
IBM Language Environment for VSE/ESA

Programming Guide

Version 1 Release 4 Modification Level 4

SC33-6684-04

���

IBM Language Environment for VSE/ESA

Programming Guide

Version 1 Release 4 Modification Level 4

SC33-6684-04

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

xiii.

Fifth Edition (March 2005)

This edition applies to Version 1 Release 4 Modification Level 4 of IBM Language Environment for VSE/ESA,

5686-CF7, and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the addresses given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address

your comments to:

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com

FAX (Germany): 07031-16-3456

FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures ix

Tables xi

Notices xiii

Programming Interface Information xiii

Trademarks and Service Marks xiv

About This Book xv

What Is LE/VSE? xv

LE/VSE-Conforming Languages xvi

LE/VSE Compatibility with Previous Versions of

COBOL xvi

Terms Used in This Book xvii

How This Book Is Organized xvii

How to Read the Syntax Diagrams xvii

Where to Find More Information . . . xxi

Softcopy Publications xxiii

Summary of Changes xxv

Changes Introduced with Fifth Edition (March

2005) xxv

Changes Introduced with Fourth Edition (March

2003) xxv

Changes Introduced with Third Edition

(December 2001) xxvi

Part 1. Linking and Running

Applications with LE/VSE 1

Chapter 1. Introduction to LE/VSE . . . 3

Chapter 2. Preparing to Link and Run

under LE/VSE 5

Understanding the Basics 5

Planning to Link and Run 5

Link-Editing Single-Language Applications . . . 6

Link-Editing ILC Applications 6

Checking Which Run-Time Options Are in Effect . . 6

COBOL Considerations 7

COBOL Linking Considerations 7

PL/I Linking Considerations 7

Link-Editing Fetchable Phases 7

Fetching Phases with Different AMODEs 8

C AMODE/RMODE Considerations 9

Chapter 3. Prelinking an Application . . 11

Which Programs Need to Be Prelinked 11

What the Prelinker Does 11

Prelinking Process 11

Using the Prelinker Automatic Library Call . . . 12

LE/VSE Prelinker Map 13

Control Statement Processing 15

INCLUDE Control Statement 15

LIBRARY Control Statement 16

RENAME Control Statement 16

Mapping L-Names to S-Names 18

Running the Prelinker 19

Prelinker Options 19

Chapter 4. Linking and Running 21

Basic Linking and Running 21

Linking and Running an Existing Object Module 21

Overriding the Default Run-Time Options . . . 21

Providing Input to the Linkage Editor 22

Writing JCL for the Linkage Editor 23

Link-Editing Multiple Object Modules 26

Using the INCLUDE Statement 26

Linkage Editor Module Map 26

Detecting Link-Edit Errors 28

Running an Application 29

Specifying the Search Order 29

Specifying Run-Time Options 30

Specifying Run-Time Options in the EXEC

Statement 30

Using the iconv Utility for C 31

Using the genxlt Utility for C 31

Chapter 5. Using Run-Time Options . . 33

Understanding the Basics 33

Specifying Run-time Options 35

Order of Precedence 37

Specifying Suboptions in Run-Time Options . . 38

Specifying Run-Time Options and Program

Arguments 38

C Compatibility Considerations 39

COBOL Compatibility Considerations 39

PL/I Compatibility Considerations 39

CEEXOPT Invocation Syntax 40

Notes on CEEXOPT Invocation 44

Performance Considerations 45

Printing CICS-Wide Run-Time Options to

Console 45

Part 2. Preparing an Application to

Run with LE/VSE 47

Chapter 6. Using LE/VSE Parameter

List Formats 49

Understanding the Basics 49

Argument Lists and Parameter Lists 50

Passing Arguments between Routines 50

Preparing Your Main Routine to Receive Parameters 51

PL/I Argument-Passing Considerations 55

© Copyright IBM Corp. 1991, 2005 iii

Chapter 7. Routines That Must Be

Reentrant 57

Understanding the Basics 57

Making Your C Program Reentrant 57

Natural Reentrancy 57

Constructed Reentrancy 57

Generating a Reentrant C Object Module . . . 58

Making Your COBOL Routine Reentrant 58

Making Your PL/I Routine Reentrant 58

Installing a Reentrant Phase 58

Part 3. Concepts, Services, and

Models 59

Chapter 8. Initialization and

Termination Under LE/VSE 63

Understanding the Basics 63

LE/VSE Initialization 65

What Happens During Initialization 65

LE/VSE Termination 66

What Causes Termination 66

What Happens During Termination 67

Managing Return Codes in LE/VSE 68

How the LE/VSE Enclave Return Code is

Calculated 68

Setting and Altering User Return Codes 69

Termination Behavior for Unhandled Conditions . . 70

Determining the Abend Code 71

Chapter 9. Program Management Model 75

Understanding the Basics 75

Program Management Model Terminology . . . 75

Processes 77

Enclaves 77

Threads 79

The Full Language Environment Program

Management Model 79

Chapter 10. Stack and Heap Storage . . 81

Understanding the Basics 81

Stack Storage Overview 83

Tuning Stack Storage 84

COBOL Considerations 84

PL/I Storage Considerations 84

Heap Storage Overview 85

Heap IDs Recognized by the LE/VSE Heap

Manager 86

AMODE Considerations for Heap Storage . . . 87

Tuning Heap Storage 87

COBOL Considerations 87

Storage Performance Considerations 87

COBOL and LE/VSE Storage Considerations . . . 87

Dynamic Storage Services 89

Examples of Callable Storage Services 90

C Example of Building a Linked List 90

COBOL Example of Building a Linked List . . . 92

PL/I Example of Building a Linked List 94

C Example of Storage Management 96

COBOL Example of Storage Management . . . 98

PL/I Example of Storage Management 100

Chapter 11. LE/VSE Condition

Handling Introduction 103

Understanding the Basics 103

Related Run-Time Options and Callable Services 104

The Stack Frame Model 105

The Handle Cursor 106

The Resume Cursor 106

What Is a Condition in LE/VSE? 106

Steps in Condition Handling 107

Enablement Step 107

Condition Step 109

Termination Imminent Step 111

Invoking Condition Handlers 114

Responses to Conditions 116

Condition Handling Scenarios 116

Scenario 1: Simple Condition Handling 116

Scenario 2: Condition Handling with

User-Written Condition Handler Present for

T_I_U 118

Scenario 3: Condition Handling with

User-Written Condition Handler Present for

Divide-by-Zero Condition 119

Chapter 12. LE/VSE and HLL

Condition Handling Interactions . . . 121

Understanding the Basics 121

C Condition Handling Semantics 121

Comparison of C-LE/VSE Terminology 122

Controlling Condition Handling in C 122

C Condition Handling Actions 124

C Signal Representation of S/370 Exceptions 127

COBOL Condition Handling Semantics 128

COBOL Condition Handling Examples 129

Restrictions about Resuming Execution after an

IGZ Condition Occurs 131

Reentering COBOL Programs after Stack Frame

Collapse 131

Handling Fixed-Point and Decimal Overflow

Conditions 132

PL/I Condition Handling Semantics 132

PL/I Condition Handling Actions 132

Promoting Conditions to the PL/I ERROR

Condition 133

Mapping Non-PL/I Conditions to PL/I

Conditions 134

Additional PL/I Condition Handling

Considerations 134

PL/I Condition Handling Example 135

Chapter 13. Coding a User-Written

Condition Handler 137

Understanding the Basics 137

Types of Conditions You Can Handle 137

User-Written Condition Handler Interface using

CEEHDLR 138

Registering a User-Written Condition Handler

using USRHDLR 139

Nested Conditions 140

iv LE/VSE: Programming Guide

Nested Conditions in Applications Containing a

COBOL Program 140

Using LE/VSE Condition Handling with Nested

COBOL Programs 141

Examples with a Registered User-Written

Condition Handler 141

Handling a Divide-by-Zero Condition in C or

COBOL 141

Handling an Out-of-Storage Condition in C or

COBOL 148

Signaling and Handling a Condition in a C

Routine 158

Handling a Divide-by-Zero Condition in a

COBOL Program 160

Handling a Program Check in an Assembler

Routine 165

Chapter 14. Using Condition Tokens 171

Understanding the Basics 171

Understanding the Structure of the Condition

Token 172

The Effect of Coding the fc Parameter 173

Testing a Condition Token for Success 174

Testing Condition Tokens for Equivalence . . . 174

Testing Condition Tokens for Equality 175

The Effect of Omitting the fc Parameter 175

Using Symbolic Feedback Codes 175

Locating Symbolic Feedback Codes for

Conditions 175

Including Symbolic Feedback Code Files . . . 176

Examples Using Symbolic Feedback Codes . . 178

Condition Tokens for C Signals under C 182

LE/VSE-provided q_data Structure for Abends . . 182

Chapter 15. Using and Handling

Messages 185

Understanding the Basics 185

Creating Messages 185

Creating a Message Source File 186

Using the CEEBLDTX Utility 189

Files Created by CEEBLDTX 190

Running the CEEBLDTX Utility 191

Assembling and Link-Editing the Message File 192

CEEBLDTX Error Messages 192

Creating a Message Module Table 195

Assigning Values to Message Inserts 196

Using Messages in Code 197

Interpreting Run-Time Messages 198

Specifying National Language 199

Handling Message Output 199

Using LE/VSE MSGFILE 199

Using C Input/Output Functions 200

Using COBOL Input/Output Statements . . . 201

Using PL/I Input/Output Statements 203

MSGFILE Considerations When Using PL/I . . 204

Examples Using Multiple Message Handling

Callable Services 205

C Example Illustrating Calls to CEEMOUT,

CEENCOD, CEEMGET, CEEDCOD, and

CEEMSG 205

COBOL Example Illustrating Calls to

CEEMOUT, CEENCOD, CEEMGET, CEEDCOD

and CEEMSG 207

PL/I Example Illustrating Calls to CEEMOUT,

CEENCOD, CEEMGET, CEEDCOD, and

CEEMSG 210

Chapter 16. Using Date and Time

Services 213

Understanding the Basics 213

Working with Date and Time Services 214

Date Limits 214

Picture Character Terms and Picture Strings . . 215

Notation for Eras 215

Performing Calculations on Date and Time Values 216

Century Window Routines 216

National Language Support for Date and Time

Services 217

Examples Using Date and Time Callable Services 217

Examples Illustrating Calls to CEEQCEN and

CEESCEN 219

Examples Illustrating Calls to CEESECS . . . 222

Examples Illustrating Calls to CEESECS and

CEEDATM 226

Examples Illustrating Calls to CEESECS,

CEESECI, CEEISEC, and CEEDATM 231

Example Illustrating Calls to CEEDAYS,

CEEDATE, and CEEDYWK 238

Chapter 17. National Language

Support Services 247

Understanding the Basics 247

Setting the National Language 248

Setting the Country Code 248

Euro Support 249

Combining National Language Support and Date

and Time Services 249

Calls to CEE5CTY, CEEFMDT, and CEEDATM

in C 249

Calls to CEE5CTY, CEEFMDT, and CEEDATM

in COBOL 252

Example Using CEE5CTY, CEEFMDT, and

CEEDATM in PL/I 254

Chapter 18. Locale Callable Services 257

Understanding the Basics 257

Developing Internationalized Applications 258

Examples of Using Locale Callable Services . . . 258

Examples Illustrating Calls to CEEFMON . . . 258

Examples Illustrating Calls to CEEFTDS . . . 261

Examples Illustrating Calls to CEELCNV and

CEESETL 264

Examples Illustrating Calls to CEEQDTC and

CEESETL 267

Examples Illustrating Calls to CEESCOL . . . 270

Examples Illustrating Calls to CEESETL and

CEEQRYL 273

Examples Illustrating Calls to CEEQRYL and

CEESTXF 276

Contents v

Chapter 19. General Callable Services 281

CEE5DMP Callable Service 281

CEE5PRM Callable Service 282

CEE5PRML Callable Service 282

CEE5TSTG Callable Service 282

CEE5USR Callable Service 282

CEEGPID Callable Service 282

CEERAN0 Callable Service 283

CEETEST Callable Service 283

Examples of Using Basic Callable Services 283

Chapter 20. Math Services 287

Understanding the Basics 287

Call Interface to Math Services 289

Parameter Types: parm1 Type and parm2 Type 289

Examples of Calling Math Services 290

Calling CEESSLOG in C 290

Calling CEESSLOG in COBOL 291

Calling CEESSLOG in PL/I 292

Part 4. Using Interfaces to Other

Products 293

Chapter 21. Compatibility with Other

Products 295

Required Licensed Programs 295

Optional Licensed Programs 295

Chapter 22. Running Applications

under CICS 297

Understanding the Basics 297

CICS Partition 297

CICS Transaction 297

CICS Run Unit 297

Running LE/VSE Applications under CICS . . 298

Developing an Application under CICS 298

COBOL Coding Considerations under CICS . . 299

PL/I Coding Considerations under CICS . . . 299

Link-Edit Considerations under CICS 299

Specifying Run-Time Options under CICS . . . 300

Accessing DL/I Databases from CICS 302

Using Callable Services under CICS 303

DOS/VS COBOL Compatibility Considerations 303

Using Math Services in PL/I under CICS . . . 303

Coding Program Termination in PL/I under

CICS 303

Storage Management 303

CICS Short-on-Storage Condition 303

PL/I Storage Considerations under CICS . . . 304

Condition Handling under CICS 305

PL/I Considerations for Using the CICS

HANDLE ABEND Command 305

Effect of the CICS HANDLE ABEND Command 306

Effect of CICS HANDLE CONDITION and

CICS HANDLE AID 306

Restrictions on User-written Condition Handlers 306

CICS Transaction Abend Codes 307

Using the CBLPSHPOP Run-Time Option under

CICS 307

Restrictions on Assembler User Exits under

CICS 307

Ensuring Transaction Rollback under CICS . . 307

Run-Time Output under CICS 308

Message Handling under CICS 308

Dump Services under CICS 309

Support for Calls within the Same HLL under

CICS 309

C 309

COBOL 309

PL/I 310

Chapter 23. Running Applications with

DB2 311

Understanding the Basics 311

LE/VSE Support for DB2 Applications 311

Specifying Run-Time Options with DB2 . . . 311

Condition Handling under DB2 311

Chapter 24. Running Applications with

DL/I 313

Understanding the Basics 313

Using the Interface between LE/VSE and DL/I . . 313

CICS Considerations 313

C Considerations 313

PL/I Considerations 314

Specifying Run-Time Options with DL/I . . . 314

Condition Handling with DL/I 314

Part 5. Specialized Programming

Tasks 317

Chapter 25. Using Run-Time User

Exits 319

Understanding the Basics 319

User Exits Supported under LE/VSE 319

Using the Assembler User Exit CEEBXITA . . . 320

Using the HLL Initialization Exit CEEBINT . . 320

Using Sample Assembler User Exits 320

CEEBINT High-Level Language User Exit

Interface 332

Chapter 26. Assembler Considerations 335

Understanding the Basics 335

Compatibility Considerations 335

Register Conventions 335

Considerations for Coding or Running Assembler

Routines 336

Condition Handling 336

Access to the Inbound Parameter String . . . 336

Overlay Programs 337

CEESTART, CEEMAIN, and CEEFMAIN . . . 337

LE/VSE Library Routine Retention 337

Using Library Routine Retention 338

Library Routine Retention and Preinitialization 338

CEELRR Macro— Initialize/Terminate LE/VSE

Library Routine Retention 339

Assembler Macros 341

vi LE/VSE: Programming Guide

CEEENTRY Macro— Generate an

LE/VSE-Conforming Prolog 341

CEETERM Macro— Terminate an

LE/VSE-Conforming Routine 343

CEECAA Macro— Generate a CAA Mapping 344

CEECIB Macro— Generate a CIB Mapping . . 345

CEEDSA Macro— Generate a DSA Mapping 345

CEEPPA Macro— Generate a PPA 345

CEELOAD Macro— Dynamically Load a

Routine 348

CEEFETCH Macro— Dynamically Load a

Routine that Can Be Later Deleted 350

CEERELES Macro— Dynamically Delete a

Routine 353

Example of Assembler Main Routine 355

Example of an Assembler Main Calling an

Assembler Subroutine 356

Invoking Callable Services from Assembler

Routines 359

System Services Available to Assembler Routines 359

Chapter 27. Using Preinitialization

Services 363

Understanding the Basics 363

Compatibility 364

Using Preinitialization 364

Using the PIPI Table 364

Reentrancy Considerations 366

User Exit Invocation 366

Stop Semantics 367

Specifying Run-Time Options and Program

Arguments 367

CEEPIPI Interface 368

Initialization 369

Application Invocation 373

Termination 379

Adding an Entry to the PIPI Table 380

Deleting an Entry from the PIPI Table 381

Service Routines 382

An Example Program Invocation of CEEPIPI . . . 387

HLLPIPI Examples 390

Chapter 28. Using Nested Enclaves 393

Understanding the Basics 393

COBOL Considerations 393

Determining the Behavior of Child Enclaves . . . 393

Creating Child Enclaves Using EXEC CICS

LINK or EXEC CICS XCTL 394

Creating Child Enclaves Using the C system()

Function 395

Other Nested Enclave Considerations 396

What the Enclave Returns from CEE5PRM . . 396

Finding the Return and Reason Code from the

Enclave 397

Assembler User Exit 397

MSGFILE Considerations 397

AMODE Considerations 397

Part 6. Appendixes 399

Appendix A. Guidelines for Writing

Callable Services 401

Appendix B. Using Operating System

and Subsystem Parameter List

Formats 403

C Parameter Passing Considerations 403

C PLIST and EXECOPS Interactions 405

COBOL Parameter Passing Considerations . . . 406

PL/I Main Procedure Parameter Passing

Considerations 406

Appendix C. Sort and Merge

Considerations 409

Understanding the Basics 409

Invoking DFSORT/VSE Directly 409

Using the COBOL SORT and MERGE Verbs . . . 409

User Exit Considerations 410

Condition Handling Considerations 410

Using the PL/I PLISRTx Interface 411

User Exit Considerations 411

Condition Handling Considerations 412

Storage Use during a Sort or Merge Operation . . 413

Sorting under CICS 413

Appendix D. LE/VSE Macros 415

Language Environment Glossary . . . 417

Index 427

Contents vii

viii LE/VSE: Programming Guide

Figures

 1. Components of LE/VSE 4

 2. LE/VSE’s Common Run-Time Environment 4

 3. Example of Link-Editing a Fetchable Phase 8

 4. Prelinker Map 13

 5. JCL for Prelinking a C Program 19

 6. Accepting the Default Run-Time Options 21

 7. Overriding the Default Run-Time Options 22

 8. Overriding the Default Run-Time Options for

COBOL 22

 9. Basic Linkage Editor Processing 23

 10. Creating a Phase 25

 11. Using the INCLUDE Linkage Editor Control

Statement 26

 12. Link-Edit Listing and Module Map 27

 13. Link-Edit Map of a COBOL/VSE Program

with Unresolved Weak External References . . 28

 14. IBM-Supplied Batch Installation Default

Options Source Program, CEEDOPT 41

 15. IBM-Supplied CICS Installation Default

Options Source Program, CEECOPT 42

 16. IBM-Supplied Application Default Options

Source Program, CEEUOPT 43

 17. Sample of LE/CICS-Wide Options Printed to

Console 46

 18. Call Terminology Refresher 50

 19. Argument-Passing Styles in LE/VSE 51

 20. LE/VSE ILC—Only One Run-Time

Environment to Initialize 66

 21. Program Management Model Illustration of

Resource Ownership 76

 22. Overview of the Full Language Environment

Program Management Model 80

 23. LE/VSE Stack Storage Model 84

 24. LE/VSE Heap Storage Model 86

 25. C Example Using CEEGTST and CEEFRST to

Build a Linked List 90

 26. COBOL Example Using CEEGTST and

CEEFRST to Build a Linked List 92

 27. PL/I Example Using CEEGTST and CEEFRST

to Build a Linked List 94

 28. C Example Illustrating Calls to CEE5RPH,

CEECRHP, CEEGTST, CEECZST, CEEFRST,

and CEEDSHP 96

 29. COBOL Example Illustrating Calls to

CEE5RPH, CEECRHP, CEEGTST, CEECZST,

CEEFRST and CEEDSHP 98

 30. PL/I Example Illustrating Calls to CEE5RPH,

CEECRHP, CEEGTST, CEECZST, CEEFRST

and CEEDSHP 100

 31. Condition Processing 109

 32. Queues of User-Written Condition Handlers 115

 33. Scenario 1: Division by Zero with No User

Condition Handlers Present 117

 34. Scenario 2: Division by Zero with a

User-Written Condition Handler Present in

Routine A 118

 35. Scenario 3: Division by Zero with a User

Handler Present in Routine B 119

 36. C370A Routine 125

 37. C370B Routine 126

 38. C370C Routine 126

 39. C Condition Handling Example 127

 40. COBOLA Program 130

 41. COBOLB Program 130

 42. COBOLC Program 131

 43. PL/I Condition Processing 133

 44. PL/I Condition Handling Example 135

 45. Restricted type_of_move If COBOL Nested

Programs Are Present 141

 46. Handle and Resume Cursor Movement as a

Condition Is Handled 142

 47. EXCOND Routine (C) 143

 48. EXCOND Routine (COBOL) 145

 49. DIVZERO Routine (COBOL) 146

 50. USRHDLR Routine (COBOL) 147

 51. C Example of a main() Routine That Calls a

Function and Registers a Condition Handler

for an Out-of-Storage Condition 150

 52. C User-Written Condition Handler Registered

for the Out-of-Storage Condition 152

 53. COBOL Example of a Main Routine that Calls

Subroutine and Registers User-Written

Condition Handler 153

 54. COBOL User-Written Condition Handler

Registered for the Out-of-Storage Condition . 155

 55. COBOL Subroutine that Causes

Out-of-Storage Condition 157

 56. Sample C Calls to CEEHDLR, CEESGL,

CEEGQDT, and CEEMRCR 158

 57. COBOL Example of a Main Routine that

Registers User-Written Condition Handler

and Causes Divide-by-Zero Condition . . . 161

 58. Assembler Example of a Main Routine that

Calls Subroutine and Registers User-Written

Condition Handler 165

 59. LE/VSE Condition Token 172

 60. C Example Testing for CEEGTST Symbolic

Feedback Code CEE0P3 178

 61. COBOL Example Testing for CEESDEXP

Symbolic Feedback Code CEE1UR 179

 62. Wrong Placement of COBOL COPY

Statements for Testing Feedback Code . . . 180

 63. PL/I Example Testing for Symbolic Feedback

Code CEE000 181

 64. Structure of Abend Qualifying Data 183

 65. Example of a Message Source File 186

 66. Example of a Message Module Table with

One Language 195

 67. Example of a Message Module Table with

Two Languages 195

 68. Assembling and Link-Editing a Message

Phase Table 196

© Copyright IBM Corp. 1991, 2005 ix

69. Example of Assigning Values to Message

Inserts 197

 70. Example of Link-Editing and Running the

TEST PL/I Program 197

 71. C Example Illustrating Calls to CEEMOUT,

CEENCOD, CEEMGET, CEEDCOD, and

CEEMSG 205

 72. COBOL Example Illustrating Calls to

CEEMOUT, CEENCOD, CEEMGET,

CEEDCOD and CEEMSG 207

 73. PL/I Example Illustrating Calls to

CEEMOUT, CEENCOD, CEEMGET,

CEEDCOD, and CEEMSG 210

 74. Performing Calculations on Dates 216

 75. C Example of Querying and Changing the

Century Window 219

 76. COBOL Example of Querying and Changing

the Century Window 220

 77. PL/I Example of Querying and Changing the

Century Window 221

 78. Calls to CEESECS in C 222

 79. Calls to CEESECS in COBOL 223

 80. Calls to CEESECS in PL/I 225

 81. Calls to CEESECS and CEEDATM in C 226

 82. Calls to CEESECS and CEEDATM in COBOL 228

 83. Calls to CEESECS and CEEDATM in PL/I 230

 84. Calls to CEESECS, CEESECI, CEEISEC, and

CEEDATM in C 231

 85. Calls to CEESECS, CEESECI, CEEISEC, and

CEEDATM in COBOL 233

 86. Calls to CEESECS, CEESECI, CEEISEC, and

CEEDATM in PL/I 236

 87. Calls to CEEDAYS, CEEDATE, and

CEEDYWK in C 238

 88. Calls to CEEDAYS, CEEDATE, and

CEEDYWK in COBOL 240

 89. Calls to CEEDAYS, CEEDATE, and

CEEDYWK in PL/I 243

 90. Calls to CEECBLDY in COBOL 245

 91. Querying and Setting the Country Code and

Getting the Date and Time Format in C . . . 250

 92. Querying and Setting the Country Code and

Getting the Date and Time Format in COBOL . 252

 93. Querying and Setting the Country Code and

Getting the Date and Time Format in PL/I . . 254

 94. Calls to CEEFMON in COBOL 259

 95. Calls to CEEFMON in PL/I 260

 96. Calls to CEEFTDS in COBOL 261

 97. Calls to CEEFTDS in PL/I 263

 98. Calls to CEELCNV and CEESETL in COBOL 264

 99. Calls to CEELCNV and CEESETL in PL/I 266

100. Calls to CEEQDTC and CEESETL in COBOL 267

101. Calls to CEEQTDC and CEESETL in PL/I 269

102. Calls to CEESCOL in COBOL 270

103. Calls to CEESCOL in PL/I 272

104. Calls to CEESETL and CEEQRYL in COBOL 273

105. Calls to CEESETL and CEEQRYL in PL/I 275

106. Calls to CEEQRYL and CEESTXF in COBOL 276

107. Calls to CEEQRYL and CEESTXF in PL/I 278

108. C Routine with a Call to CEEFMDT 284

109. COBOL Program with a Call to CEEFMDT 285

110. PL/I Routine with a Call to CEEFMDT 286

111. C Call to CEESSLOG—Logarithm Base e 290

112. Call to CEESSLOG—Logarithm Base e in

COBOL 291

113. Call to CEESSLOG—Logarithm Base e in

PL/I 292

114. Format of Messages Sent to CESE 308

115. Location of User Exits 321

116. Interface for CEEBXITA Assembler User Exit 324

117. CEEAUE_FLAGS Format 325

118. Exit_list and Hook_exit Control Blocks 333

119. Example of Simple Main Assembler Routine 355

120. Example of an Assembler Main Routine

Calling a Subroutine 356

121. Example of a Called Assembler Subroutine 357

122. Sample Invocation of a Callable Service from

Assembler 359

123. Format of Service Routine Vector 382

124. Assembler Driver that Creates a Preinitialized

Environment 387

125. C Subroutine Called by ASMPIPI 390

126. COBOL Program Called by ASMPIPI 390

127. PL/I Routine Called by ASMPIPI 391

128. Some C Parameter Passing Styles 403

129. Accessing Parameters Using Macros __R1 and

__osplist 404

130. Examples of Casting and Dereferencing 405

131. Format of Sort Parameter List under CICS 414

x LE/VSE: Programming Guide

Tables

 1. LE/VSE-Conforming Languages xvi

 2. LE/VSE Publications xxi

 3. z/VSE Publications xxi

 4. IBM C for VSE/ESA Publications xxi

 5. IBM COBOL for VSE/ESA Publications xxii

 6. IBM PL/I for VSE/ESA Publications xxii

 7. Debug Tool for VSE/ESA Publications xxii

 8. Link-Edit Default Entry Point by Language 6

 9. Prelinker Options 19

10. Files Used for Link-Editing 23

11. Linkage Editor Control Statements 24

12. Summary of LE/VSE Run-Time Options 33

13. Formats for Specifying Run-Time Options and

Program Arguments 38

14. Semantic Terms and Methods for Passing

Arguments in LE/VSE 50

15. Default Passing Style per HLL 51

16. Coding a Main Routine to Receive an Inbound

Parameter List in Batch without DL/I 52

17. Coding a Main Routine to Receive an Inbound

Parameter List in Batch with DL/I 53

18. Coding a Main Routine to Receive an Inbound

Parameter List in CICS 54

19. Coding a Main Routine to Receive an Inbound

Parameter List in Batch 54

20. Summary of Enclave Reason Codes 70

21. Termination Behavior for Unhandled

Conditions of Severity 2 or Greater 71

22. Abend Codes Used by LE/VSE when the

Assembler User Exit Requests an Abend . . . 71

23. Abend Code Values Used by LE/VSE with

ABTERMENC(ABEND) 72

24. Program Interrupt Codes in a Non-CICS

Environment 73

25. Usage of Stack and Heap Storage by

LE/VSE-Conforming Languages 81

26. Heap IDs Recognized by LE/VSE Heap

Manager 86

27. COBOL Storage Usage 88

28. LE/VSE Default Responses to Unhandled

Conditions 111

29. T_I_U Condition Representation 112

30. T_I_S Condition Representation 113

31. C Conditions and Default System Actions 122

32. Mapping of S/370 Exceptions to C Signals 128

33. Mapping of Abend Signals to C Signals 128

34. Symbolic Feedback Codes Associated with

CEEGTST 175

35. LE/VSE Condition Tokens and C Signals 182

36. LE/VSE Run-Time Message Severity Codes 198

37. Message File Default Attributes 199

38. Defining an I/O Device for the Message File 200

39. C Message Output 201

40. C Redirected Stream Output 201

41. Run-time Message and DISPLAY Destinations

for OUTDD and MSGFILE filename

Specifications 202

42. LE/VSE Locale Callable Services and

Equivalent C Library Routines 257

43. Required Licensed Programs for LE/VSE 295

44. Optional Licensed Compiler Programs for

LE/VSE 295

45. Other Licensed Programs for LE/VSE 295

46. Run-Time Option Behavior under CICS 301

47. User Exits Supported under LE/VSE 319

48. Sample Assembler User Exits for LE/VSE 320

49. Parameter Values in the Assembler User Exit

(Part 1) 329

50. Parameter Values in the Assembler User Exit

(Part 2) 331

51. LE/VSE’s Equivalent Host Services 359

52. Invocation of User Exits during Process and

Enclave Initialization and Termination . . . 366

53. Preinitialization Services Accessed Using

CEEPIPI 368

54. Return and Reason Codes 383

55. Return and Reason Codes 384

56. Return and Reason Codes 385

57. Return and Reason Codes 386

58. Return and Reason Codes 386

59. Unhandled Condition Behavior in a

system()-Created Child Enclave 395

60. Determining the Command-Line Equivalent 396

61. Determining the Order of Run-Time Options

and Program Arguments 397

62. Interactions of C PLIST and EXECOPS

(#pragma runopts) 406

63. Interactions of SYSTEM and NOEXECOPS 407

64. DFSORT/VSE Exit Called as a Function of a

PLISRTx Interface Call 412

© Copyright IBM Corp. 1991, 2005 xi

xii LE/VSE: Programming Guide

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of

the intellectual property rights of IBM may be used instead of the IBM product,

program, or service. The evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the

responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement. IBM accepts

no responsibility for the content or use of non-IBM Web sites specifically

mentioned in this publication or accessed through an IBM Web site that is

mentioned in this publication.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Deutschland Informationssysteme GmbH

Department 0215

Pascalstr. 100

70569 Stuttgart

Germany

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

Programming Interface Information

This book is intended to help with application programming. This book documents

General-Use Programming Interface and Associated Guidance Information

provided by IBM Language Environment for VSE/ESA.

General-Use programming interfaces allow the customer to write programs that

obtain the services of IBM Language Environment for VSE/ESA.

© Copyright IBM Corp. 1991, 2005 xiii

Trademarks and Service Marks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 AT Integrated Language

Environment

VSE/ESA

C/370 Language Environment z/OS

CICS OS/390 zSeries

CICS/VSE OS/400 z/VM

DB2 SAA z/VSE

DFSORT System/370

IBM VisualAge

Microsoft, Windows, Windows NT and the Windows logo are trademarks of

Microsoft Corporation in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names, may be trademarks or service marks

of others.

xiv LE/VSE: Programming Guide

About This Book

 This book contains information about linking, running, and using services within

the IBM Language Environment for VSE/ESA (LE/VSE) environment, the LE/VSE

program management model, and language- and operating system-specific

information where applicable. For application programming, you will need to use

both this book and LE/VSE Programming Reference. LE/VSE Programming Reference

contains more detailed information, as well as specific syntax for using run-time

options and callable services. LE/VSE Writing Interlanguage Communication

Applications provides information to help you create and run interlanguage

communication (ILC) applications.

What Is LE/VSE?

LE/VSE is a set of common services and language-specific routines that provide a

single run-time environment for applications written in LE/VSE-conforming versions

of the C, COBOL, and PL/I high level languages (HLLs), and for many

applications written in previous versions of COBOL. (For a list of

LE/VSE-conforming languages, and a description of compatibility with previous

versions of COBOL, see “LE/VSE-Conforming Languages” on page xvi.) LE/VSE

also supports applications written in assembler language using LE/VSE-provided

macros and assembled using High Level Assembler (HLASM).

Prior to LE/VSE, each programming language provided its own separate run-time

environment. LE/VSE combines essential and commonly-used run-time

services—such as message handling, condition handling, storage management, date

and time services, and math functions—and makes them available through a set of

interfaces that are consistent across programming languages. With LE/VSE, you

can use one run-time environment for your applications, regardless of the

application’s programming language or system resource needs, because most

system dependencies have been removed.

Services that work with only one language are available within language-specific

portions of LE/VSE.

LE/VSE consists of:

v Basic routines for starting and stopping programs, allocating storage,

communicating with programs written in different languages, and indicating

and handling error conditions.

v Common library services, such as math services and date and time services, that

are commonly needed by programs running on the system. These functions are

supported through a library of callable services.

z/VSE is the successor to IBM’s VSE/ESA product. Many products and functions

supported on z/VSE may continue to use VSE/ESA in their names.

z/VSE can execute in 31-bit mode only. It does not implement z/Architecture, and

specifically does not implement 64-bit mode capabilities.

z/VSE is designed to exploit select features of IBM eServer zSeries hardware.

© Copyright IBM Corp. 1991, 2005 xv

v Language-specific portions of the common run-time library.

LE/VSE is the implementation of Language Environment on the VSE platform.

Language Environment is also offered on platforms z/OS and VM, and on OS/400

as Integrated Language Environment.

LE/VSE-Conforming Languages

An LE/VSE-conforming language is any HLL that adheres to the LE/VSE common

interface. Table 1 lists the LE/VSE-conforming language compiler products you can

use to generate applications that run with LE/VSE Release 4.

 Table 1. LE/VSE-Conforming Languages

Language LE/VSE-Conforming Language Minimum Release

C IBM C for VSE/ESA Release 1

COBOL IBM COBOL for VSE/ESA Release 1

PL/I IBM PL/I for VSE/ESA Release 1

Any HLL not listed in Table 1 is known as a non-LE/VSE-conforming or,

alternatively, a pre-LE/VSE-conforming language. Some examples of

non-LE/VSE-conforming languages are:

v C/370

v DOS/VS COBOL

v VS COBOL II

v DOS PL/I

v DOS/VS RPG II

Only the following products can generate applications that run with LE/VSE:

v LE/VSE-conforming languages

v HLASM using LE/VSE-provided macros (for details, see LE/VSE Programming

Guide)

v DOS/VS COBOL and VS COBOL II, with some restrictions (see LE/VSE

Compatibility with Previous Versions of COBOL below).

LE/VSE Compatibility with Previous Versions of COBOL

Although DOS/VS COBOL and VS COBOL II are non-LE/VSE-conforming

languages, many applications generated with these compilers can run with

LE/VSE without recompiling. For details about compatibility, see LE/VSE Run-Time

Migration Guide.

However relinking under LE/VSE is the minimum effort in order to migrate

run-time, and involve LE/VSE COBOL-compatibility routines (rather than the old

and unsupported library routines of non-LE/VSE conforming COBOL compilers).

This particularily applies to NORES-compiled units or applications that involve

former initialization techniques such as ILBDSET0. There are even restrictions with

this approach, such as:

v No use of 4-digit dates.

v No exploitation of LE/VSE functionality.

v Interlanguage communication capabilities, and so on.

Therefore you are strongly recommended to carry out a (subsequent) full migration to

a higher ANSI standard and LE/VSE-conforming COBOL compiler (COBOL for

VSE/ESA).

xvi LE/VSE: Programming Guide

VS COBOL II can also dynamically call some LE/VSE date and time callable

services. For details, see LE/VSE Programming Reference.

Terms Used in This Book

Unless otherwise stated, the following terms are used in this book to refer to the

specified languages:

Term... Refers to the language supported by...

C The IBM C for VSE/ESA compiler

COBOL The IBM COBOL for VSE/ESA and VS COBOL II compilers

PL/I The IBM PL/I for VSE/ESA compilers

For a list of LE/VSE-conforming language compilers, see “LE/VSE-Conforming

Languages” on page xvi.

How This Book Is Organized

This book is organized as follows:

v Part 1 is a basic introduction to LE/VSE and discusses prelinking, linking, and

running with LE/VSE, as well as using LE/VSE run-time options.

v Part 2 describes how to prepare an application to run in LE/VSE.

v Part 3 describes LE/VSE concepts, services, and models, including initialization

and termination, program management model, storage, condition handling,

messages, callable services, and math services.

v Part 4 explains using interfaces to other products such as CICS, DB2, and DL/I.

v Part 5 addresses specialized programming tasks, such as using run-time user

exits, assembler considerations, preinitialization services, and using nested

enclaves.

v The various appendixes discuss writing callable services, using parameter list

formats, sort and merge considerations, and LE/VSE macros.

How to Read the Syntax Diagrams

The following rules apply to the notation used in the syntax diagrams contained in this book:

v Read the syntax diagrams from left to right, top to bottom following the path of the line.

v Each syntax diagram begins with a double arrowhead (55).

v An arrow (─5) at the end of a line indicates that the option, service, or macro syntax continues on the

next line. A continuation line begins with an arrow (5─).

v If a syntax diagram contains too many items or groups to fit in the diagram, the syntax is shown by a

main syntax diagram and one or more syntax fragments. A syntax fragment is referred to in the main

diagram by its fragment name between two vertical bars (│).

Each syntax fragment appears below the main syntax diagram, and begins and ends with a vertical bar

(│). A heading above the fragment indicates the name of the fragment.

Read each syntax fragment as though it were imbedded in the main syntax diagram.

v IBM-supplied default keywords appear above the main path or options path (see the sample on page

xviii). In the parameter list, IBM-supplied default choices are underlined.

v Keywords appear in nonitalic capital letters and should be entered exactly as shown. However, some

keywords may be abbreviated by truncation from the right as long as the result is unambiguous. In

this case, the unambiguous truncation is shown in capital letters in the keyword, for example:

ANyheap

v Words in lowercase letters represent user-defined parameters or suboptions.

About This Book xvii

v Enter parentheses, arithmetic symbols, colons, semicolons, commas, and greater-than signs where

shown.

v Required parameters appear on the same horizontal line (the main path) as the option, service, or

macro:

55 OPTION required_parameter 5=

v If you can choose from two or more parameters, the choices are stacked one above the other.

If choosing one of the items is optional, the entire stack appears below the main line.

55 OPTION

optional_parameter_1

optional_parameter_2

optional_parameter_3

 5=

If you must choose one of the items, one item of the stack appears on the main path:

55 OPTION required_choice_1

required_choice_2

required_choice_3

 5=

v An arrow returning to the left above a line indicates that an item can be repeated:

55

OPTION

>

repeatable_item

5=

OR

55 OPTION

>

repeatable_item

 5=

v A comma or semicolon included in the repeat symbol indicates a separator that you must include

between repeated parameters. These separators must be coded where shown.

v When entering commands, parameters and keywords must be separated by at least one blank if there

is no intervening punctuation.

v A double arrow (─5=) at the end of a line indicates the end of the syntax diagram.

The following example demonstrates how to read the syntax notation. Numbers in the example

correspond to explanations supplied below the example.

55

(1)

ANyheap

(2)

(

(3)

init_size

(4)

,

incr_size

,

ANYWHERE

ANY

BELOW

,

 (6)

FREE

(5)

KEEP

5

5) 5=

xviii LE/VSE: Programming Guide

Notes:

1 Keyword with minimum unambiguous truncation shown in capital letters

2 Opening parenthesis (must be specified if any parameters are specified)

3 Optional parameter

4 Comma (must be specified if there are parameters that follow)

5 Optional keyword

6 Optional keyword (IBM-supplied default)

About This Book xix

xx LE/VSE: Programming Guide

Where to Find More Information

These are the manuals that describe LE/VSE:

 Table 2. LE/VSE Publications

Publication Form Number

LE/VSE Fact Sheet GC33-6679

LE/VSE Concepts Guide GC33-6680

LE/VSE Customization Guide SC33-6682

LE/VSE Programming Guide SC33-6684

LE/VSE Programming Reference SC33-6685

LE/VSE C Run-Time Programming Guide SC33-6688

LE/VSE C Run-Time Library Reference SC33-6689

LE/VSE Debugging Guide and Run-Time Messages SC33-6681

LE/VSE Writing Interlanguage Communication Applications SC33-6686

LE/VSE Run-Time Migration Guide SC33-6687

LE/VSE Licensed Program Specifications GC33-6683

These are the z/VSE manuals to which you might need to refer:

 Table 3. z/VSE Publications

Publication Form Number

z/VSE Administration SC33-8224

z/VSE Messages and Codes, Volume 1 SC33-8226

z/VSE Messages and Codes, Volume 2 SC33-8227

z/VSE Messages and Codes, Volume 3 SC33-8228

z/VSE Planning SC33-8221

z/VSE System Control Statements SC33-8225

z/VSE System Macros Reference SC33-8230

z/VSE System Macros User’s Guide SC33-8236

z/VSE System Upgrade and Service SC33-8223

VSE/VSAM User’s Guide and Application Programming SC33-8246

VSE/VSAM Commands SC33-8245

TCP/IP for VSE/ESA IBM Program Setup and Supplementary Information SC33-6601

These are the manuals that describe IBM C for VSE/ESA:

 Table 4. IBM C for VSE/ESA Publications

Publication Form Number

Licensed Program Specifications GC09-2421

Installation and Customization Guide GC09-2422

Migration Guide SC09-2423

© Copyright IBM Corp. 1991, 2005 xxi

Table 4. IBM C for VSE/ESA Publications (continued)

Publication Form Number

User’s Guide SC09-2424

Language Reference SC09-2425

Diagnosis Guide GC09-2426

These are the manuals that describe IBM COBOL for VSE/ESA:

 Table 5. IBM COBOL for VSE/ESA Publications

Publication Form Number

General Information GC33-6679

Licensed Program Specifications GC33-6680

Migration Guide SC33-6682

Installation and Customization Guide GC33-6680

Programming Guide SC33-6684

Language Reference SC33-6685

Diagnosis Guide SC33-6684

Reference Summary SX26-3834

These are the manuals that describe IBM PL/I for VSE/ESA:

 Table 6. IBM PL/I for VSE/ESA Publications

Publication Form Number

Fact Sheet GC26-8052

Programming Guide SC26-8053

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC33-6684

Installation and Customization Guide SC26-8057

Diagnosis Guide SC26-8058

Compile-Time Messages and Codes SC26-8059

Reference Summary SX26-3836

These are the manuals that describe Debug Tool for VSE/ESA:

 Table 7. Debug Tool for VSE/ESA Publications

Publication Form Number

User’s Guide and Reference SC26-8797

Installation and Customization Guide SC26-8798

Fact Sheet GC26-8925

You might also refer to the ...

xxii LE/VSE: Programming Guide

z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date information about

VSE-related products and services, new z/VSE functions, and other items of interest to VSE users.

You can find the z/VSE home page at:

http://www.ibm.com/servers/eserver/zseries/zvse/

Softcopy Publications

The following collection kit contains the LE/VSE and LE/VSE-conforming language product publications:

 VSE Collection, SK2T-0060

Where to Find More Information xxiii

xxiv LE/VSE: Programming Guide

Summary of Changes

This section describes the changes introduced with the current and previous two

editions of this manual.

Changes Introduced with Fifth Edition (March 2005)

These are the most important changes introduced with the fifth edition of this

manual (covering LE/VSE 1.4.4):

v The name VSE/ESA has now changed to z/VSE. However, the names of many

features and programs related to z/VSE remain unchanged (such as IBM

Language Environment for VSE/ESA, IBM COBOL for VSE/ESA, Debug Tool

for VSE/ESA, or CICS Transaction Server for VSE/ESA).

v The existing facility that utilizes VSE/POWER LSTQ to store LE/VSE dumps

(tailored using the sub-options of the TERMTHDACT run-time option), is also

available for LE/VSE batch processing. It can therefore be used optionally for

LE/VSE CICS and batch environments.

v The figures showing CEEDOPT (the IBM-supplied batch installation default

options source program), and CEECOPT (the IBM-supplied CICS installation

default options source program), have been updated to show the use of the

CEELOPT macro. For details, see Figure 14 on page 41 and Figure 15 on page 42.

v A description of the LE/VSE support for the Euro has been introduced. For

details, see “Euro Support” on page 249.

v Callable service CEE5PRM has been changed back to its previous functionality,

so that it can be used with a buffer of length 80 characters. For details, see

“CEE5PRM Callable Service” on page 282.

v Callable service CEE5PRML is new. You can use it to clear a buffer of length 300

characters. For details, see “CEE5PRML Callable Service” on page 282.

v Callable service CEE5TSTG is new. You can use it to test the access that is

available to a specified storage address. For details, see “CEE5TSTG Callable

Service” on page 282.

v Assembler macro support via CEEFETCH and CEERELES now allows reentrant

COBOL routines to be dynamically loaded and deleted. Before z/VSE 3.1, only

PL/I and C FETCHABLE reentrant routines were supported. For details, see

“CEEFETCH Macro— Dynamically Load a Routine that Can Be Later Deleted”

on page 350 and “CEERELES Macro— Dynamically Delete a Routine” on page

353.

Changes Introduced with Fourth Edition (March 2003)

These are the most important changes introduced with the fourth edition (covering

LE/VSE 1.4.3):

v For the CEE5PRM callable service, support is introduced for JCL invocation

strings that are up to 300 characters in length (previously this was only 80

characters). For details, see page 282.

v Assembler macro CEECIB can be used to generate a condition information block

(CIB) mapping. For details see page 345.

© Copyright IBM Corp. 1991, 2005 xxv

v Assembler macro CEEFETCH allows an LE/VSE-conforming assembler routine

to dynamically load another LE/VSE-conforming HLL subroutine. This loaded

LE/VSE-conforming HLL subroutine can then be later deleted using CEERELES.

For details of:

– CEEFETCH see page 350.

– CEERELES see page 353.
v The currently-active version of LE/VSE is checked when the system is initialized

using the CEEPIPI interface. As a result, a new Return Code 12 (“The version of

the CEEXPIT macro used at assembly time is not supported by the version of

LE/VSE that is currently running”) has been added for the CEEPIPI (init_main),

CEEPIPI (init_sub), and CEEPIPI (init_sub_dp) functions. For details, see pages

369, 370, and 371 respectively.

v Calling CEEPIPI with a delete_entry request allows an entry to be deleted from

the PIPI table. The entry is then available for subsequent CEEPIPI(add_entry)

functions. For details, see page 381.

Changes Introduced with Third Edition (December 2001)

These were the most important changes introduced with the third edition (covering

LE/VSE 1.4.1 and 1.4.2):

v LE/VSE’s condition-handling facilities were enhanced by the addition of new

callable services. For details, see page 104.

v The CEEENTRY macro was enhanced to allow:

– The use of multiple base registers and RMODE specification.

– Mulitple execution of CEEENTRY within a single assembly.

For details, see page 341.

v Descriptions of the NAME and NAMEADDR options for the CEELOAD macro were

changed. For details, see page 348.

xxvi LE/VSE: Programming Guide

Part 1. Linking and Running Applications with LE/VSE

Chapter 1. Introduction to LE/VSE 3

Chapter 2. Preparing to Link and Run under

LE/VSE 5

Understanding the Basics 5

Planning to Link and Run 5

Link-Editing Single-Language Applications . . . 6

Link-Editing ILC Applications 6

Checking Which Run-Time Options Are in Effect . . 6

COBOL Considerations 7

COBOL Linking Considerations 7

PL/I Linking Considerations 7

Link-Editing Fetchable Phases 7

Fetching Phases with Different AMODEs 8

C AMODE/RMODE Considerations 9

Chapter 3. Prelinking an Application 11

Which Programs Need to Be Prelinked 11

What the Prelinker Does 11

Prelinking Process 11

Using the Prelinker Automatic Library Call . . . 12

LE/VSE Prelinker Map 13

Control Statement Processing 15

INCLUDE Control Statement 15

LIBRARY Control Statement 16

RENAME Control Statement 16

Usage Notes 17

Mapping L-Names to S-Names 18

Running the Prelinker 19

Prelinker Options 19

Chapter 4. Linking and Running 21

Basic Linking and Running 21

Linking and Running an Existing Object Module 21

Overriding the Default Run-Time Options . . . 21

Providing Input to the Linkage Editor 22

Writing JCL for the Linkage Editor 23

Specifying the Files Used by the Linkage

Editor 23

Specifying Linkage Editor Control Statements 24

Using the EXEC Statement 25

Using the PARM Parameter for the Linkage

Editor 25

Example of Linkage Editor JCL 25

Link-Editing Multiple Object Modules 26

Using the INCLUDE Statement 26

Linkage Editor Module Map 26

Detecting Link-Edit Errors 28

Running an Application 29

Specifying the Search Order 29

Specifying Run-Time Options 30

Specifying Run-Time Options in the EXEC

Statement 30

Using the iconv Utility for C 31

Using the genxlt Utility for C 31

Chapter 5. Using Run-Time Options 33

Understanding the Basics 33

Specifying Run-time Options 35

Order of Precedence 37

Specifying Suboptions in Run-Time Options . . 38

Specifying Run-Time Options and Program

Arguments 38

C Compatibility Considerations 39

COBOL Compatibility Considerations 39

PL/I Compatibility Considerations 39

CEEXOPT Invocation Syntax 40

Notes on CEEXOPT Invocation 44

Performance Considerations 45

Printing CICS-Wide Run-Time Options to

Console 45

This section explains how to prelink, link, and run applications in LE/VSE.

Prelinking, linking, and running commands, as well as an overview of run-time

options, are included.

If you have an application that contains interlanguage calls, you might need to

relink it to take advantage of the improved LE/VSE ILC support. See LE/VSE

Writing Interlanguage Communication Applications for more information.

© Copyright IBM Corp. 1991, 2005 1

2 LE/VSE: Programming Guide

Chapter 1. Introduction to LE/VSE

LE/VSE provides a single run-time environment

1 for applications written in

LE/VSE-conforming versions of the C, COBOL, and PL/I HLLs, and for many

applications written in previous versions of COBOL. (For a list of

LE/VSE-conforming languages, and a description of compatibility with previous

versions of COBOL, see “LE/VSE-Conforming Languages” on page xvi.) LE/VSE

also supports applications written in assembler language using LE/VSE-provided

macros and assembled using HLASM.

Note!

The IBM DOS/VS RPG II programming language is not a Language

Environment-conforming language. You can therefore not use RPG II directly

with other Language Environment-conforming languages that support ILC

calls.

 Prior to LE/VSE, each of the HLLs had to provide a separate run-time

environment. With LE/VSE, routines call one another within one common run-time

environment, regardless of the LE/VSE-conforming HLL they are written in.

Routines follow common calling conventions that standardize the way routines call

one another and make interlanguage communication (ILC) in mixed-language

applications easier, more efficient, and more consistent.

LE/VSE also combines essential and commonly used run-time services, such as

routines for run-time message handling, condition handling, storage management,

date and time services, and math functions, and makes them available through a

set of interfaces that are consistent across programming languages. With LE/VSE,

you can use one run-time environment for your applications, regardless of the

application’s programming language or system resource needs because most

system dependencies have been removed.

Services that work with only one language are also available within

language-specific portions of LE/VSE.

LE/VSE consists of:

v Basic routines that support starting and stopping programs, allocating storage,

communicating with programs written in different languages, and indicating

and handling error conditions.

v Common library services, such as math services and date and time services, that

are commonly needed by programs running on the system. These functions are

supported through a library of callable services.

v Language-specific portions of the common run-time library.

Figure 1 on page 4 shows the separate components that make up LE/VSE.

1. Terms that might be unfamiliar to you are highlighted (like run-time environment) the first time they appear. These terms are

defined in the “Language Environment Glossary” on page 417.

© Copyright IBM Corp. 1991, 2005 3

Figure 2 illustrates the common environment that LE/VSE creates.

 For a complete list of operating systems and subsystems supported by LE/VSE,

see Chapter 21, “Compatibility with Other Products,” on page 295.

Figure 1. Components of LE/VSE

Figure 2. LE/VSE’s Common Run-Time Environment

4 LE/VSE: Programming Guide

Chapter 2. Preparing to Link and Run under LE/VSE

This chapter discusses what you need to know before linking and running

applications under LE/VSE. After LE/VSE is installed on your system, you should

run an existing application in the LE/VSE run-time environment. Although you

need to link to different libraries under LE/VSE, the procedure is similar to that

used in pre-LE/VSE versions of C, COBOL, and PL/I. To help you get started, this

chapter describes the following common initial link and run tasks, which you

might want to try before reading further:

v Linking and running an existing object module and accepting the default

LE/VSE run-time options

v Linking and running an existing object module and specifying new LE/VSE

run-time options

v Calling an LE/VSE service

These are basic tasks intended to help give you an idea of what running an

application under LE/VSE is like. They are not intended to illustrate every aspect

of linking and running you might want to learn. Detailed instructions about

linking and running existing and new applications are provided in Chapter 4,

“Linking and Running,” on page 21 and z/VSE System Control Statements

Understanding the Basics

LE/VSE library routines are divided into two categories: resident routines and

dynamic routines. The resident routines are linked with the application and include

such things as initialization/termination routines and pointers to callable services.

The dynamic routines are not part of the application and are dynamically loaded

during run time. For more information, see LE/VSE Customization Guide.

The way LE/VSE code is packaged keeps the size of application phases small.

When maintaining dynamic library code, you need not relink-edit the application

code except under special circumstances, such as when you use an earlier version

of code.

The linkage editor converts an object module into an executable phase and stores it

in a VSE Librarian sublibrary. The phase becomes a permanent member of the

sublibrary and can be run at any time, either in the job that created it, or in any

other job.

Input to the linkage editor consists of object modules and control statements that

specify how the input is to be processed. The output from the linkage editor can be

a single phase or multiple phases (using the PHASE linkage editor control

statement).

Planning to Link and Run

Before linking and running applications, you need to determine the name of the

sublibrary or sublibraries where LE/VSE routines are located. If LE/VSE has been

installed in the default sublibraries, all resident LE/VSE routines and dynamic

LE/VSE routines are located in the PRD2.SCEEBASE sublibrary.

© Copyright IBM Corp. 1991, 2005 5

Link-Editing Single-Language Applications

The entry point for an application is determined in one of two ways:

v The order of the routines presented to the linkage editor

v Explicit specification of the entry point by a linkage editor control statement

Table 8 identifies the default entry points for LE/VSE-conforming HLLs. The main

routine entry point in an application is nominated by the END text record in the

object deck produced by the compiler.

 Table 8. Link-Edit Default Entry Point by Language

Language Default Entry Point

C CEESTART

COBOL The name of the first object module presented to the linkage editor

PL/I CEESTART

A copy of CEESTART resides in the LE/VSE library. Do not explicitly include it in

a link-edit of your object modules, even for LE/VSE-enabled languages. The

compilers generate CEESTART when necessary.

You must link applications before you run them.

Link-Editing ILC Applications

When mixing languages within an application, present the desired main routine to

the linkage editor first to nominate it as a main routine. You can specify only one

main routine.

Note: To get LE/VSE’s ILC support in using pre-LE/VSE ILC applications, you

must:

v Recompile any C programs with the C/VSE compiler

v Recompile any PL/I programs with the PL/I VSE compiler

v Recompile any DOS/VS COBOL programs with the COBOL/VSE compiler

v Link-edit these applications to replace old HLL library routines with new

LE/VSE-conforming routines

Note!

The RPG programming language is not a Language Environment-conforming

language. You can therefore not use RPG directly with other Language

Environment-conforming languages that support ILC calls.

 For more information, see LE/VSE Writing Interlanguage Communication Applications

and the migration guide for your primary HLL. (Refer to “Where to Find More

Information” on page xxi for information on the various migration guides).

Checking Which Run-Time Options Are in Effect

Using the LE/VSE run-time option RPTOPTS, you can control whether a report is

produced; with the LE/VSE run-time option MSGFILE, you can control where

report output is directed. RPTOPTS generates a report of all the run-time options

that are in effect when your application begins to run. The IBM-supplied default

6 LE/VSE: Programming Guide

for RPTOPTS is OFF, meaning a report is not generated when your application

finishes running. If you override the default setting of RPTOPTS, a report is sent to

the default report destination, SYSLST.

If you want to change the options report destination, you can alter the default

setting of the MSGFILE run-time option, which specifies where all run-time

diagnostics and messages are written. For example, if you specify

MSGFILE(OPTRPRT), the storage report is written to a file whose filename is

OPTRPRT. Note that you need to provide JCL for OPTRPRT at run time.

For the syntax of RPTOPTS and MSGFILE, see LE/VSE Programming Reference

COBOL Considerations

The following discussion pertains to LE/VSE resident routines for callable services.

For COBOL CALL literal statements, the compiler allows you to specify whether

your program uses static or dynamic calls to LE/VSE callable services (or other

subroutines):

v When a COBOL program makes a static call to an LE/VSE callable service, the

LE/VSE resident routine (or callable service stub) is link-edited with the

program.

v When a COBOL program makes a dynamic call to an LE/VSE callable service,

the LE/VSE resident routine is not link-edited with the program.

With the exception of certain LE/VSE date and time callable services that can be

dynamically called from VS COBOL II programs (see LE/VSE Programming

Reference), only COBOL programs compiled with the COBOL/VSE compiler can

call LE/VSE callable services. COBOL CALL identifier statements are always

dynamic calls.

For more information about COBOL static and dynamic calls, see IBM COBOL for

VSE/ESA Programming Guide

COBOL Linking Considerations

If you relink-edit a VS COBOL II NORES program with LE/VSE, you should code

a linkage editor INCLUDE statement for IGZENRI prior to the link-edit step. This

will ensure the correct versions of the library routines are included. If you do not

include IGZENRI, the link-edited phase will be unnecessarily large and the linkage

editor will produce messages such as the following indicating duplicate sections:

2139I DUPLICATE SECTION DEFINITION: IGZCDSP . ***** SECTION IGNORED

PL/I Linking Considerations

This section discusses what you need to know if you link in PL/I.

Link-Editing Fetchable Phases

The PL/I FETCH statement dynamically loads a separate phase that can be

subsequently invoked from the PL/I procedure that fetches the phase, and the

PL/I RELEASE statement deletes the phase. There are some restrictions on the

PL/I statements that can be used in fetched procedures. These are described in

IBM PL/I for VSE/ESA Language Reference

Chapter 2. Preparing to Link and Run under LE/VSE 7

Fetchable (or dynamically loaded) phases should be link-edited into a sublibrary

that is subsequently made available as a search sublibrary by means of a LIBDEF

PHASE,SEARCH statement.

The job that link-edits a fetchable phase into a sublibrary requires the following

linkage editor control statements:

v An ENTRY statement to define the entry point into the PL/I procedure.

v A PHASE statement to define the name used for the fetchable phase. This

statement is required if the NAME compile-time option is not used.

The name by which the fetchable phase is identified in the phase sublibrary

must appear in a FETCH or RELEASE statement within the scope of the

invoking procedure.

Figure 3 illustrates these statements by showing a job that includes both the

compilation and the link-editing of the fetchable PL/I phase.

 LE/VSE-conforming COBOL or C phases can be loaded dynamically by the PL/I

FETCH statement.

Fetching Phases with Different AMODEs

LE/VSE supports the PL/I FETCH/RELEASE facility. No special considerations

apply to this support when both the fetching phase and the fetched phases have

the AMODE(ANY) attribute or both have the AMODE(24) attribute.

LE/VSE also supports the fetching of a phase that has a different AMODE

attribute than the phase issuing the FETCH instruction. LE/VSE performs the

AMODE switches in this case, and the following constraints apply:

v If any fetched phase is to execute in 24-bit addressing mode, the fetching phase

must be loaded into storage below 16MB, and therefore must have the

RMODE(24) attribute regardless of its AMODE attribute.

v Any variables passed as parameters to a fetched procedure must be addressable

in the AMODE of the fetched procedure. For any fetched phase that is to be

executed in 24-bit addressing mode, you must ensure that:

// JOB jobname

// DLBL IJSYSLN,’%LEVSE.WORKFILE.IJSYSLN’,0,VSAM,RECSIZE=322, X

 RECORDS=(400,600)

// DLBL IJSYS01,’%LEVSE.WORKFILE.IJSYS01’,0,VSAM,RECSIZE=4096, X

 RECORDS=(50,100),DISP=(NEW,KEEP)

// LIBDEF OBJ,SEARCH=(userlib.sublib,lelib.sublib)

// LIBDEF PHASE,CATALOG=userlib.sublib

// OPTION CATAL

 PHASE FETCH1,*

// EXEC IEL1AA

 .

 .

 .

 PL/I source(fetchable)

 .

 .

 .

/*

 ENTRY procedure-name

// EXEC LNKEDT

/*

/&

Figure 3. Example of Link-Editing a Fetchable Phase

8 LE/VSE: Programming Guide

– If any parameter resides in a HEAP area, the BELOW suboption of the HEAP

option is specified.

– If any parameter resides in STATIC storage of the fetching phase, the fetching

phase has the RMODE(24) attribute so that its STATIC storage is below 16MB.

– If any parameter resides in AUTOMATIC storage, no special considerations

apply. If the first two constraints cause problems, then you can copy the

variable to a like variable with the AUTOMATIC attribute and pass the copy

to the fetched AMODE(24) procedure, with the BELOW suboption of the

HEAP option specified.

When a PL/I procedure fetches another PL/I procedure, it is possible for a

condition to arise in the fetched procedure for which a PL/I ON-unit was

established in the fetching procedure.

PL/I imposes the restriction that if an ON-unit is established while the current

addressing mode is 24-bit, and the condition is raised while the addressing mode

is 31-bit, the ON-unit is not invoked. This is because PL/I must invoke the

ON-unit in the addressing mode in which it was established. If the ON-unit was

established in 24-bit addressing mode but the condition arose in 31-bit addressing

mode, the code and data required to process the error might not even be

addressable in 24-bit addressing mode.

C AMODE/RMODE Considerations

The C run-time library must be addressed in 31-bit addressing mode. Therefore,

phases containing C modules must have AMODE=31.

The following table shows valid AMODE and RMODE combinations when your

application contains C modules.

 Product RMODE AMODE Notes

C only 24 or ANY 31 All programs must use the same

AMODE and RMODE combination.

C with COBOL 24 or ANY 31 For VS COBOL II, all COBOL

programs must be compiled with the

RES and RENT compiler options,

which causes AMODE=31. For

COBOL/VSE, all COBOL programs

must be compiled with the

RMODE(ANY) compiler option.

C with PL/I 24 or ANY 31 All programs must use the same

AMODE and RMODE combination.

C with CICS ANY 31 All programs must use this AMODE

and RMODE combination.

C with DL/I 24 or ANY 31 All programs must use the same

AMODE and RMODE combination.

C with DB2 24 or ANY 31 All programs must use this AMODE

and RMODE combination.

For information on AMODE switching, see LE/VSE C Run-Time Library Reference or

LE/VSE C Run-Time Programming Guide

Chapter 2. Preparing to Link and Run under LE/VSE 9

10 LE/VSE: Programming Guide

Chapter 3. Prelinking an Application

This chapter describes how to prelink your programs under LE/VSE. The LE/VSE

prelinker performs mapping of names, manages writable static areas, collects

initialization information, and combines the object modules that form an

application into a single object module that can be link-edited for execution.

Which Programs Need to Be Prelinked

You need to prelink C programs compiled with either

v RENT

v LONGNAME

When prelinking, you do not need to include object modules that do not refer to

writable static (produced by the RENT compiler option) and do not contain

L-names (longnames produced by the LONGNAME compiler option). You could,

however, get prelinker warning messages about unresolved references. Any

unresolved references will be resolved in the following link-edit step.

When prelinking and link-editing a phase that contains both object modules that

need to be prelinked and object modules that do not need to be prelinked, all

object modules that require prelinking must be prelinked into a single object

module before being link-edited with the object modules that do not require

prelinking.

What the Prelinker Does

The prelinker performs the following functions:

v Collects information for run-time initialization, including data initialization for C

v For C object modules compiled with RENT, the prelinker:

– Combines writable static initialization information

– Assigns relative offsets to objects in writable static storage

– Removes writable static name and relocation information
v For programs containing L-names, the prelinker maps L-names to S-names on

output (L-names are mixed-case external names, of up to 255 characters in

length, emitted by the compiler when compiling with the LONGNAME option;

S-names are eight character, single-case external names, emitted by the compiler

when compiling with the NOLONGNAME option)

Prelinking Process

Input to the prelinker includes the following:

v Primary input:

– Control statements and object modules read from SYSIPT

– Object modules and linkage editor control statements read from SYSLNK

– Input specified in one or more INCLUDE or LIBRARY control statements

processed as primary input
The prelinker first reads all input from SYSIPT and then reads input from

SYSLNK. Input from SYSIPT must be terminated with a /* statement. When

reading input from SYSLNK, the prelinker interprets any linkage editor

INCLUDE control statements it reads as prelinker INCLUDE control statements,

© Copyright IBM Corp. 1991, 2005 11

and attempts to resolve them as describe below. All other linkage editor control

statements read from SYSLNK are passed to the linkage editor unchanged.

v Secondary input:

– Object modules read from VSE librarian sublibraries by automatic library call

– Input specified in one or more INCLUDE or LIBRARY control statements

processed as secondary input

The prelinker attempts to resolve each INCLUDE or LIBRARY control statement by

reading the named object module from the specified VSE librarian sublibrary or

the specified sequential file. The request is resolved if the read is successful.

After the prelinker processes all its input, it writes the prelinked output object

module to SYSLNK or SYSPCH, depending on the prelinker options specified. The

resultant prelinked object module can then be link-edited.

Using the Prelinker Automatic Library Call

If the prelinker AUTO option is in effect, the prelinker automatic library call is

used to resolve referenced and currently undefined symbols (also known as

unresolved external references). An undefined symbol becomes a defined symbol if

it is contained in the input from the automatic library call process, or from some

subsequent input.

If the undefined symbol is an S-name, for example SNAME, the VSE librarian

sublibraries in the object search chain (specified using the LIBDEF JCL statement)

are searched for the member with the same name as the undefined S-name. If the

symbol is not the name of an existing VSE librarian member, the symbol can

subsequently be defined if a function or variable with the same name is

encountered. Unresolved requests generate error or warning messages in the

prelinker map.

If the symbol is an L-name that was not resolved by automatic library call and for

which a RENAME statement with the SEARCH option is specified, the symbol is

resolved under the S-name on the RENAME statement by automatic library call.

See “RENAME Control Statement” on page 16 for a complete description of the

RENAME control statement.

Writable static references that are not resolved by the prelinker cannot be resolved

later. Only the prelinker can be used to resolve writable static. The output object

module of the prelinker should not be used as input to another prelink.

12 LE/VSE: Programming Guide

LE/VSE Prelinker Map

The LE/VSE prelinker produces a listing file called the prelinker map when you

use the MAP prelinker option (which is the default). The prelinker map contains

several individual sections that are only generated if they are applicable.

==

| PRELINKER MAP �1� |

| |

| CPLINK: 5686094 V1 R4 M00 IBM LE/VSE 1996/12/13 12:15:12 |

==

COMMAND OPTIONS. : AUTO NOMEMORY ER DUP MAP

 : NODECK OBJECT NONAME NOUPCASE

==

| OBJECT RESOLUTION WARNINGS �2� |

==

WARNING EDC4015: UNRESOLVED REFERENCES ARE DETECTED:

get_caller

==

| FILE MAP �3� |

==

*ORIGIN FILE ID FILE NAME

 P 00001 DD:SYSLNK

 PI 00002 DD:SYSLIB(GETCALL.OBJ)

 A 00003 DD:SYSLIB(CEEBETBL.OBJ)

 A 00004 DD:SYSLIB(CEEROOTA.OBJ)

 A 00005 DD:SYSLIB(CEESG003.OBJ)

 A 00006 DD:SYSLIB(EDCINPL.OBJ)

 A 00007 DD:SYSLIB(CEEBINT.OBJ)

 A 00008 DD:SYSLIB(CEEBLLST.OBJ)

 A 00009 DD:SYSLIB(CEEBTRM.OBJ)

 A 00010 DD:SYSLIB(CEEBPUBT.OBJ)

 SI 00011 DD:SYSLIB(CEEBPIRA.OBJ)

 A 00012 DD:SYSLIB(CEEARLU.OBJ)

 R 00013 DD:SYSLIB(SUBPRLK.OBJ)

 L 00014 DD:SYSLIB(PRINTF.OBJ)

*ORIGIN: P=PRIMARY INPUT PI=PRIMARY INCLUDE SI=SECONDARY INCLUDE

 A=AUTOMATIC CALL R=RENAME CARD L=C LIBRARY

 IN=INTERNAL

==

| WRITABLE STATIC MAP �4� |

==

 OFFSET LENGTH FILE ID INPUT NAME

 0 4 00001 this_int_is_in_writable_static

 8 C 00001 @STATIC

Figure 4. Prelinker Map (Part 1 of 2)

Chapter 3. Prelinking an Application 13

The numbers in the following text correspond to the numbers shown in the map.

�1� Heading

The heading is always generated and contains the product number, the

library release number, the library version number, the date and the time

the prelink step began, followed by a list of the prelinker options in effect

for the step.

�2� Object Resolution Warnings

This section is generated if objects remained undefined at the end of the

prelink step or if duplicate objects were detected during the step. The

names of the applicable objects are listed.

�3� File Map

This section lists the object modules that were included in input. An object

module consisting only of RENAME control statements, for example, is not

shown. Also provided in this section are object module origin (*ORIGIN),

identifier (FILE ID), and name (FILE NAME) information. *ORIGIN indicates

the reason the object module was included:

v The object module was read from SYSIPT or SYSLNK

==

| ESD MAP OF DEFINED AND LONG NAMES �5� |

==

 OUTPUT

*REASON FILE ID ESD NAME INPUT NAME

 P 00001 CEESTART CEESTART

 P 00001 CEEMAIN CEEMAIN

 00003 CEEBETBL CEEBETBL

 00004 CEEROOTA CEEROOTA

 D 00001 MAIN main

 D 00001 GET@DATE get_date

 D 00001 GET@NAME get_name

 P 00005 CEESG003 CEESG003

 R 00013 SUBPRLK get_year

 L 00014 PRINTF printf

 D GET@CALL get_caller

 D 00001 THIS@INT this_int_is_not_in_writable_static

 D 00001 @ST00002 Name_Collision_In_First_8

 D 00001 @ST00001 Name_Collision_In_First_Eight

 P 00006 EDCINPL EDCINPL

 D 00002 GETCALLE getcaller

 00007 CEEBINT CEEBINT

 00008 CEEBLLST CEEBLLST

 00009 CEEBTRM CEEBTRM

 00010 CEEBPUBT CEEBPUBT

 00011 CEEINT CEEINT

 00012 CEEARLU CEEARLU

 00008 CEELLIST CEELLIST

 00011 CEEBPIRA CEEBPIRA

 00011 CEEBPIRB CEEBPIRB

 00011 CEEBPIRC CEEBPIRC

 00011 CEECPYRT CEECPYRT

 00014 PRINTF PRINTF

*REASON: P=#PRAGMA OR RESERVED S=MATCHES SHORT NAME R=RENAME CARD

 L=C LIBRARY U=UPCASE OPTION D=DEFAULT

=========== E N D O F P R E - L I N K A G E M A P ============

Figure 4. Prelinker Map (Part 2 of 2)

14 LE/VSE: Programming Guide

v An INCLUDE control statement in primary or secondary input

v A RENAME control statement

v Resolution of library references by automatic library call

v The object module was internal and self-generated by the prelink step

The FILE ID can be found in other sections and is used as a cross-reference

to the object module.

 The FILE NAME can be either the member name, the VSE librarian

sublibrary and member names, or the sequential file filename.

�4� Writable Static Map

This section is generated if an object module was encountered that contains

defined static external data. This section lists the name of each symbol, the

length, the relative offset within the writable static area, and a FILE ID for

the file containing the symbol’s definition.

�5� ESD Map of Defined and Long names

This section lists the names of external symbols that are not in writable

static. It also shows a mapping of input L-names to output S-names.

 If the object is defined, the FILE ID indicates the file that contains the

definition. Otherwise, this field is left blank. For any name, the input name

and output S-name are listed. If the input name is an L-name, the rule

used to map the L-name to the S-name is applied. If the name is not an

L-name, this field is left blank.

Control Statement Processing

The only job control statements processed by the prelinker are INCLUDE,

LIBRARY, and RENAME. The remaining control statements are left unchanged

until the link step.

Note: If you cannot fit all of the information on one control statement, you can use

one or more continuations. The L-name, for example, can be split across

more than one statement. Continuations are enabled by placing a nonblank

character in column 72 of the statement that is to be continued. They must

begin in column 16 of the next statement.

INCLUDE Control Statement

The INCLUDE control statement indicates that an object module or further control

statements are to be included for processing by the prelinker. The INCLUDE

control statement has the following syntax:

Syntax

55

INCLUDE

>

 ,

member-name

filename()

lib.sublib(member-name)

5=

member-name

The name of the object module to be included. The object module must be a

member in a VSE librarian sublibrary. If the sublibrary is not specifically

Chapter 3. Prelinking an Application 15

identified by lib.sublib, the sublibrary must be included in the object search

chain as defined by the LIBDEF JCL statement.

filename

The filename of a sequential disk or tape file containing the object module to

be included. The filename must match a filename used in a DLBL or TLBL JCL

statement. The sequential file must be fixed-length unblocked 80 character

records.

lib.sublib

The name of a VSE librarian sublibrary containing the object module to be

included.

 Duplicate INCLUDE statements are ignored.

LIBRARY Control Statement

The LIBRARY control statement is used to specify the names of additional VSE

librarian sublibraries to be searched by automatic library call processing, or the

names of external references that are not to be resolved by automatic library call

processing. The LIBRARY control statement has the following syntax:

Syntax

55

LIBRARY

>

>

>

 ,

,

lib.sublib

(

)

member

,

(

extrn

)

5=

lib.sublib

The name of a VSE librarian sublibrary.

member

The member name of an object module in the specified sublibrary. Only

S-names can be specified, and the name must match the name of the

unresolved external reference. If an L-name is specified, the external reference

will not be resolved from the specified sublibrary. No warning will be issued.

 Automatic library calls search for the specified member in the specified

sublibrary instead of the sublibraries in the object search chain.

extrn

An external reference that could be unresolved after primary input processing.

This external reference will not be resolved by an automatic library call. Only

S-names can be specified. If an L-name is specified, the prelinker will still

attempt to resolve the external reference. No warning will be issued.

 The LIBRARY control statement is removed and not placed in the prelinker output

object module; the linkage editor does not see the LIBRARY control statement.

RENAME Control Statement

The RENAME control statement has the following syntax:

16 LE/VSE: Programming Guide

Syntax

55 RENAME L-name S-name

SEARCH
 5=

L-name

The name of the input L-name to be renamed on output. All occurrences of

this L-name are renamed.

S-name

The name of the output S-name to which the L-name will be changed. This

name can be at most 8 characters and case is respected.

SEARCH

An optional parameter specifying that if the S-name is undefined, the prelinker

searches by an automatic library call for the definition of the S-name.

 The RENAME control statement is processed by the prelinker and can be used for

several purposes:

v To explicitly override the default name given to an L-name when an L-name is

mapped to an S-name.

You can explicitly control the names presented to the system linkage editor so

that external variable and function names are consistent from one linkage editor

run to the next. This consistency makes it easier to recognize control section and

label names that appear in system dumps and linkage editor listings. Another

mapping rule (described in “Mapping L-Names to S-Names” on page 18) can

provide the suitable name, but if you need to replace the linkage editor control

section, you need to maintain consistent names.

v To explicitly bind an L-name to an S-name. This binding might be necessary

when communicating with objects from other language and assembler

processors, because these processors generate only S-names.

v A RENAME control statement cannot be used to rename a writable static object

because its name is not contained in the output from the prelinker.

RENAME control statements can be placed before, between, or after other control

statements or object modules. An object module can contain only RENAME

statements. Also, RENAME statements can be placed in input that is included

because of other RENAME statements.

Usage Notes

v A RENAME statement is ignored if the L-name is not encountered in the input.

v A RENAME statement for an L-name is valid provided all of the following are

true:

– The L-name was not already mapped because of a rule that preceded the

RENAME statement rule in the hierarchy described in “Mapping L-Names to

S-Names” on page 18.

– The L-name was not already mapped because of a previous valid RENAME

statement for the L-name.

– The S-name is not itself an L-name. This rule holds true even if the S-name

has its own RENAME statement.

Chapter 3. Prelinking an Application 17

– A previous valid RENAME statement did not rename another L-name to the

same S-name.

– Either the L-name or the S-name is not defined. Either the L-name or the

S-name can be defined, but not both. This rule holds true even if the S-name

has its own RENAME statement.

Mapping L-Names to S-Names

The output object module of the prelinker can be used as input to the system

linkage editor.

Because the system linkage editor accepts only S-names, the LE/VSE prelinker

maps L-names to S-names on output. S-names are not changed. L-names can be up

to 255 characters in length; truncation of the L-names to the 8-character S-name

limit is therefore not sufficient because collisions can occur.

The LE/VSE prelinker maps a given L-name to an S-name according to the

following hierarchy:

1. If any occurrence of the L-name is a reserved run-time name, or was caused by

a #pragma map or #pragma CSECT directive, then that same name is chosen for all

occurrences of the name. This name must not be changed, even if a RENAME

control statement for the name exists. For information on the RENAME control

statement, see “RENAME Control Statement” on page 16.

2. If the L-name was found to have a corresponding S-name, the same name is

chosen. For example, DOTOTALS is coded in both a C and assembler program.

This name must not be changed, even if a RENAME statement for the name

exists. This rule binds the L-name to its S-name.

3. If a valid RENAME statement for the L-name is present, the S-name specified

on the RENAME statement is chosen.

4. If the name corresponds to an LE/VSE function or library object for which you

did not supply a replacement, the name chosen is the truncated, uppercased

version of the L-name library name (with _ mapped to @).

The S-name is not chosen, if either:

v A valid RENAME statement renames another L-name to this S-name. For

example, the RENAME statement RENAME mybigname PRINTF would make the

library printf() function unavailable if mybigname is found in input.

v Another L-name is found to have the same name as the S-name. For

example, explicitly coding and referencing SPRINTF in the C source program

would make the library sprintf() function unavailable.
Avoid such practices to ensure that the appropriate LE/VSE function is chosen.

5. If the UPCASE option is specified, names that are 8 characters or fewer are

changed to uppercase (with _ mapped to @). Names that begin with IBM or CEE

will be changed to IB$, and CE$, respectively. Because of this rule, two different

names can map to the same name. You should therefore use the UPCASE

option carefully. A warning message is issued if a collision is found, but the

names are still mapped.

6. If none of the above rules apply, a default mapping is performed. This

mapping is the same as the one the compiler option NOLONGNAME uses for

external names, taking collisions into account. That is, the name is truncated to

8 characters and changed to uppercase (with _ mapped to @). Names that begin

with IBM or CEE will be changed to IB$ and CE$, respectively. If this name is the

same as the original name, it is always chosen. This name is also chosen if a

name collision does not occur. A name collision occurs if either

18 LE/VSE: Programming Guide

v The S-name has already been seen in any input, that is, the name is not new.

v After applying this default mapping, the same name is generated for at least

two, previously unmapped, names.
If a collision occurs, a unique name is generated for the output name. For

example, the name @ST00033 is manufactured.

A program that is compiled with the NOLONGNAME compiler option and

link-edited, except for collisions, presents the linkage editor with the same names

as when the program is compiled with the LONGNAME option and processed by

the prelinker.

Running the Prelinker

The following is sample JCL to run the prelinker.

 The prelinker is actually an LE/VSE-conforming C program, and requires LE/VSE

to run. If you want to specify LE/VSE run-time options when invoking the

prelinker, you should code an EXEC statement in the format shown below:

// EXEC EDCPRLK,SIZE=EDCPRLK,PARM=’run-time options/prelinker options’

For more information about specifying LE/VSE run-time options in the EXEC

statement, see “Specifying Run-Time Options in the EXEC Statement” on page 30.

Prelinker Options

The following table describes the LE/VSE prelinker options.

 Table 9. Prelinker Options

Option Description

AUTO|NOAUTO AUTO specifies that the prelinker should try to resolve unresolved short name

references by searching all sublibraries in the object search chain for OBJ files of the

same name.

DECK|NODECK DECK specifies that the prelinker is to write the prelinked object module to SYSPCH.

The DECK option is specified using the JCL OPTION statement. This option cannot be

specified in the PARM parameter of the JCL EXEC statement.

// JOB PRELINK

// LIBDEF PHASE,CATALOG=(USER.SUBLIB)

// LIBDEF OBJ,SEARCH=(USER.SUBLIB,PRD2.SCEEBASE)

// DLBL IJSYSLN,’%LEVSE.WORKFILE.IJSYSLN’,0,VSAM,RECSIZE=322, X

 RECORDS=(400,600)

// OPTION CATAL

 ACTION MAP

 PHASE PROGRAM1,* ...
compilation step ...
 INCLUDE GETCALL

// EXEC EDCPRLK,SIZE=EDCPRLK,PARM=’prelinker options’

 RENAME get_year SUBPRLK SEARCH

/*

// EXEC LNKEDT

/&

Figure 5. JCL for Prelinking a C Program

Chapter 3. Prelinking an Application 19

Table 9. Prelinker Options (continued)

Option Description

DUP|NODUP DUP specifies that if duplicate symbols are detected, the symbol names should be

directed to stdout, and the return code minimally set to a warning level of 4. NODUP

does not affect the return code setting when duplicates are detected.

ER|NOER ER specifies that if there are unresolved references, a message and list of unresolved

symbols are written as part of the prelinker map. For unresolved references, the return

code is minimally set to warning level 4. For unresolved writable static references, the

return code is minimally set to error level 8.

NOER specifies that a list of unresolved symbols is not written as part of the prelinker

map. For unresolved references, the return code is unaffected. For unresolved writable

static references, the return code is minimally set to warning level 4.

MAP|NOMAP The MAP option specifies that the prelinker should generate a prelink listing. See

“LE/VSE Prelinker Map” on page 13 for a description of the map.

MEMORY|NOMEMORY The MEMORY option specifies that the prelinker will buffer (retain in storage), for the

duration of the prelink step, those object modules that are read and processed.

The MEMORY option is used to increase prelinker speed. To use this option, however,

you might require additional memory. If you use this option and the prelink fails due

to a storage error, you must increase your storage size or use the prelinker without the

MEMORY option.

NAME(name)|NONAME NAME is used to generate a linkage editor PHASE statement or a VSE librarian

CATALOG statement.

When the NAME option is specified in conjunction with the OBJECT option, the

prelinker writes a linkage editor PHASE statement to SYSLNK for input to the linkage

editor. The format of the PHASE statement is: is as follows:

 PHASE name,*

When the NAME option is specified in conjunction with the DECK option, the

prelinker writes a VSE librarian CATALOG statement to SYSPCH. This can be used as

input to the librarian to catalog the object code in a VSE librarian sublibrary. The

format of the CATALOG statement is:

 CATALOG name.OBJ REPLACE=YES

OBJECT|NOOBJECT OBJECT specifies that the prelinker is to write the prelinked object module to SYSLNK

for input to the linkage editor. The OBJECT option is specified using the LINK or

CATAL options of the JCL OPTION statement. This option cannot be specified in the

PARM parameter of the JCL EXEC statement.

UPCASE|NOUPCASE The UPCASE option enforces the uppercase mapping of those L-names that are 8

characters or fewer and have not been explicitly mapped by another mechanism. These

L-names will be uppercased (with _ mapped to @), and names that begin with IBM or

CEE will be changed to IB$ and CE$, respectively.

The UPCASE option is useful when calling routines written in languages other than C.

For example, COBOL and assembler each uppercase all of their external names. So, if

the names are coded in lowercase in the C program and the LONGNAME option is

used, the names will not match by default. The UPCASE option can be used to enforce

this matching. The RENAME control statement can also be used for this purpose.

20 LE/VSE: Programming Guide

Chapter 4. Linking and Running

You process an application by submitting batch jobs to the VSE operating system.

A job might consist of one or more of the following job steps:

v Compiling a program

v Link-editing an application

v Running an application

The following section provides an overview of link-editing and running

LE/VSE-conforming applications. For detailed information about link-editing, refer

to z/VSE System Control Statements For information about the LE/VSE prelinker, see

Chapter 3, “Prelinking an Application,” on page 11.

Basic Linking and Running

This section describes how to accept the default LE/VSE run-time options, and

how to override the default LE/VSE run-time options using your JCL.

Linking and Running an Existing Object Module

To run an existing object module and accept all of the default LE/VSE run-time

options, use the following sample JCL.

Overriding the Default Run-Time Options

In the following example, an object module called MYPROG is link-edited and run.

The JCL in the example overrides the LE/VSE defaults for the RPTOPTS and

MSGFILE run-time options.

// JOB jobname

// DLBL IJSYSLN,’%LEVSE.WORKFILE.IJSYSLN’,0,VSAM,RECSIZE=322, X

 RECORDS=(400,600)

// LIBDEF OBJ,SEARCH=(userlib.sublib,lelib.sublib)

// LIBDEF PHASE,SEARCH=(lelib.sublib)

// OPTION LINK

 INCLUDE objmod

// EXEC LNKEDT

// EXEC

/*

/&

Figure 6. Accepting the Default Run-Time Options

© Copyright IBM Corp. 1991, 2005 21

The trailing slash after the run-time options is required when MYPROG is a C or

PL/I program. It is used to terminate the run-time options and separate them from

any program arguments that follow. However, when MYPROG is a COBOL

program, LE/VSE, by default, expects program arguments to be specified before

run-time options. In this case, you need to code the slash before the run-time

options. Alternatively, you can use the CBLOPTS run-time option to change the

order in which LE/VSE expects program arguments and run-time options to be

specified. Therefore, when MYPROG is a COBOL/VSE program, you need either

to specify the CBLOPTS(OFF) run-time option at installation (see LE/VSE

Customization Guide), or code the following:

Note: When running under CICS, DL/I, or DB2, you cannot override default

LE/VSE run-time options using your JCL. You need to assemble an

application defaults module, CEEUOPT, and link-edit it with your

application. For more information, see Chapter 5, “Using Run-Time

Options,” on page 33.

Providing Input to the Linkage Editor

The linkage editor processes your compiled program (object module) and readies it

for execution. The processed module becomes an executable phase.

Input to the linkage editor can be:

v One or more object modules

v Linkage editor control statements

Figure 9 on page 23 shows the basic link-editing process for your application.

// JOB jobname

// DLBL IJSYSLN,’%LEVSE.WORKFILE.IJSYSLN’,0,VSAM,RECSIZE=322, X

 RECORDS=(400,600)

// DLBL OPTRPRT,’fileid’,0,SD

// EXTENT SYSnnn,volser,1,0,start,tracks

// ASSGN SYSnnn,DISK,VOL=volser,SHR

// LIBDEF OBJ,SEARCH=(userlib.sublib,lelib.sublib)

// LIBDEF PHASE,SEARCH=(lelib.sublib)

// OPTION LINK

 INCLUDE MYPROG

// EXEC LNKEDT

// EXEC ,PARM=’RPTOPTS(ON),MSGFILE(OPTRPRT)/’

/*

/&

Figure 7. Overriding the Default Run-Time Options

...
// EXEC ,PARM=’/RPTOPTS(ON),MSGFILE(OPTRPRT)’ ...

Figure 8. Overriding the Default Run-Time Options for COBOL

22 LE/VSE: Programming Guide

Writing JCL for the Linkage Editor

JCL for the linkage editor is required to:

v Specify the files used by the linkage editor

v Specify the linkage editor control statements

v Invoke the linkage editor

The following sections provide a brief explanation of the JCL required.

Specifying the Files Used by the Linkage Editor

Table 10 shows the files used by the linkage editor, and summarizes the function

and permissible device types for each file.

 Table 10. Files Used for Link-Editing

 File Type Function

Permissible Device

Types

SYSIPT1 Input Additional object module input Card reader Magnetic

tape Direct access

SYSLNK Input Object module input, normally the output of the

compiler or the prelinker

Direct access

SYSLST2 Output Diagnostic messages Informative messages Linkage

editor map

Printer Magnetic tape

Direct access

SYSLOG Output Operator messages Display console

SYSRDR Input Control statement input Card reader Magnetic

tape Direct access

IJSYS01 (SYS001) Work file Linkage editor work file Direct access

Figure 9. Basic Linkage Editor Processing

Chapter 4. Linking and Running 23

Table 10. Files Used for Link-Editing (continued)

 File Type Function

Permissible Device

Types

User-specified

Sublibrary

Library Catalog sublibrary for the phase3

External reference and INCLUDE statement

 resolution4

Direct access

Notes:

1 Object modules read from SYSIPT are written to SYSLNK

2 If not provided, messages are written to SYSLOG

3 Required if the phase is to be cataloged

4 Required for additional object module input

Your installation will probably have standard labels in place for most of the files

used for link-editing, in which case you do not need to provide JCL for them.

Check with your system administrator.

Specifying Linkage Editor Control Statements

In addition to object modules, input to the linkage editor includes linkage editor

control statements. These statements are briefly described in Table 11.

 Table 11. Linkage Editor Control Statements

Statement Action Comments

ACTION Use the ACTION statement to specify linkage editor

options. The options that may be specified are:

v MAP—requests the linkage editor to write a linkage

editor map to SYSLST.

v NOMAP—suppresses the MAP option.

v NOAUTO—suppresses the automatic library lookup

(AUTOLINK) function; the linkage editor will not

attempt to resolve external references using the

automatic library lookup feature.

v CANCEL—requests the linkage editor to cancel the

job if a linkage editor error occurs.

v SMAP—request the linkage editor to produce a sorted

listing of CSECT names on SYSLST.

This statement, if present, must be the

first linkage editor statement in your

input stream. ACTION MAP is the

default, if SYSLST is assigned.

ENTRY Use the ENTRY statement to specify the entry point of a

phase that has multiple possible entry points.

The default entry point is the first

significant address the linkage editor

encounters in an END record in an

object module or, if none is found, the

load address of the phase.

INCLUDE Use the INCLUDE statement to include additional object

modules in the phase that would not otherwise be

included.

You can use the INCLUDE statement

to include an object module that was

cataloged with a different name than

the name used in the CALL statement

in your program.

24 LE/VSE: Programming Guide

Table 11. Linkage Editor Control Statements (continued)

Statement Action Comments

MODE Use the MODE statement to specify the addressing

mode and the residence mode of a phase. The

addressing mode and residence mode can be specified

by the following options of the MODE statement:

v AMODE(24|31|ANY)—requests the linkage editor to

override the default AMODE attribute established by

the compiler.

v RMODE(24|ANY)—requests the linkage editor to

override the default RMODE attribute established by

the compiler.

This statement must follow the PHASE

statement. Alternatively, the AMODE

and RMODE parameters may be

specified in the PARM parameter of

the EXEC LNKEDT statement.

PHASE Use the PHASE statement to provide the linkage editor

with a phase name.

You must provide a PHASE statement

(and the job control option CATAL) if

you wish to catalog the phase in a VSE

Librarian sublibrary.

Using the EXEC Statement

Use the EXEC job control statement in your JCL to invoke the linkage editor. The

EXEC statement to invoke the linkage editor is:

// EXEC LNKEDT

Using the PARM Parameter for the Linkage Editor

You can use the PARM parameter of the EXEC statement to specify the AMODE

and RMODE of your executable phase. Normally, the linkage editor assigns the

AMODE and RMODE from the AMODE and RMODE attributes of the input

modules, but you can override them. For example, if you want the phase produced

by the linkage editor to have RMODE(24), specify:

// EXEC LNKEDT,PARM=’RMODE=24’

Example of Linkage Editor JCL

A typical sequence of job control statements for link-editing an object module into

a phase is shown in Figure 10. The PHASE linkage editor control statement in the

figure specifies that the link-edited phase is to have the name PROGRAM1. The

LIBDEF PHASE and OPTION CATAL job control statements specify that the

link-edited phase is to be cataloged in the sublibrary USER.RUNLIB.

// JOB LNKEDT

// DLBL IJSYSLN,’%LEVSE.WORKFILE.IJSYSLN’,0,VSAM,RECSIZE=322, X

 RECORDS=(400,600)

// LIBDEF OBJ,SEARCH=(USER.OBJLIB,PRD2.SCEEBASE)

// LIBDEF PHASE,CATALOG=(USER.RUNLIB)

// OPTION CATAL

 ACTION MAP

 PHASE PROGRAM1,*

 INCLUDE PROGRAM1

// EXEC LNKEDT

/*

/&

Figure 10. Creating a Phase

Chapter 4. Linking and Running 25

Link-Editing Multiple Object Modules

When you link-edit an object module containing any of the following:

 A C main() function

 A C fetchable function

 A PL/I MAIN procedure

the entry point of the resultant phase is resolved to the external symbol

CEESTART. This happens automatically because the C and PL/I compilers

generate a CEESTART CSECT at the beginning of such object modules. Run-time

errors occur if the phase entry point is forced to some other symbol by use of the

linkage editor ENTRY control statement.

If you link-edit such an object module with object modules produced by the same

language compiler, other language compilers, or by assembler, the module

containing the CEESTART CSECT must be the first to receive control, and you

must ensure that the entry point of the resulting phase is resolved to the external

symbol CEESTART. This happens automatically if the object module containing the

CEESTART CSECT is first in the input to the linkage editor.

Alternatively, the following linkage editor ENTRY control statement can be

included in the input to the linkage editor:

ENTRY CEESTART

Using the INCLUDE Statement

You can use the INCLUDE linkage editor control statement to specify additional

object modules that you want included in the output phase. Figure 11 contains an

example of how to link-edit the CEEUOPT CSECT with your application. In the

example, CEEUOPT is used to establish application run-time option defaults; see

Chapter 5, “Using Run-Time Options,” on page 33 for more information.

Linkage Editor Module Map

If you specify the ACTION MAP linkage editor control statement, the linkage

editor produces:

v A list of the linkage editor control statements and a list all object modules

specifically included in the phase, or obtained from a Librarian sublibrary by the

automatic library lookup feature. The list includes the name of the object

module, the date and time the object module was first cataloged, the date and

time of the latest update to the module, and the name of the sublibrary from

which the module was included.

// DLBL IJSYSLN,’%LEVSE.WORKFILE.IJSYSLN’,0,VSAM,RECSIZE=322, X

 RECORDS=(400,600)

// LIBDEF OBJ,SEARCH=(USER.OBJLIB,PRD2.SCEEBASE)

// LIBDEF PHASE,CATALOG=(USER.RUNLIB)

// OPTION CATAL

 ACTION MAP

 PHASE PROGRAM1,*

 INCLUDE CEEUOPT ...
compilation step ...
// EXEC LNKEDT

Figure 11. Using the INCLUDE Linkage Editor Control Statement

26 LE/VSE: Programming Guide

v A map of the link-edited phase that shows all control sections in the phase and

all the entry point names in each control section. Named common areas are

listed as control sections.

For each control section, the map indicates its origin (as an address within the

partition in which the link-edit is run), its offset from the beginning of the

partition, and its offset within the phase. For each entry name in each control

section, the map indicates its location (as an address within the partition in

which the link-edit is run).

The control sections are arranged in ascending order according to their origin.

An entry name (prefixed by + or *) is listed with the control section in which it

is defined.

The entry (or transfer) address, that is, the relative address within the partition

of the main entry point, is at the beginning of the map. The entry address is

followed by the lowest and highest addresses of the phase within the partition.

Pseudoregisters, if used, also appear in the map; the name, length, and

displacement of each pseudoregister are given.

Figure 12 contains a linkage editor listing and map showing twelve control

sections. There is one named control section (CALLIVP1) and eleven control

sections obtained from the LE/VSE library. In addition, four entry names are

defined: CEELLIST in CEEBLLST; CEEINT, CEEBPIRB, and CEEBPIRC in

CEEBPIRA.

ACTION TAKEN MAP

 ** MODULE CEEBETBL 95-11-23 09.43 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

 ** MODULE CEEBINT 95-11-23 09.43 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

 ** MODULE CEEBLLST 95-11-23 09.43 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

 ** MODULE CEEBPUBT 95-11-23 09.43 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

 ** MODULE CEEBTRM 95-11-23 09.43 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

 ** MODULE CEESG005 95-11-22 16.14 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

 ** MODULE CEESTART 95-11-23 09.44 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

 ** MODULE IGZCBSN 95-11-22 16.14 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

 ** MODULE CEEARLU 95-11-23 09.43 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

 ** MODULE CEEINT 95-11-23 09.43 AUTOLNKD FROM PRD2 .SCEEBASE VOLID=PRDUCT

INCLUDE CEEBPIRA

 ** MODULE CEEBPIRA 95-11-23 09.43 INCLUDED FROM PRD2 .SCEEBASE VOLID=PRDUCT

ENTRY

12/13/96 PHASE XFR-AD LOCORE HICORE CSECT/ LOADED RELOC. PARTIT. PHASE TAKEN AMODE/RMODE

 ENTRY AT FACTOR OFFSET OFFSET FROM

 PHASE*** 500078 500078 5029D1 31 ANY RELOCATABLE

 CALLIVP1 500078 500078 000000 000000 SYSLNK ANY ANY

 CEEBETBL 501A90 501A90 001A18 001A18 CEEBETBL ANY ANY

 CEEBINT 501AB0 501AB0 001A38 001A38 CEEBINT ANY ANY

 CEEBLLST 501AB8 501AB8 001A40 001A40 CEEBLLST ANY ANY

 *CEELLIST 501AC8

 CEEBPUBT 501B18 501B18 001AA0 001AA0 CEEBPUBT ANY ANY

 CEEBTRM 501B38 501B38 001AC0 001AC0 CEEBTRM ANY ANY

 CEESG005 501E60 501E60 001DE8 001DE8 CEESG005 ANY ANY

 CEESTART 501E78 501E78 001E00 001E00 CEESTART ANY ANY

 IGZCBSN 501EF8 501EF8 001E80 001E80 IGZCBSN 31 ANY

 CEEARLU 502640 502640 0025C8 0025C8 CEEARLU ANY ANY

 CEEBPIRA 5026E0 5026E0 002668 002668 CEEBPIRA ANY ANY

 +CEEINT 5026E0

 *CEEBPIRB 5026E0

 *CEEBPIRC 5026E0

 CEECPYRT 5028F0 5026E0 002878 002878 CEEBPIRA ANY ANY

Figure 12. Link-Edit Listing and Module Map

Chapter 4. Linking and Running 27

Detecting Link-Edit Errors

After link-editing, you receive a listing of diagnostic messages on SYSLST. Check

the linkage editor map to ensure that all the object modules you expected were

included.

When link-editing your application, you might get unresolved weak external

references (WXTRN). The example of a link-edit map in Figure 13 shows unresolved

weak external references. These unresolved weak external references do not

necessarily indicate that there were errors when your application was link-edited.

However, all strong external references (EXTRN) should be resolved for your

application to run correctly.

12/13/96 PHASE XFR-AD LOCORE HICORE CSECT/ LOADED RELOC. PARTIT. PHASE TAKEN AMODE/RMODE

 ENTRY AT FACTOR OFFSET OFFSET FROM

 PHASE*** 500078 500078 5029D1 31 ANY RELOCATABLE

 CALLIVP1 500078 500078 000000 000000 SYSLNK ANY ANY

 CEEBETBL 501A90 501A90 001A18 001A18 CEEBETBL ANY ANY

 CEEBINT 501AB0 501AB0 001A38 001A38 CEEBINT ANY ANY

 CEEBLLST 501AB8 501AB8 001A40 001A40 CEEBLLST ANY ANY

 *CEELLIST 501AC8

 CEEBPUBT 501B18 501B18 001AA0 001AA0 CEEBPUBT ANY ANY

 CEEBTRM 501B38 501B38 001AC0 001AC0 CEEBTRM ANY ANY

 CEESG005 501E60 501E60 001DE8 001DE8 CEESG005 ANY ANY

 CEESTART 501E78 501E78 001E00 001E00 CEESTART ANY ANY

 IGZCBSN 501EF8 501EF8 001E80 001E80 IGZCBSN 31 ANY

 CEEARLU 502640 502640 0025C8 0025C8 CEEARLU ANY ANY

 CEEBPIRA 5026E0 5026E0 002668 002668 CEEBPIRA ANY ANY

 +CEEINT 5026E0

 *CEEBPIRB 5026E0

 *CEEBPIRC 5026E0

 CEECPYRT 5028F0 5026E0 002878 002878 CEEBPIRA ANY ANY

UNRESOLVED EXTERNAL REFERENCES WXTRN CEEUOPT

 WXTRN CEEBXITA

 WXTRN CEESG000

 WXTRN CEESG001

 WXTRN CEESG002

 WXTRN CEESG003

 WXTRN CEESG004

 WXTRN CEESG006

 WXTRN CEESG007

 WXTRN CEESG008

 WXTRN CEESG009

 WXTRN CEESG010

 WXTRN CEESG011

 WXTRN CEESG012

 WXTRN CEESG013

 WXTRN CEESG014

 WXTRN CEESG015

 WXTRN CEESG016

 WXTRN CEEMAIN

 WXTRN CEEFMAIN

 WXTRN CEEROOTA

 WXTRN IGZETUN

 WXTRN IGZEOPT

 WXTRN ILBDMNS0

UNRESOLVED ADCON AT OFFSET 00501AA0

UNRESOLVED ADCON AT OFFSET 00501A94

UNRESOLVED ADCON AT OFFSET 00501AC8

.

.

.

UNRESOLVED ADCON AT OFFSET 00502638

024 UNRESOLVED ADDRESS CONSTANTS

Figure 13. Link-Edit Map of a COBOL/VSE Program with Unresolved Weak External References

28 LE/VSE: Programming Guide

Running an Application

You can request the execution of a phase in an EXEC statement in your JCL. The

general form of the EXEC statement is:

// EXEC [PGM=]program_name,SIZE=program_size

where program_name is the name of the phase of the application to be executed and

program_size is the amount of program storage required to run the application.

Note: The amount of program storage required to run an application does not

include the storage required for LE/VSE heap and stack storage, LE/VSE

library routines, or dynamically loaded application routines. Program

storage is generally only used to load the main program and, if required, the

SORT product (and its work areas). LE/VSE uses partition GETVIS storage

for all other storage requirements. LE/VSE requires a minimum of 1200KB

below-the-line GETVIS storage.

Specifying the Search Order

When you use JCL to request execution of a phase (or when you dynamically load

a phase), the specified phase must be one of the following:

v A phase that is resident in the shared virtual area (SVA), and defined in the

system directory list (SDL)

v A phase that is a member of a private sublibrary specified in a LIBDEF

statement in your JCL

v A phase that is a member of a sublibrary specified in the permanent search

chain for the partition in which your job is running

v A phase that is a member of the system sublibrary, IJSYSRS.SYSLIB

Unless you specify one or more private libraries in a LIBDEF statement, VSE

searches only the SVA, those sublibraries specified in the permanent search chain

for the partition in which your job is running, and the system sublibrary for the

phase you specify.

You can define a sublibrary in a LIBDEF statement in the following ways:

v With the LIBDEF *,SEARCH statement in your JCL

v With the LIBDEF PHASE,SEARCH statement in your JCL

This sublibrary is searched after the SDL, but before the sublibraries defined in the

permanent search chain and before the system sublibrary. If you do not want the

SDL to be searched first, your must specify it at the appropriate position in the

search chain defined by the LIBDEF statement.

In the following example, assuming the phase PROGRAM1 is not in the SDL, the

system searches the private sublibrary USER.RUNLIB for the phase PROGRAM1,

reads the phase into storage, and executes it.

// JOB RUNPROG1

// LIBDEF PHASE,SEARCH=(PRD2.SCEEBASE,USER.RUNLIB)

// EXEC PROGRAM1,SIZE=PROGRAM1

/*

/&

Chapter 4. Linking and Running 29

Specifying Run-Time Options

Each time your application runs, a set of run-time options must be established.

These options determine many of the properties of how the application runs,

including its performance, error handling characteristics, storage management, and

production of debugging information. You can specify run-time options in any of

the following places:

v In the CEEDOPT CSECT, where the installation default options are located (see

“CEEXOPT Invocation Syntax” on page 40 for more information)

v In the CEEUOPT CSECT where user-supplied default options are located (see

“CEEXOPT Invocation Syntax” on page 40 for more information)

v #pragma runopts in C source code (see page 36 for more information)

v In a PLIXOPT string in PL/I source code (see page 37)

v In the PARM parameter of the EXEC statement in your JCL (see below)

v In the assembler user exit (see “CEEBXITA Assembler User Exit Interface” on

page 323 for more information)

Specifying Run-Time Options in the EXEC Statement

You can override those installation default run-time options specified as

overridable, and any application default run-time options, by specifying run-time

options in the PARM parameter of the EXEC statement. The general form for

specifying run-time options in the PARM parameter of the EXEC statement is:

// EXEC [PGM=]program_name, X

 PARM=’[run-time options/][program parameters]’

For example, if you want to generate a storage report and run-time options report

for the application PROGRAM1, specify the following:

// EXEC PROGRAM1,PARM=’RPTSTG(ON),RPTOPTS(ON)/’

The run-time options that are passed to the main routine must be followed by a

slash (/) to separate them from program parameters. For HLL considerations to

keep in mind when specifying run-time options, see “Specifying Run-Time Options

and Program Arguments” on page 38. The EXECOPS option for C is used to

specify that run-time options passed as parameters at execution time are to be

processed by LE/VSE. The option NOEXECOPS specifies that run-time options are

not to be processed from execution parameters and are to be treated as program

parameters. You can specify either option in a #pragma runopts statement in your

C program. You can also specify either option as a C/VSE compile-time option.

EXECOPS is the default. When EXECOPS is in effect, you can pass run-time

options in the EXEC statement in your JCL.

VSE normally limits the size of the string you can specify in the PARM parameter

of the EXEC statement to 100 characters. However, if you are running VSE/ESA

Version 2 Release 2, or a previous supported release of VSE/ESA with the

appropriate PTF applied, you can use the following technique to specify a

parameter string of up to 300 characters.

// EXEC [PGM=]program_name, X

 PARM=’parameter_string_segment’, X

 PARM=’parameter_string_segment’, X

 PARM=’parameter_string_segment’

Using this technique, up to three instances of the PARM parameter can be specified

on an EXEC statement, and each parameter_string_segment can be up to 100

30 LE/VSE: Programming Guide

characters in length. The following example shows how you might code an EXEC

statement and pass a 140-character string consisting of run-time options and

program arguments.

// EXEC TESTPGM,PARM=’ABTERMENC(ABEND) ALL31(ON) NATLANG(ENU) RPTOPTS(OX

 N) RPTSTG(ON) TERMTHDACT(MSG)/RUNDATE=19961213 DBNA’, X

 PARM=’ME=ODBMST TRANFLE=OTRNFLE RPTFLE=ORPTFLE’

Using the iconv Utility for C

The iconv utility uses the iconv_open(), iconv(), and iconv_close() functions to

convert the input file records from the coded character set definition for the input

code page to the coded character set definition for the output code page. There is

one record in the output file for each record in the input file. No padding or

truncation of records is performed. For information on the iconv utility, see LE/VSE

C Run-Time Programming Guide.

When conversions are performed between single-byte code pages, the output

records are the same length as the input records. When conversions are performed

between double-byte code pages, the output records could be longer or shorter

than the input records because shift-out and shift-in characters could be added or

removed.

Using the genxlt Utility for C

The genxlt utility reads character conversion information from an input file and

generates an object module containing a conversion table. The input file contains

directives that are acted upon by the genxlt utility to produce the compiled

version of the conversion table. The object module, when link-edited, is used by

the iconv utility and iconv functions. For more information on the genxlt utility,

see LE/VSE C Run-Time Programming Guide.

Chapter 4. Linking and Running 31

32 LE/VSE: Programming Guide

Chapter 5. Using Run-Time Options

This chapter shows you how to specify run-time options as installation defaults,

application defaults, in JCL, in assembler exits, or in your source code.

Understanding the Basics

LE/VSE provides run-time options with which you can control certain aspects of

your program’s processing. You can set the default values for most of these options

at installation time. Table 12 lists the LE/VSE run-time options and gives a brief

description of each. For more detailed information on the syntax and use of

LE/VSE run-time options, and how LE/VSE run-time options map to specific HLL

options, see LE/VSE Programming Reference.

 Table 12. Summary of LE/VSE Run-Time Options

Run-Time Option Description

ABPERC Specifies a VSE cancel code, a program-interruption code, or

a user cancel code to be exempted from LE/VSE condition

handling.

ABTERMENC Sets the enclave termination behavior for an enclave ending

with an unhandled condition of severity 2 or greater.

AIXBLD|NOAIXBLD (COBOL only) Invokes the access method services (AMS) for

VSAM indexed and relative data sets to complete the file

and index definition procedures for COBOL routines.

ALL31 Specifies whether an application can run entirely in

AMODE(31), or whether the application has one or more

AMODE(24) routines.

ANYHEAP Controls the allocation of library heap storage that is not

restricted to a location below 16MB.

ARGPARSE|NOARGPARSE (C only) Specifies whether arguments on the command line

are to be parsed in the usual C format. This option is

restricted to applications in which C is the main routine.

You can only specify it using the C #pragma runopts

directive.

BELOWHEAP Controls the allocation of library heap storage that must be

located below 16MB. The heap controlled by BELOWHEAP

is intended for items such as control blocks used for I/O.

CBLOPTS (COBOL only) Specifies the format of the parameter string

on application invocation when the main routine is COBOL.

CBLOPTS determines whether run-time options or program

arguments appear first in the parameter string. You can only

specify CBLOPTS in CEEDOPT or CEEUOPT.

CBLPSHPOP (COBOL only) Determines whether CICS PUSH HANDLE

and CICS POP HANDLE commands are issued when a

COBOL subroutine is called.

CHECK (COBOL only) Activates error checking within an

application. Index, subscript, and reference modification

errors are checked.

COUNTRY Sets the default formats for date, time, currency symbol,

decimal separator, and thousands separator, based on a

specified country.

© Copyright IBM Corp. 1991, 2005 33

Table 12. Summary of LE/VSE Run-Time Options (continued)

Run-Time Option Description

DEBUG|NODEBUG (COBOL only) Activates the COBOL batch debugging

language specified by the USE FOR DEBUGGING

declarative.

DEPTHCONDLMT Specifies the extent to which conditions can be nested.

ENV (C only) Specifies the operating environment for your C

application. It is only required for running with DL/I, and is

restricted to applications in which C is the main routine.

You can only specify ENV using the C #pragma runopts

directive.

ENVAR (C only) Sets initial values for specified environment

variables. This option is restricted to applications in which C

is the main routine.

ERRCOUNT Specifies how many conditions of severity 2, 3, and 4 can

occur before an enclave terminates abnormally.

EXECOPS|NOEXECOPS (C only) Specifies whether you can enter run-time options

on the command line. This option is restricted to

applications in which C is the main routine. C applications

can use the #pragma runopts directive to specify these

options or use the EXECOPS/NOEXECOPS compile-time

options.

HEAP Controls the allocation of the initial heap and of additional

heaps created with the CEECRHP callable service, and

specifies how that storage is managed.

HEAPCHK Provides a checking facility to verify that the heap storage

has not been damaged.

LIBSTACK Controls the allocation of a thread’s library stack storage.

This stack is used by LE/VSE and HLL library routines that

require save areas below 16MB.

MSGFILE Specifies the filename of the file where all run-time

diagnostics and reports generated by the RPTOPTS and

RPTSTG run-time options are written.

MSGQ Specifies the number of instance-specific information (ISI)

blocks LE/VSE allocates on a per-thread basis for use by the

application.

NATLANG Specifies the initial national language to be used for the

run-time environment, including error messages, month

names, and day-of-the-week names.

PLIST (C only) Specifies the format of the parameters received by a

C application on invocation. This option is restricted to

applications where C is the main routine. You can only

specify it using the C #pragma runopts directive.

REDIR|NOREDIR (C only) Specifies whether you can enter directions for

stdin, stderr, and stdout from the command line. This

option is restricted to applications in which C is the main

routine. You can only specify it using the C #pragma runopts

directive.

RETZERO (COBOL only) Controls the value of the COBOL

RETURN-CODE special register at run-unit termination.

RPTOPTS Generates a report of the run-time options in effect while an

application was running.

34 LE/VSE: Programming Guide

Table 12. Summary of LE/VSE Run-Time Options (continued)

Run-Time Option Description

RPTSTG Generates a report of the storage used by an application.

RTEREUS This option is provided for compatibility with the VS

COBOL II RTEREUS option; however, its use is not

recommended due to restrictions with multienclave or

multilanguage applications. Although RTEREUS can be

specified in CEEUOPT or CEEDOPT, it is not recommended

as an installation default.

STACK Controls the allocation of a thread’s stack storage.

STORAGE Controls the initial content of storage when allocated and

freed, and the amount of storage that is reserved for the

out-of-storage condition.

TERMTHDACT Sets the level of information that is produced when LE/VSE

percolates a condition of severity 2 or greater beyond the

first routine’s stack frame. Also specifies the dump output

destination for the CICS environment.

TEST|NOTEST Specifies the conditions under which a debug tool assumes

control when the user application is being initialized.

TRACE Activates LE/VSE run-time library tracing and controls the

size of the trace table, the type of trace, and whether the

trace table should be dumped unconditionally upon

termination of the application.

TRAP Specifies how LE/VSE routines handle abends and program

interrupts. LE/VSE expects TRAP(ON,MIN) to be in effect

for successful execution of the application.

UPSI (COBOL only) Sets the eight UPSI switches on or off for

applications that use COBOL programs.

USRHDLR|NOUSRHDLR Specifies the name of a user condition handler, if any, to be

registered at stack frame 0.

XUFLOW Specifies whether an exponent underflow causes a program

interrupt.

Specifying Run-time Options

You can specify LE/VSE run-time options in the following ways:

As installation defaults

The CEEDOPT assembler language source file establishes installation

defaults (for the batch environment) using the CEEXOPT macro. The file

initially contains IBM-supplied default values for each of the LE/VSE

run-time options. The syntax for CEEXOPT is presented in the section,

“CEEXOPT Invocation Syntax” on page 40. During installation of LE/VSE,

the default values contained in the CEEDOPT source file can be edited and

assembled to create the CEEDOPT object module. All batch applications

that run in the common run-time environment operate using these default

values for the run-time options. If LE/VSE is installed in the default

sublibraries, the CEEDOPT source file and object module reside in the

PRD2.SCEEBASE sublibrary.

 It is possible to associate a non-overridable attribute with each individual

run-time option. Each option in CEEDOPT must be specified as either

Chapter 5. Using Run-Time Options 35

overridable (OVR) or non-overridable (NONOVR). This allows the

installation to enforce options that are critical to the overall LE/VSE

operating environment.

 LE/VSE also provides the CEECOPT source program to establish

installation defaults for run-time options under CICS. If LE/VSE is

installed in the default sublibraries, the CEECOPT source file, and the

CEECOPT object module it generates, reside in the PRD2.SCEEBASE

sublibrary.

 Both the CEEDOPT and CEECOPT object modules contain CEEDOPT

CSECT.

 For more information on specifying options at installation, see LE/VSE

Customization Guide.

