocks 226

checking of passwords by

VSE/VSAM 126

CI
See control interval (CI)

CI access 236, 245, 246

CIDF (control information definition

field) 113

CKD
See device

CLASS parameter 83, 84

class values for data spaces 84

close disposition 202

abnormal end-of-job (managed-SAM

access) 35

abnormal end-of-job (VSE/VSAM

access) 34

avoiding loss of data 36

deletion of file 34, 35

explained 34

file contents (managed-SAM access),

loss of 35

file contents (VSE/VSAM access), loss

of 34

file contents, protecting 36

managed-SAM access 35

of files 34

VSE/VSAM access 34

CLOSE macro
close routine 211

closing a file 211

compared to TCLOSE 211

description 211

format 211

return codes 212

use 187

close routine 211

closing a file 211

cluster
command (SAM ESDS) 158

data component 6

define (SAM ESDS) 158

defining 48

index component 6

paths to alternate indexes 8

suballocating data space 84

what it is 6

CLUSTER command (with SAM

ESDS) 171

CMP-ACTIVE 69

CMP-REJECT 69

CMP-UNDET 69, 145

CMPPENDING 69

CMPSC 67

CNV access 245

codes
ACB return code 30

actions on errors 346

catalog management reason code 354

catalog management return code 354

CODE option (file access) 126

CODES attribute in modeling 59

condition code, changing a 10

condition code, testing a 10

Index 375

codes (continued)
data security 126

error handling (with IIP) 327

job return code is not 0

(managed-SAM access) 35

job return code is not 0 (VSE/VSAM

access) 34

maintain VTOC/VOL1 labels

(IKQVDU) 359

on open failure 30

on time stamp mismatch 338

sequence error (with IIP) 324

tracing during processing (SNAP

dump) 345

with OPEN error message

(cross-system sharing) 131

commands
See also commands (IDCAMS)

See commands (other than IDCAMS)

commands (IDCAMS)
// DLBL required for catalogs 24

accessing passwords in a catalog 127

and // DLBL specifications 26

and // EXEC specifications 36

and // EXTENT specifications 39

BACKUP 3

BACKUP, use of 135

BUFFERSPACE and BUFSP

relationship 27

BUFND relationship 27

BUFNI relationship 28

catalog, defining files in 41

considerations for IDCAMS

operations 127

data integrity 132

DEFINE and file-ID relationship 27

DEFINE CLUSTER 48

DEFINE CLUSTER (use in data

integrity) 133

DEFINE SPACE 48

DEFINE SPACE (use in data

integrity) 132

DEFINE USERCATALOG (use in data

integrity) 133

defining SAM ESDS file

explicitly 158

deleting empty data space 127

deleting non-empty data space 127

deleting protected file entry from

catalog 127

DTFIS (ISAM) related to

DEFINE 325

DTFIS (ISAM), support for 325

expiration date relationship to //

DLBL 27

explicit catalog specification 43

EXPORT command, use of 136

EXPORTRA command, use of 136

file access, considerations for 128

file name, specifying 27

functional commands 9

IMPORT command, use of 136

IMPORTRA command, use of 136

job control statements required for

files 25

listing catalog entries 127

commands (IDCAMS) (continued)
migrating catalogs from device to

device 55

migrating files from one device type

to another 55

migrating files from one volume to

another 56

modal commands 10

MODEL subparameter 58

name of catalog, specifying 24

operations and passwords 127

overview 8

password authorizations 127

password incorrect, prompt on 127

PRINT and CAT relationship 28

REPRO and CAT relationship 28

REPRO command, use of 136, 137

RESTORE 3

RESTORE, use of 135

SAM ESDS files, support for 153

SAM ESDS files, using with 170

time stamp entry, when updated 50

transporting catalogs between

VSE/VSAM systems 53

transporting files between

VSE/VSAM and DFSMSdfp

VSAM 52

transporting files between

VSE/VSAM and MVS/VSAM 52

transporting files between

VSE/VSAM systems 53

types of commands 9

with SAM ESDS 153

commands (other than IDCAMS)
ASI, specifications for 21

IPL, specifications for 21

lock file, defining 21

master catalog, assigning device

to 21

supervisor buffers, specifying number

of 22

communicate with VSE/VSAM, how

to 8

compatibility
ACF/VTAM with VSE/VSAM 331

DFSMSdfp VSAM ICF catalogs with

VSE/VSAM 331

VSE/VSAM files to DFSMSdfp

VSAM 329

VSE/VSAM Version 2 and 6 13

with other IBM products 329

compressed data, introduction 67

compressed files, working with 67

Compression Control Data Set 67

Compression Control Data Set, Defining

the 70

compression control services trace 351

compression facility, ESA/390 67

compression management services control

block trace 351

compression prediction
See VSE/VSAM Compression

Prediction Tool (IKQPRED)

compression states 69

conceptual information
See basic information on VSE/VSAM

concurrent I/O requests 204

connect processing program to file
See OPEN macro

connecting a file for processing 228

control area (CA)
allocation limits for CKD devices 86

and index record size 86

content of 5

crossing boundaries 86

disk storage size (CKD devices) 86

disk storage size (FBA devices) 87

fixed-size blocks (FBA devices) 85

free space, specifying 111, 113

maximum size 85

maximum size, relationship to

cylinder size 85

minimum size 85

minimum size, relationship to track

size 85

preformatting before inserting

records 110

size of 5

size, influencing 86

size, performance implications 86

specifying space 86

statistical information 121

statistical information not

updated 122

unused free space 113

what it is 5

control area, splitting of
direct processing 114

examples of record insertion 114

monitoring, means for 112

overheads 112

placement of records 114

rules 114

sequential processing 114

control block display macro (SHOWCB)
operand notation 299

parameter list 308

control block generate macro (GENCB)
operand notation 297

parameter list 304

control block manipulation macros 184

control block modify macro (MODCB)
operand notation 298

parameter list 306

control block test macro (TESTCB)
operand notation 300

parameter list 309

control information definition field

(CIDF) 113

control interval (CI)
and index record size 86

block size computation for data

component 88

buffer space (SAM ESDS) 167

for data component, performance

considerations 92

free space, specifying 111, 113

handling CIs 125

password parameter 125

physical block size computation for

data component 88

relationship to block size 88

size calculations 93

size defaults 88

376 VSE/VSAM User’s Guide and Application Programming

control interval (CI) (continued)
size in a data component 89

size in an index component 92

size of 5

size relation to block size (for data

component) 90

size relation to track space (for data

component) 90

size relationship to other

specifications 88

size, displaying actual settings 92

size, effect on buffer size 94

size, performance considerations 92

specifying size 88

statistical information 121

statistical information not

updated 122

unused free space 113

what it is 5

control interval, splitting of
direct processing 114

examples of record insertion 114

placement of records 114

rules 114

sequential processing 114

CONTROLPW (control interval password

parameter) 125

converting ISAM files to VSE/VSAM

files 2

converting SAM files to VSE/VSAM

files 2

count key data (CKD) device
See device

CRA
See catalog recovery area (CRA)

cross-system sharing 131

current type data, recovery of 139

CYLINDER parameter 109

cylinder size (CKD devices) relationship

to max CA size 85

cylinders per volume (CKD devices) 86

D
DASD

support of large DASD 77

DASD sharing facility (VSE/VSAM) 21,

129

data
component name 6

integrity, tools for 132, 139

organization concepts 4

portability 2

portability to MVS/VSAM 329

recovery procedures 143

recovery, levels of 139

data compression
activation 67

backup 150

backup and restore, EXPORT

command 136

CMP-UNDET 145

CMP-UNDET, how to recover 145

compatibility considerations 331

compression control services

trace 351

data compression (continued)
compression management services

control block trace 351

compression states 69

data format of records 69

defining the CCDS 70

eligible data set types 71

introduction 67

portability to DFSMSdfp VSAM 329

restrictions 71

transporting files between

systems 53

data loss, avoiding 132

data protection 125

data recovery 125

data secure file bit, setting of 48

data set name sharing (ACB macro) 198

data set name, sharing of 192

data space
class value, assigning 83

continuation, where described 334

controlling performance 83

define (example) 341

defining 48

defining for files with UNIQUE

attribute 48, 339

delete, how to 49, 358

deletion, effect on VTOC 336

descriptor 333

empty, deleting 127

extents, where recorded 49, 333

format-1 label processing 337

format-3 label processing 338

format-4 label processing 338

group mismatch 147

label (format-1 label) 333

label deletion from VTOC 336

label processing overview 335

name in the VTOC 50, 333

name, assignment of 333

names, format of 50

non-empty, deleting 127

ownership 5

ownership, releasing from 49

performance, controlling 83

protection status, indication of 48

purpose of 5

records of ownership, where

located 48

redefine, how to 355

relationship of volumes, files,

labels 334

suballocating 83

suballocation 336, 339

unique (user-specified names) 50

VOL1 label processing 337

VTOC label processing 335

work files in 51

data space class
CLASS parameter 83

classification, values for 84

default value 84

example 84

for MVS/VSAM 84

high performance value 84

IMPORT command 85

restrictions 85

data space class (continued)
USECLASS parameter 84

user-defined values 84

where specified 83

data, backup of
See protection of resources

data, restore of
See restore

DATE disposition (ACB macro) 202

date, expiration 27

DBB 68

DDN (in ACB macro) 192

DDNAME (file name) parameter of

ACB 27

deadlock in exclusive control 101

DEF (IPL command) 21

DEF SYSCAT (assign device to master

catalog) 21

default catalog 44

// DLBL with application

programs 23

explained 44

ownership, overriding 28

with catalog check program

(IKQVCHK) 346

default volumes 65

deferred requests, relating 263

deferring write operations 262

DEFINE (IDCAMS command)
allocation of space 109

allocation of space for dynamic

files 109

allocation of space for modeling 109

basics on dynamic files 109

block size specification 88

buffer space default 88

buffer space for index records 121

buffer space size 95

CI size specification 88

cluster 48

CLUSTER parameters (with SAM

ESDS) 159

CLUSTER parameters with DTFIS

(ISAM) 325

control interval size 88

data space class 83

data space on volume 48

date specification 27

dynamic file, specifying 109

files, defining 48

free space 111

identify volume to contain files 48

key compression 93

key range (with multiple

volume) 102

modeling of objects 57

modeling of parameters 57, 63

NOWRITECHECK parameter 110

ORDERED parameter 103

ordered space allocation 103

preformatting space for CAs 110

record size 88

record size computation 88

records, write check of 110

RECOVERY parameter 110

RECOVERY/SPEED

considerations 110

Index 377

DEFINE (IDCAMS command) (continued)
space allocation (multiple volume),

examples 103

space allocation options 108

space allocation parameters 109

SPEED parameter 110

UNORDERED parameter 103

unordered space allocation 103

volume to contain file, identify 48

WRITECHECK parameter 110

DEFINE CLUSTER command (use in data

integrity) 133

define requests
See parameter list request macro (RPL)

DEFINE SPACE command (use in data

integrity) 132

DEFINE USERCATALOG command (use

in data integrity) 133

defining
access authority 125

clusters 48

data space 48

files 48

files with UNIQUE attribute 48

indexes 7

nonVSAM files in VSE/VSAM

catalog, identifying 48

objects (command overview) 9

objects by way of modeling 57

defining file
See files

defining job catalog
See catalog (job)

defining master catalog
See catalog (master)

Defining the Compression Control Data

Set 70

defining user catalog
See catalog (user)

