
TCP/IP for VSE/ESA

TCP/IP for VSE/ESA – IBM Program

Setup and Supplementary Information

SC33-6601-08

���

TCP/IP for VSE/ESA

TCP/IP for VSE/ESA – IBM Program

Setup and Supplementary Information

SC33-6601-08

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

xi.

Ninth Edition (March 2005)

This edition applies to Version 1 Release 5 of IBM TCP/IP for VSE/ESA, Program Number 5686-A04, and to all

subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the addresses given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address

your comments to:

 IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com

FAX (Germany): 07031-16-3456

FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

Notices xi

Trademarks and Service Marks xi

About this book xiii

Understanding Syntax Diagrams xiii

Summary of Changes xvii

Part 1. Using TCP/IP for VSE/ESA . . 1

Chapter 1. Important Considerations -

Read this First! 3

Documentation for the TCP/IP for VSE/ESA

(5686-A04) Program 3

General Considerations on the TCP/IP for VSE/ESA

Program Setup 3

The Demo Mode for TCP/IP for VSE/ESA 4

Supplying the Product Key 5

Installing Product Keys 6

Defining Customer Information 6

Migration Considerations 8

Chapter 2. TCP/IP for VSE/ESA

Configuration 11

How TCP/IP for VSE/ESA is Installed 11

TCP/IP for VSE/ESA Partition Startup 11

Example 11

Configuring CICS 13

Setup CICS 13

ICA Token-Ring – Sharing Considerations with

VTAM 18

HTMLINST.Z 19

Example 19

Chapter 3. TCP/IP for VSE/ESA

Configuration Dialogs 21

Configuring TCP/IP Using the Configuration

Dialogs 21

How To Do It 21

TCP/IP for VSE/ESA PC-based Configuration

Dialog 22

Configuring TCP/IP Using the IUI-based

Configuration Dialog 24

Chapter 4. Security Manager

Exploitation by TCP/IP for VSE/ESA . . 31

Using BSM Capabilities for TCP/IP Security Checks 31

Exception List BSSTIXE 32

Activation of The Security Exit 32

Deactivation of the Security Exit 34

Using Pre- and Postprocessing Exits 34

Register Settings for Preprocessing Exit 35

Register Settings for Postprocessing Exit 35

Performance Hints 36

External Security Managers 36

Chapter 5. InfoPrint Manager Support

of TCP/IP for VSE/ESA 37

Overview 37

Setting the Parameters for the IPM Support . . . 38

Description of the SET Parameters 38

Using the SET FNO= Parameter with IPM . . . 39

Customizing the InfoPrint Manager 39

Changing the Properties of the Actual Destination 39

Technical Background Information 40

Software Prerequisites 40

Chapter 6. VSE/ESA Related Hardware

Functions Supported by TCP/IP for

VSE/ESA 1.5 41

Hardware Crypto Support 41

HiperSockets 41

OSA Express Support 41

Chapter 7. Performance Considerations 43

Performance and Tuning Considerations 43

Changing Performance Parameters 43

General Performance Issues 44

Principal Performance Dependencies for TCP/IP

for VSE/ESA 44

Part 2. Programming Interfaces . . . 47

Chapter 8. Introducing Socket

Programming 49

What is a TCP/IP Socket Connection ? 49

Socket Application Programming Interfaces

Available with TCP/IP for VSE/ESA 50

Portability Aspects 51

Assembler 51

COBOL and PL/I 51

C Language 51

Language Environment 51

Which API to use ? 52

Assembler 52

COBOL and PL/I 53

C Language 53

Exploiting the LE/VSE Socket API 54

C Language 55

Assembler Language 56

PL/I 56

© Copyright IBM Corp. 1997, 2005 iii

COBOL 57

Exploiting the EZASMI/EZASOKET Programming

Interfaces 64

LE/VSE 1.4 C Socket Programming 76

General C Programming Considerations 76

LE/VSE Sockets versus TCP/IP for VSE/ESA

Sockets - Reference List 78

Messages 81

OS/390 or z/OS EZASMI and EZASOKET Calls

Supported by z/VSE 82

ERRNO Values 84

CICS Considerations 88

Executing TCP/IP Application Programs 89

Connecting To TCP/IP 89

Preparation and Setup for SSL 89

Chapter 9. TCP/IP Support for the

LE/VSE C Socket Interface 91

Overview 91

TCP/IP Callable Functions — Function Descriptions 92

accept() — Accept a New Connection on a Socket 92

aio_cancel() — Cancel an Asynchronous I/O

Request 94

aio_error() — Retrieve Error Status for an

Asynchronous I/O Operation 96

aio_read() — Asynchronous Read from a Socket 97

aio_return() — Retrieve Status for an

Asynchronous I/O Operation 100

aio_suspend() — Wait for an Asynchronous I/O

Request 101

aio_write() — Asynchronous Write to a Socket 103

bind() — Bind a Name to a Socket 106

close() — Close a Socket 109

connect() — Connect a Socket 110

fcntl() — Control Open Socket Descriptors . . . 113

getclientid() — Get the Identifier for the Calling

Application 115

gethostbyaddr() — Get a Host Entry by Address 116

gethostbyname() — Get a Host Entry by Name 118

gethostid() — Get the Unique Identifier of the

Current Host 120

gethostname() — Get the Name of the Host

Processor 121

getpeername() — Get the Name of the Peer

Connected to a Socket 122

getsockname() — Get the Name of a Socket . . 123

getsockopt() — Get the Options Associated with

a Socket 125

givesocket() — Make the Specified Socket

Available 128

gsk_free_memory() — Free memory allocated

for SSL 131

gsk_get_cipher_info() — Query Cipher Related

Information 132

gsk_get_dn_by_label() — Get Distinguished

Name Based on the Label 134

gsk_initialize() — Initialize the SSL Environment 135

gsk_secure_soc_close() — Close a Secure Socket

Connection 137

gsk_secure_soc_init() — Initialize Data Areas for

a Secure Socket Connection 138

gsk_secure_soc_read() — Receive Data on a

Secure Socket Connection 142

gsk_secure_soc_reset() — Refresh the Security

Parameters 144

gsk_secure_soc_write() — Send Data on a

Secure Socket Connection 145

gsk_uninitialize() — Remove Current Settings

for the SSL Environment 147

gsk_user_set() — Provide Callback Routines . . 148

htonl() — Translate Address Host to Network

Long 149

htons() — Translate an Unsigned Short Integer

into Network Byte Order 150

inet_addr() — Translate an Internet Address into

Network Byte Order 151

inet_lnaof() — Translate a Local Network

Address into Host Byte Order 153

inet_makeaddr() — Create an Internet Host

Address 154

inet_netof() — Get the Network Number from

the Internet Host Address 155

inet_network() — Get the Network Number

from the Decimal Host Address 156

inet_ntoa() — Get the Decimal Internet Host

Address 157

ioctl() — Control Socket 158

listen() — Prepare the Server for Incoming

Client Requests 159

ntohl() — Translate a Long Integer into Host

Byte Order 161

ntohs() — Translate an Unsigned Short Integer

into Host Byte Order 162

read() — Read From a Socket 163

recv() — Receive Data on a Socket 165

recvfrom() — Receive Messages on a Socket . . 167

select() — Monitor Activity on Sockets 169

selectex() — Monitor Activity on Sockets . . . 173

send() — Send Data on a Socket 175

sendto() — Send Data on a Socket 177

setsockopt() — Set Options Associated with a

Socket 179

shutdown() — Shut Down a Connection . . . 182

socket() — Create a Socket 183

takesocket() — Acquire a Socket from Another

Program 186

write() — Write Data on a Socket 187

Chapter 10. Using the CALL

Instruction Application Programming

Interface (EZASOKET API) 189

Environmental Restrictions and Programming

Requirements 189

CALL Instruction Application Programming

Interface (API) 189

Understanding COBOL, Assembler, and PL/I Call

Formats 190

COBOL Language Call Format 190

Assembler Language Call Format 190

PL/I Language Call Format 190

Converting Parameter Descriptions 191

iv TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Error Messages and Return Codes 191

Debugging 191

Code CALL Instructions 192

ACCEPT 192

BIND 194

CLOSE 196

CONNECT 198

FCNTL 200

GETCLIENTID 202

GETHOSTBYADDR 204

GETHOSTBYNAME 206

GETHOSTID 208

GETHOSTNAME 209

GETPEERNAME 210

GETSOCKNAME 212

GETSOCKOPT 214

GIVESOCKET 216

GSKFREEMEM 218

GSKGETCIPHINF 219

GSKGETDNBYLAB 221

GSKINIT 222

GSKSSOCCLOSE 224

GSKSSOCINIT 225

GSKSSOCREAD 228

GSKSSOCRESET 229

GSKSSOCWRITE 230

GSKUNINIT 231

INITAPI 232

IOCTL 234

LISTEN 236

READ 237

RECV 239

RECVFROM 241

SELECT 243

SELECTEX 248

SEND 251

SENDTO 253

SETSOCKOPT 255

SHUTDOWN 257

SOCKET 259

TAKESOCKET 261

TERMAPI 263

WRITE 264

Using Data Translation Programs for Socket Call

Interface 266

Data Translation 266

Bit String Processing 266

Chapter 11. Using the Macro

Application Programming Interface

(EZASMI API) 275

Environmental Restrictions and Programming

Requirements 275

EZASMI Macro Application Programming Interface

(API) 276

Defining Storage for the API Macro 276

Understanding Common Parameter Descriptions 277

Characteristics of Stream Sockets 277

Task Management and Asynchronous Function

Processing 278

How It Works 278

Error Messages and Return Codes 279

Debugging 279

Macros for Assembler Programs 280

ACCEPT 280

BIND 282

CANCEL 284

CLOSE 285

CONNECT 287

FCNTL 289

GETCLIENTID 291

GETHOSTBYADDR 293

GETHOSTBYNAME 295

GETHOSTID 297

GETHOSTNAME 298

GETPEERNAME 300

GETSOCKNAME 302

GETSOCKOPT 304

GIVESOCKET 306

GSKFREEMEM 308

GSKGETCIPHINF 309

GSKGETDNBYLAB 310

GSKINIT 311

GSKSSOCCLOSE 313

GSKSSOCINIT 314

GSKSSOCREAD 318

GSKSSOCRESET 319

GSKSSOCWRITE 320

GSKUNINIT 321

INITAPI 322

IOCTL 325

LISTEN 327

READ 329

RECV 331

RECVFROM 333

SELECT 335

SELECTEX 339

SEND 342

SENDTO 344

SETSOCKOPT 346

SHUTDOWN 349

SOCKET 351

TAKESOCKET 354

TASK 356

TERMAPI 357

WRITE 358

Part 3. CICS Listener Support . . . 361

Chapter 12. Setting Up and

Configuring CICS Listener Support . . 363

Overview 363

CICS — Defining CICS Resources 363

Transaction Definitions 363

Program Definitions 364

File Definitions 365

Transient Data Definition 365

CICS Monitoring 365

CICS Program List Table (PLT) 367

Configuring the CICS TCP/IP Environment . . . 367

Contents v

Building the Configuration Dataset with

EZACICD 367

Customizing the Configuration Dataset 371

Chapter 13. Configuring the CICS

Domain Name Server Cache 385

Overview of the Domain Name Server Cache . . 385

Function Components 385

How the DNS Cache Handles Requests . . . 386

Using the DNS Cache 386

Step 1: Create the Initialization Module 387

Step 2: Define the Cache File to CICS 389

Step 3: Execute EZACIC25 389

Chapter 14. Starting and Stopping the

CICS Listener Support 391

Overview 391

Starting/Stopping CICS Listener Support

Automatically 391

Starting/Stopping CICS Manually 391

START Function 392

STOP Function 394

Starting/Stopping CICS Listener Support with

Program Link 396

Chapter 15. Writing Your Own Listener 399

Basic Requirements 399

Pre-Requisites 399

Using IBM’s Environmental Support 399

Chapter 16. External Data Structures 405

External Data Structures 405

Configuration Data Set Record Formats . . . 405

Global Work Area 406

Parameter List (COMMAREA) for EZACIC20 408

Listener Control Area (LCA) 409

Chapter 17. CICS Listener

Programming Considerations 411

Overview 411

Writing CICS TCP/IP Applications 411

1. The Client-Listener-Child-Server Application

Set 412

2. Writing Your Own Concurrent Server . . . 414

3. The Iterative Server CICS TCP/IP Application 415

4. The Client CICS TCP/IP Application 416

Socket Addresses 417

Address Family (Domain) 417

IP Addresses 417

Ports 417

Address Structures 417

Network Byte Order 418

GETCLIENTID, GIVESOCKET, and TAKESOCKET 418

The Listener 420

Listener Input Format 420

Listener Output Format 421

Writing Your Own Security Link Module for the

Listener 422

Data Conversion Routines 423

Part 4. Appendixes 425

Appendix A. TCP/IP for VSE/ESA

(5686-A04) History 427

Appendix B. Examples 433

Autonomous FTP 433

Overview 433

Example 433

AUTOLPR – Printing with the CICS Report

Controller Feature (RCF) 435

Specification in the CICS RCF Program 435

TCP/IP Definitions 435

Script File Definition 436

GPS and RCF 437

Overview 437

Defining to VTAM 437

Defining to CICS 437

Defining to TCP/IP 437

Defining to RCF 437

TELNET and Subnetting in a Class-C Network . . 438

TELNET daemons and logmode 438

VSAMCAT Usage 439

Step 1: Defining the catalog to VSE 439

Step 2: Defining the catalog to TCP/IP 439

Step 3: Using the catalog 439

Using the Command Pre-Processor 440

Overview 440

Sample Programs 440

Compiling Your Program 445

Appendix C. Debugging Facility for

EZASMI and EZASOKET Interfaces

(EZAAPI Trace) 449

Requirements for Usage 449

Setup 449

Output 450

Index 451

vi TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Figures

 1. DFHPPTIP — CICS Processing Program Table 14

 2. 15

 3. IPNCSD.Z shipped with TCP/IP for VSE/ESA 17

 4. TCP/IP for VSE/ESA Configuration Dialog 23

 5. TCP/IP Configuration Panel CON$SEL 24

 6. TCP/IP Configuration Panel: Set IPADDR and

MASK 25

 7. TCP/IP Configuration Panel: Link List . . . 25

 8. TCP/IP Configuration Panel: Link 26

 9. TCP/IP Configuration Panel: Adapter List 26

 10. TCP/IP Configuration Panel: Adapter 27

 11. TCP/IP Configuration Panel: Route List 27

 12. TCP/IP Configuration Panel: Define Route 28

 13. TCP/IP Configuration Panel: TELNET LIST 28

 14. TCP/IP Configuration Panel: TELNET

DAEMON 29

 15. LPR-Job on TCP/IP for VSE/ESA 38

 16. Control Flow when using TCP/IP for

VSE/ESA BSD-C Sockets 53

 17. Control Flow when using LE/VSE C Sockets 54

 18. COBOL Program calling LE C socket routines 59

 19. LE/VSE C socket interface routines for

COBOL 62

 20. Sample Program Using EZASMI Macro

(Synchronously) 64

 21. Sample Program Using EZASMI Macro

(Asynchronously) 68

 22. Sample Program Using EZASOKET Call Using

COBOL 73

 23. Storage Definition Statement Examples 191

 24. ACCEPT Call Instructions Example 192

 25. BIND Call Instruction Example 194

 26. CLOSE Call Instruction Example 196

 27. CONNECT Call Instruction Example 198

 28. FCNTL Call Instruction Example 200

 29. GETCLIENTID Call Instruction Example 202

 30. GETHOSTBYADDR Call Instruction Example 204

 31. HOSTENT Structure Returned by the

GETHOSTBYADDR Call 205

 32. GETHOSTBYNAME Call Instruction Example 206

 33. HOSTENT Structure Returned by the

GETHOSTYBYNAME Call 207

 34. GETHOSTID Call Instruction Example 208

 35. GETHOSTNAME Call Instruction Example 209

 36. GETPEERNAME Call Instruction Example 210

 37. GETSOCKNAME Call Instruction Example 212

 38. GETSOCKOPT Call Instruction Example 214

 39. GIVESOCKET Call Instruction Example 216

 40. GSKFREEMEM Call Instruction Example 218

 41. GSKGETCIPHINF Call Instruction Example 219

 42. GSKGETDNBYLAB Call Instruction Example 221

 43. GSKINIT Call Instruction Example 222

 44. GSKSSOCCLOSE Call Instruction Example 224

 45. GSKSSOCINIT Call Instruction Example 225

 46. GSKSSOCREAD Call Instruction Example 228

 47. GSKSSOCRESET Call Instruction Example 229

 48. GSKSSOCWRITE Call Instruction Example 230

 49. GSKUNINIT Call Instruction Example 231

 50. INITAPI Call Instruction Example 232

 51. IOCTL Call Instruction Example 234

 52. LISTEN Call Instruction Example 236

 53. READ Call Instruction Example 237

 54. RECV Call Instruction Example 239

 55. RECVFROM Call Instruction Example 241

 56. SELECT Call Instruction Example 245

 57. SELECTEX Call Instruction Example 248

 58. SEND Call Instruction Example 251

 59. SENDTO Call Instruction Example 253

 60. SETSOCKOPT Call Instruction Example 255

 61. SHUTDOWN Call Instruction Example 257

 62. SOCKET Call Instruction Example 259

 63. TAKESOCKET Call Instruction Example 261

 64. TERMAPI Call Instruction Example 263

 65. WRITE Call Instruction Example 264

 66. EZACIC04 Call Instruction Example 267

 67. EZACIC05 Call Instruction Example 268

 68. EZACIC06 Call Instruction Example 269

 69. EZAZIC08 Call Instruction Example 272

 70. ECB Input Parameter 278

 71. HOSTENT Structure Returned by the

GETHOSTBYADDR Macro 294

 72. HOSTENT Structure Returned by the

GETHOSTBYNAME Macro 296

 73. Addition to the DCT Required by CICS

TCP/IP 365

 74. The Monitor Control Table (MCT) for Listener 366

 75. EZAC Initial Screen 372

 76. EZAC ALTER Screen 373

 77. EZAC ALTER CICS screen 373

 78. EZAC ALTER CICS Detail Screen 374

 79. ALTER LISTENER screen 374

 80. EZAC ALTER LISTENER Detail Screen 375

 81. EZAC COPY Screen 375

 82. EZAC COPY Screen 376

 83. EZAC COPY Screen 376

 84. EZAC DEFINE Screen 377

 85. EZAC DEFINE CICS screen 377

 86. EZAC DEFINE CICS Detail Screen 378

 87. EZAC DEFINE LISTENER screen 378

 88. EZAC DEFINE LISTENER Detail Screen 379

 89. EZAC DELETE Screen 379

 90. EZAC DELETE CICS screen 380

 91. EZAC DELETE LISTENER screen 380

 92. EZAC DISPLAY Screen 381

 93. EZAC DISPLAY CICS screen 381

 94. EZAC DISPLAY CICS Detail Screen 382

 95. EZAC DISPLAY LISTENER screen 382

 96. EZAC DISPLAY LISTENER Detail Screen 383

 97. EZAC RENAME Screen 383

 98. EZAC RENAME CICS Screen 384

 99. EZAC RENAME LISTENER Screen 384

100. The DNS Hostent 390

© Copyright IBM Corp. 1997, 2005 vii

101. EZAO Initial Screen 392

102. EZAO START Screen 392

103. EZAO START CICS Response Screen 393

104. EZAO START LISTENER Screen 393

105. EZAO START LISTENER Result Screen 394

106. EZAO STOP Screen 394

107. EZAO STOP CICS Screen 395

108. EZAO STOP LISTENER Screen 396

109. Sample Frame for User Written Listener 400

110. The Sequence of Sockets Calls 412

111. Sequence of Socket Calls with an Iterative

Server 415

112. Sequence of Socket Calls between a CICS

Client and a Remote Iterative Server 416

113. Transfer of CLIENTID Information 419

114. COBOL Example 441

115. PL/I Example 444

viii TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Tables

 1. Principal Performance Parameters 44

 2. TCP/IP Performance-Relevant Parameters 45

 3. Supported OS/390 Socket Calls since

VSE/ESA 2.5 82

 4. ERRNO Values Sorted by Value 85

 5. ERRNO Values sorted by Name 87

 6. IOCTL Macro Arguments 325

 7. Conditions for Translation of Tranid and User

Data 371

 8. Configuration File Format 405

 9. Global Work Area Format 406

10. COMMAREA Format for EZACIC20 408

11. Listener Control Area (LCA) 409

12. Calls for the Client Application 413

13. Calls for the Server Application 413

14. Calls for the Concurrent Server Application 414

15. Listener Output Format 422

16. Security Exit Data 423

17. TCP/IP for VSE/ESA History 427

18. Overview of CLCs for TCP/IP for VSE/ESA 431

© Copyright IBM Corp. 1997, 2005 ix

x TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of

the intellectual property rights of IBM may be used instead of the IBM product,

program, or service. The evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the

responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement. IBM accepts

no responsibility for the content or use of non-IBM Web sites specifically

mentioned in this publication or accessed through an IBM Web site that is

mentioned in this publication.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Deutschland GmbH

Department 0790

Pascalstr. 100

70569 Stuttgart

Germany

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

Trademarks and Service Marks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

ACF/VTAM

AIX

AS/400

CICS

CICS/VSE

ESA/390

ESCON

ES/9000

IBM

MVS/ESA

Nways

OS/2

OS/390

RS/6000

S/390

VM/ESA

© Copyright IBM Corp. 1997, 2005 xi

VSE/ESA

VTAM

z/OS

zSeries

z/VM

z/VSE

The following terms are trademarks of other companies:

UNIX is a registered trademark of The Open Group in the United States

and other countries.

Microsoft, Windows, Windows NT and the Windows logo

are registered trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks

of others.

xii TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

About this book

Understanding Syntax Diagrams

This section describes how to read the syntax diagrams in this manual.

To read a syntax diagram follow the path of the line. Read from left to right and

top to bottom.

v The AA─── symbol indicates the beginning of a syntax diagram.

v The ───A symbol, at the end of a line, indicates that the syntax diagram

continues on the next line.

v The A─── symbol, at the beginning of a line, indicates that a syntax diagram

continues from the previous line.

v The ───AC symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

v Directly on the line (required)

v Above the line (default)

v Below the line (optional)

Uppercase Letters

Uppercase letters denote the shortest possible abbreviation. If an

item appears entirely in uppercase letters, it can not be

abbreviated.

 You can type the item in uppercase letters, lowercase letters, or any

combination. For example:

AA KEYWOrd AC

In this example, you can enter KEYWO, KEYWOR, or KEYWORD

in any combination of uppercase and lowercase letters.

Symbols You must code these symbols exactly as they appear in the syntax

diagram

* Asterisk

: Colon

, Comma

= Equal Sign

z/VSE is the successor to IBM’s VSE/ESA product. Many products and functions

supported on z/VSE may continue to use VSE/ESA in their names.

z/VSE can execute in 31-bit mode only. It does not implement z/Architecture, and

specifically does not implement 64-bit mode capabilities.

z/VSE is designed to exploit select features of IBM eServer zSeries hardware.

© Copyright IBM Corp. 1997, 2005 xiii

- Hyphen

// Double slash

() Parenthesis

. Period

+ Add

For example:

 * $$ LST

Variables Highlighted lowercase letters denote variable information that you

must substitute with specific information. For example:

AA

,USER=

user_id
 AC

Here you must code USER= as shown and supply an ID for user_id.

You may, of course, enter USER in lowercase, but you must not

change it otherwise.

Repetition An arrow returning to the left means that the item can be repeated.

AA

I

repeat

AC

A character within the arrow means you must separate repeated

items with that character.

AA

I

 ,

repeat

AC

A footnote (1) by the arrow references a limit that tells how many

times the item can be repeated.

AA

I

(1)

repeat

AC

Notes:

1 Specify repeat up to 5 times.

Defaults Defaults are above the line. The system uses the default unless you

override it. You can override the default by coding an option from

the stack below the line. For example:

AA
 A

B

C

AC

In this example, A is the default. You can override A by choosing B

or C.

xiv TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Required Choices

When two or more items are in a stack and one of them is on the

line, you must specify one item. For example:

AA A

B

C

 AC

Here you must enter either A or B or C.

Optional Choice

When an item is below the line, the item is optional. Only one item

may be chosen. For example:

AA

A

B

C

 AC

Here you may enter either A or B or C, or you may omit the field.

Required Blank Space

A required blank space is indicated as such in the notation. For

example:

 * $$ EOJ

This indicates that at least one blank is required before and after

the characters $$.

About this book xv

xvi TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Summary of Changes

z/VSE is the successor to VSE/ESA. However, the names of many features and

programs related to z/VSE remain unchanged (such as IBM Language

Environment for VSE/ESA, IBM COBOL for VSE/ESA, or TCP/IP for VSE/ESA).

For SC33–6601–08 (March 2005), this manual has been updated to reflect the

following changes:

v Maintenance and editorial changes.

For SC33–6601–07 (March 2003), this manual has been updated to reflect the

following changes:

v The manual was based on APAR level PQ66906, which has introduced release

level 1.5 to TCP/IP for VSE/ESA from Connectivity Systems Inc. (CSI).

v Description of the InfoPrint Manager support.

v Introduction of the Hardware Crypto support, HiperSockets, and OSA Express

support.

v Maintenance and editorial changes.

© Copyright IBM Corp. 1997, 2005 xvii

xviii TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Part 1. Using TCP/IP for VSE/ESA

© Copyright IBM Corp. 1997, 2005 1

2 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 1. Important Considerations - Read this First!

Before using the TCP/IP for VSE/ESA program read the following very carefully.

Documentation for the TCP/IP for VSE/ESA (5686-A04) Program

The product description of the TCP/IP for VSE/ESA 1.5 product (IBM product

number 5686-A04) is only available on the z/VSE CD ROM (SK2T-0060) and

DVD-ROM (SK3T-8348) and from the Internet at

http://www.ibm.com/servers/eserver/zseries/zvse/.

The TCP/IP for VSE/ESA product documentation consists of 6 books with the

original product description from Connectivity Systems Inc., the provider of the

TCP/IP for VSE product, plus one manual describing the setup of the TCP/IP for

VSE/ESA product IBM is providing – this book.

The 7 books are as follows:

v TCP/IP for VSE/ESA - IBM Program Setup and Supplementary Information (this

book)

v TCP/IP for VSE 1.5 Installation Guide

v TCP/IP for VSE 1.5 User’s Guide

v TCP/IP for VSE 1.5 Commands

v TCP/IP for VSE 1.5 Programmer’s Reference

v TCP/IP for VSE 1.5 Messages and Codes

v TCP/IP for VSE 1.5 Optional Products

All books are available on the CD-ROM (SK2T-0060) and DVD-ROM (SK3T-8348)

and from the Internet in PDF format only. You can use the Adobe Acrobat Reader

to view and print these books. If you do not already have an Acrobat Reader

installed, or if you need information on installing and using an Acrobat Reader, see

the Adobe Web site at http://www.adobe.com.

The SSL setup used in z/VSE is described in the z/VSE e-business Connectors User’s

Guide.

You can find more information about the support of HiperSockets and OSA

Express in the z/VSE Planning manual.

Additional information on the z/VSE system can be found at the z/VSE Home

Page at http://www.ibm.com/servers/eserver/zseries/zvse/.

General Considerations on the TCP/IP for VSE/ESA Program Setup

As described above the product documentation for the TCP/IP for VSE/ESA 1.5

product (IBM product number 5686-A04) is available on the z/VSE CD-ROM

(SK2T-0060) and DVD-ROM (SK3T-8348) in PDF format only. This CD-ROM

specially contains 6 original books on the product from Connectivity Systems Inc.,

the provider of the TCP/IP for VSE/ESA product.

When you read the product description from Connectivity Systems Inc. (CSI) note

the following differences when using the TCP/IP for VSE/ESA product from IBM:

© Copyright IBM Corp. 1997, 2005 3

v The ’TCP/IP for VSE/ESA’ product from IBM (product number 5686-A04) is in

general the same as the product ’TCP/IP for VSE’ from CSI; the differences and

additional functions exploiting TCP/IP for VSE/ESA are listed below and

further in this manual.

v TCP/IP for VSE/ESA from IBM is supported only from VSE/ESA 2.3 on;

therefore all references to VSE/ESA releases other than VSE/ESA 2.3 and

subsequent releases do not apply. Note that the TCP/IP for VSE/ESA product

will not work on other than the supported platforms.

v TCP/IP for VSE/ESA from IBM is pre-installed in the PRD1.BASE library;

therefore all references in the documentation from CSI which describe product

installation tasks (e.g. restoring the product) do not apply.

v TCP/IP for VSE/ESA from IBM is using a specific key verification procedure;

how to install the IBM product key for TCP/IP for VSE/ESA is described below.

v There are two types of REXX support for TCP/IP for VSE/ESA available:

– The REXX Socket API support within REXX/VSE was first time available

with APAR PQ31258. The description of this REXX Socket API is in the online

manual REXX/VSE Reference, SC33-6642.

– The REXX support within TCP/IP for VSE/ESA (e.g. REXX Socket API) was

first time available from IBM with APAR PQ27252 (aka SERV130L from CSI).

The documentation of this REXX support can be found in the TCP/IP for VSE

1.5 Programmer’s Reference manual.
v The CAF (CICS Access Facility) of TCP/IP for VSE is not yet available from

IBM; therefore all references to CAF do not apply.

v Connectivity Systems Inc. provides interim service to their TCP/IP for VSE

product using ’alpha and beta service packs’. These service packs contain

updates to the TCP/IP for VSE product which are not officially available from

IBM.

If a customer is using an ’alpha’ or ’beta’ version of a CSI service pack the

VSE-TCP/IP environment has to be considered in general as ’unsupported’ for

purposes of interfacing with IBM products that exploit TCP/IP for VSE/ESA,

e.g. MQSeries V2.1. This is true regardless of whether the customer is an IBM

TCP/IP customer or a CSI TCP/IP customer. Further information can be found

in Information APAR II11836.

When CSI provides such a service pack in production mode IBM provides a PTF

for the same service pack. A comparison between APARs/PTFs from IBM and

Service Packs from CSI can be found in Appendix A, “TCP/IP for VSE/ESA

(5686-A04) History,” on page 427.

v In case of problems with TCP/IP for VSE you can refer to the Connectivity

Systems Inc. web page for TCP/IP support at www.e-vse.com/supp1.html for

any available fix that might resolve your problem.

v When you have licensed the TCP/IP for VSE/ESA product from IBM you have

to use the normal IBM service channel to get support in case of problems. Tapes

and problem documentation have to be provided to the appropriate service

center. Therefore special Technical Support Considerations in CSI’s

documentation do not apply.

The Demo Mode for TCP/IP for VSE/ESA

TCP/IP for VSE/ESA as shipped to all customers is configured to run in

demonstration mode. Demonstration mode is intended to be used to configure and

test TCP/IP for VSE/ESA in customer environments and it is not suitable for

production use. TCP/IP for VSE/ESA has the following characteristics while

running in demonstration mode:

Read this First!

4 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

v TCP/IP for VSE/ESA will shut itself down every hour.

v You are limited to one (1) concurrent FTP session.

v You are limited to one (1) concurrent TELNET session.

v You are limited to one (1) concurrent Line Printer Daemon.

v You can only establish one (1) concurrent session with the TCP/IP for VSE/ESA

web server.

NFS, GPS, and SSL are not usable in demonstration mode.

You can enable production use of TCP/IP for VSE/ESA by installing a product key

that you can obtain from IBM after licensing the product.

To run the TCP/IP for VSE/ESA in demo mode, a VSE partition of at least 20MB

size is required.

Note that you must run TCP/IP in a VSE partition with high priority. As TCP/IP

is like VTAM a timing dependent product, it is recommended to use a partition

with a PRTY about equal to VTAM.

Supplying the Product Key

TCP/IP for VSE/ESA, the native TCP/IP solution for VSE, is preinstalled in the

z/VSE (or VSE/ESA) base, and is available as an optional-priced IBM program.

IBM has licensed this program from Connectivity Systems Incorporated.

Originally two different function sets - Application Pak and Base Pak - were

available. Both had to be enabled by a key. Starting with VSE/ESA 2.5, the Base

Pak is no longer available. The functions of the Base Pak are already included in

the Application Pak. Additionally the NFS and the GPS features are available. The

Network File System (NFS) feature is an optional-priced additional application on

top of one of the function sets and requires a separate key. The General Print

Server (GPS) feature is an optional-priced additional application on top of the

TCP/IP for VSE/ESA Application Pak and requires a separate key.

SSL for VSE has been part of TCP/IP for VSE/ESA since VSE/ESA 2.6 and is also

key protected. But it is usable in conjunction with the Application Pak for TCP/IP

for VSE/ESA. Therefore it cannot be used in demo mode and also not together

with the (formerly) available Base Pak.

The different keys for the Application Pak, NFS or GPS, will be delivered to the

customer when the product is licensed. To license the TCP/IP for VSE/ESA

product and its features, you have to use the normal IBM ordering process using

e.g. CFSW.

The Application Pak includes the Socket Application Programming Interface (API),

the TCP/IP Protocol stack and handles all layers of the TCP/IP communication

from the physical layer up to the application functions. These functions were

formerly available with the Base Pak. The Application Pak also includes the

following TCP/IP Applications:

v TN3270 server and Telnet/TN3270 client

v FTP server and client

v Web Server (HTTP daemon)

v Line Printer Requestor (LPR) and Line Printer Daemon (LPD)

Read this First!

Chapter 1. Important Considerations - Read this First! 5

NFS and GPS are not included in the Application Pak.

TCP/IP for VSE/ESA is shipped with a ″demonstration mode″ product key. This

key is installed into the sublibrary PRD1.BASE together with the product’s phases.

Prior to running TCP/IP for VSE/ESA in production mode, it is necessary to

supply a permanent product key. This product key is based upon the license you

have signed. It is recommended that you place your production product key in the

sublibrary allocated to ″configuration″ data (e.g. PRD2.CONFIG) and that this

sublibrary is first in the LIBDEF search order. In this way, application of

maintenance or a product reinstallation will not overlay your production key.

The product enabling is driven by two different phases which can be generated

using the job streams shown in the examples below.

If you plan to use NFS (Network File System), you have to install a separate

product key for NFS in addition to the key for the Application Pak.

If you plan to use GPS (General Print Server), you have to install a separate

product key for GPS in addition to the key for the Application Pak.

Installing Product Keys

Defining Customer Information

Notes:

1. In the preceding example, PRD2.CONFIG is the name of the library into which

TCP/IP for VSE/ESA’s configuration data is being installed.

2. Once you have completed a license agreement for the software, you will

replace the string shown in the example with a real product key. The keys that

appear here in this example merely are for illustrative purposes.

// JOB KEY

// LIBDEF *,SEARCH=PRD1.BASE

// LIBDEF PHASE,CATALOG=PRD2.CONFIG

// OPTION CATAL

// EXEC ASMA90,SIZE=(ASMA90,50K)

 PRODKEY 1234-5678-9012-3456-7890 /* APPLICATION PAK */

 PRODKEY 1234-4567-9123-5678-9012 /* NFS */

 PRODKEY 3456-7890-1234-5678-9012 /* GPS */

 END

/*

// EXEC LNKEDT

/&

// JOB TCPCUS

// LIBDEF *,SEARCH=(PRD1.BASE)

// LIBDEF PHASE,CATALOG=PRD2.CONFIG

// OPTION CATAL

// EXEC ASSEMBLY

 CUSTDEF DEFINE, X

 NAME=’IBM z/VSE Development’, X

 NUMBER=C123-456-7890

 END

/*

// EXEC LNKEDT

/&

Read this First!

6 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

3. The customer number used by TCP/IP for VSE/ESA (as shown in the second

example above) is not the IBM customer number. The customer number to be

used in the CUSTDEF macro is provided on the same memo where the key for

the product is specified.

Read this First!

Chapter 1. Important Considerations - Read this First! 7

Migration Considerations

TCP/IP for VSE/ESA preinstalled with z/VSE (or VSE/ESA) can be tightly used

with TCP/IP for MVS, OS/390 or z/OS, or TCP/IP for VM/ESA and TCP/IP for

z/VM in a VM/VSE environment. Either product can be used as a gateway to an

intranet or the internet in general. Check your TCP/IP documentation for the

configuration necessary to couple to those products. For example, you could use a

CTCA connection. TCP/IP for VSE/ESA could also be used to connect to any

TCP/IP product on a non-VSE system, as long as this TCP/IP implementation

follows the TCP/IP standards.

If you chose to purchase TCP/IP for VSE/ESA from IBM and intended to use it

concurrently with a different non-IBM/non-Connectivity Systems

TCP/IP-implementation on the z/VSE system, you are running in an environment

which has not been tested explicitly. In this case both products must be carefully

configured to avoid any problems. For example, the products may use the same

file names where it is not predictable how they will behave if the LIBDEF chains

are not properly set up (e.g. duplicate SOCKET.H C language header file).

If you decided to run any other than the preinstalled TCP/IP together with z/VSE

(or VSE/ESA), run the IBM supplied delete job (see skeleton DELTCPIP in ICCF

library 59) to make sure that this TCP/IP does not interfere with the preinstalled

TCP/IP for VSE/ESA.

If you are migrating to TCP/IP for VSE/ESA from any other TCP/IP product than

the one from Connectivity Systems, follow the configuration steps as supplied with

the product, and use your current TCP/IP specific parameters like the host IP

address to ease the product setup.

If you have been using TCP/IP for VSE from Connectivity Systems or one of its

distributors before migrating to TCP/IP for VSE/ESA on z/VSE (or VSE/ESA),

consider the following:

v z/VSE (or VSE/ESA) preinstalls TCP/IP for VSE/ESA in the PRD1.BASE system

library. If you have followed the installation recommendation from Connectivity

Systems and installed TCP/IP in its private sublibrary, remove this sublibrary

from your default LIBDEF chains.

v TCP/IP for VSE/ESA is stored in PRD1.BASE. Jobs referring to any other

TCP/IP sublibrary need to be changed. This includes the TCP/IP startup job

itself, as well as any job performing e.g. LPR, FTP, or TELNET sessions from

within a batch job. If you perform TCP/IP related development yourself, the

respective development procedures may also be affected.

v If you do not have stored your TCP/IP specific configuration files like

IPINITxx.L and NETWORK.L in a separate sublibrary (as recommended by

Connectivity Systems), you should move these modified files into

PRD2.CONFIG to ensure they will not be replaced with the next z/VSE (or

VSE/ESA) service refresh. This includes any enhancements/modifications you

may have done to your IPXLATE translation phase as well as Telnet related

terminal definitions in the supplied TCPAPPL source book or specific

replacement of it.

v Rename the PRODKEYS phase you had assembled with product keys from

Connectivity Systems, and generate a new PRODKEYS phase with the product

keys as supplied by IBM.

While product keys from Connectivity Systems only require to generate phase

PRODKEYS, IBM supplied keys additionally require the generation of phase

CUSTDEF as described under “Defining Customer Information” on page 6. The

Read this First!

8 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

validation of the IBM supplied keys requires that the LE/VSE C run-time

environment must be accessible. Include PRD2.SCEEBASE in the LIBDEF

definition of the startup job of TCP/IP for this purpose.

v Your TCP/IP defined virtual file-system may have changed by migrating to

z/VSE (or VSE/ESA). Update your IPINITxx.L configuration member

accordingly.

v TCP/IP for VSE/ESA provided with z/VSE (or VSE/ESA) is fully MSHP

controlled, i.e. you must not apply any Connectivity Systems Inc. provided

service pack to the system as you may have done with your previous product

setup. Instead you should only install IBM supplied PTFs. Otherwise you may

be running in an unsupported environment. Applying other kind of fixes than

PTFs may downgrade your system and cause unpredictable effects.

v If you have self written TCP/IP for VSE/ESA applications:

– you may need to re-assemble your assembler application(s) if they were using

the TCP/IP for VSE/ESA SOCKET macro. This macro contains inline code

which may have been refreshed with IBM’s TCP/IP for VSE/ESA.

– you may need to relink your application(s) if they had been using the BSD-C

socket interface as provided with the product or when using the product’s

preprocessor for resolving EXEC TCP source statements in COBOL, PL/I or

assembler programs. This may be necessary because the IPNxxxx.OBJ files

linked to the application may have been serviced.
v z/VSE (or VSE/ESA) ships TCP/IP assembler macros as A-books only.

Assembler Macros in E-book format are not provided.

Read this First!

Chapter 1. Important Considerations - Read this First! 9

Read this First!

10 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 2. TCP/IP for VSE/ESA Configuration

How TCP/IP for VSE/ESA is Installed

TCP/IP for VSE/ESA is preinstalled with z/VSE (or VSE/ESA) in the PRD1.BASE

library. It is strictly recommended to keep any personalized information, e.g. the

key and customer definition or the TCP/IP startup member in PRD2.CONFIG or

any other sublibrary except PRD1.BASE. This is necessary as some modules may

be serviced by applying a PTF or by a system refresh, a Fast Service Upgrade

(FSU).

TCP/IP for VSE/ESA Partition Startup

z/VSE (or VSE/ESA) define the default partition F7 to TCP/IP for VSE/ESA. A

default partition startup member TCPSTART.Z can be found in PRD1.BASE. You

may adjust it according to your configuration and put it into the VSE/POWER

RDR queue using the DTRIINIT utility (see the following example). You may store

the updated member in PRD2.CONFIG.

The default partition for TCP/IP is F7 and is 20 MB per default. It is highly

recommended to use TCP/IP for VSE/ESA in a partition with at least 30 MB to

benefit from the 31–bit exploitation of the product.

Note that TCP/IP requires a VSE partition with a high priority. As for any other

timing dependent product such as VTAM it is therefore highly recommended to

use a partition with a PRTY about equal to VTAM. This is especially true if, for

example, TCP/IP has to service CICS for the use of Telnet or MQSeries.

Example

The following job stream can be used to load the TCP/IP for VSE/ESA startup

member TCPSTART.Z to the POWER RDR queue:

 TCPSTART.Z looks as follows:

* $$ JOB JNM=TCPLOAD,CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB TCPLOAD LOAD TCPIP STARTUP INTO POWER

// LIBDEF *,SEARCH=IJSYSRS.SYSLIB

// EXEC DTRIINIT

ACCESS PRD1.BASE

LOAD TCPSTART.Z

/*

/&

* $$ EOJ

* $$ JOB JNM=TCPSTART,CLASS=7,DISP=K

* $$ LST CLASS=A,DISP=D

// JOB TCPIP

// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD1.BASE,PRD2.SCEEBASE)

// EXEC PROC=DTRICCF

// SETPFIX LIMIT=(400K,2100K)

// EXEC IPNET,SIZE=IPNET,PARM=’ID=00,INIT=IPINIT00’,DSPACE=2M

/&

* $$ EOJ

© Copyright IBM Corp. 1997, 2005 11

Notes

v In the above example PRD1.BASE is the library where TCP/IP for VSE/ESA is

pre-installed and PRD2.CONFIG is the library where you have placed your

installation-dependent values (initialization member and authorization code).

v The PRD2.SCEEBASE library contains the LE/VSE C run-time environment and

is necessary for IBM product key verification.

v Be sure that the LIBDEF statement specifies “*”. If you specify “phase”, TCP/IP

for VSE/ESA will be unable to locate the initialization member IPINIT00.L.

v If you do not use the system supplied TCP/IP startup job, make sure that the

LIBDEF definition includes the LE/VSE C run-time contained in

PRD2.SCEEBASE. This is essential for proper IBM product key validation.

TCP/IP for VSE/ESA Configuration

12 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Configuring CICS

TCP/IP for VSE/ESA includes several CICS-based clients. These clients provide

CICS users with the ability to use TCP/IP e.g. to:

v Logon (from CICS) to other platforms and applications via Telnet. For example,

a user could logon to a UNIX system from CICS.

v Initiate a file transfer between the TCP/IP for VSE/ESA FTP server and a

remote FTP server.

v Printing files using LPR.

v Check the network connection using the Ping client.

Setup CICS

v Ensure that TCP/IP for VSE/ESA is set in your CICS partition’s search chain.

This may be accomplished by modifying your CICS startup JCL as follows:

// LIBDEF *,SEARCH=(lib,lib,PRD1.BASE)

With z/VSE (or VSE/ESA) TCP/IP for VSE/ESA is preinstalled in PRD1.BASE,

the same library where CICS resides. Therefore in general no change is required.

v Define the Programs and Transactions to your CICS which should be used with

TCP/IP. If you are not using CICS RDO, you have to include all entries from

DFHPPTIP.A and DFHPCTIP.A into your existing PPT and PCT, reassemble both

tables, and COLD start your CICS/VSE. If you are using CICS RDO, you have

two possibilities of implementing:

– Run the job DEFINE to migrate the tables to the CSD file (see example below)

– Run the job IPNCSDUP to define the definitions to the CSD file (see page 16).

The library members DFHPPTIP.A and DFHPCTIP.A are shipped with the

TCP/IP for VSE/ESA product in library PRD1.BASE.

Example for CICS/VSE 2.3 only

 If you are using the PC based dialog TCP/IP for VSE/ESA Configuration this job is

created automatically. An OS/2, respectively DOS, batch file to upload such output

files to the host is also created by this dialog.

* $$ JOB JNM=DEFINE,CLASS=0,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB DEFINE

// LIBDEF *,SEARCH=(PRD1.BASE)

// EXEC DFHCSDUP

MIGRATE TABLE(DFHPPTIP) TOGROUP(TEMP)

COPY GROUP(TEMP) TO(TCPIP) REPLACE

DELETE ALL GROUP(TEMP)

MIGRATE TABLE(DFHPCTIP) TOGROUP(TEMP)

COPY GROUP(TEMP) TO(TCPIP) REPLACE

DELETE ALL GROUP(TEMP)

ADD GROUP(TCPIP) LIST(VSELIST)

/*

/&

* $$ EOJ

TCP/IP for VSE/ESA Configuration

Chapter 2. TCP/IP for VSE/ESA Configuration 13

Notes

v The use of group “TCPIP” and list “VSELIST” is arbitrary. You may make any

adjustments that your site requires.

v The DFHPPTIP.A shipped with the TCP/IP for VSE/ESA product looks as

follows:

v The DFHPCTIP.A shipped with the TCP/IP for VSE/ESA product looks as

follows:

PPTIP TITLE ’DFHPPTIP - Cics Processing Program Table’

 DFHPPT TYPE=INITIAL, *

 SUFFIX=IP

 DFHPPT TYPE=ENTRY, Entry *

 PROGRAM=TELNET01, Program Idenitification *

 RSL=PUBLIC, Public Program *

 PGMLANG=ASSEMBLER Assembler

 DFHPPT TYPE=ENTRY, Entry *

 PROGRAM=FTP01, Program Idenitification *

 RSL=PUBLIC, Public Program *

 PGMLANG=ASSEMBLER Assembler

 DFHPPT TYPE=ENTRY, Entry *

 PROGRAM=CLIENT01, Program Idenitification *

 RSL=PUBLIC, Public Program *

 PGMLANG=ASSEMBLER Assembler

 DFHPPT TYPE=FINAL

 END

Figure 1. DFHPPTIP — CICS Processing Program Table

TCP/IP for VSE/ESA Configuration

14 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

PCTIP TITLE ’DFHPCTIP - Cics Transaction Table’

 DFHPCT TYPE=INITIAL, *

 SUFFIX=IP

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=TELN, Transaction Name *

 PROGRAM=TELNET01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=teln, Transaction Name *

 PROGRAM=TELNET01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=TELC, Transaction Name *

 PROGRAM=TELNET01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=TELW, Transaction Name *

 PROGRAM=TELNET01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=TELR, Transaction Name *

 PROGRAM=TELNET01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=FTP, Transaction Name *

 PROGRAM=FTP01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=ftp, Transaction Name *

 PROGRAM=FTP01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=FTPC, Transaction Name *

 PROGRAM=FTP01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=FTPW, Transaction Name *

 PROGRAM=FTP01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=FTPR, Transaction Name *

 PROGRAM=FTP01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=LPR, Transaction Name *

 PROGRAM=CLIENT01, Program Idenitification *

 RSL=PUBLIC Public

Figure 2. (Part 1 of 2). DFHPCTIP — CICS Transaction Table

TCP/IP for VSE/ESA Configuration

Chapter 2. TCP/IP for VSE/ESA Configuration 15

Example for CICS/TS 1.1 and CICS/VSE 2.3

CICS/TS for VSE/ESA 1.1 does not support CICS table definitions any longer. So

you have always to use one of the two methods for the definitions to the CSD

described above for CICS/VSE 2.3. A member IPNCSD.Z is available which uses

command definitions instead of macro definitions. Additionally a member

IPNCSDUP.Z is available to use IPNCSD.Z . IPNCSDUP.Z looks as follows:

Notes

v The use of group “TCPIP” and list “VSELIST” is arbitrary. You may make any

adjustments that your site requires.

v The IPNCSD.Z shipped with the TCP/IP for VSE/ESA product looks as follows:

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=lpr, Transaction Name *

 PROGRAM=CLIENT01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=PING, Transaction Name *

 PROGRAM=CLIENT01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=ping, Transaction Name *

 PROGRAM=CLIENT01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=TCPC, Transaction Name *

 PROGRAM=CLIENT01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=TCPW, Transaction Name *

 PROGRAM=CLIENT01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=ENTRY, Entry *

 TRANSID=TCPR, Transaction Name *

 PROGRAM=CLIENT01, Program Idenitification *

 RSL=PUBLIC Public

 DFHPCT TYPE=FINAL

 END

Figure 2. (Part 2 of 2). DFHPCTIP — CICS Transaction Table

* $$ JOB JNM=IPNCSDUP,CLASS=0,DISP=D

// JOB IPNCSDUP

* SHUT DOWN CICS FIRST

// PAUSE CLOSE DFHCSD FILE IF CICS IS UP : CEMT SE FI(DFHCSD) CLOSE

/*

// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD1.BASE,PRD2.SCEEBASE)

// EXEC DFHCSDUP,SIZE=600K INIT AND LOAD CICS

 DELETE GROUP(TCPIP)

* $$ SLI MEM=IPNCSD.Z,S=(PRD1.BASE)

 ADD GROUP(TCPIP) LIST(VSELIST)

 LIST ALL

/*

/&

* $$ EOJ

TCP/IP for VSE/ESA Configuration

16 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

* FOLLOWING ARE THE PPT ENTRIES REQUIRED FOR TCP/IP for VSE/ESA *

 DEFINE PROGRAM(TELNET01) GROUP(TCPIP)

 LANGUAGE(ASSEMBLER)

 DEFINE PROGRAM(FTP01) GROUP(TCPIP)

 LANGUAGE(ASSEMBLER)

 DEFINE PROGRAM(CLIENT01) GROUP(TCPIP)

 LANGUAGE(ASSEMBLER)

* FOLLOWING ARE THE PCT ENTRIES REQUIRED FOR TCP/IP for VSE/ESA *

 DEFINE TRANSACTION(TRAC) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(trac) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(REXE) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(rexe) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(DISC) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(disc) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(EMAI) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(emai) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(PING) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(ping) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(TELN) GROUP(TCPIP)

 PROGRAM(TELNET01)

 DEFINE TRANSACTION(teln) GROUP(TCPIP)

 PROGRAM(TELNET01)

 DEFINE TRANSACTION(TELC) GROUP(TCPIP)

 PROGRAM(TELNET01)

 DEFINE TRANSACTION(TELW) GROUP(TCPIP)

 PROGRAM(TELNET01)

 DEFINE TRANSACTION(TELR) GROUP(TCPIP)

 PROGRAM(TELNET01)

 DEFINE TRANSACTION(FTP) GROUP(TCPIP)

 PROGRAM(FTP01)

 DEFINE TRANSACTION(ftp) GROUP(TCPIP)

 PROGRAM(FTP01)

 DEFINE TRANSACTION(FTPC) GROUP(TCPIP)

 PROGRAM(FTP01)

 DEFINE TRANSACTION(FTPW) GROUP(TCPIP)

 PROGRAM(FTP01)

 DEFINE TRANSACTION(FTPR) GROUP(TCPIP)

 PROGRAM(FTP01)

 DEFINE TRANSACTION(TCPC) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(TCPW) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(TCPR) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(LPR) GROUP(TCPIP)

 PROGRAM(CLIENT01)

 DEFINE TRANSACTION(lpr) GROUP(TCPIP)

 PROGRAM(CLIENT01)

* END OF TCP/IP MEMBER *

Figure 3. IPNCSD.Z shipped with TCP/IP for VSE/ESA

TCP/IP for VSE/ESA Configuration

Chapter 2. TCP/IP for VSE/ESA Configuration 17

ICA Token-Ring – Sharing Considerations with VTAM

When using the Token-Ring Integrated Communications Adapter (FC6140) of an

ES/9221 processor, the following has to be carefully considered when planning to

share this ICA between VTAM and TCP/IP for VSE/ESA.

Note that with z/VSE 3.1 ICA adapters on ES/9221 systems are no longer

supported by VSE.

VTAM requires that the physical configuration of the network is to be defined in

terms of the network nodes which can be addressed and therefore used by

application programs, and also controlled by the VTAM operator (using VTAM

commands).

In order to define a token-ring connection and physical unit resources to VTAM,

do the following:

v Code a LAN major node to define local area network physical resources.

v Code a switched major node to define the logical connections over the

Token-Ring.

See VTAM V4R2 for MVS/ESA, VM/ESA, VSE/ESA Network Implementation Guide ,

SC31-6494 for configuration details.

Be aware that there are several problem areas sharing the Token-Ring between

VTAM and TCP/IP. The application configuring the Token-Ring first (either VTAM

or TCP/IP) defines the Token-Ring parameters like

v the maximum frame size being used

– MAXDATA for VTAM, in the PORT definition

– MTU (Maximum Transfer Unit) for TCP/IP
It is essential that the access method configuring the Token-Ring adapter uses

compatible frame sizes, e.g. the access method configuring the Token-Ring

adapter uses a larger frame size than the access method started afterwards.

Otherwise you may suffer random data transmission failures.

v the MAC (Medium Access Control) address

Beside the unique burn-in MAC address of a Token-Ring card, it is possible to

use self administrated MAC addresses. You can use your service processor to

define a default MAC address. Assure this isn’t used by another workstation on

the network yet or the initialization of the Token-Ring adapter may fail.

If no default address is specified, TCP/IP will use the adapter burn-in address.

It currently does not support specifying user maintained MAC addresses as part

of the DEFINE LINK definition. If you cannot use the burn-in address use the

service processor configuration panel.

VTAM allows to define a user maintained MAC address in the LAN Major Node

definition. If VTAM is started first and configures the Token-Ring adapter you

will find it using this MAC address if specified.

It is therefore possible to see different MAC addresses depending whether

TCP/IP or VTAM was started first.

If the Token-Ring is only accessible to both access methods if either TCP/IP or

VTAM is started first, thus ″owning″ the Token-Ring parameters usually either of

the above problem areas applies.

TCP/IP for VSE/ESA Configuration

18 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Note that the ICA device is slow and therefore it is recommended to not use this

device e.g. for FTP of large data sets. Additionally it is not recommended, although

it works, to share the ICA between TCP/IP and VTAM. Two separate ICAs should

be used instead.

HTMLINST.Z

To interchange Hyper Text Markup Language (HTML) documents, HTTP is used.

An HTML document is a file that contains printable text, interspersed with HTML

“tags” that describe the document to be displayed. Additional elements of HTML

allow you to include links to other documents, embedded graphics, and special

effects.

TCP/IP for VSE/ESA provides special HTML files for security reasons:

v PASSWORD.HTML

v VIOLATED.HTML

v BLANKING.HTML

The member HTMLINST.Z in PRD1.BASE contains a jobstream which generates

default members of these special HTML files. The member HTMLINST.Z can be

loaded into the VSE/POWER RDR queue using the DTRIINIT utility. An example

is shown in the following.

Example

 Details on how to use the single HTML members can be found in the section

’Security’ of chapter ’Configuring the HTTP Daemon’ in the TCP/IP for VSE 1.5

Installation Guide.

* $$ JOB JNM=HTMLLOAD,CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB HTMLLOAD LOAD HTMLINST.Z INTO POWER

// LIBDEF *,SEARCH=IJSYSRS.SYSLIB

// EXEC DTRIINIT

ACCESS PRD1.BASE

LOAD HTMLINST.Z

/*

/&

* $$ EOJ

TCP/IP for VSE/ESA Configuration

Chapter 2. TCP/IP for VSE/ESA Configuration 19

20 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs

It is important that you have read Chapter 1, “Important Considerations - Read

this First!” before you start configuring your system for TCP/IP for VSE/ESA!

Before you can use TCP/IP for VSE/ESA, some configuration work should be done.

This can be done either manually by providing the necessary definitions in the

related TCP/IP for VSE/ESA library members and definition jobs. To assist you

some configuration members are provided, e.g. TCPSTART.Z (see “TCP/IP for

VSE/ESA Partition Startup” on page 11 for details), TCPAPP00.B (sample VTAM

definitions for Telnet daemons), and IPINIT00.L (sample TCP/IP for VSE/ESA

initialization member). Or you can use the “TCP/IP for VSE/ESA PC-based

Configuration Dialog” on page 22 or the “Configuring TCP/IP Using the IUI-based

Configuration Dialog” on page 24.

Prior to running TCP/IP for VSE/ESA in production mode, you must have

installed your product key as described under “Supplying the Product Key” on

page 5.

Configuring TCP/IP Using the Configuration Dialogs

Before starting TCP/IP for VSE/ESA, you must provide information about your

configuration. The following can be specified:

General information Some general configuration is necessary. For

example, you must specify the HOST IP address of

TCP/IP for VSE/ESA.

Links You need to identify each device, controller, and

connection mechanism that TCP/IP for VSE/ESA

will use for external communication.

Daemons A definition of the service Daemons must be

provided. Daemons are the routines that provide

services to the end user. For example, FTP is a

service daemon that provides access to the VSE file

system.

Routing information Depending on your configuration, it may be

necessary to define routing information to the

TCP/IP for VSE/ESA product. This information

will be used to control connections with other

TCP/IP platforms.

How To Do It

All configuration information is specified by a series of console operator

commands. For this reason, you may simply start the TCP/IP for VSE/ESA

product and then provide all configuration data by command or more

conveniently — you may place your configuration commands in an initialization

library member IPINITxx.L. This is described in detail in the TCP/IP for VSE 1.5

Installation Guide.

© Copyright IBM Corp. 1997, 2005 21

Most conveniently, you may use the “TCP/IP for VSE/ESA PC-based

Configuration Dialog,” or the IUI-based Configuration Dialog described in

“Configuring TCP/IP Using the IUI-based Configuration Dialog” on page 24.

A default member IPINIT00.L is shipped with z/VSE (or VSE/ESA) in VSE library

PRD1.BASE. It contains many configuration parameters set to their default values.

You will find this a good starting point in developing your own configuration.

Your initialization member should be placed in a sub-library that you have

reserved for configuration data, e.g. PRD2.CONFIG. In this way, your member will

not be accidentally replaced during application of maintenance to the TCP/IP

product or to the z/VSE system.

TCP/IP for VSE/ESA PC-based Configuration Dialog

The most convenient way for configuring TCP/IP for VSE/ESA is using the

Java-based TCP/IP for VSE/ESA Configuration Dialog to perform the

configuration on your workstation. This dialog can be used on any Java-enabled

workstation, such as Windows, OS/2, Linux, etc.

Note: Since APAR PQ55593, the former platform dependent version (Windows and

OS/2 only) is no longer supported on VSE/ESA 2.6 (and subsequent

releases) or z/VSE.

Installing the Dialog On Your PC

You can download the configuration support from the z/VSE (or VSE/ESA)

sublibrary PRD1.BASE. There reside a number of members that belong to the

dialog. The code including all national language versions is contained in member

IPNCFGE.W

NLS is supported for English, German, Spanish, and Japanese.

To install the dialog on your workstation,

v make sure, a Java Development Kit (JDK) 1.4 (or higher) or Java Runtime

Environment (JRE) 1.4 (or higher) is installed on your workstation, see website

below for information about downloading IBM Java Development Kits

v receive library member IPNCFGE.W in binary as IPNCFGE.ZIP. This is a

standard ZIP-file

v open the ZIP-file with any ZIP-tool, like PKZIP(*), Winzip (**), or others

v extract the contained files into a new empty directory

v run one of the installation batch files:

– install.bat for Windows

– install.cmd for OS/2

– install.sh for Linux/Unix
v An install wizard will prompt you for installation options.

You can also download the dialog via the z/VSE homepage at

http://www.ibm.com/servers/eserver/zseries/zvse/downloads/

This internet page contains latest code, documentation, hints and tips, etc.

Using this Dialog as a VSE Navigator Plugin

This TCP/IP configuration dialog is also available as part of the VSE Navigator

Function, which can also be downloaded via

http://www.ibm.com/servers/eserver/zseries/zvse/products/connectors.html#tcpcfg

Performing Configuration Work

22 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Here, some more functionality is provided:

v Display the actual TCP/IP configuration from a connected VSE host

v Save changes directly on the host by uploading a modified IPINIT member

v Upload generated VTAM definitions for Telnet daemons to the host.

Dialog Output Files

The TCP/IP for VSE/ESA Configuration dialog creates a number of output files:

1. The input TCP/IP for VSE/ESA initialization file is overwritten with the

definitions from the notebook pages

2. A TCP/IP for VSE/ESA Startup Job is created

3. A VTAM B-book can be created to define an APPL statement for each Telnet

daemon

4. NFS configuration members.

Figure 4. TCP/IP for VSE/ESA Configuration Dialog

Performing Configuration Work

Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs 23

Downloading from the Internet

The latest version of the TCP/IP configuration dialog can be downloaded from the

z/VSE home page at http://www.ibm.com/servers/eserver/zseries/zvse/downloads/

Configuring TCP/IP Using the IUI-based Configuration Dialog

The Interactive Interface has been enhanced with the dialog TCP/IP Configuration

(Fastpath 246) to help you configure your TCP/IP environment. After completing

your definitions for the TCP/IP parameters shown in the panel below, you must

press PF5 (PROCESS) to create a job stream which updates the related

configuration members such as IPINIT00.L in system library PRD2.CONFIG. If no

member exists in PRD2.CONFIG, the system default member IPINIT00 from

PRD1.BASE is used.

The following description shows a list of panels where you can define the values

for the parameters shown in the TCP/IP Configuration panel (Figure 5) below.

Press PF5 (PROCESS) in this panel after you have entered the required values.

If TELNET daemons are added, we recommend to press PF9=VTAM (see page 29

for more information). In this case, member TCPAPP00.B is updated.

 If SET is selected, the TCP/IP Configuration: Set IPADDR and MASK panel

CON$SIP is displayed. The panel shows the already defined values for the SET

IPADDR and SET MASK statement and for the DEFINE NAME statement for this

z/VSE client. These values can be changed.

 CON$SEL TCP/IP CONFIGURATION

 Enter the required data and press ENTER.

To modify one or more of the following TCP/IP parameters,

place a 1 next to it.

 _ SET Modify SET IPADDR or SET MASK command

 _ LINK Modify DEFINE LINK command

 _ ADAPTER Modify DEFINE ADAPTER command

 _ ROUTE Modify DEFINE ROUTE command

 _ TELNETD Modify DEFINE TELNETD command

 PF1=HELP 2=REDISPLAY 3=END 5=PROCESS

 9=VTAM

Figure 5. TCP/IP Configuration Panel CON$SEL

Performing Configuration Work

24 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

If LINK is selected in the TCP/IP Configuration panel (Figure 5 on page 24), a list

of all defined links is displayed in the TCP/IP Configuration: Link List panel.

If option 1 ADD LINK is entered, the following panel is displayed.

 CONP$SIP TCP/IP CONFIGURATION: SET IPADDR AND MASK

 Enter the required data and press ENTER.

 Specify the parameters for the SET IPADDR and the SET MASK command.

 IPADDR..... ___ ___ ___ ___ default network address

 MASK....... ___ ___ ___ ___ value of the mask

 NAME....... _____________________ this z/VSE client

 PF1=HELP 2=REDISPLAY 3=END

Figure 6. TCP/IP Configuration Panel: Set IPADDR and MASK

CON$LNKS TCP/IP CONFIGURATION: LINK LIST

Enter the required data and press ENTER.

OPTIONS: 1 = ADD LINK 2 = ALTER LINK 3 = ADD ROUTE

 4 = ADD ADAPTER 5 = DELETE LINK

 OPT LINKID DEVICE TYPE

 _ VM_TCPIP E9E CTCA

 _ ELKEL 180 OSA

 _ ELKE2 IPNET

 _ ELKE3 181 3172

 _ E234567890123456 255 3172

 _ F234567890123456 181 OSA

 _

 _

 _

 _

PF1=HELP 2=REDISPLAY 3=END 5=PROCESS

Figure 7. TCP/IP Configuration Panel: Link List

Performing Configuration Work

Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs 25

If the input was correct, the dialog goes back to panel TCP/IP Configuration: LINK

LIST (Figure 7 on page 25).

Select ADAPTER on panel TCP/IP Configuration (Figure 5 on page 24) to get the

following panel (note that this panel is only possible for links of type OSA or

3172):

If option 1 ADD ADAPTER is entered, the following panel is displayed.

CON$LINK TCP/IP CONFIGURATION: LINK

Enter the required data and press ENTER.

LINK ID............ ________________ Enter the unique name of the link.

TYPE....................... ________ Specify the link type.

DEVICE..................... ___ Enter the unit address at which the

 network connection device resides.

PF1=HELP 2=REDISPLAY 3=END

Figure 8. TCP/IP Configuration Panel: Link

PF1=HELP 2=REDISPLAY 3=END

CON$APTS TCP/IP CONFIGURATION: ADAPTER LIST

Enter the required data and press ENTER.

OPTIONS: 1 = ADD ADAPTER 2 = ALTER ADAPTER

 5 = DELETE ADAPTER

 OPT LINKID TYPE NUMBER

 _ ELKEL FDDI 01

 _ F234567890123456

 _

 _ FODI 02

PF1=HELP 2=REDISPLAY 3=END 5=PROCESS

Figure 9. TCP/IP Configuration Panel: Adapter List

Performing Configuration Work

26 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

If the input was correct, the dialog goes back to panel TCP/IP Configuration:

CON$SEL (Figure 5 on page 24).

You can now select ROUTE on panel TCP/IP Configuration (Figure 5 on page 24)

and get the following panel:

 Enter Option 1=ADD ROUTE to get the DEFINE ROUTE panel. You can get the

same panel by entering 3=ADD ROUTE in panel TCP/IP Configuration: LINK

LIST (Figure 7 on page 25). In this case the LINKID has already been specified.

CON$APT TCP/IP CONFIGURATION: ADAPTER

 Enter the required data and press ENTER.

 LINK ID............. ________________ Enter the link id

 TYPE........................ ________ Specify the type of adapter.

 NUMBER...................... __ Enter the adapter number.

 PF1=HELP 2=REDISPLAY 3=END

Figure 10. TCP/IP Configuration Panel: Adapter

CONP$RTS TCP/IP CONFIGURATION: ROUTE LIST

Enter the required data and press ENTER.

OPTIONS: 1 = ADD ROUTE

 5 = DELETE ROUTE

 OPT ROUTEID LINKID IPADDR GATEWAY

 _ ALL VM_TCPIP 0.0.0.0 9.164.186.5

 _ R234567890123456 L234567890123456 155.155.155.155 111.222.33.0

 _ R2 ELKEL2 9.9.9.9 121.231.34.0

 _

 _

 _

 _

 _

 _

 _

PF1=HELP 2=REDISPLAY 3=END 5=PROCESS

Figure 11. TCP/IP Configuration Panel: Route List

Performing Configuration Work

Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs 27

If TELNET DAEMON is selected on the TCP/IP Configuration panel (Figure 5 on

page 24), the TELNET LIST panel is displayed.

 Enter option 1=ADD TELNET DAEMON to get the following panel:

CON$ROUT TCP/IP CONFIGURATION: DEFINE ROUTE

Enter the required data and press ENTER.

ROUTE ID............ ________________ Unique name of the route.

LINK ID............. ________________ Name of the associated link.

IPADDR..... ___ ___ ___ ___ Associated IP address.

GATEWAY.... ___ ___ ___ ___ Full network address of a gateway

PF1=HELP 2=REDISPLAY 3=END

Figure 12. TCP/IP Configuration Panel: Define Route

CON$TELS TCP/IP CONFIGURATION: TELNET LIST

Enter the required data and press ENTER.

OPTIONS: 1 = ADD TELNET DAEMON 2 = ALTER TELNET DAEMON

 5 = DELETE DAEMON

 OPT DAEMONID TARGET TERMNAME COUNT LOGMODE

 _ MYTEL DBDCCICS T1000 20 U

 _

 _

 _

 _

 _

 _

 _

 _

 _

PF1=HELP 2=REDISPLAY 3=END 5=PROCESS

Figure 13. TCP/IP Configuration Panel: TELNET LIST

Performing Configuration Work

28 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

When a TELNET daemon is added, the TERMname must be defined as a VTAM

application. Therefor the book TCPAPP00 is included in the VTAM configuration

member ATCCON00.B. The dialog offers the possibility to automatically add the

application definition to TCPAPP00.B. The creation is triggered by pressing

PF9=VTAM.You have to press PF5=PROCESS on the TCP/IP Configuration panel

(Figure 5 on page 24) to activate the updates. Then a job will be created which

catalogs the updated TCP/IP startup member IPINIT00.L in PRD2.CONFIG and, if

requested, the VTAM book TCPAPP00.B.

CON$TELD TCP/IP CONFIGURATION: TELNET DAEMON

 Enter the required data and press ENTER.

 DAEMON ID........... ________________ Enter the unique name of the daemon

 TARGET...................... ________ Enter the name of the VTAM applica-

 tion id you are connecting to

 TERMNAME.................... ________ Enter the VTAM LU name assigned to

 the remote terminal.

 COUNT....................... __ Count for multiple telnet daemons.

 LOGMODE..................... _ VTAM LOGMODEs for the LU session.

 PF1=HELP 2=REDISPLAY 3=END

Figure 14. TCP/IP Configuration Panel: TELNET DAEMON

Performing Configuration Work

Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs 29

30 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 4. Security Manager Exploitation by TCP/IP for

VSE/ESA

This chapter shows how the Basic Security Manager’s (BSM) functionality is

exploited by TCP/IP for VSE/ESA. This implementation applies to z/VSE (or

VSE/ESA).

Using BSM Capabilities for TCP/IP Security Checks

TCP/IP allows various platforms to communicate with VSE. With this new

openness for VSE, new security requirements arise. This is the reason why TCP/IP

for VSE/ESA provides a number of functions to protect VSE resources (see TCP/IP

for VSE 1.5 Commands).

The security concept of TCP/IP for VSE/ESA is described in the TCP/IP for VSE

1.5 Installation Guide.

Details of VSE security can be found in the z/VSE Planning manual and z/VSE

Administration manual.

One of the security functions is the TCP/IP security exit point. It can be used via

the TCP/IP provided code sample SECEXIT. But neither the TCP/IP internal

security functions nor the sample exit code exploits the security functions of the

VSE operating system, i.e. the Basic Security Manager (BSM). As a result, the

customer has to define and administrate the user IDs and VSE resources twice,

once in TCP/IP and once in the security system of the VSE operating system.

To improve this situation phase BSSTISX was introduced to replace the TCP/IP

provided code sample SECEXIT. This was done by APAR DY45309.

Note: This APAR applies to VSE/ESA 2.4 users only. Since VSE/ESA 2.5 this has

been part of the system.

The following figure shows the integration of BSSTISX as a link between TCP/IP

and BSM.

© Copyright IBM Corp. 1997, 2005 31

The phase BSSTISX exploits the BSM capabilities. It issues RACROUTE requests to

process user identification and user authentication, and resource access control for

VSE files, libraries, and members. It also allows limited access control to POWER

spool files and the SITE command.

Access to POWER spool files will be allowed for administrators and users, where

v the user ID matches the FROM or TO user ID of the requested spool file, or

v TO=ANY was specified. (Introduced with APAR DY45995, or VSE/ESA 2.7.)

Note that the user ID assigned to ANONYMOUS does not have access to these

files.

The SITE command can only be used by an administrator.

Certainly, there are various other checks possible via the TCP/IP exit point, which

are not covered by BSSTISX. Therefore BSSTISX provides a pre- and

post-processing exit interface. Customers who need additional checks, can then

write their own pre-/post-processing routines for BSSTISX.

Exception List BSSTIXE

The exit BSSTISX rejects in general ALL access requests which could not be

evaluated by this exit. But it might be necessary to not reject certain requests.

These requests can be specified in this exception list by the customer. The

exception list has to be assembled and linked as phase BSSTIXE (see SKEXCLST in

library 59).

The IBM distributed phase and the related source member BSSTIXE.A can be

found in IJSYSRS.SYSLIB after installing this APAR.

A request is defined by the SXBLOK fields SXTYPE and SXFTYPE. The SXBLOK

describes the interface between TCP/IP and BSSTISX. The layout of the SXBLOK is

distributed together with TCP/IP for VSE/ESA.

Warning: Requests defined in the exception list will NOT be security checked. Be

sure to add ONLY these requests to the exception list which will not affect your

security requirements of your installation. Instead of the exception list you could

use the BSSTISX PRE and POST-PROCESSING EXITS to add your installation

specific security checks.

Note: The Exception List BSSTIXE was introduced with APAR DY45799 or

VSE/ESA 2.6.1.

Activation of The Security Exit

To activate the security exit, you have to enter the following TCP/IP commands:

DEFINE SECURITY,DRIVER=BSSTISX[,DATA=’data’]

The DEFINE SECURITY command loads the security exit BSSTISX.PHASE

into the TCP/IP partition.

SET SECURITY =ON

The SET SECURITY=ON command activates the security processing and

gives control to BSSTISX for initialization. BSSTISX loads additional parts

into storage and initializes its control blocks according to the parameters

specified in data. From now on TCP/IP passes information to the exit

routine BSSTISX for verification.

Basic Security Manager

32 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SET SECURITY =ONX

Specify ONX if the security exit BSSTISX is to be used for FTPBATCH as

well.

The parameter DATA= of the DEFINE SECURITY command contains the

initialization parameter for BSSTISX. The syntax is described below.

DATA=’[anonym_uid][,[anonym_pwd][,[preproc][,[postproc][,[mode]]]]]’

anonym_uid Here you can specify a user ID, which is defined to BSM. Each

time a client logs on with user ID ANONYMOUS your specified

user ID and its access rights will be used.

anonym_pwd With this parameter you can specify the password of the BSM

defined user ID for user ANONYMOUS.

preproc If you like to use a self-written preprocessing exit, specify here the

name of your preprocessing exit phase.

postproc For a self-written post-processing exit you have to specify here the

name of your post-processing exit phase.

mode The mode parameter can be used to change the processing options

of the BSSTISX exit. Therefore you have to specify the sum of the

selected option codes. For example:

By default all supported checks are active. If you only want

administrator user IDs to be able to access your VSE files/libaries

(option code 4) and POWER spool files (option code 8), you have

to specify 12 as the mode.
The following list shows all option codes and their meaning.

Option Code

Meaning

1 When this option is selected, the validation of

administrator authority for VSE files and libraries is

suppressed. By definition, an administrator can access all

VSE files and libraries. Therefore it is first checked whether

the client user is an administrator. Only, if the client is not

an administrator the BSM for security validations of VSE

files or libraries is called. Using option code 1 ensures that

the RACROUTE requests for VSE files and libraries will

always be sent to the security manager.

Note: When the security manager checks are also

suppressed (option code 4), all access to VSE files

and libraries is denied.

2 When this option is selected, the validation of

administrator authority for POWER spool files is

suppressed. Only an administrator has read/write

authority to POWER spool files. If the requestor is not an

administrator, read access may be allowed, which depends

on the result of the POWER user ID validation. Specifying

option code 2, no administrator validation will be done for

POWER spool files. The access authority depends on the

POWER user ID validation.

Basic Security Manager

Chapter 4. Security Manager Exploitation by TCP/IP for VSE/ESA 33

Note: When the POWER user ID validation is also

suppressed (option code 8), all access requests to

POWER spool files will be denied.

4 With this option security manager checks for VSE files

and libraries are suppressed. Specifying option code 4, no

RACROUTE calls will be issued to check the authorization

for VSE files and libraries. When the administrator

validation is active, only administrators can access files or

libraries. Otherwise, all access requests to files or libraries

will be denied.

Note: This option will be assumed in an environment with

SYS SEC=NO.

8 With this option POWER user ID validation is suppressed

Specifying option code 8, all access requests to POWER

spool files will be denied. Only administrators can access

POWER spool files, as long as the POWER administrator

validation is active.

Deactivation of the Security Exit

To deactivate the security exit, you have to enter the following TCP/IP commands:

SET SECURITY=OFF

The SET SECURITY=OFF command stops the security processing and

gives control to BSSTISX for cleanup and termination. BSSTISX clears its

control blocks and frees the storage of its additional parts.

DELETE SECURITY

The DELETE SECURITY frees the security exit BSSTISX.PHASE.

Note: If you want to use a new version of the security exit, you should

shut down TCP/IP and restart it again before you enter DEFINE

SECURITY.

Using Pre- and Postprocessing Exits

The preprocessing exit gets control after the BSSTISX initialization and later on at

the beginning of each request. The post-processing exit gets control at the end of

each request except the termination request. Both exits get the required information

from the TCP/IP created SXBLOK.

The SXBLOK describes the interface between TCP/IP’s exit point and the security

exit. The mapping of the SXBLOK is shipped with TCP/IP for VSE/ESA. Be sure

that you use the actual level of the SXBLOK of the TCP/IP you are using for the

BSSTISX pre- and postprocessing exits.

Both, preprocessing exit and post-processing exit have to be:

v reentrant

v AMODE(31)

v RMODE(24)

The general register usage is described below.

Basic Security Manager

34 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Register Settings for Preprocessing Exit

On entry:

R1 Address of SXBLOK

R13 Standard save area

R14 Return address

R15 Entry point of preprocessing exit phase

On return:

The preprocessing exit must restore registers prior to return. Register 15 shows the

result:

R15 = 0 BSSTISX should continue normal processing

R15 = ’E0’x BSSTISX should skip all checks and terminate with R15=0 (no

violation)

R15 = 4 BSSTISX should skip all checks and terminate with R15=4 (security

violation)

Register Settings for Postprocessing Exit

On entry:

R0 Current return code value of BSSTISX

R1 Address of SXBLOK

R2 Reason code from BSSTISX. (Introduced with APAR DY45995, or VSE/ESA

2.7.)

R13 Standard save area

R14 Return address

R15 Entry point of post-processing exit phase

On return:

The postprocessing exit must restore registers prior to return. Register 15 shows

the result:

R15 = 0 BSSTISX should terminate with R15=0 (no violation)

R15 = n BSSTISX should terminate with R15=n. n=4 indicates a security

violation

R15 = 4 BSSTISX should skip all checks and terminate with R15=4 (security

violation)

 Reason codes from BSSTISX for the post-processing exit:

X’00’ No specific reason code provided

X’10’ Access allowed - user is an administrator

X’11’ Access allowed by exception list entry

X’12’ Access allowed by RACROUTE AUTH request

X’13’ Access allowed - ICCF option specified

X’14’ Access allowed by pre-processing exit

Basic Security Manager

Chapter 4. Security Manager Exploitation by TCP/IP for VSE/ESA 35

X’15’ Access allowed - to be checked by OPEN

X’16’ Access always allowed by BSSTISX

X’17’ Access allowed by POWER. It is a from/to or ANY user.

X’18’ Access allowed by the right to open a master console.

X’20’ Access denied - user is not an administrator

X’21’ Access denied - unsupported request

X’22’ Access denied by RACROUTE AUTH request

X’23’ Access denied due to option code 4

X’24’ Access denied due to option code 8

X’25’ Access denied due to internal error

X’26’ Access denied by pre-processing exit

X’27’ Access denied. It is not a read request to POWER.

X’28’ Access denied by POWER. It is not a from/to or ANY user.

Performance Hints

Depending on the TCP/IP usage, BSSTISX may have to issue a high number of

user verifications with the same user IDs. For this condition it is useful to activate

the BSM cache via:
MSG xx,DATA=DBSTARTCACHE

where xx stands for the partition ID of the security server partition (default is FB).

External Security Managers

The TCP/IP security exit BSSTISX can also be used together with External Security

Managers (ESMs), if these ESMs support the RACROUTE requests issued by

BSSTISX. CA-Top Secret (for example, distributed by CA Inc.) supports these

RACROUTE calls.

Basic Security Manager

36 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 5. InfoPrint Manager Support of TCP/IP for VSE/ESA

The InfoPrint Manager (IPM) support allows to transfer print files in EBCDIC

mode to the AIX or Windows workstation where the IPM is running. Due to the

EBCDIC transfer this support maintains the control characters in the document to

be printed. The prerequisites for this support are described in “Software

Prerequisites” on page 40.