In the assembler user exit

With the assembler user exit you can override all other sources of run-time

options except those specified as non-overridable in the installation

defaults. See “CEEBXITA Assembler User Exit Interface” on page 323 for

information about how to specify a list of run-time options in the

assembler user exit.

As application defaults

The CEEUOPT assembler language source program sets application

defaults using the CEEXOPT macro. Like CEEDOPT, CEEUOPT can be

edited and assembled to create an object module, CEEUOPT, that can be

linked with an application.

 As noted above, CEEDOPT establishes installation defaults using the

CEEXOPT macro. When the program runs, the options specified in

CEEUOPT override any corresponding overridable CEEDOPT options.

 CEEUOPT must be linked with the main program of your application in

order to establish application defaults.

In JCL

You can specify run-time options in the PARM parameter of the JCL EXEC

statement. These run-time options override all other sources of run-time

options except those provided by the assembler user exit, and those

specified as non-overridable in the installation defaults. See “Specifying

Run-Time Options in the EXEC Statement” on page 30 for details.

Note: If you use LE/VSE preinitialization services to create and initialize

the common run-time environment, LE/VSE does not honor

run-time options specified in the PARM parameter of your JCL

EXEC statement. For information about how to specify run-time

options when using LE/VSE preinitialization services, see

“Specifying Run-Time Options and Program Arguments” on page

367.

In your source code

C C provides the #pragma runopts directive, with which you can

specify run-time options in your source code.

 You must specify #pragma runopts in the source file that contains

your main function, before the first C statement. Only comments

and other pragmas can precede #pragma runopts.

 Specify #pragma runopts as follows:

36 LE/VSE: Programming Guide

Syntax

55

#

pragma

runopts

(

>

 ,

option

)

5=

 option is an LE/VSE run-time option.

 For more information about using C pragmas, see LE/VSE C

Run-Time Programming Guide.

PL/I Run-time options can be specified in a PL/I source application by

means of the following declaration:

DCL PLIXOPT CHAR(length) VAR INIT(’string’)

 STATIC EXTERNAL;

where string is a list of options separated by commas or blanks,

and length is a constant equal to or greater than the length of

string. Run-time options in PLIXOPT are parsed by the compiler.

The PL/I VSE compiler produces the CEEUOPT CSECT for the

PLIXOPT string.

 If more than one external procedure in a job declares PLIXOPT as

STATIC EXTERNAL, only the first link-edited string is available at

run time.

 Each time a PL/I application runs, the default run-time options

established at installation time apply unless overridden by a

PLIXOPT string in the source program or in the PARM parameter

of the JCL EXEC statement. Options specified in the PARM

parameter override those specified in the PLIXOPT string.

Order of Precedence

It is possible for all the methods listed above to be used for a given application.

The order of precedence (from highest to lowest) between option specification

methods is:

1. Options defined at installation time that have the non-overridable (NONOVR)

attribute.

2. Options specified by the assembler user exit.

3. Options specified on invocation of the application. Under CICS, options set

using the CLER transaction.

4. Options specified within the source program, or options specified in CEEUOPT

and link-edited with the application.

If you use both these methods to specify run-time options, the precedence is

determined by the order the object modules are included when you link edit

your application. If you include the object module for the source program first,

the options specified within the source program will be accepted and the

options specified in CEEUOPT will be ignored. If you include the CEEUOPT

object module first, the options specified in CEEUOPT will be accepted and the

options specified within the source program will be ignored. You can use

linkage editor control statements to control the order in which the object

Chapter 5. Using Run-Time Options 37

modules are included. (Note that the z/VSE linkage editor produces an

information-only message when a duplicate CEEDOPT CSECT is detected, and

ignores the second CSECT.)

5. Option defaults defined at installation time.

Specifying Suboptions in Run-Time Options

Use commas to separate suboptions of run-time options. If you do not specify a

suboption, you must still specify the comma to indicate its omission, for example

STACK(,,ANYWHERE,FREE). However, trailing commas are not required;

STACK(4K,4K,ANYWHERE) is valid. If you do not specify any suboptions, either of the

following is valid: STACK, or STACK().

Specifying Run-Time Options and Program Arguments

In order to distinguish run-time options from program arguments that are passed

to LE/VSE, the options and program arguments are separated by a slash (/). (For

more information on program arguments, see “Argument Lists and Parameter

Lists” on page 50.)

Run-time options usually precede program arguments whenever they are specified

in JCL. The possible combinations are described in Table 13. You can override this

format to ensure compatibility with COBOL applications. See “COBOL

Compatibility Considerations” on page 39 for more information.

 Table 13. Formats for Specifying Run-Time Options and Program Arguments

Possible combinations Format

Only run-time options are present run-time options/

Only program arguments are present

v If a slash is present in the arguments, a

preceding slash is mandatory.

v If a slash is NOT present in the arguments,

a preceding slash is optional.

 /program arguments

 program arguments

 or /program arguments

Both run-time options and program

arguments are present

run-time options/program arguments

You can use the callable service CEE5PRM to retrieve program arguments. For

information on CEE5PRM, see LE/VSE Programming Reference.

In the following example, an object module called MYPROG is link-edited and run.

The code in the example overrides the LE/VSE defaults for the RPTOPTS and

MSGFILE run-time options.

// JOB jobname

// DLBL IJSYSLN,’%LEVSE.WORKFILE.IJSYSLN’,0,VSAM,RECSIZE=322, X

 RECORDS=(400,600)

// DLBL OPTRPRT,’fileid’,0,SD

// EXTENT SYSnnn,volser,1,0,start,tracks

// ASSGN SYSnnn,DISK,VOL=volser,SHR

// LIBDEF OBJ,SEARCH=(userlib.sublib,lelib.sublib)

// LIBDEF PHASE,SEARCH=(lelib.sublib)

// OPTION LINK

 INCLUDE MYPROG

// EXEC LNKEDT

// EXEC ,PARM=’RPTOPTS(ON),MSGFILE(OPTRPRT)/’

/*

/&

38 LE/VSE: Programming Guide

C Compatibility Considerations

C provides the #pragma runopts directive for you to specify run-time options in

your source code. If the main routine is C and #pragma runopts(execops) is in

effect (the default), you can pass run-time options in the PARM parameter of the

JCL EXEC statement. Run-time options must be followed by a slash (/).

If the main routine is C and #pragma runopts(noexecops) is specified in the source,

you cannot enter run-time options in the PARM parameter. LE/VSE interprets the

entire string in the PARM parameter, including run-time options if present, as

program arguments to the main routine.

See LE/VSE Programming Reference for a description of the EXECOPS run-time

option.

COBOL Compatibility Considerations

VS COBOL II supports an order of run-time options and program arguments that

is the reverse of that expected by LE/VSE. In VS COBOL II, the specification order

is program arguments/run-time options.

To ensure compatibility with VS COBOL II, LE/VSE provides the run-time option

CBLOPTS, which allows you to choose whether run-time options or program

arguments are expected first in the parameter list. CBLOPTS can only be specified

in the user options CSECT, CEEUOPT, or in the installation default run-time

options CSECT, CEEDOPT. You can specify a slash (/) as part of the program

arguments with CBLOPTS(ON) or CBLOPTS(OFF).

CBLOPTS(ON) allows the existing VS COBOL II format of the invocation character

string to continue working (program arguments followed by run-time options).

When CBLOPTS(ON) is specified, the last slash in a string delineates the program

arguments from the run-time options. Anything before the last slash is interpreted

as a program argument. Conversely, when CBLOPTS(OFF) is specified, the first

slash delineates the run-time options from the program arguments. Anything after

the first slash is interpreted as a program argument.

CBLOPTS is honored only when a COBOL routine is the main routine in the

application. See LE/VSE Programming Reference for more information.

PL/I Compatibility Considerations

If a PL/I main program is compiled with the NOEXECOPS procedure option,

run-time options cannot be specified in the PARM parameter of the JCL EXEC

statement. If run-time options are specified, they are passed as program arguments.

The effect of NOEXECOPS is described in Appendix B, “Using Operating System

and Subsystem Parameter List Formats,” on page 403.

Chapter 5. Using Run-Time Options 39

CEEXOPT Invocation Syntax

Use the CEEXOPT macro to establish installation and programmer default options.

v When invoked during the assembly of the CEEDOPT source program at

installation time, CEEXOPT creates the CEEDOPT object module, which

establishes batch installation default options. LE/VSE run-time options (except

those that are C specific) must be specified in CEEDOPT. Each option in

CEEDOPT must be designated as either overridable (OVR) or non-overridable

(NONOVR). In addition, a valid value must be specified for each suboption of

each run-time option.

v When invoked during the assembly of the CEECOPT source program at

installation time, CEEXOPT creates the CEECOPT object module, which

establishes CICS installation default options. LE/VSE run-time options (except

those that are C specific) must be specified in CEECOPT. Each option in

CEECOPT must be designated as either overridable (OVR) or non-overridable

(NONOVR). In addition, a valid value must be specified for each suboption of

each run-time option.

v The CEEXOPT macro also creates the CEEUOPT object module when CEEUOPT

is assembled. CEEUOPT can be linked with an application program to establish

user default options. Options in CEEUOPT’s invocation of CEEXOPT must not

be designated as overridable or non-overridable. However, their suboption

values take precedence over those of any corresponding overridable CEEDOPT

option values.

To invoke CEEXOPT, use the format of the IBM-supplied templates CEEDOPT,

CEECOPT, and CEEUOPT, as shown in Figure 14 on page 41, Figure 15 on page 42,

and Figure 16 on page 43, respectively.

40 LE/VSE: Programming Guide

Figure 14 shows a sample of the IBM-supplied version of CEEDOPT with the

default suboption values for each of the options, which establish installation

defaults for batch.

CEEDOPT CSECT

CEEDOPT AMODE ANY

CEEDOPT RMODE ANY

 CEEXOPT ABPERC=((NONE),OVR), X

 ABTERMENC=((ABEND),OVR), X

 AIXBLD=((OFF),OVR), X

 ALL31=((OFF),OVR), X

 ANYHEAP=((16K,8K,ANYWHERE,FREE),OVR), X

 BELOWHEAP=((8K,4K,FREE),OVR), X

 CBLOPTS=((ON),OVR), X

 CBLPSHPOP=((OFF),OVR), X

 CHECK=((OFF),OVR), X

 COUNTRY=((US),OVR), X

 DEBUG=((OFF),OVR), X

 DEPTHCONDLMT=((10),OVR), X

 ENVAR=((’’),OVR), X

 ERRCOUNT=((20),OVR), X

 HEAP=((32K,32K,ANYWHERE,KEEP,8K,4K),OVR), X

 HEAPCHK=((OFF,1,0),OVR), X

 LIBSTACK=((12K,4K,FREE),OVR), X

 MSGFILE=((SYSLST),OVR), X

 MSGQ=((15),OVR), X

 NATLANG=((UEN),OVR), X

 NOTEST=((ALL,*,PROMPT,’’),OVR), X

 NOUSRHDLR=((),OVR), X

 RETZERO=((OFF),OVR), X

 RPTOPTS=((OFF),OVR), X

 RPTSTG=((OFF),OVR), X

 RTEREUS=((OFF),OVR), X

 STACK=((128K,128K,BELOW,KEEP),OVR), X

 STORAGE=((00,NONE,NONE,32K),OVR), X

 TERMTHDACT=((TRACE,,0),OVR), X

 TRACE=((OFF,4K,DUMP,LE=0),OVR), X

 TRAP=((ON,MAX),OVR), X

 UPSI=((00000000),OVR), X

 XUFLOW=((AUTO),OVR)

/ */

/ The below macro requires valid VSE/POWER settings for each of */

/ the options. If this is not done, failures may result and lost */

/ output. */

/ The options NODE and USERID are optional. However, if a NODE is */

/ specified, then a valid USERID MUST ALSO be specified. If you */

/ require the behaviour of the * in the node parameter, omit the */

/ node setting and just supply a USERID setting. Specifying an * */

/ in the NODE parameter is NOT VALID. */

/ To get a report of the current LSTQ options settings, set */

/ RPTOPTS(ON) via a support method and the resulting report will */

/ include a LSTQ options report. */

CEELSTQ CEELOPT CLASS=L, X

 DISP=D, X

 NODE=, X

 USERID=

 DC C’5686-CF7-32-81K (C) COPYRIGHT IBM CORP. 1991, 2004.’

 DC C’LICENSED MATERIALS - PROPERTY OF IBM’

 END

Figure 14. IBM-Supplied Batch Installation Default Options Source Program, CEEDOPT

Chapter 5. Using Run-Time Options 41

Figure 15 shows a sample of the IBM-supplied version of CEECOPT with the

default sub-option values for each of the options, which establish installation

defaults for CICS.

CEEDOPT CSECT

CEEDOPT AMODE ANY

CEEDOPT RMODE ANY

 CEEXOPT ABPERC=((NONE),OVR), X

 ABTERMENC=((ABEND),OVR), X

 AIXBLD=((OFF),OVR), X

 ALL31=((ON),OVR), X

 ANYHEAP=((4K,4080,ANYWHERE,FREE),OVR), X

 BELOWHEAP=((4K,4080,FREE),OVR), X

 CBLOPTS=((ON),OVR), X

 CBLPSHPOP=((ON),OVR), X

 CHECK=((OFF),OVR), X

 COUNTRY=((US),OVR), X

 DEBUG=((OFF),OVR), X

 DEPTHCONDLMT=((10),OVR), X

 ENVAR=((’’),OVR), X

 ERRCOUNT=((20),OVR), X

 HEAP=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR), X

 HEAPCHK=((OFF,1,0),OVR), X

 LIBSTACK=((4K,4080,FREE),OVR), X

 MSGFILE=((CESE),OVR), X

 MSGQ=((15),OVR), X

 NATLANG=((UEN),OVR), X

 NOTEST=((ALL,*,PROMPT,’’),OVR), X

 NOUSRHDLR=((),OVR), X

 RETZERO=((OFF),OVR), X

 RPTOPTS=((OFF),OVR), X

 RPTSTG=((OFF),OVR), X

 RTEREUS=((OFF),OVR), X

 STACK=((4K,4080,ANYWHERE,KEEP),OVR), X

 STORAGE=((00,NONE,NONE,0K),OVR), X

 TERMTHDACT=((TRACE,MSGFL,0),OVR), X

 TRACE=((OFF,4K,DUMP,LE=0),OVR), X

 TRAP=((ON,MAX),OVR), X

 UPSI=((00000000),OVR), X

 XUFLOW=((AUTO),OVR)

* DC C’5686-066-32-65K (C) COPYRIGHT IBM CORP. 1991, 2001.’

* DC C’LICENSED MATERIALS - PROPERTY OF IBM’

/ */

/ The below macro requires valid VSE/POWER settings for each of */

/ the options. If this is not done, failures will result with the */

/ CEEL011S message being displayed. The information displayed in */

/ this message can be used to determine the failure by referencing */

/ the VSE/POWER Application Programming Guide with the displayed */

/ VSE/POWER return code and feedback code. */

/ The options NODE and USERID are optional. However, if a NODE is */

/ specified, then a valid USERID MUST ALSO be specified. If you */

/ require the behaviour of the * in the node parameter, omit the */

/ node setting and just supply a USERID setting. Specifying an * */

/ in the NODE parameter is NOT VALID. */

/ To get a report of the current LSTQ options settings, run the */

/ supplied NEWC (or your locally defined version) CICS transaction.*/

Figure 15. IBM-Supplied CICS Installation Default Options Source Program, CEECOPT (Part

1 of 2)

42 LE/VSE: Programming Guide

Figure 16 shows a sample of the IBM-supplied version of CEEUOPT with the

default suboption values for each of the options, which establish application

defaults.

/ This will produce a LSTQ options report and a LE/VSE run-time */

/ options report. This transaction will also reload the LSTQ and */

/ run-time options dynamically while CICS is still active. */

CEELSTQ CEELOPT CLASS=L, X

 DISP=D, X

 NODE=, X

 USERID=

 DC C’5686-CF7-32-81K (C) COPYRIGHT IBM CORP. 1991, 2004.’

 DC C’LICENSED MATERIALS - PROPERTY OF IBM’

 END

Figure 15. IBM-Supplied CICS Installation Default Options Source Program, CEECOPT (Part

2 of 2)

CEEUOPT CSECT

CEEUOPT AMODE ANY

CEEUOPT RMODE ANY

 CEEXOPT ABPERC=(NONE), X

 ABTERMENC=(ABEND), @01C X

 AIXBLD=(OFF), X

 ALL31=(OFF), X

 ANYHEAP=(16K,8K,ANYWHERE,FREE), X

 BELOWHEAP=(8K,4K,FREE), X

 CBLOPTS=(ON), X

 CBLPSHPOP=(OFF), @01C X

 CHECK=(OFF), X

 COUNTRY=(US), X

 DEBUG=(OFF), X

 DEPTHCONDLMT=(10), X

 ENVAR=(’’), X

 ERRCOUNT=(20), X

 HEAP=(32K,32K,ANYWHERE,KEEP,8K,4K), X

 HEAPCHK=(OFF,1,0), X

 LIBSTACK=(8K,4K,FREE), X

 MSGFILE=(SYSLST), X

 MSGQ=(15), X

 NATLANG=(UEN), X

 NOTEST=(ALL,*,PROMPT,’’), X

 NOUSRHDLR=(), X

 RETZERO=(OFF), X

 RPTOPTS=(OFF), X

 RPTSTG=(OFF), X

 RTEREUS=(OFF), X

 STACK=(128K,128K,BELOW,KEEP), X

 STORAGE=(00,NONE,NONE,32K), @01C X

 TERMTHDACT=(TRACE,,0), @02C X

 TRACE=(OFF,4K,DUMP,LE=0), X

 TRAP=(ON,MAX), @01C X

 UPSI=(00000000), X

 XUFLOW=(AUTO)

 DC C’5686-CF7-32-75K (C) COPYRIGHT IBM CORP. 1991, 2002.’

 DC C’LICENSED MATERIALS - PROPERTY OF IBM’

 END

Figure 16. IBM-Supplied Application Default Options Source Program, CEEUOPT

Chapter 5. Using Run-Time Options 43

Notes on CEEXOPT Invocation

You should be aware of the following considerations when invoking CEEXOPT:

v A continuation character (X in the source) must be present in column 72 on each

line of the CEEXOPT invocation except the last line. This applies to both

CEEUOPT and CEEDOPT.

v Options and suboptions must be specified in upper case. Only suboptions that

are strings can be specified in mixed case or lowercase. For example, both

MSGFILE=(SYSLST) and MSGFILE=(syslst) are acceptable. ALL31=(off) is not

acceptable.

v A comma must end each option except for the final option. If the comma is

omitted, everything following the option is treated as a comment.

v If one of the string suboptions contains a special character, such as embedded

blank or unmatched right or left parenthesis, the string must be enclosed in

single apostrophes (' '), not in double quotation marks (" "). (A null string can

be specified with either adjacent single apostrophes or adjacent double quotation

marks.)

To obtain a single apostrophe (') or a single ampersand (&) within a string, two

instances of the character must be specified. The pair is counted as only one

character in determining whether the maximum allowable string length has been

exceeded, and in setting the effective length of the string.

v Macro instruction operands cannot exceed 255 characters in length. Therefore, it

is not possible for each suboption of the TEST|NOTEST option to attain the

maximum allowable length normally permitted by LE/VSE. For example, the

command suboption of the TEST option permits 250 characters, while the

preference_file suboption allows 80. The total number of characters for these two

suboptions, therefore, exceeds that allowed by the CEEXOPT macro. See LE/VSE

Programming Reference for further information. If the number of characters to the

right of the equal sign is greater than 255 for any keyword parameter in the

CEEXOPT invocation in CEEUOPT or CEEDOPT, a return code of 12 is

produced for the assembly, and no options are parsed.

v Avoid unmatched apostrophes in any string. The error cannot be captured

within CEEXOPT itself; instead, the assembler produces a message such as

ASMA063 *** ERROR *** NO ENDING APOSTROPHE

which bears no particular relationship to the suboption in which the apostrophe

was omitted. Furthermore, none of the options is properly parsed if this mistake

is made.

v You can completely omit the specification of any option in CEEUOPT. Default

values are then supplied for each of the missing options.

In CEEUOPT, IBM recommends that you omit any options you do not wish to

change. The options you omit from the macro will default to the

installation-wide defaults you set in CEEDOPT or CEECOPT.

v In CEEUOPT, you can use commas to indicate the omission of one or more

suboptions for options having more than one suboption. For example, if you

wish to specify only the second suboption of the STORAGE option, the omission

of the 1st, 3rd, and 4th suboptions can be indicated in any of the following

ways:

STORAGE=(,NONE), X

STORAGE=(,NONE,), X

STORAGE=(,NONE,,), X

Because suboptions are positional parameters, do not omit the comma if the

corresponding suboption is omitted and another suboption follows.

44 LE/VSE: Programming Guide

Note: If you specify an option in the CEEUOPT, there are special defaults for

omitted sub-options. You can find these default values under the “Usage

Notes” heading for the related run-time options.

v Options that allow only one suboption do not need to enclose that suboption in

parentheses. For example, the COUNTRY option can be specified in CEEUOPT

in either of the following ways:

COUNTRY=(US), X

COUNTRY=US, X

Performance Considerations

In CEEUOPT, code only those options that you want to change. This enhances

performance by minimizing the number of options lines LE/VSE must scan.

Options that are to remain the same as the installation defaults do not need to be

repeated. For example, if the only change you want to make is to define STACK

with an initial value of 64K and an increment of 64K, include the following in

CEEUOPT:

 CEEUOPT CSECT

 CEEUOPT AMODE ANY

 CEEUOPT RMODE ANY

 CEEXOPT STACK=(64K,64K,BELOW,KEEP)

 END

WARNING: If you plan to use application-specific options with a CICS

application, you should review the IBM-supplied values, and ensure

they are appropriate for your CICS application. For values that are

applicable to CICS, see the storage report produced when using

RPTSTG(ON) or the supplied CEECOPT member (shown in Figure 15

on page 42). Otherwise, your CICS system might suffer from

performance degradation and/or storage problems.

Printing CICS-Wide Run-Time Options to Console

This function allows you to print LE/VSE CICS-wide run-time options to your

z/VSE console. This provides an alternative to the global CICS-wide setting that is

possible using the LE/VSE run-time option RPTOPTS(ON). This function allows you

to avoid producing large output on the LE/VSE destination CESE (in contrast to the

RPTOPTS(ON) run-time option which might fill up this queue, if defined as a file,

and generate message CEE3492S).

From VSE/ESA 2.5 onwards, LE/VSE program EDCYCROP is shipped with the

CICS transid already set to ‘ROPC’. Transaction ROPC is already BSM

security-enabled, and can be used immediately. When this transaction has been

invoked on a CICS terminal, LE/CICS-wide default run-time options (CEECOPT)

appear on the console.

Notes:

1. If you have set the ENVAR run-time option of the CICS-wide Assember User

Exit, you can list this option in the CICS-Wide Options report sent to your

z/VSE console. In the example report shown in Figure 17 on page 46, the

ENVAR run-time option has been included.

2. The function is available with both CICS/VSE 2.3 and CICS Transaction Server.

3. For VSE systems before VSE/ESA 2.5, you can specify your own CICS transid

for LE/VSE program EDCYCROP.

Chapter 5. Using Run-Time Options 45

F2 0114 Options Report for Enclave EDCYCROP 04/27/04 9:13:46 AM

F2 0114 Language Environment for VSE/ESA V1 R4.4

F2 0114

F2 0114 LAST WHERE SET OPTION

F2 0114 --

F2 0114 Installation default ABPERC(NONE)

F2 0114 Installation default ABTERMENC(ABEND)

F2 0114 Installation default NOAIXBLD

F2 0114 Installation default ALL31(ON)

F2 0114 Installation default ANYHEAP(4096,4080,ANYWHERE,FREE)

F2 0114 Installation default BELOWHEAP(4096,4080,FREE)

F2 0114 Installation default CBLOPTS(ON)

F2 0114 Installation default CBLPSHPOP(ON)

F2 0114 Installation default CHECK(OFF)

F2 0114 Installation default COUNTRY(US)

F2 0114 Installation default NODEBUG

F2 0114 Installation default DEPTHCONDLMT(10)

F2 0114 Installation default ENVAR("")

F2 0114 Installation default ERRCOUNT(20)

F2 0114 Installation default HEAP(4096,4080,ANYWHERE,KEEP,4096,4080)

F2 0114 Installation default HEAPCHK(OFF,1,0)

F2 0114 Installation default LIBSTACK(4096,4080,FREE)

F2 0114 Installation default MSGFILE(CESE)

F2 0114 Installation default MSGQ(15)

F2 0114 Installation default NATLANG(UEN)

F2 0114 Installation default RETZERO(OFF)

F2 0114 Installation default RPTOPTS(OFF)

F2 0114 Installation default RPTSTG(OFF)

F2 0114 Installation default NORTEREUS

F2 0114 Installation default STACK(4096,4080,ANYWHERE,KEEP)

F2 0114 Installation default STORAGE(00,NONE,NONE,0)

F2 0114 Installation default TERMTHDACT(TRACE,MSGFL,0)

F2 0114 Installation default NOTEST(ALL,"*","PROMPT","")

F2 0114 Installation default TRACE(OFF,4096,DUMP,LE=0)

F2 0114 Installation default TRAP(ON,MAX)

F2 0114 Installation default UPSI(00000000)

F2 0114 Installation default NOUSRHDLR()

F2 0114 Installation default XUFLOW(AUTO)

Figure 17. Sample of LE/CICS-Wide Options Printed to Console

46 LE/VSE: Programming Guide

Part 2. Preparing an Application to Run with LE/VSE

Chapter 6. Using LE/VSE Parameter List Formats 49

Understanding the Basics 49

Argument Lists and Parameter Lists 50

Passing Arguments between Routines 50

Preparing Your Main Routine to Receive Parameters 51

PL/I Argument-Passing Considerations 55

Chapter 7. Routines That Must Be Reentrant . . 57

Understanding the Basics 57

Making Your C Program Reentrant 57

Natural Reentrancy 57

Constructed Reentrancy 57

Generating a Reentrant C Object Module . . . 58

Making Your COBOL Routine Reentrant 58

Making Your PL/I Routine Reentrant 58

Installing a Reentrant Phase 58

Running an application is generally the same under LE/VSE as in earlier versions

of a language’s run-time. However, in order to take advantage of some of the

features that a common execution environment offers, you must consider a number

of different things when preparing an application to run in LE/VSE.

When running applications in LE/VSE, you must consider the target operating

environment. Currently, under VSE and CICS, the way that parameters are passed

differs. To ensure consistency, LE/VSE standardizes the parameters as much as

possible. It is therefore important for you to know what LE/VSE does to the

format to ensure this consistency. Parameter list format information is detailed in

Chapter 6, “Using LE/VSE Parameter List Formats,” on page 49 and Appendix B,

“Using Operating System and Subsystem Parameter List Formats,” on page 403.

In addition to describing parameter list formats, this part describes how to manage

return codes, and offers suggestions on how to make your LE/VSE-conforming

applications reentrant.

© Copyright IBM Corp. 1991, 2005 47

48 LE/VSE: Programming Guide

Chapter 6. Using LE/VSE Parameter List Formats

This chapter describes how to pass parameters to external routines under LE/VSE.

The methods described do not apply to internal routines or to compiled code that

invokes its own library routines. Each LE/VSE-conforming HLL might have its

own method for transferring control and passing arguments between internal

routines.

Understanding the Basics

When writing an LE/VSE-conforming application, it is important to consider how

parameters are passed to the application on invocation. The type of parameter list

passed to LE/VSE when an application is run varies according to whether you are

running in the batch environment or under CICS. In the batch environment,

LE/VSE repackages the parameter string specified in the EXEC statement so that

what is actually passed to the main routine is a halfword-prefixed character string.

If you set up your C, COBOL, or PL/I main routine according to the rules of the

language, you generally do not need to do anything special to receive parameters

from the operating system.

Under CICS or DL/I, however, the parameter format that is passed might be

different from what your main routine expects. In these cases, you must explicitly

code your main routine to accept the format of the parameters as they are passed

by CICS or DL/I.

“Preparing Your Main Routine to Receive Parameters” on page 51 contains

examples of how to code your main routine to receive parameters under any

supported operating system or subsystem.

Additionally, some HLLs such as C and PL/I provide options that enable you to

specify the format of the parameter list you expect to be passed to your main

routine. For example, C programmers can specify the PLIST run-time option,

which determines the parameter list format. Refer to one of the following for

information on which settings you should select to run an application:

For this type of application Refer to

Batch without DL/I Table 16 on page 52

Batch with DL/I Table 17 on page 53

CICS Table 18 on page 54

Assembler calling HLL Table 19 on page 54

When running most main routines, you do not need to explicitly access the

parameter list. In some cases, you might want to inquire about the parameters

passed to your main routine; LE/VSE provides the CEE5PRM callable service to do

this (see LE/VSE Programming Reference). In addition, C allows you to investigate

passed parameters using constructs within the HLL itself. For more information,

see “C Parameter Passing Considerations” on page 403.

© Copyright IBM Corp. 1991, 2005 49

Argument Lists and Parameter Lists

The terminology used to describe passing parameters to and from routines

currently differs among LE/VSE-conforming HLLs. Figure 18 summarizes the

terminology used with LE/VSE. In Figure 18, a calling routine passes an argument

list to a called routine. That same list is referred to as a parameter list when it is

received by the called routine. Under LE/VSE, the formats of the argument and

parameter lists are identical. The only difference between the two terms is whether

it is being used from the point of view of the calling or the called routine.

Passing Arguments between Routines

LE/VSE-conforming HLLs use the semantic terms by value and by reference for

passing arguments:

By value

Only the value of the object is passed. Any changes made by the called

routine to the argument value are not reflected in the calling routine.

By reference

The address of the object is passed. Changes made by the called routine to

the argument value are reflected in the calling routine.

Under LE/VSE you can pass arguments directly and indirectly as follows:

Direct The value of the argument is placed directly in the argument list body. You

cannot pass an argument by reference (direct).

Indirect

The body of the argument list contains a pointer to the argument value.

Table 14 summarizes the semantic terms by value and by reference and the direct

and indirect methods for passing arguments. The table shows what is passed to

routines.

 Table 14. Semantic Terms and Methods for Passing Arguments in LE/VSE

By Value By Reference

Direct The value of the object is passed Not allowed under LE/VSE

Indirect A pointer points to the value of an

object

A pointer points to the address of an

object

Figure 18. Call Terminology Refresher

50 LE/VSE: Programming Guide

Figure 19 illustrates these argument-passing styles. In Figure 19, register 1 (R1)

points to the value of an object, a pointer to the value of an object, or a pointer to

the address of an object.

 HLL semantics usually determine when data is passed by value or by reference.

LE/VSE supports argument-passing styles as shown in Table 15.

 Table 15. Default Passing Style per HLL

Language Default Argument

C By Value (Direct)

COBOL By Reference (Indirect) (COBOL BY REFERENCE)

By Value (Indirect) (COBOL BY CONTENT)

PL/I By Reference (Indirect)1

Notes:

1. However, when SYSTEM(CICS) or SYSTEM(DLI) is specified, PL/I VSE main procedures

assume by value (direct) for parameters. (See “PL/I Argument-Passing Considerations”

on page 55 for a discussion of OPTIONS(BYVALUE).)

PL/I also supports by value (indirect) (also known as by content), which you can obtain

by passing an argument in parentheses, for example, A in CALL X((A), B).

Preparing Your Main Routine to Receive Parameters

When coding a main routine to receive a parameter list from the operating system,

consider the following:

v The HLL in which your main routine is written.

HLL semantics determine how you code your main routine in order to receive a

parameter list.

v The method of main routine invocation.

You should consider the environment (batch without DL/I, batch with DL/I, or

CICS) in which your main routine is invoked.

v The compiler or run-time options that you must specify.

Figure 19. Argument-Passing Styles in LE/VSE

Chapter 6. Using LE/VSE Parameter List Formats 51

The settings of the C PLIST run-time option or the PL/I SYSTEM compiler

option that you must specify are based on the environment (batch without DL/I,

batch with DL/I, or CICS) in which your main routine is invoked, and you must

specify different settings accordingly.

The following tables summarize the various options to consider when preparing a

main routine to receive parameters in each environment:

For this type of application

Refer to

Batch without DL/I

Table 16

Batch with DL/I

Table 17 on page 53

CICS Table 18 on page 54

Assembler calling HLL

Table 19 on page 54

The tables also provide sample coding for each HLL.

 Table 16. Coding a Main Routine to Receive an Inbound Parameter List in Batch without DL/I

Language Recommended Options Setting Sample Main Routine Code

C Specify PLIST(HOST) run-time option. If not

specified, PLIST(HOST) is the default.

main(int argc, char * argv[])

{ ...
 }

COBOL No specific options required. IDENTIFICATION DIVISION. ...
DATA DIVISION. ...
LINKAGE SECTION.

 01 PARMDATA.

 02 STRINGLEN PIC 99 USAGE IS BINARY.

 02 STR.

 03 PARM-BYTE PIC X OCCURS 0 TO 80

 DEPENDING ON STRINGLEN. ...
PROCEDURE DIVISION USING PARMDATA. ...

PL/I Specify SYSTEM(VSE) compile-time option. *PROCESS SYSTEM(VSE);

 MYMAIN: PROC (A) OPTIONS (MAIN);

 DCL A CHAR(80) VARYING; ...

52 LE/VSE: Programming Guide

Table 17. Coding a Main Routine to Receive an Inbound Parameter List in Batch with DL/I

Language Recommended Options Setting Sample Main Routine Code

C Specify PLIST(OS) and ENV(DLI) run-time

option.

#pragma runopts(env(dli),plist(os))

#include <ims.h>

typedef struct {PCB_STRUCT(10)} PCB_10_TYPE;

main()

{

 PCB_STRUCT_8_TYPE *alt_pcb;

 PCB_10_TYPE *db_pcb;

 IO_PCB_TYPE *io_pcb; ...
}

COBOL No specific options required. IDENTIFICATION DIVISION. ...
DATA DIVISION. ...
 LINKAGE SECTION.

 01 PCB1.

 02

 01 PCB2.

 02
PROCEDURE DIVISION.

ENTRY ’DLITCBL’ USING PCB1, PCB2. ...

PL/I Specify SYSTEM(DLI) compile-time option. *PROCESS SYSTEM(DLI);

 MYMAIN: PROC (X,Y,Z) OPTIONS(MAIN);

 DCL (X,Y,Z) POINTER;

 DCL 1 PCB based (X), ...

Chapter 6. Using LE/VSE Parameter List Formats 53

Table 18. Coding a Main Routine to Receive an Inbound Parameter List in CICS

Language Recommended Options Setting Sample Main Routine Code

C Do not specify any PLIST option. argc = 1 and

argv[0] = transaction id.

main(int argc,char *argv[])

{ ...
}

COBOL No specific options required. IDENTIFICATION DIVISION. ...
DATA DIVISION. ...
 LINKAGE SECTION.

 01 DFHEIBLK. ...
 01 DFHCOMMAREA. ...
PROCEDURE DIVISION USING DFHEIBLK

 DFHCOMMAREA. ...

PL/I Specify SYSTEM(CICS) compile-time option. *PROCESS SYSTEM(CICS);

 MYMAIN: PROC (DFHEIPTR, DFHCOMMAREAPTR_PTR)

 OPTIONS(MAIN);

 /*pointer to EIB*/

 /*supplied by CICS translator*/

 DCL DFHEIPTR POINTER;

 /*pointer to commarea*/

 DCL DFHCOMMAREAPTR_PTR POINTER; ...

 Table 19. Coding a Main Routine to Receive an Inbound Parameter List in Batch. Method of invocation: Assembler

passing an arbitrary parameter list that LE/VSE is not to interpret.

Language Recommended Options Setting Sample Main Routine Code

C Specify PLIST(OS) run-time option. main()

{ access register 1 through __osplist; ...
 }

COBOL No specific options required. IDENTIFICATION DIVISION. ...
DATA DIVISION. ...
 LINKAGE SECTION.

 01 PARM1...

 01 PARM2... ...
PROCEDURE DIVISION USING PARM1, PARM2. ...

PL/I Specify SYSTEM(VSE) compile-time option and

NOEXECOPS procedure option.

*PROCESS SYSTEM(VSE);

 MYMAIN: PROC (PARM1,PARM2,...)

 OPTIONS (MAIN NOEXECOPS);

 DCL PARM1...

 DCL PARM2... ...

54 LE/VSE: Programming Guide

PL/I Argument-Passing Considerations

The PL/I OPTIONS option of both the PROCEDURE statement and ENTRY

declaration permits you to specify the mutually exclusive options BYVALUE and

BYADDR.

OPTIONS(BYVALUE)

Specifies that the PL/I procedure expects arguments to be passed to it by value

(direct). OPTIONS(BYVALUE) can be specified for external PROCEDURE

statements and ENTRY declarations. It applies to all arguments and argument

descriptors.

OPTIONS(BYADDR)

Specifies that the PL/I procedure expects arguments to be passed to it by

reference (indirect) or by value (indirect). OPTIONS(BYADDR) can be specified

for external PROCEDURE statements and for ENTRY declarations. It applies to

all arguments and argument descriptors.

OPTIONS(BYVALUE) cannot be specified for the following constructs:

v ENTRY statements:

 ENTRY(N) OPTIONS(BYVALUE); /* invalid */

v Declaration of a parameter:

 PROC(ARG1);

 DCL ARG1 FIXED BIN(31) BYVALUE; /* invalid */

Chapter 6. Using LE/VSE Parameter List Formats 55

v Parameter descriptor in an ENTRY declaration:

 DCL T ENTRY(FIXED BIN(31) BYVALUE) EXTERNAL; /* invalid */

All parameters, parameter descriptors, or return values must be specified with

either the POINTER or FIXED BIN(31) data type. Return values are passed back in

register 15.

OPTIONS(BYADDR) is the default unless the external procedure specifies

OPTIONS(MAIN) and is compiled with the SYSTEM(CICS) or SYSTEM(DLI)

compiler option. In this case, OPTIONS(BYVALUE) is the default. In general, you

should specify OPTIONS(BYVALUE) only for a main procedure compiled with the

SYSTEM(CICS) or SYSTEM(DLI) compiler option.

OPTIONS(BYVALUE) for a main procedure implies OPTIONS(NOEXECOPS).

PL/I does not support calls to routines that modify the body of an indirect

argument list built by PL/I compiled code.

56 LE/VSE: Programming Guide

Chapter 7. Routines That Must Be Reentrant

This chapter shows you how to make your application reentrant. Reentrancy allows

more than one user to share a single copy of an executable phase. If your

application is not reentrant, each application that calls your application must load

a separate copy of your application.

Understanding the Basics

The following applications must be reentrant:

v Routines to be loaded into the shared virtual area (SVA)

v Routines to be used with CICS

Your routine should be reentrant if it is a large routine that is likely to have

multiple concurrent users. Less storage is used if multiple users share the routine

concurrently. Reentrancy also offers some performance enhancement because there

is less paging to auxiliary storage.

If you want your routine to be reentrant, ensure that it does not alter any static

storage that is part of the executable phase. If the static storage is altered, the

routine is not reentrant and its results are unpredictable.

Making Your C Program Reentrant

Under C, reentrant programs can be categorized by their reentrancy type as

follows:

Natural reentrancy

The attribute of programs that contain no static external data (also known

as writable storage), that is, data that is external to the program.

Constructed reentrancy

The attribute of applications that contain external data and require

additional processing to become reentrant.

Natural Reentrancy

A C program is naturally reentrant if it contains no external data. In C, the

following are considered external data:

v Variables using the extern storage class

v Variables using the static storage class

v Writable strings

If your program contains no external data, compile it as you would normally and

install it in one of the locations listed in “Installing a Reentrant Phase” on page 58.

Constructed Reentrancy

Constructed reentrancy is achieved by running the object module produced by the

C compiler through the prelinker. The prelinker (described in more detail in

Chapter 3, “Prelinking an Application,” on page 11) concatenates compile-time

initialization information from one or more object modules into a single

initialization unit.

© Copyright IBM Corp. 1991, 2005 57

Programs with constructed reentrancy are split into two parts:

v A variable or nonreentrant part that contains external data

v A constant or reentrant part that contains executable code and constant data

Each user running the program receives a private copy of the first part, which is

mapped by the prelinker and is initialized at run time. The second part can be

shared across multiple partitions only if it is installed in the SVA.

Generating a Reentrant C Object Module

To generate a reentrant C object module, follow these steps:

1. If your program contains external data, compile your C source files using the

RENT compile-time option. See LE/VSE C Run-Time Programming Guide for

more information on RENT.

2. Use the prelinker to combine all input object modules into a single object

module.

Note: You cannot run an object module through the prelinker more than once.

You also can only link on the same platform you prelinked on.

3. To get the greatest benefit from reentrancy, link edit the object module and

install the phase in the SVA.

Making Your COBOL Routine Reentrant

If you intend to have multiple users execute a COBOL routine at the same time,

make it reentrant by specifying the RENT option when you compile it. For

information about specifying the RENT compiler option, see IBM COBOL for

VSE/ESA Programming Guide.

Making Your PL/I Routine Reentrant

If you intend to have multiple users execute a PL/I routine at the same time, make

it reentrant by specifying the REENTRANT procedure option when you code it.

For information about specifying the REENTRANT procedure option, see IBM PL/I

for VSE/ESA Language Reference.

Installing a Reentrant Phase

You will get the most benefits from reentrancy if you install your link-edited phase

in the SVA.

Your routine runs correctly if it is not installed in the SVA, but you can save

storage by installing the phase in the SVA.

Note: Installing a phase in the SVA requires that the system directory list (SDL) be

updated.

58 LE/VSE: Programming Guide

Part 3. Concepts, Services, and Models

Chapter 8. Initialization and Termination Under

LE/VSE 63

Understanding the Basics 63

LE/VSE Initialization 65

What Happens During Initialization 65

LE/VSE Termination 66

What Causes Termination 66

What Happens During Termination 67

Thread Termination 67

Enclave Termination 67

Process Termination 68

Managing Return Codes in LE/VSE 68

How the LE/VSE Enclave Return Code is

Calculated 68

PL/I Considerations 69

Setting and Altering User Return Codes 69

For C 69

For COBOL 69

For PL/I 69

How the Enclave Reason Code is Calculated 70

Termination Behavior for Unhandled Conditions . . 70

Determining the Abend Code 71

Abend Codes Generated by CEEBXITA . . . 71

Abnormal Termination Messages and Abend

Codes Generated by ABTERMENC(ABEND)

Run-Time Option 72

Program Interrupt Codes 73

Chapter 9. Program Management Model 75

Understanding the Basics 75

Program Management Model Terminology . . . 75

LE/VSE Terms and Their HLL Equivalents . . 75

Terminology for Data 76

Processes 77

Enclaves 77

The Enclave Defines the Scope of Language

Semantics 77

Additional Enclave Characteristics 78

Threads 79

The Full Language Environment Program

Management Model 79

Chapter 10. Stack and Heap Storage 81

Understanding the Basics 81

Stack Storage Overview 83

Tuning Stack Storage 84

COBOL Considerations 84

PL/I Storage Considerations 84

Heap Storage Overview 85

Heap IDs Recognized by the LE/VSE Heap

Manager 86

AMODE Considerations for Heap Storage . . . 87

Tuning Heap Storage 87

COBOL Considerations 87

Storage Performance Considerations 87

COBOL and LE/VSE Storage Considerations . . . 87

Dynamic Storage Services 89

Examples of Callable Storage Services 90

C Example of Building a Linked List 90

COBOL Example of Building a Linked List . . . 92

PL/I Example of Building a Linked List 94

C Example of Storage Management 96

COBOL Example of Storage Management . . . 98

PL/I Example of Storage Management 100

Chapter 11. LE/VSE Condition Handling

Introduction 103

Understanding the Basics 103

Related Run-Time Options and Callable Services 104

The Stack Frame Model 105

The Handle Cursor 106

The Resume Cursor 106

What Is a Condition in LE/VSE? 106

Steps in Condition Handling 107

Enablement Step 107

TRAP Effects on the Condition Handling

Process 108

LE/VSE Abends and the Enablement Step 108

Using XUFLOW and CEE5SPM to Enable

and Disable Hardware Conditions 108

Condition Step 109

Influencing Condition Handling with the

ERRCOUNT Run-Time Option 110

Termination Imminent Step 111

Processing the T_I_U Condition 112

Processing the T_I_S Condition 112

The Termination Imminent Step and the

TERMTHDACT Run-Time Option 113

CEESGL and the Termination Imminent Step 114

Invoking Condition Handlers 114

Responses to Conditions 116

Condition Handling Scenarios 116

Scenario 1: Simple Condition Handling 116

Scenario 2: Condition Handling with

User-Written Condition Handler Present for

T_I_U 118

Scenario 3: Condition Handling with

User-Written Condition Handler Present for

Divide-by-Zero Condition 119

Chapter 12. LE/VSE and HLL Condition

Handling Interactions 121

Understanding the Basics 121

C Condition Handling Semantics 121

Comparison of C-LE/VSE Terminology 122

Controlling Condition Handling in C 122

Using the signal() Function 123

Using the raise() Function 123

C atexit() Considerations 123

C Condition Handling Actions 124

C Condition Handling Examples 125

C Signal Representation of S/370 Exceptions 127

© Copyright IBM Corp. 1991, 2005 59

COBOL Condition Handling Semantics 128

COBOL Condition Handling Examples 129

Restrictions about Resuming Execution after an

IGZ Condition Occurs 131

IGZ Condition of Severity 2 or Greater . . . 131

COBOL STOP RUN Statement 131

Reentering COBOL Programs after Stack Frame

Collapse 131

Handling Fixed-Point and Decimal Overflow

Conditions 132

PL/I Condition Handling Semantics 132

PL/I Condition Handling Actions 132

Promoting Conditions to the PL/I ERROR

Condition 133

Mapping Non-PL/I Conditions to PL/I

Conditions 134

Additional PL/I Condition Handling

Considerations 134

PL/I Condition Handling Example 135

Chapter 13. Coding a User-Written Condition

Handler 137

Understanding the Basics 137

Types of Conditions You Can Handle 137

User-Written Condition Handler Interface using

CEEHDLR 138

Registering a User-Written Condition Handler

using USRHDLR 139

Nested Conditions 140

Nested Conditions in Applications Containing a

COBOL Program 140

Using LE/VSE Condition Handling with Nested

COBOL Programs 141

Examples with a Registered User-Written

Condition Handler 141

Handling a Divide-by-Zero Condition in C or

COBOL 141

C Handling a Divide-by-Zero Condition . . 143

COBOL Handling a Divide-by-Zero

Condition 145

Handling an Out-of-Storage Condition in C or

COBOL 148

C Examples Using CEEHDLR, CEEGTST,

CEECZST, and CEEMRCR 149

COBOL Examples Using CEEHDLR,

CEEGTST, CEECZST, and CEEMRCR . . . 153

Signaling and Handling a Condition in a C

Routine 158

Handling a Divide-by-Zero Condition in a

COBOL Program 160

Handling a Program Check in an Assembler

Routine 165

Chapter 14. Using Condition Tokens 171

Understanding the Basics 171

Understanding the Structure of the Condition

Token 172

The Effect of Coding the fc Parameter 173

Testing a Condition Token for Success 174

Testing Condition Tokens for Equivalence . . . 174

Testing Condition Tokens for Equality 175

The Effect of Omitting the fc Parameter 175

Using Symbolic Feedback Codes 175

Locating Symbolic Feedback Codes for

Conditions 175

Including Symbolic Feedback Code Files . . . 176

Examples Using Symbolic Feedback Codes . . 178

C 178

COBOL 179

PL/I 181

Condition Tokens for C Signals under C 182

LE/VSE-provided q_data Structure for Abends . . 182

Chapter 15. Using and Handling Messages . . 185

Understanding the Basics 185

Creating Messages 185

Creating a Message Source File 186

Using the CEEBLDTX Utility 189

Files Created by CEEBLDTX 190

Running the CEEBLDTX Utility 191

Running the CEEBLDTX Utility on VSE . . 191

Running the CEEBLDTX Utility on CMS . . 192

Assembling and Link-Editing the Message File 192

CEEBLDTX Error Messages 192

Creating a Message Module Table 195

Assigning Values to Message Inserts 196

Using Messages in Code 197

Interpreting Run-Time Messages 198

Specifying National Language 199

Handling Message Output 199

Using LE/VSE MSGFILE 199

Using C Input/Output Functions 200

Using COBOL Input/Output Statements . . . 201

Using PL/I Input/Output Statements 203

MSGFILE Considerations When Using PL/I . . 204

Examples Using Multiple Message Handling

Callable Services 205

C Example Illustrating Calls to CEEMOUT,

CEENCOD, CEEMGET, CEEDCOD, and

CEEMSG 205

COBOL Example Illustrating Calls to

CEEMOUT, CEENCOD, CEEMGET, CEEDCOD

and CEEMSG 207

PL/I Example Illustrating Calls to CEEMOUT,

CEENCOD, CEEMGET, CEEDCOD, and

CEEMSG 210

Chapter 16. Using Date and Time Services . . 213

Understanding the Basics 213

Working with Date and Time Services 214

Date Limits 214

Picture Character Terms and Picture Strings . . 215

Notation for Eras 215

Performing Calculations on Date and Time Values 216

Century Window Routines 216

National Language Support for Date and Time

Services 217

Examples Using Date and Time Callable Services 217

Examples Illustrating Calls to CEEQCEN and

CEESCEN 219

Calls to CEEQCEN and CEESCEN in C . . 219

Calls to CEEQCEN and CEESCEN in COBOL 220

60 LE/VSE: Programming Guide

Calls to CEEQCEN and CEESCEN in PL/I 221

Examples Illustrating Calls to CEESECS . . . 222

Calls to CEESECS in C 222

Calls to CEESECS in COBOL 223

Calls to CEESECS in PL/I 225

Examples Illustrating Calls to CEESECS and

CEEDATM 226

Calls to CEESECS and CEEDATM in C . . . 226

Calls to CEESECS and CEEDATM in COBOL 228

Calls to CEESECS and CEEDATM in PL/I 230

Examples Illustrating Calls to CEESECS,

CEESECI, CEEISEC, and CEEDATM 231

Calls to CEESECS, CEESECI, CEEISEC, and

CEEDATM in C 231

Calls to CEESECS, CEESECI, CEEISEC, and

CEEDATM in COBOL 233

Calls to CEESECS, CEESECI, CEEISEC, and

CEEDATM in PL/I 236

Example Illustrating Calls to CEEDAYS,

CEEDATE, and CEEDYWK 238

Calls to CEEDAYS, CEEDATE, and

CEEDYWK in C 238

Calls to CEEDAYS, CEEDATE, and

CEEDYWK in COBOL 240

Calls to CEEDAYS, CEEDATE, and

CEEDYWK in PL/I 243

Calls to CEECBLDY in COBOL 245

Chapter 17. National Language Support

Services 247

Understanding the Basics 247

Setting the National Language 248

Setting the Country Code 248

Euro Support 249

Combining National Language Support and Date

and Time Services 249

Calls to CEE5CTY, CEEFMDT, and CEEDATM

in C 249

Calls to CEE5CTY, CEEFMDT, and CEEDATM

in COBOL 252

Example Using CEE5CTY, CEEFMDT, and

CEEDATM in PL/I 254

Chapter 18. Locale Callable Services 257

Understanding the Basics 257

Developing Internationalized Applications 258

Examples of Using Locale Callable Services . . . 258

Examples Illustrating Calls to CEEFMON . . . 258

Calls to CEEFMON in COBOL 259

Calls to CEEFMON in PL/I 260

Examples Illustrating Calls to CEEFTDS . . . 261

Calls to CEEFTDS in COBOL 261

Calls to CEEFTDS in PL/I 263

Examples Illustrating Calls to CEELCNV and

CEESETL 264

Calls to CEELCNV and CEESETL in COBOL 264

Calls to CEELCNV and CEESETL in PL/I 266

Examples Illustrating Calls to CEEQDTC and

CEESETL 267

Calls to CEEQDTC and CEESETL in COBOL 267

Calls to CEEQTDC and CEESETL in PL/I 269

Examples Illustrating Calls to CEESCOL . . . 270

Calls to CEESCOL in COBOL 270

Calls to CEESCOL in PL/I 272

Examples Illustrating Calls to CEESETL and

CEEQRYL 273

Calls to CEESETL and CEEQRYL in COBOL 273

Calls to CEESETL and CEEQRYL in PL/I . . 275

Examples Illustrating Calls to CEEQRYL and

CEESTXF 276

Calls to CEEQRYL and CEESTXF in COBOL 276

Calls to CEEQRYL and CEESTXF in PL/I 278

Chapter 19. General Callable Services 281

CEE5DMP Callable Service 281

CEE5PRM Callable Service 282

CEE5PRML Callable Service 282

CEE5TSTG Callable Service 282

CEE5USR Callable Service 282

CEEGPID Callable Service 282

CEERAN0 Callable Service 283

CEETEST Callable Service 283

Examples of Using Basic Callable Services 283

Chapter 20. Math Services 287

Understanding the Basics 287

Call Interface to Math Services 289

Parameter Types: parm1 Type and parm2 Type 289

Examples of Calling Math Services 290

Calling CEESSLOG in C 290

Calling CEESSLOG in COBOL 291

Calling CEESSLOG in PL/I 292

Part 3. Concepts, Services, and Models 61

62 LE/VSE: Programming Guide

Chapter 8. Initialization and Termination Under LE/VSE

This chapter describes initialization and termination under LE/VSE. It describes

how you can customize your applications during initialization and termination by

using LE/VSE run-time options, callable services, and user exits. It includes

instructions on how to use return codes, abend codes, and VSE cancel codes to

respond to initialization and termination actions, as well as to conditions that

remain unhandled.

Understanding the Basics

Initialization and termination establish the state of various parts of the LE/VSE

program management model that supports multi-language applications. The

program management model describes three major entities of a program structure:

Process A collection of resources (code and data).

Enclave A collection of program units consisting of at least one main

routine.

Thread The basic unit of execution.

When you run a routine, LE/VSE initializes the run-time environment by creating

a process, an enclave, and an initial thread. You can modify initialization by

running a user exit, written either in assembler or in an HLL.

During termination, threads, enclaves, and processes are terminated. Through

LE/VSE’s run-time options and callable services for termination, you can control

how a thread, enclave, or process terminates. For example, you can control

whether an abend or a return code is generated from an application that

terminates with an unhandled condition of severity 2 or greater.

© Copyright IBM Corp. 1991, 2005 63

Related Options and Services

Run-Time Options

ABTERMENC

Specifies whether an enclave terminates with an abnormal

termination message (non-CICS environment) or abend (CICS

environment), or with a return code and a reason code when there is

an unhandled condition of severity 2 or greater

TERMTHDACT

Specifies the level of information that you want to receive after an

unhandled condition of severity 2 or greater causes a thread to

terminate

Callable Services

CEE5ABD

Terminates an enclave with or without clean-up

CEE5GRC

Returns the user enclave return code to your routine (along with

CEE5SRC, it allows you to use return code-based programming

techniques)

CEE5PRM and CEE5PRML

Returns to your routine the parameter string specified when your

application was invoked

CEE5SRC

Sets the user enclave return code, which is used to calculate the final

enclave return code at termination

User Exits

CEEBXITA

An assembler user exit for enclave initialization, and enclave and

process termination

CEEBINT

An HLL user exit (written in C, PL/I, or LE/VSE-conforming

assembler) called at enclave initialization

See Chapter 25, “Using Run-Time User Exits,” on page 319 for more

information on user exits.

Preinitialization Interface

CEEPIPI

CEEPIPI performs various initialization functions

See Chapter 27, “Using Preinitialization Services,” on page 363 for more

information on the preinitialization interface.

See LE/VSE Programming Reference for syntax information on run-time options

and callable services.

64 LE/VSE: Programming Guide

LE/VSE Initialization

During initialization, a process, an enclave, and then an initial thread are created.

You can affect initialization at the enclave level, by using either the assembler or

HLL user exits.

Process initialization sets up the framework to manage enclaves and initializes

resources that can be shared among enclaves. Enclave initialization creates the

framework to manage enclave-related resources and the threads that run within

the enclave. Thread initialization acquires a stack and enables the condition

manager for the thread.

What Happens During Initialization

When you run an application under LE/VSE, the following sequence of events

occurs:

1. LE/VSE runs the assembler user exit CEEBXITA.

CEEBXITA runs prior to initialization of the enclave. You can modify the

environment in which your application runs by:

v Specifying run-time options

v Listing VSE cancel codes, program-interruption codes, and user abend codes

to be exempted from normal LE/VSE condition handling

v Checking the values of program arguments
IBM provides a default version of CEEBXITA and several samples you can use

to customize your application to perform tasks such as enforcing a set of

run-time options for a particular environment. Because CEEBXITA runs before

any HLLs have been established, it is written in assembler language so that it

can establish parameters such as stack size and trap settings for the HLLs.

CEEBXITA can function as an application-specific or installation-wide exit. If

you customize CEEBXITA to do application-specific processing (for example,

checking values of program arguments), you must link the exit with the

application phase. (Conversely, installation-wide user exits must be linked with

the LE/VSE initialization library routines.)

An application-specific user exit has priority over an installation-wide exit, so

you can customize a user exit for a particular application without affecting the

installation default version.

For more information on the function and location of the CEEBXITA user exit,

see Chapter 25, “Using Run-Time User Exits,” on page 319.

2. LE/VSE examines the phase and initializes all languages identified in the

application.

Under LE/VSE, an interlanguage communication (ILC) application works as

shown in Figure 20 on page 66. Because all the language conventions are

already established and do not need to be initialized and terminated between

calls to other routines, the processing is significantly faster when using

LE/VSE-conforming HLLs.

Chapter 8. Initialization and Termination Under LE/VSE 65

Performance Consideration: LE/VSE initializes all languages included in an

application, regardless of whether all of them are

used. To optimize performance, include only

those languages your application actually uses.

3. LE/VSE runs the HLL user exit CEEBINT.

CEEBINT lets you perform tasks such as recording accounting statistics or

calling other user exits. You can write a customized version of CEEBINT in any

LE/VSE-conforming language except COBOL. COBOL applications can,

however, use CEEBINT written in another language.

IBM provides an object module default version of CEEBINT that consists

simply of an immediate return to the application. This default version is

automatically link-edited with your application unless you provide a

customized version of CEEBINT.

For more information on the function and location of the CEEBINT user exit,

see Chapter 25, “Using Run-Time User Exits,” on page 319.

LE/VSE Termination

LE/VSE termination provides services that restore the operating environment to its

original state after your application either runs to completion or terminates

abnormally. You can affect termination through the use of run-time options,

callable services, and user exits. You can also decide whether to use a return code

at termination or an abend, if a condition is unhandled with a severity code of 2 or

greater (see “Termination Behavior for Unhandled Conditions” on page 70 for

more information).

What Causes Termination

Under LE/VSE, an application terminates when any of the following conditions

occur:

v The last thread in the enclave terminates (which in turn terminates the enclave).

v An HLL construct issues a request for the termination of an enclave, for

example:

– C’s abort() function

– C’s raise(SIGTERM) function

– C’s exit() function

– COBOL’s STOP RUN statement

– PL/I’s STOP or EXIT statement
v The main routine in the enclave returns to its caller; that is, an implicit STOP is

performed. For example:

– COBOL’s GOBACK statement in a main program

– PL/I’s END or RETURN statement in a main procedure

– The end of a C main() function

 LE/VSE-The Common Run-Time Environment

 HLL1 Routine HLL2 Routine

 .

 Call HLL2 ───────5 work, work, work

 . =────── Return to HLL1

 .

 .

 Exit

Figure 20. LE/VSE ILC—Only One Run-Time Environment to Initialize

66 LE/VSE: Programming Guide

v An abend is requested by the application (that is, the application calls

CEE5ABD).

v An unhandled condition of severity 2 or greater occurs (see “Termination

Behavior for Unhandled Conditions” on page 70).

What Happens During Termination

The following sequence of events occurs during termination:

1. C atexit() functions are invoked, if present. They are not invoked if abnormal

termination occurs.

2. PL/I FINISH ON-units are invoked if established.

3. For normal termination, the enclave return code is set (see “Managing Return

Codes in LE/VSE” on page 68). For abnormal termination caused by an

unhandled condition of severity 2 or greater, either a return code and reason

code is returned, or an abnormal termination message (non-CICS environment)

or abend (CICS environment) is generated, based on settings specified in

CEEBXITA (see “Termination Behavior for Unhandled Conditions” on page 70).

4. CEEBXITA is invoked for enclave termination after all application code has

completed, but before any enclave resources are relinquished.

You can modify CEEBXITA to request an abend and a dump. Because the

environment is still active, the dump accurately reflects the state of the

environment before an enclave is terminated.

5. The environment is terminated:

v All enclaves are terminated

v All enclave resources are returned to the operating system

v Any files that LE/VSE manages are closed

v The debug tool is terminated, if active
6. CEEBXITA is invoked for process termination after the environment is

terminated. You can modify CEEBXITA to close files, request an abend, or

request a dump. A dump requested at this point, however, does not have the

degree of detail that one requested during enclave termination has.

CEEBXITA is not invoked for process termination if there is an unhandled

condition of severity 2 or greater, or if CEEBXITA requests an abend during

enclave termination.

For more information on the CEEBXITA assembler user exit, see Chapter 25,

“Using Run-Time User Exits,” on page 319.

Depending on the setting of the TERMTHDACT run-time option, you might

receive a message, a trace of the active routines, or a dump when a condition of

severity 2 or greater occurs. See LE/VSE Programming Reference for more

information on TERMTHDACT.

Thread Termination

A thread terminating is analogous to an enclave terminating, because LE/VSE

Version 1 Release 4 supports only single threads. See “Enclave Termination” for

information on enclave termination.

Enclave Termination

When an enclave terminates, LE/VSE releases resources allocated on behalf of the

enclave and performs various other activities including the following:

v Calls HLL-specific termination routines for HLLs that were active during the

running of the program

v Runs LE/VSE user-written condition handlers, if present

Chapter 8. Initialization and Termination Under LE/VSE 67

v Deletes phases loaded by LE/VSE

v Frees all storage obtained by LE/VSE services

v Calls the CEEBXITA assembler user exit for enclave termination

v Frees LE/VSE control blocks for the enclave

v Depending on the setting in the HLL or assembler user exit, LE/VSE sets a

return code and reason code or generates an abnormal termination message

(non-CICS environment) or abend (CICS environment)

v Restores the program mask and registers to preinitialization values

v Returns control to the enclave creator

Process Termination

Process termination occurs when the last enclave in the process terminates. Process

termination deletes the structure that kept track of the enclaves within the process,

releases the process control block (PCB) and associated resources, and returns

control to the creator of the process.

Because LE/VSE Version 1 Release 4 generally supports a single enclave running

within a single process, termination of the enclave means that your application has

terminated. For exceptions to the single enclave within a single process and an

enclave return and reason code being returned to the invoker, see Chapter 28,

“Using Nested Enclaves,” on page 393.

LE/VSE explicitly relinquishes all resources it obtains. Routines that obtain

resources directly from the host system must explicitly relinquish the resource. If

these resources are not explicitly released, the environment can be corrupted

because LE/VSE has no method for releasing these resources.

Managing Return Codes in LE/VSE

This section discusses how LE/VSE calculates and uses return codes and reason

codes during enclave termination. (The return codes between subroutine calls that

are implemented with programming language constructs are addressed in the

appropriate language-specific programming guides.)

Before LE/VSE, some HLLs handled conditions that occur in the run-time

environment by using a return code-based model. Such a model typically allows

return codes to be passed between called subroutines and from the main routine

back to the operating system to communicate the status of requested operations.

LE/VSE, on the other hand, uses a condition-based model to communicate

conditions, as described in Chapter 14, “Using Condition Tokens,” on page 171.

Although LE/VSE supports applications that rely on passing return codes from

called subroutines and checking these return codes, you are encouraged to use

LE/VSE condition handling mechanisms, such as user-written condition handlers,

instead.

How the LE/VSE Enclave Return Code is Calculated

When an enclave terminates, LE/VSE provides an LE/VSE enclave return code

and an enclave reason code (sometimes called a return code modifier). The

LE/VSE enclave return code is calculated by summing the user return code

generated by the HLL (see “Setting and Altering User Return Codes” on page 69)

and the enclave reason code (see “How the Enclave Reason Code is Calculated” on

page 70) as follows:

LE/VSE enclave return code = user return code + enclave reason code

68 LE/VSE: Programming Guide

The LE/VSE enclave return code is placed in register 15, and the enclave reason

code is placed in register 0.

PL/I Considerations

The severities of some PL/I conditions have been redefined from what they were

in the pre-LE/VSE-conforming version of PL/I. See IBM PL/I for VSE/ESA

Migration Guide for detailed information on the changes.

Setting and Altering User Return Codes

User return codes can be set and altered by the CEE5SRC callable service and by

language constructs. The user return code value is based on the reason an enclave

terminates and the language of the routine that initiates termination, as follows:

For C

When a C routine terminates an enclave normally by reaching the end of the

main() function, the user return code value is 0 (assuming the return type of the

main() function is int). When a C routine terminates an enclave with a language

construct such as exit(n) or return(n), the value of n is used. In either case, any

user return codes set through CEE5SRC are ignored; likewise, in an ILC

application, any user return codes set with PL/I language constructs are also

ignored.

If the enclave terminates due to an unhandled condition of severity 2 or greater,

the user return code value used is the last one set by either CEE5SRC or, in an ILC

application, PL/I language constructs. If neither CEE5SRC nor PL/I language

constructs set the user return code, the user return code value is 0. See

“Termination Behavior for Unhandled Conditions” on page 70 for information on

unhandled conditions.

See LE/VSE C Run-Time Programming Guide for more information about C language

constructs.

For COBOL

When a COBOL program initiates enclave termination, such as with a STOP RUN

statement in a subprogram or a GOBACK statement in a main program, the user

return code value is taken from the RETURN-CODE special register; any user

return codes set through CEE5SRC are ignored. Likewise, in an ILC application,

any user return codes set with PL/I language constructs are also ignored. Thus,

you can set and alter the user return code and pass it across program boundaries

in register 15. See IBM COBOL for VSE/ESA Programming Guide for more details on

the RETURN-CODE special register and COBOL language constructs.

If the enclave terminates due to an unhandled condition with severity 2 or greater,

the RETURN-CODE special register is not used in the enclave return code

calculation. Instead, the user return code value used is the last one set by either

CEE5SRC or, in an ILC application, PL/I language constructs. If neither CEE5SRC

nor PL/I language constructs have been used to set the user return code, the user

return code value is 0. See “Termination Behavior for Unhandled Conditions” on

page 70 for information on unhandled conditions.

For PL/I

You can set and alter the user return code with the PLIRETC function or the

OPTIONS(RETCODE) attribute. The PLIRETV function retrieves the current value

of the user return code.

Chapter 8. Initialization and Termination Under LE/VSE 69

When a PL/I routine initiates enclave termination, such as with a STOP or EXIT

statement in a subroutine or with a RETURN or END statement in a main

procedure, the user return code is the value set with the PLIRETC function or the

OPTIONS(RETCODE) attribute. However, CEE5SRC can alter the user return code

set with PLIRETC or the OPTIONS(RETCODE) attribute. If CEE5SRC was the last

method used to set the user return code, the value set by CEE5SRC is used as the

user return code.

If the enclave terminates due to an unhandled condition with severity 2 or greater,

the user return code value set last (with either PL/I constructs or CEE5SRC) is

used in the calculation of the enclave return code; if one has not been set, the user

return code value is 0. See “Termination Behavior for Unhandled Conditions” for

information on unhandled conditions.

See IBM PL/I for VSE/ESA Language Reference for details on PL/I language

constructs.

How the Enclave Reason Code is Calculated

The enclave reason code provides additional information in support of the enclave

return code. LE/VSE calculates the enclave reason code by multiplying a severity

code that indicates how an enclave terminated by 1000.

The severity code is initially set to 0, indicating normal enclave termination. If the

Termination_Imminent due to STOP (T_I_S) condition is signaled, it is set to 1. If

the enclave terminates due to an unhandled condition of severity 2 or greater, the

enclave reason code is set according to the severity of the unhandled condition that

caused the enclave to terminate, as shown in Table 20. For more information about

LE/VSE conditions and severity codes, see Table 28 on page 111.

Table 20 contains a summary of the enclave reason code produced when an enclave

terminates. The condition severity column indicates the reason code for the original

condition.

 Table 20. Summary of Enclave Reason Codes

Condition Severity Meaning

Enclave

Reason Code

0 Normal application termination 0

Severity 1 condition Termination_Imminent due to STOP 1000

Unhandled severity 2 condition Error — abnormal termination 2000

Unhandled severity 3 condition Severe error — abnormal termination 3000

Unhandled severity 4 condition Critical error — abnormal

termination

4000

Termination Behavior for Unhandled Conditions

When there is an unhandled condition of severity 2 or greater, you can choose

whether an enclave terminates with an abnormal termination message (non-CICS

environment) or abend (CICS environment), or with a return code and a reason

code. LE/VSE will assign an abend code and return and reason codes, as described

in this section, or you can assign values yourself, as described in “Setting and

Altering User Return Codes” on page 69.

See Table 28 on page 111 for a discussion of conditions and how they are handled

in LE/VSE.

70 LE/VSE: Programming Guide

Some users, especially those using COBOL, expect to receive an abend when an

error is detected rather than a return code and a reason code. To get this behavior,

they can use the ABTERMENC(ABEND) run-time option discussed in “Abnormal

Termination Messages and Abend Codes Generated by ABTERMENC(ABEND)

Run-Time Option” on page 72. Other users, however, expect to receive a return

code and a reason code when there is an error.

If you are running in a CICS environment, the IBM-supplied default is to terminate

the enclave with an abend for unhandled conditions of severity 2 or greater.

If you are running in a non-CICS environment, the IBM-supplied default is to

terminate with a return code and reason code for unhandled conditions of severity

2 or greater. If you want the enclave to terminate with an abend, you can use the

ABTERMENC(ABEND) run-time option or the CEEBXITA assembler user exit. The

default version of CEEBXITA for non-CICS environments requests that the enclave

terminate with a return code and a reason code.

Table 21 shows the various types of enclave termination that occur based on the

ABTERMENC run-time option settings and the CEEAUE_ABND flag settings of

CEEBXITA. See “CEEBXITA Assembler User Exit Interface” on page 323 for an

explanation of the CEEAUE_ABND flag.

 Table 21. Termination Behavior for Unhandled Conditions of Severity 2 or Greater

ABTERMENC

Suboption

Value of CEEAUE_ABND

Flag Enclave Termination Enclave Termination Type

RETCODE 0 Return to caller with return code and

reason code

RETCODE 1 Abend using CEEAUE_RETURN and

CEEAUE_REASON

ABEND 0 Abend using the abnormal termination

messages (non-CICS environment) or

abend codes (CICS environment) listed in

Table 23 on page 72

ABEND 1 Abend using CEEAUE_RETURN and

CEEAUE_REASON

Determining the Abend Code

You can choose the abend code you want LE/VSE to use, based on whether the

abend is requested by the assembler user exit or whether the

ABTERMENC(ABEND) run-time option is used.

Abend Codes Generated by CEEBXITA

When you request an abend through CEEBXITA, the values contained in certain

fields of the exit are used for the abend code and the reason code. Table 22 shows

the abend codes used by LE/VSE when CEEBXITA requests an abend and does

not modify the CEEAUE_RETURN code field.

 Table 22. Abend Codes Used by LE/VSE when the Assembler User Exit Requests an Abend

Condition

Severity

User Return

Code Abend Code in VSE Abend Code in CICS

2 0 Abnormal termination

message CEE3322C, user

abend 2000

Transaction abend 2000

Chapter 8. Initialization and Termination Under LE/VSE 71

Table 22. Abend Codes Used by LE/VSE when the Assembler User Exit Requests an

Abend (continued)

Condition

Severity

User Return

Code Abend Code in VSE Abend Code in CICS

3 0 Abnormal termination

message CEE3322C, user

abend 3000

Transaction abend 3000

4 0 Abnormal termination

message CEE3322C, user

abend 4000

Transaction abend 4000

Abnormal Termination Messages and Abend Codes Generated by

ABTERMENC(ABEND) Run-Time Option

LE/VSE terminates the enclave with an abnormal termination message (non-CICS

environment) or the same abend code that caused the unhandled condition of

severity 2 or greater (CICS environment) if both of the following are true:

v You use the ABTERMENC(ABEND) run-time option.

v The assembler user exit does not alter the CEEAUE_ABND flag setting.

Table 23 shows the abnormal termination message, abend code, and reason code

used when the enclave terminates due to the various unhandled conditions of

severity 2 or greater and ABTERMENC(ABEND) is specified in both CICS and

non-CICS environments.

 Table 23. Abend Code Values Used by LE/VSE with ABTERMENC(ABEND)

Unhandled

Condition

Abnormal Termination Message

and/or Abend Code Abend Reason Code1

System-generated

abend

In an non-CICS environment,

abnormal termination message

CEE3321C and the VSE cancel

code

In a CICS environment, the

original abend code

User-generated

abend

In an non-CICS environment,

abnormal termination message

CEE3322C and the original abend

code

In a CICS environment, the

original abend code

In non-CICS environment, the

original abend reason code

Program interrupt In a non-CICS environment,

abnormal termination message

CEE3321C and the interruption

code (see “Program Interrupt

Codes” on page 73)

In a CICS-environment, an ASRA

abend code

Software-raised

condition

In a non-CICS environment,

abnormal termination message

CEE3322C and user abend code

4038

In a CICS environment,

transaction 4038 abend

In a non-CICS environment, X'1'

72 LE/VSE: Programming Guide

Table 23. Abend Code Values Used by LE/VSE with ABTERMENC(ABEND) (continued)

Unhandled

Condition

Abnormal Termination Message

and/or Abend Code Abend Reason Code1

Note:

1. In a CICS environment, when an abend is issued, only the abend code is returned. CICS

does not return an abend reason code.

Program Interrupt Codes

A program interrupt can cause an unhandled condition of severity 2 or greater.

When running with the ABTERMENC(ABEND) run-time option:

v In a CICS environment, an abend code of ASRA is issued for a program

interrupt.

v In a non-CICS environment, abnormal termination message CEE3321C,

containing VSE cancel code 20 and one of the program interrupt codes shown in

Table 24, is issued for a program interrupt.

 Table 24. Program Interrupt Codes in a Non-CICS Environment

Program Interrupt Interrupt Code

Operation exception 01

Privileged operation exception 02

Execute exception 03

Protection exception 04

Segment translation exception (note 1) 04

Page translation exception (note 2) 04

Addressing exception 05

Specification exception 06

Data exception 07

Fixed-point overflow exception 08

Fixed-point divide exception 09

Decimal overflow exception 0A

Decimal divide exception 0B

Exponent overflow exception 0C

Exponent underflow exception 0D

Significance exception 0E

Floating-point divide exception 0F

Notes:

1. The operating system issues program interrupt code 04 for segment translation program

interrupts.

2. The operating system issues program interrupt code 04 for page translation program

interrupts.

Chapter 8. Initialization and Termination Under LE/VSE 73

74 LE/VSE: Programming Guide

Chapter 9. Program Management Model

Now that you have been introduced to how applications run in LE/VSE, you need

to understand the Language Environment model, the model of program

management under which LE/VSE operates. Understanding the model helps you

recognize equivalent entities across LE/VSE-conforming programming languages

and predict how your single- and mixed-language applications run. This chapter

provides an overview of the Language Environment model.

The Language Environment program management model supports the language

semantics of applications that run in the common run-time environment and

defines the way routines or programs are put together to form an application.

LE/VSE Implementation Information

This release of LE/VSE implements a subset of the program management

model. Features not supported in LE/VSE Version 1 Release 4 are clearly

indicated in this manual.

Understanding the Basics

The Language Environment program management model has three basic

entities—the process, enclave, and thread, each of which LE/VSE creates whenever

you run a routine. This section describes each of these entities and their

relationship to program management.

Program Management Model Terminology

Some terms used to describe the program management model are common

programming terms; others have meanings that are specific to a given language. It

is important that you understand the meaning of the program management model

terminology LE/VSE uses and how it compares with existing languages. For more

detailed definitions of these and other LE/VSE terms, please consult the

“Language Environment Glossary” on page 417.

LE/VSE Terms and Their HLL Equivalents

Process

The highest level of the Language Environment program management

model; a collection of resources, both program code and data, consisting of

at least one enclave.

Enclave

The enclave defines the scope of HLL semantics. In LE/VSE, a collection of

routines, one of which is designated as the main routine. The enclave

contains at least one thread.

 Equivalent HLL terms: COBOL—run unit, C—program consisting of a

main C function and its subroutines, PL/I—main procedure and all its

subprocedures.

Thread

An execution entity that consists of synchronous invocations and

terminations of routines. The thread is the basic run-time path within the

© Copyright IBM Corp. 1991, 2005 75

Language Environment program management model; dispatched by the

system with its own run-time stack, instruction counter, and registers.

Routine

In LE/VSE, either a procedure, function, or subroutine.

 Equivalent HLL terms: COBOL—program, C—function, PL/I—procedure,

BEGIN/END block.

Terminology for Data

Automatic data

Data that does not persist across calls; it is allocated with the same value

on entry and reentry into a routine.

External data

Data with one or more named points by which the data can be referenced

by other program units and data areas. External data is known throughout

an enclave.

Local data

Data known only to the routine in which it is declared; equivalent to local

data in C, WORKING-STORAGE in COBOL, and data with the PL/I

INTERNAL attribute (whether implicitly, or by explicit declaration).

 Figure 21 shows the simplest form of the Language Environment program

management model and the resources that each component controls. Refer to the

figure as you read about the program management model.

Figure 21. Program Management Model Illustration of Resource Ownership

76 LE/VSE: Programming Guide

Processes

A process is a collection of resources, both application code and data, consisting of

one or more related enclaves (described in the next section). The process is the

outermost or highest level run-time component of the common run-time

environment. The resources maintained at the process level do not affect the

language semantics of an application running at the enclave level.

The LE/VSE library is an example of the type of resource that is maintained at the

process level. The LE/VSE library is loaded at process initialization, although it

could be loaded for any of the individual enclaves within the process at enclave

initialization. The process is used in the same way by all enclaves created within

the process. It has no effect on the HLL semantics of applications running within

each of the enclaves.

Each process has an address space that is logically separate from those of other

processes. Except for communications with each other using certain LE/VSE

mechanisms, no resources are shared between processes; processes do not share

storage, for example. A process can create other processes. However, all processes

are independent of one another; they are not hierarchically related.

LE/VSE Implementation Information

Although the Language Environment program model supports applications

consisting of one or more processes, LE/VSE Version 1 Release 4 supports

only a single process for each application that runs in the common run-time

environment.

Enclaves

A key feature of the program management model is the enclave, which consists of

one or more phases, each containing one or more separately compiled, bound

routines. A phase can include HLL routines, assembler routines, and LE/VSE

routines.

The Enclave Defines the Scope of Language Semantics

By definition, the scope of a language statement is that portion of code in which it

has semantic effect. The enclave defines the scope of the language semantics for its

component routines, just as a COBOL run unit defines the scope of semantics of a

COBOL program. Scope encompasses names, external data sharing, and control

statements such as C’s exit(), COBOL’s STOP RUN, and PL/I’s STOP and EXIT

statements.

The Enclave Defines the Scope of the Definition of the Main Routine and

Subroutines: The enclave boundary defines whether a routine is a main routine or

a subroutine. The first routine to run in the enclave is known as the main routine in

LE/VSE. All others are designated subroutines of the main routine.

The first routine invoked in the enclave must be capable of being designated main

according to the rules of the language of the routine. For example, a main routine

in an LE/VSE-conforming PL/I application would be the PROC OPTIONS (MAIN)

routine. All other routines invoked in the enclave must be capable of being a

subroutine according to the rules of the languages of the routines.

Chapter 9. Program Management Model 77

If a routine is capable of being invoked as either a main or subroutine, and

recursive invocations are allowed according to the rules of the language, the

routine can be invoked multiple times within the enclave. The first of these

invocations could be as a main routine and the others as subroutines.

The Enclave Defines the Scope and Visibility of the Following Types of Data:

v Automatic data: Automatic data is allocated with the same value on entry and

reentry into a routine if it has been initialized to that value in the semantics of

the language used, for example, data declared using the PL/I INIT() option.

Values of the data at exit from the routine are not retained for the next entry

into the routine. The scope of automatic data is a routine invocation within an

enclave.

v External data: External data persists over the lifetime of an enclave and retains

last-used values whenever a routine is reentered. The scope of external data is

that of the enclosing enclave; all routines invoked within the enclave recognize

the external data. Examples are C data objects of extern storage class, COBOL

data items defined with the EXTERNAL attribute, and PL/I data declared as

EXTERNAL.

v Local data: The scope of local data is that of the enclosing enclave; however,

local data is recognized only by the routine that defines it. Examples are any C

or PL/I variable with block scope and COBOL WORKING-STORAGE.

The Enclave Defines the Scope of Language Statements: The enclave defines the

scope of language statements—for example, those that stop execution of the

outermost routine within an enclave. C’s exit(), COBOL’s STOP RUN, and PL/I’s

STOP and EXIT statements are examples of such statements. When one of these

statements is executed, the main routine within the enclave terminates. Thus, the

enclave defines the scope of the language statements.

Prior to returning, resources obtained by the routines in the enclave are released

and any open files (other than the LE/VSE message file) are closed.

Additional Enclave Characteristics

Management of Resources: The enclave manages most LE/VSE resources, such

as the thread and heap storage, other than the message file (which is managed as a

process-level resource). Heap storage, for example, is shared among all threads

within an enclave. Allocated heap storage remains allocated until explicitly freed or

until the enclave terminates. None of the enclave-managed resources is shared

between enclaves.

LE/VSE Implementation Information

Multiple Enclaves: Although the Language Environment program

management model supports multiple enclaves within a single process,

LE/VSE Version 1 Release 4 provides explicit support for only a single

enclave within a single process. Under some circumstances, however, multiple

enclaves can exist within a single process. A description of how to create

multiple, or nested, enclaves can be found in Chapter 28, “Using Nested

Enclaves,” on page 393.

78 LE/VSE: Programming Guide

Threads

Within each enclave is a thread, the basic run-time path represented by the machine

state; conditions raised during execution are isolated to that run-time path.

Threads share all of the resources of an enclave and therefore do not need to

selectively create or load new copies of resources, code, or data. Although a thread

does not own its storage, it can address all storage within the enclave. All threads

are independent of one another and are not related hierarchically. A thread is

dispatched with its own run-time stack, instruction counter, registers, and

condition handling mechanisms.

Because threads operate with unique run-time stacks, they can run concurrently

within an enclave and allocate and free their own storage. Concurrent, or parallel,

processing, is useful when code is event-driven, or for improving the performance

of a large application.

LE/VSE Implementation Information

Multiple Threads: Although the full Language Environment program

management model supports multiple threads within an enclave, LE/VSE

Version 1 Release 4 supports only a single thread within an enclave.

The Full Language Environment Program Management Model

Figure 22 on page 80 illustrates the relationship between the various entities that

make up the Language Environment program management model.

As Figure 22 on page 80 shows, each process consists of one or more enclaves. An

enclave consists of one main routine with any number of subroutines. External

data is available only within the enclave in which it resides. External data items

that happen to be identically named in different enclaves reference distinct storage

locations; the scope of external data, as described earlier, is the enclave. The

threads can create enclaves, which can create more threads, and so on.

Chapter 9. Program Management Model 79

Figure 22. Overview of the Full Language Environment Program Management Model

80 LE/VSE: Programming Guide

Chapter 10. Stack and Heap Storage

LE/VSE provides services that control the stack and heap storage used at run time.

LE/VSE-conforming HLLs and assembler routines use these services for all storage

requests.

Understanding the Basics

LE/VSE provides the following types of storage:

Stack storage

Stack storage is automatically created by LE/VSE and is used for routine

linkage and automatic storage. Refer to “Stack Storage Overview” on page

83 for more information.

Heap storage

Heap storage is dynamically allocated at a routine’s first request for storage

that has a lifetime not related to the execution of the current routine. You

can control allocation and freeing of heap storage using LE/VSE callable

services. Refer to “Heap Storage Overview” on page 85 for more

information.

Table 25 summarizes the ways in which LE/VSE-conforming languages use stack

and heap storage.

 Table 25. Usage of Stack and Heap Storage by LE/VSE-Conforming Languages

Language Stack Heap

C Automatic variables

Library routines

Variable allocated by:

 malloc function

 calloc function

 realloc function

 Static external (RENT)

COBOL Intrinsic functions

Library routines

WORKING-STORAGE variables

PL/I Automatic variables

Library routines

BASED variables

CONTROLLED variables

AREA variables

Variables allocated by ALLOCATE

 statement

The remainder of this section further discusses stack and heap storage concepts

and terminology.

© Copyright IBM Corp. 1991, 2005 81

Related Options and Services

Run-Time Options

ANYHEAP

Allocates library (HLL and LE/VSE) heap storage above or below

16MB

BELOWHEAP

Allocates library heap storage below 16MB

HEAP Allocates storage for user-controlled dynamically allocated variables

LIBSTACK

Used by library routine stack frames that must be below 16MB

RPTSTG

Generates a storage report

STACK

Used by library routine stack frames that can reside anywhere in

storage

STORAGE

Controls the initial content and amount of storage reserved for the

out-of-storage condition

Callable Services

CEECRHP

Defines additional heaps

CEECZST

Changes the size of a previously allocated heap element

CEEDSHP

Discards an entire heap created with CEECRHP

CEEFRST

Frees storage allocated by CEEGTST or an intrinsic language function

CEEGTST

Gets storage from a heap whose ID you specify

CEE5RPH

Sets the heading displayed at the top of the storage options report

See LE/VSE Programming Reference for syntax information on run-time options

and callable services.

82 LE/VSE: Programming Guide

Stack Storage Overview

Stack

2 storage

3 is the storage provided by LE/VSE that is needed for routine

linkage and any automatic storage. It is allocated on entry to a routine or block,

and freed on the subsequent return. It is a contiguous area of storage obtained

directly from the operating system. Stack storage is automatically provided at

thread initialization and is available in the user stack

2.

The user stack is used by both library routines and compiled code. Stack storage is

also available in the library stack, which is an independent area of stack storage,

allocated below the 16MB line, designed to be used only by library routines.

A storage stack is a data structure that supports procedure or block invocation (call

and return). It is used to provide both the storage required for the application

initialization and any automatic storage used by the called routine. Each thread has

a separate and distinct stack.

The storage stack is divided into large segments of storage called stack segments,

which are further divided into smaller segments called stack frames

3, also known

as dynamic storage areas (DSAs). A stack frame, or DSA, is dynamically acquired

storage composed of a register save area and an area available for dynamic storage

allocation for items such as program variables. Stack frames are added to the user

stack when a routine is entered, and removed upon exit in a last in, first out

(LIFO) manner. Stack frame storage is acquired during the execution of a program

and is allocated every time a procedure, function, or block is entered, as, for

example, when a call is made to an LE/VSE callable service, and is freed when the

procedure or block returns control.

The first segment used for stack storage is called the initial stack segment. When the

initial stack segment becomes full, a second segment, or stack increment is obtained

from the operating system. As each succeeding stack increment becomes full,

another is obtained from the operating system as needed. The size of the initial

stack segment and the size of the increments are specified by the init_size and

incr_size parameters of the STACK run-time option. If the STACK option is not

specified, LE/VSE uses the installation default or application default as the initial

stack segment size (see LE/VSE Programming Reference for more information on

using the STACK run-time option).

Figure 23 on page 84 shows the LE/VSE stack storage model.

2. The term stack, as used in this chapter refers to the user stack, which is an independent area of stack storage that can be located

above or below the 16MB line, designed to be used by both library routines and compiled code.

3. All references to stack storage and stack frame in this chapter are to real storage allocation, as opposed to invocation stack, which

refers to a conceptual stack.

Chapter 10. Stack and Heap Storage 83

Tuning Stack Storage

For best performance, the initial stack segment should be large enough to satisfy

all requests for stack storage. The LE/VSE storage report generated by the

RPTSTG(ON) option (see LE/VSE Programming Reference) shows you how much

stack storage is being used, the total number of segments allocated to the stack,

and the recommended values for the STACK run-time option. An initial stack

segment that is too large can waste storage and degrade overall system

performance, especially under CICS where storage is limited.

You can tune stack storage by using the LE/VSE STACK run-time option; see

LE/VSE Programming Reference for syntax information.

Note: RPTSTG(ON), as well as the STORAGE run-time option (see LE/VSE

Programming Reference) can have a negative impact upon the performance of

your application, because as the application runs, statistics are kept on

storage requests. Therefore, always specify the IBM-supplied default setting

RPTSTG(OFF) when running production jobs. Use RPTSTG(ON) and

STORAGE only when debugging and/or tuning applications.

COBOL Considerations

Ensure that your COBOL applications are not link-edited with the VS COBOL II

space management tuning module, IGZETUN. IGZETUN is not supported by

LE/VSE and causes an informational message to be logged. Logging this message

for each application inhibits performance.

PL/I Storage Considerations

PL/I automatic storage is provided by the LE/VSE user stack. Automatic storage

above the 16MB line is supported under control of the LE/VSE STACK run-time

option. When the LE/VSE user stack is above 16MB, PL/I temporaries (dummy

arguments) and parameter lists (for reentrant/recursive blocks) also reside above

16MB. As long as the application is AMODE(31), STACK(,,ANY) is supported. The

stack frame size for an individual block is constrained to 16MB. This means the

size of an automatic aggregate, temporary variable, or dummy argument cannot

exceed 16MB.

Figure 23. LE/VSE Stack Storage Model

84 LE/VSE: Programming Guide

Heap Storage Overview

Heap storage is used to allocate storage that has a lifetime not related to the

execution of the current routine; it remains allocated until you explicitly free it or

until the enclave terminates. You can control allocation and freeing of heap storage

using LE/VSE callable services, and tune heap storage using the LE/VSE HEAP

run-time option; consult LE/VSE Programming Reference for details.

Heap storage is shared among all program units and all threads in an enclave. Any

thread can free heap storage. You can free one element at a time with the CEEFRST

callable service, or you can free all heap elements at once using CEEDSHP. You

cannot, however, discard the initial heap.

Storage can be allocated or freed with any of the HLL storage facilities, such as the

C malloc() and calloc() functions or the PL/I ALLOCATE statement, along with

the LE/VSE storage services. For HLLs with no intrinsic function for storage

management, such as COBOL, you can use the LE/VSE storage services.

Heap storage (sometimes referred to simply as a ‘heap’) is a collection of one or

more heap segments comprised of an initial heap segment, which is dynamically

allocated at the first request for heap storage, and, as needed, one or more heap

increments, allocated as additional storage is required. The initial heap is provided

by LE/VSE and does not require a call to the CEECRHP service. The initial heap is

identified by heap_id=0. It is also known as the user heap. See Figure 24 on page 86

for an illustration of LE/VSE heap storage.

Heap segments, which are contiguous areas of storage obtained directly from the

operating system, are subdivided into individual heap elements. Heap elements are

obtained by a call to the CEEGTST service, and are allocated within each segment

of the initial heap by the LE/VSE storage management routines. When the initial

heap segment becomes full, LE/VSE gets another segment, or increment, from the

operating system.

The size of the initial heap segment is governed by the init_size parameter of the

HEAP run-time option. (See LE/VSE Programming Reference.) The incr_size

parameter governs the size of each heap increment.

A named heap is set up specifically by a call to the CEECRHP service, which returns

an identifier when the heap is created. Additional heaps can also be created and

controlled by calls to CEECRHP.

Additional heaps provide a means of isolating logical groups of data. Use

additional heaps when you need to group storage objects together so they can be

freed at once (with a single call to CEEDSHP), rather than freed one element at a

time (with calls to CEEFRST).

Library routines occasionally use a heap called the library heap for storage below

16MB. The size of this heap is controlled by the BELOWHEAP run-time option.

The library heap and the BELOWHEAP run-time option have no relation to heaps

created by CEECRHP. If an application program creates a heap using CEECRHP,

library routines never use that heap (except, of course, the storage management

library routines CEEGTST, CEEFRST, CEECZST, and CEEDSHP). The library heap

can be tuned with the BELOWHEAP run-time option.

Chapter 10. Stack and Heap Storage 85

Note: The LE/VSE anywhere heap and below heap are reserved for run-time

library usage only. Application data and variables are not kept in these

heaps. You normally should not adjust the size of these heaps unless the

storage report indicates excessive segments allocated for the anywhere or

below heaps, or if too much storage has been allocated.

You can use the LE/VSE STORAGE option to diagnose the use of uninitialized and

freed storage.

See Chapter 5, “Using Run-Time Options,” on page 33 and LE/VSE Programming

Reference for more information on using LE/VSE run-time options.

Figure 24 shows the LE/VSE heap storage model.

Heap IDs Recognized by the LE/VSE Heap Manager

Table 26 lists LE/VSE heaps and their respective purposes.

 Table 26. Heap IDs Recognized by LE/VSE Heap Manager

Heap Name Heap ID Intended Purpose Created By Disposed By

Initial heap User

heap

0 Application program data.

Common heap used by language

intrinsic functions and COBOL

WORKING-STORAGE data

items. CEEDSHP has no effect

on the initial heap. COBOL

access is by LE/VSE callable

services.

Enclave initialization. Size

and location determined

from HEAP run-time

option.

Enclave

termination

Additional heaps

and user heap

(Returned

by

CEECRHP)

Collections of application

program data that can be

quickly disposed with a single

CEEDSHP call.

Call to CEECRHP.

Arguments define heap

size, location, and other

characteristics.

Call to CEEDSHP

Enclave

termination

Figure 24. LE/VSE Heap Storage Model

86 LE/VSE: Programming Guide

AMODE Considerations for Heap Storage

The initsz24 and incrsz24 parameters of the HEAP run-time option control the

initial size and subsequent increments of heap storage allocated below the 16MB

line. This storage is required for AMODE(24) applications running with the

ALL31(OFF) and HEAP(,,ANYWHERE) run-time options in effect.

For example, suppose the initial heap segment is allocated above 16MB. If an

AMODE(24) routine requests storage from this initial heap, LE/VSE must allocate

a heap segment from below the 16MB line so that the AMODE(24) routine can

address the storage.

Tuning Heap Storage

For best performance, the initial heap segment should be large enough to satisfy all

requests for heap storage. The LE/VSE storage report generated by the

RPTSTG(ON) run-time option (see LE/VSE Programming Reference) shows you how

much heap storage is being used, the total number of segments allocated to the

heap, and the recommended values for the HEAP, ANYHEAP, and BELOWHEAP

run-time options.

Note: RPTSTG(ON), as well as the STORAGE run-time option (see LE/VSE

Programming Reference) can have a negative impact on the performance of

your application. Therefore, always specify the IBM-supplied default setting

RPTSTG(OFF) when running production jobs. Use RPTSTG(ON) and

STORAGE(NONE,NONE,NONE) only to debug applications.

COBOL Considerations

Ensure that your COBOL applications are not link-edited with the VS COBOL II

space management tuning module, IGZETUN. IGZETUN is not supported by

LE/VSE and causes an informational message to be logged. Logging this message

for each application inhibits performance.

Storage Performance Considerations

Use the RPTSTG(ON) option to generate a report about the amount of storage

your application uses in various LE/VSE storage classes (such as STACK, HEAP,

and LIBSTACK). You can also use the report to determine your application’s

minimum storage requirements and the number of segments allocated and freed.

You can use this information to tune your application to minimize the number of

segments allocated and freed. Before putting your application into production, be

sure to specify the RPTSTG(OFF) option so that no storage report is generated.

RPTSTG(ON) can have a negative impact on the performance of your application,

because as the application runs, statistics are kept on storage requests.

COBOL and LE/VSE Storage Considerations

Table 27 on page 88 shows the interactions between using the ALL(31) run-time

option and whether your COBOL routine is coded as reentrant or non-reentrant.

Chapter 10. Stack and Heap Storage 87

Table 27. COBOL Storage Usage

If you specify ...

LE/VSE Run-Time

Option

COBOL Compiler

RENT Option

COBOL Compiler

DATA Option

The effect on storage is ...

ALL31(ON)

RENT DATA(31)

This usage scenario minimizes the amount of storage

allocated below the 16MB line.

Control Blocks: As many of the control blocks as

possible are placed above the 16MB line in ANYHEAP

storage.

Working Storage (non-external data): allocated from

HEAP storage above the 16MB line.

Working Storage (external data): allocated from HEAP

storage above the 16MB line.

ALL31(ON)

RENT DATA(24)

Control Blocks: Same as above.

Working Storage (non-external data): allocated from

HEAP storage below the 16MB line.

Working Storage (external data): allocated from HEAP

storage below the 16MB line.

ALL31(ON)

NORENT1 DATA(31)

Control Blocks: Same as above.

Working Storage (non-external data): is part of the

application phase. HEAP storage is not allocated for

this.

Working Storage (external data): allocated from HEAP

storage above the 16MB line.

ALL31(ON)

NORENT1 DATA(24)

Control Blocks: Same as above.

Working Storage (non-external data): is part of the

application phase. HEAP storage is not allocated for

this.

Working Storage (external data): allocated from HEAP

storage below the 16MB line.

ALL31(OFF)

RENT DATA(31)

Control Blocks: Some control blocks allocated in

ANYHEAP when ALL31 is ON are allocated in

BELOWHEAP.

Working Storage (non-external data): allocated from

HEAP storage above the 16MB line.

Working Storage (external data): allocated from HEAP

storage below the 16MB line.

ALL31(OFF)

RENT DATA(24)

Control Blocks: Same as above.

Working Storage (non-external data): allocated from

HEAP storage below the 16MB line.

Working Storage (external data): allocated from HEAP

storage below the 16MB line.

88 LE/VSE: Programming Guide

Table 27. COBOL Storage Usage (continued)

If you specify ...

LE/VSE Run-Time

Option

COBOL Compiler

RENT Option

COBOL Compiler

DATA Option

The effect on storage is ...

ALL31(OFF)

NORENT DATA(31)

Control Blocks: Same as above.

Working Storage (non-external data): is part of the

application phase. HEAP storage is not allocated for

this.

Working Storage (external data): allocated from HEAP

storage above the 16MB line.

ALL31(OFF)

NORENT DATA(24)

Control Blocks: Same as above.

Working Storage (non-external data): is part of the

application phase. HEAP storage is not allocated for

this.

Working Storage (external data): allocated from HEAP

storage below the 16MB line.

Note:

1. When you link-edit a COBOL program compiled with the NORENT compiler option, the default addressing

mode of the link-edited phase is AMODE(ANY). This might result in your program being invoked in 24-bit

addressing mode. In order to specify the LE/VSE ALL31(ON) run-time option, your program must be invoked in

31-bit addressing mode. Therefore, you should link-edit your application as AMODE(31). You can use the MODE

linkage editor control statement to override the default addressing mode.

Dynamic Storage Services

LE/VSE provides callable services that let you get and free heap storage at selected

points in your application. Stack storage is automatically allocated upon entry into

a routine and freed upon exit, but you must allocate heap storage, which persists

until you free it or until your application terminates.

Each time your application runs, the setting of the HEAP run-time option specifies

the size of an initial heap from which heap storage is allocated. You can allocate

storage out of this initial heap whenever your application requires it. Call

CEEGTST (Get Heap Storage) and specify an ID identifying the initial heap and

the portion of storage in the initial heap that you require. When your application

no longer requires the storage, you can call the CEEFRST (Free Heap Storage)

service with the address of the element to free it.

CEECRHP (Create New Additional Heap) allows you to identify a heap, other than

the initial heap, from which to get and free storage. You can use CEEGTST to

allocate elements from the newly created heap. One advantage of this approach is

that CEECRHP allows you to group storage elements together and to use

CEEDSHP (Discard Heap) to discard them all at once when you no longer need

them.

For a description and syntax of each LE/VSE dynamic storage callable service, see

LE/VSE Programming Reference.

Chapter 10. Stack and Heap Storage 89

Examples of Callable Storage Services

This section contains examples that use callable services. The first group of

examples use CEEGTST and CEEFRST to build a linked list. The second group of

examples use CEE5RPH, CEECRHP, CEEGTST, CEECZST, CEEFRST, and

CEEDSHP to manage storage.

C Example of Building a Linked List

The following is an example of how to build a linked list in a C program using

callable services.

/*Module/File Name: EDCLLST */

 /**

 **FUNCTION : CEEGTST - obtain storage from user heap *

 ** for a linked list. *

 ** : CEEFRST - free linked list storage *

 ** *

 ** This example illustrates the construction of a linked *

 ** list using the LE/VSE storage management services. *

 ** *

 ** 1. Storage for each list element is allocated from the *

 ** user heap, *

 ** 2. The list element is initialized and appended to the *

 ** list. *

 ** 3. After three members are appended, the list traversed *

 ** and the count saved in each element is displayed. *

 ** 4. The link list storage is freed. *

 ** *

 **/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <leawi.h>

#include <ceeedcct.h>

void main ()

{

 _INT4 HEAPID;

 _INT4 HPSIZE;

 _INT4 LCOUNT;

 _FEEDBACK FC;

 _POINTER ADDRSS;

 struct LIST_ITEM

 { _INT4 COUNT;

 struct LIST_ITEM *NEXT_ITEM;

 } ;

 struct LIST_ITEM *ANCHOR;

 struct LIST_ITEM *CURRENT;

 _INT4 NBYTES = sizeof(struct LIST_ITEM);

 printf ("\n**********************************\n");

 printf ("\nCESCSTO C Example is now in motion\n");

 printf ("\n**********************************\n");

 ANCHOR = NULL;

 for (LCOUNT = 1; LCOUNT < 4; LCOUNT++)

 {

Figure 25. C Example Using CEEGTST and CEEFRST to Build a Linked List (Part 1 of 2)

90 LE/VSE: Programming Guide

/***

 * Call CEEGTST to get storage from user heap *

 ***/

 CEEGTST (&HEAPID , &NBYTES , &ADDRSS , &FC);

 if ((_FBCHECK (FC , CEE000) == 0) && ADDRSS != 0)

 /* **

 * If storage is gotten successfully, the linked *

 * list elements are pointed to by the pointer *

 * variable CURRENT. Append element to the end of *

 * the list. The list origin is pointed to by the *

 * variable ANCHOR. *

 * **/ {

 if (ANCHOR == NULL)

 {

 ANCHOR =(struct LIST_ITEM *) ADDRSS;

 }else{

 CURRENT -> NEXT_ITEM =(struct LIST_ITEM *)ADDRSS;

 }

 CURRENT =(struct LIST_ITEM *) ADDRSS;

 CURRENT -> NEXT_ITEM = NULL;

 CURRENT -> COUNT = LCOUNT;

 }else{

 printf ("Error in getting user storage\n");

 }

 }

 /***

 * On completion of the above loop, we have the *

 * following layout: *

 * *

 * ANCHOR --> LIST-ITEM1 --> LIST-ITEM2 --> LIST-ITEM3*

 * *

 * Loop thru list items 1 thru 3 and print out the *

 * identifying item number saved in the COUNT field. *

 * *

 * Test the LCOUNT variable to verify that three items *

 * were indeed in the linked list. *

 ***/

 CURRENT = ANCHOR;

 while (CURRENT)

 {

 printf("This is list item %d\n", CURRENT->COUNT) ;

 ADDRSS = CURRENT;

 LCOUNT = CURRENT -> COUNT;

 CURRENT = CURRENT -> NEXT_ITEM;

 /***

 * Call CEEFRST to free this piece of storage *

 ***/

 CEEFRST (&ADDRSS , &FC);

 if (_FBCHECK (FC , CEE000) == 0)

 {

 }else{

 printf ("Error freeing storage from heap\n");

 }

 }

 if (LCOUNT == 3)

 {

 printf ("\n********************************\n");

 printf ("\nC linked list example ended.\n");

 printf ("\n********************************\n");

 exit(0);

 }else{

 printf ("Error in constructing linked list\n");

 }

 exit(-1);

}

Figure 25. C Example Using CEEGTST and CEEFRST to Build a Linked List (Part 2 of 2)

Chapter 10. Stack and Heap Storage 91

COBOL Example of Building a Linked List

The following is an example of how to build a linked list in a COBOL program

using callable services.

 CBL C,LIB,RENT,LIST,APOST

 *Module/File Name: IGZTLLST

 ** CESCSTO - Drive CEEGTST - obtain storage from user heap for a linked list. *

 ** and CEEFRST - free linked list storage *

 ** *

 ** This example illustrates the construction of a linked list using the *

 ** LE storage management services. *

 ** *

 ** 1. Storage for each list element is allocated from the user heap, *

 ** *

 ** 2. The list element is initialized and appended to the list. *

 ** *

 ** 3. After three members are appended, the list traversed and the data *

 ** saved in each element is displayed. *

 ** *

 ** 4. The link list storage is freed. *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CESCSTO.

 DATA DIVISION.

 ** Storage management parameters, including pointers **

 ** for the returned storage addresses. **

 WORKING-STORAGE SECTION.

 01 LCOUNT PIC 9 USAGE DISPLAY VALUE 0.

 01 HEAPID PIC S9(9) BINARY VALUE 0.

 01 NBYTES PIC S9(9) BINARY.

 01 FC.

 05 FILLER PIC X(8).

 COPY CEEIGZCT.

 05 FILLER PIC X(4).

 01 ADDRSS USAGE IS POINTER VALUE NULL.

 01 ANCHOR USAGE IS POINTER VALUE NULL.

 ** Define variables in linkage section in order to **

 ** reference storage returned as addresses in **

 ** pointer variables by Language Environment. **

 LINKAGE SECTION.

 01 LIST-ITEM.

 05 CHARDATA PIC X(80) USAGE DISPLAY.

 05 NEXT-ITEM USAGE IS POINTER.

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.

 DISPLAY ’**************************************’.

 DISPLAY ’CESCSTO COBOL Example is now in motion. ’.

 DISPLAY ’**************************************’.

 MOVE LENGTH OF LIST-ITEM TO NBYTES

 PERFORM 3 TIMES

 ADD 1 TO LCOUNT

 CALL ’CEEGTST’ USING HEAPID , NBYTES,

 ADDRSS , FC

Figure 26. COBOL Example Using CEEGTST and CEEFRST to Build a Linked List (Part 1 of

2)

92 LE/VSE: Programming Guide

 ** If storage is gotten successfully, an address is returned by LE in the *

 ** ADDRSS parameter. The address of variable LIST-ITEM in the linkage section *

 ** can now be SET to address the aquired storage. LIST-ITEM is appended to the*

 ** end of the list. The list origin is pointed to by the variable ANCHOR. *

 IF CEE000 THEN

 IF ANCHOR = NULL THEN

 SET ANCHOR TO ADDRSS

 ELSE

 SET NEXT-ITEM TO ADDRSS

 END-IF

 SET ADDRESS OF LIST-ITEM TO ADDRSS

 SET NEXT-ITEM TO NULL

 MOVE ’ ’ TO CHARDATA

 STRING ’This is list item number ’ LCOUNT

 DELIMITED BY SIZE INTO CHARDATA

 ELSE

 DISPLAY ’Error in obtaining storage from heap’

 GOBACK

 END-IF

 END-PERFORM.

 ** On completion of the above loop, we have the **

 ** following layout: **

 ** **

 ** ANCHOR --> LIST-ITEM1 --> LIST-ITEM2 --> LIST-ITEM3 **

 ** **

 ** Loop thru list items 1 thru 3 and print out the **

 ** identifying text written in the CHARDATA fields. **

 ** **

 ** Test a counter variable to verify that three items **

 ** were indeed in the linked list. **

 MOVE 0 TO LCOUNT.

 PERFORM WITH TEST AFTER UNTIL (ANCHOR = NULL)

 SET ADDRESS OF LIST-ITEM TO ANCHOR

 DISPLAY CHARDATA

 SET ADDRSS TO ANCHOR

 SET ANCHOR TO NEXT-ITEM

 PERFORM 100-FREESTOR

 ADD 1 TO LCOUNT

 END-PERFORM.

 IF (LCOUNT = 3)

 THEN

 DISPLAY ’**************************************’

 DISPLAY ’CESCSTO COBOL Example is now ended. ’

 DISPLAY ’**************************************’

 ELSE

 DISPLAY ’Error in List construction .’

 END-IF.

 GOBACK.

 100-FREESTOR.

 * Call CEEFRST to free this storage from user heap **

 CALL ’CEEFRST’ USING ADDRSS , FC.

 IF CEE000 THEN

 NEXT SENTENCE

 ELSE

 DISPLAY ’Error freeing storage from heap’

 END-IF.

Figure 26. COBOL Example Using CEEGTST and CEEFRST to Build a Linked List (Part 2 of

2)

Chapter 10. Stack and Heap Storage 93

PL/I Example of Building a Linked List

The following is an example of how to build a linked list in a PL/I program using

callable services.

*PROCESS MACRO;

*Process lc(101),opt(0),s,map,list,stmt,a(f),ag ;

 /**/

 /*Module/File Name: IBMLLST */

 /**/

 /** **/

 /** FUNCTION : CEEGTST - obtain storage from user **/

 /** heap for a linked list. **/

 /** : CEEFRST - free linked list storage **/

 /** **/

 /** This example illustrates the construction of **/

 /** a linked list using the LE/VSE storage **/

 /** management services. **/

 /** **/

 /** 1. Storage for each list element is **/

 /** allocated from the user heap, **/

 /** **/

 /** 2. The list element is initialized and **/

 /** appended to the list. **/

 /** **/

 /** 3. After three members are appended, the **/

 /** list traversed and the data saved in **/

 /** each element is displayed. **/

 /** **/

 /** 4. The link list storage is freed. **/

 /** **/

 /**/

 CESCSTO: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 /**/

 DCL NULL BUILTIN;

 /**/

 /* Storage management parameters, including */

 /* pointers for the returned storage addresses. */

 /**/

 DCL HEAPID INT4 INIT (0); /* heap ID for user heap */

 DCL NBYTES INT4 /* size of required heap */

 INIT (STORAGE(LIST_ITEM));

 DCL 01 FC FEEDBACK;

 DCL ADDRSS POINTER, /* Address of storage */

 PREV POINTER; /* Address of prior item */

 DCL ANCHOR POINTER; /* Link list anchor */

 /**/

 /* Declare linked list item as based structure. */

 /**/

 DCL 01 LIST_ITEM BASED(ADDRSS), /* Map of list item */

 02 CHARDATA CHAR(80),

 02 NEXT_ITEM POINTER;

 PUT SKIP LIST(’***’);

 PUT SKIP LIST(’PL/I linked list example is now in motion’);

 PUT SKIP LIST(’***’);

 ANCHOR = NULL;

 DO LCOUNT = 1 TO 3;

Figure 27. PL/I Example Using CEEGTST and CEEFRST to Build a Linked List (Part 1 of 2)

94 LE/VSE: Programming Guide

/**/

 /* Call CEEGTST to get storage from user heap */

 /**/

 CALL CEEGTST (HEAPID, NBYTES, ADDRSS, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /**/

 /* If storage is obtained successfully, the */

 /* linked list elements are based on the */

 /* address of the storage obtained. Append */

 /* element to end of list. The list origin */

 /* is pointed to by the variable ANCHOR. */

 /**/

 IF (ANCHOR = NULL) THEN

 ANCHOR = ADDRSS;

 ELSE

 PREV ->NEXT_ITEM = ADDRSS;

 NEXT_ITEM = NULL;

 CHARDATA = ’This is list item number ’ || LCOUNT;

 PREV = ADDRSS;

 END;

 ELSE DO;

 PUT SKIP LIST (’Error ’ || FC.MsgNo

 || ’ in getting user storage’);

 STOP;

 END;

 END;

 /***/

 /* On completion of the above loop, we have the */

 /* following layout: */

 /* */

 /* ANCHOR -> LIST_ITEM1 -> LIST_ITEM2 -> LIST_ITEM3 */

 /* */

 /* Loop thru list items 1 thru 3 and print out the */

 /* identifying text written in the CHARDATA fields. */

 /* */

 /* Test a counter variable to verify that three */

 /* items were indeed in the linked-list. */

 /***/

 ADDRSS = ANCHOR;

 LCOUNT = 0;

 DO UNTIL (ADDRSS = NULL);

 PUT SKIP LIST(CHARDATA);

 /***/

 /* Call CEEFRST to free this piece of storage */

 /***/

 CALL CEEFRST (ADDRSS, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 LCOUNT = LCOUNT + 1;

 END;

 ELSE DO;

 PUT SKIP LIST (’Error’ || FC.MsgNo

 || ’ freeing storage from heap’);

 STOP;

 END;

 ADDRSS = NEXT_ITEM;

 END;

 IF LCOUNT = 3 THEN DO;

 PUT SKIP LIST(’**************************************’);

 PUT SKIP LIST(’PL/I linked list example is now ended.’);

 PUT SKIP LIST(’**************************************’);

 END;

 END CESCSTO;

Figure 27. PL/I Example Using CEEGTST and CEEFRST to Build a Linked List (Part 2 of 2)

Chapter 10. Stack and Heap Storage 95

C Example of Storage Management

The following is an example of how to manage storage for a C program using

callable services.

/*Module/File Name: EDCSTOR */

/**/

/* */

/* Function : CEE5RPH - Set report heading */

/* : CEECRHP - Create user heap */

/* : CEEGTST - Obtain storage from user heap */

/* : CEECZST - Change size of this piece of storage */

/* : CEEFRST - Free this piece of storage */

/* : CEEDSHP - Discard user heap */

/* */

/* This example illustrates the invocation of the LE/VSE */

/* Dynamic Storage Callable Services from a C program. */

/* */

/* 1. A report heading is set for display at the beginning */

/* of the storage or options report. */

/* */

/* 2. A user heap is created. */

/* */

/* 3. Storage is allocated from the user heap. */

/* */

/* 4. A change is made to the size of the allocated storage.*/

/* */

/* 5. The allocated storage is freed. */

/* */

/* 6. The user heap is discarded. */

/* */

/***/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <leawi.h>

#include <ceeedcct.h>

void main ()

{

 _CHAR80 RPTHEAD;

 _INT4 HEAPID;

 _INT4 HPSIZE;

 _INT4 NBYTES;

 _INT4 INCR;

 _INT4 OPTS;

 _INT4 STORALC;

 _POINTER ADDRSS;

 _FEEDBACK FC;

 printf ("\n**********************************\n");

 printf ("\nCE90STO C Example is now in motion\n");

 printf ("\n**********************************\n");

 memset (RPTHEAD , ’ ’ , 80);

 memcpy (RPTHEAD , "User defined report heading" , 27);

 /***

 * Call CEE5RPH to set the user defined report heading *

 ***/

 CEE5RPH (RPTHEAD , &FC);

 if (_FBCHECK (FC , CEE000) != 0)

 printf ("Error in setting report heading\n");

Figure 28. C Example Illustrating Calls to CEE5RPH, CEECRHP, CEEGTST, CEECZST,

CEEFRST, and CEEDSHP (Part 1 of 2)

96 LE/VSE: Programming Guide

/***

 * Call CEECRHP to create a user heap *

 ***/

 HEAPID = 0;

 HPSIZE = 1;

 INCR = 0;

 OPTS = 0;

 STORALC = 0;

 CEECRHP (&HEAPID , &HPSIZE , &INCR , &OPTS , &FC);

 if (_FBCHECK (FC , CEE000) == 0)

 {

 /***

 * Call CEEGTST to get storage from user heap *

 ***/

 NBYTES = 4000;

 CEEGTST (&HEAPID , &NBYTES , &ADDRSS , &FC);

 if ((_FBCHECK (FC , CEE000) == 0) && ADDRSS != 0)

 {

 /***

 * Call CEECZST to change size of heap element *

 ***/

 NBYTES = 2000;

 CEECZST (&ADDRSS , &NBYTES , &FC);

 if (_FBCHECK (FC , CEE000) == 0)

 {

 STORALC = 1;

 }else{

 printf ("Error in changing size of storage\n");

 }

 }else{

 printf ("Error in getting user storage\n");

 }

 }else{

 printf ("Error in creating user heap\n");

 }

 if (STORALC != 0)

 {

 /***

 * Call CEEFRST to free this piece of storage *

 ***/

 CEEFRST (&ADDRSS , &FC);

 if (_FBCHECK (FC , CEE000) == 0)

 {

 /***

 * Call CEEDSHP to discard user heap *

 ***/

 CEEDSHP (&HEAPID , &FC);

 if (_FBCHECK (FC , CEE000) == 0)

 {

 printf ("C Storage Example ended\n");

 exit(0);

 }else{

 printf ("Error discarding user heap\n");

 }

 }else{

 printf ("Error freeing storage from heap\n");

 }

 }

 exit(-1);

}

Figure 28. C Example Illustrating Calls to CEE5RPH, CEECRHP, CEEGTST, CEECZST,

CEEFRST, and CEEDSHP (Part 2 of 2)

Chapter 10. Stack and Heap Storage 97

COBOL Example of Storage Management

The following is an example of how to manage storage for a COBOL program

using callable services.

