
IBM z/VSE

System Macros Reference

Version 3 Release 1

SC33-8230-00

���

IBM z/VSE

System Macros Reference

Version 3 Release 1

SC33-8230-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

xi.

First Edition (March 2005)

This edition, which is an update of IBM VSE/Enterprise Systems Architecture System Macros Reference, Version 2 Release

4, SC33-6716-00, applies to Version 3 Release 1 of z/Virtual Storage Extended (z/VSE), Program Number 5609-ZVS,

and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the addresses given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address

your comments to:

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com

FAX (Germany): 07031-16-3456

FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

Notices xi

Programming Interface Information xi

Trademarks and Service Marks xi

About This Book xiii

Who Should Use This Book xiii

Where to Find More Information xiii

Summary of Changes xv

Chapter 1. Using the Macros 1

Selecting the Macro Level 1

Addressing Mode and the Macros 2

Address Space Control (ASC) Mode 2

Using X-Macros 3

Passing Parameters in AR Mode 3

Register Usage 3

Macro Notation 4

Positional Operands 4

Keyword Operands 5

Mixed Format 5

Comments in Macros 5

Understanding Syntax Diagrams 5

Register Notation 7

Chapter 2. Macro Descriptions 9

ALESERV (Access List Entry) Macro 9

ALESERV ADD (Add Access List Entry) Macro . . 10

Return Codes in Register 15 11

ALESERV DELETE (Delete Access List Entry) Macro 12

Return Codes in Register 15 12

ALESERV EXTRACT (Find a STOKEN) Macro . . . 13

Return Codes in Register 15 13

ALESERV SEARCH (Search Access List Entry)

Macro 15

Return Codes in Register 15 16

AMODESW CALL (Addressing Mode Switch)

Macro 17

AMODESW QRY (Query Addressing Mode) Macro 18

AMODESW RETURN (Return from Subroutine)

Macro 18

AMODESW SET (Set Addressing Mode) Macro . . 19

ASPL (Assign Parameter List) Macro 20

ASSIGN (Assign I/O Device) Macro 21

Return Codes in Register 15 21

ATTACH (Attach a Task) Macro 22

AVRLIST (Map GETVCE) Macro 25

CALL (Call a Program) Macro 26

CALL CSRPxxx (Call Cell Pool Services) Macro . . 28

Control Parameters 29

Programming Requirements 29

Register Information 29

CALL CSRPBLD (Build A Cell Pool And Initialize

An Anchor) 30

Return Codes in Register 15 30

CALL CSRPEXP (Expand A Cell Pool) 31

Return Codes in Register 15 32

CALL CSRPCON (Connect Cell Storage to an

Extent) 33

Return Codes in Register 15 33

CALL CSRPACT (Activate Previously Connected

Storage) 35

Return Codes in Register 15 35

CALL CSRPDAC (Deactivate an Extent) 36

Return Codes in Register 15 36

CALL CSRPDIS (Disconnect the Cell Storage for an

Extent) 38

Return Codes in Register 15 38

CALL CSRPGET (Allocate a Cell from a Cell Pool) 39

Return Codes in Register 15 40

CALL CSRPRGT (Allocate a Cell from a Cell Pool -

Register Interface) 41

Input Register Information 41

Output Register Information 41

Return Codes in Register 15 42

CALL CSRPFRE (Return a Cell to a Cell Pool) . . . 42

Return Codes in Register 15 43

CALL CSRPRFR (Return a Cell to a Cell Pool -

Register Interface) 44

Input Register Information 44

Output Register Information 44

Return Codes in Register 15 45

CALL CSRPQPL (Query the Cell Pool) 46

Return Codes in Register 15 47

CALL CSRPQEX (Query a Cell Pool Extent) . . . 48

Return Codes in Register 15 49

CALL CSRPQCL (Query a Cell) 50

Return Codes in Register 15 50

CANCEL (Cancel Task) Macro 51

CCB (Command Control Block Definition) Macro . . 52

Format of the CCB 53

CCB Communication Bytes 54

CDDELETE (Delete Loaded Phase) Macro 58

Return Codes in Register 15 58

CDLOAD (Control-Directory Load) Macro 59

Return Codes in Register 15 60

CDMOD (Card I/O Module Definition) Macro . . 61

Standard CDMOD Names 63

Subset/Superset CDMOD Names 63

CHAP (Change Priority) Macro 64

CHECK (Check I/O Completion) Macro 65

CHKPT (Checkpoint Request) Macro 68

CLOSE and CLOSER (Close a File) Macro 71

CNTRL (Control Device) Macro 72

CKD-Disk Devices 73

Magnetic Tape Units 73

© Copyright IBM Corp. 1990, 2005 iii

Printers – Any Type 73

PRT1 Printers – Including IBM 4248 in Native

Mode 74

Card I/O Devices 74

IBM 3881 Optical Mark Reader 75

IBM 3886 Optical Character Reader 75

COMRG (Communication Region Access) Macro . . 75

CPCLOSE (Control Program File Close) Macro . . 76

Return Codes in Register 15 76

CSRCMPSC (Compression/Expansion) Macro . . . 77

Return Codes 77

CSRYCMPS (Map Compression Control Block)

Macro 78

DCTENTRY (Map GETVCE) Macro 78

DEQ (Dequeue Resource) Macro 79

DETACH (Detach Task) Macro 80

DFR (Define Font Record) Macro 81

DIMOD (Device-Independent I/O Module

Definition) Macro 83

Standard DIMOD Names 84

Subset/Superset DIMOD Names 84

DISEN (Disengage Document Reader) Macro . . . 85

DLINT (Define Line Type) Macro 86

Line-Information Specifications 86

Field-Information Specifications 86

DOM (Delete Operator Message) Macro 89

Return Codes in Register 15 89

Cancel Codes 89

DRMOD (Document Read Module Definition)

Macro 90

Standard DRMOD Names 90

DSPLY (Display Document Field) Macro 91

DSPSERV (Data Space) Macro 92

DSPSERV CREATE (Create Data Space) Macro . . 93

Return Codes in Register 15 (and Reason Codes

in Register 0) 97

Data Space Naming Conventions 97

DSPSERV DELETE (Delete Data Space) Macro . . . 98

DSPSERV EXTEND (Extend Data Space) Macro 100

Return Codes in Register 15 (and Reason Codes

in Register 0) 101

DSPSERV RELEASE (Release Data Space) Macro 102

DTFCD (Define the File for Card I/O) Macro . . . 104

DTFCN (Define the File for Console I/O) Macro 111

DTFDA (Define the File for Direct Access) Macro 113

DTFDI (Define the File for Device Independence)

Macro 119

DTFDR (Define the File for Document Reader)

Macro 123

DTFDU (Define the File for Diskette Unit I/O)

Macro 126

DTFIS (Define the File for Indexed Sequential

Access) Macro 131

DTFMR (Define the File for Magnetic Reader

Input) Macro 141

DTFMT (Define the File for Magnetic Tape I/O)

Macro 143

DTFOR (Define the File for Optical Reader Input)

Macro 150

DTFPH (Define the File for Physical I/O) Macro 155

DTFPR (Define the File for Printer) Macro 159

DTFSD (Define the File for Sequential Disk I/O)

Macro 164

DTL (Define the Lock) Macro 172

DUMODFx (Diskette Unit I/O Module Definition)

Macro 174

Standard DUMOD Names 174

Subset/Superset DUMOD Names 175

DUMP (Dump Request) Macro 175

ENDFL (End File Load Mode) Macro 177

ENQ (Enqueue a Task) Macro 178

EOJ (End of Job) Macro 179

ERET (Error-Handling Return) Macro 179

ESETL (End Set Limit) Macro 180

EXCP (Execute Channel Program) Macro 181

EXIT (Return from Exit Routine) Macro 182

STXIT Macro Issued With AMODE 24 183

STXIT Macro Issued With AMODE ANY . . . 183

EXTRACT (Extract Control Information) Macro . . 184

Return Codes in Register 15 186

FCEPGOUT (Force Page Out) Macro 186

Exceptional Conditions 188

Return Codes in Register 15 188

FEOV (Force End of Volume) Macro 188

FEOVD (Force End of Volume for Disk) Macro . . 189

FETCH (Fetch a Phase) Macro 190

Return Codes in Register 15 192

FREE (Free Disk Area) Macro 193

FREEVIS (Free Virtual Storage) Macro 194

Format 1: Freeing Storage from the Partition

FREEVIS Area 194

Format 2: Freeing Storage from the Space

FREEVIS Area 194

Format 3: Freeing Storage from the System

FREEVIS Area 194

GENDTL (Generate the DTL Block) Macro . . . 196

GENIORB (Generate an IORB) Macro 199

GENL (Generate Directory List) Macro 200

GET (Get a Record) Macro 202

GETIME (Get the Time) Macro 203

GETSYMB (Get Symbolic Parameter) Macro . . . 205

GETVCE (Get Volume Characteristics) Macro . . . 206

GETVCE Output 209

Return Codes in Register 15 209

AVRLIST and DCTENTRY 209

GETVIS (Get Virtual Storage) Macro 212

Format 1: Obtaining Storage from the Partition

GETVIS Area 212

Format 2: Obtaining Storage from the Space

GETVIS Area 212

Format 3: Obtaining Storage from the System

GETVIS Area 212

IJBPUB (IJBPUB DSECT) Macro 216

IJJLBSER (LBSERV DSECT) Macro 217

IORB (I/O Request Block Definition) Macro . . . 218

ISMOD (Indexed Sequential I/O Module

Definition) Macro 220

Standard ISMOD Names 222

Subset/Superset ISMOD Names 223

JDUMP (Job Dump Request) Macro 224

JOBCOM (Job Communication) Macro 225

LBRET (Label-Routine Return) Macro 227

iv z/VSE System Macros Reference

Checking Disk Extents 227

Checking User Standard Labels on Disk . . . 227

Writing User Standard Labels on Disk 227

Checking User Standard Tape Labels 227

Writing User Standard Tape Labels 228

Writing or Checking Nonstandard Tape Labels 228

LBSERV (Control IBM 3494 Tape Library) Macro 229

Overview of LBSERV Macro 229

Reason Codes 241

LFCB (Load Forms Control Buffer) Macro 250

Return Codes in Register 15 251

LIBRDCB (Librarian Data Control Block) Macro 253

Library Macro Notation 254

LIBRM CLOSE (Close Library Member) Macro . . 257

Return Codes 258

LIBRM DELETE (Delete Library Member) Macro 258

Return Codes 259

LIBRM GET (Get Library Member) Macro 260

Return Codes 262

LIBRM LIBDEF (Define Sublibrary Chain) Macro 263

Return Codes 264

LIBRM LIBDROP (Drop Sublibrary Chain) Macro 265

Return Codes 265

LIBRM LOCK (Lock Library Member) Macro . . . 267

Return Codes 268

LIBRM NOTE (Note Member Address) Macro . . 268

Return Codes 269

LIBRM OPEN (Open Library Member) Macro . . 271

Return Codes 274

LIBRM POINT (Point to Noted Member Record)

Macro 275

Return Codes 276

LIBRM PUT (Put Library Member) Macro 277

Return Codes 278

LIBRM RENAME (Rename Library Member)

Macro 279

Return Codes 280

LIBRM SHOWCB (Show Librarian Control Block)

Macro 281

LIBRM STATE CHAIN (Search Library Chain)

Macro 282

Return Codes 283

LIBRM STATE LIB (Search Library) Macro 285

Return Codes 286

LIBRM STATE MEMBER (Search Library Member)

Macro 287

Return Codes 289

LIBRM STATE SUBLIB (Search Sublibrary) Macro 291

Return Codes 293

LIBRM UNLOCK (Unlock Library Member) Macro 294

Return Codes 295

LITE (Pocket-Light Control) Macro 296

LOAD (Load a Phase) Macro 297

LOCK (Lock a Resource) Macro 302

Return Codes in Register 15 304

MAPBDY (Map Boundary Information) Macro . . 305

MAPBDYVR (Map Boundary Information) Macro 306

MAPDNTRY (Map Directory Entry) Macro . . . 307

MAPEXTR (Map EXTRACT Service) Macro . . . 309

MAPSAVAR (Map Save Area) Macro 312

MAPSSID (Map for SUBSID) Macro 314

MAPSYSP (Map System Layout) Macro 315

MAPXPCCB (Map Cross-Partition Control Block)

Macro 316

MODDTL (Modify DTL Block) Macro 320

MRMOD (MICR Input Module Definition) Macro 323

MVCOM (Move to Communication Region) Macro 324

NOTE (Note-Address) Macro 324

OPEN and OPENR (Open a File) Macro 325

ORMOD (Optical Reader Input Module Definition)

Macro 327

Standard ORMOD Names 328

Subset/Superset ORMOD Names 328

PAGEIN (Page-In Request) Macro 329

Return Information 330

PDUMP (Partial-Dump Request) Macro 332

PFIX (Page-Fix Request) Macro 333

Exceptional Conditions 334

Return Codes in Register 15 334

PFREE (Page-Free Request) Macro 335

Exceptional Conditions 336

Return Codes in Register 15 336

POINTR (Point to Noted Record) Macro 337

POINTS (Point to Start) Macro 337

POINTW (Point Behind Noted Record) Macro . . 338

POST (Post Event) Macro 339

PRMOD (Printer Output Module Definition) Macro 340

Standard PRMOD Names 342

Subset/Superset PRMOD Names 343

PRTOV (Printer Overflow Control) Macro 344

PUT (Put Record) Macro 345

PUTR (PUT with Reply) Macro 347

QSETPRT (Query Printer Setup) Macro 348

Return Codes 348

Calling SETPRT for a VSE/POWER-Controlled

Printer 350

RCB (Resource Control Block Definition) Macro 352

RDLNE (Read a Line) Macro 352

READ (Read a Record) Macro 353

REALAD (Real Address Return) Macro 354

RELEASE (Release Logical Unit) Macro 355

RELPAG (Release Page) Macro 356

Exceptional Conditions 357

Return Codes in Register 15 357

RELSE (Release a Block) Macro 358

RESCN (Re-Scan) Macro 358

RETURN (Return after Call) Macro 360

RUNMODE (Run-Mode Indication) Macro . . . 360

SAVE (Save Register) Macro 361

SDUMP/SDUMPX 361

Return Codes in Register 15 365

SECTVAL (Sector-Value Calculation) Macro . . . 367

SEOV (System End-of-Volume) Macro 369

SETDEV (Set Device) Macro 369

SETFL (Set File Load Mode) Macro 370

SETIME (Set Interval Timer) Macro 370

SETL (Set Limits) Macro 372

SETPFA (Set Link to Page-Fault Appendage) Macro 374

General Coding Requirements 375

Register Usage 375

Entry Linkage 375

Page Fault Queue 376

Contents v

Processing in the Appendage Routine 376

SETPRT (Set the Printer) Macro 378

SPLEVEL (Set and Test Macro Level) Macro . . . 387

STXIT (Set Exit) Macro 388

SUBSID (Subsystem Information Display) Macro 395

Return Codes in Register 15 395

SYSSTATE (Set and Test Address Space Control

Mode) Macro 397

TECB (Timer Event Control Block) Macro 398

TPIN (Telecommunication Priority In) Macro . . . 399

TPOUT (Telecommunication Priority Out) Macro 399

TRUNC (Truncate Block) Macro 400

TTIMER (Test Interval Timer) Macro 400

UNLOCK (Unlock Resource) Macro 402

Return Codes in Register 15 402

VIRTAD (Virtual Address Return) Macro 403

WAIT (Wait for Event) Macro 404

WAITF (Wait for Completion of I/O) Macro . . . 406

WAITM (Wait for Multiple Events) Macro 407

WRITE (Write a Record) Macro 408

WTO (Write to Operator) Macro 410

Return Codes in Register 15 415

Cancel Codes 415

WTOR (Write to Operator with Reply) Macro . . 416

Return Codes in Register 15 419

Cancel Codes 419

XECBTAB (Cross-Partition Event Control Block

Table) Macro 420

Feedback Information 422

XPCC (Cross-Partition Communication) Macro . . 423

XPCCB (Cross-Partition Control Block) Macro . . 427

XPOST (Cross-Partition Post) Macro 429

Return Codes in Register 15 430

XWAIT (Cross-Partition Wait) Macro 430

Return Codes in Register 15 431

YEAR224 Macro 432

Appendix A. Control Character Codes 435

CTLCHR=ASA Option 435

CTLCHR=YES Option 436

Stacker Selection Codes 436

Printer Control Codes 437

Appendix B. American National

Standard Code for Information

Interchange 439

Appendix C. Standard and

Non-Standard Labels 445

Processing of User Labels 445

Coding Requirements - User-Standard Labels 446

Coding Requirements - Non-Standard Labels on

Tape 447

Formats of Volume and File Labels 447

Volume Label on Disk (VOL1) 447

IBM Standard File Labels on Disk 448

User-Standard File Labels on Disk 451

Volume Labels on Diskette 453

IBM Standard File Labels on Diskette 453

Volume Labels on Tape 454

IBM Standard File Labels on Tape 454

User-Standard File Labels on Tape 458

Non-Standard File Labels on Tape 458

Appendix D. Librarian Feedback

Codes 459

Appendix E. z/VSE Macros Intended

for Customer Use 463

VSE/Advanced Functions 463

VSE/SP Unique Code 466

VSE/POWER 466

Execution Macros 466

Mapping Macros 466

VSE/Interactive Computing and Control Facility

(VSE/ICCF) 466

VSE/Virtual Storage Access Method (VSE/VSAM) 467

Appendix F. z/VSE Macros And Their

Mode Dependencies 469

z/VSE Downward-Compatible Macros 472

Glossary 475

Index 485

vi z/VSE System Macros Reference

Figures

 1. Maximum and Initial BLOCKS Specification 95

 2. ASOCFLE Operand Usage with Print

Associated Files 105

 3. DTFDU Error Options 128

 4. Output Area Requirements for Loading or

Adding Records to a File by ISAM 136

 5. I/O Area Requirements for Random or

Sequential Retrieval by ISAM 137

 6. Work Area Requirements 140

 7. Operands to Define a Checkpoint File on

Disk 156

 8. Maximum and Assumed Lengths for the

IOAREA1 in Number of Bytes 161

 9. Layout of the LBSERV-Generated DSECT 217

10. Volume Status in IJJLTSTA 233

11. Media Type in IJJLTMED 233

12. Device Status in IJJLTSTA 235

13. Library Status in IJJLTSTA 238

14. Operand Notation for LIBRM Requests 255

15. Bit Configuration of the Pocket-Light Switch

Area 297

16. System Action for Control Definitions in

DTLs 303

17. System Actions by Return Code and FAIL

Operand 304

18. Layout of the MAPBDY-Generated DSECT 305

19. Layout of the MAPBDYVR-Generated DSECT 306

20. Layout of the MAPDNTRY-Generated DSECT

for DE=VSE 307

21. Layout of the MAPDNTRY-Generated DSECT

for DE=YES 308

22. Layout of the MAPEXTR-Generated DSECT

for MODE=TEMP 310

23. Layout of the MAPEXTR-Generated DSECT

for MODE=PERM 310

24. Layout of the MAPEXTR-Generated DSECT

for MODE=SYSP 311

25. Layout of the MAPEXTR-Generated DSECT

for ID=ATLCUU 311

26. Layout of the STXIT Save Area (AMODE=24

and MSGDATA=NO) 312

27. Layout of the Extended STXIT Save Area

(AMODE=ANY or MSGDATA=YES) 313

28. Layout of MAPSSID-Generated DSECT 314

29. Layout of the MAPSYSP-Generated DSECT 315

30. MAPXPCCB Macro Return Codes (IJBXRETC) 317

31. MAPXPCCB Reason Codes (IJBXREAS) 319

32. MAPXPCCB Function Codes (IJBXFCT) 319

33. MAPXPCCB Function Descriptor Codes

(IJBXFDSC) 320

34. Field Supplied for SETL Processing by Record

ID 373

35. Internal Page-Fault Queue and

Communication with the System 377

36. Effect of an AB, IT, OC, or PC Interrupt

During STXIT Routine Execution 394

37. Coding Example Showing the Use of

XECBTAB with TYPE=CHECK and XWAIT . 432

38. Syntax of YEAR224 Macro 432

39. Librarian Feedback Codes 460

40. z/VSE Macros and Their Mode Dependencies

(Execution Time) 470

© Copyright IBM Corp. 1990, 2005 vii

viii z/VSE System Macros Reference

Tables

 1. Subtask-Save Area (120 Bytes) 23

 2. Layout and Contents of the Command Control

Block (CCB) 53

 3. MICR Document Buffer Format 66

 4. Character Set Option List 82

 5. Label Extent Information Field 118

 6. COREXIT Routine Functions 123

 7. FilenameC-Status Byte if IOROUT Specifies

ADD, RETRVE, or ADDRTR 132

 8. FilenameC-Status Byte if IOROUT=LOAD 133

 9. ERREXT Parameter List 134

10. GETVCE Output Information 210

11. Layout and Contents of the I/O Request

Block (IORB) 218

12. LBSERV : Operands by Function 230

13. Naming Conventions for Inventory Files 236

14. Format of Record Generated by Query

Inventory 236

15. Common Return and Reason Codes from

LCDD, DFSMS/VM RMS, and VSE TLS

Support 242

16. Additional Reason Codes Generated by

LCDD 243

17. Additional Reason Codes Generated by

DFSMS/VM RMS 244

18. Reason Codes Generated by VGS 244

19. Reason Codes Generated by z/VSE 247

20. SDUMP Reason Codes for Return Code 8 366

21. XECBTAB Feedback Information 422

22. ASCII Character Set 439

23. ASCII to EBCDIC Correspondence 441

24. Disk Volume Label (VOL1) 447

25. IBM Standard Disk File Label (Format-1) 448

26. IBM Standard Disk File Continuation Label

(Format-3) 450

27. Disk VTOC Label (Format-4) 450

28. User-Standard Disk-File Label (Header and

Trailer) 452

29. User-Standard Disk-File Label (Five UHLs

and Four UTLs are Specified) 452

30. User-Standard Disk-File Label (Three UHLs

are Specified) 452

31. Diskette Volume Label 453

32. Diskette File Label 453

33. Tape Volume Label for EBCDIC Code 454

34. Tape Volume Label for ASCII Code 454

35. First IBM Standard Tape File Label for

EBCDIC Code 455

36. First IBM Standard Tape File Label for ASCII

Code 455

37. Second IBM Standard Tape File Label for

ASCII Code 456

38. Second IBM Standard Tape File Label for

EBCDIC Code 456

© Copyright IBM Corp. 1990, 2005 ix

x z/VSE System Macros Reference

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of

the intellectual property rights of IBM may be used instead of the IBM product,

program, or service. The evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the

responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement. IBM accepts

no responsibility for the content or use of non-IBM Web sites specifically

mentioned in this publication or accessed through an IBM Web site that is

mentioned in this publication.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Deutschland GmbH

Department 0790

Pascalstr. 100

70569 Stuttgart

Germany

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

Programming Interface Information

This manual is intended as a reference source for programmers using the macro

support available with IBM z/VSE. It contains a complete description of all z/VSE

data management (IOCS) and system control macros.

This manual documents intended Programming Interfaces that allow the customer

to write programs to obtain the services of z/VSE.

Trademarks and Service Marks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

CICS

DFSMS/VM

ECKD

ES/9000

eServer

© Copyright IBM Corp. 1990, 2005 xi

IBM

MVS

MVS/ESA

System/370

S/370

VSE/ESA

VTAM

z/Architecture

zSeries

xii z/VSE System Macros Reference

About This Book

This manual is intended as a reference source for programmers using the macro

support available with z/VSE. These macros can be used in application programs

(or routines of such programs) written in assembler language.

The manual documents reference information about the two types of macros that

z/VSE offers: data-management or input/output (IOCS) macros and control

program macros. The publication lists the macros in alphabetic order of their

names.

Who Should Use This Book

This manual is mainly intended for programmers writing application programs in

assembler language.

Where to Find More Information

For the most part, programming details have been omitted in order to provide

rapid access to the information in this publication. If the publication does not meet

your information needs, refer to the IBM publications:

 z/VSE System Macros User’s Guide

 VSE/ESA Extended Addressability

To define a sequential file in VSAM-managed space using the file definition macro

DTFSD, you should consult also the IBM publication:

 VSE/VSAM User’s Guide and Application Programming

To assemble and link-edit your program (or routine), you may have to consult the

IBM publications:

 z/VSE Guide to System Functions

 z/VSE System Control Statements

Program tools available with z/VSE to help you debug your program are

described in the IBM publication:

 z/VSE Diagnosis Tools

For planning and migration information, refer to the chapter “Planning for

Migration” in the z/VSE Planning manual.

The High Level Assembler for VSE is described in the following manuals:

 High Level Assembler for MVS & VM & VSE Programmer’s Guide

 High Level Assembler for MVS & VM & VSE Language Reference

z/VSE is the successor to IBM’s VSE/ESA product. Many products and functions

supported on z/VSE may continue to use VSE/ESA in their names.

Please be aware that the z/VSE operating system can execute in 31-bit mode only. It

does not implement z/Architecture, and specifically does not implement 64-bit mode

capabilities. The z/VSE operating system is designed to exploit select features of IBM

eServer zSeries hardware.

© Copyright IBM Corp. 1990, 2005 xiii

z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date

information about VSE-related products and services, new z/VSE functions,

and other items of interest to VSE users.

You can find the z/VSE home page at:

http://www.ibm.com/servers/eserver/zseries/zvse/

xiv z/VSE System Macros Reference

Summary of Changes

This manual has been updated to reflect the rebranding of VSE/ESA as z/VSE, as

well as the following changes and enhancements since VSE/ESA 2.4:

v DTFMT

– Maximum BLKSIZE = 65534
v EOJ

– No default for RC operand
v EXTRACT

– Added code EFMT1 for 3592 device
v FREEVIS

– Corrected syntax for LENGTH and ADDRESS parameters
v GETVCE

– RMODE change
v LBSERV

– Tape Library Support (TLS)

– Added/updated tables of return codes

– Added code 6601

– Added RC 3025

– Added RC 0002 for AQUERY

– Added TGTCAT for RELEASE

– Note on CANCEL with CMOUNT/MOUNT

– Parameters forced to uppercase
v LIBRDCB

– RMODE change
v LIBRM (all forms)

– AMODE/RMODE change
v LIBRM LIBDEF

– Maximum number of sublibraries = 32
v LIBRM STATE CHAIN

– Maximum number of sublibraries = 32
v LIBRM STATE MEMBER

– Description of RC=4/RSN=0
v LIBRM STATE SUBLIB

– Description of RC=4/RSN=0
v MAPEXTR

– Added code EFMT1 for 3592
v Updated tables in Appendix E, “z/VSE Macros Intended for Customer Use,” on

page 463 and Appendix F, “z/VSE Macros And Their Mode Dependencies,” on

page 469.

– Deleted COBOL, PLI, SAMPBASC, SAMPCOB, SAMPPLI, VSBASIC,

VSBRESEQ macros

The manual also includes terminology and editorial changes.

© Copyright IBM Corp. 1990, 2005 xv

xvi z/VSE System Macros Reference

Chapter 1. Using the Macros

To request system services, programs use macros. All macros described in this

manual are written in assembler format statements; they consist of a number of

fields as discussed under Macro Notation. When you code a macro, the assembler

processes it by using the macro definitions supplied by IBM and stored in a

sublibrary when the system is generated.

The assembler expands the macro into executable machine instructions and/or

data fields in the form of assembler language statements. The executable machine

instructions typically consist of a branch around the data fields, instructions that

load registers, and an instruction that gives control to the system. The macro

expansion appears as part of the assembler output listing.

The data fields which are derived from the macro operands are used at execution

time by the control program routine that performs the z/VSE service associated

with the macro.

z/VSE offers two different types of macros: data management (IOCS) and system

control macros. The data management macros define the characteristics of a file

and identify the I/O operation to be performed on the file. The system control

macros enable you to make use of control functions available under z/VSE.

Selecting the Macro Level

VSE/ESA Version 1.3/2.1 supports all VSE/ESA Version 1.1/1.2 macros. Therefore,

programs that issue macros and that run on a Version 1.1/1.2 system should also

run on a Version 1.3/2.1 system (provided AMODE=24 and RMODE=24).

Starting with VSE 1.3, 31-bit addressing support was introduced.

There are, however, Version 1.3/2.1 macros that cannot execute on Version 1.1/1.2.

This means that programs running on VSE/ESA 1.3/2.1 and issuing these macros

might not run on VSE/ESA 1.1/1.2, because a Version 1.1/1.2 system cannot

process all the macro parameters that work on a Version 1.3/2.1 system. When you

try to run a Version 1.3/2.1 program on a Version 1.1/1.2 system, the program

might not execute as expected. The macros in question are called downward

incompatible. In general, macros with new parameters are downward incompatible,

if not stated otherwise in the description. (For a list of the downward compatible

macros, see “z/VSE Downward-Compatible Macros” on page 472).

For the following macros it is possible to generate downward-compatible macro

expansions by using the SPLEVEL macro:

FCEPGOUT

PAGEIN

PFIX

PFREE

RELPAG

WTO

WTOR

The SPLEVEL macro sets (or tests) a global symbol that is interrogated by these

macros during assembly to determine the type of expansion to be generated. For

details refer to the description of the SPLEVEL macro on page 387

© Copyright IBM Corp. 1990, 2005 1

Addressing Mode and the Macros

A program can execute either in 24-bit addressing mode (AMODE 24) or in 31-bit

addressing mode (AMODE 31). Among the macros described in this manual, there

is one group that has no requirements on the addressing mode in which a program

executes. There is, however, another group that requires the program to be

executing in 24-bit addressing mode and the parameters to be passed in 24-bit

addressable storage (that is, below 16MB). This is indicated individually for each

macro under Requirements for the caller immediately after the macro’s syntax

description. It is also indicated in Appendix F of this manual, which lists all

macros together with their mode dependencies.

In general, a program executing in 24-bit addressing mode cannot pass parameter

addresses that are higher than 16MB. However, there are exceptions; for example, a

program executing in 24-bit addressing mode can:

v Free storage above 16MB using the FREEVIS macro

v Allocate storage above 16MB using the GETVIS macro.

If a program running in 31-bit addressing mode issues a macro whose RMODE

(residency mode) is ANY, parameter addresses can be above or below the 16MB

line. Macros with RMODE 24, on the other hand, require parameter addresses

below 16MB. The required RMODE of each macro is also indicated in the

individual macro description (and in Appendix F).

A program running in 31-bit addressing mode must be recompiled on Version

1.3/2.1 libraries and use (via SPLEVEL) the VSE/ESA Version 1.3/2.1 macro

expansion of the following macros:

FCEPGOUT

PAGEIN

PFIX

PFREE

RELPAG

For details on 31-bit addressing, AMODE, RMODE, and other related subjects, see

the manual VSE/ESA Extended Addressability under “Introducing AMODE and

RMODE”.

Address Space Control (ASC) Mode

A program can execute in either primary or AR (access register) ASC mode. For

details, see the manual VSE/ESA Extended Addressability under “Basic Concepts”.

Some z/VSE macros (DSPSERV, SDUMP, SDUMPX, for example) can generate code

that is appropriate for programs in either primary or AR mode. This is also

indicated in the individual macro description (and in Appendix F). A global

variable tells these macros which type of code to generate. The SYSSTATE macro

allows you to test or set this variable.

When you assemble a program, the initial value of this variable indicates primary

ASC mode. If you do not change the variable, macros that test it will generate code

appropriate for primary ASC mode. Thus, if your program receives control in

primary ASC mode, you do not need to change the variable. If, however, your

program receives control in AR ASC mode, you might have to issue SYSSTATE

ASCENV=AR before issuing any macro that tests the variable. To ensure that your

programs always generate code appropriate for their ASC mode, IBM recommends

that:

2 z/VSE System Macros Reference

v All programs that use macros should issue SYSSTATE before issuing any other

macros. Programs in primary ASC mode must issue SYSSTATE ASCENV=P.

Programs in AR mode must issue SYSSTATE ASCENV=AR.

v If your program switches from one ASC mode to another, issue SYSSTATE

immediately after the mode switch to indicate the new ASC mode.

Once a program has issued SYSSTATE, there is no need to reissue it unless the

program switches ASC mode.

Using X-Macros

Some z/VSE macros (at present SDUMPX only) support callers in both primary

and AR ASC mode. When the caller is in AR mode, the macro must generate larger

parameter lists. Some services (at present only the dump service) offer two macros:

one for callers in primary mode and one for callers in AR mode. The name of the

macro for the AR mode caller is the same as the name of the macro for primary

mode callers, except that the AR mode macro name ends with an ″X″ (SDUMPX

vs. SDUMP).

The only way an X-macro knows that a caller is in AR mode is by checking the

global symbol that the SYSSTATE macro sets. If SYSSTATE ASCENV=AR has been

issued, the macro generates code that is valid for callers in AR mode. If it has not

been issued, the macro generates code that is not valid for callers in AR mode.

When your program returns to primary mode, use the SYSSTATE ASCENV=P

macro to reset the global symbol.

The rules for an X-macro are:

v Callers in primary mode can invoke either macro (X or non-X).

Some parameters on the X-macros, however, are not valid for callers in primary

mode. Some parameters on the non-X macros are not valid for callers in AR

mode. Check the macro descriptions in this manual for these exceptions.

v Callers in AR mode should issue the X-macros.

If a caller in AR mode issues the non-X macro, the system substitutes the

X-macro and sends a message describing the substitution.

Passing Parameters in AR Mode

All macros which can be issued in AR mode and which include control

parameters, place these parameters in the primary address space.

Register Usage

Registers 2 through 12 are available for general use. However, the PUTR (PUT with

Reply) macro makes use of register 2. General registers 0, 1, 13, 14, and 15 are

available to your program only under certain conditions.

The following paragraphs describe the general uses of these registers by IOCS, but

the description is not meant to be all inclusive. Certain applications, such as a

MICR stacker selection routine, may require different registers.

v Registers 0, 1, and 15

IBM supplied macros use these registers to pass parameters and return codes.

Therefore, the registers may be used without restriction only for immediate

computations.

v Register 13

Chapter 1. Using the Macros 3

System routines, and also IOCS routines, use this register as a pointer to a

72-byte save area. When using the CALL, SAVE, or RETURN macro, you can set

the address of the save area at the beginning of each phase of your program,

and leave it unchanged thereafter. However, if reentrant, read-only code is

shared among tasks, register 13 must contain the address of another save area to

be used by that code each time the code is used by another task.

v Registers 14 and 15

IOCS uses these registers for linkage without saving their contents. If you use

the registers, either save their contents (and reload them later) or finish with

these registers before IOCS uses them.

Not all logic modules use standard save area conventions. Therefore, if you use

a read-only logic module (supplying a module save area) in a subroutine, the

save area back-chain pointer can get lost.

v Floating-Point Registers

If your program uses floating-point registers in a subroutine, ensure that this

subroutine:

1. Saves their contents when it receives control.

2. Restores their contents when it returns control.

Macro Notation

Macros, like assembler statements, have a name field, operation field and operand

field. Comments can also be included as in assembler statements, although certain

macros require a comment to be preceded by a comma if the macro is issued

without an operand. These macros are: CANCEL, DETACH, FREEVIS, GETIME,

GETVIS, and TTIMER.

The name field in a macro may contain a symbolic name. Some macros (for

example, CCB, TECB, or DTFxx) require a name.

The operation field must contain the mnemonic operation code of the macro.

The operands in the operand field must be written in either positional, keyword,

or mixed format.

There must be no comma between the operation and the operand field; that is, the

first operand must not start with a comma.

Positional Operands

In this format, the operand values must be in the exact order shown in this

publication. Each operand, except the last, must be followed by a comma; no

embedded blanks are allowed. If an operand is to be omitted in the macro, and

following operands are included, a comma must be inserted to indicate the

omission. No commas need to be included after the last operand. Column 72 must

contain a continuation punch (any non-blank character) if the operands fill the

operand field and overflow onto another line.

The macro GET, for example, uses the positional format. A GET for a file named

CDFILE using a work area named WORK is written as follows:

 GET CDFILE,WORK

4 z/VSE System Macros Reference

Keyword Operands

An operand written in keyword format can have this form:

 LABADDR=MYLABELS

where:

 LABADDR is the keyword

 MYLABELS is a name you specify

 LABADDR=MYLABELS is the complete operand.

The keyword operands in the macro may appear in any order, and those that are

not required may be omitted. Different keyword operands may be written in the

same statement, each followed by a comma, except for the last operand of the

macro.

Mixed Format

The operand list contains both positional and keyword operands. The keyword

operands can be written in any order, but they must be written to the right of any

positional operands in the macro.

For more detailed information on coding macro statements, see the Assembler

Language manual.

Comments in Macros

You can include a comment in a macro in the same way as in an assembler

language instruction. However, a comment together with a macro that has no

operand requires that your comment begins with a comma.

Understanding Syntax Diagrams

This section describes how to read the syntax diagrams in this manual.

To read a syntax diagram follow the path of the line. Read from left to right and

top to bottom.

v The CC─── symbol indicates the beginning of a syntax diagram.

v The ───C symbol, at the end of a line, indicates that the syntax diagram

continues on the next line.

v The C─── symbol, at the beginning of a line, indicates that a syntax diagram

continues from the previous line.

v The ───CE symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

v Directly on the line (required)

v Above the line (default)

v Below the line (optional)

Uppercase Letters

Uppercase letters denote the shortest possible abbreviation. If an item

appears entirely in uppercase letters, it can not be abbreviated.

 You can type the item in uppercase letters, lowercase letters, or any

combination. For example:

CC KEYWOrd CE

Chapter 1. Using the Macros 5

In this example, you can enter KEYWO, KEYWOR, or KEYWORD in any

combination of uppercase and lowercase letters.

Symbols

You must code these symbols exactly as they appear in the syntax diagram

* Asterisk

: Colon

, Comma

= Equal Sign

- Hyphen

// Double slash

() Parenthesis

. Period

+ Add

For example:

 * $$ LST

Variables

Lowercase letters written in italics denote variable information that you

must substitute with specific information. For example:

CC

,USER=

user_id
 CE

Here you must code USER= as shown and supply an ID for user_id. You

may, of course, enter USER in lowercase, but you must not change it

otherwise.

Repetition

An arrow returning to the left means that the item can be repeated.

CC

H

repeat

CE

A character within the arrow means you must separate repeated items with

that character.

CC

H

 ,

repeat

CE

A footnote (1) by the arrow references a limit that tells how many times

the item can be repeated.

CC

H

(1)

repeat

CE

6 z/VSE System Macros Reference

Notes:

1 Specify repeat up to 5 times.

Defaults

Defaults are above the line. The system uses the default unless you

override it. You can override the default by coding an option from the

stack below the line. For example:

CC
 A

B

C

CE

In this example, A is the default. You can override A by choosing B or C.

Required Choices

When two or more items are in a stack and one of them is on the line, you

must specify one item. For example:

CC A

B

C

 CE

Here you must enter either A or B or C.

Optional Choice

When an item is below the line, the item is optional. Only one item may be

chosen. For example:

CC

A

B

C

 CE

Here you may enter either A or B or C, or you may omit the field.

Required Blank Space

A required blank space is indicated as such in the notation. For example:

 * $$ EOJ

This indicates that at least one blank is required before and after the

characters $$.

Register Notation

Certain operands can be specified in either of two ways:

v You may specify the operand directly – as a symbol, for instance. This results in

code that, for example, cannot be executed in the SVA because it is not reentrant.

v You may load the address of the value into a register before issuing the macro.

This way, which is called register notation, results in reentrant code that may be

executed in the SVA. When using register notation, the register should contain

only the specific address; high-order bits should be set to 0.

A typical example of an operand that allows register notation is the specification of

a file name in the GET or PUT macro. The operand is represented in this manual

as follows:

Chapter 1. Using the Macros 7

filename|(rn)

n =

A decimal number indicating the sequence of specifications using register

notation.

When the macro is assembled, instructions are generated to pass the information

contained in the specified register to IOCS or to the supervisor. For example, if an

operand is written as (8), IOCS or the supervisor expects information to be stored

at the address contained in general register 8. This is an example of ordinary

register notation.

You can save both storage and execution time by using what is known as special

register notation. In this method, the operand is shown in the format description of

the macro as either (0) or (1), for example. This notation is special because the use

of registers 0 and 1 is allowed only for the indicated purpose.

If special register notation is indicated by (0) or (1) in a macro format description

and you use ordinary register notation, the macro expansion will contain an extra

LR instruction, for example, LR 0,8.

The format description for each macro shows whether special register notation can

be used and for which operands. The following example indicates that the

filename operand can be written as (1) and the workname operand as (0):

 GET filename|(1),workname|(0)

If either of these special register notations is used, your program must load the

designated register before executing the macro expansion. Ordinary register

notation can also be used.

Operand Notation

Certain system control macros (for instance, ATTACH, GENIORB, GENL, LOAD)

allow three notations for an operand:

v Register notation

This is described in the preceding paragraph.

v Notation as a relocatable expression

In the macro expansion, this results in an A-type address constant.

v Notation in the form (S,address)

In the macro expansion, this results in the generation of an address in

base-displacement form. You can specify the address in either of the following

ways:

– As a relocatable expression; for example: (S,RELOC).

– As two absolute expressions, the first of which represents the displacement

and the second the base register; for example: (S,512(12)).
Consider using this notation if your program is to be reenterable. In a

reenterable program, macro operands often refer to fields in dynamic storage.

The (S,address) format offers an alternative to register notation: if two or more

of such operands have to be provided for one macro, there is no need for

loading addresses into that many registers.

8 z/VSE System Macros Reference

Chapter 2. Macro Descriptions

This section describes the macros in alphabetical order of their names. For each

macro, the section gives the format of the macro and a summary of the macro’s

function, followed by a description of the macro’s operand(s).

ALESERV (Access List Entry) Macro

The ALESERV macro manages the contents of access lists. An access list is a table

in which each entry identifies a data space to which one or more programs have

access. Each entry in the table is referenced by an ALET (access list entry token).

For detailed guide information on how to create and use data spaces, see “Chapter

8, Creating and Using Data Spaces” in the manual VSE/ESA Extended Addressability.

For definitions of the terms used with the ALESERV macro, see the Glossary at the

back of this manual.

The ALESERV macro supports the following main functions:

CC

name
 ALESERV ADD

DELETE

EXTRACT

SEARCH

 ,operands CE

ADD

Add an entry to an access list

DELETE

Delete an entry from an access list

EXTRACT

Obtain the STOKEN for a specified ALET

SEARCH

Locate an ALET for a specified STOKEN

For a detailed description of the main functions, see the “ALESERV (Access List

Entry) Macro” with the corresponding keyword (ALESERV ADD, ALESERV

DELETE,...).

© Copyright IBM Corp. 1990, 2005 9

ALESERV ADD (Add Access List Entry) Macro

CC

name

ALESERV ADD,STOKEN=stoken_addr,ALET=alet_addr
 ,AL=WORKUNIT

,AL=PASN

C

C
,MF=

L

,RELATED=anyvalue

(E,lstaddr)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary or AR (access register)

The ALESERV ADD macro adds an entry to an access list and returns the ALET

that references this entry.

If you want to know whether a data space already has an entry on an access list,

use the ALESERV SEARCH macro.

STOKEN=stoken_addr

Specifies the address of the 8-byte identifier of the data space that the program

wants to access and for which the entry is to be added. You might have

received the STOKEN as output from the DSPSERV CREATE macro or from

another user.

ALET=alet_addr

Specifies the address of the location where the system returns the 4-byte ALET

for the access list entry that the system added.

AL=WORKUNIT | PASN

WORKUNIT specifies that the access list to which the entry is to be added is a

’dispatchable unit access list’ (DU-AL), that is, an access list associated with a

z/VSE task. PASN specifies that the access list is a ’primary address space

access list’ (PASN-AL), that is, an access list associated with a partition.

 Use AL=WORKUNIT if you want to limit the sharing of the data space to

programs running under the owning task.

 Use AL=PASN if you want other programs running in the partition to have

access to the data space, or if you are adding an entry for a data space that has

been created with DSPSERV SCOPE=COMMON.

MF=L...

L specifies the list form of the macro, which is used to construct a

non-executable control program parameter list.

 RELATED=anyvalue specifies any valid macro parameter expression which

can be freely chosen by the user.

 No other parameters may be specified if the list form of the macro is chosen.

ALESERV ADD

10 z/VSE System Macros Reference

MF=E...

E specifies the execute form of the macro, which uses the parameter list

generated by the list form of the macro.

 lstaddr specifies the address of the parameter list. This address must not be in

a data space. If the caller of the macro is in 24-bit addressing mode, the

address of the parameter list must not be above the 16MB line.

 If the MF operand is omitted, the standard form of the macro is used, which

places the parameters into an inline parameter list.

Return Codes in Register 15

00 Successful completion.

0C The current access list cannot be expanded. There are no free ALEs and the

maximum size has been reached.

10 ALESERV could not obtain storage for an expanded access list.

18 The caller tried to add to the PASN-AL without being in PSW key-0 state.

38 The input STOKEN is invalid.

4C The space represented by the input STOKEN is invalid for cross-memory

access.

5C The caller is not authorized to add a data space to an access list.

6C The caller tried to add an entry for a SCOPE=COMMON data space to a

DU-AL.

ALESERV ADD

Chapter 2. Macro Descriptions 11

ALESERV DELETE (Delete Access List Entry) Macro

CC

name
 ALESERV DELETE,ALET=alet_addr C

C
,MF=

L

,RELATED=anyvalue

(E,lstaddr)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary or AR (access register)

The ALESERV DELETE macro deletes an entry from an access list. After the access

list entry has been removed, the connection between the ALET and the data space

no longer exists.

Since the system does not check and notify programs about the reuse of an ALET,

the program deleting an access list entry must ensure that other programs do not

use the old ALET.

ALET=alet_addr

Specifies the address of the ALET for the access list entry to be deleted.

MF=L...

L specifies the list form of the macro, which is used to construct a

non-executable control program parameter list.

 RELATED=anyvalue specifies any valid macro parameter expression which

can be freely chosen by the user.

 No other parameters may be specified if the list form of the macro is chosen.

MF=E...

E specifies the execute form of the macro, which uses the parameter list

generated by the list form of the macro.

 lstaddr specifies the address of the parameter list. This address must not be in

a data space. If the caller of the macro is in 24-bit addressing mode, the

address of the parameter list must not be above the 16MB line.

 If the MF operand is omitted, the standard form of the macro is used, which

places the parameters into an inline parameter list.

Return Codes in Register 15

00 Successful completion.

14 The input ALET corresponds to an invalid access list entry.

28 The caller specified an invalid ALET.

2C The caller attempted to delete an ALET reserved for system use.

30 The caller tried to delete an entry from the PSN-AL without being in PSW

key-0 state.

ALESERV DELETE

12 z/VSE System Macros Reference

ALESERV EXTRACT (Find a STOKEN) Macro

CC

name
 ALESERV EXTRACT,STOKEN=stoken_addr,ALET=alet_addr C

C
,MF=

L

,RELATED=anyvalue

(E,lstaddr)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary or AR (access register)

The ALESERV EXTRACT macro requests that the system finds the STOKEN

associated with the specified ALET. The caller can obtain the STOKEN for any

space that is represented by a valid entry on the current access list (DU-AL or

PASN-AL related to the current task/partition).

STOKEN=stoken_addr

Specifies the address of the location where the system is to return the 8-byte

STOKEN that corresponds to the specified ALET.

ALET=alet_addr

Specifies the address of the location where the 4-byte ALET is given.

MF=L...

L specifies the list form of the macro, which is used to construct a

non-executable control program parameter list.

 RELATED=anyvalue specifies any valid macro parameter expression which

can be freely chosen by the user.

 No other parameters may be specified if the list form of the macro is chosen.

MF=E...

E specifies the execute form of the macro, which uses the parameter list

generated by the list form of the macro.

 lstaddr specifies the address of the parameter list. This address must not be in

a data space. If the caller of the macro is in 24-bit addressing mode, the

address of the parameter list must not be above the 16MB line.

 If the MF operand is omitted, the standard form of the macro is used, which

places the parameters into an inline parameter list.

Return Codes in Register 15

00 Successful completion.

14 The input ALET corresponds to an invalid access list entry.

28 The caller specified an invalid ALET.

3C An ALET value of 1 was specified.

44 The ALE associated with the input ALET represents addressing capability to a

deleted or terminated space.

ALESERV EXTRACT

Chapter 2. Macro Descriptions 13

58 The access list associated with the input ALET does not exist.

ALESERV EXTRACT

14 z/VSE System Macros Reference

ALESERV SEARCH (Search Access List Entry) Macro

CC

name
 ALESERV SEARCH,STOKEN=stoken_addr,ALET=alet_addr C

C
 ,AL=WORKUNIT

,AL=PASN

,MF=

L

,RELATED=anyvalue

(E,lstaddr)

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary or AR (access register)

The ALESERV SEARCH macro searches through the DU-AL or PASN-AL related to

the current task/partition for an ALET that corresponds to the specified STOKEN.

If the entry is on the list, the system returns the ALET. Otherwise, a return code is

set in register 15.

STOKEN=stoken_addr

Specifies the address of the 8-byte STOKEN for which the system is to return

the corresponding ALET.

ALET=alet_addr

As input to the SEARCH request, ALET specifies the point in the access list

where the system is to begin the search. The following values are valid as start

addresses:

v Minus one (-1) - Start at the beginning of the DU-AL or PASN-AL.

v Valid ALET - Start the search with the next ALET in the access list. It is

recommended to start searching from the beginning of the access list, that is

with ALET=-1. Starting with a valid ALET gives consistent results only if the

program can ensure that no ADD or DELETE requests are executed while

processing the SEARCH request.

As output from the SEARCH request, ALET specifies the address of the

location where the system is to return the 4-byte ALET, if present. Otherwise,

ALET is unchanged and register 15 contains a return code indicating that an

ALET for the specified STOKEN is not on the access list.

AL=WORKUNIT | PASN

WORKUNIT specifies that the access list to be searched is a ’dispatchable unit

access list’ (DU-AL), that is, an access list associated with a z/VSE task. PASN

specifies that the access list to be searched is a ’primary address space access

list’ (PASN-AL), that is, an access list associated with a z/VSE partition.

MF=L...

L specifies the list form of the macro, which is used to construct a

non-executable control program parameter list.

ALESERV SEARCH

Chapter 2. Macro Descriptions 15

RELATED=anyvalue specifies any valid macro parameter expression which

can be freely chosen by the user.

 No other parameters may be specified if the list form of the macro is chosen.

MF=E...

E specifies the execute form of the macro, which uses the parameter list

generated by the list form of the macro.

 lstaddr specifies the address of the parameter list. This address must not be in

a data space. If the caller of the macro is in 24-bit addressing mode, the

address of the parameter list must not be above the 16MB line.

 If the MF operand is omitted, the standard form of the macro is used, which

places the parameters into an inline parameter list.

Return Codes in Register 15

00 Successful completion.

28 The caller specified an ALET that is not valid on the specified access list.

34 The caller specified an STOKEN that is not represented on the specified access

list.

48 The caller specified AL=WORKUNIT, but the input ALET indexes into the

PASN-AL or the caller specified AL=PASN and the input ALET indexes into

the DU-AL.

ALESERV SEARCH

16 z/VSE System Macros Reference

AMODESW CALL (Addressing Mode Switch) Macro

CC

name
 AMODESW CALL

,AMODE=

24

31

(r1)

,ADDRESS=

addr

(r2)

 C

C
 ,REGS=(14,15)

,REGS=(return_reg,link_reg)

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro calls a subroutine and switches the addressing mode.

CALL

Indicates that a subroutine is to be called and that the addressing mode is to

be switched.

AMODE=24 | 31 | (r1)

Calls the subroutine and switches either to 24-bit or 31-bit addressing mode or

sets the addressing mode according to the value of bit 0 of the specified

register. The register must not be the same as the one used with the ADDRESS

operand or the register used as the return register. If you do not specify

AMODE, z/VSE sets the addressing mode as follows:

v If you specify ADDRESS=(reg), z/VSE obtains the new addressing mode

from bit 0 of (reg). If you specify ADDRESS=addr, z/VSE obtains the new

addressing mode from attributes declared with the AMODE assembler

pseudo-op.

v If you do not specify the AMODE or the ADDRESS operand, z/VSE obtains

the new addressing mode from bit 0 of the linkage register (specified in the

REGS operand).

ADDRESS=addr | (r2)

Specifies the address, either directly or in a register (1-15), where control is to

be transferred. If you omit the ADDRESS operand, z/VSE passes control to the

address in the linkage register (specified in the REGS operand).

REGS=(return_reg|14,link_reg|15)

Specifies the linkage registers for this call. Valid registers are 1-15. If you do

not specify REGS, z/VSE uses register 14 as return_reg and register 15 as

link_reg: REGS=(14,15).

AMODESW CALL

Chapter 2. Macro Descriptions 17

AMODESW QRY (Query Addressing Mode) Macro

CC

name
 AMODESW QRY CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro can be used to determine the current addressing mode of a program.

QRY

Determines the task’s current addressing mode. Upon completion, register 1

contains either all 0s for 24-bit addressing mode or non-zero (X’80000000’) for

31-bit addressing mode. (Register 1 is the only register that is being altered.)

AMODESW RETURN (Return from Subroutine) Macro

CC

name

AMODESW RETURN

,AMODE=

24

31

(reg)

 ,REGS=(14)

,REGS=(return_reg)

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro makes a return to the caller of a subroutine.

RETURN

Indicates that a subroutine is to return to its caller.

AMODE=24 | 31 | (reg)

Specifies that the subroutine is to return either in 24-bit or 31-bit addressing

mode or in the addressing mode corresponding to the value of bit 0 of the

specified register. The register must not be the same as the one used as return

register (14 or the register specified in the REG operand).

 If you do not specify AMODE, z/VSE sets the addressing mode according to

the value of bit 0 of the return register specified in the REG operand.

AMODESW QRY

18 z/VSE System Macros Reference

REG=(return_reg|14)

Specifies the register that contains the address (and, optionally, the addressing

mode) where control is to be returned. If you do not specify REG, z/VSE uses

register 14 as the return register.

AMODESW SET (Set Addressing Mode) Macro

CC

name

AMODESW SET,AMODE=

24

31

(r1)

,SAVE=(r2)

 ,WR=(15)

,WR=(r3)

C

C
,ENV=ESA

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro can be used to change a program’s addressing mode without branching

to a subroutine. If used as a supervisor generation macro, the macro can be used to

switch dynamic address translation either on or off.

SET

Indicates that the program’s addressing mode is to be changed.

AMODE=24 | 31 | (r1)

Switches either to 24-bit or 31-bit addressing mode or sets the addressing mode

according to the value of bit 0 of the specified register.

SAVE=(r2)

Saves the current (unknown) addressing mode in bit 0 of the specified register

(1-14). If you do not specify SAVE, the current mode is not saved.

WR=(r3|15)

Specifies a work register. The contents of this register will be changed. If the

operand is omitted, register 15 is taken as default.

ENV=ESA

Causes the system not to check the current environment (and assume ESA).

AMODESW RETURN

Chapter 2. Macro Descriptions 19

ASPL (Assign Parameter List) Macro

CC

name

ASPL
 DSECT=NO

DSECT=YES

CE

Required RMODE: 24

The macro generates a 7-byte parameter list that is used to pass information to the

ASSIGN macro. For the format of the parameter list, see “Assigning and Releasing

an I/O Unit” in the z/VSE System Macros User’s Guide.

DSECT=NO | YES

Specify DSECT=YES if you want the parameter list to be generated as a

mapping DSECT. If the operand is omitted, inline code is generated.

ASPL

20 z/VSE System Macros Reference

ASSIGN (Assign I/O Device) Macro

CC

name
 ASSIGN ASPL= name1

(r1)
 ,SAVE= name2

(r2)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro is used to dynamically assign and unassign tape, disk, and unit-record

devices. The system will select a free or specified unit and assign it to a free or

specified programmer logical unit. (Not all functions are defined for all device

types; for details, see the ASPL parameter list under “Assigning and Releasing an

I/O Unit” in the z/VSE System Macros User’s Guide.)

When it has made the assignment, the system returns to your program the logical

and physical unit numbers of the assigned unit. This information can be used by

the RELEASE macro to release a unit dynamically when it is no longer needed.

A skeleton example that shows how tape drives are assigned and unassigned

dynamically is also given under “Assigning and Releasing an I/O Unit” in the

z/VSE System Macros User’s Guide.

ASPL=name1 | (r1)

Specifies the address of the parameter list, in which you indicate the function

(assign or unassign) to be performed. Use the mapping DSECT generated by

the ASPL macro to interpret the fields in the parameter list.

SAVE=name2 | (r2)

Specifies a 72-byte save area that has to be reserved by the problem program.

Return Codes in Register 15

00 Assignment successful.

04 No free LUB entry found.

08 Device not found in PUB table.

0C cuu has wrong device type.

10 cuu is down.

18 No free tape unit found.

1C Invalid logical unit for unassign.

20 cuu reserved by space management or by pending mount request.

24 Invalid function code.

28 No GETVIS space available.

2C Device to be unassigned is not assigned.

30 Device is owned by another partition.

34 Conflicting I/O assignment. Device is not assigned.

38 The specified logical unit number is invalid or not free.

3C No device with the specified mode was found.

40 No tape unit found which supports the specified mode.

ASSIGN

Chapter 2. Macro Descriptions 21

ATTACH (Attach a Task) Macro

CC

name
 ATTACH entrypoint

(S,entrypoint)

(r1)

,SAVE=

savearea

(S,savearea)

(r2)

 C

C
,ABSAVE=

absavearea

(S,absavearea)

(r3)

,ECB=

ecbname

(S,ecbname)

(r4)

 C

C

,NAME=

name

(S,name)

(r5)

 ,ALCOPY=NO

,ALCOPY=YES

,MFG=

area

(S,area)

(r6)

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

A subtask can be initiated by any other task of the partition with the ATTACH

macro.

ATTACH supports the 31-bit environment as well as data spaces. ATTACH

processing can attach a subtask in 24-bit or 31-bit addressing mode, physically

resident above or below 16MB. When ATTACH is issued in 24-bit addressing

mode, all operands are treated as 24-bit addresses. When ATTACH is issued in

31-bit addressing mode, all operands are treated as 31-bit addresses.

The attached task will get control in the same addressing mode as the issuer of the

ATTACH macro. If, for example, a main task issues an ATTACH macro in AMODE

31, the subtask will also receive control in AMODE 31.

The maximum number of subtasks that can be initiated in the system at a time is

208. However, the maximum number of subtasks is also dependent on the number

of partitions defined by the IPL SYS NPARTS command. Up to 31 subtasks can run

concurrently within a partition, provided the overall limitation of 208 (or a lower

number, dependent on NPARTS) is not exceeded.

If the maximum number of subtasks is already attached, any attempt to attach

another subtask will be unsuccessful. This is indicated to the attaching task by a 1

in high-order bit 0 in register 1. Register 1 then points to an unposted ECB in the

supervisor or the shared area (24 bit), and this ECB contains the reason code in

byte 3. If byte 3 is zero, the maximum number of subtasks in the system is already

attached or no system resources are available. A non-zero value indicates that the

maximum number of 31 subtasks is already running in the partition. The attaching

ATTACH

22 z/VSE System Macros Reference

task may use this ECB to enter a wait state. The ECB is posted by the system

whenever a task is available for attaching.

If the ATTACH macro successfully initiates a subtask, the attached task is given the

lowest subtask priority, however, a higher priority than the main task. Register 1 of

the attached task contains the address of the attaching task’s save area; the other

registers contain the same values as those of the attaching task at the time when

the ATTACH was issued. The address in register 1 can be used as the second

operand of a POST macro later in the job if task-to-task communication is desired.

When SAVE is specified, register 0 of the attaching task contains the address of the

byte immediately following the save area of the attached task, upon return from a

successful ATTACH.

Note: If your program uses VSAM files, provide STXIT macros with AB and PC

and issue a CLOSE or TCLOSE for the files before you cancel the subtask.

If register notation is used in any of the macro operands, register 0 and 1 should

not be specified.

entrypoint | (S,entrypoint) | (r1)

The operand specifies the entrypoint of the subtask.

SAVE=savearea | (S,savearea) | (r2)

If specified, this operand must provide the address of the save area for the

subtask. The save area is 120 bytes in length (=15 doublewords) and must be

allocated below the 16MB line (RMODE 24).

 If this operand is omitted, the supervisor allocates a save area for the attached

subtask and passes its address in register 1 of the attaching task.

 If an interrupt occurs while the subtask is in control, the system saves data in

this area as follows (for the format of the area, see Table 1):

 The subtask’s interrupt status information

 The contents of the general purpose registers

 The contents of the floating-point registers

Note: The status of the access registers will be saved in an internal save area.

 Before issuing the ATTACH macro, move the subtask name in the first eight

bytes of the save area. This name is used to identify the subtask if an abnormal

end occurs.

 Alternatively, you can specify the name of the subtask in the NAME operand

of this macro.

 Table 1. Subtask-Save Area (120 Bytes)

Offset (In Hex) Length (In Hex) Length (In Dec) Contents

0 8 8 Name of subtask.

8 8 8 Interrupt status.

10 40 64 Contents of registers 9 through 8

(one fullword per register).

50 8 8 Reserved.

58 20 32 Contents of floating-point registers

ABSAVE=absavearea | (S,absavearea) | (r3)

Specify this operand only if the subtask is to use the attaching task’s abnormal

ATTACH

Chapter 2. Macro Descriptions 23

termination routine (see the “STXIT (Set Exit) Macro” on page 388), that is, if it

does not provide an abnormal termination routine of its own. The value

specified in this operand must be the address of an AB exit save area for the

subtask. If no AB exit is available, the specification is ignored.

 If the ATTACH macro is issued in AMODE 31 or if the attaching task uses the

extended save area layout (STXIT AMODE=ANY), the length of the AB exit

save area must correspond to this layout. Otherwise the old STXIT save area is

used. (See the “STXIT (Set Exit) Macro” on page 388 and the mapping

“MAPSAVAR (Map Save Area) Macro” on page 312)

 When an abnormal termination occurs, the supervisor saves the interrupt

status and general registers 0 through 15 in this area before the exit is taken. In

the extended save area, also the access registers are saved.

ECB=ecbname | (S,ecbname) | (r4)

Specify this operand if other tasks can be affected by this subtask’s termination

or if the ENQ and DEQ macros are used within the subtask. The operand is

the name of the subtask’s event control block (ECB). This block has a format as

follows:

 Bytes Meaning of Bits if 1

 0-1 Reserved

 2 0 Termination indicator

 1 Abnormal end indicator

 2-7 Reserved

 3 Reserved

When a subtask is attached, bits 0 and 1 of byte 2 are set to 0. When a subtask

terminates, the supervisor sets byte 2, bit 0 of the ECB to 1. In addition, byte 2,

bit 1 is set to 1 when the subtask ends abnormally; that is, if task termination

is not caused by issuing one of the macros CANCEL, DETACH, DUMP,

JDUMP, or EOJ.

NAME=name | (S,name) | (r5)

You can specify the subtask name here; however, only if you have omitted the

SAVE operand (with the subtask name specification). It points to an eight-byte

subtask name field.

 If both the NAME and the SAVE operands are omitted, the supervisor allocates

a save area for the subtask and provides a subtask name.

ALCOPY=YES | NO

This operand allows your program to transfer a copy of the attaching task’s

DU-AL to the subtask to be attached. In this way, the attaching program can

share access to one or more data spaces with a program running under the

subtask.

 YES causes a copy of the caller’s DU-AL to be given to the subtask. NO causes

no access list to be given.

MFG=area | (S,area) | (r6)

The operand is required if the program which issues the ATTACH macro is to

be reenterable. It specifies the address of a 64-byte storage area, that is, storage

which your program may obtain through a GETVIS macro. This area is

required for system use during execution of the macro.

ATTACH

24 z/VSE System Macros Reference

AVRLIST (Map GETVCE) Macro

CC

name

AVRLIST
 DSECT=YES

DSECT=NO

 ,DEVICE=NO

,DEVICE=YES

CE

Required RMODE: 24

The AVRLIST macro generates a DSECT describing volume characteristics retrieved

with the GETVCE macro. (The DCTENTRY macro, called within AVRLIST if

DEVICE=YES, describes device characteristics.)

DSECT=YES | NO

YES causes a mapping DSECT to be generated. NO causes inline code to be

generated.

DEVICE=NO | YES

YES indicates that the macro DCTENTRY is to be called within AVRLIST, thus

showing the complete (volume and device) output within one DSECT.

AVRLIST

Chapter 2. Macro Descriptions 25

CALL (Call a Program) Macro

CC

name
 CALL entryname

(15)

,(addr-list)

,VL
 C

C
,ID=id-number

,MF=L

(E,list-addr)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary or Access Register (AR)

Control parameters:

Must be in the caller’s primary address space.

The CALL macro passes control from one program to a specified entry point in

another program. You cannot use the CALL macro to pass control to a program in

a different addressing mode; The AMODE of the caller is passed to the called

program.

The CALL macro passes control to a control section at a specified entry point as

follows: If a control section is not part of the object module which applies to the

CALL macro, the linkage editor attempts to resolve this external reference by

including the object module which contains the control section (AUTOLINK

feature). When the CALL macro is executed, control is passed to the control section

at the specified entry point.

The linkage relationship established when control is passed is the same as that

created by a BAL instruction; that is, the issuing program expects control to be

returned.

AR mode programs and primary mode programs can invoke the CALL macro.

Before an AR mode program invokes this macro, the program must issue

SYSSTATE ASCENV=AR to tell the CALL macro to generate code that is

appropriate for AR mode.

entryname | (15)

Specifies the entry name to be given control.

(addr-list)

(addr-list),VL

Specifies one or more addresses (A-type address constants only), separated by

commas, to be passed to the called program. To create the parameter list, the

control program expands each address inline to a fullword on a fullword

boundary in the specified order. Register 1 contains the address of the

parameter list when the program receives control. (If this parameter is not

coded, register 1 is not altered.)

 VL is the default and causes the high-order bit of the last address parameter to

be set to 1; the bit can be checked to find the end of the list.

CALL

26 z/VSE System Macros Reference

If your program is in access register (AR) mode, the system builds the

parameter list so that the addresses that are passed to the called program are

in the first half of the list and their associated ALETs are in the second half of

the list. Therefore, the parameter list for callers in AR mode is twice as long as

the parameter list for callers in primary mode for the same number of

addresses. The 1 in the high-order bit identifies the last address parameter, but

not the last entry in the parameter list.

ID=id-number

Specifies a 2-byte identifier useful for debugging purposes only. The last

fullword of the macro expansion is a NOP instruction containing the identifier

value in bytes 3 and 4.

MF=L | (E,list-addr)

L specifies the list form of the CALL macro, which generates a non-executable

problem program parameter list that can be used by the execute form of the

macro. In the list form, only A-type address constants may be used.

 E specifies the execute form of the CALL macro, which uses the parameter list

generated by the list form of the macro. list-addr specifies the address of the

parameter list.

 Only executable instructions and a VCON of the entry point are generated. If

the address parameters are also specified in this form, the ADCONs of the

parameter are placed on contiguous fullword boundaries beginning at the

address specified in the MF parameter, and sequentially overlaying

corresponding fullwords in the existing list.

CALL

Chapter 2. Macro Descriptions 27

CALL CSRPxxx (Call Cell Pool Services) Macro

The CALL CSRPxxx macro manages so-called cell pools, which are areas of virtual

storage in address spaces or data spaces. A cell pool is subdivided into fixed-sized

areas of storage called cells.

For detailed guide information on how to handle cell pool services, see the manual

VSE/ESA Extended Addressability under “Callable Cell Pool Services”.

The CALL CSRPxxx macro supports the following main functions:

CSRPBLD

Build a cell pool

CSRPEXP

Expand a cell pool by adding an extent

CSRPCON

Connect cell storage to an extent

CSRPACT

Activate previously connected storage

CSRPDAC

Deactivate an extent

CSRPDIS

Disconnect the cell storage for an extent

CSRPGET and CSRPRGT

Allocate a cell from a cell pool

CSRPFRE and CSRPRFR

Return a cell to the cell pool

CSRPQPL

Query the cell pool

CSRPQEX

Query a cell pool extent

CSRPQCL

Query a cell

 For a detailed description of these functions, see the “CALL (Call a Program)

Macro” on page 26 with the corresponding keyword (CALL CSRPBLD, CALL

CSRPEXP,...).

CC

name
 CALL CSRPBLD

CSRPEXP

CSRPCON

CSRPACT

CSRPDAC

CSRPDIS

CSRPGET

CSRPRGT

CSRPFRE

CSRPRFR

CSRPQPL

CSRPQEX

CSRPQCL

 ,operands CE

CALL CSRPxxx

28 z/VSE System Macros Reference

Control Parameters

All parameters must reside in a single address or data space, and must be

addressable by the caller. They must be in the primary address space or in an

address/data space that is addressable through a public entry on the caller’s

dispatchable unit access list (DU-AL).

All variables must be A-type address constants.

Programming Requirements

If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR

before you call the CSRPBLD service so the CALL macro can generate the correct

code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM

macro to generate cell pool services equate (EQU) statements. CSRCPASM provides

the following constants for use in your program:

* Length of the cell pool anchor data area:

*

CSR_ANCHOR_LENGTH EQU 64

*

*

* Base length of the cell pool extent data area:

*

CSR_EXTENT_BASE EQU 128

*

*

* Length of the user-supplied pool name:

*

CSR_POOL_NAME_LEN EQU 8

*

*

Register Information

Input

Before issuing a CALL CSRPxxx macro, the caller does not have to place any

information into any register unless using it in register notation for a particular

parameter, or using it as a base register.

Output

When control returns to the caller, the general purpose registers (GPRs) contain:

Register

Contents

0-1 Used by the system

2-13 Unchanged

14 Used by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register

Contents

0-1 Used by the system

2-14 Unchanged

15 Used by the system

CALL CSRPxxx

Chapter 2. Macro Descriptions 29

Some callers depend on register contents remaining the same before and after

issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them

after the system returns control.

CALL CSRPBLD (Build A Cell Pool And Initialize An Anchor)

 Requirements for the caller:

AMODE:

24 or 31 (All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPBLD cell pool service is used to format a 64-byte area for the cell

pool anchor. You must first have acquired the storage for the anchor. You can call

this service only once for a given cell pool.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the cell pool anchor.

user_name

Specifies the 8-byte variable containing the name you want the service to

assign to the pool. There are no restrictions on the name.

cell_size

Specifies the variable containing the cell size in this pool. You can use any

positive binary or hexadecimal number as the cell size.

return_code

When CSRPBLD completes, this field (as well as R15) contains the return code.

Return Codes in Register 15

00 The operation was successful.

18 Program error. The anchor address is not valid.

 Action: The upper address of the anchor exceeds the valid address range.

Check to see if your program passed the wrong anchor address.

44 Program error. The cell size is not valid: it cannot be negative or 0.

 Action: Specify a positive value for the cell size.

CC

name

 CALL CSRPBLD,(cntl_alet,anchor_addr,user_name,cell_size,return_code) CE

CALL CSRPxxx

30 z/VSE System Macros Reference

CALL CSRPEXP (Expand A Cell Pool)

 Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPEXP cell pool service is used to:

v Add an extent to the cell pool

v Assign a number to the extent

v Optionally, establish a connection between the extent and cell storage

v Optionally, make the cell storage available for allocation.

Note: If you are reusing an extent, use CSRPCON and CSRPACT instead of

CSRPEXP.

If you specify zero for the cell storage size, CSRPEXP will add an extent to the cell

pool, but will keep it in a disconnected state. When you specify the extent size,

allow 128 bytes plus one byte per eight cells of cell storage. CSRPEXP allocates

cells contiguously, starting at the address you specify. If you specify zero for the

area length, CSRPEXP ignores the area address.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

extent_addr

Specifies the variable containing the address of the extent.

extent_size

Specifies the variable containing the size of the extent.

area_addr

Specifies the variable containing the starting address of the cell storage area.

The starting address of this area must be consistent with any boundary

requirements that you might have.

area_size

Specifies the variable containing the size (binary or hexadecimal) of the storage

area for the cells.

CC CALL CSRPEXP,(cntl_alet,anchor_addr,extent_addr,extent_size,area_addr

name

 C

C ,area_size,extent_num,return_code) CE

CALL CSRPEXP

Chapter 2. Macro Descriptions 31

extent_num

When CSRPEXP completes, the variable specifying extent_num contains the

number of the extent to be connected. You will use this number on subsequent

CALLs.

return_code

When CSRPEXP completes, the variable specifying return_code contains the

return code.

Return Codes in Register 15

00 The operation was successful.

0C Program error. There are too many extents in the cell pool.

 Action: Check to see if your program contains a logic error that caused the

limit of 65,536 extents per cell pool to be exceeded. If your program works as

expected, consider using a larger cell pool.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

28 Program error. The service could not use the extent address.

 Action: Make sure that the extent area does not overlap the anchor area. Also

make sure that the upper address of the extent does not exceed the valid

address range.

2C Program error. The extent length is not valid.

 Action: Correct the extent length. It cannot be less than 129 bytes.

48 Program error. The cell area length is not valid.

 Action: Correct the cell area length. The cell area size cannot be less than the

cell size.

4C Program error. The service could not use the cell area address.

 Action: If the cell area is in a data space, make sure the cell area is completely

within the data space.

50 Program error. The cell area is too large.

 Action: Specify a larger extent size or a smaller cell area size.

64 Program error or system error. An extent chain was broken.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

70 Program error or system error. An anchor has been overlaid.

 Action: Check to see if your program inadvertently overlaid the anchor area.

74 Program error or system error. An extent has been overlaid.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

CALL CSRPEXP

32 z/VSE System Macros Reference

CALL CSRPCON (Connect Cell Storage to an Extent)

 Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPCON cell pool service is used to connect cell storage to the extent

that you specify or to reuse a disconnected extent. The CSRPEXP service returned

the extent number. The extent must be in the disconnected state, which means that

you have not called CSRPACT to activate this particular extent.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

area_addr

Specifies the variable containing the starting address of the cell storage area.

The starting address of this area must be consistent with any boundary

requirements that you might have.

area_size

Specifies the variable containing the size (binary or hexadecimal) of the storage

area for the cells. CSRPCON determines the number of cells that will fit in the

area.

extent_num

When CSRPCON completes, the variable specifying extent_num contains the

number of the extent to be connected. The extent number must be within the

range 0 to 65,536.

return_code

When CSRPCON completes, the variable specifying return_code contains the

return code.

Return Codes in Register 15

00 The operation was successful.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

CC CALL CSRPCON,(cntl_alet,anchor_addr,area_addr,area_size,extent_num

name

 ,return_code) CE

CALL CSRPCON

Chapter 2. Macro Descriptions 33

30 Program error. The extent number is not valid.

 Action: Specify the extent number within the range 1 to 65,536.

34 Program error. You issued the services in the wrong order, or did not issue a

necessary service.

 Action: Check to see if your program passed the wrong extent number. Make

sure that the extent is in a disconnected state (that is, it has not been activated

through CSRPACT or CSRPEXP).

48 Program error. The cell area length is not valid.

 Action: Correct the cell area length. The cell area size cannot be less than the

cell size.

4C Program error. The service could not use the cell area address.

 Action: If the cell area is in a data space, make sure the cell area is completely

within the data space.

50 Program error. The cell area is too large.

 Action: Specify a larger extent size or a smaller cell area size.

64 Program error or system error. An extent chain was broken.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

6C Program error or system error. An extent could not be found.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that the anchor address being passed is for the right cell pool.

CALL CSRPCON

34 z/VSE System Macros Reference

CALL CSRPACT (Activate Previously Connected Storage)

 Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPACT cell pool service is used to activate the extent cell storage for

allocation. You must specify which extent you want to activate.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

extent_num

Specifies the variable containing the number of the extent to be connected. The

extent number must be within the range 0 to 65,536.

return_code

When CSRPACT completes, the variable specifying return_code contains the

return code.

Return Codes in Register 15

00 The operation was successful.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

30 Program error. The extent number is not valid.

 Action: Specify the extent number within the range 1 to 65,536.

34 Program error. The extent is in an incorrect state.

 Action: Check to see if your program passed the wrong extent number. Make

sure that the extent is not already in an active state (that is, it has not been

activated through CSRPACT or CSRPEXP). Also make sure that the extent is

not in a disconnected state.

64 Program error or system error. An extent chain was broken.

CC

name

 CALL CSRPACT,(cntl_alet,anchor_addr,extent_num,return_code) CE

CALL CSRPACT

Chapter 2. Macro Descriptions 35

Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

6C Program error or system error. An extent could not be found.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that the anchor address being passed is for the right cell pool.

CALL CSRPDAC (Deactivate an Extent)

 Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPDAC cell pool service is used to deactivate a specific extent. You

must specify which extent you want to deactivate.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

extent_num

Specifies the variable containing the number of the extent to be disconnected.

The extent number must be within the range 0 to 65,536.

return_code

When CSRPDAC completes, the variable specifying return_code contains the

return code.

Return Codes in Register 15

00 The extent has been deactivated, but there are still cells allocated.

04 The extent has been deactivated and there are no allocated cells remaining.

 Action: None required.

1C Program error. The anchor address is not valid.

CC

name

 CALL CSRPDAC,(cntl_alet,anchor_addr,extent_num,return_code) CE

CALL CSRPACT

36 z/VSE System Macros Reference

Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

30 Program error. The extent number is not valid.

 Action: Specify the extent number within the range 1 to 65,536.

34 Program error. You issued the services in the wrong order or did not issue a

necessary service.

 Action: Check to see if your program passed the wrong extent number. Make

sure that the extent is in an active state before calling the service.

64 Program error or system error. An extent chain was broken.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

6C Program error or system error. An extent could not be found.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that the anchor address being passed is for the right cell pool.

CALL CSRPDAC

Chapter 2. Macro Descriptions 37

CALL CSRPDIS (Disconnect the Cell Storage for an Extent)

 Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPDIS cell pool service is used to disconnect cell storage for a

specific extent.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

extent_num

Specifies the variable containing the number of the extent to be disconnected.

The extent number must be within the range 1 to 65,536.

area_addr

When CSRPDIS completes, the variable specifying area_addr contains the

address of the disconnected storage area.

area_size

When CSRPDIS completes, the variable specifying area_size contains the size of

the disconnected storage area.

return_code

When CSRPDIS completes, the variable specifying return_code contains the

return code.

Return Codes in Register 15

00 The operation was successful.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

30 Program error. The extent number is not valid.

 Action: Specify the extent number within the range 0 to 65,536.

CC CALL CSRPDIS,(cntl_alet,anchor_addr,extent_num,area_addr,area_size

name

 ,return_code) CE

CALL CSRPDIS

38 z/VSE System Macros Reference

34 Program error. You issued the services in the wrong order or did not issue a

necessary service.

 Action: Call CSRPDAC to deactivate the extent before calling CSRPDIS to

disconnect the cell storage for the extent.

38 Program error. The service cannot disconnect the extent because some cells are

still allocated.

 Action: Return all the cells associated with the extent before calling CSRPDIS

to disconnect the cell storage for the extent.

64 Program error or system error. An extent chain was broken.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

6C Program error or system error. An extent could not be found.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that the anchor address being passed is for the right cell pool.

CALL CSRPGET (Allocate a Cell from a Cell Pool)

CC

name

 CALL CSRPGET,(cntl_alet,anchor_addr,cell_addr,return_code) CE

Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPGET cell pool service is used to allocate a cell from the cell pool.

CSRPGET allocates cells from the lowest- to the highest-numbered active extents

and - within each extent - from the lowest to the highest cell address. CSRPGET

passes back to the calling program the address of the cell it allocated, but does not

clear the cell storage to binary zeros.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

CALL CSRPDIS

Chapter 2. Macro Descriptions 39

cell_addr

When CSRPGET completes, the variable specifying cell_addr contains the

address of the cell that CSRPGET allocated.

return_code

When CSRPGET completes, the variable specifying return_code contains the

return code.

Return Codes in Register 15

00 The operation was successful.

08 Program error. There were no available cells in the pool. More than one

program could be using the cell pool.

 Action: Retry the request one or more times. If the problem persists, consider

freeing existing cells or adding new cells to the cell pool, or both.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

64 Program error or system error. An extent chain was broken.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

74 Program error or system error. An extent has been overlaid.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

CALL CSRPGET

40 z/VSE System Macros Reference

CALL CSRPRGT (Allocate a Cell from a Cell Pool - Register Interface)

CC

name

 CALL CSRPRGT CE

Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPRGT cell pool service is used to allocate a cell from the cell pool

using the register interface (in case your program cannot obtain storage for a

parameter list). CSRPRGT allocates cells from the lowest- to the highest-numbered

active extents and - within each extent - from the lowest to the highest cell

address.

Input Register Information

Before calling the CSRPRGT service, the caller must ensure that the following

access registers (ARs) and general purpose registers (GPRs) contain the specified

information:

Register

Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your

program is running in AR mode and the anchor and extents are in the

primary address space. If your program is running in primary ASC mode,

CSRPRGT ignores the value.

GPR 1 The anchor address

Output Register Information

When control returns to the caller, the GPRs contain:

Register

Contents

0 Used as a work register by the system

1 Address of the allocated cell

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register

Contents

0 Used as a work register by the system

1-14 Unchanged

15 Used as a work register by the system

CALL CSRPRGT

Chapter 2. Macro Descriptions 41

Return Codes in Register 15

00 The operation was successful.

08 Program error. There were no available cells in the pool.

 Action: Retry the request one or more times. If the problem persists, consider

freeing existing cells or adding new cells to the cell pool, or both.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

64 Program error or system error. An extent chain was broken.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

74 Program error or system error. An extent has been overlaid.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

CALL CSRPFRE (Return a Cell to a Cell Pool)

CC

name

 CALL CSRPFRE,(cntl_alet,anchor_addr,cell_addr,return_code) CE

Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPFRE cell pool service is used to return an allocated cell to the cell

pool. You must specify the address of the cell that you want to return.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

CALL CSRPRGT

42 z/VSE System Macros Reference

cell_addr

Specifies the variable containing the address of the cell that CSRPFRE is to

free.

return_code

When CSRPFRE completes, the variable specifying return_code contains the

return code.

Return Codes in Register 15

00 The operation was successful.

04 The last cell has been returned to an inactive extent.

 Action: None required. However, you might take some action depending on

your application.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

54 Program error. The cell address is not valid.

 Action: Investigate the following possible causes:

v The input cell address does not point to the beginning of a cell.

v The cell is not in the cell pool specified by the anchor address.

58 Program error. Either you have already returned the cell or you never allocated

it.

 Action: Check to see if your program contains a logic error that caused this

situation to occur.

64 Program error or system error. An extent chain was broken.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

74 Program error or system error. An extent has been overlaid.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

CALL CSRPFRE

Chapter 2. Macro Descriptions 43

CALL CSRPRFR (Return a Cell to a Cell Pool - Register Interface)

 Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPRFR cell pool service is used to return an allocated cell to the cell

pool using the register interface (in case your program cannot obtain storage for a

parameter list).

Input Register Information

Before calling the CSRPRFR service, the caller must ensure that the following

access registers (ARs) and general purpose registers (GPRs) contain the specified

information:

Register

Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your

program is running in AR mode and the anchor and extents are in the

primary address space. If your program is running in primary ASC mode,

CSRPRFR ignores the value.

GPR 0 The address of the cell you want to be freed.

GPR 1 The anchor address.

Output Register Information

When control returns to the caller, the GPRs contain:

Register

Contents

0-1 Used as a work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register

Contents

0-1 Used as a work registers by the system

2-14 Unchanged

15 Used as a work register by the system

CC

name

 CALL CSRPRFR CE

CALL CSRPRFR

44 z/VSE System Macros Reference

Return Codes in Register 15

00 The operation was successful.

04 The last cell has been returned to an inactive extent.

 Action: None required. However, you might want to take some action

depending on your application.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

54 Program error. The cell address is not valid.

 Action: Investigate the following possible causes:

v The input cell address does not point to the beginning of a cell.

v The cell is not in the cell pool specified by the anchor address.

58 Program error. Either you have already returned the cell or you never allocated

it.

 Action: Check to see if your program contains a logic error that caused this

situation to occur.

64 Program error or system error. An extent chain was broken.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

74 Program error or system error. An extent has been overlaid.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

CALL CSRPRFR

Chapter 2. Macro Descriptions 45

CALL CSRPQPL (Query the Cell Pool)

 Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPQPL cell pool service is used to receive status information about

the cell pool. CSRPQPL does not prevent other programs from changing the pool

during or after a query. CSRPQPL returns the status as it was at the time you

issued the call.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

user_name

When CSRPQPL completes, the variable specified by user_name contains the

name on the CSRPBLD service that created the cell pool.

cell_size

When CSRPQPL completes, the variable specified by cell_size contains the size

of each cell at the time the cell pool was created.

total_cells

When CSRPQPL completes, the variable specified by total_cells contains the

total number of cells associated with the extent.

avail_cells

When CSRPQPL completes, the variable specified by avail_cells contains the

total number of cells in active extents that are available for allocation.

number_extents

When CSRPQPL completes, the variable specified by number_extents contains

the total number of extents (active or inactive, connected or disconnected) in

the cell pool.

return_code

When CSRPFRE completes, the variable specifying return_code contains the

return code.

CC CALL CSRPQPL,(cntl_alet,anchor_addr,user_name,cell_size,total_cells

name

 C

C ,avail_cells,number_extents,return_code) CE

CALL CSRPQPL

46 z/VSE System Macros Reference

Return Codes in Register 15

00 The operation was successful.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

64 Program error or system error. The extent address is not valid.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

CALL CSRPQPL

Chapter 2. Macro Descriptions 47

CALL CSRPQEX (Query a Cell Pool Extent)

 Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPQEX cell pool service is used to receive status information about a

specified extent.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

extent_num

Specifies the variable containing the number of the extent the service will

query.

status

When CSRPQEX completes, the variable specified for status contains one of the

following decimal numbers. These indicate the status of the extent at the time

of the CALL.

1 Disconnected and inactive

2 Connect in progress

3 Connected and inactive

4 Connected and active

5 Disconnect in progress

extent_addr

When CSRPQEX completes, the variable specified for extent_addr contains the

address of the extent.

extent_len

When CSRPQEX completes, the variable specified for extent_len contains the

length of the extent, in bytes.

area_addr

When CSRPQEX completes, the variable specified for area_addr contains the

address of cell storage.

CC CALL CSRPQEX,(cntl_alet,anchor_addr,extent_num,status,extent_addr,extent_len

name

 C

C ,area_addr,area_size,total_cells,avail_cells,return_code) CE

CALL CSRPQEX

48 z/VSE System Macros Reference

,area_size

When CSRPQEX completes, the variable specified for area_size contains the size

of cell storage for the extent.

total_cells

When CSRPQEX completes, the variable specified by total_cells contains the

total number of cells associated with the extent.

avail_cells

When CSRPQEX completes, the variable specified by avail_cells contains the

total number of cells in active extents that are available for allocation.

number_extents

When CSRPQEX completes, the variable specified by number_extents contains

the total number of extents (active or inactive, connected or disconnected) in

the cell pool.

return_code

When CSRPQEX completes, the variable specifying return_code contains the

return code.

Return Codes in Register 15

00 The operation was successful.

1C Program error. The anchor address is not valid.

 Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

30 Program error. The extent number is not valid.

 Action: Specify the extent number within the range 1 to 65,536.

64 Program error or system error. The extent address is not valid.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

6C Program error or system error. An extent could not be found.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

74 Program error or system error. An extent has been overlaid.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

CALL CSRPQEX

Chapter 2. Macro Descriptions 49

CALL CSRPQCL (Query a Cell)

 Requirements for the caller:

AMODE:

24 or 31 (System code must be in 31-bit addressing mode when calling the

service. All input addresses must be valid 31-bit addresses.)

RMODE:

24 or ANY

ASC Mode:

Primary or AR (If the anchor and the extents are located in a data space, the

caller must be in AR mode.)

The CALL CSRPQCL cell pool service is used to receive status information about a

specified cell in a cell pool. CSRPQCL reports whether the cell is free or allocated,

and returns the number of the extent associated with the cell. CSRPQCL does not

prevent other programs from changing the pool during or after a query. CSRPQCL

returns the status as it was at the time you issued the call.

cntl_alet

Specifies the variable containing the ALET that identifies the location of the

anchor and extents. Initialize the ALET to 0 if your program is running in AR

mode and the anchor and extents are in the primary address space. If your

program is running in primary ASC mode, the value is ignored, but you must

code the parameter anyway.

anchor_addr

Specifies the variable containing the address of the 64-byte anchor.

cell_addr

Specifies the variable containing the address of the cell to be queried.

cell_avail

When CSRPQCL completes, the variable specified for cell_avail contains one of

the following values. These indicate the status of the specified cell at the time

you issued the CALL macro.

0 Cell available

1 Cell allocated

extent_num

When CSRPQCL completes, the variable specified for extent_num contains the

number of the extent that contains the specified cell.

return_code

When CSRPQCL completes, the variable specifying return_code contains the

return code.

Return Codes in Register 15

00 The operation was successful.

1C Program error. The anchor address is not valid.

CC CALL CSRPQCL,(cntl_alet,anchor_addr,cell_addr,cell_avail,extent_num

name

 ,return_code) CE

CALL CSRPQCL

50 z/VSE System Macros Reference

Action: Check to see if your program passed the wrong anchor address or

inadvertently overlaid the anchor area.

54 Program error. The cell address is not valid.

 Action: Investigate the following possible causes:

v The input cell address does not point to the beginning of a cell.

v The cell is not in the cell pool specified by the anchor address.

64 Program error or system error. An extent chain was broken.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

68 Program error or system error. An extent chain is circular.

 Action: Check to see if your program inadvertently overlaid an extent area.

Make sure that no extent belongs to more than one cell pool.

CANCEL (Cancel Task) Macro

CC

name
 CANCEL

ALL
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

Issuing the CANCEL macro in a subtask abnormally terminates the subtask

without branching to any abnormal termination routine.

A CANCEL ALL macro issued in a subtask, or a CANCEL issued in the main task,

abnormally terminates all processing in the partition (job). Job termination in

multitasking causes all abnormal termination exits (via STXIT AB) to be taken for

each task except the one that issued the CANCEL macro. Once these exits are

taken, the job is terminated. System messages (using the subtask name) are issued

to identify each of the terminated subtasks.

If the CANCEL macro is issued without an operand, you may not code a comment

unless this comment begins with a comma. If CANCEL ALL is issued, you may

code a comment as usual.

If the DUMP option was specified and SYSLST is assigned, a system dump will

occur

v if a CANCEL ALL macro is issued by a subtask, or

v if a CANCEL macro is issued by a main task with subtasks attached.

Note: If your program uses VSAM files, ensure that these files are closed before

you issue this macro.

CALL CSRPQCL

Chapter 2. Macro Descriptions 51

CCB (Command Control Block Definition) Macro

CC name CCB SYSnnn,command_list_name

,X’nnnn’

,senseaddress
 C

C
 ,CCW=FORMAT0

,CCW=FORMAT1

CE

Required RMODE: 24

A CCB (command control block) macro must be specified in your program for each

I/O device controlled by physical IOCS macros. The CCB (see Table 2 on page 53)

is needed to communicate information to physical IOCS so that it can perform

desired operations (for example, indicating printer channel 9). The CCB also

receives status information after an operation and makes this available to your

program. You should ensure proper boundary alignment of the CCB if this is

necessary for your program.

Note: In some applications, it may be preferable to use an IORB (I/O Request

Block) in place of a CCB. Do this by specifying either an IORB or GENIORB

macro.

name

The CCB macro must be given a symbolic name (blockname). This name can

be used as the operand in the EXCP and WAIT macros which refer to the CCB.

SYSnnn

This operand specifies the symbolic unit for the actual I/O unit with which

this CCB is associated. The actual I/O unit can be assigned to the symbolic

unit by an ASSGN job control statement.

command_list_name

This operand specifies the symbolic name of the first CCW used with a CCB.

This name must be the same as the name specified in the assembler CCW

statement that constructs the CCW.

X’nnnn’

A hexadecimal value used to set the CCB user option bits. For the value to be

set, if applicable, see the section “CCB Communication Bytes” on page 54. If

more than one bit must be set, use the sum of the values.

senseaddress

This operand, when supplied, indicates user error recovery (bit 7 of byte 2

must be on – for more details about this bit, see page 55) and generates a CCW

for reading sense information (as the last field of the CCB). The name field

(sense address) of the area that you supply must have a length attribute

assigned of at least one byte. Physical IOCS uses this length attribute in the

CCW to determine the number of bytes of sense information you desire.

CCW=FORMAT0 | FORMAT1

Indicates whether format-0 CCWs (for I/O areas below 16MB) or format-1

CCWs (for I/O areas above 16MB) are used. (You can use the High-Level

Assembler (HLASM) instruction CCW1 to generate a format-1 CCW.)

 The format-1 CCW is invalid for EXCP REAL (user-translated CCB in virtual

partition).

CCB

52 z/VSE System Macros Reference

Format of the CCB

The macro sets up an area of either 16 bytes or 24 bytes. For the layout of this area

and its contents see Table 2 and the following description of the individual fields.

 Table 2. Layout and Contents of the Command Control Block (CCB)

Offset (In

Hex)

Length (In

Hex) Contents

0 2 Residual count (see Note 1).

2 2 Communication bytes (see Note 2).

4 2 CSW status bits (see Note 3).

6 2 Type code (see Note 4).

8 1 Reserved.

9 3 Address of CCW (see Note 5 on page 54).

0C 1 Reserved.

0D 3 CCW address in CSW (see Note 6 on page 54).

10 10 Optional sense CCW (see Note 7 on page 54).

Notes:

1. After a record has been transferred, IOCS places the residual count from the

CSW into bytes 0 and 1. By subtracting this count from the original count in

the CCW, your program can determine the length of the transferred record.

2. The two bytes, also known as transmission information, are used for

communicating information between physical IOCS and your program. For

detailed information on the use and purpose of the bits in this field, see the

section “CCB Communication Bytes” on page 54.

Your program can test any of the bits in this field using the mask given for

each of the bits. Your program may test more than one bit by the hexadecimal

sum of the test values.

All bits are set to 0 when your program is assembled unless the X’nnnn’

operand is specified. If this operand is specified, it is assembled into these two

bytes. When your program is being executed, a bit may be set to 1 by your

program (to request certain functions or specific feedback information) or by

physical IOCS (as a result of having detected a certain condition). Any bits that

can be turned on by physical IOCS during program execution are reset to zero

by PIOCS the next time an EXCP macro is executed against the same CCB.

3. Bytes 4 and 5 are set to X’00’ whenever an EXCP macro is issued against the

CCB. The meaning of the bits in these two bytes is as follows:

Byte 4: Byte 5:

0 = Attention 0 = Program-controlled interruption

1 = Status modifier 1 = Incorrect length

2 = Control unit end 2 = Program check

3 = Busy 3 = Protection check

4 = Channel end 4 = Channel data check

5 = Device end 5 = Channel control check

6 = Unit check 6 = Interface control check

7 = Unit exception 7 = Chaining check

4. Contents of byte 6:

X’0u’ = Original CCB

X’4u’ = BTAM-ES CCB

X’8u’ = User-translated CCB in virtual partition

If u = 0: the address in byte 7 refers to a system

 logical unit.

If u = 1: the address in byte 7 refers to a programmer

 logical unit.

CCB

Chapter 2. Macro Descriptions 53

Contents of byte 7: Hexadecimal representation of SYSnnn:

SYSRDR = 00 SYS000 = 00

SYSIPT = 01 SYS001 = 01

SYSPCH = 02 SYS002 = 02

SYSLST = 03 .

SYSLOG = 04 .

SYSLNK = 05 .

SYSRES = 06 SYS254 = FE

SYSUSE = 09

SYSREC = 0A

SYSCAT = 0D

5. Bytes 9 through 11 contain the address of the CCW (or of the first of a chain of

CCWs) associated with the CCB:

 This is a real address if CCB byte 6 = X’8u’.

 This is a virtual address if CCB byte 6 = X’0u’.
6. Bytes 13-15 contain either of the following:

The CCW address contained in the CSW at channel-end interrupt for the I/O

operation involving the CCB; or the address of the associated channel

appendage routine if CCB byte 12 contains X’40’.

7. Bytes 16 to 23 are provided only if the sense operand was specified in the CCB

macro. They accommodate the CCW for returning sense information to your

program.

CCB Communication Bytes

CCB Byte 2

 Bit 0 – Traffic bit:

If 0

I/O requested and not completed.

If 1

I/O completed. Normally set at channel end. Set at device end if bit 5 is 1.
 Bit 1 – End-of-file on system input:

If 1

/* or /& on SYSRDR or SYSIPT. Bit 7 of byte 4 (unit exception) is also on.

 For a PRT1 printer (see also Note 1 on page 57) – a UCB parity check (line

complete).
 Bit 2 – Irrecoverable I/O error:

If 0

No program- or operator-option error was passed back.

If 1

I/O error was passed back due to a program or an operator option.
 Bit 3 – Accept irrecoverable I/O error – Bit 2 is set to 1 (see also Note 2 on

page 57):

If 0

Cancel in case of permanent I/O error.

If 1

Return to the user in case of permanent I/O error.
ON value for the third operand of the CCB macro: X’1000’.

 Bit 4 – Return:

 Disk data check

 Data check on an IBM 3540

 Indicate A-type message to the console
If 0

Operator option – retry or cancel.

If 1

Operator option – ignore, retry or cancel. Return to the user.

CCB

54 z/VSE System Macros Reference

ON value for the third operand of the CCB macro: X’0800’.

 Bit 6 – Return on:

– DASD read or read-verify data check.

– PRT1 printer passback requested (see also Note 1 on page 57).

– Tape read data check.

– Punch equipment check on an IBM 2520 or 2540.

– Permanent error on an IBM 3505 or 3525.

– Equipment check on an IBM 3881.

– IBM 3895 error codes
If 0

Operator option:

– Ignore or cancel for tapes and for card punches.

– Retry or cancel for DASD.
If 1

For an error on a PRT1 printer (see also Note 1 on page 57), tape, or DASD,

return to the user after physical IOCS attempted to correct the error.

 For a permanent error on an IBM 3505 or 3525, bit 3 of byte 3 is also set to

1.

 For an IBM 3895, data checks on count are not retained. Error codes are

returned in CCB byte 8; refer to the IBM 3895 Document Reader/Inscriber

manuals for information about these codes.
ON value for the third operand of the CCB macro: X’0200’.

 Bit 7 – User error routine (see also Note 2 on page 57):

If 0

A physical IOCS error routine is used, except when the CCB senseaddress

operand is specified. The latter requires error recovery by the user program.

If 1

User handles error recovery. You cannot handle channel-control and

interface-control checks. When a channel-data, unit, or channel-chaining

check occurs, the system sets on bit 2 of byte 2 and completes posting and

dequeuing. Incorrect length and unit exception are treated as normal

conditions (posted with completion). You must also request device-end

posting (bit 5 of byte 2) to obtain error information after channel end.
ON value for the third operand of the CCB macro: X’0100’.

CCB Byte 3

 Bit 0 – Check bit:

If 1

Indicates one of the following:

– Data check in DASD count field.

– For an IBM 33xx CKD disk – permanent I/O error.

– For a PRT1 printer (see also Note 1 on page 57) – a print (equipment)

check.

– For an IBM 3540 – A special record has been transferred. A deleted or

bad spot record was read. After the read-in of the special record, the

CCW chain is broken.
 Bit 1 – See ″If 1″ below:

If 1

Indicates one of the following:

– DASD track overrun.

– For a PRT1 printer (see also Note 1 on page 57) – a print quality error

(equipment check).
 Bit 2 – See ″If 1″ below:

CCB

Chapter 2. Macro Descriptions 55

If 1

Indicates one of the following:

– End of DASD cylinder.

– For a PRT1 printer (see also Note 1 on page 57) – a line-position error.

A line-position error can occur as a result of an equipment, data, or

FCB-parity check.
 Bit 3 – See ″If 1″ below:

If 1

Indicates one of the following:

– Tape read data check (see ″Note″ below).

– For an IBM 2540, or 3881 – equipment check (see ″Note″ below).

– Disk data check (see ″Note″ below).

Note: Operation was unsuccessful. Bit 2 of byte 2 is set to 1; bit 0 of

byte 3 is set to 0.
– For an IBM 3203, – one of the following types of equipment checks:

print, print-data, print-clutch, and read (see ″Note″ below).

– For an IBM 3505 or 3525 – permanent I/O error (see ″Note″ below).

– For a PRT1 printer (see also Note 1 on page 57) – a data/print check.

– For an IBM 3540 – data check.

Note: Bit 6 of byte 2 is set to 1.
 Bit 4 – Nonrecovery questionable condition:

If 1

Indicates one of the following:

– For card I/O – unusual command sequence.

– For a DASD – no record found.

– For a PRT1 printer (see also Note 1 on page 57) – UCB parity check

(command retry).
 Bit 5 – Operator option:

Applies to a retry on DASD (see also Note 2 on page 57).

If 0

The nonrecovery questionable condition bit is set to 1, and control is passed

to the requesting program

If 1

Retry operation is performed for the no-record-found condition. System will

initiate appropriate action if error persists after a limited number of retries

(bit 3 in byte 2).
ON value for the third operand of the CCB macro: X’0004’.

 Bit 6 – See ″If 1″ below and also Note 2 on page 57):

If 1

Indicates one of the following:

– Verify error for DASD.

– Carriage channel 9 overflow (on a printer), but only if bit 5 of byte 2 is

set to 1.
 Bit 7 – Command-chain retry:

Specify the bit to be set to 1 if you use command chaining (see also Note 2 on

page 57).

If 0

Retry begins at the first CCW (or channel program).

If 1

Retry begins at the last CCW that was executed.

– If an error occurs, physical IOCS updates the CCW address in bytes 9

CCB

56 z/VSE System Macros Reference

through 11 of the CCB. Your program therefore must restore the

original CCW address before it starts another I/O operation using the

same CCB.
ON value for the third operand of the CCB macro: X’0001’.

Notes:

1. Applies also to a 4248 operating in native mode, except where this device is

excluded explicitly.

2. User-option bits; set in CCB macro. The system sets the other bits off while

processing the EXCP macro; it sets them on if the specified condition occurs.

CCB

Chapter 2. Macro Descriptions 57

CDDELETE (Delete Loaded Phase) Macro

CC

name
 CDDELETE phasename

(1)
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro deletes a phase previously loaded by a CDLOAD request. Deletion

means that the phase load count is decremented by one. If the load count is zero,

the phase entry in the CDLOAD directory (the anchor table) will be cleared and

the GETVIS storage occupied by the phase is freed.

CDDELETE returns the actual load count of a phase in register 0.

If the maximum load count was exceeded by previous CDLOAD requests, a

CDDELETE request is ignored and return code 4 is given.

phasename | (1)

For phasename, specify the name of the phase to be deleted. If register

notation is used, the register must contain the address of an 8-byte field that

holds the phase name as an alphameric character string.

 The address of phasename is regarded as a 24-bit or 31-bit address, depending

on the AMODE (24 or 31) of the caller.

Return Codes in Register 15

After execution of the macro, register 15 contains one of the following return

codes:

0 CDDELETE completed successfully.

4 CDDELETE was given for a phase whose maximum load count was exceeded.

The phase is not deleted.

20 Phase not found. This return code is also given for phases that are loaded into

the SVA, because SVA phases cannot be deleted by CDDELETE.

CDDELETE

58 z/VSE System Macros Reference

CDLOAD (Control-Directory Load) Macro

CC

name

CDLOAD

phasename

(1)

 ,PAGE=NO

,PAGE=YES

 ,RETPNF=NO

,RETPNF=YES

C

C
 ,SVA=NO

,SVA=YES

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro causes the phase specified as the first operand to be loaded from a

sublibrary into the partition GETVIS area. The phase is loaded into virtual storage

either below 16MB or anywhere, as indicated by the phase’s RMODE. The phase is

loaded only if it is not yet in either the partition GETVIS area or the SVA.

CDLOAD returns control to the phase which issued the macro.

The CDLOAD macro must not be used for a phase that has been linked as a

member of an overlay structure. Instead, use the LOAD macro without specifying

a load address.

phasename | (1)

For phasename, specify the name of the required phase. If register notation is

used, the register must contain the address of an 8-byte field that holds the

phase name as an alphameric character string.

 The address of phasename is regarded either as a 24-bit or 31-bit address,

depending on the AMODE (24 or 31) of the caller.

PAGE=NO | YES

If you want to have the phase loaded on a page boundary, specify PAGE=YES.

RETPNF=NO | YES

Determines whether the issuing phase is canceled if the phase to be loaded

does not exist in a sublibrary. With RETPNF=YES, the phase is not canceled;

instead, control is returned to the issuing phase with the appropriate return

code.

SVA=NO | YES

SVA=YES specifies that CDLOAD is to provide the loadpoint/entrypoint of

SVA phases without loading them.

When a phase is to be loaded, CDLOAD:

1. Determines the size of the phase

2. Acquires the required amount of GETVIS storage

3. Loads the phase into that storage.

4. CDLOAD maintains a load count for each loaded phase. This load count is

incremented by one when a CDLOAD request for the phase is given, and it is

decremented by one for a CDELETE request. If the load count reaches the

CDLOAD

Chapter 2. Macro Descriptions 59

maximum (65535), it is not increased by any following CDLOAD request, but

left at the maximum. Any further CDDELETE request will be rejected (with

return code 4).

After a phase has been loaded or if a phase need not be loaded (because it is

already in the partition GETVIS area or in the SVA), the output registers contain

the following values:

0 The load address

1 The entry point address. CDLOAD sets the high-order bit in register 1 to

indicate the phase’s AMODE, which it obtains from the phase’s directory

information: either to 0 (for AMODE 24) or to 1 (for AMODE 31). If the phase’s

AMODE is ANY, CDLOAD sets the high-order bit in register 1 corresponding

to the caller’s AMODE.

14 The length of the phase

15 The return code

Return Codes in Register 15

After execution of the macro, register 15 contains one of the following return

codes:

0 CDLOAD completed successfully.

4 The size of the (real) partition’s GETVIS area is 0K.

8 The specified length exceeds the GETVIS area.

12 Insufficient storage available in the GETVIS area.

16 The partition CDLOAD directory (also known as anchor table) is full and there

is no space (system GETVIS area) available to allocate a new anchor table.

20 The phase does not exist in a sublibrary (this return code occurs only with

RETPNF=YES).

24 A move-mode phase was requested.

CDLOAD

60 z/VSE System Macros Reference

CDMOD (Card I/O Module Definition) Macro

CC

name
 CDMOD

CONTROL=YES

,CRDERR=RETRY

,CTLCHR=

ASA

YES

 C

C
,DEVICE=nnnn

,FUNC=

R

P

I

RP

RW

RPW

PW

,IOAREA2=YES

,RDONLY=YES
 C

C
 ,RECFORM=FIXUNB

,RECFORM=

VARUNB

UNDEF

,SEPASMB=YES

 ,TYPEFLE=INPUT

,TYPEFLE=

OUTPUT

CMBND

C

C
,WORKA=YES

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The CDMOD macro defines a logic module for a card reader/punch file. It is also

to be used for the IBM 3881 optical reader. If you do not provide a name for the

module, IOCS generates a standard module name.

CONTROL=YES

Include this operand if the CNTRL macro is used with the module and its

associated DTFs. The module also processes files for which the CNTRL macro

is not used.

 If this operand is specified, the CTLCHR operand must not be specified.

 This operand cannot be specified if IOAREA2 is used for an input file or if an

input file is used in association with a punch file (when the operand

FUNC=RP or RPW is specified) on the IBM 3525; in this case, however, this

operand can be specified in the DTFCD and CDMOD for the associated punch

file.

CRDERR=RETRY

Include this operand if error retry routines for the IBM 2540 and 2520

punch-equipment check are included in the module. Whenever this operand is

specified, any DTF used with the module must also specify the same operand.

This operand does not apply to an input or a combined file.

CDMOD

Chapter 2. Macro Descriptions 61

CTLCHR=ASA | YES

Include this operand if first-character stacker select control is used. ASA

denotes the American National Standards character set, YES the System/370*

character set (see Appendix A, “Control Character Codes,” on page 435). Any

DTF to be used with this module must have the same operand. If CTLCHR is

included, CONTROL must not be specified. This operand does not apply to a

combined file or to an input file.

DEVICE=nnnn

For nnnn, specify one of the following IBM device codes:

 2540

 2520

 3505

 3525

 3881

Include this operand to specify the I/O device used by the module.

FUNC=R | P | I | RP | RW | RPW | PW

This operand specifies the type of file to be processed by the IBM 3525. Any

DTF used with the module must have the same operand. R indicates read, P

indicates punch, and W indicates print.

 When FUNC=I is specified, the file will be both punched and interpreted; no

associated file is necessary to achieve this.

 RP, RW, RPW, and PW specify associated files; when one of these operands is

specified for one file, it must also be specified for the associated file(s).

Associated files can have only one I/O area each.

IOAREA2=YES

Include this operand if a second I/O area is used. Any DTF used with the

module must also include the IOAREA2 operand. This operand is not required

for combined files. This operand is not valid for associated files.

RDONLY=YES

This operand causes a read-only module to be generated. Whenever this

operand is specified, any DTF used with the module must have the same

operand.

RECFORM=FIXUNB | VARUNB | UNDEF

This operand specifies the record format: fixed-length, variable-length, or

undefined. Any DTF used with the module must have the same operand. If

TYPEFLE=INPUT, TYPEFLE=CMBND, or FUNC=I, RECFORM must be

FIXUNB. For the IBM 3881, only RECFORM=FIXUNB is valid, which is also

the default.

SEPASMB=YES

Include this operand only if the module is to be assembled separately. This

produces an object module ready to be cataloged into a suitable sublibrary

either by the standard name or by the user-specified name. The module name

is used as the module’s transfer address. If you omit this operand, the

assembler assumes that the module is assembled together with the DTF in

your program.

TYPEFLE=INPUT | OUTPUT | CMBND

This operand generates a module for either an input, output, or combined file.

Any DTF used with the module must have the same operand. For the IBM

3881, only TYPEFLE=INPUT is valid, which is also the default.

CDMOD

62 z/VSE System Macros Reference

WORKA=YES

This operand must be included if records are to be processed in work areas

instead of in I/O areas. Any DTF used with the module must have the same

operand. This operand is not valid for the IBM 3881.

Standard CDMOD Names

Each name begins with a 3-character prefix (IJC) and continues with a 5-character

field corresponding to the options permitted in the generation of the module.

CDMOD name = IJCabcde

 Char. Content Specified Option

a F RECFORM=FIXUNB (always for INPUT, CMBND, or

FUNC=I files)

 U RECFORM=UNDEF

 V RECFORM=VARUNB

b A CTLCHR=ASA (not specified if CMBND)

 C CONTROL=YES

 Y CTLCHR=YES

 Z CTLCHR or CONTROL not specified

c B RDONLY=YES and TYPEFLE=CMBND

 C TYPEFLE=CMBND

 H RDONLY=YES and TYPEFLE=INPUT

 I TYPEFLE=INPUT

 N RDONLY=YES and TYPEFLE=OUTPUT

 O TYPEFLE=OUTPUT

d B WORKA=YES and IOAREA2

 I IOAREA2=YES

 W WORKA=YES

 Z WORKA and IOAREA2 not specified

 Z WORKA=YES not specified (CMBND file only)

e 0 DEVICE=2540

 2 DEVICE=2520

 4 DEVICE=2540 and CRDERR

 5 DEVICE=2520 and CRDERR

 6 DEVICE=3505

 7 DEVICE=3525 and FUNC=R/P or omitted

 A DEVICE=3525 and FUNC=RP

 B DEVICE=3525 and FUNC=RW

 C DEVICE=3525 and FUNC=PW

 D DEVICE=3525 and FUNC=I

 E DEVICE=3525 and FUNC=RPW

 P DEVICE=3881

Subset/Superset CDMOD Names

All but one of the operands are exclusive (that is, do not allow supersetting). A

module name specifying C (CONTROL) in the b location is a superset of a module

name specifying Z (no CONTROL or CTLCHR). A module with the name

IJCFCIW0 is a superset of a module with the name IJCFZIW0.

 * * * * *

 I J C F A B B 0

 V Y C I 2

 U + H W 4

 C I Z 5

CDMOD

Chapter 2. Macro Descriptions 63

Z N 6

 O 7

 A

 B

 C

 ...

 M

 N

 O

 P

+ Subsetting/supersetting permitted.

* No subsetting/supersetting permitted.

CHAP (Change Priority) Macro

CC

name
 CHAP CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro lowers the priority of the issuing subtask. The issuing subtask now

becomes the subtask with the lowest priority of all the subtasks within the

partition.

A CHAP macro issued by the main task is ignored.

CDMOD

64 z/VSE System Macros Reference

CHECK (Check I/O Completion) Macro

CC

name
 CHECK filename

(1)

,control_address

,(0)

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro prevents processing until data transfer on an I/O operation is complete.

It may be issued either after a READ or WRITE macro was issued for a work file,

or after a READ was issued for a MICR file to ensure that data transfer is

complete.

Because of differences in the way that IOCS posts CCB transmission information

bits in the DTFs, you should always issue a CHECK macro to ensure that data

transfer is complete before testing these bits. If the data transfer is completed

without an error or other exceptional condition, CHECK returns control to the next

sequential instruction. If an error condition is encountered, control is transferred to

the ERROPT address. If ERROPT is not specified, processing continues at the next

instruction. If end-of-file is encountered, control transfers to the EOFADDR

address.

Issuing a CHECK macro after a READ on a MICR device allows you to query the

MICR document buffer (see Table 3 on page 66) and to specify the control_address

operand.

filename | (1)

The operand specifies the name of the file associated with the record to be

checked or, if register notation is used, the register containing a pointer to the

field that contains this name. This name is the same as that specified for the

DTFxx header entry for the file.

control_address | (0)

Indicates the address to which control passes when a buffer is waiting for data

or when the file is closed. If register notation is used, the specified register

must point to a field that contains this address.

The CHECK macro determines whether the MICR document buffer:

v Contains data ready for processing.

In this case, control passes to the next sequential instruction.

v Is waiting for data.

In this case, or if the file is closed, control passes to the address specified for

control-address, if present. Else, control passes to the address specified in the

ERROPT operand of the DTFMR macro.

v Contains a special non-data status.