Overview

The following table provides an overview of the support provided the first time

with TCP/IP for VSE/ESA 1.4 - SERV140D for the InfoPrint Manager (IPM) on

AIX, Windows NT, Windows 2000 or Windows XP.

 Support LPR Script $$ LST specification*

EBCDIC SET INFOPRINT=YES/NO

 (or =ON/OFF)

n/a

Pagedef SET PAGEDEF=pdef

1 PAGEDEF=pdef

1, 2

Formdef SET FORMDEF=fdef

3 FORMDEF=fdef

3, 4

Forms SET FNO=fno

5 FNO=fno

5

1 pdef= the maximum number of alphanumeric characters is 6

2 The following definition is required in the POWER generation:

DEFINE L,PAGEDEF,1F,1,6,C

3 fdef= the maximum number of alphanumeric characters is 6

4 The following definition is required in the POWER generation:

DEFINE L,FORMDEF,1D,1,6,C

5 fno= the maximum number of alphanumeric characters is 4

* only usable with AUTOLPR

 For

1 and

3, the actual values can be checked in z/VSE with the POWER command

D AUSTMT .

Notes:

1. EBCDIC support is only available by using LPR/LPD.

2. If values are defined in $$ LST and SET, the values from the SET commands

are used.

3. Supported alphanumeric characters are: A-Z, 0-9, #, @, $

The following example shows how this support can be used:

© Copyright IBM Corp. 1997, 2005 37

Setting the Parameters for the IPM Support

Description of the SET Parameters

SET HOST=9.66.110.67

With this setting the system (AIX or Windows) containing the InfoPrint Manager

with the IP address 9.66.110.67 will be addressed. Note that the system is

addressed, not the IP address of a specific printer.

SET PRINTER=ipheft

With this setting a Logical Destination (LD) with the name ipheft will be

addressed. The Logical Destination of the InfoPrint Manager can be compared in

general to a printer queue. Note that in AIX no real AIX printer queue with this

ipheft name should exist, otherwise this queue would be addressed instead of the

LD of the IPM.

With LPR, the LPD of the AIX is addressed. Because the LPD does not know a

printer queue with that specific name (ipheft), the LPD is routing the print job

automatically to the IPM. IPM then acknowledges the name (ipheft) as a known

LD back to the LPD and assigns the print job to this LD.

SET PAGEDEF=b111 and SET FORMDEF=a222

With these settings the PAGEDEF and FORMDEF names can be specified which

are required for the AFP print formatting. These definitions are automatically

extended with a preceding P1, or F1 and overwrite the default specifications of

PAGEDEF and FORMDEF in the addressed LD. These PAGEDEF and FORMDEF

resources should be available at the IPM site. In the example shown above, the

PAGEDEF definition named P1b111 should be available at the IPM site.

SET INFOPRINT=YES

With this setting the transmission of the print data and its associated control

characters is done in EBCDIC. This allows the transmission of machine or ASA

codes as well as AFP structured fields. AFP commands (x’5A’ data records) can be

* $$ JOB JNM=TRLTSTPR,CLASS=0,PRI=5,USER=TEST

* $$ LST CLASS=L,DEST=(*,ANY)

// JOB TRLTSTLPR *** LPR to AIX queue ***

// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD1.BASE,PRD2.SCEEBASE)

// EXEC CLIENT,PARM=’APPL=LPR,ID=00’

SET HOST=9.66.110.67

SET PRINTER=ipheft

SET PAGEDEF=b111

SET FORMDEF=a222

SET INFOPRINT=YES

SET CC=YES

SET CRLF=UNIX

SET NOEJECT=ON

SET DISP=KEEP

PRINT POWER.LST.L.TRLUH003

QUIT

/*

/&

* $$ EOJ

Figure 15. LPR-Job on TCP/IP for VSE/ESA

InfoPrint Manager Support

38 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

imbedded, for example, to directly call COPYGROUPS with the IMM command or

to control the individual stitching using BDT/EDT commands.

SET CC=YES

This setting is required to transmit the print control characters or AFP control

characters (x’5A’).

SET CRLF=UNIX, SET NOEJECT=ON, SET DISP=KEEP

These parameters are required to ensure a proper data transfer and to put the

transmitted data set into disposition KEEP.

Using the SET FNO= Parameter with IPM

To use the forms parameter SET FNO=fno, you must define the following:

1. In the file /etc/environment of IPM, include one line with: PD_FORMS=true

2. Prepare an actual destination of IPM to use. This is done with 2 parameter

changes to the actual destination as described in the following section.

Customizing the InfoPrint Manager

A Logical Destination (LD) must be defined in the InfoPrint Manager on your AIX

or Windows system. In the example shown in Figure 15 on page 38, this LD has

the name ipheft.

The document defaults of this LD must be defined as follows:

Document Other: Format = line-data

This definition is required for line data transfer using the LPR or LPD

communication. It is also valid for line data with imbedded AFP structured

fields records, that is, mixed mode AFP print applications.

Document Processing: Transform Options = INDEXOBJ=BDTLY

This setting should only be used if stitching is required when using, for

example, the following IBM printers: IP2000, IP60, and IP70. Note that

otherwise indexing by using ACIF will not be possible.

Document Line Data: Location of page definitions = /usr/lpp/psf/user/ppfalib

This directory specifies, for example, where the defined PAGEDEF resource

resides.

Type of carriage control characters = machine

This definition describes whether machine or ASA print control codes will be

used.

Convert to EBCDIC = No

This definition specifies that the data is being transferred in EBCDIC.

Document AFP Resources: Location of form definitions =

/usr/lpp/psf/user/ppfalib

This directory specifies, for example, where the defined FORMDEF resource

resides.

Changing the Properties of the Actual Destination

Define the following to change the properties of the actual destination:

Load Balancing: Disable on Job mismatch = No

Load balancing: Job-Batches-Ready ADD = fno-value

InfoPrint Manager Support

Chapter 5. InfoPrint Manager Support of TCP/IP for VSE/ESA 39

(The maximum fno-value is 4 characters).

Note: Several fno-values can be added for this actual destination.

If a job with matching fno-value=Job-Batches-Ready-value is received by IPM, the

print job starts printing immediately. The operator of IPM makes sure, that the

print job has job-batch-value=fno-value assigned. If a job with no matching

fno-value=Job-Batches-Ready-value is received by IPM, the print job goes into

hold and a message indicating ’resources not ready’ is displayed. In this case, the

operator must load the printer with the requested forms paper, and then change

Job-Batches-Ready-value of the actual destination to the requested one, and set

the actual destination ready. The hold print job starts automatically.

The operator can use a shortcut by right clicking on the actual destination and

choosing Job-Batches-Ready. Select ADD or REMOVE the values as needed. The

fno-value received from the VSE system is moved into the JOB-BATCH value of the

print job, and displayed accordingly. The JOB-BATCH value of the print job is finally

compared to the Job-Batches-Ready value of the actual destination and IPM is

acting accordingly. In addition, the parameter fno-value is passed to the

-opassthru=forms value and is printed on the job separator sheet as ’FORMS:

fno-value’.

Technical Background Information

If SET INFOPRINT=YES is used, the LPR of TCP/IP for VSE/ESA is also transferring

the parameter -ofileformat=record. With this setting, every record will be

preceeded by a field with a length of 2 bytes. This field will be detected

automatically by IPM and will be removed before printing.

In the LPD/LPR control file of the file to be transferred, the following settings can

be found, for example, when investigating a TCP/IP trace.

 Support LPR Script translated to -o option(s)

EBCDIC SET INFOPRINT=YES/NO

(or =ON/OFF)

-ofileformat=record and

-odatatype=line

Pagedef SET PAGEDEF=pdef -opagedef=P1pdef

Formdef SET FORMDEF=fdef -oformdef=F1fdef

Forms SET FNO=fno -opassthru=forms=fno and

-oforms=fno

Software Prerequisites

The InfoPrint Manager support requires the following minimum software level:

v IPM for AIX 3.2, APAR IY17446 / PTF U475406, or

IPM for Windows NT or Windows 2000 1.1, CSD level 1.1.0.10

v TCP/IP for VSE/ESA 1.4 (5686-A04), APAR PQ55591 (SERV140D) + PQ60560

(ZP14D102) + PQ62068 (ZP14D109)

InfoPrint Manager Support

40 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 6. VSE/ESA Related Hardware Functions Supported

by TCP/IP for VSE/ESA 1.5

The following hardware-related functions are supported by TCP/IP for VSE/ESA

1.5:

v Hardware Crypto (starting with VSE/ESA 2.7)

v HiperSockets (starting with VSE/ESA 2.7)

v OSA Express2 and OSA Express (starting with VSE/ESA 2.6)

Hardware Crypto Support

The z/VSE hardware encryption assist support (referred to as hardware Crypto

support) requires a Crypto Express2 or PCI Cryptographic Accelerator (PCICA)

card or equivalent. The cards are available on IBM Eserver zSeries processors. It

provides encryption assist support and can help to increase the throughput in a

TCP/IP network using SSL (Secure Sockets Layer).

If z/VSE runs under z/VM, z/VM 4.2 or higher is required.

Refer to the z/VSE Planning for further details.

HiperSockets

z/VSE supports high-speed TCP/IP communication among logical partitions

(LPAR) and virtual machines using HiperSockets. The HiperSockets support is

available on IBM Eserver zSeries processors, and when running under z/VM 4.2

or higher in addition on Multiprise 3000 processors and on Parallel Enterprise

Servers G5 and G6.

Refer to the z/VSE Planning for further details.

OSA Express Support

The OSA Express support is provided as integrated hardware feature (OSA

Express2 and OSA Express adapters) for IBM G5, G6, and zSeries processors. The

support provides direct connectivity between z/VSE applications and other

platforms on the attached network. It is based on the Queued Direct Input/Output

(QDIO) architecture which allows a highly efficient data transfer and results in an

accelerated TCP/IP data packet transmission.

Refer to the z/VSE Planning for further details.

© Copyright IBM Corp. 1997, 2005 41

42 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 7. Performance Considerations

Performance and Tuning Considerations

Changing Performance Parameters

It is highly important to have an optimal selection of performance-relevant setup

or operational parameters. There are

product defaults Product defaults apply whenever the value has not

been explicitly assigned.

shipped defaults Shipped defaults apply whenever the customer has

not changed or overwritten the startup values in

the shipped startup job for TCP/IP for VSE/ESA.

The shipped specific startup values for a parameter

usually represent a good starting point. However,

based on specific loads or configurations, there

may be good reasons for a change.

Both values often do not coincide. Be aware before you change a parameter which

does not influence the workload(s), you will not see any change.

TCP/IP for VSE/ESA performance is influenced by many different parameters that

can be tailored for the specific operating environment.

In general these tuning parameters can be grouped into

v operating system tuning

v TCP/IP tuning

v communication tuning (mainframe end and workstation end)

v TCP/IP application tuning

As operating system tuning is familiar to most z/VSE customers, it need not be

addressed in more detail here.

To better understand potential effects of TCP/IP tuning, it is very helpful to

understand some basic TCP/IP concepts. These concepts include

v frames, datagrams and segments

v fragmentation and reassembly

v send and receive buffer management via window sizes and acknowledgements

Communication tuning is closely related to TCP/IP for VSE/ESA tuning. It refers

to the configuration (including links etc) of the network and also the parameter

selection on the other side, which also is TCP/IP.

As it is true for any type of tuning, make only one change at a time. Changing a

parameter in your environment may not produce any improvement as another

value may dominate performance. Having changed this value, the same change

may improve performance considerably.

© Copyright IBM Corp. 1997, 2005 43

General Performance Issues

The following types of performance data exist:

v Resource consumption of an activity

How much CPU-time, I/Os are required to perform a certain TCP/IP activity

(e.g. to use TELNET for CICS transactions, or to transfer 1M of data)

v Achievable Throughput/Performance Values

How many terminals can be concurrently supported with TN3270, or, what data

rate can be achieved for 1 concurrent FTP activity in a certain environment

Principal Performance Dependencies for TCP/IP for VSE/ESA

The performance you get with TCP/IP applications is very dependent on all the

hardware and software products involved. The following is a list of principal

parameters which tries to globally categorize performance/tuning impacts. Overall

performance is determined by the components shown:

 Table 1. Principal Performance Parameters

Parameter (type) Host CPU

time

Host storage Transfer time DASD time

Host CPU speed X - - -

S/390 System Control

Program and setup

X X - x

MTU/MSS used X x X -

Window size - x X -

Transfer buffers - X x -

Type of Comm. Adapter - - X -

Network/Line speed - - X -

Network reliability X x X -

#Appl. bytes in/out X X X X

(application

dependent)

TCP/IP implementation X X X X

TCP/IP application X X X X

Other TCP/IP parms X X X X

DASD I/O subsystem - - - X

DASD I/O blocking x - - X

Note:

X means major impact.

x means smaller or secondary impact.

- means no or negligible impact.

Transfer time includes wait for transfer.

DASD time only applicable if DASD involved (e.g. FTP).

Overall Capacity is also of interest and of specific importance for multiple

concurrent sessions (e.g. Telnet3270).

Performance Considerations

44 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

The following is a list of principal parameters showing performance-relevant

settings in TCP/IP for VSE/ESA. It also shows which TCP/IP activities a

parameter can influence.

 Table 2. TCP/IP Performance-Relevant Parameters

Scope of TCP/IP Activity

TCP/IP Parameter / Setting Any Outbound

TCP

Inbound

TN3270
Out + In

FTP
Out+In

DEFINE ADAPTER | LINK MTU

 TELNETD POOL

X

X

SET ALL_BOUND

 DISPATCH_TIME

 REDISPATCH

 ARP_TIME

 REUSE_SIZE

 FULL_SCAN

 GATEWAY

 CHECKSUM

X

X

X

X

x

X

X

x

Set MAX_SEGMENT

 WINDOW_DEPTH

 CLOSE_DEPTH

 WINDOW_RESTART

X1

X1

X1

X1

SET RETRANSMIT

 FIXED_RETRANS

 WINDOW

 ADDITIONAL_WINDOW

X1

x1

X1

x1

SET SLOW_START

 SLOW_RESTART

 SLOW_INCREMENT

x

x

x

SET TELNETD_BUFFERS

 TRANSFER_BUFFERS

 MAX_BUFFERS

X2

X

X

X means major impact

x means smaller or secondary impact

X1 only for TCP loads (includes FTP, but not NFS)

X2 only for POOL=YES TELNET daemons/sessions

More specific TCP/IP for VSE/ESA performance information and performance

results are available via the z/VSE Internet home page at

http://www.ibm.com/servers/eserver/zseries/zvse/.

Refer also to the IBM TCP/IP Performance Tuning Guide SC31-7188, which addresses

concepts, tuning and benchmark data for TCP/IP for MVS, VM, AIX, OS/2, DOS,

and OS/400.

See TCP/IP for VSE 1.5 Commands for a description of operation and default values

of the individual commands.

Performance Considerations

Chapter 7. Performance Considerations 45

46 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Part 2. Programming Interfaces

© Copyright IBM Corp. 1997, 2005 47

48 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 8. Introducing Socket Programming

TCP/IP for VSE/ESA provides different access methods connecting to/from a VSE

host and interchanging data with the system :

v Telnet

Telnet can be used from remote hosts to connect to VTAM applications running

on the local z/VSE. On the local z/VSE host it can be used to connect to other

remote systems running Telnet daemons, e.g. connecting to a UNIX workstation.

v File Transfer Protocol (FTP)

FTP is used to get/put data files from/to a remote host system

v Web Server

The Web Server can be accessed by arbitrary Web Browsers (Mosaic, Netscape,

MS Internet Explorer, ...) retrieving data defined by HTML (Hypertext Markup

Language) pages.

– Static page contents : HTML only

– Dynamic page contents : HTML, including JavaScript, Java Applets or calling

CGI (Common Gateway Interface) programs.
v Client/Server applications

Distributed applications communicating over an enterprise intranet or the

Internet. The application establishes a peer-to-peer communication exploiting the

TCP/IP socket programming interface.

This chapter focuses on discussing the requirements of TCP/IP socket based

Client/Server applications. It intends to show what aspects are to be considered

before deciding which programming interface to use and how to use them.

What is a TCP/IP Socket Connection ?

A socket programming interface provides the routines required for inter-process

communication between applications, either on the local system or spread in a

distributed, TCP/IP based network environment. Once a peer-to-peer connection is

established, a socket descriptor is used to uniquely identify the connection. The

socket descriptor itself is a task specific numerical value.

One end of a peer-to-peer connection of a TCP/IP based distributed network

application described by a socket is uniquely defined by

v Internet address

e.g. 9.164.178.140

v Communication protocol

– User Datagram Protocol (UDP)

– Transmission Control Protocol (TCP)
v Port

A numerical value, identifying an application. We distinguish between

– ″well known″ ports, e.g. port 23 for Telnet

– user defined ports

Socket applications were usually C or C++ applications using a variation of the

socket API originally defined by the Berkley System Distribution (BSD). Nowadays

© Copyright IBM Corp. 1997, 2005 49

the JAVA language provides a socket API too. There are already JAVA based

Client/Server applications showing up exploiting those socket services.

Socket programming interfaces have been standardized for ease of portability e.g.

by The Open Group.

v UNIX considerations

Besides TCP/IP based sockets, UNIX systems provide socket interfaces for

inter-process communication (IPC) within the local UNIX host itself. Those

UNIX sockets use the local file system for inter-process communication.

v VSE/ESA 2.3 and subsequent releases considerations

VSE/ESA 2.3 and subsequent releases provide TCP/IP based socket services.

These can be used for IPC too, although they are primarily aimed for network

communication only.

Socket Application Programming Interfaces Available with TCP/IP for

VSE/ESA

z/VSE (or VSE/ESA) provide a series of different socket application programming

interfaces (APIs), either provided by TCP/IP for VSE/ESA directly or indirectly by

using services provided by the Language Environment 1.4 for z/VSE.

v TCP/IP for VSE/ESA ’native’ APIs

– Assembler SOCKET macro interface

This interface supports to code socket applications, but also to dynamically

connect to remote systems using TCP/IP built-in Telnet, FTP and LPR

application level protocol support. It needs to be specified if used in a batch

or CICS environment.

– COBOL and PL/I pre-processor interface

It needs to be specified if used in a batch or CICS environment.

– BSD-C socket interface

You can make the application to dynamically determine the run-time

environment (CICS or Batch). This requires APAR PQ14724. Also refer to

“CICS Considerations” on page 88 for details.

– REXX socket APIs
There are two types of REXX support for TCP/IP for VSE/ESA available:

- The REXX support within TCP/IP for VSE/ESA (i.e. REXX Socket API) was

first time available from IBM with APAR PQ27252 (aka SERV130L from

CSI). The documentation of this REXX support can be found in the TCP/IP

for VSE 1.5 Programmer’s Reference manual.

- The REXX/VSE Socket API support within REXX/VSE is described in more

detail below.

Refer to TCP/IP for VSE 1.5 Programmer’s Reference for a detailed description of

these interfaces.

v TCP/IP APIs using Language Environment for VSE/ESA

– LE/VSE 1.4 C socket interface dynamically determines the run-time

environment (CICS or Batch). More info regarding this API can be found

within this book (see “PL/I” on page 56 and “COBOL” on page 57).

– EZA Interfaces

- Since VSE/ESA 2.5, the EZASMI macro interface for HLASM programmers

and the EZASOKET call interface for COBOL, PL/I, and HLASM

programmers are provided. See Chapter 10, “Using the CALL Instruction

Application Programming Interface (EZASOKET API),” on page 189 and

Introducing Socket Programming

50 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 11, “Using the Macro Application Programming Interface (EZASMI

API),” on page 275 for a description of these interfaces.
– The REXX/VSE Socket API support within REXX/VSE was first time

available with APAR PQ31258. The description of this REXX/VSE Socket API

is in the online manual REXX/VSE Reference, SC33-6642.

Portability Aspects

Assembler

While the TCP/IP for VSE/ESA Assembler Socket Macro Interface is undoubtedly

the most efficient way of socket programming, its usage ties the program to

z/VSE. Programs written in Assembler, using the SOCKET macro interface aren’t

portable to non z/VSE operating system environments as there is no API standard

for this language.

COBOL and PL/I

While COBOL and PL/I are the dominant programming languages in the z/VSE

environment, the ″native″ language for writing TCP/IP based socket applications is

undoubtly ″C″. Interfaces for languages other than C may exist in specific

environments or may be provided by product specific programming toolkits,

which potentially are available for multiple platforms.

If portability to non z/VSE systems isn’t essential, the TCP/IP for VSE/ESA

pre-processor API, described in the TCP/IP for VSE 1.5 Programmer’s Reference

manual may be your primary choice. If portability to z/OS or z/VM is essential

you should check section “Language Environment” below for further details.

C Language

As mentioned before, C is the only programming language besides JAVA where

very similar programming interfaces are provided in arbitrary operating system

environments.

While the C socket interfaces are de-facto standardized by the Berkley System

Distribution (BSD), there are other standards to assure cross-system and

cross-platform portability, e.g. by The Open Group in their CAE specification :

″System Interfaces and Headers, Issue 4, Version 2″, in the literature also being

referred to as XPG4.2. The Open Group can be found on the WWW by the

following URL: http://www.opengroup.org/.

Language Environment

The Language Environment (LE) on the IBM S/390 platform assures portability

across z/OS, z/VM and z/VSE. Depending on specific needs and portability issues

one of the following languages

v C

v COBOL

v PL/I

v Assembler

v REXX

may be appropriate for writing TCP/IP socket interface based Client/Server

applications.

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 51

LE supports the usage of LE services using any LE enabled High Level Language

(C, COBOL, PL/I) or from within a LE conforming Assembler program. This

includes support for mixed-language applications.

I.e. while LE based programs, using socket services and written in a programming

language other than C are not portable to a non-S/390 system, LE on S/390

provides cross system compatibility as mentioned above.

The new EZASMI macro interface and EZASOKET call interface are (with minor

differences) also available within z/OS. Applications using these interfaces on

z/OS can easily be ported to z/VSE (or VSE/ESA) and vice versa.

LE Enabled Applications

This manual mentions ″LE enabled″ applications in several places. An application

is considered to be ″LE enabled″ (or ″ LE Conforming″ or ″LE Compliant″) when it

conforms to the common execution environment (CEE) model and conforms to this

run-time linkage, storage and condition handling model. This is true if the

application is compiled, or assembled, using LE conforming compilers or

prologue/epilogue macros. These are basically all C for VSE, COBOL for VSE, and

PL/I for VSE compiled programs and Assembler programs using

CEEENTRY/CEETERM macros. Also C/VSE subroutines including assembler

programs using the C prologue/epilogue assembler macros do fulfill this

requirement.

Which API to use ?

As discussed in the previous chapters already, the selection of the appropriate

language and API to use depends on

v Portability

Ease of cross-platform development (single source code).

v Compatibility

The S/390 system platform provides source compatibility between z/OS, z/VM

and z/VSE when using LE programming interfaces.

LE/VSE focuses on the interfaces defined by the C feature test macro

_XOPEN_SOURCE_EXTENDED, where e.g. z/OS additionally provides slightly

different interfaces, enabled by the feature test macro OE_SOCKETS.

v Serviceability

By decoupling the socket application from the TCP/IP product allows

maintaining (servicing) both parts independently.

Portability, compatibility and serviceability aspects are showing up differently,

depending on the programming language chosen :

Assembler

As mentioned before, the SOCKET macro provided by TCP/IP not only supports

to write socket based applications, but grants access to the built-in Telnet, FTP and

LPR application level protocols as well. If Telnet, FTP and LPR protocol access isn’t

required, a LE conforming Assembler program can call the LE/VSE C socket

interfaces instead of using the SOCKET macro to gain independence from the

TCP/IP service level.

TCP/IP service affecting the SOCKET macro may require to reassemble the

application.

Introducing Socket Programming

52 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

The EZASMI macro and the EZASOKET call interface, available the first time with

VSE/ESA 2.5, are mostly compatible with the corresponding z/OS interfaces. This

eases cross-platform development. With both interfaces, socket applications are

decoupled from the TCP/IP product, which allows both parts to be serviced

independently.

Note that the EZASOKET call interface can be used with COBOL for VSE and PL/I

for VSE programs as well.

COBOL and PL/I

Using the TCP/IP pre-processor API (EXEC TCP ...) a stub routine linked edited

with the user application

v COBOL - IPNETXCO.OBJ

v PL/I - IPNETXP.OBJ

TCP/IP service affecting those modules may require to re-link the application.

The following figure shows an example of the usage of the pre-processor interface.

For the complete example please check the TCP/IP for VSE 1.5 Programmer’s

Reference manual.

C Language

When using the native TCP/IP BSD-C interface, every single call, - e.g. socket() -

will cause a different stub routine IPNRxxxx.OBJ - e.g. IPNRSOCK.OBJ - to be

linked to the application code. The control flow of such an application looks like :

*

* Attempt to open a connection

*

 EXEC TCP OPEN FOREIGNPORT(2000)

 FOREIGNIP(IPADDRESS)

 LOCALPORT(0)

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 ACTIVE

 WAIT(YES)

 ERROR(SECOND-TEST)

 END-EXEC.

 ┌───────────────────────┐

 │ │

 │ User Code │

 │ │ User Socket Application

 ├───────────────────────┤

 │ │

 │ IPNRxxxx.OBJ │ BSD-C Interface

 │ │

 └───────────────────────┘

 Z

 │ cross partition communication

 [

 ┌───────────────────────┐

 │ │

 │ TCP/IP for VSE/ESA │ TCP/IP Partition

 │ │

 └───────────────────────┘

Figure 16. Control Flow when using TCP/IP for VSE/ESA BSD-C Sockets

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 53

Acknowledging the dominance of C in TCP/IP environments, LE/VSE provides C

socket interfaces only. However, LE/VSE as do the Language Environments in

z/OS and z/VM allows to call LE services from Assembler, COBOL and PL/I too.

The figure below shows the logical control flow of a LE/VSE C based socket

application. While it is more complex than using TCP/IP’s own interfaces directly,

it decouples the application from the TCP/IP product.

Notes:

1. When using a non-LE enabled C compiler, e.g. C/370, you are restricted to use

the native TCP/IP for VSE/ESA BSD-C interface. This includes the usage of the

socket.h include file shipped in VSE library PRD1.BASE.

2. When using the C for VSE compiler we strongly recommend to use the socket

API provided by the Language Environment 1.4. The C header files required

are provided in VSE library PRD2.SCEEBASE.

Exploiting the LE/VSE Socket API

Applications using LE run-time services (C, COBOL and PL/I) or LE enabled

Assembler programs can use the LE/VSE C socket routines, either directly (C) or

using the LE Interlanguage Communication (ILC) support.

 ┌───────────────────────┐

 │ │

 │ User Code │

 │ │ Socket Application

 ├───────────────────────┤

 │ │

 │ LE/VSE stub routine │

 └───────────────────────┘

 Z

 │ call

 [

 ┌───────────────────────┐

 │ │

 │ LE/VSE C-runtime │ LE/VSE 1.4

 │ │

 └───────────────────────┘

 Z

 │ call

 [

 ┌───────────────────────┐

 │ │

 │ LE/VSE to TCP/IP │

 │ conversion layer │

 │ │ $EDCTCPV.PHASE

 ├───────────────────────┤

 │ │

 │ IPNRxxxx.OBJ │ BSD-C Interface

 │ │

 └───────────────────────┘

 Z

 │ cross partition communication

 [

 ┌───────────────────────┐

 │ │

 │ TCP/IP for VSE/ESA │ TCP/IP

 │ │

 └───────────────────────┘

Figure 17. Control Flow when using LE/VSE C Sockets

Introducing Socket Programming

54 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

C Language

LE/VSE provides socket programming interfaces for C only. While the Language

Environment has defined the full range of APIs, as described in Chapter 9,

“TCP/IP Support for the LE/VSE C Socket Interface,” on page 91, it bases on

TCP/IP’s native C interface too. It uses $EDCTCPV.PHASE as shipped with

VSE/ESA 2.3 and subsequent releases of VSE/ESA and serviced as part of the

TCP/IP for VSE/ESA product to adapt LE calls to the interfaces TCP/IP provides.

That is why only the functions available by TCP/IP itself as described in this

manual can actually be used. As soon as TCP/IP for VSE/ESA provides additional

functionality LE/VSE will automatically pick this up, without requesting to apply

LE service.

While the TCP/IP HLL interfaces basically provide a OPEN, SEND, RECEIVE,

CLOSE interface, the C language calls provide a higher granularity. The calls

necessary depend on writing a server or a client program.

Client

The following figure shows a simplified sample of the code logic for a client

application :

Server

The following figure shows how the code logic for a server (Daemon) application

may look like :

 The select() call in brackets shown above may be used to operate multiple clients

concurrently. It can be used to wait for activity on a series of sockets, similar to a

WAITM (wait multiple) operating system call. Therefore the server application can

 socket() - create a socket

 │

 [

 connect() - bind and connect to server

 │

 [

 send() / receive() - data interchange

 │

 [

 close() - destroy socket

 socket() - create a socket using a specific protocol

 │

 [

 bind() - bind the socket to a port

 │

 [

 listen() - make it a passive socket

 │

 [

 [select()] - wait for incoming connections

 │

 [

 accept() - connect to caller

 │

 [

 getsockname() - determine caller

 │

 [

 send() / receive() - data interchange

 │

 [

 close() - destroy socket

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 55

wait for new clients to connect (accept() call) and concurrently wait for requests

from clients already connected (receive() call).

Assembler Language

LE/VSE supports calling C subroutines from an Assembler program.

Assembler source

The code snippet in the following figure uses LE macro CEEENTRY to enable the

Language Environment. Then it calls TCP/IP subroutine GETHNAM. Here more

complex processing may be coded. At the end of the routine it calls CEETERM to

disable the Language Environment as not required any longer.

Note: You should enable LE at the very beginning and terminate it at the end of

your application, but not call this sequence more than required or there will

be high overhead introduced by starting/terminating LE more than

necessary.

C subroutine with OS linkage called from Assembler

The following figure shows how to write a stub routine with OS linkage

convention calling the C routine gethostname().

PL/I

LE/VSE Interlanguage Communication (ILC) between C and PL/I is only provided

for

v PL/I for VSE/ESA

*

GETHOSTN CEEENTRY PPA=MAINPPA,MAIN=YES

*

*

 LA 1,PARMSTR

 CALL GETHNAM

*

 LTR 15,15

 BZ RETOK

 WTO ’GETHOSTNAME() FAILED’

 B RTNEND

RETOK WTO ’GETHOSTNAME() SUCCESSFUL’

*

RTNEND CEETERM

*

CBUFLEN EQU 20

PARMSTR DC A(HNAME)

 DC F(CBUFLEN)

HNAME DS CL(CBUFLEN)

#include <types.h>

#include <unistd.h>

#pragma linkage(GETHOSTNAME, OS)

#pragma map(GETHOSTNAME, GETHNAM)

int GETHOSTNAME(char *buffer,

 size_t size)

{

 return(gethostname(buffer, size));

}

Introducing Socket Programming

56 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

The manual Writing Interlanguage Communication Applications, SC33-6686, provides

more details on how to use ILC calls.

Similar to the Assembler example, there must be a C stub routine with PL/I

linkage. Note the following:

v A NULL in C is x’00000000’ where NULL in PL/I is x’FF000000’. Therefore PL/I

programs should check for SYSNULL (x’00000000’) where appropriate.

v A character string in C is logically unbound with a x’00’ end indicator (last

byte).

The stub routine for calling gethostname() could therefore look the following way:

 The matching PL/I code fragment, calling the subroutine could look like the

following:

COBOL

LE/VSE Interlanguage Communication (ILC) between C and COBOL is provided

for

v COBOL for VSE/ESA Release 1

The manual Writing Interlanguage Communication Applications, SC33-6686, provides

more details on how to use ILC calls.

The following shows how to call the LE C routine gethostname() to retrieve the

name of the local host:

#include <types.h>

#include <unistd.h>

#pragma linkage(GETHOSTNAME, PLI)

#pragma map(GETHOSTNAME, GETHNAM)

int GETHOSTNAME(char **buffer,

 size_t size)

{

 return(gethostname(*buffer, size));

}

...

DCL GETHNAM EXTERNAL ENTRY

 RETURNS(FIXED BIN(31));

DCL HOSTNAME CHAR(20);

DCL HNSIZE FIXED BIN(31);

DCL CRC FIXED BIN(31);

...

HNSIZE = 20;

CRC = GETHNAM(ADDR(HOSTNAME),(HNSIZE));

...

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 57

The matching C stub routine for calling gethostname() with COBOL linkage could

look the following way:

A COBOL Example using LE C Socket Services

Following you will find an example based on LE’s ability to write interlanguage

communication applications. The example is split into two figures.

The complete source code can be obtained as cobsock.zip from the z/VSE home

page at http://www.ibm.com/servers/eserver/zseries/zvse/downloads/samples.html

following the FTP download link.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. C2COB2.

 AUTHOR. INGO ADLUNG.

 INSTALLATION. BOEBLINGEN GERMANY.

 DATE-WRITTEN. MAY 19, 1999.

 DATE-COMPILED.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-370.

 OBJECT-COMPUTER. IBM-370.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 RESULTS.

 05 RVALUE PIC S9(9) BINARY.

 05 RDETAIL PIC S9(9) BINARY.

 01 BUFSIZE PIC S9(9) BINARY.

 01 BUFFER.

 05 WORKAREA PICTURE X(64).

 PROCEDURE DIVISION.

 MAIN.

 *

 * Display the name of the host we are running on

 *

 MOVE 64 TO BUFSIZE.

 DISPLAY ’Calling C gethostname()’ UPON CONSOLE.

 CALL ’COBGHNAM’ USING BY REFERENCE WORKAREA

 BY CONTENT BUFSIZE

 BY REFERENCE RVALUE, RDETAIL.

 DISPLAY WORKAREA UPON CONSOLE.

 STOP RUN.

#include <types.h>

#include <unistd.h>

#pragma linkage(cobol_gethostname, COBOL)

#pragma map(cobol_gethostname, COBGHNAM)

void cobol_gethostname(char *buffer,

 size_t size,

 int *return)

{

 *return = gethostname(buffer, size);

}

Introducing Socket Programming

58 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

The figure shown below contains the COBOL source code for a very basic server

application. To reduce complexity it handles a single client only and doesn’t

include the error recovery necessary if communication problems show up.

IDENTIFICATION DIVISION.

 PROGRAM-ID. C2COB1.

 AUTHOR. INGO ADLUNG.

 INSTALLATION. BOEBLINGEN GERMANY.

 DATE-WRITTEN. MAY 4, 1998.

 DATE-COMPILED.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-370.

 OBJECT-COMPUTER. IBM-370.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 SOCKET-DATA.

 05 DOMAIN PIC S9(9) BINARY.

 05 SOCKTYPE PIC S9(9) BINARY.

 05 PROTOCOL PIC S9(9) BINARY.

 05 LSOCKET PIC S9(9) BINARY.

 05 RSOCKET PIC S9(9) BINARY.

 01 SOCKADDR-IN.

 05 SIN-FAMILY PIC S9(2) BINARY.

 05 SIN-PORT PICTURE S9(4) BINARY.

 05 SIN-ADDR PIC S9(9) BINARY.

 05 SIN-ZERO PIC S9(2) BINARY OCCURS 4 TIMES VALUE 0.

 01 RESULTS.

 05 RVALUE PIC S9(9) BINARY.

 05 RDETAIL PIC S9(9) BINARY.

 01 BUFSIZE PIC S9(9) BINARY.

 01 L-COUNT PIC S9(9) BINARY.

 01 BUFFER.

 05 WORKAREA PICTURE X(512).

 PROCEDURE DIVISION.

 MAIN.

 *

 * Create a TCP stream socket. The socket value will be

 * returned in variable RVALUE.

 *

 * domain type AF_INET is 2

 * socket type SOCK_STREAM is 1

 * protocol IPPROTO_TCP is 6

 *

 MOVE 2 TO DOMAIN.

 MOVE 1 TO SOCKTYPE.

 MOVE 6 TO PROTOCOL.

 DISPLAY ’Calling C socket()’.

 CALL ’TCPSOCKT’ USING BY CONTENT DOMAIN, SOCKTYPE, PROTOCOL

 BY REFERENCE RVALUE, RDETAIL.

 MOVE RVALUE TO LSOCKET.

Figure 18. COBOL Program calling LE C socket routines (Part 1 of 3)

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 59

*

 * Bind the socket to the local port

 *

 * domain type AF_INET is 2

 * local port is 2000

 *

 MOVE 2 TO SIN-FAMILY.

 MOVE 2000 TO SIN-PORT.

 MOVE 0 TO SIN-ADDR.

 MOVE 16 TO BUFSIZE.

 DISPLAY ’Calling C bind()’.

 CALL ’TCPBIND’ USING BY CONTENT LSOCKET

 BY REFERENCE SOCKADDR-IN

 BY CONTENT BUFSIZE

 BY REFERENCE RVALUE, RDETAIL.

 *

 * Convert socket to passive mode.

 *

 MOVE 1 TO L-COUNT.

 DISPLAY ’Calling C listen()’.

 CALL ’TCPLIST’ USING BY CONTENT LSOCKET, L-COUNT

 BY REFERENCE RVALUE, RDETAIL.

 *

 * Wait for incoming clients.

 *

 INITIALIZE SOCKADDR-IN.

 MOVE 16 TO BUFSIZE.

 DISPLAY ’Calling C accept()’.

 CALL ’TCPACCP’ USING BY CONTENT LSOCKET,

 BY REFERENCE SOCKADDR-IN, BUFSIZE,

 RVALUE, RDETAIL.

 *

 * Receive a piece of data.

 *

 MOVE RVALUE TO RSOCKET.

 MOVE 512 TO BUFSIZE.

 DISPLAY ’Calling C read()’.

 CALL ’TCPREAD’ USING BY CONTENT RSOCKET

 BY REFERENCE WORKAREA

 BY CONTENT BUFSIZE

 BY REFERENCE RVALUE, RDETAIL.

Figure 18. COBOL Program calling LE C socket routines (Part 2 of 3)

Introducing Socket Programming

60 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

The next figure shows the corresponding C source, providing the mapping for the

socket routines. The generated object deck needs to be link-edited with the

generated COBOL object deck.

 *

 * Send the data back to the caller

 *

 MOVE RVALUE TO BUFSIZE.

 DISPLAY ’Calling C write()’.

 CALL ’TCPWRITE’ USING BY CONTENT RSOCKET

 BY REFERENCE WORKAREA

 BY CONTENT BUFSIZE

 BY REFERENCE RVALUE, RDETAIL.

 *

 * Close the connection

 *

 DISPLAY ’Calling C close()’.

 CALL ’TCPCLOSE’ USING BY CONTENT RSOCKET

 BY REFERENCE RVALUE, RDETAIL.

 *

 * Release the listen socket too.

 *

 DISPLAY ’Calling C close()’.

 CALL ’TCPCLOSE’ USING BY CONTENT LSOCKET

 BY REFERENCE RVALUE, RDETAIL.

 STOP RUN.

Figure 18. COBOL Program calling LE C socket routines (Part 3 of 3)

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 61

#include <types.h>

 #include <unistd.h>

 #include <in.h>

 #include <socket.h>

 #include <errno.h>

 #include <stdio.h>

 #pragma linkage(cob2c_socket, COBOL)

 #pragma linkage(cob2c_bind, COBOL)

 #pragma linkage(cob2c_listen, COBOL)

 #pragma linkage(cob2c_accept, COBOL)

 #pragma linkage(cob2c_read , COBOL)

 #pragma linkage(cob2c_write, COBOL)

 #pragma linkage(cob2c_close, COBOL)

 #pragma map(cob2c_socket, "TCPSOCKT")

 #pragma map(cob2c_bind, "TCPBIND")

 #pragma map(cob2c_listen, "TCPLIST")

 #pragma map(cob2c_accept, "TCPACCP")

 #pragma map(cob2c_read, "TCPREAD")

 #pragma map(cob2c_write, "TCPWRITE")

 #pragma map(cob2c_close, "TCPCLOSE")

 void cob2c_socket(int domain,

 int type,

 int protocol,

 int *psocket,

 int *perr)

 {

 printf(

 "socket() called, domain : %d, type : %d, protocol : %d\n",

 domain, type, protocol);

 *psocket = socket(domain, type, protocol);

 *perr = errno;

 }

Figure 19. LE/VSE C socket interface routines for COBOL (Part 1 of 2)

Introducing Socket Programming

62 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

void cob2c_bind(int socket,

 const struct sockaddr *address,

 size_t len,

 int *pvalue,

 int *perr)

 {

 struct sockaddr_in * sockin = (struct sockaddr_in *)address;

 *pvalue = bind(socket, address, len);

 *perr = errno;

 }

 void cob2c_listen(int socket,

 int backlog,

 int *pvalue,

 int *perr)

 {

 *pvalue = listen(socket, backlog);

 *perr = errno;

 }

 void cob2c_accept(int socket,

 struct sockaddr *address,

 size_t *len,

 int *pvalue,

 int *perr)

 {

 *pvalue = accept(socket, address, len);

 *perr = errno;

 }

 void cob2c_read(int socket,

 void *buffer,

 size_t len,

 size_t *pvalue,

 int *perr)

 {

 *pvalue = read(socket, buffer, len);

 *perr = errno;

 }

 void cob2c_write(int socket,

 const void *buffer,

 size_t len,

 size_t *pvalue,

 int *perr)

 {

 *pvalue = write(socket, buffer, len);

 *perr = errno;

 }

 void cob2c_close(int socket,

 size_t *pvalue,

 int *perr)

 {

 *pvalue = close(socket);

 *perr = errno;

 }

Figure 19. LE/VSE C socket interface routines for COBOL (Part 2 of 2)

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 63

Exploiting the EZASMI/EZASOKET Programming Interfaces

Applications on VSE/ESA 2.5 (and follow-on releases) may use the EZASMI and /

or EZASOKET programming interfaces. These programming interfaces are

provided both for programming in a batch environment and in a CICS Transaction

Server environment (in CICS the application must be LE enabled; the definition of

″LE enabled″ can be found in “LE Enabled Applications” on page 52).

Following are a few sample programs which show a simple usage of these

interfaces. To reduce complexity they do not include any error recovery necessary

if communication problems show up. The first sample shows a client assembler

program which uses the EZASMI macro interface:

* PRINT NOGEN

* *

* MODULE NAME: SAMPCLIE *

* *

* FUNCTION: Sample program for usage of EZASMI macro *

* (Client part) *

* *

* ATTRIBUTES: NON-REUSABLE *

* *

* REGISTER USAGE: *

* R3 = BASE REG *

* R13 = SAVE AREA *

* *

* INPUT: NONE *

* OUTPUT: NONE *

* *

Figure 20. Sample Program Using EZASMI Macro (Synchronously) (Part 1 of 4)

Introducing Socket Programming

64 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

* START OF EXECUTABLE CODE *

SAMPCLIE START X’78’ adjust addr behind part savearea

SAMPCLIE AMODE ANY

SAMPCLIE RMODE ANY

 USING *,R15 Use Entry Register for base

 B SAMPCLST

 DC C’SAMPCLST-00/06/23’

*

SAMPCLST DS 0H

 STM R14,R12,12(R13) Save Caller’s Registers

 LR R3,R15 Change base register to R3

 DROP R15 Done with this register

 USING SAMPCLIE,R3 Tell assembler about new base

 LA R15,MYSAVE Get addr of own save area

 ST R13,MYSAVE+4 Save caller’s save area addr

 ST R15,8(R13) Save own save area addr

 LR R13,R15 Load Reg13

* *

* Issue INITAPI to connect to interface *

 EZASMI TYPE=INITAPI, Issue INITAPI Macro X

 MAXSOC=MAXSOC, Max number of sockets (in) X

 MAXSNO=MAXSNO, Greatest Descr Number used (out)X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

* Issue SOCKET call *

 EZASMI TYPE=SOCKET, Issue SOCKET call X

 AF=’INET’, INTERNET family X

 SOCTYPE=’STREAM’, Stream socket X

 PROTO=PROTOCOL, protocol X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

 MVC SOCKET1,RETCODE Save the socket descriptor

*

* Issue CONNECT *

 EZASMI TYPE=CONNECT, Issue CONNECT call X

 S=SOCKET1+2, socket descriptor (halfword) X

 NAME=SAMPSERV, to SAMPSERV program X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

* Issue WRITE on connected socket *

 EZASMI TYPE=WRITE, Issue WRITE call X

 S=SOCKET1+2, on this socket X

 NBYTE=MSG1L, Length of first message X

 BUF=MSG1, Text of first message X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

 B READ1 go and read

*

MSG1L DC F’40’

MSG1 DC CL40’DATA SENT FROM SAMPCLIE.’

Figure 20. Sample Program Using EZASMI Macro (Synchronously) (Part 2 of 4)

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 65

* Issue READ on connected socket *

READ1 EZASMI TYPE=READ, Issue READ call X

 S=SOCKET1+2, on this socket X

 NBYTE=READBL, length of read buffer X

 BUF=READB, address of read buffer X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

* Issue CLOSE on connected socket *

 EZASMI TYPE=CLOSE, Issue CLOSE call X

 S=SOCKET1+2, on this socket X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

* *

* Issue TERMAPI to disconnect interface *

 EZASMI TYPE=TERMAPI Issue TERMAPI call

*

 EOJ

 EJECT

* CONSTANTS/VARIABLES USED BY THIS PROGRAM *

 EZASMI TYPE=TASK,STORAGE=CSECT Task Storage Area

MYSAVE DC 18F’0’ Register Save Area

ERRNO DC F’0’

RETCODE DC F’0’

* INITAPI macro parms *

MAXSOC DC H’256’ MAXSOC parm value

MAXSNO DC F’0’ Highest socket descriptor avail

* SOCKET macro parms *

PROTOCOL DC F’0’ default protocol

SOCKET1 DC F’0’ save area for socket descriptor

*

* CONNECT Macro Parms*

 CNOP 0,4

SAMPSERV DC 0CL16’ ’ SOCKET NAME structure of SERVER

 DC AL2(2) FAMILY (AF-INET)

 DC H’4000’ Port of SAMPSERV

 DC AL1(9),AL1(164),AL1(155),AL1(122) IP-Addr of SAMPSERV

 DC XL8’00’ RESERVED

*

* READ MACRO PARMS *

READBL DC F’40’ SIZE OF READ BUFFER

READB DC CL40’ ’ READ BUFFER

*

Figure 20. Sample Program Using EZASMI Macro (Synchronously) (Part 3 of 4)

Introducing Socket Programming

66 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

---- register equates --

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

*

 END SAMPCLIE

Figure 20. Sample Program Using EZASMI Macro (Synchronously) (Part 4 of 4)

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 67

The second sample shows a server assembler program using the asynchronous

EZASMI macro interface:

* PRINT NOGEN

* *

* MODULE NAME: SAMPSERV *

* *

* FUNCTION: Sample Program for EZASMI (asynchronous) macro usage *

* (Server Part) *

* *

* ATTRIBUTES: NON-REUSABLE *

* NON-LE Enabled *

* *

* REGISTER USAGE: *

* R3 = BASE REG 1 *

* R13 = SAVE AREA *

* *

* INPUT: NONE *

* OUTPUT: NONE *

* *

* START OF EXECUTABLE CODE *

SAMPSERV START X’78’ adjust addr behind part savearea

SAMPSERV AMODE 31

SAMPSERV RMODE ANY

 USING *,R15 Use Entry Register for base

 B SAMPSTRT

 DC C’SAMPSEST-00/06/23’

*

SAMPSTRT DS 0H

 STM R14,R12,12(R13) Save Caller’s Registers

 LR R3,R15 Change base register to R3

 DROP R15 Done with this register

 USING SAMPSERV,R3 Tell assembler about new base

 LA R15,MYSAVE Get addr of own save area

 ST R13,MYSAVE+4 Save caller’s save area addr

 ST R15,8(R13) Save own save area addr

 LR R13,R15 Load Reg13

Figure 21. Sample Program Using EZASMI Macro (Asynchronously) (Part 1 of 5)

Introducing Socket Programming

68 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

* Issue INITAPI to connect to interface *

 EZASMI TYPE=INITAPI, Issue INITAPI Macro X

 MAXSOC=MAXSOC, Max number of sockets (in) X

 MAXSNO=MAXSNO, Greatest Descr Number used (out)X

 ASYNC=’ECB’, asynchronous ECB processing X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

* Issue SOCKET call *

 XC ECB,ECB

 EZASMI TYPE=SOCKET, Issue SOCKET call X

 AF=’INET’, INTERNET family X

 SOCTYPE=’STREAM’, Stream socket X

 PROTO=PROTOCOL, protocol X

 ECB=*ECBA, wait on this ECB X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

 WAIT ECB Wait on ECB

 MVC SOCKET1,RETCODE Save the socket descriptor

* Issue BIND call *

 XC ECB,ECB Clear ECB

 EZASMI TYPE=BIND, Issue BIND call X

 S=SOCKET1+2, socket descriptor X

 NAME=MYNAME, Name structure X

 ECB=*ECBA, wait on this ECB X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

 WAIT ECB Wait on ECB

* Issue LISTEN *

 XC ECB,ECB Clear ECB

 EZASMI TYPE=LISTEN, Issue LISTEN call X

 S=SOCKET1+2, socket descriptor X

 BACKLOG=BACKLOG, max number of backlog msgs X

 ECB=*ECBA, wait on this ECB X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

 WAIT ECB Wait on ECB

* Issue ACCEPT *

 XC ECB,ECB Clear ECB

 EZASMI TYPE=ACCEPT, Issue ACCEPT call X

 S=SOCKET1+2, socket descriptor X

 NAME=NAMECLIE, Name structure of client X

 ECB=*ECBA, wait on this ECB X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

 WAIT ECB Wait on ECB

 MVC SOCKETN,RETCODE Save RETCODE (New Socket Descr.)

Figure 21. Sample Program Using EZASMI Macro (Asynchronously) (Part 2 of 5)

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 69

* Issue READ *

 XC ECB,ECB Clear ECB

 EZASMI TYPE=READ, Issue READ call X

 S=SOCKETN+2, on this socket X

 NBYTE=READBUFL, length of read buffer X

 BUF=READBUF, address of read buffer X

 ECB=*ECBA, wait on this ECB X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

 WAIT ECB Wait on ECB

* Issue WRITE on connected socket *

 XC ECB,ECB Clear ECB

 EZASMI TYPE=WRITE, Issue WRITE call X

 S=SOCKETN+2, on this socket X

 NBYTE=MSGL, Length of first message X

 BUF=MSG, Text of first message X

 ECB=*ECBA, wait on this ECB X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

 WAIT ECB Wait on ECB

 B CLOSE1

*

MSGL DC F’40’

MSG DC CL40’SAMPSERV RECEIVED YOUR DATA.’

* Issue CLOSE socket *

CLOSE1 XC ECB,ECB Clear ECB

 EZASMI TYPE=CLOSE, Issue CLOSE call X

 S=SOCKETN+2, on this socket X

 ECB=*ECBA, wait on this ECB X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

 WAIT ECB Wait on ECB

* Issue CLOSE socket *

 XC ECB,ECB Clear ECB

 EZASMI TYPE=CLOSE, Issue CLOSE call X

 S=SOCKET1+2, on this socket X

 ECB=*ECBA, wait on this ECB X

 ERRNO=ERRNO, ERRNO field X

 RETCODE=RETCODE RETCODE field

*

 WAIT ECB Wait on ECB

* Issue TERMAPI to disconnect interface *

 EZASMI TYPE=TERMAPI Issue TERMAPI Call

 EOJ

 EJECT

Figure 21. Sample Program Using EZASMI Macro (Asynchronously) (Part 3 of 5)

Introducing Socket Programming

70 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

* CONSTANTS/VARIABLES USED BY THIS PROGRAM *

 EZASMI TYPE=TASK,STORAGE=CSECT Task Storage Area

MYSAVE DC 18F’0’ Register Save Area

ERRNO DC F’0’

RETCODE DC F’0’

ECBA DC A(ECB) POINTER to ECB

ECB DC F’0’ ECB

ECBX DC XL156’00’ ECB Extension Area

*

* INITAPI macro parms *

MAXSOC DC H’80’ MAXSOC PARM VALUE

MAXSNO DC F’0’ Highest Socket Descriptor avail

*

* SOCKET macro parms *

PROTOCOL DC F’0’ default protocol

SOCKET1 DC F’0’ savearea for socket descriptor

SOCKETN DC F’0’ savearea for socket descriptor

*

* BIND MACRO PARMS *

 CNOP 0,4

MYNAME DC 0CL16’ ’ SOCKET NAME STRUCTURE

 DC AL2(2) FAMILY (AF-INET)

MYPORT DC H’4000’ bind to this port

MYADDR DC AL1(9),AL1(164),AL1(155),AL1(122) and IP address

 DC XL8’00’ RESERVED

* LISTEN PARMS *

BACKLOG DC F’5’ BACKLOG

* ACCEPT PARMS *

NAMECLIE DC 0CL16’ ’ SOCKET NAME STRUCTURE of client

 DC AL2(2) FAMILY

PORTCLIE DC H’0’

ADDRCLIE DC F’0’

 DC XL8’00’ RESERVED

Figure 21. Sample Program Using EZASMI Macro (Asynchronously) (Part 4 of 5)

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 71

Of course, there is no real need for this simple program to use the asynchronous

interface. Asynchronous processing may be helpful when the program wants to

perform other tasks while waiting on a socket call to complete.

The next sample shows a similar server program written in COBOL and using the

EZASOKET call interface:

* READ MACRO PARMS *

READBUFL DC F’40’ SIZE OF READ BUFFER

READBUF DC CL40’none’ READ BUFFER

* ------ register equates --

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

*

 END SAMPSERV

Figure 21. Sample Program Using EZASMI Macro (Asynchronously) (Part 5 of 5)

Introducing Socket Programming

72 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

CBL LIB APOST RMODE(ANY) SAM00010

 IDENTIFICATION DIVISION. SAM00020

 SAM00030

 PROGRAM-ID. SAMPSERV SAM00040

 AUTHOR. HEINZ HAGEDORN SAM00050

 INSTALLATION. HIER. SAM00060

 DATE-WRITTEN. June 23, 2000 SAM00070

 DATE-COMPILED. SAM00080

 SAM00090

 ENVIRONMENT DIVISION. SAM00100

 SAM00110

 CONFIGURATION SECTION. SAM00120

 SAM00130

 SOURCE-COMPUTER. IBM-370. SAM00140

 OBJECT-COMPUTER. IBM-370. SAM00150

 SAM00160

 DATA DIVISION. SAM00170

 SAM00180

 SAM00190

 WORKING-STORAGE SECTION. SAM00200

 01 SOKET-FUNCTIONS. SAM00210

 02 SOKET-ACCEPT PIC X(16) VALUE ’ACCEPT ’. SAM00220

 02 SOKET-BIND PIC X(16) VALUE ’BIND ’. SAM00230

 02 SOKET-CLOSE PIC X(16) VALUE ’CLOSE ’. SAM00240

 02 SOKET-CONNECT PIC X(16) VALUE ’CONNECT ’. SAM00250

 02 SOKET-INITAPI PIC X(16) VALUE ’INITAPI ’. SAM00260

 02 SOKET-LISTEN PIC X(16) VALUE ’LISTEN ’. SAM00270

 02 SOKET-READ PIC X(16) VALUE ’READ ’. SAM00280

 02 SOKET-SOCKET PIC X(16) VALUE ’SOCKET ’. SAM00290

 02 SOKET-TERMAPI PIC X(16) VALUE ’TERMAPI ’. SAM00300

 02 SOKET-WRITE PIC X(16) VALUE ’WRITE ’. SAM00310

 01 SOKET-FUNCT PIC X(16) VALUE ’ ’. SAM00320

 01 SOKET-ADDR. SAM00330

 02 SOCK-FAMILY PIC 9(4) BINARY. SAM00340

 02 SOCK-PORT PIC 9(4) BINARY. SAM00350

 02 SOCK-IPADDR PIC 9(8) BINARY. SAM00360

 02 SOCK-ZERO PIC X(8). SAM00370

 01 SOKET-ID PIC 9(4) BINARY. SAM00380

 01 SOKET-ID-NEW PIC 9(4) BINARY. SAM00390

 01 MAXSOC PIC 9(4) BINARY. SAM00400

 01 IDENT. SAM00410

 02 TCPNAME PIC X(8). SAM00420

 02 ADSNAME PIC X(8). SAM00430

 01 SUBTASK PIC X(8). SAM00440

 01 MAXSNO PIC 9(8) BINARY. SAM00450

 SAM00460

 01 INBUFFL PIC 9(8) COMP VALUE 40. SAM00570

 SAM00580

Figure 22. Sample Program Using EZASOKET Call Using COBOL (Part 1 of 4)

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 73

01 AF-INET PIC 9(8) COMP VALUE 2. SAM00470

 01 SOCTYPE PIC 9(8) COMP VALUE 1. SAM00480

 01 PROTO PIC 9(8) COMP VALUE 0. SAM00490

 01 BACKLOG PIC 9(8) COMP VALUE 5. SAM00500

 01 RETCODE PIC S9(8) BINARY. SAM00510

 01 ERRNO PIC 9(8) BINARY. SAM00520

 01 MSG001 PIC X(34) SAM00530

 VALUE IS ’ ... SAMPSERV received your data.’. SAM00540

 01 MSG001L PIC 9(8) COMP VALUE 34. SAM00550

 01 INBUFF PIC X(40) VALUE IS ’ ’. SAM00560

 PROCEDURE DIVISION. SAM00590

 SAM00600

 BEGIN. SAM00610

 SAM00620

 -- SAM00630

 * CALL EZASOKET - function = INITAPI * SAM00640

 * input = SUBTASK blank * SAM00650

 -- SAM00660

 SAM00670

 MOVE SOKET-INITAPI TO SOKET-FUNCT. SAM00680

 MOVE ’ ’ TO TCPNAME. SAM00690

 MOVE ’ ’ TO SUBTASK. SAM00700

 MOVE 99 TO MAXSOC. SAM00710

 MOVE 0 TO RETCODE. SAM00720

 MOVE 0 TO ERRNO. SAM00730

 SAM00740

 CALL ’EZASOKET’ USING SOKET-FUNCT MAXSOC IDENT SUBTASK SAM00750

 MAXSNO ERRNO RETCODE. SAM00760

 SAM00770

 --- SAM00780

 * CALL EZASOKET - function = SOCKET * SAM00790

 --- SAM00800

 SAM00810

 MOVE SOKET-SOCKET TO SOKET-FUNCT. SAM00820

 MOVE 0 TO RETCODE. SAM00830

 MOVE 0 TO ERRNO. SAM00840

 SAM00850

 CALL ’EZASOKET’ USING SOKET-FUNCT AF-INET SOCTYPE PROTO SAM00860

 ERRNO RETCODE. SAM00870

 SAM00880

 MOVE RETCODE TO SOKET-ID. SAM00890

 SAM00900

 *-- * SAM00910

 * CALL EZASOKET - function = BIND * SAM00920

 * input = Soket-id, Soket-addr * SAM00930

 --- SAM00940

 SAM00950

 MOVE SOKET-BIND TO SOKET-FUNCT. SAM00960

 MOVE AF-INET TO SOCK-FAMILY. SAM00970

 MOVE 4000 TO SOCK-PORT. SAM00980

 MOVE 0 TO SOCK-IPADDR. SAM00990

 MOVE 0 TO RETCODE. SAM01000

 MOVE 0 TO ERRNO. SAM01010

 SAM01020

 CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID SOKET-ADDR SAM01030

 ERRNO RETCODE. SAM01040

 SAM01050

 SAM01060

Figure 22. Sample Program Using EZASOKET Call Using COBOL (Part 2 of 4)

Introducing Socket Programming

74 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

-- SAM01070

 * CALL EZASOKET - function = LISTEN * SAM01080

 * input = backlog=5 * SAM01090

 -- SAM01100

 SAM01110

 MOVE SOKET-LISTEN TO SOKET-FUNCT. SAM01120

 MOVE 0 TO RETCODE. SAM01130

 MOVE 0 TO ERRNO. SAM01140

 SAM01150

 CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID BACKLOG SAM01160

 ERRNO RETCODE. SAM01170

 SAM01180

 SAM01190

 --- SAM01200

 * CALL EZASOKET - function = ACCEPT * SAM01210

 * input = SOKET-ID * SAM01220

 --- SAM01230

 SAM01240

 MOVE SOKET-ACCEPT TO SOKET-FUNCT. SAM01250

 MOVE 0 TO RETCODE. SAM01260

 MOVE 0 TO ERRNO. SAM01270

 SAM01280

 CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID SOKET-ADDR SAM01290

 ERRNO RETCODE. SAM01300

 SAM01310

 MOVE RETCODE TO SOKET-ID-NEW. SAM01320

 SAM01330

 -- SAM01340

 * CALL EZASOKET - function = READ * SAM01350

 -- SAM01360

 SAM01370

 MOVE SOKET-READ TO SOKET-FUNCT. SAM01380

 MOVE 0 TO RETCODE. SAM01390

 MOVE 0 TO ERRNO. SAM01400

 SAM01410

 MOVE LOW-VALUES TO INBUFF. SAM01420

 CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID-NEW INBUFFL SAM01430

 INBUFF ERRNO RETCODE. SAM01440

 SAM01450

 -- SAM01460

 * CALL EZASOKET - function = WRITE * SAM01470

 -- SAM01480

 SAM01490

 MOVE SOKET-WRITE TO SOKET-FUNCT. SAM01500

 MOVE 0 TO RETCODE. SAM01510

 MOVE 0 TO ERRNO. SAM01520

 SAM01530

 CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID-NEW MSG001L SAM01540

 MSG001 ERRNO RETCODE. SAM01550

 SAM01560

 -- SAM01570

 * CALL EZASOKET - function = CLOSE * SAM01580

 -- SAM01590

 SAM01600

 MOVE SOKET-CLOSE TO SOKET-FUNCT. SAM01610

 MOVE 0 TO RETCODE. SAM01620

 MOVE 0 TO ERRNO. SAM01630

 SAM01640

 CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID-NEW SAM01650

 ERRNO RETCODE. SAM01660

 SAM01670

Figure 22. Sample Program Using EZASOKET Call Using COBOL (Part 3 of 4)

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 75

LE/VSE 1.4 C Socket Programming

General C Programming Considerations

While the Language Environment intends to cover the same functionality as do

OS/390 and z/OS, VM/ESA and z/VM in their Language Environment based C

run-time libraries, the actual behavior of the C Socket interface routines is

dependent on the TCP/IP for VSE/ESA BSD-C implementation. Therefore a

programmer porting an application from another S/390 operating system

environment may eventually find that the VSE socket interfaces require special

attention. This is also true for the TCP/IP for VSE/ESA BSD-C socket interfaces,

however, a programmer porting an application e.g. from z/OS may not expect that

source code modifications are eventually required.

The following list is aimed to identify the programming areas that may require

special attention, especially when porting applications.

v Starting with APAR PQ14724, applications using the C socket interfaces can

safely be written for CICS environments, as the LE Socket support dynamically

determines the execution environment and uses CICS services where

appropriate, e.g. EXEC CICS WAIT instead of the VSE WAIT macro. This implies

that different to z/OS CICS Sockets, no special initialization and termination

services need to be called in a C program intending to run in a CICS

environment. It is therefore possible to write communication routines, either be

called from a batch or CICS application.

v LE/VSE 1.4 does not support multitask environments if more than a single

subtask is supposed to run LE enabled code. This is caused by the fact that

z/VSE doesn’t support POSIX threads, nor does it support more than 31

subtasks per VSE partition and imposes a overall system limit of 254 VSE tasks.

Nor is it possible to fork() a new process as the necessary UNIX alike system

 -- SAM01680

 * CALL EZASOKET - function = CLOSE * SAM01690

 -- SAM01700

 SAM01710

 MOVE SOKET-CLOSE TO SOKET-FUNCT. SAM01720

 MOVE 0 TO RETCODE. SAM01730

 MOVE 0 TO ERRNO. SAM01740

 SAM01750

 CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID SAM01760

 ERRNO RETCODE. SAM01770

 SAM01780

 SAM01790

 -- SAM01800

 * CALL EZASOKET - function = TERMAPI * SAM01810

 -- SAM01820

 SAM01830

 MOVE SOKET-TERMAPI TO SOKET-FUNCT. SAM01840

 SAM01850

 CALL ’EZASOKET’ USING SOKET-FUNCT. SAM01860

 SAM01870

 SAM01880

 STOP RUN. SAM01890

 SAM01900

 END PROGRAM SAMPSERV. SAM01910

Figure 22. Sample Program Using EZASOKET Call Using COBOL (Part 4 of 4)

Introducing Socket Programming

76 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

interfaces are not available. Nevertheless, it is possible to have multiple VSE

subtasks running, but only one of them can execute LE enabled code.

Therefore, if coding Daemon applications, intending to serve multiple clients

concurrently, it is necessary not to become wait bound during an attempt to read

data or when waiting for clients to connect. Instead, it is recommended to use

select() or selectex() and check which socket shows activity before calling recv()

or accept() as these calls may block if the no outstanding requests can be served

on a specific socket connection at the time of the call.

v Other TCP/IP implementations provide ioctl() or fcntl() interfaces that allow to

operate the socket interfaces in blocking or non-blocking mode. In blocking

mode, a call e.g. to recv() will suspend the task until data for the Socket used

arrives. In non-blocking mode, the routine would return -1 and the errno

variable would be set to EWOULDBLOCK. The application can then choose

either to process something different, or use select() or selectex() to wait on one

or multiple sockets showing activity.

While TCP/IP for VSE/ESA doesn’t provide this mechanism natively, the

TCP/IP support for the LE C socket API provides the necessary support.

However, the following restrictions apply:

– In a fully BSD conforming stack implementation a default send and receive

buffer are allocated for the TCP protocol. If the send buffer was filled faster

than the stack being able to transmit the data over the network the send() or

sendto() calls would block. In non-blocking mode those calls would return an

error value EWOULDBLOCK instead. A call to select() or selectex() with the

write bit string set returns immediately if any buffer space is available.

TCP/IP for VSE/ESA doesn’t work that way, but buffers any unsent data in

partition GETVIS until the GETVIS is exhausted. If there isn’t any GETVIS

space left to buffer the unsent data the send() or sendto() calls block. Calling

select() or selectex() with the write bit string do not indicate whether any

send buffer space is available, but block until all socket specific unsent data is

put on the network.
v Some LE/VSE C socket routines require special attention, as either the TCP/IP

implementation behaves differently on z/VSE than on other platforms or only a

subset of the functionality is implemented.

getsockopt() The TCP/IP support for the LE C socket API supports option

SO_LINGER only.

recv() The recv() routine by TCP/IP for VSE/ESA doesn’t support the

MSG_PEEK and MSG_OOB options.

send() The send() routine by TCP/IP for VSE/ESA doesn’t support the

MSG_OOB and MSG_DONTROUTE options.

setsockopt() The TCP/IP support for the LE C socket API supports option

SO_LINGER only. Emulation support for SO_KEEPALIVE and

SO_REUSEADDR is granted too.

– SO_KEEPALIVE

Support for this option is provided for source code

compatibility reasons only. Indeed, setting a keep alive value

has no effect on the TCP connection. Instead the user should

use the SET PULSE_TIME TCP/IP setting which manages the

keep-alive mechanism for the owning TCP/IP partition, rather

than for a single connection only.

– SO_REUSEADDR

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 77

This option is used to allow for immediate local address

reuse. As TCP/IP always allows for immediate reuse this

socket is provided for compatibility reasons only. There is no

way to disable socket reuse

shutdown() The shutdown() options SHUT_RD and SHUT_WR to shut down

a particular end of a duplex connection are not supported by

TCP/IP for VSE/ESA. Only SHUT_RDWR is supported to shut

down both ends. Further, while on other platforms after a call to

shutdown() the socket descriptor remains valid, TCP/IP for

VSE/ESA acts as if a call to close() has also been issued. Calling

close() after shutdown() by the application therefore would cause

error EBADF. For compatibility reasons the TCP/IP support for

the LE socket API remembers the pending close request after the

call to shutdown() and doesn’t raise the EBADF error code.

However, if a new call to socket() was issued between calling

shutdown() and close() the socket descriptor may have been

reused by the TCP/IP stack already. This is true for the CICS

runtime environment especially, where another transaction

outside the program’s control may have allocated a socket

already. For compatibility reasons and to allow for portability it

is therefore not recommended to close a socket by using

shutdown(), but close() should be used instead. The call to

shutdown() should be avoided all together.

socket() TCP/IP for VSE/ESA supports TCP and UDP connections in the

AF_INET domain, i.e. only the IPPROTO_TCP and

IPPROTO_UDP protocol options are supported. IPPROTO_IP

(numeric value 0) causes special processing. According to the

socket type, the matching protocol is automatically chosen.

– SOCK_DGRAM causes protocol IPPROTO_UDP to be chosen.

– SOCK_STREAM causes protocol IPPROTO_TCP to be

choosen.

Sockets of type SOCK_RAW are not supported by TCP/IP for

VSE/ESA.

LE/VSE Sockets versus TCP/IP for VSE/ESA Sockets -

Reference List

As mentioned in previous chapters already, the C socket interface provided by the

VSE Language Environment 1.4 is not implemented in the Language Environment

(LE) itself, but is mapped to the programming interfaces that come with the

TCP/IP for VSE/ESA product.

The following list covers the LE C Socket routines documented in the manual C

Run-Time Library Reference, SC33-6689, and shows whether they are currently

available through the TCP/IP for VSE/ESA product. This list bases on the

interfaces available with TCP/IP for VSE/ESA 1.5 at APAR level PQ66906. These

interfaces are described in Chapter 9, “TCP/IP Support for the LE/VSE C Socket

Interface,” on page 91.

Introducing Socket Programming

78 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Function Description C-LE Interface TCP/IP for

VSE/ESA

accept accept a new socket connection yes yes

aio_cancel cancel an asynchronous I/O request yes yes

aio_error retrieve error status for an asynchronous I/O

operation

yes yes

aio_read asynchronous read from a socket yes yes

aio_return retrieve status for an asynchronous I/O

operation

yes yes

aio_suspend wait for an asynchronous I/O request yes yes

aio_write asynchronous write to a socket yes yes

bind bind a name to a socket yes yes

close close a socket yes yes

connect connect a socket yes yes

endhostent close the host information data set yes no

endnetent close network information data set yes no

endprotoent close protocol information data set yes no

endservent close network services information data sets yes no

fcntl control characteristics of socket yes yes (1)

getclientid get the identifier for the calling application yes yes

gethostbyaddr get a host entry by address yes yes

gethostbyname get a host entry by name yes yes

gethostent get the next host entry yes no

gethostid get unique identifier of current host yes yes

gethostname get the name of the host processor yes yes

getnetbyaddr get a network entry by address yes no

getnetbyname get a network entry by name yes no

getnetent get the next network entry yes no

getpeername get the name of the peer connected to a socket yes yes

getprotobyname get a protocol entry by name yes no

getprotobynumber get a protocol entry by number yes no

getprotoent get the next protocol entry yes no

getservbyname get a service entry by name yes no

getservbyport get a service entry by port yes no

getservent get the next service entry yes no

getsockname get the name of a socket yes yes

getsockopt get the options associated with a socket yes yes (1)

givesocket make the specified socket available yes yes

gsk_free_memory free memory allocated by SSL for VSE yes yes

gsk_get_cipher_info request cipher related information for SSL for

VSE

yes yes

gsk_get_dn _by_label identify the member name containing the

private key and certificates

yes yes

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 79

Function Description C-LE Interface TCP/IP for

VSE/ESA

gsk_initialize set the overall SSL for VSE environment in the

current partition

yes yes

gsk_secure_soc_close end a secure socket connection yes yes

gsk_secure_soc_init initialize a secure socket connection yes yes

gsk_secure_soc_read receive data on a secure socket connection yes yes

gsk_secure_soc_reset refresh the security parameters for a session yes yes

gsk_secure_soc_write send data on a secure socket connection yes yes

gsk_uninitialize remove the overall SSL for VSE environment in

the current partition

yes yes

htonl translate address host to network long yes yes

htons translate address host to network short yes yes

inet_addr translate an internet address into network byte

order

yes yes

inet_lnaof translate a local network address into host byte

order

yes yes

inet_makeaddr create an internet host address yes yes

inet_netof get the network number from the internet host

address

yes yes

inet_network get the network number from the decimal host

address

yes yes

inet_ntoa get the decimal internet host address yes yes

initapi connect an application to the TCP/IP interface yes no

ioctl specify the socket operating characteristics yes yes (1)

listen prepare the server for incoming client requests yes yes

ntohl translate a long integer into host byte order yes yes

ntohs translate a short integer into host byte order yes yes

poll monitor activity on socket descriptors yes no

read read data from a socket into a buffers yes yes

readv read data on a socket and store in a set of

buffers

yes no

recv receive data on a socket yes yes (1)

recvfrom receive messages on a socket yes yes

recvmsg receive messages on a socket and store in an

array of messages

yes no

select monitor activity on sockets yes yes

selectex monitor activity on sockets yes yes

send send data on a socket yes yes (1)

sendmsg send messages on a socket yes no

sendto send data on a socket yes yes

sethostent open the host information data set yes no

setnetent open the network information data set yes no

setprotoent open the protocol information data set yes no

Introducing Socket Programming

80 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Function Description C-LE Interface TCP/IP for

VSE/ESA

setservent open the services information data set yes no

setsockopt set options associated with a socket yes yes (1)

shutdown shut down all or part of a duplex connection yes yes (1)

socket create a socket yes yes (1)

socketpair create a pair of sockets yes no

takesocket acquire a socket from another program yes yes

tcp_cleanup cleanup LE environment used for TCP/IP yes no

termapi terminate a session created by initapi yes no

write write data from buffer to connected socket yes yes

writev write data to a socket from an array yes no

(1) Limited functionality, e.g. certain parameters are not supported. See

Chapter 9, “TCP/IP Support for the LE/VSE C Socket Interface,” on page

91 for details.

Messages

The following list covers the messages possibly be issued by the LE C Socket

interface routines. The messages may either issued by the C run-time library, or by

phase $EDCTCPV when mapping LE C Socket calls to the TCP/IP for VSE/ESA

BSD-C Socket interface routines.

Messages issued by the LE/VSE 1.4 C Run-time Library

v EDCT001I Unable to load phase $EDCTCPV

Phase $EDCTCPV could not be loaded. Application is canceled with message

CEE3322C.

Most probably the TCP/IP product library (PRD1.BASE) is missing in the

application’s partition LIBDEF search chain.

v EDCT002I xxxxxxxxx implementation not found

Phase $EDCTCPV does not contain the body of TCP/IP function xxxxxxxxx due

to a build error. Application is canceled with CEE3322C.

v EDCT003I Unsupported C-Runtime function called

Application contains calls to C run-time functions, that are not supported in

LE/VSE 1.4. Application is canceled with CEE3322C.

This should only happen if a program compiled and prelinked on z/OS or

z/VM was link-edited on z/VSE. The precompile step on z/OS or z/VM has

included a stub routine to a C run-time function not supported in the LE/VSE

1.4 run-time environment.

Message issued by Phase $EDCTCPV

v EDCV001I TCP/IP function xxxxxxxxx not implemented

The application has called a TCP/IP socket routine that is not implemented by

the TCP/IP programming interface. The application is passed back an

appropriate function specific return code. Program execution continues.

Either the function is currently not supported by TCP/IP for VSE/ESA or the

partition LIBDEF chain doesn’t list the TCP/IP product library prior to the LE

product library. Phase $EDCTCPV from the TCP/IP for VSE/ESA product

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 81

library (PRD1.BASE) must be found prior to the same phase found in the

LE/VSE product library (PRD2.SCEEBASE).

v EDCV002I Unexpected TCP/IP error code: nnnn

The TCP/IP product returned an unexpected error code, the TCP/IP support for

the LE C interfaces is not capable to handle. Error value EOPNOTSUPP is

passed back to the calling application instead.

OS/390 or z/OS EZASMI and EZASOKET Calls Supported by z/VSE

The following table shows which OS/390 or z/OS EZASMI and EZASOKET

Socket Calls are supported since VSE/ESA 2.5, and, if supported, what the

differences are (if any) compared to the OS/390 or z/OS interfaces. These Socket

Calls apply both to the EZASMI macro interface and to the EZASOKET call

interface, except for the GLOBAL and TASK calls, which apply to the EZASMI

interface only.

Asynchronous function processing with the ESASMI interface is provided on

z/VSE as well. But compared to OS/390 or z/OS, only the ECB method is

available, and the ECB area must have a length of 160 bytes (compared to 104

bytes in OS/390 or z/OS).

 Table 3. Supported OS/390 Socket Calls since VSE/ESA 2.5

Function Request Support/Difference

ACCEPT Supported with difference:

v Parameter NS ignored

BIND Supported.

CANCEL Supported.

CONNECT Supported.

FCNTL Supported.

GETCLIENTID Supported with different CLIENTID structure (total

length remains the same):

v 4 bytes: Domain-ID (is AF_INET)

v 8 bytes: Address Space Name (partition syslog-id,

left adjusted and padded with blanks)

v 8 bytes: Subtask Name (as specified or defaulted

with the INITAPI function request)

v 20 bytes: reserved (binary zeroes)

GETHOSTBYADDR Supported with different HOSTENT structure:

v No ALIASes

v Max HostName Length = 64

GETHOSTBYNAME Supported with different HOSTENT structure:

v No ALIASes

v Max HostName Length = 64

GETHOSTID Supported.

GETHOSTNAME Supported with difference:

v Max HostName Length = 64

GETIBMOPT Not supported.

GETPEERNAME Supported.

GETSOCKNAME Supported.

Introducing Socket Programming

82 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Table 3. Supported OS/390 Socket Calls since VSE/ESA 2.5 (continued)

Function Request Support/Difference

GETSOCKOPT Supported with difference:

v Supported option is SO_LINGER

GIVESOCKET Supported with difference:

v see CLIENTID structure with GETCLIENTID

function

GLOBAL Not supported.

INITAPI Supported with difference:

v EZASMI only: Parameter APITYPE=3 is ignored.

v EZASMI only: Parameter ASYNC=’EXIT’ is

rejected with ERRNO=EINVAL

v EZASMI only: Parameter UUEXIT is ignored

v Parameter MAXSOC: maximum number = default

number = 8001 sockets

v Parameter SUBTASK: Any 8-char name may be

specified. If this parameter is not specified

(EZASMI macro) or is specified as 8 blanks, a

default subtask name is used:

byte 0-3

first 3 chars from JOBNAME (batch

environment) or from EIBTRNID (CICS

transaction environment)

byte 4 x’F0’ (batch environment) or x’F1’ (CICS

transaction environment)

byte 4-7

VSE TaskId (batch environment) or CICS

EIBTASKN (CICS transaction

environment)

v Parameter IDENT:

Both the TCPNAME and the ADSNAME

subparameters are ignored,

v Output parameter MAXSNO: The socket

descriptor assigned to the application will not be in

consecutive order.

IOCTL Supported with difference:

v Only COMMAND=FIONBIO is supported.

LISTEN Supported with difference:

v Requires BIND before.

READ Supported with difference:

v Parameter ALET ignored.

READV Not supported.

RECV Supported with difference:

v Flags must be ZERO.

v Parameter ALET ignored.

RECVFROM Supported with difference:

v Flags must be ZERO.

v Parameter ALET ignored.

v EZASMI only: no asynchronous support

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 83

Table 3. Supported OS/390 Socket Calls since VSE/ESA 2.5 (continued)

Function Request Support/Difference

RECVMSG Not supported.

SELECT Supported.

SELECTEX Supported with difference:

v ECB List may hold 254 ECBs.

SEND Supported with difference:

v Flags must be ZERO.

v Parameter ALET ignored.

SENDMSG Not supported.

SENDTO Supported with difference:

v Flags must be ZERO.

v Parameter ALET ignored.

v EZASMI only: no asynchronous support

SETSOCKOPT Supported with difference:

v Supported options are SO_LINGER,

SO_KEEPALIVE, and SO_REUSEADDR

SHUTDOWN Supported with difference:

v Only HOW=SHUT_RDWR is supported.

v SHUTDOWN works like CLOSE.

SOCKET Supported with difference:

v RAW sockets are not supported.

v Parameter NS is ignored.

TAKESOCKET Supported with difference:

v Parameter NS is ignored

v For the different CLIENTID refer to

GETCLIENTID.

TASK Supported.

TERMAPI Supported.

WRITE Supported with difference:

v Parameter ALET is ignored.

WRITEV Not supported.

