<|lI!

IBM z/VSE

System Macros Reference

Version 3 Release 1

SC33-8230-00

<|lI!

IBM z/VSE

System Macros Reference

Version 3 Release 1

SC33-8230-00

Note!

Before using this information and the product it supports, be sure to read the general information under

First Edition (March 2005)

This edition, which is an update of IBM VSE/Enterprise Systems Architecture System Macros Reference, Version 2 Release
4, SC33-6716-00, applies to Version 3 Release 1 of z/Virtual Storage Extended (z/VSE), Program Number 5609-ZVS,
and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the addresses given below.

A form for readers” comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Deutschland Entwicklung GmbH
Department 3248

Schoenaicher Strasse 220
D-71032 Boeblingen

Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures
Tables

Notices. .
Programming Interface Informatlon
Trademarks and Service Marks .

About This Book .
Who Should Use This Book.
Where to Find More Information .

Summary of Changes

Chapter 1. Using the Macros.
Selecting the Macro Level .
Addressing Mode and the Macros .
Address Space Control (ASC) Mode
Using X-Macros . .
Passing Parameters in AR Mode
Register Usage.
Macro Notation .

Positional Operands .

Keyword Operands .

Mixed Format .

Comments in Macros .

Understanding Syntax Dlagrams

Register Notation . .

Chapter 2. Macro Descriptions .

ALESERV (Access List Entry) Macro

ALESERV ADD (Add Access List Entry) Macro
Return Codes in Register 15 .

ALESERV DELETE (Delete Access List Entry) Macro 12

Return Codes in Register 15 .
ALESERV EXTRACT (Find a STOKEN) Macro
Return Codes in Register 15 . .
ALESERV SEARCH (Search Access List Entry)
Macro . . .
Return Codes in Reglster 15 .o
AMODESW CALL (Addressing Mode Sw1tch)
Macro .

AMODESW QRY (Query Addressmg Mode) Macro

AMODESW RETURN (Return from Subroutine)
Macro . .
AMODESW SET (Set Addressmg Mode) Macro
ASPL (Assign Parameter List) Macro . .
ASSIGN (Assign 1/0 Device) Macro .
Return Codes in Register 15 .
ATTACH (Attach a Task) Macro
AVRLIST (Map GETVCE) Macro
CALL (Call a Program) Macro . .
CALL CSRPxxx (Call Cell Pool Serv1ces) Macro
Control Parameters .

© Copyright IBM Corp. 1990, 2005

. Vil

. Xi

. xi
. Xi

. Xl
. xiil
. xiil

x
<

N U101 U1 U B WWWNRN -~ =,

. 10

.1

.12
.13
.13

.15
. 16

.17
18

.18
. 19
. 20
.21
.21
.22
. 25
. 26
. 28
. 29

Programming Requirements .
Register Information
CALL CSRPBLD (Build A Cell Pool And Inrtlahze
An Anchor)
Return Codes in Reglster 15 .
CALL CSRPEXP (Expand A Cell Pool)
Return Codes in Register 15 . .
CALL CSRPCON (Connect Cell Storage to an
Extent) . .o
Return Codes in Reglster 15 .
CALL CSRPACT (Activate Prevrously Connected
Storage) e
Return Codes in Reglster 15 .
CALL CSRPDAC (Deactivate an Extent).
Return Codes in Register 15 .

CALL CSRPDIS (Disconnect the Cell Storage for an

Extent) .
Return Codes in Reglster 15 .

CALL CSRPGET (Allocate a Cell from a Cell Pool)
Return Codes in Register 15 .

CALL CSRPRGT (Allocate a Cell from a Cell Pool -

Register Interface) .
Input Register Informatlon
Output Register Information.
Return Codes in Register 15 . .
CALL CSRPFRE (Return a Cell to a Cell Pool)
Return Codes in Register 15 . .
CALL CSRPRFR (Return a Cell to a Cell Pool -
Register Interface) . .
Input Register Information
Output Register Information.
Return Codes in Register 15 . .
CALL CSRPQPL (Query the Cell Pool)
Return Codes in Register 15 . .
CALL CSRPQEX (Query a Cell Pool Extent)
Return Codes in Register 15 . .
CALL CSRPQCL (Query a Cell)
Return Codes in Register 15 .
CANCEL (Cancel Task) Macro . .
CCB (Command Control Block Def1n1t10n) Macro.
Format of the CCB .
CCB Communication Bytes . .
CDDELETE (Delete Loaded Phase) Macro .
Return Codes in Register 15 . .o
CDLOAD (Control-Directory Load) Macro .
Return Codes in Register 15 . .
CDMOD (Card I/0O Module Definition) Macro
Standard CDMOD Names e
Subset/Superset CDMOD Names .
CHAP (Change Priority) Macro.
CHECK (Check I/O Completion) Macro
CHKPT (Checkpoint Request) Macro .
CLOSE and CLOSER (Close a File) Macro .
CNTRL (Control Device) Macro
CKD-Disk Devices .
Magnetic Tape Units

.29
. 29

. 30
. 30
.31
.32

. 33
. 33

. 35
. 35
. 36
. 36

. 38

. 38

. 40

.41
.41
.41
.42
.42
.43

.44
. 44
. 44
. 45
. 46
. 47
. 48
. 49
. 50
. 50
. 51
. 52
. 53
. 54
. 58
. 58
. 59
. 60
. 61
. 63
. 63
. 64
. 65
. 68
.71
.72
.73
.73

iii

Printers — Any Type . .
PRT1 Printers — Including IBM 4248 in Natlve
Mode
Card I/0 Dev1ces
IBM 3881 Optical Mark Reader
IBM 3886 Optical Character Reader .
COMRG (Communication Region Access) Macro .
CPCLOSE (Control Program File Close) Macro
Return Codes in Register 15 . .o
CSRCMPSC (Compression/Expansion) Macro
Return Codes.
CSRYCMPS (Map Compressmn Control Block)
Macro . . e
DCTENTRY (Map GETVCE) Macro
DEQ (Dequeue Resource) Macro
DETACH (Detach Task) Macro .
DFR (Define Font Record) Macro .
DIMOD (Device-Independent 1/0 Module
Definition) Macro Lo
Standard DIMOD Names
Subset/Superset DIMOD Names .
DISEN (Disengage Document Reader) Macro .
DLINT (Define Line Type) Macro . .
Line-Information Specifications .
Field-Information Specifications
DOM (Delete Operator Message) Macro .
Return Codes in Register 15 .
Cancel Codes.
DRMOD (Document Read Module Deflnltlon)
Macro . .
Standard DRMOD Names
DSPLY (Display Document Field) Macro
DSPSERV (Data Space) Macro . .
DSPSERV CREATE (Create Data Space) Macro
Return Codes in Register 15 (and Reason Codes
in Register 0) . .
Data Space Naming Conventlons .
DSPSERV DELETE (Delete Data Space) Macro
DSPSERV EXTEND (Extend Data Space) Macro
Return Codes in Register 15 (and Reason Codes
in Register 0) .
DSPSERV RELEASE (Release Data Space) Macro
DTFCD (Define the File for Card 1/0O) Macro.
DTFCN (Define the File for Console 1/0O) Macro
DTFDA (Define the File for Direct Access) Macro
DTEDI (Define the File for Device Independence)
Macro . .
DTFDR (Define the Flle for Document Reader)
Macro .
DTFDU (Deflne the Flle for Dlskette Un1t I/ O)
Macro .
DTFIS (Define the Frle for Indexed Sequentlal
Access) Macro . .
DTEMR (Define the File for Magnetlc Reader
Input) Macro
DTFMT (Define the Frle for Magnetlc Tape 1/ O)
Macro .
DTFOR (Define the Flle for Optlcal Reader Input)
Macro .
DTFPH (Define the Fﬂe for Physrcal I / O) Macro
DTFPR (Define the File for Printer) Macro.

iv z/VSE System Macros Reference

.73

. 74
. 74
.75
.75
.75
.76
. 76
.77
.77

.78
. 78
.79
. 80
. 81

. 83
. 84
. 84
. 85
. 86
. 86
. 86
. 89
. 89
. 89

.90
. 90
.91
.92

.97
.97
. 98

100

. 101

102

. 104

111
113

. 119

. 123

. 126

. 131

. 141

. 143

. 150

155

. 159

DTFSD (Define the File for Sequent1a1 Disk 1/0)
Macro . .o . .o
DTL (Define the Lock) Macro .
DUMODFx (Diskette Unit I/O Module Def1n1t10n)
Macro . .
Standard DUMOD Names .
Subset/Superset DUMOD Names
DUMP (Dump Request) Macro
ENDFL (End File Load Mode) Macro
ENQ (Enqueue a Task) Macro .
EOJ (End of Job) Macro .
ERET (Error-Handling Return) Macro
ESETL (End Set Limit) Macro . .
EXCP (Execute Channel Program) Macro .
EXIT (Return from Exit Routine) Macro
STXIT Macro Issued With AMODE 24 .
STXIT Macro Issued With AMODE ANY .
EXTRACT (Extract Control Information) Macro .
Return Codes in Register 15
FCEPGOUT (Force Page Out) Macro
Exceptional Conditions . .
Return Codes in Register 15
FEOV (Force End of Volume) Macro. .
FEOVD (Force End of Volume for Disk) Macro .
FETCH (Fetch a Phase) Macro.
Return Codes in Register 15
FREE (Free Disk Area) Macro . .
FREEVIS (Free Virtual Storage) Macro . .
Format 1: Freeing Storage from the Partition
FREEVIS Area . .
Format 2: Freeing Storage from the Space
FREEVIS Area .
Format 3: Freeing Storage from the System
FREEVIS Area .
GENDTL (Generate the DTL Block) Macro
GENIORB (Generate an IORB) Macro
GENL (Generate Directory List) Macro .
GET (Get a Record) Macro . .
GETIME (Get the Time) Macro .
GETSYMB (Get Symbolic Parameter) Macro .
GETVCE (Get Volume Characteristics) Macro.
GETVCE Output
Return Codes in Register 15
AVRLIST and DCTENTRY .
GETVIS (Get Virtual Storage) Macro.
Format 1: Obtaining Storage from the Part1t10n
GETVIS Area .
Format 2: Obtaining Storage from the Space
GETVIS Area
Format 3: Obtaining Storage from the System
GETVIS Area e
IJBPUB (IJBPUB DSECT) Macro
IJJLBSER (LBSERV DSECT) Macro .
IORB (I/O Request Block Definition) Macro .
ISMOD (Indexed Sequential I/O Module
Definition) Macro . . Lo
Standard ISMOD Names .
Subset/Superset ISMOD Names .
JDUMP (Job Dump Request) Macro .
JOBCOM (Job Communication) Macro .
LBRET (Label-Routine Return) Macro

. 164

. 172

. 174
. 174
. 175
. 175
. 177
. 178
. 179
. 179
. 180
. 181
. 182
. 183
. 183
. 184
. 186
. 186
. 188
. 188
. 188
. 189
. 190
. 192
. 193
. 194

. 194

. 194

. 194
. 196
. 199
. 200
. 202
. 203
. 205
. 206
. 209
. 209
. 209
. 212

. 212

. 212

. 212
. 216
. 217
. 218

. 220
. 222
. 223
. 224
. 225
. 227

Checking Disk Extents .

Checking User Standard Labels on Drsk

Writing User Standard Labels on Disk .

Checking User Standard Tape Labels

Writing User Standard Tape Labels . .

Writing or Checking Nonstandard Tape Labels
LBSERV (Control IBM 3494 Tape L1brary) Macro

Overview of LBSERV Macro .o

Reason Codes .

LFCB (Load Forms Control Buffer) Macro

Return Codes in Register 15
LIBRDCB (Librarian Data Control Block) Macro

Library Macro Notation . .
LIBRM CLOSE (Close Library Member) Macro .

Return Codes
LIBRM DELETE (Delete L1brary Member) Macro

Return Codes .
LIBRM GET (Get Library Member) Macro

Return Codes
LIBRM LIBDEF (Define Subllbrary Cham) Macro

Return Codes
LIBRM LIBDROP (Drop Sublrbrary Cham) Macro

Return Codes .
LIBRM LOCK (Lock L1brary Member) Macro

Return Codes
LIBRM NOTE (Note Member Address) Macro

Return Codes
LIBRM OPEN (Open L1brary Member) Macro

Return Codes
LIBRM POINT (Point to Noted Member Record)
Macro .

Return Codes
LIBRM PUT (Put Library Member) Macro

Return Codes
LIBRM RENAME (Rename L1brary Member)
Macro .

Return Codes
LIBRM SHOWCB (Show L1brar1an Control Block)
Macro . .
LIBRM STATE CHAIN (Search Lrbrary Cham)
Macro . .o

Return Codes
LIBRM STATE LIB (Search lerary) Macro

Return Codes
LIBRM STATE MEMBER (Search Lrbrary Member)
Macro . A . .o

Return Codes
LIBRM STATE SUBLIB (Search Sublrbrary) Macro

Return Codes
LIBRM UNLOCK (Unlock L1brary Member) Macro

Return Codes . .
LITE (Pocket-Light Control) Macro .

LOAD (Load a Phase) Macro .
LOCK (Lock a Resource) Macro .

Return Codes in Register 15 .
MAPBDY (Map Boundary Information) Macro
MAPBDYVR (Map Boundary Information) Macro
MAPDNTRY (Map Directory Entry) Macro
MAPEXTR (Map EXTRACT Service) Macro
MAPSAVAR (Map Save Area) Macro
MAPSSID (Map for SUBSID) Macro .

. 227
. 227
. 227
. 227
. 228

228
229

. 229
. 241
. 250
. 251

253

. 254
. 257
. 258

258

. 259
. 260
. 262

263

. 264

265

. 265
. 267
. 268
. 268
. 269
. 271
. 274

. 275
. 276
. 277
. 278

. 279

. 280

. 281

. 282
. 283
. 285

. 286

. 287
. 289

291
. 293
294

. 295
. 296
. 297
. 302
. 304
. 305

306

. 307
. 309
. 312
. 314

MAPSYSP (Map System Layout) Macro

MAPXPCCB (Map Cross-Partition Control Block)

Macro . .
MODDTL (M0d1fy DTL Block) Macro .

. 315

. 316

. 320

MRMOD (MICR Input Module Definition) Macro
MVCOM (Move to Communication Region) Macro

NOTE (Note-Address) Macro .
OPEN and OPENR (Open a File) Macro

ORMOD (Optical Reader Input Module Defmrtron)

Macro . .
Standard ORMOD Names . .
Subset/Superset ORMOD Names

PAGEIN (Page-In Request) Macro
Return Information

PDUMP (Partial-Dump Request) Macro

PFIX (Page-Fix Request) Macro .
Exceptional Conditions .

Return Codes in Register 15

PFREE (Page-Free Request) Macro
Exceptional Conditions .

Return Codes in Register 15 .

POINTR (Point to Noted Record) Macro

POINTS (Point to Start) Macro

POINTW (Point Behind Noted Record) Macro

POST (Post Event) Macro

323
324

. 324

. 325

. 327

. 328
. 328
. 329
. 330
. 332
. 333
. 334
. 334
. 335
. 336
. 336
. 337
. 337

PRMOD (Printer Output Module Defmrtron) Macro

Standard PRMOD Names
Subset/Superset PRMOD Names
PRTOV (Printer Overflow Control) Macro .
PUT (Put Record) Macro
PUTR (PUT with Reply) Macro
QSETPRT (Query Printer Setup) Macro
Return Codes

. 338

. 339
340

. 342

. 343
. 344
. 345
. 347
. 348

Calling SETPRT for a VSE / POWER Controlled

Printer.

. 348

. 350

RCB (Resource Control Block Deﬁmtron) Macro

RDLNE (Read a Line) Macro .
READ (Read a Record) Macro .
REALAD (Real Address Return) Macro
RELEASE (Release Logical Unit) Macro
RELPAG (Release Page) Macro

Exceptional Conditions .

Return Codes in Register 15
RELSE (Release a Block) Macro
RESCN (Re-Scan) Macro. .
RETURN (Return after Call) Macro .
RUNMODE (Run-Mode Indication) Macro
SAVE (Save Register) Macro
SDUMP/SDUMPX

Return Codes in Register 15 .
SECTVAL (Sector-Value Calculation) Macro
SEOV (System End-of-Volume) Macro .
SETDEV (Set Device) Macro
SETFL (Set File Load Mode) Macro .
SETIME (Set Interval Timer) Macro .
SETL (Set Limits) Macro.

352

. 352
. 353
. 354
. 355
. 356
. 357
. 357
. 358
. 358
. 360
. 360
. 361
. 361
. 365
. 367
. 369
. 369
. 370
. 370

SETPFA (Set Link to Page-Fault Appendage) Macro

General Coding Requirements.
Register Usage .

Entry Linkage .

Page Fault Queue .

. 372
374

. 375
. 375
. 375
. 376

Contents

v

Processing in the Appendage Routine .
SETPRT (Set the Printer) Macro .
SPLEVEL (Set and Test Macro Level) Macro .
STXIT (Set Exit) Macro . .

SUBSID (Subsystem Information Dlsplay) Macro

Return Codes in Register 15
SYSSTATE (Set and Test Address Space Control
Mode) Macro .o
TECB (Timer Event Control Block) Macro .
TPIN (Telecommunication Priority In) Macro .
TPOUT (Telecommunication Priority Out) Macro
TRUNC (Truncate Block) Macro
TTIMER (Test Interval Timer) Macro
UNLOCK (Unlock Resource) Macro .

Return Codes in Register 15 .
VIRTAD (Virtual Address Return) Macro .
WAIT (Wait for Event) Macro . . .
WAITF (Wait for Completion of I/O) Macro .
WAITM (Wait for Multiple Events) Macro .
WRITE (Write a Record) Macro
WTO (Write to Operator) Macro .

Return Codes in Register 15

Cancel Codes .

WTOR (Write to Operator w1th Reply) Macro

Return Codes in Register 15 .

Cancel Codes
XECBTAB (Cross-Partition Event Control Block
Table) Macro e

Feedback Informatlon .
XPCC (Cross-Partition Commun1cat1on) Macro .
XPCCB (Cross-Partition Control Block) Macro
XPOST (Cross-Partition Post) Macro .

Return Codes in Register 15
XWAIT (Cross-Partition Wait) Macro

Return Codes in Register 15

YEAR224 Macro

Appendix A. Control Character Codes
CTLCHR=ASA Option
CTLCHR=YES Option

Stacker Selection Codes .

Printer Control Codes

Appendix B. American National
Standard Code for Information
Interchange .

vi 2z/VSE System Macros Reference

. 376
. 378
. 387
. 388

395

. 395

. 397
. 398
. 399

399

. 400
. 400
. 402
. 402
. 403
. 404
. 406
. 407
. 408
. 410
. 415
. 415
. 416
. 419
. 419

. 420
. 422
. 423
. 427
. 429
. 430
. 430
. 431
. 432

435

. 435
. 436
. 436
. 437

. 439

Appendix C. Standard and

Non-Standard Labels 445

Processing of User Labels 445
Coding Requirements - User—Standard Labels 446
Coding Requirements - Non-Standard Labels on

Tape . . . oL 447
Formats of Volume and F1le Labels L. L 447
Volume Label on Disk (VOL1).447
IBM Standard File Labels on Disk 448
User-Standard File Labels on Disk 451
Volume Labels on Diskette453
IBM Standard File Labels on Dlskette453
Volume Labels on Tape 454
IBM Standard File Labels on Tape T
User-Standard File Labels on Tape 458
Non-Standard File Labels on Tape 458

Appendix D. Librarian Feedback

Codes . 459
Appendix E. z/VSE Macros Intended
for Customer Use463
VSE/Advanced Functions463
VSE/SP Unique Code466
VSE/POWER466
Execution Macros466
Mapping Macros . . . 466
VSE/Interactive Computmg and Control Fac1l1ty
(VSE/ICCF). 466

VSE/Virtual Storage Access Method (VSE/ VSAM) 467

Appendix F. z/VSE Macros And Their

Mode Dependencies . - . . . 469
z/VSE Downward-Compatible Macros 472
Glossary . 475
Index . . 485

Figures

—_

10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.

Maximum and Initial BLOCKS Specification
ASOCFLE Operand Usage with Print
Associated Files. e
DTFDU Error Options .
Output Area Requirements for Loadlng or
Adding Records to a File by ISAM

I/O Area Requirements for Random or
Sequential Retrieval by ISAM .

Work Area Requirements

Operands to Define a Checkpoint F11e on
Disk .

Maximum and Assumed Lengths for the
IOAREA1 in Number of Bytes . .
Layout of the LBSERV-Generated DSECT
Volume Status in IJJLTSTA . .
Media Type in IJJLTMED

Device Status in IJJLTSTA

Library Status in IJJLTSTA .

Operand Notation for LIBRM Requests

Bit Configuration of the Pocket-Light Switch
Area . .
System Action for Control Def1n1t10ns in
DTLs

System Actions by Return Code and FAIL
Operand .

Layout of the MAPBDY Generated DSECT
Layout of the MAPBDYVR-Generated DSECT
Layout of the MAPDNTRY-Generated DSECT
for DE=VSE .

Layout of the MAPDNTRY Generated DSECT
for DE=YES .

© Copyright IBM Corp. 1990, 2005

95

. 105
. 128

. 136

. 137
. 140

. 156

. 1ol

217

. 233
. 233
. 235
. 238

255

. 297

. 303

. 304

305
306

. 307

. 308

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39.
40.

Layout of the MAPEXTR-Generated DSECT
for MODE=TEMP . .

Layout of the MAPEXTR- Generated DSECT
for MODE=PERM . .

Layout of the MAPEXTR- Generated DSECT
for MODE=SYSP .

Layout of the MAPEXTR- Generated DSECT
for ID=ATLCUU

Layout of the STXIT Save Area (AMODE 24
and MSGDATA=NO) . . .
Layout of the Extended STXIT Save Area
(AMODE=ANY or MSGDATA=YES).

Layout of MAPSSID-Generated DSECT
Layout of the MAPSYSP-Generated DSECT
MAPXPCCB Macro Return Codes (IJBXRETC)
MAPXPCCB Reason Codes (IJBXREAS)
MAPXPCCB Function Codes (IJBXFCT)
MAPXPCCB Function Descriptor Codes
(IJBXFDSC) . .o

Field Supplied for SETL Processmg by Record
ID .

Internal Page—Fault Queue and
Communication with the System . .
Effect of an AB, IT, OC, or PC Interrupt
During STXIT Routine Execution .

Coding Example Showing the Use of
XECBTAB with TYPE=CHECK and XWAIT
Syntax of YEAR224 Macro .

Librarian Feedback Codes .

z/VSE Macros and Their Mode Dependenc1es
(Execution Time) e

. 310

. 310

. 311

. 311

. 312

. 313

314
315
317
319
319

. 320

. 373

. 377

. 394

. 432
. 432

. 460

. 470

vii

viii z/VSE System Macros Reference

Tables

N

NG

10.
11.

12.
13.
14.

15.

16.

17.

18.
19.

Subtask-Save Area (120 Bytes)23
Layout and Contents of the Command Control
Block (CCB)53
MICR Document Buffer Format66
Character Set Option List82
Label Extent Information Field. 118
COREXIT Routine Functions . . . 123
FilenameC-Status Byte if IOROUT Spec1f1es

ADD, RETRVE, or ADDRTR 132
FilenameC-Status Byte if IOROUT= LOAD 133
ERREXT Parameter List134
GETVCE Output Information210
Layout and Contents of the I/O Request

Block (IORB).218
LBSERV : Operands by Functlon ... 230
Naming Conventions for Inventory Files 236
Format of Record Generated by Query

Inventory 236

Common Return and Reason Codes from
LCDD, DFSMS/VM RMS, and VSE TLS

Support 242
Additional Reason Codes Generated by

LCDD 243
Additional Reason Codes Generated by

DFSMS/VM RMS L. 244
Reason Codes Generated by VGS ... 244
Reason Codes Generated by z/VSE 247

© Copyright IBM Corp. 1990, 2005

20.
21.
22.
23.
24.
25.
26.

27.
28.

29.
30.
31.
32.
33.
34.
35.
36.
37.

38.

SDUMP Reason Codes for Return Code 8
XECBTAB Feedback Information .

ASCII Character Set .

ASCII to EBCDIC Correspondence

Disk Volume Label (VOL1) .

IBM Standard Disk File Label (Format- 1)
IBM Standard Disk File Continuation Label
(Format-3) .

Disk VTOC Label (Format 4) .
User-Standard Disk-File Label (Header and
Trailer).

User-Standard Dlsk Flle Label (Flve UHLs
and Four UTLs are Specified) . .
User-Standard Disk-File Label (Three UHLs
are Specified) . . e
Diskette Volume Label

Diskette File Label . .

Tape Volume Label for EBCDIC Code

Tape Volume Label for ASCII Code .

First IBM Standard Tape File Label for
EBCDIC Code

First IBM Standard Tape Flle Label for ASCII
Code .
Second IBM Standard Tape Flle Label for
ASCII Code . .
Second IBM Standard Tape F1le Label for
EBCDIC Code e

366

. 422
. 439
. 441
. 447

448

. 450
. 450

. 452
. 452
. 452

. 453
. 453

454

. 454

. 455

. 455

. 456

. 456

ix

X z/VSE System Macros Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement. IBM accepts
no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland GmbH

Department 0790

Pascalstr. 100

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

Programming Interface Information

This manual is intended as a reference source for programmers using the macro
support available with IBM z/VSE. It contains a complete description of all z/VSE
data management (IOCS) and system control macros.

This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of z/VSE.

Trademarks and Service Marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

CICS

DFSMS/VM

ECKD

ES/9000
eServer

© Copyright IBM Corp. 1990, 2005 xi

IBM

MVS

MVS/ESA
System/370
S/370

VSE/ESA

VTAM
z/Architecture
zSeries

xii z/VSE System Macros Reference

About This Book

This manual is intended as a reference source for programmers using the macro
support available with z/VSE. These macros can be used in application programs
(or routines of such programs) written in assembler language.

The manual documents reference information about the two types of macros that
z/VSE offers: data-management or input/output (IOCS) macros and control
program macros. The publication lists the macros in alphabetic order of their
names.

z/VSE is the successor to IBM’s VSE/ESA product. Many products and functions
supported on z/VSE may continue to use VSE/ESA in their names.

Please be aware that the z/VSE operating system can execute in 31-bit mode only. It
does not implement z/Architecture, and specifically does not implement 64-bit mode
capabilities. The z/VSE operating system is designed to exploit select features of IBM
eServer zSeries hardware.

Who Should Use This Book

This manual is mainly intended for programmers writing application programs in
assembler language.

Where to Find More Information

For the most part, programming details have been omitted in order to provide
rapid access to the information in this publication. If the publication does not meet
your information needs, refer to the IBM publications:

2/VSE System Macros User’s Guide]

VSE/ESA Extended Addressabiliti]

To define a sequential file in VSAM-managed space using the file definition macro
DTESD, you should consult also the IBM publication:
[VSE/VSAM User’s Guide and Application Programming|

To assemble and link-edit your program (or routine), you may have to consult the
IBM publications:

/VSE Guide to System Functions
/VSE System Control Statements

Program tools available with z/VSE to help you debug your program are
described in the IBM publication:
k/VSE Diagnosis Tools|

For planning and migration information, refer to the chapter *
’ in the [z/VSE Planning| manual.

The High Level Assembler for VSE is described in the following manuals:
High Level Assembler for MVS & VM & VSE Programmer’s Guide
High Level Assembler for MVS & VM & VSE Language Reference

© Copyright IBM Corp. 1990, 2005 xiii

— z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date
information about VSE-related products and services, new z/VSE functions,
and other items of interest to VSE users.

You can find the z/VSE home page at:

http://www.ibm.com/servers/eserver/zseries/zvse/

xiv z/VSE System Macros Reference

Summary of Changes

This manual has been updated to reflect the rebranding of VSE/ESA as z/VSE, as
well as the following changes and enhancements since VSE/ESA 2.4:

DTFMT

— Maximum BLKSIZE = 65534

EQJ

— No default for RC operand

EXTRACT

— Added code EEMT1 for 3592 device
FREEVIS

— Corrected syntax for LENGTH and ADDRESS parameters
GETVCE

— RMODE change

LBSERV

— Tape Library Support (TLS)

— Added/updated tables of return codes
— Added code 6601

— Added RC 3025

— Added RC 0002 for AQUERY

— Added TGTCAT for RELEASE

— Note on CANCEL with CMOUNT/MOUNT
— Parameters forced to uppercase
LIBRDCB

— RMODE change

LIBRM (all forms)

- AMODE/RMODE change

LIBRM LIBDEF

— Maximum number of sublibraries = 32
LIBRM STATE CHAIN

— Maximum number of sublibraries = 32
LIBRM STATE MEMBER

— Description of RC=4/RSN=0

LIBRM STATE SUBLIB

— Description of RC=4/RSN=0
MAPEXTR

— Added code EFMT1 for 3592

Updated tables in|Appendix E, “z/VSE Macros Intended for Customer Use,” onl

Eage 463! and [Appendix F, “z/VSE Macros And Their Mode Dependencies,” on|
age 469.

— Deleted COBOL, PLI, SAMPBASC, SAMPCOB, SAMPPLI, VSBASIC,
VSBRESEQ macros

The manual also includes terminology and editorial changes.

© Copyright IBM Corp. 1990, 2005 XV

Xvi z/VSE System Macros Reference

Chapter 1. Using the Macros

To request system services, programs use macros. All macros described in this
manual are written in assembler format statements; they consist of a number of
fields as discussed under [Macro Notation] When you code a macro, the assembler
processes it by using the macro definitions supplied by IBM and stored in a
sublibrary when the system is generated.

The assembler expands the macro into executable machine instructions and/or
data fields in the form of assembler language statements. The executable machine
instructions typically consist of a branch around the data fields, instructions that
load registers, and an instruction that gives control to the system. The macro
expansion appears as part of the assembler output listing.

The data fields which are derived from the macro operands are used at execution
time by the control program routine that performs the z/VSE service associated
with the macro.

z/VSE offers two different types of macros: data management (IOCS) and system
control macros. The data management macros define the characteristics of a file
and identify the I/O operation to be performed on the file. The system control
macros enable you to make use of control functions available under z/VSE.

Selecting the Macro Level

VSE/ESA Version 1.3/2.1 supports all VSE/ESA Version 1.1/1.2 macros. Therefore,
programs that issue macros and that run on a Version 1.1/1.2 system should also
run on a Version 1.3/2.1 system (provided AMODE=24 and RMODE=24).

Starting with VSE 1.3, 31-bit addressing support was introduced.

There are, however, Version 1.3/2.1 macros that cannot execute on Version 1.1/1.2.
This means that programs running on VSE/ESA 1.3/2.1 and issuing these macros
might not run on VSE/ESA 1.1/1.2, because a Version 1.1/1.2 system cannot
process all the macro parameters that work on a Version 1.3/2.1 system. When you
try to run a Version 1.3/2.1 program on a Version 1.1/1.2 system, the program
might not execute as expected. The macros in question are called downward
incompatible. In general, macros with new parameters are downward incompatible,
if not stated otherwise in the description. (For a list of the downward compatible
macros, see “z/VSE Downward-Compatible Macros” on page 472).

For the following macros it is possible to generate downward-compatible macro
expansions by using the SPLEVEL macro:

FCEPGOUT
PAGEIN
PFIX
PFREE
RELPAG
WTO

WTOR

The SPLEVEL macro sets (or tests) a global symbol that is interrogated by these
macros during assembly to determine the type of expansion to be generated. For
details refer to the description of the SPLEVEL macro on page

© Copyright IBM Corp. 1990, 2005 1

Addressing Mode and the Macros

A program can execute either in 24-bit addressing mode (AMODE 24) or in 31-bit
addressing mode (AMODE 31). Among the macros described in this manual, there
is one group that has no requirements on the addressing mode in which a program
executes. There is, however, another group that requires the program to be
executing in 24-bit addressing mode and the parameters to be passed in 24-bit
addressable storage (that is, below 16MB). This is indicated individually for each
macro under Requirements for the caller immediately after the macro’s syntax
description. It is also indicated in Appendix F of this manual, which lists all
macros together with their mode dependencies.

In general, a program executing in 24-bit addressing mode cannot pass parameter
addresses that are higher than 16MB. However, there are exceptions; for example, a
program executing in 24-bit addressing mode can:

* Free storage above 16MB using the FREEVIS macro
* Allocate storage above 16MB using the GETVIS macro.

If a program running in 31-bit addressing mode issues a macro whose RMODE
(residency mode) is ANY, parameter addresses can be above or below the 16MB
line. Macros with RMODE 24, on the other hand, require parameter addresses
below 16MB. The required RMODE of each macro is also indicated in the
individual macro description (and in Appendix F).

A program running in 31-bit addressing mode must be recompiled on Version
1.3/2.1 libraries and use (via SPLEVEL) the VSE/ESA Version 1.3/2.1 macro
expansion of the following macros:

FCEPGOUT

PAGEIN

PFIX

PFREE

RELPAG

For details on 31-bit addressing, AMODE, RMODE, and other related subjects, see
the manual |VSE/ESA Extended Addressabilit] under |["Introducing AMODE and]

IRMODE"}

Address Space Control (ASC) Mode

2

A program can execute in either primary or AR (access register) ASC mode. For
details, see the manual [VSE/ESA Extended Addressability|under [“Basic Concepts”}

Some z/VSE macros (DSPSERV, SDUMP, SDUMPX, for example) can generate code
that is appropriate for programs in either primary or AR mode. This is also
indicated in the individual macro description (and in Appendix F). A global
variable tells these macros which type of code to generate. The SYSSTATE macro
allows you to test or set this variable.

When you assemble a program, the initial value of this variable indicates primary
ASC mode. If you do not change the variable, macros that test it will generate code
appropriate for primary ASC mode. Thus, if your program receives control in
primary ASC mode, you do not need to change the variable. If, however, your
program receives control in AR ASC mode, you might have to issue SYSSTATE
ASCENV=AR before issuing any macro that tests the variable. To ensure that your
programs always generate code appropriate for their ASC mode, IBM recommends
that:

z/VSE System Macros Reference

¢ All programs that use macros should issue SYSSTATE before issuing any other
macros. Programs in primary ASC mode must issue SYSSTATE ASCENV=P.
Programs in AR mode must issue SYSSTATE ASCENV=AR.

* If your program switches from one ASC mode to another, issue SYSSTATE
immediately after the mode switch to indicate the new ASC mode.

Once a program has issued SYSSTATE, there is no need to reissue it unless the
program switches ASC mode.

Using X-Macros

Some z/VSE macros (at present SDUMPX only) support callers in both primary
and AR ASC mode. When the caller is in AR mode, the macro must generate larger
parameter lists. Some services (at present only the dump service) offer two macros:
one for callers in primary mode and one for callers in AR mode. The name of the
macro for the AR mode caller is the same as the name of the macro for primary
mode callers, except that the AR mode macro name ends with an "X" (SDUMPX
vs. SDUMP).

The only way an X-macro knows that a caller is in AR mode is by checking the
global symbol that the SYSSTATE macro sets. If SYSSTATE ASCENV=AR has been
issued, the macro generates code that is valid for callers in AR mode. If it has not
been issued, the macro generates code that is not valid for callers in AR mode.
When your program returns to primary mode, use the SYSSTATE ASCENV=P
macro to reset the global symbol.

The rules for an X-macro are:
* Callers in primary mode can invoke either macro (X or non-X).

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non-X macros are not valid for callers in AR
mode. Check the macro descriptions in this manual for these exceptions.

e (Callers in AR mode should issue the X-macros.

If a caller in AR mode issues the non-X macro, the system substitutes the
X-macro and sends a message describing the substitution.

Passing Parameters in AR Mode

All macros which can be issued in AR mode and which include control
parameters, place these parameters in the primary address space.

Register Usage

Registers 2 through 12 are available for general use. However, the PUTR (PUT with
Reply) macro makes use of register 2. General registers 0, 1, 13, 14, and 15 are
available to your program only under certain conditions.

The following paragraphs describe the general uses of these registers by IOCS, but
the description is not meant to be all inclusive. Certain applications, such as a
MICR stacker selection routine, may require different registers.

* Registers 0, 1, and 15

IBM supplied macros use these registers to pass parameters and return codes.
Therefore, the registers may be used without restriction only for immediate
computations.

* Register 13

Chapter 1. Using the Macros 3

System routines, and also IOCS routines, use this register as a pointer to a
72-byte save area. When using the CALL, SAVE, or RETURN macro, you can set
the address of the save area at the beginning of each phase of your program,
and leave it unchanged thereafter. However, if reentrant, read-only code is
shared among tasks, register 13 must contain the address of another save area to
be used by that code each time the code is used by another task.

* Registers 14 and 15

IOCS uses these registers for linkage without saving their contents. If you use
the registers, either save their contents (and reload them later) or finish with
these registers before IOCS uses them.

Not all logic modules use standard save area conventions. Therefore, if you use
a read-only logic module (supplying a module save area) in a subroutine, the
save area back-chain pointer can get lost.

* Floating-Point Registers

If your program uses floating-point registers in a subroutine, ensure that this
subroutine:

1. Saves their contents when it receives control.

2. Restores their contents when it returns control.

Macro Notation

4

Macros, like assembler statements, have a name field, operation field and operand
field. Comments can also be included as in assembler statements, although certain
macros require a comment to be preceded by a comma if the macro is issued
without an operand. These macros are: CANCEL, DETACH, FREEVIS, GETIME,
GETVIS, and TTIMER.

The name field in a macro may contain a symbolic name. Some macros (for
example, CCB, TECB, or DTFxx) require a name.

The operation field must contain the mnemonic operation code of the macro.

The operands in the operand field must be written in either positional, keyword,
or mixed format.

There must be no comma between the operation and the operand field; that is, the
first operand must not start with a comma.

Positional Operands

In this format, the operand values must be in the exact order shown in this
publication. Each operand, except the last, must be followed by a comma; no
embedded blanks are allowed. If an operand is to be omitted in the macro, and
following operands are included, a comma must be inserted to indicate the
omission. No commas need to be included after the last operand. Column 72 must
contain a continuation punch (any non-blank character) if the operands fill the
operand field and overflow onto another line.

The macro GET, for example, uses the positional format. A GET for a file named
CDFILE using a work area named WORK is written as follows:

GET CDFILE,WORK

z/VSE System Macros Reference

Keyword Operands
An operand written in keyword format can have this form:
LABADDR=MYLABELS

where:
LABADDR is the keyword
MYLABELS is a name you specify
LABADDR=MYLABELS is the complete operand.

The keyword operands in the macro may appear in any order, and those that are
not required may be omitted. Different keyword operands may be written in the
same statement, each followed by a comma, except for the last operand of the
macro.

Mixed Format

The operand list contains both positional and keyword operands. The keyword
operands can be written in any order, but they must be written to the right of any
positional operands in the macro.

For more detailed information on coding macro statements, see the Assembler
Language manual.

Comments in Macros

You can include a comment in a macro in the same way as in an assembler
language instruction. However, a comment together with a macro that has no
operand requires that your comment begins with a comma.

Understanding Syntax Diagrams

This section describes how to read the syntax diagrams in this manual.

To read a syntax diagram follow the path of the line. Read from left to right and
top to bottom.

¢ The »—— symbol indicates the beginning of a syntax diagram.

* The —> symbol, at the end of a line, indicates that the syntax diagram
continues on the next line.

e The »— symbol, at the beginning of a line, indicates that a syntax diagram
continues from the previous line.

¢ The —»>< symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:
* Directly on the line (required)

* Above the line (default)

* Below the line (optional)

Uppercase Letters

Uppercase letters denote the shortest possible abbreviation. If an item
appears entirely in uppercase letters, it can not be abbreviated.

You can type the item in uppercase letters, lowercase letters, or any
combination. For example:

»»>—KEYWOrd

\4
A

Chapter 1. Using the Macros 5

6

In this example, you can enter KEYWO, KEYWOR, or KEYWORD in any
combination of uppercase and lowercase letters.

Symbols
You must code these symbols exactly as they appear in the syntax diagram
* Asterisk
Colon
, Comma
= Equal Sign
- Hyphen
1 Double slash
0 Parenthesis
Period
+ Add
For example:
* $§ LST
Variables

Lowercase letters written in italics denote variable information that you
must substitute with specific information. For example:

Here you must code USER= as shown and supply an ID for user_id. You
may, of course, enter USER in lowercase, but you must not change it

otherwise.

Repetition

z/VSE System Macros Reference

An arrow returning to the left means that the item can be repeated.

A

»>——repeat

v
A

A character within the arrow means you must separate repeated items with

that character.

—

»»— repeat

A footnote (1) by the arrow references a limit that tells how many times

the item can be repeated.

(1)

»—Y —— repeat

v
A

v
A

Notes:
1 Specify repeat up to 5 times.

Defaults
Defaults are above the line. The system uses the default unless you
override it. You can override the default by coding an option from the
stack below the line. For example:

A
a)

A\ 4
\4
\4
A

| B
L ¢

In this example, A is the default. You can override A by choosing B or C.

Required Choices
When two or more items are in a stack and one of them is on the line, you
must specify one item. For example:

] ‘

Here you must enter either A or B or C.

[N
>

Optional Choice
When an item is below the line, the item is optional. Only one item may be
chosen. For example:

»p- »<

Here you may enter either A or B or C, or you may omit the field.
Required Blank Space
A required blank space is indicated as such in the notation. For example:
* $$ EOJ

This indicates that at least one blank is required before and after the
characters $$.