DELETE (IDCAMS command)
data space 49

IGNOREERROR and checks on

catalog 345

remove volume ownership from

catalog 49

using with SAM ESDS files 171

DELETE disposition (ACB macro) 202

delete records (ERASE macro) 214

delete VSE/VSAM resource pool

(DLVRP) macro 212

deleting
access authority 125

cluster 358

data space 49

data space, effect on VTOC 336

data space, how to 49, 358

empty data space 127

empty user catalog 127

files (SAM ESDS) 171

information from catalog 142

information from VTOC 142

labels from VTOC 336

non-empty data space 127

objects (command overview) 9

protected file entry from catalog 127

records 113

deleting (continued)
space using DELETE SPACE

FORCE 142

unprotected files 128

VTOC label 358

deletion, addressed sequential 286

deletion, keyed direct 286

device
assignment when mounting

volume 22

automatic assignment to volume 22

block size related to CI size 90

disk storage size (FBA devices) 87

fixed-size blocks (FBA devices) 85

limits of CA allocation 86

SCSI 80

storage capacities for CKD 86

support for 80

track space related to block size 90

track space related to CI size 90

track/cylinder size for CKD 85

device dependencies 14, 77

device migration
See migrating

Device Support Facilities (DSF)
initialize disk pack (format-4 label

creation) 334

specify VTOC size 336

when used 334

DFSMSdfp VSAM
compatibility of ICF catalogs with

VSE/VSAM 331

transporting files to VSE/VSAM 52

diagnosis tools
catalog check program

(IKQVCHK) 345

LISTCRA (IDCAMS command) to list

CRA 143

maintain VTOC/VOL1 labels

(IKQVDU) 355

overview 345

SNAP dump program

(IKQVEDA) 350

diagnostics (processing option

PARM) 38

dialogs (z/VSE)
overview 11

dictionary 67

dictionary building block 68

direct processing 239

direct retrieval 242

directory mismatch 147

disconnect processing program from file
See CLOSE macro

disk extent information 39

disk storage devices, capacities of 86

diskette extent information 39

DISP specification 28

disposition of a file 202

disposition of files 29

disposition, close 202

distributed free space 111

DLBL statement (job control)
alternative specification for catalog

name 24

and catalog search order 44

and defining files 48

DLBL statement (job control) (continued)
avoiding loss of data 36

buffer number, specifying 27

buffer space for index records 121

buffer space size 96

buffer space, specifying 27

CAT=filename specification 28

DISP (disposition) specification 28

disposition control (SAM ESDS) 155

explicit catalog specification 43

file disposition, specifying 28

file name for catalog owning a

file 28

file name, specifying 27

file-ID specification 27

files with UNIQUE attribute, how to

define 48

for file processing 340

for job catalog 42

for master catalog 23

for unique files 337

for user catalog 42

format of 27

information for implicit define (SAM

ESDS) 163

job catalog, how to define 42

master catalog, how to define 41

options of the ACB macro 202

record allocation number (SAM

ESDS), specifying 29

record allocation size (SAM ESDS),

specifying 29

RECORDS specification 29

RECSIZE specification (SAM

ESDS) 29

required when using IDCAMS

commands 24

user catalog, how to define 42

virtual storage for buffer space 27

DLF (IPL command) 21

DLVRP (delete VSE/VSAM resource

pool) macro 212

DLVRP macro
See resource pool delete macro

(DLVRP)

DLVRP macro format 212

dname (file name) specification 27

downlevel type data, recovery of 139

DSN (in ACB macro) 192

DSN structure 201

DSN structure, GETVIS space

requirement 15

DSN=dsname (scratch VTOC label for a

specified file) 358

DTFPH support for SAM ESDS 151, 165

DTFSD information (implicit define SAM

ESDS file) 162

DTFSD information (implicit define SAM

ESDS work file) 163

DTFSD MOUNTED=SINGLE information

(implicit define SAM ESDS work

file) 163

DTFSD support for SAM ESDS 151

duplicate data condition, recover

from 144

dynamic files 109

378 VSE/VSAM User’s Guide and Application Programming

dynamic space
See also dynamic space allocation

See files (DYNAMIC)

dynamic space allocation
advantages 109, 152

basics 5

device independence 2

dynamic file, advantages 109

dynamic file, specifying 109

dynamic file, what it is 109

example (SAM ESDS) 177

EXCP support (SAM ESDS) 165

for files 109

how it works 5, 109, 152

job control (SAM ESDS) 152

making a file a dynamic file 109, 178

NOALLOCATION, use of 109

performance 109, 165

primary allocation 154

restrictions 110

REUSE with NOALLOCATION,

purpose of 178

SAM ESDS files, specifying for 164

secondary allocation 154

specifying for work files 160

unallocated dynamic file 30

with SAM ESDS files 152

work files (SAM ESDS), specifying

for 154

E
empty

CAs/CIs and FREESPACE

parameter 113

data space (non-empty), deleting 127

data space, deleting 127

deallocate a file, meaning of 30

dynamic file and

EXPORT/EXPORTRA support 110

file, open failure 34

object, backup 3, 135

object, restore 3

object, what it is 3, 56

objects, backup 55

objects, restore 55

reset a file, meaning of 30

user catalog, deleting 127

empty file (SAM ESDS), treatment

of 166

end-of-file processing 185, 216

ending a processing request (ENDREQ

macro) 213

ENDREQ macro
See processing end request macro

(ENDREQ)

ENDREQ macro format 214

Enterprise Storage Server (ESS) xix, 9,

87

environments for VSE/VSAM 13

EODAD (end of data address) exit 185,

216

ERASE macro
description 214

format 214

operands 214

errors
See codes

ESA/390 compression facility 67

ESDS file (SAM)
access by ACB 151

access by VSE/VSAM programs 151

access considerations for

managed-SAM files) 166

access mode and record format,

specifying 159

access modes, valid 156

accessing data through DTFPH 161

allocating disk space as single

extend 161

allocating file extension space 155

allocation size, requesting 153

alter catalog entries 170

ALTER command, using 170

assignments ignored 167

BLOCKS parameter explained 160

buffer space for CI 167

change programs to VSE/VSAM

programs 156

CI and track/cylinder

relationship 153

CLOSE, checking for 173

CLUSTER command, using 171

CLUSTER parameters explained 159

convert to VSE/VSAM files 157

convert unmanaged-SAM files 172

creating, steps in 157

CYLINDERS parameter

explained 160

data not in CI format, accessing 159

define a default model (example) 177

DEFINE CLUSTER command,

purpose of 151

DEFINE CLUSTER command,

using 171

define dynamic (example) 177

define implicitly at OPEN 155

defined 151

defining explicitly 158

defining implicitly 161

defining, ways of 158

DELETE command, using 171

deleting explicitly 171

deleting implicitly 173

device independence 153

device-dependent SAM functions,

restrictions for 167

disk-independence, recommendations

for 167

DISP (disposition) parameter 155

disposition control for REUSE

file 155

disposition default (example) 155

DTF not opened (file ignored) 167

DTF specifications, restrictions

for 168

DTFPH access support 165

DTFPH method of access, when to

use 159

DTFPH specifications, restrictions

for 168

DTFPH support 151

ESDS file (SAM) (continued)
DTFSD information (implicit define

work file) 163

DTFSD information (implicit

define) 162

DTFSD MOUNTED=SINGLE

information (implicit define) 163

DTFSD support 151

dynamic space allocation 152

dynamic space allocation (work

files) 160

dynamic space allocation,

performance 165

dynamic space allocation,

specifying 164

empty file, treatment of 166

explicitly define 158

EXPORT command, using 171

extending existing files 155

format and access mode,

specifying 159

format differences to VSE/VSAM

ESDS file 179

formats, abbreviations used for 159

functions available 152

GETVIS space, specifying 167

ICCF, partition independence

with 161

IDCAMS commands, using 153, 170

ignored (DTF not opened) 167

implicit define 153

implicit define (example) 176

implicit define cluster, occurrences

of 161

implicit define cluster, VSE/VSAM

assumptions 162

implicit define, information from

DLBL statement 163

implicit define, information from

DTFSD 162, 163

implicit define, information from

DTFSD MOUNTED=SINGLE 163

implicit define, information from

EXTEND statement 164

implicit delete 153

implicit deletion, cases of 173

IMPORT command, using 171

job control 152

level 1 advantages over SAM

file 152, 156

level 2 advantages over SAM file 156

level 3 advantages over SAM file 157

LISTCAT command, using 171

loading (example) 174

managed-SAM access, define

considerations 165

managed-SAM access, purpose

of 165

managed-SAM, access

considerations 166

management for work files (SAM

ESDS) 154

migrating SAM files 155

modeling for DEFINE CLUSTER

command 153

multiple extends, support for 154

multiple volumes, support for 154

Index 379

ESDS file (SAM) (continued)
NOCIFORMAT specification, meaning

of 159

NONINDEXED file, establishing as

SAM ESDS file 159

overview 151

partition independence (work

files) 154

partition independence,

specifying 159, 161

physical record 181

planning for 154

portability 153

primary space allocation

(dynamic) 154

PRINT command, using 172

processor independence (work

files) 154

processor independence,

specifying 159, 161

programs changes 156

protection 153

purpose of 2

RECORDFORMAT parameter

explained 159

RECORDFORMAT parameter,

purpose of 151

RECORDFORMAT to RECORDSIZE

relationship 160

RECORDSIZE parameter

explained 159

recovery 153

REPRO command, using 172

requirements for creating/using 151

resetting at OPEN 155

restrictions in using 167

retention period default (work

files) 161

REUSE parameter 162

SAM file, defining for use in

VSE/VSAM data space 152

SAM logical block 181

secondary space allocation

(dynamic) 154

sharing characteristics 166

space assignment 157

space management (automatic) 154

space, where to specify 158

specifying 151, 157

specifying a file as ESDS file 159

system work file support 163, 168

TRACKS parameter explained 160

using IDCAMS commands 170

VERIFY command, using 173

VOLUMES parameter explained 160

volumes, specifying 160

VSE/VSAM access, considerations

for 169

VSE/VSAM block 181

VSE/VSAM Space Management for

SAM Function, use of 152

work files, considerations 154

work files, space management

for 154

ESDS file (VSE/VSAM)
access modes, valid 156

ESDS file (VSE/VSAM) (continued)
format differences to SAM ESDS

file 179

examples
allocation for multiple volumes (an

exercise) 107

alternate index 8

CA splits 114

catalog check program

(IKQVCHK) 346

CI splits 114

data space class 84

data spaces, define 341

defining catalogs through job

control 42

explicit catalog specification 43

explicit models (allocation) 58

explicit models (noallocation) 60

file in not recoverable catalog,

define 343

file, process 343

implicit models (allocation) 61

invoke IDCAMS, how to 38

job catalog, use of 42

job streams 340

macro operands, notation of 295

maintain VTOC/VOL1 labels 355

PARM parameter 38

SAM ESDS file, define default

model 177

SAM ESDS file, define dynamic 177

SAM ESDS file, define implicitly 176

SAM ESDS file, loading 174

SNAP dump program

(IKQVEDA) 353

space allocation on multiple

volumes 103

unique file, define 343

volume layout (data spaces, files,

VTOC) 335

exclusive control, preventing deadlock

in 101

EXCPAD (EXCP address) exit 185, 217

EXEC
See EXEC statement (job control)

EXEC statement (job control)
catalog check program

(IKQVCHK) 346

coding rules 38

format of 37

GETVIS for non-SVA-eligible

phases 38

invoke IDCAMS, how to 38

job termination, how to avoid 38

non-SVA-eligible phases, GETVIS

for 38

PARM parameter, advantages of

using 39

PARM parameter, examples of 38

processing options 38

real mode, execute program in 37

size to load a program 38

SIZE=AUTO recommended 38

SNAP dump program

(IKQVEDA) 351

VTOC/VOL1 label maintain program

(IKQVDU) 355

execute form of GENCB, MODCB,

SHOWCB, TESTCB 291

exit list (EXLST) macro 185

exit list macro (EXLST)
positioning if I/O error occurs 221

exit, security-verification 128

EXLST macro 214

See exit list macro (EXLST)

