
IBM Language Environment for VSE/ESA

Customization Guide

Version 1 Release 4 Modification Level 4

SC33-6682-06

���

IBM Language Environment for VSE/ESA

Customization Guide

Version 1 Release 4 Modification Level 4

SC33-6682-06

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

xi.

Seventh Edition (March 2005)

This edition applies to Version 1 Release 4 Modification Level 4 of IBM Language Environment for VSE/ESA,

5686-CF7, and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the addresses given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address

your comments to:

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com

FAX (Germany): 07031-16-3456

FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

Notices xi

Trademarks and Service Marks xii

About This Book xiii

What Is LE/VSE? xiii

LE/VSE-Conforming Languages xiv

LE/VSE Compatibility with Previous Versions of

COBOL xiv

How to Read the Syntax Diagrams xv

Where to Find More Information . . . xvii

Softcopy Publications xix

Summary Of Changes xxi

Changes Introduced with Seventh Edition (March

2005) xxi

Changes Introduced with Sixth Edition (September

2003) xxi

Changes Introduced with Fifth Edition (March

2003) xxi

Chapter 1. Planning to Customize

LE/VSE 1

How the Pre-Installed LE/VSE Is Structured 1

Deciding Whether and What to Customize 1

Planning to Customize LE/VSE Run-Time Options . 2

Why Do It 2

Choices to Make Now 2

An Example of Customizing LE/VSE Run-Time

Options 4

Planning to Customize Run-Time LIOCS Phases . . 4

Why Do It 4

Choices to Make Now 5

An Example of Customizing Run-Time LIOCS

Phases 5

Planning to Customize User Exits 6

Why Do It 6

Choices to Make Now 6

An Example of Customizing User Exits 6

Planning to Install in the Shared Virtual Area . . . 7

Why Do It 7

Choices to Make Now 7

An Example of Installing in the Shared Virtual

Area 9

Planning to Tailor the COBOL COBPACKs 10

Why Do It 10

Choices to Make Now 10

Some Examples of Tailoring the COBOL

COBPACKs 10

Planning to Customize C Locale Time Information 11

Why Do It 11

Choices to Make Now 11

Planning to Activate LE/VSE Attention Routine

Commands 11

Why Do It 11

Tasks Required For Activating the Attention

Routine Support 11

Restrictions When Using Attention Routine

Commands 12

IBM-Provided Customization and Verification Jobs 12

Chapter 2. Customizing LE/VSE 15

Overview of Customization 16

Changing Run-Time Options Defaults 17

Setting Installation-Wide Default Options with

the CEEXOPT Macro 17

Changing the Installation-Wide Run-Time

Options Default (Batch) 18

Changing the Installation-Wide Run-Time

Options Default (CICS) 20

Creating Application-Specific Options Using the

CEEXOPT Macro 22

Requirements for Coding the CEEXOPT Macro 23

Changing Run-Time LIOCS Phases Defaults . . . 26

Changing the Card-Device Run-Time LIOCS

Phase 29

Changing the Diskette-Device Run-Time LIOCS

Phase 30

Changing the Printer-Device Run-Time LIOCS

Phase 31

Changing the Assembler Language User Exit . . . 32

Changing the Installation-Wide Assembler

Language User Exit (Batch) 32

Changing the Installation-Wide Assembler

Language User Exit (CICS) 33

Creating an Application-Specific Assembler

Language User Exit 34

Creating a High-Level Language User Exit 35

Creating a User-Written Handler for Compatibility

with VS COBOL II and DOS PL/I 35

Customizing LE/VSE Abnormal Termination Exits 37

Shipped Defaults 37

Sample Source Programs 37

Creating an LE/VSE Abnormal Termination Exit 37

Creating a CEEEXTAN Abnormal Termination

Exit CSECT 38

Identifying an Abnormal Termination Exit (Batch) 40

Identifying an Abnormal Termination Exit (CICS) 42

Placing LE/VSE Routines in the Shared Virtual Area

(SVA) 44

De-Activating LE/VSE Language Components Used

By CICS 47

Tailoring the COBOL COBPACKs 48

Adding and Deleting Routines in a COBPACK 49

Where to Place the Tailored COBPACKs 49

© Copyright IBM Corp. 1991, 2005 iii

Customizing the COBOL Reusable Run-Time

Environment 50

Customizing the COBOL Reusable Environment 50

Customizing the Behaviour of the COBOL

Reusable Environment 50

Changing the C Locale Time Information 51

Including the CSD for LE/VSE Support Under CICS 52

Tailoring the CICS Destination Control Table

(Optional) 53

Members That You Use for Your DCT

Implementation 53

Ensuring CICS Coexistence is Set Up Correctly . . 55

Chapter 3. Maintaining LE/VSE 57

Separating User-Customized Modules From

IBM-Shipped Code 57

Applying Service Updates 58

What You Receive 58

Step 1: Check Prerequisite APARs or PTFs . . . 58

Step 2: Run the Installation Verification Program

(IVP) 59

To Report a Problem with LE/VSE 59

Appendix A. LE/VSE Run-Time Options 61

Quick Reference Table of LE/VSE Run-Time

Options 62

Language Run-Time Option Mapping 66

COBOL Compatibility 69

LE/VSE Run-Time Options 70

ABPERC 70

ABTERMENC 72

AIXBLD (COBOL Only) 74

ALL31 75

ANYHEAP 76

BELOWHEAP 78

CBLOPTS (COBOL Only) 79

CBLPSHPOP (COBOL Only) 80

CHECK (COBOL Only) 81

COUNTRY 82

DEBUG (COBOL Only) 83

DEPTHCONDLMT 84

ENVAR (C Only) 85

ERRCOUNT 86

HEAP 87

HEAPCHK 89

LIBSTACK 90

MSGFILE 92

MSGQ 93

NATLANG 94

NOTEST 95

NOUSRHDLR 95

RETZERO (COBOL Only) 95

RPTOPTS 96

RPTSTG 98

RTEREUS (COBOL Only) 101

STACK 102

STORAGE 104

TERMTHDACT 107

TEST 111

TRACE 113

TRAP 114

UPSI (COBOL Only) 117

USRHDLR 118

XUFLOW 119

CLER: Interactively Process CICS-Wide Run-Time

Options 121

Pre-Defined Settings For Use With CLER . . . 122

Using CLER to Change Options 123

Considerations When Changing the LSTQ

Options 124

NEWC: Activate Changed CICS-Wide Run-Time

Options 125

ROPC: Print CICS-Wide Run-Time Options to

Console 127

Appendix B. LE/VSE Run-Time LIOCS

Phases 129

CEEYCD0—Card Device Run-Time LIOCS Phase 129

CRDERR 130

CTLCHR 131

DEVICE 132

IOAREA2 133

RDONLY 133

RECFORM 134

TYPEFLE 134

WORKA 135

CEEYDU0—Diskette Device Run-Time LIOCS

Phase 135

RDONLY 136

TYPEFLE 136

CEEYPR0—Printer Device Run-Time LIOCS Phase 137

CTLCHR 138

DEVICE 139

IOAREA2 139

RDONLY 140

RECFORM 140

STLIST 141

WORKA 141

Appendix C. Customizing LE/VSE

User Exits 143

When User Exits Are Invoked 144

CEEBXITA Behavior During Enclave

Initialization 145

CEEBXITA Behavior During Enclave

Termination 145

CEEBXITA Behavior During Process Termination 145

Specifying Abnormal Conditions to Be

Exempted from Condition Handling 146

Actions Taken for Errors That Occur within the

Assembler User Exit 146

CEEBXITA Assembler User Exit Interface 147

Parameter Values in the Assembler User Exit 151

Abnormal Termination Exit Syntax 155

Appendix D. Using COBOL with

LE/VSE 157

Using COBOL Side-File Exits 157

Using the Search Function of the COBOL Side-File 158

Contents of the General COBPACK (IGZCPAC) 158

iv LE/VSE: Customization Guide

Contents of the Environment-Specific COBPACK

(IGZCPCO) 160

Contents of the CICS ESM COBPACK (IGZCPCC) 162

Appendix E. Customizing C Locale

Time Information 163

Customizing Locale 163

Time Information Options Reference 163

Appendix F. Routines Eligible for the

Shared Virtual Area 165

LE/VSE Base Routines 165

LE/VSE COBOL Component Routines 167

LE/VSE PL/I Component Routines 169

LE/VSE C Component Routines 175

Appendix G. LE/VSE National

Language Support Country Codes . . 177

Appendix H. Program and Service

Level Information 179

Service Updates to the LE/VSE Base 179

Service Updates to the C Component of LE/VSE 179

Service Updates to the COBOL Component of

LE/VSE 179

Service Updates to the PL/I Component of

LE/VSE 180

Index 181

Contents v

vi LE/VSE: Customization Guide

Figures

 1. Sample Generation of CEEDOPT Object

Module (Batch) 19

 2. Sample Generation of CEECOPT Object

Module (CICS) 20

 3. Sample Use of the CEEUOPT Run-Time

Option Module 23

 4. Sample Invocation of CEEXCDMD to Generate

the CEEYCD0 Phase 27

 5. Sample Invocation of CEEXDUMD to Generate

the CEEYDU0 Phase 28

 6. Sample Invocation of CEEXPRMD to Generate

the CEEYPR0 Phase 28

 7. Default Member CEEBXTAN.A (for Batch

Environment) 41

 8. Default Member CEECXTAN.A (for CICS

Environment) 43

 9. Format of a Transient Data Queue Entry 53

10. Job to Update CSD File for CICS/VSE . . . 56

11. Job to Retrace APARs and PTFs 58

12. Effect of DEPTHCONDLMT(3) on Condition

Handling 84

13. Options Report Produced by LE/VSE

Run-Time Option RPTOPTS(ON) 97

14. Storage Report Produced by LE/VSE

Run-Time Option RPTSTG(ON) 100

15. BMS Map Used With the CLER Transaction 121

16. Example of Using NEWC Transaction to

Activate Changed CICS-Wide Options . . . 126

17. Example of Using ROPC Transaction to Print

CICS-Wide Options to Console 128

18. Location of User Exits 144

19. Interface for CEEBXITA Assembler User Exit 147

20. CEEAUE_FLAGS Format 149

21. Example Time Zone and Daylight Savings

Time Information 163

© Copyright IBM Corp. 1991, 2005 vii

viii LE/VSE: Customization Guide

Tables

 1. LE/VSE-Conforming Languages xiv

 2. LE/VSE Publications xvii

 3. z/VSE Publications xvii

 4. IBM C for VSE/ESA Publications xvii

 5. IBM COBOL for VSE/ESA Publications xviii

 6. IBM PL/I for VSE/ESA Publications xviii

 7. Debug Tool for VSE/ESA Publications xviii

 8. LE/VSE Component IDs and CLCs 1

 9. Worksheet: Planning to Customize LE/VSE

Run-Time Options 3

10. Customizing Run-Time Options with Sample

Customization Jobs 4

11. Customizing LIOCS Phases with Sample

Customization Jobs 5

12. Customizing Assembler User Exits with Sample

Customization Jobs 6

13. Loadlists That Are Pre-Installed in the SVA

(VSE/ESA 2.5 Onwards) 7

14. Installing in the SVA with Supplied SVA

Loadlists 7

15. Installing in the SVA with Sample

Customization Jobs 7

16. SVA Space Requirements for the Components of

LE/VSE 8

17. Making the Trade-off: Performance Time

versus Storage Use 10

18. LE/VSE Jobs Contained in VSE/ICCF Library

62 12

19. Summary of Customization Jobs for LE/VSE 16

20. Sample jobs to change run-time options

defaults 17

21. Sample Jobs to Change Run-Time LIOCS

Phases 26

22. Sample Assembler User Exits for LE/VSE 32

23. Sample Jobs to Create a User-Written

Condition Handler 35

24. LE/VSE Supplied SVA load lists 44

25. LE/VSE Sample ASI Procedure Modification

Members 45

26. Sample Jobs for Modifying COBPACKs 49

27. Including LE/VSE Support under CICS Using

the CSD 52

28. LE/VSE Component IDs and CLCs 59

29. Run-Time Options Quick Reference 62

30. C/370 and LE/VSE Options 66

31. DOS/VS COBOL and LE/VSE Options 67

32. VS COBOL II and LE/VSE Options 67

33. DOS PL/I and LE/VSE Options 69

34. Sample Assembler User Exits for LE/VSE 143

35. Parameter Values in the Assembler User Exit

(Part 1) 152

36. Parameter Values in the Assembler User Exit

(Part 2) 154

37. Routines Eligible for Inclusion in General

COBPACK (IGZCPAC) 158

38. Routines Eligible for Inclusion in the

Environment-Specific COBPACK (IGZCPCO) . 160

39. Routines Eligible for Inclusion in the CICS

ESM COBPACK (IGZCPCC) 162

40. LE/VSE Routines Eligible for Inclusion in the

SVA 165

41. COBOL/VSE Routines Eligible for Inclusion

in the SVA 167

42. PL/I VSE Routines Eligible for Inclusion in

the SVA 169

43. C Routines Eligible for Inclusion in the SVA 175

44. Country / Region Codes 177

45. APARs against the LE/VSE Base Component 179

46. APARs against the C Component of LE/VSE 179

47. APARs against the COBOL Component of

LE/VSE 179

48. APAR against the PL/I Component of

LE/VSE 180

© Copyright IBM Corp. 1991, 2005 ix

x LE/VSE: Customization Guide

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of

the intellectual property rights of IBM may be used instead of the IBM product,

program, or service. The evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the

responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement. IBM accepts

no responsibility for the content or use of non-IBM Web sites specifically

mentioned in this publication or accessed through an IBM Web site that is

mentioned in this publication.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Deutschland Informationssysteme GmbH

Department 0215

Pascalstr. 100

70569 Stuttgart

Germany

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

© Copyright IBM Corp. 1991, 2005 xi

Trademarks and Service Marks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 AT IBM System/370

C/370 Integrated Language

Environment

VisualAge

CICS Language Environment VSE/ESA

CICS/VSE OS/390 z/OS

DB2 OS/400 zSeries

DFSORT SAA z/VSE

Microsoft, Windows, the Windows 95 logo, and Windows NT, are trademarks or

registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names, may be trademarks or service marks

of others.

xii LE/VSE: Customization Guide

About This Book

 This book is intended for system programmers and system administrators who

plan for, install, customize, and maintain IBM Language Environment for

VSE/ESA (LE/VSE).

To use this book, you need to be familiar with the VSE operating system, the

publications that describe your system, and job control language (JCL) processing.

What Is LE/VSE?

LE/VSE is a set of common services and language-specific routines that provide a

single run-time environment for applications written in LE/VSE-conforming versions

of the C, COBOL, and PL/I high level languages (HLLs), and for many

applications written in previous versions of COBOL. (For a list of

LE/VSE-conforming languages, and a description of compatibility with previous

versions of COBOL, see “LE/VSE-Conforming Languages” on page xiv.) LE/VSE

also supports applications written in assembler language using LE/VSE-provided

macros and assembled using High Level Assembler (HLASM).

Prior to LE/VSE, each programming language provided its own separate run-time

environment. LE/VSE combines essential and commonly-used run-time

services—such as message handling, condition handling, storage management, date

and time services, and math functions—and makes them available through a set of

interfaces that are consistent across programming languages. With LE/VSE, you

can use one run-time environment for your applications, regardless of the

application’s programming language or system resource needs, because most

system dependencies have been removed.

Services that work with only one language are available within language-specific

portions of LE/VSE.

LE/VSE consists of:

v Basic routines for starting and stopping programs, allocating storage,

communicating with programs written in different languages, and indicating

and handling error conditions.

v Common library services, such as math services and date and time services, that

are commonly needed by programs running on the system. These functions are

supported through a library of callable services.

v Language-specific portions of the common run-time library.

z/VSE is the successor to IBM’s VSE/ESA product. Many products and functions

supported on z/VSE may continue to use VSE/ESA in their names.

z/VSE can execute in 31-bit mode only. It does not implement z/Architecture, and

specifically does not implement 64-bit mode capabilities.

z/VSE is designed to exploit select features of IBM eServer zSeries hardware.

© Copyright IBM Corp. 1991, 2005 xiii

LE/VSE is the implementation of Language Environment on the VSE platform.

Language Environment is also offered on platforms z/OS and VM, and on OS/400

as Integrated Language Environment.

LE/VSE-Conforming Languages

An LE/VSE-conforming language is any HLL that adheres to the LE/VSE common

interface. Table 1 lists the LE/VSE-conforming language compiler products you can

use to generate applications that run with LE/VSE Release 4.

 Table 1. LE/VSE-Conforming Languages

Language LE/VSE-Conforming Language Minimum Release

C IBM C for VSE/ESA Release 1

COBOL IBM COBOL for VSE/ESA Release 1

PL/I IBM PL/I for VSE/ESA Release 1

Any HLL not listed in Table 1 is known as a non-LE/VSE-conforming or,

alternatively, a pre-LE/VSE-conforming language. Some examples of

non-LE/VSE-conforming languages are:

v C/370

v DOS/VS COBOL

v VS COBOL II

v DOS PL/I

v DOS/VS RPG II

Only the following products can generate applications that run with LE/VSE:

v LE/VSE-conforming languages

v HLASM using LE/VSE-provided macros (for details, see LE/VSE Programming

Guide)

v DOS/VS COBOL and VS COBOL II, with some restrictions (see LE/VSE

Compatibility with Previous Versions of COBOL below).

LE/VSE Compatibility with Previous Versions of COBOL

Although DOS/VS COBOL and VS COBOL II are non-LE/VSE-conforming

languages, many applications generated with these compilers can run with

LE/VSE without recompiling. For details about compatibility, see LE/VSE Run-Time

Migration Guide.

However relinking under LE/VSE is the minimum effort in order to migrate

run-time, and involve LE/VSE COBOL-compatibility routines (rather than the old

and unsupported library routines of non-LE/VSE conforming COBOL compilers).

This particularily applies to NORES-compiled units or applications that involve

former initialization techniques such as ILBDSET0. There are even restrictions with

this approach, such as:

v No use of 4-digit dates.

v No exploitation of LE/VSE functionality.

v Interlanguage communication capabilities, and so on.

Therefore you are strongly recommended to carry out a (subsequent) full migration to

a higher ANSI standard and LE/VSE-conforming COBOL compiler (COBOL for

VSE/ESA).

xiv LE/VSE: Customization Guide

VS COBOL II can also dynamically call some LE/VSE date and time callable

services. For details, see LE/VSE Programming Reference.

How to Read the Syntax Diagrams

The following rules apply to the notation used in the syntax diagrams contained in this book:

v Read the syntax diagrams from left to right, top to bottom following the path of the line.

v Each syntax diagram begins with a double arrowhead (44).

v An arrow (─4) at the end of a line indicates that the option, service, or macro syntax continues on the

next line. A continuation line begins with an arrow (4─).

v If a syntax diagram contains too many items or groups to fit in the diagram, the syntax is shown by a

main syntax diagram and one or more syntax fragments. A syntax fragment is referred to in the main

diagram by its fragment name between two vertical bars (│).

Each syntax fragment appears below the main syntax diagram, and begins and ends with a vertical bar

(│). A heading above the fragment indicates the name of the fragment.

Read each syntax fragment as though it were imbedded in the main syntax diagram.

v IBM-supplied default keywords appear above the main path or options path (see the sample on page

xvi). In the parameter list, IBM-supplied default choices are underlined.

v Keywords appear in nonitalic capital letters and should be entered exactly as shown. However, some

keywords may be abbreviated by truncation from the right as long as the result is unambiguous. In

this case, the unambiguous truncation is shown in capital letters in the keyword, for example:

ANyheap

v Words in lowercase letters represent user-defined parameters or suboptions.

v Enter parentheses, arithmetic symbols, colons, semicolons, commas, and greater-than signs where

shown.

v Required parameters appear on the same horizontal line (the main path) as the option, service, or

macro:

44 OPTION required_parameter 4<

v If you can choose from two or more parameters, the choices are stacked one above the other.

If choosing one of the items is optional, the entire stack appears below the main line.

44 OPTION

optional_parameter_1

optional_parameter_2

optional_parameter_3

 4<

If you must choose one of the items, one item of the stack appears on the main path:

44 OPTION required_choice_1

required_choice_2

required_choice_3

 4<

v An arrow returning to the left above a line indicates that an item can be repeated:

44

OPTION

=

repeatable_item

4<

OR

About This Book xv

44 OPTION

=

repeatable_item

 4<

v A comma or semicolon included in the repeat symbol indicates a separator that you must include

between repeated parameters. These separators must be coded where shown.

v When entering commands, parameters and keywords must be separated by at least one blank if there

is no intervening punctuation.

v A double arrow (─4<) at the end of a line indicates the end of the syntax diagram.

The following example demonstrates how to read the syntax notation. Numbers in the example

correspond to explanations supplied below the example.

44

(1)

ANyheap

(2)

(

(3)

init_size

(4)

,

incr_size

,

ANYWHERE

ANY

BELOW

,

 (6)

FREE

(5)

KEEP

4

4) 4<

Notes:

1 Keyword with minimum unambiguous truncation shown in capital letters

2 Opening parenthesis (must be specified if any parameters are specified)

3 Optional parameter

4 Comma (must be specified if there are parameters that follow)

5 Optional keyword

6 Optional keyword (IBM-supplied default)

xvi LE/VSE: Customization Guide

Where to Find More Information

These are the manuals that describe LE/VSE:

 Table 2. LE/VSE Publications

Publication Form Number

LE/VSE Fact Sheet GC33-6679

LE/VSE Concepts Guide GC33-6680

LE/VSE Customization Guide SC33-6682

LE/VSE Programming Guide SC33-6684

LE/VSE Programming Reference SC33-6685

LE/VSE C Run-Time Programming Guide SC33-6688

LE/VSE C Run-Time Library Reference SC33-6689

LE/VSE Debugging Guide and Run-Time Messages SC33-6681

LE/VSE Writing Interlanguage Communication Applications SC33-6686

LE/VSE Run-Time Migration Guide SC33-6687

LE/VSE Licensed Program Specifications GC33-6683

These are the z/VSE manuals to which you might need to refer:

 Table 3. z/VSE Publications

Publication Form Number

z/VSE Administration SC33-8224

z/VSE Messages and Codes, Volume 1 SC33-8226

z/VSE Messages and Codes, Volume 2 SC33-8227

z/VSE Messages and Codes, Volume 3 SC33-8228

z/VSE Planning SC33-8221

z/VSE System Control Statements SC33-8225

z/VSE System Macros Reference SC33-8230

z/VSE System Macros User’s Guide SC33-8236

z/VSE System Upgrade and Service SC33-8223

VSE/VSAM User’s Guide and Application Programming SC33-8246

VSE/VSAM Commands SC33-8245

TCP/IP for VSE/ESA IBM Program Setup and Supplementary Information SC33-6601

These are the manuals that describe IBM C for VSE/ESA:

 Table 4. IBM C for VSE/ESA Publications

Publication Form Number

Licensed Program Specifications GC09-2421

Installation and Customization Guide GC09-2422

Migration Guide SC09-2423

© Copyright IBM Corp. 1991, 2005 xvii

Table 4. IBM C for VSE/ESA Publications (continued)

Publication Form Number

User’s Guide SC09-2424

Language Reference SC09-2425

Diagnosis Guide GC09-2426

These are the manuals that describe IBM COBOL for VSE/ESA:

 Table 5. IBM COBOL for VSE/ESA Publications

Publication Form Number

General Information GC33-6679

Licensed Program Specifications GC33-6680

Migration Guide SC33-6682

Installation and Customization Guide GC33-6680

Programming Guide SC33-6684

Language Reference SC33-6685

Diagnosis Guide SC33-6684

Reference Summary SX26-3834

These are the manuals that describe IBM PL/I for VSE/ESA:

 Table 6. IBM PL/I for VSE/ESA Publications

Publication Form Number

Fact Sheet GC26-8052

Programming Guide SC26-8053

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC33-6684

Installation and Customization Guide SC26-8057

Diagnosis Guide SC26-8058

Compile-Time Messages and Codes SC26-8059

Reference Summary SX26-3836

These are the manuals that describe Debug Tool for VSE/ESA:

 Table 7. Debug Tool for VSE/ESA Publications

Publication Form Number

User’s Guide and Reference SC26-8797

Installation and Customization Guide SC26-8798

Fact Sheet GC26-8925

You might also refer to the ...

xviii LE/VSE: Customization Guide

z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date information about

VSE-related products and services, new z/VSE functions, and other items of interest to VSE users.

You can find the z/VSE home page at:

http://www.ibm.com/servers/eserver/zseries/zvse/

Softcopy Publications

The following collection kit contains the LE/VSE and LE/VSE-conforming language product publications:

 VSE Collection, SK2T-0060

Where to Find More Information xix

xx LE/VSE: Customization Guide

Summary Of Changes

This section describes the changes introduced with the current and previous three

editions of this manual.

Changes Introduced with Seventh Edition (March 2005)

These are the most important changes introduced with the seventh edition of this

manual (covering LE/VSE 1.4.4):

v The name VSE/ESA has now changed to z/VSE. However, the names of many

features and programs related to z/VSE remain unchanged (such as IBM

Language Environment for VSE/ESA, IBM COBOL for VSE/ESA, Debug Tool

for VSE/ESA, or CICS Transaction Server for VSE/ESA).

v A new section has been added describing how you can use attention routines to

obtain information about the BATCH configuration of your language

environment. See “Planning to Activate LE/VSE Attention Routine Commands”

on page 11.

v A summary of all LE/VSE customization and verification jobs has been

included. See “IBM-Provided Customization and Verification Jobs” on page 12.

v The figures showing CEEDOPT (the IBM-supplied batch installation default

options source program), and CEECOPT (the IBM-supplied CICS installation

default options source program), have been updated to show the use of the

CEELOPT macro. See Figure 1 on page 19 and Figure 2 on page 20.

v The default abnormal termination exit for CICS (member CEECXTAN.A), that is

shipped with LE/VSE, now enables the IUI-supplied exit IESPDATX to include

U40xx abend in OLPD records. See “Shipped Defaults” on page 37 and Figure 8

on page 43.

v The figure showing the options report produced by LE/VSE run-time option

RPTOPTS(ON) has been updated to show how the “Remote Node ID/User ID”

definition is set. See Figure 13 on page 97.

v A description of the COBOL side-file has been included. See “Using COBOL

Side-File Exits” on page 157 and “Using the Search Function of the COBOL

Side-File” on page 158.

Changes Introduced with Sixth Edition (September 2003)

The sixth edition of this manual, which is used together with LE/VSE 1.4.3,

contained corrections to minor errors contained in the previous edition.

Changes Introduced with Fifth Edition (March 2003)

This section describes the changes introduced with LE/VSE 1.4.3:

v You can use the CEELOPT macro to modify the default CLASS and DISP for

output sent to the VSE/POWER LSTQ. For details, see “TERMTHDACT” on

page 107. For an example of the use of CEELOPT, see Figure 2 on page 20.

v The CLER CICS transaction allows you to interactively (using a CICS BMS panel)

display and modify LE/VSE CICS-wide default runtime options, without the

need to re-start your CICS system. For details, see “CLER: Interactively Process

CICS-Wide Run-Time Options” on page 121.

© Copyright IBM Corp. 1991, 2005 xxi

xxii LE/VSE: Customization Guide

Chapter 1. Planning to Customize LE/VSE

This chapter provides information for planning the customization of LE/VSE. It

includes:

v A description of the structure of the pre-installed LE/VSE.

v Deciding whether or not to customize.

v Planning to customize the IBM-supplied default run-time option values.

v Planning to customize the IBM-supplied LIOCS phases.

v Planning to customize the IBM-supplied default assembler user exit.

v Planning to customize the IBM-supplied default abnormal termination exit.

v Planning to install LE/VSE into the shared virtual area (SVA).

v Planning to customize programming language-specific features.

v A summary of the LE/VSE customization and verification jobs that you can use.

This chapter helps you plan for these customization tasks. See Chapter 2,

“Customizing LE/VSE,” on page 15 for the actual customization procedure.

How the Pre-Installed LE/VSE Is Structured

The LE/VSE components are shipped as part of the z/VSE base system (except for

the DBCS locale component). Table 8 lists these new component identifiers (COMP

IDs) and component level codes (CLCs):

 Table 8. LE/VSE Component IDs and CLCs

Component Id CLC Description

5686-CF7-32 81K LE Common base, containing information written in:

v uppercase and mixed-case U.S. English

v Japanese NLF

5686-CF7-33 81L LE C-specific base, containing information written in:

v uppercase and mixed-case U.S. English

v Japanese NLF

5686-CF7-34 81W Optional LE DBCS Locale component (see note below)

5686-CF7-36 81Z LE COBOL-specific base and CICS, containing

information written in:

v uppercase and mixed-case U.S. English

v Japanese NLF

5686-CF7-37 81M LE PL/I-specific base, containing information written in:

v uppercase and mixed-case U.S. English

v Japanese NLF

Note: The optional LE/VSE DBCS locale component is shipped on the z/VSE

extended base tape.

Deciding Whether and What to Customize

You need to choose which

v run-time options (see page 2)

v LIOCS phases (see page 4)

v assembler user exits (see page 6)

you will customize. You also need to decide

© Copyright IBM Corp. 1991, 2005 1

v whether to install some routines in the shared virtual area (see page 7), and

v whether to customize C locale time information (see page 11).

You should consider whether the IBM-supplied values for the run-time options

that come with LE/VSE suit the needs of your site. These values control such

features as:

v The national language in which messages appear

v When condition handling is invoked

v How storage is allocated to the heap and stack

v How much storage is allocated above and below the 16MB line

v The format of the program invocation parameters

v Generation of a storage and/or run-time options report

v Shared storage allocations

You should also consider whether the IBM-supplied LIOCS (logical input/output

control system) phases suit the needs of your site. These LIOCS phases contain

logic routines used by the VSE input/output control system when processing files

assigned to card, diskette, or printer devices. The IBM-supplied phases contain

logic routines for the most commonly used of these device types. You should

ensure that the LIOCS phases contain all the necessary logic routines for the types

of devices processed by your LE/VSE-conforming applications.

If you don’t want to customize LE/VSE now, you can install it, test it, and put it

into production using the IBM-supplied defaults. You can use the instructions in

this book to customize LE/VSE later, if you choose. For many of the run-time

options, application programmers can:

v Override the installation defaults in their code.

v Use the CEEUOPT run-time option module to override the installation defaults

(see “Creating Application-Specific Options Using the CEEXOPT Macro” on

page 22).

Application programmers at your site will be the primary users of LE/VSE. Ask

them what defaults they prefer for run-time options, LIOCS phases, and user exits,

which affect their work directly. Doing so will ensure that the modifications you

make will best support the application programs being developed at your site.

Planning to Customize LE/VSE Run-Time Options

Why Do It

The run-time option values supplied with LE/VSE may not suit the application

programmers’ needs at your site. Resetting the defaults will save the programmers’

time because they will not need to override the run-time option defaults as often.

You should change some of the defaults shipped with LE/VSE if you plan to use

PL/I. See “An Example of Customizing LE/VSE Run-Time Options” on page 4.

Choices to Make Now

You should plan which run-time options you want to change. Refer to

Appendix A, “LE/VSE Run-Time Options,” on page 61 for detailed information

about the run-time options, default values, and syntax. You might not need to

change every default. You can fill in the blanks in Table 9 on page 3 with the

changes you plan to make in the defaults for both batch and CICS processing.

2 LE/VSE: Customization Guide

Table 9. Worksheet: Planning to Customize LE/VSE Run-Time Options

Run-time Option Batch Default Value Your New Batch

Default

CICS Default Value Your New CICS

Default

Page

ABPERC ((NONE),OVR) _____________ N/A1 N/A1 70

ABTERMENC ((ABEND),OVR) _____________ ((ABEND),OVR) _____________ 72

AIXBLD ((OFF),OVR) _____________ N/A1 N/A1 74

ALL31 ((OFF),OVR) _____________ ((ON),OVR) _____________ 75

ANYHEAP ((16K,8K,ANYWHERE,

FREE), OVR)

_____________ ((4K,4080,ANYWHERE,

FREE), OVR)

_____________ 76

BELOWHEAP ((8K,4K,FREE),OVR) _____________ ((4K,4080,FREE),OVR) _____________ 78

CBLOPTS ((ON),OVR) _____________ ((ON),OVR) _____________ 79

CBLPSHPOP ((OFF),OVR) _____________ ((ON),OVR) _____________ 80

CHECK ((OFF),OVR) _____________ ((OFF),OVR) _____________ 81

COUNTRY ((US),OVR) _____________ ((US),OVR) _____________ 82

DEBUG ((OFF),OVR) _____________ ((OFF),OVR) _____________ 83

DEPTHCONDLMT ((10),OVR) _____________ ((10),OVR) _____________ 84

ENVAR ((''),OVR) _____________ ((''),OVR) _____________ 85

ERRCOUNT ((20),OVR) _____________ ((20),OVR) _____________ 86

HEAP ((32K,32K,ANYWHERE,

KEEP,8K,4K),OVR)

_____________ ((4K,4080,ANYWHERE,

KEEP,4K,4080),OVR)

_____________ 87

HEAPCHK ((OFF,1,0)OVR) _____________ ((OFF,1,0)OVR) _____________ 89

LIBSTACK ((12K,4K,FREE),OVR) _____________ ((4K,4080,FREE),OVR) _____________ 90

MSGFILE ((SYSLST),OVR) _____________ ((CESE),OVR) _____________ 92

MSGQ ((15),OVR) _____________ ((15),OVR) _____________ 93

NATLANG ((UEN),OVR) _____________ ((UEN),OVR) _____________ 94

NOTEST (ALL,*,PROMPT,''),OVR) _____________ (ALL,*,PROMPT,''),OVR) _____________ 111

NOUSRHDLR ((),OVR) _____________ ((),OVR) _____________ 118

RETZERO ((OFF),OVR) _____________ ((OFF),OVR) _____________ 95

RPTOPTS ((OFF),OVR) _____________ ((OFF),OVR) _____________ 96

RPTSTG ((OFF),OVR) _____________ ((OFF),OVR) _____________ 98

RTEREUS ((OFF),OVR) _____________ N/A1 N/A1 101

STACK ((128K,128K,BELOW,

KEEP),OVR)

_____________ ((4K,4080,ANYWHERE,

KEEP),OVR)

_____________ 102

STORAGE ((00,NONE,
NONE,32K), OVR)

_____________ ((00,NONE,
NONE,0K), OVR)

_____________ 104

TERMTHDACT ((TRACE,,0),OVR) _____________ ((TRACE,MSGFL,0),OVR) _____________ 107

TRACE ((OFF,4K,DUMP,LE=0),

OVR)

_____________ ((OFF,4K,DUMP,LE=0),

OVR)

_____________ 113

TRAP ((ON,MAX),OVR) _____________ ((ON,MAX),OVR) _____________ 114

UPSI ((00000000),OVR) _____________ ((00000000),OVR) _____________ 117

XUFLOW ((AUTO),OVR) _____________ ((AUTO),OVR) _____________ 119

Note:

1. The abbreviation N/A is used for not applicable. These options are ignored under CICS.

You also need to choose which sample customization jobs you need to modify and

run. Table 10 on page 4 lists the sample jobs provided on the distribution tape to

help you customize LE/VSE run-time options. These jobs are included in the

PRD2.SCEEBASE sublibrary. See “Changing Run-Time Options Defaults” on page

17 for instructions on how to use these jobs to customize LE/VSE run-time

Chapter 1. Planning to Customize LE/VSE 3

options.

 Table 10. Customizing Run-Time Options with Sample Customization Jobs

To Use this Sample Job

Change installation-wide defaults for run-time options. CEEWDOPT.Z

Change installation-wide CICS defaults for run-time

options.

CEEWCOPT.Z

Create an application-specific run-time options module. CEEWUOPT.Z

Note: These jobs are available in ICCF Library 62.

An Example of Customizing LE/VSE Run-Time Options

The following are recommended run-time option settings for PL/I VSE

applications:

ABTERMENC(ABEND) for compatibility with PL/I and DOS/VS COBOL.

ERRCOUNT(0) required for PL/I.

DEPTHCONDLMT(0) for compatibility with DOS PL/I.

STORAGE(00,NONE,00,32K) for Batch.

STORAGE(00,NONE,00,0K) for CICS.

XUFLOW(AUTO) recommended for PL/I.

Planning to Customize Run-Time LIOCS Phases

Why Do It

When you install LE/VSE, you are provided with default phases for three sets of

run-time LIOCS phases that you can customize. The run-time LIOCS phases

contain logic routines used by the VSE input/output control system when

processing files assigned to card, diskette, or printer devices. When an

LE/VSE-conforming HLL application opens a file assigned to one of these device

types, LE/VSE loads the appropriate run-time LIOCS phase. LE/VSE then searches

the loaded LIOCS phase for the appropriate logic routine. The appropriate logic

routine is the routine that contains the code needed to support the attributes (such

as device type, record format, number of I/O areas, and whether the file is being

opened for input or output) of the file being opened. LE/VSE then stores the

address of the routine in the VSE DTF (define the file) control block for the file.

LE/VSE supplies the run-time LIOCS phases because the VSE-supplied LIOCS

routines for these devices are shipped with the operating system in object format

only, and LE/VSE-conforming HLL applications require the LIOCS routines in

loadable-phase format. The supplied phases that you can customize are:

v CEEYCD0 - LIOCS routines for card reader/punch devices

v CEEYDU0 - LIOCS routines for diskette devices

v CEEYPR0 - LIOCS routines for printer devices

The run-time LIOCS phases supplied with LE/VSE contain only the LIOCS

routines for the most commonly used combinations of file attributes. The LIOCS

phases do not contain LIOCS routines that support all possible combinations of file

attributes as this would make the phases unnecessarily large.

4 LE/VSE: Customization Guide

If your LE/VSE-conforming HLL application opens a file with a certain set of file

attributes, but the necessary LIOCS routine for that set of file attributes is not

included in the supplied LIOCS phase, then you must modify the appropriate

run-time LIOCS phase. If LE/VSE is unable to find the appropriate logic routine, it

issues message CEE3751S.

Choices to Make Now

You should plan which devices you want to be able to access with your

LE/VSE-conforming HLL applications, and what attributes files assigned to those

devices will have. Refer to Appendix B, “LE/VSE Run-Time LIOCS Phases,” on

page 129 for detailed information about the LIOCS phases, default values, and

syntax.

 Note!:

1. During customization, you are recommended not to delete or change any

shipped LE/VSE LIOCS definitions. If LIOCS definitions for dummy card

punch, card reader, and printer devices are missing, the startup of the CICS

Transaction Server might be severely affected.

2. The Interactive Interface’s Hardware Configuration dialog also contains

definitions for dummy card punch, card reader, and print devices. These

definitions reflect the currently-shipped LE/VSE LIOCS. You are recommended

not to delete or change any of these definitions.

3. If, however, you do decide to change any of the dummy device defnitions,

ensure you have customized the appropriate LIOCS definitions for these devices!.

Choose which sample customization jobs you need to modify and run. Table 11

lists the sample jobs provided on the distribution tape to help you customize

LE/VSE LIOCS phases. These jobs are included in the PRD2.SCEEBASE sublibrary.

See “Changing Run-Time LIOCS Phases Defaults” on page 26 for instructions on

how to use these jobs to customize LE/VSE run-time LIOCS phases.

 Table 11. Customizing LIOCS Phases with Sample Customization Jobs

To Use this Sample Job

Change the card-device run-time LIOCS phase. CEEWDCD0.Z

Change the diskette-device run-time LIOCS phase. CEEWDDU0.Z

Change the printer-device run-time LIOCS phase. CEEWDPR0.Z

Note: These jobs are available in ICCF Library 62.

VS COBOL II Users: If you plan to run VS COBOL II programs compiled with the

NORES option, and without relink-editing with LE/VSE, you may need to

customize a VS COBOL II-only LIOCS phase. Three sample jobs are provided on

the distribution tape to help you customize these phases. They are:

v IGZWEQC0.Z - Change the VS COBOL II card-device run-time LIOCS phase

v IGZWEQD0.Z - Change the VS COBOL II diskette device run-time LIOCS phase

v IGZWEQP0.Z - Change the VS COBOL II printer device run-time LIOCS phase

An Example of Customizing Run-Time LIOCS Phases

A COBOL program coded with this input SELECT statement

 SELECT FILE01 ASSIGN TO SYS001-S-SYS001 RESERVE 1 AREA.

with the RESERVE 1 AREA clause, would require a new card-device run-time

LIOCS phase, omitting the IOAREA2 attribute, as in the following sample

TYPE=ENTRY statement of the CEEXCDMD macro:

Chapter 1. Planning to Customize LE/VSE 5

CEEXCDMD TYPE=ENTRY,TYPEFLE=INPUT,DEVICE=3505, X

 RECFORM=FIXUNB,RDONLY=YES

Omitting the IOAREA2 attribute means that one I/O area is used, which is

required for the RESERVE 1 AREA clause.

Planning to Customize User Exits

Why Do It

LE/VSE assembler, high-level language (HLL) and abnormal termination user exits

perform functions for enclave initialization, normal and abnormal enclave

termination, and process termination. When you install LE/VSE, sample user exits

are installed by default. You can modify the exits to suit the needs of your site.

Choices to Make Now

You should plan which features of the user exits you want to customize. Refer to

Appendix C, “Customizing LE/VSE User Exits,” on page 143 for detailed

information about the features of the exits, default values, and syntax.

Choose which sample customization jobs to modify and run. Table 12 lists the

sample jobs provided on the distribution tape to help you customize LE/VSE user

exits. These jobs are included in the PRD2.SCEEBASE sublibrary.

For instructions on how to use these jobs to customize the user exits, see:

v “Changing the Assembler Language User Exit” on page 32

v “Creating a High-Level Language User Exit” on page 35

v “Creating a User-Written Handler for Compatibility with VS COBOL II and DOS

PL/I” on page 35

v “Customizing LE/VSE Abnormal Termination Exits” on page 37

 Table 12. Customizing Assembler User Exits with Sample Customization Jobs

To Use this Sample Job

Change installation-wide assembler language user exit. CEEWDXIT.Z

Change installation-wide CICS assembler language user exit. CEEWCXIT.Z

Create an application-specific assembler language user exit. CEEWUXIT.Z

Identify an abnormal termination exit (Batch). CEEWDEXT.Z

Identify an abnormal termination exit (CICS). CEEWCEXT.Z

Change high-level language user exit. CEEWHLLX.Z

Create USRHDLR program for VS COBOL II-only compatibility CEEWWCHA.Z

Create USRHDLR program for VS COBOL II and DOS PL/I

compatibility

CEEWCCHA.Z

Note: These jobs are available in ICCF Library 62.