ERRNO Values

The following gives an overview on all ERRNO values which are returned by the

TCP/IP LE/C and /or by the EZASMI/EZASOKET socket interfaces.

The following table shows the ERRNO values sorted by their decimal value.

Table 5 on page 87 shows the same table sorted by ERRNO names.

Introducing Socket Programming

84 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Table 4. ERRNO Values Sorted by Value

ERRNO Errno Value

from LE/C

(Note 1)

Errno

Value

from

BSD-C

(Note 1

and Note

2)

Description See

Note

EBADF 113 2 Bad socket descriptor.

EFAULT 118 17 Bad Adress or buffer

address not accessible.

EINVAL 121 3 Invalid parameter.

EIO 122 9 Socket closed.

ENFILE 127 6 Too many open sockets.

ENOENT 129 10 No such socket.

ENOMEM 132 15 Not enough memory to

fulfill the request.

ENOSYS 134 11 Function not implemented.

EMVSPARM 158 14 Bad parameters.

EVSE 183 12 Not supported under VSE.

EWOULDBLOCK 1102 19 Request would block. An

operation on a socket

marked as non-blocking

has encountered a situation

such as no data available

that otherwise would have

caused the function to

suspend execution.

EINPROGRESS 1103 24 Socket connection in

progress. O_NONBLOCK is

set for the socket descriptor

and the connection cannot

be immediately established.

EALREADY 1104 22 Connection request already

in progress. A connection

request is already in

progress for the specified

socket.

EDESTADDRREQ 1106 23 Destination address

required. No bind address

was specified.

ENOPROTOPT 1109 7 No Option recognized. The

option specified to

setsockopt() is not

supported.

EPROTONOSUPPORT 1110 n/a The protocol is not

supported by the address

family, or the protocol is

not supported by the

implementation.

EOPNOTSUPP 1112 4 Socket call not supported.

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 85

Table 4. ERRNO Values Sorted by Value (continued)

ERRNO Errno Value

from LE/C

(Note 1)

Errno

Value

from

BSD-C

(Note 1

and Note

2)

Description See

Note

EAFNOSUPPORT 1114 13 Address family not

supported (other than

AF_INET). The

implementation does not

support the specified

address family, or the

specified address is not a

valid address for the

address family of the

specified socket.

EADDRINUSE 1115 18 Specified address or port is

already in use.

ENETDOWN 1117 1117 The local interface to use or

reach the destination is

down.

ECONNRESET 1121 20 Connection was forcibly

closed/reset by the peer.

ENOBUFS 1122 5 No buffers available.

Insufficient buffer resources

were available in the

system to perform the

socket operation.

EISCONN 1123 21 Specified socket is already

connected.

ENOTCONN 1124 8 Socket is not connected.

ETIMEDOUT 1127 16 Connection request timed

out. The connection to a

remote machine has timed

out. If the connection timed

out during execution of the

function that reported this

error (as opposed to timing

out prior to the function

being called), it is

unspecified whether the

function has completed

some or all of the behavior

associated with a successful

completion of the function.

ECANCELED 1152 1152 The asynchronous I/O

request has been canceled.

EZAINVFU 20000 n/a Invalid Function used with

EZASOKET call

4.

EZAINVPA 20001 n/a Incorrect Parameter with

EZASOKET call

4.

EZAERL00 20100 n/a Error loading phase

EZASOH00

3.

Introducing Socket Programming

86 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Table 4. ERRNO Values Sorted by Value (continued)

ERRNO Errno Value

from LE/C

(Note 1)

Errno

Value

from

BSD-C

(Note 1

and Note

2)

Description See

Note

EZAERL03 20101 n/a Error loading phase

EZASOH03

3.

EZAERPII 20102 n/a Initialization of LE CEEPIPI

envrionment failed

3.

EZAERPIG 20103 n/a Call to LE CEEPIPI

environment failed

3.

EZAERPIT 20104 n/a Termination of LE CEEPIPI

environment failed

3.

EZAERGIS 20105 n/a LE storage request call

CEEGTST failed

3.

EZAERL01 20106 n/a Error loading phase

EZASOH01

3.

EZAERGTV 20107 n/a Not enough partition

GETVIS

3.

EZAERNIN 20108 n/a First call not INITAPI 3.

EZAERNLE 20109 n/a Non-LE call under CICS 3.

EZAERLPI 20110 n/a Error loading phase

CEEPIPI

3

Notes:

1. ERRNO values are shown in decimal.

2. These ERRNO values are shown in the BSD-C Trace (″$SOCKDBG trace″)

provided by TCP/IP for VSE/ESA. See Information APAR II11836 for further

details on this trace.

3. Used by EZASMI and EZASOKET interfaces only.

4. Used by EZASOKET interface only.

Programming Notes:

1. C Language definitions for ERRNOs (other than those returned by

EZASMI/EZASOKET) can be found in ERRNO.H as shipped in

PRD2.SCEEBASE.

2. Assembler equates for ERRNOs that may be returned from the EZASMI macro

or the EZASOKET call interface can be included in your assembler program by

EZASMI TYPE=TASK,STORAGE=DSECT.

 Table 5. ERRNO Values sorted by Name

ERRNO Value

EADDRINUSE 1115

EAFNOSUPPORT 1114

EALREADY 1104

EBADF 113

ECANCELED 1152

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 87

Table 5. ERRNO Values sorted by Name (continued)

ERRNO Value

ECONNRESET 1121

EDESTADDRREQ 1106

EFAULT 118

EINPROGRESSS 1103

EINVAL 121

EIO 122

EISCONN 1123

EMVSPARM 158

ENETDOWN 1117

ENFILE 127

ENOBUFS 1122

ENOENT 129

ENOMEM 132

ENOPROTOOPT 1109

ENOSYS 134

ENOTCONN 1124

EOPNOTSUPP 1112

EPROTONOSUPPORT 1110

ETIMEDOUT 1127

EVSE 183

EWOULDBLOCK 1102

EZAERGIS 20105

EZAERGTV 20107

EZAERL00 20100

EZAERL01 20106

EZAERL03 20101

EZAERLPI 20110

EZAERNIN 20108

EZAERNLE 20109

EZAERPII 20102

EZAERPIG 20103

EZAERPIT 20104

EZAINVFU 20000

EZAINVPA 20001

CICS Considerations

The C Socket programming interface supports writing applications for either a

CICS or batch execution environment.

Introducing Socket Programming

88 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

However, while the Assembler SOCKET macro and the TCP/IP for VSE/ESA HLL

pre-processor (resolving EXEC TCP calls) allow to explicitly specify the execution

environments, this is not possible with the BSD- C socket interfaces.

APAR PQ14724 for TCP/IP for VSE/ESA 1.3 introduced a method that allows

TCP/IP to dynamically determine the execution environment. Exploiting this

capability, a programmer can write bimodal modules or applications, being called

from either a CICS or batch program. The TCP/IP run-time services will act

according to the execution environment’s requirements, i.e. they will eventually use

CICS services (e.g. EXEC CICS WAIT) where appropriate.

To force an application to dynamically determine the environment it is running in,

you need to include the following 2 OBJ files in the application’s link-edit step:

v IPCICSRQ

v DFHECI

Omitting those two files will cause the application to act CICS unfriendly even if

running under CICS’ control, e.g. by issuing VSE GETVIS requests instead of CICS

GETMAIN.

Note: This is true for non-LE socket applications using the BSD-C interface of

TCP/IP for VSE/ESA. Using the C socket interfaces provided by the VSE

Language Environment 1.4 C run-time does not require these modules to be

linked for the purpose described above. This is already covered by the

TCP/IP for VSE/ESA support for the LE/VSE 1.4 C socket interfaces,

transparently to the application. This support is described in Chapter 9,

“TCP/IP Support for the LE/VSE C Socket Interface,” on page 91.

Executing TCP/IP Application Programs

Connecting To TCP/IP

By default, your TCP/IP application (e.g. MQSeries 2.1) will attempt to connect

with the TCP/IP for VSE/ESA partition that has been assigned ID=00. This

assignment is made in the PARM field of the TCP/IP for VSE/ESA EXEC

statement. Its default value is also ″00″. If you wish to connect with a different

TCP/IP for VSE/ESA partition for testing or other purposes, you may do so by

including an appropriate OPTION statement in your C program’s JCL:

// OPTION SYSPARM=’xx’

In the above, xx is the two-digit ID number, coded exactly as in the TCP/IP for

z/VSE start-up JCL.

Preparation and Setup for SSL

Before using the new LE/VSE C, EZASMI and EZASOKET function calls for

secured socket communication, the VSE system must be prepared to use SSL for

VSE.

Note: SSL for VSE can only be used together with the TCP/IP for VSE Application

Pak.

This preparation work includes

v (Optional) Creation of the library and sublibrary where private key and

certificates are to be stored (if default files on disk are not to be used).

Introducing Socket Programming

Chapter 8. Introducing Socket Programming 89

v (Optional) Definition of library, sublibrary and member name to be used for

private key and certificates (if default files on disk are not to be used)

v Creation of private key.

v Creation of server certificate.

v Creation of root certificate.

v (Optional) Verification of SSL for VSE Certificate.

Refer to z/VSE e-business Connectors User’s Guide for default SSL setup and to

TCP/IP for VSE 1.5 Optional Features for a detailed description of this preparation

work.

Introducing Socket Programming

90 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface

Overview

This chapter describes the LE/VSE C socket interface as provided by TCP/IP for

VSE/ESA.

BSD or ″Berkeley″ Sockets is a method for using TCP/IP programming interfaces

that was developed for UNIX platforms. Only a subset of the routines you may

know from other, especially UNIX alike platforms is implemented. The BSD-C

alike interfaces provided by TCP/IP for VSE/ESA are primarily aimed for users of

non-LE enabled C compilers, for example, the IBM C/370 compiler. This interface

is described in the TCP/IP for VSE 1.5 Programmer’s Reference manual.

If you use the IBM C for VSE/ESA Release 1 (5686-A01) compiler together with the

IBM Language Environment for VSE/ESA (LE/VSE) 1.4 C run-time environment

we strongly recommend the usage of the LE/VSE 1.4 socket interfaces. These are

compatible with the OS/390 X/Open (XPG4.2) compliant socket interfaces. This

assures the maximum on compatibility and portability for cross platform

development.

Notes:

1. The LE/VSE 1.4 run-time environment does not implement the socket routines

itself, but dynamically calls phase $EDCTCPV which is part of the TCP/IP for

VSE/ESA product stored in PRD1.BASE. Therefore the socket application is

decoupled from the TCP/IP product (see Figure 17 on page 54 for details). The

LE/VSE 1.4 run-time dynamically picks up new service levels, by calling this

phase, while applications using the native TCP/IP BSD- C socket routines

eventually need to be relinked when TCP/IP service is applied.

2. LE/VSE 1.4 C base ships a default $EDCTCPV phase in PRD2.SCEEBASE

aimed for systems where TCP/IP for VSE/ESA is either not installed (e.g. pre

VSE/ESA 2.3) or deleted. This default phase does nothing but defining a

function specific return code and issuing message EDCV001I, stating that the

called function is not implemented.

When you receive this message check your application’s LIBDEF for correctness

and check this chapter whether the routine is supposed to be available.

3. While the LE/VSE 1.4 C run-time provides the same range of socket routines as

OS/390, TCP/IP for VSE/ESA has only implemented a subset. This means that

when you use a LE/VSE C run-time interface, you need this chapter for

reference and implementation details.

© Copyright IBM Corp. 1997, 2005 91

TCP/IP Callable Functions — Function Descriptions

accept() — Accept a New Connection on a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

int accept(int socket, struct sockaddr *address, size_t *address_len);

General Description

The accept() call is used by a server to accept a connection request from a client.

For details, refer to the functional description of your TCP/IP provider. When a

connection is available, the socket created is ready for use to read data from the

process that requested the connection. The call accepts the first connection on its

queue of pending connections for the given socket socket. The accept() call creates

a new socket descriptor with the same properties as socket and returns it to the

caller. The original socket, socket, remains available to accept more connection

requests.

Parameter Description

socket The socket descriptor.

address The socket address of the connecting client that is filled in by

accept() before it returns. The format of address is determined by

the domain that the client resides in. This parameter can be NULL

if the caller is not interested in the client address.

address_len Must initially point to an integer that contains the size in bytes of

the storage pointed to by address. On return, that integer contains

the size of the data returned in the storage pointed to by address. If

address is NULL, address_len is ignored.

The socket parameter is a stream socket descriptor created with the socket() call. It

is usually bound to an address with the bind() call. The listen() call marks the

socket as one that accepts connections and allocates a queue to hold pending

connection requests. The listen() call places an upper boundary on the size of the

queue.

The address parameter is a pointer to a buffer into which the connection requester’s

address is placed. The address parameter is optional and can be set to be the NULL

pointer. If set to NULL, the requester’s address is not copied into the buffer. The

exact format of address depends on the addressing domain from which the

communication request originated. For example, if the connection request

originated in the AF_INET domain, address points to a sockaddr_in structure as

defined in the include file in.h.. The address_len parameter is used only if name is

not NULL. Before calling accept(), you must set the integer pointed to by

address_len to the size of the buffer, in bytes, pointed to by address. On successful

return, the integer pointed to by address_len contains the actual number of bytes

copied into the buffer. If the buffer is not large enough to hold the address, up to

address_len bytes of the requester’s address are copied. If the actual length of the

address is greater than the length of the supplied sockaddr, the stored address is

truncated. The sa_len member of the store structure contains the length of the

untruncated address.

Note: This call is used only with SOCK_STREAM sockets. There is no way to

screen requesters without calling accept(). The application cannot tell the

92 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

system the requesters from which it will accept connections. However, the

caller can choose to close a connection immediately after discovering the

identity of the requester.

A socket can be checked for incoming connection requests using the select() call.

Returned Value

A nonnegative socket descriptor indicates success; the value −1 indicates an error.

The value of the error code indicates the specific error.

Error Code Description

EBADF The socket parameter is not within the acceptable range for a socket

descriptor.

EFAULT Using address and address_len would result in an attempt to copy

the address into a portion of the caller’s address space into which

information cannot be written.

EINVAL listen() was not called for socket descriptor socket.

ENFILE The maximum number of socket descriptors in the system are

already open.

ENOBUFS Insufficient buffer space is available to create the new socket.

EOPNOTSUPP

The socket type of the specified socket does not support accepting

connections.

EWOULDBLOCK

The socket descriptor socket is in nonblocking mode, and no

connections are in the queue.

Example

The following are two examples of the accept() call. In the first, the caller wishes

to have the requester’s address returned. In the second, the caller does not wish to

have the requester’s address returned.

int clientsocket;

int s;

struct sockaddr clientaddress;

int address_len;

int accept(int s, struct sockaddr *addr, int *address_len);

/* socket(), bind(), and listen() have been called */

/* EXAMPLE 1: I want the address now */

address_len = sizeof(clientaddress);

clientsocket = accept(s, &clientaddress, &address_len);

/* EXAMPLE 2: I can get the address later using getpeername() */

clientsocket = accept(s, (struct sockaddr *) 0, (int *) 0);

Related Information

v “bind() — Bind a Name to a Socket” on page 106

v “connect() — Connect a Socket” on page 110

v “getpeername() — Get the Name of the Peer Connected to a Socket” on page

122

v “listen() — Prepare the Server for Incoming Client Requests” on page 159

v “socket() — Create a Socket” on page 183

accept

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 93

aio_cancel() — Cancel an Asynchronous I/O Request

#define _OPEN_SYS_SOCK_EXT

#include <aio.h>

int aio_cancel(int socket, struct aiocb *aiocbp);

General Description

The aio_cancel() function attempts to cancel one or more asynchronous I/O

requests currently outstanding against socket descriptor socket. The aiocbp

argument points to an aiocb structure for a particular request to be canceled, or is

NULL to cancel all outstanding cancelable requests against socket.

Normal asynchronous notification occurs for asynchronous I/O operations that are

successfully canceled. The associated error status is set to ECANCELED and the return

status is set to -1 for the canceled requests.

For requests that cannot be canceled, the normal asynchronous completion process

takes place when their I/O completes. In this case the aiocb is not modified by

aio_cancel().

An asynchronous operation is cancelable if it is currently blocked or becomes

blocked. Once an outstanding request can be completed, it is allowed to complete.

For example, an aio_read() will be cancelable if there is no data available at the

time that aio_cancel() is called.

socket must be a valid socket descriptor, but when aiocbp is not NULL, socket does not

have to match the socket descriptor with which the asynchronous operation was

initiated. However, for maximum portability it should match.

The aio_cancel() function always waits for the request being canceled to either

complete or be canceled. When control returns from aio_cancel(), the program

may safely free the original request’s aiocb and buffer.

Canceling all requests on a given descriptor does not stop new requests from being

made or otherwise effect the descriptor. The program may start again or close the

descriptor depending on why it issued the cancel.

An individual request can only be canceled once. Subsequent attempts to explicitly

cancel the same request will fail with EALREADY.

Returned Value

The aio_cancel() function returns one of the following values:

Return Value Description

AIO_CANCELED

The requested operations were canceled.

AIO_NOTCANCELED

At least one of the requested operations cannot be canceled

because it is in progress. In this case, the state of the other

operations, if any, referenced in the call to aio_cancel() is not

indicated by the return value of aio_cancel(). The application can

determine the status of these operations by using aio_error().

AIO_ALLDONE

The operations have already completed. This is returned when

there are no outstanding requests found that match the criteria

aio_cancel

94 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

specified. This is also the result returned when a file associated

with socket does not support the asynchronous I/O function

because there are no outstanding requests to be found that match

the criteria specified.

-1 An error has occurred. errno is set to indicate the type of error.

The aio_cancel() function will fail if:

errno Description

EBADF The socket argument is not a valid socket descriptor.

EALREADY The operation to be canceled is already being canceled.

Related Information

v “aio_read() — Asynchronous Read from a Socket” on page 97

v “aio_write() — Asynchronous Write to a Socket” on page 103

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page

100

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on

page 96

aio_cancel

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 95

aio_error() — Retrieve Error Status for an Asynchronous I/O

Operation

#define _OPEN_SYS_SOCK_EXT

#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

General Description

The aio_error() function returns the error status associated with the aiocb

structure referenced by the aiocbp argument. The error status for an asynchronous

I/O operation is the errno value that would be set by the corresponding read(), or

write() operation. If the operation has not yet completed, then the error status will

be equal to EINPROGRESS.

Returned Value

If the asynchronous I/O operation has completed successfully, then 0 is returned. If

the asynchronous I/O operation has completed unsuccessfully, then the error

status as described for read(), or write() is returned. If the asynchronous I/O

operation has not yet completed, then EINPROGRESS is returned.

The aio_error() function does not set errno.

Related Information

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page

100

v “aio_suspend() — Wait for an Asynchronous I/O Request” on page 101

v “aio_read() — Asynchronous Read from a Socket” on page 97

aio_error

96 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

aio_read() — Asynchronous Read from a Socket

#define _OPEN_SYS_SOCK_EXT

#include <aio.h>

int aio_read(struct aiocb *aiocbp);

General Description

The aio_read() function initiates an asynchronous read operation as described by

the aiocb structure (the asynchronous I/O control block).

The aiocbp argument points to the aiocb structure. This structure contains the

following members:

aio_ filedes socket descriptor

aio_offset file offset

aio_buf location of buffer

aio_nbytes length of transfer

aio_reqprio request priority offset

aio_sigevent signal number and value

aio_lio_opcode operation to be performed

The operation reads up to aio_nbytes from the socket associated with aio_ filedes

into the buffer pointed to by aio_buf. The call to aio_read() returns when the

request has been initiated or queued (even when the data cannot be delivered

immediately).

Asynchronous I/O is currently only supported for sockets. The aio_offset field may

be set but it will be ignored.

With a stream socket an asynchronous read may be completed when the first

packet of data arrives and the application may have to issue additional reads,

either asynchronously or synchronously, to get all the data it wants. A datagram

socket has message boundaries and the operation will not complete until an entire

message has arrived.

The aiocbp value may be used as an argument to aio_error() and aio_return()

functions in order to determine the error status and return status, respectively, of

the asynchronous operation. While the operation is proceeding, the error status

retrieved by aio_error() is EINPROGRESS; the return status retrieved by

aio_return() however is unpredictable.

If an error condition is encountered during the queuing, the function call returns

without having initiated or queued the request.

The program can occasionally poll the aiocb with aio_error() until the result is no

longer EINPROGRESS.

Be aware that the operation may complete, before control returns from the call to

aio_read(). Even when the operation does complete this quickly the return value

from the call to aio_read() will be zero, reflecting the queueing of the I/O request

not the results of the I/O itself.

An asynchronous operation may be canceled with aio_cancel() prior to its

completion. Canceled operations complete with an error status of ECANCELED. Due

to timing, the operation may still complete naturally, either successfully or

unsuccessfully, before it can be canceled by aio_cancel().

aio_read

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 97

If the socket descriptor of this operation is closed, the operation will be deleted if it

has not completed or is not just about to complete. Close() will wait for

asynchronous operations in progress for the descriptor to be deleted or completed.

You may use aio_suspend() to wait for the completion of asynchronous operations.

Sockets must be in blocking state or the operation may fail with EWOULDBLOCK.

If the control block pointed by aiocbp or the buffer pointed to by aio_buf becomes

an illegal address prior to the asynchronous I/O completion, then the behavior of

aio_read() is unpredictable.

Simultaneous asynchronous operations using the same aiocbp, asynchronous

operations using an invalid aiocbp, or any system action, that changes the process

memory space while asynchronous I/O is outstanding to that address range, will

produce unpredictable results.

The aio_lio_opcode field is set to LIO_READ by the function aio_read().

_POSIX-PRIORITIZED_IO is not supported. The aio_reqprio field may be set but it will

be ignored.

_POSIX_SYNCHRONIZED_IO is not supported.

Returned Value

The aio_read() function returns the value of zero to the calling process if the I/O

operation is successfully queued; otherwise, the function returns the value -1 and

sets errno to indicate the error. The aio_read() function will fail if:

errno Description

ENOSYS The file associated with aio_filedes does not support the aio_read()

function.

Each of the following conditions may be detected synchronously at the time of the

call to aio_read(), or asynchronously. If any of the conditions below are detected

synchronously, the aio_read() function returns -1 and sets the errno to the

corresponding value. If any of the conditions below are detected asynchronously,

the return status of the asynchronous operation is set to -1, and the error status of

the asynchronous operation will be set to the corresponding value.

Error Status Description

EBADF The aio_ filedes argument is not a valid socket descriptor open for

reading.

EWOULDBLOCK

The file associated with aio_ filedes is in non-blocking state and

there is no data available.

EINVAL aio_sigevent contains an invalid value.

In the case where the aio_read() function successfully queues the I/O operation

but the operation is subsequently canceled or encounters an error, the return status

of the asynchronous operations is set to -1, and the error status of the

asynchronous operation will be set to the error status normally set by the read()

function call, or to the following value:

Error Status Description

aio_read

98 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

ECANCELED The requested I/O was canceled before the I/O completed due to

an explicit call to aio_cancel().

Related Information

v “aio_write() — Asynchronous Write to a Socket” on page 103

v “aio_cancel() — Cancel an Asynchronous I/O Request” on page 94

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on

page 96

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page

100

v “aio_suspend() — Wait for an Asynchronous I/O Request” on page 101

aio_read

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 99

aio_return() — Retrieve Status for an Asynchronous I/O

Operation

#define _OPEN_SYS_SOCK_EXT

#include <aio.h>

int aio_return(const struct aiocb *aiocbp);

General Description

The aio_return() function returns the return status associated with the aiocb

structure referenced by the aiocbp argument. The return status for an asynchronous

I/O operation is the value that would be set by the corresponding read() or

write() operation. While the operation is proceeding, the error status retrieved by

aio_error() is EINPROGRESS; the return status retrieved by aio_return() however is

unpredictable. The aio_return() function may be called to retrieve the return

status of a given asynchronous operation; once aio_error() has returned with 0.

Returned Value

If the asynchronous I/O operation has completed successfully, then the return

status as described for read() or write() is returned. If the asynchronous I/O

operation has not yet completed, then the return status is unpredictable.

The aio_return() does not set errno.

Related Information

v “aio_read() — Asynchronous Read from a Socket” on page 97

v “aio_suspend() — Wait for an Asynchronous I/O Request” on page 101

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on

page 96

aio_return

100 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

aio_suspend() — Wait for an Asynchronous I/O Request

#define _OPEN_SYS_SOCK_EXT

#include <aio.h>

int aio_suspend(const struct aiocb * const list[],

 int nent, const struct timespec * timeout);

General Description

The aio_suspend() function suspends the calling thread when the timeout is a null

pointer until at least one of the asynchronous I/O operations referenced by the list

argument has completed. Or, if timeout is not null, it is suspended until the time

interval specified by timeout has passed. If the time interval indicated in the

timespec structure pointed to by timeout passes before any of the I/O operations

referenced by list, then aio_suspend() returns with an error. If any of the aoicb

structures in the list correspond to completed asynchronous I/O operations (that is,

the error status for the operation is not equal to EINPROGRESS) at the time of the

call, the function returns without suspending the calling thread.

The list argument is an array of pointers to asynchronous I/O control blocks

(AIOCBs). The nent argument indicates the number of elements in the array. Each

aiocb structure pointed to will have been used in initiating an asynchronous I/O

request. This array may contain null pointers, which are ignored. If this array

contains pointers that refer to aiocb structures that have not been used in

submitting asynchronous I/O or aiocb structures that are not valid, the results are

unpredictable.

Returned Value

If the aio_suspend() function returns after one or more asynchronous I/O

operation have completed, the function returns zero. Otherwise, the function

returns a value of -1 and sets errno to indicate the error. The application may

determine which asynchronous I/O completed by scanning the associated error

and return status using aio_error() or aio_return(), respectively. The value of

errno indicates the specific error.

errno Description

ENOSYS z/VSE does not support the aio_suspend function.

Usage Notes

1. The AIOCBs represented by the list of AIOCB pointers must reside in the same

storage key as the key of the invoker of aio_suspend. If the AIOCB Pointer List

or any of the AIOCBs represented in the list are not accessible by the invoker

an EFAULT may occur.

2. AIOCB pointers in the list with a value of zero will be ignored.

3. A timeout value of zero (seconds+nanoseconds) means that the aio_suspend()

call will not wait at all. It will check for any completed asynchronous I/O

requests. If none are found it will return with a EAGAIN. If at least one is

found aio_suspend() will return with success.

4. A timeout value of a timespec with the tv_sec field set with INT_MAX, as defined

in <limits.h> will cause the aio_suspend service to wait until a asynchronous

I/O request completes.

5. The AIOCBs passed to aio_suspend() must not be freed or reused while this

service is still in progress. This service may use the AIOCBs even after the

asynchronous I/O completes. Modifying the AIOCB during an aio_suspend()

will produce unpredictable results.

aio_suspend

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 101

Related Information

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page

100

v “aio_read() — Asynchronous Read from a Socket” on page 97

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on

page 96

aio_suspend

102 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

aio_write() — Asynchronous Write to a Socket

#define _OPEN_SYS_SOCK_EXT

#include <aio.h>

int aio_write(struct aiocb *aiocbp);

General Description

The aio_write() function initiates an asynchronous write operation as described

by the aiocb structure (the asynchronous I/O control block).

The aiocbp argument points to the aiocb structure. This structure contains the

following members:

aio_ filedes socket descriptor

aio_offset file offset

aio_buf location of buffer

aio_nbytes length of transfer

aio_reqprio request priority offset

aio_sigevent signal number and value

aio_lio_opcode operation to be performed

The operation will write aio_nbytes from the buffer pointed to by aio_buf to the

socket associated with aio_ filedes. The call to aio_write() returns when the request

has been initiated or queued (even when the data cannot be delivered

immediately).

Asynchronous I/O is currently only supported for sockets. The aio_offset field may

be set but it will be ignored.

The aiocbp value may be used as an argument to aio_error() and aio_return()

functions in order to determine the error status and return status, respectively, of

the asynchronous operation. While the operation is proceeding, the error status

retrieved by aio_error() is EINPROGRESS; the return status retrieved by

aio_return() however is unpredictable.

If an error condition is encountered during the queueing, the function call returns

without having initiated or queued the request.

The program can occasionally poll the aiocb with aio_error() until the result is no

longer EINPROGRESS.

Be aware that the operation may complete before control returns from the call to

aio_read(). Even when the operation does complete this quickly, the return value

from the call to aio_read() will be zero, reflecting the queueing of the I/O request

not the results of the I/O itself.

An asynchronous operation may be canceled with aio_cancel() prior to its

completion. Canceled operations complete with an error status of ECANCELED. Due

to timing, the operation may still complete naturally, either successfully or

unsuccessfully, before it can be canceled by aio_cancel().

If the socket descriptor of this operation is closed, the operation will be deleted if it

has not completed or is not just about to complete. Close() will wait for

asynchronous operations in progress for the descriptor to be deleted or completed.

You may use aio_suspend() to wait for the completion of asynchronous operations.

Sockets must be in blocking state or the operation may fail with EWOULDBLOCK.

aio_write

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 103

If the control block pointed by aiocbp or the buffer pointed to by aio_buf becomes

an illegal address prior to the asynchronous I/O completion, then the behavior of

aio_read() is unpredictable.

Simultaneous asynchronous operations using the same aiocbp, attempting

asynchronous operations using an invalid aiocbp, or any system action that changes

the process memory space while asynchronous I/O is outstanding to that address

range, will produce unpredictable results.

The aio_lio_opcode field must be set to LIO_WRITE .

_POSIX-PRIORITIZED_IO is not supported. The aio_reqprio field may be set but it will

be ignored.

_POSIX_SYNCHRONIZED_IO is not supported.

Returned Value

The aio_write() function returns the value of zero to the calling process if the I/O

operation is successfully queued; otherwise, the function returns the value -1 and

sets errno to indicate the error. The aio_write() function will fail if:

errno Description

ENOSYS The file associated with aio_ filedes does not support the

aio_write() function.

Each of the following conditions may be detected synchronously at the time of the

call to aio_write(), or asynchronously. If any of the conditions below are detected

synchronously, the aio_write() function returns -1 and sets the errno to the

corresponding value. If any of the conditions below are detected asynchronously,

the return status of the asynchronous operation is set to -1, and the error status of

the asynchronous operation will be set to the corresponding value.

Error Status / errno

Description

EBADF The aio_ filedes argument is not a valid socket descriptor open for

writing.

EWOULDBLOCK

The file associated with aio_ filedes is in non-blocking state and

there is no data available.

EINVAL The aio_nbytes is not a valid value or aio_sigevent contains an

invalid value.

In the case where the aio_write() function successfully queues the I/O operation

but the operation is subsequently canceled or encounters an error, the return status

of the asynchronous operations is set to -1, and the error status of the

asynchronous operation is set to the error status normally set by the write()

function call, or to the following value:

Error Status Description

ECANCELED The requested I/O was canceled before the I/O completed due to

an explicit call to aio_cancel().

Related Information

v “aio_read() — Asynchronous Read from a Socket” on page 97

v “aio_cancel() — Cancel an Asynchronous I/O Request” on page 94

aio_write

104 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on

page 96

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page

100

v “aio_suspend() — Wait for an Asynchronous I/O Request” on page 101

aio_write

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 105

bind() — Bind a Name to a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

int bind(int socket, const struct sockaddr *name, size_t namelen);

General Description

The bind() call binds a unique local name to the socket with descriptor socket.

After calling socket(), a descriptor does not have a name associated with it.

However, it does belong to a particular address family as specified when socket()

is called. The exact format of a name depends on the address family.

Parameter Description

socket The socket descriptor returned by a previous socket() call.

name The pointer to a sockaddr structure containing the name that is to

be bound to socket.

namelen The size of name in bytes.

The socket parameter is a socket descriptor of any type created by calling socket().

The name parameter is a pointer to a buffer containing the name to be bound to

socket. The namelen parameter is the size, in bytes, of the buffer pointed to by name.

The format of the name buffer is expected to be sockaddr_in, as defined in the

include file in.h:

struct in_addr

{

 ip_addr_t s_addr;

};

 struct sockaddr_in {

 unsigned char sin_len;

 unsigned char sin_family;

 unsigned short sin_port;

 struct in_addr sin_addr;

 unsigned char sin_zero[8];

};

The sin_family field must be set to AF_INET.

The sin_port field is set to the port to which the application must bind. It must be

specified in network byte order. If sin_port is set to 0, the caller leaves it to the

system to assign an available port. The application can call getsockname() to

discover the port number assigned.

The sin_addr.s_addr field is set to the Internet address and must be specified in

network byte order. On hosts with more than one network interface (called

multihomed hosts), a caller can select the interface to which it is to bind.

Subsequently, only UDP packets and TCP connection requests from this interface

(which match the bound name) are routed to the application. If this field is set to

the constant INADDR_ANY, as defined in in.h, the caller is requesting that the

socket be bound to all network interfaces on the host. Subsequently, UDP packets

and TCP connections from all interfaces (which match the bound name) are routed

to the application. This becomes important when a server offers a service to

multiple networks. By leaving the address unspecified, the server can accept all

bind

106 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

UDP packets and TCP connection requests made for its port, regardless of the

network interface on which the requests arrived.

The sin_zero field is not used and must be set to all zeros.

Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EADDRINUSE The address is already in use.

EAFNOSUPPORT The address family is not AF_INET.

EBADF The socket parameter is not a valid socket

descriptor.

EINVAL The socket is already bound to an address—for

example, trying to bind a name to a socket that is

already connected. Or the socket was shut down.

ENOBUFS bind() is unable to obtain a buffer due to

insufficient storage.

EOPNOTSUPP The socket type of the specified socket does not

support binding to an address.

Example

The following example illustrates the bind() call binding to interfaces in the

AF_INET domain. The Internet address and port must be in network byte order.

To put the port into network byte order, the htons() utility routine is called to

convert a short integer from host byte order to network byte order. The address

field is set using another utility routine, inet_addr(), which takes a character

string representing the dotted-decimal address of an interface and returns the

binary Internet address representation in network byte order. It is a good idea to

zero the structure before using it to ensure that the name requested does not set

any reserved fields.

int rc;

int s;

struct sockaddr_in myname;

/* Bind to a specific interface in the Internet domain */

/* make sure the sin_zero field is cleared */

memset(&myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = inet_addr("129.5.24.1"); /* specific interface */

myname.sin_port = htons(1024); ...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

/* Bind to all network interfaces in the Internet domain */

/* make sure the sin_zero field is cleared */

memset(&myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = INADDR_ANY; /* specific interface */

myname.sin_port = htons(1024); ...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

aslr.* Bind to a specific interface in the Internet domain.

 Let the system choose a port */

/* make sure the sin_zero field is cleared */

memset(&myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

bind

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 107

myname.sin_addr.s_addr = inet_addr("129.5.24.1"); /* specific interface */

myname.sin_port = 0; ...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

Related Information

v “connect() — Connect a Socket” on page 110

v “getsockname() — Get the Name of a Socket” on page 123

v “inet_addr() — Translate an Internet Address into Network Byte Order” on page

151

v “listen() — Prepare the Server for Incoming Client Requests” on page 159

v “socket() — Create a Socket” on page 183

bind

108 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

close() — Close a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int close(int socket);

General Description

close() call shuts down the socket associated with the socket descriptor socket, and

frees resources allocated to the socket. If socket refers to an open TCP connection,

the connection is closed. If a stream socket is closed when there is input data

queued, the TCP connection is reset rather than being cleanly closed.

Parameter Description

socket The descriptor of the socket to be closed.

Note: All sockets should be closed before the end of your process.

For AF_INET stream sockets (SOCK_STREAM) using SO_LINGER socket option,

the socket does not immediately end if data is still present when a close is issued.

The following structure is used to set or unset this option, and it can be found in

socket.h. It is to be used with the setsockopt routine.

struct linger {

 int l_onoff; /* zero=off, nonzero=on */

 int l_linger; /* time is seconds to linger */

};

If the l_onoff switch is nonzero, the system attempts to deliver any unsent

messages. If a linger time is specified, the system waits for n seconds before

flushing the data and terminating the socket.

Returned Value

If successful, close() returns 0. If unsuccessful, it returns −1 and sets errno to one of

the following:

EBADF The socket parameter is not a valid socket

descriptor.

EIO An I/O error occurred while reading from or

writing to the socket.

Related Information

v “accept() — Accept a New Connection on a Socket” on page 92

close

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 109

connect() — Connect a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

int connect(int socket, const struct sockaddr *name, size_t namelen);

General Description

For stream sockets, the connect() call attempts to establish a connection between

two sockets. For datagram sockets, the connect() call specifies the peer for a

socket. The socket parameter is the socket used to originate the connection request.

The connect() call performs two tasks when called for a stream socket. First, it

completes the binding necessary for a stream socket (in case it has not been

previously bound using the bind() call). Second, it attempts to make a connection

to another socket.

Parameter Description

socket The socket descriptor.

name The pointer to a socket address structure containing the address of

the socket to which a connection will be attempted.

namelen The size of the socket address pointed to by name in bytes.

The connect() call on a stream socket is used by the client application to establish

a connection to a server. The server must have a passive open pending. A server

that is using sockets must successfully call bind() and listen() before a

connection can be accepted by the server with accept().

If socket is in blocking mode, the connect() call blocks the caller until the

connection is set up, or until an error is received. If the socket is in nonblocking

mode, connect() returns −1 with the error code set to EINPROGRESS to indicate

that the connection has been initiated but is not yet complete (if no errors

occurred). The caller can test the completion of the connection setup by calling

select() and testing for the ability to write to the socket.

When called for a datagram socket, connect() specifies the peer with which this

socket is associated. This gives the application the ability to use data transfer calls

reserved for sockets that are in the connected state. In this case, read(), write(),

readv(), writev(), send(), and recv() calls are then available in addition to

sendto() and recvfrom() calls. Stream sockets can call connect() only once, but

datagram sockets can call connect() multiple times to change their association.

Datagram sockets can dissolve their association by connecting to an incorrect

address, such as the null address (all fields zeroed).

The name parameter is a pointer to a buffer containing the name of the peer to

which the application needs to connect. The namelen parameter is the size, in bytes,

of the buffer pointed to by name.

The format of the name buffer is expected to be sockaddr_in, as defined in the

include file in.h.

struct in_addr

{

 ip_addr_t s_addr;

};

 struct sockaddr_in {

 unsigned char sin_len;

 unsigned char sin_family;

connect

110 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

unsigned short sin_port;

 struct in_addr sin_addr;

 unsigned char sin_zero[8];

};

The sin_family field must be set to AF_INET. The sin_port field is set to the port to

which the server is bound. It must be specified in network byte order. The sin_zero

field is not used and must be set to all zeros.

Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EAFNOSUPPORT The address family is not supported.

EALREADY The socket descriptor socket is marked nonblocking,

and a previous connection attempt has not

completed.

EBADF The socket parameter is not a valid socket

descriptor.

EFAULT Using name and namelen would result in an attempt

to copy the address into a portion of the caller’s

address space to which data cannot be written.

EINPROGRESS O_NONBLOCK is set for the socket descriptor for

the socket, and the connection cannot be

immediately established. The connection will be

established asynchronously. The EINPROGRESS

value does not indicate an error condition.

EINVAL The namelen parameter is not a valid length.

EISCONN The socket descriptor socket is already connected.

EOPNOTSUPP The socket parameter is not of type

SOCK_STREAM.

ETIMEDOUT The connection establishment timed out before a

connection was made.

Example

The following are examples of the connect() call. The Internet address and port

must be in network byte order. To put the port into network byte order, the

htons() utility routine is called to convert a short integer from host byte order to

network byte order. The address field is set using another utility routine,

inet_addr(), which takes a character string representing the dotted-decimal

address of an interface and returns the binary Internet address representation in

network byte order. Finally, it is a good idea to zero the structure before using it to

ensure that the name requested does not set any reserved fields. These examples

could be used to connect to the servers shown in the examples listed with the call,

“bind() — Bind a Name to a Socket” on page 106.

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

#include <in.h>

int s;

struct sockaddr_in inet_server;

int rc;

connect

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 111

/* Connect to server bound to a specific interface in the Internet domain */

/* make sure the sin_zero field is cleared */

memset(&inet_server, 0, sizeof(inet_server));

inet_server.sin_family = AF_INET;

inet_server.sin_addr = inet_addr("129.5.24.1"); /* specific interface */

inet_server.sin_port = htons(1024); ...
rc = connect(s, (struct sockaddr *) &inet_server, sizeof(inet_server));

Related Information

v “accept() — Accept a New Connection on a Socket” on page 92

v “bind() — Bind a Name to a Socket” on page 106

v “inet_addr() — Translate an Internet Address into Network Byte Order” on page

151

v “listen() — Prepare the Server for Incoming Client Requests” on page 159

v “select() — Monitor Activity on Sockets” on page 169

v “selectex() — Monitor Activity on Sockets” on page 173

v “socket() — Create a Socket” on page 183

connect

112 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

fcntl() — Control Open Socket Descriptors

#define _XOPEN_SOURCE_EXTENDED 1

#include <types.h>

#include <unistd.h>

#include <fcntl.h>

int fcntl(int socket, int cmd, ... /* arg */);

General Description

The operating characteristics of sockets can be controlled with the fcntl() call. The

operations to be controlled are determined by cmd. The arg parameter is a variable

with a meaning that depends on the value of the cmd parameter.

Parameter Description

socket The socket descriptor.

cmd The command to perform.

arg The data associated with cmd.

The cmd argument can be one of the following symbols:

F_GETFL This command gets the status flags of socket descriptor socket. With

the _XOPEN_SOURCE_EXTENDED 1 feature test macro you can query

the O_NDELAY flag. The O_NDELAY flagsmarks socket as being in

nonblocking mode. If data is not present on calls that can block,

such as read(), readv(), and recv(), the call returns with −1, and

the error code is set to EWOULDBLOCK.

F_SETFL This command sets the status flags of socket descriptor socket. With

the _XOPEN_SOURCE_EXTENDED 1 feature test macro you can set the

O_NDELAY flag.

Returned Value

If successful, the value returned will depend on the cmd that was specified. If

unsuccessful, fcntl() returns −1 and sets errno to one of the following:

EBADF The socket parameter is not a valid socket descriptor.

EINVAL The arg parameter is no a valid flag, or the cmd parameter is not a

valid command.

Example

Sockets example:

#define _XOPEN_SOURCE_EXTENDED 1

#include <types.h>

#include <unistd.h>

#include <fcntl.h>

int s;

int rc;

int flags; ...
/* Place the socket into nonblocking mode */

rc = fcntl(s, F_SETFL, O_NDELAY);

/* See if asynchronous notification is set */

flags = fcntl(s, F_GETFL, 0);

if (flags & O_NDELAY)

 /* it is set */

else

 /* it is not */

fcntl

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 113

Related Information

v “close() — Close a Socket” on page 109

v “getsockopt() — Get the Options Associated with a Socket” on page 125

v “ioctl() — Control Socket” on page 158

v “setsockopt() — Set Options Associated with a Socket” on page 179

v “socket() — Create a Socket” on page 183

fcntl

114 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

getclientid() — Get the Identifier for the Calling Application

#define _OPEN_SYS_SOCK_EXT

#include <socket.h>

#include <types.h>

int getclientid(int domain, struct clientid *clientid);

General Description

The getclientid() function call returns the identifier by which the calling

application is known to the TCP/IP partition. The clientid can be used in the

givesocket() and takesocket() calls.

Parameter Description

domain The address domain requested.

clientid The pointer to a clientid structure to be filled.

The clientid structure is filled in by the call and returned as follows:

The clientid structure:

 struct clientid {

 int domain;

 union {

 char name[8];

 struct {

 int NameUpper;

 pid_t pid;

 } c_pid;

 } c_name;

 char subtaskname[8];

 struct {

 char type;

 union {

 char specific[19];

 struct {

 char unused[3];

 int SockToken;

 } c_func;

 } c_reserved;

 };

Element Description

domain The input domain value returned in the domain field of the clientid

structure.

c_name.name The application program’s partition name, left-justified and padded

with blanks.

subtaskname The calling program’s task identifier.

c_reserved Specifies binary zeros.

Returned Value

The value 0 indicates success. The value -1 indicates an error. The value of errno

indicates the specific error.

errno Description

EFAULT Using the clientid parameter as specified would result in an attempt

to access storage outside the caller’s partition, or storage not

modifiable by the caller.

getclientid

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 115

gethostbyaddr() — Get a Host Entry by Address

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyaddr(const void *address,

 size_t address_len,

 int domain);

General Description

The gethostbyaddr() call tries to resolve the host address through a name server, if

one is present.

Parameter Description

address The pointer to a structure containing the address of the host.

(An unsigned long for AF_INET.)

address_len The size of address in bytes.

domain The address domain supported (AF_INET).

The gethostbyaddr() call returns a pointer to a hostent structure for the host

address specified on the call.

gethostbyaddr(), and gethostbyname() all use the same static area to return the

hostent structure. This static area is only valid until the next one of these functions

is called on the same thread.

The netdb.h include file defines the hostent structure and contains the following

elements:

Element Description

h_addr A pointer to the network address of the host.

h_addrtype The type of address returned; currently, it is always set to

AF_INET.

h_aliases A zero-terminated array of alternative names for the host.

h_length The length of the address in bytes.

h_name The official name of the host.

The following function is defined in netdb.h and should be used by multithreaded

applications when attempting to reference h_errno return on error:

int *__h_errno(void);

This function returns a pointer to a thread-specific value for the h_errno variable.

Returned Value

The return value points to static data that is overwritten by subsequent calls. A

pointer to a hostent structure indicates success. A NULL pointer indicates an error

or end-of-file.

On unsuccessful completion, this function sets h_errno to indicate the error as

follows:

Error Code Description

gethostbyaddr

116 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

HOST_NOT_FOUND

No such host is known.

TRY_AGAIN A temporary error such as no response from a server, indicating

the information is not available now but may be at a later time.

NO_RECOVERY

An unexpected server failure occurred from which there is no

recovery.

NO_DATA The server recognized the request and the name but no address is

available. Another type of request to the name server might return

an answer.

Related Information

v “gethostbyname() — Get a Host Entry by Name” on page 118

gethostbyaddr

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 117

gethostbyname() — Get a Host Entry by Name

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname(const char *name);

General Description

The gethostbyname() call tries to resolve the host name through a name server, if

one is present. When a call is made to convert a symbolic name to an IP address,

TCP/IP for VSE/ESA searches the local names table (created by DEFINE NAME)

first. If this search fails, the name is passed to the specified DNSs (set with SET

DNSx). TCP/IP for VSE/ESA will try each DNS, beginning with DNS1, until an

response is received or all servers have been polled. The first server to respond

determines if the request succeeds or fails. If the search within a DNS fails, the

default domain string (as specified with SET DEFAULT_DOMAIN) is appended to

the name (following a period) and the DNS is consulted the last time for the name

resolution.

Parameter Description

name The name of the host.

The gethostbyname() call returns a pointer to a hostent structure for the host name

specified on the call.

gethostent(), gethostbyaddr(), and gethostbyname() all use the same static area to

return the hostent structure. This static area is only valid until the next one of

these functions is called on the same thread.

The netdb.h include file defines the hostent structure and contains the following

elements:

Element Description

h_addr A pointer to the network address of the host.

h_addrtype The type of address returned; currently, it is always set to

AF_INET.

h_aliases A zero-terminated array of alternative names for the host.

h_length The length of the address in bytes.

h_name The official name of the host.

The following function is defined in netdb.h and should be used by multithreaded

applications when attempting to reference h_errno return on error:

int *__h_errno(void);

Returned Value

The return value points to static data that is overwritten by subsequent calls. A

pointer to a hostent structure indicates success. A NULL pointer indicates an error

or end-of-file.

On unsuccessful completion, this function sets h_errno to indicate the error as

follows:

Error Code Description

HOST_NOT_FOUND

No such host is known.

gethostbyname

118 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

TRY_AGAIN A temporary error such as no response from a server, indicating

the information is not available now but may be at a later time.

NO_RECOVERY

An unexpected server failure occurred from which there is no

recovery.

NO_DATA The server recognized the request and the name but no address is

available. Another type of request to the name server might return

an answer.

Related Information

v “gethostbyaddr() — Get a Host Entry by Address” on page 116

v “gethostname() — Get the Name of the Host Processor” on page 121

gethostbyname

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 119

gethostid() — Get the Unique Identifier of the Current Host

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

long gethostid(void);

General Description

The gethostid() call gets the unique 32-bit identifier for the current host. This

value is the default home Internet address.

Returned Value

The gethostid() call returns the 32-bit identifier of the current host, which should

be unique across all hosts.

Related Information

v “gethostname() — Get the Name of the Host Processor” on page 121

gethostid

120 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

gethostname() — Get the Name of the Host Processor

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int gethostname(char *name, size_t namelen);

General Description

The gethostname() call returns the name of the host processor that the program is

running on. Up to namelen characters are copied into the name array. The returned

name is null-terminated unless there is insufficient room in the name array.

Parameter Description

name The character array to be filled with the host name.

namelen The length of name.

Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EFAULT Using name and namelen would result in an attempt to copy the

address into a portion of the caller’s address space to which data

cannot be written.

EMVSPARM Incorrect parameters were passed to the service or function is not

implemented.

Related Information

v “gethostbyname() — Get a Host Entry by Name” on page 118

v “gethostid() — Get the Unique Identifier of the Current Host” on page 120

gethostname

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 121

getpeername() — Get the Name of the Peer Connected to a

Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

int getpeername(int socket, struct sockaddr *name, size_t *namelen);

General Description

The getpeername() call returns the name of the peer connected to socket descriptor

socket. namelen must be initialized to indicate the size of the space pointed to by

name and is set to the number of bytes copied into the space before the call returns.

The size of the peer name is returned in bytes. If the actual length of the address is

greater than the length of the supplied sockaddr, the stored address is truncated.

The sa_len field of structure sockaddr contains the length of the untruncated

address.

Parameter Description

socket The socket descriptor.

name The Internet address of the connected socket that is filled by

getpeername() before it returns. The exact format of name is

determined by the domain in which communication occurs.

namelen The size of the address structure pointed to by name in bytes.

Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EBADF The socket parameter is not a valid socket

descriptor.

EFAULT Using the name and namelen parameters as

specified would result in an attempt to access

storage outside of the caller’s address space.

EINVAL The namelen parameter is not a valid length.

ENOBUFS getpeername() is unable to process the request due

to insufficient storage.

ENOTCONN The socket is not in the connected state.

EOPNOTSUPP The operation is not supported for the socket

protocol.

Related Information

v “accept() — Accept a New Connection on a Socket” on page 92

v “connect() — Connect a Socket” on page 110

v “getsockname() — Get the Name of a Socket” on page 123

v “socket() — Create a Socket” on page 183

getpeername

122 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

getsockname() — Get the Name of a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

int getsockname(int socket, struct sockaddr *name, size_t *namelen);

General Description

The getsockname() call stores the current name for the socket specified by the

socket parameter into the structure pointed to by the name parameter. It returns the

address to the socket that has been bound. If the socket is not bound to an address,

the call returns with the family set, and the rest of the structure set to zero. For

example, an unbound socket in the Internet domain would cause the name to

point to a sockaddr_in structure with the sin_family field set to AF_INET and all

other fields zeroed.

If the actual length of the address is greater than the length of the supplied

sockaddr, the stored address is truncated. The sa_len field of structure sockaddr

contains the length of the untruncated address.

Parameter Description

socket The socket descriptor.

name The address of the buffer into which getsockname() copies the

name of socket.

namelen Must initially point to an integer that contains the size in bytes of

the storage pointed to by name. Upon return, that integer contains

the size of the data returned in the storage pointed to by name.

The getsockname() call is often used to discover the port assigned to a socket after

the socket has been implicitly bound to a port. For example, an application can call

connect() without previously calling bind(). In this case, the connect() call

completes the binding necessary by assigning a port to the socket. This assignment

can be discovered with a call to getsockname().

Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EBADF The socket parameter is not a valid socket descriptor.

EFAULT Using the name and namelen parameters as specified would result

in an attempt to access storage outside of the caller’s address

space.

ENOBUFS getsockname() is unable to process the request due to insufficient

storage.

ENOTCONN The socket is not in the connected state.

EOPNOTSUPP

The operation is not supported for the socket protocol.

Related Information

v “accept() — Accept a New Connection on a Socket” on page 92

v “bind() — Bind a Name to a Socket” on page 106

v “connect() — Connect a Socket” on page 110

getsockname

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 123

v “getpeername() — Get the Name of the Peer Connected to a Socket” on page

122

v “socket() — Create a Socket” on page 183

getsockname

124 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

getsockopt() — Get the Options Associated with a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

int getsockopt(int socket,

 int level,

 int option_name,

 void *option_value,

 size_t *option_len);

General Description

The getsockopt() call gets options associated with a socket. Not all options are

supported by all address families. See each option for details. Options can exist at

multiple protocol levels; they are always present at the highest socket level.

Parameter Description

socket The socket descriptor.

level The level for which the option is set. Only SOL_SOCKET is

supported.

option_name The name of a specified socket option.

option_value The pointer to option data.

option_len The pointer to the length of the option data.

When manipulating socket options, you must specify the level at which the option

resides and the name of the option. To manipulate options at the socket level, the

level parameter must be set to SOL_SOCKET as defined in socket.h

The option_value and option_len parameters are used to return data used by the

particular get command. The option_value parameter points to a buffer that is to

receive the data requested by the get command. The option_len parameter points to

the size of the buffer pointed to by the option_value parameter. It must be initially

set to the size of the buffer before calling getsockopt(). On return it is set to the

actual size of the data returned.

All the socket level options except SO_LINGER expect option_value to point to an

integer and option_len to be set to the size of an integer. When the integer is

nonzero, the option is enabled. When it is zero, the option is disabled. The

SO_LINGER option expects option_value to point to a linger structure as defined in

socket.h. This structure is defined in the following example:

struct linger

{

 int l_onoff; /* option on/off */

 int l_linger; /* linger time */

};

The l_onoff field is set to zero if the SO_LINGER option is being disabled. A

nonzero value enables the option. The l_linger field specifies the amount of time to

linger on close.

The following options are recognized at the socket level:

Option Description

SO_LINGER Lingers on close if data is present. When this option is enabled and

there is unsent data present when close() is called, the calling

application is blocked during the close() call until the data is

getsockopt

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 125

transmitted or the connection has timed out. If this option is

disabled, the TCP/IP address space waits to try to send the data.

Although the data transfer is usually successful, it cannot be

guaranteed, because the TCP/IP address space waits only a finite

amount of time trying to send the data. The close() call returns

without blocking the caller. This option has meaning only for

stream sockets.

Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EBADF The socket parameter is not a valid socket

descriptor.

EFAULT Using option_value and option_len parameters would

result in an attempt to access storage outside the

caller’s address space.

EINVAL The specified option is invalid at the specified

socket level.

ENOBUFS Buffer space is not available to send the message.

ENOPROTOOPT The option_name parameter is unrecognized, or the

level parameter is not SOL_SOCKET.

ENOSYS The function is not implemented. You attempted to

use a function that is not yet available.

EOPNOTSUPP The operation is not supported by the socket

protocol.

Example

The following are examples of the getsockopt() call. See “setsockopt() — Set

Options Associated with a Socket” on page 179 for examples of how the

setsockopt() call options are set.

int rc;

int s;

int option_value;

int option_len;

struct linger l;

 ...
/* Do I linger on close? */

option_len = sizeof(l);

rc = getsockopt(s,

 SOL_SOCKET,

 SO_LINGER,

 (char *)&l,

 &option_len);

if (rc == 0)

{

 if (option_len == sizeof(l))

 {

 if (l.l_onoff)

 /* yes I linger */

getsockopt

126 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

else

 /* no I do not */

 }

}

Related Information

v “bind() — Bind a Name to a Socket” on page 106

v “close() — Close a Socket” on page 109

v “setsockopt() — Set Options Associated with a Socket” on page 179

v “socket() — Create a Socket” on page 183

getsockopt

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 127

givesocket() — Make the Specified Socket Available

Format

#define _OPEN_SYS_SOCK_EXT

#include <socket.h>

int givesocket(int socket,struct clientid *clientid);

General Description

The givesocket() call makes the specified socket available to a takesocket() call

issued by another program. Any socket can be given. Typically, givesocket() is

used by a master program that obtains sockets by means of accept(), and gives

them to application programs that handle one socket at a time.

Parameter Description

socket The descriptor of a socket to be given to another application.

clientid A pointer to a client ID structure which specifies the program to

which the socket is to be given.

To pass a socket, the giving program first calls givesocket() with the client ID

structure filled in as follows:

The clientid structure:

 struct clientid {

 int domain;

 union {

 char name[8];

 struct {

 int NameUpper;

 pid_t pid;

 } c_pid;

 } c_name;

 char subtaskname[8];

 struct {

 char type;

 union {

 char specific[19];

 struct {

 char unused[3];

 int SockToken;

 } c_close;

 } c_func;

 } c_reserved;

 };

Element Description

Element Description

domain The domain of the input socket descriptor.

c_name.name If the clientid was set by a getclientid() call, c_name.name can be:

v set to the application program’s partition name, left-justified and

padded with blanks. The application program can run in the

same partition as the master program, in which case this field is

set to the master program’s partition.

v set to blanks, so any z/VSE partition can take the socket.

subtaskname If the clientid was set by a getclientid() call, subtaskname can be:

givesocket

128 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

v set to the task identifier of the taker. This, combined with a

c_name.name value, allows only a process with this c_name.name

and subtaskname to take the socket.

v set to blanks. If c_name.name has a value and subtaskname is

blank, any task with that c_name.name can take the socket.

v if c_name_name is set to blanks, subtaskname parameter will be set

to blanks.

c_reserved.type When set to SO_CLOSE, this indicates the socket should be

automatically closed by givesocket(), and a unique socket

identifying token is to be returned in c_close.SockToken. The

c_close.SockToken should be passed to the taking program to be

used as input to takesocket() instead of the socket descriptor. The

now closed socket descriptor could be re-used by the time the

takesocket() is called, so the c_close.SockToken should be used for

takesocket().

c_close.SockToken

The unique socket identifying token returned by givesocket to be

used as input to takesocket(), instead of the socket descriptor

when c_reserved.type has been set to SO_CLOSE.

c_reserved Specifies binary zeros if an automatic close of a socket is not to be

done by givesocket().

Using Name and Subtaskname for Givesocket/Takesocket

1. The giving program calls getclientid() to obtain its client ID. The giving

program calls givesocket() to make the socket available for a takesocket()

call. The giving program passes its client ID along with the descriptor of the

socket to be given to the taking program by the taking program’s startup

parameter list.

2. The taking program calls takesocket(), specifying the giving program’s client

ID and socket descriptor.

3. Waiting for the taking program to take the socket, the giving program uses

select() to test the given socket for an exception condition. When select()

reports that an exception condition is pending, the giving program calls

close() to free the given socket.

4. If the giving program closes the socket before a pending exception condition is

indicated, the connection is immediately reset, and the taking program’s call to

takesocket() is unsuccessful. Calls other than the close() call issued on a

given socket return -1, with errno set to EBADF.

Note: For backward compatibility, a client ID can point to the struct client ID

structure obtained when the target program calls getclientid(). In this case,

only the target program, and no other programs in the target program’s

partition, can take the socket.

Returned Value

The value 0 indicates success. The value -1 indicates an error. The value of errno

indicates the specific error.

Error Code Description

EBADF The d parameter is not a valid socket descriptor. The socket has

already been given.

EFAULT Using the clientid parameter as specified would result in an attempt

to access storage outside the caller’s partition.

givesocket

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 129

EINVAL The clientid parameter does not specify a valid client identifier or

the clientid domain does not match the domain of the input socket

descriptor.

Related Information

v “accept() — Accept a New Connection on a Socket” on page 92

v “close() — Close a Socket” on page 109

v “getclientid() — Get the Identifier for the Calling Application” on page 115

v “listen() — Prepare the Server for Incoming Client Requests” on page 159

v “select() — Monitor Activity on Sockets” on page 169

v “takesocket() — Acquire a Socket from Another Program” on page 186

givesocket

130 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

gsk_free_memory() — Free memory allocated for SSL

Format

#include <gskssl.h>

void gsk_free_memory(void *pointer,

 void *future_use);

General Description

gsk_free_memory() frees the memory that is allocated for SSL.

Note: This function is currently not used under VSE.

Parameter Description

pointer The address of the memory, returned to the application from a

previous call to a SSL function, that is to be freed.

future_use Reserved for future use by SSL.

Related Information

v “gsk_get_dn_by_label() — Get Distinguished Name Based on the Label” on page

134

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_free_memory

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 131

gsk_get_cipher_info() — Query Cipher Related Information

Format

#include <gskssl.h>

int gsk_get_cipher_info(int level,

 gsk_sec_level *sec_level,

 void *Reserved_for_future_use);

General Description

Queries cipher related information for SSL. gsk_get_cipher_info() determines the

encryption level that the system can support and returns a list of cipher specs SSL

can use. This allows an application to determine, at run-time, the level of SSL

encryption that the installed application can request. This function is useful for

programs that run on systems running across the globe.

You can use gsk_get_cipher_info() to determine the valid values that may be

specified in the cipher specs of the gsk_soc_init_data structure used by

gsk_secure_soc_init().

Parameter Description

level Determines the type of cipher information returned. Specify either

GSK_LOW_SECURITY or GSK_HIGH_SECURITY.

GSK_LOW_SECURITY causes only exportable cipher information

to be returned. GSK_HIGH_SECURITY causes exportable and

domestic cipher information to be returned. GSK_LOW_SECURITY

is useful when setting up SSL communications with systems that

may be located outside of the US and Canada where strong

cryptographic functions are not available.

sec_level The pointer to a gsk_sec_level structure.

Reserved_for_future_use

Reserved for future use by SSL.

The gsk_sec_level structure is defined in the gskssl.h header file as follows:

typedef struct _gsk_sec_level {

 int version; /* Output - SSL toolkit version */

 char v3cipher_specs [64]; /* Output - The sslv3 cipher specs */

 char v2cipher_specs [32]; /* Output - The sslv2 cipher specs */

 int security_level; /* Output - initially one of */

 /* GSK_SEC_LEVEL_US, */

 /* GSK_SEC_LEVEL_EXPORT, */

 /* GSK_SEC_LEVEL_EXPORT_FR */

} gsk_sec_level;

The gsk_sec_level structure specifies information about the level of cryptography

that is available on the system. The application must allocate the memory

necessary for this structure. On successful return, the contents of the structure is

set.

Returned Value

The gsk_get_cipher_info() call returns an integer. A value greater or equal to 0

indicates sucessful completion. A negative value indicates an error.

If GSK_ERROR_IO is returned, a general I/O error occurred and the value of

errno indicates the specific error.

gsk_get_cipher_info

132 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Note: errno may change during this operation. However, errno is not explicitly

used by the SSL interface nor can errno be used to determine the cause of

the error. The return value is the exclusive indicator of any potential errors

from a SSL API.

Related Information

v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 138

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_get_cipher_info

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 133

gsk_get_dn_by_label() — Get Distinguished Name Based on

the Label

Format

#include <gskssl.h>

char * gsk_get_dn_by_label(char *label);

General Description

Returns the distinguished name for a key based on the label. You can use this

value for the DName field of the gsk_soc_init_data structure, which is used on calls

to gsk_secure_soc_init().

Note: gsk_get_dn_by_label() cannot be called prior to calling gsk_initialize().

Parameter Description

label Specifies a null-terminated character string that contains the label

for the key.

Returned Value

The gsk_get_dn_by_label() call returns a pointer to the distinguished name upon

successful completion. A NULL value is returned if an error is encountered finding

the specified label.

Related Information

v “gsk_free_memory() — Free memory allocated for SSL” on page 131

v “gsk_initialize() — Initialize the SSL Environment” on page 135

v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 138

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_get_dn_by_label

134 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

gsk_initialize() — Initialize the SSL Environment

Format

#include <gskssl.h>

int gsk_initialize(gsk_init_data *init_data);

General Description

Sets up the overall SSL environment for the current partition. Upon successful

completion of gsk_initialize(), the application is ready to call SSL interfaces and

to begin creating and using secure socket connections.

Note: Multiple calls to gsk_initialize() can be made as long as the existing SSL

environment is cleaned up by a call to gsk_uninitialize() before the next

call to gsk_initialize() is made.

Parameter Description

init_data The pointer to a gsk_init_data structure.

The gsk_init_data structure is defined in the gskssl.h header file as follows:

typedef struct _gsk_init_data { /* Basic gsk SSL Toolkit

 * initialization data

 */

 char * sec_types; /* Security protocol choice */

 /* (SSLV2|SSLV3|...|ALL */

 char * keyring; /* Keyring file name */

 /* Default roots used when NULL */

 char * keyring_pw; /* Keyring password */

 /* Ignored when keyring=NULL */

 char * keyring_stash;

 long V2_session_timeout; /* Number of seconds for SSLV2 */

 /* session data to time out. 0-100 */

 long V3_session_timeout; /* Number of seconds for SSLV3 */

 /* session data to time out. */

 /* 0-86400 (1 day) */

 char * LDAP_server; /* Name or IP address of X500 host */

 int LDAP_port; /* Port number of X500 host */

 char * LDAP_user; /* User name for X500 host */

 char * LDAP_password; /* Password of X500 host */

 gsk_ca_roots LDAP_CA_roots; /* Which CA roots to use */

 gsk_auth_type auth_type; /* Client authentication type */

} gsk_init_data;

The sec_types field specifies a null-terminated character string that identifies the

security protocols that are to be used.

Note: SSLV2 is currently not used under VSE.

The keyring field specifies a null-terminated character string that identifies the sub

library (format: ″lib.sublib″) used for keys and certificates.

The keyring_pw field is currently not used under VSE.

The keyring_stash field is currently not used under VSE.

The V2_session_timeout field is currently not used under VSE.

The V3_session_timeout field specifies the number of seconds for the SSLV3 session

identifier to expire. The range is 0-86400 seconds (1 day).

gsk_initialize

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 135

The LDAP_server field is currently not used under VSE.

The LDAP_port field is currently not used under VSE.

The LDAP_user field is currently not used under VSE.

The LDAP_password field is currently not used under VSE.

The LDAP_CA_roots field specifies which CA roots to use for certificate verification.

The supported values are: GSK_CA_ROOTS_LOCAL_ONLY and

GSK_CA_ROOTS_LOCAL_AND_X500.

The auth_type field specifies the method to use for verifying the client’s certificate.

This field is only used when the LDAP_CA_roots field is set to

GSK_CA_ROOTS_LOCAL_AND_X500. The supported values are:

GSK_CLIENT_AUTH_LOCAL, GSK_CLIENT_AUTH_STRONG_OVER_SSL,

GSK_CLIENT_AUTH_STRONG and GSK_CLIENT_AUTH_PASSTHRU.

Note: The gsk_init_data structure, along with the data it refers to, should remain

accessible for the entire time the application makes use of SSL. In particular,

pointers in the gsk_init_data structure should not point to storage that is

freed by the application or that is on the call stack.

Returned Value

The gsk_initialize() call returns an integer. The value GSK_INITIALIZE_OK

indicates successful SSL initialization.

If GSK_ERROR_IO is returned, a general I/O error occurred and the value of

errno indicates the specific error.

Note: errno may change during this operation. However, errno is not explicitly

used by the SSL interface nor can errno be used to determine the cause of

the error. The return value is the exclusive indicator of any potential errors

from a SSL API.

Related Information

v “gsk_secure_soc_close() — Close a Secure Socket Connection” on page 137

v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 138

v “gsk_secure_soc_read() — Receive Data on a Secure Socket Connection” on page

142

v “gsk_secure_soc_write() — Send Data on a Secure Socket Connection” on page

145

v “gsk_uninitialize() — Remove Current Settings for the SSL Environment” on

page 147

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_initialize

136 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

gsk_secure_soc_close() — Close a Secure Socket Connection

Format

#include <gskssl.h>

void gsk_secure_soc_close(gsk_soc_data *user_socket);

General Description

The function gsk_secure_soc_close() ends a secure socket connection and frees all

the SSL resources for that secure socket connection.

Note: If you do not call gsk_secure_soc_close(), the storage referenced by the

user_socket parameter is not be freed.

Note: The user application must close all socket descriptors opened by any socket

API. gsk_secure_soc_close() does not close any open socket descriptors.

Parameter Description

user_socket The pointer to a gsk_soc_data structure.

Related Information

v “gsk_initialize() — Initialize the SSL Environment” on page 135

v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 138

v “gsk_secure_soc_read() — Receive Data on a Secure Socket Connection” on page

142

v “gsk_secure_soc_write() — Send Data on a Secure Socket Connection” on page

145

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_secure_soc_close

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 137

gsk_secure_soc_init() — Initialize Data Areas for a Secure

Socket Connection

Format

#include <gskssl.h>

gsk_soc_data * gsk_secure_soc_init(gsk_soc_init_data *soc_init_data);

General Description

The function gsk_secure_soc_init() initializes the data areas necessary for SSL to

initiate or accept a secure socket connection. Upon successful completion of

gsk_secure_soc_init(), a handle is returned to the application. Then other calls

using this secure socket connection can use this handle.

A complete SSL handshake is performed during this call based on the input

specified in the gsk_soc_init_data structure. While SSL performs the mechanics of

the SSL handshake, the application must supply the routines necessary to transport

the SSL data during the SSL handshake, as well as for all subsequent read/write

operations.

Note: These routines must be supplied as an external entry-point generated with

fetchep().

Parameter Description

soc_init_data The pointer to a gsk_soc_init_data structure.

The gsk_soc_init_data structure is defined in the gskssl.h header file as follows:

typedef struct _gsk_soc_init_data {

 int fd; /* file descriptor */

 gsk_handshake hs_type; /* client or server handshake */

 char * DName; /* keyring entry Distinguished */

 /* name. When NULL the default */

 /* keyring entry is used */

 char * sec_type; /* Type of security protocol used */

 /* to protect this socket */

 char * cipher_specs; /* SSLV2 cipher specs preference */

 char * v3cipher_specs; /* SSLV3 cipher specs preference */

 /* and order */

 int (* skread) /* User supplied READ function ptr */

 (int fd, void * buffer, int num_bytes);

 int (* skwrite) /* User supplied WRITE function ptr */

 (int fd, void * buffer, int num_bytes);

 unsigned char cipherSelected[3]; /* Cipher Spec used */

 unsigned char v3cipherSelected[2]; /* Cipher Spec used */

 int failureReasonCode; /* failure reason code */

 gsk_cert_info * cert_info; /* This information is read from */

 /* from the client certificate */

 /* when client authentication is */

 /* enabled */

 gsk_init_data * gsk_data;

} gsk_soc_init_data;

The gsk_soc_init_data structure specifies information about the characteristics for the

secure sockets connection. In addition, SSL uses this structure to return information

about the secure socket connection after it has been established.

The fd field specifies the socket descriptor for this connection. The socket

descriptor is passed to the application routines specified in the skread and skwrite

fields. These application-supplied routines can use the socket descriptor to perform

the required reading/writing of the SSL data.

gsk_secure_soc_init

138 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Note: The socket must be created, opened, and connected prior to calling

gsk_secure_soc_init(). This implies that a client must perform the socket()

and connect() calls prior to calling gsk_secure_soc_init(). For servers, this

imples that the server must perform the socket(), bind(), listen(), and

accept() calls prior to calling gsk_secure_soc_init().

The hs_type field specifies how to perform the SSL handshake. The supported

values are:

v GSK_AS_CLIENT to perform the SSL handshake as a client with authentication.

v GSK_AS_SERVER to perform the SSL handshake as a server.

v GSK_AS_SERVER_WITH_CLIENT_AUTH to perform the SSL handshake as a

server that requires client authentication.

v GSK_AS_CLIENT_NO_AUTH to perform the SSL handshake as a client without

authentication.

The DName field specifies a character string that is the Distinguished Name or

label of the desired entry (certificate) in the key database file. The default key

database file entry can be used by specifying a NULL.

The sec_type field specifies a null-terminated character string that identifies the

security protocol that will be used.

The cipher_specs field is currently not used under VSE.

The v3cipher_specs field specifies a null-terminated character string that contains the

list of SSL Version 3.0 ciphers in the order of usage preference. Some values may

not be valid depending on the level of cryptography that is installed on the

system. Any combination of valid values may be used in any order. Refer to

“gsk_get_cipher_info() — Query Cipher Related Information” on page 132 for

information about determining the cipher specs supported by the system. If you

specify a NULL value for cipher_specs, the default SSL Version 3.0 cipher specs are

used.

The skread field specifies an entry point of an application provided I/O routine that

performs a read function for SSL. This application must use fetchep() to register

the entry point of this I/O routine, if this routine or any called subroutine refers to

writable static or global variables. Parameters for this routine must be defined as

specified in skread. SSL uses the skread routine while performing the SSL handshake

during the gsk_secure_soc_init() call and the gsk_secure_soc_read() call. The

skread routine can be implemented as follows:

 int skread(int fd, void *data, int len){

 return(recv(fd, data, len, 0));

 }

The skwrite field specifies an entry point of an application provided I/O routine

that performs a write function for SSL. This application must use fetchep() to

register the entry point of this I/O routine, if this routine or any called subroutine

refers to writable static or global variables. Parameters for this routine must be as

defined as specified in skwrite. SSL uses the skwrite routine while performing the

SSL handshake during the gsk_secure_soc_init() call and the

gsk_secure_soc_write() call. The skwrite routine can be implemented as follows:

 int skwrite(int fd, void *data, int len){

 return(send(fd, data, len, 0));

 }

The cipherSelected field is currently not used under VSE.

gsk_secure_soc_init

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 139

The v3cipherSelected field specifies the architected SSL version 3.0 cipher spec value

selected for this session.

The failureReasonCode field specifies the failure reason code for

gsk_secure_soc_init().

The cert_info field specifies the Distinguished Name components from the client’s

certificate. This parameter is only valid when client authentication is requested for

a server using SSL. The gsk_cert_info structure is defined in the gskssl.h header file

as follows:

 typedef struct _gsk_cert_info { /* Client certificate information */

 char * cert_body; /* Certificate body */

 int cert_body_len; /* Lenth of certificate body */

 char * sessionID; /* Current session ID */

 int newSessionID; /* TRUE if sid is new */

 char * serial_num; /* Serial number */

 char * common_name; /* Common name of client */

 char * locality; /* Locality */

 char * state_or_province; /* State or Province */

 char * country; /* Country */

 char * org; /* Organization */

 char * org_unit; /* Organizational Unit */

 char * issuer_common_name; /* Issuer’s common name */

 char * issuer_locality; /* Issuer’s locality */

 char * issuer_state_or_province; /* Issuer’s state or province */

 char * issuer_country; /* Issuer’s country */

 char * issuer_org; /* Issuer’s organization */

 char * issuer_org_unit; /* Issuer’s organizational unit */

 } gsk_cert_info;

The gsk_data field specifies the gsk_init_data structure pointer. This field should

point to the same gsk_init_data structure that was used during the

gsk_initialize() function call.

Returned Value

Upon successful completion, gsk_secure_soc_init() returns a pointer to a

structure of type gsk_soc_data. Save this pointer because this structure is used in

subsequent SSL operations. The gsk_soc_data structure is defined in the gskssl.h

header file as follows:

typedef struct _gsk_soc_data {

 void * sk_SSLHandle; /* gskssl connector to SSLHandlestr */

} gsk_soc_data;

If a failor occurres the failureReasonCodefield of the gsk_soc_init_data structure is

used to indicate the error.

If the failureReasonCode field is set to GSK_ERROR_IO, a general I/O error occurred

and the value of errno indicates the specific error.

Note: errno may change during this operation. However, errno is not explicitly

used by the SSL interface nor can errno be used to determine the cause of

the error. The failureReasonCode field of the gsk_soc_init_data structure is the

exclusive indicator of any potential errors from a SSL API.

Related Information

v “gsk_get_cipher_info() — Query Cipher Related Information” on page 132

v “gsk_get_dn_by_label() — Get Distinguished Name Based on the Label” on page

134

v “gsk_initialize() — Initialize the SSL Environment” on page 135

gsk_secure_soc_init

140 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

v “gsk_secure_soc_close() — Close a Secure Socket Connection” on page 137

v “gsk_secure_soc_read() — Receive Data on a Secure Socket Connection” on page

142

v “gsk_secure_soc_reset() — Refresh the Security Parameters” on page 144

v “gsk_secure_soc_write() — Send Data on a Secure Socket Connection” on page

145

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_secure_soc_init

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 141

gsk_secure_soc_read() — Receive Data on a Secure Socket

Connection

Format

#include <gskssl.h>

int gsk_secure_soc_read(gsk_soc_data *user_socket,

 void *data_buffer,

 int buffer_length);

General Description

The function gsk_secure_soc_read() receives data on a secure socket connection

using the application specified read routine.

Parameter Description

user_socket The pointer to gsk_soc_data returned from gsk_secure_soc_init()

that initialized the secure socket connection over which data is to

be read.

data_buffer The pointer to the user-supplied buffer in which the data is to be

stored.

buffer_length The number of bytes to be read. This must be less or equal to the

length of the data_buffer.

The maximum length of the data returned will not exceed 32KB because SSL is a

record level protocol and the largest record allowed is 32KB minus the necessary

SSL record headers.

Improperly mixing calls to gsk_secure_soc_read() and any of the sockets read

functions (recv(), read(), readv(), ...), while possible, is not recommended. This

requires very close matching of operations between client and server programs. If

any portion of an SSL record is read using a socket read function, a fatal SSL

protocol error is detected when the next gsk_secure_soc_read() is performed.

SSL and socket reads and writes can be mixed, but they must be performed in

matched sets. If a client application writes 100 bytes of data using one or more of

the socket send() calls, then the server application must read exactly 100 bytes of

data using one or more of the socket recv() calls. This is also true for

gsk_secure_soc_read() and gsk_secure_soc_write().

Since SSL is a record-oriented protocol, SSL must receive an entire record before it

can be decrypted and any data returned to the application. Thus, a select() may

indicate that data is available to be read, but a subsequent gsk_secure_soc_read()

may hang waiting for the remainder of the SSL record to be received.

Returned Value

The gsk_secure_soc_read() call returns an integer. A value of 0 or greater indicates

the number of bytes read. A value of less than 0 indicates that an error occurred.

If GSK_ERROR_IO is returned, a general I/O error occurred and the value of

errno indicates the specific error.

Note: errno may change during this operation. However, errno is not explicitly

used by the SSL interface nor can errno be used to determine the cause of

the error. The return value is the exclusive indicator of any potential errors

from a SSL API.

gsk_secure_soc_read

142 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Related Information

v “gsk_initialize() — Initialize the SSL Environment” on page 135

v “gsk_secure_soc_close() — Close a Secure Socket Connection” on page 137

v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 138

v “gsk_secure_soc_write() — Send Data on a Secure Socket Connection” on page

145

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_secure_soc_read

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 143

gsk_secure_soc_reset() — Refresh the Security Parameters

Format

#include <gskssl.h>

int gsk_secure_soc_reset(gsk_soc_data *user_socket);

General Description

The function gsk_secure_soc_reset() refreshes the security parameters, such as

encryption keys, for this session.

Use gsk_secure_soc_reset() when a client or server needs to reset the SSL

environment. Call gsk_secure_soc_reset() only after a successful call to

gsk_secure_soc_init(). Also, use gsk_secure_soc_reset() when resuming or

restarting a connection for an SSL session that was cached and when resetting the

keys used for that connection.

Parameter Description

user_socket The pointer to gsk_soc_data structure returned from

gsk_secure_soc_init().

Returned Value

The gsk_secure_soc_reset() call returns an integer. A value of 0 indicates success.

A value less than 0 indicates that an error occurred.

Related Information

v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 138

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_secure_soc_reset

144 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

gsk_secure_soc_write() — Send Data on a Secure Socket

Connection

Format

#include <gskssl.h>

int gsk_secure_soc_write(gsk_soc_data *user_socket,

 void *data_buffer,

 int buffer_length);

General Description

The function gsk_secure_soc_write() sends data on a secure socket connection

using the application specified write routine is used to send the data over the

secure socket connection.

Parameter Description

user_socket The pointer to gsk_soc_data returned from gsk_secure_soc_init()

that initialized the secure socket connection over which data is to

be written.

data_buffer The pointer to the user-supplied buffer in which the data to be

written is stored.

buffer_length The the number of bytes to be written. This must be less or equal

to the length of the data_buffer.

Note: SSL for VSE currently supports a maximum of 64KB to be

sent with one gsk_secure_soc_write() call.

If the application data sent to a SSL application is greater than 32KB, multiple calls

to gsk_secure_soc_read() must be made in order to read the entire block of

application data.

SSL and socket reads and writes can be mixed, but they must be performed in

matched sets. If a client application writes 100 bytes of data using one or more of

the socket send calls, then the server application must read exactly 100 bytes of

data using one or more of the socket receive calls. This is also true for

gsk_secure_soc_read() and gsk_secure_soc_write(). If a write buffer is separated

into multiple buffers, the remote site of the secure socket connection must perform

enough gsk_secure_soc_read() operations to read the complete buffer.