Register Notation
Certain operands can be specified in either of two ways:
* You may specify the operand directly — as a symbol, for instance. This results in
code that, for example, cannot be executed in the SVA because it is not reentrant.

* You may load the address of the value into a register before issuing the macro.
This way, which is called register notation, results in reentrant code that may be
executed in the SVA. When using register notation, the register should contain
only the specific address; high-order bits should be set to 0.

A typical example of an operand that allows register notation is the specification of

a file name in the GET or PUT macro. The operand is represented in this manual
as follows:

Chapter 1. Using the Macros 7

8

filename| (rn)

n=
A decimal number indicating the sequence of specifications using register
notation.

When the macro is assembled, instructions are generated to pass the information
contained in the specified register to IOCS or to the supervisor. For example, if an
operand is written as (8), IOCS or the supervisor expects information to be stored
at the address contained in general register 8. This is an example of ordinary
register notation.

You can save both storage and execution time by using what is known as special
register notation. In this method, the operand is shown in the format description of
the macro as either (0) or (1), for example. This notation is special because the use
of registers 0 and 1 is allowed only for the indicated purpose.

If special register notation is indicated by (0) or (1) in a macro format description
and you use ordinary register notation, the macro expansion will contain an extra
LR instruction, for example, LR 0,8.

The format description for each macro shows whether special register notation can
be used and for which operands. The following example indicates that the
filename operand can be written as (1) and the workname operand as (0):

GET filename|(1),workname] (0)

If either of these special register notations is used, your program must load the
designated register before executing the macro expansion. Ordinary register
notation can also be used.

Operand Notation
Certain system control macros (for instance, ATTACH, GENIORB, GENL, LOAD)
allow three notations for an operand:

* Register notation

This is described in the preceding paragraph.
* Notation as a relocatable expression

In the macro expansion, this results in an A-type address constant.
* Notation in the form (S,address)

In the macro expansion, this results in the generation of an address in

base-displacement form. You can specify the address in either of the following

ways:

— As a relocatable expression; for example: (5,RELOC).

— As two absolute expressions, the first of which represents the displacement
and the second the base register; for example: (5,512(12)).

Consider using this notation if your program is to be reenterable. In a
reenterable program, macro operands often refer to fields in dynamic storage.
The (S,address) format offers an alternative to register notation: if two or more
of such operands have to be provided for one macro, there is no need for
loading addresses into that many registers.

z/VSE System Macros Reference

Chapter 2. Macro Descriptions

This section describes the macros in alphabetical order of their names. For each
macro, the section gives the format of the macro and a summary of the macro’s
function, followed by a description of the macro’s operand(s).

ALESERYV (Access List Entry) Macro

The ALESERV macro manages the contents of access lists. An access list is a table
in which each entry identifies a data space to which one or more programs have
access. Each entry in the table is referenced by an ALET (access list entry token).

For detailed guide information on how to create and use data spaces, see |”Chapte1-’|
B8, Creating and Using Data Spaces”|in the manual [VSE/ESA Extended Addressability]

For definitions of the terms used with the ALESERV macro, see the Glossary at the
back of this manual.

The ALESERV macro supports the following main functions:

»—L—_|—ALESERV ADD ,operands
name DELETE

EXTRACT

SEARCH

ADD
Add an entry to an access list

DELETE
Delete an entry from an access list

EXTRACT
Obtain the STOKEN for a specified ALET

SEARCH
Locate an ALET for a specified STOKEN

v
A

For a detailed description of the main functions, see the ["ALESERV (Access List|
with the corresponding keyword (ALESERV ADD, ALESERV
DELETE,...).

© Copyright IBM Corp. 1990, 2005 9

ALESERV ADD

ALESERV ADD (Add Access List Entry) Macro

|—,AL=WORKUNIT—

»—L—_|—ALESERV ADD,STOKEN=stoken_addr,ALET=alet_addr |_
name ,AL=PASN——

L I— ,RELATED= anyvalue—|

(E, Zstaddr)

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:

Primary or AR (access register)

The ALESERV ADD macro adds an entry to an access list and returns the ALET
that references this entry.

If you want to know whether a data space already has an entry on an access list,

use the ALESERV SEARCH macro.
STOKEN=stoken_addr

v
A

Specifies the address of the 8-byte identifier of the data space that the program

wants to access and for which the entry is to be added. You might have
received the STOKEN as output from the DSPSERV CREATE macro or from
another user.

ALET=alet_addr

Specifies the address of the location where the system returns the 4-byte ALET

for the access list entry that the system added.
AL=WORKUNIT | PASN

WORKUNIT specifies that the access list to which the entry is to be added is a
‘dispatchable unit access list” (DU-AL), that is, an access list associated with a

z/VSE task. PASN specifies that the access list is a "primary address space
access list” (PASN-AL), that is, an access list associated with a partition.

Use AL=WORKUNIT if you want to limit the sharing of the data space to
programs running under the owning task.

Use AL=PASN if you want other programs running in the partition to have

access to the data space, or if you are adding an entry for a data space that has

been created with DSPSERV SCOPE=COMMON.

MF=L...
L specifies the list form of the macro, which is used to construct a
non-executable control program parameter list.

RELATED=anyvalue specifies any valid macro parameter expression which
can be freely chosen by the user.

No other parameters may be specified if the list form of the macro is chosen.

10 z/VSE System Macros Reference

ALESERV ADD

MF=E...

E specifies the execute form of the macro, which uses the parameter list
generated by the list form of the macro.

Istaddr specifies the address of the parameter list. This address must not be in
a data space. If the caller of the macro is in 24-bit addressing mode, the
address of the parameter list must not be above the 16MB line.

If the MF operand is omitted, the standard form of the macro is used, which
places the parameters into an inline parameter list.

Return Codes in Register 15

00
0C

10
18
38
4C

5C
6C

Successful completion.

The current access list cannot be expanded. There are no free ALEs and the
maximum size has been reached.

ALESERYV could not obtain storage for an expanded access list.

The caller tried to add to the PASN-AL without being in PSW key-0 state.
The input STOKEN is invalid.

The space represented by the input STOKEN is invalid for cross-memory
access.

The caller is not authorized to add a data space to an access list.

The caller tried to add an entry for a SCOPE=COMMON data space to a
DU-AL.

Chapter 2. Macro Descriptions 11

ALESERV DELETE

ALESERV DELETE (Delete Access List Entry) Macro

»—I_—_|—ALESERV DELETE,ALET=alet_addr
name

L I— ,RELATED= anyvalue—|

E, Zstaddr‘)

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary or AR (access register)

The ALESERV DELETE macro deletes an entry from an access list. After the access
list entry has been removed, the connection between the ALET and the data space
no longer exists.

Since the system does not check and notify programs about the reuse of an ALET,
the program deleting an access list entry must ensure that other programs do not
use the old ALET.

ALET=alet_addr
Specifies the address of the ALET for the access list entry to be deleted.

MF=L...
L specifies the list form of the macro, which is used to construct a
non-executable control program parameter list.

RELATED=anyvalue specifies any valid macro parameter expression which
can be freely chosen by the user.

No other parameters may be specified if the list form of the macro is chosen.

MF=E...
E specifies the execute form of the macro, which uses the parameter list
generated by the list form of the macro.

Istaddr specifies the address of the parameter list. This address must not be in
a data space. If the caller of the macro is in 24-bit addressing mode, the
address of the parameter list must not be above the 16MB line.

If the MF operand is omitted, the standard form of the macro is used, which
places the parameters into an inline parameter list.

Return Codes in Register 15
00 Successful completion.
14 The input ALET corresponds to an invalid access list entry.
28 The caller specified an invalid ALET.
2C The caller attempted to delete an ALET reserved for system use.
30 The caller tried to delete an entry from the PSN-AL without being in PSW
key-0 state.

12 z/VSE System Macros Reference

ALESERV EXTRACT

ALESERV EXTRACT (Find a STOKEN) Macro

»—L—_|—ALESERV EXTRACT,STOKEN=stoken_addr,ALET=alet_addr >
name

L l— ,RELATED= anyvalue—|

E,lstaddr)———

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary or AR (access register)

The ALESERV EXTRACT macro requests that the system finds the STOKEN
associated with the specified ALET. The caller can obtain the STOKEN for any
space that is represented by a valid entry on the current access list (DU-AL or
PASN-AL related to the current task/partition).

STOKEN=stoken_addr
Specifies the address of the location where the system is to return the 8-byte
STOKEN that corresponds to the specified ALET.

ALET=alet_addr
Specifies the address of the location where the 4-byte ALET is given.

MF=L...
L specifies the list form of the macro, which is used to construct a
non-executable control program parameter list.

RELATED=anyvalue specifies any valid macro parameter expression which
can be freely chosen by the user.

No other parameters may be specified if the list form of the macro is chosen.

MF=E...
E specifies the execute form of the macro, which uses the parameter list
generated by the list form of the macro.

Istaddr specifies the address of the parameter list. This address must not be in
a data space. If the caller of the macro is in 24-bit addressing mode, the
address of the parameter list must not be above the 16MB line.

If the MF operand is omitted, the standard form of the macro is used, which
places the parameters into an inline parameter list.

Return Codes in Register 15

00 Successful completion.

14 The input ALET corresponds to an invalid access list entry.

28 The caller specified an invalid ALET.

3C An ALET value of 1 was specified.

44 The ALE associated with the input ALET represents addressing capability to a
deleted or terminated space.

Chapter 2. Macro Descriptions 13

ALESERV EXTRACT

58 The access list associated with the input ALET does not exist.

14 z/VSE System Macros Reference

ALESERV SEARCH

ALESERV SEARCH (Search Access List Entry) Macro

»—L—_|—ALESERV SEARCH,STOKEN=stoken_addr ,ALET=alet_addr >
name

|—,AL=WORKUNIT—

A\
A

l—,AL=PASN— l—,MF— |

—|: I— ,RELATED= anyvalue—|

(E, lstaddr)

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary or AR (access register)

The ALESERV SEARCH macro searches through the DU-AL or PASN-AL related to
the current task/partition for an ALET that corresponds to the specified STOKEN.
If the entry is on the list, the system returns the ALET. Otherwise, a return code is
set in register 15.

STOKEN=stoken_addr
Specifies the address of the 8-byte STOKEN for which the system is to return
the corresponding ALET.

ALET=alet_addr
As input to the SEARCH request, ALET specifies the point in the access list
where the system is to begin the search. The following values are valid as start
addresses:

* Minus one (-1) - Start at the beginning of the DU-AL or PASN-AL.

* Valid ALET - Start the search with the next ALET in the access list. It is
recommended to start searching from the beginning of the access list, that is
with ALET=-1. Starting with a valid ALET gives consistent results only if the
program can ensure that no ADD or DELETE requests are executed while
processing the SEARCH request.

As output from the SEARCH request, ALET specifies the address of the
location where the system is to return the 4-byte ALET, if present. Otherwise,
ALET is unchanged and register 15 contains a return code indicating that an
ALET for the specified STOKEN is not on the access list.

AL=WORKUNIT | PASN
WORKUNIT specifies that the access list to be searched is a ‘dispatchable unit
access list” (DU-AL), that is, an access list associated with a z/VSE task. PASN
specifies that the access list to be searched is a "primary address space access
list” (PASN-AL), that is, an access list associated with a z/VSE partition.

MF=L...
L specifies the list form of the macro, which is used to construct a
non-executable control program parameter list.

Chapter 2. Macro Descriptions 15

ALESERV SEARCH

RELATED=anyvalue specifies any valid macro parameter expression which
can be freely chosen by the user.

No other parameters may be specified if the list form of the macro is chosen.

MF=E...

E specifies the execute form of the macro, which uses the parameter list
generated by the list form of the macro.

Istaddr specifies the address of the parameter list. This address must not be in
a data space. If the caller of the macro is in 24-bit addressing mode, the
address of the parameter list must not be above the 16MB line.

If the MF operand is omitted, the standard form of the macro is used, which
places the parameters into an inline parameter list.

Return Codes in Register 15

00
28
34

48

Successful completion.

The caller specified an ALET that is not valid on the specified access list.

The caller specified an STOKEN that is not represented on the specified access
list.

The caller specified AL=WORKUNIT, but the input ALET indexes into the
PASN-AL or the caller specified AL=PASN and the input ALET indexes into
the DU-AL.

16 z/VSE System Macros Reference

AMODESW CALL

AMODESW CALL (Addressing Mode Switch) Macro

»

»—L——|—AMODESW CALL |_ |_
name »AMODE=——24 ,ADDRESS=—|:addr:|J

—E31 (r2)
(r1)

|—,REGS=(14,15)

|—, REGS=(return_reg,link_reg)—

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

The macro calls a subroutine and switches the addressing mode.

CALL
Indicates that a subroutine is to be called and that the addressing mode is to
be switched.

AMODE=24 | 31 | (1)

Calls the subroutine and switches either to 24-bit or 31-bit addressing mode or

sets the addressing mode according to the value of bit 0 of the specified

register. The register must not be the same as the one used with the ADDRESS
operand or the register used as the return register. If you do not specify

AMODE, z/VSE sets the addressing mode as follows:

* If you specify ADDRESS=(reg), z/VSE obtains the new addressing mode
from bit 0 of (reg). If you specify ADDRESS=addr, z/VSE obtains the new
addressing mode from attributes declared with the AMODE assembler
pseudo-op.

* If you do not specify the AMODE or the ADDRESS operand, z/VSE obtains

the new addressing mode from bit 0 of the linkage register (specified in the
REGS operand).

ADDRESS=addr | (r2)
Specifies the address, either directly or in a register (1-15), where control is to
be transferred. If you omit the ADDRESS operand, z/VSE passes control to the
address in the linkage register (specified in the REGS operand).

REGS=(return_reg | E,link_reg | E)
Specifies the linkage registers for this call. Valid registers are 1-15. If you do
not specify REGS, z/VSE uses register 14 as return_reg and register 15 as
link_reg: REGS=(14,15).

Chapter 2. Macro Descriptions 17

AMODESW QRY

AMODESW QRY (Query Addressing Mode) Macro

name

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

The macro can be used to determine the current addressing mode of a program.

ORY
Determines the task’s current addressing mode. Upon completion, register 1
contains either all Os for 24-bit addressing mode or non-zero (X’80000000") for
31-bit addressing mode. (Register 1 is the only register that is being altered.)

AMODESW RETURN (Return from Subroutine) Macro

—,REGS=(14)
>>—L——|—AMODESW RETURN |— _|
name ,AMODE=——24—— —,REGS=(return_reg)—

—E31
(reg)—

A\
A

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

The macro makes a return to the caller of a subroutine.

RETURN
Indicates that a subroutine is to return to its caller.

AMODE=24 | 31 | (reg)
Specifies that the subroutine is to return either in 24-bit or 31-bit addressing
mode or in the addressing mode corresponding to the value of bit 0 of the
specified register. The register must not be the same as the one used as return
register (14 or the register specified in the REG operand).

If you do not specify AMODE, z/VSE sets the addressing mode according to
the value of bit 0 of the return register specified in the REG operand.

18 z/VSE System Macros Reference

AMODESW RETURN

REG=(return_reg |14)
Specifies the register that contains the address (and, optionally, the addressing
mode) where control is to be returned. If you do not specify REG, z/VSE uses
register 14 as the return register.

AMODESW SET (Set Addressing Mode) Macro

’>—L——|—AMODESW SET,AMODE= 24 >
name |:31ﬂ |—,SAVE:(r2)J |—,|r.IR:(r'3’)J
(r1)

|—,ENV=ESAJ

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

The macro can be used to change a program’s addressing mode without branching
to a subroutine. If used as a supervisor generation macro, the macro can be used to
switch dynamic address translation either on or off.

SET
Indicates that the program’s addressing mode is to be changed.

AMODE=24 | 31 | (r1)
Switches either to 24-bit or 31-bit addressing mode or sets the addressing mode
according to the value of bit 0 of the specified register.

SAVE=(r2)
Saves the current (unknown) addressing mode in bit 0 of the specified register
(1-14). If you do not specify SAVE, the current mode is not saved.

WR=(13115)
Specifies a work register. The contents of this register will be changed. If the
operand is omitted, register 15 is taken as default.

ENV=ESA
Causes the system not to check the current environment (and assume ESA).

Chapter 2. Macro Descriptions 19

ASPL

ASPL (Assign Parameter List) Macro

DSECT=NO
ASPL |_ _|

|:name:| |—DSECT=YES—|

v
A

Required RMODE: 24

The macro generates a 7-byte parameter list that is used to pass information to the
ASSIGN macro. For the format of the parameter list, see|”Assigning and Releasing]
an 1/0 Unit”|in the f/VSE System Macros User’s Guide]

DSECT=NO | YES
Specify DSECT=YES if you want the parameter list to be generated as a
mapping DSECT. If the operand is omitted, inline code is generated.

20 z/VSE System Macros Reference

ASSIGN

ASSIGN (Assign I/0O Device) Macro

> ASSIGN ASPL= namel ,SAVE= name2- <
|:name:| (r1)——I— |—(rZ)J

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The macro is used to dynamically assign and unassign tape, disk, and unit-record
devices. The system will select a free or specified unit and assign it to a free or
specified programmer logical unit. (Not all functions are defined for all device

ypes; for details, see the ASPL parameter list under [Assigning and Releasing an|
in the|z/VSE System Macros User’s Guide])

When it has made the assignment, the system returns to your program the logical
and physical unit numbers of the assigned unit. This information can be used by
the RELEASE macro to release a unit dynamically when it is no longer needed.

A skeleton example that shows how tape drives are assigned and unassigned
dynamically is also given under [“Assigning and Releasing an I/O Unit”|in the
z/VSE System Macros User’s Guidel

ASPL=namel | (x1)
Specifies the address of the parameter list, in which you indicate the function
(assign or unassign) to be performed. Use the mapping DSECT generated by
the ASPL macro to interpret the fields in the parameter list.

SAVE=name2 | (r2)
Specifies a 72-byte save area that has to be reserved by the problem program.

Return Codes in Register 15

00 Assignment successful.

04 No free LUB entry found.

08 Device not found in PUB table.

0C cuu has wrong device type.

10 cuu is down.

18 No free tape unit found.

1C Invalid logical unit for unassign.

20 cuu reserved by space management or by pending mount request.
24 Invalid function code.

28 No GETVIS space available.

2C Device to be unassigned is not assigned.

30 Device is owned by another partition.

34 Conflicting I/O assignment. Device is not assigned.

38 The specified logical unit number is invalid or not free.
3C No device with the specified mode was found.

40 No tape unit found which supports the specified mode.

Chapter 2. Macro Descriptions 21

ATTACH

ATTACH (Attach a Task) Macro

»—L—_I—ATTACH entrypoint
name (S,entrypoint)— l—,SAVE= savearea
(rl])— —E(S,savearea)—
(r2)

Yy
4

l—,ABSAVE= bsavearea —| I—, ECB=——ecbname |
E(S,absavearea)— (S,ecbname)—|
(

r3)——— (r4)
,ALCOPY=NO
l—,NAME= name —| l—,ALCOPY=YES—| l—,MFG= area —|
(S,name)— (S,area)—

(r5)

(r6)

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

A subtask can be initiated by any other task of the partition with the ATTACH
macro.

ATTACH supports the 31-bit environment as well as data spaces. ATTACH
processing can attach a subtask in 24-bit or 31-bit addressing mode, physically
resident above or below 16MB. When ATTACH is issued in 24-bit addressing
mode, all operands are treated as 24-bit addresses. When ATTACH is issued in
31-bit addressing mode, all operands are treated as 31-bit addresses.

The attached task will get control in the same addressing mode as the issuer of the
ATTACH macro. If, for example, a main task issues an ATTACH macro in AMODE
31, the subtask will also receive control in AMODE 31.

The maximum number of subtasks that can be initiated in the system at a time is
208. However, the maximum number of subtasks is also dependent on the number
of partitions defined by the IPL SYS NPARTS command. Up to 31 subtasks can run
concurrently within a partition, provided the overall limitation of 208 (or a lower
number, dependent on NPARTS) is not exceeded.

If the maximum number of subtasks is already attached, any attempt to attach
another subtask will be unsuccessful. This is indicated to the attaching task by a 1
in high-order bit 0 in register 1. Register 1 then points to an unposted ECB in the
supervisor or the shared area (24 bit), and this ECB contains the reason code in
byte 3. If byte 3 is zero, the maximum number of subtasks in the system is already
attached or no system resources are available. A non-zero value indicates that the
maximum number of 31 subtasks is already running in the partition. The attaching

22 z/VSE System Macros Reference

ATTACH

task may use this ECB to enter a wait state. The ECB is posted by the system
whenever a task is available for attaching.

If the ATTACH macro successfully initiates a subtask, the attached task is given the
lowest subtask priority, however, a higher priority than the main task. Register 1 of
the attached task contains the address of the attaching task’s save area; the other
registers contain the same values as those of the attaching task at the time when
the ATTACH was issued. The address in register 1 can be used as the second
operand of a POST macro later in the job if task-to-task communication is desired.

When SAVE is specified, register 0 of the attaching task contains the address of the
byte immediately following the save area of the attached task, upon return from a
successful ATTACH.

Note: If your program uses VSAM files, provide STXIT macros with AB and PC
and issue a CLOSE or TCLOSE for the files before you cancel the subtask.

If register notation is used in any of the macro operands, register 0 and 1 should
not be specified.

entrypoint | (S,entrypoint) | (r1)
The operand specifies the entrypoint of the subtask.

SAVE=savearea | (S,savearea) | (r2)
If specified, this operand must provide the address of the save area for the
subtask. The save area is 120 bytes in length (=15 doublewords) and must be
allocated below the 16MB line (RMODE 24).

If this operand is omitted, the supervisor allocates a save area for the attached
subtask and passes its address in register 1 of the attaching task.

If an interrupt occurs while the subtask is in control, the system saves data in
this area as follows (for the format of the area, see :

The subtask’s interrupt status information

The contents of the general purpose registers

The contents of the floating-point registers

Note: The status of the access registers will be saved in an internal save area.

Before issuing the ATTACH macro, move the subtask name in the first eight
bytes of the save area. This name is used to identify the subtask if an abnormal
end occurs.

Alternatively, you can specify the name of the subtask in the NAME operand
of this macro.

Table 1. Subtask-Save Area (120 Bytes)

Offset (In Hex) Length (In Hex) Length (In Dec) Contents

0 8 8 Name of subtask.

8 8 8 Interrupt status.

10 40 64 Contents of registers 9 through 8
(one fullword per register).

50 8 8 Reserved.

58 20 32 Contents of floating-point registers

ABSAVE=absavearea | (S,absavearea) | (¥3)
Specify this operand only if the subtask is to use the attaching task’s abnormal

Chapter 2. Macro Descriptions 23

ATTACH

termination routine (see the ["STXIT (Set Exit) Macro” on page 388), that is, if it
does not provide an abnormal termination routine of its own. The value
specified in this operand must be the address of an AB exit save area for the
subtask. If no AB exit is available, the specification is ignored.

If the ATTACH macro is issued in AMODE 31 or if the attaching task uses the
extended save area layout (STXIT AMODE=ANY), the length of the AB exit
save area must correspond to this layout. Otherwise the old STXIT save area is
used. (See the [“STXIT (Set Exit) Macro” on page 388| and the mapping
['MAPSAVAR (Map Save Area) Macro” on page 312)

When an abnormal termination occurs, the supervisor saves the interrupt
status and general registers 0 through 15 in this area before the exit is taken. In
the extended save area, also the access registers are saved.

ECB=ecbname | (S,ecbname) | (r4)

Specify this operand if other tasks can be affected by this subtask’s termination
or if the ENQ and DEQ macros are used within the subtask. The operand is
the name of the subtask’s event control block (ECB). This block has a format as
follows:

Bytes Meaning of Bits if 1
0-1 Reserved
2 0 Termination indicator
1 Abnormal end indicator
2-7 Reserved
3 Reserved

When a subtask is attached, bits 0 and 1 of byte 2 are set to 0. When a subtask
terminates, the supervisor sets byte 2, bit 0 of the ECB to 1. In addition, byte 2,
bit 1 is set to 1 when the subtask ends abnormally; that is, if task termination
is not caused by issuing one of the macros CANCEL, DETACH, DUMP,
JDUMP, or EQJ.

NAME=name | (S,name) | (r5)

You can specify the subtask name here; however, only if you have omitted the
SAVE operand (with the subtask name specification). It points to an eight-byte
subtask name field.

If both the NAME and the SAVE operands are omitted, the supervisor allocates
a save area for the subtask and provides a subtask name.

ALCOPY=YES | NO

This operand allows your program to transfer a copy of the attaching task’s
DU-AL to the subtask to be attached. In this way, the attaching program can
share access to one or more data spaces with a program running under the
subtask.

YES causes a copy of the caller’s DU-AL to be given to the subtask. NO causes
no access list to be given.

MFG=area | (S,area) | (r6)

The operand is required if the program which issues the ATTACH macro is to
be reenterable. It specifies the address of a 64-byte storage area, that is, storage
which your program may obtain through a GETVIS macro. This area is
required for system use during execution of the macro.

24 z/VSE System Macros Reference

AVRLIST

AVRLIST (Map GETVCE) Macro

DSECT=YES ,DEVICE=NO
AVRLIST—|— 1 [
L | L _|
name DSECT=NO ,DEVICE=YES

A\
A

Required RMODE: 24

The AVRLIST macro generates a DSECT describing volume characteristics retrieved
with the GETVCE macro. (The DCTENTRY macro, called within AVRLIST if
DEVICE=YES, describes device characteristics.)

DSECT=YES | NO
YES causes a mapping DSECT to be generated. NO causes inline code to be
generated.

DEVICE=NO | YES
YES indicates that the macro DCTENTRY is to be called within AVRLIST, thus
showing the complete (volume and device) output within one DSECT.

Chapter 2. Macro Descriptions 25

CALL

CALL (Call a Program) Macro

»>> CALL—[entryname
|:narne:| (15)4 l—,(addr-list)—| l—,VL—|

|—,ID=id-numberJ i:,MF:L—

(E,list-addr)—

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary or Access Register (AR)

Control parameters:
Must be in the caller’s primary address space.

The CALL macro passes control from one program to a specified entry point in
another program. You cannot use the CALL macro to pass control to a program in
a different addressing mode; The AMODE of the caller is passed to the called
program.

The CALL macro passes control to a control section at a specified entry point as
follows: If a control section is not part of the object module which applies to the
CALL macro, the linkage editor attempts to resolve this external reference by
including the object module which contains the control section (AUTOLINK
feature). When the CALL macro is executed, control is passed to the control section
at the specified entry point.

The linkage relationship established when control is passed is the same as that
created by a BAL instruction; that is, the issuing program expects control to be
returned.

AR mode programs and primary mode programs can invoke the CALL macro.
Before an AR mode program invokes this macro, the program must issue
SYSSTATE ASCENV=AR to tell the CALL macro to generate code that is
appropriate for AR mode.

entryname | (15)
Specifies the entry name to be given control.

(addr-list)

(addr-list),VL
Specifies one or more addresses (A-type address constants only), separated by
commas, to be passed to the called program. To create the parameter list, the
control program expands each address inline to a fullword on a fullword
boundary in the specified order. Register 1 contains the address of the
parameter list when the program receives control. (If this parameter is not
coded, register 1 is not altered.)

VL is the default and causes the high-order bit of the last address parameter to
be set to 1; the bit can be checked to find the end of the list.

26 z/VSE System Macros Reference

CALL

If your program is in access register (AR) mode, the system builds the
parameter list so that the addresses that are passed to the called program are
in the first half of the list and their associated ALETs are in the second half of
the list. Therefore, the parameter list for callers in AR mode is twice as long as
the parameter list for callers in primary mode for the same number of
addresses. The 1 in the high-order bit identifies the last address parameter, but
not the last entry in the parameter list.

ID=id-number
Specifies a 2-byte identifier useful for debugging purposes only. The last
fullword of the macro expansion is a NOP instruction containing the identifier
value in bytes 3 and 4.

MF=L | (Elist-addr)
L specifies the list form of the CALL macro, which generates a non-executable
problem program parameter list that can be used by the execute form of the
macro. In the list form, only A-type address constants may be used.

E specifies the execute form of the CALL macro, which uses the parameter list
generated by the list form of the macro. list-addr specifies the address of the
parameter list.

Only executable instructions and a VCON of the entry point are generated. If
the address parameters are also specified in this form, the ADCONs of the
parameter are placed on contiguous fullword boundaries beginning at the
address specified in the MF parameter, and sequentially overlaying
corresponding fullwords in the existing list.

Chapter 2. Macro Descriptions 27

CALL CSRPxxx

CALL CSRPxxx (Call Cell Pool Services) Macro

The CALL CSRPxxx macro manages so-called cell pools, which are areas of virtual
storage in address spaces or data spaces. A cell pool is subdivided into fixed-sized

areas of storage called cells.

For detailed guide information on how to handle cell pool services, see the manual

|VSE/ESA Extended Addressabilitif under [“Callable Cell Pool Services”}

The CALL CSRPxxx macro supports the following main functions:

v
A

S I B
name

—CSRPEXP—
—CSRPCON—
—CSRPACT—
—CSRPDAC—
—CSRPDIS—
—CSRPGET—
—CSRPRGT—
—CSRPFRE—
—CSRPRFR—
—CSRPQPL—
—CSRPQEX—
—CSRPQCL—

CSRPBLD ,operands

CSRPBLD
Build a cell pool

CSRPEXP
Expand a cell pool by adding an extent

CSRPCON
Connect cell storage to an extent

CSRPACT
Activate previously connected storage

CSRPDAC
Deactivate an extent

CSRPDIS
Disconnect the cell storage for an extent

CSRPGET and CSRPRGT
Allocate a cell from a cell pool

CSRPFRE and CSRPRFR
Return a cell to the cell pool

CSRPQPL
Query the cell pool

CSRPQEX
Query a cell pool extent

CSRPQCL
Query a cell

For a detailed description of these functions, see the ['CALL (Call a Program)|
Macro” on page 26| with the corresponding keyword (CALL CSRPBLD, CALL
CSRPEXP.,...).

28 z/VSE System Macros Reference

CALL CSRPxxx

Control Parameters

All parameters must reside in a single address or data space, and must be
addressable by the caller. They must be in the primary address space or in an
address/data space that is addressable through a public entry on the caller’s
dispatchable unit access list (DU-AL).

All variables must be A-type address constants.

Programming Requirements

If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call the CSRPBLD service so the CALL macro can generate the correct
code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:

* Length of the cell pool anchor data area:
*

CSR_ANCHOR_LENGTH EQU 64

*
*

* Base length of the cell pool extent data area:
*

CSR_EXTENT_BASE EQU 128

*
*

* Length of the user-supplied pool name:
*

CSR_POOL_NAME_LEN EQU 8
*
*

Register Information

Input

Before issuing a CALL CSRPxxx macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output

When control returns to the caller, the general purpose registers (GPRs) contain:

Register

Contents
0-1 Used by the system
2-13 Unchanged
14 Used by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents
0-1 Used by the system
2-14 Unchanged
15 Used by the system

Chapter 2. Macro Descriptions 29

CALL CSRPxxx

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

CALL CSRPBLD (Build A Cell Pool And Initialize An Anchor)

»—L—_l—CALL CSRPBLD, (cntl_alet,anchor_addr,user_name,cell size,return_code) >«
name

Requirements for the caller:

AMODE:
24 or 31 (All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPBLD cell pool service is used to format a 64-byte area for the cell
pool anchor. You must first have acquired the storage for the anchor. You can call
this service only once for a given cell pool.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the cell pool anchor.

user_name
Specifies the 8-byte variable containing the name you want the service to
assign to the pool. There are no restrictions on the name.

cell_size
Specifies the variable containing the cell size in this pool. You can use any
positive binary or hexadecimal number as the cell size.

return_code
When CSRPBLD completes, this field (as well as R15) contains the return code.

Return Codes in Register 15
00 The operation was successful.
18 Program error. The anchor address is not valid.

Action: The upper address of the anchor exceeds the valid address range.
Check to see if your program passed the wrong anchor address.

44 Program error. The cell size is not valid: it cannot be negative or 0.

Action: Specify a positive value for the cell size.

30 z/VSE System Macros Reference

CALL CSRPEXP

CALL CSRPEXP (Expand A Cell Pool)

»—L—_|—CALL CSRPEXP, (cntl_alet ,anchor_addr,extent_addr,extent_size,area_addr

name

»—.,area_size,extent_num,return_code)

v

A\
A

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPEXP cell pool service is used to:

* Add an extent to the cell pool

* Assign a number to the extent

¢ Optionally, establish a connection between the extent and cell storage
¢ Optionally, make the cell storage available for allocation.

Note: If you are reusing an extent, use CSRPCON and CSRPACT instead of
CSRPEXP.

If you specify zero for the cell storage size, CSRPEXP will add an extent to the cell
pool, but will keep it in a disconnected state. When you specify the extent size,
allow 128 bytes plus one byte per eight cells of cell storage. CSRPEXP allocates
cells contiguously, starting at the address you specify. If you specify zero for the
area length, CSRPEXP ignores the area address.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

extent_addr
Specifies the variable containing the address of the extent.

extent_size
Specifies the variable containing the size of the extent.

area_addr
Specifies the variable containing the starting address of the cell storage area.
The starting address of this area must be consistent with any boundary
requirements that you might have.

area_size
Specifies the variable containing the size (binary or hexadecimal) of the storage
area for the cells.

Chapter 2. Macro Descriptions 31

CALL CSRPEXP

32

extent_num

When CSRPEXP completes, the variable specifying extent_num contains the
number of the extent to be connected. You will use this number on subsequent
CALLs.

return_code

When CSRPEXP completes, the variable specifying return_code contains the
return code.

Return Codes in Register 15

00
0C

1C

28

2C

48

4C

50

64

68

70

74

The operation was successful.
Program error. There are too many extents in the cell pool.

Action: Check to see if your program contains a logic error that caused the
limit of 65,536 extents per cell pool to be exceeded. If your program works as
expected, consider using a larger cell pool.

Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

Program error. The service could not use the extent address.

Action: Make sure that the extent area does not overlap the anchor area. Also
make sure that the upper address of the extent does not exceed the valid
address range.

Program error. The extent length is not valid.
Action: Correct the extent length. It cannot be less than 129 bytes.
Program error. The cell area length is not valid.

Action: Correct the cell area length. The cell area size cannot be less than the
cell size.

Program error. The service could not use the cell area address.

Action: If the cell area is in a data space, make sure the cell area is completely
within the data space.

Program error. The cell area is too large.
Action: Specify a larger extent size or a smaller cell area size.
Program error or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An anchor has been overlaid.
Action: Check to see if your program inadvertently overlaid the anchor area.
Program error or system error. An extent has been overlaid.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

z/VSE System Macros Reference

CALL CSRPCON

CALL CSRPCON (Connect Cell Storage to an Extent)

»—L—_|—CALL CSRPCON, (cntl_alet ,anchor_addr,area_addr,area_size,extent_num—,return_code)————><
name

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPCON cell pool service is used to connect cell storage to the extent
that you specify or to reuse a disconnected extent. The CSRPEXP service returned

the extent number. The extent must be in the disconnected state, which means that
you have not called CSRPACT to activate this particular extent.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

area_addr
Specifies the variable containing the starting address of the cell storage area.
The starting address of this area must be consistent with any boundary
requirements that you might have.

area_size
Specifies the variable containing the size (binary or hexadecimal) of the storage
area for the cells. CSRPCON determines the number of cells that will fit in the
area.

extent_num
When CSRPCON completes, the variable specifying extent_num contains the
number of the extent to be connected. The extent number must be within the
range 0 to 65,536.

return_code
When CSRPCON completes, the variable specifying return_code contains the
return code.

Return Codes in Register 15
00 The operation was successful.
1C Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

Chapter 2. Macro Descriptions 33

CALL CSRPCON

34

30

34

48

4C

50

64

68

6C

Program error. The extent number is not valid.
Action: Specify the extent number within the range 1 to 65,536.

Program error. You issued the services in the wrong order, or did not issue a
necessary service.

Action: Check to see if your program passed the wrong extent number. Make
sure that the extent is in a disconnected state (that is, it has not been activated
through CSRPACT or CSRPEXP).

Program error. The cell area length is not valid.

Action: Correct the cell area length. The cell area size cannot be less than the
cell size.

Program error. The service could not use the cell area address.

Action: If the cell area is in a data space, make sure the cell area is completely
within the data space.

Program error. The cell area is too large.
Action: Specify a larger extent size or a smaller cell area size.
Program error or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An extent could not be found.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that the anchor address being passed is for the right cell pool.

z/VSE System Macros Reference

CALL CSRPACT

CALL CSRPACT (Activate Previously Connected Storage)

»—L—_l—CALL CSRPACT, (cntl_alet,anchor_addr,extent_num,return_code) >«
name

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPACT cell pool service is used to activate the extent cell storage for
allocation. You must specify which extent you want to activate.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

extent_num
Specifies the variable containing the number of the extent to be connected. The
extent number must be within the range 0 to 65,536.

return_code
When CSRPACT completes, the variable specifying return_code contains the
return code.

Return Codes in Register 15

00 The operation was successful.
1C Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

30 Program error. The extent number is not valid.
Action: Specify the extent number within the range 1 to 65,536.
34 Program error. The extent is in an incorrect state.

Action: Check to see if your program passed the wrong extent number. Make
sure that the extent is not already in an active state (that is, it has not been
activated through CSRPACT or CSRPEXP). Also make sure that the extent is
not in a disconnected state.

64 Program error or system error. An extent chain was broken.

Chapter 2. Macro Descriptions 35

CALL CSRPACT

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

6C Program error or system error. An extent could not be found.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that the anchor address being passed is for the right cell pool.

CALL CSRPDAC (Deactivate an Extent)

»—L—_l—CALL CSRPDAC, (cntl_alet ,anchor_addr,extent_num,return_code) ><
name

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPDAC cell pool service is used to deactivate a specific extent. You
must specify which extent you want to deactivate.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

extent_num
Specifies the variable containing the number of the extent to be disconnected.
The extent number must be within the range 0 to 65,536.

return_code
When CSRPDAC completes, the variable specifying return_code contains the
return code.

Return Codes in Register 15
00 The extent has been deactivated, but there are still cells allocated.
04 The extent has been deactivated and there are no allocated cells remaining.
Action: None required.

1C Program error. The anchor address is not valid.

36 z/VSE System Macros Reference

30

34

64

68

6C

CALL CSRPDAC

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

Program error. The extent number is not valid.
Action: Specify the extent number within the range 1 to 65,536.

Program error. You issued the services in the wrong order or did not issue a
necessary service.

Action: Check to see if your program passed the wrong extent number. Make
sure that the extent is in an active state before calling the service.

Program error or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An extent could not be found.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that the anchor address being passed is for the right cell pool.

Chapter 2. Macro Descriptions 37

CALL CSRPDIS

CALL CSRPDIS (Disconnect the Cell Storage for an Extent)

»—L—_|—CALL CSRPDIS, (cnti_alet ,anchor_addr,extent_num,area_addr,area_size—,return_code)————»<
name

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPDIS cell pool service is used to disconnect cell storage for a
specific extent.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

extent_num
Specifies the variable containing the number of the extent to be disconnected.
The extent number must be within the range 1 to 65,536.

area_addr
When CSRPDIS completes, the variable specifying area_addr contains the
address of the disconnected storage area.

area_size
When CSRPDIS completes, the variable specifying area_size contains the size of
the disconnected storage area.

return_code
When CSRPDIS completes, the variable specifying return_code contains the
return code.

Return Codes in Register 15

00 The operation was successful.
1C Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

30 Program error. The extent number is not valid.

Action: Specify the extent number within the range 0 to 65,536.

38 z/VSE System Macros Reference

CALL CSRPDIS

34 Program error. You issued the services in the wrong order or did not issue a
necessary service.

Action: Call CSRPDAC to deactivate the extent before calling CSRPDIS to
disconnect the cell storage for the extent.

38 Program error. The service cannot disconnect the extent because some cells are
still allocated.

Action: Return all the cells associated with the extent before calling CSRPDIS
to disconnect the cell storage for the extent.

64 Program error or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

6C Program error or system error. An extent could not be found.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that the anchor address being passed is for the right cell pool.

CALL CSRPGET (Allocate a Cell from a Cell Pool)

»—L—_l—CALL CSRPGET, (cntl_alet,anchor_addr,cell_addr,return_code)——— >
name

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPGET cell pool service is used to allocate a cell from the cell pool.
CSRPGET allocates cells from the lowest- to the highest-numbered active extents
and - within each extent - from the lowest to the highest cell address. CSRPGET
passes back to the calling program the address of the cell it allocated, but does not
clear the cell storage to binary zeros.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

Chapter 2. Macro Descriptions 39

CALL CSRPGET

cell_addr
When CSRPGET completes, the variable specifying cell_addr contains the
address of the cell that CSRPGET allocated.

return_code
When CSRPGET completes, the variable specifying return_code contains the
return code.

Return Codes in Register 15

00 The operation was successful.

08 Program error. There were no available cells in the pool. More than one
program could be using the cell pool.

Action: Retry the request one or more times. If the problem persists, consider
freeing existing cells or adding new cells to the cell pool, or both.