An Example of Customizing User Exits

If there is an unhandled condition of severity 2 or greater, the default assembler

user exit in batch returns to the system. You can change the default assembler user

exit so that it forces an abend for unhandled conditions of severity 2 or greater.

Examples of conditions that are severity 2 or greater include:

v Program interrupts: applicable if TRAP=(ON,MAX) is used

6 LE/VSE: Customization Guide

v System abends: applicable if TRAP=(ON,MAX) is used

v Conditions detected by LE/VSE: for example, a program load failure

The ABTERMENC(ABEND) run-time option is an alternative way to force an

abend for unhandled conditions of severity 2 or greater.

Planning to Install in the Shared Virtual Area

Why Do It

Placing routines in the shared virtual area (SVA) reduces the overall system storage

requirement by making the routines shareable and common to all partitions. Also,

initialization/termination (init/term) time is reduced for each application, since

load time decreases.

Choices to Make Now

Choose which routines to put in the SVA. Appendix F, “Routines Eligible for the

Shared Virtual Area,” on page 165 contains a complete list of routines you can

place in the SVA.

After you have chosen the routines, select the SVA loadlists to use from Table 14.

Alternatively, select the sample jobs you will need to use from Table 15. The

samples are included in the PRD2.SCEEBASE sublibrary. See “Placing LE/VSE

Routines in the Shared Virtual Area (SVA)” on page 44 for instructions on how to

use these jobs to load routines into the SVA.

Table 13 contains a list of the loadlists that are pre-installed.

 Table 13. Loadlists That Are Pre-Installed in the SVA (VSE/ESA 2.5 Onwards)

Description Loadlist

LE/VSE base routines $SVACEE

LE/VSE recommended C run-time routines $SVAEDCM

 Table 14. Installing in the SVA with Supplied SVA Loadlists

To Use this Loadlist

Add recommended COBOL run-time routines to the SVA $SVAIGZM

Add eligible COBOL run-time routines to the SVA $SVAIGZ

Add recommended PL/I run-time routines to the SVA $SVAIBMM

Add eligible PL/I run-time routines to the SVA $SVAIBM

Add eligible C run-time routines to the SVA $SVAEDC

 Table 15. Installing in the SVA with Sample Customization Jobs

To Use this Sample Job

Add eligible LE/VSE base routines to the SVA CEEWMSVA.Z

Add eligible COBOL run-time routines to the SVA IGZWESV1.Z

Add eligible PL/I run-time routines to the SVA IBMSVA1.Z

Add eligible C run-time routines to the SVA EDCWMSV1.Z

Note: These jobs are available in ICCF Library 62.

Chapter 1. Planning to Customize LE/VSE 7

Space Required: Allow space in the 24-bit SVA and the 31-bit SVA for the

components of LE/VSE that you need. Table 16 provides an estimate of the amount

of space used by routines for use with VSE/ESA 2.6, that can be put in the 24-bit

and 31-bit SVA.

 Table 16. SVA Space Requirements for the Components of LE/VSE

Phase Name Can Be Used In 24-Bit Members

(Size)

31-Bit Members

(Size)

Recommended

or Optional?

$SVACEE LE Base 8 (266K) 25 (1096K) IBM default

$SVAIGZM LE COBOL 0 (0K) 3 (152K) Recommended

$SVAIGZ 32 (165K) 15 (401K) Optional

$SVAIBMM LE PL/I 1 (36K) 2 (208K) Recommended

$SVAIBM 1 (36K) 26 (285K) Optional

$SVAEDCM LE C 0 (0K) 6 (1605K) Recommended

$SVAEDC 1 (0.16K) 18 (2237K) Optional

Notes:

1. $SVACEE and $SVAEDCM are pre-installed in the SVA. All members contained

in these load lists are pre-defined to the CICS CSD file via the USESVACOPY(YES)

parameter. From VSE/ESA 2.6 onwards, the CICS System Initialization Table

(SIT) contains a corresponding setting of SVA=YES. Also be aware that LE/VSE

modules in the SVA are only used by CICS Transaction Server if SIT SVA=YES

is specified, plus USESVACOPY(YES). Refer to the CICS Transaction Server

documentation for details.

2. These requirements reflect the amount of storage needed if you include all

eligible routines from the listed components in your 24-bit and 31-bit SVA. For

a list of each routine’s storage requirements and the modules recommended for

inclusion in the 24-bit or 31-bit SVA, see Appendix F, “Routines Eligible for the

Shared Virtual Area,” on page 165.

3. The requirements for the C component do not include the space needed for

locales and code page converters, as the sizes of these modules may vary

significantly. Check the specific locale or converter you plan to use and add this

size to the estimates in this table.

4. Number and total size of members are approximate and may change during

product cycle.

5. Use only one of the two “language-dependent load books”.

6. The use of a load book is “recommended”, providing you use the language

listed above.

7. If the use of a load book is “optional”, you can use it instead of the

recommended load book for a language.

8. Make sure that PSIZE31 is large enough to prevent phases with location mode

any from being loaded into SVA-24.

9. Load books $SVACEE and $SVAEDCM are included in the startup skeleton

SKJCL0 located in ICCF library 59. This startup skeleton is directly used during

the VSE/ESA 2.5 Base installation. SKJCL0 can also be used after an FSU, by

manually including it.

You can obtain further information on LE/VSE performance considerations, by

referring to the z/VSE Home Page (whose address is given in “Where to Find

More Information” on page xvii).

8 LE/VSE: Customization Guide

COBOL Users: The system will load the IBM-supplied default COBOL COBPACKs

into the 31-bit SVA (above the 16MB line). As distributed, the COBOL COBPACKs

can reside above the 16MB line because they include only those routines that have

the attribute RMODE(ANY). If you add a routine with RMODE(24) to a COBOL

COBPACK, that COBOL COBPACK must reside below the line. See Appendix D,

“Using COBOL with LE/VSE,” on page 157 for an overview of the contents of the

COBOL COBPACKs and a list of their link-edit attributes. “Tailoring the COBOL

COBPACKs” on page 48 gives specific instructions on customizing the COBOL

COBPACKs.

CICS Users: If your CICS system is 24-bit storage constrained, you should not

include unnecessary routines in the 24-bit SVA. Doing so reduces the amount of

24-bit storage that you can allocate to your CICS partition. Therefore, if you use

LE/VSE mainly in the CICS environment, only include the CICS initialization

routine, CEECCICS, in the 24-bit SVA. Do not include the batch initialization

routine, CEEBINIT.

Note: CICS TS users should be aware that to load phases into the SVA, a SIT table

setting of SVA=YES should be specified. For details, refer to the CICS

Transaction Server for VSE/ESA System Definition Guide, SC33-1651.

PL/I Users: If you plan to use Debug Tool for VSE/ESA to debug PL/I VSE

applications, consider loading the LE/VSE PL/I phases into the SVA. These phases

are listed in Table 42 on page 169. They are named IBM3....

An Example of Installing in the Shared Virtual Area

If your SVA space is limited, you can load just the frequently used modules there.

For example, load:

 CEEBINIT into the 24-bit SVA, if you use LE/VSE mainly in the batch

environment

 CEECCICS into the 24-bit SVA, if you use LE/VSE mainly in the CICS

environment

 CEEPLPKA into the 31-bit SVA

Chapter 1. Planning to Customize LE/VSE 9

Planning to Tailor the COBOL COBPACKs

Why Do It

You might want to customize the COBOL COBPACKs to:

v Shorten the load time for the COBOL COBPACK by reducing its size.

v Minimize the virtual storage required for an application by eliminating

seldom-used routines from main storage.

v Reduce the number of loads for application programs by adding frequently used

routines to COBOL COBPACKs.

v Reduce the size of the contents of the SVA.

The COBOL COBPACKs are generally shared among several different applications

and cannot be tuned for a specific application. Therefore, ideal COBOL COBPACKs

contain only library routines that are common to all application programs.

Choices to Make Now

You need to decide whether to modify the COBOL COBPACKs. If you modify the

COBOL COBPACKs, you make a trade-off between use of storage and faster

performance of application programs. See Table 17.

 Table 17. Making the Trade-off: Performance Time versus Storage Use

Type of COBOL COBPACK Performance Time Storage Use

Partially loaded Slower because more routines

are loaded individually

Less virtual and SVA storage

used

Fully loaded Faster because no routines

loaded individually

More virtual and SVA

storage used

You can use the information in the following sections and the tables in

Appendix D, “Using COBOL with LE/VSE,” on page 157 to decide which modules

to include in your COBOL COBPACKs.

Some Examples of Tailoring the COBOL COBPACKs

You can add or remove routines from the COBOL COBPACKs to reflect the

requirements of your site. For example, to include only the group of general

routines that your location uses most often, eliminate unnecessary routines from

the COBOL COBPACK.

If your installation runs only under CICS, you can eliminate the general routines

for ACCEPT and DISPLAY, because you cannot use them with CICS.

If you plan to put your COBOL COBPACKs into the SVA and your SVA space is

limited, consider reducing the size of your COBOL COBPACKs. All modules

eligible to be in the COBOL COBPACKs are reentrant and are therefore eligible to

be stored in the SVA.

10 LE/VSE: Customization Guide

Planning to Customize C Locale Time Information

Why Do It

The only category of C locale that you can customize at installation is the locale

time category. This locale category describes the time zone difference, the time

zone name, and Daylight Savings Time start and end dates.

Choices to Make Now

Decide whether or not you should modify C locale time information for your site.

For more detailed information, see Appendix E, “Customizing C Locale Time

Information,” on page 163.

If you decide to modify C locale time information, you can use job EDCLLOCL.Z

in the PRD2.SCEEBASE sublibrary to help you.

Planning to Activate LE/VSE Attention Routine Commands

Why Do It

From LE/VSE 1.4.4 onwards, you can use VSE operator attention routine (AR)

commands to obtain information about the BATCH configuration of your current

Language Environment.

This information can be of help to both application and system programmers when

tailoring or debugging applications.

Tasks Required For Activating the Attention Routine Support

Before using the support for attention routine commands, you should:

1. Review the current SVA load list.

2. Tailor and submit the customization jobs.

These tasks are described below.

Note: For details of how to execute LE/VSE attention routine commands, refer to

the section “Using Attention Routine Interface Commands” in the LE/VSE

Debugging Guide and Run-Time Messages, SC33-6681.

Review the Current SVA Load List

Before you can use the attention routine commands, check that these LE/VSE load

modules are resident in the SVA:

v CEL4CMDR

v CEEBXTAN (optional)

v CEEBXITA (optional)

You can load these modules (and other high-use LE/VSE modules) during the IPL

of your z/VSE system. To do so, you must use the current SVA load list (member

$SVACEE).

Tailor and Submit the Customization Jobs

The attention routine (AR) support is activated by default, and does not require an

IPL of the z/VSE system. Sample jobs are provided in the LE/VSE installation

library and VSE/ICCF library 62. If required, you can use these jobs to activate

and deactivate the attention routine support. However, both the base install and

FSU process automatically activate the attention routine support.

Chapter 1. Planning to Customize LE/VSE 11

You should follow the procedure below if you need to:

v Tailor the attention routine functions.

v Activate the attention-routine support manually.
1. Tailor member CEEWARC.Z and submit this job to the VSE/POWER reader

queue. Submit this job with parameter DISP=L so that the job can be released

as required. This job performs both activation and refresh functions of the

attention routine support.

2. Tailor member CEEWOPTJ.Z and submit this job to the VSE/POWER reader

queue with DISP=L. You can change all the JECL parameters except for the JNM=

and DISP= parameters. This job is required in order for the D CEE,CEEDOPT

attention routine command to function correctly. The job should be submitted

to a CLASS that is always available for execution (preferably a dynamic

partition), and it should be at least 3 MB in size.

Restrictions When Using Attention Routine Commands

v There is no National Language support for:

– console messages,

– reports written to the console,

that are issued in response to attention routine interface commands.

v Reports showing exit information or options do not include application-specific

settings or overrides.

IBM-Provided Customization and Verification Jobs

This section provides you with a list of the LE/VSE-related jobs that you might

find useful when verifying and customizing your system. You can find these jobs

in VSE/ICCF library 62.

 Table 18. LE/VSE Jobs Contained in VSE/ICCF Library 62

ICCF Member Purpose and Function

CEECCSD LE/VSE base program definitions (CICS)

CEECOPT LE/VSE CICS-wide default run-time options source

CEEDOPT LE/VSE batch-wide default run-time options source

CEEUOPT LE/VSE application specific run-time option source

CEETSCSD (Note 1) Sample code for USESVACOPY(YES) alteration, LE Base under

CICS TS (pre-customized from VSE/ESA 2.6.0 onwards)

CEEWARC Preloaded JCL support to enable AR commands

CEEWCCHA Assemble and link sample user condition handler

CEEWCCSD Skeleton for enabling LE/VSE program definitions (CICS)

CEEWCEXT Identify abnormal termination exit to LE/VSE (CICS)

CEEWCOPT Installation-wide default LE/CICS run-time options

CEEWCXIT Installation-wide assembler user exit

CEEWDCD0 Card-device run-time LIOCS phase

CEEWDDU0 Diskette-device run-time LIOCS phase

CEEWDEL Delete the system-supplied LE/VSE level

CEEWDEXT Identify abnormal termination exit to LE/VSE (Batch)

CEEWDOPT Installation-wide default LE/batch run-time options

CEEWDPR0 Printer device run-time LIOCS phase

12 LE/VSE: Customization Guide

Table 18. LE/VSE Jobs Contained in VSE/ICCF Library 62 (continued)

ICCF Member Purpose and Function

CEEWDXIT Installation-wide assembler user exit (Batch)

CEEWHLLX High-level language user exit

CEEWINFG Collect system status information related to LE/VSE

CEEWINFR Summarize/condense information generated via CEEWINFG

CEEWIVP1 Verification of Assembler program interface

CEEWIVP2 Verification of LE/VSE COBOL Component

CEEWIVP3 Verification of LE/VSE PL/I Component

CEEWIVP4 Verification of LE/VSE C Component

CEEWIVP5 Verify the LE/VSE C pre-link Utility

CEEWMSVA LE/VSE base routines eligible for putting into the SVA

CEEWUCHA Sample user-written condition handler for CICS

CEEWOPTJ Preload JCL support to allow for LE/VSE batch-wide run-time

option report via the AR command “D CEE,CEEDOPT” (available

from z/VSE 3.1 onwards)

CEEWUOPT Application specific run-time options

CEEWUXIT Application specific assembler user exit

CEEWWCHA Assemble and link sample user condition handler

EDCCCSD LE/VSE C-specific program definitions (CICS)

EDCLLOCL Changing the C locale time information

EDCUCSD Optional codeset converters (CICS)

EDCTSCSD (Note 1) Sample code for USESVACOPY(YES) alteration, LE C under CICS

TS (pre-customized from VSE/ESA 2.6.0 onwards)

EDCUTCSD Optional codeset converters (CICS)

EDCWMSV1 LE/VSE C-specific routines eligible for SVA

EDCXYDLY (Note 2) Sample C/VSE code exploiting new LE/VSE Callable Service

CEE5DLY (available from LE 1.4.2 onwards)

IBMCCSD LE/VSE PL/I-specific program definitions (CICS)

IBMSVA1 LE/VSE PL/I-specific routines eligible for SVA

IBMTSCSD (Note 1) Sample code for USESVACOPY(YES) alteration, LE PL/I under

CICS TS (optional)

IGZCCSD LE/VSE COBOL-specific program definitions (CICS)

IGZTDLY (Note 2) Sample COBOL/VSE code exploiting new LE/VSE Callable Service

CEE5DLY (available from LE 1.4.2 onwards)

IGZTSCSD (Note 1) Sample code for USESVACOPY(YES) alteration, LE COBOL under

CICS TS (optional)

IGZWARRE Customize behavior of COBOL reusable environment

IGZWEPAC COBOL COBPACK tailoring

IGZWEPCC COBOL COBPACK tailoring

IGZWEPCO COBOL COBPACK tailoring

IGZWESV1 LE/VSE COBOL-specific routines eligible for SVA

SKLE370 LE/VSE CICS CSD entries in GROUP(CEE)

Chapter 1. Planning to Customize LE/VSE 13

Notes:

1. Sample code containing LE/VSE 1.4.2 component-specific DFHCSDUP ALTER

commands for USESVACOPY(YES) enablement under CICS Transaction Server.

Please be aware that this change has to go along with a CICS SIT parameter

setting of SIT SVA=YES as well as load of corresponding $SVAxxxx loadlists.

For details and possible impacts in a CICS coexistence environment, refer to the

z/VSE Planning, SC33-8221.

2. Provide sample code for LE/VSE Callable Service CEE5DLY.

3. Skeleton SKLE370 is stored in VSE/ICCF library 59. It reflects the

pre-customized status of the shipped CICS region (which is CICS TS-based

DBDCCICS). Therefore, you must not run SKLE370 unless your LE/VSE

definitions have been modified or reestablished.

4. A set of Z-books (which allow for direct DFHCSDUP input) were provided to

support the preload issue. Members CEETICSD.Z and EDCTICSD.Z are

integrated into the common base-install and service-upgrade procedures. The

LE COBOL and LE PL/I specific Z-books (IGZTICSD and IBMTICSD) are

additionally provided, although these Z-books are not pre-loaded. All such

Z-books correspond to TSCSD members outlined in Table 18 on page 12.

The delivered system is pre-customized with SIT SVA=YES and uses SVA load lists

$SVACEE (LE/VSE Base) and $SVAEDCM (LE/VSE C). As a result, LE/VSE

modules contained in these load lists use USESVACOPY(YES)-enabled CICS CSD

definitions. These LE/VSE CICS CSD resource definitions are contained in CICS

CSD GROUP(CEE).

14 LE/VSE: Customization Guide

Chapter 2. Customizing LE/VSE

Chapter 1, “Planning to Customize LE/VSE,” on page 1 provides information on

what you can modify, and why you might want to customize LE/VSE. This

chapter tells how to make the modifications or where to find the necessary coding

information to customize LE/VSE to the needs of your site. This chapter consists

of these main sections:

v “Overview of Customization” on page 16

v “Changing Run-Time Options Defaults” on page 17

v “Changing Run-Time LIOCS Phases Defaults” on page 26

v “Changing the Assembler Language User Exit” on page 32

v “Creating a High-Level Language User Exit” on page 35

v “Creating a User-Written Handler for Compatibility with VS COBOL II and DOS

PL/I” on page 35

v “Customizing LE/VSE Abnormal Termination Exits” on page 37

v “Placing LE/VSE Routines in the Shared Virtual Area (SVA)” on page 44

v “De-Activating LE/VSE Language Components Used By CICS” on page 47

v “Tailoring the COBOL COBPACKs” on page 48

v “Customizing the COBOL Reusable Run-Time Environment” on page 50

v “Changing the C Locale Time Information” on page 51

v “Including the CSD for LE/VSE Support Under CICS” on page 52

v “Tailoring the CICS Destination Control Table (Optional)” on page 53

v “Ensuring CICS Coexistence is Set Up Correctly” on page 55

© Copyright IBM Corp. 1991, 2005 15

Overview of Customization

Table 19 shows the names and purpose of the sample customization jobs provided

with LE/VSE.

 Table 19. Summary of Customization Jobs for LE/VSE

Description Customization Job Page

Run-time options 17

Installation-wide run-time options default (Batch) CEEWDOPT 18

Installation-wide run-time options default (CICS) CEEWCOPT 20

Application-specific run-time options CEEWUOPT 22

Run-time LIOCS phases 26

Card-device run-time LIOCS phase CEEWDCD0 29

Diskette-device run-time LIOCS phase CEEWDDU0 30

Printer-device run-time LIOCS phase CEEWDPR0 31

Assembler language user

exit

32

Installation-wide assembler language user exit (Batch) CEEWDXIT 32

Installation-wide assembler language user exit (CICS) CEEWCXIT 33

Application-specific assembler language user exit CEEWUXIT 34

High-level language user

exit

CEEWHLLX 35

User-written condition

handler

35

Create USRHDLR program for VS COBOL II-only

compatibility

CEEWWCHA 35

Create USRHDLR program for VS COBOL II and DOS

PL/I-only compatibility

CEEWCCHA 35

Abnormal termination

exit

37

Identify abnormal termination exit to LE/VSE (Batch) CEEWDEXT 40

Identify abnormal termination exit to LE/VSE (CICS) CEEWCEXT 42

Place LE/VSE routines in

the SVA

CEEWMSVA

IGZWESV1

IBMSVA1

EDCWMSV1

44

Tailoring the COBOL

COBPACKs

IGZWEPAC

IGZWEPCO

IGZWEPCC

48

Changing the C locale

time information

EDCLLOCL 51

Note: These jobs are available in ICCF Library 62.

16 LE/VSE: Customization Guide

Changing Run-Time Options Defaults

From VSE/ESA 2.5 onwards, changes you make to the installation-wide run-time

options will no longer replace the initialization phases. As a result, the option

regeneration no longer replaces the CEECCICS and CEEBINIT initialization phases.

You can change the run-time option defaults for batch, for CICS, and for individual

applications. Table 20 summarizes the sample jobs IBM provides to help you

customize the run-time options.

 Table 20. Sample jobs to change run-time options defaults

Set Defaults For Sample Job Member Options Member

Installation-wide batch CEEWDOPT.Z CEEDOPT.A

Installation-wide CICS CEEWCOPT.Z CEECOPT.A

Application-specific CEEWUOPT.Z CEEUOPT.A

Note: These jobs are available in ICCF Library 62.

Note: From VSE/ESA 2.6 onwards, the above sample jobs include SET SDL

processing to reload the regenerated option phases, into the SVA.

All of the members listed in Table 20 are installed in the PRD2.SCEEBASE

sublibrary.

To change the run-time option defaults, copy the corresponding options member

into the sample job in place of the comment, and change the parameters on the

CEEXOPT macro invocation in the sample job you are using. Make the options in

the CEEXOPT macro match the run-time options you have selected for your

installation. See Setting Installation-Wide Default Options with the CEEXOPT

Macro for sample invocations of CEEXOPT.

At run time you can verify which LE/VSE run-time options are in effect by using

the RPTOPTS run-time option. For more information, see “RPTOPTS” on page 96.

Setting Installation-Wide Default Options with the CEEXOPT

Macro

When you run the sample jobs CEEWDOPT.Z or CEEWCOPT.Z, they create the

CEEDOPT CSECT, an options control block which establishes the defaults for the

options. The jobs invoke CEEXOPT during the assembly of the CEEDOPT module.

When you modify CEEXOPT to change installation-wide defaults, you must

specify each run-time option as either OVR or NONOVR. OVR means that the

option can be overridden at run time. NONOVR means that the option cannot be

overridden at run time.

To invoke CEEXOPT, adhere to the syntax of the IBM-supplied template for

CEEDOPT (see Figure 1 for batch and Figure 2 for CICS). These are samples and

should be compared to the actual code before you attempt to use them.

Figure 1 on page 19 shows the source statements used to generate the

IBM-supplied version of CEEDOPT, the batch options module, with the default

suboption values for each of the options. Figure 2 on page 20 shows the source

statements used to generate the IBM-supplied version of CEECOPT, the CICS

Chapter 2. Customizing LE/VSE 17

options module, with the default suboption values for each of the options. Note

that the default sub-options for several options in CEEDOPT differ from those in

CEECOPT.

You may have to check whether the system default values (as shown in Figure 1

on page 19 and Figure 2 on page 20) agree with the values required for your

environment.

Changing the Installation-Wide Run-Time Options Default

(Batch)

Use the sample job in the PRD2.SCEEBASE sublibrary member CEEWDOPT.Z to

change the installation-wide defaults for the LE/VSE run-time options. Use the

worksheet in “Planning to Customize LE/VSE Run-Time Options” on page 2 to

select your default values and use the information in Appendix A, “LE/VSE

Run-Time Options,” on page 61for more detail about the options and their syntax.

These defaults apply to applications running with the LE/VSE library. This

includes the C Prelinker and the C/VSE Compiler.

Modifying the JCL for CEEWDOPT

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the CEEWDOPT job, submit it. The job finishes with a return

code of 2 if it runs successfully. The return code of 2 indicates there were

unresolved weak external references during the link-edit steps. This return code is

normal and does not indicate a problem.

Note: From VSE/ESA 2.6 onwards, the CEEWDOPT job contains SET SDL

processing to reload the regenerated CEEDOPT.PHASE into the SVA.

Considerations for DB2 and PL/I Users

1. For DB2 users: Check the Usage notes under the run-time option

“ABTERMENC” on page 72.

2. PL/I users should be aware of the third STORAGE parameter (‘NONE’) which

provides migration help:

v If PL/I variables need to be pre-initialized (because the program did not

explicitly initialize these variables), you should set NONE to ‘00’.

v However, setting NONE to ‘00’ might reduce the performance of other

languages, since it uses the LE/VSE stack storage.

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the

ACC SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have

installed LE/VSE.

4. Copy member CEEDOPT.A from the PRD2.SCEEBASE sublibrary into job CEEWDOPT

in place of the comment line.

5. Change the parameters on the CEEXOPT macro statement in CEEDOPT to reflect the

values you have chosen for your installation-wide default batch run-time options.

18 LE/VSE: Customization Guide

CEEDOPT CSECT

CEEDOPT AMODE ANY

CEEDOPT RMODE ANY

 CEEXOPT ABPERC=((NONE),OVR), X

 ABTERMENC=((ABEND),OVR), X

 AIXBLD=((OFF),OVR), X

 ALL31=((OFF),OVR), X

 ANYHEAP=((16K,8K,ANYWHERE,FREE),OVR), X

 BELOWHEAP=((8K,4K,FREE),OVR), X

 CBLOPTS=((ON),OVR), X

 CBLPSHPOP=((OFF),OVR), X

 CHECK=((OFF),OVR), X

 COUNTRY=((US),OVR), X

 DEBUG=((OFF),OVR), X

 DEPTHCONDLMT=((10),OVR), X

 ENVAR=((’’),OVR), X

 ERRCOUNT=((20),OVR), X

 HEAP=((32K,32K,ANYWHERE,KEEP,8K,4K),OVR), X

 HEAPCHK=((OFF,1,0),OVR), X

 LIBSTACK=((12K,4K,FREE),OVR), X

 MSGFILE=((SYSLST),OVR), X

 MSGQ=((15),OVR), X

 NATLANG=((UEN),OVR), X

 NOTEST=((ALL,*,PROMPT,’’),OVR), X

 NOUSRHDLR=((),OVR), X

 RETZERO=((OFF),OVR), X

 RPTOPTS=((OFF),OVR), X

 RPTSTG=((OFF),OVR), X

 RTEREUS=((OFF),OVR), X

 STACK=((128K,128K,BELOW,KEEP),OVR), X

 STORAGE=((00,NONE,NONE,32K),OVR), X

 TERMTHDACT=((TRACE,,0),OVR), X

 TRACE=((OFF,4K,DUMP,LE=0),OVR), X

 TRAP=((ON,MAX),OVR), X

 UPSI=((00000000),OVR), X

 XUFLOW=((AUTO),OVR)

/ */

/ The below macro requires valid VSE/POWER settings for each of */

/ the options. If this is not done, failures may result and lost */

/ output. */

/ The options NODE and USERID are optional. However, if a NODE is */

/ specified, then a valid USERID MUST ALSO be specified. If you */

/ require the behaviour of the * in the node parameter, omit the */

/ node setting and just supply a USERID setting. Specifying an * */

/ in the NODE parameter is NOT VALID. */

/ To get a report of the current LSTQ options settings, set */

/ RPTOPTS(ON) via a support method and the resulting report will */

/ include a LSTQ options report. */

CEELSTQ CEELOPT CLASS=L, X

 DISP=D, X

 NODE=, X

 USERID=

 DC C’5686-CF7-32-81K (C) COPYRIGHT IBM CORP. 1991, 2004.’

 DC C’LICENSED MATERIALS - PROPERTY OF IBM’

 END

/*

Notes:

1. Xs are in column 72.

2. You can regenerate your batch-wide options using skeleton CEEWDOPT.

Figure 1. Sample Generation of CEEDOPT Object Module (Batch)

Chapter 2. Customizing LE/VSE 19

Changing the Installation-Wide Run-Time Options Default

(CICS)

Use the sample job in the PRD2.SCEEBASE sublibrary member CEEWCOPT.Z to

change the installation-wide defaults for the LE/VSE run-time options under CICS.

Use the worksheet in “Planning to Customize LE/VSE Run-Time Options” on page

2 to select your default values and use the information in Appendix A, “LE/VSE

Run-Time Options,” on page 61 for more detail about the options and their syntax.

Modifying the JCL for CEEWCOPT

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the CEEWCOPT job, submit it. The job finishes with a return

code of 2 if it runs successfully. The return code of 2 indicates there were

unresolved weak external references during the link-edit step. This return code is

normal and does not indicate a problem.

Notes:

1. From VSE/ESA 2.6 onwards, the CEEWCOPT job contains SET SDL processing

to reload the regenerated CEECOPT.PHASE into the SVA.

2. After running the modified CEEWCOPT JCL and the job completing

sucessfully, you must activate the new run-time options while the current CICS

system is active. To do this, you need to use the supplied CICS transaction

NEWC (or your own defined transaction code) to perform the new-copy

function. (Alternatively you can, of course, restart your CICS system to activate

the changes).

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the ACC

SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have installed

LE/VSE.

4. Copy member CEECOPT.A from the PRD2.SCEEBASE sublibrary into job CEEWCOPT in

place of the comment line.

5. Change the parameters on the CEEXOPT macro statement in CEECOPT to reflect the

values you have chosen for your installation-wide default CICS run-time options.

CEEDOPT CSECT

CEEDOPT AMODE ANY

CEEDOPT RMODE ANY

 CEEXOPT ABPERC=((NONE),OVR), X

 ABTERMENC=((ABEND),OVR), X

 AIXBLD=((OFF),OVR), X

 ALL31=((ON),OVR), X

 ANYHEAP=((4K,4080,ANYWHERE,FREE),OVR), X

Figure 2. Sample Generation of CEECOPT Object Module (CICS) (Part 1 of 2)

20 LE/VSE: Customization Guide

BELOWHEAP=((4K,4080,FREE),OVR), X

 CBLOPTS=((ON),OVR), X

 CBLPSHPOP=((ON),OVR), X

 CHECK=((OFF),OVR), X

 COUNTRY=((US),OVR), X

 DEBUG=((OFF),OVR), X

 DEPTHCONDLMT=((10),OVR), X

 ENVAR=((’’),OVR), X

 ERRCOUNT=((20),OVR), X

 HEAP=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR), X

 HEAPCHK=((OFF,1,0),OVR), X

 LIBSTACK=((4K,4080,FREE),OVR), X

 MSGFILE=((CESE),OVR), X

 MSGQ=((15),OVR), X

 NATLANG=((UEN),OVR), X

 NOTEST=((ALL,*,PROMPT,’’),OVR), X

 NOUSRHDLR=((),OVR), X

 RETZERO=((OFF),OVR), X

 RPTOPTS=((OFF),OVR), X

 RPTSTG=((OFF),OVR), X

 RTEREUS=((OFF),OVR), X

 STACK=((4K,4080,ANYWHERE,KEEP),OVR), X

 STORAGE=((00,NONE,NONE,0K),OVR), X

 TERMTHDACT=((TRACE,MSGFL,0),OVR), X

 TRACE=((OFF,4K,DUMP,LE=0),OVR), X

 TRAP=((ON,MAX),OVR), X

 UPSI=((00000000),OVR), X

 XUFLOW=((AUTO),OVR)

* DC C’5686-CF7-32-81K (C) COPYRIGHT IBM CORP. 1991, 2004.’

* DC C’LICENSED MATERIALS - PROPERTY OF IBM’

/ */

/ The below macro requires valid VSE/POWER settings for each of */

/ the options. If this is not done, failures will result with the */

/ CEEL011S message being displayed. The information displayed in */

/ this message can be used to determine the failure by referencing */

/ the VSE/POWER Application Programming Guide with the displayed */

/ VSE/POWER return code and feedback code. */

/ The options NODE and USERID are optional. However, if a NODE is */

/ specified, then a valid USERID MUST ALSO be specified. If you */

/ require the behaviour of the * in the node parameter, omit the */

/ node setting and just supply a USERID setting. Specifying an * */

/ in the NODE parameter is NOT VALID. */

/ To get a report of the current LSTQ options settings, run the */

/ supplied NEWC (or your locally defined version) CICS transaction.*/

/ This will produce a LSTQ options report and a LE/VSE run-time */

/ options report. This transaction will also reload the LSTQ and */

/ run-time options dynamically while CICS is still active. */

CEELSTQ CEELOPT CLASS=L, X

 DISP=D, X

 NODE=, X

 USERID=

 DC C’5686-CF7-32-81K (C) COPYRIGHT IBM CORP. 1991, 2004.’

 DC C’LICENSED MATERIALS - PROPERTY OF IBM’

 END

/*

Notes:

1. Xs are in column 72.

2. You can regenerate your CICS-wide options using skeleton CEEWCOPT.

3. The customization macro CEELOPT has been included in the above member. This is used to tailor LE/CICS

environments, by defining VSE/POWER LIST QUEUE options that LE/VSE will use when creating dump output

under CICS. If you require LE/CICS DUMP output to be routed to the VSE/POWER LIST QUEUE, you must

specify the LSTQ sub-option of TERMTHDACT run-time option (described on page 109).

4. For an example of how the NEWC transaction is used, see Figure 16 on page 126.

Figure 2. Sample Generation of CEECOPT Object Module (CICS) (Part 2 of 2)

Chapter 2. Customizing LE/VSE 21

Creating Application-Specific Options Using the CEEXOPT

Macro

You can create an application-specific options module to provide default run-time

options for a given application. A sample job to do this is in CEEWUOPT.Z. The

name of the CSECT created to establish application-specific defaults is CEEUOPT,

and this must then be link-edited with your application program for the defaults to

be recognized.

Each run of the job CEEWUOPT can create a new CEEUOPT options module in a

user-specified sublibrary. The application programmer can include one of these

CEEUOPT modules when link-editing an application. The options in CEEUOPT

then override the default options in CEEDOPT or CEECOPT, unless NONOVR was

specified for the option when CEEDOPT or CEECOPT was created.

The job invokes the CEEXOPT macro during the assembly of the CEEUOPT

module. OVR and NONOVR are not applicable to the creation of an

application-specific options module.

Using the CEEUOPT Run-Time Option Module

CEEUOPT is a sample source module (A-book), that is similar to that provided for

LE/VSE batch-wide run-time options (CEEDOPT).

You should be careful when specifying application-specific override options, since:

v A CEEUOPT module is intended to be linked with an application, and forces

specific application behaviour without changing the general batch- or CICS-wide

LE/VSE run-time option settings.

v If you create different levels of CEEUOPT.OBJ modules (for application relink

purposes), you can cause various problems if you do not carefully control the

use of the various levels.

WARNING: If you plan to use application-specific options with a CICS

application, you should review the IBM-supplied values, and ensure

they are appropriate for your CICS application. For values that are

applicable to CICS, see the storage report produced when using

RPTSTG(ON) or the supplied CEECOPT member (shown in Figure 2

on page 20). Otherwise, your CICS system might suffer from

performance degradation and/or storage problems.

Modifying the JCL for CEEWUOPT

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

22 LE/VSE: Customization Guide

After you modify the CEEWUOPT job, submit it. The job finishes with a return

code of 0 if it runs successfully.

Figure 3 provides an example of the use a CEEUOPT module, in which:

1. An option report is to be generated, by specifying the RPTOPTS(ON) run-time

option.

2. The application is prepared to be debugged, by specifying the TEST run-time

option.

Requirements for Coding the CEEXOPT Macro

v No omissions permitted in CEEDOPT and CEECOPT. Each option in the

CEEDOPT or CEECOPT template must be present, and each of its suboptions

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. Copy member CEEUOPT.A from the PRD2.SCEEBASE sublibrary into job CEEWUOPT

in place of the comment line. Change the parameters on the CEEXOPT macro statement

in CEEUOPT to reflect the values you have chosen for your application-specific default

run-time options. Delete all options you do not wish to change from the system-wide

default settings (as shown in Figure 3 below).

4. Change YOURLIB.YOURSUB in the ACC SUBLIB statement to the name of the sublibrary

into which you want your CEEUOPT module to be cataloged. The new CEEUOPT

module replaces any existing CEEUOPT module in the chosen sublibrary.

 * $$ JOB JNM=SMPUOPT,CLASS=Z

 * $$ PUN DISP=I,PRI=6,CLASS=Z

 // JOB SMPUOPT

 // LIBDEF *,SEARCH=(PRD2.SCEEBASE)

 // ASSGN SYSIPT,SYSRDR

 // EXEC IESINSRT

 // JOB SMPUOPT

 *

 * STEP 2: CATALOG MODULE CEEUOPT.OBJ

 *

 // EXEC LIBR,PARM=’MSHP;ACCESS SUBLIB=PRD2.CONFIG’

 * $$ END

 *

 * STEP 1: ASSEMBLE LE/VSE APPLICATION UOPTS

 *

 // OPTION DECK

 // EXEC ASMA90,SIZE=ASMA90

 PUNCH ’ CATALOG CEEUOPT.OBJ,REPLACE=YES’

 PRINT ON,NOGEN

 CEEUOPT CSECT

 CEEUOPT AMODE ANY

 CEEUOPT RMODE ANY

 CEEXOPT RPTOPTS=(ON), X

 TEST=(ALL,*,PROMPT,*)

 END

 /*

 // ASSGN SYSIPT,SYSRDR

 // EXEC IESINSRT

 /*

 #&

 $ $$ EOJ

 * $$ END

/&

* $$ EOJ

Figure 3. Sample Use of the CEEUOPT Run-Time Option Module

Chapter 2. Customizing LE/VSE 23

must be specified with one of the legal suboption values, except for the

sub-option of the USRHDLR option. The final suboption for each CEEDOPT or

CEECOPT option must be OVR or NONOVR. OVR means that the option can

be overridden at run time. NONOVR means that the option cannot be

overridden at run time.

v Omissions permitted in CEEUOPT. You can completely omit the specification

of any option in CEEUOPT. Default values are then supplied for each of the

missing options.

In either case, the continuation character (X in this example) must still be present

in column 72.

In CEEUOPT, IBM recommends that you omit any options you do not wish to

change. The options you omit from the macro will default to the

installation-wide defaults you set in CEEDOPT or CEECOPT.

v Omission of suboptions in CEEUOPT. In CEEUOPT, you can use commas to

indicate the omission of one or more suboptions for options having more than

one suboption. For example, if you wish to specify only the second suboption of

the STORAGE option, the omission of the 1st, 3rd, and 4th suboptions can be

indicated in any of the following ways:

STORAGE=(,NONE), X

STORAGE=(,NONE,), X

STORAGE=(,NONE,,), X

Because suboptions are positional parameters, do not omit the comma if the

corresponding suboption is omitted and another suboption follows.

Note: If you specify an option in the CEEUOPT, there are special defaults for

omitted sub-options. You can find these default values under the “Usage

Notes” heading for the related run-time options.

v Continuing lines of code. A continuation character (X in the source) must be in

column 72 on each line of the CEEXOPT invocation except the last line. The

continuation line must start in column 16. You can break the coding after any

comma.

v Case sensitivity. Options and suboptions must be in uppercase. Only suboptions

that are strings can be specified in mixed-case or lowercase. For example, both

MSGFILE=(SYSLST) and MSGFILE=(syslst) are acceptable, but

TRACE=((off,4K,DUMP,LE=0),OVR) is not.

v A comma must end each option except for the final option. If the comma is

omitted, everything following the option is treated as a comment.

v Special characters. If one of the string suboptions contains a special character

(for example, an embedded blank or unmatched right or left parenthesis), the

string must be enclosed in single apostrophes ('), not in double quotation marks

("). (You can specify a null string with either contiguous single apostrophes or

contiguous double quotation marks.)

To obtain a single apostrophe (') or a single ampersand (&) within a string, you

must specify two contiguous instances of the character. The pair is counted as

only one character in determining whether the maximum allowable string length

has been exceeded and in setting the effective length of the string.

v Maximum length. Macro instruction operands cannot be longer than 255

characters. If the number of characters to the right of the equal sign is greater

than 255 for any keyword parameter in the CEEXOPT invocation in CEEDOPT,

CEECOPT, or CEEUOPT, a return code of 12 is produced for the assembly, and

the options are not parsed properly.

24 LE/VSE: Customization Guide

v Apostrophes. Avoid unmatched apostrophes in any string that uses apostrophes.

The error cannot be captured within CEEXOPT itself; instead, the assembler

produces a message such as:

 ASMA063 *** ERROR *** NO ENDING APOSTROPHE

However, the assembler does not necessarily produce such a message

immediately following the offending suboption. If the assembler detects

unmatched apostrophes, none of the options are properly parsed.

v Options that permit only one suboption. Options that permit only one

suboption do not need to enclose that suboption in parentheses. For example,

you can specify the COUNTRY option in CEEUOPT in either of the following

ways:

COUNTRY=(US), X

COUNTRY=US, X

Chapter 2. Customizing LE/VSE 25

Changing Run-Time LIOCS Phases Defaults

You can customize the run-time LIOCS phases for card reader/punch devices,

diskette devices, and printer devices. Table 21 summarizes the sample jobs IBM

provides to help you customize the run-time options.

 Table 21. Sample Jobs to Change Run-Time LIOCS Phases

Change LIOCS Phases For Sample Job Member

Assembler Source

Member

Card reader/punch devices CEEWDCD0.Z CEEYCD0.A

Diskette devices CEEWDDU0.Z CEEYDU0.A

Printer devices CEEWDPR0.Z CEEYPR0.A

Note: These jobs are available in ICCF Library 62.

All of the members listed in Table 21 are installed in the PRD2.SCEEBASE

sublibrary.

The LE/VSE macros CEEXCDMD, CEEXDUMD, and CEEXPRMD, described in

Appendix B, “LE/VSE Run-Time LIOCS Phases,” on page 129, generate card,

diskette, and printer LIOCS routines that are suitable for your applications. These

macros are front-end macros for the VSE-supplied macros CDMOD, DUMODFI,

DUMODFO, and PRMOD. For more information about device LIOCS routines, see

the descriptions of macros CDMOD, DUMODFI, DUMODFO, and PRMOD in the

z/VSE System Macros Reference.