Returned Value

The gsk_secure_soc_write() call returns an integer. A value of 0 or greater

indicates the number of bytes written. A value of less than 0 indicates that an error

occurred.

If GSK_ERROR_IO is returned, a general I/O error occurred and the value of

errno indicates the specific error.

Note: errno may change during this operation. However, errno is not explicitly

used by the SSL interface nor can errno be used to determine the cause of

the error. The return value is the exclusive indicator of any potential errors

from a SSL API.

Related Information

v “gsk_initialize() — Initialize the SSL Environment” on page 135

v “gsk_secure_soc_close() — Close a Secure Socket Connection” on page 137

gsk_secure_soc_write

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 145

v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 138

v “gsk_secure_soc_read() — Receive Data on a Secure Socket Connection” on page

142

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_secure_soc_write

146 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

gsk_uninitialize() — Remove Current Settings for the SSL

Environment

Format

#include <gskssl.h>

int gsk_uninitialize(void);

General Description

The function gsk_uninitialize() removes the current overall settings for the SSL

environment. gsk_uninitialize() removes settings such as session timeout values,

and SSL protocols.

Use gsk_uninitialize() when it is required to reset the SSL environment settings.

Then, use gsk_initialize() to create a new set of SSL environment settings.

Note: Before calling gsk_uninitialize(), all SSL sessions created using the current

SSL environment should be closed.

Returned Value

The gsk_uninitialize() call returns an integer. A value of 0 indicates success. A

value less than 0 indicates that an error occurred.

Related Information

v “gsk_initialize() — Initialize the SSL Environment” on page 135

v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 138

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_uninitialize

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 147

gsk_user_set() — Provide Callback Routines

Format

#include <gskssl.h>

int gsk_user_set(int user_data_fid,

 void *user_input_data,

 void *reserved);

General Description

The function gsk_user_set() allows the SSL application to provide callbacks rather

than using the default SSL implementation.

Note: The function gsk_user_set() is currently not used under VSE.

Parameter Description

user_data_fid The integer value to specify the action to perform.

user_input_data

The pointer to specify the action specific information.

reserved Reserved for future use by SSL and should be specified as NULL.

Returned Value

The gsk_user_set() call returns an integer. A value of 0 indicates success. A value

less than 0 indicates that an error occurred.

Related Information

v “gsk_initialize() — Initialize the SSL Environment” on page 135

v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 138

v For more details refer to TCP/IP for VSE 1.5 SSL for VSE User’s Guide.

gsk_user_set

148 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

htonl() — Translate Address Host to Network Long

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

in_addr_t htonl (in_addr_t hostlong);

General Description

The htonl() call translates a long integer from host byte order to network byte

order.

Parameter Description

hostlong Is typed to the unsigned long integer to be put into

network byte order.

Note: For S/390, host byte order and network byte order are the same. However,

for cross platform portability reasons, it is recommended to use the routine

whenever host to network byte order translation is required.

Returned Value

htonl() returns the translated long integer.

Related Information

v “htons() — Translate an Unsigned Short Integer into Network Byte Order” on

page 150

v “ntohl() — Translate a Long Integer into Host Byte Order” on page 161

v “ntohs() — Translate an Unsigned Short Integer into Host Byte Order” on page

162

htonl

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 149

htons() — Translate an Unsigned Short Integer into Network

Byte Order

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

in_port_t htons(in_port_t hostshort);

General Description

The htons() call translates a short integer from host byte order to network byte

order.

Parameter Description

hostshort Is typed to the unsigned short integer to be put

into network byte order.

Note: For S/390, host byte order and network byte order are the same. However,

for cross platform portability reasons, it is recommended to use the routine

whenever host to network byte order translation is required.

Returned Value

htons() returns the translated short integer.

Related Information

v “htonl() — Translate Address Host to Network Long” on page 149

v “ntohl() — Translate a Long Integer into Host Byte Order” on page 161

v “ntohs() — Translate an Unsigned Short Integer into Host Byte Order” on page

162

htons

150 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

inet_addr() — Translate an Internet Address into Network Byte

Order

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

#include <in.h>

in_addr_t inet_addr(const char *cp);

General Description

The inet_addr() call interprets character strings representing host addresses

expressed in standard dotted-decimal notation and returns host addresses suitable

for use as an Internet address.

Parameter Description

cp A character string in standard dotted-decimal (.) notation.

Values specified in standard dotted-decimal notation take one of the following

forms:

a.b.c.d

a.b.c

a.b

a

When a 4-part address is specified, each part is interpreted as a byte of data and

assigned, from left to right, to one of the 4 bytes of an Internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit

quantity and placed in the two rightmost bytes of the network address. This makes

the three-part address format convenient for specifying class-B network addresses

as 128.net.host.

When a two-part address is specified, the last part is interpreted as a 24-bit

quantity and placed in the three rightmost bytes of the network address. This

makes the two-part address format convenient for specifying class-A network

addresses as net.host.

When a one-part address is specified, the value is stored directly in the network

address space without any rearrangement of its bytes.

Numbers supplied as address parts in standard dotted-decimal notation can be

decimal, hexadecimal, or octal. Numbers are interpreted in C language syntax. A

leading 0x implies hexadecimal; a leading 0 implies octal. A number without a

leading 0 implies decimal.

Returned Value

The Internet address is returned in network byte order. If the Internet address is

returned in error—for example, not in the correct format—INADDR_NONE (-1) is

the returned value. INADDR_NONE is defined in the in.h include file.

If there is no TCP/IP product installed or if the TCP/IP product has not

implemented this specific function, the corresponding dummy routine in C

Run-Time always returns the value INADDR_NONE (-1).

Related Information

v “inet_makeaddr() — Create an Internet Host Address” on page 154

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 155

inet_addr

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 151

v “inet_network() — Get the Network Number from the Decimal Host Address”

on page 156

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 157

inet_addr

152 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

inet_lnaof() — Translate a Local Network Address into Host

Byte Order

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

in_addr_t inet_lnaof(struct in_addr in);

General Description

The inet_lnaof() call breaks apart the Internet host address and returns the local

network address portion.

Parameter Description

in The host Internet address.

Returned Value

The local network address is returned in host byte order.

Related Information

v “inet_makeaddr() — Create an Internet Host Address” on page 154

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 155

v “inet_network() — Get the Network Number from the Decimal Host Address”

on page 156

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 157

inet_lnaof

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 153

inet_makeaddr() — Create an Internet Host Address

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

struct in_addr inet_makeaddr(in_addr_t net, in_addr_t lna);

General Description

The inet_makeaddr() call takes a network number and a local network address and

constructs an Internet address.

Parameter Description

net The network number.

lna The local network address.

Returned Value

The Internet address is returned in network byte order.

Related Information

v “inet_lnaof() — Translate a Local Network Address into Host Byte Order” on

page 153

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 155

v “inet_network() — Get the Network Number from the Decimal Host Address”

on page 156

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 157

inet_makeaddr

154 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

inet_netof() — Get the Network Number from the Internet Host

Address

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

in_addr_t inet_netof(struct in_addr in);

General Description

The inet_netof() call breaks apart the Internet host address and returns the

network number portion.

Parameter Description

in The Internet address in network byte order.

Returned Value

The network number is returned in host byte order.

Related Information

v “inet_lnaof() — Translate a Local Network Address into Host Byte Order” on

page 153

v “inet_makeaddr() — Create an Internet Host Address” on page 154

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 157

inet_netof

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 155

inet_network() — Get the Network Number from the Decimal

Host Address

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

in_addr_t inet_network(const char *cp);

General Description

The inet_network() call interprets character strings representing addresses

expressed in standard dotted-decimal notation and returns numbers suitable for

use as a network number.

Parameter Description

cp A character string in standard, dotted decimal (.) notation.

Returned Value

The network number is returned in host byte order.

Related Information

v “inet_lnaof() — Translate a Local Network Address into Host Byte Order” on

page 153

v “inet_makeaddr() — Create an Internet Host Address” on page 154

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 157

inet_network

156 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

inet_ntoa() — Get the Decimal Internet Host Address

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

char *inet_ntoa(struct in_addr in);

General Description

The inet_ntoa() call returns a pointer to a string expressed in the dotted-decimal

notation. inet_ntoa() accepts an Internet address expressed as a 32-bit quantity in

network byte order and returns a string expressed in dotted-decimal notation.

Parameter Description

in The host Internet address.

Returned Value

Returns a pointer to the Internet address expressed in dotted-decimal notation. The

storage pointed to exists on a per-thread basis and is overwritten by subsequent

calls.

Related Information

v “inet_addr() — Translate an Internet Address into Network Byte Order” on page

151

v “inet_lnaof() — Translate a Local Network Address into Host Byte Order” on

page 153

v “inet_makeaddr() — Create an Internet Host Address” on page 154

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 155

v “inet_network() — Get the Network Number from the Decimal Host Address”

on page 156

inet_ntoa

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 157

ioctl() — Control Socket

#include <ioctl.h>

int ioctl(int socket int cmd, ... /* arg */);

General Description

ioctl() performs a variety of control functions on sockets.

The cmd argument selects the control function to be performed and will depend on

the socket being addressed.

The arg argument represents additional information that is needed by this specific

device to perform the requested function. The type of arg depends upon the

particular control request, but it is either an integer or a pointer to a

request-specific data structure.

Sockets

The following ioctl() commands are used with sockets:

Command Description

FIONBIO Sets or clears nonblocking I/O for a socket. arg is a

pointer to an integer. If the integer is 0,

nonblocking I/O on the socket is cleared.

Otherwise, the socket is set for nonblocking I/O.

Terminal and Sockets Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EBADF The socket parameter is not a valid socket descriptor.

EINVAL The request is invalid or not supported.

EMVSPARM Incorrect parameters were passed to the service.

Example

The following is an example of the ioctl() call.

int s;

int dontblock;

int rc; ...
/* Place the socket into nonblocking mode */

dontblock = 1;

rc = ioctl(s, FIONBIO, (char *) &dontblock); ...

Related Information

v “close() — Close a Socket” on page 109

v “fcntl() — Control Open Socket Descriptors” on page 113

v “read() — Read From a Socket” on page 163

v “write() — Write Data on a Socket” on page 187

ioctl

158 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

listen() — Prepare the Server for Incoming Client Requests

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

int listen(int socket, int backlog);

General Description

The listen() call applies only to stream sockets. It establishes a readiness to accept

client connection requests, and creates a connection request queue of length backlog

to queue incoming connection requests. Once full, additional connection requests

are rejected.

Parameter Description

socket The socket descriptor.

backlog Defines the maximum length for the queue of pending connections.

This parameter is ignored. A value of 1 is always assumed.

The listen() call indicates a readiness to accept client connection requests. It

transforms an active socket into a passive socket. Once called, socket can never be

used as an active socket to initiate connection requests. Calling listen() is the

third of four steps that a server performs to accept a connection. It is called after

allocating a stream socket with socket(), and after binding a name to socket with

bind(). It must be called before calling accept().

If the backlog is less than 0, backlog is set to 0. If the backlog is greater than

SOMAXCONN, as defined in socket.h, backlog is set to SOMAXCONN.

The value cannot exceed the maximum number of connections allowed by the

installed TCP/IP.

Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EBADF The socket parameter is not a valid socket

descriptor.

EDESTADDRREQ The socket is not bound to a local address, and the

protocol does not support listening on an unbound

socket.

EINVAL An invalid argument was supplied. The socket is

not named (a bind() has not been done), or the

socket is ready to accept connections (a listen()

has already been done). The socket is already

connected.

ENOBUFS Insufficient system resources are available to

complete the call.

EOPNOTSUPP The socket parameter is not a socket descriptor that

supports the listen() call.

Related Information

v “accept() — Accept a New Connection on a Socket” on page 92

v “bind() — Bind a Name to a Socket” on page 106

v “connect() — Connect a Socket” on page 110

listen

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 159

v “socket() — Create a Socket” on page 183

listen

160 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

ntohl() — Translate a Long Integer into Host Byte Order

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

in_addr_t ntohl(in_addr_t netlong);

General Description

The ntohl() call translates a long integer from network byte order to host byte

order.

Parameter Description

netlong Is typed to the unsigned long integer to be put into

host byte order.

Note: For S/390, host byte order and network byte order are the same. However,

for cross platform portability reasons, it is recommended to use the routine

whenever host to network byte order translation is required.

Returned Value

ntohl() returns the translated long integer.

Related Information

v “htonl() — Translate Address Host to Network Long” on page 149

v “htons() — Translate an Unsigned Short Integer into Network Byte Order” on

page 150

v “ntohs() — Translate an Unsigned Short Integer into Host Byte Order” on page

162

ntohl

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 161

ntohs() — Translate an Unsigned Short Integer into Host Byte

Order

#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>

in_port_t ntohs(in_port_t netshort);

General Description

The ntohs() call translates a short integer from network byte order to host byte

order.

Parameter Description

netshort Is typed to the unsigned short integer to be put into host byte

order.

Note: For S/390, host byte order and network byte order are the same. However,

for cross platform portability reasons, it is recommended to use the routine

whenever host to network byte order translation is required.

Returned Value

ntohs() returns the translated short integer.

Related Information

v “htonl() — Translate Address Host to Network Long” on page 149

v “htons() — Translate an Unsigned Short Integer into Network Byte Order” on

page 150

v “ntohl() — Translate a Long Integer into Host Byte Order” on page 161

ntohs

162 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

read() — Read From a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

ssize_t read(int fs, void *buf, ssize_t N);

General Description

From the socket indicated by the socket descriptor fs, the read() function reads N

bytes of input into the memory area indicated by buf. If successful, read() changes

the file offset by the number of bytes read. N should not be greater than INT_MAX

(defined in the limits.h header file).

Read() is equivalent to recv() with no flags set.

Parameter Description

fs The socket descriptor.

buf The pointer to the buffer that receives the data.

N The length in bytes of the buffer pointed to by the buf parameter.

Behavior for Sockets

The read() call reads data on a socket with descriptor fs and stores it in a buffer.

The read() all applies only to connected sockets. This call returns up to N bytes of

data. If there are fewer bytes available than requested, the call returns the number

currently available. If data is not available for the socket fs, and the socket is in

blocking mode, the read() call blocks the caller until data arrives. If data is not

available, and the socket is in nonblocking mode, read() returns a −1 and sets the

error code to EWOULDBLOCK. See “ioctl() — Control Socket” on page 158 or

“fcntl() — Control Open Socket Descriptors” on page 113 for a description of how

to set nonblocking mode.

For datagram sockets, this call returns the entire datagram that was sent, provided

that the datagram fits into the specified buffer. Excess datagram data is discarded.

Stream sockets act like streams of information with no boundaries separating data.

For example, if applications A and B are connected with a stream socket and

application A sends 1000 bytes, each call to this function can return 1 byte, or 10

bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should

place this call in a loop, calling this function until all data has been received.

Returned Value

If successful, read() returns the number of bytes actually read and placed in buf.

This number is less than or equal to N. The value −1 indicates an error. The value

0 indicates the connection is closed.

If read() fails, it returns the value −1 and sets errno to one of the following:

EBADF fs is not a valid socket descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT Using the buf and N parameters would result in an

attempt to access memory outside the caller’s

address space.

EINVAL N contains a value that is less than 0, or the

request is invalid or not supported, or the

STREAM or multiplexer referenced by fs is linked

(directly or indirectly) downstream from a

multiplexer.

read

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 163

EIO An I/O error occurred.

ENOBUFS Insufficient system resources are available to

complete the call.

ENOTCONN A receive was attempted on a connection-oriented

socket that is not connected.

ETIMEDOUT The connection timed out during connection

establishment, or due to a transmission timeout on

active connection.

EWOULDBLOCK The socket is in nonblocking mode and data is not

available to read.

If there is no TCP/IP product installed or if the TCP/IP product has not

implemented this specific function, the corresponding dummy routine in C

Run-Time always returns the value -1 and errno is set to ENOTCONN.

Example

The following are examples of the read() call.

#include <stdio.h>

/* Read from the socket aSocket

 and print number of byte read and string read.

 Return number of bytes read or -1 for no success.

 */

int readFromSocket(int aSocket)

{ int numberOfBytesReceived;

 char dataBuffer 255 ; /* data to read */

 numberOfBytesReceived=

 read(aSocket, dataBuffer, sizeof(dataBuffer));

 if (numberOfBytesReceived < 0)

 { perror("read"); return -1; }

 else

 { dataBuffer numberOfBytesReceived =0;

 printf("Read string ’%s’ (length %d).\n",

 dataBuffer,numberOfBytesReceived);

 return numberOfBytesReceived;

 }

}

Related Information

v “close() — Close a Socket” on page 109

v “connect() — Connect a Socket” on page 110

v “fcntl() — Control Open Socket Descriptors” on page 113

v “getsockopt() — Get the Options Associated with a Socket” on page 125

v “ioctl() — Control Socket” on page 158

v “recv() — Receive Data on a Socket” on page 165

v “recvfrom() — Receive Messages on a Socket” on page 167

v “select() — Monitor Activity on Sockets” on page 169

v “selectex() — Monitor Activity on Sockets” on page 173

v “send() — Send Data on a Socket” on page 175

v “sendto() — Send Data on a Socket” on page 177

v “setsockopt() — Set Options Associated with a Socket” on page 179

v “socket() — Create a Socket” on page 183

v “write() — Write Data on a Socket” on page 187

read

164 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

recv() — Receive Data on a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

ssize_t recv(int socket,

 void *buf,

 size_t len,

 int flags);

General Description

The recv() call receives data on a socket with descriptor socket and stores it in a

buffer. The recv() call applies only to connected sockets.

Parameter Description

socket The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.

flags reserved zero

This call returns the length of the incoming message or data. If a datagram packet

is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If

data is not available for the socket socket, and socket is in blocking mode, the recv()

call blocks the caller until data arrives. If data is not available and socket is in

nonblocking mode, recv() returns a −1 and sets the error code to EWOULDBLOCK.

See “fcntl() — Control Open Socket Descriptors” on page 113 or “ioctl() — Control

Socket” on page 158 for a description of how to set nonblocking mode.

For datagram sockets, this call returns the entire datagram that was sent, provided

that the datagram fits into the specified buffer. Stream sockets act like streams of

information with no boundaries separating data. For example, if applications A

and B are connected with a stream socket and application A sends 1000 bytes, each

call to this function can return 1 byte, or 10 bytes, or the entire 1000 bytes.

Therefore, applications using stream sockets should place this call in a loop, calling

this function until all data has been received.

Returned Value

If successful, the length of the message or datagram in bytes is returned. The value

−1 indicates an error. The value 0 indicates the connection is closed. The value of

the error code indicates the specific error.

Error Code Description

EBADF socket is not a valid socket descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT Using the buf and len parameters would result in

an attempt to access storage outside the caller’s

address space.

EINVAL The request is invalid or not supported. The

MSG_OOB flag is set and no out-of-band data is

available.

ENOBUFS Insufficient system resources are available to

complete the call.

ENOTCONN A receive is attempted on a connection-oriented

socket that is not connected.

recv

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 165

EOPNOTSUPP The specified flags are not supported for this

socket type or protocol.

ETIMEDOUT The connection timed out during connection

establishment, or due to a transmission timeout on

active connection.

EWOULDBLOCK socket is in nonblocking mode and data is not

available to read.

Related Information

v “connect() — Connect a Socket” on page 110

v “fcntl() — Control Open Socket Descriptors” on page 113

v “getsockopt() — Get the Options Associated with a Socket” on page 125

v “ioctl() — Control Socket” on page 158

v “read() — Read From a Socket” on page 163

v “recvfrom() — Receive Messages on a Socket” on page 167

v “select() — Monitor Activity on Sockets” on page 169

v “selectex() — Monitor Activity on Sockets” on page 173

v “send() — Send Data on a Socket” on page 175

v “sendto() — Send Data on a Socket” on page 177

v “setsockopt() — Set Options Associated with a Socket” on page 179

v “socket() — Create a Socket” on page 183

v “write() — Write Data on a Socket” on page 187

recv

166 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

recvfrom() — Receive Messages on a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

int recvfrom(int socket,

 void *buffer,

 size_t length,

 int flags,

 struct sockaddr *name,

 size_t *namelen);

General Description

The recvfrom() call receives data on a socket named by descriptor socket and stores

it in a buffer. The recvfrom() call applies to any datagram socket, whether

connected or unconnected.

Parameter Description

socket The socket descriptor.

buffer The pointer to the buffer that receives the data.

length The length in bytes of the buffer pointed to by the buffer parameter.

flags reserved zero

name A pointer to a socket address structure from which data is

received. If name is a nonzero value, the source address is returned.

namelen The size of name in bytes.

If name is nonzero, the source address of the message is filled. namelen must first be

initialized to the size of the buffer associated with name, and is then modified on

return to indicate the actual size of the address stored there.

This call returns the length of the incoming message or data. If a datagram packet

is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If

data is not available for the socket socket, and socket is in blocking mode, the

recvfrom() call blocks the caller until data arrives. If data is not available and

socket is in nonblocking mode, recvfrom() returns a −1 and sets the error code to

EWOULDBLOCK. See “fcntl() — Control Open Socket Descriptors” on page 113 or

“ioctl() — Control Socket” on page 158 for a description of how to set nonblocking

mode.

For datagram sockets, this call returns the entire datagram that was sent, provided

that the datagram fits into the specified buffer. Stream sockets act like streams of

information with no boundaries separating data. For example, if applications A

and B are connected with a stream socket and application A sends 1000 bytes, each

call to this function can return 1 byte, or 10 bytes, or the entire 1000 bytes.

Therefore, applications using stream sockets should place this call in a loop, calling

this function until all data has been received.

Returned Value

If successful, the length of the message or datagram in bytes is returned. The value

0 indicates the connection is closed, the value −1 indicates an error. The value of

the error code indicates the specific error.

Error Code Description

EBADF socket is not a valid socket descriptor.

ECONNRESET The connection was forcibly closed by a peer.

recvfrom

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 167

EFAULT Using the buffer and length parameters would result

in an attempt to access storage outside the caller’s

address space.

EINVAL The request is invalid or not supported. The

MSG_OOB flag is set and no out-of-band data is

available.

ENOBUFS Insufficient system resources are available to

complete the call.

ENOTCONN A receive is attempted on a connection-oriented

socket that is not connected.

EOPNOTSUPP The specified flags are not supported for this

socket type.

ETIMEDOUT The connection timed out during connection

establishment, or due to a transmission timeout on

active connection.

EWOULDBLOCK socket is in nonblocking mode and data is not

available to read.

Related Information

v “fcntl() — Control Open Socket Descriptors” on page 113

v “getsockopt() — Get the Options Associated with a Socket” on page 125

v “ioctl() — Control Socket” on page 158

v “read() — Read From a Socket” on page 163

v “recv() — Receive Data on a Socket” on page 165

v “select() — Monitor Activity on Sockets” on page 169

v “selectex() — Monitor Activity on Sockets” on page 173

v “send() — Send Data on a Socket” on page 175

v “sendto() — Send Data on a Socket” on page 177

v “setsockopt() — Set Options Associated with a Socket” on page 179

v “socket() — Create a Socket” on page 183

v “write() — Write Data on a Socket” on page 187

recvfrom

168 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

select() — Monitor Activity on Sockets

#define _XOPEN_SOURCE_EXTENDED 1

#include <types.h>

#include <time.h>

int select(int num,

 fd_set *readlist,

 fd_set *writelist,

 fd_set *exceptlist,

 struct timeval *timeout);

General Description

The select() call monitors activity on a set of sockets until a timeout occurs, to

see if any of the sockets have read, write, or exception processing conditions

pending.

Parameter Description

num The number of socket descriptors to check.

 If your application allocates sockets 3, 4, 5, 6, and 7 and you want

to check all of your allocations, num should be set to 8, the highest

descriptor you specified + 1. If your application checks sockets 3

and 4, num should be set to 5.

readlist,writelist,exceptlist

Pointers to fd_set types, arrays of message queue identifiers, or

sellist structures to check for reading, writing, and exceptional

conditions, respectively. The type of parameter to pass depends on

whether you want to monitor socket descriptors, message queue

identifiers, or both. To monitor socket descriptors, set the

high-order halfword of nmsgsfds to 0, the low-order halfword to

(highest descriptor number + 1), and use fd_set pointers.

timeout The pointer to the time to wait for the select() call to complete.

If timeout is not a NULL pointer, it specifies a maximum interval to wait for the

selection to complete. If timeout is a NULL pointer, the select() call blocks until a

socket or message becomes ready. To poll the sockets and return immediately,

timeout should be a non-NULL pointer to a zero-valued timeval structure.

To allow you to test more than one socket at a time, the sockets to test are placed

into a bit set of type fd_set. A bit set is a string of bits such that if x is an element

of the set, the bit representing x is set to 1. If x is not an element of the set, the bit

representing x is set to 0. For example, if socket 33 is an element of a bit set, then

bit 33 is set to 1. If socket 33 is not an element of a bit set, then bit 33 is set to 0.

Because the bit sets contain a bit for every socket that a process can allocate, the

size of the bit sets is constant. If your program needs to allocate a large number of

sockets, you may need to increase the size of the bit sets. Increasing the size of the

bit sets should be done when you compile the program. To increase the size of the

bit sets, define FD_SETSIZE before including time.h. FD_SETSIZE is the largest

value of any socket that your program expects to use select() on. It is defined to

be 2048 in time.h. However, TCP/IP for VSE allows for 8000 sockets.

Note: FD_SETSIZE may only be defined by the application program if the

extended version of select() is used (by defining _OPEN_MSGQ_EXT). Do

NOT define FD_SETSIZE in your program if a sellist structure will be used.

select

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 169

Note: If your application program requires a large number of socket descriptors,

you should protect your code from possible run-time errors by:

v Adding a check before your select() or selectex() calls to see if num is

larger than FD_SETSIZE.

v Dynamically allocate bit strings large enough to hold the largest

descriptor value in your application program, rather than rely on the

static bit strings created at compile time. When allocating your own bit

strings, use malloc() to define an area large enough to represent each bit,

rounded up to the next 4-byte multiple. For example, if your largest

descriptor value is 31, you need 4 bytes; if your largest descriptor is 32,

you need 8 bytes.

v If you dynamically allocate your own bit strings, the FD_ZERO() macro

will not work. The application must zero that storage, by using the

memset function—that is, memset(ptr,0,mallocsize). The other macros

can be used with the dynamically allocated bit strings, as long as the

descriptor you are manipulating is within the bit string. If the descriptor

number is larger than the bit string, unpredictable results can occur.

The application program must make sure that the parameters readlist, writelist, and

exceptlist point to bit strings that are as large as the bit string size in parameter

num. TCP/IP services will try to access bits 0 through num-1−1, for each of the bit

strings. If the bit strings are too short, you will receive unpredictable results when

you run your application program.

The following macros are provided to manipulate bit sets.

Macro Description

FD_ZERO(&fdset)

Sets all bits in the bit set fdset to zero. After this operation, the bit

set does not contain sockets as elements. This macro should be

called to initialize the bit set before calling FD_SET() to set a socket

as a member.

Note: If you used malloc() to dynamically allocate a new area, the

FD_ZERO() macro can cause unpredictable results and

should not be used. You should zero the area using the

memset() function.

FD_SET(sock, &fdset)

Sets the bit for the socket sock to a 1, making sock a member of the

bit set fdset.

FD_CLR(sock, &fdset)

Clears the bit for the socket sock in bit set fdset. This operation sets

the appropriate bit to a zero.

FD_ISSET(sock, &fdset)

Returns > 0 if sock is a member of the bit set fdset. Returns zero if

sock is not a member of fdset. (This operation returns the bit

representing sock.)

The following macros are provided to manipulate the nmsgsfds parameter and the

return value from select():

Macro Description

select

170 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

_SET_FDS_MSGS(nmsgsfds, nmsgs, nfds)

Sets the high-order halfword of nmsgsfds to nmsgs, and sets the

low-order halfword of nmsgsfds to nfds.

_NFDS(n) If the return value n from select() is non-negative, returns the

number of descriptors that meet the read, write, and exception

criteria. A descriptor may be counted multiple times if it meets

more than one given criterion.

_NMSGS(n) If the return value n from select() is non-negative, returns the

number of message queues that meet the read, write, and

exception criteria.

A socket is ready for reading when incoming data is buffered for it or when a

connection request is pending. To test whether any sockets are ready for reading,

use either FD_ZERO() or memset(), if the function was dynamically allocated, to

initialize the fdset bit set in readlist and invoke FD_SET() for each socket to test.

A socket is ready for writing if there is buffer space for outgoing data. A

nonblocking stream socket in the process of connecting (connect() returned

EINPROGRESS) is selected for write when the connect() completes. A call to

write(), send(), or sendto() does not block provided that the amount of data is

less than the amount of buffer space. To test whether any sockets are ready for

writing, initialize the fdset bit set in writelist with either FD_ZERO() or memset(), if

dynamically allocated, and use FD_SET() for each socket to test.

The programmer can pass NULL for any of the readlist, writelist, and exceptlist

parameters. However, when they are not NULL, they must all point to the same

type of structures.

Because the sets of sockets passed to select() are bit sets, the select() call must

test each bit in each bit set before polling the socket for its status. The select() call

tests only sockets in the range 0 to num−1.

Returned Value

The value −1 indicates the error code should be checked for an error. The value

zero indicates an expired time limit.

When the return value is greater than 0, then it is similar to nmsgsfds in that the

high-order 16 bits give the number of message queues, and the low-order 16 bits

give the number of descriptors. These values indicate the sum total that meet each

of the read, write, and exception criteria. Should the return value for socket

descriptors be greater than 65,535, only 65,535 will be reported.

If the return value is greater than zero, the sockets that are ready in each bit set are

set to 1. Sockets in each bit set that are not ready are set to zero. Use the macro

FD_ISSET() with each socket to test its status.

Error Code Description

EBADF One of the bit sets specified an invalid socket or a message queue

identifier is invalid. FD_ZERO() was probably not called to clear

the bit set before the sockets were set.

EFAULT One of the parameters contained an invalid address.

EINVAL One of the fields in the timeval structure is invalid, or there was

an invalid nmsgsfds value.

EIO One of the sockets being selected has become inoperative due to a

select

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 171

network problem. This can occur for a socket if TCP/IP is

shutdown. To find out which descriptor is bad, you can code a

loop to individually select() on each descriptor, without waiting,

until you get a failure.

Example

The following are examples of the select() call.

#define _OPEN_MSGQ_EX /* needed for _SET_FDS_MSGS macro */

#include <time.h>

#include <types.h>

#include <stdio.h>

/* This function returns

 -1 if an error occurred

 0 if aSocket is NOT ready for read

 1 if aSocket is ready for read.

 */

int testSocketReadyForRead(int aSocket)

{

 fd_set socketSet;

 struct timeval timeout;

 int rc, number;

 /* Initialize timeout structure. */

 timeout.tv_sec=1; */ seconds */

 /* Initialize socket set bits and add sockets to be examined. */

 FD_ZERO(&socketSet)

 FD_SET(aSocket, &socketSet);

 /* Set the number parameter. */

 _SET_FDS_MSGS(number,

 0, /* don’t monitor message queues */

 aSocket+1);

 /* check for READ availability on this socket */

 rc=select(number,

 &socketSet, /* set of sockets to check for readability */

 NULL, /* set of sockets to check whether ready to write */

 NULL, /* set of sockets to check for pending exceptions */

 &timeout);

 if (rc<0)

 { perror("select");

 return rc;

 }

 else return (FD_ISSET(aSocket,&socketSet) > 0);

}

Related Information

v “selectex() — Monitor Activity on Sockets” on page 173

select

172 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

selectex() — Monitor Activity on Sockets

#define _XOPEN_SOURCE_EXTENDED 1

#define _ALL_SOURCE

#include <types.h>

#include <time.h>

int selectex(int num,

 fd_set *readlist,

 fd_set *writelist,

 fd_set *exceptlist,

 struct timeval *timeout,

 int *ecbptr);

General Description

The selectex() call provides an extension to the select() call by allowing you to

use an ECB that defines an event not described by readlist, writelist, or exceptlist.

The selectex() call monitors activity on a set of sockets until a timeout occurs, or

until the ECB is posted, to see if any of the sockets have read, write, or exception

processing conditions pending.

See select() for more information.

Parameter Description

num The number of socket descriptors to check. (Refer to select() for a

full description of this and other parameters below.)

readlist A pointer to an fd_set type to check for reading.

writelist A pointer to an fd_set type to check for writing.

exceptlist A pointer to an fd_set type to be checked for exceptional pending

conditions.

timeout The pointer to the time to wait for the selectex() call to complete.

ecbptr This variable can contain one of the following values:

1. A pointer to a user event control block. To specify this usage of

ecbptr, the high-order bit must be set to ’0’B.

2. A pointer to a list of ECBs. To specify this usage of ecbptr, the

high order bit must be set to ’1’B.

The list can contain the pointers for up to 254 ECBs. The

high-order bit of the last pointer in the list must be set to ’1’B.

3. A NULL pointer. This indicates no ECBs are specified.

Returned Value

The value −1 indicates the error code should be checked for an error. The value 0

indicates an expired time limit or that the ECB is posted.

When the return value is greater than 0, this value indicates the sum total that

meet each of the read, write, and exception criteria. Note that a descriptor may be

counted multiple times if it meets more than one requested criterion. Should the

return value for socket descriptors be greater than 65,535, only 65,535 will be

reported.

If the return value is greater than zero, the sockets that are ready in eachbit set are

set to 1. Sockets in each bit set that are not ready are set to zero. Use the macro

FD_ISSET() with each socket to test its status.

selectex

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 173

Related Information

v “accept() — Accept a New Connection on a Socket” on page 92

v “connect() — Connect a Socket” on page 110

v “recv() — Receive Data on a Socket” on page 165

v “selectex() — Monitor Activity on Sockets” on page 173

v “send() — Send Data on a Socket” on page 175

selectex

174 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

send() — Send Data on a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

ssize_t send(int socket, const void *msg, size_t length, int flags);

General Description

The send() call sends data on the socket with descriptor socket. The send() call

applies to all connected sockets.

Parameter Description

socket The socket descriptor.

msg The pointer to the buffer containing the message to transmit.

length The length of the message pointed to by the msg parameter.
Unless the PTF for APAR PQ55591 is installed, the maximum

number of bytes to be specified is 64K.

flags reserved zero

If there is not enough available buffer space to hold the socket data to be

transmitted, and the socket is in blocking mode, send() blocks the caller until

additional buffer space becomes available. If the socket is in nonblocking mode,

send() returns a −1 and sets the error code to EWOULDBLOCK. See “fcntl() —

Control Open Socket Descriptors” on page 113 or “ioctl() — Control Socket” on

page 158 for a description of how to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, provided that the

datagram fits into the TCP/IP buffers. Stream sockets act like streams of

information with no boundaries separating data. For example, if an application

wishes to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or

the entire 1000 bytes. Therefore, applications using stream sockets should place this

call in a loop, calling this function until all data has been sent.

Returned Value

The value −1 indicates locally detected errors. The value of the error code indicates

the specific error. No indication of failure to deliver is implicit in a send() routine.

A value of 0 or greater indicates the number of bytes sent, however, this does not

assure that data delivery was complete.

Error Code Description

EBADF socket is not a valid socket descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not connection-oriented and no peer

address is set.

EFAULT Using the msg and length parameters would result

in an attempt to access storage outside the caller’s

address space.

ENOBUFS Buffer space is not available to send the message.

ENOTCONN The socket is not connected.

EOPNOTSUPP The socket argument is associated with a socket that

does not support one or more of the values set in

flags.

send

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 175

EWOULDBLOCK socket is in nonblocking mode and no data buffers

are available.

Related Information

v “connect() — Connect a Socket” on page 110

v “fcntl() — Control Open Socket Descriptors” on page 113

v “getsockopt() — Get the Options Associated with a Socket” on page 125

v “ioctl() — Control Socket” on page 158

v “read() — Read From a Socket” on page 163

v “recv() — Receive Data on a Socket” on page 165

v “recvfrom() — Receive Messages on a Socket” on page 167

v “select() — Monitor Activity on Sockets” on page 169

v “selectex() — Monitor Activity on Sockets” on page 173

v “sendto() — Send Data on a Socket” on page 177

v “socket() — Create a Socket” on page 183

v “write() — Write Data on a Socket” on page 187

send

176 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

sendto() — Send Data on a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

ssize_t sendto(int socket,

 const void *msg,

 size_t length,

 int flags,

 const struct sockaddr *address,

 size_t address_length);

General Description

The sendto() call sends data on the socket with descriptor socket. The sendto() call

applies to either connected or unconnected sockets.

Parameter Description

socket The socket descriptor.

msg The pointer to the buffer containing the message to transmit.

length The length of the message in the buffer pointed to by the msg

parameter.
Unless the PTF for APAR PQ55591 is installed, the maximum

number of bytes to be specified is 64K.

flags reserved zero

address The address of the target.

address_length The size of the address pointed to by address.

If there is not enough available buffer space to hold the socket data to be

transmitted, and the socket is in blocking mode, sendto() blocks the caller until

additional buffer space becomes available. If the socket is in nonblocking mode,

sendto() returns a −1 and sets the error code to EWOULDBLOCK. See “fcntl() —

Control Open Socket Descriptors” on page 113 or “ioctl() — Control Socket” on

page 158 for a description of how to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, provided that the

datagram fits into the TCP/IP buffers. Stream sockets act like streams of

information with no boundaries separating data. For example, if an application

wishes to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or

the entire 1000 bytes. Therefore, applications using stream sockets should place this

call in a loop, calling this function until all data has been sent.

Returned Value

If successful, the number of characters sent is returned. The value −1 indicates an

error. The value of errno indicates the specific error. No indication of failure to

deliver is implied in the return value of this call when used with datagram sockets.

A value of 0 or greater indicates the number of bytes sent, however, this does not

assure that data delivery was complete.

Error Code Description

EAFNOSUPPORT The address family is not supported (it is not

AF_INET).

EBADF socket is not a valid socket descriptor.

ECONNRESET A connection was forcibly closed by a peer.

sendto

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 177

EFAULT Using the msg and length parameters would result

in an attempt to access storage outside the caller’s

address space.

EINVAL address_length is not the size of a valid address for

the specified address family.

ENOBUFS Buffer space is not available to send the message.

ENOTCONN The socket is not connected.

EOPNOTSUPP The socket argument is associated with a socket that

does not support one or more of the values set in

flags.

EWOULDBLOCK socket is in nonblocking mode and no data buffers

are available.

Related Information

v “read() — Read From a Socket” on page 163

v “recv() — Receive Data on a Socket” on page 165

v “recvfrom() — Receive Messages on a Socket” on page 167

v “select() — Monitor Activity on Sockets” on page 169

v “send() — Send Data on a Socket” on page 175

v “socket() — Create a Socket” on page 183

v “write() — Write Data on a Socket” on page 187

sendto

178 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

setsockopt() — Set Options Associated with a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

int setsockopt(int socket,

 int level,

 int option_name,

 const void *option value,

 size_t option_length);

General Description

The setsockopt() call sets options associated with a socket. Options can exist at

multiple protocol levels; they are always present at the highest socket level.

Parameter Description

socket The socket descriptor.

level The level for which the option is being set. Only SOL_SOCKET is

supported.

option_name The name of a specified socket option.

option_value The pointer to option data.

option_length The length of the option data.

When manipulating socket options, you must specify the level at which the option

resides and the name of the option. To manipulate options at the socket level, the

level parameter must be set to SOL_SOCKET, as defined in socket.h

The option_value and option_length parameters are used to pass data used by the

particular set command. The option_value parameter points to a buffer containing

the data needed by the set command. The option_value parameter is optional and

can be set to the NULL pointer, if data is not needed by the command. The

option_length parameter must be set to the size of the data pointed to by

option_value.

All of the socket-level options except SO_LINGER expect option_value to point to

an integer and option_length to be set to the size of an integer. When the integer is

nonzero, the option is enabled. When it is zero, the option is disabled. The

SO_LINGER option expects option_value to point to a linger structure, as defined in

socket.h. This structure is defined in the following example:

struct linger

{

 int l_onoff; /* option on/off */

 int l_linger; /* linger time */

};

The l_onoff field is set to 0 if the SO_LINGER option is begin disabled. A nonzero

value enables the option. The l_linger field specifies the amount of time to linger

on close. The units of l_linger are seconds.

The following options are recognized at the socket level:

Option Description

SO_LINGER Lingers on close if data is present. When this option is enabled and

there is unsent data present when close() is called, the calling

application program is blocked during the close() call, until the

data is transmitted or the connection has timed out. If this option

setsockopt

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 179

is disabled, the TCP/IP address space waits to try to send the data.

Although the data transfer is usually successful, it cannot be

guaranteed, because the TCP/IP address space waits only a finite

amount of time trying to send the data. The close() call returns

without blocking the caller. This option has meaning only for

stream sockets.

SO_KEEPALIVE

This option is provided for source compatibility reasons only. It

will not perform any action, but the user should instead use the

common TCP/IP setting : SET PULSE_TIME=nnn . This TCP/IP

option has the same effect on the entire TCP/IP partition as

SO_KEEPALIVE is supposed to have for a single TCP connection.

SO_REUSEADDR

This option is provided for source compatibility reasons only. It

will not perform any action, but TCP/IP implicitly allows for

immediate address reuse.

Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EBADF The socket parameter is not a valid socket

descriptor.

EFAULT Using option_value and option_length parameters

would result in an attempt to access storage

outside the caller’s address space.

EINVAL The specified option is invalid at the specified

socket level or the socket has been shut down.

ENOBUFS Insufficient system resources are available to

complete the call.

ENOPROTOOPT The option_name parameter is unrecognized, or the

level parameter is not SOL_SOCKET.

ENOSYS The function is not implemented. You attempted to

use a function that is not yet available.

Example

The following are examples of the setsockopt() call. See “getsockopt() — Get the

Options Associated with a Socket” on page 125 for examples of how the

getsockopt() options set are queried.

#include <socket.h>

int rc;

int s;

int option_value;

struct linger l; ...
/* I want to linger on close */

l.l_onoff = 1;

l.l_linger = 100;

rc = setsockopt(s, SOL_SOCKET, SO_LINGER, &l, sizeof(l));

setsockopt

180 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Related Information

v “fcntl() — Control Open Socket Descriptors” on page 113

v “getsockopt() — Get the Options Associated with a Socket” on page 125

v “ioctl() — Control Socket” on page 158

v “socket() — Create a Socket” on page 183

setsockopt

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 181

shutdown() — Shut Down a Connection

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

long shutdown(int socket, int how);

General Description

The shutdown() call shuts down a connection.

Parameter Description

socket The socket descriptor.

how The condition of the shutdown. how can have a value of

SHUT_RDWR, which ends communication both to and from

socket socket.

Returned Value

The value 0 indicates success; the value −1 indicates an error. The value of the

error code indicates the specific error.

Error Code Description

EBADF socket is not a valid socket descriptor.

EINVAL The how parameter was not set to one of the valid

values.

ENOBUFS Insufficient system resources are available to

complete the call.

ENOTCONN The socket is not connected.

Related Information

v “accept() — Accept a New Connection on a Socket” on page 92

v “close() — Close a Socket” on page 109

v “connect() — Connect a Socket” on page 110

v “socket() — Create a Socket” on page 183

shutdown

182 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

socket() — Create a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <socket.h>

#include <in.h>

int socket(int domain, int type, int protocol);

General Description

The socket() call creates an endpoint for communication and returns a socket

descriptor representing the endpoint. Different types of sockets provide different

communication services.

Parameter Description

domain The address domain requested, AF_INET.

type The type of socket created, either SOCK_STREAM or

SOCK_DGRAM.

protocol The protocol requested. Some possible values are 0,

IPPROTO_UDP, or IPPROTO_TCP.

The domain parameter specifies a communication domain within which

communication is to take place. This parameter selects the address family (format

of addresses within a domain) that is used. The family supported is AF_INET,

which is the Internet domain. This constant is defined in the socket.h include file.

The type parameter specifies the type of socket created. The type is analogous with

the semantics of the communication requested. These socket type constants are

defined in the socket.h include file. The types supported are:

Socket Type Description

SOCK_DGRAM Provides datagrams, which are connectionless

messages of a fixed maximum length whose

reliability is not guaranteed. Datagrams can be

corrupted, received out of order, lost, or delivered

multiple times. This type is supported in the

AF_INET domain.

SOCK_STREAM Provides sequenced, two-way byte streams that are

reliable and connection-oriented. They support a

mechanism for out-of-band data. This type is

supported in the AF_INET domain.

Understanding the socket() Parameters

The protocol parameter specifies a particular protocol to be used with the socket. In

most cases, a single protocol exists to support a particular type of socket in a

particular address family. If the protocol parameter is set to 0, the system selects the

default protocol number for the domain and socket type requested. The

getprotobyname() call can be used to get the protocol number for a protocol with a

known name.

SOCK_STREAM sockets model duplex-byte streams. They provide reliable,

flow-controlled connections between peer application programs. Stream sockets are

either active or passive. Active sockets are used by clients who start connection

requests with connect(). By default, socket() creates active sockets. Passive

sockets are used by servers to accept connection requests with the connect() call.

You can transform an active socket into a passive socket by binding a name to the

socket()

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 183

socket with the bind() call and by indicating a willingness to accept connections

with the listen() call. After a socket is passive, it cannot be used to start

connection requests.

In the AF_INET domain, the bind() call applied to a stream socket lets the

application program specify the networks from which it is willing to accept

connection requests. The application program can fully specify the network

interface by setting the Internet address field in the address structure to the Internet

address of a network interface. Alternatively, the application program can use a

wildcard to specify that it wants to receive connection requests from any network.

This is done by setting the Internet address field in the address structure to the

constant INADDR_ANY, as defined in in.h.

After a connection has been established between stream sockets, any of the data

transfer calls can be used: (read(), readv(), recv(), recvfrom(), , send(), ,

sendto(), write(), and writev()). Usually, the read()-write() or send()-recv()

pairs are used for sending data on stream sockets. If out-of-band data is to be

exchanged, the send()-recv() pair is normally used.

SOCK_DGRAM sockets model datagrams. They provide connectionless message

exchange without guarantees of reliability. Messages sent have a maximum size.

There is no active or passive analogy to stream sockets with datagram sockets.

Servers must still call bind() to name a socket and to specify from which network

interfaces it wishes to receive packets. Wildcard addressing, as described for stream

sockets, applies for datagram sockets also. Because datagram sockets are

connectionless, the listen() call has no meaning for them and must not be used

with them.

After an application program has received a datagram socket, it can exchange

datagrams using the sendto() and recvfrom(), or sendmsg() and recvmsg(), calls.

If the application program goes one step further by calling connect() and fully

specifying the name of the peer with which all messages will be exchanged, then

the other data transfer calls read(), write(), readv(), writev(), send(), and recv()

can also be used. For more information on placing a socket into the connected

state, see “connect() — Connect a Socket” on page 110.

Datagram sockets allow messages to be broadcast to multiple recipients. Setting the

destination address to be a broadcast address is network-interface-dependent (it

depends on the class of address and whether subnets—logical networks divided

into smaller physical networks to simplify routing—are used).

Sockets are deallocated with the close() call.

Returned Value

A nonnegative socket descriptor indicates success. The value −1 indicates an error.

The value of the error code indicates the specific error.

Error Code Description

EAFNOSUPPORT The address family is not supported (it is not

AF_INET).

EINVAL The request is invalid or not supported.

ENOBUFS Insufficient system resources are available to

complete the call.

socket()

184 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Example

The following are examples of the socket() call.

int s;

char *name; ...
/* Get stream socket in Internet domain with default protocol */

s = socket (AF_INET, SOCK_STREAM, 0); ...

Related Information

v “accept() — Accept a New Connection on a Socket” on page 92

v “bind() — Bind a Name to a Socket” on page 106

v “close() — Close a Socket” on page 109

v “connect() — Connect a Socket” on page 110

v “fcntl() — Control Open Socket Descriptors” on page 113

v “getsockname() — Get the Name of a Socket” on page 123

v “getsockopt() — Get the Options Associated with a Socket” on page 125

v “ioctl() — Control Socket” on page 158

v “read() — Read From a Socket” on page 163

v “recv() — Receive Data on a Socket” on page 165

v “recvfrom() — Receive Messages on a Socket” on page 167

v “select() — Monitor Activity on Sockets” on page 169

v “selectex() — Monitor Activity on Sockets” on page 173

v “send() — Send Data on a Socket” on page 175

v “shutdown() — Shut Down a Connection” on page 182

v “write() — Write Data on a Socket” on page 187

socket()

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 185

takesocket() — Acquire a Socket from Another Program

#define _OPEN_SYS_SOCK_EXT

#include <socket.h>

int takesocket(struct clientid *clientid,int sdesc);

General Description

The takesocket() call acquires a socket from another program. Typically, the other

program passes its client ID and socket descriptor to your program through your

program’s startup parameter list.

Parameter Description

clientid A pointer to the clientid of the application from which you are

taking a socket.

sdesc The descriptor of the socket to be taken.

If the c_reserved.type field of the clientid structure was set to SO_CLOSE on the

givesocket() call, c_close.SockToken of clientid structure should be used as input to

takesocket(), instead of the normal socket descriptor. See “givesocket() — Make

the Specified Socket Available” on page 128 for a description of the clientid

structure.

Returned Value

The value -1 indicates an error. The value of errno indicates the specific error. If

not -1, the return value is the new socket descriptor.

Error Code Description

EBADF The sdesc parameter does not specify a valid socket descriptor

owned by the other application, or the socket has already been

taken.

EFAULT Using the clientid parameter as specified would result in an attempt

to access storage outside the caller’s partition.

EINVAL The clientid parameter does not specify a valid client identifier.

Either the client process cannot be found, or the client exists but

has no outstanding givesockets.

ENFILE The socket descriptor table is already full.

Related Information

v “getclientid() — Get the Identifier for the Calling Application” on page 115

v “givesocket() — Make the Specified Socket Available” on page 128

takesocket

186 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

write() — Write Data on a Socket

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

ssize_t write(int fs, const void *buf, ssize_t N);

General Description

The write() call writes data from a buffer on a socket with descriptor fs. The

write() call can only be used with connected sockets. This call writes up to N

bytes of data.

write() is equivalent to send() with no flags set.

Parameter Description

socket The socket descriptor.

buf The pointer to the buffer holding the data to be written.

N The length in bytes of the buffer pointed to by the buf parameter.

Unless the PTF for APAR PQ55591 is installed, the maximum

number of bytes to be specified is 64K.

If there is not enough available buffer space to hold the socket data to be

transmitted, and the socket is in blocking mode, write() blocks the caller until

additional buffer space becomes available. If the socket is in nonblocking mode,

write() returns a −1 and sets the error code to EWOULDBLOCK. See “fcntl() —

Control Open Socket Descriptors” on page 113 or “ioctl() — Control Socket” on

page 158 for a description of how to set the nonblocking mode.

When the socket is not ready to accept data and the process is trying to write data

to the socket:

v Unless O_NDELAY is set, write() blocks until the socket is ready to accept data.

v If O_NDELAY is set, write() returns a 0.

For datagram sockets, this call sends the entire datagram, provided that the

datagram fits into the TCP/IP buffers. Stream sockets act like streams of

information with no boundaries separating data. For example, if an application

program wishes to send 1000 bytes, each call to this function can send 1 byte or 10

bytes or the entire 1000 bytes. Therefore, application programs using stream

sockets should place this call in a loop, calling this function until all data has been

sent.

Returned Value

If successful, write() returns the number of bytes actually written, less than or

equal to N. If unsuccessful, it returns the value −1 and sets errno to one of the

following:

A value of 0 or greater indicates the number of bytes sent. However, this does not

assure that data delivery was complete.

EBADF fs is not a valid socket descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not connection-oriented and no peer

address is set.

EFAULT Using the buf and N parameters would result in an

attempt to access storage outside the caller’s

address space.

write

Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface 187

EINVAL The request is invalid or not supported.

EIO An I/O error occurred.

ENOBUFS Buffer space is not available to send the message.

ENOTCONN The socket is not connected.

EWOULDBLOCK The socket is in nonblocking mode and data is not

available to write.

Example

The following are examples of the write() call.

#include <stdio.h>

#include <string.h>

/*Write the zero terminated string aString to the socket aSocket and

print number of bytes written. Return number of bytes written or -1

for no success.

*/

int writeToSocket(int aSocket, char* aString)

{ int numberOfBytesWritten;

 number ofBytesWritten=

 write(aSocket, aString, strlen(aString));

 if (numberOfBytesWritten < 0)

 { perror("write"); return -1; }

 else

 { printf("number of bytes written is %d.\n", numberOfBytesWritten);

 return numberOfBytesWritten:

 }

}

Related Information

v “connect() — Connect a Socket” on page 110

v “fcntl() — Control Open Socket Descriptors” on page 113

v “getsockopt() — Get the Options Associated with a Socket” on page 125

v “ioctl() — Control Socket” on page 158

v “read() — Read From a Socket” on page 163

v “recv() — Receive Data on a Socket” on page 165

v “recvfrom() — Receive Messages on a Socket” on page 167

v “select() — Monitor Activity on Sockets” on page 169

v “selectex() — Monitor Activity on Sockets” on page 173

v “send() — Send Data on a Socket” on page 175

v “sendto() — Send Data on a Socket” on page 177

v “setsockopt() — Set Options Associated with a Socket” on page 179

v “socket() — Create a Socket” on page 183

write

188 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 10. Using the CALL Instruction Application

Programming Interface (EZASOKET API)

This chapter describes the CALL Instruction API for TCP/IP Application programs

and includes the following topics:

v Environmental Restrictions and Programming Requirements

v CALL instruction API

v Understanding COBOL, Assembler, and PL/I call formats

Environmental Restrictions and Programming Requirements

The following restrictions apply to the Callable Socket API:

v VSE/ESA 2.5 or later installed

v CICS TS required (if running under CICS)

v The EZASOKET API cannot be used with programs running in an ICCF Pseudo

Partition.

v Locks

No locks should be held when issuing these calls.

v INITAPI/TERMAPI macros

The INITAPI/TERMAPI macros must be issued under the same task.

v Storage

Storage acquired for the purpose of containing data returned from a socket call

must be obtained in the same key as the application program status word (PSW)

at the time of the socket call.

v Addressability mode (Amode) considerations

The EZASOKET Call API must be invoked while the caller is in 31-bit Amode.

v When using the EZASOKET CALL API in CICS transactions while CICS

operates with storage protection, all programs using the CALL API need to be

defined with EXECKEY(CICS). This is also true for those programs that link to

these programs. TASKDATAKEY(CICS) for the transaction definition is NOT

required.

v When using the CALL API in CICS transactions while CICS has been started

with SVA=NO, make sure that phase EZASOH03 has not been loaded into the

SVA.

v When using the CALL API on VSE/ESA 2.6, make sure that APAR DY45937 has

been applied.

CALL Instruction Application Programming Interface (API)

This section describes the CALL instruction API for TCP/IP application programs

written in the COBOL, PL/I, or High Level Assembler language. The format and

parameters are described for each socket call.

Notes:

1. Reentrant code is supported by this interface.

2. When your program is running in a CICS environment, the CALL instruction

API needs an LE run-time environment.

© Copyright IBM Corp. 1997, 2005 189

3. For a PL/I program, include the following statement before your first call

instruction.

 DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

4. Register conventions:

Register 0, 1, 14, and 15 are used by the interface and must be, if necessary,

saved prior to invocation.

Register 13 must point to a 72–byte save area provided by the caller.

Understanding COBOL, Assembler, and PL/I Call Formats

This API is invoked by calling the EZASOKET program and performs the same

functions as the C language calls. The parameters look different because of the

differences in the programming languages.

COBOL Language Call Format

AA CALL ‘EZASOKET’ USING SOC-FUNCTION parm1 parm2 ... ERRNO RETCODE. AC

SOC-FUNCTION

A 16-byte character field, left-justified and padded on the right with

blanks. Set to the name of the call. SOC-FUNCTION is case specific. It

must be in uppercase.

parmn A variable number of parameters depending on the type call.

ERRNO

If RETCODE is negative, there is an error number in ERRNO. This field is

used in most, but not all, of the calls.

RETCODE

A fullword binary variable containing a code returned by the EZASOKET

call. This value corresponds to the normal return value of a C function.

Assembler Language Call Format

The following is the ‘EZASOKET’ call format for assembler language programs.

AA CALL EZASOKET,(SOC-FUNCTION, parm1, parm2, ... ERRNO, RETCODE),VL AC

PL/I Language Call Format

AA CALL EZASOKET (SOC-FUNCTION, parm1, parm2, ... ERRNO, RETCODE); AC

SOC-FUNCTION

A 16-byte character field, left-justified and padded on the right with

blanks. Set to the name of the call.

parmn A variable number of parameters depending on the type call.

ERRNO

If RETCODE is negative, there is an error number in ERRNO. This field is

used in most, but not all, of the calls.

RETCODE

A fullword binary variable containing a code returned by the EZASOKET

call. This value corresponds to the normal return value of a C function.

Using the EZASOKET API

190 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Converting Parameter Descriptions

The parameter descriptions in this chapter are written using the COBOL VSE

language syntax and conventions, but you should use the syntax and conventions

that are appropriate for the language you want to use.

Figure 23 shows examples of storage definition statements for COBOL, PL/I, and

assembler language programs.

Error Messages and Return Codes

For information about error messages, see z/VSE Messages and Codes and TCP/IP for

VSE 1.5 Messages and Codes.

For information about error codes that are returned by TCP/IP, see “ERRNO

Values” on page 84.

Debugging

See Appendix C, “Debugging Facility for EZASMI and EZASOKET Interfaces

(EZAAPI Trace),” on page 449.

COBOL PIC

 PIC S9(4) COMP HALFWORD BINARY VALUE

 PIC S9(8) COMP FULLWORD BINARY VALUE

 PIC X(n) CHARACTER FIELD OF N BYTES

PL/I DECLARE STATEMENT

 DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE

 DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE

 DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

 DS H HALFWORD BINARY VALUE

 DS F FULLWORD BINARY VALUE

 DS CLn CHARACTER FIELD OF n BYTES

Figure 23. Storage Definition Statement Examples

Using the EZASOKET API

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 191

Code CALL Instructions

This section contains the description, syntax, parameters, and other related

information for each call instruction included in this API.

ACCEPT

A server issues the ACCEPT call to accept a connection request from a client. The

call points to a socket that was previously created with a SOCKET call and marked

by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections

2. Creates a new socket with the same properties as s, and returns its descriptor

in RETCODE. The original sockets remain available to the calling program to

accept more connection requests.

3. The address of the client is returned in NAME for use by subsequent server

calls.

Notes:

1. The blocking or nonblocking mode of a socket affects the operation of certain

commands. The default is blocking; nonblocking mode can be established by

use of the FCNTL and IOCTL calls. When a socket is in blocking mode, an I/O

call waits for the completion of certain events. For example, a READ call will

block until the buffer contains input data. When an I/O call is issued: if the

socket is blocking, program processing is suspended until the event completes;

if the socket is nonblocking, program processing continues.

2. If the queue has no pending connection requests, ACCEPT blocks the socket

unless the socket is in nonblocking mode. The socket can be set to nonblocking

by calling FCNTL or IOCTL.

3. When multiple socket calls are issued, a SELECT call can be issued prior to the

ACCEPT to ensure that a connection request is pending. Using this technique

ensures that subsequent ACCEPT calls will not block.

4. TCP/IP does not provide a function for screening clients. As a result, it is up to

the application program to control which connection requests it accepts, but it

can close a connection immediately after discovering the identity of the client.

Figure 24 shows an example of ACCEPT call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’ACCEPT’.

 01 S PIC 9(4) BINARY.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 24. ACCEPT Call Instructions Example

Using the EZASOKET API

192 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing 'ACCEPT'. Left justify the field and

pad it on the right with blanks.

S A halfword binary number specifying the descriptor of a socket that was

previously created with a SOCKET call. In a concurrent server, this is the

socket upon which the server listens.

Parameter Values Returned to the Application

NAME

A socket address structure that contains the client’s socket address.

FAMILY

A halfword binary field specifying the addressing family. The call

returns the value 2 for AF_INET.

PORT A halfword binary field that is set to the client’s port number.

IP-ADDRESS

A fullword binary field that is set to the 32-bit internet address, in

network-byte-order, of the client’s host machine.

RESERVED

Specifies eight bytes of binary zeros. This field is required, but not

used.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

If the RETCODE value is positive, the RETCODE value is the new socket

number.

 If the RETCODE value is negative, check the ERRNO field for an error

number.

ACCEPT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 193

BIND

In a typical server program, the BIND call follows a SOCKET call and completes

the process of creating a new socket.

The BIND call can either specify the required port or let the system choose the

port. A listener program should always bind to the same well-known port, so that

clients know what socket address to use when attempting to connect.

In the AF_INET domain, the BIND call for a stream socket can specify the

networks from which it is willing to accept connection requests. The application

can fully specify the network interface by setting the ADDRESS field to the

internet address of a network interface. Alternatively, the application can use a

wildcard to specify that it wants to receive connection requests from any network

interface. This is done by setting the ADDRESS field to a fullword of zeros.

Figure 25 shows an example of BIND call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing BIND. The field is left justified and

padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket

to be bound.

NAME

Specifies the socket address structure for the socket that is to be bound.

FAMILY

A halfword binary field specifying the addressing family. The value

is always set to 2, indicating AF_INET.

PORT A halfword binary field that is set to the port number to which

you want the socket to be bound.

Note: If PORT is set to 0 when the call is issued, the system

assigns the port number for the socket. The application can

call the GETSOCKNAME macro after the BIND macro to

discover the assigned port number.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’BIND’.

 01 S PIC 9(4) BINARY.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 25. BIND Call Instruction Example

BIND

194 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

IP-ADDRESS

A fullword binary field that is set to the 32-bit internet address

(network byte order) of the socket to be bound.

RESERVED

Specifies an eight-byte character field that is required but not used.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, this field contains an

error number. See “ERRNO Values” on page 84, for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

BIND

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 195

CLOSE

The CLOSE call performs the following functions:

v The CLOSE call shuts down a socket and frees all resources allocated to it. If the

socket refers to an open TCP connection, the connection is closed.

v The CLOSE call is also issued by a concurrent server after it gives a socket to a

child server program. After issuing the GIVESOCKET and receiving notification

that the client child has successfully issued a TAKESOCKET, the concurrent

server issues the close command to complete the passing of ownership. In

high-performance, transaction-based systems the timeout associated with the

CLOSE call can cause performance problems.

Notes:

1. If a stream socket is closed while input or output data is queued, the TCP

connection is reset and data transmission may be incomplete. The

SETSOCKOPT call can be used to set a linger condition, in which TCP/IP

will continue to attempt to complete data transmission for a specified period

of time after the CLOSE call is issued. See SO-LINGER in the description of

“SETSOCKOPT” on page 255.

2. A concurrent server differs from an iterative server. An iterative server

provides services for one client at a time; a concurrent server receives

connection requests from multiple clients and creates child servers that

actually serve the clients. When a child server is created, the concurrent

server obtains a new socket, passes the new socket to the child server, and

then dissociates itself from the connection. The CICS Listener is an example

of a concurrent server.

3. After an unsuccessful socket call, a close should be issued and a new socket

should be opened. An attempt to use the same socket with another call

results in a nonzero return code.

Figure 26 shows an example of CLOSE call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte field containing CLOSE. Left justify the field and pad it on the

right with blanks.

S A halfword binary field containing the descriptor of the socket to be

closed.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’CLOSE’.

 01 S PIC 9(4) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 CALL ’EZASOKET’ USING SOC-FUNCTION S ERRNO RETCODE.

Figure 26. CLOSE Call Instruction Example

CLOSE

196 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, this field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

CLOSE

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 197

CONNECT

The CONNECT call is issued by a client to establish a connection between a local

socket and a remote socket.

Stream Sockets

For stream sockets, the CONNECT call is issued by a client to establish connection

with a server. The call performs two tasks:

1. It completes the binding process for a stream socket if a BIND call has not been

previously issued.

2. It attempts to make a connection to a remote socket. This connection is

necessary before data can be transferred.

UDP Sockets

For UDP sockets, a CONNECT call need not precede an I/O call, but if issued, it

allows you to send messages without specifying the destination.

 The call sequence issued by the client and server for stream sockets is:

1. The server issues BIND and LISTEN to create a passive open socket.

2. The client issues CONNECT to request the connection.

3. The server accepts the connection on the passive open socket, creating a new

connected socket.

The blocking mode of the CONNECT call conditions its operation.

v If the socket is in blocking mode, the CONNECT call blocks the calling program

until the connection is established, or until an error is received.

v If the socket is in nonblocking mode the return code indicates whether the

connection request was successful.

– A zero RETCODE indicates that the connection was completed.

– A nonzero RETCODE with an ERRNO EINPROGRESS indicates that the

connection is not completed but since the socket is nonblocking, the

CONNECT call returns normally.
The caller must test the completion of the connection setup by calling SELECT

and testing for the ability to write to the socket.

The completion cannot be checked by issuing a second CONNECT. For more

information, see “SELECT” on page 243.

Figure 27 shows an example of CONNECT call instructions.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’CONNECT’.

 01 S PIC 9(4) BINARY.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 27. CONNECT Call Instruction Example

CONNECT

198 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte field containing CONNECT. Left justify the field and pad it on

the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket

that is to be used to establish a connection.

NAME

A structure that contains the socket address of the target to which the local,

client socket is to be connected.

FAMILY

A halfword binary field specifying the addressing family. The value

must be 2 for AF_INET.

PORT A halfword binary field that is set to the server’s port number in

network byte order. For example, if the port number is 5000 in

decimal, it is stored as X'1388' in hex.

IP-ADDRESS

A fullword binary field that is set to the 32-bit internet address of

the server’s host machine in network byte order. For example, if

the internet address is 129.4.5.12 in dotted decimal notation, it

would be represented as ’8104050C’ in hex.

RESERVED

Specifies an eight-byte reserved field. This field is required, but is

not used.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, this field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

CONNECT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 199

FCNTL

The blocking mode of a socket can either be queried or set to nonblocking using

the FNDELAY flag described in the FCNTL call. You can query or set the

FNDELAY flag even though it is not defined in your program.

See “IOCTL” on page 234 for another way to control a socket’s blocking mode.

Figure 28 shows an example of FCNTL call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing FCNTL. The field is left justified and

padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket

that you want to unblock or query.

COMMAND

A fullword binary number with the following values.

Value Description

3 Query the blocking mode of the socket

4 Set the mode to blocking or nonblocking for the socket

REQARG

A fullword binary field containing a mask that TCP/IP uses to set the

FNDELAY flag.

v If COMMAND is set to 3 ('query') the REQARG field should be set to 0.

v If COMMAND is set to 4 ('set')

– Set REQARG to 4 to turn the FNDELAY flag on. This places the

socket in nonblocking mode.

– Set REQARG to 0 to turn the FNDELAY flag off. This places the

socket in blocking mode.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’FCNTL’.

 01 S PIC 9(4) BINARY.

 01 COMMAND PIC 9(8) BINARY.

 01 REQARG PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S COMMAND REQARG

 ERRNO RETCODE.

Figure 28. FCNTL Call Instruction Example

FCNTL

200 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

RETCODE

A fullword binary field that returns one of the following.

v If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is nonblocking. (The

FNDELAY flag is on).

– If RETCODE contains X'00000000', the socket is blocking. (The

FNDELAY flag is off).
v If COMMAND was set to 4 (set), a successful call is indicated by 0 in

this field. In both cases, a RETCODE of −1 indicates an error (check the

ERRNO field for the error number).

FCNTL

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 201

GETCLIENTID

GETCLIENTID call returns the identifier by which the calling application is known

to the TCP/IP address space in the calling program. The CLIENT parameter is

used in the GIVESOCKET and TAKESOCKET calls. See “GIVESOCKET” on page

216 for a discussion of the use of GIVESOCKET and TAKESOCKET calls.

Do not be confused by the terminology; when GETCLIENTID is called by a server,

the identifier of the caller (not necessarily the client) is returned.

Figure 29 shows an example of GETCLIENTID call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing 'GETCLIENTID'. The field is left

justified and padded to the right with blanks.

Parameter Values Returned to the Application

CLIENT

A client-ID structure that describes the application that issued the call.

DOMAIN

A fullword binary number specifying the caller’s domain. For

TCP/IP the value is set to 2 for AF_INET.

NAME

An 8-byte character field. It is built with the partition’s partition

ID, which is left adjusted and padded with blanks.

TASK An 8-byte character field. This task identifier can be specified by

the user with the INITAPI call or defaulted by the system (see the

description of the INITAPI call for details).

RESERVED

Specifies 20-byte character reserved field. This field is required and

internally used by TCP/IP.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETCLIENTID’.

 01 CLIENT.

 03 DOMAIN PIC 9(8) BINARY.

 03 NAME PIC X(8).

 03 TASK PIC X(8).

 03 RESERVED PIC X(20).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION CLIENT ERRNO RETCODE.

Figure 29. GETCLIENTID Call Instruction Example

GETCLIENTID

202 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETCLIENTID

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 203

GETHOSTBYADDR

The GETHOSTBYADDR call returns the domain name and alias name of a host

whose internet address is specified in the call. A given TCP/IP host can have

multiple alias names and multiple host internet addresses.

Figure 30 shows an example of GETHOSTBYADDR call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing 'GETHOSTBYADDR'. The field is left

justified and padded on the right with blanks.

HOSTADDR

A fullword binary field set to the internet address (specified in network

byte order) of the host whose name is being sought. See “ERRNO Values”

on page 84 for information about ERRNO return codes.

Parameter Values Returned to the Application

HOSTENT

A fullword containing the address of the HOSTENT structure.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 An error occurred

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 31 on page

205.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTBYADDR’.

 01 HOSTADDR PIC 9(8) BINARY.

 01 HOSTENT PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

Figure 30. GETHOSTBYADDR Call Instruction Example

GETHOSTBYADDDR

204 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

This structure contains:

v The address of the host name that is returned by the call. The name length is

variable and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by the

call. This list is ended by the pointer X'00000000'. Each alias name is a variable

length field ended by X'00'.

Note: ALIAS names are not supported with TCP/IP for VSE/ESA.

v The value returned in the FAMILY field is always 2 for AF_INET.

v The length of the host internet address returned in the HOSTADDR_LEN field is

always 4 for AF_INET.

v The address of a list of addresses that point to the host internet addresses

returned by the call. The list is ended by the pointer X'00000000'

The HOSTENT structure uses indirect addressing to return a variable number of

alias names and internet addresses. If you are coding in PL/I or assembler

language, this structure can be processed in a relatively straight-forward manner. If

you are coding in COBOL, this structure may be difficult to interpret. You can use

the subroutine EZACIC08 to simplify interpretation of the information returned by

the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about

EZACIC08, see “EZACIC08” on page 271.

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 31. HOSTENT Structure Returned by the GETHOSTBYADDR Call

GETHOSTBYADDDR

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 205

GETHOSTBYNAME

The GETHOSTBYNAME call returns the alias name and the internet address of a

host whose domain name is specified in the call. A given TCP/IP host can have

multiple alias names and multiple host internet addresses.

TCP/IP tries to resolve the host name through a name server, if one is present.

When a call is made to convert a symbolic name to an IP address, TCP/IP for

VSE/ESA searches the local names table (created by DEFINE NAME) first. If this

search fails, the name is passed to the specified DNSs (set with SET DNSx).

TCP/IP for VSE/ESA will try each DNS, beginning with DNS1, until an response

is received or all servers have been polled. The first server to respond determines

if the request succeeds or fails. If the search within a DNS fails, the default domain

string (as specified with SET DEFAULT_DOMAIN) is appended to the name

(following a period) and the DNS is consulted the last time for the name

resolution.

Figure 32 shows an example of GETHOSTBYNAME call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing 'GETHOSTBYNAME'. The field is left

justified and padded on the right with blanks.

NAMELEN

A value set to the length of the host name.

NAME

A character string, up to 24 characters, set to a host name. This call returns

the address of the HOSTENT structure for this name.

Parameter Values Returned to the Application

HOSTENT

A fullword binary field that contains the address of the HOSTENT

structure.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 An error occurred

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTBYNAME’.

 01 NAMELEN PIC 9(8) BINARY.

 01 NAME PIC X(24).

 01 HOSTENT PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION NAMELEN NAME

 HOSTENT RETCODE.

Figure 32. GETHOSTBYNAME Call Instruction Example

GETHOSTBYNAME

206 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 33. This

structure contains:

v The address of the host name that is returned by the call. The name length is

variable and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by the

call. This list is ended by the pointer X'00000000'. Each alias name is a variable

length field ended by X'00'.

Note: Alias names are not supported with TCP/IP for VSE/ESA.

v The value returned in the FAMILY field is always 2 for AF_INET.

v The length of the host internet address returned in the HOSTADDR_LEN field is

always 4 for AF_INET.

v The address of a list of addresses that point to the host internet addresses

returned by the call. The list is ended by the pointer X'00000000'.

The HOSTENT structure uses indirect addressing to return a variable number of

alias names and internet addresses. If you are coding in PL/I or assembler

language, this structure can be processed in a relatively straight-forward manner. If

you are coding in COBOL, this structure may be difficult to interpret. You can use

the subroutine EZACIC08 to simplify interpretation of the information returned by

the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about

EZACIC08, see “EZACIC08” on page 271.

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 33. HOSTENT Structure Returned by the GETHOSTYBYNAME Call

GETHOSTBYNAME

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 207

GETHOSTID

The GETHOSTID call returns the 32-bit internet address for the current host.

Figure 34 shows an example of GETHOSTID call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing 'GETHOSTID'. The field is left justified

and padded on the right with blanks.

RETCODE

Returns a fullword binary field containing the 32-bit internet address of the

host. A –1 in RETCODE indicates an error. A possible reason can be that

TCP/IP has not been started. There is no ERRNO parameter for this call.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTID’.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION RETCODE.

Figure 34. GETHOSTID Call Instruction Example

GETHOSTID

208 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GETHOSTNAME

The GETHOSTNAME call returns the domain name of the local host.

Figure 35 shows an example of GETHOSTNAME call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing GETHOSTNAME. The field is left

justified and padded on the right with blanks.

NAMELEN

A fullword binary field set to the length of the NAME field.

Parameter Values Returned to the Application

NAMELEN

A fullword binary field set to the length of the host name.

NAME

Indicates the receiving field for the host name. TCP/IP for VSE/ESA

allows a maximum length of 64-characters. The internet standard is a

maximum name length of 255 characters. The actual length of the NAME

field is found in NAMELEN.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTNAME’.

 01 NAMELEN PIC 9(8) BINARY.

 01 NAME PIC X(24).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION NAMELEN NAME

 ERRNO RETCODE.

Figure 35. GETHOSTNAME Call Instruction Example

GETHOSTNAME

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 209

GETPEERNAME

The GETPEERNAME call returns the name of the remote socket to which the local

socket is connected.

Figure 36 shows an example of GETPEERNAME call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing GETPEERNAME. The field is left

justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the local socket

connected to the remote peer whose address is required.

Parameter Values Returned to the Application

NAME

A structure to contain the peer name. The structure that is returned is the

socket address structure for the remote socket that is connected to the local

socket specified in field S.

FAMILY

A halfword binary field containing the connection peer’s

addressing family. The call always returns the value 2, indicating

AF_INET.

PORT A halfword binary field set to the connection peer’s port number.

IP-ADDRESS

A fullword binary field set to the 32-bit internet address of the

connection peer’s host machine.

RESERVED

Specifies an eight-byte reserved field. This field is required, but not

used.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETPEERNAME’.

 01 S PIC 9(4) BINARY.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 36. GETPEERNAME Call Instruction Example

GETPEERNAME

210 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETPEERNAME

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 211

GETSOCKNAME

The GETSOCKNAME call returns the address currently bound to a specified

socket. If the socket is not currently bound to an address the call returns with the

FAMILY field set, and the rest of the structure set to 0.

Since a stream socket is not assigned a name until after a successful call to either

BIND, CONNECT, or ACCEPT, the GETSOCKNAME call can be used after an

implicit bind to discover which port was assigned to the socket.

Figure 37 shows an example of GETSOCKNAME call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing GETSOCKNAME. The field is left

justified and padded on the right with blanks.

S A halfword binary number set to the descriptor of local socket whose

address is required.

Parameter Values Returned to the Application

NAME

Specifies the socket address structure returned by the call.

FAMILY

A halfword binary field containing the addressing family. The call

always returns the value 2, indicating AF_INET.

PORT A halfword binary field set to the port number bound to this

socket. If the socket is not bound, zero is returned.

IP-ADDRESS

A fullword binary field set to the 32-bit internet address of the

local host machine.

RESERVED

Specifies eight bytes of binary zeros. This field is required but not

used.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETSOCKNAME’.

 01 S PIC 9(4) BINARY.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 37. GETSOCKNAME Call Instruction Example

GETSOCKNAME

212 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETSOCKNAME

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 213

GETSOCKOPT

The GETSOCKOPT call queries the options that are set by the SETSOCKOPT call.

Several options are associated with each socket. These options are described below.

You must specify the option to be queried when you issue the GETSOCKOPT call.

Figure 38 shows an example of GETSOCKOPT call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing GETSOCKOPT. The field is left

justified and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket

requiring options.

OPTNAME

Set OPTNAME to the required option before you issue GETSOCKOPT. The

option are as follows:

SO-LINGER Requests the status of LINGER.

v When the LINGER option has been enabled, and data

transmission has not been completed, a CLOSE call

blocks the calling program until the data is transmitted

or until the connection has timed out.

v If LINGER is not enabled, a CLOSE call returns without

blocking the caller. TCP/IP attempts to send the data;

although the data transfer is usually successful, it cannot

be guaranteed, because TCP/IP only attempts to send

the data for a specified amount of time.

Parameter Values Returned to the Application

OPTVAL

v If SO-LINGER is specified in OPTNAME, the following structure is

returned:

 ONOFF PIC X(8)

 LINGER PIC 9(8)

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETSOCKOPT’.

 01 S PIC 9(4) BINARY.

 01 OPTNAME PIC 9(8) BINARY.

 88 SO-REUSEADDR VALUE 4.

 88 SO-KEEPALIVE VALUE 8.

 88 SO-LINGER VALUE 128.

 01 OPTVAL PIC X(16) BINARY.

 01 OPTLEN PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S OPTNAME

 OPTVAL OPTLEN ERRNO RETCODE.

Figure 38. GETSOCKOPT Call Instruction Example

GETSOCKOPT

214 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

– A nonzero value returned in ONOFF indicates that the option is

enabled; a zero value indicates that it is disabled.

– The LINGER value indicates the amount of time (in seconds) TCP/IP

will continue to attempt to send the data after the CLOSE call is

issued. To set the Linger time, see “SETSOCKOPT” on page 255.

OPTLEN

A fullword binary field containing the length of the data returned in

OPTVAL.

v For OPTNAME of SO-LINGER, OPTVAL contains two fullwords, so

OPTLEN will be set to 8 (two fullwords).

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETSOCKOPT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 215

GIVESOCKET

The GIVESOCKET call is used to pass a socket from one process to another.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in

the following sequence:

1. A process issues a GETCLIENTID call to get the jobname of its region and its

VSE subtask identifier. This information is used in a GIVESOCKET call.

2. The process issues a GIVESOCKET call to prepare a socket for use by a child

process.

3. The child process issues a TAKESOCKET call to get the socket. The socket now

belongs to the child process, and can be used by TCP/IP to communicate with

another process.

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE.

The child process must use this new socket descriptor for all calls which

use this socket. The socket descriptor that was passed to the

TAKESOCKET call must not be used.

4. After issuing the GIVESOCKET command, the parent process issues a SELECT

command that waits for the child to get the socket.

5. When the child gets the socket, the parent receives an exception condition that

releases the SELECT command.

6. The parent process closes the socket.

The original socket descriptor can now be reused by the parent.

Figure 39 shows an example of GIVESOCKET call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing 'GIVESOCKET'. The field is left

justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be

given.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GIVESOCKET’.

 01 S PIC 9(4) BINARY.

 01 CLIENT.

 03 DOMAIN PIC 9(8) BINARY.

 03 NAME PIC X(8).

 03 TASK PIC X(8).

 03 RESERVED PIC X(20).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

Figure 39. GIVESOCKET Call Instruction Example

GIVESOCKET

216 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

CLIENT

A structure containing the identifier of the application to which the socket

should be given.

DOMAIN

A fullword binary number that must be set to 2, indicating

AF_INET.

NAME

Specifies an 8-character field, left-justified, padded to the right with

blanks set to the address space name of the application (partition

ID) going to take the socket. If this field is left blank, any z/VSE

partition can take the socket.