EXLST macro format 215

expiration date 27

explicit
allocation model 57

allocation model (example) 58

catalog specification 43

define cluster (SAM ESDS) 158

defining file (SAM ESDS) 158

modeling (SAM ESDS) 153

modeling, specifying the model 57

models 57

models (allocation) 58, 60

NOALLOCATION model 57

NOALLOCATION model

(example) 60

opening of file 25

specifications when migrating objects

to other device 57

EXPORT (IDCAMS command)
dynamic file support 110

use of 136

using with SAM ESDS files 171

export file (SAM ESDS) 171

EXPORTRA (IDCAMS command)
dynamic file support 110

use of 136

extended user buffering option 237

extended-addressed KSDS 233, 236, 238,

245, 246, 261, 287

EXTENT
See EXTENT statement (job control)

extent information, when to specify 39

extent overlap, action on 337

EXTENT statement (job control)
and defining files 48

define files with UNIQUE

attribute 48

for unique files 337

for unique files, validation 337

format of 39

information for implicit define SAM

ESDS file 164

logical unit of volume 39

number of blocks/tracks for file 39

relative block/track of extent 39

serial number of volume 39

extents of data space, where recorded 49

EXTRACT codes 317

F
Fast Copy utility (VSE)

backup copy, creating a 136, 137

backup copy, restoring a 136

use in protecting resources 132

fast recovery of files, preparing for 150

FBA
See device

Fibre Channel Protocol (FCP) 80

380 VSE/VSAM User’s Guide and Application Programming

file closing, temporarily 257

file disposition
basic information 29

considerations (DLBL, ACB, DTF) 36

DISP parameter, default of 30

on closing files 34

on opening files 30

specification for OPEN/CLOSE

processing 28

states at OPEN 30

status at CLOSE 34

where to specify 29

file processing, close 211

file protection
back up considerations 135

BACKUP command, use of 135

data secure file bit, setting of 48

EXPORT command, use of 136

EXPORTRA command, use of 136

IMPORT command, use of 136

IMPORTRA command, use of 136

REPRO command, use of 136

RESTORE command, use of 135

user-written back up programs 136

file space
dynamic allocation 109

NOALLOCATION parameter 109

file types supported 4

file, connecting for processing 228

files
// DLBL statement 23

adding records, considerations

for 111

altering definitions in

password-protected catalog 126

and lock facility 130

authorization verification routine 128

back up and recovery

considerations 134, 135

back up methods 135

block, relative 39

blocks, allocating number of 39

buffer space, specifying 27

buffers, specifying number of 27

cataloging 48

CLOSE disposition 34

cross-system sharing 131

data space records, where located 48

data space suballocation 336, 339

define in not recoverable catalog

(example) 343

define unique (example) 343

defining 48

defining and DLBL/EXTENT

statements 48

defining in catalog 41

defining with UNIQUE attribute 48

defining, what it means 7

delete, how to 358

deleting protected file entry from

catalog 127

directory mismatch 147

disposition, basic information on 29

disposition, specifying 28

duplicate file for back up,

creating 136

entries in catalog 135

files (continued)
entries in catalog, purpose of 47

extents mismatch 147

file-ID, specifying 27

formats 4

high RBA mismatch 147

IDCAMS and job control

statements 25

identifier, specifying 27

identify volume to contain files 48

identifying nonVSAM files in

VSE/VSAM catalog 48

in catalog, performance

consideration 83

job control statements required 25

listing definitions in a catalog 126

loading 339

loading a file, considerations for 111

loading records, considerations

for 111

locking activities, trace of 351

management 7

management, dialog for 11

migrating from one device type to

another 55

migrating from one volume to

another 56

mismatches 147

name associated with volume 27

name, specifying 27

non-unique, defining 54, 336, 339

nonVSAM, unloading a catalog

to 137

number of blocks, allocating 39

number of tracks, allocating 39

OPEN disposition 30

opening for processing

(SHAREOPTIONS) 130

organization 4

ownership, overriding 28

portability to MVS/VSAM 329

porting, create copy for 136

processing (example) 343

processing (SHAREOPTIONS) 130

processing, DLBL statement for 340

protection considerations 128, 134

quick recovery, considerations

for 150

read integrity, ensuring 130

record allocation size (SAM ESDS),

specifying 29

record, allocation size (SAM

ESDS) 29

records adding, considerations

for 111

records, number of 29

recover from duplicate data

condition 144

recover from file cannot be

opened 145

recover from file completely

unreadable 145

recover from file not properly

closed 143

recover from file partially

unreadable 145

files (continued)
recover from files cannot be

opened 146

recover from inaccessibility 145

recover from incomplete write to

disk 144

recover from incorrect high RBA 144

recovery and backup

considerations 134

relationship of volumes, data space,

labels 334

relationship to catalogs 40

reorganization considerations 113

restore 135

reusable, specifying 28

SAM ESDS files, planning for 154

SAM file for back up, creating 136

search order in catalogs 44

secondary allocation, minimize 133

sharing 129

sharing across systems 131

sharing and protection 129

sharing control blocks 192

sharing, options for 130

states at OPEN disposition 30

statistic mismatch 147

statistical information 121

statistical information not

updated 122

trace of activities 351

track, relative 39

tracks, allocating number of 39

transporting between systems 52

types supported 4

unique, explanation for 336

unprotected, deletion of 128

user-written back up programs 136

volume mounting, requirements

for 339

write integrity, ensuring 130

files (DYNAMIC)
advantages 109

allocation of space 109

define example (SAM ESDS) 177

deleting 110

restrictions 110

space allocation (SAM ESDS) 152

space allocation (SAM ESDS),

performance 165

space allocation (SAM ESDS),

specifying 164

space allocation, suppressing 109

specifying 109

what it is 109

files (UNIQUE)
define (example) 343

define data space 48, 339

delete, how to 358

DLBL statement needed 337

explained 336

EXTENT statement needed 337

format-1 label processing 337

format-3 label processing 338

format-4 label processing 338

key area contents (format-1

label) 333

label processing 340

Index 381

files (UNIQUE) (continued)
record of physical extents 135

redefine, how to 355

UNIQUE attribute and job control

statements 48

user-specified names 50

volume time stamp 338

files (WORK)
considerations 154

considerations for access 167

DTFSD information (implicit

define) 163

GETVIS space 37

IJSYSnn support 168

on virtual disk 51

on virtual disk, preparation for 51

partition/processor

independence 154

planning for (SAM ESDS) 154

recommendations (SAM ESDS) 160

retention period default 161

single extent allocation,

requesting 163

system work file support (SAM

ESDS) 168

files, back up of
See file protection

files, restore of
if catalog damaged 138

RESTORE command, use of 135

FORCE option 142

format differences (VSE/VSAM ESDS

and SAM ESDS) 179

format of compressed data 69

format-1 VTOC label 48

format-1 VTOC label, purpose of 333

format-3 VTOC label, purpose of 334

format-4 VTOC label 49

format-4 VTOC label settings (when

space released) 49

format-4 VTOC label, purpose of 334

free space
causes of 111

changing values 111

CI size relative to record size

(performance) 92

default 111

file loading considerations 111

for mass insertion 111

in CA, specifying 113

in CI, specifying 113

parameter 111

reclaiming 113

specifying 111

threshold 112

too much/too little 112

unused if nonspanned data CI 92

unused, cause of 113

FREESPACE parameter 111

function codes for alternate index

processing 290

functions of VSE/VSAM 2

G
GENCB (generate control block)

macro 187, 221

GENCB macro
See control block generate macro

(GENCB)

GENCB macro format 222

generate form of GENCB, MODCB,

SHOWCB, TESTCB 292

generated names for data spaces 50

generic back up 56

generic restore 56

GET macro 224

See records retrieve macro (GET)

GET macro format 224

GETVIS space
default adjustment 18

failure correction 360

for buffers 14, 38

for control blocks 14, 38

for IDCAMS 18

for IDCAMS, where to specify 18

for non-SVA-eligible phases 38

for non-SVA-eligible routines 13

for users of the VSE/VSAM Space

Management for SAM Function 37,

167

minimum for files 14

non-GETVIS space for job control

routines 18

specifying for users of the

VSE/VSAM Space Management for

SAM Function 18

usage, keeping small 16

H
hardware compression facility,

ESA/390 67

hierarchy of catalog search 44

high RBA mismatch 147

I
I/O areas for a VSE/VSAM file 198, 246

I/O buffer
See buffer space, I/O

I/O buffers, managing 262

I/O operations, overlapping of 217

I/O routines, user 317

ICF (Integrated Catalog Facility 331

ICF catalogs, compatibility with

VSE/VSAM catalogs 331

IDCAMS commands
See commands (IDCAMS)

IDCAMS utility program
GETVIS, where to specify 18

how to invoke (job control) 38

job termination, how to avoid 38

password authorizations 127

password prompt 127

storage requirements 18

use in protecting resources 132

use of 8

IGNOREERROR parameter and catalog

check 345

IJSYSCT (name of master catalog) 41

IKQPRED
See also VSE/VSAM Compression

Prediction Tool (IKQPRED)

overview 72

IKQVCHK (diagnosis tool) 345

IKQVDU (diagnosis tool) 345

IKQVEDA (diagnosis tool) 345

implicit
define file (SAM ESDS) 153

delete file (SAM ESDS) 153

file definition (SAM ESDS), allocation

size 29

information from DLBL statement

(SAM ESDS) 163

model, specifying name 61

modeling, choosing the model 57

models 57

NOALLOCATION model 57

NOALLOCATION model

(example) 61

opening of file 25

IMPORT (IDCAMS command)
data space class 85

key compression 93

using with SAM ESDS files 171

import file (SAM ESDS) 171

IMPORTRA (IDCAMS command)
using with SAM ESDS files 153

in-core wrap trace 351

inaccessible file, recover from 145

incomplete write to disk, recover

from 144

index
See also alternate index

component 6

component, CI size of 92

key compression 93

keys, reducing size of 93

options 7

separate from data residence 121

with VSE/VSAM 7

index options
AIX portions on different

volumes 121

buffer space required 120

file portions on different

volumes 121

index and data on separate

volumes 121

key ranges 121

with KSDS and ESDS files 7

index records
in storage, methods of specifying 121

size to accommodate CAs and CIs 86

initial program load (IPL)
automatic device assignment to

volume 22

commands for VSE/VSAM 21

lock file, defining 21

master catalog, assigning device

to 21

supervisor buffers, specifying number

of 22

volumes, ways of mounting 22

inserting records in a file 111

insertion, keyed direct 281

insertion, keyed-sequential 278

382 VSE/VSAM User’s Guide and Application Programming

insertion, skip-sequential 279

Integrated Catalog Facility (ICF) 331

integrity of data
See protection of resources

integrity of data, tools for 139

interactive user interface
See dialogs (z/VSE)

Interrogation in data compression 68

introduction to VSE/VSAM 1

invoke IDCAMS (job control), how to 38

invoking IDCAMS from a program 295

invoking macro instructions 315

IPL
See initial program load (IPL)