CBL LIB,APOST

 *Module/File Name: IGZTSTOR

 **

 ** CE90STO - Call the following LE services:

 ** : CEE5RPH - Set report heading

 ** : CEECRHP - Create user heap

 ** : CEEGTST - obtain storage from user heap

 ** : CEECZST - change size of this piece of storage

 ** : CEEFRST - free this piece of storage

 ** : CEEDSHP - discard user heap

 ** This example illustrates the invocation of the LE

 ** Dynamic Storage Callable Services from a COBOL program.

 **

 ** 1. A report heading is set for display at the beginning

 ** of the storage or options report.

 **

 ** 2. A user heap is created.

 **

 ** 3. Storage is allocated from the user heap.

 **

 ** 4. A change is made to the size of the allocated storage.

 **

 ** 5. The allocated storage is freed.

 **

 ** 6. The user heap is discarded.

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CE90STO.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 RPTHEAD PIC X(80).

 01 HEAPID PIC S9(9) BINARY.

 01 HPSIZE PIC S9(9) BINARY.

 01 INCR PIC S9(9) BINARY.

 01 OPTS PIC S9(9) BINARY.

 01 ADDRSS USAGE IS POINTER.

 01 NBYTES PIC S9(9) BINARY.

 01 NEWSIZE PIC S9(9) BINARY.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.

 DISPLAY ’**************************************’.

 DISPLAY ’CE90STO COBOL Example is now in motion. ’.

 DISPLAY ’**************************************’.

 MOVE ’User defined report heading’ TO RPTHEAD.

Figure 29. COBOL Example Illustrating Calls to CEE5RPH, CEECRHP, CEEGTST,

CEECZST, CEEFRST and CEEDSHP (Part 1 of 2)

98 LE/VSE: Programming Guide

 * Call CEE5RPH to set the user defined report heading

 CALL ’CEE5RPH’ USING RPTHEAD, FC.

 IF NOT CEE000 THEN

 DISPLAY ’Error in setting Report Heading’

 GOBACK

 END-IF.

 * Call CEECRHP to create a user heap

 MOVE 0 TO HEAPID.

 MOVE 1 TO HPSIZE.

 MOVE 0 TO INCR.

 MOVE 0 TO OPTS.

 CALL ’CEECRHP’ USING HEAPID, HPSIZE, INCR, OPTS, FC.

 IF CEE000 of FC THEN

 * Call CEEGTST to get storage from user heap

 MOVE 4000 TO NBYTES

 CALL ’CEEGTST’ USING HEAPID, NBYTES, ADDRSS, FC

 IF CEE000 of FC THEN

 * Call CEECZST to change the size of heap element

 MOVE 2000 TO NEWSIZE

 CALL ’CEECZST’ USING ADDRSS, NEWSIZE, FC

 IF CEE000 of FC THEN

 PERFORM 100-FREE-ALL

 DISPLAY ’COBOL Storage example pgm ended’

 ELSE

 DISPLAY ’Error in changing size of storage’

 END-IF

 ELSE

 DISPLAY ’Error in obtaining storage from heap’

 END-IF

 ELSE

 DISPLAY ’Error in creating user heap’

 END-IF.

 GOBACK.

 100-FREE-ALL.

 * Call CEEFRST to free this storage from user heap

 CALL ’CEEFRST’ USING ADDRSS, FC.

 IF CEE000 of FC THEN

 * Call CEEDSHP to discard user heap

 CALL ’CEEDSHP’ USING HEAPID, FC

 IF CEE000 THEN

 NEXT SENTENCE

 ELSE

 DISPLAY ’Error discarding user heap’

 END-IF

 ELSE

 DISPLAY ’Error freeing storage from heap’

 END-IF.

Figure 29. COBOL Example Illustrating Calls to CEE5RPH, CEECRHP, CEEGTST,

CEECZST, CEEFRST and CEEDSHP (Part 2 of 2)

Chapter 10. Stack and Heap Storage 99

PL/I Example of Storage Management

The following is an example of how to manage storage for a PL/I program using

callable services.

*PROCESS MACRO;

 /***/

 /*Module/File Name: IBMSTOR */

 /***/

 /* FUNCTION : CEE5RPH - set report heading */

 /* : CEECRHP - create user heap */

 /* : CEEGTST - obtain storage from user heap */

 /* : CEEZCST - change size of storage block */

 /* : CEEFRST - free this piece of storage */

 /* : CEEDSHP - discard user heap */

 /* This example illustrates the use of the LE/VSE */

 /* Storage Callable Services from a PL/I program. */

 /* */

 /* 1. A report heading is set for display at the */

 /* beginning of the storage or options report. */

 /* */

 /* 2. A user heap is created. */

 /* */

 /* 3. Storage is allocated from the user heap. */

 /* */

 /* 4. The size of allocated storage is changed. */

 /* */

 /* 5. The allocated storage is freed. */

 /* */

 /* 6. The user heap is discarded. */

 /* */

 /***/

 CE90STO: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL NULL BUILTIN;

 DCL ADDRESS PTR INIT(NULL); /* ADDRESS OF STORAGE */

 DCL NEWSIZE INT4 INIT(2000); /* NEW STORAGE SIZE */

 DCL RPTHEAD CHAR(80)

 INIT(’USER DEFINED REPORT HEADING’);

 DCL HEAPID INT4 INIT(0); /* HEAP ID FOR CEECRHP */

 DCL HPSIZE INT4 INIT(1); /* HEAP SIZE FOR CEECRHP */

 DCL INCR INT4 INIT(0); /* HEAP INCREMENT */

 DCL NBYTES INT4 INIT(4000); /* SIZE OF REQUIRED HEAP */

 DCL 01 FC FEEDBACK;

 DCL OPTS INT4 INIT(0); /* HEAP OPTIONS */

 PUT SKIP LIST(’PL/I Storage example is now in motion’);

 /**/

 /* Call CEE5RPH to set user defined report heading */

 /**/

 CALL CEE5RPH (RPTHEAD, FC);

 IF ª FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP LIST (’Error ’ || FC.MsgNo

 || ’ in setting Report Heading’);

 STOP;

 END;

Figure 30. PL/I Example Illustrating Calls to CEE5RPH, CEECRHP, CEEGTST, CEECZST,

CEEFRST and CEEDSHP (Part 1 of 2)

100 LE/VSE: Programming Guide

/**/

 /* Call CEECRHP to create user heap */

 /**/

 CALL CEECRHP (HEAPID, HPSIZE, INCR, OPTS, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /***/

 /* Call CEEGTST to get storage from user heap */

 /***/

 CALL CEEGTST (HEAPID, NBYTES, ADDRESS, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /**/

 /* Call CEECZST to change the size of block */

 /**/

 CALL CEECZST (ADDRESS, NEWSIZE, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 CALL FREE_ALL;

 PUT SKIP LIST (’PL/I Storage Example program ended’);

 END;

 ELSE DO;

 PUT SKIP LIST(’Error ’ || FC.MsgNo

 || ’ in changing size of storage’);

 STOP;

 END;

 END;

 ELSE DO;

 PUT SKIP LIST(’Error ’ || FC.MsgNo

 || ’ in getting user storage’);

 STOP;

 END;

 END;

 ELSE DO;

 PUT SKIP LIST (’Error’ || FC.MsgNo

 || ’ in creating user heap’);

 STOP;

 END;

 /* Logical end of Main program CE90STO */

 FREE_ALL: PROC;

 /**/

 /* Call CEEFRST to free this piece of storage */

 /**/

 CALL CEEFRST (ADDRESS, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /***/

 /* Call CEEDSHP to discard user heap */

 /***/

 CALL CEEDSHP (HEAPID, FC);

 IF ª FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP LIST (’Error ’ || FC.MsgNo

 || ’ discarding user heap’);

 STOP;

 END;

 END;

 ELSE DO;

 PUT SKIP LIST (’Error ’ || FC.MsgNo

 || ’ freeing storage from heap’);

 STOP;

 END;

 END FREE_ALL;

 END CE90STO;

Figure 30. PL/I Example Illustrating Calls to CEE5RPH, CEECRHP, CEEGTST, CEECZST,

CEEFRST and CEEDSHP (Part 2 of 2)

Chapter 10. Stack and Heap Storage 101

102 LE/VSE: Programming Guide

Chapter 11. LE/VSE Condition Handling Introduction

This chapter outlines the LE/VSE condition handling model. It describes what

constitutes a condition in LE/VSE and how LE/VSE supplements existing HLL

condition handling methods. It also presents several condition handling scenarios

to demonstrate how LE/VSE condition handling works.

If you use mixed-language applications, it is especially important for you to know

how LE/VSE condition handling works with existing high-level language (HLL)

condition handling schemes.

The chapters that follow:

v Chapter 12, “LE/VSE and HLL Condition Handling Interactions,” on page 121

v Chapter 13, “Coding a User-Written Condition Handler,” on page 137

v Chapter 14, “Using Condition Tokens,” on page 171

describe in detail the steps involved in condition handling under LE/VSE,

HLL-specific condition handling considerations, and how you can communicate

events that happen in a routine to another routine.

If your application is running under CICS, you should refer to the CICS-specific

condition handling information, which is discussed in “Condition Handling under

CICS” on page 305. If your application is running under DL/I, you should refer to

the DL/I-specific condition handling information, which is discussed in “Condition

Handling with DL/I” on page 314.

Understanding the Basics

The two main concepts of LE/VSE condition handling are its stack frame-based

model and the unique, 12-byte condition token that it provides to communicate

information about conditions to LE/VSE resources and services.

LE/VSE uses stack frames to keep track of a routine’s order of execution, and the

condition handlers available for each routine. This ensures that conditions can be

isolated and handled precisely where they occur in a routine.

One of the most useful features of the condition handling model is the condition

token: a 12-byte data type that contains information about each condition. You can

use the condition token as a feedback code or to communicate with LE/VSE

message services. Unlike a return code, which is specific to the caller and callee of

a routine, a condition token communicates between all the routines involved in an

application. A condition token contains more instance-specific information about a

condition than does a return code.

LE/VSE supplements, but does not replace, existing HLL condition handling

techniques such as C signal handlers (created using the signal() function), PL/I

ON-units, and return code-based programming techniques. HLL condition

handling techniques are discussed in Chapter 12, “LE/VSE and HLL Condition

Handling Interactions,” on page 121.

LE/VSE condition handling is most beneficial when used as part of

mixed-language applications because it is consistent for all applications. If you are

© Copyright IBM Corp. 1991, 2005 103

coding in a single language, you can use the condition handling semantics of that

language, but if you have any ILC applications, you need the consistency across

languages that LE/VSE provides.

LE/VSE can respond in many ways to a condition. For example, LE/VSE can

invoke a condition handler, a term used to define the specific routine that actually

recognizes and responds to the condition. A condition handler can be registered by

the CEEHDLR (register user-written condition handler) service, or be part of the

language-specific condition handling services, such as a C signal handler or a PL/I

ON-unit. HLL condition handling semantics that are intrinsic to the programming

language also exist; an example is the COBOL ON SIZE phrase.

Related Run-Time Options and Callable Services

Here is a complete list of the run-time options and callable services that will help

your application program detect and handle conditions. The new callable services

available with these enhancements are CEE5GRO, CEE5SRP, and CEEMRCE.

Run-Time Options

ABPERC Exempts from LE/VSE condition handling a single

abend or program check.

DEPTHCONDLMT Indicates how deep conditions might be nested.

ERRCOUNT Indicates how many severity 2, 3, and 4 conditions

can occur before issuing an abend.

TRAP Indicates whether LE/VSE routines should handle

abends and program interrupts: TRAP(ON,MIN)

must be in effect for applications to run

successfully.

USRHDLR Registers a user condition handler at stack frame 0,

allowing you to register a user condition handler

without having to include a call to CEEHDLR in

your application, and then recompile the

application.

XUFLOW Indicates whether exponent underflow should

cause a program interrupt

Callable Services

CEE5CIB Returns a pointer to the condition information block that is

associated with a condition token passed to a user-written

condition handler.

CEE5GRN Gets the name of routine that incurred the condition currently

being processed.

CEE5GRO Gets the offset within the routine of the instruction that incurred

the condition currently being processed.

CEE5SPM Queries or modifies (by enabling or masking) hardware conditions.

CEE5SRP Sets a position within a routine for execution to resume after a

condition has been handled.

CEEDCOD Decomposes or alters an existing condition token.

CEEGPID Retrieves the version ID and the platform ID of the version and

platform of LE/VSE currently in use.

104 LE/VSE: Programming Guide

CEEGQDT Retrieves the q_data token from the ISI

CEEHDLR Registers a user-written condition handler.

CEEHDLU Unregisters a user-written condition handler.

CEEITOK Returns the initial condition token from the current condition

information block.

CEEMRCE Moves the resume cursor to an explicit location in a specific

routine, where the location was previously defined by the

CEE5SRP service.

CEEMRCR Moves the resume cursor relative to handle cursor (you might view

this as performing a GOTO out of block in PL/I, or setjmp() and

longjmp() in C).

CEENCOD Dynamically constructs a condition token.

CEESGL Signals a condition.

See LE/VSE Programming Reference for more information on run-time options and

callable services.

The Stack Frame Model

A stack consists of an ordered set of stack elements, called stack frames, which are

managed in a last-in first-out manner. In this book, unqualified references to stack

mean invocation stack. The invocation stack can contain multiple invocation stack

frames, which represent invocation instances of routines. A stack frame is added to

the stack on entry to a routine and removed from the stack on exit from the

routine.

The LE/VSE condition handling model is based on stack frames, in which

condition handling can be different in different stack frames. Another condition

handling model is global condition handling, which means that one condition

handling mechanism remains in effect for the life of an application. The distinction

between global condition handling and condition handling within a stack

frame-based model can affect how a condition is handled in your application,

particularly if it is a mixed-language application.

The following cause a stack frame to be added to the invocation stack:

 A function call in C that has not been inlined

 Entry into a program in COBOL

 Entry into a procedure or begin block in PL/I

 Entry into an ON-unit in PL/I

A stack frame is added to the stack every time a new routine is entered and

removed when it is exited. LE/VSE uses stack frames to keep track of such things

as the routine currently executing, the point at which an error occurs, and the

point at which execution should resume after the condition is handled.

Each new stack frame may contain user-written condition handlers registered with

CEEHDLR, but language-specific handlers such as C signal handlers are not

associated with each stack frame. User condition handlers can be unregistered

explicitly (by calling CEEHDLU) or implicitly, as when the routine that registered

the handler returns control to its caller.

Chapter 11. LE/VSE Condition Handling Introduction 105

Two cursors, or pointers, keep track of the state of condition handling. The cursors

are named the handle and resume cursors.

The Handle Cursor

If a condition occurs or is raised, the handle cursor initially points to the most

recently established condition handler within the stack frame. As condition

handling progresses, the handle cursor moves to earlier handlers within the stack

frame, or to the first handler in the calling stack frame.

The Resume Cursor

The resume cursor points to the next sequential instruction where a routine would

continue running if it were to resume.

Initially, the resume cursor is positioned after the machine instruction that caused

or signaled the condition. You can move the resume cursor relative to the handle

cursor by calling CEEMRCR. You can also use CEEMRCE to move the resume

cursor to an explicit location in the application. You must have previously defined

this location using a call to CEE5SRP (set resume point).

What Is a Condition in LE/VSE?

LE/VSE defines a condition as any event that can require the attention of a running

application or the HLL routine supporting the application. A condition is also

known as an exception, interrupt, or signal. LE/VSE makes it possible to respond

to events that in the past might have caused a routine to abend, including

hardware-detected errors and operating system-detected errors.

All of the following can generate a condition in LE/VSE:

Hardware-detected errors

Also known as program interruptions, these are signaled by the central

processing unit. Examples are the fixed-overflow and addressing

exceptions. The operating system derives the error codes from the codes

defined for the machine on which the application is running. The error

codes differ from machine to machine.

Operating system-detected errors

These are software errors and are reported to you as abends. An example

is an OPEN error.

Software-generated signals

Signals are conditions intentionally and explicitly created by LE/VSE

(using CEESGL), language library routines, language constructs (such as

C’s raise() or PL/I’s SIGNAL), or user-written condition handling

routines.

Under LE/VSE, an exception is the original event, such as a hardware signal,

software-detected event, or user-signaled event, that is a potential condition.

Through the enablement step (described briefly in “Steps in Condition Handling”

on page 107 and in detail in the next chapter), LE/VSE might deem an exception

to be a condition, at which point it can be handled by LE/VSE, user-written

condition handlers, if they are present, or HLL condition handling semantics.

106 LE/VSE: Programming Guide

Steps in Condition Handling

LE/VSE condition handling is performed in three distinct steps: the enablement,

condition, and termination imminent steps.

During the condition and termination imminent steps, the stack is used to

determine the order of condition handler processing. Condition handlers associated

with the most recent stack frame added to the stack are given first chance to

handle the condition. Condition handlers associated with the next stack frame are

next given a chance, and so on until either the condition is handled or default

LE/VSE condition handling semantics take effect.

Only routines that are currently active on the stack have an effect on condition

handling. For example, in a COBOL—PL/I application, a COBOL main program

calls a PL/I subroutine. The subroutine then returns control to COBOL. The PL/I

routine is no longer on the stack and does not affect condition handling.

Enablement Step

Enablement refers to the determination that an exception should be processed as a

condition. The enablement step begins at the time an exception occurs in your

application. In general, you are not involved with the enablement step; LE/VSE

determines which exceptions should be enabled (treated as conditions) and which

should be ignored, based on the languages currently active on the stack. If you do

not specify explicitly or as a default any of the services or constructs discussed

below, the default enablement of your HLL applies.

If LE/VSE ignores an exception, the exception is not seen as a condition, and will

not undergo condition handling. Processing resumes at the next sequential

instruction.

You can affect the enablement of exceptions in the following ways:

v Set the TRAP run-time option to handle or ignore abends and program checks.

See “TRAP Effects on the Condition Handling Process” on page 108 for more

information.

v Specify in the assembler user exit or ABPERC run-time option a VSE cancel

code, a program-interruption code, or a user abend code to be exempted from

LE/VSE condition handling.

See “LE/VSE Abends and the Enablement Step” on page 108 for more

information.

v Disable specific conditions by doing one of the following:

– Code a construct such as signal(sigfpe, SIG_IGN) in a C function or a PL/I

NOZERODIVIDE prefix in a PL/I procedure to request that program checks

(in this case divide-by-zero) be ignored if they occur in either routine.

Execution continues at the next sequential instruction after the one that

caused the divide-by-zero. Condition handlers never get a chance to handle

the program check because it is not considered a condition.

– Call the CEE5SPM callable service or use the XUFLOW run-time option to

disable hardware conditions.

See “Using XUFLOW and CEE5SPM to Enable and Disable Hardware

Conditions” on page 108 for more information.

Chapter 11. LE/VSE Condition Handling Introduction 107

In summary, not all hardware interrupts, software conditions, or user-signaled

events become conditions. Those that are not ignored and do become conditions

enter the condition step. See “Condition Step” on page 109 for the details of what

takes place during the condition step.

TRAP Effects on the Condition Handling Process

The TRAP run-time option specifies how LE/VSE handles abends and program

interrupts. In LE/VSE, TRAP(ON,MIN) must be in effect for applications to run

successfully; TRAP(ON,MAX) is the IBM-supplied default.

Use the ABPERC runtime option to bypass LE/VSE condition handling for specific

conditions, and to allow normal z/VSE processing to occur. Alternatively, use

TRAP(ON,MIN) to generate a standard z/VSE system dump, for application

failures. Do not use TRAP(OFF) unless requested to by IBM support personnel.

When TRAP(ON) is in effect, LE/VSE is notified of abends and program

interrupts. Language semantics, C signal handlers, PL/I ON-units, and

user-written condition handlers can then be invoked to handle them.

CEESGL and TRAP: When a condition is raised using the CEESGL callable

service, C signal handlers, PL/I ON-units, and user-written condition handlers are

always invoked if present, regardless of the setting of TRAP. If none of these

handle the condition, then HLL semantics’ default action could be taken. See

LE/VSE Programming Reference for more information about TRAP and CEESGL.

LE/VSE Abends and the Enablement Step

You can prevent LE/VSE from automatically handling certain exceptions by

requesting that a VSE cancel code or codes, a program-interruption code or codes,

or a user abend code or codes be exempted from LE/VSE condition handling. If an

abend is exempted, neither LE/VSE nor an HLL can handle it; LE/VSE issues an

operating system request to terminate the enclave.

Abends can be exempted from LE/VSE condition handling in two ways:

v You can specify in the assembler user exit CEEBXITA a list of VSE cancel codes,

program-interruption codes, user abend codes, or a combination of any of these

codes, that LE/VSE will exempt from normal condition handling. See

Chapter 25, “Using Run-Time User Exits,” on page 319 for more information.

v The ABPERC run-time option allows you to specify which (if any) VSE cancel

code, program-interruption code, or user abend code should be exempt from

LE/VSE condition handling. ABPERC is intended for use as a debugging tool

that allows the application to execute with TRAP(ON).

For a list of LE/VSE-issued abends and information about using ABPERC to

debug your application, see LE/VSE Debugging Guide and Run-Time Messages. For

a list of VSE cancel codes, see z/VSE Messages and Codes For a list of

program-interruption codes, see the Principles of Operation manual for your

machine. For more information about the TRAP and ABPERC run-time options,

see LE/VSE Programming Reference.

Using XUFLOW and CEE5SPM to Enable and Disable Hardware

Conditions

You can change the enablement of certain hardware interrupts using the CEE5SPM

callable service and XUFLOW run-time option (see LE/VSE Programming Reference).

LE/VSE provides the CEE5SPM callable service to replace assembler language

routines that manipulate bits 20 through 23 of the Program Status Word (PSW) to

enable or disable the following hardware interrupts:

108 LE/VSE: Programming Guide

Decimal overflow

 Exponent underflow

 Fixed-point overflow

 Significance

The XUFLOW run-time option specifies whether or not an exponent underflow

exception causes a program interrupt. Both CEE5SPM and XUFLOW can change

the condition handling semantics of the HLL or HLLs of your application.

Therefore, use CEE5SPM and XUFLOW only if you understand the effect they

have on your application.

PL/I Considerations: PL/I semantics depend on the program mask being given

certain settings:

v The fixed-point overflow, decimal overflow, and exponent underflow masks are

ON

v The significance mask is OFF

C Considerations: C ignores requests to enable the decimal overflow, exponent

underflow, fixed-point overflow, or significance exceptions.

COBOL Considerations: The decimal overflow and fixed-point overflow

exceptions cannot be enabled in a COBOL routine; COBOL ignores any request to

enable these exceptions.

Condition Step

The condition step begins after the enablement step has completed and LE/VSE

determines that an exception in your application should be handled as a condition.

In the simplest form of this step, LE/VSE traverses the stack beginning with the

stack frame for the routine in which the condition occurred and progresses

towards earlier stack frames. Condition handlers are invoked at each intervening

stack frame and given a chance to respond in any of the ways described in

“Responses to Conditions” on page 116. The condition step lasts until a condition

handler requests a resume or until default condition handling occurs (condition

went unhandled).

Throughout the following discussion, it might help you to refer to Figure 31.

1. LE/VSE condition handling begins at the most recently activated stack frame.

This is the stack frame associated with the routine that incurred the condition.

In Figure 31, this is A, or routine 4.

Figure 31. Condition Processing

Chapter 11. LE/VSE Condition Handling Introduction 109

2. If a debug tool, such as Debug Tool for VSE/ESA, is present, and the setting of

the TEST run-time option indicates that it should be given control, it is

invoked. See LE/VSE Programming Reference for information about the TEST

run-time option.

3. If the debug tool is not invoked, or does not handle the condition, LE/VSE

traverses the stack, stack frame by stack frame, towards earlier stack frames.

This is in the direction of arrow B in Figure 31 on page 109. First user-written

condition handlers established using CEEHDLR, and then language-specific

condition handlers present at each stack frame, such as C signal handlers or

PL/I ON-units, can all respond by percolating, promoting, or handling the

condition (see “Responses to Conditions” on page 116 for a discussion of these

actions).

4. Condition handling is complete if one of the handlers requests the application

to resume execution. If all stack frames have been visited, and no condition

handler has requested a resume, the language of the routine in which the

exception occurred can enforce default condition handling semantics.

5. If the HLL of the routine that originated the condition does not issue a resume,

what occurs next depends on whether there is a PL/I routine active on the

stack.

a. The condition is percolated if there is no currently active PL/I routine or if

the condition is not one that PL/I promotes to the ERROR condition (see

“Promoting Conditions to the PL/I ERROR Condition” on page 133 for

details). LE/VSE default actions are then taken based on the severity of the

unhandled condition, as indicated in Table 28 on page 111. If the condition

is of severity 2 or above, LE/VSE promotes the condition to T_I_U

(termination imminent due to an unhandled condition) and returns to

routine 4 to redrive the stack (this occurs at points C and D in Figure 31 on

page 109). For more information about the termination imminent step and

T_I_U, see “Termination Imminent Step” on page 111.

b. If the condition is one that PL/I promotes to the PL/I ERROR condition

(see “Promoting Conditions to the PL/I ERROR Condition” on page 133 for

details), the condition is promoted at the location represented as C in

Figure 31 on page 109, and another pass is made of the stack. The following

takes place:

 On the next pass of the stack (D), any ERROR ON-unit or user-written

condition handler is invoked. If the ON-unit or user-written condition

handler issues a resume, condition handling ends. Execution resumes

where the resume cursor points.

 If no ON-unit or user-written condition handler issues a resume, the

ERROR condition is promoted (at E) to T_I_U. (See “Processing the

T_I_U Condition” on page 112 for a discussion of T_I_U.)

 A final pass of the stack is made, beginning in Routine 4 where the

original condition occurred (F). Because T_I_U maps to the PL/I FINISH

condition, both established PL/I FINISH ON-units and user-written

condition handlers registered for T_I_U are invoked.

 If no user-written or HLL condition handlers act on the condition,

LE/VSE begins thread termination activities in response to the

unhandled condition (G). See Table 28 on page 111 for the default actions

that LE/VSE takes for conditions of different severities.

Influencing Condition Handling with the ERRCOUNT Run-Time

Option

The ERRCOUNT option allows you to specify the number of errors that are

tolerated during the execution of an enclave. Each condition of severity 2 or above,

110 LE/VSE: Programming Guide

regardless of its origin, increments the error count by one. If the error count

exceeds the limit, LE/VSE terminates the enclave with abend code 4091 and reason

code 11.

See LE/VSE Programming Reference for syntax and more information on using

ERRCOUNT.

 Table 28. LE/VSE Default Responses to Unhandled Conditions. LE/VSE’s default responses to unhandled conditions

fall into one of two types, depending on whether the condition was signaled using CEESGL and an fc parameter, or

the condition came from any other source.

Severity of Condition

Condition Signaled by User in a Call to

CEESGL with an fc Condition Came from Any Other Source

0 (Informative

message)

Return CEE069 condition token, and resume

processing at the next sequential instruction.

See the fc table for CEESGL (LE/VSE

Programming Reference) for a description of

the CEE069 condition token.

Resume without issuing message.

1 (Warning Message) Return CEE069 condition token, and resume

processing at the next sequential instruction.

If the condition occurred in a stack frame

associated with a COBOL program, resume

and issue the message. If the condition

occurred in a stack frame associated with a

non-COBOL routine, resume without issuing

message.

2 (Program terminated

in error)

Return CEE069 condition token, and resume

processing at the next sequential instruction.

Promote condition to T_I_U, redrive the

stack, then terminate the thread if the

condition remains unhandled. Message

issued if TERMTHDACT(MSG) is specified.

(See “Processing the T_I_U Condition” on

page 112 for more information on T_I_U.)

3 (Program terminated

in severe error)

Return CEE069 condition token, and resume

processing at the next sequential instruction.

Promote condition to T_I_U, redrive the

stack, then terminate the thread if the

condition remains unhandled. Message

issued if TERMTHDACT(MSG) is specified.

4 (Program terminated

in critical error)

Promote condition to T_I_U, redrive the

stack, then terminate the thread if the

condition remains unhandled. Message

issued if TERMTHDACT(MSG) is specified.

Promote condition to T_I_U, redrive the

stack, then terminate the thread if the

condition remains unhandled. Message

issued if TERMTHDACT(MSG) is specified.

Termination Imminent Step

The termination imminent step occurs for certain unhandled conditions or as the

result of STOP-like language constructs such as PL/I STOP, C exit() or abort(),

or COBOL STOP RUN. The termination imminent step occurs when one of the

following events occurs:

v The T_I_U condition (Termination Imminent due to Unhandled condition) is

raised

v The T_I_S condition (Termination Imminent due to Stop) is raised to indicate

that the thread can potentially terminate

When T_I_U or T_I_S is raised, another pass is made of the stack. See “Processing

the T_I_U Condition” on page 112 and “Processing the T_I_S Condition” on page

112 for details on what can happen during and after the pass.

Chapter 11. LE/VSE Condition Handling Introduction 111

You can directly signal T_I_U and T_I_S using the CEESGL callable service. When

you do, LE/VSE behaves in the way described in “CEESGL and the Termination

Imminent Step” on page 114.

Processing the T_I_U Condition

Table 28 on page 111 indicates that for severity 4 conditions signaled by CEESGL,

and for severity 2 and above conditions that remain unhandled after all condition

handlers have had a chance to handle them, LE/VSE promotes the unhandled

condition to T_I_U. See LE/VSE Programming Reference for a discussion of CEESGL.

T_I_U is a severity 3 condition with the representation shown in Table 29:

 Table 29. T_I_U Condition Representation

Symbolic

Feedback Code

(fc) Severity

Message

Number Message Text

CEE066 3 0198 Termination of a thread was

signaled.

After promoting the condition to T_I_U, LE/VSE does the following:

1. LE/VSE revisits each stack frame on the stack, beginning with the stack frame

in which the condition occurred, and progressing towards earlier stack frames.

At each stack frame, HLL and user-written condition handlers are given a

chance to handle the condition.

The T_I_U condition maps to the PL/I FINISH condition. Therefore, an

established PL/I FINISH ON-unit or registered user-written condition handler

can be invoked to handle the condition. After the ON-unit or condition handler

completes its processing, the termination activities described in step 3 take

place.

2. If, during the course of condition handling, the resume cursor is moved and a

resume is requested by a condition handler, execution resumes at the

instruction pointed to by the resume cursor. If a resume is requested for the

T_I_U condition without moving the resume cursor, the thread terminates

immediately with no clean-up. See LE/VSE Programming Reference for a

discussion of the CEEMRCR service.

3. If all stack frames have been visited, and the condition remains unhandled, or a

FINISH ON-unit or user-written condition handler has processed the condition

and returned, LE/VSE performs the following termination activities:

v Sets the reason and return codes. The return code value is based on the

severity of the original unhandled condition, not on the T_I_U condition

(which is a severity 3).

v Issues a message for the condition.

v Prints a traceback and dump depending on the setting of the TERMTHDACT

run-time option (see LE/VSE Programming Reference for syntax).

v Terminates the thread. (This release of LE/VSE only supports a single thread

within an enclave. Therefore, when a thread terminates, the entire enclave

terminates.)

Processing the T_I_S Condition

The termination imminent step of condition handling can also be entered as the

result of the T_I_S (Termination_Imminent due to STOP) condition being signaled.

T_I_S is a severity 1 condition with the representation shown in Table 30 on page

113:

112 LE/VSE: Programming Guide

Table 30. T_I_S Condition Representation

Symbolic

Feedback Code

(fc) Severity

Message

Number Message Text

CEE067 1 0199 Termination of a thread was

signaled.

The T_I_S condition is raised by LE/VSE immediately upon detection of a

language STOP-like construct such as:

 C exit() function

 COBOL STOP RUN

 PL/I EXIT statement

 PL/I STOP statement

The HLL constructs listed above initiate termination activities for the enclave in

two steps:

1. LE/VSE traverses the stack beginning at the stack frame for the routine

containing the STOP-like statement and proceeds, stack frame by stack frame,

towards earlier stack frames. User-written and HLL condition handlers at each

stack frame are given a chance to handle the condition.

T_I_S maps to the PL/I FINISH condition. Therefore, both established PL/I

FINISH ON-units and user-written condition handlers can be invoked. After

the ON-unit or condition handler completes its processing, the termination

activities described in step 2 take place.

2. If all stack frames have been visited, and the condition remains unhandled, or

an ON-unit or condition handler has processed the condition and returned,

LE/VSE:

v Sets the reason and return codes

v Terminates the thread
LE/VSE performs only one pass of the stack for STOP-like statements.

The Termination Imminent Step and the TERMTHDACT Run-Time

Option

You can use the TERMTHDACT run-time option to set the type of information you

receive after your application terminates in response to a severity 2, 3, or 4

condition. For example, you can specify that a message is issued or a dump is

generated if the application terminates.

PL/I Considerations: For those PL/I conditions that do not raise the ERROR

condition as part of their implicit action, PL/I requires that a message be issued.

For these conditions, the message is issued regardless of the setting of

TERMTHDACT. Therefore, messages may be delivered even when

TERMTHDACT(QUIET) is set.

If the condition remains unhandled (for example, the PL/I FINISH condition is still

regarded as unhandled after normal return from a FINISH ON-unit), and the

application terminates, the message associated with the condition is not issued

again at termination.

For more information about TERMTHDACT, see LE/VSE Debugging Guide and

Run-Time Messages and LE/VSE Programming Reference.

Chapter 11. LE/VSE Condition Handling Introduction 113

CEESGL and the Termination Imminent Step

You can signal T_I_U and T_I_S directly with the CEESGL callable service. Two

reasons you might need to do this are:

v To force the driving of a FINISH ON-unit or similar construct that would

perform clean-up activities

v To test a PL/I ON-unit or user-written condition handler that you have designed

to handle T_I_U or T_I_S

If you signal T_I_U or T_I_S by calling CEESGL with the feedback code parameter,

the following occurs:

1. LE/VSE visits each stack frame on the stack, beginning with the stack frame in

which the condition was signaled, and progressing towards older stack frames.

At each stack frame, HLL and user-written condition handlers are given a

chance to handle the condition.

T_I_U and T_I_S both map to the PL/I FINISH condition. Therefore, an

established PL/I FINISH ON-unit can be invoked to handle the condition.

2. If all stack frames have been visited, and the condition remains unhandled, or a

FINISH ON-unit has processed the condition and returned, LE/VSE returns the

CEE069 condition token to the routine that called CEESGL, and processing

resumes at the next sequential instruction.

Invoking Condition Handlers

After a condition has been enabled, LE/VSE steps through the stack and passes

control to the most recently established condition handling routines in the stack.

Condition handling routines can be in the form of a debug tool, a user-written

condition handler, or a language-specific condition handling mechanism:

Debug Tool

If you have invoked a debug tool using the TEST run-time option or the

CEETEST callable service (see LE/VSE Programming Reference), the debug

tool gains control when a condition occurs. Unless a condition is promoted

and is passed through the stack again for additional condition handling, a

debug tool is invoked only once per stack.

User-Written Condition Handler

User-written condition handlers are routines that you supply to handle

specific conditions that might arise in the run-time environment. As shown

in Figure 32 on page 115, a LIFO queue containing zero or more

user-written condition handlers is associated with each stack frame. A

different queue exists for each stack frame. For example, if routine A calls

routine B, there is a new queue associated with the stack frame for

routine B.

114 LE/VSE: Programming Guide

User-written condition handlers are registered on a stack frame-by-stack

frame basis using the CEEHDLR callable service. A call to CEEHDLR from

a given routine adds a user-written condition handler onto the queue for

the stack frame associated with that routine. Registering a condition

handling routine using CEEHDLR implicitly requests LE/VSE to pass

control to this routine when a condition occurs. For example, you could

call CEEHDLR to register two user-written condition handlers for the same

stack frame, one that handles floating point underflow conditions and

another that handles floating point divide conditions.

 The most recent user condition handler registered using CEEHDLR is the

first to be invoked by LE/VSE. Note that you could also register a single

user condition handler to handle both of these conditions.

 The user-written condition handlers can respond to a condition in any of

the ways described in the section “Responses to Conditions” on page 116.

 User-written condition handlers are given a chance to handle a given

condition before the language-specific condition handling semantics

described below take effect.

Language-Specific Condition Handling Semantics

If language-specific semantics are established within a stack frame, they are

honored. Of course, the language-specific handling mechanisms act only on

those conditions for which the language has a defined action. The language

percolates all other conditions by simply passing them on to the next

condition handler.

 If a condition is unhandled after the stack is traversed, default

language-specific and LE/VSE condition semantics take over.

Figure 32. Queues of User-Written Condition Handlers

Chapter 11. LE/VSE Condition Handling Introduction 115

Responses to Conditions

Condition handlers are routines written to respond to conditions in one of the

following ways:

Resume

A resume occurs when a condition handler determines that the condition

was handled and normal application execution should resume. A program

resumes running usually at the instruction immediately following the point

where the condition occurred.

 A resume cursor points to the place where a routine should resume. The

resume cursor can be manipulated to be placed at a specific point by using

the CEEMRCR callable service (see LE/VSE Programming Reference).

Percolate

A condition is percolated if a condition handler declines to handle it.

User-written condition handlers, for example, can be written to act on a

particular condition, but percolate all other conditions. LE/VSE can

continue condition handling in one of the following places:

v With the next condition handler associated with the current stack frame.

This can be either the first condition handler in a queue of

user-established condition handlers, or the language-specific condition

semantics.

v With the most recently established condition handler associated with the

calling stack frame.

Promote

A condition is promoted when a condition handler converts the condition

into one with a different meaning. A condition handler can promote a

condition for a variety of reasons, including the condition handler’s

knowledge or lack of knowledge about the cause of the original condition.

A condition can be promoted to simulate conditions that would normally

come from a different source.

Condition Handling Scenarios

The following condition handling scenarios can help you better understand what

occurs during the condition handling steps. The scenarios differ in complexity,

with Scenario 1 being the easiest to understand. The scenarios assume that no

debug tool has been invoked.

See Chapter 12, “LE/VSE and HLL Condition Handling Interactions,” on page 121

if you are interested in specific HLL condition handling behavior.

Scenario 1: Simple Condition Handling

Refer to Figure 33 on page 117 throughout the following discussion.

116 LE/VSE: Programming Guide

In this scenario, no C handlers created by a call to signal(), PL/I ON-units, or

user-written condition handlers registered using the CEEHDLR service are

established at any stack frame in the application.

1. A divide-by-zero exception occurs in routine B.

2. The divide-by-zero exception is enabled by the language of the stack frame in

which it occurred because it is a problem that, if it remains unhandled, causes

termination.

3. The following occurs in the condition step:

v If any user-written condition handlers have been registered using the

CEEHDLR callable service on routine B’s stack frame, they are given control.

No handlers have been registered, so the condition is percolated.

v If a C signal handler is registered, or if a PL/I ON-unit is established on the

stack frame, it is given control. Neither one exists on routine B’s stack frame,

so the condition is percolated.

v If any user-written condition handlers have been registered using CEEHDLR

on routine A’s stack frame, they are given control. None have been, so the

condition is percolated.

v If a PL/I ON-unit is established on routine A’s stack frame, it is given

control. No PL/I ON-unit has been established for the stack frame, so the

condition is percolated.

v After the oldest stack frame (in this case, that for routine A) has been

checked, HLL and LE/VSE default actions occur. Assume that the HLL

percolates the condition to LE/VSE.

LE/VSE examines the severity of the unhandled divide-by-zero condition

(severity 3), promotes the condition to T_I_U, and requests that the stack be

redriven. This is the end of the condition step and the beginning of the

termination imminent step.
4. The following occurs during the termination imminent step:

v The stack frame for routine B is revisited, and if a user-written condition

handler is present, it is given control. No handlers are registered, so T_I_U is

percolated.

v If a C signal handler or PL/I ON-unit can respond to the T_I_U condition, it

is given control. In this case, there isn’t one, so the condition is percolated.

v The stack frame for routine A is revisited, and checked for user-written

condition handlers registered for the T_I_U condition, C signal handlers or

PL/I ON-units. No handlers are registered, so T_I_U is percolated.

Figure 33. Scenario 1: Division by Zero with No User Condition Handlers Present

Chapter 11. LE/VSE Condition Handling Introduction 117

v LE/VSE takes the default action for the unhandled T_I_U condition, which

terminates the enclave.

Scenario 2: Condition Handling with User-Written Condition

Handler Present for T_I_U

Scenario 2 is much the same as scenario 1, except that routine A does have a

user-written condition handler established. Refer to Figure 34 throughout the

following scenario.

 In this scenario, routine A is a routine that invokes other prewritten applications. If

any of the components of the prewritten application fail, routine A must remain up

and take alternative action. Therefore, routine A has a user-written condition

handler registered. The handler is designed to handle the T_I_U condition by

issuing a nonlocal jump to a location within routine A. The handler percolates all

conditions other than T_I_U.

1. A divide-by-zero exception occurs in routine B.

2. The divide-by-zero exception is enabled by the language of the stack frame in

which it occurred because it is a problem that, if it remains unhandled, causes

termination.

3. The following occurs in the condition step:

v If any user-written condition handlers have been registered using the

CEEHDLR callable service on routine B’s stack frame, they are given control.

No handlers have been registered, so the condition is percolated.

v If a C signal handler has been registered or a PL/I ON-unit has been

established for the divide-by-zero condition, it is given control. No C signal

handler or PL/I ON-unit is present, so the condition is percolated to

LE/VSE.

v A user-written condition handler has been registered on routine A’s stack

frame, so it is given control. However, because the divide-by-zero condition

is not the one the handler is looking for, the condition is percolated.

v If a C signal handler is registered or a PL/I ON-unit is established for the

condition on routine A’s stack frame, it is given control. Neither one is

present, so the condition is percolated.

Figure 34. Scenario 2: Division by Zero with a User-Written Condition Handler Present in

Routine A

118 LE/VSE: Programming Guide

v After the earliest stack frame (in this case, that for routine A) has been

checked, HLL and LE/VSE default actions occur. In this case, assume that

the HLL percolates the condition to LE/VSE.

LE/VSE examines the severity of the unhandled divide-by-zero condition

(severity 3), promotes the condition to T_I_U, and requests that the stack be

redriven. This is the end of the condition step and the beginning of the

termination imminent step.
4. The following occurs during the termination imminent step:

v LE/VSE revisits the stack frame for routine B, checking for user-written

condition handlers registered for the T_I_U condition. No handlers are

registered, so T_I_U is percolated.

v If a PL/I FINISH ON-unit is present, it is given control. In this example,

there isn’t one, so the condition is percolated.

v LE/VSE revisits the stack frames for routine A, checking for user-written

condition handlers registered for the T_I_U condition. There is one, and it is

given control. The user code in the handler, using either HLL or LE/VSE

facilities, causes control to pass to a location within routine A.
5. Control resumes with routine A at the location specified. The condition is now

handled.

Scenario 3: Condition Handling with User-Written Condition

Handler Present for Divide-by-Zero Condition

Scenario 3 is much the same as scenario 2, except that routine B has a user-written

condition handler established to handle the divide-by-zero condition.

Refer to Figure 35 throughout the following scenario.

 The handler established by routine B is designed to deal with divide-by-zero and

possibly other conditions that occur either during its execution or in the routines

that it calls. For a divide-by-zero condition, the handler is to print a message and

continue processing.

1. A divide-by-zero exception occurs in routine B.

2. The divide-by-zero exception is enabled by the language of the stack frame in

which it occurred because it is a problem that, if it remains unhandled, causes

termination.

Figure 35. Scenario 3: Division by Zero with a User Handler Present in Routine B

Chapter 11. LE/VSE Condition Handling Introduction 119

3. The following occurs in the condition step:

v A user-written condition handler has been registered using the CEEHDLR

callable service on routine B’s stack frame, so it is given control. The handler

recognizes the divide-by-zero as a condition it is capable of dealing with. It

produces a message, does appropriate clean-up, and then causes resumption

either through HLL constructs or LE/VSE services.
4. The condition is now considered to be handled and is never seen by stack

frame A or the LE/VSE default handler.

120 LE/VSE: Programming Guide

Chapter 12. LE/VSE and HLL Condition Handling Interactions

This is the second part of the condition handling discussion. It would be helpful

for you to read Chapter 11, “LE/VSE Condition Handling Introduction,” on page

103 before reading this chapter. Chapter 11 introduces you to terminology and

concepts that are discussed in the present chapter, and offers a brief overview of

pre-LE/VSE HLL condition handling. It discusses in detail the LE/VSE condition

handling model and the many services that you can use to tailor how conditions

are handled in your application. In addition, it introduces the three steps of

condition handling in LE/VSE.

Understanding the Basics

This chapter discusses HLL condition handling semantics, focusing on how HLL

semantics interact with the LE/VSE condition handling model and services. C,

COBOL, and PL/I are each discussed, and condition handling scenarios and

examples are provided. See one of the following sections for details:

v “C Condition Handling Semantics”

v “COBOL Condition Handling Semantics” on page 128

v “PL/I Condition Handling Semantics” on page 132

If you are running a single-language application written in a language such as C or

PL/I that has extensive built-in error handling functions, and you are relying

entirely upon the semantics of these languages to handle errors, you will not notice

much difference in how errors are handled under LE/VSE.

On the other hand, if you are running a single-language application written in a

language such as COBOL or assembler that has little built-in error handling, you

might notice a change in how errors are handled under LE/VSE. For example, in

an application that relies on abend codes to handle errors, you might need to alter

the assembler user exit to get the same behavior under LE/VSE as under the

previous run-time environment. See Chapter 25, “Using Run-Time User Exits,” on

page 319 for information on modifying the assembler user exit.

For information on condition handling in ILC applications, see LE/VSE Writing

Interlanguage Communication Applications.

C Condition Handling Semantics

This section describes C condition handling.

C employs a global condition handling model, which, on initialization, defines the

actions that are taken when a condition is raised. The actions defined by C apply

to an entire enclave, not just to a routine or block within an enclave. You can alter

a specific action that the C condition handler takes when a condition is raised,

however, by coding signal() function calls in your applications.

C recognizes a number of errors; some correspond directly to the errors detected

by the hardware or the operating system, and some are unique to C. All actions for

condition handling are controlled by the contents of the C global error table.

Table 31 on page 122 contains default C-language error handling semantics.

© Copyright IBM Corp. 1991, 2005 121

Table 31. C Conditions and Default System Actions

C Condition Origin Default Action

SIGILL Execute exception Operation

exception Privileged

operation raise(SIGILL)

Abnormal termination (return

code=3000)

SIGSEGV Addressing exception

Protection exception

Specification exception

raise(SIGSEGV)

Abnormal termination (return

code=3000)

SIGFPE Data exception Decimal

divide Exponent overflow

Fixed-point divide

Floating-point divide

raise(SIGFPE)

Abnormal termination (return

code=3000)

SIGABRT abort() function

raise(SIGABRT)

Abnormal termination (return

code=2000)

SIGABND Abend the function Abnormal termination (return

code=3000)

SIGTERM Termination request

raise(SIGTERM)

Abnormal termination (return

code = 3000)

SIGINT Attention condition Abnormal termination (return

code = 3000)

SIGIOERR I/O errors Ignore the condition

SIGUSR1 User-defined condition Abnormal termination (return

code=3000)

SIGUSR2 User-defined condition Abnormal termination (return

code=3000)

Masked Exponent overflow

Fixed-point underflow

Significance

These exceptions are

disabled. They are ignored

during the condition

handling process, even if you

try to enable them using the

CEE5SPM callable service.

Comparison of C-LE/VSE Terminology

The term signal is defined differently under C than under LE/VSE, and you need

to know the distinction to understand how C and LE/VSE condition handling

interact. Here is a comparison of the terminology LE/VSE and C use to describe

the same general idea:

v Using LE/VSE services, you register a condition handler by using CEEHDLR,

and you raise a condition by using CEESGL.

v Using C functions, you register a signal handler by using the signal() function,

and you raise a signal using the raise() function.

You can think of signal as the C term for an LE/VSE condition. To simplify the

following discussion, the term condition is used in place of signal.

Controlling Condition Handling in C

In C, conditions can come from two main sources:

v An exception might occur because of an error in the code. The exception might

or might not be seen as a condition, depending on how you use the signal()

function.

122 LE/VSE: Programming Guide

v You can explicitly report a condition by using the raise() function.

Using the signal() Function

The C signal() function call alters the actions that the global error table specifies

will be taken for a given condition. You can use signal() to do the following:

v Ignore the condition completely. You do this by specifying

signal(sig_num,SIG_IGN), where sig_num represents the condition to be ignored.

When the action for the condition is to ignore it, the condition is considered to

be disabled. The condition will therefore not be seen.

Note: Exceptions to this rule are:

– The SIGABND condition

– A system or user abend represented by LE/VSE message CEE3250C under

CICS

– A system abend (other than a program check) represented by LE/VSE

message CEE3321C in batch

– A user abend represented by LE/VSE message CEE3322C in batch
These are never ignored, even if you specify SIG_IGN in a call to signal().

v Reset condition handling to the defaults shown in Table 31 on page 122. Actions

for handling a condition are implicitly reset to the system default when the

condition is reported, but at times you need to explicitly reset condition

handling. Specify signal(sig_num, SIG_DFL), where sig_num represents the

condition to be reset.

v Register a signal handler to handle the condition. Specify signal(sig_num,

sig_handler), where sig_num represents the condition to be handled, and

sig_handler represents a pointer to the user-written function that is called when

the condition occurs.

The signal handler specified in signal() is given a chance to handle a condition

only after any user-written handler established using CEEHDLR is invoked.

Using the raise() Function

When the C raise() function is called for any of the conditions listed in Table 31

on page 122, a corresponding LE/VSE condition is automatically raised by a call to

the CEESGL callable service. Any of these conditions (EDC6000 through EDC6004)

can be handled by a user-written condition handler registered using the CEEHDLR

service. For detailed descriptions of conditions EDC6000 through EDC6004, see

LE/VSE C Run-Time Programming Guide and LE/VSE Debugging Guide and Run-Time

Messages.

For more information about the CEEHDLR and CEESGL callable services, see

LE/VSE Programming Reference. For more information about using the raise()

function, see LE/VSE C Run-Time Library Reference.

C atexit() Considerations

In all C applications, the atexit list is honored only after all condition handling

activity has taken place and all user code is removed from the stack, which

invalidates any jump buffer previously established.

With C, you can register a number of routines that gain control during the

termination of an enclave. When using the C atexit() function, consider the

following:

v A C atexit routine can nominate only C routines, but those routines can call

routines written in other languages.

Chapter 12. LE/VSE and HLL Condition Handling Interactions 123

v User-written condition handlers can be registered while running an atexit

routine. However, any jump buffers established are invalid.

v If a severity 2 or greater condition arises while running an atexit routine and it

is unhandled, further atexit routines are skipped and the LE/VSE environment

is terminated.

v A C exit() function or PL/I STOP or EXIT statement issued within an atexit

routine halts all other atexit functions.

v If, while running an atexit routine, an attempt to register another atexit

routine is made, the registration is ignored. The atexit routine returns a nonzero

result indicating a failure to register the routine.

C Condition Handling Actions

In this section the condition handling semantics of C-only applications are

described as they relate to the LE/VSE condition handling model. Condition

handling for applications with both C and non-C routines is discussed in LE/VSE

Writing Interlanguage Communication Applications.

If an exception occurs while a C routine is executing, the following activities are

performed:

1. The LE/VSE enablement step of condition handling is entered.

If the action defined for the exception is to ignore it for one of the following

reasons, the condition is disabled. Execution continues at the next sequential

instruction after the point where the condition occurred.

v You have specified SIG_IGN in a call to the signal() function for any C

condition except the following:

– The SIGABND condition

– A system or user abend represented by LE/VSE message CEE3250C under

CICS

– A system abend (other than a program check) represented by LE/VSE

message CEE3321C in batch

– A user abend represented by LE/VSE message CEE3322C in batch
v The exception is one of those listed as masked in Table 31 on page 122.

v You did not specify any action, but the default action for the condition is

SIG_IGN (see Table 31 on page 122).

v You are running under CICS and a CICS handler is pending.
2. If SIG_IGN is not specified or defaulted for the exception, and the exception is

not masked, the LE/VSE condition step of condition handling is entered. These

activities then occur:

v If a debug tool is present, and the setting of the TEST run-time option

indicates that it should be given control, it is invoked. See LE/VSE

Programming Reference for information about the TEST run-time option.

v If a debug tool is not invoked, or does not handle the condition, any

user-written condition handlers registered using CEEHDLR for that stack

frame are invoked.

v If no user-written condition handlers are registered for the condition that has

occurred, and if you have registered a signal handler for the condition, that

handler is invoked.

v If the signal handler handles the condition, control returns to the routine in

which the condition occurred. If the signal handler cannot handle the

condition, it might force termination by issuing exit() or abort(), or might

issue a longjmp().

124 LE/VSE: Programming Guide

Condition handling can only continue after a signal handler gains control if

you specify SIG_DFL in a call to signal(). If you do, the condition is

percolated to the next user-written condition handler registered using

CEEHDLR, or to the language-specific condition handler associated with the

next stack frame.

v If condition handlers at every stack frame have had a chance to respond to

the condition and it still remains unhandled, the LE/VSE default actions

described in Table 28 on page 111 take place.

v If the LE/VSE default action is to promote the condition to T_I_U

(Termination Imminent due to an Unhandled condition), the termination

imminent step of condition handling is entered.
3. When the condition is promoted to T_I_U, LE/VSE makes another pass of the

stack looking for user-written condition handlers registered for T_I_U.

If, on the next pass of the stack, no condition handler issued a resume or

moved the resume cursor, LE/VSE terminates the enclave.

C Condition Handling Examples

Condition Occurs with No Signal Handler Present: The following three

examples illustrate how a condition such as a divide-by-zero is handled in a C

routine in LE/VSE if you do not use any LE/VSE callable services, or don’t have

any user-written condition handlers registered.

There is no user-written condition handler or signal handler registered for C370C

or any of the other C routines, so the condition is percolated through all of the

stack frames on the stack. At this point, C default actions take place of percolating

the condition to LE/VSE. LE/VSE takes its default action for an unhandled

severity 3 condition and terminates the application. A message, dump, or trace

could be generated depending on the setting of TERMTHDACT (see LE/VSE

Programming Reference).

This example is a C main routine that calls C370B, a subroutine that passes data to

another subroutine, C370C.

 This example is a C subroutine that calls C370C, and passes data to it.

/*Module/File Name: EDCMLTA */

/***/

/* Demonstrate a failing C/370 program */

/* with multiple active routines */

/* on the stack. The call sequence is as follows: */

/* C370A ---> C370B ---> C370C (which does a divide-by-zero) */

/***/

#include <stdio.h>

int y = 0;

void C370B(void);

int main(void) {

 printf("In Program C370A\n");

 C370B();

}

Figure 36. C370A Routine

Chapter 12. LE/VSE and HLL Condition Handling Interactions 125

The following example generates a divide-by-zero. The divide-by-zero condition is

percolated back to C370B, to C370A, and to LE/VSE default behavior.

Condition Occurs with Signal Handler Present: The following contains a simple

example of a C application in which y = a/b is a mathematical operation. signal

(SIGFPE, c_handler) is a signal invocation that registers the routine c_handler()

and gives it control if a floating-point divide exception occurs.

/*Module/File Name: EDCMLTB */

/**/

/* This routine is called to pass data forward to C370C. */

/* C370C will then cause a zero divide. */

/**/

#include <stdio.h>

extern int y;

void C370C(int);

void C370B(void) {

 int x;

 printf("In Program C370B\n");

 x = y;

 C370C(x);

}

Figure 37. C370B Routine

/*Module/File Name: EDCMLTC */

/**/

/* This routine is called by C370B to generate a zero divide. */

/**/

#include <stdio.h>

void C370C(int y) {

 printf("In Program C370C\n");

 y = 1/y;

}

Figure 38. C370C Routine

126 LE/VSE: Programming Guide

If b = 0, a floating-point divide condition occurs. LE/VSE condition handling

begins:

v The enablement step occurs.

– If Table 31 on page 122 indicates that floating-point divide is a masked

exception, the exception is ignored. The floating-point divide is not a masked

exception, however.

– If SIG_IGN is specified for the SIGFPE exception in any of the three examples,

then the SIGFPE exception is ignored. However, this does not occur.
The floating-point divide condition is enabled and enters the condition step of

condition handling.

v If a debug tool is present, it receives control.

v If a user-written condition handler is registered by CEEHDLR for that stack

frame, it receives control.

If none of the above takes place, the condition manager gives the C signal-handler

control. This handler in turn invokes c_handler() as specified in the signal()

function in the Figure 39. Control is then returned to the instruction following the

one that caused the condition.

C Signal Representation of S/370 Exceptions

S/370 exceptions and abends are mapped to C signals. Therefore, if both of the

following are true:

v You have set the TRAP(ON) run-time option (LE/VSE condition handling is

enabled)

/*Module/File Name: EDCCSIG */

/**/

/* A routine with a C condition handler registered. */

/**/

#include <stdio.h>

#include <signal.h>

void c_handler(int);

int main(void) {

 int a=8, b=0, y;

 /* .

 .

 . */

 signal (SIGFPE, c_handler);

 /* .

 .

 . */

 y = a/b;

 /* .

 . */

}

void c_handler(int i)

{

 printf("handled SIGFPE\n");

 /* .

 . */

 return;

}

Figure 39. C Condition Handling Example

Chapter 12. LE/VSE and HLL Condition Handling Interactions 127

v You do not request in the assembler user exit or in the ABPERC run-time option

that any of the exceptions or abends be exempted from condition handling

(ABPERC(NONE))

then you can apply C signal handling functions to S/370 exceptions and abends.

C signal representations for the following exceptions are provided in this section:

v For S/370 exceptions generated by the hardware or math library, see Table 32.

Some of the exceptions listed in the table can be masked off for normal LE/VSE

execution.

v For abends, see Table 33.

 Table 32. Mapping of S/370 Exceptions to C Signals

Interrupt Code Interrupt Code Description C Signal Type

01 Operation exception SIGILL

02 Privileged-operation exception SIGILL

03 Execution exception SIGILL

04 Protection exception SIGSEGV

05 Addressing exception SIGSEGV

06 Specification exception SIGILL

07 Data exception SIGFPE

08 Fixed-point overflow exception n/a

09 Fixed-point divide exception SIGFPE

10 Decimal-overflow exception SIGFPE

11 Decimal-divide exception SIGFPE

12 Exponent-overflow exception SIGFPE

13 Exponent-underflow exception n/a

14 Significance exception n/a

15 Floating-point divide exception SIGFPE

Table 33 lists the C signal type for abends that can occur under LE/VSE.

 Table 33. Mapping of Abend Signals to C Signals

Message Abend Description C Signal Type

CEE3250 CICS-initiated abends SIGABND

CEE3250 CICS user-initiated abends SIGABND

CEE3321 VSE-initiated abends SIGABND

CEE3322 VSE user-initiated abends SIGABND

CEE3322 LE/VSE abends for severity 4 errors (U40xx) n/a

CEE3322 LE/VSE-initiated abends n/a

COBOL Condition Handling Semantics

COBOL native condition handling is very different from C’s and PL/I’s native

condition handling.

128 LE/VSE: Programming Guide

COBOL provides some condition handling on a statement-by-statement basis: for

example, the ON EXCEPTION phrase of the CALL statement, the ON EXCEPTION

phrase of the INVOKE statement, and the ON SIZE ERROR phrase of the

COMPUTE statement. For other conditions, COBOL generally reports the error. An

assembler user exit is available for COBOL to specify events that should cause an

abend.

For more information about user exits, see Chapter 25, “Using Run-Time User

Exits,” on page 319. For a discussion of COBOL condition handling in an ILC

application, see LE/VSE Writing Interlanguage Communication Applications. The

following discussion applies to stacks comprised solely of COBOL programs.

If an exception occurs in a COBOL program, COBOL does nothing until every

condition handler at every stack frame has been interrogated.

Once all stack frames have been visited, COBOL does the following:

1. Checks to see if the condition has a facility ID of IGZ (is a COBOL-specific

condition). If not, COBOL percolates the condition to the LE/VSE condition

manager.

2. Handles the condition based on its severity (see Table 28 on page 111 for an

explanation of severity codes and their meaning under LE/VSE).

If the condition severity is 1, a message describing the condition is issued to the

destination specified in the MSGFILE run-time option, and processing resumes

in the program in which the error occurred.

If the severity is 2 or above, COBOL percolates the condition to the LE/VSE

condition manager. The LE/VSE default action then takes place.

COBOL Condition Handling Examples

The following examples demonstrate how conditions are handled in LE/VSE if

you do not use any LE/VSE callable services, and do not have any user-written

condition handlers registered. The COBOLA program in Example Figure 40 on

page 130 calls COBOLB in Example Figure 41 on page 130, which in turn calls the

COBOLC program, in Example Figure 42 on page 131. A divide-by-zero condition

occurs in COBOLC.

The divide-by-zero is enabled as a condition, so the condition step of LE/VSE

condition handling is entered. There is no user-written condition handler registered

for COBOLC or any of the other COBOL programs, so the condition is percolated

through all of the stack frames. COBOL’s default action for the divide-by-zero

condition is to percolate the condition to LE/VSE. The divide-by-zero condition

has a severity of 3. LE/VSE’s default response to an unhandled severity 3

condition is to terminate the application and issue a message if

TERMTHDACT(MSG) is specified.

Chapter 12. LE/VSE and HLL Condition Handling Interactions 129

Figure 41 calls COBOLC, and passes data to it.

 Figure 42 generates a divide-by-zero condition. The divide-by-zero condition is

percolated back to COBOLB, to COBOLA, and to LE/VSE default behavior.

CBL LIB,APOST,NODYNAM

 *Module/File Name: IGZTMLTA

 * *

 * Demonstrate a failing COBOL program with multiple active *

 * routines on the stack. The call sequence is as follows: *

 * *

 * COBOLA --> COBOLB --> COBOLC (which causes a zero divide) *

 * *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBOLA.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 1 Y PIC 999 VALUE ZERO.

 *

 PROCEDURE DIVISION.

 DISPLAY ’In COBOLA.’.

 CALL ’COBOLB’ USING Y.

 GOBACK.

Figure 40. COBOLA Program

CBL LIB,APOST,NOOPTIMIZE,NODYNAM

 * Module/File Name: IGZTMLTB

 * *

 * Second routine called in the following call sequence: *

 * *

 * COBOLA --> COBOLB --> COBOLC (which causes a zero divide) *

 * *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBOLB.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 1 X PIC 999 VALUE ZERO.

 LINKAGE SECTION.

 1 Y PIC 999.

 *

 PROCEDURE DIVISION USING Y.

 DISPLAY ’In COBOLB.’.

 MOVE Y TO X.

 CALL ’COBOLC’ USING X.

 GOBACK.

Figure 41. COBOLB Program

130 LE/VSE: Programming Guide

Restrictions about Resuming Execution after an IGZ Condition

Occurs

You cannot resume in place after certain COBOL conditions (those with the facility

ID IGZ) occur. If a user-written condition handler issued a result_code 10 (see

“User-Written Condition Handler Interface using CEEHDLR” on page 138) without

moving the resume cursor first, that would be a resume in place.

IGZ Condition of Severity 2 or Greater

A user-written condition handler cannot issue a resume in place after any IGZ

condition of severity 2 or higher occurs. For example, if you encounter an error

when trying to open a file, you cannot resume in place. You must either move the

resume cursor and then resume, or percolate the condition.

COBOL STOP RUN Statement

There is a different constraint on resuming after a COBOL STOP RUN statement.

When a STOP RUN is issued, Termination Imminent due to Stop (T_I_S) is raised

(see “Processing the T_I_S Condition” on page 112 for more information about

T_I_S). Therefore, you can respond to a STOP RUN by registering a user-written

condition handler to recognize T_I_S.

This condition handler cannot call CEEMRCR with a 0 type_of_move, meaning

move the resume cursor to the point in your program just after the STOP RUN

statement. This violates the standard definition of a STOP RUN being the last

statement to execute in the program in which it is coded. Assuming your program

is a subroutine, you could issue a 1 type_of_move, meaning move the resume cursor

to the call return point of the stack frame previous to the one of the program that

issued the STOP RUN. You could also percolate the condition.

Reentering COBOL Programs after Stack Frame Collapse

A stack frame collapse occurs when the condition manager skips over one or more

active routines and execution resumes in an earlier routine on the stack. This can

occur due to either of the following:

CBL LIB,APOST,NODYNAM

 *Module/File Name: IGZTMLTC

 * *

 * Third routine called in the following call sequence: *

 * *

 * COBOLA --> COBOLB --> COBOLC (which causes a zero divide) *

 * *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBOLC.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 LINKAGE SECTION.

 1 Y PIC 999.

 *

 PROCEDURE DIVISION USING Y.

 DISPLAY ’In COBOLC.’.

 COMPUTE Y = 1 / Y.

 GOBACK.

Figure 42. COBOLC Program

Chapter 12. LE/VSE and HLL Condition Handling Interactions 131

v An explicit GOTO out of block issued from a C or PL/I routine

v Moving the resume cursor using the CEEMRCR callable service and requesting a

resume

LE/VSE resets any intervening COBOL programs from an active to inactive state,

provided they are the following:

v VS COBOL II programs compiled with the CMPR2 compiler option

v VS COBOL II programs compiled with NOCMPR2 that do not use nested

programs

v COBOL/VSE programs compiled with the CMPR2 compiler option or

v COBOL/VSE programs compiled with NOCMPR2 that do not use the

combination of the INITIAL attribute, nested programs, and files processing in

the same compilation unit

After a stack frame collapse, the routines listed above can be reentered.

LE/VSE issues a warning message during stack frame collapse for each

intervening COBOL program that does not adhere to the above restrictions. In

addition, after the GOTO or resume is performed, any attempt to reenter these

programs is diagnosed as an attempted recursive entry error.

Handling Fixed-Point and Decimal Overflow Conditions

The ON SIZE ERROR phrase continues to be invoked by COBOL to handle

fixed-point and decimal overflow conditions, regardless of whether these

conditions are enabled by LE/VSE.

PL/I Condition Handling Semantics

When an exception occurs in a PL/I routine, PL/I language semantics for handling

the condition prevail. Therefore, the behavior of PL/I condition handling in

applications consisting of only PL/I routines is unchanged under LE/VSE.

In PL/I, you handle all run-time conditions by writing ON-units. An ON-unit is a

procedure that is established in a block when the ON statement for the ON-unit is

run. The ON-unit itself runs when the specified condition in the ON statement is

raised. The establishment of an ON-unit applies to all dynamically descendent

(inherited from calling procedure) blocks of the block that established it; a

condition occurring in a called procedure could result in an ON-unit being run in

the caller.

This section provides a high-level view of how condition handling works if an

exception occurs in a PL/I routine, and only PL/I routines are on the stack. For a

more detailed explanation of PL/I condition handling, refer to IBM PL/I for

VSE/ESA Language Reference For details about how PL/I condition handling works

in an ILC application, see LE/VSE Writing Interlanguage Communication Applications.

PL/I Condition Handling Actions

Refer to Figure 43 on page 133 throughout the following summary of the steps

taken to process a condition when there are only PL/I routines on the stack.

132 LE/VSE: Programming Guide

1. Assume a condition such as CONVERSION, which is severity 3, occurs in

routine 4.

2. If a debug tool is present, and the setting of the TEST run-time option indicates

that it should be given control, it is invoked. See LE/VSE Programming Reference

for information about the TEST run-time option.

3. If a debug tool is not invoked, or does not handle the condition, LE/VSE

moves down the stack towards the earliest stack frame. If a PL/I ON-unit is

established for the CONVERSION condition, it is given control.

4. If all stack frames have been visited and no ON CONVERSION unit was

found, a message is issued. The condition is promoted to the ERROR condition

if it meets any of the qualifications listed in “Promoting Conditions to the PL/I

ERROR Condition.” Otherwise, the PL/I implicit action occurs.

A CONVERSION condition would be promoted to ERROR.

5. If a debug tool is present, and the setting of the TEST run-time option indicates

that it should be given control, it is invoked.

6. If a debug tool is not invoked, or does not handle the condition, the LE/VSE

condition manager makes another pass of the stack, beginning in Routine 4

where the original condition occurred. If a PL/I ERROR ON-unit is established,

it is invoked.

7. If either of the following occurs:

v An ERROR ON-unit is found, but it does not issue a GOTO out of block.

v No ERROR ON-unit is found.

then the ERROR condition is promoted to T_I_U (Termination Imminent due to

an Unhandled Condition). T_I_U maps to the PL/I FINISH condition. (See

“Termination Imminent Step” on page 111 for a discussion of T_I_U.)

8. LE/VSE makes yet another pass of the stack, beginning in Routine 4 where the

original condition occurred. If a PL/I FINISH ON-unit is established, it is

invoked.

9. If all stack frames have been visited, and no FINISH ON-unit issued a GOTO

out of block, then LE/VSE begins thread termination activities in response to

the unhandled condition. Since a message was issued for the CONVERSION

condition before it was promoted to the ERROR condition, no message is

issued at this time.

Promoting Conditions to the PL/I ERROR Condition

PL/I promotes to the PL/I ERROR condition any PL/I condition for which the

implicit action is to promote to the ERROR condition. The appropriate ONCODE is

used. See IBM PL/I for VSE/ESA Language Reference for details.

Figure 43. PL/I Condition Processing

Chapter 12. LE/VSE and HLL Condition Handling Interactions 133

Mapping Non-PL/I Conditions to PL/I Conditions

Some non-PL/I conditions map directly to PL/I conditions:

v The LE/VSE conditions listed in the first column below map directly to the PL/I

conditions in the second column.

Decimal divide

ZERODIVIDE

Decimal overflow

FIXEDOVERFLOW

Exponent overflow

OVERFLOW

Exponent underflow

UNDERFLOW

Fixed-point divide

ZERODIVIDE

Fixed-point overflow

FIXEDOVERFLOW

Floating-point divide

ZERODIVIDE
These LE/VSE conditions map directly to the PL/I conditions. They are detected

by the hardware and are normally represented by condition tokens with a

facility ID of CEE when raised. They are represented by an IBM condition token

only when signaled by the PL/I SIGNAL statement.

v The following conditions map directly to ERROR:

– An LE/VSE condition of severity 2, 3, or 4 that does not map to one of the

PL/I conditions listed above.

For these conditions, an established ERROR ON-unit is run on the first pass

of the stack. In general, the ONCODE is 9999. Some LE/VSE conditions that

map to ERROR, however, are represented by an ONCODE other than 9999.

Examples are some of the conditions raised by the LE/VSE math services.

– Any other condition of severity 2, 3, or 4.

For these conditions, an established ERROR ON-unit is run on the first pass

of the stack. The ONCODE is 9999.

Additional PL/I Condition Handling Considerations

Keep the following additional PL/I condition handling considerations in mind:

v Non-PL/I conditions of severity 0 or 1 are not promoted to ERROR.

v Promoting any non-PL/I condition to a PL/I condition is prohibited.

v Raising a PL/I condition through the use of the CEESGL callable service is

prohibited.

v Issuing a call to CEEMRCR from within a PL/I ON-unit in order to move the

resume cursor is prohibited. You can move the resume cursor by using

CEEMRCR from within a LE/VSE user-written condition handler, however.

134 LE/VSE: Programming Guide

PL/I Condition Handling Example

*PROCESS MACRO;

 /*Module/File Name: IBMDIVZ

 /***/

 /* */

 /* PL/I Condition Handling Functions: */

 /* : Establish ZERODIVIDE ON-unit */

 /* : GO TO out of ZERODIVIDE ON-unit */

 /* : PL/I Normal return from ZERODIVIDE ON-unit */

 /* : Revert ZERODIVIDE ON-unit */

 /* : PL/I System action on ZERODIVIDE condition */

 /* */

 /* 1. This example establishes a ZERODIVIDE ON-unit. */

 /* 2. A sub-program, sdivide, is called and causes a ZERODIVIDE */

 /* condition to occur. */

 /* 3. The ZERODIVIDE ON-unit is entered. A GOTO out of the ON-unit */

 /* is processed. The program resumes at the label */

 /* "after_1st_zerodivide". */

 /* 4. A new ZERODIVIDE ON-unit is established and it overrides the */

 /* current established ZERODIVIDE ON-unit. */

 /* 5. The subroutine sdivide is called a second time. */

 /* 6. The newly established ZERODIVIDE ON-unit is entered. A GOTO */

 /* is not executed, and the program resumes at the location */

 /* following the instruction that caused the condition. This */

 /* is the PL/I normal return action for the ZERODIVIDE condition. */

 /* 7. The established ZERODIVIDE ON-unit is canceled by executing */

 /* the REVERT ZERODIVIDE statement. */

 /* 8. Sdivide is called a third time. Because there is no */

 /* ZERODIVIDE ON-unit established, the PL/I implicit action */

 /* is executed. Namely, the ERROR condition is raised and the */

 /* program is terminated. */

 /** */

 /***/

 CEPLCND: Proc Options(Main);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 dcl in_zdiv_ou1 char (1), in_zdiv_ou2 char(1),fell_thru char(1);

 in_zdiv_ou1 = ’N’;

 in_zdiv_ou2 = ’N’;

 fell_thru = ’N’;

 /**/

 /* A ZERODIVIDE ON-unit is established when control reaches the */

 /* ON statement. */

 /**/

 on zerodivide begin;

 in_zdiv_ou1 = ’Y’;

 go to after_1st_zerodivide;

 end;

 /**/

 /* The first call to sdivide will result in the ZERODIVIDE */

 /* condition being raised. The preceding established ON-unit */

 /* gets control. Due to a GO TO out of the ON-unit, execution */

 /* resumes immediately at label after_1st_zerodivide. This is */

 /* verified by checking that the flow of control did not resume */

 /* at the instruction following the ZERODIVIDE condition. */

 /**/

Figure 44. PL/I Condition Handling Example (Part 1 of 2)

Chapter 12. LE/VSE and HLL Condition Handling Interactions 135

call sdivide;

 after_1st_zerodivide:

 if (fell_thru = ’Y’) then do;

 put skip list (’Error in flow of control after’

 || ’ the first call to sdivide. ’);

 end;

 /**/

 /* A new ZERODIVIDE ON-unit is established when control */

 /* reaches the following ON ZERODIVIDE statement. */

 /**/

 on zerodivide begin;

 in_zdiv_ou2 = ’Y’;

 end;

 /**/

 /* Subroutine sdivide is called a second time to raise the */

 /* ZERODIVIDE condition. Control enters the established */

 /* ZERODIVIDE ON-unit. On exit from the preceding zerodivide */

 /* ON-unit, control returns to the instruction following the */

 /* divide by zero in subroutine SDIVIDE. A check is made to */

 /* detect if control flowed to the instruction following the */

 /* one that caused the zerodivide condition to be raised. */

 /**/

 call sdivide;

 if (fell_thru = ’N’) then do;

 put skip list

 (’Error in flow of control after second call to cepldiv. ’);

 end;

 /**/

 /* The ZERODIVIDE ON-unit is canceled by action of the */

 /* REVERT statement. */

 /**/

 revert zerodivide;

 if (in_zdiv_ou1 = ’N’ | in_zdiv_ou2 = ’N’) then

 put skip list (’Error in flow of control to ON-units’);

 else do;

 put skip list (’The PL/I condition handling example’

 || ’ will terminate with PL/I message IBM0301’);

 /***/

 /* Sdivide is called for the third and final time. Because */

 /* there are no established ON-units, the implicit action */

 /* for ZERODIVIDE takes place. */

 /***/

 call sdivide;

 put skip list (’Error in flow of control after third’

 || ’ call to sdivide. ’);

 end;

 /***/

 /* The sdivide subroutine causes a ZERODIVIDE condition. */

 /***/

 sdivide: proc;

 dcl int fixed bin (15,0);

 dcl int_2 fixed bin (15,0) init(5);

 dcl int_3 fixed bin (15,0) init(0);

 int = int_2 / int_3;

 fell_thru = ’Y’;

 end sdivide;

 End CEPLCND;

Figure 44. PL/I Condition Handling Example (Part 2 of 2)

136 LE/VSE: Programming Guide

Chapter 13. Coding a User-Written Condition Handler

This chapter describes how you can code a user-written condition handling routine

and provides examples for LE/VSE-conforming HLLs.

Understanding the Basics

Your user-written condition handler can test for the occurrence of a particular

condition by coding a 12-byte condition token or by coding a symbolic feedback

code. You can use CEEHDLR when coding your user-written condition handler to

register the condition handler. For information about using CEEHDLR, see

“User-Written Condition Handler Interface using CEEHDLR” on page 138.

User-written condition handlers cannot be written in PL/I, be registered from a

PL/I routine, or use PL/I pseudovariables or condition handling built-in functions.

However, PL/I ON-units can call programs written in C or COBOL that can

register a user-written condition handler. Similarly, user-written condition handlers

can call PL/I routines, which can then establish ON-units. ON-units can make calls

to any LE/VSE services except CEEMRCR.

Also, the USRHDLR run-time option enables you to register a user-written

condition handler at stack frame 0 without having to recompile your application to

include a call to CEEHDLR. This is particularly useful in supporting PL/I

applications that are unable to directly call CEEHDLR.

Condition handlers written in COBOL must be compiled with the COBOL/VSE

compiler.

Nested conditions can be used in your routine as long as the language your

routine is written in allows it to be recursively entered. You should design the

routine to handle specific conditions rather than designing the routine to handle a

wide variety of conditions. You should also code the condition handling routine to

respond to the original condition on the first pass of the stack, rather than coding a

routine to handle T_I_U on the second pass of the stack. This helps ensure that the

handling that you perform addresses the original condition. The more specific the

condition is that you design the handler for, the more precise the fix can be.

Types of Conditions You Can Handle

A user-written condition handler can, in general, intercept and process any

condition, regardless of the language of the routine in which the condition

occurred. This means that you can code a user-written condition handler to

respond to condition tokens with any of the following facility IDs:

 CEE, representing LE/VSE conditions

 EDC, representing C conditions

 IGZ, representing COBOL conditions

 IBM, representing PL/I conditions

In general, your user-written condition handler can use any of the LE/VSE

condition handling services. Specific exceptions follow:

© Copyright IBM Corp. 1991, 2005 137

v The ways in which you can resume after an IGZ condition of severity 2 or above

are restricted. See “Restrictions about Resuming Execution after an IGZ

Condition Occurs” on page 131 for details.

v If an IBM condition of severity 2 or above was raised, then you cannot issue a

resume without first moving the resume cursor.

This restriction does not apply to IBM conditions of severity 0 or 1, or any IBM

conditions signaled using the PL/I SIGNAL statement.

v You cannot promote any condition to a condition with a facility ID of IBM (one

that belongs to PL/I). You can promote IBM conditions to conditions with

facility IDs of CEE, EDC, or IGZ.

For more information on coding user-written condition handlers to respond to

conditions of different facility IDs, see “Using Symbolic Feedback Codes” on page

175.

User-Written Condition Handler Interface using CEEHDLR

Use CEEHDLR to register a user-written condition handler. See LE/VSE

Programming Reference for more information about CEEHDLR.

User-written condition handlers are automatically unregistered when the stack

frame they’re associated with is removed from the stack due to a return, GOTO

out of block, or a move of the resume cursor. You can, however, call CEEHDLU to

explicitly unregister a user-written condition handler. See LE/VSE Programming

Reference for more information about CEEHDLU.

Recursion is allowed if a handler is registered within a handler, and nested

conditions are allowed.

It is invalid to promote a condition without returning a new condition token. You

cannot promote a condition to a PL/I condition.

Syntax

55 condition_handler (c_ctok , token , result_code , new_condition) 5=

c_ctok (input)

A 12-byte condition token that identifies the current condition being processed.

LE/VSE uses this parameter to tell your condition handler what condition has

occurred.

token (input)

A 4-byte integer that specifies the token you passed into LE/VSE when this

condition handler was registered by a call to the CEEHDLR callable service.

result_code (output)

A 4-byte integer that contains instructions about responses the user-written

condition handler wants LE/VSE to make when processing the condition.

 result_code is passed by reference. The following responses are valid:

Response

Result_Code

Value Action

resume 10 Resume at the resume cursor (condition has been handled).

138 LE/VSE: Programming Guide

Response

Result_Code

Value Action

percolate 20 Percolate to the next condition handler. If a result_code is

not explicitly set by a handler, this is the default result_code.

21 Percolate to the first user-written condition handler for the

stack frame that is before the one to which the handle

cursor points. This can skip a language-specific condition

handler for this stack frame as well as the remaining

user-written condition handlers in the queue for this stack

frame.

promote 30 Promote to the next condition handler.

31 Promote to the stack frame before the one to which the

handle cursor points. This can skip a language-specific

condition handler for this stack frame as well as any

remaining user-written condition handler in the queue at

this stack frame.

32 Promote and restart condition handling at the first

condition handler of the stack frame of the handle cursor.

 If result_code is not explicitly set by the handler, the default response is

Value=20, Percolate to the next condition handler.

new_condition (output)

A 12-byte condition token that represents the promoted condition. This field is

used only for result_code values of 30, 31, and 32, denoting promote.

Registering a User-Written Condition Handler using USRHDLR

Use the USRHDLR run-time option to register a user-written condition handler at

stack frame 0. The condition handler specified is invoked after the default HLL

condition handler for the main program, but before the HLL condition handler for

stack frame 0. The condition handler percolated or promoted by the user-written

condition handler registered by USRHDLR, is not passed to any other condition

handler.

Syntax

55
 NOUsrhdlr

USrhdlr

(

phname

)

5=

NOUsrhdlr

Specifies that no user-written condition handler is registered.

USrhdlr

Specifies that a user-written condition handler is registered at stack frame 0.

phname

The entry point name of a phase that contains the user-written condition

handler to be registered at stack frame 0.

 The condition handler registered by the USRHDLR run-time option can return

any of the result codes allowed for a condition handler registered with the

CEEHDLR callable service.

 For more information about using the USRHDLR run-time option, refer to the

LE/VSE Programming Reference.

Chapter 13. Coding a User-Written Condition Handler 139

Nested Conditions

A nested condition is one that occurs within a C signal handler, PL/I ON-unit, or

user-written condition handler invoked to handle a condition. When conditions

occur during the condition handling process, the handling of the original condition

is suspended and further action is taken based on the state of the condition

handling.

The DEPTHCONDLMT run-time option indicates whether nested conditions are

permitted while your application runs. If you specify DEPTHCONDLMT(1),

handling of the initial condition is allowed, but any additional nested condition

causes your application to abend. If you specify DEPTHCONDLMT(0), an

unlimited number of nested conditions is permitted. If you specify some other

integer value for DEPTHCONDLMT, LE/VSE allows handling of the initial

condition plus additional levels of nested conditions before your application

abends (see LE/VSE Programming Reference for more information).

If a nested condition is allowed within a user-written condition handler, LE/VSE

begins handling the most recently raised condition. After the most recently raised

condition is properly handled, execution begins at the instruction pointed to by the

resume cursor, the instruction following the point where the condition occurred. If

a user-written condition handler is registered using CEEHDLR within another user

condition handler, nested conditions are handled by the most recently registered

condition handler.

If any HLL or user-written condition handler moves the resume cursor closer to

the oldest stack frame both conditions are considered handled. The application

resumes running at the instruction pointed to by the resume cursor. The resume

cursor can be moved using the CEEMRCR callable service, or by language

constructs such as GOTO.

Nested Conditions in Applications Containing a COBOL

Program

You must take special care when dealing with nested conditions in ILC

applications. For example, the following scenario can cause your application to

abend:

1. A nested condition occurs within a COBOL user-written condition handler

(COBOL_UHDLR).

2. The COBOL user-written condition handler calls another user-written condition

handler established using CEEHDLR to handle the nested condition.

3. The user-written condition handler percolates the condition.

In this scenario, the condition can be percolated back to the stack frame where the

original condition occurred. Since condition handling actions for the routine where

the condition originally occurred include calling COBOL_UHDLR,

COBOL_UHDLR can be recursively entered. This is not permitted under COBOL,

and your application abends.

A rule of thumb is to ensure that COBOL user-written condition handlers that call

other user-written handlers do not regain control.

140 LE/VSE: Programming Guide

Using LE/VSE Condition Handling with Nested COBOL

Programs

If your application contains both nested COBOL programs and calls to LE/VSE

condition handling services, keep the following in mind:

v Do not call CEEHDLR from a nested COBOL program.

v Do not call CEEMRCR with a 1 type_of_move from a user handler associated with

a stack frame that was called by a nested COBOL program. In Figure 45,

Program A calls nested Program B. Program B calls Program C, which registers a

user-written condition handler, UWCHC. UWCHC cannot call CEEMRCR with a

1 type_of_move, which would move the resume cursor back to nested Program B.

Examples with a Registered User-Written Condition Handler

This section contains C, COBOL, and assembler examples in which user-written

condition handlers are registered to respond to specific conditions that might occur

in an application.

v In “Handling a Divide-by-Zero Condition in C or COBOL,” C and COBOL call

CEEHDLR and CEEMRCR to handle a divide-by-zero condition.

v In “Handling an Out-of-Storage Condition in C or COBOL” on page 148, C and

COBOL call CEEHDLR and CEEMRCR to handle an out-of-storage condition.

v In “Signaling and Handling a Condition in a C Routine” on page 158, C calls

CEEHDLR, CEEGQDT, and CEEMRCR to respond to a signaled condition.

v In “Handling a Divide-by-Zero Condition in a COBOL Program” on page 160,

COBOL calls CEEHDLR, CEE5GRN, and CEEMOUT to respond to the

significance condition (which was enabled using CEE5SPM).

v In “Handling a Program Check in an Assembler Routine” on page 165,

assembler calls CEEHDLR to register a condition handler that responds to a

program check.

You cannot register PL/I routines as user-written condition handlers using

CEEHDLR. However, user-written condition handlers written in C or COBOL can

call PL/I routines.

Handling a Divide-by-Zero Condition in C or COBOL

Figure 46 on page 142 and the following examples provide an illustration of how

user-written condition handlers can handle conditions such as a divide-by-zero in a

C or COBOL application. In Figure 47 on page 143 (for C) or Figure 48 on page 145

(for COBOL), the main routine EXCOND calls CEEHDLR to register the USRHDLR

user-written condition handler (Figure 50 on page 147). EXCOND then calls the

Figure 45. Restricted type_of_move If COBOL Nested Programs Are Present

Chapter 13. Coding a User-Written Condition Handler 141

DIVZERO routine (Figure 49 on page 146), in which a divide-by-zero exception

occurs.

 Divide-by-zero is enabled as a condition in the following steps:

1. The handle cursor, which first points at DIVZERO’s stack frame, moves down

the stack to the USRHDLR condition handler, the first user-written condition

handler established to handle conditions for the main routine’s stack frame.

2. For divide-by-zero conditions, USRHDLR issues a call to CEEMRCR (Move

Resume Cursor Relative to Handle Cursor) with a 0 type_of_move, meaning

move the resume cursor to the call return point of the stack frame associated

with the handle cursor. (The call return point is the next instruction after the

call to the DIVZERO routine.)

3. Execution resumes in EXCOND at this point. A divide-by-zero condition is the

only type of program interrupt for which USRHDLR causes a resume.

4. All other program interrupts are percolated to the next condition handler on

the stack.

Note: For simplicity, the examples shown below do not include calls to some

LE/VSE services that might otherwise be useful for handling conditions in

your application. For example, you might code in the USRHDLR routine a

call to the CEE5GRN callable service in order to get the name of the routine

that incurred the condition.

Figure 46. Handle and Resume Cursor Movement as a Condition Is Handled

142 LE/VSE: Programming Guide

C Handling a Divide-by-Zero Condition

Figure 47 is the C routine that performs the tasks discussed above.

/*Module/File Name: EDCDIVZ */

/**/

/* */

/* MAIN .-> DIVZERO */

/* - register handler | - force a divide-by-zero */

/* - call DIVZERO --’ */

/* ==> "resume point" */

/* - unregister handler */

/* USRHDLR: */

/* - if divide-by-zero */

/* - move resume cursor */

/* - resume at "resume point" */

/* */

/**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <leawi.h>

#include <ceeedcct.h>

void usrhdlr(_FEEDBACK *, _INT4 *, _INT4 *, _FEEDBACK *);

void divzero(int);

int main(void) {

 _FEEDBACK fc;

 _INT4 divisor;

 _INT4 token;

 _ENTRY pgmptr;

 /* Register a user-written condition handler. */

 pgmptr.address = (_POINTER)&usrhdlr;

 pgmptr.nesting = NULL;

 token = 97;

 CEEHDLR (&pgmptr, &token, &fc);

 if (_FBCHECK (fc , CEE000) != 0) {

 printf("CEEHDLR failed with message number %d\n",

 fc.tok_msgno);

 exit(99);

 }

 printf("MAIN: Registered USRHDLR.\n");

 /* Call DIVZERO to divide by zero and drive USRHDLR */

 divisor = 0;

 divzero(divisor);

 printf("MAIN: Resumption after DIVZERO.\n");

Figure 47. EXCOND Routine (C) (Part 1 of 2)

Chapter 13. Coding a User-Written Condition Handler 143

/* Unregister the user condition handler. */

 CEEHDLU (&pgmptr, &fc);

 if (_FBCHECK (fc , CEE000) != 0) {

 printf("CEEHDLU failed with message number %d\n",

 fc.tok_msgno);

 exit(99);

 }

 printf("MAIN: Unregistered USRHDLR.\n");

} /* end main */

void divzero(int arg) {

 printf(" DIVZERO: Starting.\n");

 arg = 1 / arg;

 printf(" DIVZERO: Returning to its caller.\n");

} /* end divzero */

/**/

/* usrhdlr will handle DIVIDE-BY-ZERO conditions... */

/* all others will be percolated. */

/**/

void usrhdlr(_FEEDBACK *cond,_INT4 *input_token,

 _INT4 *result, _FEEDBACK *new_cond)

 {

 _INT4 move_type_0 = 0;

 _INT4 move_type_1 = 1;

 _FEEDBACK feedback;

 /* values for handling the conditions */

 #define resume 10

 #define percolate 20

 #define promote 30

 #define promote_sf 31

 printf(">>> USRHDLR: Entered User Handler \n");

 printf(">>> passed token value is %d\n",*input_token);

 /* check if the DIVIDE-BY-ZERO message (0C9) */

 if (cond->tok_msgno == 3209) {

 CEEMRCR (&move_type_0, &feedback);

 if (_FBCHECK (feedback , CEE000) != 0) {

 printf("CEEMRCR failed with message number %d\n",

 feedback.tok_msgno);

 exit(99);

 }

 *result = resume;

 printf(">>> USRHDLR: Resuming execution\n");

 }

 else { /* not DIVIDE-BY-ZERO */

 *result = percolate;

 printf(">>> USRHDLR: Percolating it\n");

 }

} /* end usrhdlr */

Figure 47. EXCOND Routine (C) (Part 2 of 2)

144 LE/VSE: Programming Guide

COBOL Handling a Divide-by-Zero Condition

Figure 48 registers a user-written condition handler, calls the DIVZERO subroutine,

and unregisters the condition handler on return from the subroutine.

CBL LIB,APOST,NODYNAM,NOOPT

 *Module/File Name: IGZTDIVZ

 **

 * *

 * EXCOND .-> DIVZERO *

 * - register handler | - force a divide-by-zero *

 * - call DIVZERO --’ *

 * ==> ’resume point’ *

 * - unregister handler *

 * USRHDLR *

 * - if divide-by-zero, then: *

 * - move resume cursor *

 * - resume at ’resume point’ *

 * *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EXCOND.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 77 DIVISOR PIC S9(9) BINARY.

 **

 ** Declarations for condition handling

 **

 77 TOKEN PIC X(4).

 77 PGMPTR USAGE IS PROCEDURE-POINTER.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION.

 PARA-CND01A.

 **

 ** Register a user-written condition handler. **

 **

 SET PGMPTR TO ENTRY ’USRHDLR’.

 MOVE ZERO TO TOKEN.

 CALL ’CEEHDLR’ USING PGMPTR TOKEN FC.

 IF CEE000 of FC THEN

 DISPLAY ’EXCOND: REGISTERED USRHDLR.’

 ELSE

 DISPLAY ’CEEHDLR failed with msg ’

 Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

Figure 48. EXCOND Routine (COBOL) (Part 1 of 2)

Chapter 13. Coding a User-Written Condition Handler 145

Figure 49 is a subroutine that generates the divide-by-zero condition.

 **

 ** Call DIVZERO to force a divide-by-zero and drive USRHDLR **

 **

 MOVE 00 TO DIVISOR.

 CALL ’DIVZERO’ USING DIVISOR.

 DISPLAY ’EXCOND: RESUMED AFTER DIVZERO.’.

 ** Unregister the user-written condition handler.**

 CALL ’CEEHDLU’ USING PGMPTR FC.

 IF CEE000 of FC THEN

 DISPLAY ’EXCOND: UNREGISTERED USRHDLR.’

 ELSE

 DISPLAY ’CEEHDLU failed with msg ’

 Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

 END PROGRAM EXCOND.

Figure 48. EXCOND Routine (COBOL) (Part 2 of 2)

CBL LIB,APOST,NODYNAM,NOOPT

 *Module/File Name: IGZTDIVS

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DIVZERO.

 DATA DIVISION.

 LINKAGE SECTION.

 01 ARG PIC S9(9) BINARY.

 PROCEDURE DIVISION USING ARG.

 DISPLAY ’ DIVZERO: STARTING.’.

 COMPUTE ARG = 1 / ARG.

 DISPLAY ’ DIVZERO: RETURNING TO ITS CALLER.’.

 GOBACK.

 END PROGRAM DIVZERO.

Figure 49. DIVZERO Routine (COBOL)

146 LE/VSE: Programming Guide

Figure 50 is the user-written condition handler registered by EXCOND to handle

the divide-by-zero condition. When the divide-by-zero condition arises, USRHDLR

calls CEEMRCR with a 0 type of move. Doing so moves the resume cursor to the

point in EXCOND after the call to DIVZERO.

CBL LIB,APOST

 *Module/File Name: IGZTDIVU

 **

 * *

 * USRHDLR *

 * *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. USRHDLR.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 MISC-VARIABLES.

 02 MOVE-TYPE-0 PIC S9(9) BINARY VALUE ZERO.

 02 MOVE-TYPE-1 PIC S9(9) BINARY VALUE 1.

 01 FEEDBACK.

 02 FB-SEVERITY PIC 9(4) BINARY.

 02 FB-DETAIL PIC X(10).

 *

 LINKAGE SECTION.

 **

 * *

 * Note: the symbolic names of the condition tokens *

 * for S/370 program interrupt codes 0C1 thru 0CF *

 * are CEE341 through CEE34F *

 * *

 **

 01 TOKEN PIC X(4).

 01 RESULT-CODE PIC S9(9) BINARY.

 88 RESUME VALUE +10.

 88 PERCOLATE VALUE +20.

 88 PERC-SF VALUE +21.

 88 PROMOTE VALUE +30.

 88 PROMOTE-SF VALUE +31.

 01 CURRENT-CONDITION.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

Figure 50. USRHDLR Routine (COBOL) (Part 1 of 2)

Chapter 13. Coding a User-Written Condition Handler 147

Handling an Out-of-Storage Condition in C or COBOL

You can use the LE/VSE condition handling services to resolve an out of storage

condition in your application. In the user-written condition handler examples that

follow, CEEGTST and CEECZST are used to get and reallocate heap storage.

CEEMRCR is also used to handle an out-of-storage condition in a user subroutine,

and allow the subroutine to be invoked again. To see the user code that

corresponds to this scenario, see:

v See the Examples on 150 and 152, for C

v See the Examples on 153, 155, and 157, for COBOL

The out-of-storage condition is handled as follows:

1. The out-of-storage condition arises in your function (C) or subroutine (COBOL),

and LE/VSE gives control to the user-written condition handler you have

registered through CEEHDLR for the out-of-storage condition.

2. The condition handler detects the out-of-storage condition and calls CEEMRCR

to set the resume cursor to resume execution at the return address of your

subroutine call.

3. On return from the user condition handler, your main program regains control

as if your subroutine has actually run.

 01 NEW-CONDITION.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION USING CURRENT-CONDITION TOKEN

 RESULT-CODE NEW-CONDITION.

 DISPLAY ’>>> USRHDLR: Entered User Condition Handler ’.

 IF CEE349 of CURRENT-CONDITION THEN

 **

 * Expected condition, divide by zero, occurred... *

 * move resume cursor to stack frame which registered *

 * the handler, and resume execution at that point. *

 **

 CALL ’CEEMRCR’ USING MOVE-TYPE-0 FEEDBACK

 SET RESUME TO TRUE

 DISPLAY ’>>> USRHDLR: Resuming execution’

 ELSE

 **

 * UNexpected condition encountered.. percolate it!*

 **

 SET PERCOLATE TO TRUE

 DISPLAY ’>>> USRHDLR: Percolating it’

 END-IF.

 GOBACK.

 END PROGRAM USRHDLR.

Figure 50. USRHDLR Routine (COBOL) (Part 2 of 2)

148 LE/VSE: Programming Guide

4. The main program tests a completion indicator and discovers that the

subroutine did not actually complete.

5. Your program then recognizes that it has been invoked with insufficient storage

for maximum efficiency, and frees some previously allocated storage.

6. The subroutine is invoked a second time and completes successfully.

See LE/VSE Programming Reference for syntax of all LE/VSE condition handling

services.

C Examples Using CEEHDLR, CEEGTST, CEECZST, and

CEEMRCR

Figure 51 calls CEEHDLR to register a user-written condition handler for the

out-of-storage condition, calls CEEGTST to allocate heap storage, and calls

CEECZST to alter the size of the heap storage requested.

Chapter 13. Coding a User-Written Condition Handler 149

/*Module/File Name: EDCOOSR */

 /***/

 /* */

 /* Function : CEEHDLR - Register user condition handler */

 /* : CEEGTST - Get Heap Storage */

 /* : CEECZST - Change the size of heap element */

 /* */

 /* 1. A user condition handler CECNDHD is registered. */

 /* 2. A large amount of HEAP storage is allocated. */

 /* 3. An inline function, sub(), is called which */

 /* requires a large amount of storage. It is not */

 /* known whether the storage for sub() is */

 /* available during this run of the application. */

 /* 4. If sufficient storage for sub() is not avail- */

 /* able, a storage condition is generated by LE/VSE. */

 /* 5. CECNDHD get control and sets resume at the */

 /* next instruction following the call to sub(). */

 /* 6. A test for completion of sub() is made after */

 /* the function call. If sub() did not complete, */

 /* a large amount of storage is freed, and sub() */

 /* is invoked a second time. */

 /* 7. sub() runs successfully once it has enough */

 /* storage available. */

 /* */

 /* Note: In order for this example to complete */

 /* successfully, the FREE suboption of the HEAP */

 /* runtime option must be in effect. */

 /* */

 /***/

#include <stdio.h>

#include <string.h>

#include <leawi.h>

#include <ceeedcct.h>

#define BIGSTOR 300000

#define BIGINDX BIGSTOR-1

 void CECNDHD(_FEEDBACK *, _INT4 *, _INT4 *, _FEEDBACK *);

 char *sub();

 void main ()

 {

 _FEEDBACK feedback;

 _ENTRY pgmptr;

 _POINTER addrss;

 _INT4 token;

 _INT4 hpsize;

 _INT4 heapid;

 _INT4 newsize;

 char *RAN;

Figure 51. C Example of a main() Routine That Calls a Function and Registers a Condition

Handler for an Out-of-Storage Condition (Part 1 of 2)

150 LE/VSE: Programming Guide

When any condition occurs in the C program (Figure 51), the user-written

condition handler (Figure 52) receives control and tests for the out-of-storage

condition. If the out-of-storage condition has occurred, then the example calls

CEEMRCR to return to the instruction in the C main after the call to function

sub().

 /***/

 /* Call CEEHDLR to register user condition handler CECNDHD */

 /***/

 pgmptr.address = (_POINTER)&CECNDHD;

 pgmptr.nesting = NULL;

 token = 97;

 CEEHDLR(&pgmptr, &token, &feedback);

 if (_FBCHECK (feedback , CEE000) != 0)

 printf("CEEHDLR failed with message number %d\n",

 feedback.tok_msgno);

 else

 printf("Condition handler registered\n");

 /***/

 /* Call subroutine sub(). When sub becomes active, an out */

 /* of storage condition arises if the region is too small */

 /***/

 heapid = 0;

 hpsize = BIGSTOR;

 CEEGTST (&heapid , &hpsize , &addrss , &feedback);

 if (_FBCHECK (feedback , CEE000) != 0)

 printf("CEEGTST failed with message number %d\n",

 feedback.tok_msgno);

 RAN = sub ();

 if (RAN != "r")

 {

 /***/

 /* If Sub did not run, reduce the size of allocated */

 /* storage and call Sub a second time. */

 /***/

 newsize = 2000;

 CEECZST (&addrss, &newsize, &feedback);

 if (_FBCHECK (feedback , CEE000) != 0)

 printf("CEECZST failed with message number %d\n",

 feedback.tok_msgno);

 printf("Subroutine is called for the 2nd time\n");

 RAN = sub ();

 printf("Subroutine %.can sucessfully\n", *RAN);

 };

 } /* end of main */

 char *sub()

 {

 char w2[BIGSTOR];

 w2[BIGINDX] = ’B’;

 return("r");

 } /* end of sub */

Figure 51. C Example of a main() Routine That Calls a Function and Registers a Condition

Handler for an Out-of-Storage Condition (Part 2 of 2)

Chapter 13. Coding a User-Written Condition Handler 151

/*Module/File Name: EDCOOSH */

 /**/

 /* */

 /* Function : CEEMRCR - Move resume cursor relative */

 /* to handle cursor. */

 /* */

 /* CECNDHD is a user condition handler that is registered */

 /* by the program CECNDXP. CECNDHD gets control from the */

 /* condition manager and tests for the STORAGE CONDITION. */

 /* If a STORAGE CONDITION is detected, the resume cursor */

 /* is moved so that control is returned to the caller of */

 /* the routine encountering the STORAGE CONDITION. */

 /* */

 /**/

 #include <stdio.h>

 #include <string.h>

 #include <leawi.h>

 #include <ceeedcct.h>

 #define RESUME 10

 #define PERCOLATE 20

 #define PROMOTE 30

 #define PROMOTE_STACK_FRAME 31

 void CECNDHD (_FEEDBACK *cond, _INT4 *input_token,

 _INT4 *result, _FEEDBACK *new_cond)

{

 _FEEDBACK feedback;

 _INT4 movetyp;

 /**/

 /* Determine if entry was for OUT OF STORAGE condition. */

 /**/

 if (_FBCHECK (*cond , CEE0PD) == 0)

 {

 printf("CESUBXP not run because of storage condition.\n");

 /**/

 /* Call CEEMRCR to move resume cursor. */

 /**/

 movetyp = 0;

 CEEMRCR (&movetyp , &feedback);

 if (_FBCHECK (feedback , CEE000) != 0)

 {

 *result = PERCOLATE;

 }

 else

 {

 *result = RESUME;

 }

 }

 else

 {

 /***/

 /* Percolate all conditions except for OUT OF STORAGE */

 /***/

 *result = PERCOLATE;

 }

}

Figure 52. C User-Written Condition Handler Registered for the Out-of-Storage Condition

152 LE/VSE: Programming Guide

COBOL Examples Using CEEHDLR, CEEGTST, CEECZST, and

CEEMRCR

The Figure 51 calls CEEHDLR to register a user-written condition handler for the

out-of-storage condition, calls CEEGTST to allocate heap storage, and calls

CEECZST to alter the size of the heap storage requested.

CBL LIB,APOST,NODYNAM

 *Module/File Name: IGZTOOSR

 **

 * CECNDXP - Call the following LE services: *

 * : CEEHDLR - Register user condition handler *

 * : CEEGTST - Get Heap Storage *

 * : CEECZST - Change the size of heap element *

 * *

 * 1. A user condition handler CECNDHD is registered. *

 * 2. A large amount of HEAP storage is allocated. *

 * 3. A subroutine, CESUBXP is called which is known to *

 * require a large amount of storage. It is not known *

 * whether the storage for CESUBXP is available during *

 * this run of the application. *

 * 4. If sufficient storage for CESUBXP is not available, *

 * a storage condition is generated by LE. *

 * 5. CECNDHD get control and sets resume at the *

 * next instruction following the call to CESUBXP. *

 * 6. A test for completion of CESUBXP is made after *

 * the subroutine call. If CESUBXP did not complete, *

 * a large amount of storage is freed, and CESUBXP *

 * is invoked a second time. *

 * 7. CESUBXP runs successfully once it has enough *

 * storage available. *

 * Note: In order for this example to complete successfully, *

 * the FREE suboption of the HEAP runtime option must *

 * be in effect. *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CECNDXP.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 TOKEN PIC X(4).

 01 HEAPID PIC S9(9) BINARY.

 01 HPSIZE PIC S9(9) BINARY.

 01 NEWSIZE PIC S9(9) BINARY.

 01 ADDRSS PIC S9(9) BINARY.

 01 PGMPTR USAGE IS PROCEDURE-POINTER.

 01 FEEDBACK.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 01 COMPLETED PIC X.

 88 RAN VALUE ’Y’.

 88 NOTRUN VALUE ’N’.

Figure 53. COBOL Example of a Main Routine that Calls Subroutine and Registers

User-Written Condition Handler (Part 1 of 2)

Chapter 13. Coding a User-Written Condition Handler 153

When any condition occurs in CECNDXP (Figure 53), CECNDHD (Figure 54)

receives control and tests for the out-of-storage condition. If the out-of-storage

condition has occurred, then CECNDHD calls CEEMRCR to return to the

instruction in CECNDXP after the call to CESUBXP.

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.

 ** Register user condition handler CECNDHD using CEEHDLR **

 SET PGMPTR TO ENTRY ’CECNDHD’.

 MOVE 97 TO TOKEN

 CALL ’CEEHDLR’ USING PGMPTR TOKEN.

 MOVE 0 TO HEAPID.

 ** Allocate large amount of heap storage **

 MOVE 500000 TO HPSIZE.

 CALL ’CEEGTST’ USING HEAPID, HPSIZE, ADDRSS, FEEDBACK.

 IF CEE000 OF FEEDBACK THEN

 ** Call CESUBXP, which requires a large stack **

 SET NOTRUN TO TRUE

 CALL ’CESUBXP’ USING COMPLETED

 * Check whether CESUBXP completed, or failed with *

 * storage condition. If CESUBXP did not run, *

 * resize the heap element down by a large amount *

 * and call it again. *

 IF NOTRUN THEN

 DISPLAY ’Reduce storage acquired BY main program’

 ’ AND CALL CESUBXP again.’

 MOVE 300 TO NEWSIZE

 CALL ’CEECZST’ USING ADDRSS, NEWSIZE

 CALL ’CESUBXP’ USING COMPLETED

 END-IF

 ELSE

 DISPLAY ’Call TO GET Storage Failed WITH MESSAGE ’

 Msg-No OF FEEDBACK

 END-IF.

 GOBACK.

 END PROGRAM CECNDXP.

Figure 53. COBOL Example of a Main Routine that Calls Subroutine and Registers

User-Written Condition Handler (Part 2 of 2)

154 LE/VSE: Programming Guide

CBL LIB,APOST,NODYNAM

 *Module/File Name: IGZTOOSH

 * *

 * CECNDHD - Call CEEMRCR to move the resume cursor *

 * relative to the handle cursor. *

 * *

 * CECNDHD is a user condition handler that is registered *

 * by the program CECNDXP. CECNDHD gets control from the *

 * condition manager and tests for the STORAGE CONDITION. *

 * If a STORAGE CONDITION is detected, the resume cursor *

 * is moved so that control is returned to the caller of *

 * the routine encountering the STORAGE CONDITION. *

 * *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CECNDHD.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 Movetyp PIC S9(9) BINARY.

 01 Feedback.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 LINKAGE SECTION.

 01 Current-condition.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 **

 01 Token PIC X(4).

 **

Figure 54. COBOL User-Written Condition Handler Registered for the Out-of-Storage

Condition (Part 1 of 2)

Chapter 13. Coding a User-Written Condition Handler 155

Figure 55 is a COBOL subroutine that causes the out-of-storage condition.

 01 Result-code PIC S9(9) BINARY.

 88 resume VALUE +10.

 88 percolate VALUE +20.

 88 perc-sf VALUE +21.

 88 promote VALUE +30.

 88 promote-sf VALUE +31.

 01 New-condition.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION USING current-condition, token,

 result-code, new-condition.

 ** Determine if entry was for OUT OF STORAGE condition. **

 IF CEE0PD OF current-condition THEN

 DISPLAY ’COBOL subroutine could NOT RUN because’,

 ’ of the insufficient storage condition.’

 ** Call CEEMRCR to move the resume cursor **

 MOVE 0 TO Movetyp

 CALL ’CEEMRCR’ USING Movetyp, Feedback

 IF CEE000 OF Feedback THEN

 SET resume TO TRUE

 ELSE

 SET promote TO TRUE

 MOVE feedback TO new-condition

 END-IF

 ELSE

 SET percolate TO TRUE

 END-IF

 GOBACK.

 END PROGRAM CECNDHD.

Figure 54. COBOL User-Written Condition Handler Registered for the Out-of-Storage

Condition (Part 2 of 2)

156 LE/VSE: Programming Guide

CBL LIB,APOST,NODYNAM

 *Module/File Name: IGZTOOSS

 **

 * *

 * CESUBXP - *

 * *

 * When CESUBXP gets control, a request is made to LE *

 * to allocate storage for the declared array W2. An *

 * out of storage condition takes place, provided the *

 * caller has not allocated a large amount of storage. *

 * *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CESUBXP.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 ARRAY.

 05 W2 PIC X OCCURS 3000000 TIMES.

 LINKAGE SECTION.

 01 PARM1 PIC X.

 88 RAN-OK VALUE ’Y’.

 PROCEDURE DIVISION USING PARM1.

 PARA-CND01A.

 MOVE ’B’ TO W2(2999999).

 SET RAN-OK TO TRUE.

 GOBACK.

 End program CESUBXP.

Figure 55. COBOL Subroutine that Causes Out-of-Storage Condition

Chapter 13. Coding a User-Written Condition Handler 157

Signaling and Handling a Condition in a C Routine

Figure 56 shows how a user-written condition handler gains control for a condition

that was signaled using CEESGL, and calls CEEGQDT to access a data structure

that was set up in the signaling routine. The CEEMRCR callable service resets the

resume cursor, and execution resumes at the new point:

/*Module/File Name: EDCSIGH */

/**/

/* This example shows how several of the LE/VSE Condition Management */

/* Callable Services are used. The services shown are: */

/* CEEHDLR -- register a user condition handler */

/* CEESGL -- signal a condition to the condition manager */

/* CEEGQDT -- get the q_data_token */

/* CEEMRCR -- move the resume cursor */

/* */

/* The example also shows how to directly construct a condition token */

/* and provides a sample user condition handler. */

/**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <leawi.h>

#include <ceeedcct.h>

void b(void);

void handler(_FEEDBACK *,_INT4 *,_INT4 *,_FEEDBACK *);

typedef struct { /* condition info structure */

 int error_value;

 char err_msg[80];

 int retcode;

} info_struct;

int main(void) {

 printf("In main program\n");

 b();

 /* CEEMRCR should put the resume cursor at this point */

 printf("Finished\n");

}

void b(void) {

 _FEEDBACK fc,condtok;

 _ENTRY routine;

 _INT4 token,qdata;

 info_struct *info;

 _INT2 c_1,c_2,cond_case,sev,control;

 _CHAR3 facid;

 _INT4 isi;

Figure 56. Sample C Calls to CEEHDLR, CEESGL, CEEGQDT, and CEEMRCR (Part 1 of 3)

158 LE/VSE: Programming Guide

printf("In routine b\n");

 token = 99;

 routine.address = (_POINTER)&handler;

 routine.nesting = NULL;

 /* register the condition handler: handler */

 CEEHDLR(&routine,&token,&fc);

 if (_FBCHECK (fc , CEE000) != 0) {

 printf("CEEHDLR failed with message number %d\n",

 fc.tok_msgno);

 exit(2999);

 }

 /* build the condition token */

 c_1 = 1;

 c_2 = 99;

 cond_case = 1;

 sev = 1;

 control = 0;

 memcpy(facid,"ZZZ",3);

 isi = 0;

 CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,

 facid,&isi,&condtok,&fc);

 if (_FBCHECK (fc , CEE000) != 0) {

 printf("CEENCOD failed with message number %d\n",

 fc.tok_msgno);

 exit(2999);

 }

 /* set up the condition info structure */

 info = (info_struct *)malloc(sizeof(info_struct));

 if (info == NULL) {

 printf("error allocating info_struct\n");

 exit(2399);

 }

 memset(info->err_msg,’ ’,79);

 info->err_msg[79] = ’\0’;

 info->error_value = 86;

 memcpy(info->err_msg,"Test message",12);

 info->retcode = 99;

 /* set qdata to be the condition info structure */

 qdata = (int)info;

 /* signal the condition */

 CEESGL(&condtok,&qdata,NULL);

 printf("Failed: handler should have moved resume cursor past this\n");

}

/**/

/* User condition handler */

/**/

void handler(_FEEDBACK *fc, _INT4 *token, _INT4 *result,

 _FEEDBACK *newfc) {

 _FEEDBACK cursorfc, orig_fc;

 _INT4 type;

 _INT4 qdata;

 /* if the condition is not mine (ZZZ facid) then percolate */

 if (memcmp(fc->tok_facid,"ZZZ",3) != 0) {

 *result = 20;

 return;

 }

Figure 56. Sample C Calls to CEEHDLR, CEESGL, CEEGQDT, and CEEMRCR (Part 2 of 3)

Chapter 13. Coding a User-Written Condition Handler 159

Handling a Divide-by-Zero Condition in a COBOL Program

Figure 57 illustrates how a COBOL program can handle a divide-by-zero condition

if one should occur. The following occurs:

1. The program uses CEEHDLR to register a user-written condition handler that

recognizes the divide-by-zero condition.

2. The program then performs a divide-by-zero, which causes the user-written

condition handler to get control.

3. The handler calls CEE5GRN (Get Name of Routine that Incurred Condition), to

return the name of the routine that the condition occurred in.

4. The handler inserts the routine name and condition token into a user-defined

message string, and calls CEEMOUT (Dispatch a Message) to send the message

to the LE/VSE message file.