To change a run-time LIOCS phase, copy the corresponding assembler source

member into the sample job in place of the comment, and change the parameters

on the macro (CEEXCDMD, CEEXDUMD, or CEEXPRMD) invocation in the

sample job you are using. Make the parameters in the macro invocation match the

parameters you have selected for your installation.

Figure 4 on page 27 shows the source statements used to generate the

IBM-supplied version of the card reader/punch device run-time LIOCS phase,

CEEYCD0, with the file attributes supported.

Figure 5 on page 28 shows the source statements used to generate the

IBM-supplied version of the diskette device run-time LIOCS phase, CEEYDU0,

with the file attributes supported.

Figure 6 on page 28 shows the source statements used to generate the

IBM-supplied version of the printer device run-time LIOCS phase, CEEYPR0, with

the file attributes supported.

26 LE/VSE: Customization Guide

CEEXCDMD TYPE=START

 CEEXCDMD TYPE=ENTRY,TYPEFLE=INPUT,DEVICE=1442, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=INPUT,DEVICE=2520, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=INPUT,DEVICE=2540, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=INPUT,DEVICE=3505, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=INPUT,DEVICE=3525, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=INPUT,DEVICE=3881, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=1442, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2520, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES, X

 CTLCHR=ASA

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES, X

 CTLCHR=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=3525, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES

*

* The following are added for C runtime support

*

 CEEXCDMD TYPE=ENTRY,TYPEFLE=INPUT,DEVICE=2540, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES,WORKA=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES,WORKA=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES, X

 CTLCHR=ASA,WORKA=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=FIXUNB,IOAREA2=YES,RDONLY=YES, X

 CTLCHR=YES,WORKA=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=VARUNB,IOAREA2=YES,RDONLY=YES,WORKA=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=VARUNB,IOAREA2=YES,RDONLY=YES, X

 CTLCHR=ASA,WORKA=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=VARUNB,IOAREA2=YES,RDONLY=YES, X

 CTLCHR=YES,WORKA=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=UNDEF,IOAREA2=YES,RDONLY=YES,WORKA=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=UNDEF,IOAREA2=YES,RDONLY=YES, X

 CTLCHR=ASA,WORKA=YES

 CEEXCDMD TYPE=ENTRY,TYPEFLE=OUTPUT,DEVICE=2540, X

 RECFORM=UNDEF,IOAREA2=YES,RDONLY=YES, X

 CTLCHR=YES,WORKA=YES

 CEEXCDMD TYPE=FINAL

 END

Note: Xs are in column 72.

Figure 4. Sample Invocation of CEEXCDMD to Generate the CEEYCD0 Phase

Chapter 2. Customizing LE/VSE 27

CEEXDUMD TYPE=START

 CEEXDUMD TYPE=ENTRY,TYPEFLE=INPUT,RDONLY=YES

*

 CEEXDUMD TYPE=ENTRY,TYPEFLE=OUTPUT,RDONLY=YES

 CEEXDUMD TYPE=FINAL

 END

Figure 5. Sample Invocation of CEEXDUMD to Generate the CEEYDU0 Phase

 CEEXPRMD TYPE=START

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=FIXUNB, X

 RDONLY=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=FIXUNB, X

 CTLCHR=YES,RDONLY=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=FIXUNB, X

 CTLCHR=ASA,RDONLY=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=VARUNB, X

 RDONLY=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=VARUNB, X

 CTLCHR=YES,RDONLY=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=VARUNB, X

 CTLCHR=ASA,RDONLY=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=UNDEF, X

 RDONLY=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=UNDEF, X

 CTLCHR=YES,RDONLY=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=UNDEF, X

 CTLCHR=ASA,RDONLY=YES

*

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=FIXUNB, X

 RDONLY=YES,WORKA=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=FIXUNB, X

 CTLCHR=YES,RDONLY=YES,WORKA=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=FIXUNB, X

 CTLCHR=ASA,RDONLY=YES,WORKA=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=VARUNB, X

 RDONLY=YES,WORKA=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=VARUNB, X

 CTLCHR=YES,RDONLY=YES,WORKA=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=VARUNB, X

 CTLCHR=ASA,RDONLY=YES,WORKA=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=UNDEF, X

 RDONLY=YES,WORKA=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=UNDEF, X

 CTLCHR=YES,RDONLY=YES,WORKA=YES

 CEEXPRMD TYPE=ENTRY,DEVICE=1403,IOAREA2=YES,RECFORM=UNDEF, X

 CTLCHR=ASA,RDONLY=YES,WORKA=YES

 CEEXPRMD TYPE=FINAL

 END

Note: Xs are in column 72.

Figure 6. Sample Invocation of CEEXPRMD to Generate the CEEYPR0 Phase

28 LE/VSE: Customization Guide

Changing the Card-Device Run-Time LIOCS Phase

 Note!:

1. During customization, you are recommended not to delete or change any

shipped LE/VSE LIOCS definitions. If LIOCS definitions for dummy card

punch, card reader, and printer devices are missing, the startup of the CICS

Transaction Server might be severely affected.

2. The Interactive Interface’s Hardware Configuration dialog also contains

definitions for dummy card punch, card reader, and print devices. These

definitions reflect the currently-shipped LE/VSE LIOCS. You are recommended

not to delete or change any of these definitions.

3. If, however, you do decide to change any of the dummy device defnitions,

ensure you have customized the appropriate LIOCS definitions for these devices!.

Use the sample job in the PRD2.SCEEBASE sublibrary member CEEWDCD0.Z to

replace the IBM-supplied card-device run-time LIOCS phase. Use the information

in Appendix B, “LE/VSE Run-Time LIOCS Phases,” on page 129 to select your

default values.

Modifying the JCL for CEEWDCD0

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the CEEWDCD0 job, submit it. The job finishes with a return

code of 0 if it runs successfully.

Note: This sample job will replace the LE/VSE card-device LIOCS phase,

CEEYCD0, in the installation sublibrary. If service is applied to this phase

you may need to rerun CEEWDCD0.

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries Where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the ACC

SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have installed

LE/VSE.

4. Copy member CEEYCD0.A from the PRD2.SCEEBASE sublibrary into job CEEWDCD0

in place of the comment line.

5. Add any additional CEEXCDMD TYPE=ENTRY macro calls that you require to describe

the additional combinations of file attributes you need to support at your installation.

6. Remove any CEEXCDMD TYPE=ENTRY macros you do not require at your installation.

If these are left in it will make the phase slightly larger but will not affect the correct

running of your LE/VSE application program.

7. Make sure you do not change the position or format of the CEEXCDMD TYPE=START

or CEEXCDMD TYPE=FINAL macro calls in the supplied job.

Chapter 2. Customizing LE/VSE 29

Changing the Diskette-Device Run-Time LIOCS Phase

Before you start, please read the note at the start of section “Changing the

Card-Device Run-Time LIOCS Phase” on page 29!.

Use the sample job in the PRD2.SCEEBASE sublibrary member CEEWDDU0.Z to

replace the IBM-supplied diskette-device run-time LIOCS phase. Use the

information in Appendix B, “LE/VSE Run-Time LIOCS Phases,” on page 129 to

select your default values.

Modifying the JCL for CEEWDDU0

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the CEEWDDU0 job, submit it. The job finishes with a return

code of 0 if it runs successfully.

Note: This sample job will replace the LE/VSE diskette-device LIOCS phase,

CEEYDU0, in the installation sublibrary. If service is applied to this phase

you may need to rerun CEEWDDU0.

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the ACC

SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have installed

LE/VSE.

4. Copy member CEEYDU0.A from the PRD2.SCEEBASE sublibrary into job CEEWDDU0

in place of the comment line.

5. Add any additional CEEXDUMD TYPE=ENTRY macro calls that you require to describe

the additional combinations of file attributes you need to support at your installation.

6. Remove any CEEXDUMD TYPE=ENTRY macros you do not require at your installation.

If these are left in it will make the phase slightly larger but will not affect the correct

running of your LE/VSE application program.

7. Make sure you do not change the position or format of the CEEXDUMD TYPE=START

or CEEXDUMD TYPE=FINAL macro calls in the supplied job.

30 LE/VSE: Customization Guide

Changing the Printer-Device Run-Time LIOCS Phase

Before you start, please read the note at the start of section “Changing the

Card-Device Run-Time LIOCS Phase” on page 29!.

Use the sample job in the PRD2.SCEEBASE sublibrary member CEEWDPR0.Z to

replace the IBM-supplied printer-device run-time LIOCS phase. Use the

information in Appendix B, “LE/VSE Run-Time LIOCS Phases,” on page 129 to

select your default values.

Modifying the JCL for CEEWDPR0

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the CEEWDPR0 job, submit it. The job finishes with a return

code of 0 if it runs successfully.

Note: This sample job will replace the LE/VSE printer-device LIOCS phase,

CEEYPR0, in the installation sublibrary. If service is applied to this phase

you may need to rerun CEEWDPR0.

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the ACC

SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have installed

LE/VSE.

4. Copy member CEEYPR0.A from the PRD2.SCEEBASE sublibrary into job CEEWDPR0 in

place of the comment line.

5. Add any additional CEEXPRMD TYPE=ENTRY macro calls that you require to describe

the additional combinations of file attributes you need to support at your installation.

6. Remove any CEEXPRMD TYPE=ENTRY macros you do not require at your installation.

If these are left in it will make the phase slightly larger but will not affect the correct

running of your LE/VSE application program.

7. Make sure you do not change the position or format of the CEEXPRMD TYPE=START or

CEEXPRMD TYPE=FINAL macro calls in the supplied job.

Chapter 2. Customizing LE/VSE 31

Changing the Assembler Language User Exit

The LE/VSE sublibrary contains three sample jobs to assist you in modifying the

assembler language user exit. Two of the jobs replace the IBM-supplied

installation-wide assembler user exits. The third sample job creates an

application-specific assembler user exit that can be link-edited with those

applications that need its functions. You can create several different

application-specific user exits, each in a different sublibrary, to satisfy the needs of

different application programs. Examples of the source for assembler user exits are

provided in the LE/VSE sublibrary.

Table 22 describes these sample assembler user exits.

 Table 22. Sample Assembler User Exits for LE/VSE

Example User Exit Operating System Language (if Language-Specific)

CEEBXITA VSE (default)

CEECXITA CICS (default)

CEEBX05A VSE VS COBOL II compatibility

Note:

1. CEEBXITA and CEECXITA are the defaults on your system for VSE and CICS, if

LE/VSE is installed at your site without modification.

2. The source code for CEEBXITA, CEECXITA, and CEEBX05A can be found in the

LE/VSE sublibrary.

Use the information in Appendix C, “Customizing LE/VSE User Exits,” on page

143 to assist you in modifying the IBM-supplied user exits or in creating your own.

If you specify run-time options in an assembler language user exit, they override

options specified in CEEUOPT. They override options in CEEDOPT or CEECOPT

only if OVR was specified for the option in CEEDOPT or CEECOPT.

Changing the Installation-Wide Assembler Language User Exit

(Batch)

Use the sample job in the PRD2.SCEEBASE sublibrary member CEEWDXIT.Z to

change the installation-wide assembler language user exit. You must replace the

comment in CEEWDXIT with your source for CEEBXITA. You can copy the source

for the IBM-supplied default installation-wide assembler language user exit from

member CEEBXITA.A in the PRD2.SCEEBASE sublibrary and modify it to suit

your needs, or you can create your own source for CEEBXITA. Use the information

in Appendix C, “Customizing LE/VSE User Exits,” on page 143 to guide you in

coding your changes.

Modifying the JCL for CEEWDXIT

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

32 LE/VSE: Customization Guide

After you modify the CEEWDXIT job, submit it. The job finishes with a return

code of 2 if it runs successfully. The return code of 2 indicates there were

unresolved weak external references during the link-edit steps. This return code is

normal and does not indicate a problem.

Note: If CEEBXITA.PHASE is loaded in the SVA, you will need to reload this

module. If you wish to use the LE/VSE attention routine commands to

report on currently active assembler user exit information, then

CEEBXITA.PHASE must be resident in the SVA.

Changing the Installation-Wide Assembler Language User Exit

(CICS)

Use the sample job in the PRD2.SCEEBASE sublibrary member CEEWCXIT.Z to

change the CICS installation-wide assembler language user exit. You must replace

the comment in CEEWCXIT with your source for CEECXITA. You can copy the

source for the IBM-supplied default installation-wide assembler language user exit

from the member CEECXITA.A in the PRD2.SCEEBASE sublibrary and modify it to

suit your needs, or you can create your own source for CEECXITA.

Note the differences between the IBM-supplied CEEBXITA and the IBM-supplied

CEECXITA. You can retain some or all of these differences in your user exit. Use

the information in Appendix C, “Customizing LE/VSE User Exits,” on page 143 to

guide you in coding your changes.

Modifying the JCL for CEEWCXIT

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the CEEWCXIT job, submit it. The job finishes with a return

code of 2 if it runs successfully. The return code of 2 indicates there were

unresolved weak external references during the link-edit step. This return code is

normal and does not indicate a problem.

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the ACC

SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have installed

LE/VSE.

4. Replace the comment in the job with your source program for the installation-wide

(batch) assembler language user exit.

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the ACC

SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have installed

LE/VSE.

4. Replace the comment in the job with your source program for the installation-wide CICS

assembler language user exit.

Chapter 2. Customizing LE/VSE 33

Notes:

1. LE/VSE will not use a newly created Assembler User Exit under CICS until the

CICS system(s) has been re-started via either a COLD or EMERGENCY startup.

There is no support for dynamically loading a new CEECXITA into an active

CICS system. Use of the CICS CEMT facility on CEECXITA is not supported.

2. Remember that if you have the CEECXITA PHASE loaded in the SVA, you will

need to reload this module into the SVA after running the CEEWCXIT job to

activate the new Assembler User Exit PHASE.

Creating an Application-Specific Assembler Language User

Exit

Use the sample job CEEWUXIT in the PRD2.SCEEBASE sublibrary member

CEEWUXIT.Z to create as many application-specific assembler language user exits

as your site requires. You must replace the comment in CEEWUXIT with your

source. You can copy the source for the IBM-supplied default installation-wide

assembler language user exit from member CEEBXITA.A (batch) or member

CEECXITA.A (CICS) in the PRD2.SCEEBASE sublibrary and modify it to suit your

needs, or you can create your own source.

You can run job CEEWUXIT several times to create several different CEEBXITA

modules, each in its own user-specified sublibrary. Use the information in

Appendix C, “Customizing LE/VSE User Exits,” on page 143 to guide you in

coding your changes.

Modifying the JCL for CEEWUXIT

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the CEEWUXIT job, submit it. The job finishes with a return

code of 0 if it runs successfully.

Note: The LE/VSE attention routine interface feature cannot report on any

application-specific assembler user exits that might be used or included in

applications.

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. Replace the comment in the job with your source program for the application-specific

assembler language user exit.

4. Change YOURLIB.YOURSUB in the ACC SUBLIB statement, to the name of the sublibrary

into which you want your CEEBXITA module to be cataloged. The new CEEBXITA

module replaces any existing CEEBXITA module in the chosen sublibrary.

34 LE/VSE: Customization Guide

Creating a High-Level Language User Exit

Use the sample job CEEWHLLX in the PRD2.SCEEBASE sublibrary member

CEEWHLLX.Z to create as many high-level language user exits as your site

requires. The sample job catalogs the object program for the user exit. It does not

contain JCL to compile the high-level language source program. You must compile

your user exit and use the object program produced by the compiler to replace the

comment in the job CEEWHLLX. Refer to Appendix C, “Customizing LE/VSE User

Exits,” on page 143 for a description of the high-level language user exit interface.

Modifying the JCL for CEEWHLLX

 After you modify the CEEWHLLX job, submit it. The job finishes with a return

code of 0 if it runs successfully.

Creating a User-Written Handler for Compatibility with VS COBOL II

and DOS PL/I

Use the sample code in CEEWUCHA.A in the PRD2.SCEEBASE sub-library, to

provide condition handling compatibility under CICS/VSE with VS COBOL II and

DOS PL/I. The condition handler you create usingt CEEWUCHA.A is registered at

stack frame 0 by the USRHDLR run-time option.

Two sample jobs are provided to assemble and link-edit CEEWUCHA depending

upon the requirements of your site. Table 23 summarizes these sample jobs.

 Table 23. Sample Jobs to Create a User-Written Condition Handler

Function Sample Job

Create a phase for VS COBOL II-only compatibility CEEWWCHA.Z

Create a phase for VS COBOL II and DOS PL/I compatibility CEEWCCHA.Z

Notes:

1. These jobs are available in ICCF Library 62.

2. VS COBOL II is no longer in service, and is therefore not available from VSE/ESA 2.5 onwards.

1. Modify the job card as appropriate for your site.

2. Add POWER JECL statements if your site requires them.

3. Replace the comment line in CEEWHLLX with the object program obtained by

compiling your high-level language user exit.

4. Change YOURLIB.YOURSUB in the ACC SUBLIB parameter of the EXEC LIBR statement, to

the name of the sublibrary into which you want your CEEBINT module to be cataloged.

The new CEEBINT module replaces any existing CEEBINT module in the chosen

sublibrary.

Chapter 2. Customizing LE/VSE 35

Modifying the JCL for CEEWWCHA and CEEWCCHA

 After you modify the job, submit it. The job finishes with a return code less than 4

if it runs successfully.

1. Modify the job card as appropriate for your site.

2. Add POWER JECL statements if your site requires them.

3. Insert the program CEEWUCHA as described in the JCL.

4. If you are modifying CEEWCCHA.Z then modify the &PLI SETC statement as described

in the JCL member, to activate the DOS PL/I compatibility mode.

5. If necessary, change the name of the sub-library specified in the LIBDEF *,SEARCH

statement to match the sub-library where you have installed LE/VSE.

6. Change YOURLIB.YOURSUB in the library LIBDEF PHASE,CATALOG statement, to the name of

the sub-library into which you want your user-written condition handler phase to be

cataloged.

36 LE/VSE: Customization Guide

Customizing LE/VSE Abnormal Termination Exits

If LE/VSE encounters an unhandled condition of severity 2 or greater, it can

invoke an abnormal termination exit before it terminates the enclave. If the

abnormal termination exit is invoked before the thread is terminated, the abnormal

termination exit can collect problem determination data before LE/VSE frees the

resources it has acquired.

Shipped Defaults

LE/VSE is shipped with a default abnormal termination exit setting, which you

can find in these shipped members:

v CEEBXTAN.A (for batch)

v CEECXTAN.A (for CICS)

The above two shipped members are associated with these job skeletons (available

in ICCF library 62):

v CEEWDEXT.Z

v CEEWCEXT.Z

Note: From z/VSE 3.1 onwards, the IUI-supplied exit IESPDATX is enabled to

include U40xx abends in OLPD records. For detailed information about how

OLPD is used, refer to the section “Online Analysis of CICS TS Transaction

Abends” in the manual z/VSE Guide for Solving Problems, SC33-8232.

The LE/CICS abnormal termination exit was changed from LE/VSE 1.4.1 onwards,

by specifying TERMXIT=CEEBNATX instead of TERMXIT=CEECDATX. This abnormal

termination exit is used when you receive application abends under CICS, and

when invoked it ensures immediate return to the caller. From LE/VSE 1.4.1

onwards, the abnormal termination exit for CICS is pre-customized with this

null-exit capability (CEEBNATX) so that the cause of a CICS Axxx abend code is

easier to identify.

Sample Source Programs

The LE/VSE library also contains two sample source programs that you can use as

examples of how to write an abnormal termination exit:

CEEBBATX.A

A batch abnormal termination exit. It produces a system dump when

invoked.

Note: If you use run-time options TERMTHDACT(UADUMP) and TRAP(ON,MAX),

you can also generate a system dump without the need to customize

the abnormal termination exits!.

CEECATX1.A

An LE/CICS abnormal termination exit – predump. For details of the

PREDUMP and POSTDUMP functions, refer to “CEEXART Macro” on page 38.

Creating an LE/VSE Abnormal Termination Exit

To create an abnormal termination exit:

1. Create an assembler language routine that conforms to the syntax described in

“Abnormal Termination Exit Syntax” on page 155.

2. Assemble and link-edit your exit into a library that LE/VSE can access at run

time, such as PRD2.SCEEBASE.

Chapter 2. Customizing LE/VSE 37

3. Create a CEEEXTAN CSECT containing a CEEXART macro identifying your

exit. The CEEXART macro specifies your routine as an abnormal termination

exit routine. PRD2.SCEEBASE contains the source modules CEECXTAN.A (for

CICS) or CEEBXTAN.A (for non-CICS) which you can use to create a

CEEEXTAN CSECT. See “Creating a CEEEXTAN Abnormal Termination Exit

CSECT” for more information.

4. Replace the existing CEEEXTAN CSECT with the updated CEEEXTAN as

described in the sections below.

5. If you wish to use the LE/VSE attention routine feature to report on your

defined abnormal termination exits, CEEBXTAN.PHASE must be loaded and

resident in the SVA.

Creating a CEEEXTAN Abnormal Termination Exit CSECT

CEEEXTAN is a CSECT you create by coding these LE/VSE-provided assembler

macros:

CEEXAHD Defines the header of the table

CEEXART Identifies the name of the abnormal termination exit to be invoked

CEEXAST Identifies the end of the list of abnormal termination exits

You can use the above three macros to create these objects decks:

v CEEBXTAN (for batch)

v CEECXTAN (for CICS)

Each object deck has the CSECT name CEEEXTAN.

You then link these object decks to create these phases:

v CEEBXTAN.PHASE (for batch)

v CEECXTAN.PHASE (for CICS)

LE/VSE will automatically use the correct phase dependant upon the environment

being used.

LE/VSE validates the format of the abnormal termination exit CSECT and issues a

load of the phases identified in the table. The LOAD is attempted only for

terminations due to unhandled conditions of severity 2 or greater:

v If the LOAD is successful, an abnormal termination exit is invoked according to

the interface described below.

v If the LOAD fails (for example, if the phase cannot be found, or there is not

enough storage for the routine), no error indication is delivered and either the

next name in CEEEXTAN is chosen, or termination continues (if the names have

been exhausted).

This allows your sublibrary search chain to either contain or omit the phases.

CEEXAHD Macro

CEEXAHD generates the CSECT statement and any header information required. It

has no operands.

CEEXART Macro

CEEXART generates one entry for an abnormal termination exit.

More than one invocation of CEEXART can appear in the CEEEXTAN CSECT, thus

allowing multiple abnormal termination exits to be registered. When more than

38 LE/VSE: Customization Guide

one name is specified, the abnormal termination exits are honored at the specified

point in enclave termination in the order found in CEEEXTAN CSECT.

Syntax

44 CEEXART TERMXIT= exitname

POSTDUMP

,

TYPE=

PREDUMP

BOTH

 4<

TERMXIT

Keyword required to specify the phase name for the abnormal termination exit.

exitname

The phase name for the abnormal termination exit. There is a limit of 8

characters for the phase name, and no validation of the name is performed by

the macro.

TYPE

Keyword required to specify the type of abnormal termination exit.

POSTDUMP

The abnormal termination exit is invoked after the LE/VSE dump is generated.

PREDUMP

The abnormal termination exit is invoked before the LE/VSE dump is

generated. The abnormal termination exit can pass back to LE/VSE a return

code of 8 in register 15 indicating the LE/VSE dump not be generated.

BOTH

The abnormal termination exit is invoked both before and after the LE/VSE

dump is generated. When invoked before the LE/VSE dump is generated, the

abnormal termination exit can pass back to LE/VSE a return code of 8 in

register 15 indicating the LE/VSE dump not be generated.

CEEXAST Macro

CEEXAST generates the trailer for the CEEEXTAN CSECT. It has no parameters.

Installation Jobs to Generate and Modify CEEEXTAN CSECT

You can use two source files to generate CEEEXTAN CSECT, one for CICS and one

for Batch. The following members are provided in the PRD2.SCEEBASE sublibrary:

CEEBXTAN.A Source to generate CEEEXTAN CSECT for Batch

CEECXTAN.A Source to generate CEEEXTAN CSECT for CICS

You can use the jobs in the following two PRD2.SCEEBASE sublibrary members to

replace CEEEXTAN CSECT:

CEEWDEXT.Z Replaces CEEEXTAN CSECT for Batch

CEEWCEXT.Z Replaces CEEEXTAN CSECT for CICS

Chapter 2. Customizing LE/VSE 39

Identifying an Abnormal Termination Exit (Batch)

Use the sample job CEEWDEXT in the PRD2.SCEEBASE sublibrary member

CEEWDEXT.Z to identify an abnormal termination exit in a Batch environment.

1. Replace the comment in CEEWDEXT with your source for CEEBXTAN.

2. Copy the source from the IBM-supplied default, which invokes the null module

CEEBDATX, from member CEEBXTAN.A in the PRD2.SCEEBASE sublibrary

and modify it to suit your needs.

Modifying the JCL for CEEWDEXT

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the CEEWDEXT job, submit it. The job finishes with a return

code of 2 if it runs successfully. The return code of 2 indicates there were

unresolved weak external references during the link-edit steps. This return code is

normal and does not indicate a problem.

Note: This sample job no longer replaces the LE/VSE initialization/termination

phases, CEEBINIT and CEEPIPI, in the installation sublibrary.

Figure 7 on page 41 contains the source for the IBM-supplied CEEBXTAN.A:

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the ACC

SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have installed

LE/VSE.

4. Replace the comment lines in CEEWDEXT with your source program that identifies an

abnormal termination exit.

40 LE/VSE: Customization Guide

TITLE ’LE/VSE Abnormal Termination User exit CSECT for BATCH’

*/**/

/ */

/ Language Environment/VSE V1 R4 M2 */

/ */

/ LICENSED MATERIALS - PROPERTY OF IBM */

/ */

/ 5686-066-32-65K (C) COPYRIGHT IBM CORPORATION 2001 */

/ ALL RIGHTS RESERVED. */

/ */

/ US Government Users Restricted Rights - Use, duplication or */

/ disclosure restricted by GSA ADP Schedule Contract with IBM */

/ Corp. */

/ */

/ ** */

/ I M P O R T A N T */

/ */

/ If you do not use the supplied JCL sample (CEEWDEXT) to assemble */

/ and linkedit this CSECT, please ensure this module is cataloged */

/ as CEEEXTAN.OBJ with a CSECT name of CEEEXTAN. The link-book */

/ provided for linkediting the required PHASE is CEE$XTAN.OBJ */

/ and is supplied in the LE/VSE Installation sub-library. */

/ */

*/**/

 CEEXAHD ,User exit header

*

* Use the default BATCH null abnormal termination exit.

* You can change the following module name, specified on the TERMXIT

* option, to another user written abnormal termination exit routine.

*

 CEEXART TERMXIT=CEEBNATX

*

* To specify an additional abnormal termination exit, change the

* following line where CEEXART is specified:

* - change the XXXXXXXX to the name of the abnormal termination exit

* - change the ’*’ in column 1 to a blank

*

* CEEXART TERMXIT=XXXXXXXX

*

 CEEXAST ,Terminate the list

Figure 7. Default Member CEEBXTAN.A (for Batch Environment)

Chapter 2. Customizing LE/VSE 41

Identifying an Abnormal Termination Exit (CICS)

Use the sample job CEEWCEXT in the PRD2.SCEEBASE sublibrary member

CEEWCEXT.Z to identify an abnormal termination exit in a CICS environment.

Replace the comment in CEEWCEXT with your source for CEECXTAN. Copy the

source from the IBM-supplied default, from member CEECXTAN.A in the

PRD2.SCEEBASE sublibrary and modify it to suit your needs.

Modifying the JCL for CEEWCEXT

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the CEEWCEXT job, submit it. The job finishes with a return

code of 2 if it runs successfully. The return code of 2 indicates there were

unresolved weak external references during the link-edit steps. This return code is

normal and does not indicate a problem.

Figure 8 on page 43 contains the source for the IBM-supplied CEECXTAN.A:

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the ACC

SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have installed

LE/VSE.

4. If necessary, change the name of the sublibrary specified in the EXEC LIBR statement to

match the sublibrary where you have installed LE/VSE.

5. Replace the comment lines in CEEWCEXT with your source program that identifies an

abnormal termination exit.

42 LE/VSE: Customization Guide

Notes:

1. From LE/VSE 1.4.1 onwards, TERMXIT is set to CEEBNATX by default.

 TITLE ’LE/VSE Abnormal Termination User exit CSECT for CICS’

*/**/

/ */

/ Language Environment/VSE V1 R4 M4 */

/ */

/ LICENSED MATERIALS - PROPERTY OF IBM */

/ */

/ 5686-CF7-32-81K (C) COPYRIGHT IBM CORPORATION 1996, 2004 */

/ ALL RIGHTS RESERVED. */

/ */

/ US Government Users Restricted Rights - Use, duplication or */

/ disclosure restricted by GSA ADP Schedule Contract with IBM */

/ Corp. */

/ ** */

/ I M P O R T A N T */

/ */

/ If you do not use the supplied JCL sample (CEEWCEXT) to assemble */

/ and linkedit this CSECT, please ensure this module is cataloged */

/ as CEECXTAN.OBJ with a CSECT name of CEEEXTAN. The link-book */

/ provided for linkediting the required PHASE is CEE$CTAN.OBJ */

/ and is supplied in the LE/VSE Installation sub-library. */

/ */

*/**/

 CEEXAHD ,User exit header

*

* To replace the default abnormal termination exit with a your own,

* assemble and link-edit your module and replace CEEBNATX with your

* modules name in the following line where CEEXART is specified.

*

* CEEXART TERMXIT=CEECDATX

 CEEXART TERMXIT=IESPDATX,TYPE=POSTDUMP

 CEEXART TERMXIT=CEEBNATX

*

* To specify an additional abnormal termination exit, change the

* following line where CEEXART is specified:

* - change the XXXXXXXX to the name of the abnormal termination exit

* - change the ’*’ in column 1 to a blank

*

* CEEXART TERMXIT=XXXXXXXX

*

* The following line shows an example of specifying the sample

* program CEECATX1 as a pre-dump abnormal termination exit.

* NOTE: valid options for the TYPE parameter are:

*

* - POSTDUMP: exit invoked after LE dump is generated (default)

* - PREDUMP : exit invoked before LE dump is generated

* - BOTH : exit invoked both before and after LE dump is

* generated.

*

* CEEXART TERMXIT=CEECATX1,TYPE=PREDUMP

*

 CEEXAST ,Terminate the list

Figure 8. Default Member CEECXTAN.A (for CICS Environment)

Chapter 2. Customizing LE/VSE 43

2. From z/VSE 3.1 onwards, the IUI-supplied exit IESPDATX is enabled to

include U40xx abends in OLPD records. For detailed information about how

OLPD is used, refer to the section “Online Analysis of CICS TS Transaction

Abends” in the manual z/VSE Guide for Solving Problems, SC33-8232.

Placing LE/VSE Routines in the Shared Virtual Area (SVA)

Placing routines in the SVA reduces overall system storage requirements. Also,

initiate/terminate (init/term) time is reduced for each application, since load time

decreases.

Table 16 on page 8 provides an estimate of the amount of space used by routines

for use with VSE/ESA 2.5.1, that can be put in the 24-bit and 31-bit SVA.

All of the routines listed in Appendix F, “Routines Eligible for the Shared Virtual

Area,” on page 165 can be included in the SVA. To include them:

v Modify the SVA statement of the VSE IPL ASI (Automated System Initialization)

procedure to allow space for the routines:

– Increase the SDL parameter by the number of new routines being added to

the SVA.

– Increase the PSIZE parameters by the amount of storage required to contain

the new phases being added to the 24-bit SVA and 31-bit SVA.
v Modify the VSE background (BG) ASI procedure to automatically load the

selected routines into the SVA:

– After the SET SDL statement, add a statement:

 phasename,SVA

or

 LIST=$SVAxxxx

for each routine or list of routines to be loaded into the SVA. For an example,

refer to skeleton SKJCK0 in ICCF library 59.
v Shut down and re-IPL your VSE system.

 CICS Coexistence Users:

 The SIT parameter SVA=YES should be specified in order to load phases into the

SVA. For details, refer to the z/VSE Administration.

 SVA load lists (phases) are provided with LE/VSE to load either the recommended

phases or all SVA-eligible phases, for each component, into the SVA. The modules

contained in these load lists are those listed in Appendix F, “Routines Eligible for

the Shared Virtual Area,” on page 165, omitting the modules for the Japanese

national language features. Table 24 lists the names of these load lists and their

contents.

 Table 24. LE/VSE Supplied SVA load lists

Phase Name Description

$SVACEE All LE/VSE base routines eligible for the SVA except callable

service stubs and Japanese modules

$SVAIGZM The LE/VSE COBOL component routines listed as recommended

for inclusion in the SVA

44 LE/VSE: Customization Guide

Table 24. LE/VSE Supplied SVA load lists (continued)

Phase Name Description

$SVAIGZ All LE/VSE COBOL component routines eligible for the SVA

assuming COBPACKs as distributed (COBPACKs reside above the

16MB line) and excepting Japanese modules

$SVAIBMM The LE/VSE PL/I component routines listed as recommended for

inclusion in the SVA

$SVAIBM All LE/VSE PL/I component routines eligible for the SVA except

Japanese modules and Debug Tool for VSE/ESA modules

$SVAEDCM The LE/VSE C component routines listed as recommended for

inclusion in the SVA

$SVAEDC All LE/VSE C component routines eligible for the SVA except

Japanese modules, locales and code page converters

To load these lists automatically, modify the VSE BG ASI procedure as follows:

After the SET SDL statement, add the statement:

 LIST=$SVAxxxx

for each list to be loaded.

LIST statements and phasename,SVA statements can both be used in the same

execution of SET SDL.

If you wish to tailor your own SVA lists, several members are provided in the

PRD2.SCEEBASE sublibrary for you to use as examples in modifying your ASI

procedures. Table 25 lists the members and their contents.

 Table 25. LE/VSE Sample ASI Procedure Modification Members

Member Name Description

CEEWMSVA.Z All LE/VSE base routines eligible for the SVA except callable

service stubs

IGZWESV1.Z All LE/VSE COBOL component routines eligible for the SVA

assuming COBPACKs as distributed (COBPACKs reside above the

16MB line)

IBMSVA1.Z All LE/VSE PL/I component routines eligible for the SVA except

Debug Tool for VSE/ESA modules

EDCWMSV1.Z All LE/VSE C component routines eligible for the SVA except

locales and code page converters

Note: These jobs are available in ICCF Library 62.

Examine the lists carefully to ensure that you are installing the correct message

modules for the national language support you have installed. Comments in

CEEWMSVA, IBMSVA1, and EDCWMSV1 identify the mixed-case U.S. English

modules and the Japanese modules. Remove the statements for the national

language support you do not require. In IGZWESV1, remove the module name

IGZCMGEN if mixed-case U.S. English is not required and add IGZCMGJA if

Japanese is installed and you want it to be in the SVA.

Chapter 2. Customizing LE/VSE 45

For more information on including routines in the SVA, see z/VSE System Control

Statements.

46 LE/VSE: Customization Guide

De-Activating LE/VSE Language Components Used By CICS

After installing your LE/VSE base and components, you might decide to

de-activate the LE/VSE LE COBOL and/or LE PL/I components. If you do not

require these components, you can save the storage these components require and

also the purchase price.

Please be aware!

You should not de-activate the LE/VSE Base or C components, since they are

required by the CICS Transaction Server and other base components.

 If you do de-activate the LE COBOL and/or LE PL/I components, one or both of

these initialization messages (introduced from LE/VSE 1.4.1 onwards) will not be

displayed on your system console:

v CEE3551I (“COBOL/LE Run-Time initialized”).

v CEE3552I (“PLI/LE Run-Time initialized”).

For a detailed description of these messages, refer to the LE/VSE Debugging Guide

and Run-Time Messages.

To de-activate the LE COBOL and/or LE PL/I components, you should:

1. Run jobs DELLEPLI and DELLECOB, which are contained in ICCF library 59,

to delete the programs for the LE COBOL and/or LE PL/I components. You

can use the z/VSE Interactive Interface to run these jobs.

2. Run job SKLE370 (contained in ICCF library 59) or job CEEWCCSD (contained

in ICCF library 62), to modify the appropriate CICS CSD entries used with

LE/VSE (see also “Ensuring CICS Coexistence is Set Up Correctly” on page 55).

As a result, CICS System Definition file (CSD) resources for LE COBOL and/or

LE PL/I components will be removed, and the changes will be effective for all

LISTs that have LE/VSE GROUP CEE appended.

Note: You must also delete LE COBOL and/or LE PL/I components after you

have carried out an FSU. For details, refer to the z/VSE Planning manual.

3. In the CSD (CICS System Definition) for each of your CICS Transaction Server

sub-systems, set START=COLD. Then make a COLD start for each of your

CICS Transaction Server sub-systems.

Note: In CICS TS, a COLD start will not take place if you have the parameters

JCT=NO and START=AUTO in your SIT. Only a PARTIAL cold start will

be initiated (and not an explicit COLD start), since an EMERGENCY

restart is not possible without enabling journaling.

Chapter 2. Customizing LE/VSE 47

Tailoring the COBOL COBPACKs

From LE/VSE 1.4.1 onwards, the COBOL/CICS and COBOL/BATCH run-time

environments no longer use the same module names. You are therefore not

required to support two LE/VSE installation sub-libraries. As a result, library

cleanup activities will automatically be performed if you carry out a Fast Service

Upgrade (FSU) from one z/VSE release to a later z/VSE release.

The COBOL component of the LE/VSE library is shipped with individual routines

and with groupings of routines called COBPACKs. A COBPACK is a phase that

contains individual library routines packaged together by the linkage editor.

The library routines can be divided into two categories:

General

These routines do not contain system-specific logic.

Environment specific

These routines contain system-specific logic and are known as

environment-specific modules (ESMs), of which there are two types:

v One set for use with VSE

v One set for use with CICS

Three COBPACKs are supplied for COBOL support:

 IGZCPAC contains general routines that can be used in any operating

environment.

 IGZCPCO contains routines that are sensitive to the operating environment.

This COBPACK is used in a VSE environment.

 IGZCPCC also contains routines that are sensitive to the operating

environment. This COBPACK is used in a CICS environment.

When you run a program, the general COBPACK and the appropriate

system-sensitive COBPACK are loaded into main storage at the start of the run.

Any routines not brought in as part of a COBPACK are loaded individually as

required. Under CICS, they are loaded once for each CICS system initialization;

under VSE they are loaded once for each VSE task (job step).

After installation, all three COBPACKs will reside above the 16MB line. You may

wish to modify the COBPACKs to include routines with RMODE 24, or to remove

some of the routines distributed in the COBPACKs. If you add one or more

RMODE 24 routines to a COBPACK, the system will store that COBPACK below

the 16MB line. IBM provides sample jobs to help you add or remove routines in a

COBPACK.

Requirements for tailoring or creating a COBPACK:

v If you want your COBPACK to be loaded above the 16MB line, do not include

any RMODE 24 routines in it.

v Routines not in your COBPACK are loaded dynamically on an individual basis;

thus, you can exclude any routine from the COBACK, even if your application

programs use it.

v A COBPACK might be relink-edited as part of the MSHP maintenance

procedure. This occurs when a routine being maintained is a routine that was

included in an IBM-supplied COBPACK. If you have tailored a COBPACK to

remove routines and the COBPACK is relink-edited as part of the maintenance

procedure, it may no longer contain the routines you expect. You should

therefore rebuild the tailored COBPACK.

48 LE/VSE: Customization Guide

v If you have built a COBPACK that is not controlled by MSHP, make sure you

rebuild it whenever any routine contained in the COBPACK is maintained by a

PTF.

v Routines removed from the COBPACK IGZCPCC must be added to the CICS

PPT (Processing Program Table) or the CICS System Definition File.

See Appendix D, “Using COBOL with LE/VSE,” on page 157 for information on

the contents of each COBPACK.

If you want to alter the contents of COBPACKs, you must modify and run the

appropriate job shown in Table 26. The sample jobs listed in Table 26 are supplied

in members in the PRD2.SCEEBASE sublibrary.

 Table 26. Sample Jobs for Modifying COBPACKs

COBPACK Library Member

IGZCPAC IGZWEPAC.Z

IGZCPCO IGZWEPCO.Z

IGZCPCC IGZWEPCC.Z

Note: These jobs are available in ICCF Library 62.

Adding and Deleting Routines in a COBPACK

The jobs in Table 26 each contain linkage editor statements to build the COBPACKs

as distributed with LE/VSE.

To delete a routine from a COBPACK, you must remove (or replace with a

comment statement) the linkage editor INCLUDE statement that specifies the name

of the routine you want to remove.

To add a routine to a COBPACK, you must add (or remove the comment indicator

from) a linkage editor INCLUDE statement that specifies the name of the routine

you want to add.

If you add or delete routines in a COBPACK, and you have loaded any

LE/VSE-COBOL routines into the SVA, you may need to modify your SDL

procedures and reload the SVA.

Modifying the JCL for Tailoring a COBPACK

 After you modify the job, submit it. The job will finish with a return code of 0 or 2.

The return code of 2 indicates there were unresolved weak external references

during the link-edit step. This return code is normal and does not indicate a

problem.

Where to Place the Tailored COBPACKs

The sample jobs provided with LE/VSE tailor the COBPACKs and then link-edit

them to replace the resident COBPACKs in the default LE/VSE sublibraries.

1. Modify the job card as appropriate to your site.

2. Add POWER JECL statements if your site requires them.

3. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

4. Add or delete linkage editor INCLUDE statements as required.

Chapter 2. Customizing LE/VSE 49

Alternatively, you can place them in other sublibraries, provided that the LOADs

issued during run-time can find them. You must specify the sublibraries containing

the customized COBPACKs ahead of, or instead of, the sublibraries containing the

IBM-supplied COBPACKs. You can modify the LIBDEF PHASE,CATALOG job

control statement and run the sample jobs in Table 26 on page 49 to link-edit a

COBPACK into an alternative sublibrary.

Customizing the COBOL Reusable Run-Time Environment

Customizing the COBOL Reusable Environment

You can customize the COBOL reusable environment behavior, to control how

program checks are handled that occur in a non-Language Environment

conforming driver. The COBOL reusable environment is established with the

RTEREUS run-time option or a call to IGZERRE INIT.