CHECK

Chapter 2. Macro Descriptions 65

In this case, control passes to the ERROPT routine. In the routine, you can

examine the posted error conditions before determining your action (see byte 0

of the document buffer, bits 2, 3, and 4).

The CHECK macro also determines whether the file (filename) is closed.

Return from the ERROPT routine to the next sequential instruction by a branch

either on register 14 or to the address in register 0.

If an error, a closed file, or a waiting condition occurs with neither control-address

nor an ERROPT address specified, control is given to your program at the next

sequential instruction.

If the waiting condition occurred, byte 0, bit 5 of the buffer is set to 1. If the file

was closed, byte 0, bits 5 and 6 of the buffer are set to 1.

 Table 3. MICR Document Buffer Format

Byte Bit Comment

0 Buffer Status Indicator

 0 The document is ready for processing (you need not test

this bit).

 1 Irrecoverable stacker select error, but all document data is

present. You may continue to issue GETs and READs.

 2 Irrecoverable I/O error. An operator I/O error message is

issued. The file is unusable and must be closed.

 3 Unit Exception. You requested disengage and all follow-up

documents are processed. The LITE macro may be issued,

and the next GET or READ engages the device for

continued reading.

 4 Intervention required or disengage failure. This buffer

contains no data. The next GET or READ continues

normal processing. This indicator allows your program to

give operator information needed to select pockets for

documents not properly selected and to determine unread

documents.

 5 The program issued a READ, no document is ready for

processing; bits 0 through 2 of byte 0 are off, or the file is

closed (bit 6 of byte 0 is on). The CHECK macro examines

this bit. Test bits 1 through 4 and take appropriate action.

No data from a buffer should be processed if bits 2, 3, or 4

are on.

 6 The program issued a GET or READ and the file is closed.

Bit 5 also on.

 7 Reserved.

1 Buffer Status Indicator

 0 Applies to old devices.

 1-7 Reserved.

2 Buffer Status Indicator

 0 Applies to old devices.

 1-3 Reserved.

 Bits 4 through 7 reflect MICR sense information

 4 Data check occurred while reading. Examine byte 3 to

determine the error fields.

 5 Overrun occurred while reading. Examine byte 3 to

determine the error fields. Overruns cause short-length

data fields.

CHECK

66 z/VSE System Macros Reference

Table 3. MICR Document Buffer Format (continued)

Byte Bit Comment

 6-7 The meanings of these bits depend on the device type, the

model, and the engineering-change level of (old) MICR

devices.

3 Buffer Status Indicator – The byte contains MICR sense

information (applies to old devices).

4 Buffer Status Indicator – Pocket code

Should be examined by your stacker select routine. If bits

2, 3, or 4 of byte 0 are on, this byte is X’00’. No document

was read and your stacker selection routine was not

entered.

If auto-selection occurs, this value is ignored. A no-op

(X’03’) is issued to the device, and the reject pocket code

(X’CF’) is placed into byte 5. The possible pocket codes

(when bit 6 or 7 of byte 2 is on) are:

 Pocket 0: X’0F’ Pocket 7: X’7F’

 Pocket 1: X’1F’ Pocket 8: X’8F’

 Pocket 2: X’2F’ Pocket 9: X’9F’

 Pocket 3: X’3F’ Reject Pocket: X’CF’

 Pocket 4: X’4F’

 Pocket 5: X’5F’

 Pocket 6: X’6F’

5 Buffer Status Indicator – Pocket-selected code

 Indicates the pocket selected for the document. The

contents of the byte are normally the same as that in byte

4.

X’CF’ is inserted whenever auto-selection occurs (bit 6 of

byte 2, bit 7 of byte 2, bit 0 of byte 2, or bit 2 of byte 3).

These conditions may result from late READ commands,

errant document spacing, or late stacker selection:

v Start I/O for stacker selection is unsuccessful (bit 1 of

byte 0).

6–end Additional User Work Area

This area can be used as a work or an output area or both.

The size of this area is determined by the DTFMR

ADDAREA operand. The only size restriction: this area,

plus the status-indicator bytes and the data portion must

not exceed 256 bytes. This area may be omitted.

Document Data Area

This area follows immediately your work area. In this

area, the data is right-adjusted. The length of this area is

determined by the DTFMR RECSIZE operand.

CHECK

Chapter 2. Macro Descriptions 67

CHKPT (Checkpoint Request) Macro

CC

name
 CHKPT SYSnnn, restart_address

(r1)

,end_address

,(r2)

 C

C
,tpointer

,(r3)

,dpointer

,(r4)

,filename

,(r5)

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The CHKPT macro causes the status of your program to be recorded in one of two

ways:

v As interspersed records of a tape output file.

v Into a separate file on disk.

Should your program come to an abnormal end, then you can restart the program

by submitting job control statements as required. The partition in which the

program is to be restarted must begin at the same location as when the program

was checkpointed. Also, its end address must not be lower than the end address

when the checkpoint was taken. For more information about restarting a

checkpointed program, see the z/VSE Guide to System Functionsunder “Starting a

Program from a Checkpoint”.

If the CHKPT macro is processed successfully, your program receives control with

register 0 containing, in unpacked decimal format, the number of the checkpoint. If

the macro is processed unsuccessfully, that is, no checkpoint has been taken,

register 0 contains zero. In addition, the reason for the failure is printed on

SYSLOG.

Note: If a program using routines in the SVA is being checkpointed, you must

make sure that SVA routines occupy the same locations on restart, should a

restart become necessary.

Special register notation cannot be used with any of the CHKPT macro operands.

All VSAM files must be closed before the CHKPT macro is issued. A SAM ESDS

(supported by the VSE/VSAM Space Management for SAM feature) cannot be

repositioned by the restart program.

Restrictions:

Checkpoint/restart does not support the 31-bit environment; the macro is canceled

when issued from a partition that crosses the 16MB line.

CHKPT

68 z/VSE System Macros Reference

Checkpoint/restart does not support data spaces; that is, data spaces that a

program may access are not recorded during CHKPT requests.

Checkpoint/restart does not support dynamic partitions.

Checkpoint/restart does not support PFIXed pages which are PFIXed in page

frames outside the ALLOCR area; this means, whenever the CHKPT macro is used,

any currently PFIXed page must have been PFIXed in the ALLOCR area. The

easiest way to ensure this is to have no PFIX limit set (via the JCL SETPFIX

statement) during the execution of your program. The CHKPT macro is ignored

when it detects a page being PFIXed in a page frame outside the ALLOCR area.

The IBM 9346 tape is not allowed as a checkpoint device. If a program requests a

checkpoint to be written to a 9346 tape, the function issues a message and ignores

the request.

SYSnnn

Specifies the logical unit on which the checkpoint information is to be stored. It

must be an EBCDIC magnetic tape or a DASD volume.

restart_address | (r1)

Specifies a symbolic name of the instruction (or register containing the address)

at which execution is to restart if processing must be continued later.

end_address | (r2)

A symbolic name assigned to (or register containing the address of) the

uppermost byte of the program area required for restart. This address must be

higher than the highest address of storage occupied by any phase loaded into

the partition. The address should be a multiple of 2K. If the address is not a

multiple of 2K, it is rounded to the next 2K boundary. If this operand is

omitted, all storage allocated to the partition (other than the GETVIS area) is

checkpointed.

 The specified end address is ignored if any GETVIS request was executed in

the partition. (Note that GETVIS storage may have been requested by included

IBM routines). In this case again, all storage allocated to the partition is

checkpointed.

tpointer | (r3)

Address of an 8-byte field containing 2 V-type address constants used in

repositioning magnetic tape at restart time. The address may be a symbolic

address or contained in a register.

 The first constant points to a table containing the file names of all logical IOCS

magnetic tape files to be repositioned. Each file name points to the

corresponding DTF table where IOCS maintains repositioning information.

 The second constant points to a table containing information for physical IOCS

magnetic tape files to be repositioned. The entries in the table are:

v First halfword: hexadecimal representation of the logical unit address of the

tape (copy from CCB).

v Second halfword: number of files within the tape (in binary notation), that

is, the number of tape marks between the beginning of the tape and the

position at checkpoint.

v Third halfword: number (in binary notation) of physical records between the

preceding tape mark and the position at checkpoint.

 If the first, second, or both constants are zero, no tapes are repositioned.

CHKPT

Chapter 2. Macro Descriptions 69

If the tables are contained in the same source module as the CHKPT macro,

the constants must be defined as A-type constants.

 Both tables have to be preceded by a halfword containing the number of table

entries.

dpointer | (r4)

Address of a DASD operator verification table, used to allow the operator to

verify DASD volume serial numbers at restart time. May be a symbolic address

or contained in a register.

 The entries in the table must consist of the following two halfwords:

v The logical unit number (in hexadecimal notation) of each DASD unit used

by your program (copied from CCB bytes 6 and 7).

v Reserved.

 The table has to be preceded by a halfword containing the number of table

entries.

 There must be one entry for each DASD unit to be verified. At restart time, the

volume serial number of each of these DASD units is printed on SYSLOG.

filename | (r5)

This operand applies only if checkpoint records are to be written into a

separate file on disk. The operand specifies the name of the associated DTFPH.

CHKPT

70 z/VSE System Macros Reference

CLOSE and CLOSER (Close a File) Macro

CC

name

CLOSE

CLOSER

H

 ,

filename

(rn)

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

The format of the CLOSER macro is the same as that of the CLOSE macro, except

that you code CLOSER instead of CLOSE in the operation field.

When CLOSER is specified, the symbolic address constants that CLOSER generates

from the parameter list are self-relocating. When CLOSE is specified, the symbolic

address constants are not self-relocating. Throughout the manual the term CLOSE

also implies CLOSER, unless stated otherwise.

The CLOSE or CLOSER macro is used to deactivate previously opened files; it

ends the association between a logical file declared in a program and a specific

physical file on an I/O device. Issuing a CLOSE or CLOSER macro for a file

ensures that the system properly ends processing for the specified file(s).

A file may generally be closed at any time, with the following exceptions:

v Console files must not be closed; the CLOSE(R) macro is invalid for files defined

by means of the DTFCN.

v A file may not be closed from within an ERROPT routine.

If issued for a 4248 printer file making use of the horizontal copy function, the

macro causes horizontal printing to be turned off.

If CLOSE or CLOSER is issued to an unopened tape input file, the option specified

in the DTF rewind option is performed. If CLOSE or CLOSER is issued to an

unopened tape output file, no tapemark or labels are written.

No further requests can be issued for the closed file until it is reopened.

filename | (rn)

Code the symbolic name of the file (DTF filename) to be closed. You can close

up to 16 files with one macro by coding additional file names. Alternatively,

you can load the address of a file name into a register and specify the register,

using ordinary register notation.

 The high-order 8 bits of this register must be zeros. For CLOSER, the address

of the file’s name may be pre-loaded into any of the registers 2 through 12. For

CLOSE, this address may be pre-loaded into register 0 or any of the registers 2

through 12.

CHKPT

Chapter 2. Macro Descriptions 71

CNTRL (Control Device) Macro

CC

name
 CNTRL filename

(1)
 ,code

,

n1

,n2

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The CNTRL (control) macro provides commands for I/O devices. These commands

apply to non-data operations of an I/O unit and are specific to this unit. They

specify functions such as rewinding tape, card stacker selection, and line spacing

on a printer. For optical readers, commands specify marking error lines, correcting

a line for journal tapes, document stacker selecting, or ejecting and incrementing

documents.

The CNTRL macro does not wait for completion of the command before it returns

control to your program, except when certain codes are specified for optical

readers.

If your program issues CNTRL requests, ensure that your DTFxx macros (except

DTFMT and DTFDR):

v Include the CONTROL operand.

v Omit the CTLCHR operand.

If your program uses control characters although the CONTROL operand is

specified, then IOCS does not recognize them and treats them as data.

Conversely, if your DTFxx macro for a file includes the CTLCHR operand, your

program normally cannot issue a CNTRL macro for this DTFxx. It can issue a

CNTRL macro in this case only if:

1. The macro refers to a DTFPR defined printer and requests an immediate printer

operation, and

2. The device being used is a PRT1 printer or an IBM 4248.

Examples of immediate printer operations are: space or skip immediate, enable or

disable horizontal copying.

The CNTRL macro is ignored if specified for DTFSD or DTFDI DASD files. The

macro cannot be used for:

v A card-input file that is being processed with two I/O areas.

v A card-input file on an IBM 3525 if this file is associated with a punch file. Use

the macro for the associated punch file instead.

filename | (1)

Must be the name of the file specified in the DTF header entry. It can be

specified as a symbol or in register notation.

CNTRL

72 z/VSE System Macros Reference

code

Is the mnemonic code for the command to be performed. A list of the possible

command codes and the related n1 and n2 values is given following the

description of the operands.

n1 Is required whenever a number is needed for stacker selection, immediate

printer carriage control, or for line or page marking on the IBM 3886.

n2 Applies to delayed spacing or skipping or to timing mark check on the IBM

3886. In the case of a printer file, the operands n1 and n2 may be required. If

n1 is omitted and n2 is specified, a comma must be coded for n1.

A list of valid command codes and related n1 and n2 values follows. The codes are

listed by device class (disk, tape, and so on) or, if necessary, by device type.

CKD-Disk Devices

 Code n1 n2 Requested Operation

SEEK Seek to address.

Magnetic Tape Units

 Code n1 n2 Requested Operation

REW Rewind tape.

RUN Rewind and unload tape.

ERG Erase gap (writes blank tape).

WTM Write tapemark.

BSR Backspace to inter-record gap.

BSF Backspace to tapemark.

BSL Backspace to logical record. See also ″Note″

under FSL below.

FSR Forward-space to inter-record gap.

FSF Forward-space to tapemark.

FSL Forward-space to logical record.

SYN Synchronize buffer and program. Applies

only if the tape unit is a buffered device.

Causes all data held in the buffer to be

written to tape.

Note: The codes BSL and FSL can be used to control the processing of spanned

records. LIOCS ignores a CNTRL request with BSL or FSL if a RELSE macro

immediately precedes the CNTRL request.

Printers – Any Type

 Code n1 n2 Requested Operation

SP c1 d2 Carriage-space c or d lines. For c or d, you

give the number of lines to be spaced. This

number can be 1, 2, or 3. See also

3..

SK c1 d2 Skip to channel c or d or both. See also

3

and

4.

UCS Applies to IBM printers with a UCS buffer,

either standard or as a feature.

CNTRL

Chapter 2. Macro Descriptions 73

Code n1 n2 Requested Operation

 ON Data checks are processed with an

indication to the operator.

 OFF Data checks are ignored, and blanks are

printed.

1 A value for n1 requests immediate printer control (before printing).

2 A value for n2 indicates delayed printer control (after printing).

3 Applies to IBM printers of type 1403, 3203, 3800, PRT1 (including 4248 in

native mode), and 3525 card punch with the print feature.

4 If an IBM 3525, a skip to channel 1 is valid only for a print-only file.

PRT1 Printers – Including IBM 4248 in Native Mode

Note: If the printer does not support the requested operation, the system ignores

your request.

 Code n1 n2 Requested Operation

FOLD Print uppercase characters for any byte

with equivalent bits 2 through 7.

UNFOLD Print character equivalents for any EBCDIC

byte.

CLRPRT Clear print buffer. Applies if the printer

has a data buffer. Causes all data contained

in the buffer to be printed before the

program receives control again.

ORDER Applies only to an IBM 4248 operating in

native mode.

 DHC Disable horizontal copy. Stops horizontal

copy printing.

 EHC Enable horizontal copy. Starts horizontal

copy printing if your printer’s FCB

contains an FCB image with a horizontal

copy control code.

Horizontal copy printing is turned off

automatically when one of the following

occurs:

v Your program issues a CLOSE (or

CLOSER) macro for the printer file.

v The system initiates an automatic close

for the printer file at the end of the job

step.

 PURDAT Purge data. Causes all data stored in the

printer’s data buffer to be erased.

Card I/O Devices

 Code n1 n2 Requested Operation

SS 1 or 2 Select stacker 1 or stacker 2. Applies to

IBM 2520.

PS 1 to 3 Select stacker 1, 2, or 3. Applies to IBM

2540, 3505, and 3525. For a 3505 or 3525,

the value 3 defaults to stacker 2.

CNTRL

74 z/VSE System Macros Reference

IBM 3881 Optical Mark Reader

 Code n1 n2 Requested Operation

PS 1 or 2 Select stacker 1 or stacker 2.

IBM 3886 Optical Character Reader

 Code n1 n2 Requested Operation

INC Increment document at read station.

DMK see

1

 Page-mark the document when it is

stacker-selected as specified by n1.

LMK see

2

 Line-mark the document when it is

stacker-selected as specified by n1.

ESP 1 or 2 see

1 Eject and stacker-select the current

document to stacker A or B. Perform

line-mark station timing-mark check as

specified by n2.

1 name(r) number

2 name(r) number,number

COMRG (Communication Region Access) Macro

CC

name

COMRG
 REG=(1)

REG=(r1)

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The COMRG macro places the address of the communication region of the

partition from which the macro is issued into the specified register. If the operand

is omitted, register 1 is assumed.

CNTRL

Chapter 2. Macro Descriptions 75

CPCLOSE (Control Program File Close) Macro

CC

name
 CPCLOSE

parmlist

(r1)

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro can be used in spooling programs written in Basic Assembler Language.

It causes a CPCLOSE command to be issued to VM in order to release a print or

punch file for output.

parmlist | (r1)

This operand specifies a 16-byte parameter list. The format of the list is

described below. In your program, you must set up the list before you issue

the macro. If the parameter list name is specified, the system loads the address

into register 1. If a register is specified, it is assumed to contain the address of

the parameter list and this address is loaded into register 1. If no operand is

specified, register 1 is assumed to contain the address of the parameter list.

The format of this list is:

Bytes Contents

0-1 Always 0.

2-3 Device address in hexadecimal format.

4-7 Device address in EBCDIC format.

8-15 Job name (left justified).

Assume the device at address 280 is to be closed and the name of the job is

JOB. The parameter list then contains:

 00 00 02 80 F0 F2 F8 F0 D1 D6 C2 40 40 40 40 40

Return Codes in Register 15

00 Successful completion of CPCLOSE macro.

04 Device is invalid, no CLOSE is issued.

08 Supervisor not running under VM.

CPCLOSE

76 z/VSE System Macros Reference

CSRCMPSC (Compression/Expansion) Macro

CC

name

 CSRCMPSC CBLOCK= address

(r1)

,RETCODE=

address

(r2)

 CE

Requirements for the caller:

AMODE:

31

ASC Mode:

Primary or AR (access register)

The CSRCMPSC macro is used to compress data (to save DASD space, for

example) and to expand previously compressed data. Data compression and

expansion services allow you to compress certain types of data so that the data

occupies less space while you are not using it. You can then restore the data to its

original state when you need it.

For detailed guide information on how to compress and expand data, see

“Compressing and Expanding Data” in the manual z/VSE System Macros User’s

Guide.

CBLOCK=address | (r1)

Specifies the address of a 36-byte input/output area (compression block) which

contains the parameter information for the compression/expansion service. The

area is mapped by DSECT CMPSC in macro CSRYCMPS and contains

information such as the compression and expansion dictionaries and the source

and target areas, together with their lengths.

RETCODE=address | (r2)

Specifies the address of an 8-byte area into which the return code is to be

copied from R15.

Return Codes

00 Successful completion of CSRCMPSC macro.

04 Source operand was not completely processed. No room is left in the source

operand.

10 A field in the CSRYCMPS area does not contain a value.

14 The symbol size (CMPSC_SYMSIZE) in the CSRYCMPS area does not have a

value of 1 through 5.

18 The target area for compression or the source area for expansion is not large

enough to hold even one compression symbol. The length of the area is

specified in the CSRYCMPS area.

1C The length of the string represented by a single compression symbol exceeds

the limit of 260 bytes.

20 The number of child characters for a compression dictionary entry exceeds 260.

24 A compression dictionary entry indicates that it contains more than six child

characters, not including sibling characters.

28 The number of extension characters for a compression dictionary entry with 0

or 1 child characters exceeds 4.

2C A sibling descriptor compression dictionary entry has a count of 0.

30 Expansion of a compression symbol used more than 127 dictionary entries.

CSRCMPSC

Chapter 2. Macro Descriptions 77

CSRYCMPS (Map Compression Control Block) Macro

CC

name

CSRYCMPS
 DSECT=YES

DSECT=NO

CE

Required RMODE: 24

The CSRYCMPS macro causes a DSECT of the compression control block to be

generated.

DSECT=YES | NO

YES causes a mapping DSECT to be generated. NO causes inline code to be

generated.

CSRYCMPS

CSRYCMPS is described in the Principles of Operation manual for the

respective processor and in ESA/390 Data Compression, SA22-7208.

DCTENTRY (Map GETVCE) Macro

CC

DCTENTRY
 DSECT=YES

DSECT=NO

CE

Required RMODE: 24

The DCTENTRY macro describes device characteristics retrieved with the GETVCE

macro.

DSECT=YES | NO

YES causes a mapping DSECT to be generated. NO causes inline code to be

generated.

CSRYCMPS

78 z/VSE System Macros Reference

DEQ (Dequeue Resource) Macro

CC

name
 DEQ rcbname

(0)
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

A task releases a resource by issuing the DEQ macro. If other tasks are enqueued

on the same RCB, the DEQ macro frees from their wait condition all other tasks

that were waiting for that resource. A task that attempts to dequeue a resource that

was not enqueued or that was enqueued by another task is abnormally terminated.

Dequeuing under these two conditions within an abnormal termination routine

results in a null operation instruction.

The DEQ macro supports the 31 bit environment. DEQ may be issued in 24-bit or

31-bit addressing mode, above or below the 16MB line.

When DEQ is issued in AMODE 24, the RCB address is treated as a 24-bit address.

When DEQ is issued in AMODE 31, the RCB address is treated as a 31-bit address.

rcbname | (0)

The operand is the same as that in the ENQ macro and specifies the address of

the RCB.

DEQ

Chapter 2. Macro Descriptions 79

DETACH (Detach Task) Macro

CC

name
 DETACH

SAVE=

savearea

(1)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro terminates execution of a task. A subtask is normally terminated by

issuing a DETACH macro in the main task, attaching subtask, or in the subtask

itself.

The macro sets byte 2, bit 0 of the ECB to 1 (if specified in the ATTACH macro) to

indicate task termination. All tasks waiting on this ECB are taken out of the wait

state.

If the subtask issues a DETACH macro without an operand, only the subtask

issuing the DETACH macro is terminated. Any subtasks attached by the

terminating subtask are not affected by the termination.

If the main task issues the DETACH macro without specifying an operand, it will

be canceled, that is, all processing in the partition is terminated abnormally.

However, the partition may recover, dependent on the AB exit specification.

SAVE=savearea | (1)

A subtask may also terminate a subtask which it attached by issuing the

DETACH macro with the SAVE operand. If the main task issues the DETACH

macro with the SAVE operand, it can terminate any subtask in the partition.

The SAVE operand provides the address of the save area specified in the

ATTACH macro for the subtask to be terminated. The save area has to be

allocated below the 16MB line.

When the task identified by SAVE cannot be detached by the owning task, the

request is ignored. When the address specified by SAVE does not point to the save

area of an active task, the result is unpredictable.

Note: If the subtask being terminated uses VSAM files, ensure that these files are

closed before you issue this macro.

DETACH

80 z/VSE System Macros Reference

DFR (Define Font Record) Macro

CC

name
 DFR FONT=code

,BCH=n

,BCHSER=n

,CHRSET=n
 C

C

H

,

(1)

,EDCHAR=(

x

)

 ,ERASE=NO

,ERASE=YES

 ,NATNHP=NO

,NATNHP=YES

,REJECT=x

CE

Notes:

1 Can be repeated up to six times.

Required RMODE: 24

The DFR macro defines attributes common to a group of line types on an IBM

3886.

FONT=code

The operand is required. It specifies the default font for all fields described by

the format record. The default font is used to read a field unless another font is

specified for an individual field through the DLINT macro. The valid codes

and the fonts they represent are:

ANA1 =

Alphameric OCR-A font (mode 1)

ANA2 =

Alphameric OCR-A font (mode 2)

ANB1 =

Alphameric OCR-B font

GOTH =

Gothic font

MRKA =

Mark OCR-A font

MRKB =

Mark OCR-B font

NHP1 =

Numeric hand printing (normal mode)

NHP2 =

Numeric hand printing (verify mode)

NUMA =

Numeric OCR-A font

NUMB =

Numeric OCR-B font (mode 3)

 For a description of these fonts, see the appropriate IBM 3886 device manuals.

BCH=1 | 2 | 3

This operand is valid only if the serial numbering feature is installed. The

operand indicates that batch numbering is to be performed. Specifying 1, 2, or

3 indicates that documents routed to a stacker are to be batch numbered.

Specifying 1 indicates stacker A, 2 indicates stacker B, 3 indicates both stackers.

If this operand is specified, the BCHSER operand is invalid. For more

information on batch numbering, see the IBM 3886 device manuals.

DFR

Chapter 2. Macro Descriptions 81

BCHSER=1 | 2 | 3

This operand is valid only if the serial numbering feature is installed. The

operand indicates that both batch and serial numbering are to be performed.

Specifying 1, 2, or 3 indicates that documents routed to a stacker are to be

batch and serial numbered. Specifying 1 indicates stacker A, 2 indicates stacker

B, 3 indicates both stackers. If this operand is specified, the BCH operand is

invalid. If neither BCH nor BCHSER is specified, batch and serial numbering

are not performed. For more information on batch and serial numbering, see

the IBM 3886 device manuals.

CHRSET=0 | 1 | 2 | 3 | 4 | 5

Specifies which one of the options in Table 4 is to be used for recognizing

characters. If this operand is not supplied, 0 is assumed.

 Table 4. Character Set Option List

OCR-A OCR-B

Numeric Mode Alphameric Modes Numeric Mode Alphameric

Mode

High-Speed

Printers or

Typewriters

Mode 1

(High-Speed

Printer)

Mode 2

(Typewriter)

High-Speed Printers or

Typewriters

 Hexa-

 decimal

 Code

 Format

 Record

 Codes

$ $ $ $ $ 5B 00

£ £ £ £ £ 5B 01

¥ ¥ ¥ ¥ ¥ 5B 02

$

Ñ

$

Ñ

$ $

Ñ

$

7B

5B 03

 Å

Æ

Ø

Å

Æ

Ø

 Å

Æ

Ø

5B

7B

7C 04

$

$

Ä

Ö

Ü

$

Ä

Ö

Ü

 Ü Note

Ä

Ö

5B

7B

7C

F0 05

Note: In OCR-A font the Ü is coded as a zero and should be used only in

alphabetic fields.

EDCHAR=(x,...)

Specifies up to six characters that may be deleted from any field that is read.

The operand EDITn=EDCHAR of the DLINT macro controls this function for

individual fields. If this operand is omitted, no character deletion is performed.

See the note under the REJECT operand discussion for characters that must be

specified in quotes. For example, to specify the characters &, >, and), you

would code EDCHAR=(’&’,’>’,’)’).

ERASE=NO | YES

Specifies whether group and character erase symbols are to be recognized as

valid symbols. If this operand is not specified, NO is assumed. For more

information on group and character erase symbols, see the IBM 3886 device

manuals.

NATNHP=NO | YES

Specifies which of the numeric hand printing character set options are used for

the numbers 1 and 7. YES indicates that the European Numeric Hand Printing

DFR

82 z/VSE System Macros Reference

(ENHP) characters 1 and 7 are used; NO indicates the Numeric Hand Printing

(NHP) characters 1 and 7 are used. If this operand is not coded, NO is

assumed.

REJECT=x

Indicates the character that is to be substituted in the data record for any reject

character read by the device. If this operand is omitted, X’3F’ is assumed.

Reject characters are characters that are not recognizable by the device.

Note: This note applies to the keywords REJECT and EDCHAR. Apostrophes

enclosing the character are optional for all characters except special

characters used in macro operands. For a description of these characters,

see the Assembler Language manual.

DIMOD (Device-Independent I/O Module Definition) Macro

CC

name
 DIMOD

IOAREA2=YES

,RDONLY=YES

,SEPASMB=YES
 C

C
,TRC=YES

 ,TYPEFLE= OUTPUT

INPUT
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The DIMOD macro defines a logic module for a device-independent file. If you do

not provide a name for the module, IOCS generates a standard module name.

For DASD devices and for PRT1 and 3800 printers, a user-supplied logic module is

not required. If one is supplied, it is ignored. OPEN always provides linkage to an

IBM-supplied logic module which resides in the SVA.

IOAREA2=YES

Include this operand if a second I/O area is needed. A module with this

operand can be used with DTFDI specifying either one or two I/O areas. If the

operand is omitted or is invalid, one I/O area is assumed.

RDONLY=YES

This operand causes a read-only module to be generated. Whenever this

operand is specified, any DTF used with the module must have the same

operand.

SEPASMB=YES

Include this operand only if the module is to be assembled separately. This

produces an object module ready to be cataloged into a suitable sublibrary

either by the standard name or by the user-specified name. The module name

is used as the module’s transfer address. If you omit this operand, the

assembler assumes that the module is assembled together with the DTF in

your program.

DFR

Chapter 2. Macro Descriptions 83

TRC=YES

Include this operand to specify whether the module is to test the table

reference character indicator in the DTFDI or ignore that indicator. If TRC=YES

is specified, the generated module can process output files with table reference

characters and those without. If the TRC operand is specified,

TYPEFLE=INPUT must not be specified.

TYPEFLE=OUTPUT | INPUT

Include this operand to specify whether the module is to process input or

output files. If OUTPUT is specified, the generated module can process both

input and output files.

Standard DIMOD Names

Each name begins with a 3-character prefix (IJJ) followed by a 5-character field

corresponding to the options permitted in the generation of the module.

DIMOD name = IJJabcde

 Char. Content Specified Option

a F Always

b C RPS=SVA is not specified

 V RPS=SVA

c B TYPEFLE=OUTPUT (both input and output)

 I TYPEFLE=INPUT

d I IOAREA2=YES

 Z IOAREA2=YES is not specified

e C RDONLY=YES

 D RDONLY=YES is not specified

Subset/Superset DIMOD Names

All of the operands except TRC=YES allow subsetting. A module name specifying

B is a superset of the module specifying I, for example. IJJFCBID is a superset of

the module IJJFCIID.

The IBM-supplied preassembled logic modules do not have TRC=YES. The system

programmer can reassemble them with TRC=YES to support 3800 table reference

characters. Although the code that is generated for a module assembled with

TRC=YES is different from the code that is generated for a module with TRC=NO,

the module name is the same. If some, but not all DIMOD logic modules are

reassembled this way, it may interfere with subsetting or supersetting.

 * + + *

 I J J F C B I C

 V I Z D

+ Subsetting/supersetting permitted.

* No subsetting/supersetting permitted.

DIMOD

84 z/VSE System Macros Reference

DISEN (Disengage Document Reader) Macro

CC

name
 DISEN filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

This macro stops the feeding of documents through the magnetic character reader

or optical reader/sorter. The program proceeds to the next sequential instruction

without waiting for the disengagement to complete. You should continue to issue

GET or READ until the unit exception bit (byte 0, bit 3), of the buffer status

indicators is set on (see Table 3 on page 66).

filename | (1)

Specifies the name of the file to be disengaged. This name is the same as that

specified for the DTFMR header entry for the file. The operand can be

specified either as a symbol or in register notation.

DISEN

Chapter 2. Macro Descriptions 85

DLINT (Define Line Type) Macro

CC

name

DLINT LFR=n,LINBEG=n
 ,IMAGE=NO

,IMAGE=YES

H

,

,NOSCAN=(

n

)

C

C

,FLDn=(field_information)

,EDITn=

(code)

(EDCHAR)

(code,EDCHAR)

 ,FREND=NO

,FREND=YES

CE

Required RMODE: 24

The macro describes one line type in a format group and the individual fields in

the line.

Line-Information Specifications

LFR=n

This operand specifies the line format record number for the line. The decimal

number specified must be in the range of 0 through 63. The line format record

describes the format of one type of line; the line format record number is used

to identify the line format record. This number is specified in the READ macro

when you read a line of data from a document.

LINBEG=n

This operand specifies the beginning of a line. The beginning position is the

distance, measured in units of 0.1 inch (2.54 mm), from the left edge of the

document to the left boundary of the first field. The limiting range of this

position is 4 to 85.

IMAGE=NO | YES

This operand specifies whether the data record should be in standard mode

(IMAGE=NO), or image mode (IMAGE=YES). If this operand is not specified,

IMAGE=NO is assumed.

NOSCAN=(n,...)

Specifies an area on the document line that is to be ignored by the IBM 3886.

’n’ is a decimal number indicating the distance, measured in units of 0.1 inch

(2.54 mm), from the left edge of the document to the right end of the

NOSCAN field. The field immediately to the left of the NOSCAN field must

end with an address delimiter rather than a character delimiter.

Field-Information Specifications

FLDn=(field_information)

The operand describes each of the fields of a line.

n of FLDn

Is a number from 1 up to 14. The following rules apply to the use of the

keyword FLDn:

v Fields may be described in any order in the macro.

v Each EDITn operand must follow its associated FLDn operand.

DLINT

86 z/VSE System Macros Reference

v The n suffix need not be 1 for the first field in the line; however, the n

suffix must increase for each field from left to right on the document

line.

m An address delimiter, which you code as a decimal number. It specifies

the distance, measured in units of 0.1 inch (2.54 mm), from the left edge of

the document to the right end of the field being defined. The last field in a

line must end with an address delimiter.

x A character delimiter. It specifies the character that indicates the end of a

field. The character delimiter is not considered part of the data; it is neither

included in the data record nor used in determining the length of the field.

 Apostrophes enclosing the characters are optional for all characters except

0 through 9 and the special characters used in macro operands. For these

characters, the apostrophes are required. For a description of these

characters, see the Assembler Language manual.

 If a field ends with a character delimiter, the next field must be read using

a font from the same font group. The font groups are:

v NPH1, NPH2, GOTH

v ANA1, ANA2, NUMA, MRKA

v NUMB, MRKB

v ANB1

length

Is a decimal number that specifies the length of the field in the edited

record. Specify a value from 1 to 127. If IMAGE=NO is specified, this

specification is required; if IMAGE=YES is specified, this specification is

invalid.

 The length you specify refers to the length of the field after any EDITn

options have been performed. The sum of the field lengths for a line

cannot be greater than 130.

NCRIT

Indicates that this is not a critical field. If this specification is omitted, the

field is assumed to be critical.

fontcode

Specifies a font for this field, different from the font specified in the DFR

macro. If this specification is omitted, the font specified in the DFR macro

is used for the field. For information about the valid codes, see the

description of the FONT=code operand of the DFR macro on page 81.

EDITn=(code) | (EDCHAR) | (code,EDCHAR)

Describes the editing functions to be performed on the data by the IBM 3886.

 The specifications are the same for keywords EDIT1 through EDIT14. There

must be an FLDn keyword corresponding with each EDITn keyword you

specify. If an EDITn keyword is specified, a code, EDCHAR, or both must be

specified. When image mode is used, an EDITn keyword is invalid.

 When the editing functions are completed and the field is greater than the

specified length, the field is truncated from the right and the wrong length

field indicator is set on in the header record. If only blanks are truncated, the

wrong length field indicator is not set.

 code specifies the blanks to be removed and the fill characters to be added to

the field, if any. The valid codes and their meanings are:

DLINT

Chapter 2. Macro Descriptions 87

ALBHIF

All blanks are removed, the data is right-justified and the field is padded

with EBCDIC zeros (X’F0’) on the left.

ALBLOF

All blanks are removed from the data, the data is left-justified and the field

is padded with blanks on the right. If code is omitted, ALBLOF is

assumed.

ALBNOF

All blanks are removed; the data must be equal in length to the field

length specified. No padding is done.

HLBHIF

All high- and low-order blanks are removed, the data is right-justified and

the field is padded to the left with EBCDIC zeros (X’F0’) (see Note, below).

HLBLOF

All high- and low-order blanks are removed, the data is left justified, and

the field is padded with blanks on the right (see Note, below).

NOBLOF

No blanks are removed, the data is left-justified, and the field is padded on

the right with blanks.

Note: Two consecutive embedded blanks is the maximum number sent.

 EDCHAR indicates that the characters specified in the EDCHAR keyword of

the DFR macro are to be deleted from the field. If this specification is omitted,

the characters are not deleted.

 If the EDITn keyword is omitted or if EDITn=EDCHAR is specified and the

code is omitted, ALBLOF is assumed.

FREND=NO | YES

Indicates whether this is the last DLINT macro for the format record. NO

indicates that more DLINT macros follow; YES indicates that this is the last

one. If this operand is omitted, NO is assumed.

DLINT

88 z/VSE System Macros Reference

DOM (Delete Operator Message) Macro

CC

name

 DOM MSG= address

(r1)
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

The DOM macro may be used to delete a console message, when the condition

that caused the message to be issued does not exist any more (for example, a

device became ready).

The message being deleted may never appear on any console. If it did appear, any

highlighting or hold state is removed as a result of DOM.

MSG=address | (r1)

Specifies the address of a 4-byte area containing the ID of the message to be

deleted. Registers 1 to 12 may be used for register notation. The message ID

was returned by the WTO or WTOR macro used to issue the message.

The only effect of the DOM macro is to remove the message from the ’hold’ state

(reply or action pending) and to reset its intensity attribute from ’high’ to ’normal’,

as applicable. The message is still routed and logged as if no DOM macro had

been issued.

DOM for a message written via WTO may be issued by a different task than the

one that issued the original message identified by the message ID. In particular, it

may be issued by a console application, rather than by the application that

originated the message, when the message is being deleted as a result of an

operator request.

DOM for a message written with WTOR may only be issued by the task that

issued the original message; otherwise it is ignord.

Return Codes in Register 15

0 Successful completion.

Cancel Codes

21 One or more input parameters are invalid or not supported by z/VSE.

25 One or more of the specified addresses are invalid.

45 Mode violation (for example, caller is in AR-mode).

DOM

Chapter 2. Macro Descriptions 89

DRMOD (Document Read Module Definition) Macro

CC

name
 DRMOD

DEVICE=3886

,RDONLY=YES

,SEPASMB=YES
 C

C
,SETDEV=YES

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro defines a logic module for a file on an IBM 3886. If you do not provide

a name for the module, IOCS generates a standard module name.

DEVICE=3886

Specifies that the IBM 3886 is the input device. This operand may be omitted.

RDONLY=YES

This operand generates a read only module. RDONLY=YES must also be

specified in the DTF. For additional programming requirements concerning this

operand, see the DTFDR RDONLY operand.

SEPASMB=YES

Must be specified if the I/O module is to be assembled separately. This entry

produces an object module ready to be cataloged into a suitable sublibrary

either by the standard name or by the user-specified name. The module name

is used as the module’s transfer address. If you omit this operand, the

assembler assumes that the module is assembled together with the DTF in

your program.

SETDEV=YES

Is specified if the SETDEV macro may be used when processing a file with this

I/O module. If SETDEV=YES is specified in the DRMOD macro but not in the

DTFDR macro, the SETDEV macro cannot be used when processing that file.

Standard DRMOD Names

Each name consists of eight characters: IJMZxxD0. The fifth and sixth characters

are variables as follows:

v If SETDEV=YES is specified, the fifth character is S; otherwise it is Z.

v If RDONLY=YES is specified, the sixth character is R; otherwise it is Z.

Note: Subsetting/supersetting is allowed with the SETDEV keyword, but not with

the RDONLY keyword.

DRMOD

90 z/VSE System Macros Reference

DSPLY (Display Document Field) Macro

CC

name
 DSPLY filename

(1)
 ,(r2),(r3) CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The DSPLY macro displays the document field on the display scope of your IBM

1287. A complete field may be keyboard-entered if a 1287 read error makes this

type of correction necessary. An unreadable character may be replaced by the reject

character either by the operator (if processing in the online correction mode) or by

the device (if processing in the offline correction mode). You may then use the

DSPLY macro to display the field in error.

filename | (1)

Is the symbolic name specified in the name field of the DTFOR macro for your

1287 file.

(r2)

Specifies any of registers 2 to 12. This register must contain the address of the

load format CCW that gives the document coordinates for the field to be

displayed. When the DSPLY macro is used in the COREXIT routine, the

address of the load format CCW can be obtained by subtracting 8 from the

3-byte address that is right-justified in the fullword location beginning at

filename+32 (the high-order fourth byte of this fullword should be ignored). If

the DSPLY macro is not used in the COREXIT routine, you must determine the

load format CCW address.

(r3)

Specifies any of registers 2 to 12. This register must contain the address of the

load format CCW that gives the coordinates of the reference mark associated

with the displayed field.

DSPLY

Chapter 2. Macro Descriptions 91

DSPSERV (Data Space) Macro

The DSPSERV macro creates, deletes, and controls data spaces. A data space is a

range of up to two gigabytes of contiguous virtual storage addresses that a

program can directly manipulate through ESA/370* instructions. Unlike an address

space, a data space can hold only data and programs stored as data. For detailed

guide information on how to create and use data spaces, see “Chapter 8, Creating

and Using Data Spaces” in the manual VSE/ESA Extended Addressability.

The DSPSERV macro can only be executed in 31-bit addressing mode.

The DSPSERV macro supports the following main functions:

CC

name
 DSPSERV CREATE

DELETE

EXTEND

RELEASE

 ,operands CE

CREATE

Create a data space

DELETE

Delete a data space

EXTEND

Increase the current size of a data space

RELEASE

Release a data space

For a detailed description of the main functions, see the “DSPSERV (Data Space)

Macro” with the corresponding keyword (DSPSERV CREATE, DSPSERV

DELETE,...).

DSPSERV

92 z/VSE System Macros Reference

DSPSERV CREATE (Create Data Space) Macro

CC

name
 DSPSERV CREATE,STOKEN=stoken_addr,NAME=name_addr C

C
 ,GENNAME=NO

,GENNAME=

COND

YES

,OUTNAME=outname_addr

,ORIGIN=origin_addr

C

C
 ,SCOPE=SINGLE

,SCOPE=

ALL

COMMON

 ,BLOCKS=0

,BLOCKS=

(0,0)

(0,init)

(0,init_ad)

max

(max,init)

(max_ad,init_ad)

C

C

,NUMBLKS=numblks_addr

 ,CALLERKEY

,KEY=key_addr

 ,FPROT=YES

,FPROT=NO

C

C
 ,MF=S

,0D

,PLISTVER=0

,MF=(L,lstaddr

)

,attr

,PLISTVER=1

(E,lstaddr

)

COMPLETE

CE

Requirements for the caller:

AMODE:

31

RMODE:

24 or ANY

ASC Mode:

Primary or AR (access register) if SYSSTATE ASCENV=AR

DSPSERV CREATE requests the system to create a data space. Creating a data

space can be compared to issuing a GETVIS request for storage. z/VSE gives you

contiguous 31-bit virtual storage of the size you specify and initializes the storage

to hexadecimal zeros. The entire data space has the storage key that you request or,

by default, the storage key that matches your own PSW key.

STOKEN=stoken-addr

Specifies the address of an eight-byte field where the system returns the

STOKEN (space token or identifier) that uniquely identifies the data space.

 Your program can then gain access to the data space by using the ALESERV

ADD macro to add an entry to an access list and obtain an ALET (access list

entry token) for the given STOKEN. The entry on the access list identifies the

newly created data space, and the ALET indexes the entry.

DSPSERV CREATE

Chapter 2. Macro Descriptions 93

NAME=name-addr

Specifies the address of an eight-byte variable or constant that contains the

name of the data space. The naming conventions are described under “Data

Space Naming Conventions” on page 97.

GENNAME=NO | COND | YES

Specifies whether or not you want the system to generate a name for the data

space to ensure that all names are unique within the partition. The system

generates a name by adding a 5-character prefix (consisting of a numeral

followed by four characters) to the first three characters of the name you

supply in the NAME operand. For example, if you supply XYZDATA in the

NAME operand, the name becomes nCCCCXYZ where ’n’ is the numeral,

CCCC is the 4-character string generated by the system, and XYZ comes from

the name you supplied on NAME. See “Data Space Naming Conventions” on

page 97 for more information.

GENNAME=NO

The system does not generate a name. In the NAME operand you must

supply a name that is unique within the partition. GENNAME=NO is the

default.

GENNAME=COND

The system generates a unique name only if you supply a name that is

already being used. Otherwise, the system uses the name you supply.

GENNAME=YES

The system takes the name you supply in the NAME operand and makes

it unique.

 If you want the system to return the unique name it generates, use the

OUTNAME operand.

OUTNAME=outname-addr

Specifies the address of an eight-byte variable where the system returns the

data space name it generated if you specified GENNAME=YES or

GENNAME=COND.

ORIGIN=origin-addr

Specifies the address of a four-byte variable where the system returns the

beginning address (either zero or 4096) of the data space. The system tries to

start all data spaces at origin zero; on some processors, however, the origin is

4096. To be independent of the type of processor, IBM recommends always to

use ORIGIN.

SCOPE=SINGLE | ALL | COMMON

SCOPE=SINGLE indicates that the data space may be accessed only by

programs running in the owner’s partition. The ALESERV ADD macro (which

the program must issue to gain access to the data space) adds an entry for the

data space only to access lists of the partition where the program owning the

data space is running.

 SCOPE=ALL indicates that the data space can be accessed by programs

running in the owner’s partition (SCOPE=SINGLE) and in other selected

partitions. This allows to share data selectively among programs running in

different partitions. Whenever a program running in another partition wants to

access the data space (for example, called DX) it must first set up an ALESERV

ADD request with that STOKEN (DX) in order to get an ALET returned. Thus,

access to the data space can be restricted by communicating the STOKEN only

to certain programs.

DSPSERV CREATE

94 z/VSE System Macros Reference

SCOPE=COMMON indicates that the data space can be used by all programs

and from all partitions in the system. Such a data space provides a commonly

addressable area similar to the Shared Virtual Area (SVA).

 To gain access to the data space, a program must issue the ALESERV ADD

macro with AL=PASN. ALESERV ADD then adds an entry for the data space

to the caller’s PASN-AL and returns the ALET for that entry. Additionally,

ALESERV ADD adds the same entry to the access lists (PASN-ALs) of all

active partitions in the system. Also, newly created partitions receive the same

entry. All programs running in the system use the same ALET to access the

data space. Since the entry is now on all PASN-ALs, programs in other

partitions do not have to issue the ALESERV ADD macro. The creating

program must only pass the ALET for the data space to the other programs.

 Any program can create and delete SCOPE=SINGLE data spaces. However,

only PSW key 0 programs can create, extend, release, or delete SCOPE=ALL or

SCOPE=COMMON data spaces.

 For a summary of the rules for creating, deleting, and using data spaces with

different SCOPEs, see “Chapter 8, Creating and Using Data Spaces” in the

manual VSE/ESA Extended Addressability.

BLOCKS=0 | (0,0) | (0,init) | (0,init-ad) | max | (max,init) | (max-ad,init-ad)

Specifies the maximum and the initial size of the data space or the size of an

area within the data space, as shown in Figure 1.

v The first (or only) value is always the maximum size, which identifies the

largest amount of storage you will need in the data space.

v The second value which you specify (after the comma) denotes an initial size

which identifies the amount of storage you will immediately use.

 BLOCKS=0 (which is the default) or BLOCKS=(0,0) establishes a data space

with the maximum size and the initial size both set to the default size, which

is either the IBM defined default or the default set via the SYSDEF

DSPACE,DFSIZE job control (or attention) command. The system returns this

default (as the maximum size) at the location identified by NUMBLKS.

 BLOCKS=(0,...) sets the maximum size to the default value.

 BLOCKS=(...,init) specifies the number of 4K-blocks to be used as the initial

size of the data space to be created. This initial size is the amount of storage

 ┌──────────────┬──────────────┬─────────────────┐

 │ BLOCKS= │ Maximum Size │ Initial Size │

 ├──────────────┼──────────────┼─────────────────┤

 │ 0 │ default │ default │

 │ (0,0) │ default │ default │

 │ (0,init) │ default │ init │

 │ max │ max │ default │

 │ (max,init) │ max │ init │

 ├──────────────┴──────────────┴─────────────────┤

 │ Example 1: If you specify BLOCKS=(0,500), │

 │ the system sets the maximum size of your │

 │ data space to the default value and the │

 │ initial size to 500 blocks. │

 │ Example 2: If you specify BLOCKS=1000, │

 │ the system sets the maximum size to 1000 │

 │ and the initial size to the default value. │

 └───┘

Figure 1. Maximum and Initial BLOCKS Specification

DSPSERV CREATE

Chapter 2. Macro Descriptions 95

you will immediately use. (If you need more space in the data space, you can

use the DSPSERV EXTEND macro to increase the available storage.) If the

initial size you specify exceeds or equals the maximum size, the initial size

becomes the maximum size.

Note: The amount of storage taken from VSIZE is always the initial number of

4K-blocks you specify, rounded up to the next multiple of 8, if necessary.

For example, if you specify 10 blocks, the system rounds this number up

to 16 and takes 64K from VSIZE.

 BLOCKS=(...,init-ad) specifies the address of a field that contains the initial

size of the data space.

 BLOCKS=max or BLOCKS=(max,...) specifies the maximum size (in number

of blocks) to which the data space can be expanded. A block is a unit of 4 K

bytes. You cannot extend the data space beyond its maximum size. The

maximum size that can be specified is 524,288 blocks (the product of 524,288

times 4K bytes being 2 Gigabytes). Note, however, that your installation can set

limits to the amount of storage available for all data spaces together; for

details, see the SYSDEF job control (or attention) command.

 BLOCKS=(max-ad,...) specifies the address of a field that contains the

maximum size of the data space to be created.

NUMBLKS=numblks-addr

Specifies the address of a four-byte area where the system returns the

maximum size (in blocks) of the newly created data space.

 If you specify BLOCKS=0 or omit the BLOCKS operand when creating a data

space, the system returns the default.

CALLERKEY

Indicates that the data space has the storage key that matches the PSW key of

the caller.

KEY=key-addr

Specifies the address of an eight-bit variable or constant that contains the

storage key of the data space to be created. The key must be in bits 0-3 of the

field. The system ignores bits 4-7.

Note: A program running with a non-zero PSW key can only delete a data

space it owns; the PSW key has to match the storage key of the data

space.

FPROT=YES | NO

Specifies whether or not the data should be fetch-protected. Fetch protection

means that a program must be in the key of the data space storage (or key 0)

to reference data in the data space. If you specify YES, the entire data space is

fetch-protected.

MF=S

Specifies the standard form of the macro, which is used to place the

parameters into an inline parameter list. This is also the default if the MF

parameter is omitted.

MF=(L,...

Specifies the list form of the macro, which is used to construct a

non-executable control program parameter list.

DSPSERV CREATE

96 z/VSE System Macros Reference

lstaddr specifies the address of the area that the system is to use for the

parameter list.

 attr is an optional 1- to 60-character input string which can contain any value

that is valid on an assembler DS pseudo-op. You can use this parameter to

force boundary alignment of the parameter list. If you do not code attr, the

system provides a value of 0D, which forces the parameter list to a

double-word boundary.

 PLISTVER=0|1 specifies which parameter list the system is to generate. 0

produces a 56-character parameter list; 1 (which is always recommended)

produces a 60-character list.

 No other parameters may be specified if the list form of the macro is chosen.

MF=(E,...

Specifies the execute form of the macro, which uses the parameter list

generated by the list form of the macro.

 lstaddr specifies the address of the parameter list. This address must not be in

a data space. If the caller of the macro is in 24-bit mode, the address of the

parameter list must not be above the 16MB line.

 COMPLETE specifies that the system is to check for required parameters and

supply optional parameters that are not specified.

Return Codes in Register 15 (and Reason Codes in Register 0)

00 Successful completion

04 Successful completion. 2 Gigabytes (524,288 blocks) were requested. However,

since the processor does not support a data space with zero origin, a data

space with one block less than specified (524,287 blocks) was created.

08 R0=X’xx0005xx’: Creation of data space would violate installation criteria. The

available storage may be exhausted. The installation criteria is defined with

SYSDEF DSPACE... and can be displayed with QUERY DSPACE.

08 R0=X’xx0009xx’: GENNAME=NO was specified, but the data space name is

not unique within the partition.

08 R0=X’xx0012xx’: The system’s set of generated names for data spaces has been

temporarily exhausted.

0C The system cannot create any additional data spaces at this time because of a

shortage of resources:

0C R0=X’xx000600’: No system GETVIS storage available (page manager).

0C R0=X’xx000601’: No virtual storage available (page manager).

0C R0=X’xx000602’: No real storage available (page manager).

Data Space Naming Conventions

Data space names are from one to eight bytes long. They can contain letters,

numbers, and the characters @, #, and $, but no imbedded blanks. Names that

contain fewer than eight bytes must be left-justified and padded on the right with

blanks.

Data space names must be unique within the partition of the data space owner. No

other data space belonging to the partition can have the same name. Therefore, in

choosing names for your data spaces, avoid using the same names that IBM

products use for data spaces. IBM products use the following names for data

spaces:

v Names that begin with A through I, where the first three characters denote an

IBM component prefix, if possible.

DSPSERV CREATE

Chapter 2. Macro Descriptions 97

v Names that begin with SYSAxxxx through SYSIxxxx, where the fourth through

sixth characters denote any IBM component prefix, if possible.

v Names that begin with numbers or the characters SYSDS or SYSIV.

Use The Following Names For Your Data Spaces

v Problem state programs (non-zero PSW key) can use data space names that

begin with @, #, $, or the letters J through Z, with the exception of SYS. The

system abends problem state programs that begin any names with SYS (check

for subsystem).

v Supervisor state programs, programs with PSW key 0, and subsystems can use

data space names that begin with @, #, $, or letters I through Z. In addition, they

can use names that begin with SYSJ through SYSZ. The system abends programs

whose names begin with SYSDS.

Use names that begin with SYSJ through SYSZ to ensure that the names of the

data spaces belonging to supervisor state programs and programs with PSW key

0 do not conflict with the names of data spaces that belong to problem state

programs.

When you choose a name, consider that operators have to identify data space

names in some display requests and the DUMP command.

DSPSERV DELETE (Delete Data Space) Macro

CC

name
 DSPSERV DELETE,STOKEN=stoken_addr C

C
 ,MF=S

,0D

,PLISTVER=0

,MF=(L,lstaddr

)

,attr

,PLISTVER=1

(E,lstaddr

)

COMPLETE

CE

Requirements for the caller:

AMODE:

31

RMODE:

24 or ANY

ASC Mode:

Primary or AR (access register) if SYSSTATE ASCENV=AR

DSPSERV DELETE requests the system to delete a data space (when your program

does not need it any longer). Before you delete the data space, you should remove

the data space entry (ALET) from the access list by means of the ALESERV

DELETE macro.

A non-zero key program can delete any data space it owns, provided its PSW key

matches the storage key of the data space. A key-0 program can delete any data

space it owns and other data spaces of the caller’s partition.

DSPSERV CREATE

98 z/VSE System Macros Reference

STOKEN=stoken-addr

Specifies the address of the eight-byte STOKEN for the data space. (returned

from DSPSERV CREATE).

MF=S

Specifies the standard form of the macro, which is used to place the

parameters into an inline parameter list. This is also the default if the MF

parameter is omitted.

MF=(L,...

Specifies the list form of the macro, which is used to construct a

non-executable control program parameter list.

 lstaddr specifies the address of the area that the system is to use for the

parameter list.

 attr is an optional 1- to 60-character input string which can contain any value

that is valid on an assembler DS pseudo-op. You can use this parameter to

force boundary alignment of the parameter list. If you do not code attr, the

system provides a value of 0D, which forces the parameter list to a

double-word boundary.

 PLISTVER=0|1 specifies which parameter list the system is to generate. 0

produces a 56-character parameter list; 1 (which is always recommended)

produces a 60-character list.

 No other parameters may be specified if the list form of the macro is chosen.

MF=(E,...

Specifies the execute form of the macro, which uses the parameter list

generated by the list form of the macro.

 lstaddr specifies the address of the parameter list. This address must not be in

a data space. If the caller of the macro is in 24-bit mode, the address of the

parameter list must not be above the 16MB line.

 COMPLETE specifies that the system is to check for required parameters and

supply optional parameters that are not specified.

The return code in register 15 is always 0.

DSPSERV DELETE

Chapter 2. Macro Descriptions 99

DSPSERV EXTEND (Extend Data Space) Macro

CC

name
 DSPSERV EXTEND,STOKEN=stoken_addr,BLOCKS= size

size_addr
 C

C
,NUMBLKS=numblks_addr

 C

C
 ,MF=S

,0D

,PLISTVER=0

,MF=(L,lstaddr

)

,attr

,PLISTVER=1

(E,lstaddr

)

COMPLETE

CE

Requirements for the caller:

AMODE:

31

RMODE:

24 or ANY

ASC Mode:

Primary or AR (access register) if SYSSTATE ASCENV=AR

DSPSERV EXTEND requests the system to increase the current size of the data

space. Use the EXTEND function only for a data space that was created with an

initial size smaller than the maximum size.

Before you can reference storage beyond the current size, you must use EXTEND

to increase the storage that is currently available. If you reference data space

storage beyond the current size, the system rejects the request and terminates the

caller with a cancel code.

A caller with non-zero PSW key can extend the data space it owns. A key-0

program can extend any data space it owns and other data spaces of the caller’s

partition.

The system rejects the request if the extended size would:

v Exceed the maximum size as specified by the BLOCKS operand of DSPSERV

CREATE when the data space was created.

v Extend the installation limit for the accumulated size of all data spaces. This

limit is either the system default or can be set by the SYSDEF job control

command.

v Be smaller than 1 or greater than 524287 blocks.

STOKEN=stoken-addr

Specifies the address of the eight-byte STOKEN for the data space (returned

from DSPSERV CREATE).

DSPSERV EXTEND

100 z/VSE System Macros Reference

BLOCKS=size | size-addr

Defines the amount of storage (in number of 4K-blocks) by which the current

size of the data space is to be increased. size-addr specifies the address of an

area where the size is specified.

Note: The amount of storage taken from VSIZE is always the number of

4K-blocks you specify for extension, rounded up to the next multiple of

8, if necessary. For example, if you specify 10 blocks, the system rounds

this number to 16 and takes 64K from VSIZE.

NUMBLKS=numblks-addr

Specifies the address of a 4-byte area where the system returns the size by

which the data space was extended.

MF=S

Specifies the standard form of the macro, which is used to place the

parameters into an inline parameter list. This is also the default if the MF

parameter is omitted.

MF=(L,...

Specifies the list form of the macro, which is used to construct a

non-executable control program parameter list.

 lstaddr specifies the address of the area that the system is to use for the

parameter list.

 attr is an optional 1- to 60-character input string which can contain any value

that is valid on an assembler DS pseudo-op. You can use this parameter to

force boundary alignment of the parameter list. If you do not code attr, the

system provides a value of 0D, which forces the parameter list to a

double-word boundary.

 PLISTVER=0|1 specifies which parameter list the system is to generate. 0

produces a 56-character parameter list; 1 (which is always recommended)

produces a 60-character list.

 No other parameters may be specified if the list form of the macro is chosen.

MF=(E,...

Specifies the execute form of the macro, which uses the parameter list

generated by the list form of the macro.

 lstaddr specifies the address of the parameter list. This address must not be in

a data space. If the caller of the macro is in 24-bit mode, the address of the

parameter list must not be above the 16MB line.

 COMPLETE specifies that the system is to check for required parameters and

supply optional parameters that are not specified.

Return Codes in Register 15 (and Reason Codes in Register 0)

00 Successful completion

08 R0=X’xx050200’: Extending the data space would cause the data space limits

(as specified in the SYSDEF job control command) to be exceeded.

08 R0=X’xx050201’: No system GETVIS storage available (page manager).

08 R0=X’xx050202’: No virtual storage available (page manager).

08 R0=X’xx050203’: No real storage available (page manager).

DSPSERV EXTEND

Chapter 2. Macro Descriptions 101

DSPSERV RELEASE (Release Data Space) Macro

CC

name
 DSPSERV RELEASE,STOKEN=stoken_addr,START=start_addr,BLOCKS= C

C

size

size_addr

 ,MF=S

,0D

,PLISTVER=0

,MF=(L,lstaddr

)

,attr

,PLISTVER=1

(E,lstaddr

)

COMPLETE

CE

Requirements for the caller:

AMODE:

31

RMODE:

24 or ANY

ASC Mode:

Primary or AR (access register) if SYSSTATE ASCENV=AR

DSPSERV RELEASE requests the system to release a data space. Use this macro

when you have finished using a data space or when you want to reuse it for

another purpose. Releasing a data space means to initialize the virtual storage area

to hexadecimal zeros and to return the resources (used to contain your data) to the

system. Although the data contained in the virtual storage is discarded, the virtual

storage itself remains intact and is available for further use.

A non-zero key program can release the storage of any data space it owns,

provided its PSW key matches the storage key of the data space. A key-0 program

can release the storage of any data space it owns and other data spaces of the

caller’s partition.

The system rejects the request if the released size would be outside the data space

range or be zero.

STOKEN=stoken-addr

Specifies the address of the eight-byte STOKEN for the data space (returned

from DSPSERV CREATE).

START=start-addr

Specifies the address of a four-byte variable that contains the start address of

the block of storage to be returned to the system. The address must be on a

4KB boundary.

BLOCKS=size | size-addr

Defines either the length of the storage area (in blocks of 4K bytes) that the

system is to release or the address of a field that contains this length.

MF=S

Specifies the standard form of the macro, which is used to place the

parameters into an inline parameter list. This is also the default if the MF

parameter is omitted.

DSPSERV RELEASE

102 z/VSE System Macros Reference

MF=(L,...

Specifies the list form of the macro, which is used to construct a

non-executable control program parameter list.

 lstaddr specifies the address of the area that the system is to use for the

parameter list.

 attr is an optional 1- to 60-character input string which can contain any value

that is valid on an assembler DS pseudo-op. You can use this parameter to

force boundary alignment of the parameter list. If you do not code attr, the

system provides a value of 0D, which forces the parameter list to a

double-word boundary.

 PLISTVER=0|1 specifies which parameter list the system is to generate. 0

produces a 56-character parameter list; 1 (which is always recommended)

produces a 60-character list.

 No other parameters may be specified if the list form of the macro is chosen.

MF=(E,...

Specifies the execute form of the macro, which uses the parameter list

generated by the list form of the macro.

 lstaddr specifies the address of the parameter list. This address must not be in

a data space. If the caller of the macro is in 24-bit mode, the address of the

parameter list must not be above the 16MB line.

 COMPLETE specifies that the system is to check for required parameters and

supply optional parameters that are not specified.

The return code in register 15 is always 0.

DSPSERV RELEASE

Chapter 2. Macro Descriptions 103

DTFCD (Define the File for Card I/O) Macro

CC name DTFCD DEVADDR=SYSxxx,IOAREA1=name

,ASOCFLE=filename
 C

C
,BLKSIZE=n

,CONTROL=YES

,CRDERR=RETRY

,CTLCHR=

ASA

YES

 C

C
,DEVICE=nnnn

,EOFADDR=name

,ERROPT=

IGNORE

SKIP

name

,FUNC=xxx
 C

C
,IOAREA2=name

,IOREG=(r)

,MODE=xx

,MODNAME=name
 C

C

,OUBLKSZ=n

,RDONLY=YES

 ,RECFORM=FIXUNB

,RECFORM=

VARUNB

UNDEF

,RECSIZE=(r)

C

C

,SEPASMB=YES

,SSELECT=n

 ,TYPEFLE=INPUT

,TYPEFLE=

OUTPUT

CMBND

,WORKA=YES

CE

Required RMODE: 24

This macro defines a file for an IBM card I/O device or an IBM 3881 Optical Mark

Reader.

If not stated otherwise, the operands of the DTFCD macro can be specified for all

three types of files (INPUT, OUTPUT, CMBND).

ASOCFLE=filename

This operand is used together with the FUNC operand to define associated

files on the IBM 3525. For a discussion of associated files see “Programming

for Associated Files” in the z/VSE System Macros User’s Guide. ASOCFLE

specifies the file name of associated read, punch, or print files as shown in

Figure 2 on page 105. It enables macro sequence checking by the logic module

of each associated file. One file name is required per DTF for an associated file.

 This operand applies to input and output files.

DTFCD

104 z/VSE System Macros Reference

BLKSIZE=n

Enter the length of the I/O area (IOAREA1). If the record format is variable or

undefined, enter the length of the largest record.

 To use the IBM 3741 diskette as input device for SYSIPT data (as spooling

device for VSE/POWER), you can specify a maximum value of 512 bytes for

BLKSIZE.

 If the operand is omitted, the defaults for the various IBM devices are as

follows:

 160 For column binary processing on the 3505 or 3525.

 96 For the 5424 and 5425.

 80 For all other devices.

If FUNC=I is specified for a file on the IBM 3525, the length specified for

BLKSIZE must be 80 data bytes if CTLCHR=YES or if ASA is not specified; if

CTLCHR=YES or if ASA is specified, the length must be 81 bytes.

CONTROL=YES

This operand is specified if a CNTRL macro is to be issued for a file. If this

operand is specified, CTLCHR must be omitted.

 The CNTRL macro cannot be used for an input file with two I/O areas (that is,

when the IOAREA2 operand is specified), or for an input file used in

association with a punch file (when the operand FUNC=RP or RPW is

specified) on the 3525; in this case, however, this operand can be specified in

the DTFCD for the associated punch file.

CRDERR=RETRY

This operand applies to card output on the 2520 or 2540. It specifies the

┌──────────┬───────────────────┬───────────────────┬───────────────────┐

│ FUNC=... │ Read DTFCD │ Punch DTFCD │ Print DTFPR │

├──────────┼───────────────────┼───────────────────┼───────────────────┤

│ FUNC=PW │ │Filename of asso- │Filename of asso- │

│ │ │ciated print DTFPR │ciated punch DTFCD │

│ │ │ │ │

│ FUNC=RP │Filename of asso- │Filename of asso- │ │

│ │ciated punch DTFCD │ciated read DTFCD │ │

│ │ │ │ │

│ FUNC=RPW │Filename of asso- │Filename of asso- │Filename of asso- │

│ │ciated punch DTFCD │ciated print DTFPR │ciated read DTFCD │

│ │ │ │ │

│ FUNC=RW │Filename of asso- │ │Filename of asso- │

│ │ciated print DTFPR │ │ciated read DTFCD │

└──────────┴───────────────────┴───────────────────┴───────────────────┘

Examples:

 If FUNC=PW is specified, then specify:

1. The file name of the print DTFPR in the ASOCFLE=filename

operand of the punch DTFCD.

2. The file name of the punch DTFCD in the ASOCFLE=filename

operand of the print DTFPR.

 If FUNC=RPW is specified, then specify:

1. The file name of the punch DTFCD in the ASOCFLE=filename

operand of the read DTFCD.

2. The file name of the print DTFPR in the ASOCFLE=filename

operand of the punch DTFCD.

3. The file name of the read DTFCD in the ASOCFLE=filename

operand of the print DTFPR.

Figure 2. ASOCFLE Operand Usage with Print Associated Files

DTFCD

Chapter 2. Macro Descriptions 105

operation to be performed if an error is detected. From this specification, IOCS

generates a retry routine and a save area for the card punch record.

 If a punching error occurs, it is usually ignored and operation continues. The

error card is stacked in stacker P1 (punch), while correct cards are stacked in

the stacker you select. If the CRDERR=RETRY operand is included and an

error condition occurs, IOCS also notifies the operator and then enters the wait

state. The operator can either cancel the job, ignore the error, or instruct IOCS

to repunch the card.

CTLCHR=ASA | YES

This operand is required if first-character control is to be used on an output

file. ASA denotes the American National Standards character set. YES denotes

the System/370 character set. See Appendix A, “Control Character Codes,” on

page 435 for the complete list of codes. If this operand is specified, CONTROL

must be omitted.

DEVADDR=SYSIPT | SYSPCH | SYSRDR | SYSnnn

This operand specifies the logical unit name to be associated with a file. The

logical unit represents an actual I/O device address and is used in the ASSGN

job control statement to assign an actual I/O device address to the file.

 SYSIPT, SYSPCH, or SYSRDR must not be specified:

v For a file on an IBM 3881

v For a combined file on an IBM 2520 or 2540 (TYPEFLE=CMBND)

v For an associated file on an IBM 3525 (FUNC=RP, RW, RPW, or PW)

v If the operand FUNC=I is specified

v If the MODE operand is specified with C, O, or R.

DEVICE=nnnn

For nnnn, specify the device code of the IBM device associated with the file.

The code you specify can be one of the following:

 2520

 2540

 3505

 3525

 3881

If the operand is omitted, 2540 is assumed.

EOFADDR=name

This entry must be included for input and combined files; it specifies the

symbolic name of your end-of-file routine. IOCS automatically branches to this

routine on an end-of-file condition. In your routine, you can perform any

operations required for the end of the file (you generally issue a CLOSE

instruction for the file).

 IOCS detects end-of-file conditions in the card reader by recognizing the

characters /* punched in card columns 1 and 2 (column 3 must be blank).

ERROPT=IGNORE | SKIP | name

This operand specifies the desired error-exit option. The operand applies to

files as follows:

v Input with any of the possible specifications.

v Output with the specification IGNORE, except associated output files. For an

associated output file, do not use the operand at all.

The functions of the specifications are described below:

ERROPT=IGNORE

The error is to be ignored. When control returns to your program, register

DTFCD

106 z/VSE System Macros Reference

1 contains the address of the error record and, for output files, byte 3, bit 3

of the CCB is set on (see page 56). You can check this bit and take the

appropriate action to recover from the error. Only one I/O area and no

work area is permitted for output files. When IGNORE is specified for an

input file associated with a punch file (FUNC=RP or RPW) and an error

occurs, a PUT for the card in error must nevertheless be given for the

punch file.

ERROPT=SKIP

The record in error is not to be made available for processing. The next

card is read and processing continues.

ERROPT=name

IOCS branches to your routine when an error occurs. Register 1 contains

the address of the record in error; register 14 contains the return address.

 In your routine, you may perform whatever actions you desire. However,

GET macros may not be issued for cards in the same device. If the file is

an associated file, PUT macros may not be issued for cards in the same

device.

 If any other IOCS macros are issued in the routine, register 14 must be

saved. If the operand RDONLY=YES is specified, register 13 must also be

saved. At the end of your routine, return to IOCS by branching to the

address in register 14. If the input file is associated with an output file

(FUNC=RP, RPW, or RW), no punching or printing must be done for the

card in error. IOCS continues processing by reading the next card.

Note: When ERROPT is specified for an input file and an error occurs, the /*

end-of-file card may be lost. After having taken the action for the card in

error as specified by the ERROPT operand, IOCS reads the next card,

which is assumed to be a data card. If this card is an end-of-file card,

IOCS cannot recognize the end-of-file condition.

FUNC=R | P | I | RP | RW | RPW | PW

This operand specifies the type of input or output file to be processed on the

IBM 3525.

 R indicates read.

 P indicates punch.

 W indicates write (print).

When FUNC=I is specified, the file will be both punched and interpreted; no

associated file is necessary to achieve this. The information printed will be the

same as the information punched, in contrast to FUNC=PW, where any relation

between the information printed and the information punched is determined

by your program. When FUNC=I is specified the file can have only one I/O

area.

 RP, RW, RPW, and PW are used, together with the ASOCFLE operand, to

specify associated files. When one of these specifications is coded for a file, it

must also be coded for the associated file(s). Each of the associated files can

have only one I/O area.

IOAREA1=name

This operand specifies the name of the input or output area used for this file.

 If the macro is issued for a combined file, this operand specifies the input area.

If IOAREA2 is not specified, the area specified in this operand is used for both

input and output.

DTFCD

Chapter 2. Macro Descriptions 107

IOAREA2=name

This operand specifies the name of a second I/O area. If the file is a combined

file and the operand is specified, the designated area is an output area.

 If this operand is specified for a file on the IBM 3881, the IOREG operand must

also be specified.

 This operand must not be specified if either:

v In the FUNC operand, you code one of the specifications I, RP, RPW, RW, or

PW, or

v For an output file, you specify ERROPT=IGNORE.

IOREG=(r)

If two input or output areas are used instead of a work area, this operand

specifies the register (any of 2 through 12) into which IOCS puts the address of

the record. For output files, IOCS puts into this register the address where the

user can build a record. This operand cannot be used for combined files.

 This operand must be specified for a file on the IBM 3881 if the IOAREA2

operand is specified.

MODE=E | C | O | R | EO | ER | CO | CR

This operand specifies the mode used to process an input or output file on an

IBM 3505 or 3525.

E =

Normal EBCDIC mode, which is also the default. It is also the default if

only O or R is specified.

C =

Column binary mode.

O =

Optical mark read (OMR) mode.

R =

Read column eliminate mode.

 Valid entries are:

v For a file on the IBM 3505: E, C, O, R, EO, ER, CO, and CR.

v For a file on the IBM 3525: E, C, R, ER, and CR.

v For SYSIPT, SYSPCH, or SYSRDR: E. O, and R (with or without E or C)

cannot be specified for output files.

 If O or R is specified (with or without E or C), a format descriptor card

defining the card columns to be read, or eliminated, must be provided. See

“Format Descriptor Card” in the z/VSE System Macros User’s Guide for

instructions on how to write this card and on how to code and process OMR

data.

MODNAME=name

This operand is used to specify the name of the logic module that is used with

the DTF table to process the file. If the logic module is assembled with the

program, MODNAME must specify the same name as the CDMOD macro.

 If this operand is omitted, standard names are generated for calling the logic

module. If two DTF macros call for different functions that can be handled by

a single module, only one module is called.

OUBLKSZ=n

This operand is used in conjunction with IOAREA2, but only for a combined

file. Enter the maximum number of characters to be transferred at one time. If

this entry is not included and IOAREA2 is specified, the same length as

defined by BLKSIZE is assumed.

DTFCD

108 z/VSE System Macros Reference

RDONLY=YES

This operand is specified if the DTF is used with a read-only module. Each

time a read-only module is entered, register 13 must contain the address of a

72-byte doubleword-aligned save area.

 Every task requires its own uniquely defined save area, and each time an

imperative macro (except OPEN or OPENR) is issued, register 13 must contain

the address of the save area associated with that task. Because each of the save

areas is unique for a certain task, the module is reentrant. Thus, the module

can be used concurrently by two or more tasks.

 If an ERROPT routine issues I/O macros using the same read-only module that

caused control to pass to the error routine, your program must provide another

save area. One save area is used for the normal I/O operations; the second for

I/O operations in the ERROPT routine. Before returning to the module that

entered the ERROPT routine, register 13 must contain the save area address

originally specified for the task.

 If this operand is omitted, the module generated is not reenterable, and no

save area is required.

RECFORM=FIXUNB | VARUNB | UNDEF

This operand specifies the record format of the file: fixed length, variable

length, or undefined. If the record format is fixed unblocked (FIXUNB,) this

operand may be omitted. This operand must specify FIXUNB if you also

specified one of the following:

 TYPEFLE=INPUT

 TYPEFLE=CMBND

 FUNC=I

 DEVICE=3881

RECSIZE=(r)

For undefined records, this operand specifies the register (any one of 2 through

12) that contains the length of the output record. You must load the length of

each record into the specified register before you issue the PUT macro for the

record.

SEPASMB=YES

Include this operand only if your DTFCD macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name used as file name. The name is used as the module’s

transfer address. If you omit this operand, the assembler assumes that the

DTFDA macro is assembled together with your program.

SSELECT=n

This operand specifies the valid stacker-select character for a file. If this

operand is not specified, cards are selected into the NR (normal read) or NP

(normal punch) stackers.

 This operand must not be specified for:

v Combined files

v Files on the IBM 3881

v Read files associated with punch files (FUNC=RP or FUNC=RPW) on an

IBM 3525.

 In this case, SSELECT=n may be specified for the associated output file.

 When this operand is used, the program ignores CONTROL=YES with input

files.

DTFCD

Chapter 2. Macro Descriptions 109

TYPEFLE=INPUT | OUTPUT | CMBND

This operand specifies whether a file is input, output, or combined. A

combined file can be specified for an IBM 2520 or for an IBM 2540 with the

punch-feed-read feature. TYPEFLE=CMBND is applicable if both GETs and

PUTs are issued for the same card file.

 Only TYPEFLE=INPUT can be specified for the 3881. If OUTPUT or CMBND

is specified, the DTF defaults to DEVICE=2540 and a non-executable CDMOD

logic module is produced. The MNOTE

 IMPROPER DEVICE. 2540 ASSUMED

is then printed at the time of assembly.

 If the operand is omitted, INPUT is assumed.

WORKA=YES

If I/O records are processed in work areas instead of in the I/O areas, specify

this operand. You must set up the work area in storage. The address of the

work area, or a general-purpose register which contains the address, must be

specified in each GET and PUT macro.

 If ERROPT=IGNORE is specified for an output file or if DEVICE=3881,

WORKA=YES must not be specified.

DTFCD

110 z/VSE System Macros Reference

DTFCN (Define the File for Console I/O) Macro

CC name DTFCN DEVADDR=SYSxxx,IOAREA1=name

,BLKSIZE=n

,INPSIZE=n
 C

C

,MODNAME=name

 ,RECFORM=FIXUNB

,RECFORM=UNDEF

,RECSIZE=(r)

C

C
 ,TYPEFLE=INPUT

,TYPEFLE=

OUTPUT

CMBND

,WORKA=YES

CE

Required RMODE: 24

The macro defines an input or output file that is processed on an IBM console

printer-keyboard, or display operator console. DTFCN provides GET/PUT logic as

well as PUTR logic for a file.

BLKSIZE=n

This operand specifies the length of the I/O area; if the PUTR macro is used

(TYPEFLE=CMBND is specified), this operand specifies the length of the

output part of the I/O area. For the undefined record format, BLKSIZE must

be as large as the largest record to be processed. The length must not exceed

256 characters.

 If the console buffering option is specified at system generation time and the

device is assigned to SYSLOG, physical IOCS can increase throughput for each

actual output record not exceeding 80 characters. This increase in throughput

results from starting the output I/O command and returning to the program

before output completion. Regardless of whether or not output records are

buffered (queued on an I/O completion basis), they are always printed or

displayed in first-in-first-out order.

DEVADDR=SYSLOG | SYSnnn

This operand specifies the logical unit name associated with the file. Specify

DEVADDR=SYSLOG to get partition prefixes (BG, F1, F2, F3, ... Fn) for

message identification.

 DEVADDR=SYSLOG must be specified if your DTFCN macro includes

TYPEFLE=CMBND.

 Specifying DEVADDR=SYSnnn is not recommended because:

v The lines you write to the console do not have a partition identifier.

v A GET request for input from the console cannot be buffered, and the

system waits for the requested input. Until the operator supplies this input,

no other console communication can take place. Thus, your system’s console

can become a serious performance bottleneck.

INPSIZE=n

This operand specifies the length of the input part of the I/O area for PUTR

macro usage.

IOAREA1=name

This operand specifies the name of the I/O area used by the file. For PUTR

macro usage, the first part of the I/O area is used for output, and the second

part is used for input. The lengths of these parts are specified by the BLKSIZE

DTFCN

Chapter 2. Macro Descriptions 111

and INPSIZE operands respectively. The I/O area is not cleared before or after

a message is printed, or when a message is canceled and reentered on the

console.

MODNAME=name

This operand specifies the name of the logic module generated by this DTFCN

macro. If this entry is omitted, standard module names are generated for the

logic module.

 A module name must be given when two phases (each containing a DTFCN

macro) are link-edited into the same program. Under such conditions, omission

of this operand results in unresolved address constants.

RECFORM=FIXUNB | UNDEF

This operand specifies the record format of the file: fixed length or undefined.

FIXUNB must be specified if TYPEFLE=CMBND is specified. FIXUNB is

assumed if the RECFORM operand is omitted.

RECSIZE=(r)

For undefined records, this operand is required for output files and is optional

for input files. It specifies a general register (2 to 12) that contains the length of

the record. On output, you must load the length of each record into the

specified register before you issue a PUT macro. If specified for input files,

IOCS provides the length of the record transferred to storage.

TYPEFLE=INPUT | OUTPUT | CMBND

This operand specifies a file as input, output, or combined. If INPUT is

specified, code is generated for both input and output files. If OUTPUT is

specified, code is provided for output files only.

 CMBND must be specified if you use the PUTR macro. This causes coding to

be generated for:

v Input and output files.

v The use of PUTR macros, which ensures that a message requiring an

operator response is not deleted from the console display.

 When CMBND is specified, DEVADDR=SYSLOG must also be specified.

WORKA=YES

This operand indicates that a work area is used with the file. A GET or PUT

macro moves the record to or from the work area. A PUTR macro moves the

record from and to the work area.

DTFCN

112 z/VSE System Macros Reference

DTFDA (Define the File for Direct Access) Macro

 Required RMODE: 24

The DTFDA macro defines a file for Direct Access Method (DAM) processing. If

not stated otherwise, the operands of the DTFDA macro can be specified for both

input and output files.

DAM does not support FBA devices.

AFTER=YES

This operand must be included for output files if any records (or an additional

record) are written in a file by a formatting WRITE (count, key and data)

following the last record previously written on a track. The remainder of the

track is erased. That is, whenever either of the macros

 WRITE filename,AFTER

 WRITE filename,RZERO

is used in a program, this operand is required.

BLKSIZE=n

This operand indicates the size of the I/O area by specifying the maximum

number of characters that are transferred to or from the area at any one time.

When undefined, variable length or spanned records are read or written, the

area must be large enough to accommodate the largest record. The chapter

“I/O Area Specification” in the z/VSE System Macros User’s Guide describes

how to compute the size of an I/O area.

 IOCS uses this specification to set up the count field of the CCW for reading or

writing records.

CONTROL=YES

Include this operand if a CNTRL macro is issued for this file. The CNTRL

macro for seeking on a disk allows you to specify a track address on which

access movement should begin for the next READ or WRITE macro. While the

arm is moving, you may process data and/or request I/O operations on other

devices.

CC name DTFDA BLKSIZE=n,ERRBYTE=name,IOAREA1=name,SEEKADR=name,TYPEFLE= INPUT

OUTPUT

,AFTER=YES
 C

C
,CONTROL=YES

,DEVADDR=SYSnnn

,DSKXTNT=n

,ERREXT=YES

,FEOVD=YES
 C

C
,HOLD=YES

,IDLOC=name

,KEYARG=name

,KEYLEN=n

,LABADDR=name
 C

C
,READID=YES

,READKEY=YES

,RECFORM=recordformat

,RECSIZE=(r)
 C

C
,RELTYPE=

DEC

HEX

,SEPASMB=YES

,SRCHM=YES

,TRLBL=YES

,VERIFY=YES
 C

C
,WRITEID=YES

,WRITEKY=YES

,XTNTXIT=name
 CE

DTFDA

Chapter 2. Macro Descriptions 113

DEVADDR=SYSnnn

This operand must specify the symbolic unit (SYSnnn) associated with a file if

the symbolic unit is not provided via an EXTENT job control statement. If such

a unit is provided, its specification overrides the DEVADDR specification. This

specification, or symbolic unit, represents an actual I/O address and is used in

the ASSGN job control statement to assign the actual I/O device address to the

file.

Note: EXTENT job control statements provided for DAM must be supplied in

ascending order, and the symbolic units for multi-volume files must be

assigned in consecutive order.

DSKXTNT=n

This operand indicates the maximum number of extents (up to 256) that are

specified for a file. When this operand is used together with FIXUNB,

VARUNB, or UNDEF specified in the RECFORM operand, it indicates that a

relative ID is used in the SEEKADR and IDLOC locations. If DSKXTNT=n is

omitted, a physical ID is assumed in the SEEKADR and IDLOC locations.

 If RECFORM=SPNUNB is specified, DSKXTNT is required. If relative

addressing is used, the RELTYPE operand must also be specified.

ERRBYTE=name

This operand is required. It specifies the name of a two-byte field in which

IOCS stores an error-condition or status code. For description of these codes,

see “Error Handling” in the z/VSE System Macros User’s Guide .

ERREXT=YES

This operand enables irrecoverable I/O errors (occurring before a data transfer

takes place) to be indicated to your program. This error information is

indicated in the bytes named in the ERRBYTE operand and is available after

the WAITF macro has been issued.

FEOVD=YES

This operand is specified if code is generated to handle end-of-volume records.

It should be specified only when reading a file which was built using DTFSD

and the FEOVD macro.

HOLD=YES

This operand provides for the track hold function, which is to be specified at

system generation time. If the operand is omitted, the track hold function is

not performed. For details, see “DASD Record Protection (Track Hold)” in the

z/VSE System Macros User’s Guide.

IDLOC=name

Include this operand if you want IOCS to supply the ID of a record after each

READ or WRITE (ID or KEY) is completed. Specify the name of a record

reference field in which IOCS is to store the ID. WAITF should be used before

referencing this field. Do not specify the same field for IDLOC and SEEKADR.

Note: When the record to be read or written is the last record of the cylinder,

an end-of-cylinder indication is posted in ERRBYTE1, bit 2, but the

address returned is that of the first record of the next cylinder. If, in

addition, the end-of-volume indication is posted, the address returned in

IDLOC is all 1 bits.

IOAREA1=name

This operand must be included. It specifies the name of the input/output area

DTFDA

114 z/VSE System Macros Reference

used for the file. IOCS routines transfer records to or from this area. The

specified name must be the same as the name used in the DS instruction that

reserves this area of storage.

KEYARG=name

This operand must be included if records are identified by key; that is, if either

of the macros

 READ filename,KEY

 WRITE filename,KEY

is used in a program, this entry and the corresponding KEYLEN operand are

required. KEYARG specifies the name of the key field in which you supply the

record key to IOCS.

 The KEYARG operand is required for formatting WRITE (WRITE

filename,AFTER) operations for files containing keys if RECFORM=VARUNB

or SPNUNB. It is required also when the macro

 READ filename,ID

is specified and if KEYLEN is not zero. When record reference is by key, IOCS

uses this specification at assembly time to set up the data address field of the

CCW for search commands.

KEYLEN=n

This operand must be included if record reference is by key or if keys are read

or written. It specifies the number of bytes in each key. All keys must have the

same length. If this operand is omitted, IOCS assumes a key length of zero.

 If there are keys recorded on disk and this entry is absent, a WRITE ID or

READ ID writes or reads the data portion of the record.

 When the record reference is by key, IOCS uses this specification and your

IOAREA1 specification to locate the data field in the I/O area.

LABADDR=name

You may require one or more user-standard labels in addition to the standard

file label. If so, you must include your own routine to check (or write) the

labels. The name of this routine is specified in this operand. IOCS branches to

the routine after having processed the standard label. For more information

about the handling of user-standard labels, see the section “Processing of User

Labels” on page 445.

 Note that the routine always gets control in 24-bit addressing mode.

READID=YES

This operand must be included for an input file if, in your program, the macro

’READ filename,ID’ is used.

READKEY=YES

This operand must be included for an input file if, in your program, the macro

’READ filename,KEY’ is used.

RECFORM=FIXUNB | SPNUNB | UNDEF | VARUNB

This operand specifies the type of records in the input or output file. The

specifications are:

FIXUNB

For fixed-length records. All records are considered unblocked. If you want

blocked records, you must provide your own blocking and deblocking.

SPNUNB

For spanned records. This specification is for unblocked variable-length

logical records of less than 32,768 bytes per record.

DTFDA

Chapter 2. Macro Descriptions 115

UNDEF

For undefined records. This specification is required only if the records are

of undefined format.

VARUNB

For variable-length records. This specification is for unblocked

variable-length records.

 For a description of record formats, see “Record Types” in the z/VSE System

Macros User’s Guide.

RECSIZE=(r)

This operand must be included if undefined records are specified

(RECFORM=UNDEF). It specifies the number of the general-purpose register

(any of 2 through 12) that contains the length of each individual input or

output record.

 Whenever an undefined record is read, IOCS supplies the length of the data

area for that record in the specified register.

 When an undefined record is written, you must load the length of the data

area of the record (in bytes) into this register, before you issue the WRITE

macro for the record. IOCS adds the length of the key when required.

 When records are written (AFTER specified in the WRITE macro), IOCS uses

the length to set up the count area written on disk. IOCS adds the length of

both the count and the key when required.

RELTYPE=DEC | HEX

This operand specifies whether the zoned decimal (DEC) or hexadecimal

(HEX) form of the relative ID is to be used. When FIXUNB, VARUNB, or

UNDEF is specified in the RECFORM operand, RELTYPE should be supplied

only if the DSKXTNT operand (relative ID) is specified.

 If the operand is omitted, a hexadecimal relative ID is assumed. However, if

DSKXTNT is also omitted, a physical ID is assumed in the SEEKADR and

IDLOC addresses.

 If RECFORM=SPNUNB is specified, the RELTYPE operand is required when

relative addressing is used. If RELTYPE is omitted, a physical ID is assumed in

the SEEKADR and IDLOC addresses.

SEEKADR=name

This operand must be included to specify the name of your track-reference

field. In this field, you store the track location of the particular record read or

written. IOCS refers to this field to determine which volume and which track

contains the desired record. Whenever records are to be located by searching

for a specified ID, the track-reference field must also contain the number of the

record on the track.

SEPASMB=YES

Include this operand only if the DTFDA macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name used as file name. The name is used as the module’s

transfer address. If you omit this operand, the assembler assumes that the

DTFDA macro is assembled together with your program.

SRCHM=YES

If records are identified by key, this operand may be included to cause IOCS to

search multiple tracks for each specified record. The macros

 READ filename,KEY

 WRITE filename,KEY

DTFDA

116 z/VSE System Macros Reference

cause IOCS to search the track specified in the track-reference field and all

following tracks in the cylinder, until the record is found or the end of the

cylinder is reached. If the file ends before the end of the cylinder and the

record is not found, the search continues into the next file, if any, on the

cylinder. EOC, instead of NRF, is indicated. Without SRCHM=YES, each search

is confined to the specified track.

TRLBL=YES

This operand, if specified with the LABADDR operand, indicates that user

standard trailer labels are to be read or written following the user standard

header labels on the user label track. Both operands must be specified for

trailer label processing.

TYPEFLE=INPUT | OUTPUT

This operand must be included to indicate how standard volume and file

labels are to be processed. INPUT indicates that standard labels are to be read;

OUTPUT indicates that standard labels are to be written.

VERIFY=YES

This operand is included if you want to check the parity of disk records after

they are written. If this operand is omitted, any records written on a disk are

not verified.

WRITEID=YES

This operand must be included if the disk location for writing an output

record or updating an input file is specified by a record identifier; that is,

whenever the macro

 WRITE filename,ID

is used in the program, this operand is required.

WRITEKY=YES

This operand must be included if the disk location for writing any output

record or updating an input file is specified by record key, that is, whenever

 WRITE filename,KEY

is used.

XTNTXIT=name

This operand is included if you want to process label extent information. It

specifies the name of your extent exit routine. Note that the routine always

gets control in 24-bit addressing mode.

 During an OPEN, IOCS branches to your routine after each specified extent is

checked. Upon entering your routine, IOCS stores, in register 1, the address of

a 14-byte field that contains the label extent information (in binary form)

retrieved from the format 1 and format 3 labels. If user labels are present, the

user label track is returned as a separate extent and the lower limit of the first

normal extent is increased by one track. The format of this field is shown in

Table 5 on page 118.

 Return to IOCS by use of the LBRET macro. Registers 2 through 13 are

available in the XTNTXIT routine. Within the routine you cannot issue a macro

that calls a transient routine (such as OPEN, CLOSE, DUMP, PDUMP,

CANCEL, CHKPT, etc.).

DTFDA

Chapter 2. Macro Descriptions 117

Table 5. Label Extent Information Field

Bytes Contents

0 Extent type code (as specified in the EXTENT statement).

1 Number of extent (as determined by the EXTENT statement sequence).

2-5 Lower limit of the extent (cchh).

6-9 Upper limit of the extent (cchh).

10-11 Symbolic unit number (in hexadecimal format).

12-13 Not used.

DTFDA

118 z/VSE System Macros Reference

DTFDI (Define the File for Device Independence) Macro

CC name DTFDI DEVADDR=SYSxxx,IOAREA1=name

,CISIZE=n

,EOFADDR=name
 C

C
,ERROPT=

IGNORE

SKIP

name

,IOAREA2=name

,IOREG=(r)
 C

C
,MODNAME=name

,RDONLY=YES

,RECSIZE=n

,SEPASMB=YES
 C

C
,TRC=YES

,WLRERR=name
 CE

Required RMODE: 24

The macro provides device independence for system logical units.

CISIZE=n

This operand specifies the FBA control interval size. The value n must be an

integral multiple of the FBA physical block size and, if greater than 8K, must

be a multiple of 2K. The maximum value is 32768 (32K), except when assigned

to SYSLST or SYSPCH, when the maximum is 30720 (30K).

 If CISIZE is omitted, CISIZE=0 is assumed. For FBA devices, control interval

size may be overridden for an output file at execution time by specifying the

CISIZE operand of the DLBL control statement. For an input file, the CISIZE

value in the format-1 label is used. If the CISIZE value is zero, then OPEN

calculates a value based on the RECSIZE value specification.

DEVADDR=SYSIPT | SYSLST | SYSPCH | SYSRDR

This operand must specify the symbolic unit associated with this system file.

Only the system names shown above may be specified.

EOFADDR=name

This operand specifies the name of your end-of-file routine. It is required only

if SYSIPT or SYSRDR is specified. Note that the routine always gets control in

24-bit addressing mode.

 IOCS branches to this routine when it detects an end-of-file condition. In this

routine, you can perform any operations necessary for the end-of-file condition

(you generally issue the CLOSE macro).

 An end-of-file condition exists when the following occurs for SYSIPT or

SYSRDR:

v For a card reader, a /* in positions 1 and 2 of the record.

v For tape, a /* in positions 1 and 2 of the record or a tapemark.

v For disk, a /* in positions 1 and 2 of the record or an end-of-file record.

 IOCS detects the end-of-file condition on diskette units by recognizing that end

of data has been reached on the current volume and that there are no more

volumes available.

ERROPT=IGNORE | SKIP | name

This operand does not apply to output files. For output files for most devices,

the job is automatically terminated after IOCS has attempted to retry writing

the record.

DTFDI

Chapter 2. Macro Descriptions 119

This operand applies to wrong-length records if WLRERR is omitted. If both

ERROPT and WLRERR are omitted and wrong-length records occur, IOCS

ignores the error.

 ERROPT specifies the function to be performed for an error block. If an error is

detected when reading a magnetic tape, or a disk or a diskette volume, IOCS

attempts to recover from the error. If the error is not corrected, the job is

terminated unless this operand is included to specify other procedures to be

taken. The three specifications are described below:

ERROPT=IGNORE

The error condition is to be ignored. The address of the error record is

made available to you for processing.

ERROPT=SKIP

The error block is not to be made available for processing. The next record

is read and processing continues.

ERROPT=name

IOCS is to branch to your routine when an error occurs. Register 1 contains

the address of the record in error; register 14 contains the return address.

Note that the routine always gets control in 24-bit addressing mode.

 In your error routine, you may perform whatever functions are desired, or

simply note the error condition. However, you may not issue any GET

macro in the routine. If you use any other IOCS macros, you must save the

contents of register 14. You must also save the contents of register 13. To

access the error record, use the address in register 1; the address in the

IOREG register may vary.

 At the end of the error routine, return to IOCS by branching to the address

in register 14. The next record is then made available for processing.

IOAREA1=name

This operand must specify the name of the input or output area used with the

file. The input and/or output routines transfer records to or from this area.

 If the DTFDI macro is used to define a printer file, or a card file to be

processed on a printing card punch, the first byte of the output area must

contain a control character.

IOAREA2=name

Two input or output areas can be allotted for a file to permit overlapped GET

or PUT processing. The operand specifies the name of the second I/O area.

IOREG=(r)

When two I/O areas are used, this operand specifies the general purpose

register (any of 2 through 12) that points to the address of the next record. For

input files, it points to the logical record available for processing. For output

files, it points to the address of the area where you can build a record.

 If the operand is omitted and two I/O areas are used, register 2 is assumed.

MODNAME=name

This operand may be used to specify the name of the logic module used with

the DTF table to process the file. If the logic module (DIMOD) is assembled

with the program, the MODNAME operand in this DTF must specify the same

name as the DIMOD macro.

 If this entry is omitted, standard names are generated for calling the logic

module. If two different DTF macros call for different functions that can be

DTFDI

120 z/VSE System Macros Reference

handled by a single module, only one standard-named module is called. The

module specified by this operand is ignored if the actual device is one of the

following:

 A disk device

 A printer of type PRT1, IBM 4248, or IBM 3800.

 OPEN always provides linkage to an IBM-supplied module for these devices.

RDONLY=YES

This operand is specified if the DTF is to be used with a read-only module.

Each time a read-only module is entered, register 13 must contain the address

of a 72-byte doubleword-aligned save area. Each task should have its own

uniquely defined save area, and each time an imperative macro (except OPEN,

OPENR or LBRET) is issued, register 13 must contain the address of the save

area associated with that task. The fact that the save areas are unique for each

task makes the module reentrant (that is, capable of being used concurrently

by several tasks).

 If an ERROPT or WLRERR routine issues I/O macros using the same

read-only module that caused control to pass to either error routine, the

program must provide another save area. One save area is used for the initial

I/O operations, and the second for I/O operations in the ERROPT or WLRERR

routine. Before returning to the module that entered the error routine, register

13 must be set to the save area address originally specified for the task.

 If the operand is omitted, the module generated is not reenterable and no save

area need be established.

 This operand is ignored for all disk devices. For these devices a read-only

module is always supplied.

RECSIZE=n

This operand specifies the length of the record. For input files (SYSIPT and

SYSRDR), the maximum allowable record size is 81 bytes. To ensure that

control characters are handled properly during input, specify the maximum of

81 bytes (and also an I/O area of 81 bytes). In this case, the first byte of the

I/O area always contains the first data byte, even if the input consists of 80

data bytes plus one control character.

 For output files, RECSIZE must include one byte for control characters. The

maximum length specification is 121 for SYSLST and 81 for SYSPCH.

 For disk files, 121 must be specified for SYSLST, and 81 for SYSPCH. For

printers and punches, DIMOD assumes a S/370-type control character if the

character is not a valid ASA character. The program checks ASA control

characters before S/370-type control characters. Therefore, if it is a valid ASA

control character (even though it may also be a S/370-type control character), it

is used as an ASA control character. Otherwise, it is used as a S/370-type

control character.

 Control character codes are listed in Appendix A. However:

v Stacker-selection code 3 for the IBM 2540 cannot be used if device

independence is to be maintained.

 If this operand is omitted, the following is assumed:

 80 bytes for SYSIPT.

 80 bytes for SYSRDR.

 81 bytes for SYSPCH.

 121 bytes for SYSLST.

DTFDI

Chapter 2. Macro Descriptions 121

SEPASMB=YES

Include this operand only if your DTFDI macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name used as file name. The name is used as the module’s

transfer address. If you omit this operand, the assembler assumes that the

DTFDI macro is assembled together with your program.

TRC=YES

This operand applies to the IBM 3800 Printing Subsystem. TRC=YES specifies

that a table reference character is included as the first byte of each output data

line (following the optional print control character). The printer uses the table

reference character (0, 1, 2, or 3) to select the character arrangement table

corresponding to the order in which the table names have been specified with

the CHARS operand in the SETPRT job control statement (or SETPRT macro

instruction).

 If the device allocated is not a printer and TRC=YES is specified, the table

reference character is treated as data when a PUT is issued. If the device is a

non-3800 printer, the table reference character is removed and not printed.

WLRERR=name

This operand applies only to input files on devices other than diskette units. It

specifies the name of your routine to which IOCS branches if a wrong-length

record is read on a tape or disk device. Note that the routine always gets

control in 24-bit addressing mode.

 If this operand is omitted and a wrong-length error occurs, the ERROPT

routine will be invoked if it is available.

DTFDI

122 z/VSE System Macros Reference

DTFDR (Define the File for Document Reader) Macro

 Required RMODE: 24

You must use the macro to define a file on an IBM 3886.

BLKSIZE=nnn

Specifies the length of the area named by the IOAREA1 keyword. The length

of the area must be equal to the length of the longest record to be passed from

the 3886.

 If this operand is omitted, the maximum length of 130 is assumed.

Note: LIOCS does not allow you to block records read from the 3886.

COREXIT=name

Provides the symbolic name of your error correction routine. LIOCS branches

to this routine whenever an error is indicated in the EXITIND byte.

 You can attempt to recover from various errors that occur on the 3886 through

the COREXIT routine you provide. Your COREXIT routine receives control

whenever one of the following conditions occurs:

 Incomplete scan

 Line mark station timing mark check error

 Non-recovery error

 Permanent error

 If any of these errors occur while the file is being opened, the COREXIT

routine does not receive control and the job is canceled. Table 6 describes

normal functions for the COREXIT routine for the various error conditions; it

lists the exits that must be taken from the COREXIT routine.

 Error messages are provided to describe errors to the operator during program

execution.

 Table 6. COREXIT Routine Functions

Error Normal COREXIT Function Exit to:

X’F1’ Do any processing that may be required.

The document may have been read

incorrectly; you may want to delete all data

records read in (see also Note 2 on page 124

below).

Branch to the address in

register 14 to return to the

instruction following the

macro that caused the error.

X’F2’ Eliminate the data that has been read from

this document and prepare to read the next

document (see also Note 1 on page 124).

Routine in your program to

read the next document.

X’F3’ Rescan the line, using another format record

or using image processing and editing the

record in your program (see also Note 2 on

page 124).

Branch to the address in reg.

14 to return to the instruction

following the macro that

caused the error.

CC name DTFDR COREXIT=name,DEVADDR=SYSxxx,EOFADDR=name,EXITIND=name C

C ,FRNAME=name,FRSIZE=n,HEADER=name,IOAREA1=name

,BLKSIZE=nnn

,DEVICE=3886
 C

C
,MODNAME=name

,RDONLY=YES

,SEPASMB=YES

,SETDEV=YES
 CE

DTFDR

Chapter 2. Macro Descriptions 123

Table 6. COREXIT Routine Functions (continued)

Error Normal COREXIT Function Exit to:

X’F4’ or X’F9’ Do whatever processing is necessary before

the job is canceled.

Your end-of-job routine (see

also Note 1).

Notes:

1. If, in your COREXIT routine, you issue an I/O macro to the 3886 and an

error occurs during that operation, control is returned to the beginning of

the COREXIT routine. You must take precautions in the COREXIT routine

to prevent looping in this situation. If no errors occur control returns to the

instruction following the I/O macro.

2. If, in your COREXIT routine, you issue an I/O macro to the 3886, control

always returns to the instruction following the macro. You should then

check the completion code to determine the outcome of the operation.

DEVADDR=SYSxxx

Specifies the symbolic unit to be associated with the logical file. The symbolic

unit is associated with an actual I/O device through the job control ASSGN

statement.

DEVICE=3886

Indicates that an IBM 3886 is the I/O device for this file. This operand may be

omitted.

EOFADDR=name

Specifies the symbolic address of your end-of-file routine. LIOCS branches to

this routine whenever end of file is detected on the 3886.

EXITIND=name

Specifies the symbolic name of the 1-byte area in which the completion code is

returned to the COREXIT routine for error handling from an I/O operation.

 The completion codes are:

X’F0’ =

No errors occurred (this code should not be present when the COREXIT

routine receives control).

X’F1’ =

Line mark station timing mark check error.

X’F2’ =

Non-recovery error. Do not issue the CNTRL macro to eject the document

from the machine. Have the operator remove the document.

X’F3’ =

Incomplete scan.

X’F4’ =

Line mark station timing mark check and equipment check.

X’F9’ =

Permanent error.

Note: If any of these errors occur while the file is being opened, the COREXIT

routine does not receive control and the job is canceled.

FRNAME=phasename

Specifies the name of the format record that is to be loaded when the file is

opened. This name is the one you used for link-editing the desired format

record. To build a format record, proceed as follows:

1. Code a DFR macro and one or more DLINT macros.

2. Assemble these macros.

DTFDR

124 z/VSE System Macros Reference

3. Link-edit the assembled macros into a suitable sublibrary.

FRSIZE=n

Specifies the number of bytes to be reserved in the DTF expansion for format

records. The number must equal at least the size of the largest DFR macro

expansion and its associated DLINT macro expansions, plus four. This size is

printed in the ninth and tenth bytes of the DFR macro expansion.

 If you use the SETDEV macro in your program to change format records, you

can reduce the library retrieval time by specifying a size large enough to

contain all the frequently used format records. The area should then be equal

to the sum of the format record sizes, plus four bytes for each format record.

When the SETDEV macro is issued, the format record is loaded into this area

from the related sublibrary if this record is not already in the area.

HEADER=name

Specifies the symbolic name of the 20-byte area to receive the header record

from the 3886.

IOAREA1=name

Specifies the symbolic name of the input area to be used for the file. The area

must be as large as the size specified in the BLKSIZE operand. If BLKSIZE is

not specified, the input area must be 130 bytes.

MODNAME=name

This operand may be used to specify the name of the logic module used with

the DTF table to process the file. If the logic module (DRMOD) is assembled

with the program, the MODNAME operand in this DTF must specify the same

name as the DRMOD macro.

 If this entry is omitted, standard names are generated for calling the logic

module. If two different DTF macros call for different functions that can be

handled by a single module, only one standard-named module is called.

RDONLY=YES

This operand is specified if the DTF is used with a read-only module. Each

time a read-only module is entered, register 13 must contain the address of a

72-byte doubleword-aligned save area. Each DTF should have its own uniquely

defined save area.

 Each time an imperative macro (except OPEN or OPENR) is issued for a DTF,

register 13 must contain the address of the save area associated with that DTF.

 If a COREXIT routine issues I/O macros using the same read-only module that

caused control to pass to either error routine, your program must provide

another save area. One save area is used for the normal I/O operations, and

the second for I/O operations in the COREXIT routine. Before returning to the

module that entered the COREXIT routine, register 13 must contain the save

area address originally specified for that DTF.

 If this operand is omitted, the module generated is not reenterable, and no

save area is required.

SEPASMB=YES

Include this operand only if your DTFDR macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name used as file name. The name is used as the module’s

transfer address. If you omit this operand, the assembler assumes that the

DTFDR macro is assembled together with your program.

DTFDR

Chapter 2. Macro Descriptions 125

SETDEV=YES

Specifies that the SETDEV macro is issued in your program to load a different

format record into the 3886.

DTFDU (Define the File for Diskette Unit I/O) Macro

CC name DTFDU EOFADDR=name,IOAREA1=name,RECSIZE=n

,CMDCHN=n
 C

C
,DEVADDR=SYSxxx

,DEVICE=3540

,ERREXT=YES
 C

C

,ERROPT=

IGNORE

SKIP

name

 ,FEED=YES

,FEED=NO

,FILESEC=YES

,IOAREA2=name

C

C
,IOREG=(r)

,MODNAME=name

,RDONLY=YES

,SEPASMB=YES
 C

C
 ,TYPEFLE=INPUT

,TYPEFLE=OUTPUT

,VERIFY=YES

,VOLSEQ=YES

,WORKA=YES

C

C
,WRTPROT=YES

 CE

Required RMODE: 24

The macro defines sequential (consecutive) processing for a file contained on a

diskette.

CMDCHN=n

This operand is specified to indicate the number of Read/Write CCWs to be

command chained. Valid entries are 1, 2, 13, or 26; 1 is assumed if this operand

is omitted. For each CCW specified by this operand, one record is processed

(for example, if you code CMDCHN=13, 13 records are command chained and

are processed - read or written - as a group). For entries of 2, 13, or 26, either

the IOREG operand or the WORKA operand must be specified.

DEVADDR=SYSxxx

This operand specifies the symbolic unit (SYSxxx) associated with the file if an

EXTENT job control statement is not provided. An EXTENT statement is not

required for single-volume input files. If an EXTENT statement is provided, its

specification overrides any DEVADDR specification. SYSxxx represents an

actual I/O device address, and is used in the ASSGN job control statement to

assign the actual I/O device address to this file.

DEVICE=3540

This operand specifies that the file to be processed is on the IBM 3540. This

operand may be omitted.

DTFDR

126 z/VSE System Macros Reference

EOFADDR=name

This operand specifies the symbolic name of your end-of-file routine. IOCS

automatically branches to this routine on an end-of-file condition. You can

perform any operations required for the end of file in this routine (you will

generally issue the CLOSE macro).

ERREXT=YES

This operand enables IOCS to indicate to your program permanent I/O errors.

The operand enables your ERROPT routine to return to DUMODFx with the

ERET macro. If you specify this operand, you must also specify the ERROPT

operand. However, to take full advantage of this option, use the

ERROPT=name operand.

ERROPT=IGNORE | SKIP | name

Specify this operand if you do not want a job to be terminated when a

permanent error cannot be corrected in the diskette error routine. If attempts to

reread a chain of records are unsuccessful, the job is terminated unless the

ERROPT entry is included. Either IGNORE, SKIP, or the name of an error

routine can be specified. The functions of these specifications are described

below.

ERROPT=IGNORE

The error condition is ignored. The records are made available for

processing. On output, the error condition is ignored and the records are

considered written correctly.

ERROPT=SKIP

No records in the error chain are made available for processing. The next

chain of records is read from the diskette, and processing continues with

the first record of that chain. On output the SKIP option is the same as the

IGNORE option.

ERROPT=name

IOCS branches to the routine named by this operand even if ERREXT=YES

is not specified. In this routine, you can perform any function as desired or

simply make note of the error condition. However, you may not issue any

GET macro in the routine for records in the error chain. If you use any

other IOCS macros (excluding ERET if ERREXT=YES), save the contents of

register 14 and, if RDONLY=YES, also of register 13. Restore these contents

to the two registers after their use.

 If ERREXT is not specified, register 1 contains the address of the first

record in the error chain. In your error routine, reference records in the

error chain by referring to this address. The address in the IOREG register

or the contents of the work area are variable and should not be used to

process error records.

 At the end of the routine, return control to IOCS by branching to the

address in register 14. For a read error, IOCS skips the chain of records in

error and makes the first record of the next chain available for processing.

 If ERREXT is specified, register 1 contains the address of a two-word

parameter list:

Bytes Contents

0-3 Address of the DTF table for the file.

4-7 The four-byte address of the first record in the error chain.

DTFDU

Chapter 2. Macro Descriptions 127

Processing is similar to that described above, except for addressing the

records in error. At the end of its processing, the routine returns to LIOCS

by issuing the ERET macro:

v For an input file, the program:

– Skips the error chain and reads the next chain with an ERET SKIP.

– Ignores the error with an ERET IGNORE.

– Makes another attempt to read the error chain with an ERET RETRY.
v For an output file, the program:

– Ignores the error condition with ERET IGNORE or ERET SKIP.

– Attempts to write the error chain with an ERET RETRY. Bad spot

control records (1, 2, 13, or 26 records depending on the CMDCHN

specification) are written at the current diskette address, and the write

chain is retried in the next 1, 2, 13, or 26 (depending on the

CMDCHN specification) sectors on the disk.

 Figure 3 summarizes the error options for a diskette file.

FEED=YES | NO

If YES is specified and IOCS detects an end-of-file condition, the diskette being

processed is fed to the stacker, and a new diskette is fed to the diskette drive

(provided another diskette is still in the hopper). If NO is specified, the

diskette being processed is left mounted for the next job.

 If the operand is omitted, YES is assumed.

FILESEC=YES

This operand applies to output only. On output it causes OPEN to set the

security flag in the file label. For subsequent input, the security flag causes an

operator message to be written. The operator must then reply in order to make

the file available to be read.

 When this operand is used with WRTPROT=YES, the reuse of the diskette is

prevented.

IOAREA1=name

This operand specifies the symbolic name of the I/O area used by the file.

 Intended Processing Your Specification

 To terminate the job Nothing.

 To skip the error record ERROPT=SKIP.

 To ignore the error record ERROPT=IGNORE.

 To process the error record ERROPT=name.

After the error record was processed:

 To leave the error-processing

 routine and

 Skip the (input) record Issue ERET SKIP.

 Ignore the record Issue ERET IGNORE.

 Retry reading or writing

 the record Issue ERET RETRY.

Figure 3. DTFDU Error Options

DTFDU

128 z/VSE System Macros Reference

IOCS either reads or writes records using this area. Note that you should

provide an I/O area equal in size to the result obtained from multiplying the

RECSIZE entry by the CMDCHN entry.

IOAREA2=name

If two I/O areas are used by GET or PUT, this operand is specified. You

should provide an I/O area equal in size to the result obtained from

multiplying the RECSIZE entry by the CMDCHN entry.

IOREG=(r)

This operand specifies the general purpose register (any one of 2 to 12) in

which IOCS puts the address of the logical record that is available for

processing. At OPEN time, for output files, IOCS puts the address of the area

where the user can build a record in this register. The same register can be

used for two or more files in the same program, if desired. If this is done, the

problem program must store the address supplied by IOCS for each record. If

this operand is specified, omit the WORKA operand.

 This operand must be specified if either:

v The CMDCHN factor is 2 or higher and records are processed in one I/O

area, or

v Two I/O areas are used and records are processed in both I/O areas.

MODNAME=name

This operand specifies the name of the logic module which is to process the

file. If the logic module is assembled with the program, MODNAME must

specify the same name as the DUMODFx macro. If this operand is omitted,

standard names are generated for calling the logic module. If two DTFxx

macros call for different functions that can be handled by a single module,

only one module is called.

RDONLY=YES

This operand is specified if the DTF is used with a read-only module. Each

time a read-only module is entered, register 13 must contain the address of a

72-byte double-word aligned save area. Each task should have its own

uniquely defined save area. When an imperative macro (except OPEN,

OPENR) is issued, register 13 must contain the address of the save area

associated with the task. Because the save areas are unique for each task, the

module is reentrant (that is, capable of being used concurrently by several

tasks).

 If an ERROPT routine issues I/O macros using the same read-only module that

caused control to pass to the error routine, your problem program must

provide another save area. One save area is used for the normal I/O

operations, and the second for input/output operations in the ERROPT

routine. Before control is returned to the module that entered the ERROPT

routine, register 13 must be set to the save area address originally specified for

the DTF.

 If this operand is omitted, the generated module is not reentrant and no save

area need be established.

RECSIZE=n

This operand specifies (in bytes) the length of each record in the input/output

area (1 to 128 bytes).

SEPASMB=YES

Include this operand only if your DTFDU macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name used as file name. The name is used as the module’s

DTFDU

Chapter 2. Macro Descriptions 129

transfer address. If you omit this operand, the assembler assumes that the

DTFDU macro is assembled together with your program.