ISAM (indexed-sequential access method)
compared to VSE/VSAM 321

converting to VSE/VSAM 2

files, convert to VSE/VSAM 2

performance improvements,

possible 321

ISAM Interface Program (IIP)
defining a VSE/VSAM file 324

DTFIS related to DEFINE 325

ERREXT format 327

error handling 327

filenameC format 327

ISAM compared to VSE/VSAM 321

job control statements, changing 326

loading ISAM file into VSE/VSAM

file 325

processing explained 326

storage requirements 18

using, prepare for 323

using, prerequisites for 324

VSE/VSAM functions available 322

J
job

cancellation (VOL1 label

incorrect) 337

end-of-job disposition (managed-SAM

access) 35

end-of-job disposition (VSE/VSAM

access) 34

running a job 36

running a job step 36

step, start of 36

termination, how to avoid 38

job catalog
See catalog (job)

job catalog // DLBL statement 23

job control
access VSE/VSAM files 11

and IDCAMS commands 24

catalogs, defining 40

for files 48

for job catalog 42

for master catalog 41

for user catalog 42

GETVIS space for managed-SAM

access 18

invoke IDCAMS 38

job control and IDCAMS

commands 24

linkage editor, processing of control

statements 37

job control (continued)
mounting volumes 22

non-GETVIS space for managed-SAM

access 18

parameters 11

requirements 23

SAM in VSE/VSAM data space 152

simplified job control in using SAM

ESDS 152

job control statements
// DLBL (VSE/VSAM) 26

// DLBL, where to specify 23

// EXEC (VSE/VSAM) 18, 36

// EXTENT (VSE/VSAM) 39

access VSE/VSAM files 11

alternative specification for //

DLBL 24

and IDCAMS commands 24

avoiding job termination with

IDCAMS 38

avoiding loss of data 36

defining catalogs (// DLBL) 41

defining files 48

explicit catalog specification 43

extent information, specifying 39

for application programs 23

for catalogs 23, 40

for ISAM programs 23

for SAM programs 23

implicit define SAM ESDS file 163

ISAM processing under

VSE/VSAM 326

job catalog (// DLBL), specifying 42

master catalog (// DLBL),

specifying 41

parameters, purpose of 11

program execution, starting 36

required for files 25, 48

required when using IDCAMS

commands 24

requirements 23

running catalog check program

(IKQVCHK) 346

running SNAP dump

(IKQVEDA) 351

running VTOC/VOL1 labels maintain

program (IKQVDU) 355

setting up execution of maintain

VTOC/VOL1 labels 355

setting up execution of SNAP

dump 353

user catalog (// DLBL),

specifying 42

job step, start of 36

job stream
data spaces, define 341

examples 340

file in not recoverable catalog,

define 343

file, process 343

unique file, define 343

JRNAD (journal) exit routine 185, 218

K
KEEP disposition (ACB macro) 202

key compression 93

key range mismatch 148

key ranges 121

keyed access 238

keyed deletion 244

keyed insertion 243

keyed positioning with POINT 273

keyed-direct retrieval 271

keyed-sequential retrieval 268

KEYRANGES parameter (with multiple

volumes) 102

KSDS
performance considerations with large

DASD 78

L
label

44-byte key area, what it is 333

check, when it occurs 336

creation, when it occurs 336

data space continuation, where

described 334

data space extents, where

described 333

data space name, assignment of 333

data space, description of 333

definition label for VTOC 334

deletion from VTOC, when it

occurs 336

entries in the VTOC 48

explained 333

format-1 and format-3 labels,

relationship of 333

format-1 label processing (unique

files) 337

format-1 label, purpose of 333

format-1 VTOC 48

format-3 label , purpose of 334

format-3 label processing (unique

files) 338

format-4 label processing (unique

files) 338

format-4 label, purpose of 334

format-4 VTOC 49

format-4 VTOC settings (when space

released) 49

information, submitting 335

key area contents (format-1

label) 333

location of 334

maintain program (IKQVDU), purpose

of 355

not supported by VSE/VSAM 333

processing overview 335

processing, when it occurs 336

relationship of volumes, files, data

space 334

sets, overriding 335

submitting 335

types 333

VOL1 label processing 337

VOL1 label, purpose of 333

VOL1 label, required location of 337

volume identifier 333

VTOC labels for FBA devices,

residence of 336

VTOC, definition label for 334

Index 383

large DASD
BUFFERSPACE parameter 79

KSDS 78

LISTCAT output with 79

migration using BACKUP 78

migration using RESTORE 78

performance considerations 78

restrictions 79

support for 77

LERAD exit routine 185, 220

levels of data recovery 139

linkage editor statements, processing

of 37

list form of GENCB, MODCB, SHOWCB,

TESTCB 291

LISTCAT (IDCAMS command)
displaying CI size 92

file statistics 121

monitoring CA splits 112

purpose 112, 121

relating names in VTOC (generated

and user-specified) 50

using with SAM ESDS files 171

with large DASD 79

listing a file’s definitions in a

password-protected catalog 126

listing information (SAM ESDS) 171

load a SAM ESDS file (example) 174

loading a file 111, 339

loading the VSE/VSAM Backup/Restore

Function into SVA 19

local shared resources (LSR)
allocate virtual storage for pools 194

buffer allocation 17

buffer pools statistics, requesting 256

buffer pools, statistics on use 256

connect pool to ACB 203

considerations 95, 99

control blocks of a file, sharing 192

data set name sharing 192

error codes, potential 210

file opening, specification before 210

I/O buffer sharing 192

LSR in ACB specified, effect on

TCLOSE 257

LSR operand in ACB 202

MACRF operand, specifying 210

macros, overview 11

managing 99

multiple LSR pools 193

partition virtual storage 14

pool, connect to ACB 203

pool, residence of I/O buffers 209

pools above 16MB 193

pools, allocate virtual storage for 194

processing errors, avoiding 241, 242,

243

processing option, advantages of 192

program check 194

requirements with 31-bit

addressing 194

restrictions with LSR 210

RMODE31 parameter in macros 194

separate data and index pools 210,

213

SHRPOOL parameter in ACB 203

space calculation 16

local shared resources (LSR) (continued)
statistics on buffer pools 122

TYPE operand of BLDVRP

macro 210

TYPE operand of DLVRP macro 213

what to specify 207

write requests, deferring 262

locate mode 237, 246

lock facility (z/VSE), use of 130

lock file
defining 21

requirements, determining 21

locking activities, trace of 351

logical unit of volume containing

extent 39

loss of data, avoiding 132

LSR
See local shared resources (LSR)

LSR operand in ACB 202

M
MACRF operand, specifying for

LSR 210

macro groups 183

macros (VSE/VSAM)
coding, ways of 196

descriptions 195

display file statistics 121

operand notations explained 295

overview 10

parameter lists explained 303

purpose 10

syntax 195

test file parameters 121

unique control block, generating 331

VTAM control block, generating 331

maintain VTOC/VOL1 labels program

(IKQVDU)
actions on error discovery 359

error message explained 359

execution, setting up for 355

output of 359

purpose and use 355

return codes explained 359

running 355

UPSI job control statement, setting

of 355

managed-SAM access
See SAM access (managed)

managed-SAM file
See SAM file (managed)

managing I/O buffers 262

manipulation macros
overview 184

parameter list, internal 303

specifying 193

mass insertion of records 111

master catalog
See catalog (master)

master catalog // DLBL statement 41

MASTERPW (master password) 125

max CA per volume (CKD devices) 86

max CA per volume (FBA devices) 87

max CA, what it is 85

message area

(OPEN/CLOSE/TCLOSE) 204

message format 206

messages
catalog check program

(IKQVCHK) 346

maintain VTOC/VOL1 labels

(IKQVDU) 359

migrating
catalogs from one device type to

another 53

files from one device type to

another 53

files from one volume to another 56

ISAM files to VSE/VSAM

control 321

SAM files to VSE/VSAM control 155

to SCSI device 55

transporting files between

systems 52

min CA per cylinder (CKD devices) 86

min CA per max CA (FBA devices) 87

min CA, what it is 85

mismatch problem
catalog entries do not match

description of volumes 147

causes 148

data space group 147

extents mismatch 147

file directory mismatch 147

file statistics mismatch 147

files mismatch 147

guide to solving problems 147

high RBA mismatch 147

key range 148

minimizing catalog mismatches 148

recovery procedures 143

space map 147

volume entry 147

volume information mismatch 148

MODCB (modify control block)

macro 188, 226

MODCB macro
See control block modify macro

(MODCB)

MODCB macro format 226

modeling
access authority 125

advantages of 57

allocation of space 109

default models, using 61

default volumes 65

explicitly (allocation) 58

explicitly (noallocation) 60

for SAM ESDS 153

implicitly (allocation) 61

job termination, avoiding 58

MODEL subparameter 58

overriding system defaults 57

processing by VSE/VSAM 62

restrictions for 63

SAM ESDS file (example) 177

types 57

modifying VSE/VSAM control

blocks 226

mounting need for volumes 51

move mode 237, 246

multiple extents (SAM ESDS) 154

multiple LSR pools 193

384 VSE/VSAM User’s Guide and Application Programming

multiple volumes
DEFINE parameters for 102

ORDERED specification 103

performance notes 102

space allocation 102

space allocation (an exercise) 107

space allocation (with key range) 103

space allocation (without key

range) 102

space allocation, examples of 103

support 102

UNORDERED specification 103

with SAM ESDS files 154

multivolume files 135

MVS, transfer files from VSE to 7

MVS/VSAM
data space class 84

moving VSE/VSAM files to 2

transporting files to VSE/VSAM 52

N
names for data spaces 50

NOALLOCATION parameter 109

non-empty data pace, deleting 127

non-shared resources (NSR)
buffer allocation 17

buffer space for CIs 94

considerations 99

I/O buffer sharing 192

I/O operations 192

master catalog 131

partition virtual storage 14

read/write integrity 192

space calculation 15

non-unique files, defining 54, 336, 339

nonVSAM file, unloading a catalog

to 137

notrecoverable catalog
See catalog (notrecoverable)

NSR
See non-shared resources (NSR)

number of blocks for file, allocate 39

number of tracks for file, allocate 39

O
object (tasks, commands)