The IBM-supplied default setting for COBOL’s reusable environment behavior is

IGZERREO with REUSENV=COMPAT. Using this setting, when a program check

occurs while the reusable environment is “dormant”, standard VSE abends occur.

The reusable environment is “dormant” between a GOBACK from a top-level

COBOL program to the non-Language Environment conforming assembler driver,

and the next call to a COBOL program. This behavior is compatible with the VS

COBOL II and DOS/VS COBOL run-times, but it significantly impacts performance

when a COBOL/VSE program is invoked repeatedly in a COBOL/LE reusable

environment. The performance degradation is caused by Language Environment

issuing STXIT requests when the reusable environment becomes dormant and then

again upon reentering the reusable environment.

You can customize COBOL’s reusable environment behavior (IGZERREO with

REUSENV=OPT), so that all program checks are intercepted by Language

Environment, even those that occur while the reusable environment is dormant. In

this case, a program check that occurs while the reusable environment is dormant,

will result in messages CEE3321C/CEE3320C from LE/VSE. However, since

Language Environment does not have to issue the STXIT requests between

invocations of the COBOL program, this can be faster than using

REUSENV=COMPAT.

Customizing the Behaviour of the COBOL Reusable

Environment

Use the IGZWARRE sample job to customize the behavior of COBOL’s reusable

environment. You must modify the IGZRREOP macro invocation, depending on

the function that you want.

To run with VS COBOL II and DOS/VS COBOL run-time compatibility mode (that

is, the user has control of program checks that occur when the COBOL reusable

environment is dormant, resulting in an additional performance cost), use:

IGZRREOP REUSENV=COMPAT

To run with optimum performance (that is, Language Environment intercepts all

program checks that occur when the COBOL reusable environment is dormant and

converts them to CEE3321C/CEE3320C, resulting in improved performance), use:

IGZRREOP REUSENV=OPT

To modify the JCL for IGZWARRE, you should:

50 LE/VSE: Customization Guide

1. Copy the IGZERREO member from PRD2.SCEEBASE into IGZWARRE in place

of the comment lines.

2. Change the REUSENV parameter on the IGZRREOP macro statement to the

desired value.

3. Submit the JCL to create the deisred IGZERREO PHASE.

Note: IGZWARRE should run with a condition code no greater than 2.

Changing the C Locale Time Information

Use the sample job EDCLLOCL.Z to change the C locale time information for your

site. See Appendix E, “Customizing C Locale Time Information,” on page 163 for

information on changing the C locale time information.

Modifying the JCL for EDCLLOCL

This job uses the IESINSRT utility supplied with z/VSE and the DISP=I punch

facility of VSE/POWER.

 After you modify the EDCLLOCL job, submit it. The job finishes with a return

code of 2. This return code of 2 indicates there were unresolved weak external

references during the link-edit step. This return code is normal and does not

indicate a problem.

Note: This sample job will replace the main C event handler phase, CEEEV003, in

the installation sublibrary. If service is applied to this phase you may need

to rerun EDCLLOCL.

1. Modify the POWER JECL and the job card as appropriate for your site.

2. If necessary, change the LIBDEF statements to match the sublibraries where you have

installed LE/VSE.

3. If necessary, change the name of the sublibrary specified in the ACC

SUBLIB=PRD2.SCEEBASE statement to match the sublibrary where you have installed

LE/VSE.

4. Copy member EDCLOCI.A from the PRD2.SCEEBASE sublibrary into the job

EDCLLOCL in place of the comment line.

5. Make the required changes to the parameters on the EDCLOCTZ macro call.

Chapter 2. Customizing LE/VSE 51

Including the CSD for LE/VSE Support Under CICS

Since there are no PPT or PCT members shipped with LE/VSE, you use the CSD

to include LE/VSE support under CICS:

 Table 27. Including LE/VSE Support under CICS Using the CSD

To include Use member In sublibrary

LE/VSE base (mandatory)* CEECCSD.Z PRD2.SCEEBASE

COBOL (optional)* IGZCCSD.Z PRD2.SCEEBASE

PL/I (optional)* IBMCCSD.Z PRD2.SCEEBASE

C (mandatory)* EDCCCSD.Z PRD2.SCEEBASE

C/VSE Code Converter (optional)* EDCUCSD.Z PRD2.SCEEBASE

Notes:

1. * These LE/VSE-specific sample books are also referred to via member

CEEWCCSD in ICCF Library 62 (or the equivalent member SKLE370 in library

59). If you need to update the CICS Resource Definition File (CSD), one (only)

of these members should be edited and executed. The situations in which

explicit customization might be required, are discussed on pages 47 and 55.

2. If you use additional LE/VSE SVA loadlists together with CICS TS subsystems,

make sure you enable the related USESVACOPY(YES) attribute contained in the

CICS CSD file. Refer to these skeletons (contained in ICCF library 62) for

example of such enablement-support:

v CEETSCSD

v EDCTSCSD

v IGZTSCSD

v IBMTSCSD

From VSE/ESA 2.6 onwards, the modules contained in the pre-installed SVA

loadlists $SVACEE and $SVAEDCM are already enabled with the

USESVACOPY(YES) attribute. The IBM-shipped system also has a CICS SIT table

setting of SVA=YES.

52 LE/VSE: Customization Guide

Tailoring the CICS Destination Control Table (Optional)

Tailoring the CICS Destination Control Table (DCT) entries contained in DFHDCT

is an optional task, and you need to tailor DFHDCT entries only if you do not wish

to use the LE/VSE default-implementation.

These CICS transient data queues are specific to LE/VSE:

v CESE (default MSGFILE setting): LE/VSE messages, dumps, and reports are

written to this queue. Each record written to the CESE queue has a header with

terminal ID, transaction ID, date, and time. This queue is also used by C for

stderr output and by PL/I for stream output data.

v CESO: C stdout stream output is written to this queue. The definition for this

queue is required only if you use C. Each record written to the CESO queue has

a header with terminal ID and transaction ID.

Figure 9 illustrates the format of a transient data queue entry.

ASA The American National Standard carriage-control character

Terminal ID A 4-character terminal identifier

Transaction ID

A 4-character transaction identifier

sp A space

Timestamp The date and time displayed in the same format as that returned

by the CEELOCT service

Message The message identifier and message text

 These queues can each have an intrapartition, extrapartition, or indirect

destination. The block size for the transient data queue CESE must be at least 175

and for the transient data queue CESO at least 137. The record format for each

should be variable unblocked.

Members That You Use for Your DCT Implementation

The following members support cross-product defaults, as well as optional DCT

implementations:

DFHDCT/DFHDCT1.A

The CICS/VSE-supplied sample DCT definitions, used for

directing output to SYSLST. This member is used as the default in

shipped z/VSE systems. This setup is also implemented in member

DFHDCTCO (supplied with the z/VSE Interactive Interface), for

optional CICS coexistence installation. These resource definitions

are not applicable for the CICS Transaction Server.

Figure 9. Format of a Transient Data Queue Entry

Chapter 2. Customizing LE/VSE 53

DFH$DCTD.A

The CICS TS-supplied sample DCT definitions, used for directing

output to SYSLST. This member is used as the default in shipped

z/VSE systems.

IESZDCT.A The z/VSE-supplied member used for implementing

TYPE=INDIRECT implementation (for LE/VSE destinations CESE

and CESO) to the z/VSE Interactive Interface’s “Inspect Message

Log” dialog. IESZDCT.A is the default member used with shipped

z/VSE systems containing CICS TS setup. DFHDCTSP and

DFHDCTC2 are the related z/VSE Interactive Interface skeletons,

which you find in ICCF library 59.

CEECDCT.A (optional)

An LE/VSE-supplied member that you can optionally use in order

to direct output to disk (rather than SYSLST). It contains both

TYPE=SDSCI and TYPE=EXTRA definitions. To avoid compiler

errors, before using CEECDCT.A you must first make some

environment-specific planning, and appropriate DCT customization

changes. Specifically, you must ensure that you are not using

double DCT definitions. This is because the copybooks provided

by CICS and the z/VSE Interactive Interface contain redefinitions,

and split TYPE=SDSCI and TYPE=EXTRA into separate members.

Note: If you define CESE and CESO as extrapartition destinations assigned to

disk, your CICS startup job must contain the appropriate DLBL, EXTENT,

and ASSGN entries.

In addition, to tailor your DFHDCT, refer to CICS Transaction Server for VSE/ESA

Resource Definition (Macro) for details of the DFHDCT macro and the definitions of

the queues and associated buffers.

54 LE/VSE: Customization Guide

Ensuring CICS Coexistence is Set Up Correctly

If you perform a Fast Service Upgrade (version upgrade) from VSE/ESA 2.4.x to

VSE/ESA 2.5 or later, you are responsible for setting your CICS CSD definitions so

that any CICS/VSE installations you have, run correctly with LE/VSE 1.4.1 or

later.

Note!

Any CICS/VSE (non-shared) CSD file you have will still hold resource

definitions that are related to LE/VSE 1.4.0.

 Form LE/VSE 1.4.1 onwards, LE/VSE has been internally restructured to allow

you to use LE/COBOL unique naming conventions, single product ship library,

and so on. As a result, you must include all related changes in your CICS/VSE

CSD. If you do not do so, you will receive LE/VSE initialization errors under

CICS/VSE (such as the abend 4093 RC 36).

To avoid this type of problem, you must edit and execute skeleton SKLE370 (of

ICCF lib 59), which points to any CICS/VSE subsystem you use (for example,

GRPLIST and // DLBL references to actual CSD files).

There are two skeletons that you might need to edit and execute:

v SKPREPCO is the skeleton you use for CICS/VSE systems in which a CSD is not

shared.

v SKPREPSO is the skeleton you use for CICS systems in which a CSD is shared

between CICS TS and CICS/VSE.

From VSE/ESA 2.5 onwards, the CICS Transaction Server is the shipped CICS

subsystem of a z/VSE base system. Therefore you do not need to edit and execute

skeleton SKPREPCO, if you perform a Fast Service Upgrade from VSE/ESA 2.4.x

to VSE/ESA 2.5 or later.

All related cleanup activities (for removing LE/VSE 1.4.0 and establishing LE/VSE

1.4.1 or later) are performed automatically, even if you are performing a version

upgrade.

If your CSD file is separate from your CSD file for CICS Transaction Server, here is

the job you require to update your CSD file for CICS/VSE:

Chapter 2. Customizing LE/VSE 55

Notes:

1. The above job is an extract of the skeleton SKPREPCO, that is provided with

the z/VSE Interactive Interface.

2. Job execution only needs to be considered for a non-shared CICS CSD setup

(the CICS coexistence environment).

3. Refer to the skeleton SKPREPCO (contained in ICCF Library 59) for details of

how to setup your non-shared CICS CSD file for CICS/VSE.

* $$ JOB JNM=DFHCSDOL,CLASS=0,DISP=D

// JOB DFHCSDOL UPGRADE THE CSD FILE FOR COEXISTENT CICS

// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD2.CICSOLDP,PRD2.SCEEBASE,PRD1.BASE)

// DLBL DFHCSD,’CICSO.CSD’,0,VSAM, X

 CAT=VSESPUC

// EXEC DFHCSDUP,SIZE=600K INIT AND LOAD CICS CSD VSAM FILE

 UPGRADE USING(IESMODEL)

 UPGRADE USING(DFHCU230)

 UPGRADE USING(DFHCU23F)

 MIGRATE TABLE(DFHPPTCO) TOGROUP(VSESPO)

 MIGRATE TABLE(DFHPCTCO) TOGROUP(VSESPT)

 COPY GROUP(VSESPT) TO(VSESPO)

 DELETE GROUP(VSESPT)

 APPEND LIST(DFHLIST) TO(VSELSTO)

 ADD GROUP(VSETYPE) LIST(VSELSTO)

 ADD GROUP(VSETERM) LIST(VSELSTO)

 ADD GROUP(VSETERM1) LIST(VSELSTO)

 ADD GROUP(VSESPO) LIST(VSELSTO)

* $$ SLI MEM=CEECCSD.Z,S=(PRD2.SCEEBASE)

* $$ SLI MEM=IBMCCSD.Z,S=(PRD2.SCEEBASE)

* $$ SLI MEM=IGZCCSD.Z,S=(PRD2.SCEEBASE)

* $$ SLI MEM=EDCCCSD.Z,S=(PRD2.SCEEBASE)

* THESE CODESET CONVERTERS CAN BE OPTIONALLY INCLUDED HERE

* $$ SLI MEM=EDCUCSD.Z,S=(PRD2.SCEEBASE)

 ADD GROUP(CEE) LIST(VSELSTO)

* $$ SLI MEM=IPNCSD.Z,S=(PRD1.BASE)

 ADD GROUP(TCPIP) LIST(VSELSTO)

 LIST ALL

/*

/&

* $$ EOJ

Figure 10. Job to Update CSD File for CICS/VSE

56 LE/VSE: Customization Guide

Chapter 3. Maintaining LE/VSE

This chapter describes how to replace or reinstall LE/VSE, and how to apply

service updates to LE/VSE. To effectively use the maintenance procedures, you

must have already installed LE/VSE and any required products.

Note: Since LE/VSE is now distributed together with the z/VSE Base, the section

“Reinstalling LE/VSE” has been removed from this chapter. You must now

reinstall LE/VSE using z/VSE, either as:

v A Fast Service Upgrade (FSU). Refer to z/VSE System Upgrade and Service

for details.

v An Initial Installation. Refer to z/VSE Installation for details.

You Should Never...

Remove the LE/VSE Base or LE/VSE C components from your system!.

Separating User-Customized Modules From IBM-Shipped Code

From LE/VSE 1.4.1 onwards, there are changes in the way LE/VSE is serviced.

LE/VSE now uses the approach of using the phase service wherever possible.

There are, however, some exceptions to this approach: LE/VSE still ships OBJECTs

for supporting customization tasks, such as COBPACK tailoring (described on page

48).

In general, LE/VSE attempts to use a hybrid service approach, thereby separating

user-customized modules (such as run-time option tailoring, exits, and so on) from

IBM-shipped phases. This is especially true for batch and CICS initialization phases

CEEBINIT and CEECCICS. As a result, CEEBINIT and CEECCICS initialization

phases no longer require that customers re-link such phases, with the resulting

danger of errors occuring (for example, when applying PTF service).

These changes should improve the servicability and reliability of LE/VSE.

The changes to the CEEBINIT and CEECCICS initialization phases result in minor

changes to several customization jobs, such as run-time option generation, and exit

tailoring (CEEWCOPT and CEEWDOPT, CEEWDEXT, and so on).

The initialization phases remain unchanged during the build of the customization

option phases.

Related Section:

v “Changing Run-Time Options Defaults” on page 17

v “Customizing LE/VSE Abnormal Termination Exits” on page 37

v “Tailoring the COBOL COBPACKs” on page 48

© Copyright IBM Corp. 1991, 2005 57

Applying Service Updates

You might need to apply maintenance or service updates to LE/VSE periodically.

There are two types of formally supported software fixes. One is the program

temporary fix (PTF) applied as corrective service or as preventive maintenance.

The other is the authorized program analysis report (APAR) fix applied as a code

replacement in a corrective maintenance mode.

For details of how to apply maintenance or service updates, refer to the z/VSE

System Upgrade and Service.

What You Receive

If you report a problem with LE/VSE to your IBM Support Center, you will

receive a tape containing one or more APARs or PTFs which have been created to

solve your problem.

You may also receive a list of prerequisite APARs or PTFs which should have been

applied to your system before applying the current service. These prerequisite

APARs or PTFs may relate to LE/VSE or any other licensed product you have

installed, including z/VSE.

You apply service to LE/VSE using the z/VSE Interactive Interface.

Step 1: Check Prerequisite APARs or PTFs

Prerequisite APARs or PTFs are APARs or PTFs that need to be applied to your

system before you can apply the current maintenance. These APARs or PTFs may

apply to LE/VSE or any licensed program you have installed at your site.

Note: The z/VSE Interactive Interface provides different types of service dialogs (for

example, to check for existing components, or to lookup specific APARs and

PTFs). In addition, the corresponding support is provided for analyzing and

applying PTFs.

Your IBM Support Center will have given you a list of any relevant prerequisite

APARs or PTFs. Most probably they will already be applied to your system. You

can verify this by retracing the APARs and PTFs in your system history file. The

job shown in Figure 11 shows how to retrace APARs and PTFs in the system

history file.

 Use the listing produced when you run this job to check that you have already

applied any prerequisite APARs or PTFs. If you have not, your IBM Support

Center will arrange to send them to you and you should apply them before

applying other service.

// JOB CEEWRETR Retrace APARs and PTFs

// EXEC MSHP,SIZE=900K

RETRACE APARS

RETRACE PTFS

/*

/&

Figure 11. Job to Retrace APARs and PTFs

Maintaining LE/VSE

58 LE/VSE: Customization Guide

Step 2: Run the Installation Verification Program (IVP)

After you have applied all the files on the service tape, run the appropriate

installation verification programs to ensure that LE/VSE functions properly.

Notes:

1. Some customizing tasks for LE/VSE modify phases which you might have

linkedited into your own sublibrary. Examples are the customizing of the

options modules and the LIOCS phases (which re-link CEEYCDO, CEEYDUO,

and CEEYPRO).

2. If you have linkedited any of the above phases into your own sublibrary, and

you apply service which modifies these phases, make sure that the service is

also applied to the version of the phase you are using. The most reliable way to

do this is to re-run the customizing jobs after the service has been applied.

3. If you apply the service to the phases in the installation sublibrary and do not

re-run your customizing jobs (continuing to use the phases from your own

sublibrary), then the applied service will not take effect. This is especially

important if there are co-requisite PTFs applied to other products (such as

CICS/VSE).

4. Similar problems may arise if service is applied to phases which you have

loaded into the SVA or into COBOL COBPACKs, and you do not reload the

SVA or COBPACK after applying the service.

To Report a Problem with LE/VSE

Report any difficulties you have using this product to your IBM Support Center.

Table 28 identifies the component IDs for LE/VSE.

 Table 28. LE/VSE Component IDs and CLCs

Component Id CLC Description

5686-CF7-32 81K LE Common base, containing information written in:

v uppercase and mixed-case U.S. English

v Japanese NLF

5686-CF7-33 81L LE C-specific base, containing information written in:

v uppercase and mixed-case U.S. English

v Japanese NLF

5686-CF7-34 81W Optional LE DBCS Locale component (see note below)

5686-CF7-36 81Z LE COBOL-specific base and CICS, containing

information written in:

v uppercase and mixed-case U.S. English

v Japanese NLF

5686-CF7-37 81M LE PL/I-specific base, containing information written in:

v uppercase and mixed-case U.S. English

v Japanese NLF

Note: The optional LE/VSE DBCS locale component is shipped on the z/VSE

extended base tape.

Maintaining LE/VSE

Chapter 3. Maintaining LE/VSE 59

60 LE/VSE: Customization Guide

Appendix A. LE/VSE Run-Time Options

This appendix first describes the LE/VSE run-time options in alphabetical

sequence. Where noted, some of the run-time options might be used only by a

COBOL or a C program. A quick reference table is provided for convenience. In

addition, there is a table that maps LE/VSE run-time options to HLL run-time

options to help you plan your customization.

The CEEXOPT macro is used to specify installation default run-time options in the

CEEDOPT PHASE for batch programs, and the CEECOPT PHASE for CICS. The

same macro is used to specify application-specific run-time options in the

CEEUOPT CSECT. See “Setting Installation-Wide Default Options with the

CEEXOPT Macro” on page 17 for details.

The syntax described here is specific to the CEEDOPT form of the file used at

installation time. All suboptions must be specified and no abbreviations are

permitted in CEEDOPT. IBM-supplied defaults are indicated for planning

information only.

This appendix also includes additional CICS-wide run-time option information,

under these headings:

v “Quick Reference Table of LE/VSE Run-Time Options” on page 62

v “Language Run-Time Option Mapping” on page 66

v “LE/VSE Run-Time Options” on page 70

v “CLER: Interactively Process CICS-Wide Run-Time Options” on page 121

v “NEWC: Activate Changed CICS-Wide Run-Time Options” on page 125

v “ROPC: Print CICS-Wide Run-Time Options to Console” on page 127

© Copyright IBM Corp. 1991, 2005 61

Quick Reference Table of LE/VSE Run-Time Options

 Table 29. Run-Time Options Quick Reference

Run-Time Options Function Page

44

ABPERC

=

(

(
 NONE

abcode

)

,
 OVR

NONOVR

)

4<

Exempts a specified VSE

cancel code,

program-interruption

code, or user abend code

from LE/VSE condition

handling.

70

44

ABTERMENC

=

(

(
 ABEND

RETCODE

)

,
 OVR

NONOVR

)

4<

Sets the enclave

termination behavior for

an enclave ending with an

unhandled condition of

severity 2 or greater.

72

44

AIXBLD

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

(COBOL only) Invokes the

access method services

(AMS) for VSAM

key-sequenced data sets

(KSDS) and

relative-record data sets

(RRDS) to complete the

file and index definition

procedures for COBOL

routines.

74

44

ALL31

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

Indicates whether an

application does or does

not run entirely in

AMODE(31).

75

44

ANYHEAP

=

(

(

init_size

,

incr_size

,
 ANYWHERE

ANY

BELOW

,
 FREE

KEEP

4

4

)

,
 OVR

NONOVR

)

4<

Controls allocation of

library heap storage not

restricted to below the

16MB line.

76

44

BELOWHEAP

=

(

(

init_size

,

incr_size

,
 FREE

KEEP

)

,

4

4
 OVR

NONOVR

)

4<

Controls allocation of

library heap storage

below the 16MB line.

78

44

CBLOPTS

=

(

(
 ON

OFF

)

,
 OVR

NONOVR

)

4<

(COBOL only) Specifies

the format of the

argument string on

application invocation

when the main program

is COBOL.

79

62 LE/VSE: Customization Guide

Table 29. Run-Time Options Quick Reference (continued)

Run-Time Options Function Page

44

CBLPSHPOP

=

(

(
 ON

OFF

)

,
 OVR

NONOVR

)

4<

(COBOL only) Controls

whether CICS PUSH

HANDLE and CICS POP

HANDLE commands are

issued when a COBOL

subprogram is called.

80

44

CHECK

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

(COBOL only) Indicates

whether “checking errors”

within an application

should be detected.

81

44

COUNTRY

=

(

(

country_code

)

,
 OVR

NONOVR

)

4<

Specifies the default

formats for date, time,

currency symbol, decimal

separator, and the

thousands separator based

on a country.

82

44

DEBUG

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

(COBOL only) Activates

the COBOL batch

debugging features

specified by the

“debugging lines” or the

USE FOR DEBUGGING

declarative.

83

44

DEPTHCONDLMT

=

(

(

limit

)

,
 OVR

NONOVR

)

4<

Limits the extent to which

conditions can be nested.

84

44

ENVAR

=

(

(

=

 ,

string

)

,

OVR

NONOVR

)

4<

(C only) Sets the initial

values for the

environment variables

specified in string.

85

44

ERRCOUNT

=

(

(

number

)

,
 OVR

NONOVR

)

4<

Specifies how many

conditions of severity 2, 3,

and 4 can occur per

thread before an enclave

terminates abnormally.

86

44

HEAP

=

(

(

init_size

,

incr_size

,
 ANYWHERE

ANY

BELOW

,
 KEEP

FREE

,

4

4

initsz24

,

incrsz24

)

,
 OVR

NONOVR

)

4<

Controls allocation of the

heaps.

87

Appendix A. LE/VSE Run-Time Options 63

Table 29. Run-Time Options Quick Reference (continued)

Run-Time Options Function Page

44

HEAPCHK

=

(

(
 OFF

ON

,

frequency

,

delay

)

,
 OVR

NONOVR

)

4<

Provides a checking

facility to verify that the

heap storage has not been

damaged.

89

44

LIBSTACK

=

(

(

init_size

,

incr_size

,
 FREE

KEEP

)

,

4

4
 OVR

NONOVR

)

4<

Controls the allocation of

the thread’s library stack

storage.

90

44

MSGFILE

=

(

(

filename

)

,
 OVR

NONOVR

)

4<

Specifies the filename of

the run-time diagnostics

file.

92

44

MSGQ

=

(

(

number

)

,
 OVR

NONOVR

)

4<

Specifies the number of

ISI blocks allocated on a

per-thread basis during

execution.

93

44

NATLANG

=

(

(
 UEN

ENU

JPN

)

,
 OVR

NONOVR

)

4<

Specifies the national

language to use for the

run-time environment.

94

44

RETZERO

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

(COBOL only) Ensures

that, if the run unit does

not abend or terminate

abnormally, the user

return code will be set to

zero regardless of the

contents of register 15 or

the RETURN-CODE

special register.

95

44

RPTOPTS

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

Specifies that a report of

the run-time options in

use by the application be

generated.

96

44

RPTSTG

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

Specifies that a report of

the storage used by the

application be generated

at the end of execution.

98

44

RTEREUS

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

Initializes the run-time

environment to be

reusable when the first

COBOL program is

invoked.

101

64 LE/VSE: Customization Guide

Table 29. Run-Time Options Quick Reference (continued)

Run-Time Options Function Page

44

STACK

=

(

(

init_size

,

incr_size

,
 BELOW

ANYWHERE

ANY

,
 KEEP

FREE

)

4

4

,
 OVR

NONOVR

)

4<

Controls the allocation

and management of

thread-level stack storage.

102

44 STORAGE = ((heap_alloc_value , heap_free_value , 4

4

dsa_alloc_value

,

reserve_size

)

,
 OVR

NONOVR

)

4<

Controls the value of

storage that is allocated

and freed.

104

44

TERMTHDACT

=

(

(
 TRACE

QUIET

MSG

DUMP

UADUMP

,
 MSGFL

LSTQ

,

reg_stor_amount

4

4

)

,
 OVR

NONOVR

)

4<

Sets the level of

information produced due

to an unhandled error of

severity 2 or greater.

107

44
 NOTEST

TEST

=

(

(

Suboptions

)

,
 OVR

NONOVR

)

4<

Suboptions:

 ALL

ERROR

NONE

,
 *

commands_file

,
 PROMPT

NOPROMPT

*

;

command

,

preference_file

*

Specifies that a debug tool

is to be given control

according to the

suboptions specified.

 111

44

TRACE

=

(

(
 OFF

ON

,

table_size

,
 DUMP

NODUMP

,
 LE=0

LE=1

)

,

4

4
 OVR

NONOVR

)

4<

Determines whether

LE/VSE run-time library

tracing is active.

113

44

TRAP

=

(

(
 ON

OFF

,
 MAX

MIN

)

,
 OVR

NONOVR

)

4<

Specifies how LE/VSE

routines handle abends

and program interrupts.

114

44

UPSI

=

(

(

nnnnnnnn

)

,
 OVR

NONOVR

)

4<

(COBOL only) Sets the

eight UPSI switches on or

off. Affects only COBOL

programs.

117

Appendix A. LE/VSE Run-Time Options 65

Table 29. Run-Time Options Quick Reference (continued)

Run-Time Options Function Page

44
 NOUSRHDLR

USRHDLR

=

(

(

phname

)

,
 OVR

NONOVR

)

4<

Registers a user condition

handler at stack frame 0,

allowing you to register a

user condition handler

without having to include

a call to CEEHDLR in

your application and then

recompile the application.

118

44

XUFLOW

=

(

(
 AUTO

ON

OFF

)

,
 OVR

NONOVR

)

4<

Specifies whether an

exponent underflow

causes a program

interrupt.

119

Language Run-Time Option Mapping

 Table 30. C/370 and LE/VSE Options

C/370 Option LE/VSE Equivalent Notes

ISAINC (incr_size) STACK (incr_size) The C/370 ISAINC run-time option is mapped to the LE/VSE

STACK run-time option for compatibility. It affects all

languages in the enclave.

ISASIZE (init_size) STACK (init_size) The C/370 ISASIZE run-time option is mapped to the

LE/VSE STACK run-time option for compatibility. It affects all

languages in the enclave.

LANGUAGE NATLANG The C/370 LANGUAGE run-time option is mapped to the

LE/VSE NATLANG run-time option for compatibility. It

affects all languages in the enclave.

REPORT RPTSTG(ON) The C/370 REPORT run-time option is mapped to the

LE/VSE RPTSTG(ON) run-time option for compatibility. It

affects all languages in the enclave.

NOREPORT RPTSTG(OFF) The C/370 NOREPORT run-time option is mapped to the

LE/VSE RPTSTG(OFF) run-time option for compatibility. It

affects all languages in the enclave.

SPIE TRAP(ON) The C/370 SPIE run-time option is mapped to the LE/VSE

TRAP(ON) run-time option for compatibility. It affects all

languages in the enclave. The mapping of SPIE might differ

depending upon other options specified. For more

information, see “TRAP” on page 114.

NOSPIE TRAP(OFF) The C/370 NOSPIE run-time option is mapped to the LE/VSE

TRAP(OFF) run-time option for compatibility. It affects all

languages in the enclave. The mapping of NOSPIE might

differ depending upon other options specified. For more

information, see “TRAP” on page 114.

STAE TRAP(ON) The C/370 STAE run-time option is mapped to the LE/VSE

TRAP(ON) run-time option for compatibility. It affects all

languages in the enclave. The mapping of STAE might differ

depending upon other options specified. For more

information, see “TRAP” on page 114.

66 LE/VSE: Customization Guide

Table 30. C/370 and LE/VSE Options (continued)

C/370 Option LE/VSE Equivalent Notes

NOSTAE TRAP(OFF) The C/370 NOSTAE run-time option is mapped to the

LE/VSE TRAP(OFF) run-time option for compatibility. It

affects all languages in the enclave. The mapping of NOSTAE

might differ depending upon other options specified. For

more information, see “TRAP” on page 114.

 Table 31. DOS/VS COBOL and LE/VSE Options

DOS/VS COBOL Option LE/VSE Equivalent Notes

A (SYSPARM) AIXBLD The LE/VSE AIXBLD run-time option is compatible with the

DOS/VS COBOL SYSPARM='A' run-time option. It affects

only COBOL programs in the enclave.

NA (SYSPARM) NOAIXBLD The LE/VSE NOAIXBLD run-time option is compatible with

the DOS/VS COBOL SYSPARM='NA' run-time option. It

affects only COBOL programs in the enclave.

D (SYSPARM) DEBUG The LE/VSE DEBUG run-time option is compatible with the

DOS/VS COBOL SYSPARM='D' run-time option. It affects

only COBOL programs in the enclave.

ND (SYSPARM) NODEBUG The LE/VSE NODEBUG run-time option is compatible with

the DOS/VS COBOL SYSPARM='ND' run-time option. It

affects only COBOL programs in the enclave.

UPSI UPSI The LE/VSE UPSI run-time option replaces the DOS/VS

COBOL UPSI run-time option provided by the // UPSI job

control statement. The UPSI switches set by the // UPSI job

control statement are not available to COBOL programs under

LE/VSE.

 Table 32. VS COBOL II and LE/VSE Options

VS COBOL II Option LE/VSE Equivalent Notes

AIXBLD AIXBLD The LE/VSE AIXBLD run-time option is compatible with the

VS COBOL II AIXBLD run-time option. It affects only COBOL

programs in the enclave.

NOAIXBLD NOAIXBLD The LE/VSE NOAIXBLD run-time option is compatible with

the VS COBOL II NOAIXBLD run-time option. It affects only

COBOL programs in the enclave.

DEBUG DEBUG The LE/VSE DEBUG run-time option is compatible with the

VS COBOL II DEBUG run-time option. It affects only COBOL

programs in the enclave.

NODEBUG NODEBUG The LE/VSE NODEBUG run-time option is compatible with

the VS COBOL II NODEBUG run-time option. It affects only

COBOL programs in the enclave.

LANGUAGE NATLANG The VS COBOL II LANGUAGE run-time option is mapped to

the LE/VSE NATLANG run-time option for compatibility. It

affects all languages in the enclave.

Appendix A. LE/VSE Run-Time Options 67

Table 32. VS COBOL II and LE/VSE Options (continued)

VS COBOL II Option LE/VSE Equivalent Notes

LIBKEEP Not applicable There is no LE/VSE equivalent for the VS COBOL II LIBKEEP

run-time option. To obtain similar performance function, use

the Library Routine Retention (LRR) feature described in .

LE/VSE Programming Guide.

NOLIBKEEP Not applicable There is no LE/VSE equivalent for the VS COBOL II

NOLIBKEEP run-time option.

MIXRES Not applicable There is no LE/VSE equivalent for the VS COBOL II MIXRES

run-time option. MIXRES applications supported by LE/VSE

always exhibit RES behavior.

NOMIXRES Not applicable There is no LE/VSE equivalent for the VS COBOL II

NOMIXRES run-time option. MIXRES applications supported

by LE/VSE always exhibit RES behavior.

RTEREUS RTEREUS The LE/VSE RTEREUS run-time option is compatible with the

VS COBOL II RTEREUS run-time option. The RTEREUS

option is intended for use when the main program of an

enclave is a COBOL program. The RTEREUS option can cause

problems for HLLs other than COBOL.

NORTEREUS NORTEREUS The VS COBOL II NORTEREUS run-time option is compatible

with the VS COBOL II NORTEREUS run-time option.

SIMVRD Not applicable There is no LE/VSE equivalent for the VS COBOL II SIMVRD

run-time option.

NOSIMVRD Not applicable There is no LE/VSE equivalent for the VS COBOL II

NOSIMVRD run-time option.

SPOUT RPTOPTS(ON)

RPTSTG(ON)

The VS COBOL II SPOUT run-time option is mapped to the

LE/VSE RPTOPTS(ON) and RPTSTG(ON) run-time options

for compatibility. It affects all languages in the enclave.

NOSPOUT RPTOPTS(OFF)

RPTSTG(OFF)

The VS COBOL II NOSPOUT run-time option is mapped to

the LE/VSE RPTOPTS(OFF) and RPTSTG(OFF) run-time

options for compatibility. It affects all languages in the

enclave.

SSRANGE CHECK(ON) The VS COBOL II SSRANGE run-time option is mapped to

the LE/VSE CHECK(ON) run-time option for compatibility. It

affects only COBOL programs in the enclave.

NOSSRANGE CHECK(OFF) The VS COBOL II NOSSRANGE run-time option is mapped

to the LE/VSE CHECK(OFF) run-time option for

compatibility. It affects only COBOL programs in the enclave.

STAE TRAP(ON) The VS COBOL II STAE run-time option is mapped to the

LE/VSE TRAP(ON) run-time option for compatibility. It

affects all languages in the enclave. The mapping of STAE

might differ depending upon other options specified. For

more information, see “TRAP” on page 114..

NOSTAE TRAP(OFF) The VS COBOL II NOSTAE run-time option is mapped to the

LE/VSE TRAP(OFF) run-time option for compatibility. It

affects all languages in the enclave. The mapping of NOSTAE

might differ depending upon other options specified. For

more information, see “TRAP” on page 114..

UPSI UPSI The VS COBOL II UPSI option is processed for compatibility.

WSCLEAR STORAGE(00) The VS COBOL II WSCLEAR run-time option is not

supported under LE/VSE. For behavior similar to that

produced by the VS COBOL II WSCLEAR run-time option,

use the LE/VSE STORAGE(00) run-time option.

68 LE/VSE: Customization Guide

Table 32. VS COBOL II and LE/VSE Options (continued)

VS COBOL II Option LE/VSE Equivalent Notes

NOWSCLEAR STORAGE(NONE) The VS COBOL II NOWSCLEAR run-time option is not

supported under LE/VSE. For behavior similar to that

produced by the VS COBOL II NOWSCLEAR run-time option,

use the LE/VSE STORAGE(NONE) run-time option.

 Table 33. DOS PL/I and LE/VSE Options

DOS PL/I Option LE/VSE Equivalent Notes

COUNT Not applicable There is no LE/VSE equivalent for the DOS PL/I COUNT

run-time option.

NOCOUNT Not applicable There is no LE/VSE equivalent for the DOS PL/I NOCOUNT

run-time option.

FLOW Not applicable There is no LE/VSE equivalent for the DOS PL/I FLOW

run-time option.

NOFLOW Not applicable There is no LE/VSE equivalent for the DOS PL/I NOFLOW

run-time option.

ISASIZE (init_size) STACK (init_size) The DOS PL/I ISASIZE run-time option is mapped to the

LE/VSE STACK run-time option for compatibility. It affects all

languages in the enclave.

REPORT RPTSTG(ON) The DOS PL/I REPORT run-time option is mapped to the

LE/VSE RPTSTG(ON) run-time option for compatibility. It

affects all languages in the enclave.

NOREPORT RPTSTG(OFF) The DOS PL/I NOREPORT run-time option is mapped to the

LE/VSE RPTSTG(OFF) run-time option for compatibility. It

affects all languages in the enclave.

STAE TRAP(ON) The DOS PL/I STAE run-time option is mapped to the

LE/VSE TRAP(ON) run-time option for compatibility. It

affects all languages in the enclave. The mapping of STAE

might differ depending upon other options specified. For

more information, see “TRAP” on page 114..

NOSTAE TRAP(OFF) The DOS PL/I NOSTAE run-time option is mapped to the

LE/VSE TRAP(OFF) run-time option for compatibility. It

affects all languages in the enclave. The mapping of NOSTAE

might differ depending upon other options specified. For

more information, see “TRAP” on page 114..

COBOL Compatibility

VS COBOL II supports an order of run-time options and program options that is

the reverse of that of LE/VSE: program arguments precede run-time options in

COBOL. To ensure compatibility with COBOL, LE/VSE provides the run-time

option CBLOPTS, which specifies whether run-time options or program arguments

are first in the character parameter.

For example:

 CBLOPTS=OFF:

Appendix A. LE/VSE Run-Time Options 69

// EXEC PGM=program-name,PARM=’run-time-options/program-arguments’

// EXEC PGM=program-name,PARM=’run-time-options/’

// EXEC PGM=program-name,PARM=’/program-arguments’

// EXEC PGM=program-name,PARM=’program-arguments’

 CBLOPTS=ON:

// EXEC PGM=program-name,PARM=’program-arguments/run-time-options’

// EXEC PGM=program-name,PARM=’/run-time-options’

// EXEC PGM=program-name,PARM=’program-arguments/’

// EXEC PGM=program-name,PARM=’program-arguments’

LE/VSE Run-Time Options

The run-time options that can be modified in the CEEDOPT CSECT are described

here in detail in the form specific to CEEDOPT.

IBM-supplied default keywords appear above the main path or options path in the

syntax diagrams. In the parameter list, IBM-supplied default choices are

underlined. For a full description of the syntax of LE/VSE run-time options, see

LE/VSE Programming Reference.

Some of these run-time options descriptions refer to the severity of conditions. The

values that can occur as condition token severity codes, and their meanings, are

listed here:

0 An informational message (or, if the entire token is zero, no information)

1 An attention message. Service completed, probably correctly.

2 An error message. Correction attempted. Service completed, perhaps

incorrectly.

3 A severe error message. Service not completed.

4 A critical error message. Service not completed and condition signaled. A

critical error is a condition that jeopardizes the environment. If a critical

error occurs during an LE/VSE callable service, it is always signaled to the

condition manager instead of being returned synchronously to the caller.

ABPERC

ABPERC exempts a specified VSE cancel code, program-interruption code, or user

abend code from LE/VSE condition handling, and causes an operating system

request to be issued to terminate the enclave.

The ABPERC option is a debugging aid that can be used by an application that

runs with TRAP set to ON. This provides LE/VSE semantics for everything except

one VSE cancel, program interruption, or user abend, whose code you specify.

When you run with ABPERC and encounter the specified VSE cancel, interruption,

or user abend:

v User condition handlers are not enabled.

v No storage report or run-time options report is generated.

v No LE/VSE messages or LE/VSE dump output is generated.

v The assembler user exit is not driven for enclave termination.

v The abnormal termination exit (if there is one) is not driven.

70 LE/VSE: Customization Guide

v Files opened by HLLs are not closed by LE/VSE, so records might be lost.

v Resources acquired by LE/VSE are not freed.

v The debug tool is not notified of the error.

You can also specify a list of VSE cancel codes, interruption codes, and user abend

codes in the CEEBXITA assembler user exit for the condition manager to exempt

from LE/VSE condition handling.

IBM-Supplied Default: ABPERC=((NONE),OVR)

Syntax

44

ABPERC

=

(

(
 NONE

abcode

)

,
 OVR

NONOVR

)

4<

NONE

Specifies that all abnormal terminations are handled according to LE/VSE

condition handling semantics.

abcode

Specifies the VSE cancel code, program-interruption code, or user abend code

to be exempted from LE/VSE condition handling.

 abcode can be specified as:

Shh A VSE cancel code where hh is the hexadecimal cancel code.

Ihh A VSE interruption code where hh is the hexadecimal interruption

code.

Udddd A user abend code where dddd is a decimal user-issued abend code.

 Any 4-character string can also be used as an abcode.

 You can identify only one VSE cancel code, program-interruption code, or

abend code with this option.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v LE/VSE ignores ABPERC=((S20),...). The VSE cancel code 20 indicates a program

check has occurred. In this instance, LE/VSE condition handling semantics are in

effect. You can, however, specify one program check interruption code, in the

form Ihh, to be exempted from LE/VSE condition handling.

v CICS consideration—ABPERC is ignored under CICS.

For More Information

v For more information about the CEEBXITA assembler user exit, see LE/VSE

Programming Guide.

v For more information about VSE cancel codes, see z/VSE Messages and Codes,

Volume 1.

ABPERC

Appendix A. LE/VSE Run-Time Options 71

v For a list of program-interruption codes, see the Principles of Operations manual

for your machine.

ABTERMENC

ABTERMENC sets the enclave termination behavior for an enclave ending with an

unhandled condition of severity 2 or greater. TRAP(ON) must be in effect for

ABTERMENC to have an effect when the unhandled condition is a program check

or an abend. ABTERMENC is always in effect for unhandled conditions raised by

the CEESGL callable service, regardless of the setting of the TRAP option.