TASK Specifies an eight-character field that can be set to blanks, or to the

identifier of the socket-taking VSE subtask. If this field is set to

blanks, any subtask in the partition specified in the NAME field

can take the socket.

RESERVED

A 20-byte reserved field. This field is required, but only used

internally.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GIVESOCKET

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 217

GSKFREEMEM

The GSKFREEMEM call frees memory passed to the application on a a previous

call to an SSL function.

For example, the distinguished name returned in the null-terminated string by the

GSKGETDNBYLAB call must be freed using GSKFREEMEM.

Figure 40 shows an example of the GSKFREEMEM call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKFREEMEM’. The field is

left-justified and padded on the right with blanks.

AREA

Parameter Values returned to the Application

ERRNO A fullword binary field. May show detailed error information.

RETCODE A fullword binary field that returns one of the following

0 Successful call.

less than 0 An error occurred.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKFREEMEM ’.

 01 AREA PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION AREA

 ERRNO RETCODE.

Figure 40. GSKFREEMEM Call Instruction Example

GSKFREEMEM

218 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKGETCIPHINF

The GSKGETCIPHINF call requests cipher related information for SSL for VSE.

This information determines the encryption level that the system can support and

returns a list of cipher specifications that SSL can use. This allows an application to

determine, at run time, the level of SSL encryption that the installed application

can request.

Figure 41 shows an example of the GSKGETCIPHINF call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKGETCIPHINF’. The field

is left-justified and padded on the right with blanks.

CIPHLEVEL A fullword binary field with a number that determines the type of

cipher information to be returned. Valid values are

1 only exportable cipher information is to be returned

(GSK_LOW_SECURITY)

2 exportable and domestic cipher information is to be

returned (GSK_HIGH_SECURITY)

Parameter Values returned to the Application

SECLEVEL A 104 byte area where the system returns the following

information:

4 bytes System SSL version (always 3 for GSK_VERSION3)

64 bytes A character string (terminated with x00) with the

SSL Version 3 cipher specs allowed for use on the

system (these are passable on the V3CIPHER

parameter on the GSKSSOCINIT call).

32 bytes This field will always be filled with binary zeros

because SSL for VSE does not support SSL Version

2 cipher specs.

4 bytes One of the following

1 GSK_SEC_LEVEL_US

2 GSK_SEC_LEVEL_EXPORT

3 GSK_SEC_LEVEL_EXPORT_FR

ERRNO A fullword binary field. May show detailed error information.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKGETCIPHINF ’.

 01 CIPHLEVEL PIC 9(8) BINARY.

 01 SECLEVEL PIC X(104).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION CIPHLEVEL SECLEVEL

 ERRNO RETCODE.

Figure 41. GSKGETCIPHINF Call Instruction Example

GSKGETCIPHINF

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 219

RETCODE A fullword binary field that returns one of the following

0 Successful call.

less than 0 An error occurred. Please refer to VSE library

member SSLVSE.A or to the TCP/IP for VSE 1.5

Optional Products for a detailed description of error

return codes.

GSKGETCIPHINF

220 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKGETDNBYLAB

The GSKGETDNBYLAB call returns the complete distinguished name for a key

based on the label the key has in the key database file. This value can be used for

the DNAME field in the GSKSSOCINIT call.

Figure 42 shows an example of the GSKGETDNBYLAB call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKGETDNBYLAB’. The field

is left-justified and padded on the right with blanks.

KEYLABEL

Parameter Values returned to the Application

ERRNO A fullword binary field. May show detailed error information.

RETCODE A fullword binary field that returns one of the following

greater 0 Successful call. RETCODE denotes a pointer to

character string with the distinguished name.

0 or less than 0

Unsuccessful call.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKGETDNBYLAB ’.

 01 KEYLABEL PIC X(Length of key label).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION KEYLABEL

 ERRNO RETCODE.

Figure 42. GSKGETDNBYLAB Call Instruction Example

GSKGETDNBYLAB

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 221

GSKINIT

The GSKINIT call sets the overall SSL for VSE environment for the current

partition. After the function completes successfully, the application is ready to call

SSL for VSE interfaces and to create and use secure socket connections.

Figure 43 shows an example of the GSKINIT call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKINIT’. The field is

left-justified and padded on the right with blanks.

SECTYPE A character string that identifies the minimum acceptable security

protocol. The value must be entered in upper case characters and

terminated with a X00. Valid values are (without double-quotes):

v ″SSL30″ for SSL Version 3.0

v ″TLS31″ for TLS Version 1.0 (not supported for client

applications)

KEYRING A character string specifying the ″lib.sublib″ where the private key

and certificates are stored. The string must be terminated with x00.

Provide a string of 8 blanks, if you want to use the default ″SSL for

VSE″ files as defined in procedure $SSL4VSE.PROC. Refer to

TCP/IP for VSE 1.5 Optional Products for details on this procedure.

V3TIMEOUT The number of seconds for the SSL V3 session Identifier to expire.

The valid range is 0 to 86400 (1 day). If this parameter is not

specified, a default value of 86400 is applied.

CAROOTS A value that specifies which CA (Certificate Authority) root to use

for certificate verification. The supported values are:

0 Use the CA roots from the local key database file for

certificate verifcation.

1 Allow client authentication with certificates issued by the

same certificate authority as VSE.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKINIT ’.

 01 SECTYPE.

 05 SECTYPE1 PIC X(5) VALUE IS ’SSL30’.

 05 SECTPYE2 PIC 9(1) BINARY VALUE 0.

 01 KEYRING.

 05 KEYRING1 PIC X(11) VALUE IS ’PRIMARY.GSK’.

 05 KEYRING2 PIC 9(1) COMP VALUE 0.

 01 V3TIMEOUT PIC 9(8) COMP VALUE 86400.

 01 CAROOTS PIC 9(8) COMP VALUE 0.

 01 AUTHTYPE PIC 9(8) COMP VALUE 0.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION SECTYPE KEYRING

 V3TIMEOUT CAROOTS AUTHTYPE

 ERRNO RETCODE.

Figure 43. GSKINIT Call Instruction Example

GSKINIT

222 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

AUTHTYPE A value that specifies the method to use for verifying the client’s

certificate. This field is only used when CAROOTS is set to 1. The

supported values are:

0 the client’s certificate is verified using the local key

database file.

1 the same meaning as with value 0

2 the same meaning as with value 0

3 the client’s certificate is not verified.

Parameter Values returned to the Application

ERRNO

A fullword binary field. May show detailed error information.

RETCODE

A fullword binary field that returns one of the following

0 Successful call.

not equal 0 An error occurred. Please refer to VSE library member

SSLVSE.A or to the TCP/IP for VSE 1.5 Optional Products for

a detailed description of error return codes.

GSKINIT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 223

GSKSSOCCLOSE

The GSKSSOCCLOSE call ends a secure socket connection and frees all SSL for

VSE resources for that connection.

Figure 44 shows an example of the GSKSSOCCLOSE call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKSSOCCLOSE’. The field is

left-justified and padded on the right with blanks.

SSOCDATA Address of GSKSOCDATA structure as returned in RETCODE by

the GSKSSOCINIT call.

Parameter Values returned to the Application

ERRNO A fullword binary field. May show detailed error information.

RETCODE A fullword binary field that returns one of the following

0 Successful call.

less than 0. An error occurred. Please refer to VSE library

member SSLVSE.A or to the TCP/IP for VSE 1.5

Optional Products for a detailed description of error

return codes.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCCLOSE ’.

 01 SSOCDATA PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION SSOCDATA

 ERRNO RETCODE.

Figure 44. GSKSSOCCLOSE Call Instruction Example

GSKSSOCCLOSE

224 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKSSOCINIT

The GSKSSOCINIT call initializes the data areas for SSL for VSE to initiate or

accept a secure socket connection. After the function is completed successfully, a

pointer to a secured socket control block (in the following referred to as

GSKSOCDATA) is returned to the application. Other calls using this secure socket

connection must refer to this pointer.

During the call a complete handshake is performed based on the input specified

with the GSKSSOCINIT call. While SSL for VSE performs the mechanics of the SSL

handshake, ″normal″ RECV and SEND routines (provided by the EZAAPI

processing environment) will be used to transport the SSL data during the SSL

handshake, as well as for all subsequent read/write operations.

Figure 45 shows an example of the GSKSSOCINIT call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKSSOCINIT’. The field is

left-justified and padded on the right with blanks.

S A halfword binary field with the descriptor of the socket that is going to be

used for a secure socket connection.

HANDSHAKE

A halfword binary number that specifies how the handshake is performed:

0 Perform the SSL handshake as a client (GSK_AS_CLIENT).

1 Perform the SSL handshake as a server (GSK_AS_SERVER).

2 Perform the SSL handshake as a server that requires client

authentication (GSK_AS_SERVER_WITH_CLIENT_AUTH).

3 Perform the SSL handshake as a client without authentication

(GSK_AS_CLIENT_NO_AUTH).

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCINIT ’.

 01 S PIC 9(4) BINARY.

 01 HANDSHAKE PIC 9(8) BINARY.

 01 DNAME.

 05 DNAME1 PIC X(n) VALUE IS ’.......’.

 05 DNAME2 PIC 9(1) BINARY VALUE 0.

 01 V3CIPHER.

 05 V3CIPHER1 PIC X(6) VALUE IS ’0A0908’.

 05 V3CIPHER2 PIC 9(1) COMP VALUE 0.

 01 SECTYPE USAGE IS POINTER.

 01 V3CIPHSEL PIC X(2).

 01 CERTINFO USAGE IS POINTER.

 01 REASCODE PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S HANDSHAKE DNAME

 SECTYPE V3CIPHER V3CIPHSEL CERTINFO REASCODE

 ERRNO RETCODE.

Figure 45. GSKSSOCINIT Call Instruction Example

GSKSSOCINIT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 225

DNAME

A character that is the Distinguished name or label of the desired entry

(certificate) in the key database file. This character string must be

terminated with x00. To use the default key database file entry, point to a

string of 8 blanks. The distinguished name for a key database file entry

may be determined via the EZASOKET GETDNBYLAB function call.

V3CIPHER

A character string that contains the list of SSL Version 3.0 ciphers in order

of usage preference. Valid values as supported by TCP/IP for VSE are:

v 01 for RSA512_NULL_MD5

v 02 for RSA512_NULL_SHA

v 08 for RSA512_DES40CBC_SHA

v 09 for RSA1024_DESCBC_SHA

v 0A for RSA1024_3DESCBC_SHA

v 62 for RSA1024_EXPORT_DESCBC_SHA

You can use any combination of these values in any order. The list of

values must be terminated with x00. The exportable cipher suites

01,02,08,62 can only be used with SSL30, and will not work with TLS1.0.

To use the default SSL V3 cipher specs (which is 0A0908) specify a string

of 8 blanks.

Parameter Values returned to the Application

SECTYPE

A fullword binary field where where the address of a character string is

stored that identifies the minimum acceptable security protocol. The

character string is terminated with x00. Valid values are (without

double-quotes):

v ″SSL30″ for SSL Version 3.0

v ″TLS31″ for TLS Version 1.0

V3CIPHSEL

A 2-byte area (provided by the application) where the architected SSL

Version 3.0 cipher spec value selected for this session is stored (for

example: x0009).

CERTINFO

A fullword binary field where the address of the Distinguished Name

components from the client’s certificate is stored. This parameter is only

valid when client authentication is requested for a server using SSL. The

layout of this area is as follows:

4 bytes Pointer to base64 certificate body

4 bytes Length of base64 certificate body

4 bytes Pointer to session ID for this connection

4 bytes Flag to indicate if new session

4 bytes Pointer to certificate serial number

4 bytes Pointer to common name of client

4 bytes Pointer to locality

4 bytes Pointer to state or province

4 bytes Pointer to country

GSKSSOCINIT

226 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

4 bytes Pointer to organization

4 bytes Pointer to organizational unit

4 bytes Pointer to issuer’s common name

4 bytes Pointer to issuer’s locality

4 bytes Pointer to issuer’s state or province

4 bytes Pointer to issuer’s country

4 bytes Pointer to issuer’s organization

4 bytes Pointer to issuer’s organizational unit

REASCODE

A fullword binary field where the failure reason code for the

GSKSSOCINIT call is stored. A value of 0 indicates the successful

completion of the function.

ERRNO

A fullword binary field. May show detailed error information.

RETCODE

When REASCODE is 0, the RETCODE parameter contains the pointer to a

GSKSOCDATA structure which needs to be used in subsequent SSL for

VSE operations.

GSKSSOCINIT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 227

GSKSSOCREAD

The GSKSSOCREAD call receives data on a secure socket connection.

Figure 46 shows an example of the GSKSSOCREAD call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKSSOCREAD’. The field is

left-justified and padded on the right with blanks.

SSOCDATA Address of GSKSOCDATA structure as returned in RETCODE by

the GSKSSOCINIT call.

NBYTE A fullword binary number set to the size of BUF. GSKSSOCREAD

will not return more than the number of bytes specified in NBYTE

even if more data is available. The length of the data buffer must

be either 64 Kb or at least 32 bytes larger than the largest send

buffer that is to be received.

BUF A buffer to be filled by completion of the call. The length of BUF

must be at least as long as the value of NBYTE.

Parameter Values returned to the Application

ERRNO A fullword binary field. May show detailed error information.

RETCODE A fullword binary field that returns one of the following

0 or greater 0. Successful call. RETCODE denotes the number of

bytes which have been received.

less than 0. An error occurred. Please refer to VSE library

member SSLVSE.A or to the TCP/IP for VSE 1.5

Optional Products for a detailed description of error

return codes.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCREAD ’.

 01 SSOCDATA PIC 9(8) BINARY.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION SSOCDATA NBYTE BUF

 ERRNO RETCODE.

Figure 46. GSKSSOCREAD Call Instruction Example

GSKSSOCREAD

228 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKSSOCRESET

The GSKSSOCRESET call refreshes the security parameters, such as encryption

keys, for a session.

Figure 47 shows an example of the GSKSSOCRESET call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKSSOCRESET’. The field is

left-justified and padded on the right with blanks.

SSOCDATA Address of GSKSOCDATA structure as returned in RETCODE by

the GSKSSOCINIT call.

Parameter Values returned to the Application

ERRNO A fullword binary field. May show detailed error information.

RETCODE A fullword binary field that returns one of the following

0 Successful call.

less than 0. An error occurred. Please refer to VSE library

member SSLVSE.A or to the TCP/IP for VSE 1.5

Optional Products for a detailed description of error

return codes.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCRESET ’.

 01 SSOCDATA PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION SSOCDATA

 ERRNO RETCODE.

Figure 47. GSKSSOCRESET Call Instruction Example

GSKSSOCRESET

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 229

GSKSSOCWRITE

The GSKSSOCWRITE call sends data on a secure socket connection.

Figure 48 shows an example of the GSKSSOCWRITE call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKSSOCWRITE’. The field is

left-justified and padded on the right with blanks.

SSOCDATA Address of GSKSOCDATA structure as returned in RETCODE by

the GSKSSOCINIT call.

NBYTE A fullword binary number set to the number of bytes to transmit.

The maximum supported number of bytes is 64K.

BUF Specifies the buffer containing the data to be transmitted. BUF

should have the size specified in NBYTE.

Parameter Values returned to the Application

ERRNO A fullword binary field. May show detailed error information.

RETCODE A fullword binary field that returns one of the following

0 or greater 0. Successful call. RETCODE denotes the number of

bytes which have been sent.

less than 0. An error occurred. Please refer to VSE library

member SSLVSE.A or to the TCP/IP for VSE 1.5

Optional Products for a detailed description of error

return codes.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCWRITE ’.

 01 SSOCDATA PIC 9(8) BINARY.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION SSOCDATA NBYTE BUF

 ERRNO RETCODE.

Figure 48. GSKSSOCWRITE Call Instruction Example

GSKSSOCWRITE

230 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKUNINIT

The GSKUNINIT call removes the current overall settings for the SSL environment.

It removes fields such as session timeout values and SSL protocols.

Figure 49 shows an example of the GSKUNINIT call instruction:

Parameter Values set by the Application

SOC-FUNCTION

A 16-byte character field containing ’GSKUNINIT’. The field is

left-justified and padded on the right with blanks.

Parameter Values returned to the Application

ERRNO A fullword binary field. May show detailed error information.

RETCODE A fullword binary field that returns one of the following

0 Successful call.

not equal 0 An error occurred. Please refer to VSE library

member SSLVSE.A or to the TCP/IP for VSE 1.5

Optional Products for a detailed description of error

return codes.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE ’GSKUNINIT ’.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION

 ERRNO RETCODE.

Figure 49. GSKUNINIT Call Instruction Example

GSKUNINIT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 231

INITAPI

The INITAPI call connects an application to the TCP/IP interface. Almost all

sockets programs that are written in COBOL, PL/I, or assembler language must

issue the INITAPI macro before they issue other sockets macros.

The exceptions to this rule are the following calls, which, when issued first, will

generate a default INITAPI call.

v GETCLIENTID

v GETHOSTID

v GETHOSTNAME

v SELECT

v SELECTEX

v SOCKET

v TAKESOCKET

Figure 50 shows an example of INITAPI call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing INITAPI. The field is left justified and

padded on the right with blanks.

MAXSOC

Optional input parameter. A halfword binary field specifying the maximum

number of sockets supported for this application.

Currently, TCP/IP for VSE/ESA ignores this input and defaults the

maximum number of sockets supported to 8001. Socket descriptor numbers

are in the range 0 – 8000.

IDENT

A structure containing the identities of the TCP/IP address space and the

calling program’s address space. Specify IDENT on the INITAPI call from

an address space.

TCPNAME

An eight-byte character field which is ignored.

ADSNAME

An eight-byte character field which is ignored.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’INITAPI’.

 01 MAXSOC PIC 9(4) BINARY.

 01 IDENT.

 02 TCPNAME PIC X(8).

 02 ADSNAME PIC X(8).

 01 SUBTASK PIC X(8).

 01 MAXSNO PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC IDENT SUBTASK

 MAXSNO ERRNO RETCODE.

Figure 50. INITAPI Call Instruction Example

INITAPI

232 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SUBTASK

Indicates an eight-byte field, containing a unique subtask identifier which

is used to distinguish between multiple subtasks within a single address

space. Use your own jobname as part of your subtask name. This will

ensure that, if you issue more than one INITAPI command from the same

address space, each SUBTASK parameter will be unique. If not specified or

specified as 8 blanks, a default subtask name is used. In a batch

environment we have

byte 0-2

first 3 characters of the JOBNAME

byte 3

hex F0

byte 4-7

the VSE Task Identifier

In a CICS transaction environment we have

byte 0-2

the CICS EIBTRNID (transaction identifier)

byte 3 hex F1

byte 4-7

the CICS EIBTASKN (task number)

Parameter Values Returned to the Application

MAXSNO

Output parameter. A fullword binary field containing the greatest

descriptor number that may get assigned to this application.

Currently, TCP/IP for VSE/ESA always returns 8000.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

INITAPI

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 233

IOCTL

The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL macro, you must load a value representing the

characteristic that you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are

passed to and returned from IOCTL. The length of REQARG and RETARG is

determined by the value that you specify in COMMAND.

Figure 51 shows an example of IOCTL call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing IOCTL. The field is left justified and

padded to the right with blanks.

S A halfword binary number set to the descriptor of the socket to be

controlled.

 WORKING-STORAGE SECTION.

 01 SOKET-FUNCTION PIC X(16) VALUE ’IOCTL ’.

 01 S PIC 9(4) BINARY.

 01 COMMAND PIC 9(4) BINARY.

 01 IFREQ,

 3 NAME PIC X(16).

 3 FAMILY PIC 9(4) BINARY.

 3 PORT PIC 9(4) BINARY.

 3 ADDRESS PIC 9(8) BINARY.

 3 RESERVED PIC X(8).

 01 IFREQOUT,

 3 NAME PIC X(16).

 3 FAMILY PIC 9(4) BINARY.

 3 PORT PIC 9(4) BINARY.

 3 ADDRESS PIC 9(8) BINARY.

 3 RESERVED PIC X(8).

 01 GRP_IOCTL_TABLE(100)

 02 IOCTL_ENTRY,

 3 NAME PIC X(16).

 3 FAMILY PIC 9(4) BINARY.

 3 PORT PIC 9(4) BINARY.

 3 ADDRESS PIC 9(8) BINARY.

 3 NULLS PIC X(8).

 01 IOCTL_REQARG POINTER ;

 01 IOCTL_RETARG POINTER ;

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S COMMAND REQARG

 RETARG ERRNO RETCODE.

Figure 51. IOCTL Call Instruction Example

IOCTL

234 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

COMMAND

To control an operating characteristic, set this field to the value shown in

Table 6 on page 325.

REQARG and RETARG

REQARG is used to pass arguments to IOCTL and RETARG receives

arguments from IOC. For the lengths and meanings of REQARG and

RETARG see Table 6 on page 325.

Parameter Values Returned to the Application

RETARG

Returns an array whose size is based on the value in COMMAND.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

IOCTL

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 235

LISTEN

The LISTEN call:

v Creates a connection-request queue of a specified length for incoming connection

requests.

Note: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is typically used by a server to receive connection requests from

clients. When a connection request is received, a new socket is created by a

subsequent ACCEPT call, and the original socket continues to listen for additional

connection requests. The LISTEN call converts an active socket to a passive socket

and conditions it to accept connection requests from clients. Once a socket becomes

passive it cannot initiate connection requests.

Figure 52 shows an example of LISTEN call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing LISTEN. The field is left-justified and

padded to the right with blanks.

S A halfword binary number set to the socket descriptor.

BACKLOG

A fullword binary number set to the number of communication requests to

be queued. This parameter is ignored. A value of 1 is always assumed.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’LISTEN’.

 01 S PIC 9(4) BINARY.

 01 BACKLOG PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

Figure 52. LISTEN Call Instruction Example

LISTEN

236 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

READ

The READ call reads the data on socket s. This is the conventional TCP/IP read

data operation. If a datagram packet is too long to fit in the supplied buffer,

datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if programs A and B are connected with a stream

socket and program A sends 1000 bytes, each call to this function can return any

number of bytes, up to the entire 1000 bytes. The number of bytes returned will be

contained in RETCODE. Therefore, programs using stream sockets should place

this call in a loop that repeats until all data has been received.

Note: See “EZACIC05” on page 268 for a subroutine that will translate ASCII

input data to EBCDIC.

Figure 53 shows an example of READ call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing READ. The field is left justified and

padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket that is

going to read the data.

NBYTE

A fullword binary number set to the size of BUF. READ does not return

more than the number of bytes of data in NBYTE even if more data is

available.

Parameter Values Returned to the Application

BUF On input, a buffer to be filled by completion of the call. The length of BUF

must be at least as long as the value of NBYTE.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’READ’.

 01 S PIC 9(4) BINARY.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S NBYTE BUF

 ERRNO RETCODE.

Figure 53. READ Call Instruction Example

READ

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 237

Value Description

0 A zero return code indicates that the connection is closed and no

data is available.

>0 A positive value indicates the number of bytes copied into the

buffer.

−1 Check ERRNO for an error code.

READ

238 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

RECV

The RECV call, like READ receives data on a socket with descriptor S. RECV

applies only to connected sockets. If a datagram packet is too long to fit in the

supplied buffers, datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if programs A and B are connected with a stream

socket and program A sends 1000 bytes, each call to this function can return any

number of bytes, up to the entire 1000 bytes. The number of bytes returned will be

contained in RETCODE. Therefore, programs using stream sockets should place

RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV

blocks the caller until data arrives. If data is not available and the socket is in

nonblocking mode, RECV returns a −1 and sets ERRNO EWOULDBLOCK. See

“FCNTL” on page 200 or “IOCTL” on page 234 for a description of how to set

nonblocking mode.

Note: See “EZACIC05” on page 268 for a subroutine that will translate ASCII

input data to EBCDIC.

Figure 54 shows an example of RECV call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing RECV. The field is left justified and

padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to

receive the data.

FLAGS

A fullword binary field which must be zet to NO-FLAG or 0.

NBYTE

A value or the address of a fullword binary number set to the size of BUF.

RECV does not receive more than the number of bytes of data in NBYTE

even if more data is available.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’RECV’.

 01 S PIC 9(4) BINARY.

 01 FLAGS PIC 9(8) BINARY.

 88 NO-FLAG VALUE IS 0

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE BUF

 ERRNO RETCODE.

Figure 54. RECV Call Instruction Example

RECV

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 239

Parameter Values Returned to the Application

BUF The input buffer to receive the data.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 The socket is closed

>0 A positive return code indicates the number of bytes copied into

the buffer.

−1 Check ERRNO for an error code

RECV

240 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

RECVFROM

The RECVFROM call receives data on a socket with descriptor S and stores it in a

buffer. The RECVFROM call applies to both connected and unconnected sockets.

The socket address is returned in the NAME structure. If a datagram packet is too

long to fit in the supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, recvfrom() returns the source address associated with each

incoming datagram. For connection-oriented protocols like TCP, getpeername()

returns the address associated with the other end of the connection.

If NAME is nonzero, the call returns the address of the sender. The NBYTE

parameter should be set to the size of the buffer.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if programs A and B are connected with a stream

socket and program A sends 1000 bytes, each call to this function can return any

number of bytes, up to the entire 1000 bytes. The number of bytes returned will be

contained in RETCODE. Therefore, programs using stream sockets should place

RECVFROM in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode,

RECVFROM blocks the caller until data arrives. If data is not available and the

socket is in nonblocking mode, RECVFROM returns a −1 and sets ERRNO

EWOULDBLOCK. See “FCNTL” on page 200 or “IOCTL” on page 234 for a

description of how to set nonblocking mode.

Note: See “EZACIC05” on page 268 for a subroutine that will translate ASCII

input data to EBCDIC.

Figure 55 shows an example of RECVFROM call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’RECVFROM’.

 01 S PIC 9(4) BINARY.

 01 FLAGS PIC 9(8) BINARY.

 88 NO-FLAG VALUE IS 0.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS

 NBYTE BUF NAME ERRNO RETCODE.

Figure 55. RECVFROM Call Instruction Example

RECVFROM

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 241

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing RECVFROM. The field is left justified

and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to

receive the data.

FLAGS

A fullword binary field which must be set to NO-FLAG or 0.

NBYTE

A fullword binary number specifying the length of the input buffer.

Parameter Values Returned to the Application

BUF Defines an input buffer to receive the input data.

NAME

A structure containing the address of the socket that sent the data. The

structure is:

FAMILY

A halfword binary number specifying the addressing family. The

value is always 2, indicating AF_INET.

PORT A halfword binary number specifying the port number of the

sending socket.

IP-ADDRESS

A fullword binary number specifying the 32-bit internet address of

the sending socket.

RESERVED

An 8-byte reserved field. This field is required, but is not used.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 The socket is closed.

>0 A positive return code indicates the number of bytes of data

transferred by the read call.

−1 Check ERRNO for an error code.

RECVFROM

242 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SELECT

In a process where multiple I/O operations can occur it is necessary for the

program to be able to wait on one or several of the operations to complete.

For example, consider a program that issues a READ to multiple sockets whose

blocking mode is set. Because the socket would block on a READ call, only one

socket could be read at a time. Setting the sockets nonblocking would solve this

problem, but would require polling each socket repeatedly until data became

available. The SELECT call allows you to test several sockets and to execute a

subsequent I/O call only when one of the tested sockets is ready; thereby ensuring

that the I/O call will not block.

To use the SELECT call as a timer in your program, do one of the following:

v Set the read, write, and except arrays to zeros.

v Specify MAXSOC <= 0.

Defining Which Sockets to Test

The SELECT call monitors for read operations, write operations, and exception

operations:

v When a socket is ready to read, one of the following has occurred:

– A buffer for the specified sockets contains input data. If input data is

available for a given socket, a read operation on that socket will not block.

– A connection has been requested on that socket.
v When a socket is ready to write, TCP/IP can accommodate additional output

data. If TCP/IP can accept additional output for a given socket, a write

operation on that socket will not block.

v When an exception condition has occurred on a specified socket it is an

indication that a TAKESOCKET has occurred for that socket.

Each socket descriptor is represented by a bit in a bit string. The bit strings are

contained in 32-bit fullwords, numbered from right to left. The right-most bit

represents socket descriptor zero; the left-most bit represents socket descriptor 31,

and so on. If your process uses 32 or fewer sockets, the bit string is one fullword.

If your process uses 33 sockets, the bit string is two full words. The first fullword

represents socket descriptors 0 to 31, the second fullword is for socket descriptors

32 to 63. You define the sockets that you want to test by turning on bits in the

string.

Note: To simplify string processing in COBOL, you can use the program

EZACIC06 to convert each bit in the string to a character. For more

information, see “EZACIC06” on page 269.

Read Operations

Read operations include ACCEPT, READ, RECV, or RECVFROM calls. A socket is

ready to be read when data has been received for it, or when a connection request

has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits

in RSNDMSK to one before issuing the SELECT call. When the SELECT call

returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

Write Operations

A socket is selected for writing (ready to be written) when:

v TCP/IP can accept additional outgoing data.

SELECT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 243

v The socket is marked nonblocking and a previous CONNECT did not complete

immediately. In this case, CONNECT returned an ERRNO with a value

EINPROGRESS. This socket will be selected for write when the CONNECT

completes.

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent

exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the

write operation with a SELECT call to ensure that the socket is ready for writing.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits

representing those sockets to one before issuing the SELECT call. When the

SELECT call returns, the corresponding bits in the WRETMSK indicate sockets

ready for writing.

Exception Operations

For each socket to be tested, the SELECT call can check for an existing exception

condition. Two exception conditions are supported:

v The calling program (concurrent server) has issued a GIVESOCKET command

and the target child server has successfully issued the TAKESOCKET call. When

this condition is selected, the calling program (concurrent server) should issue

CLOSE to dissociate itself from the socket.

v A socket has received out-of-band data. On this condition, a READ will return

the out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the

ESNDMSK bits representing those sockets to one. When the SELECT call returns,

the corresponding bits in the ERETMSK indicate sockets with exception conditions.

MAXSOC Parameter

The SELECT call must test each bit in each string before returning results. For

efficiency, the MAXSOC parameter can be used to specify the largest socket

descriptor number that needs to be tested for any event type. The SELECT call

tests only bits in the range zero through the MAXSOC value.

TIMEOUT Parameter

If the time specified in the TIMEOUT parameter elapses before any event is

detected, the SELECT call returns, RETCODE is set to 0.

Figure 56 on page 245 shows an example of SELECT call instructions.

SELECT

244 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Bit masks are 32-bit fullwords with one bit for each socket. Up to 32 sockets fit into

one 32-bit mask [PIC X(4)]. If you have 33 sockets, you must allocate two 32-bit

masks [PIC X(8)].

For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing SELECT. The field is left justified and

padded on the right with blanks.

MAXSOC

Input parameter. A fullword binary field specifying the largest socket

descriptor number to be checked plus 1 (remember, TCP/IP for VSE/ESA

supports socket descriptor numbers from 0 to 8000).

TIMEOUT

If TIMEOUT is a positive value, it specifies the maximum interval to wait

for the selection to complete. If TIMEOUT-SECONDS is a negative value,

the SELECT call blocks until a socket becomes ready. To poll the sockets

and return immediately, specify the TIMEOUT value to be zero.

 TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds

component of the time-out value.

v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the

microseconds component of the time-out value (0—999999).

 For example, if you want SELECT to timeout after 3.5 seconds, set

TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK

A bit string sent to request read event status.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECT’.

 01 MAXSOC PIC 9(8) BINARY.

 01 TIMEOUT.

 03 TIMEOUT-SECONDS PIC 9(8) BINARY.

 03 TIMEOUT-MICROSEC PIC 9(8) BINARY.

 01 RSNDMSK PIC X(*).

 01 WSNDMSK PIC X(*).

 01 ESNDMSK PIC X(*).

 01 RRETMSK PIC X(*).

 01 WRETMSK PIC X(*).

 01 ERETMSK PIC X(*).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

 RSNDMSK WSNDMSK ESNDMSK

 RRETMSK WRETMSK ERETMSK

 ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))*4

Figure 56. SELECT Call Instruction Example

SELECT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 245

v For each socket to be checked for pending read events, the

corresponding bit in the string should be set to 1.

v For sockets to be ignored, the value of the corresponding bit should be

set to 0.

If this parameter is set to all zeros, the SELECT will not check for read

events.

WSNDMSK

A bit string sent to request write event status.

v For each socket to be checked for pending write events, the

corresponding bit in the string should be set to set.

v For sockets to be ignored, the value of the corresponding bit should be

set to 0.

If this parameter is set to all zeros, the SELECT will not check for write

events.

ESNDMSK

A bit string sent to request exception event status.

v For each socket to be checked for pending exception events, the

corresponding bit in the string should be set to set.

v For each socket to be ignored, the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for

exception events.

Parameter Values Returned to the Application

RRETMSK

A bit string returned with the status of read events. The length of the

string should be equal to the maximum number of sockets to be checked.

For each socket that is ready to read, the corresponding bit in the string

will be set to 1; bits that represent sockets that are not ready to read will

be set to 0.

WRETMSK

A bit string returned with the status of write events. The length of the

string should be equal to the maximum number of sockets to be checked.

For each socket that is ready to write, the corresponding bit in the string

will be set to 1; bits that represent sockets that are not ready to be written

will be set to 0.

ERETMSK

A bit string returned with the status of exception events. The length of the

string should be equal to the maximum number of sockets to be checked.

For each socket that has an exception status, the corresponding bit will be

set to 1; bits that represent sockets that do not have exception status will

be set to 0.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

>0 Indicates the sum of all ready sockets in the three masks

SELECT

246 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

0 Indicates that the SELECT time limit has expired

−1 Check ERRNO for an error code

SELECT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 247

SELECTEX

The SELECTEX call monitors a set of sockets, a time value and an ECB or list of

ECBs. It completes when either one of the sockets has activity, the time value

expires, or one of the ECBs is posted.

To use the SELECTEX call as a timer in your program, do either of the following:

v Set the read, write, and except arrays to zeros

v Specify MAXSOC <= 0

For a detailed description on testing sockets, refer to the description of “SELECT”

on page 243.

Figure 57 shows an example of SELECTEX call instructions.

 Parameter Values Set by the Application

MAXSOC

Input parameter. A fullword binary field specifying the largest socket

descriptor number to be checked plus 1 (remember, TCP/IP for VSE/ESA

supports socket descriptor numbers from 0 to 8000).

TIMEOUT

If TIMEOUT is a positive value, it specifies a maximum interval to wait for

the selection to complete. If TIMEOUT-SECONDS is a negative value, the

SELECT call blocks until a socket becomes ready. To poll the sockets and

return immediately, set TIMEOUT to be zeros.

 TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds

component of the time-out value.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECTEX’.

 01 MAXSOC PIC 9(8) BINARY.

 01 TIMEOUT.

 03 TIMEOUT-SECONDS PIC 9(8) BINARY.

 03 TIMEOUT-MINUTES PIC 9(8) BINARY.

 01 RSNDMSK PIC X(*).

 01 WSNDMSK PIC X(*).

 01 ESNDMSK PIC X(*).

 01 RRETMSK PIC X(*).

 01 WRETMSK PIC X(*).

 01 ERETMSK PIC X(*).

 01 SELECB PIC X(4).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 where * is the size of the select mask

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

 RSNDMSK WSNDMSK ESNDMSK

 RRETMSK WRETMSK ERETMSK

 SELECB ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))*4

Figure 57. SELECTEX Call Instruction Example

SELECTEX

248 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the

microseconds component of the time-out value (0—999999).

 For example, if you want SELECTEX to timeout after 3.5 seconds, set

TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK

The bit-mask array to control checking for read interrupts. If this

parameter is not specified or the specified bit-mask is zeros, the SELECT

will not check for read interrupts. The length of this bit-mask array is

dependent on the value in MAXSOC.

WSNDMSK

The bit-mask array to control checking for write interrupts. If this

parameter is not specified or the specified bit-mask is zeros, the SELECT

will not check for write interrupts. The length of this bit-mask array is

dependent on the value in MAXSOC.

ESNDMSK

The bit-mask array to control checking for exception interrupts. If this

parameter is not specified or the specified bit-mask is zeros, the SELECT

will not check for exception interrupts. The length of this bit-mask array is

dependent on the value in MAXSOC.

SELECB

An ECB which, if posted, causes completion of the SELECTEX.

 If an ECB list is specified, you must set the high-order bit of the last entry

in the ECB list to one to signify it is the last entry, and you must add the

LIST keyword. The ECBs must reside in the caller primary address space.

Note: The maximum number of ECBs that can be specified in a list is 254.

Parameter Values Returned to the Application

ERRNO

A fullword binary field; if RETCODE is negative, this contains an error

number. See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE

A fullword binary field

Value Meaning

>0 The number of ready sockets.

0 Either the SELECTEX time limit has expired (ECB value will be

zero) or one of the caller’s ECBs has been posted (ECB value will

be non-zero and the caller’s descriptor sets will be set to 0). The

caller must initialize the ECB values to zero before issuing the

SELECTEX macro.

-1 Error; check ERRNO.

RRETMSK

The bit-mask array returned by the SELECT if RSNDMSK is specified. The

length of this bit-mask array is dependent on the value in MAXSOC.

WRETMSK

The bit-mask array returned by the SELECT if WSNDMSK is specified. The

length of this bit-mask array is dependent on the value in MAXSOC.

SELECTEX

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 249

ERETMSK

The bit-mask array returned by the SELECT if ESNDMSK is specified. The

length of this bit-mask array is dependent on the value in MAXSOC.

SELECTEX

250 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SEND

The SEND call sends data on a specified connected socket.

For datagram sockets, SEND transmits the entire datagram if it fits into the

receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if a program is required to send 1000 bytes, each

call to this function can send any number of bytes, up to the entire 1000 bytes,

with the number of bytes sent returned in RETCODE. Therefore, programs using

stream sockets should place this call in a loop, reissuing the call until all data has

been sent.

Note: See “EZACIC04” on page 267 for a subroutine that will translate EBCDIC

input data to ASCII.

Figure 58 shows an example of SEND call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing SEND. The field is left justified and

padded on the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket

that is sending data.

FLAGS

A fullword binary field which must be set to 0.

NBYTE

A fullword binary number set to the number of bytes of data to be

transferred. Unless the PTF for APAR PQ55591 is installed, the maximum

number of bytes to be specified is 64K.

BUF The buffer containing the data to be transmitted. BUF should be the size

specified in NBYTE.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SEND’.

 01 S PIC 9(4) BINARY.

 01 FLAGS PIC 9(8) BINARY.

 88 NO-FLAG VALUE IS 0.

 88 OOB VALUE IS 1.

 88 DONT-ROUTE VALUE IS 4.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE

 BUF ERRNO RETCODE.

Figure 58. SEND Call Instruction Example

SEND

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 251

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes

transmitted.

−1 Check ERRNO for an error code

SEND

252 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SENDTO

SENDTO is similar to SEND, except that it includes the destination address

parameter. The destination address allows you to use the SENDTO call to send

datagrams on a UDP socket, regardless of whether the socket is connected.

For datagram sockets SENDTO transmits the entire datagram if it fits into the

receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if a program is required to send 1000 bytes, each

call to this function can send any number of bytes, up to the entire 1000 bytes,

with the number of bytes sent returned in RETCODE. Therefore, programs using

stream sockets should place SENDTO in a loop that repeats the call until all data

has been sent.

Note: See “EZACIC04” on page 267 for a subroutine that will translate EBCDIC

input data to ASCII.

Figure 59 shows an example of SENDTO call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing SENDTO. The field is left justified and

padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket

sending the data.

FLAGS

A fullword field that must be set to 0.

NBYTE

A fullword binary number set to the number of bytes to transmit. Unless

the PTF for APAR PQ55591 is installed, the maximum number of bytes to

be specified is 64K.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SENDTO’.

 01 S PIC 9(4) BINARY.

 01 FLAGS. PIC 9(8) BINARY.

 88 NO-FLAG VALUE IS 0.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 NAME

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE

 BUF NAME ERRNO RETCODE.

Figure 59. SENDTO Call Instruction Example

SENDTO

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 253

BUF Specifies the buffer containing the data to be transmitted. BUF should be

the size specified in NBYTE.

NAME

Specifies the socket name structure as follows:

FAMILY

A halfword binary field containing the addressing family. For

TCP/IP the value must be 2, indicating AF_INET.

PORT A halfword binary field containing the port number bound to the

socket.

IP-ADDRESS

A fullword binary field containing the socket’s 32-bit internet

address.

RESERVED

Specifies eight-byte reserved field. This field is required, but not

used.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes

transmitted.

−1 Check ERRNO for an error code

SENDTO

254 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SETSOCKOPT

The SETSOCKOPT call sets the options associated with a socket. SETSOCKOPT

can be called only for sockets in the AF_INET domain.

The OPTVAL and OPTLEN parameters are used to pass data used by the

particular set command. The OPTVAL parameter points to a buffer containing the

data needed by the set command. The OPTVAL parameter is optional and can be

set to 0, if data is not needed by the command. The OPTLEN parameter must be

set to the size of the data pointed to by OPTVAL.

Figure 60 shows an example of SETSOCKOPT call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing 'SETSOCKOPT'. The field is left

justified and padded to the right with blanks.

S A halfword binary number set to the socket whose options are to be set.

OPTNAME

Specify one of the following values.

SO-REUSEADDR

This option is provided for source compatibility reasons only. It

will not perform any action. TCP/IP implicitly allows for

immediate address reuse.

SO-KEEPALIVE

This option is provided for source compatibility reasons only. It

will not perform any action. Instead the user should use the

common TCP/IP setting: SET PULSE_TIME=nnn.

SO-LINGER

Controls how TCP/IP deals with data that it has not been able to

transmit when the socket is closed. This option has meaning only

for stream sockets.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SETSOCKOPT’.

 01 S PIC 9(4) BINARY.

 01 OPTNAME PIC 9(8) BINARY.

 88 SO-REUSEADDR VALUE 4.

 88 SO-KEEPALIVE VALUE 8.

 88 SO-LINGER VALUE 128.

 01 OPTVAL PIC 9(16) BINARY.

 01 OPTLEN PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S OPTNAME

 OPTVAL OPTLEN ERRNO RETCODE.

Figure 60. SETSOCKOPT Call Instruction Example

SETSOCKOPT

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 255

v When LINGER is enabled and CLOSE is called, the calling

program is blocked until the data is successfully transmitted or

the connection has timed out.

v When LINGER is disabled, the CLOSE call returns without

blocking the caller, and TCP/IP continues to attempt to send the

data for a specified period of time. Although this usually

provides sufficient time to complete the data transfer, use of the

LINGER option does not guarantee successful completion

because TCP/IP only waits the amount of time specified in

OPTVAL LINGER.

The default is DISABLED.

OPTVAL

Contains data which further defines the option specified in OPTNAME.

v For OPTNAME of SO-REUSEADDR, OPTVAL is a one-word binary

integer. Set OPTVAL to a nonzero positive value to enable the option; set

OPTVAL to zero to disable the option.

v For SO-LINGER, OPTVAL assumes the following structure:

 ONOFF PIC X(4).

 LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to enable the option; set it to zero to

disable the option. Set the LINGER value to the amount of time (in

seconds) TCP/IP will linger after the CLOSE call.

OPTLEN

A fullword binary number specifying the length of the data returned in

OPTVAL.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

SETSOCKOPT

256 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SHUTDOWN

One way to terminate a network connection is to issue the CLOSE call which

attempts to complete all outstanding data transmission requests prior to breaking

the connection. The HOW parameter determines the direction of traffic to

shutdown.

When the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter

determines the amount of time the system will wait before releasing the

connection. For example, with a LINGER value of 30 seconds, system resources

will remain in the system for up to 30 seconds after the CLOSE call is issued. In

high volume, transaction-based systems this can impact performance severely.

If the SHUTDOWN call is issued, when the CLOSE call is received, the connection

can be closed immediately, rather than waiting for the 30 second delay.

Figure 61 shows an example of SHUTDOWN call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing SHUTDOWN. The field is left justified

and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be

shutdown.

HOW A fullword binary field. The following value can be set:

Value Description

2 (END-BOTH)

Ends further send and receive operations.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SHUTDOWN’.

 01 S PIC 9(4) BINARY.

 01 HOW PIC 9(8) BINARY.

 88 END-BOTH VALUE 2.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S HOW ERRNO RETCODE.

Figure 61. SHUTDOWN Call Instruction Example

SHUTDOWN

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 257

−1 Check ERRNO for an error code

SHUTDOWN

258 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SOCKET

The SOCKET call creates an endpoint for communication and returns a socket

descriptor representing the endpoint.

Figure 62 shows an example of SOCKET call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing 'SOCKET'. The field is left justified and

padded on the right with blanks.

AF A fullword binary field set to the addressing family. For TCP/IP the value

is set to 2 for AF_INET.

SOCTYPE

A fullword binary field set to the type of socket required. The types are:

Value Description

1 Stream sockets provide sequenced, two-way byte streams that are

reliable and connection-oriented. They support a mechanism for

out-of-band data.

2 Datagram sockets provide datagrams, which are connectionless

messages of a fixed maximum length whose reliability is not

guaranteed. Datagrams can be corrupted, received out of order,

lost, or delivered multiple times.

PROTO

A fullword binary field set to the protocol to be used for the socket. If this

field is set to 0, the default protocol is used. For streams, the default is

TCP; for datagrams, the default is UDP. If this field is set to 17, the UDP

Protocol is used. If it is set to 6, the TCP protocol is used.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84, for information about

ERRNO return codes.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SOCKET’.

 01 AF PIC 9(8) COMP VALUE 2.

 01 SOCTYPE PIC 9(8) BINARY.

 88 STREAM VALUE 1.

 88 DATAGRAM VALUE 2.

 01 PROTO PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION AF SOCTYPE

 PROTO ERRNO RETCODE.

Figure 62. SOCKET Call Instruction Example

SOCKET

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 259

RETCODE

A fullword binary field that returns one of the following:

Value Description

> or = 0

Contains the new socket descriptor

−1 Check ERRNO for an error code

SOCKET

260 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

TAKESOCKET

The TAKESOCKET call acquires a socket from another program and creates a new

socket. Typically, a child server issues this call using client ID and socket descriptor

data which it obtained from the concurrent server. See “GIVESOCKET” on page

216 for a discussion of the use of GIVESOCKET and TAKESOCKET calls.

Note: When TAKESOCKET is issued, a new socket descriptor is returned in

RETCODE. You should use this new socket descriptor in subsequent calls

such as GETSOCKOPT, which require the S (socket descriptor) parameter.

Figure 63 shows an example of TAKESOCKET call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing TAKESOCKET. The field is left

justified and padded to the right with blanks.

SOCRECV

A halfword binary field set to the descriptor of the socket to be taken. The

socket to be taken is passed by the concurrent server.

CLIENT

Specifies the client ID of the program that is giving the socket. In CICS ,

these parameters are passed by the Listener program to the program that

issues the TAKESOCKET call.

v In CICS, the information is obtained using EXEC CICS RETRIEVE.

DOMAIN

A fullword binary field set to domain of the program giving the

socket. It is always 2, indicating AF_INET.

NAME

Specifies an 8-byte character field set to the VSE partition identifier

of the program that gave the socket.

TASK Specifies an eight-byte character field set to the task identifier of

the task that gave the socket.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’TAKESOCKET’.

 01 SOCRECV PIC 9(4) BINARY.

 01 CLIENT.

 03 DOMAIN PIC 9(8) BINARY.

 03 NAME PIC X(8).

 03 TASK PIC X(8).

 03 RESERVED PIC X(20).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION SOCRECV CLIENT

 ERRNO RETCODE.

Figure 63. TAKESOCKET Call Instruction Example

TAKESOCKET

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 261

RESERVED

A 20-byte reserved field. This field is required, and only used

internally.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

> or = 0

Contains the new socket descriptor

−1 Check ERRNO for an error code

TAKESOCKET

262 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

TERMAPI

This call terminates the session created by INITAPI.

Figure 64 shows an example of TERMAPI call instructions.

For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing TERMAPI. The field is left justified

and padded to the right with blanks.

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’TERMAPI’.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION.

Figure 64. TERMAPI Call Instruction Example

TERMAPI

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 263

WRITE

The WRITE call writes data on a connected socket. This call is similar to SEND,

except that it lacks the control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the

receiving buffer.

Stream sockets act like streams of information with no boundaries separating data.

For example, if a program wishes to send 1000 bytes, each call to this function can

send any number of bytes, up to the entire 1000 bytes. The number of bytes sent

will be returned in RETCODE. Therefore, programs using stream sockets should

place this call in a loop, calling this function until all data has been sent.

See “EZACIC04” on page 267 for a subroutine that will translate EBCDIC output

data to ASCII.

Figure 65 shows an example of WRITE call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values Set by the Application

SOC-FUNCTION

A 16-byte character field containing WRITE. The field is left justified and

padded on the right with blanks.

S A halfword binary field set to the socket descriptor.

NBYTE

A fullword binary field set to the number of bytes of data to be

transmitted. Unless the PTF for APAR PQ55591 is installed, the maximum

number of bytes to be specified is 64K.

BUF Specifies the buffer containing the data to be transmitted.

Parameter Values Returned to the Application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See “ERRNO Values” on page 84 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

 WORKING STORAGE

 01 SOC-FUNCTION PIC X(16) VALUE IS ’WRITE’.

 01 S PIC 9(4) BINARY.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING SOC-FUNCTION S NBYTE BUF

 ERRNO RETCODE.

Figure 65. WRITE Call Instruction Example

WRITE

264 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

≥0 A successful call. A return code greater than zero indicates the

number of bytes of data written.

−1 Check ERRNO for an error code.

WRITE

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 265

Using Data Translation Programs for Socket Call Interface

In addition to the socket calls, you can use the following utility programs to

translate data:

Data Translation

TCP/IP hosts and networks use ASCII data notation; TCP/IP for VSE/ESA and its

subsystems use EBCDIC data notation. In situations where data must be translated

from one notation to the other, you can use the following utility programs:

v EZACIC04—Translates EBCDIC data to ASCII data

v EZACIC05—Translates ASCII data to EBCDIC data

Bit String Processing

In C-language, bit strings are often used to convey flags, switch settings, and so

on; TCP/IP makes frequent uses of bit strings. However, since bit strings are

difficult to decode in COBOL, TCP/IP includes:

v EZACIC06—Translates bit-masks into character arrays and character arrays into

bit-masks.

v EZACIC08—Interprets the variable length address list in the HOSTENT structure

returned by GETHOSTBYNAME or GETHOSTBYADDR.

Using Data Translation Programs for Socket Call Interface

266 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

EZACIC04

Purpose: The EZACIC04 program is used to translate EBCDIC data to ASCII data.

Figure 66 shows an example of EZACIC04 call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

OUT-BUFFER

A buffer that contains the following:

v When called – EBCDIC data

v Upon return – ASCII data

LENGTH

Specifies the length of the data to be translated.

 WORKING STORAGE

 01 OUT-BUFFER PIC X(length of output).

 01 LENGTH PIC 9(8) BINARY.

 PROCEDURE

 CALL ’EZACIC04’ USING OUT-BUFFER LENGTH.

Figure 66. EZACIC04 Call Instruction Example

Using Data Translation Programs for Socket Call Interface

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 267

EZACIC05

Purpose: The EZACIC05 program is used to translate ASCII data to EBCDIC data.

EBCDIC data is required by COBOL, PL/I, and assembler language programs.

Figure 67 shows an example of EZACIC05 call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

IN-BUFFER

A buffer that contains the following:

v When called – ASCII data

v Upon return – EBCDIC data.

LENGTH

Specifies the length of the data to be translated.

 WORKING STORAGE

 01 IN-BUFFER PIC X(length of output)

 01 LENGTH PIC 9(8) BINARY VALUE

 PROCEDURE

 CALL ’EZACIC05’ USING IN-BUFFER LENGTH.

Figure 67. EZACIC05 Call Instruction Example

Using Data Translation Programs for Socket Call Interface

268 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

EZACIC06

Purpose: The SELECT call uses bit strings to specify the sockets to test and to

return the results of the test. Because bit strings are difficult to manage in COBOL,

you might want to use the assembler language program EZACIC06 to translate

them to character strings to be used with the SELECT call.

Figure 68 shows an example of EZACIC06 call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

TOKEN

Specifies a 16 character identifier. This identifier is required and it must be

the first parameter in the list.

CH-MASK

Specifies the character array where nn is the maximum number of sockets

in the array.

BIT-MASK

Specifies the bit string to be translated for the SELECT call. The bits are

ordered right-to-left with the right-most bit representing socket 0. The

socket positions in the character array are indexed starting with one

making socket zero index number one in the character array. You should

keep this in mind when turning character positions on and off.

WORKING STORAGE

 01 CHAR-MASK.

 05 CHAR-STRING PIC X(nn).

 01 CHAR-ARRAY REDEFINES CHAR-MASK.

 05 CHAR-ENTRY-TABLE OCCURS nn TIMES.

 10 CHAR-ENTRY PIC X(1).

 01 BIT-MASK.

 05 BIT-ARRAY-FWDS PIC 9(16) COMP.

 01 BIT-FUNCTION-CODES.

 05 CTOB PIC X(4) VALUE ’CTOB’.

 05 BTOC PIC X(4) VALUE ’BTOC’.

 01 BIT-MASK-LENGTH PIC 9(8) COMP VALUE 50 .

PROCEDURE CALL (to convert from character to binary)

 CALL ’EZACIC06’ USING CTOB

 BIT-MASK

 CHAR-MASK

 BIT-MASK-LENGTH

 RETCODE.

PROCEDURE CALL (to convert from binary to character)

 CALL ’EZACIC06’ USING BTOC

 BIT-MASK

 CHAR-MASK

 BIT-MASK-LENGTH

 RETCODE.

Figure 68. EZACIC06 Call Instruction Example

Using Data Translation Programs for Socket Call Interface

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 269

COMMAND

BTOC—Specifies bit string to character array translation.

 CTOB—Specifies character array to bit string translation.

BIT-MASK-LENGTH

Specifies the length of the bit-mask.

RETCODE

A binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

Examples: If you want to use the SELECT call to test sockets zero, five, and nine,

and you are using a character array to represent the sockets, you must set the

appropriate characters in the character array to one. In this example, index

positions one, six and ten in the character array are set to 1. Then you can call

EZACIC06 with the COMMAND parameter set to CTOB. When EZACIC06

returns, BIT-MASK contains a fullword with bits zero, five, and nine (numbered

from the right) turned on as required by the SELECT call. These instructions

process the bit string shown in the following example.

MOVE ZEROS TO CHAR-STRING.

MOVE '1'TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(10).

CALL 'EZACIC06' USING TOKEN CTOB BIT-MASK CH-MASK

 BIT-LENGTH RETCODE.

MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket

activity, enter the following instructions.

MOVE TO BIT-MASK.

CALL 'EZACIC06' USING TOKEN BTOC BIT-MASK CH-MASK

 BIT-LENGTH RETCODE.

PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX

 FROM 1 BY 1 UNTIL IDX EQUAL 10.

TEST-SOCKET.

 IF CHAR-ENTRY(IDX) EQUAL '1'

 THEN PERFORM SOCKET-RESPONSE THRU SOCKET-RESPONSE-EXIT

 ELSE NEXT SENTENCE.

TEST-SOCKET-EXIT.

 EXIT.

Using Data Translation Programs for Socket Call Interface

270 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

EZACIC08

Purpose: The GETHOSTBYNAME and GETHOSTBYADDR calls were derived

from C socket calls that return a structure known as HOSTENT. A given TCP/IP

host can have multiple alias names and host internet addresses.

TCP/IP uses indirect addressing to connect the variable number of alias names

and internet addresses in the HOSTENT structure that is returned by the

GETHOSTBYADDR AND GETHOSTBYNAME calls.

If you are coding in PL/I or assembler language, the HOSTENT structure can be

processed in a relatively straight-forward manner. However, if you are coding in

COBOL, HOSTENT can be more difficult to process and you should use the

EZACIC08 subroutine to process it for you.

It works as follows:

v GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that

indirectly addresses the lists of alias names and internet addresses.

v Upon return from GETHOSTBYADDR or GETHOSTBYNAME your program

calls EZACIC08 and passes it the address of the HOSTENT structure. EZACIC08

processes the structure and returns the following:

 1. The length of host name, if present

 2. The host name

 3. The number of alias names for the host

 4. The alias name sequence number

 5. The length of the alias name

 6. The alias name

 7. The host internet address type, always two for AF_INET

 8. The host internet address length, always 4 for AF_INET

 9. The number of host internet addresses for this host

10. The host internet address sequence number

11. The host internet address
v If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one

alias name or host internet address (steps 3 and 9 above), the application

program should repeat the call to EZACIC08 until all alias names and host

internet addresses have been retrieved.

Figure 69 on page 272 shows an example of EZACIC08 call instructions.

Using Data Translation Programs for Socket Call Interface

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 271

For equivalent PL/I and assembler language declarations, see “Converting

Parameter Descriptions” on page 191.

Parameter Values set by the Application

HOSTENT-ADDR

This fullword binary field must contain the address of the HOSTENT

structure (as returned by the GETHOSTBYxxxx call). This variable is the

same as the variable HOSTENT in the GETHOSTBYADDR and

GETHOSTBYNAME socket calls.

HOSTALIAS-SEQ

This halfword field is used by EZACIC08 to index the list of alias names.

When EZACIC08 is called, it adds one to the current value of

HOSTALIAS-SEQ and uses the resulting value to index into the table of

alias names. Therefore, for a given instance of GETHOSTBYxxxx, this field

should be set to 0 for the initial call to EZACIC08. For all subsequent calls

to EZACIC08, this field should contain the HOSTALIAS-SEQ number

returned by the previous invocation.

HOSTADDR-SEQ

This halfword field is used by EZACIC08 to index the list of IP addresses.

When EZACIC08 is called, it adds one to the current value of

HOSTADDR-SEQ and uses the resulting value to index into the table of IP

addresses. Therefore, for a given instance of GETHOSTBYxxxx, this field

should be set to 0 for the initial call to EZACIC08. For all subsequent calls

to EZACIC08, this field should contain the HOSTADDR-SEQ number

returned by the previous call.

Parameter Values Returned to the Application

 WORKING STORAGE

 01 HOSTENT-ADDR PIC 9(8) BINARY.

 01 HOSTNAME-LENGTH PIC 9(4) BINARY.

 01 HOSTNAME-VALUE PIC X(255)

 01 HOSTALIAS-COUNT PIC 9(4) BINARY.

 01 HOSTALIAS-SEQ PIC 9(4) BINARY.

 01 HOSTALIAS-LENGTH PIC 9(4) BINARY.

 01 HOSTALIAS-VALUE PIC X(255)

 01 HOSTADDR-TYPE PIC 9(4) BINARY.

 01 HOSTADDR-LENGTH PIC 9(4) BINARY.

 01 HOSTADDR-COUNT PIC 9(4) BINARY.

 01 HOSTADDR-SEQ PIC 9(4) BINARY.

 01 HOSTADDR-VALUE PIC 9(8) BINARY.

 01 RETURN-CODE PIC 9(8) BINARY.

 PROCEDURE

 CALL ’EZASOKET’ USING ’GETHOSTBYxxxx’

 HOSTENT-ADDR

 RETCODE.

 Where xxxx is ADDR or NAME.

 CALL ’EZACIC08’ USING HOSTENT-ADDR HOSTNAME-LENGTH

 HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ

 HOSTALIAS-LENGTH HOSTALIAS-VALUE

 HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT

 HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE

Figure 69. EZAZIC08 Call Instruction Example

Using Data Translation Programs for Socket Call Interface

272 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

HOSTNAME-LENGTH

This halfword binary field contains the length of the host name (if host

name was returned).

HOSTNAME-VALUE

This 255-byte character string contains the host name (if host name was

returned).

HOSTALIAS-COUNT

This halfword binary field contains the number of alias names returned.

HOSTALIAS-SEQ

This halfword binary field is the sequence number of the alias name

currently found in HOSTALIAS-VALUE.

HOSTALIAS-LENGTH

This halfword binary field contains the length of the alias name currently

found in HOSTALIAS-VALUE.

HOSTALIAS-VALUE

This 255-byte character string contains the alias name returned by this

instance of the call. The length of the alias name is contained in

HOSTALIAS-LENGTH.

HOSTADDR-TYPE

This halfword binary field contains the type of host address. For FAMILY

type AF_INET, HOSTADDR-TYPE is always 2.

HOSTADDR-LENGTH

This halfword binary field contains the length of the host internet address

currently found in HOSTADDR-VALUE. For FAMILY type AF_INET,

HOSTADDR-LENGTH is always set to 4.

HOSTADDR-COUNT

This halfword binary field contains the number of host internet addresses

returned by this instance of the call.

HOSTADDR-SEQ

This halfword binary field contains the sequence number of the host

internet address currently found in HOSTADDR-VALUE.

HOSTADDR-VALUE

This fullword binary field contains a host internet address.

RETURN-CODE

This fullword binary field contains the EZACIC08 return code:

Value Description

0 Successful completion

-1 Invalid HOSTENT address

Using Data Translation Programs for Socket Call Interface

Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API) 273

Using Data Translation Programs for Socket Call Interface

274 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 11. Using the Macro Application Programming

Interface (EZASMI API)

This chapter describes the macro API for TCP/IP application programs written in

System/390 assembler language.

The macro interface can be used to produce reentrant modules.

The following topics are included:

v Environmental restrictions and programming requirements

v Defining storage for the API macro

v Understanding common parameter descriptions

v Characteristics of stream sockets

v Task management and asynchronous function processing

v Using an unsolicited event exit routine

v Error messages and return codes

v Macros for assembler programs

Environmental Restrictions and Programming Requirements

The following restrictions apply to the Macro Socket API:

v VSE/ESA 2.5 or later installed.

v CICS/TS (if running under CICS)

v The EZASMI API cannot be used with programs running in an ICCF Pseudo

Partition.

v Locks

No locks should be held when issuing these calls.

v INITAPI/TERMAPI macros

The INITAPI/TERMAPI macros must be issued under the same task.

v Storage

Storage acquired for the purpose of containing data returned from a socket call

must be obtained in the same key as the application program status word (PSW)

at the time of the socket call.

v When using the EZASMI macro API in CICS transactions while CICS operates

with storage protection, all programs using the macro API need to be defined

with EXECKEY(CICS). This is also true for those programs that link to these

programs. TASKDATAKEY(CICS) for the transaction definition is NOT required.

v Addressability mode (Amode) considerations

The EZASMI macro API must be invoked while the caller is in 31-bit Amode.

v When using the macro API in CICS transactions while CICS has been started

with SVA=NO, make sure that phase EZASOH03 has not been loaded into the

SVA.

v When using the EZASMI Macro API on VSE/ESA 2.6, make sure that APAR

DY45937 has been applied.

© Copyright IBM Corp. 1997, 2005 275

EZASMI Macro Application Programming Interface (API)

This section describes the EZASMI Macro API for TCP/IP application programs

written in the High Level Assembler language. The format and parameters are

described for each socket call.

Notes:

1. Reentrant code is supported by this interface.

2. When your program is running in a CICS environment , the application must

be LE-enabled to use the EZASMI macro API.

3. Register conventions: Register 0, 1, 14, 15 are used by the interface and must

be, if necessary, saved prior to invocation. Register 13 must point to a 72-byte

save area provided by the caller.

Defining Storage for the API Macro

The macro API requires a task storage area.

The task storage area must be known to and addressable by all socket users

communicating across a specified connection. A connection runs between the

application and TCP/IP. The most common way to organize storage is to assign

one connection to each VSE subtask. If there are multiple modules using sockets

within a single task or connection, you must provide the address of the task

storage to every user.

The following describes two alternatives how to define the address of the task

storage:

v Code the instruction EZASMI TYPE=TASK with STORAGE=CSECT as part of

the program code. This makes the program nonreentrant, but simplifies the

code.

v Code the instruction EZASMI TYPE=TASK with STORAGE=DSECT as part of

the program code. The expansion of this instruction generates the equate field,

TIELENTH, which is equal to the length of the storage area. This can be used to

issue a VSE GETVIS request to allocate the required storage. Please make sure

that this storage area is cleared to binary 0’s before using it.

The defining program must make the address of this storage available to all other

programs using this connection. Programs running in these tasks must define the

storage mapping with an EZASMI TYPE=TASK with STORAGE=DSECT.

The EZASMI TYPE=TASK macro generates only one parameter list for a

connection. A program can use the following format to build unique parameter list

storage areas for each function call:

BINDPRML EZASMI MF=L This will generate the storage used for

 building the parm list in the following BIND call

 EZASMI TYPE=BIND, *

 S=SOCKDESC, *

 NAME=NAMEID, *

 ERRNO=ERRNO, *

 RETCODE=RETCODE, *

 ECB=ECB1, *

 MF=(E,BINDPRML)

This example of an asynchronous BIND macro would use the MF=L macro to

generate the parameter list. The fields that are common across all macro calls, for

example, RETCODE and ERRNO, must be unique for each outstanding call.

Using the EZASMI API

276 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

You can create multiple connections to TCP/IP from a single task. Each of these

connections functions independently of the other and is identified by its own task

interface element (TIE). The TASK parameter can be used to explicitly reference a

TIE. If you do not include the TASK parameter, the macro uses the TIE generated

by the EZASMI TYPE=TASK macro.

TIE1 DS XL(TIELENTH) Length of TIE

EZASMI TYPE=INITAPI, *

 MAXSOC=MAX75, *

 ERRNO=ERRNO, *

 RETCODE=RETCODE, *

 APITYPE=2, *

 MAXSNO=MAXS, *

 TASK=TIE1 *

EZASMI TYPE=SOCKET, *

 AF=’INET’, *

 SOCTYPE=’STREAM’, *

 ERRNO=ERRNO, *

 RETCODE=RETCODE,

 TASK=TIE1

In this example, the TIE TIE1 is used for the connection, not the TIE generated by

the EZASMI TYPE=TASK macro.

Understanding Common Parameter Descriptions

This section describes the parameters and concepts common to the macros

described in this section.

Parameter Description

address The name of the field that contains the value of the parameter. The

following example illustrates a BIND macro where SOCKNO is set

to 2.

 MVC SOCKNO,=H’2’

 EZASMI TYPE=BIND,S=SOCKNO

*indaddr The name of the address field that contains the address of the field

containing the parameter. The following example produces the

same result as the example above.

 MVC SOCKNO,=H’2’

 LA 0,SOCKNO

 ST 0,SOCKADD

 EZASMI TYPE=BIND,S=*SOCKADD

(reg) The name (equated to a number) or the number of a general

purpose register. Do not use a register 0, 1, 14, or 15. The following

example produces the same result as the previous examples.

 MVC SOCKNO,=H’2’

 LA 3,SOCKNO

 EZASMI TYPE=BIND,SOCKNO=(3)

'value' A literal value for the parameter; for example, AF='INET'

Characteristics of Stream Sockets

For stream sockets, data is processed as streams of information with no boundaries

separating data. For example, if applications A and B are connected with a stream

socket and application A sends 1000 bytes, each call to the SEND function can

return one byte, ten bytes, or the entire 1000 bytes, with the number of bytes sent

Using the EZASMI API

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 277

returned in the RETCODE call. Therefore, applications using stream sockets should

place the READ call and the SEND call in a loop that repeats until all of the data

has been sent or received.

Task Management and Asynchronous Function Processing

The EZASMI socket interface allows asynchronous operation, although by default

the task issuing a macro request is put into a WAIT state until the requested

function is completed. At that time, the issuing task resumes and continues

execution.

If you do not want the issuing task to be placed into a WAIT while its request is

processed, use asynchronous function processing.

How It Works

The macro API provides for asynchronous function processing in two forms. Both

forms cause the system to return control to the application immediately after the

function request has been sent to TCP/IP. The difference between the two forms is

in how the application is notified when the function is completed:

ECB method

Enables you to pass an VSE event control block (ECB) on each socket call.

The socket call returns control to the program immediately and posts the

ECB when the call has completed.

EXIT method

Enables you to specify the entry point of an exit routine using the INITAPI

call. The individual socket calls immediately return control to the program

and the socket call drives the specified exit routine when the socket call is

complete.

Note: This method is not supported with TCP/IP for VSE/ESA.

In either case, the function is completed when the notification is delivered. Note

that the notification may be delivered at any time, in some cases even before the

application has received control back from the EZASMI macro call. It is therefore

important that the application is ready to handle a notification as soon as it issues

the EZASMI macro call.

Using the EZASMI macro you can specify an APITYPE parameter. APITYPE=2 is

the only supported (and default) type. It allows to have more than one outstanding

asynchronous socket call per socket descriptor (for example, a RECV and a SEND

call).
It requires the ECB method when asynchronous macro calls are used.

The ECB input parameter for asynchronous calls must point to a 160- byte storage

area:

 The 156-byte storage area following the ECB is used during asynchronous function

processing and must not be changed by the application program until the

asynchronous function call completes (that is, until the ECB is posted).

Figure 70. ECB Input Parameter

Using the EZASMI API

278 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Asynchronous functions are processed in the following sequence:

1. The application must issue the EZASMI TYPE=INITAPI with ASYNC=’ECB’.

The ASYNC parameter notifies the API that asynchronous processing is

eventually used for this connection.

2. When an asynchronous function request with an ECB is issued by the

application, the request is queued for processing and the API returns control to

the application immediately. A successful function queuing returns with

RETCODE=0 and ERRNO set to EINPROGRESS.
If an error condition is encountered during function queuing, the API returns

with RETCODE=-1 and ERRNO showing the error status of the asynchronous

operation. The ECB is posted as well.

3. When the function completes (this may even occur before the function call

returns to the application), the ECB is posted and function specific return

(RETCODE) and error (ERRNO) information is returned.

The following example shows how to code an asynchronous macro function:

 EZASMI TYPE=READ, READ A BUFFER OF DATA FROM THE *

 S=SOCKNO, CONNECTION PEER. I MAY NEED TO *

 NBYTES=COUNT, WAIT SO GIVE CONTROL BACK TO ME *

 BUF=DATABUF, AND LET ME ISSUE MY OWN WAIT. *

 ERRNO=ERROR, IT COULD BE PART OF A WAIT WHICH *

 RETCODE=RCODE, WOULD INCLUDE OTHER EVENTS. *

 ECB=MYECB, SPECIFY ECB/STORAGE AREA FOR INTERFACE *

 ERROR=ERRORRTN

 WAIT MYECB TELL VSE TO WAIT UNTIL READ IS DONE

Error Messages and Return Codes

For information about error messages, see z/VSE Messages and Codes and TCP/IP for

VSE 1.5 Messages and Codes.

For information about error codes that are returned by TCP/IP, see “ERRNO

Values” on page 84.

Debugging

See Appendix C, “Debugging Facility for EZASMI and EZASOKET Interfaces

(EZAAPI Trace),” on page 449.

Using the EZASMI API

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 279

Macros for Assembler Programs

This section contains the description, syntax, parameters, and other related

information for every macro included in this API.

ACCEPT

The ACCEPT macro is issued when the server receives a connection request from a

client. ACCEPT points to a socket that was created with a SOCKET macro and

marked by a LISTEN macro. If a process waits for the completion of connection

requests from several peer processes, a later ACCEPT macro can block until one of

the CONNECT macros completes. To avoid this, issue a SELECT macro between

the CONNECT and the ACCEPT macros. Concurrent server programs use the

ACCEPT macro to pass connection requests to subtasks.

When issued, the ACCEPT macro:

1. Accepts the first connection on a queue of pending connections

2. Creates a new socket with the same properties as the socket used in the macro

and returns the address of the client for use by subsequent server macros. The

new socket cannot be used to accept new connections, but can be used by the

calling program for its own connection. The original socket remains available to

the calling program for more connection requests.

3. Returns the new socket descriptor to the calling program.

AA EZASMI TYPE=ACCEPT ,S = number

address

*indaddr

(reg)

 ,NAME = address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,NS

=

address

*indaddr

(reg)

 A

A
,ECB=

address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value or the address of a halfword binary

number specifying the descriptor of the socket from which the

connection is accepted.

NAME Output parameter. Initially, the application provides a pointer to

the socket address structure; this structure is filled on completion

of the call with the socket address of the connection peer.

Using the EZASMI API

280 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Field Description

FAMILY

A halfword binary field specifying the addressing family.

For TCP/IP the value is always 2, indicating AF_INET.

PORT A halfword binary field that is set to the client port

number.

IP-ADDRESS

A fullword binary field that is set to the 32-bit internet

address, in network byte order, of the client host machine.

RESERVED

Specifies eight bytes of binary zeros. This field is required,

but not used.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. If RETCODE is positive, RETCODE is the new

socket number.

 If RETCODE is negative, check ERRNO for an error number.

NS Not supported for TCP/IP for VSE/ESA.

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted.

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

ACCEPT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 281

BIND

In a server program, the BIND macro normally follows a SOCKET macro to

complete the new socket creation process.

The BIND macro can specify the port or let the system choose the port. A listener

program should always bind to the same well-known port so that clients know the

socket address to use when issuing a CONNECT macro.

In the AF_INET domain, the BIND macro for a stream socket can specify the

networks from which it is willing to accept connection requests. Your application

can select the network interface by setting ADDRESS to the internet address of the

network from which you want to accept connection requests. Alternatively, your

application can accept connection requests from any network if you set the address

field to a fullword of zeros.

AA EZASMI TYPE=BIND ,S = number

address

*indaddr

(reg)

 ,NAME = address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value or the address of a halfword binary

number specifying the socket descriptor.

NAME Input parameter. The application provides a pointer to the socket

address structure, from which it specifies the port number and IP

address the application can accept connections.

Field Description

FAMILY

A halfword binary field specifying the addressing family.

For TCP/IP the value is always 2, indicating AF_INET.

PORT A halfword binary field set to the port number that will

bind to the socket. If you set the port number to zero,

TCP/IP assigns the port. The application can call the

GETSOCKNAME macro after the BIND macro to discover

the assigned port number.

IP-ADDRESS

A fullword binary field that is set to the 32-bit internet

address, in network byte order, of the client host machine.

If zero is specified, the application accepts connections

from any network address.

BIND

282 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

RESERVED

Specifies eight bytes of binary zeros. This field is required,

but not used.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted.

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

BIND

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 283

CANCEL

The CANCEL function terminates a call in progress. The call being cancelled must

have specified ECB or REQAREA.

AA EZASMI TYPE=CANCEL ,CALAREA = address

*indaddr

,ECB=

address

(reg)

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

CALAREA Input parameter. The ECB or REQAREA specified in the call being

cancelled.

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this contains an error number.

RETCODE Output parameter. A fullword binary field. If RETCODE is 0, the

CANCEL was successful. The error status (ERRNO) of the

cancelled call is sent to ECANCELED. If RETCODE is –1, the

CANCEL failed. Check ERRNO for an error code. For example,

ERRNO is set to EINPROGRESS if the selected request cannot be

cancelled because it is in progress, or set to EINVAL if the selected

request cannot be cancelled because it has already been completed.

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

CANCEL

284 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

CLOSE

The CLOSE macro shuts down the socket and frees the resources that are allocated

to the socket. Issue the SHUTDOWN macro before you issue the CLOSE macro.

CLOSE can also be issued by a concurrent server after it gives a socket to a

subtask program. After issuing GIVESOCKET and receiving notification that the

client child has successfully issued TAKESOCKET, the concurrent server issues the

CLOSE macro to complete the transfer of ownership.

Note: If a stream socket is closed while input or output data is queued, the stream

connection is reset and data transmission can be incomplete. SETSOCKET

can be used to set a SO_LINGER condition, in which TCP/IP continues to

send data for a specified period of time after the CLOSE macro is issued.

For information about SO_LINGER, see “SETSOCKOPT” on page 346.

AA EZASMI TYPE=CLOSE ,S = number

address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 A

A ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value or the address of a halfword binary

number specifying the socket to be closed.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO field.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted..

CLOSE

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 285

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

CLOSE

286 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

CONNECT

The CONNECT macro is used by a client to establish a connection between a local

socket and a remote socket.

For stream sockets, the CONNECT macro:

v Completes the binding process for a stream socket if BIND has not been

previously issued.

v Attempts connection to a remote socket. This connection must be completed

before data can be transferred.

For datagram sockets, CONNECT is not essential, but you can use it to send

messages without specifying the destination.

For both types of sockets, the following CONNECT macro sequence applies:

1. The server issues BIND and LISTEN (stream sockets only) to create a passive

open socket.

2. The client issues CONNECT to request a connection.

3. The server creates a new connected socket by accepting the connection on the

passive open socket.

If the socket is in blocking mode, CONNECT blocks the calling program until the

connection is established, or until an error is received.

If the socket is in nonblocking mode, the return code indicates the success of the

connection request.

v A zero RETCODE indicates that the connection was completed.

v A nonzero RETCODE with an ERRNO EINPROGRESS indicates that the

connection could not be completed, but since the socket is nonblocking, the

CONNECT macro completes its processing.

The caller must test the completion of the connection setup by calling SELECT and

testing for the ability to write to the socket. The completion cannot be checked by

issuing a second CONNECT.

AA EZASMI TYPE=CONNECT ,S = number

address

*indaddr

(reg)

 ,NAME = address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value or the address of a halfword binary

number specifying the socket descriptor.

CONNECT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 287

NAME Input parameter. The NAME parameter for CONNECT specifies

the socket address of the connection peer.

Field Description

FAMILY

A halfword binary field specifying the addressing family.

For TCP/IP the value is always 2, indicating AF_INET.

PORT A halfword binary field that is set to the server port

number in network byte order. For example, if the port

number is 5000 in decimal it is set to X'1388'.

IP-ADDRESS

A fullword binary field specifying the 32-bit internet

address of the server host machine in network byte order.

For example, if the internet address is 129.4.5.12 in dotted

decimal notation, it is set to X'8104050C'.

RESERVED

Specifies eight bytes of binary zeros. This field is required,

but not used.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted.

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

CONNECT

288 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

FCNTL

The blocking mode for a socket can be queried or set to nonblocking using the

FNDELAY flag. You can query or set the FNDELAY flag even though it is not

defined in your program.

See “IOCTL” on page 325 for another way to control socket blocking.

AA EZASMI TYPE=FCNTL ,S = number

address

*indaddr

(reg)

 ,COMMAND = 'F_GETFL'

'F_SETFL'

address

*indaddr

(reg)

 A

A ,REQARG = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ECB=

address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value or the address of a halfword binary

number specifying the socket descriptor for the socket that you

want to unblock or query.

COMMAND Input parameter. A fullword binary field or a literal that sets the

FNDELAY flag to one of the following values:

Value Description

3 or 'F_GETFL'

Query the blocking mode for the socket.

4 or 'F_SETFL'

Set the mode to nonblocking for the socket. REQARG is

set by TCP/IP.

The FNDELAY flag sets the nonblocking mode for the socket. If

data is not present on calls that can block (READ, READV, and

RECV), the call returns a -1, and ERRNO is set to

EWOULDBLOCK.

REQARG A fullword binary field containing a mask that TCP/IP uses to set

the FNDELAY flag.

v If COMMAND is set to 3 (query) the REQARG field should be

set to 0.

v If COMMAND is set to 4 (set),

– Set REQARG to 4 to turn the FNDELAY flag on. This places

the socket in nonblocking mode.

– Set REQARG to 0 to turn the FNDELAY flag off. This places

the socket in blocking mode.

FCNTL

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 289

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

the ERRNO field.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

v If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is nonblocking.

The FNDELAY flag is on.

– If RETCODE contains X'00000000', the socket is blocking. The

FNDELAY flag is off.
v If the COMMAND field was 4 (set), a successful call returns

zero in COMMAND. For either COMMAND, a RETCODE of

-1 indicates an error. Check ERRNO for the error number.

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted.

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

FCNTL

290 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GETCLIENTID

The GETCLIENTID macro returns the identifier by which the calling application is

known to the TCP/IP address space. The client ID structure returned is used by

the GIVESOCKET and TAKESOCKET macros.

When GETCLIENTID is called by a server or client, the identifier of the calling

application is returned.

AA EZASMI TYPE=GETCLIENTID ,CLIENT = address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

CLIENT A client-ID structure that describes the application that issued the

call.

DOMAIN

A fullword binary number specifying the caller’s domain.

For TCP/IP the value is set to 2 for AF_INET.

NAME

An 8-byte character field. It is built with the partition’s

partition ID, which is left adjusted and padded with

blanks.

TASK An 8-byte character field. This task identifier can be

specified by the user with the INITAPI call or defaulted by

the system (see the description of the INITAPI call for

details).