1C Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

64 Program error or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

74 Program error or system error. An extent has been overlaid.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

40 z/VSE System Macros Reference

CALL CSRPRGT

CALL CSRPRGT (Allocate a Cell from a Cell Pool - Register Interface)

»—L—_|—CALL CSRPRGT <
name

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPRGT cell pool service is used to allocate a cell from the cell pool
using the register interface (in case your program cannot obtain storage for a
parameter list). CSRPRGT allocates cells from the lowest- to the highest-numbered
active extents and - within each extent - from the lowest to the highest cell
address.

Input Register Information

Before calling the CSRPRGT service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRPRGT ignores the value.

GPR 1 The anchor address

Output Register Information

When control returns to the caller, the GPRs contain:

Register

Contents
0 Used as a work register by the system
1 Address of the allocated cell
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents
0 Used as a work register by the system
1-14 Unchanged
15 Used as a work register by the system

Chapter 2. Macro Descriptions 41

CALL CSRPRGT

Return Codes in Register 15

00 The operation was successful.
08 Program error. There were no available cells in the pool.

Action: Retry the request one or more times. If the problem persists, consider
freeing existing cells or adding new cells to the cell pool, or both.

1C Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

64 Program error or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

74 Program error or system error. An extent has been overlaid.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

CALL CSRPFRE (Return a Cell to a Cell Pool)

»—L—_l—CALL CSRPFRE, (cntl_alet,anchor_addr,cell addr,return _code)———»=
name

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPFRE cell pool service is used to return an allocated cell to the cell
pool. You must specify the address of the cell that you want to return.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

42 z/VSE System Macros Reference

CALL CSRPFRE

cell_addr

Specifies the variable containing the address of the cell that CSRPFRE is to
free.

return_code

When CSRPFRE completes, the variable specifying return_code contains the
return code.

Return Codes in Register 15

00
04

1C

54

58

64

68

74

The operation was successful.
The last cell has been returned to an inactive extent.

Action: None required. However, you might take some action depending on
your application.

Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

Program error. The cell address is not valid.

Action: Investigate the following possible causes:
* The input cell address does not point to the beginning of a cell.
* The cell is not in the cell pool specified by the anchor address.

Program error. Either you have already returned the cell or you never allocated
it.

Action: Check to see if your program contains a logic error that caused this
situation to occur.

Program error or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An extent has been overlaid.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Chapter 2. Macro Descriptions 43

CALL CSRPRFR

CALL CSRPRFR (Return a Cell to a Cell Pool - Register Interface)

Y
A

»—L—_l—CALL CSRPRFR
name

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPREFR cell pool service is used to return an allocated cell to the cell
pool using the register interface (in case your program cannot obtain storage for a
parameter list).

Input Register Information

Before calling the CSRPRFR service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRPRER ignores the value.

GPR 0 The address of the cell you want to be freed.

GPR 1 The anchor address.

Output Register Information

When control returns to the caller, the GPRs contain:

Register

Contents
0-1 Used as a work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents
0-1 Used as a work registers by the system
2-14 Unchanged
15 Used as a work register by the system

44 z/VSE System Macros Reference

CALL CSRPRFR

Return Codes in Register 15

00
04

1C

54

58

64

68

74

The operation was successful.
The last cell has been returned to an inactive extent.

Action: None required. However, you might want to take some action
depending on your application.

Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

Program error. The cell address is not valid.

Action: Investigate the following possible causes:
¢ The input cell address does not point to the beginning of a cell.
* The cell is not in the cell pool specified by the anchor address.

Program error. Either you have already returned the cell or you never allocated
it.

Action: Check to see if your program contains a logic error that caused this
situation to occur.

Program error or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Program error or system error. An extent has been overlaid.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Chapter 2. Macro Descriptions 45

CALL CSRPQPL

CALL CSRPQPL (Query the Cell Pool)

»—L—_|—CALL CSRPQPL, (cnti_alet ,anchor_addr,user_name,cell_size,total_cells

»—,avail_cells,number_extents,return_code)

46

name

v
A

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPQPL cell pool service is used to receive status information about
the cell pool. CSRPQPL does not prevent other programs from changing the pool
during or after a query. CSRPQPL returns the status as it was at the time you
issued the call.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

user_name
When CSRPQPL completes, the variable specified by user_name contains the
name on the CSRPBLD service that created the cell pool.

cell_size
When CSRPQPL completes, the variable specified by cell_size contains the size
of each cell at the time the cell pool was created.

total_cells
When CSRPQPL completes, the variable specified by total_cells contains the
total number of cells associated with the extent.

avail_cells
When CSRPQPL completes, the variable specified by avail_cells contains the
total number of cells in active extents that are available for allocation.

number_extents
When CSRPQPL completes, the variable specified by number_extents contains
the total number of extents (active or inactive, connected or disconnected) in
the cell pool.

return_code
When CSRPFRE completes, the variable specifying return_code contains the
return code.

z/VSE System Macros Reference

CALL CSRPQPL

Return Codes in Register 15

00 The operation was successful.
1C Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

64 Program error or system error. The extent address is not valid.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Chapter 2. Macro Descriptions 47

CALL CSRPQEX

CALL CSRPQEX (Query a Cell Pool Extent)

»—L—_|—CALL CSRPQEX, (cntl_alet ,anchor_addr,extent_num,status,extent_addr,extent_len >

name

»—.,area_addr,area_size,total _cells,avail _cells,return_code)

48

v
A

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPQEX cell pool service is used to receive status information about a
specified extent.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

extent_num
Specifies the variable containing the number of the extent the service will

query.
status
When CSRPQEX completes, the variable specified for status contains one of the

following decimal numbers. These indicate the status of the extent at the time
of the CALL.

1 Disconnected and inactive
2 Connect in progress

3 Connected and inactive

4 Connected and active

5 Disconnect in progress

extent_addr
When CSRPQEX completes, the variable specified for extent_addr contains the
address of the extent.

extent_len
When CSRPQEX completes, the variable specified for extent_len contains the
length of the extent, in bytes.

area_addr
When CSRPQEX completes, the variable specified for area_addr contains the
address of cell storage.

z/VSE System Macros Reference

CALL CSRPQEX

,area_size
When CSRPQEX completes, the variable specified for area_size contains the size
of cell storage for the extent.

total_cells
When CSRPQEX completes, the variable specified by total_cells contains the
total number of cells associated with the extent.

avail_cells
When CSRPQEX completes, the variable specified by avail_cells contains the
total number of cells in active extents that are available for allocation.

number_extents
When CSRPQEX completes, the variable specified by number_extents contains
the total number of extents (active or inactive, connected or disconnected) in
the cell pool.

return_code
When CSRPQEX completes, the variable specifying return_code contains the
return code.

Return Codes in Register 15

00 The operation was successful.
1C Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

30 Program error. The extent number is not valid.
Action: Specify the extent number within the range 1 to 65,536.
64 Program error or system error. The extent address is not valid.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

6C Program error or system error. An extent could not be found.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

74 Program error or system error. An extent has been overlaid.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

Chapter 2. Macro Descriptions 49

CALL CSRPQCL

CALL CSRPQCL (Query a Cell)

»—L—_|—CALL CSRPQCL, (cnti_alet ,anchor_addr,cell_addr,cell_avail ,extent_num—,return_code)———»<
name

Requirements for the caller:

AMODE:
24 or 31 (System code must be in 31-bit addressing mode when calling the
service. All input addresses must be valid 31-bit addresses.)

RMODE:
24 or ANY

ASC Mode:
Primary or AR (If the anchor and the extents are located in a data space, the
caller must be in AR mode.)

The CALL CSRPQCL cell pool service is used to receive status information about a
specified cell in a cell pool. CSRPQCL reports whether the cell is free or allocated,
and returns the number of the extent associated with the cell. CSRPQCL does not
prevent other programs from changing the pool during or after a query. CSRPQCL
returns the status as it was at the time you issued the call.

cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

cell_addr
Specifies the variable containing the address of the cell to be queried.

cell_avail
When CSRPQCL completes, the variable specified for cell_avail contains one of
the following values. These indicate the status of the specified cell at the time
you issued the CALL macro.

0 Cell available
1 Cell allocated

extent_num
When CSRPQCL completes, the variable specified for extent_num contains the
number of the extent that contains the specified cell.

return_code
When CSRPQCL completes, the variable specifying return_code contains the
return code.

Return Codes in Register 15

00 The operation was successful.

1C Program error. The anchor address is not valid.

50 z/VSE System Macros Reference

CALL CSRPQCL

Action: Check to see if your program passed the wrong anchor address or
inadvertently overlaid the anchor area.

54 Program error. The cell address is not valid.

Action: Investigate the following possible causes:
* The input cell address does not point to the beginning of a cell.
* The cell is not in the cell pool specified by the anchor address.

64 Program error or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent area.
Make sure that no extent belongs to more than one cell pool.

CANCEL (Cancel Task) Macro

»—L—_|—CANCEL »<
name |—ALL—|

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

Issuing the CANCEL macro in a subtask abnormally terminates the subtask
without branching to any abnormal termination routine.

A CANCEL ALL macro issued in a subtask, or a CANCEL issued in the main task,
abnormally terminates all processing in the partition (job). Job termination in
multitasking causes all abnormal termination exits (via STXIT AB) to be taken for
each task except the one that issued the CANCEL macro. Once these exits are
taken, the job is terminated. System messages (using the subtask name) are issued
to identify each of the terminated subtasks.

If the CANCEL macro is issued without an operand, you may not code a comment
unless this comment begins with a comma. If CANCEL ALL is issued, you may
code a comment as usual.

If the DUMP option was specified and SYSLST is assigned, a system dump will
occur

* if a CANCEL ALL macro is issued by a subtask, or
* if a CANCEL macro is issued by a main task with subtasks attached.

Note: If your program uses VSAM files, ensure that these files are closed before
you issue this macro.

Chapter 2. Macro Descriptions 51

ccB

CCB (Command Control Block Definition) Macro

»>—name CCB SYSnnn,command_list_name >
I—,X’nnnn’—| I—,senseaddress—l

,CCH=FORMATO
[]

v
A

l—,CCW=FORMAT1—|

Required RMODE: 24

A CCB (command control block) macro must be specified in your program for each
1/0 device controlled by physical IOCS macros. The CCB (see [Table 2 on page 53)
is needed to communicate information to physical IOCS so that it can perform
desired operations (for example, indicating printer channel 9). The CCB also
receives status information after an operation and makes this available to your
program. You should ensure proper boundary alignment of the CCB if this is
necessary for your program.

Note: In some applications, it may be preferable to use an IORB (I/O Request
Block) in place of a CCB. Do this by specifying either an IORB or GENIORB
macro.

name
The CCB macro must be given a symbolic name (blockname). This name can
be used as the operand in the EXCP and WAIT macros which refer to the CCB.

SYSnnn
This operand specifies the symbolic unit for the actual I/O unit with which
this CCB is associated. The actual I/O unit can be assigned to the symbolic
unit by an ASSGN job control statement.

command_list_name
This operand specifies the symbolic name of the first CCW used with a CCB.
This name must be the same as the name specified in the assembler CCW
statement that constructs the CCW.

X'nnnn’
A hexadecimal value used to set the CCB user option bits. For the value to be
set, if applicable, see the section [‘CCB Communication Bytes” on page 54/ If
more than one bit must be set, use the sum of the values.

senseaddress
This operand, when supplied, indicates user error recovery (bit 7 of byte 2
must be on — for more details about this bit, see page and generates a CCW
for reading sense information (as the last field of the CCB). The name field
(sense address) of the area that you supply must have a length attribute
assigned of at least one byte. Physical IOCS uses this length attribute in the
CCW to determine the number of bytes of sense information you desire.

CCW=FORMATO0 | FORMAT1
Indicates whether format-0 CCWs (for I/O areas below 16MB) or format-1
CCWs (for I/O areas above 16MB) are used. (You can use the High-Level
Assembler (HLASM) instruction CCW1 to generate a format-1 CCW.)

The format-1 CCW is invalid for EXCP REAL (user-translated CCB in virtual
partition).

52 z/VSE System Macros Reference

ccB

Format of the CCB

The macro sets up an area of either 16 bytes or 24 bytes. For the layout of this area
and its contents see and the following description of the individual fields.

Table 2. Layout and Contents of the Command Control Block (CCB)

Offset (In Length (In

Hex) Hex) Contents

0 2 Residual count (see Note .

2 2 Communication bytes (see Note .

4 2 CSW status bits (see Note ﬂ)

6 2 Type code (see Note EI)

8 1 Reserved.

9 3 Address of CCW (see Note [5_on page 54).

0C 1 Reserved.

0D 3 CCW address in CSW (see Note .
10 10 Optional sense CCW (see Note .
Notes:

1. After a record has been transferred, IOCS places the residual count from the

CSW into bytes 0 and 1. By subtracting this count from the original count in
the CCW, your program can determine the length of the transferred record.

The two bytes, also known as transmission information, are used for
communicating information between physical IOCS and your program. For
detailed information on the use and purpose of the bits in this field, see the
section ['CCB Communication Bytes” on page 54

Your program can test any of the bits in this field using the mask given for
each of the bits. Your program may test more than one bit by the hexadecimal
sum of the test values.

All bits are set to 0 when your program is assembled unless the X'nnnn’
operand is specified. If this operand is specified, it is assembled into these two
bytes. When your program is being executed, a bit may be set to 1 by your
program (to request certain functions or specific feedback information) or by
physical IOCS (as a result of having detected a certain condition). Any bits that
can be turned on by physical IOCS during program execution are reset to zero
by PIOCS the next time an EXCP macro is executed against the same CCB.

Bytes 4 and 5 are set to X’00” whenever an EXCP macro is issued against the
CCB. The meaning of the bits in these two bytes is as follows:

Byte 4: Byte 5:

0 = Attention 0 = Program-controlled interruption
1 = Status modifier 1 = Incorrect Tength

2 = Control unit end 2 = Program check

3 = Busy 3 = Protection check

4 = Channel end 4 = Channel data check

5 = Device end 5 = Channel control check

6 = Unit check 6 = Interface control check

7 = Unit exception 7 = Chaining check

Contents of byte 6:

X'Ou' = Original CCB
X'4u' = BTAM-ES CCB
X'8u' = User-translated CCB in virtual partition

If u = 0: the address in byte 7 refers to a system
logical unit.

1: the address in byte 7 refers to a programmer
logical unit.

If u

Chapter 2. Macro Descriptions 53

ccB

54

Contents of byte 7: Hexadecimal representation of SYSnnn:

SYSRDR = 00 SYS000 = 00
SYSIPT = 01 SYS001 = 01
SYSPCH = 02 SYS002 = 02
SYSLST = 03 .

SYSLOG = 04

SYSLNK = 05 .

SYSRES = 06 SYS254 = FE
SYSUSE = 09

SYSREC = OA

SYSCAT = 0D

. Bytes 9 through 11 contain the address of the CCW (or of the first of a chain of

CCWs) associated with the CCB:
This is a real address if CCB byte 6 = X'8u’.
This is a virtual address if CCB byte 6 = X'0u’.

. Bytes 13-15 contain either of the following:

The CCW address contained in the CSW at channel-end interrupt for the I/O
operation involving the CCB; or the address of the associated channel
appendage routine if CCB byte 12 contains X"40".

. Bytes 16 to 23 are provided only if the sense operand was specified in the CCB

macro. They accommodate the CCW for returning sense information to your
program.

CCB Communication Bytes
CCB Byte 2

Bit 0 — Traffic bit:
If 0
I/0O requested and not completed.
If1
I/O completed. Normally set at channel end. Set at device end if bit 5 is 1.
Bit 1 — End-of-file on system input:
If 1
/* or /& on SYSRDR or SYSIPT. Bit 7 of byte 4 (unit exception) is also on.

For a PRT1 printer (see also Note — a UCB parity check (line

complete).
Bit 2 — Irrecoverable 1/0O error:
If 0
No program- or operator-option error was passed back.
If 1
I/0 error was passed back due to a program or an operator option.
Bit 3 — Accept irrecoverable I/O error — Bit 2 is set to 1 (see also Note

If 0
Cancel in case of permanent 1/O error.
If1
Return to the user in case of permanent I/O error.

ON value for the third operand of the CCB macro: X"1000".
Bit 4 — Return:
Disk data check
Data check on an IBM 3540
Indicate A-type message to the console
If 0
Operator option — retry or cancel.
If1
Operator option — ignore, retry or cancel. Return to the user.

z/VSE System Macros Reference

ccB

ON value for the third operand of the CCB macro: X'0800".
Bit 6 — Return on:
— DASD read or read-verify data check.
— PRT1 printer passback requested (see also Note .
— Tape read data check.
— Punch equipment check on an IBM 2520 or 2540.
— Permanent error on an IBM 3505 or 3525.
— Equipment check on an IBM 3881.
— IBM 3895 error codes
If 0
Operator option:
— Ignore or cancel for tapes and for card punches.
— Retry or cancel for DASD.
If1

For an error on a PRT1 printer (see also Note |l on page 57), tape, or DASD,

return to the user after physical IOCS attempted to correct the error.

For a permanent error on an IBM 3505 or 3525, bit 3 of byte 3 is also set to
1.

For an IBM 3895, data checks on count are not retained. Error codes are
returned in CCB byte §; refer to the IBM 3895 Document Reader/Inscriber
manuals for information about these codes.

ON value for the third operand of the CCB macro: X'0200".

Bit 7 — User error routine (see also Note :

If0
A physical IOCS error routine is used, except when the CCB senseaddress
operand is specified. The latter requires error recovery by the user program.

If1
User handles error recovery. You cannot handle channel-control and
interface-control checks. When a channel-data, unit, or channel-chaining
check occurs, the system sets on bit 2 of byte 2 and completes posting and
dequeuing. Incorrect length and unit exception are treated as normal
conditions (posted with completion). You must also request device-end
posting (bit 5 of byte 2) to obtain error information after channel end.

ON value for the third operand of the CCB macro: X'0100".

CCB Byte 3
Bit 0 — Check bit:
If1

Indicates one of the following:
- Data check in DASD count field.
- For an IBM 33xx CKD disk — permanent I/O error.
— For a PRT1 printer (see also Note — a print (equipment)
check.
- For an IBM 3540 — A special record has been transferred. A deleted or
bad spot record was read. After the read-in of the special record, the
CCW chain is broken.
Bit 1 — See "If 1" below:
If1
Indicates one of the following:
— DASD track overrun.
— For a PRT1 printer (see also Note — a print quality error
(equipment check).
Bit 2 — See "If 1" below:

Chapter 2. Macro Descriptions 55

ccB

If 1
Indicates one of the following;:
- End of DASD cylinder.
— For a PRT1 printer (see also Note — a line-position error.
A line-position error can occur as a result of an equipment, data, or
FCB-parity check.
Bit 3 — See "If 1" below:
If1
Indicates one of the following:
— Tape read data check (see "Note” below).
— For an IBM 2540, or 3881 — equipment check (see "Note” below).
— Disk data check (see "Note” below).

Note: Operation was unsuccessful. Bit 2 of byte 2 is set to 1; bit 0 of
byte 3 is set to 0.
— For an IBM 3203, — one of the following types of equipment checks:
print, print-data, print-clutch, and read (see "Note” below).
— For an IBM 3505 or 3525 — permanent 1/O error (see "Note” below).

— For a PRT1 printer (see also Note 1 on page 57) — a data/ print check.

— For an IBM 3540 — data check.

Note: Bit 6 of byte 2 is set to 1.
Bit 4 — Nonrecovery questionable condition:
If1
Indicates one of the following:
- For card I/O - unusual command sequence.
— For a DASD - no record found.
— For a PRT1 printer (see also Note — UCB parity check
(command retry).
Bit 5 — Operator option:
Applies to a retry on DASD (see also Note .
If 0
The nonrecovery questionable condition bit is set to 1, and control is passed
to the requesting program
If1
Retry operation is performed for the no-record-found condition. System will
initiate appropriate action if error persists after a limited number of retries
(bit 3 in byte 2).
ON value for the third operand of the CCB macro: X'0004".
Bit 6 — See "If 1" below and also Note :
If1
Indicates one of the following:
- Verify error for DASD.
— Carriage channel 9 overflow (on a printer), but only if bit 5 of byte 2 is
set to 1.
Bit 7 — Command-chain retry:

Specify the bit to be set to 1 if you use command chaining (see also Note @
|- ge 57).
If 0

Retry begins at the first CCW (or channel program).
If 1

Retry begins at the last CCW that was executed.

— If an error occurs, physical IOCS updates the CCW address in bytes 9

56 z/VSE System Macros Reference

ccB

through 11 of the CCB. Your program therefore must restore the
original CCW address before it starts another I/O operation using the
same CCB.

ON value for the third operand of the CCB macro: X'0001".

Notes:

1. Applies also to a 4248 operating in native mode, except where this device is
excluded explicitly.

2. User-option bits; set in CCB macro. The system sets the other bits off while
processing the EXCP macro; it sets them on if the specified condition occurs.

Chapter 2. Macro Descriptions 57

CDDELETE

CDDELETE (Delete Loaded Phase) Macro

58

»—L—_l—CDDELETE—[phasename <
name (1) Q

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

The macro deletes a phase previously loaded by a CDLOAD request. Deletion
means that the phase load count is decremented by one. If the load count is zero,
the phase entry in the CDLOAD directory (the anchor table) will be cleared and
the GETVIS storage occupied by the phase is freed.

CDDELETE returns the actual load count of a phase in register 0.

If the maximum load count was exceeded by previous CDLOAD requests, a
CDDELETE request is ignored and return code 4 is given.

phasename | (1)
For phasename, specify the name of the phase to be deleted. If register
notation is used, the register must contain the address of an 8-byte field that
holds the phase name as an alphameric character string.

The address of phasename is regarded as a 24-bit or 31-bit address, depending
on the AMODE (24 or 31) of the caller.

Return Codes in Register 15

After execution of the macro, register 15 contains one of the following return

codes:

0 CDDELETE completed successfully.

4 CDDELETE was given for a phase whose maximum load count was exceeded.
The phase is not deleted.

20 Phase not found. This return code is also given for phases that are loaded into
the SVA, because SVA phases cannot be deleted by CDDELETE.

z/VSE System Macros Reference

CDLOAD

CDLOAD (Control-Directory Load) Macro

,PAGE=NO ,RETPNF=NO
[]

l_
»—L—_|—CDL0AD phasename »>
name —[(I)Q l—,PAGE=YES—| l—,RETPNF=YES—|

v

‘»

<

i

=

T
v
A

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

The macro causes the phase specified as the first operand to be loaded from a
sublibrary into the partition GETVIS area. The phase is loaded into virtual storage
either below 16MB or anywhere, as indicated by the phase’s RMODE. The phase is
loaded only if it is not yet in either the partition GETVIS area or the SVA.
CDLOAD returns control to the phase which issued the macro.

The CDLOAD macro must not be used for a phase that has been linked as a
member of an overlay structure. Instead, use the LOAD macro without specifying
a load address.

phasename | (1)
For phasename, specify the name of the required phase. If register notation is
used, the register must contain the address of an 8-byte field that holds the
phase name as an alphameric character string.

The address of phasename is regarded either as a 24-bit or 31-bit address,
depending on the AMODE (24 or 31) of the caller.

PAGE=NO | YES
If you want to have the phase loaded on a page boundary, specify PAGE=YES.

RETPNF=NO | YES
Determines whether the issuing phase is canceled if the phase to be loaded
does not exist in a sublibrary. With RETPNF=YES, the phase is not canceled;
instead, control is returned to the issuing phase with the appropriate return
code.

SVA=NO | YES
SVA=YES specifies that CDLOAD is to provide the loadpoint/entrypoint of
SVA phases without loading them.

When a phase is to be loaded, CDLOAD:

Determines the size of the phase

Acquires the required amount of GETVIS storage

Loads the phase into that storage.

CDLOAD maintains a load count for each loaded phase. This load count is
incremented by one when a CDLOAD request for the phase is given, and it is
decremented by one for a CDELETE request. If the load count reaches the

Pon =

Chapter 2. Macro Descriptions 59

CDLOAD

60

maximum (65535), it is not increased by any following CDLOAD request, but
left at the maximum. Any further CDDELETE request will be rejected (with
return code 4).

After a phase has been loaded or if a phase need not be loaded (because it is
already in the partition GETVIS area or in the SVA), the output registers contain
the following values:

0
1

14
15

The load address

The entry point address. CDLOAD sets the high-order bit in register 1 to
indicate the phase’s AMODE, which it obtains from the phase’s directory
information: either to 0 (for AMODE 24) or to 1 (for AMODE 31). If the phase’s
AMODE is ANY, CDLOAD sets the high-order bit in register 1 corresponding
to the caller’'s AMODE.

The length of the phase

The return code

Return Codes in Register 15

After execution of the macro, register 15 contains one of the following return
codes:

0
4
8
12
16

20

24

CDLOAD completed successfully.

The size of the (real) partition’s GETVIS area is 0K.

The specified length exceeds the GETVIS area.

Insufficient storage available in the GETVIS area.

The partition CDLOAD directory (also known as anchor table) is full and there
is no space (system GETVIS area) available to allocate a new anchor table.

The phase does not exist in a sublibrary (this return code occurs only with
RETPNF=YES).

A move-mode phase was requested.

z/VSE System Macros Reference

CDMOD

CDMOD (Card I/0 Module Definition) Macro

»—L——I—CDMOD
name |—CONTROL=YES—| I—,CRDERR=RETRY—| l—,CTLCHR= ASA]J

YES
I—,DEVICE=nnnn—| l—,FUNC= R I—,IOAREA2=YES—| I—,RDONLY=YES—|
P
I
RP
RW
RPW
PW
,RECFORM=FIXUNB , TYPEFLE=INPUT
.l - .
I—,RECFORM=—|:VARUNB I—,SEPASMB=YES—| I—,TYPEFLE=—|:OUTPUT
UNDEF CMBND

\

l—,WORKA=YES—|

A\
A

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The CDMOD macro defines a logic module for a card reader/punch file. It is also
to be used for the IBM 3881 optical reader. If you do not provide a name for the
module, IOCS generates a standard module name.

CONTROL=YES

Include this operand if the CNTRL macro is used with the module and its
associated DTFs. The module also processes files for which the CNTRL macro
is not used.

If this operand is specified, the CTLCHR operand must not be specified.

This operand cannot be specified if IOAREA?2 is used for an input file or if an
input file is used in association with a punch file (when the operand
FUNC=RP or RPW is specified) on the IBM 3525; in this case, however, this
operand can be specified in the DTFCD and CDMOD for the associated punch
file.

CRDERR=RETRY

Include this operand if error retry routines for the IBM 2540 and 2520
punch-equipment check are included in the module. Whenever this operand is
specified, any DTF used with the module must also specify the same operand.
This operand does not apply to an input or a combined file.

Chapter 2. Macro Descriptions 61

CDMOD

CTLCHR=ASA | YES
Include this operand if first-character stacker select control is used. ASA
denotes the American National Standards character set, YES the System /370*
character set (see|[Appendix A, “Control Character Codes,” on page 435). Any
DTF to be used with this module must have the same operand. If CTLCHR is
included, CONTROL must not be specified. This operand does not apply to a
combined file or to an input file.

DEVICE=nnnn
For nnnn, specify one of the following IBM device codes:

2540
2520
3505
3525
3881

Include this operand to specify the I/O device used by the module.

FUNC=R | P I I| RP | RW | RPW | PW
This operand specifies the type of file to be processed by the IBM 3525. Any
DTF used with the module must have the same operand. R indicates read, P
indicates punch, and W indicates print.

When FUNC=I is specified, the file will be both punched and interpreted; no
associated file is necessary to achieve this.

RP, RW, RPW, and PW specify associated files; when one of these operands is
specified for one file, it must also be specified for the associated file(s).
Associated files can have only one I/O area each.

IOAREA2=YES
Include this operand if a second I/O area is used. Any DTF used with the
module must also include the IOAREA2 operand. This operand is not required
for combined files. This operand is not valid for associated files.

RDONLY=YES
This operand causes a read-only module to be generated. Whenever this
operand is specified, any DTF used with the module must have the same
operand.

RECFORM=FIXUNB | VARUNB | UNDEF
This operand specifies the record format: fixed-length, variable-length, or
undefined. Any DTF used with the module must have the same operand. If
TYPEFLE=INPUT, TYPEFLE=CMBND, or FUNC=I, RECFORM must be
FIXUNB. For the IBM 3881, only RECFORM=FIXUNB is valid, which is also
the default.

SEPASMB=YES
Include this operand only if the module is to be assembled separately. This
produces an object module ready to be cataloged into a suitable sublibrary
either by the standard name or by the user-specified name. The module name
is used as the module’s transfer address. If you omit this operand, the
assembler assumes that the module is assembled together with the DTF in
your program.

TYPEFLE=INPUT | OUTPUT | CMBND
This operand generates a module for either an input, output, or combined file.
Any DTF used with the module must have the same operand. For the IBM
3881, only TYPEFLE=INPUT is valid, which is also the default.

62 z/VSE System Macros Reference

WORKA=YES

CDMOD

This operand must be included if records are to be processed in work areas
instead of in I/O areas. Any DTF used with the module must have the same
operand. This operand is not valid for the IBM 3881.

Standard CDMOD Names

Each name begins with a 3-character prefix (IJC) and continues with a 5-character
field corresponding to the options permitted in the generation of the module.

CDMOD name = IJCabcde

Char. Content

i

a

THOOAOFIPNOARENONNSTHOZTINENLOP G

Specified Option

RECFORM=FIXUNB (always for INPUT, CMBND, or
FUNCHI files)

RECFORM=UNDEF
RECFORM=VARUNB

CTLCHR=ASA (not specified if CMBND)
CONTROL=YES

CTLCHR=YES

CTLCHR or CONTROL not specified
RDONLY=YES and TYPEFLE=CMBND
TYPEFLE=CMBND

RDONLY=YES and TYPEFLE=INPUT
TYPEFLE=INPUT

RDONLY=YES and TYPEFLE=OUTPUT
TYPEFLE=OUTPUT

WORKA=YES and IOAREA2
IOAREA2=YES

WORKA=YES

WORKA and IOAREA?2 not specified
WORKA=YES not specified (CMBND file only)
DEVICE=2540

DEVICE=2520

DEVICE=2540 and CRDERR
DEVICE=2520 and CRDERR
DEVICE=3505

DEVICE=3525 and FUNC=R/P or omitted
DEVICE=3525 and FUNC=RP
DEVICE=3525 and FUNC=RW
DEVICE=3525 and FUNC=PW
DEVICE=3525 and FUNC=I
DEVICE=3525 and FUNC=RPW
DEVICE=3881

Subset/Superset CDMOD Names

All but one of the operands are exclusive (that is, do not allow supersetting). A
module name specifying C (CONTROL) in the b location is a superset of a module
name specifying Z (no CONTROL or CTLCHR). A module with the name
IJCECIWO is a superset of a module with the name IJCEZIWO.

<< T %

O+ <= %

— T O W %

N = — o %

R NO X

Chapter 2. Macro Descriptions 63

CDMOD

Z N 6
0 7

A

B

C

M

N

0

P

+ Subsetting/supersetting permitted.
* No subsetting /supersetting permitted.

CHAP (Change Priority) Macro

>>—L—_|—CHAP >
name

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:

Primary

The macro lowers the priority of the issuing subtask. The issuing subtask now
becomes the subtask with the lowest priority of all the subtasks within the
partition.

A CHAP macro issued by the main task is ignored.

64 z/VSE System Macros Reference

CHECK

CHECK (Check I/0 Completion) Macro

> CHECK: -filename ><
|:name:| |—(1)4 ,control_address—
s () —————

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The macro prevents processing until data transfer on an I/O operation is complete.
It may be issued either after a READ or WRITE macro was issued for a work file,
or after a READ was issued for a MICR file to ensure that data transfer is
complete.

Because of differences in the way that IOCS posts CCB transmission information
bits in the DTFs, you should always issue a CHECK macro to ensure that data
transfer is complete before testing these bits. If the data transfer is completed
without an error or other exceptional condition, CHECK returns control to the next
sequential instruction. If an error condition is encountered, control is transferred to
the ERROPT address. If ERROPT is not specified, processing continues at the next
instruction. If end-of-file is encountered, control transfers to the EOFADDR
address.

Issuing a CHECK macro after a READ on a MICR device allows you to query the
MICR document buffer (see [Table 3 on page 66) and to specify the control_address
operand.

filename | (1)
The operand specifies the name of the file associated with the record to be
checked or, if register notation is used, the register containing a pointer to the
field that contains this name. This name is the same as that specified for the
DTEFxx header entry for the file.

control_address | (0)
Indicates the address to which control passes when a buffer is waiting for data
or when the file is closed. If register notation is used, the specified register
must point to a field that contains this address.

The CHECK macro determines whether the MICR document buffer:
* Contains data ready for processing.

In this case, control passes to the next sequential instruction.
* Is waiting for data.

In this case, or if the file is closed, control passes to the address specified for
control-address, if present. Else, control passes to the address specified in the
ERROPT operand of the DTFMR macro.

* Contains a special non-data status.

Chapter 2. Macro Descriptions 65

CHECK

66

In this case, control passes to the ERROPT routine. In the routine, you can
examine the posted error conditions before determining your action (see byte 0
of the document buffer, bits 2, 3, and 4).

The CHECK macro also determines whether the file (filename) is closed.

Return from the ERROPT routine to the next sequential instruction by a branch
either on register 14 or to the address in register 0.

If an error, a closed file, or a waiting condition occurs with neither control-address
nor an ERROPT address specified, control is given to your program at the next

sequential instruction.

If the waiting condition occurred, byte 0, bit 5 of the buffer is set to 1. If the file
was closed, byte 0, bits 5 and 6 of the buffer are set to 1.

Table 3. MICR Document Buffer Format

Byte Bit
0

Comment

Buffer Status Indicator

The document is ready for processing (you need not test
this bit).

Irrecoverable stacker select error, but all document data is
present. You may continue to issue GETs and READs.
Irrecoverable I/O error. An operator 1/O error message is
issued. The file is unusable and must be closed.

Unit Exception. You requested disengage and all follow-up
documents are processed. The LITE macro may be issued,
and the next GET or READ engages the device for
continued reading.

Intervention required or disengage failure. This buffer
contains no data. The next GET or READ continues
normal processing. This indicator allows your program to
give operator information needed to select pockets for
documents not properly selected and to determine unread
documents.

The program issued a READ, no document is ready for
processing; bits 0 through 2 of byte 0 are off, or the file is
closed (bit 6 of byte 0 is on). The CHECK macro examines
this bit. Test bits 1 through 4 and take appropriate action.
No data from a buffer should be processed if bits 2, 3, or 4
are on.

The program issued a GET or READ and the file is closed.
Bit 5 also on.

Reserved.

Buffer Status Indicator

Applies to old devices.

Reserved.

Buffer Status Indicator

Applies to old devices.

Reserved.

Bits 4 through 7 reflect MICR sense information

Data check occurred while reading. Examine byte 3 to
determine the error fields.

Overrun occurred while reading. Examine byte 3 to

determine the error fields. Overruns cause short-length
data fields.

z/VSE System Macros Reference

CHECK

Table 3. MICR Document Buffer Format (continued)

Byte

6-end

Bit
6-7

Comment

The meanings of these bits depend on the device type, the
model, and the engineering-change level of (old) MICR
devices.

Buffer Status Indicator — The byte contains MICR sense
information (applies to old devices).

Buffer Status Indicator — Pocket code

Should be examined by your stacker select routine. If bits
2, 3, or 4 of byte 0 are on, this byte is X’00". No document
was read and your stacker selection routine was not
entered.

If auto-selection occurs, this value is ignored. A no-op
(X’03’) is issued to the device, and the reject pocket code
(X'CF) is placed into byte 5. The possible pocket codes
(when bit 6 or 7 of byte 2 is on) are:

Pocket 0: X'OF' Pocket 7: X'7F!'
Pocket 1: X'IF' Pocket 8: X'8F'
Pocket 2: X'2F' Pocket 9: X'OF'
Pocket 3: X'3F' Reject Pocket: X'CF'
Pocket 4: X'4F'

Pocket 5: X'5F!'

Pocket 6: X'6F'

Buffer Status Indicator — Pocket-selected code
Indicates the pocket selected for the document. The

contents of the byte are normally the same as that in byte
4.

X'CF’ is inserted whenever auto-selection occurs (bit 6 of

byte 2, bit 7 of byte 2, bit 0 of byte 2, or bit 2 of byte 3).

These conditions may result from late READ commands,

errant document spacing, or late stacker selection:

» Start I/O for stacker selection is unsuccessful (bit 1 of
byte 0).

Additional User Work Area

This area can be used as a work or an output area or both.
The size of this area is determined by the DTFMR
ADDAREA operand. The only size restriction: this area,
plus the status-indicator bytes and the data portion must
not exceed 256 bytes. This area may be omitted.

Document Data Area

This area follows immediately your work area. In this
area, the data is right-adjusted. The length of this area is
determined by the DTFMR RECSIZE operand.

Chapter 2. Macro Descriptions 67

CHKPT

CHKPT (Checkpoint Request) Macro

»—L—_|—CHKPT SYSnnn,—[restart_addr‘ess
name (rl)g i:,end_address—

,(r2)

»
>

v
A

i:,tpointer— i:,dpointer— ,filename—
»(r3) »(r4) ,(rb)

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The CHKPT macro causes the status of your program to be recorded in one of two
ways:

* As interspersed records of a tape output file.

* Into a separate file on disk.

Should your program come to an abnormal end, then you can restart the program
by submitting job control statements as required. The partition in which the
program is to be restarted must begin at the same location as when the program
was checkpointed. Also, its end address must not be lower than the end address
when the checkpoint was taken. For more information about restarting a
checkpointed program, see the |z/VSE Guide to System Functiongunder [“Starting al
[Program from a Checkpoint’}

If the CHKPT macro is processed successfully, your program receives control with
register 0 containing, in unpacked decimal format, the number of the checkpoint. If
the macro is processed unsuccessfully, that is, no checkpoint has been taken,
register 0 contains zero. In addition, the reason for the failure is printed on
SYSLOG.

Note: If a program using routines in the SVA is being checkpointed, you must
make sure that SVA routines occupy the same locations on restart, should a
restart become necessary.

Special register notation cannot be used with any of the CHKPT macro operands.
All VSAM files must be closed before the CHKPT macro is issued. A SAM ESDS
(supported by the VSE/VSAM Space Management for SAM feature) cannot be
repositioned by the restart program.

Restrictions:

Checkpoint/restart does not support the 31-bit environment; the macro is canceled
when issued from a partition that crosses the 16MB line.

68 z/VSE System Macros Reference

CHKPT

Checkpoint/restart does not support data spaces; that is, data spaces that a
program may access are not recorded during CHKPT requests.

Checkpoint/restart does not support dynamic partitions.

Checkpoint/restart does not support PFIXed pages which are PFIXed in page
frames outside the ALLOCR area; this means, whenever the CHKPT macro is used,
any currently PFIXed page must have been PFIXed in the ALLOCR area. The
easiest way to ensure this is to have no PFIX limit set (via the JCL SETPFIX
statement) during the execution of your program. The CHKPT macro is ignored
when it detects a page being PFIXed in a page frame outside the ALLOCR area.

The IBM 9346 tape is not allowed as a checkpoint device. If a program requests a
checkpoint to be written to a 9346 tape, the function issues a message and ignores
the request.

SYSnnn
Specifies the logical unit on which the checkpoint information is to be stored. It
must be an EBCDIC magnetic tape or a DASD volume.

restart_address | (r1)
Specifies a symbolic name of the instruction (or register containing the address)
at which execution is to restart if processing must be continued later.

end_address | (r2)
A symbolic name assigned to (or register containing the address of) the
uppermost byte of the program area required for restart. This address must be
higher than the highest address of storage occupied by any phase loaded into
the partition. The address should be a multiple of 2K. If the address is not a
multiple of 2K, it is rounded to the next 2K boundary. If this operand is
omitted, all storage allocated to the partition (other than the GETVIS area) is
checkpointed.

The specified end address is ignored if any GETVIS request was executed in
the partition. (Note that GETVIS storage may have been requested by included
IBM routines). In this case again, all storage allocated to the partition is
checkpointed.

tpointer | (¥3)
Address of an 8-byte field containing 2 V-type address constants used in
repositioning magnetic tape at restart time. The address may be a symbolic
address or contained in a register.

The first constant points to a table containing the file names of all logical IOCS
magnetic tape files to be repositioned. Each file name points to the
corresponding DTF table where IOCS maintains repositioning information.

The second constant points to a table containing information for physical IOCS
magnetic tape files to be repositioned. The entries in the table are:

* First halfword: hexadecimal representation of the logical unit address of the
tape (copy from CCB).

* Second halfword: number of files within the tape (in binary notation), that
is, the number of tape marks between the beginning of the tape and the
position at checkpoint.

* Third halfword: number (in binary notation) of physical records between the
preceding tape mark and the position at checkpoint.

If the first, second, or both constants are zero, no tapes are repositioned.

Chapter 2. Macro Descriptions 69

CHKPT

If the tables are contained in the same source module as the CHKPT macro,
the constants must be defined as A-type constants.

Both tables have to be preceded by a halfword containing the number of table
entries.

dpointer | (r4)
Address of a DASD operator verification table, used to allow the operator to
verify DASD volume serial numbers at restart time. May be a symbolic address
or contained in a register.

The entries in the table must consist of the following two halfwords:

¢ The logical unit number (in hexadecimal notation) of each DASD unit used
by your program (copied from CCB bytes 6 and 7).

e Reserved.