alter (command overview) 9

backup (command overview) 9

BACKUP command, use of 135

backup empty object 3, 135

backup multiple objects 56

backup operations on 3

backup to tape or disk 56

build alternate index (command

overview) 9

cancel job (command overview) 9

cancel job step (command

overview) 9

copying to another volume 56

data space, suballocating 83

define (command overview) 9

delete (command overview) 9

empty object, what it is 3

empty, what it is 56

object (tasks, commands) (continued)
first one on a volume 47

generated names 50

generic names, use of 56

interactive interface 11

levels of protection 125

list command 9

migrating catalogs 55

migrating files, methods for 56

migrating, methods for 53

MODEL subparameter 58

modeling of 57

modeling, advantages of 57

modeling, default volume lists 65

modeling, restrictions with 63

modeling, types of 57

move data (commands overview) 9

password-protected objects, operating

on 126

passwords, protection by 1

performance, controlling 83

print (commands overview) 9

print command 9

restore (command overview) 9

RESTORE command, use of 135

restore empty object 3

restore multiple objects 56

restore operations on 3

restrictions for master catalog 52

suballocate data space for 47

verify (command overview) 9

open disposition
explained 30

of files 30

states with 30

OPEN macro
connecting a file for processing 228

description 228

format 228

open routine 228

operands 228

return codes 229

use 187

open routine 228

opening a file for processing 228

operand notation for macros
BLDVRP 302

DLVRP 302

explained 295

GENCB 297

MODCB 298

SHOWCAT 303

SHOWCB 299

TESTCB 300

WRTBFR 303

operation
authorize password submission 126

back up VSE/VSAM objects

(dialog) 12

extent overlap, action on 337

file access code 126

job cancellation (VOL1 label

incorrect) 337

password, supplying 126

real mode and virtual mode 37

restore VSE/VSAM objects

(dialog) 12

operation (continued)
virtual mode and real mode 37

operation and job control 21

optimizing the performance of

VSE/VSAM 83

options for processing, summary of 238

order of catalog search 44

order of space allocation 103

ORDERED parameter 103

organization elements with

VSE/VSAM 5

overlap of volume extents, action on 337

overlapping I/O operations 217

overriding file catalog ownership 28

overview on VSE/VSAM 1

ownership
data space 5, 47

data space, releasing from catalog 49

indicator 49

of space 48

of volume 48

of volume and nonVSAM files 48

of volume, removing from catalog 49

P
parameter list (manipulation

macros) 303

parameter list request macro (RPL)
chain of RPLs, positioning

information 234

OPTCD values in RPL 225

OPTCD= specification and POINT

macro 229

positioning for processing 239

processing of records, positioning

for 239

records, processing of 239

sequential positioning 233

parameter lists for macros
BLDVRP 312

explained 303

GENCB 304

MODCB 306

SHOWCAT 313

SHOWCB 308

TESTCB 309

PARM parameter (EXEC statement),

advantages of using 39

PARM parameter (EXEC statement),

examples 38

partition independence (SAM ESDS work

files) 154

partition space
adjusting minimum value (users of

the VSE/VSAM Space Management

for SAM Function) 37

for buffers 14

for control blocks 14

for IDCAMS 18

for non-SVA-eligible phases 38

for non-SVA-eligible routines 13, 14

for program execution 38

for real mode operation 14, 37

for SAM access routines 17

requirements 37

Index 385

password
access to files, considerations for 128

access to passwords in a catalog 126

altering file definitions in a

catalog 126

ATTEMPTS option (password

control) 126

authorization routine

(user-written) 128

authorize file access 126

authorize for submission by

operator 126

catalog and files, relationship

between 126

checking 126

CODE option (file access) 126

control interval accessing 125

deleting data space

(empty/non-empty) 127

deleting protected file entry 127

deleting unprotected file 128

IDCAMS operations, considerations

for 127

levels of access to resources 125

levels of access, relationship 125

listing catalog entries 127

listing definitions of a file 126

master catalog and user catalog,

relationship of 127

MASTERPW (master password) 125

operator password, controlling

submission 126

prompt from IDCAMS 127

protect resources 125

protected objects, operating on 126

read access 125

resources protection 125

submission through operator 126

submission through processing

program 126

update access 125

UPDATEPW (update password) 125

user catalog and master catalog,

relationship of 127

user catalog, deleting empty 127

user security-verification routine and

MASTERPW 125

performance considerations
assigning data space to performance

class 84

buffer space considerations 99

buffer space for CIs, optimizing 94

control area (CA) size 85, 86

control interval (CI) size 88, 92

data integrity 110

data protection 110

data space class values, use of 84

data space classification 83

degradation with real mode

operation 14

dynamic files, advantages of 109

dynamic files, restrictions 110

file information, obtaining 121

files in catalog, number of 83

free space considerations 111

free space too much/too little 112

performance considerations (continued)
index and data on separate

volumes 121

index options 120

index records, buffer space for 120

information requests to catalogs 41

ISAM, improvements possible

for 321

key compression 93

measurements, means for 121

multiple volume support 102

optimizing VSE/VSAM 83

parts of a file on different

volumes 121

parts of an AIX on different

volumes 121

preformatting space for CAs 110

real mode and virtual mode 37

RECOVERY/SPEED

considerations 110

space allocation 108

space allocation for SAM ESDS

files 165

space utilization and CI size 90

statistics on files 121

suballocating data space 83

write check 110

physical block size for data

component 88

physical record size for data

component 88

planning
applicable environments 13

avoid performance degradation 14

buffer allocation above 16MB line 16

compatibility VSE/VSAM Version 2

and 7 13

considerations 13

for IDCAMS 18

for ISAM Interface Program (IIP) 18

for SAM ESDS files 154

for VSE/VSAM 13

for VSE/VSAM Backup/Restore

Function 19

for VSE/VSAM Space Management

for SAM Function 17

GETVIS for IDCAMS 18

local shared resource, space

calculations 16

non-shared resource, space

calculations 15

partition space for non-SVA-eligible

routines 14

performance considerations 67, 83

quick recovery, considerations

for 150

resources protection, considerations

for 125

space for real mode operation 14

SVA required for VSE/VSAM 13

VSE/VSAM Backup/Restore Function

with user-generated supervisor 19

POINT macro
See position for processing macro

(POINT)

POINT macro format 230

portability of data 2

portability of VSE/VSAM files to

DFSMSdfp VSAM 329

porting files
See migrating

position for processing macro (POINT)
positioning VSE/VSAM at a wanted

record 229

positioning VSE/VSAM for

processing 229

positioning VSE/VSAM for processing

requests
activation of requests 204

active requests 232

at a wanted record 229

backward processing 229

cancellation of the position 213

chain of RPLs, positioning

information 234

ending a request 213

for sequential or skip sequential

processing 229

forward processing 229

if I/O error with data CI occurs 221

keeping for sequential or skip

sequential processing 225

loss of positioning 221

OPTCD values in RPL for

macros 225

positioning if OPTCD=(KEY,DIR,NSP)

in RPL 230

positioning information

maintained 204

positions for request macros in

process 225

records into RBA if positioning not

established 233

sequential positioning 233

primary allocation of file (SAM ESDS),

records for 29

primary index
how generated 7

PRINT (IDCAMS command)
overview 9

using with SAM ESDS files 172

printed output (processing option) 38

procedures
catalog cannot be opened, recover

from 146

catalog unusable, recover from 138,

146

catalog volume unusable, recover

from 147

data management 47

defining data space 48

defining files 48

deleting data space 49

duplicate data condition, recover

from 144

file cannot be opened, recover

from 145

file completely unreadable, recover

from 145

file inaccessible, recover from 145

file not properly closed, recover

from 143

file partially unreadable, recover

from 145

386 VSE/VSAM User’s Guide and Application Programming

procedures (continued)
files cannot be opened, recover

from 146

incorrect high RBA, recover from 144

ISAM to VSE/VSAM, converting

from 323

migrating catalogs 55

migrating catalogs from device to

device 53

migrating files from device to

device 55

migrating SAM files 155

modeling objects 57

quick recovery of files 150

recognizing names in the VTOC 50

recovery of resources 143

relating names in VTOC (generated

and user-specified) 50

running catalog check program

(IKQVCHK) 346

running SNAP dump program

(IKQVEDA) 351

running VTOC/VOL1 labels maintain

program (IKQVDU) 355

space management 47

space ownership, releasing from

catalog 49

transporting catalogs between

VSE/VSAM systems 53

transporting files between

VSE/VSAM and DFSMSdfp

VSAM 52

transporting files between

VSE/VSAM and MVS/VSAM 52

transporting files between

VSE/VSAM systems 53

volume inaccessible, recover

from 148

volume ownership, removing from

catalog 49

work files on virtual disk 51

write to disk incomplete, recover

from 144

processing end request macro (ENDREQ)
cancellation of the position for

processing request 213

ending a processing a request 213

giving up the position for an

RPL 213

processing of file, close 211

processing options (PARM

parameter/command) 38

processing options, summary of 185, 238

processing shared data 129

processor independence (SAM ESDS

work files) 154

program connection (OPEN macro)
See OPEN macro

program disconnection (CLOSE macro)
See CLOSE macro

program execution, start of 36

program load, storage for 38

program separation (TCLOSE)
See TCLOSE macro

prompting code 126

protection of resources
avoiding loss of data at CLOSE

disposition 36

back up considerations (catalogs) 137

back up considerations (files) 134

back up considerations

(volumes) 134

catalog check program, when to

run 345

catalog content relating to

files/volumes 135

catalogs 137

control interval (CI) access 125

cross-system data, specifying share

options 131

data integrity tools 132

data integrity, commands for 132

data space classification 83

DEFINE CLUSTER command 133

DEFINE SPACE command 132

DEFINE USERCATALOG

command 133

explained 125

Fast Copy utility 132

file access, considerations for 128

file sharing, degrees of 130

file unprotected, deletion of 128

files 134

IDCAMS operations, considerations

for 127

levels of access to resources 125

levels of access, relationship 125

lock facility, use of 130

master access (MASTERPW

parameter) 125

master catalog and user catalog,

relationship of 127

operating on password-protected

objects 126

password check 126

password relationship between catalog

and files 126

password verification routine

(user-written) 128

passwords, use of 125

quick recovery, preparing for 150

read access 125

recovery considerations

(catalogs) 137

recovery considerations (files) 134

recovery considerations

(volumes) 134

recovery specification, purpose

of 110

RECOVERY/SPEED

considerations 110

secondary allocation, minimize 133

shared files 129

SHAREOPTIONS parameter 129

tools 139

update access 125

user catalog and master catalog,

relationship of 127

user security-verification routine and

MASTERPW 125

volume separation 132

volumes 134

protection of resources (continued)
VTOC utility (IKQVDU) 132

with SAM ESDS files 153

write check 110

write check default 110

PUT macro
description 230

format 231

operands 231

positioning VSE/VSAM for

processing 230

Q
quick recovery of files, preparing

for 150

R
RBA (relative byte address)

direct processing of records

(sequential) 239

processing of records

(addressed) 244

processing of records (direct) 239

search arguments, specifying 273

testing for the last processed

record 259

RDF (record definition field) 113

READPW (read password

parameter) 125

real mode operation 14, 37

record allocation (SAM ESDS),

specifying 29

record definition field (RDF) 113

record insert macro (PUT)
See PUT macro

RECORDFORMAT parameter (for SAM

ESDS files) 151

records
adding 111

allocation size (SAM ESDS),

specifying 29

deleting 113

examples CI/CI splits 114

loading into a file 111

loading into a file, considerations

for 111

mass insertion 111

number of (SAM ESDS) 29

reclaiming space 113

retrieval of
See GET macro

size computation for data

component 88

size relationship to control

interval 88

size, specifying 88

write check 110

write check default 110

writing of
See PUT macro

records delete macro (ERASE)
See ERASE macro

Index 387

records retrieve macro (GET)
positioning for processing,

keeping 225

positions for request macros in

process 225

RECORDS specification (SAM ESDS) 29

RECORDSIZE parameter 88

RECORDSIZE parameter (for SAM ESDS

files) 158

recoverable catalog
See catalog (recoverable)

recovery of resources
a guide to 139

catalog cannot be opened 146

catalog damaged 138

catalog unusable 146

catalog volume unusable 147

catalogs 137

considerations (catalogs) 137

considerations (files) 134

considerations (volumes) 134

current type of data 139

downlevel type of data 139

duplicate data condition 144

file cannot be opened 145

file completely unreadable 145

file not properly closed 143

file partially unreadable 145

files cannot be opened 146

inaccessible file 145

incomplete write to disk 144

incorrect high RBA 144

levels of data recovery 139

procedures 143

quick recovery, preparing for 150

tools 139

volume is inaccessible 148

what it is 139

with SAM ESDS files 153

RECOVERY parameter 110

RECSIZE specification (SAM ESDS) 29

relating deferred requests 263

relationship of catalog entries to

VSE/VSAM files and volumes 135

relative block of extent 39

relative track of extent 39

REPRO (IDCAMS command)
use of 136, 137

using with SAM ESDS files 172

request macros
examples 267

overview 183

return codes 289

request parameter list (RPL) 186, 231

requirements
and restrictions with modeling

objects 63

for creating SAM ESDS file from SAM

file 151

for job control 23

for lock file 21

ISAM to VSE/VSAM, converting

from 323

spanned record, begin of 6

storage
See storage requirements

VOL1 label, location of 337

requirements (continued)
volume mounting 51

reset high RBA mismatch 147

resource pool build macro (BLDVRP)
operand notation 302

parameter list 312

resource pool delete macro (DLVRP)
operand notation 302

resource pool, building 207

resources protection
See protection of resources

resources, shared 191

restore
access to data 139

addressability of data 139

dialog for 12

generic names 56

generic names, using 56

RESTORE command
migration to large DASD 78

migration to SCSI disk 55

overview 3

use of 135

restrictions
large DASD 79

restrictions, data compression 71

retrieval of records 240, 245

return codes from BLDVRP 210

return codes from close routine 212

return codes from DLVRP 213

return codes from manipulation

macros 291

return codes from OPEN 229

return codes from request macros 289

return codes from SHOWCAT 249

reusable (REUSE) file, disposition control

for 155

reusable files 202

REUSE parameter 162

REUSE parameter with SAM ESDS work

files 160

RMODE31 parameter in macros 194

RPL chain, positioning information

for 234

RPL macro
See parameter list request macro (RPL)

RPL macro format 232

S
SAM (sequential access method)

file format differences to SAM

ESDS 179

files, processing with

VSE/VSAM 151

functions, restrictions with SAM

ESDS 167

migrating to VSE/VSAM control 155

SAM access (managed)
// DLBL date parameter for

managed-SAM file 27

// DLBL specifications, dependencies

on 30

change programs 156

considerations 165

considerations for access to files 166

SAM access (managed) (continued)
considerations for access to work

files 167

control block trace 351

differences to unmanaged-SAM

access 165

DTF specifications, dependencies

on 30

GETVIS space, specifying 167

modeling managed-SAM file 61

purpose of 165

requirements 17

steps in obtaining managed-SAM

access 155

SAM access (unmanaged)
considerations 165

differences to managed-SAM

access 165

disk-independence 167

steps in changing to managed-SAM

access 155

SAM ESDS file
See ESDS file (SAM)