(The LE/VSE message file is a file that you can specify to store messages from

a given routine or application, or from all routines that run under LE/VSE.)

 printf("%d is handling the condition for Control\n",*token);

 /* get the q_data_token */

 CEEGQDT(fc,&qdata,NULL);

 /* look at the q_data_token and print out a message if the */

 /* error_value was 86 */

 if (((info_struct *)qdata)->error_value == 86)

 printf("%.80s\n",((info_struct*)qdata)->err_msg);

 /* move the resume cursor to the caller of the routine */

 /* that registered this handler */

 type = 1;

 CEEMRCR(&type,&cursorfc);

 if (_FBCHECK (cursorfc , CEE000) != 0) {

 printf("CEEMRCR failed with message number %d\n",

 cursorfc.tok_msgno);

 exit(2999);

 }

 /* mark the condition as handled and return */

 printf("Condition handled\n");

 *result = 10;

 return;

}

Figure 56. Sample C Calls to CEEHDLR, CEESGL, CEEGQDT, and CEEMRCR (Part 3 of 3)

160 LE/VSE: Programming Guide

CBL LIB,APOST,NODYNAM

 *Module/File Name: IGZTSIGR

 **

 ** *

 ** IGZTSIGR - Call the following LE services: *

 ** *

 ** : CEEHDLR - register user condition handler *

 ** : CEE5GRN - get name of routine that incurred *

 ** condition. *

 ** : CEEMOUT - output message associated with *

 ** condition, including name of *

 ** routine that incurred condition. *

 ** *

 ** 1. Our example registers user condition handler IGZTSIGH. *

 ** 2. Our program then divides by zero which causes a *

 ** hardware exception condition. *

 ** 3. IGZTSIGH gets control and prints out a message *

 ** that includes the name of the routine incurring *

 ** the divide-by-zero condition, IGZTSIGR. *

 ** 4. IGZTSIGH requests that LE Condition management resume *

 ** execution after the point at which the condition occurred *

 ** 5. IGZTSIGR terminates normally. *

 ** *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. IGZTSIGR.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 DIVISOR PIC S9(9) BINARY.

 01 QUOTIENT PIC S9(9) BINARY.

 **

 ** Declares for condition handling

 **

 01 PGMPTR USAGE IS PROCEDURE-POINTER.

 01 FBCODE.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 77 TOKEN PIC X(4).

Figure 57. COBOL Example of a Main Routine that Registers User-Written Condition Handler

and Causes Divide-by-Zero Condition (Part 1 of 4)

Chapter 13. Coding a User-Written Condition Handler 161

PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.

 DISPLAY ’**’.

 DISPLAY ’IGZTSIGR COBOL Example is now in motion.’.

 DISPLAY ’**’.

 ** **

 ** Register user condition handler IGZTSIGH using CEEHDLR

 ** **

 SET PGMPTR TO ENTRY ’IGZTSIGH’.

 MOVE 97 TO TOKEN.

 CALL ’CEEHDLR’ USING PGMPTR, TOKEN, FBCODE.

 IF (NOT CEE000 of FBCODE) THEN

 DISPLAY ’Error ’ Msg-No of FBCODE

 ’ registering condition handler IGZTSIGH’ UPON CONSOLE

 STOP RUN

 END-IF.

 ** ***

 ** Divide by zero to cause a hardware exception condition.

 ** Condition handler IGZTSIGH gets control and invokes

 ** CEE5GRN to obtain the name of the routine in which

 ** condition was raised. IGZTSIGH then prints a message

 ** using CEEMOUT and passing the name ’LEASMSIG’.

 ** Control returns and normal termination takes place.

 ** **

 MOVE 0 TO DIVISOR.

 DIVIDE 5 BY DIVISOR GIVING QUOTIENT.

 DISPLAY ’************************************’.

 DISPLAY ’IGZTSIGR COBOL Example is now ended.’.

 DISPLAY ’************************************’.

 GOBACK.

 End program IGZTSIGR .

CBL LIB,APOST,NODYNAM

 **

 ** IGZTSIGH - Call the following LE services:

 **

 ** : CEE5GRN - Get name of routine that

 ** : incurred a condition.

 ** : CEEMOUT - output a user message

 **

 ** This is the user condition handler registered

 ** by IGZTSIGR. It calls CEE5GRN to retrieve the name of

 ** the routine incurring the divide-by-zero condition.

 ** It then calls CEEMOUT to output the message.

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. IGZTSIGH.

Figure 57. COBOL Example of a Main Routine that Registers User-Written Condition Handler

and Causes Divide-by-Zero Condition (Part 2 of 4)

162 LE/VSE: Programming Guide

DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 msgstr.

 02 VarStr-length PIC S9(4) BINARY.

 02 VarStr-text.

 03 VarStr-char PIC X,

 OCCURS 0 TO 256 TIMES

 DEPENDING ON VarStr-length

 OF msgstr.

 01 Feedback.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 77 rtn-name PIC X(80).

 77 msgdest PIC S9(9) BINARY.

 77 string-pointer PIC S9(4) BINARY.

 *

 LINKAGE SECTION.

 01 Current-condition.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 **

 01 Token PIC X(4).

 **

 01 Result-code PIC S9(9) BINARY.

 88 resume VALUE +10.

 88 percolate VALUE +20.

 88 perc-sf VALUE +21.

 88 promote VALUE +30.

 88 promote-sf VALUE +31.

 01 New-condition.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

Figure 57. COBOL Example of a Main Routine that Registers User-Written Condition Handler

and Causes Divide-by-Zero Condition (Part 3 of 4)

Chapter 13. Coding a User-Written Condition Handler 163

PROCEDURE DIVISION USING current-condition, token

 result-code, new-condition.

 **

 * Check to see whether this routine was entered due to a

 * divide-by-zero exception, or due to some other condition.

 **

 IF CEE349 OF current-condition THEN

 **

 * (A divide-by-zero condition has occurred)

 **

 SET resume TO TRUE

 **

 ** Call CEE5GRN to retrieve the name of program **

 ** incurring the divide-by-zero exception. Build **

 ** user message and include the name of the program. **

 **

 CALL ’CEE5GRN’ USING rtn-name, feedback

 IF (NOT CEE000 OF feedback) THEN

 DISPLAY ’Error ’ Msg-No OF feedback

 ’ in obtaining program name.’ UPON CONSOLE

 MOVE feedback TO new-condition

 SET promote TO TRUE

 ELSE

 MOVE 1 TO string-pointer

 MOVE 255 TO VarStr-length OF msgstr

 STRING ’The example program ’ rtn-name

 ’ incurred a divide-by-zero exception.’

 DELIMITED BY ’ ’ INTO VarStr-text OF msgstr

 POINTER string-pointer

 SUBTRACT 1 FROM string-pointer,

 GIVING VarStr-length OF msgstr

 MOVE 2 TO msgdest

 **

 ** Call CEEMOUT to output the user message.

 **

 CALL ’CEEMOUT’ USING msgstr, msgdest, feedback

 IF (NOT CEE000 OF feedback) THEN

 DISPLAY ’Error in writing message string.’

 MOVE feedback TO new-condition

 SET promote TO TRUE

 END-IF

 END-IF

 ELSE

 **

 * (A condition other than divide-by-zero has occurred)

 **

 SET percolate TO TRUE

 END-IF

 GOBACK.

 END PROGRAM IGZTSIGH.

Figure 57. COBOL Example of a Main Routine that Registers User-Written Condition Handler

and Causes Divide-by-Zero Condition (Part 4 of 4)

164 LE/VSE: Programming Guide

Handling a Program Check in an Assembler Routine

The Figure 58 illustrates how an assembler routine can handle a program check if

one should occur. The following occurs:

1. The routine registers a user-written condition handler, LEASMHD3, that

responds to a program check by calling CEE5DMP to request a dump.

2. The routine then calls a subroutine, LEASMHD2, that generates a program

check.

3. LE/VSE gives control to the user-written condition handler.

Note that a condition handler to which LE/VSE gives control does not have to be

link-edited into the same phase as the routine in which the condition occurs; a

condition handler can be dynamically loaded and can possibly dynamically load

other phases also.

SMP1 TITLE ’Sample of main program that registers a handler’ 00010000

* 00020000

* Symbolic Register Definitions and Usage 00030000

* 00040000

R1 EQU 1 Parameter list address, 0 if no parms 00130000

R10 EQU 10 Base register for executable code 00140000

R12 EQU 12 LE Common Anchor Area address 00150000

R13 EQU 13 Save Area/Dynamic Storage Area address 00160000

R14 EQU 14 Return point address 00170000

R15 EQU 15 Entry point address 00180000

* 00190000

* Prologue 00200000

* 00210000

CEEHDRA CEEENTRY AUTO=DSASIZ, Amount of main memory to obtain 00220000

 MAIN=YES, This routine is a MAIN program 00230000

 PPA=PPA1, Program Prolog Area for this routine 00240000

 BASE=R10 Base register for executable code 00250000

* constants, and static variables 00260000

 USING CEECAA,R12 LE Common Anchor Area addressability 00270000

 USING CEEDSA,R13 Dynamic Storage Area addressability 00280000

* 00290000

* Announce ourselves 00300000

* 00310000

 WTO ’CEEHDRA Says "HELLO"’,ROUTCDE=2 00320000

* 00330000

* Register User Handler 00340000

* 00350000

 LA R1,USRHDLPP Get addr of proc-ptr to Handler rtn 00360000

 ST R1,PARM1 Make it 1st parameter 00370000

 LA R1,TOKEN Get addr of 32-bit token 00380000

 ST R1,PARM2 Make it 2nd parameter 00390000

 LA R1,0 Omit address for Feedback Code: 00400000

* If an error occurs while 00410000

* registering the handler, LE will 00420000

* signal the condition, rather 00430000

* than passing it back to caller 00440000

 ST R1,PARM3 Make it 3rd parameter 00450000

 LA R1,HDLRPLST Point to parameter list for CEEHDLR 00460000

 CALL CEEHDLR Invoke CEEHDLR callable service AWI 00470000

* 00480000

* Call subroutine to cause an exception 00490000

* 00500000

 CALL LEASMHD2 00510000

* 00520000

* Un-Register User Handler 00530000

* 00540000

Figure 58. Assembler Example of a Main Routine that Calls Subroutine and Registers

User-Written Condition Handler (Part 1 of 6)

Chapter 13. Coding a User-Written Condition Handler 165

LA R1,USRHDLPP Get addr of proc-ptr to Handler rtn 00550000

 ST R1,HDLUPRM1 Make it 1st parameter 00560000

 LA R1,FEEDBACK Address for Feedback Code 00570000

 ST R1,HDLUPRM2 Make it 2nd parameter 00580000

 LA R1,HDLUPLST Point to parameter list for CEEHDLU 00590000

 CALL CEEHDLU Invoke CEEHDLU callable service AWI 00600000

* 00610000

* Bid fond farewell 00620000

* 00630000

 WTO ’CEEHDRA Says "GOOD-BYE"’,ROUTCDE=2 00640000

* 00650000

* Epilogue 00660000

* 00670000

 CEETERM RC=4,MODIFIER=1 Terminate program 00680000

* 00690000

* Program Constants and Local Static Variables 00700000

* 00710000

USRHDLPP DC V(LEASMHD3),A(0) Procedure-pointer to Handler routine 00720000

* 00730000

 LTORG , Place literal pool here 00740000

 SPACE 3 00750000

PPA1 CEEPPA , Program Prolog Area for this routine 00760000

 EJECT 00770000

* 00780000

* Map the Dynamic Storage Area (DSA) 00790000

* 00800000

 CEEDSA , Map standard CEE DSA prologue 00810000

* 00820000

* Local Automatic (Dynamic) Storage.. 00830000

* 00840000

HDLRPLST DS 0F Parameter List for CEEHDLR 00850000

PARM1 DS A Address of User-written Handler 00860000

PARM2 DS A Address of 32-bit Token 00870000

PARM3 DS A Address of Feedback Code cond token 00880000

* 00890000

HDLUPLST DS 0F Parameter List for CEEHDLR 00900000

HDLUPRM1 DS A Address of User-written Handler 00910000

HDLUPRM2 DS A Address of Feedback Code cond token 00920000

* 00930000

TOKEN DS F 32-bit Token: fullword whose *value* will 00940000

* be passed to the user handler each 00950000

* time it is called. 00960000

* 00970000

FEEDBACK DS CL12 Feedback Code condition token 00980000

* 00990000

DSASIZ EQU *-CEEDSA Length of DSA 01000000

 EJECT 01010000

* 01020000

* Map the Common Anchor Area (CAA) 01030000

* 01040000

 CEECAA 01050000

 END CEEHDRA 01060000

HDR2 TITLE ’Sample of subprogram that forces a program check’ 01070000

Figure 58. Assembler Example of a Main Routine that Calls Subroutine and Registers

User-Written Condition Handler (Part 2 of 6)

166 LE/VSE: Programming Guide

* 01080000

* Symbolic Register Definitions and Usage 01090000

* 01100000

R1 EQU 1 Parameter list address, 0 if no parms 01110000

R11 EQU 11 Base register for executable code 01120000

R12 EQU 12 LE Common Anchor Area address 01130000

R13 EQU 13 Save Area/Dynamic Storage Area address 01140000

R14 EQU 14 Return point address 01150000

R15 EQU 15 Entry point address 01160000

* 01170000

* Prologue 01180000

* 01190000

LEASMHD2 CEEENTRY AUTO=DSASIZ, Amount of main memory to obtain *01200000

 PPA=PPA2, Program Prolog Area for this routine *01210000

 MAIN=NO, This program is a Subroutine *01220000

 NAB=YES, YES because called by LE enabled rtn *01230000

 BASE=R11 Base register for executable code, 01240000

* constants, and static variables 01250000

 USING CEECAA,R12 LE Common Anchor Area addressability 01260000

 USING CEEDSA,R13 Dynamic Storage Area addressability 01270000

* 01280000

* Announce ourselves 01290000

* 01300000

 WTO ’LEASMHD2 Says "HELLO"’,ROUTCDE=2 01310000

* 01320000

* Cause Data Exception (LE Condition 3207) 01330000

* 01340000

 XC A,A Clear to Binary Zeros 01350000

* (not a valid packed number) 01360000

 AP A,=P’7’ Cause Data exception 01370000

* 01380000

* Say good-bye 01390000

* 01400000

 WTO ’LEASMHD2 Says "GOOD-BYE"’,ROUTCDE=2 01410000

* 01420000

* Epilogue 01430000

* 01440000

 CEETERM RC=0 Terminate program 01450000

 SPACE 3 01460000

* 01470000

* Program Constants and Local Static Variables 01480000

* 01490000

PPA2 CEEPPA , Program Prolog Area for this routine 01500000

* 01510000

 LTORG , Place literal pool here 01520000

 EJECT 01530000

* 01540000

* Map the Dynamic Storage Area (CAA) 01550000

* 01560000

 CEEDSA , Map standard CEE DSA prologue 01570000

* 01580000

* Local Automatic (Dynamic) Storage.. 01590000

* 01600000

A DS PL2 Packed operand (uninitialized) 01610000

* 01620000

DSASIZ EQU *-CEEDSA Length of DSA 01630000

 EJECT 01640000

* 01650000

* Map the Common Anchor Area (CAA) 01660000

* 01670000

 CEECAA 01680000

 END , of LEASMHD2 01690000

SMP3 TITLE ’User-written condition handler’ 01700000

Figure 58. Assembler Example of a Main Routine that Calls Subroutine and Registers

User-Written Condition Handler (Part 3 of 6)

Chapter 13. Coding a User-Written Condition Handler 167

* 01710000

* Symbolic Register Definitions and Usage 01720000

* 01730000

R1 EQU 1 Parameter list address (upon entry) 01740000

R2 EQU 2 Work register 01750000

R3 EQU 3 Parameter list address (after CEEENTRY) 01760000

R4 EQU 4 Will point to Result Code Argument 01770000

R10 EQU 10 Will point to Condition Token Argument 01780000

R11 EQU 11 Base register for executable code 01790000

R12 EQU 12 LE Common Anchor Area address 01800000

R13 EQU 13 Save Area/Dynamic Storage Area address 01810000

R14 EQU 14 Return point address 01820000

R15 EQU 15 Entry point address 01830000*

 01840000

* Prologue 01850000

* 01860000

LEASMHD3 CEEENTRY AUTO=DSASIZ, Amount of main memory to obtain *01870000

 PPA=PPA3, Program Prolog Area for this routine *01880000

 MAIN=NO, This program is a Subroutine *01890000

 NAB=YES, YES because called in LE environment *01900000

 PARMREG=R3, R1 value is saved here *01910000

 BASE=R11 Base register for executable code, 01920000

* constants, and static variables 01930000

 USING CEECAA,R12 LE Common Anchor Area addressability 01940000

 USING CEEDSA,R13 Dynamic Storage Area addressability 01950000

 USING UHDLARGS,R3 User Handler Args addressability 01960000

* 01970000

* Locate Arguments 01980000

* 01990000

 L R10,@CURCOND Get address of Condition Token 02000000

 USING $CURCOND,R10 Condition Token addressability 02010000

 L R4,@RESCODE Get address of Result Code 02020000

 USING $RESCODE,R4 Result Code addressability 02030000

* 02040000

* Announce ourselves 02050000

* 02060000

 WTO ’LEASMHD3 Says "HELLO"’,ROUTCDE=2 02070000

* 02080000

* Process Condition 02090000

* 02100000

 CLC CURCOND(8),CEE347 Was this handler entered due to the 02110000

* condition it was created to 02120000

* deal with (data exception) ? 02130000

 BE BADPDATA Yes -- go process it 02140000

* No.. 02150000

 MVC RESCODE,=A(PERCOLAT) Indicate PERCOLATE action 02160000

 B OUT Return to LE/VSE Condition Manager 02170000

* 02180000

BADPDATA EQU * Processing for data exception: 02190000

 MVC RESCODE,=A(RESUME) Indicate RESUME action 02200000

* 02210000

* Call CEE5DMP to Dump machine state 02220000

* 02230000

 LA R1,DUMPTITL Get address of Dump Title 02240000

 ST R1,PARM1 Make it first parameter 02250000

 LA R1,DUMPOPTS Get address of Dump Options string 02260000

 ST R1,PARM2 Make it second parameter 02270000

 LA R1,FC Address of Feedback Code 02280000

 ST R1,PARM3 Make it third parameter 02290000

 LA R1,DMPPARMS Point to parameter list for CEE5DMP 02300000

 CALL CEE5DMP Invoke CEE5DMP callable service AWI 02310000

Figure 58. Assembler Example of a Main Routine that Calls Subroutine and Registers

User-Written Condition Handler (Part 4 of 6)

168 LE/VSE: Programming Guide

* 02320000

* Sign-off 02330000

* 02340000

OUT EQU * 02350000

 WTO ’LEASMHD3 Says "GOOD-BYE"’,ROUTCDE=2 02360000

* 02370000

* Epilogue 02380000

* 02390000

 CEETERM RC=0 02400000

* 02410000

* Program Constants and Local Static Variables 02420000

* 02430000

DUMPOPTS DC CL256’THR(ALL) BLOCK STORAGE’ Dump Options 02440000

* 02450000

DUMPTITL DC CL80’LEASMHD3 - Sample Dump ’ Dump Title 02460000

* 02470000

PPA3 CEEPPA , Program Prolog Area for this routine 02480000

* 02490000

 LTORG , Place literal pool here 02500000

* 02510000

* Define Symbolic Value Constants for Condition Tokens 02520000

* 02530000

 CEEBALCT 02540000

 EJECT 02550000

* 02560000

* Map Arguments to User-Written Condition Handler 02570000

* 02580000

UHDLARGS DSECT 02590000

@CURCOND DS A Address of CIB 02600000

@TOKEN DS A Address of 32-bit token value from CEEHDLR 02610000

@RESCODE DS A Address of Result Code 02620000

@NEWCOND DS A Address of New Condition 02630000

 SPACE 3 02640000

$CURCOND DSECT , Mapping of the current condition 02650000

CURCOND DS A Condition token that identifies the 02660000

* current condition being processed 02670000

 SPACE 3 02680000

$TOKEN DSECT , Mapping of the 32-bit Token Argument 02690000

TOKEN DS A Value of 32-bit Token from CEEHDLR call 02700000

 SPACE 3 02710000

$RESCODE DSECT , Mapping of Result Code Argument 02720000

RESCODE DS F Result Code specifies the action for 02730000

* the LE/VSE condition manager to take when 02740000

* control returns from the user handler: 02750000

RESUME EQU 10 Resume at the resume cursor 02760000

* (condition has been handled) 02770000

PERCOLAT EQU 20 Percolate to the next condition handler 02780000

* (if a Result Code is not explicitly set 02790000

* by the handler, this is the default) 02800000

PROMOTE EQU 30 Promote to the next condition handler 02810000

* (New Condition has been set) 02820000

* (See the LE/VSE Programming Guide for other Result Code values) 02830000

 SPACE 3 02840000

$NEWCOND DSECT , Mapping of the New Condition Argument 02850000

NEWCOND DS CL12 New Condition (condition token) specifies 02860000

* the condition promoted to. 02870000

 EJECT 02880000

Figure 58. Assembler Example of a Main Routine that Calls Subroutine and Registers

User-Written Condition Handler (Part 5 of 6)

Chapter 13. Coding a User-Written Condition Handler 169

* 02890000

* Map the Dynamic Storage Area (DSA) 02900000

* 02910000

 CEEDSA , Map standard CEE DSA prologue 02920000

* 02930000

* Local Automatic (Dynamic) Storage.. 02940000

* 02950000

DMPPARMS DS 0F Parameter list for CEE5DMP 02960000

PARM1 DS A Address of Title string 02970000

PARM2 DS A Address of Options string 02980000

PARM3 DS A Address of Feedback Code 02990000

* 03000000

FC DS CL12 Feedback Code condition token 03010000

* 03020000

DSASIZ EQU *-CEEDSA Length of DSA 03030000

 EJECT 03040000

* 03050000

* Map the Common Anchor Area (CAA) 03060000

* 03070000

 CEECAA 03080000

 END , of LEASMHD3 03090000

Figure 58. Assembler Example of a Main Routine that Calls Subroutine and Registers

User-Written Condition Handler (Part 6 of 6)

170 LE/VSE: Programming Guide

Chapter 14. Using Condition Tokens

LE/VSE uses the 12-byte condition token data type to perform a variety of

communication functions. This chapter describes the format of the condition token

and its components, and how you can use the condition token to react to

conditions and communicate conditions with other routines.

Understanding the Basics

If you provide an fc parameter in a call to an LE/VSE callable service, the service

sets fc to a specific value called a condition token and returns it to your

application. (See “The Effect of Coding the fc Parameter” on page 173 for more

information.)

If you do not specify the fc parameter in a call to an LE/VSE service, LE/VSE

generates a condition token for any nonzero condition and signals it using the

CEESGL callable service.

4 Signaling the condition token causes it to be passed it to

LE/VSE condition handling. (See “The Effect of Omitting the fc Parameter” on

page 175 for more information.)

The condition token is used by the routines of your application to communicate

with message services, the condition manager, and other routines within the

application. For example, you can use it with LE/VSE message services to write a

diagnostic message associated with a particular condition to a file. You can also

determine if a particular condition has occurred by testing the condition token, or

a symbolic representation of it. See “User-Written Condition Handler Interface

using CEEHDLR” on page 138 for more information on coding user-written

condition handlers. The structure of the condition token is discussed in

“Understanding the Structure of the Condition Token” on page 172, and symbolic

feedback codes are discussed in “Using Symbolic Feedback Codes” on page 175.

Related Services

LE/VSE provides callable services to help you construct and decompose your

own condition tokens.

CEEDCOD Breaks down a condition token into its component parts.

CEENCOD Creates a new condition token in your application.

See LE/VSE Programming Reference for a detailed explanation of each field in a

condition token and for more information on using CEEDCOD and

CEENCOD callable services. See also the message handling services listed in

Chapter 15, “Using and Handling Messages,” on page 185.

4. COBOL programs must provide the feedback code parameter in each call to an LE/VSE callable service. However, C and PL/I

routines do not have to. See LE/VSE Programming Reference for information on how to provide the feedback code parameter in

each HLL.

© Copyright IBM Corp. 1991, 2005 171

Understanding the Structure of the Condition Token

Figure 59 illustrates the structure of the condition token, with bit offsets shown

above the components:

 Every condition token contains the components indicated in Figure 59:

Condition_ID A 4-byte identifier that, with the facility ID, describes the condition

that the token communicates. The format of Condition_ID depends

on whether a Case 1 (service condition) or Case 2 (class/cause

code) condition is being represented. LE/VSE callable services and

most applications can produce Case 1 conditions. Case 2 conditions

may be produced by some operating systems and compiler

libraries. LE/VSE does not produce them directly.

 Figure 59 illustrates the format of the Condition_ID for Case 1 and

Case 2 conditions.

Case Specifies whether the condition token is for a Case 1 or Case 2

condition.

Severity Specifies the severity of the condition represented by the condition

token.

Control Specifies whether the facility ID has been assigned by IBM.

Facility ID A 3-character alphanumeric string that identifies the product or

component of a product that generated the condition; in the case of

LE/VSE, the facility ID is CEE. Although all LE/VSE-conforming

HLLs use LE/VSE message and condition handling services, the

actual run-time messages generated under LE/VSE still carry the

language identification in the facility ID. The facility ID for PL/I,

for example, is IBM.

 When paired with a message number, a facility ID uniquely

identifies a message in the message source file. The facility ID and

message number persist throughout an application. This allows the

Figure 59. LE/VSE Condition Token

172 LE/VSE: Programming Guide

meaning of the condition and its associated message to be

determined at any point in the application after a condition has

occurred.

 If you are creating a new facility ID to use with your own message

source file, follow the guidelines listed under the Facility_ID

parameter of CEENCOD in LE/VSE Programming Reference.

 If you create a new facility_ID to use with a message source file to

be processed by CEEBLDTX (“Creating Messages” on page 185),

be aware that the facility ID must be part of the message source

file name. It is therefore important to follow the naming guidelines

in order to have a module name that does not abend.

ISI A 4-byte instance specific information (ISI) token associated with a

given instance of the condition. A nonzero ISI token indicates the

presence of instance specific information. The ISI can contain data

on message inserts for the message associated with the condition.

It can also contain a 4-byte token (q_data_token) that represents

qualifying data (q_data) that user-written condition handlers use to

identify and react to a specific condition. The q_data_token can

contain q_data, or it can be a pointer to q_data.. The ISI is typically

built by LE/VSE for system or LE/VSE-signaled conditions. It can

also be built by an application for conditions signaled using

CEESGL. The CEECMI callable service can be used to define the

message inserts within the ISI for a condition token. The q_data to

be placed in the ISI for a condition token is defined when signaling

the condition using CEESGL.

 A user-written condition handler can retrieve information from the

ISI. Message insert information cannot be retrieved directly;

however, the entire formatted message with inserts can be

formatted and placed in an application-provided character string

using CEEMGET. The q_data_token can be retrieved using

CEEGQDT.

The Effect of Coding the fc Parameter

The feedback code is the last parameter of all LE/VSE callable services, and the

second to last parameter of all LE/VSE math services.

4 When the fc parameter is

provided and a condition is raised, the following sequence of events occurs:

1. The callable service in which the condition occurred builds a condition token

for the condition. The condition token is a 12-byte representation of an LE/VSE

condition. Each condition is associated with a single LE/VSE run-time message.

2. The callable service places information into the ISI, which might contain the

following:

v A timestamp.

v Information that is inserted into a message associated with the condition.

For example, you can use the CEEBLDTX utility (see “Creating Messages” on

page 185) or the CEECMI callable service (see LE/VSE Programming Reference)

to generate message inserts. Routines signaling a new condition with a call to

CEESGL should first call CEECMI to copy any insert information into the ISI

associated with the condition.
3. If the severity of the detected condition is critical (severity = 4), it is raised

directly to the condition manager. LE/VSE then processes the condition in the

manner described in “Condition Step” on page 109.

Chapter 14. Using Condition Tokens 173

4. If the condition severity is not critical (severity less than 4), the condition token

is returned to the routine that called the service.

5. When the condition token is returned to your application, you can use the

condition token in the following ways:

v Ignore it and continue processing.

v Signal it to LE/VSE using the CEESGL callable service.

v Get, format, and dispatch the message for display using the CEEMSG

callable service.

v Store the message in a storage area using the CEEMGET callable service.

v Use the CEEMOUT callable service to dispatch a user-defined message string

to a destination that you specify.

v Compare the condition token to one that is known to you so that you can

react appropriately. You can test the condition token for success, equivalence

or equality.

See LE/VSE Programming Reference for more information about LE/VSE callable

services.

Testing a Condition Token for Success

To test a condition token for success, it is sufficient to determine if the first 4 bytes

are zero; if the first 4 bytes are zero, the remainder of the condition token is zero,

indicating that a successful call was made to the service.

The LE/VSE condition handling model provides two ways you can check for

success using the fc parameter. You can compare the value returned in fc to the

symbolic feedback code CEE000, or you can compare it to a 12-byte condition

token containing all zeroes coded in your routine. See “Using Symbolic Feedback

Codes” on page 175 for details.

You do not necessarily need to check the feedback code after every invocation of a

service or to check for success before proceeding with execution. However, if you

want to ensure that your application is invoking callable services successfully, test

the feedback code after each call to a service.

Testing Condition Tokens for Equivalence

Two condition tokens are equivalent if they represent the same type of condition,

even if not necessarily the same instance of the condition. For example, you could

have two occurrences of an out-of-storage condition. Though equivalent conditions,

they are not necessarily equal because they occur in different locations in your

program.

To determine whether two condition tokens are equivalent, compare the first 8

bytes of each condition token to one another. These bytes are static and do not

change depending upon the given instance of the condition.

Two reasons you might check for equivalence are to write a message about a type

of condition that occurs in your application or to register a condition handling

routine to respond to a given type of condition.

There are two ways to check for equivalent condition tokens:

v You can break down the condition token by coding it as a structure and looking

at its individual components, or you can call the CEEDCOD (decompose

condition token) service to break down the condition token. See LE/VSE

Programming Reference for more information about the CEEDCOD service.

174 LE/VSE: Programming Guide

v The easiest way to test for equivalence is to compare the value returned in fc

with the symbolic feedback code for the condition you are interested in

handling. Symbolic feedback codes represent only the first 8 bytes of a 12-byte

condition token. See “Using Symbolic Feedback Codes” for details.

Testing Condition Tokens for Equality

To determine whether two condition tokens are equal (that is, the same instance or

occurrence of the condition token), you must compare all 12 bytes of each

condition token with each other. The last 4 bytes can change from instance to

instance of a given condition.

The only way to test condition tokens for equality is to compare the value returned

in fc with another condition token that has either been returned from a call to a

service, or that you have coded as a 12-byte condition token in your routine.

Symbolic feedback codes are used to test for equivalence; they are not useful in

testing for equality because they represent only the first 8 bytes of the condition

token.

The Effect of Omitting the fc Parameter

When a feedback code is not provided, any nonzero condition is raised. Signaled

conditions are processed by LE/VSE in the manner described in “Condition Step”

on page 109. If the condition remains unhandled at the end of processing, LE/VSE

takes the LE/VSE default action (defined in Table 28 on page 111). The message

delivered is the translation of the condition token into English (or another

supported national language).

Using Symbolic Feedback Codes

LE/VSE provides symbolic feedback codes representing the first 8 bytes of a

12-byte condition token. Using LE/VSE-provided symbolic feedback codes saves

you from having to define an 8-byte condition token in your code whenever you

want to check for the occurrence of a condition. Symbolic feedback codes are

limited to testing for conditions rather than actual condition instances: no ISI

information is tested using symbolic feedback codes because the comparison is

only performed against the first 8 bytes of the condition token.

LE/VSE provides include files (copy files) that define all LE/VSE symbolic

feedback codes. See “Including Symbolic Feedback Code Files” on page 176 for

information about LE/VSE symbolic feedback code files.

Locating Symbolic Feedback Codes for Conditions

In LE/VSE you can locate symbolic feedback codes in the following ways:

v Look in the first column of the symbolic feedback codes table listed after each of

the callable services in LE/VSE Programming Reference. The symbolic feedback

code table for the CEEGTST (get heap storage) callable service is shown in

Table 34.

 Table 34. Symbolic Feedback Codes Associated with CEEGTST

Symbolic

Feedback

Code Severity

Message

Number Message Text

CEE000 0 — The service completed successfully.

Chapter 14. Using Condition Tokens 175

Table 34. Symbolic Feedback Codes Associated with CEEGTST (continued)

Symbolic

Feedback

Code Severity

Message

Number Message Text

CEE0P2 4 0802 Heap storage control information was

damaged.

CEE0P3 3 0803 The heap identifier in a get storage request

or a discard heap request was

unrecognized.

CEE0P8 3 0808 Storage size in a get storage request

(CEEGTST) or a reallocate request

(CEECZST) was not a positive number.

CEE0PD 3 0813 Insufficient storage was available to satisfy

a get storage (CEECZST) request.

If you want to test for the condition raised when you specify an invalid heap ID

from which to get storage, you can compare the symbolic feedback code CEE0P3

to the condition token returned either from the service or from the LE/VSE

condition manager (depending on whether you specified fc in the call to

CEEGTST).

v If you want to code a condition handling routine to handle a condition resulting

in an error message from your application, look up the error message in LE/VSE

Debugging Guide and Run-Time Messages. You will find the symbolic feedback

code for the condition listed there.

Including Symbolic Feedback Code Files

Symbolic feedback codes are provided for LE/VSE, C, COBOL, and PL/I

conditions.

If you installed LE/VSE in the default sublibraries, the symbolic feedback code

files are stored in the PRD2.SCEEBASE sublibrary. To use symbolic feedback codes,

you must include the symbolic feedback code files in your source code.

The symbolic feedback code files have file names of the form xxxyyyCT, where:

xxx

Indicates the facility ID of the conditions represented in the file. For example,

EDCyyyCT contains condition tokens for C-specific conditions (those with the

facility ID of EDC).

 xxx can be CEE (LE/VSE), EDC (C), IBM (PL/I), or IGZ (COBOL).

yyy

Indicates the facility ID of the language in which the declarations are coded.

For example, EDCIBMCT contains PL/I declarations of C condition tokens. yyy

can be BAL (assembler), EDC (C), IBM (PL/I), or IGZ (COBOL).

CT

Stands for “condition token.”

176 LE/VSE: Programming Guide

To use symbolic feedback codes, include the file in your source code using the

appropriate language construct. For example:

v In C, specify:

#include <ceeedcct>

#include <igzedcct>

to include the files containing the C declarations for CEE (LE/VSE) and IGZ

(COBOL) condition tokens.

v In COBOL, specify:

 COPY CEEIGZCT.

 COPY IGZIGZCT.

to include the files containing the COBOL definitions of CEE (LE/VSE) and IGZ

(COBOL) condition tokens.

v In PL/I, specify:

 %INCLUDE CEEIBMCT;

 %INCLUDE EDCIBMCT;

to include the files containing the PL/I definitions of CEE (LE/VSE) and EDC

(C) condition tokens.

Before compiling your source program, you need to include the sublibrary

containing the include (copy) files in the source library search chain, as shown

below:

// LIBDEF SOURCE,SEARCH=(PRD2.SCEEBASE)

Chapter 14. Using Condition Tokens 177

Examples Using Symbolic Feedback Codes

The following examples use symbolic feedback codes to test user input and display

a message if the input is incorrect.

C

In the following example, the symbolic feedback code file CEEEDCCT is included

and a call is made to CEEGTST. After the call, a test is made for the condition

token representing an invalid heap ID. The fc returned from CEEGTST is tested

against the symbolic feedback code CEE0P3 listed in the CEEGTST feedback code

table (see LE/VSE Programming Reference). If the heap ID specified is invalid,

another call is made to CEEGTST to try again.

_FBCHECK (IBM-supplied) is used to compare only the first 8 bytes of the fc

against the symbolic feedback code.

/*Module/File Name: EDCSFC */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <leawi.h>

#include <ceeedcct.h>

main(void)

{

 _FEEDBACK fc;

 _POINTER address;

 _INT4 heapid, size;

 size = 1000;

 heapid = 999;

 CEEGTST(&heapid, &size, &address, &fc);

 if ((_FBCHECK (fc, CEE0P3)) == 0){

 printf("You specified a Heap Id that doesn’t exist!\n\n");

 }

 printf("Try again:\n");

 heapid = 0;

 CEEGTST(&heapid, &size, &address, &fc);

 if ((_FBCHECK (fc, CEE000)) == 0){

 printf("Now it worked!\n");

 }

 else {

 printf("CEEGTST failed with message number%d \n", fc.tok_msgno);

 exit(99);

 }

 return 0;

}

Figure 60. C Example Testing for CEEGTST Symbolic Feedback Code CEE0P3

178 LE/VSE: Programming Guide

COBOL

In the following example, the symbolic feedback code file CEEIGZCT is accessed

and a call is made to CEESDEXP (exponential base e). The first 8 bytes of the

feedback code returned are tested against the symbolic feedback code CEE1UR to

ensure that the input parameter is within the valid range for CEESDEXP. The

symbolic feedback code table for CEESDEXP is listed in LE/VSE Programming

Reference. A message is displayed if the input parameter is out of range.

 It is important that symbolic feedback codes be compared with only the first 8

bytes of the 12-byte condition token. To this end, you must code the COPY

statements for the symbolic feedback code declarations in the right place within

the condition token declaration.

In Figure 61, for example, symbolic feedback code CEE1UR is compared to the first 8

bytes of condition token FBC because of the correct placement of the COPY

statements.

It is wrong to place the COPY statements before the declaration of

Condition-Token-Value as shown in Figure 62 on page 180, because the 8-byte

symbolic feedback code blank-padded (X’40’) to a length of 12 bytes would be

compared to the full 12-byte condition token. The comparison would fail, because

the blanks would not match the ISI data in the last 4 bytes of the condition token.

CBL LIB,APOST

 * Module/File Name: IGZTSFC

 * *

 * CTDEMO - This routine assigns values to a *

 * condition token. *

 * *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CTDEMO.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 FBC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 01 X COMP-2 VALUE +2.0E+02.

 01 Y COMP-2.

 PROCEDURE DIVISION.

 CALL ’CEESDEXP’ USING X FBC Y.

 IF CEE1UR of FBC THEN

 DISPLAY ’Argument X out of range’

 ’ for CEEDEXP’

 END-IF

 GOBACK.

Figure 61. COBOL Example Testing for CEESDEXP Symbolic Feedback Code CEE1UR

Chapter 14. Using Condition Tokens 179

01 FBC

 COPY CEEIGZCT. <-----+ Incorrect

 COPY IGZIGZCT. <-----+ Incorrect

 02 Condition-Token-Value

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY. ...

Figure 62. Wrong Placement of COBOL COPY Statements for Testing Feedback Code

180 LE/VSE: Programming Guide

PL/I

The following example includes the symbolic feedback code file CEEIBMCT so that

LE/VSE feedback codes (those with facility ID CEE) will be defined. FBCHECK

(IBM-supplied) is called to compare the first 8 bytes of FC with the symbolic

feedback code CEE000 to determine if the call to CEEMGET is successful. If it is,

the message associated with feedback code CEE001 is printed.

*PROCESS MACRO;

 /*Module/File Name: IBMMGET **/

 /**/

 /** ***/

 /**Function : CEEMGET - Get a Message **/

 /** ***/

 /**/

 PLIMGET: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL 01 CONTOK FEEDBACK;

 DCL 01 FC FEEDBACK;

 DCL MSGBUF CHAR(80);

 DCL MSGPOINTER INT4;

 /* Give CONTOK value of condition CEE001 */

 ADDR(CONTOK) -> CEEIBMCT = CEE001;

 MSGPTR = 0;

 /* Call CEEMGET to retrieve msg corresponding */

 /* to condition token */

 CALL CEEMGET (CONTOK, MSGBUF, MSGPTR, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP LIST(’Message text for message number’

 || CONTOK.MsgNo || ’ is "’ || MSGBUF || ’"’);

 END;

 ELSE DO;

 DISPLAY(’CEEMGET failed with msg ’

 || FC.MsgNo);

 STOP;

 END;

Figure 63. PL/I Example Testing for Symbolic Feedback Code CEE000

Chapter 14. Using Condition Tokens 181

Condition Tokens for C Signals under C

You need the condition token representing an event as input to many LE/VSE

condition and message handling services. C signals have condition token

representations that you can use for this purpose. The signals listed in Table 35

have a condition token representation with facility ID of EDC.

 Table 35. LE/VSE Condition Tokens and C Signals

Sev-

erity

Message

Number

Symbolic

Feedback

Code Case

Sev-

erity Control ID Signal Name

Signal

Number

3 6000 EDC5RG 1 3 1 EDC SIGFPE 8

3 6001 EDC5RH 1 3 1 EDC SIGILL 4

3 6002 EDC5RI 1 3 1 EDC SIGSEGV 11

3 6003 EDC5RJ 1 3 1 EDC SIGABND 18

3 6004 EDC5RK 1 3 1 EDC SIGTERM 15

3 6005 EDC5RL 1 3 1 EDC SIGINT 2

2 6006 EDC5RM 1 2 1 EDC SIGABRT 3

3 6007 EDC5RN 1 3 1 EDC SIGUSR1 16

3 6008 EDC5RO 1 3 1 EDC SIGUSR2 17

1 6009 EDC5RP 1 1 1 EDC SIGIOERR 27

LE/VSE-provided q_data Structure for Abends

When LE/VSE intercepts an abend or VSE cancel, one of the following LE/VSE

messages is issued and the corresponding condition raised:

Message Number

Condition

CEE3250C CEE35I

CEE3321C CEE37P

CEE3322C CEE37Q

For all abends and VSE cancels except VSE cancel code 20 (program check),

LE/VSE provides q_data as part of the ISI token for the condition. The q_data can

be retrieved using the CEEGQDT callable service from within

CEEHDLR-established condition handlers. See LE/VSE Programming Reference for

syntax of the CEEGQDT service. The q_data associated with abends is also listed

by message number in the LE/VSE Debugging Guide and Run-Time Messages.

Qualifying data is comprised of a list of addresses pointing to information that can

be used by HLL and user-written condition handlers to react to a condition. The

q_data structure is shown in Figure 64 on page 183.

182 LE/VSE: Programming Guide

The information provided by the q_data_token is input only and is described

below.

parm count (input)

A fullword field containing the total number of meaningful parameters in the

q_data structure, including the parm count. In this case, the value of parm count

is a fullword containing the integer 3.

abend code

A 4-byte field containing the abend code or the VSE cancel code. The VSE

cancel code is what is contained in the low-order byte of R0 on entry to the

STXIT routine.

reason code

A 4-byte field containing the reason code. If a reason code is not available (as

occurs, for example, in a CICS abend), reason code is set to zero.

Figure 64. Structure of Abend Qualifying Data

Chapter 14. Using Condition Tokens 183

184 LE/VSE: Programming Guide

Chapter 15. Using and Handling Messages

This chapter describes how you can use the LE/VSE message services to create,

issue, and handle messages for LE/VSE-conforming applications.

Understanding the Basics

The LE/VSE message services provide a common method of handling and issuing

messages for LE/VSE-conforming applications.

When a condition is raised in your application, either LE/VSE common routines or

language-specific run-time routines can issue messages from the run-time message

file. The messages can provide information about the condition and suggest

possible solutions to errors.

You can use LE/VSE callable services and run-time options to modify message

handling, and control the destination of message output. You can also define a

message log file to create a record of the messages that LE/VSE issues.

Related Options and Services

Run-Time Options

MSGFILE Specifies a file where run-time messages issued by LE/VSE

are logged

MSGQ Specifies the maximum number of ISIs

NATLANG Specifies the run-time national language

Callable Services

CEEMGET Gets a message

CEEMOUT Dispatches a message

CEEMSG Gets, formats, and dispatches a message

CEECMI Stores and loads message insert data about a condition

Utilities

CEEBLDTX Builds a loadable message module

See LE/VSE Programming Reference for syntax information on run-time options

and callable services.

Creating Messages

The following sections explain how to create messages to use in your routines. To

create a message, you:

1. Create a message source file

2. Assemble the message source file with the CEEBLDTX utility

3. Create a message module table

4. Assign values to message inserts

5. Use messages in code to get message output

© Copyright IBM Corp. 1991, 2005 185

Creating a Message Source File

The message source file contains the message text and information associated with

each message. Standard tags and format are used to describe the message text and

message information. The tags and format of the message source files are used by

the CEEBLDTX utility to transform the source file into an assembler-language file.

This file is assembled, and the resultant object module is link-edited to produce a

phase containing the loadable message module.

The source file should have a fixed record format with a record length of 80. When

creating a message source file, make sure your sequential numbering attribute is

turned off in the editor so that trailing sequence numbers are not generated.

Trailing blanks in columns 1–72 are ignored.

One message source file is required for each national language.

All tags used to create the source file begin with a colon(:), followed by a keyword

and a period(.). All tags must begin in column 1, except where noted. Comments

in the message source file must begin with a period asterisk (.*) in the leftmost

position of the input line.

Figure 65 shows an example of a message source file for messages with a facility

ID of XMP.

 The tags used in message source files are described below. Unless otherwise

indicated, each tag is optional.

:facid. The facility ID is required at the beginning of every message file. It

is used as the first 3 characters of the message number and the first

3 characters of the condition token. All messages within a source

file have the same facility ID. For example, all messages issued by

LE/VSE have a facility ID of CEE. The facility ID is combined with

a 4-digit identification number and the message severity code to

form the message number. The facility ID can contain any

alphanumeric (A–Z, a–z, 0–9) characters. If this tag is omitted, or if

this tag is specified more than once, the CEEBLDTX utility

generates error messages.

 To avoid confusion with message files used by IBM products, you

should not use facility IDs CEE, EDC, EQA, IBM, IGZ, and FOR.

 This tag is required.

:msgno. The message number tag defines the beginning and end of

information for a message. All information up to the next :msgno.

:facid.XMP

:msgno.10

:msgsubid.0001

:msgname.EXMPLMSG

:msgclass.I

:msg.This is an example of an insert,

:tab.+1

:ins 1.a simple insert

:msg., within a message.

:xpl.This is a simple example of how to put an insert into a message.

:presp.No programmer response required.

:sysact.No system action is taken.

Figure 65. Example of a Message Source File

186 LE/VSE: Programming Guide

tag refers to the current message. The message number appears as

the 4 digits following the message prefix, and is used to identify

the message in a message source file. Multiple messages can use

the same message number, but only if a :msgsubid. tag is used

within the message.

 The message numbers used with the :msgno. tags must be in

ascending order. The message numbers can be from 1 to 4 numeric

(0–9) characters. Leading zeros will be added if fewer than 4 digits

are specified.

 This tag is required.

:msgsubid. The message subidentifier tag distinguishes between different

messages with the same message number. If every message has a

unique message number, the :msgsubid. tag is unnecessary.

 The numbers specified with the :msgsubid. tags must be unique

and in ascending order within messages that have the same

message number. The numbers can be from 1 to 4 numeric (0–9)

characters. Leading zeros will be added if fewer than 4 digits are

used.

:msgname. The :msgname. tag is used to give a name to a message. This name

becomes the symbolic name (feedback code) of the condition token

associated with the message, and is placed into the copy member

generated by the CEEBLDTX utility. For example, if EXMPLMSG is

used for the :msgname. tag in a message, the symbolic feedback

code for the condition associated with this message is EXMPLMSG.

 If a message name is omitted, the facility ID plus the base 32

equivalent of the message number is used as the symbolic message

name. For example, if the :msgno. is 10 and the facility ID is XMP,

the symbolic feedback code for the condition associated with this

message is XMP00A.

 If the :msgsubid. tag is used, the subidentifier preceded by an

underscore is added to the message name. For example, if the

:msgno. is 10, the :msgsubid. is 1, and the facility ID is XMP, the

symbolic feedback code for the condition associated with this

message is XMP00A_0001.

:msgclass. The :msgclass. (or :msgcl.) tag makes up the final part of the

message identification. It requires a case-sensitive character that

indicates the severity code of the message. This character

corresponds to the level of severity of the condition token

associated with the message. If the :msgclass. tag differs from the

severity level of the condition token, the severity assigned to the

condition token is used. Refer to Table 36 on page 198 for the

severity codes, levels of severity, and condition descriptions.

 This tag is required.

:msg. The :msg. tag indicates the beginning of partial or complete text of

the message to be displayed. The message text can appear in any

national language known to LE/VSE (including DBCS characters).

For a list of the supported national languages, refer to LE/VSE

Programming Reference. The :msg. tag can be repeated as often as

necessary to construct a message. It is not required if the message

consists only of message inserts. If the message text for a message

Chapter 15. Using and Handling Messages 187

requires more than one line, all lines are left-aligned with the

beginning of the first line of message text.

 The message text ends with the last nonblank character. There is no

fixed space reserved for the message, so there is no requirement to

reserve any additional space for message translation.

:hex. The :hex. tag indicates the beginning of a hexadecimal

character string. If used, it must be within the text of a

:msg. tag. It is terminated by an :ehex. tag. The :hex. tag

can occur anywhere within the message text.

:ehex. The :ehex. tag terminates a string of hexadecimal

characters. This tag can occur anywhere within the

message text.

:dbc. The :dbc. tag defines text of DBCS characters. The string

itself cannot contain any SBCS characters, and it must

begin with a shift-out character and end with a shift-in

character.

:tab.n The :tab. tag indicates that the next part of the message will be

tabbed over a given number of spaces or tabbed to a given

column. If the number is preceded by a plus sign, it indicates the

next part of the message will be moved over the specified number

of spaces from the current position. Otherwise, the number

indicates the column where the next message part will begin. The

tab value must be between 1 and 255. If necessary, a new line of

output is automatically created in order to accommodate the tab

value. This includes the case where the current position is greater

than a specified tab column.

:tbn. The :tbn. tag is used to force any text written on a subsequent line

to start in the current column until an :etbn. tag is found.

:etbn. The :etbn. tag turns off the tabs set by a :tbn. tag.

:ins n.[text] The :ins. tag defines a message insert. The insert is a variable that

is assigned a value with the CEECMI callable service. The insert

number (n) can be any number between 1 and 9. The text

following the period describes the insert. This text is optional, and

is included only in a message file when the value assigned to the

insert is not known. For example, the text variable name after an

insert tag indicates that a variable name is assigned to the insert.

 One value can be assigned to each insert used in a message. Insert

tags can be moved around, interchanged, or omitted, but the insert

values cannot be changed. The order of the :ins n. tags, not the

insert number, determines the order of the inserts.

:newline. The :newline. tag creates a new message line that can be used for

multi-line messages.

:xpl. The :xpl. tag indicates text used to explain the condition. It is not

printed as part of the message, but is included if the message

source file is formatted and printed.

:presp. The :presp. tag indicates text that describes the suggested

programmer response. It is not printed as part of the message, but

is included if the message source file is formatted and printed.

:sysact. The :sysact. tag indicates text that describes the system action. It

188 LE/VSE: Programming Guide

is not printed as part of the message, but is included if the

message source file is formatted and printed.

Using the CEEBLDTX Utility

CEEBLDTX is a utility that transforms the message source file into an

assembler-language file that can be assembled and link-edited into a phase

containing the loadable message module. The CEEBLDTX utility also optionally

produces a language-specific copy book that contains declarations for the condition

tokens associated with each message.

You can run the CEEBLDTX utility in the following environments:

v VSE batch

To run the CEEBLDTX utility on VSE, you must have the REXX/VSE Interpreter

installed on your VSE system. For more information about the REXX/VSE

Interpreter, see REXX/VSE User’s Guide

v CMS

To run the utility on CMS, you must first copy the CEEBLDTX source program,

CEEBLDTX.PROC, from the PRD2.SCEEBASE sublibrary to a CMS-accessible

minidisk as CEEBLDTX EXEC.

The syntax of the CEEBLDTX invocation is shown below.

Syntax

55 CEEBLDTX in_file out_file

options
 5=

in_file

v On VSE, either SYSIPT or a fully-qualified librarian member name in the

format:

in_lib.in_sublib.in_member.in_type

v On CMS, the file name of the SCRIPT file containing the message text

source.

out_file

v On VSE, the fully-qualified name of the librarian member containing the

assembler-language text version of the messages. The fully-qualified member

name has the format:

out_lib.out_sublib.out_member.out_type

If in_file is SYSIPT, out_type must not be SCRIPT.

v On CMS, the filename of the resulting ASSEMBLE file containing the text

version of the messages.

options

Can be omitted or one of the following:

 COBOL(copy-member-name)

 PLI(copy-member-name)

 BAL(copy-member-name)

where copy-member-name

v On VSE, is the fully-qualified name of the librarian member containing the

copy member. The fully-qualified member name has the format:

Chapter 15. Using and Handling Messages 189

copy_lib.copy_sublib.copy_member.copy_type

If you plan to include the copy member generated by the CEEBLDTX utility

in your application program, you should specify copy_type according to the

specified language:

C for COBOL

P for PL/I

A for BAL
If in_file is SYSIPT, copy_type must not be SCRIPT.

v On CMS, is the CMS filename with the following default file types based on

the specified language:

COBOL for COBOL

PLIOPT for PL/I

MACRO for BAL

Usage Notes:

1. Each parameter is positional. Every parameter, except the options parameter, is

required.

2. On CMS, an equal sign (=) can be substituted for any parameter, except for

in_file. Parameters represented by an equal sign (=) are equated with the

corresponding parameter previously used.

Files Created by CEEBLDTX

When you run the CEEBLDTX utility on VSE, the utility creates up to three

librarian members:

out_lib.out_sublib.out_member.SCRIPT

This librarian member is only created if in_file is specified as SYSIPT, and

contains a copy of the source file read from SYSIPT.

out_lib.out_sublib.out_member.out_type

The librarian member containing the assembler-language version of the

message file. The source statements in this member can be assembled and

link-edited into a phase containing the loadable message module. When

the name of the loadable message file is placed in a message module table,

the LE/VSE message services can dynamically access the file. See

“Creating a Message Module Table” on page 195 for more information

about creating a message module table.

copy_lib.copy_sublib.copy_member.copy_type

The librarian member containing the language-specific COPY or INCLUDE

member. This member contains the declarations for the condition tokens

associated with each message in the message file. When this member is

included in the source routine, the condition tokens can be used to

reference the message. The :msgname. tag indicates the symbolic name of

the condition token.

When you run the CEEBLDTX utility on CMS, the utility creates one or two files:

out_file ASSEMBLE

The ASSEMBLE file can be assembled into a loadable text file. When the

name of this file is placed in a message module table, the LE/VSE message

services can dynamically access the file. See “Creating a Message Module

Table” on page 195 for more information about creating a message module

table.

copy_member_name COPY or copy_member_name INCLUDE

The COPY or INCLUDE file contains the declarations for the condition

190 LE/VSE: Programming Guide

tokens associated with each message in the message source file. When this

file is included in the source routine, the condition tokens can be used to

reference the message. The :msgname. tag indicates the symbolic name of

the condition token.

Running the CEEBLDTX Utility

Once you have created a message source file, you need to run the CEEBLDTX

utility to create the assembler-language version of the file.

Running the CEEBLDTX Utility on VSE

The following sample JCL shows how you can invoke the REXX/VSE Interpreter

to run the CEEBLDTX utility. The message source file being processed is in the

librarian member EXAMPLE.SCRIPT in the sublibrary USER.SUBLIB. The sample

JCL shows the parameters needed to produce the assembler-language version of

the message file in USER.SUBLIB sublibrary member EXMPLASM.A, and the

COBOL copy member in the USER.SUBLIB sublibrary member EXMPLCOB.C. The

label information for the USER library is assumed to be in system standard labels.

Column 1 Column 16 Column 72

a a a

// JOB CEEBLDTX

// LIBDEF PROC,SEARCH=PRD2.SCEEBASE

// EXEC REXX=CEEBLDTX,PARM=’USER.SUBLIB.EXAMPLE.SCRIPT X

 USER.SUBLIB.EXMPLASM.A COBOL(USER.SUBLIB.EXMPLCOB.C)’

/&

The following sample JCL shows how to invoke the REXX/VSE Interpreter on VSE

to run the CEEBLDTX utility to process a message source file provided in SYSIPT.

The sample JCL shows the parameters needed to produce the assembler-language

version of the message file in USER.SUBLIB sublibrary member EXMPLASM.A,

and the PL/I include member in the USER.SUBLIB sublibrary member

EXMPLPLI.P. The label information for the USER library is assumed to be in

system standard labels.

Column 1 Column 16 Column 72

a a a

// JOB CEEBLDTX

// LIBDEF PROC,SEARCH=PRD2.SCEEBASE

// EXEC REXX=CEEBLDTX,PARM=’SYSIPT USER.SUBLIB.EXMPLASM.A X

 PLI(USER.SUBLIB.EXMPLPLI.P)’ ...
message source file

/*

/&

The following sample JCL shows an alternative way to invoke the REXX/VSE

Interpreter on VSE to run the CEEBLDTX utility to process a message source file

provided in SYSIPT and produce the output described in the previous example.

Column 1 Column 16 Column 72

a a a

// JOB CEEBLDTX

// LIBDEF PROC,SEARCH=PRD2.SCEEBASE

// EXEC ARXJCL,PARM=’CEEBLDTX SYSIPT USER.SUBLIB.EXMPLASM.A X

 PLI(USER.SUBLIB.EXMPLPLI.P)’ ...
message source file

/*

/&

Chapter 15. Using and Handling Messages 191

Running the CEEBLDTX Utility on CMS

To use the CEEBLDTX utility with the sample file shown in Figure 65 on page 186

you would issue:

CEEBLDTX example exmplasm pli(exmplpli)

The in_file is EXAMPLE SCRIPT, the out_file is EXMPLASM ASSEMBLE, and the

PL/I include file is EXMPLPLI PLIOPT.

Assembling and Link-Editing the Message File

To assemble and link-edit the assembler-language file (EXMPLASM) produced by

the CEEBLDTX utility, use the following JCL.

// JOB EXMPLASM

// LIBDEF SOURCE,SEARCH=(USER.SUBLIB,PRD2.SCEEBASE)

// LIBDEF PHASE,CATALOG=USER.SUBLIB

// OPTION CATAL

 PHASE EXMPLASM,*

// EXEC ASMA90,SIZE=ASMA90

 COPY EXMPLASM

/*

// EXEC LNKEDT

/&

CEEBLDTX Error Messages

LE/VSE issues the CEEBLDTX error message described below. In some situations,

a CEEBLDTX message might be accompanied by a REXX Interpreter message

which can help you determine the cause of the problem.

When running the CEEBLDTX utility on VSE, one or more REXX/VSE Interpreter

messages might be produced without an accompanying CEEBLDTX error message.

These messages usually indicates a recoverable error. You can ignore the following

REXX/VSE Interpreter messages if they occur without an accompanying

CEEBLDTX error message:

ARX0563E Unable to open file member_name

ARX0670E EXECIO error while trying to GET or PUT a record.

Return Code=0028 Message source file ssssssss not

found.

Explanation: On VSE, the librarian member with the

fully-qualified name ssssssss could not be found.

 On CMS, the file with the name ssssssss could not be

found an any accessed disk.

Programmer Response: On VSE, make sure the name

of the message source file is specified correctly as

SYSIPT or a fully-qualified librarian member name. If

you specify a librarian member name, make sure that

you provide label information for the specified library.

 ON CMS, make sure the file is correctly named and the

file is available on one of your accessed disks.

Return Code=0036 Disk A must be accessed as

Read/Write.

Explanation: On CMS, the A-disk must be writeable to

write the output files.

Programmer Response: Specify an A-disk that is write

accessible.

Return Code=0040 Error on line nnn in message nnnn

Insert number greater than mmmm.

Explanation: An insert number greater than the

allowable maximum was specified. The current

maximum allowable insert number is 9.

Programmer Response: Specify an insert number of 9

or less.

Return Code=0044 Error on line nnn Duplicate

:FACID. tags found within the given

message source file.

Explanation: Only one facility ID can be specified in

the message source file.

Programmer Response: Specify only one facility ID in

the message source file.

192 LE/VSE: Programming Guide

Return Code=0048 No :FACID. tag found within the

given message source file.

Explanation: A 3-character facility ID must be

specified in the message source file with the :facid. tag.

Programmer Response: Specify a 3-character facility

ID with the :facid. tag.

Return Code=0052 Error on line nnn Message

number nnnn found out of range

mmmm to mmmm.

Explanation: A message was found with a number

outside the valid range. The current valid range is 0 to

9999.

Programmer Response: Correct the invalid message

number on the given line of the message source file.

Return Code=0056 Number of hex digits not

divisible by 2 on line nnn in message

nnnn.

Explanation: A hexadecimal string must contain an

even number of digits.

Programmer Response: Specify an even number of

digits for the hexadecimal string.

Return Code=0060 Invalid hexadecimal digits on line

nnn in message nnnn.

Explanation: Valid hexadecimal digits are 0–9 and

A–F. Invalid digits were detected.

Programmer Response: Specify only digits 0–9 and

A–F within a hexadecimal string.

Return Code=0064 Number of DBCS bytes not

divisible by 2 on line nnn in message

nnnn.

Explanation: Double-byte character strings must

contain an even number of bytes.

Programmer Response: Specify an even number of

bytes for the double-byte character string.

Return Code=0068 ASSEMBLE out_file name must

be longer than the message facid pppp.

Explanation: The ASSEMBLE file name must be

greater than 3 characters.

Programmer Response: Specify an ASSEMBLE out_file

name of greater than 3 characters.

Return Code=0072 Message facility ID pppp on line

nnn was longer than 4 characters.

Explanation: Facility ID must be exactly 3 characters

long, with no blanks.

Programmer Response: Specify a 3-character facility

ID.

Return Code=0076 Message class on line nnn was not

a valid message class type: IWESCFLA.

Explanation: Message class must be one of the valid

message classes.

Programmer Response: Specify a valid message class.

Return Code=0080 Error on line nnn - tag not

recognized.

Explanation: A tag that was not recognized was

encountered.

Programmer Response: Check the tag for proper

spelling and use.

Return Code=0084 Error on line nnn - first tag not

:FACID..

Explanation: The first tag of the message source file

must be the facility ID tag.

Programmer Response: Specify the facility ID tag as

the first tag in the message source file.

Return Code=0088 Error on line nnn - unexpected

tag.

Explanation: A valid tag was found in an unexpected

location in the message source file. It is likely out of

order.

Programmer Response: Check the order of the tags in

the message source file.

Return Code=0092 Error on line nnn - duplicate tags

ttt.

Explanation: Duplicate :msgname., :msgclass., or

:msgsubid. tags were found for a single message.

Programmer Response: Remove the extra tag from the

message script.

Return Code=0096 No :MSGNO. tags found within

the given message source file.

Explanation: A message file must have at least one

message in it, and it must be denoted by a :msgno. tag.

Programmer Response: Specify at least one message

in the message file.

Chapter 15. Using and Handling Messages 193

Return Code=0100 Error on line nnn - insert number

was not provided or was less than 1.

Explanation: A positive insert number must be

provided for each insert.

Programmer Response: Specify a positive insert

number of 9 or less for the insert.

Return Code=0104 Error on line nnn in message

mmmm - subid ssss found out of range 0

to 9999.

Explanation: A message subid was found with a

number outside the valid range. The current valid

range is 0 to 9999.

Programmer Response: Correct the invalid message

subid on the given line of the message source file.

Return Code=0108 Existing copy_member_name COPY

file found, but not on A-disk.

Explanation: On CMS, a feedback token file was

found with the given name, but it is not on the A-disk,

and will not be replaced.

Programmer Response: Specify a different feedback

token file name, or release the disk on which the file

currently resides.

Return Code=0120 Error rc opening file filename for

io_type processing.

Explanation: The REXX I/O command, EXECIO,

returned the return code rc when trying to open file

filename for io_type (READ or WRITE) processing.

Programmer Response: See your REXX Reference for a

description of the EXECIO return code, and correct the

problem that caused the return code.

Return Code=0124 Error rc copying file in_file to

out_file.

Explanation: The REXX I/O command, EXECIO,

returned the return code rc when writing to the file

out_file.

Programmer Response: See your REXX Reference for a

description of the EXECIO return code, and correct the

problem that caused the return code.

Return Code=0128 Invalid option

language(copy_member_name).

Explanation: The language specified for the optional

copy member was not COBOL, PLI, or BAL.

Programmer Response: Specify COBOL, PLI, or BAL

for the language type of the copy member.

Return Code=0132 Variable used on line lineno has

not been initialized.

Explanation: The REXX NOVALUE condition has

been signaled. One of the REXX variables used on line

lineno of the CEEBLDTX source file has not been

initialized. This error should not occur.

Programmer Response: If you have modified the

CEEBLDTX source file, correct the problem by

initializing any uninitialized REXX variables.

 If you have not modified the CEEBLDTX source file,

this is an internal problem. Contact your service

representative.

Return Code=nnn Undefined error number nnn

issued.

Explanation: An undefined error was encountered.

Programmer Response: Contact your service

representative.

194 LE/VSE: Programming Guide

Creating a Message Module Table

LE/VSE locates the user-created messages using a message module table that you

code in assembler.

The message module table begins with a header that indicates the number of

languages in the table. In Figure 66, for example, only English is used, so the first

fullword of the header declares the constant F'1'.

 In Figure 67, however, both English and Japanese are used, so the first fullword of

the header declares the constant F'2'. Following the message module table header

are tables for each language.

 Each language table has one or more 16-byte entries that indicate the name of a

phase containing a loadable message module, and the range of message numbers

the module contains. The first fullword of each 16-byte entry contains the lowest

 TITLE ’UXMPMSGT’

UXMPMSGT CSECT

 DC F’1’ number of languages

 DC CL8’ENU ’ language identifier

 DC A(TABLEENU) pointer to first language table

TABLEENU DC F’01’ lowest message number in module

 DC F’100’ highest message number in module

 DC CL8’EXMPLASM’ message module name

 DC F’-1’ flags indicating the last...

 DC F’-1’ 16-byte entry (a dummy entry)...

 DC CL8’DUMMY’ in the language table

 END UXMPMSGT

Figure 66. Example of a Message Module Table with One Language

 TITLE ’UZOGMSGT’

UZOGMSGT CSECT

 DC F’2’ number of languages

 DC CL8’ENU ’ first language identifier

 DC A(TABLEENU) pointer to first language table

 DC CL8’JPN ’ second language identifier

 DC A(TABLEJPN) pointer to second language table

TABLEENU DC F’01’ lowest message number in first module

 DC F’100’ highest message number in first module

 DC CL8’ZOGMSGE1’ first message module name

 DC F’101’ lowest message number in second module

 DC F’200’ highest message number in second module

 DC CL8’ZOGMSGE2’ second message module name ...
 DC F’-1’ flags indicating the last...

 DC F’-1’ 16-byte entry (a dummy entry)...

 DC CL8’DUMMY’ in the language table

TABLEJPN DC F’01’ lowest message number in first module

 DC F’100’ highest message number in first module

 DC CL8’ZOGMSGJ1’ first message module name

 DC F’101’ lowest message number in second module

 DC F’200’ highest message number in second module

 DC CL8’ZOGMSGJ2’ second message module name ...
 DC F’-1’ flags indicating the last...

 DC F’-1’ 16-byte entry (a dummy entry)...

 DC CL8’DUMMY’ in the language table

 END UZOGMSGT

Figure 67. Example of a Message Module Table with Two Languages

Chapter 15. Using and Handling Messages 195

message number within the corresponding module; the second fullword contains

the highest message number for that module. The last 8 bytes of each 16-byte entry

contain the phase name of the loadable message module. For example, in Figure 67

on page 195, Japanese messages numbered 101–200 are found in phase

ZOGMSGJ2. Finally, each language table ends with a dummy 16-byte entry whose

first two fullwords contain the flag F'-1' indicating the end of the language table.

Use an 8-character format for the title of the message module table: ‘U’ (to indicate

that the table contains user-created messages), followed by a 3-character facility ID,

followed by ‘MSGT’. For example, the title of the message module table for

messages using a facility ID of XMP would be ‘UXMPMSGT’ as shown in

Figure 66 on page 195; the title of the message module table for messages having a

facility ID of ZOG would be ‘UZOGMSGT’ as shown in Figure 67 on page 195.

After you create the message module table:

1. Assemble it and link-edit it into a loadable phase

2. Store the phase in a sublibrary where it can be dynamically accessed while

your application is running

The following shows an example of how to assemble and link-edit a message

module table.

Assigning Values to Message Inserts

After you add message insert tags to the message source file, you can use the

LE/VSE callable service CEECMI to assign values to the inserts. Values do not

need to be assigned to inserts in sequential order. For example, the value of insert

3 can be assigned before the value for insert 1. Before invoking the CEECMI

callable service, assign values to the callable service parameters. For more

information about CEECMI, see LE/VSE Programming Reference.

Figure 69 on page 197 shows an example of the use of CEECMI to assign value

1234 to insert 1 for :msgname.EXMPLMSG shown in Figure 65 on page 186.

// JOB UXMPMSGT

// DLBL IJSYSLN,’%LEVSE.WORKFILE.IJSYSLN’,0,VSAM,RECSIZE=322, X

 RECORDS=(400,600)

// LIBDEF PHASE,CATALOG=(USER.RUNLIB)

// OPTION CATAL

 PHASE UXMPMSGT,*

// EXEC ASMA90,SIZE=ASMA90 ...
message module table source ...
/*

// EXEC LNKEDT

/*

/&

Figure 68. Assembling and Link-Editing a Message Phase Table

196 LE/VSE: Programming Guide

Using Messages in Code

Figure 70 shows a test case in which the object module for program TEST (

Figure 69) is link-edited and run. The MSGFILE run-time option is used to direct

the output to a file named TSTMSGS.

 The following shows the message output from the test case.

Example of Message Output

XMP0010I This is an example of an insert, 1234, within a message.

*PROCESS MACRO;

 TEST: Proc Options(Main);

 /*Module/File Name: IBMMINS */

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 %INCLUDE SYSLIB(EXMPLCOP);

 DCL INSERT CHAR(255) VARYING AUTO;

 DCL 01 CTOK FEEDBACK;

 DCL 01 FBCODE FEEDBACK;

 DCL MSGFILE FIXED AUTO;

 ctok = EXMPLMSG;

 insert = ’1234’;

 MSGFILE = 2;

 /* Call CEECMI to create a message insert */

 CALL CEECMI(ctok, 1, insert, fbcode);

 /* Call CEEMSG to issue the message */

 CALL CEEMSG(ctok, MSGFILE, fbcode);

 END TEST;

Figure 69. Example of Assigning Values to Message Inserts

// JOB TEST

// DLBL IJSYSLN,’%LEVSE.WORKFILE.IJSYSLN’,0,VSAM,RECSIZE=322, X

 RECORDS=(400,600)

// DLBL TSTMSGS,’TEST.MESSAGES.FILE’,0,VSAM,RECSIZE=133, X

 RECORDS=(100,10)

// LIBDEF OBJ,SEARCH=(userlib.sublib,PRD2.SCEEBASE)

// LIBDEF PHASE,SEARCH=(userlib.sublib,PRD2.SCEEBASE)

// OPTION LINK

 INCLUDE TEST

// EXEC LNKEDT

// EXEC ,PARM=’MSGFILE(TSTMSGS)/’

/*

/&

Figure 70. Example of Link-Editing and Running the TEST PL/I Program

Chapter 15. Using and Handling Messages 197

Interpreting Run-Time Messages

Run-time messages are designed to provide information about conditions and

possible solutions to errors that occur in your routine. LE/VSE common routines

and language-specific run-time routines issue run-time messages. All run-time

messages in LE/VSE are comprised of the following:

v A 3-character facility ID used by all messages generated under LE/VSE or a

particular LE/VSE-conforming product. This prefix indicates the LE/VSE

component that generated the message, and is also the facility ID in the

condition token. LE/VSE uses the ID of the condition token to write the message

associated with the condition to MSGFILE. For more information about the

condition token, see Chapter 14, “Using Condition Tokens,” on page 171.

v A message number that identifies the message associated with the condition.

v A severity level that indicates the severity of the condition that was raised.

The format of every run-time message is:

 FFFnnnnx

FFF

represents the facility ID. In LE/VSE Version 1 Release 4, the possible facility

IDs assigned by IBM are:

CEE LE/VSE common library

EDC C language-specific library

IGZ COBOL language-specific library

IBM PL/I language-specific library

nnnn

represents the message number.

x represents the severity code. This character indicates the level of severity (0, 1,

2, 3, or 4) of the message.

Table 36 lists the severity codes, corresponding severity levels, explanations of the

severity codes, and the default actions taken if conditions corresponding to each

level of severity are unhandled.

 Table 36. LE/VSE Run-Time Message Severity Codes

Severity

Code

Level of

Severity Explanation

Default Action If Condition

Unhandled

I 0 An informational message (or,

if the entire token is zero, no

information)

No message issued.

W 1 A warning message. Service

completed, probably

successfully.

No message issued, except in

COBOL. Processing

continues for all languages.

E 2 Error detected, correction

attempted, service completed,

perhaps successfully.

Issues message and

terminates thread.

S 3 Severe error detected, service

incomplete with possible side

effects.

Issues message and

terminates thread.

C 4 Critical error detected, service

incomplete with condition

signaled.

Issues message and

terminates thread.

198 LE/VSE: Programming Guide

LE/VSE messages can appear even though you made no explicit calls to LE/VSE

services. C, COBOL, and PL/I run-time library routines commonly use the LE/VSE

services, so you may receive LE/VSE messages even when the application routine

does not directly call LE/VSE services.

Some LE/VSE conditions have qualifying data associated with the instance specific

information (ISI) for the condition. For more information about qualifying data,

refer to “LE/VSE-provided q_data Structure for Abends” on page 182.

Specifying National Language

You can use LE/VSE national language support to view run-time messages in

uppercase or mixed-case U.S. English, or Japanese. You can also use national

language support to select the most appropriate language variables for your

messages, such as language character set, left-to-right text, single-byte character set

(SBCS), and double-byte character set (DBCS).

LE/VSE message services support requirements for national language support

machine-readable information such as message formatting, message delivery, and

normalization (removes adjacent shift-out, shift-in character in order to make DBCS

strings as compatible as possible).

The NATLANG run-time option allows you to set the national language used for

messages before you run your routine. The default national language is uppercase

U.S. English. Refer to LE/VSE Programming Reference for more information on the

NATLANG run-time option.

The CEE5LNG callable service allows you to set or query the current national

language setting while your routine is running. Refer to LE/VSE Programming

Reference for more information about CEE5LNG.

Handling Message Output

The following sections provide information about directing message output and

displaying messages under LE/VSE, C, COBOL, and PL/I.

For information about handling message output in ILC applications, see LE/VSE

Writing Interlanguage Communication Applications.

Using LE/VSE MSGFILE

Run-time messages are directed to a common LE/VSE message file. You can use

the MSGFILE run-time option to specify the filename of this file. If a message file

filename is not declared, messages are written to the IBM-supplied default,

SYSLST.

Table 37 lists the default attributes of the message file.

 Table 37. Message File Default Attributes

MSGFILE Default Attributes

Default (SYSLST) Logical record length 1331 Unblocked ASA

print control character

Printer (SYSnnn) Logical record length 133 Unblocked ASA

print control character

Chapter 15. Using and Handling Messages 199

Table 37. Message File Default Attributes (continued)

MSGFILE Default Attributes

Unlabeled tape (SYSnnn) Logical record length 133 Block size 133*100

ASA print control character

Disk file Logical record length 133 Block size

(133*100)+8 ASA print control character

Labeled tape file (SYSnnn) Logical record length 133 Block size 133*100

ASA print control character

Note:

1. If SYSLST is assigned to a disk file on CKD DASD, the logical record length is 121.

When you direct run-time messages to an I/O device, the method you should use

depends on the device type. Table 38 lists methods for directing run-time messages

to each allowable type of I/O device.

 Table 38. Defining an I/O Device for the Message File

MSGFILE Device Type JCL to Define I/O Device

Default (SYSLST) // ASSGN SYSLST,cuu

Printer (SYSnnn) // ASSGN SYSnnn,cuu

Unlabeled tape (SYSnnn) // ASSGN SYSnnn,cuu

Disk file (filename) // DLBL filename...

Labeled tape file (SYSnnn) // TLBL SYSnnn,... // ASSGN SYSnnn,cuu

Notes:

1. You might need to modify existing JCL of pre-LE/VSE-conforming applications

in order to define new filenames for MSGFILE.

2. You can specify the same message file across nested enclaves; LE/VSE

coordinates the use of the same filename across nested enclaves. If you specify

different MSGFILE filenames in each enclave, LE/VSE honors each filename.

3. Under CICS, the MSGFILE run-time option defaults to the CESE transient data

queue. You can specify an alternative transient data queue for the MSGFILE

run-time option. For more information about message handling and run-time

message output under CICS, see “Run-Time Output under CICS” on page 308.

Using C Input/Output Functions

C makes a distinction between types of error output, and whether the output is

directed to the MSGFILE destination or to one of the standard stream output

devices, stderr or stdout.

Run-time messages and perror() messages are directed to the stderr standard

stream output device. The default destination for stderr output is the MSGFILE

filename; you can change this default as discussed below.

Message output issued by a call to the printf() function is directed to stdout. The

default destination of stdout is SYSLST.

You can change the destination of printf() output by redirection. For example,

1>&2 in the PARM parameter of the JCL EXEC statement at routine invocation

redirects stdout to the stderr destination.

200 LE/VSE: Programming Guide

Table 39 lists the types of C output, the types of messages associated with them,

and the destination of the message output:

 Table 39. C Message Output

Type of Output Type of Message Produced By Default Destination

MSGFILE output LE/VSE messages

(CEExxxx)

LE/VSE unhandled

conditions

MSGFILE filename

C library messages C unhandled

conditions

MSGFILE filename

stderr messages perror() messages

(EDCxxx)

Issued by a call to

perror()

MSGFILE filename

User output sent

explicitly to stderr

Issued by a call to

fprintf()

MSGFILE filename

stdout messages User output sent

explicitly to stdout

Issued by a call to

printf()

stdout

You can control the destination of stderr output by using the LE/VSE MSGFILE

run-time option. You can control the destination of stdout output by using the C

freopen() function or by requesting redirection services at run time.

Table 40 lists the possible destinations of redirected stderr and stdout standard

stream output.

 Table 40. C Redirected Stream Output

stderr Not Redirected

stderr Redirected to

Destination Other

Than stdout

stderr Redirected to

stdout

stdout not redirected stdout to itself stdout to itself Both to stdout

stderr to MSGFILE stderr to its other

destination

stdout redirected to

destination other than

stderr

stdout to its other

destination

stdout to its other

destination

Both to the other

stdout destination

stderr to MSGFILE stderr to its other

destination

stdout redirected to

stderr

Both to MSGFILE Both to the other

stderr destination

When stderr and

stdout are redirected

to each other (this is

not recommended),

output from both is

directed to whichever

was specified first.

For more information about redirecting standard streams in C, see LE/VSE C

Run-Time Programming Guide.

Using COBOL Input/Output Statements

LE/VSE directs run-time messages produced by VS COBOL II and COBOL/VSE

routines to the file specified by the LE/VSE MSGFILE run-time option. If your

application includes a DOS/VS COBOL program, run-time messages, such as those

produced by the DOS/VS COBOL SYMDMP, STATE, FLOW, and COUNT compiler

options, are directed to SYSLST.

Chapter 15. Using and Handling Messages 201

LE/VSE manages all user-specified output directed to the system-logical output

device. This includes output produced by the following statements:

v DISPLAY [UPON SYSLST]

v EXHIBIT (DOS/VS COBOL only)

v READY TRACE (DOS/VS COBOL only)

Note: The COBOL DISPLAY statement is not supported under CICS. The

DOS/VS COBOL READY TRACE and EXHIBIT statements are also not

supported under CICS.

LE/VSE determines the destination of user-specified output as follows:

v For a DOS/VS COBOL program in your application, the DISPLAY, READY

TRACE, and EXHIBIT statements send all message output to SYSLST. This

output will be synchronized with other run-time message output that is directed

to SYSLST by the VS COBOL II and COBOL/VSE OUTDD compiler option.

v For a VS COBOL II program in your application, the DISPLAY statement sends

message output to the file specified by the VS COBOL II OUTDD compiler

option when the routine was compiled.

Note: The VS COBOL II compiler under VSE does not support the OUTDD

compiler option, and the system-logical output device is always SYSOUT.

However, LE/VSE treats the OUTDD filename of SYSOUT as SYSLST.

Therefore, if the VS COBOL II routine was compiled using the VS COBOL

II compiler under VSE, output from the DISPLAY statement is sent to

SYSLST.

v For a COBOL/VSE program in your application, the DISPLAY statement sends

message output to the file specified by the COBOL/VSE OUTDD compiler

option. For compatibility with COBOL compilers that run on z/OS and VM, the

IBM-supplied default value for the OUTDD compiler option is SYSOUT.

However, LE/VSE treats the OUTDD filename of SYSOUT as SYSLST.

If the filename specified in the OUTDD compiler option matches the filename

specified in the MSGFILE run-time option, the output is synchronized with the

run-time messages.

If the file designated by the OUTDD compiler option or the MSGFILE run-time

option has not been defined (associated with an I/O device) when the output is

delivered, the LE/VSE condition with symbolic feedback code CEE0E9 is raised.

The possible filename specification combinations for OUTDD and MSGFILE and

the locations where display output and run-time messages are routed are

summarized in Table 41.

 Table 41. Run-time Message and DISPLAY Destinations for OUTDD and MSGFILE filename

Specifications

filename Specification

filename

Defined? Destination1

MSGFILE(SYSLST)

OUTDD(SYSLST)

Yes, for SYSLST Messages and DISPLAY data are routed to

SYSLST.

No The LE/VSE condition with symbolic

feedback code CEE0E9 is raised.

202 LE/VSE: Programming Guide

Table 41. Run-time Message and DISPLAY Destinations for OUTDD and MSGFILE filename

Specifications (continued)

filename Specification

filename

Defined? Destination1

MSGFILE(SYSLST)

OUTDD(filename)

Yes, for SYSLST Messages are routed to SYSLST.

Yes, for filename COBOL/VSE DISPLAY data is routed to the

file defined for filename.

No If the file designated by filename is not

defined when output is directed to it, the

LE/VSE condition with symbolic feedback

code CEE0E9 is raised.

If SYSLST is not defined when output is

directed to it, the LE/VSE condition with

symbolic feedback code CEE0E9 is raised.

MSGFILE(filename)

OUTDD(SYSLST)

Yes, for filename Messages are routed to the file defined for

filename.

Yes, for SYSLST COBOL/VSE DISPLAY data is routed to

SYSLST.

No If the file designated by filename is not

defined when output is directed to it, the

LE/VSE condition with symbolic feedback

code CEE0E9 is raised.

If SYSLST is not defined when output is

directed to it, the LE/VSE condition with

symbolic feedback code CEE0E9 is raised.

MSGFILE(filename_1)

OUTDD(filename_2)

Yes, for

filename_1

Messages are routed to the file defined for

filename_1.

Yes, for

filename_2.

COBOL/VSE DISPLAY data is routed to

filename_2.

No If the file designated by filename_1 is not

defined when output is directed to it, the

LE/VSE condition with symbolic feedback

code CEE0E9 is raised.

If the file designated by filename_2 is not

defined when output is directed to it, the

LE/VSE condition with symbolic feedback

code CEE0E9 is raised.

Note:

1. DOS/VS COBOL run-time messages, DOS/VS COBOL DISPLAY data, and DISPLAY

data produced by VS COBOL II routines compiled with the VS COBOL II compiler

under VSE are always directed to SYSLST.

For more information about directing COBOL output, refer to IBM COBOL for

VSE/ESA Programming Guide

Using PL/I Input/Output Statements

LE/VSE directs run-time messages in PL/I routines to the file specified by the

LE/VSE MSGFILE run-time option, instead of to the PL/I SYSPRINT STREAM

PRINT file.

Chapter 15. Using and Handling Messages 203

User-specified output is still directed to the PL/I SYSPRINT STREAM PRINT file.

If you want LE/VSE to handle this output, specify the run-time option

MSGFILE(SYSPRINT). When you use MSGFILE(SYSPRINT), LE/VSE routes all

output directed to the PL/I SYSPRINT STREAM PRINT file to SYSLST, unless the

SYSPRINT file constant declaration includes the INTERNAL attribute. If the

INTERNAL attribute is specified in the SYSPRINT declaration, user-specified

output is routed to the device specified in the MEDIUM option of the

ENVIRONMENT attribute.

When you specify MSGFILE(SYSPRINT):

v Run-time messages and user-specified output directed to the PL/I SYSPRINT

STREAM PRINT EXTERNAL file are routed to SYSLST, using the attributes

shown in Table 37 on page 199.

v Any file constant declaration that includes SYSPRINT STREAM PRINT

EXTERNAL file attributes is ignored.

v Any OPENs and CLOSEs to the PL/I SYSPRINT STREAM PRINT EXTERNAL

file are ignored.

v If SYSLST is not defined when output is first directed to it, the LE/VSE

condition with the symbolic feedback code CEE0E9 is raised.

v Synchronization between the types of output (messages and user-specified

output) is not provided, so the order of the output is unpredictable.

MSGFILE Considerations When Using PL/I

If MSGFILE(SYSPRINT) is in effect, use SYSPRINT only to direct output to the

PL/I SYSPRINT STREAM PRINT file.

Because performance might be degraded with the MSGFILE(SYSPRINT) option, it

is recommended only for debugging purposes. For production applications, do not

use the MSGFILE(SYSPRINT) option if your applications direct user-created output

to the PL/I SYSPRINT STREAM PRINT file.

In the batch environment, nested enclaves in an LE/VSE process can share the

same PL/I SYSPRINT STREAM PRINT EXTERNAL file. In a nested enclave

environment, if you want to use MSGFILE(SYSPRINT) you should specify

MSGFILE(SYSPRINT) for all enclaves in the application that contain SYSPRINT

PUT statements. When you specify MSGFILE(SYSPRINT), the file is opened by

LE/VSE when run-time message or user-specified output is first directed to it, and

is closed by LE/VSE at process termination.

Under CICS, the MSGFILE run-time option defaults to the CESE transient data

queue. Both run-time messages and the SYSPRINT STREAM PRINT EXTERNAL

file output are directed to this transient data queue. The CESE transient data queue

is a CICS thread-level resource. For more information about message handling and

run-time message output under CICS, see “Run-Time Output under CICS” on page

308.

For more information about directing PL/I output, refer to IBM PL/I for VSE/ESA

Programming Guide.

204 LE/VSE: Programming Guide

Examples Using Multiple Message Handling Callable Services

The examples in this section show how to use the LE/VSE message and

condition-handling services to issue a message that relates to a condition token.

The same calls are illustrated in C, PL/I, and COBOL.

Each example illustrates how CEEMOUT dispatches an informational message and

uses CEENCOD to construct a token for the message. The message area is then

initialized, CEEMGET retrieves the message, and CEEDCOD decodes the feedback

token from CEEMGET. After all of the message has been retrieved, CEEMOUT

issues the message. If any of the services fail, CEEMSG issues an informational

error message.

C Example Illustrating Calls to CEEMOUT, CEENCOD,

CEEMGET, CEEDCOD, and CEEMSG

/*Module/File Name: EDCMSGSX */

 /**

 **FUNCTION : CEEMOUT - dispatch a message to message file *

 ** : CEENCOD - construct a condition token *

 ** : CEEMGET - retrieve, format and store a message*

 ** : CEEDCOD - decode an existing condition token *

 ** : CEEMSG - retrieve, format, and dispatch a *

 ** : - message to message file *

 ** *

 ** This example illustrates the invocation of the LE/VSE *

 ** Message and Condition Handling services. *

 ** It constructs a condition token, retrieves the *

 ** associated message, and outputs the message to the *

 ** message file. *

 ** *

 ** This example program will output the LE/VSE *

 ** message,"CEE0260S". *

 ***/

#include <string.h>

#include <stdio.h>

#include <leawi.h>

#include <stdlib.h>

#include <ceeedcct.h>

int main(void) {

 _VSTRING message;

 _INT4 dest,msgindx;

 _CHAR80 msgarea;

 _FEEDBACK fc,token;

 _INT2 c_1,c_2,cond_case,sev,control;

 _CHAR3 facid;

 _INT4 isi;

 printf ("\n**********************************\n");

 printf ("\nCE92MSG C Example is now in motion\n");

 printf ("\n**********************************\n");

 strcpy(message.string,"The following message, CEE0260S, is expected");

 message.length = strlen(message.string);

 dest = 2;

Figure 71. C Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD,

and CEEMSG (Part 1 of 2)

Chapter 15. Using and Handling Messages 205

/***

 * Call CEEMOUT to output informational message. *

 * Call CEEMSG to output error message if CEEMOUT fails. *

 **/

 CEEMOUT(&message,&dest,&fc);

 if (_FBCHECK (fc , CEE000) != 0) {

 /* put the message if CEEMOUT failed */

 dest = 2;

 CEEMSG(&fc,&dest,NULL);

 exit(2999);

 }

 /**

 * Construct a to ken for CEE message 0260.*

 **/

 c_1 = 3;

 c_2 = 260;

 cond_case = 1;

 sev = 3;

 control = 1;

 memcpy(facid,"CEE",3);

 isi = 0;

 CEENCOD(&c_1,&c_2,&cond_case,&sev,&control,

 facid,&isi,&token,&fc);

 if (_FBCHECK (fc , CEE000) != 0) {

 printf("CEENCOD failed with message number %d\n",

 fc.tok_msgno);

 exit(2999);

 }

 /**

 * Initialize the message area. *

 **/

 msgindx = 0;

 memset(msgarea,’ ’,79);

 msgarea[80] = ’\0’;

 /**

 * Use CEEMGET until all the message has been retrieved. *

 * Msgindx will be zero when all the message has been retrieved.*

 * Call CEEMSG to output error message if CEEMGET fails. *

 **/

 do {

 CEEMGET(&token,msgarea,&msgindx,&fc);

 if (fc.tok_sev > 1) {

 dest = 2;

 CEEMSG(&fc,&dest,NULL);

 exit(2999);

 }

 memcpy(message.string,msgarea,80);

 message.length = 80;

 dest = 2;

 CEEMOUT(&message,&dest,&fc); /* put out the message */

 if (_FBCHECK (fc , CEE000) != 0) {

 dest = 2;

 CEEMSG(&fc,&dest,NULL);

 exit(2999);

 }

 } while (msgindx != 0);

 printf ("\n**********************************\n");

 printf ("\nCE92MSG C Example is now ended \n");

 printf ("\n**********************************\n");

}

Figure 71. C Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD,

and CEEMSG (Part 2 of 2)

206 LE/VSE: Programming Guide

COBOL Example Illustrating Calls to CEEMOUT, CEENCOD,

CEEMGET, CEEDCOD and CEEMSG

CBL LIB,APOST

 *Module/File Name: IGZTMSGS

 * *

 * CE92MSG - Program to invoke the following LE services: *

 * *

 * : CEEMOUT - dispatch a message to message file *

 * : CEENCOD - construct a condition token *

 * : CEEMGET - retrieve, format and store a message *

 * : CEEDCOD - decode an existing condition token *

 * : CEEMSG - retrieve, format, and dispatch a *

 * : message to message file *

 * *

 * This example illustrates the invocation of the Language *

 * Environment Message and Condition Handling services. *

 * It constructs a condition token, retrieves the associated *

 * message, and outputs the message to the message file. *

 * *

 * This example program will output the Language Environment *

 * message, ’CEE0260S’. *

 * *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CE92MSG.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 MSGSTR.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of MSGSTR.

 01 MSGDEST PIC S9(9) BINARY.

 01 SEV PIC S9(4) BINARY.

 01 MSGNO PIC S9(4) BINARY.

 01 CASE PIC S9(4) BINARY.

 01 SEV2 PIC S9(4) BINARY.

 01 CNTRL PIC S9(4) BINARY.

 01 FACID PIC X(3).

 01 ISINFO PIC S9(9) BINARY.

 01 MSGINDX PIC S9(9) BINARY.

 01 CTOK.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

Figure 72. COBOL Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET,

CEEDCOD and CEEMSG (Part 1 of 3)

Chapter 15. Using and Handling Messages 207

01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 01 MGETFC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 01 MSGAREA PIC X(80).

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.

 DISPLAY ’**************************************’.

 DISPLAY ’CE92MSG COBOL Example is now in motion. ’.

 DISPLAY ’**************************************’.

 MOVE 80 TO Vstring-length of MSGSTR.

 MOVE ’The following error message, CEE0260S, is expected:’

 TO Vstring-text of MSGSTR.

 MOVE 2 TO MSGDEST.

 **

 ** Call CEEMOUT to put out informational message. **

 **

 CALL ’CEEMOUT’ USING MSGSTR , MSGDEST , FC.

 IF NOT CEE000 of FC THEN

 DISPLAY ’Error ’ Msg-No of FC

 ’ in issuing header message’

 STOP RUN

 END-IF.

 **

 ** Set up token fields for creation of a condition token **

 **

 MOVE 3 TO SEV.

 MOVE 260 TO MSGNO.

 MOVE 1 TO CASE.

 MOVE 3 TO SEV2.

 MOVE 1 TO CNTRL.

 MOVE ’CEE’ TO FACID.

 MOVE 0 TO ISINFO.

 **

 ** Call CEENCOD to construct a condition token **

 **

 CALL ’CEENCOD’ USING SEV, MSGNO, CASE, SEV2, CNTRL,

 FACID, ISINFO, CTOK, FC.

 IF CEE000 of FC THEN

 MOVE 0 TO MSGINDX

 MOVE SPACES TO MSGAREA

Figure 72. COBOL Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET,

CEEDCOD and CEEMSG (Part 2 of 3)

208 LE/VSE: Programming Guide

**

 ** Call CEEMGET to retrieve message 260. Since **

 ** message 260 is longer than the length of MSGAREA, **

 ** a PERFORM statement loop is used to call CEEMGET **

 ** multiple times until the message index is zero. **

 **

 PERFORM TEST AFTER UNTIL(MSGINDX = 0)

 CALL ’CEEMGET’ USING CTOK, MSGAREA, MSGINDX, MGETFC

 IF (MGETFC NOT = LOW-VALUE) THEN

 **

 * Call CEEDCOD to decode CEEMGET’s feedback token **

 **

 CALL ’CEEDCOD’ USING MGETFC, SEV, MSGNO,

 CASE, SEV2, CNTRL, FACID, ISINFO, FC

 IF NOT CEE000 of FC THEN

 **

 * Call CEEMSG to output LE error message **

 * using feedback code from CEEDCOD call. **

 **

 CALL ’CEEMSG’ USING MGETFC, MSGDEST, FC

 IF NOT CEE000 of FC THEN

 DISPLAY ’Error ’ Msg-No of FC

 ’ from CEEMSG after error in CEEDCOD’

 END-IF

 STOP RUN

 END-IF

 **

 * If decoded message number is not 455, **

 * then CEEMGET actually failed with error. **

 **

 IF (Msg-No of MGETFC NOT = 455) THEN

 DISPLAY ’Error ’ Msg-No of MGETFC

 ’ retrieving message CEE0260S’

 STOP RUN

 END-IF

 END-IF

 **

 * Call CEEMOUT to output earch portion of message 260 **

 **

 MOVE MSGAREA TO Vstring-text of MSGSTR

 CALL ’CEEMOUT’ USING MSGSTR , MSGDEST , FC

 IF (MSGINDX = ZERO) THEN

 DISPLAY ’**************************************’

 DISPLAY ’ Cobol message example program ended.’

 DISPLAY ’**************************************’

 END-IF

 END-PERFORM

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ in encoding condition token’

 STOP RUN

 END-IF.

 GOBACK.

Figure 72. COBOL Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET,

CEEDCOD and CEEMSG (Part 3 of 3)

Chapter 15. Using and Handling Messages 209

PL/I Example Illustrating Calls to CEEMOUT, CEENCOD,

CEEMGET, CEEDCOD, and CEEMSG

*PROCESS MACRO;

 /*Module/File Name: IBMMSGS */

 /***/

 /* */

 /* FUNCTION : CEEMOUT - dispatch a message to message file */

 /* : CEENCOD - construct a condition token */

 /* : CEEMGET - retrieve, format and store a message */

 /* : CEEDCOD - decode an existing condition token */

 /* : CEEMSG - retrieve, format, and dispatch a */

 /* message to message file */

 /* */

 /* This example illustrates the invocation of the LE/VSE */

 /* Message and Condition Handling services. */

 /* It constructs a condition token, retrieves the */

 /* associated message, and outputs the message to the */

 /* message file. */

 /* */

 /* This example program will output the LE/VSE */

 /* message, "CEE0260S" */

 /* */

 /***/

 CE92MSG: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL MSGSTR CHAR(255) VARYING;

 DCL MSGDEST INT4;

 DCL MSGNUM INT2;

 DCL CASE INT2;

 DCL SEV INT2;

 DCL SEV2 INT2;

 DCL CNTRL INT2;

 DCL FACID CHARACTER (3);

 DCL ISINFO INT4;

 DCL MSGINDX INT4;

 DCL 01 CTOK FEEDBACK;

 DCL 01 FC FEEDBACK;

 DCL 01 MGETFC FEEDBACK;

 DCL MSGAREA CHAR(80);

 PUT SKIP LIST(’PL/I message example is now in motion’);

 MSGSTR = ’The following message, CEE0260S, is expected’;

 MSGDEST = 2;

 /***/

 /* Call CEEMOUT to output informational message. */

 /* Call CEEMSG to output error message if CEEMOUT fails. */

 /***/

 CALL CEEMOUT (MSGSTR, MSGDEST, FC);

 IF ª FBCHECK(FC, CEE000) THEN

 CALL CEEMSG(FC, MSGDEST, MGETFC);

 /***/

 /* Set up token fields for creation of a condition token */

 /***/

 SEV = 3;

 MSGNUM = 260;

 CASE = 1;

 SEV2 = 3;

 CNTRL = 1;

 FACID = ’CEE’;

 ISINFO = 0;

Figure 73. PL/I Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD,

and CEEMSG (Part 1 of 2)

210 LE/VSE: Programming Guide

/***/

 /* Call CEENCOD to construct a condition token */

 /***/

 CALL CEENCOD (SEV, MSGNUM, CASE, SEV2, CNTRL, FACID,

 ISINFO, CTOK, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 MSGINDX = 0;

 MSGAREA = ’ ’;

 /**/

 /* Call CEEMGET to retrieve message 260. Since */

 /* message 260 is longer than the length of MSGAREA, */

 /* a DO UNTIL statement loop is used to call CEEMGET */

 /* multiple times until the message index is zero. */

 /**/

 Retrieve_Message:

 DO UNTIL(MSGINDX = 0);

 CALL CEEMGET (CTOK, MSGAREA, MSGINDX, MGETFC);

 IF ª FBCHECK(MGETFC, CEE000) THEN DO;

 /**/

 /*Call CEEDCOD to decode CEEMGET’s feedback token */

 /**/

 CALL CEEDCOD (MGETFC, SEV, MSGNUM,

 CASE, SEV2, CNTRL, FACID, ISINFO, FC);

 IF ª FBCHECK(FC, CEE000) THEN DO;

 /***/

 /* Call CEEMSG to output LE/VSE error message */

 /* associated with feedback token from CEEMGET. */

 /***/

 CALL CEEMSG (MGETFC, MSGDEST, FC);

 IF ª FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP LIST (’Error ’ || FC.MsgNo

 || ’ from CEEMSG’);

 STOP;

 END;

 /***/

 /* If decoded message number is not 455, */

 /* then CEEMGET actually failed with error. */

 /***/

 IF (MGETFC.MsgNo ª= 455) THEN DO;

 PUT SKIP LIST(’Error ’ || MGETFC.MsgNo

 || ’ retrieving message CEE0260S’);

 STOP;

 END;

 END;

 END;

 /***/

 /* Call CEEMOUT to output each portion of message 260 */

 /***/

 MSGSTR = MSGAREA;

 CALL CEEMOUT (MSGSTR, MSGDEST, FC);

 IF (MSGINDX = 0) THEN DO;

 PUT SKIP LIST (’**********************************’);

 PUT SKIP LIST (’PL/I message example program ended’);

 PUT SKIP LIST (’**********************************’);

 END;

 END Retrieve_Message /* END DO UNTIL MSGINDX = 0 */;

 END /* CEENCOD successful */;

 ELSE DO;

 PUT SKIP LIST (’Error ’ || FC.MsgNo

 || ’ in encoding condition token’);

 END;

 END CE92MSG;

Figure 73. PL/I Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD,

and CEEMSG (Part 2 of 2)

Chapter 15. Using and Handling Messages 211

212 LE/VSE: Programming Guide

Chapter 16. Using Date and Time Services

This chapter describes LE/VSE date and time services and includes examples

showing calls to those services.

Understanding the Basics

LE/VSE includes a complete set of callable services that help HLLs perform date

and time calculations. You can use these services to read, calculate, and write

values representing the date and time. LE/VSE offers unique pattern-matching

capabilities that let you process almost any date and time format contained in an

input record or produced by operating system services.

You can use date and time services to:

v Format date and time values by country code

v Format date and time values using customized formats

v Parse date values and time values

v Convert between Gregorian, Julian, Asian, and Lilian formats

v Calculate days between dates

v Calculate elapsed time to the nearest millisecond

v Get local time and Greenwich Mean Time (GMT) from the system without a

supervisor call (SVC) overhead

v Properly handle 2-digit years in the year 2000 and beyond

All LE/VSE date and time services are enabled for national language support,

including full DBCS support for the Japanese Emperor and Chinese eras. For more

information on national language support see Chapter 17, “National Language

Support Services,” on page 247.

All LE/VSE date and time services are based on the Gregorian calendar, with

Lilian limits as described in “Date Limits” on page 214.

© Copyright IBM Corp. 1991, 2005 213

Related Services

Callable Services

CEECBLDY Converts character date value to the COBOL Integer format.

Day one is 01 January 1601 and the value is incremented by

one for each subsequent day. This service is similar to

CEEDAYS, except that it provides an answer in COBOL

Integer format, so that it is compatible with ANSI COBOL

intrinsic functions. It should not be used with other LE/VSE

date or time services.

CEEDATE Converts dates in the Lilian format to character values

CEEDATM Converts number of seconds to character timestamp

CEEDAYS Converts character date values to the Lilian format. Day one

is 15 October 1582, and the value is incremented by one for

each subsequent day.

CEEDYWK Provides day of week calculation

CEEGMT Gets current Greenwich Mean Time (date and time)

CEEGMTO Gets difference between Greenwich Mean Time and local time

CEEISEC Converts binary year, month, day, hour, minute, second, and

millisecond to a number representing the number of seconds

since 00:00:00 15 October 1582

CEELOCT Gets current date and time

CEEQCEN Queries the century window

CEESCEN Sets the century window

CEESECI Converts a number representing the number of seconds since

00:00:00 15 October 1582 to seven separate binary integers

representing year, month, day, hour, minute, second, and

millisecond

CEESECS Converts character timestamps (a date and time) to the

number of seconds since 00:00:00 15 October 1582

CEEUTC Same as CEEGMT

See LE/VSE Programming Reference for further information about these callable

services.

Working with Date and Time Services

Before you can start working with date and time services, you need to know the

various formats for specifying date and times and any limits that exist.

Date Limits

All LE/VSE date and time services are based on the Gregorian calendar, which has

certain limits for the date variables. These limits are:

Starting Lilian Date (Non-COBOL)

The beginning of the valid Lilian date range (day one) is Friday, 15

214 LE/VSE: Programming Guide

October 1582, the date the Gregorian calendar was adopted. Lilian dates

preceding this date are undefined. In the Lilian date range:

 Day zero equals 00:00:00 14 October 1582.

 Day one equals 00:00:00 15 October 1582.

All valid Lilian dates must be after 00:00:00 15 October 1582.

Starting COBOL Integer Date (COBOL Intrinsic Functions)

The beginning of the COBOL Integer date range according to the COBOL

standard is 31 December 1600. COBOL Integer dates preceding this date

are undefined. In the COBOL Integer date range:

 Day zero equals 00:00:00 31 December 1600.

 Day one equals 00:00:00 01 January 1601.

All valid COBOL Integer dates must be after 00:00:00 01 January 1601.

End Lilian Date (End COBOL Integer Date)

The end of the Lilian date range, as well as the COBOL Integer date range,

is set to 31 December 9999. Lilian dates and COBOL Integer dates

following this date are undefined.

Limit of Current Era

The maximum future date you can express in an era system (Japanese Era

or Chinese Era) must be within the first 999 years of the current era.

Future dates past year 999 of the current era are undefined.

Picture Character Terms and Picture Strings

Picture character terms define the format of date and time fields. A picture string is

a template that indicates the format of the input data. For example, the format of

the date 06/16/1990 (where 06 is the month, 16 is the day, and 1990 is the year)

corresponds to the picture string MM/DD/YYYY. See LE/VSE Programming

Reference for the LE/VSE picture character term and picture string values.

Notation for Eras

Calendars based on eras use unique picture strings to identify the eras. The era

picture string begins with a less than character (<) and ends with the greater than

character (>). The characters between the less than and greater than characters are

the Japanese era name in DBCS characters or Chinese era name in DBCS

characters. The picture strings identify the eras as follows:

Japanese Era The six-character string <JJJJ>. An example of specifying the

Japanese Meiji era would be to specify X'0E45A645840F' where the

X'0E' and X'0F' are the less than character (<) and greater than

character (>), respectively. Refer to LE/VSE Programming Reference

for the Japanese Eras used by LE/VSE date and time services.

Chinese Era The six-character string <CCCC> or the ten-character string

<CCCCCCCC>. An example of specifying the MinKow era would

be to specify X'0E4DB256CE0F' where the X'0E' and X'0F' are the

less than character (<) and greater than character (>), respectively.

Refer to LE/VSE Programming Reference for the Chinese Eras used

by LE/VSE date and time services.

Chapter 16. Using Date and Time Services 215

Performing Calculations on Date and Time Values

LE/VSE stores a date as a fullword binary integer and a timestamp as a

doubleword floating-point value. You can use these formats to perform arithmetic

calculations on date and time values, instead of writing special subroutines to do

so. Figure 74 is an example of how you can use LE/VSE date and time services to

convert a date to a different format and perform a simple calculation on the

formatted date.

In this example, the number of years of service for an employee is determined

using the original date of hire in the format YYMMDD to make the calculations.

The example calculates the total number of years of service for an employee by

first calling CEEDAYS to convert the days to Lilian and by then calling CEELOCT

(Get Current Local Time) to get the current local time. Then, doh_Lilian is

subtracted from today_Lilian (the number of days from the beginning of the

Gregorian calendar to the current local time) to calculate the employee’s total

number of days of employment. The final calculation divides that number by

365.25 to get the number of service years.

 The valid Lilian date range is 15 October 1582 to 31 December 9999. However,

COBOL intrinsic functions uses the COBOL Integer date 01 January 1601 as day

one. LE/VSE provides the CEECBLDY callable service to allow you to work with

the COBOL Integer date format. See LE/VSE Programming Reference for more

information on the CEECBLDY service.

Century Window Routines

To process 2-digit years in the year 2000 and beyond, LE/VSE employs a sliding

scheme called a century window where all 2-digit years lie within a 100-year

interval. The default century window for LE/VSE is set to start 80 years before the

current system date. In the following example, 1996 is the current system date. The

century window spans one hundred years from 1916 to 2015 where years 16

through 99 are recognized as 1916-1999 and years 00 through 15 are recognized as

2000-2015.

In 1997, years 17 through 99 are recognized as 1917-1999, and years 00 through 16

are recognized as 2000-2016.

By year 2080, all 2-digit years would be recognized as 20xx. In 2081, 00 would be

recognized as year 2100.

Note: If you use the DATE job control statement to override the system date,

LE/VSE calculates the century window based upon the year specified in the

DATE job control statement.

CALL CEEDAYS (date_of_hire, ’YYMMDD’, doh_Lilian, fc)

CALL CEELOCT (today_Lilian, today_seconds, today_Gregorian, fc)

service_days = today_Lilian - doh_Lilian

service_years = service_days / 365.25

Figure 74. Performing Calculations on Dates

216 LE/VSE: Programming Guide

Some applications might need to set up a different 100-year interval. For example,

banks often deal with 30-year bonds, which could be due 01/31/20. You can use

the CEESCEN callable service (see LE/VSE Programming Reference) to change the

century window.

For example,

Call CEESCEN(30, fc)

sets the default century to the 100-year interval starting 30 years prior to the

system date, instead of the LE/VSE default of 80 years.

A companion service, CEEQCEN, queries the current century window. A

subroutine can, for example, use a different interval for date processing than the

parent routine. Before returning, the subroutine resets the interval back to its

previous value.

For more information about changing the century window, see “Examples

Illustrating Calls to CEEQCEN and CEESCEN” on page 219.

National Language Support for Date and Time Services

The NATLANG and COUNTRY run-time options provide national language

support for date and time services. The names of the months and days of the week

are based on the national language specified in the NATLANG option. In addition,

some date and time services allow the specification of a blank or null picture

string, a practice that directs LE/VSE to use a date and time format based upon

the current value specified in the COUNTRY option. You can locate the default

date and time format for any supported country by using the CEEFMDA,

CEEFMDT, or CEEFMTM callable services.

Examples Using Date and Time Callable Services

The examples in this section illustrate some of the date conversion and

manipulation you can perform by using the LE/VSE date and time services

together. There are examples for the following services:

v CEEQCEN—Query the century window (see “Examples Illustrating Calls to

CEEQCEN and CEESCEN” on page 219)

v CEESCEN—Set the century window (see “Examples Illustrating Calls to

CEEQCEN and CEESCEN” on page 219)

v CEESECS—Convert timestamp to seconds (see “Examples Illustrating Calls to

CEESECS” on page 222)

v CEESECS and CEEDATM—Convert timestamp to seconds and build a new

timestamp (see “Examples Illustrating Calls to CEESECS and CEEDATM” on

page 226)

v CEESECS, CEESECI, CEEISEC, and CEEDATM—Convert timestamp to seconds,

convert seconds to date and time components, convert date and time to seconds,

and build new timestamp (see “Examples Illustrating Calls to CEESECS,

CEESECI, CEEISEC, and CEEDATM” on page 231)

Chapter 16. Using Date and Time Services 217

v CEEDAYS, CEEDYWK, and CEEDATE—Convert a date to a Lilian date, convert

Lilian date to calendar format, and return day of week for the derived Lilian

date (see “Example Illustrating Calls to CEEDAYS, CEEDATE, and CEEDYWK”

on page 238)

v CEECBLDY—Converts a date to a COBOL Integer date so that it is compatible

with ANSI COBOL intrinsic functions (see “Calls to CEECBLDY in COBOL” on

page 245)

218 LE/VSE: Programming Guide

Examples Illustrating Calls to CEEQCEN and CEESCEN

The following examples illustrate how to query the current century window and

how to set a new window with a new default of 30 years.

Calls to CEEQCEN and CEESCEN in C

/*Module/File Name: EDCCWIN */

/***/

/* Demonstrates how to use CEEQCEN and CEESCEN to query and */

/* set the century window. */

/***/

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <leawi.h>

#include <ceeedcct.h>

int main (void) {

_INT4 oldcen, tempcen;

_FEEDBACK qcenfc,scenfc;

/* Call CEEQCEN to retrieve and save current century window */

 CEEQCEN (&oldcen , &qcenfc);

 if (_FBCHECK (qcenfc , CEE000) != 0) {

 printf("CEEQCEN failed with message number %d\n",

 qcenfc.tok_msgno);

 exit(1999);

 }

 /* Call CEESCEN to temporarily change century window to 30 */

 tempcen = 30;

 CEESCEN (&tempcen , &scenfc);

 if (_FBCHECK (scenfc , CEE000) != 0) {

 printf(

 "CEESCEN (1st call) failed with message number %d\n",

 scenfc.tok_msgno);

 exit(2999);

 }

/* Perform date processing with 2-digit years... */

/* .

 .

 . */

 /* Call CEESCEN again to reset century window */

 CEESCEN (&oldcen , &scenfc);

 if (_FBCHECK (scenfc , CEE000) != 0) {

 printf(

 "CEESCEN (2nd call) failed with message number %d\n",

 scenfc.tok_msgno);

 exit(3999);

 }

 exit (0);

}

Figure 75. C Example of Querying and Changing the Century Window

Chapter 16. Using Date and Time Services 219

Calls to CEEQCEN and CEESCEN in COBOL

CBL LIB,APOST

 *Module/File Name: IGZTCWIN

 **

 * *

 * Demonstrates how to use CEEQCEN and CEESCEN to query *

 * and set the century window. *

 * *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBCENTW.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 77 OLDCEN PIC S9(9) BINARY.

 77 TEMPCEN PIC S9(9) BINARY.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION.

 **

 ** Call CEEQCEN to retrieve and save current century window **

 **

 CALL ’CEEQCEN’ USING OLDCEN , FC.

 IF NOT CEE000 of FC THEN

 DISPLAY ’CEEQCEN failed with msg ’

 Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 **

 ** Call CEESCEN to temporarily change century window to 30 **

 **

 MOVE 30 TO TEMPCEN.

 CALL ’CEESCEN’ USING TEMPCEN , FC.

 IF NOT CEE000 of FC THEN

 DISPLAY ’First call to CEESCEN failed with msg ’

 Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 ** Perform date processing with 2-digit years...

 * .

 * .

 * .

 ** Call CEESCEN again to reset century window

 CALL ’CEESCEN’ USING OLDCEN , FC.

 IF NOT CEE000 of FC THEN

 DISPLAY ’Second call to CEESCEN failed with msg ’

 Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

Figure 76. COBOL Example of Querying and Changing the Century Window

220 LE/VSE: Programming Guide

Calls to CEEQCEN and CEESCEN in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMCWIN */

 /**/

 /* */

 /* Demonstrates how to use CEEQCEN and */

 /* CEESCEN to query and set the century window. */

 /* window. */

 /* */

 /**/

 PLCENTW: PROC OPTIONS (MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL OLDCEN INT4;

 DCL TEMPCEN INT4;

 DCL 01 FC FEEDBACK;

 /* Call CEEQCEN to retrieve and save current century window */

 CALL CEEQCEN (OLDCEN, FC);

 IF ª FBCHECK(FC, CEE000) THEN DO;

 DISPLAY(’CEEQCEN failed with msg ’|| FC.MsgNo);

 STOP;

 END;

 /* Call CEESCEN to temporarily change century window to 30 */

 TEMPCEN = 30;

 CALL CEESCEN (TEMPCEN, FC);

 IF ª FBCHECK(FC, CEE000) THEN DO;

 DISPLAY(’First call to CEESCEN failed with msg ’

 || FC.MsgNo);

 STOP;

 END;

 /* Perform date processing with 2-digit years... */

 /* .

 .

 . */

 /* Call CEESCEN again to reset century window */

 CALL CEESCEN (OLDCEN, FC);

 IF ª FBCHECK(FC, CEE000) THEN DO;

 DISPLAY(’Second call to CEESCEN failed with msg ’

 || FC.MsgNo);

 STOP;

 END;

 END PLCENTW;

Figure 77. PL/I Example of Querying and Changing the Century Window

Chapter 16. Using Date and Time Services 221

Examples Illustrating Calls to CEESECS

The following examples illustrate calls to CEESECS to compute the total number of

hours between two timestamps.

Calls to CEESECS in C

/*Module/File Name: EDCDT1 */

 /**/

 /*Function : CEESECS - convert timestamp to seconds */

 /*This example calls the LE CEESECS callable service to compute the hour*/

 /* number of numbers between the timestamps 11/02/92 05:22 and */

 /* 11/02/92 17:22. The program responds that 36 hours has elapsed. */

 /**/

#include <stdio.h>

#include <string.h>

#include <leawi.h>

#include <ceeedcct.h>

main ()

{

 _VSTRING StartTime;

 _VSTRING EndTime;

 _VSTRING picstr;

 _FLOAT8 Start_Secs;

 _FLOAT8 End_Secs;

 _FLOAT8 Elapsed_Time;

 _FEEDBACK FC;

 _INT4 dest=2;

 /***

 The date picstr must be set to match the timestamp format.