IBM-Supplied Default: ABTERMENC=((ABEND),OVR)

Syntax

44

ABTERMENC

=

(

(
 ABEND

RETCODE

)

,
 OVR

NONOVR

)

4<

ABEND

Specifies that LE/VSE terminates the enclave with an abend, regardless of the

setting of the CEEAUE_ABND flag by the assembler user exit. In the batch

environment, LE/VSE produces run-time message CEE3321C or CEE3322C,

and issues an operating system request to terminate the enclave. In the CICS

environment, LE/VSE issues an EXEC CICS ABEND. The setting of the

CEEAUE_ABND flag affects the abend processing, as follows:

 When CEEAUE_ABND is off, the following occurs:

v Abend code: LE/VSE sets an abend code value that depends on the type of

unhandled condition.

v Reason code: LE/VSE sets a reason code value that depends on the type of

unhandled condition.

v Abend dump attribute: LE/VSE does not request a system dump.

When CEEAUE_ABND is on, LE/VSE uses values set by the assembler user

exit to determine abend processing:

v Abend code: Value of the CEEAUE_RETURN parameter of the assembler

user exit.

v Reason code: Value of the CEEAUE_REASON parameter of the assembler

user exit.

v Abend dump attribute: LE/VSE requests a system dump only if the

assembler user exit sets CEEAUE_DUMP to ON.

RETCODE

Specifies that the enclave terminates with a normal return code and reason

code.

 However, the CEEBXITA assembler user exit can modify this behavior as

follows:

v If the assembler user exit does not set the CEEAUE_ABND flag to ON

during enclave termination, LE/VSE returns to its caller with a return code

and a reason code.

v If the assembler user exit sets the CEEAUE_ABND flag to ON during

enclave termination, LE/VSE terminates the enclave with an abend. In the

batch environment, LE/VSE produces the run-time message CEE3322C, and

ABPERC

72 LE/VSE: Customization Guide

issues an operating system request to terminate the enclave. In the CICS

environment, LE/VSE issues an EXEC CICS ABEND.

LE/VSE sets the abend and reason code for the abend to equal the values of

assembler-user-exit parameters, as follows:

– Abend code: Value of the CEEAUE_RETURN parameter of the assembler

user exit. If the assembler user exit does not modify the

CEEAUE_RETURN value, LE/VSE sets an abend code that maps to the

severity of the condition and to the user return code.

– Reason code: Value of the CEEAUE_REASON parameter of the assembler

user exit.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v COBOL consideration—For compatibility with pre-LE/VSE- conforming COBOL,

ABEND is the recommended setting for COBOL customers.

v PL/I consideration–For compatibility with DOS PL/I, ABEND is the

recommended setting for PL/I customers.

v DB2 and DL/I Considerations – ABEND is the recommended setting for SQL

and DL/I users. For SQL, for example, this ensures that error conditions are

mirrored back to SQL to enable SQL/DS ROLLBACK. See also Chapter 23

″Running Applications with SQL/DS″ of the LE/VSE Programming Guide.

For More Information

v For information about return code calculation, CEEAUA_RETURN,

CEEAUE_ABND, and CEEBXITA assembler user exit processing, see LE/VSE

Programming Guide.

v For a list of abend code values and reason code values, see LE/VSE Debugging

Guide and Run-Time Messages.

ABTERMENC

Appendix A. LE/VSE Run-Time Options 73

AIXBLD (COBOL Only)

AIXBLD invokes the access method services (AMS) for VSAM key-sequenced

(KSDS) and relative-record data sets (RRDS) to complete the file and index

definition procedures for COBOL routines.

AIXBLD conforms to the ANSI 1985 COBOL standard.

IBM-Supplied Default: AIXBLD=((OFF),OVR)

Syntax

44

AIXBLD

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

OFF

Does not invoke the access method services for VSAM key-sequenced and

relative-record datasets.

ON

Invokes the access method services for VSAM key-sequenced and

relative-record datasets.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v CICS consideration—AIXBLD is ignored under CICS.

v VSE consideration—Access method services messages are directed to the

MSGFILE filename or, if the file identified by filename is unavailable, to SYSLST.

Performance Considerations

Running your program under AIXBLD requires more storage, which can degrade

performance. Therefore, use AIXBLD only during application development to build

alternate indexes. Use AIXBLD=((OFF),...) when you have already defined your

VSAM data sets.

For More Information

v For more information about AIXBLD, see LE/VSE Programming Guide.

v For more information about the MSGFILE run-time option, see “MSGFILE” on

page 92.

AIXBLD

74 LE/VSE: Customization Guide

ALL31

ALL31 specifies whether an application can run entirely in AMODE 31 or whether

the application has one or more AMODE 24 routines.

This option does not implicitly alter storage, in particular storage managed by the

STACK and HEAP run-time options. However, you must be aware of your

application’s requirements for stack and heap storage, because such storage can

potentially be allocated above the line while running in AMODE 24.

ALL31 should have the same setting for all enclaves in the process, because

LE/VSE does not support the invocation of a nested enclave requiring ALL31(OFF)

from an enclave running with ALL31(ON).

IBM-Supplied Default for CICS: ALL31=((ON),OVR)

IBM-Supplied Default for Batch: ALL31=((OFF),OVR)

Syntax

44

ALL31

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

OFF

Indicates that one or more routines of an LE/VSE application are AMODE 24.

 With ALL31(OFF) specified:

v AMODE switching across calls to LE/VSE common run-time routines is

performed. For example, AMODE switching is performed on calls to

LE/VSE callable services.

v In COBOL, EXTERNAL data is allocated in storage below the 16MB line.

If you use the default setting ALL31=((OFF),...), you must also use the BELOW

suboption of the STACK option. AMODE 24 routines usually require stack

storage below the 16MB line.

ON

Indicates that no user routines of an LE/VSE application are AMODE 24.

 With ALL31(ON) specified:

v AMODE switching across calls to LE/VSE common run-time routines is

minimized. For example, no AMODE switching is performed on calls to

LE/VSE callable services.

v In COBOL, EXTERNAL data is allocated in unrestricted storage.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v COBOL consideration—When you link-edit a COBOL program compiled with

the NORENT compiler option, the default addressing mode of the link-edited

phase is AMODE(ANY). This might result in your program being invoked in

ALL31

Appendix A. LE/VSE Run-Time Options 75

24-bit addressing mode. In order to specify ALL31(ON), your program must be

invoked in 31-bit addressing mode. Therefore, you should link-edit your

application as AMODE(31). You can use the MODE linkage editor control

statement to override the default addressing mode.

Performance Consideration

If your application consists entirely of AMODE (31) routines, it might run faster

with ALL31(ON) than with ALL31(OFF) because mode switching code is not

required.

Automatic AMODE detection is available under CICS using EXEC CICS calls to

other LE-enabled applications. However, if an installation uses dynamic calls from

an AMODE31 to an AMODE24 program, they must still use an installation default

of ALL31(OFF) or use a specific override using CEEUOPT or exits. AMODE24

autodetection will not work for dynamically-called programs.

For More Information

For more information about the STACK run-time option, see “STACK” on page

102.

ANYHEAP

ANYHEAP controls the allocation of library heap storage that is not restricted to a

location below the 16MB line.

The ANYHEAP option is always in effect. If you do not specify ANYHEAP or if

you specify ANYHEAP(0), LE/VSE allocates the IBM-supplied default value of

16K when a call is made to obtain heap storage.

IBM-Supplied Default for CICS: ANYHEAP=((4K,4080,ANYWHERE,FREE),OVR)

IBM-Supplied Default for Batch: ANYHEAP=((16K,8K,ANYWHERE,FREE),OVR)

Syntax

44

ANYHEAP

=

(

(

init_size

,

incr_size

,
 ANYWHERE

ANY

BELOW

4

4

,
 FREE

KEEP

)

,
 OVR

NONOVR

)

4<

init_size

Determines the minimum initial size of the anywhere heap storage. This value

can be specified as n, nK, or nM bytes of storage. The actual amount of

allocated storage is rounded up to the nearest multiple of 8 bytes.

incr_size

Determines the minimum size of any subsequent increment to the anywhere

heap area, and is specified in n, nK, or nM bytes of storage. This value is

rounded up to the nearest multiple of 8 bytes.

ANYWHERE|ANY

Specifies that heap storage can be allocated anywhere in storage. On systems

ALL31

76 LE/VSE: Customization Guide

that support bimodal addressing, storage can be allocated either above or

below the 16MB line. If there is no storage available above the line, storage is

acquired below the line.

BELOW

Specifies that heap storage must be allocated below the 16MB line in storage

that is accessible to 24-bit addressing.

FREE

Specifies that storage allocated to ANYHEAP increments is released when the

last of the storage is freed.

KEEP

Specifies that storage allocated to ANYHEAP increments is not released when

the last of the storage is freed.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v CICS consideration—Both the initial size and the increment size are rounded up

to the nearest multiple of 8 bytes. The minimum is 4K for initial size, and 4080

bytes for increment size.

Under CICS/VSE 2.3, if ANYHEAP(,,BELOW) is in effect, the maximum initial

and increment size for ANYHEAP is 65,504 bytes. If ANYHEAP(,,ANYWHERE)

is in effect, the maximum initial and increment size for ANYHEAP is 1 gigabyte

(1024M).

v CEEUOPT consideration—If you specify the ANYHEAP run-time option in

CEEUOPT, the following default values are used for omitted suboptions:

init_size

32K

incr_size

16K

Performance Considerations

The ANYHEAP option improves performance when you specify values that

minimize the number of times the operating system allocates storage. The RPTSTG

run-time option generates a report of the storage the application uses while

running; you can use this report to help determine what values to specify.

For More Information

v For more information about LE/VSE heap storage, see LE/VSE Programming

Guide.

v For more information about the RPTSTG run-time option, see “RPTSTG” on

page 98.

v For more information about using the storage report generated by the RPTSTG

run-time option to tune your application, see LE/VSE Programming Guide.

v For more information about CEEUOPT, see LE/VSE Programming Guide.

ANYHEAP

Appendix A. LE/VSE Run-Time Options 77

BELOWHEAP

BELOWHEAP controls the allocation of library heap storage that must be located

below the 16MB line. The heap controlled by BELOWHEAP is intended for items

such as control blocks used for I/O.

The BELOWHEAP option is always in effect. If you do not specify BELOWHEAP

or if you specify BELOWHEAP(0), the IBM-supplied default value of 8K is

allocated when a call is made to obtain heap storage.

IBM-Supplied Default for CICS: BELOWHEAP=((4K,4080,FREE),OVR)

IBM-Supplied Default for Batch: BELOWHEAP=((8K,4K,FREE),OVR)

Syntax

44

BELOWHEAP

=

(

(

init_size

,

incr_size

,
 FREE

KEEP

)

,

4

4
 OVR

NONOVR

)

4<

init_size

Determines the minimum initial size of the below heap storage. This value can

be specified as n, nK, or nM bytes of storage. The actual amount of allocated

storage is rounded up to the nearest multiple of 8 bytes.

incr_size

Determines the minimum size of any subsequent increment to the area below

the 16MB line, and is specified in n, nK, or nM bytes of storage. This value is

rounded up to the nearest multiple of 8 bytes.

FREE

Specifies that storage allocated to BELOWHEAP increments is released when

the last of the storage is freed.

KEEP

Specifies that storage allocated to BELOWHEAP increments is not released

when the last of the storage is freed.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v CICS considerations—Both the initial size and the increment size are rounded to

the nearest multiple of 8 bytes. The minimum is 4K for initial size, and 4080

bytes for increment size. The maximum initial and increment size for

BELOWHEAP under CICS/VSE 2.3 is 65,504 bytes.

v CEEUOPT consideration—If you specify the BELOWHEAP run-time option in

CEEUOPT, the following default values are used for omitted suboptions:

init_size

32K

incr_size

16K

BELOWHEAP

78 LE/VSE: Customization Guide

Performance Considerations

BELOWHEAP improves performance when you specify values that minimize the

number of times that the operating system allocates storage. The RPTSTG run-time

option generates a report of storage your application uses while running. You can

use this report to help determine what values to specify.

For More Information

v For more information about LE/VSE heap storage, see LE/VSE Programming

Guide.

v For more information about the RPTSTG run-time option, see “RPTSTG” on

page 98.

v For more information about tuning your application, see LE/VSE Programming

Guide.

v For more information about CEEUOPT, see LE/VSE Programming Guide.

CBLOPTS (COBOL Only)

CBLOPTS specifies the format of the parameter string on application invocation

when the main routine is COBOL. CBLOPTS determines whether run-time options

or program arguments appear first in the parameter string.

You can specify this option only in CEEUOPT or CEEDOPT at initialization.

When you specify the ON suboption of CBLOPTS in CEEUOPT or CEEDOPT, the

run-time arguments and program arguments specified in the JCL are honored in

the following order:

 program arguments/run-time options

This order is the reverse of that normally honored by LE/VSE.

CBLOPTS(ON) allows the existing COBOL format of the invocation character

string to continue working (user parameters followed by run-time options).

CBLOPTS(ON) is valid only for applications whose main program is COBOL.

IBM-Supplied Default: CBLOPTS=((ON),OVR)

Syntax

44

CBLOpts

CBLOPTS

=

(

(
 ON

OFF

)

,
 OVR

NONOVR

)

4<

ON

Specifies that program arguments appear first in the parameter string.

OFF

Specifies that run-time options appear first in the parameter string.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

BELOWHEAP

Appendix A. LE/VSE Run-Time Options 79

For More Information

For more information about CEEUOPT, see LE/VSE Programming Guide.

CBLPSHPOP (COBOL Only)

CBLPSHPOP controls whether CICS PUSH HANDLE and CICS POP HANDLE

commands are issued when a COBOL (VS COBOL II or COBOL/VSE) subroutine

is called.

Specify CBLPSHPOP=((ON),...) to avoid compatibility problems when calling

COBOL/VSE or VS COBOL II subroutines that contain CICS CONDITION, AID, or

ABEND condition handling commands.

You can set the CBLPSHPOP run-time option on a transaction by transaction basis

using CEEUOPT.

IBM-Supplied Default for CICS: CBLPSHPOP=((ON),OVR)

IBM-Supplied Default for Batch: CBLPSHPOP=((OFF),OVR)

Syntax

44

CBLPSHPOP

=

(

(
 ON

OFF

)

,
 OVR

NONOVR

)

4<

ON

Automatically issues the following when a COBOL subroutine is called:

v An EXEC CICS PUSH HANDLE command as part of the routine

initialization

v An EXEC CICS POP HANDLE command as part of the routine termination

OFF

Does not issue CICS PUSH HANDLE and CICS POP HANDLE commands on

a call to a COBOL subroutine.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Performance Consideration

v If your application calls COBOL subroutines under CICS, performance is better

with CBLPSHPOP(OFF) than with CBLPSHPOP(ON).

For More Information

For more information about CEEUOPT, see LE/VSE Programming Guide.

CBLOPTS

80 LE/VSE: Customization Guide

CHECK (COBOL Only)

CHECK flags checking errors within an application. In COBOL, index, subscript,

and reference modification ranges are checking errors. COBOL is the only language

that uses the CHECK option.

IBM-Supplied Default: CHECK=((OFF),OVR)

Syntax

44

CHECK

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

OFF

Specifies that run-time checking is not performed.

ON

Specifies that run-time checking is performed.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Note

 CHECK=((ON),...) has no effect if NOSSRANGE was in effect at compile time.

Performance Consideration

1. Please be aware that CHECK(ON) is required to ensure that the COBOL

Compile option SSRANGE takes effect. This may be required for debugging

purposes and would, for example, enable storage boundary checking.

2. If your COBOL program was compiled with SSRANGE, and you are not testing

or debugging an application, performance improves when you specify

CHECK(OFF).

CHECK

Appendix A. LE/VSE Run-Time Options 81

COUNTRY

COUNTRY sets the country code, which affects the date and time formats, the

currency symbol, the decimal separator, and the thousands separator, based on a

specified country. COUNTRY does not change the default settings for the language

currency symbol, decimal point, thousands separator, and date and time picture

strings set by CEESETL or setlocale(). COUNTRY affects only the LE/VSE NLS

services, not the LE/VSE locale callable services.

You can set the country value using the run-time option COUNTRY or the callable

service CEE5CTY.

The COUNTRY setting affects the format of the date and time in the reports

generated by the RPTOPTS and RPTSTG run-time options.

IBM-Supplied Default: COUNTRY=((US),OVR)

Syntax

44

COUNTRY

=

(

(

country_code

)

,
 OVR

NONOVR

)

4<

country_code

A 2-character code that indicates to LE/VSE the country on which to base the

default settings.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v If you specify a country_code that is not available on your system, LE/VSE

accepts the value, issues informational message CEE3616I, and uses a default

generic country code. This is not the same as the installation-supplied default US

country code. For more information about the settings of this default country

code, see Appendix A in LE/VSE Programming Reference.

CEEUOPT and CEEDOPT permit the specification of an unavailable country

code, but give a return code of 4 and a warning message.

v C consideration—LE/VSE provides locales used in C to establish default formats

for the locale-sensitive functions and locale callable services, such as date and

time formatting, sorting, and currency symbols. To change the locale, you can

use the setlocale() library function or the CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the

COUNTRY run-time option. COUNTRY affects only LE/VSE NLS and date and

time services. setlocale() and CEESETL affect only C locale-sensitive functions

and LE/VSE locale callable services.

To ensure that all settings are correct for your country, use COUNTRY and either

CEESETL or setlocale().

For More Information

v For a list of countries and their codes, see Appendix G, “LE/VSE National

Language Support Country Codes,” on page 177.

COUNTRY

82 LE/VSE: Customization Guide

v For more information about the CEE5CTY callable service, see LE/VSE

Programming Reference.

v For more information about the RPTOPTS and RPTSTG run-time options, see

“RPTOPTS” on page 96 and “RPTSTG” on page 98.

v For more information about the CEESETL callable service, see LE/VSE

Programming Reference.

v For more information on setlocale(), see LE/VSE C Run-Time Programming

Guide.

DEBUG (COBOL Only)

DEBUG activates the COBOL batch debugging features specified by the USE FOR

DEBUGGING declarative.

IBM-Supplied Default: DEBUG=((OFF),OVR)

Syntax

44

DEBUG

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

OFF

Suppresses the COBOL batch debugging features.

ON

Activates the COBOL batch debugging features.

 You must have the WITH DEBUGGING MODE clause in the environment

division of your application in order to compile the debugging sections.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Performance Consideration

Because DEBUG(ON) gives worse run-time performance than DEBUG(OFF), you

should use it only during application development or debugging.

For More Information

For more information on the USE FOR DEBUGGING declarative, see LE/VSE

Programming Guide.

COUNTRY

Appendix A. LE/VSE Run-Time Options 83

DEPTHCONDLMT

DEPTHCONDLMT specifies the extent to which conditions can be nested.

Figure 12 illustrates the effect of DEPTHCONDLMT(3) on condition handling. The

initial condition and two nested conditions are handled in this example. The third

nested condition is not handled.

 IBM-Supplied Default: DEPTHCONDLMT=((10),OVR)

Syntax

44

DEPTHCONDLMT

=

(

(

limit

)

,
 OVR

NONOVR

)

4<

limit

An integer of 0 or greater value. It is the depth of condition handling allowed.

An unlimited depth of condition handling is allowed if you specify 0.

 A value of 1 specifies handling of the initial condition, but does not allow

handling of nested conditions that occur while handling a condition. With a

value of 5, for example, the initial condition and four nested conditions are

processed, but there can be no further nesting of conditions.

 If the number of nested conditions exceeds the limit, the application terminates

with abend 4091 and reason code 21 (X'15').

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

 PL/I consideration—DEPTHCONDLMT(0) provides compatibility with

previous releases of the DOS PL/I Optimizing Compiler.

Figure 12. Effect of DEPTHCONDLMT(3) on Condition Handling

DEPTHCONDLMT

84 LE/VSE: Customization Guide

For More Information

For more information on nested conditions, see LE/VSE Programming Guide.

ENVAR (C Only)

ENVAR sets the initial values for the environment variables specified in string.

With ENVAR, you can pass into the application switches or tagged information

that can then be accessed using the C functions getenv, setenv, and clearenv.

When the run-time options are merged, ENVAR strings are appended in the order

encountered during the merge. Thus, the set of environment variables established

by the end of run-time option processing reflects all the various sources where

environment variables are specified (rather than just the one source with the

highest precedence). However, if a setting for the same environment variable is

specified in more than one source, the last setting is used.

Environment variables in effect at the time of the system function are copied to the

new environment. The copied environment variables are treated the same as those

found in the ENVAR run-time option on the command level, with respect to the

merge of the run-time options from their various sources.

When you have specified the RPTOPTS run-time option, you receive a list of the

merged ENVAR run-time options. The output for the ENVAR run-time options

contains a separate entry for each source where ENVAR was specified with the

environment variables from that source.

IBM-Supplied Default: ENVAR=((''),OVR)

Syntax

44

ENVAR

=

(

(

=

 ,

string

)

,

OVR

NONOVR

)

4<

string

Is of the form name=value, where name and value are sequences of characters

that do not contain null bytes or equal signs. The string name is an

environment variable, and value is its value.

 Blanks are significant in both the name= and the value characters.

 You can enclose the string in either single or double quotation marks to

distinguish it from other strings. string cannot contain DBCS characters. It can

have a maximum of 250 characters.

 You can specify multiple environment variables, separating the name=value

pairs with commas. Quotation marks are required when specifying multiple

variables.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

DEPTHCONDLMT

Appendix A. LE/VSE Run-Time Options 85

Usage Notes

 C consideration—An application can access the environment variables using C

function getenv.

HLLs can access the environment variables through standard C functions at

enclave initialization and throughout the application’s run. Access remains until

the HLL returns from enclave termination.

For More Information

v For more information about the RPTOPTS run-time option, see “RPTOPTS” on

page 96.

v For more information about getenv, setenv, and clearenv, see LE/VSE C

Run-Time Programming Guide.

ERRCOUNT

ERRCOUNT specifies how many conditions of severity 2, 3, and 4 can occur before

the enclave terminates abnormally. After the number specified in ERRCOUNT is

reached, no further LE/VSE condition management, including CEEHDLR

management, is honored.

IBM-Supplied Default: ERRCOUNT=((20),OVR)

Syntax

44

ERRCOUNT

=

(

(

number

)

,
 OVR

NONOVR

)

4<

number

The number of severity 2, 3, and 4 conditions that can occur while this enclave

is running. If the number of conditions exceeds number, the enclave terminates

abnormally.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v ERRCOUNT(0) means the number of conditions that can occur is unlimited. This

setting can cause an infinite loop or a runaway task.

v COBOL consideration—LE/VSE counts severity 1 messages with the facility ID

IGZ. When the limit is reached, additional severity 1 messages are suppressed.

v PL/I consideration—You should use ERRCOUNT(0) if you are using PL/I.

For More Information

v For more information about the CEEHDLR callable service, see LE/VSE

Programming Reference.

v For more information about facility IDs, see LE/VSE Programming Guide.

ENVAR

86 LE/VSE: Customization Guide

HEAP

HEAP controls the allocation of the initial heap, controls allocation of additional

heaps created with the CEECRHP callable service, and specifies how that storage is

managed.

Heaps are storage areas where you allocate memory for user-controlled

dynamically allocated variables such as:

v C variables allocated as a result of the malloc(), calloc(), and realloc()

functions

v COBOL WORKING-STORAGE data items

v PL/I variables with the storage class CONTROLLED, or the storage class

BASED

LE/VSE does not allocate heap storage until the first call to obtain heap storage is

made. You can obtain heap storage by using language constructs or by making a

call to CEEGTST.

IBM-Supplied Default for CICS:

HEAP=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR)

IBM-Supplied Default for Batch:

HEAP=((32K,32K,ANYWHERE,KEEP,8K,4K),OVR)

Syntax

44

HEAP

=

(

(

init_size

,

incr_size

,
 ANYWHERE

ANY

BELOW

,
 KEEP

FREE

4

4

,

initsz24

,

incrsz24

)

,
 OVR

NONOVR

)

4<

init_size

Determines the minimum initial allocation of heap storage. Specify this value

as n, nK, or nM bytes of storage. The actual amount of allocated storage is

rounded up to the nearest multiple of 8 bytes.

incr_size

Determines the minimum size of any subsequent increment to the heap

storage. Specify this value as n, nK, or nM bytes of storage. The actual amount

of allocated storage is rounded up to the nearest multiple of 8 bytes.

ANYWHERE|ANY

Specifies that you can allocate heap storage anywhere in storage. On systems

that support bimodal addressing, you can allocate storage either above or

below the 16MB line. If there is no available storage above the line, storage is

acquired below the line.

BELOW

Specifies that you must allocate heap storage below the 16MB line in storage

that is accessible to 24-bit addressing.

KEEP

Specifies that storage allocated to HEAP increments is not released when the

last of the storage is freed.

HEAP

Appendix A. LE/VSE Run-Time Options 87

FREE

Specifies that storage allocated to HEAP increments is released when the last of

the storage is freed.

initsz24

Determines the minimum initial size of the heap storage that is obtained below

the 16MB line for applications running with ALL31(OFF) when these

applications specify ANYWHERE in the HEAP run-time option. Specify

initsz24 as n, nK, or nM number of bytes. The amount of storage is rounded up

to the nearest multiple of 8 bytes.

 initsz24 applies to all heaps that are not allocated strictly below the 16MB line.

incrsz24

Determines the minimum size of any subsequent increment to the heap area

that is obtained below the 16MB line for applications running with

ALL31(OFF) when these applications specify ANYWHERE in the HEAP

run-time option. Specify incrsz24 as n, nK, or nM number of bytes. The amount

of storage is rounded up to the nearest multiple of 8 bytes.

 incrsz24 applies to all heaps that are not allocated strictly below the 16MB line.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v Applications running in AMODE 24 that request heap storage get the storage

below the 16MB line regardless of the setting of ANYWHERE | BELOW.

v COBOL consideration—You can use the HEAP option to provide some of the

function provided by the VS COBOL II space management tuning table.

v PL/I consideration—For PL/I, the only case in which storage is allocated above

the line is when all of the following conditions exist:

– The user routine requesting the storage is running in 31-bit addressing mode.

– HEAP(,,ANYWHERE) is in effect.

– The main routine is AMODE 31.
v CICS consideration—Both the initial HEAP allocation and HEAP increments are

rounded to the next higher multiple of 8 bytes. The minimum is 4K for initial

size, and 4080 bytes for increment size.

Under CICS/VSE 2.3, if HEAP(,,BELOW) is in effect, the maximum size of a

heap segment is 65,504 bytes. If too large a value is specified, the application

fails at the first attempt to allocate heap storage. If HEAP(,,ANYWHERE) is in

effect, the maximum size of a heap segment is 1 gigabyte (1024M). These

restrictions are subject to change from one release of CICS to another.

v CEEUOPT consideration—If you specify the HEAP run-time option in

CEEUOPT, the following default values are used for omitted suboptions:

init_size

64K

incr_size

64K

initsz24

16K

incrsz24

16K

HEAP

88 LE/VSE: Customization Guide

Performance Considerations

The RPTSTG run-time option generates a report of storage your application uses

while running. To improve performance, use the information in this report as an

aid in setting application-specific initial and increment sizes for HEAP.

For More Information

v For more information about LE/VSE heap storage, see LE/VSE Programming

Guide

v For more information about the CEECRHP and CEEGTST callable services, see

LE/VSE Programming Reference

v For more information about the RPTSTG run-time option, see “RPTSTG” on

page 98.

v For more information about using the storage report generated by the RPTSTG

run-time option to tune your application, see LE/VSE Programming Guide.

HEAPCHK

HEAPCHK provides a checking facility to verify that the heap storage has not

been damaged.

IBM-Supplied Default: HEAPCHK=((OFF,1,0),OVR)

Syntax

44

HEAPCHK

=

(

(
 OFF

ON

,

frequency

,

delay

)

,
 OVR

NONOVR

4

4) 4<

OFF

Specifies that no heap checking will be done.

ON

Specifies that heap checking will be activated and controlled by the frequency

and delay parameters.

frequency

Determines the event frequency at which heap checking is to occur. This

specifies that heap storage will be checked for damage on every nth call to an

LE/VSE storage management service. Specify this value as n, nK, or nM.

delay

Determines the number of calls to LE/VSE storage management services that

will be made before activating the heap checking mechanism. Specify this

value as n, nK, or nM.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

HEAP

Appendix A. LE/VSE Run-Time Options 89

Usage Notes

v When specifying values for frequency and delay, remember that storage

management services are called by LE/VSE’s internal routines in addition to

your application calls.

v Certain language constructs will also call LE/VSE storage management services.

For example, PL/I ALLOCATE and FREE statements for variables and

aggregates that are not within a PL/I AREA, and the C malloc() and free()

library functions.

v EXEC CICS GETMAIN and FREEMAIN do not use LE/VSE storage

management services.

Performance Considerations

HEAPCHK is intended to be used in a test environment only!. Use HEAPCHK in

production only when necessary, as it will use extra CPU resources and degrade

performance.

For More Information

For more information about:

v LE/VSE’s storage management services, refer to the description of CEEGTST

and CEEFRST in the LE/VSE Programming Reference.

v the HEAP diagnostics report created when HEAPCHK(ON,n,n) is used, refer to

the LE/VSE Debugging Guide and Run-Time Messages.

LIBSTACK

LIBSTACK controls the allocation of the thread’s library stack storage. This stack is

used by LE/VSE and HLL library routines that require save areas below the 16MB

line.

IBM-Supplied Default for CICS: LIBSTACK=((4K,4080,FREE),OVR)

IBM-Supplied Default for Batch: LIBSTACK=((12K,4K,FREE),OVR)

Syntax

44

LIBSTACK

=

(

(

init_size

,

incr_size

,
 FREE

KEEP

)

,

4

4
 OVR

NONOVR

)

4<

init_size

Determines the size of the initial library stack segment. The storage is

contiguous.

 Specify init_size as n, nK, or nM bytes of storage. init_size can be preceded by a

minus sign. In the batch environment, if you specify a negative number, all

available storage minus the amount specified is used for the initial stack

segment.

 In the batch environment, an init_size of 0 or −0 requests half of the largest

block of contiguous storage below the 16MB line.

 At initialization, LE/VSE allocates the storage rounded up to the nearest

multiple of 8 bytes.

HEAPCHK

90 LE/VSE: Customization Guide

incr_size

Determines the minimum size of any subsequent increment to the library stack

area. Specify this value as n, nK, or nM bytes of storage. The actual amount of

allocated storage is the larger of 2 values— incr_size or the requested

size—rounded up to the nearest multiple of 8 bytes.

 If you do not specify incr_size, LE/VSE uses the IBM-supplied default setting

of 4K. If incr_size=0, LE/VSE obtains only the amount of storage needed at the

time of the request, rounded up to the nearest multiple of 8 bytes.

 The requested size is the amount of storage a routine needs for a stack frame.

For example, if the requested size is 9000 bytes, incr_size is specified as 8K and

the initial stack segment is full, LE/VSE obtains a 9000-byte stack increment

from the operating system to satisfy the request. If the requested size is smaller

than 8K, LE/VSE obtains an 8K stack increment from the operating system.

FREE

Specifies that LE/VSE releases storage allocated to LIBSTACK increments when

the last of the storage in the library stack is freed. The initial library stack

segment is not released until the enclave terminates.

KEEP

Specifies that LE/VSE does not release storage allocated to LIBSTACK

increments when the last of the storage is freed.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v CICS consideration—Both the initial and increment sizes are rounded up to the

next multiple of 8 bytes. The minimum is 4K for initial size, and 4080 bytes for

increment size.

Under CICS, the maximum initial and increment size for LIBSTACK is 65,504

bytes.

v CEEUOPT consideration—If you specify the LIBSTACK run-time option in

CEEUOPT, the following default values are used for omitted suboptions:

init_size

32K

incr_size

16K

Performance Considerations

The RPTSTG run-time option generates a report of storage your application uses

while running. To improve performance, use the information in this report as an

aid in setting the initial and increment sizes for LIBSTACK.

For More Information

v For more information about the RPTSTG run-time option, see “RPTSTG” on

page 98.

v For more information about using the storage report generated by the RPTSTG

run-time option to tune your application, see LE/VSE Programming Guide.

LIBSTACK

Appendix A. LE/VSE Run-Time Options 91

MSGFILE

MSGFILE specifies the filename of the file where all run-time diagnostics and

reports generated by the RPTOPTS and RPTSTG run-time options are written.

MSGFILE also specifies the filename for CEEMSG and CEEMOUT callable services.

IBM-Supplied Default for CICS: MSGFILE=((CESE),OVR)

IBM-Supplied Default for Batch: MSGFILE=((SYSLST),OVR)

Syntax

44

MSGFILE

=

(

(

filename

)

,
 OVR

NONOVR

)

4<

filename

The filename of the run-time diagnostics file.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v CICS considerations – The MSGFILE option defaults to the CESE transient data

queue. Specification of a different transient data queue for MSGFILE is possible.

However, it is the user’s responsibility to ensure that this transient data queue is

available in the CICS system. If an option other than CESE is specified for

MSGFILE and this transient data queue becomes unusable or unavailable,

LE/VSE will default to the CESE transient data queue. The CESE transient data

queue must always be available either as TYPE=INDIRECT or TYPE=EXTRA in

the CICS DCT definition.

The MSGFILE destination name under CICS must not exceed 4 characters in

length. Truncation will occur on the MSGFILE destination if the name used is

greater than 4 characters in length. The supplied definition of CEEMSG in

CEECDCT.A in PRD2.SCEEBASE should be used as an example for any other

TYPE=SDSCI destinations being used as a Disk File destination for MSGFILE.

Note that if a DISK file is being used as a final destination, you must remember

to add 8 bytes to the BLKSIZE specified in your DCT definition. Any MSGFILE

destination used must support a blksize of at least 175 bytes (inclusive of the 8

bytes required for LIOCS output files if DISK is used). The VSE system console

is not a supported destination for MSGFILE either directly or indirectly.

v HLL compile-time options can affect whether your run-time output goes to

MSGFILE filename.

v LE/VSE does not check the validity of the MSGFILE filename. An invalid filename

generates an error condition on the first attempt to issue a message.

v C consideration—C perror() messages and output directed to stderr go to the

MSGFILE destination.

v PL/I consideration—Run-time messages in PL/I routines are directed to the file

specified by the LE/VSE MSGFILE run-time option, instead of to the PL/I

SYSPRINT STREAM PRINT file.

User-specified output is still directed to the PL/I SYSPRINT STREAM PRINT

file. If you want LE/VSE to handle this output, specify MSGFILE(SYSPRINT).

MSGFILE

92 LE/VSE: Customization Guide

When you specify MSGFILE(SYSPRINT), all PL/I run-time messages and

user-specified output are directed to SYSLST.

For More Information

v For more information about the RPTOPTS and RPTSTG run-time options, see

“RPTOPTS” on page 96 and “RPTSTG” on page 98.

v For more information about the CEEMSG and CEEMOUT callable services, see

LE/VSE Programming Reference.

v For details on how HLL compiler options affect messages, see information on

HLL I/O statements and message handling in LE/VSE Programming Guide.

v For more information about the CESE transient data queue, see LE/VSE

Programming Guide.

v For more information about perror() and stderr, see C message output

information in LE/VSE Programming Guide.

MSGQ

MSGQ specifies the number of ISI blocks that LE/VSE allocates on a per thread

basis for use by the application. The ISI contains information that LE/VSE uses to

identify and react to conditions, provide access to q_data tokens, and assign space

for message inserts used with user-created messages. When an ISI is needed and

one is not available, LE/VSE takes the least recently used ISI for reuse. CEECMI

allocates storage for the ISI, if necessary.

IBM-Supplied Default: MSGQ=((15),OVR)

Syntax

44

MSGQ

=

(

(

number

)

,
 OVR

NONOVR

)

4<

number

An integer that specifies the number of ISIs to be maintained per thread within

an enclave.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

For More Information

v For more information about the CEECMI callable service, see LE/VSE

Programming Reference.

v For more information about the ISI, see LE/VSE Programming Guide.

MSGFILE

Appendix A. LE/VSE Run-Time Options 93

NATLANG

NATLANG specifies the initial national language to be used for the run-time

environment, including error messages, month names, and day-of-the week names.

Message translations are provided for Japanese and (uppercase and mixed-case)

U.S. English. NATLANG also determines how the message facility formats

messages.

NATLANG affects only the LE/VSE NLS and date and time services, not the

LE/VSE locale callable services.

You can set the national language by using the NATLANG run-time option or the

SET option of the CEE5LNG callable service. LE/VSE maintains one current

language at the enclave level. This current language remains in effect until one of

the above changes it. For example, if you specify JPN in the NATLANG run-time

option, but subsequently specify ENU using the CEE5LNG callable service, ENU

becomes the current national language.

LE/VSE writes certain parts of storage and options reports and dump output only

in mixed-case U.S. English, and certain abnormal termination messages only in

uppercase U.S. English.

IBM-Supplied Default: NATLANG=((UEN),OVR)

Syntax

44

NATLANG

=

(

(
 UEN

ENU

JPN

)

,
 OVR

NONOVR

)

4<

UEN

A 3-character ID specifying uppercase U.S. English.

 Message text consists of SBCS (single-byte character set) characters and

includes only uppercase letters.

ENU

A 3-character ID specifying mixed-case U.S. English.

 Message text consists of SBCS characters and includes both uppercase and

lowercase letters.

JPN

A 3-character ID specifying Japanese.

 Message text can contain a mixture of SBCS and DBCS (double-byte character

set) characters.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v If you specify a national language that is not available on your system, LE/VSE

uses the IBM-supplied default UEN (uppercase U.S. English).

NATLANG

94 LE/VSE: Customization Guide

CEEUOPT and CEEDOPT can specify an unknown national language code, but

give a return code of 4 and a warning message.

v C consideration—LE/VSE provides locales used in C to establish default formats

for the locale-sensitive functions and locale callable services, such as date and

time formatting, sorting, and currency symbols. To change the locale, you can

use the setlocale() library function or the CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the

NATLANG run-time option. NATLANG affects only LE/VSE NLS and date and

time services. setlocale() and CEESETL affect only C locale-sensitive functions

and LE/VSE locale callable services.

To ensure that all settings are correct for your country, use NATLANG and

either CEESETL or setlocale().

For More Information

v For more information about the CEE5LNG and CEESETL callable services, see

LE/VSE Programming Reference.

v For more information about setlocale(), see LE/VSE C Run-Time Programming

Guide.

NOTEST

See “TEST” on page 111.

NOUSRHDLR

See “USRHDLR” on page 118.

RETZERO (COBOL Only)

RETZERO will ensure that, if the run unit does not abend or terminate abnormally,

the user return code will be set to zero regardless of the contents of register 15 or

the RETURN-CODE special register.

IBM-Supplied Default: RETZERO=((OFF),OVR)

Syntax

44

RETZERO

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

OFF

Specifies that the user return code will be unchanged.

ON

Specifies that LE/VSE will set the user return code to zero before terminating

the run unit.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

This option is intended for COBOL programs that call Assembler or other

non-COBOL/VSE subroutines, where the subroutine does not clear register 15

NATLANG

Appendix A. LE/VSE Run-Time Options 95

before returning to the calling program. Under normal circumstances (with

RETZERO(OFF)), the contents of register 15 will become the contents of the

RETURN-CODE special register, and if the COBOL program does not subsequently

change this, it will be used as the user return code for the enclave. As this is an

unpredictable value (possibly a virtual storage address), it can cause errors in the

batch job stream. With RETZERO(ON), the user return code will be forced to zero

before the run unit ends.

RPTOPTS

RPTOPTS generates, after an application has run, a report of the run-time options

in effect while the application was running. LE/VSE writes options reports only in

mixed-case U.S. English.

In the batch environment, LE/VSE directs the report to the filename specified in the

MSGFILE run-time option. In the CICS environment, LE/VSE directs the report to

the CESE transient data queue.

Figure 13 on page 97 shows the sample output when RPTOPTS is set to ON.

RPTOPTS(ON) lists the declared run-time options in alphabetic order. The report

lists the option names and shows where each option obtained its current setting.

The report heading displayed at the top of the options report is set by CEE5RPH.

The date and time formats are affected by the country code set by the COUNTRY

run-time option or the CEE5CTY callable service.

The LAST WHERE SET column in the report shows the last place where the

options were referenced, even if no suboptions or subsets of the options were

changed. “Default setting” in the report indicates that you cannot specify the

option in CEEDOPT or CEEUOPT. “Programmer default” includes any options

specified with C #pragma runopts, PL/I PLIXOPT, and CEEUOPT.

IBM-Supplied Default: RPTOPTS=((OFF),OVR)

Syntax

44

RPTOPTS

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

OFF

Does not generate a report of the run-time options in effect while the

application was running.

ON

Generates a report of the run-time options in effect while the application was

running.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

 In most instances, RPTOPTS does not generate the options report if an

application terminates abnormally.

RETZERO

96 LE/VSE: Customization Guide

Performance Considerations

This option increases the time it takes for the application to run. Therefore, use it

only as an aid to application development.

When TERMTHDACT is set with the LSTQ suboption, a “LSTQ Options Report”

will be produced. This report shows the LSTQ options that are currently active.

You can change these settings using the CEELOPT macro. This macro is supplied

with the CEECOPT and CEEDOPT samples, which are used to set the LE/VSE

default environment-wide run-time options.

The “LSTQ Options Report” shown at the end of Figure 13 was produced using

the settings TERMTHDACT(DUMP,LSTQ,0).

Options Report for Enclave CBLDATE 06/01/04 10:06:17 AM

Language Environment for VSE/ESA V1 R4.4

LAST WHERE SET OPTION

Programmer default ABPERC(NONE)

Installation default ABTERMENC(ABEND)

Installation default NOAIXBLD

Programmer default ALL31(OFF)

Programmer default ANYHEAP(16384,8192,ANYWHERE,FREE)

Installation default BELOWHEAP(8192,4096,FREE)

Installation default CBLOPTS(ON)

Installation default CBLPSHPOP(OFF)

Installation default CHECK(OFF)

Non-overrideable COUNTRY(US)

Installation default NODEBUG

Installation default DEPTHCONDLMT(10)

Installation default ENVAR("")

Programmer default ERRCOUNT(20)

Installation default HEAP(32768,32768,ANYWHERE,KEEP,8192,4096)

Installation default HEAPCHK(OFF,1,0)

Installation default LIBSTACK(12288,4096,FREE)

Installation default MSGFILE(SYSLST)

Installation default MSGQ(15)

Installation default NATLANG(UEN)

Installation default RETZERO(OFF)

Invocation command RPTOPTS(ON)

Installation default RPTSTG(OFF)

Installation default NORTEREUS

Installation default STACK(131072,131072,BELOW,KEEP)

Assembler user exit STORAGE(00,NONE,NONE,32768)

Programmer default TERMTHDACT(DUMP,LSTQ,0)

Installation default NOTEST(ALL,"*","PROMPT","")

Installation default TRACE(OFF,4096,DUMP,LE=0)

Installation default TRAP(ON,MAX)

Installation default UPSI(00000000)

Installation default NOUSRHDLR()

Programmer default XUFLOW(AUTO)

LSTQ Options Report

--

LSTQ Class Setting L

LSTQ Disposition Setting D

LSTQ Remote Node ID LETEST

LSTQ Remote User ID LETEST

Figure 13. Options Report Produced by LE/VSE Run-Time Option RPTOPTS(ON)

RPTOPTS

Appendix A. LE/VSE Run-Time Options 97

For More Information

v For more information about the MSGFILE and COUNTRY run-time options, see

“MSGFILE” on page 92 and “COUNTRY” on page 82.

v For more information about the CEE5RPH and CEE5CTY callable services, see

LE/VSE Programming Reference.

v For more information about the CEECOPT and CEEDOPT samples, see

“Changing the Installation-Wide Run-Time Options Default (CICS)” on page 20

and “Changing the Installation-Wide Run-Time Options Default (Batch)” on

page 18.