SAM file
converting to VSE/VSAM 2

creating back up 136

creating SAM ESDS files, requirement

for 151

defining for use in VSE/VSAM data

space 152

migrating to VSE/VSAM control 155

VSE/VSAM functions available 152

SAM file (managed)
// DLBL date parameter 27

disposition at CLOSE 30

GETVIS space, adjusting 37

modeling 61

options at OPEN 30

partition size, adjusting 37

possible restrictions 168

steps in obtaining managed-SAM

access 155

SAM file (unmanaged)
advantages in changing to SAM ESDS

files 152

steps in changing to managed-SAM

access 155

SAM files and data compression 71

SAM files to VSE/VSAM, convert 2

Sampling in data compression 68

scratch VTOC label for a specified

file 358

SCSI disk devices
FBA disk devices 80

migration using BACKUP 55

migration using RESTORE 55

restrictions 81

search order of catalogs 44

second close disposition 202

secondary allocation of file (SAM ESDS),

records for 29

secondary allocation, minimize 133

security-verification exit 128

separate processing program from file
See TCLOSE macro

sequential positioning 233

sequential processing 239

388 VSE/VSAM User’s Guide and Application Programming

sequential retrieval 240

serial-number of volume containing

extent 39

shared resource (LSR) option in

ACB 202

shared resources 191

shared resources, local
See local shared resources (LSR)

SHAREOPTIONS parameter
control file sharing 129

degrees of file sharing 130

purpose of 129

where to specify 129

with SAM ESDS files 166

SHAREOPTIONS(4) locking activity

trace 351

sharing
catalogs across systems 131

cross-system data, specifying share

options 131

cross-system user catalogs,

specifying 131

DASDs, establish environment 129

data across system 131

data set names, advantages 192

data, protection of 129

file control blocks 192

files 129

files across systems 131

files and use of z/VSE LOCK

facility 130

files, protection for 129

I/O buffers 192

integrity when opening a file through

different ACBs 192

master catalog with shared user

catalogs 131

options 130

sharing of data set name 192

SHOWCAT (display catalog) macro 189,

246

SHOWCAT macro
See catalog display macro

(SHOWCAT)

SHOWCAT macro format 246

SHOWCB (display control block)

macro 188, 251

SHOWCB macro 121

See control block display macro

(SHOWCB)

SHOWCB macro format 252

SHRPOOL parameter in ACB 203

size of partition to load a program
See partition space

skip sequential insertion 243

skip sequential retrieval 243

skip-sequential retrieval 268

SNAP (IDCAMS command) 9, 141

SNAP dump program (IKQVEDA)
activating 351

disabling 352

dump numbers 350

enabling 352

examples 353

execution, setting up for 353

output of 354

purpose 350

SNAP dump program (IKQVEDA)

(continued)
running 351

types of dumps 350

UPSI job control statement, setting

of 353

space
allocation (dynamic file),

suppressing 109

allocation (dynamic) with SAM

ESDS 152, 164, 165

allocation for multiple volumes 102

allocation for multiple volumes (an

exercise) 107

allocation options 108

allocation parameters 109

defaults 93

determination 93

dynamic allocation 5, 109

GETVIS space (SAM ESDS),

specifying 167

management 6, 47

map, mismatch of 147

ownership 47

partition for time-dependent

programs 37

suballocate data space 47

unused, cause of 113

utilization and CI size 90

SPACE FORCE command 142

spanned record, what it is 6

spanned records, handling 218, 237, 238

SPEED parameter 110

standard volume label (VOL1 label) 337

statistical information not updated 122

statistics mismatch 147

statistics on files 121

statistics provided by SHOWCB

macro 256

storage
above/below the 16MB line 16

capacities of CKD devices 86

capacities of FBA devices 87

for loading programs 38

GETVIS for non-SVA-eligible

routines 13

space for buffers (due to CIs) 94

storage requirements
buffers 14

considerations 13

control blocks 14

for index records 120

IDCAMS 18

if LSR is specified 16

if NSR is specified 15

ISAM Interface Program (IIP) 18

non-SVA-eligible routines 14

real mode operation 14

SVA for VSE/VSAM 13

VSE/VSAM 14

VSE/VSAM Backup/Restore

Function 19

VSE/VSAM Space Management for

SAM Function 17

suballocation of data space 109, 336

supervisor buffers, specifying 22

support of 3390-9 disk device 77

switching from direct to keyed-sequential

retrieval 274

SYNAD exit routine 185, 220

syntax checking (processing option) 38

SYS (IPL command) 21, 22

system defaults, overriding through

modeling 57

system work file (IJSYSnn) support 168

T
TCLOSE macro

description 257

format 257

operands 257

use 188

temporary closing of a file 257

terminating a request 214

terms explained 363

TESTCB (test control block) macro 188,

257

TESTCB macro 121

See control block test macro (TESTCB)

TESTCB macro format 258

threshold, free space 112

time stamp
entry in volume 50

entry in VTOC 50

error codes on mismatch 338

field in volume 338

time-dependent programs, partition space

for 37

tools for resources protection and

recovery 139

track size (CKD devices) relationship to

min CA size 85

track space used for data component 90

tracks per cylinder (CKD devices) 86

transaction ID (in RPL macro) 187, 238,

263

transporting files
See migrating

U
unique control block for access methods,

generating 331

unique file
See files (UNIQUE)

UNIQUE parameter 48, 109

unmanaged-SAM access
See SAM access (unmanaged)

unmanaged-SAM file
See SAM file (unmanaged)

UNORDERED parameter 103

update, addressed sequential 285

update, keyed direct 283

update, keyed sequential 282

UPDATEPW (update password

parameter) 125

updating VSE/VSAM files 243, 245

upgrade record, what it is 350

upgrade set (alternate index)
buffer allocation 99

buffer allocation for path entry 98

data output from catalog check 348

Index 389

upgrade set (alternate index) (continued)
partition requirements (if NSR) 15,

16

UPGRADE attribute and share

options 130

upgrade record, what it is 350

UPSI statement (with maintain

VTOC/VOL1 labels) 355

UPSI statement (with SNAP dump) 353

USECLASS parameter 84

user catalog
See catalog (user)

user catalog // DLBL statement 23

user I/O routines 317

user security-verification routine (USVR)
action with master password

(MASTERPW) 125

explained 128

register content 128

specifying name of routine 128

user-written program for file back

up 136

utilities for data integrity 132

V
verification of passwords (user-written

routine) 128

VERIFY (IDCAMS command)
// DLBL required 25

compare catalog with EOF

indicator 143

incorrect high RBA, handling of 144

mismatch, correct a 147

overview 10

using with SAM ESDS files 173

virtual disk support
preparation procedures 51

restrictions 52

use with VSE/VSAM 51

work files on 51

virtual mode operation 14, 37

virtual tape 71, 82

VM, transfer files from VSE to 7

VOL1 label, processing 337

VOL1 label, purpose of 333

volume
automatic device assignment 22

back up and recovery

considerations 134

back up considerations/methods 136

data space suballocation 336, 339

defining data space on 48

defining for SAM ESDS files 160

entries in catalog 135

entries in catalog, purpose of 47

entries in catalog, scope of 49

extent information, specifying 39

extent overlap, action on 337

file name associated with 27

identifier, when written 333

indicator of ownership 49

information mismatch 148

label maintain program

(IKQVDU) 355

layout of 334

lists with object modeling 65

volume (continued)
logical unit 39

migrating files from one volume to

another 56

mismatch of catalog entry 147

mounting for file processing 339

mounting, ways of 22

mounting, when needed 51

ownership and nonVSAM files 48

ownership, records of 48

ownership, removing from

catalog 49

portability 41

protection considerations 134

relationship of data space, files,

labels 334

relative block 39

relative track 39

separate for indexes and data 121

separation for data integrity 132

serial number 39

space ownership by catalogs

(restrictions) 41

space ownership, determining 138

time stamp 338

time stamp entry, when updated 50

VOL1 label, purpose of 333

volume layout example 335

VSE/Fast Copy utility, use of 136

volume back up
See volume protection

volume protection
back up considerations/methods 136

backup copy, creating a 136

VSE/Fast Copy utility, use of 136

volume space
define for VSAM and nonVSAM

files 132

ownership, determine 138

volume table of contents (VTOC)
data component names

(user-specified) 50

data space names, entries for 50

data space names, generation of 50

delete (scratch) 358

deletion of labels, when it occurs 336

Device Support Facilities (DSF), when

used 334

format-4 label, purpose of 334

format-4 label, when written 334

index component names

(user-specified) 50

label entries 48

label maintain program

(IKQVDU) 355

label processing 338

label processing overview 335

label that defines the VTOC 334

labels for FBA devices, residence

of 336

record of physical extents (unique

files) 135

relating generated and user-specified

names 50

relationship to labels 334

scratching label for a specified

file 358

volume table of contents (VTOC)

(continued)
size for FBA devices, specifying 336

time stamp 338

time stamp entry, when updated 50

volume time stamp 50, 338

VSAM
support of Large DASD 77

VSAM.COMPRESS.CONTROL 70

VSE/Fast Copy utility 132

VSE/VSAM access
to SAM ESDS files 169

to VSE/VSAM ESDS files 169

VSE/VSAM basic information
See basic information on VSE/VSAM

VSE/VSAM Compression Prediction Tool

(IKQPRED)
examples 72

interpreting results 73

invocation 72

output description 74

process 73

VSE/VSAM DASD sharing facility 21

VSE/VSAM device dependencies 77

VSE/VSAM extended user buffering
new support 288

overview 287

using 288

VSE/VSAM for VM
DASD considerations 132

VSE/VSAM macros
See macros (VSE/VSAM)

VSE/VSAM Space Management for SAM

Function
creating/using SAM ESDS files 151

GETVIS space default 37

IDCAMS commands, using 170

partition requirements 38

partition size 37

RECORDS specification for SAM

ESDS files 29

RECSIZE specification for SAM ESDS

files 29

storage requirements 17

use of 2, 152

VSE/VSAM support of Large DASD 77

VSE/VSAM virtual tape 82

VSE/VSAM Virtual Tape 82

VTAM similarities with VSE/VSAM 331

VTOC
See volume table of contents (VTOC)

VTOC utility (IKQVDU) 132, 355

W
words explained 363

work files
See files (WORK)

work files on virtual disk 51

wrap trace 351

write operations, deferring 262

WRITECHECK
data integrity 132

default when modeling 63

performance with

NOWRITECHECK 110

purpose of 110, 142

390 VSE/VSAM User’s Guide and Application Programming

WRITECHECK (continued)
with ALTER command 170

writing buffers 263

writing records
See PUT macro

WRTBFR (write buffer) macro 263

WRTBFR macro
See buffer write macro (WRTBFR)

WRTBFR macro format 264

Z
z/VSE Interactive Interface for users 11

z/VSE LOCK facility, use of 130

Index 391

392 VSE/VSAM User’s Guide and Application Programming

Readers’ Comments — We’d Like to Hear from You

IBM z/VSE

VSE Central Functions

VSE/VSAM User’s Guide and Application Programming

Version 7 Release 1

 Publication No. SC33-8246-00

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-8246-00

SC33-8246-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5686-066
5686-CF7

Printed in USA

SC33-8246-00

Sp
in

e
in

fo
rm

at
io

n:

 �
�

�

IB
M

z/

VS
E

VS
E

C

en
tr

al

Fu

nc
tio

ns

V
SE

/V
SA

M

U
se
r’s

G
ui
de

an
d
Ap
pl
ic
at
io
n

Pr
og
ra
m
m
in
g

Ve
rs
io
n
7
R
el
ea
se

1

SC
33
-8
24
6-
00

	Contents
	Figures
	Tables
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information

	Abbreviations
	Summary of Changes
	New Information
	Device Dependencies
	Buffer Hashing
	IDCAMS SNAP Command

	Changed Functionality
	Other Changes
	Deleted Material

	Chapter 1. Introduction to IBM VSE/VSAM
	Overview
	Advantages
	Central Control
	Data Protection and Integrity
	Device Independence
	Portability of Data Between Systems
	Ease of Conversion from SAM or ISAM to VSE/VSAM