The table has to be preceded by a halfword containing the number of table
entries.

There must be one entry for each DASD unit to be verified. At restart time, the
volume serial number of each of these DASD units is printed on SYSLOG.

filename | (r5)
This operand applies only if checkpoint records are to be written into a
separate file on disk. The operand specifies the name of the associated DTFPH.

70 z/VSE System Macros Reference

CHKPT

CLOSE and CLOSER (Close a File) Macro

»—L—_|-—|:CLOSE Y _—filename ><
name CLOSER:| |:(rn)J

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24

ASC Mode:
Primary

The format of the CLOSER macro is the same as that of the CLOSE macro, except
that you code CLOSER instead of CLOSE in the operation field.

When CLOSER is specified, the symbolic address constants that CLOSER generates
from the parameter list are self-relocating. When CLOSE is specified, the symbolic
address constants are not self-relocating. Throughout the manual the term CLOSE
also implies CLOSER, unless stated otherwise.

The CLOSE or CLOSER macro is used to deactivate previously opened files; it
ends the association between a logical file declared in a program and a specific
physical file on an I/O device. Issuing a CLOSE or CLOSER macro for a file
ensures that the system properly ends processing for the specified file(s).

A file may generally be closed at any time, with the following exceptions:

* Console files must not be closed; the CLOSE(R) macro is invalid for files defined
by means of the DTFCN.

* A file may not be closed from within an ERROPT routine.

If issued for a 4248 printer file making use of the horizontal copy function, the
macro causes horizontal printing to be turned off.

If CLOSE or CLOSER is issued to an unopened tape input file, the option specified
in the DTF rewind option is performed. If CLOSE or CLOSER is issued to an
unopened tape output file, no tapemark or labels are written.

No further requests can be issued for the closed file until it is reopened.

filename | (rn)
Code the symbolic name of the file (DTF filename) to be closed. You can close
up to 16 files with one macro by coding additional file names. Alternatively,
you can load the address of a file name into a register and specify the register,
using ordinary register notation.

The high-order 8 bits of this register must be zeros. For CLOSER, the address
of the file’s name may be pre-loaded into any of the registers 2 through 12. For
CLOSE, this address may be pre-loaded into register 0 or any of the registers 2
through 12.

Chapter 2. Macro Descriptions 71

CNTRL

CNTRL (Control Device) Macro

72

> CNTRL filename ,code
|:narne:| |:(1)——|—

L |
C L L

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The CNTRL (control) macro provides commands for I/O devices. These commands
apply to non-data operations of an I/O unit and are specific to this unit. They
specify functions such as rewinding tape, card stacker selection, and line spacing
on a printer. For optical readers, commands specify marking error lines, correcting
a line for journal tapes, document stacker selecting, or ejecting and incrementing
documents.

The CNTRL macro does not wait for completion of the command before it returns
control to your program, except when certain codes are specified for optical
readers.

If your program issues CNTRL requests, ensure that your DTFxx macros (except
DTEMT and DTFDR):

* Include the CONTROL operand.

* Omit the CTLCHR operand.

If your program uses control characters although the CONTROL operand is
specified, then IOCS does not recognize them and treats them as data.

Conversely, if your DTFxx macro for a file includes the CTLCHR operand, your

program normally cannot issue a CNTRL macro for this DTFxx. It can issue a

CNTRL macro in this case only if:

1. The macro refers to a DTFPR defined printer and requests an immediate printer
operation, and

2. The device being used is a PRT1 printer or an IBM 4248.

Examples of immediate printer operations are: space or skip immediate, enable or
disable horizontal copying.

The CNTRL macro is ignored if specified for DTFSD or DTFDI DASD files. The
macro cannot be used for:

* A card-input file that is being processed with two 1/O areas.
* A card-input file on an IBM 3525 if this file is associated with a punch file. Use
the macro for the associated punch file instead.

filename | (1)
Must be the name of the file specified in the DTF header entry. It can be
specified as a symbol or in register notation.

z/VSE System Macros Reference

code

CNTRL

Is the mnemonic code for the command to be performed. A list of the possible
command codes and the related nl and n2 values is given following the

description of the operands.

nl Is required whenever a number is needed for stacker selection, immediate
printer carriage control, or for line or page marking on the IBM 3886.

n2 Applies to delayed spacing or skipping or to timing mark check on the IBM
3886. In the case of a printer file, the operands nl and n2 may be required. If
nl is omitted and n2 is specified, a comma must be coded for nl.

A list of valid command codes and related n1 and n2 values follows. The codes are
listed by device class (disk, tape, and so on) or, if necessary, by device type.

CKD-Disk Devices

Code nl n2
SEEK

Requested Operation

Seek to address.

Magnetic Tape Units

Code nl n2

REW
RUN
ERG
WTM
BSR
BSF
BSL

FSR
FSF
FSL
SYN

Requested Operation

Rewind tape.

Rewind and unload tape.

Erase gap (writes blank tape).

Write tapemark.

Backspace to inter-record gap.

Backspace to tapemark.

Backspace to logical record. See also "Note”
under FSL below.

Forward-space to inter-record gap.
Forward-space to tapemark.
Forward-space to logical record.
Synchronize buffer and program. Applies
only if the tape unit is a buffered device.
Causes all data held in the buffer to be
written to tape.

Note: The codes BSL and FSL can be used to control the processing of spanned
records. LIOCS ignores a CNTRL request with BSL or FSL if a RELSE macro
immediately precedes the CNTRL request.

Printers — Any Type

Code nl n2
SP c! d?
SK c! d?
UcCs

Requested Operation

Carriage-space c or d lines. For c or d, you
give the number of lines to be spaced. This
number can be 1, 2, or 3. See also *.

Skip to channel c or d or both. See also *
and *.

Applies to IBM printers with a UCS buffer,
either standard or as a feature.

Chapter 2. Macro Descriptions 73

CNTRL

74

Code nl n2
ON

OFF

Requested Operation

Data checks are processed with an
indication to the operator.

Data checks are ignored, and blanks are
printed.

A value for nl requests immediate printer control (before printing).

A value for n2 indicates delayed printer control (after printing).

® Applies to IBM printers of type 1403, 3203, 3800, PRT1 (including 4248 in
native mode), and 3525 card punch with the print feature.

If an IBM 3525, a skip to channel 1 is valid only for a print-only file.

PRT1 Printers — Including IBM 4248 in Native Mode

Note: If the printer does not support the requested operation, the system ignores

your request.

Code nl n2
FOLD
UNFOLD
CLRPRT
ORDER
DHC
EHC
PURDAT

Requested Operation

Print uppercase characters for any byte
with equivalent bits 2 through 7.

Print character equivalents for any EBCDIC
byte.

Clear print buffer. Applies if the printer
has a data buffer. Causes all data contained
in the buffer to be printed before the
program receives control again.

Applies only to an IBM 4248 operating in
native mode.

Disable horizontal copy. Stops horizontal
copy printing.

Enable horizontal copy. Starts horizontal
copy printing if your printer’s FCB
contains an FCB image with a horizontal
copy control code.

Horizontal copy printing is turned off
automatically when one of the following
occurs:

* Your program issues a CLOSE (or
CLOSER) macro for the printer file.

* The system initiates an automatic close
for the printer file at the end of the job
step.

Purge data. Causes all data stored in the

printer’s data buffer to be erased.

Card 1/O Devices

Code nl n2
SS lor2
PS 1to3

Requested Operation

Select stacker 1 or stacker 2. Applies to
IBM 2520.

Select stacker 1, 2, or 3. Applies to IBM
2540, 3505, and 3525. For a 3505 or 3525,
the value 3 defaults to stacker 2.

z/VSE System Macros Reference

CNTRL

IBM 3881 Optical Mark Reader

Code nl n2 Requested Operation

PS lor2 Select stacker 1 or stacker 2.

IBM 3886 Optical Character Reader

Code nl n2 Requested Operation

INC Increment document at read station.

DMK see ! Page-mark the document when it is
stacker-selected as specified by nl.

LMK see 2 Line-mark the document when it is
stacker-selected as specified by nl.

ESP 1or2 see ! Eject and stacker-select the current
document to stacker A or B. Perform
line-mark station timing-mark check as
specified by n2.

! name(r) number

2 name(r) number,number

COMRG (Communication Region Access) Macro

REG=(1)
ORI I [j
name REG=(rlI)

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:

Primary

The COMRG macro places the address of the communication region of the
partition from which the macro is issued into the specified register. If the operand
is omitted, register 1 is assumed.

Chapter 2. Macro Descriptions 75

CPCLOSE

CPCLOSE (Control Program File Close) Macro

76

name i:parml ist—

(r1)

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The macro can be used in spooling programs written in Basic Assembler Language.
It causes a CPCLOSE command to be issued to VM in order to release a print or
punch file for output.

parmlist | (r1)
This operand specifies a 16-byte parameter list. The format of the list is
described below. In your program, you must set up the list before you issue
the macro. If the parameter list name is specified, the system loads the address
into register 1. If a register is specified, it is assumed to contain the address of
the parameter list and this address is loaded into register 1. If no operand is
specified, register 1 is assumed to contain the address of the parameter list.
The format of this list is:

Bytes Contents

0-1 Always 0.

2-3 Device address in hexadecimal format.
4-7 Device address in EBCDIC format.
8-15 Job name (left justified).

Assume the device at address 280 is to be closed and the name of the job is

JOB. The parameter list then contains:
00 00 02 80 FO F2 F8 FO D1 D6 C2 40 40 40 40 40

Return Codes in Register 15
00 Successful completion of CPCLOSE macro.
04 Device is invalid, no CLOSE is issued.
08 Supervisor not running under VM.

z/VSE System Macros Reference

CSRCMPSC

CSRCMPSC (Compression/Expansion) Macro

»>>- CSRCMPSC CBLOCK= ddress »><
|:name :l (rl)J I—, RETCODE=—|:addr§,J
(r2)

Requirements for the caller:

AMODE:
31

ASC Mode:
Primary or AR (access register)

The CSRCMPSC macro is used to compress data (to save DASD space, for
example) and to expand previously compressed data. Data compression and
expansion services allow you to compress certain types of data so that the data
occupies less space while you are not using it. You can then restore the data to its
original state when you need it.

For detailed guide information on how to compress and expand data, see
“Compressing and Expanding Data”| in the manual |z/VSE System Macros User’s|
Guide]
CBLOCK=address | (r1)
Specifies the address of a 36-byte input/output area (compression block) which
contains the parameter information for the compression/expansion service. The
area is mapped by DSECT CMPSC in macro CSRYCMPS and contains
information such as the compression and expansion dictionaries and the source
and target areas, together with their lengths.

RETCODE=address | (r2)
Specifies the address of an 8-byte area into which the return code is to be
copied from R15.

Return Codes

00 Successful completion of CSRCMPSC macro.

04 Source operand was not completely processed. No room is left in the source
operand.

10 A field in the CSRYCMPS area does not contain a value.

14 The symbol size (CMPSC_SYMSIZE) in the CSRYCMPS area does not have a
value of 1 through 5.

18 The target area for compression or the source area for expansion is not large
enough to hold even one compression symbol. The length of the area is
specified in the CSRYCMPS area.

1C The length of the string represented by a single compression symbol exceeds
the limit of 260 bytes.

20 The number of child characters for a compression dictionary entry exceeds 260.

24 A compression dictionary entry indicates that it contains more than six child
characters, not including sibling characters.

28 The number of extension characters for a compression dictionary entry with 0
or 1 child characters exceeds 4.

2C A sibling descriptor compression dictionary entry has a count of 0.

30 Expansion of a compression symbol used more than 127 dictionary entries.

Chapter 2. Macro Descriptions 77

CSRYCMPS

CSRYCMPS (Map Compression Control Block) Macro

DSECT=YES
[]

»—L—_I—CSRYCMPS
name |—DSECT=NOJ

\4
A

Required RMODE: 24

The CSRYCMPS macro causes a DSECT of the compression control block to be
generated.

DSECT=YES | NO
YES causes a mapping DSECT to be generated. NO causes inline code to be
generated.

CSRYCMPS
CSRYCMPS is described in the Principles of Operation manual for the
respective processor and in ESA/390 Data Compression, SA22-7208.

DCTENTRY (Map GETVCE) Macro

DSECT=YES
[]

|—DSECT=N0J

»>—DCTENTRY

Required RMODE: 24

The DCTENTRY macro describes device characteristics retrieved with the GETVCE
macro.

DSECT=YES | NO

YES causes a mapping DSECT to be generated. NO causes inline code to be
generated.

78 z/VSE System Macros Reference

DEQ

DEQ (Dequeue Resource) Macro

»>>- DEQ rcbname <
|:name:| |—(E))4

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

A task releases a resource by issuing the DEQ macro. If other tasks are enqueued
on the same RCB, the DEQ macro frees from their wait condition all other tasks
that were waiting for that resource. A task that attempts to dequeue a resource that
was not enqueued or that was enqueued by another task is abnormally terminated.
Dequeuing under these two conditions within an abnormal termination routine
results in a null operation instruction.

The DEQ macro supports the 31 bit environment. DEQ may be issued in 24-bit or
31-bit addressing mode, above or below the 16MB line.

When DEQ is issued in AMODE 24, the RCB address is treated as a 24-bit address.
When DEQ is issued in AMODE 31, the RCB address is treated as a 31-bit address.

rcbname | (0)
The operand is the same as that in the ENQ macro and specifies the address of
the RCB.

Chapter 2. Macro Descriptions 79

DETACH

DETACH (Detach Task) Macro

name SAV E=—|:sav@J
(1)

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

The macro terminates execution of a task. A subtask is normally terminated by
issuing a DETACH macro in the main task, attaching subtask, or in the subtask
itself.

The macro sets byte 2, bit 0 of the ECB to 1 (if specified in the ATTACH macro) to
indicate task termination. All tasks waiting on this ECB are taken out of the wait
state.

If the subtask issues a DETACH macro without an operand, only the subtask
issuing the DETACH macro is terminated. Any subtasks attached by the
terminating subtask are not affected by the termination.

If the main task issues the DETACH macro without specifying an operand, it will
be canceled, that is, all processing in the partition is terminated abnormally.
However, the partition may recover, dependent on the AB exit specification.

SAVE=savearea | (1)
A subtask may also terminate a subtask which it attached by issuing the
DETACH macro with the SAVE operand. If the main task issues the DETACH
macro with the SAVE operand, it can terminate any subtask in the partition.
The SAVE operand provides the address of the save area specified in the
ATTACH macro for the subtask to be terminated. The save area has to be
allocated below the 16MB line.

When the task identified by SAVE cannot be detached by the owning task, the
request is ignored. When the address specified by SAVE does not point to the save
area of an active task, the result is unpredictable.

Note: If the subtask being terminated uses VSAM files, ensure that these files are
closed before you issue this macro.

80 z/VSE System Macros Reference

DFR

DFR (Define Font Record) Macro

»—L—_l—DFR FONT=code
name l—,BCH=n—| I—,BCHSER=n—| I—,CHRSET=n—I

,ERASE=NO ,NATNHP=NO
[1 [

»
>

A\
A

\\ ’— l—,ERASE=YES—| l—,NATNHP=YES—| l—,REJECT=X—|
(1)
,EDCHAR= (Lxl)

Notes:

1 Can be repeated up to six times.
Required RMODE: 24

The DFR macro defines attributes common to a group of line types on an IBM
3886.

FONT=code
The operand is required. It specifies the default font for all fields described by
the format record. The default font is used to read a field unless another font is
specified for an individual field through the DLINT macro. The valid codes
and the fonts they represent are:
ANA1 =
Alphameric OCR-A font (mode 1)
ANA2 =
Alphameric OCR-A font (mode 2)
ANB1 =
Alphameric OCR-B font
GOTH =
Gotbhic font
MRKA =
Mark OCR-A font
MRKB =
Mark OCR-B font
NHP1 =
Numeric hand printing (normal mode)
NHP2 =
Numeric hand printing (verify mode)
NUMA =
Numeric OCR-A font
NUMB =
Numeric OCR-B font (mode 3)

For a description of these fonts, see the appropriate IBM 3886 device manuals.

BCH=11213
This operand is valid only if the serial numbering feature is installed. The
operand indicates that batch numbering is to be performed. Specifying 1, 2, or
3 indicates that documents routed to a stacker are to be batch numbered.
Specifying 1 indicates stacker A, 2 indicates stacker B, 3 indicates both stackers.
If this operand is specified, the BCHSER operand is invalid. For more
information on batch numbering, see the IBM 3886 device manuals.

Chapter 2. Macro Descriptions 81

DFR

BCHSER=1 | 2 | 3

This operand is valid only if the serial numbering feature is installed. The
operand indicates that both batch and serial numbering are to be performed.
Specifying 1, 2, or 3 indicates that documents routed to a stacker are to be
batch and serial numbered. Specifying 1 indicates stacker A, 2 indicates stacker
B, 3 indicates both stackers. If this operand is specified, the BCH operand is
invalid. If neither BCH nor BCHSER is specified, batch and serial numbering
are not performed. For more information on batch and serial numbering, see
the IBM 3886 device manuals.

CHRSET=0 1112131415

Specifies which one of the options in [Table 4|is to be used for recognizing
characters. If this operand is not supplied, 0 is assumed.

Table 4. Character Set Option List

OCR-A OCR-B
Numeric Mode Alphameric Modes Numeric Mode Alphameric
Mode
High-Speed Mode 1 Hexa- Format
Printers or (High-Speed Mode 2 High-Speed Printers or decimal Record
Typewriters Printer) (Typewriter) Typewriters Code Codes
$ $ $ $ 5B 00
£ £ 5B 01
¥ ¥ ¥ ¥ 5B 02
N N N 7B
$ $ $ $ $ 5B 03
A A A 5B
yz3 A A 7B
%] %] (%] 7C 04
$ $ U Note 5B
A A A 7B
O O ¢ 7C
$ U U FO 05

Note: In OCR-A font the U is coded as a zero and should be used only in
alphabetic fields.

EDCHAR=(x,...)

Specifies up to six characters that may be deleted from any field that is read.
The operand EDITn=EDCHAR of the DLINT macro controls this function for
individual fields. If this operand is omitted, no character deletion is performed.
See the note under the REJECT operand discussion for characters that must be
specified in quotes. For example, to specify the characters &, >, and), you
would code EDCHAR=("&",>",")").

ERASE=NO | YES

Specifies whether group and character erase symbols are to be recognized as
valid symbols. If this operand is not specified, NO is assumed. For more
information on group and character erase symbols, see the IBM 3886 device
manuals.

NATNHP=NO | YES

Specifies which of the numeric hand printing character set options are used for
the numbers 1 and 7. YES indicates that the European Numeric Hand Printing

82 z/VSE System Macros Reference

DFR

(ENHP) characters 1 and 7 are used; NO indicates the Numeric Hand Printing
(NHP) characters 1 and 7 are used. If this operand is not coded, NO is
assumed.

REJECT=x
Indicates the character that is to be substituted in the data record for any reject
character read by the device. If this operand is omitted, X’3F" is assumed.
Reject characters are characters that are not recognizable by the device.

Note: This note applies to the keywords REJECT and EDCHAR. Apostrophes
enclosing the character are optional for all characters except special
characters used in macro operands. For a description of these characters,
see the Assembler Language manual.

DIMOD (Device-Independent I/O Module Definition) Macro

>>—L——|—DIMOD >
name |—IOAREA2=YES—| l—,RDONLY=YES—| l—,SEPASMB=YES—|

A\
A

> , TYPEFLE= OUTPUT
I—,TRC=YES—I |—INPUT

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The DIMOD macro defines a logic module for a device-independent file. If you do
not provide a name for the module, IOCS generates a standard module name.

For DASD devices and for PRT1 and 3800 printers, a user-supplied logic module is
not required. If one is supplied, it is ignored. OPEN always provides linkage to an
IBM-supplied logic module which resides in the SVA.

IOAREA2=YES
Include this operand if a second 1/0O area is needed. A module with this
operand can be used with DTFDI specifying either one or two I/O areas. If the
operand is omitted or is invalid, one I/O area is assumed.

RDONLY=YES
This operand causes a read-only module to be generated. Whenever this
operand is specified, any DTF used with the module must have the same
operand.

SEPASMB=YES
Include this operand only if the module is to be assembled separately. This
produces an object module ready to be cataloged into a suitable sublibrary
either by the standard name or by the user-specified name. The module name
is used as the module’s transfer address. If you omit this operand, the
assembler assumes that the module is assembled together with the DTF in
your program.

Chapter 2. Macro Descriptions 83

DIMOD

TRC=YES
Include this operand to specify whether the module is to test the table
reference character indicator in the DTFDI or ignore that indicator. If TRC=YES
is specified, the generated module can process output files with table reference
characters and those without. If the TRC operand is specified,
TYPEFLE=INPUT must not be specified.

TYPEFLE=OUTPUT | INPUT
Include this operand to specify whether the module is to process input or
output files. If OUTPUT is specified, the generated module can process both
input and output files.

Standard DIMOD Names

Each name begins with a 3-character prefix (IJ]) followed by a 5-character field
corresponding to the options permitted in the generation of the module.

DIMOD name = IJJabcde

Char. Content Specified Option

a Always

b RPS=SVA is not specified

RPS=SVA

TYPEFLE=OUTPUT (both input and output)
TYPEFLE=INPUT

IOAREA2=YES

IOAREA2=YES is not specified
RDONLY=YES

RDONLY=YES is not specified

gOoN——@m<N™

Subset/Superset DIMOD Names

All of the operands except TRC=YES allow subsetting. A module name specifying
B is a superset of the module specifying I, for example. IJJECBID is a superset of
the module IJJECIID.

The IBM-supplied preassembled logic modules do not have TRC=YES. The system
programmer can reassemble them with TRC=YES to support 3800 table reference
characters. Although the code that is generated for a module assembled with
TRC=YES is different from the code that is generated for a module with TRC=NO,
the module name is the same. If some, but not all DIMOD logic modules are
reassembled this way, it may interfere with subsetting or supersetting.

* + + %
I JJFCBTIC
VI 70D
+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

84 z/VSE System Macros Reference

DISEN

DISEN (Disengage Document Reader) Macro

> DISEN -filename <
|:name:| |:(1)4

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

This macro stops the feeding of documents through the magnetic character reader
or optical reader/sorter. The program proceeds to the next sequential instruction
without waiting for the disengagement to complete. You should continue to issue
GET or READ until the unit exception bit (byte 0, bit 3), of the buffer status
indicators is set on (see [Table 3 on page 66).

filename | (1)
Specifies the name of the file to be disengaged. This name is the same as that
specified for the DTFMR header entry for the file. The operand can be
specified either as a symbol or in register notation.

Chapter 2. Macro Descriptions 85

DLINT

DLINT (Define Line Type) Macro

, IMAGE=NO
»—L——l—DLINT LFR=n,LINBEG=n [_|_|
name , IMAGE=YES \\

v

»NOSCAN= (Ln:|—)J

, FREND=NO

|—,FLDn=(fieZd_inforrnation)J |—,EDITn: (code)—J |—,FREND:YESJ
(EDCHAR)
(code ,EDCHAR)—

Required RMODE: 24

The macro describes one line type in a format group and the individual fields in
the line.

Line-Information Specifications

LFR=n
This operand specifies the line format record number for the line. The decimal
number specified must be in the range of 0 through 63. The line format record
describes the format of one type of line; the line format record number is used
to identify the line format record. This number is specified in the READ macro
when you read a line of data from a document.

LINBEG=n
This operand specifies the beginning of a line. The beginning position is the
distance, measured in units of 0.1 inch (2.54 mm), from the left edge of the

document to the left boundary of the first field. The limiting range of this
position is 4 to 85.

IMAGE=NO | YES
This operand specifies whether the data record should be in standard mode
(IMAGE=NO), or image mode (IMAGE=YES). If this operand is not specified,
IMAGE=NO is assumed.

NOSCAN=(n,...)
Specifies an area on the document line that is to be ignored by the IBM 3886.
‘n’ is a decimal number indicating the distance, measured in units of 0.1 inch
(2.54 mm), from the left edge of the document to the right end of the
NOSCAN field. The field immediately to the left of the NOSCAN field must
end with an address delimiter rather than a character delimiter.

Field-Information Specifications

FLDn=(field_information)
The operand describes each of the fields of a line.

n of FLDn

Is a number from 1 up to 14. The following rules apply to the use of the
keyword FLDn:

* Fields may be described in any order in the macro.
* Each EDITn operand must follow its associated FLDn operand.

86 z/VSE System Macros Reference

DLINT

* The n suffix need not be 1 for the first field in the line; however, the n
suffix must increase for each field from left to right on the document
line.

m An address delimiter, which you code as a decimal number. It specifies
the distance, measured in units of 0.1 inch (2.54 mm), from the left edge of
the document to the right end of the field being defined. The last field in a
line must end with an address delimiter.

x A character delimiter. It specifies the character that indicates the end of a
field. The character delimiter is not considered part of the data; it is neither
included in the data record nor used in determining the length of the field.

Apostrophes enclosing the characters are optional for all characters except
0 through 9 and the special characters used in macro operands. For these
characters, the apostrophes are required. For a description of these
characters, see the Assembler Language manual.

If a field ends with a character delimiter, the next field must be read using
a font from the same font group. The font groups are:

* NPH1, NPH2, GOTH

* ANAI, ANA2, NUMA, MRKA
¢ NUMB, MRKB

 ANBI

length
Is a decimal number that specifies the length of the field in the edited
record. Specify a value from 1 to 127. If IMAGE=NO is specified, this
specification is required; if IMAGE=YES is specified, this specification is
invalid.

The length you specify refers to the length of the field after any EDITn
options have been performed. The sum of the field lengths for a line
cannot be greater than 130.

NCRIT
Indicates that this is not a critical field. If this specification is omitted, the
field is assumed to be critical.

fontcode
Specifies a font for this field, different from the font specified in the DFR
macro. If this specification is omitted, the font specified in the DFR macro
is used for the field. For information about the valid codes, see the
description of the FONT=code operand of the DFR macro on page

EDITn=(code) | (EDCHAR) | (code, EDCHAR)
Describes the editing functions to be performed on the data by the IBM 3886.

The specifications are the same for keywords EDIT1 through EDIT14. There
must be an FLDn keyword corresponding with each EDITn keyword you
specify. If an EDITn keyword is specified, a code, EDCHAR, or both must be
specified. When image mode is used, an EDITn keyword is invalid.

When the editing functions are completed and the field is greater than the
specified length, the field is truncated from the right and the wrong length
field indicator is set on in the header record. If only blanks are truncated, the
wrong length field indicator is not set.

code specifies the blanks to be removed and the fill characters to be added to
the field, if any. The valid codes and their meanings are:

Chapter 2. Macro Descriptions 87

DLINT

ALBHIF
All blanks are removed, the data is right-justified and the field is padded
with EBCDIC zeros (X'F0’) on the left.

ALBLOF
All blanks are removed from the data, the data is left-justified and the field
is padded with blanks on the right. If code is omitted, ALBLOF is
assumed.

ALBNOF
All blanks are removed; the data must be equal in length to the field
length specified. No padding is done.

HLBHIF
All high- and low-order blanks are removed, the data is right-justified and
the field is padded to the left with EBCDIC zeros (X'F0’) (see Note, below).

HLBLOF
All high- and low-order blanks are removed, the data is left justified, and
the field is padded with blanks on the right (see Note, below).

NOBLOF
No blanks are removed, the data is left-justified, and the field is padded on
the right with blanks.

Note: Two consecutive embedded blanks is the maximum number sent.

EDCHAR indicates that the characters specified in the EDCHAR keyword of
the DFR macro are to be deleted from the field. If this specification is omitted,
the characters are not deleted.

If the EDITn keyword is omitted or if EDITn=EDCHAR is specified and the
code is omitted, ALBLOF is assumed.

FREND=NO | YES

Indicates whether this is the last DLINT macro for the format record. NO
indicates that more DLINT macros follow; YES indicates that this is the last
one. If this operand is omitted, NO is assumed.

88 z/VSE System Macros Reference

DOM

DOM (Delete Operator Message) Macro

> DOM MSG= address <
|:name :l I—(r])J

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24

ASC Mode:
Primary

The DOM macro may be used to delete a console message, when the condition
that caused the message to be issued does not exist any more (for example, a
device became ready).

The message being deleted may never appear on any console. If it did appear, any
highlighting or hold state is removed as a result of DOM.

MSG=address | (11)
Specifies the address of a 4-byte area containing the ID of the message to be
deleted. Registers 1 to 12 may be used for register notation. The message ID
was returned by the WTO or WTOR macro used to issue the message.

The only effect of the DOM macro is to remove the message from the "hold” state
(reply or action pending) and to reset its intensity attribute from "high’ to "normal’,
as applicable. The message is still routed and logged as if no DOM macro had
been issued.

DOM for a message written via WTO may be issued by a different task than the
one that issued the original message identified by the message ID. In particular, it
may be issued by a console application, rather than by the application that
originated the message, when the message is being deleted as a result of an
operator request.

DOM for a message written with WTOR may only be issued by the task that
issued the original message; otherwise it is ignord.

Return Codes in Register 15
0 Successful completion.

Cancel Codes

21 One or more input parameters are invalid or not supported by z/VSE.
25 One or more of the specified addresses are invalid.
45 Mode violation (for example, caller is in AR-mode).

Chapter 2. Macro Descriptions 89

DRMOD

DRMOD (Document Read Module Definition) Macro

90

»—l_—_l—DRMOD
name |—DEVICE=3886—| I—,RDONLY=YES—| I—,SEPASMB=YES—|

|—,SETDEV=YESJ

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The macro defines a logic module for a file on an IBM 3886. If you do not provide
a name for the module, IOCS generates a standard module name.

DEVICE=3886
Specifies that the IBM 3886 is the input device. This operand may be omitted.

RDONLY=YES
This operand generates a read only module. RDONLY=YES must also be

specified in the DTE. For additional programming requirements concerning this
operand, see the DTFDR RDONLY operand.

SEPASMB=YES
Must be specified if the I/O module is to be assembled separately. This entry
produces an object module ready to be cataloged into a suitable sublibrary
either by the standard name or by the user-specified name. The module name
is used as the module’s transfer address. If you omit this operand, the
assembler assumes that the module is assembled together with the DTF in
your program.

SETDEV=YES
Is specified if the SETDEV macro may be used when processing a file with this
I/0O module. If SETDEV=YES is specified in the DRMOD macro but not in the
DTFDR macro, the SETDEV macro cannot be used when processing that file.

Standard DRMOD Names

Each name consists of eight characters: JMZxxDO0. The fifth and sixth characters
are variables as follows:

* If SETDEV=YES is specified, the fifth character is S; otherwise it is Z.
» If RDONLY=YES is specified, the sixth character is R; otherwise it is Z.

Note: Subsetting/supersetting is allowed with the SETDEV keyword, but not with
the RDONLY keyword.

z/VSE System Macros Reference

DSPLY

DSPLY (Display Document Field) Macro

> DSPLY -filename ,(r2),(r3) <
|:name:| —[(1)——[_

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The DSPLY macro displays the document field on the display scope of your IBM
1287. A complete field may be keyboard-entered if a 1287 read error makes this
type of correction necessary. An unreadable character may be replaced by the reject
character either by the operator (if processing in the online correction mode) or by
the device (if processing in the offline correction mode). You may then use the
DSPLY macro to display the field in error.

filename | (1)
Is the symbolic name specified in the name field of the DTFOR macro for your
1287 file.

(x2)
Specifies any of registers 2 to 12. This register must contain the address of the
load format CCW that gives the document coordinates for the field to be
displayed. When the DSPLY macro is used in the COREXIT routine, the
address of the load format CCW can be obtained by subtracting 8 from the
3-byte address that is right-justified in the fullword location beginning at
filename+32 (the high-order fourth byte of this fullword should be ignored). If
the DSPLY macro is not used in the COREXIT routine, you must determine the
load format CCW address.

(x3)
Specifies any of registers 2 to 12. This register must contain the address of the
load format CCW that gives the coordinates of the reference mark associated
with the displayed field.

Chapter 2. Macro Descriptions 91

DSPSERV

DSPSERV (Data Space) Macro

The DSPSERV macro creates, deletes, and controls data spaces. A data space is a
range of up to two gigabytes of contiguous virtual storage addresses that a
program can directly manipulate through ESA /370* instructions. Unlike an address
space, a data space can hold only data and programs stored as data. For detailed

cuide information on how to create and use data spaces, see [“Chapter 8, Creatin.
land Using Data Spaces”|in the manual [VSE/ESA Extended Addressabilitif,

The DSPSERV macro can only be executed in 31-bit addressing mode.

The DSPSERV macro supports the following main functions:

»—L—_|—DSPSERV CREATE ,operands
name EDELETE?
E

EXTEND
RELEAS

CREATE
Create a data space

DELETE
Delete a data space

EXTEND
Increase the current size of a data space

RELEASE
Release a data space

For a detailed description of the main functions, see the ['DSPSERV (Data Space)|
[Macro”] with the corresponding keyword (DSPSERV CREATE, DSPSERV
DELETE,...).

92 z/VSE System Macros Reference

DSPSERV CREATE

DSPSERV CREATE (Create Data Space) Macro

»—L—_I—DS PSERV CREATE,STOKEN=stoken_addr ,NAME=name_addr >
name

|—,GENNAME=NO

\
v

l—,GENNAME=—|:COND l—,OUTNAME=ou1,‘name_addr—| l—,ORIGIN=or‘z‘gin_addr—|
YES

|—,SCOPE=SINGLE |—,BLOCKS=O

Yy

I—,SCOPE=—|:ALL l—,BLOCKS= (0,0)

COMMON (0,init)
(0,init_ad)
ax
(max,init)

(max_ad,init_ad)—

,CALLERKEY—— —,FPROT=YES
[il

\4
v

l—,NUMBLKS=numeks_addr—| l—,KEY=key_addr— I—,FPROT=NO—I

—,MF=S

\
A\
A

,0D ,PLISTVER=0
,MF=(L, Istaddr]) B 1
I—,Gttl"J |—,PLISTVER=1J

(E,lstaddr |_ _|)
COMPLETE

Requirements for the caller:

AMODE:
31

RMODE:
24 or ANY

ASC Mode:
Primary or AR (access register) if SYSSTATE ASCENV=AR

DSPSERV CREATE requests the system to create a data space. Creating a data
space can be compared to issuing a GETVIS request for storage. z/VSE gives you
contiguous 31-bit virtual storage of the size you specify and initializes the storage
to hexadecimal zeros. The entire data space has the storage key that you request or,
by default, the storage key that matches your own PSW key.

STOKEN=stoken-addr
Specifies the address of an eight-byte field where the system returns the
STOKEN (space token or identifier) that uniquely identifies the data space.

Your program can then gain access to the data space by using the ALESERV

ADD macro to add an entry to an access list and obtain an ALET (access list

entry token) for the given STOKEN. The entry on the access list identifies the
newly created data space, and the ALET indexes the entry.

Chapter 2. Macro Descriptions 93

DSPSERV CREATE

NAME=name-addr
Specifies the address of an eight-byte variable or constant that contains the
name of the data space. The naming conventions are described under
[Space Naming Conventions” on page 97/

GENNAME=NO | COND | YES
Specifies whether or not you want the system to generate a name for the data
space to ensure that all names are unique within the partition. The system
generates a name by adding a 5-character prefix (consisting of a numeral
followed by four characters) to the first three characters of the name you
supply in the NAME operand. For example, if you supply XYZDATA in the
NAME operand, the name becomes nCCCCXYZ where 'n’ is the numeral,
CCCC is the 4-character string generated by the system, and XYZ comes from
the name you supplied on NAME. See ['Data Space Naming Conventions” on|
page 97] for more information.

GENNAME=NO
The system does not generate a name. In the NAME operand you must
supply a name that is unique within the partition. GENNAME=NO is the
default.

GENNAME=COND
The system generates a unique name only if you supply a name that is
already being used. Otherwise, the system uses the name you supply.

GENNAME=YES
The system takes the name you supply in the NAME operand and makes
it unique.

If you want the system to return the unique name it generates, use the
OUTNAME operand.

OUTNAME=outname-addr
Specifies the address of an eight-byte variable where the system returns the
data space name it generated if you specified GENNAME=YES or
GENNAME=COND.

ORIGIN=origin-addr
Specifies the address of a four-byte variable where the system returns the
beginning address (either zero or 4096) of the data space. The system tries to
start all data spaces at origin zero; on some processors, however, the origin is
4096. To be independent of the type of processor, IBM recommends always to
use ORIGIN.

SCOPE=SINGLE | ALL | COMMON
SCOPE=SINGLE indicates that the data space may be accessed only by
programs running in the owner’s partition. The ALESERV ADD macro (which
the program must issue to gain access to the data space) adds an entry for the
data space only to access lists of the partition where the program owning the
data space is running.

SCOPE=ALL indicates that the data space can be accessed by programs
running in the owner’s partition (SCOPE=SINGLE) and in other selected
partitions. This allows to share data selectively among programs running in
different partitions. Whenever a program running in another partition wants to
access the data space (for example, called DX) it must first set up an ALESERV
ADD request with that STOKEN (DX) in order to get an ALET returned. Thus,
access to the data space can be restricted by communicating the STOKEN only
to certain programs.

94 z/VSE System Macros Reference

DSPSERV CREATE

SCOPE=COMMON indicates that the data space can be used by all programs
and from all partitions in the system. Such a data space provides a commonly
addressable area similar to the Shared Virtual Area (SVA).

To gain access to the data space, a program must issue the ALESERV ADD
macro with AL=PASN. ALESERV ADD then adds an entry for the data space
to the caller’s PASN-AL and returns the ALET for that entry. Additionally,
ALESERV ADD adds the same entry to the access lists (PASN-ALs) of all
active partitions in the system. Also, newly created partitions receive the same
entry. All programs running in the system use the same ALET to access the
data space. Since the entry is now on all PASN-ALs, programs in other
partitions do not have to issue the ALESERV ADD macro. The creating
program must only pass the ALET for the data space to the other programs.

Any program can create and delete SCOPE=SINGLE data spaces. However,
only PSW key 0 programs can create, extend, release, or delete SCOPE=ALL or
SCOPE=COMMON data spaces.

For a summary of the rules for creating, deleting, and using data spaces with
different SCOPEs, see |“Chapter 8, Creating and Using Data Spaces”] in the
manual [VSE/ESA Extended Addressabiliti]

BLOCKS=0 | (0,0) | (0,init) | (0,init-ad) | max | (max,init) | (max-ad,init-ad)
Specifies the maximum and the initial size of the data space or the size of an
area within the data space, as shown in
* The first (or only) value is always the maximum size, which identifies the

largest amount of storage you will need in the data space.
* The second value which you specify (after the comma) denotes an initial size
which identifies the amount of storage you will immediately use.

BLOCKS= Maximum Size | Initial Size
0 default default
(0,0) default default
(0,init) default init

max max default
(max,init) max init

Example 1: If you specify BLOCKS=(0,500),
the system sets the maximum size of your
data space to the default value and the
initial size to 500 blocks.

Example 2: If you specify BLOCKS=1000,
the system sets the maximum size to 1000
and the initial size to the default value.

Figure 1. Maximum and Initial BLOCKS Specification

BLOCKS=0 (which is the default) or BLOCKS=(0,0) establishes a data space
with the maximum size and the initial size both set to the default size, which
is either the IBM defined default or the default set via the SYSDEF
DSPACE,DFSIZE job control (or attention) command. The system returns this
default (as the maximum size) at the location identified by NUMBLKS.

BLOCKS=(0,...) sets the maximum size to the default value.

BLOCKS=(...,init) specifies the number of 4K-blocks to be used as the initial
size of the data space to be created. This initial size is the amount of storage

Chapter 2. Macro Descriptions 95

DSPSERV CREATE

you will immediately use. (If you need more space in the data space, you can
use the DSPSERV EXTEND macro to increase the available storage.) If the
initial size you specify exceeds or equals the maximum size, the initial size
becomes the maximum size.

Note: The amount of storage taken from VSIZE is always the initial number of
4K-blocks you specify, rounded up to the next multiple of 8, if necessary.
For example, if you specify 10 blocks, the system rounds this number up
to 16 and takes 64K from VSIZE.

BLOCKS-=(...,init-ad) specifies the address of a field that contains the initial
size of the data space.

BLOCKS=max or BLOCKS=(max,...) specifies the maximum size (in number
of blocks) to which the data space can be expanded. A block is a unit of 4 K
bytes. You cannot extend the data space beyond its maximum size. The
maximum size that can be specified is 524,288 blocks (the product of 524,288
times 4K bytes being 2 Gigabytes). Note, however, that your installation can set
limits to the amount of storage available for all data spaces together; for
details, see the SYSDEF job control (or attention) command.

BLOCKS=(max-ad,...) specifies the address of a field that contains the
maximum size of the data space to be created.

NUMBLKS=numblks-addr
Specifies the address of a four-byte area where the system returns the
maximum size (in blocks) of the newly created data space.

If you specify BLOCKS=0 or omit the BLOCKS operand when creating a data
space, the system returns the default.

CALLERKEY
Indicates that the data space has the storage key that matches the PSW key of
the caller.

KEY=key-addr
Specifies the address of an eight-bit variable or constant that contains the
storage key of the data space to be created. The key must be in bits 0-3 of the
field. The system ignores bits 4-7.