RPTSTG

RPTSTG generates, after an application has run, a report of the storage the

application used. In the batch environment, the report is directed to the filename

specified in the MSGFILE run-time option. In the CICS environment, the report is

directed to the CESE transient data queue.

Figure 14 on page 100 shows a sample report created with the RPTSTG option set

to ON.

The storage report heading is set by CEE5RPH. The date and time formats, in the

RPTSTG generated reports, are affected by the country code set by the COUNTRY

run-time option or the CEE5CTY callable service.

You can use the storage report information to adjust the ANYHEAP, BELOWHEAP,

HEAP, LIBSTACK, and STACK run-time options.

LE/VSE writes storage reports only in mixed-case U.S. English.

IBM-Supplied Default: RPTSTG=((OFF),OVR)

Syntax

44

RPTSTG

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

OFF

Does not generate a report of the storage used while the application was

running.

ON

Generates a report of the storage used while the application was running.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v In most instances, RPTSTG does not generate a storage report if your application

terminates abnormally.

v The phrases “Number of segments allocated” and “Number of segments freed”

represent the following:

RPTOPTS

98 LE/VSE: Customization Guide

– In the batch environment, the number of GETVIS and FREEVIS requests,

respectively.

– Under CICS, the number of EXEC CICS GETMAIN and EXEC CICS

FREEMAIN requests, respectively.
v The statistics for initial and incremental allocations of storage types that have a

corresponding run-time option differ from the run-time option settings when (1)

their values have been rounded up by the implementation, or (2) when

allocations larger than the amounts specified were required during execution. All

of the following are rounded up to an integral number of double-words:

 Initial STACK allocations

 Initial allocations of all types of heap

 Incremental allocations of all types of stack and heap

Performance Considerations

This option increases the time it takes for an application to run. Therefore, use it

only as an aid to application development.

The storage report generated by RPTSTG(ON) shows the number of system-level

get storage calls that were required while the application was running. To improve

performance, use the information in the storage report generated by the RPTSTG

option as an aid in setting the initial and increment sizes for STACK and HEAP.

This reduces the number of times that the LE/VSE storage manager makes

requests to acquire storage. For example, you can use the storage report to set

appropriate values in the HEAP and STACK init_size and incr_size fields for

allocating storage.

RPTSTG

Appendix A. LE/VSE Run-Time Options 99

For More Information

v For more information about the MSGFILE and COUNTRY run-time options, see

“MSGFILE” on page 92 and “COUNTRY” on page 82.

v For more information about the CEE5RPH and CEE5CTY callable services, see

LE/VSE Programming Reference.

v For more information about the BELOWHEAP and HEAP run-time options, see

“BELOWHEAP” on page 78 and “HEAP” on page 87.

v For more information about the LIBSTACK and STACK run-time options, see

“LIBSTACK” on page 90 and “STACK” on page 102.

Storage Report for Enclave CBLDATE 06/01/04 9:16:06 AM

Language Environment for VSE/ESA V1 R4.4

 STACK statistics:

 Initial size: 131072

 Increment size: 131072

 Total stack storage used (sugg. initial size): 9056

 Number of segments allocated: 1

 Number of segments freed: 0

 LIBSTACK statistics:

 Initial size: 12288

 Increment size: 4096

 Total stack storage used (sugg. initial size): 1144

 Number of segments allocated: 1

 Number of segments freed: 0

 HEAP statistics:

 Initial size: 32768

 Increment size: 32768

 Total heap storage used (sugg. initial size): 0

 Successful Get Heap requests: 0

 Successful Free Heap requests: 0

 Number of segments allocated: 0

 Number of segments freed: 0

 ANYHEAP statistics:

 Initial size: 16384

 Increment size: 8192

 Total heap storage used (sugg. initial size): 2480

 Successful Get Heap requests: 12

 Successful Free Heap requests: 0

 Number of segments allocated: 1

 Number of segments freed: 0

 BELOWHEAP statistics:

 Initial size: 8192

 Increment size: 4096

 Total heap storage used (sugg. initial size): 1184

 Successful Get Heap requests: 6

 Successful Free Heap requests: 3

 Number of segments allocated: 1

 Number of segments freed: 0

 Additional Heap statistics:

 Successful Create Heap requests: 0

 Successful Discard Heap requests: 0

 Total heap storage used: 0

 Successful Get Heap requests: 0

 Successful Free Heap requests: 0

 Number of segments allocated: 0

 Number of segments freed: 0

End of Storage Report

Figure 14. Storage Report Produced by LE/VSE Run-Time Option RPTSTG(ON)

RPTSTG

100 LE/VSE: Customization Guide

v For more information about using the storage report generated by the RPTSTG

run-time option to tune your application, see LE/VSE Programming Guide.

RTEREUS (COBOL Only)

RTEREUS implicitly initializes the run-time environment to be reusable when the

main program for the thread is a COBOL program. This option is valid only when

used with CEEDOPT or CEEUOPT.

IBM-Supplied Default: RTEREUS=((OFF),OVR)

Syntax

44

RTEREUS

=

(

(
 OFF

ON

)

,
 OVR

NONOVR

)

4<

OFF

Does not initialize the run-time environment to be reusable when the first

COBOL routine is invoked.

ON

Initializes the run-time environment to be reusable when the first COBOL

routine is invoked.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v Avoid using RTEREUS=((ON),...) as an installation default, because doing so can

cause problems for other HLLs such as C and PL/I.

v CICS consideration—RTEREUS is ignored under CICS.

v The IGZERREO CSECT affects the handling of program checks in the

non-Language Environment conforming driver that repeatedly invokes COBOL

programs.

Performance Considerations

You must change STOP RUN statements to GOBACK statements in order to gain

the benefits of RTEREUS. STOP RUN terminates the reusable environment. If you

specify RTEREUS, LE/VSE recreates the reusable environment on the next

invocation of COBOL. Doing this repeatedly degrades performance, because a

reusable environment takes longer to create than does a normal environment.

Notes:

1. The IGZERREO CSECT affects the performance of running with RTEREUS.

2. LE/VSE also offers preinitialization support in addition to RTEREUS.

For More Information

v For more information about CEEUOPT, see LE/VSE Programming Guide.

v For more information about preinitialization, see LE/VSE Programming Guide.

v For more information about IGZERREO, see “Customizing the COBOL Reusable

Environment” on page 50.

RPTSTG

Appendix A. LE/VSE Run-Time Options 101

STACK

STACK controls the allocation of the thread’s stack storage. Typical items residing

in the stack are C or PL/I automatic variables, and temporary work areas for

COBOL library routines.

Storage required for the common anchor area (CAA) and other control blocks is

allocated separately from, and prior to, the allocation of the initial stack segment

and the initial heap.

IBM-Supplied Default for CICS: STACK=((4K,4080,ANYWHERE,KEEP),OVR)

IBM-Supplied Default for Batch: STACK=((128K,128K,BELOW,KEEP),OVR)

Syntax

44

STACK

=

(

(

init_size

,

incr_size

,
 BELOW

ANYWHERE

ANY

,

4

4
 KEEP

FREE

)

,
 OVR

NONOVR

)

4<

init_size

Determines the size of the initial stack segment. The storage is contiguous. You

specify the init_size value as n, nK, or nM bytes of storage. The actual amount

of allocated storage is rounded up to the nearest multiple of 8 bytes.

 init_size can be preceded by a minus sign. In the batch environment, if you

specify a negative number LE/VSE uses all available storage minus the

amount specified for the initial stack segment.

 A size of "0" or "−0" requests half of the largest block of contiguous storage

available below the 16MB line. Behavior under CICS is described in the Usage

Notes for this run-time option.

incr_size

Determines the minimum size of any subsequent increment to the stack area.

You can specify this value as n, nK, or nM bytes of storage. The actual amount

of allocated storage is the larger of two values—incr_size or the requested

size—rounded up to the nearest multiple of 8 bytes.

 If you specify incr_size as 0, only the amount of the storage needed at the time

of the request, rounded up to the nearest 4K, is obtained.

 The requested size is the amount of storage a routine needs for a stack frame.

For example, if the requested size is 9000 bytes, incr_size is specified as 8K, and

the initial stack segment is full, LE/VSE obtains a 9000-byte stack increment

from the operating system to satisfy the request. If the requested size is smaller

than 8K, LE/VSE obtains an 8K stack increment from the operating system.

BELOW

Specifies that the stack storage must be allocated below the 16MB line, in

storage that is accessible to 24-bit addressing.

ANYWHERE|ANY

Specifies that stack storage can be allocated anywhere in storage. On systems

STACK

102 LE/VSE: Customization Guide

that support bimodal addressing, storage can be allocated either above or

below the 16MB line. If there is no storage available above the line, LE/VSE

acquires storage below the line.

KEEP

Specifies that storage allocated to STACK increments is not released when the

last of the storage in the stack increment is freed.

FREE

Specifies that storage allocated to STACK increments is released when the last

of the storage in the stack is freed. The initial stack segment is never released

until the enclave terminates.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v Applications running with ALL31(OFF) must specify the BELOW suboption of

STACK to ensure that stack storage is addressable by the application.

v CICS consideration—the maximum initial and increment size for STACK below

16MB is 65,504 bytes. The maximum initial and increment size for STACK above

16MB is 1 gigabyte (1024M). This restriction is subject to change from one

release of CICS to another.

Both the initial size and the increment size are rounded up to the nearest

multiple of 8 bytes. The initial size minimum is 4K, the increment size minimum

is 4080 bytes.

If you do not specify STACK, LE/VSE assumes the default value of 4K. Under

CICS, STACK(0), STACK (−0), and STACK (−n) are all interpreted as

STACK(4K).

v COBOL consideration—When you linkedit a COBOL program compiled with the

NORENT compiler option, the default addressing mode of the linkedited phase

is AMODE(ANY). This might result in your program being invoked in 24-bit

addressing mode. If you wish to specify STACK(ANY) to obtain better storage

utilisation, your program must be invoked in 31-bit addressing mode. Therefore,

you might wish to compile your program specifying the RENT option.

Alternatively, you can use the MODE linkage editor control statement to

override the addressing mode to AMODE(31).
Note: You are strongly recommended not to change the residency mode

(RMODE) for programs compiled with the RENT or NORENT options.

v PL/I consideration—PL/I automatic storage above the 16MB line is supported

under control of the LE/VSE STACK option. When the LE/VSE stack is above,

PL/I temporaries (dummy arguments) and parameter lists (for

reentrant/recursive blocks) also reside above.

The stack frame size for an individual block is constrained to 16MB. Stack frame

extensions are also constrained to 16MB. Therefore, the size of an automatic

aggregate, temporary variable, or dummy argument cannot exceed 16MB.

Violation of this constraint might have unpredictable results.

v CEEUOPT consideration—If you specify the STACK run-time option in

CEEUOPT, the following default values are used for omitted suboptions:

init_size

512K

incr_size

512K

STACK

Appendix A. LE/VSE Run-Time Options 103

Performance Considerations

To improve performance, use the information in the storage report generated by

the RPTSTG run-time option as an aid in setting the initial and increment sizes for

STACK.

For More Information

v For more information about the ALL31 run-time option, see “ALL31” on page

75.

v For more information about the RPTSTG run-time option, see “RPTSTG” on

page 98.

v For more information about using the storage report generated by the RPTSTG

run-time option to tune your application, see LE/VSE Programming Guide.

STORAGE

STORAGE controls the initial content of storage when allocated and freed, and the

amount of storage that is reserved for the out-of-storage condition. If you specify

one of the parameters in the STORAGE run-time option, all allocated storage

processed by the parameter is initialized to that value. Otherwise, it is left

uninitialized.

You can use the STORAGE option to identify uninitialized application variables, or

prevent the accidental use of previously freed storage. STORAGE is also useful in

data security. For example, storage containing sensitive data can be cleared when it

is freed.

IBM-Supplied Default for CICS: STORAGE=((00,NONE,NONE,0K),OVR)

IBM-Supplied Default for Batch: STORAGE=((00,NONE,NONE,32K),OVR)

Syntax

44 STORAGE = ((heap_alloc_value , heap_free_value , 4

4

dsa_alloc_value

,

reserve_size

)

,
 OVR

NONOVR

)

4<

heap_alloc_value

The initialized value of any heap storage allocated by the storage manager. You

can specify heap_alloc_value as:

v A single character enclosed in quotes. If you specify a single character, every

byte of heap storage allocated by the storage manager is initialized to that

character’s EBCDIC equivalent. For example, if you specify 'a' as the

heap_alloc_value, heap storage is initialized to X'818181...81' or 'aaa...a'.

v Two hex digits without quotes. If you specify two hex digits, every byte of

the allocated heap storage is initialized to that value. For example, if you

specify FE as the heap_alloc_value, heap storage is initialized to

X'FEFEFE...FE'. A heap_alloc_value of 00 initializes heap storage to X'0000...00'.

v NONE. If you specify NONE, the allocated heap storage is not initialized.

heap_free_value

The value with which any heap storage freed by the storage manager is

overwritten. You can specify heap_free_value as:

STACK

104 LE/VSE: Customization Guide

v A single character enclosed in quotes. For example, a heap_free_value of 'f'

overwrites freed heap storage to X'868686...86'; 'B' overwrites freed heap

storage to X'C2'.

v Two hex digits without quotes. A heap_free_value of FE overwrites freed heap

storage with X'FEFEFE...FE'.

v NONE. If you specify NONE, the freed heap storage is not overwritten.

dsa_alloc_value

The initialized value of stack frames from the LE/VSE stack. A stack frame is

dynamically-acquired storage that is composed of a standard register save area

and the area available for automatic storage.

 If specified, all LE/VSE stack storage including automatic variable storage is

initialized to dsa_alloc_value. Stack frames allocated outside the LE/VSE stack

are never initialized.

 You can specify dsa_alloc_value as:

v A single character enclosed in quotes. If you specify a single character, any

dynamically-acquired stack storage allocated by the storage manager is

initialized to that character’s EBCDIC equivalent. For example, if you specify

'A' as the dsa_alloc_value, stack storage is initialized to X'C1'. A dsa_alloc_value

of 'F' initializes stack storage to X'C6', 'd' to X'84'.

v Two hex digits without quotes. If you specify two hex digits, any

dynamically acquired stack storage is initialized to that value. For example,

if you specify FE as the dsa_alloc_value, stack storage is initialized to X'FE'. A

dsa_alloc_value of 00 initializes stack storage to X'00', FF to X'FF'.

v NONE. If you specify NONE, the stack storage is not initialized.

reserve_size

The amount of storage for the LE/VSE storage manager to reserve in the event

of an out-of-storage condition. You can specify the reserve_size value as n, nK,

or nM bytes of storage. The amount of storage is rounded up to the nearest

multiple of 8 bytes.

 If you specify reserve_size as 0, no reserve segment is allocated. If you do not

specify a reserve segment and your application runs out of storage, the

application abends with a return code of 4088 and a reason code of 1004.

 If you specify a reserve_size that is greater than 0 in the batch environment,

LE/VSE does not immediately abend when your application runs out of

storage. Instead, when the stack overflows, LE/VSE attempts to get another

stack segment and add it to the stack.

 If unsuccessful, LE/VSE temporarily adds the reserve stack segment to the

overflowing stack, and signals the out-of-storage condition. This allows a

user-written condition handler to gain control and release storage. If the

reserve stack segment overflows while this is happening, LE/VSE abends with

a return code of 4088 and reason code of 1004.

 To avoid such an overflow, increase the size of the reserve stack segment with

the STORAGE(,,,reserve_size) run-time option. The reserve stack segment is not

freed until thread termination.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

STORAGE

Appendix A. LE/VSE Run-Time Options 105

Usage Notes

v heap_alloc_value, heap_free_value, and dsa_alloc_value can all be enclosed in quotes.

To initialize heap storage to the EBCDIC equivalent of a single quote, double it

within the string delimited by single quotes or surround it with a pair of double

quotes. Both of the following are correct ways to specify a single quote:

 STORAGE('''')

 STORAGE("'")

Similarly, double quotes must be doubled within a string delimited by double

quotes, or surrounded by a pair of single quotes. The following are correct ways

to specify a double quote:

 STORAGE("""")

 STORAGE('"')

v CICS consideration— The out-of-storage condition is not raised under CICS.

If a reserved segment size is specified, either as a default or an override under

CICS, this storage size will be allocated but never used. This results in wasted

24-bit storage. You are recommended to always use a reserve segment size of 0k

under CICS.

v CEEUOPT consideration— If you specify the STORAGE run-time option in

CEEUOPT, the default value 8K is used if the reserve_size suboption is omitted.

v PL/I considerations— To provide similar storage initialization as DOS/PL1, use

STORAGE=(00,NONE,00,32K) as an installation default setting. Please note that

a performance degradation may result from using this setting.

Performance Considerations

Using STORAGE to control initial values can increase program run time. If you

specify a dsa_alloc_value, performance is likely to be poor. Therefore, use the

dsa_alloc_value option only for debugging, not to initialize automatic variables or

data structures.

Use STORAGE= ((00,NONE,NONE,..),...) when you are not debugging.

STORAGE

106 LE/VSE: Customization Guide

TERMTHDACT

TERMTHDACT sets the level of information that is produced when LE/VSE

percolates a condition of severity 2 or greater beyond the first routine’s stack

frame. The UADUMP suboption has been added to TERMTHDACT as part of

these enhancements to provide a comprehensive dump in the event of an abnormal

termination.

The LE/VSE service CEE5DMP is called for the TRACE, DUMP, and UADUMP

suboptions of TERMTHDACT.

The following CEE5DMP options are passed for TRACE:

 NOENTRY CONDITION TRACEBACK THREAD(ALL) NOBLOCKS

NOSTORAGE VARIABLES FILES STACKFRAME(ALL) PAGESIZE(60)

FNAME(CEEDUMP)

The following options are passed for DUMP and UADUMP:

 NOENTRY CONDITION TRACEBACK THREAD(ALL) BLOCKS STORAGE

VARIABLES FILES STACKFRAME(ALL) PAGESIZE(60) FNAME(CEEDUMP)

If a message is printed (based upon the TERMTHDACT(MSG) run-time option),

the message is for the active condition immediately prior to the termination

imminent step. In addition, if that active condition is a promoted condition (was

not the original condition), the original condition’s message is printed.

If the TRACE run-time option is specified with the DUMP suboption, a dump

containing the trace table, at a minimum, is produced. The contents of the dump

depend on the values set in the TERMTHDACT run-time option.

v Under abnormal termination, the following dump contents are generated:

– TERMTHDACT(QUIET)—generates a dump containing the trace table only

– TERMTHDACT(MSG)—generates a dump containing the trace table only

– TERMTHDACT(TRACE)—generates a dump containing the trace table and

the traceback

– TERMTHDACT(DUMP)—generates a dump containing

thread/enclave/process storage and control blocks (the trace table is included

as an enclave control block)

– TERMTHDACT(UADUMP)—generates a CEE5DMP, which is the same as

TERMTHDACT(DUMP), as well as producing a complete VSE system dump.
v Under normal termination, the following dump contents are generated:

– Independent of the TERMTHDACT setting, LE/VSE generates a dump

containing the trace table only.

TERMTHDACT

Appendix A. LE/VSE Run-Time Options 107

IBM-Supplied Default for CICS: TERMTHDACT=((TRACE,MSGFL,0),OVR)

IBM-Supplied Default for Batch: TERMTHDACT=((TRACE,,0),OVR)

Syntax

44

TERMTHDACT

=

(

(
 TRACE

QUIET

MSG

DUMP

UADUMP

,
 MSGFL

LSTQ

,

4

4

reg_stor_amount

)

,
 OVR

NONOVR

)

4<

TRACE

Specifies that when a thread terminates due to an unhandled condition of

severity 2 or greater, LE/VSE generates a message indicating the cause of the

termination and a trace of the active routines on the activation stack.

QUIET

Specifies that LE/VSE does not generate a message when a thread terminates

due to an unhandled condition of severity 2 or greater.

MSG

Specifies that when a thread terminates due to an unhandled condition of

severity 2 or greater, LE/VSE generates a message indicating the cause of the

termination.

DUMP

Specifies that when a thread terminates due to an unhandled condition of

severity 2 or greater, LE/VSE generates a message indicating the cause of the

termination, a trace of the active routines on the activation stack, and an

LE/VSE dump.

 A currently active run-time options report will also be sent to the dump

destination for problem diagnosis assistance, even if RPTOPTS(OFF) has been

previously specified. If RPTOPTS(ON) has been specified and a dump is

produced in response to a failure only a single run-time options report will be

generated within the dump output.

UADUMP

Specifies that when a thread terminates due to an unhandled condition of

severity 2 or greater, LE/VSE generates a message indicating the cause of the

termination, a trace of the active routines on the activation stack, and an

LE/VSE dump, and, depending on the JCL OPTION DUMP setting, a system

dump of the user partition.

 If abnormal termination occurs while TERMTHDACT(UADUMP) is set,

LE/VSE will attempt (if possible) to re-execute the failing instruction to

produce a system dump. If this is not possible, LE/VSE will issue an JDUMP

macro to terminate the enclave with a system dump. The use of UADUMP

with database managers might bypass any backout processing that could be

required. For DL/1 users, if the CALL xxxTDLI interface is used, backout

processing will be performed. Other DL/1 interfaces used will not allow

TERMTHDACT

108 LE/VSE: Customization Guide

backout processing to be performed by DL/1, if an application failure occurs.

Any non-database files open at the time of failure will not be closed.

 A currently active run-time options report will also be sent to the dump

destination for problem diagnosis assistance, even if RPTOPTS(OFF) has been

previously specified. If RPTOPTS(ON) has been specified and a dump is

produced in response to a failure only a single run-time options report will be

generated within the dump output.

 The use of UADUMP with database managers might bypass any backout

processing that may be required following an application failure. Any files still

open when an application failure occurs will not be closed.

 If DL/I is active in the application, a VSE system dump will only be taken if

the appropriate UPSI bit is set for DL/I. Refer to DL/1 Resource Definition and

Utilities for information on which UPSI bit needs to be set in order to produce

dumps.

Note: Also ensure you have applied DL/I APAR PQ68093.

MSGFL

Under CICS, causes all dump output to be sent to the output destination

specified by the run-time option MSGFILE. For BATCH environments, the

destination is dependant upon the presence or absence of a CEEDUMP label.

In the BATCH environment, the default destination is the device assigned to

SYSLST.

LSTQ

Causes all dump output to be sent to the VSE/POWER LSTQ.

Usage Notes:

1. The LSTQ option will only take effect when a condition of severity 2 or

greater goes unhandled and a dump is requested.

2. Callable services, such as CEE5DMP, will still have dump output sent to

the destination specified in the MSGFILE run-time option.

3. Abend messages and LE/VSE reports will still be sent to the MSGFILE

destination even if LSTQ is set. The exception to this is when DUMP or

UADUMP are set and a run-time options report is generated as part of the

dump output. In this case, the options report will be send to the LSTQ

member along with the dump output.

4. A TERMTHDACT level setting of TRACE or more must be in effect for

dump output to be produced. Otherwise all output will still be sent to the

MSGFILE destination.

5. Output sent to the VSE/POWER LSTQ will be stored on CLASS=L with

DISP=D attributes. These defaults can be modified by changing the options

specified in the CEELOPT macro. This macro is generated when the

installation default run-time options are assembled:

v You use member CEEWCOPT.Z to assemble the installation default

run-time options under CICS. For details, see “Changing the

Installation-Wide Run-Time Options Default (CICS)” on page 20.

v You use member CEEWDOPT.Z to assemble the installation default

run-time options under batch. For details, see “Changing the

Installation-Wide Run-Time Options Default (Batch)” on page 18.
6. In the BATCH environment, the VSE/POWER LSTQ entry name is taken

from the executing application job stream. The user-id is taken from any

FROM= card specified in the active JOB JECL statement (when available).

Otherwise, LE/VSE uses a default user-id of LE$LSTQ$. In a CICS

TERMTHDACT

Appendix A. LE/VSE Run-Time Options 109

environment, the VSE/POWER LSTQ entry name is built by using the

failing CICS transaction identification name and the CICS terminal number

that the user was signed-on to at the time of the failure. For example, if

transaction MENU fails on terminal A001, the LSTQ entry name will be

MENUA001.

7. When the CICS Transaction Server is started, message DFHLD0107I may be

issued for module CEELEDT if this module is not loaded in the SVA. This

is an informational message only, and can be ignored. To stop the

informational message from being issued, you can load module CEELEDT

into the SVA and make the required CICS Transaction Server startup and

CSD changes. The module will reside in SVA-31 storage.

8. LSTQ support is not available in a pre-initialized environment.

9. LSTQ is not supported for 4083 abends.

reg_stor_amount

Controls the amount of storage to be dumped around registers. The

reg_stor_amount variable must be in the range 0-256 and indicates the storage in

bytes to be dumped around each register. The reg_stor_amount value will be

rounded up to the nearest multiple of 32. If you call the CEE5DMP service and

do not require a dump storage around registers (regardless of the

reg_stor_amount value), you must specify REGSTor(0) as a CEE5DMP option.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v PL/I considerations—After a normal return from a PL/I ERROR ON-unit or

from a PL/I FINISH ON-unit, LE/VSE considers the condition unhandled. If a

GOTO is not performed and the resume cursor is not moved, the thread

terminates. The TERMTHDACT setting guides the amount of information that is

produced. The message is not presented twice.

v Batch considerations—The recommended setting for debugging under BATCH is

TERMTHDACT(DUMP). When a VSE system dump is required, or TRAP(OFF)

was previously required, a setting of TERMTHDACT(UADUMP) is

recommended.

v CICS considerations—The recommended setting for debugging under CICS is

TERMTHDACT(DUMP).

For More Information

v For more information about the TRACE and USRHDLR run-time options, see

the run-time option descriptions in the LE/VSE Programming Reference.

v For more information about the CEE5DMP service and its parameters, see the

description of the CEE5DMP callable service in the LE/VSE Programming

Reference.

v For more information about the TERMTHDACT run-time option and condition

messages, see LE/VSE Programming Guide.

v For more information about the CESE transient data queue, see LE/VSE

Programming Guide.

TERMTHDACT

110 LE/VSE: Customization Guide

TEST

TEST specifies the conditions under which a debug tool (such as Debug Tool for

VSE/ESA) assumes control when the user application is being initialized.

Parameters of the TEST and NOTEST run-time options are merged as one set of

parameters.

IBM-Supplied Default: NOTEST=((ALL,*,PROMPT,''),OVR)

Syntax

44
 NOTEST

TEST

=

(

(

Suboptions

)

,
 OVR

NONOVR

)

4<

Suboptions:

 ALL

ERROR

NONE

,
 *

commands_file

,
 PROMPT

NOPROMPT

*

;

command

,

4

4 preference_file

*

ALL

Specifies that either of the following will cause the debug tool to gain control

even without a defined AT OCCURRENCE for a particular condition or AT

TERMINATION:

v Any LE/VSE condition of severity 1 or above

v Application termination

ERROR

Specifies that only one of the following will cause the debug tool to gain

control without a defined AT OCCURRENCE for a particular condition or AT

TERMINATION:

v Any LE/VSE-defined error condition of severity 2 or higher

v Application termination

NONE

Specifies that no condition will cause the debug tool to gain control without a

defined AT OCCURRENCE for a particular condition or AT TERMINATION.

commands_file

A character string, up to 80 characters long, that you use to pass to the debug

tool the filename of the primary commands file for this run. The syntax of the

character string is defined by the debug tool you are using.

 You can enclose commands_file in single or double quotes to distinguish it from

the rest of the TEST | NOTEST suboption list.

* (asterisk—in place of commands_file)

Specifies that no commands_file is supplied. The default device, as defined by

your debug tool, is used as the source of the debug tool commands.

TEST

Appendix A. LE/VSE Run-Time Options 111

PROMPT

Specifies that the debug tool is invoked at LE/VSE initialization.

NOPROMPT

Specifies that the debug tool is not invoked at LE/VSE initialization.

* (asterisk—in place of PROMPT/NOPROMPT)

Specifies that the debug tool is not invoked at LE/VSE initialization; equivalent

to NOPROMPT.

; (semicolon—in place of PROMPT/NOPROMPT)

Specifies that the debug tool is invoked at LE/VSE initialization; equivalent to

PROMPT.

command

A character string, up to 250 characters long, that specifies a valid debug tool

command. The command string can be enclosed in single or double quotes to

distinguish it from the rest of the TEST parameter list; it cannot contain DBCS

characters. Quotes are needed whenever the command string contains

embedded blanks, commas, semicolons, or parentheses. The list can have a

maximum of 250 characters.

preference_file

A character string, up to 80 characters long, that you use to pass to the debug

tool the filename of the preference file to be used. A preference file is a type of

commands file that you can use to specify settings for your debugging

environment. The syntax of the character string is defined by the debug tool

you are using.

 You can enclose preference_file in single or double quotes to distinguish it from

the rest of the TEST parameter list.

* (asterisk—in place of preference_file)

Specifies that no preference_file is supplied.

Usage Notes

 You can specify parameters on the NOTEST option. If NOTEST is in effect

when the application gains control, it is interpreted as TEST(NONE,,*,). If

Debug Tool for VSE/ESA is initialized using a CALL CEETEST or equivalent,

the initial test level, the initial commands_file, and the initial preference_file are

taken from the NOTEST run-time option setting.

Performance Consideration

To improve performance, use this option only while debugging.

For More Information

v For more information about the syntax of the TEST run-time option when using

Debug Tool for VSE/ESA, see Debug Tool for VSE/ESA User’s Guide and Reference.

v For more information about creating and using a commands and a preference

file for Debug Tool for VSE/ESA, see Debug Tool for VSE/ESA User’s Guide and

Reference.

TEST

112 LE/VSE: Customization Guide

TRACE

TRACE controls run-time library tracing activity, the size of the in-storage trace

table, the type of trace events to record, and it determines whether a dump

containing, at a minimum, the trace table should be unconditionally taken when

the application terminates. When you specify TRACE(ON), user-requested trace

entries are intermixed with LE/VSE trace entries in the trace table.

Under normal termination conditions, if TRACE is active and you specify DUMP,

only the trace table is written to the dump report, independent of the

TERMTHDACT setting. Only one dump is taken for each termination. Under

abnormal termination conditions, the type of dump taken (if one is taken) depends

on the value of the TERMTHDACT run-time option and whether TRACE is active

and the DUMP suboption is specified.

IBM-Supplied Default: TRACE=((OFF,4K,DUMP,LE=0),OVR)

Syntax

44

TRACE

=

(

(
 OFF

ON

,

table_size

,
 DUMP

NODUMP

,
 LE=0

LE=1

4

4

)

,
 OVR

NONOVR

)

4<

OFF

Indicates that the tracing facility is inactive.

ON

Indicates that the tracing facility is active.

table_size

Determines the size of the tracing table as specified in bytes (nK or nM). The

upper limit is 16M.

DUMP

Requests that an LE/VSE-formatted dump (containing the trace table) be

produced at program termination regardless of the setting of the

TERMTHDACT run-time option.

NODUMP

Requests that an LE/VSE-formatted dump not be produced at program

termination.

LE=0

Specifies that no trace events be recorded.

LE=1

Specifies that entry to and exit from LE/VSE member libraries be recorded

(such as, in the case of C, entry and exit of the printf() library function).

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

TRACE

Appendix A. LE/VSE Run-Time Options 113

For More Information

v For more information about the dump contents, see “TERMTHDACT” on page

107.

v For more information about using the tracing facility, see LE/VSE Debugging

Guide and Run-Time Messages.

TRAP

Trap specifies the level of condition handling that LE/VSE performs for user

abends and program interrupts.

You must specify at least TRAP=((ON,MIN),..) in order for applications to run

successfully.

TRAP=((ON,MAX),..) must be in effect for the ABTERMENC or ABPERC run-time

options to have effect.

The use of the CEESGL callable service is not affected by this option.

IBM-Supplied Default: TRAP=((ON,MAX),OVR)

Syntax

44

TRAP

=

(

(
 ON

OFF

,
 MAX

MIN

)
 OVR

NONOVR

)

4<

ON

Enables LE/VSE condition handling.

OFF

Disables LE/VSE condition handling. The MIN|MAX option is ignored when

TRAP(OFF) is used.

MAX

Instructs LE/VSE to activate full condition handling. This will involve the use

of both STXIT AB and STXIT PC processing. TRAP sub-option ON must also

be specified for this option to have any effect.

MIN

Instructs LE/VSE not to use any STXIT AB processing for LE/VSE condition

handling and to only use STXIT PC condition handling. This is required for

internal LE/VSE condition handling that is used as part of abend reporting,

dump production, and language-dependent condition handling. TRAP

sub-option ON must also be specified for this option to have any effect.

Note: Each of the HLLs will still issue STXIT AB’s as required regardless of

the TRAP run-time option setting.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

TRACE

114 LE/VSE: Customization Guide

Usage Notes

During normal processing, LE/VSE expects TRAP(ON,..) to be in effect for the

application to run successfully. Use TRAP(ON,MIN) when a program exception

needs to be analyzed. The use of TRAP(OFF,...) is not recommended and can cause

unpredictable results to occur. Alternatively, an abnormal termination exit can be

used to analyze the failure and report on the problem using information provided

by LE/VSE to the exit.

Specifying TRAP(ON) without MIN or MAX is equivilent to specifying

TRAP(ON,MAX).

The use of TRAP(ON,MIN) when an abnormal condition occurs within a user

application will result in:

v Any user registered condition handlers will not be called. This includes handlers

specified via the USRHDLR run-time option.

v LE DUMP processing will not be performed.

v ABTERMENC run-time option has no effect.

v ABPERC run-time option has no effect.

v No resources acquired by LE/VSE are released.

v Files opened by HLLs are not closed and this may result in the loss of data.

v The abnormal termination exit is not driven.

v The assembler user exit is not called for enclave termination.

v Debug Tool is not notified of the error.

v No storage or run-time options reports are generated.

v No LE/VSE messages are produced.

v For a user program interrupt, or an unexpected LE/VSE program interrupt,

LE/VSE will try to re-execute the failing instruction in an attempt to invoke

normal VSE abnormal termination semanics. If this is not possible, a JDUMP

macro will be issued to terminate the enclave and to produce a system dump.

Note: LE/VSE internal condition handling is enabled but any user program

interrupts or abends are not handled by LE/VSE condition management.

Running with TRAP(OFF) can cause many side effects because LE/VSE requires

internal condition handling to successfully execute. If you run with TRAP(OFF),

you can get failures even if you do not encounter a software-raised condition,

program check or abend. If you do encounter a program check or abend with

TRAP(OFF) in effect, the following will occur:

v The ABTERMENC run-time option will have no effect.

v The ABPERC run-time option will have no effect.

v Resources acquired by LE/VSE are not freed.

v Files opened by HLLs are not closed so data may be lost.

v The abnormal termination exit is not driven for enclave termination.

v The assembler user exit is not driven for enclave termination.

v User condition handlers are not enabled.

v The Debug Tool is not notified of the error.

v No storage report or run-time options report is generated.

The enclave terminates abnormally if such conditions are raised.

TRAP(ON,MAX) must be in effect when you want to use the CEEBXITA assembler

user exit for enclave initialization to specify a list of VSE cancel codes, program

interruption code and user abend codes that LE/VSE exempts from normal

condition handling.
When TRAP(ON,MAX) is in effect and an abnormal condition occurs, if the VSE

cancel code, program-interruption code, or user abend code is in the

TRAP

Appendix A. LE/VSE Run-Time Options 115

CEEAUE_CODES list in CEEBXITA, LE/VSE exempts the condition from normal

condition handling. Normal LE/VSE condition handling is never invoked to

handle these conditions. This feature is useful when you do not want LE/VSE

condition handling to intervene for certain abnormal conditions, or when you want

to prevent invocation of the abnormal termination exit for such conditions.
When TRAP(OFF) or TRAP(ON,MIN) are set and there is a program interrupt, or

an abend, the assembler user exit is not driven at termination. Any information

provided in CEEAUE_CODES is ignored.

CICS Considerations

The MIN|MAX option is ignored under CICS. If you specify TRAP(OFF) in a CICS

environment, LE/VSE does not produce any messages or dumps for conditions

raised by program interrupts or transaction abends. The standard CICS system

action occurs. However abends not caused by the application program, can occur,

as internal LE/VSE condition handling has been disabled by the use of

TRAP(OFF). For applications to run successfully under CICS, TRAP(ON,MAX) is

required.

Performance Considerations

When using COBOL internal sorts, with a SORT product’s STXIT option activated

either by default or by design, performance benefits can be achieved by using

TRAP(ON,MIN) for the application. Alternatively, if possible, set the SORT

product’s option to NOSTXIT (or to MINSTXIT in the case of DFSORT/VSE),

which will allow the use of TRAP(ON,MAX) without impacting performance.

Fore More Information

For more information about the:

v ABPERC or ABTERMENC run-time options, see “ABPERC” on page 70 and

“ABTERMENC” on page 72 respectively.

v CEESGL callable service, refer to the LE/VSE Programming Reference.

v CEEBXITA assembler user exit, refer to the LE/VSE Programming Guide.

TRAP

116 LE/VSE: Customization Guide

UPSI (COBOL Only)

UPSI sets the eight UPSI switches on or off for applications that use COBOL

routines.

IBM-Supplied Default: UPSI=((00000000),OVR)

Syntax

44

UPSI

=

(

(

nnnnnnnn

)

,
 OVR

NONOVR

)

4<

nnnnnnnn

n represents one UPSI switch between 0 and 7, the leftmost n representing the

first switch. Each n can either be 0 (off) or 1 (on).

 The IBM-supplied default setting is UPSI(00000000).

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

 Do not confuse the LE/VSE UPSI run-time option with the job control UPSI

statement. The UPSI switches set by the job control UPSI statement are not

available to COBOL routines under LE/VSE.

For More Information

For more information on how COBOL routines access the UPSI switches, see

LE/VSE Programming Guide.

UPSI

Appendix A. LE/VSE Run-Time Options 117

USRHDLR

USRHDLR registers a user condition handler at stack frame 0, allowing you to

register a user condition handler without having to include a call to CEEHDLR in

your application and then recompile the application.

IBM-Supplied Default: NOUSRHDLR=((),OVR)

Syntax

44
 NOUSRHDLR

USRHDLR

=

(

(

phname

)

,
 OVR

NONOVR

)

4<

NOUSRHDLR

Does not register a user condition handler without recompiling an application

to include a call to CEEHDLR.

USRHDLR

Registers a user condition handler without recompiling an application to

include a call to CEEHDLR.

phname

The name of a phase that contains the user condition handler that is to be

registered at stack frame 0.

OVR

Specifies that the option can be overridden.

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

v User Handler module names of YES, NO, ON and OFF, are no longer permitted.

v The user condition handler specified by the USRHDLR run-time option must be

in a separate phase rather than be linkedited with the rest of the application.

v The user condition handler phname is invoked for conditions that are still

unhandled after being presented to condition handlers for the main program.

v Restriction - if USRHDLR is in effect, you cannot resume execution in the

program in which the condition occurs. This includes calls in the condition

handler to CEEMRCR and CEEMRCE.

v You can use a user condition handler registered with the USRHDLR run-time

option to return any of the result codes allowed for a user condition handler

registered with the CEEHDLR callable service.

v A condition that is percolated or promoted by a user condition handler

registered with the USRHDLR run-time option, is not presented to any other

user condition handler.

v The loading of the user condition handler phname occurs only when that user

condition handler needs to be invoked the first time.

v PL/I Consideration - Although PL/I cannot use the CEEHDLR callable service

to register a user-written condition handler, PL/I can use the USRHDLR

run-time option.

v CICS Consideration - phname must be defined in the CICS System Definition File

(CSD).

USRHDLR

118 LE/VSE: Customization Guide

For More Information

For more information on registering a user condition handler, see CEEHDLR

callable service in the LE/VSE Programming Reference.

XUFLOW

XUFLOW specifies whether an exponent underflow causes a program interrupt.

An exponent underflow occurs when a floating point number becomes too small to

be represented.

The underflow setting is determined at enclave initialization and is updated when

new languages are introduced into the application (via fetch or dynamic call, for

example). Otherwise, it does not vary while the application is running.

LE/VSE preserves the language semantics for C and COBOL regardless of the

XUFLOW setting. LE/VSE preserves the language semantics for PL/I only when

XUFLOW is set to AUTO or ON. LE/VSE does not preserve the language

semantics for PL/I when XUFLOW is set to OFF.

An exponent underflow caused by a C or COBOL routine does not cause a

condition to be raised.

IBM-Supplied Default: XUFLOW=((AUTO),OVR)

Syntax

44

XUFLOW

=

(

(
 AUTO

ON

OFF

)

,
 OVR

NONOVR

)

4<

AUTO

An exponent underflow causes or does not cause a program interrupt

dynamically, based upon the HLLs that make up the application. Enablement

is determined without user intervention.

 XUFLOW(AUTO) causes condition management to process underflows only in

those applications where the semantics of the application languages require it.

Normally, XUFLOW(AUTO) provides the best efficiency while meeting

language semantics.

ON

An exponent underflow causes a program interrupt.

 XUFLOW(ON) causes condition management to process underflows regardless

of the mix of languages; therefore, this setting might be less efficient in

applications that consist of languages not requiring underflows to be processed

by condition management.