 **/

 strncpy (picstr.string,"MM/DD/YY HH:MI",14);

 picstr.length = 14;

 strncpy(StartTime.string,"11/02/92 05:22",14);

 StartTime.length = 14;

 strncpy(EndTime.string,"11/03/92 17:22",14);

 EndTime.length = 14;

 /**

 CEESECS takes the start time and returns

 a double-precision Lilian seconds tally in Start_Secs.

 **/

 CEESECS (&StartTime, &picstr , &Start_Secs , &FC);

 if (_FBCHECK (FC , CEE000) == 0)

 {

 /**

 CEESECS takes the end time and returns

 a double-precision Lilian seconds tally in End_Secs.

 **/

 CEESECS (&EndTime, &picstr , &End_Secs , &FC);

 if (_FBCHECK (FC , CEE000) == 0)

 {

 Elapsed_Time = (End_Secs - Start_Secs)/3600.0;

 printf("%4.2f hours have elapsed between %s and %s.\n",

 Elapsed_Time, StartTime.string, EndTime.string);

 }

 else

 {

 printf ("Error converting TimeStamp to seconds.\n");

 CEEMSG(&FC, &dest, NULL);

 }

 }

 else

 {

 printf ("Error converting TimeStamp to seconds.\n");

 CEEMSG(&FC, &dest, NULL);

 }

}

Figure 78. Calls to CEESECS in C

222 LE/VSE: Programming Guide

Calls to CEESECS in COBOL

CBL LIB,APOST

 *Module/File Name: IGZTDT1

 **

 ** **

 ** CEE78DAT - Call CEESECS to convert timestamp to **

 ** seconds **

 ** **

 ** This example calls the LE CEESECS callable **

 ** service to compute the number of hours between **

 ** the timestamps 11/02/92 05:22 and 11/02/92 17:22. **

 ** The program responds that 36 hours has elapsed. **

 ** **

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CE78DAT.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * Double precision is needed for the seconds results

 01 START-SECS COMP-2.

 01 END-SECS COMP-2.

 01 EOF-SWITCH PIC X VALUE ’N’.

 88 EOF VALUE ’Y’.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 01 PICSTR.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of PICSTR.

 01 START-TIME.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of START-TIME.

 01 END-TIME.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of END-TIME.

 01 INPUT-VARIABLES.

 05 ELAPSED-TIME PIC S9(5)V99 PACKED-DECIMAL.

 05 ELAPSED-TIME-OUT PIC +Z(4)9.99.

 PROCEDURE DIVISION.

Figure 79. Calls to CEESECS in COBOL (Part 1 of 2)

Chapter 16. Using Date and Time Services 223

0001-BEGIN-PROCESSING.

 MOVE 14 TO Vstring-length of PICSTR.

 MOVE ’MM/DD/YY HH:MI’ TO Vstring-text of PICSTR.

 MOVE 14 TO Vstring-length of START-TIME.

 MOVE ’11/02/92 05:22’ TO Vstring-text of START-TIME.

 MOVE 14 TO Vstring-length of END-TIME.

 MOVE ’11/03/92 17:22’ TO Vstring-text of END-TIME.

 * ***

 * * CEESECS takes the timestamp START-TIME and returns a *

 * * double-precision Lilian seconds tally in START-SECS. *

 * ***

 CALL ’CEESECS’ USING START-TIME, PICSTR, START-SECS, FC

 IF CEE000 of FC THEN

 * ***

 * * CEESECS takes the timestamp END-TIME and returns a *

 * * double-precision Lilian seconds tally in END-SECS. *

 * ***

 CALL ’CEESECS’ USING END-TIME, PICSTR, END-SECS, FC

 IF CEE000 of FC THEN

 COMPUTE ELAPSED-TIME = (END-SECS - START-SECS) / 3600

 MOVE ELAPSED-TIME TO ELAPSED-TIME-OUT

 DISPLAY ELAPSED-TIME-OUT

 ’ hours have elapsed between ’

 Vstring-text of START-TIME

 ’ and ’ Vstring-text of END-TIME

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ converting ending date to Lilian date’

 STOP RUN

 END-IF

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ converting starting date to Lilian date’

 STOP RUN

 END-IF

 GOBACK.

Figure 79. Calls to CEESECS in COBOL (Part 2 of 2)

224 LE/VSE: Programming Guide

Calls to CEESECS in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMDT1 */

 /**/

 /* */

 /* Function: CEESECS - convert timestamp to seconds */

 /* */

 /* This example calls the CEESECS callable */

 /* service to compute the number of hours between */

 /* the timestamps 11/02/92 05:22 and 11/03/92 17:22.*/

 /* The program responds that 36 hours has elapsed. */

 /* */

 /**/

 CE78DAT : PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL START_TIME CHAR(255) VARYING

 INIT (’11/02/92 05:22’);

 DCL END_TIME CHAR(255) VARYING

 INIT (’11/03/92 17:22’);

 DCL PICSTR CHAR(255) VARYING

 INIT (’MM/DD/YY HH:MI’);

 DCL START_SECS FLOAT8;

 DCL END_SECS FLOAT8;

 DCL ELAPSED_TIME FIXED DEC (9,4);

 DCL 01 FC FEEDBACK;

 /***/

 /* CEESECS takes the timestamp START_TIME and */

 /* returns a double-precision Lilian seconds */

 /* tally in START_SECS. */

 /***/

 CALL CEESECS (START_TIME, PICSTR, START_SECS, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /**/

 /* CEESECS takes the timestamp END_TIME and */

 /* returns a double-precision Lilian seconds */

 /* tally in END_SECS. */

 /**/

 CALL CEESECS (END_TIME, PICSTR, END_SECS, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 ELAPSED_TIME = (END_SECS - START_SECS) / 3600;

 PUT SKIP EDIT(ELAPSED_TIME,

 ’ hours have elapsed between ’,

 START_TIME, ’ and ’, END_TIME)

 (F(7,2), (4) A);

 END;

 ELSE DO;

 PUT SKIP LIST(’ERROR ’ || FC.MsgNo ||

 ’ CONVERTING ENDING TIMESTAMP TO SECONDS’);

 STOP;

 END;

 END;

 ELSE DO;

 PUT SKIP LIST(’ERROR ’ || FC.MsgNo

 || ’ CONVERTING STARTING TIMESTAMP TO SECONDS’);

 STOP;

 END;

 END CE78DAT ;

Figure 80. Calls to CEESECS in PL/I

Chapter 16. Using Date and Time Services 225

Examples Illustrating Calls to CEESECS and CEEDATM

The following examples illustrate calls to date and time services to convert a

timestamp to seconds (CEESECS), twenty-four hours in seconds is subtracted from

the original timestamp value, and a new timestamp is built (CEEDATM) for the

updated number of seconds.

Calls to CEESECS and CEEDATM in C

/*Module/File Name: EDCDT2 */

 /**/

 /* */

 /*Function : CEESECS - convert timestamp to seconds */

 /* : CEEDATM - convert seconds to timestamp */

 /* : */

 /*CEESECS is used to convert a timestamp to seconds. */

 /*24 hours in seconds is subtracted from */

 /*the number of seconds in the original timestamp. */

 /*CEEDATM is then used to build a new timestamp */

 /*representing the new date and time, 11/01/92 05:22. */

 /* */

 /**/

#include <stdio.h>

#include <string.h>

#include <leawi.h>

#include <ceeedcct.h>

#define TimeStamp "11/02/92 05:22"

#define displacement 24

main ()

{

 int User_Input();

 _VSTRING Time_Stamp;

 _CHAR80 New_TimeStamp;

 _VSTRING picstr;

 _FLOAT8 Lilian_Seconds;

 _FLOAT8 New_Secs;

 _FEEDBACK FC;

 _INT4 dest=2;

 char New_Time[15];

 /**

 The date picstr must be set to match the timestamp format.

 **/

 strncpy (picstr.string,"MM/DD/YY HH:MI",14);

 picstr.length = 14;

 /***/

 /* In the following loop the timestamp is converted to Lilian*/

 /* seconds. 24 hours in seconds are subtracted from the */

 /* Lilian seconds and a new timestamp is created and */

 /* displayed. */

 /***/

 strncpy(Time_Stamp.string,TimeStamp,14);

 Time_Stamp.length = 14;

Figure 81. Calls to CEESECS and CEEDATM in C (Part 1 of 2)

226 LE/VSE: Programming Guide

/**

 CEESECS takes the user-entered timestamp Time_Stamp and

 returns a double-precision Lilian seconds tally in

 Lilian_Seconds

 **/

 CEESECS (&Time_Stamp, &picstr , &Lilian_Seconds , &FC);

 if ((_FBCHECK (FC , CEE000)) == 0)

 {

 /**

 The displacement variable is subtracted from the Lilian

 seconds tally in Lilian_Seconds

 **/

 New_Secs = Lilian_Seconds - displacement * 3600.0;

 /***

 CEEDATM is invoked to get a new timestamp value based on the

 new Lilian seconds tally in New_Secs.

 ***/

 CEEDATM (&New_Secs, &picstr , New_TimeStamp , &FC);

 if ((_FBCHECK (FC , CEE000)) == 0)

 {

 New_TimeStamp[14] = ’\0’;

 sprintf(New_Time,"%s\0",New_TimeStamp);

 printf("%s is the time %i hours before %s\n",

 New_Time, displacement, TimeStamp);

 }

 else

 {

 printf ("Error converting Seconds to TimeStamp.\n");

 CEEMSG(&FC, &dest, NULL);

 }

 }

 else

 {

 printf ("Error converting TimeStamp to seconds.\n");

 CEEMSG(&FC, &dest, NULL);

 }

}

Figure 81. Calls to CEESECS and CEEDATM in C (Part 2 of 2)

Chapter 16. Using Date and Time Services 227

Calls to CEESECS and CEEDATM in COBOL

CBL LIB,APOST

 *Module/File Name: IGZTDT2

 **

 ** **

 ** CEE80DAT - Call CEESECS to convert timestamp to seconds**

 ** and CEEDATM to convert seconds to timestamp **

 ** **

 ** CEESECS is used to convert a timestamp to seconds. **

 ** 24 hours in seconds is subtracted from **

 ** the number of seconds in the original timestamp. **

 ** CEEDATM is then used to build a new timestamp for **

 ** the updated number of seconds. **

 ** **

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CE80DAT.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * Double precision needed for the seconds results

 01 START-SECS COMP-2.

 01 NEW-TIME COMP-2.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 01 PICSTR.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of PICSTR.

 01 WS-TIMESTAMP.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of WS-TIMESTAMP.

 01 NEW-TIMESTAMP PIC X(80).

 01 INPUT-VARIABLES.

 05 SECONDS-DISPLACED PIC S9(9) BINARY.

 05 ELAPSED-TIME-OUT PIC +Z(4)9.99.

 PROCEDURE DIVISION.

Figure 82. Calls to CEESECS and CEEDATM in COBOL (Part 1 of 2)

228 LE/VSE: Programming Guide

0001-BEGIN-PROCESSING.

 MOVE 14 TO Vstring-length of PICSTR.

 MOVE ’MM/DD/YY HH:MI’ TO Vstring-text of PICSTR.

 MOVE 14 TO Vstring-length of WS-TIMESTAMP.

 MOVE ’11/02/92 05:22’ TO Vstring-text of WS-TIMESTAMP.

 * **

 * * CEESECS is invoked to obtain the Lilian seconds tally *

 * * corresponding to the timestamp 11/02/92 05:22. *

 * * The Lilian seconds tally is returned in the double- *

 * * precision floating-point field START-SECS. *

 * **

 CALL ’CEESECS’ USING WS-TIMESTAMP, PICSTR, START-SECS, FC.

 IF CEE000 of FC THEN

 * **

 * * The Lilian seconds tally in START-SECS is *

 * * decremented by 24 hours worth of seconds.. *

 * **

 COMPUTE NEW-TIME = START-SECS - 24 * 3600

 * **

 * * CEEDATM is invoked to obtain a new timestamp *

 * * based on the new Lilian seconds tally. *

 * **

 CALL ’CEEDATM’ USING NEW-TIME, PICSTR, NEW-TIMESTAMP, FC

 IF CEE000 of FC THEN

 DISPLAY ’The time 24 hours before ’

 Vstring-text of WS-TIMESTAMP

 ’ is ’ NEW-TIMESTAMP

 ELSE

 DISPLAY ’Error converting seconds to timestamp.’

 STOP RUN

 END-IF

 ELSE

 DISPLAY ’Error converting timestamp to seconds.’

 STOP RUN

 END-IF

 GOBACK.

Figure 82. Calls to CEESECS and CEEDATM in COBOL (Part 2 of 2)

Chapter 16. Using Date and Time Services 229

Calls to CEESECS and CEEDATM in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMDT2 */

 /**/

 /* */

 /* Function: CEESECS - convert timestamp to seconds */

 /* : CEEDATM - convert seconds to timestamp */

 /* */

 /* CEESECS is used to convert a timestamp to */

 /* seconds. 24 hours in seconds is subtracted from */

 /* the number of seconds in the original timestamp. */

 /* CEEDATM is then used to build a new timestamp */

 /* representing the new date and time. */

 /* */

 /**/

 PLIDS: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL TIMESTAMP CHAR(255) VARYING

 INIT(’01/26/67 20:00’);

 DCL NEW_TIMESTAMP CHAR(80);

 DCL PICSTR CHAR(255) VARYING

 INIT (’MM/DD/YY HH:MI’);

 DCL START_SECS FLOAT8;

 DCL NEW_TIME FLOAT8;

 DCL DISPLACEMENT INT4 INIT(24);

 DCL 01 FC FEEDBACK;

 /***/

 /* CEESECS is invoked to obtain the Lilian */

 /* seconds tally corresponding to the timestamp */

 /* 01/26/67 20:00. The Lilian seconds tally is */

 /* returned in double-precision variable */

 /* START_SECS. */

 /***/

 CALL CEESECS (TIMESTAMP, PICSTR, START_SECS, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /**/

 /* The Lilian seconds tally in START_SECS is */

 /* decremented by 24 hour DISPLACEMENT */

 /* variable times 3600 seconds. */

 /** */

 NEW_TIME = START_SECS - DISPLACEMENT * 3600;

 /**/

 /* CEEDATM is invoked to obtain a new */

 /* TimeStamp based on the new Lilian seconds. */

 /**/

 CALL CEEDATM (NEW_TIME, PICSTR, NEW_TIMESTAMP, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP LIST (’The time ’ || DISPLACEMENT

 || ’ hours before ’ || TIMESTAMP

 || ’ is ’ || NEW_TIMESTAMP);

 END;

 ELSE DO;

 PUT SKIP LIST(’ERROR CONVERTING SECONDS TO TIMESTAMP’);

 PUT SKIP LIST(’CEEDATM failed with msg ’|| FC.MsgNo);

 END;

 END;

 ELSE DO;

 PUT SKIP LIST(’ERROR CONVERTING TIMESTAMP TO SECONDS’);

 PUT SKIP LIST(’CEESECS failed with msg ’|| FC.MsgNo);

 END;

 END PLIDS;

Figure 83. Calls to CEESECS and CEEDATM in PL/I

230 LE/VSE: Programming Guide

Examples Illustrating Calls to CEESECS, CEESECI, CEEISEC,

and CEEDATM

The following examples illustrate calls to date and time services to convert a

timestamp into seconds (CEESECS), convert the seconds to a date and time

component (CEESECI), add thirty-two months to the month component, convert

the date and time component back to seconds (CEEISEC), and build a new

timestamp (CEEDATM).

Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in C

 /*Module/File Name: EDCDT3 */

 /**/

 /*Function : CEESECS - convert timestamp to seconds */

 /* : CEESECI - convert seconds to time components */

 /* : CEEISEC - convert time components to seconds */

 /* : CEEDATM - convert seconds to timeStamp */

 /* : */

 /*32 months is added to the timestamp 11/02/92 05:22 giving */

 /*the new timestamp 07/02/95 05:22. */

 /* */

 /*CEESECS is used to convert timestamp 11/02/92 05:22 to seconds. */

 /*CEESECI is used to convert the seconds to date/time components. */

 /*32 months is added to the month component. */

 /*CEEISEC is then used to convert date/time components to seconds. */

 /*CEEDATM is then used to build a new timestamp for the new time. */

 /**/

#include <stdio.h>

#include <string.h>

#include <leawi.h>

#include <ceeedcct.h>

#define TimeStamp "11/02/92 05:22"

#define displacement 32

void main ()

{

 _VSTRING Time_Stamp;

 _CHAR80 New_TimeStamp;

 _VSTRING picstr;

 _FLOAT8 Lilian_Seconds;

 _FLOAT8 New_Secs;

 _FEEDBACK FC;

 char New_Time[15];

 int Month_in_Century;

 /***

 Date/time components for CEESECI, CEEISEC.

 ***/

 _INT4 year;

 _INT4 month;

 _INT4 days;

 _INT4 hours;

 _INT4 minutes;

 _INT4 seconds;

 _INT4 millsec;

 /***

 The date picstr must be set to match the timestamp format.

 ***/

 strcpy (picstr.string,"MM/DD/YY HH:MI");

 picstr.length = 14;

 strncpy(Time_Stamp.string,TimeStamp,14);

 Time_Stamp.length = 14;

Figure 84. Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in C (Part 1 of 2)

Chapter 16. Using Date and Time Services 231

/***

 CEESECS takes the timestamp "11/02/92 05:22" and returns

 a double-precision Lilian seconds tally in Lilian_Seconds

 ***/

 CEESECS (&Time_Stamp, &picstr , &Lilian_Seconds , &FC);

 if ((_FBCHECK (FC, CEE000)) == 0)

 {

 /***

 CEESECI converts the Lilian seconds tally in Lilian_Seconds and

 returns date/time components.

 ***/

 CEESECI (&Lilian_Seconds, &year, &month, &days, &hour

 &minutes, &seconds, &millsec, &FC);

 if ((_FBCHECK (FC, CEE000)) == 0)

 {

 /***

 The month component of the timestamp is converted to

 month-in-century.

 Then a new month and a new year are computed from the

 new month-in-century number. The month date/time component has a

 range between 1 and 12.

 ***/

 Month_in_Century = year*12 + month + displacement - 1;

 year = Month_in_Century / 12;

 month = (Month_in_Century % 12) + 1;

 /* ***

 The month date/time component has been shifted

 forward 32 months. Our examples gets a new Lilian seconds

 tally based on the new month and year components.

 This is done with a call to function CEEISEC.

 The new Lilian seconds tally is placed in the double-precision

 variable Lilian_Seconds.

 ***/

 CEEISEC (&year,

 &month,

 &days,

 &hours,

 &minutes,

 &seconds,

 &millsec, &Lilian_Seconds, &FC);

 if ((_FBCHECK (FC, CEE000)) == 0)

 {

 /***

 CEEDATM is invoked to get a new timestamp value based on the

 new Lilian seconds tally in Lilian_Seconds.

 ***/

 CEEDATM (&Lilian_Seconds,

 &picstr ,

 New_TimeStamp ,

 &FC);

 if ((_FBCHECK (FC, CEE000)) == 0)

 {

 New_TimeStamp[14] = ’\0’;

 sprintf(New_Time,"%s\0",New_TimeStamp);

 if (displacement < 0)

 printf("%s is the time %d months before %s.\n",

 New_Time, displacement, TimeStamp);

 else

 printf("%s will be the time %d months after %s.\n",

 New_Time, displacement, TimeStamp);

 }

 else

 printf ("Error converting Seconds to TimeStamp.\n");

 }

 else

 printf ("Error converting Components to seconds.\n");

 }

 else

 printf ("Error converting seconds to components.\n");

 }

 else

 printf ("Error converting TimeStamp to seconds\n");

}

Figure 84. Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in C (Part 2 of 2)

232 LE/VSE: Programming Guide

Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in

COBOL

CBL LIB,APOST

 *Module/File Name: IGZTDT3

 **

 * *

 * CE81DATA - Call the following LE service routines: *

 * : CEESECS - convert timestamp to seconds *

 * : CEESECI - convert seconds to time components *

 * : CEEISEC - convert time components to seconds *

 * : CEEDATM - convert seconds to timestamp *

 * *

 * CEESECS is used to convert the timestamp to seconds *

 * CEESECI is used to convert seconds to date/time components.*

 * 32 months is added to the month and year component *

 * of date/time. *

 * CEEISEC is to convert the date/time components with the *

 * new months component back to a Lilian seconds tally. *

 * CEEDATM is then used to build a new timestamp for *

 * the updated number of seconds. *

 * *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CE81DAT.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * Double precision needed for the seconds results

 01 START-SECS COMP-2.

 01 NEW-TIME COMP-2.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 01 PICSTR.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of PICSTR.

 01 WS-TIMESTAMP.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of WS-TIMESTAMP.

 01 NEW-TIMESTAMP PIC X(80).

 * ***

 * * These are the date/time variables used by *

 * * CEEISEC and CEESECI. *

 * ***

Figure 85. Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in COBOL (Part 1 of 3)

Chapter 16. Using Date and Time Services 233

01 DATE-TIME-COMPONENTS BINARY.

 05 YEAR PIC 9(9).

 05 MONTH PIC 9(9).

 05 DAYS PIC 9(9).

 05 HOURS PIC 9(9).

 05 MINUTES PIC 9(9).

 05 SECONDS PIC 9(9).

 05 MILLSEC PIC 9(9).

 01 FILLER PIC X(80).

 01 INPUT-VARIABLES.

 05 MONTHS-TO-DISPLACE PIC S9(4) BINARY VALUE 32.

 05 DISPLACEMENT-COMP PIC S9(4) BINARY.

 05 MONTHNUM PIC 9(9) BINARY.

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.

 MOVE 14 TO Vstring-length of WS-TIMESTAMP.

 MOVE ’11/02/92 05:22’ TO Vstring-text of WS-TIMESTAMP.

 MOVE 14 TO Vstring-length of PICSTR.

 MOVE ’MM/DD/YY HH:MI’ TO Vstring-text of PICSTR.

 * ***

 * * The timestamp ’11/02/92 05:22’ is converted to *

 * * seconds under the control of the mask PICSTR. CEESECS *

 * * will return a Lilian seconds tally in the double- *

 * * precision floating-point variable START-SECS. *

 * ***

 CALL ’CEESECS’ USING WS-TIMESTAMP, PICSTR, START-SECS, FC.

 IF CEE000 of FC THEN

 * ***

 * * The Lilian seconds tally in field START-SECS is mapped *

 * * into its date/time components using function CEESECI. *

 * ***

 CALL ’CEESECI’ USING START-SECS, YEAR, MONTH, DAYS,

 HOURS, MINUTES, SECONDS, MILLSEC, FC

 IF CEE000 of FC THEN

 MOVE MONTHS-TO-DISPLACE TO DISPLACEMENT-COMP

 * **

 * * MONTH is converted to month-in-century for the *

 * * displacement arithmetic. Then a new month and *

 * * year are computed from the new month-in-century *

 * * number (in variable MONTHNUM). The months com- *

 * * ponent has an allowed range of between 1 and 12. *

 * **

 COMPUTE MONTHNUM =

 YEAR * 12 + MONTH + DISPLACEMENT-COMP - 1

 DIVIDE MONTHNUM BY 12 GIVING YEAR REMAINDER MONTH

 ADD 1 TO MONTH

 * **

 * * Now that the MONTH DateTime component has *

 * * been shifted forward by 32 months, *

 * * we must get a new Lilian seconds tally based *

 * * on the new MONTH and YEAR components. We *

 * * do this with a call to the CEEISEC callable *

 * * service. The new Lilian seconds tally is *

 * * placed in the double-precision field NEW-TIME. *

 * **

 CALL ’CEEISEC’ USING YEAR, MONTH, DAYS, HOURS,

 MINUTES, SECONDS, MILLSEC, NEW-TIME, FC

 * **

 * * CEEDATM is now used to obtain a new *

 * * timestamp based on the Lilian seconds *

 * * tally in the variable New-time. *

 * **

Figure 85. Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in COBOL (Part 2 of 3)

234 LE/VSE: Programming Guide

IF CEE000 THEN

 CALL ’CEEDATM’ USING NEW-TIME, PICSTR,

 NEW-TIMESTAMP, FC

 IF CEE000 THEN

 DISPLAY ’The time ’

 MONTHS-TO-DISPLACE ’ months after ’

 Vstring-text of WS-TIMESTAMP

 ’ is ’ NEW-TIMESTAMP

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ converting seconds to timestamp.’

 END-IF

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ converting components to seconds.’

 END-IF

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ converting seconds to components.’

 END-IF

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ converting timestamp to seconds.’

 END-IF

 GOBACK.

Figure 85. Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in COBOL (Part 3 of 3)

Chapter 16. Using Date and Time Services 235

Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMDT3

 /**/

 /* */

 /* Function : CEESECS - convert timestamp to seconds */

 /* : CEESECI - convert seconds to time components */

 /* : CEEISEC - convert time components to seconds */

 /* : CEEDATM - convert seconds to timestamp */

 /* : */

 /* 32 months is added to the timestamp 11/02/92 05:22 */

 /* giving the new timestamp 07/02/95 05:22. */

 /* */

 /* CEESECS is used to convert the timestamp to seconds */

 /* CEESECI is used to convert seconds to date/time components */

 /* 32 months is added to the month component. */

 /* CEEISEC is used to convert the date components to seconds. */

 /* CEEDATM is then used to build a new timestamp for the */

 /* updated time. */

 /* */

 /**/

 CE81DAT: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL TIMESTAMP CHAR(255) VARYING INIT(’11/02/92 05:22’);

 DCL NEW_TIMESTAMP CHAR(80);

 DCL PICSTR CHAR(255) VARYING INIT(’MM/DD/YY HH:MI’);

 DCL START_SECS FLOAT8;

 DCL NEW_TIME FLOAT8;

 DCL DISPLACEMENT INT4 INIT(32);

 DCL MONTHNUM INT4;

 DCL 01 FC FEEDBACK;

 /**/

 /* DATE COMPONENTS FOR CEESECI, CEEISEC */

 /**/

 DCL YEAR INT4;

 DCL MONTH INT4;

 DCL DAYS INT4;

 DCL HOURS INT4;

 DCL MINUTES INT4;

 DCL SECONDS INT4;

 DCL MILLSEC INT4;

 /**/

 /* The timestamp ’11/02/92 05:22’ is converted to seconds */

 /* under the control of the mask PICSTR. CEESECS will */

 /* return a Lilian seconds tally in the double-precision */

 /* floating-point field START_SECS. */

 /**/

 CALL CEESECS (TIMESTAMP, PICSTR, START_SECS, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /***/

 /* The Lilian seconds tally in the field START_SECS is mapped */

 /* into its date/time components using function CEESECI. */

 /***/

 CALL CEESECI(START_SECS, YEAR, MONTH, DAYS, HOURS, MINUTES,

 SECONDS, MILLSEC, FC);

Figure 86. Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in PL/I (Part 1 of 2)

236 LE/VSE: Programming Guide

IF FBCHECK(FC, CEE000) THEN DO;

 /**/

 /* MONTH is converted to month-in-century for the displace- */

 /* ment arithmetic. Then a new month and year are computed */

 /* from the new month-in-century number. The months */

 /* component has an allowed range of between 1 and 12. */

 /**/

 MONTHNUM = YEAR * 12 + MONTH + DISPLACEMENT - 1;

 YEAR = MONTHNUM / 12;

 MONTH = MOD(MONTHNUM, 12) + 1;

 /***/

 /* Now that the MONTH DateTime component has been shifted */

 /* forward by 32 months, we must get a new Lilian */

 /* seconds tally based on the new MONTH and YEAR compo- */

 /* nents. We do this with a call to service CEEISEC. */

 /* The new Lilian seconds tally is placed in the double- */

 /* precision floating- point variable NEW_TIME. */

 /***/

 CALL CEEISEC (YEAR, MONTH, DAYS, HOURS, MINUTES, SECONDS,

 MILLSEC, NEW_TIME, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /**/

 /* CEEDATM is now used to obtain a new timestamp based */

 /* on the Lilian seconds tally in variable New_time */

 /**/

 CALL CEEDATM(NEW_TIME, PICSTR, NEW_TIMESTAMP, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP EDIT(’The time ’, DISPLACEMENT,

 ’ months after ’, TIMESTAMP,

 ’ is ’, NEW_TIMESTAMP)

 (A, F(4), (3) A);

 END;

 ELSE DO;

 PUT SKIP EDIT(’ERROR ’, FC.MsgNo,

 ’ CONVERTING SECONDS TO TIMESTAMP’)

 (A, F(4), A);

 END;

 END;

 ELSE DO;

 PUT SKIP EDIT(’ERROR ’, FC.MsgNo,

 ’ CONVERTING COMPONENTS TO SECONDS’)

 (A, F(4), A);

 END;

 END;

 ELSE DO;

 PUT SKIP EDIT(’ERROR ’, FC.MsgNo,

 ’ CONVERTING SECONDS TO COMPONENTS’)

 (A, F(4), A);

 END;

 END;

 ELSE DO;

 PUT SKIP EDIT(’ERROR ’, FC.MsgNo,

 ’ CONVERTING TIMESTAMP TO SECONDS’)

 (A, F(4), A);

 END;

 END CE81DAT;

Figure 86. Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in PL/I (Part 2 of 2)

Chapter 16. Using Date and Time Services 237

Example Illustrating Calls to CEEDAYS, CEEDATE, and

CEEDYWK

The following examples illustrate calls to date and time services to convert a date

to a Lilian date (CEEDAYS). In these examples, a varying number of days are

added to the Lilian date, the date is converted back to a character format

(CEEDATE), and the day of the week for that Lilian date is returned (CEEDYWK).

Calls to CEEDAYS, CEEDATE, and CEEDYWK in C

/*Module/File Name: EDCDT4 */

 /**/

 /*Function : CEEDAYS - convert date to Lilian date */

 /* : CEEDATE - convert Lilian date to date */

 /* : CEEDYWK - find day-of-week from Lilian */

 /* : */

 /*CEEDAYS is passed the calendar date "11/09/92". The date*/

 /*is originally in YYMMD format and conversion to Lilian */

 /*format takes place. On return, a varying number of days */

 /*is added to or subtracted from the Lilian date. */

 /*CEEDATE is called to convert the Lilian dates to the */

 /*calendar format "MM/DD/YY". */

 /*CEEDYWK is called to return the day of the week for */

 /*each derived Lilian date. */

 /*The results are tested for accuracy. */

 /**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <time.h>

#include <leawi.h>

#include <ceeedcct.h>

 char PastFuture;

 int NumberOfDays[5] = { 80, 20, 10, 5, 4};

 int i;

void main ()

{

 _CHAR80 chrdate;

 _VSTRING picstr;

 _VSTRING CurrentDate;

 _INT4 Current_Lilian;

 _INT4 Displaced_Lilian;

 _INT4 WeekDay;

 _INT4 ChkWeekDay[5] = { 6, 1, 5, 4, 6 };

 _FEEDBACK FC;

 char Entered_Date[8];

 _INT4 dest=2;

 struct tm *timeptr;

 char Current_Date[6];

 time_t current_time;

 char *ChkDates[] = {

 "08/21/92",

 "11/29/92",

 "11/19/92",

 "11/04/92",

 "11/13/92",

 };

 /**/

 /* Set current date to 11/09/92 in YYMMDD format */

 /**/

 strncpy (CurrentDate.string,"921109",6);

 CurrentDate.length = 6;

 /***/

 /* The date picstr must be adjusted to fit the current date */

 /* format. */

 /***/

 strncpy (picstr.string,"YYMMDD",6);

 picstr.length = 6;

Figure 87. Calls to CEEDAYS, CEEDATE, and CEEDYWK in C (Part 1 of 2)

238 LE/VSE: Programming Guide

/**/

 /*Call CEEDAYS to convert the date in Current_Date to its */

 /*corresponding Lilian date format. */

 /**/

 CEEDAYS (&CurrentDate, &picstr , &Current_Lilian , &FC);

 if (_FBCHECK (FC , CEE000) != 0)

 {

 printf ("Error in converting current date.\n");

 CEEMSG(&FC, &dest, NULL);

 exit(99);

 }

 /**/

 /*Modify the date picstr to the familiar MM/DD/YY format. */

 /**/

 strncpy (picstr.string,"MM/DD/YY",8);

 picstr.length = 8;

 /***/

 /* In the following loop, add or subtract the number */

 /* of days in each element of the NumberOfDays array to the */

 /* Lilian date. Determine the day of the week for each */

 /* Lilian date and convert each date back to "MM/DD/YY" */

 /* format. Issue a message if anything goes wrong. */

 /***/

 for (i=0; i < 5; i++)

 {

 if (i == 0 || i == 3)

 Displaced_Lilian = Current_Lilian - NumberOfDays[i];

 else

 Displaced_Lilian = Current_Lilian + NumberOfDays[i];

 /**/

 /*Call CEEDATE to convert the Lilian dates to MM/DD/YY */

 /*format. */

 /**/

 CEEDATE (&Displaced_Lilian, &picstr , chrdate , &FC);

 if (_FBCHECK (FC , CEE000) == 0)

 {

 chrdate[8] = ’\0’;

 /**/

 /*Compare the dates to an array of expected values. */

 /*Issue an error message if any conversion is incorrect. */

 /**/

 if (memcmp (&chrdate, ChkDates[i] , 8) != 0)

 printf (

 "Error in returned date %8s for displacement %d\n",

 chrdate,NumberOfDays[i]);

 /**/

 /*Call CEEDYWK to return the day-of-the-week value (1 thru 7) */

 /*for each calculated Lilian date. Compare results to an array */

 /*of expected returned values and issue an error message for any*/

 /*incorrect values. */

 /**/

 CEEDYWK (&Displaced_Lilian , &WeekDay , &FC);

 if (_FBCHECK (FC , CEE000) == 0)

 {

 if (WeekDay != ChkWeekDay[i])

 printf ("Error in day of the week for %s\n",

 chrdate);

 }

 else

 {

 printf ("Error finding day of the week\n");

 CEEMSG(&FC, &dest, NULL);

 }

 }

 else

 {

 printf ("Error converting Lilian date to date.\n");

 CEEMSG(&FC, &dest, NULL);

 }

 } /* for loop */

}

Figure 87. Calls to CEEDAYS, CEEDATE, and CEEDYWK in C (Part 2 of 2)

Chapter 16. Using Date and Time Services 239

Calls to CEEDAYS, CEEDATE, and CEEDYWK in COBOL

CBL LIB,APOST

 *Module/File Name: IGZTDT4

 **

 ** **

 ** CE77DAT - Call the following LE service routines: **

 ** : CEEDAYS - convert date to Lilian format **

 ** : CEEDATE - convert Lilian date to date **

 ** : CEEDYWK - find day of week from Lilian **

 ** **

 ** CEEDAYS is passed the calendar date ’11/09/92’. The **

 ** date is originally in YYMMDD format and conversion to **

 ** Lilian format takes place. On return from CEEDAYS, **

 ** a varying number of days is added to or subtracted **

 ** from the Lilian date. **

 ** CEEDATE is then called to convert the Lilian dates to **

 ** the format ’MM/DD/YY’. **

 ** CEEDYWK is called to return the day of the week for **

 ** each derived Lilian date. **

 ** The results are tested for accuracy. **

 ** **

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CE77DAT.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 WEEKDAY PIC S9(9) BINARY.

 01 LILIAN PIC S9(9) BINARY.

 01 CURRENT-LILIAN PIC S9(9) BINARY.

 01 DISPLACED-LILIAN PIC S9(9) BINARY.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 01 INDXX PIC S9(9) BINARY.

 01 NUMBER-OF-DAYS.

 05 NUMBERS.

 10 FILLER PIC S9(9) BINARY VALUE 80.

 10 FILLER PIC S9(9) BINARY VALUE 20.

 10 FILLER PIC S9(9) BINARY VALUE 10.

 10 FILLER PIC S9(9) BINARY VALUE 5.

 10 FILLER PIC S9(9) BINARY VALUE 4.

 05 NUMBEROFDAYS REDEFINES NUMBERS

 PIC S9(9) BINARY OCCURS 5 TIMES.

 01 PICSTR.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X,

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of PICSTR.

 01 CHRDATE PIC X(80).

Figure 88. Calls to CEEDAYS, CEEDATE, and CEEDYWK in COBOL (Part 1 of 3)

240 LE/VSE: Programming Guide

01 CURRENT-DATE.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of CURRENT-DATE.

 01 INPUT-VARIABLES.

 05 DATE-TABLE.

 10 FILLER PIC X(9) VALUE ’08/21/92’.

 10 FILLER PIC X(9) VALUE ’11/29/92’.

 10 FILLER PIC X(9) VALUE ’11/19/92’.

 10 FILLER PIC X(9) VALUE ’11/04/92’.

 10 FILLER PIC X(9) VALUE ’11/13/92’.

 05 CHKDATES REDEFINES DATE-TABLE PIC X(9)

 OCCURS 5 TIMES.

 01 CHK-WEEKDAYS.

 05 DAY-TABLE.

 10 FILLER PIC S9(9) BINARY VALUE 6.

 10 FILLER PIC S9(9) BINARY VALUE 1.

 10 FILLER PIC S9(9) BINARY VALUE 5.

 10 FILLER PIC S9(9) BINARY VALUE 4.

 10 FILLER PIC S9(9) BINARY VALUE 6.

 05 CHKWEEKDAY REDEFINES DAY-TABLE PIC S9(9) BINARY

 OCCURS 5 TIMES.

 PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.

 DISPLAY ’*** Example CE77DAT in motion’

 * ***

 * * The current date is converted to a Lilian date. *

 * ***

 MOVE 6 TO Vstring-length of PICSTR.

 MOVE ’YYMMDD’ TO Vstring-text of PICSTR.

 MOVE 6 TO Vstring-length of CURRENT-DATE.

 MOVE ’921109’ TO Vstring-text of CURRENT-DATE.

 * ***

 * * Call CEEDAYS to return the Lilian days tally for the *

 * * date value in the variable CURRENT-DATE. *

 * ***

 CALL ’CEEDAYS’ USING CURRENT-DATE, PICSTR,

 CURRENT-LILIAN, FC.

 IF NOT CEE000 THEN

 DISPLAY ’Error ’ Msg-No of FC

 ’ in converting current date’

 END-IF.

 * ***

 * * The datestamp mask must be changed for the dates *

 * * being entered by the user. *

 * ***

 MOVE 8 TO Vstring-length of PICSTR.

 MOVE ’MM/DD/YY’ TO Vstring-text of PICSTR.

Figure 88. Calls to CEEDAYS, CEEDATE, and CEEDYWK in COBOL (Part 2 of 3)

Chapter 16. Using Date and Time Services 241

* ***

 * * In the following loop, add or subtract the number of *

 * * days in each element of the NumberofDays array to the *

 * * Lilian date. Determine the day of the week for each *

 * * Lilian date and convert each date back to ’MM/DD/YY’ *

 * * format. Issue a message if anything goes wrong. *

 * ***

 MOVE 1 TO INDXX.

 PERFORM UNTIL INDXX = 6

 IF (INDXX = 1 OR 4) THEN

 COMPUTE DISPLACED-LILIAN =

 CURRENT-LILIAN - NUMBEROFDAYS(INDXX)

 ELSE

 COMPUTE DISPLACED-LILIAN =

 CURRENT-LILIAN + NUMBEROFDAYS(INDXX)

 END-IF

 * **

 * * Call CEEDATE to convert the Lilian dates to *

 * * MM/DD/YY format. *

 * **

 CALL ’CEEDATE’ USING DISPLACED-LILIAN, PICSTR,

 CHRDATE, FC

 IF CEE000 THEN

 * **

 * * Compare converted date to expected value *

 * **

 IF CHRDATE NOT = CHKDATES(INDXX) THEN

 DISPLAY ’Expecting returned date of ’

 CHKDATES(INDXX)

 ’ for displacement of ’ NUMBEROFDAYS(INDXX)

 ’, but got returned date of ’ CHRDATE

 END-IF

 * ***

 * * Call CEEDYWK to return a day-of-the week value (1 *

 * * thru 7) for each calculated Lilian date. Compare *

 * * results to an array of expected values and issue *

 * * an error message for any incorrect values. *

 * ***

 CALL ’CEEDYWK’ USING DISPLACED-LILIAN, WEEKDAY, FC

 IF CEE000 THEN

 IF WEEKDAY NOT = CHKWEEKDAY(INDXX) THEN

 DISPLAY ’Expecting day of week ’

 CHKWEEKDAY(INDXX) ’, but got ’ WEEKDAY

 ’ instead for ’ CHRDATE

 END-IF

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ in finding day-of-week’

 END-IF

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ converting date to Lilian date’

 END-IF

 ADD 1 TO INDXX

 END-PERFORM.

 DISPLAY ’*** Example CE77DAT complete’

 STOP RUN.

Figure 88. Calls to CEEDAYS, CEEDATE, and CEEDYWK in COBOL (Part 3 of 3)

242 LE/VSE: Programming Guide

Calls to CEEDAYS, CEEDATE, and CEEDYWK in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMDT4

 /**/

 /* */

 /* Function : CEEDAYS - convert date to Lilian date */

 /* : CEEDATE - convert Lilian Date to date */

 /* : CEEDYWK - find day-of-week from Lilian */

 /* */

 /* CEEDAYS is passed the calendar date "11/09/92". The */

 /* date is originally in YYMMD format and conversion to */

 /* Lilian format takes place. On return, a varying number */

 /* of days is added to or subtracted from the Lilian date. */

 /* CEEDATE is called to convert the Lilian dates to the */

 /* calendar format "MM/DD/YY". CEEDYWK is called to */

 /* return the day of the week for each derived Lilian date. */

 /* */

 /* The results are tested for accuracy. */

 /* */

 /**/

 CE77DAT: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL CHRDATE CHAR(80);

 DCL CURRENT_DATE CHAR(255) VARYING;

 DCL PICSTR CHAR(255) VARYING;

 DCL Lilian INT4;

 DCL ii INT4;

 DCL NumberOfDays (5) INT4

 INIT(80, 20, 10, 5, 4);

 DCL ChkWeekDay (5) INT4

 INIT(6, 1, 5, 4, 6);

 DCL CURRENT_LILIAN INT4;

 DCL DISPLACED_LILIAN INT4;

 DCL WEEKDAY INT4;

 DCL 01 FC FEEDBACK;

 DCL ChkDates (5) CHAR(8) INIT(

 ’08/21/92’,

 ’11/29/92’,

 ’11/19/92’,

 ’11/04/92’,

 ’11/13/92’);

 PUT SKIP LIST(’>>> Example CE77DAT in motion’);

 /**/

 /* Set current date to 11/09/92 in YYMMDD format */

 /**/

 Picstr = ’YYMMDD’;

 Current_Date = ’921109’;

 /**/

 /* Call CEEDAYS to convert the date in Current_Date to */

 /* its corresponding Lilian date format. */

 /**/

 Call CEEDAYS (Current_Date, Picstr, Current_Lilian, FC);

 IF ¬ FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP LIST(’Error in converting Current Date’);

 END;

Figure 89. Calls to CEEDAYS, CEEDATE, and CEEDYWK in PL/I (Part 1 of 2)

Chapter 16. Using Date and Time Services 243

/***/

 /* The date picstr must be adjusted to fit the current */

 /* date format. */

 /***/

 Picstr = ’MM/DD/YY’;

 /***/

 /* In the following loop, add or subtract the number */

 /* of days in each element of the NumberOfDays array to the */

 /* Lilian date. Determine the day of the week for each */

 /* Lilian date and convert each date back to "MM/DD/YY" */

 /* format. Issue a message if anything goes wrong. */

 /***/

 DO ii = 1 TO 5;

 IF (ii= 1 | ii= 4) THEN DO;

 Displaced_Lilian = Current_Lilian - NumberOfDays(ii);

 END;

 ELSE DO;

 Displaced_Lilian = Current_Lilian + NumberOfDays(ii);

 END;

 /**/

 /* Call CEEDATE to convert the Lilian dates to MM/DD/YY */

 /* format. */

 /**/

 Call CEEDATE (Displaced_Lilian, Picstr, ChrDate, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /***/

 /* Compare the dates to an array of expected values. */

 /* Issue an error message if any conversion is incorrect. */

 /***/

 IF ChrDate ¬= ChkDates(ii) THEN DO;

 PUT SKIP EDIT(’Error in returned date ’, Chrdate,

 ’ for number of days ’, NumberOfDays(i))

 ((3) a, f(6));

 END;

 END;

 ELSE DO;

 PUT SKIP LIST(’Error ’ || FC.MsgNo

 || ’ converting Date to Lilian Date’);

 END;

 /***/

 /* Call CEEDYWK to return the day-of-the-week value */

 /* (1 thru 7) for each calculated Lilian date. Compare */

 /* results to an array of expected returned values and */

 /* issue an error message for any incorrect values. */

 /***/

 Call CEEDYWK (Displaced_Lilian, WeekDay, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 IF WeekDay ¬= ChkWeekDay(ii) THEN DO;

 PUT SKIP EDIT(’Error in day of the week for ’, ChrDate)

 (a, a);

 END;

 END;

 ELSE DO;

 PUT SKIP LIST(’Error finding Day-of-Week’);

 END;

 END;

 PUT SKIP LIST(’<<< Example CE77DAT complete’);

 END CE77DAT;

Figure 89. Calls to CEEDAYS, CEEDATE, and CEEDYWK in PL/I (Part 2 of 2)

244 LE/VSE: Programming Guide

Calls to CEECBLDY in COBOL

This example shows converting a 2-digit input date to a COBOL Integer date,

adding 90 days to the Integer date, and converting the Integer format date back to

a 4-digit year format using COBOL intrinsic functions.

 CBL APOST

 *Module/File Name: IGZTBDY

 ** **

 ** Function: Invoke CEECBLDY callable service **

 ** to convert date to COBOL Integer format. **

 ** This service is used when using the **

 ** Language Environment Century Window **

 ** mixed with COBOL Intrinsic Functions. **

 ** **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLDAYS.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 CHRDATE.

 05 CHRDATE-LENGTH PIC 9(2) BINARY.

 05 CHRDATE-STRING PIC X(50).

 01 PICSTR.

 05 PICSTR-LENGTH PIC S9(4) BINARY.

 05 PICSTR-STRING PIC X(50).

 01 INTEGER PIC S9(9) BINARY.

 01 NEWDATE PIC 9(8).

 01 FC PIC X(12).

 PROCEDURE DIVISION.

 ** Specify input date and length **

 MOVE ’1 January 00’ to CHRDATE-STRING.

 MOVE 25 TO CHRDATE-LENGTH.

 ** Specify a picture string that describes **

 ** input date, and the picture string’s length.**

 MOVE ’ZD Mmmmmmmmmmmmmmz YY’

 TO PICSTR-STRING.

 MOVE 23 TO PICSTR-LENGTH.

 ** Call CEECBLDY to convert input date to a **

 ** COBOL Integer date **

 CALL ’CEECBLDY’ USING CHRDATE, PICSTR,

 INTEGER, FC.

 ** If CEECBLDY runs successfully, then compute **

 ** the date of the 90th day after the **

 ** input date using Intrinsic Functions **

 IF (FC = LOW-VALUE) THEN

 COMPUTE INTEGER = INTEGER + 90

 COMPUTE NEWDATE = FUNCTION

 DATE-OF-INTEGER (INTEGER)

 DISPLAY NEWDATE ’ is Integer day: ’ INTEGER

 ELSE

 CONTINUE

 END-IF.

 GOBACK.

Figure 90. Calls to CEECBLDY in COBOL

Chapter 16. Using Date and Time Services 245

246 LE/VSE: Programming Guide

Chapter 17. National Language Support Services

This chapter introduces the national language support services, which you use to

set the national language, the country code, currency symbols, and decimal

separators. It includes examples showing you how to query the default country

code and change it, how to get the default date and time in the new country code,

and how to convert the seconds to a timestamp. It also provides guidance for

setting national language and country codes, including examples that show how

national language services work in conjunction with date and time services.

Understanding the Basics

National language support services allow you to customize LE/VSE output (such

as messages, RPTOPTS reports, RPTSTG reports, or dumps) for a given country by

specifying the following:

v The language in which run-time messages, days of the week, and months are

displayed and printed

v A country code that indicates the default date and time format, currency symbol,

decimal separator, and thousands separator

Related Options and Services

Run-Time Options

COUNTRY Sets default country

NATLANG Sets initial national language

Callable Services

CEE5CTY Sets default country

CEE5LNG Sets national language

CEE5MCS Gets default currency symbol

CEE5MDS Gets default decimal separator

CEE5MTS Gets default thousands separator

CEEFMDA Gets default date format

CEEFMDT Gets default date and time format

CEEFMTM Gets default time format

Most of the tasks you perform with national language support services

involve date and time services as well. See Chapter 16, “Using Date and Time

Services,” on page 213 for a discussion of callable services for date and time

calculations and see LE/VSE Programming Reference for syntax information for

all callable services.

© Copyright IBM Corp. 1991, 2005 247

Setting the National Language

You can set the national language with the NATLANG (specify national language)

run-time option or the CEE5LNG (set national language) callable service. The

national language settings affect the error messages, month name, and day of the

week name. Message translations are provided for the following languages:

 UEN—Uppercase U.S. English

 ENU—Mixed-case U.S. English

 JPN—Japanese

Setting the Country Code

You can use the COUNTRY run-time option or the CEE5CTY callable service to set

the current country code for your application. The country code determines the

default formats used to display and print the date and timestamps in the reports

generated by the:

v RPTSTG run-time option,

v RPTOPTS run-time option,

v CEE5DMP (dump) callable service.

Default values associated with the country code also describe the currency symbol,

decimal separator, and thousands separator.

Because CEE5LNG and CEE5CTY allow you to maintain multiple national

languages and country settings on separate LIFO stacks, you can easily reset the

national language or alternate between different country settings. For example, if

you want to ensure that a routine in your application outputs the date and time in

a Japanese format, use CEE5CTY to query the current default setting and, if

necessary, to set it to Japanese with CEE5CTY if some other country code is in

effect. For sample user code, see LE/VSE Programming Reference.

The C language provides locales, which are UNIX structures that reflect different

combinations of languages, cultural and territorial conventions, and codepages.

Locale-sensitive C-language functions make use of values and formats in the

current locale. There is a set of Language Environment locale callable services that

exploit a subset of the C run-time interfaces for internationalized applications (see

Chapter 18, “Locale Callable Services,” on page 257).

However, although C locale support and Language Environment callable services

for national language support overlap functionally, they are completely

independent of each other. Locale settings and the COUNTRY run-time option do

not affect each other. Likewise, within Language Environment, locale callable

services and the national language support callable services do not intersect.

National language callable services derive values and formats only from defaults

established by the COUNTRY run-time option or the CEE5CNTY service.

Note: LE/VSE does not currently support certain languages as national languages,

so you would not be able to use CEE5LNG to set the national language to

an unsupported language. You can, however, change the date and time

format so that your English or Japanese banking application, for example,

would display the default date and time format for an unsupported

language. In general, you must use CEE5CTY to set the conventions for

formatting date and time information.

248 LE/VSE: Programming Guide

Euro Support

The current country code determines the default currency symbol that will be

returned by the CEE5MCS callable service. For countries in the European Union

that have adopted the Euro as the legal tender, the currency symbol is represented

as a hex string in the default country settings (for the country settings, refer to the

manual see the Language Environment Programming Reference for country

settings). The value is taken from a typical code page for the given country, but, of

course, the actual graphical representation depends on the code page in use.

Language Environment supports the Euro as the default currency symbol in the

following countries:

v Austria

v Belgium

v Finland

v France

v Germany

v Greece

v Ireland

v Italy

v Luxembourg

v The Netherlands

v Portugal

v Spain.

As more countries pass the Economic and monetary union convergence criteria

and adopt the Euro as the legal currency, the default currency symbol will replace

the national currency symbol with the Euro.

Combining National Language Support and Date and Time Services

To customize your applications for a particular country, use national language

support services to query the current country code, which you then can use as

input to the LE/VSE date and time callable services. For example, you could query

the current country code with CEE5CTY and then use the returned value and

CEEFMDT to get the default date and time format. When calling the CEEDATM

(convert seconds to character timestamp) date and time service, you can use the

string returned by CEEFMDT to specify the format of the convert seconds to

character timestamp.

Calls to CEE5CTY, CEEFMDT, and CEEDATM in C

This example illustrates how you would query the default country code

(CEE5CTY), change it to another country code (CEE5CTY), get the default date and

time in the new country code (CEEFMDT), and convert the seconds to a timestamp

(CEEDATM).

Chapter 17. National Language Support Services 249

/*Module/File Name: EDCNLS */

/**/

/* FUNCTION */

/* CEE5CTY : query default country. set country to */

/* : Germany. */

/* CEEFMDT : get the German date and time format */

/* CEEDATM : convert seconds to timestamp */

/* */

/* This example shows how to use several of the LE national */

/* language support callable services. The current country is queried */

/* and changed to Germany. The default date and time for Germany is */

/* obtained. CEEDATM is called to convert a large numeric value in */

/* seconds to the timestamp 16.05.1988 19:01:01. */

/**/

#include <stdio.h>

#include <string.h>

#include <leawi.h>

#include <stdlib.h>

#include <ceeedcct.h>

int main(void) {

 _FEEDBACK fc;

 _INT4 function;

 _CHAR2 country, symbol;

 _CHAR80 date_pic;

 _FLOAT8 seconds;

 _VSTRING picstr;

 _CHAR80 timestp;

 #define DE "DE"

 #define BL " "

 printf ("\n**********************************\n");

 printf ("CESCNLS C Example is now in motion");

 printf ("\n**********************************\n");

Figure 91. Querying and Setting the Country Code and Getting the Date and Time Format in

C (Part 1 of 2)

250 LE/VSE: Programming Guide

printf ("\n**********************************\n");

 printf ("CESCNLS C Example is now in motion");

 printf ("\n**********************************\n");

 /***/

 /* Call CEE5CTY to query the current country setting */

 /***/

 function = 2;

 CEE5CTY(&function,country,&fc);

 if ((_FBCHECK (fc , CEE000)) != 0) {

 printf("CEE5CTY failed with message number %d\n",fc.tok_msgno);

 exit(2999);

 }

 /***/

 /* Call CEE5CTY to set current country to Germany. */

 /***/

 function = 3;

 CEE5CTY(&function,DE,&fc);

 if ((_FBCHECK (fc , CEE000)) != 0) {

 printf("CEE5CTY failed with message number %d\n",fc.tok_msgno);

 exit(2999);

 }

 /**/

 /* Call CEEFMDT retrieve the default date and time format */

 /**/

 CEEFMDT(BL,date_pic,&fc);

 if ((_FBCHECK (fc , CEE000)) != 0) {

 printf("CEEFMDT failed with message number %d\n",fc.tok_msgno);

 exit(2999);

 }

 /**/

 /* Call CEEDATM to convert the number of seconds from 12:00AM */

 /* October 14, 1582 to 7:01PM May 16, 1988 to character */

 /* format. The default date and time format matches that of */

 /* the default country, Germany. */

 /**/

 seconds = 12799191661.986;

 strcpy(picstr.string,date_pic);

 picstr.length = strlen(picstr.string);

 CEEDATM (&seconds , &picstr , timestp , &fc);

 if ((_FBCHECK (fc , CEE000)) != 0) {

 printf("CEE5MDS failed with message number %d\n",fc.tok_msgno);

 exit(2999);

 }

 printf("Generated timestamp: %s",timestp);

 printf ("\n*********************\n");

 printf ("CESCNLS example ended.");

 printf ("\n*********************\n");

}

Figure 91. Querying and Setting the Country Code and Getting the Date and Time Format in

C (Part 2 of 2)

Chapter 17. National Language Support Services 251

Calls to CEE5CTY, CEEFMDT, and CEEDATM in COBOL

This example illustrates how you would query the default country code

(CEE5CTY), change it to another country code (CEE5CTY), get the default date and

time in the new country code (CEEFMDT), and convert the seconds to a timestamp

(CEEDATM).

CBL LIB,APOST,RENT,OPTIMIZE

 *Module/file name: IGZTNLS

 **

 ** **

 ** CESCNLS - Call the following LE services: **

 ** **

 ** CEE5CTY : query default country **

 ** CEEFMDT : obtain the default date and **

 ** time format **

 ** CEEDATM : convert seconds to timestamp **

 ** **

 ** This example shows how to use several of the LE **

 ** national language support callable services in a **

 ** COBOL program. The current country is queried, saved, **

 ** and then changed to Germany. The default date and time **

 ** for Germany is obtained. CEEDATM is called to **

 ** convert a large numeric value in seconds to the **

 ** timestamp 16.05.1988 19:01:01 (May 16, 1988 7:01PM.) **

 ** **

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CESCNLS.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 SECONDS COMP-2.

 01 FUNCTN PIC S9(9) BINARY.

 01 COUNTRY PIC X(2).

 01 GERMANY PIC X(2) VALUE ’DE’.

 01 PICSTR.

 02 Vstring-length PIC S9(4) BINARY.

 02 Vstring-text.

 03 Vstring-char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Vstring-length

 of PICSTR.

 01 TIMESTP PIC X(80).

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 01 QUERY-COUNTRY-SETTING PIC S9(9) BINARY VALUE 2.

 01 SET-COUNTRY-SETTING PIC S9(9) BINARY VALUE 3.

 01 COUNTRY-PIC-STR PIC X(80).

Figure 92. Querying and Setting the Country Code and Getting the Date and Time Format in

COBOL (Part 1 of 2)

252 LE/VSE: Programming Guide

PROCEDURE DIVISION.

 0001-BEGIN-PROCESSING.

 DISPLAY ’**************************************’.

 DISPLAY ’CESCNLS COBOL example is now in motion. ’.

 DISPLAY ’**************************************’.

 **

 * Query Country Setting *

 **

 MOVE QUERY-COUNTRY-SETTING TO FUNCTN.

 CALL ’CEE5CTY’ USING FUNCTN, COUNTRY, FC.

 IF NOT CEE000 of FC THEN

 DISPLAY ’Error ’ Msg-No of FC

 ’ in query of country setting’

 ELSE

 **

 * Call CEE5CTY to set country to Germany *

 **

 MOVE SET-COUNTRY-SETTING TO FUNCTN

 MOVE GERMANY TO COUNTRY

 CALL ’CEE5CTY’ USING FUNCTN, COUNTRY, FC

 IF NOT CEE000 of FC THEN

 DISPLAY ’Error ’ Msg-No of FC

 ’ in setting country’

 ELSE

 **

 * Call CEEFMDT to get default date/time *

 * format for Germany and verify format *

 * against the published value. *

 **

 MOVE SPACE TO COUNTRY

 CALL ’CEEFMDT’ USING COUNTRY, COUNTRY-PIC-STR, FC

 IF NOT CEE000 of FC THEN

 DISPLAY ’Error getting default date/time’

 ’ format for Germany.’

 ELSE

 **

 * Call CEEDATM to convert the number of *

 * seconds from October 14, 1582 12:00AM *

 * to 16 May 1988 7:01PM to character format.*

 * The default date and time matches *

 * that of the default country, Germany. *

 **

 MOVE 12799191661.986 TO SECONDS

 COMPUTE Vstring-length OF PICSTR =

 FUNCTION MIN(LENGTH OF COUNTRY-PIC-STR, 256)

 MOVE COUNTRY-PIC-STR TO Vstring-text of PICSTR

 CALL ’CEEDATM’ USING SECONDS, PICSTR,

 TIMESTP, FC

 IF CEE000 of FC THEN

 DISPLAY ’Generated timestamp is: ’ TIMESTP

 ELSE

 DISPLAY ’Error ’ Msg-No of FC

 ’ generating timestamp’

 END-IF

 END-IF

 DISPLAY ’***********************’

 DISPLAY ’COBOL NLS example ended’

 DISPLAY ’***********************’

 END-IF

 END-IF.

 GOBACK.

Figure 92. Querying and Setting the Country Code and Getting the Date and Time Format in

COBOL (Part 2 of 2)

Chapter 17. National Language Support Services 253

Example Using CEE5CTY, CEEFMDT, and CEEDATM in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMNLS

 /**/

 /* */

 /* Function CEE5CTY : query default country */

 /* CEEFMDT : obtain the default date and */

 /* time format */

 /* CEEDATM : convert seconds to timestamp */

 /* */

 /* This example shows how to use several of the LE */

 /* national language support callable services in a */

 /* PL/I program. The current country is queried, saved, */

 /* and then changed to Germany. The default date and */

 /* time for Germany is obtained. CEEDATM is called to */

 /* convert a large numeric value in seconds to the */

 /* timestamp 16.05.1988 19:01:01 (May 16, 1988 7:01PM). */

 /* */

 /**/

 CESCNLS: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL FUNCTN INT4;

 DCL QUERY_COUNTRY INT4 INIT(2);

 DCL SET_COUNTRY INT4 INIT(3);

 DCL SECONDS FLOAT8;

 DCL COUNTRY CHARACTER (2);

 DCL GERMANY CHARACTER (2)INIT (’DE’);

 DCL 01 FC FEEDBACK;

 DCL TIMESTP CHAR(80);

 DCL PICSTR CHAR(80);

 DCL PIC_VSTR CHAR(255) VARYING;

 /**/

 /* Query country setting */

 /**/

 FUNCTN = QUERY_COUNTRY;

 CALL CEE5CTY (FUNCTN, COUNTRY, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 /**/

 /* Call CEE5CTY to set country to Germany */

 /**/

 FUNCTN = SET_COUNTRY;

 COUNTRY = GERMANY;

 CALL CEE5CTY (FUNCTN, COUNTRY, FC);

 IF ª FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP LIST(’Error ’ || FC.MsgNo || ’ in setting country’);

 END;

 ELSE DO;

 /**/

 /* Call CEEFMDT to get default date/time format for */

 /* Germany and verify format against published value. */

 /**/

 COUNTRY = ’ ’;

 CALL CEEFMDT (COUNTRY, PICSTR, FC);

 IF ª FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP LIST(’Error ’ || FC.MsgNo

 || ’ getting default date/time format for Germany.’);

 END;

Figure 93. Querying and Setting the Country Code and Getting the Date and Time Format in

PL/I (Part 1 of 2)

254 LE/VSE: Programming Guide

ELSE DO;

 /***/

 /* Call CEEDATM to convert the number representing */

 /* the number of seconds from October 14, 1582 */

 /* 12:00AM to 16 May 1988 7:01PM to character */

 /* format. The default date and time format */

 /* matches that of the default country, Germany. */

 /***/

 SECONDS = 12799191661.986;

 PIC_VSTR = PICSTR;

 CALL CEEDATM (SECONDS, PIC_VSTR, TIMESTP, FC);

 IF FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP EDIT (’Generated timestamp is ’,

 TIMESTP) (A, A);

 END;

 ELSE DO;

 PUT SKIP LIST (’Error ’ || FC.MsgNo

 || ’ generating timestamp’);

 END;

 END;

 END;

 END;

 ELSE DO;

 PUT SKIP LIST(’Error ’ || FC.MsgNo || ’ querying country code’);

 END;

 END CESCNLS;

Figure 93. Querying and Setting the Country Code and Getting the Date and Time Format in

PL/I (Part 2 of 2)

Chapter 17. National Language Support Services 255

256 LE/VSE: Programming Guide

Chapter 18. Locale Callable Services

This chapter describes how to use the LE/VSE locale callable services to

internationalize your applications, and includes examples that show how locale

callable services work in conjunction with each other. Locale callable services do

not affect, nor are they affected by, LE/VSE callable services or the COUNTRY or

NATLANG run-time options.

LE/VSE locale support adheres to the standards used by C. For detailed

information on these standards, locales, and charmaps, see LE/VSE C Run-Time

Programming Guide.

Note: LE/VSE locale callable services use the LE/VSE C run-time library. As the C

run-time library must be addressed in 31-bit addressing mode, phases

containing calls to locale callable services must be link-edited with

AMODE=31.

Understanding the Basics

Locale callable services allow you to customize culturally-sensitive output for a

given national language, country, and codeset by specifying a locale name.

Related Services

Callable Services

CEEFMON Formats monetary string

CEEFTDS Formats date and time into a character string

CEELCNV Query locale numeric conventions

CEEQDTC Queries locale, date, and time conventions

CEEQRYL Queries the active locale environment

CEESCOL Compares the collation weights of two strings

CEESETL Sets the locale operating environment

CEESTXF Transforms string characters into collation weights

See LE/VSE Programming Reference for syntax information.

 Although C routines can use the locale callable services, it is recommended that

they use the equivalent native C library services instead for portability across

platforms. Table 42 shows the LE/VSE locale callable services and the equivalent C

library routines.

 Table 42. LE/VSE Locale Callable Services and Equivalent C Library Routines

LE/VSE Locale Callable Service C Library Routine

CEEFMON strfmon()

CEEFTDS strftime()

CEELCNV localeconv()

CEEQDTC localdtconv()

CEEQRYL setlocale()

CEESCOL strcoll()

© Copyright IBM Corp. 1991, 2005 257

Table 42. LE/VSE Locale Callable Services and Equivalent C Library Routines (continued)

LE/VSE Locale Callable Service C Library Routine

CEESETL setlocale()

CEESTXF strxfrm()

Developing Internationalized Applications

Locale callable services define environment control variables that you can set to

establish language-specific information and preferences for an application. Locale

callable services also provide a means for establishing global preferences, such as

setlocale(), locale management services, and locale-dependent interfaces to the

application.

Locale callable services allow you to develop applications that can be used in

multiple countries, because they can function with specific language and cultural

conventions. Such applications are referred to as internationalized applications.

These applications have no built-in assumptions with respect to the language,

culture, or conventions of their users or the data they process. Instead, language

and cultural information is set at run time, a process called localization. Thus, the

application processes data provided specifically for a certain locale. In LE/VSE,

localization occurs at the enclave level.

Examples of Using Locale Callable Services

The examples in this section illustrate how you can use locale callable services.

Examples Illustrating Calls to CEEFMON

The following examples illustrate calls to CEEFMON to convert a numeric value to

a monetary string using a specified format.

258 LE/VSE: Programming Guide

Calls to CEEFMON in COBOL

 CBL LIB,APOST,RMODE(ANY)

 *Module/File Name: IGZTFMON

 * Example for callable service CEEFMON *

 * Function: Convert a numeric value to a *

 * monetary string using specified *

 * format passed as parameter. *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBFMON.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 Monetary COMP-2.

 * OMIT is a dummy parameter used across LE call.

 01 OMIT COMP-2.

 01 Max-Size PIC S9(9) BINARY.

 01 Format-Mon.

 02 FM-Length PIC S9(4) BINARY.

 02 FM-String PIC X(256).

 01 Output-Mon.

 02 OM-Length PIC S9(4) BINARY.

 02 OM-String PIC X(60).

 01 Length-Mon PIC S9(9) BINARY.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 *

 PROCEDURE DIVISION.

 * Set up numeric value

 MOVE 12345.62 TO Monetary.

 MOVE 60 TO Max-Size.

 MOVE 2 TO FM-Length.

 MOVE ’%i’ TO FM-String (1:FM-Length).

 * Call CEEFMON to convert numeric value

 CALL ’CEEFMON’ USING OMIT, Monetary,

 Max-Size, Format-Mon

 Output-Mon, Length-Mon,

 FC.

 * Check feedback code and display result

 IF Severity > 0

 DISPLAY ’Call to CEEFMON failed. ’ Msg-No

 ELSE

 DISPLAY ’International format is ’

 OM-String(1:OM-Length)

 END-IF.

 STOP RUN.

 END PROGRAM COBFMON.

Figure 94. Calls to CEEFMON in COBOL

Chapter 18. Locale Callable Services 259

Calls to CEEFMON in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMFMON */

 /**/

 /* Example for callable service CEEFMON */

 /* Function: Convert a numeric value to a monetary */

 /* string using specified format passed as parm */

 /**/

 PLIFMON: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */

 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */

 %INCLUDE CEEIBMLC; /* Locale category constants */

 /* CEEFMON service call arguments */

 DCL MONETARY FLOAT8; /* input value */

 DCL MAXSIZE_FMON INT4; /* output size */

 DCL FORMAT_FMON CHAR(256) VARYING;/* format spec */

 DCL RESULT_FMON INT4; /* result status */

 DCL OUTPUT_FMON CHAR(60) VARYING; /* output string */

 DCL 01 FC FEEDBACK;

 MONETARY = 12345.62; /* monetary numeric value */

 MAXSIZE_FMON = 60; /* max char length returned */

 FORMAT_FMON = ’%i’; /* international currency */

 CALL CEEFMON (*, /* optional argument */

 MONETARY , /* input, 8 byte floating point */

 MAXSIZE_FMON, /* maximum size of output string*/

 FORMAT_FMON, /* conversion request */

 OUTPUT_FMON, /* string returned by CEEFMON */

 RESULT_FMON, /* no. of chars in OUTPUT_FMON */

 FC); /* feedback code structure */

 IF FC.Severity > 0 THEN

 DO;

 /* FBCHECK macro used (defined in CEEIBMCT) */

 IF FBCHECK(FC, CEE3VM) THEN

 DISPLAY (’Invalid input ’||MONETARY);

 ELSE

 DISPLAY (’CEEFMON not completed ’||FC.MsgNo);

 STOP;

 END;

 ELSE

 DO;

 PUT SKIP LIST(

 ’International Format ’||OUTPUT_FMON);

 END;

 END PLIFMON;

Figure 95. Calls to CEEFMON in PL/I

260 LE/VSE: Programming Guide

Examples Illustrating Calls to CEEFTDS

The following examples illustrate calls to CEEFTDS to convert a numeric time and

date to a string using a specified format.

Calls to CEEFTDS in COBOL

 CBL LIB,APOST,RMODE(ANY)

 *Module/File Name: IGZTFTDS

 * Example for callable service CEEFTDS *

 * Function: Convert numeric time and date *

 * values to a string using specified *

 * format string and locale format *

 * conversions. *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. MAINFTDS.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * Use TD-Struct for CEEFTDS calls

 COPY CEEIGZTD.

 *

 PROCEDURE DIVISION.

 * Subroutine needed for pointer addressing

 CALL ’COBFTDS’ USING TD-Struct.

 STOP RUN.

 *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBFTDS.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * Use Locale category constants

 COPY CEEIGZLC.

 *

 * OMIT is a dummy parameter used across LE call.

 01 OMIT COMP-2.

 01 Ptr-FTDS POINTER.

 01 Output-FTDS.

 02 O-Length PIC S9(4) BINARY.

 02 O-String PIC X(72).

 01 Format-FTDS.

 02 F-Length PIC S9(4) BINARY.

 02 F-String PIC X(64).

 01 Max-Size PIC S9(9) BINARY.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 LINKAGE SECTION.

 * Use TD-Struct for calls to CEEFTDS

 COPY CEEIGZTD.

 *

Figure 96. Calls to CEEFTDS in COBOL (Part 1 of 2)

Chapter 18. Locale Callable Services 261

PROCEDURE DIVISION USING TD-Struct.

 * Set up time and date values

 MOVE 1 TO TM-Sec.

 MOVE 2 TO TM-Min.

 MOVE 3 TO TM-Hour.

 MOVE 9 TO TM-Day.

 MOVE 11 TO TM-Mon.

 MOVE 94 TO TM-Year.

 MOVE 5 TO TM-Wday.

 MOVE 344 TO TM-Yday.

 MOVE 1 TO TM-Is-DLST.

 * Set up format string for CEEFTDS call

 MOVE 72 TO Max-Size.

 MOVE 36 TO F-Length.

 MOVE ’Today is %A, %b %d Time: %I:%M %p’

 TO F-String (1:F-Length).

 * Set up pointer to structure for CEEFTDS call

 SET Ptr-FTDS TO ADDRESS OF TD-Struct.

 * Call CEEFTDS to convert numeric values

 CALL ’CEEFTDS’ USING OMIT, Ptr-FTDS,

 Max-Size, Format-FTDS,

 Output-FTDS, FC.

 * Check feedback code and display result

 IF Severity = 0

 DISPLAY ’Format ’ F-String (1:F-Length)

 DISPLAY ’Result ’ O-String (1:O-Length)

 ELSE

 DISPLAY ’Call to CEEFTDS failed. ’ Msg-No

 END-IF.

 EXIT PROGRAM.

 END PROGRAM COBFTDS.

 *

 END PROGRAM MAINFTDS.

Figure 96. Calls to CEEFTDS in COBOL (Part 2 of 2)

262 LE/VSE: Programming Guide

Calls to CEEFTDS in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMFTDS */

 /**/

 /* Example for callable service CEEFTDS */

 /* Function: Convert numeric time and date values */

 /* to a string based on a format specification */

 /* string parameter and locale format conversions */

 /**/

 PLIFTDS: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */

 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */

 %INCLUDE CEEIBMLC; /* Locale category constants */

 %INCLUDE CEEIBMTD; /* TD_STRUCT for CEEFTDS calls */

 /* use explicit pointer to local TD_STRUCT structure*/

 DCL TIME_AND_DATE POINTER INIT(ADDR(TD_STRUCT));

 /* CEEFTDS service call arguments */

 DCL MAXSIZE_FTDS BIN FIXED(31); /* OUTPUT_FTDS size */

 DCL FORMAT_FTDS CHAR(64) VARYING; /* format string */

 DCL OUTPUT_FTDS CHAR(72) VARYING; /* output string */

 DCL 01 FC FEEDBACK;

 /* specify numeric input fields for conversion */

 TD_STRUCT.TM_SEC=1; /* seconds after min (0-61) */

 TD_STRUCT.TM_MIN=2; /* minutes after hour (0-59)*/

 TD_STRUCT.TM_HOUR=3; /* hours since midnight(0-23)*/

 TD_STRUCT.TM_MDAY=9; /* day of the month (1-31) */

 TD_STRUCT.TM_MON=11; /* months since Jan(0-11) */

 TD_STRUCT.TM_YEAR=94; /* years since 1900 */

 TD_STRUCT.TM_WDAY=5; /* days since Sunday (0-6) */

 TD_STRUCT.TM_YDAY=344;/* days since Jan 1 (0-365) */

 TD_STRUCT.TM_ISDST=1; /* Daylight Saving Time flag*/

 /* specify format string for CEEFTDS call */

 FORMAT_FTDS = ’Today is %A, %b %d Time: %I:%M %p’;

 MAXSIZE_FTDS = 72; /* specify output string size */

 CALL CEEFTDS (*, TIME_AND_DATE, MAXSIZE_FTDS,

 FORMAT_FTDS, OUTPUT_FTDS, FC);

 /* FBCHECK macro used (defined in CEEIBMCT) */

 IF FBCHECK(FC, CEE000) THEN

 DO; /* CEEFTDS call is successful */

 PUT SKIP LIST(’Format ’||FORMAT_FTDS);

 PUT SKIP LIST(’Results in ’||OUTPUT_FTDS);

 END;

 ELSE

 DISPLAY (’Format ’||FORMAT_FTDS||

 ’ Results in ’||FC.MsgNo);

 END PLIFTDS;

Figure 97. Calls to CEEFTDS in PL/I

Chapter 18. Locale Callable Services 263

Examples Illustrating Calls to CEELCNV and CEESETL

The following examples illustrate calls to CEELCNV to retrieve the numeric and

monetary format for the default locale, and to CEESETL to set the locale.

Calls to CEELCNV and CEESETL in COBOL

 CBL LIB,APOST,RMODE(ANY)

 *Module/File Name: IGZTLCNV

 ** Example for callable service CEELCNV **

 ** Function: Retrieve numeric and monetary **

 ** format for default locale and **

 ** print an item. **

 ** Set locale to France, retrieve **

 ** structure, and print an item. **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. MAINLCNV.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ** Use Locale NM-Struct for CEELCNV calls **

 COPY CEEIGZNM.

 *

 PROCEDURE DIVISION.

 ** Subroutine needed for addressing **

 CALL ’COBLCNV’ USING NM-Struct.

 STOP RUN.

 *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBLCNV.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * OMIT is a dummy parameter used across LE call.

 01 OMIT COMP-2.

 01 Locale-Name.

 02 LN-Length PIC S9(4) BINARY.

 02 LN-String PIC X(256).

 ** Use Locale category constants **

 COPY CEEIGZLC.

 *

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 LINKAGE SECTION.

Figure 98. Calls to CEELCNV and CEESETL in COBOL (Part 1 of 2)

264 LE/VSE: Programming Guide

 ** Use Locale NM-Struct for CEELCNV calls **

 COPY CEEIGZNM.

 *

 PROCEDURE DIVISION USING NM-Struct.

 ** Call CEELCNV to retrieve values for locale**

 CALL ’CEELCNV’ USING OMIT,

 ADDRESS OF NM-Struct, FC.

 ** Check feedback code and display result **

 IF Severity = 0 THEN

 DISPLAY ’Default decimal point is ’

 DECIMAL-PT-String(1:DECIMAL-PT-Length)

 ELSE

 DISPLAY ’Call to CEELCNV failed. ’ Msg-No

 END-IF.

 ** Set up locale for France **

 MOVE 4 TO LN-Length.

 MOVE ’FRAN’ TO LN-String (1:LN-Length).

 ** Call CEESETL to set monetary locale **

 CALL ’CEESETL’ USING Locale-Name,

 LC-MONETARY, FC.

 ** Call CEESETL to set numeric locale **

 CALL ’CEESETL’ USING Locale-Name,

 LC-NUMERIC, FC.

 ** Check feedback code and call CEELCNV again **

 IF Severity = 0

 CALL ’CEELCNV’ USING OMIT,

 ADDRESS OF NM-Struct, FC

 IF Severity > 0

 DISPLAY ’Call to CEELCNV failed. ’

 Msg-No

 ELSE

 DISPLAY ’French decimal point is ’

 DECIMAL-PT-String(1:DECIMAL-PT-Length)

 END-IF

 ELSE

 DISPLAY ’Call to CEESETL failed. ’ Msg-No

 END-IF.

 EXIT PROGRAM.

 END PROGRAM COBLCNV.

 *

 END PROGRAM MAINLCNV.

Figure 98. Calls to CEELCNV and CEESETL in COBOL (Part 2 of 2)

Chapter 18. Locale Callable Services 265

Calls to CEELCNV and CEESETL in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMLCNV */

 /**/

 /* Example for callable service CEELCNV */

 /* Function: Retrieve numeric and monetary format */

 /* structure for default locale and print an item. */

 /* Set locale to France, retrieve structure and */

 /* print an item. */

 /**/

 PLILCNV: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */

 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */

 %INCLUDE CEEIBMLC; /* Locale category constants */

 %INCLUDE CEEIBMNM; /* NM_STRUCT for CEELCNV calls */

 /* use explicit pointer for local NM_STRUCT struct */

 DCL NUM_AND_MON POINTER INIT(ADDR(NM_STRUCT));

 /* CEESETL service call arguments */

 DCL LOCALE_NAME CHAR(256) VARYING;

 DCL 01 FC FEEDBACK;

 /* retrieve structure for default locale */

 CALL CEELCNV (*, NUM_AND_MON, FC);

 PUT SKIP LIST(’Default DECIMAL_POINT is ’,

 NM_STRUCT.DECIMAL_POINT);

 /* set locale for France */

 LOCALE_NAME = ’FRAN’;

 /* use LC_NUMERIC category const from CEEIBMLC */

 CALL CEESETL (LOCALE_NAME, LC_NUMERIC, FC);

 /* use LC_MONETARY category const from CEEIBMLC */

 CALL CEESETL (LOCALE_NAME, LC_MONETARY, FC);

 /* FBCHECK macro used (defined in CEEIBMCT) */

 IF FBCHECK(FC, CEE000) THEN

 DO;

 /* retrieve active NM_STRUCT, France Locale */

 CALL CEELCNV (*, NUM_AND_MON, FC);

 PUT SKIP LIST(’French DECIMAL_POINT is ’,

 NM_STRUCT.DECIMAL_POINT);

 END;

 END PLILCNV;

Figure 99. Calls to CEELCNV and CEESETL in PL/I

266 LE/VSE: Programming Guide

Examples Illustrating Calls to CEEQDTC and CEESETL

The following examples illustrate calls to CEEQDTC to retrieve the date and time

conventions, and to CEESETL to set the locale.

Calls to CEEQDTC and CEESETL in COBOL

 CBL LIB,APOST,RMODE(ANY)

 *Module/File Name: IGZTQDTC

 **

 * Example for callable service CEEQDTC *

 * MAINQDTC - Retrieve date and time convention *

 * structures for two countries and *

 * compare an item. *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. MAINQDTC.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * Use DTCONV structure for CEEQDTC calls

 COPY CEEIGZDT.

 *

 PROCEDURE DIVISION.

 * Subroutine needed for addressing

 CALL ’COBQDTC’ USING DTCONV.

 STOP RUN.

 *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBQDTC.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * OMIT is a dummy parameter used across LE call.

 01 OMIT COMP-2.

 01 Locale-Name.

 02 LN-Length PIC S9(4) BINARY.

 02 LN-String PIC X(256).

 * Use Locale category constants

 COPY CEEIGZLC.

 *

 01 Test-Length1 PIC S9(4) BINARY.

 01 Test-String1 PIC X(80).

 01 Test-Length2 PIC S9(4) BINARY.

 01 Test-String2 PIC X(80).

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 *

 LINKAGE SECTION.

 * Use Locale structure DTCONV for CEEQDTC calls

 COPY CEEIGZDT.

 *

Figure 100. Calls to CEEQDTC and CEESETL in COBOL (Part 1 of 2)

Chapter 18. Locale Callable Services 267

PROCEDURE DIVISION USING DTCONV.

 * Set up locale for France

 MOVE 4 TO LN-Length.

 MOVE ’FFEY’ TO LN-String (1:LN-Length).

 * Call CEESETL to set all locale categories

 CALL ’CEESETL’ USING Locale-Name, LC-ALL,

 FC.

 * Check feedback code

 IF Severity > 0

 DISPLAY ’Call to CEESETL failed. ’ Msg-No

 EXIT PROGRAM

 END-IF.

 * Call CEEQDTC for French values

 CALL ’CEEQDTC’ USING OMIT,

 ADDRESS OF DTCONV, FC.

 * Check feedback code

 IF Severity > 0

 DISPLAY ’Call to CEEQDTC failed. ’ Msg-No

 EXIT PROGRAM

 END-IF.

 * Save date and time format for FFEY locale

 MOVE D-T-FMT-Length IN DTCONV TO Test-Length1

 MOVE D-T-FMT-String IN DTCONV TO Test-String1

 * Set up locale for French Canadian

 MOVE 4 TO LN-Length.

 MOVE ’FCEY’ TO LN-String (1:LN-Length).

 * Call CEESETL to set locale for all categories

 CALL ’CEESETL’ USING Locale-Name, LC-ALL,

 FC.

 * Check feedback code

 IF Severity > 0

 DISPLAY ’Call to CEESETL failed. ’ Msg-No

 EXIT PROGRAM

 END-IF.

 * Call CEEQDTC again for French Canadian values

 CALL ’CEEQDTC’ USING OMIT,

 ADDRESS OF DTCONV, FC.

 * Check feedback code and display results

 IF Severity = 0

 * Save date and time format for FCEY locale

 MOVE D-T-FMT-Length IN DTCONV

 TO Test-Length2

 MOVE D-T-FMT-String IN DTCONV

 TO Test-String2

 IF Test-String1(1:Test-Length1) =

 Test-String2(1:Test-Length2)

 DISPLAY ’Same date and time format.’

 ELSE

 DISPLAY ’Different formats.’

 DISPLAY Test-String1(1:Test-Length1)

 DISPLAY Test-String2(1:Test-Length2)

 END-IF

 ELSE

 DISPLAY ’Call to CEEQDTC failed. ’ Msg-No

 END-IF.

 EXIT PROGRAM.

 END PROGRAM COBQDTC.

 *

 END PROGRAM MAINQDTC.

Figure 100. Calls to CEEQDTC and CEESETL in COBOL (Part 2 of 2)

268 LE/VSE: Programming Guide

Calls to CEEQTDC and CEESETL in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMQDTC */

 /**/

 /* Example for callable service CEEQDTC */

 /* Function: Retrieve date and time convention */

 /* structures for two countries, compare an item. */

 /**/

 PLIQDTC: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */

 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */

 %INCLUDE CEEIBMLC; /* Locale category constants */

 %INCLUDE CEEIBMDT; /* DTCONV for CEEQDTC calls */

 /* use explicit pointer to local DTCONV structure */

 DCL LOCALDT POINTER INIT(ADDR(DTCONV));

 /* CEESETL service call arguments */

 DCL LOCALE_NAME CHAR(256) VARYING;

 DCL 1 DTCONVC LIKE DTCONV; /* Def Second Structure */

 DCL 1 FC FEEDBACK;

 /* set locale with IBM default for France */

 LOCALE_NAME = ’FFEY’; /* or Fr_FR.IBM-1047 */

 /* use LC_ALL category constant from CEEIBMLC */

 CALL CEESETL (LOCALE_NAME, LC_ALL, FC);

 /* retrieve date and time structure, France Locale*/

 CALL CEEQDTC (*, LOCALDT, FC);

 /* set locale with French Canadian(FCEY) defaults */

 /* literal constant -1 used to set all categories */

 CALL CEESETL (’FCEY’, -1, FC);

 /* retrieve date and time tables for French Canada*/

 /* example of temp pointer used for service call */

 CALL CEEQDTC (*, ADDR(DTCONVC), FC);

 /* compare date and time formats for two countries*/

 IF DTCONVC.D_T_FMT = DTCONV.D_T_FMT THEN

 DO;

 PUT SKIP LIST(’Countries have same D_T_FMT’);

 END;

 ELSE

 DO;

 PUT SKIP LIST(’Date and Time Format ’,

 DTCONVC.D_T_FMT||’ vs ’||

 DTCONV.D_T_FMT);

 END;

 END PLIQDTC;

Figure 101. Calls to CEEQTDC and CEESETL in PL/I

Chapter 18. Locale Callable Services 269

Examples Illustrating Calls to CEESCOL

The following examples illustrate calls to CEESCOL to compare the collation of

two character strings.

Calls to CEESCOL in COBOL

 CBL LIB,APOST,RMODE(ANY)

 *Module/File Name: IGZTSCOL

 * Example for callable service CEESCOL *

 * COBSCOL - Compare two character strings *

 * and print the result. *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBSCOL.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * OMIT is a dummy parameter used across LE call.

 01 OMIT COMP-2.

 01 String1.

 02 Str1-Length PIC S9(4) BINARY.

 02 Str1-String.

 03 Str1-Char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Str1-Length.

 01 String2.

 02 Str2-Length PIC S9(4) BINARY.

 02 Str2-String.

 03 Str2-Char PIC X

 OCCURS 0 TO 256 TIMES

 DEPENDING ON Str2-Length.

 01 Result PIC S9(9) BINARY.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 *

 PROCEDURE DIVISION.

 * Set up two strings for comparison

 MOVE 9 TO Str1-Length.

 MOVE ’12345a789’

 TO Str1-String (1:Str1-Length)

 MOVE 9 TO Str2-Length.

 MOVE ’12346$789’

 TO Str2-String (1:Str2-Length)

 * Call CEESCOL to compare the strings

 CALL ’CEESCOL’ USING OMIT, String1,

 String2, Result, FC.

Figure 102. Calls to CEESCOL in COBOL (Part 1 of 2)

270 LE/VSE: Programming Guide

 * Check feedback code

 IF Severity > 0

 DISPLAY ’Call to CEESCOL failed. ’ Msg-No

 STOP RUN

 END-IF.

 * Check result of compare

 EVALUATE TRUE

 WHEN Result < 0

 DISPLAY ’1st string < 2nd string.’

 WHEN Result > 0

 DISPLAY ’1st string > 2nd string.’

 WHEN OTHER

 DISPLAY ’Strings are identical.’

 END-EVALUATE.

 STOP RUN.

 END PROGRAM COBSCOL.

Figure 102. Calls to CEESCOL in COBOL (Part 2 of 2)

Chapter 18. Locale Callable Services 271

Calls to CEESCOL in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMSCOL */

 /**/

 /* Example for callable service CEESCOL */

 /* Function: Compare two character strings and */

 /* print the result. */

 /**/

 PLISCOL: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs for LE */

 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */

 %INCLUDE CEEIBMLC; /* Locale category constants */

 /* CEESCOL service call arguments */

 DCL STRING1 CHAR(256) VARYING;/* first string */

 DCL STRING2 CHAR(256) VARYING;/* second string */

 DCL RESULT_SCOL BIN FIXED(31);/* result of compare */

 DCL 01 FC FEEDBACK;

 STRING1 = ’12345a789’;

 STRING2 = ’12346$789’;

 CALL CEESCOL(*, STRING1, STRING2, RESULT_SCOL,FC);

 /* FBCHECK macor used (defined in CEEIBMCT) */

 IF FBCHECK(FC, CEE3T1) THEN

 DO;

 DISPLAY (’CEESCOL not completed ’||FC.MsgNo);

 STOP;

 END;

 SELECT;

 WHEN(RESULT_SCOL < 0)

 PUT SKIP LIST(

 ’"firststring" is less than "secondstring" ’);

 WHEN(RESULT_SCOL > 0)

 PUT SKIP LIST(

 ’"firststring" is greater than "secondstring" ’);

 OTHERWISE

 PUT SKIP LIST(’Strings are identical’);

 END; /* END SELECT */

 END PLISCOL;

Figure 103. Calls to CEESCOL in PL/I

272 LE/VSE: Programming Guide

Examples Illustrating Calls to CEESETL and CEEQRYL

The following examples illustrate calls to CEESETL to set the locale, and to

CEEQRYL to retrieve locale time information.

Calls to CEESETL and CEEQRYL in COBOL

 CBL LIB,APOST,RMODE(ANY)

 *Module/File Name: IGZTSETL

 * Example for callable service CEESETL *

 * COBSETL - Set all global locale environment *

 * categories to country Sweden. *

 * Query one category. *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBSETL.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 Locale-Name.

 02 LN-Length PIC S9(4) BINARY.

 02 LN-String PIC X(256).

 01 Locale-Time.

 02 LT-Length PIC S9(4) BINARY.

 02 LT-String PIC X(256).

 * Use Locale category constants

 COPY CEEIGZLC.

 *

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 *

 PROCEDURE DIVISION.

 * Set up locale name for Sweden

 MOVE 14 TO LN-Length.

 MOVE ’Sv_SE.IBM-1047’

 TO LN-String (1:LN-Length).

 * Set all locale categories to Sweden

 * Use LC-ALL category constant from CEEIGZLC

 CALL ’CEESETL’ USING Locale-Name, LC-ALL,

 FC.

 * Check feedback code

 IF Severity > 0

 DISPLAY ’Call to CEESETL failed. ’ Msg-No

 STOP RUN

 END-IF.

Figure 104. Calls to CEESETL and CEEQRYL in COBOL (Part 1 of 2)

Chapter 18. Locale Callable Services 273

 * Retrieve active locale for LC-TIME category

 CALL ’CEEQRYL’ USING LC-TIME, Locale-Time,

 FC.

 * Check feedback code and correct locale

 IF Severity = 0

 IF LT-String(1:LT-Length) =

 LN-String(1:LN-Length)

 DISPLAY ’Successful query.’

 ELSE

 DISPLAY ’Unsuccessful query.’

 END-IF

 ELSE

 DISPLAY ’Call to CEEQRYL failed. ’ Msg-No

 END-IF.

 STOP RUN.

 END PROGRAM COBSETL.

Figure 104. Calls to CEESETL and CEEQRYL in COBOL (Part 2 of 2)

274 LE/VSE: Programming Guide

Calls to CEESETL and CEEQRYL in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMSETL */

 /**/

 /* Example for callable service CEESETL */

 /* Function: Set all global locale environment */

 /* categories to country. Query one category. */

 /**/

 PLISETL: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */

 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */

 %INCLUDE CEEIBMLC; /* Locale category constants */

 /* CEESETL service call arguments */

 DCL LOCALE_NAME CHAR(14) VARYING;

 /* CEEQRYL service call arguments */

 DCL LOCALE_NAME_TIME CHAR(256) VARYING;

 DCL 01 FC FEEDBACK;

 /* init locale name with IBM default for Sweden */

 LOCALE_NAME = ’Sv_SE.IBM-1047’;

 /* use LC_ALL category const from CEEIBMLC */

 CALL CEESETL (LOCALE_NAME, LC_ALL, FC);

 /* FBCHECK macro used (defined in CEEIBMCT) */

 IF FBCHECK(FC, CEE2KE) THEN

 DO; /* invalid locale name */

 DISPLAY (’Locale LC_ALL Call ’||FC.MsgNo);

 STOP;

 END;

 /* retrieve active locale for LC_TIME category */

 /* use LC_TIME category const from CEEIBMLC */

 CALL CEEQRYL (LC_TIME, LOCALE_NAME_TIME, FC);

 IF FBCHECK(FC, CEE000) THEN

 DO; /* successful query, check category name */

 IF LOCALE_NAME_TIME ¬= LOCALE_NAME THEN

 DO;

 DISPLAY (’Invalid LOCALE_NAME_TIME ’);

 STOP;

 END;

 ELSE

 DO;

 PUT SKIP LIST(’Successful query LC_TIME’,

 LOCALE_NAME_TIME);

 END;

 END;

 ELSE

 DO;

 DISPLAY (’LC_TIME Category Call ’||FC.MsgNo);

 STOP;

 END;

 END PLISETL;

Figure 105. Calls to CEESETL and CEEQRYL in PL/I

Chapter 18. Locale Callable Services 275

Examples Illustrating Calls to CEEQRYL and CEESTXF

The following examples illustrate calls to CEEQRYL to retrieve the locale name,

and to CEESTXF to translate a string into its collation weights.

Calls to CEEQRYL and CEESTXF in COBOL

 CBL LIB,APOST,RMODE(ANY)

 *Module/File Name: IGZTSTXF

 * Example for callable service CEESTXF *

 * COBSTXF - Query current collate category and *

 * build input string as function of *

 * locale name. *

 * Translate string as function of *

 * locale. *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBSTXF.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * OMIT is a dummy parameter used across LE call.

 01 OMIT COMP-2.

 01 MBS.

 02 MBS-Length PIC S9(4) BINARY.

 02 MBS-String PIC X(10).

 01 TXF.

 02 TXF-Length PIC S9(4) BINARY.

 02 TXF-String PIC X(256).

 01 Locale-Name.

 02 LN-Length PIC S9(4) BINARY.

 02 LN-String PIC X(256).

 * Use Locale category constants

 COPY CEEIGZLC.

 *

 01 MBS-Size PIC S9(9) BINARY VALUE 0.

 01 TXF-Size PIC S9(9) BINARY VALUE 0.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 *

 PROCEDURE DIVISION.

 * Call CEEQRYL to retrieve locale name

 CALL ’CEEQRYL’ USING LC-COLLATE,

 Locale-Name, FC.

Figure 106. Calls to CEEQRYL and CEESTXF in COBOL (Part 1 of 2)

276 LE/VSE: Programming Guide

 * Check feedback code and set input string

 IF Severity = 0

 IF LN-String (1:LN-Length) =

 ’Sv-SE.IBM-1047’

 MOVE 10 TO MBS-Length

 MOVE 10 TO MBS-Size

 MOVE ’7,123,456.’

 TO MBS-String (1:MBS-Length)

 ELSE

 MOVE 7 TO MBS-Length

 MOVE 7 TO MBS-Size

 MOVE ’8765432’

 TO MBS-String (1:MBS-Length)

 END-IF

 ELSE

 DISPLAY ’Call to CEEQRYL failed. ’ Msg-No

 STOP RUN

 END-IF.

 MOVE SPACES TO TXF-String.

 MOVE 0 to TXF-Length.

 * Call CEESTXF to translate the string

 CALL ’CEESTXF’ USING OMIT, MBS, MBS-Size,

 TXF, TXF-Size, FC.

 * Check feedback code and return length

 IF Severity = 0

 IF TXF-Length > 0

 DISPLAY ’Translated string is ’

 TXF-String

 ELSE

 DISPLAY ’String not translated.’

 END-IF

 ELSE

 DISPLAY ’Call to CEESTXF failed. ’ Msg-No

 END-IF.

 STOP RUN.

 END PROGRAM COBSTXF.

Figure 106. Calls to CEEQRYL and CEESTXF in COBOL (Part 2 of 2)

Chapter 18. Locale Callable Services 277

Calls to CEEQRYL and CEESTXF in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMSTXF */

 /**/

 /* Example for callable service CEESTXF */

 /* Function: Query current collate category and */

 /* build input string as function of locale name. */

 /* Translate string as function of locale. */

 /**/

 PLISTXF: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW; /* ENTRY defs, macro defs */

 %INCLUDE CEEIBMCT; /* FBCHECK macro, FB constants */

 %INCLUDE CEEIBMLC; /* Locale category constants */

 /* CEESTXF service call arguments */

 DCL MBSTRING CHAR(10) VARYING; /* input string */

 DCL MBNUMBER BIN FIXED(31); /* input length */

 DCL TXFSTRING CHAR(256) VARYING; /* output string */

 DCL TXFLENGTH BIN FIXED(31); /* output length */

 /* CEEQRYL service call arguments */

 DCL LOCALE_NAME_COLLATE CHAR(256) VARYING;

 DCL 01 FC FEEDBACK;

 /* retrieve active locale for collate category */

 /* Use LC_COLLATE category const from CEEIBMLC */

 CALL CEEQRYL (LC_COLLATE, LOCALE_NAME_COLLATE, FC);

 /* FBCHECK macro used (defined in CEEIBMCT) */

 IF FBCHECK(FC, CEE000) THEN

 DO; /* successful query, set string for CEESTXF */

 IF LOCALE_NAME_COLLATE = ’Sv_SE.IBM-1047’ THEN

 MBSTRING = ’7,123,456.’;

 ELSE

 MBSTRING = ’8765432’;

 MBNUMBER = LENGTH(MBSTRING);

 END;

 ELSE

 DO;

 DISPLAY (’Locale LC_COLLATE ’||FC.MsgNo);

 STOP;

 END;

 TXFSTRING = ’;

 CALL CEESTXF (*, MBSTRING, MBNUMBER,

 TXFSTRING, TXFLENGTH, FC);

 IF FBCHECK(FC, CEE000) THEN

 DO; /* successful call, use transformed length */

 IF TXFLENGTH >0 THEN

 DO;

 PUT SKIP LIST(’Transformed string is ’||

 SUBSTR(TXFSTRING,1, TXFLENGTH));

 END;

 END;

 ELSE

 DO;

 IF FBCHECK(FC, CEE3TF) THEN

 DO;

 DISPLAY (’Zero length input string’);

 END;

 END;

 END PLISTXF;

Figure 107. Calls to CEEQRYL and CEESTXF in PL/I

278 LE/VSE: Programming Guide

Chapter 18. Locale Callable Services 279

280 LE/VSE: Programming Guide

Chapter 19. General Callable Services

This chapter describes the set of LE/VSE callable services that provide general

services. The general callable services are a set of callable services that are not

directly related to a specific LE/VSE function.

Related Services

Callable Services

CEE5DMP Generates a dump of the LE/VSE run-time environment and

member language libraries

CEE5PRM Passes to the calling routine the argument string with a

length of up to 80 characters, that was specified at invocation

of the program

CEE5PRML CEE5PRML can be used instead of CEE5PRM. It passes to the

calling routine an argument string with a length of up to 300

characters, that was specified at invocation of the program.

CEE5TSTG CEE5TSTG tests for the access that is available to a specified

storage address.

CEE5USR Sets or queries one of two 4-byte fields known as the user

area fields

CEEGPID Retrieves LE/VSE version and platform ID

CEERAN0 Generates a sequence of uniform pseudorandom numbers

between 0.0 and 1.0

CEETEST Invokes a debug tool, such as Debug Tool for VSE/ESA

Refer to the LE/VSE Programming Reference for detailed information about

these callable services.

CEE5DMP Callable Service

CEE5DMP generates a dump of LE/VSE and the member language libraries.

Sections of the dump are selectively included, depending on options specified with

the options parameter. Output from CEE5DMP is written to the default filename

CEEDUMP, unless you specify the filename of another file by using the FNAME

option of CEE5DMP. The call to CEE5DMP does not cause your application to

terminate. For an example of a dump and a description of the LE/VSE dump

service, see LE/VSE Debugging Guide and Run-Time Messages.

CEE5DMP can be called by your application when you want:

v A trace of calls so you can see the order in which applications were called

v A dump of storage and control blocks

v The status of files to determine whether a file is open or closed, and to see the

buffer contents of the file

© Copyright IBM Corp. 1991, 2005 281

CEE5PRM Callable Service

CEE5PRM queries and returns to the calling program the parameter string

specified at invocation of the program. The parameter string is returned in an

80-byte fixed-length string. Only program arguments are returned, not run-time

options. If the parameter string is longer than 80 characters, it is truncated. If it is

shorter than 80 characters, the returned string is padded with blanks. If no

program arguments are provided at invocation, the returned string is blank.

CEE5PRML Callable Service

CEE5PRML can be used instead of CEE5PRM. It queries and returns to the calling

program the parameter string specified at invocation of the program. The

parameter string is returned in a 300-byte fixed-length string. Only program

arguments are returned, not run-time options. If the parameter string is shorter

than 300 characters, the returned string is padded with blanks. If no program

arguments are provided at invocation, the returned string is blank.

CEE5TSTG Callable Service

CEE5TSTG allows a programmer to test for the access that is available to a

specified storage address. The service returns a feedback token indicating what

access is available to the supplied storage address. This can be either:

v No access permitted in current execution key.

v Read-only access.

v Update access.

v All access permitted.

CEE5USR Callable Service

CEE5USR sets or queries one of two 4-byte fields known as the user area fields.

The user area fields are associated with an enclave and are maintained on an

enclave basis. A user area might be used by vendor or application programs to

store a pointer to a global data area or to keep a recursion counter.

The LE/VSE user area fields should not be confused with the PL/I user area. The

PL/I user area is a 4-byte field in the PL/I task communication area (TCA) and

can only be accessed through assembler language.

CEEGPID Callable Service

CEEGPID retrieves the LE/VSE version ID and the platform ID.

The version ID returned by CEEGPID can be tested to determine if you can use

new or extended functions that are available in a particular release of LE/VSE or

on a particular platform. For example, the CEE5CIB and CEECBLDY callable

services and the locale callable services are new in Release 4. Before using any of

these new functions, you can test the LE/VSE version to make sure you are

running on the release of LE/VSE that supports them.

You can also use CEEGPID if you are writing an application that you plan to run

in the VSE, z/OS, or VM, language environments. With CEEGPID, you can check

the platform ID at run-time to determine the platform you are running on. Certain

functions available in the z/OS or VM language environments are not available

with LE/VSE. Also, platform-specific LE/VSE callable services have different

282 LE/VSE: Programming Guide

names in the z/OS and VM language environments. For example, the LE/VSE

dump callable service CEE5DMP, is called CEE3DMP in the z/OS and VM

language environments.

Note: Object programs generated by LE/VSE-conforming HLL compilers are not

necessarily portable between operating environments. For more information

about object program portability, see your HLL publications.

CEERAN0 Callable Service

CEERAN0 generates a sequence of uniform pseudorandom numbers between 0.0

and 1.0 using the multiplicative congruential method with a user-specified seed.

The numbers generated are pseudorandom in that the same numbers are generated

if the same seed key is used.

CEETEST Callable Service

CEETEST invokes a debug tool, such as the Debug Tool for VSE/ESA. You can use

a debug tool to monitor, trace, and interact with your application while it runs.

The invocation is dynamic; the debug tool starts when errors are encountered, so

you do not have to run your application under an active debug tool.

For more information about Debug Tool for VSE/ESA, see Debug Tool for VSE/ESA

User’s Guide and Reference

Examples of Using Basic Callable Services

If you plan to use an LE/VSE callable service, you must code a call to the service

in your source code, then recompile your source under the latest

LE/VSE-conforming version of the language you are writing in. The standard call

to an LE/VSE service is different in each language, but does not differ across

operating systems.

The following examples illustrate how the CEEFMDT callable service is called in C,

PL/I, and COBOL. CEEFMDT sets the default date and time formats for a

specified country. In the examples, country is a 2-character fixed-length string

representing an LE/VSE-defined country code. Picture string (pic_str or PICSTR) is

a character string, containing the default date and time for the country, that is

returned by CEEFMDT. A feedback code (fc) returned from the service is checked

to determine if the service completed correctly.

Chapter 19. General Callable Services 283

/*Module/File Name: EDCSTRT */

/**/

/* */

/* Function: CEEFMDT - Obtain default date and time format */

/* */

/**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <leawi.h>

#include <ceeedcct.h>

int main(void) {

 _FEEDBACK fc;

 _CHAR2 country;

 _CHAR80 date_pic;

 /* get the default date and time format for Canada */

 memcpy(country,"CA",2);

 CEEFMDT(country,date_pic,&fc);

 if (_FBCHECK (fc , CEE000) != 0) {

 printf("CEEFMDT failed with message number %d\n",

 fc.tok_msgno);

 exit(2999);

 }

 /* print out the default date and time format */

 printf("%.80s\n",date_pic);

}

Figure 108. C Routine with a Call to CEEFMDT

284 LE/VSE: Programming Guide

CBL LIB,APOST

 *Module/File Name: IGZTSTRT

 ** **

 ** CBLFMDT - Call CEEFMDT to obtain default **

 ** date & time format **

 ** **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLFMDT.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 COUNTRY PIC X(2).

 01 PICSTR PIC X(80).

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION.

 PARA-CBLFMDT.

 **

 ** Specify country code for the US **

 **

 MOVE ’US’ TO COUNTRY.

 **

 ** Call CEEFMDT to return the default date and **

 ** time format for the US **

 **

 CALL ’CEEFMDT’ USING COUNTRY, PICSTR, FC.

 **

 ** If CEEFMDT runs successfully, display result.**

 **

 IF CEE000 of FC THEN

 DISPLAY ’The default date and time ’

 ’format for the US is: ’ PICSTR

 ELSE

 DISPLAY ’CEEFMDT failed with msg ’

 Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

Figure 109. COBOL Program with a Call to CEEFMDT

Chapter 19. General Callable Services 285

See LE/VSE Programming Reference for detailed instructions on how to call LE/VSE

services and for more information about the CEEFMDT callable service.

*PROCESS MACRO;

 /*Module/File Name: IBMSTRT

 /**/

 /** **/

 /** Function: CEEFMDT - obtain default **/

 /** date & time format **/

 /** **/

 /**/

 PLIFMDT: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL COUNTRY CHARACTER (2);

 DCL PICSTR CHAR(80);

 DCL 01 FC FEEDBACK;

 COUNTRY = ’US’; /* Specify country code for */

 /* the United States */

 /* Call CEEFMDT to get default date format */

 /* for the US */

 CALL CEEFMDT (COUNTRY , PICSTR , FC);

 /* Print default date format for the US */

 IF FBCHECK(FC, CEE000) THEN DO;

 PUT SKIP LIST(’The default date and time ’

 || ’format for the US is ’ || PICSTR);

 END;

 ELSE DO;

 DISPLAY(’CEEFMDT failed with msg ’

 || FC.MsgNo);

 STOP;

 END;

 END PLIFMDT;

Figure 110. PL/I Routine with a Call to CEEFMDT

286 LE/VSE: Programming Guide

Chapter 20. Math Services

This chapter introduces LE/VSE math services and describes the call interface to

the math services.

Understanding the Basics

LE/VSE math services provide standard math computations and can be called

from LE/VSE-conforming languages or from Language Environment-conforming

assembler routines.

You can invoke LE/VSE math services by using the call interface (defined below)

or by using the C, COBOL, or PL/I built-in math functions specific to the HLL

used in your application. For example, your COBOL program can continue to use

the built-in SIN function without having to be recoded to use the CEExSIN call

interface.

© Copyright IBM Corp. 1991, 2005 287

Math Services

CEESxABS Absolute value

CEESxACS Arccosine

CEESxASN Arcsine

CEESxATH Hyperbolic arctangent

CEESxATN Arctangent

CEESxAT2 Arctangent of two arguments

CEESxCJG Conjugate complex

CEESxCOS Cosine

CEESxCSH Hyperbolic cosine

CEESxCTN Cotangent

CEESxDIM Positive difference

CEESxDVD Division

CEESxERC Error function complement

CEESxERF Error function

CEESxEXP Exponential (base e)

CEESxGMA Gamma function

CEESxIMG Imaginary part of a complex

CEESxINT Truncation

CEESxLGM Log gamma function

CEESxLG1 Logarithm base 10

CEESxLG2 Logarithm base 2

CEESxLOG Logarithm base e

CEESxMLT Floating-point complex multiplication

CEESxMOD Modular arithmetic

CEESxNIN Nearest integer

CEESxNWN Nearest whole number

CEESxSGN Transfer of sign

CEESxSIN Sine

CEESxSNH Hyperbolic sine

CEESxSQT Square root

CEESxTAN Tangent

CEESxTNH Hyperbolic tangent

CEESxXPx Exponential (**)

See LE/VSE Programming Reference for syntax and examples of the math

services.

288 LE/VSE: Programming Guide

Call Interface to Math Services

The syntax for math services has two forms, depending on how many input

parameters the routine requires. The first four letters of the math services are

always CEES. The fifth character is x, which you replace according to the

parameter types listed in “Parameter Types: parm1 Type and parm2 Type.” The

last three letters indicate the math function performed. In these examples, the first

function performed is the absolute value (ABS), and the second function is the

positive difference (DIM).

One Parameter

55 CEESxABS (parm1 , fc , result) 5=

Two Parameters

55 CEESxDIM (parm1 , parm2 , fc , result) 5=

Parameter Types: parm1 Type and parm2 Type

The first parameter (parm1) is mandatory. The second parameter (parm2) is used

only when you use a math service with two parameters. The x in the fifth

character position of CEESx must be replaced by a parameter type for input and

output. Substitute I, S, D, Q, T, E, or R for x:

I 32-bit binary integer

S 32-bit single floating-point number

D 64-bit double floating-point number

Q 128-bit extended floating-point number

T 32-bit single floating-complex number

5

E 64-bit double floating-complex number

6

R 128-bit extended floating-complex number

7

LE/VSE math services expect normalized input. Generally, the result has the same

parameter type as the input argument.

C, COBOL, and PL/I offer built-in math functions that you can also use under

LE/VSE. See LE/VSE C Run-Time Library Reference IBM COBOL for VSE/ESA

Language Reference , and IBM PL/I for VSE/ESA Language Reference for a description

of these functions.

5. This parameter type is comprised of a 32-bit real part and a 32-bit imaginary part.

6. This parameter type is comprised of a 64-bit real part and a 64-bit imaginary part.

7. This parameter type is comprised of a 128-bit real part and a 128-bit imaginary part.

Chapter 20. Math Services 289

Examples of Calling Math Services

The following examples illustrate calls to the CEESSLOG math service to calculate

the logarithm base e of an argument.

Calling CEESSLOG in C

/*Module/File Name: EDCMATH */

/**/

/* */

/* This routine demonstrates calling the math service */

/* CEESSLOG in C/370 */

/**/

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <leawi.h>

#include <ceeedcct.h>

int main (void) {

 float int1, intr;

 _FEEDBACK fc;

 int1 = 39;

 CEESSLOG(&int1,&fc,&intr);

 if (_FBCHECK (fc , CEE000) != 0)

 {

 printf("CEESSLOG failed with message number %d\n",

 fc.tok_msgno);

 exit(2999);

 }

 printf("Log base e of %f is %f\n",int1,intr);

}

Figure 111. C Call to CEESSLOG—Logarithm Base e

290 LE/VSE: Programming Guide

Calling CEESSLOG in COBOL

CBL LIB,APOST

 *Module/File Name: IGZTMATH

 **

 ** **

 ** Demonstrates the CEESSLOG math service in COBOL. **

 ** **

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. MTHSLOG.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 ARG1RS COMP-1.

 01 RESLTRS COMP-1.

 01 FC.

 02 Condition-Token-Value.

 COPY CEEIGZCT.

 03 Case-1-Condition-ID.

 04 Severity PIC S9(4) BINARY.

 04 Msg-No PIC S9(4) BINARY.

 03 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

 04 Class-Code PIC S9(4) BINARY.

 04 Cause-Code PIC S9(4) BINARY.

 03 Case-Sev-Ctl PIC X.

 03 Facility-ID PIC XXX.

 02 I-S-Info PIC S9(9) BINARY.

 PROCEDURE DIVISION.

 PARA-MTHSLOG.

 MOVE 5.65 TO ARG1RS.

 CALL ’CEESSLOG’ USING ARG1RS, FC, RESLTRS.

 ** If CEESSLOG runs successfully, display result.**

 IF CEE000 of FC THEN

 DISPLAY ’SLOG OF ’ ARG1RS ’ = ’ RESLTRS

 ELSE

 DISPLAY ’CEESSLOG failed with msg ’

 Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

Figure 112. Call to CEESSLOG—Logarithm Base e in COBOL

Chapter 20. Math Services 291

Calling CEESSLOG in PL/I

*PROCESS MACRO;

 /*Module/File Name: IBMMATH */

 /**/

 /* */

 /* Demonstrates the CEESSLOG math service in PL/I. */

 /* */

 /**/

 MTHSLOG: PROC OPTIONS(MAIN);

 %INCLUDE CEEIBMAW;

 %INCLUDE CEEIBMCT;

 DCL 01 FC FEEDBACK;

 DCL ARG1 FLOAT4 INIT(5.65);

 DCL RESULT FLOAT4;

 CALL CEESSLOG (ARG1, FC, RESULT);

 IF FBCHECK(FC, CEE000) THEN

 PUT SKIP LIST(’SLOG OF ’ || ARG1 || ’ is ’ || RESULT);

 ELSE

 PUT SKIP LIST(’CEESLOG failed with msg ’|| FC.MsgNo);

 END MTHSLOG;

Figure 113. Call to CEESSLOG—Logarithm Base e in PL/I

292 LE/VSE: Programming Guide

Part 4. Using Interfaces to Other Products

Chapter 21. Compatibility with Other Products 295

Required Licensed Programs 295

Optional Licensed Programs 295

Chapter 22. Running Applications under CICS 297

Understanding the Basics 297

CICS Partition 297

CICS Transaction 297

CICS Run Unit 297

Running LE/VSE Applications under CICS . . 298

Developing an Application under CICS 298

COBOL Coding Considerations under CICS . . 299

PL/I Coding Considerations under CICS . . . 299

Link-Edit Considerations under CICS 299

C Considerations 300

COBOL Considerations 300

PL/I Considerations 300

Specifying Run-Time Options under CICS . . . 300

Accessing DL/I Databases from CICS 302

Using Callable Services under CICS 303

DOS/VS COBOL Compatibility Considerations 303

Using Math Services in PL/I under CICS . . . 303

Coding Program Termination in PL/I under

CICS 303

Storage Management 303

CICS Short-on-Storage Condition 303

PL/I Storage Considerations under CICS . . . 304

Initializing Static External Data 304

PL/I Object Program Size 304

Using CICS Storage Constructs Rather Than

PL/I Language Statements 304

PL/I Storage Classes 304

Using Storage Built-In Functions 305

Condition Handling under CICS 305

PL/I Considerations for Using the CICS

HANDLE ABEND Command 305

Effect of the CICS HANDLE ABEND Command 306

Effect of CICS HANDLE CONDITION and

CICS HANDLE AID 306

Restrictions on User-written Condition Handlers 306

COBOL Considerations 306

CICS Transaction Abend Codes 307

Using the CBLPSHPOP Run-Time Option under

CICS 307

Restrictions on Assembler User Exits under

CICS 307

PL/I Considerations 307

Ensuring Transaction Rollback under CICS . . 307

Run-Time Output under CICS 308

Message Handling under CICS 308

PL/I SYSPRINT 309

Dump Services under CICS 309

PL/I Considerations 309

Support for Calls within the Same HLL under

CICS 309

C 309

COBOL 309

COBOL/VSE 309

VS COBOL II 310

DOS/VS COBOL 310

PL/I 310

Chapter 23. Running Applications with DB2 . . 311

Understanding the Basics 311

LE/VSE Support for DB2 Applications 311

Specifying Run-Time Options with DB2 . . . 311

Condition Handling under DB2 311

Chapter 24. Running Applications with DL/I . . 313

Understanding the Basics 313

Using the Interface between LE/VSE and DL/I . . 313

CICS Considerations 313

C Considerations 313

PL/I Considerations 314

Specifying Run-Time Options with DL/I . . . 314

Condition Handling with DL/I 314

This section describes how to link and run applications under CICS, and with DB2

and DL/I.