Note: A program running with a non-zero PSW key can only delete a data
space it owns; the PSW key has to match the storage key of the data
space.

FPROT=YES | NO
Specifies whether or not the data should be fetch-protected. Fetch protection
means that a program must be in the key of the data space storage (or key 0)
to reference data in the data space. If you specify YES, the entire data space is
fetch-protected.

MF=S
Specifies the standard form of the macro, which is used to place the
parameters into an inline parameter list. This is also the default if the MF
parameter is omitted.

MF=(L,...
Specifies the list form of the macro, which is used to construct a
non-executable control program parameter list.

96 z/VSE System Macros Reference

DSPSERV CREATE

Istaddr specifies the address of the area that the system is to use for the
parameter list.

attr is an optional 1- to 60-character input string which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
double-word boundary.

PLISTVER=011 specifies which parameter list the system is to generate. 0
produces a 56-character parameter list; 1 (which is always recommended)
produces a 60-character list.

No other parameters may be specified if the list form of the macro is chosen.

MF=(E,...

Specifies the execute form of the macro, which uses the parameter list
generated by the list form of the macro.

Istaddr specifies the address of the parameter list. This address must not be in
a data space. If the caller of the macro is in 24-bit mode, the address of the
parameter list must not be above the 16MB line.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified.

Return Codes in Register 15 (and Reason Codes in Register 0)

00
04

08

08
08
0C
0C

0C
0C

Successful completion

Successful completion. 2 Gigabytes (524,288 blocks) were requested. However,
since the processor does not support a data space with zero origin, a data
space with one block less than specified (524,287 blocks) was created.
RO=X"xx0005xx": Creation of data space would violate installation criteria. The
available storage may be exhausted. The installation criteria is defined with
SYSDEF DSPACE... and can be displayed with QUERY DSPACE.
RO=X"xx0009xx": GENNAME=NO was specified, but the data space name is
not unique within the partition.

RO=X"xx0012xx": The system’s set of generated names for data spaces has been
temporarily exhausted.

The system cannot create any additional data spaces at this time because of a
shortage of resources:

RO=X"xx000600": No system GETVIS storage available (page manager).
RO=X"xx000601": No virtual storage available (page manager).
RO=X"xx000602": No real storage available (page manager).

Data Space Naming Conventions

Data space names are from one to eight bytes long. They can contain letters,
numbers, and the characters @, #, and $, but no imbedded blanks. Names that
contain fewer than eight bytes must be left-justified and padded on the right with
blanks.

Data space names must be unique within the partition of the data space owner. No

other data space belonging to the partition can have the same name. Therefore, in

choosing names for your data spaces, avoid using the same names that IBM

products use for data spaces. IBM products use the following names for data

spaces:

* Names that begin with A through I, where the first three characters denote an
IBM component prefix, if possible.

Chapter 2. Macro Descriptions 97

DSPSERV CREATE

* Names that begin with SYSAxxxx through SYSIxxxx, where the fourth through
sixth characters denote any IBM component prefix, if possible.
* Names that begin with numbers or the characters SYSDS or SYSIV.

Use The Following Names For Your Data Spaces

* Problem state programs (non-zero PSW key) can use data space names that
begin with @, #, $, or the letters] through Z, with the exception of SYS. The
system abends problem state programs that begin any names with SYS (check
for subsystem).

* Supervisor state programs, programs with PSW key 0, and subsystems can use
data space names that begin with @, #, $, or letters I through Z. In addition, they
can use names that begin with SYSJ through SYSZ. The system abends programs
whose names begin with SYSDS.

Use names that begin with SYS]J through SYSZ to ensure that the names of the
data spaces belonging to supervisor state programs and programs with PSW key
0 do not conflict with the names of data spaces that belong to problem state
programs.

When you choose a name, consider that operators have to identify data space
names in some display requests and the DUMP command.

DSPSERV DELETE (Delete Data Space) Macro

»—L—_|—DS PSERV DELETE,STOKEN=stoken_addr
name

v

A\
v
A

,0D ,PLISTVER=0
,MF=(L,lstaddr |_ _| |_ —l

)
l—,attr—l I—,PLISTVER=1—|
)
LcompLeTe

(E,Istaddr

Requirements for the caller:

AMODE:
31

RMODE:
24 or ANY

ASC Mode:
Primary or AR (access register) if SYSSTATE ASCENV=AR

DSPSERV DELETE requests the system to delete a data space (when your program
does not need it any longer). Before you delete the data space, you should remove
the data space entry (ALET) from the access list by means of the ALESERV
DELETE macro.

A non-zero key program can delete any data space it owns, provided its PSW key
matches the storage key of the data space. A key-0 program can delete any data
space it owns and other data spaces of the caller’s partition.

98 z/VSE System Macros Reference

DSPSERV DELETE

STOKEN=stoken-addr
Specifies the address of the eight-byte STOKEN for the data space. (returned
from DSPSERV CREATE).

MF=S§
Specifies the standard form of the macro, which is used to place the
parameters into an inline parameter list. This is also the default if the MF
parameter is omitted.

MF=(L,...
Specifies the list form of the macro, which is used to construct a
non-executable control program parameter list.

Istaddr specifies the address of the area that the system is to use for the
parameter list.

attr is an optional 1- to 60-character input string which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
double-word boundary.

PLISTVER=011 specifies which parameter list the system is to generate. 0
produces a 56-character parameter list; 1 (which is always recommended)
produces a 60-character list.

No other parameters may be specified if the list form of the macro is chosen.

MF=(E,...
Specifies the execute form of the macro, which uses the parameter list
generated by the list form of the macro.

Istaddr specifies the address of the parameter list. This address must not be in
a data space. If the caller of the macro is in 24-bit mode, the address of the
parameter list must not be above the 16MB line.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified.

The return code in register 15 is always 0.

Chapter 2. Macro Descriptions 99

DSPSERV EXTEND

DSPSERV EXTEND (Extend Data Space) Macro

»—L—_I—DS PSERV EXTEND,STOKEN=stoken_addr,BLOCKS= I_s ize .
name size_addr

\

I—, NUMBLKS=numb ks_addr—|

A\

,0D ,PLISTVER=0
,MF=(L,lstaddr |_ _| |_ —l

)
l—,attr—l I—,PLISTVER=1—|

(E,Istaddr B g)
COMPLETE

Requirements for the caller:

AMODE:
31

RMODE:
24 or ANY

ASC Mode:
Primary or AR (access register) if SYSSTATE ASCENV=AR

DSPSERV EXTEND requests the system to increase the current size of the data
space. Use the EXTEND function only for a data space that was created with an
initial size smaller than the maximum size.

Before you can reference storage beyond the current size, you must use EXTEND
to increase the storage that is currently available. If you reference data space
storage beyond the current size, the system rejects the request and terminates the
caller with a cancel code.

A caller with non-zero PSW key can extend the data space it owns. A key-0
program can extend any data space it owns and other data spaces of the caller’s
partition.

The system rejects the request if the extended size would:

* Exceed the maximum size as specified by the BLOCKS operand of DSPSERV
CREATE when the data space was created.

* Extend the installation limit for the accumulated size of all data spaces. This
limit is either the system default or can be set by the SYSDEEF job control
command.

* Be smaller than 1 or greater than 524287 blocks.

STOKEN=stoken-addr
Specifies the address of the eight-byte STOKEN for the data space (returned
from DSPSERV CREATE).

100 z/VSE System Macros Reference

Y
A

DSPSERV EXTEND

BLOCKS=size | size-addr

Defines the amount of storage (in number of 4K-blocks) by which the current
size of the data space is to be increased. size-addr specifies the address of an
area where the size is specified.

Note: The amount of storage taken from VSIZE is always the number of
4K-blocks you specify for extension, rounded up to the next multiple of
8, if necessary. For example, if you specify 10 blocks, the system rounds
this number to 16 and takes 64K from VSIZE.

NUMBLKS=numblks-addr

Specifies the address of a 4-byte area where the system returns the size by
which the data space was extended.

MF=S§

Specifies the standard form of the macro, which is used to place the
parameters into an inline parameter list. This is also the default if the MF
parameter is omitted.

MF=(L,...

Specifies the list form of the macro, which is used to construct a
non-executable control program parameter list.

Istaddr specifies the address of the area that the system is to use for the
parameter list.

attr is an optional 1- to 60-character input string which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
double-word boundary.

PLISTVER=011 specifies which parameter list the system is to generate. 0
produces a 56-character parameter list; 1 (which is always recommended)
produces a 60-character list.

No other parameters may be specified if the list form of the macro is chosen.

MF=(E,...

Specifies the execute form of the macro, which uses the parameter list
generated by the list form of the macro.

Istaddr specifies the address of the parameter list. This address must not be in
a data space. If the caller of the macro is in 24-bit mode, the address of the
parameter list must not be above the 16MB line.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified.

Return Codes in Register 15 (and Reason Codes in Register 0)

00
08

08
08
08

Successful completion

RO=X"xx050200": Extending the data space would cause the data space limits
(as specified in the SYSDEF job control command) to be exceeded.
RO=X"xx050201": No system GETVIS storage available (page manager).
RO=X"xx050202": No virtual storage available (page manager).
RO=X"xx050203": No real storage available (page manager).

Chapter 2. Macro Descriptions 101

DSPSERV RELEASE

DSPSERV RELEASE (Release Data Space) Macro

102

>>——I:————:]——DSPSERV RELEASE,STOKEN=stoken_addr,START=start_addr,BLOCKS=———»>
name

v
A

size
size_addr—|
,0D ,PLISTVER=0
,MF=(L,lstaddr |_ _| |_ —l

)
l—,attr—l I—,PLISTVER=1—|

(E,lstaddr |_ _|)
COMPLETE

Requirements for the caller:

AMODE:
31

RMODE:
24 or ANY

ASC Mode:
Primary or AR (access register) if SYSSTATE ASCENV=AR

DSPSERV RELEASE requests the system to release a data space. Use this macro
when you have finished using a data space or when you want to reuse it for
another purpose. Releasing a data space means to initialize the virtual storage area
to hexadecimal zeros and to return the resources (used to contain your data) to the
system. Although the data contained in the virtual storage is discarded, the virtual
storage itself remains intact and is available for further use.

A non-zero key program can release the storage of any data space it owns,
provided its PSW key matches the storage key of the data space. A key-0 program
can release the storage of any data space it owns and other data spaces of the
caller’s partition.

The system rejects the request if the released size would be outside the data space
range or be zero.

STOKEN=stoken-addr
Specifies the address of the eight-byte STOKEN for the data space (returned
from DSPSERV CREATE).

START=start-addr
Specifies the address of a four-byte variable that contains the start address of
the block of storage to be returned to the system. The address must be on a
4KB boundary.

BLOCKS=size | size-addr
Defines either the length of the storage area (in blocks of 4K bytes) that the
system is to release or the address of a field that contains this length.

MF=S§
Specifies the standard form of the macro, which is used to place the
parameters into an inline parameter list. This is also the default if the MF
parameter is omitted.

z/VSE System Macros Reference

DSPSERV RELEASE

MF=(L,...
Specifies the list form of the macro, which is used to construct a
non-executable control program parameter list.

Istaddr specifies the address of the area that the system is to use for the
parameter list.

attr is an optional 1- to 60-character input string which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
double-word boundary.

PLISTVER=011 specifies which parameter list the system is to generate. 0
produces a 56-character parameter list; 1 (which is always recommended)
produces a 60-character list.

No other parameters may be specified if the list form of the macro is chosen.

MF=(E,...
Specifies the execute form of the macro, which uses the parameter list
generated by the list form of the macro.

Istaddr specifies the address of the parameter list. This address must not be in
a data space. If the caller of the macro is in 24-bit mode, the address of the
parameter list must not be above the 16MB line.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified.

The return code in register 15 is always 0.

Chapter 2. Macro Descriptions 103

DTFCD

DTFCD (Define the File for Card 1/0) Macro

104

»»—name DTFCD DEVADDR=SYSxxx,IOAREAl=name |_ _| >
,ASOCFLE=filename

I—,BLKSIZE=n—| I—,CONTROL=YES—| I—,CRDERR=RETRY—| l—,CTLCHR= ASA]J

YES

vy
v

SKIP
name

l—,DEVICE=nnnn—| I—,EOFADDR=name—| I—,ERROPT=—EIGNORE l—,FUNC=xxx—|

I—,IOAREA2=name—| I—,IOREG=(r)—I l—,MODE=xx—| I—,MODNAME=namt-2—|

»RECFORM=FIXUNB

I—,OUBLKSZ=n—| l—,RDONLY=YES—| I—, RECFORM=—|:VARUNB I—, RECSIZE= (r‘)—|
UNDEF

, TYPEFLE=INPUT

Yy

I—,SEPASMB=YES—| I—,SSELECT=n—| I—,TYPEFLE=—|:OUTPUT l—,WORKA=YES—|
CMBND

Required RMODE: 24

This macro defines a file for an IBM card I/O device or an IBM 3881 Optical Mark
Reader.

If not stated otherwise, the operands of the DTFCD macro can be specified for all
three types of files INPUT, OUTPUT, CMBND).

ASOCFLE=filename
This operand is used together with the FUNC operand to define associated
files on the IBM 3525. For a discussion of associated files see ["Programming]
ffor Associated Files”|in the /VSE System Macros User’s Guide] ASOCFLE
specifies the file name of associated read, punch, or print files as shown in
[Figure 2 on page 105 It enables macro sequence checking by the logic module
of each associated file. One file name is required per DTF for an associated file.

This operand applies to input and output files.

z/VSE System Macros Reference

FUNC=... Read DTFCD Punch DTFCD Print DTFPR
FUNC=PW Filename of asso- |Filename of asso-
ciated print DTFPR |ciated punch DTFCD
FUNC=RP |Filename of asso- |Filename of asso-
ciated punch DTFCD |ciated read DTFCD
FUNC=RPW |Filename of asso- |Filename of asso- |Filename of asso-
ciated punch DTFCD |ciated print DTFPR |ciated read DTFCD
FUNC=RW |Filename of asso- Filename of asso-
ciated print DTFPR ciated read DTFCD
Examples:

If FUNC=PW is specified, then specify:
1. The file name of the print DTFPR in the ASOCFLE=filename
operand of the punch DTFCD.
2. The file name of the punch DTFCD in the ASOCFLE=filename
operand of the print DTFPR.
If FUNC=RPW is specified, then specify:
1. The file name of the punch DTFCD in the ASOCFLE=filename
operand of the read DTFCD.
2. The file name of the print DTFPR in the ASOCFLE=filename
operand of the punch DTFCD.
3. The file name of the read DTFCD in the ASOCFLE=filename
operand of the print DTFPR.

Figure 2. ASOCFLE Operand Usage with Print Associated Files

BLKSIZE=n
Enter the length of the I/O area (IOAREA1). If the record format is variable or
undefined, enter the length of the largest record.

DTFCD

To use the IBM 3741 diskette as input device for SYSIPT data (as spooling
device for VSE/POWER), you can specify a maximum value of 512 bytes for
BLKSIZE.

If the operand is omitted, the defaults for the various IBM devices are as

follows:

160 For column binary processing on the 3505 or 3525.
96 For the 5424 and 5425.
80 For all other devices.

If FUNC=I is specified for a file on the IBM 3525, the length specified for
BLKSIZE must be 80 data bytes if CTLCHR=YES or if ASA is not specified; if

CTLCHR=YES or if ASA is specified, the length must be 81 bytes.

CONTROL=YES
This operand is specified if a CNTRL macro is to be issued for a file. If this
operand is specified, CTLCHR must be omitted.

The CNTRL macro cannot be used for an input file with two I/O areas (that is,
when the IOAREA?2 operand is specified), or for an input file used in
association with a punch file (when the operand FUNC=RP or RPW is
specified) on the 3525; in this case, however, this operand can be specified in
the DTFCD for the associated punch file.

CRDERR=RETRY

This operand applies to card output on the 2520 or 2540. It specifies the

Chapter 2. Macro Descriptions 105

DTFCD

operation to be performed if an error is detected. From this specification, IOCS
generates a retry routine and a save area for the card punch record.

If a punching error occurs, it is usually ignored and operation continues. The
error card is stacked in stacker P1 (punch), while correct cards are stacked in
the stacker you select. If the CRDERR=RETRY operand is included and an
error condition occurs, IOCS also notifies the operator and then enters the wait
state. The operator can either cancel the job, ignore the error, or instruct IOCS
to repunch the card.

CTLCHR=ASA | YES

This operand is required if first-character control is to be used on an output
file. ASA denotes the American National Standards character set. YES denotes

the System/370 character set. See |[Appendix A, “Control Character Codes,” on|
for the complete list of codes. If this operand is specified, CONTROL

must be omitted.

DEVADDR=SYSIPT | SYSPCH | SYSRDR | SYSnnn

This operand specifies the logical unit name to be associated with a file. The
logical unit represents an actual I/O device address and is used in the ASSGN
job control statement to assign an actual I/O device address to the file.

SYSIPT, SYSPCH, or SYSRDR must not be specified:

e For a file on an IBM 3881

* For a combined file on an IBM 2520 or 2540 (TYPEFLE=CMBND)

* For an associated file on an IBM 3525 (FUNC=RP, RW, RPW, or PW)
* If the operand FUNC=I is specified

¢ If the MODE operand is specified with C, O, or R.

DEVICE=nnnn

For nnnn, specify the device code of the IBM device associated with the file.
The code you specify can be one of the following:

2520
2540
3505
3525
3881

If the operand is omitted, 2540 is assumed.

EOFADDR=name

This entry must be included for input and combined files; it specifies the
symbolic name of your end-of-file routine. IOCS automatically branches to this
routine on an end-of-file condition. In your routine, you can perform any
operations required for the end of the file (you generally issue a CLOSE
instruction for the file).

IOCS detects end-of-file conditions in the card reader by recognizing the
characters /* punched in card columns 1 and 2 (column 3 must be blank).

ERROPT=IGNORE | SKIP | name

This operand specifies the desired error-exit option. The operand applies to

files as follows:

* Input with any of the possible specifications.

* Output with the specification IGNORE, except associated output files. For an
associated output file, do not use the operand at all.

The functions of the specifications are described below:

ERROPT=IGNORE
The error is to be ignored. When control returns to your program, register

106 z/VSE System Macros Reference

DTFCD

1 contains the address of the error record and, for output files, byte 3, bit 3
of the CCB is set on (see page . You can check this bit and take the
appropriate action to recover from the error. Only one I/O area and no
work area is permitted for output files. When IGNORE is specified for an
input file associated with a punch file (FUNC=RP or RPW) and an error
occurs, a PUT for the card in error must nevertheless be given for the
punch file.

ERROPT=SKIP
The record in error is not to be made available for processing. The next
card is read and processing continues.

ERROPT=name
IOCS branches to your routine when an error occurs. Register 1 contains
the address of the record in error; register 14 contains the return address.

In your routine, you may perform whatever actions you desire. However,
GET macros may not be issued for cards in the same device. If the file is
an associated file, PUT macros may not be issued for cards in the same
device.

If any other IOCS macros are issued in the routine, register 14 must be
saved. If the operand RDONLY=YES is specified, register 13 must also be
saved. At the end of your routine, return to IOCS by branching to the
address in register 14. If the input file is associated with an output file
(FUNC=RP, RPW, or RW), no punching or printing must be done for the
card in error. IOCS continues processing by reading the next card.

Note: When ERROPT is specified for an input file and an error occurs, the /*
end-of-file card may be lost. After having taken the action for the card in
error as specified by the ERROPT operand, IOCS reads the next card,
which is assumed to be a data card. If this card is an end-of-file card,
IOCS cannot recognize the end-of-file condition.

FUNC=R | P | I1| RP | RW | RPW | PW
This operand specifies the type of input or output file to be processed on the
IBM 3525.
R indicates read.
P indicates punch.
W indicates write (print).

When FUNC=I is specified, the file will be both punched and interpreted; no
associated file is necessary to achieve this. The information printed will be the
same as the information punched, in contrast to FUNC=PW, where any relation
between the information printed and the information punched is determined
by your program. When FUNC=I is specified the file can have only one I/O
area.

RP, RW, RPW, and PW are used, together with the ASOCFLE operand, to
specify associated files. When one of these specifications is coded for a file, it
must also be coded for the associated file(s). Each of the associated files can
have only one I/O area.

IOAREAl=name
This operand specifies the name of the input or output area used for this file.

If the macro is issued for a combined file, this operand specifies the input area.
If IOAREAZ2 is not specified, the area specified in this operand is used for both
input and output.

Chapter 2. Macro Descriptions 107

DTFCD

IOAREA2=name
This operand specifies the name of a second 1/O area. If the file is a combined
file and the operand is specified, the designated area is an output area.

If this operand is specified for a file on the IBM 3881, the IOREG operand must
also be specified.

This operand must not be specified if either:

¢ In the FUNC operand, you code one of the specifications I, RP, RPW, RW, or
PW, or

* For an output file, you specify ERROPT=IGNORE.

IOREG=(r)
If two input or output areas are used instead of a work area, this operand
specifies the register (any of 2 through 12) into which IOCS puts the address of
the record. For output files, IOCS puts into this register the address where the
user can build a record. This operand cannot be used for combined files.

This operand must be specified for a file on the IBM 3881 if the IOAREA2
operand is specified.

MODE=E I CIOIRIEOIERICOICR
This operand specifies the mode used to process an input or output file on an
IBM 3505 or 3525.

E =
Normal EBCDIC mode, which is also the default. It is also the default if
only O or R is specified.
C=
Column binary mode.
0=
Optical mark read (OMR) mode.
R =

Read column eliminate mode.

Valid entries are:

e For a file on the IBM 3505: E, C, O, R, EO, ER, CO, and CR.

* For a file on the IBM 3525: E, C, R, ER, and CR.

» For SYSIPT, SYSPCH, or SYSRDR: E. O, and R (with or without E or C)
cannot be specified for output files.

If O or R is specified (with or without E or C), a format descriptor card
defining the card columns to be read, or eliminated, must be provided. See
[‘Format Descriptor Card”|in the|z/VSE System Macros User’s Guide|for
instructions on how to write this card and on how to code and process OMR
data.

MODNAME=name
This operand is used to specify the name of the logic module that is used with
the DTF table to process the file. If the logic module is assembled with the
program, MODNAME must specify the same name as the CDMOD macro.

If this operand is omitted, standard names are generated for calling the logic
module. If two DTF macros call for different functions that can be handled by
a single module, only one module is called.

OUBLKSZ=n
This operand is used in conjunction with IOAREA2, but only for a combined
file. Enter the maximum number of characters to be transferred at one time. If
this entry is not included and IOAREA?2 is specified, the same length as
defined by BLKSIZE is assumed.

108 z/VSE System Macros Reference

DTFCD

RDONLY=YES
This operand is specified if the DTF is used with a read-only module. Each
time a read-only module is entered, register 13 must contain the address of a
72-byte doubleword-aligned save area.

Every task requires its own uniquely defined save area, and each time an
imperative macro (except OPEN or OPENR) is issued, register 13 must contain
the address of the save area associated with that task. Because each of the save
areas is unique for a certain task, the module is reentrant. Thus, the module
can be used concurrently by two or more tasks.

If an ERROPT routine issues I/O macros using the same read-only module that
caused control to pass to the error routine, your program must provide another
save area. One save area is used for the normal I/O operations; the second for
I/0O operations in the ERROPT routine. Before returning to the module that
entered the ERROPT routine, register 13 must contain the save area address
originally specified for the task.

If this operand is omitted, the module generated is not reenterable, and no
save area is required.

RECFORM=FIXUNB | VARUNB | UNDEF

This operand specifies the record format of the file: fixed length, variable
length, or undefined. If the record format is fixed unblocked (FIXUNB,) this
operand may be omitted. This operand must specify FIXUNB if you also
specified one of the following:

TYPEFLE=INPUT

TYPEFLE=CMBND

FUNC=I

DEVICE=3881

RECSIZE=(r)
For undefined records, this operand specifies the register (any one of 2 through
12) that contains the length of the output record. You must load the length of
each record into the specified register before you issue the PUT macro for the
record.

SEPASMB=YES
Include this operand only if your DTFCD macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name used as file name. The name is used as the module’s
transfer address. If you omit this operand, the assembler assumes that the
DTFDA macro is assembled together with your program.

SSELECT=n
This operand specifies the valid stacker-select character for a file. If this
operand is not specified, cards are selected into the NR (normal read) or NP
(normal punch) stackers.

This operand must not be specified for:

* Combined files

* Files on the IBM 3881

* Read files associated with punch files (FUNC=RP or FUNC=RPW) on an
IBM 3525.

In this case, SSELECT=n may be specified for the associated output file.

When this operand is used, the program ignores CONTROL=YES with input
files.

Chapter 2. Macro Descriptions 109

DTFCD

TYPEFLE=INPUT | OUTPUT | CMBND
This operand specifies whether a file is input, output, or combined. A
combined file can be specified for an IBM 2520 or for an IBM 2540 with the
punch-feed-read feature. TYPEFLE=CMBND is applicable if both GETs and
PUTs are issued for the same card file.

Only TYPEFLE=INPUT can be specified for the 3881. If OUTPUT or CMBND
is specified, the DTF defaults to DEVICE=2540 and a non-executable CDMOD
logic module is produced. The MNOTE

IMPROPER DEVICE. 2540 ASSUMED

is then printed at the time of assembly.

If the operand is omitted, INPUT is assumed.

WORKA=YES
If I/O records are processed in work areas instead of in the I/O areas, specify
this operand. You must set up the work area in storage. The address of the
work area, or a general-purpose register which contains the address, must be
specified in each GET and PUT macro.

If ERROPT=IGNORE is specified for an output file or if DEVICE=3881,
WORKA=YES must not be specified.

110 z/VSE System Macros Reference

DTFCN

DTFCN (Define the File for Console 1/0) Macro

»»—name DTFCN DEVADDR=SYSxxx,IOAREAl=name >

l—,BLKSIZE=n—| l—, INPSIZE=n—|

»RECFORM=FIXUNB

v

\

»
>

I—,MODNAME=name—| I—, RECFORM=UNDEFJ I—, RECSIZE= (r‘)—l

|—,TYPEFLE=INPUT

v
A

I—,TYPEFLE=—|:OUTPUT l—,WORKA=YES—|

CMBND

Required RMODE: 24

The macro defines an input or output file that is processed on an IBM console
printer-keyboard, or display operator console. DTFCN provides GET/PUT logic as
well as PUTR logic for a file.

BLKSIZE=n

This operand specifies the length of the I/O area; if the PUTR macro is used
(TYPEFLE=CMBND is specified), this operand specifies the length of the
output part of the I/O area. For the undefined record format, BLKSIZE must
be as large as the largest record to be processed. The length must not exceed
256 characters.

If the console buffering option is specified at system generation time and the
device is assigned to SYSLOG, physical IOCS can increase throughput for each
actual output record not exceeding 80 characters. This increase in throughput
results from starting the output I/O command and returning to the program
before output completion. Regardless of whether or not output records are
buffered (queued on an I/O completion basis), they are always printed or
displayed in first-in-first-out order.

DEVADDR=SYSLOG | SYSnnn

This operand specifies the logical unit name associated with the file. Specify
DEVADDR=SYSLOG to get partition prefixes (BG, F1, F2, E3, ... Fn) for
message identification.

DEVADDR=SYSLOG must be specified if your DTFCN macro includes
TYPEFLE=CMBND.

Specifying DEVADDR=SYSnnn is not recommended because:

* The lines you write to the console do not have a partition identifier.

* A GET request for input from the console cannot be buffered, and the
system waits for the requested input. Until the operator supplies this input,
no other console communication can take place. Thus, your system’s console
can become a serious performance bottleneck.

INPSIZE=n

This operand specifies the length of the input part of the I/O area for PUTR
macro usage.

IOAREA1=name

This operand specifies the name of the I/O area used by the file. For PUTR
macro usage, the first part of the I/O area is used for output, and the second
part is used for input. The lengths of these parts are specified by the BLKSIZE

Chapter 2. Macro Descriptions 111

DTFCN

and INPSIZE operands respectively. The I/O area is not cleared before or after
a message is printed, or when a message is canceled and reentered on the
console.

MODNAME=name

This operand specifies the name of the logic module generated by this DTFCN
macro. If this entry is omitted, standard module names are generated for the
logic module.

A module name must be given when two phases (each containing a DTFCN
macro) are link-edited into the same program. Under such conditions, omission
of this operand results in unresolved address constants.

RECFORM=FIXUNB | UNDEF

This operand specifies the record format of the file: fixed length or undefined.
FIXUNB must be specified if TYPEFLE=CMBND is specified. FIXUNB is
assumed if the RECFORM operand is omitted.

RECSIZE=(r)

For undefined records, this operand is required for output files and is optional
for input files. It specifies a general register (2 to 12) that contains the length of
the record. On output, you must load the length of each record into the
specified register before you issue a PUT macro. If specified for input files,
IOCS provides the length of the record transferred to storage.

TYPEFLE=INPUT | OUTPUT | CMBND

This operand specifies a file as input, output, or combined. If INPUT is
specified, code is generated for both input and output files. If OUTPUT is
specified, code is provided for output files only.

CMBND must be specified if you use the PUTR macro. This causes coding to

be generated for:

* Input and output files.

* The use of PUTR macros, which ensures that a message requiring an
operator response is not deleted from the console display.

When CMBND is specified, DEVADDR=SYSLOG must also be specified.

WORKA=YES

This operand indicates that a work area is used with the file. A GET or PUT
macro moves the record to or from the work area. A PUTR macro moves the
record from and to the work area.

112 z/VSE System Macros Reference

DTFDA

DTFDA (Define the File for Direct Access) Macro

»»>—name DTFDA BLKSIZE=n,ERRBYTE=name,10AREAl1=name ,SEEKADR=name ,TYPEFLE= |_INPUT_| |_ _| >
QUTPUT L,AFTER=YES

v

\

I—,CONTROL=YES—| l—,DEVADDR=SYSnnn—| l—,DSKXTNT=n—I I—,ERREXT=YES—| I—,FEOVD=YES—|

I—,HOLD=YES—| l—,IDLOC=nan1e—| l—,KEYARG=nan1e—| I—,KEYLEN=n—| l—,LABADDR=naI77e—|

|—, READID=YESJ |—, READKEY=YESJ |—, RECFORM=r‘ecor‘dformatJ |—, RECSIZE= (r‘)J

l—,RELTYPE= DEC]J I—,SEPASMB=YES—| l—,SRCHM=YES—| l—,TRLBL=YES—| I—,VERIFY=YES—|

HEX

Yy

Yy

l—,WRITEID=YES—| l—,WRITEKY=YES—| I—,XTNTXIT=n(7me—I

Required RMODE: 24

The DTFDA macro defines a file for Direct Access Method (DAM) processing. If
not stated otherwise, the operands of the DTFDA macro can be specified for both
input and output files.

DAM does not support FBA devices.

AFTER=YES
This operand must be included for output files if any records (or an additional
record) are written in a file by a formatting WRITE (count, key and data)
following the last record previously written on a track. The remainder of the
track is erased. That is, whenever either of the macros
WRITE filename, AFTER
WRITE filename,RZERO

is used in a program, this operand is required.

BLKSIZE=n
This operand indicates the size of the I/O area by specifying the maximum
number of characters that are transferred to or from the area at any one time.
When undefined, variable length or spanned records are read or written, the
area must be large enough to accommodate the largest record. The chapter
[“1/O Area Specification”|in the [z/VSE System Macros User’s Guide|describes
how to compute the size of an I/O area.

IOCS uses this specification to set up the count field of the CCW for reading or
writing records.

CONTROL=YES
Include this operand if a CNTRL macro is issued for this file. The CNTRL
macro for seeking on a disk allows you to specify a track address on which
access movement should begin for the next READ or WRITE macro. While the
arm is moving, you may process data and/or request I/O operations on other
devices.

Chapter 2. Macro Descriptions 113

DTFDA

DEVADDR=SYSnnn
This operand must specify the symbolic unit (SYSnnn) associated with a file if
the symbolic unit is not provided via an EXTENT job control statement. If such
a unit is provided, its specification overrides the DEVADDR specification. This
specification, or symbolic unit, represents an actual I/O address and is used in
the ASSGN job control statement to assign the actual I/O device address to the
file.

Note: EXTENT job control statements provided for DAM must be supplied in
ascending order, and the symbolic units for multi-volume files must be
assigned in consecutive order.

DSKXTNT=n
This operand indicates the maximum number of extents (up to 256) that are
specified for a file. When this operand is used together with FIXUNB,
VARUNB, or UNDEF specified in the RECFORM operand, it indicates that a
relative ID is used in the SEEKADR and IDLOC locations. If DSKXTNT=n is
omitted, a physical ID is assumed in the SEEKADR and IDLOC locations.

If RECFORM=SPNUNB is specified, DSKXTNT is required. If relative
addressing is used, the RELTYPE operand must also be specified.

ERRBYTE=name
This operand is required. It specifies the name of a two-byte field in which
IOCS stores an error-condition or status code. For description of these codes,
see [“Error Handling”|in the |z/VSE System Macros User's Guide .

ERREXT=YES
This operand enables irrecoverable 1/O errors (occurring before a data transfer
takes place) to be indicated to your program. This error information is
indicated in the bytes named in the ERRBYTE operand and is available after
the WAITF macro has been issued.

FEOVD=YES
This operand is specified if code is generated to handle end-of-volume records.
It should be specified only when reading a file which was built using DTFSD
and the FEOVD macro.

HOLD=YES
This operand provides for the track hold function, which is to be specified at
system generation time. If the operand is omitted, the track hold function is
not performed. For details, see ['DASD Record Protection (Track Hold)"|in the
k/VSE System Macros User’s Guide]

IDLOC=name
Include this operand if you want IOCS to supply the ID of a record after each
READ or WRITE (ID or KEY) is completed. Specify the name of a record
reference field in which IOCS is to store the ID. WAITF should be used before
referencing this field. Do not specify the same field for IDLOC and SEEKADR.

Note: When the record to be read or written is the last record of the cylinder,
an end-of-cylinder indication is posted in ERRBYTEL, bit 2, but the
address returned is that of the first record of the next cylinder. If, in
addition, the end-of-volume indication is posted, the address returned in
IDLOC is all 1 bits.

IOAREAl1=name
This operand must be included. It specifies the name of the input/output area

114 z/VSE System Macros Reference

DTFDA

used for the file. IOCS routines transfer records to or from this area. The
specified name must be the same as the name used in the DS instruction that
reserves this area of storage.

KEYARG=name
This operand must be included if records are identified by key; that is, if either
of the macros
READ filename, KEY
WRITE filename KEY

is used in a program, this entry and the corresponding KEYLEN operand are
required. KEYARG specifies the name of the key field in which you supply the
record key to IOCS.

The KEYARG operand is required for formatting WRITE (WRITE
filename, AFTER) operations for files containing keys if RECFORM=VARUNB
or SPNUNB. It is required also when the macro

READ filename,ID

is specified and if KEYLEN is not zero. When record reference is by key, IOCS
uses this specification at assembly time to set up the data address field of the
CCW for search commands.

KEYLEN=n
This operand must be included if record reference is by key or if keys are read
or written. It specifies the number of bytes in each key. All keys must have the
same length. If this operand is omitted, IOCS assumes a key length of zero.

If there are keys recorded on disk and this entry is absent, a WRITE ID or
READ ID writes or reads the data portion of the record.

When the record reference is by key, IOCS uses this specification and your
IOAREAT1 specification to locate the data field in the I/O area.

LABADDR=name
You may require one or more user-standard labels in addition to the standard
file label. If so, you must include your own routine to check (or write) the
labels. The name of this routine is specified in this operand. IOCS branches to
the routine after having processed the standard label. For more information
about the handling of user-standard labels, see the section ["Processing of User|
[Labels” on page 445|

Note that the routine always gets control in 24-bit addressing mode.

READID=YES
This operand must be included for an input file if, in your program, the macro
'READ filename,ID’ is used.

READKEY=YES
This operand must be included for an input file if, in your program, the macro
'READ filename, KEY”’ is used.

RECFORM=FIXUNB | SPNUNB | UNDEF | VARUNB
This operand specifies the type of records in the input or output file. The
specifications are:
FIXUNB
For fixed-length records. All records are considered unblocked. If you want
blocked records, you must provide your own blocking and deblocking.
SPNUNB
For spanned records. This specification is for unblocked variable-length
logical records of less than 32,768 bytes per record.

Chapter 2. Macro Descriptions 115

DTFDA

UNDEF
For undefined records. This specification is required only if the records are
of undefined format.

VARUNB
For variable-length records. This specification is for unblocked
variable-length records.

For a description of record formats, see [“Record Types”|in the k/VSE System

Macros User’s Guide}

RECSIZE=(r)
This operand must be included if undefined records are specified
(RECFORM=UNDETF). It specifies the number of the general-purpose register
(any of 2 through 12) that contains the length of each individual input or
output record.

Whenever an undefined record is read, IOCS supplies the length of the data
area for that record in the specified register.

When an undefined record is written, you must load the length of the data
area of the record (in bytes) into this register, before you issue the WRITE
macro for the record. IOCS adds the length of the key when required.

When records are written (AFTER specified in the WRITE macro), IOCS uses
the length to set up the count area written on disk. IOCS adds the length of
both the count and the key when required.

RELTYPE=DEC | HEX
This operand specifies whether the zoned decimal (DEC) or hexadecimal
(HEX) form of the relative ID is to be used. When FIXUNB, VARUNB, or
UNDEF is specified in the RECFORM operand, RELTYPE should be supplied
only if the DSKXTNT operand (relative ID) is specified.

If the operand is omitted, a hexadecimal relative ID is assumed. However, if
DSKXTNT is also omitted, a physical ID is assumed in the SEEKADR and
IDLOC addresses.

If RECFORM=SPNUNB is specified, the RELTYPE operand is required when
relative addressing is used. If RELTYPE is omitted, a physical ID is assumed in
the SEEKADR and IDLOC addresses.

SEEKADR=name
This operand must be included to specify the name of your track-reference
field. In this field, you store the track location of the particular record read or
written. IOCS refers to this field to determine which volume and which track
contains the desired record. Whenever records are to be located by searching
for a specified ID, the track-reference field must also contain the number of the
record on the track.

SEPASMB=YES
Include this operand only if the DTFDA macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name used as file name. The name is used as the module’s
transfer address. If you omit this operand, the assembler assumes that the
DTFDA macro is assembled together with your program.

SRCHM=YES
If records are identified by key, this operand may be included to cause IOCS to
search multiple tracks for each specified record. The macros
READ filename, KEY
WRITE filename KEY

116 z/VSE System Macros Reference

DTFDA

cause IOCS to search the track specified in the track-reference field and all
following tracks in the cylinder, until the record is found or the end of the
cylinder is reached. If the file ends before the end of the cylinder and the
record is not found, the search continues into the next file, if any, on the
cylinder. EOC, instead of NRE, is indicated. Without SRCHM=YES, each search
is confined to the specified track.

TRLBL=YES
This operand, if specified with the LABADDR operand, indicates that user
standard trailer labels are to be read or written following the user standard
header labels on the user label track. Both operands must be specified for
trailer label processing.

TYPEFLE=INPUT | OUTPUT
This operand must be included to indicate how standard volume and file
labels are to be processed. INPUT indicates that standard labels are to be read;
OUTPUT indicates that standard labels are to be written.

VERIFY=YES
This operand is included if you want to check the parity of disk records after
they are written. If this operand is omitted, any records written on a disk are
not verified.

WRITEID=YES
This operand must be included if the disk location for writing an output
record or updating an input file is specified by a record identifier; that is,
whenever the macro

WRITE filename,ID

is used in the program, this operand is required.

WRITEKY=YES
This operand must be included if the disk location for writing any output
record or updating an input file is specified by record key, that is, whenever

WRITE filename,KEY

is used.

XTNTXIT=name
This operand is included if you want to process label extent information. It
specifies the name of your extent exit routine. Note that the routine always
gets control in 24-bit addressing mode.

During an OPEN, IOCS branches to your routine after each specified extent is
checked. Upon entering your routine, IOCS stores, in register 1, the address of
a 14-byte field that contains the label extent information (in binary form)
retrieved from the format 1 and format 3 labels. If user labels are present, the
user label track is returned as a separate extent and the lower limit of the first
normal extent is increased by one track. The format of this field is shown in
[Table 5 on page 118

Return to IOCS by use of the LBRET macro. Registers 2 through 13 are
available in the XTNTXIT routine. Within the routine you cannot issue a macro
that calls a transient routine (such as OPEN, CLOSE, DUMP, PDUMP,
CANCEL, CHKPT, etc.).

Chapter 2. Macro Descriptions 117

DTFDA

Table 5. Label Extent Information Field

Bytes Contents

0 Extent type code (as specified in the EXTENT statement).

1 Number of extent (as determined by the EXTENT statement sequence).
2-5 Lower limit of the extent (cchh).

6-9 Upper limit of the extent (cchh).

10-11 Symbolic unit number (in hexadecimal format).

12-13 Not used.