OFF

An exponent underflow does not cause a program interrupt; the hardware

takes care of the underflow.

 When you set XUFLOW to OFF, the hardware processes exponent underflows.

This is more efficient than condition handling to process the underflow.

OVR

Specifies that the option can be overridden.

USRHDLR

Appendix A. LE/VSE Run-Time Options 119

NONOVR

Specifies that the option cannot be overridden.

Usage Notes

 PL/I consideration—You should use XUFLOW=((AUTO),...) or

XUFLOW=((ON),...) for PL/I.

XUFLOW

120 LE/VSE: Customization Guide

CLER: Interactively Process CICS-Wide Run-Time Options

The CLER CICS transaction allows you to interactively display and modify

LE/VSE CICS-wide default run-time options, while your CICS system is running.

This is done while the CICS system is still processing online transactions, using an

interactive BMS map.

CLER Cannot Be Used Concurrently!

The CLER transaction can only be used by one task per CICS system at a

time. If the CLER transaction is concurrently executed in the same CICS

system, the second execution will be terminated with this message:

 CLER005S CLER task busy. Used by userid:SYSA on terminal:A001

 Figure 15 provides an example of the BMS map used with the CLER transaction.

CLER is available for both CICS Transaction Server 1.1.1 and CICS/VSE 2.3

systems.

You may change the transaction name used to perform this function to one of your

choice. This functionality is provided by program CEL4RTO and the CLER

transaction, which you use to establish new option settings.

Notes:

1. If you decide to change the transaction name as described above, before using

this transaction you must ensure that BSM-security definitions have been

established for your transaction name.

2. Each transaction used with the CICS Transaction Server must be

“security-enabled” before it can be executed. The Interactive Interface provides

this support via the Define Transaction Security dialog. To access this dialog, you

use the selection path Resource Definition — Define Transaction Security.

You can use the CLER transaction to:

CLER 10/28/02

 10:24:31

 Language Environment for VSE/ESA V1 R4.3

 Dynamic CICS Runtime Option Modification Facility

ABPERC: (NONE) STORAGE: (00 , 00 , 00 , 0)

ABTERMENC:(ABEND) TERMTHD: (TRACE , MSGFL , 0)

ALL31: (ON) TRAP: (ON , MAX)

CBLPSHPOP:(ON) USRHDLR: ()

CHECK: (OFF) TERMTHDACT LSTQ OPTIONS :

DEBUG: (OFF) CLASS: (L) DISPOSITION: (D)

DEPTHCOND:(10) NODE-ID: ()

ERRCOUNT: (20) USER-ID: ()

HEAP: (4096 , 4080 , ANYWHERE , KEEP , 4096 , 4080)

LIBSTACK: (4096 , 4080 , FREE)

MSGFILE: (CESE)

RPTOPTS: (OFF)

RPTSTG: (OFF)

STACK: (4096 , 4080 , ANYWHERE , KEEP)

 Please change the runtime option to the setting required.

<PF3> Exit <PF4> Restore Defaults <PF5> Update <PF12> Exit(No Change)

Figure 15. BMS Map Used With the CLER Transaction

Interactively Process CICS-Wide Options

Appendix A. LE/VSE Run-Time Options 121

v Select and display current run-time options that are active for the current

operational CICS system.

v Modify these default run-time options used with your CICS system:

– ABPERC

– ABTERMENC

– ALL31(ON|OFF)

– CBLPSHPOP(ON|OFF)

– CHECK(ON|OFF)

– DEBUG(ON|OFF)

– DEPTHCONDLMT

– ERRCOUNT

– HEAP

– LIBSTACK

– MSGFILE

– RPTOPTS(ON|OFF)

– RPTSTG(ON|OFF)

– STACK

– STORAGE

– TRAP(ON|OFF,MAX)

– TERMTHDACT(QUIET|MSG|TRACE|DUMP|UADUMP,

LSTQ|MSGFL,regstor_amount)

– USRHDLR
v Modify these LSTQ run-time options used with TERMTHDACT (as shown in

Figure 15 on page 121):

– CLASS

– DISP

– NODE-ID

– USER-ID

Note: The run-time options are validated using the rules defined for each run-time

option. For example, if you set ALL31(OFF) and

STACK(4096,4096,ANY,KEEP) a message will be displayed stating this is

invalid. This is because the ALL31(OFF) and STACK(nn,nn,ANY,nn)

combination is incorrect. You would therefore need to either change ALL31

or STACK to conform to the ALL31and STACK run-time option rules.

You can produce an updated run-time options report to the VSE system console,

using the ROPC transaction (as described in “ROPC: Print CICS-Wide Run-Time

Options to Console” on page 127).

Pre-Defined Settings For Use With CLER

The CLER transaction is predefined in the CICS CSD (CICS System Definition file)

during the installation of VSE/ESA 2.7 onwards (which automatically installs

LE/VSE).

These CEDA definitions are automatically included in your CICS system for use

with CLER:

v DEFINE PROGRAM(CEL4RTO) GROUP(CEE) LANGUAGE(C) EXECKEY(USER)

v DEFINE MAP(CELCLEM) GROUP(CEE)

v DEFINE TRANS(CLER) PROG(CEL4RTO) GROUP(CEE)

Notes:

1. The CLER transaction for tailoring LE/VSE CICS-wide default run-time options

was introduced with VSE/ESA 2.7. It is intended for dynamic, temporary

overrides in a single, active, CICS subsystem. CLER customization will not take

Interactively Process CICS-Wide Options

122 LE/VSE: Customization Guide

effect in other CICS sub-systems, or remain active if CICS is restarted. If you

wish to modify LE/CICS run-time options that are commonly shared between

multiple CICS subsystems (that refer to the same CEECOPT module), you

should use the customizing CEEWCOPT skeleton and CEECOPT.A option

source.

2. Transaction CLER is shipped with “security enabled” (using BSM) and ready

for you to use.

3. You can perform an immediate verification of your LE/CICS run-time option

changes, by using the transaction ROPC. An updated options report is available

at destination MSGFILE immediately upon completion of the CLER transaction.

Using CLER to Change Options

To change any of the options shown in Figure 15 on page 121, simply position the

cursor on the option you wish to change and type in the option you require. If you

press Enter, the application will then perform a validation of all the displayed

options, including any options you might have changed. If you press PF3 or PF5,

the same type of validation is performed.

You will not be able to exit the application using PF5 until you have corrected any

errors. If you are unable to correct a reported error, press either:

v PF4, which will restore all options changed in the current and previous CLER

sessions to the original LE/VSE installation defaults.

v PF12, which leave any changes made in previous CLER sessions, but will also

reverse any changes made in the current session to their original LE/VSE

installation defaults.

For storage-related options, you should be especially careful when:

v Defining these options, since values that are too large might cause your CICS

system to enter an “SOS” (short-on-storage) situation. This situation might also

disable the use of CLER to reset the incorrect value, and a CICS restart would

then be required to correct this situation.

v Changing these options, since option changes will apply to all LE/VSE

applications executed in your CICS system.

If you wish to make changes to the options for a specific LE/VSE application, you

should use CEEUOPT to do so (see “Creating Application-Specific Options Using

the CEEXOPT Macro” on page 22 for details). Alternatively, for PL/I you can use

PLIXOPT. For C/VSE you can use #pragma runopts. Using these methods, you can

ensure that other applications executing in your CICS system will remain

unaffected by changes to a specific LE/VSE application.

Options defined in an application-specific CEEUOPT that have also been changed

using CLER, will result in the CLER value(s) being actioned when the application

is executed.

Run-time option over-rides set using the CLER transaction will remain in effect

until the CICS system is shutdown unless you use the PF4 key to remove all CLER

over-rides from the CICS system. There is no option available to limit the CLER

over-rides set to specific transactions or programs. Over-rides set by CLER

therefore apply to all LE/VSE applications in the active CICS system.

Interactively Process CICS-Wide Options

Appendix A. LE/VSE Run-Time Options 123

Considerations When Changing the LSTQ Options

In Figure 15 on page 121, you must change the TERMTHD option MSGFL to

LSTQ, before you can change these TERMTHDACT LSTQ options:

v CLASS

v DISPOSITION

v NODE-ID

v USER-ID

If the TERMTHD option is set to MSGFL, the four TERMTHDACT LSTQ options

listed above remain protected. For further details of these options, see page 109.

If you change any of the TERMTHDACT LSTQ options, a validation of the options

is performed. The rules used during this validation are in accordance with the

current VSE/POWER requirements for CLASS, DISP, USERID and NODEID. If you

wish to use the NODE=* facility to specify your “local” node, set the NODEID field

to SPACES together with a valid USERID. Any LE/VSE dump output will then be

sent to the local node and userid that you have specified.

Please be aware that if you use the PF4 key to restore the LE/VSE default run-time

options, these defaults do not apply to the LSTQ options. To restore the LSTQ

options to their original settings (as defined using the CEELOPT macro), you must

use the NEWC transaction as described in the next section. This will provide new

copies of the:

v LE/VSE default run-time options.

v LSTQ options.

Interactively Process CICS-Wide Options

124 LE/VSE: Customization Guide

NEWC: Activate Changed CICS-Wide Run-Time Options

The NEWC CICS transaction allows you to activate changed LE/VSE CICS-wide

default run-time options, while your CICS system is running. This means, you can

change your installation CICS-wide default run-time options by editing and

running the supplied CEEWCOPT job, and activate these new run-time options by

executing the supplied CICS transaction NEWC. This is done while the CICS

system is still processing online transactions.

NEWC is available for both CICS Transaction Server 1.1.1 and CICS/VSE 2.3

systems.

You may change the transaction name used to perform this function to one of your

choice. This functionality is provided by program EDCCNEWC and the NEWC

transaction, which you use to establish new option settings.

Notes:

1. If you decide to change the transaction name as described above, before using

this transaction you must ensure that BSM-security definitions have been

established for your transaction name.

2. Each transaction used with the CICS Transaction Server must be

“security-enabled” before it can be executed. The Interactive Interface provides

this support via the Define Transaction Security dialog. To access this dialog, you

use the selection path Resource Definition — Define Transaction Security.

To activate LE/CICS run-time options, you should follow these steps:

1. Edit JCL member CEEWCOPT (supplied in ICCF LIB 59 and in the LE/VSE

installation library as CEEWCOPT.Z).

2. Submit the modified JCL for execution. Ensure the job completes with a return

code not greater than 2 (RC<=2).

3. If you have CEECOPT.PHASE loaded in the SVA, you will need to re-load this

module using the SET SDL command from BG partition. For example,

 0 // LIBDEF PHASE,SEARCH=PRD2.SCEEBASE (or Lib where CEECOPT.PHASE cataloged)

 0 SET SDL

 0 CEECOPT,SVA

 0 /*

4. Sign-on to your CICS system. Exit to a ’blank’ CICS session (if using IUI, press

PF6).

5. Enter NEWC (or whatever transaction code you have defined). You should

receive these messages on the CICS terminal:

 CEE3553I CICS Options Newcopy Started

 CEE3554I CICS Options Newcopy Complete

If the options module newcopy fails to complete in some way, you will receive

this message:

 CEE3555E CICS Options Newcopy Failed

Keep the CICS output log for problem determination, and report the failure to

your Systems Programmer or IBM Support Center.

6. If all completed sucessfully, your new installation default CICS-wide run-time

options are now activated for this CICS system.

Notes:

1. If you have more than one CICS system for which you want the new options

activated, you will need to repeat steps 4-6 for each of the CICS systems.

Otherwise, the new default options will not be activated until the CICS systems

are re-started (with a COLD/EMERGENCY start-up).

Activate CICS-Wide Options

Appendix A. LE/VSE Run-Time Options 125

2. Transaction NEWC is shipped with “security enabled” (using BSM) and ready

for you to use.

3. You can perform an immediate verification of your LE/CICS run-time option

changes, by using the transaction ROPC. An updated options report is available

at destination MSGFILE immediately upon completion of the NEWC

transaction.

Figure 16 provides an example of how the NEWC transaction is used.

 A002NEWC 20020807092709 LE/VSE V1R4M3 Environment-wide Default Run-Time Options Newcopied

 A002NEWC 20020807092709

 A002NEWC 20020807092709 LSTQ OPTIONS REPORT FOR ENCLAVE EDCCNEWC

 A002NEWC 20020807092709 LANGUAGE ENVIRONMENT FOR VSE/ESA V1 R4.3

 A002NEWC 20020807092709 ---

 A002NEWC 20020807092709 LSTQ CLASS SETTING L

 A002NEWC 20020807092709 LSTQ DISPOSITION SETTING D

 A002NEWC 20020807092709 END OF LE/VSE V1 R4.3 LSTQ OPTIONS REPORT

 A002NEWC 20020807092709

 A002NEWC 20020807092709 Options Report for Enclave main 08/07/02 9:27:09 AM

 A002NEWC 20020807092709 Language Environment for VSE/ESA V1 R4.3

 A002NEWC 20020807092709

 A002NEWC 20020807092709 LAST WHERE SET OPTION

 A002NEWC 20020807092709 --

 A002NEWC 20020807092709 Installation default ABPERC(NONE)

 A002NEWC 20020807092709 Installation default ABTERMENC(ABEND)

 A002NEWC 20020807092709 Installation default NOAIXBLD

 A002NEWC 20020807092709 Installation default ALL31(ON)

 A002NEWC 20020807092709 Installation default ANYHEAP(4096,4080,ANYWHERE,FREE)

 A002NEWC 20020807092709 Installation default BELOWHEAP(4096,4080,FREE)

 A002NEWC 20020807092709 Installation default CBLOPTS(ON)

 A002NEWC 20020807092709 Installation default CBLPSHPOP(ON)

 A002NEWC 20020807092709 Installation default CHECK(OFF)

 A002NEWC 20020807092709 Installation default COUNTRY(US)

 A002NEWC 20020807092709 Installation default NODEBUG

 A002NEWC 20020807092709 Installation default DEPTHCONDLMT(10)

 A002NEWC 20020807092709 Installation default ENVAR("")

 A002NEWC 20020807092709 Installation default ERRCOUNT(20)

 A002NEWC 20020807092709 Installation default HEAP(4096,4080,ANYWHERE,KEEP,4096,4080)

 A002NEWC 20020807092709 Installation default HEAPCHK(OFF,1,0)

 A002NEWC 20020807092709 Installation default LIBSTACK(4096,4080,FREE)

 A002NEWC 20020807092709 Installation default MSGFILE(CESE)

 A002NEWC 20020807092709 Installation default MSGQ(15)

 A002NEWC 20020807092709 Installation default NATLANG(UEN)

 A002NEWC 20020807092709 Installation default RETZERO(OFF)

 A002NEWC 20020807092709 Installation default RPTOPTS(ON)

 A002NEWC 20020807092709 Installation default RPTSTG(OFF)

 A002NEWC 20020807092709 Installation default NORTEREUS

 A002NEWC 20020807092709 Installation default STACK(4096,4080,ANYWHERE,KEEP)

 A002NEWC 20020807092709 Installation default STORAGE(00,NONE,NONE,0)

 A002NEWC 20020807092709 Installation default TERMTHDACT(TRACE,LSTQ,0)

 A002NEWC 20020807092709 Installation default NOTEST(ALL,"*","PROMPT","")

 A002NEWC 20020807092709 Installation default TRACE(OFF,4096,DUMP,LE=0)

 A002NEWC 20020807092709 Installation default TRAP(ON,MAX)

 A002NEWC 20020807092709 Installation default UPSI(00000000)

 A002NEWC 20020807092709 Installation default NOUSRHDLR()

 A002NEWC 20020807092709 Installation default XUFLOW(AUTO)

 A002NEWC 20020807092709

Figure 16. Example of Using NEWC Transaction to Activate Changed CICS-Wide Options

Activate CICS-Wide Options

126 LE/VSE: Customization Guide

ROPC: Print CICS-Wide Run-Time Options to Console

The ROPC CICS transaction allows you to print LE/VSE CICS-wide run-time

options to your z/VSE console. This provides an alternative to the global CICS-wide

setting that is possible using the LE/VSE run-time option RPTOPTS(ON). ROPC

allows you to avoid producing large output on the LE/VSE destination CESE (in

contrast to the RPTOPTS(ON) run-time option which might fill up this queue, if

defined as a file, and generate message CEE3492S).

From VSE/ESA 2.5 onwards, LE/VSE program EDCYCROP is shipped with the

CICS transid already set to ‘ROPC’. Transaction ROPC is already BSM

security-enabled, and can be used immediately. When this transaction has been

invoked on a CICS terminal, LE/CICS-wide default run-time options (CEECOPT)

appear on the console.

Notes:

1. If you have set the ENVAR run-time option of the CICS-wide Assember User

Exit, you can list this option in the CICS-Wide Options report sent to your

z/VSE console. In the example report shown in Figure 17 on page 128, the

ENVAR run-time option has been included.

2. The function is available with both CICS/VSE 2.3 and the CICS Transaction

Server.

3. For VSE systems before VSE/ESA 2.5, you could specify your own CICS

transid for LE/VSE program EDCYCROP.

Print CICS-Wide Options

Appendix A. LE/VSE Run-Time Options 127

F2 0103 Options Report for Enclave EDCYCROP 03/09/01 4:24:01 PM

F2 0103

F2 0103 LAST WHERE SET OPTION

F2 0103 --

F2 0103 LE/CICS-wide default ABPERC(NONE)

F2 0103 LE/CICS-wide default ABTERMENC(ABEND)

F2 0103 LE/CICS-wide default NOAIXBLD

F2 0103 LE/CICS-wide default ALL31(ON)

F2 0103 LE/CICS-wide default ANYHEAP(4096,4080,ANYWHERE,FREE)

F2 0103 LE/CICS-wide default BELOWHEAP(4096,4080,FREE)

F2 0103 LE/CICS-wide default CBLOPTS(ON)

F2 0103 LE/CICS-wide default CBLPSHPOP(ON)

F2 0103 LE/CICS-wide default CHECK(OFF)

F2 0103 LE/CICS-wide default COUNTRY(US)

F2 0103 LE/CICS-wide default NODEBUG

F2 0103 LE/CICS-wide default DEPTHCONDLMT(10)

F2 0103 LE/CICS-wide default ENVAR("")

F2 0103 LE/CICS-wide default ERRCOUNT(20)

F2 0103 LE/CICS-wide default HEAP(4096,4080,ANYWHERE,KEEP,4096,4080)

F2 0103 LE/CICS-wide default HEAPCHK(OFF,1,0)

F2 0103 LE/CICS-wide default LIBSTACK(4096,4080,FREE)

F2 0103 LE/CICS-wide default MSGFILE(CESE)

F2 0103 LE/CICS-wide default MSGQ(15)

F2 0103 LE/CICS-wide default NATLANG(UEN)

F2 0103 LE/CICS-wide default RETZERO(OFF)

F2 0103 LE/CICS-wide default RPTOPTS(OFF)

F2 0103 LE/CICS-wide default RPTSTG(OFF)

F2 0103 LE/CICS-wide default NORTEREUS

F2 0103 LE/CICS-wide default STACK(4096,4080,ANYWHERE,KEEP)

F2 0103 LE/CICS-wide default STORAGE(00,NONE,NONE,0)

F2 0103 LE/CICS-wide default TERMTHDACT(TRACE,MSGFL,0)

F2 0103 LE/CICS-wide default NOTEST(ALL,"*","PROMPT","")

F2 0103 LE/CICS-wide default TRACE(OFF,4096,DUMP,LE=0)

F2 0103 LE/CICS-wide default TRAP(ON,MAX)

F2 0103 LE/CICS-wide default UPSI(00000000)

F2 0103 LE/CICS-wide default NOUSRHDLR()

F2 0103 LE/CICS-wide default XUFLOW(AUTO)

Figure 17. Example of Using ROPC Transaction to Print CICS-Wide Options to Console

Print CICS-Wide Options

128 LE/VSE: Customization Guide

Appendix B. LE/VSE Run-Time LIOCS Phases

This appendix includes descriptions of the macros supplied with LE/VSE to

generate the run-time LIOCS phases for card, diskette, and printer devices. The

run-time LIOCS phases contain logic modules used by VSE input/output services

when processing files assigned to the these device types.

If the logic module required by VSE input/output services cannot be found,

message CEE3751S is issued. This may mean you need to customize the

LE/VSE-supplied phase. The phases that you can customize are:

v CEEYCD0 - LIOCS routines for card reader/punch devices

v CEEYDU0 - LIOCS routines for diskette devices

v CEEYPR0 - LIOCS routines for printer devices.

Each LIOCS logic module in the LIOCS phases has a unique name in the format

IJxxxxxx, where xxxxxx is determined by the file attributes specified in the

LE/VSE-supplied macros, CEEXCDMD, CEEXDUMD and CEEXPRMD. These

macros are the front-ends to the VSE system macros, CDMOD, DUMODFI,

DUMODFO and PRMOD. For more information about these VSE system macros

and the names of the modules, see z/VSE System Macros Reference.

 Note!:

1. During customization, you are recommended not to delete or change any

shipped LE/VSE LIOCS definitions. If LIOCS definitions for dummy card

punch, card reader, and printer devices are missing, the startup of the CICS

Transaction Server might be severely affected.

2. The Interactive Interface’s Hardware Configuration dialog also contains

definitions for dummy card punch, card reader, and print devices. These

definitions reflect the currently-shipped LE/VSE LIOCS. You are recommended

not to delete or change any of these definitions.

3. If, however, you do decide to change any of the dummy device defnitions,

ensure you have customized the appropriate LIOCS definitions for these devices!.

CEEYCD0—Card Device Run-Time LIOCS Phase

The run-time LIOCS phase CEEYCD0 contains the LIOCS logic modules required

for processing files assigned to card reader and card punch devices. For

information about the types of card files supported by the IBM-supplied CEEYCD0

phase, see Figure 4 on page 27.

If you plan to run an application that processes a card file other than those

supported by the IBM-supplied CEEYCD0 phase, use the CEEXCDMD macro to

generate the required logic module.

Each LIOCS logic module in CEEYCD0 has a unique name in the format IJCxxxxx,

where xxxxx is determined by the file attributes specified in the CEEXCDMD

macro. The CEEXCDMD macro is a front-end to the VSE system macro, CDMOD.

The syntax of the CEEXCDMD macro is as follows:

© Copyright IBM Corp. 1991, 2005 129

Syntax

44 CEEXCDMD

=

 TYPE= START

.

ENTRY

,file_attribute

FINAL

 4<

 The following sections describe the file attributes that you can specify on the

CEEXCDMD macro. Refer to the description of CDMOD in z/VSE System Macros

Reference to determine the values you should supply for these attributes.

Note: The CONTROL operand of CDMOD is not applicable to CEEYCD0.

CRDERR

CRDERR specifies whether error retry routines for the IBM 2520 and 2540 are

included in the generated logic module.

Syntax

44 CRDERR=

RETRY
 4<

RETRY

Specifies that the generated logic module contains error retry routines for the

IBM 2520 and 2540 punch-equipment check.

Default

If you do not specify this file attribute, the IBM-supplied default is that the

generated logic module does not contain error retry routines.

Usage Notes

 Do not specify this file attribute for input or combined files.

130 LE/VSE: Customization Guide

CTLCHR

CTLCHR specifies whether or not the first character of each record written to this

card punch file contains a stacker selection control character.

Syntax

44 CTLCHR=

ASA

YES

 4<

ASA

Specifies that the first character of each record written to this card punch file is

an American National Standard stacker selection character. Specify

CTLCHR=ASA if the file you want to process is either:

v Defined in a VS COBOL II or COBOL/VSE program as a non-EXTERNAL

file, and written using the AFTER ADVANCING phrase of the WRITE

statement to control stacker selection

v Declared in a PL/I VSE program and declared with the CTLASA

ENVIRONMENT option to control stacker selection

YES

Specifies that the first character of each record written to this card punch file is

a System/370 stacker selection character. Specify CTLCHR=YES if the file you

want to process is either:

v Defined in a VS COBOL II or COBOL/VSE program as an EXTERNAL file,

and written using the AFTER ADVANCING phrase of the WRITE statement

to control stacker selection

v Declared in a PL/I VSE program and declared with the CTL360

ENVIRONMENT option to control stacker selection

Default

If you do not specify this file attribute, the IBM-supplied default is that records

written to this file do not contain stacker selection control characters.

Usage Notes

 This file attribute should only be specified for card punch devices.

Appendix B. LE/VSE Run-Time LIOCS Phases 131

DEVICE

DEVICE specifies the device code of the IBM device the generated logic module

supports.

Syntax

44
 2540

DEVICE=

1442

2520

3505

3525

3881

4<

1442

Generates code for an IBM 1442 card reader/punch.

2520

Generates code for an IBM 2520 card reader/punch.

2540

Generates code for an IBM 2540 card reader/punch.

3505

Generates code for an IBM 3505 card reader/punch.

3525

Generates code for an IBM 3525 multifunction card unit.

3881

Generates code for an IBM 3881 card reader.

132 LE/VSE: Customization Guide

IOAREA2

IOAREA2 specifies whether or not a second I/O area is used for this file.

Syntax

44 IOAREA2=

YES
 4<

YES

Specifies that two I/O areas are used for this file. Specify IOAREA2=YES if the

file you want to process is either:

v Defined in a VS COBOL II or COBOL/VSE program, and defined without

the RESERVE 1 AREA clause of the FILE-CONTROL paragraph

v Declared in a PL/I VSE program, and declared without the BUFFERS(1) .

Default

If you do not specify this file attribute, the IBM-supplied default is that one

I/O area is used for this file.

Usage Notes

 Do not specify this file attribute for combined files.

RDONLY

RDONLY specifies whether or not the generated logic module is a read-only

module.

Syntax

44 RDONLY=

YES
 4<

YES

Specifies that the generated logic module is read-only. Specify RDONLY=YES

for all LE/VSE-conforming HLL applications.

Default

If you do not specify this file attribute, the IBM-supplied default is that the

generated logic module is not read-only.

Usage Notes

 If all the logic modules in the LIOCS phase CEEYCD0 are generated with the

RDONLY=YES attribute, the phase is eligible for inclusion in the SVA.

Appendix B. LE/VSE Run-Time LIOCS Phases 133

RECFORM

RECFORM specifies the record format of this file.

Syntax

44
 FIXUNB

RECFORM=

UNDEF

VARUNB

4<

FIXUNB

Specifies a record format of fixed length, unblocked. If you specify any of the

attributes TYPEFLE=INPUT, TYPEFLE=CMBND, or DEVICE=3881, you must

specify RECFORM=FIXUNB.

UNDEF

Specifies a record format of undefined.

VARUNB

Specifies a record format of variable length, unblocked.

TYPEFLE

TYPEFLE specifies whether the generated logic module is for an input file or an

output file.

Syntax

44
 INPUT

TYPEFLE=

OUTPUT

CMBND

4<

INPUT

Generates a logic module for an input file. If you specify DEVICE=3881, you

must specify TYPEFLE=INPUT.

OUTPUT

Generates a logic module for an output file.

CMBND

Generates a logic module for a combined input and output file.

134 LE/VSE: Customization Guide

WORKA

WORKA specifies whether or not records are processed in work areas instead of

I/O areas.

Syntax

44 WORKA=

YES
 4<

YES

Specifies that records are processed in work areas instead of I/O areas.

WORKA=YES is not valid for the IBM 3881.

Default

If you do not specify this file attribute, the IBM-supplied default is that records

are processed in I/O areas.

CEEYDU0—Diskette Device Run-Time LIOCS Phase

The run-time LIOCS phase CEEYDU0 contains the LIOCS logic modules required

for processing files assigned to diskette devices. For information about the types of

diskette files supported by the IBM-supplied CEEYDU0 phase, see Figure 5 on

page 28.

If you plan to run an application that processes a diskette file other than those

supported by the IBM-supplied CEEYDU0 phase, use the CEEXDUMD macro to

generate the required logic module.

Each LIOCS logic module in CEEYDU0 has a unique name in the format

IJNDxxxx, where xxxx is determined by the file attributes specified in the

CEEXDUMD macro. The CEEXDUMD macro is a front-end to the VSE system

macros, DUMODFI and DUMODFO.

The syntax of the CEEXDUMD macro is as follows:

Syntax

44 CEEXDUMD

=

 TYPE= START

.

ENTRY

,file_attribute

FINAL

 4<

 The following sections describe the file attributes that you can specify on the

CEEXDUMD macro. Refer to the description of DUMODFI and DUMODFO in

z/VSE System Macros Reference to determine the values you should supply for these

file attributes.

Appendix B. LE/VSE Run-Time LIOCS Phases 135

RDONLY

RDONLY specifies whether or not the generated logic module is a read-only

module.

Syntax

44 RDONLY=

YES
 4<

YES

Specifies that the generated logic module is read-only. Specify RDONLY=YES

for all LE/VSE-conforming HLL applications.

Default

If you do not specify this file attribute, the IBM-supplied default is that the

generated logic module is not read-only.

Usage Notes

 Even if all the logic modules in the LIOCS phase CEEYDU0 are generated with

the RDONLY=YES attribute, the phase is not eligible for inclusion in the SVA.

TYPEFLE

TYPEFLE specifies whether the generated logic module is for an input file or an

output file.

Syntax

44
 INPUT

TYPEFLE=

OUTPUT

4<

INPUT

Generates a logic module for an input file.

OUTPUT

Generates a logic module for an output file.

136 LE/VSE: Customization Guide

CEEYPR0—Printer Device Run-Time LIOCS Phase

The run-time LIOCS phase CEEYPR0 contains the LIOCS logic modules required

for processing files assigned to printer devices. For information about the types of

printer files supported by the IBM-supplied CEEYPR0 phase, see Figure 6 on page

28.

If you plan to run an application that processes a printer file other than those

supported by the IBM-supplied CEEYPR0 phase, use the CEEXPRMD macro to

generate the required logic module.

Each LIOCS logic module in CEEYPR0 has a unique name in the format IJDxxxxx,

where xxxxx is determined by the file attributes specified in the CEEXPRMD

macro. The CEEXPRMD macro is a front-end to the VSE system macro, PRMOD.

The syntax of the CEEXPRMD macro is as follows:

Syntax

44 CEEXPRMD

=

 TYPE= START

.

ENTRY

,file_attribute

FINAL

 4<

 The following sections describe the file attributes that you can specify on the

CEEXPRMD macro. Refer to the description of PRMOD in z/VSE System Macros

Reference for the values you should supply for these file attributes.

Note: The CONTROL operand of PRMOD is not applicable to CEEYPR0.

Appendix B. LE/VSE Run-Time LIOCS Phases 137

CTLCHR

CTLCHR specifies whether or not the first character of each record written to this

printer file contains a print control character.

Syntax

44 CTLCHR=

ASA

YES

 4<

ASA

Specifies that the first character of each record written to this printer file is an

American National Standard print character. Specify CTLCHR=ASA if the file

you want to process is either:

v Defined in a VS COBOL II or COBOL/VSE program as a non-EXTERNAL

file, and written using any of the following language constructs to control

printing:

– The LINAGE clause of the FD entry

– The AFTER ADVANCING phrase of the WRITE statement

– The BEFORE ADVANCING phrase of the WRITE statement for a file

defined with the CODE-SET clause of the FD entry
v Declared in a PL/I VSE program and declared with the CTLASA

ENVIRONMENT option to control printing

YES

Specifies that the first character of each record written to this printer file is a

System/370 print control character. Specify CTLCHR=YES if the file you want

to process is either:

v Defined in a VS COBOL II or COBOL/VSE program and written using any

of the following language constructs to control printing:

– For an EXTERNAL file:

- The LINAGE clause of the FD entry

- The AFTER ADVANCING phrase of the WRITE statement

- The BEFORE ADVANCING phrase of the WRITE statement
– For a non-EXTERNAL file, the BEFORE ADVANCING phrase of the

WRITE statement for a file defined without the CODE-SET clause of the

FD entry
v Declared in a PL/I VSE program and declared with the CTL360

ENVIRONMENT option to control printing

Default

If you do not specify this file attribute, the IBM-supplied default is that records

written to this file do not contain print control characters.

138 LE/VSE: Customization Guide

DEVICE

DEVICE specifies the device code of the IBM device the generated logic module

supports.

Syntax

44
 1403

DEVICE=

3203

3525

4<

1403

Generates code for an IBM 1403 printer.

3203

Generates code for an IBM 3203 printer.

3525

Generates code for an IBM 3525 multifunction card unit.

IOAREA2

IOAREA2 specifies whether or not a second I/O area is used for this file.

Syntax

44 IOAREA2=

YES
 4<

YES

Specifies that two I/O areas are used for this file. Specify IOAREA2=YES if the

file you want to process is either:

v Defined in a VS COBOL II or COBOL/VSE program, and defined without

the RESERVE 1 AREA clause of the FILE-CONTROL paragraph

v Declared in a PL/I VSE program, and declared without the BUFFERS(1)

characteristic.

Default

If you do not specify this file attribute, the IBM-supplied default is that one

I/O area is used for this file.

Appendix B. LE/VSE Run-Time LIOCS Phases 139

RDONLY

RDONLY specifies whether or not the generated logic module is a read-only

module.

Syntax

44 RDONLY=

YES
 4<

YES

Specifies that the generated logic module is read-only. Specify RDONLY=YES

for all LE/VSE-conforming HLL applications.

Default

If you do not specify this file attribute, the IBM-supplied default is that the

generated logic module is not read-only.

Usage Notes

 If all the logic modules in the LIOCS phase CEEYPR0 are generated with the

RDONLY=YES attribute, the phase is eligible for inclusion in the SVA.

RECFORM

RECFORM specifies the record format of files assigned to this device.

Syntax

44
 FIXUNB

RECFORM=

UNDEF

VARUNB

4<

FIXUNB

Specifies a record format of fixed length, unblocked.

UNDEF

Specifies a record format of undefined.

VARUNB

Specifies a record format of variable length, unblocked.

140 LE/VSE: Customization Guide

STLIST

STLIST specifies whether or not the IBM 1403 selective tape listing feature is used.

Syntax

44 STLIST=

YES
 4<

YES

Generates a logic module that contains code to support the IBM 1403 selective

tape feature.

Default

If you do not specify this file attribute, the IBM-supplied default is that the

generated logic module does not contain code to support the IBM 1403

selective tape feature.

Usage Notes

v Do not specify this file attribute for LE/VSE-conforming HLL applications.

v This file attribute should only be specified if DEVICE=1403 is specified.

v If you specify this file attribute, you must also specify RECFORM=FIXUNB.

v If you specify this file attribute, the CTLCHR file attribute is not valid and is

ignored if specified.

WORKA

WORKA specifies whether or not records are processed in work areas instead of

I/O areas.

Syntax

44 WORKA=

YES
 4<

YES

Specifies that records are processed in work areas instead of I/O areas.

Default

If you do not specify this file attribute, the IBM-supplied default is that records

are processed in I/O areas.

Appendix B. LE/VSE Run-Time LIOCS Phases 141

142 LE/VSE: Customization Guide

Appendix C. Customizing LE/VSE User Exits

IBM offers a default version of the CEEBXITA assembler user exit that you can

customize during your LE/VSE installation and use on a global or

installation-wide basis. After installation, you can again customize CEEBXITA and

link it directly to applications to use on an application-specific basis.

IBM also provides an HLL user exit, CEEBINT, that you can modify and use after

installation. The HLL user exit is used during enclave initialization. LE/VSE

supplies an IBM-supplied default HLL user exit, or you can code one in C, PL/I,

or LE/VSE-conforming assembler language. You cannot write one in COBOL.

After the enclave has been established, the HLL user exit is invoked and passed a

parameter list that conforms to the LE/VSE definition. The parameter list is

described in LE/VSE Programming Guide.

You can use the sample assembler user exit programs distributed with LE/VSE to

modify the code for the requirements of your application. Choose a sample

program appropriate for your application. The following assembler user exit

programs are delivered with LE/VSE:

 Table 34. Sample Assembler User Exits for LE/VSE

Example User Exit

Member Name Operating Environment Language (if Language-Specific)

CEEBXITA.A VSE (default)

CEECXITA.A CICS (default)

CEEBX05A.A VSE VS COBOL II compatibility

Note:

1. If LE/VSE is installed at your site without modification, then CEEBXITA and CEECXITA

are the defaults on your system for VSE and CICS, respectively.

If LE/VSE is installed in the default sublibraries, you can find the source code for

CEEBXITA, CEECXITA, and CEEBX05A in the PRD2.SCEEBASE sublibrary.

The assembler user exit CEEBXITA performs functions for enclave initialization,

normal and abnormal enclave termination, and process termination. CEEBXITA

must be written in assembler language, because an HLL environment might not be

established when the exit is invoked.

You can set up user exits for tasks such as:

 Installation accounting and charge back

 Installation audit controls

 Programming standard enforcement

 Common application run-time support

© Copyright IBM Corp. 1991, 2005 143

When User Exits Are Invoked

shows the timing of the invocations of the user exits at initialization and

termination processing.

 In Figure 18, run-time user exits are invoked in the following sequence:

1. Assembler user exit is invoked for enclave initialization

2. Environment is established

3. HLL user exit is invoked

4. Main routine is invoked

5. Main routine returns control to caller

6. Assembler user exit is invoked for termination of the enclave

CEEBXITA is invoked for enclave termination processing after all application

code in the enclave has completed, but prior to any enclave termination

activity.

7. Environment is terminated

8. Assembler user exit is invoked for termination of the process

CEEBXITA is invoked again when the LE/VSE process terminates.

LE/VSE provides the CEEBXITA assembler user exit for termination but does not

provide a corresponding HLL termination user exit.

Figure 18. Location of User Exits

144 LE/VSE: Customization Guide

CEEBXITA behaves differently, depending upon when it is invoked, as described in

the following sections.

CEEBXITA Behavior During Enclave Initialization

The CEEBXITA assembler user exit is invoked before enclave initialization is

performed. You can use CEEBXITA to help establish your application run time

environment. For example, in the assembler user exit you can specify the stack and

heap run-time options. You can also use the user exit to interrogate program

parameters supplied in the JCL and change them if you want. In addition, you can

specify run-time options in the user exit by using the CEEAUE_OPTION field of

the assembler interface.

CEEBXITA Behavior During Enclave Termination

The CEEBXITA assembler exit is invoked after the user code for the enclave has

completed, but prior to the occurrence of any enclave termination activity. In other

words, the assembler user exit for termination is invoked when the environment is

still active. For example, CEEBXITA is invoked before the storage report is

produced (if you requested one), files are closed, and the debug tool is invoked for

enclave termination.

The assembler user exits permit you to request an abend. You can also request a

dump to assist in problem diagnosis. Because termination activities have not yet

begun when the user exit is invoked, the majority of storage has not been modified

when the dump is produced.

You can request the abend and dump in the assembler user exit for all

enclave-terminating events including:

v The situation that occurs in PL/I when the ON condition (including ERROR or

FINISH) is raised and one of the following conditions is true:

 The program does not have an appropriate ON-unit.

 The ON-unit does not terminate with a GOTO.

 The GOTO is not allowed.

This rule applies only to the conditions that cause termination of the program.

v Return from the main routine

v A debug tool QUIT command

v An HLL stop statement such as:

 C exit()

 COBOL STOP RUN

 PL/I STOP or EXIT
v An unhandled condition of severity 2 or above

CEEBXITA Behavior During Process Termination

The CEEBXITA assembler exit is invoked after:

 All enclaves have terminated

 The enclave resources have been relinquished

 Any LE/VSE-managed files have been closed

 The debug tool has terminated

At this time you can free allocated files and request an abend.

During termination, CEEBXITA can interrogate the LE/VSE reason and return

codes and, if necessary, request an abend with or without a dump. This can be

done at either enclave or process termination.

Appendix C. Customizing LE/VSE User Exits 145

Specifying Abnormal Conditions to Be Exempted from

Condition Handling

The assembler user exit, when invoked for initialization in the batch environment,

can return a list of VSE cancel codes, program-interruption codes, and user abend

codes (contained in the CEEAUE_CODES field of the assembler user exit

interface—see “CEEBXITA Assembler User Exit Interface” on page 147) that are to

be exempted from LE/VSE condition handling.

When an abend or program interrupt occurs in your application, and TRAP(ON) is

in effect, and the VSE cancel code, program-interruption code, or user abend code

is in the CEEAUE_CODES list, LE/VSE produces an abnormal termination

message and issues an abend to terminate the enclave. Normal LE/VSE condition

handling is never invoked to handle these conditions. This feature is useful when

you do not want LE/VSE condition handling to intervene for certain abends, and

when you want to produce a system dump.

When TRAP(OFF) is specified and there is a program interrupt, the user exit for

termination is not driven.

Actions Taken for Errors That Occur within the Assembler

User Exit

If any errors occur during the enclave initialization user exit, the standard system

action occurs because LE/VSE condition handling has not yet been established.

Any errors occurring during the enclave termination user exit lead to abnormal

termination (through an abend) of the LE/VSE environment.

If there is a program check during the enclave termination user exit and

TRAP(ON) is in effect, the application ends abnormally with message CEE3322C

and user abend code 4094 and reason code 44. If there is a program check during

the enclave termination user exit and TRAP(OFF) has been specified, the

application ends abnormally without additional error checking support. LE/VSE

performs no condition handling; error handling is performed by the operating

system.

If there is a program check during the process termination user exit, the

application ends abnormally without additional error checking support, regardless

of the setting of the TRAP run-time option. LE/VSE performs no condition

handling; error handling is performed by the operating system.

146 LE/VSE: Customization Guide

CEEBXITA Assembler User Exit Interface

You can modify CEEBXITA to perform any function you need, but the exit must

have the following attributes after you modify it at installation:

v The user-supplied exit must be named CEEBXITA.

v The exit must be reentrant.

v The exit must be capable of executing in AMODE(ANY) and RMODE(ANY).

If a user exit is modified, you are responsible for conforming to the interface

shown in Figure 19. Note that this user exit must be written in assembler.

 When the user exit is called, register 1 points to a word that contains the address

of the CEEAUE control block. The high-order bit is on.

The CEEAUE control block contains the following fullwords:

CEEAUE_LEN (input parameter)

A fullword integer that specifies the total length of this control block. For

LE/VSE, the length is 48 bytes.

CEEAUE_FUNC (input parameter)

A fullword integer that specifies the function code. LE/VSE supports the

following function codes:

1 Initialization of the first enclave within a process.

2 Termination of the first enclave within a process.

Figure 19. Interface for CEEBXITA Assembler User Exit

Appendix C. Customizing LE/VSE User Exits 147

3 Nested enclave initialization.

4 Nested enclave termination.

5 Process termination.

The user exit should ignore function codes other than those numbered from 1

through 5.