TYPEFLE=INPUT | OUTPUT

This operand indicates whether the file is an input or output file.

VERIFY=YES

This operand specifies that the input on an IBM 3741/3742 must be verified

before processing may continue. If VERIFY=YES is not specified, it is assumed

that the input need not be verified. If VERIFY=YES is specified and the input

is not verified, the job is canceled and message 4n57I is issued. If the operand

is specified for an output file, it will be ignored.

VOLSEQ=YES

This operand is valid only on input. If specified, it causes OPEN to ensure that

the volume sequence numbers of a multi-volume file are in ascending and

sequential order. However, if the volume sequence number of the first volume

processed is blank, no volume sequence checking is done.

WORKA=YES

If I/O records are processed or built in work areas instead of in the I/O areas,

specify this operand. You must set up the work area in storage. The address of

the work area, or a general register containing the address, must be specified

in each GET or PUT macro. For GET or PUT, IOCS moves the record to or

from the specified work area.

 When this operand is specified, the IOREG operand must be omitted.

WRTPROT=YES

This operand indicates that an output file is to be created with write-protect

(which means, the file cannot be overwritten). For 3540 support, this has no

effect on subsequent input processing of the file.

Note: When this operand is used with FILESEC=YES, reuse of the diskette is

prevented.

DTFDU

130 z/VSE System Macros Reference

DTFIS (Define the File for Indexed Sequential Access) Macro

CC name DTFIS DSKXTNT=n,IOROUT=xxxxxx,KEYLEN=n,NRECDS=n,RECFORM= FIXUNB

FIXBLK
 C

C ,RECSIZE=n

,CYLOFL=n

,DEVICE=nnnn

,ERREXT=YES
 C

C
,HINDEX=nnnn

,HOLD=YES

,INDAREA=name

,INDSKIP=YES
 C

C
,INDSIZE=n

,IOAREAL=name

,IOAREAR=name

,IOAREAS=name
 C

C
,IOAREA2=name

,IOREG=(r)

,IOSIZE=n

,KEYARG=name
 C

C
,KEYLOC=n

,MODNAME=name

,MSTIND=YES

,RDONLY=YES
 C

C
,SEPASMB=YES

,TYPEFLE=

RANDOM

SEQNTL

RANSEQ

,VERIFY=YES

,WORKL=name
 C

C
,WORKR=name

,WORKS=YES
 CE

Required RMODE: 24

The macro defines a disk file for the Indexed Sequential Access Method.

Note: Since all the devices on which ISAM runs are no longer supported, your

ISAM programs must use the ISAM Interface Program (IIP) to process files

that have been converted from ISAM format to VSE/VSAM format. For

details, see the VSE/VSAM User’s Guide and Application Programming under

“Advantages of the ISAM IIP”.

CYLOFL=n

This operand must be included if cylinder overflow areas are reserved for a

file. Do not include this entry if no overflow areas are reserved.

 When a file is loaded or when records are added, this operand is required to

reserve the areas for cylinder overflow. It specifies the number of tracks to be

reserved on each cylinder. The maximum number of tracks that can be

reserved on each cylinder is:

 For an IBM 2311 8

 For an IBM 2314 or 2319 18

 For an IBM 3330 or 3333 17

 For an IBM 3340 10

DEVICE=2311 | 2314 | 3330 | 3340

This operand specifies the unit that contains the prime data area and overflow

areas for the logical file. For ISAM the prime data area and the overflow areas

must be on the same device type, and, for a 3340, the data modules must be of

the same size (35 or 70MB).

DSKXTNT=n

This operand must be included to specify the maximum number of extents for

DTFIS

Chapter 2. Macro Descriptions 131

this file. The number must include all the data area extents if more than one

disk area is used for the data records, and all the index area and independent

overflow area extents that are specified by EXTENT job control statements.

Thus the minimum number specified by this entry is 2: one extent for one

prime data area, and one for a cylinder index. Each area assigned to an ISAM

file is considered an extent.

Note: Master and cylinder indexes are treated as one area. When there is one

master index extent, one cylinder index extent, and one prime data area

extent, DSKXTNT=2 could be specified.

ERREXT=YES

This operand is required for IOCS to supply your program with detailed

information about irrecoverable I/O errors occurring before a data transfer

takes place, and for your program to be able to use the ERET imperative macro

to return to IOCS specifying an action to be taken for an error condition.

 Some error information is available for testing by your program after each

imperative macro is executed, even if ERREXT=YES is not specified, by

referencing field filenameC. For filename, give the name that you specified in

the name field of the DTFIS macro for the file. One or more of the bits in the

filenameC byte may be set to 1 by IOCS. The meaning of the bits varies

depending on what was specified in the IOROUT operand; Table 7 shows the

meaning if IOROUT=ADD, RETRVE, or ADDRTR was specified; Table 8 on

page 133 shows the meaning if IOROUT=LOAD was specified.

 If ERREXT=YES is not specified, IOCS returns the address of the DTF table in

register 1, as well as any data-transfer error information in filenameC, after

each imperative macro is executed; non-data-transfer error information is not

given. After testing filenameC, return to IOCS by issuing any imperative macro

except ERET; no special action is taken by IOCS to correct or check an error.

 If ERREXT=YES is specified, IOCS returns the address of an ERREXT

parameter list in register 1 after each imperative macro is executed, and

information about both data-transfer and non-data-transfer errors in filenameC.

The format of the ERREXT parameter list is shown in Table 9 on page 134.

After testing filenameC and finding an error, return to IOCS by using the ERET

imperative macro; IOCS takes the action indicated by the ERET operand. If

HOLD=YES (and ERREXT=YES), ERET must be used to return to IOCS to free

any held track.

 In your program, check bit 7 of DTF byte 16 for a block size compatibility error

when adding to, or extending a file. If the block size specified in your program

is not equal to the block size of the previously built file, this bit will be set to

1.

 Table 7. FilenameC-Status Byte if IOROUT Specifies ADD, RETRVE, or ADDRTR

Bit Meaning if Set to 1

0 Disk error – An irrecoverable disk error has occurred (except wrong-length

record.)

1 Wrong-length record – A wrong length record has been detected during an

I/O operation.

2 End of file – End of file has been encountered during sequential retrieval.

3 No record found – The record to be retrieved has not been found in the

file. This applies to RANDOM (RANSEQ) and to SETL in SEQNTL

(RANSEQ) when KEY is specified, or after GKEY. This may also be a

hardware error.

DTFIS

132 z/VSE System Macros Reference

Table 7. FilenameC-Status Byte if IOROUT Specifies ADD, RETRVE, or

ADDRTR (continued)

Bit Meaning if Set to 1

4 Invalid ID specified – The ID specified to the SETL in SEQNTL (RANSEQ)

is outside the prime file limits.

5 Duplicate record – The record to be added to the file has a duplicate

record key of another record in the file.

6 Overflow area full – An overflow area in a cylinder is full, and no

independent overflow area has been specified; or an independent overflow

area is full, and the addition cannot be made. You should assign an

independent overflow area or extend the limit.

7 Overflow – The record being processed in one of the retrieval functions

(RANDOM/SEQNTL) is an overflow record.

 Table 8. FilenameC-Status Byte if IOROUT=LOAD

Bit Meaning if Set to 1

0 Disk error – An irrecoverable disk error has occurred (except wrong-length

record.)

2 Prime area full – The next to the last track of the prime data area has been

filled during the load or extension of the file. Issue the ENDFL macro,

then do a load extend on the file with next extents given.

3 Cylinder-index area full – The cylinder-index area is not large enough to

contain all entries needed to index each cylinder specified for the prime

data area. This condition can occur during the execution of the SETFL.

Extend the upper limit of the cylinder index by using a new EXTENT

statement.

4 Master index full – The master index area is not large enough to contain

all the entries needed to index each track of the cylinder index. This

condition can occur during SETFL. Extend the upper limit, if you are

creating the file, by using an EXTENT statement; or reorganize the file and

assign a larger area.

5 Duplicate record – The record to be added to the file has a duplicate

record key of another record in the file.

6 Sequence check – The record being loaded is not in sequential order.

7 Prime data area overflow – There is not enough space in the prime data

area to write an EOF record. This condition can occur during the execution

of the ENDFL macro.

DTFIS

Chapter 2. Macro Descriptions 133

Table 9. ERREXT Parameter List

Bytes Contents

0-3 Address of the DTF block

4-7 Virtual storage address of the record in error.

8-15 Disk address (mbbcchhr) of the error, where:

m =

Extent sequence number

r = A record number which can be inaccurate if a read error occurred

during a read of the index of the highest level.

16 Record identification:

Bit Meaning if 1

1 Data record

2 Track-index record.

3 Cylinder- or master-index record.

4-5 Reserved.

6 Read operation.

7 Write operation

17 Command code of failing CCW.

HINDEX=2311 | 2314 | 3330 | 3340

This operand specifies the type of the disk unit that contains the highest index.

 Placing the highest index on a separate unit is recommended only if that unit

is physically separate from the unit(s) holding the track indexes and the data

of the file, and if it has its own access mechanism. If this operand is omitted,

2311 is assumed.

HOLD=YES

This operand provides for the track hold option for both data and index

records. If the HOLD operand is omitted, the track hold function is not

performed. Because track hold cannot be performed on a LOAD file,

HOLD=YES cannot be specified when IOROUT=LOAD.

 If HOLD=YES and ERREXT=YES, your program must issue the ERET macro to

return to the ISAM module to free any held tracks.

INDAREA=name

This operand specifies the name of the area assigned to the cylinder index. If

specified, all or part of the cylinder index resides in virtual storage thereby

increasing throughput. If this operand is included, INDSIZE must be included.

 If the area assigned to INDAREA is large enough for all the index entries to be

read into virtual storage at one time and the index skip feature (INDSKIP) is

not specified, no presorting of records need be done. If the area assigned to

INDAREA is not large enough, the records processed should be presorted to

fully utilize the resident cylinder index.

INDSKIP=YES

When cylinder index entries reside in virtual storage, this operand specifies the

index skip feature. This feature allows ISAM to skip any index entries

preceding those needed to process a given key. If the index skip operand is

omitted, the cylinder indexes are processed sequentially.

 This operand may be specified only with the INDAREA and INDSIZE

operands and increases throughput only when:

v The records are presorted.

v The allocated virtual storage is insufficient for storing all of the cylinder

index.

v One or more large segments of the file are not referenced.

DTFIS

134 z/VSE System Macros Reference

INDSIZE=n

This operand specifies the length (in bytes) of the index area assigned in

virtual storage to the cylinder index by INDAREA. The minimum you can

specify is:

 n = (m + 3) (keylength + 6)

where

m =

The number of entries to be read into virtual storage at a time.

3 =

The number of dummy entries.

6 =

A pointer to the cylinder.

 If m is set equal to the number of prime data cylinders+1, the entire cylinder

index is read into virtual storage at one time. The maximum value for n =

32767.

 The resident index facility is suppressed if this operand is omitted, the

minimum requirement is not met at assembly time, or an irrecoverable read

error is encountered while reading the index.

IOAREAL=name

This operand must be included when a file is created (loaded) or when records

are added to a file. It specifies the name of the output area used for loading or

adding records to the file. The specified name must be the same as the name

used in the DS instruction that reserves the area of storage. The ISAM routines

construct the contents of this area and transfer records to disk.

 This output area must be large enough to contain the count, key, and data

areas of records. Furthermore, the data-area portion must provide enough

space for the sequence-link field of overflow records whenever records are

added to a file (see Figure 4 on page 136).

 If IOAREAL is increased to permit the reading and writing of more than one

physical record on disk at a time, the IOSIZE operand must be included when

records are added to the file. In this case, the IOAREAL area must be at least

as large as the number of bytes specified in the IOSIZE operand.

 When simultaneously building two ISAM files using two DTFs, do not use a

common IOAREAL. Also, do not use a common area for IOAREAL, IOAREAR,

and IOAREAS in multiple DTFs.

IOAREAR=name

This operand must be included whenever records are processed in random

order. It specifies the name of the input/output area for random retrieval (and

updating). The specified name must be the same as that used in the DS

instruction that reserves this area of storage.

 The I/O area must be large enough to contain the data area for records.

Furthermore, the data-area portion must provide enough space for the

sequence-link field of overflow records (see Figure 5 on page 137).

IOAREAS=name

This operand must be included whenever records are processed in sequential

order by key. It specifies the name of the input/output area used for sequential

retrieval (and updating). The specified name must be the same as that used in

the DS instruction that reserves this area of storage.

DTFIS

Chapter 2. Macro Descriptions 135

This I/O area must be large enough to contain the key and data areas of

unblocked records and the data area for blocked records. Furthermore, the

data-area portion must provide enough space for the sequence-link field of

overflow records (see Figure 5 on page 137).

IOAREA2=name

This operand permits overlapping of I/O with indexed sequential processing

for either the load (creation) or sequential retrieval functions. Specify the name

of an I/O area to be used when loading or sequentially retrieving records. The

I/O area must be at least the length of the area specified by either the

IOAREAL operand for the load function or the IOAREAS operand for the

sequential retrieval function. If the operand is omitted, one I/O area is

assumed. If TYPEFLE=RANSEQ, this operand must not be specified.

IOREG=(r)

This operand must be included whenever records are retrieved and processed

directly in the I/O area. It specifies the register that ISAM uses to indicate

which individual record is available for processing. ISAM puts the address of

the current record in the designated register (any of 2 through 12) each time a

READ, WRITE, GET, or PUT is executed.

IOROUT=LOAD | ADD | RETRVE | ADDRTR

This entry must be included to specify the type of function to be performed.

The specifications have the following meanings:

IOROUT=LOAD

To build a logical file on a disk or to extend a file beyond the highest

record presently in a file.

IOROUT=ADD

To insert new records into a file.

IOROUT=RETRVE

To retrieve records from a file for either random or sequential processing

and/or updating.

IOROUT=ADDRTR

To both insert new records into a file (ADD) and retrieve records for

processing and/or updating (RTR).

┌────────────────────────┬───┐

│ │ Output Area Requirements (in No. of Bytes) │

│ ├───┤

│ Function │ Count Key Seq. Link Data │

├────────────────────────┤ ───── ──────────── ─────────── ────── │

│ Load unblocked records │ 8 + key-length + 0 + R │

│ │ │

│ Load blocked records │ 8 + key-length + 0 + R x B │

│ │ │

│ Add unblocked records │ 8 + key-length + 10 + R │

│ │ │

│ Add blocked records │ │

│ The greater of │ 8 + key-length + 0 + R x B │

│ │ 8 + key-length + 10 + R │

├────────────────────────┴───┤

│ B = Blocking factor │

│ R = Record length │

└──┘

Figure 4. Output Area Requirements for Loading or Adding Records to a File by ISAM

DTFIS

136 z/VSE System Macros Reference

Note: The disk device must be in READ/WRITE mode for all functions.

IOSIZE=n

This operand specifies the (decimal) number of bytes in the virtual-storage area

assigned for the add function using IOAREAL. The number n can be

computed using the following formula:

 n = m (keylength + blocksize + 40) + 24

 Where m = The maximum number of physical records that can

 be read into virtual storage at one time.

The number n must be at least equal to

 (keylength + blocksize + 74)

This formula accounts for a needed sequence link field for unblocked records

or short blocks (see Figure 4 on page 136 and Figure 5).

 If the operand is omitted, or if the minimum requirement is not met, no

increase in throughput is realized.

 The number n should not exceed the track capacity because throughput cannot

be increased by specifying a number larger than the capacity of a track.

KEYARG=name

This operand must be included for random READ/WRITE operations and

sequential retrieval initiated by key. It specifies the symbolic name of the key

field in which you must supply the record key to ISAM.

KEYLEN=n

This operand must be included to specify the number of bytes in the record

key.

KEYLOC=n

This operand must always be specified if RECFORM=FIXBLK. It supplies

ISAM with the high-order position of the key field within the data record. That

is, if the key is recorded in positions 21-25 of each record in the file, this

operand should specify 21.

 ISAM uses this specification to locate (by key) a specified record within a

block. The key area of a block of records contains the key of the highest record

in the block. To search for any other records, ISAM locates the proper block

and then examines the key field within each record in the block.

┌────────────────────────────┬──┐

│ │ I/O Area Requirements (in No. of Bytes) │

│ ├──┤

│ │ Count Key Seq. Link Data │

├────────────────────────────┤ ───── ────────────── ─────────── ─────── │

│Retrieve unblocked records │ 0 + *key-length + 10 + R │

│ │ │

│Retrieve blocked records │ │

│ The greater of │ 0 + 0 + 0 +**R x B │

│ │ 0 + 0 + 10 + R │

├────────────────────────────┴──┤

│ B = Blocking factor * Only for sequential retrieval │

│ R = Record length ** Including keys │

└───┘

Figure 5. I/O Area Requirements for Random or Sequential Retrieval by ISAM

DTFIS

Chapter 2. Macro Descriptions 137

MODNAME=name

This operand may be used to specify the name of the logic module used with

the DTF table to process the file. If the logic module is assembled with the

program, the MODNAME in the DTF must specify the same name as the

ISMOD macro. If this entry is omitted, standard names are generated for

calling the logic module. If two DTF macros call for different functions that can

be handled by a single module, only one module is called.

MSTIND=YES

This operand is included whenever a master index is used or is to be built for

a file. The location of the master index is specified by an EXTENT job control

statement.

NRECDS=n

This operand specifies the number of logical records in a block (called the

blocking factor). It is required only if RECFORM=FIXBLK. For FIXBLK, n must

be greater than 1; for FIXUNB, n must be =1.

RDONLY=YES

This operand is specified if the DTF is used with a read-only module. Each

time a read-only module is entered, register 13 must contain the address of a

72-byte doubleword-aligned save area. Each task should have its own uniquely

defined save area. Register 13 must contain the address of the save area

associated with the task each time an imperative macro (except OPEN,

OPENR, LBRET, SETL, or SETFL) is issued. The fact that the save areas are

unique for each task makes the module reentrant (that is, capable of being

used concurrently by several tasks).

RECFORM=FIXUNB | FIXBLK

This operand specifies whether records are blocked or unblocked. FIXUNB is

used for unblocked records, and FIXBLK for blocked records. If FIXBLK is

specified, the key of the highest record in the block becomes the key for the

block and must be recorded in the key area.

 The specification that is included when the logical file is loaded onto a disk

must also be included whenever the file is processed.

 Records in the overflow area(s) are always unblocked, but this has no effect on

this operand. RECFORM refers to records in the prime data area only.

RECSIZE=n

This operand must be included to specify the number of characters in the data

area of each individual record. This operand should specify the same number

for additions and retrieval as indicated when the file was created.

SEPASMB=YES

Include this operand only if your DTFIS macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name used as file name. The name is used as the module’s

transfer address. If you omit this operand, the assembler assumes that the

DTFIS macro is assembled together with your program.

TYPEFLE=RANDOM | SEQNTL | RANSEQ

This operand must be included when IOROUT=RETRVE or

IOROUT=ADDRTR. The operand specifies the type(s) of processing performed

by your program for the file.

 RANDOM is used for random processing. Records are retrieved in random

order specified by key.

DTFIS

138 z/VSE System Macros Reference

SEQNTL is used for sequential processing. Your program specifies the first

record retrieved, and thereafter ISAM retrieves records in sequential order by

key. The first record is specified by key, ID, or the beginning of the logical file

(see “SETL (Set Limits) Macro” on page 372).

 RANSEQ is used if both random and sequential processing are to be

performed for the same file. If RANSEQ is specified, the IOAREA2 operand

must not be specified.

 TYPEFLE is not required for loading or adding functions.

VERIFY=YES

Use this operand if you want to check the parity of disk records after they are

written. If this operand is omitted, any records written on a disk are not

verified.

WORKL=name

This operand must be included whenever a file is created (loaded) or records

are added to a file. It specifies the name of the work area in which you must

supply the data records to ISAM for loading or adding to the file. The

specified name must be the same as the name used in the DS instruction that

reserves this area of storage.

 This work area must provide space for one logical record when a file is created

(for blocked records: data; for unblocked records: key and data).

 The original contents of WORKL are changed due to record shifting in the

ADD function.

WORKR=name

When records are processed in random order, this operand must be included if

the individual records are to be processed in a work area rather than in the

I/O area. It specifies the name of the work area. This name must be the same

as the name used in the DS instruction that reserves this area of storage. This

area must provide space for one logical record (data area). When this entry is

included and a READ (or WRITE) macro is executed, ISAM moves the

individual record to (or from) this area.

WORKS=YES

When records are processed in sequential order, this operand must be included

if the individual records are processed in work areas rather than in the I/O

area. Each GET and PUT macro must specify the name of the work area to or

from which ISAM is to move the record. When processing unblocked records,

the area must be large enough for one record (data area) and the record key

(key area). For blocked records, the area must be large enough for one logical

record (data area) only. The work area requirements are as shown in Figure 6.

DTFIS

Chapter 2. Macro Descriptions 139

┌────────────────────┬────────────────────┬──────────────────┐

│ Function │ Unblocked Records │ Blocked Records │

├────────────────────┼────────────────────┼──────────────────┤

│ Load │ │ │

│ The greater of │ 10 │ 10 │

│ │ K + D │ D │

│ │ │ │

│ Add │ │ │

│ The greater of │ 10 │ 10 │

│ │ K + D │ K + D │

│ │ │ │

│ Random Retrieve │ D │ D │

│ │ │ │

│ Sequential Retrieve│ K + D │ K + D │

└────────────────────┴────────────────────┴──────────────────┘

Figure 6. Work Area Requirements

DTFIS

140 z/VSE System Macros Reference

DTFMR (Define the File for Magnetic Reader Input) Macro

CC name DTFMR DEVADDR=SYSxxx,IOAREA1=name

,ADDAREA=n

,ADDRESS=DUAL
 C

C
 ,BUFFERS=25

,BUFFERS=n

,ERROPT=name

,EXTADDR=name

,IOREG=(r)

C

C

,MODNAME=name

 ,RECSIZE=80

,RECSIZE=n

,SECADDR=SYSnnn

,SEPASMB=YES

C

C
 ,SORTMDE=ON

,SORTMDE=OFF

CE

Required RMODE: 24

DTFMR defines an input file processed on an IBM 1255 or 1419 magnetic character

reader, or an IBM 1270 or 1275 optical character reader/sorter.

ADDAREA=n

This operand must be included only if an additional buffer work area is

needed. For n, specify the number of additional bytes you desire in each

buffer. The sum of the ADDAREA and RECSIZE specifications must not exceed

250. This area can be used as a work area and/or output area and is reset to

binary zeros when the next GET or READ for the file is executed.

ADDRESS=DUAL

This operand must be included only if the 1419 or 1275 contains the dual

address adapter. If the single address adapter is used, this operand must be

omitted.

BUFFERS=25 | n

This operand is included to specify the number of buffers in the document

buffer area. The limits for n are 12 and 254. 25 is assumed if this operand is

omitted.

DEVADDR=SYSxxx

This operand is required and specifies the symbolic unit to be associated with

the file. The symbolic unit represents an actual I/O device address used in the

ASSGN job control statement to assign the actual I/O device address to the

file.

ERROPT=name

This operand may be included only if the CHECK macro is used. For name,

give the name of the routine that the CHECK macro branches to if any error

condition is posted in byte 0, bits 2 to 4 (and bit 5, if no control address is

specified in the CHECK macro) of the buffer status indicators. It is your

responsibility to exit from this routine (see the “CHECK (Check I/O

Completion) Macro” on page 65).

EXTADDR=name

This operand specifies the name of your stacker selection routine. The routine

receives control if an external interrupt occurs while documents are being read

or being sorted internally. You may omit this if you specify SORTMDE=OFF.

DTFMR

Chapter 2. Macro Descriptions 141

IOAREA1=name

This operand is required and specifies the name of the document buffer area

that will be used by the file. Table 3 on page 66 shows the format of the

document buffer area.

IOREG=(r)

This operand specifies the general-purpose register (one of 2 to 12) that the

IOCS routines and your routines use to indicate which individual document

buffer is available for processing. IOCS puts the address of the current

document buffer in the specified register each time a GET or READ is issued.

 The same register may be specified in the IOREG entry for two or more files in

the same program, if desired. In this case, your program may need to store the

address supplied by IOCS for each record.

 Register 2 is assumed if this operand is omitted.

MODNAME=name

This operand specifies the name of the logic module generated by MRMOD. If

the operand is omitted, IOCS generates the standard system module name.

RECSIZE=80 | n

This operand specifies the actual length of the data portion of the buffer. The

record size specified must be the size of the largest record processed. If this

operand is omitted, a record size of 80 is assumed. The sum of the ADDAREA

and RECSIZE specifications must not exceed 250.

SECADDR=SYSnnn

This operand specifies the symbolic unit to be associated with the secondary

control unit address if the IBM 1275 or 1419 with the dual address adapter and

LITE macro are used. Omit the operand if the pocket LITE macro is not being

used.

SEPASMB=YES

Include this operand only if your DTFMR macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name used as file name. The name is used as the module’s

transfer address. If you omit this operand, the assembler assumes that the

DTFMR macro is assembled together with your program.

SORTMDE=ON | OFF

This operand specifies the method of sorting done on the 1419. SORTMDE=ON

indicates that the program sort mode is being used. SORTMDE=OFF indicates

that sorting is under control of the magnetic character reader. If the operand is

omitted, the program sort mode is assumed.

DTFMR

142 z/VSE System Macros Reference

DTFMT (Define the File for Magnetic Tape I/O) Macro

CC

name DTFMT BLKSIZE=n,DEVADDR=SYSxxx,EOFADDR=name
 ,FILABL=NO

,FILABL=

STD

NSTD

C

C

,IOAREA1=

name

(r)

,ASCII=YES

 ,BUFOFF=0

,BUFOFF=n

,CKPTREC=YES

C

C
,ERREXT=YES

,ERROPT=

IGNORE

SKIP

name

,HDRINFO=YES
 C

C
,IOAREA2=

name

(r)

,IOREG=(r)

,LABADDR=name

,LENCHK=YES
 C

C
 ,READ=FORWARD

,READ=BACK

,RECFORM=format

,RECSIZE=

n

(r)

C

C

,REWIND=

UNLOAD

NORWD

,SEPASMB=YES

 ,TPMARK=NO

,TPMARK=YES

C

C
 ,TYPEFLE=INPUT

,TYPEFLE=

OUTPUT

WORK

,VARBLD=(r)

,WLRERR=name

,WORKA=YES

CE

Required RMODE: 24

The macro defines a magnetic tape file.

If not otherwise stated, the operands of the DTFMT macro can be specified for all

three types of files (input, output, or work).

You need not code an MTMOD logic module. It is automatically loaded into the

SVA at IPL time and linked to the problem program during OPEN processing for

the DTFMT.

ASCII=YES

This operand specifies that processing of ASCII tapes is required (see

Appendix B, “American National Standard Code for Information Interchange,”

on page 439). If this operand is omitted, EBCDIC processing is assumed.

ASCII=YES is not permitted for work files.

BLKSIZE=n

For n, specify the length of the I/O area in number of bytes. If the record

DTFMT

Chapter 2. Macro Descriptions 143

format is variable or undefined, give the length of the largest block of records.

For a file of variable-length records, the value must include the block and

record descriptor bytes.

 If a READ or WRITE macro specifies a length greater than n for work files, the

record to be read or written is truncated to fit into the I/O area.

 The maximum block size is 65,534 bytes. The minimum size of a physical tape

record (gap to gap) is 12 bytes.

 For output processing, the minimum physical record length is 18 bytes. If the

specified value is less than 18 (but not less than 12), IOCS does one of the

following, depending on the format of the records of the file:

v Fixed and variable length – IOCS writes the records padded up to a length

of 18 bytes as follows:

– For EBCDIC tapes (ASCII=YES is not specified) – X’800000...’.

– For ASCII tapes (ASCII=YES is specified) – X’5F5F5F...’.
Note, however, that when your data records are exactly 18 bytes long and

end with the padding character, they will be truncated during input

processing. You can avoid this by increasing your records by one byte.

v Spanned – IOCS ignores your specification and assumes a specification of

BLKSIZE=18.

 For ASCII tapes, the BLKSIZE includes the length of any block prefix or

padding characters present. If ASCII=YES and BLKSIZE is less than 18 bytes

(for fixed-length records only) or greater than 2 048 bytes, an MNOTE is

generated because this length violates the limits specified by American

National Standards Institute, Inc.

BUFOFF=0 | n

This operand can be included only when ASCII=YES is specified; it is not

allowed for work files. The operand indicates the length of the block prefix.

Supply this length if processing of the block prefix is required. The contents of

this field are not passed on to you. For n, you can specify a value as follows:

Value Condition

0 to 99

If TYPEFLE=INPUT

0 IF TYPEFLE=OUTPUT and the file contains records of fixed length.

4 If TYPEFLE=OUTPUT and the file contains records of variable length.

In this case, the program automatically inserts the physical record

length in the block prefix.

CKPTREC=YES

This operand is necessary if an input tape has checkpoint records interspersed

among the data records. IOCS bypasses any checkpoint records encountered.

This operand must not be included when ASCII=YES.

DEVADDR=SYSRDR | SYSIPT | SYSLST | SYSPCH | SYSnnn

This operand specifies the symbolic unit to be associated with the file. An

ASSGN job control statement assigns an actual channel and unit number to the

unit. The ASSGN job control statement contains the same symbolic name as

DEVADDR. When processing ASCII tapes, you must specify a programmer

logical unit (SYSnnn).

EOFADDR=name

This operand specifies the name of your end-of-file routine. IOCS

DTFMT

144 z/VSE System Macros Reference

automatically branches to this routine on an end-of-file condition. This entry

must be specified for input and work files. Note that the routine always gets

control in 24-bit addressing mode.

 In your routine, you can perform any operations required for the end of file

(generally you issue the CLOSE macro for the file). IOCS detects end-of-file

conditions in magnetic tape input by reading a tapemark and EOF when

standard labels are specified. If standard labels are not specified, IOCS assumes

an end-of-file condition when the tapemark is read, or, if the unit is assigned to

SYSRDR or SYSIPT, when a /* is read. You must determine, in your routine,

that this actually is the end of the file.

ERREXT=YES

This operand enables IOCS to indicate to your program any irrecoverable I/O

errors other than tape read data checks. The operand enables your ERROPT

routine to return to IOCS by means of the ERET (error return) macro.

 Specifying this operand is meaningful only if you supply an error routine (by

ERROPT=name). ERREXT=YES and ERROPT=name are both required for an

output file (TYPEFLE=OUTPUT).

ERROPT=IGNORE | SKIP | name

This operand specifies functions to be performed when a tape read data check

or (when ERREXT=YES is specified) a tape write check (irrecoverable I/O

error) occurs.

 The functions of these specifications are:

ERROPT=IGNORE

The error condition is completely ignored, and the records are made

available for processing. When spanned records are processed, IOCS

returns to your program the entire spanned record or a block of spanned

records rather than just the one physical record in which the error

occurred.

 On output, the error is ignored and the physical record containing the

error is treated as a valid record. The remainder, if any, of spanned record

segments are written, if possible.

ERROPT=SKIP

On input, no records in the error block are made available for processing.

The next block is read from tape, and processing continues with the first

record of that block. The error block is included in the block count. When

reading spanned records, the entire spanned record or a block of spanned

records is skipped rather than just one physical record.

 On output, the error is ignored and the physical record containing the

error is treated as a valid record. The remainder, if any, of the spanned

record segments are written.

ERROPT=name

This operand and ERREXT=YES are both required for an output file

(TYPEFLE=OUTPUT). IOCS branches to the routine named by this

operand even if ERREXT=YES is not specified. Note that the routine

always gets control in 24-bit addressing mode. In your routine, you can

perform any function as desired or simply make note of the error

condition. However, you may not issue any GET macro in the routine for

the tape file. If you use any other IOCS macros (excluding ERET if

ERREXT=YES), save the contents of register 14 and, if RDONLY=YES, also

of register 13. Restore these contents to the two registers after their use.

DTFMT

Chapter 2. Macro Descriptions 145

If ERREXT is not specified, register 1 contains the address of the block in

error. In your error routine, reference the error block by referring to this

address. The address in the IOREG register or the contents of the work

area are variable and should not be used to process error records.

 At the end of the routine, return control to IOCS by branching to the

address in register 14. For a read error, IOCS skips the error block and

makes the next block of records available for processing.

 If ERREXT is specified, register 1 contains the address of a two-word

parameter list:

Bytes Contents

0-3 Address of the DTF table for the file. Test the data transfer bit (bit

2 of byte 2). If the bit is 1, the block in error has not been read or

written. If the bit is 0, data was transferred.

4-7 The 4-byte address of the first record in the error chain. For an

ASCII tape, this is the address of the first logical record following

the block prefix.

 Processing is similar to that described above, except for addressing the

error block.

 At the end of its processing, the routine returns to LIOCS either by

branching to the address in register 14 or, for an input file, by issuing the

ERET macro with SKIP or with IGNORE. Do not use the ERET macro to

return to IOCS from your routine for a tape output file.

FILABL=NO | STD | NSTD

This operand specifies what type of labels are to be processed. Specify:

NO

To indicate no labels.

STD

To indicate IBM- or user-standard labels.

NSTD

To indicate non-standard labels.

 You must furnish a routine to check or build user- or non-standard labels.

Define the entry point of this routine in the LABADDR operand of the DTFMT

macro for your file.

 FILABL=NSTD is not permitted for ASCII files (that is, when ASCII=YES).

Labels and tape data are assumed to be in the same mode.

HDRINFO=YES

This operand, if specified with FILABL=STD, causes IOCS to print standard

header label information (fields 3-10) on SYSLOG each time a file with

standard labels is opened. It also prints the file name, logical unit, and device

address each time an end-of-volume condition is detected. Both FILABL=STD

and HDRINFO=YES must be specified for header label information to be

printed.

IOAREA1=name | (r)

This operand specifies the name of the I/O area. When variable-length records

are processed, the size of the I/O area must include four bytes for the block

size. If you use register notation, you can get the required storage from the

partition GETVIS area via the GETVIS macro. This operand does not apply to

work files.

DTFMT

146 z/VSE System Macros Reference

IOAREA2=name | (r)

This operand specifies the name of a second I/O area. When variable-length

records are processed, the size of the I/O area must include four bytes for the

block size. If you use register notation, you can get the required storage from

the partition GETVIS area via the GETVIS macro. This operand does not apply

to work files.

IOREG=(r)

This operand specifies the register in which IOCS places the address of the

logical record that is available for processing if:

v Two input or output areas are used.

v Blocked input or output records are processed in the I/O area.

v Variable unblocked records are read.

v Undefined records are read backwards.

v Neither BUFOFF=0 nor WORKA=YES is specified for ASCII files.

For output files, IOCS places, in the specified register, the address of the area

where you can build a record. Any of registers 2 to 12 may be specified.

 This operand cannot be used if WORKA=YES.

LABADDR=name

Enter the symbolic name of your routine to process user-standard or

non-standard labels. Note that the routine always gets control in 24-bit

addressing mode.

 For ASCII tapes, this operand may be used only for writing and checking user

standard labels that conform to American National Standards Institute, Inc.

standards. Non-standard labels are not permitted.

 This operand does not apply to work files.

 For more information about the handling of user labels, see the section

“Processing of User Labels” on page 445.

LENCHK=YES

This operand applies only to ASCII tape input if BUFOFF=4 and

RECFORM=VARUNB or VARBLK. It must be included if the block length

(specified in the block prefix) is to be checked against the physical record

length. If the two lengths do not match, the action taken is the same as

described under the WLRERR operand, but the WLR bit (byte 5, bit 1) in the

DTF is not set.

READ=FORWARD | BACK

This operand specifies, for input and work files, the direction in which the tape

is read. If READ=BACK is specified and a wrong-length record smaller than

the I/O area is encountered, the record is read into the I/O area right-justified.

 If READ=BACK is specified, REWIND=NORWD must also be specified;

otherwise the tape will be repositioned after CLOSE.

RECFORM=format

This operand specifies the type of EBCDIC or ASCII records in the input or

output file. For format, specify one of the following:

FIXUNB

For fixed-length unblocked records (the default)

FIXBLK

For fixed-length blocked records

VARUNB

For variable-length unblocked records

DTFMT

Chapter 2. Macro Descriptions 147

VARBLK

For variable-length blocked records

SPNBLK

For spanned variable-length blocked records (EBCDIC only)

SPNUNB

For spanned variable-length unblocked records (EBCDIC only)

UNDEF

For undefined records

 Work files may use only FIXUNB or UNDEF.

 On an IBM 9346 tape device, you cannot process a multi-volume file with

spanned records. Your program will be canceled (unit check with command

reject).

RECSIZE=n | (r)

For fixed-length blocked records, RECSIZE is required. It specifies the number

of characters in each record.

 When processing spanned records, you must specify RECSIZE=(r) where r is a

register that contains the length of each record.

 For undefined records, this entry is required for output files but is optional for

input files. It specifies a general register (any of 2 to 12) that contains the

length of the record. On output, you must load the length of each record into

the register before you issue a PUT macro.

 Spanned-record output requires a minimum record length of 18 bytes. A

physical record less than 18 bytes is padded with binary zeros to complete the

18-byte requirement. This applies to both blocked and unblocked records. If

specified for input, IOCS provides the length of the record transferred to

virtual storage. This operand does not apply to work files.

REWIND=UNLOAD | NORWD

If this specification is not included, tapes are automatically rewound to load

point, but not unloaded, on an OPEN or OPENR or a CLOSE or CLOSER

macro or on an end-of-volume condition. If other operations are desired for a

tape input or output file, specify:

REWIND=UNLOAD

To rewind the tape on an OPEN and to rewind and unload on a CLOSE or

on an end-of-volume condition.

REWIND=NORWD

To prevent rewinding the tape at any time. This option positions the

read/write head between the two tapemarks that indicate the end-of-file

condition.

SEPASMB=YES

Include this operand only if your DTFMT macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name used as file name. The name is used as the module’s

transfer address. If you omit this operand, the assembler assumes that the

DTFMT macro is assembled together with your program.

TPMARK=YES | NO

If a tapemark is desired for an output file and nonstandard labels are indicated

(FILABL=NSTD), specify TPMARK=YES. If TPMARK=NO is specified together

with FILABL=STD, the former specification is ignored. If FILABL=NO is

DTFMT

148 z/VSE System Macros Reference

specified or the FILABL operand is omitted, TPMARK=YES must be specified

for IOCS to write a tapemark ahead of the first data record. The default is NO.

TYPEFLE=INPUT | OUTPUT | WORK

Use this operand to indicate whether the file is used for input or output. If

INPUT is specified, the GET macro is used. If OUTPUT is specified, the PUT

macro is used. If WORK is specified, the READ/WRITE, NOTE/POINTx, and

CHECK macros are used.

 The specification of WORK in this operand is not permitted for ASCII files.

 On an IBM 9346 tape you cannot process a work file that requires previously

stored data to be overwritten. Your program will be canceled (unit check with

command reject).

VARBLD=(r)

This entry is required whenever variable-length blocked records are built

directly in the output area (no work area is specified). It specifies the number

(r) of a general-purpose register (any of 2 to 12) that always contains the length

of the available space remaining in the output area.

 IOCS calculates the space still available in the output area, and supplies it to

you in the VARBLD register after the PUT macro is issued for a variable-length

record. You can then compare the length of the next variable-length record

with the available space to determine whether the record will fit in the

remaining area. This check must be made before the record is built. If the

record does not fit, issue a TRUNC macro to transfer the completed block of

records to the tape. The current record is then built as the first record of the

next block.

WLRERR=name

This operand applies only to tape input files. It specifies the name of your

routine to receive control if a wrong-length record is read. Note that the

routine always gets control in 24-bit addressing mode. If the WLRERR entry is

omitted but a wrong-length record is detected by IOCS, one of the following

conditions results:

v If the ERROPT operand is included for this file, the wrong-length record is

treated as an error block, and handled according to your specifications for

an error (IGNORE, SKIP, or name of error routine).

v If the ERROPT entry is not included, IOCS assumes the IGNORE option of

ERROPT.

WORKA=YES

If I/O records are processed in work areas instead of in the I/O areas, specify

this operand. You must set up the work areas in virtual storage. The symbolic

address of the work area, or a general-purpose register containing the address,

must be specified in each GET or PUT. Omit IOREG if this operand is

included. WORKA=YES is required for spanned record processing. It does not

apply to work files.

DTFMT

Chapter 2. Macro Descriptions 149

DTFOR (Define the File for Optical Reader Input) Macro

 Required RMODE: 24

This macro is used to define an input file to be processed on an IBM 1287 Optical

Reader or 1288 Optical Page Reader. If not stated otherwise, the operands of the

DTFOR macro can be specified for any file on these devices.

The macro cannot be used for a file on the IBM 3881 Optical Mark Reader; use the

DTFCD macro instead.

BLKFAC=n

On an IBM 1287, undefined journal tape records are processed with greater

throughput when this operand is included. BLKFAC specifies the blocking

factor (n) that determines the number of lines read as a block of data by one

physical read. Deblocking is accomplished automatically by IOCS when the

GET macro is used. The BLKFAC operand is not used with

RECFORM=FIXBLK, because the blocking factor is determined from the

BLKSIZE and RECSIZE operands. If the operand is included for FIXBLK,

FIXUNB, or document processing, the operand is noted (in an MNOTE) and

ignored.

BLKSIZE=38 | n

This operand indicates the size of the input area specified by IOAREA1. 38 is

the default. For journal tape processing, BLKSIZE specifies the maximum

number of characters that can be transferred to the area at any one time.

 When undefined journal tape records are read, the area must be large enough

to accommodate the longest record to be read if the BLKFAC operand is not

specified. If the BLKFAC operand is specified, the BLKSIZE value must be

determined by multiplying the maximum length that must be accommodated

for an undefined record by the blocking factor desired. A BLKSIZE value

smaller than this results in truncated data.

 If two input areas are used for journal tape processing (IOAREA1 and

IOAREA2), the size specified in this entry is the size of each I/O area.

CONTROL=YES

This entry must be included if a CNTRL macro is issued for a file. A CNTRL

macro issues orders to the optical reader to perform non-data operations such

as line marking, stacker selecting, and document incrementing.

CC

name DTFOR COREXIT=name,DEVADDR=SYSxxx,EOFADDR=name,IOAREA1=name

,BLKFAC=n

 ,BLKSIZE=38

,BLKSIZE=n

C

C

,CONTROL=YES

 DEVICE=1287D

DEVICE=1287T

,HEADER=YES

,HPRMTY=YES

,IOAREA2=name

C

C

,IOREG=(r)

,MODNAME=name

 ,RECFORM=FIXUNB

,RECFORM=

FIXBLK

UNDEF

,RECSIZE=

n

(r)

C

C
,SEPASMB=YES

,WORKA=YES
 CE

DTFOR

150 z/VSE System Macros Reference

COREXIT=name

COREXIT provides an exit to your error correction routine for the 1287 or 1288.

Note that the routine always gets control in 24-bit addressing mode. After a

GET, WAITF, or CNTRL macro is executed (to increment or eject and/or

stacker select a document), an error condition causes an error correction

routine to be entered with an error indication provided in filename+80.

 The byte at filename+80 indicates the condition that occurred while the last

line or field was read. Therefore, have your program test the byte also after

any of the following macros: DSPLY, RESCN, RDLNE, CNTRL READKB, and

CNTRL MARK. More than one error condition may be present. The conditions

are indicated by the setting of bits as follows:

X’01’ =

A data check has occurred. Five read attempts for journal tape processing

or three read attempts for document processing were made.

X’02’ =

The operator corrected one or more characters from the keyboard

(DEVICE=1287T) or a hopper empty condition (see HPRMTY=YES

operand) has occurred (DEVICE=1287D).

X’04’ =

A wrong-length record condition has occurred (for journal tapes, five read

attempts were made; for documents, three read attempts were made). Not

applicable for undefined records.

X’08’ =

An equipment check resulted in an incomplete read (ten read attempts

were made for journal tapes or three for documents). If an equipment

check occurs on the first character in the record, when processing

undefined journal tape records, the RECSIZE register contains zero, and

the IOREG (if used) points to the rightmost position of the record in the

I/O area. You should test the RECSIZE register before moving records

from the work area or the I/O area.

X’10’ =

An irrecoverable error occurred.

X’20’ =

End of page (EOP) occurred while records are read (in unformatted mode)

from a file on the IBM 1288. Normally, on an EOP indication, the problem

program ejects and stacker selects the document. After one of the macros

CNTRL ESD, CNTRL SSD, CNTRL EJD in your COREXIT routine, a late

stacker selection condition occurred. For the 1287, a stacker select was

given after the allotted elapsed time and the document was put in the

reject pocket.

X’40’ =

The scanner of your IBM 1287 was unable to locate the reference mark. For

journal tapes, ten read attempts were made; for documents, three read

attempts were made.

 The action in your error correction routine depends on the requirements of

your program:

v If you issue I/O macros to any device other than IBM 1287 or 1288, you

must save registers 0. 1, 14, and 15 when your routine receives control. Your

program must restore these registers before exiting.

DTFOR

Chapter 2. Macro Descriptions 151

v If I/O macros (other than the GET, WAITF, and READ, which cannot be

used in COREXIT) are issued to your IBM 1287 and/or 1288, you must save

registers 14 and 15 and later restore these registers before exiting.

 All exits from the routine should be to the address specified in register 14. This

provides a return to the point from which the branch to COREXIT occurred.

 If the command chain bit is on in the READ CCW for which the error

occurred, IOCS completes the chain upon return from the COREXIT routine.

Note: Do not issue a GET, READ, OPEN, or WAITF macro to your IBM 1287

or 1288 in the error-correction routine. Do not process records in that

routine. The record which caused the exit to the error routine is

available for processing on return of control to the mainline program.

Any processing included in the error routine would be duplicated after

return to the mainline program.

 When processing journal tapes, an irrecoverable error (torn tape, tape jam, and

so on) normally requires that the tape be completely reprocessed. In this case,

your routine must not branch to the address in register 14 from the COREXIT

routine or a program loop will occur. Following an irrecoverable error:

v The optical reader file must be closed.

v The condition causing the non-recovery must be cleared.

v The file must be reopened before processing can continue.

 If an irrecoverable error occurs while processing documents (indicating, for

example, a jam during an increment for a document, a scanner control failure,

or an end-of-page condition), the document should be removed either

manually or by nonprocess runout. In such cases, your program should branch

to read the next document.

 If the scanner of the device is unable to locate the document reference mark,

the document cannot be processed. In this case, the document must be ejected

and stacker selected before attempting to read the following document or a

program loop will result.

 Whenever an irrecoverable error occurs, your COREXIT routine must not

branch to the address in register 14 to return to IOCS. Instead, the routine

should ignore any output resulting from the document.

 Eight binary error counters are used to accumulate totals of certain

device-error conditions. Each of these counters occupies four bytes, starting at

filename+48 (where filename is the name you specified in the name field). The

error counters are listed in the table below.

 Counter Address Description of Count

1 filename+48 Equipment check (see Note, below).

2 filename+52 Equipment check after ten read attempts for journal

tapes or three read attempts for documents (see Note,

below).

3 filename+56 Wrong-length records (not applicable for undefined

records).

4 filename+60 Wrong-length record error after five read attempts for

journal tapes or three read attempts for documents (not

applicable for undefined records).

5 filename+64 Keyboard corrections (journal tape only).

DTFOR

152 z/VSE System Macros Reference

Counter Address Description of Count

6 filename+68 Journal tape lines (including retried lines) or document

fields (including retried fields) in which data checks are

present.

7 filename+72 Lines marked (journal tape only).

8 filename+76 Count of total lines read from journal tape or the

number of CCW chains executed during document

processing.

Note: Counters 1 and 2 apply to equipment checks that result from incomplete

reads or from the inability of the scanner to locate a reference mark

(when processing documents only).

 The counters contain binary zeros at the start of each job step. You may list the

contents of these counters for analysis at end of file, or at end of job, or you

may ignore the counters. To list these contents convert them from binary to a

printable format.

DEVADDR=SYSnnn

This operand specifies the logical unit (SYSnnn) to be associated with the file.

The logical unit represents an actual I/O device address used in the ASSGN

job control statement to assign the actual I/O device address to this file.

DEVICE=1287D | 1287T

This operand specifies the I/O device associated with this file. 1287D specifies

a document file. 1287T specifies a journal tape file on the IBM 1287.

 From this specification, IOCS sets up the device-dependent routines for this

file. For document processing you must code the CCWs.

 If this operand is omitted, 1287D is assumed.

EOFADDR=name

This operand specifies the name of your end-of-file routine. IOCS

automatically branches to this routine on an end-of-file condition. Note that the

routine always gets control in 24-bit addressing mode.

 When reading data from documents, you can recognize an end-of-file condition

by pressing the end-of-file key on the console when the hopper is empty. When

processing journal tapes on a 1287, you can detect an end of file by pressing

the end-of-file key after the end of the tape is sensed.

 When IOCS detects an end-of-file condition, it branches to your routine

specified by EOFADDR. You must determine whether the current roll is the

last roll to be processed when handling journal tapes. Regardless of the

situation, the tape file must be closed for each roll within your EOF routine. If

the current roll is not the last, OPEN must be issued. The OPEN macro allows

header (identifying) information to be entered at the reader keyboard and read

by the processor when using logical IOCS. The same procedure can be used for

1287 processing of multiple journal tape rolls, as well as the method described

under ’OPEN Macro’ in the section ’Imperative Macros’.

HEADER=YES

This operand cannot be used for 1288 files. This operand is required if the

operator is to key in header (identifying) information from the 1287 keyboard.

The OPEN routine reads the header information only when this entry is

present. If the entry is not included, OPEN assumes no header information is

to be read. The header record size can be as large as the BLKSIZE entry and is

read into the high-order positions of IOAREA1.

DTFOR

Chapter 2. Macro Descriptions 153

HPRMTY=YES

This operand is included (for the 1287D or 1288) if you want to be informed of

the hopper empty condition. This condition occurs when a READ is issued and

no document is present, and is recognized at WAITF time. When a hopper

empty condition is detected, your COREXIT routine is entered with X’02’

stored in filename+80.

 This operand should be used when processing documents in the

time-dependent mode of operation, which allows complete overlapping of

processing with reading. See the appropriate IBM 1287 device manuals for

processing details. With this method of processing, specifying HPRMTY=YES

allows you to check for a hopper empty condition in your COREXIT routine.

You can then select into the proper hopper the previously ejected document

before return from COREXIT (via register 14).

IOAREA1=name

This operand is included to specify the name of the input area used by the file.

When opening a file and before each journal tape input operation to this area,

the designated area is set to binary zeros and the input routines then transfer

records to this area. For document processing, the area is cleared only when

the file is opened.

IOAREA2=name

A second input area can be allotted only for a journal tape file (on a 1287T).

This permits an overlap of data transfer and processing operations. The

specified second I/O area is set to binary zeros before each input operation to

this area occurs.

IOREG=(r)

This operand specifies a general-purpose register (any one of 2 to 12) that

IOCS uses to indicate the beginning of records for a journal tape file. The same

register may be specified in the IOREG operand for two or more files in the

same program, if desired. In this case, your program may need to store the

address supplied by IOCS for each record. Whenever this operand is included

for a file, the WORKA operand must be omitted, and a GET macro for the file

may not specify a work area.

 A read by an optical reader is accomplished by a backward scan. This places

the rightmost character in the record into the rightmost position of the I/O

area and subsequent characters in sequence from right to left. The register

defined by IOREG points to the leftmost position of the record.

MODNAME=name

This operand may be used to specify the name of the logic module used with

the DTF table to process the file. If the logic module (ORMOD) is assembled

with the program, the MODNAME operand in this DTF must specify the same

name as the ORMOD macro.

 If this entry is omitted, standard names are generated for calling the logic

module. If two different DTF macros call for different functions that can be

handled by a single module, only one standard-named module is called.

RECFORM=FIXUNB | FIXBLK | UNDEF

This operand specifies the type of records in an optical reader file. One of the

following may be specified:

FIXUNB

For fixed-length unblocked records (default).

FIXBLK

For fixed-blocked records in journal tape mode.

DTFOR

154 z/VSE System Macros Reference

UNDEF

For undefined records.

RECSIZE=n | (r)

For fixed-length unblocked records, do not specify this operand.

 For fixed-length blocked records (journal tape mode), include this operand to

specify the number, n, of characters in an individual record. The input routines

use this number to deblock records, and to check the length of input records. If

this operand is omitted, IOCS assumes unblocked records of fixed length.

 For undefined journal tape records, this operand specifies the number (r) of

the general-purpose register in which IOCS provides the length of each input

record. For undefined document records, RECSIZE contains only the length of

the last field of a document read by the CCW chain that you supply. Any one

of registers 2 through 12 may be specified.

 If the operand is omitted, IOCS uses register 13.

Note: When processing undefined records in document mode, you gain

complete usage of the register normally used in the RECSIZE operand.

You can do this by ensuring that the suppress-length-indication (SLI)

flag is always on when processing undefined records.

SEPASMB=YES

Include this operand only if your DTFOR macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name used as file name. The name is used as the module’s

transfer address. If you omit this operand, the assembler assumes that the

DTFOR macro is assembled together with your program.

WORKA=YES

Input records from a journal tape can be processed in work areas instead of in

the input areas. If this is planned, the operand WORKA=YES must be

specified, and you must set up the work area in storage. The symbolic name of

the work area, or a general-purpose register containing the address of the work

area, must be specified in each GET macro. When GET is issued, IOCS

left-justifies the record in the specified work area. Whenever this operand is

included for a file, the DTFOR IOREG operand must be omitted.

DTFPH (Define the File for Physical I/O) Macro

CC name DTFPH TYPEFLE= INPUT

OUTPUT

,ASCII=YES

,CISIZE=n
 C

C

,CCWADDR=name

,DEVADDR=SYSxxx

 ,DEVICE=TAPE

,DEVICE=xxxx

C

C
,EOXPTR=pointer

,HDRINFO=YES

,LABADDR=name
 C

DTFOR

Chapter 2. Macro Descriptions 155

C
,MOUNTED=

ALL

SINGLE

,XTNTXIT=name
 CE

Required RMODE: 24

When physical IOCS macros (EXCP, WAIT, etc.) are used in a program, disk,

diskette, or tape files with standard labels need to be defined by the DTFPH macro

(DTFxx macro for a file handled by physical IOCS). DTFPH must also be used for

a checkpoint file on a disk.

Figure 7 shows which of the DTFPH entries can or must be coded to define a

checkpoint file on disk.

ASCII=YES

This operand is required to process ASCII tape files (see Appendix B,

“American National Standard Code for Information Interchange,” on page

439). If this operand is omitted, EBCDIC processing is assumed.

CCWADDR=name

This operand allows you to use the CCB generated within the first 16 bytes of

the DTFPH table. CCWADDR specifies the symbolic name of the first CCW

used with the CCB generated within the DTFPH macro. This name must be the

same as the name specified in the assembler CCW statement that defines the

CCW.

 If you omit the operand, the location counter value of the CCB-CCW table

address constant is substituted for the CCW address.

CISIZE=n

This operand specifies the FBA control-interval size. The value n must be an

integral multiple of the FBA physical block size and, if greater than 8K, must

be a multiple of 2K. The maximum value is 32 768 (32K) except when assigned

to SYSLST or SYSPCH, when the maximum is 30 720 (30K).

 If CISIZE is omitted, CISIZE=0 is assumed. For an output file on an FBA

devices, the control-interval size may be overridden at the time of program

execution. You do this by specifying the CISIZE operand of the DLBL job

control statement. For an input file, the CISIZE value in the format-1 label is

used.

DEVADDR=SYSxxx

This operand must specify the logical unit (SYSxxx) associated with the file if a

logical unit is not provided via an EXTENT job control statement. If a logical

unit is provided, its specification overrides a DEVADDR specification. This

 Operand Optional Required

 CCWADDR=name X

 CISIZE=n X

 DEVADDR=SYSnnn X

 DEVICE=DISK X

 LABADDR=name X

 MOUNTED=SINGLE X

 TYPEFLE=OUTPUT X

Figure 7. Operands to Define a Checkpoint File on Disk

DTFPH

156 z/VSE System Macros Reference

specification, or logical unit, represents an actual I/O address, and is used in

the ASSGN job control statement to assign the actual I/O device address to

this file.

 If SYSLST or SYSPCH are used as output tape units and alternate tape

switching is desired upon detecting a reflective spot, the SEOV macro must be

used (see “SEOV (System End-of-Volume) Macro” on page 369). When

processing ASCII tape files, the only valid specification is a programmer logical

unit (that is, SYSnnn).

DEVICE=TAPE | xxxx

Code the proper device identification, which may be one of the following:

TAPE

If the file resides on a tape mounted on an IBM tape drive supported by

z/VSE. For an ASCII file, TAPE is the only valid specification in this

operand. TAPE is the default if you omit the operand.

DISK

If the file may reside on a disk of any type, CKD or FBA. If you specify

DISK, IOCS determines the disk device type when the file is opened.

3540

If the file resides on a diskette.

nnnn

Which is a disk device-type code.

 There is no need for you to specify a disk device type code; specify

DEVICE=DISK instead. The assembler accepts the following type

specification:

 3380

EOXPTR=pointer

This operand is valid only if TYPEFLE=OUTPUT and MOUNTED=SINGLE is

specified.

 The operand points to a 4-byte field that contains the address of your

end-of-extent exit routine. The routine receives control if, during OPEN

processing for an output file, IOCS cannot find an additional extent. Note that

the routine always gets control in 24-bit addressing mode.

 On entry to the exit routine, register 15 is set to zero.

HDRINFO=YES

This operand causes IOCS to print standard header label information (fields

3-10) on SYSLOG each time a file with standard labels is opened. Likewise, the

file name, symbolic unit, and device address are printed each time an

end-of-volume condition is detected. If HDRINFO=YES is omitted, no header

or end-of-volume information is printed.

LABADDR=name

This operand does not apply to diskette input/output units.

 You may require one or more disk or tape labels in addition to the standard

file labels. If so, you must include your own routine to check (on input) or

build (on output) your label(s). Specify the symbolic name of your routine in

this operand. IOCS branches to this routine after the standard label is

processed. Note that the routine always gets control in 24-bit addressing mode.

 LABADDR may be included to specify a routine for your header or trailer

labels as follows:

v Disk input or output: header labels only.

DTFPH

Chapter 2. Macro Descriptions 157

v Tape input or output: header and trailer labels.

 Thus, if LABADDR is specified, your header labels can be processed for an

input/output disk or tape file, and your trailer labels can be built for a tape

output file. Physical IOCS reads input labels and makes them available to you

for checking; it writes output labels after they are built. This is similar to the

functions performed by logical IOCS.

 If physical IOCS macros are used for a tape file, an OPEN must be issued for

the new volume. This causes IOCS to check the HDR1 label and provides for

your checking of user standard labels, if any.

 When physical IOCS macros are used and DTFPH is specified for standard

tape label processing, FEOV must not be issued for an input file.

 For more information about the handling of user labels, see the section

“Processing of User Labels” on page 445.

MOUNTED=ALL | SINGLE

This operand does not apply to diskette input/output units.

 This operand must be included to specify how many extents (areas) of the file

are available for processing when the file is initially opened. This operand

must not be specified for tape.

 Specify ALL if all extents are available for processing. When a file is opened,

IOCS checks all labels on each disk pack and makes available all extents

specified by your control statements. Only one OPEN is required for the file.

ALL should be specified whenever you plan to process records in a manner

similar to the direct access method.

 After an OPEN is performed, you must be aware that the symbolic unit

address of the first volume containing the file is in bytes 30 and 31 of the

DTFPH table rather than in the CCB. Therefore, place this symbolic address

into bytes 6 and 7 of the associated CCB before you issue an EXCP against this

CCB in your program.

 Specify SINGLE if only the first extent on the first volume is available for

processing. SINGLE should be specified when you plan to process records in

sequential order. IOCS checks the labels on the first pack and makes the first

extent specified by your control statements available for processing. You must

keep track of the extents and issue a subsequent OPEN whenever another

extent is required for processing. You will find the information in the DTFPH

table helpful in keeping track of the extents.

 The contents of the table are:

Bytes Contents

0-15 CCB (symbolic unit has been initialized in the CCB).

54-57 Upper extent limits (cchh).

 For an FBA disk, the extent upper limit is the number of the first block

of the last CI. If the number of blocks per CI is greater than 1, the

upper extent limit can differ from the format-1 label and your

specification in the DTFPH macro.

58-59 Seek address. For a disk it must be zero.

60-63 Lower extent limit (cchh for CKD).

DTFPH

158 z/VSE System Macros Reference

On each OPEN after the first, IOCS makes available the next extent specified

by the control cards. When you issue a CLOSE for an output file, the volume

on which you are currently writing records is indicated, in the file label, as the

last volume for the file.

TYPEFLE=INPUT | OUTPUT

This operand must be included to specify the type of file: input or output.

XTNTXIT=name

This operand does not apply to diskette input/output units.

 Include this operand if you want to process label extent information. It

specifies the symbolic name of your extent routine. The DTFPH operand

MOUNTED=ALL must also be specified for the file. Note that the routine

always gets control in 24-bit addressing mode.

 Whenever XTNTXIT is included, IOCS branches to your routine during the

initial OPEN for the file. It branches after each specified extent is completely

checked and after conflicts, if any, have been resolved.

 When your routine receives control, register 1 contains the address of a 14-byte

area from which you can retrieve label extent information (in binary form). The

layout of this area is:

Bytes Contents

0 Extent type code.

1 Extent sequence number.

2-5 Lower limit of the extent.

6-9 Upper limit of the extent.

10-11 Symbolic unit.

12 Set to zero.

13 Reserved.

 Return to IOCS by using the LBRET macro.

DTFPR (Define the File for Printer) Macro

CC name DTFPR DEVADDR=SYSxxx,IOAREA1=name

,ASOCFLE=filename
 C

C
,BLKSIZE=n

,CONTROL=YES

,CTLCHR=

YES

ASA

,DEVICE=nnnn
 C

C
,ERROPT=

RETRY

IGNORE

name

,FUNC=xxxx

,IOAREA2=name

,IOREG=(r)
 C

C
,MODNAME=name

,PRINTOV=YES

,RDONLY=YES
 C

DTFPH

Chapter 2. Macro Descriptions 159

C
 ,RECFORM=FIXUNB

,RECFORM=

VARUNB

UNDEF

,RECSIZE=(r)

,SEPASMB=YES

C

C

,STLIST=YES

,TRC=YES

 ,UCS=OFF

,UCS=ON

,WORKA=YES

CE

Required RMODE: 24

The macro is used to define an output file for a printer.

ASOCFLE=filename

This operand is used together with the FUNC operand to define associated

files for the IBM 3525. For a discussion of associated files see “Programming

for Associated Files” in the z/VSE System Macros User’s Guide.

 The operand specifies the file name of an associated read and/or punch file.

The specification enables macro sequence checking by the logic module of each

associated file. One file name is required per DTF for associated files.

 Figure 2 on page 105 shows which file name is to be specified by the

ASOCFLE operand for each of the associated DTFs.

BLKSIZE=n

This operand specifies the length of IOAREA1. The maximum values which

may be specified in this operand and the lengths assumed when it is omitted

are given for the different devices in Figure 8 on page 161.

 The actual size of the block may exceed the maximum length given in Figure 8

if the following is true:

1. Your DTFPR includes CTLCHR=YES or ASA.

2. The control character of your record is X’5A’ to indicate that this is a

composed page data stream (CPDS) record.

3. The specified record format is VARUNB (for variable unblocked) or

UNDEF (for undefined).

 Data with a control character of X’5A’ can have a length of up to 32 767 bytes.

DTFPR

160 z/VSE System Macros Reference

CONTROL=YES

This operand should be specified if the CNTRL macro is issued for the file.

You may omit this operand if:

1. Your CNTRL macros request immediate printer operations only, and

2. The device being used is a PRT1 printer or an IBM 4248.

Examples of immediate printer operations are: immediate space or skip; enable

or disable horizontal copying.

CTLCHR=YES | ASA

Specify this operand if first-character control is used. CTLCHR=YES specifies

the S/370 character set (see Appendix A, “Control Character Codes,” on page

435 for a list of codes).

 CTLCHR=ASA specifies the American National Standards Institute, Inc.

character set. As an addition to the ASA character set, X’5A’ indicating a

’composed page data stream’ (CPDS) record is accepted as a valid ASA

character.

 If this operand is specified, omit CONTROL.

 If CTLCHR=ASA is specified for a file on the IBM 3525, the + character is not

allowed. To print on the first line of a card, you must issue either a space 1

command or a skip to channel 1 command. For a print associated file on the

IBM 3525, you must issue a space 1 command to print on the first line of a

card.

DEVADDR=SYSLOG | SYSLST | SYSnnn

This operand specifies the symbolic unit to be associated with the printer.

SYSLOG and SYSLST must not be specified for the IBM 3525.

 ┌───┐

 │ Maximum Length Assumed Length│

 │ IBM Device (See Note 1) (See Note 2) │

 │──────────────────── ────────────── ──────────────│

 │ PRT1 512 121 │

 │ │

 │ 1403-2 132 121 │

 │ 1403-3 132 121 │

 │ 1403-6 120 121 │

 │ 1403-7 120 121 │

 │ 1403-8 132 121 │

 │ 1403-9 132 121 │

 │ │

 │ 3203 132 121 │

 │ │

 │ 3525 64 64 │

 │ │

 │ 3800/3200 without 384 136 │

 │ TRC (See Note 3) │

 └───┘

Notes:

1. RECFORM is FIXUNB or UNDEF and operand CTLCHR is not

specified. If the CTLCHR operand is specified, add one byte to

the maximum value which can be specified. Add four bytes to

the maximum value if RECFORM=VARUNB is specified.

2. The operand BLKSIZE=n is omitted.

3. For a 3800, the maximum length is 385 if TRC=YES is used; the

assumed length is 137.

Figure 8. Maximum and Assumed Lengths for the IOAREA1 in Number of Bytes

DTFPR

Chapter 2. Macro Descriptions 161

DEVICE=nnnn

This operand specifies the type of IBM device used for the file. Specify one of

the following type codes:

 PRT1 3211

 1403 3525

 3203 3800

PRT1 refers to a 3211 or 3211-compatible IBM printer as listed under “Device

Type Codes” in the z/VSE System Control Statements manual; it refers also to an

IBM 4248 printer operating in native mode. Change your specification (in an

existing program) to PRT1 if you want your program to:

1. Direct its print output to an IBM 4248.

2. Make use of certain IBM 4248 specific functions.

 Reassemble and relink the program after this change.

ERROPT=RETRY | IGNORE | name

This operand specifies the action to be taken in the case of an equipment error.

The actions you can specify are described below:

ERROPT=RETRY

Applies only if you specify also DEVICE=PRT1.

 RETRY indicates that, if an equipment check with command retry is

encountered, the command is retried once. If the retry is unsuccessful, a

message is issued and the job is canceled.

ERROPT=IGNORE

Can be specified only for the 3525. IGNORE indicates that the error is to be

ignored. The address of the record in error is put in register 1 and made

available for processing. Byte 3, bit 3 of the CCB is also set on (see page

56); you can check this bit and take the appropriate action to recover from

the error. IGNORE must not be specified for files with two I/O areas or a

work area.

ERROPT=name

Applies only if you specify also DEVICE=PRT1.

 If an equipment check with command retry is encountered, the command

is retried once. If the retry is unsuccessful a message is issued and the job

canceled.

 For other types of errors (for these, see “CCB Communication Bytes” on

page 54), IOCS:

1. Issues an error message.

2. Places error information into the CCB.

3. Returns control to your error routine.

 In your routine, you may perform whatever actions are desired, but you

should not issue any imperative macro instruction for the file invoking the

error exit. Note that the routine always gets control in 24-bit addressing

mode.

 To continue processing at the end of the routine, return to IOCS by

branching to the address in register 14.

FUNC=W | WT | RW | RWT | RPW | RPWT | PW | PWT

This operand specifies the type of file to be processed by the IBM 3525.

 W indicates print, R indicates read, P indicates punch, and T (for the 3525

only) indicates an optional 2-line printer.

DTFPR

162 z/VSE System Macros Reference

RW|RWT|RPW|RPWT, and PW|PWT are used, together with the ASOCFLE

operand, to specify associated files; when one of these specifications (without

T) is used for a printer file, it must be specified also for the associated file(s).

Note: Do not use T for associated files, it is valid only for printer files.

 If a 2-line printer is not specified for the 3525, multi-line print is assumed. T is

ignored if CONTROL or CTLCHR is specified.

IOAREA1=name

This operand specifies the name of the output area.

IOAREA2=name

This operand specifies the name of a second output area.

IOREG=(r)

If two output areas and no work areas are used, this operand specifies the

register into which IOCS will place the address of the area where you can

build a record. For (r) specify one of the registers 2 to 12.

MODNAME=name

This operand may be used to specify the name of the logic module that is used

with the DTF table to process the file. If the logic module is assembled with

the program, MODNAME must specify the same name as the PRMOD macro.

If this operand is omitted, standard names are generated for calling the logic

module. If two DTF macros call for different functions that can be handled by

a single module, only one module is called.

 The module specified by this operand is ignored if the actual IBM device is

one of the following:

 PRT1 printer

 4248 printer operating in native mode

 3800 printer

 OPEN always provides an IBM-supplied logic module for these devices.

PRINTOV=YES

This operand is specified if the PRTOV macro is included in your program.

RDONLY=YES

This operand is specified if the DTF is used with a read-only module. Each

time a read-only module is entered, register 13 must contain the address of a

72-byte doubleword-aligned save area. Every task requires its own uniquely

defined save area. Each time an imperative macro (except OPEN or OPENR) is

issued, register 13 must contain the address of the save area associated with

the task. Because the save area is unique for each task, the module is reentrant;

that is, capable of being used concurrently by several tasks.

 If an ERROPT routine issues I/O macros which use the same read-only

module that caused control to pass to either error routine, your program must

provide another save area. One save area is used for the normal I/O, and the

second for I/O operations in the ERROPT routine. Before returning to the

module that entered the ERROPT routine, register 13 must be set to the save

area address originally specified for the task.

 If this operand is omitted, the module generated is not reenterable and no save

area need be established.

RECFORM=FIXUNB | UNDEF | VARUNB

The operand RECFORM=FIXUNB is specified whenever the record format is

fixed. When the record format is FIXUNB, this entry may be omitted.

DTFPR

Chapter 2. Macro Descriptions 163

The entry RECFORM=UNDEF is specified whenever the record format is

undefined. If the output is variable and unblocked, enter VARUNB.

RECSIZE=(r)

This operand specifies the general register (any one of 2 to 12) that will contain

the length of an output record of undefined format. The length of every record

must be loaded into the register before issuing the PUT macro.

SEPASMB=YES

Include this operand only if the DTFPR macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name you used as file name. The name is used as the

module’s transfer address. If you omit the operand, the assembler assumes that

the DTFPR macro is assembled together with your program.

STLIST=YES

Include this operand if the selective tape listing feature (IBM 1403 only) is

used. If this entry is specified, the CONTROL, CTLCHR, and PRINTOV entries

are not valid and are ignored if specified. If you specify this operand, you

must specify also RECFORM=FIXUNB.

TRC=YES

This operand applies if DEVICE=3800 is specified. Specify TRC=YES if each

output data line includes a table reference character following the optional

print control character. The printer uses the table reference character to select

the character arrangement table corresponding to the order in which the table

names were specified (in the CHAR operand of the SETPRT job control

statement or a SETPRT macro).

 If a device code other than a 3800 is specified in the DEVICE operand, any

table reference character sent to that printer is treated as data.

UCS=OFF | ON

For a printer with the universal character set feature, or for a 3800, this

operand determines whether data checks occurring in case of unprintable

characters are indicated to the operator or printed as blanks. The operand is

especially useful if you are using first-character forms control and have

modules that cannot process the CNTRL macro. If the operand is omitted, OFF

is the default.

ON

Data checks are processed with an operator indication.

OFF

Data checks are ignored and blanks are printed for the unprintable

character.

WORKA=YES

If output records are processed in work areas instead of in the I/O areas,

specify this operand. You must set up the work area in storage. The address of

the work area, or a general-purpose register which contains the address, must

be specified in each PUT macro.

DTFSD (Define the File for Sequential Disk I/O) Macro

CC name DTFSD BLKSIZE= n

MAX
 ,EOFADDR=name

,CISIZE=n
 C

DTFPR

164 z/VSE System Macros Reference

C
,DELETFL=NO

,DEVADDR=SYSxxx

,EOXPTR=pointer
 C

C
,ERROPT=

IGNORE

SKIP

name

,FEOVD=YES

,HOLD=YES

,IOAREA1=name
 C

C
,IOAREA2=name

,IOREG=(r)

,LABADDR=name

,PWRITE=YES
 C

C
,RECFORM=format

,RECSIZE=

n

(r)

,SEPASMB=YES
 C

C

,TRUNCS=YES

 ,TYPEFLE=INPUT

,TYPEFLE=

OUTPUT

WORK

WORKIN

WORKINUP

WORKMOD

,UPDATE=YES

C

C
,VARBLD=(r)

,VERIFY=YES

,WLRERR=name

,WORKA=YES
 CE

Required RMODE: 24

The macro defines a disk file for sequential (consecutive) processing. Only IBM

standard label formats are processed for the file.

Note: To code a DTFSD macro for a SAM file in VSAM managed space, consult

VSE/VSAM User’s Guide and Application Programming under “VSE/VSAM

Support for SAM Files”.

BLKSIZE=n | MAX

For n in BLKSIZE=n, code the length of the I/O area. If the record format is

variable or undefined, enter the length of the I/O area needed for the largest

block of records.

 For input files with fixed-length blocked records, BLKSIZE must be an integer

multiple of RECSIZE; for output files, eight bytes must be added for IOCS to

set up a count field.

 If the file is on an FBA device, the operand specifies the logical block size. For

an FBA disk, the maximum value is 32 761 (the maximum CISIZE value minus

7).

 The BLKSIZE value for output files must include eight bytes for a count field

to provide compatibility between FBA and CKD disk.

 The value given in this operand can be overridden by the BLKSIZE operand of

the DLBL job control statement if you define blocked records

(RECFORM=xxxBLK). For an output file, the records are blocked according to

the size specified by the BLKSIZE operand (from the DLBL statement if it was

DTFSD

Chapter 2. Macro Descriptions 165

specified; otherwise from the DTFSD). For an input file, the BLKSIZE value

must match the format of the data as this resides on the disk.

 To use the DLBL BLKSIZE operand:

v The device must be a CKD device; else, the operand is ignored.

v Partition GETVIS space for a DTF extension and new buffers must be

available.

v DTFSD RECFORM=xxxBLK must have been specified.

 Specify BLKSIZE=MAX for optimum use of the storage capacity of your disk

device. This sets the length of the I/O area to one full track if:

v The file resides on a CKD device.

v The file’s records have a format other than control interval (CI).

 OPEN obtains the track capacity of your device and sets the length of the I/O

area accordingly.

 If the records of the file have the CI format, BLKSIZE=MAX sets the I/O area

to a length of 32 761 bytes, except when you specify also RECFORM=FIXBLK.

In that case, BLKSIZE=MAX sets the length of the I/O area to the highest

integer multiple of RECSIZE that is not greater than 32 761.

 If you specify BLKSIZE=MAX, any CISIZE specification is ignored.

CISIZE=n

This operand specifies the size of the file’s control intervals. The operand

applies if the file resides on an FBA disk assigned to a non-system file logical

unit. The operand is ignored if the device is assigned to a system file (SYSRDR,

SYSIPT, SYSLST, or SYSPCH), or to a CKD-disk extent. In case of SAM ESDS, a

specified value for CSIZE is being used by VSAM to implicitly DEFINE

CLUSTER the file (FBA and CKD).

 The value n must be a multiple of the FBA block size and, if greater than 8K,

must be a multiple of 2K. The maximum value is 32 768.

 If CISIZE is omitted, CISIZE=0 is assumed.

 For an output file, the specified control interval size may be overridden when

the program is to be executed. You do this by specifying the CISIZE operand

of the DLBL control statement (except when you specify BLKSIZE=MAX in this

macro).

 For an input file, the size stored in the format-1 label is used. If this value is

zero, OPEN calculates a value based on your specification for BLKSIZE.

 Omit CISIZE if you specify BLKSIZE=MAX.

DELETFL=NO

Specify this operand if the CLOSE macro is not to delete the format-1 and

format-3 label for a work file. The operand applies to work files only.

DEVADDR=SYSxxx

This operand must specify the symbolic unit associated with the file if an

extent is not provided. A job control EXTENT statement is not required for

single-volume input files. If an EXTENT statement is provided, its specification

overrides any DEVADDR specification. SYSnnn represents an actual I/O

address, and is used in the ASSGN job control statement to assign the actual

I/O device address to this file.

EOFADDR=name

This operand specifies the name of your end-of-file routine (for input or work

DTFSD

166 z/VSE System Macros Reference

files). IOCS automatically branches to this routine on an end-of-file condition.

In this routine, you can perform any operations required at end of file (you

generally issue the CLOSE macro). Note that the routine always gets control in

24-bit addressing mode.

EOXPTR=pointer

This operand points to a 4-byte field that contains the address of an

end-of-extent exit routine. IOCS branches to this routine when the end of the

last (or only) extent is reached during an output operation on an output or

work file. Note that the routine always gets control in 24-bit addressing mode.

 On entry to the routine, register 15 contains:

0 If the end-of-extent condition occurred during normal processing. In this

case, you can issue a CLOSE macro for the file; usually, there will be

enough space for an end-of-file record. However, for blocked files, the last

block may not be written.

4 If the condition occurred during CLOSE processing. In this case, you can

no longer issue an imperative macro for the file. For blocked files, the last

block may not be written.

8 If the condition occurred during processing of a POINT macro for a work

file (if, for example, the NOTE information provided was incorrect).

 EOXPTR is not allowed for TYPEFLE=WORKIN.

ERROPT=IGNORE | SKIP | name

This operand is specified if a job is not to be terminated when a read or write

error cannot be corrected in the disk error routines. The disk error routines

normally retry failing I/O operations several times before considering the error

irrecoverable. Once the error is considered irrecoverable, the job is terminated

unless the ERROPT operand is specified.

 Note that a no-record-found condition is not considered a real I/O error.

Therefore the ERROPT exit will not be activated by a no-record-found

condition. Instead, the operator receives a message to which he can respond

with CANCEL; then the error is considered irrecoverable.

 The functions you can specify are explained below:

ERROPT=IGNORE

The error condition is ignored. The records are made available for

processing. When reading spanned records, the whole spanned record or

block of spanned records is returned, rather than just the one physical

record in which the error occurred.

 On output, the physical record or control interval in which the error

occurred is ignored as if it were written correctly. If possible, any

remaining spanned record segments are written.

ERROPT=SKIP

On input, no records in the error block or control interval are made

available for processing. The next block or control interval is read from the

disk, and processing continues with the first record of that block. When

reading spanned records, the whole spanned record or block of spanned

records is skipped, rather than just one physical record.

 On output or for an UPDATE=YES file, the physical record or control

interval in which the error occurred is ignored as if it were written

correctly. If possible, any remaining spanned record segments are written.

DTFSD

Chapter 2. Macro Descriptions 167

ERROPT=name

IOCS branches to the error routine named in this operand. In this routine,

you can process or make note of the error condition as desired, but you

should not issue any imperative macro instructions for the file invoking

the error exit. Note that the routine always gets control in 24-bit addressing

mode.

 To continue processing at the end of the routine, return to IOCS by either:

v Branching to the address in register 14, or

v Coding the ERET macro.

FEOVD=YES

This operand is specified if a forced end of volume for disk feature is desired.

It forces the end-of-volume condition before physical end of volume occurs.

When the FEOVD macro is issued, the current volume is closed, and I/O

processing continues on the next volume. This operand does not apply to work

files.

HOLD=YES

This operand may be specified only if:

1. Generation of the track-hold function was requested for the assembly of

your supervisor.

2. Your DTFSD macro includes the operand UPDATE=YES.

For a more detailed discussion of the track-hold function, see “DASD Record

Protection (Track Hold)” in the z/VSE System Macros User’s Guide.

IOAREA1=name

This operand specifies, for an input or output file, the symbolic name of the

I/O area used by the file. It is not required if WORKA=YES or IOREG=(r) is

specified for any input or output file.

 If both IOAREA1=name and WORKA=YES are specified on an FBA file,

IOAREA1 is ignored.

 If the BLKSIZE is overridden by the DLBL statement, and the value is greater

than the value specified in the DTF, OPEN issues a GETVIS for the space of

the larger I/O area and the specified one is not used.

 For variable-length or undefined records, this area must be large enough to

contain the largest block or record.

Note: Either IOAREA1=name or WORKA=YES must be specified if

variable-length records are to be used with VSE/VSAM managed space.

IOAREA2=name

If two I/O areas are used by GET or PUT, this operand is specified. When

variable length records are processed, the size of the I/O area must include

four bytes for the block size. For output files, the I/O area must include eight

bytes. This operand is ignored if IOAREA1 is not specified.

IOREG=(r)

This operand specifies, for an input or output file, the general purpose register

(any of 2 to 12) in which IOCS puts the address of the logical record that is

available for processing. At OPEN time, for output files, IOCS puts into the

register specified the address of the area where you can build a record. The

same register may be used for two or more files in the same program, if

desired. If this is done, the program must store the address supplied by IOCS

for each record.

 This operand must be specified if

DTFSD

168 z/VSE System Macros Reference

v No I/O area has been specified, or

v Blocked input or output records are processed in one I/O area, or

v Two I/O areas are used and the records are processed in both I/O areas.

 For an FBA file, the register specified by IOREG will point directly to data in

the control interval buffer.

LABADDR=name

Specifies, for an input or output file, the name of the routine in which you

process user-standard labels. Note that the routine always gets control in 24-bit

addressing mode. For more information about the handling of user-standard

labels, see the sections “Processing of User Labels” on page 445.

PWRITE=YES

This operand is specified if formatting output operations to an FBA device

(PUT for data files or WRITE SQ for work files) are to cause a physical write

for each logical block. If omitted, the actual write takes place only when the

control interval buffer is full.

 If PWRITE=YES is specified, the POINTR, POINTS, and POINTW macros may

not be used.

RECFORM=format

This operand specifies the type of records for input or output. For format,

specify one of the following:

FIXUNB

For fixed-length unblocked records.

FIXBLK

For fixed-length blocked records.

VARUNB

For variable-length unblocked records.

VARBLK

For variable-length blocked records.

SPNUNB

For spanned variable-length unblocked records.

SPNBLK

For spanned variable-length blocked records.

UNDEF

For undefined records.

 If RECFORM=SPNUNB or RECFORM=SPNBLK is specified and RECSIZE=(r)

is not specified, an assembler diagnostic (MNOTE) is issued, and register 2 is

assumed. If WORKA=YES is omitted, an MNOTE is issued and WORKA=YES

is assumed. If RECFORM is omitted, FIXUNB is assumed.

 If RECFORM=xxxBLK is specified and if the actual device is a CKD device,

you can override the BLKSIZE value with the BLKSIZE operand on the DLBL

statement at execution time.

 For work files, use FIXUNB or UNDEF only.

RECSIZE=n | (r)

Specifies the number of characters in each logical record either directly or in a

register (any one of 2 to 12, where R2 is the default). When and how to use

RECSIZE largely depends on the record format:

v RECSIZE is required in direct format for RECFORM=FIXBLK.

DTFSD

Chapter 2. Macro Descriptions 169

v RECSIZE must not be used for RECFORM=FIXUNB | VARUNB | VARBLK.

For these file types, the record size is derived from the block size and set to

BLKSIZE minus 8 for output files, and BLKSIZE for others.

v RECSIZE is required with register notation for

RECFORM=SPNUNB|SPNBLK|UNDEF. In these cases, RECSIZE

– is required for output files; the length of each record must be loaded into

the designated register before issuing a PUT macro.

– is optional for input files; IOCS returns the length of the record

transferred to virtual storage in the designated register.
v RECSIZE must not be specified for work files.

SEPASMB=YES

Include this operand only if the DTFSD macro is to be assembled separately.

This produces an object module ready to be cataloged into a suitable

sublibrary by the name you used as file name. The name is used as the

module’s transfer address. If you omit the operand, the assembler assumes that

the DTFSD macro is assembled together with your program.

TRUNCS=YES

This operand is specified if FIXBLK disk files contain short blocks embedded

within an input file or if the input file was created with a module that

specified TRUNCS. This entry is also specified if the TRUNC macro is issued

for a FIXBLK output file. The operand does not apply to work files.

TYPEFLE=INPUT | OUTPUT | WORK | WORKIN | WORKINUP |

WORKMOD

Use this operand to indicate whether the file is an input or an output or a

work file.

INPUT

The GET macro must be used.

OUTPUT

The PUT macro must be used.

WORK

The READ and WRITE, NOTE and POINTx, and CHECK macros must be

used, and RECFORM must be either FIXUNB or UNDEF.

WORKIN

Indicates an input type OPEN for which WRITE is not allowed. See Note

below.

WORKINUP

Indicates an input type OPEN for which WRITE is allowed. See Note

below.

WORKMOD

Equal to TYPEFLE=WORKINUP if the file already exists. Equal to

TYPEFLE=WORK if the file does not exist.

Note: For work files all extents must reside on a single volume. If WORKIN or

WORKINUP is specified, the work file has to reside on one volume, that

is, only the first EXTENT statement (if any) is processed; additional

EXTENT statements are ignored. From the first EXTENT statement, only

the logical unit and volume serial number (if specified) are used. Any

other information in the EXTENT statement is ignored.

If the operand is omitted, INPUT is assumed.

UPDATE=YES

This operand must be included if the disk input file is updated - that is, if disk

records are read, processed, and then re-written in the same disk record

DTFSD

170 z/VSE System Macros Reference

locations from which they were read. CLOSE writes any remaining records in

sequence onto the disk. For workfiles to be updated, use TYPEFLE=

WORKINUP.

 This operand is invalid for a file on a disk assigned to a system logical unit

(SYSRDR, SYSIPT, SYSLST, or SYSPCH). If a PUT is attempted to an input file,

the job will be terminated.

VARBLD=(r)

Whenever variable-length blocked records are built directly in the output area

(no work area specified), this entry must be included. It specifies the number

(r) of a general-purpose register (any one of 2 to 12), which will always contain

the length of the available space remaining in the output area.

 IOCS calculates the space still available in the output area, and supplies it to

you in the designated register after the PUT macro is issued for a

variable-length record. You then compare the length of your next

variable-length record with the available space to determine if the record fits in

the area. This check must be made before the record is built. If the record does

not fit, issue a TRUNC macro to transfer the completed block of records to the

file. Then, the present record is built at the beginning of the output area in the

next block.

VERIFY=YES

This operand is included if you want to check the parity of disk records after

they are written. If this operand is omitted, any records written on a disk are

not verified.

WLRERR=name

This operand applies only to disk input files. It does not apply to undefined

records. WLRERR specifies the symbolic name of your routine to receive

control if a wrong-length record is read. Note that the routine always gets

control in 24-bit addressing mode.

 If the WLRERR operand is omitted but a wrong-length record is detected by

IOCS, one of the following conditions results:

v If the ERROPT entry is included for this file, the wrong-length record is

treated as an error block and handled according to your specifications for an

error (IGNORE, SKIP, or name of error routine).

v If the ERROPT entry is not included, the error is ignored.

v If WORKA=YES is specified, do not destroy R0 when return by ERET

IGNORE is set, as R0 may be used as work area address.

 Undefined records are not checked for incorrect record length. The record is

truncated when the BLKSIZE specification is exceeded.

WORKA=YES

If records of an input or output file are processed or built in work areas

instead of I/O areas, specify this operand. You must set up the work area in

storage. The address of the work area, or a general-purpose register which

contains the address, must be specified in each GET or PUT macro. For a GET

or PUT macro, IOCS moves the record to, or from, the specified work area.

WORKA=YES is required for SPNUNB and SPNBLK records, where the work

area must be sufficiently long to hold the longest spanned record.

 When WORKA=YES is specified, IOREG must be omitted.

DTFSD

Chapter 2. Macro Descriptions 171

DTL (Define the Lock) Macro

CC

name

DTL NAME=resourcename
 ,CONTROL=E

,CONTROL=S

 ,KEEP=NO

,KEEP=YES

C

C
 ,LOCKOPT=1

,LOCKOPT=

2

4

 ,OWNER=TASK

,OWNER=PARTITION

 ,SCOPE=INT

,SCOPE=EXT

C

C
,VOLID=volume_id

 CE

Required RMODE: 24

The macro generates a control block which is used by the LOCK/UNLOCK macros

to queue and dequeue a resource access request. The control block, commonly

called ’DTL’, is generated at the time of program assembly.

NAME=resourcename

Specifies the name by which the resource is known to the system for the

purpose of access share control. It is by this name that the system controls

shared access of the resource as requested by active tasks via the LOCK macro.

These tasks may all be active in one partition, or they may be distributed over

several partitions; the resource-share control extends across partitions.

 The name may be up to twelve bytes long. If it is shorter, it is padded with

blanks. Note that the name must not begin with any of the characters A

through I or V, because these characters are reserved for IBM usage.

CONTROL=E | S

Defines how the named resource can be shared while your program owns it,

which is determined by this specification and your specification for the

operand LOCKOPT. A specification of E means the resource is queued for

exclusive use; a specification of S means the resource is queued as sharable.

KEEP=NO | YES

This operand may be used to lock the named resource beyond job step

boundaries. Only a main task should use this operand. KEEP=NO indicates

that the named resource once locked, is to be released automatically at the end

of the particular job step. With KEEP=YES, a named resource that is locked

remains locked across job steps; it will be automatically released at end of job.

 If a job terminates abnormally, all resources with KEEP=YES are unlocked by

the abnormal termination routine.

LOCKOPT=1 | 2 | 4

This operand, together with the CONTROL operand, determines how the

system controls shared access in response to a LOCK request.

LOCKOPT=1 and CONTROL=E

No other task is allowed to use the resource concurrently.

LOCKOPT=1 and CONTROL=S

Other ’S’ users are allowed concurrent access, but no concurrent ’E’ user is

allowed.

DTL

172 z/VSE System Macros Reference

LOCKOPT=2 and CONTROL=E

No other ’E’ user gets concurrent access; however, other ’S’ users can have

access to the resource.

LOCKOPT=2 and CONTROL=S

Other ’S’ users can have concurrent access and, in addition, one ’E’ user is

allowed.

LOCKOPT=4 and CONTROL=E

No other ’E’ user from another system is allowed concurrent access.

However, other ’S’ users from other systems may use the resource

concurrently. (Within his own system, the user always has access to the

resource.)

LOCKOPT=4 and CONTROL=S

Other ’S’ users can have concurrent access and, in addition, one ’E’ user

from another system is allowed.

Note: If the DASDSHR support is not generated in the supervisor, the LOCK

request for the resource is always granted.

All users of a particular resource have to use the same LOCKOPT specification

when they lock the resource. (Exception: if LOCKOPT=1 and CONTROL=E,

the lock status may be modified.)

OWNER=TASK | PARTITION

Defines whether the named resource, once locked, can be unlocked only by the

task which issued the corresponding LOCK request (OWNER=TASK), or

whether it can be unlocked by any task within the partition

(OWNER=PARTITION).

 When OWNER is defined as PARTITION, a LOCK request for the resource

must not specify FAIL=WAIT, FAIL=WAITC, or FAIL=WAITECB, because

deadlock prevention (return code 16) is not supported with

OWNER=PARTITION.

SCOPE=INT | EXT

This operand may be used for locking resources across systems. SCOPE=EXT

specifies that the lock is used across systems. You may omit the operand if you

want to lock your resources only on one system since the default is

SCOPE=INT (that is, the locking applies to one system only).

VOLID=volume-id

Specifies the 6-byte identifier of a disk volume which (at the time of the LOCK

request) is to be checked whether it is mounted on an I/O device that is

defined as being shared across systems. If the device is a shared disk, the

LOCK request is treated as being defined with SCOPE=EXT; otherwise,

SCOPE=INT is assumed, and a SCOPE=EXT specification is ignored.

DTL

Chapter 2. Macro Descriptions 173

DUMODFx (Diskette Unit I/O Module Definition) Macro

CC

name
 DUMODFx ERREXT=YES,ERROPT=YES

,RDONLY=YES

,SEPASMB=YES
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro defines a logic module for a diskette file. Use either of the following:

DUMODFI –

Diskette Unit MODule, Fixed length records, Input file.

DUMODFO –

Diskette Unit MODule, Fixed length records, Output file.

ERREXT=YES

Include this operand if permanent errors are returned to a problem program

ERROPT routine or if the ERET macro is used with the DTF and module. The

ERROPT operand must be specified for this module.

ERROPT=YES

This operand applies to both DUMODFx macros. This operand is included if

the module handles any of the error options for an error chain. Logic is

generated to handle any of the three options (IGNORE, SKIP, or name)

regardless of which option is specified in the DTF. This module also processes

any DTF in which the ERROPT operand is not specified.

 If this operand is not included, your program is canceled whenever a

permanent error is encountered.

RDONLY=YES

This operand causes a read-only module to be generated. If this operand is

specified, any DTF used with this module must have the same operand.

SEPASMB=YES

Include this operand only if the module is to be assembled separately. This

produces an object module ready to be cataloged into a suitable sublibrary,

either by the standard name or by the user-specified name. The name is used

as the module’s transfer address. If you omit the operand, the assembler

assumes that the DUMODFx macro is assembled together with the DTF in

your program.

Standard DUMOD Names

Each name begins with a 4-character prefix (IJND) and continues with a

4-character field corresponding to the options permitted in the generation of the

module, as shown below. DUMODFx name = IJNDabcd

 Char. Content Specified Option

a I DUMODFI (as the macro operation code)

 O DUMODFO (as the macro operation code)

DUMODFx

174 z/VSE System Macros Reference

Char. Content Specified Option

b C ERROPT=YES and ERREXT=YES

 E ERROPT=YES

 Z Neither is specified

c Z Always

d Y RDONLY=YES

 Z RDONLY is not specified

Subset/Superset DUMOD Names

The following chart shows the subsetting and supersetting allowed for DUMOD

names.

 * + * *

 I J N D I C Z Y

 O E Z

 Z

+ Subsetting/supersetting permitted

* No subsetting/supersetting permitted

DUMP (Dump Request) Macro

CC

name
 DUMP

RC=

0

n

(15)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

This macro provides a hexadecimal dump of the following:

v The contents of the entire supervisor area and the system GETVIS area, or of

some supervisor control blocks only.

v The contents of the partition that issued the macro.

v The contents of the registers.

The dump includes the contents of just some of the supervisor control blocks

(rather than the entire supervisor area) if either is true:

v The STDOPT job control command specifies DUMP=PART or DUMP=NO.

v A job control // OPTION statement with PARTDUMP or NODUMP is

submitted.

The macro causes the job step to be terminated if DUMP was issued by the main

(or only) task of the program. If DUMP was issued by a subtask, the macro causes

that subtask to be detached without terminating the main task in the partition.

DUMODFx

Chapter 2. Macro Descriptions 175

If the job control option SYSDUMP is active, the output of the dump is directed to

the dump sublibrary of the partition. If NOSYSDMP is active, the output is

directed to SYSLST. If SYSLST is assigned to tape, this tape must be positioned as

desired.

If SYSLST is assigned to an IBM 3211 and indexing was used before you issue the

DUMP macro, a certain number of characters on every line of the printed dump

may be lost. To avoid this, reload the printer’s FCB (forms control buffer) by

issuing an LFCB macro before you issue the DUMP macro. The FCB image you

load must not have an indexing byte.

If DUMP is issued by a job running in real mode, the storage contents of the

partition are dumped only up to the limit as determined by the SIZE operand of

the EXEC job control statement, plus the storage obtained dynamically through the

GETVIS macro. If SIZE was not specified, the entire partition will be dumped. If

DUMP is issued by a program running in virtual mode, the entire partition is

dumped.

RC=0 | n | (15)

Indicates a user-specified return code, between 0 and 4095, which is passed to

job control to reflect the result of the job step and to allow conditional

execution of subsequent job steps.

 If register notation is used, the return code must be contained in bytes 2 and 3

of the register.

 If the operand is omitted, no return code is passed to job control.

 The RC operand is only applicable for the main task; it is ignored if the DUMP

macro is issued by a subtask.

Note: The DUMP macro modifies some of the user registers:

v If the RC operand is not specified, the macro modifies register 1; all other

registers are displayed unchanged.

v If the RC operand is specified, the macro modifies registers 0, 1, 14, and

15; the other registers are displayed unchanged.

DUMP

176 z/VSE System Macros Reference

ENDFL (End File Load Mode) Macro

CC

name
 ENDFL filename

(0)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro ends the load mode started by the SETFL macro. The macro must be

issued only after a SETFL and before a CLOSE.

The ENDFL macro performs an operation similar to CLOSE for a blocked file. It

writes the last block of data records, if necessary, and then writes an end-of-file

record after the last data record. Also, it writes any index entries that are needed

followed by dummy index entries for the unused portion of the prime data extent.

filename | (0)

The name of the file to be loaded is the only operand required, and it is the

same as the name specified in the DTFIS header entry for the file. The filename

can be specified either as a symbol or in register notation. Register notation is

necessary if your program is to be self-relocating.

ENDFL

Chapter 2. Macro Descriptions 177

ENQ (Enqueue a Task) Macro

CC

name
 ENQ rcbname

(0)
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

A task protects a resource by issuing an ENQ (enqueue) macro. When the ENQ

macro is issued, the task requesting the resource either continues its execution, or

if the requested resource is held by another task, is placed in a wait condition.

When the task holding that resource completes, that task issues the DEQ (dequeue)

macro. All other tasks that are then waiting for the dequeued resource are freed

from their wait condition, and the highest-priority task either obtains or maintains

control.

If a task is terminated without dequeuing its queued resources, any task

subsequently trying to queue that resource is abnormally terminated. If a task

issues two ENQs without an intervening DEQ for the same resource, the task is

canceled. Also, any task that does not control a resource but attempts to dequeue

that resource is terminated, unless DEQ appears in the abnormal termination

routine, in which case it is ignored.

Although the main task does not require the program to set up a task-to-task

communication ECB to queue and dequeue, every subtask using the facility must

have the ECB operand in the ATTACH macro. That ECB must not be used for any

other purpose. Also, a resource can be protected only within the partition

containing the ECB.

Note: Do not use the ENQ macro in your AB exit routine, since a deadlock may

occur.

The ENQ macro supports the 31 bit environment. ENQ may be issued in 24-bit or

31-bit addressing mode, above or below the 16MB line.

When ENQ is issued in AMODE 24, the RCB address is treated as a 24-bit address.

When ENQ is issued in AMODE 31, the RCB address is treated as a 31-bit address.

rcbname | 0

Specifies the address of the RCB.

ENQ

178 z/VSE System Macros Reference

EOJ (End of Job) Macro

CC

name
 EOJ

RC=

n

(15)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or (if RC is not specified) ANY

ASC Mode:

Primary

Issue the macro in the main (or only) task within a partition, to inform the system

that the job step is finished. If a subtask issues an EOJ, the subtask is detached and

the remainder of the partition continues. If the main task issues EOJ, any abnormal

termination exits set up via STXIT AB are taken for the subtasks still attached.

RC= n | (15)

Indicates a user-specified return code, between 0 and 4095, which is passed to

job control to reflect the result of the job step and to allow conditional

execution of subsequent job steps.

 If register notation is used, the return code must be contained in bytes 2 and 3

of the register.

 Note that if this operand is included, execution of the EOJ macro is allowed

below the 16MB line only (RMODE 24).

 If the operand is omitted, no return code is passed to Job Control.

ERET (Error-Handling Return) Macro

CC

name
 ERET SKIP

IGNORE

RETRY

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

This macro enables your program’s ERROPT or WLRERR routine to return to IOCS

and specify an action to be taken. The macro applies to:

v DTFSD files.

v DTFIS and DTFDU files if ERREXT=YES is specified in the DTFxx macro.

v DTFMT input files if ERREXT=YES is specified.

EOJ

Chapter 2. Macro Descriptions 179

SKIP

Passes control back to the logic module to skip the block of records or control

interval in error and process the next one. For disk or diskette output, an ERET

SKIP is treated as an ERET IGNORE.

IGNORE

Passes control back to the module to ignore the error and continue processing.

RETRY

Causes the module to retry the operation that resulted in the error. For SD

wrong-length record errors, RETRY cancels the job.

ESETL (End Set Limit) Macro

CC

name
 ESETL filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro ends the sequential mode initiated by the SETL macro. If the records

are blocked, ESETL writes the last block back if a PUT was issued.

If ADDRTR and/or RANSEQ are specified in the same DTF, ESETL should be

issued before issuing a READ or WRITE.

Another SETL can be issued to restart sequential retrieval.

Sequential processing must always be terminated by issuing an ESETL macro.

filename | (1)

Is the same name as the name specified in the DTFIS header entry. The name

can be specified as a symbol or in register notation. Register notation is

necessary if your program is to be self-relocating.

ERET

180 z/VSE System Macros Reference

EXCP (Execute Channel Program) Macro

CC

name
 EXCP ccb_name

(1)

,REAL
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro requests physical IOCS to start an input/output operation for a

particular I/O device.

Physical IOCS determines the device from the CCB or IORB control block specified

by blockname. Physical IOCS places the block in a queue and returns control to the

problem program. Physical IOCS causes the channel program to be executed as

soon as the channel and device are available. I/O interruptions are used to process

I/O completion and to start I/O requests if the channel or device was busy at the

time the EXCP was executed.

ccbname | (1)

Is the virtual address of the control block established for the device. It can be

given as a symbol or in register notation.

 The address of the CCB or IORB must be a 24-bit address.

REAL

Indicates that the addresses in the CCWs and the address in the control block

pointing to the first CCW have already been translated into real addresses. The

operand causes the CCW translation routine to be skipped. (For a program

running in real mode, the operand is ignored.)

 In your program, the EXCP macro with the REAL operand must be preceded

by the PFIX macro that causes the system to:

v Page in those program pages that contain the associated control block,

channel program, I/O areas, and IDA (indirect address) words (if used).

v Fix these pages in storage.

Notes:

1. With option REAL, if the I/O area being used crosses page boundaries, the

data address in your CCW(s) must point to the required indirect data address

words within your program. In addition, bit 37 (the IDA bit) of these CCWs

must be set to 1. If REAL is not specified, the IDA bit must be set to 0.

2. A channel program has to start with:

v A long seek command in the case of a CKD disk.

v A define extent command in the case of an FBA disk.
The data chaining must be set to zero for these commands.

EXCP

Chapter 2. Macro Descriptions 181

EXIT (Return from Exit Routine) Macro

CC

name
 EXIT AB

IT

OC

PC

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro is used to return control from your exit routine to normal processing.

Your routine is specified in the STXIT macro. The operands have the following

meanings:

AB

Exit from your abnormal task termination routine of your main task.

IT Exit from your interval timer routine.

OC

Exit from your routine which handles the operator attention interrupt of your

main task.

PC

Exit from your program check routine.

Issue the EXIT macro only in the corresponding (AB, IT, OC, PC) exit routine; a

cancel condition (illegal SVC) may occur if this rule is not observed.

The EXIT AB macro may be used only in main tasks. In a subtask, it would result

in a cancel condition (illegal SVC). The EXIT AB macro should be issued as early

as possible to enable recovery from other abnormal termination conditions. EXIT

AB does not restore the original state existing prior to entry of the exit routine, that

is, it does not return to the interrupted program. Control is returned from the

abnormal termination routine to the instruction following the EXIT AB macro. The

cancel condition and ABEND indication of the affected task are reset.

When your AB exit routine completes with the EXIT AB macro, the program

continues with an empty linkage stack.

For IT, OC, and PC, the interrupt status information and registers are restored

from the exit save area. (From the extended save area, also the access registers are

restored.) If the save area is unchanged, control is returned to the instruction in

your interrupted program immediately after the instruction where the interruption

occurred. By changing the save area, you can cause your program to continue from

a different point or with changed register contents.

When your PC, IT, or OC exit routine completes with the corresponding EXIT

PC|IT|OC macro, the program continues with the linkage stack existing at the

EXIT

182 z/VSE System Macros Reference

time the EXIT macro was issued. When the exit routine completes with EXIT

PC|IT|OC, the linkage stack must be equal to the linkage stack at exit entry.

Otherwise the program is canceled.

An exit routine using non-paired instructions (BAKR|PC, PR) is canceled.

STXIT Macro Issued With AMODE 24

v If the address part of SVUPSW (see “MAPSAVAR (Map Save Area) Macro” on

page 312) has not been changed, control is returned to the instruction (and in the

same mode) where the interruption occurred.

v If the address part of SVUPSW has been changed, control is returned to the

address and with the status that is indicated by the PSW in field SVUPSW. Since

this is a BC-mode PSW, neither AR (access register) mode nor a continuation

address larger than X’FFFFFF’ can be specified.

v If the exit routine uses the address part indicated by the PSW in field SVUPSW

for problem analysis, unpredictable results (even a program check) may occur if

the interruption takes place in a program part above the 16MB line.

STXIT Macro Issued With AMODE ANY

v The program continues processing with the PSW specified at SVUAPSW (bytes 0

and 1 of the PSW are retrieved from the PSW at the time of interruption) and

with the general-register and access-register content retrieved from the exit save

area.

EXIT

Chapter 2. Macro Descriptions 183

EXTRACT (Extract Control Information) Macro

To display partition boundaries:

CC

name
 EXTRACT ID=BDY,AREA= name1

(S,name1)

(r1)

 ,LEN= length

(r2)
 C

C

,MFG=

name3

(r3)

 ,MODE=T

,MODE=

TEMP

P

PERM

SYSP

,PID=

name4

(S,name4)

(r4)

CE

To display unit information:

CC

name
 EXTRACT ID=PUB,AREA= name1

(S,name1)

(r1)

 ,LEN= length

(r2)
 C

C
,DISP=

name6

(r6)

,MFG=

name3

(r3)

,PID=

name4

(S,name4)

(r4)

 C

C
,SEL=

name5

(S,name5)

(r5)

 CE

To retrieve a free tape drive in an automated tape library:

CC

name
 EXTRACT ID=ATLCUU,AREA= name1

(S,name1)

(r1)

 ,LEN= length

(r2)
 C

C
,MFG=

name3

(r3)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro may be used to retrieve and display partition boundaries or unit

information (from the PUB table). It may also be used to retrieve a free tape drive

for a subsequent LBSERV MOUNT request.

EXTRACT

184 z/VSE System Macros Reference

The retrieved information can be interpreted with the help of the MAPEXTR (or

MAPBDY, MAPBDYVR, MAPSYSP) and IJBPUB macros.

ID=BDY

Indicates that partition boundaries are to be displayed.

ID=PUB

Indicates that unit information is to be displayed.

ID=ATLCUU

Indicates that a free tape drive in an automated tape library is to be retrieved

for a subsequent LBSERV MOUNT request.

 If the tape library is VM-controlled, z/VSE searches for a free, not operational

tape drive which was added as ’3490E’, ’TPA’, or ’EFMT1’. The specified

external device type and logical library name are ignored in this case. If the

tape library is not controlled by VM, z/VSE searches for a free, operational

tape drive belonging to the requested library.

 In both cases, if a free cuu is found, the mount ownership flag is set and the

cuu is returned to the caller. Mount ownership can only be reset by EOJ

processing.

AREA=name1 | (S,name1) | (r1)

Specifies the address of the area where the extracted information is to be

stored. For ID=ATLCUU, the area also contains input information as described

in Figure 25 on page 311.

LEN=length | (r2)

Specifies the length of the area as an integer, a self-defining term, or as a value

in a register.

DISP=name6 | (r6)

Defines the offset within the PUB table entry of the specified device. DISP may

be specified as a number, a register containing the displacement value, or the

field name in the DSECT generated by the IJBPUB macro.

MFG=name3 | (r3)

The MFG operand is required if the program is to be reenterable. It specifies

the address of a 64-byte dynamic storage area, that is: storage which your

program obtained through a GETVIS macro. The area is required for system

use during execution of the macro.

MODE=T | TEMP | P | PERM | SYSP

MODE=T or MODE=TEMP indicates that the temporary boundaries of the

issuing partition plus the PFIX limits of the partition are to be returned. Do not

specify the PID operand together with MODE=T|TEMP; a snapshot of any

other partition’s temporary boundaries is unreliable.

 If your program runs in real mode, the boundaries of the real partition are

returned.

 The output can be interpreted with the help of the MAPEXTR macro with the

keywords ID=BDY and MODE=TEMP. For compatibility reasons, the MAPBDY

macro is still supported.

 MODE=P or MODE=PERM indicates that the permanent boundaries (including

the PFIX limits) are to be returned of either the issuing partition or of the

partition indicated by the PID operand. However, these boundaries correspond

to the latest allocation and may not have been used by the job active in the

partition.

EXTRACT

Chapter 2. Macro Descriptions 185

The output can be interpreted with the help of the MAPEXTR macro with the

keywords ID=BDY and MODE=PERM. For compatibility reasons, the

MAPBDYVR macro is still supported.

 MODE=SYSP indicates that information about the system layout is to be

provided, including the values for the 31-bit addressable part of the supervisor.

The output can be interpreted with the help of the MAPEXTR macro with the

keywords ID=BDY and MODE=SYSP. For compatibility reasons, the MAPSYSP

macro is still supported for old programs; however, new fields are no longer

mapped.

PID=name4 | (S,name4) | (r4)

Specifies the address of a two-byte field containing the identification key of the

partition (PIK) for which the information is retrieved. If this operand is

omitted, the identifier of the partition issuing the request is taken as the

default.

SEL=name5 | (S,name5) | (r5)

Specifies the address of a halfword containing the logical unit number in the

same format as the logical unit number in the CCB.

Return Codes in Register 15

0 The requested information has been extracted and, for ID=ATLCUU, the mount

ownership is set.

4 The partition specified is not supported in the system. For ID=ATLCUU, an

invalid external device type has been specified.

8 The logical unit specified exceeds the range of the logical units for the

specified partition.

12 The LUB is not assigned or ignored. In addition, an indicator is stored in byte

0 of the area indicated by the AREA operand. This indicator is either

 X’FF’ if the logical unit is unassigned, or

 X’FE’ if the logical unit is assigned IGN.

16 The length value is zero, negative, or below the minimum, or the DISP

specification exceeds the length of the PUB entry.

20 For ID=ATLCUU, no free device has been found.

FCEPGOUT (Force Page Out) Macro

CC

name

FCEPGOUT

H

 ,

beginaddr,endaddr

CE

CC

name
 FCEPGOUT listname

(1)
 CE

Requirements for the caller:

AMODE:

24 (if SPLEVEL SET=1)

 24 or 31 (if SPLEVEL SET>1)

EXTRACT

186 z/VSE System Macros Reference

RMODE:

24 (if SPLEVEL SET=1)

 24 or ANY (if SPLEVEL SET>1)

ASC Mode:

Primary

The macro causes a certain area of virtual storage to be scheduled for page-out if it

is in processor (real) storage. This request is ignored if the specified area does not

contain a full page. This can happen up to an area size of twice the page size

minus two bytes as shown below.

 ┌─────── First byte of page n

 │

 │ ┌─────── Address specified for beginaddr

 │ │

 \ \

 ┌───┬───┬───┐

 ├───┴───┘ Page n │

 │ │

 ├───┤

 │ Page n+1 │

 │ ┌───┬───┤

 └───┴───┴───┘

]]

 │ │

 Address specified for endaddr ───────┘ │

 │

 Last byte of page n+1 ───────┘

In a system without page data set, execution of the macro results in a null

operation; the return code is set to zero.

beginaddr

Points to the first byte of the area to be paged out.

endaddr

Points to the last byte of the area to be paged out.

listname | (1)

Is the name of a list of consecutive 8-byte entries as shown below. (Register

notation may also be used.) The address of this parameter list and the

addresses in the list are treated as 3-byte addresses if the macro is invoked in

24-bit addressing mode and as 4-byte addresses if invoked in 31-bit addressing

mode.

 24-bit Addressing Mode:

 31-bit Addressing Mode:

 where:

Address constant =

Address of the first byte of the area to be paged out.

 ┌─────────┬────────────────────┬──────────────────┐

 │ X’00’ │ Address constant │ Length minus 1 │

 └─────────┴────────────────────┴──────────────────┘

 0 1 4

 ┌──────────────────────────────┬──────────────────┐

 │ Address constant │ Length minus 1 │

 └──────────────────────────────┴──────────────────┘

 0 4

FCEPGOUT

Chapter 2. Macro Descriptions 187

Length =

A binary constant indicating the length of the area to be paged out.

 The end of the list is indicated by a non-zero byte following the last entry (for

24-bit mode). For 31-bit mode, a non-zero value in bit 0 of the byte following

the last entry indicates the end of the list.

Exceptional Conditions

v The program is running in real mode.

v The page(s) referenced by the macro is (are) outside of the requesting partition.

v A page handling request is active for the referenced page(s).

v The page(s) is (are) not in real storage.

v The page(s) is (are) fixed.

For those pages the FCEPGOUT request will be ignored.

Return Codes in Register 15

0 All specified pages have been forced for page-out or the request has been

ignored because the issuing program is running in real mode.

2 The begin address is greater than the end address, or a negative length has

been found.

4 At least one of the requested pages does not belong to the partition in which

the issuing program is running. The FCEPGOUT request has only been

executed for those pages which belong to the partition of the issuing program.

8 At least one of the requested pages is temporarily fixed, either by the system

or a previous PFIX macro. The FCEPGOUT request has only been executed for

the unfixed pages.

16 The list of areas that are to be paged out is not completely in the requesting

program’s partition. The request is ignored.

20 Inconsistent function/option code provided in register 15 (not possible if

macro interface is used).

 Any combination of return codes 2, 4, and 8 is possible.

FEOV (Force End of Volume) Macro

CC

name
 FEOV filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

FCEPGOUT

188 z/VSE System Macros Reference

The macro is used for files on magnetic tape (programmer logical units only) to

force an end-of-volume condition before sensing a reflector mark. This indicates

that processing of records on one volume is considered finished, but that more

records for the same logical file are to be read from, or written on, a following

volume. For system units, see the “SEOV (System End-of-Volume) Macro” on page

369.

When physical IOCS macros are used and DTFPH is specified for standard label

processing, FEOV may be issued for output files only. In this case, FEOV writes a

tapemark, the standard trailer label, and any user-standard trailer labels if DTFPH

LABADDR is specified. When the new volume is mounted and ready for writing,

IOCS writes the standard header label and user-standard labels, if any.

filename | (1)

The name of the file is the only operand required. You can specify the name

either as a symbol or in register notation.