© Copyright IBM Corp. 1991, 2005 293

294 LE/VSE: Programming Guide

Chapter 21. Compatibility with Other Products

This chapter lists products that are compatible with LE/VSE. From z/VSE 3.1

onwards, LE/VSE is included in the VSE Central Functions.

Required Licensed Programs

The licensed programs in Table 43 are required to customize LE/VSE, or to run

LE/VSE applications.

 Table 43. Required Licensed Programs for LE/VSE

Licensed Program Name Program Number

High Level Assembler for VSE 5696-234

Optional Licensed Programs

The licensed compiler programs listed in Table 44, with or without the Debug Tool

feature, can optionally be used to generate LE/VSE applications.

 Table 44. Optional Licensed Compiler Programs for LE/VSE

Licensed Program Name Program Number

C/VSE 5686-A01

COBOL/VSE 5686-068

PL/I VSE 5686-069

The licensed programs listed in Table 45 can optionally be used with LE/VSE.

 Table 45. Other Licensed Programs for LE/VSE

Licensed Program Name Program Number

CICS/VSE 5686-026

CICS Transaction Server for VSE/ESA 5648-054

DB2 V7 Server for VSE (including QMF) 5697-F42

DFSORT/VSE 5746-SM3

DL/I DOS/VS (Release 10) 5746-XX1

DL/I VSE (Release 11) 5746-XX1

Note: LE/VSE is not supported in VSE/ICCF interactive partitions.

© Copyright IBM Corp. 1991, 2005 295

296 LE/VSE: Programming Guide

Chapter 22. Running Applications under CICS

LE/VSE provides support that, when used in conjunction with facilities provided

by the Customer Information Control System (CICS) product permits you to write

applications in high-level languages and run them in a CICS environment. LE/VSE

supports CICS/VSE Version 2 Release 3, and CICS Transaction Server for VSE

Version 1 Release 1.

You can code an application that runs in a CICS environment by using any

LE/VSE-conforming HLL. This chapter describes special features and

considerations that apply to LE/VSE-conforming applications running in a CICS

environment.

Note: Wherever CICS is used here, it covers both CICS/VSE 2.3 and the CICS

Transaction Server for VSE/ESA, unless stated otherwise.

Understanding the Basics

Before discussing how to develop and run LE/VSE-conforming applications in a

CICS environment, it is important to map familiar CICS terminology to the

terminology used in the LE/VSE program model described in Chapter 9, “Program

Management Model,” on page 75.

CICS Partition

A CICS partition is a fixed-size subdivision of main storage that is initialized and

used by CICS. Initialization of a partition creates a common environment for all

CICS transactions running in that environment. There are no unique LE/VSE

services that can be applied at a partition level.

CICS Transaction

A CICS transaction is initiated by a single request, usually from a terminal. A CICS

transaction is equivalent to an LE/VSE process. An LE/VSE process consists of one

or more enclaves that carry out the needed processing when they are run. When a

CICS transaction is initiated, the first LE/VSE thread is triggered within the first

enclave in the LE/VSE process.

For example, the insertion of a bank card into an ATM might trigger an LE/VSE

process (CICS transaction) consisting of one or more enclaves (CICS run units) to

read the information on the card. After an ATM reads a bank card, the validation

of the information on the card might be performed by one enclave, processing the

user’s personal id number might be performed by another enclave, processing a

user request by another, and dispensing the cash by a final enclave.

CICS Run Unit

A CICS run unit consists of a bound set of one or more phases that can be loaded

by the CICS program loader. Run units are equivalent to LE/VSE enclaves. Each

enclave has its own entry in the CICS processing program table (PPT). (The PPT

can be updated using the CICS DFHPPT macro or the CICS system definition

(CSD) file.) Under CICS, it is possible for a single enclave to have multiple

separately link-edited phases with separate entries in the PPT. Each enclave has its

own heap storage and other LE/VSE resources associated with it.

© Copyright IBM Corp. 1991, 2005 297

An enclave is invoked when an LE/VSE process (CICS transaction) is triggered or

when it is passed control from another enclave using the EXEC CICS LINK or

EXEC CICS XCTL commands. For details on using EXEC CICS LINK or EXEC

CICS XCTL commands, see “Creating Child Enclaves Using EXEC CICS LINK or

EXEC CICS XCTL” on page 394.

Running LE/VSE Applications under CICS

The following steps describe basic application execution under CICS:

1. An event, generally the receipt of an input message containing a transaction ID

code, triggers an LE/VSE process (CICS transaction).

2. CICS looks up the transaction ID code in the program control table (PCT) and

gets the name of the enclave (or the first enclave) to execute the process.

3. CICS defines the process (transaction) as a work item that is dispatched by the

CICS task dispatcher.

4. Once the process is defined, CICS looks up the identity of the enclave required

to perform the task in the PPT. The PPT contains information about the enclave

such as its language, whether it is in storage, and if in storage, its use count

and entry point address.

5. CICS calls the LE/VSE-CICS run-time level interface to initialize the

process-related portions of the run-time environment.

6. If the enclave does not perform all the processing associated with the process,

the enclave might pass control to another enclave through a language call or

through the EXEC CICS LINK or EXEC CICS XCTL commands.

7. When the process is complete, CICS calls the LE/VSE-CICS run-time level

interface to terminate the process-related portions of the run-time environment.

Developing an Application under CICS

Certain coding restrictions apply when you develop an application to run under

CICS. Examples are:

v Input/output restrictions—CICS provides its own I/O facilities using various

EXEC CICS commands.

v Multitasking—CICS has its own multitasking capability.

After you code your application, you must run it through a CICS translator. The

translator accepts as input an application containing EXEC CICS commands and

produces as output an equivalent application in which each CICS command has

been translated into the language of the source. The CICS translator runs in a

separate job step. The job step sequence for preparing and running an application

under CICS is:

1. Code

2. Translate

3. Compile

4. Prelink (C only)

5. Link-Edit

6. Run

C coding restrictions are discussed in LE/VSE C Run-Time Programming Guide and

COBOL restrictions are discussed in IBM COBOL for VSE/ESA Programming Guide

Examples of PL/I coding restrictions under CICS are discussed in “PL/I Coding

Considerations under CICS” on page 299.

298 LE/VSE: Programming Guide

For more information on developing an application under CICS see CICS

Transaction Server for VSE/ESA Application Programming Guide listed in “Where to

Find More Information” on page xxi.

COBOL Coding Considerations under CICS

When coding VS COBOL II or COBOL/VSE programs to run under CICS, you

must specify either the XOPTS(ANSI85) or XOPTS(COBOL2) translator option

when you translate the program. If you do not specify one of these options, your

application will abend.

For COBOL/VSE applications that are translated using the CICS TS for VSE/ESA

translator, the preferred option setting is XOPTS(COBOL3).

PL/I Coding Considerations under CICS

When coding PL/I routines to run under CICS, consider the following:

v Built-in subroutines—There are some restrictions on the use of PL/I’s built-in

subroutines:

– You cannot use the PLISRTx interfaces, PLICKPT or PLICANC.

– You can use PLIRETC and PLIRETV to communicate between user-written

routines that are link-edited together, but not to communicate with CICS. See

“Managing Return Codes in LE/VSE” on page 68 for details.

v Debugging facilities— Support has been added to allow the CICS transaction to

be debugged using a debug tool, such as Debug Tool for VSE/ESA. To prepare

your program to a debug tool, you must compile with the TEST option. For

more information on debugging under LE/VSE, see LE/VSE Debugging Guide and

Run-Time Messages.

v Language I/O facilities—You can use only a subset of PL/I I/O facilities under

CICS.

– OPEN/CLOSE can be used, but only for the SYSPRINT file, and only if the

SYSPRINT file is declared (implicitly or explicitly) with the EXTERNAL

PRINT attributes

– You can use stream output only to the SYSPRINT file (with EXTERNAL

PRINT attributes). For performance reasons, you should use stream output

under CICS only when debugging your applications.
Those PL/I I/O facilities that you cannot use under CICS are:

– Record I/O statements

– Stream input

– DISPLAY statement

– DELAY statement

– STOP statement

– WAIT statement

– PL/I I/O-related conditions such as RECORD, TRANSMIT, ENDFILE, and

KEY are not raised under CICS, because I/O is not performed using PL/I

files (except SYSPRINT) and I/O statements. CICS file-handling facilities are

used instead. If CICS detects an I/O condition during the processing of your

commands, CICS deals with the condition in the way defined in the CICS

manuals.

Link-Edit Considerations under CICS

You can link-edit LE/VSE-conforming applications that are to be run under CICS

just as if they were batch applications. If your C, COBOL, or PL/I application uses

EXEC CICS commands, however, you must also link-edit the EXEC CICS interface

Chapter 22. Running Applications under CICS 299

stub, DFHELII, with your application. To be link-edited with your application,

DFHELII must be available in the object sublibrary chain. See CICS Transaction

Server for VSE/ESA System Definition and Operations Guide for more information.

C Considerations

C applications must be link-edited AMODE(31), RMODE(ANY), as shown in “C

AMODE/RMODE Considerations” on page 9.

COBOL Considerations

DFHELII is compatible with the DFHECI stub provided for COBOL programs.

Although DFHECI is still supported under LE/VSE, DFHELII offers some

advantages. Whereas the old COBOL stub had to be link-edited at the top of your

application, DFHELII can be linked anywhere in the application. You also have the

capability of linking ILC applications with a single stub rather than with multiple

stubs.

PL/I Considerations

You no longer need to include DFHPL1I. DFHPL1I is not supported by PL/I VSE.

You should change DFHPL1I to DFHELII in your link-edit jobs.

You no longer need to include PLISHRE, the generalized shared library interface.

PLISHRE is not supported by PL/I VSE and should be removed from your

link-edit jobs.

Specifying Run-Time Options under CICS

Under CICS, you cannot pass run-time options as parameters when the application

is invoked. However, you can specify run-time options for your application using

one of the following methods:

v As default options established in CEECOPT during the installation of LE/VSE

(see page 36 for more information about CEECOPT)

v As application defaults established in CEEUOPT (see page 36 and “CEEXOPT

Invocation Syntax” on page 40 for details)

v In the user exit (see “CEEBXITA Assembler User Exit Interface” on page 323 for

details on how to do this)

v In C applications, as options specified using #pragma runopts (see page 36 for

the proper syntax)

v In PL/I applications, as default options established in CEEUOPT using the

PLIXOPT string (see page 37 for the proper syntax)

Some run-time options have different defaults and exhibit slightly different

behavior while executing under CICS. The options that differ are listed in Table 46

on page 301.

300 LE/VSE: Programming Guide

Table 46. Run-Time Option Behavior under CICS

Option Description

ABPERC ABPERC is ignored under CICS.

AIXBLD AIXBLD is ignored under CICS.

ALL31 ALL31(ON) is the IBM-supplied default under CICS.

ANYHEAP ANYHEAP=((4K,4080,ANYWHERE,FREE),OVR) is the IBM-supplied default under CICS.

Both the initial size and the increment size are rounded up to the nearest multiple of 8 bytes.

The minimum is 4K for initial size, and 4080 bytes for increment size.

Under CICS/VSE 2.3, if ANYHEAP(,,BELOW) is in effect, the maximum initial and

increment size for ANYHEAP is 65,504 bytes. If ANYHEAP(,,ANYWHERE) is in effect, the

maximum initial and increment size for ANYHEAP is 1 gigabyte (1024M).

If you specify the ANYHEAP run-time option in CEEUOPT, the following default values are

used for omitted suboptions:

v init_size is 32K

v incr_size is 16K

ARGPARSE ARGPARSE is ignored under CICS.

BELOWHEAP BELOWHEAP=((4K,4080,FREE),OVR) is the IBM-supplied default under CICS. Both the

initial size and the increment size are rounded to the nearest multiple of 8 bytes. The

minimum is 4K for initial size, and 4080 bytes for increment size. The maximum initial and

increment size for BELOWHEAP under CICS/VSE 2.3 is 65,504 bytes.

If you specify the BELOWHEAP run-time option in CEEUOPT, the following default values

are used for omitted suboptions:

v init_size is 32K

ENV ENV is ignored under CICS.

EXECOPS EXECOPS is ignored under CICS.

HEAP HEAP=((4K,4080,ANYWHERE,KEEP,4080,4K),OVR) is the IBM-supplied default under CICS.

Both the initial HEAP allocation and HEAP increments are rounded to the next higher

multiple of 8 bytes. The minimum is 4K for initial size, and 4080 bytes for increment size.

Under CICS/VSE 2.3, if HEAP(,,BELOW) is in effect, the maximum size of a heap segment

is 65,504 bytes. If too large a value is specified, the application fails at the first attempt to

allocate heap storage. If HEAP(,,ANYWHERE) is in effect, the maximum size of a heap

segment is 1 gigabyte (1024M). These restrictions are subject to change from one release of

CICS to another.

If you specify the HEAP run-time option in CEEUOPT, the following default values are used

for omitted suboptions:

v init_size is 64K

LIBSTACK LIBSTACK=((4K,4080,FREE),OVR) is the IBM-supplied default under CICS. Both the initial

and increment sizes are rounded up to the next multiple of 8 bytes. The minimum is 4K for

initial size, and 4080 bytes for increment size. Under CICS, the maximum initial and

increment size for LIBSTACK is 65,504 bytes.

If you specify the LIBSTACK run-time option in CEEUOPT, the following default values are

used for omitted suboptions:

v init_size is 32K

v incr_size is 16K

Chapter 22. Running Applications under CICS 301

Table 46. Run-Time Option Behavior under CICS (continued)

Option Description

MSGFILE MSGFILE=((CESE),OVR) is the IBM-supplied default under CICS. This means, the MSGFILE

option defaults to the CESE transient data queue. Specification of a different transient data

queue for MSGFILE is possible. However, it is the users responsibility to ensure that this

transient data queue is available in the CICS system. The CESE transient data queue must

always be available either as TYPE=INDIRECT or TYPE=EXTRA in the CICS DCT definition.

The MSGFILE destination name under CICS must not exceed 4 characters in length.

Truncation will occur on the MSGFILE destination if the name used is greater than 4

characters in length. See “Run-Time Output under CICS” on page 308 for further

information.

PLIST PLIST is ignored under CICS.

REDIR REDIR is ignored under CICS.

RTEREUS RTEREUS is ignored under CICS.

STACK STACK=((4K,4080,ANYWHERE,KEEP),OVR) is the IBM-supplied default under CICS. The

maximum initial and increment size for STACK below 16MB is 65,504 bytes. The maximum

initial and increment size for STACK above 16MB is 1 gigabyte (1024M). This restriction is

subject to change from one release of CICS to another. Both the initial size and the increment

size are rounded up to the nearest multiple of 8 bytes. The initial size minimum is 4K, the

increment size minimum is 4080 bytes.

Note: LE/VSE uses the STACK initial size as specified in the installation defaults or

programmer’s defaults. LE/VSE does not use the STACK initial size if the option is specified

or modified in the assembler user exit. If you want to tune your run unit execution with the

STACK initial size value, you must change the value in CEEUOPT and relink-edit your

application, or change the value in the #pragma runopts of your C routine and recompile

your application.

If you specify the STACK run-time option in CEEUOPT, the following default values are

used for omitted suboptions:

v init_size is 512K

v incr_size is 512K

STORAGE STORAGE=((00,NONE,NONE,0K),OVR) is the IBM-supplied default under CICS. The

out-of-storage condition is not raised under CICS. If a reserved segment size is specified,

either as a default or an override under CICS, this storage size will be allocated but never

used. This results in wasted 24-bit storage. You are recommended to always use a reserve

segment size of 0k under CICS.

If you specify the STORAGE run-time option in CEEUOPT, the default value 8K is used if

the reserve_size suboption is omitted.

TERMTHDACT TERMTHDACT((TRACE,MSGFL,0),OVR) is the IBM-supplied default under CICS.

TERMTHDACT sets the level of information that is produced when LE/VSE percolates a

condition of severity 2 or greater beyond the first routine’s stack frame. The UADUMP

suboption has been added to TERMTHDACT as part of these enhancements to provide a

comprehensive dump in the event of an abnormal termination. The LE/VSE service

CEE5DMP is called for the TRACE, DUMP, and UADUMP suboptions of TERMTHDACT.

The MSGFL sub-option causes all dump output to be sent to the output destination specified

by the Run-Time option MSGFILE. If you specify LSTQ sub-option, all dump output will be

sent to the VSE/POWER LSTQ. For further details, refer to “Appendix A: LE/VSE Run-Time

Options” of the LE/VSE Customization Guide, SC33-6682.

Accessing DL/I Databases from CICS

Various user interfaces to DL/I databases are available under CICS. See

Chapter 24, “Running Applications with DL/I,” on page 313 for details.

302 LE/VSE: Programming Guide

Using Callable Services under CICS

All LE/VSE callable services are available to applications executing as CICS

transactions. However, the CEEMOUT (dispatch a message) and CEE5DMP

(generate dump) services differ, in that messages and dumps are sent to the

transient data queue specified in the MSGFILE run-time option. See LE/VSE

Programming Reference for descriptions of these services.

See LE/VSE Writing Interlanguage Communication Applications for ILC examples that

make a call to CEEMOUT.

DOS/VS COBOL Compatibility Considerations

LE/VSE provides a set of compatibility library routines that permit you to run

DOS/VS COBOL applications under CICS in compatibility mode. When you run a

DOS/VS COBOL application on CICS, the environment that is established for a

run unit by the compatibility library routines supports only DOS/VS COBOL. This

compatibility library does not contain many of the services normally offered under

LE/VSE. LE/VSE run-time options and callable services, for example, are not

supported.

Using Math Services in PL/I under CICS

PL/I saves and restores floating-point registers where necessary. PLIDUMP can

print these registers (see LE/VSE Debugging Guide and Run-Time Messages for more

information about PLIDUMP).

Floating-point overflow and underflow can be handled in OVERFLOW and

UNDERFLOW ON-units. The program mask is set appropriately for the levels of

CICS and PL/I used.

Coding Program Termination in PL/I under CICS

You can terminate a PL/I routine running under CICS by using PL/I constructs or

CICS statements such as EXEC CICS RETURN, EXEC CICS SEND PAGE

RELEASE, EXEC CICS XCTL, or EXEC CICS ABEND. When the routine

terminates, the following occurs:

1. If you requested a storage report using the RPTSTG run-time option, the report

is written to the transient data queue specified in the MSGFILE run-time option

(described in “Run-Time Output under CICS” on page 308).

2. If the MSGFILE destination is still open, it will be closed.

3. All storage acquired by PL/I is freed before control returns to CICS, except for

the stack.

Storage Management

Applications can allocate and free storage explicitly through language facilities,

CICS facilities (EXEC CICS GETMAIN and FREEMAIN commands, see CICS

Transaction Server for VSE/ESA Application Programming Reference for more

information), or the LE/VSE storage management callable services.

If you do not explicitly free storage that was allocated through language facilities

or LE/VSE callable services, the storage is freed at enclave termination.

CICS Short-on-Storage Condition

The CICS short-on-storage condition might be raised under LE/VSE if functions in

your application attempt to acquire storage by using language facilities and not

Chapter 22. Running Applications under CICS 303

enough storage is available to satisfy the request. CICS places the transaction on a

queue until the storage request can be satisfied. If CICS cannot get enough storage

in a reasonable amount of time to satisfy the request, then the transaction that

issued the storage request is terminated by CICS with abend code AKCP.

PL/I Storage Considerations under CICS

Special storage considerations for running PL/I applications under CICS are

described in the following sections.

Initializing Static External Data

You must initialize static external data under CICS because CICS cannot handle

common CSECTs.

PL/I Object Program Size

The maximum program size allowed for an RMODE(24) program is 512KB. The

maximum program size allowed for an RMODE(ANY) program in the XA

environment is 16MB (although this is not recommended).

Using CICS Storage Constructs Rather Than PL/I Language

Statements

In the case when a PL/I routine (routine A, for example) issues an EXEC CICS

LINK to another PL/I routine (routine B, for example), you might want to use

EXEC CICS GETMAIN and FREEMAIN commands to get and free storage. This is

because the scope of EXEC CICS GETMAIN is the scope of the entire task, not just

a single routine. Either routine A or routine B can explicitly free the storage.

Alternatively, you can choose to not explicitly free the storage in either routine, but

allow the storage to be freed automatically when the task is terminated. Another

advantage to using EXEC CICS GETMAIN is that if routine A terminates, the

storage is still available to routine B.

When you use PL/I language statements to get and free storage, the scope of PL/I

storage statements is the routine, not the task. Although routine B can alter the

storage allocated by routine A by using a pointer, routine B cannot free the storage.

In addition, if routine A terminates, the storage is automatically freed. Routine B

can no longer access the storage.

PL/I Storage Classes

When using CICS, you should avoid altering STATIC storage. Doing so violates

reentrancy and can yield unpredictable results. Instead of altering STATIC storage,

you should make most or all user variables that are changed while the routine is

running AUTOMATIC. Those user variables with initial values that never change

should be declared STATIC INITIAL.

Although AUTOMATIC storage provides reentrancy and should suffice for most

purposes, you can also allocate and free storage with the ALLOCATE and FREE

statements, which you can use to allocate and free BASED and CONTROLLED

variables using these statements. References you make to BASED storage are

handled with the pointer set by the ALLOCATE statement. The pointer itself can

be AUTOMATIC.

You can use CONTROLLED storage under CICS, because it is consistent with

reentrancy.

Using PUT DATA with BASED Storage: BASED storage is used extensively in

CICS transactions. You therefore need to be aware of the following restriction on

PUT DATA.

304 LE/VSE: Programming Guide

In PL/I, you cannot code:

PUT DATA (P -> VAR);

If, however, VAR was declared as BASED (P), the value of the generation of VAR

to which P points can be coded as:

PUT DATA (VAR);

Using Storage Built-In Functions

The STORAGE and CURRENTSTORAGE built-in functions return the length of an

item to your PL/I routine. This is useful in CICS, where functions often require the

length of an argument as well as its address. In particular, you can use these

functions to get lengths of PL/I aggregates without having to count or compute

such lengths or specify length fields in the CICS commands.

For more information about the STORAGE and CURRENTSTORAGE built-in

functions, see IBM PL/I for VSE/ESA Language Reference

Condition Handling under CICS

The LE/VSE condition handling services described in Chapter 11, “LE/VSE

Condition Handling Introduction,” on page 103 and elsewhere in this book are

supported under CICS, but additional considerations apply when running an

application under CICS; these considerations are described in the following

sections.

Condition handling in nested enclaves created by EXEC CICS LINK or EXEC CICS

XCTL is discussed in “How Conditions Arising in Child Enclaves Are Handled” on

page 394.

PL/I Considerations for Using the CICS HANDLE ABEND

Command

The EXEC CICS HANDLE facility resembles a PL/I ON-unit with this syntax:

ON condition GO TO label;

You can code the HANDLE command wherever you would code the ON...GO

TO...statement. The label to be branched to can be located in any other active

block, and the condition can arise in an even later block. HANDLE terminates

intervening PL/I blocks by invoking PL/I’s out-of-block GO TO facilities.

Note: Because PL/I internal procedures are not active at all times, you should not

use internal procedures as exit routines in HANDLE commands.

HANDLE is not semantically identical to the ON condition GO TO label;

statement. A PL/I ON-unit disappears when the block containing it terminates; a

CICS HANDLE disappears when it is explicitly overridden by another one.

A HANDLE command could specify a branch to a label in a block no longer

active. Because HANDLE is implemented by forcing a PL/I out-of-block GO TO,

this is equivalent to assigning a label constant to a PL/I label variable after the

block containing the label constant has terminated, which is invalid. The PL/I

out-of-block GO TO mechanism attempts to detect this error and raises the ERROR

condition. If PL/I out-of-block GO TO fails to detect such an invalid GO TO,

however, the GO TO becomes a wild branch that causes some unpredictable

failure. Thus, upon return from a PL/I block that established HANDLE for a

particular condition, your program should issue a resetting HANDLE for that

Chapter 22. Running Applications under CICS 305

condition (provided, of course, that there is still some possibility of the condition

arising). A PL/I ON-unit does not have to be reset.

Effect of the CICS HANDLE ABEND Command

When an application is running under CICS with LE/VSE, condition handling

differs depending on whether a CICS HANDLE ABEND is active or not active.

When a CICS HANDLE ABEND is active, LE/VSE condition handling does not

gain control for any abends or program interrupts. Any abends or program

interrupts that occur while a CICS HANDLE ABEND is active cause the action

defined in the CICS HANDLE ABEND to take place. The user-written condition

handlers established by CEEHDLR are ignored.

When a CICS HANDLE ABEND is not active, LE/VSE condition handling does

gain control for abends and program interrupts if the TRAP(ON) option is

specified. Normal LE/VSE condition handling is then performed.

Effect of CICS HANDLE CONDITION and CICS HANDLE AID

LE/VSE condition handling does not alter the behavior of applications that use

CICS HANDLE CONDITION or CICS HANDLE AID. The CICS CONDITION and

AID conditions are raised by CICS and are handled only by CICS; LE/VSE is not

involved in the handling of CICS conditions.

Restrictions on User-written Condition Handlers

The following EXEC CICS commands cannot be used within a user-written

condition handler established using CEEHDLR, or within any routine called by a

user-written condition handler:

v EXEC CICS ABEND

v EXEC CICS HANDLE AID

v EXEC CICS HANDLE ABEND

v EXEC CICS HANDLE CONDITION

v EXEC CICS IGNORE CONDITION

v EXEC CICS POP HANDLE

v EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within a user-written condition

handler. However, they must be coded using the NOHANDLE option, the RESP

option, or the RESP2 option. This prevents additional conditions being raised due

to a CICS service failure.

COBOL Considerations

A user-written condition handler registered using the CEEHDLR service cannot be

translated using the CICS translator and therefore cannot contain any EXEC CICS

commands. This is because the CICS translator inserts (onto the PROCEDURE

DIVISION header of the COBOL program) the arguments EXEC Interface Block

(EIB) and COMMAREA, which do not match arguments passed by LE/VSE.

However, a user-written condition handler can call a subroutine to perform EXEC

CICS commands. If arguments need to be passed to this subroutine, they should be

preceded by two dummy arguments in the caller. The called subroutine must issue

EXEC CICS ADDRESS EIB before executing any other EXEC CICS commands.

306 LE/VSE: Programming Guide

CICS Transaction Abend Codes

The same LE/VSE reserved abend codes (4000 through 4095) are used for

applications running under CICS. In addition, there are special reason codes

returned to CICS for severe LE/VSE conditions. These severe conditions are

CICS-specific. For a detailed explanation of these reason codes, see LE/VSE

Debugging Guide and Run-Time Messages.

Using the CBLPSHPOP Run-Time Option under CICS

This section applies to VS COBOL II and COBOL/VSE programs only.

The CBLPSHPOP run-time option controls whether the LE/VSE environment

automatically issues an EXEC CICS PUSH HANDLE command during

initialization and an EXEC CICS POP HANDLE command during termination

whenever a VS COBOL II or COBOL/VSE subroutine is called using the COBOL

CALL statement.

If your application calls COBOL subroutines under CICS, your application

performance is better with CBLPSHPOP(OFF) than with CBLPSHPOP(ON). You

can set CBLPSHPOP on a transaction-by-transaction basis by using CEEUOPT.

See LE/VSE Programming Reference for more information about CBLPSHPOP.

Restrictions on Assembler User Exits under CICS

The following EXEC CICS commands cannot be used within the assembler user

exit or any routines called by the assembler user exit:

v EXEC CICS ABEND

v EXEC CICS HANDLE AID

v EXEC CICS HANDLE ABEND

v EXEC CICS HANDLE CONDITION

v EXEC CICS PUSH HANDLE

v EXEC CICS POP HANDLE

v EXEC CICS IGNORE CONDITION

All other EXEC CICS commands are allowed within the assembler user exit.

However, they must be coded using the NOHANDLE option, the RESP option, or

the RESP2 option. This prevents additional conditions being raised due to a CICS

service failure.

See Chapter 25, “Using Run-Time User Exits,” on page 319 for a discussion of the

assembler user exits available under LE/VSE.

PL/I Considerations

You can use PLIRETC to communicate with the LE/VSE assembler user exit. See

“Setting and Altering User Return Codes” on page 69 for more information about

PLIRETC, and Chapter 25, “Using Run-Time User Exits,” on page 319 for more

information about the assembler user exit.

Ensuring Transaction Rollback under CICS

Conditions that occur while an application is executing under CICS can potentially

contaminate any database currently being used by the application. It is essential

that a rollback (the backing out of any updates made by the failing application) be

performed before further damage to the database can occur.

Chapter 22. Running Applications under CICS 307

There are two ways to ensure that a transaction rollback occurs when an

unhandled condition of severity 2 or greater is detected:

v Use the ABTERMENC(ABEND) run-time option, or

v Make sure the assembler user exit requests an abend for unhandled conditions

of severity 2 or greater.

See LE/VSE Programming Reference for an explanation of the ABTERMENC run-time

option. See Chapter 25, “Using Run-Time User Exits,” on page 319 for more

information about using assembler user exits.

Run-Time Output under CICS

LE/VSE provides the same message handling and dump services for CICS as it

does for non-CICS systems. Any exceptions to this support under CICS are noted

in the following sections.

Message Handling under CICS

Under CICS, the MSGFILE option defaults to the CESE transient data queue.

Specification of a different transient data queue for MSGFILE is possible. However,

it is the users responsibility to ensure that this transient data queue is available in

the CICS system. The CESE transient data queue must always be available either

as TYPE=INDIRECT or TYPE=EXTRA in the CICS DCT definition. If an option

other than CESE is specified for MSGFILE and this transient data queue becomes

unusable or unavailable, LE/VSE will default to the CESE transient data queue.

The MSGFILE destination name under CICS must not exceed 4 characters in

length. Truncation will occur on the MSGFILE destination if the name used is

greater than 4 characters in length. The supplied definition of CEEMSG in

CEECDCT.A in PRD2.SCEEBASE should be used as an example for any other

TYPE=SDSCI destinations being used as a Disk File destination for MSGFILE. Note

that if a DISK file is being used as a final destination, you must remember to add 8

bytes to the BLKSIZE specified in your DCT definition. Any MSGFILE destination

used must support a blksize of at least 175 bytes (inclusive of the 8 bytes required

for LIOCS output files if DISK is used). The VSE system console is not a supported

destination for MSGFILE either directly or indirectly.

Messages are prefixed by a terminal ID, a transaction ID, a date, and a timestamp

before their transmission. Figure 114 illustrates this format.

ASA The American National Standard Code for Information Interchange (ASCII)

carriage-control character (optional character).

Terminal ID

A 4-character terminal identifier.

Transaction ID

A 4-character transaction identifier.

Figure 114. Format of Messages Sent to CESE

308 LE/VSE: Programming Guide

sp A space.

Timestamp

The date and time displayed in the same format as that returned by the

CEELOCT service.

Message

The message identifier and message text.

 The entire message record is preceded by an ASCII control character to determine

the format of the printing.

Message records are V-format.

See Chapter 15, “Using and Handling Messages,” on page 185 for a complete

description of LE/VSE message handling.

PL/I SYSPRINT

PL/I SYSPRINT also uses the CESE transient data queue. For information on how

to declare SYSPRINT, see IBM PL/I for VSE/ESA Programming Guide

Dump Services under CICS

Under CICS, the FNAME parameter of the CEE5DMP callable service is ignored.

Instead of being written to a ddname specified in FNAME, dumps are instead

transmitted to the CICS transient data queue named CESE.

The dump is prefixed with the same information shown in Figure 114 on page 308.

PL/I Considerations

The PLIDUMP subroutine has two additional options under CICS and some

special considerations. See LE/VSE Debugging Guide and Run-Time Messages for

more information about PLIDUMP.

Support for Calls within the Same HLL under CICS

C

EXEC CICS LINK, EXEC CICS XCTL, and calls via fetch() are supported under

CICS. The fetched program must be defined in the PPT (either using the DFHPPT

macro or the CSD). For further information, see LE/VSE C Run-Time Programming

Guide.

COBOL

The following sections describe support for calls compiled under different versions

of COBOL compilers.

COBOL/VSE

Static and dynamic calls between COBOL/VSE and VS COBOL II programs are

supported as follows:

v Called programs can contain any command or facility supported by CICS for

COBOL.

v If the called program has been translated by the CICS translator, calling

programs must pass the EIB and COMMAREA as the first two parameters on

the CALL statement.

Chapter 22. Running Applications under CICS 309

COBOL/VSE programs can invoke or be invoked by DOS/VS COBOL programs

only through CICS facilities such as EXEC CICS LINK, EXEC CICS XCTL, and

EXEC CICS RETURN.

VS COBOL II

Static and dynamic calls to or from VS COBOL II and COBOL/VSE programs are

supported with the same considerations previously listed for COBOL/VSE.

VS COBOL II programs can communicate with DOS/VS COBOL programs only

through CICS facilities such as EXEC CICS LINK, EXEC CICS XCTL, and EXEC

CICS RETURN.

DOS/VS COBOL

DOS/VS COBOL cannot call or be called by COBOL/VSE or VS COBOL II

programs. Communication between a program compiled with DOS/VS COBOL

and one compiled with a later version COBOL compiler is permitted only by CICS

facilities such as EXEC CICS LINK, EXEC CICS XCTL, and EXEC CICS RETURN.

PL/I

Static calls are supported from PL/I. Called subroutines can invoke CICS services

if the address of the EIB is passed to the subroutine properly. You can do this by

setting up the address of the EIB yourself and passing it to the subroutine, or by

coding the following command in the subroutine before issuing any other CICS

commands.

EXEC CICS ADDRESS EIB(DFHEIPTR)

PL/I FETCH is supported under CICS in a PL/I transaction compiled

310 LE/VSE: Programming Guide

Chapter 23. Running Applications with DB2

This chapter describes LE/VSE support for DB2 applications.

Understanding the Basics

An application program requests DB2 services by using SQL statements imbedded

in the program. The imbedded SQL is translated by the DB2 pre-compiler into host

language statements that typically perform assignments and then call a DB2

language interface module. The same entry point for the module is called by all

LE/VSE-conforming languages. DB2 processes the request and then returns to the

application.

LE/VSE Support for DB2 Applications

You are not required to modify anything in your code to run an

LE/VSE-conforming application with DB2. LE/VSE also supports ILC applications

that use DB2 services.

For information about HLL restrictions under DB2, see the Application

Programming Guide for your HLL listed in “Where to Find More Information” on

page xxi. For more information about using DB2 services, see Application

Programming Guide

Specifying Run-Time Options with DB2

With DB2, you cannot pass run-time options as parameters when the application is

invoked. However, you can specify run-time options for your application using

one of the following methods:

v As default options established in CEEDOPT during the installation of LE/VSE

(see page 35 for more information about CEEDOPT)

v As application defaults established in CEEUOPT (see page 36 and “CEEXOPT

Invocation Syntax” on page 40 for details)

v In the user exit (see “CEEBXITA Assembler User Exit Interface” on page 323 for

details on how to do this)

v In C applications, as options specified using #pragma runopts (see page 36 for

the proper syntax)

v In PL/I applications, as default options established in CEEUOPT using the

PLIXOPT string (see page 37 for the proper syntax)

Condition Handling under DB2

An DB2 database can be contaminated if errors occurring in DB2 are not handled

properly. For this reason, any errors occurring in DB2 must be trapped and

handled by DB2. If a task terminates, DB2 can then take appropriate action

depending on the nature of termination.

If you run DB2 in single-user mode, LE/VSE and DB2 keep track of calls to and

returns from DB2. If a program interrupt or abend occurs when your application is

running, the LE/VSE condition manager is informed whether the problem

occurred in your application or in DB2. If the program interrupt or abend occurs in

DB2, the LE/VSE condition handler percolates the condition back to DB2.

© Copyright IBM Corp. 1991, 2005 311

If you run DB2 in multiple-user mode, any errors occurring in DB2 are trapped by

DB2, regardless of the LE/VSE TRAP run-time option you specify.

If a program interrupt or abend occurs in the application outside of DB2, or a

software condition of severity 2 or greater is raised outside of DB2, the condition

manager takes normal condition handling actions as described in Chapter 11,

“LE/VSE Condition Handling Introduction,” on page 103. If the condition manager

gets control then you must do one of the following:

v Resolve the error completely so that the application can continue.

v Make sure that the application terminates abnormally by using the

ABTERMENC(ABEND) run-time option to transform all abnormal terminations

into operating system abends in order to cause DB2 rollbacks.

v Make sure that the application terminates abnormally by coding and providing a

modified run-time assembler user exit (CEEBXITA) that transforms all abnormal

terminations into operating system abends in order to cause DB2 rollbacks. The

assembler user exit you provide should check the return code and reason code

or the CEEAUE_ABTERM bit, and request an abend by setting the

CEEAUE_ABND flag to ON, if appropriate. See “CEEBXITA Assembler User Exit

Interface” on page 323 for more details about CEEBXITA user exit.

312 LE/VSE: Programming Guide

Chapter 24. Running Applications with DL/I

This chapter describes LE/VSE support for applications running with DL/I

DOS/VS Version 1 Release 10 and later.

Understanding the Basics

You do not need to change any of the code in your application in order to run

with DL/I DOS/VS, but there are some recommendations that you should

consider to ensure proper condition handling under DL/I. This topic, together with

an overview of how LE/VSE interacts with DL/I, are discussed in detail below.

For a detailed description of how to write DL/I batch and online applications, see

the appropriate DL/I DOS/VS Application Programming book listed in “Where to

Find More Information” on page xxi.

Using the Interface between LE/VSE and DL/I

LE/VSE provides a callable service, CEETDLI, that you can use to invoke DL/I. In

assembler, COBOL, and PL/I, and C, you could also invoke DL/I using the

following interfaces:

v In assembler, the ASMTDLI interface

v In COBOL, the CBLTDLI interface or the EXEC DLI interface

v In PL/I, the PLITDLI interface or the EXEC DLI interface

v In C, the ctdli() function call or the EXEC DLI interface

Under LE/VSE, each of these interfaces continues to function in its current

capacity.

CEETDLI performs essentially the same functions, as these language-specific

interfaces, but is language independent. Only LE/VSE-conforming application code

can call CEETDLI. Calls to CEETDLI are coded in the same way as calls to the

language-specific interfaces.

For information about CEETDLI, including its syntax and examples, see LE/VSE

Programming Reference. For a complete description of all available DL/I functions

and argument parameters you can specify in CEETDLI, see DL/I DOS/VS

Application Programming: CALL and RQDLI Interfaces

The names CEETDLI, ASMTDLI, CBLTDLI, PLITDLI, and CTDLI are all

interpreted to mean DL/I interfaces. If you are currently using them in any other

way in your application, you must change them.

CICS Considerations

Under CICS, you can use CEETDLI as well as the existing interfaces to access DL/I

databases.

C Considerations

To interface with DL/I from C, you must do the following:

v Specify the PLIST(OS), ENV(DLI), and NOEXECOPS run-time options of

#pragma runopts in your source code. The PLIST(OS) option establishes the

© Copyright IBM Corp. 1991, 2005 313

correct parameter list format for DL/I. The ENV(DLI) option establishes the

correct operating environment. The NOEXECOPS option specifies that run-time

options cannot be specified with DL/I.

v When you use the PLIST(OS) option in #pragma runopts, argc contains 1 (one)

and argv[0] contains NULL.

For more information about using the #pragma runopts preprocessor directive, see

Chapter 5, “Using Run-Time Options,” on page 33.

PL/I Considerations

The SYSTEM(DLI) compile option must be specified for PL/I batch applications

running with DL/I. When SYSTEM(DLI) is specified, the OPTIONS(BYADDR)

attribute is implied for the external PROCEDURE that also has OPTIONS(MAIN).

Further, the parameters to such a MAIN procedure must be POINTERs.

Specifying Run-Time Options with DL/I

With DL/I, you cannot pass run-time options as parameters when the application

is invoked. However, you can specify run-time options for your application using

one of the following methods:

v As default options established in CEEDOPT during the installation of LE/VSE

(see page 35 for more information about CEEDOPT)

v As application defaults established in CEEUOPT (see page 36 and “CEEXOPT

Invocation Syntax” on page 40 for details)

v In the user exit (see “CEEBXITA Assembler User Exit Interface” on page 323 for

details on how to do this)

v In C applications, as options specified using #pragma runopts (see page 36 for

the proper syntax)

v In PL/I applications, as default options established in CEEUOPT using the

PLIXOPT string (see page 37 for the proper syntax)

Condition Handling with DL/I

The DL/I environment is sensitive to errors or conditions. A failing DL/I

transaction or application can potentially contaminate a DL/I database. For this

reason, it is essential that DL/I knows about the failure of a transaction or

application that has been updating a database so that it can perform all necessary

cleanup activities. These include database rollback (the backing out of any updates

made by a failing online transaction), writing back any pending I/O buffers to the

physical database, and completing the journal file (if logging has been active).

Under CICS, DL/I database recovery is managed by the CICS-DL/I interface. For

more information about condition handling under CICS, see “Ensuring Transaction

Rollback under CICS” on page 307.

In the batch environment, DL/I database recovery is managed by the

LE/VSE-DL/I interface. When you run your batch application with the TRAP(ON)

run-time option, LE/VSE and DL/I DOS/VS keep track of calls to and returns

from DL/I. If a program interrupt or abend occurs when your application is

running, the LE/VSE condition manager is informed whether the problem

occurred in your application or in DL/I. If the program interrupt or abend occurs

in DL/I, the LE/VSE condition handler percolates the condition back to DL/I to

allow DL/I to do the required cleanup.

314 LE/VSE: Programming Guide

If a program interrupt or abend occurs in the application outside of DL/I, or a

software condition of severity 2 or greater is raised outside of DL/I, the condition

manager takes normal condition handling actions as described in Chapter 11,

“LE/VSE Condition Handling Introduction,” on page 103. If the condition manager

gets control then you must do one of the following:

v Resolve the error completely so that the application can continue.

v Make sure that the application terminates abnormally by using the

ABTERMENC(ABEND) run-time option to transform all abnormal terminations

into operating system abends in order to allow the DL/I exit to do the required

cleanup.

v Make sure that the application terminates abnormally by coding and providing a

modified run-time assembler user exit (CEEBXITA) that transforms all abnormal

terminations into operating system abends in order to allow the DL/I exit to do

the required cleanup. The assembler user exit you provide should check the

return code and reason code or the CEEAUE_ABTERM bit, and request an

abend by setting the CEEAUE_ABND flag to ON, if appropriate. See

“CEEBXITA Assembler User Exit Interface” on page 323 for more details about

CEEBXITA user exit.

Note: If a program interrupt or abend occurs, regardless of whether it occurs

within DL/I, or in the application outside DL/I, DL/I cleanup is only

performed when DL/I exit processing has been enabled through the

appropriate UPSI byte setting using the UPSI job control statement.

Chapter 24. Running Applications with DL/I 315

316 LE/VSE: Programming Guide

Part 5. Specialized Programming Tasks

Chapter 25. Using Run-Time User Exits 319

Understanding the Basics 319

User Exits Supported under LE/VSE 319

Using the Assembler User Exit CEEBXITA . . . 320

Using the HLL Initialization Exit CEEBINT . . 320

Using Sample Assembler User Exits 320

When User Exits Are Invoked 321

CEEBXITA Assembler User Exit Interface . . 323

CEEBINT High-Level Language User Exit

Interface 332

Chapter 26. Assembler Considerations 335

Understanding the Basics 335

Compatibility Considerations 335

Register Conventions 335

Considerations for Coding or Running Assembler

Routines 336

Condition Handling 336

Access to the Inbound Parameter String . . . 336

Overlay Programs 337

CEESTART, CEEMAIN, and CEEFMAIN . . . 337

LE/VSE Library Routine Retention 337

Using Library Routine Retention 338

Library Routine Retention and Preinitialization 338

CEELRR Macro— Initialize/Terminate LE/VSE

Library Routine Retention 339

Assembler Macros 341

CEEENTRY Macro— Generate an

LE/VSE-Conforming Prolog 341

CEETERM Macro— Terminate an

LE/VSE-Conforming Routine 343

CEECAA Macro— Generate a CAA Mapping 344

CEECIB Macro— Generate a CIB Mapping . . 345

CEEDSA Macro— Generate a DSA Mapping 345

CEEPPA Macro— Generate a PPA 345

CEELOAD Macro— Dynamically Load a

Routine 348

Usage Notes 350

CEEFETCH Macro— Dynamically Load a

Routine that Can Be Later Deleted 350

Usage Notes 352

CEERELES Macro— Dynamically Delete a

Routine 353

Usage Notes 354

Example of Assembler Main Routine 355

Example of an Assembler Main Calling an

Assembler Subroutine 356

Invoking Callable Services from Assembler

Routines 359

System Services Available to Assembler Routines 359

Chapter 27. Using Preinitialization Services . . 363

Understanding the Basics 363

Compatibility 364

COBOL 364

Using Preinitialization 364

Using the PIPI Table 364

C Considerations 364

COBOL Considerations 364

PL/I Considerations 365

Macros that Generate the PIPI Table 365

Reentrancy Considerations 366

User Exit Invocation 366

Stop Semantics 367

Specifying Run-Time Options and Program

Arguments 367

CEEPIPI Interface 368

Initialization 369

CEEPIPI(init_main)—Initialize for Main

Routines 369

CEEPIPI(init_sub)—Initialize for Subroutines 370

CEEPIPI(init_sub_dp)—Initialize for

Subroutines (Multiple Environment) 371

Application Invocation 373

CEEPIPI(call_main)—Invocation for Main

Routine 373

CEEPIPI(call_sub)—Invocation for

Subroutines 374

CEEPIPI(call_sub_addr)—Invocation for

Subroutines by Address 376

CEEPIPI(start_seq)—Start a Sequence of Calls 377

CEEPIPI(end_seq)—End a Sequence of Calls 378

Termination 379

CEEPIPI(term)—Terminate Environment . . 379

Adding an Entry to the PIPI Table 380

CEEPIPI(add_entry)—Add an Entry to the

PIPI Table 380

Deleting an Entry from the PIPI Table 381

CEEPIPI(delete_entry)—Delete an Entry from

the PIPI Table 381

Service Routines 382

An Example Program Invocation of CEEPIPI . . . 387

HLLPIPI Examples 390

Chapter 28. Using Nested Enclaves 393

Understanding the Basics 393

COBOL Considerations 393

Determining the Behavior of Child Enclaves . . . 393

Creating Child Enclaves Using EXEC CICS

LINK or EXEC CICS XCTL 394

How Run-Time Options Affect Child

Enclaves 394

How Conditions Arising in Child Enclaves

Are Handled 394

Creating Child Enclaves Using the C system()

Function 395

How Conditions Arising in Child Enclaves

Are Handled 395

Other Nested Enclave Considerations 396

What the Enclave Returns from CEE5PRM . . 396

Finding the Return and Reason Code from the

Enclave 397

© Copyright IBM Corp. 1991, 2005 317

Assembler User Exit 397

MSGFILE Considerations 397

AMODE Considerations 397

The chapters in this section describe advanced or specialized tasks that you can

perform in LE/VSE.

318 LE/VSE: Programming Guide

Chapter 25. Using Run-Time User Exits

LE/VSE provides user exits that you can use for functions at your installation. You

can use the assembler user exit (CEEBXITA) or the HLL user exit (CEEBINT). This

chapter provides information about using these run-time user exits.

Understanding the Basics

User exits are invoked under LE/VSE to perform enclave initialization functions

and both normal and abnormal termination functions. User exits offer you a

chance to perform certain functions at a point where you would not otherwise

have a chance to do so. In an assembler initialization user exit, for example, you

can specify a list of run-time options that establish characteristics of the

environment. This is done prior to the actual execution of any of your application

code.

In most cases, you do not need to modify any user exit in order to run your

application. Instead, you can accept the IBM-supplied default versions of the exits,

or the defaults as defined by your installation. To do so, run your application in

the normal manner and the default versions of the exits are invoked. You might

also want to read the sections “User Exits Supported under LE/VSE” and “When

User Exits Are Invoked” on page 321, which provide an overview of the user exits

and describe when they are invoked.

If you plan to modify either of the user exits to perform some specific function,

you must link the modified exit to your application before running. In addition,

the sections “Using the Assembler User Exit CEEBXITA” on page 320 and

“CEEBINT High-Level Language User Exit Interface” on page 332 describe the

respective user exit interfaces to which you must adhere in order to change an

assembler or HLL user exit.

User Exits Supported under LE/VSE

LE/VSE provides two user exit routines, one written in assembler (CEEBXITA) and

the other in an LE/VSE-conforming HLL (CEEBINT). If LE/VSE is installed in the

default sublibraries, you can find the IBM-supplied default exits in the

PRD2.SCEEBASE sublibrary.

The user exits supported by LE/VSE are shown in Table 47.

 Table 47. User Exits Supported under LE/VSE

Name Type of User Exit When Invoked

CEEBXITA Assembler user exit Enclave initialization

Enclave termination

Process termination

CEEBINT HLL user exit. CEEBINT can be written in

C, PL/I, or LE/VSE-conforming assembler.

Enclave initialization

When CEEBXITA or CEEBINT is linked with the LE/VSE initialization/termination

library routines during installation, it functions as an installation-wide user exit.

When CEEBXITA or CEEBINT is linked in your phase, it functions as an

© Copyright IBM Corp. 1991, 2005 319

application-specific user exit. The application-specific exit is used only when you

run that application. The installation-wide assembler user exit is not executed.

To use an application-specific user exit, you must explicitly include it at link-edit

time in the application phase using a linkage editor INCLUDE control statement

(see “Using the INCLUDE Statement” on page 26 for more information). Any time

that the application-specific exit is modified, it must be relinked with the

application.

The assembler user exit interface is described in “CEEBXITA Assembler User Exit

Interface” on page 323. The HLL user exit interface is described in “CEEBINT

High-Level Language User Exit Interface” on page 332.

Using the Assembler User Exit CEEBXITA

CEEBXITA tailors the characteristics of the enclave prior to its establishment. It

must be written in assembler language because an HLL environment is not yet

established when the exit is invoked. CEEBXITA is driven for enclave initialization

and enclave termination regardless of whether the enclave is the first enclave in

the process or a nested enclave. CEEBXITA can differentiate easily between first

and nested enclaves. For more information about nested enclaves, see Chapter 28,

“Using Nested Enclaves,” on page 393.

CEEBXITA is invoked very early during the initialization process, before enclave

initialization is complete. The enclave initialization code recognizes run-time

options specified by CEEBXITA.

Using the HLL Initialization Exit CEEBINT

CEEBINT is invoked just before the invocation of the application code. In LE/VSE,

this exit can be written in C, PL/I, or in LE/VSE-conforming assembler. CEEBINT

cannot be written in COBOL, even though COBOL applications can use this HLL

user exit. When CEEBINT is invoked, the run-time environment is fully operational

and all LE/VSE-conforming HLLs are supported.

Using Sample Assembler User Exits

You can use the sample assembler user exit programs distributed with LE/VSE to

modify the code for the requirements of your application. Choose a sample

program appropriate for your application. The following assembler user exit

programs are delivered with LE/VSE:

 Table 48. Sample Assembler User Exits for LE/VSE

Example User Exit Member

Name Operating Environment Language (if Language-Specific)

CEEBXITA.A VSE (default)

CEECXITA.A CICS (default)

CEEBX05A.A VSE VS COBOL II compatibility

Note:

1. If LE/VSE is installed at your site without modification, then CEEBXITA and CEECXITA are the

defaults on your system for VSE and CICS, respectively.

If LE/VSE is installed in the default sublibraries, you can find the source code for

CEEBXITA, CEECXITA, and CEEBX05A in the PRD2.SCEEBASE sublibrary.

320 LE/VSE: Programming Guide

The assembler user exit CEEBXITA performs functions for enclave initialization,

normal and abnormal enclave termination, and process termination. CEEBXITA

must be written in assembler language, because an HLL environment might not be

established when the exit is invoked.

You can set up user exits for tasks such as:

 Installation accounting and charge back

 Installation audit controls

 Programming standard enforcement

 Common application run-time support

When User Exits Are Invoked

Figure 115 shows the timing of the invocations of the user exits at initialization and

termination processing.

 In Figure 115, run-time user exits are invoked in the following sequence:

1. Assembler user exit is invoked for enclave initialization

2. Environment is established

3. HLL user exit is invoked

4. Main routine is invoked

5. Main routine returns control to caller

6. Assembler user exit is invoked for termination of the enclave

────5┌───────────────────┐

 │ │ ────5┌─────────────────────┐

 │ │ │ Assembler User Exit │ (invoked for

 │ │ =────│ (CEEBXITA) │ enclave

 │ │ └─────────────────────┘ initialization)

 │ INITIALIZATION │

 │ PROCESSING │

 │ │ ────5┌─────────────────────┐

 │ │ │ HLL User Exit │

 │ │ =────│ (CEEBINT) │

 │ │ └─────────────────────┘

 │ │

 └───────────────────┘ ───┐

 │

 └──5┌─────────────────────────────────┐

 │ │

 │ User Application Code │

 │ │

 │ (Main routine plus subroutines) │

 │ │

 ┌───│ │

 │ └─────────────────────────────────┘

 ┌───────────────────┐ =──┘

 │ │

 │ │ ────5┌─────────────────────┐

 │ │ │ Assembler User Exit │ (invoked for

 │ TERMINATION │ =────│ (CEEBXITA) │ enclave

 │ PROCESSING │ └─────────────────────┘ termination)

 │ │

 │ │

 │ │

 │ │ ────5┌─────────────────────┐

 │ │ │ Assembler User Exit │ (invoked for

 │ │ =────│ (CEEBXITA) │ process

=─── └───────────────────┘ └─────────────────────┘ termination)

Figure 115. Location of User Exits

Chapter 25. Using Run-Time User Exits 321

CEEBXITA is invoked for enclave termination processing after all application

code in the enclave has completed, but prior to any enclave termination

activity.

7. Environment is terminated

8. Assembler user exit is invoked for termination of the process

CEEBXITA is invoked again when the LE/VSE process terminates.

LE/VSE provides the CEEBXITA assembler user exit for termination but does not

provide a corresponding HLL termination user exit.

CEEBXITA behaves differently, depending upon when it is invoked, as described in

the following sections.

CEEBXITA Behavior During Enclave Initialization: The CEEBXITA assembler

user exit is invoked before enclave initialization is performed. You can use

CEEBXITA to help establish your application run time environment. For example,

in the assembler user exit you can specify the stack and heap run-time options.

You can also use the user exit to interrogate program parameters supplied in the

JCL and change them if you want. In addition, you can specify run-time options in

the user exit by using the CEEAUE_OPTION field of the assembler interface.

CEEBXITA Behavior During Enclave Termination: The CEEBXITA assembler exit

is invoked after the user code for the enclave has completed, but prior to the

occurrence of any enclave termination activity. In other words, the assembler user

exit for termination is invoked when the environment is still active. For example,

CEEBXITA is invoked before the storage report is produced (if you requested one),

files are closed, and the debug tool is invoked for enclave termination.

The assembler user exits permit you to request an abend. You can also request a

dump to assist in problem diagnosis. Because termination activities have not yet

begun when the user exit is invoked, the majority of storage has not been modified

when the dump is produced.

You can request the abend and dump in the assembler user exit for all

enclave-terminating events including:

v The situation that occurs in PL/I when the ON condition (including ERROR or

FINISH) is raised and one of the following conditions is true:

 The program does not have an appropriate ON-unit.

 The ON-unit does not terminate with a GOTO.

 The GOTO is not allowed.

This rule applies only to the conditions that cause termination of the program.

v Return from the main routine

v A debug tool QUIT command

v An HLL stop statement such as:

 C exit()

 COBOL STOP RUN

 PL/I STOP or EXIT
v An unhandled condition of severity 2 or above

CEEBXITA Behavior During Process Termination: The CEEBXITA assembler exit

is invoked after:

 All enclaves have terminated

 The enclave resources have been relinquished

 Any LE/VSE-managed files have been closed

322 LE/VSE: Programming Guide

The debug tool has terminated

At this time you can free allocated files and request an abend.

During termination, CEEBXITA can interrogate the LE/VSE reason and return

codes and, if necessary, request an abend with or without a dump. This can be

done at either enclave or process termination.

Specifying Abnormal Conditions to Be Exempted from Condition Handling:

 The assembler user exit, when invoked for initialization in the batch environment,

can return a list of VSE cancel codes, program-interruption codes, and user abend

codes (contained in the CEEAUE_CODES field of the assembler user exit

interface—see “CEEBXITA Assembler User Exit Interface”) that are to be exempted

from LE/VSE condition handling.

When an abend or program interrupt occurs in your application, and

TRAP(ON,MAX) is in effect, and the VSE cancel code, program-interruption code,

or user abend code is in the CEEAUE_CODES list, LE/VSE produces an abnormal

termination message and issues an abend to terminate the enclave. Normal

LE/VSE condition handling is never invoked to handle these conditions. This

feature is useful when you do not want LE/VSE condition handling to intervene

for certain abends, and when you want to produce a system dump.

When TRAP(ON,MIN) is specified and there is a program interrupt, the user exit

for termination is not driven.

Actions Taken for Errors That Occur within the Assembler User Exit: If any

errors occur during the enclave initialization user exit, the standard system action

occurs because LE/VSE condition handling has not yet been established.

Any errors occurring during the enclave termination user exit lead to abnormal

termination (through an abend) of the LE/VSE environment.

If there is a program check during the enclave termination user exit and

TRAP(ON,MAX) is in effect, the application ends abnormally with message

CEE3322C and user abend code 4094 and reason code 44. If there is a program

check during the enclave termination user exit and TRAP(ON,MIN) has been

specified, the application ends abnormally without additional error checking

support. LE/VSE performs no condition handling; error handling is performed by

the operating system.

If there is a program check during the process termination user exit, the

application ends abnormally without additional error checking support, regardless

of the setting of the TRAP run-time option. LE/VSE performs no condition

handling; error handling is performed by the operating system.

CEEBXITA Assembler User Exit Interface

You can modify CEEBXITA to perform any function you need, but the exit must

have the following attributes after you modify it at installation:

v The user-supplied exit must be named CEEBXITA.

v The exit must be reentrant.

v The exit must be capable of executing in AMODE(ANY) and RMODE(ANY).

v The exit must be relinked with LE/VSE initialization/termination routines after

modification.

Chapter 25. Using Run-Time User Exits 323

If a user exit is modified, you are responsible for conforming to the interface

shown in Figure 116. Note that this user exit must be written in assembler.

 When the user exit is called, register 1 points to a word that contains the address

of the CEEAUE control block. The high-order bit is on.

The CEEAUE control block contains the following fullwords:

CEEAUE_LEN (input parameter)

A fullword integer that specifies the total length of this control block. For

LE/VSE, the length is 48 bytes.

CEEAUE_FUNC (input parameter)

A fullword integer that specifies the function code. LE/VSE supports the

following function codes:

1 Initialization of the first enclave within a process.

2 Termination of the first enclave within a process.

3 Nested enclave initialization.

4 Nested enclave termination.

5 Process termination.

The user exit should ignore function codes other than those numbered from 1

through 5.

CEEAUE_RETURN (input/output parameter)

A fullword integer that specifies the return or abend code. CEEAUE_RETURN

has different meanings, depending on whether it is an input parameter or an

output parameter:

 ┌─────────────┐

Register 1 ───5│1 XITPTR │

 └──────┬──────┘

 │

 CEEAUE a

 ┌───────────────┐

 0(0) │ CEEAUE_LEN │

 ├───────────────┤

 4(4) │ CEEAUE_FUNC │

 ├───────────────┤

 8(8) │ CEEAUE_RETURN │

 ├───────────────┤

 12(C) │ CEEAUE_REASON │

 ├───────────────┤

 16(10) │ CEEAUE_FLAGS │

 ├───────────────┤

 20(14) │ CEEAUE_PARM │

 ├───────────────┤

 24(18) │ CEEAUE_WORK │

 ├───────────────┤

 28(1C) │ CEEAUE_OPTION │

 ├───────────────┤

 32(20) │ CEEAUE_USER │

 ├───────────────┤

 36(24) │ CEEAUE_CODES │

 ├───────────────┤

 40(28) │ CEEAUE_FBCODE │

 ├───────────────┤

 44(2C) │ CEEAUE_PAGE │

 └───────────────┘

Figure 116. Interface for CEEBXITA Assembler User Exit

324 LE/VSE: Programming Guide

v As an input parameter, CEEAUE_RETURN is the enclave return code.

v As an output parameter, CEEAUE_RETURN has different meanings,

depending on the flag CEEAUE_ABND (see below):

– If the flag CEEAUE_ABND is off, CEEAUE_RETURN is interpreted as the

LE/VSE return code placed in register 15.

– If the flag CEEAUE_ABND is on, CEEAUE_RETURN is interpreted as an

abend code used when an abend is issued. (In batch, run-time message

CEE3322C is produced and an operating system request is issued to

terminate the enclave; in CICS, an EXEC CICS ABEND is issued.)

CEEAUE_REASON (input/output parameter)

A fullword integer that specifies the reason code for CEEAUE_RETURN.

CEEAUE_REASON has different meanings, depending on whether it is an

input parameter or an output parameter:

v As an input parameter, CEEAUE_REASON is the LE/VSE return code

modifier.

v As an output parameter, CEEAUE_REASON has different meanings,

depending on the flag CEEAUE_ABND (see below):

– If the flag CEEAUE_ABND is off, CEEAUE_REASON is interpreted as the

LE/VSE return code modifier placed in register 0.

– If the flag CEEAUE_ABND is on, CEEAUE_REASON is interpreted as an

abend reason code used when an abend is issued. (CEEAUE_REASON is

used in the batch abnormal-termination run-time message CEE3322C, but

is ignored in the CICS environments when an EXEC CICS ABEND is

issued.)

CEEAUE_FLAGS

Contains four 1-byte flags. CEEBXITA uses only the first byte but reserves the

remaining flags. All unspecified bits and bytes must be 0. The layout of these

flags is shown in Figure 117:

 Byte 0 (CEEAUE_FLAG1) has the following meaning:

CEEAUE_ABTERM (input parameter)

 Byte 0 ┌───┐

 │ x... - CEEAUE_ABTERM │

 │ 0... - Normal termination │

 │ 1... - Abnormal termination │

 │ .x.. - CEEAUE_ABND │

 │ .0.. - Terminate with CEEAUE_RETURN │

 │ .1.. - ABEND with CEEAUE_RETURN and │

 │ CEEAUE_REASON given │

 │ ..x. - CEEAUE_DUMP │

 │ ..0. - If CEEAUE_ABND=1 ABEND with no dump │

 │ ..1. - If CEEAUE_ABND=1 ABEND with a dump │

 │ ...0 0000 - Reserved bits (must be zero) │

 Byte 1 ├───┤

 │ 00 - Reserved for future use │

 Byte 2 ├───┤

 │ 00 - Reserved for future use │

 Byte 3 ├───┤

 │ 00 - Reserved for future use │

 └───┘

Figure 117. CEEAUE_FLAGS Format

Chapter 25. Using Run-Time User Exits 325

OFF Indicates that the enclave is terminating normally (severity 0 or 1

condition).

ON Indicates that the enclave is terminating with an LE/VSE return code

modifier of 2 or greater. This could, for example, indicate that a

severity 2 or greater condition was raised but not handled.

CEEAUE_ABND (input/output parameter)

OFF Indicates that the enclave should terminate without an abend being

issued. Thus, CEEAUE_RETURN and CEEAUE_REASON are placed

into register 15 and register 0 respectively and returned to the enclave

creator.

ON Indicates that the enclave terminates with an abend. Thus,

CEEAUE_RETURN and CEEAUE_REASON are used by LE/VSE in

the invocation of the abend. When running in the batch environment,

run-time message CEE3322C is produced and an operating system

request is issued to terminate the enclave. When running under CICS,

an EXEC CICS ABEND command is issued using the abend code

contained in CEEAUE_RETURN. CEEAUE_REASON is ignored under

CICS.

The TRAP run-time option does not affect the setting of CEEAUE_ABND.

 When the ABTERMENC(ABEND) run-time option is specified, the enclave

always terminates with an abend when there is an unhandled condition of

severity 2 or greater, regardless of the setting of the CEEAUE_ABND flag.

However, if you want a system dump to be produced when the enclave

terminates with an abend, you must set CEEAUE_ABND and CEEAUE_DUMP

to ON. See “Termination Behavior for Unhandled Conditions” on page 70 for a

detailed explanation of how the CEEAUE_ABND parameter can affect the

behavior of the ABTERMENC run-time option.

CEEAUE_DUMP (output parameter)

OFF Indicates that when you request an abend, by setting CEEAUE_ABND

to ON, an abend is issued without requesting a dump.

ON Indicates that when you request an abend by setting CEEAUE_ABND

to ON, an abend requesting a dump is issued. You must also specify

the VSE DUMP option if you want a system dump to be produced

when you request an abend.

CEEAUE_PARM (input/output parameter)

A fullword pointer to the parameter address list of the application program.

 As an input parameter, CEEAUE_PARM contains the register 1 value passed to

the main routine. The exit can modify this value, and the value is then passed

to the main routine. If run-time options are present in the PARM parameter of

the JCL EXEC statement, they are stripped off before the exit is called.

 If the parameter inbound to the main routine is a character string,

CEEAUE_PARM contains the address of a fullword address that points to a

halfword prefixed string. The halfword prefix contains the length of the string.

If no program arguments are specified in the PARM parameter of the JCL

EXEC statement, the halfword prefix contains zero.

Note: It is important that before using this pointer your program checks:

v if CEEAUE_PARM has a non-zero value.

v the length and content of invocation string.

326 LE/VSE: Programming Guide

If this string is altered by the user exit, the string must not be extended in

place. Before the string is extended, it must be copied to an area of user

storage large enough for the extended string.

CEEAUE_WORK (input parameter)

A fullword pointer to a 256-byte work area that the exit can use. On entry it

contains binary zeros and is doubleword-aligned.

 This area does not persist across exits.

CEEAUE_OPTION (output parameter)

Upon return, CEEAUE_OPTION contains a fullword pointer to the address of

a halfword-length prefixed character string that contains run-time options.

These options are honored only during the initialization of the first enclave.

When invoked for enclave termination, CEEAUE_OPTION is ignored.

 These run-time options override all other sources of run-time options except

those that are specified as NONOVR in the installation default run-time

options.

 Under CICS, the STACK run-time option cannot be modified with the

assembler user exit.

CEEAUE_USER (input/output parameter)

A fullword whose value is maintained without alteration and passed to every

user exit. Upon entry to the enclave initialization user exit, it is zero.

Thereafter, the value of the user word is not altered by LE/VSE or any

member libraries. The user exit might change the value of CEEAUE_USER, and

LE/VSE maintains that value. This allows the initialization user exit to acquire

and initialize a work area, save its address in CEEAUE_USER, and pass the

work area address to subsequent user exits. The work area might be freed by

the termination user exit.

CEEAUE_CODES (output parameter)

During the initialization exit, CEEAUE_CODES contains the fullword address

of a table of VSE cancel codes, program-interruption codes, and user-abend

codes that the LE/VSE condition handler exempts from normal condition

handling. Therefore, the application is not given the opportunity to field the

abend. The table consists of:

v A fullword count of the number of cancel codes, program-interruption

codes, and abend codes that are to be exempted from LE/VSE condition

handling, and passed to the operating system.

v A fullword for each of the particular cancel codes, program-interruption

codes, or abend codes that are to be exempted from LE/VSE condition

handling, and passed to the operating system.

– User abend codes are specified as F'uuuu'. For example, if you want user

abend 7777 to be exempted from LE/VSE condition handling, code

F'7777'.

– VSE cancel codes are specified as X'000000cc'. Avoid specifying the value

X'00000020', which indicates a program check has occurred. If you specify

the value X'00000020', LE/VSE ignores it, and normal LE/VSE condition

handling semantics take effect. If you want to exempt specific program

checks from LE/VSE condition handling, specify the program-interruption

codes.

– Program-interruption codes are specified as X'800000ii'. For example, if

you want an operation exception to be exempted from LE/VSE condition

handling, code X'80000001'.

This function is not enabled under CICS.

Chapter 25. Using Run-Time User Exits 327

CEEAUE_FBCODE (input parameter)

Contains a fullword address of the condition token with which the enclave

terminated. If the enclave terminates normally (that is, not due to a condition),

the condition token is zero.

CEEAUE_PAGE (input parameter)

This parameter indicates whether PL/I BASED variables that are allocated

storage outside of AREAs are allocated on a 4K-page boundary. You can

specify in the field the minimum number of bytes of storage that must be

allocated. Your allocation request must be an exact multiple of 4K.

 The IBM-supplied default setting for CEEAUE_PAGE is 32768 (32K).

 If CEEAUE_PAGE is set to zero, PL/I BASED variables can be placed on other

than 4K-page boundaries.

 CEEAUE_PAGE is honored only during enclave initialization, that is, when

CEEAUE_FUNC is 1 or 3.

Parameter Values in the Assembler User Exit: The parameters described in

“CEEBXITA Assembler User Exit Interface” on page 323 contain different values

depending on how the user exit is used. Table 49 on page 329 and Table 50 on page

331 describe the possible values for the parameters based on how the assembler

user exit is invoked.

328 LE/VSE: Programming Guide

Ta
bl

e
49

.
P

ar
am

et
er

V

al
ue

s
in

th

e
A

ss
em

bl
er

U

se
r

E
xi

t
(P

ar
t

1)
.

T
he

as

se
m

bl
er

us

er

ex

it
co

nt
ai

ns

th

es
e

pa
ra

m
et

er

va

lu
es

de

pe
nd

in
g

on

w

he
n

it
is

in

vo
ke

d.

W
h

en

In

vo
k

ed

C
E

E
A

U
E

_
L

E
N

C

E
E

A
U

E
_R

E
T

U
R

N

C
E

E
A

U
E

_
R

E
A

S
O

N

(S

ee

N

ot
e

1)

C
E

E
A

U
E

_
FL

A
G

S

C
E

E
A

U
E

_P
A

R
M

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
In

it
ia

liz
at

io
n

—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

1

48

0
0

0
T

he

ad

d
re

ss

of

a

fu
llw

or
d

th

at

po

in
ts

to

a

st
ri

ng

of

us

er

pa

ra
m

et
er

s
pr

ef
ix

ed

by

a

ha
lf

w
or

d

le

ng
th

. I
f

no

pa

ra
m

et
er

s
ar

e
pr

es
en

t,
th

e
ha

lf
w

or
d

le

ng
th

co

nt
ai

ns

ze

ro
.

Yo
u

ca
n

al
te

r
th

e
st

ri
ng

in

a

us
er

ex

it
. U

po
n

re
tu

rn
, t

he

C

E
E

A
U

E
_P

A
R

M

is

pr

oc
es

se
d

an
d

m

er
ge

d

as

th

e
in

vo
ca

ti
on

st

ri
ng

.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
In

it
ia

liz
at

io
n

—

R

et
ur

n

0,

or

ab

en
d

co

d
e

if

C

E
E

A
U

E
_A

B
N

D

=

1

0,

or

re

as
on

co

d
e

fo
r

C
E

E
A

U
E

_R
E

T
U

R
N

if

C
E

E
A

U
E

_A
B

N
D

=

1

Se
e

N
ot

e
2

on

pa

ge

33
0.

T
he

ad

d
re

ss

of

a

fu
llw

or
d

th

at

po

in
ts

to

an

op
ti

on
al

ly

al

te
re

d

st

ri
ng

of

us

er

pa

ra
m

et
er

s
pr

ef
ix

ed

by

a

ha
lf

w
or

d

le

ng
th

. I
f

no

pa
ra

m
et

er
s

ar
e

pr
es

en
t,

th
e

ha
lf

w
or

d

le

ng
th

co
nt

ai
ns

ze

ro
. U

po
n

re
tu

rn
, t

he

C
E

E
A

U
E

_P
A

R
M

is

pr

oc
es

se
d

an

d

m

er
ge

d

as

th

e
in

vo
ca

ti
on

st

ri
ng

.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
Te

rm
in

at
io

n
—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

2

48

R
et

ur
n

co
d

e
is

su
ed

by

ap

pl
ic

at
io

n
th

at

is

te
rm

in
at

in
g.

R
ea

so
n

co
d

e
th

at

ac

co
m

pa
ni

es

C
E

E
A

U
E

_R
E

T
U

R
N

.
Se

e
N

ot
e

3
on

pa

ge

33
0.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
Te

rm
in

at
io

n
—

R

et
ur

n

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
re

tu
rn

co

d
e

pl
ac

ed

in

to

re

gi
st

er

15

w

he
n

th
e

en
cl

av
e

te
rm

in
at

es
. I

f
C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
ab

en
d

co

d
e.

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
en

cl
av

e
re

as
on

co
d

e.

If

C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
ab

en
d

re
as

on

co

d
e.

Se
e

N
ot

e
2

on

pa

ge

33
0.

N
es

te
d

E

nc
la

ve

In
it

ia
liz

at
io

n
—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

3

48

0
0

0
T

he

ad

d
re

ss

of

a

fu
llw

or
d

th

at

po

in
ts

to

a

st
ri

ng

of

us

er

pa

ra
m

et
er

s
pr

ef
ix

ed

by

a

ha
lf

w
or

d

le

ng
th

. I
f

no

pa

ra
m

et
er

s
ar

e
pr

es
en

t,
th

e
ha

lf
w

or
d

le

ng
th

co

nt
ai

ns

ze

ro
.

Yo
u

ca
n

al
te

r
th

e
st

ri
ng

in

a

us
er

ex

it
. U

po
n

re
tu

rn
, t

he

C

E
E

A
U

E
_P

A
R

M

is

pr

oc
es

se
d

an
d

m

er
ge

d

as

th

e
in

vo
ca

ti
on

st

ri
ng

.

N
es

te
d

E

nc
la

ve

In
it

ia
liz

at
io

n
—

R
et

ur
n

0,

or

if

C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
ab

en
d

co
d

e.

0,

or

if

C

E
E

A
U

E
_A

B
N

D

=

1,

re

as
on

co

d
e

fo
r

C
E

E
A

U
E

_R
E

T
U

R
N

.
Se

e
N

ot
e

2
on

pa

ge

33
0.

T
he

ad

d
re

ss

of

a

fu
llw

or
d

th

at

po

in
ts

to

an

op
ti

on
al

ly

al

te
re

d

st

ri
ng

of

us

er

pa

ra
m

et
er

s
pr

ef
ix

ed

by

a

ha
lf

w
or

d

le

ng
th

. I
f

no

pa
ra

m
et

er
s

ar
e

pr
es

en
t,

th
e

ha
lf

w
or

d

le

ng
th

co
nt

ai
ns

ze

ro
. U

po
n

re
tu

rn
, t

he

C
E

E
A

U
E

_P
A

R
M

is

pr

oc
es

se
d

an

d

m

er
ge

d

as

th

e
in

vo
ca

ti
on

st

ri
ng

.

N
es

te
d

E

nc
la

ve

Te
rm

in
at

io
n

—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

4

48

R
et

ur
n

co
d

e
is

su
ed

by

en

cl
av

e
th

at

is

te
rm

in
at

in
g.

R
ea

so
n

co
d

e
ac

co
m

pa
ny

in
g

C
E

E
A

U
E

_R
E

T
U

R
N

.
Se

e
N

ot
e

3
on

pa

ge

33
0.

Chapter 25. Using Run-Time User Exits 329

Ta
bl

e
49

.
P

ar
am

et
er

V

al
ue

s
in

th

e
A

ss
em

bl
er

U

se
r

E
xi

t
(P

ar
t

1)

(c

on
tin

ue
d)

.
T

he

as

se
m

bl
er

us

er

ex

it
co

nt
ai

ns

th

es
e

pa
ra

m
et

er

va

lu
es

de

pe
nd

in
g

on

w

he
n

it
is

in
vo

ke
d.

W
h

en

In

vo
k

ed

C
E

E
A

U
E

_
L

E
N

C

E
E

A
U

E
_R

E
T

U
R

N

C
E

E
A

U
E

_
R

E
A

S
O

N

(S

ee

N

ot
e

1)

C
E

E
A

U
E

_
FL

A
G

S

C
E

E
A

U
E

_P
A

R
M

N
es

te
d

E

nc
la

ve

Te
rm

in
at

io
n

—

R
et

ur
n

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
re

tu
rn

co

d
e

fr
om

th

e
en

cl
av

e.

If

C

E
E

A
U

E
_A

B
N

D

=

1,

th
e

ab
en

d

co

d
e.

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
en

cl
av

e
re

as
on

co
d

e.

If

C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
en

cl
av

e
re

as
on

co

d
e.

Se
e

N
ot

e
2.

Pr
oc

es
s

Te
rm

in
at

io
n

—

E

nt
ry

Fu

nc
ti

on

C
od

e
=

5

48

R
et

ur
n

co
d

e
pr

es
en

te
d

to

th

e
in

vo
ki

ng

sy
st

em

in

re

gi
st

er

15

th

at

re

fl
ec

ts

th

e
va

lu
e

re
tu

rn
ed

fr

om

th

e
“f

ir
st

en

cl
av

e
w

it
hi

n
pr

oc
es

s
te

rm
in

at
io

n”
.

R
ea

so
n

co
d

e
ac

co
m

pa
ny

in
g

C
E

E
A

U
E

_R
E

T
U

R
N

th

at

is

pr

es
en

te
d

to

th

e
in

vo
ki

ng

sy

st
em

in

re

gi
st

er

0

an
d

re

fl
ec

ts

th
e

va
lu

e
re

tu
rn

ed

fr

om

th

e
“f

ir
st

en

cl
av

e
w

it
hi

n
pr

oc
es

s
te

rm
in

at
io

n”
.

Se
e

N
ot

e
4.

Pr
oc

es
s

Te
rm

in
at

io
n

—

R

et
ur

n

If

C

E
E

A
U

E
_A

B
N

D

=

0,

re

tu
rn

co

d
e

fr
om

th
e

pr
oc

es
s.

If

C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
ab

en
d

co

d
e.

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
re

as
on

co

d
e

fo
r

C
E

E
A

U
E

_R
E

T
U

R
N

fr

om

th

e
pr

oc
es

s.

If

C
E

E
A

U
E

_A
B

N
D

=

1,

re

as
on

co

d
e

fo
r

th
e

C
E

E
A

U
E

_R
E

T
U

R
N

ab

en
d

re

as
on

co

d
e.

Se
e

N
ot

e
2.

N
ot

es
:

1.

C
E

E
A

U
E

_R
E

A
SO

N

is

ig

no
re

d

un

d
er

C

IC
S

w
he

n
C

E
E

A
U

E
_A

B
N

D

=

1.

2.

C
E

E
A

U
E

_F
L

A
G

S
:

C
E

E
A

U
E

_A
B

N
D

=

1

if

an

ab

en
d

is

re

qu
es

te
d

, o
r

0
if

th

e
en

cl
av

e
sh

ou
ld

co

nt
in

ue

w

it
h

te
rm

in
at

io
n

pr
oc

es
si

ng

C
E

E
A

U
E

_D
U

M
P

=

1

if

th

e
ab

en
d

sh

ou
ld

re

qu
es

t
a

d
um

p
3.

C

E
E

A
U

E
_F

L
A

G
S

:

C
E

E
A

U
E

_A
B

T
E

R
M

=

1

if

th

e
ap

pl
ic

at
io

n
is

te

rm
in

at
in

g
w

it
h

an

L

E
/

V
SE

re

tu
rn

co

d
e

m
od

if
ie

r
of

2

or

gr

ea
te

r,
or

0

ot
he

rw
is

e

C
E

E
A

U
E

_A
B

N
D

=

1

if

an

ab

en
d

is

re

qu
es

te
d

, o
r

0
if

th

e
en

cl
av

e
sh

ou
ld

co

nt
in

ue

w

it
h

te
rm

in
at

io
n

pr
oc

es
si

ng

C
E

E
A

U
E

_D
U

M
P

=

0

4.

C
E

E
A

U
E

_F
L

A
G

S
:

C
E

E
A

U
E

_A
B

T
E

R
M

=

1

if

th

e
la

st

en

cl
av

e
is

te

rm
in

at
in

g
ab

no
rm

al
ly

(t

ha
t

is
, a

n
L

E
/

V
SE

re

tu
rn

co

d
e

m
od

if
ie

r
is

2

or

gr

ea
te

r)
. T

hi
s

re
fl

ec
ts

th

e
va

lu
e

re
tu

rn
ed

fr

om

th

e
“f

ir
st

en
cl

av
e

w
it

hi
n

pr
oc

es
s

te
rm

in
at

io
n”

.

C
E

E
A

U
E

_A
B

N
D

=

1

if

an

ab

en
d

is

re

qu
es

te
d

, o
r

0
if

th

e
en

cl
av

e
sh

ou
ld

co

nt
in

ue

w

it
h

te
rm

in
at

io
n

pr
oc

es
si

ng

“f

ir
st

en

cl
av

e
w

it
hi

n
pr

oc
es

s
te

rm
in

at
io

n”

(f

un
ct

io
n

co
d

e
2)

.

C
E

E
A

U
E

_D
U

M
P

=

0

330 LE/VSE: Programming Guide

Ta
bl

e
50

.
P

ar
am

et
er

V

al
ue

s
in

th

e
A

ss
em

bl
er

U

se
r

E
xi

t
(P

ar
t

2)
.

T
he

as

se
m

bl
er

us

er

ex

it
co

nt
ai

ns

th

es
e

pa
ra

m
et

er

va

lu
es

de

pe
nd

in
g

on

w

he
n

it
is

in

vo
ke

d.

W
h

en

In

vo
k

ed

C
E

E
A

U
E

_W
O

R
K

C

E
E

A
U

E
_O

P
T

IO
N

C

E
E

A
U

E

_U

S
E

R

C
E

E
A

U
E

_

C
O

D
E

S

C
E

E
A

U
E

_F
B

C
O

D
E

C

E
E

A
U

E
_P

A
G

E

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
In

it
ia

liz
at

io
n

—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

1

A
d

d
re

ss

of

a

25
6-

by
te

w

or
k

ar
ea

of

bi

na
ry

ze

ro
s.

0
0

M
in

im
um

nu

m
be

r
of

st

or
ag

e
by

te
s

to

be

al

lo
ca

te
d

fo

r
PL

/
I

B
A

SE
D

va

ri
ab

le
s

(d
ef

au
lt

=

32

76
8)

.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
In

it
ia

liz
at

io
n

—

R

et
ur

n

Po

in
te

r
to

ad

d
re

ss

of

a

ha
lf

w
or

d

pr
ef

ix
ed

ch

ar
ac

te
r

st
ri

ng

co

nt
ai

ni
ng

ru
n-

ti
m

e
op

ti
on

s,

or

0.

V
al

ue

of

C
E

E
A

U
E

_U
SE

R

fo

r
al

l
su

bs
eq

ue
nt

ex

it
s.

Po
in

te
r

to

th
e

ab
en

d

co
d

es

ta
bl

e,

or

0.

U
se

r
sp

ec
if

ie
d

PA

G
E

va

lu
e.

M

in
im

um

nu

m
be

r
of

st

or
ag

e
by

te
s

to

be

al

lo
ca

te
d

fo

r
PL

/
I

B
A

SE
D

va

ri
ab

le
s

(d
ef

au
lt

=

32

76
8)

.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
Te

rm
in

at
io

n
—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

2

A
d

d
re

ss

of

a

25
6-

by
te

ar

ea

of

bi
na

ry

ze

ro
s.

R

et
ur

n
va

lu
e

fr
om

pr
ev

io
us

ex

it
.

Fe
ed

ba
ck

co

d
e

ca
us

in
g

te
rm

in
at

io
n.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
Te

rm
in

at
io

n
—

R

et
ur

n

T
he

va

lu
e

of

C
E

E
A

U
E

_U
SE

R

fo

r
al

l
su

bs
eq

ue
nt

ex

it
s.

N
es

te
d

E

nc
la

ve

In
it

ia
liz

at
io

n
—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

3

A
d

d
re

ss

of

a

25
6-

by
te

w

or
k

ar
ea

of

bi

na
ry

ze

ro
s.

R

et
ur

n
va

lu
e

fr
om

pr
ev

io
us

ex

it
.

0

M
in

im
um

nu

m
be

r
of

st

or
ag

e
by

te
s

to

be

al

lo
ca

te
d

fo

r
PL

/
I

B
A

SE
D

va

ri
ab

le
s

(d
ef

au
lt

=

32

76
8)

.

N
es

te
d

E

nc
la

ve

In
it

ia
liz

at
io

n
—

R
et

ur
n

Po

in
te

r
to

fu

llw
or

d

ad
d

re
ss

th

at

po

in
ts

to

a

ha
lf

w
or

d

pr
ef

ix
ed

le

ng
th

st
ri

ng

co

nt
ai

ni
ng

ru
n-

ti
m

e
op

ti
on

s,

or

0.

T
he

va

lu
e

of

C
E

E
A

U
E

_U
SE

R

fo

r
al

l
su

bs
eq

ue
nt

ex

it
s.

Po
in

te
r

to

ab
en

d

co
d

es

ta
bl

e,

or

0.

U
se

r
sp

ec
if

ie
d

PA

G
E

va

lu
e.

M

in
im

um

nu

m
be

r
of

st

or
ag

e
by

te
s

to

be

al

lo
ca

te
d

fo

r
PL

/
I

B
A

SE
D

va

ri
ab

le
s

(d
ef

au
lt

=

32

76
8)

.

N
es

te
d

E

nc
la

ve

Te
rm

in
at

io
n

—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

4

A
d

d
re

ss

of

a

25
6-

by
te

w

or
k

ar
ea

of

bi

na
ry

ze

ro
s.

R

et
ur

n
va

lu
e

fr
om

pr
ev

io
us

ex

it
.

Fe

ed
ba

ck

co

d
e

ca
us

in
g

te
rm

in
at

io
n.

N
es

te
d

E

nc
la

ve

Te
rm

in
at

io
n

—

R

et
ur

n

V

al
ue

of

C
E

E
A

U
E

_U
SE

R

fo

r
al

l
su

bs
eq

ue
nt

ex

it
s.

Pr
oc

es
s

Te
rm

in
at

io
n

—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

5

A
d

d
re

ss

of

a

25
6-

by
te

w

or
k

ar
ea

of

bi

na
ry

ze

ro
s.

R

et
ur

n
va

lu
e

fr
om

pr
ev

io
us

ex

it
.

Fe

ed
ba

ck

co

d
e

ca
us

in
g

te
rm

in
at

io
n.

Pr
oc

es
s

Te
rm

in
at

io
n

—

R

et
ur

n

V

al
ue

of

C
E

E
A

U
E

_U
SE

R

fo

r
al

l
su

bs
eq

ue
nt

ex

it
s.

Chapter 25. Using Run-Time User Exits 331

CEEBINT High-Level Language User Exit Interface

LE/VSE provides CEEBINT for enclave initialization. You can code CEEBINT in C,

PL/I, or LE/VSE-conforming assembler. COBOL programs can use CEEBINT, but

CEEBINT cannot be written in COBOL or be used to call COBOL programs.

You can modify CEEBINT to perform any function desired, although the exit must

have the following attributes after you modify it:

v The user exit must not be a main-designated routine. That is, it must not be a C

main function, and OPTIONS(MAIN) must not be specified for PL/I

applications.

v CEEBINT must be linked with compiled code. If you do not provide an

initialization user exit, an IBM-supplied default, which simply returns control to

your application, is linked with the compiled code.

v The exit cannot be written in COBOL.

v The exit should be coded so that it returns for all unknown function codes.

v C constructs such as the exit(), abort(), raise(SIGTERM), and raise(SIGABRT)

functions terminate the enclave.

v A PL/I EXIT or STOP statement terminates the enclave.

v Use the callable service IBMHKS to turn hooks on and off. For more information

about IBMHKS, see IBM PL/I for VSE/ESA Programming Guide

v C functions such as exit(), abort(), raise(SIGTERM), and raise(SIGABRT)

terminate the entire application as well as the user exit.

CEEBINT is invoked after the enclave has been established, after the debug tool

initial command string has been processed, and prior to the invocation of compiled

code. When invoked, it is passed a parameter list. The parameters are all fullwords

and are defined as:

Number of arguments in parameter list (input)

A fullword binary integer.

v On entry: Contains 7.

v On exit: Not applicable.

Return code (output)

A fullword binary integer.

v On entry: 0.

v On exit: Able to be set by the exit, but not interrogated by LE/VSE.

Reason code (output)

A fullword binary integer.

v On entry: 0.

v On exit: Able to be set by the exit, but not interrogated by LE/VSE.

Function code (input)

A fullword binary integer.

v On entry: 1, indicating the exit is being driven for initialization.

v On exit: Not applicable.

Address of the main program entry point (input)

A fullword binary address.

v On entry: The address of the routine that gains control first.

v On exit: Not applicable.

User word (input/output)

A fullword binary integer.

332 LE/VSE: Programming Guide

v On entry: Value of the user word (CEEAUE_USER) as set by the assembler

user exit. See page 327 for a description of the CEEAUE_USER field.

v On exit: The value set by the user exit, maintained by LE/VSE and passed

to subsequent user exits.

Exit List Address (output)

The address of the exit list control block, Exit_list.

v On entry: 0.

v On exit: 0, unless you establish a hook exit, in which case you would set this

pointer and fill in relevant control blocks. The control blocks for Exit_list and

Hook_exit are shown in the following figure.

As supplied, CEEBINT has only one exit defined that you can establish—the hook

exit described by the Hook_exit control block. This exit gains control when hooks

generated by the PL/I compile-time TEST option are executed. You can establish

this exit by setting appropriate pointers (A_Exits to Exit_list to Hook_exit).

 The control block Exit_list exit contains the following fields:

Exit_list_count

The count of exit list hooks. It must be 1.

Exit_list_hooks

The address of the Hook_exit control block.

The control block for the hook exit must contain the following fields:

Hook_exit_len

The length of the control block.

Figure 118. Exit_list and Hook_exit Control Blocks

Chapter 25. Using Run-Time User Exits 333

Hook_exit_rtn

The address of a routine you want invoked for the exit. When the routine is

invoked, it is passed the address of this control block. Since this routine is

invoked only if the address you specify is nonzero, you can turn the exit on

and off.

Hook_exit_fnccode

The function code with which the exit is invoked. This is always 1.

Hook_exit_retcode

The return code set by the exit. You must ensure it conforms to the following

specifications:

0 Requests that the debug tool be invoked next

4 Requests that the program resume immediately

16 Requests that the program be terminated

Hook_exit_rsncode

The reason code set by the exit. This is always zero.

Hook_exit_userwd

Reserved.

Hook_exit_ptr

An exit-specific user word.

Hook_exit_reserved

Reserved.

Hook_exit_dsa

The contents of register 13 when the hook was executed.

Hook_exit_addr

The address of the hook instruction executed.

334 LE/VSE: Programming Guide

Chapter 26. Assembler Considerations

You can run applications written in assembler language in LE/VSE. Applications

written in LE/VSE-conforming HLLs can also call or be called by assembler

language applications.

This chapter discusses considerations for assembler applications and introduces

library routine retention, a function that can provide performance improvement for

applications running in the batch environment.

Understanding the Basics

Whether you plan to execute a single-language assembler application or a

multiple-language application containing assembler code, there are a number of

restrictions you must follow under LE/VSE.

For example, to communicate with LE/VSE and other applications running in the

common run-time environment, your assembler application must preserve the use

of certain registers and storage areas in a consistent way. Calling conventions for

assembler programs must follow the standard S/370 linkage conventions. In

addition, your assembler program is restricted from using some operating system

services. These conventions and restrictions are described in this chapter.

Compatibility Considerations

If you are coding a new assembler routine that you want to conform to the

LE/VSE interface or if your assembler routine calls LE/VSE services, you must use

the macros provided by LE/VSE. For a list of these macros, see “Assembler

Macros” on page 341. Throughout this book, LE/VSE-conforming assembler routine

refers to an assembler routine coded using the CEEENTRY and associated macros.

Assembler routines that rely on control blocks that were valid under previous

versions of C, COBOL, and PL/I (for example, routines that check flags or switches

in these control blocks) might be invalid under LE/VSE. These control blocks

might have changed. For more information, see one of the migration guides listed

in “Where to Find More Information” on page xxi.

Any assembler routine used within the scope of an LE/VSE application must use

standard save area conventions, and the save area address in R13 must be a valid

31-bit address.

LE/VSE-conforming assembler main routines are not supported under CICS.

Register Conventions

To communicate properly with assembler routines, you must observe certain

register conventions on entry into the assembler routine (while it runs), and on exit

from the assembler routine. These conventions are honored when you use the

macros listed in “Assembler Macros” on page 341 to write your assembler

application or if you call any LE/VSE service.

On entry into the assembler main routine, registers must contain the following

values because they are passed without change to the CEEENTRY macro:

© Copyright IBM Corp. 1991, 2005 335

R0 Undefined

R1 Address of the parameter list, or equal to R15 if no parameters are

passed

R2 Undefined

R13 Caller’s standard register save area

R14 Return address

R15 Entry point address

On entry into the assembler subroutine, these registers must contain the following

values:

R0 Reserved

R1 Address of the parameter list, or zero

R12 Common anchor area (CAA) address

R13 Caller’s DSA

R14 Return address

R15 Entry point address

All others Undefined

On entry into an assembler routine, the caller’s registers (R14 through R12) are

saved into the DSA provided by the caller. After allocating a DSA (which sets the

NAB field correctly in the new DSA), the first halfword of the DSA is set to zero

and the backchain is set appropriately.

At all times while the assembler routine is running, R13 must contain the executing

routine’s DSA.

At call and return points, R12 must contain the CAA address.

On exit from the assembler routine, these registers contain:

R0 Undefined

R1 Undefined

R14 Undefined

R15 Undefined

All others The contents they had upon entry

Considerations for Coding or Running Assembler Routines

This section summarizes some areas you might need to consider when coding or

running an assembler routine under LE/VSE.

Condition Handling

LE/VSE default condition handling actions occur for assembler routines unless you

have registered a user-written condition handler using CEEHDLR (see LE/VSE

Programming Reference for more information about CEEHDLR).

LE/VSE relinquishes all enclave-level resources that were obtained by LE/VSE

when the enclave terminates, and all process-level resources when the process

terminates.

Access to the Inbound Parameter String

You can access the standardized form of the inbound parameter list for the

assembler main routine any time after routine initialization by using one of the

following:

v The CEE5PRM (query parameter string) callable service described in LE/VSE

Programming Reference.

336 LE/VSE: Programming Guide

What CEE5PRM returns depends on your execution environment, and the

run-time or compile-time options you specify. See “What the Enclave Returns

from CEE5PRM” on page 396 for more information.

v The PARMREG output value from the CEEENTRY macro described in

“CEEENTRY Macro— Generate an LE/VSE-Conforming Prolog” on page 341.

Overlay Programs

LE/VSE does not provide explicit support for overlay programs. If programs are

overlaid, LE/VSE imposes the following restrictions:

v All LE/VSE routines and static data must be placed in the root segment.

v All named routines and static data referred to by LE/VSE must be in the root

segment.

v All ENTRY values or static data addresses passed to any LE/VSE service must

point to routines in the root segment.

v All routines in the save area chain must be in storage for the whole time that

they are in the chain.

v Calls that cause a new overlay segment to be loaded must not result in the

calling segment being overlaid.

v Calls that cause a new overlay segment to be loaded must be between two

routines in the same language (that is, they cannot be ILC calls).

v LE/VSE-conforming COBOL and PL/I routines cannot contain calls to the SORT

program. The LE/VSE sort interface does not support overlay programs.

CEESTART, CEEMAIN, and CEEFMAIN

Assembler programs cannot call or use directly CEESTART, CEEMAIN, or

CEEFMAIN as a standard entry point. Results are unpredictable if this rule is

violated.

LE/VSE Library Routine Retention

LE/VSE library routine retention is a function that provides a performance

improvement for those applications running in the batch environment with the

following attributes:

v The application invokes programs that require LE/VSE.

v The application is not LE/VSE-conforming. That is, LE/VSE is not already

initialized when the application invokes programs that require LE/VSE.

v The application repeatedly invokes programs that require LE/VSE.

v The application or subsystem is not using LE/VSE preinitialization services.

Note: LE/VSE library routine retention is not supported under CICS.

The use of library routine retention does not affect the behavior of applications

other than improving their performance.

LE/VSE provides a macro called CEELRR, which is used in an assembler program

to initialize library routine retention and to terminate library routine retention. See

“CEELRR Macro— Initialize/Terminate LE/VSE Library Routine Retention” on

page 339 for details about the CEELRR macro.

In addition, LE/VSE provides two sample programs that use the CEELRR macro:

Chapter 26. Assembler Considerations 337

CEELRRIN

This routine uses the CEELRR macro to initialize library routine retention.

If LE/VSE is installed in the default sublibraries, you can find the source

for this routine in member CEELRRIN.A in the PRD2.SCEEBASE

sublibrary. The object module containing CEELRRIN can also be found in

PRD2.SCEEBASE.

CEELRRTR

This routine uses the CEELRR macro to terminate library routine retention.

If LE/VSE is installed in the default sublibraries, you can find the source

for this routine in member CEELRRTR.A in the PRD2.SCEEBASE

sublibrary. The object module containing CEELRRTR can also be found in

PRD2.SCEEBASE.

When an application initializes library routine retention, LE/VSE keeps a subset of

its resources in memory after the environment terminates. As a result, subsequent

invocations of LE/VSE-conforming programs within the application are much

faster because the resources can be reused without having to be reacquired and

reinitialized.

When library routine retention has been initialized, the resources that LE/VSE

keeps in memory when it terminates include the following:

v LE/VSE run-time library routines

v LE/VSE storage associated with the management of the run-time library

routines

v LE/VSE storage for startup control blocks

When library routine retention is terminated, the resources that LE/VSE kept in

memory are freed. (Library routines are deleted and storage is freed.)

Note: If library routine retention is initialized, and the job step in which it is being

used is terminated, the operating system frees the LE/VSE resources as part

of job step termination.

Using Library Routine Retention

If you are going to use library routine retention, you need to be aware of the

following:

v Library routine retention can only be used in the batch environment, not under

CICS.

v In order to successfully initialize library routine retention or terminate library

routine retention, LE/VSE must not be currently initialized.

For example, if you use CEELRR with ACTION=INIT in an LE/VSE-conforming

assembler program, library routine retention is not initialized, because the

invocation of the assembler program caused LE/VSE to be initialized.

Library Routine Retention and Preinitialization

The LE/VSE preinitialization services can be used while library routine retention is

initialized. However, the LE/VSE resources initialized and terminated with

LE/VSE preinitialization services are not kept in memory when library routine

retention is initialized. There is no sharing of resources between LE/VSE when

initialized with preinitialization services and an environment initialized by

invoking an HLL program without using preinitialization services. There is no

338 LE/VSE: Programming Guide

performance benefit of library routine retention for those applications that bring up

an LE/VSE preinitialized environment, and then use the preinitialization services

to invoke programs that require LE/VSE.

CEELRR Macro— Initialize/Terminate LE/VSE Library Routine

Retention

CEELRR is used to tell LE/VSE to initialize and terminate library routine retention.

The macro generates reentrant code.

Syntax

55 label CEELRR ACTION= INIT

TERM
 5=

label

Assembler label on this macro generation.

ACTION=

The action to be performed by LE/VSE with regard to library routine retention.

Valid values are INIT and TERM. A value of INIT tells LE/VSE to initialize

library routine retention. A value of TERM tells LE/VSE to terminate library

routine retention. You must specify the ACTION value.

Usage Notes:

1. The macro must be used in an assembler routine that is not

LE/VSE-conforming.

2. The contents of the following registers are destroyed by the macro invocation:

 R14

 R15: Upon return, contains the return code

 R0

 R1
3. The code generated by the macro expansion assumes that R13 has a standard

register save area (RSA) available.

4. One of the following return codes is put in R15 upon completion of the code

generated by the CEELRR macro with ACTION=INIT:

0 Library routine retention was successfully initialized.

4 Library routine retention is already initialized. No action was taken.

8 Library routine retention was not initialized. The parameter list is not

recognized.

12 Library routine retention was not initialized due to one of the following

problems:

v There was insufficient storage.

v There was an error in an attempt to load CEEAEXT, CEEBLRR,

CEEBINIT, or CEEBLIBM.

16 Library routine retention was not initialized because LE/VSE is

currently initialized.

 This return code can occur in the following example scenarios:

v A program that is running with LE/VSE calls an assembler program

that uses CEELRR with ACTION=INIT.

Chapter 26. Assembler Considerations 339

v An assembler program calls IGZERRE to initialize a reusable

environment, and then it uses CEELRR with ACTION=INIT.

v A reusable environment is established with the RTEREUS run-time

option and a call is made to an assembler program that uses

CEELRR with ACTION=INIT.

20 Library routine retention was not initialized because the LE/VSE

preinitialized environment has been established and is dormant.

 This return code can occur when an assembler program calls CEEPIPI

to preinitialize LE/VSE, and then it uses CEELRR with ACTION=INIT.
5. One of the following return codes is put in R15 upon completion of the code

generated by the CEELRR macro with ACTION=TERM:

0 Library routine retention was successfully terminated. All resources

associated with library routine retention were freed.

4 Library routine retention is not initialized. No action was taken.

8 Library routine retention was not terminated. The parameter list is not

recognized.

12 Library routine retention was not terminated because there was an

error in an attempt to load CEEAEXT or CEEBLRR.

16 Library routine retention was not terminated because LE/VSE is

currently initialized.

 This return code can occur in the following example scenarios:

v A program that is running with LE/VSE calls an assembler program

that uses CEELRR with ACTION=TERM.

v An assembler program calls IGZERRE with the initialize function,

and then it uses CEELRR with ACTION=TERM.

v A reusable environment is established with the RTEREUS run-time

option and a call is made to an assembler program that uses

CEELRR with ACTION=TERM.

20 Library routine retention was not terminated because the LE/VSE

preinitialized environment has been established and is dormant.

 This return code can occur when an assembler program calls CEEPIPI

to preinitialize LE/VSE, and then it uses CEELRR with

ACTION=TERM.

340 LE/VSE: Programming Guide

Assembler Macros

LE/VSE provides the following macros to assist in the entry and exit of assembler

routines, to map the CAA and DSA, and to generate the appropriate fields in the

program prolog area (PPA):

v CEEENTRY generates an LE/VSE-conforming prolog. You must use CEEENTRY

in conjunction with the following macros, except for CEELOAD. (See page 341

for syntax.)

v CEETERM generates an LE/VSE-conforming epilog and terminates the

assembler routine. (See page 343 for syntax.)

v CEECAA generates a CAA mapping. (See page 344 for syntax.)

v CEECIB generates a CIB mapping. (See page 345 for syntax.)

v CEEDSA generates a DSA mapping. (See page 345 for syntax.)

v CEEPPA generates the appropriate fields in the PPA in your assembler routine.

The fields describe the entry point of an LE/VSE block. (See page 345 for

syntax.)

v CEELOAD loads an LE/VSE-conforming routine, but without a corresponding

service to later delete such routines. (See page 348 for syntax.)

v CEEFETCH loads an LE/VSE-conforming routine that can be later deleted using

CEERELES. (See page 350 for syntax.)

v CEERELES deletes an LE/VSE-conforming routine that was loaded using

CEEFETCH. (See page 353 for syntax.)

CEEENTRY Macro— Generate an LE/VSE-Conforming Prolog

CEEENTRY provides an LE/VSE-conforming prolog. Code is generated in

cooperation with the CEEPPA macro (see “CEEPPA Macro— Generate a PPA” on

page 345 for syntax).

You must use CEEENTRY in conjunction with the macros CEETERM, CEECAA,

CEEDSA, and CEEPPA.

CEEENTRY assumes that the registers contain what is described in “Register

Conventions” on page 335 for assembler main routines.

Syntax

55 name CEEENTRY

PPA=label,

AUTO=value,

NAB=

YES

,

NO

 5

5
MAIN=

YES

,

NO

EXECOPS=

YES

,

NO

PARMREG=register,
 5

5

>

BASE=

register

,

,

(

register

)

PLIST=

HOST

OS

RMODE=

ANY

24

 5=

name

The entry name (and the CSECT name, if this is the first call to CEEENTRY).

Chapter 26. Assembler Considerations 341

PPA=

The label of the corresponding PPA (Program Prolog Area) generated using the

CEEPPA macro. If unspecified, the name “PPA” is used.

AUTO=

The amount of space used by prolog code for the DSA and local automatic

variables that are to be allocated for the duration of this routine. This value

must be a multiple of doublewords. If unspecified, the size of the automatic

area is the size of a DSA without any automatic variables. This is indicated by

the label CEEDSASZ (the DSA mapping generated by the CEEDSA macro. See

“CEEDSA Macro— Generate a DSA Mapping” on page 345 for syntax).

NAB=

YES

Indicates that the previous save area has an NAB (next available byte)

value.

 If you do not specify a value, YES is assumed.

 In general,

v If your routine is always called by an LE/VSE-conforming assembler

routine, specify NAB=YES.

v If your routine can be called by a non-LE/VSE-conforming assembler

routine, specify NAB=NO.

NO

Indicates that the previous save area cannot contain the NAB. Code to find

the NAB is generated. This parameter is ignored if MAIN=YES.

MAIN=

YES

Indicates that the LE/VSE environment should be brought up. YES

designates this assembler routine as the main routine in the enclave.

 If you do not specify a value, YES is assumed.

 The following is accomplished by the macro invocation:

1. Save the caller’s registers (R14 through R12) in the DSA provided by

the caller.

2. Sets base register (see BASE).

3. Sets R12 with the address of CEECAA.

4. Sets R13 with the address of CEEDSA.

5. Sets PARMREG (R1 is the default) based on PLIST.

6. Register 0 and 2 are undefined.

NO

Designates this assembler routine as a subroutine in the enclave. NO

should be specified when the LE/VSE environment is already active and

only prolog code is needed.

 The following is accomplished by the macro invocation:

1. Save the caller’s registers (R14 through R12) in the DSA provided by

the caller.

2. Sets base register (see BASE).

3. Sets R13 with the address of CEEDSA.

4. Sets PARMREG (see PARMREQ).

5. Register 0 is undefined.

EXECOPS=

342 LE/VSE: Programming Guide

YES

Indicates that the main routines are to honor run-time options on the

inbound parameter string. This option is applicable only when MAIN=YES

is in effect for the routine. The EXECOPS setting is ignored if MAIN=NO

is specified.

 If you do not specify a value, YES is assumed.

NO

Indicates that there are no run-time options in the inbound parameter

string. LE/VSE considers the entire inbound parameter string as program

arguments, but does not attempt to process run-time options and remove

them from the inbound parameter string.

PARMREG=

Specifies the register to hold the inbound parameters. If you do not specify a

value, Register 1 is assumed.

 For MAIN=YES, the value of the PARMREG is determined based on PLIST. For

MAIN=NO and PARMREG equal 1 (PARMREG defaults to 1), R1 is restored

from the save area passed to the routine. For MAIN=NO and PARMREG not

equal 1, R1 is used to load the specifed PARMREG.

BASE=

Establishes the base register(s) that you specify here, as the base register(s) for

this module. If multiple base registers are required, they must be enclosed

within brackets. If you do not specify a value, Register 11 is assumed. Register

12 should not be used.

 If MAIN=YES is specified explicitly or by default, register 2 cannot be used.

PLIST=

Indicates that the main routines are to honor PLIST format on the inbound

parameter string. This option is applicable only when MAIN=YES is in effect

for the routine. The PLIST settings are ignored if MAIN=NO is specified. If

you do not specify a value, HOST format is assumed.

 The HOST format will set the specified PARMREG to the address of a field

with a halfword-prefixed string of user parameters (run-time options have

been removed). To obtain the inbound parameter list as specified, use

PLIST=OS.

RMODE=

Allows the specification of the modules CSECT RMODE setting. All

LE-enabled Assembler programs CSECTs are AMODE ANY. Valid settings for

this option are ANY and 24.

Usage Notes: Macro CEEENTRY allows multiple invocations within a single

Assembly, but with the following restrictions:

v R15 MUST be pointing to the entry point for each CEEENTRY

MAIN=NO section when invoked.

v Only a SINGLE MAIN=YES may be used in a single Assembly

with multiple MAIN=NO CEEENTRY iterations.

v Use of MAIN=NO implies no CEETERM MF=L is allowed.

CEETERM Macro— Terminate an LE/VSE-Conforming Routine

CEETERM provides an LE/VSE-conforming epilog and is used to terminate, or

return from, an LE/VSE-conforming routine. If used with a main entry, the

appropriate call is made to LE/VSE termination routines.

Chapter 26. Assembler Considerations 343

Syntax

55 name CEETERM

RC=return_code,

MODIFIER=modifier
 5

5
MF=

L

(E,ctrl_addr)

 5=

name

The entry name (and the CSECT name, if this is for a main entry).

RC=

The return code that is to be placed into R15 after the modifier is added to it, if

terminating a main routine. If returning from an LE/VSE subroutine,

return_code itself is placed into R15, without modifier being added to it. You can

specify return_code as a fixed constant, a variable, or register 2–12.

MODIFIER=

The return code modifier that is multiplied by the appropriate value (based

upon the operating system), added to the return code and placed into R15, if

terminating a main routine. The MODIFIER is independently placed into R0.

You can specify modifier as a fixed constant, a variable, or register 2–12.

MF=L

Indicates the list form of the macro. A remote control program parameter list

for the macro is defined, but the service is not invoked. The list form of the

macro is usually used in conjunction with the execute form of the macro.

MF=(E,ctrl_addr)

Indicates the execute form of the macro. The service is invoked using the

remote control program parameter list addressed by ctrl_addr (normally

defined by the list form of the macro, it cannot be register 0).

Usage Notes:

1. The MF=L and the MF=(E,ctrl_addr) parameters cannot both be coded for the

same macro invocation. If neither is coded, the immediate form of the macro is

used. The immediate form generates an inline parameter list, and generates

nonreentrant code.

2. The address of the name can be specified as a register using parentheses ().

3. The macro invocation destroys the following registers:

 R1

 R14

 R15

CEECAA Macro— Generate a CAA Mapping

Syntax

55 CEECAA 5=

344 LE/VSE: Programming Guide

CEECAA is used to generate a common anchor area (CAA) mapping. This macro

has no parameters, and no label can be specified. CEECAA is required for the

CEEENTRY macro.

CEECIB Macro— Generate a CIB Mapping

Syntax

55 CEECIB 5=

 CEECIB is used to generate a a condition information block (CIB) mapping. This

macro has no parameters, and no label can be specified. CEECIB is required for

condition handling and debugging purposes. For details, refer to the section

“Debugging with the Condition Information Block” in the LE/VSE Debugging Guide

and Run-Time Messages.

CEEDSA Macro— Generate a DSA Mapping

Syntax

55 CEEDSA 5=

 CEEDSA is used to generate a dynamic save area (DSA) mapping. This macro has

no parameters, and no label can be specified. The minimum size of the DSA is

specified by the assembler equated symbol CEEDSASZ. CEEDSA is required for

the CEEENTRY macro.

CEEPPA Macro— Generate a PPA

CEEPPA is used to generate the LE/VSE program prolog area (PPA). The PPA

defines constants that describe the entry point of an LE/VSE block. It is generated

at the time of assembly; one PPA is generated per entry point.

The CEEPPA macro is required for the CEEENTRY macro.

Chapter 26. Assembler Considerations 345

Syntax

55 label CEEPPA

LIBRARY=

NO

,

YES

PPA2=

YES

,

NO

 5

5
EXTPROC=

YES

,

NO

TSTAMP=

YES

,

NO

PEP=

YES

,

NO

 5

5
INSTOP=

NO

,

YES

EXITDSA=

NO

,

YES

OWNEXM=

YES

,

NO

 5

5
EPNAME=name,

VER=version_number,

REL=release_number,
 5

5
MOD=level,

DSA=

YES

NO

 5=

label

The name of the PPA.

 If you specified a name for PPA in the CEEENTRY macro, you must specify

the same name here. If you did not specify a name for PPA in the CEEENTRY

macro, you must specify “PPA” (the CEEENTRY default PPA label) as the

name here.

LIBRARY=

Indicates whether the routine is an LE/VSE library routine. Valid values for

LIBRARY are YES and NO. If you do not specify a value, NO is used. Use of

this IBM-supplied default is recommended.

PPA2=

Instructs the macro to generate a PPA2 or suppress the generation of the PPA2.

A PPA2 is a program prolog area that defines constants for the CSECT. Only

one is used, independent of the number of entry points.

 Valid values for PPA2 are YES and NO. If you do not specify a value, YES is

used, which generates a PPA2 field.

EXTPROC=

Indicates whether this routine is an external procedure or an internal

procedure. An internal procedure is known only within the CSECT and can be

called only from within the CSECT.

 Valid values for EXTPROC are YES and NO. If you do not specify a value,

YES is used, which indicates that the block is an external procedure.

TSTAMP=

Indicates whether a timestamp, indicating the date and time of assembly,

should be generated. Valid values for TSTAMP are YES and NO. If you do not

specify a value, YES is used and a timestamp is generated.

PEP=

Indicates whether this entry point is primary or secondary. A secondary entry

point is an alternate entry point. Some LE/VSE facilities, such as CEE5DMP,

report information based on the primary entry point only.

346 LE/VSE: Programming Guide

Valid values for PEP are YES and NO. If you do not specify a value, YES is

used, which indicates that this is a primary entry point (PEP).

INSTOP=

Indicates whether time spent in this routine should be attributed to the

program (rather than to the “system”). Valid values for INSTOP are YES and

NO. If you do not specify a value, NO is used, which indicates that time

should be attributed to the system.

EXITDSA=

Indicates whether the code should gain control on GOTO out of block. Valid

values for EXITDSA are YES and NO. If you do not specify a value, NO is

used, which indicates that the code does not gain control for GOTO out of

block. Use of this IBM-supplied default is recommended.

OWNEXM=

Specifies whether this routine should participate in condition handling

according to the member id set in ID. Valid values for OWNEXM are YES and

NO. If you do not specify a value, YES is used, which indicates that

participation is desired. Use of this IBM-supplied default is recommended.

EPNAME=

Indicates the entry point name. If you do not specify a value, the name of the

CSECT is used.

VER=

The version number for the routine. This field is not interrogated by LE/VSE.

Valid values for VER are 1 through 99. If you do not specify a value, 1 is used.

REL=

The release number for the routine. This field is not interrogated by LE/VSE.

Valid values for REL are 1 through 99. If you do not specify a value, 1 is used.

MOD=

The modification level for the routine. This field is not interrogated by LE/VSE.

Valid values for MOD are 1 through 99. If you do not specify a value, 0 is

used.

DSA=YES

Indicates whether this procedure has a DSA. Valid values for DSA are YES and

NO. If you do not specify a value, YES is used, which indicates that the code

does have an associated DSA. Use of this IBM-supplied default is

recommended.

Chapter 26. Assembler Considerations 347

CEELOAD Macro— Dynamically Load a Routine

CEELOAD is used to dynamically load an LE/VSE-conforming routine. It does not

create a nested enclave, so the target of CEELOAD must be a subroutine.

Notes:

1. If you use CEELOAD, you should be aware that there is no corresponding

service to delete LE/VSE-conforming routines. You should not use system

services to delete phases that you load using CEELOAD; during thread (if

SCOPE=THREAD) or enclave (if SCOPE=ENCLAVE) termination, LE/VSE

deletes phases loaded by CEELOAD.