	Functions of IBM VSE/VSAM
	VSE/VSAM Space Management for SAM Function
	VSE/VSAM Backup/Restore Function

	Concepts of Data Organization
	File Types
	Formats of Files

	Elements of Organization
	Data Space
	Control Area (CA)
	Control Interval (CI)
	Spanned Records
	Clusters

	Catalogs with VSE/VSAM
	Space Management
	File Management
	Master and User Catalogs

	Indexes with VSE/VSAM
	Alternate Indexes - Their Advantages
	Paths to Base Clusters

	How to Communicate with VSE/VSAM
	IDCAMS Commands
	Functional Commands
	Modal Commands

	VSE/VSAM Macros
	To Relate the Program and the Data (Declarative Macros)
	To Handle Declarative Macros
	To Display Data
	To Connect/Disconnect a Program to/from a File
	To Share Resources Between Several Files (LSR)
	To Handle Records

	Job Control Parameters to Access VSE/VSAM Files
	z/VSE Interactive Interface

	Chapter 2. Planning Information
	Compatibility with IBM VSE/VSAM Version 2
	Overview of Environment and Requirements
	What to Consider
	Partition Space for Non-SVA-Eligible Routines
	Device Dependencies

	Storage for VSE/VSAM
	Space for Running in Virtual Mode
	Space for Running in Real Mode
	Partition Requirement for Buffers and Control Blocks
	If NSR is Specified
	If LSR is Specified
	Buffer Allocation above the 16MB Line of Storage

	Storage for the VSE/VSAM Space Management for SAM Function
	SAM Access Routines
	Space for Running in Real Mode
	Partition Requirement for Control Blocks and Buffers
	Partition Virtual Storage
	GETVIS Requirements for Managed-SAM Access to SAM ESDS Files

	Storage for the ISAM Interface Program (IIP)
	Storage for IDCAMS Including the VSE/VSAM Backup/Restore Function
	VSE/VSAM Backup/Restore Function
	Loading VSE/VSAM Backup/Restore into the SVA
	Partition Virtual Storage

	Chapter 3. Operation and Job Control
	IPL Command Specifications for VSE/VSAM
	Assigning a Device to the Master Catalog
	Defining the Lock File
	Lock File Requirements

	Specifying the Number of Supervisor Buffers for Channel Programs

	Volume Mounting
	Mounting a Volume Through Job Control Specifications
	Mounting a Volume Through Automatic Assignment
	If the Volume is Mounted
	If the Volume is Not Mounted

	Use of z/VSE Job Control Statements for VSE/VSAM
	Job Control Statements for Catalogs
	VSE/VSAM Application Programs
	IDCAMS Commands

	Job Control Statements for Files

	// DLBL Statement
	Format of the DLBL Statement
	File Disposition
	OPEN Disposition
	CLOSE Disposition
	Additional Considerations

	// EXEC Statement
	Note to Users of the VSE/VSAM Space Management for SAM Function
	Format of the EXEC Statement

	// EXTENT Statement
	Format of the EXTENT Statement

	Using Job Control for Catalog Definition
	Overview of Catalogs
	Master Catalogs
	User Catalogs
	Files and Catalogs
	Catalog Volumes

	Specifying the Master Catalog
	Specifying a User Catalog
	Specifying a Job Catalog
	Using a Job Catalog
	Explicit Catalog Specification (With a VSE/VSAM File's // DLBL CAT Parameter)
	Explicit Catalog Specification (With the IDCAMS CATALOG Parameter)

	Search Sequence of Catalogs

	Chapter 4. Tasks under VSE/VSAM
	Data and Space Management
	About the VSE/VSAM Catalog
	Information Contained in the Entries of a Catalog

	Defining VSE/VSAM Data Spaces on a Volume
	Defining VSE/VSAM Files
	About Volumes and VTOCs
	Volume Ownership
	Handling Ownership
	Recognizing VSE/VSAM Data Space Names in the VTOC
	Relating Names Created for Unique Data Spaces
	Time Stamps
	Volume Mounting Needs

	Work Files on Virtual Disk
	Preparations for Use
	Restrictions

	Transporting Files between Systems
	Transporting Catalog Information
	Transporting Files between VSE/VSAM and DFSMSdfp VSAM or DFSMS/MVS
	Transporting Files between VSE/VSAM and MVS/VSAM (not DFP)
	Transporting Files between z/VSE Systems

	Catalog and File Migration
	Definitions for Catalog Migration
	Defining a Catalog
	Defining a VSE/VSAM Data Space
	Defining a Non-Unique Cluster or Alternate Index
	Defining a Unique Cluster or Alternate Index

	Migrating Catalogs
	Catalog Migration Using BACKUP/RESTORE
	Catalog Migration Using EXPORT/IMPORT

	Migrating VSE/VSAM Files to Another Device
	File Migration Using BACKUP and RESTORE
	Other Methods of File Migration

	NonVSAM Migration
	Space Allocation through Modeling

	Using an Object as a Model
	About the MODEL Subparameter
	Explicit Allocation Models
	If MODEL is Specified in DATA or INDEX Parameter

	Explicit Noallocation Models
	Implicit NOALLOCATION Models (Default Models)
	How VSE/VSAM Determines Which Parameters to Use
	Restrictions
	Default Volumes

	Chapter 5. Working With Compressed Files
	Introduction to VSE/VSAM Compression
	Advantages
	Activating VSE/VSAM Data Compression

	How VSE/VSAM Data Compression Works Internally
	Dictionary Creation
	Compression States
	Data Format of Records

	How to Define the Compression Control Data Set
	Which Data Set Types Are Eligible
	Restrictions
	The VSE/VSAM Compression Prediction Tool (IKQCPRED)
	Using IKQPRED
	IKQCPRED Examples

	Method of Operation
	Interpreting IKQCPRED Results

	Chapter 6. Device Dependencies
	VSE/VSAM Support of Large DASD
	Making Use of the Support
	Migrating to Large DASD Using IDCAMS Backup/ Restore
	Performance Considerations (KSDS Only)
	BUFFERSPACE Parameter

	Increased Size of the Catalog Index
	Restrictions for VSE/VSAM Support of Large DASD
	New or Changed Fields in LISTCAT Output

	Support for FBA Disk Devices (FBA and SCSI)
	Technical Considerations
	Restrictions

	Virtual Tapes

	Chapter 7. Optimizing the Performance of VSE/VSAM
	Number of Files Defined in a Catalog
	Data Space Classification
	Control Area (CA) Size
	Minimum and Maximum CA Sizes
	Performance Implications
	Disk Storage Sizes

	Control Interval (CI) Size
	How to Specify
	Data CI and Block Sizes
	Physical Block Size for Data Component

	CI Size in a Data Component
	Performance Considerations

	CI Size in an Index Component
	Considerations
	What IDCAMS Calculates and Adjusts

	Key Compression

	I/O Buffer Space (Using Non-Shared Resources)
	Considerations
	Sequential Processing
	Direct Processing

	Buffer Specification
	Specifying through DEFINE Command
	Specifying through ACB Macro
	Specifying through // DLBL

	Buffer Allocation
	Minimum Buffer Allocation
	Buffer Allocation for a Path
	Miscellaneous Notes on Buffer Allocation (NSR)

	I/O Buffer Space (Using Local Shared Resources)
	Miscellaneous Notes on Buffer Allocation (LSR)
	LSR Buffer Hashing
	How Does Buffer Hashing Work?

	Preventing Deadlock in Buffer Contention
	Multiple Volume Support
	Key Ranges
	Space Allocation
	Space Allocation without Key Range Specified
	Space Allocation with Key Range Specified
	Unordered Space Allocation
	Ordered Space Allocation

	Examples: Allocation of Space on Multiple Volumes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	An Exercise

	Space Allocation
	Possible Options
	NOALLOCATION
	Dynamic Files

	Data Protection and Integrity Options
	Distributed Free Space
	Loading a File
	Specifying Free Space
	Altering Free Space
	Considerations for Loading a File
	Performance with Too Much or Too Little Free Space
	Where VSE/VSAM Places the Records
	Specifying Free Space in a CI and CA
	Reclaiming Space

	CI/CA Splits
	Sequential Processing
	Direct Processing

	Examples: CI/CA Splits
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Index Options
	Number of Index Records in Virtual Storage
	Index and Data on Separate Volumes
	Consideration for ECKD Devices
	Key Ranges

	Performance Measurement
	Displaying Statistics About Buffer Pools

	Chapter 8. Data Protection and Data Recovery
	Data Protection
	Passwords to Authorize Access
	Password Levels
	Password Submission
	Password Relationships
	Password Checking
	Passwords and IDCAMS Operations

	User Security-Verification Routine
	Protecting Shared Data
	Cross-Systems Sharing

	Data Integrity
	IDCAMS Commands and Command Options for Data Integrity
	Using the DEFINE SPACE Command
	Using the DEFINE CLUSTER Allocation Subparameter
	Using the DEFINE USERCATALOG Command

	Protecting VSE/VSAM Files and Volumes
	Backup Considerations
	Relationship of Catalog Entries to VSE/VSAM Files and Volumes
	Creating Backup Copies of VSE/VSAM Files
	Creating Backup Copies of Volumes

	Protecting VSE/VSAM Catalogs
	Creating Backup Copies of Catalogs
	Protect Against Loss of Data, and Recover
	Protect Against Unusable Catalog, and Recover

	Rebuilding a Catalog

	Guide to VSE/VSAM Recovery
	About Data Organization and Recovery
	About the Recovery Process
	Levels of Recovery

	Tools for Data Integrity, Backup, and Recovery
	Procedures for VSE/VSAM Recovery
	File is Not Properly Closed
	Cause of Failure
	Error Conditions:
	Overview
	Recovery for Incorrect High RBA in Catalog
	Recovery for Incomplete Write to a Disk Device
	Recovery for Duplicate Data in a Key-Sequenced File, Alternate Index, or Catalog

	File is Inaccessible
	Cause of Failure
	Error Conditions:
	Overview
	Recovery for a File that Cannot Be Opened
	Recovery for a File that is Partially Unreadable
	Recovery for a File that is Completely Unreadable

	Catalog is Unusable
	Cause of Failure
	Error Conditions:
	Overview
	Recovery for a Catalog that Can Be Opened, but Many VSE/VSAM Files Cannot Be Opened
	Recovery for a Catalog that Cannot Be Opened
	Recovery for a Catalog Volume that is Unusable
	Catalog Entry Mismatches

	Volume is Inaccessible
	Cause of Failure
	Error Conditions
	Overview
	Recovery for Volume that is Totally Unusable
	Recovery for Volume that is Partially Unusable

	Quick Recovery
	Procedure for Quick Recovery

	Chapter 9. VSE/VSAM Support for SAM Files
	Overview
	About SAM ESDS Files
	About the VSE/VSAM Space Management for SAM Function

	Advantages in Using SAM ESDS Files
	Dynamic Allocation
	Simplified Job Control
	Default Modeling
	Implicit File Definition
	Device Independence
	IDCAMS Commands
	Security and Integrity of Data
	Data Recovery
	Additional Functions Available for Managed-SAM Access

	Planning for Files
	Work Files
	Automatic Space Management
	Partition/Processor Independence

	Disposition
	Extending Existing SAM ESDS Files

	Levels of Migrating Data and Programs from SAM to VSE/VSAM Control
	Functions Available at the Various Migration Levels
	Step 1: Move SAM Files to SAM ESDS Files
	Step 2: Change Managed-SAM Access Programs to VSE/VSAM Programs
	Step 3: Convert SAM ESDS Files to VSE/VSAM ESDS Files

	Creating a SAM ESDS File
	Setting Up a Quantity of Space
	Defining a SAM ESDS File
	Explicit Define Cluster (Using the DEFINE CLUSTER Command)
	DEFINE CLUSTER Command -- Explanations of Parameters
	Additional Considerations
	Single Extent Primary Allocation
	Partition/Processor Independence Specification

	Implicit Define Cluster
	Assumptions Made by VSE/VSAM
	Information Obtained from the DTF
	Information Obtained from the Job Control Statements