FEOVD (Force End of Volume for Disk) Macro

CC

name
 FEOVD filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro is used for either input or output files to force an end-of-volume

condition before it actually occurs. This indicates that processing of records on one

volume is finished, but that more records for the same logical file are to be read

from, or written on, the following volume. If extents are not available on the new

volume, or if the format-1 label is posted as the last volume of the file, control is

passed to the EOF address specified in the DTF.

filename | (1)

The name of the file is the only required operand. The name can be specified

either symbolically or in register notation.

FEOV

Chapter 2. Macro Descriptions 189

FETCH (Fetch a Phase) Macro

CC

name
 FETCH phasename

(S,address)

(1)

,entrypoint

,(S,entrypoint)

,(0)

 C

C

,LIST=

listname

(S,listname)

(r1)

,SYS=YES

 ,DE=NO

,DE=

YES

VSE

VSEFORM

C

C

,MFG=

area

(S,area)

(r2)

 ,RET=NO

,RET=YES

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

The macro loads and gives control to the phase specified in the first operand. If the

phase is in the SVA, it is not loaded into the partition, but control is given to the

phase. For information on how to load phases into the SVA and how to write

SVA-eligible (reenterable) phases see “Loading Phases into the SVA” in the z/VSE

Guide to System Functions.

Notes:

1. Both the expanded code and the parameter lists must be below 16MB,

otherwise the request will be canceled.

2. The addresses are not validated by the macro expansion. Depending on the

macro call, only three bytes of a passed four-byte address may be passed to the

SVC service. This may cause unpredictable results, since the address cannot be

validated properly.

The AMODE bit in the PSW will be updated depending on the AMODE attribute

of the phase:

 If AMODE=31, the phase gets control in AMODE 31.

 If AMODE=24, the phase gets control in AMODE 24.

 If AMODE=ANY, the phase gets control in the AMODE of its caller.

Restriction: The load point plus the size of the phase must be below the start of the

GETVIS area.

phasename | (S,address) | (1)

For phasename specify the name of the required phase. The address is

FETCH

190 z/VSE System Macros Reference

regarded as either a 24-bit or 31-bit address, depending on the AMODE of the

caller. If the caller has AMODE 31 and the address points to a storage location

above 16MB, the requestor is canceled.

 If the DE operand is omitted or DE=NO is specified, the address as specified

in (S,address) or as loaded into a register points to an 8-byte field that contains

the phase name.

 For DE=YES or DE=VSE or VSEFORM, the operand has a different meaning;

refer to the discussion of the DE operand.

entrypoint | (S,entrypoint) | (0)

Control is passed to the address specified for entrypoint. This entry point

overwrites the entry point determined a link-edit time. The entry point is

regarded either as 24-bit or 31-bit address, depending on the AMODE of the

caller, but since the phase must be located totally below 16MB, an entry point

above 16MB is regarded as invalid. Apart from that, no further validity

checking is done.

 If this operand is not specified, control is passed to the entry point determined

at link-edit time.

 If entrypoint is given in register notation, register 1 must not be used. You

preload the register with the entry-point address.

 With S-type notation, the entry point is derived from base register and

displacement, for example (S, offset (reg)). If, instead, a symbolic name is used

for entrypoint, the macro expansion results in a V-type address constant. The

entry point does not have to be identified by an EXTRN statement.

LIST=listname | (S,listname) | (r1)

For listname specify the name of the local directory list generated in the

partition by the GENL macro. When this operand is included, the system scans

the local directory list for the required phase name before it initiates a search

for this phase name in the directories of the accessible sublibraries.

 If the phase has been found in the local directory list, general register 0 points

to the related directory entry; otherwise, register 0 is set to zero.

 The local directory list must be located below 16MB (only three bytes are used

in the macro expansion).

 If LIST is specified, a specification of YES or VSE (or VSEFORM) for DE= is

invalid.

SYS=YES

If this is specified, the system scans the system directory list (SDL) in the SVA

and the system sublibrary before any private sublibraries. If the operand is

omitted, the SDL and the private sublibraries are searched first.

DE=NO | YES | VSE | VSEFORM

By specifying DE=YES or DE=VSE | VSEFORM, you can generate your own

local directory entry for a frequently used phase in order to save a

time-consuming library directory search for that phase. A specification of YES

or VSE|VSEFORM is invalid if LIST is specified.

DE=NO

Indicates that no local directory entry is to be generated.

DE=YES

Indicates a conventional 38-byte directory entry in the old librarian format

(prior to VSE/Advanced Functions Version 2).

FETCH

Chapter 2. Macro Descriptions 191

DE=VSE | VSEFORM

Indicates a 40-byte directory entry in the new librarian format (starting

with VSE/Advanced Functions Version 2). VSE is a short form of

VSEFORM.

 For DE=YES or DE=VSE, the MAPDNTRY macro can be used to interpret the

information returned by the FETCH (or LOAD) macro. Among other

information, the local directory entry shows the AMODE/RMODE assigned to

the phase. The directory entry must be located below 16MB (see explanation

for phasename).

 The local directory entry is activated by the first FETCH request; all further

FETCH requests are executed without any directory search.

 If the first operand is written as phasename (instead of S-type or register

notation), a directory entry will be generated within the macro expansion. The

generated directory entry will contain the phasename in the first 8 bytes.

 If you use S-type or register notation for the first operand, you must set aside

the 38-byte (or 40-byte) field for the directory entry yourself and point to it via

this operand. The directory entry must contain the phase name in the first 8

bytes (left-justified and padded with blanks) and have the following format:

 For DE=YES:

 Byte Contents

 0 CL8’PHASENAM’

 8 XL3’0’

 11 XL1’ ’ NO. OF HALFWORDS FOLLOWING

 12 XL26’0’

For DE=VSE | VSEFORM:

 Byte Contents

 0 CL8’PHASENAM’

 8 XL3’FFFFFF’ ID FOR NEW FORMAT

 11 XL1’ ’ NO. OF HALFWORDS FOLLOWING

 12 XL28’0’

MFG=area | (S,area) | (r2)

The operand is required if the program which issues the FETCH macro is to be

reenterable. It specifies the address of a 64-byte dynamic storage area, that is,

storage which your program obtained through a GETVIS macro. This area is

required for system use during execution of the macro.

RET=NO | YES

By specifying RET=YES you can cause control to be returned to your program

in any case (both in normal and error situations). Register 15 contains one of

the following return codes:

Return Codes in Register 15

0 FETCH completed successfully.

4 Phase not found. This return code will also be issued if a user directory entry

is found and the corresponding phase has already been deleted or re-cataloged.

8 Irrecoverable I/O error during FETCH processing.

12 Invalid library or sublibrary structure detected during FETCH processing.

FETCH

192 z/VSE System Macros Reference

16 Invalid address range detected during FETCH processing ─ Either of the

following:

 Local directory entry outside the partition.

 Phase does not fit into the partition.

 Entry point of phase is not below 16MB. (In case RET=NO is specified, the

program is canceled with ’invalid address’).

20 Security violation.

24 Inconsistent user directory state: FETCH found an inconsistency between your

program’s local directory entry and the corresponding entry in the directory of

the related sublibrary. The local directory entry is overwritten by the entry read

from the directory of the sublibrary. FETCH checks the following:

 Length of phase

 Relocation state

 Difference between the load point and the partition-start address

 Difference between the load point and the entry point

28 Partition is too small (or phase does not fit into the logical transient area).

FREE (Free Disk Area) Macro

CC

name
 FREE filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro is used in conjunction with the HOLD=YES option of a DTFxx macro. It

frees a portion of a disk volume that is being held under disk record (track)

protection. On a CKD device, that protected portion is a track; on an FBA device, it

is a number of contiguous FBA blocks. On an FBA device, or on a DTFSD or

DTFDI file assigned to a CKD disk, the FREE macro is treated as a null operation;

all holding and freeing of FBA block ranges or CKD tracks for DTFSD and DTFDI

are performed implicitly by LIOCS.

The same track (or blocks) can be held more than once without an intervening

FREE if the hold requests are from the same task. The same number of FREEs

must be issued before the track (or block) is completely freed. However, a task is

terminated if more than 16 hold requests are recorded without an intervening

FREE, or if a FREE is issued to a file that does not have a hold request for that

track (or block). For situations that require the use of the FREE macro, see “DASD

Record Protection (Track Hold)” in the z/VSE System Macros User’s Guide.

filename | (1)

This operand is the same as the name you specified in the DTFxx macro for

the file.

FETCH

Chapter 2. Macro Descriptions 193

FREEVIS (Free Virtual Storage) Macro

Format 1: Freeing Storage from the Partition FREEVIS Area

Format 2: Freeing Storage from the Space FREEVIS Area

Format 3: Freeing Storage from the System FREEVIS Area

 Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro releases a block of virtual storage that was obtained by the GETVIS

macro.

If you code the macro without any operand, the system assumes that the start

address of the block to be released is contained in register 1 and that the length of

this block was placed into register 0. If the macro is issued without an operand,

the macro must not contain a comment unless the comment begins with a comma.

ADDRESS=name1 | (1)

The start address of the virtual storage block to be released in the GETVIS area

may be specified either in a 4-byte field addressed by name1 or in a register.

 The start address is regarded as a 31-bit address.

LENGTH=name2 | (0)

The length of the virtual storage block to be released may be specified in a

CC

name

FREEVIS
 ADDRESS=(1) LENGTH=(0)

ADDRESS=name1

LENGTH=name2

SPID=

(1)

name3

 SVA=NO SPACE=NO

CE

CC

name

FREEVIS
 ADDRESS=(1) LENGTH=(0)

ADDRESS=name1

LENGTH=name2

SPID=

(1)

name3

SPACE=YES
 SVA=NO

CE

CC

name

FREEVIS
 ADDRESS=(1) LENGTH=(0)

ADDRESS=name1

LENGTH=name2

SPID=

(1)

name3

SVA=YES
 SPACE=NO

CE

FREEVIS

194 z/VSE System Macros Reference

4-byte field addressed by name2 or in a register. The length is specified in

number of bytes. The smallest unit of virtual storage that can be released by

FREEVIS is either of the following:

 128 bytes if the GETVIS area is part of a partition.

 16 bytes if the GETVIS area is part of the SVA or of the dynamic space

GETVIS area.

If the specified length is not a multiple of 128 or 16, respectively, it is rounded

to the next higher multiple of 128 or 16.

SPACE=NO | YES

SPACE=YES indicates that the virtual storage block is to be released from the

dynamic space GETVIS area. The requestor needs storage protection key zero.

 SPACE=YES must not be specified together with SVA=YES.

SPID=name3 | (1)

Specifies that the whole subpool indicated by the SPID operand is to be freed.

The eight-byte subpool ID (addressed either by name3 or by a register) consists

of the six-byte subpool name and a two-byte subpool index that was set by the

system when the subpool was created via GETVIS.

 The address where the SPID operand points to is regarded either as a 24-bit or

31-bit address, depending on the AMODE of the caller.

Note: When the SPID operand is specified, the ADDRESS and LENGTH

operands are ignored. Use ADDRESS and LENGTH if only a block of

storage within the subpool is to be freed.

SVA=NO | YES

SVA=YES can be specified only in a program that runs with storage protection

key zero.

 If you specify SVA=YES, the system releases the block in the SVA. If you

specify SVA=NO or omit the operand, the system releases the block in the

partition in which your program runs.

 SVA=YES must not be specified together with SPACE=YES.

Return Codes in Register 15

0 FREEVIS completed successfully.

4 The size of the (real) partition GETVIS area is 0K.

8 The specified length is negative.

12 The specified address is not within the GETVIS area or the address is not a

multiple of:

 128 bytes if the GETVIS area is part of a partition.

 16 bytes if the GETVIS area is part of the SVA or of the dynamic space

GETVIS area.

16 The specified storage block to be released (ADDRESS + LENGTH) exceeds the

GETVIS area or is not within a subpool.

20 Invalid FREEVIS option.

24 An invalid subpool ID was passed.

28 The specified subpool does not exist.

36 An invalid subpool index was specified in the SPID operand. The subpool was

created with the GETVIS operand SPCNTRL=YES (compare the GETVIS

macro).

FREEVIS

Chapter 2. Macro Descriptions 195

40 FREEVIS for an area or subpool for which a PFIX request is pending is not

allowed.

GENDTL (Generate the DTL Block) Macro

CC

name

GENDTL

ADDR=

name1

(S,name1)

(r1)

 ,CONTROL=E

,CONTROL=S

 ,KEEP=NO

,KEEP=YES

C

C
 ,LENGTH=NO

,LENGTH=YES

 ,LOCKOPT=1

,LOCKOPT=

2

4

,NAME=

name2

(S,name2)

(r2)

C

C
 ,OWNER=TASK

,OWNER=PARTITION

 ,SCOPE=INT

,SCOPE=EXT

,VOLID=

name3

(S,name3)

(r3)

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

The macro generates a control block which is used by the LOCK/UNLOCK macros

to enqueue/dequeue a resource access request. The control block, commonly called

’DTL’ (Define The Lock), is generated at the time of program execution. Space for

the DTL is either provided by the program, or it is to be acquired by the system.

ADDR=name1 | (S,name1) | (r1)

Specifies the address of the area where the DTL is to be built. If this operand is

omitted, storage is allocated in the partition’s GETVIS area by an implicit

GETVIS request. After a successful GETVIS, the system places the DTL’s

address in register 1. Register 15 contains the return code set by the implicit

GETVIS request.

CONTROL=E | S

Defines how the named resource can be shared while your program owns it,

which is determined by this specification and your specification for the

operand LOCKOPT. A specification of E means the resource is enqueued for

exclusive use; a specification of S means the resource is enqueued as sharable.

KEEP=NO | YES

This operand may be used to lock the named resource beyond job step

boundaries. Only a main task should use this operand. KEEP=NO indicates

that the named resource once locked, is to be released automatically at the end

of the particular job step. With KEEP=YES, a named resource that is locked

remains locked across job steps; it will be automatically released at end of job.

FREEVIS

196 z/VSE System Macros Reference

If a job terminates abnormally, all resources with KEEP=YES are unlocked by

the end-of-task (termination) routine.

LENGTH=NO | YES

If LENGTH=YES is specified, the GENDTL macro returns the length of the

DTL in register 0. With LENGTH=NO, register 0 remains unchanged.

LOCKOPT=1 | 2 | 4

Together with the CONTROL operand, this operand determines how the

system controls shared access in response to a LOCK request:

LOCKOPT=1 and CONTROL=E

No other task is allowed to use the resource concurrently.

LOCKOPT=1 and CONTROL=S

Other ’S’ users are allowed concurrent access, but no concurrent ’E’ user is

allowed.

LOCKOPT=2 and CONTROL=E

No other ’E’ user gets concurrent access; however, other ’S’ users can have

access to the resource.

LOCKOPT=2 and CONTROL=S

Other ’S’ users can have concurrent access and, in addition, one ’E’ user is

allowed.

LOCKOPT=4 and CONTROL=E

No ’E’ user from another system is allowed concurrent access. An ’S’ user

from another system may use the resource concurrently. Within your own

system, you always have access to the resource.

LOCKOPT=4 and CONTROL=S

’S’ users can have concurrent access and, in addition, one ’E’ user from

another system is allowed.

Note: If the DASDSHR support is not generated in the supervisor, the LOCK

request for the resource is always granted.

All users of a particular resource have to use the same LOCKOPT specification

when they lock the resource. Exception: if LOCKOPT=1 and CONTROL=E, the

lock status may be modified.

NAME=name2 | (S,name2) | (r2)

Specifies the address of the area where a 12-byte long resource name is stored.

If the name is shorter than 12 bytes, it must be padded with blanks. It is by

this name that z/VSE controls shared access of the resource as requested by

active tasks via the LOCK macro. These tasks may all be active in one

partition, or they may be distributed over several partitions; the resource-share

control extends across partitions.

 The name must not begin with any of the characters A through I or V because

these characters are reserved for IBM usage.

OWNER=TASK | PARTITION

Defines whether the named resource, once locked, can be unlocked only by the

task which issued the corresponding LOCK request (OWNER=TASK), or

whether it can be unlocked by any task within the partition

(OWNER=PARTITION).

GENDTL

Chapter 2. Macro Descriptions 197

When OWNER is defined as PARTITION, a LOCK request for the resource

must not specify FAIL=WAIT, FAIL=WAITC, or FAIL=WAITECB, because

deadlock prevention (return code 16) is not supported with

OWNER=PARTITION.

SCOPE=INT | EXT

This operand may be used for locking resources across systems. SCOPE=EXT

specifies that the lock is used across systems. You may omit the operand if you

want to lock your resources only on one system since the default is

SCOPE=INT (that is, the locking applies to one system only).

VOLID=name3 | (S,name3) | (r3)

Specifies the address of a 6-byte identifier of a DASD volume which (at the

time of the LOCK request) is to be checked whether it is mounted on an I/O

device that is defined as being shared across systems. If the device is a shared

DASD, the LOCK request is treated as being defined with SCOPE=EXT (that is,

the SCOPE operand is ignored); otherwise, SCOPE=INT is assumed.

GENDTL

198 z/VSE System Macros Reference

GENIORB (Generate an IORB) Macro

CC

name
 GENIORB CCW= name1

(S,name1)

(r1)

 , DEVICE=SYSxxx

LOGUNIT=

name2

(S,name2)

(r2)

 C

C
,ADDRESS=

name3

(S,name3)

(r3)

,LENGTH=fieldlength
 C

C
,ECB=

name4

(S,name4)

(r4)

,ERREXIT=

name5

(S,name5)

(r5)

 C

C

H

,

(1)

,IOFLAG=(

POSTDE

)

POSTERR

SKIPERP

FORMAT1

 CE

Notes:

1 Each option can be specified once.

Note: The operands FIXLIST and FIXFLAG have become obsolete; for

compatibility reasons they are, however, still accepted.

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro generates an IORB (input/output request block). The block is generated

at the time of program execution. For the layout and contents of an IORB, see

Table 11 on page 218. The IORB is an alternative to the CCB; instead of specifying

a CCB in the EXCP macro, the address of an IORB is given.

After execution of the macro:

v register 1 contains the address of the IORB, and

v register 15 contains the return code from an implicit GETVIS.

For a detailed display in your assembly, showing the IORB fields and their

meaning, issue the IORB macro with the (only) operand DSECT=YES.

CCW=name1 | (S,name1) | (r1)

This operand gives the name of the first CCW used with the IORB. The name

must be the same as the name specified in the assembler CCW statement that

builds the CCW.

GENIORB

Chapter 2. Macro Descriptions 199

DEVICE=SYSxxx

This operand specifies the logical unit for the actual I/O unit with which the

IORB is associated.

LOGUNIT=name2 | (S,name2) | (r2)

This operand describes the device in logical unit format. It points to a

halfword with the same format as a logical unit number (bytes 6 and 7) in a

CCB; see Table 2 on page 53 provided in context with the discussion of the

CCB macro.

ADDRESS=name3 | (S,name3) | (r3)

If specified, this operand gives the name of the area in which the IORB is to be

generated. If the ADDRESS operand is specified, the LENGTH operand should

be specified as well.

 Omitting the ADDRESS operand indicates that the required area is to be

obtained through an implicit GETVIS issued by the system.

LENGTH=fieldlength

This operand gives the length of the field provided for IORB generation. The

value must be given as a self-defining term. If this operand is omitted, a

default value equal to the length of the IORB will be used; however, the

assembler issues an MNOTE. If the ADDRESS operand is omitted, LENGTH is

not used.

ECB=name4 | (S,name4) | (r4)

This operand specifies the address of the ECB to be posted when the I/O is

complete. For a more detailed description of an ECB, see the description of the

ECB operand of the ATTACH macro on page 24.

ERREXIT=name5 | (S,name5) | (r5)

The operand specifies the address of a routine to be executed should the

system be unable to obtain the required virtual storage. If the ERREXIT

operand is omitted, failure to obtain virtual storage causes the system to cancel

the program (task).

IOFLAG=

For a description of this operand, see the “IORB (I/O Request Block Definition)

Macro” on page 218.

GENL (Generate Directory List) Macro

CC

name

GENL

H

 ,

phasename

C

C
,DE=OLD

,ADDRESS=

area

,LENGTH=number

(S,area)

,DE=

VSE

(r1)

VSEFORM

DYNAMIC

DYN

,ERREXIT=

addr

(S,addr)

(r2)

 CE

GENIORB

200 z/VSE System Macros Reference

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

The macro generates a local directory list within the partition. This saves access

time if you load the same phases more than once in the course of program

execution.

The format of the generated directory entries is determined by the DE operand.

phasename1,phasename2,...

Specify, for these operands, the names of phases for which entries in a local

directory list are to be built. The list will be generated in alphameric sequence.

You may specify up to 200 phase names, but no more than a total of 200

operands.

ADDRESS=area | (S,area) | (r1)

If the ADDRESS operand is omitted, the assembler builds a 38-(or 40-)byte

directory entry within the macro expansion for each of the specified phases

and inserts the pertinent phase name in the entry. The rest of the entry is filled

in by the supervisor when the phase is called by a FETCH or LOAD macro

with the LIST option for the first time. When, subsequently, the phase is called

again, the entry is active.

 Coding ADDRESS in conjunction with LENGTH indicates that the directory is

to be built, during execution, at a location within your program whose address

is given by the ADDRESS operand.

 The specified address must be below 16MB.

LENGTH=number

LENGTH gives the length of the field provided for the generation of the

directory. If LENGTH is too short, the assembler issues an MNOTE.

ADDRESS=DYNAMIC | DYN

Coding ADDRESS=DYNAMIC (or the short form ADDRESS=DYN) directs the

system to acquire, through a GETVIS, as much dynamic storage as needed.

Execution of the macro causes the contents of registers 0, 1, 14, and 15 to be

overwritten.

ERREXIT=addr | (S,addr) | (r2)

ERREXIT is the address of a routine to be executed should the implicit GETVIS

fail. If the ERREXIT operand is omitted, an unsuccessful GETVIS will cause the

task to be canceled.

DE=OLD | VSE | VSEFORM

Indicates the format of the directory entries to be generated. DE=OLD

generates 38-byte directory entries in the old (VSE/Advanced Functions

Version 1) format. DE=VSE | VSEFORM generates 40-byte directory entries in

the new (Version 2) librarian format. VSE is a short form of VSEFORM.

GENL

Chapter 2. Macro Descriptions 201

GET (Get a Record) Macro

CC

name
 GET filename

(1)

,workname

,(0)

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

GET makes the next sequential logical record from an input file available for

processing in either an input area or in a specified work area. It is used for any

input file in the system, and for any type of record.

If GET is used with a file containing checkpoint records, the checkpoint records are

bypassed automatically.

filename | (1)

This operand must be the same as the name of the DTF macro for the file from

which the record is to be retrieved. The name can be specified as a symbol or

in (special or ordinary) register notation (to make your program

self-relocating). The high-order bits of the register must be zero, or

unpredictable results may occur.

workname | (0)

This operand specifies a work area name or a register (in either special or

ordinary register notation) containing the address of the work area. The work

area address should never be preloaded into register 1.

 The operand is used if the corresponding DTF contains the WORKA=YES

operand, indicating that the records are to be processed in a work area. You

must define the work area in your program. You may do this by using a DS

instruction, for example.

 Specifying a work area causes GET to move each individual record from the

input area to the work area.

 If the operand is specified, all GETs for the named file must use either a

register or a workname.

 The workname operand is not valid for the 3881. Also, you cannot specify the

WORKA operand in the DTFCD for the 3881.

GET

202 z/VSE System Macros Reference

GETIME (Get the Time) Macro

CC

name

GETIME
 STANDARD

BINARY

TU

MIC

 ,LOCAL

,GMT

,CLOCK=YES

C

C
,MFG=

area

(S,area)

(r)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro obtains the time-of-day at any time during program execution.

STANDARD and LOCAL are assumed if no operands are given.

If the macro is issued without an operand, the macro must not contain a comment

unless the comment begins with a comma.

As long as no DATE job control statement is supplied or CLOCK=YES is specified,

the calendar date and the system date in the communication region are updated

every time GETIME is issued. However, when the job stream contains a DATE job

control statement, only the system date in the communication region is updated

when GETIME is used; the calendar date is not changed in that case.

STANDARD | BINARY | TU | MIC

If you specify:

STANDARD

The system returns the time-of-day in register 1 as a packed decimal

number of the form hhmmss, where:

 hh = Hours

 mm = Minutes

 ss = Seconds

with the sign in the low-order half-byte. The time-of-day may be stored

and unpacked or edited.

BINARY

The system returns the time-of-day in register 1 as a binary number of

seconds.

TU

The system returns the time-of-day in register 1 as a binary number of

units of 1/300 seconds.

MIC

The system returns the time-of-day in registers 0 and 1 as a binary number

GETIME

Chapter 2. Macro Descriptions 203

of microseconds. Bit 51 of the register pair indicates one microsecond. The

specification of MIC forces the GMT operand.

LOCAL | GMT

Specify LOCAL to obtain the local time or GMT if, in your program, you want

to use Greenwich Mean Time.

CLOCK=YES

Indicates that registers 0 and 1 contain, as input to GETIME, a value that was

obtained by means of a STCK (store clock) instruction from the hardware

time-of-day (TOD) clock:

STCK TOD (Store time-of-day into 8-byte TOD)

LM R0,R1,TOD

GETIME ...,CLOCK=YES

The stored value is transformed into time and date as defined by the other

operands and any associated job control statements. Additionally, the date is

returned in registers 14 and 15 (in the form mmddyycc or ddmmyycc, where

cc indicates the century).

MFG=area | (S,area) | (r)

The MFG operand is required if the program is to be reenterable and if option

STANDARD applies (with the options BINARY, TU, or MIC, reentrancy is

preserved in any case). MFG specifies the address of a 64-byte dynamic storage

area, that is, storage which your program obtained through a GETVIS macro.

This area is required for system use during execution of the macro.

GETIME

204 z/VSE System Macros Reference

GETSYMB (Get Symbolic Parameter) Macro

CC

name
 GETSYMB AREA= area

(r1)
 ,PARMNAM= parmname

(r2)
 ,VALBUF= C

C valbuf

(r3)
 ,LENFLD= lenfld

(r4)
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

This macro allows user programs to resolve symbolic parameters. This may be

especially useful for JCL exit routines. To resolve symbolic parameters, you first

have to scan the JCL commands/statements and isolate the symbolic parameters.

You then invoke the macro GETSYMB to get the value of a symbolic parameter.

AREA=area | (r1)

Specifies the address of a 100-byte work area which is used as control block for

saving all information related to the macro call.

PARMNAM=parmname | (r2)

Specifies the address of a 7-byte field containing the symbolic parameter name.

A name shorter than 7 bytes must start in the leftmost position and the unused

bytes must be blank.

VALBUF=valbuf | (r3)

Provides the address of a buffer which will receive the character string that

was defined in a previous // SETPARM job control statement for the symbolic

parameter. Since this value can be up to 50 characters long, the length of the

buffer must be 50 bytes.

LENFLD=lenfld | (r4)

Specifies the address of a 2-byte field where the system will provide the length

of the value.

Return code 0 in register 15 indicates that the request was successful and that the

symbol was found. Return code X’10’ indicates that the symbol was not found.

Registers 13, 14, 15, 0, 1 are destroyed.

GETSYMB

Chapter 2. Macro Descriptions 205

GETVCE (Get Volume Characteristics) Macro

CC

name
 GETVCE

AREA=

name1

,

(S,name1)

(r1)

 C

C

DEVICE=

SYSxxx

X’cuu’

DASD

VOLID=

name2

(S,name2

,DEVTYPE=

name3

(r2)

(S,name3)

(r3)

LOGUNIT=

name4

(S,name4)

(r4)

CHNUNIT=

name5

(S,name5)

(r5)

 ,CLASS=DASD

,CLASS=

TAPE

ANY

C

C
,LENGTH=n

,MFG=

name6

(S,name6)

(r6)

,REQUEST=

TRKBAL

TRKCAP

 C

C
,DATALEN=

name7

(S,name7)

(r7)

,KEYLEN=

name8

(S,name8)

(r8)

 C

C
,RECNO=

name9

(S,name9)

(r9)

,BALANCE=

name10

(S,name10)

(r10)

 C

C
,OPTION=

REMOVE

MAXSIZE

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

GETVCE

206 z/VSE System Macros Reference

The GETVCE macro returns specific volume characteristics and information about

the track capacity or track balance of the specified device. Refer also to “AVRLIST

and DCTENTRY” on page 209.

AREA=name1 | (S,name1) | (r1)

Specifies the address of an area where you want the volume characteristics to

be stored. For the format of this area, see “GETVCE Output” on page 209.

DEVICE=SYSxxx | X’cuu’ | DASD

Identifies the device whose volume characteristics are to be returned. The

specification may refer to a logical unit (SYSxxx) or to a physical unit (cuu).

DASD indicates that the cuu and VOLID for all DASDs is to be returned.

VOLID=name2 | (S,name2 | (r2)

Specifies the address of a six-byte field that contains the volume serial number

of the device whose volume characteristics are to be returned. When register

notation is used, the register must also point to a 6-byte field.

 If duplicate volume serial numbers are present in the system, the first one

found by GETVCE is saved and returned if the associated device is not DOWN

or if all the associated devices are DOWN. In all other cases the first device

which is not DOWN will be returned.

 The VOLID can be qualified by the DEVTYPE operand which further limits the

search.

DEVTYPE=name3 | (S,name3) | (r3)

Specifies the address of a 1-byte field that contains the device type code of the

device to be returned. Specified in conjunction with VOLID, DEVTYPE will

return volume and device information for the volume with the matching

volume serial number and device type (for example, 3380).

LOGUNIT=name4 | (S,name4) | (r4)

Specifies the address of a 2-byte field that contains the logical unit name of the

device to be returned.

CHNUNIT=name5 | (S,name5) | (r5)

Specifies the address of a 2-byte field that contains the physical unit address

(channel, unit) of the device to be returned.

CLASS=TAPE | DASD | ANY

Indicates the device class for which the request is to be made. Default is DASD

(disk or diskette), ANY includes TAPE and DASD.

LENGTH=n

Specifies the length of the data to be placed into the AREA field. The AREA

field is initially cleared for this length before the requested information is

moved in. Default is the maximum defined length.

MFG=name6 | (S,name6) | (r6)

Specifies the address of a dynamic storage area that is to be used for parameter

list construction for re-entrant programs.

REQUEST=TRKBAL | TRKCAP

TRKBAL requests the track balance to be returned, that is, the number of

remaining bytes on a track of the specified DASD. The output is returned in

register 0.

 Balance calculation determines the amount of physical data fitting on a track if

a record were to be written or deleted. (Of course, no actual record is being

written or deleted; the calculation merely gives the number of bytes left on a

track if such an operation had taken place.) The operation itself is indicated in

GETVCE

Chapter 2. Macro Descriptions 207

the OPTION operand: REMOVE indicates that the record is to be deleted. If

OPTION has been omitted, the record is to be written.

 You may provide the track balance yourself (in the BALANCE operand), which

is the balance that is true before the operation indicated by REMOVE takes

place. The value returned by GETVCE will then be the balance after the

operation took place.

 In the following example, the record is assumed to be removed

(OPTION=REMOVE), the record to be removed is record no. 3 (RECNO=), and

the balance is provided by the user (BALANCE=):

|<-------------Total usable space on track----------->|

<######> = Record size

<%%%%...%%%> = User-provided balance

<====...=====> = New balance, returned by GETVCE

Situation on entry to GETVCE:

|<######><######><######><%%%% Given by user %%%%%%%%>|

Situation on exit:

|<######><######><====== Returned by GETVCE =========>|

In the next example, the record is assumed to be written (no OPTION=), the

record to be written is record no. 3 (RECNO=), and no balance is provided by

the user:

Situation on entry to GETVCE:

|<######><######><...................................>|

Situation on exit:

|<######><######><######><===========================>|

TRKCAP requests the track capacity to be returned, that is, the number of

whole records that will fit either into a user-supplied track balance

(BALANCE=) or into the system-calculated track balance (remainder of the

track). The output is returned in register 0.

 The calculated value depends on the REMOVE option: If the option is not set,

GETVCE takes the user-provided balance without subtracting the record’s size

from this value. (This is different from the above balance calculation, where the

record size was subtracted.) This approach is useful if you want to know how

many records would fit into a given balance.

DATALEN=name7 | (S,name7) | (r7)

Specifies the address of a two-byte field containing the length of one

fixed-length data record. This field is processed as an unsigned binary value.

KEYLEN=name8 | (S,name8) | (r8)

Specifies the address of a one-byte field containing the key length of one

fixed-length data record. This field is processed as an unsigned binary value. If

non-keyed records are processed, this byte must either be set to zero or the

operand must be omitted.

RECNO=name9 | (S,name9) | (r9)

Specifies the address of a one-byte field containing the record number. A

record number of zero (which is also the default) results in the maximum track

balance being returned to the user or being used for track capacity calculations.

BALANCE=name10 | (S,name10) | (r10)

Specifies the address of a two-byte field containing the track balance that is to

be used for calculation. This balance field is processed as an unsigned binary

value. If the balance is not known, this operand must be omitted.

GETVCE

208 z/VSE System Macros Reference

OPTION=REMOVE | MAXSIZE

REMOVE indicates that the given record with the specified DATALEN and

KEYLEN is assumed to be removed from the track by the user. GETVCE

processing will calculate and/or increment the track balance or track capacity.

If the user also provided a balance, it must always equal the number of bytes

available on the track before the record was removed.

 If the operand is omitted, the given record is assumed to be written on the

track of the specified device.

 MAXSIZE specifies that the length of the largest data record that would still fit

onto the remainder of the track is to be returned (keylength has already been

taken into account).

 If the record to be written does not fit onto the track, return code X’24’ is set,

where the returned value is the amount of user data that would still fit onto

the remainder of the track if the record is not written.

GETVCE Output

The output field pointed to by AREA is initially cleared for the specified length

(LENGTH=) before the requested information is moved in. The output is described

by a DSECT generated by the macro AVRLIST DSECT=YES,DEVICE=YES (see

“AVRLIST and DCTENTRY”).

For REQUEST=TRKCAP, register 0 contains the number of whole records that will

fit on the remainder of the track (input track balance).

For REQUEST=TRKBAL, register 0 contains the updated track balance if a new

record fits or an old record is removed. If a whole record would not fit (R15=36)

and MAXSIZE was requested, register 0 is set to the maximum number of data

bytes that would fit onto the remainder of the track (key bytes have already been

taken care off). If a whole record would not fit and MAXSIZE was not specified,

register 0 is set to zero.

Return Codes in Register 15

0 Successful completion.

4 Successful completion, but some data is not valid.

8 The volume specified is not mounted, or the logical unit specified is not

assigned, or the specified unit is not included in the system.

12 The logical unit specified is assigned IGNORE.

16 The device is not operational.

20 The parameter list is invalid (for example, the logical unit number is too high).

24 The given logical unit or device does not belong to the class specified in the

CLASS operand.

28 The device is not ready.

36 For REQUEST=TRKBAL or TRKCAP only: The input balance is not sufficient

to accommodate a record of the specified key and data length. MAXSIZE was

specified and at least one byte of data could be written. Register 0 returns the

maximum number of data bytes that would fit onto the remainder of the track.

AVRLIST and DCTENTRY

The AVRLIST macro describes volume characteristics, the DCTENTRY macro

(called within AVRLIST) describes device characteristics retrieved with the

GETVCE macro.

GETVCE

Chapter 2. Macro Descriptions 209

CC

name

AVRLIST
 DSECT=YES

DSECT=NO

 ,DEVICE=NO

,DEVICE=YES

CE

CC

DCTENTRY
 DSECT=YES

DSECT=NO

CE

DSECT=YES | NO

YES indicates that a mapping DSECT is to be generated. NO indicates that

inline code is to be generated.

DEVICE=NO | YES

YES indicates that the macro DCTENTRY is to be called within AVRLIST, thus

showing the complete (volume and device) output within one DSECT.

The layout of the DSECT is described in Table 10.

 Table 10. GETVCE Output Information

Field Name Length Field Description

AVRADR Start of AVRLIST: Volume characteristics

AVRPUB 4 Address of PUB

AVRVOLID 6 Volume identifier

AVRFLAG 1 Flag byte

AVRTYPE 1 Format of device characteristics

AVRVTOC 5 DASD address of VTOC

AVRVCC 2 CKD cylinder number

AVRVHH 2 CKD track number

AVRVR 1 CKD record number

AVRCDCST 1 CKD device status

AVRVCI 1 VTOC: blocks per CI

AVRVNUM 4 VTOC: starting block number

AVRFDCST 1 Dual copy status

AVRLNO 2 Logical unit, actual value

AVRDEVC Device type characteristics

DCTENTRY

DCTADR Start of DCTENTRY: Device characteristics

DCTPUBC 1 PUB device type code

DCTDTFC 1 DTF device type code (as in SECTVAL

macro)

DCTUCBC 4 Unit code (as in VSAM catalog

record)

DCTUFLG 1 Unit I/O flags

DCTUOPT 1 Unit features

DCTUDCL 1 Unit device class

DCTUTYP 1 Unit type

DCTPCYL 2 Number of cylinders/blocks

GETVCE

210 z/VSE System Macros Reference

Table 10. GETVCE Output Information (continued)

Field Name Length Field Description

DCTACYL 2 Cylinders/blocks in alternate

area

DCTTCYL 2 Tracks per cylinder

DCTBTRK 4 Blocks per track

DCTTFIX 4 Number of blocks

DCTMAXR 2 Block size

DCTROH 1 Data+key overhead for all records

DCTROH1 1 Data+key overhead for non-last

records

DCTROH2 1 Data+key overhead for last record

DCTKYOH 1 Key overhead

DCTTFLG 1 Capacity/balance calculation

ID

DCTTFAC 2 Tolerance factor

DCTBYSEG 1 Bytes/segment

DCTDCBYT 1 Data correction bytes

DCTRPSC 1 RPS device type code

1 Reserved

DCTEXTCD 6 External device type code

GETVCE

Chapter 2. Macro Descriptions 211

GETVIS (Get Virtual Storage) Macro

Format 1: Obtaining Storage from the Partition GETVIS Area

Format 2: Obtaining Storage from the Space GETVIS Area

Format 3: Obtaining Storage from the System GETVIS Area

 Requirements for the caller:

CC

name

GETVIS
 ADDRESS=(1)

ADDRESS=name1

 ,LENGTH=(0)

,LENGTH=name2

 ,PAGE=NO

,PAGE=YES

 ,LOC=RES

,LOC=

BELOW

ANY

C

C
 ,SVA=NO ,SPACE=NO ,PFIX=NO ,POOL=NO ,SPCNTRL=NO ,TSKSUBP=NO

(1)

,POOL=YES

,SPID=

(1)

name3

,SPCNTRL=YES

,TSKSUBP=YES

CE

Notes:

1 POOL=YES is invalid if LOC=ANY is specified.

CC

name

GETVIS
 ADDRESS=(1)

ADDRESS=name1

 ,LENGTH=(0)

,LENGTH=name2

 ,PAGE=NO

,PAGE=YES

 ,LOC=RES

,LOC=

BELOW

ANY

C

C
 ,SVA=NO ,SPACE=NO ,PFIX=NO ,POOL=NO ,SPCNTRL=NO ,TSKSUBP=NO

,SPACE=

YES

FTCHPR

,SPID=

(1)

PARTKEY

name3

,SPCNTRL=YES

CE

CC

name

GETVIS
 ADDRESS=(1)

ADDRESS=name1

 ,LENGTH=(0)

,LENGTH=name2

 ,PAGE=NO

,PAGE=YES

 ,LOC=RES

,LOC=

BELOW

ANY

C

C
 ,SVA=NO ,SPACE=NO ,PFIX=NO ,POOL=NO ,SPCNTRL=NO ,TSKSUBP=NO

,SVA=YES

(1)

,POOL=YES

,SPID=

(1)

name3

,PFIX=YES

,SPCNTRL=YES

CE

Notes:

1 POOL=YES is invalid if LOC=ANY is specified.

GETVIS

212 z/VSE System Macros Reference

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro retrieves a block of virtual storage either from the GETVIS area of your

partition or of the SVA or from the dynamic space GETVIS area.

Initially, the GETVIS area is cleared to binary zeros, and after each FREEVIS

request the returned storage is cleared again. However, a program may

erroneously store data into freed storage that is still addressable; this may result in

a later GETVIS request for uncleared storage.

If you code the macro without any operand, the system assumes that the length of

the desired virtual storage area is contained in register 0 and returns the start

address of the area it retrieved for you in register 1. If the macro is issued without

an operand, the macro must not contain a comment unless the comment begins

with a comma.

ADDRESS=name1 | (1)

The start address of the requested virtual storage area is returned by the

system either in the 4-byte field specified as a symbol by name1 or in the

specified register. Register 15 must not be used because it contains the return

code. The returned address is valid only if the return code in register 15 is

zero. If the operand is omitted, the address is returned in register 1 only.

LENGTH=name2 | (0)

The length of the requested storage block may be specified either in the 4-byte

field (specified as a symbol by name2) or in the specified register. The length is

specified in number of bytes. The smallest unit that can be requested by

GETVIS is either of the following:

 128 bytes if the GETVIS area is part of a partition or

 16 bytes if the GETVIS area is part of the SVA or of the dynamic space

GETVIS area.

If the specified length is not a multiple of 128 or 16, respectively, it is rounded

to the next higher multiple of 128 or 16. If the operand is omitted, the system

assumes that you have specified the length in register 0.

LOC=RES | BELOW | ANY

Indicates the location of the virtual storage obtained by the GETVIS request.

 RES indicates that the location of the requested virtual storage depends on the

location of the caller. If the caller resides below 16M, virtual storage is to be

allocated below 16MB (LOC=RES is treated as LOC=BELOW). If the caller

resides above 16MB, virtual storage can be allocated anywhere (LOC=RES is

then treated as LOC=ANY).

Note: The location of the caller is determined by the address portion of the

PSW. Since a phase may cross the 16MB line, LOC=RES requests may

return GETVIS areas above and below 16MB within the same phase.

BELOW indicates that virtual storage is to be allocated below 16MB. The

allocation of storage is done from bottom to top. For partition GETVIS requests,

storage is allocated up to the 16MB line. For system GETVIS requests

GETVIS

Chapter 2. Macro Descriptions 213

(SVA=YES), the area is reserved in the 24-bit system GETVIS area only, even if

the 31-bit system GETVIS area is located partly or totally below 16MB.

 ANY indicates that virtual storage can be allocated anywhere. For partition

GETVIS requests, the system tries to allocate virtual storage above 16MB. If the

attempt fails (or if no area above 16MB is available), the system tries to allocate

virtual storage below 16MB. If this attempt also fails, no storage is allocated.

Storage is always allocated from top to bottom and may cross the 16MB line.

LOC=ANY is treated as LOC=BELOW if the total GETVIS area is located

below 16MB.

 For system GETVIS requests (SVA=YES), the system tries to allocate virtual

storage in the 31-bit system GETVIS area, even if this area is located partially

or totally below 16MB. If the attempt fails, the system tries to allocate storage

in the 24-bit system GETVIS area. If there is no 31-bit system GETVIS area,

LOC=ANY is treated as LOC=BELOW.

 For dynamic space GETVIS requests (SPACE=YES), a LOC=ANY request is

treated as LOC=BELOW, since there is only a 24-bit dynamic space GETVIS

area. The same is true if LOC=RES is specified and the caller resides above

16MB.

 Subpool Processing: Both LOC=ANY and LOC=BELOW can be given for the

same subpool, so a subpool can contain areas below and above 16MB.

Normally, the system tries to find the requested area within an existing

subpool. However, for LOC=ANY requests, the system tries to allocate the

requested storage totally above 16MB (partition) or in the 31-bit system

GETVIS area. It is only when there is not enough storage available above 16MB

(partition) or in the 31-bit system GETVIS area that the area below 16MB

(partition) or the 24-bit system GETVIS area is searched for. (If the SPID

operand is omitted, virtual storage is retrieved from a general GETVIS

subpool.)

PAGE=NO | YES

PAGE=YES causes the requested storage area to start on a 2K boundary if the

requested size is not larger than 2K, or on a 4K boundary if the requested size

is larger than 2K. This may reduce the number of page faults, but increases

storage fragmentation.

PFIX=NO | YES

If PFIX=YES is specified, the requested storage area will be PFIXed. PFIX=YES

is allowed only if the SPID operand is specified and SVA=YES.

 If PFIX=YES is specified, z/VSE backs virtual pages that reside below 16MB

with real storage below 16MB, and virtual pages that reside above 16MB with

real storage that can be located anywhere (preferably above 16MB).

 PFIX=YES is not allowed with SPACE=YES.

POOL=NO | YES

If POOL=YES is specified, GETVIS expects to find, in register 1, an address

within the defined GETVIS area where the search is to be started.

 POOL=YES must not be specified together with SPACE, SPID, or with

TSKSUBP=YES.

 The POOL operand is invalid when specified with LOC=ANY. It is ignored for

LOC=RES requests if the caller resides above 16MB. If POOL is specified, the

address in register 1 (where the search for the required area is started) is

GETVIS

214 z/VSE System Macros Reference

regarded either as a 24-bit or 31-bit address, depending on the AMODE of the

caller. The address is ignored if it does not point to the LOC=BELOW area.

SPACE=NO | YES | FTCHPR | PARTKEY

SPACE=YES indicates that the requested storage area is to be taken from the

dynamic space GETVIS area. The requestor needs storage protection key zero.

 If the GETVIS request is for a static partition, the storage area is taken from the

system GETVIS area. If the request is for a static partition and the SPID

operand is omitted, the storage is retrieved from a partition-related general

GETVIS subpool.

 SPACE=NO indicates that the storage area is not to be taken from the dynamic

space GETVIS area.

 SPACE=FTCHPR has the same function as SPACE=YES, but the area will be

fetch-protected, that is, require key zero for read and write operations. The

operand is only allowed if the SPID operand is specified.

 SPACE=PARTKEY has the same function as SPACE=YES, but the area will be

protected with the key of the partition. The operand is only allowed if the

SPID operand is specified.

 The SPACE operand must not be specified together with PFIX=YES,

POOL=YES, SVA=YES, and TSKSUBP=YES.

SPCNTRL=NO | YES

SPCNTRL=YES indicates that access to the subpool specified in the SPID

operand is only allowed when the correct subpool index (which is part of the

subpool ID) is specified.

 When you initialize a subpool (by setting the subpool index to zero), the

system creates a controlled subpool, that is, any further request for the

subpool is only allowed if the correct subpool index is passed (independent of

the SPCNTRL specification).

 When you refer to an existing subpool, the index must point to a subpool with

the same name as the supplied one. Otherwise a return code is passed

indicating an invalid subpool index.

 SPCNTRL=YES is only allowed if the SPID operand is specified.

SPID=name3 | (1)

This operand can be used to create a subpool of pages of virtual storage from

the partition or dynamic space GETVIS area or from the SVA.

 Each subpool is defined by an eight-byte area (the subpool ID) or a register

that points to the area. This eight-byte area consists of a six-byte field

containing the subpool name (which you must supply) and a two-byte

subpool index that is set by the system and should be initialized to zero when

you first create the subpool. The entire eight-byte area must be used for

subsequent references to the subpool. The subpool ID field is passed to the

supervisor in register 1.

 The address of the subpool ID is regarded either as a 24-bit or 31-bit address,

depending on the AMODE (24 or 31) of the caller.

 The same subpool name may be used for a SPACE=YES request within

different partitions. If the request is routed to the SVA, the system does not

return a unique subpool name (the subpool name is made unique internally).

 The subpool name must not begin with the character I to avoid conflicts with

internal IBM subpools.

GETVIS

Chapter 2. Macro Descriptions 215

When you omit the SPID (or TSKSUBP) operand, virtual storage is retrieved

from a general GETVIS subpool.

 SPID must not be specified together with POOL or TSKSUBP=YES.

SVA=NO | YES

SVA=YES can be specified only in a program that runs with storage protection

key zero. If SVA=YES is specified, the system retrieves the desired block of

virtual storage from the system GETVIS area. If SVA=NO is specified or the

operand is omitted, the system retrieves the block from the partition in which

your program runs.

 SVA=YES must not be specified together with SPACE or TSKSUBP=YES.

TSKSUBP=NO | YES

This operand, if specified for a subtask, indicates whether or not the requested

storage area is to be taken from an exclusive task subpool, which is freed when

the task is terminated. If specified for a main task, this operand is ignored.

 If TSKSUBP (or SPID) is not specified, GETVIS space is retrieved from the

general GETVIS subpool.

 TSKSUBP=YES must not be specified together with SPACE, SPID, POOL=YES,

or SVA=YES.

Return Codes in Register 15

0 GETVIS completed successfully.

4 The size of the (real) partition GETVIS area is 0K.

8 The specified length is negative or exceeds the GETVIS area.

12 No more virtual storage is available in the GETVIS area, or a GETVIS request

with length zero has been specified for a non-existing subpool or a subpool

that has no free space.

16 The maximum number of subpools is exhausted.

20 Invalid GETVIS option.

24 Invalid subpool ID.

32 PFIX for an SVA subpool request failed.

36 An invalid subpool index was specified and (a) the request was done with

SPCNTRL=YES and/or (b) the specified subpool name denotes an existing

subpool that was created with SPCNTRL=YES. (A subpool index is invalid if it

points to a subpool other than the supplied one. This includes a subpool index

of zero for an already existing subpool.)

40 No access to the specified subpool is allowed as long as a PFIX request is

pending.

IJBPUB (IJBPUB DSECT) Macro

CC

name
 IJBPUB CE

The macro generates a mapping DSECT which you need in your program to

interpret the information retrieved with the macro EXTRACT ID=PUB. The

generated DSECT makes fields accessible that contain:

 The channel and device number

 Device type code

 Some device characteristics.

GETVIS

216 z/VSE System Macros Reference

IJJLBSER (LBSERV DSECT) Macro

This macro maps the output area pointed to by the LBSERV SERVL field. It must

always be used together with the LBSERV macro.

CC

name

IJJLBSER DSECT=
 NO

YES

CE

DSECT=NO | YES

DSECT=YES specifies that a mapping DSECT is generated. If the operand is

omitted or if NO is specified, inline code is generated.

For the layout and a description of the DSECT fields, see Figure 9.

 Field IJJLTLEN must be set by the user.

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ IJJLTLEN │ 2 │ Length of area set by user │

 │ IJJLTIDN │ 2 │ Level identification │

 │ IJJLTRES │ 4 │ Reserved │

 │ IJJLTNAM │ 8 │ Name of DSECT │

 │ IJJLTRET │ 4 │ Return code │

 │ IJJLTREA │ 4 │ Reason code │

 │ IJJLFLEN │ 2 │ Length of parameter list │

 │ IJJLFREQ │ 2 │ Request type │

 │ IJJLFRWF │ 4 │ Address of Read/Write flag │

 │ IJJLFCUU │ 4 │ Address of cuu │

 │ IJJLFVOL │ 4 │ Address of volume serial number │

 │ IJJLFECB │ 4 │ Address of ECB │

 │ IJJLFLBN │ 4 │ Address of library-ID │

 │ IJJLFSCT │ 4 │ Address of source category │

 │ IJJLFTCT │ 4 │ Address of target category │

 │ IJJLFMEM │ 4 │ Address of LIBR member name │

 │ │ 3 │ Reserved │

 │ IJJLTCNT │ 5 │ Count field for number of volumes │

 │ IJJLTSTA │ 4 │ Operational status (device) │

 │ IJJLFUSW │ 4 │ User word │

 │ IJJLFPIP │ 4 │ Pointer to internal part │

 │ IJJLTMED │ 4 │ Media name of volume │

 │ │ 4 │ Reserved │

 │ IJJLTRST │ 44 │ Set to zeros │

 │ IJJLTLN │ │ Length of DSECT │

 └───────────┴─────────┴───┘

Figure 9. Layout of the LBSERV-Generated DSECT

IJJLBSER

Chapter 2. Macro Descriptions 217

IORB (I/O Request Block Definition) Macro

Use either of the formats shown below:

CC

name
 IORB DSECT=YES CE

CC

name
 IORB CCW=name1,DEVICE=SYSxxx

,ECB=name2
 C

C

H

,

(1)

,IOFLAG=(

POSTDE

)

POSTERR

SKIPERP

FORMAT1

 CE

Notes:

1 Each option can be specified once.

Required RMODE: 24

Note: The operands FIXLIST and FIXFLAG have become obsolete; for

compatibility reasons they are, however, still accepted.

The macro generates an IORB (input/output request block). The block is generated

when your program is being assembled. For the layout and contents of an IORB,

see Table 11.

 Table 11. Layout and Contents of the I/O Request Block (IORB)

Offset (In

Hex)

Length (In

Hex) Contents

0 2 Residual count (same as for a CCB; see Table 2 on page

53).

2 2 Transmission information (same as for a CCB; see Table 2

on page 53).

4 2 CSW status bits (same as for a CCB; see Table 2 on page

53).

6 7 Reserved.

0D 3 CSW address in CSW (same as for a CCB; see Table 2 on

page 53).

10 10 Reserved.

The block is an alternative to the CCB: instead of specifying a CCB in the EXCP

macro, the address of an IORB is given.

CCW=name1

This operand gives the name of the first CCW used with the IORB. This name

must be the same as the name specified in the assembler CCW statement that

builds the CCW.

DEVICE=SYSxxx

This operand specifies the logical unit for the actual I/O unit with which this

IORB is associated.

IORB

218 z/VSE System Macros Reference

DSECT=YES

If the operand is specified, it should be the only one. Any other operands you

specify are ignored and an MNOTE is generated by the assembler.

 Specifying DSECT=YES causes the assembler to generate, as a DSECT

structure, the IORB and the meaning of its fields.

ECB=name2

This operand specifies the address of the ECB to be posted when I/O is

complete. The traffic bit (byte 2, bit 0) of the ECB must have been cleared

before issuing the EXCP macro. The ECB area must be included in the fix list if

the ECB operand is used.

Note: If FIXFLAG=(FIXED) is specified, the ECB must have be fixed in storage

by a PFIX macro.

IOFLAG=(option,...)

A list of options may be specified which apply to I/O interrupt handling:

POSTDE

To indicate that device end is to be posted.

POSTERR

To indicate that an irrecoverable I/O error is to be accepted.

SKIPERP

To indicate that error recovery by the system is to be skipped.

FORMAT1

To indicate that the CCW is a format-1 CCW.

IORB

Chapter 2. Macro Descriptions 219

ISMOD (Indexed Sequential I/O Module Definition) Macro

CC

name
 ISMOD IOROUT= LOAD

ADD

RETRVE

ADDRTR

,CORDATA=YES

,CORINDX=YES
 C

C
,ERREXT=YES

,HOLD=YES

,IOAREA2=YES

,RDONLY=YES
 C

C
,RECFORM=

FIXUNB

FIXBLK

BOTH

,RPS=SVA

,SEPASMB=YES
 C

C
,TYPEFLE=

RANDOM

SEQNTL

RANSEQ

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro defines a logic module for an ISAM file. If you do not provide a name

for the module, IOCS generates a standard module name.

Note: If an ISMOD module precedes an assembler language USING statement or

follows your program, registers 2 through 12 remain unrestricted even

during assembly. However, if the module lies within your program, issue

the same USING statement (as that which was issued before the ISMOD

module) directly following the module. This is necessary because the

ISMOD module uses registers 1 through 3 as base registers. It uses register 5

in addition if your ISMOD macro includes CORDATA=YES. Each time the

module is assembled, these registers are dropped.

CORDATA=YES

Include this operand if the module is to add records to files with the IOSIZE

DTFIS operand. If this operand is included, the IOSIZE operand is required in

the DTF. If you omit the CORDATA=YES operand, you will not have an

increase in throughput when adding records to a file.

CORINDX=YES

Include this operand to generate a module that can process DTFIS files (add or

random retrieve functions) with or without the cylinder index entries resident

in virtual storage. If the operand is omitted, the generated module cannot

process the resident cylinder index entries.

 If an irrecoverable I/O error occurs while reading indexes into virtual storage,

the program will not use the resident cylinder index entries.

ISMOD

220 z/VSE System Macros Reference

ERREXT=YES

Include this operand if the ERET macro is to be used with this module or if

non-data-transfer error conditions are returned in filenameC. If HOLD=YES

and ERREXT=YES, your program must issue the ERET macro to return to the

ISAM module to free any held tracks. See also the DTF ERREXT and HOLD

operands.

HOLD=YES

This operand provides for the track hold option for both data and index

records. If the HOLD operand is omitted, the track hold function is not

performed.

 Because track hold cannot be performed on a LOAD file, HOLD=YES cannot

be specified when IOROUT=LOAD.

 If HOLD=YES and ERREXT=YES, your program must issue the ERET macro to

return to the ISAM module to free any held tracks.

IOAREA2=YES

Include this operand if a second I/O area is to be used, that is, if IOAREA2 is

specified in any of the DTFs linked to the logic module. The operand is only

valid for load or sequential retrieval functions. The module can process DTFs

with one or two I/O areas specified. This operand must not be specified if

TYPEFLE=RANSEQ is specified.

IOROUT=LOAD | ADD | RETRVE | ADDRTR

This operand specifies the type of module required to perform a given

function:

IOROUT=LOAD

Generates a module for creating or extending a file.

IOROUT=ADD

Generates a module for adding new records to an existing file.

IOROUT=RETRVE

Generates a module to retrieve, either randomly or sequentially, records

from a file.

IOROUT=ADDRTR

Generates a module that combines the features of the ADD and RETRVE

modules. This module also processes any file in which only ADD or

RETRVE is specified in the IOROUT operand of the DTF, and in which the

TYPEFLE operand contains the corresponding specification (or a subset of

it).

RDONLY=YES

This operand causes a read-only module to be generated. Whenever this

operand is specified, any DTF used with the module must have the same

operand.

RECFORM=FIXUNB | FIXBLK | BOTH

This operand generates a module that creates, adds to, or processes an

unblocked (FIXUNB) or blocked (FIXBLK) file. If BOTH is specified, a module

is generated to process both unblocked and blocked files, and the DTF may

specify either FIXUNB or FIXBLK in the RECFORM operand. The RECFORM

operand is required only when IOROUT specifies ADD or ADDRTR. If

IOROUT specifies LOAD or RETRVE, a module that handles fixed-length

blocked and unblocked files is generated, and the operand is not required.

RPS=SVA

This operand causes the RPS logic modules to be assembled.

ISMOD

Chapter 2. Macro Descriptions 221

SEPASMB=YES

Include this operand only if the module is to be assembled separately. This

produces an object module ready to be cataloged into a suitable sublibrary

either by the standard name or by the user-specified name. The name is used

as the module’s transfer address. If you omit the operand, the assembler

assumes that the ISMOD macro is assembled together with the DTF in your

program.

TYPEFLE=RANDOM | SEQNTL | RANSEQ

This operand is required when IOROUT specifies RETRVE or ADDRTR.

RANDOM generates a module that includes only random retrieval capabilities.

SEQNTL generates a module that includes only sequential retrieval capabilities.

RANSEQ generates a module that includes random and sequential capabilities.

It also processes any file in which the TYPEFLE operand specifies either

RANDOM or SEQNTL. If TYPEFLE=RANSEQ, IOAREA2=YES must not be

specified.

 When all operands are omitted, the ISMOD module can only process files

where IOROUT=RETRVE, TYPEFLE=RANSEQ, CORINDX, CORDATA, HOLD,

and RDONLY are not specified. The name of that module is IJHZRBZZ.

Standard ISMOD Names

Each name begins with a 3-character prefix (IJH) and continues with a 5-character

field corresponding to the options permitted in the generation of the module.

ISMOD name = IJHabcde

 Char. Content Specified Option

a A RECFORM=FIXBLK or RECFORM=FIXUNB,

IOROUT=ADD or IOROUT=ADDRTR

 B RECFORM=FIXBLK, IOROUT=ADD or IOROUT=ADDRTR

 U RECFORM=FIXUNB, IOROUT=ADD or

IOROUT=ADDRTR

 Z RECFORM is not specified (IOROUT=LOAD,

IOROUT=RETRVE)

b A IOROUT=ADDRTR

 I IOROUT=ADD

 L IOROUT=LOAD

 R IOROUT=RETRVE

 V IOROUT=ADDRTR, RPS=SVA

 X IOROUT=LOAD, RPS=SVA

c B TYPEFLE=RANSEQ

 G IOAREA2=YES, TYPEFLE=SEQNTL or IOROUT=LOAD

 R TYPEFLE=RANDOM

 S TYPEFLE=SEQNTL

 Z Neither is specified (IOROUT=LOAD or IOROUT=ADD)

d B CORINDX=YES and HOLD=YES

 C CORINDX=YES

 O HOLD=YES

 Z Neither is specified

e F CORDATA=YES, ERREXT=YES, RDONLY=YES

 G CORDATA=YES and ERREXT=YES

 O CORDATA=YES and RDONLY=YES

 P CORDATA=YES

 S ERREXT=YES and RDONLY=YES

ISMOD

222 z/VSE System Macros Reference

Char. Content Specified Option

 T ERREXT=YES

 Y RDONLY=YES

 Z Neither is specified

Subset/Superset ISMOD Names

The following chart shows the subsetting and supersetting allowed for ISMOD

names. Five specifications provide for supersetting. Module IJHBABZZ, for

example, is a superset of the module IJHBASZZ.

 + + + + +

 I J H A A B B F

 B I R O O

 Z + + + +

 + A B C S

 A R S Z Y

 U * + *

 Z L G G

 S P

 + +

 G T

 Z Z

+ Subsetting/supersetting permitted.

* No subsetting/supersetting permitted.

If two or more modules with the same entry point are included, the linkage editor

message 2143I (invalid duplication of entry point label) is generated. Occasionally

these entry points are not obvious when using the preceding chart, but the module

can perform the indicated functions. This message can usually be suppressed by

including a superset module. However, modules with and without prime data in

main storage or modules with TYPEFLE=RANDOM and IOAREA2=YES cannot be

combined. Therefore, you should take either of the following actions:

v Specify prime data in core for each ADD type DTF in your program. In this case,

superset modules are generated.

v Specify the MODNAME operand in the DTF, and include an ISMOD of that

name. The DTF then generates only the specified module.

ISMOD

Chapter 2. Macro Descriptions 223

JDUMP (Job Dump Request) Macro

CC

name
 JDUMP CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

This macro provides a hexadecimal dump of the following:

v The contents of either the entire supervisor area and the used part of the system

GETVIS area, or of some supervisor control blocks only. The dump includes the

contents of some supervisor control blocks only if either:

– The STDOPT job control command specifies DUMP=PART or DUMP=NO, or

– the job is submitted with PARTDUMP or NODUMP specified in a job control

OPTION statement.
v The contents of the partition that issued the macro.

v The contents of the registers.

In addition, the macro causes the job to be terminated if JDUMP was issued by the

main (or only) task of the program. If JDUMP was issued by a subtask, the macro

causes that subtask to be detached without terminating the program in the

partition.

If the job control option SYSDUMP is active, the output of the dump is directed to

the dump sublibrary of the partition. If the option NOSYSDUMP is active, the

output is directed to SYSLST, which can be assigned to a printer, disk or tape unit.

If SYSLST is assigned to tape, this tape must be positioned as desired.

If SYSLST is assigned to an IBM 3211 and indexing was used before you issue the

JDUMP macro, a certain number of characters on every line of the printed dump

may be lost. To avoid this, reload the printer’s FCB (forms control buffer) by

issuing an LFCB macro before you issue the JDUMP macro. The FCB image you

load must not have an indexing byte.

If JDUMP is issued by a job running in real mode, the storage contents of the

partition are dumped only up to the limit as determined by the SIZE operand of

the EXEC job control statement, plus the storage obtained dynamically through the

GETVIS macro. If SIZE was not specified, the entire partition will be dumped.

If JDUMP is issued by a program running in virtual mode, the entire partition is

dumped.

JDUMP

224 z/VSE System Macros Reference

JOBCOM (Job Communication) Macro

CC

name
 JOBCOM FUNCT= PUTCOM

GETCOM
 ,AREA= address

(r1)
 ,LENGTH= C

C length

(r2)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro provides for communication between jobs or job steps in a partition.

For dynamic partitions, this applies only to z/VSE jobs and job steps within one

VSE/POWER job, because a dynamic partition and its z/VSE control blocks are

only existent during the execution of a VSE/POWER job.

Information being communicated is stored in a 256-byte area. The system provides

such an area for each partition. Through the JOBCOM macro, a program either

moves information into that area or retrieves information that had previously been

stored there by another program. The area remains unaltered from one job (or job

step) to the next. Unless it is modified through execution of the JOBCOM macro,

the contents of the area remain unchanged over any number of jobs. The JOBCOM

macro is not reentrant.

The program that issues the JOBCOM macro must provide a register save area 18

fullwords long. Prior to execution of the macro, register 13 has to point to that save

area.

Note: When the JOBCOM macro is used, the contents of registers 14 through 1 are

destroyed.

FUNCT=PUTCOM | GETCOM

This operand describes the function that the macro is to perform. Specifying

PUTCOM causes information to be stored into the system-supplied area. The

number of bytes to be moved is given by the LENGTH operand. If LENGTH

yields a value smaller than 256, the remainder of the area is left unaltered.

 Specifying GETCOM indicates that information is to be retrieved from the

system-supplied area. Again, the number of bytes to be moved is given by the

LENGTH operand.

AREA=address | (r1)

This operand gives the address of a field where the program provides

(FUNCT=PUTCOM specified) or receives (FUNCT=GETCOM specified) the

information to be moved.

LENGTH=length | (r2)

This operand specifies the number of bytes to be moved. The value is either

given as a self-defining term or in register notation. If register notation is used,

the specified register is expected to contain the length value.

JOBCOM

Chapter 2. Macro Descriptions 225

Length should be a positive number up to 256. If it is zero or negative, no

information gets moved. If it is greater than 256, only 256 bytes are moved.

JOBCOM

226 z/VSE System Macros Reference

LBRET (Label-Routine Return) Macro

CC

name
 LBRET 1

2

3

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro is issued in your subroutines when you have completed processing

labels and wish to return control to IOCS. LBRET applies to subroutines that write

or check user-standard on disk or on magnetic tape, write or check tape

nonstandard labels, or check disk extents. The operand used – 1, 2, or 3 – depends

on the function to be performed. The functions and operands are explained below.

Checking Disk Extents

When processing an input file with all volumes mounted, you can process your

extent information. After each extent is processed, use LBRET 2 to receive the next

extent. When extent processing is complete, use LBRET 1 to return control to IOCS.

Checking User Standard Labels on Disk

IOCS passes the labels to you one at a time until the maximum allowable number

is read (and updated), or until you signify you want no more. In the label routine,

use LBRET 3 if you want IOCS to update (rewrite) the label just read and pass you

the next label. Use LBRET 2 if you simply want IOCS to read and pass the next

label. If an end-of-file record is read when LBRET 2 or LBRET 3 is used, label

checking is automatically ended. If you want to eliminate the checking of one or

more remaining labels, use LBRET 1.

Writing User Standard Labels on Disk

Build the labels one at a time and use LBRET to return to IOCS, which writes the

labels. Use LBRET 2 if you want control returned to you after IOCS writes the

label. If, however, IOCS determines that the maximum number of labels has

already been written, label processing is terminated. Use LBRET 1 if you wish to

stop writing labels before the maximum number of labels is written.

Checking User Standard Tape Labels

IOCS reads and passes the labels to you one at a time until a tapemark is read, or

until you indicate that you do not want any more labels. Use LBRET 2 if you want

to process the next label. If IOCS reads a tapemark, label processing is

automatically terminated. Use LBRET 1 if you want to bypass any remaining

labels.

LBRET

Chapter 2. Macro Descriptions 227

Writing User Standard Tape Labels

Build the labels one at a time and return to IOCS, which writes the labels. When

LBRET 2 is used, IOCS returns control to you (at the address specified in the

DTFxx LABADDR operand) after writing the label. Use LBRET 1 to terminate the

label set.

Writing or Checking Nonstandard Tape Labels

You must process all your nonstandard labels at once. Use LBRET 2 after all label

processing is completed and you want to return control to IOCS.

LBRET

228 z/VSE System Macros Reference

LBSERV (Control IBM 3494 Tape Library) Macro

Overview of LBSERV Macro

CC

name
 LBSERV FUNC= AQUERY

CANCEL

CMOUNT

CQUERY

DQUERY

EJECT

IQUERY

LQUERY

MOUNT

RECEIVE

RELEASE

SETVCAT

SQUERY

MINVENT

,CUU=

name1

(r1)

 C

C
,ECB=

name2

(r2)

,LIBNAME=

name3

(r3)

,MEMNAME=

name4

(r4)

 C

C ,SERVL= name5

(r5)

,SRCCAT=

name6

(r6)

,TGTCAT=

name7

(r7)

 C

C
,VOLSER=

name8

(r8)

,WRITE=

name9

(r9)

 CE

LBSERV allows passing tape handling requests to an IBM 3494 Tape Library

Dataserver. These requests are passed in one of three ways:

v directly to the 3494 via VSE Tape Library Support (TLS)

v via the Library Control Device Driver (LCDD) in z/VSE

v via the VSE Guest Server (VGS) machine in VM (see DFSMS/VM Removable

Media Services User’s Guide and Reference, SC35–0141)

See z/VSE Administration and z/VSE Planning for information on TLS and on

configuring one of these options.

For sample usage, see ″Example for an LBSERV MOUNT Request″ in the System

Macros User’s Guide.

The following publications provide additional information on the 3494:

v IBM 3494 Tape Library Data Server: Introduction and Planning Guide, GA32-0279

v IBM 3494 Tape Library Data Server: Operator’s Guide, GA32-0280

For any LBSERV request, you must use the IJJLBSER mapping macro. IJJLBSER

must start on doubleword boundary. After each LBSERV request (except CANCEL

and RECEIVE) a WAIT macro has to be issued, if the return code from the LBSERV

request in register 15 is zero. After the ECB is posted, an LBSERV RECEIVE

request must be issued, which provides return and reason code information in the

field indicated by SERVL.

LBSERV

Chapter 2. Macro Descriptions 229

Note: Be aware that the program using the LBSERV macro must reserve GETVIS

space. If the LBSERV macro is supported via the VSE Guest Server (VGS),

you must provide at least 100K permanent PFIX for each partition using

VGS. The following example defines the 100K permanent PFIX above the

16MB line:

// SETPFIX LIMIT=(,100K),PERM

// EXEC ...SIZE= must reserve GETVIS space

Table 12 lists the input and output parameters required for the various function

operands.

 Table 12. LBSERV : Operands by Function

 CUU ECB LIBNAME MEMNAME SERVL SRCCAT TGTCAT VOLSER WRITE

AQUERY i(*) o i o i

CANCEL i

CMOUNT i i i b i i i b o i

CQUERY i i b i i b

DQUERY i i i o o

EJECT i i b i i

IQUERY i i b i i b

LQUERY i i b i

MINVENT i i b i i i b i

MOUNT i i i b i i b i i

RECEIVE i

RELEASE i i i i b

SETVCAT i i b b i i b i i

SQUERY i(*) i b o i o i

 ’i’ = required input parameter

 ’o’ = required output parameter

 ’b’ = input parameter contents may be a blank value to indicate

 optional

 ’*’ = a free CUU is required for this request when running under

 VM (VGS)

Note: In order to get CUU for CMOUNT, DQUERY, and MOUNT, use the

EXTRACT macro or the ASSGN command to assign the device.

The following requirements for the caller, register usage convention, input

parameters and return codes apply to all LBSERV functions.

Requirements for the caller:

AMODE: 24 or 31

RMODE: ANY

ASC Mode: Primary

Register usage convention:

r(x) for register notation R(x) any general register from 2 to 12 can be

used

Registers 0, 1 will be destroyed.

LBSERV

230 z/VSE System Macros Reference

Register 13 must point to a 72 byte save area.

Register 14 return register.

Register 15 branch register at input, return code from LBSERV macro call on

output

Input Parameters:

CUU = name1 | (r1)

address of an area containing a 4–character device number to be

used for this operation.

ECB = name2 | (r2)

address of an area containing the ECB which is posted when the

request completes.

LIBNAME = name3 | (r3)

address of an 8 character area containing the tape library name, or

blanks to indicate the default library.

MEMNAME = name4 | (r4)

address of an area containing an 8–character name of a z/VSE

library member. This member contains the list of volumes to be

managed by an MINVENT request.

SERVL = name5 | (r5)

address of an area where the return information will be stored

when the request completes. This area must start on a double word

boundary. The area is mapped by macro IJJLBSER. The area’s

length, IJJLTLN, must be stored into field IJJLTLEN of IJJLBSER by

the user. It is checked at LBSERV invocation if its size is as large as

required. The first part up to label IJJLTRST is available to the user,

the rest is reserved for system use only.

SRCCAT = name6 | (r6)

address of a 10-character area where the tape volume’s category

(source category) is specified or will be returned. A blank name (10

blank characters) indicates to ignore the source category.

 Valid category names are:

v INSERT

v MANEJECT (not for VGS)

v PRIVATE (not for VGS)

v SCRATCH

v SCRATCHnn, nn=00-31 for LCDD, nn=00-15 for VGS (mapped

to n=0-F)

v SCRATCHn, n=0-F VGS only

TGTCAT = name7 | (r7)

address of a 10-character area containing the new category name

(target category) for the volume to be used for this function. The

target category is assigned to the volume. Valid category names

are:

v blank

v PRIVATE

v SCRATCH

v SCRATCHnn, nn=00-31 for LCDD, nn=00-15 for VGS (mapped

to n=0-F)

v SCRATCHn, n=0-F VGS only

v VOLspecific

LBSERV

Chapter 2. Macro Descriptions 231

A blank field (10 blank characters) as category name indicates that

the parameter is to be ignored and the category left unchanged.

VOLSER = name8 | (r8)

address of an area containing the 6-character volume serial number

of the volume to be queried, mounted, or ejected.

WRITE = name9 | (r9)

address of an area containing a one-character read/write flag,

where R means read-only and W means write. R is the default.

Return codes in register 15:

x’0000’ Request passed successfully. After ECB was posted issue LBSERV

RECEIVE and check return and reason code for this request.

x’0004’ Request passed, but warning condition. Check reason code.

x’0005’ or >x’0005’

Request not successful. Check reason code.

LBSERV AQUERY

CC

name
 LBSERV FUNC=AQUERY,ECB= name1

(r1)
 ,LIBNAME= name2

(r2)
 C

C ,SERVL= name3

(r3)
 ,SRCCAT= name4

(r4)
 ,VOLSER= name5

(r5)
 CE

LBSERV AQUERY requests a volume’s location to be verified. All known tape

libraries will be queried until the specified volume is found. If the volume is

found, the name of its library, source category and the media type will be returned.

Output:

LIBNAME

name of the tape library containing the volume

SRCCAT

name of the category the tape volume belongs to

IJJLTSTA

volume status (see Figure 10 on page 233)

IJJLTMED

media type (see Figure 11 on page 233)

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV

232 z/VSE System Macros Reference

LBSERV CANCEL

CC

name
 LBSERV FUNC=CANCEL,SERVL= name1

(r1)
 CE

A prior CMOUNT/MOUNT request is to be cancelled because it is in a hang

condition. An ongoing CMOUNT/MOUNT cannot be stopped, but the pointers

and assignments will be reset. The prior request is identified by the address of the

IJJLBSER area passed in SERVL, which still contains CUU, VOLSER and ECB

address of the last executed function.

Output:

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV CMOUNT

CC

name
 LBSERV FUNC=CMOUNT,CUU= name1

(r1)
 ,ECB= name2

(r2)
 ,LIBNAME= C

 Size Contents Meaning

 4 char. 0000 no special condition

 4 char. 8000 inaccessible

 4 char. 4000 mounted

 4 char. 2000 queued for mount

 4 char. 1000 being mounted

 4 char. 0800 queued for demount

 4 char. 0400 being demounted

 4 char. 0200 queued for eject

 4 char. 0100 being ejected

 4 char. 0080 queued for audit

 4 char. 0040 being audited

 4 char. 0020 misplaced

 4 char. 0010 missing or damaged label

 4 char. 0008 used in manual mode

 4 char. 0004 manually ejected

 4 char. 0002 assigned to category with fast-ready attribute

Figure 10. Volume Status in IJJLTSTA

 Size Contents Meaning

 4 char. CST1 3490E

 4 char. CST2 3490E

 4 char. CST3 3590

 4 char. CST4 3590

 4 char. CST5 3592 300 GB

 4 char. CST6 3592 300 GB WORM

 4 char. CST7 3592 60 GB

 4 char. CST8 3592 60 GB WORM

Figure 11. Media Type in IJJLTMED

LBSERV

Chapter 2. Macro Descriptions 233

C name3

(r3)
 ,SERVL= name4

(r4)
 ,SRCCAT= name5

(r5)
 ,TGTCAT= name6

(r6)
 C

C ,VOLSER= name7

(r7)
 ,WRITE= name8

(r8)
 CE

CMOUNT requests a volume from the specified source category to be mounted on

a device in a library. If TGTCAT is specified, this target category is assigned to the

mounted volume. If no TGTCAT is specified, the mounted volume is set to

category PRIVATE.

Output:

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

VOLSER

volume serial number of mounted tape is stored in the area pointed to by

VOLSER.

LBSERV CQUERY

CC

name
 LBSERV FUNC=CQUERY,ECB= name1

(r1)
 ,LIBNAME= name2

(r2)
 C

C ,SERVL= name3

(r3)
 ,SRCCAT= name4

(r4)
 CE

CQUERY requests the number of volumes in the specified category to be returned

to the requestor. If SRCCAT is not specified (set to blank) then the number of all

volumes within the library is returned.

Output:

IJJLTCNT

number of volumes in specified category and library

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV DQUERY

CC

name
 LBSERV FUNC=DQUERY,CUU= name1

(r1)
 ,ECB= name2

(r2)
 ,SERVL= C

C name3

(r3)
 ,SRCCAT= name4

(r4)
 ,VOLSER= name5

(r5)
 CE

DQUERY request the status of a device in a library.

Output:

LBSERV

234 z/VSE System Macros Reference

IJJLTSTA

status of device as explained in Figure 12.

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

SRCCAT

name of the category the tape volume belongs to if a tape is mounted. If

no tape is mounted the field will be blank.

VOLSER

volume serial number of the tape volume if a tape is mounted. If no tape

is mounted the field will be blank.

LBSERV EJECT

CC

name
 LBSERV FUNC=EJECT,ECB= name1

(r1)
 ,LIBNAME= name2

(r2)
 ,SERVL= C

C name3

(r3)
 ,VOLSER= name4

(r4)
 CE

EJECT request to eject the specified volume from the specified library. The tape

volume is moved to the Convenience I/O station if this feature is installed or to

the high-capacity output area if one is defined in the 3494. If both output facilities

are available the tape volume goes to the Convenience I/O.

Note: SETVCAT provides an interface to specify the output area.

Output:

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV IQUERY

CC

name
 LBSERV FUNC=IQUERY,ECB= name1

(r1)
 ,LIBNAME= name2

(r2)
 C

C ,SERVL= name3

(r3)
 ,SRCCAT= name4

(r4)
 CE

LBSERV IQUERY is used to request inventory data on volumes currently assigned

to a specified category in a specified library. If the source category name is omitted

 Size Contents Meaning

 4 char. 0000 installed and available

 4 char. 8000 not installed or available

Figure 12. Device Status in IJJLTSTA

LBSERV

Chapter 2. Macro Descriptions 235

as an input argument, inventory data for the entire library is created. If the library

name is omitted, the 3494 default is used for this query.

The return code indicates if the query was successful, that is, if inventory data was

obtained from the library. This request type may take a minute or longer to

complete, depending on the number of cartridges in the category that is queried. A

response is not returned (either via an programming interface in the request block

or via a console message notification for command interface) until the request

completes.

The inventory data is placed as a list of volumes in a librarian-managed file in the

z/VSE library specified in the QUERY_INV_LISTS control card (see ″Implementing

3494 Tape Library Support″ in z/VSE Administration). The sub-library is the tape

library name (up to 8 characters) for the 3494 target and is expected to be

predefined. An LBSERV IQUERY request fails if the control information is not

available or if the library.sub-library is not defined.

The member name created (or rebuilt) by an IQUERY request is the name (up to 8

characters) determined by the source category for the request:

 Table 13. Naming Conventions for Inventory Files

Source Category Member Name

(blank) ALL

PRIVATE PRIVATE

INSERT INSERT

SCRATCHnn SCRnn

SCRATCH SCRnn

MANEJECT MANEJECT

EJECT EJECT

VOL VOL

SCRATCH will use the default library.

Query Inventory Member Format: An 80-byte inventory-record output member,

named as indicated in the preceding table, is created by an IQUERY request. This

member contains one record for each volume belonging to the specified source

category. The record format is as follows:

 Table 14. Format of Record Generated by Query Inventory

Position Content

1–6 External volume label

7 Blank

8–11 Media type

12 Blank

LBSERV

236 z/VSE System Macros Reference

Table 14. Format of Record Generated by Query Inventory (continued)

13–20 Attribute string (EBCDIC representation of

attribute byte)

Bit 0 If 1, volume is present in library,

but inaccessible

Bit 1 If 1, volume is mounted or queued

for mount

Bit 2 If 1, volume is in eject-pending

state

Bit 3 If 1, volume is in process of ejection

Bit 4 If 1, volume is misplaced

Bit 5 If 1, volume has unreadable label or

no label

Bit 6 If 1, volume was used during

manual mode

Bit 7 If 1, volume was manually ejected

21 Blank

22–31 Category

32 Blank

33–36 Library manager category number (EBCDIC,

hexadecimal)

37 Blank

38–80 Change result

A sample file record is:

CS0010 CST2 01000000 PRIVATE FFFF

A header record containing the time of the list creation is inserted as the first

record in the list.

Output:

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV LQUERY

CC

name
 LBSERV FUNC=LQUERY,ECB= name1

(r1)
 ,LIBNAME= name2

(r2)
 C

C ,SERVL= name3

(r3)
 CE

LQUERY asks for the operational status of a library.

Output:

IJJLTSTA

status of the library explained in Figure 13 on page 238.

LBSERV

Chapter 2. Macro Descriptions 237

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV MINVENT

CC

name
 LBSERV FUNC=MINVENT,ECB= name1

(r1)
 ,LIBNAME= name2

(r2)
 C

C ,MEMNAME= name3

(r3)
 ,SERVL= name4

(r4)
 ,SRCCAT= name5

(r5)
 ,TGTCAT= C

C name6

(r6)
 CE

MINVENT (Manage Inventory) is used to assign a list of volumes in a specific

library to a specified target category. Lists created by the Query Inventory function

are pre-formatted for use as input to the Manage Inventory function.

The user must supply a target category and the member name for the list file to be

used as input. The z/VSE library for MINVENT requests is specified on the

MANAGE_INV_LISTS control card (see ″Implementing 3494 Tape Library Support″

in z/VSE Administration), and the sub-library name is the 3494 library name.

The return code indicates if the query was successful, that is, if inventory data was

obtained from the tape library. This request type can take a long time, and a

response is not returned (either via a programming interface in the request block

or via a console message notification for command interface) until the request

completes.

The input list is updated to reflect the outcome of the category change for each

volume. See also Table 13 on page 236.

Manage Inventory Data Formats:

1. Manage-Inventory Input

A file submitted for use in a Manage Inventory request requires that each

6-character external volume serial number in the list start in column 1 of a file

record. The remaining space in each 80-character record is ignored as input.

This allows for using a Query Inventory (IQUERY) output file as input to the

Manage Inventory function (see “Query Inventory Member Format” on page

236).

A sample record in a Manage Inventory input file is:

CS0010 CST2 01000000 PRIVATE FFFF

Or, simply

 Size Contents Meaning

 4 char. 0000 automated mode

 4 char. 0100 paused mode

 4 char. 0200 manual mode

Figure 13. Library Status in IJJLTSTA

LBSERV

238 z/VSE System Macros Reference

CS0010

A header record (as described under “Query Inventory Member Format” on

page 236) can be present in the input list. Any record starting with an asterisk

(*) is not considered a valid input data record and is ignored.

2. Manage-Inventory Output

After a Manage Inventory request is completed, a return code (or reason code)

is supplied to indicate that processing is complete and to report the overall

results for processing the request (for example, input was valid, file was found,

and so forth). The actual outcome of transferring each volume to a new target

category is reflected within the file itself. The file is updated by adding a

results message in each file record, starting in column 38. An example of a

successful output file record is:

CS0010 CST2 01000000 PRIVATE FFFF CATEGORY CHANGED TO EJECT

An example for an unsuccessful output file record is:

AB1234 CATEGORY NOT CHANGED, RSN=3340

See Table 13 on page 236 for a list of member names by category.

Output:

The inventory list specified in MEMNAME

is updated with result of category change per volume (see “Query

Inventory Member Format” on page 236).

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV MOUNT

CC

name
 LBSERV FUNC=MOUNT,CUU= name1

(r1)
 ,ECB= name2

(r2)
 ,LIBNAME= C

C name3

(r3)
 ,SERVL= name4

(r4)
 ,TGTCAT= name5

(r5)
 ,VOLSER= name6

(r6)
 C

C ,WRITE= name7

(r7)
 CE

MOUNT requests a volume with the specified volume serial number to be

mounted on a device in a library. If TGTCAT is specified, this target category is

assigned to the mounted volume.

Output:

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV

Chapter 2. Macro Descriptions 239

LBSERV RECEIVE

CC

name
 LBSERV FUNC=RECEIVE,SERVL= name1

(r1)
 CE

LBSERV RECEIVE must be issued after the ECB of any functional request was

posted, except for FUNCtion CANCEL. It retrieves the return information from the

previously issued request. All input from the last executed function is left in the

IJJLBSER area pointed to by SERVL.

Output:

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV RELEASE

CC

name
 LBSERV FUNC=RELEASE,CUU= name1

(r1)
 ,ECB= name2

(r2)
 ,SERVL= C

C name3

(r3)
 ,TGTCAT= name4

(r4)
 CE

LBSERV RELEASE frees a cuu used in a prior MOUNT request, no longer needed

by the z/VSE job. A rewind unload is issued for the specified device. The actual

volume on the device will be returned to the library. Note that mount ownership

can only be reset by EOJ processing.

If TGTCAT is specified, this target category is assigned to the released volume.

For VGS support: VM will release the real device attached at the specified virtual

address so that it may be used by another VM guest, if not dedicated.

Output:

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV SETVCAT

CC

name
 LBSERV FUNC=SETVCAT,ECB= name1

(r1)
 ,LIBNAME= name2

(r2)
 C

C ,SERVL= name3

(r3)
 ,SRCCAT= name4

(r4)
 ,TGTCAT= name5

(r5)
 ,VOLSER= C

C name6

(r6)
 CE

LBSERV

240 z/VSE System Macros Reference

LBSERV SETVCAT assigns a category to a volume. If SRCCAT is specified, the

volume has to be of this category for the assignment to be changed.

Output:

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LBSERV SQUERY

CC LBSERV FUNC=SQUERY,ECB= name1

(r1)
 ,LIBNAME= name2

(r2)
 ,SERVL= C

C name3

(r3)
 ,SRCCAT= name4

(r4)
 ,VOLSER= name5

(r5)
 CE

LBSERV SQUERY requests a volume’s location to be verified. A single query in the

specified library is performed. If LIBNAME is not specified (set to blank) the

default library is queried. If the volume is found its source category and media

type are returned, and in case of the default library also the library name.

Output:

IJJLTSTA

volume status, see Figure 10 on page 233.

IJJLTMED

media type, see Figure 11 on page 233.

IJJLTREA

reason code in IJJLBSER

IJJLTRET

return code in IJJLBSER

LIBNAME

only for default library (blank name on input): name of library where

volume was found

SRCCAT

name of the category the tape volume belongs to

Reason Codes

Reason codes are stored in field IJJLTREA. They indicate the source of the problem

and of the additional return code stored in field IJJLTRET. Please note that both

reason and return code are stored in character format.

For a description of return and reason codes issued by the MAPXPCCB macro, see

“MAPXPCCB (Map Cross-Partition Control Block) Macro” on page 316.

Overview of the originating area:

If the reason code is

< C’4000’ Error detected by DFSMS/VM RMS, LCDD, or VSE TLS. See

Table 15 on page 242, Table 16 on page 243, and Table 17 on page

244

LBSERV

Chapter 2. Macro Descriptions 241

244. Refer also to the publication DFSMS/VM Removable Media

Services User’’s Guide and Reference for additional codes.

> C’5000’ and < C’6000’

Error detected by VGS. See Table 18 on page 244.

> C’6000’ Error detected by LBSERV macro. See Table 19 on page 247.

 Table 15. Common Return and Reason Codes from LCDD, DFSMS/VM RMS, and VSE TLS Support

Return Code Reason Code Meaning

8 0024 Master not accepting commands

4 0036 Request not found for MOUNT CANcel

8 0064 Invalid request for MOUNT CANcel

8 2040 Request was already cancelled

8 3000 Library /Device mismatch - the specified device does not reside in the

specified library

8 3004 Source category undefined

8 3008 Undefined device

8 3000 Library /Device mismatch - the specified device does not reside in the

specified library

8 3012 Invalid manual request - a request other than mount or demount request is

received and the specified library is a manual library

8 3020 Invalid library name

8 3024 Target category not defined for input library, or for library in which

specified device resides

8 3025 Target category name is invalid for this type of request.

8 3028 Target or source category defined for mount issued to manual library

8 3032 Specified category not assigned to specified device

8 3034 Volume not currently assigned to the source category

8 3035 Target category name is invalid for this type of request.

8 3036 No device available

8 3116 Preprocessing error

8 3136 No device available

8 3140 Specified device not available

8 3150 The specified device was found to be in use and is not issuing the request.

8 3152 Unable to acquire I/O resource

8 3156 Unable to send request to library. Communication with the library was not

executed successfully.

8 3208 Attach or Detach error after completion

8 3220 Category not changed

8 3300 Completion status unknown

8 3304 External label unreadable

8 3308 Cancelled by request

8 3312 Request cancelled due to an order-sequence condition.

8 3320 Hardware malfunction

8 3324 The requested volume is in a position that is inaccessible to the library

LBSERV

242 z/VSE System Macros Reference

Table 15. Common Return and Reason Codes from LCDD, DFSMS/VM RMS, and VSE TLS Support (continued)

Return Code Reason Code Meaning

8 3328 Source category empty

8 3332 Volume not in inventory

8 3336 Volume in use - the requested volume is already mounted or mount

pending

8 3340 Volume not in library

8 3344 Library catalog empty

8 3348 Library volume misplaced

8 3352 Volume inaccessible - the requested volume is in a position in which it is

inaccessible to the robotic gripper

8 3356 Volume manually ejected

8 3360 Category is in use

8 3364 Mount in progress - a mount is already in progress on the requested

device

8 3368 Demount already pending

8 3376 No volume mounted - no volume is mounted on the device for which this

demount is requested

4 3384 Request completed during restart

4 3388 Request cannot be completed during restart

4 3500 Library attachment check

4 3504 Library manager offline

8 3508 Control unit and library manager error

8 3512 Library vision failure

8 3516 Library not capable

8 3608 Device is not online

8 3624 Unrecognized I/O error

8 3692 Unload failure

8 3740 Unsolicited sense

8 3800 Command reject

8 3804 The function is incompatible. For a MOUNT request media and drive

types are incompatible.

 Table 16. Additional Reason Codes Generated by LCDD

Return Code Reason Meaning

8 0001 An internal error in LCDD processing, or LCDD cannot process the request

due to an offline condition in the Library Manager. An error or

information message on the console provides additional details.

8 0020 An invalid request type was sent to LCDD.

8 3030 An inventory file created by a Query Inventory request or referenced by a

Manage Inventory request is currently in use by another inventory task.

Reissue the request later.

8 3032 A Query Inventory or Manage Inventory request cannot be processed

because control information for library location of inventory lists has not

been specified.

LBSERV

Chapter 2. Macro Descriptions 243

Table 16. Additional Reason Codes Generated by LCDD (continued)

Return Code Reason Meaning

8 3034 A Query Inventory or Manage Inventory request cannot be processed

 Table 17. Additional Reason Codes Generated by DFSMS/VM RMS

Return Code Reason Meaning

12 3932 Communication error.

8 3940 RMS master unavailable.

8 3952 Invalid target category name.

8 3962 Invalid source category name.

8 3964 Invalid real device number

8 3968 Invalid virtual device number

 Table 18. Reason Codes Generated by VGS

Reason Meaning Explanation/Action

5000 Request not authorized The authorization user exit has determined that

the request is not authorized.

5003 Insufficient data length The length of the request data was smaller than

the minimum required number of bytes. This is

an internal program error; contact IBM service.

5008 Invalid request type An unrecognized request type was specified. This

is an internal program error; contact IBM service.

5011 Request to be cancelled not found A request to cancel a mount request cannot be

completed successfully, because the request is not

longer in-process on the VGS machine. Issue

rewind/unload to queue a dismount operation in

the library.

5017 Request cancelled by a cancel-mount request This request is the target request for a

cancel-mount operation. The reason code in the

response message for the original mount request.

The mount operation was not completed.

5020 Request cancelled by an immediate machine

shutdown

This request is purged from the VGS in-process

files during immediate shutdown processing of

the VGS machine. The mount operation. may

have completed successfully, but the status is not

known to VGS at the time of shutdown.

5023 Device not found The device specified for release is not found in

the VGS device-use file. No action is taken.

5026 Library not known The library name specified in a request is not

found in the VGS library configuration file

LIBCONFG LIST A. Update or correct this file

and retry the request.

5028 Device information not obtained VGS is not able to get information about real tape

drives currently attached to the requesting z/VSE

guest. The request cannot be processed. Ensure

that the VGS is machine has privilege-class B

authorization in its directory record.

LBSERV

244 z/VSE System Macros Reference

Table 18. Reason Codes Generated by VGS (continued)

Reason Meaning Explanation/Action

5029 Problem with CP ATTACH or DETACH operation VGS is not able DETACH a device from the

requesting guest or to re-ATTACH a guest device

to itself for performing the requested function.

Ensure that the VGS is machine has

privilege-class B authorization in its directory

record.

5030 Virtual cuu not provided A mount, release, cancel, or query device

operation has not specified the required virtual

cuu field.

5031 Virtual cuu contains invalid characters A mount, release, cancel, or query device

operation does not use valid numeric or hex-digit

characters.

5032 Volume label not provided when required A mount, query volume, cancel, eject, or set

volume category operation has not specified a

volume serial number.

5033 Source category not provided when required A mount from category operation has not

specified a source category name.

5034 Target category not provided when required A set volume category or manage inventory

operation has not specified a target category

name.

5035 Member name not provided when required A manage inventory operation has not specified a

member name for the source file containing

volume category assignments.

5040 Error reading result of Query or Manage

Inventory request

The VGLIBSRV machine was not able to read the

request final status information from the

secondary inventory support machine’s 191 disk.

The result of the inventory operation is unknown.

5041 Timeout occurred during Query or Manage

Inventory request

The VGLIBSRV machine did not receive final

status on the request within the time limit

specified by the INV_MAX_TIME customization

variable. The request may still complete

successfully, or the secondary machine may have

encountered an error. Check the status of the

secondary inventory support machine.

5042 Secondary inventory server is not logged on The VGS machine has determined the there the

secondary inventory support server is not logged

on, or its logon status is cannot be obtained. The

inventory request cannot be processed.

5043 Secondary inventory server’s 191 is not linked by

VGLIBSRV

Inventory requests cannot be processed by VGS

unless the secondary support server is defined,

logged on, and it’s 191 disk is linked by

VGLIBSRV.

5044 Secondary inventory server is not identified to

VGLIBSRV

The customization variable HELPER_ID in the

customization exec does not specify a valid server

name. Inventory requests cannot be processed.

5080 Lock failed, Librarian member already locked The Librarian member specified in a Manage

Inventory request or implied by

category-inventory naming conventions for a

Query Inventory request is already locked by

another user. Wait and resubmit the request.

LBSERV

Chapter 2. Macro Descriptions 245

Table 18. Reason Codes Generated by VGS (continued)

Reason Meaning Explanation/Action

5081 Lock failed, fully-qualified Librarian member is

not valid

The Librarian member specified in a Manage

Inventory request could not be locked and most

likely does not exist. Ensure that the Library and

Sublibrary names specified in the customization

exec are valid and that the specified member

already exists in the sublibrary.

5082 Unspecified lock failure for Librarian member The Librarian member specified in an Inventory

request could not be locked for some unknown

reason. This is most likely an internal error.

5083 Librarian write failure The Librarian member specified in an Inventory

request could was not successfully written in the

Librarian file in the VSE guest machine.

5084 RMS error on Query Library Inventory command An unspecified error occurred requesting the

inventory report from the RMS machine. Retry

the request. If the problem persists, logon to the

secondary inventory support machine and check

the console during request submission, and/or

the RMS Master console.

5085 Invalid source category specified for Query

Inventory

The source category requested for inventory in

not supported or is not a valid category name.

5086 LIBRCMS server name not found for the

requesting VSE guest

When multiple VSE guests are supported by

VGS, a LIBRCMS server cross-reference file on

the secondary inventory support machine 191

disk must provide the name of the LIBRCMS

server for each VSE guest. This no server was

found for the requesting VSE guest.

5090 Secondary inventory support internal error -

Erase

The CMS ERASE command failed for a file in the

inventory support server’s 191 disk.

5091 Secondary inventory support internal error - Disk

I/O

The EXECIO command failed for a file in the

inventory support server’s 191 disk. Check for

disk-full condition.

5092 Secondary inventory support internal error -

Copyfile

The CMS COPYFILE command failed for a file in

the inventory support server’s 191 disk. Check for

disk-full condition.

5093 Secondary inventory support internal error -

Query Reader

The Query Reader command failed checking the

reader for returned inventory report.

5094 Secondary inventory support internal error -

Receive

The Receive command failed reading the report

file from the reader to the 191 disk. Check for

disk-full condition.

5095 Secondary inventory support internal error -

Unexpected disk files

At least one previous inventory report was

detected on the secondary inventory server’s 191

disk. The integrity of inventory data cannot be

guaranteed. Report is not updated in the VSE

Librarian file.

5096 Secondary inventory support internal error -

Mismatch

The name of the category inventoried on the RMS

inventory report does not match the source

category name in this request. The report is not

updated in the VSE Librarian file.

LBSERV

246 z/VSE System Macros Reference

Table 19. Reason Codes Generated by z/VSE

Reason Meaning Explanation/Action

61xx XPCC internal error An XPCC internal error occurred. Check the

return code and reason code coming from XPCC,

where xx in reason code 61xx is the reason code

from XPCC. Possible return codes are:

0038 (return code)

Reason 1. The maximum of possible

XPCC connections may have been

reached or the APPC connection is not

available. Please try later.

 Reason 2. Check the SYS command in

your IPL procedure. SYS ATL=VM must

specified if VGS is used, and SYS

ATL=VSE must be specified if LCDD is

used.

0039 (return code)

Please check that you provided at least

100K permanent PFIX for this partition

using the SETPFIX command.

If the error persists, please contact IBM service.

62xx APPC internal error An APPC internal error occurred. Possibly the

XPCC/APPC connection went down. Please

check the return code and reason code coming

from APPC, where xx in reason code 62xx is the

reason code coming from APPC. If the error

persists, please contact IBM service.

LBSERV

Chapter 2. Macro Descriptions 247

Table 19. Reason Codes Generated by z/VSE (continued)

Reason Meaning Explanation/Action

63xx LBSERV failure An error in LBSERV code occurred. Please check

the reason code xx, where xx means:

01 The version of the service list mapping is

incorrect or the service list specified by

SERVL is less than the minimum

requirement. If the version is less than 2,

please recompile.

02 In a current RECEIVE request, the

previous request was not one of the

following: AQUERY, CMOUNT,

CQUERY, DQUERY, EJECT, IQUERY,

LQUERY, MINVENT, MOUNT,

RELEASE (VGS only), SETVCAT,

SQUERY; or the previous return code

was not zero.

03 Phase IJJTLIB is not loaded in the SVA.

04 Either the previous request was LBSERV

CANCEL and there is no more

information available to receive, or the

previous function has already completed.

05 User submitted a RECEIVE request but

the main ECB has not been posted. Issue

a WAIT macro on the main ECB before

submitting the RECEIVE request.

06 A MOUNT request is already pending

for this CUU; try later.

07 There is nothing to RELEASE for this

CUU.

08 An invalid (out-of-partition) address has

been specified for the ECB.

09 An invalid (out-of-partition) address has

been specified for LIBNAME.

10 An invalid (out-of-partition) address has

been specified for VOLSER.

11 An invalid (out-of-partition) address has

been specified for SRCCAT.

12 A RELEASE request was given for a

device not being ready, a rewind unload

may have been already performed.

Continue anyway with a RECEIVE

request.

13 An invalid CUU was specified for a

MOUNT request.

14 The specified CUU in a MOUNT request

is in use, CUU is in ready state.

15 A nonzero return code was received by a

GETFLD request.

LBSERV

248 z/VSE System Macros Reference

Table 19. Reason Codes Generated by z/VSE (continued)

Reason Meaning Explanation/Action

6400 GETVIS failed There is no more storage available in the GETVIS

area. Please check the return code, which comes

from the GETVIS macro (see “GETVIS (Get

Virtual Storage) Macro” on page 212).

6500 MODFLD failed An error in the internal MODFLD macro

occurred. Please check the return code, which

comes from the MODFLD macro:

04 NEWVAL not zero and TLMECBSV

already set. There is a already a MOUNT

pending for this cuu.

08 NEWVAL zero and TLMECBSV not set.

There is nothing more to RELEASE for

this cuu.

12 Device not owned by issuing partition.

16 Invalid input CUU= parameter.

20 Device specified by CUU= parameter is

not tape or lib.

66xx VSE TLS Support An error occurred in VSE TLS support. Check the

reason code xx, where xx means:

01 Supervisor interface error. If the error

persists, contact IBM service.

Other LIBRM error detected on an IQUERY or

MINVENT request, where the return

code is the RC from an internal LIBRM

macro call and xx is the reason code

from LIBRM. Check the LIBRM return

and reason code description. The

library/sublib for the inventory

command was possibly not allocated or

is not accessible.

LBSERV

Chapter 2. Macro Descriptions 249

LFCB (Load Forms Control Buffer) Macro

CC

name
 LFCB SYSxxx,phasename

,NULMSG

,FORMS=xxxx

,LPI=n
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro can be used to load the forms control buffer (FCB) of a printer

dynamically. This printer must not be an IBM 3800; the macro is ignored for an

IBM 3800. An FCB whose contents have been changed by means of this macro

retains the changed contents until one of the following occurs:

v another LFCB macro is issued for the printer

v an LFCB command is issued for the printer

v the SYSBUFLD program is executed to reload the printer’s FCB.

v IPL is performed for the system.

The macro, when executed, generates messages to request operator action (such as

changing forms), whenever manual action is required. It informs the operator that

the FCB of the specified printer has been reloaded.

If the FCB image to be loaded is to control horizontal copying on an IBM 4248,

processing the macro turns on the function. Horizontal copying is turned off again

when one of the following occurs:

v Your program issues a CNTRL macro that specifies ORDER,DHC.

v Your program issues a CLOSE (or CLOSER) macro for the printer file.

v The system initiates an automatic close for the printer file at the end of the job

step.

v The logical unit SYSLST is assigned to the printer for which your program issues

the LFCB macro.

SYSxxx

The name of the logical unit associated with the printer whose FCB is to be

loaded. You can specify one of the following:

SYSLST

SYSLOG

If assigned to the printer; the results of the initiated FCB load operation are

unpredictable.

SYSnnn

A programmer logical unit assigned to a printer owned by the partition in

which the program runs.

phasename

The name by which the phase containing the applicable FCB image is

LFCB

250 z/VSE System Macros Reference

cataloged in the accessible sublibrary. For information on the contents and

format of an FCB image, see “Chapter 7. System Buffer Load (SYSBUFLD)” in

the z/VSE System Control Statements.

NULMSG

This operand specifies that the 80-character verification message, which is

normally printed following the FCB load operation, is to be suppressed. This

operand, if given, causes the system to continue normal processing

immediately after the FCB load operation has been completed. The operator

cannot verify that the proper forms are placed on the printer.

 If you omit the operand, the system:

1. Prints the last 80 characters of the phase identified by phasename.

2. Positions the printer to the first printable line on the forms.

FORMS=xxxx

This operand specifies the type of forms to be used on the printer whose FCB

is being reloaded. For xxxx, a string of up to four alphameric characters can be

specified. The specified form number is included in a message to the operator.

LPI=n

The operand specifies the desired number of lines per inch. For n, you can

specify either 6 or 8.

 Do not specify this operand if the number of lines per inch is controlled by the

FCB. If you code this operand for such a printer and the specified number

disagrees with the lines-per-inch setting in the new buffer image, the system

does not perform the FCB load operation.

 When issued for a non-FCB controlled printer, the macro causes the operand to

be included in a message to the operator.

Return Codes in Register 15

Successful completion of the FCB load operation is indicated to your program by a

return code of 0. If the operation fails, register 15 contains one of the return codes

listed below; in this case the FCB retains its original contents.

Note: For an IBM 3800, register 15 contains 0, although the macro was not

executed.

The return codes and their meanings are:

X’04’

For the printer, the number of lines per inch is controlled by the FCB. The LPI

operand specified in the macro disagrees with lines-per-inch setting in the FCB

image.

X’08’

No LUB is available for the specified logical unit.

X’0C’

The specified logical unit has not been assigned or is assigned IGN (ignore), or

it is currently unassigned.

X’10’

The specified logical unit is assigned to a device without an FCB.

X’14’

The printer assigned to the specified logical unit is down.

X’18’

The specified FCB image phase has not been found.

X’1C’

The specified FCB image phase for the printer assigned to the specified logical

LFCB

Chapter 2. Macro Descriptions 251

unit is invalid or has an incorrect length or incorrect index byte, or the FCB

data is out of range, or channel 1 is missing.

By testing register 15, you can determine in your program whether or not the

operation has failed. If the operation has failed, you can either terminate the job

step or continue processing. Should you decide to continue processing, then the

system bypasses the execution of the LFCB macro.

LFCB

252 z/VSE System Macros Reference

LIBRDCB (Librarian Data Control Block) Macro

CC

label
 LIBRDCB FUNC= MAP

GEN

MOD

,AREA=areaname
 C

C
,BUFFER=buffer,BUFSIZE=size_value

,CHAIN=chain
 C

C
,CHAINID=chainid

,CONT=

YES

NO

 C

C
,DATAID=did,DATALEN=dlen,DATA=data

,DIRINF=dirinf,DIRINFL=len_value
 C

C
,EODAD=label

,EROPT=

RET

CANCEL

,ERRAD=label
 C

C
,LIB=lib,SUBLIB=sublib

,MEMBER=membername,TYPE=membertype
 C

C
,NOTFND=label

,RECFM=

F

S

,RECNO=recno_value
 C

C
,UNITS=units_value

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

This macro causes the Librarian Data Control Block (LDCB) for the Library Access

Service either to be generated, or to be modified, or to be mapped. If it is

generated, the addressed area will be cleared and all specified operand values are

inserted. Operand specifications which are given with the function macro LIBRM

will overwrite these initial specifications (always the latest specification of an

operand will be valid).

FUNC

Indicates the main function of the macro LIBRDCB.

MAP

Provides a mapping DSECT of the LDCB. No other operands are allowed.

GEN

Generates the LDCB at the given address.

MOD

Modifies the LDCB at the given address.

LIBRDCB

Chapter 2. Macro Descriptions 253

AREA=areaname

Specifies the name of the area where the LDCB is to be generated or modified.

All other operands are described together with the macros to which they apply.

Notes:

1. The LDCB must be generated (with FUNC=GEN) to be used as control block

before any LIBRM request can be given.

2. The DSECT of the LDCB is created automatically, if necessary, for

FUNC=GEN|MOD or any LIBRM request.

3. The registers used in expanded code are 0 and 1.

Library Macro Notation

v Macro operands specified with lowercase characters are either data areas or

numeric values:

– Each possible RX-type address can be used to address a data area. If register

notation is used (registers 2 - 12), the specified register is expected to contain

the address of the area.

– Numeric values (for operands like BUFSIZE) can be specified in register

notation or as a self-defining term. If register notation is used, the specified

register is expected to contain the numeric value.
v Operands which can be specified in more than one macro, but must eventually

be specified somewhere, are also shown as optional. For example, BUFFER may

be specified in the LIBRDCB macro or at OPEN time, but if not done there, it

must be specified in a GET or PUT request. If it is, for instance, specified in both

the LIBRDCB and the GET macro, then the latest specification will be taken.

The following figure shows the possible combinations of macros and operands.

LIBRDCB

254 z/VSE System Macros Reference

┌──────────────────┬──┐

│ │ Macro │

│ │ │

│ Operand │ ──────STATE──────────── │

│ │ LIBRDCB LIBDEF LIBDROP LIB SUBLIB MEMBER CHAIN │

├──────────────────┼──┤

│ BUFFER, BUFSIZE │ o - - - - - - │

│ CATALOG │ - - - - - - O │

│ CHAIN │ o m - - - - m │

│ CHAINID │ o m m - - m m │

│ CONT │ o - - - o o - │

│ DATA, DATAID, │ o - - - - o - │

│ DATALEN │ o - - - - o - │

│ DIRINF, DIRINFL │ o - - o o o - │

│ DIRNO │ - - - - O O - │

│ EODAD │ o - - - - - - │

│ EROPT │ o o o o o o o │

│ ERRAD │ o o o o o o o │

│ LIB, SUBLIB │ o - - m m m - │

│ LOCKID │ - - - - - O - │

│ MEMBER, TYPE │ o - - - - m - │

│ MOVELEN │ - - - - - - - │

│ NMEMBER, NTYPE │ - - - - - - - │

│ NOTECTL │ - - - - - - - │

│ NOTEINF │ - - - - - - - │

│ NOTFND │ o - - o o o o │

│ RECFM │ o - - - - - - │

│ RECNO │ o - - - - - - │

│ SCOPE │ - - - - - - O │

│ SYSIPT │ - - - - - - - │

│ TYPEFLE │ - - - - - - - │

│ UNITS │ o - - - - - - │

│ COMMIT │ - - - - - - - │

└──────────────────┴──┘

Abbreviations:

o Operand can be specified in a previous LIBRM or LIBRDCB request; if it is not specified

here, a default value will be taken.

O Operand is optional and can be specified only in the indicated LIBRM macro.

m Operand can be specified in a previous LIBRM or LIBRDCB request, but if this has not

been done, it must be specified here.

M Operand is mandatory and must be specified only in the indicated LIBRM macro.

Figure 14. Operand Notation for LIBRM Requests (Part 1 of 2)

LIBRDCB

Chapter 2. Macro Descriptions 255

┌──────────────────┬──┐

│ │ Macro │

│ │ │

│ Operand │ │

│ │ RENAME DELETE OPEN GET PUT NOTE POINT CLOSE (UN)LOCK │

├──────────────────┼──┤

│ BUFFER, BUFSIZE │ - - o m m - - - - │

│ CATALOG │ - - - - - - - - - │

│ CHAIN │ - - - - - - - - - │

│ CHAINID │ m m m - - - - - - │

│ COMMIT │ - - - - - - - O - │

│ CONT │ - - - - - - - - - │

│ DATA, DATAID, │ - - o - - - - - - │

│ DATALEN │ - - o - - - - - - │

│ DIRINF, DIRINFL │ - - o - - - - - - │

│ DIRNO │ - - - - - - - - - │

│ EODAD │ - - - o - - - - - │

│ EROPT │ o o o o o o o o - │

│ ERRAD │ o o o o o o o o - │

│ LIB, SUBLIB │ m m m - - - - - - │

│ LOCKID │ - - - - - - - - M │

│ MEMBER, TYPE │ m m m - - - - - - │

│ MOVELEN │ - - - O - - - - - │

│ NMEMBER, NTYPE │ M - - - - - - - - │

│ NOTECTL │ - - - - - O O - - │

│ NOTEINF │ - - - - - O O - - │

│ NOTFND │ o - o - - - - - - │

│ RECFM │ - - o - - - - - - │

│ RECNO │ - - - o o - - - - │

│ SCOPE │ - - - - - - - - - │

│ SYSIPT │ - - O - - - - - - │

│ TYPEFLE │ - - O - - - - - - │

│ UNITS │ - - - o o - - - - │

└──────────────────┴──┘

Abbreviations:

o Operand can be specified in a previous LIBRM or LIBRDCB request; if it is not specified

here, a default value will be taken.

O Operand is optional and can be specified only in the indicated LIBRM macro.

m Operand can be specified in a previous LIBRM or LIBRDCB request, but if this has not

been done, it must be specified here.

M Operand is mandatory and must be specified only in the indicated LIBRM macro.

Figure 14. Operand Notation for LIBRM Requests (Part 2 of 2)

LIBRDCB

256 z/VSE System Macros Reference

LIBRM CLOSE (Close Library Member) Macro

CC

label

LIBRM CLOSE,LDCB=areaname
 ,COMMIT=YES

,COMMIT=NO

 ,EROPT=RET

,EROPT=CANCEL

C

C
,ERRAD=label

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

This macro closes the member addressed by the LDCB, so that no further

GET/PUT or NOTE/POINT access is possible.

The directory entry for a member opened for OUTPUT or INOUT is written to the

sublibrary.

For a member opened for OUTPUT or INOUT it is possible to prevent (decommit)

its cataloging into the directory by specifying COMMIT=NO. The original member

(if any) will stay in the sublibrary.

Empty members (members opened for OUTPUT or INOUT without a PUT

request) are not cataloged.

For members opened for INOUT, the directory entry is written with the member

name and member type which is addressed in the LDCB at CLOSE time. Thus, it is

possible to catalog the new member version under a different name while keeping

the old version of the member in the sublibrary.

CLOSE clears member-related data like RECFM, RECNO, UNITS, and the options

for the OPEN and CLOSE request in the LDCB and frees the resources (virtual

storage space, locks, etc.) that OPEN used to construct and protect library control

blocks and library objects.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

COMMIT=YES | NO

Is applicable only for a member opened for OUTPUT or INOUT:

YES

the member is cataloged (default).

LIBRM CLOSE

Chapter 2. Macro Descriptions 257

NO

the member is not cataloged.