2. If you wish to dynamically load LE/VSE-conforming routines and have the

possibility to later delete these routines, you should use CEEFETCH instead of

CEELOAD. For details, see “CEEFETCH Macro— Dynamically Load a Routine

that Can Be Later Deleted” on page 350.

Using CEELOAD imposes restrictions on further dynamic loading or dynamic calls

or fetches:

v You cannot dynamically load a routine with CEELOAD that has already been

dynamically loaded by CEELOAD or has been fetched or dynamically called.

v You cannot fetch or dynamically call a routine that has already been dynamically

loaded by CEELOAD.

Results are unpredictable if these rules are violated.

If CEELOAD completes successfully, the address of the loaded routine is found in

R15. You can then invoke the routine using BALR 14,15 (or BASSM 14,15).

LE/VSE returns the address of the target routine with the high-order bit indicating

the addressing mode (AMODE) of the routine. LE/VSE-enabled programs return in

the AMODE in which they are entered. Because LE/VSE does not provide any

AMODE switching on behalf of the target routine, you must provide any necessary

AMODE switching code.

The macro invocation destroys the following registers:

 R0

 R1

 R14

 R15 (upon return, contains the target address)

When the macro code is expanded and run, the following assumptions are made:

v R12 points to the CAA.

v R13 has a standard LE/VSE DSA available.

Syntax

55 label CEELOAD

NAME=name

NAMEADDR=nameaddr

 ,

SCOPE=ENCLAVE

SCOPE=THREAD

 , 5

5
FEEDBACK=fbcode

 ,

MF=I

MF=L

(MF=E

,

ctrl_addr)

 5=

348 LE/VSE: Programming Guide

label

The assembler label you give to this invocation of the macro. A label is

required if MF=L; otherwise it is optional.

NAME=

The name of the entry point to be loaded by LE/VSE. If MF=I, you must

specify either NAME or NAMEADDR but not both. If MF=L or MF=E, NAME

is optional: however if you do specify NAME, you must not specify

NAMEADDR.

NAMEADDR=

The address of a halfword-prefixed name that should be loaded by LE/VSE.

This can be an A-type address or a register (registers 2 to 11). If MF=I, you

must specify either NAME or NAMEADDR but not both. If MF=L or MF=E,

NAMEADDR is optional: however if you do specify NAMEADDR, you must

not specify NAME.

SCOPE=THREAD

Indicates that the load is to be scoped to the thread level. Phases loaded at the

thread level are deleted automatically at thread termination.

SCOPE=ENCLAVE

Indicates that the load is to be scoped to the enclave level. Phases loaded at the

enclave level are deleted automatically at enclave termination.

 If neither SCOPE=ENCLAVE nor SCOPE=THREAD is specified,

SCOPE=ENCLAVE is used.

FEEDBACK=

The name of a variable to contain the resulting 12-byte feedback token. If you

omit this parameter, any nonzero feedback token that results is signaled.

 The following symbolic conditions might be returned from this service:

 Symbolic

Feedback

Code Severity

Message

Number Message Text

CEE000 0 — The service completed successfully.

CEE38M 3 3350 Unable to find the event handler.

CEE38N 3 3351 Unable to properly initialize the event

handler.

CEE39K 1 3380 The target phase was not recognized by

Language Environment.

CEE3DC 3 3500 Not enough storage was available to load

phase-name.

CEE3DD 3 3501 The phase phase-name was not found.

CEE3DE 3 3502 The phase name phase-name was too long.

CEE3DF 3 3503 The load request for phase phase-name was

unsuccessful.

MF=I

Indicates the immediate form of the macro. The immediate form generates an

inline parameter list, and generates nonreentrant code.

MF=L

Indicates the list form of the macro. A remote control program parameter list

for the macro is defined, but the service is not invoked. The list form of the

macro is usually used in conjunction with the execute form of the macro.

Chapter 26. Assembler Considerations 349

MF=(E,ctrl_addr)

Indicates the execute form of the macro. The service is invoked using the

remote control program parameter list addressed by ctrl_addr (normally

defined by the list form of the macro).

Usage Notes

v LE/VSE issues the appropriate operating system load command according to

LE/VSE search order (described in “Specifying the Search Order” on page 29),

and performs the necessary dynamic updates to accommodate the new phase.

v There is no corresponding service to delete LE/VSE-conforming assembler

routines. You should not use system services to delete phases that you load

using CEELOAD.

v LE/VSE performs any language-related initialization that is required.

v You cannot use CEELOAD to load C modules that use writable static. C

programs that are compiled as RENT will have writable static, C programs that

are compiled as NORENT do not have writable static. If any program in a phase

uses writable static, the PHASE will require writable static switching. CEELOAD

does not provide support to switch writable static when calling a C function. To

circumvent this restriction, if possible, compile your C modules using the

NORENT option.

CEEFETCH Macro— Dynamically Load a Routine that Can Be

Later Deleted

CEEFETCH is used to dynamically load an LE/VSE-conforming routine that may be

later deleted. Because CEEFETCH does not create a nested enclave, the target of

CEEFETCH must be a subroutine.

Use the CEERELES macro to delete routines loaded with CEEFETCH. You should

not use system services to delete modules that you load using CEEFETCH, since

LE/VSE deletes modules loaded by CEEFETCH during either:

v thread (if SCOPE=THREAD) termination

v enclave (if SCOPE=ENCLAVE) termination

If CEEFETCH completes successfully, the address of the target routine is found in

R15. You can then invoke the routine using the BALR 14,15 (or BASSM 14,15)

instruction.

LE/VSE returns the address of the target routine with the high-order bit indicating

the addressing mode (AMODE) of the routine. LE/VSE-enabled programs return in

the AMODE in which they are entered. Because LE/VSE does not provide any

AMODE switching on behalf of the target routine, you must provide any necessary

AMODE switching code.

The macro invocation destroys the following registers:

 R0

 R1

 R14

 R15 (upon return, contains the target address)

When the macro code is expanded and run, the following assumptions are made:

v R12 points to the CAA.

v R13 has a standard LE/VSE DSA available.

350 LE/VSE: Programming Guide

Syntax

55

label

CEEFETCH

NAME=name

NAMEADDR=nameaddr

,
 SCOPE=ENCLAVE

SCOPE=THREAD

,

5

5
 SEARCH=VSE

,

TOKEN=token

,

FEEDBACK=fbcode

,

5

5
 MF=I

MF=L

(MF=E

,

ctrl_addr)

5=

label

The assembler label you give to this invocation of the macro. A label is

required if MF=L; otherwise it is optional.

NAME=name

The name of the entry point to be loaded by LE/VSE. The maximum length of

name is eight characters. You cannot specify NAME and NAMEADDR

together.

NAMEADDR=nameaddr

The address of a halfword-prefixed name that should be loaded by LE/VSE. A

halfword prefix name is a string where the first two bytes identify the length

of a name string and are followed by the name string itself. This can be an

A-type address or a register (register 2 through 11). The address of the name

can be specified as a register using parentheses (). The maximum length of the

name is 8 characters. You cannot specify NAME and NAMEADDR together.

SCOPE=THREAD

Indicates that the load is to be scoped to the thread level. Modules loaded at

the thread level are deleted automatically at thread termination.

SCOPE=ENCLAVE

Indicates that the load is to be scoped to the enclave level. Modules loaded at

the enclave level are deleted automatically at enclave termination; this is the

default.

TOKEN=token

The name of a variable to contain the resulting 4-byte token. This variable

must be passed to the CEERELES macro if the load module is to deleted. If

MF=I or MF=L are specified, you must specify TOKEN.

SEARCH=VSE

The SEARCH option is accepted for LE z/OS compatibility only. If this option

is set to anything other than VSE, it is accepted but ignored at execution time.

An informational message is produced in the assembler listing when this

option is specified and set to anything other than VSE.

FEEDBACK=fbcode

The name of a variable to contain the resulting 12-byte feedback token. If you

omit this parameter, any nonzero feedback token that results is signaled.

Chapter 26. Assembler Considerations 351

The following symbolic conditions might be returned from this service:

 Symbolic

Feedback

Code Severity

Message

Number Message Text

CEE000 0 — The service completed successfully.

CEE38M 3 3350 CEE5ADM or CEE5MBR could not find the

event handler.

CEE38N 3 3351 CEE5ADM or CEE5MBR could not properly

initialize the event handler.

CEE39K 1 3380 The target load module was not recognized

by Language Environment.

CEE3DC 3 3500 Not enough storage was available to load

module-name.

CEE3DD 3 3501 The module module-name was not found.

CEE3DE 3 3502 The module name module-name was too

long.

CEE3DF 3 3503 The load request for module module-name

was unsuccessful.

CEE3N9 2 3817 The member event handler did not return a

usable function pointer.

MF=I

Indicates the immediate form of the macro. The immediate form generates an

inline parameter list, and generates nonreentrant code. This is the default

value.

MF=L

Indicates the list form of the macro. A remote control program parameter list

for the macro is defined, but the service is not invoked. The list form of the

macro is usually used in conjunction with the execute form of the macro.

MF=(E,ctrl_addr)

Indicates the execute form of the macro. The service is invoked using the

remote control program parameter list addressed by ctrl_addr (usually defined

by the list form of the macro).

 Only one of the MF=I, MF=L, or MF=(E, ctrl_addr) parameters can be coded for

the same macro invocation. If none is coded, the immediate form of the macro is

used.

Usage Notes

1. LE/VSE issues the appropriate operating system load command, and performs

the necessary dynamic updates to accommodate the target load module.

2. LE/VSE performs any language-related initialization required.

3. Any C or PL/I module that will be fetched, dynamically called, or

CEEFETCHed more than once must be reentrant.

4. CEEFETCH is only supported by LE/VSE for:

v FETCHABLE reentrant C or PL/I subroutines.

v Reentrant COBOL/VSE programs.

CEEFETCH only supports COBOL load modules that are constructed entirely

of COBOL programs compiled with an LE/VSE-conforming compiler

(COBOL/VSE), and link-edited with LE/VSE.

5. If a PL/I reentrant fetchable subroutine is to be the entry point of a target

CEEFETCHed load module, the following rules must be followed or

unpredictable results may occur:

352 LE/VSE: Programming Guide

v The main environment must be created by a C routine or assembler program.

v Any CEEFETCHed PL/I subroutines must be reentrant, fetchable and in

AMODE(31).

v To ensure the PL/I-specific run-time is available at the time a PL/I routine is

executed, one of the following must be true in the executable program:

– A CEEFETCHed C subroutine directly calls the PL/I for VSE subroutine.

– A PL/I for VSE subroutine is present in the main executable program.

– The LE/VSE PL/I signature CSECT CEESG010 is explicitly included in the

main executable program.

CEERELES Macro— Dynamically Delete a Routine

CEERELES is used to dynamically delete an LE/VSE-conforming routine.

The macro invocation destroys the following registers:

 R0

 R1

 R14

 R15

When the macro code is expanded and run, the following assumptions are made:

v R12 points to the CAA.

v R13 has a standard LE/VSE DSA available.

Syntax

55 label CEERELES

TOKEN=token
 ,

FEEDBACK=fbcode
 , 5

5
 MF=I

MF=L

(MF=E

,

ctrl_addr)

5=

label

The assembler label you give to this invocation of the macro. A label is

required if MF=L; otherwise it is optional.

TOKEN=token

The name of a variable that contains the token returned by the CEEFETCH

macro. If MF=I or MF=L are specified, you must specify TOKEN.

FEEDBACK=fbcode

The name of a variable to contain the resulting 12-byte feedback token. If you

omit this parameter, any nonzero feedback token that results is signaled.

 The following symbolic conditions might be returned from this service:

 Symbolic

Feedback

Code Severity

Message

Number Message Text

CEE000 0 — The service completed successfully.

CEE38N 3 3351 An event handler was unable to process the

request successfully.

Chapter 26. Assembler Considerations 353

Symbolic

Feedback

Code Severity

Message

Number Message Text

CEE39K 1 3380 The target load module was not recognized

by Language Environment.

CEE3DG 3 3504 Delete service request for module-name

was unsuccessful.

CEE3E0 3 3520 The token passed to the CEERELES macro

was invalid.

MF=I

Indicates the immediate form of the macro. The immediate form generates an

inline parameter list, and generates nonreentrant code. This is the default

value.

MF=L

Indicates the list form of the macro. A remote control program parameter list

for the macro is defined, but the service is not invoked. The list form of the

macro is usually used in conjunction with the execute form of the macro.

MF=(E,ctrl_addr)

Indicates the execute form of the macro. The service is invoked using the

remote control program parameter list addressed by ctrl_addr (usually defined

by the list form of the macro).

 Only one of the MF=I, MF=L, or MF=(E, ctrl_addr) parameters can be coded for

the same macro invocation. If none is coded, the immediate form of the macro is

used.

Usage Notes

1. LE/VSE issues the appropriate operating system delete command, and

performs the necessary dynamic updates to accommodate the deleted load

module.

2. LE/VSE performs any language-related cleanup required.

3. LE/VSE only supports CEERELES for programs that are:

v FETCHABLE reentrant C or PL/I subroutines.

v Reentrant COBOL/VSE programs.

CEERELES only supports COBOL load modules that are constructed entirely of

COBOL programs compiled with an LE/VSE-conforming compiler

(COBOL/VSE), and link-edited with LE/VSE.

354 LE/VSE: Programming Guide

Example of Assembler Main Routine

The following shows a simple assembler main routine. In the example, the LE/VSE

environment is established, a message showing control is received in the routine,

and the LE/VSE environment terminates with a zero return code passed in R15 to

the invoker.

If you write an assembler main routine, nominate the routine as the phase entry

point using the END statement, as shown in the following example. Otherwise,

you must explicitly declare the routine as the entry point at link-edit time.

*COMPILATION UNIT: LEASMMN

* ===

*

* A simple main assembler routine that brings up the

* LE/VSE environment, prints a message in the main routine,

* and returns with a return code of 0, modifier of 0.

*

* ===

MAIN CEEENTRY PPA=MAINPPA

*

* Invoke CEEMOUT to issue a message for us

*

 CALL CEEMOUT,(STRING,DEST,0) Omitted feedback code

*

* Terminate the LE/VSE environment and return to the caller

*

 CEETERM RC=0,MODIFIER=0

* ==

* CONSTANTS AND WORKAREAS

* ==

*

DEST DC F’2’

STRING DC Y(STRLEN)

STRBEGIN DC C’In the main routine’

STRLEN EQU *-STRBEGIN

MAINPPA CEEPPA , Constants describing the code block

 CEEDSA , Mapping of the dynamic save area

 CEECAA , Mapping of the common anchor area

 END MAIN Nominate MAIN as the entry point

Figure 119. Example of Simple Main Assembler Routine

Chapter 26. Assembler Considerations 355

Example of an Assembler Main Calling an Assembler

Subroutine

Figure 120 illustrates a simple assembler main routine that calls the DISPARM

subroutine shown in Figure 121 on page 357.

*COMPILATION UNIT: LEASMSB

* ===

* A simple main assembler routine brings up LE/VSE, calls a

* subroutine, and returns with a return code of 0.

* ===

SUBXMP CEEENTRY PPA=XMPPPA,AUTO=WORKSIZE

 USING WORKAREA,R13

* --

* Invoke CEEMOUT to issue the greeting message

*

 CALL CEEMOUT,(HELLOMSG,DEST,FBCODE),VL,MF=(E,CALLMOUT)

*

* No plist to DISPARM, so zero R1. Then call it.

*

 SR R01,R01

 CALL DISPARM

*

* Invoke CEEMOUT to issue the farewell message

*

 CALL CEEMOUT,(BYEMSG,DEST,FBCODE),VL,MF=(E,CALLMOUT)

*

* Terminate Language Environment and return to the caller

*

 CEETERM RC=0

* ==

* CONSTANTS

* ==

*

HELLOMSG DC Y(HELLOEND-HELLOSTR)

HELLOSTR DC C’Hello from the sub example.’

HELLOEND EQU *

*

BYEMSG DC Y(BYEEND-BYESTART)

BYESTART DC C’Terminating the sub example.’

BYEEND EQU *

*

DEST DC F’2’ Destination is the LE message file

*

XMPPPA CEEPPA , Constants describing the code block

* ==

* The Workarea and DSA

* ==

WORKAREA DSECT

 ORG *+CEEDSASZ Leave space for the DSA fixed part

CALLMOUT CALL ,(,,),VL,MF=L 3-argument parameter list

*

FBCODE DS 3F Space for a 12-byte feedback code

*

*

 DS 0D

WORKSIZE EQU *-WORKAREA

 CEEDSA , Mapping of the dynamic save area

 CEECAA , Mapping of the common anchor area

*

R01 EQU 1

R13 EQU 13

 END SUBXMP Nominate SUBXMP as the entry point

Figure 120. Example of an Assembler Main Routine Calling a Subroutine

356 LE/VSE: Programming Guide

*COMPILATION UNIT: LEASMPRM

* ==

*

* Shows an assembler subroutine that displays inbound

* parameters and returns.

*

* ==

DISPARM CEEENTRY PPA=PARMPPA,AUTO=WORKSIZE,MAIN=NO

 USING WORKAREA,R13

*

* --

*

* Invoke CEE5PRM to retrieve the command parameters for us

*

 CALL CEE5PRM,(CHARPARM,FBCODE),VL,MF=(E,CALL5PRM)

*

* Check the feedback code from CEE5PRM to see if everything worked.

*

 CLC FBCODE(8),CEE000

 BE GOT_PARM

*

* Invoke CEEMOUT to issue the error message for us

*

 CALL CEEMOUT,(BADFBC,DEST,FBCODE),VL,MF=(E,CALLMOUT)

 B GO_HOME Time to go....

*

GOT_PARM DS 0H

*

* See if the parm string is blank.

*

 CLC CHARPARM(80),=CL80’ ’ Is the parm empty?

 BNE DISPLAY_PARM No. Print it out.

*

* Invoke CEEMOUT to issue the error message for us

*

 CALL CEEMOUT,(NOPARM,DEST,FBCODE),VL,MF=(E,CALLMOUT)

 B GO_HOME Time to go....

*

DISPLAY_PARM DS 0H

*

* Set up the plist to CEEMOUT to display the parm.

*

 LA R02,80 Get the size of the string

 STH R02,BUFFSIZE Save it for the len-prefixed string

*

* Invoke CEEMOUT to display the parm string for us

*

 CALL CEEMOUT,(BUFFSIZE,DEST,FBCODE),VL,MF=(E,CALLMOUT)

*

* Return to the caller

*

GO_HOME DS 0H

 CEETERM RC=0

Figure 121. Example of a Called Assembler Subroutine (Part 1 of 2)

Chapter 26. Assembler Considerations 357

* ==

* CONSTANTS

* ==

*

DEST DC F’2’ Destination is the LE message file

CEE000 DS 3F’0’ Success feedback code

*

BADFBC DC Y(BADFBEND-BADFBSTR)

BADFBSTR DC C’Feedback code from CEE5PRM was nonzero.’

BADFBEND EQU *

*

NOPARM DC Y(NOPRMEND-NOPRMSTR)

NOPRMSTR DC C’No user parm was passed to the application.’

NOPRMEND EQU *

*

*

PARMPPA CEEPPA , Constants describing the code block

* ==

* The Workarea and DSA

* ==

WORKAREA DSECT

 ORG *+CEEDSASZ Leave space for the DSA fixed part

*

CALL5PRM CALL ,(,),VL,MF=L 2-argument parameter list

CALLMOUT CALL ,(,,),VL,MF=L 3-argument parameter list

FBCODE DS 3F Space for a 12-byte feedback code

*

BUFFSIZE DS H Halfword prefix for following string

CHARPARM DS CL255 80-byte buffer

*

*

 DS 0D

WORKSIZE EQU *-WORKAREA

 CEEDSA , Mapping of the dynamic save area

 CEECAA , Mapping of the common anchor area

*

R02 EQU 2

R13 EQU 13

 END

Figure 121. Example of a Called Assembler Subroutine (Part 2 of 2)

358 LE/VSE: Programming Guide

Invoking Callable Services from Assembler Routines

The interface to a callable service is the same as the interface described above for

assembler routines. An example of calling the CEEGTST (Get Heap Storage)

callable service is shown in the following sample.

An X'80000000' placed in the last parameter address slot indicates that the fc

(feedback code) parameter is omitted.

System Services Available to Assembler Routines

LE/VSE provides a number of services that the host system typically provides.

Each of these system-provided services belongs to one of three categories,

depending on whether it can and ought to be used in LE/VSE:

v The system-provided service can be used, but you must manage the resource.

Examples are ENQ and DEQ.

v The system-provided service can, but should not be used. The system-provided

service might not have the desired effect. For example, instead of using GETVIS

and FREEVIS, use the LE/VSE dynamic storage callable services.

v The system-provided service must not be used. If you use this service, it directly

interferes with the LE/VSE environment. For example, any STXIT AB or STXIT

PC that you issue interferes with LE/VSE condition handling.

Whenever possible, non-LE/VSE-conforming assembler routines should use the

equivalent LE/VSE services. A list of the equivalent services is provided in

Table 51.

 Table 51. LE/VSE’s Equivalent Host Services

Host service LE/VSE Equivalent Usability

ATTACH/DETACH/CHAP No equivalent LE/VSE function. LE/VSE does not provide specific support

for multitasking. If you use these host

services, you must manage the subtasks.

CANCEL Call CEESGL with a severity 4 condition,

call CEE5ABD, or have the assembler user

exit request an abend at termination.

If you want LE/VSE to terminate the

environment, this host service must not be

used.

*

* R12 = A(CAA)

* R13 = DSA

* This example is non-reentrant.

*

 LA R1,PLIST

 L R15,=V(CEEGTST)

 BALR R14,R15

PLIST DS 0D

 DC A(HEAP_ID)

 DC A(SIZE)

 DC A(ADDR)

 DC A(X’80000000)

HEAP_ID DC F’0’ Heap id for the user

SIZE DC F’256’ Size of storage to allocate

ADDR DC F’0’ Address of allocated storage

Figure 122. Sample Invocation of a Callable Service from Assembler

Chapter 26. Assembler Considerations 359

Table 51. LE/VSE’s Equivalent Host Services (continued)

Host service LE/VSE Equivalent Usability

CDLOAD/CDDELETE Use the LE/VSE CEELOAD assembler

macro (see page 348).

If you are introducing a new language into

the environment, host services must not

be used. The new language is not properly

initialized.

If you are not introducing a new language

into the environment, then host services

can be used. However, you must manage

the loaded routines.

DUMP Call CEESGL with a severity 4 condition,

call CEE5ABD, or have the assembler user

exit request an abend at termination.

If you want LE/VSE to terminate the

environment, this host service must not be

used.

ENQ/DEQ No equivalent LE/VSE function. These services can be used.

EOJ Use the LE/VSE CEETERM macro, or the

LE/VSE-conforming language equivalent,

from the main program in your

application.

If you want LE/VSE to terminate the

environment, this host service must not be

used.

EXEC CICS GETMAIN/FREEMAIN For automatic storage (block related), use

LE/VSE’s stack storage.

For non-block related storage (that is, the

storage persists beyond the current

activation), use LE/VSE heap storage.

Host services can, but should not, be used.

Use of equivalent LE/VSE storage

management services is advised.

EXEC CICS HANDLE ABEND Use LE/VSE’s condition management

callable services—CEEHDLR, CEEHDLU,

and CEESGL.

Host services should not be used. They

interfere with LE/VSE’s condition

management.

EXEC CICS LOAD/DELETE No equivalent LE/VSE function. Host services can be used, but you must

manage the loaded routines.

EXEC CICS XCTL/LINK No equivalent LE/VSE function. These services can be used.

FETCH Use the LE/VSE CEELOAD assembler

macro (see page 348).

If you are introducing a new language into

the environment, host services must not

be used. The new language is not properly

initialized.

If you are not introducing a new language

into the environment, then host services

can be used. However, you must manage

the loaded routines.

GETIME Call LE/VSE date and time services. This service can be used.

GETVIS/FREEVIS For automatic storage (block related), use

LE/VSE’s stack storage.

For non-block related storage (that is, the

storage persists beyond the current

activation), use LE/VSE heap storage.

Host services can, but should not, be used.

Use of equivalent LE/VSE storage

management services is advised.

JDUMP Call CEESGL with a severity 4 condition,

call CEE5ABD, or have the assembler user

exit request an abend at termination.

If you want LE/VSE to terminate the

environment, this host service must not be

used.

LOAD Use the LE/VSE CEELOAD assembler

macro (see page 348).

If you are introducing a new language into

the environment, host services must not

be used. The new language is not properly

initialized.

If you are not introducing a new language

into the environment, then host services

can be used. However, you must manage

the loaded routines.

OPEN/CLOSE GET/PUT READ/WRITE No equivalent LE/VSE function. These host services can be used.

PDUMP/SDUMP/SDUMPX Call CEE5DMP. These host services can be used.

360 LE/VSE: Programming Guide

Table 51. LE/VSE’s Equivalent Host Services (continued)

Host service LE/VSE Equivalent Usability

SETIMER/TTIMER No equivalent LE/VSE function. These host services can be used.

SETT/TESTT No equivalent LE/VSE function. These host services can be used.

STXIT AB/PC Use LE/VSE’s condition management

callable services—CEEHDLR, CEEHDLU,

and CEESGL.

Host services must not be used. They

interfere with LE/VSE’s condition

management.

STXIT IT/OC/TT No equivalent LE/VSE function. These host services can be used.

WAIT/WAITM/POST No equivalent LE/VSE function. Host services can be used.

WTO Call CEEMOUT. This writes to the

message file.

Host services can be used.

Chapter 26. Assembler Considerations 361

362 LE/VSE: Programming Guide

Chapter 27. Using Preinitialization Services

You can use preinitialization to enhance the performance of your application.

Preinitialization lets an application initialize an HLL environment once, perform

multiple executions using that environment, and then explicitly terminate the

environment. Because the environment is initialized only once (even if you

perform multiple executions), you free up system resources and allow for faster

responses to your requests.

This chapter describes the LE/VSE-supplied routine, CEEPIPI, that provides the

interface for preinitialized routines. Using CEEPIPI, you can initialize an

environment, invoke applications, terminate an environment, and add an entry to

the PIPI table. (The PIPI table contains the names and entry point addresses of

routines that can be executed in the preinitialized environment.)

This chapter also describes reentrancy considerations for a preinitialized

environment, user exit invocation, stop semantics, service routines, and an example

of CEEPIPI invocation.

Note: The CEEPIPI preinitialization service is designed to call HLL Language

Environment-enabled programs from a non-LE/VSE environment running in

a batch partition. This service is a batch interface and cannot be used under

CICS. Under CICS you should use EXEC CICS LINK/XCTL to introduce an

LE/VSE-conforming HLL routine.

Understanding the Basics

From a non-LE/VSE-conforming driver (such as assembler) you can use LE/VSE

preinitialization facilities to create and initialize a common run-time environment,

execute applications written in an LE/VSE-conforming HLL multiple times within

the preinitialized environment, and terminate the preinitialized environment.

LE/VSE provides the CEEPIPI preinitialized interface to perform these tasks.

In the preinitialized environment, the first routine to execute can be treated as

either the main routine or a subroutine of that execution instance. LE/VSE

provides support for both of these types of preinitialized routines:

v Executing one main routine multiple times

v Executing subroutines multiple times

LE/VSE preinitialization is commonly used to enhance performance for repeated

invocations of an application or for a complex application where there are many

repetitive requests and where fast response is required. For instance, if an

assembler routine invokes either a number of LE/VSE-conforming HLL routines or

the same HLL routine a number of times, the creation and termination of that HLL

environment multiple times is needlessly inefficient. A more efficient method is to

create the HLL environment only once for use by all invocations of the routine.

You must be careful with regards to the currently-active PSW program mask

settings, when non-LE conforming languages are involved in an application that:

1. Uses pre-initialisation services.

2. Are executed while the LE environment is inactive.

© Copyright IBM Corp. 1991, 2005 363

Each Language Environment-conforming language sets required program mask

bits at initialisation. LE/VSE will maintain and control the correct program mask

settings within the active environment. However, when the environment is

dormant and non-LE conforming languages are executed, program mask bits will

still be active for the Language Environment and may cause unexpected program

interruptions. It is the programmers responsibility to set program mask bit settings

for the non-LE conforming application and to restore the previous mask settings

before activating the LE environment.

Compatibility

COBOL

LE/VSE honors the current COBOL interfaces to preinitialization, RTEREUS,

ILBDSET0, and IGZERRE. For more information about these interfaces, see IBM

COBOL for VSE/ESA Migration Guide

Using Preinitialization

The interface for preinitialized routines is a loadable routine called CEEPIPI.

CEEPIPI is loaded as an RMODE(24) / AMODE(ANY) routine and returns in the

AMODE of its caller when the request is satisfied.

CEEPIPI handles the requests and provides services for environment initialization,

application invocation, and environment termination. All requests for services by

CEEPIPI must be made from a non-LE/VSE environment. (“CEEPIPI Interface” on

page 368 contains a detailed description and information about how to invoke each

of these services.) The parameter list for CEEPIPI is an OS standard linkage

parameter list. Each request to CEEPIPI is identified by a function code that

describes the CEEPIPI service and that is the first parameter in the parameter list.

The function code is a fullword integer (for example, 1 = init_main, 2 = call_main).

The preinitialization services offered under LE/VSE are listed in Table 53 on page

368.

An example assembler program in section “An Example Program Invocation of

CEEPIPI” on page 387 illustrates invocation of CEEPIPI for the function codes

init_sub, call_sub, and term.

Using the PIPI Table

LE/VSE uses the PIPI table to identify the routines that are candidates for

execution in the preinitialized environment, as well as optionally to load the

routine when it is called. It is possible to have an empty PIPI table with no entries.

The PIPI table contains the names and the entry point addresses of each routine

that can be executed within the preinitialized environment. Candidate routines can

be present in the table when the init_main or init_sub functions are invoked, or

can be added to the table using CEEPIPI(add_entry).

C Considerations

C programs that are the target of CEEPIPI(call_main) or CEEPIPI(call_sub) must be

C/VSE programs (not C/370 programs).

COBOL Considerations

COBOL programs that are the target of CEEPIPI(call_main) or CEEPIPI(call_sub)

must be COBOL/VSE programs (not VS COBOL II or DOS/VS COBOL programs).

364 LE/VSE: Programming Guide

PL/I Considerations

PL/I routines that are the target of CEEPIPI(call_main) or CEEPIPI(call_sub) must

be PL/I VSE routines (not DOS PL/I routines).

Macros that Generate the PIPI Table

LE/VSE provides the following assembler macros to generate the PIPI table for

you:

 CEEXPIT

 CEEXPITY

 CEEXPITS

CEEXPIT: CEEXPIT generates a header for the PIPI table. This macro has no

parameters.

Syntax

55 table_name CEEXPIT 5=

table_name

Assembler symbolic name assigned to the first word in the PIPI table. This is

the value that should be used as the ceexptbl_addr parameter in a

CEEPIPI(init_main) or a CEEPIPI(init_sub) call.

CEEXPITY: CEEXPITY generates an entry within the PIPI table.

Syntax

55 CEEXPITY (

name
 ,

entry_point
) 5=

name

The eight-character phase name of a routine that can be invoked within the

LE/VSE preinitialized environment.

entry_point

The address of the phase that is to be invoked.

 You have the option of specifying either, both, or neither of the parameters:

v If name is omitted and entry_point is present, the comma must be present.

v If both parameters are omitted, the entry is a candidate for assignment to the

PIPI table by a call to CEEPIPI(add_entry).

v If both parameters are present, name is ignored and entry_point is used as the

start of the routine.

Each invocation of the CEEXPITY macro generates a row in the PIPI table. The first

entry is row 0, the second is row 1, and so on.

CEEXPITS: CEEXPITS identifies the end of the PIPI table.

This macro has no parameters.

Chapter 27. Using Preinitialization Services 365

Syntax

55 CEEXPITS 5=

Reentrancy Considerations

You can make multiple calls to main routines by invoking CEEPIPI services and

making multiple requests from a single PIPI table. In general, you should specify

only reentrant routines for multiple invocations, or you might get unexpected

results.

For instance, if you have a reentrant main routine that is invoked using

CEEPIPI(call_main) and that uses external variables, then when your routine is

invoked again, the external variables are re-initialized. Multiple executions of a

reentrant main routine are not influenced by a previous execution of the same

routine.

On the other hand, if you have a nonreentrant main routine that is invoked using

CEEPIPI(call_main) and that uses external variables, then when your routine is

invoked again, the external variables can potentially contain last-used values. Local

variables (those contained in the object code itself) might also contain last-used

values. If main routines are allowed to execute multiple times, a given execution of

a routine can influence subsequent executions of the same routine.

User Exit Invocation

User exits are invoked for initialization and termination during calls to CEEPIPI as

shown in Table 52.

 Table 52. Invocation of User Exits during Process and Enclave Initialization and Termination

Function When Invoked

Assembler user exit for first

enclave initialization

v CEEPIPI(init_sub)

v CEEPIPI(init_sub_dp)

v CEEPIPI(call_main)

v CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) if a previous

CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) ended with

stop semantics (see “Stop Semantics” on page 367)

HLL user exit v CEEPIPI(init_sub)

v CEEPIPI(init_sub_dp)

v CEEPIPI(call_main)

v CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) if a previous

CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) ended with

stop semantics

C atexit() functions v CEEPIPI(call_main)

v CEEPIPI(call_sub) or CEEPIPI(call_sub_addr), which ended

stop semantics.

v CEEPIPI(term) for environment created with

CEEPIPI(init_sub) or CEEPIPI(init_sub_dp), if the last

CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) did not end

with stop semantics

366 LE/VSE: Programming Guide

Table 52. Invocation of User Exits during Process and Enclave Initialization and

Termination (continued)

Function When Invoked

Assembler user exit for first

enclave termination

v CEEPIPI(call_main)

v CEEPIPI(call_sub) or CEEPIPI(call_sub_addr), which ended

stop semantics

v CEEPIPI(term) for environment created with

CEEPIPI(init_sub) or CEEPIPI(init_sub_addr) if the last

CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) did not end

with stop semantics

Assembler user exit for

process termination

v CEEPIPI(term)

See Chapter 25, “Using Run-Time User Exits,” on page 319 for more information

about user exits.

Stop Semantics

When one of the following is issued within the preinitialized environment for

subroutines:

v COBOL STOP RUN statement

v C exit(), return(), abort(), or signal handling function specifying a normal or

abnormal termination

v PL/I STOP or EXIT

or when an unhandled condition causes termination of the (only) thread, the

logical enclave is terminated. The process level of the environment is retained.

LE/VSE does not delete those entries that were loaded explicitly by LE/VSE

during the preinitialization processing.

Specifying Run-Time Options and Program Arguments

When using LE/VSE preinitialization facilities, you can specify LE/VSE run-time

options in the following ways:

As installation defaults

For information about establishing installation defaults, see “Specifying

Run-time Options” on page 35.

In the assembler user exit

For information about how to specify a list of run-time options in the

assembler user exit, see “CEEBXITA Assembler User Exit Interface” on

page 323.

 CEEBXITA must be linked with the routine specified in the first valid entry

in the PIPI table. Any occurrences of CEEBXITA in other PIPI table entries

are ignored.

As application defaults

The CEEUOPT assembler language source program sets application

defaults using the CEEXOPT macro. Like the installation defaults module,

CEEDOPT, CEEUOPT can be edited and assembled to create an object

module, CEEUOPT, that can be linked with an application. When the

application runs, the options specified in CEEUOPT override any

corresponding overridable CEEDOPT options.

Chapter 27. Using Preinitialization Services 367

CEEUOPT must be linked with the routine specified in the first valid entry

in the PIPI table. Any occurrences of CEEUOPT in other PIPI table entries

are ignored.

In your CEEPIPI calls

You can specify run-time options in the runtime_opts parameter of a

CEEPIPI(init_sub), CEEPIPI(init_sub_dp), or CEEPIPI(call_main) request.

In your C source code

You can specify run-time options in #pragma runopts directive in your C

source program. For more information, see “Specifying Run-time Options”

on page 35.

In your PL/I source code

You can specify run-time options in the PLIXOPT string in your PL/I

source program. For more information, see “Specifying Run-time Options”

on page 35.

When using LE/VSE preinitialization facilities, you can specify program arguments

in the parm_ptr parameter of a CEEPIPI(call_sub), CEEPIPI(call_sub_addr), or

CEEPIPI(call_main) request.

Note: When using LE/VSE preinitialization facilities, LE/VSE does not honor

run-time options or program arguments specified in the PARM parameter of

the JCL EXEC statement.

CEEPIPI Interface

The following section describes how to invoke the CEEPIPI interface to perform

the following tasks:

v Initialization

v Application invocation

v Termination

v Addition of an entry to the PIPI table

CEEPIPI preinitialization services offered under LE/VSE are listed in Table 53.

 Table 53. Preinitialization Services Accessed Using CEEPIPI

Function Code Integer Value Service Performed

Initialization

init_main 1 Create and initialize an environment for multiple

executions of main routines

init_sub 3 Create and initialize an environment for multiple

executions of subroutines

init_sub_dp 9 Create and initialize an environment for multiple

executions of subroutines

Application invocation

call_main 2 Invoke a main routine within an already initialized

environment

call_sub 4 Invoke a subroutine within an already initialized

environment

start_seq 7 Start a sequence of uninterruptable calls to a number of

subroutines

call_sub_addr 10 Invoke a subroutine by address within an already

initialized environment

Termination

368 LE/VSE: Programming Guide

Table 53. Preinitialization Services Accessed Using CEEPIPI (continued)

Function Code Integer Value Service Performed

term 5 Explicitly terminate the environment without executing

a user routine

end_seq 8 Terminate a sequence of uninterruptable calls to a

number of subroutines

Addition of an entry to

PIPI table

add_entry 6 Dynamically add a candidate routine to execute within

the preinitialized environment

Initialization

An LE/VSE environment can be initialized in two different capacities—one to

allow executions of main routines, the other to allow multiple executions of

subroutines. Each capacity is discussed below.

CEEPIPI(init_main)—Initialize for Main Routines

This invocation of CEEPIPI:

v Creates and initializes a new common run-time environment (process) that

allows the execution of main routines multiple times

v Sets the environment dormant so that exceptions are percolated out of it

v Returns a token identifying the environment to the caller

v Returns a code in Register 15 indicating whether an environment was

successfully initialized

Syntax

55 CALL CEEPIPI (init_main , ceexptbl_addr , service_rtns , token) 5=

init_main (input)

A fullword function code (integer value = 1) containing the init_main request.

ceexptbl_addr (input)

A fullword containing the address of the PIPI table to be used during

initialization of the new environment. LE/VSE does not alter the user-supplied

copy of the table. If an entry address is zero and the entry name is nonblank,

LE/VSE searches for the routine (see “Specifying the Search Order” on page

29) and dynamically loads it. LE/VSE places the entry address in the

corresponding slot of an LE/VSE-maintained table.

 LE/VSE uses the high-order bit of the entry address to determine what

AMODE to use when calling the routine. If the entry address is zero, and the

entry name is supplied, LE/VSE uses the AMODE returned by the system

loader. If the entry address is supplied, you must provide the AMODE in the

high-order bit of the address.

service_rtns (input)

A fullword containing the address of the service routine vector or 0, if there is

no service routine vector. See “Service Routines” on page 382 for more

information.

token (output)

A fullword containing a unique value used to represent the environment.

Chapter 27. Using Preinitialization Services 369

The token parameter should be used only as input to additional calls to

CEEPIPI, and should not be altered or used in any other manner.

Return Codes: Register 15 contains a return code indicating whether an

environment was successfully initialized or not. Possible return codes are:

0 A new environment was successfully initialized.

4 The function code is invalid.

8 Not all addresses in the table were resolved. This can occur if a load failure

was encountered or a routine within the table was generated by a

non-LE/VSE-conforming HLL.

12 The version of the CEEXPIT macro used at assembly time is not supported

by the version of LE/VSE that is currently running.

16 CEEPIPI was called from an active environment.

Usage Note:

v The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and

programmer defaults (CEEUOPT) that are used to initialize the environment are

taken from the first valid entry in the PIPI table. Any occurrences of CEEBXITA,

CEEBINT, and CEEUOPT in other PIPI table entries are ignored.

CEEPIPI(init_sub)—Initialize for Subroutines

This invocation of CEEPIPI:

v Creates and initializes a new common run-time environment (process and

enclave) that allows the execution of subroutines multiple times

v Sets the environment dormant so that exceptions are percolated out of it

v Returns a token identifying the environment to the caller

v Returns a code in Register 15 indicating whether an environment was

successfully initialized

v Ensures that when the environment is dormant, it is immune to other LE/VSE

enclaves that are created or terminated

Syntax

55 CALL CEEPIPI (init_sub , ceexptbl_addr , service_rtns , 5

5 runtime_opts , token) 5=

init_sub (input)

A fullword function code (integer value = 3) containing the init_sub request.

ceexptbl_addr (input)

A fullword containing the address of the PIPI table to be used during

initialization of the new environment. LE/VSE does not alter the user-supplied

copy of the table. If the entry point address is zero and the routine name is

nonblank, LE/VSE searches for the routine (see “Specifying the Search Order”

on page 29) and dynamically loads it. LE/VSE then places the entry address in

the corresponding slot of an LE/VSE-maintained table.

 LE/VSE uses the high-order bit of the entry address to determine what

AMODE to use when calling the routine. If the entry address is zero, and the

370 LE/VSE: Programming Guide

routine name is supplied, LE/VSE uses the AMODE returned by the system

loader. If the entry address is supplied, you must provide the AMODE in the

high-order bit of the address.

service_rtns (input)

A fullword containing the address of the service routine vector. It contains 0 if

there is no service routine vector. See “Service Routines” on page 382 for more

information.

run-time_opts (input)

A fixed-length 255-character string containing run-time options (see LE/VSE

Programming Reference for a list of run-time options that you can specify).

token (output)

A fullword containing a unique value used to represent the environment.

 The token parameter should be used only as input to additional calls to

CEEPIPI, and should not be altered or used in any other manner.

Return Codes: Register 15 contains a return code indicating the success or failure

of the call. Possible return codes are:

0 A new environment was successfully initialized.

4 The function code is invalid.

8 Not all addresses in the table were resolved. This can occur if a load failure

was encountered or a routine within the table was generated by a

non-LE/VSE-conforming HLL.

12 The version of the CEEXPIT macro used at assembly time is not supported

by the version of LE/VSE that is currently running.

16 CEEPIPI was called from an active environment.

Usage Note:

v The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and

programmer defaults (CEEUOPT) that are used to initialize the environment are

taken from the first valid entry in the PIPI table. Any occurrences of CEEBXITA,

CEEBINT, and CEEUOPT in other PIPI table entries are ignored.

CEEPIPI(init_sub_dp)—Initialize for Subroutines (Multiple

Environment)

This invocation of CEEPIPI:

v Creates and initializes a new LE/VSE process and enclave to allow the execution

of subroutines multiple times

v Sets the environment dormant so that exceptions are percolated out of it

v Returns a token identifying the environment to the caller

v Returns a code in Register 15 indicating whether an environment was

successfully initialized

v Ensures that the environment tolerates the existence of multiple LE/VSE

enclaves

v Ensures that when the environment is dormant, it is immune to other LE/VSE

enclaves that are created or terminated

Multiple environments can be established only by using the CEEPIPI(init_sub_dp)

as opposed to CEEPIPI(init_sub), which can establish only a single environment.

Chapter 27. Using Preinitialization Services 371

Syntax

55 CALL CEEPIPI (init_sub_dp , ceexptbl_addr , service_rtns , 5

5 runtime_opts , token) 5=

init_sub_dp (input)

A fullword function code (integer value = 9) containing the init_sub_dp request.

ceexptbl_addr (input)

A fullword containing the address of the PIPI table to be used during

initialization of the new environment. LE/VSE does not alter the user-supplied

copy of the table. If the entry point address is zero and the routine name is

nonblank, LE/VSE searches for the routine (see “Specifying the Search Order”

on page 29) and dynamically loads it. LE/VSE then places the entry address in

the corresponding slot of an LE/VSE-maintained table.

 LE/VSE uses the high-order bit of the entry address to determine what

AMODE to use when calling the routine. If the entry address is zero, and the

routine name is supplied, LE/VSE uses the AMODE returned by the system

loader. If the entry address is supplied, you must provide the AMODE in the

high-order bit of the address.

service_rtns (input)

A fullword containing the address of the service routine vector. It contains 0 if

there is no service routine vector. See “Service Routines” on page 382 for more

information.

run-time_opts (input)

A fixed-length 255-character string containing run-time options (see LE/VSE

Programming Reference for a list of run-time options that you can specify).

token (output)

A fullword containing a unique value used to represent the environment.

 The token parameter should be used only as input to additional calls to

CEEPIPI, and should not be altered or used in any other manner.

Return Codes: Register 15 contains a return code indicating the success or failure

of the call. Possible return codes are:

0 A new environment was successfully initialized.

4 The function code is invalid.

8 Not all addresses in the table were resolved. This can occur if a load failure

was encountered or a routine within the table was generated by a

non-LE/VSE-conforming HLL.

12 The version of the CEEXPIT macro used at assembly time is not supported

by the version of LE/VSE that is currently running.

Usage Notes:

v The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and

programmer defaults (CEEUOPT) that are used to initialize the environment are

taken from the first valid entry in the PIPI table. Any occurrences of CEEBXITA,

CEEBINT, and CEEUOPT in other PIPI table entries are ignored.

372 LE/VSE: Programming Guide

v COBOL, PL/I, and C routines must be compiled RENT to participate in this

environment.

v You can direct MSGFILE output to either SYSLST or to a unique file.

v C memory files are not shared across multiple environments.

Application Invocation

LE/VSE provides two facilities to invoke either a main routine or subroutine.

When invoking main routines, the environment must have been initialized using

the init_main function code. In a similar manner, when invoking subroutines, the

environment must have been initialized with the init_sub function code.

CEEPIPI(call_main)—Invocation for Main Routine

This invocation of CEEPIPI invokes as a main routine the routine that you specify.

The common execution environment identified by token is activated before the

called routine is invoked, and after the called routine returns, the environment is

dormant.

At termination, the currently active HLL event handlers are driven to enforce

language semantics for the termination of an application such as closing files and

freeing storage. The process level is made dormant rather than terminated. The

thread and enclave levels are terminated. The assembler user exit is driven with

the function code for first enclave termination. (See Chapter 25, “Using Run-Time

User Exits,” on page 319 for more information about user exits.)

Syntax

55 CALL CEEPIPI (call_main , ceexptbl_index , token , 5

5 runtime_opts , parm_ptr , enclave_return_code , 5

5 enclave_reason_code , appl_feedback_code) 5=

call_main (input)

A fullword function code (integer value = 2) containing the call_main request.

ceexptbl_index (input)

A fullword containing the row number within the PIPI table of the entry that

should be invoked. The index starts at 0.

 Note that each invocation of the CEEXPITY macro generates a row in the PIPI

table. The first entry is row 0, the second is row 1 and so on. A call to

CEEPIPI(add_entry) to add an entry to the PIPI table also returns a row

number in the ceexptbl_index parameter.

token (input)

A fullword with the value of the token returned by CEEPIPI(init_main).

 The token parameter must identify a previously preinitialized environment that

is not active at the time of the call.

runtime_opts (input)

A fixed-length 255-character string containing run-time options. (See LE/VSE

Programming Reference for a list of run-time options that you can specify.)

parm_ptr (input)

A fullword parameter list pointer or 0 (zero) that is placed in Register 1 when

the main routine is executed.

Chapter 27. Using Preinitialization Services 373

The parameter list that is passed must be in a format that HLL subroutines

expect (for example, in an argc, argv format for C routines).

enclave_return_code (output)

A fullword containing the enclave return code returned by the called routine

when it finished executing. For more information about return codes, see

“Managing Return Codes in LE/VSE” on page 68.

enclave_reason_code (output)

A fullword containing the enclave reason code returned by the environment

when the routine finished executing. For more information about reason codes,

see “Managing Return Codes in LE/VSE” on page 68.

appl_feedback_code (output)

A 96-bit condition token indicating why the application terminated.

Return Codes: A return code is provided in Register 15 and can contain the

following values:

0 The environment was activated and the routine called.

4 The function code is invalid.

8 CEEPIPI was called from an LE/VSE-conforming HLL.

12 The indicated environment was initialized for subroutines. No routine was

executed.

16 The token parameter is invalid.

20 The index points to an entry that is invalid or empty.

24 The index that was passed is outside the range of the table.

Usage Notes:

v The NOEXECOPS and CBLOPTS run-time options (see LE/VSE Programming

Reference) are ignored since the parameter inbound to the application and the

run-time options are separated already. Therefore, NOEXECOPS and CBLOPTS

do not affect the parameter string format. See “C PLIST and EXECOPS

Interactions” on page 405 for more information.

v For more information about return codes, see “Managing Return Codes in

LE/VSE” on page 68.

CEEPIPI(call_sub)—Invocation for Subroutines

This invocation of CEEPIPI invokes as a subroutine the routine that you specify.

The common run-time environment identified by token is activated before the

called routine is invoked, and after the called routine returns, the environment is

dormant.

The enclave is terminated when an unhandled condition is encountered or a STOP

statement is executed. (See “Stop Semantics” on page 367 for more information.)

However, the process level is maintained. The next call to CEEPIPI(call_sub)

initializes a new enclave.

374 LE/VSE: Programming Guide

Syntax

55 CALL CEEPIPI (call_sub , ceexptbl_index , token , parm_ptr , 5

5 sub_ret_code , sub_reason_code , sub_feedback_code) 5=

call_sub (input)

A fullword function code (integer value = 4) containing the call_sub request for

a subroutine.

ceexptbl_index (input)

A fullword containing the row number of the entry within the PIPI table that

should be invoked. The index starts at 0.

token (input)

A fullword with the value of the token returned when the common run-time

environment is initialized. This token is initialized by the CEEPIPI(init_sub) or

CEEPIPI(init_sub_dp).

 The token parameter must identify a previously preinitialized environment that

is not active at the time of the call. You must not alter the value of the token.

parm_ptr (input)

A parameter list pointer or 0 (zero) that is placed in register 1 when the routine

is executed.

 C users need to follow the subroutine linkage convention for C—assembler ILC

applications as outlined in LE/VSE C Run-Time Programming Guide.

sub_ret_code (output)

The subroutine return code.

 If the enclave is terminated due to an unhandled condition or a STOP

statement, this contains the enclave return code for termination.

sub_reason_code (output)

The subroutine reason code. This is 0 for normal subroutine returns. If the

enclave is terminated due to an unhandled condition or a STOP statement, this

contains the enclave reason code for termination.

sub_feedback_code (output)

The feedback code for enclave termination. This is the CEE000 feedback code

for normal subroutine returns. If the enclave is terminated due to an

unhandled condition or a STOP statement, this contains the enclave feedback

code for termination.

 A return code is provided in Register 15 and can contain the following values:

0 The environment was activated and the routine called.

4 The function code is invalid.

8 CEEPIPI was called from an LE/VSE-conforming HLL.

12 The indicated environment was initialized for main routines. No routine

was executed.

16 The token parameter is invalid.

20 The index points to an entry that is invalid or empty.

Chapter 27. Using Preinitialization Services 375

24 The index passed is outside the range of the table.

28 The enclave was terminated but the process level persists.

 This value indicates the enclave was terminated while the process was

retained. This can occur due to a STOP statement being issued or due to an

unhandled condition. The sub_ret_code, sub_reason_code, and

sub_feedback_code indicate this action.

Usage Notes:

v The enclave terminates if the subroutine issues a STOP statement or if there is an

unhandled condition. However, the process level is not terminated. When the

enclave level is terminated, any subsequent invocation creates a new enclave by

using the same run-time options used in the creation of the first enclave.

LE/VSE does not delete any user routines that were loaded into the PIPI table.

(See “Stop Semantics” on page 367.)

v External data must be in its original state before preinitialization.

CEEPIPI(call_sub_addr)—Invocation for Subroutines by Address

This invocation of CEEPIPI invokes as a subroutine the routine that you specify.

The common run-time environment identified by token is activated before the

called routine is invoked, and after the called routine returns, the environment is

dormant.

The enclave is terminated when an unhandled condition is encountered or a STOP

statement is executed. (See “Stop Semantics” on page 367 for more information.)

However, the process level is maintained; only the enclave level terminates.

Syntax

55 CALL CEEPIPI (call_sub_addr , routine_addr , token , parm_ptr , 5

5 sub_ret_code , sub_reason_code , sub_feedback_code) 5=

call_sub_addr (input)

A fullword function code (integer value = 10) containing the call_sub request

for a subroutine.

routine_addr (input)

A doubleword containing the address of the routine that should be invoked.

The first fullword contains the entry point address and the second fullword

must be zero.

token (input)

A fullword with the value of the token returned by CEEPIPI(init_sub) or

CEEPIPI(init_sub_dp) when the common run-time environment is initialized.

 The token parameter must identify a previously preinitialized environment that

is not active at the time of the call. You must not alter the value of the token.

parm_ptr (input)

A parameter list pointer or 0 (zero) that is placed in register 1 when the routine

is executed.

 C users are advised to follow the subroutine linkage convention for

C—assembler ILC applications as outlined in LE/VSE C Run-Time Programming

Guide.

376 LE/VSE: Programming Guide

sub_ret_code (output)

The subroutine return code.

 If the enclave is terminated due to an unhandled condition or a STOP

statement, this contains the enclave return code for termination.

sub_reason_code (output)

The subroutine reason code. This is 0 for normal subroutine returns. If the

enclave is terminated due to an unhandled condition or a STOP statement, this

contains the enclave reason code for termination.

sub_feedback_code (output)

The feedback code for enclave termination. This is the CEE000 feedback code

for normal subroutine returns. If the enclave is terminated due to an

unhandled condition or a STOP statement, this contains the enclave feedback

code for termination.

Return Codes: A return code is provided in register 15 and can contain the

following values:

0 The environment was activated and the routine called.

4 The function code is invalid.

8 CEEPIPI was called from an LE/VSE-conforming HLL.

12 The indicated environment was initialized for main routines. No routine

was executed.

16 The token parameter is invalid.

28 The enclave was terminated but the process level persists.

 This value indicates the enclave was terminated while the process was

retained. This can occur due to a STOP statement being issued or due to an

unhandled condition. The sub_ret_code, sub_reason_code, and

sub_feedback_code indicate this action.

Usage Notes:

v The enclave terminates if the subroutine issues a STOP statement or if there is an

unhandled condition. However, the process level is not terminated. When the

enclave level is terminated, any subsequent invocation creates a new enclave

using the same run-time options used in the creation of the first enclave.

LE/VSE does not delete any user routines that were loaded into the PIPI table.

(See “Stop Semantics” on page 367.)

v External data must be in its original state before preinitialization.

CEEPIPI(start_seq)—Start a Sequence of Calls

This invocation of CEEPIPI declares that a sequence of uninterrupted calls is made

to a number of subroutines by this driver program to the same preinitialized

environment. This minimizes the overhead between calls by performing as much

activity as possible at the start of a sequence of calls.

Syntax

55 CALL CEEPIPI (start_seq , token) 5=

start_seq (input)

A fullword function code (integer value = 7) containing the start_seq request.

Chapter 27. Using Preinitialization Services 377

token (input)

A fullword with the value of the token returned by CEEPIPI(init_sub_dp)

when the common run-time environment is initialized.

 The token parameter must identify a previously preinitialized environment for

subroutines that is dormant at the time of the call.

Return Codes: A return code is provided in register 15 and can contain the

following values:

0 The environment was prepared for a sequence of calls.

4 The function code is invalid.

8 The indicated environment was already active. No action taken.

16 The token parameter is invalid.

20 Sequence already started using token.

Usage Notes:

v CEEPIPI(start_seq) can be used only in conjunction with an LE/VSE

environment initialized by CEEPIPI(init_sub_dp) function code. A return code 4

is set for environments not initialized by CEEPIPI(init_sub_dp).

v CEEPIPI(start_seq) minimizes the overhead between calls by allowing LE/VSE

to perform as much activity as possible at the start of the sequence of calls.

v Only CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) invocations are allowed

between the CEEPIPI(start_seq) and CEEPIPI(end_seq) calls.

v The same token must be passed for all invocations of CEEPIPI(call_sub) or

CEEPIPI(call_sub_addr) between the CEEPIPI(start_seq) and CEEPIPI(end_seq)

function codes. You can vary the routine invoked.

CEEPIPI(end_seq)—End a Sequence of Calls

This invocation of CEEPIPI declares that a sequence of uninterrupted calls to

subroutines by this driver program has finished.

Syntax

55 Call CEEPIPI (end_seq , token) 5=

end_seq (input)

A fullword function code (integer value = 8) containing the end_seq request

token (input)

A fullword with the value of the token returned by CEEPIPI(init_sub_dp)

when the common run-time environment is initialized.

 The token parameter must identify a previously preinitialized environment that

was prepared for multiple calls via the CEEPIPI(start_seq) call.

Return Codes: A return code is provided in register 15 and can contain the

following values:

0 The environment is no longer prepared for a sequence of calls.

4 The function code is invalid.

8 The indicated environment was already active. No action taken.

378 LE/VSE: Programming Guide

16 The token parameter is invalid.

20 The specified token was not used in a start_seq call.

Usage Notes:

v CEEPIPI(end_seq) can be used only in conjunction with an LE/VSE environment

initialized by an CEEPIPI(init_sub_dp) function code. A return code of 4 is set

for environments initialized by other than CEEPIPI(init_sub_dp).

v Only CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) invocations are allowed

between the CEEPIPI(start_seq) and CEEPIPI(end_seq) calls.

v This function can be called from an active environment if the PIPI environment

indicated by token was created with the CEEPIPI(init_sub_dp) function.

Termination

An LE/VSE environment can be terminated by calling CEEPIPI with a termination

request.

CEEPIPI(term)—Terminate Environment

This invocation of CEEPIPI terminates the environment identified by the value

given in token. This service is used for terminating environments created for

subroutines or main routines.

Syntax

55 CALL CEEPIPI (term , token , env_return_code) 5=

term (input)

A fullword function code (integer value = 5) containing the termination

request.

token (input)

A fullword with the value of the token of the environment to be terminated.

This token is returned by a CEEPIPI(init_main), CEEPIPI(init_sub), or

CEEPIPI(init_sub_dp) request during the initialization call.

 The token parameter must identify a previously preinitialized environment that

is dormant at the time of the call.

env_return_code (output)

A fullword integer which is set to the return code from the environment

termination.

 If the environment was initialized for a main routine or a subroutine, and the

last CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) issued stop semantics, the

value of env_return_code is zero.

 If the environment was initialized for a subroutine, and the last

CEEPIPI(call_sub) or CEEPIPI(call_sub_addr) did not terminate with stop

semantics, env_return_code contains the same value as that in sub_ret_code from

the last CEEPIPI(call_sub) or CEEPIPI(call_sub_addr).

 Upon return, Register 15 contains a return code indicating the success or failure of

this request and can contain the following values:

0 The environment was activated and termination was requested.

4 Invalid function code.

Chapter 27. Using Preinitialization Services 379

8 CEEPIPI was called from an LE/VSE-conforming routine.

16 The token parameter is invalid.

Usage Notes:

v All resources obtained are released when the environment terminates.

v All routines loaded by LE/VSE are deleted when the environment terminates.

v Subsequent references to token by preinitialization services result in an error

indicating the token is invalid.

Adding an Entry to the PIPI Table

You can add an entry to the PIPI table by calling CEEPIPI with an add_entry

request.

CEEPIPI(add_entry)—Add an Entry to the PIPI Table

This invocation of CEEPIPI adds an entry for the environment represented by token

in the LE/VSE-maintained table. If a routine entry address is not provided, the

routine name is used to dynamically load the routine and add it to the PIPI table.

The PIPI table index for the new entry is returned to the calling routine.

Syntax

55 CALL CEEPIPI (add_entry , token , routine_name , 5

5 routine_entry , ceexptbl_index) 5=

add_entry (input)

A fullword function code (integer value = 6) containing the add_entry request.

token (input)

A fullword with the value of the token associated with the environment that

adds this new routine. This token is returned by a CEEPIPI(init_main),

CEEPIPI(init_sub), or CEEPIPI(init_sub_dp) request.

 The token parameter must identify a previously preinitialized environment that

is dormant at the time of the call.

routine_name (input)

A character string of length 8, left-justified and padded right with blanks,

containing the name of the routine. To indicate the absence of the name, this

field should be blank. If routine_entry is zero, this is used as the load name.

routine_entry (input/output)

The routine entry address that is added to the PIPI table. If routine_entry is zero

on input, routine_name is used as the load name. On output, routine_entry is set

to the load address of routine_name.

ceexptbl_index (output)

The index to the PIPI table where this routine was added. If the return code is

nonzero, this value is indeterminate. The index starts at zero.

 LE/VSE uses the high-order bit of the entry address to determine what

AMODE to use when calling the routine. If the routine_entry is zero, and the

routine_name is supplied LE/VSE uses the AMODE returned by the system

loader. If the routine_entry is supplied, you must provide the AMODE in the

high-order bit of the address.

380 LE/VSE: Programming Guide

Return Codes: Upon return, Register 15 contains a return code indicating the

success or failure of this request and can contain one of the following values:

0 The routine was added to the PIPI table.

4 Invalid function code.

8 CEEPIPI was called from an LE/VSE-conforming routine.

12 The routine did not contain a common run-time environment PPA style

prolog. The PIPI table was not updated. routine_entry is set to the address

of the loaded routine.

16 The token parameter is invalid.

20 The routine_name contains only blanks and the routine_entry was zero. The

PIPI table was not updated.

24 The routine_name was not found or there was a load failure. The PIPI table

was not updated.

28 The PIPI table is full. No routine was added to the table, nor was any

routine loaded by LE/VSE.

Usage Notes:

v The PIPI table is built using the macros described in this chapter. Therefore, its

size is under the control of your application, not LE/VSE.

v None of the routines in the PIPI table can be nested routines. All routines must

be external routines.

Deleting an Entry from the PIPI Table

You can delete an entry from the PIPI table by calling CEEPIPI with a delete_entry

request. The entry is then available for subsequent CEEPIPI(add_entry) functions.

CEEPIPI(delete_entry)—Delete an Entry from the PIPI Table

This invocation of CEEPIPI removes an entry for the environment represented by

token in the LE/VSE-maintained table.

Syntax

55 CALL CEEPIPI (delete_entry , token , ceexptbl_index) 5=

delete_entry (input)

A fullword function code (integer value = 11) containing the delete_entry

request.

token (input)

A fullword with the value of the token of the environment. This is the token

returned by a CEEPIPI(init_sub) or CEEPIPI(init_sub_dp) request.

ceexptbl_index (output)

The index into the PIPI table of the entry to delete.

Return Codes: Upon return, Register 15 contains a return code indicating the

success or failure of this request and can contain one of the following values:

0 The routine was deleted from the PIPI table.

4 Invalid function code.

Chapter 27. Using Preinitialization Services 381

8 CEEPIPI was called from an active environment. No entries were deleted

from the PIPI table.

16 The token parameter is invalid.

20 The PIPI table entry indicated by ceexptbl_index was empty.

24 The index passed is outside the range of the table.

28 The system request to delete the routine failed; the routine was not deleted

from the PIPI table.

Usage Notes:

v The token must identify a previously-preinitialized environment that is dormant

at the time of the call.

v If the routine indicated by ceexptbl_index had been loaded by CEEPIPI, it will be

deleted.

v Only C or PL/I reentrant fetchable subroutines are support targets of a

delete_entry request. COBOL target load modules are not supported.

Service Routines

Under LE/VSE, you can specify several service routines to execute a main routine

or subroutine in the preinitialized environment. To use the routines, specify a list

of addresses of the routines in a service routine vector as shown in Figure 123.

 The service routine vector is composed of a list of fullword addresses of routines

that are used instead of LE/VSE service routines. The list of addresses is preceded

by the number of the addresses in the list, as specified in the count field of the

vector. The service_rtns parameter that you specify in calls to CEEPIPI(init_main)

and CEEPIPI(init_sub) contains the address of the vector itself. If this pointer is

specified as zero (0), LE/VSE routines are used instead of the service routines

shown in Figure 123.

The @GETSTORE and @FREESTORE service routines must be specified together; if

one is zero, the other is automatically ignored. The same is true for the @LOAD

Figure 123. Format of Service Routine Vector

382 LE/VSE: Programming Guide

and @DELETE service routines. You should be aware that if you replace the

program management routines, these routines might not account for all the storage

obtained for use with the application. Program management obtains virtual storage

for the load module. This storage will not be managed by the user-replaced storage

management routines.

The service routines must be AMODE(ANY) / RMODE(24).

Count

A fullword binary number representing the number of fullwords that follow.

The count does not include itself. In Figure 123 on page 382, the count is 9. For

each vector slot, a zero represents the absence of the routine, a nonzero

represents the presence of a routine.

User Word

A fullword that is passed to the service routines. The user word is provided as a

means for your routine to communicate to the service routines.

@WorkArea

An address of a work area of at least 256 bytes that is doubleword aligned.

The first word of the area contains the length of the area provided. This

parameter is required if service routines are present in the service routine

vector.

@LOAD

This routine loads named routines for program management. Each time the

@LOAD routine is called, the parameter list that is passed to the routine

contains the following:

Name_addr

The fullword address of the name of the phase to load (input).

Name_length

A fixed binary(31) length of the phase name (input).

User_word

A fullword user field (input).

Rsvd_word

A fullword reserved for future use (input). This must be specified as

zero (0).

Entry_point

The fullword entry point address of the loaded routine (output).

Module_size

The fixed binary(31) size of the phase that was loaded (output).

Return code

The fullword return code from the @LOAD service (output).

Reason code

The fullword reason code from the @LOAD service (output).

The return and reason codes set by the @LOAD service routine supplied with

LE/VSE are listed in Table 54.

 Table 54. Return and Reason Codes

Return Code Reason Code1 Description

0 0 Successful

8 20 Unsuccessful—phase not found

12 4 Unsuccessful—the size of the (real) partition GETVIS

is 0KB

12 8 Unsuccessful—the length of the phase exceeds the

GETVIS area

Chapter 27. Using Preinitialization Services 383

Table 54. Return and Reason Codes (continued)

Return Code Reason Code1 Description

12 12 Unsuccessful—insufficient storage in the GETVIS area

12 16 Unsuccessful—the partition CDLOAD directory is

full and there is no system GETVIS available to

allocate a new directory

16 24 Unsuccessful—load request failed trying to load a

move-type phase

Note:

1. The reason codes are the return codes received from the CDLOAD system macro.

@DELETE

This routine deletes named routines for program management. Each time the

@DELETE routine is called, the parameter list that is passed to the routine

contains the following:

Name_addr

The fullword address of the phase name to be deleted (input).

Name_length

A fixed binary(31) length of phase name (input).

User_word

A fullword user field (input).

Rsvd_word

A fullword reserved for future use (input). Must be zero.

Return code

The return code from the @DELETE service (output).

Reason code

The fullword reason code from the @DELETE service (output).

The return and reason codes set by the @DELETE service routine supplied

with LE/VSE are listed in Table 55.

 Table 55. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful2

4 41 Unsuccessful—maximum load count for phase

exceeded

4 8 Unsuccessful—insufficient program storage available

to determine if phase is in the SVA

4 201 Unsuccessful—phase not found

Note:

1. This reason code is the return code received from the CDDELETE system macro.

2. This return code and reason code are also set if the phase is found in the SVA.

@GETSTORE

This routine allocates storage on behalf of the storage manager. This routine

can rely on the caller to provide a save area, which can be the @WorkArea.

Each time the @GETSTORE routine is called, the parameter list that is passed

to the routine contains the following:

Amount

A fixed binary(31) amount of storage requested (input).

384 LE/VSE: Programming Guide

If the specified value is less than zero, this is a request for the

maximum amount of available contiguous storage. The absolute value

of Amount is the minimum amount of storage required.

Rsvd_word

A fullword reserved for future use (input).

User_word

A fullword user field (input).

Flags A fullword flag area (input).

 Bit zero in the flags is ON if the storage is required below the 16MB

line. The remaining bits are reserved for future use and must be zero.

Bit zero in the flags is OFF if the storage required can be allocated

anywhere.

Stg_address

The fullword address of the storage obtained or zero (output).

Obtained

A fixed binary(31) number of bytes obtained (output).

Return code

The fullword return code from the @GETSTORE service (output).

Reason code

The fullword reason code from the @GETSTORE service (output).

The return and reason codes set by the @GETSTORE service routine supplied

with LE/VSE are listed in Table 56.

 Table 56. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful

16 4 Unsuccessful—the size of the (real) partition GETVIS

is 0KB

16 8 Unsuccessful—the specified length exceeds the

GETVIS area

16 12 Unsuccessful—no more virtual storage is available in

the GETVIS area

@FREESTORE

This routine frees storage on behalf of the storage manager. Each time the

@FREESTORE routine is called, the parameter list that is passed to the routine

contains the following:

Amount

The fixed binary(31) amount of storage to free (input).

Rsvd_word

A fullword reserved for future use (input).

User_word

A fullword user field (input).

Stg_address

The fullword address of the storage to free (input).

Return code

The fullword return code from the @FREESTORE service (output).

Reason code

The fullword reason code from the @FREESTORE service (output).

The return and reason codes set by the @FREESTORE service routine supplied

with LE/VSE are listed in Table 57 on page 386.

Chapter 27. Using Preinitialization Services 385

Table 57. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful

16 4 Unsuccessful—the size of the (real) partition GETVIS

is 0KB

16 8 Unsuccessful—the value specified in Amount is less

than zero

16 12 Unsuccessful—the specified address is not within the

GETVIS area or the address is not a multiple of 128

16 16 Unsuccessful—the specified storage block to be

released (Stg_address + Amount) exceeds the

GETVIS area

@MSGRTN

This routine allows error messages to be processed by the caller of the

application. Each time the @MSGRTN routine is called, the parameter list that

is passed to the routine contains the following:

Message

A pointer to the first byte of text that is printed, or zero (input).

 If the message pointer is zero, your message routine is expected to

return the size of the line to which messages are written (in the

Line_length field). This allows messages to be formatted

correctly—that is broken at blanks or punctuation.

Msg_len

The fixed binary(31) length of the message (input).

User_word

A fullword user field (input).

Line_length

The fixed binary(31) size of the output line length. This is used when

the Message pointer is zero (output).

Return code

The fullword return code from the @MSGRTN service (output).

Return code

The fullword reason code from the @MSGRTN service (output).

The return and reason codes set by the @MSGRTN service routine supplied with

LE/VSE are listed in Table 58.

 Table 58. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful

16 4 Unsuccessful—uncorrectable error occurred

386 LE/VSE: Programming Guide

An Example Program Invocation of CEEPIPI

In the following example, the assembler program ASMPIPI ASSEMBLE invokes

CEEPIPI to:

v Initialize a subroutine environment under LE/VSE

v Load and call a reentrant HLL subroutine

v Terminate the LE/VSE environment

Following the assembler program are examples of the program HLLPIPI written in

C, COBOL, and PL/I. You can use the assembler program to call the HLL versions

of HLLPIPI.

*COMPILATION UNIT: LEASMPIP

* *

* Function : CEEPIPI - Initialize the PIPI environment, *

* call a PIPI HLL program, and terminate *

* the environment. *

* *

* 1.Call CEEPIPI to initialize a subroutine environment under LE. *

* 2.Call CEEPIPI to load and call a reentrant HLL subroutine. *

* 3.Call CEEPIPI to terminate the LE PIPI environment. *

* *

* Note: ASMPIPI is not reentrant. *

* *

*

* ===

* Standard program entry conventions.

* ===

ASMPIPI CSECT

 STM R14,R12,12(R13) Save caller’s registers

 LR R12,R15 Get base address

 USING ASMPIPI,R12 Identify base register

 ST R13,SAVE+4 Back-chain the save area

 LA R15,SAVE Get addr of this routine’s save area

 ST R15,8(R13) Forward-chain in caller’s save area

 LR R13,R15 R13 -> save area of this routine

*

* Load LE CEEPIPI service routine into main storage.

*

 CDLOAD CEEPIPI Load CEEPIPI routine dynamically

 ST R0,PPRTNPTR Save the addr of CEEPIPI routine

*

* Initialize an LE PIPI subroutine environment.

*

INIT_ENV EQU *

 LA R5,PPTBL Get address of PIPI Table

 ST R5,@CEXPTBL Ceexptbl-addr -> PIPI Table

 L R15,PPRTNPTR Get address of CEEPIPI routine

* Invoke CEEPIPI routine

 CALL (15),(INITSUB,@CEXPTBL,@SRVRTNS,RUNTMOPT,TOKEN)

* Check return code:

 LTR R2,R15 Is R15 = zero?

 BZ CSUB Yes (success).. go to next section

* No (failure).. issue message

 WTO ’ASMPIPI : call to CEEPIPI(INIT_SUB) failed’,ROUTCDE=2

 C R2,=F’8’ Check for partial initialization

 BE TSUB Yes.. go do PIPI termination

* No.. issue message & quit

 WTO ’ASMPIPI : INIT_SUB failure RC is not 8.’,ROUTCDE=2

 DUMP RC=(2) Cancel with bad RC and dump memory

Figure 124. Assembler Driver that Creates a Preinitialized Environment (Part 1 of 3)

Chapter 27. Using Preinitialization Services 387

*

* Call the subroutine, which is loaded by LE

*

CSUB EQU *

 L R15,PPRTNPTR Get address of CEEPIPI routine

 CALL (15),(CALLSUB,PTBINDEX,TOKEN,PARMPTR, X

 SUBRETC,SUBRSNC,SUBFBC) Invoke CEEPIPI routine

* Check return code:

 LTR R2,R15 Is R15 = zero?

 BZ TSUB Yes (success).. go to next section

* No (failure).. issue message & quit

 WTO ’ASMPIPI : call to CEEPIPI(CALL_SUB) failed’,ROUTCDE=2

 DUMP RC=(2) Cancel with bad RC and dump memory

*

* Terminate the environment.

*

TSUB EQU *

 L R15,PPRTNPTR Get address of CEEPIPI routine

 CALL (15),(TERM,TOKEN,ENV_RC) Invoke CEEPIPI routine

* Check return code:

 LTR R2,R15 Is R15 = zero ?

 BZ DONE Yes (success).. go to next section

* No (failure).. issue message & quit

 WTO ’ASMPIPI : call to CEEPIPI(TERM) failed’,ROUTCDE=2

 DUMP RC=(2) Cancel with bad RC and dump memory

*

* Standard exit code.

*

DONE EQU *

 LA R15,0 Passed return code for system

 L R13,SAVE+4 Get address of caller’s save area

 L R14,12(R13) Reload caller’s register 14

 LM R0,R12,20(R13) Reload caller’s registers 0-12

 BR R14 Branch back to caller

*

* ===

* CONSTANTS and SAVE AREA.

* ===

SAVE DC 18F’0’

PPRTNPTR DS A Save the address of CEEPIPI routine

*

* Parameters passed to a CEEPIPI(INIT_SUB) call.

*

INITSUB DC F’3’ Function code to initialize for subr

@CEXPTBL DC A(PPTBL) Address of PIPI Table

@SRVRTNS DC A(0) Addr of service-rtns vector, 0 = none

RUNTMOPT DC CL255’ ’ Fixed length string of runtime optns

TOKEN DS F Unique value returned (output)

*

* Parameters passed to a CEEPIPI(CALL_SUB) call.

*

CALLSUB DC F’4’ Function code to call subroutine

PTBINDEX DC F’0’ The row number of PIPI Table entry

PARMPTR DC A(0) Pointer to @PARMLIST or zero if none

SUBRETC DS F Subroutine return code (output)

SUBRSNC DS F Subroutine reason code (output)

SUBFBC DS 3F Subroutine feedback token (output)

*

* Parameters passed to a CEEPIPI(TERM) call.

*

TERM DC F’5’ Function code to terminate

ENV_RC DS F Environment return code (output)

*

Figure 124. Assembler Driver that Creates a Preinitialized Environment (Part 2 of 3)

388 LE/VSE: Programming Guide

* ===

* PIPI Table.

* ===

PPTBL CEEXPIT , PIPI Table with index

 CEEXPITY HLLPIPI,0 0 = dynamically loaded routine with

* re-entrant option

 CEEXPITS , End of PIPI table

*

*

 LTORG

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END ASMPIPI

Figure 124. Assembler Driver that Creates a Preinitialized Environment (Part 3 of 3)

Chapter 27. Using Preinitialization Services 389

HLLPIPI Examples

/*Module/File Name: EDCPIPI */

 /**/

 /* */

 /* HLLPIPI is called by an assembler program, ASMPIPI. */

 /* ASMPIPI uses the LE preinitialized program */

 /* subroutine call interface. HLLPIPI can be written */

 /* in COBOL, C, or PL/I. */

 /* */

 /**/

#include <stdio.h>

#include <string.h>

#include <time.h>

HLLPIPI ()

{

 printf ("C subroutine beginning\n");

 printf ("Called using LE PIPI call\n");

 printf ("Subroutine interface.\n");

 printf ("C subroutine returns to caller\n");

}

Figure 125. C Subroutine Called by ASMPIPI

CBL LIB,APOST

 *Module/File Name: IGZTPIPI

 * *

 * HLLPIPI is called by an assembler program, ASMPIPI. *

 * ASMPIPI uses the LE preinitialized program *

 * subroutine call interface. HLLPIPI can be written *

 * in COBOL, C, or PL/I. *

 * *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. HLLPIPI.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 PROCEDURE DIVISION.

 DISPLAY ’COBOL subroutine beginning’.

 DISPLAY ’Called using LE PIPI ’.

 DISPLAY ’Call subroutine interface.’.

 DISPLAY ’COBOL program returns to caller.’.

 GOBACK.

Figure 126. COBOL Program Called by ASMPIPI

390 LE/VSE: Programming Guide

/*Module/File Name: IBMPIPI */

 /**/

 /* */

 /* HLLPIPI is called by an assembler program, ASMPIPI. */

 /* ASMPIPI uses the LE preinitialized program */

 /* subroutine call interface. HLLPIPI can be written */

 /* in COBOL, C, or PL/I. */

 /* */

 /**/

 HLLPIPI: PROC OPTIONS(FETCHABLE);

 DCL RESULT FIXED BIN(31,0) INIT(0);

 PUT SKIP LIST

 (’HLLPIPI : PLI subroutine beginning.’);

 PUT SKIP LIST

 (’HLLPIPI : Called LE PIPI Call ’);

 PUT SKIP LIST

 (’HLLPIPI : Subroutine interface. ’);

 PUT SKIP LIST

 (’HLLPIPI : PLI program returns to caller.’);

 RETURN;

 END HLLPIPI;

Figure 127. PL/I Routine Called by ASMPIPI

Chapter 27. Using Preinitialization Services 391

392 LE/VSE: Programming Guide

Chapter 28. Using Nested Enclaves

An enclave is a logical run-time structure that supports the execution of a

collection of routines (see Chapter 9, “Program Management Model,” on page 75

for a detailed description of LE/VSE enclaves).

LE/VSE Release 4 explicitly supports the execution of a single enclave within an

LE/VSE process. However, by using the system services and language constructs

described in this chapter, you can create an additional, or nested, enclave and

initiate its execution within the same process.

The enclave that issues a call to system services or language constructs to create a

nested enclave is called the parent enclave. The nested enclave that is created is

called the child enclave. The child must be a main routine; a link to a subroutine by

commands and language constructs is not supported under LE/VSE.

Understanding the Basics

In LE/VSE, you can use the following methods to create a child enclave:

v Under CICS, the EXEC CICS LINK and EXEC CICS XCTL commands (see CICS

Transaction Server for VSE/ESA Application Programming Guide for more

information about these commands)

v In the batch environment, the C system() function (see LE/VSE C Run-Time

Library Reference and LE/VSE C Run-Time Programming Guide for more

information about system())

If the target routine of any of these commands is not written in an

LE/VSE-conforming HLL or LE/VSE-conforming assembler, no nested enclave is

created.

COBOL Considerations

In the batch environment, DOS/VS COBOL routines are supported in a single

enclave only.

Determining the Behavior of Child Enclaves

If you want to create a child enclave, you need to consider the following factors:

v The language of the main routine in the child enclave

v The sources from which each type of child enclave gets run-time options

v The default condition handling behavior of each type of child enclave

v The setting of the TRAP run-time option in the parent and the child enclave

All of these interrelated factors affect the behavior, particularly the condition

handling, of the created enclave. The sections that follow describe how the child

enclaves created by each method (EXEC CICS LINK, EXEC CICS XCTL, and C

system() function) will behave.

© Copyright IBM Corp. 1991, 2005 393

Creating Child Enclaves Using EXEC CICS LINK or EXEC

CICS XCTL

If your C, COBOL, or PL/I application uses EXEC CICS commands, you must also

link-edit the EXEC CICS interface stub, DFHELII, with your application. To be

link-edited with your application, DFHELII must be available in the object

sublibrary search chain.

See CICS Transaction Server for VSE/ESA Application Programming Guide for more

information about the EXEC CICS LINK and EXEC CICS XCTL commands.

How Run-Time Options Affect Child Enclaves

The child enclave gets its run-time options from one of the sources discussed in

“Specifying Run-Time Options under CICS” on page 300. The run-time options are

completely independent of the creating enclave, and can be set on an

enclave-by-enclave basis.

Some of the methods for setting run-time options might slow down your

transaction. Follow these suggestions to improve performance:

v If you need to specify options in CEEUOPT, specify only those options that are

different from system defaults.

v Before putting transactions into production, request a storage report (using the

RPTSTG run-time option) to minimize the number of GETMAINs and

FREEMAINs required by the transactions.

v Ensure that VS COBOL II transactions are not link-edited with IGZETUN, which

is no longer supported and which causes an informational message to be logged.

Logging this message for every transaction inhibits system performance.

How Conditions Arising in Child Enclaves Are Handled

This section describes the default condition handling for child enclaves created by

EXEC CICS LINK or EXEC CICS XCTL.

Condition handling varies depending on the source of the condition, and whether

or not an EXEC CICS HANDLE ABEND is active:

v If a software condition of severity 2 or greater occurs, LE/VSE condition

handling takes place. If the condition remains unhandled, the problem is not

percolated to the parent enclave. The CICS thread is terminated with an abend.

These actions take place even if a CICS HANDLE ABEND is active, because

CICS HANDLE ABEND does not gain control in the event of an LE/VSE

software condition.

v If an LE/VSE- or CEEBXITA-initiated (generated by setting the CEEAUE_ABND

field of CEEBXITA) abend occurs, the CICS thread is terminated. This occurs

even if a CICS HANDLE ABEND is active, because CICS HANDLE ABEND

does not gain control in the event of an LE/VSE abend.

v If a user abend or program check occurs, the following actions take place:

 If no EXEC CICS HANDLE ABEND is active, and TRAP(ON) is set in the

child enclave, LE/VSE condition handling takes place. If the abend or

program check remains unhandled, the problem is not propagated to the

parent enclave. The CICS thread is terminated with an abend.

 An active EXEC CICS HANDLE ABEND overrides the setting of TRAP. The

action defined by the EXEC CICS HANDLE ABEND takes place.

394 LE/VSE: Programming Guide

Creating Child Enclaves Using the C system() Function

Child enclaves created by the C system() function get run-time options through a

merge from the usual sources (see Chapter 5, “Using Run-Time Options,” on page

33 for more information). Therefore, you can set run-time options on an

enclave-by-enclave basis. See LE/VSE C Run-Time Library Reference and LE/VSE C

Run-Time Programming Guide for information on the system() function.

When you perform a system() function to a COBOL program, in the form:

system("PGM=program_name,PARM=’...’")

the run-time options specified in the PARM= portion of the system() function are

ignored. However, run-time options are merged from CEEDOPT, CEEUOPT, and

the CEEAUE_OPTION from the assembler user exit.

How Conditions Arising in Child Enclaves Are Handled

Condition handling varies depending on the source of the condition, and the

settings of the TRAP run-time option in the parent and child enclaves.

If a software condition occurs, LE/VSE condition handling takes place. If the

condition remains unhandled, the behavior depends upon the severity of the

condition, and the settings of the TRAP run-time option in the parent and child

enclaves. The following conditions might cause the child enclave to terminate:

 Unhandled user abend

 Unhandled program check

Table 59 summarizes the different types of behavior that can occur when an

unhandled condition occurs in a child enclave created by the C system() function.

 Table 59. Unhandled Condition Behavior in a system()-Created Child Enclave

Parent Enclave

TRAP(ON)

Child Enclave

TRAP(ON)

Parent Enclave

TRAP(ON)

Child Enclave

TRAP(OFF)

Parent Enclave

TRAP(OFF)

Child Enclave

TRAP(ON)

Parent Enclave

TRAP(OFF)

Child Enclave

TRAP(OFF)

Unhandled

condition

severity 0 or 1

Resume child

enclave

Resume child

enclave

Resume child

enclave

Resume child

enclave

Unhandled

condition

severity 2 or

above

Resume parent

enclave, and

ignore condition

Resume parent

enclave, and

ignore condition

Resume parent

enclave, and

ignore condition

Resume parent

enclave, and

ignore condition

Non-LE/VSE

abend

Resume parent

enclave, and

ignore condition

Process

terminated with

VSE system

abend message

or LE/VSE

message

CEE3322C

Resume parent

enclave, and

ignore condition

Process

terminated with

VSE system

abend message

or LE/VSE

message

CEE3322C

Program check Resume parent

enclave, and

ignore condition

Process

terminated with

VSE system

abend message

Resume parent

enclave, and

ignore condition

Process

terminated with

VSE system

abend message

If an LE/VSE- or CEEBXITA-initiated (generated by setting the CEEAUE_ABND

field of CEEBXITA) abend occurs in a child enclave created by a call to system(),

the entire process is terminated.

Chapter 28. Using Nested Enclaves 395

Other Nested Enclave Considerations

The following sections contain other information you might need to know when

creating nested enclaves. The topics include:

v The string that CEE5PRM returns for each type of child enclave (see LE/VSE

Programming Reference for more information about the CEE5PRM callable service)

v The return and reason codes that are returned on termination of the child

enclave

v How the assembler user exit handles nested enclaves

v MSGFILE considerations

v AMODE considerations

What the Enclave Returns from CEE5PRM

CEE5PRM returns to the calling routine the user parameter string that was

specified at program invocation. Only program arguments are returned.

See Table 60 to determine whether a user parameter string was passed to your

routine, and where the user parameter string is found. This depends on the

method you used to create the child enclave, the language of the routine in the

child enclave, and the PLIST or SYSTEM setting of the main routine in the child

enclave. If a user parameter string was passed to your routine, the user parameter

string is extracted from the command-line equivalent for your routine (shown in

Table 61 on page 397) and returned to you.

Note: Under CICS, CEE5PRM always returns a blank string.

 Table 60. Determining the Command-Line Equivalent

Language Option Suboption Parameter String

C #pragma

runopts(PLIST)

HOST OS

Parameter

string from

the command

string passed

to system()

Not available

PL/I SYSTEM

compiler option

VSE CICS, DLI

Parameter

string from

the command

string passed

to system()

Not available

COBOL Null

LE/VSE-

conforming

assembler

CEEENTRY

PLIST parameter

HOST OS

Parameter

string from

the command

string passed

to system()

Not available

If Table 60 indicates that a parameter string was passed to your routine at

invocation, the string is extracted from the command-line equivalent listed in the

right-hand column of Table 61 on page 397. The command-line equivalent depends

on the language of your routine and the run-time options specified for it.

396 LE/VSE: Programming Guide

Table 61. Determining the Order of Run-Time Options and Program Arguments

Language of

Routine Run-Time Options in Effect?

Order of Run-Time Options

and Program Arguments

C #pragma runopts(EXECOPS) is specified (or

defaulted)

#pragma runopts(NOEXECOPS)

is specified

run-time options / user parms entire string is user parms

COBOL CBLOPTS(ON) CBLOPTS(OFF)

run-time options are not available; entire

string is user parms

run-time options are not

available; entire string is user

parms

PL/I PROC OPTIONS(NOEXECOPS) is not

specified

PROC

OPTIONS(NOEXECOPS) is

specified

run-time options / user parms entire string is user parms

LE/VSE-

conforming

assembler

CEEENTRY EXECOPS=ON is specified CEEENTRY EXECOPS=OFF is

specified

run-time options / user parms entire string is user parms

Finding the Return and Reason Code from the Enclave

The following list tells where to look for the return and reason codes that are

returned to the parent enclave when a child enclaves terminates:

v EXEC CICS LINK or EXEC CICS XCTL

If the CICS thread was not terminated, the return code is placed in the optional

RESP2 field of EXEC CICS LINK or EXEC CICS XCTL. The reason code is

discarded.

v C’s system() function

If the target command or program of system() cannot be started, “-1”is returned

as the function value of system(). Otherwise, the return code of the child

enclave is reported as the function value of system(), and the reason code is

discarded. (See LE/VSE C Run-Time Library Reference and LE/VSE C Run-Time

Programming Guide for more information about the system() function.)

Assembler User Exit

An assembler user exit (CEEBXITA) is driven for enclave initialization and enclave

termination regardless of whether the enclave is the first enclave created in the

process or a nested enclave. The assembler user exit differentiates between first

and nested enclave initialization.

MSGFILE Considerations

You can specify the same message file across nested enclaves; LE/VSE coordinates

the use of the same filename across nested enclaves. If you specify a different

MSGFILE filename in each enclave, LE/VSE honors each filename.

The message file is not closed when control returns from a child enclave. All open

message files are closed during process termination.

AMODE Considerations

ALL31 should have the same setting for all enclaves within a process. You cannot

invoke a nested enclave that requires ALL31(OFF) from an enclave running with

ALL31(ON).

Chapter 28. Using Nested Enclaves 397

398 LE/VSE: Programming Guide

Part 6. Appendixes

© Copyright IBM Corp. 1991, 2005 399

400 LE/VSE: Programming Guide

Appendix A. Guidelines for Writing Callable Services

If you want to write services similar in form and description to LE/VSE callable

services, follow the guidelines listed in this chapter.

v Callable service parameters must follow the data type descriptions outlined in

LE/VSE Programming Reference.

v Argument passing is by one level of indirection, either “by reference” or “by

value”. See “Passing Arguments between Routines” on page 50 for these

argument passing styles.

v Avoid the use of operating system services and macros. Use LE/VSE services

whenever possible.

v Always use the prototype definition or the entry declaration whenever possible.

v Avoid using the CEE5SPM callable service (see LE/VSE Programming Reference).

CEE5SPM can change the condition handling semantics of the HLLs supported

by LE/VSE.

v LE/VSE assumes the following defaults for character strings:

– For input arguments, a length-prefixed string (with the length of the 2-byte

prefix not included in the length value)

– For output arguments, a fixed-length string of 80 bytes, padded on the right

with blanks as necessary.
v Allow a feedback code area to be optionally passed as the last parameter to the

callable service. The feedback code must be a FEED_BACK data type and

conform to the layout described in Chapter 14, “Using Condition Tokens,” on

page 171.

v If omitted arguments are permitted by the HLL, a zero or NULL pointer must be

used to indicate the omitted parameter in the parameter list that is passed to the

callable service. For example:

The last parameter passed in the list must have the high-order bit on to indicate

that it is last. If the last parameter is omitted, the zero value that the user passes

in the parameter list must have the high-order bit on, for example X'80000000'.

Therefore, you must allow the user of the callable service to check for this bit

when the last parameter passed to the service is omitted.

v When documenting callable services, follow the same general format used to

document each of the callable services in this book. Each callable service

description should contain (in this order):

– A general description of what the service does

– A diagram indicating the syntax of the call to the service

– A complete description of each callable service parameter and an

identification of the required data type

– A list of possible feedback codes that can be returned by the service to its

caller

© Copyright IBM Corp. 1991, 2005 401

– Usage notes that provide additional needed information to the user, such as a

list of related callable services

– An example or examples of usage.

402 LE/VSE: Programming Guide

Appendix B. Using Operating System and Subsystem

Parameter List Formats

This appendix describes the various formats of parameters passed to and from

operating systems and subsystems. In most cases you do not need to know these

formats in order to pass or receive parameters in your application. For cases in

which you want to directly access the parameter list that is passed, the format and

contents of the parameter list are shown below.

There are additional considerations depending on whether the main routine is in

the C, COBOL, or PL/I language. For information about parameter passing in

these languages, see:

v “C Parameter Passing Considerations”

v “COBOL Parameter Passing Considerations” on page 406

v “PL/I Main Procedure Parameter Passing Considerations” on page 406

C Parameter Passing Considerations

C generally supports a single character string as a parameter to a main routine. It

parses the string into tokens that are accessed by the argc and argv parameters of

the main function.

In addition, C supports various other styles of passing a set of parameters to the

main routine. For example, you can pass a parameter to a main routine as a single

value, a pointer to a value, or a pointer to a list of values. In these cases, the set of

parameters is not parsed. It is assumed that the invoker of the application (for

example, the operating system) has stored the address of the set of parameters in

register 1 prior to entry into the main routine. Depending on how the parameters

are passed, register 1 points on entry to the entities illustrated in Figure 128:

 Style 1: Register 1 contains parameter value (restricted to integer types)

 Register 1 = parameter value

 Style 2: Register 1 contains pointer to parameter value

 Register 1 = pointer → parameter value

 Style 3: Register 1 contains pointer to array

 of pointers to parameter values

 Register 1 = pointer → (pointer0→value0)

 (pointer1→value1)

 (pointer2→value2)

 .

 .

 .

 (pointern→valuen)

Figure 128. Some C Parameter Passing Styles

© Copyright IBM Corp. 1991, 2005 403

When you code your C main routine, you elect to use one of the styles shown in

Figure 128 on page 403 by specifying the PLIST(OS) run-time option in #pragma

runopts (see “C PLIST and EXECOPS Interactions” on page 405). When PLIST(OS)

is specified, C makes the parameter list available through a pair of macros: __R1

and __osplist. Use the macros in your main routine according to which parameter

list style your routine receives:

__R1 of type void *

__R1 contains the value that is in register 1 on entry into the main routine.

It provides access to the parameters when they are passed according to the

first two styles shown in Figure 128 on page 403.

__osplist of type void **

__osplist acts as an array of pointers to parameters. It is derived from

__R1 and provides access to the parameters when they are passed

according to the third style shown in Figure 128 on page 403.

You must include the header file stdlib.h when using __R1 or __osplist.

Figure 129 illustrates how these macros can be used to access items in the three

alternative parameter arrangements.

 Suitable casting and dereferencing are required when using these macros, as shown

in Figure 130 on page 405, according to the parameter passing style in use.

 Style 1:

 Register 1 = __R1

 Style 2:

 Register 1 = __R1 → *__R1

 Style 3:

 Register 1 = __R1 →(__osplist[0]→*__osplist[0])

 (__osplist[1]→*__osplist[1])

 (__osplist[2]→*__osplist[2])

 .

 .

 .

 (__osplist[n]→*__osplist[n])

Figure 129. Accessing Parameters Using Macros __R1 and __osplist

404 LE/VSE: Programming Guide

The third parameter passing style is also supported by certain invoker-specific

macros and functions (for example, __pcblist and __csplist for invokers of DL/I

and Cross System Product). __osplist is a generalized form of the more

specialized __pcblist and __csplist macros; it can be used in their place or in

cases where they do not apply.

C PLIST and EXECOPS Interactions

You can use C #pragma runopts to specify to the C compiler a list of options to be

used at run time. Two of the options of #pragma runopts affect the format of the

argument list passed to the application on initialization: EXECOPS and PLIST.

EXECOPS allows you to specify run-time options PARM parameter of the JCL

EXEC statement at application invocation. NOEXECOPS indicates that run-time

options cannot be so specified. When the EXECOPS run-time option is specified,

LE/VSE removes any run-time options that are present before passing the

parameter list to the main routine.

PLIST indicates in what form the invoked routine should expect the argument list.

You can specify PLIST with the following values under LE/VSE:

HOST The argument list is assumed to be a character string. LE/VSE uses the

standard VSE parameter list format; a string prefixed by a halfword length

field.

OS The inbound parameter list is assumed to be in the OS linkage format in

which register 1 points to a parameter address list. No run-time options are

available. Register 1 is not interrogated by LE/VSE.

The EXECOPS, NOEXECOPS, and PLIST options can alter the format of the

argument list passed to your application, depending on the combination of options

specified. The setting of EXECOPS determines whether LE/VSE looks for run-time

parameters in the inbound parameter list. The effects of the interactions of these

options under the various operating environments are summarized in Table 62 on

page 406

Style 1:

 parm = (int) __R1; (restricted to integer types)

Style 2:

 parm_ptr = (float *) __R1;

 parm = &asterisk ((float *) __R1);

Style 3:

 parm0_ptr = (float *) __osplist[0];

 parm0 = &asterisk ((float *) __osplist[0]);

Figure 130. Examples of Casting and Dereferencing

Appendix B. Using Operating System and Subsystem Parameter List Formats 405

Table 62. Interactions of C PLIST and EXECOPS (#pragma runopts)

Operating

Environment Method of Invocation

PLIST

Suboption EXECOPS argc/argv

__R1/__osplist

and PCBs

Batch EXEC PGM=,

PARM= <run-time

options> / <user args>

HOST Yes

(default).

<run-time

options>

honored

argc = number of tokenized

args in <user args>

argv[0...argc-1] = tokenized

args in <user args>

Batch EXEC PGM=,

PARM= <run-time

options> / <user args>

HOST No.

<run-time

options>

ignored

argc = number of tokenized

args in the entire PARM

string, that is, <run-time

options> / <user args>

argv[0...argc-1] = tokenized

args in the entire PARM

string

Batch Driver link to C main

passing noncharacter

parameter list

OS n/a argc=1

argv[0] = name of C main

routine

Access register

1 through

__osplist macro

as defined in

stdlib.h

Batch DL/I DL/I invokes C main

routine

OS

Specify

ENV(DLI)

also.

n/a argc=1

argv[0] = 0

Access PCBs

through C

macros as

defined in

ims.h

CICS CICS invokes C main

routine

n/a n/a argc=1

argv[0] = transaction id

COBOL Parameter Passing Considerations

When COBOL is the main routine, LE/VSE sets the argument list passed to the

application on initialization as follows:

 VSE

– If the COBOL main is invoked in a non-CICS environment:

A halfword prefixed string is passed to the application after run-time options

have been removed.

– If the COBOL main is invoked from an assembler routine using standard

assembler linkage conventions, then Register 1 and the argument list are

passed without change.
 CICS

– If the COBOL main is invoked in a CICS environment, Register 1 is passed

without change.

PL/I Main Procedure Parameter Passing Considerations

The format of the parameter list passed to a PL/I main procedure from the

operating system is controlled by the SYSTEM compiler option and also by options

on the main PROCEDURE statement.

The SYSTEM compiler option specifies the format used to pass parameters to the

PL/I main procedure, and indicates the operating environment under which the

program runs: VSE batch without DL/I, VSE batch with DL/I, or CICS.

406 LE/VSE: Programming Guide

The NOEXECOPS procedure option indicates that run-time options are not present

in the operating system parameter list. The NOEXECOPS option can be explicitly

specified or implicitly defaulted. Otherwise, it is assumed that run-time options

might be present in the operating system parameter list. If present, these run-time

options are removed by run-time initialization before the PL/I main procedure

gains control.

In order for run-time options to be passed in the operating system parameter list

for SYSTEM(VSE), the PL/I main procedure must receive no parameters or receive

a single parameter that is a varying character string. If this is not the case,

NOEXECOPS is always defaulted.

The OPTIONS(BYVALUE) or OPTIONS(BYADDR) procedure options indicate

whether the main procedure parameters are passed directly or indirectly. If

SYSTEM(CICS) is specified for a PL/I main procedure, the OPTIONS(BYVALUE)

procedure option is defaulted at compilation time; OPTIONS(BYADDR) is not

permitted. If SYSTEM(DLI) is specified for a PL/I main procedure, the

OPTIONS(BYADDR) procedure option is defaulted at compilation time;

OPTIONS(BYVALUE) is not permitted. See “Passing Arguments between Routines”

on page 50 for additional information about LE/VSE parameter passing.

The following table describes the interaction of the PL/I SYSTEM and

NOEXECOPS options. Their effect is described in terms of the parameters that are

coded on the main procedure statement and also the incoming system, subsystem

or assembler parameter list as initially received by LE/VSE.

 Table 63. Interactions of SYSTEM and NOEXECOPS

SYSTEM Setting No Run-Time Options (NOEXECOPS) Run-Time Options May be Present

SYSTEM(VSE) If the main procedure parameter is a single

varying character string, a VSE parameter list is

assumed and repackaged so the main

procedure receives a halfword prefixed string.

The entire string is passed to the main

procedure without change.

Otherwise, the parameter list is passed without

change.

If the main procedure parameter is a single

varying character string, a VSE parameter list

is assumed and repackaged so the main

procedure receives a halfword prefixed string.

Any run-time options are removed from the

string, and the (potentially) altered string is

passed.

Otherwise, the parameter list is passed

without change.

SYSTEM(DLI) The parameter list is passed without change. Not allowed

SYSTEM(CICS) The parameter list is passed without change. Not allowed

Note:

 NOEXECOPS is always implied for SYSTEM(DLI) and SYSTEM(CICS). NOEXECOPS is also implied for

SYSTEM(VSE) if the main procedure has more than one parameter or a single parameter that is not a varying

character string.

Appendix B. Using Operating System and Subsystem Parameter List Formats 407

408 LE/VSE: Programming Guide

Appendix C. Sort and Merge Considerations

This chapter discusses the run-time aspects of sort and merge operations. For

details on the compile-time aspects of sort and merge, including instructions on

coding the sort and merge procedures, see your compiler programming guide.

Understanding the Basics

Under LE/VSE, you can invoke the sort facility to sort or merge records in a

particular sequence. A sort operation takes an unordered sequence of input data,

arranges it according to a specified key or pattern, and places it into an output file.

A merge operation compares two or more files that have already been sorted

according to an identical key and combines them in a specified order in an output

file.

To invoke the sort facility in LE/VSE, you can use either of the following:

v An HLL construct

– COBOL’s SORT and MERGE verbs

– PL/I’s PLISRTx interface, where x is replaced by A, B, C, or D

You cannot call the PLISRTx interface under CICS.
v A method other than an HLL construct (for example, assembler routines or JCL).

In the batch environment, your IBM sort/merge licensed program must be

DFSORT/VSE or an equivalent that honors the DFSORT/VSE parameter list.

Whenever DFSORT/VSE is mentioned in this chapter, you can use any equivalent

SORT product.

Invoking DFSORT/VSE Directly

For information about using the methods to run DFSORT/VSE directly with JCL or

to invoke DFSORT/VSE directly from an assembler program, see DFSORT/VSE

Application Programming Guide Also see that book for details on the many

DFSORT/VSE built-in features that you can use to eliminate the need for writing

program logic (for example, the INCLUDE, OMIT, OUTREC, and SUM statements).

Using the COBOL SORT and MERGE Verbs

This section contains a high-level overview of COBOL SORT and MERGE verbs. It

is designed to introduce you to concepts that help you understand some of the

special considerations for using these COBOL statements in LE/VSE. For a detailed

description of how to use SORT and MERGE, see IBM COBOL for VSE/ESA

Programming Guide

A COBOL routine that contains a sort operation can be organized so that an input

procedure reads and operates on one or more input files before the files are actually

sorted:

SORT...INPUT PROCEDURE

You can also specify an output procedure that processes the files after they are

sorted:

SORT...OUTPUT PROCEDURE

© Copyright IBM Corp. 1991, 2005 409

These input and output procedures can be used to add, delete, alter, edit, or

otherwise modify the records.

You can also sort records under COBOL without any processing by the input and

output procedures. For example, to read records into a new file for sorting without

any preliminary processing, specify:

SORT...USING

To transfer sorted records to a file without any further processing, specify:

SORT...GIVING

User Exit Considerations

SORT or MERGE COBOL verbs can trigger COBOL-generated user exits (E15 for

sort, E35 for merge). These exits include any input or output procedures. However,

the exits are not triggered when a COBOL USING or GIVING statement is in effect

and the files qualify for FASTSRT.

ILC is permitted within the DFSORT/VSE user exits if ILC is permitted among

programs within the same phase. ILC is not permitted in a DFSORT/VSE user exit

if it involves dynamically loaded routines.

Condition Handling Considerations

This section summarizes how LE/VSE condition handling behaves when a

COBOL/VSE or VS COBOL II routine is involved in a SORT or MERGE.

Program Interrupts

User handlers established by the routine that initiated the SORT/MERGE are able

to handle program interrupts as they are presented to the condition manager by a

condition token. Normal condition handling as described in Chapter 11, “LE/VSE

Condition Handling Introduction,” on page 103 occurs.

Establishment of HLL-specific handlers and user handlers is not supported while

in a SORT input or output procedure. The results are unpredictable, and the

condition handler does not attempt to diagnose this case.

HLL-specific handlers and user handlers established by the routine called by an

input or output procedure are able to handle program interrupts. However,

because these exits are typically invoked many times (equivalent to the number of

records being sorted for each exit), it is recommended that you register the handler

within the application that initiated the SORT/MERGE in order to save overhead.

LE/VSE-Signaled Conditions

HLL-specific handlers and user handlers established by the routine that initiated

the SORT/MERGE are able to handle any condition signaled by LE/VSE. Normal

condition handling as described in Chapter 11, “LE/VSE Condition Handling

Introduction,” on page 103 occurs.

Abends

When there is an abend, LE/VSE condition handling behavior depends on where

the abend occurred, and the run-time options that are in effect:

v If the TRAP(ON) run-time option is in effect, the LE/VSE condition handler

intercepts the abend. The condition handler then gives control to the

DFSORT/VSE STXIT exit if:

– The condition handler determines that the abend occurred with DFSORT/VSE

410 LE/VSE: Programming Guide

– The DFSORT/VSE STXIT exit has been established

– No overriding STXIT exit has been established (such as the STXIT exit

established by DL/I, or the STXIT exit established by DB2 running in

single-user mode)

The DFSORT/VSE STXIT exit then performs various cleanups and recoveries,

produces informational dumps and messages, as appropriate. The task is then

terminated without LE/VSE condition handling being invoked.

If the LE/VSE condition handler determines that the abend did not occur within

DFSORT/VSE, or that the DFSORT/VSE STXIT exit has not been established, or

that an overriding STXIT exit has been established, normal condition handling as

described in Chapter 11, “LE/VSE Condition Handling Introduction,” on page

103 occurs. For information about condition handling behavior when your

application uses DL/I, see Chapter 24, “Running Applications with DL/I,” on

page 313. For information about condition handling behavior when your

application uses DB2, see Chapter 23, “Running Applications with DB2,” on

page 311.

v If the TRAP(ON) run-time option is not in effect, the DFSORT/VSE STXIT exit,

if it has been established, intercepts the abend. The DFSORT/VSE STXIT exit

then performs various cleanups and recoveries, produces informational dumps

and messages, as appropriate. The task in then terminated without LE/VSE

condition handling being invoked.

Using the PL/I PLISRTx Interface

This section contains a high-level overview of the PLISRTx interfaces to

DFSORT/VSE. It is designed to introduce you to concepts that help you

understand some of the special considerations for using these PL/I interfaces in

LE/VSE. For a detailed description of how to use PLISRTx, see IBM PL/I for

VSE/ESA Programming Guide

PL/I provides a SORT interface called PLISRTx. When you make a call to PLISRTx,

you replace x with A, B, C, or D, depending on whether your input comes from a

file or a PL/I subroutine, and whether your output is to be written to a data set or

processed by a PL/I subroutine:

PLISRTA Unsorted input is read from a file and then sorted. The sorted

output is written to a file.

PLISRTB Unsorted input is provided and processed by a PL/I subroutine

before sorting. The sorted output is written to a file.

PLISRTC Unsorted input is read from a file and then sorted. The sorted

output is then processed in some way by a PL/I subroutine.

PLISRTD Unsorted input is provided and processed by a PL/I subroutine

before sorting. The sorted output is then processed by a PL/I

subroutine.

In the call to PLISRTx, you also pass information about your data, using the SORT

and RECORD arguments, and specify the maximum amount of storage you will

allow DFSORT/VSE to use.

User Exit Considerations

Your input handling subroutine and output handling subroutine must be written

in PL/I. PL/I generates a DFSORT/VSE E15 exit for your input handling

subroutine and a DFSORT/VSE E35 exit for your output handling subroutine.

Appendix C. Sort and Merge Considerations 411

A call to one of the PLISRTx interfaces might trigger a call to user exit E15 or E35,

depending on whether a subroutine processed your input before sorting, and

output after sorting, as shown in Table 64.

 Table 64. DFSORT/VSE Exit Called as a Function of a PLISRTx Interface Call

PL/I Sort Interface DFSORT/VSE Exit

PLISRTA None

PLISRTB E15

PLISRTC E35

PLISRTD E15 and E35

ILC is not supported within SORT exits when the PLISRTx interface is used from a

PL/I routine.

Condition Handling Considerations

Input and output handling subroutines can issue GOTOs. If you need to deactivate

the SORT program for any reason while in one of these exits, issue a GOTO out of

the subroutine.

Program Interrupts and LE/VSE-Signaled Conditions

PL/I ON-units can be established in any of the following:

v The routine that made a call to PLISRTx

v The input(E15) or output(E35) procedure

v A routine called by the input or output procedure

These ON-units can handle program interrupts and LE/VSE-signaled conditions.

Normal condition handling, as described in Chapter 11, “LE/VSE Condition

Handling Introduction,” on page 103, occurs.

Abends

When there is an abend, LE/VSE condition handling behavior depends on where

the abend occurred, and the run-time options that are in effect:

v If the TRAP(ON) run-time option is in effect, the LE/VSE condition handler

intercepts the abend. The condition handler then gives control to the

DFSORT/VSE STXIT exit if:

– The condition handler determines that the abend occurred with DFSORT/VSE

– The DFSORT/VSE STXIT exit has been established

– No overriding STXIT exit has been established (such as the STXIT exit

established by DL/I, or the STXIT exit established by DB2 running in

single-user mode)
The DFSORT/VSE STXIT exit then performs various cleanups and recoveries,

produces informational dumps and messages, as appropriate. The task is then

terminated without LE/VSE condition handling being invoked.

If the LE/VSE condition handler determines that the abend did not occur within

DFSORT/VSE, or that the DFSORT/VSE STXIT exit has not been established, or

that an overriding STXIT exit has been established, normal condition handling as

described in Chapter 11, “LE/VSE Condition Handling Introduction,” on page

103 occurs. For information about condition handling behavior when your

application uses DL/I, see Chapter 24, “Running Applications with DL/I,” on

page 313. For information about condition handling behavior when your

application uses DB2, see Chapter 23, “Running Applications with DB2,” on

page 311.

412 LE/VSE: Programming Guide

v If the TRAP(ON) run-time option is not in effect, the DFSORT/VSE exit, if it has

been established, intercepts the abend. The DFSORT/VSE STXIT exit performs

various cleanups and recoveries, produces informational dumps and messages,

as appropriate. The task in then terminated without LE/VSE condition handling

being invoked.

Note: If, in the call to PLISRTx, you specify the CKPT parameter in the SORT

argument, LE/VSE temporarily disables normal LE/VSE condition

handling during DFSORT/VSE phase 3 processing. Any abend that occurs

during phase 3 is handled by DFSORT/VSE.

Storage Use during a Sort or Merge Operation

In general, the more storage DFSORT/VSE has available, the faster the sorting

operation is performed. Certain parameters specified during the installation of

DFSORT/VSE determine the amount of storage used during its operation.

DFSORT/VSE does not use GETVIS storage. Sufficient program storage must be

reserved for:

v Loading the phase specified on the EXEC statement

v DFSORT/VSE modules

v DFSORT/VSE input and output buffers

v DFSORT/VSE working storage

Note: Program storage may be reserved by using the JCL EXEC statement SIZE

parameter. Your run-time JCL should look like:

// EXEC pgrmid,SIZE=(pgrmid,nnnK)

where nnnK is the amount of program storage required for DFSORT/VSE.

GETVIS storage must be reserved for:

v Application programs that are dynamically loaded

v LE/VSE library routines

v LE/VSE stack and heap storage

COBOL users can override the DFSORT/VSE parameter values specified at

installation. The STORAGE keyword on the DFSORT/VSE control statement, or the

COBOL SORT-CORE-SIZE special register, can be used for this purpose. (For the

meaning of this key word see DFSORT/VSE Application Programming Guide .)

Note: Be careful not to override the storage allocation to the extent that more than

the reserved program storage is used for sort’s operation.

Sorting under CICS

Under CICS, you can invoke the sort facility from a COBOL/VSE program. You

can use the COBOL SORT statement (along with a sort program that runs under

CICS) to sort small amounts of data. The format of the parameter list passed to the

sort program under CICS is shown in figure Figure 131 on page 414.

Appendix C. Sort and Merge Considerations 413

CONTROL

The address of the sort control statements, or zero.

IP_PROC

The address of the input procedure specified in the INPUT PROCEDURE

phrase of the SORT statement.

OP_PROC

The address of the output procedure specified in the OUTPUT

PROCEDURE phrase of the SORT statement.

ALTSEQ

The address of the collating-sequence table specified in the COLLATING

SEQUENCE phrase of the SORT statement, or zero.

END_MARK

A fullword containing X'FFFFFFFF', indicating the end of the parameter

list.

 For more information about using the COBOL SORT statement under CICS, see

IBM COBOL for VSE/ESA Programming Guide

Figure 131. Format of Sort Parameter List under CICS

414 LE/VSE: Programming Guide

Appendix D. LE/VSE Macros

The macros identified in this appendix are provided by LE/VSE as programming

interfaces for customers.

v CEECAA (see “CEECAA Macro— Generate a CAA Mapping” on page 344)

v CEECIB, a macro for generating a CIB mapping (refer to the section “Debugging

with the Condition Information Block” in the LE/VSE Debugging Guide and

Run-Time Messages).

v CEEDSA (see “CEEDSA Macro— Generate a DSA Mapping” on page 345)

v CEEENTRY (see “CEEENTRY Macro— Generate an LE/VSE-Conforming

Prolog” on page 341)

v CEEFETCH (see “CEEFETCH Macro— Dynamically Load a Routine that Can Be

Later Deleted” on page 350)

v CEELOAD (see “CEELOAD Macro— Dynamically Load a Routine” on page 348)

v CEEPPA (see “CEEPPA Macro— Generate a PPA” on page 345)

v CEERELES (see “CEERELES Macro— Dynamically Delete a Routine” on page

353)

v CEETERM (see “CEETERM Macro— Terminate an LE/VSE-Conforming

Routine” on page 343)

v CEEXPIT (see “Macros that Generate the PIPI Table” on page 365)

v CEEXPITY (see “Macros that Generate the PIPI Table” on page 365)

v CEEXPITS (see “Macros that Generate the PIPI Table” on page 365)

v __csplist (see “C Parameter Passing Considerations” on page 403)

v __osplist (see “C Parameter Passing Considerations” on page 403)

v __pcblist (see “C Parameter Passing Considerations” on page 403)

v __R1 (see “C Parameter Passing Considerations” on page 403)

© Copyright IBM Corp. 1991, 2005 415

416 LE/VSE: Programming Guide

Language Environment Glossary

A

abend. Abnormal end of application.

absolute value. The magnitude of a real number

regardless of its algebraic sign.

active routine. The currently executing routine.

additional heap. An LE/VSE heap created and

controlled by a call to CEECRHP. See also below heap,

anywhere heap, and initial heap.

addressing mode. An attribute that refers to the

address length that a routine is prepared to handle

upon entry. Addresses may be 24 or 31 bits long.

aggregate. A structured collection of data items that

form a single data type. Contrast with scalar.