	Resetting and Reusing a Previously-Defined File

	Using a SAM ESDS File
	Access to a SAM ESDS File
	Managed-SAM Access: Differences to (Unmanaged) SAM Access
	Considerations Relating to DEFINE CLUSTER Specifications
	Considerations for Access to Files

	Using SAM ESDS Files: Restrictions
	Device-Dependent SAM Functions
	SAM ESDS Files
	DTF Specifications
	DTFPH Specifications

	VSE/VSAM Access of SAM ESDS Files: Considerations

	The IDCAMS Commands for a SAM ESDS File
	Implicit Deletion of a SAM ESDS File
	Case 1
	Case 2
	Case 3

	Sample Programs and Job Streams
	Example 1: Load a SAM ESDS File by Way of Managed-SAM Access
	Example 2: Implicit Define of a SAM ESDS File
	Example 3: Define a Default Model SAM ESDS File
	Example 4: Define a Dynamic SAM ESDS File and Access

	Differences Between VSE/VSAM ESDS and SAM ESDS File Format
	How CIs are Formatted into CAs
	VSE/VSAM ESDS Files
	SAM ESDS Files

	Relationship of Physical and Logical Layout

	Chapter 10. Using VSE/VSAM Macros
	Groups of Macros
	Declarative VSE/VSAM macros:
	Macros to Share Resources Between Several Files
	Request Macros
	Control Block Manipulation Macros
	OPEN/CLOSE Macros

	Relating a Program and the Data
	ACB: Specifying the Access Method Control Block
	Exit Routines
	I/O Buffers
	Password
	Processing Options
	Concurrent Requests
	Error Messages

	EXLST: Specifying the Exit List
	Analyzing Physical Errors (SYNAD)
	Analyzing Logic Errors (LERAD)
	End-of-File Processing (EODAD)
	Overlapping I/O Operations (EXCPAD)
	Writing a Journal (JRNAD)

	RPL: Specifying the Request Parameter List
	Processing Options for a Request (OPTCD)
	Address of the Work Area for, or Pointer to, a Data Record (AREA)
	Size of the Work Area for a Data Record (AREALEN)
	Length of the Data Record Being Processed (RECLEN)
	Length of the Key (KEYLEN)
	Address of the Area Containing the Search Argument (ARG)
	Address of the Next RPL in a Chain (NXTRPL)
	Transaction-ID (TRANSID)

	GENCB: Generating Control Blocks and Lists

	Connecting and Disconnecting a Processing Program and a File
	OPEN: Connecting a Processing Program to a File
	CLOSE: Disconnecting a Processing Program from a File
	TCLOSE: Securing Records Added to a File

	Manipulating and Displaying the Information Relating Program and Data
	MODCB: Modifying the Contents of Control Blocks and Lists
	SHOWCB: Displaying Fields of Control Blocks and Lists
	TESTCB: Testing the Contents of Control Blocks and Lists

	Requesting Data Transfer, Positioning, and Deletion of Records
	Displaying Catalog Information
	SHOWCAT: Retrieving Information from a Catalog

	Sharing Resources Among Files and Displaying Catalog Information
	Data Set Name Sharing
	Considerations
	Processing
	Specifying Manipulation Macros

	Buffers and LSR Pools above 16MB Line of Storage

	Chapter 11. Descriptions of VSE/VSAM Macros
	Syntax of VSE/VSAM Macros
	VSAM Executable Macros and Their Mode Dependencies
	The ACB Macro
	Format of the ACB Macro
	Options of the MACRF Parameter

	OPEN/CLOSE/TCLOSE Message Area
	Providing the Area
	Format of the Message Area Header
	Exceptional Conditions for the Message Area

	The BLDVRP Macro
	Deciding How Big a Pool to Provide
	Displaying Information about an Unopened File
	Displaying Statistics about a Buffer Pool
	Format of the BLDVRP Macro
	Return Codes from BLDVRP
	Connecting a File to a Resource Pool
	Restrictions

	The CLOSE Macro
	Format of the CLOSE Macro

	The DLVRP Macro
	Format of the DLVRP Macro
	Return Codes from DLVRP

	The ENDREQ Macro
	Format of the ENDREQ Macro

	The ERASE Macro
	Format of the ERASE Macro

	The EXLST Macro
	Format of the EXLST Macro
	EODAD Exit Routine to Process End-of-File
	EXCPAD Exit Routine
	JRNAD Exit Routine to Journalize Transactions
	LERAD Exit Routine to Analyze Logic Errors
	SYNAD Exit Routine to Analyze Physical Errors

	The GENCB Macro
	Format of the GENCB Macro
	Examples of the GENCB Macro

	The GET Macro
	Format of the GET Macro
	VSE/VSAM is Not Yet Positioned

	The MODCB Macro
	Format of the MODCB Macro
	Examples of the MODCB Macro

	The OPEN Macro
	Format of the OPEN Macro
	Return Codes from OPEN

	The POINT Macro
	Format of the POINT Macro

	The PUT Macro
	Format of the PUT Macro

	The RPL Macro
	Format of the RPL Macro
	Specifying Processing Options for a Request
	Keyed and Addressed Access
	Sequential and Direct Processing
	CI Access

	The SHOWCAT Macro
	Format of the SHOWCAT Macro
	Return Codes from SHOWCAT

	The SHOWCB Macro
	Format of the SHOWCB Macro
	Keywords of the ACB, EXLST, and RPL Macros
	Length of a Control Block or List
	Attributes of an Open File
	Example: The SHOWCB Macro
	Example: Statistics on Use of LSR Buffer Pools

	The TCLOSE Macro
	Format of the TCLOSE Macro

	The TESTCB Macro
	Format of the TESTCB Macro
	Operands of the ACB, EXLST, and RPL Macros
	Length of a Control Block or List
	Attributes of an Open File or Index
	Examples of the TESTCB Macro

	The WRTBFR Macro
	Managing I/O Buffers
	Deferring Write Requests
	Relating Deferred Requests by Transaction ID
	Writing Buffers Whose Writing Has Been Deferred
	Format of the WRTBFR Macro

	Examples: ACB, EXLST, and RPL Macros
	Specifying VSE/VSAM Control Blocks
	JCL to Open and Process a File

	Examples of Request Macros
	How to Retrieve a Record: GET Macro
	Example 1: Keyed-Sequential Retrieval
	Example 2: Skip-Sequential Retrieval
	Example 3: Addressed-Sequential Retrieval
	Example 4: Keyed-Direct Retrieval
	Example 5: Addressed-Direct Retrieval

	How to Position for Subsequent Sequential Access: GET and POINT Macros
	Example 6: Keyed Positioning with POINT
	Example 7: Switching from Direct to Keyed-Sequential Retrieval

	How to Chain Request Parameter Lists and Terminate a Request: ENDREQ Macro
	Example 8: Chaining Request Parameter Lists
	Example 9: Giving up Positioning for Another Request

	How to Store a Record: PUT Macro
	Example 10: Keyed-Sequential Insertion
	Example 11: Skip-Sequential Insertion
	Example 12: Keyed-Direct Insertion
	Example 13: Addressed-Sequential Addition

	How to Update a Record: GET and PUT Macros
	Example 14: Keyed-Sequential Update
	Example 15: Keyed-Direct Update
	Example 16: Addressed-Sequential Update

	How to Delete a Record: GET and ERASE Macros
	Example 17: Keyed-Direct Deletion
	Example 18: Addressed-Sequential Deletion

	How to Use Extended User Buffering: GET and PUT Macros
	Current User Buffering Support
	Extended User Buffering Support
	Using Extended User Buffering
	Errors

	Return Codes of Request Macros
	Return Codes from the Control Block Manipulation Macros
	List, Execute, and Generate Forms of the Control Block Manipulation Macros
	List and Execute Forms
	Generate Form
	Examples of the List, Execute, and Generate Forms

	Appendix A. Operand Notation and Parameter Lists for VSE/VSAM Macros
	Operand Notation for VSE/VSAM Macros
	GENCB Macro Operands
	MODCB Macro Operands
	SHOWCB Macro Operands
	TESTCB Macro Operands
	BLDVRP Macro Operands
	DLVRP Macro Operands
	SHOWCAT Macro Operands
	WRTBFR Macro Operands

	Parameter Lists for VSE/VSAM Macros
	The GENCB Parameter List
	Header Entry
	Keyword Entries

	The MODCB Parameter List
	Header Entry
	Keyword Entries

	The SHOWCB Parameter List
	Header Entry
	Keyword Entries

	The TESTCB Parameter List
	Header Entry
	Keyword Entries

	The BLDVRP Parameter List
	The SHOWCAT Parameter List
	Header Entry

	Appendix B. Invoking IDCAMS from a Program
	Invoking Macro Instructions
	Explanation
	(A) The Argument List
	(B) The Page Number List
	(C) The Input/Output List
	(D) The Options List
	(E) The DNAMES List
	(F) USER DATA AREA

	User I/O Routines
	Explanation

	Appendix C. Advantages of the ISAM Interface Program (IIP)
	Comparison of VSE/VSAM and ISAM
	Differences Between ISAM and VSE/VSAM
	Index Structure
	Relation of Index to Data
	Defining and Loading a File
	Deletion of Records

	VSE/VSAM Functions That Go Beyond ISAM
	VSE/VSAM Functions Available through IIP
	VSE/VSAM Functions Requiring Conversion from ISAM

	Preparations and Using the ISAM Interface Program
	Step 1: Consider Restrictions in the Use of IIP and VSE/VSAM
	Step 2: Define a VSE/VSAM File
	Data Space
	Buffer Space
	Reusable File
	DTFIS Parameters and DEFINE Command Relationship

	Step 3: Load the VSE/VSAM File
	Step 4: Changing ISAM Job Control Statements

	What the ISAM Interface Program Does

	Appendix D. Compatibility With Other Products
	Portability of VSE/VSAM Files to DFSMSdfp VSAM
	FBA Support
	Dedicated VSE/VSAM Volume
	Data Space Classification
	Default Models
	Default Volumes
	Multiple Volume Ownership
	Catalog Check Services
	Automatic Catalog Check

	Backup/Restore
	Device Dependency
	VSE/VSAM Data Compression

	Compatibility of VSE/VSAM with DFSMSdfp VSAM
	Similarities between VSE/VSAM and ACF/VTAM

	Appendix E. VSE/VSAM Labels
	Types of VSE/VSAM Labels
	Volume Label
	Data Space Label
	Space Continuation Label
	VTOC Label

	Location of Labels
	Volume Layouts
	Label Information Area

	VTOC Label Processing
	VSE/VSAM Data Spaces
	VSE/VSAM Files
	VTOC Labels for FBA Devices
	VSE/VSAM Data Space
	VOL1 Label Processing
	Format-1 VTOC Label Processing for Unique Files
	Format-3 VTOC Label Processing
	Format-4 VTOC Label Processing

	VSE/VSAM Files
	Defining a File: Suballocating Data Space (Non-Unique Files)
	Defining a File: Unique
	Processing a File

	Job Stream Examples
	Example - Define Data Spaces
	Example - Define a File in a Catalog
	Example - Define a Unique File
	Example - Process a File

	Appendix F. Diagnosis Tools
	Catalog Check Service Aid (IKQVCHK)
	In Case of Errors
	How to Run a Check
	Examples of Error Messages
	Example: Key-Range Names Not Matching
	Example: Erroneous Association Group Occurrence

	Output of a Check
	Record Types and Catalog Identifiers

	SNAP Dump (IKQVEDA)
	How to Run a SNAP Dump
	Activating a SNAP Dump
	Enabling a SNAP Dump
	Disabling a SNAP Dump

	Example: SNAP Dump 0001
	Activating
	SNAP 0001 Output

	Maintaining VTOC and VOL1 Labels on Disk (IKQVDU)
	How to Run the IKQVDU
	Error Message and Codes (from IKQVDU)

	Glossary
	Related IBM Manuals
	IBM z/VSE
	Various

	Index
	Readers’ Comments — We'd Like to Hear from You