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the function cannot be

performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Member has been closed.

 12 12 Library is full (for OUTPUT, INOUT).

 New member has been purged, old kept.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

LIBRM DELETE (Delete Library Member) Macro

CC

label
 LIBRM DELETE

,ENTITY=MEMBER
 ,LDCB=areaname C

C ,LIB=lib,SUBLIB=sublib

,CHAINID=chainid

,MEMBER=membername,TYPE=membertype
 C

C
 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

LIBRM CLOSE

258 z/VSE System Macros Reference

The DELETE (MEMBER) function is used to delete a library member. The member

can be specified fully qualified, or it can be searched in a sublibrary chain.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

LIB=lib

Specifies the address of an area where the library name (1 to 7 alphameric

characters) is stored.

SUBLIB=sublib

Specifies the address of an area where the sublibrary name (1 to 8 alphameric

characters) is stored.

CHAINID=chainid

Specifies the address of an area where the sublibrary chain identifier (1 to 8

alphameric characters) is stored.

MEMBER=membername

Specifies the address of an area where the member name (1 to 8 alphameric

characters) is stored.

TYPE=membertype

Specifies the address of an area where the member type (1 to 8 alphameric

characters) is stored.

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Member has been deleted.

 4 0 The specified member does not exist.

 12 0 The specified sublibrary does not exist.

 4 The specified library does not exist.

 8 The specified chain does not exist.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

LIBRM DELETE

Chapter 2. Macro Descriptions 259

Note: If both LIB/SUBLIB and CHAINID are specified, LIB/SUBLIB will be taken

and CHAINID is ignored.

LIBRM GET (Get Library Member) Macro

CC

label
 LIBRM GET,LDCB=areaname C

C
,BUFFER=buffer,BUFSIZE=length_value

,RECNO=recnumber_value
 C

C
,UNITS=units_value

,MOVELEN=moved_length

,EODAD=label
 C

C
 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

This macro retrieves one or more records of a member with record format F or a

string of bytes of a member with record type S in the user’s work area specified by

BUFFER and BUFSIZE.

The starting position of the retrieval within the member is always the current

position. This position can be altered by specifying the starting record number (for

record format F) or the starting byte number (for record format S) in RECNO.

The amount of data to be returned is controlled by the UNITS operand: For record

format S specify the number of bytes to be read, for record format F the number of

records to be retrieved with the request. You can either retrieve one or more

records or bytes (UNITS>0), or fill up the whole buffer with member data

(UNITS=0). The length of the returned data can be obtained via the MOVELEN

operand.

The current position is updated either to the record (for record format F) or byte

(for record format S) following the last returned member data.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

LIBRM DELETE

260 z/VSE System Macros Reference

BUFFER=buffer

Specifies the address of the caller’s work area where the member data is to be

returned.

BUFSIZE=length-value

Specifies the length (as a numeric value) of the caller’s work area.

RECNO=recnumber-value

Specifies the starting point (as a numeric value) of the data retrieval within the

member. The value indicates the offset either in number of records (for record

format F) or in number of bytes (for format S) relative to the start of the

member.

 After the GET request, RECNO is set to its default value, which is the current

member position.

UNITS=units-value

Specifies, as a numeric value, the number of records or bytes to be retrieved.

 If UNITS=0, the buffer is filled up with member data, either until the buffer is

full or the member is exhausted. If, for record format ’F’ the buffer cannot

contain all records, the last record will not be truncated (except when the last

record is also the first record).

 The default is 1 for record format F, and 0 for record format S. This default will

be taken if RECFM is specified with the OPEN or LIBRDCB macro, or if

UNITS is not specified at all.

MOVELEN=moved-length

Specifies the address of a fullword where the length of the data written into

the caller’s work area is returned.

EODAD=label

Specifies a label to which the service will branch if the function is not

performed because of an end-of-member condition (return code 8).

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

LIBRM GET

Chapter 2. Macro Descriptions 261

Return Codes

Return Reason Meaning

 Code Code

 0 0 Record(s) or byte(s) returned (more available)

 4 For record format F:

 Record(s) returned, but work area is too small

 to return the requested amount of records

 (UNITS * LRECL > BUFSIZE).

 The last record in the work area may be truncated.

 For record format S:

 Byte(s) returned, but work area is too small

 to return the requested amount of bytes

 (UNITS > BUFSIZE).

 4 0 Last record or byte returned.

 4 For record format F:

 Last record returned, but work area is too small

 to return the requested amount of records.

 The last record is truncated.

 For record format S: Not applicable.

 8 Last record or byte returned, but more records or

 bytes were requested than are available.

 8 0 Reading past end-of-member (EOF).

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

Notes:

1. For a GET request with RECFM=F and UNITS=0, the last record will only be

truncated if the size of the work area (BUFSIZE) is not large enough to hold at

least one record. Reason code 4 will be returned in that case.

2. If a GET request is issued with a RECNO value outside the member range,

return code 8 is issued.

3. A GET request for an empty member yields return code 8 and reason code 0.

4. The member will be internally closed for all exceptions with the return code >

8.

LIBRM GET

262 z/VSE System Macros Reference

LIBRM LIBDEF (Define Sublibrary Chain) Macro

CC

label
 LIBRM LIBDEF,LDCB=areaname

,CHAINID=chainid
 C

C

,CHAIN=chain

 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

This macro causes a chain of up to 32 sublibraries to be built and identified by the

name given with CHAINID. Referring to the name of the chain, you can look up a

member by searching the chain sequentially (for example, for LIBRM STATE or

LIBRM OPEN).

The chain is valid for the duration of a task. Only the task that established the

chain can access it. Other tasks from the same or another partition cannot access

the chain. However, those tasks can establish a chain with the same name.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

CHAINID=chainid

Specifies the address of an area where the sublibrary chain identifier (1 to 8

alphameric characters) is stored.

CHAIN=chain

Specifies the address of an array of 1 to 32 entries with

DS CL7

containing the library name

DS CL8

containing the sublibrary name

 The last entry must be followed by 4 characters ’FFFFFFFF’X (decimal value:

-1). They do not require a fullword boundary.

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

LIBRM LIBDEF

Chapter 2. Macro Descriptions 263

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Chain established.

 8 Chain not established, since more than 32

 sublibraries were specified.

 12 Chain not established.

 0 Chain contains non-existing sublibrary.

 4 Chain contains non-existing library.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference , SC33-6330.

Notes:

1. The chain exists as long as it is not overwritten (with the same CHAINID) or

dropped (with the LIBDROP macro), or until the task is ended.

2. A LIBDEF with CHAINID=ACCESS|SEARCH|CATALOG corresponds to the

sublibrary specifications on a Librarian ACCESS and CONNECT (SEARCH and

CATALOG) command, respectively. They will overwrite each other if used

within the same task.

LIBRM LIBDEF

264 z/VSE System Macros Reference

LIBRM LIBDROP (Drop Sublibrary Chain) Macro

CC

label
 LIBRM LIBDROP,LDCB=areaname

,CHAINID=chainid
 C

C
 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

This macro causes the sublibrary chain referenced by CHAINID to be dropped.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

CHAINID=chainid

Specifies the address of an area where the sublibrary chain identifier (1 to 8

alphameric characters) is stored.

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Chain dropped.

 4 0 Chain does not exist.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

LIBRM LIBDROP

Chapter 2. Macro Descriptions 265

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

LIBRM LIBDROP

266 z/VSE System Macros Reference

LIBRM LOCK (Lock Library Member) Macro

CC

label
 LIBRM LOCK,LDCB=areaname,LOCKID=lockid C

C
,LIB=lib,SUBLIB=sublib

,MEMBER=membername,TYPE=membertype
 C

C

,NOTFND=label

 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

The LOCK (MEMBER) function is used to lock a library member for any write or

update access. The member must be fully qualified. The member can be unlocked

again with the LIBRM UNLOCK macro.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

LOCKID=lockid

Specifies a lock word by which the lock operation is uniquely identified. The

lockid is a string of up to eight alphanumeric characters; it may not be generic.

The specified lockid must be used when the library member is to be unlocked

again (with the corresponding UNLOCK function).

 The lockid in the LDCB will be cleared after processing.

LIB=lib

Specifies the address of an area where the library name (1 to 7 alphameric

characters) is stored.

SUBLIB=sublib

Specifies the address of an area where the sublibrary name (1 to 8 alphameric

characters) is stored.

MEMBER=membername

Specifies the address of an area where the member name (1 to 8 alphameric

characters) is stored. No generic specification is allowed.

TYPE=membertype

Specifies the address of an area where the member type (1 to 8 alphameric

characters) is stored.

LIBRM LOCK

Chapter 2. Macro Descriptions 267

NOTFND=label

Specifies a label to which the service will branch if the specified member does

not exist (return code 8 for members opened for INPUT), or if the specified

library or sublibrary does not exist or is not accessible (return code 12).

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Member has been locked.

 0 8 The macro is ignored, no member will be locked.

 Option IGNLOCK is on.

 4 0 The specified member was already locked.

 8 0 The specified member does not exist.

 4 The specified member is locked with a different lockid.

 12 0 The specified sublibrary does not exist.

 4 The specified library does not exist.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

LIBRM NOTE (Note Member Address) Macro

CC

label
 LIBRM NOTE,LDCB=areaname

,NOTEINF=noteinf
 C

C
 ,NOTECTL=NO

,NOTECTL=YES

 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

LIBRM LOCK

268 z/VSE System Macros Reference

This macro saves the current member position, that is, the position following the

record or byte that was last read from or written to the library member specified in

the LDCB.

The member position for members opened for INPUT and INOUT is the GET

position, for members opened for OUTPUT it is the PUT position.

For NOTECTL=NO the Librarian keeps track of the noted position by itself in a

last-in first-out (LIFO) mechanism, NOTE pushing an element to the stack and

POINT popping up the stack. The stack has a depth of 20 elements.

Specify NOTECTL=YES if you want to control this information yourself. In this

case, a 32-byte area NOTEINF has to be provided which obtains the member’s

position.

It is not possible to switch from NOTECTL=NO to NOTECTL=YES and vice versa.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

NOTEINF=noteinf

Specifies the address of a 32-byte area in which the NOTE information is to be

returned. This operand is required if NOTECTL=YES has been specified.

NOTECTL=NO | YES

Specifies who is to maintain the NOTE information:

NO

The Librarian keeps track of the NOTE information (LIFO mechanism).

YES

The caller maintains the information himself. In this case, the NOTEINF

operand is required.

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the function cannot be

performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 NOTE information has been extracted.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

LIBRM NOTE

Chapter 2. Macro Descriptions 269

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference , SC33-6330.

Notes:

1. If a stack overflow occurs (that is, if the number of NOTE requests minus the

number of POINT requests is greater than 20), return code 16 is passed back

with a feedback code.

2. A member will automatically be closed if the return code is higher than 12.

Please note that instead of specifying LIBRM NOTE also LIBRM NOTEF can be

specified. This must be done when the PL/X 1.4 (or higher) compiler is used.

LIBRM NOTE

270 z/VSE System Macros Reference

LIBRM OPEN (Open Library Member) Macro

CC

label

LIBRM OPEN
 ,TYPEFILE=INPUT

,TYPEFILE=

INOUT

(OUTPUT,REPLACE)

(OUTPUT,NOREPLACE)

C

C ,LDCB=areaname

,LIB=lib,SUBLIB=sublib

,CHAINID=chainid

 C

C
,MEMBER=membername,TYPE=membertype

 C

C
,BUFFER=buffer,BUFSIZE=length_value

,RECFM=

F

S

 C

C
,DIRINF=dirinf,DIRINFL=length_value

 C

C

,DATAID=did,DATALEN=dlen,DATA=data

 ,SYSIPT=NO

,SYSIPT=YES

,NOTFND=label

C

C
 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

This macro opens the member defined by MEMBER and TYPE in the sublibrary

LIB/SUBLIB, if given, otherwise in the chain identified by CHAINID. The member

is opened either for input (INPUT), or update (INOUT), or output (OUTPUT).

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

TYPEFLE=INPUT

The first occurrence of the member in the chain sequence is opened for INPUT.

The current (GET) position is at the start of the member. No PUT requests are

accepted.

LIBRM OPEN

Chapter 2. Macro Descriptions 271

For INPUT (or INOUT), directory information will be provided in the area

specified by DIRINF (control block layout INLCMBST). User-provided

directory information identified by DATAID is returned in DATA, its length in

DATALEN.

TYPEFLE=INOUT

The first occurrence of the member in the chain sequence is opened for

INOUT. If the member does not exist, a new member is opened in the first

sublibrary of the chain. GET position is at the start of the existing member,

PUT position is at the start of the new copy of the member.

TYPEFLE=(OUTPUT,REPLACE)

The member is opened for OUTPUT in the first sublibrary of the chain.

TYPEFLE=(OUTPUT,NOREPLACE)

The member is only opened for OUTPUT if it does not exist in the first

sublibrary of the chain.

 For OUTPUT, no GET or POINT requests are allowed. The presence of SYSIPT

data is indicated by the SYSIPT operand.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

LIB=lib

Specifies the address of an area where the library name (1 to 7 alphameric

characters) is stored.

SUBLIB=sublib

Specifies the address of an area where the sublibrary name (1 to 8 alphameric

characters) is stored.

CHAINID=chainid

Specifies the address of an area where the sublibrary chain identifier (1 to 8

alphameric characters) is stored.

MEMBER=membername

Specifies the address of an area where the member name (1 to 8 alphameric

characters) is stored.

TYPE=membertype

Specifies the address of an area where the member type (1 to 8 alphameric

characters) is stored.

BUFFER=buffer

Specifies the address of the caller’s work area where a GET request returns the

input or a PUT request gets the output.

BUFSIZE=length-value

Specifies the length (as a numeric value) of the caller’s work area.

RECFM=F | S

Specifies the logical record format:

F specifies record format FIXED,

S specifies record format STRING.

 If TYPEFLE=INPUT or INOUT and the member exists, RECFM is checked. If

TYPEFLE=OUTPUT or INOUT and the member does not exist, F is assumed as

default.

LIBRM OPEN

272 z/VSE System Macros Reference

For TYPE=DUMP or PHASE, record format F is not allowed; S is assumed as

default.

 For TYPE=PROC, OBJ, or source program, record format S is not allowed.

DIRINF=dirinf

Specifies the address of an area where member directory information is

returned.

DIRINFL=length-value

Specifies the length (numeric value) of DIRINF area.

DATAID=did

Specifies the address of an area where the 1 to 4 character alphameric identifier

for user-provided directory information is specified.

DATALEN=dlen

Specifies the address of a fullword where the length of the DATA area is given.

The actual length of the user-provided information will be returned by the

service.

DATA=data

Specifies the address of the area where the user-provided directory information

is returned. The area specified must have a minimal length of DATALEN.

SYSIPT=NO | YES

Indicates whether the member contains SYSIPT data:

NO

No SYSIPT data in the member.

YES

The member contains SYSIPT data.

 SYSIPT is only possible for OPEN(OUTPUT). Default is NO.

NOTFND=label

Specifies a label to which the service will branch if the specified member does

not exist (return code 8 for members opened for INPUT), or if the specified

library, sublibrary or chain does not exist or is not accessible (return code 12).

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

LIBRM OPEN

Chapter 2. Macro Descriptions 273

Return Codes

Return Reason Meaning

 Code Code

 0 0 OPEN(INPUT): Member exists and is opened for GET requests.

 OPEN(OUTPUT,REPLACE): Member exists and is opened for

 replacement by subsequent PUT requests.

 OPEN(OUTPUT,NOREPLACE): Member does not exist.

 It is opened for creation.

 OPEN(INOUT): Member exits and is opened for creating a new copy.

 4 OPEN(OUTPUT,REPLACE): Member does not exist.

 It is opened for creation.

 4 0 OPEN(INOUT): Member does not exist. It is opened for creation.

 8 0 OPEN(INPUT): Member does not exist. No open is done.

 OPEN(OUTPUT,NOREPLACE): Member already exists. It is not opened.

 12 0 The specified sublibrary does not exist.

 4 The specified library does not exist.

 8 The specified chain does not exist.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

Notes:

1. If both LIB/SUBLIB and CHAINID are specified, LIB/SUBLIB will be taken

and CHAINID will be ignored.

2. If RECFM has been specified, the GET/PUT UNITS value is set to its default.

3. The GET/PUT RECNO value, which defines the start position for the

subsequent GET or PUT request, is initialized to the start of the member. It

overwrites a previously specified value.

4. If it is not possible to return any user-provided directory information (operands

DATA, DATALEN, DATAID), the fullword addressed with DATALEN will be

set to zero. Return and reason codes are not affected.

Processing will be ignored if DIRINF is not specified or its length is too small

to return the member status.

5. Executable programs (TYPE=PHASE) can only be read.

LIBRM OPEN

274 z/VSE System Macros Reference

LIBRM POINT (Point to Noted Member Record) Macro

CC

label
 LIBRM POINT,LDCB=areaname

,NOTEINF=noteinf
 C

C
 ,NOTECTL=NO

,NOTECTL=YES

 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

This macro repositions a member to the record identified by a previous NOTE

macro.

POINT is not possible for OPEN(OUTPUT). For OPEN(INOUT), POINT refers to

the old version of the member.

If you want to control the NOTE information yourself (NOTECTL=YES), you must

provide the new position in an area specified by NOTEINF. In this case, the new

position must be in the currently opened member. The NOTE information given

with POINT must be obtained by a previous NOTE request and must not have

been modified by the caller.

If you specify NOTECTL=NO, the Librarian takes the information of the most

recent NOTE operation for member positioning. In this case, the number of POINT

operations at any time must be less than or equal to the number of performed

NOTE operations. If a member was opened by a LIB/SUBLIB specification, POINT

is only possible for a member within the same sublibrary, otherwise a sublibrary

chain specification has to be used.

After POINT, the number of requested units (UNITS operand of GET/PUT) is set

to its default.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

NOTEINF=noteinf

Specifies the address of a 32-byte area in which the NOTE information is to be

returned. This operand is required if NOTECTL=YES has been specified.

NOTECTL=NO | YES

Specifies who is to maintain the NOTE information:

LIBRM POINT

Chapter 2. Macro Descriptions 275

NO

The Librarian keeps track of the NOTE information (LIFO mechanism).

YES

The caller maintains the information himself. In this case, the NOTEINF

operand is required.

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Position has been reset according to NOTE information.

 12 28 POINT failed because of invalid NOTE information

 (old position kept).

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

Notes:

1. If a stack underflow occurs (that is, if the number of NOTE requests is smaller

than the number of POINT requests), return code 16 is passed back with a

feedback code.

2. The NOTE information is only valid between OPEN and CLOSE.

3. A member will automatically be closed if the return code is higher than 12.

LIBRM POINT

276 z/VSE System Macros Reference

LIBRM PUT (Put Library Member) Macro

CC

label
 LIBRM PUT,LDCB=areaname C

C
,BUFFER=buffer,BUFSIZE=length_value

,RECNO=recnumber_value
 C

C

,UNITS=units_value

 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

This macro writes one or more records of a member with record format F or a

string of bytes of a member with record type S from the user’s work area specified

by BUFFER and BUFSIZE to the member specified in LDCB.

The starting position of the write operation within the member is always the

current position. It can only be altered for members with record format S (via

RECNO). For record format F, data can only be appended to the member. If, for

record format S, the specified position is beyond the high end of the member, the

member is extended with X’00’ up to the specified position.

The amount of data to be written is controlled by the UNITS operand: It is possible

to write one or more records or bytes (UNITS > 0), or to write the whole buffer

contents to the member (UNITS=0).

For record format F, only complete records stored in the user’s work area are

written. A UNITS specification for one or more records (UNITS > 0) is internally

limited by the size of the work area.

The current position is updated to the record or byte following the last written

member data.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

BUFFER=buffer

Specifies the address of the caller’s work area where the member data is

provided.

LIBRM PUT

Chapter 2. Macro Descriptions 277

BUFSIZE=length-value

Specifies the length of the caller’s work area (only for UNITS=0).

RECNO=recnumber-value

Specifies the starting position (as a numeric value) in the member where the

data is to be written.

 Default is the member’s current position. This default is active after each PUT.

For record format F, data can only be appended to the current end of the

member (RECNO specification is ignored).

UNITS=units-value

Specifies, as a numeric value, the number of records or bytes to be written.

 If UNITS is 0, all data contained in the buffer is written to the member.

 The default is 1 for record format F, and 0 for record format S. This default will

be taken if RECFM is specified with the OPEN or LIBRDCB macro, or if

UNITS is not specified at all.

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Record(s) byte(s) written to member.

 8 0 For record format F:

 The user’s work area does not contain

 a complete record. The request is ignored.

 12 12 Library is full: Complete new member data is purged.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

Note: The member will be automatically closed for all exceptions with return code

> 8. The complete new member data is purged.

LIBRM PUT

278 z/VSE System Macros Reference

LIBRM RENAME (Rename Library Member) Macro

CC

label
 LIBRM RENAME

,ENTITY=MEMBER
 ,LDCB=areaname C

C ,LIB=lib,SUBLIB=sublib

,CHAINID=chainid

,MEMBER=membername,TYPE=membertype
 C

C

,NMEMBER=newname,NTYPE=newtype

,NOTFND=label

 ,EROPT=RET

,EROPT=CANCEL

C

C
,ERRAD=label

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

The RENAME (MEMBER) function is used to rename a fully qualified member.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

LIB=lib

Specifies the address of an area where the library name (1 to 7 alphameric

characters) is stored.

SUBLIB=sublib

Specifies the address of an area where the sublibrary name (1 to 8 alphameric

characters) is stored.

CHAINID=chainid

Specifies the address of an area where the sublibrary chain identifier (1 to 8

alphameric characters) is stored.

MEMBER=membername

Specifies the address of an area where the old member name (1 to 8

alphameric characters) is stored.

TYPE=membertype

Specifies the address of an area where the old member type (1 to 8 alphameric

characters) is stored.

LIBRM RENAME

Chapter 2. Macro Descriptions 279

NMEMBER=newname

Specifies the address of an area where the new member name (1 to 8

alphameric characters) is stored.

NTYPE=newtype

Specifies the address of an area where the new member type (1 to 8

alphameric characters) is stored.

NOTFND=label

Specifies the label to which the service will branch if the ’old’ member name

does not exist (return code 8, reason code 0), or if the specified library,

sublibrary or chain does not exist (return code 12).

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Member has been renamed.

 4 0 Rename ignored: old and new member name

 and type are identical.

 8 0 Old member does not exist.

 4 New member already exists.

 8 Record type (member-type) conflict.

 12 0 The specified sublibrary does not exist.

 4 The specified library does not exist.

 8 The specified chain does not exist.

 12 The library is full.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference , SC33-6330.

Notes:

1. If both LIB/SUBLIB and CHAINID are specified, LIB/SUBLIB will be taken

and CHAINID will be ignored.

2. The NOTFND Exit will only be taken if the old member does not exist. If the

new member already exists, return code 8 and reason code 4 will be returned.

3. For a member-TYPE conflict (for example, renaming a PHASE to a MACRO),

return code 8 with reason code 8 is passed.

4. A library-full condition (return code 12, reason code 12) may be raised when

renaming a member because of a directory block split.

LIBRM RENAME

280 z/VSE System Macros Reference

LIBRM SHOWCB (Show Librarian Control Block) Macro

CC

label
 LIBRM SHOWCB,CB= LDCB

MBST

SBST

LBST

NOTEINF

 ,CBLEN=name CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

The macro retrieves the length of the specified control block and returns it in the

field CBLEN.

CB=LDCB

Identifies the LDCB (Librarian Data Control Block).

CB=MBST

Identifies the member status control block INLCMBST.

CB=SBST

Identifies the sublibrary status control block INLCSBST.

CB=LBST

Identifies the library status control block INLCLBST.

CB=NOTEINF

Identifies the NOTE information word.

CBLEN=name

Specifies the name of the fullword that is to receive the length of the identified

control block.

Notes:

1. The SHOWCB macro service also requires registers 0, 1, 13, 14 and 15.

2. With the SHOWCB function the storage size for the used library control blocks

can be determined at run time of the application. This gives the possibility to

enlarge the control blocks without recompilation.

3. The CBLEN value returned for the LBST (library status) is the size necessary to

hold all 16 extent information records.

LIBRM SHOWCB

Chapter 2. Macro Descriptions 281

LIBRM STATE CHAIN (Search Library Chain) Macro

CC

label
 LIBRM STATE,ENTITY=CHAIN,LDCB=areaname

,CHAINID=chainid
 C

C

,CHAIN=chain

,CATALOG=sublib

 ,SCOPE=TASK

,SCOPE=

JOB

PART

C

C

,NOTFND=label

 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

The STATE (CHAIN) function is used to determine whether a particular chain

(identified by CHAINID) of sublibraries exists. If it exists, the sequence of

sublibraries building up that chain is returned in the area specified by CHAIN.

With the CATALOG operand you can retrieve the name of the sublibrary specified

in the external Job Control LIBDEF CATALOG statement.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

CHAINID=chainid

Specifies the address of an area where the sublibrary chain identifier (1 to 8

alphameric characters) is stored by the caller.

CHAIN=chain

Specifies the address of an array of 32 entries with

DS CL7

containing the library name

DS CL8

containing the sublibrary name, which will be passed back with return

code 0.

 The last valid entry will be followed by a 4-character end indicator:

’FFFFFFFF’X (decimal value: -1). Therefore the size of the storage space given

with CHAIN is assumed to be ((7+8)*32 + 4) bytes. If the chain does not exist,

the end indication will be moved to the start of the area.

LIBRM STATE CHAIN

282 z/VSE System Macros Reference

The CHAIN operand is required if SCOPE=TASK has been specified or if the

CATALOG operand is missing.

CATALOG=sublib

Specifies the address of a field that is used to retrieve the name of the

CATALOG sublibrary from the external Job Control LIBDEF CATALOG

statement (only if SCOPE=JOB or SCOPE=PART). If SCOPE=TASK, the

operand is ignored.

 The format of the field is: DS CL7 taking up the library name DS CL8 taking

up the sublibrary name.

 If the CATALOG sublibrary does not exist, a 4-character ’FFFFFFFF’X (decimal

value: -1) end indicator will be moved to the start of the area.

SCOPE=TASK | JOB | PART

Defines the scope associated with the chain:

PART

Indicates the chains which will be kept until partition deactivation or

re-definition (LIBDEF...PERM).

JOB

Indicates the chains which will be kept until job termination or

re-definition.

TASK

Indicates the chains which will be kept until task termination or

re-definition (LIBRM LIBDEF).

 The default is SCOPE=TASK.

NOTFND=label

Specifies a label to which the service will branch if the specified chain does not

exist (return code 8).

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Chain exists, information is returned in CHAIN.

 8 0 The chain does not exist.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

LIBRM STATE CHAIN

Chapter 2. Macro Descriptions 283

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

Notes:

1. A generic specification for CHAINID is not possible.

2. If both the CATALOG and the CHAIN operand are specified, the NOTFND

condition (return code 8) will only be true if both requested chains are absent.

3. The STATE function will always return complete sublibrary names with one

exception: For requests with CHAINID ’PHASE’ and SCOPE=JOB, which

reflects the JCL LIBDEF PHASE,SEARCH....,TEMP statement, it is possible that

a special entry for the system directory list (SDL) is returned. The SDL is not a

real sublibrary but a reference to the ’virtual’ phase library in the SVA. It

cannot be processed by any other library services. In this case the STATE

function returns the string ’SDL’ as a library name and a string with blanks

(40’X) as sublibrary name.

LIBRM STATE CHAIN

284 z/VSE System Macros Reference

LIBRM STATE LIB (Search Library) Macro

CC

label
 LIBRM STATE,ENTITY=LIB,LDCB=areaname

,LIB=lib
 C

C
,DIRINF=dirinf,DIRINFL=dirinfl_value

,NOTFND=label
 C

C
 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

The STATE (LIB) function is used to determine whether a particular library exists.

If it exists, the library attributes will be provided in the area specified by DIRINF

and DIRINFL (DSECT INLCLBST).

The status information for a library is variable in size. It starts with logical library

attributes like ’number of sublibs’ or ’number of used (free) blocks’ as a fixed part.

One to sixteen extent information records may then follow. The extent information

describes the physical location of the library. The number of returned extent

records is provided in the halfword LBSTXTRT.

The LIB operand cannot be specified generically.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

LIB=lib

Specifies the address of an area where the library name (1 to 7 alphameric

characters) is stored. A generic specification for the library name is not

possible.

DIRINF=dirinf

Specifies the address of an area where library descriptor information is

returned.

DIRINFL=dirinfl-value

Specifies the length (numeric value) of the DIRINF area.

NOTFND=label

Specifies a label to which the service will branch if the library does not exist or

is not accessible (return code 8).

LIBRM STATE LIB

Chapter 2. Macro Descriptions 285

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Library exists, information is returned in DIRINF.

 4 Library exists, but no information is returned,

 because DIRINF was not specified.

 4 0 Library exists, but the area is too small to

 return all available extent records. LBSTXTRT

 contains the number of records actually

 returned. LBSTXTRT can be zero.

 4 Library exists, but the area is too small to

 hold even the fixed part of the status information.

 No information is returned at all.

 8 0 The specified library does not exist.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

Note: To have access to a library, the library must exist on a volume accessible by

the system, and the user must provide the correct labels for it. Otherwise,

the library is treated as nonexistent.

LIBRM STATE LIB

286 z/VSE System Macros Reference

LIBRM STATE MEMBER (Search Library Member) Macro

CC

label
 LIBRM STATE

,ENTITY=MEMBER
 ,LDCB=areaname C

C
,LIB=lib,SUBLIB=sublib

,CHAINID=chainid

,MEMBER=membername,TYPE=membertype
 C

C
,DIRINF=dirinf,DIRINFL=dirinfl_value

,DIRNO=dirno
 C

C

,LOCKID=lockid

 ,CONT=YES

,CONT=NO

,DATAID=did,DATALEN=dlen,DATA=data

C

C

,NOTFND=label

 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

The STATE (MEMBER) function is used to determine whether a particular member

exists in a certain sublibrary or a chain of sublibraries. If it is found, the member

attributes will be provided in the area specified by DIRINF and DIRINFL (DSECT

INLCMBST).

The MEMBER and TYPE operands can be specified generically by giving a prefix

of the name followed by an asterisk (for example, PREF*). In this case, all members

whose names start with PREF will be returned. If only * (without a prefix) is

specified, all members will be returned. For generic requests with chain processing,

the sublibrary with the first match will be selected and all matching members

within this sublibrary will be returned.

The LOCKID operand specifies the lock identifier of the library member to be

searched for. The state of the specified member will be displayed only if the

member is locked with this lockid. Otherwise, return code 8 is issued.

The status information entries of the members are stored contiguously in the area

specified by DIRINF and DIRINFL. The number of returned entries can be

retrieved via DIRNO. If the given space is insufficient, return code 4 is issued. A

continuation request is possible.

The library access service will treat the logically next call as a continuation request

under the following conditions:

LIBRM STATE MEMBER

Chapter 2. Macro Descriptions 287

1. The previous request requires a continuation (return code 4, reason code 0).

2. The option CONT=YES is set.

3. The LDCB still defines a STATE,ENTITY=MEMBER function.

The caller should not change the LDCB (and any fields referenced by the LDCB)

while processing continuation requests.

The continuation logic will be reset if (1) the space defined by DIRINF and

DIRINFL is sufficient to hold the returned members (return code 0), or (2) a

processing error occurs (return code > 12), or (3) the caller switches to CONT=NO.

User-provided directory information identified by DATAID is returned in DATA,

its length in DATALEN. This service is only provided for the STATE of a single

member (nongeneric).

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

LIB=lib

Specifies the address of an area where the library name (1 to 7 alphameric

characters) is stored.

SUBLIB=sublib

Specifies the address of an area where the sublibrary name (1 to 8 alphameric

characters) is stored.

CHAINID=chainid

Specifies the address of an area where the sublibrary chain identifier (1 to 8

alphameric characters) is stored.

MEMBER=membername

Specifies the address of an area where the member name (1 to 8 alphameric

characters) is stored.

TYPE=membertype

Specifies the address of an area where the member type (1 to 8 alphameric

characters) is stored.

DIRINF=dirinf

Specifies the address of the area where member directory information is

returned.

DIRINFL=dirinfl-value

Specifies the length (numeric value) of the DIRINF area.

DIRNO=dirno

Specifies the address of a fullword where the number of returned directory

entries is provided.

LOCKID=lockid

Specifies the lock identifier of the library member to be searched for. The state

of the specified member will be displayed only if the member is locked with

this lockid. Otherwise, return code 8 is given indicating that no member

locked with the specified lockid was found. If the member is locked, the lockid

is copied into the area specified by DIRINF and DIRINFL. The lockid

(provided in the LIBRM LOCK macro) is a string of up to eight alphanumeric

characters.

LIBRM STATE MEMBER

288 z/VSE System Macros Reference

The lockid can also be specified generically by giving a prefix, followed by an

asterisk (for example, PRE*). In this case, information for the specified member

will be returned only if it is locked with a lockid starting with the specified

prefix. If LOCKID=* is specified, the member information will be returned only

if the member is locked at all (with any lockid).

 The lockid in the LDCB will be cleared after processing.

CONT=YES | NO

Defines whether the continuation should be requested (CONT=YES) or not

(CONT=NO). This option will be ignored for a nongeneric specification.

CONT=YES is the default.

DATAID=did

Specifies the address of an area where the 1 to 4 character alphameric identifier

for user-provided directory information is specified.

DATALEN=dlen

Specifies the address of a fullword where the length of the DATA area is given.

The actual length of the user-provided information will be returned by the

service.

DATA=data

Specifies the address of the area where the user-provided directory information

is returned. The area specified must have a minimal length of DATALEN.

NOTFND=label

Specifies a label to which the service will branch if the member does not exist

within the searched sublibraries (return code 8), or the related sublibrary,

library or chain does not exit (return code 12).

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Member exists (or generic members exist),

 information is returned in DIRINF.

 4 Member exists (or generic members exist),

 but no information is returned because

 DIRINF was not specified.

 4 0 Match found for generic specification, but

 DIRINF is too small to contain all entries.

 Continuation is required to free partition GETVIS storage.

 4 Match found for nongeneric or generic specification,

 but area is too small for a full entry.

 No information is returned. Continuation is not possible.

 8 0 No match found.

LIBRM STATE MEMBER

Chapter 2. Macro Descriptions 289

12 0 The specified sublibrary does not exist.

 4 The specified library does not exist.

 8 The specified chain does not exist.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

Notes:

1. You can read the member directory (all members) sequentially by specifying

MEMBER=* and TYPE=*, providing a DIRINF area for one entry, and by

continuing (return code 4) until return code 0 is passed with the last entry.

2. If both LIB/SUBLIB and CHAINID are specified, LIB/SUBLIB will be taken

and CHAINID will be ignored.

3. If user-provided directory information (operands DATA, DATALEN, DATAID)

cannot be returned, the fullword addressed with DATALEN will be set to zero.

Return and reason codes are not affected.

No processing is done for a generic member request and for a nongeneric

request if the directory information cannot be returned (return code 0 or 4, with

reason code 4).

LIBRM STATE MEMBER

290 z/VSE System Macros Reference

LIBRM STATE SUBLIB (Search Sublibrary) Macro

CC

label
 LIBRM STATE,ENTITY=SUBLIB,LDCB=areaname C

C
,LIB=lib,SUBLIB=sublib

,DIRINF=dirinf,DIRINFL=dirinfl_value
 C

C

,DIRNO=dirno

 ,CONT=YES

,CONT=NO

,NOTFND=label

 ,EROPT=RET

,EROPT=CANCEL

C

C
,ERRAD=label

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

The STATE (SUBLIB) function is used to determine whether a particular sublibrary

exists in a certain library. If it is found, the sublibrary attributes will be provided in

the area specified by DIRINF and DIRINFL (DSECT INLCSBST).

The SUBLIB operand can be specified generically by giving a prefix of the name

followed by an asterisk (for example, PREF*). In this case, all sublibraries whose

names start with PREF will be returned. If only * (without a prefix) is specified, all

sublibraries will be returned.

The status information entries of the sublibraries are stored contiguously in the

area specified by DIRINF and DIRINFL. The number of returned entries can be

retrieved via DIRNO. If the given space is insufficient, return code 4 is returned. A

continuation request is possible.

The library access service will treat the logically next call as a continuation request

under the following conditions:

1. The previous call requires a continuation (return code 4, reason code 0).

2. The option CONT=YES is set.

3. The LDCB still defines a STATE,ENTITY=SUBLIB function.

The caller should not change the LDCB (and any fields referenced by the LDCB)

while processing continuation requests.

The continuation logic will be reset if (1) the space defined by DIRINF and

DIRINFL is sufficient to hold the returned sublibraries (return code 0), or (2) a

processing error occurs (return code > 12), or (3) the caller switches to CONT=NO.

LIBRM STATE SUBLIB

Chapter 2. Macro Descriptions 291

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

LIB=lib

Specifies the address of an area where the library name (1 to 7 alphameric

characters) is stored.

SUBLIB=sublib

Specifies the address of an area where the sublibrary name (1 to 8 alphameric

characters) is stored.

DIRINF=dirinf

Specifies the address of an area where sublibrary directory (INLCSBST)

information is returned.

DIRINFL=dirinfl-value

Specifies the length (numeric value) of the DIRINF area.

DIRNO=dirno

Specifies the address of a fullword where the number of directory entries is

returned.

CONT=YES | NO

Defines whether continuation should be requested (CONT=YES) or not

(CONT=NO). This option will be ignored for an nongeneric specification.

CONT=YES is the default.

NOTFND=label

Specifies a label to which the service will branch if the sublibrary does not

exist within the given library (return code 8), or the related library does not

exit or is not accessible (return code 12).

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

LIBRM STATE SUBLIB

292 z/VSE System Macros Reference

Return Codes

Return Reason Meaning

 Code Code

 0 0 Sublibrary exists (or generic sublibraries exist),

 information is returned in DIRINF.

 4 Sublibrary exists (or generic sublibraries exist),

 but no information is returned,

 because DIRINF was not specified.

 4 0 Match found for generic specification, but

 DIRINF is too small to contain all entries.

 If CONT=YES (default) is specified, a continuation

 request is required to free partition GETVIS storage.

 4 Match found for nongeneric or generic specification,

 but the area is too small to contain a full entry.

 No information is returned. Continuation is not possible.

 8 0 No match found.

 12 4 The specified library does not exist.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

Note: You can read the sublibrary directory sequentially by specifying SUBLIB=*,

providing a DIRINF area for one entry, and by continuing (return code 4)

until return code 0 is passed with the last entry.

LIBRM STATE SUBLIB

Chapter 2. Macro Descriptions 293

LIBRM UNLOCK (Unlock Library Member) Macro

CC

label
 LIBRM UNLOCK,LDCB=areaname,LOCKID=lockid C

C
,LIB=lib,SUBLIB=sublib

,MEMBER=membername,TYPE=membertype
 C

C

,NOTFND=label

 ,EROPT=RET

,EROPT=CANCEL

,ERRAD=label

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

Any

ASC Mode:

Primary

The UNLOCK (MEMBER) function causes a library member that has been locked

for write or update access to be unlocked again. The member must be fully

qualified. It will be unlocked only if the specified lockid matches the lockid with

which this member was locked (with LIBRM LOCK). Only the lockid specification

may be generic.

See also “Library Macro Notation” on page 254 for details on register notation and

possible operand specifications.

LDCB=areaname

Specifies the address of the LDCB (Librarian Data Control Block) for the

request.

LOCKID=lockid

Specifies the lock identifier with which the member was locked (with the

corresponding LOCK function). The member will be unlocked only if the

specified lockid corresponds with the lockid with which this member was

locked. The lockid is a string of up to eight alphanumeric characters.

 The lockid can also be specified generically by giving a prefix, followed by an

asterisk (for example, PRE*). In this case, the specified member will be

unlocked only if it is locked with a lockid starting with the specified prefix. If

LOCKID=* is specified, the member will be unlocked if it is locked at all (with

any lockid).

 The lockid in the LDCB will be cleared after processing.

LIB=lib

Specifies the address of an area where the library name (1 to 7 alphameric

characters) is stored.

SUBLIB=sublib

Specifies the address of an area where the sublibrary name (1 to 8 alphameric

characters) is stored.

LIBRM UNLOCK

294 z/VSE System Macros Reference

MEMBER=membername

Specifies the address of an area where the member name (1 to 8 alphameric

characters) is stored. No generic specification is allowed.

TYPE=membertype

Specifies the address of an area where the member type (1 to 8 alphameric

characters) is stored.

NOTFND=label

Specifies a label to which the service will branch if the specified member does

not exist (return code 8 for members opened for INPUT), or if the specified

library or sublibrary does not exist or is not accessible (return code 12).

EROPT=RET | CANCEL

Defines an error handling option which will be taken if the function cannot be

performed (return code > 12).

RET

Processing will be continued, either by a normal return or by branching to

the ERRAD exit.

CANCEL

Processing will be canceled. A librarian error message will be issued to

SYSLOG.

ERRAD=label

Specifies a label to which the Librarian will branch if the above function

cannot be performed because of an error (return code > 12).

Return Codes

Return Reason Meaning

 Code Code

 0 0 Member has been unlocked.

 0 8 The macro is ignored, no member will be unlocked.

 Option IGNLOCK is on.

 4 0 The specified member was already unlocked.

 8 0 The specified member does not exist.

 4 The specified member is locked with a different lockid.

 12 0 The specified sublibrary does not exist.

 4 The specified library does not exist.

 16 xx External system error with feedback code and message.

 20 xx Internal system error with feedback code and message.

 32 0 Access control failed (with message L163I).

The external system error feedback codes are described in Appendix D, “Librarian

Feedback Codes,” on page 459. All other (internal) feedback codes are described in

VSE Central Functions Librarian Diagnosis Reference, SC33-6330.

LIBRM UNLOCK

Chapter 2. Macro Descriptions 295

LITE (Pocket-Light Control) Macro

CC

name
 LITE filename

(1)

,light_switches

,(0)

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

This macro lights any combination of pocket lights on an IBM 1419 Magnetic

Character Reader or an IBM 1275 Optical Reader/Sorter. Before using the LITE

macro, the DISEN macro must be issued to disengage the device. Processing of the

documents should be continued until the unit exception bit (byte 0, bit 3) of the

document buffer status indicators is set on (see Table 3 on page 66). When this bit

is on, the follow-up documents have been processed, the MICR reader has been

disengaged, and the pocket LITE macro can be issued.

filename | (1)

Is the name of the file; this name is the same as that specified for the DTFMR

header entry for the file.

light-switches | (0)

Indicates a 2-byte area containing the pocket light switches. Both operands can

be given either as a symbol or in register notation.

 The bit configuration for the pocket light switch area is shown below. The

pocket lights that are turned on should have their indicator bits set to 1. If an

error occurs during the execution of a pocket lighting I/O command, bit 7 in

byte 1 is set to 1. This error condition normally indicates that the pocket light

operation was unsuccessful.

 The bit configuration of the pocket light switch area is shown in Figure 15.

LITE

296 z/VSE System Macros Reference

LOAD (Load a Phase) Macro

CC

name
 LOAD phasename

(S,address)

(1)

,loadpoint

,(S,loadpoint)

,(0)

 C

C

,LIST=

listname

(S,listname)

(r1)

,SYS=YES

 ,DE=NO

,DE=

YES

VSE

VSEFORM

,TXT=NO

C

C

,MFG=

area

(S,area)

(r2)

 ,RET=NO

,RET=YES

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

The LOAD macro loads the phase specified in the first operand (if this phase is not

in the SVA) and returns control to the calling program.

After execution of the macro, the entry-point address of the called phase is

returned to you in register 1. LOAD sets the high-order bit in register 1 to indicate

the phase’s AMODE (0 for 24, 1 for 31). If the phase’s AMODE is ANY, LOAD sets

the high-order bit in register 1 corresponding to the caller’s AMODE.

 Corresponding

 Byte Bit Pocket Light Other Purpose

 ────── ────── ───────────────── ───────────────

 0 0 A

 1 B

 2 0

 3 1

 4 2

 5 3

 6 4

 7 5

 1 0 6

 1 7

 2 8

 3 9

 4-6 Reserved

 7 Error indicator

Figure 15. Bit Configuration of the Pocket-Light Switch Area

LOAD

Chapter 2. Macro Descriptions 297

Notes:

1. Both the expanded code and the parameter lists must be below 16MB,

otherwise the request will be canceled.

2. The addresses are not validated by the macro expansion. Depending on the

macro call, only three bytes of a passed four-byte address may be passed to the

SVC service. This may cause unpredictable results, since the address cannot be

validated properly.

For a nonrelocatable phase, the address of the called phase is the entry-point

determined at link-edit time. For a relocatable phase, the entry point is adjusted by

the relocation factor.

If the phase is in the SVA, it is not loaded. Instead, the system returns, in register

1, the entry-point address of the phase in the SVA. If, however, the SDL operand is

specified in the LIBDEF statement, the phase is loaded if it is found in one of the

sublibraries specified before the SDL operand.

phasename | (S,address) | (1)

For phasename specify the name of the required phase. The address is

regarded as either a 24-bit or 31-bit address, depending on the AMODE of the

caller. If the caller has AMODE 31 and the address points to a storage location

above 16MB, the requestor is canceled.

 If the DE operand is omitted or if DE=NO is specified, the address as specified

in (S, address) or as loaded into a register points to an 8-byte field that

contains the phase name.

 If DE=YES or DE=VSE | VSEFORM, the operand has a different meaning; refer

to the discussion of the DE operand.

loadpoint | (S,loadpoint) | (0)

If loadpoint is provided, the phase is loaded at the specified address. If no

loadpoint is given, the (relocated) loadpoint specified at link-edit time is used.

The loadpoint is interpreted as either a 24-bit or 31-bit address, depending on

the AMODE of the caller.

 The address used must be outside the supervisor area. When an overriding

address is given, the entry-point address is relocated and returned in register 1.

An overriding load-point address must not be specified for a phase that had

been linked as a member of an overlay structure.

 If the phase is non-relocatable, none of the other addresses in the phase are

relocated; if the phase is relocatable, however, the entry point and address

constants are updated with the relocation factor.

 If loadpoint is given in register notation, the register used must not be register

1. Pre-load the register with the load-point address.

 With (S,...) notation, the load-point address is derived from base register and

displacement as assembled for loadpoint in the (S,loadpoint) specification.

LIST=listname | (S,listname) | (r1)

For listname specify the name of your local directory list generated in the

partition by the GENL macro. When this operand is included, the system scans

the local directory list for the name of the required phase before it initiates a

search for this phase name in the directories of accessible sublibraries.

 If the phase has been found in the local directory list, general register 0 points

to the related directory entry; otherwise, register 0 is set to zero.

LOAD

298 z/VSE System Macros Reference

The local directory list must be located below 16MB (only three bytes are used

in the macro expansion).

 If LIST is specified, DE=YES or DE=VSE | VSEFORM is invalid.

SYS=YES

If SYS=YES is specified, the system scans the system directory list (SDL) in the

SVA and the system sublibrary before any private sublibraries. If the operand

is omitted, the SDL and the private sublibraries are searched first.

DE=NO | YES | VSE | VSEFORM

By specifying DE=YES or DE=VSE | VSEFORM you can generate your own

local directory entry for a frequently used phase in order to save a

time-consuming library directory search for that phase. A specification of YES

or VSE|VSEFORM is invalid if LIST is specified.

DE=NO

Indicates that no local directory entry is to be generated.

DE=YES

Indicates a conventional 38-byte directory entry in the old (VSE/Advanced

Functions Version 1) librarian format is to be generated.

DE=VSE | VSEFORM

Indicates that a 40-byte directory entry in the new (VSE/Advanced

Functions Version 2) librarian format is to be generated. VSE is a short

form of VSEFORM.

 For DE=YES or DE=VSE, the MAPDNTRY macro can be used to interpret the

information returned by the LOAD (or FETCH) macro. Among other

information, the local directory entry shows the AMODE/RMODE assigned to

the phase. The directory entry must be located below 16MB (see explanation

for phasename).

 The local directory entry is activated by the first LOAD request; all further

LOAD requests are executed without any directory search.

 If the first operand is written as phasename (instead of S-type or register

notation), a directory entry will be generated within the macro expansion. The

generated directory entry will contain the name of the phase in the first eight

bytes.

 If you use S-type or register notation for the first operand, you must set aside

the 38-byte (or 40-byte) field for the directory entry yourself and point to it via

this operand. The directory entry must contain the phase name in the first 8

bytes (left-justified and padded with blanks); its format is:

 For DE=YES:

 Bytes Contents

 0 CL8’PHASENAM’

 8 XL3’0’

 11 XL1’0D’ NO. OF HALFWORDS FOLLOWING

 12 XL26’0’

For DE=VSE | VSEFORM:

 Bytes Contents

 0 CL8’PHASENAM’

 8 XL3’FFFFFF’ ID FOR NEW FORMAT

 11 XL1’0E’ NO. OF HALFWORDS FOLLOWING

 12 XL28’0’

LOAD

Chapter 2. Macro Descriptions 299

TXT=NO

Together with LIST=listname or DE=YES, TXT=NO is useful if a phase is to be

loaded more than once while your program executes. TXT=NO causes a search

for the directory entry without transfer of the contents (or text) of the phase

itself. It indicates, in the directory entry, if and where the phase was found.

This can be used to accomplish either of the following:

v The directory entry can be filled in from the sublibrary for later

FETCH/LOAD calls without the overhead of text transfer.

v You can establish whether a given phase is present in a user sublibrary, or

the SYSLIB sublibrary, or the SVA since register 0 contains the address of the

directory entry and byte 16 of the directory entry is:

X’06’

If the phase is not found

X’12’

If the phase is in the SVA

X’0A’

If the phase is in a user sublibrary

Note: Test for these conditions by means of a Test Under Mask (TM)

instruction, not a Compare instruction. If the phase is not found and

both DE=YES and TXT=NO have been specified, register 1 is returned

with X’00’. See Figure 20 on page 307.

MFG=area | (S,area) | (r2)

The operand is required if the program that issues the LOAD macro is to be

reenterable. It specifies the address of a 64-byte dynamic storage area, that is,

storage which your program obtained through a GETVIS macro. This area is

required for system use during execution of the macro.

 The MFG area must be located below 16MB.

RET=NO | YES

By specifying RET=YES you can cause control to be returned to your program

in any case (both in normal and error situations). Register 15 contains one of

the following return codes:

0 LOAD completed successfully.

4 Phase not found. This return code is issued also if a user directory entry is

found and the corresponding phase has already been deleted or

re-cataloged.

8 Irrecoverable I/O error during LOAD processing.

12 Invalid library or sublibrary structure detected during LOAD processing.

16 Either of the following was found during LOAD processing:

v Local directory entry outside the partition.

v Phase does not fit into the partition.

v Loadpoint outside partition.

20 Security violation.

24 Inconsistent user directory state ─ LOAD found an inconsistency between

your program’s local directory entry and the corresponding entry in the

directory of the related sublibrary. The local directory entry is overwritten

by the entry read from the directory of the sublibrary. LOAD checks the

following:

v Length of phase.

v Relocation state.

LOAD

300 z/VSE System Macros Reference

v Difference between the load point and the partition start address.

v Difference between the load point and the entry point.

Return code 24 is also issued if an incorrect length has been specified in

byte 11 of the directory entry.

28 Partition is too small (or phase does not fit into the logical transient area).

36 A loadpoint is provided that causes a mismatch with the RMODE

specification in the phase’s local directory (that is, loadpoint and/or end of

phase is above 16MB and RMODE=24). The phase is not loaded. If

RET=NO is specified, the user is canceled with ’RMODE violation’.

LOAD

Chapter 2. Macro Descriptions 301

LOCK (Lock a Resource) Macro

CC

name

LOCK

name

(S,name)

(1)

 ,FAIL=RETURN

,FAIL=

WAITC

WAIT

WAITECB

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

The macro queues the task for accessing the named resource. The resource must

have been defined in the program by a DTL (Define The Lock) control block. A

DTL is generated by issuing a DTL or GENDTL macro; it may be modified by

issuing a MODDTL macro.

Note: Do not LOCK a resource in an AB exit routine if this resource is held by the

main task, since a deadlock situation may occur.

name | (S,name) | (r)

Specifies the DTL address.

FAIL=RETURN | WAITC | WAIT | WAITECB

Defines the system action in case the resource cannot be obtained:

FAIL=RETURN

Causes the system to return control back to the requesting program in any

case. The requesting program has to check the return code in register 15 to

find out whether or not the request was successful.

FAIL=WAITC

Causes the system to place the requesting task in the wait state if the

requested resource is found to be locked by another task. In all other cases,

control returns to the requesting program. The requesting program has to

check the return code in register 15 to find out whether the request was

successful, or whether an error occurred.

FAIL=WAIT

Requests the system to return control to the requesting task when the

resource can be obtained. If the resource is locked by another task, the

requesting task is set into the wait state until the resource is freed. In case

of an error condition with a return code of 12 or higher, the requesting task

is canceled.

FAIL=WAITECB

Causes the system to place the requesting task in the request queue if the

requested resource is found to be locked by another task. In all cases,

control returns to the requesting program. The requesting program has to

check the return code in register 15 to find out whether the request was

successful, or whether an error occurred, or whether the task’s request is

LOCK

302 z/VSE System Macros Reference

put in the request queue (return code = 4). If the request was put in the

request queue, the requesting task should issue a WAIT macro on this ECB.

 WAIT, WAITC or WAITECB cannot be specified if the resource is defined with

OWNER=PARTITION.

Figure 16 summarizes how the system controls access to a resource, depending on

the specification of the CONTROL and LOCKOPT operands in the DTL or

GENDTL macro. The illustration assumes that a task issues a LOCK request for a

resource which is already locked.

 A task or partition may lock a resource more than once. The system maintains a

lock request count for the resource.

When a resource is defined with LOCKOPT=1, a task may issue up to 255 LOCK

requests with CONTROL=S. When a resource is defined with LOCKOPT=2, up to

255 LOCK requests with CONTROL=S and (if no other task locks the resource

exclusively) one LOCK request with CONTROL=E are allowed.

When a resource is locked more than once by a task, this task has to issue at least

as many UNLOCK requests as it issued LOCK requests before it gives up the

resource completely. If the resource is defined with OWNER=PARTITION, the

unlocking may be done by any task in the partition.

 ┌───────────────────────┬────────────────────────────────────┐

 │ │ Current Lock Status of Resource │

 │ ├───────────┬───────────┬────────────┤

 │ │ LOCKOPT=1 │ LOCKOPT=2 │ LOCKOPT=4 │

 │ │ CONTROL= │ CONTROL= │ CONTROL= │

 │ ├───────────┼───────────┼────────────┤

 │ Incoming LOCK Request │ E S │ E S │ E S │

 ├───────────────────────┼───────────┼───────────┼────────────┤

 │ LOCKOPT=1 CONTROL=E │ W W │ W W │ W W │

 │ CONTROL=S │ W G │ I I │ I I │

 │ │ │ │ │

 │ LOCKOPT=2 CONTROL=E │ W I │ W G │ I I │

 │ CONTROL=S │ W I │ G G │ I I │

 │ │ │ │ │

 │ LOCKOPT=4 CONTROL=E │ W I │ I I │ G/W G │

 │ CONTROL=S │ W I │ I I │ G G │

 └───────────────────────┴───────────┴───────────┴────────────┘

where:

G =

Access is granted (return code 0).

I =

Access is not granted. The incoming LOCK request is

inconsistent with the current LOCK status (return code 12).

W =

Access to the resource cannot be granted (return code 4 or 16).

G/W =

Access is granted if the resource is already exclusively

owned by the requesting system. Access is denied (return code 4)

if the resource is exclusively held by the other system.

Figure 16. System Action for Control Definitions in DTLs

LOCK

Chapter 2. Macro Descriptions 303

Return Codes in Register 15

Figure 17 gives a summary of system actions by return codes, depending on the

specification of the FAIL operand. A list of possible return codes together with a

summary of their meanings follows Figure 17. If FAIL=WAITECB is specified, the

return code is also presented in byte 1 of the ECB.

0 Successful request: the resource is locked for the task (or for the partition if the

resource is defined with partition ownership).

4 Resource not available: the resource is already locked with a locking status that

allows no concurrent access.

8 The lock table space is exhausted.

12 The lock request is inconsistent with previous lock requests (by the same or

other tasks).

16 The request would have resulted in a deadlock condition within the system

(deadlocks across systems are not affected).

20 DTL format error.

24 The issuing task tried to lock a resource which it owns already exclusively.

Note that the locking status may not be the same as the one specified in the

DTL macro with the CONTROL and LOCKOPT options.

28 The lock request resulted in a lock file overflow condition. Use the DLF

command to specify a larger size for the lock file.

32 A lock request was issued for a shared DASD file, but the corresponding

volume is not online.

36 An unrecoverable I/O error occurred on the lock file. This probably means that

the system must be restarted and the lock file re-defined. This has to be done

on all sharing systems.

 ┌──────────────┬───┐

 │ Return Code │ System Action if │

 ├──────┬───────┼─────────────┬────────────┬───────────┬──────────────┤

 │ Hex │ Dec. │ FAIL=RETURN │ FAIL=WAITC │ FAIL=WAIT │ FAIL=WAITECB │

 ├──────┼───────┼─────────────┼────────────┼───────────┼──────────────┤

 │ 00 │ 0 │ Return │ Return │ Return │ Return │

 │ 04 │ 4 │ Return │ Wait │ Wait │Queue + Return│

 │ 08 │ 8 │ Return │ Return │ Wait │ Return │

 │ 0C │ 12 │ Return │ Return │ Cancel │ Return │

 │ │ │ │ │ │ │

 │ 10 │ 16 │ Return │ Return │ Cancel │ Return │

 │ 14 │ 20 │ Return │ Return │ Cancel │ Return │

 │ 18 │ 24 │ Return │ Return │ Cancel │ Return │

 │ 1C │ 28 │ Return │ Return │ Wait │ Return │

 │ │ │ │ │ │ │

 │ 20 │ 32 │ Return │ Return │ Cancel │ Return │

 │ 24 │ 36 │ Return │ Return │ Cancel │ Return │

 └──────┴───────┴─────────────┴────────────┴───────────┴──────────────┘

Figure 17. System Actions by Return Code and FAIL Operand

LOCK

304 z/VSE System Macros Reference

MAPBDY (Map Boundary Information) Macro

CC
 MAPBDY

name

MAPBDY
 DSECT=NO

DSECT=YES

CE

Required RMODE: 24 or ANY

The macro may be used to interpret the information retrieved by the EXTRACT

macro for ID=BDY and MODE=T. If ’name’ is omitted, MAPBDY is taken as

default.

DSECT=NO | YES

DSECT=YES specifies that a mapping DSECT is generated. If the operand is

omitted, inline code is generated.

 For the layout and a description of the DSECT fields, see Figure 18.

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ PBEGIN │ 4 │ Partition start address; corresponds to the │

 │ │ │ address of the program save area (field SAVE│

 │ │ │ of PIB). │

 │ │ │ │

 │ PENDLOG │ 4 │ Logical end of partition (last addressable │

 │ │ │ byte, GETVIS area excluded); corresponds to │

 │ │ │ PPEND of the partition communication region.│

 │ │ │ │

 │ PGEND │ 4 │ Physical end of partition (last addressable │

 │ │ │ byte, GETVIS area included). │

 │ │ │ │

 │ PFIXLMT │ 4 │ PFIX limit (in No. of K bytes) or zero (in │

 │ │ │ real mode). │

 │ │ │ │

 │ PFIXCNT │ 4 │ PFIX count (No. of pages fixed by a PFIX │

 │ │ │ request). │

 └───────────┴─────────┴───┘

Figure 18. Layout of the MAPBDY-Generated DSECT

MAPBDY

Chapter 2. Macro Descriptions 305

MAPBDYVR (Map Boundary Information) Macro

CC
 MAPBDYVR

name

MAPBDYVR
 DSECT=NO

DSECT=YES

CE

Required RMODE: 24 or ANY

The MAPBDYVR macro may be used to interpret the information retrieved by the

EXTRACT macro for ID=BDY and MODE=P. If ’name’ is omitted, MAPBDYVR is

taken as default.

DSECT=NO | YES

DSECT=YES specifies that a mapping DSECT is generated. If the operand is

omitted, inline code is generated.

 For the layout and a description of the DSECT fields, see Figure 19.

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ VPBEGIN │ 4 │ Virtual partition start address; corresponds│

 │ │ │ to the latest allocation. │

 │ │ │ │

 │ VPEND │ 4 │ Logical end of virtual partition (last │

 │ │ │ addressable byte, GETVIS area excluded). │

 │ │ │ │

 │ VPGEND │ 4 │ Physical end of virtual partition (last │

 │ │ │ addressable byte, GETVIS area included); │

 │ │ │ corresponds to the latest allocation. │

 │ │ │ │

 │ RPBEGIN │ 4 │ Real partition start address; corresponds │

 │ │ │ to the latest allocation. │

 │ │ │ │

 │ RPEND │ 4 │ Real partition end address (last addressable│

 │ │ │ byte); corresponds to the latest allocation.│

 └───────────┴─────────┴───┘

Figure 19. Layout of the MAPBDYVR-Generated DSECT

MAPBDYVR

306 z/VSE System Macros Reference

MAPDNTRY (Map Directory Entry) Macro

CC MAPDNTRY DE= VSE

YES
 CE

The MAPDNTRY macro generates a mapping DSECT which may be used to

interpret the information returned by the LOAD or FETCH macro when DE=VSE

or DE=YES has been specified.

DE=VSE | YES

DE=VSE specifies the directory entry that will be returned when DE=VSE was

specified in the LOAD or FETCH macro. For the layout and a description of

the DSECT fields, see Figure 20.

 DE=YES specifies the directory entry that will be returned when DE=YES was

specified in the LOAD or FETCH macro. For the layout and a description of

the DSECT fields, see Figure 21 on page 308.

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ DIRNAME │ 8 │ Phasename │

 │ DIRIDVSE │ 3 │ VSE-ID (X’FFFFFF’) │

 │ DIRN │ 1 │ Number of halfwords following │

 │ DIRLMBR │ 4 │ Length of library member (phase) │

 │ DIRC │ 1 │ Flags: │

 │ SELFREL │ │ X’80’ Phase is self-relocatable │

 │ RELPHASE │ │ X’40’ Phase is relocatable │

 │ SVAELIG │ │ X’20’ Phase is SVA-eligible │

 │ SVAPHASE │ │ X’10’ Phase is located in SVA │

 │ PCIL │ │ X’08’ Non-SYSLIB phase │

 │ NOTFND │ │ X’04’ Phase not found │

 │ ACTIVE │ │ X’02’ Directory entry active │

 │ DIRSWIT │ 1 │ Flags: │

 │ DIRRMOD │ │ X’20’ 1: RMODE=ANY, 0: RMODE=24 │

 │ DIRAM31 │ │ X’10’ 1: AMODE=31 or AMODE=ANY │

 │ DIRAM24 │ │ X’08’ 1: AMODE=24 or AMODE=ANY │

 │ │ │ 11: AMODE=ANY, 10: AMODE=31 │

 │ │ │ 00 or 01: AMODE=24 │

 │ │ 2 │ Reserved │

 │ DIRACOPY │ 4 │ Address of directory copy │

 │ DIRALPT │ 4 │ Load point at link-edit time │

 │ DIRAEPT │ 4 │ Entry point at link-edit time │

 │ DIRAPART │ 4 │ Partition start at link-edit time │

 │ DIRASVA │ 4 │ Entry point of phase in SVA │

 └───────────┴─────────┴───┘

Figure 20. Layout of the MAPDNTRY-Generated DSECT for DE=VSE

MAPDNTRY

Chapter 2. Macro Descriptions 307

┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ DIRNAME │ 8 │ Phasename │

 │ DIRCOPY │ 3 │ Address of directory copy │

 │ DIRN │ 1 │ Number of halfwords following │

 │ DIRTT │ 2 │ Number of text blocks │

 │ DIRLL │ 2 │ Number of text bytes in last block │

 │ DIRC │ 1 │ Flags: │

 │ SELFREL │ │ X’80’ Phase is self-relocatable │

 │ RELPHASE │ │ X’40’ Phase is relocatable │

 │ SVAELIG │ │ X’20’ Phase is SVA-eligible │

 │ SVAPHASE │ │ X’10’ Phase is located in SVA │

 │ PCIL │ │ X’08’ Non-SYSLIB phase │

 │ NOTFND │ │ X’04’ Phase not found │

 │ ACTIVE │ │ X’02’ Directory entry active │

 │ DIRSWIT │ 1 │ Flags: │

 │ DIRRMOD │ │ X’20’ 1: RMODE=ANY, 0: RMODE=24 │

 │ DIRAM31 │ │ X’10’ 1: AMODE=31 or AMODE=ANY │

 │ DIRAM24 │ │ X’08’ 1: AMODE=24 or AMODE=ANY │

 │ │ │ 11: AMODE=ANY, 10: AMODE=31 │

 │ │ │ 00 or 01: AMODE=24 │

 │ DIRPPP │ 3 │ Load point at link-edit time │

 │ DIREEE │ 3 │ Entry point at link-edit time │

 │ │ 3 │ Reserved │

 │ DIRAAA │ 3 │ Partition start at link-edit time │

 │ DIRVEE │ 4 │ Entry point of phase in SVA │

 │ │ 4 │ Reserved │

 └───────────┴─────────┴───┘

Figure 21. Layout of the MAPDNTRY-Generated DSECT for DE=YES

MAPDNTRY

308 z/VSE System Macros Reference

MAPEXTR (Map EXTRACT Service) Macro

CC

name
 MAPEXTR ID=BDY,MODE=mname

,DSECT=YES

,PREFIX=xyz
 CE

CC

name
 MAPEXTR ID=ATLCUU

,DSECT=YES

,PREFIX=xyz
 CE

Required RMODE: 24 or ANY

The MAPEXTR macro may be used to interpret the information retrieved by the

EXTRACT macro with the corresponding keywords ID=BDY,MODE=mname or

ID=ATLCUU. If ’name’ is omitted, MAPEXTR is taken as default.

ID=BDY

Specifies that partition boundary information retrieved by the EXTRACT

ID=BDY,... macro is to be interpreted.

ID=ATLCUU

Specifies that input required for, and the output returned by, the EXTRACT

ID=ATLCUU,... macro is to be mapped. For the layout of the generated DSECT

see Figure 25 on page 311.

MODE=mname

Specifies the type of boundary information that has been extracted. mname can

be one of the following:

T Temporary boundary information retrieved by (old) EXTRACT

ID=BDY,MODE=T and mapped by (old) MAPBDY macro. The PREFIX

operand is invalid.

TEMP

Temporary boundary information retrieved by (new) EXTRACT

ID=BDY,MODE=TEMP. For the layout of the generated DSECT see

Figure 22 on page 310.

P Permanent boundary information retrieved by (old) EXTRACT

ID=BDY,MODE=P and mapped by (old) MAPBDYVR macro. The PREFIX

operand is invalid.

PERM

Permanent boundary information retrieved by (new) EXTRACT

ID=BDY,MODE=PERM. For the layout of the generated DSECT see

Figure 23 on page 310.

SYSP

System boundary information retrieved by EXTRACT

ID=BDY,MODE=SYSP. For the layout of the generated DSECT see Figure 24

on page 311.

DSECT=YES

Specifies that a mapping DSECT is to be generated. If the operand is omitted,

inline code will be generated.

PREFIX=xyz

Provides the possibility to change the first three characters of the label ’name’.

The prefix value must not be longer than three bytes. If the operand is not

specified, it defaults to MAP.

MAPEXTR

Chapter 2. Macro Descriptions 309

PREFIX is valid for MODE=TEMP|PERM|SYSP only; it is ignored for

MODE=T|P, since this invokes the old mapping macros MAPBDY and

MAPBDYVR only.

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┼───┐

 │ xyzPTBEG │ 4 │ Partition start address (first addressable │ │

 │ │ │ byte) │ │

 │ │ │ │ O │

 │ xyzPTPPE │ 4 │ Logical end of partition (last addressable │ L │

 │ │ │ byte, GETVIS area excluded) │ D │

 │ │ │ │ │

 │ xyzPTEND │ 4 │ Physical end of partition (last addressable │ M │

 │ │ │ byte, GETVIS area included) │ A │

 │ │ │ │ P │

 │ xyzPFXLL │ 4 │ PFIX limit (in no. of K bytes) or zero (in │ B │

 │ │ │ real mode) │ D │

 │ │ │ │ Y │

 │ xyzPFXCL │ 4 │ PFIX count (no. of pages fixed by a PFIX │ │

 │ │ │ request) │ │

 │-----------│---------│---├───┤

 │ xyzPFXL3 │ 4 │ PFIX limit for storage above 16MB │ N │

 │ │ │ │ E │

 │ xyzPFXC3 │ 4 │ PFIX count for this storage (pages) │ W │

 ├───────────┼─────────┼───┼───┘

 │ xyzBDYTL │ │ Length of area │

 └───────────┴─────────┴───┘

Figure 22. Layout of the MAPEXTR-Generated DSECT for MODE=TEMP. Note that the

upper part of the DSECT is identical with the old MAPBDY DSECT.

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┼───┐

 │ xyzVPBEG │ 4 │ Virtual partition start address; corresponds│ │

 │ │ │ to the latest allocation. │ O │

 │ │ │ │ L │

 │ xyzVPPPE │ 4 │ Logical end of virtual partition (last │ D │

 │ │ │ addressable byte, GETVIS area excluded). │ │

 │ │ │ │ M │

 │ xyzVPEND │ 4 │ Physical end of virtual partition (last │ A │

 │ │ │ addressable byte, GETVIS area included); │ P │

 │ │ │ corresponds to the latest allocation. │ B │

 │ │ │ │ D │

 │ xyzRPBEG │ 4 │ Real partition start address; corresponds │ Y │

 │ │ │ to the latest allocation. │ V │

 │ │ │ │ R │

 │ xyzRPEND │ 4 │ Real partition end address (last addressable│ │

 │ │ │ byte); corresponds to the latest allocation.│ │

 │-----------│---------│---├───┤

 │ xyzPFXLL │ 4 │ PFIX limit for storage below 16MB │ N │

 │ │ │ │ E │

 │ xyzPFXL3 │ 4 │ PFIX limit for storage above 16MB │ W │

 ├───────────┼─────────┼───┼───┘

 │ xyzPDYPL │ │ Length of area │

 └───────────┴─────────┴───┘

Figure 23. Layout of the MAPEXTR-Generated DSECT for MODE=PERM. Note that the

upper part of the DSECT is identical with the old MAPBDYVR DSECT.

MAPEXTR

310 z/VSE System Macros Reference

┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┼───┐

 │ xyzSUPBG │ 4 │ Begin of supervisor area │ │

 │ xyzSUPND │ 4 │ End of supervisor area │ │

 │ xyzSSBEG │ 4 │ Begin of SDAID area │ O │

 │ xyzSSEND │ 4 │ End of SDAID area │ L │

 │ xyzSVA │ 4 │ Begin of Shared Virtual Area │ D │

 │ xyzESVA │ 4 │ End of Shared Virtual Area │ │

 │ xyzSPBEG │ 4 │ Begin of shared partition area │ M │

 │ xyzSPEND │ 4 │ End of shared partition area │ A │

 │ xyzPRPBG │ 4 │ Begin of private partition area │ P │

 │ xyzPRPND │ 4 │ End of private partition area │ S │

 │ xyzVPBEG │ 4 │ Begin of VPOOL area │ Y │

 │ xyzVPEND │ 4 │ End of VPOOL area │ S │

 │ xyzSVIS │ 4 │ Begin of system GETVIS area │ P │

 │ xyzSVISE │ 4 │ End of system GETVIS area │ │

 │ xyzPPBEG │ 4 │ Begin of problem program area │ │

 │ │ │ (may be shared or private) │ │

 │-----------│---------│---├───┤

 │ xyzSVA3B │ 4 │ Begin of 31-bit SVA │ │

 │ xyzSVA3E │ 4 │ End of 31-bit SVA │ │

 │ xyzSGV3B │ 4 │ Begin of 31-bit system GETVIS area │ N │

 │ xyzSGV3E │ 4 │ End of 31-bit system GETVIS area │ E │

 │ xyzVLB3B │ 4 │ Begin of 31-bit virtual library │ W │

 │ xyzVLB3E │ 4 │ End of 31-bit virtual library │ │

 │ xyzVSIZE │ 4 │ Total virtual storage size in KB │ I │

 │ xyzSYSVS │ 4 │ Total virtual storage size of system-used │ N │

 │ │ │ address spaces (KB) │ F │

 │ xyzSPFLL │ 4 │ System PFIX limit in low area │ O │

 │ xyzSPFCL │ 4 │ System PFIX count in low area │ │

 │ xyzSPFL3 │ 4 │ System PFIX limit in high area │ │

 │ xyzSPFC3 │ 4 │ System PFIX count in high area │ │

 ├───────────┼─────────┼───┼───┘

 │ xyzSYLEN │ │ Length of area │

 └───────────┴─────────┴───┘

Figure 24. Layout of the MAPEXTR-Generated DSECT for MODE=SYSP

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ xyzATVER │ 4 │ Version indicator, must be X’0000’. │

 │ xyzATCUU │ 2 │ Cleared to X’0000’ and filled with X’0cuu’ │

 │ │ │ if cuu was found. (X’0000’ if no free │

 │ │ │ drive found, indicated by return code.) │

 │ xyzATDVT │ 6 │ External device type code of the requested │

 │ │ │ tape drive as on the ADD command (3490E, │

 │ │ │ TPA, EFMT1). Always start at the begin- │

 │ │ │ ning of the 6 character field (left │

 │ │ │ margin and continue the input without │

 │ │ │ using blanks. (Not used if running under │

 │ │ │ VM, but validity is checked.) │

 │ xyzATLNM │ 8 │ Logical name of the requested automatic │

 │ │ │ tape library. (Not used if running │

 │ │ │ under VM, but validity is checked.) │

 │ xyzATLLN │ │ Length of one entry in list. │

 └───────────┴─────────┴───┘

Figure 25. Layout of the MAPEXTR-Generated DSECT for ID=ATLCUU

MAPEXTR

Chapter 2. Macro Descriptions 311

MAPSAVAR (Map Save Area) Macro

CC MAPSAVAR CE

The MAPSAVAR macro may be used to interpret the save area information

returned by the STXIT macro. A mapping DSECT with the name SVUARA is

generated.

For the layout and a description of the DSECT fields, see Figure 26.

 If AMODE=ANY or MSGDATA=YES is specified in the STXIT macro, the extended

save area as shown in Figure 27 on page 313 is used:

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ SVUPSW │ 4 │ First half of (BC-mode) PSW of interrupted │

 │ │ │ program │

 │ SVUPSW2 │ 4 │ Second half of PSW │

 │ SVUR00 │ 4 │ Save area for register 0 │

 │ SVUR01 │ 4 │ Save area for register 1 │

 │ . │ │ . │

 │ . │ │ . │

 │ . │ │ . │

 │ SVUR0F │ 4 │ Save area for register 15 │

 │ SVUOLDLN │ │ Old save area length │

 └───────────┴─────────┴───┘

Figure 26. Layout of the STXIT Save Area (AMODE=24 and MSGDATA=NO)

MAPSAVAR

312 z/VSE System Macros Reference

┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ SVUPSW │ 4 │ First half of (BC-mode) PSW of interrupted │

 │ │ │ program │

 │ SVUPSW2 │ 4 │ Second half of PSW │

 │ SVUR00 │ 4 │ Save area for register 0 │

 │ SVUR01 │ 4 │ Save area for register 1 │

 │ . │ │ . │

 │ . │ │ . │

 │ . │ │ . │

 │ SVUR0F │ 4 │ Save area for register 15 │

 │ SVUOLDLN │ │ Old save area length │

 │ SVUAPSW │ 8 │ Actual PSW of interrupted program │

 │ │ 8 │ Reserved │

 │ │ 64 │ Exit-dependent area: │

 │ SVUABINF │ │ AB exit: Cancel information │

 │ SVUMGADR │ │ OC exit: Data from MSG command │

 │ SVUMCSID │ │ 4-byte console ID (CONSID) of the console │

 │ │ │ where the MSG command was entered. The │

 │ │ │ setting of the high-order bit indicates │

 │ │ │ if the console has ’master’ (0) or │

 │ │ │ ’user’ (1) authority. │

 │ SVUMNAME │ │ 8-byte name of the console where the │

 │ │ │ MSG command was entered. │

 │ SVUMCART │ │ 8-byte command and response token (CART) │

 │ │ │ associated with the MSG command. │

 │ SVUMDLNG │ │ 2-byte length of MSG data. │

 │ SVUMDATA │ │ 31-bit pointer to MSG data (zero if no data │

 │ │ │ is specified). │

 │ SVUEXLNG │ │ Length of OC exit extension │

 │ SVUAREG │ 64 │ Save area for access registers │

 │ SVUAR00 │ │ Save area for access register 1 │

 │ . │ │ . │

 │ . │ │ . │

 │ . │ │ . │

 │ SVUAR0F │ │ Save area for access register 15 │

 │ SVULNGTH │ │ New save area length │

 │ SVUOCLEN │ │ Save area for OC exit extension │

 └───────────┴─────────┴───┘

Figure 27. Layout of the Extended STXIT Save Area (AMODE=ANY or MSGDATA=YES)

MAPSAVAR

Chapter 2. Macro Descriptions 313

MAPSSID (Map for SUBSID) Macro

CC

name
 MAPSSID CE

The macro generates a mapping DSECT which is used to interpret the supervisor

information retrieved with the SUBSID macro. The output shows the supervisor

identification string in the format as shown in Figure 28.

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ IJBSSID1 │ 2 │ Always zero │

 │ IJBSNAME │ 4 │ Character string: SUP │

 │ IJBSVERS │ 1 │ Version number * │

 │ IJBSREL │ 1 │ Release number * │

 │ IJBSMOD │ 1 │ Modification level * │

 │ IJBSVARL │ 1 │ Length of variable part (a max. of 24 bytes) │

 │ │ │ │

 │ IJBSFL01 │ 1 │ Flag byte 1: │

 │ IJBSF370 │ │ X’80’ ESA-mode supervisor │

 │ IJBSFCKD │ │ X’20’ CKD support available │

 │ IJBSFFBA │ │ X’10’ FBA support available │

 │ IJBSFAPR │ │ X’08’ 3800 support available │

 │ IJBRCHAN │ │ X’04’ Relocating channels │

 │ IJBSVMLE │ │ X’02’ Reserved │

 │ IJBSVMAC │ │ X’01’ Any supervisor active under VM control │

 │ │ │ │

 │ IJBSFL02 │ 1 │ Flag byte 2: │

 │ IJBSFAF │ │ X’80’ Always 1 │

 │ IJBSFPAG │ │ X’40’ 4K page size │

 │ IJBSUNAT │ │ X’20’ Running unattended │

 │ IJBSESAS │ │ X’10’ Reserved │

 │ IJBSACCR │ │ X’08’ Access registers available │

 │ │ │ │

 │ IJBSFL03 │ 1 │ Flag byte 3: │

 │ IJBSFSEC │ │ X’80’ Access-control support is available │

 │ IJBSFSHR │ │ X’40’ DASD sharing support is available │

 │ IJBSFSAT │ │ X’20’ For internal use │

 │ │ │ │

 │ IJBSFL04 │ 1 │ Flag byte 4: Reserved │

 │ │ │ │

 │ IJBSLCON │ 2 │ Length of sublibrary search chain │

 │ IJBSFIXL │ │ Length of fixed part │

 │ IJBSSLEN │ │ Total length of supervisor entry │

 ├───────────┴─────────┴───┤

 │* This information pertains to the VSE/Advanced Functions release. │

 │ For z/VSE 3.1, the VSE/Advanced Functions release is 7.1.0. │

 └───┘

Figure 28. Layout of MAPSSID-Generated DSECT

MAPSSID

314 z/VSE System Macros Reference

MAPSYSP (Map System Layout) Macro

CC

name
 MAPSYSP

DSECT=

NO

YES

 CE

Required RMODE: 24 or ANY

The macro may be used to interpret the information retrieved by the EXTRACT

macro for ID=BDY and MODE=SYSP. If ’name’ is omitted, MAPSYSP is taken as

default.

DSECT=NO | YES

DSECT=YES specifies that a mapping DSECT is generated. If the operand is

omitted, inline code is generated.

 For the layout and a description of the DSECT fields, see Figure 29.

 ┌───────────┬─────────┬───┐

 │ Field │ No. of │ │

 │ Name │ Bytes │ Contents │

 ├───────────┼─────────┼───┤

 │ MAPSUPBG │ 4 │ Begin of supervisor area │

 │ MAPSUPND │ 4 │ End of supervisor area │

 │ MAPSSBEG │ 4 │ Begin of SDAID area │

 │ MAPSSEND │ 4 │ End of SDAID area │

 │ MAPSVA │ 4 │ Begin of Shared Virtual Area │

 │ MAPESVA │ 4 │ End of Shared Virtual Area │

 │ MAPSPBEG │ 4 │ Begin of shared partition area │

 │ MAPSPEND │ 4 │ End of shared partition area │

 │ MAPPRPBG │ 4 │ Begin of private partition area │

 │ MAPPRPND │ 4 │ End of private partition area │

 │ MAPVPBEG │ 4 │ Begin of VPOOL area │

 │ MAPVPEND │ 4 │ End of VPOOL area │

 │ MAPSVIS │ 4 │ Begin of system GETVIS area │

 │ MAPSVISE │ 4 │ End of system GETVIS area │

 │ MAPPPBEG │ 4 │ Begin of problem program area │

 │ │ │ (may be shared or private) │

 │ MAPSYLEN │ │ Length of MAPSYSP area │

 └───────────┴─────────┴───┘

Figure 29. Layout of the MAPSYSP-Generated DSECT

MAPSYSP

Chapter 2. Macro Descriptions 315

MAPXPCCB (Map Cross-Partition Control Block) Macro

CC

name

MAPXPCCB
 VERSION=1

VERSION=2

CE

This macro causes a DSECT of the cross-partition communication control block

XPCCB to be generated.

VERSION=1 | 2

Indicates the version of the XPCCB. Two versions of the XPCCB are

maintained. VERSION=1 is the default. VERSION=2 is required if the

application wants to make use of the TIMEOUT, SENDI, or MECB functions of

the XPCC support.

The most important fields of the XPCCB are described in the following figures:

v IJBXRETC (return codes) - see Figure 30 on page 317

v IJBXREAS (reason codes, set when an ECB is posted) - see Figure 31 on page 319

v IJBXFCT (function codes) - see Figure 32 on page 319

v IJBXFDSC (function descriptors) - see Figure 33 on page 320.

MAPXPCCB

316 z/VSE System Macros Reference

┌─────────┬─────────┬────────────────┬──────────────────────────────────┐

│Reg. 15 │ IJBXRETC│(Symbolic Name) │Reason │

├─────────┼─────────┼────────────────┼──────────────────────────────────┤

│X’00’ │ X’00’ │(IJBXREOK) │Request completed successfully. │

│ │ │ │ │

│X’04’ │ X’01’ │(IJBXDAPP) │Identification with the same │

│ │ │ │application was requested │

│ │ │ │previously in different partition.│

│ │ │ │The connection is granted. │

│ │ X’02’ │(IJBXAPSP) │Identification with the same │

│ │ │ │application was requested │

│ │ │ │previously in same partition. │

│ │ │ │The connection is granted. │

│ │ X’03’ │(IJBXFCRQ) │More than one CONNECT request is │

│ │ │ │pending for this application. │

│ │ X’04’ │(IJBXNIDN) │Other side did no IDENT until now.│

│ │ X’05’ │(IJBXNCNN) │Other side did no CONNECT for │

│ │ │ │this application until now. │

│ │ X’1B’ │(IJBXOICL) │Request already cleared. │

│ │ X’20’ │(IJBXSSWI) │SENDI protocol switched to SEND │

│ │ │ │protocol because RECEIVE area is │

│ │ │ │too small. │

│ │ X’21’ │(IJBXWECB) │Invalid main ECB address │

│ │ │ │(address ignored). │

│ │ X’22’ │(IJBXBUFS) │CLEAR request accepted, wait on │

│ │ │ │IJBXSECB for completion. │

│X’08’ │ X’06’ │(IJBXWCBK) │XPCCB control block format error. │

│ │ X’07’ │(IJBXWIDK) │Wrong identify token. │

│ │ │ │(Token is invalid, or application │

│ │ │ │issued TERMQSCE already, or │

│ │ │ │CONNECT from pseudo partition │

│ │ │ │without an IDENTify.) │

│ │ X’08’ │(IJBXWPID) │Wrong path ID. │

│ │ X’09’ │(IJBXWOWN) │Request was done under a task │

│ │ │ │that has an incorrect task ID. │

│ │ X’0A’ │(IJBXWIND) │Buffer list was specified for a │

│ │ │ │function that does not support it.│

│ │ X’0B’ │(IJBXWLST) │Too many buffers, or buffer length│

│ │ │ │exceeds 16M bytes, or length is │

│ │ │ │smaller than 2 in a CMS connection│

│ │ X’0C’ │(IJBXWRAR) │Receiving buffer is too small. │

│ │ X’0D’ │ │Reserved. │

│ │ X’0E’ │(IJBXNSTO) │Try later, not sufficient storage │

│ │ │ │to allocate system control blocks.│

│ │ X’0F’ │ │Reserved. │

│ │ X’10’ │(IJBXNREQ) │No request pending. │

│ │ │ │(Line not busy, or │

│ │ │ │SEND was from other side, or │

│ │ │ │data already cleared). │

│ │ X’11’ │(IJBXCCLR) │Request was already cleared. │

└─────────┴─────────┴────────────────┴──────────────────────────────────┘

Figure 30. MAPXPCCB Macro Return Codes (IJBXRETC) (Part 1 of 2)

MAPXPCCB

Chapter 2. Macro Descriptions 317

┌─────────┬─────────┬────────────────┬──────────────────────────────────┐

│Reg. 15 │ IJBXRETC│(Symbolic Name) │Reason │

├─────────┼─────────┼────────────────┼──────────────────────────────────┤

│X’08’ │ X’12’ │(IJBXCBSY) │Communication link already busy │

│ │ │ │(FUNC=SEND/R). │

│ │ X’13’ │(IJBXWSEQ) │REPLY was issued before data │

│ │ │ │was received. │

│ │ X’14’ │(IJBXNTRM) │At least one connection is still │

│ │ │ │busy for the application. │

│ │ X’15’ │(IJBXNDC1) │Busy from own SEND │

│ │ │ │(FUNC=DISCONN). │

│ │ X’16’ │(IJBXNDC2) │SEND from other side pending │

│ │ │ │(FUNC=DISCONN). │

│ │ X’17’ │(IJBXQSCE) │Other side issued TERMQSCE. │

│ │ X’18’ │(IJBXNOC1) │A connection was never existing. │

│ │ X’19’ │(IJBXNOC2) │The other side terminated normally│

│ │ X’1A’ │(IJBXNOC3) │The other side terminated │

│ │ │ │abnormally. │

│ │ X’1C’ │(IJBXWCBA) │XPCCB address of this request │

│ │ │ │differs from the one given with │

│ │ │ │CONNECT. │

│ │ X’1D’ │(IJBXER25) │Input contains invalid address. │

│ │ X’1E’ │(IJBXWSIS) │Wrong sequence in SENDI │

│ │ │ │protocol. │

│ │ X’1F’ │(IJBXWTSK) │Task requested communication │

│ │ │ │with itself. │

│ │ X’23’ │(IJBXDUP) │Application name was specified │

│ │ │ │twice, at least once with UNIQUE. │

│ │ X’24’ │ │Reserved. │

│ │ to │ │ │

│ │ X’29’ │ │ │

│ │ X’2A’ │(IJBXINAM) │Invalid application name │

│ │ │ │(application name contains │

│ │ │ │a blank or all binary zeros). │

│ │ X’2B’ │(IJBXTIMO) │A connection never existed because│

│ │ │ │TIMEOUT occurred, or TIMEOUT=0 │

│ │ │ │was specified with CONNECT, but │

│ │ │ │the target application has not yet│

│ │ │ │issued CONNECT. │

└─────────┴─────────┴────────────────┴──────────────────────────────────┘

Figure 30. MAPXPCCB Macro Return Codes (IJBXRETC) (Part 2 of 2)

MAPXPCCB

318 z/VSE System Macros Reference

┌─────────┬───────┬─────────┬───┐

│Symbolic │ Hex │Posted │ Description │

│ Name │ Value │ ECB │ │

├─────────┴───────┴─────────┴───┤

│One of the following reason codes will be set up in IJBXREAS: │

├─────────┬───────┬─────────┬───┤

│IJBXCPRG │ X’01’ │IJBXSECB │ After SEND/SENDR the receiver │

│ │ │ │ issued PURGE. │

│IJBXCLEA │ X’02’ │IJBXRECB │ Sender issued CLEAR before receiver │

│ │ │ │ was able to receive/reply. │

│IJBXRECX │ X’03’ │IJBXCECB │ After SENDR command, RECEIVE is being │

│ │ │ │ executed by partner. │

│ │ X’04’ │ │ Reserved. │

│ │ X’05’ │ │ Reserved. │

│IJBXMQSD │ X’06’ │IJBXSECB │ Maintask issued TERMQSCE and subtask │

│ │ │IJBXRECB │ has CONNECT requests open. │

│ │ │IJBXCECB │ │

│IJBXSWSR │ X’07’ │IJBXRECB │ A SENDI was changed to SEND because │

│ │ │ │ RECEIVE area was too small. │

│ │ X’08’ │ │ Reserved. │

│ │ to │ │ │

│ │ X’0B’ │ │ │

│IJBXTOUT │ X’0C’ │IJBXCECB │ The specified time interval elapsed and │

│ │ │ │ the requested application has not issued │

│ │ │ │ CONNECT (DISCONNECT is required for │

│ │ │ │ acknowledgement). │

├─────────┴───────┴─────────┴───┤

│The next two reason codes are OR’ed to the reason code field. │

├─────────┬───────┬─────────┬───┤

│IJBXDISC │ X’40’ │IJBXSECB │ Other side issued DISCONNECT. │

│ │ │IJBXRECB │ │

│ │ │IJBXCECB │ │

│IJBXABDC │ X’80’ │IJBXSECB │ Other side was disconnected due to │

│ │ │IJBXRECB │ abnormal termination. │

│ │ │IJBXCECB │ │

└─────────┴───────┴─────────┴───┘

Figure 31. MAPXPCCB Reason Codes (IJBXREAS)

┌─────────┬───────┬──────────────────────────┐

│Symbolic │IJBXFCT│ Description │

│ Name │Hex Val│ │

├─────────┼───────┼──────────────────────────┤

│IJBXID │ X’01’ │ Identify │

│IJBXCON │ X’02’ │ Connect │

│IJBXSND │ X’03’ │ Send │

│IJBXSNDR │ X’04’ │ Send with reply │

│IJBXRCV │ X’05’ │ Receive │

│IJBXREP │ X’06’ │ Reply │

│IJBXCLR │ X’07’ │ Clear │

│IJBXPRG │ X’08’ │ Purge │

│IJBXDSC │ X’09’ │ Disconnect │

│IJBXDSCP │ X’0A’ │ Disconnect and purge │

│IJBXDSCA │ X’0B’ │ Disconnect all │

│IJBXTRM │ X’0C’ │ Terminate │

│IJBXTRMP │ X’0D’ │ Terminate and purge │

│IJBXTRMQ │ X’0E’ │ Terminate and quiesce │

│IJBXSNDI │ X’0F’ │ Send with immediate move│

└─────────┴───────┴──────────────────────────┘

Figure 32. MAPXPCCB Function Codes (IJBXFCT)

MAPXPCCB

Chapter 2. Macro Descriptions 319

MODDTL (Modify DTL Block) Macro

CC

name
 MODDTL ADDR= name1

(S,name1)

(r1)

,NAME=

name2

(S,name2)

(r2)

 C

C
,CHANGE=

ON

OFF

,CONTROL=

E

S

,LOCKOPT=

1

2

4

 C

C
,KEEP=

NO

YES

,OWNER=

TASK

PARTITION

,SCOPE=

INT

EXT

 C

C
,VOLID=

name3

(S,name3)

(r3)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

The macro modifies operands (fields) of a DTL (Define The Lock) control block. A

DTL is used by the LOCK/UNLOCK macros to enqueue/dequeue a specific

resource. The control block must have been generated by the DTL or GENDTL

macro.

Operands not specified in the MODDTL macro leave the corresponding field in the

DTL unchanged. There are no default values for the MODDTL macro.

ADDR=name1 | (S,name1) | (r1)

Specifies the address of the DTL.

NAME=name2 | (S,name2) | (r2)

Specifies the address of the area where a 12-byte long resource name is stored.

┌─────────┬────────┬────────┬───┐

│Symbolic │IJBXFDSC│ Valid │ Description │

│ Name │Hex Val.│ with │ │

├─────────┼────────┼────────┼───┤

│IJBXPOST │ X’80’ │ SENDR │ The sender requests posting of IJBXCECB │

│ │ │ │ when the data has been received. │

│IJBXUNIQ │ X’40’ │ IDENT │ The current application name is │

│ │ │ │ requested to be unique. │

│IJBXFTIM │ X’08’ │CONNECT │ Timeout required │

│IJBXFDAB │ X’10’ │DISCONN │ The requested disconnect has to be │

│ │ │DISCPRG │ indicated as abnormal. │

└─────────┴────────┴────────┴───┘

Figure 33. MAPXPCCB Function Descriptor Codes (IJBXFDSC)

MODDTL

320 z/VSE System Macros Reference

If the name is shorter than 12 bytes, it must be padded with blanks. It is by

this name, that z/VSE controls shared access of the resource as requested by

active tasks via the LOCK macro. These tasks may all be active in one

partition, or they may be distributed over several partitions; the resource-share

control extends across partitions.

 The name you specify must not begin with any of the characters A through I

or V because these characters are reserved for IBM.

CHANGE=ON | OFF

CHANGE=ON sets up the DTL such that a subsequent UNLOCK macro

would not release the resource, but reduce its locking status. Reducing the lock

status can be done only when the current lock status is defined with strongest

possible values: CONTROL=E and LOCKOPT=1. At least one of the operands

CONTROL and LOCKOPT should be specified, too. CHANGE=OFF causes a

subsequent UNLOCK macro to resume its normal function: to dequeue the

resource.

CONTROL=E | S

Defines how the named resource can be shared while your program owns it,

which is determined by this specification and your specification for the

operand LOCKOPT. A specification of E means the resource is enqueued for

exclusive use; a specification of S means the resource is enqueued as sharable.

LOCKOPT=1 | 2 | 4

Together with the CONTROL operand, this operand determines how the

system controls shared access in response to a LOCK request.

LOCKOPT=1 and CONTROL=E

No other task is allowed to use the resource concurrently.

LOCKOPT=1 and CONTROL=S

Other ’S’ users are allowed concurrent access, but no concurrent ’E’ user is

allowed.

LOCKOPT=2 and CONTROL=E

No other ’E’ user gets concurrent access; however, other ’S’ users can have

access to the resource.

LOCKOPT=2 and CONTROL=S

Other ’S’ users can have concurrent access and, in addition, one ’E’ user is

allowed.

LOCKOPT=4 and CONTROL=E

No other ’E’ user from another system is allowed concurrent access.

However, other ’S’ users from other systems may use the resource

concurrently. Within your own system, you always have access to the

resource.

LOCKOPT=4 and CONTROL=S

Other ’S’ users can have concurrent access and, in addition, one ’E’ user

from another system is allowed.

Note: If the DASDSHR support is not generated in the supervisor, the LOCK

request for the resource is always granted.

All users of a particular resource have to use the same LOCKOPT specification

when they lock the resource. Exception: If LOCKOPT=1 and CONTROL=E, the

lock status may be modified.

KEEP=NO | YES

This operand may be used to lock the named resource beyond job step

MODDTL

Chapter 2. Macro Descriptions 321

boundaries. Only a main task should use this operand. KEEP=NO indicates

that the named resource once locked, is to be released automatically at the end

of the particular job step. With KEEP=YES, a named resource that is locked

remains locked across job steps; it will be automatically released at end of job.

If a job terminates abnormally, all resources with KEEP=YES are unlocked by

the abnormal termination routine.

OWNER=TASK | PARTITION

Defines whether the named resource, once locked, can be unlocked only by the

task which issued the corresponding LOCK request (OWNER=TASK), or

whether it can be unlocked by any task within the partition

(OWNER=PARTITION).

 When OWNER is defined as PARTITION, a LOCK request for the resource

must not specify FAIL=WAIT or FAIL=WAITC because deadlock prevention

(return code 16) is not supported with OWNER=PARTITION.

SCOPE=INT | EXT

This operand may be used for locking resources across systems. SCOPE=EXT

specifies that the lock is used across systems. Specify SCOPE=INT if the

locking is to apply to one system only.

VOLID=name3 | (S,name3) | (r3)

Specifies the address of a 6-byte identifier of a DASD volume which (at the

time of the LOCK request) is to be checked whether it is mounted on an I/O

device that is defined as being shared across systems. If the device is a shared

DASD, the LOCK request is treated as being defined with SCOPE=EXT (that is,

the SCOPE operand is ignored); otherwise, SCOPE=INT is assumed.

MODDTL

322 z/VSE System Macros Reference

MRMOD (MICR Input Module Definition) Macro

CC

name

MRMOD
 ADDRESS=SINGLE

ADDRESS=DUAL

,BUFFERS=n

,SEPASMB=YES

CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro defines a logic module for a MICR or OCR file. If you do not specify a

name, IOCS assigns a standard module name: IJUxZZZZ. In this name:

 x = S: single address adapter

 D: dual address adapter

ADDRESS=SINGLE | DUAL

Required only if the dual address adapter is used for the IBM 1419 or 1275. If

the operand is omitted, the single address adapter is assumed by the

assembler.

BUFFERS=n

A numeric value equal to the corresponding value specified in the DTFMR

macro.

SEPASMB=YES

Include this operand only if the module is to be assembled separately. This

produces an object module ready to be cataloged into a suitable sublibrary

either by the standard name or by the user-specified name. The name is used

as the module’s transfer address. If you omit the operand, the assembler

assumes that the MRMOD macro is assembled together with the DTF in your

program.

MRMOD

Chapter 2. Macro Descriptions 323

MVCOM (Move to Communication Region) Macro

CC

name
 MVCOM to,length, from

(0)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The MVCOM macro modifies the content of bytes 12 through 23 of the

communication region of the partition from which the macro is issued. This area is

commonly referred to as the user area. For the layout of the partition

communication region, see “Communication via the Partition Communication

Region” in the z/VSE System Macros User’s Guide.

to Specifies the address (relative to the first byte of the region) of the first

communication region byte to be modified.

length

Specifies the number of bytes (1 to 12) to be inserted.

from | (0)

Specifies the address (either as a symbol or in register notation) of the bytes to

be inserted.

The following example shows how to move three bytes from the symbolic location

DATA into bytes 16 through 18 of the communication region:

 MVCOM 16,3,DATA

NOTE (Note-Address) Macro

CC

name
 NOTE filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

filename | (1)

The macro obtains identification for a physical record or logical block that was

last read from or written to the file specified for filename (as a symbol or in

register notation). At least one READ or WRITE operation should be

successfully completed by means of the CHECK macro before issuing the

MVCOM

324 z/VSE System Macros Reference

NOTE macro. To NOTE a desired record successfully, the POINTR, POINTS, or

POINTW macros must not be issued between CHECK and NOTE.

For magnetic tape, the last record read or written in the specified file is identified

by the number of physical records read or written from the load point. The

physical record number is returned in binary in the three low-order bytes of

register 1. The high-order byte contains binary zero.

For CKD DASD, the binary number returned in register 1 is in the form cchr,

where

 cc = cylinder number

 h = track number

 r = record number within the track

Register 0 contains, in the two low-order bytes, the unused space remaining on the

track following the end of the identified record.

For FBA devices, register 1 contains an address relative to the beginning of the file

in the form cccb, where ccc is the relative number of the current control interval

(origin 0), and b is the relative block number within the current CI (origin 1).

Register 0 contains the length of the longest logical block that could completely fit

in the CI following the NOTEd logical block. A logical block three bytes longer

than the returned value will fit in the CI if it is of the same length as both the

NOTEd block and the block preceding the NOTEd block. (This means that if the CI

were exactly filled when the NOTE was issued, a value of -3 would be passed back

in register 0.)

You must provide a four- or six-byte field and store in it the record identification

and the remaining capacity so that it can be used later by a POINTR or POINTW

macro to find the NOTEd record again. The remaining two-byte track or CI

capacity is needed only when a WRITE SQ is to follow the POINTR or POINTW.

OPEN and OPENR (Open a File) Macro

CC

name

OPEN

H

 ,

filename

(rn)

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

Except for the code in the operation field, the format of the OPENR macro is the

same as that of the OPEN macro.

The OPEN (or OPENR) macro activates all files.

NOTE

Chapter 2. Macro Descriptions 325

When OPENR is specified, the symbolic address constants generated from the

operands of the macro are self-relocating. When OPEN is specified, the symbolic

address constants are not self-relocating. Throughout the manual the term OPEN

also implies OPENR, unless stated otherwise.

OPEN need not be issued for DTFCN files in a non-self-relocating environment.

However, self-relocating programs using LIOCS must specify OPENR for all files,

including console files.

If OPEN attempts to activate a file whose device is unassigned, the job is

terminated. If the device is assigned IGN, OPEN does not activate the file, but

turns on bit 2 of the DTF byte 16, which indicates that the file is not activated. If

this bit is on after issuing an OPEN, I/O operations may not be attempted for the

file.

filename | (rn)

Code the symbolic name of the file (DTF filename) to be opened. You can open

up to 16 files with one macro by coding additional file names. Alternatively,

you can load the address of a file name into a register and specify the register,

using ordinary register notation.

 The high-order 8 bits of this register must be zeros. For OPENR, the address of

the file’s name may be preloaded into any of the registers 2 through 12. For

OPEN, this address may be preloaded into register 0 or any of the registers 2

through 12.

OPEN(R)

326 z/VSE System Macros Reference

ORMOD (Optical Reader Input Module Definition) Macro

CC

name
 ORMOD DEVICE= 1287D

1287T

,BLKFAC=YES

,CONTROL=YES
 C

C

,IOAREA2=YES

 ,RECFORM=FIXUNB

,RECFORM=

FIXBLK

UNDEF

,SEPASMB=YES

,WORKA=YES

CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The ORMOD macro defines a logic module for an IBM 1287 or 1288 optical reader

file.

Note: ORMOD is not used for the 3881 Optical Mark Reader. The IBM 3881 uses

CDMOD.

BLKFAC=YES

Include this operand if RECFORM=UNDEF and groups of undefined journal

tape records are to be processed as blocks of data. For more information, see

the DTFOR BLKFAC=n operand. The DTFOR used with this module must

include RECFORM=UNDEF and BLKFAC=n.

CONTROL=YES

Include this operand if CNTRL macros are to be used with the associated

DTFs. The module also processes files that do not use the CNTRL macro.

DEVICE=1287D | 1287T

This operand must be included to specify the I/O device associated with this

file. 1287D specifies a 1287 or 1288 document file. 1287T specifies a 1287

journal tape file.

IOAREA2=YES

Include this operand (journal tape only) if a second I/O area is used. The

DTFOR used with this module must also include the IOAREA2 operand.

RECFORM=FIXUNB | FIXBLK | UNDEF

This operand generates a module that processes the specified record format.

Any DTF used with the module must have the same operand.

SEPASMB=YES

Include this operand if the module is to be assembled separately. This

produces an object module ready to be cataloged into a suitable sublibrary,

either by the standard name or by the user-specified name. This name is used

also as the module’ transfer address. If you omit this operand, the assembler

assumes that the module is assembled together with the DTF in your program.

ORMOD

Chapter 2. Macro Descriptions 327

WORKA=YES

Include this operand (journal tape only) if records are to be processed in work

areas instead of in I/O areas. Any DTF used with the module must have the

same operand.

Standard ORMOD Names

Each name begins with a 3-character prefix (IJM) followed by a 5-character field

corresponding to the options permitted in the generation of the module.

ORMOD name = IJMabcde

 Char. Content Specified Option

a F RECFORM=FIXUNB

 X RECFORM=FIXBLK

 U RECFORM=UNDEF

 D RECFORM=UNDEF and BLKFAC=YES

b C CONTROL=YES

 Z CONTROL=YES is not specified

c I IOAREA2=YES

 W WORKA=YES

 B Both are specified

 Z Neither is specified

d T Device is in tape mode

 D Device is in document mode

e Z Always

Subset/Superset ORMOD Names

The following chart shows the subsetting and supersetting allowed for ORMOD

names. One of the operands allows subsetting. For example, the module IJMFCITZ

is a superset of the module IJMFZITZ.

 * + * *

 I J M D C B D Z

 F Z I T

 U W

 X Z

+ Subsetting/supersetting permitted

* No subsetting/supersetting permitted

ORMOD

328 z/VSE System Macros Reference

PAGEIN (Page-In Request) Macro

You can code the macro in either of the following formats:

CC

name

PAGEIN

H

 ,

beginaddr,endaddr

,ECB=

ecbname

(0)

CE

CC

name
 PAGEIN listname

(1)

,ECB=

ecbname

(0)

 CE

Requirements for the caller:

AMODE:

24 (if SPLEVEL SET=1)

 24 or 31 (if SPLEVEL SET>1)

RMODE:

24 (if SPLEVEL SET=1)

 24 or ANY (if SPLEVEL SET>1)

ASC Mode:

Primary

The macro causes specific areas to be brought into real storage before their

contents are needed by the requesting program. If the requested area is already in

real storage the attached page frame will get low priority for the next page-outs.

This function, however, does not include any fixing, so that it cannot determine

whether all areas requested will still be in real storage when the entire request has

been completed.

The system can handle up to 15 active PAGEIN requests at any point in time.

In a system without page data set, execution of the macro results in a null

operation. If the ECB operand is specified, the system posts the specified event

control block.

beginaddr

Points to the first byte of the area to be paged in.

endaddr

Points to the last byte of the area to be paged in.

listname | (1)

Is the name of a list of consecutive 8-byte entries as shown below. Register

notation may also be used. The address of this parameter list and the

addresses in the list are treated as 3-byte addresses if the macro is invoked in

24-bit addressing mode and as 4-byte addresses if invoked in 31-bit addressing

mode.

 24-bit Addressing Mode:

PAGEIN

Chapter 2. Macro Descriptions 329

31-bit Addressing Mode:

 where:

Address constant =

Address of the first byte of the area to be paged in.

Length =

A binary constant indicating the length of the area to be paged in.

 The end of the list is indicated by a non-zero byte following the last entry (for

24-bit addressing mode). For 31-bit addressing mode, a non-zero value in bit 0

of the byte following the last entry indicates the end of the list.

ECB=ecbname | (0)

Specifies the symbolic address of the ECB, a fullword defined by your

program, which is to be posted when the operation is complete. An invalid

ECB address causes the task to be canceled.

Return Information

The return information can be obtained from byte 2 of the ECB. The meaning of

these bits is shown below.

Bit Meaning if the Bit is One

0 PAGEIN request is finished.

1 The page table is full, the request cannot be queued at this time for further

handling; the request is ignored, bit 0 is set.

2 One or more of the requested pages are outside the requesting program’s

partition; PAGEIN is not performed for these pages.

3 At least one negative length has been detected in the area specifications;

PAGEIN is not performed for these areas.

4 List of areas that are to be paged in is not completely in the requesting

program’s partition; the request is ignored, bit 0 is set.

5 Paging activity is too high in the system, no performance improvement is

possible; the request is terminated, bit 0 is set.

6 Reserved.

7 Inconsistent function/option code provided in register 15 (not possible if

macro interface is used).

Any combination of the return bits in the ECB is possible.

Use the WAIT macro with the ecbname as operand for completion of the PAGEIN

macro, before the bits in byte 2 of the ECB are tested.

 ┌─────────┬────────────────────┬──────────────────┐

 │ X’00’ │ Address constant │ Length minus 1 │

 └─────────┴────────────────────┴──────────────────┘

 0 1 4

 ┌──────────────────────────────┬──────────────────┐

 │ Address constant │ Length minus 1 │

 └──────────────────────────────┴──────────────────┘

 0 4

PAGEIN

330 z/VSE System Macros Reference

The PAGEIN function runs asynchronously with the requesting user task;

therefore, if no ECB has been specified, the requesting task cannot be notified

when the PAGEIN function is completed.

PAGEIN

Chapter 2. Macro Descriptions 331

PDUMP (Partial-Dump Request) Macro

CC

name
 PDUMP address1

(r1)
 , address2

(r2)

,MFG=

area

(S,area)

(r3)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

This macro provides a hexadecimal dump of the general registers and of the

virtual storage area contained between the two address expressions (address1 and

address2). The contents of registers 0 and 1 are overwritten, but the CPU status is

retained. Thus, PDUMP furnishes a dynamic dump (snapshot) useful for program

checkout. Processing continues with your next instruction.

Restrictions: The PDUMP macro cannot be used to process 31-bit addresses; these

addresses must be specified in register notation. Also, the PDUMP macro cannot be

used to dump data spaces; use the SDUMP or SDUMPX macro for this purpose.

The dump is always directed to SYSLST with 121-byte records (the first byte is an

ASA control character). If SYSLST is not assigned, the PDUMP macro is ignored. If

SYSLST is assigned to a CKD-type disk device, no output will be produced.

If SYSLST is assigned to an IBM 3211 and indexing was used before you issue the

PDUMP macro, a certain number of characters on every line of the printed dump

may be lost. To avoid this, reload the printer’s FCB (forms control buffer) by

issuing an LFCB macro before you issue the DUMP macro. The FCB image you

load must not have an indexing byte.

If non-addressable areas are included in the range of PDUMP, the system issues a

message to indicate this.

address1 | (r1),address2 | (r2)

One or both of the addresses can be specified in register notation. The specified

addresses must be 3-byte addresses; 31-bit addresses are only allowed in

register notation. If address2 is not greater than address1, or address1 is

greater than the highest address in the allocated virtual storage, the macro

results in no operation. If the value in address2 is greater than the end of the

allocated virtual storage area, the virtual storage between address1 and the end

of the allocated virtual storage is dumped.

MFG=area | (S,area) | (r3)

The operand is required if the program which issues the PDUMP is to be

reenterable. It specifies the address of a 64-byte dynamic storage area, that is,

storage which you obtained by a GETVIS macro; this area is needed by the

system during execution of the macro.

PDUMP

332 z/VSE System Macros Reference

PFIX (Page-Fix Request) Macro

You can code the macro in either of the following formats: with an explicitly

provided fix list or, in the generation format, with the implicitly generated fix list

in the macro expansion:

CC

name

PFIX

H

 ,

beginaddr,endaddr

,RLOC=BELOW

,RLOC=ANY

,RETURN=NO

,RETURN=YES

CE

CC

name

PFIX

listname

(1)

 ,RLOC=BELOW

,RLOC=ANY

 ,RETURN=NO

,RETURN=YES

CE

Requirements for the caller:

AMODE:

24 (if SPLEVEL SET=1) 24 or 31 (if SPLEVEL SET>1)

RMODE:

24 (if SPLEVEL SET=1) 24 or ANY (if SPLEVEL SET>1)

ASC Mode:

Primary

The macro causes specific pages to be brought into real storage and fixed in their

page frames until they are released at some later time. The maximum number of

pages that may be fixed at any one time is specified via the ALLOC R or the

SETPFIX job control command. Each time a page is fixed, a counter for that page is

incremented. This counter must not exceed 32,767 for any page.

beginaddr

Points to the first byte of the area to be fixed.

endaddr

Points to the last byte of the area to be fixed.

RLOC=BELOW | ANY

Specifies the location of the real storage for the PFIX requests: BELOW

indicates below 16MB, ANY indicates anywhere. (For ANY, the system first

tries to PFIX in the area above the 16MB line and only if this area is already

totally PFIXed, it tries to PFIX in the area below the 16MB line.)

RETURN=NO | YES

YES indicates that control is to be returned to the issuer of the PFIX if the

request cannot be satisfied because of temporarily fixed pages. NO indicates

that the issuer of PFIX has to wait till the requested pages have been fixed.

listname | (1)

Is the name of a list of consecutive 8-byte entries as shown below. (Register

notation may also be used.) The address of this parameter list and the

addresses in the list are treated as 3-byte addresses if the macro is invoked in

24-bit addressing mode and as 4-byte addresses if invoked in 31-bit addressing

mode.

 24-bit Addressing Mode:

PFIX

Chapter 2. Macro Descriptions 333

31-bit Addressing Mode:

 where:

Address constant =

Address of the first byte of the area to be fixed.

Length =

A binary constant indicating the length of the area to be fixed.

 The end of the list is indicated by a non-zero byte following the last entry (for

24-bit addressing mode). For 31-bit addressing mode, a non-zero value in bit 0

of the byte following the last entry indicates the end of the list.

Exceptional Conditions

v If a PFIX causes the maximum count of fixes for a page to be exceeded, the task

issuing the PFIX is canceled.

v If it is not possible to fix all pages requested, then none will be fixed.

v If PFIX is issued in a program running in real mode, it is ignored and register 15

contains 0.

Return Codes in Register 15

0 The pages were successfully fixed.

4 The number of pages to be fixed for one request exceeds the number of

PFIXable page frames; in order for this PFIX request to be satisfied, more

PFIXable storage must be allocated through the ALLOC R or SETPFIX job

control command.

8 Not enough page frames are available in the partition because of previous

PFIXes or current system resource usage; this PFIX request could, however, be

satisfied at another time without reallocating PFIXable storage.

12 One of the specified addresses was invalid, or begin address was higher than

end address, or a negative length was found.

16 A PFIX request was given with RLOC=BELOW, but at least one page of the

requested area is already PFIXed in a frame above 16MB by a previous request.

The request is ignored, no page is fixed. A subsequent PFIX request with the

same list and RLOC=ANY does, however, PFIX the area.

20 Inconsistent function/option code provided in register 15; no page is fixed (not

possible if macro interface is used).

24 No pages were PFIXed because not enough page frames were available due to

temporarily fixed pages.