118 z/VSE System Macros Reference

DTFDI

DTFDI (Define the File for Device Independence) Macro

»»—name DTFDI DEVADDR=SYSxxx,IOAREAl=name >

l—,CISIZE=n—| I—, EOFADDR=name—|

SKIP—
name—-

|—,ERR0PT=—EIGN0RE—J |—,IOAREA2=nameJ |—,IOREG=(7’)J

\

l—,MODNAME=name—| l—,RDONLY=YES—| I—,RECSIZE=n—| I—,SEPASMB=YES—|

l—,TRC=YES—I I—,WLRERR=nan7e—|

Required RMODE: 24

The macro provides device independence for system logical units.
CISIZE=n

This operand specifies the FBA control interval size. The value n must be an
integral multiple of the FBA physical block size and, if greater than 8K, must
be a multiple of 2K. The maximum value is 32768 (32K), except when assigned
to SYSLST or SYSPCH, when the maximum is 30720 (30K).

If CISIZE is omitted, CISIZE=0 is assumed. For FBA devices, control interval
size may be overridden for an output file at execution time by specifying the
CISIZE operand of the DLBL control statement. For an input file, the CISIZE
value in the format-1 label is used. If the CISIZE value is zero, then OPEN
calculates a value based on the RECSIZE value specification.

DEVADDR=SYSIPT | SYSLST | SYSPCH | SYSRDR

This operand must specify the symbolic unit associated with this system file.
Only the system names shown above may be specified.

EOFADDR=name

This operand specifies the name of your end-of-file routine. It is required only
if SYSIPT or SYSRDR is specified. Note that the routine always gets control in
24-bit addressing mode.

IOCS branches to this routine when it detects an end-of-file condition. In this
routine, you can perform any operations necessary for the end-of-file condition
(you generally issue the CLOSE macro).

An end-of-file condition exists when the following occurs for SYSIPT or
SYSRDR:

 For a card reader, a /* in positions 1 and 2 of the record.

* For tape, a /* in positions 1 and 2 of the record or a tapemark.

* For disk, a /* in positions 1 and 2 of the record or an end-of-file record.

IOCS detects the end-of-file condition on diskette units by recognizing that end
of data has been reached on the current volume and that there are no more
volumes available.

ERROPT=IGNORE | SKIP | name

This operand does not apply to output files. For output files for most devices,
the job is automatically terminated after IOCS has attempted to retry writing
the record.

Chapter 2. Macro Descriptions 119

DTFDI

This operand applies to wrong-length records if WLRERR is omitted. If both
ERROPT and WLRERR are omitted and wrong-length records occur, IOCS
ignores the error.

ERROPT specifies the function to be performed for an error block. If an error is
detected when reading a magnetic tape, or a disk or a diskette volume, IOCS
attempts to recover from the error. If the error is not corrected, the job is
terminated unless this operand is included to specify other procedures to be
taken. The three specifications are described below:

ERROPT=IGNORE
The error condition is to be ignored. The address of the error record is
made available to you for processing.

ERROPT=SKIP
The error block is not to be made available for processing. The next record
is read and processing continues.

ERROPT=name
IOCS is to branch to your routine when an error occurs. Register 1 contains
the address of the record in error; register 14 contains the return address.
Note that the routine always gets control in 24-bit addressing mode.

In your error routine, you may perform whatever functions are desired, or
simply note the error condition. However, you may not issue any GET
macro in the routine. If you use any other IOCS macros, you must save the
contents of register 14. You must also save the contents of register 13. To
access the error record, use the address in register 1; the address in the
IOREG register may vary.

At the end of the error routine, return to IOCS by branching to the address
in register 14. The next record is then made available for processing.

IOAREA1=name

This operand must specify the name of the input or output area used with the
file. The input and/or output routines transfer records to or from this area.

If the DTFDI macro is used to define a printer file, or a card file to be
processed on a printing card punch, the first byte of the output area must
contain a control character.

IOAREA2=name

Two input or output areas can be allotted for a file to permit overlapped GET
or PUT processing. The operand specifies the name of the second 1/0O area.

IOREG=(r)

When two I/O areas are used, this operand specifies the general purpose
register (any of 2 through 12) that points to the address of the next record. For
input files, it points to the logical record available for processing. For output
files, it points to the address of the area where you can build a record.

If the operand is omitted and two I/O areas are used, register 2 is assumed.

MODNAME=name

This operand may be used to specify the name of the logic module used with
the DTF table to process the file. If the logic module (DIMOD) is assembled
with the program, the MODNAME operand in this DTF must specify the same
name as the DIMOD macro.

If this entry is omitted, standard names are generated for calling the logic
module. If two different DTF macros call for different functions that can be

120 z/VSE System Macros Reference

DTFDI

handled by a single module, only one standard-named module is called. The
module specified by this operand is ignored if the actual device is one of the
following:

A disk device

A printer of type PRT1, IBM 4248, or IBM 3800.

OPEN always provides linkage to an IBM-supplied module for these devices.

RDONLY=YES
This operand is specified if the DTF is to be used with a read-only module.
Each time a read-only module is entered, register 13 must contain the address
of a 72-byte doubleword-aligned save area. Each task should have its own
uniquely defined save area, and each time an imperative macro (except OPEN,
OPENR or LBRET) is issued, register 13 must contain the address of the save
area associated with that task. The fact that the save areas are unique for each
task makes the module reentrant (that is, capable of being used concurrently
by several tasks).

If an ERROPT or WLRERR routine issues /O macros using the same
read-only module that caused control to pass to either error routine, the
program must provide another save area. One save area is used for the initial
I/0 operations, and the second for I/O operations in the ERROPT or WLRERR
routine. Before returning to the module that entered the error routine, register
13 must be set to the save area address originally specified for the task.

If the operand is omitted, the module generated is not reenterable and no save
area need be established.

This operand is ignored for all disk devices. For these devices a read-only
module is always supplied.

RECSIZE=n
This operand specifies the length of the record. For input files (SYSIPT and
SYSRDR), the maximum allowable record size is 81 bytes. To ensure that
control characters are handled properly during input, specify the maximum of
81 bytes (and also an I/O area of 81 bytes). In this case, the first byte of the
I/0O area always contains the first data byte, even if the input consists of 80
data bytes plus one control character.

For output files, RECSIZE must include one byte for control characters. The
maximum length specification is 121 for SYSLST and 81 for SYSPCH.

For disk files, 121 must be specified for SYSLST, and 81 for SYSPCH. For
printers and punches, DIMOD assumes a S/370-type control character if the
character is not a valid ASA character. The program checks ASA control
characters before S/370-type control characters. Therefore, if it is a valid ASA
control character (even though it may also be a S/370-type control character), it
is used as an ASA control character. Otherwise, it is used as a S/370-type
control character.

Control character codes are listed in Appendix A. However:

* Stacker-selection code 3 for the IBM 2540 cannot be used if device
independence is to be maintained.

If this operand is omitted, the following is assumed:
80 bytes for SYSIPT.
80 bytes for SYSRDR.
81 bytes for SYSPCH.
121 bytes for SYSLST.

Chapter 2. Macro Descriptions 121

DTFDI

SEPASMB=YES

Include this operand only if your DTFDI macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name used as file name. The name is used as the module’s
transfer address. If you omit this operand, the assembler assumes that the
DTFDI macro is assembled together with your program.

TRC=YES

This operand applies to the IBM 3800 Printing Subsystem. TRC=YES specifies
that a table reference character is included as the first byte of each output data
line (following the optional print control character). The printer uses the table
reference character (0, 1, 2, or 3) to select the character arrangement table
corresponding to the order in which the table names have been specified with
the CHARS operand in the SETPRT job control statement (or SETPRT macro
instruction).

If the device allocated is not a printer and TRC=YES is specified, the table
reference character is treated as data when a PUT is issued. If the device is a
non-3800 printer, the table reference character is removed and not printed.

WLRERR=name

This operand applies only to input files on devices other than diskette units. It
specifies the name of your routine to which IOCS branches if a wrong-length
record is read on a tape or disk device. Note that the routine always gets
control in 24-bit addressing mode.

If this operand is omitted and a wrong-length error occurs, the ERROPT
routine will be invoked if it is available.

122 z/VSE System Macros Reference

DTFDR

DTFDR (Define the File for Document Reader) Macro

»»>—name DTFDR COREXIT=name,DEVADDR=SYSxxx,EQOFADDR=name ,EXITIND=name

v

»—, FRNAME=name , FRSIZE=n ,HEADER=name , I0AREA1=name

l—, BLKSIZE=nnn—| I—,DEVICE=3886—|

I—,MODNAME=nan7e—| l—,RDONLY=YES—| I—,SEPASMB=YES—| l—,SETDEV=YES—|

Required RMODE: 24

You must use the macro to define a file on an IBM 3886.

BLKSIZE=nnn

Specifies the length of the area named by the IOAREA1 keyword. The length
of the area must be equal to the length of the longest record to be passed from

the 3886.

If this operand is omitted, the maximum length of 130 is assumed.

Note: LIOCS does not allow you to block records read from the 3886.

COREXIT=name

Provides the symbolic name of your error correction routine. LIOCS branches
to this routine whenever an error is indicated in the EXITIND byte.

You can attempt to recover from various errors that occur on the 3886 through
the COREXIT routine you provide. Your COREXIT routine receives control

whenever one of the following conditions occurs:
Incomplete scan
Line mark station timing mark check error
Non-recovery error
Permanent error

If any of these errors occur while the file is being opened, the COREXIT

routine does not receive control and the job is canceled.

describes

normal functions for the COREXIT routine for the various error conditions; it
lists the exits that must be taken from the COREXIT routine.

Error messages are provided to describe errors to the operator during program

execution.

Table 6. COREXIT Routine Functions

Error Normal COREXIT Function

X'F1’ Do any processing that may be required.
The document may have been read
incorrectly; you may want to delete all data
records read in (see also Note
below).

Eliminate the data that has been read from
this document and prepare to read the next
document (see also Note .
Rescan the line, using another format record
or using image processing and editing the
record in your program (see also Note @

page 124).

X'F2

X'F3’

Exit to:

Branch to the address in
register 14 to return to the
instruction following the
macro that caused the error.

Routine in your program to
read the next document.

Branch to the address in reg.
14 to return to the instruction
following the macro that
caused the error.

Chapter 2. Macro Descriptions

123

DTFDR

Table 6. COREXIT Routine Functions (continued)

Error Normal COREXIT Function Exit to:

X'F4" or X’F9” Do whatever processing is necessary before Your end-of-job routine (see

the job is canceled. also Note EI)

Notes:

1. If, in your COREXIT routine, you issue an I/O macro to the 3886 and an
error occurs during that operation, control is returned to the beginning of
the COREXIT routine. You must take precautions in the COREXIT routine
to prevent looping in this situation. If no errors occur control returns to the
instruction following the I/O macro.

2. If, in your COREXIT routine, you issue an I/O macro to the 3886, control
always returns to the instruction following the macro. You should then
check the completion code to determine the outcome of the operation.

DEVADDR=SYSxxx
Specifies the symbolic unit to be associated with the logical file. The symbolic
unit is associated with an actual I/O device through the job control ASSGN
statement.

DEVICE=3886
Indicates that an IBM 3886 is the 1/O device for this file. This operand may be
omitted.

EOFADDR=name
Specifies the symbolic address of your end-of-file routine. LIOCS branches to
this routine whenever end of file is detected on the 3886.

EXITIND=name
Specifies the symbolic name of the 1-byte area in which the completion code is
returned to the COREXIT routine for error handling from an I/O operation.

The completion codes are:
X'F0’ =
No errors occurred (this code should not be present when the COREXIT
routine receives control).
X'F1 =
Line mark station timing mark check error.
X'F2' =
Non-recovery error. Do not issue the CNTRL macro to eject the document
from the machine. Have the operator remove the document.
X'F3" =
Incomplete scan.
X'F4 =
Line mark station timing mark check and equipment check.
X'FY =
Permanent error.

Note: If any of these errors occur while the file is being opened, the COREXIT
routine does not receive control and the job is canceled.

FRNAME=phasename
Specifies the name of the format record that is to be loaded when the file is
opened. This name is the one you used for link-editing the desired format
record. To build a format record, proceed as follows:

1. Code a DFR macro and one or more DLINT macros.

2. Assemble these macros.

124 z/VSE System Macros Reference

DTFDR

3. Link-edit the assembled macros into a suitable sublibrary.

FRSIZE=n
Specifies the number of bytes to be reserved in the DTF expansion for format
records. The number must equal at least the size of the largest DFR macro
expansion and its associated DLINT macro expansions, plus four. This size is
printed in the ninth and tenth bytes of the DFR macro expansion.

If you use the SETDEV macro in your program to change format records, you
can reduce the library retrieval time by specifying a size large enough to
contain all the frequently used format records. The area should then be equal
to the sum of the format record sizes, plus four bytes for each format record.
When the SETDEV macro is issued, the format record is loaded into this area
from the related sublibrary if this record is not already in the area.

HEADER=name
Specifies the symbolic name of the 20-byte area to receive the header record
from the 3886.

IOAREAl1=name
Specifies the symbolic name of the input area to be used for the file. The area
must be as large as the size specified in the BLKSIZE operand. If BLKSIZE is
not specified, the input area must be 130 bytes.

MODNAME=name
This operand may be used to specify the name of the logic module used with
the DTF table to process the file. If the logic module (DRMOD) is assembled
with the program, the MODNAME operand in this DTF must specify the same
name as the DRMOD macro.

If this entry is omitted, standard names are generated for calling the logic
module. If two different DTF macros call for different functions that can be
handled by a single module, only one standard-named module is called.

RDONLY=YES
This operand is specified if the DTF is used with a read-only module. Each
time a read-only module is entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Each DTF should have its own uniquely
defined save area.

Each time an imperative macro (except OPEN or OPENR) is issued for a DTF,
register 13 must contain the address of the save area associated with that DTE.

If a COREXIT routine issues I/O macros using the same read-only module that
caused control to pass to either error routine, your program must provide
another save area. One save area is used for the normal I/O operations, and
the second for I/O operations in the COREXIT routine. Before returning to the
module that entered the COREXIT routine, register 13 must contain the save
area address originally specified for that DTF.

If this operand is omitted, the module generated is not reenterable, and no
save area is required.

SEPASMB=YES
Include this operand only if your DTFDR macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name used as file name. The name is used as the module’s
transfer address. If you omit this operand, the assembler assumes that the
DTFDR macro is assembled together with your program.

Chapter 2. Macro Descriptions 125

DTFDR

SETDEV=YES
Specifies that the SETDEV macro is issued in your program to load a different
format record into the 3886.

DTFDU (Define the File for Diskette Unit I/0) Macro

»»>—name DTFDU EOFADDR=name,I10AREAl1=name ,RECSIZE=n |_ _| >
,CMDCHN=n

Yy
v

I—, DEVADDR=SYSXXX—| l—,DEVICE=3540—| I—, ERREXT=YES—|

,FEED=YES

Y
v

SKIP—
name—

|—, ERROPT=—EIGNORE—J |—, FEED=N0J |—, FI LESEC=YESJ |—, IOAREA2=nameJ

I—,IOREG=()‘)—| l—,MODN/-\ME=name—I l—,RDONLY=YES—| I—,SEPASMB=YES—|

|—,TYPEFLE=INPUT

Yy

I—,TYPEFLE=OUTPUT—| I—,VERIFY=YES—| I—,VOLSEQ=YES—| I—,WORKA=YES—|

v
v
A

I—,WRTPROT=YES—|

Required RMODE: 24

The macro defines sequential (consecutive) processing for a file contained on a
diskette.

CMDCHN=n
This operand is specified to indicate the number of Read/Write CCWs to be
command chained. Valid entries are 1, 2, 13, or 26; 1 is assumed if this operand
is omitted. For each CCW specified by this operand, one record is processed
(for example, if you code CMDCHN=13, 13 records are command chained and
are processed - read or written - as a group). For entries of 2, 13, or 26, either
the IOREG operand or the WORKA operand must be specified.

DEVADDR=SYSxxx
This operand specifies the symbolic unit (§YSxxx) associated with the file if an
EXTENT job control statement is not provided. An EXTENT statement is not
required for single-volume input files. If an EXTENT statement is provided, its
specification overrides any DEVADDR specification. SYSxxx represents an
actual I/O device address, and is used in the ASSGN job control statement to
assign the actual I/O device address to this file.

DEVICE=3540
This operand specifies that the file to be processed is on the IBM 3540. This
operand may be omitted.

126 z/VSE System Macros Reference

DTFDU

EOFADDR=name
This operand specifies the symbolic name of your end-of-file routine. IOCS
automatically branches to this routine on an end-of-file condition. You can
perform any operations required for the end of file in this routine (you will
generally issue the CLOSE macro).

ERREXT=YES
This operand enables IOCS to indicate to your program permanent I/O errors.
The operand enables your ERROPT routine to return to DUMODEFx with the
ERET macro. If you specify this operand, you must also specify the ERROPT
operand. However, to take full advantage of this option, use the
ERROPT=name operand.

ERROPT=IGNORE | SKIP | name
Specify this operand if you do not want a job to be terminated when a
permanent error cannot be corrected in the diskette error routine. If attempts to
reread a chain of records are unsuccessful, the job is terminated unless the
ERROPT entry is included. Either IGNORE, SKIP, or the name of an error
routine can be specified. The functions of these specifications are described
below.

ERROPT=IGNORE
The error condition is ignored. The records are made available for
processing. On output, the error condition is ignored and the records are
considered written correctly.

ERROPT=SKIP
No records in the error chain are made available for processing. The next
chain of records is read from the diskette, and processing continues with
the first record of that chain. On output the SKIP option is the same as the
IGNORE option.

ERROPT=name
IOCS branches to the routine named by this operand even if ERREXT=YES
is not specified. In this routine, you can perform any function as desired or
simply make note of the error condition. However, you may not issue any
GET macro in the routine for records in the error chain. If you use any
other IOCS macros (excluding ERET if ERREXT=YES), save the contents of
register 14 and, if RDONLY=YES, also of register 13. Restore these contents
to the two registers after their use.

If ERREXT is not specified, register 1 contains the address of the first
record in the error chain. In your error routine, reference records in the
error chain by referring to this address. The address in the IOREG register
or the contents of the work area are variable and should not be used to
process error records.

At the end of the routine, return control to IOCS by branching to the
address in register 14. For a read error, IOCS skips the chain of records in
error and makes the first record of the next chain available for processing.

If ERREXT is specified, register 1 contains the address of a two-word
parameter list:

Bytes Contents
0-3 Address of the DTF table for the file.

4-7 The four-byte address of the first record in the error chain.

Chapter 2. Macro Descriptions 127

DTFDU

Processing is similar to that described above, except for addressing the
records in error. At the end of its processing, the routine returns to LIOCS
by issuing the ERET macro:

* For an input file, the program:
— Skips the error chain and reads the next chain with an ERET SKIP.
— Ignores the error with an ERET IGNORE.
— Makes another attempt to read the error chain with an ERET RETRY.

 For an output file, the program:

— Ignores the error condition with ERET IGNORE or ERET SKIP.

- Attempts to write the error chain with an ERET RETRY. Bad spot
control records (1, 2, 13, or 26 records depending on the CMDCHN
specification) are written at the current diskette address, and the write
chain is retried in the next 1, 2, 13, or 26 (depending on the
CMDCHN specification) sectors on the disk.

summarizes the error options for a diskette file.

To
To
To
To
Afte
To
ro

S

I

R
t

Intended Processing Your Specification
terminate the job Nothing.

skip the error record ERROPT=SKIP.
ignore the error record ERROPT=IGNORE.
process the error record ERROPT=name.

r the error record was processed:

leave the error-processing

utine and

kip the (input) record Issue ERET SKIP.
gnore the recordcoiuiiiin... Issue ERET IGNORE.
etry reading or writing

he record ..ovviiiiiiiiiiiiiiiiiees Issue ERET RETRY.

Figure 3. DTFDU Error Options

FEE

D=YES | NO

If YES is specified and IOCS detects an end-of-file condition, the diskette being
processed is fed to the stacker, and a new diskette is fed to the diskette drive
(provided another diskette is still in the hopper). If NO is specified, the
diskette being processed is left mounted for the next job.

If the operand is omitted, YES is assumed.

FILESEC=YES

This operand applies to output only. On output it causes OPEN to set the
security flag in the file label. For subsequent input, the security flag causes an
operator message to be written. The operator must then reply in order to make
the file available to be read.

When this operand is used with WRTPROT=YES, the reuse of the diskette is
prevented.

IOAREA1=name

This operand specifies the symbolic name of the I/O area used by the file.

128 z/VSE System Macros Reference

DTFDU

IOCS either reads or writes records using this area. Note that you should
provide an I/O area equal in size to the result obtained from multiplying the
RECSIZE entry by the CMDCHN entry.

IOAREA2=name
If two I/O areas are used by GET or PUT, this operand is specified. You
should provide an I/O area equal in size to the result obtained from
multiplying the RECSIZE entry by the CMDCHN entry.

IOREG=(r)
This operand specifies the general purpose register (any one of 2 to 12) in
which IOCS puts the address of the logical record that is available for
processing. At OPEN time, for output files, IOCS puts the address of the area
where the user can build a record in this register. The same register can be
used for two or more files in the same program, if desired. If this is done, the
problem program must store the address supplied by IOCS for each record. If
this operand is specified, omit the WORKA operand.

This operand must be specified if either:

¢ The CMDCHN factor is 2 or higher and records are processed in one I/O
area, or

¢ Two I/O areas are used and records are processed in both I/O areas.

MODNAME=name
This operand specifies the name of the logic module which is to process the
file. If the logic module is assembled with the program, MODNAME must
specify the same name as the DUMODEFEx macro. If this operand is omitted,
standard names are generated for calling the logic module. If two DTFxx
macros call for different functions that can be handled by a single module,
only one module is called.

RDONLY=YES
This operand is specified if the DTF is used with a read-only module. Each
time a read-only module is entered, register 13 must contain the address of a
72-byte double-word aligned save area. Each task should have its own
uniquely defined save area. When an imperative macro (except OPEN,
OPENR) is issued, register 13 must contain the address of the save area
associated with the task. Because the save areas are unique for each task, the
module is reentrant (that is, capable of being used concurrently by several
tasks).

If an ERROPT routine issues I/O macros using the same read-only module that
caused control to pass to the error routine, your problem program must
provide another save area. One save area is used for the normal 1/0O
operations, and the second for input/output operations in the ERROPT
routine. Before control is returned to the module that entered the ERROPT
routine, register 13 must be set to the save area address originally specified for
the DTE.

If this operand is omitted, the generated module is not reentrant and no save
area need be established.

RECSIZE=n
This operand specifies (in bytes) the length of each record in the input/output
area (1 to 128 bytes).

SEPASMB=YES
Include this operand only if your DTFDU macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name used as file name. The name is used as the module’s

Chapter 2. Macro Descriptions 129

DTFDU

transfer address. If you omit this operand, the assembler assumes that the
DTFDU macro is assembled together with your program.

TYPEFLE=INPUT | OUTPUT
This operand indicates whether the file is an input or output file.

VERIFY=YES
This operand specifies that the input on an IBM 3741/3742 must be verified
before processing may continue. If VERIFY=YES is not specified, it is assumed
that the input need not be verified. If VERIFY=YES is specified and the input
is not verified, the job is canceled and message 4n571 is issued. If the operand
is specified for an output file, it will be ignored.

VOLSEQ=YES
This operand is valid only on input. If specified, it causes OPEN to ensure that
the volume sequence numbers of a multi-volume file are in ascending and
sequential order. However, if the volume sequence number of the first volume
processed is blank, no volume sequence checking is done.

WORKA=YES
If I/O records are processed or built in work areas instead of in the I/O areas,
specify this operand. You must set up the work area in storage. The address of
the work area, or a general register containing the address, must be specified
in each GET or PUT macro. For GET or PUT, IOCS moves the record to or
from the specified work area.

When this operand is specified, the IOREG operand must be omitted.

WRTPROT=YES
This operand indicates that an output file is to be created with write-protect
(which means, the file cannot be overwritten). For 3540 support, this has no
effect on subsequent input processing of the file.

Note: When this operand is used with FILESEC=YES, reuse of the diskette is
prevented.

130 z/VSE System Macros Reference

DTFIS

DTFIS (Define the File for Indexed Sequential Access) Macro

»>—name DTFIS DSKXTNT=n,IOROUT=xxxxxx,KEYLEN=n,NRECDS=n,RECFORM= FIXUNB:I—>
FIXBLK

»—,RECSIZE=n >
|—,CYLOFL=nJ |—, DEVICE=nnnnJ |—, ERREXT=YESJ

l—,HINDEX=nnnn—| l—,HOLD=YES—| I—,INDAREA=name—| l—,INDSKIP=YES—|

v

\

l—,INDSIZE=n—| I—,IOAREAL=name—| l—,IOAREAR=name—| I—,IOAREAS=name—|

v

\

I—,IOAREA2=name—| l—,IOREG=(r)—| l—,IOSIZE=n—| l—,KEYARG=name—|

I—,KEYL0C=n—| l—,MODNAME=name—| l—,MSTIND=YES—| l—,RDONLY=YES—|

SEQNTL

|—,SEPASMB=YESJ L,TYPEFLE=—ERAND0M |—,VERI FY=YESJ |—,|/JORKL=nameJ
RANSEQ

A\
A

l—,WORKR=name—| l—,WORKS=YES—|

Required RMODE: 24
The macro defines a disk file for the Indexed Sequential Access Method.

Note: Since all the devices on which ISAM runs are no longer supported, your
ISAM programs must use the ISAM Interface Program (IIP) to process files
that have been converted from ISAM format to VSE/VSAM format. For
details, see the |VSE/VSAM User’s Guide and Application Programming| under
[“Advantages of the ISAM IIP”}

CYLOFL=n
This operand must be included if cylinder overflow areas are reserved for a
file. Do not include this entry if no overflow areas are reserved.

When a file is loaded or when records are added, this operand is required to
reserve the areas for cylinder overflow. It specifies the number of tracks to be
reserved on each cylinder. The maximum number of tracks that can be
reserved on each cylinder is:

For an IBM 2311 8

For an IBM 2314 or 2319 18

For an IBM 3330 or 3333 17
For an IBM 3340 10

DEVICE=2311 | 2314 | 3330 | 3340
This operand specifies the unit that contains the prime data area and overflow
areas for the logical file. For ISAM the prime data area and the overflow areas
must be on the same device type, and, for a 3340, the data modules must be of
the same size (35 or 70MB).

DSKXTNT=n
This operand must be included to specify the maximum number of extents for

Chapter 2. Macro Descriptions 131

DTFIS

this file. The number must include all the data area extents if more than one
disk area is used for the data records, and all the index area and independent
overflow area extents that are specified by EXTENT job control statements.
Thus the minimum number specified by this entry is 2: one extent for one
prime data area, and one for a cylinder index. Each area assigned to an ISAM
file is considered an extent.

Note: Master and cylinder indexes are treated as one area. When there is one
master index extent, one cylinder index extent, and one prime data area
extent, DSKXTNT=2 could be specified.

ERREXT=YES
This operand is required for IOCS to supply your program with detailed
information about irrecoverable 1/O errors occurring before a data transfer
takes place, and for your program to be able to use the ERET imperative macro
to return to IOCS specifying an action to be taken for an error condition.

Some error information is available for testing by your program after each
imperative macro is executed, even if ERREXT=YES is not specified, by
referencing field filenameC. For filename, give the name that you specified in
the name field of the DTFIS macro for the file. One or more of the bits in the
filenameC byte may be set to 1 by IOCS. The meaning of the bits varies

depending on what was specified in the IOROUT operand; shows the
meaning if IOROUT=ADD, RETRVE, or ADDRTR was specified; [Table 8 o
shows the meaning if IOROUT=LOAD was specified.

If ERREXT=YES is not specified, IOCS returns the address of the DTF table in
register 1, as well as any data-transfer error information in filenameC, after
each imperative macro is executed; non-data-transfer error information is not
given. After testing filenameC, return to IOCS by issuing any imperative macro
except ERET; no special action is taken by IOCS to correct or check an error.

If ERREXT=YES is specified, IOCS returns the address of an ERREXT
parameter list in register 1 after each imperative macro is executed, and
information about both data-transfer and non-data-transfer errors in filenameC.
The format of the ERREXT parameter list is shown in [Table 9 on page 134}
After testing filenameC and finding an error, return to IOCS by using the ERET
imperative macro; IOCS takes the action indicated by the ERET operand. If
HOLD=YES (and ERREXT=YES), ERET must be used to return to IOCS to free
any held track.

In your program, check bit 7 of DTF byte 16 for a block size compatibility error
when adding to, or extending a file. If the block size specified in your program
is not equal to the block size of the previously built file, this bit will be set to

1.
Table 7. FilenameC-Status Byte if IOROUT Specifies ADD, RETRVE, or ADDRTR
Bit Meaning if Set to 1
0 Disk error — An irrecoverable disk error has occurred (except wrong-length
record.)
1 Wrong-length record — A wrong length record has been detected during an
I/0 operation.
2 End of file — End of file has been encountered during sequential retrieval.
3 No record found — The record to be retrieved has not been found in the

file. This applies to RANDOM (RANSEQ) and to SETL in SEQNTL
(RANSEQ) when KEY is specified, or after GKEY. This may also be a
hardware error.

132 z/VSE System Macros Reference

DTFIS

Table 7. FilenameC-Status Byte if IOROUT Specifies ADD, RETRVE, or
ADDRTR (continued)

Bit
4

Meaning if Set to 1

Invalid ID specified — The ID specified to the SETL in SEQNTL (RANSEQ)
is outside the prime file limits.

Duplicate record — The record to be added to the file has a duplicate
record key of another record in the file.

Overflow area full — An overflow area in a cylinder is full, and no
independent overflow area has been specified; or an independent overflow
area is full, and the addition cannot be made. You should assign an
independent overflow area or extend the limit.

Overflow — The record being processed in one of the retrieval functions
(RANDOM/SEQNTL) is an overflow record.

Table 8. FilenameC-Status Byte if OROUT=LOAD

Bit
0

Meaning if Set to 1

Disk error — An irrecoverable disk error has occurred (except wrong-length
record.)

Prime area full — The next to the last track of the prime data area has been
filled during the load or extension of the file. Issue the ENDFL macro,
then do a load extend on the file with next extents given.

Cylinder-index area full — The cylinder-index area is not large enough to
contain all entries needed to index each cylinder specified for the prime
data area. This condition can occur during the execution of the SETFL.
Extend the upper limit of the cylinder index by using a new EXTENT
statement.

Master index full — The master index area is not large enough to contain
all the entries needed to index each track of the cylinder index. This
condition can occur during SETFL. Extend the upper limit, if you are
creating the file, by using an EXTENT statement; or reorganize the file and
assign a larger area.

Duplicate record — The record to be added to the file has a duplicate
record key of another record in the file.

Sequence check — The record being loaded is not in sequential order.
Prime data area overflow — There is not enough space in the prime data
area to write an EOF record. This condition can occur during the execution
of the ENDFL macro.

Chapter 2. Macro Descriptions 133

DTFIS

Table 9. ERREXT Parameter List

Bytes Contents

0-3 Address of the DTF block

4-7 Virtual storage address of the record in error.

8-15 Disk address (mbbcchhr) of the error, where:
m =

Extent sequence number
r = A record number which can be inaccurate if a read error occurred
during a read of the index of the highest level.
16 Record identification:

Bit Meaning if 1

1 Data record
2 Track-index record.
3 Cylinder- or master-index record.
4-5 Reserved.
6 Read operation.
7 Write operation
17 Command code of failing CCW.

HINDEX=2311 | 2314 | 3330 | 3340
This operand specifies the type of the disk unit that contains the highest index.

Placing the highest index on a separate unit is recommended only if that unit
is physically separate from the unit(s) holding the track indexes and the data
of the file, and if it has its own access mechanism. If this operand is omitted,
2311 is assumed.

HOLD=YES
This operand provides for the track hold option for both data and index
records. If the HOLD operand is omitted, the track hold function is not
performed. Because track hold cannot be performed on a LOAD file,
HOLD=YES cannot be specified when IOROUT=LOAD.

If HOLD=YES and ERREXT=YES, your program must issue the ERET macro to
return to the ISAM module to free any held tracks.

INDAREA=name
This operand specifies the name of the area assigned to the cylinder index. If
specified, all or part of the cylinder index resides in virtual storage thereby
increasing throughput. If this operand is included, INDSIZE must be included.

If the area assigned to INDAREA is large enough for all the index entries to be
read into virtual storage at one time and the index skip feature (INDSKIP) is
not specified, no presorting of records need be done. If the area assigned to
INDAREA is not large enough, the records processed should be presorted to
fully utilize the resident cylinder index.

INDSKIP=YES
When cylinder index entries reside in virtual storage, this operand specifies the
index skip feature. This feature allows ISAM to skip any index entries
preceding those needed to process a given key. If the index skip operand is
omitted, the cylinder indexes are processed sequentially.

This operand may be specified only with the INDAREA and INDSIZE

operands and increases throughput only when:

* The records are presorted.

* The allocated virtual storage is insufficient for storing all of the cylinder
index.

* One or more large segments of the file are not referenced.

134 z/VSE System Macros Reference

DTFIS

INDSIZE=n
This operand specifies the length (in bytes) of the index area assigned in
virtual storage to the cylinder index by INDAREA. The minimum you can
specify is:
n = (m+ 3) (keylength + 6)

where
m =
The number of entries to be read into virtual storage at a time.
3=
The number of dummy entries.
6 =
A pointer to the cylinder.

If m is set equal to the number of prime data cylinders+1, the entire cylinder
index is read into virtual storage at one time. The maximum value for n =
32767.

The resident index facility is suppressed if this operand is omitted, the
minimum requirement is not met at assembly time, or an irrecoverable read
error is encountered while reading the index.

IOAREAL=name
This operand must be included when a file is created (loaded) or when records
are added to a file. It specifies the name of the output area used for loading or
adding records to the file. The specified name must be the same as the name
used in the DS instruction that reserves the area of storage. The ISAM routines
construct the contents of this area and transfer records to disk.

This output area must be large enough to contain the count, key, and data
areas of records. Furthermore, the data-area portion must provide enough
space for the sequence-link field of overflow records whenever records are
added to a file (see [Figure 4 on page 136).

If IOAREAL is increased to permit the reading and writing of more than one
physical record on disk at a time, the IOSIZE operand must be included when
records are added to the file. In this case, the IOAREAL area must be at least
as large as the number of bytes specified in the IOSIZE operand.

When simultaneously building two ISAM files using two DTFs, do not use a
common IOAREAL. Also, do not use a common area for IOAREAL, IOAREAR,
and IOAREAS in multiple DTFs.

IOAREAR=name
This operand must be included whenever records are processed in random
order. It specifies the name of the input/output area for random retrieval (and
updating). The specified name must be the same as that used in the DS
instruction that reserves this area of storage.

The I/O area must be large enough to contain the data area for records.
Furthermore, the data-area portion must provide enough space for the
sequence-link field of overflow records (see [Figure 5 on page 137).

IOAREAS=name
This operand must be included whenever records are processed in sequential
order by key. It specifies the name of the input/output area used for sequential
retrieval (and updating). The specified name must be the same as that used in
the DS instruction that reserves this area of storage.

Chapter 2. Macro Descriptions 135

DTFIS

This I/O area must be large enough to contain the key and data areas of
unblocked records and the data area for blocked records. Furthermore, the
data-area portion must provide enough space for the sequence-link field of
overflow records (see [Figure 5 on page 137).

Output Area Requirements (in No. of Bytes)

Function Count Key Seq. Link Data
Load unblocked records 8 + key-length + 0 + R
Load blocked records 8 + key-length + 0 + RxB
Add unblocked records 8 + key-Tength + 10 + R
Add blocked records
The greater of 8 + key-length + 0 + RxB
8 + key-length + 10 + R
B = Blocking factor

=
n n

Record Tength

Figure 4. Output Area Requirements for Loading or Adding Records to a File by ISAM

IOAREA2=name

This operand permits overlapping of I/O with indexed sequential processing
for either the load (creation) or sequential retrieval functions. Specify the name
of an I/O area to be used when loading or sequentially retrieving records. The
I/0 area must be at least the length of the area specified by either the
IOAREAL operand for the load function or the IOAREAS operand for the
sequential retrieval function. If the operand is omitted, one I/O area is
assumed. If TYPEFLE=RANSEQ, this operand must not be specified.

IOREG=(r)

This operand must be included whenever records are retrieved and processed
directly in the I/O area. It specifies the register that ISAM uses to indicate
which individual record is available for processing. ISAM puts the address of
the current record in the designated register (any of 2 through 12) each time a
READ, WRITE, GET, or PUT is executed.

IOROUT=LOAD | ADD | RETRVE | ADDRTR

This entry must be included to specify the type of function to be performed.
The specifications have the following meanings:

IOROUT=LOAD
To build a logical file on a disk or to extend a file beyond the highest
record presently in a file.

IOROUT=ADD
To insert new records into a file.

IOROUT=RETRVE
To retrieve records from a file for either random or sequential processing
and/or updating.

IOROUT=ADDRTR
To both insert new records into a file (ADD) and retrieve records for
processing and/or updating (RTR).

136 z/VSE System Macros Reference

DTFIS

Note: The disk device must be in READ/WRITE mode for all functions.

I/0 Area Requirements (in No. of Bytes)
Count Key Seq. Link Data
Retrieve unblocked records 0 + *key-length + 10 + R
Retrieve blocked records
The greater of 0 + 0 + 0 +**R x B
0 + 0 + 10+ R
B = Blocking factor * Only for sequential retrieval
R = Record Tength ** Including keys

Figure 5. I/0O Area Requirements for Random or Sequential Retrieval by ISAM

IOSIZE=n
This operand specifies the (decimal) number of bytes in the virtual-storage area
assigned for the add function using IOAREAL. The number n can be
computed using the following formula:

n =m (keylength + blocksize + 40) + 24

Where m = The maximum number of physical records that can
be read into virtual storage at one time.

The number n must be at least equal to
(keylength + blocksize + 74)

This formula accounts for a needed sequence link field for unblocked records
or short blocks (see [Figure 4 on page 136|and |[Figure 5).

If the operand is omitted, or if the minimum requirement is not met, no
increase in throughput is realized.

The number n should not exceed the track capacity because throughput cannot
be increased by specifying a number larger than the capacity of a track.

KEYARG=name
This operand must be included for random READ/WRITE operations and
sequential retrieval initiated by key. It specifies the symbolic name of the key
field in which you must supply the record key to ISAM.

KEYLEN=n
This operand must be included to specify the number of bytes in the record
key.

KEYLOC=n
This operand must always be specified if RECFORM=FIXBLK. It supplies
ISAM with the high-order position of the key field within the data record. That
is, if the key is recorded in positions 21-25 of each record in the file, this
operand should specify 21.

ISAM uses this specification to locate (by key) a specified record within a
block. The key area of a block of records contains the key of the highest record
in the block. To search for any other records, ISAM locates the proper block
and then examines the key field within each record in the block.

Chapter 2. Macro Descriptions 137

DTFIS

MODNAME=name

This operand may be used to specify the name of the logic module used with
the DTF table to process the file. If the logic module is assembled with the
program, the MODNAME in the DTF must specify the same name as the
ISMOD macro. If this entry is omitted, standard names are generated for
calling the logic module. If two DTF macros call for different functions that can
be handled by a single module, only one module is called.

MSTIND=YES

This operand is included whenever a master index is used or is to be built for
a file. The location of the master index is specified by an EXTENT job control
statement.

NRECDS=n

This operand specifies the number of logical records in a block (called the
blocking factor). It is required only if RECFORM=FIXBLK. For FIXBLK, n must
be greater than 1; for FIXUNB, n must be =1.

RDONLY=YES

This operand is specified if the DTF is used with a read-only module. Each
time a read-only module is entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Each task should have its own uniquely
defined save area. Register 13 must contain the address of the save area
associated with the task each time an imperative macro (except OPEN,
OPENR, LBRET, SETL, or SETFL) is issued. The fact that the save areas are
unique for each task makes the module reentrant (that is, capable of being
used concurrently by several tasks).

RECFORM=FIXUNB | FIXBLK

This operand specifies whether records are blocked or unblocked. FIXUNB is
used for unblocked records, and FIXBLK for blocked records. If FIXBLK is
specified, the key of the highest record in the block becomes the key for the
block and must be recorded in the key area.

The specification that is included when the logical file is loaded onto a disk
must also be included whenever the file is processed.

Records in the overflow area(s) are always unblocked, but this has no effect on
this operand. RECFORM refers to records in the prime data area only.

RECSIZE=n

This operand must be included to specify the number of characters in the data
area of each individual record. This operand should specify the same number
for additions and retrieval as indicated when the file was created.

SEPASMB=YES

Include this operand only if your DTFIS macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name used as file name. The name is used as the module’s
transfer address. If you omit this operand, the assembler assumes that the
DTFIS macro is assembled together with your program.

TYPEFLE=RANDOM | SEQNTL | RANSEQ

This operand must be included when IOROUT=RETRVE or
IOROUT=ADDRTR. The operand specifies the type(s) of processing performed
by your program for the file.

RANDOM is used for random processing. Records are retrieved in random
order specified by key.

138 z/VSE System Macros Reference

DTFIS

SEQNTL is used for sequential processing. Your program specifies the first
record retrieved, and thereafter ISAM retrieves records in sequential order by
key. The first record is specified by key, ID, or the beginning of the logical file
(see [’SETL (Set Limits) Macro” on page 372).

RANSEQ is used if both random and sequential processing are to be
performed for the same file. If RANSEQ is specified, the IOAREA2 operand
must not be specified.

TYPEFLE is not required for loading or adding functions.

VERIFY=YES
Use this operand if you want to check the parity of disk records after they are
written. If this operand is omitted, any records written on a disk are not
verified.