RESERVED

Specifies 20-byte character reserved field. This field is

required and internally used by TCP/IP.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

GETCLIENTID

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 291

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

GETCLIENTID

292 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GETHOSTBYADDR

The GETHOSTBYADDR macro returns domain and alias names of the host whose

internet address is specified by the macro. A TCP/IP host can have multiple alias

names and host internet addresses.

AA EZASMI TYPE=GETHOSTBYADDR ,HOSTADR = number

address

*indaddr

(reg)

 A

A ,HOSTENT = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Note: GETHOSTBYADDR and GETHOSTBYNAME all use the same static area to

return the hostent structure. This static area is only valid until the next one

of these functions is called on the same thread or till TERMAPI.

Keyword Description

HOSTADR Input parameter. A fullword unsigned binary field set to the

internet address of the host whose name you want to find.

HOSTENT Input parameter. A fullword word containing the address of the

HOSTENT structure returned by the macro. For information about

the HOSTENT structure, see Figure 71 on page 294.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

>0 Successful call

−1 An error occurred

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

GETHOSTBYADDR

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 293

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 71. This

structure contains:

v The address of the host name returned by the macro. The name length is

variable and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by the

GETHOSTBYADDR. This list is ended by the pointer X'00000000'. Each alias

name is a variable length field ended by X'00'

Note: Alias names are not supported.
.

v The value returned in the FAMILY field is always 2 to signify AF_INET.

v The length of the host internet address returned in the HOSTADDR_LEN field is

always 4 to signify AF_INET.

v The address of a list of addresses that point to the host internet addresses

returned by the macro. The list is ended by the pointer X'00000000'.

The HOSTENT structure uses indirect addressing to return a variable number of

alias names and internet addresses.

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 71. HOSTENT Structure Returned by the GETHOSTBYADDR Macro

GETHOSTBYADDR

294 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GETHOSTBYNAME

The GETHOSTBYNAME macro returns the alias names and the internet addresses

of a host whose domain name is specified in the macro.

TCP/IP tries to resolve the host name through a name server, if one is present. If a

name server is not present, the system searches the HOSTS.SITEINFO data set

until a matching host name is found, or until an EOF marker is reached.

When a call is made to convert a symbolic name to an IP address, TCP/IP for

VSE/ESA searches the local names table (created by DEFINE NAME) first. If this

search fails, the name is passed to the specified DNSs (set with SET DNSx).

TCP/IP for VSE/ESA will try each DNS, beginning with DNS1, until an response

is received or all servers have been polled. The first server to respond determines

if the request succeeds or fails. If the search within a DNS fails, the default domain

string (as specified with SET DEFAULT_DOMAIN) is appended to the name

(following a period) and the DNS is consulted the last time for the name

resolution.

If the host name is not found, the return code is -1.

AA EZASMI TYPE=GETHOSTBYNAME ,NAMELEN = number

address

*indaddr

(reg)

 A

A ,NAME = address

*indaddr

(reg)

 ,HOSTENT = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Note: GETHOSTBYADDR and GETHOSTBYNAME all use the same static area to

return the hostent structure. This static area is only valid until the next one

of these functions is called on the same thread or till TERMAPI.

Keyword Description

NAMELEN Input parameter. A value or the address of a fullword binary field

specifying the length of the name and alias fields. This length has a

maximum value of 255 bytes.

NAME A character string, up to 24 characters, set to a host name. This call

returns the address of HOSTENT for this name.

HOSTENT Output parameter. A fullword word containing the address of

HOSTENT returned by the macro. For information about the

HOSTENT structure, see Figure 72 on page 296.

RETCODE A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 An error occurred

GETHOSTBYNAME

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 295

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

 GETHOSTBYNAME returns the HOSTENT structure shown in Figure 72. This

structure contains:

v The address of the host name returned by the macro. The name length is

variable and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by

GETHOSTBYNAME. This list is ended by the pointer X'00000000'. Each alias

name is a variable length field ended by X'00'.

Note: Alias names are not supported.

v The value returned in the FAMILY field is always 2 to signify AF_INET.

v The length of the host internet address returned in the HOSTADDR_LEN field is

always 4 to signify AF_INET.

v The address of a list of addresses that point to the host internet addresses

returned by the macro. The list is ended by the pointer X'00000000'.

The HOSTENT structure uses indirect addressing to return a variable number of

alias names and internet addresses.

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 72. HOSTENT Structure Returned by the GETHOSTBYNAME Macro

GETHOSTBYNAME

296 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GETHOSTID

The GETHOSTID macro returns the 32-bit identifier for the current host. This value

is the default home internet address.

AA EZASMI TYPE=GETHOSTID ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

RETCODE Output parameter. Returns 32-bit internet address of the host. A -1

in RETCODE indicates an error. There is no ERRNO parameter for

this macro.

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

GETHOSTID

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 297

GETHOSTNAME

The GETHOSTNAME macro returns the name of the host processor on which the

program is running. As many as NAMELEN characters are copied into the NAME

field.

AA EZASMI TYPE=GETHOSTNAME ,NAMELEN = address

*indaddr

(reg)

 A

A ,NAME = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ECB=

address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

NAMELEN Input and output parameter. A fullword set to a value, or the

address of a fullword binary field set to the length of the name

field. The maximum length that can be specified in the field is 255

characters.

NAME Initially, the application provides a pointer to a receiving field for

the host name. TCP/IP for VSE allows a maximum length of 64

characters. This field is filled with a host name the length returned

in NAMELEN when the call completes.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

GETHOSTNAME

298 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

TASK Input parameter. The location of the task storage area in your

program.

GETHOSTNAME

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 299

GETPEERNAME

The GETPEERNAME macro returns the name of the remote socket to which the

local socket is connected.

AA EZASMI TYPE=GETPEERNAME ,S = number

address

*indaddr

(reg)

 ,NAME = address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S A value, or the address of a halfword binary number specifying the

local socket connected to the remote peer whose address is

required.

NAME Initially points to the peer name structure, filled when the call

completes with the address structure for the remote socket

connected to the local socket specified by s.

Field Description

FAMILY

A halfword binary field set to the connection peer

addressing family. The value is always 2 indicating

AF_INET.

PORT A halfword binary field set to the connection peer port

number.

IP-ADDRESS

A fullword binary field set to the 32-bit internet address of

the connection peer host machine.

RESERVED

Input parameter. Specifies an eight-byte reserved field. This

field is required, but not used.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this field contains an error number. See “ERRNO Values”

on page 84 for information about ERRNO return codes.

RETCODE Output parameter. A fullword binary field.

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

GETPEERNAME

300 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

GETPEERNAME

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 301

GETSOCKNAME

The GETSOCKNAME macro stores the name of the socket into the structure

pointed to by NAME and returns the address to the socket that has been bound. If

the socket is not bound to an address, the macro returns with the FAMILY field

completed and the rest of the structure set to zeros.

Stream sockets are not assigned a name until after a successful call to BIND,

CONNECT, or ACCEPT.

Use the GETSOCKNAME macro to determine the port assigned to a socket after

that socket has been implicitly bound to a port. If an application calls CONNECT

without previously calling BIND, the CONNECT macro completes the binding

necessary by assigning a port to the socket. You can determine the port assigned to

the socket by issuing GETSOCKNAME.

AA EZASMI TYPE=GETSOCKNAME ,S = number

address

*indaddr

(reg)

 ,NAME = address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket descriptor.

NAME Initially, the application provides a pointer to the socket name

structure, which is filled in on completion of the call with the

socket name.

Field Description

FAMILY

Output parameter. A halfword binary field containing the

addressing family. The macro always returns the value 2,

indicating AF_INET.

PORT Output parameter. A halfword binary field set to the port

number bound to this socket. If the socket is not bound, a

zero is returned.

IP-ADDRESS

Output parameter. A fullword binary field set to the 32-bit

internet address of the local host machine.

RESERVED

Input parameter. Specifies eight bytes of binary zeros. This

field is required, but not used.

ERRNO Output parameter. A fullword binary field. If RETCODE is

GETSOCKNAME

302 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

negative, this field contains an error number. See “ERRNO Values”

on page 84 for information about ERRNO return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

GETSOCKNAME

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 303

GETSOCKOPT

The GETSOCKOPT macro gets the options associated with a socket that were set

using the SETSOCKOPT macro.

The options for each socket are described by the following parameters. You must

specify the option that you want when you issue the GETSOCKOPT macro.

AA EZASMI TYPE=GETSOCKOPT ,S = number

address

*indaddr

(reg)

 A

A ,OPTNAME = 'SO_REUSEADDR'

'SO_KEEPALIVE'

'SO_LINGER'

address

*indaddr

(reg)

 ,OPTVAL = address

*indaddr

(reg)

 A

A ,OPTLEN = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ECB=

address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket descriptor of the socket requiring

options.

OPTNAME Input parameter. Set OPTNAME to one of the following options

before you issue GETSOCKOPT.

SO_LINGER

Requests the status of SO_LINGER.

v When the SO_LINGER option is enabled, and data

transmission has not been completed, a CLOSE macro

blocks the calling program until the data is transmitted

or until the connection has timed out.

v If SO_LINGER is not enabled, a CLOSE call returns

without blocking the caller and TCP/IP continues to try

the send data function. Normally the send data function

completes and the data is sent, but it cannot be

guaranteed because TCP/IP can timeout before the send

has been completed.

OPTVAL Output parameter.

v If SO_LINGER is specified in OPTNAME, the following

structure is returned:

GETSOCKOPT

304 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

ONOFF DS F

 LINGER DS F

– A nonzero value returned in ONOFF indicates that the option

is enabled and a zero value indicates that it is disabled.

– The LINGER value indicates the time in seconds that TCP/IP

continues to try to send the data after the CLOSE call is

issued. For information about how to set the LINGER time,

see “SETSOCKOPT” on page 255.

OPTLEN Input parameter. A fullword binary field containing the length of

the data returned in OPTVAL.

v For SO_LINGER, OPTVAL contains two fullwords and OPTLEN

is set to 8 (two fullwords).

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this field contains an error number. See “ERRNO Values”

on page 84 for information about ERRNO return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

GETSOCKOPT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 305

GIVESOCKET

The GIVESOCKET macro makes the socket available for a TAKESOCKET macro

issued by another program. The GIVESOCKET macro can specify any connected

stream socket. Typically, the GIVESOCKET macro is issued by a concurrent server

program that creates sockets to be passed to a subtask.

After a program has issued a GIVESOCKET macro for a socket, it can only issue a

CLOSE macro for the same socket.

Note: Both concurrent servers and iterative servers use this interface. An iterative

server handles one client at a time. A concurrent server receives connection

requests from multiple clients and creates subtasks that process the client

requests. When a subtask is created, the concurrent server gets a new socket,

passes the new socket to the subtask, and dissociates itself from the

connection. The CICS Listener program is an example of a concurrent server.

AA EZASMI TYPE=GIVESOCKET ,S = number

address

*indaddr

(reg)

 ,CLIENT = address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the descriptor of the socket to be given.

CLIENT A structure containing the identifier of the application to which the

socket should be given.

DOMAIN

A fullword binary number that must be set to 2, indicating

AF_INET.

NAME

Specifies an 8-character field, left-justified, padded to the

right with blanks set to the address space name of the

application (partition ID) going to take the socket. If this

field is left blank, any z/VSE partition can take the socket.

TASK Specifies an eight-character field that can be set to blanks,

or to the identifier of the socket-taking VSE subtask. If this

field is set to blanks, any subtask in the partition specified

in the NAME field can take the socket.

RESERVED

A 20-byte reserved field. This field is required, but only

used internally.

GIVESOCKET

306 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

GIVESOCKET

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 307

GSKFREEMEM

This function frees memory passed to the application on a previous call to an SSL

function.

EZASMI macro

AA EZASMI TYPE=GSKFREEMEM , AREA= address ,RETCODE= address ,

*indaddr

*indaddr

(reg)

(reg)

 A

A ERRNO= address

*indaddr

(reg)

 AC

AREA Input parameter. Specifies the address of the memory, returned to

the application from a previous SSL call, that is to be freed.

RETCODE Output parameter. A value of 0 indicates the successful completion

of the function. If RETCODE is negative, an error has occurred.

ERRNO Output parameter. May show detailed error information.

Note: The distinguished name returned in the null-terminated string by the

GSKGETDNBYLAB call must be freed using GSKFREEMEM.

GSKFREEMEM

308 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKGETCIPHINF

This function requests cipher related information for SSL for VSE. This information

determines the encryption level that the system can support and returns a list of

cipher specifications that SSL can use. This allows an application to determine, at

run time, the level of SSL encryption that the installed application can request.

AA EZASMI TYPE=GSKGETCIPHINF , CIPHLEVEL= number ,

address

*indaddr

(reg)

 A

A SECLEVEL= address ,RETCODE= address ,

*indaddr

*indaddr

(reg)

(reg)

 ERRNO= address

*indaddr

(reg)

 AC

CIPHLEVEL Input Parameter. A value, or the address of a fullword binary

number that determines the type of cipher information to be

returned. Valid values are

1 only exportable cipher information is to be returned

(GSK_LOW_SECURITY)

2 exportable and domestic cipher information is to be

returned (GSK_HIGH_SECURITY)

SECLEVEL Output Parameter. Point to an 104 byte area (to be allocated by the

application) where the system returns the following information:

4 bytes System SSL version (always 3 for GSK_VERSION3)

64 bytes A character string (terminated with x00) with the

SSL Version 3 cipher specs allowed for use on the

system (these are passable on the V3CIPHER

parameter on the GSKSSOCINIT call).

32 bytes This field will always be filled with binary zeros

because SSL for VSE does not support SSL Version

2 cipher specs.

4 bytes One of the following

1 GSK_SEC_LEVEL_US

2 GSK_SEC_LEVEL_EXPORT

3 GSK_SEC_LEVEL_EXPORT_FR

RETCODE Output Parameter. A value of 0 indicates the successful completion

of the function. If RETCODE is not 0, an error occurred (please

refer to VSE library member SSLVSE.A or to the TCP/IP for VSE 1.5

Optional Products for a detailed description of error return codes).

ERRNO Output Parameter. May show detailed error information.

GSKGETCIPHINF

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 309

GSKGETDNBYLAB

This function returns the complete distinguished name for a key based on the label

the key has in the key database file. This value can be used for the DNAME field

in the GSKSSOCINIT call.

AA EZASMI TYPE=GSKGETDNBYLAB , A

A KEYLABEL= address ,RETCODE= address ,

*indaddr

*indaddr

(reg)

(reg)

 ERRNO= address

*indaddr

(reg)

 AC

KEYLABEL Input Parameter. Point to a character string that contains the label

for the key in the key database file. The string must be terminated

with x00.

RETCODE Output parameter. A value greater 0 indicates the successful

completion of the function and denotes a pointer to the character

string with the distinguished name. A value of 0 indicates an error.

ERRNO Output parameter. May show detailed error information.

Note: The distinguished name returned in the null-terminated string must be freed

using the GSKFREEMEM call.

GSKGETDNBYLAB

310 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKINIT

This function sets the overall SSL for VSE environment for the current partition.

After the function completes successfully, the application is ready to call SSL for

VSE interfaces and to create and use secure socket connections.

AA EZASMI TYPE=GSKINIT , A

A SECTYPE= address ,

*indaddr

KEYRING=

address

,

(reg)

*indaddr

(reg)

 A

A
V3TIMEOUT=

number

,

address

*indaddr

(reg)

 A

A
CAROOTS=

number

,AUTHTYPE=

number

,

address

address

*indaddr

*indaddr

(reg)

(reg)

 RETCODE= address ,

*indaddr

(reg)

 A

A ERRNO= address

*indaddr

(reg)

 AC

Keyword Descriptions

SECTYPE Input Parameter. Point to a character string that identifies the

minimum acceptable security protocol. The value must be entered

in upper case characters and terminated with x00. Valid values are

(without double-quotes):

v ″SSL30″ for SSL Version 3.0

v ″TLS31″ for TLS Version 1.0 (not supported for client

applications)

KEYRING (Optional) Input Parameter. Point to a character string specifying

the ″lib.sublib″ where the private key and certificates are stored.

This string must be terminated with x00. If this parameter is used,

the GSKGETDNBYLAB call must be used lateron to identify the

library member name that is specified in DNAME parameter of the

GSKSSOCINIT call. If this parameter is not specified, the default

″SSL for VSE″ files as defined in procedure $SSL4VSE.PROC are

used (for details refer to the manual TCP/IP for VSE 1.5 Optional

Products).

V3TIMEOUT (Optional) Input Parameter. A value, or the address of a fullword

binary number, that specifies the number of seconds for the SSL V3

session identifier to expire. The valid range is 0 - 86400 (1 day). If

this parameter is not specified, a default value of 86400 is assumed.

CAROOTS (Optional) Input Parameter. A value, or the address of a fullword

binary number, that specifies which CA (Certificate Authority) root

to use for certificate verification. The supported values are:

0 Use the CA roots from the local key database file for

certificate verifcation.

GSKINIT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 311

1 Allow client authentication with certificates issued by the

same certificate authority as VSE.

If this parameter is not specified, a default value of 0 is assumed.

AUTHTYPE (Optional) Input Parameter. A value, or the address of a fullword

binary number, that specifies the method to use for verifying the

client’s certificate. This field is mandatory when the CAROOTS

field is set to 1. It is ignored when CAROOTS is set to 0. The

supported values are:

0 the client’s certificate is verified using the local key

database file.

1 the same meaning as with value 0

2 the same meaning as with value 0

3 the client’s certificate is not verified.

RETCODE Output Parameter. A value of 0 indicates the successful completion

of the function. If RETCODE is not 0, an error occurred (please

refer to VSE library member SSLVSE.A or to the TCP/IP for VSE 1.5

Optional Products for a detailed description of error return codes.).

ERRNO Output Parameter. May show detailed error information.

Note: Subsequent calls for GSKINIT without corresponding GSKUNINIT calls in

between will be rejected.

GSKINIT

312 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKSSOCCLOSE

This function ends a secure socket connection and frees all SSL for VSE resources

for that connection.

AA EZASMI TYPE=GSKSSOCCLOSE , A

A SSOCDATA= address ,RETCODE= address ,

*indaddr

*indaddr

(reg)

(reg)

 ERRNO= address

*indaddr

(reg)

 AC

SSOCDATA

Input Parameter. Pointer to GSKSOCDATA as returned in RETCODE by

EZASMI TYPE=GSKSSOCINIT.

RETCODE

Output parameter. A value of 0 indicates the successful completion of the

function. If RETCODE is negative, an error has occurred (please refer to

VSE library member SSLVSE.A or to the TCP/IP for VSE 1.5 Optional

Products for a detailed description of error return codes).

ERRNO

Output parameter. May show detailed error information.

GSKSSOCCLOSE

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 313

GSKSSOCINIT

This function initializes the data areas necessary for SSL for VSE to initiate or

accept a secure socket connection. After the function is completed successfully, a

pointer to a secured socket control block (in the following referred to as

GSKSOCDATA) is returned to the application. Other calls using this secure socket

connection must use this pointer.

During the call a complete handshake is performed based on the input specified

with the GSKSSOCINIT call. While SSL for VSE performs the mechanics of the SSL

handshake, ″normal″ RECV and SEND routines (either provided by the EZAAPI

processing environment or provided by the application with the SKREAD and

SKWRITE parameters) will be used to transport the SSL data during the SSL

handshake, as well as for all subsequent read/write operations.

AA EZASMI TYPE=GSKSSOCINIT , S= number ,HANDSHAKE= number ,

address

address

*indaddr

*indaddr

(reg)

(reg)

 A

A SECTYPE= address ,

DNAME=

address

,

*indaddr

*indaddr

(reg)

(reg)

 A

A V3CIPHSEL= address ,

V3CIPHER=

address

,

*indaddr

*indaddr

(reg)

(reg)

 A

A REASCODE= address ,

CERTINFO=

address

,

*indaddr

*indaddr

(reg)

(reg)

 A

A
SKREAD=

address

,

SKWRITE=

address

,

*indaddr

*indaddr

(reg)

(reg)

 A

A RETCODE= address ,ERRNO= address

*indaddr

*indaddr

(reg)

(reg)

 AC

S Input Parameter. A value, or the address of a halfword binary

number specifying the socket descriptor of the socket which is to

be initialized for a secure socket connection.

HANDSHAKE

Input parameter. A value, or the address of a fullword binary

number that specifies how the handshake is performed:

0 Perform the SSL handshake as a client (GSK_AS_CLIENT).

1 Perform the SSL handshake as a server (GSK_AS_SERVER).

2 Perform the SSL handshake as a server that requires client

authentication (GSK_AS_SERVER_WITH_CLIENT_AUTH).

3 Perform the SSL handshake as a client without

authentication (GSK_AS_CLIENT_NO_AUTH).

GSKSSOCINIT

314 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

DNAME (Optional) Input Parameter. Point to a character string that is the

Distinguished name or label of the desired entry (certificate) in the

key database file. This character string must be terminated with

x00. To use the default key database file entry, omit the parameter.

The distinguished name for a key database file entry may be

determined via the EZASMI TYPE=GETDNBYLAB function call.

SECTYPE Output Parameter. Point to a fullword where the address of a

character string is stored that identifies the minimum acceptable

security protocol. The character string is terminated with x00. Valid

values are (without double-quotes):

v ″SSL30″ for SSL Version 3.0

v ″TLS31″ for TLS Version 1.0

V3CIPHER (Optional) Input Parameter. Points to a character string that

contains the list of SSL Version 3.0 ciphers in order of usage

preference. Valid values as supported by TCP/IP for VSE are:

v 01 for RSA512_NULL_MD5

v 02 for RSA512_NULL_SHA

v 08 for RSA512_DES40CBC_SHA

v 09 for RSA1024_DESCBC_SHA

v 0A for RSA1024_3DESCBC_SHA

v 62 for RSA1024_EXPORT_DESCBC_SHA

You can use any combination of these values in any order. The list

of values must be terminated with x00. The exportable cipher

suites 01,02,08,62 can only be used with SSL30, and will not work

with TLS31. To use the default SSL V3 cipher specs (which is

0A0908) omit this parameter.

V3CIPHSEL Output parameter. Point to a 2-byte area (provided by the

application) where the architected SSL Version 3.0 cipher spec

value selected for this session is stored (for example: x0009).

CERTINFO (Optional) Output parameter. Point to a fullword where the

address of the Distinguished Name components from the client’s

certificate is stored. This parameter is only valid when client

authentication is requested for a server using SSL. The layout of

this area is as follows:

4 bytes Pointer to base64 certificate body

4 bytes Length of base64 certificate body

4 bytes Pointer to session ID for this connection

4 bytes Flag to indicate if new session

4 bytes Pointer to certificate serial number

4 bytes Pointer to common name of client

4 bytes Pointer to locality

4 bytes Pointer to state or province

4 bytes Pointer to country

4 bytes Pointer to organization

4 bytes Pointer to organizational unit

GSKSSOCINIT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 315

4 bytes Pointer to issuer’s common name

4 bytes Pointer to issuer’s locality

4 bytes Pointer to issuer’s state or province

4 bytes Pointer to issuer’s country

4 bytes Pointer to issuer’s organization

4 bytes Pointer to issuer’s organizational unit

SKREAD (Optional) Input parameter. Point to an application-provided

routine that performs a socket read function for SSL for VSE. This

routine must fulfill the following requirements:

v It must be an HLASM LE Subroutine.

v It must use the EZASMI READ or RECV call for the actual read.

v It must use an own TIE (Task Interface Element) which is in its

first bytes (use the TIECLEN equate from the EZASMI

TYPE=TASK,STORAGE=DSECT/CSECT macro) copied from the

TIE used with the GSK calls.

If this parameter is not provided, a ″read″ routine provided by the

EZAAPI processing environment will be used.

 Example:

MAIN ROUTINE

==

 EZASMI TYPE=GSKSSOCINIT, Issue GSKSSOCINIT call X

 SKREAD=*SKREADA, X

SKREADA DC V(SKREAD)

MTIE EZASMI TYPE=TASK,STORAGE=CSECT Task Interface Element

 ENTRY MTIE

SUB ROUTINE (to be linked to main routine)

==

SKREAD CEEENTRY PPA=MYPPA,MAIN=NO,NAB=NO,BASE=3,AUTO=SKREADSZ, *

 RMODE=ANY

 USING SKREADWK,R13 Base DSECT of module workarea

 L R6,AMTIE

 MVC SKRDTIE(TIECLEN),0(R6) First 24 bytes must be copied

 L R6,0(R1) Get addr of socket descriptor

 MVC RSOCK,0(R6) Move to local field

 L R6,4(R1) Get addr of buffer

 ST R6,RBUFA Move to local field

 L R6,8(R1) Get addr of buffer length

 MVC RBUFL,0(R6) Move to local field

 EZASMI TYPE=READ, READ request X

 S=RSOCK+2, for this socket descriptor X

 BUF=*RBUFA, to this buffer X

 NBYTE=RBUFL, with this length X

 TASK=SKRDTIE, own task storage X

 ERRNO=MERRNO, own ERRNO X

 RETCODE=MRETCODE own RETCODE

 L R15,MRETCODE Move RETCODE to Register 15

 CEETERM RC=(15) Back to caller

*

AMTIE DC V(MTIE) Address of main TIE

MYPPA CEEPPA LE PPA

 CEEDSA LE DSA Dsect

GSKSSOCINIT

316 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

CEECAA LE CAA Dsect

 EZASMI TYPE=TASK,STORAGE=DSECT TIE DSECT

SKREADWK DSECT Own LE Work area DSECT

 ORG *+CEEDSASZ Leave space for the DSA fix part

SKRDTIE DS XL(TIELENTH) Own TIE

RSOCK DC F’0’

RBUFA DC F’0’

RBUFL DC F’0’

MERRNO DC F’0’

MRETCODE DC F’0’

SKREADSZ EQU *-SKREADWK Size of own ork area

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

*

 END SKREAD

SKWRITE (Optional) Input parameter. Point to an application-provided

routine that performs a socket write function for SSL for VSE. This

routine must fulfill the following requirements:

v It must be an HLASM LE Subroutine.

v It must use the EZASMI WRITE or SEND call for the actual

write.

v It must use an own TIE (Task Interface Element) which is in its

first bytes (use the TIECLEN equate from the EZASMI

TYPE=TASK,STORAGE=DSECT/CSECT macro) copied from the

TIE used with the GSK calls.

If this parameter is not provided, a ″write″ routine provided by the

EZAAPI processing environment will be used.

 Example:

 Similar to the SKREAD example.

REASCODE Output parameter. Point to a fullword where the failure reason

code for the GSKSSOCINIT call is stored. A value of 0 indicates the

successful completion of the function.

RETCODE Output parameter. When REASCODE is 0, the RETCODE

parameter contains the pointer to a GSKSOCDATA structure which

needs to be used in subsequent SSL for VSE operations.

ERRNO Output parameter. May show detailed error information.

GSKSSOCINIT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 317

GSKSSOCREAD

This function receives data on a secure socket connection.

AA EZASMI TYPE=GSKSSOCREAD , SSOCDATA= address ,BUF= address ,

*indaddr

*indaddr

(reg)

(reg)

 A

A NBYTE= number ,RETCODE= address ,

address

*indaddr

*indaddr

(reg)

(reg)

 ERRNO= address

*indaddr

(reg)

 AC

SSOCDATA Input parameter. Address of GSKSOCDATA as returned in

RETCODE by EZASMI TYPE=GSKSSOCINIT.

BUF Input parameter. The address of the user-supplied buffer in which

the data is to be stored.

NYBTE Input parameter. A value, or the address of a fullword binary

number specifying the length of the data buffer. The length of the

data buffer must be either 64Kb or at least 32 bytes larger than the

largest send buffer that is to be received.

RETCODE Output parameter. A value of 0 or greater 0 indicates the successful

completion of the function and denotes the number of bytes which

have been read. If RETCODE is negative, an error has occurred

(please refer to VSE library member SSLVSE.A or to the TCP/IP for

VSE 1.5 Optional Products for a detailed description of error return

codes).

ERRNO Output parameter. May show detailed error information. For

non-blocking sockets, if no data is received, the GSKSSOCREAD

may return with ERRNO set to EWOULDBLOCK.

GSKSSOCREAD

318 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKSSOCRESET

This function refreshes the security parameters, such as encryption keys, for a

session.

AA EZASMI TYPE=GSKSSOCRESET , A

A SSOCDATA= address ,RETCODE= address ,

*indaddr

*indaddr

(reg)

(reg)

 ERRNO= address

*indaddr

(reg)

 AC

SSOCDATA Input parameter. Address of GSKSOCDATA as returned in

RETCODE by EZASMI TYPE=GSKSSOCINIT.

RETCODE Output parameter. A value of 0 indicates the successful completion

of the function. If RETCODE is negative, an error has occurred

(please refer to VSE library member SSLVSE.A or to the TCP/IP for

VSE 1.5 Optional Products for a detailed description of error return

codes).

ERRNO Output parameter. May show detailed error information.

GSKSSOCRESET

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 319

GSKSSOCWRITE

This function sends data on a secure socket connection.

AA EZASMI TYPE=GSKSSOCWRITE , SSOCDATA= address ,BUF= address ,

*indaddr

*indaddr

(reg)

(reg)

 A

A NBYTE= number ,RETCODE= address ,

address

*indaddr

*indaddr

(reg)

(reg)

 ERRNO= address

*indaddr

(reg)

 AC

SSOCDATA Input parameter. Address of GSKSOCDATA as returned in

RETCODE by EZASMI TYPE=GSKSSOCINIT.

BUF Input parameter. The address of the data being transmitted.

NYBTE Input parameter. A value, or the address of a fullword binary

number specifying the number of bytes to be transmitted.

RETCODE Output parameter. A value of 0 or greater 0 indicates the successful

completion of the function and denotes the number of bytes which

have been sent. If RETCODE is negative, an error has occurred

(please refer to VSE library member SSLVSE.A or to the TCP/IP for

VSE 1.5 Optional Products for a detailed description of error return

codes).

ERRNO Output parameter. May show detailed error information.

GSKSSOCWRITE

320 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GSKUNINIT

The GSKUNINIT call removes the current overall settings for the SSL environment.

It removes fields such as session timeout values and SSL protocols.

AA EZASMI TYPE=GSKUNINIT , RETCODE= address ,ERRNO= address

*indaddr

*indaddr

(reg)

(reg)

 AC

RETCODE Output Parameter. A value of 0 indicates the successful completion

of the function. If RETCODE is not 0, an error occurred (please

refer to VSE library member SSLVSE.A or to the TCP/IP for VSE 1.5

Optional Products for a detailed description of error return codes.).

ERRNO Output Parameter. May show detailed error information.

GSKUNINIT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 321

INITAPI

The INITAPI macro connects an application to the TCP/IP interface. Almost all

sockets programs that are written in COBOL, PL/I, or assembler language must

issue the INITAPI macro before they issue other sockets macros.

Note: Because the default INITAPI still requires the TERMAPI to be issued, it is

recommended that you always code the INITAPI command.

The exceptions to this rule are the following calls, which, when issued first, will

generate a default INITAPI call:

v GETCLIENTID

v GETHOSTID

v GETHOSTNAME

v SELECT

v SELECTEX

v SOCKET

v TAKESOCKET

AA EZASMI TYPE=INITAPI

,MAXSOC

=

number

address

*indaddr

(reg)

 A

A
,SUBTASK

=

address

*indaddr

(reg)

,IDENT

=

address

*indaddr

(reg)

 A

A ,MAXSNO = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,APITYPE

=

'2'

address

*indaddr

(reg)

,UEEXIT

=

address

*indaddr

(reg)

 A

A
,ASYNC

=

'NO'

'ECB'

,ERROR

=

indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Descriptions

MAXSOC Optional input parameter. A halfword binary field specifying the

maximum number of sockets supported for this application.

Currently, TCP/IP for VSE/ESA ignores this input and defaults the

maximum number of sockets supported to 8001. Socket descriptor

numbers are in the range 0 – 8000.

SUBTASK Indicates an eight-byte field, containing a unique subtask identifier

which is used to distinguish between multiple subtasks within a

INITAPI

322 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

single address space. Use your own jobname as part of your

subtask name. This will ensure that, if you issue more than one

INITAPI command from the same address space, each SUBTASK

parameter will be unique. If not specified or specified as 8 blanks,

a default subtask name is used. In a batch environment we have

byte 0-2

first 3 characters of the JOBNAME

byte 3

hex F0

byte 4-7

the VSE Task Identifier

In a CICS transaction environment we have

byte 0-2

the CICS EIBTRNID (transaction identifier)

byte 3 hex F1

byte 4-7

the CICS EIBTASKN (task number)

IDENT A structure containing the identities of the TCP/IP address space

and the calling program’s address space. Specify IDENT on the

INITAPI call from an address space.

TCPNAME

An eight-byte character field which is ignored.

ADSNAME

An eight-byte character field which is ignored.

MAXSNO Output parameter. A fullword binary field containing the greatest

descriptor number that may get assigned to this application.

Currently, TCP/IP for VSE/ESA always returns 8000.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO field contains a valid error number. Otherwise,

ignore ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

APITYPE Optional input parameter. A halfword binary field specifying the

APITYPE:

Value Meaning

2 APITYPE 2 (AF_INET). This is the default.

UEEXIT Any parameter will be ignored.

ASYNC Optional input parameter. One of the following:

v The literal 'NO' indicating no asynchronous support.

INITAPI

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 323

v The literal 'ECB' indicating the asynchronous support using

ECBs is to be used.

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

INITAPI

324 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

IOCTL

The IOCTL macro is used to control certain operating characteristics for a socket.

Before you issue an IOCTL macro, you must load a value representing the

characteristic that you want to control in COMMAND.

Note: IOCTL can only be used with programming languages that support address

pointers

AA EZASMI TYPE=IOCTL ,S = number

address

*indaddr

(reg)

 ,COMMAND = 'FIONBIO'

address

*indaddr

(reg)

 A

A ,REQARG = address

*indaddr

(reg)

 ,RETARG = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 A

A ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket to be controlled.

COMMAND Input parameter. To control an operating characteristic, set this

field to one of the following symbolic names. A value in a bit mask

is associated with each symbolic name. By specifying one of these

names, you are turning on a bit in a mask which communicates the

requested operating characteristic to TCP/IP.

Value Description

'FIONBIO' Sets or clears blocking status..

REQARG and RETARG

Point to arguments that are passed between the calling program

and IOCTL. The length of the argument is determined by the

COMMAND request. REQARG is an input parameter and is used

to pass arguments to IOCTL. RETARG is an output parameter and

is used for arguments returned by IOCTL.

 For the lengths and meanings of REQARG and RETARG see

Table 6.

 Table 6. IOCTL Macro Arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO X'8004A77E' 4 Set socket mode to:

X'00'=blocking;

X'01'=nonblocking

0 Not used

IOCTL

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 325

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

IOCTL

326 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

LISTEN

Only servers use the LISTEN macro. The LISTEN macro:

v Establishes the readiness to accept client connection requests.

v Creates a connection-request queue of a specified number of entries for incoming

connection requests.

The LISTEN macro is typically used by a concurrent server to receive connection

requests from clients. When a connection request is received, a new socket is

created by a later ACCEPT macro. The original socket continues to listen for

additional connection requests.

Note: Concurrent servers and iterative servers use this macro. An iterative server

handles one client at a time. A concurrent server receives connection

requests from multiple clients and creates subtasks that process the client

requests. When a subtask is created, the concurrent server gets a new socket,

passes the new socket to the subtask, and dissociates itself from the

connection. The CICS Listener program is an example of a concurrent server.

AA EZASMI TYPE=LISTEN ,S = number

address

*indaddr

(reg)

 ,BACKLOG = 'number'

address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket descriptor.

BACKLOG Input parameter. A value (enclosed in single quotation marks) or

the address of a fullword binary number specifying the number of

messages that can be backlogged. This parameter is ignored. A

value of 1 is always assumed.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

LISTEN

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 327

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

LISTEN

328 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

READ

The READ macro reads data on a socket and stores it in a buffer. The READ macro

applies only to connected sockets.

For datagram sockets, the READ call returns the entire datagram that was sent. If a

datagram packet is too long to fit in the supplied buffer, datagram sockets discard

extra bytes.

AA EZASMI TYPE=READ ,S = number

address

*indaddr

(reg)

 ,NBYTE = number

address

*indaddr

(reg)

 A

A ,BUF = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ECB=

address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket that is going to read the data.

NBYTE Input parameter. A fullword binary number set to the size of BUF.

READ does not return more than the number of bytes of data in

NBYTE even if more data is available.

BUF On input, a buffer to be filled by completion of the call. The length

of BUF must be at least as long as the value of NBYTE.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

the ERRNO field.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description

0 A zero return code indicates that the connection is closed

and no data is available.

>0 A positive value indicates the number of bytes copied into

the buffer.

−1 Check ERRNO for an error code.

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

READ

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 329

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

 READ returns up to the number of bytes specified by NBYTE. If less than the

number of bytes requested is available, the READ macro returns the number

currently available.

If data is not available for the socket and the socket is in blocking mode, the READ

macro blocks the caller until data arrives. If data is not available, and the socket is

in nonblocking mode, READ returns a -1 and sets ERRNO EWOULDBLOCK. See

“IOCTL” on page 325 or “FCNTL” on page 289 for a description of how to set the

nonblocking mode.

READ

330 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

RECV

The RECV macro receives data on a socket and stores it in a buffer. The RECV

macro applies only to connected sockets.

RECV returns the length of the incoming message or data. If a datagram packet is

too long to fit in the supplied buffer, datagram sockets discard extra bytes.

For stream sockets, the data is processed like streams of information with no

boundaries separating data. For example, if applications A and B are connected

with a stream socket and Application A sends 1000 bytes, each call to RECV can

return one byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications using

stream sockets should place RECV in a loop that repeats the call until all data has

been received.

AA EZASMI TYPE=RECV ,S = number

address

*indaddr

(reg)

 ,NBYTE = number

address

*indaddr

(reg)

 A

A ,BUF = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ECB=

address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket descriptor.

NBYTE Input parameter. A fullword binary number set to the size of BUF.

RECV does not receive more than the number of bytes of data in

NBYTE even if more data is available.

BUF On input, a buffer to be filled by completion of the call. The length

of BUF must be at least as long as the value of NBYTE.

ERRNO Ouput parameter. A fullword binary field. If RETCODE is

negative, this field contains an error number. See “ERRNO Values”

on page 84 for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description

0 A zero return code indicates that the connection is closed

and no data is available.

>0 A positive value indicates the number of bytes copied into

the buffer.

−1 Check ERRNO for an error code.

RECV

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 331

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

 If data is not available for the socket and the socket is in blocking mode, the RECV

macro blocks the caller until data arrives. If data is not available and the socket is

in nonblocking mode, RECV returns a −1 and sets ERRNO to EWOULDBLOCK.

See “FCNTL” on page 289 or “IOCTL” on page 325 for a description of how to set

nonblocking mode.

RECV

332 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

RECVFROM

The RECVFROM macro receives data for a socket and stores it in a buffer.

RECVFROM returns the length of the incoming message or data stream.

If data is not available for the socket designated by descriptor S, and socket S is in

blocking mode, the RECVFROM call blocks the caller until data arrives.

If data is not available and socket S is in nonblocking mode, RECVFROM returns a

−1 and sets ERRNO to EWOULDBLOCK. Because RECVFROM returns the socket

address in the NAME structure, it applies to any datagram socket, whether

connected or unconnected. See “FCNTL” on page 289 or “IOCTL” on page 325 for

a description of how to set nonblocking mode. If a datagram packet is too long to

fit in the supplied buffer, datagram sockets discard extra bytes.

For stream sockets, the data is processed as streams of information with no

boundaries separating data. For example, if applications A and B are connected

with a stream socket and Application A sends 1000 bytes, each call to this function

can return one byte, or 10 bytes, or the entire 1000 bytes. Applications using stream

sockets should place RECVFROM in a loop that repeats until all of the data has

been received.

AA EZASMI TYPE=RECVFROM ,S = number

address

*indaddr

(reg)

 ,NBYTE = number

address

*indaddr

(reg)

 A

A ,BUF = address

*indaddr

(reg)

 ,NAME = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 A

A ,RETCODE = address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket to receive the data.

NBYTE Input parameter. A value, or the address of a fullword binary

number specifying the length of the input buffer. NBYTE must first

be initialized to the size of the buffer associated with NAME. On

return the NBYTE contains the number of bytes of data received.

BUF On input, a buffer to be filled by completion of the call. The length

of BUF must be at least as long as the value of NBYTE.

NAME Initially, the application provides a pointer to a structure that will

contain the peer socket name on completion of the call.

 If the NAME parameter value is nonzero, the source address of the

message is filled.

RECVFROM

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 333

Field Description

FAMILY

Output parameter. A halfword binary number specifying

the addressing family. The value is always 2, indicating

AF_INET.

PORT Output parameter. A halfword binary number specifying

the port number of the sending socket.

IP-ADDRESS

Output parameter. A fullword binary number specifying

the 32-bit internet address of the sending socket.

RESERVED

Output parameter. An eight-byte reserved field. This field

is required, but is not used.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this field contains an error number. See “ERRNO Values”

on page 84 for information about ERRNO return codes.

RETCODE A fullword binary field that returns one of the following:

Value Description

0 A zero return code indicates that the connection is closed

and no data is available.

>0 A positive value indicates the number of bytes transferred

by the RECVFROM call.

−1 Check ERRNO for an error code.

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

RECVFROM

334 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SELECT

In a process where multiple I/O operations can occur it is necessary for the

program to be able to wait on one or several of the operations to complete. For

example, consider a program that issues a READ to multiple sockets whose

blocking mode is set. Because the socket would block on a READ macro, only one

socket could be read at a time. Setting the sockets to nonblocking would solve this

problem, but would require polling each socket repeatedly until data becomes

available. The SELECT macro allows you to test several sockets and to process a

later I/O macro only when one of the tested sockets is ready. This ensures that the

I/O macro does not block.

To use the SELECT macro as a timer in your program, do either of the following:

v Set the read, write, and except arrays to zeros

v Do not specify MAXSOC.

Testing Sockets

Read, write, and exception operations can be tested. The select () call monitors

activity on selected sockets to determine whether:

v A buffer for the specified sockets contains input data. If input data is available

for a given socket, a read operation on that socket does not block.

v TCP/IP can accommodate additional output data. If TCP/IP can accept

additional output for a socket, a write operation on the socket does not block.

v An exceptional condition occurs on a socket.

v A timeout occurs on the SELECT macro itself. A TIMEOUT period can be

specified when the SELECT macro is issued.

Each socket descriptor is represented by a bit in a bit string.The bit strings are

contained in 32-bit fullwords, numbered from right to left. The right-most bit

represents socket descriptor zero; the left-most bit represents socket descriptor 31,

and so on. If your process uses 32 or fewer sockets, the bit string is one fullword.

If your process uses 33 sockets, the bit string is two full words. The first fullword

represents socket descriptors 0 to 31, the second fullword is for socket descriptors

32 to 63. You define the sockets that you want to test by turning on bits in the

string.

Read Operations

The ACCEPT, READ, RECV, and RECVFROM macros are read operations. A socket

is ready for reading when data is received on it, or when an exception condition

occurs.

To determine if a socket is ready for the read operation, set the appropriate bit in

RSNDMSK to ‘1’ before issuing the SELECT macro. When the SELECT macro

returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

Write Operations

A socket is selected for writing, ready to be written, when:

v TCP/IP can accept additional outgoing data.

v A connection request is received in response to an ACCEPT macro.

v A CONNECT call for a nonblocking socket, that has previously returned ERRNO

EINPROGRESS, completes the connection.

The WRITE, SEND, or SENDTO macros block when the data to be sent exceeds the

amount that TCP/IP can accept. To avoid this, you can precede the write operation

with a SELECT macro to ensure that the socket is ready for writing.

SELECT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 335

To determine if a socket is ready for the write operation, set the appropriate bit in

WSNDMSK to ‘1’.

Exception Operations

For each socket to be tested, the SELECT macro can check for an exception

condition. The exception conditions are:

v The calling program (concurrent server) has issued a GIVESOCKET command

and the target subtask has successfully issued the TAKESOCKET call. When this

condition is selected, the calling program (concurrent server) should issue

CLOSE to dissociate itself from the socket.

v A socket has received out-of-band data. For this condition, a READ macro

returns the out-of-band data before the program data.

To determine if a socket has an exception condition, use the ESNDMSK character

string and set the appropriate bits to ‘1’.

Returning the Results

For each event tested by a xSNDMSK, a bit string records the results of the check.

The bit strings are RRETMSK, WRETMSK, and ERETMSK for read, write, and

exceptional events. On return from the SELECT macro, each bit set to ‘1’ in the

xRETMSK is a read, write, or exceptional event for the associated socket.

MAXSOC Parameter

The SELECT call must test each bit in each string before returning any results. For

efficiency, the MAXSOC parameter can be set to the largest socket number for any

event type. The SELECT call tests only bits in the range 0 through the MAXSOC

value.

TIMEOUT Parameter

If the time in the TIMEOUT parameter elapses before an event is detected, the

SELECT call returns and RETCODE is set to 0.

AA EZASMI TYPE=SELECT ,MAXSOC = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 A

A ,RETCODE = address

*indaddr

(reg)

,TIMEOUT

=

address

*indaddr

(reg)

 A

A
,RSNDMSK

=

address

,RRETMSK

=

address

*indaddr

*indaddr

(reg)

(reg)

 A

A
,WSNDMSK

=

address

,WRETMSK

=

address

*indaddr

*indaddr

(reg)

(reg)

 A

A
,ESNDMSK

=

address

,ERETMSK

=

address

*indaddr

*indaddr

(reg)

(reg)

 A

SELECT

336 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

A
,ECB=

address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

MAXSOC Input parameter. A fullword binary field specifying the largest

socket descriptor number to be checked plus 1 (remember, TCP/IP

for VSE/ESA supports socket descriptor numbers from 0 to 8000).

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84, for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

>0 Indicates the number of ready sockets in the three return

masks.

=0 Indicates that the SELECT time limit has expired.

−1 Check ERRNO for an error code

TIMEOUT Input parameter.

 If TIMEOUT is not specified, the SELECT call blocks until a socket

becomes ready.

 If TIMEOUT is specified, TIMEOUT is the maximum interval for

the SELECT call to wait until completion of the call. If you want

SELECT to poll the sockets and return immediately, TIMEOUT

should be specified to point to a zero-valued TIMEVAL structure.

 TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of TIMEOUT, is the seconds

component of the time-out value.

v TIMEOUT-MICROSEC, word two of TIMEOUT, is the

microseconds component of the time-out value (0–999999).

For example, if you want SELECT to timeout after 3.5 seconds, set

TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK Input parameter. A bit string sent to request read event status.

v For each socket to be checked for pending read events, the

corresponding bit in the string should be set to 1.

v For sockets to be ignored, the value of the corresponding bit

should be set to 0.

If this parameter is set to 0, the SELECT will not check for read

events. The length of this bit-mask array is dependent on the value

in MAXSOC and must be a multiple of 4 bytes.

SELECT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 337

RRETMSK Output parameter. A bit string that returns the status of read

events.

v For each socket that is ready for to read, the corresponding bit in

the string will be set to 1.

v For sockets to be ignored, the corresponding bit in the string will

be set to 0.

WSNDMSK Input parameter. A bit string sent to request write event status.

v For each socket to be checked for pending write events, the

corresponding bit in the string should be set to 1.

v For sockets to be ignored, the value of the corresponding bit

should be set to 0.

WRETMSK Output parameter. A bit string that returns the status of write

events.

v For each socket that is ready to write, the corresponding bit in

the string will be set to 1.

v For sockets that are not ready to be written, the corresponding

bit in the string will be set to 0.

ESNDMSK Input parameter. A bit string sent to request exception event status.

The length of the string should be equal to the maximum number

of sockets to be checked.

v For each socket to be checked for pending exception events, the

corresponding bit in the string should be set to 1.

v For each socket to be ignored, the corresponding bit should be

set to 0.

ERETMSK Output parameter. A bit string that returns the status of exception

events. The length of the string should be equal to the maximum

number of sockets to be checked.

v For each socket for which exception status has been set, the

corresponding bit will be set to 1.

v For sockets that do not have exception status, the corresponding

bit will be set to 0.

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

SELECT

338 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SELECTEX

The SELECTEX macro monitors a set of sockets, a time value, and an ECB or list of

ECBs. It completes when either one of the sockets has activity, the time value

expires, or the ECBs are posted.

To use the SELECTEX call as a timer in your program, do either of the following:

v Set the read, write, and except arrays to zeros

v Do not specify MAXSOC.

For a detailed description on testing sockets, refer to the description of “SELECT”

on page 335.

AA EZASMI TYPE=SELECTEX ,MAXSOC = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 A

A ,RETCODE = address

*indaddr

(reg)

,TIMEOUT

=

address

*indaddr

(reg)

 A

A
,RSNDMSK

=

address

,RRETMSK

=

address

*indaddr

*indaddr

(reg)

(reg)

 A

A
,WSNDMSK

=

address

,WRETMSK

=

address

*indaddr

*indaddr

(reg)

(reg)

 A

A
,ESNDMSK

=

address

,ERETMSK

=

address

*indaddr

*indaddr

(reg)

(reg)

 A

A ,SELECB = address

(

*indaddr

,’LIST’)

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

MAXSOC Input parameter. A fullword binary field specifying the largest

socket descriptor number to be checked plus 1 (remember, TCP/IP

for VSE/ESA supports socket descriptor numbers from 0 to 8000).

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this contains an error number.

RETCODE Output parameter. A fullword binary field.

Value Meaning

>0 The number of ready sockets.

SELECTEX

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 339

0 Either the SELECTEX time limit has expired (ECB value

will be 0) or one of the caller’s ECBs has been posted (ECB

value will be nonzero and the caller’s descriptor sets will

be set to 0). The caller must initialize the ECB values to

zero before issuing the SELECTEX macro.

-1 Check ERRNO.

TIMEOUT Input parameter.

 If TIMEOUT is not specified, the SELECTEX call blocks until a

socket becomes ready or until a user ECB is posted.

 If a TIMEOUT value is specified, TIMEOUT is the maximum

interval for the SELECTEX call to wait until completion of the call.

If you want SELECTEX to poll the sockets and return immediately,

TIMEOUT should be specified to point to a zero-valued TIMEVAL

structure.

 TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of TIMEOUT, is the seconds

component of the time-out value.

v TIMEOUT-MICROSEC, word two of TIMEOUT, is the

microseconds component of the time-out value (0—999999).

For example, if you want SELECT to timeout after 3.5 seconds, set

TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

TIMEOUT, SELECTEX returns to the calling program.

RSNDMSK Input parameter. The bit-mask array to control checking for read

interrupts. If this parameter is not specified or the specified

bit-mask is zeros, the SELECT will not check for read interrupts.

The length of this bit-mask array is dependent on the value in

MAXSOC and must be a multiple of 4 bytes.

RRETMSK Output parameter. The bit-mask array returned by the SELECT if

RSNDMSK is specified. The length of this bit-mask array is

dependent on the value in MAXSOC and must be a multiple of 4

bytes.

WSNDMSK Input parameter. The bit-mask array to control checking for write

interrupts. If this parameter is not specified or the specified

bit-mask is zeros, the SELECT will not check for write interrupts.

The length of this bit-mask array is dependent on the value in

MAXSOC and must be a multiple of 4 bytes.

WRETMSK Output parameter. The bit-mask array returned by the SELECT if

WSNDMSK is specified. The length of this bit-mask array is

dependent on the value in MAXSOC and must be a multiple of 4

bytes.

ESNDMSK Input parameter. The bit-mask array to control checking for

exception interrupts. If this parameter is not specified or the

specified bit-mask is zeros, the SELECT will not check for

exception interrupts. The length of this bit-mask array is dependent

on the value in MAXSOC and must be a multiple of 4 bytes.

ERETMSK Output parameter. The bit-mask array returned by the SELECT if

ESNDMSK is specified. The length of this bit-mask array is

dependent on the value in MAXSOC and must be a multiple of 4

bytes

SELECTEX

340 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SELECB Input parameter. An ECB or list of ECB addresses which, if posted,

causes completion of the SELECTEX.

 If the address of an ECB list is specified you must set the

high-order bit of the last entry in the ECB list to one and you must

also add the LIST keyword. The ECBs must reside in the caller’s

home address space.

Note: The maximum number of ECBs that can be specified in a

list is 254.

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

SELECTEX

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 341

SEND

The SEND macro sends datagrams on a specified connected socket.

For datagram sockets, SEND transmits the entire datagram if it fits into the

receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if a program is required to send 1000 bytes, each

call to this function can send any number of bytes, up to the entire 1000 bytes,

with the number of bytes sent returned in RETCODE. Therefore, programs using

stream sockets should place this call in a loop, and reissue the call until all data

has been sent.

AA EZASMI TYPE=SEND ,S = number

address

*indaddr

(reg)

 ,NBYTE = number

address

*indaddr

(reg)

 A

A ,BUF = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ECB=

address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket descriptor of the socket that is

sending data.

NBYTE Input parameter. A value, or the address of a fullword binary

number specifying the number of bytes to transmit. Unless the PTF

for APAR PQ55591 is installed, the maximum number of bytes to

be specified is 64K.

BUF The address of the data being transmitted. The length of BUF must

be at least as long as the value of NBYTE.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this field contains an error number. See “ERRNO Values”

on page 84, for information about ERRNO return codes.

RETCODE Output parameter. A fullword binary field.

Value Description

0 or >0

A successful call. The value is set to the number of bytes

transmitted.

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

SEND

342 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

SEND

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 343

SENDTO

SENDTO is similar to SEND, except that it includes the destination address

parameter. You can use the destination address on the SENDTO macro to send

datagrams on a UDP socket that is connected or not connected.

For datagram sockets, the SENDTO macro sends the entire datagram if the

datagram fits into the buffer.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if a program is required to send 1000 bytes, each

SENDTO macro call can send any number of bytes, up to the entire 1000 bytes,

with the number of bytes sent returned in RETCODE. Therefore, programs using

stream sockets should place SENDTO in a loop that repeats the macro until all

data has been sent.

AA EZASMI TYPE=SENDTO ,S = number

address

*indaddr

(reg)

 ,NBYTE = number

address

*indaddr

(reg)

 A

A ,BUF = address

*indaddr

(reg)

 ,NAME = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 A

A ,RETCODE = address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Output parameter. A value, or the address of a halfword binary

number specifying the socket descriptor of the socket sending the

data.

NBYTE Input parameter. A value, or the address of a fullword binary

number specifying the number of bytes to transmit. Unless the PTF

for APAR PQ55591 is installed, the maximum number of bytes to

be specified is 64K.

BUF Input parameter. The address of the data being transmitted. The

length of BUF must be at least as long as the value of NBYTE.

NAME Input parameter. The address of the target.

Field Description

FAMILY

A halfword binary field containing the addressing family.

The value is always 2, indicating AF_INET.

PORT A halfword binary field containing the port number bound

to the socket.

SENDTO

344 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

IP-ADDRESS

A fullword binary field containing the 32-bit internet

address of the socket.

RESERVED

Specifies an eight-byte reserved field. This field is required,

but is not used.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, ERRNO contains a valid error number. Otherwise, ignore

ERRNO.

 See “ERRNO Values” on page 84 for information about ERRNO

return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0 or >0

A successful call. The value is set to the number of bytes

transmitted.

−1 Check ERRNO for an error code

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

SENDTO

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 345

SETSOCKOPT

The SETSOCKOPT macro sets the options associated with a socket. SETSOCKOPT

can be called only for sockets in the AF_INET domain.

The OPTVAL and OPTLEN parameters are used to pass data used by the

particular set command. The OPTVAL parameter points to a buffer containing the

data needed by the set command. The OPTLEN parameter must be set to the size

of the data pointed to by OPTVAL.

AA EZASMI TYPE=SETSOCKOPT ,S = number

address

*indaddr

(reg)

 ,OPTLEN = address

*indaddr

(reg)

 A

A ,OPTNAME = 'SO_KEEPALIVE'

'SO_LINGER'

'SO_REUSEADDR'

address

*indaddr

(reg)

 ,OPTVAL = address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S A value, or the address of a halfword binary number specifying the

socket sending the data.

OPTLEN Input parameter. A fullword binary number specifying the length

of the field specified by OPTVAL.

OPTNAME Input parameter. Indicates the following values:

Value Description

SO_KEEPALIVE

This option is provided for source compatibility

reasons only. It will not perform any action. Instead

the user should use the common TCP/IP setting:

SET PULSE_TIME=nnn.

SO_LINGER Controls how TCP/IP processes data that has not

been transmitted when a CLOSE macro is issued

for the socket. This option has meaning only for

stream sockets.

v When SO_LINGER is set and CLOSE is called,

the calling program is blocked until the data is

successfully transmitted or the connection has

timed out.

v When SO_LINGER is not set, the CLOSE macro

returns without blocking the caller, and TCP/IP

SETSOCKOPT

346 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

continues to attempt to send data for a specified

time. This usually allows sufficient time to

complete the data transfer. Use of the

SO_LINGER option does not guarantee

successful completion because TCP/IP only

waits the amount of time specified in OPTVAL

for SO_LINGER.

The default is DISABLED.

SO_REUSEADDR

This option is provided for source compatibility

reasons only. It will not perform any action.

TCP/IP implicitly allows for immediate address

reuse.

OPTVAL Input parameter. Contains data about the option specified in

OPTNAME.

v OPTVAL is a 32-bit binary number for all values of OPTNAME,

except SO_LINGER. Set OPTVAL to a nonzero positive value to

enable the option. set OPTVAL to zero to disable the option.

v For SO_LINGER, OPTVAL is:

 ONOFF DS F ON OR OFF

 LINGER DS F TIME IN SECONDS

Set ONOFF to a nonzero value to enable the option and set it to

zero to disable the option. Set the LINGER value to the time in

seconds that TCP/IP lingers after the CLOSE macro is issued.

ERRNO Output parameter.

 A fullword binary field. If RETCODE is negative, OPTVAL

contains an error number. See “ERRNO Values” on page 84, for

information about ERRNO return codes.

RETCODE Output parameter.

 A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

 The OPTVAL and OPTLEN parameters are used to pass data used by the

particular set command. The OPTVAL parameter points to a buffer containing the

data needed by the set command. It is optional and can be set to the NULL

SETSOCKOPT

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 347

pointer, if data is not needed by the command. The OPTLEN parameter must be

set to the size of the data pointed to by OPTVAL.

SETSOCKOPT

348 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SHUTDOWN

One way to terminate a network connection is to issue a CLOSE macro that

attempts to complete all outstanding data transmission requests prior to breaking

the connection. The SHUTDOWN macro can be used to close one-way traffic while

completing data transfer in the other direction. The HOW parameter determines

the direction of the traffic to shutdown.

A client program can use the SHUTDOWN macro to reuse a given socket with a

different connection.

AA EZASMI TYPE=SHUTDOWN ,S = number

address

*indaddr

(reg)

 ,HOW = number

address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket to be shutdown.

HOW Input parameter. A fullword binary field specifying the shutdown

method.

Value Description

2 Ends further send and receive operations.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this field contains an error number. See “ERRNO Values”

on page 84 for information about ERRNO return codes.

RETCODE Output parameter. A fullword binary field that returns the

following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

SHUTDOWN

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 349

TASK Input parameter. The location of the task storage area in your

program.

SHUTDOWN

350 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SOCKET

The SOCKET macro creates an endpoint for communication and returns a socket

descriptor representing the endpoint. Different types of sockets provide different

communication services.

AA EZASMI TYPE=SOCKET ,AF = 'INET'

address

*indaddr

(reg)

 ,SOCTYPE = 'STREAM'

'DATAGRAM'

address

*indaddr

(reg)

 A

A ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,PROTO

=

address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

AF Input parameter. Specifies the literal INET, which indicates the

internet or TCP/IP. AF can also indicate a fullword binary number

specifying the address family. For TCP/IP the value is always 2,

indicating AF_INET.

SOCTYPE Input parameter. A fullword binary field set to the type of socket

required. The types are:

Value Description

1 or 'STREAM'

Stream sockets provide sequenced, two-way byte streams

that are reliable and connection-oriented. They support a

mechanism for out-of-band data. This is the normal type

for TCP/IP.

2 or 'DATAGRAM'

Datagram sockets provide datagrams, which are

connectionless messages of a fixed maximum length whose

reliability is not guaranteed. Datagrams can be corrupted,

received out of order, lost, or delivered multiple times. This

type is supported only in the AF_INET domain.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this field contains an error number. See “ERRNO Values”

on page 84 for information about ERRNO return codes.

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

> or = 0

Contains the new socket descriptor

SOCKET

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 351

−1 Check ERRNO for an error code

PROTO Input parameter. A fullword binary number specifying the protocol

supported.

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

 PROTO specifies a particular protocol to be used with the socket. If PROTO is set

to 0, the system selects the default protocol number for the domain and socket

type requested. The PROTO defaults are TCP for stream sockets and UDP for

datagram sockets. If PROTO is set to 17, the UDP Protocol is used. If it is set to 6,

the TCP protocol is used.

SOCK_STREAM sockets model duplex byte streams. They provide reliable,

flow-controlled connections between peer applications. Stream sockets are either

active or passive. Active sockets are used by clients who initiate connection

requests with CONNECT. By default, SOCKET creates active sockets. Passive

sockets are used by servers to accept connection requests with the CONNECT

macro. An active socket is transformed into a passive socket by binding a name to

the socket with the BIND macro and by indicating a willingness to accept

connections with the LISTEN macro. Once a socket is passive, it cannot be used to

initiate connection requests.

In the AF_INET domain, the BIND macro, applied to a stream socket, lets the

application specify the networks from which it is willing to accept connection

requests. The application can fully specify the network interface by setting the

internet address field in the address structure to the internet address of a network

interface. Alternatively, the application can set the address in the name structure to

zeros to indicate that it wants to receive connection requests from any network.

Once a connection has been established between stream sockets, the data transfer

macros READ, WRITE, SEND, RECV, SENDTO, and RECVFROM can be used.

Usually, the READ-WRITE or SEND-RECV pairs are used for sending data on

stream sockets.

SOCK_DGRAM sockets are used to model datagrams. They provide connectionless

message exchange without guarantees of reliability. Messages sent have a

maximum size.

The active or passive concepts for stream sockets do not apply to datagram

sockets. Servers must still call BIND to name a socket and to specify from which

network interfaces it wants to receive datagrams. Wildcard addressing, as

SOCKET

352 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

described for stream sockets, also applies to datagram sockets. Because datagram

sockets are connectionless, the LISTEN macro has no meaning for them and must

not be used.

After an application receives a datagram socket, it can exchange datagrams using

the SENDTO and RECVFROM macros. If the application goes one step further by

calling CONNECT and fully specifying the name of the peer with which all

messages are exchanged, then the other data transfer macros READ, WRITE,

SEND, and RECV can be used as well. For more information about placing a

socket into the connected state, see “CONNECT” on page 198.

Datagram sockets allow message broadcasting to multiple recipients. Setting the

destination address to a broadcast address depends on the network interface

(address class and whether subnets are used).

Outgoing datagrams have an IP header prefixed to them. Your program receives

incoming datagrams with the IP header intact. You can set and inspect IP options

by using the SETSOCKOPT and GETSOCKOPT macros.

Use the CLOSE macro to deallocate sockets.

SOCKET

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 353

TAKESOCKET

The TAKESOCKET macro acquires a socket from another program and creates a

new socket. Typically, a subtask issues this macro using client ID and socket

descriptor data which it obtained from the concurrent server.

Notes:

1. When TAKESOCKET is issued, a new socket descriptor is returned in

RETCODE. You should use this new socket descriptor in later macros such as

GETSOCKOPT, which require the S (socket descriptor) parameter.

2. Both concurrent servers and iterative servers use this interface. An iterative

server handles one client at a time. A concurrent server receives connection

requests from multiple clients and creates subtasks that process the client

requests. When a subtask is created, the concurrent server gets a new socket,

passes the new socket to the subtask, and dissociates itself from the connection.

The CICS Listener program is an example of a concurrent server.

AA EZASMI TYPE=TAKESOCKET ,CLIENT = address

*indaddr

(reg)

 A

A ,SOCRECV = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 A

A ,RETCODE = address

*indaddr

(reg)

,ECB=

address

*indaddr

(reg)

 A

A
,ERROR

=

address

*indaddr

(reg)

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

CLIENT Input parameter. The client data returned by the GETCLIENTID

macro.

Field Description

DOMAIN

Input parameter. A fullword binary number set to the

domain of the program that is giving the socket. For

TCP/IP the value is always 2, indicating AF_INET.

NAME

An eight-byte character field set to the VSE partition

identifier of the program giving the socket.

TASK Input parameter. Specifies an eight-byte character field.

This field must match the value of the SUBTASK

parameter on the INITAPI for the VSE task that issued the

GIVESOCKET request.

RESERVED

Input parameter. A 20-byte reserved field. This field is

required and only used internally.

TAKESOCKET

354 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

SOCRECV Input parameter. A halfword binary field containing the socket

descriptor number assigned by the application that called

GIVESOCKET.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this field contains an error number. See “ERRNO Values”

on page 84, for information about ERRNO return codes.

RETCODE Output parameter. A fullword binary field.

Value Description

0 or >0

Contains the new socket descriptor

−1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

TAKESOCKET

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 355

TASK

The TASK macro allocates a task storage area addressable to all socket users within

a task. If more than one module is using sockets within a task, it is your

responsibility to provide the task storage address to each module. These modules

should use the instruction EZASMI TYPE=TASK with STORAGE=DSECT to define

the storage mapping.

If this macro is not named, the default name EZASMTIE is used for the storage

mapping.

AA EZASMI TYPE=TASK ,STORAGE = DSECT

CSECT
 AC

Keyword Description

STORAGE Input parameter. Defines one of the following storage definitions:

Keyword Description

DSECT Generates a DSECT.

CSECT Generates an in-line storage definition that can be

used within a CSECT or as a part of a larger

DSECT.

TASK

356 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

TERMAPI

The TERMAPI macro ends the session created by the INITAPI macro.

Note: The INITAPI and TERMAPI macros must be issued under the same task.

AA EZASMI TYPE=TERMAPI

,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

TASK Input parameter. The location of the task storage area in your

program.

TERMAPI

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 357

WRITE

The WRITE macro writes data on a connected socket. The WRITE macro is similar

to the SEND macro.

For datagram sockets, this macro writes the entire datagram, if it will fit into one

TCP/IP buffer.

For stream sockets, the data is processed as streams of information with no

boundaries separating the data. For example, if you want to send 1000 bytes of

data, each call to the write macro can send one byte, ten bytes, or the entire 1000

bytes. You should place the WRITE macro in a loop that cycles until all of the data

has been sent.

AA EZASMI TYPE=WRITE ,S = number

address

*indaddr

(reg)

 ,NBYTE = number

address

*indaddr

(reg)

 A

A ,BUF = address

*indaddr

(reg)

 ,ERRNO = address

*indaddr

(reg)

 ,RETCODE = address

*indaddr

(reg)

 A

A
,ECB=

address

*indaddr

(reg)

,ERROR

=

address

*indaddr

(reg)

 A

A
,TASK

=

address

*indaddr

(reg)

 AC

Keyword Description

S Input parameter. A value, or the address of a halfword binary

number specifying the socket descriptor of the socket to receive the

data.

NBYTE Input parameter. A value, or the address of a fullword binary field

specifying the number of bytes of data to transmit. Unless the PTF

for APAR PQ55591 is installed, the maximum number of bytes to

be specified is 64K.

BUF The address of the data being transmitted. The length of BUF must

be at least as long as the value of NBYTE.

ERRNO Output parameter. A fullword binary field. If RETCODE is

negative, this field contains an error number. See “ERRNO Values”

on page 84 for information about ERRNO return codes.

RETCODE Output parameter. A fullword binary field.

Value Description

>0 A successful call. The value is set to the number of bytes

transmitted.

0 Connection partner has closed connection.

−1 Check ERRNO for an error code

WRITE

358 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

ECB Input parameter. It points to a 160-byte field containing:

v A four-byte ECB posted by TCP/IP when the macro completes.

v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function

has completed and the ECB has been posted .

ERROR Input parameter. The location in your program to receive control

when the application programming interface (API) processing

module cannot be loaded.

TASK Input parameter. The location of the task storage area in your

program.

 This macro writes up to NBYTE bytes of data. If there is not enough available

buffer space for the socket data to be transmitted, and the socket is in blocking

mode, WRITE blocks the caller until additional buffer space is available. If the

socket is in nonblocking mode, WRITE returns a -1 and sets ERRNO to

EWOULDBLOCK. See “FCNTL” on page 289 or “IOCTL” on page 325 for a

description of how to set the nonblocking mode.

WRITE

Chapter 11. Using the Macro Application Programming Interface (EZASMI API) 359

360 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Part 3. CICS Listener Support

© Copyright IBM Corp. 1997, 2005 361

362 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 12. Setting Up and Configuring CICS Listener

Support

Overview

This chapter describes the steps required to configure the CICS Listener Support.

The error messages are included in the z/VSE Messages and Codes, Volume 1.

Note: The CICS Listener Support requires CICS/TS. First of all, the CICS Listener

Support requires starting CICS/TS with SIT parameter SVA=YES.

Before you can start the CICS Listener Support, you need to do the following:

 Task Refer to

Define additional files, programs, maps, and

transient data to CICS using RDO.

“CICS — Defining CICS Resources”

Use the configuration macro (EZACICD), to

build the CICS Listener Configuration

dataset

“Building the Configuration Dataset with

EZACICD” on page 367

Use the configuration transaction to

customize the Configuration dataset

“Customizing the Configuration Dataset” on

page 371

Note: You can modify the dataset while CICS is running by using EZAC. See

“Configuration Transaction (EZAC)” on page 371.

CICS — Defining CICS Resources

The following definitions are required for the CICS Listener Support:

v Transactions

v Programs (see “Program Definitions” on page 364)

v Files (see “File Definitions” on page 365)

v Transient data queues (see “Transient Data Definition” on page 365)

Note: With z/VSE (and VSE/ESA) all these definitions have been activated using

member IESCSEZA.Z and IESZDCT.A in IJSYSRS.SYSLIB. This setup

includes the definition of TASKDATAKEY(CICS) for transactions and

EXECKEY(CICS) for programs which is required when running with CICS

storage protection. These definitions are ignored when running without

CICS storage protection.

For information on defining transactions, programs, and files to the CICS Resource

Definition Online (RDO) facility, refer to CICS/ESA Resource Definition (Online)

(SC33–0666)

Transaction Definitions

The following four transactions are required to support the CICS Listener:

EZAC Configure the socket interface

EZAO Enable the socket interface

EZAP Internal transaction that is invoked during termination of the socket

interface

© Copyright IBM Corp. 1997, 2005 363

EZAL Listener task

Note: This is a single listener. Each listener in the same CICS partition

needs a unique transaction ID.

Note: For transactions EZAL, EZAO, and EZAP we have suggested a priority of

255. This ensures timely transaction dispatching, and in case of EZAL

maximizes the connection rate of clients requesting service.

Using Storage Protection

When running with CICS storage protection, the EZAP, EZAO, and EZAL

transactions must be defined with TASKDATAKEY(CICS). If this is not done,

EZAO fails with an ASRA abend code indicating an incorrect attempt to overwrite

the CDSA by EZACIC01.

Note that, if the machine does not support storage protection or is not enabled for

storage protection, TASKDATAKEY(CICS) is ignored and does not cause an error.

Notes:

1. Use of the IBM-supplied Listener is not required.

2. You may use a transaction name other than EZAL.

3. The TASKDATALoc values for EZAO and EZAP and the TASKDATALoc value

for EZAL must all be the same.

Program Definitions

The following programs and one mapset are required:

EZACIC00

is the connection manager program. It provides the enabling and disabling

of CICS TCP/IP through the transactions EZAO and EZAP.

EZACIC01

is the task related user exit (TRUE).

EZACIC02

is the Listener program that is used by the transaction EZAL. This

transaction is started when you enable CICS TCP/IP Listener through the

EZAO transaction.

Note: While you do not need to use the IBM-supplied Listener, you do

need to provide a Listener function.

EZACIC20

is the initialization/termination front-end module for CICS Listener

Interface.

EZACIC21

is the initialization module for CICS Listener Interface.

EZACIC22

is the termination module for CICS Listener Interface.

EZACIC23

is the primary module for the configuration transaction (EZAC).

EZACIC24

is the message delivery module for transactions EZAC and EZAO.

EZACIC25

is the Domain Name Server (DNS) cache module.

Setting Up / Configuring CICS Listener Support

364 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

EZACICME

is the US English text delivery module.

EZACICM

has all the maps used by the transactions.

EZASOH00, EZASOH01, EZASOH03

Interface modules for the TCP/IP API used by the CICS Listener.

Using Storage Protection

When running with CICS Storage Protection, all the required CICS Listener

programs must have EXECKEY=CICS as part of their CEDA definitions.

Note that, if the machine does not support storage protection or is not enabled for

storage protection, EXECKEY(CICS) is ignored and does not cause an error.

File Definitions

The updates to CICS include two files: EZACONF, the CICS Listener configuration

file, and EZACACH, which is required if you want to use the Domain Name

Server Cache function (EZACIC25).

Transient Data Definition

The CICS Listener Support uses a transient data queue for messages. With z/VSE,

the EZAM transient data queue is predefined and can be used by the CICS

Listener Support as well as by your own socket applications. The name of the

transient data queue may be changed.

If so, it must match the name specified in the ERRORTD parameter of the EZAC

DEFINE CICS and/or the EZACICD TYPE=CICS (refer to “Configuration Macro”

on page 367).

The Listener transaction can start a server using a transient data queue, as

described in “Listener Input Format” on page 420. Following is an DCT entry for

an application that is started using the trigger-level mechanism of the DCT.

CICS Monitoring

Optionally, the CICS Listener Interface uses the CICS Monitoring Facility to collect

data about its operation. Event Monitoring Points (EMPs) with identifier ’EZA02’

are used by the Listener to collect performance class data.

Event Monitoring Points for the Listener

The Listener monitors the activities associated with connection acceptance and

server task startup.

The listener counts the following events:

v Number of Connection Requested Accepted

 DFHDCT TYPE=INTRA, X

 DESTID=TRAA, X

 DESTFAC=FILE, X

 TRIGLEV=1, X

 TRANSID=TRAA

 ...

 ...

Figure 73. Addition to the DCT Required by CICS TCP/IP

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 365

v Number of Transactions Started

v Number of Transactions Rejected Due To Invalid Transaction ID

v Number of Transactions Rejected Due To Disabled Transaction

v Number of Transactions Rejected Due To Disabled Program

v Number of Transactions Rejected Due To Givesocket Failure

v Number of Transactions Rejected Due To Negative Response from Security Exit

v Number of Transactions Not Authorized to Run

v Number of Transactions Rejected Due to I/O Error

v Number of Transactions Rejected Due to No Space

v Number of Transactions Rejected Due to TD Length Error

The following Monitor Control Table (MCT) entries make use of the

event-monitoring points in the performance class used by the Listener.

In the ID parameter, the following specifications are used:

(EZA02.01)

Completion of ACCEPT call.

(EZA02.02)

Completion of CICS transaction initiation.

(EZA02.03)

Detection of Invalid Transaction ID.

(EZA02.04)

Detection of Disabled Transaction.

(EZA02.05)

Detection of Disabled Program.

DFHMCT TYPE=EMP,ID=(EZA02.01),CLASS=PERFORM, X

 PERFORM=ADDCNT(1,1)

DFHMCT TYPE=EMP,ID=(EZA02.02),CLASS=PERFORM, X

 PERFORM=ADDCNT(2,1)

DFHMCT TYPE=EMP,ID=(EZA02.03),CLASS=PERFORM, X

 PERFORM=ADDCNT(3,1)

DFHMCT TYPE=EMP,ID=(EZA02.04),CLASS=PERFORM, X

 PERFORM=ADDCNT(4,1)

DFHMCT TYPE=EMP,ID=(EZA02.05),CLASS=PERFORM, X

 PERFORM=ADDCNT(5,1)

DFHMCT TYPE=EMP,ID=(EZA02.06),CLASS=PERFORM, X

 PERFORM=ADDCNT(6,1)

DFHMCT TYPE=EMP,ID=(EZA02.07),CLASS=PERFORM, X

 PERFORM=ADDCNT(7,1)

DFHMCT TYPE=EMP,ID=(EZA02.08),CLASS=PERFORM, X

 PERFORM=ADDCNT(8,1)

DFHMCT TYPE=EMP,ID=(EZA02.09),CLASS=PERFORM, X

 PERFORM=ADDCNT(9,1)

DFHMCT TYPE=EMP,ID=(EZA02.10),CLASS=PERFORM, X

 PERFORM=ADDCNT(10,1)

DFHMCT TYPE=EMP,ID=(EZA02.11),CLASS=PERFORM, X

 PERFORM=ADDCNT(11,1)

DFHMCT TYPE=EMP,ID=(EZA02.12),CLASS=PERFORM, X

 PERFORM=(MLTCNT(1,11)), X

 COUNT=(1,CONN,STARTED,INVALID,DISTRAN,DISPROG,GIVESOKT,SECEXIT)

Figure 74. The Monitor Control Table (MCT) for Listener

Setting Up / Configuring CICS Listener Support

366 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

(EZA02.06)

Detection of Givesocket Failure.

(EZA02.07)

Transaction Rejection by Security Exit.

(EZA02.08)

Transaction Not Authorized

(EZA02.09)

I/O Error on Transaction Start.

(EZA02.10)

No Space Available for TD Start Message

(EZA02.11)

TD Length Error

(EZA02.12)

Program Termination.

CICS Program List Table (PLT)

You can allow automatic startup/shutdown of the CICS Listener Interface through

updates to the PLT. This is achieved through placing the EZACIC20 module in the

appropriate PLT.

To start the CICS Listener Interface interface automatically, make the following

entry in PLTPI after the DFHDELIM entry:

DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

To shut down the CICS Listener Interface interface automatically, make the

following entry in PLTSD before the DFHDELIM entry:

DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

Configuring the CICS TCP/IP Environment

The Configuration File contains information about the CICS Listener environment.

The file is organized by two types of objects—CICS instances and listeners within

those instances. The creation of this dataset is done in three stages:

1. Create the empty dataset using VSAM IDCAMS (Access Method Services). For

z/VSE the configuration file is pre-allocated, but empty.

2. Initialize the dataset using the program generated by the EZACICD macro. See

member SKCICSLI in ICCF library 59 for a sample job to initialize the

configuration file.

3. Add to or modify the dataset using the configuration transaction EZAC. This

step is described in “Customizing the Configuration Dataset” on page 371.1

Building the Configuration Dataset with EZACICD

Configuration Macro

The configuration macro (EZACICD) is used to build the configuration dataset.

This dataset can then be incorporated into CICS using RDO and modified using

the configuration transactions (see “Configuration Transaction (EZAC)” on page

371). The macro is keyword-driven with the TYPE keyword controlling the specific

function request. The dataset contains one record for each instance of CICS it

1. The EZAC transaction is modeled after the CEDA transaction used by CICS Resource Definition Online (RDO).

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 367

supports, and one record for each listener. The following is an example of the

macros required to create a configuration file for one instance of the CICS Listener

interface using one listener:

 EZACICD TYPE=INITIAL, INITIALIZE GENERATION ENVIRONMENT X

 PRGNAME=EZACONFP, GENERATE THIS PROGRAM X

 FILNAME=EZACONF name of the configuration file

 EZACICD TYPE=CICS, GENERATE CONFIGURATION RECORD X

 APPLID=DBDCCICS, APPLID OF CICS X

 CACHMIN=10, MINIMUM REFRESH TIME FOR CACHE X

 CACHMAX=20, MAXIMUM REFRESH TIME FOR CACHE X

 CACHRES=5, MAXIMUM NUMBER OF ACTIVE RESOLVERS X

 ERRORTD=EZAM NAME OF TD QUEUE FOR ERROR MESSAGES

 EZACICD TYPE=LISTENER, CREATE LISTENER RECORD X

 APPLID=DBDCCICS, APPLID OF CICS X

 TRANID=EZAL, USE STANDARD TRANSACTION ID X

 PORT=3010, USE PORT NUMBER 3010 X

 BACKLOG=40, SET BACKLOG VALUE TO 40 X

 ACCTIME=30, SET TIMEOUT VALUE TO 30 SECONDS X

 GIVTIME=10, SET GIVESOCKET TIMEOUT TO 10 SECONDS X

 REATIME=300, SET READ TIMEOUT TO 5 MINUTES X

 NUMSOCK=100, SUPPORT 99 CONCURRENT CONNECTIONS X

 MINMSGL=4, MINIMUM INPUT MESSAGE IS 4 BYTES X

 IMMED=NO, DO NOT START LISTENER IMMEDIATELY X

 FASTRD=NO READ AFTER ACCEPT (NO SELECT)

 EZACICD TYPE=FINAL

TYPE Parameter: The TYPE parameter controls the function requests. It may have

the following values:

Value Meaning

INITIAL

Initialize the generation environment. This value should only be used once

per generation and it should be in the first invocation of the macro. For

sub-parameters, refer to “TYPE=INITIAL.”