 ┌─────────┬────────────────────┬──────────────────┐

 │ X’00’ │ Address constant │ Length minus 1 │

 └─────────┴────────────────────┴──────────────────┘

 0 1 4

 ┌──────────────────────────────┬──────────────────┐

 │ Address constant │ Length minus 1 │

 └──────────────────────────────┴──────────────────┘

 0 4

PFIX

334 z/VSE System Macros Reference

PFREE (Page-Free Request) Macro

You can code the macro in either of the following formats: with an explicitly

provided fix list or, in the generation format, with the implicitly generated fix list

in the macro expansion:

CC

name

PFREE

H

 ,

beginaddr,endaddr

CE

CC

name
 PFREE listname

(1)
 CE

Requirements for the caller:

AMODE:

24 (if SPLEVEL SET=1)

 24 or 31 (if SPLEVEL SET>1)

RMODE:

24 (if SPLEVEL SET=1)

 24 or ANY (if SPLEVEL SET>1)

ASC Mode:

Primary

The macro frees one or more pages previously PFIXed in real storage.

Each page in the virtual address area is assigned a ’PFIX counter’. If a page is not

fixed - that is, if it is subject to normal page management - the counter is 0.

Whenever a page is fixed by using a PFIX macro its counter is increased by one.

All pages whose counters are greater than 0 remain fixed in real storage.

The PFREE macro decrements the counter of a specified page by 1. If a PFREE is

issued for a page whose counter is 0, that PFREE is ignored.

beginaddr

Points to the first byte of the area to be freed.

endaddr

Points to the last byte of the area to be freed.

listname | (1)

Is the name of a list of consecutive 8-byte entries as shown below. (Register

notation may also be used.) The address of this parameter list and the

addresses in the list are treated as 3-byte addresses if the macro is invoked in

24-bit mode and as 4-byte addresses if invoked in 31-bit mode.

 24-bit Mode:

 ┌─────────┬────────────────────┬──────────────────┐

 │ X’00’ │ Address constant │ Length minus 1 │

 └─────────┴────────────────────┴──────────────────┘

 0 1 4

PFREE

Chapter 2. Macro Descriptions 335

31-bit Mode:

 where:

Address constant =

Address of the first byte of the area to be freed.

Length =

A binary constant indicating the length of the area to be freed.

 The end of the list is indicated by a non-zero byte following the last entry (for

24-bit mode). For 31-bit mode, a non-zero value in bit 0 of the byte following

the last entry indicates the end of the list.

Exceptional Conditions

If PFREE is issued by a program running in real mode, the macro is ignored.

Return Codes in Register 15

0 The pages were successfully freed.

12 One of the specified addresses was invalid, or begin address was higher than

end address, or a negative length was specified.

20 Inconsistent function/option code provided in register 15; no page is freed (not

possible if macro interface is used).

 ┌──────────────────────────────┬──────────────────┐

 │ Address constant │ Length minus 1 │

 └──────────────────────────────┴──────────────────┘

 0 4

PFREE

336 z/VSE System Macros Reference

POINTR (Point to Noted Record) Macro

CC

name
 POINTR filename

(1)
 , address

(0)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro repositions the file specified by filename to the record identified by

previously issuing a NOTE macro.

If a READ follows the POINTR, the record noted by NOTE is the record read (tape

or DASD).

For magnetic tape, a WRITE must not follow a POINTR.

For a work file on disk, if a WRITE UPDATE follows the POINTR, the noted

record is written (or overwritten). If a WRITE SQ follows the POINTR, the record

after the noted one is written (or overwritten) and, on CKD DASD, the remainder

of the track is erased (overwritten with zeros). On an FBA disk, the remainder of

the CI is erased (overwritten with zeros) and an SEOF is written (the following CI

is also overwritten with zeros).

filename | (1)

The filename may be expressed either as a symbol or in register notation.

address | (0)

Specifies the virtual storage location of either a four-byte record identifier or a

four-byte record identifier followed by a two-byte track or CI capacity. The

four- or six-byte number must be in the form obtained from the NOTE macro.

The two-byte track or CI capacity is required only when a WRITE SQ is to be

issued following the POINTR.

POINTS (Point to Start) Macro

CC

name
 POINTS filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

POINTR

Chapter 2. Macro Descriptions 337

The POINTS macro repositions a file to its beginning.

For a tape file, the tape is rewound. If the file contains any header labels, they are

bypassed, and the tape is positioned to the first record following the label set.

For disk work files, the file is repositioned to the lower limit of the first extent. A

POINTS should not be followed by a WRITE UPDATE. If a POINTS is followed by

a WRITE SQ, the first record in the file is overwritten. For CKD DASD, the

remainder of the track is then erased (overwritten with zeros). For FBA devices, the

remainder of the CI is erased (overwritten with zeros) and an SEOF is written (the

following CI is also overwritten with zeros).

filename | (1)

The file name may be expressed either as a symbol or in register notation.

POINTW (Point Behind Noted Record) Macro

CC

name
 POINTW filename

(1)
 , address

(0)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The POINTW macro repositions the file specified by filename to the record

following the record identified by previously issuing a NOTE macro. A READ or

WRITE following a POINTW macro results in the following:

v For magnetic tape, a READ following a POINTW causes IOCS to read the record

after the one noted by a NOTE macro.

v For DASD work files, a READ following a POINTW causes the noted record to

be read.

v For magnetic tape, a WRITE UPDATE following a POINTW causes the record

following the noted record to be overwritten.

v For a work file on disk, a WRITE UPDATE following a POINTW causes the

noted record to be overwritten.

If a WRITE SQ follows the POINTW, the record after the noted one is written (or

overwritten) and, on CKD disk, the remainder of the track is erased (overwritten

with zeros). On an FBA disk, the remainder of the CI is erased (overwritten with

zeros) and an SEOF is written (the following CI is also overwritten with zeros).

filename | (1)

The file name may be expressed either as a symbol or in register notation.

address | (0)

Specifies the virtual storage location of either a four-byte record identifier or a

four-byte record identifier plus a two-byte track or CI capacity. The four- or

POINTS

338 z/VSE System Macros Reference

six-byte number must be in the form obtained from the NOTE macro. The

two-byte track or CI capacity is required only when a WRITE SQ is to be

issued following the POINTW.

POST (Post Event) Macro

CC

name
 POST ecbname

(1)

,SAVE=

savearea

(0)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

This macro provides communication between two tasks in the same partition by

posting an event control block (ECB). It causes bit 0 of byte 2 of the ECB to be set

on. A post issued to an ECB removes a task waiting for the ECB from the wait

state. For more details about an ECB, see the description of the ECB operand of the

ATTACH macro on page 24.

POST processing can post an ECB in 24-bit or 31-bit addressing mode physically

resident above or below 16MB. When POST is issued in AMODE 24, all operands

are treated as 24-bit addresses. When POST is issued in AMODE 31, all operands

are treated as 31-bit addresses.

ecbname | (1)

Provides the address of the ECB that is to be posted.

SAVE=savearea | (0)

This operand may be used for taking a specific waiting task out of the wait

state. The operand causes the system to locate the save area whose address is

specified in the operand and to take only the subtask associated with this save

area out of the wait state. This task normally is waiting for the specified ECB

to be posted. The save area has to be allocated below the 16MB line (RMODE

24).

 Although specifying this operand saves time, since other tasks waiting for this

ECB are not taken out of the wait state for the event that your program signals

by issuing the POST macro, specifying the operand does not guarantee that

those tasks will stay in the wait state until another POST is issued. Other

events could cause the other tasks to be dispatched. Therefore, use the POST

macro with SAVE to control subtask operation only if either:

v You have a separate ECB for each of the tasks, or

v There is a need to save processing time.

 If you issue a POST without SAVE, all tasks waiting for the ECB are taken out

of the wait state.

POINTW

Chapter 2. Macro Descriptions 339

PRMOD (Printer Output Module Definition) Macro

CC

name
 PRMOD

CONTROL=YES

,CTLCHR=

YES

ASA

,DEVICE=xxxxx
 C

C
,ERROPT=YES

,FUNC=xxx

,IOAREA2=YES

,PRINTOV=YES
 C

C

,RDONLY=YES

 ,RECFORM=FIXUNB

,RECFORM=

VARUNB

UNDEF

,SEPASMB=YES

,STLIST=YES

C

C
,TRC=YES

,WORKA=YES
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro defines a logic module for a printer file.

For printers of the type PRT1, 3800, and 4248 in native mode, the PRMOD macro is

not needed. A logic module supplied for a printer of these types is ignored. OPEN

always provides linkage to an IBM-supplied logic module. PRMOD is required for

a 1403 and a 3525 printer.

CONTROL=YES

Include this operand if CNTRL macros are used with the associated DTFs. The

module also processes files that do not use the CNTRL macro. If CONTROL is

specified, the CTLCHR operand must not be specified.

CTLCHR=YES | ASA

Include this operand if first-character carriage control is used. Any DTF used

with the module must have the same operand. If CTLCHR is specified,

CONTROL must not be specified.

 If CTLCHR=ASA is specified for a file on the IBM 3525, the + character is not

allowed. For a 3525 print (not associated) file, you must issue either a space 1

command or skip to channel 1 command to print on the first line of a card. For

3525 print associated files, you must issue a space 1 command to print on the

first line of a card.

 Overprinting may occur if several DTFPRs of different tasks address the same

device and at least one DTF specifies CTLCHR=ASA. Therefore, while a

DTFPR (with CTLCHR=ASA) is doing an I/O operation, no other DTFPR

should be allowed to do I/O on the same device.

PRMOD

340 z/VSE System Macros Reference

DEVICE=xxxxx

This operand specifies which device is used for the file. For xxxxx, you can

specify one of the following IBM device-type codes:

 1403

 3203

 3211

 3525

A device code of 3800 and PRT1 is accepted for compatibility reasons. The

logic module is generated, but ignored if the DTF is opened.

 Any DTF to be used with this module must have the same operand.

ERROPT=YES

The operand is valid only together with DEVICE=PRT1 and if the DTFPR

macro for the file includes ERROPT=name. The operand is accepted for

compatibility reasons.

FUNC=W | WT | RW | RWT | RPW | RPWT | PW | PWT

This operand specifies the type of file to be processed on your IBM 3525. Any

DTF used with the module must include the same operand. W indicates print,

R indicates read, P indicates punch, and T (for the IBM 3525 only) indicates an

optional 2-line printer.

 RW | RWT, RPW| RPWT, and PW | PWT are used to specify associated files.

When one of these specifications is used for a printer file, this specification

must be used also for the associated file(s).

 If a 2-line printer is not specified for a file on the IBM 3525, multi-line print is

assumed. T is ignored if CONTROL or CTLCHR is specified.

IOAREA2=YES

Include this operand if a second I/O area is used. Any DTF used with the

module must also include the IOAREA2 operand.

PRINTOV=YES

Include this operand if PRTOV macros are used with the associated DTFs. The

module also processes any files that do not use the PRTOV macro.

RDONLY=YES:

This operand causes a read-only module to be generated. Whenever this

operand is specified, any DTF used with the module must have the same

operand.

RECFORM=FIXUNB | VARUNB | UNDEF

This operand causes a module to be generated that processes the specified

record format: fixed-length, variable-length, or undefined. Any DTF used with

the module must include the same operand.

SEPASMB=YES

Include this operand only if the module is to be assembled separately. This

produces an object module ready to be cataloged into a suitable sublibrary,

either by the standard name or a name specified by you. The module name

will be used also as the module entry-point. If you omit this operand, the

assembler assumes that the module is assembled together with the DTF in

your program.

STLIST=YES

Include this operand if the selective tape listing feature (IBM 1403 only) is

PRMOD

Chapter 2. Macro Descriptions 341

used. If this entry is specified, the CONTROL, CTLCHR, and PRINTOV entries

are not valid, and are ignored if supplied. If this operand is specified,

RECFORM must specify FIXUNB.

TRC=YES

Include this operand to specify whether the module is to test the TRC bit in

the DTFPR or ignore that bit. If TRC=YES is specified, the generated module

can process output files with table reference characters and those without.

WORKA=YES

Include this operand if records are processed in work areas instead of in I/O

areas. Any DTF used with the module must have the same operand.

Standard PRMOD Names

Each name begins with a 3-character prefix (IJD) followed by a 5-character field

corresponding to the options permitted in the generation of the module.

PRMOD name = IJDabcde

 Char. Content Specified Option

a F RECFORM=FIXUNB

 V RECFORM=VARUNB

 U RECFORM=UNDEF

b A CTLCHR=ASA

 Y CTLCHR=YES

 C CONTROL=YES

 S STLIST=YES

 Z None of these is specified

 T DEVICE=3525 with 2-line printer

c B ERROPT=YES and PRINTOV=YES

 P PRINTOV=YES, DEVICE is not 3525, and ERROPT is not

specified

 I PRINTOV=YES, DEVICE=3525, and FUNC=W|WT or

omitted

 F PRINTOV=YES, DEVICE=3525, and FUNC=RW|RWT

 C PRINTOV=YES, DEVICE=3525, and FUNC=PW|PWT

 D PRINTOV=YES, DEVICE=3525, and FUNC=RPW|RPWT

 Z Neither PRINTOV nor ERROPT is specified, and DEVICE

is not a 3525

 O PRINTOV=YES not specified, DEVICE=3525, and

FUNC=W|WT or omitted

 R PRINTOV=YES not specified, DEVICE=3525, and

FUNC=RW|RWT

 S PRINTOV=YES not specified, DEVICE=3525, and

FUNC=PW|PWT

 T PRINTOV=YES not specified, DEVICE=3525, and

FUNC=RP|RPT

 E ERROPT=YES and PRINTOV=YES is not specified

d I IOAREA2=YES

 Z IOAREA2=YES is not specified

e V RDONLY=YES and WORKA=YES

 W WORKA=YES

 Y RDONLY=YES

 Z Neither is specified

PRMOD

342 z/VSE System Macros Reference

Subset/Superset PRMOD Names

Two of the operands allow subsetting. For example, the module name IJDFCPIW is

a superset of the module names IJDFCZIW and IJDFZZIW.

Note: The IBM-supplied modules were assembled without TRC=YES. You can

reassemble them with TRC=YES to support 3800 table reference characters.

Although the code generated for a module assembled with TRC=YES is

different from the code generated for a module with TRC=NO, the module

name is the same. If some, but not all PRMOD logic modules are

reassembled this way, subsetting or supersetting may not work.

 * * + * *

 I J D F A P I V

 V Y Z Z W

 U S + Y

 T I Z

 + O

 C +

 Z F

 R

 +

 +

 C

 S

 +

 D

 T

 +

 B

 E

+ Subsetting/supersetting permitted.

* No subsetting/supersetting permitted.

PRMOD

Chapter 2. Macro Descriptions 343

PRTOV (Printer Overflow Control) Macro

CC

name
 PRTOV filename

(1)
 , 9

12

,routine_name

,(0)

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro is used with a printer file to specify the operation to be performed

when a carriage overflow condition occurs during the last PUT. To use this macro,

the PRINTOV=YES operand must be included in the DTFPR macro.

filename | (1)

This operand is required. It must be the same as the name of the DTFPR macro

for the printer file. You can code the operand as a symbol or in register

notation.

9 | 12

This operand is required. It specifies the number of the carriage control

channel (9 or 12) used to indicate the overflow. When an overflow condition

occurs, IOCS advances the printer carriage to the first printing line on the form

(channel 1), and normal printing continues.

routine-name | (0)

Specify this operand only if you prefer to branch to your own routine on an

overflow condition, rather than skipping directly to channel 1. It specifies the

name of the routine, as a symbol or in register notation. However, the name

should never be preloaded into register 1.

 If you specify this operand, IOCS does not advance the carriage to channel 1.

 Return from the overflow routine via register 14.

PRTOV

344 z/VSE System Macros Reference

PUT (Put Record) Macro

CC

name
 PUT filename

(1)

,workname

,(0)

,STLSP=

controlfield

(r1)

 C

C
,STLSK=

controlfield

(r2)

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

PUT writes, prints, or punches logical records which are built directly in the

output area or in a specified work area. PUT can be used for any sequential output

file defined by a DTF macro, and for any type of record. It operates much the same

as GET but in reverse. It is issued after a record has been built.

filename | (1)

This operand must be the same as the name of the DTF macro for the file that

is being built. The operand can be specified as a symbol or in either special or

ordinary register notation. The high-order eight bits of the register must be

zero. Use register notation if your program is to be self-relocating.

workname | (0)

This operand specifies a work area name or a register (in either special or

ordinary register notation) containing the address of the work area. The work

area address should never be preloaded into register 1.

 This operand is used if the corresponding DTF contains the WORKA=YES

operand indicating that the records are to be built in a work area which you

define yourself (for example, using a DS instruction). If the operand is

specified, all PUTs for the named file must use either a register or a workname.

PUT then moves each record from the work area to the output area.

 Individual records for a logical file may be built in the same work area or in

different work areas. Each PUT macro specifies the work area where the

completed record was built. However, only one work area can be specified in

any one PUT macro.

 Whenever a PUT macro transfers an output data record from an output area

(or work area) to an I/O device, the data remains in the area until it is either

cleared or replaced by other data. IOCS does not clear the area. Therefore, if

you plan to build another record whose data does not use every position of the

output area or work area, clear that area before you build the record. If this is

not done, the new record will contain interspersed characters from the

preceding record.

STLSP=controlfield | (r1)

This operand specifies a control byte that allows for spacing while using the

PUT

Chapter 2. Macro Descriptions 345

selective tape listing feature on an IBM 1403. To use this feature, the operand

STLST=YES must be specified in the DTFPR.

 Up to 8 paper tapes may be independently spaced. The control byte is set up

like any other data byte in virtual storage. You can also use ordinary register

notation to provide the address of the control byte. Registers 2 through 12 are

available without restriction. You determine the spacing (which occurs after

printing) by setting on the bits corresponding to the tapes you want to space.

The correspondence between control byte bits and tapes is as follows:

 Bit Tape Position

 0 8 (rightmost tape)

 1 7

 2 6

 3 5

 4 4

 5 3

 6 2

 7 1 (leftmost tape)

Note: Double-width tapes must be controlled by both bits of the control field.

STLSK=controlfield | (r2)

This operand specifies a control byte that allows for skipping while using the

selective tape listing feature on the 1403 printer. To use this feature, the

operand STLIST=YES must be specified in the DTFPR. Up to 8 paper tapes

may be independently skipped. The control byte is set up like any other data

byte in virtual storage. You can also use ordinary register notation to provide

the address of the control byte. Registers 2 through 12 are available without

restriction.

 You determine the skipping (which occurs after printing) by setting on the bits

corresponding to the tapes you want to skip. The correspondence between

control byte bits and tapes is shown in the figure under ″STLSP=controlfield″,

above.

PUT

346 z/VSE System Macros Reference

PUTR (PUT with Reply) Macro

CC

name
 PUTR filename

(1)

,

workname1

,

workname2

(0)

(2)

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro is used if a message is to be displayed at the system console and this

message requires a reply. The message is not deleted from the display screen until

the operator has issued the reply.

You may use PUTR also with the IBM 3215 console printer-keyboard, in which

case PUTR functions the same as PUT followed by GET for these devices, but

provides the message non-deletion code for the display operator console. Use of

PUTR for the IBM 3215 is therefore recommended for compatibility if your

program may at some time be run on a computer system with a display operator

console.

Use PUTR for fixed unblocked records (messages). Issue PUTR after the record has

been built.

Do not use register 2 as base register in any of the PUTR operands.

filename | (1)

This operand must be the same as the name of the DTFCN for the file that is

being built. The filename can be specified as a symbol or in either special or

ordinary register notation. The latter is necessary to make your programs

self-relocating.

workname1 | (0)

This operand specifies the output work area name or a register (in either

special or ordinary register notation) containing the address of the output work

area. The work area address should never be preloaded into registers 1 or 2.

This operand is used if records are built in a work area which you define

yourself (for example, using a DS instruction). The length of the work area is

defined by the BLKSIZE operand of the DTFCN macro. If workname1 is

specified, workname2 must also be specified.

workname2 | (2)

This operand specifies the input work area name or a register (in either special

or ordinary register notation) containing the address of the input work area.

The work area address should never be preloaded into registers 0 or 1. The

operand is used if records are built in a work area which you define yourself

(for example, using a DS instruction). The length of the work area is defined

by the INPSIZE operand of the DTFCN macro. If workname2 is specified,

workname1 must also be specified.

PUTR

Chapter 2. Macro Descriptions 347

QSETPRT (Query Printer Setup) Macro

The purpose of the QSETPRT macro is to determine how the printer is set up and/

or to build a SETPRT parameter list that can later be passed to the SETPRT routine

to recreate the current setup. The parameter list passed to QSETPRT is converted

to a SETPRT parameter list with INIT=Y set in it. FCB verification and SEP

indicators are not set in the parameter list.

The SETPRT and QSETPRT macros may use registers 0, 1, 14, and 15 in their

expansions. The caller’s addressability must be based on a different register.

After successful completion of QSETPRT, register one points to the parameter list

passed to QSETPRT. This means that after issuance of the standard form of

QSETPRT, the parameter list can later be used with the execute form of SETPRT.

Even though successful issuance of QSETPRT converts the parameter list to

SETPRT, a subsequent reexecution of the same QSETPRT macro will still act as

QSETPRT.

The user may specify either the LUB ID or the LUB address when calling

QSETPRT. However, on successful completion, the parameter list always contains

the LUB ID (in the SPPLUNIT field).

CC

name
 QSEPRT SYSxxx

(register)

,EP=

label

(register)

 C

C
,MF=

L

(E,label)

(E,(register))

(E,(1))

,WORKA=

label

(register)

 CE

The parameters have the same meaning as for the SETPRT macro except that MF

may refer to a parameter list created by coding MF=L on either a SETPRT or

QSETPRT macro. Successful execution of the QSETPRT routine effectively changes

the parameter list to a SETPRT parameter list. It can then be used either for

SETPRT or another QSETPRT. A QSETPRT parameter list that has not been passed

to QSETPRT with a return code of zero cannot be used as a SETPRT parameter list

but for another QSETPRT.

The possible QSETPRT return codes are 0, 8, C, 14, 28, 2C, 30, 34, and 38. See the

SETPRT return codes.

Return Codes

When SETPRT or QSETPRT returns to its caller, register 15 contains a return code

as described below. With current support, the bytes described with ″..″ contain

zeros but to allow for possible future support, application programs should not

assume those bytes to contain zeros.

All return codes except 0, 30, 38 and 0028 have associated messages that are

written on the printer and on SYSLOG.

Return Code

Meaning

QSETPRT

348 z/VSE System Macros Reference

00000000

Successful completion due to one of the following:

v Output device is 3800 and all functions completed successfully.

v Output device is PRT1 printer. If the FCB parameter was specified, and

it was not a request for the system default forms control buffer phase,

then the LFCB macro was issued successfully.

v Caller is executing in the B-transient area and no operation was

performed.

......04 All printer setup requests were successfully completed except for the

burster request. The burster request was not done because there is no

Burster- Trimmer-Stacker installed on the 3800.

......08 Invalid device type. The output device must be 3800 or PRT1 printer.

......0C Invalid parameter list. The length value in the list is not valid, the logical

unit was not specified, the list is not a word boundary, or reserved field

does not contain zeros.

ggcctt10

Phase not found in the library or the phase header has an invalid format.

The header is the first eight bytes. Byte 2 of register 15 indicates the type

of phase that could not be found or has an invalid format:

Byte 2 (tt)

Phase Type

04 Forms control buffer (FCB) phase.

08 Copy modification phase.

0C Character arrangement table phase.

10 Graphic character modification phase.

If the phase type code is 0C or 10, then bytes 0 and 1 (ggcc) identify which

of the possible character arrangement table (CAT) phases or graphic

character modification (GCM) phases was required. If a CAT phase was

required, byte 0 (gg) is zero and byte 1 (cc) identifies the character

arrangement table phase (that is, 01 for the first CAT, etc.). If the CAT that

was required was specified in the MODIFY keyword and not the CHARS

keyword, (cc) is set to 05.

 If a graphic character modification phase was required, then byte 1 (cc)

identifies the CAT for which the GCM phase was being loaded from the

library and byte 0 (gg) identifies which of the four possible GCM phases

was required.

ggccop14

Permanent I/O error on printer. Byte 2 (op) of register 15 contains the

channel command code of the failing CCW. For example, if the printer

gives an error on a Load Copy Modification channel command, then byte 2

(op) contains X’35’. If byte 2 (op) is X’83’ or X’25’, then bytes 0 and 1 have

the same meaning as for a 10 return code.

......18 The operator canceled the SETPRT request because the manual setup could

not be performed.

......1C Reserved. Should not occur.

..ccnn20

More character generation storage was requested than was available on the

printer. The cc identifies the character arrangement table that caused the

QSETPRT

Chapter 2. Macro Descriptions 349

error (that is, 01 for the first CAT, etc.). If the table is the one specified in

the MODIFY keyword and not the CHARS keyword, cc is 05. The nn is

either 2 or 4 and indicates the number of WCGMs available on the device.

..cc..24 A byte in a character arrangement table references a character generation

module (CGM) that was not identified in the table. This should never

occur for character arrangement tables created by the IEBIMAGE utility.

The cc identifies the character arrangement table that caused the error (that

is, 01 for the first CAT, etc.). If the table is the one specified in the MODIFY

keyword and not the CHARS keyword, cc is 05.

....ss28 Not enough storage was available to perform printer setup. The ss is 00 if

the initial 512-byte work area could not be obtained, or 04 if the secondary

11776-byte area could not be obtained. Decrease the value of SIZE on the

EXEC statement, run the program in a larger partition, or supply a valid

work area to SETPRT with the WORKA parameter.

....uu2C

Symbolic unit is invalid or not assigned. The uu is 04 if the symbolic unit

is invalid or 08 if the symbolic unit is not assigned.

....cc30 SETPRT or QSETPRT routine is not in the System Virtual AREA and could

not be loaded from the private or system library. Byte 2 is the nonzero

return code from the CDLOAD macro.

..yyzz34

Internal macro failure. This should never occur. yy is the internal macro’s

return code. zz indicates failing macro where 04 is the EXTRACT macro, 08

is the MODCTB macro, and 0C is the CDLOAD macro. For information on

EXTRACT or MODCTB return codes, see z/VSE Messages and Codes

......38 User-supplied work area is not a double-word boundary.

....rr3C PRT1 initialization failed. SETPRT issued an LFCB macro because the

output device is a PRT1 printer and the FCB parameter was specified. The

LFCB routine gave nonzero return code rr. For an explanation of the LFCB

return codes, see “Return Codes in Register 15” on page 251.

Calling SETPRT for a VSE/POWER-Controlled Printer

Some, but not all possible errors are detectable by SETPRT when the 3800 is

controlled by VSE/POWER. Some user errors are detectable only when

VSE/POWER attempts to write the file on the real printer. Such errors include:

v Non-existent control phase

v Control phase contains invalid data

v Unavailable forms or forms overlay frame

v Burster-Trimmer-Stacker not installed

Control phases from private libraries should not be requested unless the library is

allocated to the VSE/POWER partition.

A work area of 512 bytes is always enough, whether supplied via the WORKA

parameter or gotten via GETVIS by SETPRT routine.

When the device status is changed for any of the following, the output is

segmented:

v BURST

v FORMS

QSETPRT

350 z/VSE System Macros Reference

v FLASH

v Copy grouping

v CINDX

This means that the data already sent is queued for output and a new file is begun

with the same job attributes. The new SETPRT parameter list is written as the first

record of the new file. When a CINDX value that is greater than 1 is passed to

VSE/POWER, the output is segmented as described, but the VSE/POWER copy

count is set to 1.

QSETPRT

Chapter 2. Macro Descriptions 351

RCB (Resource Control Block Definition) Macro

CC

name
 RCB CE

Required RMODE: 24 or ANY

The RCB macro generates an 8-byte word-aligned resource control block (RCB)

which allows you to protect a user-defined resource if the ENQ macro is issued

before (and the DEQ macro is issued after) each use of the resource. The RCB may

be allocated below or above the 16MB line.

The format of the RCB is shown below.

Bytes Purpose of Bits

0 All bits are set to 1 to indicate that the resource has been placed in a

priority queue by the ENQ macro.

1-3 Reserved.

4-7 ECB address of current resource owner (4-byte address). Bit 0 of byte 4 will

be set to 1 when another task is waiting to use the resource.

RDLNE (Read a Line) Macro

CC

name
 RDLNE filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The RDLNE macro provides selective online correction when a journal tape is

being processed on the IBM 1287 Optical Reader. This macro reads a line in the

online correction mode while processing in the offline correction mode. RDLNE

should be used in the COREXIT routine only, or else the line following the one in

error will be read in online correction mode.

If your IBM 1287 cannot read a character, IOCS first resets the input area to binary

zeros and then retries the line containing the character that could not be read. If

the read is unsuccessful, you are informed of this condition via your error

correction routine (specified in DTFOR COREXIT). The RDLNE macro may then be

issued to cause another attempt to read the line. If the character in the line still

cannot be read, the character is displayed on the 1287 display scope. The operator

keys in the correct character, if possible. If the operator cannot readily identify the

defective character, the reject character may be entered in the error line. This

condition is posted in filename+80 for your examination. Wrong-length records and

incomplete read conditions are also posted in filename+80.

RCB

352 z/VSE System Macros Reference

filename | (1)

The symbolic name of your 1287 file from which the record is to be retrieved.

This name is the same as that specified in the DTFOR header entry for the file.

READ (Read a Record) Macro

CC

name
 READ filename

(1)
 ,SQ, area

(0)

,length

,(r1)

,S

,ID

,KEY

,OR,

name

(r2)

,DR,

name

(r3)

number,number

,MR

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The READ macro transfers a record or part of a record from an input file to an

area in virtual storage. Do not code a READ macro after a WRITE SQ macro.

filename | (1)

Specifies the name of the file from which the record is to be read. The name is

the same as the one you specified in the DTFxx macro for the file.

SQ

Required for sequential work files.

area | (0)

The name of the input area used by a sequential file.

length | (r1)| S

Species only sequential files of undefined format (RECFORM=UNDEF).

Specifies the actual number of bytes to be read, or the register where the

number is to be found. S specifies that the entire record is to be read. The

length of the record is taken from the filenameL field of the DTF.

ID Applies to DAM. Specifies that the reference is to be by ID (identifier in the

count area of the record).

KEY

For ISAM, KEY is required. For DAM, KEY specifies that the record reference

is to be by record key (control information in the key area of the DASD

record).

OR

Indicates that the file to be accessed is on an IBM 1287 or 1288 optical

character reader.

RDLNE

Chapter 2. Macro Descriptions 353

name | (r2)

Specifies the CCW list address to be used to read a document from a file on

your IBM 1287 or 1288.

DR,name | (r3) | number,number

Indicates an IBM 3886 Optical Character Reader is the input device.

 The line number to be read and the format record for the line are specified in

one of three ways:

name

Provides the symbolic address of a two-byte hexadecimal field containing

the line number in the first byte and the format record number in the

second byte.

(r3)

Provides the number of the register that contains the address of the

two-byte hexadecimal field.

number,number

Provides the decimal line number to be read (any number from 1 through

33), followed by the format record number used to read the line (0-63).

MR

Specifies that the file is for a magnetic ink character reader (MICR).

REALAD (Real Address Return) Macro

CC

name
 REALAD address

(1)
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro returns the real address corresponding to a specified virtual address.

address | (1)

Is the virtual address to be converted. It can be specified as a symbol or in

register notation.

 Register 0 returns the 31-bit real address corresponding to the specified virtual

address if and only if the virtual address points to a PFIXed page, otherwise

register 0 contains 0. Thus, the macro can be used to test if a page is PFIXed.

 The AMODE/RMODE of the caller can be 24 or 31 bit. When called in 24-bit

mode, the address will be treated as a 3-byte address; when called in 31-bit

mode, the address will be treated as a 4-byte address.

Note: The pages of a partition running in real mode are treated as if they were

fixed.

READ

354 z/VSE System Macros Reference

RELEASE (Release Logical Unit) Macro

CC

name

RELEASE (

H

 ,

SYSnnn

)

,savearea

CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro specifies the names of programmer logical units to be released.

RELEASE may be used only for units used within a given partition.

Consider informing your operator about this release of an assignment. You can do

this by a message to the console.

SYSnnn

Specifies the programmer logical unit that is to be released. Up to 16 units may

be specified in a list, which must be enclosed in parentheses.

 All the units specified are checked by the assembler to assure that no system

logical units are requested for release. If system logical units are specified, an

MNOTE is issued and such units are ignored. Before any release is attempted,

a check is made for ownership of the unit. If the requesting partition does not

own the unit, or if the unit is already unassigned, the request is ignored.

savearea

Is the name of an 8-byte word-aligned area where registers 0 and 1 are saved

for your program. If the operand is not provided, the contents of registers 0

and 1 are overwritten.

 The macro expansion includes a unit table and loads the table’s address into

register 0. If the save area operand is specified, the macro expansion saves

registers 0 and 1.

 If there is no permanent assignment, the device is unassigned. If the device is

at permanent assignment level, no action is taken on the unit.

RELEASE

Chapter 2. Macro Descriptions 355

RELPAG (Release Page) Macro

You can code the macro in either of the following formats:

CC

name

RELPAG

H

 ,

beginaddr,endaddr

CE

CC

name
 RELPAG listname

(1)
 CE

Requirements for the caller:

AMODE:

24 (if SPLEVEL SET=1)

 24 or 31 (if SPLEVEL SET>1)

RMODE:

24 (if SPLEVEL SET=1)

 24 or ANY (if SPLEVEL SET>1)

ASC Mode:

Primary

The RELPAG macro causes the contents of one or more virtual storage areas to be

released. If the affected areas are in real storage when the RELPAG macro is

executed, their contents are not saved but are overwritten when the associated

page frames are needed to satisfy pending page frame requests.

After the RELPAG macro has been executed for an area and a location in that area

is referenced again during the current program execution, the related page is

attached to a page frame which contains all zeros.

The storage area is released only if it contains at least one full page. You can be

sure of this only if the specified area is two times the page size minus 1 or bigger.

This is explained in more detail under “FCEPGOUT (Force Page Out) Macro” on

page 186.

beginaddr

Points to the first byte of the area to be released.

endaddr

Points to the last byte of the area to be released.

listname | (1)

Is the name of a list of consecutive 8-byte entries as shown below. (Register

notation may also be used.) The address of this parameter list and the

addresses in the list are treated as 3-byte addresses if the macro is invoked in

24-bit addressing mode and as 4-byte addresses if invoked in 31-bit addressing

mode.

 24-bit Addressing Mode:

RELPAG

356 z/VSE System Macros Reference

31-bit Addressing Mode:

 where:

Address constant =

Address of the first byte of the area to be released.

Length =

A binary constant indicating the length of the area to be released.

 The end of the list is indicated by a non-zero byte following the last entry (for

24-bit addressing mode). For 31-bit addressing mode, a non-zero value in bit 0

of the byte following the last entry indicates the end of the list.

Exceptional Conditions

v The program is running in real mode.

v The area is, fully or partially, outside of the virtual partition of the requesting

program.

v A page handling request is pending for the referenced page(s).

v The page(s) is (are) fixed. For these pages, the RELPAG request will be ignored.

Return Codes in Register 15

0 All referenced pages have been released or the request has been ignored

because the requesting program is running in real mode.

2 The begin address is greater than the end address, or a negative length has

been found.

4 The area, fully or partially, does not belong to the partition where the issuing

program is running. The release request has only been executed for those

pages which belong to the partition of the issuing program.

8 At least one of the requested pages is temporarily fixed, either by the system

or by a previous PFIX macro. The release request has only been executed for

the unfixed pages.

16 List of areas that are to be released is not completely in the requesting

program’s partition. The request is ignored.

20 Inconsistent function/option code provided in register 15; the request is

ignored (this is not possible if the macro interface is used).

 Any combination of the return codes 2, 4, and 8 is possible.

 ┌─────────┬────────────────────┬──────────────────┐

 │ X’00’ │ Address constant │ Length minus 1 │

 └─────────┴────────────────────┴──────────────────┘

 0 1 4

 ┌──────────────────────────────┬──────────────────┐

 │ Address constant │ Length minus 1 │

 └──────────────────────────────┴──────────────────┘

 0 4

RELPAG

Chapter 2. Macro Descriptions 357

RELSE (Release a Block) Macro

CC

name
 RELSE filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro is used with blocked input records read from or updated on a disk

device. The macro is also used with blocked input records read from magnetic

tape.

The macro allows you to skip the remaining records in a block and continue

processing with the first record of the next block when the next GET macro is

issued. When used with blocked spanned records, RELSE causes the next GET to

skip to the first segment of the next record.

If RELSE immediately precedes a CNTRL macro with FSL or BSL (tape spacing for

spanned records), then LIOCS ignores the CNTRL macro request.

filename | (1)

Specifies the name of the file for which a release operation is requested. The

name is the same as the one you specified in the DTFxx macro for the file. It is

the only operand required for this macro and can be specified as a symbol or

in register notation.

RESCN (Re-Scan) Macro

CC

name
 RESCN filename

(1)
 ,(r1),(r2)

,n1

,n2
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro selectively rereads a field on a document if one or more defective

characters make this type of operation necessary. The field is always right-justified

into the area (normally within IOAREA1) that was originally intended for this field

as specified in the CCW. The macro first resets this area to binary zeros.

RELSE

358 z/VSE System Macros Reference

Note: If you use the macro with a READ FORWARD command, the input area is

not cleared.

filename | (1)

Specifies the name of the document file for which a reread operation is

requested. The name is the same as the one you specified in the DTFOR macro

for the file; it can be specified as a symbol or in register notation.

(r1)

Specifies a general-purpose register from 2 to 12 into which the program places

the address of the load format CCW.

(r2)

Specifies a general-purpose register from 2 to 12 into which the program places

the address of the load format CCW for reading the reference mark.

n1 Allows you to specify the number of attempts (one to nine allowed) to reread

the unreadable field. If this operand is omitted, one is assumed. If n1 is

omitted but n2 is specified, a comma must be coded instead of n1 to indicate

its absence.

n2 This operand cannot be used for a file on your IBM 1288.

 The operand indicates one more reread which forces online correction of any

unreadable character(s) by individually projecting the unreadable character(s)

on the display scope of your IBM 1287.

 The operator must key in a correction (or reject) character(s).

RESCN

Chapter 2. Macro Descriptions 359

RETURN (Return after Call) Macro

CC

name
 RETURN

(r1

)

,r2

,RC=

n

(15)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The RETURN macro restores the registers whose contents were saved and returns

control to the calling program.

r1|(r1,r2)

Specify the range of the registers to be restored from the save area of the

program that receives control. The operands are written as self-defining values.

The operands cause the desired registers in the range from 14 through 12 (14,

15, 0 through 12) to be restored from words 4 through 18 of the save area.

 If r2 is omitted, only the register specified by r1 is restored. If you omit the

whole operand, the contents of the registers are not changed.

 To access this save area, the system requires that register 13 contains the save

area address. Therefore, in your program, load the address of the save area

into register 13 before you issue the RETURN macro.

RC=n | (15)

Indicates a user-specified return code to be passed to the calling program. n

must be a number between 0 and 4095, which is placed right-adjusted in

register 15.

 If register notation is used, the register is loaded into register 15.

 If RC is specified, register 15 is not restored from the save area.

RUNMODE (Run-Mode Indication) Macro

CC

name
 RUNMODE CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro returns the following information to the program issuing this macro:

RETURN

360 z/VSE System Macros Reference

v Register 1 contains 0 if the issuing program is running in virtual mode.

v Register 1 contains 4 if the issuing program is running in real mode.

No operand is required for this macro.

SAVE (Save Register) Macro

CC

name
 SAVE(r1

,r2
) CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro stores the contents of specified registers in the save area provided by

the calling program.

The operands r1,r2 specify the range of the registers to be stored in the save area

of the calling program. The address of this area is passed to the program in

register 13. The operands are written as self-defining values so that they cause

desired registers in the range of 14 through 12 (14, 15, 0 through 12) to be stored

when inserted in an STM assembler instruction.

Registers 14 and 15, if specified, are saved in words 4 and 5 of the save area.

Registers 0 through 12 are saved in words 6 through 18 of the save area. The

contents of a given register are always stored in a particular word in the save area.

For example, register 3 is always saved in word 9 even if register 2 is not saved.

If r2 is omitted, only the register specified by r1 is saved.

SDUMP/SDUMPX

CC

name
 SDUMP

HDR=’dump_title’

HDRAD=dump_title_addr

 C

C

H

,

,STORAGE=(

startaddr,endaddr

)

,LIST=listaddr

,SUMLIST=listaddr
 C

RUNMODE

Chapter 2. Macro Descriptions 361

C
 ,TYPE=FAILRC

,MF=

L

(E,listaddr)

CE

CC

name
 SDUMPX

HDR=’dump_title’

HDRAD=dump_title_addr

 C

C

H

,

,STORAGE=(

startaddr,endaddr

)

,LIST=listaddr

,LISTD=listaddr
 C

C
,SUMLIST=listaddr

,SUMLSTL=listaddr

FAILRC

,TYPE=

 C

C
,MF=

L

(E,listaddr)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary or AR (access register)

The SDUMP and SDUMPX macros provide a dump of virtual storage which

contains user data and system data. The macros provide support for 31-bit

addressing. The dump output is written either into a dump library or onto

SYSLST, depending on the current setting of the SYSDUMP/SYSDUMPC option.

The High Level Assembler is required to compile the macros.

The SDUMP macro causes address ranges in your current address space to be

dumped, whereas the SDUMPX macro also provides for storage ranges in address

spaces or data spaces to which addressability via an ALET or via an STOKEN

exists.

If the program is running in primary ASC (address space control) mode, either

SDUMP or SDUMPX can be used. Otherwise, when the program runs in access

register (AR) mode, the SDUMPX macro must be used. SDUMPX provides all of

the functions of SDUMP, but generates code and addresses that are appropriate for

AR mode.

If you are in access register (AR) mode, issue the SYSSTATE ASCENV=AR macro

before you issue the SDUMPX macro to tell SDUMPX to generate code appropriate

for AR mode.

SDUMP/SDUMPX

362 z/VSE System Macros Reference

The SDUMP macro cannot dump data space storage. To dump data space storage,

SDUMPX is to be used instead by including either the LISTD or SUMLSTL

operand.

When SDUMPX is entered, the specified parameter list and all areas to which the

list points must be in the current address space of your partition.

HDR=’dump-title’

Specifies the title or header to be used for the dump. The title must be from 1

to 100 characters, enclosed in quotes.

Note: The header is displayed only if the dump is routed to SYSLST (OPTION

NOSYSDMP). If the dump is routed to a dump sublibrary, the header is

not displayed; you can, however, inspect it by using the SELECT DUMP

SYMPTOMS function of Info/Analysis.

HDRAD=dump-title-addr

Specifies the address of the title to be used for the dump. The dump title field

consists of a one-byte length field, followed by the specified title. The length

field specifies the length of the title, excluding the length byte itself. The macro

accepts a length value of 1 to 100. See Note under HDR.

STORAGE=(startaddr,endaddr,...)

Specifies the start and end address of the virtual storage area to be dumped.

One or more pairs of start and end addresses may be given, that is, the list

must contain an even number of addresses, and each address must occupy one

fullword. For example:

 STORAGE=(startaddr,endaddr,startaddr,endaddr)

LIST=listaddr

Specifies a list of start and end addresses of the storage to be dumped. The list

must contain an even number of addresses, and each address must occupy one

fullword. In the list, the high-order bit of the fullword containing the last

ending address of the list must be set to 1; all other high-order bits must be set

to 0.

LISTD=listaddr

Specifies a list of start and end addresses - qualified by STOKENs (space

tokens) - of the areas to be included in the dump. Specify the STOKENs and

address ranges as follows:

SDUMP/SDUMPX

Chapter 2. Macro Descriptions 363

E──────────────────── 4 bytes ──────────────────────────C

 ┌───┐

 │Length of the list │

 ├───┤

 │First STOKEN (8 bytes) │

 ├───┤

 │Number of ranges to be dumped in this STOKEN │

 ├───┤

 │Range 1 starting address │

 ├───┤

 │Range 1 ending address │

 ├───┤

 │Range 2 starting address │

 ├───┤

 │Range 2 ending address │

 ├───┤

 . .

 . .

 . .

 ├───┤

 │Last STOKEN (8 bytes) │

 ├───┤

 │Number of ranges to be dumped in this STOKEN │

 ├───┤

 │Range 1 starting address │

 ├───┤

 │Range 1 ending address │

 ├───┤

 │Range n starting address │

 ├───┤

 │Range n ending address │

 └───┘

 The first fullword of the list contains the number of bytes (including the first

word) in the list. STOKEN refers to any address or data space.

SUMLIST=listaddr

Specifies a list of start and end addresses of areas to be included in the dump.

The list must contain an even number of addresses, and each address must

occupy one fullword. In the list, the high-order bit of the fullword containing

the last ending address of the list must be set to 1; all other high-order bits

must be set to 0.

SUMLSTL=listaddr

Specifies a list of start and end addresses - qualified by ALETs (access list entry

tokens) - of areas to be included in the dump. Specify the ALETs and address

ranges as follows:

SDUMP/SDUMPX

364 z/VSE System Macros Reference

E───────────────────── 4 bytes ─────────────────────────C

 ┌───┐

 │Length of the list │

 ├───┤

 │First ALET (4 bytes) │

 ├───┤

 │Number of ranges to be dumped in this ALET │

 ├───┤

 │Range 1 starting address │

 ├───┤

 │Range 1 ending address │

 ├───┤

 │Range 2 starting address │

 ├───┤

 │Range 2 ending address │

 ├───┤

 . .

 . .

 . .

 ├───┤

 │Last ALET (4 bytes) │

 ├───┤

 │Number of ranges to be dumped in this ALET │

 ├───┤

 │Range 1 starting address │

 ├───┤

 │Range 1 ending address │

 ├───┤

 │Range n starting address │

 ├───┤

 │Range n ending address │

 └───┘

 The first fullword of the list contains the number of bytes (including the first

word) in the list. ALET refers to entries in either a DU-AL or a PASN-AL

associated with any address or data space that the caller has addressability to.

TYPE=FAILRC

Specifies that the macro is to return a reason code together with the return

code in register 15. The reason code explains why the dump failed. This is also

the default if the TYPE operand is omitted.

MF=L | (E,listaddr)

L specifies the list form of the macro, which generates a control program

parameter list that can be used by the execute form of the macro. In the list

form, only A-type addresses may be used; RX-type addresses and registers

cannot be used.

 E specifies the execute form of the macro, which uses the parameter list

generated by the list form of the macro. listaddr specifies the address of the

parameter list.

 If the MF operand is omitted, the standard form of the macro is used, which is

for programs that are not reenterable or that do not change values in the

parameter list.

Return Codes in Register 15

Register 15 contains one of the following return codes in bits 24-31:

0 A complete dump was taken.

4 A partial dump was taken.

8 The system was unable to take a dump.

SDUMP/SDUMPX

Chapter 2. Macro Descriptions 365

For return code 8, a reason code is supplied in bits 16-23 of register 15. The reason

code explains why the dump failed.

The reason codes are as follows:

 Table 20. SDUMP Reason Codes for Return Code 8

Reason Code Meaning

15 The parameter list address is zero.

16 Invalid parameter list options - invalid dump type.

18 Invalid address range specified: conflicting begin and end

addresses.

19 Invalid user data specified - header is not correct.

1B Invalid STORAGE list or LISTD.

1E Invalid address space or data space.

2A The caller-supplied storage list is inaccessible.

2B The user header data is inaccessible.

2E The caller-supplied SUMLIST is inaccessible.

33 Out of space limits.

34 The caller-supplied STOKEN and range list in LISTD is

inaccessible.

35 The caller-supplied ALET and range list in SUMLSTL is

inaccessible.

E0 SYSLST is not available.

E1 Dump library is full - part of dump is on SYSLST.

E2 Dump library is not defined - dump is on SYSLST.

E3 Dump library is in error - dump is on SYSLST.

E4 Getvis Failure

E5 No dump due to JCL/Macro options

SDUMP/SDUMPX

366 z/VSE System Macros Reference

SECTVAL (Sector-Value Calculation) Macro

CC

name
 SECTVAL DDKR= name1

(0)
 ,RECFORM= FIX

VAR
 C

C ,LOGUNIT= name2

(1)

,DVCTYP=

name3

(1)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro calculates the sector value of the start of the requested record on the

track of a disk storage device when RPS is used. The macro returns this value in

register 0. If an error is detected in calculating the sector value, the system returns

a no-operation sector value (X’FF’).

The sector value is calculated from data length, key length, and record number

(except record number 0) information. Values are calculated for fixed or

variable-length and for keyed and non-keyed records.

DDKR=name1 | (0)

The information needed to calculate the sector value should be specified in the

4-byte field at name1, or in the specified register. The four bytes of information

have the format ddkr, where

dd =

Two-byte field which specifies for:

v Fixed-length records, the data length of each record.

v Variable-length records, the total number of user data bytes written on

the track after R0 up to the requested record.

If the k and r bytes are zero, the dd field is considered a 16-bit number

specifying the total number of bytes (including all gaps, keys, and

overhead) that were written on the track after R0 and the home address.

Therefore, a sector value should not be requested for record 0 (fields

kr=0000).

k =

A one-byte field indicating the key length for:

v Fixed-length records, the actual key length must be specified.

v Variable-length records, any non-zero value is sufficient to indicate the

presence of keys.

Note: For non-keyed records the value should be 0.

r =

A one-byte record number field which specifies the number of the record

of which the sector value is being requested. Do not specify record number

0, unless you use the special interface described above.

SECTVAL

Chapter 2. Macro Descriptions 367

RECFORM=FIX | VAR

Specifies whether the records are of fixed- or variable length format.

LOGUNIT=name2 | (1)

Specifies the logical unit number of the device, either in a two-byte field at

name2 or in the two low-order bytes of the specified register (that is,

right-adjusted). See Note.

DVCTYP=name3 | (1)

Specifies the DTF device type code, either in a one-byte field at name3 or in

the low-order byte of the specified register (that is, right-adjusted). The

remaining bytes of that register are assumed to be zero. See Note.

 The following device type codes (the same as those contained in the DTF

block) are valid for IBM disk devices as indicated:

 IBM Device Code

 3375 X’0B’

 3380 X’0C’

 3390 Use the LOGUNIT operand or the GETVCE macro

 3390 Model 1 X’26’

 3390 Model 2 X’27’

 3390 Model 3 X’24’

 3390 Model 9 X’25’

 9345 X’04’

Note: If LOGUNIT or DVCTYP are not supplied in a register, the address of the

named field must not be based on register 1.

SECTVAL

368 z/VSE System Macros Reference

SEOV (System End-of-Volume) Macro

CC

name
 SEOV filename CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro may be used only with physical IOCS to automatically switch volumes

if SYSLST or SYSPCH are assigned to a tape output file. SEOV writes a tapemark,

rewinds and unloads the tape, and checks for an alternate tape. If none is found, a

message is issued to the operator who can mount a new tape on the same drive

and continue.

If an alternate unit is assigned, the macro fetches the alternate switching routine to

promote the alternate unit, opens the new tape, and makes it ready for processing.

When using this macro, you must check for the end-of-volume condition in the

CCB.

filename | (1)

Specifies the name of the file for which the end-of-volume operation is

requested. The name is the same as that specified as name in the DTFPH

macro for the file.

SETDEV (Set Device) Macro

CC

name
 SETDEV filename

(1)
 , phasename

(r)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro changes format records during execution of the program. When the

new format record has been loaded into your IBM 3886, control returns to the next

sequential instruction in your program. If the operation is not successful, the

completion code is posted at EXITIND and control is passed to the COREXIT

routine, or the job is canceled. If you issue the SETDEV macro and no documents

remain to be processed and the end-of-file key has been pressed on the device,

control is passed to the end-of-file routine.

SEOV

Chapter 2. Macro Descriptions 369

filename | (1)

Specify the name you used for the DTFDR macro which defines the file.

Register notation must be used if your program is to be self-relocating.

phasename | (r)

The operand either:

v Specifies the name of the format record to be loaded, or

v Indicates the register containing the address of an eight-byte area that

contains this name.

SETFL (Set File Load Mode) Macro

CC

name
 SETFL filename

(0)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro causes ISAM to set up the file so that the load or extension function can

be performed. This macro must be issued whenever the file is loaded or extended.

When loading a file, SETFL pre-formats the last track of each track index. When

extending a file, SETFL preformats only the last track of the last track index plus

each new track index for the extension of the file. This allows prime data on a

shared track to be referenced even though no track indexes exist on the shared

track.

filename | (0)

The name of the file to be loaded is the only operand required for this macro.

The name you specify is the same you used for the DTFIS macro which defines

the file. This name can be specified as a symbol or in register notation. Register

notation is necessary if your program is to be self-relocating.

SETIME (Set Interval Timer) Macro

CC

name
 SETIME timervalue

(1)

,tecbname

,(r)

,PREC
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

SETDEV

370 z/VSE System Macros Reference

The SETIME macro sets the interval timer to the specified value. If the tecbname

operand is specified, bit 0 of byte 2 in the TECB is set to 0 so that a subsequent

WAIT/WAITM macro can be issued by the task issuing the SETIME macro. When

the interval specified in timervalue elapses, the interrupt routine is entered or the

TECB is posted. If tecbname is omitted, the interrupt routine specified in a

previous STXIT IT macro is entered (if no STXIT IT macro was issued prior to the

time of the interrupt, the interrupt is ignored). If tecbname is specified, the TECB is

posted (byte 2, bit 0 of the TECB is set to 1) and the task is posted ready to run if

it is already waiting.

Warning

The SETIME macro should not be issued from an application running under

CICS. Issuing this macro can adversely affect CICS execution.

timervalue | (1)

Specifies the amount of time for the interval. This value can be specified either

as an absolute expression or in register notation. If register notation is used,

the pertinent register must contain the time value.

 The largest allowable value is 55 924 seconds (equivalent to 15 hours, 32

minutes, 4 seconds) if PREC is omitted, and 8 388 607 (equivalent to 7 hours,

46 minutes, 2 seconds) if PREC is specified.

tecbname | (r)

Specifies the name (address if register notation is used) of a timer event control

block (TECB) which must have been defined previously in your program by a

TECB macro. If you use register notation, register 0 and 1 must not be used.

After having executed the SETIME macro, the system returns the TECB

address in register 1.

 The address of the tecbname is treated as a 3-byte address if SETIME is issued

in 24-bit mode, and as a 4-byte address if SETIME is issued in 31-bit mode.

 A SETIME macro without the tecbname operand is used in combination with a

previous STXIT IT macro.

 Any previous STXIT IT specification is overwritten when using the SETIME

macro with the tecbname operand.

 If you omit tecbname but want to specify PREC, you must code a comma

instead of tecbname to indicate the omission.

PREC

Indicates that the timer value specified in the first operand is expressed in

1/300 of a second. When PREC is omitted, the timer value is in seconds.

SETIME

Chapter 2. Macro Descriptions 371

SETL (Set Limits) Macro

 Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro initiates the mode for sequential retrieval and initializes ISAM to begin

retrieval at the specified starting address.

Note: Sequential processing must always be terminated by issuing an ESETL

macro. The ESETL (end set limit) macro should be issued before issuing a

READ or WRITE if ADDRTR and/or RANSEQ are specified in the same

DTF. Another SETL can be issued to restart sequential retrieval.

filename | (r1)

Specifies the same name as that used in the DTFIS header entry, as a symbol or

in register notation. Register notation is necessary if your program is to be

self-relocating.

id-name | (r2)

Specifies that processing is by record ID. The operand specifies the symbolic

name of the eight-byte field in which you supply the starting (or lowest)

reference for ISAM use. This field contains the information shown in Figure 34

on page 373.

KEY

Specifies that processing begins with a key you supply. The key is supplied in

the field specified by the DTFIS KEYARG operand. If the specified key is not

present in the file, an indication is given at filenameC.

BOF

Specifies that retrieval is to start at the beginning of the logical file.

GKEY

Indicates that selected groups of records within a file containing identical

characters or data in the first locations of each key can be selected. GKEY

allows processing to begin at the first record (or key) within the desired group.

 You must supply a key that identifies the significant (high order) bytes of the

required group of keys. The remainder (or insignificant) bytes of the key must

be padded with blanks, binary zeros, or bytes lower in collating sequence than

any of the insignificant bytes in the first key of the group to be processed. For

example, a GKEY specification of D6420000 would permit processing to begin

at the first record (or key) containing D642xxxx, regardless of the characters

represented by the x’s.

CC

name
 SETL filename

(r1)
 , id_name

(r2)

KEY

BOF

GKEY

 CE

SETL

372 z/VSE System Macros Reference

Your program must determine when the generic group is completed.

Otherwise, ISAM continues through the remainder of the file.

Note: If the search key is greater than the highest key on the file, the filename

status byte is set to X’10’ (no record found).

┌──────┬────────┬──────────────┬──┐

│ │ Iden- │ Contents in │ │

│ Byte │ tifier │ Hexadecimal │ Information │

├──────┼────────┼──────────────┼──┤

│ 0 │ m │ 02-F5 │ Number of the extent in which the │

│ │ │ │ starting record is located. │

│ │ │ │ │

│ 1-2 │ │ 0000 (disk) │ Always zero for disk │

│ │ │ │

│ 3-4 │ cc │ Cylinder number for disk: │

│ │ │ 0000-00C7 │ For IBM 2311, 2314/2319: 0-199 │

│ │ │ 0000-0193 │ For IBM 3330/3333: 0-403 │

│ │ │ 0000-015B │ For IBM 3340 with 3348 Model 35: 0-347 │

│ │ │ 0000-02B7 │ For IBM 3340 with 3348 Model 70: 0-695 │

│ │ │ │

│ 5-6 │ hh │ Head position for disk: │

│ │ │ 0000-0009 │ For IBM 2311. │

│ │ │ 0000-0013 │ For IBM 2314/2319. │

│ │ │ 0000-0012 │ For IBM 3330/3333. │

│ │ │ 0000-000B │ For IBM 3340. │

│ │ │ │ │

│ 7 │ r │ 01-FF │ Record location │

└──────┴────────┴──────────────┴──┘

Figure 34. Field Supplied for SETL Processing by Record ID

SETL

Chapter 2. Macro Descriptions 373

SETPFA (Set Link to Page-Fault Appendage) Macro

 Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro either sets up or removes linkage to a user-written page-fault

appendage routine. When this linkage is set up, your page-fault appendage routine

receives control each time a page fault occurs in the task that owns the routine. It

receives control also when the system has completed handling such a page fault.

For a page fault while the supervisor is servicing the owning task, the appendage

routine does not receive control. The same may apply to an IBM-supplied base

program such as VTAM*.

As long as the exit is active, your program does not lose control when a page fault

occurs. Instead, the system:

1. Returns control to your program immediately.

2. Passes to your routine the page fault information which otherwise serves as

input to the page management routine of z/VSE.

A page-fault appendage routine may be useful in a performance critical

application. The routine can set the conditions for the dispatching of a private (not

z/VSE controlled) subtask.

entryaddress | (r1)

By specifying an entry address, you activate the page-fault exit for your

program. The macro causes the system to set up the required linkage to the

page-fault appendage routine of your program at the specified address.

 If SETPFA is issued without an operand, the linkage to the page fault

appendage is terminated. Each issuance of SETPFA supersedes all previous

SETPFAs for that task. Only one task per partition is allowed to have a

page-fault appendage.

 Restriction: The entry address must be a 24-bit address.

 The entry address may be specified as a symbol or in register notation.

AREA=address | (S,name) | (r2)

Specifies the address of a 16-byte area that contains (in bytes 0-3) the virtual

address of the page to be handled, and (in bytes 4-11) the token identifying the

space to which the virtual address belongs to for entry A (page fault

occurrence) of the appendage. In case of a data space, the token is the

CC

name
 SETPFA

entryaddress

(r1)

,DSPACE=NO

,AREA=

address

(S,name)

,DSPACE=YES

(r2)

 CE

SETPFA

374 z/VSE System Macros Reference

STOKEN returned by DSPSERV CREATE. Bytes 12 to 15 are reserved. The

same information (in the same area) has to be provided to the system on

return from entry B (page fault completion). If the internal page fault queue is

empty, an area of all zeros should be returned from entry B (page fault

completion). This area has to be PFIXed.

 If the AREA operand is not specified, the page fault information is contained

in register 13; however, the appendage routine is not entered for a page fault

of an address space with a space number larger than 255. The SETPFA SVC is

canceled with illegal SVC if it is issued in an address space with a space

number larger than 255.

DSPACE=NO | YES

Specifies whether the appendage routine is to process page faults for both

address and data spaces (YES) or for address spaces only (NO). In this case,

page faults caused by accessing data spaces are handled by the system and the

appendage routine is not entered.

 If DSPACE is specified, the AREA operand is required.

Following is a summary of linkage conventions which you must adhere to when

you code an appendage routine.

General Coding Requirements

Your routine and all areas referenced by the routine must be fixed in real storage

using the PFIX macro before the SETPFA is issued.

Register Usage

The following registers are used to pass information between the system and your

appendage routine:

Register

Contents

7 The address for return of control to the supervisor of your z/VSE. Do not

change the contents of this register.

8 The address of your appendage routine. You can therefore use the register

as the base register.

13 Information about the page fault to be handled (if the AREA operand is

not specified):

Bytes Contents

0-2 Shows the leftmost 24 bits of the 31-bit address of the page that is

to be handled.

3 Space number

If the AREA operand is specified, the contents of register 13 should be ignored.

The page fault information is then contained in the 16-byte area denoted by the

AREA operand.

All other registers are undefined. However, the contents of all registers are saved

by the supervisor before it passes control to your appendage routine.

Entry Linkage

This should be as follows:

SETPFA

Chapter 2. Macro Descriptions 375

entryaddress USING *,8

 (1) B ENTRYA

 (2) B ENTRYB

where:

(1) Used by the supervisor when a page fault occurs.

(2) Used by the supervisor after it has completed the handling of a page fault.

The appendage routine gets control in 24-bit addressing mode.

Page Fault Queue

Your routine must maintain a queue of 16-byte entries (if AREA is specified) or

4-byte entries (if AREA is not specified): one entry per private subtask controlled

by your z/VSE task. Figure 35 on page 377 indicates how your appendage routine

should manage the internal queue of page faults. Review Figure 35 after having

read the remaining paragraphs about using the SETPFA macro. Note, however, that

the page fault handling as outlined below does not apply if the AREA operand is

specified. (If the AREA operand is specified, the 16-byte area - rather than register

13 - contains the page fault information.)

Processing in the Appendage Routine

This is described separately for the entry points ENTRYA and ENTRYB.

Control transfers to ENTRYA – processing when a page fault occurs. Do the

following:

1. Examine the page-fault information.

If you do not want to overlap handling of this page fault with your task

processing, return control to the address in register 7 plus 4. This causes z/VSE

to handle the page fault synchronously.

Continue with the next step if you want to overlap page fault processing.

2. Store the contents of register 13 (if AREA is not specified) in the internally

maintained page fault queue.

3. Set the task that caused the page fault into an internal wait state.

4. Dispatch a privately controlled subtask.

You do this by storing, in bytes 8 through 15 of the task’s save area, an

EC-mode PSW. This PSW must contain the address of the subtask instruction to

be executed first. To accomplish this:

a. Set up this PSW (along with any values that should be loaded into certain

registers for this subtask) in the save area of the subtask.

b. Exchange this save area’s contents with the contents of the save area for the

task that issued the SETPFA macro.
To be able to always dispatch a privately controlled subtask, provide one that

merely issues a WAIT or a WAITM with an unposted ECB. Dispatch this

subtask (as described above) if no other privately controlled subtask is

dispatchable.

5. Return control to the address in register 7.

Control transfers to ENTRYB – processing at the completion of a page fault. Do

the following:

1. Post the task that caused the now completed page fault so that it is removed

from the internal wait.

2. Dequeue, from the internal page fault queue, the request that has just been

handled.

SETPFA

376 z/VSE System Macros Reference

3. Load the page fault information next in your queue, if any, into register 13 or

set this register to zero if your queue is empty.

4. Return control to the address in register 7.

┌────────────┬──────────────┬────────────┬──────────────┬──────────────┐

│ │Address in │ │ │Address in │

│Processing │Register 13 │ Return to │Internal Page │Register 13 │

│ for PF │From Superv. │ Superv. by │Fault Queue │To Superv. │

├────────────┼──────────────┼────────────┼──────────────┼──────────────┤

│ R1 │PF address R1 │ BR 7 │PF address R1 │irrelevant │

│ │ │ │ │ │

│ R2 │PF address R2 │ BR 7 │PF address R1 │irrelevant │

│ │ │ │PF address R2 │ │

│ │ │ │ │ │

│ R3 │PF address R3 │ BR 7 │PF address R1 │irrelevant │

│ │ │ │PF address R2 │ │

│ │ │ │PF address R3 │ │

│ │ │ │ │ │

│ * any │any PF address│ B 4(7) │PF address R1 │unchanged │

│ │ │ │PF address R2 │ │

│ │ │ │PF address R3 │ │

│ │ │ │ │ │

│ R4 │PF address R4 │ BR 7 │PF address R1 │irrelevant │

│ │ │ │PF address R2 │ │

│ │ │ │PF address R3 │ │

│ │ │ │PF address R4 │ │

│ │ │ │ │ │

│R1 complete │PF address R1 │ BR 7 │PF address R2 │PF address R2 │

│ │ │ │PF address R3 │ │

│ │ │ │PF address R4 │ │

│ │ │ │ │ │

│ R5 │PF address R5 │ BR 7 │PF address R2 │irrelevant │

│ │ │ │PF address R3 │ │

│ │ │ │PF address R4 │ │

│ │ │ │PF address R5 │ │

│ │ │ │ │ │

│R2 complete │PF address R2 │ BR 7 │PF address R3 │PF address R3 │

│ │ │ │PF address R4 │ │

│ │ │ │PF address R5 │ │

├────────────┴──────────────┴────────────┴──────────────┴──────────────┤

│ PF = Page fault │

│ Rn = Page fault request n (1, 2, and so on) of your partition │

│ │

│ * Page fault is not related to the partition. │

└──┘

Figure 35. Internal Page-Fault Queue and Communication with the System

SETPFA

Chapter 2. Macro Descriptions 377

SETPRT (Set the Printer) Macro

The SETPRT (printer setup) function serves as the interface for servicing printer

setup requests between the following:

 Job control and printer

 Job control and operator

 VSE/POWER and printer

 User and printer

 User and operator

 User and VSE/POWER

Any request to alter the printer setup should be routed to SETPRT. SETPRT

maintains a control block for each 3800 to reflect correct current printer status.

Except for offset stacking and marking forms, application programs should not

bypass the SETPRT routines and directly perform any of its services. This is

because a subsequent SETPRT call, possibly in the next job, will not be able to

correctly determine the machine’s status.

The SETPRT routine is in the System Virtual Area (SVA) and is called by a macro

issued by Job Control, VSE/POWER, or a problem program. When the device for

which SETPRT was issued is a PRT1 printer and the FCB parameter was specified,

the SETPRT routine issues an LFCB macro to use the appropriate FCB, and

optionally, forms. When the device is a PRT1 but the FCB parameter was not

specified, SETPRT performs no operation and gives a return code of zero. When

the device type is not a 3800 or PRT1 printer, it is an invalid device type.

If the caller is running in the B-transient area and calls the SETPRT routine for a

PRT1 printer, SETPRT performs no operation.

SETPRT issues one message to the operator defining necessary operator action

(paper threading, forms change, or forms overlay frame change). SETPRT

optimizes all requests for printer setup such that a setup request for a characteristic

already established in the printer will not be performed again.

When a parameter is omitted from a call to SETPRT, the general principle is that

SETPRT makes no changes to the corresponding characteristics for the printer.

Exceptions are INIT and DFLT, and this concept does not apply to DCHK or SEP.

Before the SETPRT routine processes any parameter, except for WORKA, it

determines whether the current SETPRT request will cause the device status to

change. If a change will be needed, a Clear Printer command is issued, which fills

the current page with blank lines if a partial page has been transmitted.

Any printer I/O errors encountered by SETPRT result in resetting the printer to

IMPL status, writing an informational message to the printer, and setting a unique

return code.

Although the caller of SETPRT identifies the printer with its logical unit identifier,

the setup information is retained by the system according to the physical device

address. This means that reassigning the printer does not cause a change to the

setup status.

The SETPRT or QSETPRT macro calls the SETPRT routine. The macro generates a

SETPRT parameter list and/or instructions to call the SETPRT routine. The macro

exists in three forms controlled by the MF keyword:

SETPRT

378 z/VSE System Macros Reference

v Standard form. Build a parameter list and then call the SETPRT routine (MF

keyword omitted).

v Execute form. Point to an existing parameter list and then call the SETPRT

routine (MF=(E,(address|(register)))).

v List form. Create a parameter list without any executable instructions and

without linkage to SETPRT routine (MF=L).

Any parameter coded on an execute form macro overrides the same parameter

coded on the corresponding list form of the macro.

The SETPRT and QSETPRT macros may use registers 0, 1, 14, and 15 in their

expansions. The caller’s addressability must be based on a different register.

Any number of register value for the SETPRT and QSETPRT macros can be

specified as an absolute (non-relocatable) expression. These are examples of valid

absolute expressions:

 12

 X’C’

 NUM (where NUM has been set by an EQU instruction to an absolute

expression).

 NUM+1

The advantage of using symbolic references is that the assembler cross reference

shows other dependencies on the values. The disadvantage is that the macro

cannot do as much checking of the validity.

The special values required for certain keywords, such as N, Y, V, B or L, must be

specified as described.

The format of the SETPRT macro is:

CC

label
 SETPRT SYSxxx

(register)

,BURST=

N

Y

*

 C

C

H

,CHARS=

table_name

,

(

table_name

)

*

,CINDX=

i

(register)

 C

C

H

,COPYG=

n

,

(1)

(

n

)

,DCHK=

B

U

,DEBUG=

NORM

TERM

DUMP

TRAC

 C

C
,DFLT=

N

Y

,EP=

label

(register)

,FCB=

fcb_name

(fcb_name,V)

(*,V)

*

 C

SETPRT

Chapter 2. Macro Descriptions 379

C
,FLASH=

overlay_name

(overlay_name,count)

(,count)

(*,count)

*

,FORMS=

forms_name

*

 C

C
,INIT=

N

Y

,MF=

L

(E,label)

(E,(register)

 C

C
,MODIFY=

copymod_name

(copymod_name,table_name)

*

(*,tablename)

,SEP=

M

O

MO

NONE

 C

C
,TRC=

N

Y

,WORKA=

label

(register)

 CE

Notes:

1 You can specify up to eight groups of copies.

label

Optional label. If MF is omitted or coded as E, the name applies to the first

executable instruction of the macro expansion. If MF=L is coded, the name

applies to the beginning of the parameter list.

SYSxxx

Logical unit identifier for the printer to be set up. Only SYSLST and SYSnnn

are supported. Instead of specifying the six-character name of the logical unit,

the address of its LUB may be supplied in a register numbered in the range of

2 to 13. This parameter is always required by the SETPRT routine. It is

required by the macro when MF is omitted. When MF is coded, the logical unit

must be supplied in the execute form or list form of the macro.

BURST

Forms bursting request.

Y Specifies that the operator should thread the forms through the

Burster-Trimmer-Stacker.

N Specifies that the operator should thread the forms to the continuous forms

stacker.

* The system default BURST setting is requested.

 If the forms are not already threaded correctly, then message P300D is issued

to ask the operator to change the threading.

 If BURST is omitted, no change to the threading is requested.

CHARS

Character arrangement table names.

table name

Specifies the 1- to 4-character name of the character arrangement table (not

including the system-assigned prefix, XTB1). Up to four names separated

by commas and enclosed in parentheses, can be specified. No null value,

such as CHARS=(AA,,BB) or CHARS=(,AA), can be specified. See Note on

page 385.

SETPRT

380 z/VSE System Macros Reference

* The system default character arrangement table is requested. If this is

specified, multiple table names are not allowed. If the operator has not

specified a default for CHARS, the hardware default Gothic 10-pitch table

is used.

CINDX

Transmission or copy group number.

i Is an absolute arithmetic expression. If it is not enclosed in parentheses, the

value must be in the range of 0 to 255. If it is enclosed in parentheses, it

identifies a register in the range of 2 to 13 containing a value from 0 to 255.

Only the low-order byte of the register is used, but for compatibility with

possible future support, it is recommended that the high-order three bytes

be clear. How CINDX is interpreted depends on whether copy grouping

(COPYG) is requested in the same call to SETPRT.

 When copy grouping is not specified. CINDX specifies the transmission

number. If CINDX is a number 1 through 255, it tells which copy

(transmission) is about to begin. If zero is specified or no value is supplied

to the SETPRT routine, then the copy number and grouping is not changed

from the previous setting unless INIT=Y is specified. At the beginning of

each job, there is no copy grouping.

 When copy grouping is specified. The CINDX value identifies which copy

group value to use. If CINDX is zero or not supplied to the SETPRT

routine, then 1 is assumed. If the CINDX value is greater than the number

of groups, COPYG is treated as if it were extended with group values of 1

each. The sum of the COPYG values and the values with which they are

extended cannot exceed 255.

 If both CINDX and COPYG are omitted, no change is made to the copy

grouping or transmission count unless INIT is coded.

COPYG

Data set copy grouping information.

n Each n is an arithmetic expression specifying the number of copies of each

page to be reproduced by the printer before printing the next page. If more

than one n is specified, they are separated by commas and surrounded by

parentheses. Each value can be from 1 to 255, except that if only one value

is specified, it can be 0. Specifying 0 is mainly useful to clear a grouping

when using the execute form. Up to 8 groups of copies can be specified.

The sum of the group values cannot exceed 255. Which of the values is to

be used for the current transmission is determined by the value specified

or defaulted for the CINDX keyword. If both CINDX and COPYG are

omitted, then the transmission number and copy grouping are not changed

from their previous settings unless the INIT keyword parameter is also

coded. When COPYG is coded and CINDX is not coded, a value of 1 is

assumed for CINDX. See the CINDX description for the action taken when

COPYG is omitted and CINDX is coded.

DCHK

Block or unblock data check indicator.

B Specifies that data checks are to be blocked (prevented). This means that

unprintable characters in the data printed after completion of SETPRT are

to be treated as blanks.

U Specifies that data checks are to be unblocked (allowed). A data check is an

I/O error.

 If DCHK is omitted, data checks are blocked.

SETPRT

Chapter 2. Macro Descriptions 381

DEBUG

Select debugging options for SETPRT and QSETPRT errors. This can be useful

for debugging errors by the caller or by the system. This option remains in

effect until changed in a later SETPRT call or the end of the job.

NORM

When an error is detected by SETPRT or QSETPRT, return to the caller

with a return code in register 15, no matter what the return code is.

TERM

Terminate the task with a CANCEL macro if a condition causing a return

code greater than 4 in the low-order byte is detected. If it is the main (or

only) task in the partition and OPTION DUMP was specified or defaulted

in the JCL, a dump is taken to SYSLST. In the dump, register 15 contains

the SETPRT or QSETPRT return code. Unless the return code is X’0028’,

X’2C’, X’30’, or X’38’, a message is written to the printer.

DUMP

Terminate program with dump if a condition causing a return code greater

than 4 in the low-order byte is detected. In the dump, register 15 contains

the SETPRT or QSETPRT return code. Unless the return code is X’0028’,

X’2C’, X’30’, or X’38’, a message is written to the printer.

TRAC

Initiate tracing of all significant SETPRT and QSETPRT events and if the

return code is greater than 4, terminate partition with dump. If SYSLST is

assigned, a dump of the SETPRT/QSETPRT work area is written to

SYSLST at several points during execution. If SYSLST is not assigned, then

DEBUG=TRAC has the same effect as DEBUG=DUMP. If SYSLST is

assigned to a printer, each dump is preceded by a description of the dump.

 If the DEBUG keyword is omitted, then the most recently specified value

for DEBUG in a previous SETPRT (but not QSETPRT) in the job is taken. If

DEBUG has not been specified during the job, DEBUG=NORM is assumed.

DFLT

Establish printer defaults.

Y Specifies that the printer is to be set with the defaults that were specified

by the operator in the SETDF command. (See z/VSE System Control

Statements under “SETDF”.) It is equivalent to coding * for each of the

parameters BURST, CHARS, FCB, FLASH, FORMS, and MODIFY that are

not specified.

N Is the default specification for this keyword and does not establish 3800

default setup.

EP Entry point address of the SETPRT routine. The EP keyword value can be a

relocatable expression valid in an RX-type instruction or it can identify a

register if it is in parentheses. If it is a relocatable expression, it must identify a

word containing the address of the SETPRT routine. If a register is specified,

the register must contain the entry point address of the SETPRT routine. The

register can be 15 or in the range 2 to 13. EP cannot be coded when MF=L is

coded. When EP can be coded but is not, the SETPRT macro generates code to

obtain the address of the SETPRT routine.

FCB

Forms control buffer information.

fcb name

Is the 1- to 4-character name of the FCB (not including the system-assigned

prefix, FCB1). The length of the form defined by FCB must match the

length of the actual forms loaded.

SETPRT

382 z/VSE System Macros Reference

V Indicates FCB verification. The FCB contents are formatted and printed on

the 3800. Data checks are blocked and translate table zero is used for

printing the FCB verification page.

* The system default FCB is requested. If the operator has not specified a

default FCB, the FCB loaded indicates 6 lines per inch with a channel-1

code defined on the first printable line, and the length set equal to that of

the form currently loaded.

FLASH

Forms overlay or flashing request.

overlay name

Is the 1- to 4-character name of the forms overlay frame. If the specified

frame is not already loaded, the operator is requested via message P300D

to insert it in the 3800.

count

Is the number (from 0 to 255) of copies to be flashed, beginning with the

first copy of the first transmission. If 0 is specified, the specified forms

overlay frame is mounted but is not flashed. A specification of

FLASH=(,count) means to flash the current forms overlay frame for the

specified number of copies. If an overlay name but no count is specified, all

copies are flashed.

* The system default forms overlay is requested. If the operator has not

specified a default, no flashing occurs.

FORMS

Paper forms request.

 If the specified forms are not already loaded, then message P300D is issued to

the operator requesting that the forms be changed. If the new form has a

length different from the previous form and a new FCB is not specified, the

3800 loads the hardware default FCB. This can cause erroneous results later. To

avoid this problem, either specify INIT or a new FCB when loading forms of a

new length.

forms name

Is a 1- to 4-alphameric character forms identifier.

* The system default form is requested. If the operator has not specified a

FORMS default, form STANDARD is requested.

 If the FORMS parameter is omitted, the operator is not asked to change the

forms.

INIT

Initializing the printer request.

Y Specifies that the printer be reset to hardware defaults of 6 lines per inch

FCB, channel-1 code in the first printable line, a Gothic-10 folded character

arrangement table, one copy, and no flashing. Copy modification and copy

grouping are cleared. The burster threading is not affected. If TRC=Y is not

also coded, then lines written to DTFs opened after this SETPRT will not

contain TRCs (table reference characters). The TRC indicators in any open

DTFs are not changed. The effect of INIT=Y is similar to the effect of the

Initialize Printer channel command.

N Is the default and does not reset the printer to hardware defaults.

MF

Identifies the form of the macro generation. Omission of this keyword

generates the standard form with a parameter list and instructions to call the

SETPRT routine.

(E,label)

Identifies this as an execute form macro and specifies that the SETPRT

SETPRT

Chapter 2. Macro Descriptions 383

parameter list at ″label″ is to be used for this SETPRT request. The

parameter list is created from an L-form SETPRT macro or by execution of

a QSETPRT macro. The parameter list must be on a word boundary and in

the same protection key as the issue of SETPRT. The parameter list is

updated with any parameters specified with this SETPRT macro except EP

or WORKA. The name can be a relocatable expression of the form

acceptable in an RX-type instruction, or a register in parentheses can be

specified. The register must be in the range of 2 to 13, except that if EP is

coded, then the register can be 1.

L Specifies that the list form of the macro instruction is used to create a

parameter list that can be referenced by an execute form of the SETPRT

macro instruction. The list is automatically aligned on a word boundary.

No machine instructions are generated.

MODIFY

Copy modification information.

copymod name

Is the 1- to 4-character name of the copy modification phase (not including

the system-assigned prefix, MOD1) to be loaded from the library into the

3800.

table name

Is the 1- to 4-character name of the character arrangement table to be used

when printing the copy modification text. This character arrangement table

need not be one of those specified or defaulted for CHARS if the 3800 has

enough WCGMs installed. See Note on page 385. If table name is omitted,

the first character arrangement table specified or defaulted with the

CHARS keyword is used.

* The system default copy modification is requested. If the operator has not

specified a MODIFY default, any existing copy modification is eliminated.

 If the MODIFY parameter is omitted, then the currently-loaded phase is

used unless INIT=Y is also coded. Note that in some cases SETPRT must

reload the currently-loaded copy modification into the printer even when

you did not specify it. If it was obtained from a private library that is no

longer assigned, SETPRT may give a return code that indicates that the

copy modification phase could not be found even though it was not

explicitly re-requested.

SEP

Data set separation information. Omission indicates that no data set separation

is required.

O Indicates that if the Burster-Trimmer-Stacker is being used, the 3800 should

offset-stack the pages that follow from the pages that were previously

transmitted. If the continuous forms stacker is being used, the 3800

changes the marking on the perforation edge from one line to two lines or

vice versa.

M Indicates that, irrespective of whether offset stacking was requested, the

current page is to be replicated three or five times and the perforations

marked. The user can transmit a data set separator page prior to issuing

SETPRT and the printer prints the page three or five times depending on

the form length. The separator data must be contained within a single page

and the 3800 must be positioned (relative to the FCB) within that page.

NONE

Specifies that the separator options are to be reset (not used). This has the

same effect as omitting the SEP parameter except that SEP=NONE can be

used with MF=(E,label) to clear the SEP options in the parameter list.

SETPRT

384 z/VSE System Macros Reference

TRC

Table reference characters indicator.

N Indicates that for any DTFPR or DTFDI opened after this SETPRT, data

lines do not contain table reference characters unless specified in the DTF

macro. The table reference character will not be prefixed to each data line

when presented to the access method.

Y Indicates that the first character of each data line given to the access

method is a table reference character. This applies only to the issuance of

PUT macros with DTFPR, DTFDI or DTFCP. The DTF must be opened

after SETPRT is successfully issued.

WORKA

Work area address. This work area must be on a double-word boundary and at

least 512 bytes or 12288 bytes long. When the caller provides a work area, the

first word must contain the length of the area, including the first word. The

caller either identifies the work area or identifies a register name or number in

parentheses. The register contains the address of the work area. The register

must range from 2 to 13, unless EP is coded, in which case register 0 can be

specified. The WORKA parameter cannot be specified at the same time as

MF=L. When it is omitted, the SETPRT routine obtains storage space from the

user GETVIS area and frees it before completing. If the partition does not have

enough virtual storage space or is running in real mode, the caller must code

the WORKA parameter.

 If no valid work area is supplied (with the WORKA parameter), SETPRT

obtains 512 bytes from the user GETVIS area. If the caller does not supply at

least 12288 bytes and a character arrangement table, copy modification, or FCB

is being processed, then an additional 11776 bytes are obtained from the user

GETVIS area. The exception to this is that a SETPRT to a printer whose I/O is

being trapped by VSE/POWER only requires 512 bytes for a work area. If an

invalid work area is supplied, it is ignored and an area is gotten. All

SETPRT-requested functions are performed using this area.

Note: The total number of character sets referenced by character arrangement

tables in both the CHARS and MODIFY parameters cannot exceed the number of

WCGMs available on the 3800 (either two or four). If the same character set is

referenced by multiple character arrangement tables and graphic character

modification is not used, then SETPRT loads only one copy of the character set. If

a character set is referenced by two character arrangement tables and one is

modified by graphic character modification and the other is not, then two character

sets are loaded.

The SETPRT routine processes the parameters in the following order:

 WORKA

 SEP

 INIT

 TRC

 BURST/FORMS/FLASH name

 CHARS/MODIFY

 FCB

 COPYG/CINDX/FLASH count

 DCHK

MF and EP are not relative to the SETPRT routine execution.

Certain SETPRT parameters have system-defined defaults available. These

keywords are BURST, CHARS (first table name only), FCB, FLASH name, FORMS,

SETPRT

Chapter 2. Macro Descriptions 385

and MODIFY (copymod name only). To request a system default, either code an ″*″

(asterisk) or omit the keyword and code DFLT=Y.

SETPRT

386 z/VSE System Macros Reference

SPLEVEL (Set and Test Macro Level) Macro

CC

name
 SPLEVEL SET=n

SET

TEST

 CE

The macro sets or tests the global symbol that indicates the level of a macro.

Certain macros supplied in the VSE/ESA 2.1 macro library are identified as being

downward-incompatible with VSE/ESA 1.1, 1.2, or 1.3. In order to use these

macros, you have to generate downward-compatible expansions by issuing the

SPLEVEL macro. SPLEVEL sets (or tests) a global symbol that is interrogated by

these macros during assembly to determine the type of expansion to be generated.

The following is a list of the macros that check the setting of the global symbol:

 FCEPGOUT

 PAGEIN

 PFIX

 PFREE

 RELPAG

 WTO

 WTOR

SET=n

Sets a global symbol equal to n, where n must be 1, 2, 3, or 4. If you code any

of the above macros, one of the following macro expansions is generated:

v VSE/ESA 1.1 and 1.2 macro expansion if n=1

v VSE/ESA 1.3 macro expansion if n=2 or 3

v VSE/ESA 2.1 macro expansion if n=4

SET

Causes the SPLEVEL routine to use the default value n=4.

TEST

Determines the macro level that is in effect. The result of the test request is

returned to your program in the global set symbol &SYSSPLV. If TEST is

specified and if SPLEVEL SET has not been issued during this assembly, the

SPLEVEL routine puts the default value (4) into the global set symbol. If

SPLEVEL has been issued, the previous value of n or the default value is

already in the global set symbol. (For information about global set symbols

refer to the High Level Assembler for VSE manuals.)

SPLEVEL

Chapter 2. Macro Descriptions 387

STXIT (Set Exit) Macro

To establish linkage:

CC

name

 STXIT AB

IT

OC

PC

 , rtnaddr

(0)
 , savearea

(1)
 C

C
 ,OPTION=DUMP

,OPTION=

MSGONLY

NODUMP

EARLY

,MFG=

area

(S,area)

(r)

 ,MSGDATA=NO

,MSGDATA=YES

C

C
 ,MSGPARM=NO

,MSGPARM=YES

 ,AMODE=24

,AMODE=ANY

CE

MSGDATA and MSGPARM are valid for STXIT OC only.

To end linkage:

CC

name
 STXIT AB

IT

OC

PC

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro establishes or ends linkage between the supervisor and an exit routine

of your program for handling the specified condition. Linkage must be established

before an interrupt occurs.

The STXIT macro is only allowed when the linkage stack is empty. If a STXIT

macro is issued in a module called with a PC or BAKR instruction (that is, the

linkage stack is not empty), the calling task is canceled.

The following types of exit routines can be specified:

AB

Exit routine to handle abnormal termination conditions.

IT Exit routine to handle interval timer interrupts.

OC

Exit routine to handle operator attention interrupts.

STXIT

388 z/VSE System Macros Reference

PC

Exit routine to handle program checks.

Use the EXIT macro to return from your exit routine.

Warning

The STXIT macro should not be issued from an application running under

CICS. Issuing this macro can adversely affect CICS execution.

 The exit routine gets control:

v In the addressing mode specified in the AMODE operand of the STXIT macro;

that is, in 24-bit addressing mode for AMODE=24 or in 31-bit addressing mode

for AMODE=ANY.

v With the PSW key active at invocation time of the related STXIT macro or

ATTACH macro.

When the STXIT macro is executed in 31-bit addressing mode, AMODE=ANY

must be specified; otherwise a cancel condition (mode violation) occurs.

When you restart a program from a checkpoint, any STXIT linkages established

prior to the checkpoint are destroyed.

If, in an exit routine, you are issuing an I/O request that requires the same logic

module as your main routine, you must generate a read-only module by specifying

RDONLY=YES in the DTF and in the logic module.

Both the main routine and the exit routine require a save area of their own.

Upon entry to an exit routine, the supervisor resets the PSW condition code, access

register mode, and program mask to zero, and sets up the following registers:

v For STXIT AB, register 0 contains, in its low-order byte, the cancel code passed

by z/VSE. For a list of these codes, see z/VSE Messages and Codes.

v Register 1 points to the user-supplied exit save area, which contains the

interrupt status information and the contents of registers 0 through 15, plus the

access registers (if the extended save area was used). For a detailed description

of the information that is provided in the save area, see the “MAPSAVAR (Map

Save Area) Macro” on page 312.

v Register 15 points to the exit routine entry (bit 0 being off indicates that the exit

is in 24-bit mode; bit 0 being on indicates 31-bit mode).

All other registers have to be reloaded (for example, from the user-supplied save

area) before they can be used. Do not rely on the contents of these registers at the

time of interrupt; unpredictable results may occur if you do.

AB

An abnormal task termination routine is entered if a task is terminated for a

reason other than one of the following macros in the program: CANCEL,

DETACH, DUMP, JDUMP, RETURN, and EOJ. (When OPTION=EARLY is

specified, the AB exit routine is invoked for any type of termination, normal or

abnormal.) Before invocation of the task’s abnormal termination routine, the

system produces termination messages and a partition dump depending on

selected options (see the OPTION operand below).

STXIT

Chapter 2. Macro Descriptions 389

The abnormal termination routine can then examine the interrupt status

information (from register 1) and take whatever action is necessary.

 Macros which might be used in this routine are, for instance, POST and

CLOSE. The STXIT macro cannot be used; it would result in an abnormal

termination (illegal SVC). Macros which should not be used are CHKPT, ENQ,

LOCK, some I/O macros, and WAIT or WAITM in combination with ECBs.

Using these macros may result in an abnormal termination or a wait condition.

Note: An abnormal termination condition within the abnormal termination

exit routine causes this routine to be terminated immediately. A

deadlock situation may occur if a wait condition occurs within a

subtask’s abnormal termination exit routine that has to be posted by the

main task.

 After the appropriate action is taken, your abnormal termination routine may

either resume processing using the EXIT AB macro (main task only) or

terminate the task with CANCEL, DETACH, DUMP, JDUMP, EOJ, or with

RETURN. For a main task, the whole job is terminated if OPTION=DUMP has

been specified explicitly or by default. Only the current job step is terminated

if OPTION=NODUMP and the termination macro used was DUMP or EOJ.

Recovery via the EXIT AB macro is possible.

 If your routine issues the DUMP or JDUMP macro, the system produces a

storage map of the partition even if job control option NODUMP was

specified.

 Any task in a partition can attach a subtask with an ABSAVE operand in the

ATTACH macro. This assumes the subtask will use the attaching task’s

abnormal termination routine. The length of the save area and the dump

options are taken from the AB exit definition of the attaching task. If the

ATTACH macro is issued in 31-bit mode, the length of the extended save area

is assumed. However, the subtask may override the ABSAVE specification by

issuing its own STXIT AB macro.

 If an abnormal termination condition occurs in a main task and linkage has not

been established to an abnormal termination routine, processing in the

partition is abnormally terminated. However, if the abnormal termination

condition occurs in a subtask without exit linkage, only the subtask is

terminated.

 When subtasks are detached or canceled, associated time intervals and exit

linkages are cleared.

IT

An interval timer interruption routine is entered when the specified interval

elapses.

 If an interval timer interrupt occurs while an interval timer exit routine is still

processing, the handling of the interrupt is delayed. When processing ends

with EXIT IT, the IT exit routine is entered again to process the new IT

interrupt. (This can only occur if a short time interval was issued in your exit

routine).

Note: If a task is using a logical transient routine when a timer interrupt

occurs, your timer routine is not entered until the logical transient

routine is released.

STXIT

390 z/VSE System Macros Reference

OC

An operator communication interruption routine is entered when the operator

enters the MSG command. Only the main task can issue the STXIT OC macro.

Exception: In the VTAM partition, either the main task or a subtask can issue

STXIT OC.

 An operator communication interruption is ignored if no exit linkage has been

established.

PC

A program check interruption routine is entered when a program check occurs.

If a program check occurs in a routine being executed from the logical

transient area, the job containing the routine is abnormally terminated.

 A program check interruption routine can be shared by more than one task

within a partition. To accomplish this, issue the STXIT macro in each subtask

with the same routine address but with separate save areas. To successfully

share the same PC routine, the routine must be reenterable, that is, it must be

capable of being used concurrently by two or more tasks.

 If a program check condition occurs in a main task without exit linkage,

processing in the partition is terminated. However, if this same condition

occurs in a subtask, only the subtask is terminated.

 The specified exit is not taken if either of the following is true:

v The program check occurs while VTAM is processing a request issued by the

program.

v The STXIT macro was issued with a PSW-key not equal to 0 and the

PSW-key at the time of the program check is not equal to the PSW-key when

the STXIT macro was issued.

rtnaddr

Specifies the entry point address of the routine that processes the condition

described in the first operand. Your exit routine may be located anywhere in

the program if AMODE=ANY. If AMODE=24, it must be located below the

16MB line.

Note: If the routine address is zero, the termination function is executed.

savearea

Specifies the address of a save area in which the supervisor stores the interrupt

status information. Your program must have a separate save area for each

routine that is included. The save area may be located anywhere in storage if

AMODE=ANY; if AMODE=24, it must be located below the 16MB line. For the

format of the save area, see the “MAPSAVAR (Map Save Area) Macro” on page

312.

OPTION=DUMP | MSGONLY | NODUMP | EARLY

This operand can be used only when setting up linkage to an abnormal

termination exit routine (STXIT AB). The effect of the various specifications is

as follows:

OPTION=DUMP (or omission of the operand)

Before the abnormal termination routine receives control, the system issues

termination messages. In addition, the system produces a partition dump,

unless the job control option NODUMP is active.

OPTION=MSGONLY

Before the abnormal termination routine receives control, the system issues

termination messages. No dump is produced in this case.

STXIT

Chapter 2. Macro Descriptions 391

OPTION=NODUMP

Neither a termination message is issued nor a dump is produced.

However, if the abnormal termination routine terminates abnormally,

termination messages and the dump are given regardless of this OPTION

specification.

Note: If your routine ends with a DUMP macro and the STXIT macro was

specified without OPTION=NODUMP, you get two dumps.

OPTION=EARLY (applies to subsystems only)

This causes the AB exit routine to be invoked for any type of termination

(normal or abnormal) and, for a main task, before propagating the

termination to its subtasks.

 An exit with OPTION=EARLY can be set up only once during the whole

lifetime of a task. Any subsequent request to modify or reset this exit is

ignored. This protects the early exit from being overwritten by any user

code that is executed under the same task as the subsystem.

 For an STXIT request with OPTION=EARLY, the system sets one of the

following return codes into register 15:

X’00’

Exit successfully set.

X’04’

Exit already set.

X’08’

Reset not allowed.

X’0C’

No subsystem request.

 An AB exit routine defined with OPTION=EARLY cannot be transferred

via the ATTACH (ABSAVE=) macro. If an AB exit is to be transferred to

the attached task, a secondary AB exit (other than OPTION=EARLY) must

be defined either prior to or after the STXIT AB OPTION=EARLY macro

request (the AB exit becomes secondary when the STXIT OPTION=EARLY

is issued). The secondary AB exit is only used in the ATTACH processing.

MFG=area | (S,area) | (r)

This operand is required if the program that issues the STXIT macro is to be

reenterable. (It is not required if STXIT is issued in 24-bit mode, and rtnaddr

plus savearea are specified in register notation, and no other operand is

specified.)

 The operand specifies the address of a 64-byte dynamic storage area, that is,

storage which your program obtains through a GETVIS macro. The area is

needed by the system during execution of the macro. Registers 0 and 1 may

not be used for register notation.

MSGDATA=NO | YES

MSGDATA=YES indicates that the operator communication (OC) exit is

prepared to retrieve data from the AR MSG DATA command. In that case

z/VSE assumes that the extended save area is used. The layout of the area is

defined with the mapping macro MAPSAVAR. If the STXIT macro was issued

with AMODE=24, the MAPSAVAR fields SVUAPSW (actual PSW) and

SVUAREG (access register save area) are not used.

 If no data is specified with the MSG command, the area is initialized with

binary zeros.

STXIT

392 z/VSE System Macros Reference

MSGDATA=NO indicates that no data is to be passed from the MSG command

and that the DATA operand, if specified, is to be ignored.

 MSGDATA and MSGPARM are mutually exclusive.

MSGPARM=NO | YES

Indicates that routing and correlation parameters associated with the MSG

command are to be passed to the OC exit in the user save area, along with a

pointer to MSG data, if any (see the “MAPSAVAR (Map Save Area) Macro” on

page 312). MSGPARM and MSGDATA are mutually exclusive.

 If MSGPARM=YES is specified on STXIT OC, the scheduled save area is used.

The following fields are added to MAPSAVAR in the SVUMGADR area, and

used to pass MSG parameters to the OC exit for MSGPARM=YES:

SVUMCSID

4-byte console ID (CONSID) of the console where the MSG command

was entered. The setting of the high order bit indicates if the console

has ’master’ (0) or ’user’ (1) authority.

SVUMNAME

8-byte name of the console where the MSG command was entered.

SVUMCART

8-byte command and response token (CART) associated with the MSG

command.

SVUMDLNG

2-byte length of MSG data.

SVUMDATA

31-bit pointer to MSG data (zero if no data specified).

 To ensure correct routing and correlation of all messages generated by the OC

exit, such messages must be written via WTO/WTOR, with CONSID and

CART parameters matching the values passed in SVUMCSID and SVUMCART

respectively.

 Use of the MSG command from a user console is restricted by the system to

partitions running under control of that console (ECHO option).

AMODE=24 | ANY

Specifies the type of exit save area that is to be used for status saving and the

addressing mode in which the exit routine gets control. AMODE=24 indicates

that the old (72-byte) save area is to be used and that the exit routine is to get

control in 24-bit addressing mode. AMODE=ANY indicates that the extended

save area (with access registers) is to be used and that the exit routine is to get

control in 31-bit addressing mode. For the layout of the save areas, see the

“MAPSAVAR (Map Save Area) Macro” on page 312.

Figure 36 shows what happens when one of the four exit conditions occurs while

an STXIT routine is being processed within a particular partition.

STXIT

Chapter 2. Macro Descriptions 393

┌──────────────────┬───┐

│ │ Interrupt Condition │

│ Routine being ├───────────┬───────────┬───────────┬───────────┤

│ Processed │ AB │ IT | OC │ PC │

├──────────────────┼───────────┼───────────┼───────────┼───────────┤

│ AB │ C │ D │ I │ C │

│ │ │ │ │ │

│ IT │ S │ E │ H │ H │

│ │ │ │ │ │

│ OC │ S │ H │ I │ H │

│ │ │ │ │ │

│ PC │ S │ H │ H │ T │

├──────────────────┴───────────┴───────────┴───────────┴───────────┤

│C = The job is canceled immediately. The AB routine does not re- │

│ ceive control again. │

│ │

│D = The interrupt is delayed. The IT exit routine receives │

│ control after the EXIT AB macro is issued. If no EXIT AB is │

│ issued, the interrupt is ignored. │

│ │

│E = Handling of the new timer interrupt is delayed until the pro- │

│ cessing of the EXIT IT for the original interrupt is complete.│

│ │

│H = The condition is honored. When the newly called routine has │

│ finished processing, control returns to the interrupted rou- │

│ tine. │

│ │

│I = The condition is ignored. │

│ │

│S = Execution of the routine is suspended. Control is transferred│

│ to the AB routine. │

│ │

│T = The job abnormally terminates. If an AB routine exists, that │

│ routine receives control; else, a system abnormal end occurs. │

└──┘

Figure 36. Effect of an AB, IT, OC, or PC Interrupt During STXIT Routine Execution

STXIT

394 z/VSE System Macros Reference

SUBSID (Subsystem Information Display) Macro

CC

name
 SUBSID INQUIRY,NAME= name1

(S,name1)

(r1)

 ,AREA= name2

(S,name2)

(r2)

 C

C

,LEN=

length

(r3)

 ,LVLTEST=NO

,LVLTEST=YES

,MFG=

name4

(r4)

CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro allows you to make inquiries about the supervisor. The information

about the supervisor (such as version number, modification number, or some

indicators) is described by a byte string, which may be interpreted with the help of

the macro MAPSSID.

NAME=name1 | (S,name1) | (r1)

Specifies the address of a 4-byte field containing the name SUPb (where b =

blank).

AREA=name2 | (S,name2) | (r2)

Specifies the address of the area into which the requested information is to be

stored.

LEN=length | (r3)

Specifies the length of the area as an integer, a self-defining term, or as a value

in a register. The length to be specified can be obtained from the DSECT

generated by the MAPSSID macro.

LVLTEST=NO | YES

Specify LVLTEST=YES if the program might make the inquiry on a pre-VSE

release (DOS/VS) supervisor that does not support the SUBSID function. This

prevents the program from being canceled. If you specify LVLTEST=NO an

inquiry under these circumstances causes the program to be canceled.

MFG=name4 | (r4)

The operand is required if the program is to be reenterable. It specifies the

address of a 64-byte dynamic storage area, that is: storage which your program

obtained through a GETVIS macro. This area is required for system use during

execution of the macro.

Return Codes in Register 15

0 Information returned.

8 Returned information truncated, because the area specified is too short.

Register 0 contains the total length in the 2 rightmost bytes.

16 Name not found.

SUBSID

Chapter 2. Macro Descriptions 395

20 SUBSID function not available because this is a back-level supervisor (only if

LVLTEST=YES).

SUBSID

396 z/VSE System Macros Reference

SYSSTATE (Set and Test Address Space Control Mode) Macro

CC

name
 SYSSTATE ASCENV= P

AR
 CE

CC

name
 SYSSTATE TEST CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The SYSSTATE ASCENV macro sets a global symbol that indicates whether your

program is running in AR (access register) mode or in primary ASC (address space

control) mode. This information is needed by certain macros (DSPSERV, SDUMP,

SDUMPX, for example) that support callers in both AR and primary mode and

that need to know in which mode your program is running. The macros that

support callers in AR mode generate code and addresses that are appropriate for

AR mode; macros that support callers in primary mode generate code and

addresses for primary mode. These macros use the SYSSTATE TEST option to test

the global symbol that was set with the SYSSTATE ASCENV macro.

Issue the SYSSTATE ASCENV=AR macro at the time your program changes ASC

mode to AR mode. Then, when your program returns to primary mode, issue

SYSSTATE ASCENV=P.

ASCENV=P | AR

Specifies whether your program is running in primary (P) or access register

(AR) mode.

TEST

Determines the current mode by checking the global symbol that was set by

the most recent invocation of SYSSTATE ASCENV. Depending on the setting of

the global symbol, the caller of SYSSTATE TEST generates code and addresses

appropriate for primary mode or AR mode.

SYSSTATE

Chapter 2. Macro Descriptions 397

TECB (Timer Event Control Block) Macro

CC

name
 TECB CE

Required RMODE: 24 or ANY

The macro generates a timer event control block which can be referred to by the

symbol you specify in the name field. This block contains an event bit that

indicates when the time interval specified in SETIME has elapsed. The format of

this block is as follows:

Bytes Purpose of Bits

0-1 Reserved.

2 Control byte:

0 If 0: the time specified in SETIME has not elapsed. If 1: the time

specified in SETIME has elapsed.

1-7 Reserved.

3 Reserved.

TECB

398 z/VSE System Macros Reference

TPIN (Telecommunication Priority In) Macro

CC

name
 TPIN CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro is available primarily for telecommunication applications that require

immediate system response. The macro causes one or more partitions (other than

the one issuing the macro) to be deactivated. The number of partitions that can be

deactivated is specified at the console by way of a TPBAL command. The

partitions to be deactivated are the ones with the lowest priorities.

This request is ignored in each of the following cases:

v The operator has not made TP balancing active by means of the TPBAL

command.

v None of the partitions specified in the TPBAL command contains a program

running in virtual mode.

v The only partition that could be affected by TP balancing is the partition that

issued the TPIN request.

v There is no paging in the system.

The TPIN macro must always be used in conjunction with the TPOUT macro. The

operand field is ignored.

In a system without page data set, the macro results in a null operation.

TPOUT (Telecommunication Priority Out) Macro

CC

name
 TPOUT CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The TPOUT macro causes the system to reactivate partitions that had been

deactivated by the TPIN macro.

TPIN

Chapter 2. Macro Descriptions 399

Failure to issue the TPOUT macro can cause considerable and unnecessary

performance degradation in the batch partition(s). The operand field is ignored.

In a system without page data set, the macro results in a null operation.

TRUNC (Truncate Block) Macro

CC

name
 TRUNC filename

(1)
 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro is used with blocked output records written to disk or to magnetic tape.

It allows you to write a short block of records. These short blocks do not include

padding. Thus, the macro can be used for a function similar to that of the RELSE

macro for input records. When the end of a category of records is reached, the last

block can be written and the new category can be started at the beginning of a

new block.

The TRUNC macro does not necessarily cause a physical write to an FBA disk. If

this is desirable, code the PWRITE operand in the DTFSD macro for the affected

file.

filename | (1)

The symbolic name of the file specified as name in the DTFxx macro for the

affected file.

TTIMER (Test Interval Timer) Macro

CC

name
 TTIMER

CANCEL
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro is used to test how much time has elapsed of an interval which was set

in the same task by the associated SETIME macro. The TTIMER macro returns the

time remaining of the interval, expressed in hundredths of seconds in binary, in

register 0.

TPOUT

400 z/VSE System Macros Reference

CANCEL

If this is specified, the time interval set in that task is canceled. As a result, the

interval timer interruption routine of the task (to which linkage may have been

established by an STXIT IT macro) does not receive control. If the

corresponding SETIME macro specified the same name of a TECB, that TECB’s

event bit is set to 1.

If you omit the operand, you can include a comment in the macro only if this

comment begins with a comma.

TTIMER

Chapter 2. Macro Descriptions 401

UNLOCK (Unlock Resource) Macro

CC

name
 UNLOCK name

(S,name)

(1)

ALL

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24

ASC Mode:

Primary

The macro can be used to:

v Dequeue the issuing task (or partition) from the named resource (to which the

task had previously been queued by a LOCK macro). The resource must have

been defined to the system by a DTL or GENDTL macro.

v Lower the lock control level. This may be done only if the issuing task is

currently locked, onto the resource, with the most stringent control level:

CONTROL=E and LOCKOPT=1 (the CONTROL and LOCKOPT operands are

described with the DTL macro). The resource then continues to be held by the

task. However, another task waiting for this resource can be dispatched again

and may gain shared access (see also the description of the “LOCK (Lock a

Resource) Macro” on page 302). To use the UNLOCK macro for this purpose,

you must issue the MODDTL macro with CHANGE=ON.

name | (S,name) | (1)

Specifies the DTL address.

ALL

Frees all resources which are locked by the task and whose DTLs were defined

with KEEP=NO. If UNLOCK ALL is issued by the main task, not only the

resources locked by that task are unlocked, but also those which have been

locked by subtasks, with OWNER=PARTITION specified for DTL generation.

Return Codes in Register 15

0 Successful request; the resource has been unlocked.

4 The resource is not locked for the unlocking task.

8 DTL format error.

Note: UNLOCK ALL does not provide a return code, and register 15 remains

unchanged.

UNLOCK

402 z/VSE System Macros Reference

VIRTAD (Virtual Address Return) Macro

CC

name
 VIRTAD address

(1)
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro returns, in register 0, the virtual address corresponding to a specified

real address.

address | (1)

Is the real storage address to be converted. It can be given as a symbol or in

register notation.

 The AMODE/RMODE of the caller can be 24 or 31 bit. When called in 24-bit

mode, the address will be treated as a 3-byte address; when called in 31-bit

mode, the address will be treated as a 4-byte address.

Register 0 returns the virtual address only if the specified real address points to a

page frame that contains a PFIXed page. Otherwise register 0 contains 0. Thus, the

macro can be used to test if a page is PFIXed.

Note: The pages of a program running in real mode are considered to be fixed.

VIRTAD

Chapter 2. Macro Descriptions 403

WAIT (Wait for Event) Macro

CC

name
 WAIT blockname

(1)
 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

Issue this macro whenever your program requires that an event is completed

before processing by the program continues. You need the macro, for example, if

an I/O operation (started by an EXCP macro) must be completed before processing

continues.

With the WAIT macro, a task sets itself into the wait state until the event control

block (ECB) specified in the macro is posted. An ECB is posted if its event bit (bit 0

of byte 2) is set to 1.

WAIT processing can wait for an ECB in 24-bit or 31-bit addressing mode

physically resident above or below 16MB. When WAIT is issued in AMODE 24, the

ECB address is treated as 24-bit address. When WAIT is issued in AMODE 31, the

ECB address is treated as 31-bit address.

The types of ECBs that may be referred to in the macro are any of the following:

v User defined (by a DC F’0’ or as the operand of a macro such as ATTACH).

v TECB

v CCB or IORB (24-bit address only).

For a discussion of the use of ECBs, see “Specifying an Event Control Block” in the

z/VSE System Macros User’s Guide; for a description of the TECB, CCB, or IORB see

the corresponding macros.

ECBs are normally used to synchronize tasks within the same partition. Use the

XPCC support when tasks belong to different partitions.

Do not use the macro to wait on any of the ECBs listed below if they are not

associated with the task (for instance, elapsed timer interval or an I/O operation

not started by the same task).

The ECBs are:

 Telecommunication ECB

 TECB

 CCB or IORB (24-bit address only).

An ECB is posted in either of the following ways:

v Automatically by the system if the macro requesting the involved service

included a valid ECB specification. Examples are:

 The CCB or IORB referred to in an EXCP macro.

 The ECB referred to in an ATTACH macro.

WAIT

404 z/VSE System Macros Reference

v By your program when it issues a POST macro referring to the ECB.

Do not use the WAIT macro together with logical IOCS request macros such as

GET, PUT, or CNTRL.

When a WAIT macro is processed, and the corresponding event control block is

not posted, the issuing task is set into the wait state. Control is then passed to the

supervisor, which makes the processor available to another task in the same or in

another partition.

Notes:

1. When a WAIT macro is processed and the corresponding event bit is on, the

task retains control. If an ECB or a TECB is to be used more than once, it is the

task’s responsibility to reset the event bit as soon as possible after it has been

posted.

2. Telecommunication ECBs must not be waited for, because their format does not

satisfy a WAIT.

blockname | (1)

The name of the event control block or the CCB or IORB, specified as a symbol

or in register notation. For a CCB or an IORB, this is the name of the control

block used in the EXCP macro.

WAIT

Chapter 2. Macro Descriptions 405

WAITF (Wait for Completion of I/O) Macro

CC

name

WAITF

H

 ,

filename

(rn)

CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro ensures that the transfer of a record is complete. It is valid for DAM

and ISAM; but for SAM only with MICR and OCR devices.

The WAITF macro is issued after any READ or WRITE for a file and before the

succeeding READ or WRITE for the same file. If the I/O operation is not

completed when WAITF is issued, the partition is placed in a wait state until the

data transfer is completed. This allows processing of programs in other partitions

while waiting for completion. When data transfer is complete, and if no errors

were encountered, processing continues with the next sequential instruction. If an

error is encountered, control passes to the error-handling routine named in the

DTFxx macro.

filename|(r1),filename|(r2),...

For filename, specify the name you used in the DTFxx macro for the file from

which a record is being read or to which a record is being written. You may

specify this name as a symbol or in register notation. Multiple file names are

valid only when using SAM to read MICR records.

 If you are using the multiple-file-name format of the macro while processing

MICR records, and if any of the files have records or errors ready to be

processed, control remains in the partition and processing continues with the

instruction following the WAITF.

WAITF

406 z/VSE System Macros Reference

WAITM (Wait for Multiple Events) Macro

CC

name

WAITM

H

 ,

(1)

ecbn

listname

(1)

CE

Notes:

1 You can specify up to 16 ECB’s.

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro enables your program or task to wait for one of a number of events to

occur. Control returns to the task when at least one of the event control blocks

specified in the WAITM macro is posted. Refer to the “WAIT (Wait for Event)

Macro” on page 404 for a description of the types of event control blocks and the

restrictions on their use.

WAITM processing can wait for ECBs in 24-bit or 31-bit addressing mode

physically resident above or below 16MB.

v When WAITM is issued in AMODE 24, the passed ECB addresses or list address

are treated as 24-bit addresses. The first byte following the last address in the list

must be nonzero to indicate the end of the list.

v When WAITM is issued in AMODE 31, the passed ECB addresses or list address

are treated as 31-bit address. The first bit of the last address in the list must be

nonzero to indicate the end of the list.

On return, register 1 holds a posted entry of the ECB list. If register 1 holds the last

list entry, the high-order bit is set (only for user-defined ECB lists).

When control returns to a waiting task, register 1 points to the posted event control

block (byte 2, bit 0 set to 1).

Note: Telecommunication ECBs must not be waited for, because their format does

not satisfy a WAITM.

ecb1,ecb2,... | listname | (1)

The operand provides the addresses of the ECBs to be waited upon. The

names of ecb1, ecb2... are assumed when at least two operands are supplied.

Up to 16 names can be coded.

 If only one operand is supplied, it is assumed to be the name (listname) of a

list of consecutive fullword addresses that point to the ECBs to be waited

upon.

WAITM

Chapter 2. Macro Descriptions 407

WRITE (Write a Record) Macro

CC

name
 WRITE filename

(1)
 , SQ , area

UPDATE

(0)

,length

,(r)

AFTER

,EOF

ID

KEY

NEWKEY

RZERO

 CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The WRITE macro transfers a record from virtual storage to an output file.

filename | (1)

For filename specify the same name you used as name in the DTFxx macro for

the file. Register notation must be used if your program is to be self-relocating.

SQ | UPDATE

For sequential work files, specify SQ for magnetic tape work files. For disk

work files, specify:

 SQ for a formatting write.

 UPDATE for a non-formatting write.

When writing to an FBA disk, a non-formatting WRITE (with UPDATE) writes

the current CI (control interval), while a formatting WRITE (with SQ) writes

the CI and follows it immediately with a Software-End-Of-File (SEOF).

 When writing to a CKD disk, a formatting WRITE writes count, key, and data,

while a non-formatting WRITE writes only data.

area | (0)

For a sequential file, this specifies the name, as a symbol or in register

notation, of the output area used by the file.

length | (r)

Specifies the actual number of bytes to be written on a sequential file.

Determines only records of undefined format (RECFORM=UNDEF).