American National Standard Code for Information

Interchange (ASCII). The code developed by the

American National Standards Institute (ANSI) for

information interchange among data processing

systems, data communications systems, and associated

equipment. The ASCII character set consists of 7-bit

control characters and symbolic characters.

AMODE. Addressing mode.

anywhere heap. The LE/VSE heap controlled by the

ANYHEAP run-time option. It contains library data,

such as LE/VSE control blocks and data structures not

normally accessible from user code. The anywhere heap

may reside above 16MB. See also below heap, additional

heap, and initial heap.

application. A collection of one or more routines

cooperating to achieve particular objectives.

application program. A collection of software

components used to perform specific types of work on

a computer, such as a program that does inventory

control or payroll.

argument. An expression used at the point of a call to

specify a data item or aggregate to be passed to the

called routine.

array. An aggregate that consists of data objects, each

of which may be uniquely referenced by subscripting.

array element. A data item in an array.

ASCII. American National Standard Code for

Information Interchange.

Asian date format. In this book, Asian date format

refers to the era picture strings associated with the

Japanese or Chinese eras. Era picture strings begin with

a less than character < and end with a greater than

character >. The characters inside are either capital Js or

Cs.

assembler. see High Level Assembler.

automatic call library. Contains object modules that

are to be used as secondary input to the linkage editor

to resolve external symbols left undefined after all the

primary input has been processed.

 The automatic call library may be:

v Sublibraries containing object modules, with or

without linkage editor control statements

v The sublibrary containing LE/VSE run-time routines

(PRD2.SCEEBASE or PRD2.SCEECICS)

automatic data. Data that does not persist across calls

to other routines. Automatic data may be automatically

initialized to a certain value upon entry and reentry to

a routine.

automatic storage. Storage that is allocated on entry to

a routine or block and is freed on the subsequent

return. Sometimes referred to as stack storage or dynamic

storage.

B

batch. Pertaining to activity involving little or no user

action. Contrast with interactive.

below heap. The LE/VSE heap controlled by the

BELOWHEAP run-time option, which contains library

data, such as LE/VSE control block and data structures

not normally accessible from user code. Below heap

always resides below 16MB. See also anywhere heap,

initial heap, and additional heap.

buffer. An area of storage into which data is read or

from which it is written. Typically, buffers are used

only for temporary storage.

by content. See pass by content.

by reference. See pass by reference.

by value. See pass by value.

C

callable services. A set of services that can be invoked

by an LE/VSE-conforming high level language using

© Copyright IBM Corp. 1991, 2005 417

the conventional LE/VSE-defined call interface, and

usable by all programs sharing the LE/VSE

conventions.

 Use of these services helps to decrease an application’s

dependence on the specific form and content of the

services delivered by any single operating system.

callable service stub. Contains addressing code to

access LE/VSE callable service routines.

callee. Receiver of a call.

caller. A routine that calls another routine.

century window. The 100-year interval in which

LE/VSE assumes all 2-digit years lie. The LE/VSE

default century window begins 80 years before the

system date.

chained list. Synonym for linked list.

child enclave. The nested enclave created as a result of

certain commands being issued from a parent enclave.

CICS. Customer Information Control System.

CICS run unit. Consists of a statically and/or

dynamically bound set of one or more phases which

can be loaded by a CICS loader. A CICS run unit is

equivalent to an LE/VSE enclave.

CICS translator. A routine that accepts as input an

application containing EXEC CICS commands and

produces as output an equivalent application in which

each CICS command has been translated into the

language of the source.

COBOL. COmmon Business-Oriented Language. A

high level language, based on English, that is primarily

used for business applications.

COBOL run unit. A COBOL-specific term that defines

the scope of language semantics. Equivalent to an

LE/VSE enclave.

command line. The command used to invoke an

application program, and the associated program

arguments and LE/VSE run-time options. This can be

the job control EXEC statement and the associated

PARM parameter, or the parameter string passed to the

C system() function.

COMMAREA. A communication area made available

to applications running under CICS.

compilation unit. An independently compilable

sequence of HLL statements. Each HLL product has

different rules for what makes up a compilation unit.

Synonym for program unit.

condition. An exception that has been enabled, or

recognized, by LE/VSE and thus is eligible to activate

user and language condition handlers. Any alteration to

the normal programmed flow of an application.

Conditions can be detected by the hardware/operating

system and result in an interrupt. They can also be

detected by language-specific generated code or

language library code.

condition handler. A user-written condition handler

or language-specific condition handler (such as a PL/I

ON-unit) invoked by the LE/VSE condition manager to

respond to conditions.

condition handling. In LE/VSE, the diagnosis,

reporting, and/or tolerating of errors that occur in the

run-time environment.

condition manager. Manages conditions in the

common execution environment by invoking various

user-written and language-specific condition handlers.

condition step. The step of the LE/VSE condition

handling model that follows the enablement step. In

the condition step, user-written condition handlers and

PL/I ON-units are first given a chance to handle a

condition. See also enablement step and termination

imminent step.

condition token. In LE/VSE, a data type consisting of

96 bits (12 bytes). The condition token contains

structured fields that indicate various aspects of a

condition including the severity, the associated message

number, and information that is specific to a given

instance of the condition.

constructed reentrancy. The attribute of applications

that contain external data and require additional

processing to make them reentrant. Contrast with

natural reentrancy.

Customer Information Control System (CICS). CICS

is an OnLine Transaction Processing (OLTP) system that

provides specialized interfaces to databases, files and

terminals in support of business and commercial

applications.

D

data type. The properties and internal representation

that characterize data.

DBCS. Double-byte character set.

decimal overflow. A condition that occurs when one

or more nonzero digits are lost because the destination

field in a decimal operation is too short to contain the

result.

default. A value that is used when no alternative is

specified.

direct parameter passing. Placing a value directly in

the parameter list body.

disabled/enabled. See enabled/disabled.

418 LE/VSE: Programming Guide

double-byte character set (DBCS). A collection of

characters represented by a two-byte code.

double-precision. Pertaining to the use of two

computer words to represent a number in accordance

with the required precision. See also precision and

single-precision.

doubleword. A sequence of bits or characters that

comprises two computer words and can be addressed

as a unit.

DSA. Dynamic storage area.

dynamic call. A call that results in the resolution of

the called routine at run time. Contrast with static call.

dynamic storage. Storage acquired as needed at run

time. Contrast with static storage.

dynamic storage area (DSA). An area of storage

obtained during the running of an application that

consists of a register save area and an area for

automatic data, such as program variables. DSAs are

generally allocated within LE/VSE-managed stack

segments. DSAs are added to the stack when a routine

is entered and removed upon exit in a last in, first out

(LIFO) manner. In LE/VSE, a DSA is known as a stack

frame.

E

EBCDIC. Extended binary-coded decimal interchange

code.

EIB. EXEC interface block.

enabled/disabled. A condition is enabled when its

occurrence will result in the execution of condition

handlers or in the performance of a standard system

action to handle the condition as defined by LE/VSE.

 A condition is disabled when its occurrence will

apparently be ignored by the condition manager.

enablement. The determination by a language at run

time that an exception should be processed as a

condition. This is the capability to intercept an

exception and to determine whether it should be

ignored or not; unrecognized exceptions are always

defined to be enabled. Normally, enablement is used to

supplement the hardware for capabilities that it does

not have and for language enforcement of the

language’s semantics. An example of supplementing

the hardware is the specialized handling of

floating-point overflow exceptions based on language

specifications (on some machines this can be achieved

through masking the exception).

enablement step. The first step of the LE/VSE

condition handling model. In the enablement step it is

determined whether an exception is to be enabled and

processed as a condition. See also condition step and

termination imminent step.

enclave. In LE/VSE, an independent collection of

routines, one of which is designated as the main

routine. An enclave is roughly analogous to a program

or run unit.

entry name. In assembler language, a

programmer-specified name within a control section

that identifies an entry point and can be referred to by

any control section.

entry point. In assembler language, the address or

label of the first instruction that is executed when a

routine is entered for execution.

environment. A set of services and data available to a

program during execution. In LE/VSE, environment is

normally a reference to the run-time environment of

HLLs at the enclave level.

epilog. Code generated at the end of a routine,

normally causing a return to the caller of the routine.

ESDS. Entry sequenced data sets. See VSAM.

EXEC interface block (EIB). In CICS, a control block

containing information useful in the execution of an

application, such as a transaction identifier and a time

and a date when the transaction is started.

execution time. Synonym for run time.

execution environment. Synonym for run-time

environment.

extended binary-coded decimal interchange code

(EBCDIC). A set of 256 eight-bit characters.

external data. Data that persists over the lifetime of an

enclave and maintains last-used values whenever a

routine within the enclave is reentered. Within an

enclave consisting of a single phase, it is equivalent to

COBOL external data.

external routine. A procedure or function that may be

invoked from outside the program in which the routine

is defined.

F

facility ID. A string of three characters identifying an

LE/VSE-conforming component. The facility IDs

assigned by IBM are:

CEE LE/VSE common library

EDC C language-specific library

IGZ COBOL language-specific library

IBM PL/I language-specific library

feedback code (fc). A condition token value. If you

specify fc in a call to a callable service, a condition

Language Environment Glossary 419

token indicating whether the service completed

successfully is returned to the calling routine.

file. A named collection of related data records that is

stored and retrieved by an assigned name.

filename. A 1- to 7-character name used within an

application and in JCL to identify a file. The filename

provides the means for the logical file to be connected

to the physical file.

fix-up and resume. The correction of a condition by

changing the argument or parameter and running the

routine again.

fixed-overflow. A condition raised as a result of an

overflow during signed binary arithmetic or signed

left-shift operations.

function. A routine that is invoked by coding its name

in an expression. The routine passes a result back to the

invoker through the routine name.

G

Gregorian calendar. The calendar in use since Friday,

15 October, 1582 throughout most of the world. Used as

the basis for the Lilian date used in many LE/VSE date

and time services.

H

handle cursor. Points to the first condition handler

within the stack frame that is to be invoked when a

condition occurs. As condition handling progresses, the

handle cursor moves to earlier handlers within the

stack frame, or to the first handler in the calling stack

frame.

header file. A file that contains system-defined control

information that precedes user data.

heap 0. Synonym for initial heap.

heap. An area of storage used for allocation of storage

whose lifetime is not related to the execution of the

current routine. The heap consists of the initial heap

segment and zero or more increments. See also

additional heap, anywhere heap, below heap, heap element,

and initial heap.

heap element. A contiguous area of storage allocated

by a call to the CEEGTST service. Heap elements are

always allocated within a single heap segment.

heap increment. See increment.

heap segment. A contiguous area of storage obtained

directly from the operating system. The LE/VSE

storage management scheme subdivides heap segments

into individual heap elements. If the initial heap

segment becomes full, LE/VSE obtains a second

segment, or increment, from the operating system.

heap storage. See heap.

hexadecimal. A base 16 numbering system.

Hexadecimal digits range from 0 through 9 (decimal 0

to nine) and uppercase or lowercase A through F

(decimal ten to fifteen).

High Level Assembler. An IBM licensed program.

Translates symbolic assembler language into binary

machine language.

high level language (HLL). A programming language

above the level of assembler language and below that

of program generators and query languages.

HLL. High level language.

I

ILC. Interlanguage communication.

increment. The second and subsequent segments of

storage allocated to the stack or heap.

indirect argument passing. The body of the argument

list contains a pointer to the argument value.

indirect parameter passing. Placing an address in a

parameter list. In other words, passing a pointer to a

value instead of passing the value itself.

initial heap. The LE/VSE heap controlled by the

HEAP run-time option and designated by a heap_id of

0. The initial heap contains dynamically allocated user

data. See also additional heap.

initial heap segment. The first heap segment. A heap

consists of the initial heap segment and zero or more

additional segments or increments.

initial stack segment. The first stack segment. A stack

consists of the initial stack segment and zero or more

additional segments or increments.

initial program load (IPL). The process of loading

system programs and preparing a system to run jobs.

IPL. Initial program load.

input procedure. A set of statements, to which control

is given during the execution of a SORT statement, for

the purpose of controlling the release of specified

records to be sorted.

instance specific information (ISI). Located within

the LE/VSE condition token, the ISI contains

information used by the condition manager to identify

and react to a specific occurrence of a condition.

integer. A positive or negative whole number or zero.

420 LE/VSE: Programming Guide

interactive. Pertaining to a program or system that

alternately accepts input and responds. In an interactive

system, a constant dialog exists between user and

system. Contrast with batch.

interlanguage communication (ILC). The ability of

routines written in different programming languages to

communicate. ILC support allows the application

writer to readily build applications from component

routines written in a variety of languages.

interrupt. A suspension of a process, such as the

execution of a computer program, caused by an event

external to that process, and performed in such a way

that the process can be resumed.

ISI. Instance specific information.

J

JCL. Job control language.

job control language (JCL). A sequence of commands

used to identify a job to an operating system and to

describe a job’s requirements.

job step. One of a group of related programs complete

with the JCL statements necessary for a particular run.

Every job step is identified in the job stream by an

EXEC statement under one job statement for the whole

job.

Julian date. A date format that contains the year in

positions 1 and 2, and the day in positions 3 through 5.

The day is represented as 1 through 366, right-adjusted,

with zeros in the unused high-order position.

K

KSDS. Key sequenced data sets. See VSAM.

L

Language Environment. A set of architectural

constructs and interfaces that provides a common

run-time environment and run-time services to

applications compiled by Language

Environment-conforming compilers.

Language Environment for VSE/ESA. An IBM

software product that is the implementation of

Language Environment on the VSE platform.

LE/VSE. Short form of Language Environment for

VSE/ESA.

LE/VSE-conforming. Adhering to LE/VSE’s common

interface.

library. A collection of functions, subroutines, or other

data.

library stack. An independent area of stack storage,

allocated below the 16MB line, designed to be used

only by library routines. See also stack, user stack, and

stack frame.

library vector table (LIBVEC). A vector table used to

support access to library routines (LE/VSE and HLLs)

from compiler-generated code, user-written assembly

language code, and other subroutines.

LIBVEC. Library vector table

LIFO. Last in, first out method of access. A queuing

technique in which the next item to be retrieved is the

item most recently placed in the queue.

Lilian date. The number of days since the beginning

of the Gregorian calendar. Day one is Friday, 15

October 1582. The Lilian date format is named in honor

of Luigi Lilio, the creator of the Gregorian calendar.

linked list. A list in which the data elements may be

dispersed but in which each data element contains

information for locating the next. Synonym for chained

list.

linkage editor. A program that resolves

cross-references between separately assembled object

modules and then assigns final addresses to create a

single relocatable phase. The linkage editor then stores

the phase in a program library in main storage.

link-edit. To create a loadable computer program by

means of a linkage editor.

local data. Data that is known only to the routine in

which it is declared. Equivalent to local data in C and

WORKING-STORAGE in COBOL.

locale. The definition of the subset of a user’s

environment that depends on language and cultural

conventions.

locator. PL/I control block that holds the address of

data such as structures or arrays and the address of the

descriptor.

LWS. Library workspace.

M

main program. The first routine in an enclave to gain

control from the invoker.

mapped condition. A condition that is generated by

one component and converted, or mapped, to another

component; for example, some LE/VSE conditions,

such as the decimal divide condition that maps directly

to the PL/I ZERODIVIDE condition.

megabyte (M). 1,048,576 bytes.

Language Environment Glossary 421

module. A language construct that consists of

procedures or data declarations and can interact with

other such constructs. In PL/I, an external procedure.

multitasking. See multithreading.

multithreading. Mode of operation that provides for

the concurrent, or interleaved, execution of two or

more tasks, or threads.

N

n-way ILC application. An ILC application that

includes a C routine, COBOL program, and PL/I

routine.

NAB. Next available byte.

name scope. The portion of an application within

which a particular declaration of external data applies

or is known.

name space. The portion of a phase within which a

particular declaration of external data applies or is

known.

named heap. A heap set up specifically by the

CEECRHP callable service. An identifier is returned

when the heap is created.

national language support. Translation requirements

affecting parts of licensed programs; for example,

translation of message text and conversion of symbols

specific to countries.

natural reentrancy. The attribute of applications that

contain no static external data and do not require

additional processing to make them reentrant. Contrast

with constructed reentrancy.

nested condition. A condition that occurs during the

handling of another, previous condition. LE/VSE by

default permits 10 levels of nested conditions. You may

change this setting by altering the DEPTHCONDLMT

run-time option.

nested program. In COBOL, a program that is directly

contained within another program.

nested enclave. A new enclave created by an existing

enclave. The nested enclave that is created must be a

new main routine within the process. See also child

enclave and parent enclave.

next available byte (NAB). The address of the next

available byte of storage on a doubleword boundary.

This address is a segment of stack storage.

next sequential instruction. The next instruction to be

executed in the absence of any branch or transfer of

control.

non-LE/VSE conforming. Any HLL program that does

not adhere to LE/VSE’s common interface. For

example, VS COBOL II, DOS/VS COBOL, and DOS/VS

PL/I are all non-LE/VSE conforming HLLs. Synonym

for pre-LE/VSE conforming.

non-reentrant. A type of program that cannot be

shared by multiple users.

O

object code. Output from a compiler or assembler

which is itself executable machine code or is suitable

for processing to produce executable machine code.

object deck. Synonym for object module.

object module. A portion of an object program

suitable as input to a linkage editor. Synonym for object

deck.

offset. The number of measuring units from an

arbitrary starting point in a record, area, or control

block, to some other point.

omitted parameter. A parameter not needed in a call.

online. Pertaining to a user’s ability to interact with a

computer.

ON-unit. The specified action to be taken upon

detection of the condition named in the containing ON

statement.

operating system. Software that controls the running

of programs; in addition, an operating system may

provide services such as resource allocation,

scheduling, input/output control, and data

management.

out-of-storage condition. A condition signaled when

an application has used all of the storage allocated to it.

If the STORAGE run-time option is set to a value other

than 0, LE/VSE adds a reserve stack segment to the

overflowing stack, and then signals the out-of-storage

condition.

output procedure. A set of statements, to which

control is given during the execution of a SORT

statement after the sort function is completed, or

during the MERGE statement after the merge function

reaches a point at which it can select the next record in

merged order when requested.

overflow. That portion of an operation that exceeds

the capacity of the intended unit of storage.

overlay. To write over existing data in storage.

owning stack frame. Given the calling sequence of

Routine 1 calling Routine 2 that in turn calls Routine 3,

Routine 3 is the owning stack frame if a condition

occurs while Routine 3 is executing.

422 LE/VSE: Programming Guide

ON-unit. The specified action to be taken upon

detection of the condition named in the containing ON

statement.

P

packed decimal format. A format in which each byte

in a field except the rightmost byte represents two

numeric digits. The rightmost byte contains one digit

and the sign. For example, the decimal value +123 is

represented as 0001 0010 0011 1100.

pad. To fill unused positions in a field with dummy

data, usually zeros, ones, or blanks.

parameter. Data items that are received by a routine.

parent enclave. The enclave that issues a call to

system services or language constructs to create a

nested (child) enclave. See also child enclave and nested

enclave.

partition. A fixed-size division of storage.

Pascal. A high level language for general purpose use.

Programs written in Pascal are block structured,

consisting of independent routines.

pass by content. A COBOL argument passing style

synonymous with passing an argument by value

directly. In this style, R1 contains a pointer to a copy of

the argument.

pass by reference. In programming languages, one of

the basic argument passing semantics. The address of

the object is passed. Any changes made by the callee to

the argument value will be reflected in the calling

routine at the time the change is made.

pass by value. In programming languages, one of the

basic argument passing semantics. The value of the

object is passed. Any changes made by the callee to the

argument value will not be reflected in the calling

routine.

percolate. The action taken by the condition manager

when the returned value from a condition handler

indicates that the handler could not handle the

condition, and the condition will be transferred to the

next handler.

phase. An application or routine in a form suitable for

execution. The application or routine has been

compiled and link-edited; that is, address constants

have been resolved.

picture string. Character strings used to specify date

and time formats.

PL/I. A general purpose scientific/business high level

language. It is a high-powered procedure-oriented

language especially well suited for solving complex

scientific problems or running lengthy and complicated

business transactions and record-keeping applications.

pointer. A data element that indicates the location of

another data element.

portability. The ability to transfer an application from

one platform to another with relatively few changes to

the source code.

PPA1 entry point block. Program Prolog Area. This

block contains information about the compiled module.

PPA2 entry point block. An extension of the PPA1

entry point block.

PPT. Processing Program Table

precedence. In programming languages, an order

relation defining the sequence of the application of

operations or options.

precision. A measure of the ability to distinguish

between nearly equal values. See also single-precision

and double-precision.

pre-initialization. A facility that allows a routine to

initialize the run-time environment once, perform

multiple executions within the environment, then

explicitly terminate the environment.

pre-LE/VSE conforming. Any HLL program that does

not adhere to LE/VSE’s common interface. For

example, VS COBOL II, DOS/VS COBOL, and DOS/VS

PL/I are all pre-LE/VSE conforming HLLs. Synonym

for non-LE/VSE conforming.

preprocessor. A routine that examines application

source code for preprocessor statements that are then

executed, resulting in the alteration of the source.

procedure. A named block of code that can be

invoked, usually via a call. In LE/VSE, the term routine

is used as generic for a procedure or a function.

process. The highest level of the LE/VSE program

management model. A process is a collection of

resources, both program code and data, and consists of

at least one enclave.

Processing Program Table (PPT). A CICS table that

contains information about CICS phases (whether the

phase is in storage or not, its language, use count and

entry point address, etc.) needed to complete a

transaction.

program. See application program.

program control data. In PL/I, data used to affect

how a program runs; that is, any data that is not string

or arithmetic data.

program management. The functions within the

system that provide for establishing the necessary

Language Environment Glossary 423

activation and invocation for a program to run in the

applicable run-time environment when it is called.

program mask. A structure that describes the manner

in which S/370 hardware-detected conditions are to be

handled.

program status word (PSW). An area in storage used

to indicate the order in which instructions are executed

and to hold and indicate the status of the operating

system. The program mask (bits 20 to 23) of the PSW

can be manipulated to enable or disable the detection

of some hardware conditions under LE/VSE.

program unit. Synonym for compilation unit.

programmable workstation (PWS). A workstation that

has some degree of processing capability and that

allows a user to change its functions.

program unit. Synonym for compilation unit.

prolog. The code sequence when a routine is entered.

promote. To change a condition. A condition is

promoted when a condition handling routine changes

the condition to a different one. A condition handling

routine promotes a condition because the error needs to

be handled in a way other than that suggested by the

original condition.

PSB. Program specification block.

PSW. Program status word.

Q

q_data. Qualifying data. Information that a

user-written condition handler can use to identify and

react to a given instance of a condition.

q_data_token. An optional 32-bit data object that is

placed in the ISI. It is used to access math condition

qualifying data associated with a given instance of a

condition.

R

reason code. A value returned to the invoker of an

enclave that indicates how the enclave terminated. The

value reflects whether the enclave terminated

successfully, or unsuccessfully, to an unhandled

condition.

recursive routine. A routine that can call itself or be

called by another routine that it has called.

reentrant. The attribute of a routine or application that

allows more than one user to share a single copy of a

phase.

register. (1) Special processing areas that hold a

specific amount of data and can process, load, and

store this data quickly. (2) To specify formally. In

LE/VSE, to register a condition handler means to add a

user-written condition handler onto a routine’s stack

frame.

register save area (RSA). Area of main storage in

which contents of registers are saved.

resident routines. A category of LE/VSE library

routines linked with your application. They include

such things as initialization routines and callable service

stubs.

resume. To begin execution in an application at the

point immediately after which a condition occurred. A

resume occurs when the condition manager determines

that a condition has been handled and normal

application execution should continue.

resume cursor. Designates the point in the application

where a condition occurred when it is first reported to

the condition manager. The resume cursor also

designates the point where execution resumes after a

condition is handled, usually at the instruction in the

application immediately following the point at which

the error occurred. The resume cursor can be moved

with the CEEMRCR callable service.

return code. A code produced by a routine to indicate

its success. It may be used to influence the execution of

succeeding instructions.

return_code_modifier. A value set by LE/VSE

routines that manage the environment. It indicates

whether or not an enclave terminated successfully.

rollback. The backing out of any updates made by a

failing application.

root phase. The phase containing a main routine and

the first to be executed in an application.

routine. In this book, used as an exact equivalent of a

COBOL/VSE compilation unit, and means a named

external routine, with or without named entry points,

and with or without internal (contained) routines.

RMODE. Residence mode. The attribute of a phase

that specifies whether the phase, when loaded, must

reside below the 16MB virtual storage line or may

reside anywhere in virtual storage.

RRDS. Relative record data sets. See VSAM.

run. To cause a program, utility, or other machine

function to be performed.

run time. Any instant at which a program is being

executed. Synonym for execution time.

424 LE/VSE: Programming Guide

run-time environment. A set of resources that are

used to support the execution of a program. Synonym

for execution environment.

run unit. One or more object programs that are

executed together. In LE/VSE, a run unit is the

equivalent of an enclave.

S

safe condition. Any condition having a severity of 0

or 1. Such conditions are ignored if no condition

handler handles the condition.

save area. Area of main storage in which contents of

registers are saved.

scalar. A quantity characterized by a single value.

Contrast with aggregate.

scope. 1. A term used to describe the effective range of

the enablement of a condition and/or the establishment

of a user-generated routine to handle a condition.

Scope can be both statically and dynamically defined.

2. The portion of an application within which the

definition of a variable remains unchanged.

segment. See stack segment.

severity code. A part of run-time messages that

indicates the severity of the error condition (1, 2, 3, or

4).

shared virtual area (SVA). In VSE, an area of main

storage containing a system directory list (SDL) of

frequently used phases, resident routines shared

between partitions, and an area for system support.

The presence of a reentrable routine in the SVA saves

loading time when the routine is needed.

significance condition. A condition raised when the

resulting fraction in a floating-point addition or

subtraction operation is zero.

single-precision. Pertaining to the use of one

computer word to represent a number in accordance

with the required precision. Needed for proper

alignment. See also precision and double-precision.

sort/merge program. A processing program that can

be used to sort or merge records in a prescribed

sequence.

source code. The input to a compiler or assembler,

written in a source language.

source program. A set of instructions written in a

programming language that must be translated to

machine language before the program can be run.

stack. An area of storage used for suballocation of

stack frames. Such suballocations are allocated and

freed on a LIFO (last in, first out) basis. A stack is a

collection of one or more stack segments consisting of

an initial stack segment and zero or more increments.

stack frame. The physical representation of the

activation of a routine. The stack frame is allocated on

a LIFO stack and contains various pieces of information

including a save area, condition handling routines,

fields to assist the acquisition of a stack frame from the

stack, and the local, automatic variables for the routine.

In LE/VSE, a stack frame is synonymous with DSA.

stack frame collapse. An action that occurs when the

condition manager skips over one or more active

routines and execution resumes in an earlier routine on

the stack. A stack frame collapse happens if an explicit

GOTO is coded in a PL/I routine or if the resume

cursor is moved with the CEEMRCR.

stack segment. A contiguous area of storage obtained

directly from the operating system. The LE/VSE

storage management scheme subdivides stack segments

into individual DSAs. If the initial stack segment

becomes full, a second segment or increment is

obtained from the operating system.

stack storage. See stack and automatic storage.

standard system action. The name given to the

language-defined default action taken when a condition

occurs and it is not handled by a condition handler.

statement. In programming languages, a language

construct that represents a step in a sequence of actions

or a set of declarations.

static call. A call that results in the resolution of the

called program statically at link-edit time. Contrast

with dynamic call.

static data. Data that retains its last-used state across

calls.

static storage. Storage that persists and retains its

value across calls. Contrast with dynamic storage.

storage heap. An unordered group of program stack

areas that may be associated with programs running

within a process.

suboption. An option that can be used with

compile-time and run-time options to further specify

the action of the option.

subroutine. In general, any routine within an

application called by another routine.

symbolic feedback code. The symbolic representation

of the 12-byte condition token returned by LE/VSE

callable services. Symbolic feedback codes are provided

so that you do not have to code the entire 12-byte

condition token in a condition handling routine.

Language Environment Glossary 425

system directory list (SDL). In VSE, a list containing

the directory entries of frequently-used phases and of

all phases resident in the SVA. The list resides in the

SVA.

subsystem. A secondary or subordinate system, or

programming support, usually capable of operating

independently of or asynchronously with a controlling

system. Example: CICS.

SVC. Supervisor call. A request that serves as the

interface to certain functions, such as the allocation of

storage.

syntax. The rules governing the structure of a

programming language and the construction of a

statement in a programming language.

T

thread. The basic run-time path within the LE/VSE

program management model. It is dispatched by the

system with its own instruction counter and registers.

The thread is where actual code resides.

token. See condition token.

translator. See CICS translator.

transient data queue. A file to which run-time

messages are written under CICS. Under LE/VSE, the

name of this file is CESE.

termination imminent step. The final step of the

3-step LE/VSE condition handling model. In the

termination imminent step, user-written condition

handlers and PL/I ON-units are given one last chance

to handle a condition or perform cleanup before the

thread is terminated. See also condition step and

enablement step.

U

underflow condition. A condition that occurs when

the result characteristic of a floating-point operation is

less that zero and the result fraction is not zero. In an

extended-format floating-point result, the condition is

raised only when the high-order characteristic

overflows.

unpacked decimal format. A format for representing

numbers in which the digit is contained in bits 4

through 7 and the sign is contained in bits 0 through 3

of the rightmost byte. Bits 0 through 3 of all other bytes

contain 1s (hex F). For example, the decimal value of

+123 is represented as 1111 0001 1111 0010 1111 0011.

Synonym for zoned decimal format.

user-written condition handler. A routine established

by the CEEHDLR callable service to handle a condition

or conditions when they occur in the common run-time

environment. A queue of user-written condition

handlers established by CEEHDLR may be associated

with each stack frame in which they are established.

user exit. A routine that takes control at a specific

point in an application. Two assembler user exits and

one HLL user exit are provided by LE/VSE. They are

invoked to perform initialization functions and both

normal and abnormal termination functions.

user heap. See initial heap.

user stack. An independent area of stack storage that

may be located above or below 16MB, designed to be

used by both library routines and compiled code. See

also stack, stack frame, library stack.

V

vendor. A person or company that provides a service

or product to another person or company.

VSTRING. The VSTRING data type is used for the

character string parameters in many of the LE/VSE

callable services. In Language Environment/VSE

Version 1 Release 4, VSTRING is a halfword

length-prefixed character string for input, or a

fixed-length 80-character string for output.

VSE (Virtual Storage Extended). A system that

consists of a basic operating system (VSE/Advanced

Functions) and IBM-supplied programs required to

meet the data processing needs of a user.

W

weak external reference. A special type of external

reference that is not to be resolved by automatic library

calls unless an ordinary external reference to the same

symbol is found. The external symbol dictionary entry

specifies the symbol; the location is unknown.

word. A contiguous series of 32 bits (4 bytes) in

storage, addressable as a unit. The address of the first

byte of a word is evenly divisible by four.

working storage. In COBOL/VSE, the storage

required for data items in the WORKING-STORAGE

SECTION. Working storage is a portion of main storage

that is used by a computer program to hold data

temporarily.

Z

zoned decimal format. Synonym for unpacked decimal

format.

426 LE/VSE: Programming Guide

Index

Special characters
, (comma) 38

/ (slash)
specifying in parameter list 22, 38

@DELETE service routine for

preinitialization
components of 384

return/reason codes for 384

@FREESTORE service routine for

preinitialization
components of 385

return/reason codes for 386

@GETSTORE service routine for

preinitialization
components of 384

return/reason codes for 385

@LOAD service routine for

preinitialization
components of 383

return/reason codes for 383, 384

@MSGRTN service routine for

preinitialization
components of 386

return/reason codes for 386

& (ampersand) 44

__csplist macro 405

__osplist macro 404

__pcblist macro 405

__R1 macro 404

#pragma directives
See pragma

abort() function
C condition handling semantics

and 124

HLL user exit and 332

in a preinitialized environment 367

SIGABRT and 122

argc parameter for C
C parameter passing styles and 405

argv parameter for C
C parameter passing styles and 405

atexit list
CEEPIPI and 366

calloc() function 85

ctdli()interface to DL/I 313

exit() function 124

C condition handling scenario

and 124

CEEBINT HLL user exit and 332

in a preinitialized environment 367

fetch()
C fetching C 309

fprintf function 201

printf() function
default destination 201

interspersing messages into an

application 200

raise() function for C
how C terminology differs from

LE/VSE’s 123

raise() function for C (continued)
SIGABRT

See abort() function

SIGTERM
HLL user exit and 332

return() 367

stderr
default destinations of 200

' (apostrophe) 44

A
abend

CANCEL system macro and 359

CEEPIPI interface to

preinitialization 376

CICS
assembler user exit and EXEC

CICS ABEND 326

EXEC CICS HANDLE ABEND

and 306

forcing database rollback 308

nested conditions and 394

short-on-storage condition

and 304

codes
abend AKCP (CICS short-on

storage condition) 304

CEEAUE_RETURN field of CXIT

control block and 324

exempting from condition

handling with ABPERC run-time

option 108

exempting from condition

handling with assembler user

exit 108

in CICS 307

DB2 312

definition 106

DL/I 315

dump, requesting 326

exempting from condition handling
ABPERC run-time option and 108

CEEBXITA and 108, 323

LE/VSE-generated 108

nested conditions and 140

nested enclaves and 394

q_data_token and 182

requesting
using CEE5ABD 322

short-on-storage condition can

cause 304

sort and merge operations 410

system
DB2 and CEEBXITA 312

DL/I and CEEBXITA 315

TRAP run-time option and 323

abnormal termination
See abend

ABPERC run-time option
description 33

ABTERMENC run-time option 312, 315

abend codes and 71

description 33

using to terminate with abend code or

return and reason codes 70

ACTION linkage editor control

statement 24, 25

add_entry
CEEPIPI(init_main) and 380

CEEPIPI(init_sub) and 380

return codes from 381

syntax description 380

additional heap
intended purpose of 85, 87

tuning the heap 87

addressing mode
See AMODE

AIXBLD run-time option
description 33

ALL31 run-time option
description 33

ALLOCATE
statement for PL/I 85

AMODE 87

ALL31 run-time option and 89

assembler routines and 336

C AMODE considerations 9, 300

for CEEBXITA user exit 323

heap storage 87

in preinitialized routines 364

ampersand (&) 44

ANYHEAP run-time option
description 33

anywhere heap 85, 87

apostrophe (') 44

application
See enclave

application defaults 36

AREA storage for PL/I 85

ARGPARSE run-time option
description 33

argument
distinguishing program arguments

from run-time options 38

list format
EXECOPS run-time option

and 405, 406

how interactions of EXECOPS and

PLIST run-time options

affect 405

PLIST run-time option and 405

passing
by reference 50, 51

by value 50, 51

C style 51, 403

COBOL styles 51

directly 50, 51

indirectly 50, 51

PL/I styles 51

styles permitted by LE/VSE 51,

401

© Copyright IBM Corp. 1991, 2005 427

argument (continued)
relationship to parameter list 50

specifying to an invoked routine

which format to expect (C) 405

arithmetic
See also math services

date calculations
examples illustrating date and time

callable service 222, 237

overview 216

ASMTDLI interface to DL/I 313

ASSEMBLE file 185

assembler language
ASMTDLI interface 313

COBOL parameter list format 406

macros 341, 342

CEECAA—generate a CAA

mapping 344

CEECIB— generate a CIB

mapping 345

CEEDSA—generate a DSA

mapping 345

CEEENTRY—generate an

LE/VSE-conforming prolog 341

CEEFETCH— dynamically load an

LE/VSE routine that can be later

deleted 350

CEELOAD— dynamically load an

LE/VSE routine 348

CEEPPA—generate a PPA 345

CEERELES— dynamically delete

an LE/VSE routine 353

CEETERM—terminate an

LE/VSE-conforming routine 344

routines
calling conventions for 335

compatibility with LE/VSE 335

condition handling for 165, 170,

336

equivalent callable services

for 359

examples 355, 359

invoking callable services

from 359

main routines 335, 355, 356

no support for assembler main

routines under CICS 335

operating services for 359, 401

program check, handling 165

subroutines 336, 356, 358

user exit
See CEEBXITA assembler user exit

assign
message insert data 196

ATTACH system macro 359

automatic data
definition 76

how used in enclave 78

automatic library lookup (AUTOLINK)

feature
See librarian automatic library lookup

(AUTOLINK) function

B
below heap

what used for 87

BELOWHEAP run-time option
description 33

BYADDR compile-time option for

PL/I 55

BYVALUE compile-time option for PL/I
functions 55

required if SYSTEM(CICS)

specified 407

C
C

#pragmas
See pragma

stderr
default destinations of 200

interleaving output with other

output 201

redirecting output from 201

AMODE/RMODE considerations 9

building linked list in 90, 91

calls to C under CICS 309

condition handling 121, 127

examples
CEE5CTY, CEEFMDT, and

CEEDATM 249, 251

CEE5RPH, CEECRHP, CEEGTST,

CEECZST, CEEFRST and

CEEDSHP 96, 97

CEEDAYS, CEEDATE and

CEEDYWK 238, 239

CEEGTST and CEEFRST 90, 91

CEEHDLR, CEEGTST, CEECZST

and CEEMRCR 149, 152

CEEHDLR, CEESGL, CEEGQDT

and CEEMRCR 158, 160

CEEMOUT, CEENCOD,

CEEMGET, CEEDCOD and

CEEMSG 205, 207

CEEQCEN and CEESCEN 219

CEESECS and CEEDATM 226,

227

CEESECS, CEESECI, CEEISEC, and

CEEDATM 231, 233

CEESECS, multiple calls to 222

CEESSLOG 290

coding main routine to receive

inbound parameter list 52, 55

global condition handling model 121

interfaces to DL/I from 313

L-names
See L-names

LONGNAME compile-time

option 11

parameter passing style 51

PLIST and EXECOPS

interactions 405

styles 403, 405

pragma
See pragma

prelinker
See prelinker

RENT compile-time option
making C routines reentrant

with 58

S-names
See S-names

C (continued)
signals

mapping abends to 128

mapping S/370 exceptions to 127

specifying run-time options for 36

CAA (common anchor area)
See common anchor area (CAA)

CALL statement
for COBOL

callable service feedback code

and 175

for PL/I
See FETCH statement

call_main
See preinitialization facility,

CEEPIPI(call_main)

call_sub
See preinitialization facility,

CEEPIPI(call_sub)

call_sub_addr
See preinitialization facility,

CEEPIPI(call_sub_addr)

callable services
CEE5ABD—terminate enclave with an

abend 64

CEE5CIB—return pointer to condition

information block 104

CEE5CTY—set default country 247

CEE5DMP—generate dump 281

CEE5GRC—get the enclave return

code 64

CEE5GRN—get name of routine that

incurred condition 104

CEE5GRO— get offset of

instruction 104

CEE5LNG—set national

language 247

CEE5MCS—obtain default currency

symbol 247

CEE5MDS—obtain default decimal

separator 247

CEE5MTS—obtain default thousands

separator 247

CEE5PRM—query parameter

string 64, 281

CEE5PRML 281

CEE5RPH—set report heading 82

CEE5SPM—query and modify

LE/VSE hardware condition

enablement 104

CEE5SRC—set the enclave return

code 64

CEE5SRP— set position for execution

to resume 104

CEE5TSTG 281

CEE5USR—set or query user area

fields 281

CEECBLDY—convert date to COBOL

Lilian format 214

CEECMI—store and load message

insert data 185

CEECRHP—create new additional

heap 82

CEECZST—reallocate (change size of)

storage 82

CEEDATE—convert Lilian date to

character format 214

428 LE/VSE: Programming Guide

callable services (continued)
CEEDATM—convert seconds to

character timestamp 214

CEEDAYS—convert date to Lilian

format 214

CEEDCOD—decompose a condition

token 171

CEEDSHP—discard heap 82

CEEDYWK—calculate day of week

from Lilian date 214

CEEFMDA—obtain default date

format 247

CEEFMDT—obtain default date and

time format 247

CEEFMON—format monetary

string 257

CEEFMTM—obtain default time

format 247

CEEFRST—free heap storage 82

CEEFTDS—format date and time into

character string 257

CEEGMT—get current Greenwich

mean time 214

CEEGMTO—get offset from

Greenwich mean time to local

time 214

CEEGPID—retrieve LE/VSE version

and platform ID 281

CEEGQDT—retrieve

q_data_token 104, 158, 160

CEEGTST—get heap storage 82

CEEHDLR—register user condition

handler 104

CEEHDLU—unregister user condition

handler 104

CEEISEC—convert integers to

seconds 214

CEEITOK—return initial condition

token 104

CEELCNV—query locale numeric

conventions 257

CEELOCT—get current local

time 214

CEEMGET—get a message 185

CEEMOUT—dispatch a message 185

CEEMRCE— move resume cursor to

an explicit location 105

CEEMRCR—move resume cursor

relative to handle cursor 104

CEEMSG—get, format, and dispatch a

message 185

CEENCOD—construct a condition

token 171

CEEQCEN—query the century

window 214

CEEQDTC—query locale, date, and

time conventions 257

CEEQRYL—query active locale

environment 257

CEERAN0—calculate uniform random

numbers 281

CEESCEN—set the century

window 214

CEESCOL—compare string collation

weight 257

CEESECI—convert seconds to

integers 214

callable services (continued)
CEESECS—convert timestamp to

number of seconds 214

CEESETL—set locale operating

environment 257

CEESGL—signal a condition 104

CEESTXF—transform string into

collation weights 257

CEETEST—invoke debug tool 281

feedback code parameter
See feedback code

getting started with 283, 286

guidelines for writing 401, 403

invoking 359

assembler 359

calls
dynamic call

See also CALL statement

calls between COBOL/VSE and VS

COBOL II, under CICS 309

external references resolved at run

time when made 7

static call
external references resolved at

link-edit time when made 7

in CICS COBOL applications 309,

310

cancel codes
See abend, codes

CANCEL system macro
CEE5ABD callable service and 359

CEESGL callable service and 359

table of equivalent LE/VSE

services 359

casting, when using R1 and osplist

macros 404

CBLOPTS run-time option
description 33

VS COBOL II compatibility and 39

CBLPSHPOP run-time option
description 33

EXEC CICS PUSH and EXEC CICS

POP commands and 307

CBLTDLI interface to DL/I 313

CCE5MCS callable service
Euro support 249

CDLOAD and CDDELETE system

macros 363

CEE facility ID 198

CEE5ABD—terminate enclave with an

abend
CANCEL system macro and 359

CEE5CIB—return pointer to condition

information block 104

CEE5CTY—set default country
examples using

examples with CEEFMDT and

CEEDATM 249, 255

CEE5DMP—generate dump
CESE transient data queue and 309

description 281

PDUMP system macro and 363

CEE5GRN—get name of routine that

incurred condition
examples using 160, 164

CEE5GRO— get offset of instruction 104

CEE5LNG—set national language
messages and 199

CEE5PRM—query parameter string
description 281

CEE5PRML 64

CEE5PRML—pass string with length 300

characters 281

CEE5SPM—query and modify LE/VSE

hardware condition enablement
advisory note regarding 401

condition handling, XUFLOW

run-time option and 108

examples using 160, 164

CEE5SRP— set position for execution to

resume 104

CEE5TSTG—test for access available to a

storage address 281

CEE5USR—set or query user area fields
description 281

CEEAUE_ABND field of CXIT control

block 326

CEEAUE_ABTERM field of CXIT control

block 325

CEEAUE_CODES field of CXIT control

block
description 327

specifying abend codes in 323

CEEAUE_DUMP field of CXIT control

block 326

CEEAUE_FBCODE field of CXIT control

block 328

CEEAUE_FLAGS field of CXIT control

block
CEEAUE_ABND field of 326

CEEAUE_ABTERM field of 325

CEEAUE_DUMP field of 326

format 325

CEEAUE_FUNC field of CXIT control

block 324

CEEAUE_LEN field of CXIT control

block 324

CEEAUE_OPTION field of CXIT control

block 327

CEEAUE_PARM field of CXIT control

block 326

CEEAUE_REASON field of CXIT control

block
description 325

relationship to CEEAUE_ABND 326

relationship to

CEEAUE_RETURN 326

CEEAUE_RETURN field of CXIT control

block
description 324

relationship to CEEAUE_ABND 324,

326

relationship to

CEEAUE_REASON 325, 326

CEEAUE_USER field of CXIT control

block 327

CEEAUE_WORK field of CXIT control

block 327

CEEBINT HLL user exit 64

functions 320

interactions with CEEPIPI 366

interface to 332

languages it can be coded in 332

Index 429

CEEBINT HLL user exit (continued)
terminating enclave using 332

user word parameter of, and

CEEAUE_USER 333

when invoked 321

CEEBLDTX EXEC
error messages 192

using to create message files 185

CEEBXITA assembler user exit 64

abends and
requesting 322

specifying codes to be exempted

from condition handling 323

actions taken if errors occur within

the exit 323

AMODE/RMODE

considerations 323

application-specific 319

behavior of
during enclave initialization 320,

321, 322

during enclave termination 322

during process termination 322

DB2 and 312

DL/I and 315

EXEC CICS commands that cannot be

used with 307

functions 319

installation-wide 319

interactions with CEEPIPI 366

modifications to, rules for

making 323

PLIRETC and 307

specifying run-time options in 300,

311, 314, 327

TRAP run-time option and 323

when invoked 321

work area for 327

CEECAA assembler macro
relationship to CEEENTRY 341

syntax description 344

CEECBLDY—convert date to COBOL

Lilian format
example using 245

CEECIB assembler macro 345

CEECMI—store and load message insert

data
assigning values to message

insert 196

CEECOPT assembler source file 36

CEECOPT options module
CEEXOPT macro and 40

description 36

IBM-supplied version of defaults 40

specifying run-time options with 300

CEECXITA assembler user exit 308

See CEEBXITA assembler user exit

CEEDATE—convert Lilian date to

character format
examples using 238

CEEDATM—convert seconds to character

timestamp
examples using

examples with CEE5CTY and

CEEFMDT 249, 255

examples with CEESECS 226, 231

CEEDATM—convert seconds to character

timestamp (continued)
examples using (continued)

examples with CEESECS,

CEESECI, and CEEISEC 231

CEEDAYS—convert date to Lilian format
examples using 238

CEEDCOD—decompose a condition

token
examples using 205

testing equivalent tokens 175

CEEDOPT assembler source file 35

CEEDOPT options module
CEEXOPT macro and 40

description 35

IBM-supplied version of defaults 40

specifying run-time options with 30,

311, 314

CEEDSA assembler macro
relationship to CEEENTRY 341

syntax description 345

CEEDSASZ label 345

CEEDYWK—calculate day of week from

Lilian date
examples using 238

CEEENTRY assembler macro
relationship to CEECAA 341

relationship to CEEDSA 342

relationship to CEEPPA 341, 342

relationship to CEETERM 341

syntax description 341

CEEFETCH assembler macro 350

CEEFMDA—obtain default date

format 247

CEEFMDT—obtain default date and time

format
examples using

examples with CEE5CTY and

CEEDATM 249, 255

CEEFMON—format monetary string
examples using 258, 260

CEEFMTM—obtain default time

format 247

CEEFTDS—format date and time into

character string
examples using 261, 263

CEEGMT—get current Greenwich mean

time 214

CEEGMTO—get offset from Greenwich

mean time to local time 214

CEEGPID—retrieve the LE/VSE version

and platform ID
description 281, 282

CEEGQDT—retrieve q_data_token
examples using 158, 160

CEEHDLR—register user condition

handler 115

assembler routines and 336

condition handling example 127

condition handling model and 115

condition handling terminology 122

examples using
assembler example 165, 170

examples with CEE5SPM,

CEE5GRN and CEEMOUT 160,

164

CEEHDLR—register user condition

handler (continued)
examples using (continued)

examples with CEEGTST,

CEECZST and CEEMRCR 149,

157

examples with CEESGL,

CEEGQDT and CEEMRCR 158,

160

restrictions on using with various

EXEC CICS commands 306, 359

SETRP command and 359

STXIT system macro and 359

syntax description of user-written

condition handlers 138, 139

CEEHDLU—unregister user condition

handler
EXEC CICS HANDLE ABEND

command and 359

SETRP command and 359

STXIT system macro and 359

syntax description of user-written

condition handlers 138, 139

CEEISEC—convert integers to seconds
examples using 231

CEELCNV—query locale numeric

conventions
examples using 264, 266

CEELOAD assembler macro 348

CEELOCT—get current local time
examples using 216

CEELRR—initialize or terminate library

routine retention 339

CEEMGET—get a message
examples using 205

examples with CEEMOUT,

CEENCOD, CEEDCOD and

CEEMSG 207, 211

relationship to condition tokens and

other message services 174

CEEMOUT—dispatch a message
examples using

examples with CEEHDLR,

CEE5SPM and CEE5GRN 160,

164

examples with CEENCOD,

CEEMGET, CEEDCOD and

CEEMSG 205, 207, 211

relationship to condition tokens and

other message services 174

WTO system macro and 363

CEEMRCE— move resume cursor to an

explicit location 105

CEEMRCR—move resume cursor relative

to handle cursor
examples using

examples with CEEHDLR,

CEEGTST and CEECZST 149,

157

examples with CEEHDLR,

CEESGL and CEEGQDT 158,

160

resume action and 116

CEEMSG—get, format, and dispatch a

message
examples using 205

430 LE/VSE: Programming Guide

CEEMSG—get, format, and dispatch a

message (continued)
relationship to condition tokens and

other message services 174

CEENCOD—construct a condition token
examples using 205

CEEPIPI
See preinitialization facility

CEEPIPI(add_entry) 380

CEEPIPI(call_main) 373

CEEPIPI(call_sub_addr) 376

CEEPIPI(call_sub) 374

CEEPIPI(delete_entry) 381

CEEPIPI(end_seq) 378

CEEPIPI(init_main) 369

CEEPIPI(init_sub_dp) 371

CEEPIPI(init_sub) 370

CEEPIPI(start_seq) 377

CEEPIPI(term) 379

CEEPPA assembler macro
relationship to CEEENTRY 341

syntax description 345

CEEQCEN—query the century window
examples using 219, 221

CEEQDTC—query locale, date, and time

conventions
examples using 267, 269

CEEQRYL—query active locale

environment
examples using 273, 278

CEERAN0—calculate uniform random

numbers
description 281

CEERELES assembler macro 353

CEESCEN—set the century window
examples using 219, 221

CEESCOL—compare string collation

weight
examples using 270, 272

CEESECI—convert seconds to integers
examples using 231

CEESECS—convert timestamp to number

of seconds
examples using CEESECS

C 222

COBOL 223

PL/I 225

examples with CEEDATM
C 226, 227

COBOL 228, 229

PL/I 230, 231

examples with CEESECI, CEEISEC,

and CEEDATM
C 231, 233

COBOL 233, 235

PL/I 236

CEESETL—set locale operating

environment
examples using 264, 269, 273, 275

CEESGL—signal a condition
CANCEL system macro and 359

description of signals 106

examples using 158, 160

EXEC CICS HANDLE ABEND

command and 359

HLL-specific condition handlers

and 106, 108

CEESGL—signal a condition (continued)
important condition handling

terminology 116

relationship to condition tokens and

message services 174

SETRP command and 359

STXIT system macro and 359

TRAP run-time option does not

affect 108

user-written condition handlers

and 108

CEESTART
default entry point for PL/I 6

CEESTXF—transform string into collation

weights
examples using 276, 278

CEETDLI interface to DL/I 313

CEETERM assembler macro
relationship to CEEENTRY 341

syntax description 344

CEETEST—invoke debug tool
condition handling and 114

description 281

CEEUOPT assembler source file 36

CEEUOPT options module
CEEXOPT macro and 40

description 36

specifying run-time options with 30,

300, 311, 314

CEEXOPT macro
description 40

sample of CEECOPT modified

using 42

sample of CEEDOPT modified

using 41

sample of CEEUOPT modified

using 43

usage notes for 44, 45

CEEXPIT macro 365

CEEXPITS macro 365

CEEXPITY macro 365

CESE transient data queue
CICS dump and message output

file 303, 308

format 308

message handling and 200

CHAP command 359

CHECK run-time option
description 33

CICS
See also EXEC CICS command

callable service behavior under
availability of callable

services 303

CBLPSHPOP run-time option

and 307

CEECOPT options module 36

CESE transient data queue and 303

CICS partition 297

CICS run unit
behavior in nested enclave 394

compared to LE/VSE enclave 297

COBOL parameter list formats 406

coding main routines to receive

parameters 54

condition handling for 305, 308

DL/I interface 313

CICS (continued)
DOS/VS COBOL compatibility

considerations 303

I/O restrictions in 298

link-editing for 299

message and dump output file 303

message format 308

message handling for 308

multi-tasking for 298

PLIRETC support 299, 307

PLIRETV support 299

PLIST and EXECOPS

interactions 406

processing program table (PPT) 298

program control table (PCT) 298

reentrancy and 57

required level of 297

run-time option behavior under 301,

302

run-time output file 308

sort parameter list and 413

specifying run-time options for 300

storage and 303

SYSTEM(CICS) compile-time option

and 54, 56, 406

terminology 297

transaction 297, 298

transaction rollback 307

translator 298, 306

CICS-wide run-time options, printing to

console 45

CLOSE system macro 363

COBOL
building a linked list in 92, 93

can choose between static and

dynamic calls under 7

CEEBXITA assembler user exit for VS

COBOL II compatibility 320

condition handling 128, 132

constructing and dispatching a

message for the significance

condition 160, 164

DOS/VS COBOL under CICS 303

examples
CEE5CTY, CEEFMDT, and

CEEDATM 251, 253

CEE5RPH, CEECRHP, CEEGTST,

CEECZST, CEEFRST and

CEEDSHP 98, 99

CEECBLDY—convert date to

COBOL Lilian format 245

CEEDAYS, CEEDATE and

CEEDYWK 240, 242

CEEFMON—format monetary

string 259

CEEFTDS—format date and time

into character string 261

CEEGTST and CEEFRST 92, 93

CEEHDLR, CEE5SPM, CEE5GRN

and CEEMOUT 160, 164

CEEHDLR, CEEGTST, CEECZST

and CEEMRCR 153, 157

CEELCNV and CEESETL 264

CEEMOUT, CEENCOD,

CEEMGET, CEEDCOD and

CEEMSG 207, 209

Index 431

COBOL (continued)
examples (continued)

CEEQCEN and CEESCEN 220,

221

CEEQDTC and CEESETL 267

CEESCOL—compare string

collation weight 270

CEESECS and CEEDATM 228,

229

CEESECS, CEESECI, CEEISEC and

CEEDATM 233, 235

CEESECS, multiple calls to 223

CEESETL and CEEQRYL 273

CEESSLOG 291

CEESTXF and CEEQRYL 276

coding main routine to receive

inbound parameters 52, 55

GOBACK statement
generates return code 69

interfaces to DL/I from 313

non-CICS DOS/VS COBOL programs

supported in single enclave

only 393

order of program arguments and

run-time options 39

parameter list formats 406

parameter passing style 51

RENT compile-time option for

COBOL 58

specifying run-time options from 35,

45

STOP RUN statement
preinitialized enviroment and 367

return codes and 69

comma (,) 38

COMMAREA
COBOL user-written condition

handlers and 306

common anchor area (CAA)
writing assembler routines 336

common area in linkage editor map 27

common run-time environment,

introduction 3

compatibility
assembler 335

CICS 300

condition
callable service feedback code

and 173, 175

definition 106

divide-by-zero
examples illustrating condition

handling for 158

nested 394

severity
CEEBXITA assembler user exit

and 325

COBOL condition handling 129

condition token and 172

ERRCOUNT run-time option

and 110

how to determine in a

message 111, 198

TERMTHDACT run-time option

and 113

unhandled conditions and 70

condition (continued)
signalling with CEESGL callable

service
See CEESGL—signal a condition

condition handler
C signal handlers

CEESGL callable service and 108

description 123

TRAP run-time option and 108

description 115

HLL semantics
percolation and 116

SORT and MERGE

operations 410

TRAP run-time option and 108

PL/I ON-units
CEESGL callable service and 108

SORT and MERGE

operations 412

TRAP run-time option and 108

user-written
accessing a q_data structure and

moving the resume cursor

from 158, 160

C raise() function and 122, 123

C signal() function and 123

CEESGL callable service and 108

coding 137, 139

constructing message string when

significance condition

occurs 160, 164

EXEC CICS commands that cannot

be used with 306

in ILC applications 140

in nested condition handling 140

introduction to user-written

condition handlers 114

registering with CEEHDLR callable

service 115

role in LE/VSE condition handling

model of 114

sort and merge operations

and 410, 412

syntax for 138

TRAP run-time option and 108

condition handling 173

See also stack, frame

assembler routines 336

basic condition handling

scenarios 116, 121

C semantics 121, 127

signal() function and 122, 123

default actions for C

conditions 121

example of 125, 127

global error table and 121

scenario of 124

callable service feedback code

and 173, 175

callable services for
examples using CEEHDLR,

CEEGTST, CEECZST and

CEEMRCR 149, 157

examples using CEEHDLR,

CEESGL, CEEGQDT and

CEEMRCR 158, 160

usage scenario 148

condition handling (continued)
CICS, under 306

COBOL
ON SIZE ERROR clause 128, 132

semantics of 128, 132

coding 137, 139

condition step of
See condition step

default actions 129

enablement step of
See enablement, condition handling

step

examples 141, 170

global model provided by C 121

introduction to 103, 116

nested enclaves
created by Csystem()

function 395

created by EXEC CICS LINK or

EXEC CICS XCTL 394, 395

PL/I 132, 136

registering with USRHDLR 139

signalling condition with CEESGL
See CEESGL—signal a condition

sort and merge considerations 410

COBOL/VSE 410

PL/I 412

stack frame-based model provided by

LE/VSE
details of 116

overview 103, 104, 116

termination imminent step of
See termination imminent step

terminology 106

user exits and 307

user-written condition handler 114

using symbolic feedback code in 175,

181

when to use 103

condition manager
C signal handler and 127

percolating abends and 129

stack frame collapse and 131

symbolic feedback code and 176

thread initialization and 65

condition step 109, 111

condition token 171, 185

C signal and 182

callable service feedback code

and 173, 175

condition handling model and 103

messages and 199

constructed reentrancy 57

See prelinker

continuations 44

control
block

CAA 336

sections 26

COPY file 185

COUNTRY run-time option
description 33

critical error message (severity 4) 198

cross system product (CSP) 405

csplist macro 405

CXIT control block
CEEAUE_CODES field of 323

432 LE/VSE: Programming Guide

CXIT control block (continued)
CEEAUE_FBCODE field of 328

CEEAUE_FLAGS field of
CEEAUE_DUMP field of 326

format of the 325

CEEAUE_FUNC field of 324

CEEAUE_LEN field of 324

CEEAUE_OPTION field of 327

CEEAUE_PARM field of 326

CEEAUE_USER field of
user word parameter of CEEBINT

and 333

CEEAUE_WORK field of 327

D
DATA compile-time option, effect on

storage 88, 89

Data Language/I (DL/I)
See DL/I DOS/VS

data type
guidelines for, when writing callable

services 401

database rollback
assembler user exit and DB2 312

assembler user exit and DL/I 315

how CICS handles a 307

date and time
services

GETIME system macro and 363

summary 214

DB2
running applications with 311

specifying run-time options with 311

DEBUG run-time option
description 33

debug tool
CEEBINT and 332

CEEBXITA and 322

condition handling model and 114

debugging
ABPERC run-time option and 108

DELETE command
EXEC CICS command 359

DELETE service routine for

preinitialization
components of 384

return/reason codes for 384

delete_entry
CEEPIPI(init_sub_dp) and) and 381

CEEPIPI(init_sub) and 381

DEPTHCONDLMT run-time option
description 33

DEQ 359

dereferencing 404

DETACH 359

DFHECI (EXEC CICS interface stub) 300

DFHELII (EXEC CICS interface

stub) 300

DFSORT/VSE
condition handling for 410, 413

native invocations of 409, 410

user exits associated with 410

DISPLAY statement
default file for 202

OUTDD compile-time option for

COBOL 203

DL/I DOS/VS
C considerations 313, 405

CEETDLI interface 313

coding a main routine to run with 53

condition handling under 314

list of DLI interfaces 313

OPTIONS(BYADDR) and 314

PLIST and EXECOPS

interactions 406

PLIST run-time option and 53

specifying run-time options with 314

SYSTEM(DLI) compile-time option

and 53, 56, 314, 407

TRAP run-time option 314

DOS/VS VM/SP Sort Merge Version 2
See DFSORT/VSE

DSA (dynamic save area)
See also stack, frame

register 13 and 336

dump
CEEBXITA assembler user exit

and 322, 326

for CICS 303, 309

LE/VSE
PDUMP system macro and 363

dynamic call
C, under CICS 309

external references resolved at run

time when made 7

VS COBOL II, under CICS 309

dynamic routines 5

dynamic save area (DSA)
See DSA (dynamic save area)

E
EDC facility ID 198

EDCYCROP program, to display

CICS-wide run-time option settings 45

EIB (exec interface block)
calls within same HLL and 309

user-written condition handlers, EXEC

CICS commands and 306

enablement
condition handling step

definition of exceptions 106

discussion of 107, 109

TRAP run-time option and 108

enclave
definition 77

HLLs and 77, 78

main routines and 77

management of LE/VSE resources 78

multiple 78

nested
created by Csystem()

function 393, 395

created by EXEC CICS LINK or

EXEC CICS XCTL 393, 394, 395

MSGFILE filenames and 200, 397

relationship with C main()

functions 77

relationship with COBOL run

units 77

relationship with processes 77

role in Language Environment

program management model 80

enclave (continued)
subroutines and 77

termination
behavior 71

with abend 326

with assembler routine 336

with HLL user exit 332

end_seq
See preinitialization facility,

CEEPIPI(end_seq)

ENQ 359

ENTRY linkage editor control

statement 24, 25, 26

entry point
defaults for each language 6

defining, when link-editing a fetchable

PL/I phase 8

link-edit map contains entry point

names 26

ENV run-time option
C interface to DL/I 313

description 33

ENVAR run-time option
description 33

environment, common 3

equality, testing a condition token

for 175

equivalence, testing a condition token

for 174

ERRCOUNT run-time option
condition handling model and 110

description 33

error message (severity 2) 198

ESD map of defined and longnames 14

Euro support 249

examples
building a condition token, in C 158

CEE5CTY—set default country
with CEEFMDT and

CEEDATM 249, 255

CEEDATE—convert Lilian date to

character format
with CEEDAYS and

CEEDYWK 238

CEEDATM—convert seconds to

character format
with CEE5CTY and

CEEFMDT 249, 255

with CEESECS callable

service 226, 231

with CEESECS, CEESECI, and

CEEISEC 231

CEEDAYS—convert date to Lilian

format
with CEEDATE and

CEEDYWK 238

CEEDCOD—decompose a condition

token
with CEEMOUT, CEENCOD,

CEEMGET, and CEEMSG 160,

164

CEEDYWK—calculate day of week

from Lilian date
with CEEDATE and

CEEDAYS 238

Index 433

examples (continued)
CEEFMDT—get default date and time

format
with CEE5CTY and

CEEDATM 249, 255

CEEFMON—format monetary

string 258, 260

CEEFTDS—format date and time into

character string 261, 263

CEEHDLR—register user-written

condition handler
calling from assembler 165, 170

with CEE5SPM, CEE5GRN, and

CEEMOUT 164

with CEEGTST, CEECZST and

CEEMRCR 149, 157

with CEESGL, CEEGQDT, and

CEEMRCR 158

CEEISEC—convert integers to seconds
with CEESECS, CEESECI, and

CEEDATM 231

CEELCNV—query locale numeric

conventions
with CEESETL 264, 266

CEEMGET—get a message
with CEEMOUT, CEENCOD,

CEEDCOD, and CEEMSG 160,

164

CEEMOUT—dispatch a message
with CEEHDLR, CEE5SPM, and

CEE5GRN 164

with CEENCOD, CEEMGET,

CEEDCOD, and CEEMSG 160,

164

CEEMSG—get, format, and dispatch a

message
with CEEMOUT, CEENCOD,

CEEMGET, and CEEDCOD 160,

164

CEENCOD—construct a condition

token
with CEEMOUT, CEEMGET,

CEEDCOD, and CEEMSG 160,

164

CEEQCEN—query century

window 219

CEEQDTC—query locale, date, and

time conventions
with CEESETL 267, 269

CEEQRYL—query active locale

environment
with CEESETL 273, 275

with CEESTXF 276, 278

CEESCEN—set century window 219

CEESCOL—compare string collation

weight 270, 272

CEESECI—convert seconds to integers
with CEESECS, CEEISEC, and

CEEDATM 231

CEESECS—convert timestamp to

number of seconds
multiple calls to 222, 225

using CEEDATM with 226, 231

with CEESECI, CEEISEC, and

CEEDATM 231

examples (continued)
CEESETL—set locale operating

environment
with CEELCNV 264, 266

with CEEQDTC 267, 269

CEESSLOG—calculate logarithm base

e 290

CEESTXF—transform string into

collation weights
with CEEQRYL 276, 278

link-editing a PL/I-fetchable phase 7

math services 289

querying and setting the century

window 219

exceptions
historical definition 106

LE/VSE definition 106

EXEC CICS command
ABEND 306, 307, 326

DELETE 359

FREEMAIN 303, 363

GETMAIN 303, 363

HANDLE ABEND
assembler user exit and 307

CEEHDLR callable service

and 359

CEEHDLU callable service

and 359

CEESGL callable service and 359

table of equivalent LE/VSE

services 359

TRAP run-time option and 306

user-written condition handlers

and 306

HANDLE AID
assembler user exit and 307

user-written condition handlers

and 306

HANDLE CONDITION
assembler user exit and 307

user-written condition handlers

and 306

IGNORE CONDITION 306, 307

LINK
assembler routines and 363

behavior of nested enclaves created

by 394

C and 309

DOS/VS COBOL and 310

program management model

and 298

run-time options and 394

LOAD 359

POP HANDLE
assembler user exit and 307

user-written condition handlers

and 306

PUSH HANDLE
assembler user exit and 307

user-written condition handlers

and 306

RETURN 310

XCTL
assembler routines and 363

behavior of nested enclaves created

by 394, 395

C and 309

EXEC CICS command (continued)
XCTL (continued)

DOS/VS COBOL and 310

program management model

and 298

run-time options and 394

EXEC CICS interface stubs
See DFHECI, DFHELII

exec interface block (EIB)
See EIB (exec interface block)

EXEC job control statement
EXECOPS run-time option and 30

invoking linkage editor 25

syntax for executing an

application 29

syntax for specifying run-time

options 30, 39

EXECOPS run-time option
CEENTRY macro and 342

considerations when specifying

run-time options 39

description 33

EXEC job control statement and 30

EXHIBIT for DOS/VS COBOL
default output file of 202

no support for, under CICS 202

external data
constructed reentrancy and 58

preinitialization and 366

scope of, in Language Environment

program management model 77, 78

F
facility ID

each language component has a 198

part of condition token 172, 198

part of messages 198, 199

feedback code
condition manager and 173

condition token and 173, 175

guidelines for writing callable services

and 401

in callable services 173

omitting 175

symbolic feedback code in condition

handling 175, 181

FETCH statement
link-editing PL/I-fetchable phases 7

PL/I fetching PL/I 310

files used for link-editing 23

FREESTORE service routine for

preinitialization
components of 385

return/reason codes for 386

FREEVIS system macro 363

See EXEC CICS command,

FREEMAIN

freopen 201

G
genxlt utility 31

GET system macro 363

GETIME command
LE/VSE date/time services and 363

434 LE/VSE: Programming Guide

GETIME command (continued)
table of equivalent LE/VSE

services 363

GETSTORE service routine for

preinitialization
components of 384

return/reason codes for 385

GETVIS storage required by LE/VSE 29

GETVIS system macro 363

See EXEC CICS command, GETMAIN

global assembler user exit 319

global error table 121

See condition handling

glossary 417

H
HANDLE ABEND EXEC CICS command

assembler user exit and 307

CEEHDLR and 359

CEEHDLU and 359

CEESGL and 359

table of equivalent LE/VSE

services 359

TRAP run-time option and 306

user-written condition handlers

and 306

handle cursor
definition 106

promote action and 139

header files
stdlib.h and the __R1 and __osplist

macros 404

symbolic feedback code files

and 176, 178

HEAP run-time option
description 33

heap storage
See also additional heap

callable services for
relationship to GETVIS/FREEVIS

host services 359, 363

examples of HLL data stored in 85

heap element
heap storage model and 85, 87,

101

heap increment
when allocated 85

heap storage model 85, 87

initial heap segment 85

heap storage model and 87

performance and 87

when allocated 85

lifetime of 85

MODE considerations of 87

program management model and 78

reallocating (changing size of)
See callable services,

CEECZST—reallocate (change

size of) storage

RPTSTG run-time option and 87

threads and 85

tuning 87

heap_id 0
See also heap storage, initial heap

segment

See initial heap

homepage, VSE xxiii

I
I/O

See input/output

IBM facility ID 198

iconv utility 31

IGZ facility ID 198

IGZERRE 364

IJSYS workfiles used for link-editing 23

ILBDSET0 364

ILC (interlanguage communication)
benefits of LE/VSE support 103

link-editing ILC applications 6

overlay programs and 337

INCLUDE file 185

INCLUDE linkage editor control

statement 24, 25, 26

application-specific assembler user

exit and 320

informational message (severity 0) 198

init_main
See preinitialization facility,

CEEPIPI(init_main)

init_sub
See preinitialization facility,

CEEPIPI(init_sub)

init_sub_dp
See preinitialization facility,

CEEPIPI(init_sub_dp)

initial heap
heap storage model and 87

initial heap segment
See heap storage, initial heap segment

initial stack segment 83

performance and 84

stack storage model and 83

when allocated 83

initializing 335

See also preinitialization facility

initialization routines 5

nested enclave
CEEBXITA’s function code

for 324

using CEEBXITA assembler user exit

for
CEEBXITA behavior 320

function code for 324

input/output
CICS restrictions 298

LE/VSE default message file

attributes 199

insert data
user-created

assigning values to 196

installation-wide assembler user exit 319

interlanguage communication (ILC)
See also external data

See ILC (interlanguage

communication)

interleaved output to MSGFILE 201, 202

Internet address, VSE homepage xxiii

interrupts
See program interrupts

intrinsic functions 86

ISI (instance specific information)
callable service feedback code

and 173

description 173

q_data_token 182

L
L-names

LIBRARY control statement and 16

mapping to S-names 18

RENAME control statement and 16

UPCASE prelink option and 19

language environment
introduction 3

LE/VSE
introduction 3

library structure 5

LIBDEF statement
format in JCL 29

librarian automatic library lookup

(AUTOLINK) function
ACTION linkage editor control

statement and 24, 25

files required by the linkage editor

and 23

libraries, linkage editor use of 23

library routine retention 337

LIBRARY statement
prelinker and 16

library, LE/VSE
See LE/VSE, library structure

LIBSTACK run-time option
description 33

Lilian date
calculate day of week from

(CEEDYWK) 214

convert date to (CEEDAYS) 214

convert to character format

(CEEDATE) 214

return current local date as a

(CEELOCT) 214

return GMT as a (CEEGMT) 214

link-editing
basics of linking and running 5

CICS considerations 299

detecting errors 28

diagram of linkage editor

processing 22

example of 25

files used for 23

ILC applications 6

input to the linkage editor 22

options 24, 25

PL/I-fetchable phases 7

using INCLUDE statement to include

additional modules as input 26

VS COBOL II NORES

considerations 7

writing JCL for the linkage editor 25

linkage editor
control statements 24, 25

function 5

generating a link-edit map 24, 25

input to 22

messages, where they go 23, 28

writing JCL for 23

Index 435

LOAD service routine for preinitialization
components of 383

return/reason codes for 383, 384

LOAD system macro 363

local
data 78

locale callable services 257

LONGNAME compile-time option 11

M
macro

__csplist 405

__osplist 404

__pcblist 405

__R1 404

CEECAA
relationship to CEEENTRY 341

syntax description 344

CEECIB 345

CEEDSA
relationship to CEEENTRY 341

syntax description 345

CEEENTRY
relationship to CEECAA 341

relationship to CEEDSA 342

relationship to CEEPPA 341, 342

relationship to CEETERM 341

syntax description 341

CEEFETCH 350

CEELOAD 348

CEEPPA
relationship to CEEENTRY 341

syntax description 345

CEERELES 353

CEETERM
relationship to CEEENTRY 341

syntax description 344

CEEXOPT
description 35

sample of CEECOPT modified

using 42

sample of CEEDOPT modified

using 41

sample of CEEUOPT modified

using 43

usage notes for 44, 45

CEEXPIT 365

CEEXPITS 365

CEEXPITY 365

main routine
assembler main

example of a simple 355

example of main calling a

sub 356

register values on entry to 335

determining 77

nested enclave considerations 393

position in Language Environment

program management model 77

preinitialization of 363, 369

management of resources 78

management, program 75, 80

mapping
L-names to S-names 18

math services
about 287

math services (continued)
examples using 289

MERGE (COBOL verb)
condition handling

considerations 410, 413

overview 409

user exit triggered by 410

message file
C stderr and stdout output and 201

CICS considerations 200

COBOL condition handling semantics

and 129

COBOL DISPLAY statement and 203

LE/VSE’s default destinations 199

nested enclave considerations 200,

397

PL/I I/O statements 203

specifying filename of 200

using CEEBLDTX to assemble 185

message handling
See also ISI (instance specific

information)

CESE transient data queue and 308

relationship to fc parm of callable

services 173, 175

specifying filename of message

file 200

message module table 185

messages
complete listing of

See LE/VSE Debugging Guide and

Run-Time Messages

condition token and 198, 199

directing to an I/O device 200

example 199

facility ID 198

message prefixes 199

redirecting stderr, stdout and

printf() output 201

severity codes and values 198

using in your application 200

migration
See also IBM COBOL for VSE/ESA

Migration Guide

See IBM PL/I for VSE/ESA Migration

Guide

MODE linkage editor control

statement 24, 25

models, architectural
program management 75, 80

MSGFILE run-time option 6, 129

COBOL condition handling semantics

and 129

default destination 199

description 33

different treatment under CICS 303

specifying filenames across nested

enclaves 200, 397

SYSPRINT file and 203

MSGQ run-time option
description 33

MSGRTN service routine for

preinitialization
components of 386

return/reason codes for 386

multiple
enclaves 78

multiple (continued)
processes 77

threads 79

N
NAB (next available byte)

assembler main routine and 336

assembler subroutine and 336

CEEENTRY macro and 342

national language support (NLS)
message handling and 199

NATLANG run-time option
description 33

messages and 199

natural reentrancy 57

nested conditions 140

nested enclave
See also enclave, nested

See also EXEC CICS command, LINK

See also EXEC CICS command,

RETURN

See EXEC CICS command, XCTL

NLS (national language support)
See national language support (NLS)

nonoverridable run-time options 36, 327

O
omitted parameter 175

condition manager reaction to 175

considerations when writing a callable

service 401

ON EXCEPTION clause 128

ON SIZE ERROR clause 128, 132

OPEN system macro 363

OPTIONS(BYADDR)
description 55

DL/I considerations 314, 407

specifying with OPTIONS(BYVALUE)

is an error 55

SYSTEM(CICS) and 407

when it is the default 56

OPTIONS(BYVALUE)
description 55

OPTIONS(NOEXECOPS) and 56

rules for specifying 55

specifying with OPTIONS(BYADDR)

is an error 55

SYSTEM(CICS) and 407

when it is the default 56

osplist macro 404

OUTDD compile-time option for

COBOL 203

overflow condition
C conditions and default system

actions 122

C SIGFPE condition and 122

COBOL ON SIZE ERROR clause

and 132

enabling and disabling 108

overlay programs 337

overridable/nonoverridable run-time

options 36, 327

436 LE/VSE: Programming Guide

P
parallel processing 79

parameter
See also omitted parameter

list
accessing by using macros 404,

405

assembler 336

relationship to argument list 50

list format
effect of EXECOPS run-time option

on 405, 406

how interaction of EXECOPS and

PLIST run-time options

affects 405, 406

PLIST run-time option and 405

list pointer 51

passing
by reference 50, 51

by value 50, 51

C passing styles 403, 405

directly 50, 51

indirectly 50, 51

passing styles permitted by

LE/VSE 51, 401

PARM parameter of JCL EXEC

statement 25, 30, 36, 368

partition (CICS) 297

pcblist macro 405

PCT (Program Control Table) 304

PDUMP system macro
CEE5DMP callable service and 363

table of equivalent LE/VSE

services 363

percolate action
C condition handling and 124

COBOL condition handling and 129

compared to promote and resume

actions 116

condition handling model and 110

user-written condition handler syntax

for 139

PHASE linkage editor control

statement 24, 25

PIPI table
See preinitialization facility, PIPI table

PL/I
BYADDR

functions 55

must be specified if SYSTEM(DLI)

specified 407

BYVALUE
functions 55

must be specified if

SYSTEM(CICS) specified 407

calls under CICS 310

condition handling 132, 136

examples
CEE5CTY, CEEFMDT,

CEEDATM 254, 255

CEE5RPH, CEECRHP, CEEGTST,

CEECZST, CEEFRST and

CEEDSHP 100, 101

CEEDAYS, CEEDATE,

CEEDYWK 243, 244

CEEFMON—format monetary

string 260

PL/I (continued)
examples (continued)

CEEFTDS—format date and time

into character string 263

CEEGTST and CEEFRST 94, 96

CEELCNV and CEESETL 266

CEEMOUT, CEENCOD,

CEEMGET, CEEDCOD,

CEEMSG 210

CEEQCEN and CEESCEN 221

CEEQDTC and CEESETL 269

CEESCOL—compare string

collation weight 272

CEESECS and CEEDATM 230,

231

CEESECS, CEESECI, CEEISEC,

CEEDATM 236

CEESECS, multiple calls to 225

CEESETL and CEEQRYL 275

CEESSLOG 292

CEESTXF and CEEQRYL 278

coding main routines to receive

inbound parm list 52, 55

interfaces to DL/I from 313

link-editing fetchable phases 7, 8

linked list, building 94, 96

MSGFILE run-time option and

SYSPRINT 203

NOEXECOPS option on Procedure

statement 406

parameter passing style 51

PLIXOPT variable, specifying run-time

options in 37, 300, 311, 314

run-time options, specifying from 35,

45

variables, where stored 85

PLIRETC subroutine
CICS support for 299, 307

PLIRETV intrinsic function
CICS support for 299

PLIST run-time option
argument list format and 405, 406

C interface to DL/I 313

description 33

PLITDLI interface to DL/I 313

PLIXOPT variable, specifying run-time

options in 37, 300, 311, 314

POST system macro 363

PPA (Program Prolog Area) 341, 345

PPT (Processing Program Table) 298

pragma
#pragma runopts

affecting argument list format

with 405, 406

DL/I and 313

specifying run-time options

with 39, 300, 311, 314

PRD2.SCEEBASE and PRD2.SCEECICS

sublibraries
default installation sublibraries 5

preinitialization facility
benefits of 363

CEEPIPI(add_entry)
CEEPIPI(init_main) and 380

CEEPIPI(init_sub) and 380

function code for 364

return codes from 381

preinitialization facility (continued)
CEEPIPI(add_entry) (continued)

syntax description 380

CEEPIPI(call_main)
assembler user exits and 373

CEEPIPI(init_main) and 373

COBOL STOP RUN and 373

function code for 364

reentrancy considerations 366

return codes from 374

syntax description 373

CEEPIPI(call_sub_addr) 371, 376, 377

function code for 364

return codes from 377

syntax description 376

CEEPIPI(call_sub)
CEEPIPI(init_sub) and 373, 375

CEEPIPI(term) and 379

COBOL STOP RUN and 374, 375,

376

function code for 364

return codes from 375

syntax description 374

CEEPIPI(delete_entry)
CEEPIPI(init_sub_dp) and 381

CEEPIPI(init_sub) and 381

function code for 381

return codes for 381

syntax description 381

CEEPIPI(end_seq) 378

function code for 364

return codes from 378

syntax description 378

CEEPIPI(init_main)
CEEPIPI(add_entry) and 380

CEEPIPI(call_main) and 373

CEEPIPI(term) 379

function code for 364

return codes from 370

specifying service routines in 369

syntax description 369

CEEPIPI(init_sub_dp)
function code for 364

return codes from 372

syntax description 371

CEEPIPI(init_sub)
CEEPIPI(add_entry) and 380

CEEPIPI(call_sub) and 373, 375

CEEPIPI(term) and 379

function code for 364

return codes from 371

specifying service routines in 371

syntax description 370

CEEPIPI(start_seq)
function code for 364

return codes from 378

syntax description 377

CEEPIPI(term)
CEEPIPI(call_sub) and 379

CEEPIPI(init_main) and 379

CEEPIPI(init_sub) and 379

function code for 364

return codes from 379

syntax description 379

CEEXPIT macro 365

CEEXPITS macro 365

CEEXPITY macro 365

Index 437

preinitialization facility (continued)
IGZERRE (COBOL interface to

preinitialization) 364

ILBDSET0 (COBOL interface to

preinitialization) 364

PIPI table
add entry to 380

CEEPIPI(call_main) and 373

CEEPIPI(call_sub_addr) and 376

CEEPIPI(call_sub) and 375, 376

CEEPIPI(end_seq) and 378

CEEPIPI(init_main) and 369

CEEPIPI(init_sub_dp) and 371

CEEPIPI(init_sub) and 370

CEEPIPI(start_seq) and 377

generate entry within 365

generate heading for 365

identify end of 365

introduction to 364

restrictions against nested routines

in 381

service routines for 382

See also @DELETE, @LOAD,

@FREESTORE, @STORE

allocating storage for 384

AMODE/RMODE requirements

of 383

freeing storage of 385

in CEEPIPI(init_main) 369, 382

in CEEPIPI(init_sub) 371, 382

relationship to each other 383

vector format 382

prelinker
constructed reentrancy 57

functions 11

how it maps L-names to S-names 18

INCLUDE statement and 15

LIBRARY statement and 16

prelink options 19

prelinker map 13

RENAME statement and 16

when it has to be used 11

process
assembler user exit for termination

of 324

current support for 77

definition 77

relationship to enclaves 77

role in Language Environment

program management model 80

termination of assembler routines

and 336

Processing Program Table (PPT) 298

program interrupts
abend codes and return codes 72

condition handling and 106, 108

SORT/MERGE and 410

under CICS 306, 308

under DL/I 314

under SORT/MERGE 410

user exits and 323

program management model
diagram of 80

terminology of 77, 79

Program Prolog Area (PPA) 341, 345

prolog 341, 345

promote action
compared to percolate and resume

actions 116

condition handling model and 110

user-written condition handler syntax

for 139

PRV (pseudoregister vector) listings 27

PUT system macro 363

Q
q_data structure 182

R
R1 macro 404

READ system macro 363

READY TRACE statement 202

reason code
CEEPIPI(call_main) and 374

CEEPIPI(call_sub) and 375

in user exits 323, 325

summary of LE/VSE codes 70

under CICS 307

recursion
allowed in user-written condition

handlers 139

Language Environment program

management model and 78

REDIR run-time option
description 33

redirections
of stderr, stdout and printf()

output 201

reentrancy
advantages of 57

C routines and
constructed reentrancy 57

limitations of reentrancy 57

natural reentrancy 57

procedure for generating reentrant

phases in 58

reentrant routines split into two

parts 58

CEEPIPI(call_main) and 366

CEEPIPI(delete_entry) 382

CICS routines and 57

COBOL RENT compile-time option

and 58

modified CEEBXITA must be

reentrant 323

PL/I REENTRANT procedure option

and 58

prelinker and 57

routines that must be reentrant 57

shared virtual area (SVA) and 58

RENAME control statement
how prelinkage utility maps L-names

to S-names 18

syntax and usage notes 16

RENT compile-time option
effect on storage 88, 89

making C routines reentrant with 58

making COBOL routines reentrant

with 58

RENT compile-time option (continued)
prelinker must be used when C source

file compiled with 11

resident routines 5

resume action
definition 116

severity 2 or above IGZ conditions

and 129

user-written condition handlers

and 129, 138

resume cursor
definition 106

nested conditions and 140

return code
calculation 69

CEEAUE_RETURN field of CXIT

control block and 324

CEEPIPI(call_main) and 374

CEEPIPI(call_sub) and 375

CEEPIPI(delete_entry) 381

in user exits 324

RETURN-CODE special register 69

RMODE
C considerations 9

for fetchable phases 8

for preinitialization facility 364

root segment in overlay program 337

routines
See main routine, subroutine

RPTOPTS run-time option 6

description 33

RPTOPTS(OFF) 45

RPTOPTS(ON) 45

RPTSTG run-time option 84

description 33

storage report generated by
using to tune the stacks 84

RTEREUS run-time option
description 33

preinitialization and 364

run unit
for CICS 297

for COBOL
relationship to LE/VSE

enclave 77

run-time environment, introduction 3

run-time options
ABPERC—exempt an abend from

condition handling
See ABPERC run-time option

ABTERMENC—control abnormal

enclave termination behavior
See ABTERMENC run-time option

AIXBLD—invoke AMS for COBOL
See AIXBLD run-time option

ALL31—indicates whether an

application runs in AMODE(31)
See ALL31 run-time option

ANYHEAP—control unrestricted

library heap storage
See ANYHEAP run-time option

application defaults for
See CEEUOPT options module

ARGPARSE—specify whether

arguments are parsed
See ARGPARSE run-time option

438 LE/VSE: Programming Guide

run-time options (continued)
BELOWHEAP—control library heap

storage below 16MB
See BELOWHEAP run-time option

CBLOPTS—specify format of COBOL

argument
See CBLOPTS run-time option

CBLPSHPOP—control CICS

commands
See CBLPSHPOP run-time option

CHECK—detect checking errors
See CHECK run-time option

COUNTRY—specify default date/time

formats
See COUNTRY run-time option

DEBUG—activate COBOL batch

debugging
See DEBUG run-time option

DEPTHCONDLMT—limit extent of

nested conditions
See DEPTHCONDLMT run-time

option

ENV—specify operating environment

for C application
See ENV run-time option

ENVAR—set initial values for

environment variables
See ENVAR run-time option

ERRCOUNT—specify number of

errors allowed
See ERRCOUNT run-time option

EXECOPS—let run-time options be

specified on command line
See EXECOPS run-time option

HEAP—control allocation of heaps
See HEAP run-time option

how nested enclaves get
enclaves created by C

system() 395

enclaves created by EXEC CICS

commands 394

IBM-supplied and installation defaults
See CEEDOPT options module

IBM-supplied and installation defaults

for, under CICS
See CEECOPT options module

in the CEEPIPI interface to

preinitialization 371, 373

in the user exit 322, 327

LIBSTACK—control library stack

storage
See LIBSTACK run-time option

MSGFILE—specify filename of

diagnostic file
See MSGFILE run-time option

MSGQ—specify number of ISI blocks

allocated
See MSGQ run-time option

NATLANG—specify national

language
See NATLANG run-time option

PLIST—specify format of C arguments
See PLIST run-time option

printing CICS-wide options to

console 45

run-time options (continued)
REDIR—specify whether C standard

input/output can be redirected
See REDIR run-time option

RPTOPTS—generate a report of

run-time options
See RPTOPTS run-time option

RPTSTG—generate a report of storage

used
See RPTSTG run-time option

RTEREUS—initialize a reusable

COBOL environment
See RTEREUS run-time option

specifying 35, 45

See CICS, specifying run-time

options for

See also running an application,

specifying run-time options for

order of precedence 37

STACK—allocate stack storage
See STACK run-time option

STORAGE—control storage
See STORAGE run-time option

TERMTHDACT—specify type of

information generated with

unhandled error
See TERMTHDACT run-time

option

TEST—indicate debug tool to gain

control
See TEST run-time option

TRACE—activate LE/VSE run-time

library tracing
See TRACE run-time option

TRAP—handle abends and program

interrupts
See TRAP run-time option

UPSI—set UPSI switches
See UPSI run-time option

XUFLOW—specify program interrupt

due to exponent underflow
See XUFLOW run-time option

run-time options, CICS-wide,

printing 45

running an application
specifying run-time options for 30,

36

writing JCL to run an application 29

S
S-names

prelinker and
how L-names are mapped to

S-names 18

save area 105

SCEEBASE and SCEECICS sublibraries
CEECOPT source file 36

CEEDOPT source file 35

default installation sublibraries 5

search order of sublibraries 29

service
routines

allocating storage for 384

AMODE/RMODE requirements

of 383

freeing storage of 385

service (continued)
routines (continued)

in CEEPIPI(init_main) 369, 382

in CEEPIPI(init_sub) 371, 382

relationship to each other 383

vector format 382

service routines for preinitialization
See @DELETE, @FREESTORE,

@GETSTORE, @LOAD, @MSGRTN

SETIME and SETT system macros 363

SETRP command
CEEHDLR callable service and 359

CEEHDLU callable service and 359

CEESGL callable service and 359

table of equivalent LE/VSE

services 359

severe error message (severity 3) 198

severity
of conditions

CEEBXITA assembler user exit

and 325

COBOL condition handling 129

condition token and 172

ERRCOUNT run-time option

and 110

how to determine in a

message 111, 198

TERMTHDACT run-time option

and 113

unhandled conditions and 70, 111

shared virtual area (SVA)
See SVA (shared virtual area)

short-on-storage condition 303

SIGABRT
HLL user exit and 332

SIGTERM
HLL user exit and 332

slash (/)
specifying in parameter list 22, 38

SORT/MERGE
condition handling within 410, 413

overview of sort/merge

operations 409, 410, 411

parameter list format under

CICS 413

storage use 413

user exits triggered by 410

Sort/Merge II
See DFSORT/VSE

stack
frame 81, 83, 84

condition management model

and 109

differentiated from Global Error

Table model of condition

handling 107, 121

HLL-specific condition handlers

and 115

obtaining 105

stack frame zero 110, 114, 129

user-written condition handlers

and 114

increment
stack storage model and 83

when allocated 83

Index 439

stack (continued)
storage

Language Environment program

management model and 79

LE/VSE stack storage model 84

LE/VSE storage management

run-time options and

GETVIS/FREEVIS 363

RPTSTG run-time option and 84

threads and 83

tuning 84

STACK run-time option 83, 84

description 33

LE/VSE stack storage model and 83

using with RPTSTG to tune the

stack 84

standard streams 201

start_seq
See preinitialization facility,

CEEPIPI(start_seq)

static data 337

STOP RUN
in a preinitialized environment 367

relationship to

CEEPIPI(call_main) 373

STOP statement
for COBOL

CEEPIPI(call_sub) and 374, 375,

376

in a preinitialized

environment 367

storage
GETVIS storage required 29

management model 81, 101

heap storage 85, 101

stack storage 83, 84

manager 81

operating system services for 359,

363

program storage required 29

service routines for 383

sort requirements 413

STORAGE run-time option
description 33

STXIT abnormal termination exit
sort and merge condition

handling 410

STXIT system macro
CEEHDLR and 359

CEEHDLU and 359

CEESGL and 359

table of equivalent LE/VSE

services 359

subroutine
assembler

examples using 356, 358

register values of 336

position in Language Environment

program management model 77

preinitialization and 363

restriction regarding nested

enclaves 393

success, testing a condition token

for 174

SVA (shared virtual area)
reentrancy considerations 58

symbolic feedback code 175, 181

SYSIPT, linkage editor use of 23

SYSLNK, linkage editor use of 23

SYSLOG, linkage editor use of 23

SYSLST
default destinations of MSGFILE

run-time option 199

destination when inserting messages

in your application 202

linkage editor use of 23, 28

SYSPRINT as filename in MSGFILE

run-time option 203

SYSRDR, linkage editor use of 23

system dump
See dump

SYSTEM PL/I compile-time option
SYSTEM(CICS) required when

running under CICS 54, 56, 407

SYSTEM(DLI) required when running

with DL/I DOS/VS 53, 56, 314, 407

T
termination 113

CEETERM macro and 343

enclave
as indicated in CEEAUE_ABND

field of CEEAUE_FLAGS 326

as indicated in CEEAUE_ABTERM

field of CEEAUE_FLAGS 325

CEEBXITA behavior during 322

CEEBXITA function codes for 324

terminating enclave created by an

assembler routine 336

terminating enclave using

CEEBINT HLL user exit 332

preinitialized routines and 363

process
CEEBXITA behavior during 322

CEEBXITA function code for 324

terminating process created by

assembler routine 336

TERMTHDACT run-time option

and 113

thread 112

termination imminent step
discussion of 111, 114

TERMTHDACT run-time option
condition message and 111

description 33

termination imminent step and 113

TEST run-time option
condition handling model and 114

description 33

maximum allowable length in

CEEXOPT macro 44

thread
multiple 79

role in Language Environment

program management model 80

stack storage and 83

token, condition
See condition token

TRACE run-time option
description 33

translator (CICS) 298, 306

TRAP run-time option
abends that occur in CEEBXITA

and 323

ABPERC run-time option and 108

CEEBXITA assembler user exit

and 308

CICS condition handling and 306

description 33

errors occurring in CEEBXITA

and 323

how CEEAUE_ABND is affected

by 326

nested enclaves and
enclaves created by C system()

function 395

enclaves created by EXEC CICS

LINK or EXEC CICS XCTL 394,

395

using with CEEAUE_CODES to

exempt abends from condition

handling 323

using with interfaces to DL/I 314

U
UPSI run-time option

description 33

user
exit

assembler 323

for initialization 321, 322, 366

for termination 322, 366

HLL 332

under CICS 324, 326, 327

under SORT/MERGE 410

heap (initial heap)
heap storage model and 87

return code
See also return code

C language constructs that

generate 69

COBOL language constructs that

generate 69

PL/I language constructs that

generate 69

user-written condition handler
allowing nested conditions in 140

as opposed to condition manager 114

C raise() function and 122, 123

C signal() function and
terminology differences between C

and LE/VSE 123

CEESGL callable service and 108

coding 137, 139

examples 141, 170

EXEC CICS commands that cannot be

used with 306

in ILC applications 140

in nested condition handling 140

in SORT/MERGE condition

handling 410

registering with CEEHDLR 115

role in LE/VSE condition

management model 114

syntax for 138

TRAP run-time option and 108

440 LE/VSE: Programming Guide

USRHDLR run-time option
description 35, 137

using to register a user-written

condition handler 139

V
VS COBOL II, considerations when

link-editing NORES modules 7

W
WAIT and WAITM system macros 363

warning error message (severity 1) 198

working storage 78

writable static
handled by prelinker 11

writable static map 13

WRITE system macro 363

writeable static
See also external data

interface to
See CXIT control block

WTO system macro
CEEMOUT callable service and 363

table of equivalent LE/VSE

services 363

X
XITPTR in interface to CEEBXITA 323

XUFLOW run-time option
description 33

using to manipulate the PSW 108

Index 441

442 LE/VSE: Programming Guide

Readers’ Comments — We’d Like to Hear from You

IBM Language Environment for VSE/ESA

Programming Guide

Version 1 Release 4 Modification Level 4

 Publication No. SC33-6684-04

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-6684-04

SC33-6684-04

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File Number: S370-40

Program Number: 5686-CF7

Printed in USA

SC33-6684-04

Sp
in

e
in

fo
rm

at
io

n:

 �
�

�

LE
/V

SE

Pr
og

ra
m

m
in

g
G

ui
de

Ve
rs

io
n

1
R

el
ea

se

4

M
od

ifi
ca

tio
n

L
ev

el

4

SC
33

-6
68

4-
04

	Contents
	Figures
	Tables
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	About This Book
	What Is LE/VSE?
	LE/VSE-Conforming Languages
	LE/VSE Compatibility with Previous Versions of COBOL

	Terms Used in This Book
	How This Book Is Organized
	How to Read the Syntax Diagrams

	Where to Find More Information
	Softcopy Publications

	Summary of Changes
	Changes Introduced with Fifth Edition (March 2005)
	Changes Introduced with Fourth Edition (March 2003)
	Changes Introduced with Third Edition (December 2001)

	Part 1. Linking and Running Applications with LE/VSE
	Chapter 1. Introduction to LE/VSE
	Chapter 2. Preparing to Link and Run under LE/VSE
	Understanding the Basics
	Planning to Link and Run
	Link-Editing Single-Language Applications
	Link-Editing ILC Applications

	Checking Which Run-Time Options Are in Effect
	COBOL Considerations
	COBOL Linking Considerations

	PL/I Linking Considerations
	Link-Editing Fetchable Phases
	Fetching Phases with Different AMODEs

	C AMODE/RMODE Considerations

	Chapter 3. Prelinking an Application
	Which Programs Need to Be Prelinked
	What the Prelinker Does
	Prelinking Process
	Using the Prelinker Automatic Library Call

	LE/VSE Prelinker Map
	Control Statement Processing
	INCLUDE Control Statement
	LIBRARY Control Statement
	RENAME Control Statement
	Usage Notes

	Mapping L-Names to S-Names
	Running the Prelinker
	Prelinker Options

	Chapter 4. Linking and Running
	Basic Linking and Running
	Linking and Running an Existing Object Module
	Overriding the Default Run-Time Options

	Providing Input to the Linkage Editor
	Writing JCL for the Linkage Editor
	Specifying the Files Used by the Linkage Editor
	Specifying Linkage Editor Control Statements
	Using the EXEC Statement
	Using the PARM Parameter for the Linkage Editor
	Example of Linkage Editor JCL

	Link-Editing Multiple Object Modules
	Using the INCLUDE Statement
	Linkage Editor Module Map
	Detecting Link-Edit Errors

	Running an Application
	Specifying the Search Order

	Specifying Run-Time Options
	Specifying Run-Time Options in the EXEC Statement

	Using the iconv Utility for C
	Using the genxlt Utility for C

	Chapter 5. Using Run-Time Options
	Understanding the Basics
	Specifying Run-time Options
	Order of Precedence
	Specifying Suboptions in Run-Time Options
	Specifying Run-Time Options and Program Arguments
	C Compatibility Considerations
	COBOL Compatibility Considerations
	PL/I Compatibility Considerations
	CEEXOPT Invocation Syntax
	Notes on CEEXOPT Invocation
	Performance Considerations
	Printing CICS-Wide Run-Time Options to Console

	Part 2. Preparing an Application to Run with LE/VSE
	Chapter 6. Using LE/VSE Parameter List Formats
	Understanding the Basics
	Argument Lists and Parameter Lists
	Passing Arguments between Routines
	Preparing Your Main Routine to Receive Parameters
	PL/I Argument-Passing Considerations

	Chapter 7. Routines That Must Be Reentrant
	Understanding the Basics
	Making Your C Program Reentrant
	Natural Reentrancy
	Constructed Reentrancy
	Generating a Reentrant C Object Module

	Making Your COBOL Routine Reentrant
	Making Your PL/I Routine Reentrant
	Installing a Reentrant Phase

	Part 3. Concepts, Services, and Models
	Chapter 8. Initialization and Termination Under LE/VSE
	Understanding the Basics
	LE/VSE Initialization
	What Happens During Initialization

	LE/VSE Termination
	What Causes Termination
	What Happens During Termination
	Thread Termination
	Enclave Termination
	Process Termination

	Managing Return Codes in LE/VSE
	How the LE/VSE Enclave Return Code is Calculated
	PL/I Considerations

	Setting and Altering User Return Codes
	For C
	For COBOL
	For PL/I
	How the Enclave Reason Code is Calculated

	Termination Behavior for Unhandled Conditions
	Determining the Abend Code
	Abend Codes Generated by CEEBXITA
	Abnormal Termination Messages and Abend Codes Generated by ABTERMENC(ABEND) Run-Time Option
	Program Interrupt Codes

	Chapter 9. Program Management Model
	Understanding the Basics
	Program Management Model Terminology
	LE/VSE Terms and Their HLL Equivalents
	Terminology for Data

	Processes
	Enclaves
	The Enclave Defines the Scope of Language Semantics
	Additional Enclave Characteristics

	Threads

	The Full Language Environment Program Management Model

	Chapter 10. Stack and Heap Storage
	Understanding the Basics
	Stack Storage Overview
	Tuning Stack Storage
	COBOL Considerations
	PL/I Storage Considerations

	Heap Storage Overview
	Heap IDs Recognized by the LE/VSE Heap Manager
	AMODE Considerations for Heap Storage
	Tuning Heap Storage
	COBOL Considerations

	Storage Performance Considerations
	COBOL and LE/VSE Storage Considerations
	Dynamic Storage Services
	Examples of Callable Storage Services
	C Example of Building a Linked List
	COBOL Example of Building a Linked List
	PL/I Example of Building a Linked List
	C Example of Storage Management
	COBOL Example of Storage Management
	PL/I Example of Storage Management

	Chapter 11. LE/VSE Condition Handling Introduction
	Understanding the Basics
	Related Run-Time Options and Callable Services

	The Stack Frame Model
	The Handle Cursor
	The Resume Cursor

	What Is a Condition in LE/VSE?
	Steps in Condition Handling
	Enablement Step
	TRAP Effects on the Condition Handling Process
	LE/VSE Abends and the Enablement Step
	Using XUFLOW and CEE5SPM to Enable and Disable Hardware Conditions

	Condition Step
	Influencing Condition Handling with the ERRCOUNT Run-Time Option

	Termination Imminent Step
	Processing the T_I_U Condition
	Processing the T_I_S Condition
	The Termination Imminent Step and the TERMTHDACT Run-Time Option
	CEESGL and the Termination Imminent Step

	Invoking Condition Handlers
	Responses to Conditions
	Condition Handling Scenarios
	Scenario 1: Simple Condition Handling
	Scenario 2: Condition Handling with User-Written Condition Handler Present for T_I_U
	Scenario 3: Condition Handling with User-Written Condition Handler Present for Divide-by-Zero Condition

	Chapter 12. LE/VSE and HLL Condition Handling Interactions
	Understanding the Basics
	C Condition Handling Semantics
	Comparison of C-LE/VSE Terminology
	Controlling Condition Handling in C
	Using the signal() Function
	Using the raise() Function
	C atexit() Considerations

	C Condition Handling Actions
	C Condition Handling Examples

	C Signal Representation of S/370 Exceptions

	COBOL Condition Handling Semantics
	COBOL Condition Handling Examples
	Restrictions about Resuming Execution after an IGZ Condition Occurs
	IGZ Condition of Severity 2 or Greater
	COBOL STOP RUN Statement

	Reentering COBOL Programs after Stack Frame Collapse
	Handling Fixed-Point and Decimal Overflow Conditions

	PL/I Condition Handling Semantics
	PL/I Condition Handling Actions
	Promoting Conditions to the PL/I ERROR Condition
	Mapping Non-PL/I Conditions to PL/I Conditions
	Additional PL/I Condition Handling Considerations
	PL/I Condition Handling Example

	Chapter 13. Coding a User-Written Condition Handler
	Understanding the Basics
	Types of Conditions You Can Handle
	User-Written Condition Handler Interface using CEEHDLR
	Registering a User-Written Condition Handler using USRHDLR
	Nested Conditions
	Nested Conditions in Applications Containing a COBOL Program
	Using LE/VSE Condition Handling with Nested COBOL Programs

	Examples with a Registered User-Written Condition Handler
	Handling a Divide-by-Zero Condition in C or COBOL
	C Handling a Divide-by-Zero Condition
	COBOL Handling a Divide-by-Zero Condition

	Handling an Out-of-Storage Condition in C or COBOL
	C Examples Using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR
	COBOL Examples Using CEEHDLR, CEEGTST, CEECZST, and CEEMRCR

	Signaling and Handling a Condition in a C Routine
	Handling a Divide-by-Zero Condition in a COBOL Program
	Handling a Program Check in an Assembler Routine

	Chapter 14. Using Condition Tokens
	Understanding the Basics
	Understanding the Structure of the Condition Token
	The Effect of Coding the fc Parameter
	Testing a Condition Token for Success
	Testing Condition Tokens for Equivalence
	Testing Condition Tokens for Equality

	The Effect of Omitting the fc Parameter
	Using Symbolic Feedback Codes
	Locating Symbolic Feedback Codes for Conditions
	Including Symbolic Feedback Code Files
	Examples Using Symbolic Feedback Codes
	C
	COBOL
	PL/I

	Condition Tokens for C Signals under C
	LE/VSE-provided q_data Structure for Abends

	Chapter 15. Using and Handling Messages
	Understanding the Basics
	Creating Messages
	Creating a Message Source File
	Using the CEEBLDTX Utility
	Files Created by CEEBLDTX
	Running the CEEBLDTX Utility
	Running the CEEBLDTX Utility on VSE
	Running the CEEBLDTX Utility on CMS

	Assembling and Link-Editing the Message File
	CEEBLDTX Error Messages
	Creating a Message Module Table
	Assigning Values to Message Inserts
	Using Messages in Code

	Interpreting Run-Time Messages
	Specifying National Language
	Handling Message Output
	Using LE/VSE MSGFILE
	Using C Input/Output Functions
	Using COBOL Input/Output Statements
	Using PL/I Input/Output Statements
	MSGFILE Considerations When Using PL/I

	Examples Using Multiple Message Handling Callable Services
	C Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and CEEMSG
	COBOL Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD and CEEMSG
	PL/I Example Illustrating Calls to CEEMOUT, CEENCOD, CEEMGET, CEEDCOD, and CEEMSG

	Chapter 16. Using Date and Time Services
	Understanding the Basics
	Working with Date and Time Services
	Date Limits
	Picture Character Terms and Picture Strings
	Notation for Eras

	Performing Calculations on Date and Time Values
	Century Window Routines
	National Language Support for Date and Time Services
	Examples Using Date and Time Callable Services
	Examples Illustrating Calls to CEEQCEN and CEESCEN
	Calls to CEEQCEN and CEESCEN in C
	Calls to CEEQCEN and CEESCEN in COBOL
	Calls to CEEQCEN and CEESCEN in PL/I

	Examples Illustrating Calls to CEESECS
	Calls to CEESECS in C
	Calls to CEESECS in COBOL
	Calls to CEESECS in PL/I

	Examples Illustrating Calls to CEESECS and CEEDATM
	Calls to CEESECS and CEEDATM in C
	Calls to CEESECS and CEEDATM in COBOL
	Calls to CEESECS and CEEDATM in PL/I

	Examples Illustrating Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM
	Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in C
	Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in COBOL
	Calls to CEESECS, CEESECI, CEEISEC, and CEEDATM in PL/I

	Example Illustrating Calls to CEEDAYS, CEEDATE, and CEEDYWK
	Calls to CEEDAYS, CEEDATE, and CEEDYWK in C
	Calls to CEEDAYS, CEEDATE, and CEEDYWK in COBOL
	Calls to CEEDAYS, CEEDATE, and CEEDYWK in PL/I
	Calls to CEECBLDY in COBOL

	Chapter 17. National Language Support Services
	Understanding the Basics
	Setting the National Language
	Setting the Country Code
	Euro Support
	Combining National Language Support and Date and Time Services
	Calls to CEE5CTY, CEEFMDT, and CEEDATM in C
	Calls to CEE5CTY, CEEFMDT, and CEEDATM in COBOL
	Example Using CEE5CTY, CEEFMDT, and CEEDATM in PL/I

	Chapter 18. Locale Callable Services
	Understanding the Basics
	Developing Internationalized Applications
	Examples of Using Locale Callable Services
	Examples Illustrating Calls to CEEFMON
	Calls to CEEFMON in COBOL
	Calls to CEEFMON in PL/I

	Examples Illustrating Calls to CEEFTDS
	Calls to CEEFTDS in COBOL
	Calls to CEEFTDS in PL/I

	Examples Illustrating Calls to CEELCNV and CEESETL
	Calls to CEELCNV and CEESETL in COBOL
	Calls to CEELCNV and CEESETL in PL/I

	Examples Illustrating Calls to CEEQDTC and CEESETL
	Calls to CEEQDTC and CEESETL in COBOL
	Calls to CEEQTDC and CEESETL in PL/I

	Examples Illustrating Calls to CEESCOL
	Calls to CEESCOL in COBOL
	Calls to CEESCOL in PL/I

	Examples Illustrating Calls to CEESETL and CEEQRYL
	Calls to CEESETL and CEEQRYL in COBOL
	Calls to CEESETL and CEEQRYL in PL/I

	Examples Illustrating Calls to CEEQRYL and CEESTXF
	Calls to CEEQRYL and CEESTXF in COBOL
	Calls to CEEQRYL and CEESTXF in PL/I

	Chapter 19. General Callable Services
	CEE5DMP Callable Service
	CEE5PRM Callable Service
	CEE5PRML Callable Service
	CEE5TSTG Callable Service
	CEE5USR Callable Service
	CEEGPID Callable Service
	CEERAN0 Callable Service
	CEETEST Callable Service
	Examples of Using Basic Callable Services

	Chapter 20. Math Services
	Understanding the Basics
	Call Interface to Math Services
	Parameter Types: parm1 Type and parm2 Type

	Examples of Calling Math Services
	Calling CEESSLOG in C
	Calling CEESSLOG in COBOL
	Calling CEESSLOG in PL/I

	Part 4. Using Interfaces to Other Products
	Chapter 21. Compatibility with Other Products
	Required Licensed Programs
	Optional Licensed Programs

	Chapter 22. Running Applications under CICS
	Understanding the Basics
	CICS Partition
	CICS Transaction
	CICS Run Unit
	Running LE/VSE Applications under CICS

	Developing an Application under CICS
	COBOL Coding Considerations under CICS
	PL/I Coding Considerations under CICS
	Link-Edit Considerations under CICS
	C Considerations
	COBOL Considerations
	PL/I Considerations

	Specifying Run-Time Options under CICS
	Accessing DL/I Databases from CICS
	Using Callable Services under CICS
	DOS/VS COBOL Compatibility Considerations
	Using Math Services in PL/I under CICS
	Coding Program Termination in PL/I under CICS

	Storage Management
	CICS Short-on-Storage Condition
	PL/I Storage Considerations under CICS
	Initializing Static External Data
	PL/I Object Program Size
	Using CICS Storage Constructs Rather Than PL/I Language Statements
	PL/I Storage Classes
	Using Storage Built-In Functions

	Condition Handling under CICS
	PL/I Considerations for Using the CICS HANDLE ABEND Command
	Effect of the CICS HANDLE ABEND Command
	Effect of CICS HANDLE CONDITION and CICS HANDLE AID
	Restrictions on User-written Condition Handlers
	COBOL Considerations

	CICS Transaction Abend Codes
	Using the CBLPSHPOP Run-Time Option under CICS
	Restrictions on Assembler User Exits under CICS
	PL/I Considerations

	Ensuring Transaction Rollback under CICS

	Run-Time Output under CICS
	Message Handling under CICS
	PL/I SYSPRINT

	Dump Services under CICS
	PL/I Considerations

	Support for Calls within the Same HLL under CICS
	C
	COBOL
	COBOL/VSE
	VS COBOL II
	DOS/VS COBOL

	PL/I

	Chapter 23. Running Applications with DB2
	Understanding the Basics
	LE/VSE Support for DB2 Applications
	Specifying Run-Time Options with DB2
	Condition Handling under DB2

	Chapter 24. Running Applications with DL/I
	Understanding the Basics
	Using the Interface between LE/VSE and DL/I
	CICS Considerations
	C Considerations
	PL/I Considerations
	Specifying Run-Time Options with DL/I

	Condition Handling with DL/I

	Part 5. Specialized Programming Tasks
	Chapter 25. Using Run-Time User Exits
	Understanding the Basics
	User Exits Supported under LE/VSE
	Using the Assembler User Exit CEEBXITA
	Using the HLL Initialization Exit CEEBINT
	Using Sample Assembler User Exits
	When User Exits Are Invoked
	CEEBXITA Assembler User Exit Interface

	CEEBINT High-Level Language User Exit Interface

	Chapter 26. Assembler Considerations
	Understanding the Basics
	Compatibility Considerations

	Register Conventions
	Considerations for Coding or Running Assembler Routines
	Condition Handling
	Access to the Inbound Parameter String
	Overlay Programs
	CEESTART, CEEMAIN, and CEEFMAIN

	LE/VSE Library Routine Retention
	Using Library Routine Retention
	Library Routine Retention and Preinitialization
	CEELRR Macro— Initialize/Terminate LE/VSE Library Routine Retention

	Assembler Macros
	CEEENTRY Macro— Generate an LE/VSE-Conforming Prolog
	CEETERM Macro— Terminate an LE/VSE-Conforming Routine
	CEECAA Macro— Generate a CAA Mapping
	CEECIB Macro— Generate a CIB Mapping
	CEEDSA Macro— Generate a DSA Mapping
	CEEPPA Macro— Generate a PPA
	CEELOAD Macro— Dynamically Load a Routine
	Usage Notes

	CEEFETCH Macro— Dynamically Load a Routine that Can Be Later Deleted
	Usage Notes

	CEERELES Macro— Dynamically Delete a Routine
	Usage Notes

	Example of Assembler Main Routine
	Example of an Assembler Main Calling an Assembler Subroutine

	Invoking Callable Services from Assembler Routines
	System Services Available to Assembler Routines

	Chapter 27. Using Preinitialization Services
	Understanding the Basics
	Compatibility
	COBOL

	Using Preinitialization
	Using the PIPI Table
	C Considerations
	COBOL Considerations
	PL/I Considerations
	Macros that Generate the PIPI Table

	Reentrancy Considerations
	User Exit Invocation
	Stop Semantics
	Specifying Run-Time Options and Program Arguments

	CEEPIPI Interface
	Initialization
	CEEPIPI(init_main)—Initialize for Main Routines
	CEEPIPI(init_sub)—Initialize for Subroutines
	CEEPIPI(init_sub_dp)—Initialize for Subroutines (Multiple Environment)

	Application Invocation
	CEEPIPI(call_main)—Invocation for Main Routine
	CEEPIPI(call_sub)—Invocation for Subroutines
	CEEPIPI(call_sub_addr)—Invocation for Subroutines by Address
	CEEPIPI(start_seq)—Start a Sequence of Calls
	CEEPIPI(end_seq)—End a Sequence of Calls

	Termination
	CEEPIPI(term)—Terminate Environment

	Adding an Entry to the PIPI Table
	CEEPIPI(add_entry)—Add an Entry to the PIPI Table

	Deleting an Entry from the PIPI Table
	CEEPIPI(delete_entry)—Delete an Entry from the PIPI Table

	Service Routines
	An Example Program Invocation of CEEPIPI
	HLLPIPI Examples

	Chapter 28. Using Nested Enclaves
	Understanding the Basics
	COBOL Considerations

	Determining the Behavior of Child Enclaves
	Creating Child Enclaves Using EXEC CICS LINK or EXEC CICS XCTL
	How Run-Time Options Affect Child Enclaves
	How Conditions Arising in Child Enclaves Are Handled

	Creating Child Enclaves Using the C system() Function
	How Conditions Arising in Child Enclaves Are Handled

	Other Nested Enclave Considerations
	What the Enclave Returns from CEE5PRM
	Finding the Return and Reason Code from the Enclave
	Assembler User Exit
	MSGFILE Considerations
	AMODE Considerations

	Part 6. Appendixes
	Appendix A. Guidelines for Writing Callable Services
	Appendix B. Using Operating System and Subsystem Parameter List Formats
	C Parameter Passing Considerations
	C PLIST and EXECOPS Interactions

	COBOL Parameter Passing Considerations
	PL/I Main Procedure Parameter Passing Considerations

	Appendix C. Sort and Merge Considerations
	Understanding the Basics
	Invoking DFSORT/VSE Directly
	Using the COBOL SORT and MERGE Verbs
	User Exit Considerations
	Condition Handling Considerations
	Program Interrupts
	LE/VSE-Signaled Conditions
	Abends

	Using the PL/I PLISRTx Interface
	User Exit Considerations
	Condition Handling Considerations
	Program Interrupts and LE/VSE-Signaled Conditions
	Abends

	Storage Use during a Sort or Merge Operation
	Sorting under CICS

	Appendix D. LE/VSE Macros
	Language Environment Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