WORKL=name
This operand must be included whenever a file is created (loaded) or records
are added to a file. It specifies the name of the work area in which you must
supply the data records to ISAM for loading or adding to the file. The
specified name must be the same as the name used in the DS instruction that
reserves this area of storage.

This work area must provide space for one logical record when a file is created
(for blocked records: data; for unblocked records: key and data).

The original contents of WORKL are changed due to record shifting in the
ADD function.

WORKR=name
When records are processed in random order, this operand must be included if
the individual records are to be processed in a work area rather than in the
I/0 area. It specifies the name of the work area. This name must be the same
as the name used in the DS instruction that reserves this area of storage. This
area must provide space for one logical record (data area). When this entry is
included and a READ (or WRITE) macro is executed, ISAM moves the
individual record to (or from) this area.

WORKS=YES
When records are processed in sequential order, this operand must be included
if the individual records are processed in work areas rather than in the I/O
area. Each GET and PUT macro must specify the name of the work area to or
from which ISAM is to move the record. When processing unblocked records,
the area must be large enough for one record (data area) and the record key

(key area). For blocked records, the area must be large enough for one logical
record (data area) only. The work area requirements are as shown in

Chapter 2. Macro Descriptions 139

DTFIS

140

Function

Unblocked Records

Blocked Records

Load
The greater of

Add
The greater of

Random Retrieve

Sequential Retrieve

10
K+D

10
K+D

10
D

Figure 6. Work Area Requirements

z/VSE System Macros Reference

DTFMR

DTFMR (Define the File for Magnetic Reader Input) Macro

»»—name DTFMR DEVADDR=SYSxxx,IOAREAl=name

,BUFFERS=25

\

l—,ADDAREA=n—| l—,ADDRESS=DU/-\L—|

,RECSIZE=80

l—,BUFFERS=nJ l—,ERROPT=name—| l—,EXTADDR=name—| l—,IOREG=(r)—|

v

\

» SORTMDE=0N
[]

Yy

I—,MODNAME=name—| I—,RECSIZE=nJ I—,SECADDR=SYSnnn—| I—,SEPASMB=YES—|

v

I—,SORTMDE=OFF—|

Required RMODE: 24

DTFMR defines an input file processed on an IBM 1255 or 1419 magnetic character

reader, or an IBM 1270 or 1275 optical character reader/sorter.
ADDAREA=n

This operand must be included only if an additional buffer work area is
needed. For n, specify the number of additional bytes you desire in each
buffer. The sum of the ADDAREA and RECSIZE specifications must not exceed
250. This area can be used as a work area and/or output area and is reset to

binary zeros when the next GET or READ for the file is executed.

ADDRESS=DUAL

This operand must be included only if the 1419 or 1275 contains the dual
address adapter. If the single address adapter is used, this operand must be

omitted.

BUFFERS=25 | n

This operand is included to specify the number of buffers in the document
buffer area. The limits for n are 12 and 254. 25 is assumed if this operand is

omitted.

DEVADDR=SYSxxx

This operand is required and specifies the symbolic unit to be associated with
the file. The symbolic unit represents an actual I/O device address used in the
ASSGN job control statement to assign the actual I/O device address to the

file.
ERROPT=name

This operand may be included only if the CHECK macro is used. For name,
give the name of the routine that the CHECK macro branches to if any error
condition is posted in byte 0, bits 2 to 4 (and bit 5, if no control address is
specified in the CHECK macro) of the buffer status indicators. It is your

responsibility to exit from this routine (see the ["CHECK (Check I/0|

ICompletion) Macro” on page 65).
EXTADDR=name

This operand specifies the name of your stacker selection routine. The routine
receives control if an external interrupt occurs while documents are being read
or being sorted internally. You may omit this if you specify SORTMDE=OFF.

Chapter 2. Macro Descriptions 141

DTFMR

IOAREA1=name
This operand is required and specifies the name of the document buffer area
that will be used by the file. [Table 3 on page 66 shows the format of the
document buffer area.

IOREG=(r)
This operand specifies the general-purpose register (one of 2 to 12) that the
IOCS routines and your routines use to indicate which individual document
buffer is available for processing. IOCS puts the address of the current
document buffer in the specified register each time a GET or READ is issued.

The same register may be specified in the IOREG entry for two or more files in
the same program, if desired. In this case, your program may need to store the
address supplied by IOCS for each record.

Register 2 is assumed if this operand is omitted.

MODNAME=name
This operand specifies the name of the logic module generated by MRMOD. If
the operand is omitted, IOCS generates the standard system module name.

RECSIZE=80 | n
This operand specifies the actual length of the data portion of the buffer. The
record size specified must be the size of the largest record processed. If this
operand is omitted, a record size of 80 is assumed. The sum of the ADDAREA
and RECSIZE specifications must not exceed 250.

SECADDR=SYSnnn
This operand specifies the symbolic unit to be associated with the secondary
control unit address if the IBM 1275 or 1419 with the dual address adapter and
LITE macro are used. Omit the operand if the pocket LITE macro is not being
used.

SEPASMB=YES
Include this operand only if your DTFMR macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name used as file name. The name is used as the module’s
transfer address. If you omit this operand, the assembler assumes that the
DTEMR macro is assembled together with your program.

SORTMDE=ON | OFF
This operand specifies the method of sorting done on the 1419. SORTMDE=0ON
indicates that the program sort mode is being used. SORTMDE=OFF indicates
that sorting is under control of the magnetic character reader. If the operand is
omitted, the program sort mode is assumed.

142 z/VSE System Macros Reference

DTFMT

DTFMT (Define the File for Magnetic Tape 1/0) Macro

|—, FILABL=NO——
»>—name DTFMT BLKSIZE=n,DEVADDR=SYSxxx,EOFADDR=name

v

I—, FI LABL=—|:STD
NSTD

—,BUFOFF=0

»—,I0AREA1= name
I—(r‘)—I I—,ASCII=YES—| —,BUFOFF=n—| I—,CKPTREC=YES—|

v

\
v

SKIP—
name——

I—, ERREXT=YES—| I—, ERROPT=—EIGN0RE——| l—,HDRINF0=YES—|

|—,10AREA2=—[name;,J l—,IOREG=(r)—| l—,LABADDR=name—| l—,LENCHK=YES—|
(r)

|—, READ=FORWARD—

Yy

I—,READ=BACK— l—,RECFORM=for‘mat—| l—,RECSIZE=—|:n

(r)

, TPMARK=NO

l—,REWIND= UNLOAD;,J l—,SEPASMB=YES—| |—,TPMARK=YESJ
NORWD

|—,TYPEFLE=INPUT

\

A\
A

I—, TYPEFLE=—|:OUTPUT I—, VARBLD= (r)—| l—,WLRERR=name—| I—,WORKA=YES—|
WORK

Required RMODE: 24
The macro defines a magnetic tape file.

If not otherwise stated, the operands of the DTFMT macro can be specified for all
three types of files (input, output, or work).

You need not code an MTMOD logic module. It is automatically loaded into the
SVA at IPL time and linked to the problem program during OPEN processing for
the DTFMT.

ASCII=YES

This operand specifies that processing of ASCII tapes is required (see
Appendix B, “American National Standard Code for Information Interchange,”|
on page 439). If this operand is omitted, EBCDIC processing is assumed.
ASCII=YES is not permitted for work files.

BLKSIZE=n
For n, specify the length of the I/O area in number of bytes. If the record

Chapter 2. Macro Descriptions 143

DTFMT

format is variable or undefined, give the length of the largest block of records.
For a file of variable-length records, the value must include the block and
record descriptor bytes.

If a READ or WRITE macro specifies a length greater than n for work files, the
record to be read or written is truncated to fit into the I/O area.

The maximum block size is 65,534 bytes. The minimum size of a physical tape
record (gap to gap) is 12 bytes.

For output processing, the minimum physical record length is 18 bytes. If the
specified value is less than 18 (but not less than 12), IOCS does one of the
following, depending on the format of the records of the file:

* Fixed and variable length — IOCS writes the records padded up to a length
of 18 bytes as follows:
— For EBCDIC tapes (ASCII=YES is not specified) — X’800000...".
— For ASCII tapes (ASCII=YES is specified) — X'5F5F5E...".

Note, however, that when your data records are exactly 18 bytes long and
end with the padding character, they will be truncated during input
processing. You can avoid this by increasing your records by one byte.

* Spanned - IOCS ignores your specification and assumes a specification of
BLKSIZE=18.

For ASCII tapes, the BLKSIZE includes the length of any block prefix or
padding characters present. If ASCII=YES and BLKSIZE is less than 18 bytes
(for fixed-length records only) or greater than 2 048 bytes, an MNOTE is
generated because this length violates the limits specified by American
National Standards Institute, Inc.

BUFOFF=0 | n

This of)erand can be included only when ASCII=YES is specified; it is not
allowed for work files. The operand indicates the length of the block prefix.
Supply this length if processing of the block prefix is required. The contents of
this field are not passed on to you. For n, you can specify a value as follows:

Value Condition

0 to 99
If TYPEFLE=INPUT
0 IF TYPEFLE=OUTPUT and the file contains records of fixed length.
4 If TYPEFLE=OUTPUT and the file contains records of variable length.

In this case, the program automatically inserts the physical record
length in the block prefix.

CKPTREC=YES

This operand is necessary if an input tape has checkpoint records interspersed
among the data records. IOCS bypasses any checkpoint records encountered.
This operand must not be included when ASCII=YES.

DEVADDR=SYSRDR | SYSIPT | SYSLST | SYSPCH | SYSnnn

This operand specifies the symbolic unit to be associated with the file. An
ASSGN job control statement assigns an actual channel and unit number to the
unit. The ASSGN job control statement contains the same symbolic name as
DEVADDR. When processing ASCII tapes, you must specify a programmer
logical unit (SYSnnn).

EOFADDR=name

This operand specifies the name of your end-of-file routine. IOCS

144 z/VSE System Macros Reference

DTFMT

automatically branches to this routine on an end-of-file condition. This entry
must be specified for input and work files. Note that the routine always gets
control in 24-bit addressing mode.

In your routine, you can perform any operations required for the end of file
(generally you issue the CLOSE macro for the file). IOCS detects end-of-file
conditions in magnetic tape input by reading a tapemark and EOF when
standard labels are specified. If standard labels are not specified, IOCS assumes
an end-of-file condition when the tapemark is read, or, if the unit is assigned to
SYSRDR or SYSIPT, when a /* is read. You must determine, in your routine,
that this actually is the end of the file.

ERREXT=YES
This operand enables IOCS to indicate to your program any irrecoverable I/O
errors other than tape read data checks. The operand enables your ERROPT
routine to return to IOCS by means of the ERET (error return) macro.

Specifying this operand is meaningful only if you supply an error routine (by
ERROPT=name). ERREXT=YES and ERROPT=name are both required for an
output file (TYPEFLE=OUTPUT).

ERROPT=IGNORE | SKIP | name
This operand specifies functions to be performed when a tape read data check
or (when ERREXT=YES is specified) a tape write check (irrecoverable I/O
error) occurs.

The functions of these specifications are:

ERROPT=IGNORE
The error condition is completely ignored, and the records are made
available for processing. When spanned records are processed, IOCS
returns to your program the entire spanned record or a block of spanned
records rather than just the one physical record in which the error
occurred.

On output, the error is ignored and the physical record containing the
error is treated as a valid record. The remainder, if any, of spanned record
segments are written, if possible.

ERROPT=SKIP
On input, no records in the error block are made available for processing.
The next block is read from tape, and processing continues with the first
record of that block. The error block is included in the block count. When
reading spanned records, the entire spanned record or a block of spanned
records is skipped rather than just one physical record.

On output, the error is ignored and the physical record containing the
error is treated as a valid record. The remainder, if any, of the spanned
record segments are written.

ERROPT=name
This operand and ERREXT=YES are both required for an output file
(TYPEFLE=OUTPUT). IOCS branches to the routine named by this
operand even if ERREXT=YES is not specified. Note that the routine
always gets control in 24-bit addressing mode. In your routine, you can
perform any function as desired or simply make note of the error
condition. However, you may not issue any GET macro in the routine for
the tape file. If you use any other IOCS macros (excluding ERET if
ERREXT=YES), save the contents of register 14 and, if RDONLY=YES, also
of register 13. Restore these contents to the two registers after their use.

Chapter 2. Macro Descriptions 145

DTFMT

If ERREXT is not specified, register 1 contains the address of the block in
error. In your error routine, reference the error block by referring to this

address. The address in the IOREG register or the contents of the work
area are variable and should not be used to process error records.

At the end of the routine, return control to IOCS by branching to the
address in register 14. For a read error, IOCS skips the error block and
makes the next block of records available for processing.

If ERREXT is specified, register 1 contains the address of a two-word
parameter list:

Bytes Contents

0-3 Address of the DTF table for the file. Test the data transfer bit (bit

2 of byte 2). If the bit is 1, the block in error has not been read or
written. If the bit is 0, data was transferred.

4-7 The 4-byte address of the first record in the error chain. For an

ASCII tape, this is the address of the first logical record following

the block prefix.

Processing is similar to that described above, except for addressing the
error block.

At the end of its processing, the routine returns to LIOCS either by
branching to the address in register 14 or, for an input file, by issuing the
ERET macro with SKIP or with IGNORE. Do not use the ERET macro to

return to IOCS from your routine for a tape output file.

FILABL=NO | STD | NSTD

This operand specifies what type of labels are to be processed. Specify:
NO
To indicate no labels.
STD
To indicate IBM- or user-standard labels.
NSTD
To indicate non-standard labels.

You must furnish a routine to check or build user- or non-standard labels.

Define the entry point of this routine in the LABADDR operand of the DTFMT

macro for your file.

FILABL=NSTD is not permitted for ASCII files (that is, when ASCII=YES).
Labels and tape data are assumed to be in the same mode.

HDRINFO=YES

This operand, if specified with FILABL=STD, causes IOCS to print standard
header label information (fields 3-10) on SYSLOG each time a file with

standard labels is opened. It also prints the file name, logical unit, and device
address each time an end-of-volume condition is detected. Both FILABL=STD

and HDRINFO=YES must be specified for header label information to be
printed.

IOAREAl=name | (r)
This operand specifies the name of the I/O area. When variable-length records

are processed, the size of the I/O area must include four bytes for the block
size. If you use register notation, you can get the required storage from the

partition GETVIS area via the GETVIS macro. This operand does not apply to

work files.

146 z/VSE System Macros Reference

DTFMT

IOAREA2=name | (r)
This operand specifies the name of a second 1/O area. When variable-length
records are processed, the size of the I/O area must include four bytes for the
block size. If you use register notation, you can get the required storage from
the partition GETVIS area via the GETVIS macro. This operand does not apply
to work files.

IOREG=(r)
This operand specifies the register in which IOCS places the address of the
logical record that is available for processing if:
¢ Two input or output areas are used.
* Blocked input or output records are processed in the I/O area.
* Variable unblocked records are read.
* Undefined records are read backwards.
* Neither BUFOFF=0 nor WORKA=YES is specified for ASCII files.

For output files, IOCS places, in the specified register, the address of the area
where you can build a record. Any of registers 2 to 12 may be specified.

This operand cannot be used if WORKA=YES.

LABADDR=name
Enter the symbolic name of your routine to process user-standard or
non-standard labels. Note that the routine always gets control in 24-bit
addressing mode.

For ASCII tapes, this operand may be used only for writing and checking user
standard labels that conform to American National Standards Institute, Inc.
standards. Non-standard labels are not permitted.

This operand does not apply to work files.

For more information about the handling of user labels, see the section
[“Processing of User Labels” on page 445

LENCHK=YES
This operand applies only to ASCII tape input if BUFOFF=4 and
RECFORM=VARUNB or VARBLK. It must be included if the block length
(specified in the block prefix) is to be checked against the physical record
length. If the two lengths do not match, the action taken is the same as
described under the WLRERR operand, but the WLR bit (byte 5, bit 1) in the
DTF is not set.

READ=FORWARD | BACK
This operand specifies, for input and work files, the direction in which the tape
is read. If READ=BACK is specified and a wrong-length record smaller than
the I/O area is encountered, the record is read into the I/O area right-justified.

If READ=BACK is specified, REWIND=NORWD must also be specified;
otherwise the tape will be repositioned after CLOSE.

RECFORM=format
This operand specifies the type of EBCDIC or ASCII records in the input or
output file. For format, specify one of the following:
FIXUNB
For fixed-length unblocked records (the default)
FIXBLK
For fixed-length blocked records
VARUNB
For variable-length unblocked records

Chapter 2. Macro Descriptions 147

DTFMT

VARBLK

For variable-length blocked records
SPNBLK

For spanned variable-length blocked records (EBCDIC only)
SPNUNB

For spanned variable-length unblocked records (EBCDIC only)
UNDEF

For undefined records

Work files may use only FIXUNB or UNDEFE.

On an IBM 9346 tape device, you cannot process a multi-volume file with
spanned records. Your program will be canceled (unit check with command
reject).

RECSIZE=n | (1)
For fixed-length blocked records, RECSIZE is required. It specifies the number
of characters in each record.

When processing spanned records, you must specify RECSIZE=(r) where r is a
register that contains the length of each record.

For undefined records, this entry is required for output files but is optional for
input files. It specifies a general register (any of 2 to 12) that contains the
length of the record. On output, you must load the length of each record into
the register before you issue a PUT macro.

Spanned-record output requires a minimum record length of 18 bytes. A
physical record less than 18 bytes is padded with binary zeros to complete the
18-byte requirement. This applies to both blocked and unblocked records. If
specified for input, IOCS provides the length of the record transferred to
virtual storage. This operand does not apply to work files.

REWIND=UNLOAD | NORWD
If this specification is not included, tapes are automatically rewound to load
point, but not unloaded, on an OPEN or OPENR or a CLOSE or CLOSER
macro or on an end-of-volume condition. If other operations are desired for a
tape input or output file, specify:

REWIND=UNLOAD
To rewind the tape on an OPEN and to rewind and unload on a CLOSE or
on an end-of-volume condition.

REWIND=NORWD
To prevent rewinding the tape at any time. This option positions the
read/write head between the two tapemarks that indicate the end-of-file
condition.

SEPASMB=YES
Include this operand only if your DTEMT macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name used as file name. The name is used as the module’s
transfer address. If you omit this operand, the assembler assumes that the
DTFMT macro is assembled together with your program.

TPMARK=YES | NO
If a tapemark is desired for an output file and nonstandard labels are indicated
(FILABL=NSTD), specify TPMARK=YES. If TPMARK=NO is specified together
with FILABL=STD, the former specification is ignored. If FILABL=NO is

148 z/VSE System Macros Reference

DTFMT

specified or the FILABL operand is omitted, TPMARK=YES must be specified
for IOCS to write a tapemark ahead of the first data record. The default is NO.

TYPEFLE=INPUT | OUTPUT | WORK
Use this operand to indicate whether the file is used for input or output. If
INPUT is specified, the GET macro is used. If OUTPUT is specified, the PUT
macro is used. If WORK is specified, the READ/WRITE, NOTE/POINTX, and
CHECK macros are used.

The specification of WORK in this operand is not permitted for ASCII files.

On an IBM 9346 tape you cannot process a work file that requires previously
stored data to be overwritten. Your program will be canceled (unit check with
command reject).

VARBLD=(r)
This entry is required whenever variable-length blocked records are built
directly in the output area (no work area is specified). It specifies the number
(r) of a general-purpose register (any of 2 to 12) that always contains the length
of the available space remaining in the output area.

IOCS calculates the space still available in the output area, and supplies it to
you in the VARBLD register after the PUT macro is issued for a variable-length
record. You can then compare the length of the next variable-length record
with the available space to determine whether the record will fit in the
remaining area. This check must be made before the record is built. If the
record does not fit, issue a TRUNC macro to transfer the completed block of
records to the tape. The current record is then built as the first record of the
next block.

WLRERR=name
This operand applies only to tape input files. It specifies the name of your
routine to receive control if a wrong-length record is read. Note that the
routine always gets control in 24-bit addressing mode. If the WLRERR entry is
omitted but a wrong-length record is detected by IOCS, one of the following
conditions results:

¢ If the ERROPT operand is included for this file, the wrong-length record is
treated as an error block, and handled according to your specifications for
an error (IGNORE, SKIP, or name of error routine).

¢ If the ERROPT entry is not included, IOCS assumes the IGNORE option of
ERROPT.

WORKA=YES
If I/O records are processed in work areas instead of in the I/O areas, specify
this operand. You must set up the work areas in virtual storage. The symbolic
address of the work area, or a general-purpose register containing the address,
must be specified in each GET or PUT. Omit IOREG if this operand is
included. WORKA=YES is required for spanned record processing. It does not
apply to work files.

Chapter 2. Macro Descriptions 149

DTFOR

DTFOR (Define the File for Optical Reader Input) Macro

,BLKSIZE=38
»»>—name DTFOR COREXIT=name ,DEVADDR=SYSxxx,EQFADDR=name,10AREAl=name |_ _| |_ _| >
,BLKFAC=n ,BLKSIZE=n

DEVICE=1287D

l—,(IONTROL=YES—| I—DEVICE=1287T—| l—,HEADER=YES—| l—,HPRMTY=YES—| I—,IOAREA2=name—|

,RECFORM=FIXUNB

|—,IOREG=(r)J L,MODNAME:nameJ L,RECFORM= FIXBLK: L,RECSIZE= an
T s

UNDEF (

l—, SEPASMB=YES—| l—, WORKA=YES—|

Required RMODE: 24

This macro is used to define an input file to be processed on an IBM 1287 Optical
Reader or 1288 Optical Page Reader. If not stated otherwise, the operands of the
DTFOR macro can be specified for any file on these devices.

The macro cannot be used for a file on the IBM 3881 Optical Mark Reader; use the
DTFCD macro instead.

BLKFAC=n
On an IBM 1287, undefined journal tape records are processed with greater
throughput when this operand is included. BLKFAC specifies the blocking
factor (n) that determines the number of lines read as a block of data by one
physical read. Deblocking is accomplished automatically by IOCS when the
GET macro is used. The BLKFAC operand is not used with
RECFORM=FIXBLK, because the blocking factor is determined from the
BLKSIZE and RECSIZE operands. If the operand is included for FIXBLK,
FIXUNB, or document processing, the operand is noted (in an MNOTE) and
ignored.

BLKSIZE=38 | n
This operand indicates the size of the input area specified by IOAREAL. 38 is
the default. For journal tape processing, BLKSIZE specifies the maximum
number of characters that can be transferred to the area at any one time.

When undefined journal tape records are read, the area must be large enough
to accommodate the longest record to be read if the BLKFAC operand is not
specified. If the BLKFAC operand is specified, the BLKSIZE value must be
determined by multiplying the maximum length that must be accommodated
for an undefined record by the blocking factor desired. A BLKSIZE value
smaller than this results in truncated data.

If two input areas are used for journal tape processing (IOAREA1 and
IOAREA2), the size specified in this entry is the size of each I/O area.

CONTROL=YES
This entry must be included if a CNTRL macro is issued for a file. A CNTRL
macro issues orders to the optical reader to perform non-data operations such
as line marking, stacker selecting, and document incrementing.

150 z/VSE System Macros Reference

DTFOR

COREXIT=name
COREXIT provides an exit to your error correction routine for the 1287 or 1288.
Note that the routine always gets control in 24-bit addressing mode. After a
GET, WAITEF, or CNTRL macro is executed (to increment or eject and/or
stacker select a document), an error condition causes an error correction
routine to be entered with an error indication provided in filename+80.

The byte at filename+80 indicates the condition that occurred while the last
line or field was read. Therefore, have your program test the byte also after
any of the following macros: DSPLY, RESCN, RDLNE, CNTRL READKB, and
CNTRL MARK. More than one error condition may be present. The conditions
are indicated by the setting of bits as follows:

X01 =
A data check has occurred. Five read attempts for journal tape processing
or three read attempts for document processing were made.

X02 =
The operator corrected one or more characters from the keyboard
(DEVICE=1287T) or a hopper empty condition (see HPRMTY=YES
operand) has occurred (DEVICE=1287D).

X04 =
A wrong-length record condition has occurred (for journal tapes, five read
attempts were made; for documents, three read attempts were made). Not
applicable for undefined records.

X'08" =
An equipment check resulted in an incomplete read (ten read attempts
were made for journal tapes or three for documents). If an equipment
check occurs on the first character in the record, when processing
undefined journal tape records, the RECSIZE register contains zero, and
the IOREG (if used) points to the rightmost position of the record in the
I/0 area. You should test the RECSIZE register before moving records
from the work area or the I/O area.

X'10" =
An irrecoverable error occurred.

X20" =
End of page (EOP) occurred while records are read (in unformatted mode)
from a file on the IBM 1288. Normally, on an EOP indication, the problem
program ejects and stacker selects the document. After one of the macros
CNTRL ESD, CNTRL SSD, CNTRL E]JD in your COREXIT routine, a late
stacker selection condition occurred. For the 1287, a stacker select was
given after the allotted elapsed time and the document was put in the
reject pocket.

X'40" =
The scanner of your IBM 1287 was unable to locate the reference mark. For

journal tapes, ten read attempts were made; for documents, three read
attempts were made.

The action in your error correction routine depends on the requirements of
your program:

 If you issue I/O macros to any device other than IBM 1287 or 1288, you
must save registers 0. 1, 14, and 15 when your routine receives control. Your
program must restore these registers before exiting.

Chapter 2. Macro Descriptions 151

DTFOR

e If I/O macros (other than the GET, WAITFE, and READ, which cannot be
used in COREXIT) are issued to your IBM 1287 and/or 1288, you must save
registers 14 and 15 and later restore these registers before exiting.

All exits from the routine should be to the address specified in register 14. This
provides a return to the point from which the branch to COREXIT occurred.

If the command chain bit is on in the READ CCW for which the error
occurred, IOCS completes the chain upon return from the COREXIT routine.

Note: Do not issue a GET, READ, OPEN, or WAITF macro to your IBM 1287
or 1288 in the error-correction routine. Do not process records in that
routine. The record which caused the exit to the error routine is
available for processing on return of control to the mainline program.
Any processing included in the error routine would be duplicated after
return to the mainline program.

When processing journal tapes, an irrecoverable error (torn tape, tape jam, and
so on) normally requires that the tape be completely reprocessed. In this case,
your routine must not branch to the address in register 14 from the COREXIT
routine or a program loop will occur. Following an irrecoverable error:

* The optical reader file must be closed.

* The condition causing the non-recovery must be cleared.

* The file must be reopened before processing can continue.

If an irrecoverable error occurs while processing documents (indicating, for
example, a jam during an increment for a document, a scanner control failure,
or an end-of-page condition), the document should be removed either
manually or by nonprocess runout. In such cases, your program should branch
to read the next document.

If the scanner of the device is unable to locate the document reference mark,
the document cannot be processed. In this case, the document must be ejected
and stacker selected before attempting to read the following document or a
program loop will result.

Whenever an irrecoverable error occurs, your COREXIT routine must not
branch to the address in register 14 to return to IOCS. Instead, the routine
should ignore any output resulting from the document.

Eight binary error counters are used to accumulate totals of certain
device-error conditions. Each of these counters occupies four bytes, starting at
filename+48 (where filename is the name you specified in the name field). The
error counters are listed in the table below.

Counter Address Description of Count

1 filename+48 Equipment check (see Note, below).

2 filename+52 Equipment check after ten read attempts for journal
tapes or three read attempts for documents (see Note,
below).

3 filename+56 Wrong-length records (not applicable for undefined
records).

4 filename-+60 Wrong-length record error after five read attempts for

journal tapes or three read attempts for documents (not
applicable for undefined records).
5 filename+64 Keyboard corrections (journal tape only).

152 z/VSE System Macros Reference

DTFOR

Counter Address Description of Count

6 filename+68 Journal tape lines (including retried lines) or document
fields (including retried fields) in which data checks are
present.

7 filename+72 Lines marked (journal tape only).

8 filename+76 Count of total lines read from journal tape or the
number of CCW chains executed during document
processing.

Note: Counters 1 and 2 apply to equipment checks that result from incomplete
reads or from the inability of the scanner to locate a reference mark
(when processing documents only).

The counters contain binary zeros at the start of each job step. You may list the
contents of these counters for analysis at end of file, or at end of job, or you
may ignore the counters. To list these contents convert them from binary to a
printable format.

DEVADDR=SYSnnn
This operand specifies the logical unit (SYSnnn) to be associated with the file.
The logical unit represents an actual I/O device address used in the ASSGN
job control statement to assign the actual I/O device address to this file.

DEVICE=1287D | 1287T
This operand specifies the I/O device associated with this file. 1287D specifies
a document file. 1287T specifies a journal tape file on the IBM 1287.

From this specification, IOCS sets up the device-dependent routines for this
file. For document processing you must code the CCWs.

If this operand is omitted, 1287D is assumed.

EOFADDR=name
This operand specifies the name of your end-of-file routine. IOCS
automatically branches to this routine on an end-of-file condition. Note that the
routine always gets control in 24-bit addressing mode.

When reading data from documents, you can recognize an end-of-file condition
by pressing the end-of-file key on the console when the hopper is empty. When
processing journal tapes on a 1287, you can detect an end of file by pressing
the end-of-file key after the end of the tape is sensed.

When IOCS detects an end-of-file condition, it branches to your routine
specified by EOFADDR. You must determine whether the current roll is the
last roll to be processed when handling journal tapes. Regardless of the
situation, the tape file must be closed for each roll within your EOF routine. If
the current roll is not the last, OPEN must be issued. The OPEN macro allows
header (identifying) information to be entered at the reader keyboard and read
by the processor when using logical IOCS. The same procedure can be used for
1287 processing of multiple journal tape rolls, as well as the method described
under 'OPEN Macro’ in the section 'Imperative Macros’.

HEADER=YES
This operand cannot be used for 1288 files. This operand is required if the
operator is to key in header (identifying) information from the 1287 keyboard.
The OPEN routine reads the header information only when this entry is
present. If the entry is not included, OPEN assumes no header information is
to be read. The header record size can be as large as the BLKSIZE entry and is
read into the high-order positions of IODAREA1.

Chapter 2. Macro Descriptions 153

DTFOR

HPRMTY=YES

This operand is included (for the 1287D or 1288) if you want to be informed of
the hopper empty condition. This condition occurs when a READ is issued and
no document is present, and is recognized at WAITF time. When a hopper
empty condition is detected, your COREXIT routine is entered with X'02’
stored in filename-+80.

This operand should be used when processing documents in the
time-dependent mode of operation, which allows complete overlapping of
processing with reading. See the appropriate IBM 1287 device manuals for
processing details. With this method of processing, specifying HPRMTY=YES
allows you to check for a hopper empty condition in your COREXIT routine.
You can then select into the proper hopper the previously ejected document
before return from COREXIT (via register 14).

IOAREA1=name

This operand is included to specify the name of the input area used by the file.
When opening a file and before each journal tape input operation to this area,
the designated area is set to binary zeros and the input routines then transfer
records to this area. For document processing, the area is cleared only when
the file is opened.

IOAREA2=name

A second input area can be allotted only for a journal tape file (on a 1287T).
This permits an overlap of data transfer and processing operations. The
specified second 1/O area is set to binary zeros before each input operation to
this area occurs.

IOREG=(r)

This operand specifies a general-purpose register (any one of 2 to 12) that
IOCS uses to indicate the beginning of records for a journal tape file. The same
register may be specified in the IOREG operand for two or more files in the
same program, if desired. In this case, your program may need to store the
address supplied by IOCS for each record. Whenever this operand is included
for a file, the WORKA operand must be omitted, and a GET macro for the file
may not specify a work area.

A read by an optical reader is accomplished by a backward scan. This places
the rightmost character in the record into the rightmost position of the I/O
area and subsequent characters in sequence from right to left. The register
defined by IOREG points to the leftmost position of the record.

MODNAME=name

This operand may be used to specify the name of the logic module used with
the DTF table to process the file. If the logic module (ORMOD) is assembled
with the program, the MODNAME operand in this DTF must specify the same
name as the ORMOD macro.

If this entry is omitted, standard names are generated for calling the logic
module. If two different DTF macros call for different functions that can be
handled by a single module, only one standard-named module is called.

RECFORM=FIXUNB | FIXBLK | UNDEF

This operand specifies the type of records in an optical reader file. One of the
following may be specified:
FIXUNB
For fixed-length unblocked records (default).
FIXBLK
For fixed-blocked records in journal tape mode.

154 z/VSE System Macros Reference

DTFOR

UNDEF
For undefined records.

RECSIZE=n | (r)

For fixed-length unblocked records, do not specify this operand.

For fixed-length blocked records (journal tape mode), include this operand to
specify the number, n, of characters in an individual record. The input routines
use this number to deblock records, and to check the length of input records. If
this operand is omitted, IOCS assumes unblocked records of fixed length.

For undefined journal tape records, this operand specifies the number (r) of
the general-purpose register in which IOCS provides the length of each input
record. For undefined document records, RECSIZE contains only the length of
the last field of a document read by the CCW chain that you supply. Any one
of registers 2 through 12 may be specified.

If the operand is omitted, IOCS uses register 13.

Note: When processing undefined records in document mode, you gain
complete usage of the register normally used in the RECSIZE operand.
You can do this by ensuring that the suppress-length-indication (SLI)
flag is always on when processing undefined records.

SEPASMB=YES

Include this operand only if your DTFOR macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name used as file name. The name is used as the module’s
transfer address. If you omit this operand, the assembler assumes that the
DTFOR macro is assembled together with your program.

WORKA=YES

Input records from a journal tape can be processed in work areas instead of in
the input areas. If this is planned, the operand WORKA=YES must be
specified, and you must set up the work area in storage. The symbolic name of
the work area, or a general-purpose register containing the address of the work
area, must be specified in each GET macro. When GET is issued, IOCS
left-justifies the record in the specified work area. Whenever this operand is
included for a file, the DTFOR IOREG operand must be omitted.

DTFPH (Define the File for Physical 1/0) Macro

»»>—name DTFPH TYPEFLE=

v

INPUT
|—OUTPUT—| l—,ASCI I=YES—| l—,CISIZE=n—|

,DEVICE=TAPE

I—, CCWADDR=name—| I—, DEVADDR=SYSxxx—| I—, DEVI CE=xxxx—|

v

\

I—,EOXPTR=pointer—I l—,HDRINF0=YES—| l—,LABADDR=name—|

v

Chapter 2. Macro Descriptions 155

DTFPH

v
A

l—,MOUNTED= ALLjJ I—,XTNTXIT=name—|

SINGLE

Required RMODE: 24

When physical IOCS macros (EXCP, WAIT, etc.) are used in a program, disk,
diskette, or tape files with standard labels need to be defined by the DTFPH macro
(DTFxx macro for a file handled by physical IOCS). DTFPH must also be used for
a checkpoint file on a disk.

shows which of the DTFPH entries can or must be coded to define a
checkpoint file on disk.

Operand Optional Required
CCWADDR=name X
CISIZE=n X
DEVADDR=SYSnnn X
DEVICE=DISK X
LABADDR=name X
MOUNTED=SINGLE X
TYPEFLE=OUTPUT X

Figure 7. Operands to Define a Checkpoint File on Disk

ASCII=YES

This operand is required to process ASCII tape files (see [Appendix B)
“ American National Standard Code for Information Interchange,” on page
439). If this operand is omitted, EBCDIC processing is assumed.

CCWADDR=name
This operand allows you to use the CCB generated within the first 16 bytes of
the DTFPH table. CCWADDR specifies the symbolic name of the first CCW
used with the CCB generated within the DTFPH macro. This name must be the
same as the name specified in the assembler CCW statement that defines the
CCW.

If you omit the operand, the location counter value of the CCB-CCW table
address constant is substituted for the CCW address.

CISIZE=n
This operand specifies the FBA control-interval size. The value n must be an
integral multiple of the FBA physical block size and, if greater than 8K, must
be a multiple of 2K. The maximum value is 32 768 (32K) except when assigned
to SYSLST or SYSPCH, when the maximum is 30 720 (30K).

If CISIZE is omitted, CISIZE=0 is assumed. For an output file on an FBA
devices, the control-interval size may be overridden at the time of program
execution. You do this by specifying the CISIZE operand of the DLBL job
control statement. For an input file, the CISIZE value in the format-1 label is
used.

DEVADDR=SYSxxx
This operand must specify the logical unit (SYSxxx) associated with the file if a
logical unit is not provided via an EXTENT job control statement. If a logical
unit is provided, its specification overrides a DEVADDR specification. This

156 z/VSE System Macros Reference

DTFPH

specification, or logical unit, represents an actual 1/O address, and is used in
the ASSGN job control statement to assign the actual I/O device address to
this file.

If SYSLST or SYSPCH are used as output tape units and alternate tape
switching is desired upon detecting a reflective spot, the SEOV macro must be
used (see[“SEOV (System End-of-Volume) Macro” on page 369). When
processing ASCII tape files, the only valid specification is a programmer logical
unit (that is, SYSnnn).

DEVICE=TAPE | xxxx
Code the proper device identification, which may be one of the following:

TAPE
If the file resides on a tape mounted on an IBM tape drive supported by
z/VSE. For an ASCII file, TAPE is the only valid specification in this
operand. TAPE is the default if you omit the operand.

DISK
If the file may reside on a disk of any type, CKD or FBA. If you specify
DISK, IOCS determines the disk device type when the file is opened.

3540
If the file resides on a diskette.

nnnn
Which is a disk device-type code.

There is no need for you to specify a disk device type code; specify
DEVICE=DISK instead. The assembler accepts the following type
specification:

3380

EOXPTR=pointer
This operand is valid only if TYPEFLE=OUTPUT and MOUNTED=SINGLE is
specified.

The operand points to a 4-byte field that contains the address of your
end-of-extent exit routine. The routine receives control if, during OPEN
processing for an output file, IOCS cannot find an additional extent. Note that
the routine always gets control in 24-bit addressing mode.

On entry to the exit routine, register 15 is set to zero.

HDRINFO=YES
This operand causes IOCS to print standard header label information (fields
3-10) on SYSLOG each time a file with standard labels is opened. Likewise, the
file name, symbolic unit, and device address are printed each time an
end-of-volume condition is detected. If HDRINFO=YES is omitted, no header
or end-of-volume information is printed.

LABADDR=name
This operand does not apply to diskette input/output units.

You may require one or more disk or tape labels in addition to the standard
file labels. If so, you must include your own routine to check (on input) or
build (on output) your label(s). Specify the symbolic name of your routine in
this operand. IOCS branches to this routine after the standard label is
processed. Note that the routine always gets control in 24-bit addressing mode.

LABADDR may be included to specify a routine for your header or trailer
labels as follows:
* Disk input or output: header labels only.

Chapter 2. Macro Descriptions 157

DTFPH

* Tape input or output: header and trailer labels.

Thus, if LABADDR is specified, your header labels can be processed for an
input/output disk or tape file, and your trailer labels can be built for a tape
output file. Physical IOCS reads input labels and makes them available to you
for checking; it writes output labels after they are built. This is similar to the
functions performed by logical IOCS.

If physical IOCS macros are used for a tape file, an OPEN must be issued for
the new volume. This causes IOCS to check the HDRI1 label and provides for
your checking of user standard labels, if any.

When physical IOCS macros are used and DTFPH is specified for standard
tape label processing, FEOV must not be issued for an input file.

For more information about the handling of user labels, see the section
[“Processing of User Labels” on page 445,

MOUNTED=ALL | SINGLE

This operand does not apply to diskette input/output units.

This operand must be included to specify how many extents (areas) of the file
are available for processing when the file is initially opened. This operand
must not be specified for tape.

Specify ALL if all extents are available for processing. When a file is opened,
IOCS checks all labels on each disk pack and makes available all extents
specified by your control statements. Only one OPEN is required for the file.
ALL should be specified whenever you plan to process records in a manner
similar to the direct access method.

After an OPEN is performed, you must be aware that the symbolic unit
address of the first volume containing the file is in bytes 30 and 31 of the
DTFPH table rather than in the CCB. Therefore, place this symbolic address
into bytes 6 and 7 of the associated CCB before you issue an EXCP against this
CCB in your program.

Specify SINGLE if only the first extent on the first volume is available for
processing. SINGLE should be specified when you plan to process records in
sequential order. IOCS checks the labels on the first pack and makes the first
extent specified by your control statements available for processing. You must
keep track of the extents and issue a subsequent OPEN whenever another
extent is required for processing. You will find the information in the DTFPH
table helpful in keeping track of the extents.

The contents of the table are:

Bytes Contents

0-15 CCB (symbolic unit has been initialized in the CCB).
54-57 Upper extent limits (cchh).

For an FBA disk, the extent upper limit is the number of the first block
of the last CL If the number of blocks per CI is greater than 1, the
upper extent limit can differ from the format-1 label and your
specification in the DTFPH macro.

58-59 Seek address. For a disk it must be zero.
60-63 Lower extent limit (cchh for CKD).

158 z/VSE System Macros Reference

DTFPH

On each OPEN after the first, IOCS makes available the next extent specified
by the control cards. When you issue a CLOSE for an output file, the volume
on which you are currently writing records is indicated, in the file label, as the
last volume for the file.

TYPEFLE=INPUT | OUTPUT
This operand must be included to specify the type of file: input or output.

XTNTXIT=name
This operand does not apply to diskette input/output units.