AFTER

For a DA file, specify AFTER to write a record after the last record written,

regardless of key or identifier.

EOF

Applies only to the WRITE...AFTER form of the macro. Specify EOF to write

an end-of-file on a track after the last record on the track, if this is desired.

ID For DA files, specify ID to write at a location determined by the record

identifier in the count area of the records.

WRITE

408 z/VSE System Macros Reference

KEY

For an indexed sequential file, specify KEY for random updating. For a direct

access file, specify KEY to write at a location determined by the record key

(control information is in the key area of the records).

NEWKEY

Applies only to indexed sequential files. Specify NEWKEY to write a new (not

updated) record in the file.

 When loading or extending the file, precede the WRITE filename,NEWKEY

with a SETFL macro and follow it with an ENDFL macro.

 When adding a record after sequential retrieval, issue an ESETL macro before

writing the record.

RZERO

For a direct access file, specify RZERO to reset the capacity record of a track to

its maximum value and erase the track after record zero.

WRITE

Chapter 2. Macro Descriptions 409

WTO (Write to Operator) Macro

CC

name

 WTO

H

H

H

 ’msg’

(’msg’)

,

(’text’

)

,linetype

TEXT=

address1

,

(

address1

)

,

(

(

address1,

)

)

(r1),

linetype

 C

C

H

,

,ROUTCDE=(

routingcode

)

H

,

,DESC=(

descriptorcode

)

 C

C

H

,

,MCSFLAG=(

keyword

)

,CONNECT=

address2

(r2)

 C

C
,CONSID=

address3

(r3)

,CONSNAME=

address4

(r4)

 C

C

,CART=

address5

(r5)

 ,MF=I

,MF=L

(E,

address6

)

(r6)

CE

Except where noted otherwise, only registers 2 to 12 may be used for register

notation.

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The WTO macro is used to issue a console message. It allows to use message text

addresses (TEXT operand) in addition to literal text, to issue log-only messages

(MCSFLAG operand), to use multiple WTOs for a single message (CONNECT

WTO

410 z/VSE System Macros Reference

operand), to direct a message (typically a command response) to a specific console

(CONSID operand), and to correlate command responses with the original

command (CART operand).

Both source and object level compatibility is preserved for programs using the

WTO version of VSE/ESA releases prior to 2.1.0. However, the default expansion

as of VSE/ESA 2.1.0 is backward incompatible. If none of the operands introduced

in release 2.1.0 or later is used, a backward-compatible expansion, suitable for

execution on all VSE/ESA and z/VSE releases, may also be obtained with the

WTO macro as of VSE/ESA 2.1.0 by issuing SPLEVEL SET=n with n < 4 prior to

WTO invocation invocation (see also “SPLEVEL (Set and Test Macro Level) Macro”

on page 387).

’msg’ | (’msg’)

Denotes a single-line literal message. The message text must be enclosed in

quotes and may be up to 125 characters long. Quotes to be included in the

message text must be coded as double quotes. All characters with a value

smaller than X’40’ (except for the DBCS control characters SI and SO) or equal

X’FF’ are replaced by blanks.

(’text’,linetype)...

Denotes a message consisting of up to 10 lines. The text of each line must be

enclosed in quotes, its maximum length depends on the specified line type (see

below). Quotes to be included in the message text must be coded as double

quotes. All characters with a value smaller than X’40’ (except for the DBCS

control characters SI and SO) or equal X’FF’ are replaced by blanks.

 linetype may be specified as one of the following:

C Denotes a control line containing a message title. It can only be specified

for the first message line. The maximum text length is 34 characters.

L Denotes a label line containing message heading information. It can be

specified for at most two consecutive lines immediately following the C

line, if any. The maximum text length is 70 characters.

D Denotes a detail message line. Up to ten detail lines can be specified, each

with a maximum of 70 characters. This is the default when the line type is

omitted and two or more lines are specified.

DE

Denotes the last detail line and, in addition, the end of the whole message.

Only one DE line with a maximum length of 70 characters may be

specified. DE is implied for a single line message, when linetype is

omitted.

E Indicates that the previous line was the last message line. E is mutually

exclusive with DE. Only one E line may be specified. The text portion

should be omitted for this line and is in any case ignored.

 Incomplete multi-line messages not terminating with a linetype of DE or E and

to be continued on subsequent WTO macros with the CONNECT operand, are

only supported for known subsystems or authorized vendor products.

Otherwise, DE is enforced for the last message line, or an E line is appended

by the system.

TEXT=...

Denotes a message consisting of up to 10 lines. The text of each line is

specified by the address of an area containing a 2-byte length, followed by a

character string of that length. The maximum length for a single line with line

WTO

Chapter 2. Macro Descriptions 411

type omitted is 125 characters, and depends otherwise on the line type. All

characters with a value smaller than X’40’ (except for the DBCS control

characters SI and SO) or equal X’FF’ are replaced by blanks.

 The line type is used as described above.

ROUTCDE=(routing code...)

Specifies one or more routing codes as decimal numbers in the range 1-128,

separated by commas or by a hyphen to indicate a range. When ROUTCDE is

omitted, a default routing code of 2 is assumed. ROUTCDE is ignored when

specified together with CONNECT (see below).

 Routing codes determine, along with the CONSID or CONSNAME operands

(see below) and the VSE/POWER JECL JOB ECHO option, on which console(s)

the message is to be displayed and whether or not the message is to be logged

on the hardcopy file. The meaning associated with each routing code is as

follows:

1 Master Console Action: The message indicates a change in the system

status and demands action by an operator with master authority.

2 Master Console Information: The message indicates a change in the system

status and informs about a condition that might require action by an

operator with master authority.

3 Tape Pool: The message gives information about tape devices such as the

status of a tape unit or a request to mount a volume.

4 Direct Access Pool: The message gives information about DASD devices

such as the status of a DASD unit or a request to mount a volume.

5 Tape Library: The message gives tape library information such as mount

requests qualified by volume serial numbers.

6 Disk Library: The message gives disk library information such as mount

requests qualified by volume serial numbers.

7 Unit Record Pool: The message gives information about unit record devices

such as a request to mount a printer train.

8 Teleprocessing Control: The message gives information about

teleprocessing equipment such as a notification of line errors.

9 System Security: The message gives information about security checking

such as a request for a password.

10 System Error/Maintenance: The message gives problem information for the

system programmer such as a system error, an uncorrectable I/O error, or

information about system maintenance.

11 Programmer Information: The message is intended for the problem

programmer and is to be routed to the console identified by a

VSE/POWER JECL JOB ECHO option or to an ICCF terminal.

12 Reserved for emulators.

13-20

Reserved for customer use.

21-28

Reserved for subsystem use.

29-64

Reserved for IBM use.

WTO

412 z/VSE System Macros Reference

65-96

Reserved for messages associated with particular processors.

97-128

Reserved for messages associated with particular devices.

 When WTO is issued from an ICCF interactive partition and only routing code

11 is specified, the message is only displayed on the ICCF terminal and is not

logged on the HC file. If other routing codes are (also) present, the message is

(also) routed and logged according to the general rules.

DESC=(descriptor code...)

Specifies one or more descriptor codes as decimal numbers in the range 1-16.

Codes 1 to 6, 11 and 12 are mutually exclusive. If more than one of these codes

are specified, the most significant one is used (see below), the others are

ignored. Code 7 can be assigned in combination with any other code. When

DESC is omitted, a descriptor code of 7 is assumed. DESC is ignored if

specified together with CONNECT (see below).

 Descriptor codes determine, along with other factors, the presentation and

retention attributes of a message. The meaning associated with each descriptor

code is as follows:

1 System Failure: The message indicates an error that disrupts system

operations. To continue, the operator may have to re-IPL the system or

restart a major subsystem.

2 Immediate Action Required: The message indicates that the operator must

perform an action immediately. Some tasks may be in a wait state until the

action is performed, and system performance is affected.

3 Eventual Action Required: The message indicates that the operator must

perform an action eventually. No tasks are waiting for action completion.

4 System Status: The message indicates the status of a system task or of a

hardware unit.

5 Immediate Command Response: The message is issued as a response to a

system command.

6 Job Status: The message indicates the status of a job or job step.

7 Task-Related: The message is related to the processing of an application or

system program and is automatically DOMed by the system when the

related job step ends after logging, if applicable.

 This descriptor code is assigned automatically when the message is issued

by a user task on its own behalf.

8-10

Not used by z/VSE, ignored when specified.

11 Critical Eventual Action Required: The message indicates that the operator

must perform an action eventually, and no tasks are waiting for action

completion. However, the action is important enough for retaining the

message on the console screen until the action is completed.

12 Important Information: The message contains important information that

must be displayed at a console, but does not require any action in

response.

13-16

Reserved.

WTO

Chapter 2. Macro Descriptions 413

MCSFLAG=(keyword...)

Specifies one or more keywords requesting some special handling for this

message. Only the following specifications are supported by z/VSE:

RESP The message is a command response.

HRDCPY

The message is only to be logged on the hardcopy file. All routing

parameters (ROUTCDE, CONSID, CONSNAME) are ignored.

BUSYEXIT

Shortage of message buffers is to be handled by a return code, rather

than by waiting for buffers to be freed.

CONNECT=address2 | (r2)

Specifies (for privileged applications only) the address of a 4-byte field or a

register containing a message ID returned by a previous WTO to which this

WTO is to be connected. Connected WTOs are treated as one logical message

and only the last line of the last WTO must be an E or DE line. CONNECT to

or for a single line message, with linetype omitted, is invalid.

 CONNECT is mutually exclusive with CONSID, CONSNAME and CART.

Also, a connected message inherits routing and descriptor codes from the

message it is connected to. Therefore, ROUTCDE and DESC operands specified

together with CONNECT are ignored.

CONSID=address3 | (r3)

Specifies the address of a 4-byte field or a register containing the ID of the

console to which this message is to be directed.

 CONSID is invalid when CONNECT is specified. In this case, the console ID of

the first WTO applies to all connected WTOs.

CONSNAME=address4 | (r4)

Specifies the address of an 8-byte field containing the name of the console to

which this message is to be directed. It may be used as an alternative to, and

under the same conditions as CONSID. The name must be left-justified and

padded with blanks.

CART=address5 | (r5)

Specifies the address of an 8-byte field containing a command and response

token to be associated with this message. When omitted for a non-connected

message, a CART value of all 0s is assumed.

MF=I | L | (E,...)

Requests a macro expansion in-line (I) or in the list (L) or execute (E) format.

Register notation may not be used for the list format. For the execute form,

address specifies the address of a WTO parameter list generated by the list

format. Registers 1 to 12 may be used for this address in register notation.

 When the TEXT, CONSID, CONSNAME or CART operands are used, these

keywords must also be specified in the list form, even if no values are assigned

(for example, just CONSID=), to ensure that the right version of the parameter

list is generated.

A successful WTO returns a 4-byte message ID in register 1, that can be used for

subsequent WTOs (CONNECT parameter) or for the DOM macro.

When a message is issued for a partition with an active VSE/POWER ECHO

option and with routing code 11 on and CONSID or CONSNAME omitted, routing

WTO

414 z/VSE System Macros Reference

code 11 is reset and the ECHO userid is inserted for CONSNAME. If no other

routing code is on after resetting of routing code 11 and if the ECHO option is

REPLY, the message is suppressed.

When a message with routing code 11 and CONSID/CONSNAME omitted is

issued by the Attention Routine, routing code 11 is reset and the console ID of the

command origin is inserted for CONSID.

When CONSID or CONSNAME were specified, or set as described above and no

console with that name is active at the time the message was issued (nor a CMS

user with that userid), return code 30 is presented (see also below). The message is

processed anyway if routing codes other than 11 are on; it is ignored otherwise.

The CONNECT option is not supported for WTO issued from a VSE/ICCF

interactive partition.

Return Codes in Register 15

00 Successful completion.

04 Number of lines passed was 0 (request is ignored), or message text length

for a line was less than 1 (all lines up to error line were processed), or

more than 10 lines were specified (only the first 10 lines were processed),

or message text was truncated due to length longer than supported.

Whenever the number of lines processed is smaller than specified, an

ending line type is automatically generated. This also means that any

attempt to connect a subsequent WTO to this message will fail.

08 Message ID specified by CONNECT operand was not found or terminates

with a linetype of E or DE (request is ignored). This return code is also

given when CONNECT is rejected for a non-privileged program.

0C Invalid line type (all lines up to the error line are processed). This return

code is also given for non-privileged programs when a terminating line

type was enforced by the system.

20 Processing was terminated due to shortage of message buffers and

MCSFLAG option BUSYEXIT was specified.

30 The console identified by CONSID or CONSNAME, or by an ECHO option

in connection with routing code 11, is not active or not receiving

(MSGDLVRY=NONE). If routing codes other than 11 were specified, the

request was processed for those routing codes, otherwise it was ignored.

3C The system service responsible for WTO processing is not yet initialized.

The request is ignored. This condition can only occur during the very early

stage of system start-up.

Cancel Codes

21 One or more input parameters other than the special cases covered by

return codes are invalid or not supported by z/VSE.

25 One or more of the specified addresses are invalid.

45 Mode violation (for example, caller is in AR-mode).

WTO

Chapter 2. Macro Descriptions 415

WTOR (Write to Operator with Reply) Macro

CC

name

 WTOR ’msg’ , reply , length , ecb

(’msg’)

(r1)

(r2)

(r3)

TEXT=(

text

,

reply

,

length

,

ecb

)

(r4)

(r5)

(r6)

(r7)

 C

C

H

,

,ROUTCDE=(

routing_code

)

H

,

,DESC=(

descriptor_code

)

 C

C

H

,

,MCSFLAG=(

flag_name

)

,RPLYISUR=

address

(r8)

 C

C
,CONSID=

address

(r9)

,CONSNAME=

address

(r10)

,CART=

address

(r11)

 C

C
 ,MF=I

MF=

L

(E,

address

)

(r12)

,EXTENDED

CE

Except where noted otherwise, only registers 2 to 12 may be used for register

notation.

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The WTOR macro is used to issue a console message and to receive a reply. It

allows to use a message text address (TEXT operand) in addition to literal text, to

direct a message (typically a command response) to a specific console (CONSID or

CONSNAME operand), to correlate command responses with the original

command (CART operand), and to receive an identification of the console that

entered the reply (RPLYISUR operand).

Both source and object level compatibility is preserved for programs using the

WTOR version of VSE/ESA releases prior to 2.1.0. However, the default expansion

as of VSE/ESA 2.1.0 is backward incompatible. If none of the operands introduced

in release 2.1.0 or later is used, a backward-compatible expansion, suitable for

execution on all VSE/ESA and z/VSE releases, may also be obtained with the

WTOR

416 z/VSE System Macros Reference

WTOR macro as of VSE/ESA 2.1.0 by issuing SPLEVEL SET=n with n < 4 prior to

WTOR invocation invocation (see also “SPLEVEL (Set and Test Macro Level)

Macro” on page 387).

’msg’ | (’msg’)

Denotes a single-line literal message. The message text must be enclosed in

quotes and may be up to 122 characters long. Quotes to be included in the

message text must be coded as double quotes. All characters with a value

smaller than X’40’ (except for the DBCS control characters SI and SO) or equal

X’FF’ are replaced by blanks.

reply | (r1)

Specifies the address of an area for receiving the reply.

length | (r2)

Specifies the length of the reply area. Replies can be up to 119 characters, and

are truncated at the specified reply length.

ecb | (r3)

Specifies the address of an ECB that is posted when the reply is available. The

address must be on a halfword boundary.

TEXT=...

text denotes the address of an area containing a 2-byte length, followed by a

character string of that length. The maximum length is 122 characters. All

characters with a value smaller than X’40’ (except for the DBCS control

characters SI and SO) or equal X’FF’ are replaced by blanks.

 reply, length, and ecb have the same meaning as described above.

ROUTCDE=(routing code...)

Specifies one or more routing codes as decimal numbers in the range 1-128,

separated by commas or by a hyphen to indicate a range.

 Routing codes determine, along with the CONSID or CONSNAME operand

(see below) and the VSE/POWER JECL JOB ECHO option, on which console(s)

the message is to be displayed and whether or not the message is to be logged

on the hardcopy file. The meaning associated with each code is the same as for

WTO.

 When WTOR is issued from an ICCF interactive partition and only routing

code 11 is specified, the message is only displayed on the ICCF terminal and

can only be replied from there. Such a message is not logged on the HC file

and is not affected by DOM. If other routing codes are (also) present, the

message is (also) routed and logged according to the general rules, but cannot

be replied from the ICCF terminal.

DESC=(descriptor code...)

Specifies one or more descriptor codes as decimal numbers in the range 1-16.

This operand has no effect for WTOR and is only provided for compatibility. A

descriptor code of 7 is always assumed.

MCSFLAG=(keyword...)

Specifies one or more keywords requesting some special handling for this

message. Only the following specifications are supported by z/VSE:

RESP The message is a command response.

HRDCPY

The message is only to be logged on the hardcopy file. This option

causes the WTOR ECB to be posted as soon as logging is completed,

WTOR

Chapter 2. Macro Descriptions 417

and may be used to synchronize job processing with logging. All

routing parameters (ROUTCDE, CONSID, CONSNAME) are ignored.

RPLYISUR=address | (r8)

Specifies the address of a 12-byte area, where the system stores the 8-byte

name and the 4-byte ID of the console where the reply was entered. Bit 0 being

on in the console ID indicates to z/VSE a console without master authority.

CONSID=address | (r9)

Specifies the address of a 4-byte field or a register containing the ID of the

console to which this message is to be directed.

CONSNAME=address | (r10)

Specifies the address of an 8-byte field containing the name of the console to

which this message is to be directed, The name may be used as an alternative

to the console ID and under the same conditions as CONSID. The name must

be left justified and padded with blanks.

CART=address | (r11)

Specifies the address of an 8-byte field containing a command and response

token to be associated with this message. When omitted for a non-connected

message, a CART value of all zeros is assumed.

MF=I | L | (E,...)

Requests a macro expansion in-line (I) or in the list (L) or execute (E) format.

Register notation may not be used for the list format.

 When the TEXT, RPLYISUR, CONSID, CONSNAME or CART operands are

used, an extended form of the parameter list is required. To ensure that the

right version of the parameter list is generated, these keywords must also be

specified in the list form, even if no values are assigned, for example, just

CONSID= or TEXT=().

 For the execute form, MF also specifies the address of a WTOR parameter list

generated by the list format, and whether the extended form (EXTENDED) is

used. Registers 1 to 12 may be used for the address of the parameter list in

register notation.

A successful WTOR returns a 4-byte message ID in register 1, which can be used

for a subsequent DOM macro.

When a message is issued for a partition with an active VSE/POWER JECL JOB

ECHO option and routing code 11 on and CONSID or CONSNAME omitted,

routing code 11 is reset and the ECHO userid is inserted for CONSNAME.

When a message with routing code 11 and CONSID/CONSNAME omitted is

issued by the Attention Routine, routing code 11 is reset and the console ID of

command origin is inserted for CONSID.

When CONSID or CONSNAME were specified, or set as described above, and no

console with that name is active at the time the message was issued, nor a CMS

user with that userid, return code 30 is given (see also below). The message is

processed anyway, if routing codes other than 11 are on; otherwise it is ignored.

WTOR macro processing for an application program running in an VSE/ICCF

pseudo partition: WTOR messages with routing code 11 and other routing codes

set will be displayed as non-read messages on the VSE/ICCF terminal. The ″read″

goes to the other consoles (determined by the other routing codes) and a reply will

only be accepted from these consoles.

WTOR

418 z/VSE System Macros Reference

Return Codes in Register 15

00 Successful completion.

04 Number of lines passed was 0 (request is ignored), or message text length

was less than 1 (request is ignored), or message text was truncated due to

length longer than supported.

30 The console identified by CONSID or CONSNAME, or by an ECHO option

in connection with routing code 11, is not active or not receiving

(MSGDLVRY=NONE). If routing codes other than 11 were specified, the

request was processed for those routing codes, otherwise it was ignored.

3C The system service responsible for WTOR processing is not yet initialized.

The request is ignored. This condition can only occur during the very early

stage of system start-up.

Cancel Codes

21 One or more input parameters other than the special cases covered by

return codes are invalid or not supported by z/VSE.

25 One or more of the specified addresses are invalid.

45 Mode violation (for example, caller is in AR-mode).

WTOR

Chapter 2. Macro Descriptions 419

XECBTAB (Cross-Partition Event Control Block Table) Macro

CC

name
 XECBTAB TYPE= DEFINE

DELETE

CHECK

RESET

DELETALL

 ,XECB=xecbname C

C

,XECBADR=

xecbfield

(S,xecbfield)

(r1)

 ,ACCESS=XPOST

,ACCESS=XWAIT

,MFG=

area

(S,area)

(r2)

CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro can be used to:

v Define, for the specified cross-partition event control block (XECB), an entry in

the supervisor’s XECB table.

v Delete an XECB table entry.

v Check for the presence of an XECB table entry.

v Reset an XECB table entry.

An XECB for which an entry has been defined to the supervisor can be referred to

by XPOST and XWAIT macros. An XECB can be referred to also by a WAIT or

WAITM macro if the task issuing the macro has previously defined the XECB with

ACCESS=XWAIT.

The XECBTAB (and the XPOST and XWAIT) macro can be used to establish a

connection between two private static partitions in the same address space.

XECBTAB does not work in dynamic partitions; use the XPCC macro instead.

TYPE=CHECK | DEFINE | DELETE | DELETALL | RESET

The operand specifies the type of operation to be performed:

TYPE=CHECK

Causes the system to check whether or not an entry for a specific XECB

has been defined already. If that entry exists, the system returns the

address of both the XECB and the associated XECB table entry. For more

information, turn to Table 21 on page 422.

TYPE=DEFINE

Causes a new XECB table entry to be defined to the supervisor.

TYPE=DELETE

Causes an entry to be deleted from the supervisor’s XECB table.

TYPE=DELETE can be specified only for an XECB for which an entry has

been defined previously in the same program.

XECBTAB

420 z/VSE System Macros Reference

TYPE=DELETALL

This specification causes three actions. It:

v Deletes all entries in the XECB table that were defined previously by the

issuing task.

v Breaks the communication between any XECB owner and the issuing

task (that is, clears the information in the XECB table that indicates that

the issuing task communicates with the XECB owner).

v Posts as ready-to-run all tasks that are waiting for an XPOST by the

issuing task. Also, it sets on the abnormal termination bit in the ECB (bit

1 of byte 2). A task waiting because of an XWAIT on the XECB gets a

return code of X’08’ if this task owns the XECB.

Notes:

1. If DELETALL is specified, the XECB and ACCESS operands must not

be specified. XECBTAB with TYPE=DELETALL specified does not

provide a return code; all registers remain unchanged.

2. XPOST partition abnormal termination is not indicated to tasks using

WAIT or WAITM macro.

TYPE=RESET

Causes the system to clear the information in the supervisor XECB table

that indicates which task communicates with the program having defined

the XECB. RESET can be specified only for an XECB for which an entry

has been previously defined in the same program.

 After RESET, any task can attempt to establish a new connection with the

owner. With ACCESS=XPOST, however, if the task currently connected to

the XECB is issuing an XWAIT macro (at the time of RESET), this task

probably establishes connection again, nullifying the RESET operation.

XECB=xecbname

Specifies the name of the XECB. If the XECBADR operand is not present,

xecbname is the symbolic address of the four-byte (or larger) XECB field. If,

however, XECBADR is specified, xecbname is the name by which the control

block is known between partitions. The symbolic address of the control block

field is given by XECBADR.

 The XECB field must be defined in your program, except when TYPE=CHECK

is specified: in that case, the XECB field may be defined in another program.

XECBADR=xecbfield | (S,xecbfield) | (r1)

XECBADR is used only if TYPE=DEFINE is specified. It provides the symbolic

address of the four-byte (or larger) field that is to be used as XECB.

ACCESS=XPOST | XWAIT

This operand can be used together with TYPE=DEFINE to specify that the

program is allowed to post the XECB or wait for another program to do the

posting.

 XPOST, the default, specifies that the program is allowed to post the XECB.

Specifying XPOST implies that only one other active task is allowed to issue an

XWAIT macro against the XECB.

 XWAIT specifies that the program will be allowed to wait for one other task to

post the XECB.

MFG=area | (S,area) | (r2)

The operand is required if the program that issues the XECBTAB macro is to

be reenterable. The operand specifies the address of a 64-byte storage area, that

XECBTAB

Chapter 2. Macro Descriptions 421

is, storage which your program obtains by a GETVIS macro. This area is

needed for use by the system during execution of the macro.

 The MFG operand is useful only together with XECBADR coded in either of

these two notations: (S,xecbfield) or (r1).

Feedback Information

Table 21 shows the return codes that are supplied in register 15. The illustration

also indicates whether or not the system returns the addresses of the specified

XECB and the associated table entry in registers 1 and 14, respectively.

 Table 21. XECBTAB Feedback Information

TYPE= X’00’ X’04’ X’08’

CHECK The named XECB was found in

the table (see also Note 1).

The named XECB was not

found (see also Note 2).

The named XECB was found in

the table (see also Note 3).

DEFINE The named XECB is stored in

the table (see also Note 1).

The named XECB is already in

the table (see also Note 2).

The named XECB is full (see

also Note 2).

DELETE The named XECB is removed

from the table (see also Note 2).

The named XECB was not

found (see also Note 2).

The issuing program did not

define the XECB (see also Note

2).

RESET Communication bytes of the

named XECB were cleared (see

also Note 2).

The named XECB was not

found (see also Note 2).

The issuing program did not

define the XECB (see also Note

2).

Notes:

1. Register 1 contains the address of the XECB and register 14 the address of the

table entry.

2. Registers 1 and 14 are set to zero.

3. The issuing program and the program having defined the XECB do not run in

private partitions within the same address space (registers 1 and 14 are set to

0). A program in a private static partition can continue to use an XECB to

communicate with VSE/POWER. However, since the VSE/POWER

XECBTAB-based macros GETSPOOL, PUTSPOOL, and CTLSPOOL do not work

for dynamic partitions, use the XPCC macro instead, together with the

PWRSPL macro.

XECBTAB

422 z/VSE System Macros Reference

XPCC (Cross-Partition Communication) Macro

CC

name
 XPCC XPCCB= addr

(1)

(S,addr)

 ,FUNC= keyword

(reg)
 C

C
,BUFFER=

addr

(reg)

(S,addr)

,FDSCR=

POSTRCV

UNIQUE

ABNORM

NO

(reg)

,MECB=

addr

(reg)

(S,addr)

 C

C
,MXPCCB=

addr

(reg)

(S,addr)

,TIMEOUT=

n

(reg)

 CE

Requirements for the caller:

AMODE:

24 or 31

RMODE:

24 or ANY

ASC Mode:

Primary

The macro invokes the cross-partition communication service, which allows

communication between two application programs (two different z/VSE tasks). For

the values and meanings of the return and reason code information related to the

various XPCC requests, see the “MAPXPCCB (Map Cross-Partition Control Block)

Macro” on page 316.

XPCCB=addr | (1) | (S,addr)

Defines the address of the XPCCB, which is the control block that contains all

request-related information. The control block is set up with the XPCCB macro.

Depending on the request, only certain fields of the control block are used (for

details, refer to the description of the various functions under “Cross-Partition

Communication” in the z/VSE System Macros User’s Guide .)

 The address of the XPCCB is treated as a 3-byte address if the issuer of the

macro is operating in 24-bit mode, and as a 4-byte address if operating in

31-bit mode.

FUNC=keyword | (reg)

Defines the specific function to be requested from the XPCC service.

Depending on the type of request, an application may use the following

keywords:

1. Initialization request:

IDENT Identify an application to the XPCC service.

2. Connection-related requests:

CONNECT Connect an application to another application. DISCONN

Terminate a connected link to another application (if no data transmission

is going on at the moment).

XPCC

Chapter 2. Macro Descriptions 423

DISCPRG Terminate a connection unconditionally. This may interrupt the

transfer of data.

DISCALL Disconnect unconditionally all connections for a certain

application.

3. Data transmission requests:

SEND Send data to another application.

SENDR Send data and request a reply back from the receiver.

SENDI Send data into a predefined area and give SENDI-state to partner.

RECEIVE Receive data.

REPLY Send a reply back to the sender.

CLEAR Revoke a previously initiated SEND request from the connection

(used by the sender).

PURGE The receiver purges the data, because he is not able to receive it.

4. Termination requests:

TERMIN Terminate XPCC usage (if all links are already disconnected).

TERMPRG Terminate unconditionally. This may interrupt the transfer of

data.

TERMQSCE No termination yet, but new connections to this application

are not granted anymore.

Depending on the selected function, IJBXFCT of the cross-partition control

block (XPCCB) is set accordingly.

 If the format FUNC=(reg) is used, the specified register must have been loaded

with the corresponding function byte value. These values can be found in the

program listing under label IJBXFCT in the mapping macro MAPXPCCB (see

Figure 32 on page 319).

BUFFER=addr | (reg) | (S,addr)

This operand may optionally be used in connection with SEND, SENDR,

SENDI, RECEIVE, and REPLY requests to dynamically provide a data area

from where (SEND, SENDR, SENDI, REPLY) or to which (RECEIVE) data is to

be moved. If you use this operand, the corresponding BUFFER field in the

XPCCB control block is overwritten.

 If the address is loaded into a register, it must be a 4-byte address.

 For a RECEIVE or REPLY request, the BUFFER address must point to an 8-byte

area with the following format:

┌────────┬───┐

│ Bytes │ Description │

├────────┼───┤

│ 0,bit 0│ ON │

│ 0 ─ 3 │ Data area address (31-bit address) │

│ 4 ─ 7 │ Length of data area │

└────────┴───┘

For a SEND or SENDR request, the BUFFER address must point to an address

list as shown below, where each entry has the following format:

XPCC

424 z/VSE System Macros Reference

┌────────┬───┐

│ Bytes │ Description │

├────────┼───┤

│ 0,bit 0│ Indicator bit: │

│ │ OFF : Not last entry in list │

│ │ ON : Last entry in list │

│ 0 ─ 3 │ Data address of buffer segment (31-bit) │

│ 4 ─ 7 │ Length of buffer segment │

└────────┴───┘

 You can specify up to 256 entries of this format in one buffer address list. The

buffer segments are concatenated and passed as one buffer.

Note: For performance reasons, it is recommended that buffers should start at

a page boundary or, if smaller than a page, do not cross the page

boundary.

FDSCR=POSTRCV | UNIQUE | ABNORM | NO | (reg)

This operand specifies an option for the requested function. If omitted, the

current value of the function descriptor field IJBXFDSC of the XPCCB is used

(see also Figure 33 on page 320).

 POSTRCV Can be specified with the SENDR function. The sender is notified

when the data has been received by the other side. IJBXCECB is posted and

the reason code field IJBXREAS is set to IJBXRECX. If register notation is used,

the register must be loaded with IJBXPOST.

 UNIQUE Can be specified with the IDENT function. It ensures that the

application name specified in the XPCCB macro is unique in this z/VSE

system. If the application name is already known in the system, the request is

rejected with return code X’08’ in register 15 and return code field IJBXRETC

set to IJBXDUP. If the IDENT request is granted, each subsequent request with

the same application name is rejected with the same return information. If

register notation is used, the register must be loaded with IJBXUNIQ.

 ABNORM Can be specified with the DISCONN and DISCPRG functions. The

other side is posted an abnormal-end condition of the current task, with reason

code field IJBXREAS set to IJBXABDC. If register notation is used, the register

must be loaded with IJBXFDAB.

 NO Can be specified with any function. It forces the function descriptor code

to X’00’.

 If register notation is used, the register must be loaded with binary zeros.

MECB=addr | (reg) | (S,addr)

This operand may optionally be used with the CONNECT function. It specifies

the address of an ECB within the user’s partition. This ’main ECB’ is always

posted when any of the XPCC ECBs is posted. All tasks waiting on the MECB

are set to ’ready-to-run’. The application owning the main ECB is responsible

for resetting the traffic bit in the main ECB.

 If the address is loaded into a register, it must be a 4-byte address.

MXPCCB=addr | (reg) | (S,addr)

This operand may optionally be used with the CONNECT function. It defines

the XPCCB which contains the identify token to be used as input in the

CONNECT request.

 If the address is loaded into a register, it must be a 4-byte address.

TIMEOUT=n | (reg)

Specifies the number of seconds the issuer of a CONNECT request is prepared

XPCC

Chapter 2. Macro Descriptions 425

to wait. The value for n must be in the range of 0 to 255. After the specified

time interval is exhausted, IJBXCECB, IJBXSECB, and IJBXRECB are posted and

reason code IJBXTOUT is set in IJBXREAS. The XPCC user has to respond with

either an XPCC FUNC=DISCONN or DISCPRG request.

 In register notation, byte 3 of the register contains the value n. 0 means an

immediate request. In this case the CONNECT request is rejected with

IJBXTIMO if the partner has not already issued CONNECT.

 If the TIMEOUT operand is specified, the XPCCB must be defined with

VERSION=2.

XPCC

426 z/VSE System Macros Reference

XPCCB (Cross-Partition Control Block) Macro

CC

name
 XPCCB APPL=name,TOAPPL= name

ANY
 C

C
,BUFFER=

addr

(addr,length)

,REPAREA=(addr,length)
 C

C

,MECB=

addr

(S,addr)

 ,VERSION=1

,VERSION=2

CE

Required RMODE: 24 or ANY

This macro sets up a cross-partition communication control block XPCCB. Each

connection or communication path between the two applications is represented by

a unique XPCCB. The address of the XPCCB is indicated in the XPCC macro. The

corresponding DSECT is generated by means of the MAPXPCCB macro. This

mapping DSECT may be used to reference or modify the control block fields at

execution time when setting up a z/VSE XPCC request or when checking the

status of the XPCC connection.

APPL=name

Specifies the name of the application requesting XPCC service. It may be up to

eight bytes long and must not contain blanks or all binary zeros (printable

characters are recommended). Application names starting with SYS are

reserved for programs written by IBM.

TOAPPL=name | ANY

Specifies the name of the application to which communication is to be

established.

 ANY indicates that an open communication link is to be set up, which means

that any other application can link up. (ANY must not be used as application

name.)

BUFFER=addr | (addr,length)

Specifies the address of one or more buffer areas for the data transmission

request, where addr is a pointer to a list of 8-byte fields, as described under

the BUFFER operand in the “MAPXPCCB (Map Cross-Partition Control Block)

Macro” on page 316. If the list contains only one entry, it can be specified

directly by (addr,length) instead of addr.

REPAREA=(addr,length)

Specifies, for the SENDR function, the address of the data area into which the

reply is to be moved.

MECB=addr | (S,addr)

Specifies, for the CONNECT request, the address of a ’main ECB’, which is

always posted when any of the XPCC ECBs is posted. All tasks waiting for the

MECB are taken out of the wait state.

VERSION=1 | 2

Indicates the version of the XPCCB. Two versions of the XPCCB are

XPCCB

Chapter 2. Macro Descriptions 427

maintained: VERSION=1 is the default. VERSION=2 is required if the

application wants to make use of the TIMEOUT, SENDI or MECB functions of

the XPCC support.

XPCCB

428 z/VSE System Macros Reference

XPOST (Cross-Partition Post) Macro

CC

name
 XPOST XECB= xecbname

(1)
 POINTRG=(14) CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro provides for cross-partition communication by posting the specified

XECB (the macro sets bit 0 of byte 2 to 1).

An XPOST macro issued against an XECB causes the task waiting for this XECB to

be removed from the wait state. This task may have issued an XWAIT, a WAIT or

a WAITM with a previously defined XECB. The task may have been activated in

the same or in another private partition within the same address space.

If the XPOST macro is used in a mainline loop, the macro should be preceded by a

test which ensures that the other partition’s task waiting for the event that is being

posted must receive control and execute the function for which this event is a

prerequisite.

To perform this test, a second XECB needs to be defined. This XECB allows the

originally waiting task in its mainline loop to post completion of its function as an

event for which the originally posting task must wait.

Resetting bit 0 of byte 2 of the XECB is a user responsibility.

Once a task has issued an XPOST macro for an XECB (with ACCESS=XWAIT), no

other task can issue an XPOST for this XECB, until the connection is ended.

XECB=xecbname | (1)

Specifies the name of the XECB to be posted. The name you specify must be

the same as the one used to define the XECB. If register notation is used, the

specified register must point to an 8-byte character field that contains the

XECB name left-justified and padded with blanks. Do not specify 14 or 15 if

you choose to use ordinary register notation.

POINTRG=(14)

Specifies the register that points to the XECB table entry associated with the

named XECB. Do not specify register 1 or 15 if you choose to use ordinary

register notation.

 To obtain the address of the associated XECB table entry, issue earlier in the

program an XECBTAB macro for the same XECB and with TYPE=CHECK or

TYPE=DEFINE specified. When the system executes the XECBTAB macro, it

returns, in register 14, the address of the pertinent XECB table entry. Figure 37

on page 432, which shows a coding example for the use of the XWAIT macro,

applies to the XPOST macro accordingly.

XPOST

Chapter 2. Macro Descriptions 429

If the POINTRG register contains 0 (or any invalid value), all entries in the

XECB table are searched to determine the correct address; no error is indicated.

Return Codes in Register 15

When the system returns control to the issuing task, register 15 contains one of the

following return codes:

00 Successful completion. The named XECB has been posted.

04 The named XECB has no associated table entry in the XECB table.

0C The named XECB is not within the current address space.

0D

The XECB referred to in the XPOST macro was defined with ACCESS=XPOST

specified in the XECBTAB macro, but the task that issued the XPOST macro

does not own this XECB.

0E The XECB referred to in the XPOST macro was defined with ACCESS=XWAIT

specified in the XECBTAB macro and either (1) the task that issued the XPOST

macro also defined the XECB or (2) the XECB has been posted previously

during the same execution by another task.

Note: Following the execution of an XPOST macro, registers 1 and 14 are set to

zero.

XWAIT (Cross-Partition Wait) Macro

CC

name
 XWAIT XECB= xecbname

(1)
 POINTRG=(14) CE

Requirements for the caller:

AMODE:

24

RMODE:

24

ASC Mode:

Primary

The macro enables the issuing task to wait for an XECB to be posted by another

task. This other task may be executing in the same or in another private partition

within the same address space. Control returns to the issuing task when the XECB

is posted or if an error condition is detected.

Once a task has issued an XWAIT macro for an XECB (with ACCESS=XPOST) to

be posted, no other task can issue an XWAIT for this XECB, until the connection is

ended.

XECB=xecbname | (1)

Specifies the name of the XECB, which may be defined in the same or another

program. The name you specify must be the same as the one used to define

the XECB. If register notation is used, the specified register must point to an

eight-byte field that contains the name of the XECB left-justified and padded

with blanks. Do not specify register 14 or 15 if you choose to use ordinary

register notation.

XPOST

430 z/VSE System Macros Reference

POINTRG=(14)

Specifies the register that points to the XECB table entry associated with the

named XECB. Do not specify register 1 or 15 if you choose to use ordinary

register notation.

 To obtain the address of the associated XECB table entry, issue earlier in the

program an XECBTAB macro for the same XECB and with the TYPE=CHECK

or TYPE=DEFINE specified. When the system executes the XECBTAB macro, it

returns, in register 14, the address of the pertinent XECB table entry. Figure 37

on page 432 shows a coding example for the use of the XWAIT macro; in that

example, the required continuation character is not shown. The example

assumes that the XECB was defined by a program running in another

partition.

Return Codes in Register 15

When the system returns control to the issuing task, register 15 contains one of the

following return codes:

00 Successful completion. The named XECB has been posted.

04 The named XECB has no associated table entry in the XECB table or the owner

of the XECB issued a DELETALL.

08 The other task using this XECB has broken communication without issuing an

XPOST. The task issuing the XWAIT is owner of the XECB.

0C The named XECB is not within the current address space.

0D

The XECB referred to in the XWAIT macro was defined with ACCESS=XWAIT

specified in the XECBTAB macro, but the task that issued the XWAIT macro

does not own this XECB.

0E The XECB referred to in the XWAIT macro was defined with ACCESS=XPOST

specified in the XECBTAB macro and either (1) the task that issued the XWAIT

macro also defined the XECB or (2) the task did not define the XECB, but

another task is already waiting for the XECB to be posted.

Note: Following the execution of an XWAIT macro, registers 1 and 14 are set to

zero.

XWAIT

Chapter 2. Macro Descriptions 431

YEAR224 Macro

This macro can be used to complement a 2-digit year field, supplied as input, with

a 2-digit century field, depending on a specified 100 year window relative to the

current year. The format is as follows:

 Requirements for the caller:

AMODE: 24 or 31

RMODE: ANY

ASC Mode: Primary

Register usage convention:

(rx) For register notation (YEAR and WINDOW parameter) any general

register from 2 to 12 can be used.

Register 0 Is used for input to pass the WINDOW parameter and returns one

of the following reason codes:

0 No errors (register 15 also contains 0).

1 YEAR input is not numeric.

2 WINDOW is invalid (negative or larger than 99).

Register 1 Is used for input to pass the YEAR parameter.

Defining the XECB in a program running in another partition

 ...

 XECBTAB TYPE=DEFINE,

 XECB=MYECB

 ...

 MYECB DC F’0’

 ...

The use of the XWAIT macro:

 WAITLP XECBTAB TYPE=CHECK,

 XECB=MYECB

 LTR 15,15

 BNZ ERROR

 LA 1,XECBNAME

 XWAIT XECB=(1),

 POINTRG=(14)

 XECBNAME DC CL8’MYECB ’

If the register specified with POINTRG contains 0 (or any invalid value), then all XECBs are

searched to determine the correct address. No error is indicated.
Figure 37. Coding Example Showing the Use of XECBTAB with TYPE=CHECK and XWAIT

CC

name

YEAR224 YEAR=

address

(rx)

 ,WINDOW=20

,WINDOW=

number

(rx)

C

C
 ,LINK=NO,NAME=$IJBY224

,NAME=IJBY224S

,LINK=

YES

,NAME=modulename

NO,NAME=phasename

CE

Figure 38. Syntax of YEAR224 Macro

YEAR224 Macro

432 z/VSE System Macros Reference

Register 13 Is assumed to contain the address of a 72-byte save area.

Register 14 Is used as link register.

Register 15 Is used at input for the address of the service routine, and returns

one of the following return codes:

0 No errors.

8 Input is invalid, as indicated by the reason code in register

0.

Input Parameters:

YEAR=address|(rx)

Specifies the address of a 4-byte area containing the 2-digit year

input in the form ″..yy″. The content of substring ″..″ is ignored on

input and is replaced by the century on output, resulting in a

4-digit year ″yyyy″. For register notation (rx), register 2 through 12

can be used.

WINDOW=number|20|(rx)

Specifies a number between 0 and 99, that is interpreted as the

forward width of a 100 year window relative to the current year.

The default is 20. For register notation (rx), register 2 through 12

can be used.

LINK=YES|NO

Determines how the service routine is invoked. With the default

LINK=NO, the macro invokes, by default, the SVA phase $IJBY224

(no link-editing is required). With LINK=YES, the macro invokes

IJBY224S as the default CSECT for link-editing. In both cases, you

can also specify your own phase or CSECT name.

 LINK=YES means that the call sequence generates an external

reference to the entry point of the service routine (CSECT) causing

it to be linked with the calling program.

NAME=name|$IJBY224|IJBY224S

Specifies a user-defined phase or CSECT as the service routine to

be invoked. If no name is specified, the following default names

are used, as mentioned in the LINK parameter description:

v For LINK=NO, phase name $IJBY224.

v For LINK=YES, CSECT name IJBY224S.

The macro expansion and service routine are both reentrant. The service routine

uses the GETIME macro and references the COMREG field SYSDATE to obtain the

current date, and is therefore z/VSE-dependent. It may also be used in a CMS

environment under VM.

Example:

 YEAR224 YEAR=yyyy

 ...

 yyyy DC ’..02’

In the above example, the macro complements field yyyy to 2002, since 2002 is the

year ending with 02 in the default window (1996-79, 1996+20) = (1917, 2016). Refer

to z/VSE Planning for further details about the default window used.

YEAR224 Macro

Chapter 2. Macro Descriptions 433

YEAR224 Macro

434 z/VSE System Macros Reference

Appendix A. Control Character Codes

CTLCHR=ASA Option

If the ASA option is chosen, a control character must appear in each record. An

invalid control character for a printer causes the system to issue a message and to

cancel the job.

If the control character for a card device is not V or W, the card is selected into

stacker 1.

The codes are listed below:

 Code Interpretation

 ─────── ──

 blank Space one line before printing (see Note below)

 0 Space two lines before printing

 - Space three lines before printing

 + Suppress space before printing

 1 Skip to channel 1 before printing (see Note below)

 2 Skip to channel 2 before printing

 3 Skip to channel 3 before printing

 4 Skip to channel 4 before printing

 5 Skip to channel 5 before printing

 6 Skip to channel 6 before printing

 7 Skip to channel 7 before printing

 8 Skip to channel 8 before printing

 9 Skip to channel 9 before printing

 A Skip to channel 10 before printing

 B Skip to channel 11 before printing

 C Skip to channel 12 before printing

 V Select stacker 1

 W Select stacker 2

 X Select stacker 3

 Y Select stacker 4

 X Select stacker 5

 5A CPDS (compose page data stream) record,

 accepted for DTFPR

Note: For a print (not associated) file on an IBM 3525, either a space one line or a

skip to channel 1 must be used to print on the first line of a card. For a print

associated file, only space one line must be used to print on the first line of

a card.

© Copyright IBM Corp. 1990, 2005 435

CTLCHR=YES Option

The control character for this option is the command-code portion of the CCW

used in printing a line or spacing the forms. The control codes are listed in below:

Stacker Selection Codes

 Hex Code Card-Code Function

 ──────── ───────── ──

 Stacker Selection on a Card Input or Output Device (except IBM 1442):

 01 12-1-9 Select into stacker 1

 41 12-0-1-9 Select into stacker 2

 Stacker Selection Specific for an IBM 2540:

 81 12-0-1 Select into stacker 3 (see Note below)

 Stacker Selection on a Multifunction Card Machine:

 13 11-3-9 Primary hopper: select into stacker 1

 23 0-3-9 Primary hopper: select into stacker 2

 33 3-9 Primary hopper: select into stacker 3

 43 12-0-3-9 Primary hopper: select into stacker 4

 93 12-11-3 Secondary hopper: select into stacker 1

 A3 11-0-3 Secondary hopper: select into stacker 2

 B3 12-11-0-3 Secondary hopper: select into stacker 3

 C3 12-3 Secondary hopper: select into stacker 4

Note: The code cannot be used if you defined your file with DTFDI.

Control Characters

436 z/VSE System Macros Reference

Printer Control Codes

 Hex Code Card-Code Function

 ──────── ───────── ──

 Printer Control (Except for IBM 3525):

 01 12-1-9 Write (without automatic space)

 09 12-1-8-9 Write and space 1 line

 11 11-1-9 Write and space 2 lines

 19 11-1-8-9 Write and space 3 lines

 89 12-0-9 Write and skip to channel 1

 91 12-11-1 Write and skip to channel 2

 99 12-11-9 Write and skip to channel 3

 A1 11-0-1 Write and skip to channel 4

 A9 11-0-9 Write and skip to channel 5

 B1 12-11-0-1 Write and skip to channel 6

 B9 12-11-0-9 Write and skip to channel 7

 C1 12-1 Write and skip to channel 8

 C9 12-9 Write and skip to channel 9

 D1 11-1 Write and skip to channel 10

 D9 11-9 Write and skip to channel 11

 E1 11-0-1-9 Write and skip to channel 12

 0B 12-3-8-9 Space 1 line immediately

 13 11-3-9 Space 2 lines immediately

 1B 11-3-8-9 Space 3 lines immediately

 8B 12-0-3-8 Skip to channel 1 immediately

 93 12-11-3 Skip to channel 2 immediately

 9B 12-11-3-8 Skip to channel 3 immediately

 A3 11-0-3 Skip to channel 4 immediately

 AB 11-0-3-8 Skip to channel 5 immediately

 B3 12-11-0-3 Skip to channel 6 immediately

 BB 12-11-0-3-8 Skip to channel 7 immediately

 C3 12-3 Skip to channel 8 immediately

 CB 12-0-3-8-9 Skip to channel 9 immediately

 D3 11-3 Skip to channel 10 immediately

 DB 12-11-3-8-9 Skip to channel 11 immediately

 E3 0-3 Skip to channel 12 immediately

 5A 11-2-8 CPDS (compose page data stream) record

 03 12-3-9 No operation

Control Characters

Appendix A. Control Character Codes 437

Hex Code Card-Code Function

 ──────── ───────── ──

 Printer Control for IBM 3525 (with Print Feature):

 0D 12-5-8-9 Print on line 1

 15 11-5-9 Print on line 2

 1D 11-5-8-9 Print on line 3

 25 0-5-9 Print on line 4

 2D 0-5-8-9 Print on line 5

 35 5-9 Print on line 6

 3D 5-8-9 Print on line 7

 45 12-0-5-9 Print on line 8

 4D 12-5-8 Print on line 9

 55 12-11-5-9 Print on line 10

 5D 11-5-8 Print on line 11

 65 11-0-5-9 Print on line 12

 6D 0-5-8 Print on line 13

 75 12-11-0-5-9 Print on line 14

 7D 5-8 Print on line 15

 85 12-0-5 Print on line 16

 8D 12-0-5-8 Print on line 17

 95 12-11-5 Print on line 18

 9D 12-11-5-8 Print on line 19

 A5 11-0-5 Print on line 20

 AD 11-0-5-8 Print on line 21

 B5 12-11-0-5 Print on line 22

 BD 12-11-0-5-8 Print on line 23

 C5 12-5 Print on line 24

 CD 12-0-5-8-9 Print on line 25

Control Characters

438 z/VSE System Macros Reference

Appendix B. American National Standard Code for Information

Interchange

American National Standard Code for Information Interchange (ASCII)

In addition to the EBCDIC mode, your z/VSE system accepts magnetic tape files

written in ASCII, a 128-character 7-bit code. The high-order bit in this 8-bit

environment is zero. ASCII is based on the specifications of the American National

Standards Institute, Inc.

z/VSE processes ASCII files in EBCDIC with the help of two translate tables,

which reside in the SVA. Using these tables, logical IOCS translates from ASCII to

EBCDIC all data as it is read into the I/O area. For ASCII output, logical IOCS

translates data from EBCDIC to ASCII just before writing the record.

Table 22 shows the relative bit positions of the ASCII character set. An ASCII

character is described by its column/row position in the table. The columns across

the top of the figure list the three high-order bits. The rows along the left side of

the figure are the four low-order bits.

For example, the letter P in ASCII is under column 5 and row 0 and is described in

ASCII notation as 5/0. ASCII 5/0 and EBCDIC X’50’ represent the same binary

configuration (B’01010000’). However, P graphically represents this configuration in

ASCII and & in EBCDIC. ASCII notation is always expressed in decimal. For

example, the ASCII Z is expressed as 5/10 (not 5/A).

For those EBCDIC characters that have no direct equivalent in ASCII, the substitute

character (SUB) is provided during translation. See Table 23 on page 441 for ASCII

to EBCDIC correspondence.

Note: If an EBCDIC file is translated into ASCII, and you translate back into

EBCDIC, this substitute character may not receive the expected value.

 Table 22. ASCII Character Set

b7 ───────────────+

 b6 ───────────────+

 b5 ───────────────+

0

 0

 0

0

 0

 1

0

 1

 0

0

 1

 1

1

 0

 0

1

 0

 1

1

 1

 0

1

 1

 1

B

 i

 t

 s3

b4

│

-

b3

│

-

b2

│

-

b1

│

-

Column

─────+

- - - - -

Row -

0 1 2 3 4 5 6 7

0 0 0 0 0 NUL DLE SP 0 @ P ` p

 0 0 0 1 1 SOH DC1 !1 1 A Q a q

0 0 1 0 2 STX DC2 ″ 2 B R b r

0 0 1 1 3 ETX DC3 # 3 C S c s

0 1 0 0 4 EOT DC4 $ 4 D T d t

0 1 0 1 5 ENQ NAK % 5 E U e u

0 1 1 0 6 ACK SYN & 6 F V f v

0 1 1 1 7 BEL ETB ’ 7 G W g w

© Copyright IBM Corp. 1990, 2005 439

Table 22. ASCII Character Set (continued)

b7 ───────────────+

 b6 ───────────────+

 b5 ───────────────+

0

 0

 0

0

 0

 1

0

 1

 0

0

 1

 1

1

 0

 0

1

 0

 1

1

 1

 0

1

 1

 1

B

 i

 t

 s3

b4

│

-

b3

│

-

b2

│

-

b1

│

-

Column

─────+

- - - - -

Row -

0 1 2 3 4 5 6 7

1 0 0 0 8 BS CAN (8 H X h x

 1 0 0 1 9 HT EM) 9 I Y i y

1 0 1 0 10 LF SUB * : J Z j z

1 0 1 1 11 VT ESC + ; K [k {

1 1 0 0 12 FF FS , < L \ l ¦

1 1 0 1 13 CR GS - = M] m }

1 1 1 0 14 SO RS . > N ^2 n ~

1 1 1 1 15 SI US / ? O _ o DEL

1 The graphic | (Logical OR) may also be used instead of ! (Exclamation Point).

2 The graphic ¬ (Logical NOT) may also be used instead of ^ (Circumflex).

3 The 7 bit ASCII code expands to 8 bits when in storage by adding a high order 0 bit.

 EXAMPLE: The number sign (#) is represented internally as ’00100011’

 Control Character Representations Special Graphic Character

NUL Null DLE Data Link Escape

(CC)

SP Space < Less Than

SOH Start of Heading

(CC)

DC1 Device Control 1 ! Exclamation Point = Equals

STX Start of Text (CC) DC2 Device Control 2 | Logical OR > Greater Than

ETX End of

Transmission (CC)

DC3 Device Control 3 ″ Quotation Marks ? Question Mark

EOT End of

Transmission (CC)

DC4 Device Control 4 # Number Sign @ Commercial At

ENQ Enquiry (CC) NAK Negative

Acknowledge (CC)

$ Dollar Sign [Opening Bracket

ACK Acknowledge (CC) SYN Synchronous Idle

(CC)

% Percent \ Reverse Slant

BEL Bell ETB End of

Transmission Block

(CC)

& Ampersand] Closing Bracket

BS Backspace (FE) CAN Cancel ’ Apostrophe ^ Circumflex

HT Horizontal

Tabulation (FE)

EM End of Medium (Opening

Parenthesis

¬ Logical NOT

LF Line Feed (FE) SUB Substitute) Closing Parenthesis _ Underline

VT Vertical Tabulation

(FE)

ESC Escape * Asterisk ` Grave Accent

FF Form Feed (FE) FS File Separator (IS) + Plus { Opening Brace

CR Carriage Return

(FE)

GS Group Separator

(IS)

, Comma ¦ Vertical Line

SO Shift Out RS Record Separator

(IS)

- Hyphen (Minus) (This graphic is

SI Shift In US Unit Separator (IS) . Period (Decimal

Point)

 stylized to

ASCII Code

440 z/VSE System Macros Reference

Control Character Representations Special Graphic Character

 DEL Delete / Slant distinguish it

(CC) Communication

Control

 : Colon from Logical OR)

(FE) Format Effector ; Semicolon } Closing Brace

(IS) Information

Separator

 ~ Tilde

 Table 23. ASCII to EBCDIC Correspondence

ASCII EBCDIC

Char Col Row Bit Pattern Col

(Hex)

Row

(Hex)

Bit Pattern Comments

NUL 0 0 0000 0000 0 0 0000 0000

SOH 0 1 0000 0001 0 1 0000 0001

STX 0 2 0000 0010 0 2 0000 0010

ETX 0 3 0000 0011 0 3 0000 0011

EOT 0 4 0000 0100 3 7 0011 0111

ENQ 0 5 0000 0101 2 D 0010 1101

ACK 0 6 0000 0110 2 E 0010 1110

BEL 0 7 0000 0111 2 F 0010 1111

BS 0 8 0000 1000 1 6 0001 0110

HT 0 9 0000 1001 0 5 0000 0101

LF 0 10 0000 1010 2 5 0010 0101

VT 0 11 0000 1011 0 B 0000 1011

FF 0 12 0000 1100 0 C 0000 1100

CR 0 13 0000 1101 0 D 0000 1101

SO 0 14 0000 1110 0 E 0000 1110

SI 0 15 0000 1111 0 F 0000 1111

DLE 1 0 0001 0000 1 0 0001 0000

DC1 1 1 0001 0001 1 1 0001 0001

DC2 1 2 0001 0010 1 2 0001 0010

DC3 1 3 0001 0011 1 3 0001 0011

DC4 1 4 0001 0100 3 C 0011 1100

NAK 1 5 0001 0101 3 D 0011 1101

SYN 1 6 0001 0110 3 2 0011 0010

ETB 1 7 0001 0111 2 6 0010 0110

CAN 1 8 0001 1000 1 8 0001 1000

EM 1 9 0001 1001 1 9 0001 1001

SUB 1 10 0001 1010 3 F 0011 1111

ESC 1 11 0001 1011 2 7 0010 0111

FS 1 12 0001 1100 1 C 0001 1100

GS 1 13 0001 1101 1 D 0001 1101

RS 1 14 0001 1110 1 E 0001 1110

US 1 15 0001 1111 1 F 0001 1111

ASCII Code

Appendix B. ASCII Code 441

Table 23. ASCII to EBCDIC Correspondence (continued)

ASCII EBCDIC

Char Col Row Bit Pattern Col

(Hex)

Row

(Hex)

Bit Pattern Comments

SP 2 0 0010 0000 4 0 0100 0000

I1 2 1 0010 0001 4 F 0100 1111 Logical OR

″ 2 2 0010 0010 7 F 0111 1111

2 3 0010 0011 7 B 0111 1011

$ 2 4 0010 0100 5 B 0101 1011

% 2 5 0010 0101 6 C 0110 1100

& 2 6 0010 0110 5 0 0101 0000

’ 2 7 0010 0111 7 D 0111 1101

(2 8 0010 1000 4 D 0100 1101

) 2 9 0010 1001 5 D 0101 1101

* 2 10 0010 1010 5 C 0101 1100

+ 2 11 0010 1011 4 E 0100 1110

, 2 12 0010 1100 6 B 0110 1011

- 2 13 0010 1101 6 0 0110 0000 Hyphen,

Minus

. 2 14 0010 1110 4 B 0100 1011

/ 2 15 0010 1111 6 1 0110 1001

0 3 0 0011 0000 F 0 1111 0000

1 3 1 0011 0001 F 1 1111 0001

2 3 2 0011 0010 F 2 1111 0010

3 3 3 0011 0011 F 3 1111 0011

4 3 4 0011 0100 F 4 1111 0100

5 3 5 0011 0101 F 5 1111 0101

6 3 6 0011 0110 F 6 1111 0110

7 3 7 0011 0111 F 7 1111 0111

8 3 8 0011 1000 F 8 1111 1000

9 3 9 0011 1001 F 9 1111 1001

: 3 10 0011 1010 7 A 0111 1010

; 3 11 0011 1011 5 E 0101 1110

< 3 12 0011 1100 4 C 0100 1100

= 3 13 0011 1101 7 E 0111 1110

> 3 14 0011 1110 6 E 0110 1110

? 3 15 0011 1111 6 F 0110 1111

@ 4 0 0100 0000 7 C 0111 1100

A 4 1 0100 0001 C 1 1100 0001

B 4 2 0100 0010 C 2 1100 0010

C 4 3 0100 0011 C 3 1100 0011

D 4 4 0100 0100 C 4 1100 0100

ASCII Code

442 z/VSE System Macros Reference

Table 23. ASCII to EBCDIC Correspondence (continued)

ASCII EBCDIC

Char Col Row Bit Pattern Col

(Hex)

Row

(Hex)

Bit Pattern Comments

E 4 5 0100 0101 C 5 1100 0101

F 4 6 0100 0110 C 6 1100 0110

G 4 7 0100 0111 C 7 1100 0111

H 4 8 0100 1000 C 8 1100 1000

I 4 9 0100 1001 C 9 1100 1001

J 4 10 0100 1010 D 1 1101 0001

K 4 11 0100 1011 D 2 1101 0010

L 4 12 0100 1100 D 3 1101 0011

M 4 13 0100 1101 D 4 1101 0100

N 4 14 0100 1110 D 5 1101 0101

O 4 15 0100 1111 D 6 1101 0110

P 5 0 0101 0000 D 7 1101 0111

Q 5 1 0101 0001 D 8 1101 1000

R 5 2 0101 0010 D 9 1101 1001

S 5 3 0101 0011 E 2 1110 0010

T 5 4 0101 0100 E 3 1110 0011

U 5 5 0101 0101 E 4 1110 0100

V 5 6 0101 0110 E 5 1110 0101

W 5 7 0101 0111 E 6 1110 0110

X 5 8 0101 1000 E 7 1110 0111

Y 5 9 0101 1001 E 8 1110 1000

Z 5 10 0101 1010 E 9 1110 1001

[5 11 0101 1011 4 A 0100 1010

\ 5 12 0101 1100 E 0 1110 0000 Reverse Slant

] 5 13 0101 1101 5 A 0101 1010

¬2 5 14 0101 1110 5 F 0101 1111 Logical NOT

_ 5 15 0101 1111 6 D 0110 1101

` 6 0 0110 0000 7 9 0111 1001 Grave Accent

a 6 1 0110 0001 8 1 1000 0001

b 6 2 0110 0010 8 2 1000 0010

c 6 3 0110 0011 8 3 1000 0011

d 6 4 0110 0100 8 4 1000 0100

e 6 5 0110 0101 8 5 1000 0101

f 6 6 0110 0110 8 6 1000 0110

g 6 7 0110 0111 8 7 1000 0111

h 6 8 0110 1000 8 8 1000 1000

i 6 9 0110 1001 8 9 1000 1001

j 6 10 0110 1010 9 1 1001 0001

ASCII Code

Appendix B. ASCII Code 443

Table 23. ASCII to EBCDIC Correspondence (continued)

ASCII EBCDIC

Char Col Row Bit Pattern Col

(Hex)

Row

(Hex)

Bit Pattern Comments

k 6 11 0110 1011 9 2 1001 0010

l 6 12 0110 1100 9 3 1001 0011

m 6 13 0110 1101 9 4 1001 0100

n 6 14 0110 1110 9 5 1001 0101

o 6 15 0110 1111 9 6 1001 0110

p 7 0 0111 0000 9 7 1001 0111

q 7 1 0111 0001 9 8 1001 1000

r 7 2 0111 0010 9 9 1001 1001

s 7 3 0111 0011 A 2 1010 0010

t 7 4 0111 0100 A 3 1010 0011

u 7 5 0111 0101 A 4 1010 0100

v 7 6 0111 0110 A 5 1010 0101

w 7 7 0111 0111 A 6 1010 0110

x 7 8 0111 1000 A 7 1010 0111

y 7 9 0111 1001 A 8 1010 1000

z 7 10 0111 1010 A 9 1010 1001

{ 7 11 0111 1011 C 0 1100 0000

│ 7 12 0111 1100 6 A 0110 1010 Vertical Line

} 7 13 0111 1101 D 0 1101 0000

~ 7 14 0111 1110 A 1 1010 0001 Tilde

DEL 7 15 0111 1111 0 7 0000 0111

1 The graphic ! (Exclamation Point) can be used instead of | (Logical OR).

2 The graphic ^ (Circumflex) can be used

instead of ¬ (Logical NOT).

ASCII Code

444 z/VSE System Macros Reference

Appendix C. Standard and Non-Standard Labels

This appendix assumes that you are familiar with the concepts of label processing

as described under “Job Control for Label Information” in the z/VSE Guide to

System Functions. It summarizes the coding requirements in a user-written routine

for the processing of user-standard labels or nonstandard labels.

Do not process IBM standard file labels in a label-processing routine of your own.

The checking and writing of these labels is done by IOCS. Following is a list of

IBM standard file labels that IOCS checks and writes for files on disk and on tape:

 On disk:

 Format-1

 Format-2

 Format-3
 On tape:

 HDR1, HDR2

 EOF1, EOF2

 EOV1, EOV2

This appendix gives the formats of labels as they are stored on volumes of data

such as a tape reel or a disk pack.

Processing of User Labels

To process user-standard labels for a file, IBM standard labels for the file must

exist. IOCS always processes the IBM standard label(s) for a file before it can

process user-standard labels for the file.

IOCS processes IBM standard labels when one of the following occurs:

v For a file with labels, your program issues an OPEN or a CLOSE.

v IOCS finds end of file or end of volume.

IOCS assists you in the processing of user labels for a file by a routine of your

own. Your program must define this routine to IOCS in the LABADDR=name

operand of the DTFxx macro for the file. The types of user labels that your routine

can process are:

v For a file on disk ─ User standard labels, header and trailer.

v For a file on tape ─ User standard labels, header and trailer, and nonstandard

labels.

IOCS gives control to your routine:

v For a file with user-standard labels, when the processing of the IBM standard

label(s) is complete.

v For a file with nonstandard labels, when IOCS opens the file or finds a tape

mark.

IOCS passes to your routine:

v In the low-order byte of register 0, a code to indicate the type of label to be

processed. The code is one of the following:

O = Open ─ Header labels are to be processed.

F = File ─ End-of-file labels are to be processed.

© Copyright IBM Corp. 1990, 2005 445

V = Volume ─ End-of-volume labels are to be processed.

Note: This does not apply to a disk file for whose processing you use direct

access (DTFDA, DTFPH or DTFIS). It does not apply to the checking of

nonstandard labels for a file on tape.

v In register 1, the address of the label to be processed; this applies to:

– User-standard labels for a file on disk or on tape.
v In register 1, the hexadecimal representation of the symbolic unit being used (the

same as in bytes 6 and 7 of the CCB); this applies to:

– Nonstandard labels for a file on tape.

IOCS writes user labels on the first track of your file’s first (or only) extent if your

file is to be written onto disk. It writes the labels preceding the first data record of

your file if the file is to be written onto tape.

In your label processing routine, you cannot issue a macro that calls a transient

routine. Examples of these macros are OPEN, CLOSE, and CHKPT.

Coding Requirements - User-Standard Labels

Writing Your Labels on Output

v Up to eight header labels (UHL1, UHL2, and so on) and up to eight trailer labels

(UTL1, UTL2, and so on) can be written for a file.

v At least a UHL1 and a UTL1 label must be written if the access method is SAM

or ISAM.

v At least a UHL1 label must be written if the access method is DAM. If also

trailer labels are to be written, your DTFDA for the file must include

TRLBL=YES.

v The label is to be built in an 80-byte area of your program. In this area, leave the

first four bytes free if your file is to be written onto disk. If your file is to be

written onto tape, these four bytes must contain the label identification (UHLn

or UTLn, whichever applies).

v For IOCS to write the label, provide for:

1. Loading the address of the area into register 0.

2. Passing control to IOCS by coding a LBRET 2 macro.
IOCS writes the label onto the output volume. If this is a disk, IOCS inserts the

correct label identification into the first four bytes. IOCS then returns control to

your routine.

v When your routine has built the last label, return control to IOCS by coding a

LBRET 1 macro. For a file on tape, this causes IOCS to write a tape mark.

Checking Your Labels on Input

v IOCS makes your labels available for checking one after the other, one at a time.

v If the labels are to be checked against information retrieved from another input

file, that file must be opened first.

v If a label is to be updated (applies only to a file on disk), your routine must:

1. Move the label to an area within your program.

2. Modify the label as desired.

3. Load the address of the modified label into register 0.

4. Return control to IOCS by coding a LBRET 3 macro.
v After having checked a label, and if the label is not to be modified, your routine

must return control to IOCS:

– By coding a LBRET 2 macro if more labels are to be checked.

Labels

446 z/VSE System Macros Reference

– By coding a LBRET 1 macro if no further labels are to be checked.

Coding Requirements - Non-Standard Labels on Tape

In your label processing routine, you must use physical IOCS macros to transfer

labels from virtual storage to tape and vice versa. For each label record to be

transferred, your routine must (1) set up a CCB and a channel program and (2)

issue an EXCP macro.

Writing Your Labels on Output

After all labels have been written, return control to IOCS by coding a LBRET 2

macro.

Checking Your Labels on Input

If the DTFMT macro for your file does not include the LABADDR=name operand,

IOCS skips to the first record after the first tapemark.

When your file is opened, IOCS passes to your routine, in the low-order byte of

register 0, the character O. This indicates to your routine that nonstandard header

labels, if any, are to be processed.

IOCS is unable to distinguish between labels and data records. Therefore, you must

read all labels and indicate the end of your checking of header labels by coding a

LBRET 2 macro. For IOCS, the next tape mark is an indication of end of file or end

of volume.

When IOCS reads the tapemark, your label processing routine gets control again.

The routine now must:

1. Determine whether there is an end-of-file or an end-of-volume condition.

2. After all nonstandard trailer labels have been processed, return control to IOCS

with a two-character condition indicator in the two low-order bytes of register

0. This indicator is:

 EF = End of file

 EV = End of volume

Formats of Volume and File Labels

The formats of labels are of interest only if an application program needs to access

label information stored on a data volume.

All field displacements and lengths given in label-format descriptions are in

hexadecimal notation. These displacements are relative to the beginning of each

label.

Volume Label on Disk (VOL1)

Table 24 shows the format of the DASD volume label 1 (VOL1). The volume label

has a 4-byte key area and an 80-byte data area. Both the key area and the first four

bytes of the data area always contain the characters ″VOL1″ for the first volume

label. Only the data area is shown in Table 24.

Additional volume labels, if any, are ignored by z/VSE.

 Table 24. Disk Volume Label (VOL1)

Displ. Length Content

00 04 Identifier: VOL1. Checked by IOCS. z/VSE supports only VOL1

Labels

Appendix C. Standard and Non-Standard Labels 447

Table 24. Disk Volume Label (VOL1) (continued)

Displ. Length Content

04 06 Volume serial number. From EXTENT statement.

0A 01 Security byte. Used by VSE/OLTEP.

0B 05 VTOC address. Used by IOCS.

10 05 Reserved.

15 04 CI-size for FBA, blanks for CKD.

19 04 Number of blocks per CI for FBA, blank for CKD.

1D 04 Number of labels per CI for FBA, blank for CKD.

21 04 Reserved.

25 0E Owner code for LVTOC listing.

33 1D Reserved.

IBM Standard File Labels on Disk

There are four types of IBM standard file labels:

v Format-1 – The normal disk file label for the first 3 extents of a file.

v Format-2 – Used with ISAM only.

v Format-3 – A file continuation label for additional 13 extents.

v Format-4 – The VTOC file label, written when the disk volume is initialized.

Under VSAM, a data space is described by a file label; the characteristics of the

files that occupy that space are described in the VSAM catalog. You do not name a

VSAM data space; the 44-byte File-ID field contains a name assigned by VSAM.

However, if a data space contains the data (or the index) of only one VSAM file

(called a unique file), the File-ID field automatically contains the name you gave to

the data or the index.

If a file or VSAM data space spans several volumes, the file label is repeated in the

VTOC of each volume. The file label on each volume describes the portion of the

file or VSAM data space on that volume and its extents.

For the formats of IBM standard file labels, refer to:

v Table 25 ─ The first IBM standard disk file label (format-1).

v Table 26 on page 450 ─ The IBM standard disk file continuation label (format-3).

v Table 27 on page 450 ─ The VTOC file label (format-4).

All fields of the VTOC file label are set by Device Support Facilities during

volume initialization, except as indicated in Table 27 on page 450.

 Table 25. IBM Standard Disk File Label (Format-1)

Displ. Length Content

00 2C File ID: 1-35 bytes if generation number (Gnnn) and version

number (Vnn) are specified, else 1 to 44. From DLBL or IOCS.

Under VSAM, a data space name generated by the VSAM catalog

routines. From VSAM routines or the VSAM DEFINE command.

2C 01 Format ID: 1. Written by IOCS on output.

2D 06 Volume serial number of first volume of the file. Written by IOCS.

33 02 Volume sequence number within the file. From IOCS.

35 03 Creation date: ydd. By IOCS from SYSCOM.

38 03 Expiration date, from DLBL or system (default: creation date + 7).

3B 01 Number of extents of the file on this volume.

3C 01 Used by MVS.

Labels

448 z/VSE System Macros Reference

Table 25. IBM Standard Disk File Label (Format-1) (continued)

Displ. Length Content

3D 01 Bit 2 = 1: expiration date specified by retention period.

3E 0D System code: IBMDOSVS. Written by IOCS.

4B 03 Date of last access: ydd (not updated for read only disks).

4E 02 Reserved.

50 02 Number of blocks per CI for FBA, blanks for CKD.

52 02 File type (from DLBL; checked against the type of DTF):

X’0008’ =

VSAM

X’2000’ =

DAM

X’4000’ =

SAM (the default)

X’4100’ =

A library file whose file name begins with the characters

IJSYS

X’8000’ =

ISAM

54 01 Record Format.

 X’C0’ UNDEFINED

X’80’ FIXED

X’40’ VARIABLE

X’10’ BLOCKED

X’08’ SPANNED

55 01 Flags for optional areas used by ISAM files (from DTF and

EXTENT):

 Bit 2 = 1: Master index.

 Bit 3 = 1: Independent overflow area.

 Bit 4 = 1: Cylinder overflow area.

56 02 Block length.

 FIXED : block length

UNDEFINED / VARIABLE: max block length

(if present at file OPEN)

58 02 Record length.

 FIXED: record length

UNDEFINED: X’0000’

VARIABLE: max record length

SPANNED:

< 32K - max record length

> 32K - X’8000’

(if present at file OPEN)

5A 01 ISAM / DAM key length.

5B 02 Key field location in ISAM block. From DTF.

5D 01 Flags:

 Bit 0 = 1: Last volume (SAM only).

 Bit 3 = 1: File security. From DLBL.

5E 01 Original space request was:

 Bit 1 = 1: In blocks.

 Bit 4 = 1: For continuous extent.

 Bit 5 = 1: For maximum continuous extent.

 Bit 6 = 1: Not less than the specified minimum.

5F 03 Used by MVS. IOCS writes blanks.

62 05 Used by MVS. IOCS writes zeros.

67 02 Start of next record to end-of-data distance.

Labels

Appendix C. Standard and Non-Standard Labels 449

Table 25. IBM Standard Disk File Label (Format-1) (continued)

Displ. Length Content

69 01 Type of extent (from EXTENT):

X’01’ = Prime data area or data space extent (the default).

X’02’ = Independent overflow area.

X’04’ = Master/cylinder index area extent.

X’40’ = Extent for user-standard labels.

X’80’ = Split cylinder extent (SAM).

6A 01 Sequence number of extent in the file. From EXTENT or IOCS.

6B 04 Extent lower limit (cchh) – from EXTENT.

6F 04 Extent upper limit (cchh) – from EXTENT.

73 0A The same as the fields from 69 through 6F to describe a second

extent, if one exists for the file.

7D 0A The same as the fields from 69 through 6F to describe a third

extent, if one exists for the file.

87 05 Address of next label for the file on this volume. Written and

used by IOCS.

 Table 26. IBM Standard Disk File Continuation Label (Format-3)

Displ. Length Content

00 04 Key code for continuation label (03030303). Written by IOCS.

04 01 Type of extent, from EXTENT:

 X’01’ = Data extent (default).

 X’80’ = Split cylinder extent.

05 01 Extent sequence number.

06 04 Extent lower limit (cchh). From EXTENT.

0A 04 Extent upper limit (cchh). From EXTENT.

0E 1E The same as the fields 04, 05, 06, and 0A, repeated three times, to

describe three more extents.

2C 01 Continuation label code: EBCDIC 3, from IOCS.

2D 5A The same as the fields 04, 05, 06, and 0A, repeated nine times, to

describe nine more extents.

87 05 Address of next continuation label, if any (cchhr or 0bbbb) or

zeros. From SAM IOCS only.

 Table 27. Disk VTOC Label (Format-4)

Displ. Length Content

00 2C Key code for VTOC label: 44 times X’04’.

2C 01 VTOC label identifier: EBCDIC 4.

2D 05 Used by MVS.

32 02 Number of available file label spaces in VTOC when the volume

was initialized (tracks times cylinder minus 2).

34 04 Address of next alternate track (cchh). For FBA: zeros.

38 02 Number of alternate tracks left. For FBA: zeros.

3A 01 Flags byte:

 Bit 0 = 1: Format-5 may not be valid (set to 1 by z/VSE)

 Bit 2 = 1: Extended free space management validity flag (set to

0 by z/VSE)

 Bit 3 = 1: Volume reserved for emulators

 Bit 4 = 1: Format-5 and Format-6 are accurate

 Bit 5 = 1: VTOC is being updated by VSAM (set to 1 by

z/VSE)

 Bit 7 = 1: Indexed VTOC (set to 0 by z/VSE)

3B 01 Extent count. Always 1 (The VTOC is one extent).

Labels

450 z/VSE System Macros Reference

Table 27. Disk VTOC Label (Format-4) (continued)

Displ. Length Content

3C 02 Reserved.

3E 0E CKD device constants (for FBA: zeros):

3E 02 Number of cylinders

40 02 Tracks per cylinder

42 02 Length of track

44 01 Overhead byte for I (where I = a record with a key).

45 01 Overhead byte for L (where L = a last record with a key on a

track).

46 01 Overhead byte for a key area.

47 01 Flag byte:

Bit 4 = 1:

An I or L value takes two bytes.

Bit 7 = 1:

A tolerance is added to each record, except the last one

on a track.

48 02 Tolerance. Is device-type dependent and added to the length of a

record if bit 7 of the above flag byte is on.

4A 01 Number of labels on VTOC track.

4B 01 Reserved.

4C 0B VSAM indicators (set by VSAM catalog routines):

4C 08 Time when last data space was added.

54 01 Ownership byte:

Bit 0 = 1:

Volume is owned by VSAM.

55 02 Number of first track of CKD catalog recovery area. For FBA:

zeros.

57 09 Used by MVS.

60 04 Number of first block of FBA catalog recovery area. For CKD:

zeros.

64 05 Reserved.

69 01 Extent type: 01 for VTOC extent.

6A 01 Extent sequence number:

 00 = The VTOC always has one extent.

6B 04 Start address of VTOC (label).

6F 04 End address of VTOC. Used by IOCS.

73 19 Always zeros.

User-Standard File Labels on Disk

User-standard labels may be included for SAM or DAM files. VSAM and ISAM do

not support them.

User-standard labels are either:

v Header labels located and processed before the data of the file, or

v Trailer labels located before and processed after the data of the file.

These labels have a 4-byte key area and an 80-byte data area. Both the key area

and the first four bytes of the data area contain:

 UHLn for a user header label.

 UTLn for a user trailer label.
where: n = The label sequence number. Can be any value

 from 1 to 8.

Labels

Appendix C. Standard and Non-Standard Labels 451

The remaining 76 bytes of the data area contain user data. Up to eight header and

eight trailer labels may be written to describe a file.

Table 28 shows a user-standard disk file label (header and trailer).

There is always one header and one trailer label written in addition to those

specified. This extra label has a 4-byte key area only and no data area. An example

of five header labels and four trailer labels for a file is shown in Table 29.

 Table 28. User-Standard Disk-File Label (Header and Trailer)

Displ. Length Content

00 04 Key area:

 UHLn for a header label.

 UTLn for a trailer label.

where n is the label-sequence number:

 A number from 1 to 8 for header labels.

 A number from 0 to 7 for trailer labels.

04 04 Data area:

 UHLn for a header label.

 UTLn for a trailer label.

where n is the label-sequence number: a number from 1 to 8 for

all user labels.

08 4C The user’s label information

 Table 29. User-Standard Disk-File Label (Five UHLs and Four UTLs are Specified)

Key Area Data Area

UHL1 UHL1 + 76 bytes of user label data

UHL2 UHL2 + 76 bytes of user label data

UHL3 UHL3 + 76 bytes of user label data

UHL4 UHL4 + 76 bytes of user label data

UHL5 UHL5 + 76 bytes of user label data

UHL6

UTL0 UTL1 + 76 bytes of user label data

UTL1 UTL2 + 76 bytes of user label data

UTL2 UTL3 + 76 bytes of user label data

UTL3 UTL4 + 76 bytes of user label data

UTL4

User data

If only header labels are specified, one UTL0 label without data is written by the

system. An example in Table 30 shows the sequence of user-standard labels with

three header labels for a file.

You can include definitions or descriptions of your file in addition to those

provided by the standard labels. For example, you may want to identify

end-of-volume as opposed to end-of-file conditions, or you may have subcategories

that you want to define for your files, or you may want to maintain an audit trail

in these labels.

 Table 30. User-Standard Disk-File Label (Three UHLs are Specified)

Key Area Data Area

UHL1 UHL1 + 76 bytes of user label data

Labels

452 z/VSE System Macros Reference

Table 30. User-Standard Disk-File Label (Three UHLs are Specified) (continued)

Key Area Data Area

UHL2 UHL2 + 76 bytes of user label data

UHL3 UHL3 + 76 bytes of user label data

UHL4

UTL0

User data

Volume Labels on Diskette

A diskette volume has one volume label of 80 bytes. It is located on track 0, sector

7 and starts with VOL1. Table 31 shows the format of a diskette volume label.

 Table 31. Diskette Volume Label

Displ. Length Content

00 04 Label ID: VOL1. The alphameric 1 in byte 3 is ignored by z/VSE.

04 06 Volume serial number from EXTENT.

0A 01 Accessibility indicator: S or blank. From DTF.

0B 1A Reserved.

25 0E Name or code of volume owner.

33 1C Reserved.

4F 01 Label standard level: W.

IBM Standard File Labels on Diskette

The IBM standard file label on a diskette is 80 bytes long. The first four bytes of

the label always contain the characters HDR1. The remaining bytes contain the

start and end addresses of the file or of the extent of a file on this volume. Since

only one extent of each file is on a diskette, no continuation labels are needed.

All IBM standard file labels for all files on a diskette volume are stored in the

VTOC on track 0, sectors 8-26.

Only IBM standard file labels are supported on diskettes.

Table 32 shows the format of a diskette file label.

 Table 32. Diskette File Label

Displ. Length Content

00 04 Label ID: HDR1.

04 01 Reserved.

05 08 File-ID. From DLBL or system.

0D 09 Reserved.

16 05 Record length. From IOCS.

1B 01 Reserved.

1C 05 Start address of extent: track and sector. From IOCS.

21 01 Reserved.

22 05 End address of extent: track and sector. From IOCS.

27 01 Reserved.

28 01 Bypass byte: B or blank ─ B = job ends on input.

29 01 Security byte: S or blank.

2A 01 Write protection byte: P or blank.

Labels

Appendix C. Standard and Non-Standard Labels 453

Table 32. Diskette File Label (continued)

Displ. Length Content

2B 01 Interchange level:

 blank = Sector length is 128 bytes, unblocked,

 non-spanned, sequential.

non-blank = Job ends on input.

2C 01 Volume byte:

blank = File complete on this volume.

 C = File continued on next volume.

 L = File ends on this volume.

2D 02 Volume sequence number.

2F 06 Creation date: yymmdd.

35 0D Reserved.

42 06 Expiration date: default = seven days after output.

48 01 Verify byte: V or blank.

49 01 C ’R’ expiration date specified by retention period.

4A 05 End-of-data address.

4F 01 Reserved.

Volume Labels on Tape

The volume label for tapes is 80 bytes long and begins with VOL1 for the first

volume label. Additional volume labels, if any, are ignored by z/VSE.

Table 33 and Table 34 show volume labels for EBCDIC and ASCII tapes.

 Table 33. Tape Volume Label for EBCDIC Code

Displ. Length Content

00 04 Label ID: VOL1.

04 06 Volume serial number.

0A 1F Reserved.

29 0A Volume owner name or code.

33 1D Reserved.

 Table 34. Tape Volume Label for ASCII Code

Displ. Length Content

00 04 Label ID: VOL1.

04 06 Volume serial number.

0A 01 Accessibility character.

0B 1A Reserved.

25 0E Name or code of volume owner.

33 1C Reserved.

4F 01 Standard byte:

 Indicates version of label standard.

 If blank, file does not have ANSI standard.

IBM Standard File Labels on Tape

IBM standard file labels are 80 bytes long. Each file has a header and a trailer label

of the same format. This allows a tape to be read forward and backward.

The first four characters of a label identify its type. These characters are for:

v Header labels:

Labels

454 z/VSE System Macros Reference

HDR1 and HDR2 –

At the beginning of a file.
v Trailer labels:

EOF1 and EOF2 –

At the end of a file.

EOV1 and EOV2 –

At the end of a volume and not the end of a file.

Data Set 2 Labels

To facilitate migration to an MVS environment, labeled output tapes created via

DTFMT or DTFPH will contain standard IBM data set label 2 records (HDR2,

EOF2, EOV2). The purpose of these labels is to record characteristics of the file,

such as block size, record size, record format. These labels also contain information

about the recording technique used to create the file, the unit on which the data

was written, and the job and program (taken from the COMREG) that were used

to create the file. In an MVS environment, the file can thus be used without any

data control block (DCB) or data definition (DD) specification.

Data set 2 labels will also be created for standard labeled work files. On input,

these labels will be skipped.

Additional labels (HDR3 through HDR8, if present) are ignored by z/VSE.

Table 35 through Table 38 on page 456 show IBM standard file labels for tapes.

 Table 35. First IBM Standard Tape File Label for EBCDIC Code

Displ. Length Content

00 04 Label ID: HDR1, EOF1, or EOV1.

04 11 File ID. From TLBL.

15 06 Volume serial number of first volume of the file.

1B 04 Volume sequence number within the file.

1F 04 File sequence number on the volume.

23 04 Version number of the file.

27 02 Subversion number.

29 06 Creation date: cyyddd.

2F 06 Expiration date: cyyddd.

35 01 Reserved.

36 06 Number of blocks written. Used only in trailer labels.

37 0D System code: IBMDOSVS.

49 01 Bit 0 = 1: expiration date specified by retention period.

4A 02 Reserved.

4C 04 High order block count.

 Table 36. First IBM Standard Tape File Label for ASCII Code

Displ. Length Content

00 04 Label ID: HDR1, EOF1, or EOV1.

04 11 File ID. From TLBL.

15 06 Volume serial number of first volume of the file.

1B 04 Volume sequence number within the file.

1F 04 File sequence number within volume(s).

23 04 Version number of the file.

27 02 Subversion number.

29 06 Creation date: cyyddd.

2F 06 Expiration date: cyyddd.

Labels

Appendix C. Standard and Non-Standard Labels 455

Table 36. First IBM Standard Tape File Label for ASCII Code (continued)

Displ. Length Content

35 01 Data set security (accessibility character).

36 06 Number of blocks written. Used only in trailer labels.

3C 0D System code: IBMZLB, followed by two blanks.

49 07 Reserved.

 Table 37. Second IBM Standard Tape File Label for ASCII Code

Displ. Length Content

00 04 Label ID: HDR2, EOF2, or EOV2.

04 01 Record format:

 C’F’ for fixed.

 C’D’ for variable.

 C’S’ for all other cases.

05 05 Block length.

0A 05 Record length.

0F 23 Reserved.

32 02 Buffer-offset length.

34 1C Reserved.

 Table 38. Second IBM Standard Tape File Label for EBCDIC Code

Displ. Length Content

00 04 Label ID: HDR2, EOF2, or EOV2.

04 01 Record format:

 F for fixed-length records

 V for variable-length and spanned records

 U for undefined records (default for DTFPH)

05 05 Block length, unpacked decimal (for DTFPH, a maximum block

length of 32,767 is assumed).

0A 05 Record length, unpacked decimal.

0F 01 Tape density:

v For 7-track tapes:

 0 200 bpi

 1 556 bpi

 2 800 bpi

v For 9-track tapes:

 2 800 bpi nrzi

 3 1600 bpi pe

 4 6250 bpi gcr

v For a 3480 tape this field will be blank.

10 01 Data set position:

 0 No volume switch has occurred

 1 A volume switch has previously occurred

Open sets the field to 0 when it is the first volume, that is,

whenever the volume serial number and the file serial number

are the same; otherwise it sets the field to 1.

For end of volume (EOV) and close (EOF), the field is set to 0 or

1 in the same way as for Open.

Labels

456 z/VSE System Macros Reference

Table 38. Second IBM Standard Tape File Label for EBCDIC Code (continued)

Displ. Length Content

11 17 Job/job step identification:

 Bytes 1 to 8: Job name (taken from the COMREG).

Byte 9: Set to ’/’.

Bytes 10 to 17: Program name (taken from the COMREG).

For tape files that have been extended with TLBL DISP=OLD or

DISP=MOD, this field in the EOV2/EOF2 labels will contain the

information related to the job and job step that extended the file.

22 02 Tape recording technique:

v For 7-track tapes it will be set to (� represents a blank):

 T� Odd parity with translation.

 C� Odd parity with conversion.

 E� Even parity with no translation.

 ET Even parity with translation.

 �� Odd parity with no translation and no conversion.

v For units with the Improved Data Recording feature (IDRC),

the field will be set to (&blank represents a blank):

 P� Data is compacted using IDRC feature.

 �� Data is noncompacted. On some data sets this field may

contain NP to indicate non-compacted data.

v For all other tape units this field is set to blanks.

24 01 Printer control character, always set to blanks.

25 01 Reserved for future use, set to blanks.

26 01 Block attribute.

 B for fixed-length and variable-length blocked records

(RECFORM=FIXBLK or VARBLK).

 S for spanned variable-length unblocked records

(RECFORM=SPNUNB).

 R for spanned variable-length blocked records

(RECFORM=SPNBLK).

 '' In all other cases.

27 02 Reserved, set to blanks.

29 06 For the 3590 or 3592, bytes 42-47 contain the device serial number

(taken from sense byte 27-29).

2A 05 This field will be set as follows:

v For the 3420, the first half byte of byte 43 contains the model

number (taken from bits 4 - 7 of sense byte 17); the second half

byte of byte 43 and bytes 44 - 47 contain the last four digits of

the serial number of the creating tape unit (taken from sense

bytes 15 and 16 as a 16-bit unsigned binary number and stored

as zoned decimal equivalent).

v For the 3480 and 3490, bytes 43 - 46 contain the last four digits

of the serial number of the control unit (taken from sense bytes

28 and 29); byte 47 contains the device address (taken from bits

4 - 7 of sense byte 30).

v For the 3424, bytes 43 - 47 contain the device serial number

(taken from sense bytes 27 - 29; bits 0 - 3 of sense byte 27 are

ignored).

2F 01 Checkpoint data set identifier, set to blanks.

30 20 Reserved, set to blanks.

Labels

Appendix C. Standard and Non-Standard Labels 457

User-Standard File Labels on Tape

User-standard labels are either header labels located and processed before the data

of the file, or trailer labels located and processed after the file. These labels are

identified by:

 UHLn = User header label n.

 UTLn = User trailer label n.

where n = A number from 1 to 8.

User-standard file labels are 80 bytes long. The first four bytes contain UHLn or

UTLn, whichever applies. The remaining 76 bytes contain user data.

You can include definitions or descriptions of the file in addition to that in the IBM

standard labels. You may, for example:

 Have a unique numbering system for file identification.

 Have subcategories that you want to define for a file.

 Want to maintain an audit trail in these labels.

Non-Standard File Labels on Tape

Nonstandard labels are supported only on EBCDIC code tape labels. Nonstandard

labels may have any length; they do not have a specified identification in the first

four characters. These labels may contain whatever information the user desires,

and in any arrangement. Programming for the processing of these labels is a user

responsibility.

When files with nonstandard labels or unlabeled files are written onto a volume,

its volume label (if present) is destroyed. Therefore, such files can be written only

on volumes that are not expected to be used again for files with standard labels.

Labels

458 z/VSE System Macros Reference

Appendix D. Librarian Feedback Codes

Librarian feedback codes are 1-byte values between 1 and 255. They are listed as

part of the “Librarian Messages” (see z/VSE Messages and Codes) to describe

unexpected conditions detected by Librarian modules as a result of externally

controllable system errors.

Internal librarian feedback codes are listed in VSE Central Functions Librarian

Diagnosis Reference , SC33-6330.

© Copyright IBM Corp. 1990, 2005 459

┌─────────────────┬───┐

│ Feedback Code │ Description │

│ Dec Hex │ │

├─────────────────┼───┤

│ │ │

│ 21 15 │ GENERIC REQUEST WITHOUT VALID ARGUMENT │

│ 37 25 │ LIBINFO MISSING │

│ │ The connection to a library/sublibrary │

│ │ cannot be done because the LIBINFO is │

│ │ missing or the addressed library/sub- │

│ │ library chain does not exist. │

│ 38 26 │ INVALID NOTE WORD │

│ 39 27 │ I/O WORKAREA MISSING │

│ │ LIBRM GET or PUT without any │

│ │ BUFFER specification. │

│ 40 28 │ USED SERVICE FAILED │

│ │ A used system service returned with an │

│ │ unexpected return code. │

│ 43 2B │ I/O ERROR │

│ 44 2C │ RESOURCE ALREADY LOCKED │

│ │ The request was specified with LOCK=RETURN,│

│ │ but the resource was not available │

│ │ or the LOCK service failed. │

│ 45 2D │ OPEN FAILURE │

│ │ VSAM OPEN failed, see VSAM message(s). │

│ 46 2E │ CLOSE FAILURE │

│ │ VSAM CLOSE failed, see VSAM message(s). │

│ 48 30 │ MEMBER IS IN WRITE MODE (Supervisor locked) │

│ 51 33 │ DATA SET IS NOT A VSE LIBRARY │

│ │ The accessed data set is not a valid │

│ │ library. │

│ 52 34 │ NO VALID INDEX ENTRY TYPE │

│ │ An index block with an invalid TYPE │

│ │ indication has been read. │

│ 53 35 │ DUPLICATE TYPE ENTRY │

│ │ An index block with more than one │

│ │ TYPE entry at the beginning. │

│ 54 36 │ NO STARTING TYPE ENTRY IN LIBRARY BLOCK │

│ │ An index block must always start with │

│ │ a TYPE entry. │

│ 55 37 │ INCONSISTENCY IN MEMBER INDEX │

│ │ The consistency check of a library │

│ │ block of the member index failed. │

│ 56 38 │ EMPTY LIBRARY BLOCK │

│ │ A library block must contain at least one │

│ │ record. │

│ 57 39 │ INVALID # OF MEMBER INDEX LEVELS │

│ 59 3B │ NO MBRX ENTRY AFTER TYPE ENTRY │

│ 60 3C │ INVALID LB DATA INVARIANT │

│ │ The contents of the library block │

│ │ have been destroyed. │

│ │ │

└─────────────────┴───┘

Figure 39. Librarian Feedback Codes (Part 1 of 3)

460 z/VSE System Macros Reference

┌─────────────────┬───┐

│ Feedback Code │ Description │

│ Dec Hex │ │

├─────────────────┼───┤

│ │ │

│ 61 3D │ ZERO PRBA IN MBRX ENTRY │

│ 62 3E │ LIBRARY BLOCK IDENTIFIER WRONG │

│ │ The library block which has been read │

│ │ has an LBID value which does not match │

│ │ the value contained in the descriptor. │

│ 63 3F │ NEW DIRECTORY ENTRY EXCEEDS MAXIMUM LENGTH │

│ │ (255 bytes) │

│ 65 41 │ LIBRARY IS FULL │

│ │ A request for allocation of one or │

│ │ more LB(s) cannot be satisfied. │

│ 66 42 │ LIBRARY OR SUBLIBRARY CONTAINS LOCKED MEMBERS │

│ 67 43 │ MEMBER LOCKED │

│ 68 44 │ SPECIFICATION OF LOCKID IS MISSING OR INVALID │

│ 70 46 │ MEMBER DOES NOT EXIST │

│ │ A service was issued for a member │

│ │ which does not exist. │

│ 71 47 │ SUBLIBRAY DOES NOT EXIST │

│ │ A service was issued for a sublibrary │

│ │ which does not exist. │

│ 72 48 │ LIBRARY DOES NOT EXIST │

│ │ A service was issued for a library │

│ │ which does not exist. │

│ 100 64 │ GETVIS SPACE EXHAUSTED │

│ │ A GETVIS request failed. │

│ 105 69 │ LIBRARY CONTROL TABLES OVERFLOW │

│ │ An insertion in a library control │

│ │ table fails because of overflow. │

│ 106 6A │ LIB/SUBLIB NOT UNIQUELY ASSIGNED │

│ 107 6B │ LOGICAL UNITS EXHAUSTED │

│ │ The ASSGN service failed with RC=4 │

│ 108 6C │ VOLUME NOT MOUNTED │

│ │ The GETVCE service failed because the │

│ │ volume is not mounted. │

│ 165 A5 │ EXTENT ON DIFFERENT DEVICE TYPE │

│ │ The extents for a library cannot reside │

│ │ on DASDs of different types. │

│ 166 A6 │ INVALID OR MISSING MEMBER TYPE │

│ │ The library service failed due to missing │

│ │ or invalid member type input. │

│ 167 A7 │ INVALID OR MISSING MEMBER NAME │

│ 180 B4 │ MORE THAN 16 EXTENT STATEMENTS │

│ 181 B5 │ LIBRARY IS NOT EXTENDABLE │

│ 183 B7 │ DLBL/EXTENT STATEMENT MISSING │

│ 184 B8 │ INCORRECT EXTENT STATEMENT │

│ 185 B9 │ INCORRECT DLBL STATEMENT │

│ 186 BA │ EXTENT STATEMENT MISSING │

│ │ │

└─────────────────┴───┘

Figure 39. Librarian Feedback Codes (Part 2 of 3)

Appendix D. Librarian Feedback Codes 461

┌─────────────────┬───┐

│ Feedback Code │ Description │

│ Dec Hex │ │

├─────────────────┼───┤

│ │ │

│ 231 E7 │ NO ALPHANUMERIC INPUT │

│ │ The library service failed because of │

│ │ invalid input. │

│ 232 E8 │ RENAME W/O NEW MEMBER INPUT │

│ │ The RENAME request was given without │

│ │ the new name (NMEMBER or NTYPE). │

│ 233 E9 │ NOTE STACK UNDERFLOW/OVERFLOW │

│ │ A NOTE stack overflow occurred during this │

│ │ NOTE. The maximum depth of the stack is 20.│

│ │ A NOTE stack underflow occurred during this│

│ │ POINT. The stack is empty. │

│ 234 EA │ MEMBER NOT OPENED │

│ │ A member record operation request was │

│ │ issued, but the member is not opened. │

│ 235 EB │ RECORD FORMAT MISMATCH │

│ │ The record format specified in the LDCB │

│ │ (librarian data control block) does not │

│ │ fit with the existing member or the member │

│ │ type specified in the LDCB for a new member│

│ │ LIBRM OPEN: │

│ │ Record format F was specified for members │

│ │ of type DUMP or PHASE. │

│ │ Record format S was specified for members │

│ │ of type PROC, OBJ, or source. │

│ 236 EC │ INCORRECT PHASE HANDLING │

│ │ The request cannot handle the phase. │

│ │ A phase cannot be replaced or │

│ │ built without having correct phase-related │

│ │ control information. │

│ 238 EE │ MISSING CHAIN-AREA │

│ │ The CHAIN operand is required for │

│ │ the issued request. │

│ 242 F2 │ MISSING CHAINID │

│ │ The CHAINID operand is required for │

│ │ the issued request. │

│ 246 F6 │ MISSING LIB or SUBLIB │

│ │ The LIB and SUBLIB operands must be │

│ │ specified together. │

│ 248 F8 │ INVALID MACRO SEQUENCE │

│ │ The applied macro sequence is invalid │

│ │ (e.g CLOSE before OPEN, or STATE within an │

│ │ OPEN/CLOSE frame). │

│ 249 F9 │ INVALID OPEN NESTING │

│ │ An OPEN for INPUT can only be issued in │

│ │ a nested way for Librarian-controlled NOTE │

│ │ and POINT requests to open a new member │

│ │ (stacked record inclusion from different │

│ │ members). │

│ 250 FA │ INVALID LDCB AS INPUT │

│ │ A request was issued with register 1 │

│ │ pointing to an area which does not have the │

│ │ format of the LDCB. │

│ │ │

└─────────────────┴───┘

Figure 39. Librarian Feedback Codes (Part 3 of 3)

462 z/VSE System Macros Reference

Appendix E. z/VSE Macros Intended for Customer Use

The macros identified in this appendix are provided as programming interfaces for

customers by z/VSE.

Warning: Do not use as programming interfaces any z/VSE macros other than

those identified in this appendix.

Note: All macros mentioned in this appendix are distributed in the system library

IJSYSRS.SYSLIB.

VSE/Advanced Functions

 Macro Name General Use Product Sensitive Described in

ALESERV x z/VSE System Macros Reference

AMODESW x z/VSE System Macros Reference

ASPL x z/VSE System Macros Reference

ASSIGN x z/VSE System Macros Reference

ATTACH x z/VSE System Macros Reference

AVRLIST x z/VSE System Macros Reference

CALL x z/VSE System Macros Reference

CANCEL x z/VSE System Macros Reference

CCB x z/VSE System Macros Reference

CDDELETE x z/VSE System Macros Reference

CDLOAD x z/VSE System Macros Reference

CHAP x z/VSE System Macros Reference

CHECK x z/VSE System Macros Reference

CHKPT x z/VSE System Macros Reference

CLOSE x z/VSE System Macros Reference

CLOSER x z/VSE System Macros Reference

CNTRL x z/VSE System Macros Reference

COMRG x z/VSE System Macros Reference

CPCLOSE x z/VSE System Macros Reference

CSRCMPSC x z/VSE System Macros Reference

DCTENTRY x z/VSE System Macros Reference

DEQ x z/VSE System Macros Reference

DETACH x z/VSE System Macros Reference

DFR x z/VSE System Macros Reference

DISEN x z/VSE System Macros Reference

DLINT x z/VSE System Macros Reference

DSPLY x z/VSE System Macros Reference

DSPSERV x z/VSE System Macros Reference

DTFCD x z/VSE System Macros Reference

DTFCN x z/VSE System Macros Reference

DTFDA x z/VSE System Macros Reference

DTFDI x z/VSE System Macros Reference

DTFDR x z/VSE System Macros Reference

DTFDU x z/VSE System Macros Reference

DTFIS x z/VSE System Macros Reference

DTFMR x z/VSE System Macros Reference

DTFMT x z/VSE System Macros Reference

DTFOR x z/VSE System Macros Reference

© Copyright IBM Corp. 1990, 2005 463

Macro Name General Use Product Sensitive Described in

DTFPH x z/VSE System Macros Reference

DTFPR x z/VSE System Macros Reference

DTFSD x z/VSE System Macros Reference

DTL x z/VSE System Macros Reference

DUMP x z/VSE System Macros Reference

ENDFL x z/VSE System Macros Reference

ENQ x z/VSE System Macros Reference

EOJ x z/VSE System Macros Reference

ERET x z/VSE System Macros Reference

ESETL x z/VSE System Macros Reference

EXCP x z/VSE System Macros Reference

EXIT x z/VSE System Macros Reference

EXTRACT x z/VSE System Macros Reference

FCEPGOUT x z/VSE System Macros Reference

FEOV x z/VSE System Macros Reference

FEOVD x z/VSE System Macros Reference

FETCH x z/VSE System Macros Reference

FREE x z/VSE System Macros Reference

FREEVIS x z/VSE System Macros Reference

GENDTL x z/VSE System Macros Reference

GENIORB x z/VSE System Macros Reference

GENL x z/VSE System Macros Reference

GET x z/VSE System Macros Reference

GETIME x z/VSE System Macros Reference

GETSYMB x z/VSE System Macros Reference

GETVCE x z/VSE System Macros Reference

GETVIS x z/VSE System Macros Reference

IJBPUB x z/VSE System Macros Reference

IORB x z/VSE System Macros Reference

JDUMP x z/VSE System Macros Reference

JOBCOM x z/VSE System Macros Reference

LBRET x z/VSE System Macros Reference

LBSERV x z/VSE System Macros Reference

LFCB x z/VSE System Macros Reference

LIBRDCB x z/VSE System Macros Reference

LIBRM xxx x z/VSE System Macros Reference

LITE x z/VSE System Macros Reference

LOAD x z/VSE System Macros Reference

LOCK x z/VSE System Macros Reference

MAPBDY x z/VSE System Macros Reference

MAPBDYVR x z/VSE System Macros Reference

MAPDNTRY x z/VSE System Macros Reference

MAPEXTR x z/VSE System Macros Reference

MAPSAVAR x z/VSE System Macros Reference

MAPSSID x z/VSE System Macros Reference

MAPSYSP x z/VSE System Macros Reference

MAPXPCCB x z/VSE System Macros Reference

MODDTL x z/VSE System Macros Reference

MVCOM x z/VSE System Macros Reference

NOTE x z/VSE System Macros Reference

OPEN x z/VSE System Macros Reference

OPENR x z/VSE System Macros Reference

PAGEIN x z/VSE System Macros Reference

PDUMP x z/VSE System Macros Reference

464 z/VSE System Macros Reference

Macro Name General Use Product Sensitive Described in

PFIX x z/VSE System Macros Reference

PFREE x z/VSE System Macros Reference

POINTR x z/VSE System Macros Reference

POINTS x z/VSE System Macros Reference

POINTW x z/VSE System Macros Reference

POST x z/VSE System Macros Reference

PRTOV x z/VSE System Macros Reference

PUT x z/VSE System Macros Reference

PUTR x z/VSE System Macros Reference

QSETPRT x z/VSE System Macros Reference

RCB x z/VSE System Macros Reference

RDLNE x z/VSE System Macros Reference

READ x z/VSE System Macros Reference

REALAD x z/VSE System Macros Reference

RELEASE x z/VSE System Macros Reference

RELPAG x z/VSE System Macros Reference

RELSE x z/VSE System Macros Reference

RESCN x z/VSE System Macros Reference

RETURN x z/VSE System Macros Reference

RUNMODE x z/VSE System Macros Reference

SAVE x z/VSE System Macros Reference

SDUMP x z/VSE System Macros Reference

SDUMPX x z/VSE System Macros Reference

SECTVAL x z/VSE System Macros Reference

SEOV x z/VSE System Macros Reference

SETDEV x z/VSE System Macros Reference

SETFL x z/VSE System Macros Reference

SETIME x z/VSE System Macros Reference

SETL x z/VSE System Macros Reference

SETPFA x z/VSE System Macros Reference

SETPRT x z/VSE System Macros Reference

SPLEVEL x z/VSE System Macros Reference

STXIT x z/VSE System Macros Reference

SUBSID x z/VSE System Macros Reference

SYSSTATE x z/VSE System Macros Reference

TECB x z/VSE System Macros Reference

TPIN x z/VSE System Macros Reference

TPOUT x z/VSE System Macros Reference

TRUNC x z/VSE System Macros Reference

TTIMER x z/VSE System Macros Reference

UNLOCK x z/VSE System Macros Reference

VIRTAD x z/VSE System Macros Reference

WAIT x z/VSE System Macros Reference

WAITF x z/VSE System Macros Reference

WAITM x z/VSE System Macros Reference

WRITE x z/VSE System Macros Reference

WTO x z/VSE System Macros Reference

WTOR x z/VSE System Macros Reference

XECBTAB x z/VSE System Macros Reference

XPCC x z/VSE System Macros Reference

XPCCB x z/VSE System Macros Reference

XPOST x z/VSE System Macros Reference

XWAIT x z/VSE System Macros Reference

Appendix E. z/VSE Macros Intended for Customer Use 465

VSE/SP Unique Code

 Macro Name General Use Product Sensitive Described in

INWMAPI x VSE/ESA Programming and Workstation Guide

VSE/POWER

Execution Macros

 Macro Name General Use Product Sensitive Described in

CTLSPOOL x VSE/POWER Application Programming

GETSPOOL x VSE/POWER Application Programming

PUTACCT x VSE/POWER Application Programming

PUTSPOOL x VSE/POWER Application Programming

PWRSPL x VSE/POWER Application Programming

SPL x VSE/POWER Application Programming

SEGMENT x VSE/POWER Application Programming

IPWSEGM x VSE/POWER Application Programming

Mapping Macros

 Macro Name General Use Product Sensitive Described in

IPW$MXD x VSE/POWER Application Programming

IPW$DXE x VSE/POWER Application Programming

IPW$DTX x VSE/POWER Networking

IPW$IDM x VSE/POWER Administration and Operation

PACCNT x VSE/POWER Application Programming

PWRSPL x VSE/POWER Application Programming

SPL x VSE/POWER Application Programming

VSE/Interactive Computing and Control Facility (VSE/ICCF)

 Macro Name General Use Product Sensitive Described in

A$HELP x VSE/ICCF User’s Guide

A$MAIL x VSE/ICCF User’s Guide

ASSEMBLE x VSE/ICCF User’s Guide

COPY x VSE/ICCF User’s Guide

COPYFILE x VSE/ICCF User’s Guide

COPYMEM x VSE/ICCF User’s Guide

CPYLIB x VSE/ICCF User’s Guide

DTSGENER x VSE/ICCF Administration and Operation

DTSGOFS x VSE/ICCF Administration and Operation

DTSLG00 x VSE/ICCF User’s Guide

DTSLG4R x VSE/ICCF User’s Guide

DTSLG40 x VSE/ICCF User’s Guide

DTSLG7A x VSE/ICCF User’s Guide

DTSLG70 x VSE/ICCF User’s Guide

DTSOPTNS x VSE/ICCF Administration and Operation

DTSSCRN x VSE/ICCF User’s Guide

DTSWRTRD x VSE/ICCF User’s Guide

466 z/VSE System Macros Reference

Macro Name General Use Product Sensitive Described in

ED x VSE/ICCF User’s Guide

EDPRT x VSE/ICCF User’s Guide

EDPUN x VSE/ICCF User’s Guide

FORTPROG x VSE/ICCF User’s Guide

FORTRAN x VSE/ICCF User’s Guide

FSEDPF x VSE/ICCF User’s Guide

GETL x VSE/ICCF User’s Guide

GETP x VSE/ICCF User’s Guide

GETR x VSE/ICCF User’s Guide

HC x VSE/ICCF User’s Guide

HELP x VSE/ICCF User’s Guide

HELP$LIS x VSE/ICCF User’s Guide

HELP$LST x VSE/ICCF User’s Guide

LIBRC x VSE/ICCF User’s Guide

LIBRL x VSE/ICCF User’s Guide

LIBRP x VSE/ICCF User’s Guide

LOAD x VSE/ICCF User’s Guide

MOVE x VSE/ICCF User’s Guide

MVLIB x VSE/ICCF User’s Guide

PRINT x VSE/ICCF User’s Guide

RELIST x VSE/ICCF User’s Guide

RPGIAUTO x VSE/ICCF User’s Guide

RPGII x VSE/ICCF User’s Guide

RPGIXLTR x VSE/ICCF User’s Guide

RSEF x VSE/ICCF User’s Guide

SAMPASMB x VSE/ICCF User’s Guide

SAMPFORT x VSE/ICCF User’s Guide

SCHD1ASM x VSE/ICCF User’s Guide

SCHD2ASM x VSE/ICCF User’s Guide

SCHD1COB x VSE/ICCF User’s Guide

SCHD2COB x VSE/ICCF User’s Guide

SCHD1PLI x VSE/ICCF User’s Guide

SCHD2PLI x VSE/ICCF User’s Guide

SCRATCH x VSE/ICCF User’s Guide

SDSERV x VSE/ICCF User’s Guide

SORT x VSE/ICCF User’s Guide

STORE x VSE/ICCF User’s Guide

SUBMIT x VSE/ICCF User’s Guide

WORKFILE x VSE/ICCF User’s Guide

WORKFIL2 x VSE/ICCF User’s Guide

WORKFIL3 x VSE/ICCF User’s Guide

VSE/Virtual Storage Access Method (VSE/VSAM)

 Macro Name General Use Product Sensitive Described in

ACB x VSE/VSAM User’s Guide and Application Programming

BLDVRP x VSE/VSAM User’s Guide and Application Programming

CLOSE x VSE/VSAM User’s Guide and Application Programming

DLVRP x VSE/VSAM User’s Guide and Application Programming

ENDREQ x VSE/VSAM User’s Guide and Application Programming

ERASE x VSE/VSAM User’s Guide and Application Programming

EXLST x VSE/VSAM User’s Guide and Application Programming

Appendix E. z/VSE Macros Intended for Customer Use 467

Macro Name General Use Product Sensitive Described in

GENCB x VSE/VSAM User’s Guide and Application Programming

GET x VSE/VSAM User’s Guide and Application Programming

MODCB x VSE/VSAM User’s Guide and Application Programming

OPEN x VSE/VSAM User’s Guide and Application Programming

POINT x VSE/VSAM User’s Guide and Application Programming

PUT x VSE/VSAM User’s Guide and Application Programming

RPL x VSE/VSAM User’s Guide and Application Programming

SHOWCAT x VSE/VSAM User’s Guide and Application Programming

SHOWCB x VSE/VSAM User’s Guide and Application Programming

TCLOSE x VSE/VSAM User’s Guide and Application Programming

TESTCB x VSE/VSAM User’s Guide and Application Programming

WRTBFR x VSE/VSAM User’s Guide and Application Programming

468 z/VSE System Macros Reference

Appendix F. z/VSE Macros And Their Mode Dependencies

Figure 40 on page 470 lists the z/VSE macros and the modes allowed at execution

time. The list mainly applies to the 31-bit addressing support, except for the AR

MODE column which applies to the data space support.

v AMODE indicates the addressing mode that is expected to be in effect when the

program is entered. AMODE can have one of the following values:

AMODE 24

Specifies 24-bit addressing mode

AMODE 31

Specifies 31-bit addressing mode

An X in column AMODE 24 or AMODE 31 indicates that the macro can be

invoked by a program executing in that mode. An X in both AMODE 24 and

AMODE 31 columns implies AMODE ANY which indicates that the macro can

be used and executed in both 24-bit and 31-bit addressing mode.

v RMODE indicates the residency mode, that is, the virtual storage location (either

below 16MB or anywhere in virtual storage) where the program should reside.

RMODE can have one of the following values:

RMODE 24

Indicates that the program must reside in virtual storage below 16MB.

RMODE ANY

Indicates that the program can reside anywhere in virtual storage, either

above or below 16MB.

An X in column RMODE 24 or RMODE ANY indicates that the macro can be

invoked by a program with the corresponding mode.