CICS Identify a CICS object. This corresponds to a specific instance of CICS and

will create a configuration record. For sub-parameters, refer to

“TYPE=CICS.”

LISTENER

Identify a Listener object. This will create a listener record. For

sub-parameters, refer to “TYPE=LISTENER” on page 369.

FINAL

indicates the end of the generation. There are no sub-parameters.

TYPE=INITIAL: When TYPE=INITIAL is specified, the following parameters

apply:

Value Meaning

PRGNAME

The name of the generated initialization program. The default value is

EZACONFP.

FILNAME

The file name used for the Configuration File in the execution of the

initialization program. The default value is EZACONF.

TYPE=CICS: When TYPE=CICS is specified, the following parameters apply:

Value Meaning

Setting Up / Configuring CICS Listener Support

368 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

APPLID

The APPLID of the CICS address space in which this instance of CICS

Listener is to run. This field is mandatory.

CACHMIN

The minimum refresh time for the Domain Name Server cache in minutes.

This value depends on the stability of your network, that is, the time you

would expect a domain name to have the same internet address. Higher

values improve performance but increase the risk of getting an incorrect

(expired) address when resolving a name. The value must be less than

cachmax. The default value is 15.

CACHMAX

The maximum refresh time for the Domain Name Server cache in minutes.

This value depends on the stability of your network, that is, the time you

would expect a domain name to have the same internet address. Higher

values improve performance but increase the risk of getting an incorrect

(expired) address when resolving a name. The value must be greater than

cachmin. The default value is 30.

CACHRES

The maximum number of concurrent resolvers desired. If the number of

concurrent resolvers is equal to or greater than this value, refresh of cache

records will not happen unless their age is greater than the CACHMAX

value. The default value is 10.

ERRORTD

The name of a Transient Data destination to which error messages will be

written. The default value is EZAM.

TYPE=LISTENER: When TYPE=LISTENER is specified the following parameters

apply:

Value Meaning

APPLID

The APPLID value of the CICS object for which this listener is being

defined. If this is omitted, the APPLID from the previous TYPE=CICS

macro is used.

TRANID

The transaction name for this listener. The default is EZAL.

PORT The port number this listener will use for accepting connections. This

parameter is mandatory. The value should be between 2049 and 65535. The

ports may be shared.

BACKLOG

The number of unaccepted connections that can be queued to this listener.

The default value is 20.

Note: Due to the TCP/IP Stack Implementation a value of 1 will always be

used.

ACCTIME

The time in seconds this listener will wait for a connection request before

checking for a CICS Listener interface shutdown or CICS shutdown. The

default value is 60. Setting this value high will minimize CPU consumption

on a lightly loaded system but will lengthen shutdown processing. Setting

this value low will use more CPU but facilitate shutdown processing.

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 369

GIVTIME

The time in seconds this listener will wait for a response to a

GIVESOCKET. If this time expires, the listener will assume that either the

server transaction did not start or the TAKESOCKET failed. At this time,

the listener will send the client a message indicating the server failed to

start and close the socket (connection). If this parameter is not specified,

the ACCTIME value is used.

REATIME

The time in seconds this listener will wait for a response to a READ

request. If this time expires, the listener will assume that the client has

failed and will terminate the connection by closing the socket. If this

parameter is not specified, no checking for read timeout is done.

NUMSOCK

The number of sockets supported by this listener. One socket is the

listening socket. The others are used to pass connections to the servers

using the GIVESOCKET call so, in effect, one less than this number is the

maximum number of concurrent GIVESOCKET requests that can be active.

The default value is 50.

MINMSGL

The minimum length of the Transaction Initial Message from the client to

the listener. The default value is 4. The listener will continue to read on the

connection until this length of data has been received. FASTRD (below)

handles blocking.

IMMED

Specify YES or NO. YES indicates this listener is to be started when the

interface starts. No indicates this Listener is to be started independently

using the EZAO transaction. The default is YES.

FASTRD

Specify YES or NO. YES indicates this listener will issue a READ

immediately after completion of the ACCEPT, i.e. without issuing an

intervening SELECT. NO indicates this listener will issue a SELECT

between the ACCEPT and the READ. YES improves performance but relies

on the client sending data immediately after its connect request. NO

assumes the client may connect without sending data immediately.

 The default is YES.

Note: FASTRD=YES acts as a blocking (synchronous) read. FASTRD=NO

causes the system to ensure that data is present before issuing a read

(that is, it does not block).

TRANTRN

Specify YES or NO. YES indicates that the translation of the user data is

based on the character format of the transaction code. That is, with YES

specified for TRANTRN, the user data is translated if and only if

TRANUSR is YES and the transaction code is not uppercase EBCDIC. With

NO specified for TRANTRN, the user data is translated if and only if

TRANUSR is YES. The default value for TRANTRN is YES.

Note: Regardless of how TRANTRN is specified, translation of the

transaction code occurs if and only if the first character is not upper

case EBCDIC.

TRANUSR

Specify YES or NO. NO indicates that the user data from the Transaction

Setting Up / Configuring CICS Listener Support

370 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Initial Message should not be translated from ASCII to EBCDIC. YES

indicates that the user data may be translated depending on TRANTRN

and whether the transaction code is upper case EBCDIC. The default value

for TRANUSR is YES.

Note: Previous implementations functioned as if TRANTRN and

TRANUSR were both set to YES. Normally, data on the internet is

ASCII and should be translated. The exceptions are data coming

from an EBCDIC client or binary data in the user fields. In those

cases, you should set these values accordingly. If you are operating

in a mixed environment, use of multiple listeners on multiple ports

is recommended.

Table 7 shows how the listener handles translation with different combinations of

TRANTRN, TRANSUSR, and character format of the transaction code:

 Table 7. Conditions for Translation of Tranid and User Data

TRANTRN TRANUSR Tranid format

Translate

tranid?

Translate user

data?

YES YES EBCDIC NO NO

YES NO EBCDIC NO NO

NO YES EBCDIC NO YES

NO NO EBCDIC NO NO

YES YES ASCII YES YES

YES NO ASCII YES NO

NO YES ASCII YES YES

NO NO ASCII YES NO

SECEXIT

The name of the security exit used by this listener. The default is no

security exit.

Customizing the Configuration Dataset

There is a CICS object for each CICS that uses the CICS Listener Support and is

controlled by the Configuration File. The CICS object is identified by the APPLID

of the CICS it references.

There is a Listener object for each Listener defined for a CICS. It is possible that a

CICS may have no Listener but this is not common practice. A CICS may have

multiple listeners which are either multiple instances of the supplied Listener with

different specifications, multiple user-written listeners or some combination.

Configuration Transaction (EZAC)

The EZAC transaction is a panel-driven interface that lets you add, delete, or

modify the Configuration file. The following table lists and describes the functions

supported by the EZAC transaction.

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 371

Command Object Function

ALTER CICS/Listener Modifies the attributes of an existing

resource definition

COPY CICS/Listener v CICS - Copies the CICS object and its

associated listeners to create another

CICS object. COPY will fail if the new

CICS object already exists.

v Listener - Copies the Listener object to

create another Listener object. COPY will

fail if the new Listener object already

exists.

DEFINE CICS/Listener Create a new resource definition

DELETE CICS/Listener v CICS - Deletes the CICS object and all of

its associated listeners.

v Listener - Deletes the Listener object.

DISPLAY CICS/Listener Shows the parameters specified for the

CICS/Listener object.

RENAME CICS/Listener Performs a COPY followed by a DELETE of

the original object.

If you enter EZAC, the following screen is displayed:

ALTER Function: The ALTER function is used to change CICS objects and/or

their Listener objects. If you specify ALter on the EZAC Initial Screen or enter

EZAC AL on a blank screen, the following screen is displayed:

 EZAC

 ENTER ONE OF THE FOLLOWING

 ALter

 COpy

 DEFine

 DELete

 DISplay

 REName

 APPLID=DBDCCICS

 PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 75. EZAC Initial Screen

Setting Up / Configuring CICS Listener Support

372 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Note: You can short-cut this by entering either EZAC ALTER CICS or EZAC

ALTER LISTENER.

ALTER CICS: For alteration of a CICS object, the following screen is displayed:

After the APPLID is entered, the following screen is displayed.

EZAC ALTER

 ENTER ONE OF THE FOLLOWING

 CICS ===> Enter Yes|No

 LIStener ===> Enter Yes|No

 APPLID=DBDCCICS

 PF 3 END 9 MSG 12 CNCL

Figure 76. EZAC ALTER Screen

EZAC ALTER CICS

 ENTER ALL FIELDS

 APPLID ===> APPLID of CICS System

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 77. EZAC ALTER CICS screen

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 373

The system will request a confirmation of the values displayed. After the changes

are confirmed, the changed values will be in effect for the next initialization of the

CICS sockets interface.

ALTER LISTENER: For alteration of a Listener, the following screen is displayed:

After the names are entered, the following screen is displayed:

EZAC ALTER CICS

 OVERTYPE TO ENTER

 APPLID ===> APPLID of CICS System

 CACHMIN ===> ... Minimum Refresh Time for Cache

 CACHMAX ===> ... Maximum Refresh Time for Cache

 CACHRES ===> .. Maximum Number of Resolvers

 ERRortd ===> TD queue for Error Messages

 APPLID=DBDCCICS

 PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 78. EZAC ALTER CICS Detail Screen

EZAC ALTER

 ENTER ALL FIELDS

 APPLID ===> APPLID of CICS System

 NAME ===> Transaction Name of Listener

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 79. ALTER LISTENER screen

Setting Up / Configuring CICS Listener Support

374 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

The system will request a confirmation of the values displayed. After the changes

are confirmed, the changed values will be in effect for the next initialization of the

CICS sockets interface.

COPY Function: The COPY function is used to copy an object into a new object.

If you specify COpy on the EZAC Initial Screen or enter EZAC CO on a blank

screen, the following screen is displayed:

Note: You can short-cut this by entering either EZAC COPY CICS or EZAC COPY

LISTENER.

COPY CICS: If you specify CICS on the previous screen, the following screen is

displayed:

EZAC ALTER LISTENER

 OVERTYPE TO MODIFY

 APPLID ===> APPLID of CICS System

 TRanid ===> Transaction Name of Listener

 POrt ===> Port Number of Listener

 IMMEDiate ===> ... Immediate Startup Yes|No

 BAcklog ===> ... Backlog Value for Listener

 NUMsock ===> .. Number of Sockets in Listener

 MINmsgl ===> .. Minimum Message Length

 ACCTime ===> .. Timeout Value for Accept

 GIVTime ===> .. Timeout Value for Givesocket

 REATime ===> .. Timeout Value for Read

 FASTrd ===> ... Read immediately Yes|No

 TRANTrn ===> ... Translate Trans. Name Yes|No

 TRANUsr ===> ... Translate User Data Yes|No

 SECexit ===> Security Exit Name

 PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 80. EZAC ALTER LISTENER Detail Screen

EZAC COPY

 ENTER ONE OF THE FOLLOWING

 CICS ===> Enter Yes|No

 LIStener ===> Enter Yes|No

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 81. EZAC COPY Screen

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 375

After the APPLIDs of the source CICS object and the target CICS object are

entered, confirmation is requested. When confirmation is entered, the copy is

performed.

COPY LISTENER: If you specify COPY LISTENER, the following screen is

displayed:

After the APPLIDs of the source and target CICS objects and the names of the

source and target listeners are entered, confirmation is requested. When the

confirmation is entered, the copy is performed.

EZAC COPY

 ENTER ALL FIELDS

 SCICS ===> APPLID of Source CICS

 TCICS ===> APPLID of Target CICS

 APPLID=DBDCCICS

 PF 3 END 9 MSG 12 CNCL

Figure 82. EZAC COPY Screen

EZAC COPY

 ENTER ALL FIELDS

 SCICS ===> APPLID of Source CICS

 SLISTener ===> Transaction Name of Source Listener

 TCICS ===> APPLID of Target CICS

 TLISTener ===> Transaction Name of Target Listener

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 83. EZAC COPY Screen

Setting Up / Configuring CICS Listener Support

376 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

DEFINE Function: The DEFINE function is used to create CICS objects and their

Listener objects. If you specify DEFine on the EZAC Initial Screen or enter EZAC

DEF on a blank screen, the following screen is displayed:

Note: You can short-cut this by entering either EZAC DEFINE CICS or EZAC

DEFINE LISTENER.

DEFINE CICS: For definition of a CICS object, the following screen is displayed:

After the APPLID is entered, the following screen is displayed.

EZAC DEFINE

 ENTER ONE OF THE FOLLOWING

 CICS ===> Enter Yes|No

 LIStener ===> Enter Yes|No

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 84. EZAC DEFINE Screen

EZAC DEFINE CICS

 ENTER ALL FIELDS

 APPLID ===> APPLID of CICS System

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 85. EZAC DEFINE CICS screen

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 377

After the definition is entered, confirmation is requested. When confirmation is

entered, the object is created on the configuration file.

DEFINE LISTENER: For definition of a Listener, the following screen is displayed:

After the names are entered, the following screen is displayed:

EZAC DEFINE CICS

 OVERTYPE TO ENTER

 APPLID ===> APPLID of CICS System

 CACHMIN ===> ... Minimum Refresh Time for Cache

 CACHMAX ===> ... Maximum Refresh Time for Cache

 CACHRES ===> .. Maximum Number of Resolvers

 ERRortd ===> TD queue for Error Messages

 APPLID=DBDCCICS

 PF 3 END 9 MSG 12 CNCL

Figure 86. EZAC DEFINE CICS Detail Screen

EZAC DEFINE LISTENER

 ENTER ALL FIELDS

 APPLID ===> APPLID of CICS System

 NAME ===> Transaction Name of Listener

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 87. EZAC DEFINE LISTENER screen

Setting Up / Configuring CICS Listener Support

378 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

After the definition is entered, confirmation is requested. When confirmation is

entered, the object is created on the configuration file.

DELETE Function: The DELETE function is used to delete a CICS object or a

Listener object. Deleting a CICS object deletes all Listener objects within that CICS

object. If you specify DELete on the EZAC initial screen or enter EZAC DEL on a

blank screen, the following screen is displayed:

DELETE CICS: If you specify DELETE CICS, the following screen is displayed:

EZAC DEFINE LISTENER

 OVERTYPE TO MODIFY

 APPLID ===> APPLID of CICS System

 TRanname ===> Transaction Name of Listener

 POrt ===> Port Number of Listener

 IMMediate ===> Yes Immediate Startup Yes|No

 BAcklog ===> 020 Backlog Value for Listener

 NUMsock ===> 50 Number of Sockets in Listener

 MINmsgl ===> 04 Minimum Message Length

 ACCTime ===> 60 Timeout Value for Accept

 GIVTime ===> 60 Timeout Value for Givesocket

 REATime ===> 10 Timeout Value for Read

 FASTread ===> Yes Read immediately Yes|No

 TRANTrn ===> Yes Translate Trans. Name Yes|No

 TRANUsr ===> Yes Translate User Data Yes|No

 SECexit ===> Security Exit Name

 PF 3 END 12 CNCL

Figure 88. EZAC DEFINE LISTENER Detail Screen

EZAC DELETE

 ENTER ONE OF THE FOLLOWING

 CICS ===> ... Enter Yes|No

 LISTener ===> ... Enter Yes|No

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 89. EZAC DELETE Screen

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 379

After the APPLID is entered, confirmation is requested. When the confirmation is

entered, the CICS object is deleted.

DELETE LISTENER: If you specify DELETE LISTENER, the following screen is

displayed:

After the APPLID and listener name are entered, confirmation is requested. When

confirmation is entered, the Listener object is deleted

EZAC DELETE CICS

 ENTER ALL FIELDS

 APPLID ===> APPLID of CICS System

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 90. EZAC DELETE CICS screen

EZAC DELETE LISTENER

 ENTER ALL FIELDS

 APPLID ===> APPLID of CICS System

 NAME ===> Transaction Name of Listener

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 91. EZAC DELETE LISTENER screen

Setting Up / Configuring CICS Listener Support

380 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

DISPLAY Function: The DISPLAY function is used to display the specification of

an object. If you specify DISplay on the initial EZAC screen or enter EZAC DIS on

a blank screen, the following screen is displayed:

Note: You can short-cut this by entering either EZAC DISPLAY CICS or EZAC

DISPLAY LISTENER.

DISPLAY CICS: If you specify DISPLAY CICS, the following screen is displayed:

After the APPLID is entered, the following screen is displayed:

EZAC DISPLAY

 ENTER ONE OF THE FOLLOWING

 CICS ===> Enter Yes|No

 LIStener ===> Enter Yes|No

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 92. EZAC DISPLAY Screen

EZAC DISPLAY

 ENTER ALL FIELDS

 APPLID ===> APPLID of CICS System

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 93. EZAC DISPLAY CICS screen

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 381

DISPLAY LISTENER: If you specify DISPLAY LISTENER, the following screen is

displayed:

After the APPLID and name are entered, the following screen is displayed

EZAC DISPLAY CICS

 APPLID ===> APPLID of CICS System

 CACHMIN ===> ... Minimum Refresh Time for Cache

 CACHMAX ===> ... Maximum Refresh Time for Cache

 CACHRES ===> .. Maximum Number of Resolvers

 ERRortd ===> TD queue for Error Messages

 APPLID=DBDCCICS

 PF 3 END 9 MSG 12 CNCL

Figure 94. EZAC DISPLAY CICS Detail Screen

EZAC DISPLAY

 ENTER ALL FIELDS

 APPLID ===> APPLID of CICS System

 NAME ===> Transaction Name of Listener

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 95. EZAC DISPLAY LISTENER screen

Setting Up / Configuring CICS Listener Support

382 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

RENAME Function: The RENAME function is used to rename a CICS or Listener

object. It consists of a COPY followed by a DELETE of the source object. For a

CICS object, the object and all of its associated listeners are renamed. For a listener

object, only that listener is renamed.

If you specify REName on the initial EZAC screen or enter EZAC REN on a blank

screen, the following screen is displayed:

Note: You can short-cut this by entering either EZAC RENAME CICS or EZAC

RENAME LISTENER.

RENAME CICS: If you specify CICS on the previous screen, the following screen

is displayed:

EZAC DISPLAY LISTENER

 APPLID ===> APPLID of CICS System

 TRanname ===> Transaction Name of Listener

 POrt ===> Port Number of Listener

 IMMediate ===> Yes Immediate Startup Yes|No

 BAcklog ===> 020 Backlog Value for Listener

 NUMsock ===> 50 Number of Sockets in Listener

 MINmsgl ===> 04 Minimum Message Length

 ACCTime ===> 60 Timeout Value for Accept

 GIVTime ===> 60 Timeout Value for Givesocket

 REATime ===> 10 Timeout Value for Read

 FASTread ===> Yes Read immediately Yes|No

 TRANTrn ===> Yes Translate Trans. Name Yes|No

 TRANUsr ===> Yes Translate User Data Yes|No

 SECexit ===> Security Exit Name

 PF 3 END 12 CNCL

Figure 96. EZAC DISPLAY LISTENER Detail Screen

EZAC RENAME

 ENTER ONE OF THE FOLLOWING

 CICS ===> Enter Yes|No

 LIStener ===> Enter Yes|No

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 97. EZAC RENAME Screen

Setting Up / Configuring CICS Listener Support

Chapter 12. Setting Up and Configuring CICS Listener Support 383

After the APPLIDs of the source CICS object and the target CICS object are

entered, confirmation is requested. When confirmation is entered, the rename is

performed.

RENAME LISTENER: If you specify RENAME LISTENER, the following screen is

displayed:

After the APPLIDs of the source and target CICS objects and the names of the

source and target listeners are entered, confirmation is requested. When the

confirmation is entered, the rename is performed.

EZAC RENAME

 ENTER ALL FIELDS

 SCICS ===> APPLID of Source CICS

 TCICS ===> APPLID of Target CICS

 APPLID=DBDCCICS

 PF 3 END 9 MSG 12 CNCL

Figure 98. EZAC RENAME CICS Screen

EZAC RENAME

 ENTER ALL FIELDS

 SCICS ===> APPLID of Source CICS

 SLISTener ===> Transaction Name of Source Listener

 TCICS ===> APPLID of Target CICS

 TLISTener ===> Transaction Name of Target Listener

 APPLID=DBDCCICS

 PF 3 END 12 CNCL

Figure 99. EZAC RENAME LISTENER Screen

Setting Up / Configuring CICS Listener Support

384 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 13. Configuring the CICS Domain Name Server Cache

Overview of the Domain Name Server Cache

The Domain Name Server (DNS) is like a telephone book that contains a person’s

name, address, and telephone number. The name server maps a host name to an IP

address, or an IP address to a host name. For each host, the name server can

contain IP addresses, nicknames, mailing information, and available well-known

services (for example, SMTP, FTP, or Telnet).

Translating host names into IP addresses is just one way of using the DNS. Other

types of information related to hosts may also be stored and queried. The different

possible types of information are defined via input data to the name server in the

resource records.

While the CICS Domain Name Server Cache function is optional, it is useful in a

highly active CICS client environment. It combines the gethostbyname() call

supported in TCP/IP for VSE and a cache that saves results from the

gethostbyname() for future reference. If your system gets repeated requests for the

same set of domain names, using the DNS will improve performance significantly.

Function Components

The function consists of three parts.

v A VSAM file which is used for the cache.

v A macro, EZACICR which is used to initialize the cache file.

v A CICS application program, EZACIC25, which is invoked by the CICS

application in place of the gethostbyname socket call.

VSAM Cache File

The cache file is a VSAM KSDS (Key Sequenced Data Set) with a key of the host

name padded to the right with binary zeros. The cache records contain a

compressed version of the hostent structure returned by the domain name server

plus a time of last refresh field. When a record is retrieved, EZACIC25 determines

if it is usable based on the difference between the current time and the time of last

refresh.

EZACICR macro

The EZACICR macro builds an initialization module for the cache file, because the

cache file must start with at least one record to permit updates by the EZACIC25

module. To optimize performance, you can preload ’dummy’ records for the hosts

names which you expect to be used frequently. This results in a more compact file

and minimizes the I/O required to use the cache. If you do not specify at least one

dummy record, the macro will build a single record of binary zeros. See “Step 1:

Create the Initialization Module” on page 387.

EZACIC25 Module

This module is a normal CICS application program which is invoked by an EXEC

CICS LINK command. The COMMAREA passes information between the invoking

CICS program and the DNS Module. If domain name resolves successfully,

EZACIC25 obtains storage from CICS and builds a hostent structure in that

storage. When finished with the hostent structure, release this storage using the

EXEC CICS FREEMAIN command.

© Copyright IBM Corp. 1997, 2005 385

The EZACIC25 module uses four parameters plus the information passed by the

invoking application to manage the cache. These parameters are as follows:

Error Destination

The Transient Data destination to which error messages are sent.

Minimum Refresh Time

The minimum time in minutes between refreshes of a cache record. If a

cache record is ’younger’ than this time, it will be used. This value is set to

15 (minutes).

Maximum Refresh Time

The maximum time in minutes between refreshes of a cache record. If a

cache record is ’older’ than this time, it will be refreshed. This value is set

to 30 (minutes).

Maximum Resolver Requests

The maximum number of concurrent requests to the resolver. It is set at 10.

See “How the DNS Cache Handles Requests.”

How the DNS Cache Handles Requests

When a request is received where cache retrieval is specified, the following takes

place:

1. Attempt to retrieve this entry from the cache. If not successful, issue

gethostbyname unless request specifies cache only.

2. If cache retrieval is successful, calculate the ’age’ of the record (the difference

between the current time and the time this record was created or refreshed).

v If the age is not greater than minimum cache refresh, use the cache

information and build the Hostent structure for the requestor. Then return to

the requestor.

v If the age is greater than the maximum cache refresh, go issue the

gethostbyname call and refresh the cache record with the results.

v If the age is between the minimum and maximum cache refresh values, do

the following:

a. Calculate the difference between the maximum and minimum cache

refresh times and divide it by the maximum number of concurrent

resolver requests. The result is called the time increment.

b. Multiply the time increment by the number of currently active resolver

requests. Add this time to the minimum refresh time giving the adjusted

refresh time.

c. If the age of the record is less than the adjusted refresh time, use the

cache record.

d. If the age of the record is greater than the adjusted refresh time, issue the

gethostbyname call and refresh the cache record with the results.
v If the gethostbyname is issued and is successful, the cache is updated and

the update time for the entry is changed to the current time.

Using the DNS Cache

There are three steps to using the DNS cache.

1. Create the initialization module, which in turn defines and initializes the file

and the EZACIC25 module. See “Step 1: Create the Initialization Module” on

page 387.

Configuring the CICS Domain Name Server Cache

386 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

2. Define the cache files to CICS. See “Step 2: Define the Cache File to CICS” on

page 389.

3. Use EZACIC25 to replace gethostbyname calls in CICS application modules.

See “Step 3: Execute EZACIC25” on page 389.

Step 1: Create the Initialization Module

The initialization module is created using the EZACICR macro. A minimum of two

invocations of the macro are coded and assembled and the assembly produces the

module. An example follows:

 EZACICR TYPE=INITIAL

 EZACICR TYPE=FINAL

This produces an initialization module which creates one record of binary zeros. If

you wish to preload the file with dummy records for frequently referenced domain

names, it would look like this:

 EZACICR TYPE=INITIAL

 EZACICR TYPE=RECORD,NAME=HOSTA

 EZACICR TYPE=RECORD,NAME=HOSTB

 EZACICR TYPE=RECORD,NAME=HOSTC

 EZACICR TYPE=FINAL

where HOSTA, HOSTB, AND HOSTC are the host names you want in the dummy

records. The names can be specified in any order.

The specifications for the EZACICR macro are as follows:

Operand

Meaning

TYPE There are three acceptable values:

Value Meaning

INITIAL

Indicates the beginning of the generation input. This value should

only appear once and should be the first entry in the input stream.

RECORD

Indicates a dummy record the user wants to generate. There can be

from 0 to 4096 dummy records generated and each of them must

have a unique name. Generating dummy records for frequently

used host names will improve the performance of the cache file. A

TYPE=INITIAL must precede a TYPE=RECORD statement.

FINAL

Indicates the end of the generation input. This value should only

appear once and should be the last entry in the input stream. A

TYPE=INITIAL must precede a TYPE=FINAL.

AVGREC

The length of the average cache record. This value is specified on the

TYPE=INITIAL macro and has a default value of 500. It is recommended

that you use the default value until you have adequate statistics to

determine a better value. This parameter is the same as the first

sub-parameter in the RECORDSIZE parameter of the IDCAMS DEFINE

statement. Accurate definition of this parameter along with use of dummy

records will minimize control interval and control area splits in the cache

file.

Configuring the CICS Domain Name Server Cache

Chapter 13. Configuring the CICS Domain Name Server Cache 387

NAME

Specifies the host name for a dummy record. The name must be from 1 to

255 bytes long. The NAME operand is required for TYPE=RECORD

entries.

Within VSE/ESA 2.5 the DNS cache file is pre-defined, but empty. It is defined as

VSAM cluster VSE.EZACICS.CACHE within catalog VSESP.USER.CATALOG. Its

filename is EZACACH.
For a minimum initialization of this file, the following JCL may be used:

 Be aware that file EZACACH must be closed when running this job.

Once the cache file has been created, it has the following layout:

Field Name

Description

Host Name

A 255-byte character field specifying the host name. This field is the key to

the file.

Record Type

A 1-byte binary field specifying the record type. The value is X’00000001’.

Last Refresh Time

A 4-byte field specifying the last refresh time. It is expressed in seconds

since 0000 hours on January 1, 1990 and is derived by taking the ABSTIME

value obtained from an EXEC CICS ASKTIME and subtracting the value

for January 1, 1990.

Number of Alias Entries

A halfword binary field specifying the number of entries in the Alias array.

Offset to Alias Array List

A halfword binary field specifying the offset in the record to the Alias

array. The Alias array consists of alias names each followed by a x ’00’

byte.

Number of INET Addresses

A halfword binary field specifying the number of INET addresses in the

record..

INET Addresses

One or more fullword binary fields specifying INET addresses returned

from gethostbyname().

Alias Names

An array of variable length character fields specifying the alias name(s)

returned from the domain name server cache. These fields are delimited by

a byte of binary zeros. Each of these fields have a maximum length of 255

bytes.

// JOB CACHCRE

// EXEC ASSEMBLY,GO

 EZACICR TYPE=INITIAL

 EZACICR TYPE=FINAL

 END

/*

/&

Configuring the CICS Domain Name Server Cache

388 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Step 2: Define the Cache File to CICS

All CICS definitions required to add this function to a CICS system are already

provided within VSE/ESA 2.5.

This includes the definitions for file EZACACH as well as for program EZACIC25.

Step 3: Execute EZACIC25

EZACIC25 replaces the gethostbyname socket call. It is invoked by a EXEC CICS

LINK PROGRAM (EZACIC25) COMMAREA(com-area) where com-area is defined

as follows:

Field Name

Description

Return Code

A fullword binary variable specifying the results of the function:

Value Meaning

-1 ERRNO value returned from gethostbyname() call. Check ERRNO

field.

0 Host name could not be resolved either within the cache or by use

of the gethostbyname call.

1 Host name was resolved using cache.

2 Host name was resolved using gethostbyname call.

ERRNO

A fullword binary field specifying the ERRNO returned from the

GETHOSTBYNAME call.

HOSTENT Address

The address of the returned HOSTENT structure.

Command

A 4-byte character field specifying the requested operation.

Value Meaning

GHBN

gethostbyname. This is the only function supported.

Namelen

A fullword binary variable specifying the actual length of the host name

for the query.

Query_Type

A 1-byte character field specifying the type of query:

Value Meaning

0 Attempt query using cache. If unsuccessful, attempt using

gethostbyname() call.

1 Attempt query using gethostbyname() call. This forces a cache

refresh for this entry.

2 Attempt query using cache only.

Note: If the cache contains a matching record, the contents of that record

will be returned regardless of its age.

Configuring the CICS Domain Name Server Cache

Chapter 13. Configuring the CICS Domain Name Server Cache 389

Name A 256-byte character variable specifying the host name for the query.

HOSTENT Structure

The returned HOSTENT structure is shown in Figure 100.

Hostent

Hostname

Address of

Address of

X'00000002'

X'00000004'

Address of

Name X'00'

Address of

Address of

Address of

Address of

Address of

Address of INET Addr#3

Alias#3 X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#1

Alias#1 X'00'

X'00000000'

X'00000000'

Figure 100. The DNS Hostent

Configuring the CICS Domain Name Server Cache

390 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 14. Starting and Stopping the CICS Listener Support

Overview

This chapter explains how to start and stop (enable and disable) the CICS Listener

Support. It describes:

v You can customize your system so that the CICS Listener Support starts and

stops automatically. See “Starting/Stopping CICS Listener Support

Automatically.”

v An operator can also start and stop CICS Listener Support manually after CICS

has been initialized. See “Starting/Stopping CICS Manually.”

v You can also start and stop CICS Listener Support from a CICS application

program. See “Starting/Stopping CICS Listener Support with Program Link” on

page 396.

This section describes all three methods.

Note: The listener interface must be started first before any listener is started.

Listener transactions should be started only via transaction EZAO or via

program EZACIC20.

Starting/Stopping CICS Listener Support Automatically

You can start and stop the CICS Listener Support automatically by modifying the

CICS Program List Table (PLT).

v Startup (PLTPI)

To start the CICS Listener Support automatically, make the following entry in

the PLTPI after the DFHDELIM entry:

DFHPLT TYPE=ENTRY, PROGRAM=EZACIC20

v Shutdown (PLTSD)

To shut down the CICS Listener Support automatically, make the following entry

in the PLTSD before the DFHDELIM entry:

DFHPLT TYPE=ENTRY, PROGRAM=EZACIC20

Starting/Stopping CICS Manually

You can start CICS Listener Support manually by using the EZAO transaction. This

operational transaction has four functions:

CICS Listener Support Startup

Starts the CICS Listener Support in a CICS address space and starts all

listeners which are identified for immediate start.

Note: The EZAO transaction must be running on the CICS where you

want to start the CICS Listener Support. You may not start a CICS

Listener Support from a different CICS.

CICS Listener Support Shutdown

Stops the interface in a CICS address space.

Listener Startup

Starts a Listener in a CICS address space.

© Copyright IBM Corp. 1997, 2005 391

Listener Shutdown

Stops a Listener in a CICS address space.

When you enter EZAO, the following screen displays.

START Function

The START function starts either the CICS Listener Support or a single Listener.

When the CICS Listener Support is started, all Listeners marked for immediate

start will be started as well. If you enter STA on the previous screen or enter EZAO

STA on a blank screen, the following screen displays.

START CICS Listener Support

If you enter EZAO START CICS, the following screen displays.

 EZAO

 ENTER ONE OF THE FOLLOWING

 STArt

 STOp

 APPLID=DBDCCICS

 PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 101. EZAO Initial Screen

EZAO START

 ENTER ONE OF THE FOLLOWING

 CICS ===> ... Enter Yes|No

 LIStener ===> ... Enter Yes|No

 APPLID=DBDCCICS

 PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 102. EZAO START Screen

Starting and Stopping the CICS Listener Support

392 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

START A LISTENER

If you enter EZAO START LISTENER, the following screen displays.

 After you enter the listener name, the listener is started. The following screen

displays; the results appear in the message area.

EZAO START CICS

 CICS ===> APPLID APPLID of CICS

 RESULT MESSAGE APPEARS HERE

 APPLID=DBDCCICS

 PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 103. EZAO START CICS Response Screen

EZAO START LISTENER

 CICS ===> APPLID APPLID of CICS

 NAME ===> Enter Name of Listener

 APPLID=DBDCCICS

 PF 3 END 9 MSG 12 CNCL

Figure 104. EZAO START LISTENER Screen

Starting and Stopping the CICS Listener Support

Chapter 14. Starting and Stopping the CICS Listener Support 393

STOP Function

The STOP function is used to stop either the CICS Listener Support or a single

Listener within the interface. If the CICS Listener Support is stopped, all Listeners

will be stopped before the CICS Listener Support is stopped. If you enter STO on

the previous screen or enter EZAO STO on a blank screen, the following screen

will be displayed:

STOP CICS Listener Support

If you specify EZAO STOP CICS, the following screen is displayed

EZAO START LISTENER

 CICS ===> APPLID APPLID of CICS system

 NAME ===> XXXX Transaction Name of Listener

 RESULT MESSAGE APPEARS HERE

 APPLID=DBDCCICS

 PF 3 END 9 MSG 12 CNCL

Figure 105. EZAO START LISTENER Result Screen

EZAO STOP

 ENTER ONE OF THE FOLLOWING

 CICS ===> ... Enter Yes|No

 LIStener ===> ... Enter Yes|No

 APPLID=DBDCCICS

 PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 106. EZAO STOP Screen

Starting and Stopping the CICS Listener Support

394 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Two options are available to stop CICS Listener Support:

IMMEDIATE=NO

This should be used in most cases, because it causes the graceful

termination of the CICS Listener Support. It has the following effects on

applications using this API:

v The Listener transaction (EZAL) quiesces after a maximum wait of 3

minutes provided that no other socket applications are active or

suspended.

v If there are active or suspended sockets applications, the Listener will

allow them to continue processing. When all of these tasks are

completed, then the Listener terminates.

v New listeners cannot be started.

IMMEDIATE=YES

This option is reserved for unusual situations and causes the abrupt

termination of the CICS Listener Support. It has the following effect on

applications using this API:

v It force purges the master server (Listener) EZAL.

After you choose an option, the stop will be attempted. The screen re-displays; the

results appear in the message line.

STOP A LISTENER

If you specify STOP LISTENER, the following screen displays.

EZAO STOP CICS

 CICS ===> ... APPLID of CICS

 IMMEDIATE ===> ... Enter Yes|No

 APPLID=DBDCCICS

 PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 107. EZAO STOP CICS Screen

Starting and Stopping the CICS Listener Support

Chapter 14. Starting and Stopping the CICS Listener Support 395

When you enter the listener named, that listener will be stopped. The screen

re-displays; the results appear in the message line.

Starting/Stopping CICS Listener Support with Program Link

You can start or stop the CICS TCP/IP Listener Support by issuing an EXEC CICS

LINK to program EZACIC20. Make sure you include the following steps in the

LINKing program:

1. Define the COMMAREA for EZACIC20. This can be done by including the

following instruction within your DFHEISTG definition:

 EZACICA AREA=P20,TYPE=CSECT

The length of the area is equated to P20PARML and the name of the structure

is P20PARMS.

2. Initialize the COMMAREA values as follows:

P20TYPE

I Initialization

T Immediate Termination

D Deferred Termination

P20OBJ

C CICS Listener Support

L Listener

P20LIST

Name of listener if this is listener initialization/termination.
3. Issue the EXEC CICS LINK to program EZACIC20. EZACIC20 will not return

until the function is complete.

4. Check the P20RET field for the response from EZACIC20.

Note: The following user abend codes may be issued by EZACIC20:

EZAO STOP LISTENER

 CICS ===> DBDCCICS APPLID of this CICS

 LIStener ===> Enter Name of Listener

 APPLID=DBDCCICS

 PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Figure 108. EZAO STOP LISTENER Screen

Starting and Stopping the CICS Listener Support

396 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

v E20L is issued if the CICS Listener Support is not in startup or

termination and no COMMAREA was provided.

v E20T is issued if CICS Listener Support is not active.

Starting and Stopping the CICS Listener Support

Chapter 14. Starting and Stopping the CICS Listener Support 397

Starting and Stopping the CICS Listener Support

398 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 15. Writing Your Own Listener

Basic Requirements

The CICS Listener Support provides a structure which supports up to 255 listeners.

These listeners may be multiple copies of the IBM-supplied listener, user-written

listeners, or a combination of the two. You may choose to run without a listener as

well.

For each listener (IBM-Supplied or user-written), there are certain basic

requirements that enable the interface to manage the listeners correctly; particularly

during initialization and termination. They are:

v Each listener instance must have a unique transaction name, even if you are

running multiple copies of the same listener.

v Each listener should have an entry in the CICS Listener Configuration Dataset.

Even if you don’t use automatic initiation for your listener, the lack of an entry

would prevent correct termination processing and could prevent CICS from

completing a normal shutdown.

For information on the IBM-supplied Listener, see “The Listener” on page 420.

Pre-Requisites

Some installations may require a customized, user-written listener. Writing your

own listener has the following prerequisites:

1. Determine what capability is required which is not supplied by the

IBM-supplied listener. Is this capability a part of the listener or a part of the

server?

2. Knowledge of the CICS-Assembler environment is required.

3. Knowledge of multi-threading applications is required. A listener must be able

to perform multiple functions concurrently to achieve good performance.

4. Knowledge of the CICS Listener Interface is required.

Using IBM’s Environmental Support

A user-written listener may use the environmental support supplied and used by

the IBM-Supplied Listener. To employ this support, the user-written listener must

do the following in addition to the requirements described above (a detailed

description of the referenced storage areas is given in Chapter 16, “External Data

Structures,” on page 405:

v The user-written listener must be written in Assembler.

v The RDO definitions for the listener transaction and program should be identical

to those for the IBM-supplied listener with the exception of the

transaction/program names.

v In the program, define an input area for configuration file records. If you are

going to read the configuration file using MOVE mode you can define the area

as by making the following entry in your DFHEISTG area:

 EZACICA AREA=CFG,TYPE=CSECT

© Copyright IBM Corp. 1997, 2005 399

If you are going to read the configuration file using LOCATE mode you can

define a DSECT for the area as follows:

 EZACICA AREA=CFG,TYPE=DSECT

In either case, the length of the area is represented by the EQUATE label

CFGLEN. The name of the area/DSECT is CFG0000.

v The CICS TCP/IP Listener Support requires a LE run-time environment. Since

LE-enabled HLASM main routines are not supported under CICS, a (simple)

front-end module written in C/VSE, COBOL/VSE or PL/I for VSE is needed to

be linked with a listener (subroutine) module.

Front-end Module MYLIST

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#pragma linkage(MYLISTA, OS)

main ()

{

 MYLISTA ();

 EXEC CICS RETURN;

}

HLASM Soubroutine MYLISTA

=========================

*ASM XOPTS(CICS NOPROLOG NOEPILOG SP)

*

MYLISTA CEEENTRY PPA=MAINPPA,MAIN=NO,BASE=(3,4,5),RMODE=ANY, C

 AUTO=MYSTORL

 USING MYSTOR,R13

 USING DFHEIBLK,DFHEIBR

* ---- code starts here ----------

* ...

* ...

 CALL EZASOKET,(SSOCKET,SAF,SSOCTYPE,SPROT,SERRNO,SRETCD),VL, C

 MF=(E,TCSOKET)

* ...

* ...

* ---- return to caller ----------

 CEETERM

 EJECT

* CONSTANTS USED TO RUN PROGRAM *

 LTORG ,

MAINPPA CEEPPA

SSOCKET DC CL16’SOCKET ’

SAF DC F’2’ Addressing family TCP/IP

SPROT DC F’1’ Stream sockets

SSOCTYPE DC F’0’ Socket Protocol (default)

 COPY DFHEIBLK

MYSTOR DSECT My working storage

 ORG *+CEEDSASZ include LE working storage

Figure 109. Sample Frame for User Written Listener (Part 1 of 2)

Writing Your Own Listener

400 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

v In the program, define a DSECT for mapping the Global Work Area (GWA). This

is done by issuing the following macro:

 EZACICA AREA=GWA,TYPE=DSECT

The name of the DSECT is GWA0000.

v In the program define a DSECT for mapping the Listener Control Area (LCA).

This is done by issuing the following macro:

 EZACICA AREA=LCA,TYPE=DSECT

The name of the DSECT is LCA0000.

v Obtain address of the Global Work Area (GWA). This can be done using the

following CICS command:

 EXEC CICS EXTRACT EXIT PROGRAM(EZACIC01) GASET(ptr) GALEN(len)

where ptr is a register and len is a halfword binary variable. The address of the

GWA is returned in ptr and the length of the GWA is returned in len.

* Execute Interface Dynamic Storage *

 DFHEISTG DSECT=NO

TCSOKET DS 30F Parameter list for EZASOKET calls

*

SERRNO DS F Field for ERRNO

SRETCD DS F Field for RETCODE

 DC CL8’&SYSDATE’

 DC CL8’&SYSTIME’

MYSTORL EQU *-MYSTOR length of my working storage

 CEEDSA

 CEECAA

*

DFHEIBR EQU 11

DFHEIPLR EQU 13

*

 END MYLIST

Linkjob MYLISTL

=========================

// JOB MYLISTL

// LIBDEF PHASE,CATALOG=lib.sublib

// OPTION CATAL,LIST

 ACTION MAP,SMAP

 PHASE MYLIST,*

 MODE AMODE(31),RMODE(ANY)

 INCLUDE DFHELII

 INCLUDE MYLIST

 INCLUDE MYLISTA

/*

// EXEC EDCPRLK,SIZE=EDCPRLK

/*

// EXEC LNKEDT,PARM=’MSHP’

/*

/&

Figure 109. Sample Frame for User Written Listener (Part 2 of 2)

Writing Your Own Listener

Chapter 15. Writing Your Own Listener 401

v Read the configuration file during initialization of the listener. The configuration

file is identified as EZACONF in the CICS Configuration file. The record key for

the user-written listener is as follows:

– APPLID

An 8 byte character field set to the APPLID value for this CICS. This value

can be obtained from the field GWACAPPL in the GWA or using the

following CICS command:

 EXEC CICS ASSIGN APPLID(applid)

where applid is an 8 byte character field.

– Record Type

A 1 byte character field set to the record type. It must have the value ’L’.

– Reserved Field

A 3 byte hex field set to binary zeros.

– Transaction

A 4 byte character field containing the transaction name for this listener. It

can be obtained from the EIBTRNID field in the Execute Interface Block.

The configuration record provides the information entered via either the

configuration macro or the EZAC transaction. The user-written listener may use

this information selectively but it is highly recommended it uses the port,

backlog and number of sockets data.

For shared files: If the user-written listener reads the configuration file, it must

first issue an EXEC CICS SET command to enable and open

the file. When the file operation is complete, the user-written

listener must issue an EXEC CICS SET command to disable

and close the file. Failure to do so will result in file errors in

certain shared-file situations.

v The user-written listener should locate its Listener Control Area (LCA). The

LCAs are located contiguously in storage with the first one pointed to by the

GWALCAAD field in the GWA. The correct LCA has the transaction name of the

listener in the field LCATRAN.

v The user-written listener should monitor either the LCASTAT field in the LCA or

the GWATSTAT field in the GWA for shutdown status. If either field shows an

immediate shutdown in progress, the user-written listener should terminate by

issuing an EXEC CICS RETURN and allow the interface to clean up any socket

connections. If either field shows a deferred termination in progress, the

user-written listener should do the following:

1. Accept any pending connections and then close the passive (listen) socket.

2. Complete processing of any sockets involved in transaction initiation, i.e.

processing the GIVESOCKET command. When processing is complete, close

these sockets.

3. When all sockets are closed, issue an EXEC CICS RETURN.
v The user-written listener should avoid socket calls which imply blocks

dependent on external events such as ACCEPT or READ. These calls should be

preceded by a single SELECTEX call which waits on the ECB LCATECB in the

LCA. This ECB is posted when an immediate termination is detected and its

posting will cause the SELECTEX to complete with a RETCODE of 0 and an

ERRNO of 0. The program should check the ECB when the SELECTEX

completes in this way as this is identical to the way SELECTEX completes when

a timeout happens. The ECB may be checked by looking for a X’80’ in the third

byte (post bit).

Writing Your Own Listener

402 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

This SELECTEX should specify a timeout value. This provides the listener with a

way to periodically check for a deferred termination request. Without this, CICS

Listener Deferred Termination or CICS Deferred Termination cannot complete.

Writing Your Own Listener

Chapter 15. Writing Your Own Listener 403

Writing Your Own Listener

404 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 16. External Data Structures

External Data Structures

The data structures available for customer use are as follows:

Configuration Data Set Record Formats

DSECT/Structure Name

CFG0000

Length of Structure

CFGLEN

Macro Expansion

 EZACICA AREA=CFG,TYPE=DSECT

 EZACICA AREA=CFG,TYPE=CSECT

 Table 8. Configuration File Format

Field Name Field Type Description Default Value

CFHAPPL 8 byte char APPLID of CICS Object to which this record refers.

CFHRTYPE 1 byte char Record type

v C = CICS Object Record

v L = Listener Object Record

(Reserved) 3 byte hex Reserved for IBM Use 00

CICS Record Format

CFCTRAN 4 byte char Transaction name for Configuration Record <<<<

CFCTCPIP 8-byte char Address space name of TCP/IP (1)

CFCNOTSK Halfword bin Number of reusable tasks (1) 20

CFCSTIME Halfword bin Resolver Cache minimum refresh time 15

CFCLTIME Halfword bin Resolver Cache maximum refresh time 30

CFCNORES Halfword bin Resolver Cache number of concurrent resolvers 10

CFCDPRTY Halfword bin Limit Priority of Subtask (LPMOD value in ATTACH

macro) (1)

0

CFCENAME 4-byte character Name of Transient Data Message Queue EZAM

Listener Record Format

CFLTRAN 4 byte char Transaction name for this listener EZAL

CFLPORT Halfword bin Port number for this listener

CFLBKLOG Halfword bin Backlog value for listen call 10

CFLNSOCK Halfword bin Number of sockets used by listener 50

CFLMMIN Halfword bin Minimum length of input message 4

CFLLTIM Halfword bin Timeout value (seconds) for accept 60

CFLRTIM Halfword bin Timeout value (seconds) for read 0

CFLGTIM Halfword bin Timeout value (seconds) for givesocket 30

© Copyright IBM Corp. 1997, 2005 405

Table 8. Configuration File Format (continued)

Field Name Field Type Description Default Value

CFLOPT 1 byte hex Listener Options

Value Description

B’00000001’

Immediate Startup

B’00000110’

Translate entire message

B’00000010’

Translate trans code only

B’00000100’

Translate user data only

B’00001000’

Issue READ immediately after ACCEPT

B’00001111’

CFLSECXT 8-byte char Name of Security Exit (1)

CFLWLMN1 12-byte char WLM Group Name 1 (1)

CFLWLMN2 12-byte char WLM Group Name 2 (1)

CFLWLMN3 12-byte char WLM Group Name 3

(1) Not used within z/VSE.

Global Work Area

DSECT/Structure Name

GWA0000

Length of Structure

GWALENTH (Length of Fixed Area)

Macro Expansion

 EZACICA AREA=GWA,TYPE=DSECT

 EZACICA AREA=GWA,TYPE=CSECT

 Table 9. Global Work Area Format

Field Name Field Type Description Default Value

Beginning of Global Work Area Eyecatcher

GWACMDSC 8 byte char Identifier EZACICGW

Beginning of Startup Module Heritage

GWACMNAM 8 byte hex Startup Module Name EZACIC21

1 byte char Delimiter

GWACMVER 3 byte char Startup Service Level

1 byte char Delimiter

GWACMREL 11 byte char Startup Module Date or APAR

6 byte char Reserved

End of Startup Module Heritage

Beginning of Task-Related User Exit Heritage

GWATRNAM 8 byte hex Task Related User Exit Module Name EZACIC01

External Data Structures

406 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Table 9. Global Work Area Format (continued)

Field Name Field Type Description Default Value

GWATRVER 2 byte char Task Related User Exit Version Number (1)

GWATRREL 2 byte char Task Related User Exit Release Number (1)

GWATRMOD 2 byte char Task Related User Exit Mod Number (1)

GWATRDAT 8 byte char Task Related User Exit Assembled Date (1)

GWATRTIM 8 byte char Task Related User Exit Assembled Time (1)

End of Task-Related User Exit Heritage

Beginning of IBM Listener Heritage

GWAMSNAM 8 byte hex IBM Listener Module Name EZACIC02

GWAMSVER 2 byte char IBM Listener Version Number

GWAMSREL 2 byte char IBM Listener Release Number

GWAMSMOD 2 byte char IBM Listener Mod Number

GWAMSDAT 8 byte char IBM Listener Assembled Date

GWAMSTIM 8 byte char IBM Listener Assembled Time

End of IBM Listener Heritage

Beginning of Attached Subtask Heritage

GWASTNAM 8 byte hex Attached Subtask Module Name (1)

GWASTVER 2 byte char Attached Subtask Version Number (1)

GWASTREL 2 byte char Attached Subtask Release Number (1)

GWASTMOD 2 byte char Attached Subtask Mod Number (1)

GWASTDAT 8 byte char Attached Subtask Assembled Date (1)

GWASTTIM 8 byte char Attached Subtask Assembled Time (1)

End of Attached Subtask Heritage

GWACMIBM 154 byte char Copyright Statement

42 byte char Reserved Area

End of Global Work Area Eyecatcher

GWAUSCNT Fullword bin Use count for this GWA

GWABKWRD Fullword bin Attached (non-pool) task chain anchor backward

address (1)

GWAFOWRD Fullword bin Attached (non-pool) task chain anchor forward address

(1)

GWACAPPL 8 byte char VTAM APPLID of the CICS System

GWATRUEN 8 byte char Name of Task Related User Exit Load Module

GWASTSKN 8 byte char Name of Attached Subtask Load Module (1)

GWATCPID 8 byte char TCPIP Address Space Name (1)

GWALCAAD Fullword bin Address of First Listener Control Area

GWA03PSA Fullword bin Address of EZASOH03 Load Module (1)

GWANTASK Halfword bin Number of Reusable Tasks (1)

GWANLIST Halfword bin Number of Listeners

External Data Structures

Chapter 16. External Data Structures 407

Table 9. Global Work Area Format (continued)

Field Name Field Type Description Default Value

GWATSTAT 1 byte char Task Related User Exit Status

Value Meaning

E TRUE is enabled

I Immediate Shutdown Requested/Processing

Q Quiescent Shutdown Requested/Processing

GWARSHUT 1 byte char EZAO Shutdown Request Indicator

Value Meaning

I Immediate Shutdown Requested/Processing

Q Quiescent Shutdown Requested/Processing

GWACSTAT 1 byte bin CICS Execution Status (1)

GWAVOSYS 1 byte bin MVS Version (1)

GWAOPREL 2 byte bin MVS Release

GWACIVER 2 byte char CICS Version (1)

GWACIREL 1 byte char CICS Release (1)

GWACIMOD 1 byte char CICS Modification (1)

GWATOKEN 8 byte char Token for OS/390 Registration/Deregistration (1)

GWAMSGMD 8 byte char Name of Message Module

End of Global Work Area Eyecatcher

GWATDMSG 4 byte char Name of TD Queue for Message Delivery

End of Fixed Part of GWA

(1) Not used within z/VSE

Parameter List (COMMAREA) for EZACIC20

DSECT/Structure Name

P20PARMS

Length of Structure

P20PARML

Macro Expansion

 EZACICA AREA=P20,TYPE=DSECT

 EZACICA AREA=P20,TYPE=CSECT

 Table 10. COMMAREA Format for EZACIC20

Field Name Field Type Description Default Value

P20TYPE 1 byte char Type of Function

Value Meaning

I Initialization

T Immediate Termination

D Deferred Termination

External Data Structures

408 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Table 10. COMMAREA Format for EZACIC20 (continued)

Field Name Field Type Description Default Value

P20OBJ 1 byte char Type of Function

Value Meaning

C CICS Listener Support

L Listener

P20LIST 4 byte char Transaction Name of Listener

P20RET 1 byte bin Return Code

Value Meaning

B’00000000’

No Errors Encountered

B’00000001’

Errors in CICS Listener Support Initialization

B’00000010’

Errors in Listener Initialization

B’00000100’

Errors in CICS Listener SupportTermination

B’00001000’

Errors in Listener Termination

B’00010000’

Errors in COMMAREA Contents.

B’00100000’

Errors in CICS/TS for VSE/ESA.

Listener Control Area (LCA)

DSECT/Structure Name

LCA0000

Length of Structure

LCALEN

Macro Expansion

 EZACICA AREA=LCA,TYPE=DSECT

 EZACICA AREA=LCA,TYPE=CSECT

 Table 11. Listener Control Area (LCA)

Field Name Field Type Description Default Value

LCATECB Fullword bin ECB Posted by Termination Manager

LCATRAN 4 byte char Transaction Name for this Listener

External Data Structures

Chapter 16. External Data Structures 409

Table 11. Listener Control Area (LCA) (continued)

Field Name Field Type Description Default Value

LCASTAT 1 byte bin Status of this Listener

Value Meaning

B’00000000’

Listener Not in Operation

B’00000001’

Listener in Initialization

B’00000010’

Listener in SELECT

B’00000100’

Listener Processing

B’00001000’

Listener Had Initialization Error

B’00010000’

Immediate Termination in Progress

B’00100000’

Deferred Termination in Progress

LCAPHASE 1 byte char Execution Phase for IBM Listener

External Data Structures

410 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Chapter 17. CICS Listener Programming Considerations

Overview

This chapter describes typical sequences of calls for client, concurrent server (with

associated child server processes), and iterative server programs. The contents of

the chapter are:

v Four setups for writing CICS TCP/IP applications:

1. Concurrent server (the supplied Listener transaction) and child server

processes run under CICS TCP/IP

2. The same as 1 but with a user-written concurrent server

3. An iterative server running under CICS TCP/IP

4. A client application running under CICS TCP/IP
v Socket addresses

v GETCLIENTID, GIVESOCKET, and TAKESOCKET commands

v The Listener program

Writing CICS TCP/IP Applications

This chapter considers in detail 4 TCP/IP setups in which CICS TCP/IP

applications are used in various parts of the client/server system.

The setups are:

1. The Client-Listener-Child Server Application Set. The concurrent server and

child server processes run under CICS TCP/IP. The concurrent server is the

supplied Listener transaction. The client might be running TCP/IP under the

OS/2 operating system or one of the various UNIX operating systems such as

AIX.

2. Writing Your Own Concurrent Server. This is the same setup as the first

except that a user-written concurrent server is being used instead of the IBM

Listener.

© Copyright IBM Corp. 1997, 2005 411

3. The Iterative Server CICS TCP/IP Application. This setup is designed to

process one socket at a time.

4. The Client CICS TCP/IP Application. In this setup, the CICS application is the

client and the server is the remote TCP/IP process.

1. The Client-Listener-Child-Server Application Set

Figure 110 shows the sequence of CICS commands and socket calls involved in this

setup. CICS commands are prefixed by EXEC CICS; all other numbered items in

the figure are CICS TCP/IP calls.

Figure 110. The Sequence of Sockets Calls

CICS Listener Programming Considerations

412 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Client Call Sequence

Table 12 explains the functions of each of the calls listed in Figure 110 on page 412.

 Table 12. Calls for the Client Application

(1) INITAPI Connect the CICS application to the TCP/IP interface. Use the

MAX-SOC parameter to specify the maximum number of sockets to

be used by the application.

(2) SOCKET This obtains a socket. You define a socket with 3 parameters:

v The domain, or addressing family

v The type of socket

v The protocol

For VSE TCP/IP, the domain can only be the TCP/IP internet

domain (2 in COBOL, AF_INET in C). The type can be stream sockets

(1 in COBOL, SOCK_STREAM in C), or datagram sockets (2 in COBOL,

SOCK_DGRAM in C). The protocol can be either TCP or UDP. Passing 0

for the protocol selects the default protocol.

If successful, the SOCKET call returns a socket descriptor, s, which

is always a small integer. Notice that the socket obtained is not yet

attached to any local or destination address.

(3) CONNECT Client applications use this to establish a connection with a remote

server. You must define the local socket s (obtained above) to be

used in this connection and the address and port number of the

remote socket. The system supplies the local address, so on

successful return from CONNECT, the socket is completely defined,

and is associated with a TCP connection (if stream) or UDP

connection (if datagram).

(4) WRITE This sends the first message to the Listener. The message contains

the CICS transaction code as its first 4 bytes of data. You must also

specify the buffer address and length of the data to be sent.

(5) READ/WRITE These calls continue the conversation with the server until it is

complete.

(6) CLOSE This closes a specified socket and so ends the connection. The

socket resources are released for other applications.

Listener Call Sequence

The Listener transaction EZAL is provided as part of CICS TCP/IP. These are the

calls issued by the CICS Listener. Your client and server call sequences must be

prepared to work with this sequence. These calls are documented in “2. Writing

Your Own Concurrent Server” on page 414, where the Listener calls in Figure 110

are explained.

Child Server Call Sequence

Table 13 explains the functions of each of the calls listed in Figure 110 on page 412.

 Table 13. Calls for the Server Application

(7) EXEC CICS

RETRIEVE

This retrieves the data passed by the EXEC CICS START command

in the concurrent server program. This data includes the socket

descriptor and the concurrent server client ID as well as optional

additional data from the client.

CICS Listener Programming Considerations

Chapter 17. CICS Listener Programming Considerations 413

Table 13. Calls for the Server Application (continued)

(8) TAKESOCKET This acquires the newly created socket from the concurrent server.

The TAKESOCKET parameters must specify the socket descriptor to

be acquired and the client id of the concurrent server. This

information was obtained by the EXEC CICS RETRIEVE command.

Note: If TAKESOCKET is the first call, it issues an implicit INITAPI

with default values.

(9) READ/WRITE The conversation with the client continues until complete.

(10) CLOSE Terminates the connection and releases the socket resources when

finished.

2. Writing Your Own Concurrent Server

The overall setup is the same as the first scenario, but your concurrent server

application performs many of the functions performed by the Listener. Obviously,

the client and child server applications have the same functions.

Concurrent Server Call Sequence

Table 14 explains the functions of each of the steps listed in Figure 110 on page 412.

 Table 14. Calls for the Concurrent Server Application

(11) INITAPI Connects the application to TCP/IP, as in Table 12.

(12) SOCKET This obtains a socket, as in Table 12.

(13) BIND Once a socket has been obtained, a concurrent server uses this call

to attach itself to a specific port at a specific address so that the

clients can connect to it. The socket descriptor and a local address

and port number are passed as arguments.

On successful return of the BIND call, the socket is bound to a port

at the local address, but not (yet) to any remote address.

(14) LISTEN After binding an address to a socket, a concurrent server uses the

LISTEN call to indicate its readiness to accept connections from

clients. LISTEN tells TCP/IP that all incoming connection requests

should be held in a queue until the concurrent server can deal with

them. The BACKLOG parameter in this call sets the maximum

queue size.

(15) GETCLIENTID This command returns the identifiers (z/VSE partition name and

subtask name) by which the concurrent server is known by TCP/IP.

This information will be needed by the EXEC CICS START call.

(16) SELECT The SELECT call monitors activity on a set of sockets. In this case, it

is used to interrogate the queue (created by the LISTEN call) for

connections. It will return when an incoming CONNECT call is

received, or else will time out after an interval specified by one of

the SELECT parameters.

(17) ACCEPT The concurrent server uses this call to accept the first incoming

connection request in the queue. ACCEPT obtains a new socket

descriptor with the same properties as the original. The original

socket remains available to accept more connection requests. The

new socket is associated with the client that initiated the

connection.

(18) READ This reads one message from the client to determine what service is

required. This message contains, at a minimum, the CICS

transaction ID of the server.

CICS Listener Programming Considerations

414 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Table 14. Calls for the Concurrent Server Application (continued)

(19) CICS INQ This checks that the SERV transaction is defined to CICS (else the

TRANSIDERR exceptional condition is raised), and, if so, that its

status is ENABLED. If either check fails, the Listener does not

attempt to start the SERV transaction.

(20) GIVESOCKET This makes the socket obtained by the ACCEPT call available to a

child server program.

(21) CICS START This initiates the CICS transaction for the child server application

and passes the ID of the concurrent server, obtained with

GETCLIENTID, to the server. For example, in “Listener Output

Format” on page 421, the parameter LSTN-CLIENTID defines the

Listener.

(22) SELECT

2 Again, the SELECT call is used to monitor TCP/IP activity. This

time, SELECT returns when the child server issues a TAKESOCKET

call.

(23) CLOSE This releases the new socket to avoid conflicts with the child server.

Passing Sockets

Sockets can be passed between programs within the same task, by passing the

descriptor number. However, passing a socket between CICS tasks does require a

GIVESOCKET/TAKESOCKET sequence of calls.

3. The Iterative Server CICS TCP/IP Application

Figure 111 shows the sequence of socket calls involved in a simple client-iterative

server setup.

 The setup with an iterative server is much simpler than the previous cases with

concurrent servers.

2. This SELECT is the same as the SELECT call in Step 16. They are shown as two calls to clarify the functions being performed.

Figure 111. Sequence of Socket Calls with an Iterative Server

CICS Listener Programming Considerations

Chapter 17. CICS Listener Programming Considerations 415

Iterative Server Use of Sockets

The iterative server need only obtain 2 socket descriptors. The iterative server

makes the following calls:

1. As with the concurrent servers, SOCKET, BIND, and LISTEN calls are made to

inform TCP/IP that the server is ready for incoming requests, and is listening

on socket 0.

2. The SELECT call then returns when a connection request is received. This

prompts the issuing of an ACCEPT call.

3. The ACCEPT call obtains a new socket (1). Socket 1 is used to handle the

transaction. Once this completed, socket 1 closes.

4. Control returns to the SELECT call, which then waits for the next connection

request.

The disadvantage of an iterative server is that it remains blocked for the duration

of a transaction.

4. The Client CICS TCP/IP Application

Figure 112 shows the sequence of calls in a CICS client-remote server setup. The

calls are similar to the previous examples.

 Figure 112 shows that the server can be on any processor and can run under any

operating system, provided that the combined software-hardware configuration

supports a TCP/IP server.

For simplicity, the figure shows an iterative server. A concurrent server would need

a child server in the remote processor and an adjustment to the calls according to

the model in Figure 110 on page 412.

Figure 112. Sequence of Socket Calls between a CICS Client and a Remote Iterative Server

CICS Listener Programming Considerations

416 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

A CICS server issues a READ call to read the client’s first message, which contains

the CICS transaction name of the required child server. When the server is in a

non-CICS system, application design must specify how the first message from the

CICS client indicates the service required (in Figure 112, the first message is sent by

a WRITE call).

If the server is a concurrent server, this indication is typically the name of the child

server. If the server is iterative as in Figure 112, and all client calls require the same

service, this indication might not be necessary.

Socket Addresses

Socket addresses are defined by specifying the address family and the address of

the socket in the internet. In VSE TCP/IP, the address is specified by the IP

address and port number of the socket.

Address Family (Domain)

VSE TCP/IP supports only one TCP/IP addressing family (or domain, as it is

called in the UNIX system). This is the internet domain, denoted by AF_INET in C.

Many of the socket calls require you to define the domain as one of their

parameters.

A socket address is defined by the IP address of the socket and the port number

allocated to the socket.

IP Addresses

IP addresses are allocated to each TCP/IP address on a TCP/IP internet. Each

address is a unique 32-bit quantity defining the host’s network and the particular

host. A host can have more than one IP address if it is connected to more than one

network (a so-called multi-homed host).

Ports

A host can maintain several TCP/IP connections at a time. One or more

applications using TCP/IP on the same host are identified by a port number. The

port number is an additional qualifier used by the system software to get data to

the correct application. Port numbers are 16-bit integers; some numbers are

reserved for particular applications and are called well-known ports (for example,

23 is for TELNET).

Address Structures

A socket address in an IP addressing family comprises 4 fields: the address family,

an IP address, a port, and a character array (zeros), set as follows:

v The family field is set to AF_INET in C, or to 2 in other languages.

v The port field is the port used by the application, in network byte order (which

is explained on page 418).

v The address field is the IP address of the network interface used by the

application. It is also in network byte order.

v The character array field should always be set to all zeros.

CICS Listener Programming Considerations

Chapter 17. CICS Listener Programming Considerations 417

For COBOL and Assembler Language Programs

The address structure of an internet socket address should be defined as follows:

 Parameter Assembler COBOL

NAME

STRUCTURE:

FAMILY H PIC 9(4)

BINARY

PORT H PIC 9(4)

BINARY

ADDRESS F PIC 9(8)

BINARY

ZEROS XL8 PIC X(8)

For C Programs

The structure of an internet socket address is defined by the sockaddr_in structure,

which is found in the IN.H header file.

Network Byte Order

Ports and addresses are specified using the TCP/IP network byte ordering

convention, which is known as big endian.

In a big endian system, the most significant byte comes first. By contrast, in a little

endian system, the least significant byte comes first. z/VSE uses the big endian

convention; because this is the same as the network convention, CICS TCP/IP

applications do not need to use any conversion routines, such as htonl, htons,

ntohl, and ntohs.

Note: The socket interface does not handle differences in data byte ordering within

application data. Sockets application writers must handle these differences

themselves.

GETCLIENTID, GIVESOCKET, and TAKESOCKET

The socket calls GETCLIENTID, GIVESOCKET, and TAKESOCKET are in CICS

used with the EXEC CICS START and EXEC CICS RETRIEVE commands to make

a socket available to a new process. This is shown in Figure 113 on page 419.

CICS Listener Programming Considerations

418 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Figure 113 shows the calls used to make a Listener socket available to a child

server process. It shows the following steps:

1. The Listener calls GETCLIENTID. This returns the Listener’s own CLIENTID

(CLIENTID-L), which comprises the z/VSE partition name and subtask identifier

of the Listener. The Listener transaction needs access to its own CLIENTID for

step 3.

2. The Listener calls GIVESOCKET, specifying a socket descriptor and the

CLIENTID of the child server.

If the Listener and child server processes are in the same CICS region (and so

in the same address space), the z/VSE partition name identifier in CLIENTID can

be set to blanks. This means that the Listener’s address space is also the child’s

address space.

If the Listener and child server processes are in different CICS regions, enter

the new address space and subtask.

In the CLIENTID structure, the supplied listener enters its own z/VSE partition

name and sets the subtask identifier to blanks. This makes the socket available

to a TAKESOCKET command from any task in the Listener’s address space,

but only the child server receives the socket descriptor number, so the exposure

is minimal. For total integrity, the child server’s subtask identifier should be

entered.

3. The Listener performs an EXEC CICS START. In the FROM parameter, the

CLIENTID-L, obtained by the previous GETCLIENTID, is specified. The Listener

is telling the new child server where it will get its socket from in step 5.

4. The child server performs an EXEC CICS RETRIEVE. In the INTO parameter,

CLIENTID-L is retrieved.

5. The child server calls TAKESOCKET, specifying CLIENTID-L as the process from

which it wants to take a socket.

Listener
(with clientid CLIENTID-L)

Child server
(with clientid CLIENTID-CS)

1. Call GETCLIENTID
-returns CLIENTID-L

2. Call GIVESOCKET
-specifies CLIENTID-CS

3. Call EXEC CICS START
-specifies CLIENTID-L

4. Call EXEC CICS RETRIEVE
returns CLIENTID-L in the
INTO parameter

5. Call TAKESOCKET
specifies CLIENTID-L

Figure 113. Transfer of CLIENTID Information

CICS Listener Programming Considerations

Chapter 17. CICS Listener Programming Considerations 419

The Listener

In a CICS system based on SNA terminals, the CICS terminal management

modules perform the functions of a concurrent server. Because the TCP/IP

interface does not use CICS terminal management, CICS provides these functions

in the form of a CICS application transaction, the Listener. The CICS transaction ID

of the Listener is EZAL.

The Listener performs the following functions:

1. It issues appropriate TCP/IP calls to “listen” on the port specified in the

Configuration file and waits for incoming connection requests issued by clients.

2. When an incoming connection request arrives, the Listener accepts it and

obtains a new socket to pass to the CICS child server application program.

3. It starts the CICS child server transaction based on information in the first

message on the new connection. The format of this information is given in

“Listener Input Format.”

4. It waits for the child server transaction to take the new socket and then issues

the close call. When this occurs, the receiving application assumes ownership of

the socket and the Listener has no more interest in it.

The Listener program is written so that some of this activity goes on in parallel.

For example, while the program is waiting for a new server to accept a new socket,

it listens for more incoming connections. The program can be in the process of

starting 49 child servers simultaneously. The starting process begins when the

Listener accepts the connection and ends when the Listener closes the socket it has

given to the child server.

Listener Input Format

The Listener requires the following input format from the client in its first

transmission. The client should then wait for a response before sending any

subsequent transmissions. Input can be in uppercase or lowercase. The commas are

required.

AA tran , , ,

client-in-data

IC

hhmmss

ic

TD

td

 AC

tran

The CICS transaction ID (in uppercase) that the Listener is going to start. This

field can be 1 to 4 characters.

client-in-data

Optional. Application data, used by the optional security exit

3 or the server

transaction. The maximum length of this field is 35 characters.

IC/TD

Optional. Startup type that can be either IC for CICS interval control or TD for

CICS transient data. These can also be entered in lowercase (ic or td). If this

field is left blank, startup is immediate.

3. (See “Writing Your Own Security Link Module for the Listener” on page 422)

CICS Listener Programming Considerations

420 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

hhmmss

Optional. Hours, minutes, and seconds for interval time if the transaction is

started using interval control. All 6 digits must be given.

Note: TD ignores the timefield.

Examples

The following are examples of client input and the Listener processing that results

from them. The data fields referenced can be found in “Listener Output Format.”

Note that parameters are separated by commas.

 Example Listener Response

TRN1,userdataishere It starts the CICS transaction TRN1 using task control, and

passes to it the data userdataishere in the field

CLIENT-IN-DATA.

TRN2,,IC,000003 It starts the CICS transaction TRN2 using interval control,

without user data. There is a 3-second delay between the

initiation request from the Listener and the transaction

startup in CICS.

TRN3,userdataishere,TD It writes a message to the transient data queue named TRN3

in the format described by the structure

TCPSOCKET-PARM, described in “Listener Output Format.”

The data contained in userdataishere is passed to the field

CLIENT-IN-DATA. This queue must be an intrapartition

queue with trigger-level set to 1. It causes the initiation of

transaction TRN3 if it is not already active. This transaction

should be written to read the transient data queue and

process requests until the queue is empty.

This mechanism is provided for those server transactions

that are used very frequently and for which the overhead of

initiating a separate CICS transaction for each server request

could be a performance concern.

TRN3,,TD It causes data to be placed on transient data queue TRN3,

which in turn causes the start or continued processing of the

CICS transaction TRN3, as described in the TRN3 previous

example. There is no user data passed.

TRN4 It starts the CICS transaction TRN4 using task control. There

is no user data passed to the new transaction.

Listener Output Format

Table 15 on page 422 shows the format of the Listener output data area passed to

the child server. This output data area has a total length of 96 bytes. The Listener

program uses the following COBOL definition:

01 TCPSOCKET-PARM.

 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.

 05 LSTN-CLIENTID.

 15 LSTN-CID-DOMAIN PIC 9(8) COMP.

 15 LSTN-CID-NAME PIC X(8)

 15 LSTN-CID-TASK PIC X(8)

 15 LSTN-CID-RSVD PIC X(20)

 05 CLIENT-IN-DATA PIC X(35).

 05 FILLER PIC X(1).

 05 SOCKADDR-IN-PARM.

CICS Listener Programming Considerations

Chapter 17. CICS Listener Programming Considerations 421

15 SIN-FAMILY PIC 9(4) COMP.

 15 SIN-PORT PIC 9(4) COMP.

 15 SIN-ADDRESS PIC 9(8) COMP.

 15 SIN-ZERO PIC X(8).

 Table 15. Listener Output Format

Description Format Value

Socket descriptor Fullword binary The socket descriptor to be used by the

child server in the TAKESOCKET command

Listener Client ID 40 bytes Client ID of Listener

Data area 35-byte character plus

1-byte filler

Client-in-data from Listener input received

from the client

Socket address Structure containing

remaining 4 fields

See each field

TCP/IP addressing

family

Halfword binary 2, indicating AF-INET

Port descriptor Halfword binary Descriptor of the port bound to the socket

(Listener’s port number from the

configuration file).

32-bit IP address Fullword binary IP address of the socket’s host machine in

network byte order

Unused Doubleword Binary zeros

Writing Your Own Security Link Module for the Listener

The Listener process provides an exit point for those users who want to write and

include a module that performs a security check before a CICS transaction is

initiated. The exit point is implemented so that if a module is not provided, all

valid transactions are initiated.

If you write a security module, you can name it anything you want, as long as you

define it in the configuration dataset. You can write this program in COBOL, PL/I,

or assembler language and must provide an appropriate entry in the CICS

program processing table (PPT).

Specifying in EZAC: Specify the name of the security module in the SECexit field

in Alter or Define. If you don’t name the module, CICS will

assume you don’t have one. See Figure 88 on page 379 for

more information.

Just before the task creation process, the Listener invokes the security module by a

conditional CICS LINK passing a COMMAREA. The Listener passes a data area to

the module that contains information for the module to use for security checking

and a 1-byte switch. Your security module should perform a security check and set

the switch accordingly.

When the security module returns, the Listener checks the state of the switch and

initiates the transaction if the switch indicates security clearance. The module can

perform any function that is valid in the CICS environment. Excessive processing,

however, could cause performance degradation.

CICS Listener Programming Considerations

422 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Table 16 shows the data area used by the security module.

 Table 16. Security Exit Data

Description Format Value

CICS transaction

identifier

4-byte character CICS transaction requested by the client

Data area 40-byte character User data received from the client

Action 2-byte character Method of starting the task:

IC Interval control

KC Task control

TD Transient data

Interval control time 6-byte character Interval requested for IC start

Has the form hhmmss

Address family Halfword binary Network address family. A value of 2 must

be set.

Port Halfword binary The port number of the requester’s port.

Address Fullword binary The IP address of the requester’s host.

Switch 1-byte character Switch:

1 Permit the transaction

Not 1 Prohibit the transaction

Switch-2 1-byte character Switch:

1 Listener sends message to Client.

Not 1 Security Exit program sends

message to client.

Terminal

identification

4-byte character LOW-VALUES and binary zeros if a CICS

terminal is not associated with the new task.

CICS terminal identifier if a CICS terminal is

associated with the new task.

Socket descriptor Halfword binary Current socket descriptor

User ID 8-byte character A USERID value which is used in starting

the server transaction.

Data Conversion Routines

CICS uses the EBCDIC data format, whereas TCP/IP networks use ASCII. When

moving data between CICS and the TCP/IP network, your application programs

must initiate the necessary data conversion. CICS programs can use routines

provided by z/VSE for:

v Converting data from EBCDIC to ASCII and back, when sending and receiving

data to and from the TCP/IP network, with the SEND, RECEIVE, READ, and

WRITE calls.

v Converting between bit arrays and character strings when using the SELECT

call.

For details of these routines, refer to EZACIC04, EZACIC05, and EZACIC06 in

Figure 114 on page 441.

CICS Listener Programming Considerations

Chapter 17. CICS Listener Programming Considerations 423

424 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Part 4. Appendixes

© Copyright IBM Corp. 1997, 2005 425

426 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Appendix A. TCP/IP for VSE/ESA (5686-A04) History

This table provides an overview of the APARs/PTFs available from IBM for the

TCP/IP for VSE/ESA product (5686-A04) in relation to Service Packs from

Connectivity Systems Incorporated (CSI), the provider of the TCP/IP for VSE

product.

This table also shows the APARs/PTFs for the TCP/IP-C-LE Interface used e.g. by

MQSeries for VSE/ESA V2.1. You will also find the APARs/PTFs providing the

TCP/IP for VSE/ESA PC-based Configuration Dialog.

 Table 17. TCP/IP for VSE/ESA History

GA CSI’s Service

Pack

5686-A04 (12) Product Highlights

TCP/IP TCP/IP-C-LE

Interface

(1) (2) (3)

Conf.
Dialog
(4)

mm/yy name APAR

PTF

APAR

PTF

APAR

PTF

10/97 SERV130B n/a n/a n/a GA level 12/97 with

VSE/ESA 2.3.0

12/97 SERV130C PQ11216

UQ12233

n/a PQ11589

UQ13250

NLS Configuration

Dialog

01/98 SERV130D PQ11981

UQ13349

n/a n/a

02/98 SERV130E PQ12876

UQ14494

n/a n/a

04/98 SERV130F PQ14724

UQ16791

n/a n/a

07/98 SERV130G

NFS0110E

PQ14716

UQ19196

PQ16251

UQ18646

PQ14718

UQ18722

NFS GA,

SC33–6601–01, cut off

VSE/ESA 2.3.1

08/98 SERV130H

NFS0110F

PQ18295

UQ20719

n/a n/a DBCS enablement (step

1), II11362 for

AUTOFTP

DBCS01 PQ18354

UQ20720

n/a n/a DBCS table for Japan

10/98 n/a PQ19603

UQ21823

n/a n/a OME update for

TCP/IP , cut off

VSE/ESA 2.4.0-LA

11/98 SERV130I

NFS0110G

PQ19496

UQ22503

PQ19507

UQ22957

n/a DBCS enablement (step

2),MQSeries V2.1

prereq

DBCS01 PQ19780

UQ22956

n/a n/a DBCS tables for China

and Korea

n/a (5) PQ21691

UQ23952

n/a n/a EURO translate tables

© Copyright IBM Corp. 1997, 2005 427

Table 17. TCP/IP for VSE/ESA History (continued)

GA CSI’s Service

Pack

5686-A04 (12) Product Highlights

TCP/IP TCP/IP-C-LE

Interface

(1) (2) (3)

Conf.
Dialog
(4)

02/99 SERV130J

NFS0110H

PQ20942

UQ26288

n/a n/a full 31-bit exploitation,

II11596 for FTPBATCH,

cut off VSE/ESA 2.3.2

and VSE/ESA 2.4.0-GA

06/99 SERV130K

NFS0110I

PQ24008

UQ30758

PQ26600

UQ32767

PQ25507

UQ28847

New Command

Processor, Conf.Diag.

for VSE/ESA 2.4

07/99 GPS130L PQ27233

UQ32439

(6)

n/a n/a GPS GA

n/a PQ29052

UQ32704

PQ28760

UQ32767

PQ28003

UQ31626

II11836 for

TCP/IP-C-LE Interface

10/99 n/a n/a n/a n/a (7), cut off VSE/ESA

2.4.1

01/00 SERV130L PQ27252

UQ38659

n/a n/a REXX/VSE Socket API

(8) (with APAR

PQ31258)

03/00 n/a n/a n/a n/a BSM and TCP/IP for

VSE/ESA (VSE/ESA

2.4 only), DY45309 /

UD51306, cut off

VSE/ESA 2.4.2

06/00 TCPIP140 PQ29053

UQ44071

PQ34615 (9)

UQ44071

n/a TCP/IP for VSE/ESA

1.4, SC33-6601-02 (10),

CD-ROM SK2T-1336

06/00 (11) PQ39048

UQ44312

n/a n/a correction of problem

with TCP/IP for VSE

1.4

06/00 (11) PQ39540

UQ44757

n/a n/a correction of problem

with TCP/IP for VSE

1.4 and MQSeries for

VSE/ESA 2.1 (AEIP)

07/00 n/a n/a n/a PQ39277

UQ44872

Configuration Dialog

Update for TCP/IP for

VSE 1.4, cut off

VSE/ESA 2.5.0

11/00 SERV140A PQ40278

UQ48729

UQ48724

n/a n/a Email client,

SC33-6601-03 (10)

11/00 n/a n/a n/a PQ43707

UD49003

UD49004

Updated configuration

dialog

12/00 (13) PQ43576

UQ49528

UQ49529

n/a n/a CICS ABEND 233 with

VSE/ESA 2.5 and CWS,

TCPIP documentation

now on VSE/ESA

CD-ROM SK2T-0060,

cut off VSE/ESA 2.5.1

TCP/IP for VSE/ESA (5686-A04) History

428 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Table 17. TCP/IP for VSE/ESA History (continued)

GA CSI’s Service

Pack

5686-A04 (12) Product Highlights

TCP/IP TCP/IP-C-LE

Interface

(1) (2) (3)

Conf.
Dialog
(4)

02/01 (13) n/a PQ45531

UQ50852

UQ50853

n/a IPT318W after close of

sockets in multiple VSE

subtasks

06/01 SERV140B PQ45314

UQ55343

UQ55344

n/a n/a multi thread event

processing,

SC33–6601–04 (10), cut

off VSE/ESA 2.5.2

07/01 n/a n/a n/a n/a BSM update for

SERV140B (14), EZA

Interfaces update (14)

10/01 (15) PQ52348

UQ59867

UQ59868

n/a n/a cut off VSE/ESA 2.6.0

11/01 SERV140C PQ54068

UQ59964

UQ59966

UQ59965

n/a n/a SSL for VSE available

with Application Pak

(16), Storage Manager,

(17)

12/01 (18) n/a PQ54855

UQ60775

UQ60776

UQ60777

PQ55593

UQ60821

AIO_WRITE correction,

SC33–6601–05 (10), new

Java-based version of

TCP/IP for VSE/ESA

configuration dialog.