Include this operand if you want to process label extent information. It
specifies the symbolic name of your extent routine. The DTFPH operand
MOUNTED=ALL must also be specified for the file. Note that the routine
always gets control in 24-bit addressing mode.

Whenever XTNTXIT is included, IOCS branches to your routine during the
initial OPEN for the file. It branches after each specified extent is completely
checked and after conflicts, if any, have been resolved.

When your routine receives control, register 1 contains the address of a 14-byte
area from which you can retrieve label extent information (in binary form). The
layout of this area is:

Bytes Contents

0 Extent type code.
1 Extent sequence number.
2-5 Lower limit of the extent.

6-9 Upper limit of the extent.
10-11 Symbolic unit.

12 Set to zero.

13 Reserved.

Return to IOCS by using the LBRET macro.

DTFPR (Define the File for Printer) Macro

»»>—name DTFPR DEVADDR=SYSxxx, I0AREAl=name

v

l—,ASOCFLE=filename—|

I—,BLKSIZE=n—| I—,CONTROL=YES—| l—,CTLCHR= YES:IJ I—,DEVICE=nnnn—|

ASA

—| I—,FUNC=xxxx—| I—,IOAREA2=nan1e—| I—,IOREG=(r)—|

IGNORE—
name—-

l—, ERROPT=—ERETRY—

I—,MODNAME=name—| l—,PRINT0V=YES—| l—,RDONLY=YES—|

Chapter 2. Macro Descriptions 159

DTFPR

Yy

|—, RECFORM=FIXUNB

v

l—, RECFORM=—|:VARUNB l—, RECSIZE= (r‘)—| I—,SEPASMB=YES—|
UNDEF

,UCS=0FF

|—,STLIST=YESJ |—,TRC=YESJ |—,UCS=0NJ |—,WORKA=YESJ

Required RMODE: 24

The macro is used to define an output file for a printer.

ASOCFLE=filename

This operand is used together with the FUNC operand to define associated
files for the IBM 3525. For a discussion of associated files see |”Programmina
ffor Associated Files”|in the z/VSE System Macros User’s Guide]

The operand specifies the file name of an associated read and/or punch file.
The specification enables macro sequence checking by the logic module of each
associated file. One file name is required per DTF for associated files.

[Figure 2 on page 105 shows which file name is to be specified by the
ASOCFLE operand for each of the associated DTFs.

BLKSIZE=n

This operand specifies the length of IOAREA1. The maximum values which
may be specified in this operand and the lengths assumed when it is omitted
are given for the different devices in [Figure 8 on page 161}

The actual size of the block may exceed the maximum length given in

if the following is true:

1. Your DTFPR includes CTLCHR=YES or ASA.

2. The control character of your record is X’5A” to indicate that this is a
composed page data stream (CPDS) record.

3. The specified record format is VARUNB (for variable unblocked) or
UNDEEF (for undefined).

Data with a control character of X’5A" can have a length of up to 32 767 bytes.

160 z/VSE System Macros Reference

DTFPR

Maximum Length Assumed Length
IBM Device (See Note 1) (See Note 2)
PRT1 512 121
1403-2 132 121
1403-3 132 121
1403-6 120 121
1403-7 120 121
1403-8 132 121
1403-9 132 121
3203 132 121
3525 64 64
3800/3200 without 384 136
TRC (See Note 3)

Notes:

1.

RECFORM is FIXUNB or UNDEF and operand CTLCHR is not
specified. If the CTLCHR operand is specified, add one byte to
the maximum value which can be specified. Add four bytes to
the maximum value if RECFORM=VARUNB is specified.

The operand BLKSIZE=n is omitted.

For a 3800, the maximum length is 385 if TRC=YES is used; the
assumed length is 137.

Figure 8. Maximum and Assumed Lengths for the IODAREAT in Number of Bytes

CONTROL=YES

This operand should be specified if the CNTRL macro is issued for the file.
You may omit this operand if:

1. Your CNTRL macros request immediate printer operations only, and

2. The device being used is a PRT1 printer or an IBM 4248.

Examples of immediate printer operations are: immediate space or skip; enable
or disable horizontal copying.

CTLCHR=YES | ASA

Specify this operand if first-character control is used. CTLCHR=YES specifies
the S/370 character set (see |[Appendix A, “Control Character Codes,” on page|

for a list of codes).

CTLCHR=ASA specifies the American National Standards Institute, Inc.

character set. As an addition to the ASA character set, X’5A” indicating a
‘composed page data stream’ (CPDS) record is accepted as a valid ASA

character.

If this operand is specified, omit CONTROL.

If CTLCHR=ASA is specified for a file on the IBM 3525, the + character is not
allowed. To print on the first line of a card, you must issue either a space 1
command or a skip to channel 1 command. For a print associated file on the
IBM 3525, you must issue a space 1 command to print on the first line of a
card.

DEVADDR=SYSLOG | SYSLST | SYSnnn

This operand specifies the symbolic unit to be associated with the printer.
SYSLOG and SYSLST must not be specified for the IBM 3525.

Chapter 2. Macro Descriptions 161

DTFPR

DEVICE=nnnn
This operand specifies the type of IBM device used for the file. Specify one of
the following type codes:

PRT1 3211
1403 3525
3203 3800

PRT1 refers to a 3211 or 3211-compatible IBM printer as listed under
in the |p/VSE System Control Statements| manual; it refers also to an
IBM 4248 printer operating in native mode. Change your specification (in an
existing program) to PRT1 if you want your program to:

. Direct its print output to an IBM 4248.

2. Make use of certain IBM 4248 specific functions.

Reassemble and relink the program after this change.

ERROPT=RETRY | IGNORE | name
This operand specifies the action to be taken in the case of an equipment error.
The actions you can specify are described below:

ERROPT=RETRY

Applies only if you specify also DEVICE=PRT1.

RETRY indicates that, if an equipment check with command retry is
encountered, the command is retried once. If the retry is unsuccessful, a
message is issued and the job is canceled.

ERROPT=IGNORE

Can be specified only for the 3525. IGNORE indicates that the error is to be
ignored. The address of the record in error is put in register 1 and made
available for processing. Byte 3, bit 3 of the CCB is also set on (see page

; you can check this bit and take the appropriate action to recover from
the error. IGNORE must not be specified for files with two I/O areas or a
work area.

ERROPT=name

Applies only if you specify also DEVICE=PRTTI.

If an equipment check with command retry is encountered, the command
is retried once. If the retry is unsuccessful a message is issued and the job
canceled.

For other types of errors (for these, see ["CCB Communication Bytes” on|
[page 54), 10CS:

1. Issues an error message.
2. Places error information into the CCB.
3. Returns control to your error routine.

In your routine, you may perform whatever actions are desired, but you
should not issue any imperative macro instruction for the file invoking the
error exit. Note that the routine always gets control in 24-bit addressing
mode.

To continue processing at the end of the routine, return to IOCS by
branching to the address in register 14.

FUNC=W | WT | RW | RWT | RPW | RPWT | PW | PWT
This operand specifies the type of file to be processed by the IBM 3525.

W indicates print, R indicates read, P indicates punch, and T (for the 3525
only) indicates an optional 2-line printer.

162 z/VSE System Macros Reference

DTFPR

RWIRWT IRPW |RPWT, and PW IPWT are used, together with the ASOCFLE
operand, to specify associated files; when one of these specifications (without
T) is used for a printer file, it must be specified also for the associated file(s).

Note: Do not use T for associated files, it is valid only for printer files.

If a 2-line printer is not specified for the 3525, multi-line print is assumed. T is
ignored if CONTROL or CTLCHR is specified.

IOAREAl1=name
This operand specifies the name of the output area.

IOAREA2=name
This operand specifies the name of a second output area.

IOREG=(r)
If two output areas and no work areas are used, this operand specifies the
register into which IOCS will place the address of the area where you can
build a record. For (r) specify one of the registers 2 to 12.

MODNAME=name
This operand may be used to specify the name of the logic module that is used
with the DTF table to process the file. If the logic module is assembled with
the program, MODNAME must specify the same name as the PRMOD macro.
If this operand is omitted, standard names are generated for calling the logic
module. If two DTF macros call for different functions that can be handled by
a single module, only one module is called.

The module specified by this operand is ignored if the actual IBM device is
one of the following:

PRT1 printer

4248 printer operating in native mode

3800 printer

OPEN always provides an IBM-supplied logic module for these devices.

PRINTOV=YES
This operand is specified if the PRTOV macro is included in your program.

RDONLY=YES
This operand is specified if the DTF is used with a read-only module. Each
time a read-only module is entered, register 13 must contain the address of a
72-byte doubleword-aligned save area. Every task requires its own uniquely
defined save area. Each time an imperative macro (except OPEN or OPENR) is
issued, register 13 must contain the address of the save area associated with
the task. Because the save area is unique for each task, the module is reentrant;
that is, capable of being used concurrently by several tasks.

If an ERROPT routine issues I/O macros which use the same read-only
module that caused control to pass to either error routine, your program must
provide another save area. One save area is used for the normal I/O, and the
second for I/O operations in the ERROPT routine. Before returning to the
module that entered the ERROPT routine, register 13 must be set to the save
area address originally specified for the task.

If this operand is omitted, the module generated is not reenterable and no save
area need be established.

RECFORM=FIXUNB | UNDEF | VARUNB
The operand RECFORM=FIXUNB is specified whenever the record format is
fixed. When the record format is FIXUNB, this entry may be omitted.

Chapter 2. Macro Descriptions 163

DTFPR

The entry RECFORM=UNDEEF is specified whenever the record format is
undefined. If the output is variable and unblocked, enter VARUNB.

RECSIZE=(r)
This operand specifies the general register (any one of 2 to 12) that will contain
the length of an output record of undefined format. The length of every record
must be loaded into the register before issuing the PUT macro.

SEPASMB=YES
Include this operand only if the DTFPR macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name you used as file name. The name is used as the
module’s transfer address. If you omit the operand, the assembler assumes that
the DTFPR macro is assembled together with your program.

STLIST=YES
Include this operand if the selective tape listing feature (IBM 1403 only) is
used. If this entry is specified, the CONTROL, CTLCHR, and PRINTOV entries
are not valid and are ignored if specified. If you specify this operand, you
must specify also RECFORM=FIXUNB.

TRC=YES
This operand applies if DEVICE=3800 is specified. Specify TRC=YES if each
output data line includes a table reference character following the optional
print control character. The printer uses the table reference character to select
the character arrangement table corresponding to the order in which the table
names were specified (in the CHAR operand of the SETPRT job control
statement or a SETPRT macro).

If a device code other than a 3800 is specified in the DEVICE operand, any
table reference character sent to that printer is treated as data.

UCS=0OFF | ON
For a printer with the universal character set feature, or for a 3800, this
operand determines whether data checks occurring in case of unprintable
characters are indicated to the operator or printed as blanks. The operand is
especially useful if you are using first-character forms control and have
modules that cannot process the CNTRL macro. If the operand is omitted, OFF
is the default.

ON
Data checks are processed with an operator indication.

OFF
Data checks are ignored and blanks are printed for the unprintable
character.

WORKA=YES
If output records are processed in work areas instead of in the I/O areas,
specify this operand. You must set up the work area in storage. The address of
the work area, or a general-purpose register which contains the address, must
be specified in each PUT macro.

DTFSD (Define the File for Sequential Disk 1/0) Macro

v

»»>—name DTFSD BLKSIZE= n ,EOFADDR=name
|:MAX:| I—,CISIZE=n—|

164 z/VSE System Macros Reference

DTFSD

v
v

I—,DELETFL=NO—| I—, DEVADDR=SYSXXX—I I—, EOXPTR=p0inter—|

\

v

—| I—,FEOVD=YES—| l—,HOLD=YES—| l—,IOAREA1=name—|

SKIP—
name—-—

I—, ERROPT=—EIGN0RE—

|—,IOAREA2=nameJ |—,IOREG|=(r‘)J |—,LABADDR=nameJ |—,PWRITE=YESJ

I—, RECFORM=format—| I—, RECSIZE= an I—, SEPASMB=YES—I
—[(Y‘)

, TYPEFLE=INPUT

v

I—,TRUNCS=YES—| I—,TYPEFLE— OUTPUT I—,UPDATE=YES—I
WORK————
WORKIN—
WORKINUP—
WORKMOD—

v
A

I—,VARBLD=(r‘)—| I—,VERIFY=YES—| l—,lr‘lLRERR=name—| l—,WORKA=YES—|

Required RMODE: 24

The macro defines a disk file for sequential (consecutive) processing. Only IBM
standard label formats are processed for the file.

Note: To code a DTFSD macro for a SAM file in VSAM managed space, consult
VSE/VSAM User’s Guide and Application Programming| under [“VSE/VSAM|
Support for SAM Files”]

BLKSIZE=n | MAX
For n in BLKSIZE=n, code the length of the I/O area. If the record format is
variable or undefined, enter the length of the I/O area needed for the largest
block of records.

For input files with fixed-length blocked records, BLKSIZE must be an integer
multiple of RECSIZE; for output files, eight bytes must be added for IOCS to
set up a count field.

If the file is on an FBA device, the operand specifies the logical block size. For
an FBA disk, the maximum value is 32 761 (the maximum CISIZE value minus
7).

The BLKSIZE value for output files must include eight bytes for a count field
to provide compatibility between FBA and CKD disk.

The value given in this operand can be overridden by the BLKSIZE operand of
the DLBL job control statement if you define blocked records
(RECFORM=xxxBLK). For an output file, the records are blocked according to
the size specified by the BLKSIZE operand (from the DLBL statement if it was

Chapter 2. Macro Descriptions 165

DTFSD

specified; otherwise from the DTFSD). For an input file, the BLKSIZE value
must match the format of the data as this resides on the disk.

To use the DLBL BLKSIZE operand:
* The device must be a CKD device; else, the operand is ignored.
* Partition GETVIS space for a DTF extension and new buffers must be

available.
¢ DTFSD RECFORM=xxxBLK must have been specified.

Specify BLKSIZE=MAX for optimum use of the storage capacity of your disk
device. This sets the length of the I/O area to one full track if:

* The file resides on a CKD device.

* The file’s records have a format other than control interval (CI).

OPEN obtains the track capacity of your device and sets the length of the I/O
area accordingly.

If the records of the file have the CI format, BLKSIZE=MAX sets the I/O area
to a length of 32 761 bytes, except when you specify also RECFORM=FIXBLK.
In that case, BLKSIZE=MAX sets the length of the I/O area to the highest
integer multiple of RECSIZE that is not greater than 32 761.

If you specify BLKSIZE=MAX, any CISIZE specification is ignored.

CISIZE=n

This operand specifies the size of the file’s control intervals. The operand
applies if the file resides on an FBA disk assigned to a non-system file logical
unit. The operand is ignored if the device is assigned to a system file (SYSRDR,
SYSIPT, SYSLST, or SYSPCH), or to a CKD-disk extent. In case of SAM ESDS, a
specified value for CSIZE is being used by VSAM to implicitly DEFINE
CLUSTER the file (FBA and CKD).

The value n must be a multiple of the FBA block size and, if greater than 8K,
must be a multiple of 2K. The maximum value is 32 768.

If CISIZE is omitted, CISIZE=0 is assumed.

For an output file, the specified control interval size may be overridden when
the program is to be executed. You do this by specifying the CISIZE operand
of the DLBL control statement (except when you specify BLKSIZE=MAX in this
macro).

For an input file, the size stored in the format-1 label is used. If this value is
zero, OPEN calculates a value based on your specification for BLKSIZE.

Omit CISIZE if you specify BLKSIZE=MAX.

DELETFL=NO

Specify this operand if the CLOSE macro is not to delete the format-1 and
format-3 label for a work file. The operand applies to work files only.

DEVADDR=SYSxxx

This operand must specify the symbolic unit associated with the file if an
extent is not provided. A job control EXTENT statement is not required for
single-volume input files. If an EXTENT statement is provided, its specification
overrides any DEVADDR specification. SYSnnn represents an actual I/O
address, and is used in the ASSGN job control statement to assign the actual
I/0O device address to this file.

EOFADDR=name

This operand specifies the name of your end-of-file routine (for input or work

166 z/VSE System Macros Reference

DTFSD

files). IOCS automatically branches to this routine on an end-of-file condition.
In this routine, you can perform any operations required at end of file (you
generally issue the CLOSE macro). Note that the routine always gets control in
24-bit addressing mode.

EOXPTR=pointer
This operand points to a 4-byte field that contains the address of an
end-of-extent exit routine. IOCS branches to this routine when the end of the
last (or only) extent is reached during an output operation on an output or
work file. Note that the routine always gets control in 24-bit addressing mode.

On entry to the routine, register 15 contains:

0 If the end-of-extent condition occurred during normal processing. In this
case, you can issue a CLOSE macro for the file; usually, there will be
enough space for an end-of-file record. However, for blocked files, the last
block may not be written.

4 If the condition occurred during CLOSE processing. In this case, you can
no longer issue an imperative macro for the file. For blocked files, the last
block may not be written.

8 If the condition occurred during processing of a POINT macro for a work
file (if, for example, the NOTE information provided was incorrect).

EOXPTR is not allowed for TYPEFLE=WORKIN.

ERROPT=IGNORE | SKIP | name
This operand is specified if a job is not to be terminated when a read or write
error cannot be corrected in the disk error routines. The disk error routines
normally retry failing I/O operations several times before considering the error
irrecoverable. Once the error is considered irrecoverable, the job is terminated
unless the ERROPT operand is specified.

Note that a no-record-found condition is not considered a real I/O error.
Therefore the ERROPT exit will not be activated by a no-record-found
condition. Instead, the operator receives a message to which he can respond
with CANCEL; then the error is considered irrecoverable.

The functions you can specify are explained below:

ERROPT=IGNORE
The error condition is ignored. The records are made available for
processing. When reading spanned records, the whole spanned record or
block of spanned records is returned, rather than just the one physical
record in which the error occurred.

On output, the physical record or control interval in which the error
occurred is ignored as if it were written correctly. If possible, any
remaining spanned record segments are written.

ERROPT=SKIP
On input, no records in the error block or control interval are made
available for processing. The next block or control interval is read from the
disk, and processing continues with the first record of that block. When
reading spanned records, the whole spanned record or block of spanned
records is skipped, rather than just one physical record.

On output or for an UPDATE=YES file, the physical record or control
interval in which the error occurred is ignored as if it were written
correctly. If possible, any remaining spanned record segments are written.

Chapter 2. Macro Descriptions 167

DTFSD

ERROPT=name
IOCS branches to the error routine named in this operand. In this routine,
you can process or make note of the error condition as desired, but you
should not issue any imperative macro instructions for the file invoking
the error exit. Note that the routine always gets control in 24-bit addressing
mode.

To continue processing at the end of the routine, return to IOCS by either:
 Branching to the address in register 14, or
¢ Coding the ERET macro.

FEOVD=YES
This operand is specified if a forced end of volume for disk feature is desired.
It forces the end-of-volume condition before physical end of volume occurs.
When the FEOVD macro is issued, the current volume is closed, and I/0
processing continues on the next volume. This operand does not apply to work
files.

HOLD=YES
This operand may be specified only if:
1. Generation of the track-hold function was requested for the assembly of
your supervisor.
2. Your DTFSD macro includes the operand UPDATE=YES.

For a more detailed discussion of the track-hold function, see |”DASD Recora|
[Protection (Track Hold)”|in the|z/VSE System Macros User's Guide}

IOAREAl1=name
This operand specifies, for an input or output file, the symbolic name of the
I/0 area used by the file. It is not required if WORKA=YES or IOREG=(r) is
specified for any input or output file.

If both IOAREA1=name and WORKA=YES are specified on an FBA file,
IOAREA1 is ignored.

If the BLKSIZE is overridden by the DLBL statement, and the value is greater
than the value specified in the DTE, OPEN issues a GETVIS for the space of
the larger I/O area and the specified one is not used.

For variable-length or undefined records, this area must be large enough to
contain the largest block or record.

Note: Either IOAREAl=name or WORKA=YES must be specified if
variable-length records are to be used with VSE/VSAM managed space.

IOAREA2=name
If two I/0O areas are used by GET or PUT, this operand is specified. When
variable length records are processed, the size of the I/O area must include
four bytes for the block size. For output files, the I/O area must include eight
bytes. This operand is ignored if IOAREAT1 is not specified.

IOREG=(r)
This operand specifies, for an input or output file, the general purpose register
(any of 2 to 12) in which IOCS puts the address of the logical record that is
available for processing. At OPEN time, for output files, IOCS puts into the
register specified the address of the area where you can build a record. The
same register may be used for two or more files in the same program, if
desired. If this is done, the program must store the address supplied by IOCS
for each record.

This operand must be specified if

168 z/VSE System Macros Reference

DTFSD

* No I/O area has been specified, or
* Blocked input or output records are processed in one 1/O area, or
¢ Two I/O areas are used and the records are processed in both I/O areas.

For an FBA file, the register specified by IOREG will point directly to data in
the control interval buffer.

LABADDR=name
Specifies, for an input or output file, the name of the routine in which you
process user-standard labels. Note that the routine always gets control in 24-bit
addressing mode. For more information about the handling of user-standard
labels, see the sections [“Processing of User Labels” on page 445)

PWRITE=YES
This operand is specified if formatting output operations to an FBA device
(PUT for data files or WRITE SQ for work files) are to cause a physical write
for each logical block. If omitted, the actual write takes place only when the
control interval buffer is full.

If PWRITE=YES is specified, the POINTR, POINTS, and POINTW macros may
not be used.

RECFORM=format

This operand specifies the type of records for input or output. For format,
specify one of the following:
FIXUNB

For fixed-length unblocked records.
FIXBLK

For fixed-length blocked records.
VARUNB

For variable-length unblocked records.
VARBLK

For variable-length blocked records.
SPNUNB

For spanned variable-length unblocked records.
SPNBLK

For spanned variable-length blocked records.
UNDEF

For undefined records.

If RECFORM=SPNUNB or RECFORM=SPNBLK is specified and RECSIZE=(r)
is not specified, an assembler diagnostic (MNOTE) is issued, and register 2 is
assumed. If WORKA=YES is omitted, an MNOTE is issued and WORKA=YES
is assumed. If RECFORM is omitted, FIXUNB is assumed.

If RECFORM=xxxBLK is specified and if the actual device is a CKD device,
you can override the BLKSIZE value with the BLKSIZE operand on the DLBL
statement at execution time.

For work files, use FIXUNB or UNDEF only.

RECSIZE=n | (v)
Specifies the number of characters in each logical record either directly or in a
register (any one of 2 to 12, where R2 is the default). When and how to use
RECSIZE largely depends on the record format:

* RECSIZE is required in direct format for RECFORM=FIXBLK.

Chapter 2. Macro Descriptions 169

DTFSD

¢ RECSIZE must not be used for RECFORM=FIXUNB | VARUNB | VARBLK.
For these file types, the record size is derived from the block size and set to
BLKSIZE minus 8 for output files, and BLKSIZE for others.

* RECSIZE is required with register notation for
RECFORM=SPNUNB | SPNBLK | UNDEE. In these cases, RECSIZE
— is required for output files; the length of each record must be loaded into
the designated register before issuing a PUT macro.
— is optional for input files; IOCS returns the length of the record
transferred to virtual storage in the designated register.

¢ RECSIZE must not be specified for work files.

SEPASMB=YES
Include this operand only if the DTFSD macro is to be assembled separately.
This produces an object module ready to be cataloged into a suitable
sublibrary by the name you used as file name. The name is used as the
module’s transfer address. If you omit the operand, the assembler assumes that
the DTFSD macro is assembled together with your program.

TRUNCS=YES
This operand is specified if FIXBLK disk files contain short blocks embedded
within an input file or if the input file was created with a module that
specified TRUNCS. This entry is also specified if the TRUNC macro is issued
for a FIXBLK output file. The operand does not apply to work files.

TYPEFLE=INPUT | OUTPUT | WORK | WORKIN | WORKINUP |
WORKMOD

Use this operand to indicate whether the file is an input or an output or a

work file.

INPUT
The GET macro must be used.

OUTPUT
The PUT macro must be used.

WORK
The READ and WRITE, NOTE and POINTx, and CHECK macros must be
used, and RECFORM must be either FIXUNB or UNDEFE.

WORKIN
Indicates an input type OPEN for which WRITE is not allowed. See Note
below.

WORKINUP
Indicates an input type OPEN for which WRITE is allowed. See Note
below.

WORKMOD
Equal to TYPEFLE=WORKINUP if the file already exists. Equal to
TYPEFLE=WORK if the file does not exist.

Note: For work files all extents must reside on a single volume. If WORKIN or
WORKINUP is specified, the work file has to reside on one volume, that
is, only the first EXTENT statement (if any) is processed; additional
EXTENT statements are ignored. From the first EXTENT statement, only
the logical unit and volume serial number (if specified) are used. Any
other information in the EXTENT statement is ignored.

If the operand is omitted, INPUT is assumed.

UPDATE=YES
This operand must be included if the disk input file is updated - that is, if disk
records are read, processed, and then re-written in the same disk record

170 z/VSE System Macros Reference

DTFSD

locations from which they were read. CLOSE writes any remaining records in
sequence onto the disk. For workfiles to be updated, use TYPEFLE=
WORKINUP.

This operand is invalid for a file on a disk assigned to a system logical unit
(SYSRDR, SYSIPT, SYSLST, or SYSPCH). If a PUT is attempted to an input file,
the job will be terminated.

VARBLD=(r)
Whenever variable-length blocked records are built directly in the output area
(no work area specified), this entry must be included. It specifies the number
(r) of a general-purpose register (any one of 2 to 12), which will always contain
the length of the available space remaining in the output area.

IOCS calculates the space still available in the output area, and supplies it to
you in the designated register after the PUT macro is issued for a
variable-length record. You then compare the length of your next
variable-length record with the available space to determine if the record fits in
the area. This check must be made before the record is built. If the record does
not fit, issue a TRUNC macro to transfer the completed block of records to the
file. Then, the present record is built at the beginning of the output area in the
next block.

VERIFY=YES
This operand is included if you want to check the parity of disk records after
they are written. If this operand is omitted, any records written on a disk are
not verified.

WLRERR=name
This operand applies only to disk input files. It does not apply to undefined
records. WLRERR specifies the symbolic name of your routine to receive
control if a wrong-length record is read. Note that the routine always gets
control in 24-bit addressing mode.

If the WLRERR operand is omitted but a wrong-length record is detected by

IOCS, one of the following conditions results:

e If the ERROPT entry is included for this file, the wrong-length record is
treated as an error block and handled according to your specifications for an
error (IGNORE, SKIP, or name of error routine).

¢ If the ERROPT entry is not included, the error is ignored.

+ If WORKA=YES is specified, do not destroy RO when return by ERET
IGNORE is set, as R0 may be used as work area address.

Undefined records are not checked for incorrect record length. The record is
truncated when the BLKSIZE specification is exceeded.

WORKA=YES
If records of an input or output file are processed or built in work areas
instead of I/0O areas, specify this operand. You must set up the work area in
storage. The address of the work area, or a general-purpose register which
contains the address, must be specified in each GET or PUT macro. For a GET
or PUT macro, IOCS moves the record to, or from, the specified work area.
WORKA=YES is required for SPNUNB and SPNBLK records, where the work
area must be sufficiently long to hold the longest spanned record.

When WORKA=YES is specified, IOREG must be omitted.

Chapter 2. Macro Descriptions 171

DTL

DTL (Define the Lock) Macro

,CONTROL=E ,KEEP=NO
1 []

|_
»—L—_l—DTL NAME=resourcename
name l—,CONTROL=S—| l—,KEEP=YES—I

,LOCKOPT=1
|_

v

, OWNER=TASK ,SCOPE=INT
[[]

\

v

|— LOCKOPT=——2 |— OWNER=PARTITION-— |— SCOPE=EXT—|
s —[4]_ s s

\
Y
A

l—,VOLID=volume_id—|

Required RMODE: 24

The macro generates a control block which is used by the LOCK/UNLOCK macros
to queue and dequeue a resource access request. The control block, commonly
called 'DTL’, is generated at the time of program assembly.

NAME-=resourcename
Specifies the name by which the resource is known to the system for the
purpose of access share control. It is by this name that the system controls
shared access of the resource as requested by active tasks via the LOCK macro.
These tasks may all be active in one partition, or they may be distributed over
several partitions; the resource-share control extends across partitions.

The name may be up to twelve bytes long. If it is shorter, it is padded with
blanks. Note that the name must not begin with any of the characters A
through I or V, because these characters are reserved for IBM usage.

CONTROL=E | S
Defines how the named resource can be shared while your program owns it,
which is determined by this specification and your specification for the
operand LOCKOPT. A specification of E means the resource is queued for
exclusive use; a specification of S means the resource is queued as sharable.

KEEP=NO | YES
This operand may be used to lock the named resource beyond job step
boundaries. Only a main task should use this operand. KEEP=NO indicates
that the named resource once locked, is to be released automatically at the end
of the particular job step. With KEEP=YES, a named resource that is locked
remains locked across job steps; it will be automatically released at end of job.

If a job terminates abnormally, all resources with KEEP=YES are unlocked by
the abnormal termination routine.

LOCKOPT=1 | 2 | 4
This operand, together with the CONTROL operand, determines how the
system controls shared access in response to a LOCK request.

LOCKOPT=1 and CONTROL=E
No other task is allowed to use the resource concurrently.

LOCKOPT=1 and CONTROL=S
Other ’'S” users are allowed concurrent access, but no concurrent 'E” user is
allowed.

172 z/VSE System Macros Reference

DTL

LOCKOPT=2 and CONTROL=E
No other "E’ user gets concurrent access; however, other 'S’ users can have
access to the resource.

LOCKOPT=2 and CONTROL=S
Other 'S’ users can have concurrent access and, in addition, one 'E’ user is
allowed.

LOCKOPT=4 and CONTROL=E
No other 'E” user from another system is allowed concurrent access.
However, other 'S” users from other systems may use the resource
concurrently. (Within his own system, the user always has access to the
resource.)

LOCKOPT=4 and CONTROL=S
Other 'S’ users can have concurrent access and, in addition, one 'E’ user
from another system is allowed.

Note: If the DASDSHR support is not generated in the supervisor, the LOCK
request for the resource is always granted.

All users of a particular resource have to use the same LOCKOPT specification
when they lock the resource. (Exception: if LOCKOPT=1 and CONTROL=E,
the lock status may be modified.)

OWNER=TASK | PARTITION
Defines whether the named resource, once locked, can be unlocked only by the
task which issued the corresponding LOCK request (OWNER=TASK), or
whether it can be unlocked by any task within the partition
(OWNER=PARTITION).

When OWNER is defined as PARTITION, a LOCK request for the resource
must not specify FAIL=WAIT, FAIL=WAITC, or FAIL=WAITECB, because
deadlock prevention (return code 16) is not supported with
OWNER=PARTITION.

SCOPE=INT | EXT
This operand may be used for locking resources across systems. SCOPE=EXT
specifies that the lock is used across systems. You may omit the operand if you
want to lock your resources only on one system since the default is
SCOPE=INT (that is, the locking applies to one system only).

VOLID=volume-id
Specifies the 6-byte identifier of a disk volume which (at the time of the LOCK
request) is to be checked whether it is mounted on an I/O device that is
defined as being shared across systems. If the device is a shared disk, the
LOCK request is treated as being defined with SCOPE=EXT; otherwise,
SCOPE=INT is assumed, and a SCOPE=EXT specification is ignored.

Chapter 2. Macro Descriptions 173

DUMODFx

DUMODFx (Diskette Unit /O Module Definition) Macro

»—L—_|—DUMODFX ERREXT=YES,ERROPT=YES |_ _| |_ _|
name »RDONLY=YES » SEPASMB=YES

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The macro defines a logic module for a diskette file. Use either of the following;:

DUMODFI -
Diskette Unit MODule, Fixed length records, Input file.

DUMODFO -
Diskette Unit MODule, Fixed length records, Output file.

ERREXT=YES
Include this operand if permanent errors are returned to a problem program
ERROPT routine or if the ERET macro is used with the DTF and module. The
ERROPT operand must be specified for this module.

ERROPT=YES
This operand applies to both DUMODEFx macros. This operand is included if
the module handles any of the error options for an error chain. Logic is
generated to handle any of the three options (IGNORE, SKIP, or name)
regardless of which option is specified in the DTE This module also processes
any DTF in which the ERROPT operand is not specified.

If this operand is not included, your program is canceled whenever a
permanent error is encountered.

RDONLY=YES
This operand causes a read-only module to be generated. If this operand is
specified, any DTF used with this module must have the same operand.

SEPASMB=YES
Include this operand only if the module is to be assembled separately. This
produces an object module ready to be cataloged into a suitable sublibrary,
either by the standard name or by the user-specified name. The name is used
as the module’s transfer address. If you omit the operand, the assembler
assumes that the DUMODEFx macro is assembled together with the DTF in
your program.

Standard DUMOD Names

Each name begins with a 4-character prefix (IJND) and continues with a
4-character field corresponding to the options permitted in the generation of the
module, as shown below. DUMODEFx name = [JNDabcd

Char. Content Specified Option
a I DUMODFHI (as the macro operation code)
(@) DUMODEFO (as the macro operation code)

174 z/VSE System Macros Reference

DUMODFx

Char. Content Specified Option

b C ERROPT=YES and ERREXT=YES
E ERROPT=YES
z Neither is specified

c z Always

d Y RDONLY=YES
z RDONLY is not specified

Subset/Superset DUMOD Names

The following chart shows the subsetting and supersetting allowed for DUMOD

names.
* + * *
I J NDTICTZY
0 E z
VA

+ Subsetting/supersetting permitted
* No subsetting/supersetting permitted

DUMP (Dump Request) Macro

>>—L——|—DUMP
name I—RC= 0——|

—En
(15)

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24

ASC Mode:
Primary

A\
A

This macro provides a hexadecimal dump of the following:

¢ The contents of the entire supervisor area and the system GETVIS area, or of
some supervisor control blocks only.

* The contents of the partition that issued the macro.
* The contents of the registers.

The dump includes the contents of just some of the supervisor control blocks
(rather than the entire supervisor area) if either is true:

* The STDOPT job control command specifies DUMP=PART or DUMP=NO.

* Ajob control // OPTION statement with PARTDUMP or NODUMP is
submitted.

The macro causes the job step to be terminated if DUMP was issued by the main

(or only) task of the program. If DUMP was issued by a subtask, the macro causes
that subtask to be detached without terminating the main task in the partition.

Chapter 2. Macro Descriptions 175

DUMP

If the job control option SYSDUMP is active, the output of the dump is directed to
the dump sublibrary of the partition. If NOSYSDMP is active, the output is
directed to SYSLST. If SYSLST is assigned to tape, this tape must be positioned as
desired.

If SYSLST is assigned to an IBM 3211 and indexing was used before you issue the
DUMP macro, a certain number of characters on every line of the printed dump
may be lost. To avoid this, reload the printer’s FCB (forms control buffer) by
issuing an LFCB macro before you issue the DUMP macro. The FCB image you
load must not have an indexing byte.

If DUMP is issued by a job running in real mode, the storage contents of the
partition are dumped only up to the limit as determined by the SIZE operand of
the EXEC job control statement, plus the storage obtained dynamically through the
GETVIS macro. If SIZE was not specified, the entire partition will be dumped. If
DUMP is issued by a program running in virtual mode, the entire partition is
dumped.

RC=0 | n | (15)
Indicates a user-specified return code, between 0 and 4095, which is passed to
job control to reflect the result of the job step and to allow conditional
execution of subsequent job steps.

If register notation is used, the return code must be contained in bytes 2 and 3
of the register.

If the operand is omitted, no return code is passed to job control.

The RC operand is only applicable for the main task; it is ignored if the DUMP
macro is issued by a subtask.

Note: The DUMP macro modifies some of the user registers:

¢ If the RC operand is not specified, the macro modifies register 1; all other
registers are displayed unchanged.

¢ If the RC operand is specified, the macro modifies registers 0, 1, 14, and
15; the other registers are displayed unchanged.

176 z/VSE System Macros Reference

ENDFL

ENDFL (End File Load Mode) Macro

»>>- ENDFL- -filename <
|:name:| |:(0)4

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

The macro ends the load mode started by the SETFL macro. The macro must be
issued only after a SETFL and before a CLOSE.

The ENDFL macro performs an operation similar to CLOSE for a blocked file. It
writes the last block of data records, if necessary, and then writes an end-of-file
record after the last data record. Also, it writes any index entries that are needed
followed by dummy index entries for the unused portion of the prime data extent.

filename | (0)
The name of the file to be loaded is the only operand required, and it is the
same as the name specified in the DTFIS header entry for the file. The filename
can be specified either as a symbol or in register notation. Register notation is
necessary if your program is to be self-relocating.

Chapter 2. Macro Descriptions 177

ENQ

ENQ (Enqueue a Task) Macro

178

»>>- ENQ rcbname <
|:narne:| |—(0)4

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

A task protects a resource by issuing an ENQ (enqueue) macro. When the ENQ
macro is issued, the task requesting the resource either continues its execution, or
if the requested resource is held by another task, is placed in a wait condition.
When the task holding that resource completes, that task issues the DEQ (dequeue)
macro. All other tasks that are then waiting for the dequeued resource are freed
from their wait condition, and the highest-priority task either obtains or maintains
control.

If a task is terminated without dequeuing its queued resources, any task
subsequently trying to queue that resource is abnormally terminated. If a task
issues two ENQs without an intervening DEQ for the same resource, the task is
canceled. Also, any task that does not control a resource but attempts to dequeue
that resource is terminated, unless DEQ appears in the abnormal termination
routine, in which case it is ignored.

Although the main task does not require the program to set up a task-to-task
communication ECB to queue and dequeue, every subtask using the facility must
have the ECB operand in the ATTACH macro. That ECB must not be used for any
other purpose. Also, a resource can be protected only within the partition
containing the ECB.

Note: Do not use the ENQ macro in your AB exit routine, since a deadlock may
occur.

The ENQ macro supports the 31 bit environment. ENQ may be issued in 24-bit or
31-bit addressing mode, above or below the 16MB line.

When ENQ is issued in AMODE 24, the RCB address is treated as a 24-bit address.
When ENQ is issued in AMODE 31, the RCB address is treated as a 31-bit address.

rcbname | 0
Specifies the address of the RCB.

z/VSE System Macros Reference

EOJ

EOJ (End of Job) Macro

»—L—_l—EOJ <
name |—RC= an
—[(15)

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or (if RC is not specified) ANY

ASC Mode:
Primary

Issue the macro in the main (or only) task within a partition, to inform the system
that the job step is finished. If a subtask issues an EQ]J, the subtask is detached and
the remainder of the partition continues. If the main task issues EQJ, any abnormal
termination exits set up via STXIT AB are taken for the subtasks still attached.

RC=n | (15)
Indicates a user-specified return code, between 0 and 4095, which is passed to
job control to reflect the result of the job step and to allow conditional
execution of subsequent job steps.

If register notation is used, the return code must be contained in bytes 2 and 3
of the register.

Note that if this operand is included, execution of the EOJ macro is allowed
below the 16MB line only (RMODE 24).

If the operand is omitted, no return code is passed to Job Control.

ERET (Error-Handling Return) Macro

name kIGNORﬂ

RETRY

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:
Primary

This macro enables your program’s ERROPT or WLRERR routine to return to IOCS
and specify an action to be taken. The macro applies to:

* DTFSD files.

* DTFIS and DTFDU files if ERREXT=YES is specified in the DTFxx macro.

* DTFMT input files if ERREXT=YES is specified.

Chapter 2. Macro Descriptions 179

ERET

SKIP
Passes control back to the logic module to skip the block of records or control

interval in error and process the next one. For disk or diskette output, an ERET
SKIP is treated as an ERET IGNORE.

IGNORE
Passes control back to the module to ignore the error and continue processing.

RETRY
Causes the module to retry the operation that resulted in the error. For SD
wrong-length record errors, RETRY cancels the job.

ESETL (End Set Limit) Macro

»—L—_l—ES ETL—[fi lename
name (1)4

v
A

Requirements for the caller:

AMODE:
24

RMODE:
24

ASC Mode:

Primary

The macro ends the sequential mode initiated by the SETL macro. If the records
are blocked, ESETL writes the last block back if a PUT was issued.

If ADDRTR and/or RANSEQ are specified in the same DTF, ESETL should be
issued before issuing a READ or WRITE.

Another SETL can be issued to restart sequential retrieval.

Sequential processing must always be terminated by issuing an ESETL macro.

filename | (1)
Is the same name as the name specified in the DTFIS header entry. The name
can be specified as a symbol or in register notation. Register notation is
necessary if your program is to be self-relocating.

180 z/VSE System Macros Reference

EXCP

EXCP (Execute Channel Program) Macro

»—L—_|—EXCP ccb_name <
name I—(I)Q l—,REAL—|

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

The macro requests physical IOCS to start an input/output operation for a
particular I/O device.

Physical IOCS determines the device from the CCB or IORB control block specified
by blockname. Physical IOCS places the block in a queue and returns control to the
problem program. Physical IOCS causes the channel program to be executed as
soon as the channel and device are available. I/O interruptions are used to process
I/0 completion and to start I/O requests if the channel or device was busy at the
time the EXCP was executed.

ccbname | (1)
Is the virtual address of the control block established for the device. It can be
given as a symbol or in register notation.

The address of the CCB or IORB must be a 24-bit address.

REAL
Indicates that the addresses in the CCWs and the address in the control block
pointing to the first CCW have already been translated into real