The parameter list of a requested macro must have the same RMODE as the

macro itself. The most important exceptions are pointed out in the ’Comments’

column; for more details, see the corresponding macro description.

v AR MODE: Most macros listed in Figure 40 on page 470 can only be called in

primary ASC (address space control) mode, except those that have an indication

for Access Register (AR) ASC mode in column AR MODE (for macros supporting

data spaces). An X in that column indicates that both primary and AR mode are

possible.

Most macro services based on branch and link interfaces do not check for

execution mode violations, that is, the program requesting the macro service is

responsible for the correct execution mode (AMODE and RMODE). An execution

mode violation may lead to unpredictable results.

Important

The following list reflects the z/VSE macro support at the time this manual

was printed. For the latest status of the actual macro support provided,

consult the Program Directory which is part of the z/VSE shipment package.

© Copyright IBM Corp. 1990, 2005 469

┌─────────┬──────────┬──────────┬──────┬────────────────────────────┐

 │ │ AMODE │ RMODE │ AR │ Comments │

 │ Macro │ 24 │ 31 │ 24 │ ANY │ MODE │ │

 ├─────────┼────┼─────┼────┼─────┼──────┼────────────────────────────┤

 │ ALESERV │ X │ X │ X │ X │ X │ │

 │ AMODESW │ X │ X │ X │ X │ │ │

 │ ASPL │ │ │ X │ │ │ │

 │ ASSIGN │ X │ │ X │ │ │ │

 │ ATTACH │ X │ X │ X │ X │ │ Subtask save area RMODE=24 │

 │ AVRLIST │ │ │ X │ │ │ │

 │ CALL │ X │ X │ X │ X │ │ │

 │ CANCEL │ X │ X │ X │ X │ │ │

 │ CCB │ │ │ X │ │ │ │

 │ CDDELETE│ X │ X │ X │ X │ │ │

 │ CDLOAD │ X │ X │ X │ X │ │ │

 │ CDMOD │ X │ │ X │ │ │ │

 │ CHAP │ X │ X │ X │ X │ │ │

 │ CHECK │ X │ │ X │ │ │ │

 │ CHKPT │ X │ │ X │ │ │ │

 │ CLOSE │ X │ X │ X │ │ │ DTF has to be │

 │ │ │ │ │ │ │ allocated below 16MB │

 │ CNTRL │ X │ │ X │ │ │ │

 │ COMRG │ X │ X │ X │ X │ │ │

 │ CPCLOSE │ X │ │ X │ │ │ │

 │ DCTENTRY│ │ │ X │ │ │ │

 │ DEQ │ X │ X │ X │ X │ │ │

 │ DETACH │ X │ X │ X │ X │ │ Subtask save area RMODE=24 │

 │ DFR │ │ │ X │ │ │ │

 │ DIMOD │ X │ │ X │ │ │ │

 │ DISEN │ X │ │ X │ │ │ │

 │ DLINT │ │ │ X │ │ │ │

 │ DRMOD │ X │ │ X │ │ │ │

 │ DSPLY │ X │ │ X │ │ │ │

 │ DSPSERV │ │ X │ X │ X │ X │ AR mode: SYSSTATE necessary│

 │ DTFxx │ │ │ X │ │ │ │

 │ DTL │ │ │ X │ │ │ │

 │ DUMODFx │ X │ │ X │ │ │ │

 │ DUMP │ X │ X │ X │ │ │ │

 │ ENDFL │ X │ │ X │ │ │ │

 │ ENQ │ X │ X │ X │ X │ │ │

 │ EOJ │ X │ X │ X │ X │ │ RC=0 no longer default │

 │ EOJ RC= │ X │ X │ X │ │ │ │

 │ ERET │ X │ │ X │ │ │ │

 │ ESETL │ X │ │ X │ │ │ │

 │ EXCP │ X │ X │ X │ X │ │ Control blocks RMODE=24 │

 │ EXIT │ X │ X │ X │ X │ │ │

 │ EXTRACT │ X │ X │ X │ X │ │ │

 │ FCEPGOUT│ X │ │ X │ │ │ SPLEVEL SET=1 │

 │ │ X │ X │ X │ X │ │ SPLEVEL SET>1 │

 │ FEOV │ X │ │ X │ │ │ │

 │ FEOVD │ X │ │ X │ │ │ │

 │ FETCH │ X │ X │ X │ │ │ │

 │ FREE │ X │ │ X │ │ │ │

 └─────────┴────┴─────┴────┴─────┴──────┴────────────────────────────┘

Figure 40. z/VSE Macros and Their Mode Dependencies (Execution Time) (Part 1 of 3)

470 z/VSE System Macros Reference

┌─────────┬──────────┬──────────┬──────┬────────────────────────────┐

 │ │ AMODE │ RMODE │ AR │ Comments │

 │ Macro │ 24 │ 31 │ 24 │ ANY │ MODE │ │

 ├─────────┼────┼─────┼────┼─────┼──────┼────────────────────────────┤

 │ FREEVIS │ X │ X │ X │ X │ │ │

 │ GENDTL │ X │ X │ X │ │ │ │

 │ GENIORB │ X │ │ X │ │ │ │

 │ GENL │ X │ X │ X │ │ │ │

 │ GET │ X │ │ X │ │ │ │

 │ GETIME │ X │ X │ X │ X │ │ │

 │ GETSYMB │ X │ │ X │ │ │ │

 │ GETVCE │ X │ X │ X │ X │ │ New RMODE │

 │ GETVIS │ X │ X │ X │ X │ │ │

 │ IORB │ │ │ X │ │ │ │

 │ ISMOD │ X │ │ X │ │ │ │

 │ JDUMP │ X │ X │ X │ │ │ │

 │ JOBCOM │ X │ │ X │ │ │ │

 │ LBRET │ X │ │ X │ │ │ │

 │ LBSERV │ X │ X │ X │ X │ │ │

 │ LFCB │ X │ │ X │ │ │ │

 │ LIBRDCB │ X │ X │ X │ X │ │ New RMODE │

 │ LIBRM │ X │ X │ X │ X │ │ New AMODE/RMODE │

 │ LITE │ X │ │ X │ │ │ │

 │ LOAD │ X │ X │ X │ │ │ │

 │ LOCK │ X │ X │ X │ │ │ │

 │ MAPBDY │ │ │ X │ X │ │ │

 │ MAPBDYVR│ │ │ X │ X │ │ │

 │ MAPEXTR │ │ │ X │ X │ │ │

 │ MAPSYSP │ │ │ X │ X │ │ │

 │ MODDTL │ X │ X │ X │ │ │ │

 │ MRMOD │ X │ │ X │ │ │ │

 │ MVCOM │ X │ │ X │ │ │ │

 │ NOTE │ X │ │ X │ │ │ │

 │ OPEN │ X │ X │ X │ │ │ DTF has to be │

 │ │ │ │ │ │ │ allocated below 16MB │

 │ ORMOD │ X │ │ X │ │ │ │

 │ PAGEIN │ X │ │ X │ │ │ SPLEVEL SET=1 │

 │ │ X │ X │ X │ X │ │ SPLEVEL SET>1 │

 │ PDUMP │ X │ X │ X │ │ │ │

 │ PFIX │ X │ │ X │ │ │ SPLEVEL SET=1 │

 │ │ X │ X │ X │ X │ │ SPLEVEL SET>1 │

 │ PFREE │ X │ │ X │ │ │ SPLEVEL SET=1 │

 │ │ X │ X │ X │ X │ │ SPLEVEL SET>1 │

 │ POINTR │ X │ │ X │ │ │ │

 │ POINTS │ X │ │ X │ │ │ │

 │ POINTW │ X │ │ X │ │ │ │

 │ POST │ X │ X │ X │ X │ │ │

 │ PRMOD │ X │ │ X │ │ │ │

 │ PRTOV │ X │ │ X │ │ │ │

 └─────────┴────┴─────┴────┴─────┴──────┴────────────────────────────┘

Figure 40. z/VSE Macros and Their Mode Dependencies (Execution Time) (Part 2 of 3)

Appendix F. z/VSE Macros And Their Mode Dependencies 471

z/VSE Downward-Compatible Macros

The following macros are downward compatible to VSE/ESA 1.1, VSE/ESA 1.2

and VSE/ESA 1.3. Applications using these macros can be assembled with the

VSE/ESA 2.1 macro library and can run on previous VSE/ESA Version 1 levels

(1.1, 1.2, 1.3).

 ┌─────────┬──────────┬──────────┬──────┬────────────────────────────┐

 │ │ AMODE │ RMODE │ AR │ Comments │

 │ Macro │ 24 │ 31 │ 24 │ ANY │ MODE │ │

 ├─────────┼────┼─────┼────┼─────┼──────┼────────────────────────────┤

 │ PUT │ X │ │ X │ │ │ │

 │ PUTR │ X │ │ X │ │ │ │

 │ RCB │ │ │ X │ X │ │ │

 │ RDLNE │ X │ │ X │ │ │ │

 │ READ │ X │ │ X │ │ │ │

 │ REALAD │ X │ X │ X │ X │ │ │

 │ RELEASE │ X │ │ X │ │ │ │

 │ RELPAG │ X │ │ X │ │ │ SPLEVEL SET=1 │

 │ │ X │ X │ X │ X │ │ SPLEVEL SET>1 │

 │ RELSE │ X │ │ X │ │ │ │

 │ RESCN │ X │ │ X │ │ │ │

 │ RETURN │ X │ X │ X │ X │ │ Returns with mode of issuer│

 │ RUNMODE │ X │ │ X │ │ │ │

 │ SAVE │ X │ X │ X │ X │ │ │

 │ SDUMP(X)│ X │ X │ X │ X │ X │ AR mode: SYSSTATE necessary│

 │ SECTVAL │ X │ X │ X │ X │ │ │

 │ SEOV │ X │ │ X │ │ │ │

 │ SETDEV │ X │ │ X │ │ │ │

 │ SETFL │ X │ │ X │ │ │ │

 │ SETIME │ X │ X │ X │ X │ │ │

 │ SETL │ X │ │ X │ │ │ │

 │ SETPFA │ X │ │ X │ │ │ │

 │ STXIT │ X │ X │ X │ X │ │ │

 │ SUBSID │ X │ X │ X │ X │ │ │

 │ SYSSTATE│ X │ X │ X │ X │ │ │

 │ TECB │ │ │ X │ X │ │ │

 │ TPIN │ X │ │ X │ │ │ │

 │ TPOUT │ X │ │ X │ │ │ │

 │ TRUNC │ X │ │ X │ │ │ │

 │ TTIMER │ X │ X │ X │ X │ │ │

 │ UNLOCK │ X │ X │ X │ │ │ │

 │ VIRTAD │ X │ X │ X │ X │ │ │

 │ WAIT │ X │ X │ X │ X │ │ BTAM: AMODE=24 only │

 │ WAITF │ X │ │ X │ │ │ │

 │ WAITM │ X │ X │ X │ X │ │ │

 │ WRITE │ X │ │ X │ │ │ │

 │ WTO │ X │ X │ X │ X │ │ │

 │ WTOR │ X │ X │ X │ │ │ │

 │ XECBTAB │ X │ │ X │ │ │ │

 │ XPCC │ X │ X │ X │ X │ │ │

 │ XPCCB │ │ │ X │ X │ │ │

 │ XPOST │ X │ │ X │ │ │ │

 │ XWAIT │ X │ │ X │ │ │ │

 └─────────┴────┴─────┴────┴─────┴──────┴────────────────────────────┘

Figure 40. z/VSE Macros and Their Mode Dependencies (Execution Time) (Part 3 of 3)

472 z/VSE System Macros Reference

AVRLIST

CALL

CANCEL

CCB

CDDELETE¹

CDLOAD

CDMOD

CHECK

CHKPT

CLOSE

CLOSER

CNTRL

COMRG

DCTENTRY

DIMOD

DTFCN

DTFDI

DTFDR

DTFDU

DTFPH

DTFSD

DUMODFI

DUMODFO

DUMP

EOJ

ERET

EXIT

EXTRACT

FEOV

FEOVD

FREEVIS

GET

GETIME

GETVCE

GETVIS²

IJBPUB

JDUMP

LBRET

IBRDCB

LIBRM

LOAD

MAPBDY

MAPBDYVR

MAPSSID

NOTE

OPEN

OPENR

PDUMP

POINTR

POINTS

POINTW

PRMOD

PUT

PUTR

READ

RETURN

SAVE

STXIT³

SUBSID

TRUNC

WAIT

WRITE

WTO⁴

WTOR⁴

XPCC³

¹ Interpreted like a CDLOAD in VSE/ESA 1.1, 1.2.

² LOC=ANY operand is accepted, but ignored in VSE/ESA 1.1, 1.2.

³ If no new functions (introduced with VSE/ESA 1.3) are used.

⁴ If no new functions (introduced with VSE/ESA 2.1) are used. Refer to the

description of the “WTO (Write to Operator) Macro” on page 410, the “WTOR

(Write to Operator with Reply) Macro” on page 416, and the “SPLEVEL (Set and

Test Macro Level) Macro” on page 387.

Appendix F. z/VSE Macros And Their Mode Dependencies 473

474 z/VSE System Macros Reference

Glossary

This glossary includes terms and definitions

related primarily to IBM z/VSE.

If you do not find the term you are looking for,

refer to the index of this book or to the IBM

Dictionary of Computing, SC20-1699

The glossary includes definitions with:

v Symbol * where there is a one-to-one copy from

the IBM Dictionary of Computing.

v Symbol (A) from the American National

Dictionary for Information Processing Systems ,

copyright 1982 by the Computer and Business

Equipment Manufacturers Association

(CBEMA). Copies may be purchased from the

American National Standards Institute, 1430

Broadway, New York, New York 10018.

Definitions are identified by the symbol (A)

after the definition.

v Symbols (I) or (T) from the ISO Vocabulary -

Information Processing and the ISO Vocabulary -

Office Machines, developed by the International

Organization for Standardization, Technical

Committee 97, Subcommittee 1. Definitions of

published segments of the vocabularies are

identified by the symbol (I) after the definition;

definitions from draft international standards,

draft proposals, and working papers in

development by the ISO/TC97/SC1 vocabulary

subcommittee are identified by the symbol (T)

after the definition, indicating final agreement

has not yet been reached among participating

members.

The following cross-references are used:

v Contrast with. This refers to a term that has an

opposed or substantively different meaning.

v Synonym for. This indicates that the term has

the same meaning as a preferred term, which is

defined in its proper place in the dictionary.

v Synonymous with. This is a backward reference

from a defined term to all other terms that

have the same meaning.

v See. This refers the reader to multiple-word

terms that have the same last word.

v See also. This refers the reader to related terms

that have a related, but not synonymous,

meaning.

When an entry is an abbreviation, the explanation

consists of the spelled-out meaning of the

abbreviation, for example:

 CI. Control interval.

The spelled-out form is provided as a separate

entry in the glossary. In that entry, the

abbreviation is shown in parentheses after the

spelled-out form. The definition that appears with

the spelled-out entry provides the full meaning of

both the abbreviation and the spelled-out form:

 Control interval (CI). A fixed-length area...

access control. A function of z/VSE that ensures that

the system and the data and programs stored in it can

be accessed only by authorized users in authorized

ways.

access list. A table in which each entry specifies an

address space or data space that a program can

reference.

access method. A program, that is, a set of commands

(macros), to define files or addresses and to move data

to and from them; for example VSE/VSAM or

VSE/VTAM.

access register (AR). A hardware register that a

program can use to identify an address space or a data

space. Each processor has 16 ARs, numbered 0 through

15, which are paired one-to-one with the 16

general-purpose registers (GPRs).

ACF/VTAM. See VTAM.

addressing mode (AMODE). A program attribute that

refers to the address length that a program is prepared

to handle on entry. Addresses may be either 24 bits or

31 bits in length. In 24-bit addressing mode, the

processor treats all virtual addresses as 24-bit values; in

31-bit addressing mode, the processor treats all virtual

addresses as 31-bit values. Programs with an

addressing mode of ANY can receive control in either

24-bit or 31-bit addressing mode.

address space. A range of up to two gigabytes of

contiguous virtual storage addresses that the system

creates for a user. Unlike a data space, an address space

contains user data and programs, as well as system

data and programs, some of which are common to all

address spaces. Instructions execute in an address space

(not a data space). Contrast with data space.

address space control (ASC) mode. The mode

(determined by the PSW) that tells the system where to

find referenced data. It determines how the processor

© Copyright IBM Corp. 1990, 2005 475

resolves address references for the executing programs.

z/VSE supports two types of ASC modes:

1. In primary ASC mode, the data that a program can

access resides in the program’s own (primary)

address space. In this mode, the system uses the

contents of general-purpose registers to resolve an

address in the address space; it does not use the

contents of the access registers (ARs).

2. In access register (AR) ASC mode, the data that a

program can access may reside in an address space

other than the primary or in a data space. In this

mode, the system uses both a general-purpose

register (GPR) and the corresponding access register

together to resolve an address in another address

space or in a data space. Specifically, the AR

contains a value, called an ALET, that identifies the

address space or data space that contains the data,

and the GPR contains a base address that points to

the data within the address space or data space.

ALET (access list entry token). A token that points to

an entry in an access list. When a program is in AR

mode and the ALET is in an access register (with the

corresponding general-purpose register being used as

base register), the ALET identifies the address space or

data space that the system is to reference (while the

GPR indicates the offset within the space).

* alternate tape. A tape drive to which the operating

system switches automatically for tape read or write

operations if the end of the volume has been reached

on the originally used tape drive.

* alternate track. On a direct access device, a track

designated to contain data in place of a defective

primary track.

* American National Standard Code for Information

Interchange (ASCII). The standard code, using a

coded character set consisting of 7-bit coded characters

(8 bits including parity check), that is used for

information interchange among data processing

systems, data communication systems, and associated

equipment. The ASCII set consists of control characters

and graphic characters. (A)

AMODE. Addressing mode.

* appendage routine. Code physically located in a

program or subsystem, but logically an extension of a

z/VSE supervisor routine.

* application program. A program written for or by a

user that applies directly to the user’s work, such as a

program that does inventory control or payroll. See

also batch program and online application program.

AR (access register) mode. If a program runs in AR

mode, the system uses the access register/general-
purpose register pair to resolve an address in an

address space or data space. Contrast with primary

mode. See also address space control (ASC) mode.

ASC mode. Address space control mode.

ASCII. American National Standard Code for

Information Interchange.

* assemble. To translate an assembly language

program into an object program. (T)

* assembler. A computer program that converts

assembly language instructions into object code.

assembler language. A programming language whose

instructions are usually in one-to-one correspondence

with machine instructions and allows to write macros.

batch program. A program that is processed in series

with other programs and therefore normally processes

data without user interaction.

block. Usually, a block consists of several records of a

file that are transmitted as a unit. But if records are

very large, a block can also be part of a record only. On

an FBA disk, a block is a string of 512 bytes of data.

See also control block.

blocking. The process of combining (or cutting)

records into blocks.

* BTAM-ES (Basic Telecommunication Access Method

Extended Storage). An IBM supplied

telecommunication access method that permits read

and write communication with remote devices.

* catalog. 1. A directory of files and libraries, with

reference to their locations. A catalog may contain other

information such as the types of devices in which the

files are stored, passwords, blocking factors. (I) (A) 2.

To store a library member such as a phase, module, or

book in a sublibrary.

* cataloged procedure. A set of control statements

placed in a library and retrievable by name.

* catalog recovery area (CRA). In systems with

VSAM, an entry-sequenced data set that exists on each

volume owned by a recoverable catalog, including the

catalog volume itself. The CRA contains copies of the

catalog records and can be used to recover a damaged

or invalid catalog.

CCB. Command control block.

cell pool. An area of virtual storage obtained by an

application program and managed by the callable cell

pool services. A cell pool is located in an address space

or a data space and contains an anchor, at least one

extent, and any number of cells of the same size.

* chaining. A logical connection of sublibraries to be

searched by the system for members of the same type;

for example, phase or object modules.

* channel program. One or more channel command

words that control a sequence of data channel

476 z/VSE System Macros Reference

operations. Execution of this sequence is initiated by a

single start I/O (SIO) instruction.

character printer. A device that prints a single

character at a time. (T) (A) Contrast with line printer,

page printer.

* checkpoint. 1. A point at which information about

the status of a job and the system can be recorded so

that the job step can be restarted later. 2. To record such

information.

CI. Control interval.

CKD device. Count-key-data device.

* cluster controller. A device that can control the

input/output operations of more than one device

connected to it. A cluster controller may be run by a

program stored and executed in the unit; for example,

the IBM 3601 Finance Communication Controller. Or it

may be entirely controlled by hardware; for example,

the IBM 3272 Control Unit.

command control block (CCB). The name of a system

control block to hold information about a specific

instance of a command.

* communication controller. 1. A device that directs

the transmission of data over the data links of a

network; its operation may be controlled by a program

executed in a processor to which the controller is

connected or it may be controlled by a program

executed within the device. (T) 2. A type of

communication control unit whose operations are

controlled by one or more programs stored and

executed in the unit. It manages the details of line

control and the routing of data through a network.

* communication region. An area of the supervisor

that is set aside for transfer of information within and

between programs.

* compile. To translate a source program into an

executable program (an object program). See also

assembler.

component. 1. Hardware or software that is part of a

computer system. 2. A functional part of a product,

identified by a component identifier. 3. In VSE/VSAM,

a named, cataloged group of stored records, such as the

data component or index component of a

key-sequenced file or alternate index.

* configuration. The devices and programs that make

up a system, subsystem, or network.

connect. To authorize library access on the lowest

level. A modifier such as ″read″ or ″write″ is required

for the specified use of a sublibrary.

control block. An area within a program or a routine

defined for the purpose of storing and maintaining

control information.

* control interval (CI). A fixed-length area of disk

storage where VSE/VSAM stores records and

distributes free space. It is the unit of information that

VSE/VSAM transfers to or from disk storage. For FBA,

it must be an integral multiple, to be defined at cluster

definition, of the block size.

control program. A program to schedule and

supervise the running of programs in a system.

control unit. See communication controller and cluster

controller. Synonymous with controller.

count-key-data (CKD) device. A disk device that

stores data in the record format: count field, key field,

data field. The count field contains, among others, the

address of the record in the format: cylinder, head

(track), record number and the length of the data field.

The key field, if present, contains the record’s key or

search argument. CKD disk space is allocated by tracks

and cylinders. Contrast with FBA disk device. See also

extended count-key-data device.

CRA. Catalog recovery area.

* cross-partition communication control. A facility

that enables z/VSE subsystems and user programs to

communicate with each other; for example, with

VSE/POWER.

DASD sharing. An option that lets independent

computer systems use common data on shared disk

devices.

data link. In SNA, the combination of the link

connection and the link stations joining network nodes,

for example, a System/370 channel and its associated

protocols. A link is both logical and physical. In SNA,

synonym for link.

* data management. A major function of the operating

system. It involves organizing, storing, locating, and

retrieving data.

data set. See file.

data space. A range of up to two gigabytes of

contiguous virtual storage addresses that a program

can directly manipulate through ESA/370 instructions.

Unlike an address space, a data space can hold only

user data; it does not contain shared areas, system data

or programs. Instructions do not execute in a data

space, although a program can reside in a data space as

non-executable code. Contrast with address space.

* deblocking. The process of making each logical

record of a block available for processing. Contrast with

blocking.

Glossary 477

default value. A value assumed by the program when

no value has been specified by the user.

* device address. 1. The identification of an

input/output device by its channel and unit number. 2.

In data communication, the identification of any device

to which data can be sent or from which data can be

received.

* device class. The generic name for a group of device

types; for example, all display stations belong to the

same device class. Contrast with device type.

* Device Support Facilities. An IBM supplied system

control program for performing operations on disk

volumes so that they can be accessed by IBM and user

programs. Examples of these operations are initializing

a disk volume and assigning an alternate track.

* device type code. The four- or five-digit code to be

used for defining an I/O device to a computer system.

direct access. Accessing data on a storage device using

their address and not their sequence. This is the typical

access on disk devices as opposed to magnetic tapes.

Contrast with sequential access.

directory. 1. A table of identifiers and references to the

corresponding items of data. (I) (A) 2. In z/VSE,

specifically, the index for the program libraries. See also

library directory and sublibrary directory.

DU-AL (dispatchable unit - access list). The access

list that is associated with a z/VSE main task or

subtask. A program uses the DU-AL associated with its

task and the PASN-AL associated with its partition. See

also PASN-AL.

dynamic partition. A partition created and activated

on an ’as needed’ basis that does not use fixed static

allocations. After processing, the occupied space is

released. Contrast with static partition.

EBCDIC. Extended binary-coded decimal interchange

code.

ECKD device. Extended count-key-data device.

Enterprise Systems Architecture (ESA). See ESA/370

and ESA/390.

ESA mode. Such a supervisor will run on Enterprise

Systems Architecture processors (ESA/370 and

ESA/390) and provides support for multiple virtual

address spaces, the channel subsystem, and more than

16MB of real storage.

ESA/370. IBM Enterprise Systems Architecture/370.

The extension to the IBM System/370 architecture

which includes the advanced addressability feature that

provides access registers.

ESA/390. IBM Enterprise Systems Architecture/390.

The latest extension to the IBM System/370 architecture

which includes the advanced addressability feature and

advanced channel architecture.

* escape. To return to the original level of a user

interface.

extended addressability. 1. See 31-bit addressing. 2. The

ability of a program to use virtual storage that is

outside the address space in which the program is

running. Generally, instructions and data reside in a

single address space - the primary address space.

However, a program can have data in address spaces

other than the primary or in data spaces. (The

instructions remain in the primary address space,

whilst the data can reside in another address space or

in a data space.) To access data in other address spaces,

a program must use access registers (ARs) and execute

in access register mode (AR mode).

extended binary-coded decimal interchange code

(EBCDIC). A coded character set consisting of 8-bit

coded characters.

extended count-key-data (ECKD) device. A disk

storage device that has a data transfer rate faster than

some processors can utilize. A specialized channel

program is needed to convert ordinary CKD channel

programs for use with an ECKD device.

extent. Continuous space on a disk or diskette

occupied by or reserved for a particular file or VSAM

data space.

FASTCOPY, FCOPY. Refer to VSE/Fast Copy

FBA (Fixed Block Architecture) disk device. A disk

device that stores data in blocks of fixed size. These

blocks are addressed by block number relative to the

beginning of the file. Contrast with CKD device.

FCB. Forms control buffer.

* file. A named set of records stored or processed as a

unit. (T) Synonymous with data set.

* forms control buffer (FCB). In the 3800 Printing

Subsystem, a buffer for controlling the vertical format

of printed output.

* fragmentation (of storage). In virtual system,

inability to assign real storage locations to virtual

storage addresses because the available spaces are

smaller than the page size.

general-purpose register. A register, usually explicitly

addressable, within a set of registers that can be used

for different purposes.

* generate. To produce a computer program by

selecting subsets of skeletal code under the control of

parameters. (A)

generation. See macro generation.

478 z/VSE System Macros Reference

* GETVIS space. Storage space within a partition or

the shared virtual area, available for dynamic allocation

to programs.

hard wait. The condition of a processor when all

operations are suspended. System recovery from a hard

wait is impossible without performing a new system

startup.

* hardware. All or part of the physical components of

an information processing system, such as computers

or peripheral devices. (T) (A) Contrast with software.

ICCF. See VSE/ICCF.

integrated console. In z/VSE, the service processor

console available on ES/9000 processors that operates

as the z/VSE system console. The integrated console is

typically used during IPL and for recovery purposes

when no other console is available.

interactive. A characteristic of a program or system

that alternately accepts input and then responds. An

interactive system is conversational, that is, a

continuous dialog exists between user and system.

Contrast with batch.

interactive partition. An area of virtual storage for the

purpose of processing a job that was submitted

interactively via VSE/ICCF.

interface. A shared boundary between two hardware

or software units, defined by common functional or

physical characteristics. It might be a hardware

component or a portion of storage or registers accessed

by several computer programs.

* irrecoverable error. An error for which recovery is

impossible without use of recovery techniques external

to the computer program or run. (T)

ISAM interface program. A set of routines that allow

a processing program coded to use ISAM to gain access

to a VSAM key-sequenced file.

job control statement. A particular statement of JCL.

job step. One of a group of related programs complete

with the JCL statements necessary for a particular run.

Every job step is identified in the job stream by an

EXEC statement under one JOB statement for the whole

job.

job stream. The sequence of jobs as submitted to an

operating system.

* librarian. The set of programs that maintains,

services, and organizes the system and private libraries.

library. See z/VSE library and VSE/ICCF library.

* library block. A block of data stored in a sublibrary.

* library directory. The index that enables the system

to locate a certain sublibrary of the accessed library.

* library member. The smallest unit of data that can

be stored in and retrieved from a sublibrary.

* licensed program. A separately priced program and

its associated materials that bear an IBM copyright and

are offered to customers under the terms and

conditions of the IBM Customer Agreement (ICA).

* line printer. A device that prints a line of characters

as a unit. (I) (A) Contrast with character printer or page

printer.

link. 1. To connect items of data or portions of

programs; for example, linking of object programs by

the linkage editor or linking of data items by pointers.

2. In SNA, the combination of the link connection and

the link stations joining network nodes, for example, a

System/370 channel and its associated protocols. A link

is both logical and physical. Synonymous with data link.

* linkage editor. A program used to create a phase

(executable code) from one or more independently

translated object modules, from one or more existing

phases, or from both. In creating the phase, the linkage

editor resolves cross references among the modules and

phases available as input. The program can catalog the

newly built phases.

linkage stack. An area of protected storage that the

system gives to a program to save status information in

case of a branch or a program call.

link-edit. To create a loadable computer program by

having the linkage editor process compiled (assembled)

source programs.

* local address. In SNA, an address used in a

peripheral node in place of a network address and

transformed to or from a network address by the

boundary function in a subarea node.

* lock file. In a shared disk environment under

z/VSE, a system file on disk used by the sharing

systems to control their access to shared data.

logical record. A user record, normally pertaining to a

single subject and processed by data management as a

unit. Contrast with physical record which may be larger

or smaller.

logical unit (LU). A name used in programming to

represent an I/O device address.

* logical unit name. In programming, a name used to

represent the address of an input/output unit.

* main task. The main program within a partition in a

multiprogramming environment.

master console. In z/VSE, one or more consoles that

receive all system messages, except for those that are

Glossary 479

directed to one particular console. Contrast this with

the user console which receives only those messages that

are specifically directed to it, for example messages

issued from a job that was submitted with the request

to echo its messages to that console. The operator of a

master console can reply to all outstanding messages

and enter all system commands.

* member. The smallest unit of data that can be stored

in and retrieved from a sublibrary. See also library

member.

message. 1. In z/VSE, a communication sent from a

program to the operator or user. It can appear on a

console, a display terminal or on a printout. 2. In

telecommunication, a logical set of data being

transmitted from one node to another.

* module. A program unit that is discrete and

identifiable with respect to compiling, combining with

other units, and loading; for example, the input to, or

output from an assembler, compiler, linkage editor, or

executive routine. (A)

multitasking. Concurrent running of one main task

and one or several subtasks in the same partition.

network. 1. An arrangement of nodes (data stations)

and connecting branches. 2. The assembly of equipment

through which connections are made between data

stations.

networking. Making use of the services of a network

program.

object module (program). A program unit that is the

output of an assembler or compiler and is input to a

linkage editor.

online application program. An interactive program

used at display stations. When active, it waits for data.

Once input arrives, it processes it and sends a response

to the display station or to another device.

optical reader/sorter. A device that reads hand written

or machine printed symbols on a voucher and, after

having read the voucher, can sort it into one of the

available stacker-select pockets.

page fault. A program interruption that occurs when a

program page marked ″not in processor storage″ is

referred to by an active page.

* page fixing. Marking a page so that it is held in

processor storage until explicitly released. Until then, it

cannot be paged out.

page frame. An area of processor storage that can

contain a page.

page-in. The process of transferring a page from the

PDS to processor storage.

page-out. The process of transferring a page from

processor storage to the PDS.

page printer. A device that prints one page as a unit;

for example, a laser printer. Contrast with character

printer, line printer.

partition. A division of the virtual address area

available for running programs. See also dynamic

partition, static partition.

PASN-AL (primary address space number - access

list). The access list that is associated with a partition.

A program uses the PASN-AL associated with its

partition and the DU-AL associated with its task (work

unit). See also DU-AL.

 Each partition has its own unique PASN-AL. All

programs running in this partition can access data

spaces through the PASN-AL. Thus a program can

create a data space, add an entry for it in the PASN-AL,

and obtain the ALET that indexes the entry. By passing

the ALET to other programs in the partition, the

program can share the data space with other programs

running in the same partition.

* physical record. The amount of data transferred to

or from auxiliary storage. Synonymous with block.

primary address space. In z/VSE, the address space

where a partition is currently executed. A program in

primary mode fetches data from the primary address

space.

primary mode. If a program runs in primary mode,

the system resolves all addresses within the current

(primary) address space. Contrast with AR (access

register) mode. See also address space control (ASC) mode.

priority. A rank assigned to a partition or a task that

determines its precedence in receiving system

resources.

private area. The part of an address space that is

available for the allocation of private partitions. Its

maximum size can be defined during IPL. Contrast

with shared area.

* private partition. Any of the system’s partitions that

are not defined as shared. See also shared partition.

procedure. See cataloged procedure.

* processing. The performance of logical operations

and calculations on data, including the temporary

retention of data in processor storage while this data is

being operated upon.

* processor. In a computer, a functional unit that

interprets and executes instructions. A processor

consists of at least an instruction control unit and an

arithmetic and logic unit. (T)

480 z/VSE System Macros Reference

processor storage. The storage contained in one or

more processors and available for running machine

instructions. Synonymous with real storage.

* programmer logical unit. A logical unit available

primarily for user-written programs. See also logical

unit name.

protocol. In SNA, the set of rules for requests and

responses between communicating nodes that want to

exchange data.

* random processing. The treatment of data without

respect to its location on disk storage, and in an

arbitrary sequence governed by the input against which

it is to be processed.

real address. The address of a location in processor

storage.

real mode. A processing mode in which a program

may not be paged. Contrast with virtual mode.

real storage. See processor storage.

record. A set of related data or words, treated as a

unit. See logical record, physical record.

* reentrant. The attribute of a program or routine that

allows the same copy of the program or routine to be

used concurrently by several tasks.

residency mode (RMODE). A program attribute that

refers to the location where a program is expected to

reside in virtual storage. RMODE 24 indicates that the

program must reside in the 24-bit addressable area

(below 16 megabytes), RMODE ANY indicates that the

program can reside anywhere in 31-bit addressable

storage (above or below 16 megabytes).

* restore. To write back onto disk data that was

previously written from disk onto an intermediate

storage medium such as tape.

RMODE. Residency mode.

* routine. A program, or part of a program, that may

have some general or frequent use. (T)

* routing. The assignment of the path by which a

message will reach its destination.

SDL. System directory list.

* search chain. The order in which chained

sublibraries are searched for the retrieval of a certain

library member of a specified type.

security. See access control.

sequential access. The serial retrieval of records in

their entry sequence or serial storage of records with or

without a premeditated order. Contrast with direct

access.

sequential access method (SAM). A data access

method that writes to and reads from an I/O device

record after record (or block after block). On request,

the support performs device control operations such as

line spacing or page ejects on a printer or skip a certain

number of tape marks on a tape drive.

* sequential file. A file in which records are processed

in the order in which they are entered and stored.

shared area. An area of storage that is common to all

address spaces in the system. z/VSE has two shared

areas:

1. The shared area (24 bit) is allocated at the start of

the address space and contains the supervisor, the

SVA (for system programs and the system GETVIS

area), and the shared partitions.

2. The shared area (31 bit) is allocated at the end of

the address space and contains the SVA (31 bit) for

system programs and the system GETVIS area.

* shared virtual area (SVA). A high address area that

contains a system directory list (SDL) of frequently

used phases, resident programs that can be shared

between partitions, and an area for system support.

* skeleton. A set of control statements, instructions, or

both, that requires user-specific information to be

inserted before it can be submitted for processing.

* software. All or part of the programs, procedures,

rules, and associated documentation of a data

processing system. Software is an intellectual creation

that is independent of the medium on which it is

recorded. (T)

spanned record. A record that extends over several

blocks.

* spool file. 1. A file that contains output data saved

for later processing. 2. One of three VSE/POWER files

on disk: queue file, data file, and account file.

* spooling. The use of disk storage as buffer storage

to reduce processing delays when transferring data

between peripheral equipment and the processors of a

computer. In z/VSE, this is done under the control of

VSE/POWER.

* standard label. A fixed-format record that identifies

a volume of data such as a tape reel or a file that is

part of a volume of data.

static partition. A partition, defined at IPL time and

occupying a defined amount of virtual storage that

remains constant. Contrast with dynamic partition.

STOKEN (space token). An eight-byte identifier of a

data space. It is generated by the system when you

create a data space.

Glossary 481

storage fragmentation. Inability to allocate unused

sections (fragments) of storage in the real or virtual

address range of virtual storage.

* suballocated file. A VSE/VSAM file that occupies a

portion of an already defined data space. The data

space may contain other files. Contrast with unique file.

sublibrary. A subdivision of a library. Members can

only be accessed in a sublibrary.

sublibrary directory. An index for the system to locate

a member in the accessed sublibrary.

submit. A VSE/POWER function that passes a job to

the system for processing.

* subsystem. A secondary or subordinate system,

usually capable of operating independently of, or

asynchronously with, a controlling system. (T)

subtask. A task that is initiated by the main task or by

another subtask.

* supervisor. The part of a control program that

coordinates the use of resources and maintains the flow

of processor operations.

SYSRES. System residence file.

* system console. A console, usually equipped with a

keyboard and display screen for control and

communication with the system.

system directory list (SDL). A list containing directory

entries of frequently-used phases and of all phases

resident in the SVA. The list resides in the SVA.

* system file. A file used by the operating system, for

example, the hardcopy file, the recorder file, the page

data set.

system logical unit. A logical unit available primarily

for operating system use. See also logical unit name.

system residence file (SYSRES). The system

sublibrary IJSYSRS.SYSLIB that contains the operating

system. It is stored on the system residence volume

DOSRES.

system sublibrary. The sublibrary that contains the

operating system. It is stored on the system residence

volume (DOSRES).

* tailor. A process that defines or modifies the

characteristics of the system.

* telecommunication. Transmission of data between

computer systems over telecommunication lines and

between a computer system and remote devices.

* terminal. A point in a system or network at which

data can either enter or leave. (A) Usually a display

screen with a keyboard.

* throughput. 1. A measure of the amount of work

performed by a computer system over a given period

of time, for example, number of jobs per day. (I) (A) 2.

In data communication, the total traffic between

stations per unit of time.

* track hold. A function that protects a track that is

being updated by one program from being accessed by

another program.

* transient area. An area within the control program

used to provide high-priority system services on

demand.

UCS. Universal character set.

* unique file. A VSE/VSAM file that occupies a data

space of its own. The data space is defined at the same

time as the file and cannot contain any other file.

Contrast with suballocated file.

* universal character set (UCS). A printer feature that

permits the use of a variety of character arrays.

user console. In z/VSE, a console that receives only

those system messages that are specifically directed to

it. These are, for example, messages that are issued

from a job that was submitted with the request to echo

its messages to that console. Contrast with master

console.

* user exit. A programming service provided by an

IBM software product that may be requested during

the execution of an application program for the service

of transferring control back to the application program

upon the later occurrence of a user-specified event.

virtual address. An address that refers to a location in

virtual storage. It is translated by the system to a

processor storage address when the information stored

at the virtual address is to be used.

virtual address area. The virtual range of available

program addresses.

virtual disk. A range of up to two gigabytes of

contiguous virtual storage addresses that a program

can use as workspace. Although the virtual disk exists

in storage, it appears as a real FBA disk device to the

user program. All I/O operations directed to a virtual

disk are intercepted and the data to be written to, or

read from, the disk is moved to or from a data space.

 Like a data space, a virtual disk can hold only user

data; it does not contain shared areas, system data or

programs. Unlike an address space or a data space,

data is not directly addressable on a virtual disk. To

manipulate data on a virtual disk, the program has to

perform I/O operations.

* virtual mode. The operating mode of a program

which may be paged.

482 z/VSE System Macros Reference

* virtual partition. A division of the dynamic area of

virtual storage.

virtual storage. Addressable space image for the user

from which instructions and data are mapped into

processor (real) storage locations.

VM/ESA. Virtual Machine/Enterprise Systems

Architecture.

volume. A data carrier that is mounted and

demounted as a unit, for example, a reel of tape or a

disk pack. (I) Some disk units have no demountable

packs. In that case, a volume is the portion available to

one read/write mechanism.

volume ID. The volume serial number, which is a

number in a volume label assigned when a volume is

prepared for use by the system.

VSE (Virtual Storage Extended). A system that

consists of a basic operating system and any IBM

supplied and user-written programs required to meet

the data processing needs of a user. z/VSE and the

hardware it controls form a complete computing

system. Its current version is called z/VSE.

VSE/ESA (VSE/Enterprise Systems Architecture). The

predecessor of z/VSE.

VSE/Fast Copy. A utility program for fast copy data

operations from disk to disk and dump/restore

operations via an intermediate dump file on magnetic

tape or disk.

* VSE/ICCF (VSE/Interactive Computing and Control

Facility). An IBM program that serves as interface, on

a time-slice basis, to authorized users of terminals

linked to the system’s processor.

VSE/ICCF library. A file composed of smaller files

(libraries) including system and user data which can be

accessed under the control of VSE/ICCF.

* VSE/POWER. An IBM program primarily used to

spool input and output. The program’s networking

functions enable a z/VSE system to exchange files with

or run jobs on another remote processor.

VSE/VSAM (VSE/Virtual Storage Access Method).

An IBM access method for direct or sequential

processing of fixed and variable length records on disk

devices.

* VSE/VSAM managed space. A user-defined space

on disk placed under the control of VSE/VSAM.

* VTAM application program. A program that has

opened an ACB to identify itself to VTAM and can now

issue VTAM macro instructions.

wait state. The condition of a processor when all

operations are suspended. System recovery from a hard

wait is impossible without performing a new system

startup. Synonym for hard wait.

z/VSE. The successor to VSE/ESA.

z/VSE library. A collection of programs in various

forms and storage dumps stored on disk. The form of a

program is indicated by its member type such as source

code, object module, phase, or procedure. A z/VSE

library consists of at least one sublibrary which can

contain any type of member.

31-bit addressing. Provides addressability for address

spaces of up to 2 gigabytes. (The maximum amount of

addressable storage in previous systems was 16

megabytes.)

Glossary 483

484 z/VSE System Macros Reference

Index

Numerics
1403

See printer

24-bit addressing mode 2

2400 series tape
See tape file, magnetic

2520
See card I/O

2540
See card I/O

31-bit addressing
restrictions 469

z/VSE macros and their mode

dependencies 469

31-bit addressing mode 2

3203
See printer

3211
See printer

3350
See disk device

3375
See disk device

3380
See disk device

3400 series tape
See tape file, magnetic

3494
See Tape Library (3494)

3494 Tape Library, controlling via

LBSERV macro 229

3505
See card I/O

3525
See card I/O

3540
See diskette-I/O file

3800
See printer

3881
See card I/O

3886
See MICR/OCR device

4248
See printer

5203
See printer

A
AB exit routine

return from 182

abnormal end
See AB exit routine

abnormal end exit 389

ABSAVE operand (ATTACH macro) 23

access list
adding an entry (ALESERV ADD) 10

deleting an entry (ALESERV

DELETE) 12

access list (continued)
finding a STOKEN (ALESERV

EXTRACT) 13

searching for an entry (ALESERV

SEARCH) 15

ACCESS operand (XECBTAB) 421

access register (AR) mode 2

access-controlled GETVIS subpool 215

activate
partition (TPOUT) 399

task (ATTACH) 22

ADDAREA operand (DTFMR) 141

address delimiter 87

ADDRESS operand
DTFMR macro 141

MRMOD macro 323

address space
setting and testing control mode

(SYSSTATE macro) 397

address space control (ASC) mode 2

address specification
dynamically requested storage 213

FREEVIS macro 194

GENDTL 196

I/O request block (GENIORB) 200

job communication area

(JOBCOM) 225

local directory list 201

lock file, for modification 320

lock file, generate dynamically 196

MODDTL 320

PDUMP macro 332

storage, dynamically requested 213

virtual storage requested 213

address translation
real address return (REALAD) 354

virtual address return 403

addressing mode 2

querying (AMODESW QRY) 18

returning from subroutine

(AMODESW RETURN) 18

setting (AMODESW SET) 19

switching (AMODESW CALL) 17

AFTER operand (DTFDA) 113

ALESERV ADD macro 10

ALESERV DELETE macro 12

ALESERV EXTRACT macro 13

ALESERV SEARCH macro 15

ALET 9

AMODE 24 2

AMODE 31 2

AMODE operand (STXIT) 393

AMODESW CALL macro 17

AMODESW QRY macro 18

AMODESW RETURN macro 18

AMODESW SET macro 19

AR (access register) mode 2

ASA option control characters 435

ASC (address space control) mode 2

ASCII character code 439

ASCII character set 439

ASCII file
block prefix 144

file (DTFMT) 143

file (DTFPH) 156

file label for 455

volume label for 454

ASCII to EBCDIC correspondence 441

ASPL macro 20

ASPL operand 21

assign
device (ASSIGN) 21

parameter list (ASPL) 20

associated file
card I/O definition (of DTFCD) 104

print definition (of DTFPR) 159

print module (PRMOD) 340

print output 160

associated file (ASOCFLE) operand
card I/O 104

DTFCD macro 104

DTFPF macro 160

print output 160

attach (a task) 22

AVRLIST macro 25, 210

B
backspace tape 73

backward read (from tape) 147

batch and serial number (BCHSER)

operand (DFR) 82

batch number (BCH) operand (DFR) 81

BINARY operand (GETIME) 203

block length
See also block size (BLKSIZE) operand

1287/1288 input 150

card I/O 105

combined file output 108

console I/O 111

direct access file 113

disk sequential I/O 165

document-read (3886) file 123

indexed-sequential file 138

print output 160

tape file 143

block size (BLKSIZE) operand
1287/1288 input 150

3886 input 123

card I/O 105

console I/O 111

direct access file 113

disk sequential I/O 165

DTFCD macro 105

DTFCN macro 111

DTFDA macro 113

DTFDR macro 123

DTFMT macro 143

DTFOR macro 150

DTFPR macro 160

DTFSD macro 165

print output 160

© Copyright IBM Corp. 1990, 2005 485

block size (BLKSIZE) operand (continued)
tape I/O 143

blocking factor (BLKFAC) operand
1287/1288 input 150

1287/1288 input module 327

DTFOR macro 150

ORMOD macro 327

buffer
additional, MICR file 141

indexed sequential add 137

MICR document 66

MICR/OCR input (DTFMR) 141

print, clear the 74

status (MICR) 66

synchronize, tape 73

buffer offset (BUFOFF) operand

(DTFMT) 144

BUFFERS operand
DTFMR macro 141

MRMOD macro 323

C
CALL

CSRPACT 35

CSRPBLD 30

CSRPCON 33

CSRPDAC 36

CSRPDIS 38

CSRPEXP 31

CSRPFRE 42

CSRPGET 39

CSRPQCL 50

CSRPQEX 48

CSRPQPL 46

CSRPRFR 44

CSRPRGT 41

CSRPxxx 28

call (a program) 26

calling a subroutine (AMODESW CALL

macro) 17

cancel program
DUMP macro 175

JDUMP macro 224

STXIT option 391

task 51

card error (CRDERR) operand
card I/O 105

CDMOD macro 61

DTFCD macro 105

card I/O
define I/O module for 61

device control 74

file, define a (DTFCD) 104

carriage spacing, printer 73

CCB
See command control block (CCB)

CCW address (CCWADDR) operand

(DTFPH) 156

CCW operand
GENIORB macro 199

IORB macro 218

CDDELETE macro 58

CDLOAD macro 59

CDMOD macro 61

chaining sublibraries 263

CHANGE operand (MODDTL) 321

channel program
command control block for 52

request to execute (EXCP) 181

CHAP macro 64

character
control

See control characters

table reference 122, 164, 342

character delimiter 87

character set options (3886 file) 82

character-set (CHRSET) operand

(DFR) 82

characters, control 435

CHECK macro 65

checkpoint
end address 69

file on disk 156

on tape, interspersed 144

request macro (CHKPT) 68

restart address 69

CISIZE specification
See control-interval size

CKPTREC operand (DTFMT) 144

CLOCK operand (GETIME) 204

close a file (CLOSE, CLOSER) macro 71

close library member (LIBRM CLOSE)

macro 257

CMDCHN operand (DTFDU) 126

code, ASCII character 439

codes, control character 435

combined file
card I/O (DTFCD) 104

console (DTFCN) 111

read from (GET) 202

write to (PUT) 345

command chaining, diskette I/O 126

command control block (CCB)
address of in EXCP 181

conditions, testable 54

define a (CCB) 52

format of 53

transmission information 54

command list
CCB macro 52

in IORB (CCW operand) 199, 218

command symbols 5

comment specification 5

communication
See also cross-partition communication

activate partition (TPOUT) 399

deactivate partition (TPIN) 399

immediate response request 399

job (step) to job (step) 225

operator interrupt 391

region access (COMRG) macro 75

region, move data to 324

composed page data stream (CPDS)

records 160

compressing data 77

compression/expansion macro

(CSRCMPSC) 77

connected message 414

console file
combined, write to (PUT) 347

define a (DTFCN) 111

output, write to (PUT) 345

read from (GET) 202

console ID (WTO/R) 414

console message, deleting 89

console messages, issuing 410

console name (WTO/R) 414

control
See also return control

See also virtual storage control

a resource (LOCK) 302

card device 61

character (CDMOD) 62

characters 435

code, I/O command 73

device operation (CNTRL) macro 72

overflow of print page 344

page overflow 163, 341

pocket lights 296

print output 161, 340

printer data check 164

protected resource 172

protected resource, dynamic

setting 196

protected resource, modify 321

return of 360

spanned-record file 73

unit, secondary (MICR input) 142

control block
See control information

control character (CTLCHR) operand
ASA option 435

card I/O 106

CDMOD macro 62

DTFCD macro 106

DTFPR macro 161

EBCDIC option 436

print output 161

print output module 340

PRMOD macro 340

control characters
define for print output 161, 340

control information
device (unit), DSECT for 216

DTFPH table 158

look-up (EXTRACT macro)

request 184

partition boundary DSECT 305, 306

partition boundary format 305, 306,

310, 311, 315

save area layout DSECT 312

system layout DSECT 315

XTNTXIT information 159

control line (WTO/R) 411

CONTROL operand
1287/1288 input 150

1287/1288 input module 327

card I/O 105

CDMOD macro 61

direct access file 113

DTFCD macro 105

DTFDA macro 113

DTFOR macro 150

DTFPR macro 161

DTL macro 172

GENDTL macro 196

MODDTL macro 321

ORMOD macro 327

print output 161

print output module 340

486 z/VSE System Macros Reference

CONTROL operand (continued)
PRMOD macro 340

resource lock/unlock 172

resource, lock/unlock, dynamic

setting 196

resource, lock/unlock, modify 321

control-address specification

(CHECK) 65

control-interval size
device independent I/O 119

DTFDI macro 119

DTFPH macro 156

DTFSD macro 166

physical IOCS 156, 157

sequential file on FBA 166

conventions, command 5

conventions, notational 5

CORDATA operand (ISMOD) 220

CORINDX operand (ISMOD) 220

correction exit (COREXIT) operand
1287/1288 input 151

3886 input 123

DTFDR macro 123

DTFOR macro 151

CPCLOSE macro 76

CPDS records 160

cross-partition communication
control block (XPCCB) 427

event control block (XECBTAB) 420

example for use 432

MAPXPCCB macro 316

post event (XPOST) 429

wait on event (XWAIT) 430

XPCC macro 423

XPCCB macro 427

CSRCMPSC macro 77

CSRPACT operand (CALL macro) 35

CSRPBLD operand (CALL macro) 30

CSRPCON operand (CALL macro) 33

CSRPDAC operand (CALL macro) 36

CSRPDIS operand (CALL macro) 38

CSRPEXP operand (CALL macro) 31

CSRPFRE operand (CALL macro) 42

CSRPGET operand (CALL macro) 39

CSRPQCL operand (CALL macro) 50

CSRPQEX operand (CALL macro) 48

CSRPQPL operand (CALL macro) 46

CSRPRFR operand (CALL macro) 44

CSRPRGT operand (CALL macro) 41

CSRPxxx operand (CALL macro) 28

CSRYCMPS macro 78

cylinder overflow (CYLOFL) operand

(DTFIS) 131

D
data block

See block length

data check control 164

data compression 77

data expansion 77

data set 2 labels (for MVS) 455

data space
creating (DSPSERV CREATE) 93

deleting (DSPSERV DELETE) 98

dumping (SDUMP/SDUMPX

macro) 361

data space (continued)
extending (DSPSERV EXTEND) 100

naming conventions 97

releasing (DSPSERV RELEASE) 102

SDUMP/SDUMPX macro 361

data-check control, printer 74

DCTENTRY macro 78, 210

DDKR operand (SECTVAL) 367

DE operand
FETCH macro 191

GENL macro 201

LOAD macro 299

deactivate
partition (TPIN) 399

task 80

define
3886 document-read file

(DTFDR) 123

card I/O file (DTFCD) 104

console I/O file (DTFCN) 111

device-independent file (DTFDI) 119

direct access file (DTFDA) 113

diskette-unit file (DTFDU) 126

file for physical IOCS (DTFPH)

macro 155

indexed-sequential file (DTFIS) 131

MICR/OCR file (DTFMR) 141

OCR file (DTFOR) 150

printer file (DTFPR) macro 159

sequential disk file (DTFSD)

macro 164

tape file (DTFMT) 143

VSAM managed sequential 165

define a file
See file definition

define sublibrary chain (LIBRM LIBDEF)

macro 263

delete library member (LIBRM DELETE)

macro 258

delete loaded phase (CDDELETE)

macro 58

DELETFL operand (DTFSD) 166

deleting operator message (DOM

macro) 89

dequeue resource (DEQ) macro 79

descriptor code (WTO/R) 413

detach a task (DETACH) macro 80

detail line (WTO/R) 411

device
control (CNTRL) 72

device address (DEVADDR) operand
1287/1288 input 153

3886 input 124

card I/O 106

console I/O 111

device independent I/O 119

direct access file 114

disk sequential I/O 166

diskette I/O 126

DTFCD macro 106

DTFCN macro 111

DTFDA macro 114

DTFDI macro 119

DTFDR macro 124

DTFDU macro 126

DTFMR macro 141

DTFMT macro 144

device address (DEVADDR) operand

(continued)
DTFOR macro 153

DTFPH macro 156

DTFPR macro 161

DTFSD macro 166

MICR/OCR input 141

physical IOCS 156

print output 161

tape I/O 144

device independence
define I/O module for 83

file for, define a (DTFDI) 119

DEVICE operand
1287/1288 input 153

1287/1288 input module 327

card I/O 106

CDMOD macro 62

diskette I/O 126

DRMOD macro 90

DTFCD macro 106

DTFDR macro 124

DTFDU macro 126

DTFIS macro 131

DTFOR macro 153

DTFPH macro 157

DTFPR macro 162

GENIORB macro 200

I/O request block 200, 218

indexed sequential file 131

IORB macro 218

ORMOD macro 327

physical IOCS 157

print output 162

print output module 341

PRMOD macro 341

DIMOD macro 83

direct access file
define a (DTFDA) 113

read from (READ) 353

trailer labels for 117

wait for end of I/O 406

write to (WRITE) 408

directory entry
mapping 307

directory list, local
See local directory list

directory search only (TXT of

LOAD) 300

disengage document feed (DISEN)

macro 85

disk area, free a (FREE) 193

disk device
device-independent file on

(DTFDI) 119

direct access file on (DTFDA) 113

dynamic assign of 21

indexed-sequential file on

(DTFIS) 131

physical IOCS file on (DTFPH) 155

restart address (CHKPT) 70

seek address operation 73

sequential file on (DTFSD) 164

disk file
device independent (DTFDI) 119

direct access (DTFDA) 113

force end of volume (FEOVD) 189

Index 487

disk file (continued)
indexed sequential (DTFIS) 131

physical IOCS (DTFPH) 155

release block (RELSE) 358

sequential (DTFSD) 164

VSAM managed sequential 165

disk file label
continuation 450

first (only) 448

format-1 448

format-3 450

format-4 450

standard 448

user-standard 452

VTOC label 450

diskette label
file, standard 453

volume 453

diskette-I/O file
define I/O module for 174

file, define a (DTFDU) 126

display document field (DSPLY)

macro 91

DLINT macro 86

document
buffer 66

feed, stop of (DISEN) 85

field, display of (DSPLY) 91

read (3886) file (DTFDR) 123

read/sort file (DTFMR) 141, 150

DOM macro 89

DRMOD macro 90

drop sublibrary chain (LIBRM LIBDROP)

macro 265

DSECT operand (IORB) 219

DSKXTNT operand
direct access file 114

DTFDA macro 114

DTFIS macro 131

indexed sequential file 131

DSPSERV CREATE macro 93

DSPSERV DELETE macro 98

DSPSERV EXTEND macro 100

DSPSERV macro
CREATE request 93

DELETE request 98

EXTEND request 100

RELEASE request 102

DSPSERV RELEASE macro 102

DTFCD macro 104

DTFCN macro 111

DTFDA macro 113

DTFDI macro 119

DTFDR macro 123

DTFDU macro 126

DTFIS macro 131

DTFMR macro 141

DTFMT macro 143

DTFOR macro 150

DTFPH macro 155

DTFPR macro 159

DTFSD macro 164

DTL (define the lock) macro 172

DTL (lock control block)
See lock control block

dual address adapter
definition for 141

dual address adapter (continued)
module definition for 323

DUMODFx macro 174

DUMP macro 175

dump request by
CANCEL macro 51

DUMP macro 175

JDUMP macro 224

PDUMP macro 332

SDUMP/SDUMPX macro 361

DVCTYP operand (SECTVAL) 368

dynamic generation
directory list 200

I/0 request block (IORB) 199

lock control block 196

dynamic space GETVIS area 213

freeing space from 195

protection of 215

E
EBCDIC option control characters 436

EBCDIC to ASCII correspondence 441

ECB operand
ATTACH macro 24

GENIORB macro 200

IORB macro 219

PAGEIN macro 330

ECHO option (VSE/POWER JECL) 412

edit character (EDCHAR) operand

(DFR) 82

EDITn operand (DLINT) 87

end address (CHKPT) 69

end file load mode (ENDFL) macro 177

end line (WTO/R) 411

end of volume
disk, force end of (FEOVD) 189

force, DTFSD 168

records, handling by DTFDA 114

SYSLST/SYSPCH on tape

(SEOV) 369

tape, force end of (FEOV) 188

end-of-extent exit routine
physical I/O 157

sequential I/O 167

end-of-file exit routine
1287/1288 input 153

3886 input 124

card I/O 106

device independent I/O 119

diskette I/O 127

tape I/O 144

end-of-job (EOJ) macro 179

end-set-limit (ESETL) 180

enqueue resource (ENQ) macro 178

EOFADDR operand
1287/1288 input 153

3886 input 124

card I/O 106

device independent I/O 119

disk sequential I/O 166

diskette I/O 127

DTFCD macro 106

DTFDI macro 119

DTFDR macro 124

DTFDU macro 127

DTFMT macro 144

EOFADDR operand (continued)
DTFOR macro 153

DTFSD macro 166

tape I/O 144

EOXPTR operand
DTFPH macro 157

DTFSD macro 167

physical I/O 157

sequential I/O 167

erase gap 73

ERASE operand (DFR) 82

erase-character recognition 82

ERRBYTE operand (DTFDA) 114

ERREXT operand
direct access file 114

diskette I/O 127, 174

DTFDA macro 114

DTFDU macro 127

DTFIS macro 132

DTFMT macro 145

DUMODFx macro 174

indexed sequential file 132

indexed sequential I/O module 221

ISMOD macro 221

tape I/O 145

ERROPT operand
See error option

error exit routine
1287/1288 input 151

3886 input 123

card I/O 107

device independent I/O 120

diskette I/O 127

IORB generation 200

print output 162

return from 179

sequential disk I/O 168

tape I/O 145

error option
card I/O 106

device independent I/O 119

disk sequential I/O 167

diskette I/O 127

diskette I/O module 174

DTFCD macro 106

DTFDI macro 119

DTFDU macro 127

DTFMR macro 141

DTFMT macro 145

DTFPR macro 162

DTFSD macro 167

DUMODFx macro 174

MICR/OCR input 141

print output 162

print output module 341

PRMOD macro 341

resource-lock failure 302

tape I/O 145

error retry
card I/O (CRDERR of CDMOD) 61

card I/O (CRDERR of DTFCD) 105

error-return (ERET) macro 179

ESETL macro 180

event control block
See also ECB operand

format of 24

IORB controlled I/O 200, 219

488 z/VSE System Macros Reference

event control block (continued)
post an (POST) 339

timer 398

execute form
of WTO macro 414

of WTOR macro 418

execute-channel-program (EXCP)

macro 181

exit indicator (EXITIND) operand

(DTFDR) 124

exit routine
See also exit routine linkage

abnormal end 389

end of extent
See end-of-extent exit routine

end of file
See end-of-file exit routine

error
See error exit routine

interval timer interrupt 390

label processing
See label exit routine

MICR/OCR stacker select 141

operator communication

interrupt 391

page fault (SETPFA) 374

page overflow 344

program check interrupt 391

return control (EXIT) 182

return from 360

STXIT defined 388

wrong-length record
See wrong-length-record exit

routine

exit routine linkage
abnormal end 389

interval timer interrupt 390

operator communication

interrupt 391

program check interrupt 391

set up (STXIT) 388

expanding data 77

EXTADDR operand (DTFMR) 141

extended save area 313

extent checking, direct access file 117

extent checking, physical IOCS 159

extent information 118

extract control information
macro (EXTRACT) 184

partition boundary DSECT 305, 306

save area layout DSECT 312

system layout DSECT 315

unit information DSECT

(IJBPUB) 216

F
FAIL operand (LOCK) 302

FEED operand (DTFDU) 128

FEOVD operand
See force end of volume

FETCH (a phase) macro 190

FILABL operand (DTFMT) 146

file
See also file definition

3881 (DTFCD) 104

file (continued)
ASCII, logical IOCS access

(DTFMT) 143

ASCII, physical IOCS access

(DTFPH) 156

associated (DTFCD) 104

associated, card I/O (DTFCD) 104

associated, card print (DTFPR) 159

card I/O (DTFCD) 104

close a 71

combined (DTFCD) 104

combined (DTFCN) 111

console (DTFCN) 111

console, write to and read

(PUTR) 347

device independent (DTFDI) 119

direct access (DTFDA) 113

diskette I/O (DTFDU) 126

diskette I/O module 174

document read (1287/1288)

(DTFOR) 150

document read/sort (DTFMR) 141

document-read (3886 ─ DTFDR) 123

indexed sequential I/O module 220

indexed sequential, load a

(ENDFL) 177

indexed sequential, load mode

(SETFL) 370

indexed-sequential (DTFIS) 131

MICR/OCR I/O module

(MRMOD) 323

open a 325

physical IOCS (DTFPH) 155

printer (DTFPR) 159

read from (READ) 353

read from, sequential (GET) 202

sequential disk (DTFSD) 164

tape (DTFMT) 143

write to (WRITE) 408

write to, sequential (PUT) 345

file definition
3881 file (DTFCD) 104

ASCII, logical IOCS access

(DTFMT) 143

ASCII, physical IOCS access

(DTFPH) 156

associated, card print (DTFPR) 159

associated, print module

(PRMOD) 340

combined (DTFCN) 111

console (DTFCN) 111

device independent (DTFDI) 119

direct access (DTFDA) 113

diskette I/O (DTFDU) 126

document read (1287/1288)

(DTFOR) 150

document read/sort (DTFMR) 141

document-read (3886 ─ DTFDR) 123

indexed-sequential (DTFIS) 131

physical IOCS (DTFPH) 155

printer (DTFPR) 159

sequential disk (DTFSD) 164

tape (DTFMT) 143

file position control
note record address (NOTE) 324

point behind noted record

(POINTW) 338

file position control (continued)
point to noted record (POINTR) 337

point to start of file (POINTS) 337

file-security (FILESEC) operand

(DTFDU) 128

file-type specification
See type of file (TYPEFLE) operand

filename specification
CHECK macro 65

CHKPT macro 70

CLOSE (CLOSER) macro 71, 326

CNTRL macro 72

DISEN macro 85

DSPLY macro 91

fix a page (PFIX) macro 333

FLDn operand (DLINT) 86

floating-point registers 4

FONT operand (DFR) 81

force end of volume
direct access file 114

disk (FEOVD) 189

disk sequential I/O 168

operand, DTFDA macro 114

operand, DTFSD macro 168

tape (FEOV) 188

force page out (FCEPGOUT) macro 186

format end (FREND) specification

(DLINT) 88

format record (3886 file)
change of (SETDEV) 369

define a (DFR) 81

length of 125

line type of 86

phase name of 124

format record, change of (SETDEV) 369

forms control buffer
load message for 251

load request (LFCB) macro 250

FORMS operand (LFCB) 251

forward read (from tape) 147

forward space tape 73

free
disk area (FREE) 193

page (PFREE) 335

resource (DEQ) 79

virtual storage
See virtual storage release

virtual storage (FREEVIS) 194

FREND operand (DLINT) 88

FRNAME operand (DTFDR) 124

function operand
associated (print output) file

(FUNC) 162, 341

card I/O (FUNC) 107

CDMOD macro (FUNC) 62

DTFCD macro (FUNC) 107

DTFIS macro (IOROUT) 136

DTFPR macro (FUNC) 162

indexed sequential file 136

indexed sequential I/O module 221

ISMOD macro 221

job-communication 225

PRMOD macro (FUNC) 341

UPDATE (DTFSD) 170

Index 489

G
gap, erase a 73

GENDTL macro 196

generate I/O request block (GENIORB)

macro 199

generation, dynamic
See dynamic generation

GENL macro 200

get library member (LIBRM GET)

macro 260

GET macro 202

get symbolic parameter (GETSYMB)

macro 205

get time of day (GETIME) macro 203

get virtual storage
See virtual storage request

get virtual storage (GETVIS) macro 212

get volume characteristics (GETVCE)

macro 206

GETSYMB macro 205

GETVCE macro 206

GETVCE mapping macros
AVRLIST 25, 78

DCTENTRY 25, 78

GETVIS area
dynamic space 215

location of 213

partition 213

SVA 216

GETVIS macro 212

GETVIS subpool, access-controlled 215

Greenwich mean time 204

H
HDRINFO operand

DTFMT macro 146

DTFPH macro 157

physical IOCS 157

tape I/O 146

header information
print for physical IOCS 157

print for tape I/O 146

HEADER operand
1287/1288 input 153

3886 input 125

DTFDR macro 125

DTFOR macro 153

high index (HINDEX) operand

(DTFIS) 134

HOLD operand
direct access file 114

disk sequential I/O 168

DTFDA macro 114

DTFIS macro 134

DTFSD macro 168

indexed sequential file 134

indexed sequential I/O module 221

ISMOD macro 221

hopper empty (1287D, 1288) 154

horizontal copy control 74

HPRMTY operand (DTFOR) 154

I
I/O request block (IORB)

address of in EXCP 181

assembly of, in program 218

define dynamically 199

I/O request block (IORB) macro 218

I/O-area size
See block size (BLKSIZE) operand

I/O-area specification
1287/1288 input 154

1287/1288 input module 327

additional (DTFIS) 136

card I/O 107

CDMOD macro 62

console file 111

DIMOD macro 83

direct access file 114

disk sequential I/O 168

diskette I/O 128

DTFCD macro 107

DTFDA macro 114

DTFDI macro 120

DTFDR macro 125

DTFDU macro 128

DTFMR macro 142

DTFMT macro 146

DTFOR macro 154

DTFPR macro 163

DTFSD macro 168

indexed sequential I/O module 221

ISMOD macro 221

load file (DTFIS) 135

MICR/OCR input 142

ORMOD macro 327

print output 163

print output module 341

PRMOD macro 341

randomly process file (DTFIS) 135

sequentially process file (DTFIS) 135

tape I/O 146

I/O-register specification
1287 input 154

card I/O 108

disk sequential I/O 168

diskette I/O 129

DTFCD macro 108

DTFDI macro 120

DTFDU macro 129

DTFIS macro 136

DTFMR macro 142

DTFMT 147

DTFMT macro 147

DTFOR macro 154

DTFPR macro 163

DTFSD macro 168

indexed sequential file 136

MICR/OCR input 142

print output 163

tape I/O 147

IDLOC operand (DTFDA) 114

IJBPUB (unit information DSECT)

macro 216

IJJLBSER macro 217

IMAGE operand (DLINT) 86

index of GETVIS subpool 215

index specification
area (INDAREA of DTFIS) 134

index specification (continued)
high, unit of (HINDEX of

DTFIS) 134

master (MSTIND of DTFIS) 138

size (INDSIZE of DTFIS) 135

skip (INDSKIP of DTFIS) 134

indexed sequential file
group retrieval 372

indexed-sequential I/O DTF 131

module for 220

read from by key (READ) 353

read from, sequential (GET) 202

sequential access, start of 372

set load mode (SETFL) 370

wait for end of I/O 406

write to by key (WRITE) 408

INPSIZE operand (DTFCN) 111

insert records 136

interfaces, programming xi

interval timer
See also IT exit routine

event control block (TECB) 398

set the (SETIME) 370

interval timer interrupt 390

IOSIZE operand (DTFIS) 137

ISMOD macro 220

IT exit routine
return from 182

J
JDUMP macro 224

job name
CPCLOSE parameter list 76

job-communication (JOBCOM)

macro 225

job, end of (EOJ) 179

journal tape processing
blocking line records 150, 327

device specification for 153, 327

online correction 352

record length for 155

K
KEEP operand

DTL macro 172

GENDTL macro 196

MODDTL macro 321

key argument (KEYARG) operand
direct access file 115

DTFDA macro 115

DTFIS macro 137

indexed sequential file 137

key length (KEYLEN) operand
direct access file 115

DTFDA macro 115

DTFIS macro 137

indexed sequential file 137

key location (KEYLOC) operand

(DTFIS) 137

L
label address (LABADDR) operand

direct access file (DTFDA) 115

490 z/VSE System Macros Reference

label address (LABADDR) operand

(continued)
disk sequential I/O (DTFSD) 169

physical IOCS file (DTFPH) 157

tape file (DTFMT) 147

label exit routine
coding a 445

direct access file (DTFDA) 115

disk sequential I/O (DTFSD) 169

physical IOCS file (DTFPH) 157

tape file (DTFMT) 147

label formats
data set 2 labels (for MVS) 455

disk volume 447

disk-user, standard 452

diskette volume 453

diskette, file standard 453

format-1 448

format-3 450

format-4 450

tape, file, standard 455

tape, user-standard file 458

tape, volume 454

label line (WTO/R)
heading 411

label line 411

label-extent information 118

label-identification code 445

labels, user
delete format-1 166

extent checking, direct access file 117

extent checking, physical IOCS 159

header information (on tape) 146,

157

identification code 445

nonstandard, processing of 447

physical-IOCS file 157

processing of 445

return control (LBRET) 227

routine for, direct access file 115

routine for, disk sequential I/O 169

routine for, file on tape 147

tape, nonstandard 458

trailer, for direct-access file 117

type of on tape 146

LBRET macro 227

LBSERV macro 229

LCDD 229

LDCB (librarian data control block) 253

showing length of 281

length check (LENCHK) operand

(DTFMT) 147

LENGTH operand
FREEVIS macro 194

GENDTL macro 197

GENIORB macro 200

GETVIS macro 213

I/O request block (GENIORB) 200

job communication data 225

JOBCOM macro 225

lock file (GENDTL) 197

virtual storage request 213

level test, subsystem 395

LFCB macro 250

LFR operand (DLINT) 86

librarian data control block (LDCB) 253

showing length of 281

Library Access Service macros
LIBRDCB 253

LIBRM CLOSE 257

LIBRM DELETE 258

LIBRM GET 260

LIBRM LIBDEF 263

LIBRM LIBDROP 265

LIBRM LOCK 267

LIBRM NOTE 268

LIBRM OPEN 271

LIBRM POINT 275

LIBRM PUT 277

LIBRM RENAME 279

LIBRM SHOWCB 281

LIBRM STATE CHAIN 282

LIBRM STATE LIB 285

LIBRM STATE MEMBER 287

LIBRM STATE SUBLIB 291

LIBRM UNLOCK 294

LIBRDCB macro 253

LIBRM CLOSE macro 257

LIBRM DELETE macro 258

LIBRM GET macro 260

LIBRM LIBDEF macro 263

LIBRM LIBDROP macro 265

LIBRM LOCK macro 267

LIBRM NOTE macro 268

LIBRM OPEN macro 271

LIBRM POINT macro 275

LIBRM PUT macro 277

LIBRM RENAME macro 279

LIBRM SHOWCB macro 281

LIBRM STATE CHAIN macro 282

LIBRM STATE LIB macro 285

LIBRM STATE MEMBER macro 287

LIBRM STATE SUBLIB macro 291

LIBRM UNLOCK macro 294

LINBEG operand (DLINT) 86

line format (DLINT) 86

line type (WTO/R) 411

line-group definition (DFR) 81

lines-per-inch setting 251

LIOCS module, define a
3886 file (DRMOD) 90

card I/O (CDMOD) 61

device independent (DIMOD) 83

diskette I/O (DUMODFx) 174

IJMxxxxx (1287/1288 input) 328

indexed sequential file (ISMOD) 220

MICR/OCR file (MRMOD) 323

print output (PRMOD) 340

list form
of WTO macro 414

of WTOR macro 418

LITE macro 296

load
phase, retaining control 297

load forms control buffer (LFCB)

macro 250

load mode
end of 177

file definition for 136

load phase (LOAD) macro 297

load request
See phase, load a

LOC operand (GETVIS) 213

local directory list
address of 201

define a (GENL) 200

format definition (in FETCH) 191

format definition (in GENL) 201

format definition (in LOAD) 299

scan of by FETCH 191

scan of by LOAD 298

search of only (TXT of LOAD) 300

local time 204

lock a resource (LOCK) macro 302

lock control
control block for (DTL) 172

control block for (GENDTL) 196

system action summary 303

unlock resource (UNLOCK) 402

lock control block
assembly of, in program 172

define dynamically 196

modify a (MODDTL) 320

lock library member (LIBRM LOCK)

macro 267

lock option (LOCKOPT) operand
DTL macro 172

GENDTL macro 197

MODDTL macro 321

logical unit (LOGUNIT) operand
GENIORB macro 200

logical unit (programmer), release of 355

LOGUNIT operand (SECTVAL) 368

lower/upper-case control 74

LPI operand (LFCB) 251

M
macro

coding fields of 4

definition of 1

notation 5

operands 4

register notation in 7

usage 1

macro-format generate (MFG) operand
ATTACH macro 24

FETCH macro 192

GETIME macro 204

LOAD macro 300

PDUMP macro 332

STXIT macro 392

SUBSID macro 395

XECBTAB macro 421

macros and their mode

dependencies 469

magnetic ink character reader
See MICR/OCR device

MAPBDY macro 305

MAPBDYVR macro 306

MAPDNTRY macro 307

MAPEXTR macro 309

MAPSAVAR macro 312

MAPSSID macro 314

MAPSYSP macro 315

MAPXPCCB macro 316

message (WTO/R)
connected 414

control line 411

deleting (DOM macro) 89

Index 491

message (WTO/R) (continued)
descriptor code 413

detail line 411

line type 411

multiple-line 411

routing 412

routing code 412

single line 411

special handling 414

text 411

title 411

message reply (WTOR) 416

message writing (WTO) 410

MFG operand
See macro-format generate (MFG)

operand

MIC operand (GETIME) 203

MICR document buffer 66

MICR/OCR device
1287/1288 file module

(ORMOD) 327

1287/1288 file, define a (DTFOR) 150

1419 sort mode 142

3886 file, define a (DTFDR) 123

3886 I/O module, define a 90

character set options (3886 file) 82

document field, display of 91

dual address adapter 141

format/line-group definition (3886

file) 81

line format (3886 file) 86

pocket-lights control 296

read from (READ) 353

selective reread (RESCN) 358

sort mode, 1419 142

wait for end of I/O 406

write to (WRITE) 408

mode dependencies of z/VSE

macros 469

MODE operand (DTFCD) 108

modify lock control block (MODDTL)

macro 320

module name (MODNAME) operand
1287/1288 input 154

3886 input 125

card I/O 108

console I/O 112

diskette I/O 129

DTFCD macro 108

DTFCN macro 112

DTFDI macro 120

DTFDR macro 125

DTFDU macro 129

DTFIS macro 138

DTFMR macro 142

DTFOR macro 154

DTFPR macro 163

IJCxxxxx (card file) 63

IJDxxxxx (print output) 342

IJHxxxxx (indexed-sequential

I/O) 222

IJJxxxxx (device independent) 84

IJMxxxxx 328

IJMZxxxx (3886 file) 90

IJNDxxxx (diskette file) 174

IJUxxxxx (MICR/OCR input) 323

indexed sequential file 138

module name (MODNAME) operand

(continued)
MICR/OCR input 142

print output 163

module, LIOCS, sub/supersetting
3886 file (IJCxxxxx) 90

card I/O (IJCxxxxx) 63

device independent (IJJxxxxx) 84

diskette I/O (IJNDxxxx) 175

IJDxxxxx (print output) 343

IJHxxxxx 223

MOUNTED operand (DTFPH) 158

move to communication region

(MVCOM) 324

MRMOD macro 323

MSTIND operand (DTFIS) 138

MVCOM macro 324

N
NAME operand

ATTACH (subtask) macro 24

NATNHP operand (DFR) 82

nonstandard labels, processing of 445

nonstandard user label 458

NOSCAN operand (DLINT) 86

notation
conventions of 5

macros, general 5

operand 8

register 7

notations, command 5

note member address (LIBRM NOTE)

macro 268

note record address (NOTE) macro 324

NRECDS operand (DTFIS) 138

NULMSG operand (LFCB) 251

numeric hand printing 82

O
OC exit routine

return from 182

open a file (OPEN, OPENR) macro 325

open library member (LIBRM OPEN)

macro 271

operand
keyword 5

positional 4

operand notation 8

operator communication
See OC exit routine

operator verification
address of 70

operator, writing to (WTO) 410

operator, writing to with reply

(WTOR) 416

optical character reader
See MICR/OCR device

optical reader module (ORMOD)

macro 327

OPTION operand (STXIT) 391

ORMOD macro 327

OUBLKSZ operand (DTFCD) 108

overflow control 344

OWNER operand
DTL macro 173

GENDTL macro 197

MODDTL macro 322

P
page boundary

load at (CDLOAD) 59

page control
force page out 186

page fault appendage (SETPFA) 374

page-fix request (PFIX) 333

page-free request (PFREE) 335

page-in request (PAGEIN) 329

release a page (RELPAG) 356

page fault appendage
coding requirements 375

linkage for (SETPFA) 374

page fault queue in 376

processing by 376

page fault queue, internal 377

PAGE operand (GETVIS) 214

page overflow
See print overflow

page release request (RELPAG)

macro 356

page-fix
list 333

request (PFIX) macro 333

page-free
list 335

request (PFREE) macro 335

page-in
list 329

request (PAGEIN) macro 329

page-overflow exit 344

page-release list 356

PAGEIN macro 329

parameter list (CP CLOSE) 76

partition
activate (TPOUT) 399

deactivate (TPIN) 399

partition boundary DSECT 305, 306

partition boundary information
format of 305, 306, 310, 311, 315

request return of 184

PC exit routine
return from 182

PDUMP macro 332

PFIX macro 333

PFIX operand (GETVIS) 214

phase-name specification
CDDELETE macro 58

CDLOAD macro 59

phase, load a
into partition GETVIS area

(CDLOAD) 59

local directory scan (FETCH) 191

local directory scan (LOAD) 298

passing control (FETCH) 190

retain control unconditionally 300

retaining control (LOAD) 297

system directory scan (FETCH) 191

system directory scan (LOAD) 299

physical IOCS
access request (EXCP) 181

492 z/VSE System Macros Reference

physical IOCS (continued)
command control block for 52

define file for (DTFPH) 155

disk I/O with RPS 367

I/0 request block (IORB) 199, 218

sector value (SECTVAL) 367

wait for end of I/O (WAIT) 404

physical write on FBA 169

PIOCS
See physical IOCS

pocket-lights control 296

point macros
behind noted record (POINTW) 338

to noted record (POINTR) 337

to start of file (POINTS) 337

point to noted member record (LIBRM

POINT) macro 275

POINTRG operand
XPOST macro 429

XWAIT macro 431

POOL operand (GETVIS) 214

position-file control
note record address (NOTE) 324

point behind noted record

(POINTW) 338

point to noted record (POINTR) 337

point to start of file (POINTS) 337

post ECB (POST) macro 339

precision (PREC) operand (SETIME) 371

primary mode 2

print file (VM) release (CPCLOSE)

macro 76

print overflow
operand (PRINTOV of DTFPR) 163

operand (PRINTOV of PRMOD) 341

printer
character, table reference 164, 342

control characters, ASA 435

control of, defining 161, 340

data check control 164

device control 73

file, define a (DTFPR) 159

output module (PRMOD) 340

overflow (PRTOV) macro 344

page overflow on 163, 341

selective tape listing 164, 341

table reference character 164, 342

printer-carriage spacing 73

priority, change for a task 64

private subtasks 374

PRMOD macro 340

program check
See PC exit routine

program check interrupt 391

program, calling a 26

programmer logical unit, release of 355

programming interfaces xi

PRTOV macro 344

publications, related xiii

punch file (VM) release (CPCLOSE)

macro 76

put library member (LIBRM PUT)

macro 277

PUT macro 345

PUTR macro 347

PWRITE operand (DTFSD) 169

R
random retrieval

See indexed sequential file

RC operand (DUMP) 176

RCB, define a 352

rcbname specification
DEQ macro 79

reactivate partition (TPOUT) 399

read a line (RDLNE) macro 352

READ macro 353

read mode, direct access 115

READ operand (DTFMT) 147

read request
sequential (GET) 202

read-only module
3886 input 125

card I/O 62, 109

device independent 83

diskette I/O 129

diskette I/O module 174

DRMOD macro 90

DTFCD macro 109

DTFDI macro 121

DTFDR macro 125

DTFDU macro 129

DTFIS macro 138

DTFPR macro 163

DUMODFx macro 174

indexed sequential file 138

indexed sequential I/O module 221

ISMOD macro 221

print output 163

print output module 341

PRMOD macro 341

READID operand (DTFDA) 115

READKEY operand (DTFDA) 115

real address (in CCW) 181

real address return (REALAD)

macro 354

RECFORM operand (SECTVAL) 368

record format (RECFORM) operand
1287/1288 input 154

1287/1288 input module 327

card I/O 109

console I/O 112

direct access file 115

disk sequential I/O 169

DTFCD 109

DTFCN macro 112

DTFDA macro 115

DTFIS 138

DTFPR macro 163

DTFSD macro 169

indexed-sequential file 138

indexed-sequential I/O module 221

ISMOD macro 221

print output 163

print output module 341

PRMOD macro 341

tape I/O 147

record length
device-independent file 121

diskette-I/O file 129

journal tape processing 155

MICR/OCR file (DTFMR) 142

tape I/O 148

undefined, card I/O 109

record length (continued)
undefined, console I/O 112

undefined, direct access 116

record length, print output 160

record size (RECSIZE) operand
1287/1288 input 155

card I/O 109

console I/O 112

direct access file 116

disk sequential I/O 169

diskette I/O 129

DTFCD macro 109

DTFCN macro 112

DTFDA macro 116

DTFDI macro 121

DTFDU macro 129

DTFIS macro 138

DTFMR macro 142

DTFMT macro 148

DTFOR macro 155

DTFPR macro 164

DTFSD macro 169

indexed-sequential file 138

MICR/OCR input 142

print output 164

tape I/O 148

records, number of (DTFIS) 138

register
floating-point 4

notation 7

save area 3

saving of (SAVE) 361

usage 3

REJECT operand (DFR) 83

related publications xiii

release
block of data (RELSE) 358

disk area (FREE) 193

page, virtual storage 356

programmer logical unit 355

resource (DEQ) 79

virtual storage (FREEVIS) 194

release block (RELSE) macro 358

release logical unit (RELEASE)

macro 355

release page (RELPAG) macro 356

RELPAG macro 356

RELTYPE operand (DTFDA) 116

rename library member (LIBRM

RENAME) macro 279

replying to message (WTOR) 416

RESCN macro 358

resource control
dequeue an RCB 79

enqueue RCB (ENQ) 178

lock a (LOCK) 302

unlock a (UNLOCK) 402

resource control block
CCB 52

DTFCD 104

DTFCN 111

DTFDA 113

DTFDI 119

DTFDR 123

DTFDU 126

DTFIS 131

DTFMR 141

Index 493

resource control block (continued)
DTFMT 143

DTFOR 150

DTFPH 155

DTFPR 159

DTFSD 164

event control block (ECB) 24

I/O request
See I/O request block (IORB)

IORB 218

lock control
See lock control block

RCB 352

XECBTAB 420

resource control block (RCB) macro 352

restart
disk address for 70

end address 69

instruction-address for 69

tape position for 69

restart address (CHKPT) 69

RET operand (LOAD) 300

RETPNF operand (CDLOAD) 59

retrieve library member (LIBRM GET)

macro 260

retrieve records 136

return control
interrupt exit (EXIT) 182

label processing (LBRET) 227

return control (RETURN) macro 360

returning from a subroutine (AMODESW

RETURN macro) 18

rewind tape 73

on OPEN 148

programmed request (CNTRL) 73

rewind tape (REWIND) operand

(DTFMT) 148

rotational position sensing 221

rotational position sensing (RPS) 367

routing code (WTO) 412

RPS operand (ISMOD) 221

RUNMODE macro 360

S
save area layout (MAPSAVAR

macro) 312, 313

save area, extended 313

save area, subtask 23

SAVE operand
ASSIGN macro 21

ATTACH macro 23

DETACH macro 80

POST macro 339

save register (SAVE) macro 361

SCOPE operand
DTL macro 173

GENDTL macro 198

MODDTL macro 322

SDUMP macro 361

SDUMPX macro 361

search library (LIBRM STATE LIB)

macro 285

search library chain (LIBRM STATE

CHAIN) macro 282

search library member (LIBRM STATE

MEMBER) macro 287

search multiple tracks 116

search sublibrary (LIBRM STATE SUBLIB)

macro 291

SECADDR operand (DTFMR) 142

secondary control unit (MICR

input) 142

sector value (SECTVAL) macro 367

seek address 73

SEEKADR operand (DTFDA) 116

selective online correction 352

selective reread (RESCN) 358

selective tape list feature 164, 341

selective tape listing 345

sense-CCW specification (CCB) 52

separate assembly
1287/1288 input 155

1287/1288 input module 327

3886 input 125

CDMOD macro 62

device independent 83

disk sequential I/O 170

diskette I/O 129

diskette I/O module 174

DRMOD macro 90

DTFCD macro 109

DTFDA macro 116

DTFDI macro 122

DTFDR macro 125

DTFDU macro 129

DTFIS macro 138

DTFMR macro 142

DTFMT macro 148

DTFOR macro 155

DTFPR macro 164

DTFSD macro 170

DUMODFx macro 174

indexed-sequential file 138

indexed-sequential I/O module 222

ISMOD macro 222

MICR/OCR input 142

MICR/OCR input module 323

MRMOD macro 323

ORMOD macro 327

print output 164

print output module 341

PRMOD macro 341

tape I/O 148

sequential access
end of (ESETL) 180

start of 372

sequential file
1287/1288 input DTF 150

3886 input DTF 123

3886 input module 90

card I/O DTF 104

card I/O module 61

console I/O DTF 111

device independent module 83

device-independent I/O DTF 119

disk I/O DTF 164

diskette I/O DTF 126

diskette I/O module 174

print output DTF 159

read from (GET) 202

release block (RELSE) 358

tape DTF 143

write to (PUT) 345

set and test macro level (SPLEVEL)

macro 387

set device (SETDEV)
operand (DRMOD) 90

operand (DTFDR) 126

set exit (STXIT) 388

set file load mode (SETFL) macro 370

set interval timer (SETIME) macro 370

set limits (SETL) macro 372

set page fault appendage (SETPFA)

macro 374

SETDEV macro 369

SETPRT macro 378

setting the addressing mode (AMODESW

SET macro) 19

short block
See truncation of data

show librarian control block (LIBRM

SHOWCB) macro 281

sort mode, 1419 142

SORTMDE operand (DTFMR) 142

spanned records
skipping of (by CNTRL) 73

spacing over 358

SPID operand
FREEVIS macro 195

GETVIS macro 215

SPLEVEL macro 1, 387

spool file (VM) release (CPCLOSE)

macro 76

SRCHM operand (DTFDA) 116

SSELECT operand (DTFCD) 109

stacker eject/selection
card I/O 74

card I/O (SSELECT of DTFCD) 109

control characters, ASA 435

control characters, EBCDIC 436

document I/O 75

standard label
IBM file, disk 448

IBM file, diskette 453

IBM file, tape 454

IBM volume, diskette 453

IBM volume, tape 454

processing of 445

user file, disk 451

user file, tape 458

STANDARD operand (GETIME) 203

STLIST operand
DTFPR macro 164

PRMOD macro 341

STLSK operand (PUT) 346

STLSP operand (PUT) 345

storage control
See virtual storage control

storage dump
See dump request by

STXIT routine
interrupt in 394

set up an 388

sublibrary chain, defining a 263

sublibrary chain, dropping a 265

subpool (GETVIS)
access-controlled 215

creating 215

subpool index
FREEVIS 195

494 z/VSE System Macros Reference

subpool index (continued)
GETVIS 215

subroutine
See exit routine

subsystem information
level test 395

mapping DSECT for 314

request (SUBSID) macro 395

subtask
See task

SVA operand
FREEVIS macro 195

GETVIS macro 216

symbolic parameter, getting value of 205

synchronize tape buffer 73

syntax symbols 5

syntax, of commands 5

SYS operand
FETCH macro 191

LOAD macro 299

SYSSTATE macro 2, 397

system directory list
scan of by FETCH 191

scan of by LOAD 299

search of only (TXT of LOAD) 300

system end-of-volume (SEOV)

macro 369

system GETVIS area 216

system layout DSECT 315

SYSxxx specification
CCB macro 52

CHKPT macro 69

forms control buffer load device 250

LFCB macro 250

RELEASE macro 355

T
table reference character 84, 122, 164,

342

tape buffer, synchronization of 73

tape device
dynamic assign of 21

restart position (CHKPT) 69

tape file, magnetic
define a (DTFMT) 143

device control 73

end of volume SYSLST/SYSPCH

(SEOV) 369

force end of (FEOV) 188

physical IOCS file (DTFPH) 155

release block (RELSE) 358

SYSLST/SYSPCH end of volume

(SEOV) 369

tape handling (3494) via LBSERV

macro 229

tape label
data set 2 labels (for MVS) 455

file, standard 455

file, user-standard 458

nonstandard 458

standard, file 454

standard, volume 454

volume 454

Tape Library (3494), controlling via

LBSERV macro 229

tape mark
write a (CNTRL) 73

write a (DTFMT) 148

task
attach a (ATTACH) 22

cancel a 51

deactivate a (DETACH) 80

privately controlled 374

save area for 23

set low priority for 64

timer
See TT exit routine

wait on programmed event 404

task subpool 216

task-to-task communication
dequeue resource (DEQ) 79

enqueue resource (ENQ) 178

event control block for 24

post ECB (POST) 339

TECB macro 398

telecommunication
See communication

test interval timer (TTIMER) 400

time of day request (GETIME)

macro 203

timer
interval, event control block

(TECB) 398

interval, setting of (SETIME) 370

interval, testing the (TTIMER) 400

TLS 229

TPIN macro 399

TPOUT macro 399

track balance, getting (GETVCE) 206

track capacity, getting (GETVCE) 206

trailer labels, direct access file 117

translation, ASCII to EBCDIC to

ASCII 439

transmission information, CCB 54

TRC (table reference character) operand
DTFPR macro 164

PRMOD macro 342

TRC operand (DIMOD) 84

TRC operand (DTFDI) 122

TRLBL operand (DTFDA) 117

truncate (TRUNC) macro 400

truncation of data
disk sequential I/O 170

request macro (TRUNC) 400

TRUNCS operand, DTFSD

macro 170

TSKSUBP operand (GETVIS) 216

TTIMER macro 400

TU operand (GETIME) 203

TXT operand (LOAD) 300

type of file (TYPEFLE) operand
card I/O 110

CDMOD macro 62

console I/O 112

DIMOD macro 84

direct access file 117

disk sequential I/O 170

diskette I/O 130

DTFCD macro 110

DTFCN macro 112

DTFDA macro 117

DTFDU macro 130

type of file (TYPEFLE) operand

(continued)
DTFIS macro 138

DTFMT macro 149

DTFPH macro 159

DTFSD macro 170

indexed-sequential file 138

indexed-sequential I/O module 222

ISMOD macro 222

physical IOCS 159

tape I/O 149

TYPE operand (XECBTAB) 420

U
UCS operand (DTFPR) 164

unit information
request return of 184

unit record device
dynamic assign of 21

unit-information DSECT (IJBPUB)

macro 216

unload tape
on CLOSE 148

programmed request (CNTRL) 73

unlock library member (LIBRM

UNLOCK) macro 294

unlock resource (UNLOCK) macro 402

update a file
indexed sequential 136

UPDATE operand (DTFSD) 170

upper/lower-case control 74

use of registers 3

user label
nonstandard, processing of 447

processing of 445

standard, format of 451

user labels
See labels, user

using macros 1

V
variable-length record build (VARBLD)

operand
disk sequential I/O 171

DTFMT macro 149

DTFSD macro 171

tape I/O 149

VERIFY operand
direct access file 117

disk sequential I/O 171

diskette I/O 130

DTFDA macro 117

DTFDU macro 130

DTFIS macro 139

DTFSD macro 171

indexed-sequential file 139

VGS 229

virtual address return (VIRTAD)

macro 403

virtual storage control
force page out 186

free virtual storage (FREEVIS) 194

get virtual storage (GETVIS) 212

page fault appendage (SETPFA) 374

Index 495

virtual storage control (continued)
page-fix request (PFIX) 333

page-free request (PFREE) 335

page-in request (PAGEIN) 329

real address return (REALAD) 354

release a page (RELPAG) 356

run mode notification 360

virtual address return 403

virtual storage release
address of area 194

from dynamic space GETVIS

area 195

from subpool 195

from SVA 195

length of area 194

macro (FREEVIS) 194

virtual storage request
from dynamic space GETVIS

area 215

from pool 214

from system GETVIS 216

GETVIS macro 212

location of GETVIS area 213

page boundary allocation 214

PFIXed area 214

subpool for 215

VM spool file release (CPCLOSE)

macro 76

VOLSEQ operand (DTFDU) 130

volume characteristics, getting

(GETVCE) 206

volume identifier (VOLID) operand
DTL macro 173

GENDTL macro 198

MODDTL macro 322

volume label
disk 447

volume, force end of
disk (FEOVD) 189

SYSLST/SYSPCH on tape

(SEOV) 369

tape (FEOV) 188

W
wait state

beginning of for a task (WAIT) 404

ending of for a task 339

file access (WAITF) 406

MICR file read (CHECK) 65

multiple events (WAITM) 407

work file read/write (CHECK) 65

WLRERR operand
device independent I/O 122

disk sequential I/O 171

DTFDI macro 122

DTFMT macro 149

DTFSD macro 171

tape I/O 149

work area specification
1287/1288 input 155

1287/1288 input module 328

CDMOD macro 63

console I/O 112

disk sequential I/O 171

diskette I/O 130

DTFCD macro 110

work area specification (continued)
DTFCN macro 112

DTFDU macro 130

DTFMT macro 149

DTFOR macro 155

DTFPR macro 164

DTFSD macro 171

indexed sequential file 139

ORMOD macro 328

print output 164

print output module 342

PRMOD macro 342

read request (GET) 202

tape I/O 149

write request (PUT) 345

write request (PUTR) 347

work file
disk sequential I/O 170

point behind noted record

(POINTW) 338

point to noted record (POINTR) 337

point to start of file (POINTS) 337

read from (READ) 353

tape 149

wait for end of I/O (CHECK) 65

WORKL operand (DTFIS) 139

WORKR operand (DTFIS) 139

WORKS operand (DTFIS) 139

WRITE macro 408

write protect (on diskette) 130

write tapemark
on CLOSE (DTFMT) 148

programmed request (CNTRL) 73

write to file
by record ID 117

by record key 117

with formatting 113

write to operator with reply (WTOR)

macro 416

write-to-operator (WTO) macro 410

WRITEID operand (DTFDA) 117

WRITEKY operand (DTFDA) 117

writing messages (WTO) 410

wrong-length-record exit routine
device independent I/O 122

disk sequential I/O 171

tape I/O 149

WRTPROT operand (DTFDU) 130

WTO macro 410

execute form 414

list form 414

WTOR macro 416

execute form 418

list form 418

X
X-macro (SDUMPX) 3

XECB operand
XECBTAB macro 421

XPOST macro 429

XWAIT macro 430

XECB table entry
access type 421

check a 420

define a 420

delete a 420

XECB table entry (continued)
name of 421

post a (XPOST) 429

reset a 421

wait on (XWAIT) 430

XPCC macro 423

XPCCB (cross-partition communication

control block) 427

XPCCB macro 427

XPOST macro 429

XTNTXIT operand (DTFDA) 117

XWAIT macro 430

Y
Year 2000 support

YEAR224 macro 432

YEAR224 macro 432

496 z/VSE System Macros Reference

Readers’ Comments — We’d Like to Hear from You

IBM z/VSE

System Macros Reference

Version 3 Release 1

 Publication No. SC33-8230-00

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-8230-00

SC33-8230-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5609–ZVS

Printed in USA

SC33-8230-00

Sp
in

e
in

fo
rm

at
io

n:

 �
�

�

IB
M

z/

VS
E

z/

V
SE

Sy

st
em

M

ac
ro

s
R

ef
er

en
ce

Ve

rs
io

n
3

R
el

ea
se

1

SC
33

-8
23

0-
00

	Contents
	Figures
	Tables
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	About This Book
	Who Should Use This Book
	Where to Find More Information

	Summary of Changes
	Chapter 1. Using the Macros
	Selecting the Macro Level
	Addressing Mode and the Macros
	Address Space Control (ASC) Mode
	Using X-Macros
	Passing Parameters in AR Mode
	Register Usage
	Macro Notation
	Positional Operands
	Keyword Operands
	Mixed Format
	Comments in Macros
	Understanding Syntax Diagrams
	Register Notation
	Operand Notation

	Chapter 2. Macro Descriptions
	ALESERV (Access List Entry) Macro
	ALESERV ADD (Add Access List Entry) Macro
	Return Codes in Register 15

	ALESERV DELETE (Delete Access List Entry) Macro
	Return Codes in Register 15

	ALESERV EXTRACT (Find a STOKEN) Macro
	Return Codes in Register 15

	ALESERV SEARCH (Search Access List Entry) Macro
	Return Codes in Register 15

	AMODESW CALL (Addressing Mode Switch) Macro
	AMODESW QRY (Query Addressing Mode) Macro
	AMODESW RETURN (Return from Subroutine) Macro
	AMODESW SET (Set Addressing Mode) Macro
	ASPL (Assign Parameter List) Macro
	ASSIGN (Assign I/O Device) Macro
	Return Codes in Register 15

	ATTACH (Attach a Task) Macro
	AVRLIST (Map GETVCE) Macro
	CALL (Call a Program) Macro
	CALL CSRPxxx (Call Cell Pool Services) Macro
	Control Parameters
	Programming Requirements
	Register Information
	Input
	Output

	CALL CSRPBLD (Build A Cell Pool And Initialize An Anchor)
	Return Codes in Register 15

	CALL CSRPEXP (Expand A Cell Pool)
	Return Codes in Register 15

	CALL CSRPCON (Connect Cell Storage to an Extent)
	Return Codes in Register 15

	CALL CSRPACT (Activate Previously Connected Storage)
	Return Codes in Register 15

	CALL CSRPDAC (Deactivate an Extent)
	Return Codes in Register 15

	CALL CSRPDIS (Disconnect the Cell Storage for an Extent)
	Return Codes in Register 15

	CALL CSRPGET (Allocate a Cell from a Cell Pool)
	Return Codes in Register 15

	CALL CSRPRGT (Allocate a Cell from a Cell Pool - Register Interface)
	Input Register Information
	Output Register Information
	Return Codes in Register 15

	CALL CSRPFRE (Return a Cell to a Cell Pool)
	Return Codes in Register 15

	CALL CSRPRFR (Return a Cell to a Cell Pool - Register Interface)
	Input Register Information
	Output Register Information
	Return Codes in Register 15

	CALL CSRPQPL (Query the Cell Pool)
	Return Codes in Register 15

	CALL CSRPQEX (Query a Cell Pool Extent)
	Return Codes in Register 15

	CALL CSRPQCL (Query a Cell)
	Return Codes in Register 15

	CANCEL (Cancel Task) Macro
	CCB (Command Control Block Definition) Macro
	Format of the CCB
	CCB Communication Bytes

	CDDELETE (Delete Loaded Phase) Macro
	Return Codes in Register 15

	CDLOAD (Control-Directory Load) Macro
	Return Codes in Register 15

	CDMOD (Card I/O Module Definition) Macro
	Standard CDMOD Names
	Subset/Superset CDMOD Names

	CHAP (Change Priority) Macro
	CHECK (Check I/O Completion) Macro
	CHKPT (Checkpoint Request) Macro
	CLOSE and CLOSER (Close a File) Macro
	CNTRL (Control Device) Macro
	CKD-Disk Devices
	Magnetic Tape Units
	Printers – Any Type
	PRT1 Printers – Including IBM 4248 in Native Mode
	Card I/O Devices
	IBM 3881 Optical Mark Reader
	IBM 3886 Optical Character Reader

	COMRG (Communication Region Access) Macro
	CPCLOSE (Control Program File Close) Macro
	Return Codes in Register 15

	CSRCMPSC (Compression/Expansion) Macro
	Return Codes

	CSRYCMPS (Map Compression Control Block) Macro
	DCTENTRY (Map GETVCE) Macro
	DEQ (Dequeue Resource) Macro
	DETACH (Detach Task) Macro
	DFR (Define Font Record) Macro
	DIMOD (Device-Independent I/O Module Definition) Macro
	Standard DIMOD Names
	Subset/Superset DIMOD Names

	DISEN (Disengage Document Reader) Macro
	DLINT (Define Line Type) Macro
	Line-Information Specifications
	Field-Information Specifications

	DOM (Delete Operator Message) Macro
	Return Codes in Register 15
	Cancel Codes

	DRMOD (Document Read Module Definition) Macro
	Standard DRMOD Names

	DSPLY (Display Document Field) Macro
	DSPSERV (Data Space) Macro
	DSPSERV CREATE (Create Data Space) Macro
	Return Codes in Register 15 (and Reason Codes in Register 0)
	Data Space Naming Conventions
	Use The Following Names For Your Data Spaces

	DSPSERV DELETE (Delete Data Space) Macro
	DSPSERV EXTEND (Extend Data Space) Macro
	Return Codes in Register 15 (and Reason Codes in Register 0)

	DSPSERV RELEASE (Release Data Space) Macro
	DTFCD (Define the File for Card I/O) Macro
	DTFCN (Define the File for Console I/O) Macro
	DTFDA (Define the File for Direct Access) Macro
	DTFDI (Define the File for Device Independence) Macro
	DTFDR (Define the File for Document Reader) Macro
	DTFDU (Define the File for Diskette Unit I/O) Macro
	DTFIS (Define the File for Indexed Sequential Access) Macro
	DTFMR (Define the File for Magnetic Reader Input) Macro
	DTFMT (Define the File for Magnetic Tape I/O) Macro
	DTFOR (Define the File for Optical Reader Input) Macro
	DTFPH (Define the File for Physical I/O) Macro
	DTFPR (Define the File for Printer) Macro
	DTFSD (Define the File for Sequential Disk I/O) Macro
	DTL (Define the Lock) Macro
	DUMODFx (Diskette Unit I/O Module Definition) Macro
	Standard DUMOD Names
	Subset/Superset DUMOD Names

	DUMP (Dump Request) Macro
	ENDFL (End File Load Mode) Macro
	ENQ (Enqueue a Task) Macro
	EOJ (End of Job) Macro
	ERET (Error-Handling Return) Macro
	ESETL (End Set Limit) Macro
	EXCP (Execute Channel Program) Macro
	EXIT (Return from Exit Routine) Macro
	STXIT Macro Issued With AMODE 24
	STXIT Macro Issued With AMODE ANY

	EXTRACT (Extract Control Information) Macro
	Return Codes in Register 15

	FCEPGOUT (Force Page Out) Macro
	Exceptional Conditions
	Return Codes in Register 15

	FEOV (Force End of Volume) Macro
	FEOVD (Force End of Volume for Disk) Macro
	FETCH (Fetch a Phase) Macro
	Return Codes in Register 15

	FREE (Free Disk Area) Macro
	FREEVIS (Free Virtual Storage) Macro
	Format 1: Freeing Storage from the Partition FREEVIS Area
	Format 2: Freeing Storage from the Space FREEVIS Area
	Format 3: Freeing Storage from the System FREEVIS Area
	Return Codes in Register 15

	GENDTL (Generate the DTL Block) Macro
	GENIORB (Generate an IORB) Macro
	GENL (Generate Directory List) Macro
	GET (Get a Record) Macro
	GETIME (Get the Time) Macro
	GETSYMB (Get Symbolic Parameter) Macro
	GETVCE (Get Volume Characteristics) Macro
	GETVCE Output
	Return Codes in Register 15
	AVRLIST and DCTENTRY

	GETVIS (Get Virtual Storage) Macro
	Format 1: Obtaining Storage from the Partition GETVIS Area
	Format 2: Obtaining Storage from the Space GETVIS Area
	Format 3: Obtaining Storage from the System GETVIS Area
	Return Codes in Register 15

	IJBPUB (IJBPUB DSECT) Macro
	IJJLBSER (LBSERV DSECT) Macro
	IORB (I/O Request Block Definition) Macro
	ISMOD (Indexed Sequential I/O Module Definition) Macro
	Standard ISMOD Names
	Subset/Superset ISMOD Names

	JDUMP (Job Dump Request) Macro
	JOBCOM (Job Communication) Macro
	LBRET (Label-Routine Return) Macro
	Checking Disk Extents
	Checking User Standard Labels on Disk
	Writing User Standard Labels on Disk
	Checking User Standard Tape Labels
	Writing User Standard Tape Labels
	Writing or Checking Nonstandard Tape Labels

	LBSERV (Control IBM 3494 Tape Library) Macro
	Overview of LBSERV Macro
	Requirements for the caller:
	Register usage convention:
	Input Parameters:
	Return codes in register 15:
	LBSERV AQUERY
	LBSERV CANCEL
	LBSERV CMOUNT
	LBSERV CQUERY
	LBSERV DQUERY
	LBSERV EJECT
	LBSERV IQUERY
	LBSERV LQUERY
	LBSERV MINVENT
	LBSERV MOUNT
	LBSERV RECEIVE
	LBSERV RELEASE
	LBSERV SETVCAT
	LBSERV SQUERY

	Reason Codes

	LFCB (Load Forms Control Buffer) Macro
	Return Codes in Register 15

	LIBRDCB (Librarian Data Control Block) Macro
	Library Macro Notation

	LIBRM CLOSE (Close Library Member) Macro
	Return Codes

	LIBRM DELETE (Delete Library Member) Macro
	Return Codes

	LIBRM GET (Get Library Member) Macro
	Return Codes

	LIBRM LIBDEF (Define Sublibrary Chain) Macro
	Return Codes

	LIBRM LIBDROP (Drop Sublibrary Chain) Macro
	Return Codes

	LIBRM LOCK (Lock Library Member) Macro
	Return Codes

	LIBRM NOTE (Note Member Address) Macro
	Return Codes

	LIBRM OPEN (Open Library Member) Macro
	Return Codes

	LIBRM POINT (Point to Noted Member Record) Macro
	Return Codes

	LIBRM PUT (Put Library Member) Macro
	Return Codes

	LIBRM RENAME (Rename Library Member) Macro
	Return Codes

	LIBRM SHOWCB (Show Librarian Control Block) Macro
	LIBRM STATE CHAIN (Search Library Chain) Macro
	Return Codes

	LIBRM STATE LIB (Search Library) Macro
	Return Codes

	LIBRM STATE MEMBER (Search Library Member) Macro
	Return Codes

	LIBRM STATE SUBLIB (Search Sublibrary) Macro
	Return Codes

	LIBRM UNLOCK (Unlock Library Member) Macro
	Return Codes

	LITE (Pocket-Light Control) Macro
	LOAD (Load a Phase) Macro
	LOCK (Lock a Resource) Macro
	Return Codes in Register 15

	MAPBDY (Map Boundary Information) Macro
	MAPBDYVR (Map Boundary Information) Macro
	MAPDNTRY (Map Directory Entry) Macro
	MAPEXTR (Map EXTRACT Service) Macro
	MAPSAVAR (Map Save Area) Macro
	MAPSSID (Map for SUBSID) Macro
	MAPSYSP (Map System Layout) Macro
	MAPXPCCB (Map Cross-Partition Control Block) Macro
	MODDTL (Modify DTL Block) Macro
	MRMOD (MICR Input Module Definition) Macro
	MVCOM (Move to Communication Region) Macro
	NOTE (Note-Address) Macro
	OPEN and OPENR (Open a File) Macro
	ORMOD (Optical Reader Input Module Definition) Macro
	Standard ORMOD Names
	Subset/Superset ORMOD Names

	PAGEIN (Page-In Request) Macro
	Return Information

	PDUMP (Partial-Dump Request) Macro
	PFIX (Page-Fix Request) Macro
	Exceptional Conditions
	Return Codes in Register 15

	PFREE (Page-Free Request) Macro
	Exceptional Conditions
	Return Codes in Register 15

	POINTR (Point to Noted Record) Macro
	POINTS (Point to Start) Macro
	POINTW (Point Behind Noted Record) Macro
	POST (Post Event) Macro
	PRMOD (Printer Output Module Definition) Macro
	Standard PRMOD Names
	Subset/Superset PRMOD Names

	PRTOV (Printer Overflow Control) Macro
	PUT (Put Record) Macro
	PUTR (PUT with Reply) Macro
	QSETPRT (Query Printer Setup) Macro
	Return Codes
	Calling SETPRT for a VSE/POWER-Controlled Printer

	RCB (Resource Control Block Definition) Macro
	RDLNE (Read a Line) Macro
	READ (Read a Record) Macro
	REALAD (Real Address Return) Macro
	RELEASE (Release Logical Unit) Macro
	RELPAG (Release Page) Macro
	Exceptional Conditions
	Return Codes in Register 15

	RELSE (Release a Block) Macro
	RESCN (Re-Scan) Macro
	RETURN (Return after Call) Macro
	RUNMODE (Run-Mode Indication) Macro
	SAVE (Save Register) Macro
	SDUMP/SDUMPX
	Return Codes in Register 15

	SECTVAL (Sector-Value Calculation) Macro
	SEOV (System End-of-Volume) Macro
	SETDEV (Set Device) Macro
	SETFL (Set File Load Mode) Macro
	SETIME (Set Interval Timer) Macro
	SETL (Set Limits) Macro
	SETPFA (Set Link to Page-Fault Appendage) Macro
	General Coding Requirements
	Register Usage
	Entry Linkage
	Page Fault Queue
	Processing in the Appendage Routine

	SETPRT (Set the Printer) Macro
	SPLEVEL (Set and Test Macro Level) Macro
	STXIT (Set Exit) Macro
	SUBSID (Subsystem Information Display) Macro
	Return Codes in Register 15

	SYSSTATE (Set and Test Address Space Control Mode) Macro
	TECB (Timer Event Control Block) Macro
	TPIN (Telecommunication Priority In) Macro
	TPOUT (Telecommunication Priority Out) Macro
	TRUNC (Truncate Block) Macro
	TTIMER (Test Interval Timer) Macro
	UNLOCK (Unlock Resource) Macro
	Return Codes in Register 15

	VIRTAD (Virtual Address Return) Macro
	WAIT (Wait for Event) Macro
	WAITF (Wait for Completion of I/O) Macro
	WAITM (Wait for Multiple Events) Macro
	WRITE (Write a Record) Macro
	WTO (Write to Operator) Macro
	Return Codes in Register 15
	Cancel Codes

	WTOR (Write to Operator with Reply) Macro
	Return Codes in Register 15
	Cancel Codes

	XECBTAB (Cross-Partition Event Control Block Table) Macro
	Feedback Information

	XPCC (Cross-Partition Communication) Macro
	XPCCB (Cross-Partition Control Block) Macro
	XPOST (Cross-Partition Post) Macro
	Return Codes in Register 15

	XWAIT (Cross-Partition Wait) Macro
	Return Codes in Register 15
	YEAR224 Macro

	Appendix A. Control Character Codes
	CTLCHR=ASA Option
	CTLCHR=YES Option
	Stacker Selection Codes
	Printer Control Codes

	Appendix B. American National Standard Code for Information Interchange
	Appendix C. Standard and Non-Standard Labels
	Processing of User Labels
	Coding Requirements - User-Standard Labels
	Writing Your Labels on Output
	Checking Your Labels on Input

	Coding Requirements - Non-Standard Labels on Tape
	Writing Your Labels on Output
	Checking Your Labels on Input

	Formats of Volume and File Labels
	Volume Label on Disk (VOL1)
	IBM Standard File Labels on Disk
	User-Standard File Labels on Disk
	Volume Labels on Diskette
	IBM Standard File Labels on Diskette
	Volume Labels on Tape
	IBM Standard File Labels on Tape
	Data Set 2 Labels

	User-Standard File Labels on Tape
	Non-Standard File Labels on Tape

	Appendix D. Librarian Feedback Codes
	Appendix E. z/VSE Macros Intended for Customer Use
	VSE/Advanced Functions
	VSE/SP Unique Code
	VSE/POWER
	Execution Macros
	Mapping Macros

	VSE/Interactive Computing and Control Facility (VSE/ICCF)
	VSE/Virtual Storage Access Method (VSE/VSAM)

	Appendix F. z/VSE Macros And Their Mode Dependencies
	z/VSE Downward-Compatible Macros

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