04/02 SERV140D PQ55591

UQ65034

UQ65036

UQ65035

n/a PQ58864

UQ64169

InfoPrint Manager

support (see II13263),

Lock Manager, TCP/IP

config dialog update

for VSE/ESA 2.6, cut

off VSE/ESA 2.6.1

06/02 n/a n/a n/a n/a SC33–6601–06 (10)

08/02 SERV140E PQ63021

UQ68716

UQ68715

n/a n/a FixPack, no PTF

available anymore for

VSE/ESA 2.3 and 2.4,

cut off VSE/ESA 2.6.2

10/02 n/a PQ67598

UQ71298

UQ71297

n/a n/a Enhanced Japanese

DBCS translate table.

12/02 TCPIP150 PQ66906 n/a n/a TCP/IP for VSE/ESA

1.5

03/03 n/a n/a n/a n/a SC33–6601–07 (this

book) (10)

03/03 n/a PQ71111

UQ74259

UQ74258

UQ74260

n/a n/a OME Update for

TCP/IP 1.5

07/03 n/a PQ69970

UQ78454

UQ78453

UQ78455

n/a n/a TCP/IP for VSE/ESA

1.5 Service Pack B, cut

off VSE/ESA 2.7.1/2.6.3

TCP/IP for VSE/ESA (5686-A04) History

Appendix A. TCP/IP for VSE/ESA (5686-A04) History 429

Table 17. TCP/IP for VSE/ESA History (continued)

GA CSI’s Service

Pack

5686-A04 (12) Product Highlights

TCP/IP TCP/IP-C-LE

Interface

(1) (2) (3)

Conf.
Dialog
(4)

08/03 n/a PQ76974

UQ79200

UQ79199

UQ79201

n/a n/a Fixes for TCP/IP for

VSE/ESA 1.5 Service

Pack B

10/03 TCPIP15C PQ77237

UQ81265

UQ81264

UQ81266

n/a n/a TCP/IP for VSE/ESA

1.5 Service Pack C

12/03 n/a PQ79876

UQ86243

UQ86242

UQ86244

n/a n/a BSD-C API corrections,

cut off VSE/ESA 2.7.2

04/04 TCPIP15D PQ79563

UQ87025

UQ87026

n/a n/a TCP/IP for VSE/ESA

1.5 Service Pack D

05/04 n/a PQ89252

UQ88871

UQ88872

n/a n/a BSD-C Corrections

GETVIS Leak with

POWER Q-access

09/04 n/a PQ92136

UQ93438

UQ93439

n/a n/a BSD-C Corrections, cut

off VSE/ESA 2.7.3,

z/VSE 3.1

You can find the most recent table in the internet at

http://www.ibm.com/servers/eserver/zseries/zvse/support/tcpip.html

Notes:

 1. The TCP/IP-C-LE Interface relies on the API provided by TCP/IP for

VSE/ESA and has to be adapted via a PTF only if the BSD-C API has

changed.. The documentation of the TCP/IP-C-LE Interface can be found in

Chapter 9, “TCP/IP Support for the LE/VSE C Socket Interface,” on page 91.

 2. To use this interface from CICS also APAR PQ16795/PTF UQ18733 for

LE/VSE C (first time contained in VSE/ESA 2.3.1) is required.

 3. The contents of these APARs/PTFs are distributed by Connectivity Systems

Inc. together with their Service Packs since SERV130L starting 01/2000. See

Info APAR II11836 for more information.

 4. The most current version of the TCP/IP for VSE/ESA Configuration Dialog is

also available from the Internet at

http://www.ibm.com/servers/eserver/zseries/zvse/
products/connectors.html#tcpcfg

 5. The Euro tables are included in CSI’s TCP/IP for VSE product since SERV130J.

 6. For use of GPS the old command processor for TCP/IP for VSE/ESA is

reinstalled again with this APAR. A new command processor for TCP/IP for

VSE/ESA was included in the product with APAR PQ24008 (SERV130K). If

the customer has (after installing this APAR) the need for the new command

processor again it can be started through the NEWPARS parameter during

TCP/IP startup (e.g. use of // EXEC IPNET,PARM=’NEWPARS’). In contrast

to the documentation the following commands are different for GPS when

using the new command processor:

TCP/IP for VSE/ESA (5686-A04) History

430 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Old New Meaning

RETRY_COUNT RETRY number of retries

RETRY RETRY_TIME time of retry interval

This behaviour is adjusted with APAR PQ27252 for TCP/IP for VSE/ESA

(SERV130L).

 7. For proper IBM key validation, APAR DY45306 with PTF UD51171 (VSE/ESA

2.3) or UD51172 (VSE/ESA 2.4) for VSE Central Functions is required.

 8. Documentation on the REXX/VSE Socket API can be found e.g. at the z/VSE

Home Page at

http://www.ibm.com/servers/eserver/zseries/zvse/downloads/samples.html

or in the manual REXX/VSE Reference, SC33-6642

 9. Also requires LE-C-Runtime APARs/PTFs PQ34038/UQ40116 and

PQ36618/UQ44201 to use the enhanced API functions included in TCP/IP for

VSE 1.4 (i.e. getclientid, give/takesocket, asynch. I/O functions).

10. Softcopy only.

11. Contained in SERV140A from CSI.

12. The TCP/IP for VSE/ESA product has for service purposes the CLC 1IP in

VSE/ESA 2.3 and 2.4, in VSE/ESA 2.5 it has the CLC 5IP, in VSE/ESA 2.6 the

CLC 1OQ, in VSE/ESA 2.7 the CLC 7IP, in z/VSE 3.1 the CLC 8TP - as it can

be seen in the following table:

 Table 18. Overview of CLCs for TCP/IP for VSE/ESA

VSE/ESA contains TCP/IP with CLC -

Out-of

Service

2.3 1.3/1.4 1IP 12/31/2001

2.4 1.3/1.4 1IP 06/30/2002

2.5 1.4/1.5 5IP 12/31/2003

2.6 1.4/1.5 1OQ 03/31/2006

2.7 1.5 7IP tbd

z/VSE contains TCP/IP with CLC - Out-of

Service

3.1 1.5 8TP tbd

13. Contained in SERV140B from CSI.

14. For proper use of the Basic Security Manager with TCP/IP’s SERV140B APAR

DY45739 / PTFs UD51874 (VSE/ESA 2.4) or UD51875 (VSE/ESA 2.5) is

required.
For the EZASMI/EZASOKET programming interfaces following APARs/PTFs

are recommended:

v DY45556 with PTF UD51626

v DY45684 with PTFs UD51843 and UD51844

v DY45767 with PTF UD51843

For the CICS Listener Support APAR PQ41225 with PTF UQ47022 should be

installed.

15. Contained in SERV140C from CSI.

TCP/IP for VSE/ESA (5686-A04) History

Appendix A. TCP/IP for VSE/ESA (5686-A04) History 431

16. Documentation on SSL for VSE can be found in the manual TCP/IP for VSE 1.4

SSL for VSE User’s Guide or the TCP/IP for VSE 1.5 Optional Products manual.

The SSL setup as used in z/VSE is described in the z/VSE e-business Connectors

User’s Guide.

17. For proper use of the Basic Security Manager with TCP/IP’s SERV140C APAR

DY45799 / PTFs UD52012 (VSE/ESA 2.4) or UD52021 (VSE/ESA 2.5) or

UD52022 (VSE/ESA 2.6) is required.

18. Contained in SERV140D from CSI.

TCP/IP for VSE/ESA (5686-A04) History

432 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Appendix B. Examples

Autonomous FTP

Overview

Under normal circumstances, the VSE FTP Daemon performs all file transfers. For

this reason, all files must be defined to the TCP/IP for VSE/ESA partition.

Under some circumstances, this can be inconvenient. For example, when a batch

process creates a new file which is to be sent to a remote workstation, several

interactions with TCP/IP for VSE/ESA are required to define the new file. Rather

than force operator intervention in this manner, an extension to the FTP commands

is provided that will permit specification of a locally-defined DLBL, without the

TCP/IP partition having any advance knowledge of the data set. This operation

mode can be considered as ’Autonomous FTP’.

To transfer a file in this mode, use a command of the following format:

 The percent sign (%) indicates that a DLBL has been supplied rather than a file

name. The other parameters are as follows:

filespec The file name on the remote system.

type The file’s type.

recfm The file’s record format.

lrecl The file’s logical record length.

blksize The file’s block size.

A detailed discussion of all the parameters to be used for Autonomous FTP can be

found in the TCP/IP for VSE 1.4 User’s Guide.

Example

In the following example a SAM-ESDS working file ’A.KRUS.X1’, (’X1’ results from

the partition-id) is defined indirectly, here via IDCAMS REPRO. This file is

transferred via Autonomous FTP to a workstation and after successfully processing

it is deleted via IDCAMS. The advantage is that you don’t have to define the

actual file explicitly and to remember its file name.

* $$ JOB JNM=FTPAUTNP,CLASS=X,DISP=D

// JOB FTPAUTNP TEST AUTONOMIOUS FTP BATCH

// DLBL TESTNKD,’%A.KRUS’,0,VSAM,CAT=ESCAT1,RECSIZE=120, X

 DISP=(NEW,KEEP,DELETE),RECORDS=(150,100)

// DLBL TEST,’%A.KRUS’,0,VSAM,CAT=ESCAT1

// DLBL COPYIN,’KRUS.SAMF’,,VSAM,CAT=ESCAT1

// LOG

*

// EXEC IDCAMS,SIZE=AUTO

 REPRO INFILE (COPYIN) -

 OUTFILE (TESTNKD ENV(BLKSZ(120) RECFM(F))) -

 NOREUSE

/*

PUT %dlbl,type,recfm,lrecl,blksize filespec

GET filespec %dlbl,type,recfm,lrecl,blksize

© Copyright IBM Corp. 1997, 2005 433

*

// EXEC FTP,PARM=’IP=KRUSE’

KRUS

DAGI

DD

DD

LCD ESCAT1

CD VSE230/TEMP

PUT %TEST,SAM,F,120 FTPPUT.X1

QUIT

/*

IF $RC > 0 THEN

GOTO $EOJ

// EXEC IDCAMS,SIZE=AUTO

 DELETE (%A.KRUS) -

 CLUSTER -

 PURGE -

 CATALOG (ESCAT1.USER.CATALOG)

/*

/&

* $$ EOJ

Notes:

1. In the job listing the workfile has a dynamic name, here

 PUT %X1SAM,SAM,F,120 FTPPUT.X1

2. Following is not possible with autonomous FTP, but with the FTPBATCH

program:

v a DLBL statement with the DISP option

v SAM-ESDS ’%%working’ files

Examples

434 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

AUTOLPR – Printing with the CICS Report Controller Feature (RCF)

This section shows an example how to use the CICS Report Controller Feature

(RCF) along with the TCP/IP for VSE/ESA AUTOLPR feature.

In addition to printing from batch using the LPR client application or the

AUTOLPR feature, TCP/IP for VSE/ESA also supports automatically printing files

generated with CICS RCF. Similar to printing from batch, you must specify the

name of a Script file within the VSE/POWER user-information field or the

HOSTNAME parameter of the DEFINE EVENT definition. This Script file must

specify the remote IP address of the system hosting the LPD (Line Printer Daemon)

and the name of the printer to print on the specified host.

With this information in place, TCP/IP for VSE/ESA will send the print output off

the VSE/POWER list queue to the specified destination, assuming an EVENT (see

example below in this section) was defined to TCP/IP for VSE/ESA covering the

specified VSE/POWER class.

A detailed discussion of AUTOLPR can be found in the TCP/IP for VSE 1.4 User’s

Guide.

Specification in the CICS RCF Program

In the CICS RCF Program you need to specify the VSE/POWER class, and the

name of the Script file in the user-information field. These required values will be

passed to VSE/POWER.

In the following example those values are

v CLASS(’T’) for the VSE/POWER class

v USERDATA(SCRIPTNM) for the user information

but they may also contain other values matching your requirements.

TCP/IP Definitions

Your TCP/IP for VSE/ESA configuration file IPINITxx.L should contain the

following (or similar) definitions. If you have not defined them in your startup

configuration, you can also specify those definitions interactively to TCP/IP for

VSE/ESA.

v Definition of AUTOLPR for VSE/POWER LST Queue, CLASS T

DEFINE EVENT,ID=LPR,TYPE=POWER,CLASS=T,QUEUE=LST

v Symbolic name REMHOST for IP address 9.1.2.3

DEFINE NAME,NAME=REMHOST,IPADDR=9.1.2.3

 ...

DFHEISTG DSECT

SCRIPTNM DS CL16

 ...

TESTLPR CSECT

* Open output spoolfile

 MVC SCRIPTNM,=CL16’SCRIPT2’ Set Script Name

* Script-Name-Field should be 16 characters long

* Script-Name-Field should be padded with blanks

 EXEC CICS SPOOLOPEN REPORT(’LPRTEST’) USERDATA(SCRIPTNM) *

 TOKEN(OUTTOKEN) NOCC CLASS(’T’) NOSEP *

 RESP(RESPFLD) RESP2(RESP2FLD)

 ...

Examples

Appendix B. Examples 435

v Script File Definition for Script SCRIPT2, backed by VSE library member

PRTLOCAL.L

DEFINE NAME,NAME=SCRIPT2,SCRIPT=PRTLOCAL

Script File Definition

The Script file needs to be catalogued as L source book in a VSE library, accessible

through the // LIBDEF SOURCE,SEARCH chain. In the preceding example the

member name is PRTLOCAL.L. The Script file contains the required host and

printer definitions.

* $$ JOB JNM=CATAL,CLASS=A,DISP=D

// JOB CATAL CATALOG SCRIPT MEMBER PRTLOCAL.L

// EXEC LIBR

ACC S=PRD2.CONFIG

CAT PRTLOCAL.L R=Y

SET HOST=REMHOST SYMBOLIC HOST NAME

SET PRINTER=PRINTER1

/+

/*

/&

* $$ EOJ

Examples

436 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GPS and RCF

Overview

The following example shows the definitions to be done for TCP/IP-GPS, VTAM

and CICS for use of the GPS by the Report Controller Feature (RCF) of CICS.

A detailed description of all parameters to define a GPS daemon can be found in

TCP/IP for VSE 1.4 Optional Products.

Defining to VTAM

 TCPPRT VBUILD TYPE=APPL

GPS1 APPL AUTH=(ACQ),DLOGMOD=DSC2K

GPS2 APPL AUTH=(ACQ),DLOGMOD=DSC2K

Note: If a VTAM printer should be shared between different CICS applications it

has to be released first from one CICS before it can be used with another

CICS. This is accomplished by defining RELREQ=YES in the CICS

TYPETERM definition of that printer. But to activate RELREQ=YES the

following must be coded in the VTAM APPL statement: SESSLIM=YES. For

more details please refer to the manual VTAM Programming Guide.

Defining to CICS

 CEDA DEFine TYpeterm: GPSPRT Group: VSETERM1

CEDA DEFine TErminal: GPS1 Group: VSETERM1

CEDA DEFine TErminal: GPS2 Group: VSETERM1

Defining to TCP/IP

 DEFINE FILE,PUBLIC=’PRD2.GPSWORK’,DLBL=PRD2,TYPE=LIBRARY

*

* GPS1 is a IBM4248

DEFINE GPSD,ID=GPS001,STORAGE=’PRD2.GPSWORK’,TERMNAME=GPS1,-

IPADDR=nnn.nnn.nnn.nnn,PRINTER=LOCAL

*

* GPS2 is a IBM3130

DEFINE GPSD,ID=GPS002,STORAGE=’PRD2.GPSWORK’,TERMNAME=GPS2,-

IPADDR=nnn.nnn.nnn.nnn,PRINTER=printername

Note that the ’printername’ is case sensitive.

Defining to RCF

 PRINTER DESTINATION

 GPS1 GPS1

 GPS2 GPS2

Examples

Appendix B. Examples 437

TELNET and Subnetting in a Class-C Network

The following example shows how a Class-C network can be divided to provide

different subnets for Telnet usage. This is done by using different subnet masks for

the different subnets.

Requirement/Question:

CICS Terminal Id = TA31xx -> IPaddress 9.222.66.1 - 27

 = TA03xx -> IPaddress 9.222.66.65 - 91

 = TA06xx -> IPaddress 9.222.66.129 - 155

How can I differ between the different terminal-ids so that each user is identifiable

?

Answer:

DEFINE MASK,ID=net1mask,NETWORK=9.222.66.0,MASK=255.255.255.224

DEFINE MASK,ID=net2mask,NETWORK=9.222.66.64,MASK=255.255.255.224

DEFINE MASK,ID=net3mask,NETWORK=9.222.66.128,MASK=255.255.255.224

DEFINE TELNETD,ID=teln1,MENU=MENU3,COUNT=30,TERMNAME=TA31, -

 IPADDR=9.222.66.0

DEFINE TELNETD,ID=teln2,MENU=MENU4,COUNT=30,TERMNAME=TA03, -

 IPADDR=9.222.66.64

DEFINE TELNETD,ID=teln3,MENU=MENU5,COUNT=30,TERMNAME=TA06, -

 IPADDR=9.222.66.128

TELNET daemons and logmode

This example shows how to make TELNET sessions queryable.

If the TELNET daemon definitions are made as follows

DEFINE TEL,ID=MYTEL,TAR=DBDCCICS,TERM=T1000,CO=20,LOGMODE=SP3272QN, -

 LOGMODE3=SP3272QN,LOGMODE4=SP3272QN,LOGMODE5=SP3272QN

then all types of terminals (model 2, 3, 4, and 5) will be queryable. If only

LOGMODE=SP3272QN

is set, a model 3 will not have SP3272QN but the default value D4B32783 which

does not have an Extended Datastream. This is why the above definitions are

recommended. In case queryable sessions are not desired, the IUI default logmodes

with EXTDS are as follows

DEFINE TEL,ID=MYTEL,TAR=DBDCCICS,TERM=T1000,CO=20,LOGMODE=SP3272EN, -

 LOGMODE3=SP3273EN,LOGMODE4=NSX32704,LOGMODE5=NSX32705

Since there is no explicit logmode for model 4 and 5 in IUI, the VTAM default is

used.

Examples

438 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

VSAMCAT Usage

Instead of defining every VSAM file that you want to access via FTP, NFS, or

HTTP, you can instead simply define the VSAM catalog to TCP/IP for VSE/ESA

and let it dynamically build DLBL and file control block information for every

cluster in the catalog.

A detailed description of the VSAMCAT parameter of the DEFINE FILE command

can be found in TCP/IP for VSE 1.4 Commands.

Step 1: Defining the catalog to VSE

The first step in using a VSAM catalog is to have a DLBL defining the catalog. The

VSAMCAT fileIO driver will read the catalog sequentially in order to acquire

cluster attribute information. Because of that, the DLBL must have a ″,CAT=″

parameter pointing back to itself. For example, let’s take IJSYSUC:

// DLBL IJSYSUC,’VSAM.USER.CATALOG’,,VSAM,CAT=IJSYSUC

You can either modify the entry in standard labels, or create a new one and put it

in the TCP/IP startup JCL. In either case, it is important that TCP/IP find the

DLBL for the catalog and the catalog entry has a ″,CAT=″ pointing back to itself.

Step 2: Defining the catalog to TCP/IP

Now that VSE knows about the catalog, let’s tell TCP/IP. Here is a sample

definition for that same catalog:

DEFINE FILE,PUBLIC=’IJSYSUC’,DLBL=IJSYSUC,TYPE=VSAMCAT

Of course, the public name can be anything you want, but for this example, we’ll

make it the same as the DLBL name.

Step 3: Using the catalog

Now that you have the VSE and TCP/IP systems know about the catalog (and if it

actually exist!), you can access it with FTP by issuing a ″ChDir″ into (in this case)

IJSYSUC. The first time that you do this, you will see a message on SYSLOG

indicating that the fileIO module, IPNFVCAT has been loaded into partition

storage. When you perform a DirList, IPNFVCAT will read the catalog information

and return a listing of information. When you issue a RETRieve against a specific

entry, IPNFVCAT will check the partition to see if a DLBL already exists. If it does

not, then one will be dynamically added to the partition for you. After that, the file

is transferred for you.

The only exception to this are VSAM-controlled-SAM files. Because the VSAM

catalog is not updated with information such as the number of records, you will

not be able to retrieve these files using VSAMCAT. In this case you will need to

define each of these files individually to TCP/IP as ″TYPE=SAM″ and retrieve

these using the DTFSD methodology.

Performing a PUT to the VSAM catalog is different. For FTP, you need either have

the cluster already defined or the cluster can be dynamically defined or a REXX

program can be run from FTP to define the file. For NFS, a dynamic DEFINE

CLUSTER is automatically performed for you.

Finally, you can perform a DELEte against the VSAM files, and IDCAMS will be

dynamically invoked to perform a DELETE CLUSTER for you. However, a

RENAME will not work for VSAMCAT files.

Examples

Appendix B. Examples 439

Using the Command Pre-Processor

Overview

EXEC TCP based programs require the TCP/IP for VSE/ESA pre-processor

program IPNETRAN to generate language specific code constructs.

When you execute IPNETRAN, you specify two options by way of the PARM field

of the EXEC statement. E.g.

LANG

The LANG=xxx parameter tells the preprocessor the language being

processed. Supported values for xxx are:

ASSEMBLER High-Level Assembler

COBOL COBOL for VSE

PL1 PL/I for VSE
ENV The ENV=xxx parameter indicates the environment that the finished

program will execute in. There are two acceptable values for xxx.

BATCH The program will execute in batch mode.

CICS The program will be executed under CICS.

Notes:

1. For ENV=CICS programs always run the TCP/IP pre-processor before the CICS

pre-processor. You must execute them in this order because the TCP/IP

pre-processor will generate EXEC CICS statements that must be replaced by the

CICS pre-processor.

A detailed description of the TCP/IP for VSE/ESA preprocessor can be found in

TCP/IP for VSE 1.4 Programmer’s Reference.

Sample Programs

The following sample programs provide the same functionality presented in a

variety of languages. In each case, note any ″special″ techniques shown for

manipulating data.

// EXEC IPNETRAN,SIZE=IPNETRAN,PARM=’LANG=COBOL,ENV=CICS’

* $$ SLI MEM=COBSRC.C,S=PRD3.INGO

/*

Examples

440 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

COBOL Example

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBSRC.

 AUTHOR. JOHN RANKIN.

 INSTALLATION. WORTHINGTON OHIO.

 DATE-WRITTEN. AUGUST 2, 1995.

 DATE-COMPILED.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-370.

 OBJECT-COMPUTER. IBM-370.

 DATA DIVISION.

 EXEC TCP CONTROL DOUBLE(NO)

 END-EXEC.

 WORKING-STORAGE SECTION.

 01 WORK-AREA-ONE.

 05 PART1 PICTURE 9(4) COMP.

 05 PART2 PICTURE 9(4) COMP.

 05 PART3 PICTURE 9(4) COMP.

 05 PART4 PICTURE 9(4) COMP.

 05 IPADDRESS.

 10 IPAD1 PICTURE X.

 10 IPAD2 PICTURE X.

 10 IPAD3 PICTURE X.

 10 IPAD4 PICTURE X.

 05 HALFWORD PICTURE 9(4) COMP.

 05 HALFWORD-X REDEFINES HALFWORD.

 10 BYTEX1 PICTURE X.

 10 BYTEX2 PICTURE X.

 05 RESULTS.

 10 RECB PICTURE X(4).

 10 RLOPORT PICTURE 9(4) COMP.

 10 RFOPORT PICTURE 9(4) COMP.

 10 RFOIP PICTURE X(4).

 10 RCOUNT PICTURE 9(4) COMP.

 10 RFLAGS PICTURE X.

 10 RCODE PICTURE X.

 10 RTERMTY PICTURE X(40).

 05 MY-DESC PICTURE X(4).

 01 LOCAL-PORT PICTURE 9(4) COMP.

 01 BUFFER.

 05 WORKAREA PICTURE X(512).

Figure 114. COBOL Example (Part 1 of 3)

Examples

Appendix B. Examples 441

PROCEDURE DIVISION.

 BEGIN.

 * *

 * First Test *

 * *

 *

 * Setup IPADDRESS to hold 172.20.10.10 in binary

 *

 MOVE 172 TO HALFWORD.

 MOVE BYTEX2 TO IPAD1.

 MOVE 20 TO HALFWORD.

 MOVE BYTEX2 TO IPAD2.

 MOVE 10 TO HALFWORD.

 MOVE BYTEX2 TO IPAD3.

 MOVE 10 TO HALFWORD.

 MOVE BYTEX2 TO IPAD4.

 *

 * Attempt to open a connection at 172.20.10.10 port 2000

 *

 EXEC TCP OPEN FOREIGNPORT(2000)

 FOREIGNIP(IPADDRESS)

 LOCALPORT(0)

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 ACTIVE

 WAIT(YES)

 ERROR(SECOND-TEST)

 END-EXEC.

 DISPLAY ’Open has completed’.

 *

 * Receive a piece of data

 *

 EXEC TCP RECEIVE

 TO(BUFFER)

 LENGTH(512)

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 WAIT(YES)

 ERROR(SECOND-TEST)

 END-EXEC.

 DISPLAY ’Receive has completed’.

 *

 * Close the connection

 *

 EXEC TCP CLOSE

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 WAIT(YES)

 ERROR(SECOND-TEST)

 END-EXEC.

 DISPLAY ’Close has completed’.

Figure 114. COBOL Example (Part 2 of 3)

Examples

442 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

 * *

 * Second Test *

 * *

 SECOND-TEST.

 *

 * Attempt to open another connection

 *

 MOVE 2000 TO LOCAL-PORT.

 EXEC TCP OPEN FOREIGNPORT(0)

 FOREIGNIP(0)

 LOCALPORT(LOCAL-PORT)

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 PASSIVE

 WAIT(YES)

 ERROR(ERROR-SPOT)

 END-EXEC.

 DISPLAY ’Second Open has completed’.

 *

 * Display the foreign IP address

 *

 MOVE RFOIP TO IPADDRESS.

 MOVE IPAD1 TO BYTE2.

 MOVE HALFWORD TO PART1.

 MOVE IPAD2 TO BYTE2.

 MOVE HALFWORD TO PART2.

 MOVE IPAD3 TO BYTE2.

 MOVE HALFWORD TO PART3.

 MOVE IPAD4 TO BYTE2.

 MOVE HALFWORD TO PART4.

 DISPLAY PART1 ’.’ PART2 ’.’ PART3 ’.’ PART4

 *

 * Send another piece of data

 *

 EXEC TCP SEND

 FROM(BUFFER)

 LENGTH(512)

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 WAIT(YES)

 ERROR(ERROR-SPOT)

 END-EXEC.

 DISPLAY ’Second Send has completed’.

 *

 * Close the second connection

 *

 EXEC TCP CLOSE

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 WAIT(YES)

 ERROR(ERROR-SPOT)

 END-EXEC.

 DISPLAY ’Second Close has completed’.

 STOP RUN.

 ERROR-SPOT.

 STOP RUN.

Figure 114. COBOL Example (Part 3 of 3)

Examples

Appendix B. Examples 443

PL/I Example

SAMPLE4: PROCEDURE OPTIONS(MAIN);

 DCL IPADDRESS BINARY FIXED(31,0);

 DCL MY-DESC CHAR(4);

 DCL 1 RESULTS,

 2 RECB CHAR(4),

 2 RLOPORT BINARY FIXED(15,0),

 2 RFOPORT BINARY FIXED(15,0),

 2 RFOIP CHAR(4),

 2 RCOUNT BINARY FIXED(15,0),

 2 RFLAGS CHAR(1),

 2 RCODE CHAR(1),

 2 RTERMTY CHAR(40);

 DCL MY-DESC CHAR(4);

 DCL LOCAL-PORT BINARY FIXED(15,0);

 DCL BUFFER CHAR(512);

/*---------------------------------------*

 * *

 * First Test *

 * *

 ---------------------------------------/

/*

 * Attempt to open a connection at 172.20.10.10 port 2000

 */

 EXEC TCP OPEN FOREIGNPORT(2000)

 FOREIGNIP(IPADDRESS)

 LOCALPORT(0)

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 ACTIVE

 WAIT(YES)

 ERROR(SECOND-TEST);

/*

 * Receive a piece of data

 */

 EXEC TCP RECEIVE

 TO(BUFFER)

 LENGTH(512)

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 WAIT(YES)

 ERROR(SECOND-TEST);

/*

 * Close the connection

 */

 EXEC TCP CLOSE

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 WAIT(YES)

 ERROR(SECOND-TEST);

Figure 115. PL/I Example (Part 1 of 2)

Examples

444 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Compiling Your Program

Once you have coded your application program and it has passed through the

pre-processor, it must then be submitted to the appropriate compiler. In many

instances, you will also need to pass the output from our pre-compiler through one

or more pre-compilers. The following examples shows one method for doing this.

They use the COBOL example COBSRC.C as shown in Figure 114 on page 441.

Compiling a COBOL Program for Batch

The first example shows how to compile source COBSRC.C (see Figure 114 on page

441) stored in library PRD3.INGO and generating phase SAMPLEB.

SECOND-TEST:

/*---------------------------------------*

 * *

 * Second Test *

 * *

 *

 * Attempt to open a connection

 */

 LOCAL-PORT = 2000;

 EXEC TCP OPEN FOREIGNPORT(0)

 FOREIGNIP(0)

 LOCALPORT(LOCAL-PORT)

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 PASSIVE

 WAIT(YES)

 ERROR(ERROR-SPOT);

/*

 * Display the foreign IP address

 */

/* Need code here..... */

/*

 * Receive a piece of data

 */

 EXEC TCP SEND

 FROM(BUFFER)

 LENGTH(512)

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 WAIT(YES)

 ERROR(ERROR-SPOT);

/*

 * Close the connection

 */

 EXEC TCP CLOSE

 RESULTAREA(RESULTS)

 DESCRIPTOR(MY-DESC)

 WAIT(YES)

 ERROR(ERROR-SPOT);

 RETURN;

 END SAMPLE4;

Figure 115. PL/I Example (Part 2 of 2)

Examples

Appendix B. Examples 445

Step 1 - Main Job: The main job frame work will be the same for BATCH as well

as CICS run-time environment. It will call procedure COMSTP1.PROC stored in

PRD3.INGO.

Step 2 - Processing EXEC TCP Statements: Procedure COMSTP1.PROC calls the

TCP/IP pre-processor IPNETRAN and generates a new JOB using utility program

IESINSRT. This new JOB is named CATAL1 and is aimed to catalog the TCP/IP

pre-processor output as PRETCP.DAT into PRD3.INGO. Then it calls procedure

COMSTP2.PROC for further processing.

Step 3 - Compiling and Link-Editing: Procedure COMSTP2.PROC invokes the

COBOL for VSE Compiler and calls the Linkage Editor to link the OBJ deck

generated by the compiler. The resulting phase SAMPLEB is stored into

PRD3.INGO as

 // LIBDEF *,CATALOG=PRD3.INGO

is still active.

* $$ JOB JNM=COMPILE,CLASS=4,DISP=D

* $$ LST CLASS=W,DISP=D

* $$ PUN CLASS=4,DISP=I

// JOB COMPILE TCPIP PROGRAM

// LIBDEF *,SEARCH=(PRD3.INGO,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)

// EXEC PROC=COMSTP1

/&

* $$ EOJ

// ASSGN SYSIPT,SYSRDR

// EXEC IESINSRT

$ $$ JOB JNM=CATAL1,CLASS=4,DISP=D

$ $$ LST CLASS=W,DISP=D

$ $$ PUN CLASS=4,DISP=I

// JOB CATAL1 CATALOG OUTPUT OF THE TCPIP PRE-PROCESSOR

// LIBDEF *,SEARCH=(PRD3.INGO,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)

// LIBDEF *,CATALOG=PRD3.INGO

// EXEC LIBR

 ACC S=PRD3.INGO

 CATALOG PRETCP.DAT EOD=/(REPLACE=YES

* $$ END

// OPTION DECK

*

* Process EXEC TCP source for CICS

*

// EXEC IPNETRAN,SIZE=IPNETRAN,PARM=’LANG=COBOL,ENV=BATCH’

* $$ SLI MEM=COBSRC.C,S=PRD3.INGO

/*

// EXEC IESINSRT

/(

/*

// EXEC PROC=COMSTP2

#&

$ $$ EOJ

* $$ END

Examples

446 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Compiling a COBOL Program for CICS

The second example shows how to compile source COBSRC.C (see Figure 114 on

page 441) stored in library PRD3.INGO and generating phase SAMPLEC.

Step 1 - Main Job: The main job frame work is the same as already shown for the

BATCH environment. It will call procedure COMSTP1.PROC stored in

PRD3.INGO.

Step 2 - Processing EXEC TCP Statements: Procedure COMSTP1.PROC calls the

TCP/IP pre-processor IPNETRAN and generates a new JOB using utility program

IESINSRT. This new JOB is named CATAL1 and is aimed to catalog the TCP/IP

pre-processor output as PRETCP.DAT into PRD3.INGO. Then it calls procedure

COMSTP2.PROC for further processing.

*

* Compile and link phase SAMPLEB for Batch

*

// OPTION CATAL

 PHASE SAMPLEB,*

// EXEC IGYCRCTL,SIZE=IGYCRCTL

 CBL TEST APOST

* $$ SLI MEM=PRETCP.DAT,S=PRD3.INGO

/*

// EXEC LNKEDT

* $$ JOB JNM=COMPILE,CLASS=4,DISP=D

* $$ LST CLASS=W,DISP=D

* $$ PUN CLASS=4,DISP=I

// JOB COMPILE TCPIP PROGRAM

// LIBDEF *,SEARCH=(PRD3.INGO,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)

// EXEC PROC=COMSTP1

/&

* $$ EOJ

// ASSGN SYSIPT,SYSRDR

// EXEC IESINSRT

$ $$ JOB JNM=CATAL1,CLASS=4,DISP=D

$ $$ LST CLASS=W,DISP=D

$ $$ PUN CLASS=4,DISP=I

// JOB CATAL1 CATALOG OUTPUT OF THE TCPIP PRE-PROCESSOR

// LIBDEF *,SEARCH=(PRD3.INGO,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)

// LIBDEF *,CATALOG=PRD3.INGO

// EXEC LIBR

 ACC S=PRD3.INGO

 CATALOG PRETCP.DAT EOD=/(REPLACE=YES

* $$ END

// OPTION DECK

*

* Process EXEC TCP source for CICS

*

// EXEC IPNETRAN,SIZE=IPNETRAN,PARM=’LANG=COBOL,ENV=CICS’

* $$ SLI MEM=COBSRC.C,S=PRD3.INGO

/*

// EXEC IESINSRT

/(

/*

// EXEC PROC=COMSTP2

#&

$ $$ EOJ

* $$ END

Examples

Appendix B. Examples 447

Step 3 - Processing EXEC CICS Statements: As the TCP/IP pre-processor has

generated EXEC CICS statements where appropriate, e.g. to allocate storage or to

WAIT according to the CICS programming model we have to invoke the CICS

pre-processor before calling the COBOL compiler.

As shown in step 2 already, COMSTP2.PROC again dynamically generates a new

job named CATAL2. It is aimed to store the output from the CICS pre-processor as

PRECICS.DAT before calling COMSTP3.PROC for the final compile and link-edit

steps.

Step 4 - Compiling and Link-Editing: Procedure COMSTP3.PROC invokes the

COBOL for VSE Compiler and calls the Linkage Editor to link the OBJ deck

generated by the compiler. The resulting phase SAMPLEC is stored into

PRD3.INGO as

 // LIBDEF *,CATALOG=PRD3.INGO

is still active.

// ASSGN SYSIPT,SYSRDR

// EXEC IESINSRT

$ $$ JOB JNM=CATAL2,CLASS=4,DISP=D

$ $$ LST CLASS=W,DISP=D

$ $$ PUN CLASS=4,DISP=I

// JOB CATALOG OUTPUT OF THE CICS PRE-PROCESSOR

// LIBDEF *,SEARCH=(PRD3.INGO,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)

// LIBDEF *,CATALOG=PRD3.INGO

// EXEC LIBR

 ACC S=PRD3.INGO

 CATALOG PRECICS.DAT EOD=/(REPLACE=YES

* $$ END

*

* Starting CICS command pre-processor

*

// EXEC DFHECP1$,PARM=’CICS’

* $$ SLI MEM=PRETCP.DAT,S=PRD3.INGO

/*

// EXEC IESINSRT

/(

/*

// EXEC PROC=COMSTP3

#&

$ $$ EOJ

* $$ END

*

* Compile and link phase SAMPLEC for CICS

*

// OPTION CATAL

 PHASE SAMPLEC

 INCLUDE DFHELII

// EXEC IGYCRCTL,SIZE=IGYCRCTL

 CBL TEST APOST

* $$ SLI MEM=PRECICS.DAT,S=PRD3.INGO

/*

// EXEC LNKEDT

Examples

448 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Appendix C. Debugging Facility for EZASMI and EZASOKET

Interfaces (EZAAPI Trace)

The EZA TCP/IP HLL APIs (that is the EZASMI macro and the EZASOKET call

interface) have a trace facility integrated. This trace facility generates one (or more)

trace messages for each EZASMI or EZASOKET socket call. It allows to trace these

calls either for all partitions in the system or for selected partitions and/or

dynamic classes. Trace messages may be directed to SYSLOG or to SYSLST.

For short, this trace facility is named ″EZAAPI trace″ in the following.

Requirements for Usage

The EZAAPI trace needs module EZASOHTR loaded into the SVA (which is

default since VSE/ESA 2.5).

Setup

The EZAAPI trace can be activated and controlled with the AR command EZAAPI.

AA EZAAPI

I

I

 ?

TRACE

,ALL

,SYSLST

TRACE=ON

,

,SYSLOG

,LOGLST

,PART=(

part

)

,

,CLASS=(

class

)

TRACE=OFF

TRACE=END

 AC

EZAAPI ? Display the command syntax

EZAAPI TRACE Display currrent trace settings

EZAAPI TRACE=ON Define and start or resume starting

(default with no trace defined yet)

Define and start trace with defaults ALL

and SYSLST

(default after EZAAPI TRACE=OFF)

Resume trace

All Define and start trace for all partitions in

the system

PART=(part,..)

Define and start trace for selected

partitions

CLASS=(class,..)

Define and start trace for selected dynamic

classes

© Copyright IBM Corp. 1997, 2005 449

EZAAPI TRACE=OFF Suspend current trace

EZAAPI TRACE=END End tracing and clear all trace definitions

SYSLST trace output is send to SYSLST (if SYSLST is

assigned)

SYSLOG trace output is send to SYSLOG

LOGLST trace output is send to SYSLOG and SYSLST.

Output

The EZAAPI trace generates self-explanatory messages.

Each EZASMI or EZASOKET socket call produces

1. one (or more) start messages, like

 EZASOH03 PROCESSING -------------------------(LEVEL DY45556)----

 EZASOH03 ..CONNECT...ON SOCKET 0000

2. eventually some messages showing additional input/output information (for

example for a SEND socket call, the first 30 bytes of data will be shown in

character representation)

3. and an ending message, like

EZASOH03 ..CONNECT RETURNED RC/ERRNO=0000/0000

Each message is prefixed with the name of the originating module. Currently, only

module EZASOH03 is generating trace messages (EZASOH03 is the main

processing module for the EZASMI/EZASOKET API). Thus, all messages start

with prefix EZASOH03.

With the activation of the EZAAPI trace, the BSD–C trace of TCP/IP for VSE/ESA

(called $SOCKDBG trace) is automatically activated in addition. In all those cases

where the TCP/IP socket call is passed over to the underlying TCP/IP for

VSE/ESA product, this BSD–C trace produces additional messages, like

BSD001I IPNRCONN 01.04.00 10/25/00 22.41 01DB0590 00800080

BSD004I CONNECTING 009.164.155.122,00000 TO 009.164.155.122,0400

BSD002I IPNRCONN R15=00000000 RETCD=GOOD ERRNO=NONE

These messages (all starting with prefix BSD) are generated by the TCP/IP for

VSE/ESA product and go both to SYSLST (if SYSLST is asssigned) and to SYSLOG.

The deactivation of the EZAAPI trace triggers a deactivation of the BSD–C trace.

Debugging Facility for EZASMI / EZASOKET Interfaces

450 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

Index

A
abend codes

E20L 397

E20T 397

ACCEPT (call) 192

accept()
use in server 414

accept() library function 92

address
family (domain) 417

structures 417

address, host 116

AF parameter on call interface, on

SOCKET 259

AF parameter on macro interface, on

socket 351

AF_INET domain
example 107

socket descriptor created in 106

AF_INET domain parameter 417

aio_cancel() library function 94

aio_error() library function 96

aio_read() library function 97

aio_return() library function 100

aio_suspend() library function 101

aio_write() library function 103

ALTER 372

APITYPE parameter on macro interface,

INITAPI call 323

ASCII data format 423

asynch I/O op., retrieve error status 96

asynch I/O op., retrieve status 100

asynch I/O request, cancel 94

asynch I/O request, wait for 101

asynch read from socket 97

asynch write to a socket 103

asynchronous ECB routine 278

asynchronous exit routine 278

asynchronous macro, coding

example 279

AUTOLPR and CICS RCF 435

automatic startup 391

autonomous FTP 433

B
BACKLOG parameter on call interface,

LISTEN call 236

Basic Security Manager (BSM) 31

big endian 418

bind ()
use in server 414

BIND (call) 194

bind() library function 106

bit-mask on call interface, on EZACIC06

call 269

bit-mask-length on call interface, on

EZACIC06 call 270

BLANKING.HTML 19

BSM (Basic Security Manager) 31

BUF parameter on call socket interface
on READ 237

on RECV 240

on RECVFROM 242

on SEND 251

on SENDTO 254

on WRITE 264

BUF parameter on macro socket interface
on READ 329

on RECVFROM 333

on SEND 342

on SENDTO 344

on WRITE 358

buffers
receive data and store in 165

receive messages and store in 167

C
cache file, VSAM 385

CALAREA parameter on CANCEL 284

CALL Instruction Interface for Assembler,

PL/1, and COBOL 189

Call Instructions for Assembler, PL/1,

and COBOL Programs
EZACIC04 267

EZACIC05 268

EZACIC06 269

EZACIC08 271

GETHOSTNAME 209

GETPEERNAME 210

GETSOCKNAME 212

GETSOCKOPT 214

GIVESOCKET 216

INITAPI 232

IOCTL 234

LISTEN 236

READ 237

RECV 239

RECVFROM 241

SELECT 243

SELECTEX 248

SENDTO 253

SETSOCKOPT 255

SHUTDOWN 257

SOCKET 259

TAKESOCKET 261

TERMAPI 263

WRITE 264

callable functions 92

CANCEL (macro) 284

CH-MASK parameter on call interface, on

EZACIC06 269

child server 413

CICS 391

starting automatically 391

starting manually 391

starting with program link 396

CICS Report Controller Feature (RCF)

and AUTOLPR 435

CICS Report Controller Feature (RCF)

and GPS 437

client
incoming requests, preparing server

for 159

socket calls used in 413

CLIENT parameter on call socket

interface
on GIVESOCKET 217

on TAKESOCKET 261

CLIENT parameter on macro socket

interface
on TAKESOCKET 354

CLOSE (macro)
use in child server 414

use in client 413

use in server 415

close() library function 109

COMMAND parameter on call interface,

IOCTL call 235

COMMAND parameter on call socket

interface
on EZACIC06 270

COMMAND parameter on macro

interface
on IOCTL 325

COMMAREA 408

concurrent server 411

writing your own 414

configuration macro 367

configuration transaction 371

configuring CICS TCP/IP 363

configuring TCP/IP for VSE/ESA
configuring CICS 13

configuring TCP/IP using the

IUI-based configuration dialog 24

configuring TCP/IP using the

PC-based configuration dialog 22

IESTCP.EXE (OS/2 version) 22

IESTCPW.EXE (Windows version) 22

supplying the product key 5

connect()
use in client 413

connect() library function 110

connection
duplex, shutting down 182

connection between sockets 110

connection request 92

conversion routines 423

COPY 375

creating
socket 183

CSKL transaction 420

current host address 120

CUSTDEF phase 8

D
data

receiving 165

sending on socket 177

© Copyright IBM Corp. 1997, 2005 451

data (continued)
store in buffers 165

data conversion 423

data structures, external
configuration data set 405

global work area 406

listener control area 409

parameter list for EZACIC20 408

data translation, socket interface 266

ASCII to EBCDIC 268

bit-mask to character 269

character to bit-mask 269

EBCDIC to ASCII 267

datagram
sending on socket 175

Debugging Facility for EZASMI /

EZASOKET Interfaces 449

decimal host address
from network number 156

DEFINE 377

defining customer information 6

DELETE 379

demonstration mode 4

descriptor, socket 106

Destination Control Table 365

DFHPCTIP 16

DFHPPTIP 14

DISPLAY 381

DNS
EZACIC25, adding to RDO 364

domain
address family 417

Domain Name Server Cache 385

cache file 385

EZACICR macro 385

initialization module, creating 387

duplex connection 182

E
EBCDIC data format 423

ECB parameter on macro interface
on ACCEPT 303, 305, 307, 326, 327,

329, 332, 338, 342, 347, 349, 352, 355,

359

EDCT001I message 81

EDCT002I message 81

EDCT003I message 81

EDCV001I message 81, 91

EDCV002I message 82

environmental support 399

ERETMSK parameter on call interface, on

SELECT 246

ERETMSK parameter on macro interface,

on SELECT 338

ERRNO parameter on call socket

interface
on BIND 195

on CLOSE 197

on CONNECT 199

on FCNTL 200

on GETCLIENTID 202

on GETHOSTNMAE 209

on GETPEERNAME 210

on GETSOCKNAME 213

on GETSOCKOPT 215

on GIVESOCKET 217

ERRNO parameter on call socket

interface (continued)
on INITAPI 233

on IOCTL 235

on LISTEN 236

on READ 237

on RECV 240

on RECVFROM 242

on SELECT 246

on SELECTEX 249

on SEND 252

on SENDTO 254

on SETSOCKOPT 256

on SHUTDOWN 257

on SOCKET 259

on TAKESOCKET 262

on WRITE 264

ERRNO parameter on macro socket

interface
on CANCEL 284

on GETSPCKNAME 302

on RECVFROM 334

on SELECT 337

on SELECTEX 339

on SEND 342

on SENDTO 345

on SETSOCKOPT 347

on SHUTDOWN 349

on SOCKET 351

on TAKESOCKET 355

on WRITE 358

ERRNO values
sorted by name 87

sorted by value 84

ERROR parameter on macro interface
on GETHOSTID 297

on GETSOCKNAME 303

on GETSOCKOPT 305

on GIVESOCKET 307

on INITAPI 324

on IOCTL 326

on LISTEN 328

on READ 330

on RECV 332

on SELECT 338

on SEND 343

on SETSOCKOPT 347

on SHUTDOWN 349

on SOCKET 352

on TAKESOCKET 355

on WRITE 359

ERROR parameter on macro socket

interface
on CANCEL 284

on SELECTEX 341

ESDNMASK parameter on call interface,

on SELECT 246

ESNDMSK parameter on macro interface,

on SELECT 338

EWOULDBLOCK error return, call

interface calls
RECV 239

RECVFROM 241

EWOULDBLOCK error return, macro

interface calls 333

EXEC CICS LINK 396

EXEC CICS RETRIEVE 418

EXEC CICS START 418

Executing C Programs 89

EZAAPI trace 449

EZAC (configuration transaction) 371

EZAC start screen 392

EZACIC04, call interface, EBCDIC to

ASCII translation 267

EZACIC05, call interface, ASCII to

EBCDIC translation 268

EZACIC06, call interface, bit-mask

translation 269

EZACIC08, HOSTENT structure

interpreter utility 271

EZACIC20, parameter list 408

EZACICD (configuration macro) 367

EZACICR macro 385, 387

EZACICSE program 422

EZACICxx programs
defining in CICS 364

EZACIC25
Domain Name Server Cache 385

EZAO transaction
manual startup/shutdown 391

EZASMI , programming interface 64

EZASMI, debugging facility 449

EZASOKET, debugging facility 449

EZASOKET, programming interface 64

F
FCNTL (call) 200

fcntl() library function 113

files, defining to RDO 365

FLAGS parameter on call socket interface
on RECV 239

on RECVFROM 242

on SEND 251

on SENDTO 253

FNDELAY flag on call interface, on

FCNTL 200

Functions
ALTER 372

COPY 375

DEFINE 377

DELETE 379

G
get identifier for calling application 115

GETCLIENTID (call) 202

getclientid()
use in server 414, 418

getclientid() library function 115

GETHOSTBYADDR (call) 204

gethostbyaddr() library function 116

GETHOSTBYNAME (call) 206

gethostbyname() library function 118

GETHOSTID (call) 208

gethostid() library function 120

GETHOSTNAME (call) 209

gethostname() library function 121

GETPEERNAME (call) 210

getpeername() library function 122

GETSOCKNAME (call) 212

GETSOCKNAME (macro) 302

getsockname() library function 123

452 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

GETSOCKOPT (call) 214

GETSOCKOPT (macro) 304

getsockopt() library function 125

GIVESOCKET (call) 216

GIVESOCKET (macro) 306

givesocket()
use in server 415, 418

givesocket() library function 128

GPS and CICS RCF 437

gsk_free_memory() SSL function 131

gsk_get_cipher_info() SSL function 132

gsk_get_dn_by_label() SSL function 134

gsk_initialize() SSL function 135

gsk_secure_soc_close() SSL function 137

gsk_secure_soc_init() SSL function 138

gsk_secure_soc_read() SSL function 142

gsk_secure_soc_reset() SSL function 144

gsk_secure_soc_write() SSL function 145

gsk_uninitialize() SSL function 147

gsk_user_set() SSL function 148

GSKFREEMEM (macro) 308

GSKFREEMEM(call) 218

GSKGETCIPHINF (macro) 309

GSKGETCIPHINF(call) 219

GSKGETDNBYLAB (macro) 310

GSKGETDNBYLAB(call) 221

GSKINIT (macro) 311

GSKINIT(call) 222

GSKSSOCCLOSE (macro) 313

GSKSSOCCLOSE(call) 224

GSKSSOCINIT (macro) 314

GSKSSOCINIT(call) 225

GSKSSOCREAD 318

GSKSSOCREAD(call) 228

GSKSSOCRESET(call) 229

GSKSSOCWRITE 230

GSKSSOCWRITE (macro) 320

GSKUNINIT (macro) 321

GSKUNINIT(call) 231

H
hardware crypto support 41

headers
ioctl() 158

HiperSockets 41

history for TCP/IP for VSE/ESA 427

host address 116

host byte order
short integer translated to 162

translating long integer to 161

host name 118

HOSTADDR parameter on call interface,

on GETHOSTBYADDR 204

HOSTENT parameter on call socket

interface
on GETHOSTBYADDR 204

on GETHOSTBYNAME 206

HOSTENT structure interpreter

parameters, on EZACIC08 272

HOW parameter on call interface, on

SHUTDOWN 257

HOW parameter on macro interface, on

SHUTDOWN 349

HTMLINST.Z 19

htonl() library function 149

htons() library function 150

I
IDENT parameter on call interface,

INITAPI call 232, 323

IESTCP.EXE, configuration EXE (OS/2

version) 22

IESTCPW.EXE, configuration EXE

(Windows version) 22

immediate=no 395

immediate=yes 395

IN-BUFFER parameter on call interface,

EZACIC05 call 268

inet_addr() library function 151

inet_lnaof() library function 153

inet_makeaddr() library function 154

inet_netof() library function 155

inet_network() library function 156

inet_ntoa() library function 157

InfoPrint Manager
customizing 39

InfoPrint Manager support 37

INITAPI(call) 232

INITAPI(macro) 322

installing CICS TCP/IP 363

installing product keys 6

integer
short translated to host byte

order 162

translating 150

translating long to host byte

order 161

unsigned short 150

Internet address
host 154, 155, 157

into network byte order 151

interval control 420

IOCTL (call) 234

IOCTL (macro) 325

ioctl() library function 158

IPNCSD.Z 17

IPNCSDUP.Z 16

iterative server
socket calls in 415

L
LE enabling, definition of 52

LENGTH parameter on call socket

interface
on EZACIC04 267

on EZACIC05 268

link, program 396

listen ()
use in server 414

LISTEN (call) 236

listen() library function 159

Listener
control area 409

input format 420

monitor control table 365

output format 421

security module 422

starting and stopping 420, 423

user-written 399

listener/server call sequence 413

listener/server, socket call (general) 414

little endian 418

local network address
into host byte order 153

long integer, translating 149

M
macro instructions for assembler

programs
CANCEL 284

GETSOCKNAME 302

GETSOCKOPT 304

GIVESOCKET 306

INITAPI 322

IOCTL 325

RECV 331

RECVFROM 333

SELECT 335

SELECTEX 339

SEND 342

SHUTDOWN 349

SOCKET 351

WRITE 358

macro, EZACICR 385

manual startup 391

MAXSNO parameter on call interface,

INITAPI call 233

MAXSNO parameter on macro interface,

INITAPI call 323

MAXSOC parameter on call socket

interface
on INITAPI 232

on SELECT 245

on SELECTEX 248

MAXSOC parameter on macro socket

interface
on INITAPI 322

on SELECT 337

on SELECTEX 339

messages
receive and store in buffers 167

migration considerations 8

MQSeries 89

N
NAME parameter on call socket interface

on BIND 194

on CONNECT 199

on GETHOSTBYNAME 206

on GETHOSTNAME 209

on GETPEERNAME 210

on GETSOCKNAME 212

on RECVFROM 242

on SENDTO 254

NAME parameter on macro interface
on GETSOCKNAME 302

on RECVFROM 333

on SENDTO 344

name, binding to a socket 106

NAMELEN parameter on call socket

interface
on GETHOSTBYNAME 206

on GETHOSTNAME 209

NBYTE parameter on call socket interface
on READ 237

on RECV 239

Index 453

NBYTE parameter on call socket

interface (continued)
on RECVFROM 242

on SEND 251

on SENDTO 253

on WRITE 264

NBYTE parameter on macro socket

interface
on READ 329

on RECV 331

on RECVFROM 333

on SEND 342

on SENDTO 344

on WRITE 358

network byte order 149, 150, 151, 418

network number
getting decimal host address 156

getting Internet host address 155

ntohl() library function 161

ntohs() library function 162

O
OPTION SYSPARM 89

options, socket 179

OPTLEN parameter on call socket

interface
on GETSOCKOPT 215

on SETSOCKOPT 256

OPTLEN parameter on macro socket

interface
on GETSOCKOPT 305

on SETSOCKOPT 346

OPTNAME parameter on call socket

interface
on GETSOCKOPT 214

on SETSOCKOPT 255

OPTNAME parameter on macro socket

interface
on GETSOCKOPT 304

on SETSOCKOPT 346

OPTVAL parameter on call socket

interface
on GETSOCKOPT 214

on SETSOCKOPT 256

OPTVAL parameter on macro socket

interface
on GETSOCKOPT 304

on SETSOCKOPT 347

OSA Express support 41

OUT-BUFFER parameter on call interface,

on EZACIC04 267

P
partition startup 11

passing sockets 415

PASSWORD.HTML 19

performance and tuning

considerations 43

phase
CUSTDEF 8

PRODKEYS 8

PL/I programs, required statement 191

PLT 391

PLT entry 367

port numbers
definition 417

ports
numbers 417

Preparation and Setup for SSL 89

PRODKEYS phase 8

product key 5

program link 396

Program List Table 391

programs, defining in CICS 364

PROTO parameter on call interface, on

SOCKET 259

PROTO parameter on macro interface, on

SOCKET 352

R
RDO

configure the socket interface

(EZAC) 364

READ (call) 237

read()
use in child server 414

use in client 413

read() library function 163

receiving
data and store in buffers 165

messages and store in buffers 167

RECV (call) 239

RECV (macro) 331

recv() library function 165

RECVFROM (call) 241

RECVFROM (macro) 333

recvfrom()
use in server 414

recvfrom() library function 167

RENAME 383

REQARG and RETARG parameter on call

socket interface
on IOCTL 235

REQARG parameter on macro socket

interface
on IOCTL 325

resource definition in CICS 363

RETARG parameter on call interface, on

IOCTL 235

RETARG parameter on macro interface,

IOCTL call 325

RETCODE parameter on call socket

interface
on ACCEPT 193

on CLOSE 197

on CONNECT 199

on EZACIC06 270

on FCNTL 201

on GETCLIENTID 203

on GETHOSTBYADDR 204

on GETHOSTBYNAME 206

on GETHOSTID 208

on GETHOSTNAME 209

on GETPEERNAME 211

on GETSOCKNAME 213

on GETSOCKOPT 215

on GIVESOCKET 217

on INITAPI 233

on IOCTL 235

on LISTEN 236

RETCODE parameter on call socket

interface (continued)
on READ 237

on RECV 240

on RECVFROM 242

on SELECT 246

on SELECTEX 249

on SEND 252

on SENDTO 254

on SETSOCKOPT 256

on SHUTDOWN 257

on SOCKET 260

on TAKESOCKET 262

on WRITE 264

RETCODE parameter on macro socket

interface
on CANCEL 284

on GETSOCKNAME 303

on RECV 331

on RECVFROM 334

on SELECT 337

on SELECTEX 339

on SEND 342

on SENDTO 345

on SETSOCKOPT 347

on SHUTDOWN 349

on TAKESOCKET 355

on WRITE 358

RRETMSK parameter on call interface, on

SELECT 246

RRETMSK parameter on macro interface,

on SELECT 338

RSNDMSK parameter on call interface,

on SELECT 245

S
S, defines socket descriptor on macro

interface
on GETSOCKNAME 302

on GETSOCKOPT 304

on GIVESOCKET 306

on IOCTL 325

on READ 329

on RECV 331

on RECVFROM 333

on SEND 342

on SENDTO 344

on SETSOCKOPT 346

on SHUTDOWN 349

on WRITE 358

S, defines socket descriptor on socket call

interface
on ACCEPT 193

on BIND 194

on CLOSE 196

on CONNECT 199

on FCNTL 200

on GETPEERNAME 210

on GETSOCKNAME 212

on GETSOCKOPT 214

on GIVESOCKET 216

on IOCTL 234

on LISTEN 236

on READ 237

on RECV 239

on RECVFROM 242

454 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

S, defines socket descriptor on socket call

interface (continued)
on SEND 251

on SENDTO 253

on SETSOCKOPT 255

on SHUTDOWN 257

on WRITE 264

secure socket
close connection 137

initialize connection 138

initialize environment 135

provide callback routines 148

query information 132

receive data 142

refresh parameters 144

remove current settings 147

send data 145

Security Manager 31

security module 422

SELECT (call) 243

SELECT (macro) 335

select()
use in server 414, 415

select() library function 169

SELECTEX (call) 248

SELECTEX (macro) 339

selectex() library function 173

SEND (call) 251

SEND (macro) 342

send() library function 175

SENDTO (call) 253

sendto() library function 177

server
incoming client requests 159

socket calls in child server 413

socket calls in concurrent server 414

socket calls in iterative server 415

SETSOCKOPT (call) 255

setsockopt() library function 179

sharing considerations with VTAM 18

shutdown
duplex connection 182

SHUTDOWN (call) 257

SHUTDOWN (macro) 349

shutdown, immediate 395

shutdown, manual 391

shutdown() library function 182

socket
acquire from another program 186

creating 183

data, sending on 177

datagrams, sending on 175

descriptor in AF_INET domain 106

getting name 123

make available 128

operating characteristics,

specifying 158

options, getting 125

options, setting 179

peer connected to 122

send data on 175, 177

shutdown 182

SOCKET (call) 259

SOCKET (macro) 351

socket()
use in client 413

use in server 414

socket() library function 183

sockets
passing 415

SOCRECV parameter on call interface,

TAKESOCKET call 261

SOCRECV parameter on macro interface,

TAKESOCKET call 355

SOCTYPE parameter on call interface, on

SOCKET 259

SOCTYPE parameter on macro interface,

on SOCKET 351

SSL for VSE
preparation andsSetup 89

usable / not usable with 5

SSL function
gsk_free_memory() 131

gsk_get_cipher_info() 132

gsk_get_dn_by_label() 134

gsk_initialize() 135

gsk_secure_soc_close() 137

gsk_secure_soc_init() 138

gsk_secure_soc_read() 142

gsk_secure_soc_reset() 144

gsk_secure_soc_write() 145

gsk_uninitialize() 147

gsk_user_set() 148

startup
automatic 391

manually 391

program link 396

startup member TCPSTART.Z 11

STORAGE parameter on macro interface
on TASK call 356

storage protection machines 364, 365

stropts.h 158

SUBTASK parameter on call interface,

INITAPI call 233, 323

support, environmental 399

SYSPARM 89

T
TAKESOCKET (call) 261

takesocket()
use in child server 414, 418

takesocket() library function 186

task control 420

TCP/IP for VSE/ESA
callable functions 92

demonstration mode 4

history 427

migration considerations 8

partition startup 11

TCPM td queue 365

TCPSTART.Z, startup member 11

TERMAPI (call) 263

TIMEOUT parameter on call interface, on

SELECT 245

TIMEOUT parameter on call socket

interface
on SELECTEX 248

TIMEOUT parameter on macro interface,

on SELECT 337

TIMEOUT parameter on macro socket

interface
on SELECTEX 340

TOKEN parameter on call interface, on

EZACIC06 269

transaction identifier 420

transactions, defining in CICS 363

transferring print files 37

transient data 365

type parameter 368

TYPE=CICS 368

TYPE=INITIAL 368

TYPE=LISTENER 369

U
unsigned short integer 150

use of HOSTENT structure interpreter,

EZACIC08 271

utility programs 266

EZACIC04 267

EZACIC05 268

EZACIC06 269

EZACIC08 271

V
VIOLATED.HTML 19

VSAM cache file 385

VSAMCAT usage 439

W
WRETMSK parameter on call interface,

on SELECT 246

WRETMSK parameter on macro interface,

on SELECT 338

WRITE (call) 264

WRITE (macro) 358

write()
use in child server 414

use in client 413

write() library function 187

WSNDMSK parameter on call interface,

on SELECT 246

WSNDMSK parameter on macro

interface, on SELECT 338

Index 455

456 TCP/IP for VSE/ESA V1R5.0 IBM Program Setup and Supplementary Information

����

Program Number: 5686-A04

Printed in USA

SC33-6601-08

	Contents
	Figures
	Tables
	Notices
	Trademarks and Service Marks

	About this book
	Understanding Syntax Diagrams

	Summary of Changes
	Part 1. Using TCP/IP for VSE/ESA
	Chapter 1. Important Considerations - Read this First!
	Documentation for the TCP/IP for VSE/ESA (5686-A04) Program
	General Considerations on the TCP/IP for VSE/ESA Program Setup
	The Demo Mode for TCP/IP for VSE/ESA
	Supplying the Product Key
	Installing Product Keys
	Defining Customer Information

	Migration Considerations

	Chapter 2. TCP/IP for VSE/ESA Configuration
	How TCP/IP for VSE/ESA is Installed
	TCP/IP for VSE/ESA Partition Startup
	Example
	Notes

	Configuring CICS
	Setup CICS
	Example for CICS/VSE 2.3 only
	Notes
	Example for CICS/TS 1.1 and CICS/VSE 2.3
	Notes

	ICA Token-Ring – Sharing Considerations with VTAM
	HTMLINST.Z
	Example

	Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs
	Configuring TCP/IP Using the Configuration Dialogs
	How To Do It
	TCP/IP for VSE/ESA PC-based Configuration Dialog
	Installing the Dialog On Your PC
	Using this Dialog as a VSE Navigator Plugin
	Dialog Output Files
	Downloading from the Internet

	Configuring TCP/IP Using the IUI-based Configuration Dialog

	Chapter 4. Security Manager Exploitation by TCP/IP for VSE/ESA
	Using BSM Capabilities for TCP/IP Security Checks
	Exception List BSSTIXE

	Activation of The Security Exit
	Deactivation of the Security Exit
	Using Pre- and Postprocessing Exits
	Register Settings for Preprocessing Exit
	Register Settings for Postprocessing Exit

	Performance Hints
	External Security Managers

	Chapter 5. InfoPrint Manager Support of TCP/IP for VSE/ESA
	Overview
	Setting the Parameters for the IPM Support
	Description of the SET Parameters
	SET HOST=9.66.110.67
	SET PRINTER=ipheft
	SET PAGEDEF=b111 and SET FORMDEF=a222
	SET INFOPRINT=YES
	SET CC=YES
	SET CRLF=UNIX, SET NOEJECT=ON, SET DISP=KEEP

	Using the SET FNO= Parameter with IPM

	Customizing the InfoPrint Manager
	Changing the Properties of the Actual Destination
	Technical Background Information
	Software Prerequisites

	Chapter 6. VSE/ESA Related Hardware Functions Supported by TCP/IP for VSE/ESA 1.5
	Hardware Crypto Support
	HiperSockets
	OSA Express Support

	Chapter 7. Performance Considerations
	Performance and Tuning Considerations
	Changing Performance Parameters
	General Performance Issues
	Principal Performance Dependencies for TCP/IP for VSE/ESA

	Part 2. Programming Interfaces
	Chapter 8. Introducing Socket Programming
	What is a TCP/IP Socket Connection ?
	Socket Application Programming Interfaces Available with TCP/IP for VSE/ESA
	Portability Aspects
	Assembler
	COBOL and PL/I
	C Language
	Language Environment
	LE Enabled Applications

	Which API to use ?
	Assembler
	COBOL and PL/I
	C Language

	Exploiting the LE/VSE Socket API
	C Language
	Client
	Server

	Assembler Language
	Assembler source
	C subroutine with OS linkage called from Assembler

	PL/I
	COBOL
	A COBOL Example using LE C Socket Services

	Exploiting the EZASMI/EZASOKET Programming Interfaces
	LE/VSE 1.4 C Socket Programming
	General C Programming Considerations
	LE/VSE Sockets versus TCP/IP for VSE/ESA Sockets - Reference List
	Messages
	Messages issued by the LE/VSE 1.4 C Run-time Library
	Message issued by Phase $EDCTCPV

	OS/390 or z/OS EZASMI and EZASOKET Calls Supported by z/VSE
	ERRNO Values
	CICS Considerations
	Executing TCP/IP Application Programs
	Connecting To TCP/IP
	Preparation and Setup for SSL

	Chapter 9. TCP/IP Support for the LE/VSE C Socket Interface
	Overview
	TCP/IP Callable Functions — Function Descriptions
	accept() — Accept a New Connection on a Socket
	General Description
	Returned Value
	Example
	Related Information

	aio_cancel() — Cancel an Asynchronous I/O Request
	General Description
	Returned Value
	Related Information

	aio_error() — Retrieve Error Status for an Asynchronous I/O Operation
	General Description
	Returned Value
	Related Information

	aio_read() — Asynchronous Read from a Socket
	General Description
	Returned Value
	Related Information

	aio_return() — Retrieve Status for an Asynchronous I/O Operation
	General Description
	Returned Value
	Related Information

	aio_suspend() — Wait for an Asynchronous I/O Request
	General Description
	Returned Value
	Usage Notes
	Related Information

	aio_write() — Asynchronous Write to a Socket
	General Description
	Returned Value
	Related Information

	bind() — Bind a Name to a Socket
	General Description
	Returned Value
	Example
	Related Information

	close() — Close a Socket
	General Description
	Returned Value
	Related Information

	connect() — Connect a Socket
	General Description
	Returned Value
	Example
	Related Information

	fcntl() — Control Open Socket Descriptors
	General Description
	Returned Value
	Example
	Related Information

	getclientid() — Get the Identifier for the Calling Application
	General Description
	Returned Value

	gethostbyaddr() — Get a Host Entry by Address
	General Description
	Returned Value
	Related Information

	gethostbyname() — Get a Host Entry by Name
	General Description
	Returned Value
	Related Information

	gethostid() — Get the Unique Identifier of the Current Host
	General Description
	Returned Value
	Related Information

	gethostname() — Get the Name of the Host Processor
	General Description
	Returned Value
	Related Information

	getpeername() — Get the Name of the Peer Connected to a Socket
	General Description
	Returned Value
	Related Information

	getsockname() — Get the Name of a Socket
	General Description
	Returned Value
	Related Information

	getsockopt() — Get the Options Associated with a Socket
	General Description
	Returned Value
	Example
	Related Information

	givesocket() — Make the Specified Socket Available
	Format
	General Description
	Element Description
	Using Name and Subtaskname for Givesocket/Takesocket
	Returned Value
	Related Information

	gsk_free_memory() — Free memory allocated for SSL
	Format
	General Description
	Related Information

	gsk_get_cipher_info() — Query Cipher Related Information
	Format
	General Description
	Returned Value
	Related Information

	gsk_get_dn_by_label() — Get Distinguished Name Based on the Label
	Format
	General Description
	Returned Value
	Related Information

	gsk_initialize() — Initialize the SSL Environment
	Format
	General Description
	Returned Value
	Related Information

	gsk_secure_soc_close() — Close a Secure Socket Connection
	Format
	General Description
	Related Information

	gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection
	Format
	General Description
	Returned Value
	Related Information

	gsk_secure_soc_read() — Receive Data on a Secure Socket Connection
	Format
	General Description
	Returned Value
	Related Information

	gsk_secure_soc_reset() — Refresh the Security Parameters
	Format
	General Description
	Returned Value
	Related Information

	gsk_secure_soc_write() — Send Data on a Secure Socket Connection
	Format
	General Description
	Returned Value
	Related Information

	gsk_uninitialize() — Remove Current Settings for the SSL Environment
	Format
	General Description
	Returned Value
	Related Information

	gsk_user_set() — Provide Callback Routines
	Format
	General Description
	Returned Value
	Related Information

	htonl() — Translate Address Host to Network Long
	General Description
	Returned Value
	Related Information

	htons() — Translate an Unsigned Short Integer into Network Byte Order
	General Description
	Returned Value
	Related Information

	inet_addr() — Translate an Internet Address into Network Byte Order
	General Description
	Returned Value
	Related Information

	inet_lnaof() — Translate a Local Network Address into Host Byte Order
	General Description
	Returned Value
	Related Information

	inet_makeaddr() — Create an Internet Host Address
	General Description
	Returned Value
	Related Information

	inet_netof() — Get the Network Number from the Internet Host Address
	General Description
	Returned Value
	Related Information

	inet_network() — Get the Network Number from the Decimal Host Address
	General Description
	Returned Value
	Related Information

	inet_ntoa() — Get the Decimal Internet Host Address
	General Description
	Returned Value
	Related Information

	ioctl() — Control Socket
	General Description
	Sockets
	Terminal and Sockets Returned Value
	Example
	Related Information

	listen() — Prepare the Server for Incoming Client Requests
	General Description
	Returned Value
	Related Information

	ntohl() — Translate a Long Integer into Host Byte Order
	General Description
	Returned Value
	Related Information

	ntohs() — Translate an Unsigned Short Integer into Host Byte Order
	General Description
	Returned Value
	Related Information

	read() — Read From a Socket
	General Description
	Returned Value
	Example
	Related Information

	recv() — Receive Data on a Socket
	General Description
	Returned Value
	Related Information

	recvfrom() — Receive Messages on a Socket
	General Description
	Returned Value
	Related Information

	select() — Monitor Activity on Sockets
	General Description
	Returned Value
	Example
	Related Information

	selectex() — Monitor Activity on Sockets
	General Description
	Returned Value
	Related Information

	send() — Send Data on a Socket
	General Description
	Returned Value
	Related Information

	sendto() — Send Data on a Socket
	General Description
	Returned Value
	Related Information

	setsockopt() — Set Options Associated with a Socket
	General Description
	Returned Value
	Example
	Related Information

	shutdown() — Shut Down a Connection
	General Description
	Returned Value
	Related Information

	socket() — Create a Socket
	General Description
	Returned Value
	Example
	Related Information

	takesocket() — Acquire a Socket from Another Program
	General Description
	Returned Value
	Related Information

	write() — Write Data on a Socket
	General Description
	Returned Value
	Example
	Related Information

	Chapter 10. Using the CALL Instruction Application Programming Interface (EZASOKET API)
	Environmental Restrictions and Programming Requirements
	CALL Instruction Application Programming Interface (API)
	Understanding COBOL, Assembler, and PL/I Call Formats
	COBOL Language Call Format
	Assembler Language Call Format
	PL/I Language Call Format

	Converting Parameter Descriptions
	Error Messages and Return Codes
	Debugging
	Code CALL Instructions
	ACCEPT
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	BIND
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	CLOSE
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	CONNECT
	Stream Sockets
	UDP Sockets
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	FCNTL
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETCLIENTID
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETHOSTBYADDR
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETHOSTBYNAME
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETHOSTID
	Parameter Values Set by the Application

	GETHOSTNAME
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETPEERNAME
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETSOCKNAME
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETSOCKOPT
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GIVESOCKET
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GSKFREEMEM
	GSKGETCIPHINF
	GSKGETDNBYLAB
	GSKINIT
	GSKSSOCCLOSE
	GSKSSOCINIT
	GSKSSOCREAD
	GSKSSOCRESET
	GSKSSOCWRITE
	GSKUNINIT
	INITAPI
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	IOCTL
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	LISTEN
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	READ
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	RECV
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	RECVFROM
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SELECT
	Defining Which Sockets to Test
	Read Operations
	Write Operations
	Exception Operations
	MAXSOC Parameter
	TIMEOUT Parameter
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SELECTEX
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SEND
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SENDTO
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SETSOCKOPT
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SHUTDOWN
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SOCKET
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	TAKESOCKET
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	TERMAPI
	Parameter Values Set by the Application

	WRITE
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	Using Data Translation Programs for Socket Call Interface
	Data Translation
	Bit String Processing
	EZACIC04
	EZACIC05
	EZACIC06
	EZACIC08

	Chapter 11. Using the Macro Application Programming Interface (EZASMI API)
	Environmental Restrictions and Programming Requirements
	EZASMI Macro Application Programming Interface (API)
	Defining Storage for the API Macro
	Understanding Common Parameter Descriptions
	Characteristics of Stream Sockets
	Task Management and Asynchronous Function Processing
	How It Works

	Error Messages and Return Codes
	Debugging
	Macros for Assembler Programs
	ACCEPT
	BIND
	CANCEL
	CLOSE
	CONNECT
	FCNTL
	GETCLIENTID
	GETHOSTBYADDR
	GETHOSTBYNAME
	GETHOSTID
	GETHOSTNAME
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	GIVESOCKET
	GSKFREEMEM
	GSKGETCIPHINF
	GSKGETDNBYLAB
	GSKINIT
	GSKSSOCCLOSE
	GSKSSOCINIT
	GSKSSOCREAD
	GSKSSOCRESET
	GSKSSOCWRITE
	GSKUNINIT
	INITAPI
	IOCTL
	LISTEN
	READ
	RECV
	RECVFROM
	SELECT
	Testing Sockets
	Read Operations
	Write Operations
	Exception Operations
	Returning the Results
	MAXSOC Parameter
	TIMEOUT Parameter

	SELECTEX
	SEND
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	TAKESOCKET
	TASK
	TERMAPI
	WRITE

	Part 3. CICS Listener Support
	Chapter 12. Setting Up and Configuring CICS Listener Support
	Overview
	CICS — Defining CICS Resources
	Transaction Definitions
	Using Storage Protection

	Program Definitions
	Using Storage Protection

	File Definitions
	Transient Data Definition
	CICS Monitoring
	Event Monitoring Points for the Listener

	CICS Program List Table (PLT)

	Configuring the CICS TCP/IP Environment
	Building the Configuration Dataset with EZACICD
	Configuration Macro

	Customizing the Configuration Dataset
	Configuration Transaction (EZAC)

	Chapter 13. Configuring the CICS Domain Name Server Cache
	Overview of the Domain Name Server Cache
	Function Components
	VSAM Cache File
	EZACICR macro
	EZACIC25 Module

	How the DNS Cache Handles Requests

	Using the DNS Cache
	Step 1: Create the Initialization Module
	Step 2: Define the Cache File to CICS
	Step 3: Execute EZACIC25
	HOSTENT Structure

	Chapter 14. Starting and Stopping the CICS Listener Support
	Overview
	Starting/Stopping CICS Listener Support Automatically
	Starting/Stopping CICS Manually
	START Function
	START CICS Listener Support
	START A LISTENER

	STOP Function
	STOP CICS Listener Support
	STOP A LISTENER

	Starting/Stopping CICS Listener Support with Program Link

	Chapter 15. Writing Your Own Listener
	Basic Requirements
	Pre-Requisites
	Using IBM's Environmental Support

	Chapter 16. External Data Structures
	External Data Structures
	Configuration Data Set Record Formats
	Global Work Area
	Parameter List (COMMAREA) for EZACIC20

	Listener Control Area (LCA)

	Chapter 17. CICS Listener Programming Considerations
	Overview
	Writing CICS TCP/IP Applications
	1. The Client-Listener-Child-Server Application Set
	Client Call Sequence
	Listener Call Sequence
	Child Server Call Sequence

	2. Writing Your Own Concurrent Server
	Concurrent Server Call Sequence
	Passing Sockets

	3. The Iterative Server CICS TCP/IP Application
	Iterative Server Use of Sockets

	4. The Client CICS TCP/IP Application

	Socket Addresses
	Address Family (Domain)
	IP Addresses
	Ports
	Address Structures
	For COBOL and Assembler Language Programs
	For C Programs

	Network Byte Order

	GETCLIENTID, GIVESOCKET, and TAKESOCKET
	The Listener
	Listener Input Format
	Examples

	Listener Output Format
	Writing Your Own Security Link Module for the Listener

	Data Conversion Routines

	Part 4. Appendixes
	Appendix A. TCP/IP for VSE/ESA (5686-A04) History
	Appendix B. Examples
	Autonomous FTP
	Overview
	Example

	AUTOLPR – Printing with the CICS Report Controller Feature (RCF)
	Specification in the CICS RCF Program
	TCP/IP Definitions
	Script File Definition

	GPS and RCF
	Overview
	Defining to VTAM
	Defining to CICS
	Defining to TCP/IP
	Defining to RCF

	TELNET and Subnetting in a Class-C Network
	TELNET daemons and logmode
	VSAMCAT Usage
	Step 1: Defining the catalog to VSE
	Step 2: Defining the catalog to TCP/IP
	Step 3: Using the catalog

	Using the Command Pre-Processor
	Overview
	Sample Programs
	COBOL Example
	PL/I Example

	Compiling Your Program
	Compiling a COBOL Program for Batch
	Compiling a COBOL Program for CICS

	Appendix C. Debugging Facility for EZASMI and EZASOKET Interfaces (EZAAPI Trace)
	Requirements for Usage
	Setup
	Output

	Index