CEEAUE_RETURN (input/output parameter)

A fullword integer that specifies the return or abend code. CEEAUE_RETURN

has different meanings, depending on whether it is an input parameter or an

output parameter:

v As an input parameter, CEEAUE_RETURN is the enclave return code.

v As an output parameter, CEEAUE_RETURN has different meanings,

depending on the flag CEEAUE_ABND (see below):

– If the flag CEEAUE_ABND is off, CEEAUE_RETURN is interpreted as the

LE/VSE return code placed in register 15.

– If the flag CEEAUE_ABND is on, CEEAUE_RETURN is interpreted as an

abend code used when an abend is issued. (In batch, run-time message

CEE3322C is produced and an operating system request is issued to

terminate the enclave; in CICS, an EXEC CICS ABEND is issued.)

CEEAUE_REASON (input/output parameter)

A fullword integer that specifies the reason code for CEEAUE_RETURN.

CEEAUE_REASON has different meanings, depending on whether it is an

input parameter or an output parameter:

v As an input parameter, CEEAUE_REASON is the LE/VSE return code

modifier.

v As an output parameter, CEEAUE_REASON has different meanings,

depending on the flag CEEAUE_ABND (see below):

– If the flag CEEAUE_ABND is off, CEEAUE_REASON is interpreted as the

LE/VSE return code modifier placed in register 0.

– If the flag CEEAUE_ABND is on, CEEAUE_REASON is interpreted as an

abend reason code used when an abend is issued. (CEEAUE_REASON is

used in the batch abnormal-termination run-time message CEE3322C, but

is ignored in the CICS environments when an EXEC CICS ABEND is

issued.)

CEEAUE_FLAGS

Contains four 1-byte flags. CEEBXITA uses only the first byte but reserves the

remaining flags. All unspecified bits and bytes must be 0. The layout of these

flags is shown in Figure 20 on page 149:

148 LE/VSE: Customization Guide

Byte 0 (CEEAUE_FLAG1) has the following meaning:

CEEAUE_ABTERM (input parameter)

OFF Indicates that the enclave is terminating normally (severity 0 or 1

condition).

ON Indicates that the enclave is terminating with an LE/VSE return code

modifier of 2 or greater. This could, for example, indicate that a

severity 2 or greater condition was raised but not handled.

CEEAUE_ABND (input/output parameter)

OFF Indicates that the enclave should terminate without an abend being

issued. Thus, CEEAUE_RETURN and CEEAUE_REASON are placed

into register 15 and register 0 respectively and returned to the enclave

creator.

ON Indicates that the enclave terminates with an abend. Thus,

CEEAUE_RETURN and CEEAUE_REASON are used by LE/VSE in

the invocation of the abend. When running in the batch environment,

run-time message CEE3322C is produced and an operating system

request is issued to terminate the enclave. When running under CICS,

an EXEC CICS ABEND command is issued using the abend code

contained in CEEAUE_RETURN. CEEAUE_REASON is ignored under

CICS.

The TRAP run-time option does not affect the setting of CEEAUE_ABND.

 When the ABTERMENC(ABEND) run-time option is specified, the enclave

always terminates with an abend when there is an unhandled condition of

severity 2 or greater, regardless of the setting of the CEEAUE_ABND flag.

However, if you want a system dump to be produced when the enclave

terminates with an abend, you must set CEEAUE_ABND and CEEAUE_DUMP

to ON. See “ABTERMENC” on page 72 for a detailed explanation of how the

CEEAUE_ABND parameter can affect the behavior of the ABTERMENC

run-time option.

CEEAUE_DUMP (output parameter)

Figure 20. CEEAUE_FLAGS Format

Appendix C. Customizing LE/VSE User Exits 149

OFF Indicates that when you request an abend, by setting CEEAUE_ABND

to ON, an abend is issued without requesting a dump.

ON Indicates that when you request an abend by setting CEEAUE_ABND

to ON, an abend requesting a dump is issued. You must also specify

the VSE DUMP option if you want a system dump to be produced

when you request an abend.

CEEAUE_PARM (input/output parameter)

A fullword pointer to the parameter address list of the application program.

 As an input parameter, CEEAUE_PARM contains the register 1 value passed to

the main routine. The exit can modify this value, and the value is then passed

to the main routine. If run-time options are present in the PARM parameter of

the JCL EXEC statement, they are stripped off before the exit is called.

 If the parameter inbound to the main routine is a character string,

CEEAUE_PARM contains the address of a fullword address that points to a

halfword prefixed string. The halfword prefix contains the length of the string.

If no program arguments are specified in the PARM parameter of the JCL

EXEC statement, the halfword prefix contains zero.

 If this string is altered by the user exit, the string must not be extended in

place. Before the string is extended, it must be copied to an area of user

storage large enough for the extended string.

CEEAUE_WORK (input parameter)

A fullword pointer to a 256-byte work area that the exit can use. On entry it

contains binary zeros and is doubleword-aligned.

 This area does not persist across exits.

CEEAUE_OPTION (output parameter)

Upon return, CEEAUE_OPTION contains a fullword pointer to the address of

a halfword-length prefixed character string that contains run-time options.

These options are honored only during the initialization of the first enclave.

When invoked for enclave termination, CEEAUE_OPTION is ignored.

 These run-time options override all other sources of run-time options except

those that are specified as NONOVR in the installation default run-time

options.

 Under CICS, the STACK run-time option cannot be modified with the

assembler user exit.

CEEAUE_USER (input/output parameter)

A fullword whose value is maintained without alteration and passed to every

user exit. Upon entry to the enclave initialization user exit, it is zero.

Thereafter, the value of the user word is not altered by LE/VSE or any

member libraries. The user exit might change the value of CEEAUE_USER, and

LE/VSE maintains that value. This allows the initialization user exit to acquire

and initialize a work area, save its address in CEEAUE_USER, and pass the

work area address to subsequent user exits. The work area might be freed by

the termination user exit.

CEEAUE_CODES (output parameter)

During the initialization exit, CEEAUE_CODES contains the fullword address

of a table of VSE cancel codes, program-interruption codes, and user-abend

codes that the LE/VSE condition handler exempts from normal condition

handling. Therefore, the application is not given the opportunity to field the

abend. The table consists of:

150 LE/VSE: Customization Guide

v A fullword count of the number of cancel codes, program-interruption

codes, and abend codes that are to be exempted from LE/VSE condition

handling, and passed to the operating system.

v A fullword for each of the particular cancel codes, program-interruption

codes, or abend codes that are to be exempted from LE/VSE condition

handling, and passed to the operating system.

– User abend codes are specified as F'uuuu'. For example, if you want user

abend 7777 to be exempted from LE/VSE condition handling, code

F'7777'.

– VSE cancel codes are specified as X'000000cc'. Avoid specifying the value

X'00000020', which indicates a program check has occurred. If you specify

the value X'00000020', LE/VSE ignores it, and normal LE/VSE condition

handling semantics take effect. If you want to exempt specific program

checks from LE/VSE condition handling, specify the program-interruption

codes.

– Program-interruption codes are specified as X'800000ii'. For example, if

you want an operation exception to be exempted from LE/VSE condition

handling, code X'80000001'.

This function is not enabled under CICS.

CEEAUE_FBCODE (input parameter)

Contains a fullword address of the condition token with which the enclave

terminated. If the enclave terminates normally (that is, not due to a condition),

the condition token is zero.

CEEAUE_PAGE (input parameter)

This parameter indicates whether PL/I BASED variables that are allocated

storage outside of AREAs are allocated on a 4K-page boundary. You can

specify in the field the minimum number of bytes of storage that must be

allocated. Your allocation request must be an exact multiple of 4K.

 The IBM-supplied default setting for CEEAUE_PAGE is 32768 (32K).

 If CEEAUE_PAGE is set to zero, PL/I BASED variables can be placed on other

than 4K-page boundaries.

 CEEAUE_PAGE is honored only during enclave initialization, that is, when

CEEAUE_FUNC is 1 or 3.

Parameter Values in the Assembler User Exit

The parameters described in “CEEBXITA Assembler User Exit Interface” on page

147 contain different values depending on how the user exit is used. Table 35 on

page 152 and Table 36 on page 154 describe the possible values for the parameters

based on how the assembler user exit is invoked.

Appendix C. Customizing LE/VSE User Exits 151

Ta
bl

e
35

.
P

ar
am

et
er

V

al
ue

s
in

th

e
A

ss
em

bl
er

U

se
r

E
xi

t
(P

ar
t

1)
.

T
he

as

se
m

bl
er

us

er

ex

it
co

nt
ai

ns

th

es
e

pa
ra

m
et

er

va

lu
es

de

pe
nd

in
g

on

w

he
n

it
is

in

vo
ke

d.

W
h

en

In

vo
k

ed

C
E

E
A

U
E

_
L

E
N

C

E
E

A
U

E
_R

E
T

U
R

N

C
E

E
A

U
E

_R
E

A
S

O
N

(S

ee

N

ot
e

1)

C
E

E
A

U
E

_F
L

A
G

S

C
E

E
A

U
E

_P
A

R
M

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
In

it
ia

liz
at

io
n

—

E
nt

ry

C

E
E

A
U

E
_F

U
N

C

=

1

48

0
0

0
T

he

ad

d
re

ss

of

a

fu
llw

or
d

th

at

po

in
ts

to

a

st
ri

ng

of

us

er

pa

ra
m

et
er

s
pr

ef
ix

ed

by

a

ha
lf

w
or

d

le

ng
th

. I
f

no

pa

ra
m

et
er

s
ar

e
pr

es
en

t,
th

e
ha

lf
w

or
d

le

ng
th

co

nt
ai

ns

ze

ro
.

Yo
u

ca
n

al
te

r
th

e
st

ri
ng

in

a

us
er

ex

it
. U

po
n

re
tu

rn
, t

he

C

E
E

A
U

E
_P

A
R

M

is

pr

oc
es

se
d

an

d

m
er

ge
d

as

th

e
in

vo
ca

ti
on

st

ri
ng

.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
In

it
ia

liz
at

io
n

—

R
et

ur
n

0,

or

ab

en
d

co

d
e

if

C

E
E

A
U

E
_A

B
N

D

=

1

0,

or

re

as
on

co

d
e

fo
r

C
E

E
A

U
E

_R
E

T
U

R
N

if

C
E

E
A

U
E

_A
B

N
D

=

1

Se
e

N
ot

e
2

on

pa
ge

15

3.

T
he

ad

d
re

ss

of

a

fu
llw

or
d

th

at

po

in
ts

to

an

op
ti

on
al

ly

al

te
re

d

st

ri
ng

of

us

er

pa

ra
m

et
er

s
pr

ef
ix

ed

by

a

ha
lf

w
or

d

le

ng
th

. I
f

no

pa
ra

m
et

er
s

ar
e

pr
es

en
t,

th
e

ha
lf

w
or

d

le

ng
th

co
nt

ai
ns

ze

ro
. U

po
n

re
tu

rn
, t

he

C
E

E
A

U
E

_P
A

R
M

is

pr

oc
es

se
d

an

d

m

er
ge

d

as

th
e

in
vo

ca
ti

on

st

ri
ng

.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
Te

rm
in

at
io

n
—

E
nt

ry

C

E
E

A
U

E
_F

U
N

C

=

2

48

R
et

ur
n

co
d

e
is

su
ed

by

ap

pl
ic

at
io

n
th

at

is

te
rm

in
at

in
g.

R
ea

so
n

co
d

e
th

at

ac

co
m

pa
ni

es

C
E

E
A

U
E

_R
E

T
U

R
N

.
Se

e
N

ot
e

3
on

pa
ge

15

3.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
Te

rm
in

at
io

n
—

R
et

ur
n

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
re

tu
rn

co

d
e

pl
ac

ed

in
to

re

gi
st

er

15

w

he
n

th
e

en
cl

av
e

te
rm

in
at

es
. I

f
C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
ab

en
d

co

d
e.

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
en

cl
av

e
re

as
on

co

d
e.

If

C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
ab

en
d

re

as
on

co

d
e.

Se
e

N
ot

e
2

on

pa
ge

15

3.

N
es

te
d

E

nc
la

ve

In
it

ia
liz

at
io

n
—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

3

48

0
0

0
T

he

ad

d
re

ss

of

a

fu
llw

or
d

th

at

po

in
ts

to

a

st
ri

ng

of

us

er

pa

ra
m

et
er

s
pr

ef
ix

ed

by

a

ha
lf

w
or

d

le

ng
th

. I
f

no

pa

ra
m

et
er

s
ar

e
pr

es
en

t,
th

e
ha

lf
w

or
d

le

ng
th

co

nt
ai

ns

ze

ro
.

Yo
u

ca
n

al
te

r
th

e
st

ri
ng

in

a

us
er

ex

it
. U

po
n

re
tu

rn
, t

he

C

E
E

A
U

E
_P

A
R

M

is

pr

oc
es

se
d

an

d

m
er

ge
d

as

th

e
in

vo
ca

ti
on

st

ri
ng

.

N
es

te
d

E

nc
la

ve

In
it

ia
liz

at
io

n
—

R

et
ur

n

0,

or

if

C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
ab

en
d

co

d
e.

0,

or

if

C

E
E

A
U

E
_A

B
N

D

=

1,

re

as
on

co

d
e

fo
r

C
E

E
A

U
E

_R
E

T
U

R
N

.
Se

e
N

ot
e

2
on

pa
ge

15

3.

T
he

ad

d
re

ss

of

a

fu
llw

or
d

th

at

po

in
ts

to

an

op
ti

on
al

ly

al

te
re

d

st

ri
ng

of

us

er

pa

ra
m

et
er

s
pr

ef
ix

ed

by

a

ha
lf

w
or

d

le

ng
th

. I
f

no

pa
ra

m
et

er
s

ar
e

pr
es

en
t,

th
e

ha
lf

w
or

d

le

ng
th

co
nt

ai
ns

ze

ro
. U

po
n

re
tu

rn
, t

he

C
E

E
A

U
E

_P
A

R
M

is

pr

oc
es

se
d

an

d

m

er
ge

d

as

th
e

in
vo

ca
ti

on

st

ri
ng

.

N
es

te
d

E

nc
la

ve

Te
rm

in
at

io
n

—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

4

48

R
et

ur
n

co
d

e
is

su
ed

by

en

cl
av

e
th

at

is

te
rm

in
at

in
g.

R
ea

so
n

co
d

e
ac

co
m

pa
ny

in
g

C
E

E
A

U
E

_R
E

T
U

R
N

.
Se

e
N

ot
e

3
on

pa
ge

15

3.

N
es

te
d

E

nc
la

ve

Te
rm

in
at

io
n

—

R

et
ur

n

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
re

tu
rn

co

d
e

fr
om

th
e

en
cl

av
e.

If

C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
ab

en
d

co
d

e.

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
en

cl
av

e
re

as
on

co

d
e.

If

C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
en

cl
av

e
re

as
on

co

d
e.

Se
e

N
ot

e
2

on

pa
ge

15

3.

Pr
oc

es
s

Te
rm

in
at

io
n

—

E
nt

ry

Fu

nc
ti

on

C

od
e

=

5

48

R
et

ur
n

co
d

e
pr

es
en

te
d

to

th

e
in

vo
ki

ng

sy

st
em

in

re

gi
st

er

15

th

at

re

fl
ec

ts

th

e
va

lu
e

re
tu

rn
ed

fr
om

th

e
“f

ir
st

en

cl
av

e
w

it
hi

n
pr

oc
es

s
te

rm
in

at
io

n”
.

R
ea

so
n

co
d

e
ac

co
m

pa
ny

in
g

C
E

E
A

U
E

_R
E

T
U

R
N

th
at

is

pr

es
en

te
d

to

th

e
in

vo
ki

ng

sy

st
em

in

re
gi

st
er

0

an
d

re

fl
ec

ts

th

e
va

lu
e

re
tu

rn
ed

fr

om

th
e

“f
ir

st

en

cl
av

e
w

it
hi

n
pr

oc
es

s
te

rm
in

at
io

n”
.

Se
e

N
ot

e
4

on

pa
ge

15

3.

152 LE/VSE: Customization Guide

Ta
bl

e
35

.
P

ar
am

et
er

V

al
ue

s
in

th

e
A

ss
em

bl
er

U

se
r

E
xi

t
(P

ar
t

1)

(c

on
tin

ue
d)

.
T

he

as

se
m

bl
er

us

er

ex

it
co

nt
ai

ns

th

es
e

pa
ra

m
et

er

va

lu
es

de

pe
nd

in
g

on

w

he
n

it
is

in
vo

ke
d.

W
h

en

In

vo
k

ed

C
E

E
A

U
E

_
L

E
N

C

E
E

A
U

E
_R

E
T

U
R

N

C
E

E
A

U
E

_R
E

A
S

O
N

(S

ee

N

ot
e

1)

C
E

E
A

U
E

_F
L

A
G

S

C
E

E
A

U
E

_P
A

R
M

Pr
oc

es
s

Te
rm

in
at

io
n

—

R
et

ur
n

If

C

E
E

A
U

E
_A

B
N

D

=

0,

re

tu
rn

co

d
e

fr
om

th

e
pr

oc
es

s.

If

C

E
E

A
U

E
_A

B
N

D

=

1,

th

e
ab

en
d

co
d

e.

If

C

E
E

A
U

E
_A

B
N

D

=

0,

th

e
re

as
on

co

d
e

fo
r

C
E

E
A

U
E

_R
E

T
U

R
N

fr

om

th

e
pr

oc
es

s.

If

C
E

E
A

U
E

_A
B

N
D

=

1,

re

as
on

co

d
e

fo
r

th
e

C
E

E
A

U
E

_R
E

T
U

R
N

ab

en
d

re

as
on

co

d
e.

Se
e

N
ot

e
2.

N
ot

es
:

1.

C
E

E
A

U
E

_R
E

A
SO

N

is

ig

no
re

d

un

d
er

C

IC
S

w
he

n
C

E
E

A
U

E
_A

B
N

D

=

1.

2.

C
E

E
A

U
E

_F
L

A
G

S
:

C
E

E
A

U
E

_A
B

N
D

=

1

if

an

ab

en
d

is

re

qu
es

te
d

, o
r

0
if

th

e
en

cl
av

e
sh

ou
ld

co

nt
in

ue

w

it
h

te
rm

in
at

io
n

pr
oc

es
si

ng

C
E

E
A

U
E

_D
U

M
P

=

1

if

th

e
ab

en
d

sh

ou
ld

re

qu
es

t
a

d
um

p
3.

C

E
E

A
U

E
_F

L
A

G
S

:

C
E

E
A

U
E

_A
B

T
E

R
M

=

1

if

th

e
ap

pl
ic

at
io

n
is

te

rm
in

at
in

g
w

it
h

an

L

E
/

V
SE

re

tu
rn

co

d
e

m
od

if
ie

r
of

2

or

gr

ea
te

r,
or

0

ot
he

rw
is

e

C
E

E
A

U
E

_A
B

N
D

=

1

if

an

ab

en
d

is

re

qu
es

te
d

, o
r

0
if

th

e
en

cl
av

e
sh

ou
ld

co

nt
in

ue

w

it
h

te
rm

in
at

io
n

pr
oc

es
si

ng

C
E

E
A

U
E

_D
U

M
P

=

0

4.

C
E

E
A

U
E

_F
L

A
G

S
:

C
E

E
A

U
E

_A
B

T
E

R
M

=

1

if

th

e
la

st

en

cl
av

e
is

te

rm
in

at
in

g
ab

no
rm

al
ly

(t

ha
t

is
, a

n
L

E
/

V
SE

re

tu
rn

co

d
e

m
od

if
ie

r
is

2

or

gr

ea
te

r)
. T

hi
s

re
fl

ec
ts

th

e
va

lu
e

re
tu

rn
ed

fr

om

th

e
“f

ir
st

en

cl
av

e
w

it
hi

n
pr

oc
es

s
te

rm
in

at
io

n”
.

C
E

E
A

U
E

_A
B

N
D

=

1

if

an

ab

en
d

is

re

qu
es

te
d

, o
r

0
if

th

e
en

cl
av

e
sh

ou
ld

co

nt
in

ue

w

it
h

te
rm

in
at

io
n

pr
oc

es
si

ng

“f

ir
st

en

cl
av

e
w

it
hi

n
pr

oc
es

s
te

rm
in

at
io

n”

(f

un
ct

io
n

co
d

e
2)

.

C
E

E
A

U
E

_D
U

M
P

=

0

Appendix C. Customizing LE/VSE User Exits 153

Ta
bl

e
36

.
P

ar
am

et
er

V

al
ue

s
in

th

e
A

ss
em

bl
er

U

se
r

E
xi

t
(P

ar
t

2)
.

T
he

as

se
m

bl
er

us

er

ex

it
co

nt
ai

ns

th

es
e

pa
ra

m
et

er

va

lu
es

de

pe
nd

in
g

on

w

he
n

it
is

in

vo
ke

d.

W
h

en

In

vo
k

ed

C
E

E
A

U
E

_W
O

R
K

C

E
E

A
U

E
_O

P
T

IO
N

C

E
E

A
U

E
_U

S
E

R

C
E

E
A

U
E

_
C

O
D

E
S

C
E

E
A

U
E

_
FB

C
O

D
E

C

E
E

A
U

E
_P

A
G

E

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
In

it
ia

liz
at

io
n

—

E
nt

ry

C

E
E

A
U

E
_F

U
N

C

=

1

A
d

d
re

ss

of

a

25
6-

by
te

w
or

k
ar

ea

of

bi

na
ry

ze

ro
s.

0
0

M
in

im
um

nu

m
be

r
of

st

or
ag

e
by

te
s

to

be

al
lo

ca
te

d

fo

r
PL

/
I

B
A

SE
D

va

ri
ab

le
s

(d
ef

au
lt

=

32

76
8)

.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
In

it
ia

liz
at

io
n

—

R
et

ur
n

Po

in
te

r
to

ad

d
re

ss

of

a

ha
lf

w
or

d

pr

ef
ix

ed

ch
ar

ac
te

r
st

ri
ng

co

nt
ai

ni
ng

ru
n-

ti
m

e
op

ti
on

s,

or

0.

V
al

ue

of

C

E
E

A
U

E
_U

SE
R

fo
r

al
l

su
bs

eq
ue

nt

ex

it
s.

Po
in

te
r

to

th
e

ab
en

d

co
d

es

ta

bl
e,

or

0.

U
se

r
sp

ec
if

ie
d

PA

G
E

va

lu
e.

M

in
im

um

nu
m

be
r

of

st

or
ag

e
by

te
s

to

be

al

lo
ca

te
d

fo
r

PL
/

I
B

A
SE

D

va

ri
ab

le
s

(d
ef

au
lt

=

32
76

8)
.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
Te

rm
in

at
io

n
—

E
nt

ry

C

E
E

A
U

E
_F

U
N

C

=

2

A
d

d
re

ss

of

a

25
6-

by
te

ar

ea

of

bi

na
ry

ze

ro
s.

R

et
ur

n
va

lu
e

fr
om

pr
ev

io
us

ex

it
.

Fe
ed

ba
ck

co
d

e
ca

us
in

g
te

rm
in

at
io

n.

Fi
rs

t
E

nc
la

ve

w

it
hi

n
Pr

oc
es

s
Te

rm
in

at
io

n
—

R
et

ur
n

T
he

va

lu
e

of

C
E

E
A

U
E

_U
SE

R

fo

r
al

l
su

bs
eq

ue
nt

ex

it
s.

N
es

te
d

E

nc
la

ve

In
it

ia
liz

at
io

n
—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

3

A
d

d
re

ss

of

a

25
6-

by
te

w
or

k
ar

ea

of

bi

na
ry

ze

ro
s.

R

et
ur

n
va

lu
e

fr
om

pr
ev

io
us

ex

it
.

0

M
in

im
um

nu

m
be

r
of

st

or
ag

e
by

te
s

to

be

al
lo

ca
te

d

fo

r
PL

/
I

B
A

SE
D

va

ri
ab

le
s

(d
ef

au
lt

=

32

76
8)

.

N
es

te
d

E

nc
la

ve

In
it

ia
liz

at
io

n
—

R

et
ur

n

Po
in

te
r

to

fu

llw
or

d

ad
d

re
ss

th

at

po

in
ts

to

a

ha
lf

w
or

d

pr

ef
ix

ed

le

ng
th

st
ri

ng

co

nt
ai

ni
ng

ru

n-
ti

m
e

op
ti

on
s,

or

0.

T
he

va

lu
e

of

C
E

E
A

U
E

_U
SE

R

fo

r
al

l
su

bs
eq

ue
nt

ex

it
s.

Po
in

te
r

to

ab
en

d

co

d
es

ta
bl

e,

or

0.

U
se

r
sp

ec
if

ie
d

PA

G
E

va

lu
e.

M

in
im

um

nu
m

be
r

of

st

or
ag

e
by

te
s

to

be

al

lo
ca

te
d

fo
r

PL
/

I
B

A
SE

D

va

ri
ab

le
s

(d
ef

au
lt

=

32
76

8)
.

N
es

te
d

E

nc
la

ve

Te
rm

in
at

io
n

—

E

nt
ry

C
E

E
A

U
E

_F
U

N
C

=

4

A
d

d
re

ss

of

a

25
6-

by
te

w
or

k
ar

ea

of

bi

na
ry

ze

ro
s.

R

et
ur

n
va

lu
e

fr
om

pr
ev

io
us

ex

it
.

Fe

ed
ba

ck

co
d

e
ca

us
in

g
te

rm
in

at
io

n.

N
es

te
d

E

nc
la

ve

Te
rm

in
at

io
n

—

R

et
ur

n

V

al
ue

of

C

E
E

A
U

E
_U

SE
R

fo
r

al
l

su
bs

eq
ue

nt

ex

it
s.

Pr
oc

es
s

Te
rm

in
at

io
n

—

E
nt

ry

C

E
E

A
U

E
_F

U
N

C

=

5

A
d

d
re

ss

of

a

25
6-

by
te

w
or

k
ar

ea

of

bi

na
ry

ze

ro
s.

R

et
ur

n
va

lu
e

fr
om

pr
ev

io
us

ex

it
.

Fe

ed
ba

ck

co
d

e
ca

us
in

g
te

rm
in

at
io

n.

Pr
oc

es
s

Te
rm

in
at

io
n

—

R
et

ur
n

V
al

ue

of

C

E
E

A
U

E
_U

SE
R

fo
r

al
l

su
bs

eq
ue

nt

ex

it
s.

154 LE/VSE: Customization Guide

Abnormal Termination Exit Syntax

The abnormal termination exits in CEEEXTAN are invoked during the termination

of an enclave due to an unhandled condition of severity 2 or greater. An abnormal

termination exit is invoked in AMODE(31), with register 12 pointing to the CAA

and register 13 pointing to a DSA with a valid NAB.

For more information about creating and using abnormal termination exits, see

“Creating a CEEEXTAN Abnormal Termination Exit CSECT” on page 38.

Syntax

 Abnormal_Termination_Exit (CIBPTR)

CIBPTR (INPUT)

A pointer to the condition information block for the current condition.

Usage notes:

1. The abnormal termination exit must be written in assembler. If you write an

abnormal termination exit in LE/VSE-enabled assembler, be sure to specify

MAIN=NO in the CEENTRY macro.

2. The abnormal termination exit cannot call any HLL programs.

3. The abnormal termination exit cannot create an LE/VSE enclave.

4. The abnormal termination exit can use the following LE/VSE callable services

if the feedback code is passed as a parameter:

v Date and time callable services

v Dynamic storage callable services

v Message handling callable services

v National language support callable services

v A subset of the general callable services: CEE5DMP, CEE5GRC, CEE5PRM

v A subset of the condition handling callable services: CEE5GRN, CEEDCOD,

CEEGPID, CEEGQDT, CEEITOK, CEENCOD
In addition, observe the restrictions on the use of system services as described

in LE/VSE Programming Guide.

5. LE/VSE issues a system-dependent LOAD for one of the names contained in

CEEEXTAN. If the load is successful, the abnormal termination exit is invoked.

6. Upon return from the abnormal termination exit, LE/VSE deletes the routine. A

return code is not provided, because LE/VSE takes no action (beyond deleting

the routine) for a non-zero return code.

7. If LE/VSE intercepts a program check, an abend, or a CEESGL while an

abnormal termination exit is in control, LE/VSE issues an ABEND to terminate

the enclave with the abend code 4087 reason code 10.

8. Entry conditions into the abnormal termination exit are:

Register 1

Has a standard OS parameter list as described above.

Register 12

Points to the CAA.

Register 13

Points to an LE/VSE DSA with a valid NAB. (You can use it as a

standard 18-fullword save area.)

Register 14

Contains the return address.

Appendix C. Customizing LE/VSE User Exits 155

Register 15

Contains the entry point address.

AMODE

Is 31.
9. Exit conditions from the abnormal termination exit are:

Register 1

Undefined.

Registers 2–13

Are unchanged.

Register 14

Is the return point.

Register 15

For an abnormal termination exit invoked before the LE/VSE dump is

generated, can contain a return code of 8 indicating the LE/VSE dump

is not to be generated. Otherwise undefined.

AMODE

Is 31.

156 LE/VSE: Customization Guide

Appendix D. Using COBOL with LE/VSE

This appendix contains diagnosis, modification, or tuning information.

This appendix provides information for tuning and customizing your LE/VSE

COBOL support run-time routines within the LE/VSE environment.

The customization information in this appendix is intended to help you enhance

system performance.

These are the main sections contained in this appendix:

v “Using COBOL Side-File Exits”

v “Using the Search Function of the COBOL Side-File” on page 158

v “Contents of the General COBPACK (IGZCPAC)” on page 158

v “Contents of the Environment-Specific COBPACK (IGZCPCO)” on page 160

v “Contents of the CICS ESM COBPACK (IGZCPCC)” on page 162

Using COBOL Side-File Exits

LE/VSE now supports the use of exits that can be replaced by the user. You can

use these exits to override the default name and location of the side-file dataset.

Before LE/VSE Version 1 Release 4.4, at compile-time the compiler always stored

the location and name of the side-file dataset in the object code produced by the

compiler. When information such as statement number(s) or symbolic information

was required, LE/VSE COBOL run-time used this information to locate the

side-file. However, this sometimes caused problems because the side-file dataset

could not be renamed or moved, even though the resulting PHASE could be

moved.

From LE/VSE Version 1 Release 4.4 onwards, there are two exit modules that you

can use to change both the location and name (including the member-type) of the

side-file dataset, which are then used by the LE/VSE COBOL run-time when

required. The LE/VSE COBOL run-time loads and calls:

v IGZIUXB in the BATCH environment.

v IGZIUXC when running under CICS.

The parameters described below will be passed to the user exit when the side-file

is being opened. Register 1 contains the address of two parameter addresses. A

third parameter address is additionally provided under CICS.

v Firstly, the address of a Halfword-prefixed string that has a maximum length of

1024 bytes. This is an input/output field. On input, this field contains the

location and name of the side-file dataset that was created at compile-time. The

side-file dataset name is passed as a string that has this format:

 llll|library.sublibrary(member[.membertype])

where llll is the halfword length information. If membertype is omitted (as is the

case with the side-file dataset name that is provided by the compiler),

SYSDEBUG is used as the default member-type. The structure of the string

format must be maintained by the exit. Otherwise, a ″Not Found″ condition

might result.

v Secondly, the address of the COBOL program name.

© Copyright IBM Corp. 1991, 2005 157

v Thirdly (under CICS), the address of the SYSEIB. This is an input field only.

These return codes determine the action that the LE/VSE COBOL run-time should

take. On exit, R15 is set by the exit to indicate if the value in the debug file-name

area should be used.

v If R15 = 0, use the name provided by the exit.

v If R15 ≠ 0, do not use the name provided by the exit. Instead, use the default

name and searching behavior.

The LE/VSE installation library contains sample exit code. Members IGZWIUXB

and IGZWIUXC provide sample source code for both the BATCH and CICS

environments. They provide examples of how to:

1. Add a new member-type to the side-file dataset name.

2. Instruct the LE/VSE COBOL run-time to use this new side-file name.

Using the Search Function of the COBOL Side-File

From LE/VSE Version 1 Release 4.4 onwards, you can also use a side-file searching

function, which is activated automatically by LE/VSE.

Before LE/VSE Version 1 Release 4.4, to load any required side-file datasets,

LE/VSE COBOL run-time used the exact location only that was specified by the

COBOL compiler. From LE/VSE Version 1 Release 4.4 onwards, if the LE/VSE

COBOL run-time cannot find the side-file dataset in the location specified by the

COBOL compiler, it then searches the active PHASE LIBDEF search chain (both

temporary and permanent) for this side-file dataset.

The dataset name that is used in the search is either the:

v Dataset name specified by the exit.

v The dataset name generated by the compiler (if no exit is present, or no override

is provided by an active exit).

If the side file can still not be found, a ″Not Found″ condition will be issued. An

appropriate error message will then be reported in the CEEDUMP output.

Contents of the General COBPACK (IGZCPAC)

Table 37 lists routines you can include in the general COBPACK (IGZCPAC) and

briefly describes each to help you determine which to include in your tailored

COBPACK.

Table 37 also indicates which routines are included in the IBM-supplied COBPACK.

 Table 37. Routines Eligible for Inclusion in General COBPACK (IGZCPAC)

Name Description

VSE/

CICS

In IBM-

Supplied

COBPACK?

Link-

Edited

AMODE

Link-

Edited

RMODE

IGZCACP ACCEPT and STOP literal VSE Yes 31 ANY

IGZCACS Alternate collating sequence comparison Both Yes 31 ANY

IGZCANE Alphanumeric editing Both Yes 31 ANY

IGZCANF Format with figurative constant Both Yes 31 ANY

IGZCBID Binary to internal decimal Both Yes 31 ANY

158 LE/VSE: Customization Guide

Table 37. Routines Eligible for Inclusion in General COBPACK (IGZCPAC) (continued)

Name Description

VSE/

CICS

In IBM-

Supplied

COBPACK?

Link-

Edited

AMODE

Link-

Edited

RMODE

IGZCBUG4 Used for debugging Both No 31 24

IGZCCAL Call intercept routine Both Yes 31 ANY

IGZCCLS Class test Both Yes 31 ANY

IGZCCTL Interface to debug tool Both Yes 31 ANY

IGZCCVB Numeric conversion Both Yes 31 ANY

IGZCDSP DISPLAY VSE Yes 31 ANY

IGZCFDP3 Formatted FDUMP Both Yes 31 ANY

IGZCFDW TRUNC floating point to binary conversion Both Yes 31 ANY

IGZCFPW Exponentiates double precision floating-point

numbers

Both Yes 31 ANY

IGZCGDR Segment refresh Both Yes 31 ANY

IGZCHCM Condition management events handler Both Yes 31 ANY

IGZCIDB Internal decimal to binary Both Yes 31 ANY

IGZCINS INSPECT Both Yes 31 ANY

IGZCIN1 INSPECT library Both Yes 31 ANY

IGZCIN2 INSPECT library Both Yes 31 ANY

IGZCIPS Initialization for internal program setup Both Yes 31 ANY

IGZCIVL Comparison with figurative constant Both Yes 31 ANY

IGZCKCL Kanji class test Both Yes 31 ANY

IGZCLDL Load/delete subroutines Both Yes 31 ANY

IGZCLDR1 Partition loader (COBLDR) Both Yes 31 ANY

IGZCLLM2 Load list manager Both Yes 31 ANY

IGZCLNC4 Linkage manager for IGZBRDGE (dynamic

call and cancel)

Both No 31 24

IGZCLNK4 Linkage manager for VS COBOL II and

COBOL/VSE (dynamic call and cancel)

Both No 31 24

IGZCMED Median function processor Both Yes 31 ANY

IGZCMLT3 Message table Both Yes 31 ANY

IGZCMSG Message process control routine Both Yes 31 ANY

IGZCNMV NUMVAL/NUMVAL-C function processor Both Yes 31 ANY

IGZCONV Conversion routine for floating point Both Yes 31 ANY

IGZCPPL4 Linkage manager for procedure-pointers Both No 31 24

IGZCPRC2 Program cleanup Both Yes 31 ANY

IGZCPRS2 Program setup Both Yes 31 ANY

IGZCRCL2 Run unit cleanup Both Yes 31 ANY

IGZCREV Reverse function processor Both Yes 31 ANY

IGZCRSU2 Run unit setup Both Yes 31 ANY

IGZCSCH Binary search of table Both Yes 31 ANY

IGZCSMV Move right-justified Both Yes 31 ANY

Appendix D. Using COBOL with LE/VSE 159

Table 37. Routines Eligible for Inclusion in General COBPACK (IGZCPAC) (continued)

Name Description

VSE/

CICS

In IBM-

Supplied

COBPACK?

Link-

Edited

AMODE

Link-

Edited

RMODE

IGZCSPA Printer spacing VSE Yes 31 ANY

IGZCSPC Call by content Both Yes 31 ANY

IGZCSPM Space manager Both Yes 31 ANY

IGZCSSN Separate sign numeric Both Yes 31 ANY

IGZCSSR SSRANGE compile-time option Both Yes 31 ANY

IGZCSTA Statistical routine function processor Both Yes 31 ANY

IGZCSTG STRING Both Yes 31 ANY

IGZCULE4 User I/O logic error handler VSE No 31 24

IGZCUPL Upper and lowercase function Both Yes 31 ANY

IGZCUST UNSTRING Both Yes 31 ANY

IGZCVDP3 Variable dump routine 1 Both Yes 31 ANY

IGZCVIN VSAM initialization VSE Yes 31 ANY

IGZCVLD2 Verify loader Both Yes 31 ANY

IGZCVMO Variable length move Both Yes 31 ANY

IGZCXDI Double precision division Both Yes 31 ANY

IGZCXFR4 I/O declarative transfer VSE No 31 24

IGZCXMU Double precision multiplication Both Yes 31 ANY

IGZCXPR Decimal fixed-point exponentiation Both Yes 31 ANY

IGZIBPC Compile Unit Control Table Builder Both Yes 31 ANY

IGZICUD Descibe Compile Unit Both Yes 31 ANY

Notes to Routines Eligible for inclusion in General COBPACK (IGZCPAC):

1. Highly recommended for inclusion in a partially loaded COBPACK.

2. Highly recommended for inclusion in the general COBPACK, regardless of whether the location is above or

below the 16MB address line.

3. If IGZCFDP is included in the COBPACK, you should also include routines IGZCMLT and IGZCVDP.

4. This routine is not included in the IBM-supplied COBPACK IGZCPAC so that IGZCPAC is RMODE(ANY) and

will load above the 16MB line.

Contents of the Environment-Specific COBPACK (IGZCPCO)

Table 38 lists routines you can include in the environment-specific COBPACK

(IGZCPCO) and describes each to help you determine which to include in your

tailored COBPACK. Table 38 also indicates which routines are included in the

IBM-supplied COBPACK.

 Table 38. Routines Eligible for Inclusion in the Environment-Specific COBPACK (IGZCPCO)

 Name Description

In IBM- Supplied

COBPACK?

Link- Edited

AMODE

Link- Edited

RMODE

CEEARLU4 Anchor lookup Yes 31 ANY

CEEBLLST4 Language list CSECT Yes 31 ANY

CEEBPIRA4 Common initialization Yes 31 ANY

CEEBPUBT4 Common product signature Yes 31 ANY

160 LE/VSE: Customization Guide

Table 38. Routines Eligible for Inclusion in the Environment-Specific COBPACK (IGZCPCO) (continued)

 Name Description

In IBM- Supplied

COBPACK?

Link- Edited

AMODE

Link- Edited

RMODE

CEEBTRM4 Common termination Yes 31 ANY

CEESG0054 COBOL signature Yes 31 ANY

CEEYDBCP5,6 DTFCP builder No 31 ANY

CEEYCP05,6 CPMOD LIOCS module No 24 24

IGZCBET4 Common table CSECT Yes 31 ANY

IGZECKP6 Checkpoint No 31 24

IGZEDMR6 Reusable environment deactivation No 31 24

IGZEDTE Date, day, and time of day Yes 31 ANY

IGZEDTG5,6 Get storage for DTF No 31 ANY

IGZEINI2,3,4,6 Environment initialization No 31 24

IGZEINP5,6 Accept input reader No 31 24

IGZEMSG Object-time message writer Yes 31 ANY

IGZENRT NORES termination Yes 31 ANY

IGZEOUT5,6 Display output writer No 31 24

IGZEQBL6 SAM initialization transmission verbs, error

exits

No 31 24

IGZEQOC6 SAM OPEN/CLOSE No 31 24

IGZESCD5,6 SORT-CONTROL I/O handling routine No 31 24

IGZESMG6 Sort/Merge interface No 31 24

IGZETCL1 Thread cleanup Yes 31 ANY

IGZETRM6 Environment termination No 31 24

IGZETSU1 Thread setup Yes 31 ANY

IGZEVAM6 VSAM-to-IDCAMS interface No 31 24

IGZEVEX6 VSAM exit routine for SYNAD and LERAD No 31 24

IGZEVIO6 VSAM input/output No 31 24

IGZEVOC6 VSAM OPEN/CLOSE No 31 24

IGZEVOP6 VSAM OPEN interface for variable length

records

No 31 24

IGZEVO26 VSAM OPEN No 31 24

Notes to Routines Eligible for Inclusion in the Environment-Specific COBPACK(IGZCPCO):

1. Highly recommended for inclusion in a COBPACK, regardless of whether it is located above or below the 16MB

address line.

2. Must exist outside the VSE ESM COBPACK, even if it also exists in it.

3. Highly recommended for inclusion in a COBPACK if it is located below the 16MB address line.

4. If IGZEINI is included in the COBPACK, the following routines must also be included: CEEARLU, CEEBLLST,

CEEBPIRA, CEEBPUBT, CEEBTRM, CEESG005, and IGZCBET.

5. If IGZEINP, IGZEOUT, or IGZESCD is included in the COBPACK, the following routines must also be included:

CEEYDBCP, CEEYCP0, and IGZEDTG.

6. This routine is not included in the IBM-supplied COBPACK IGZCPCO so that IGZCPCO is RMODE(ANY) and

will load above the 16MB line. This routine is either link-edited RMODE(24) or is exclusively called by

RMODE(24) routines.

Appendix D. Using COBOL with LE/VSE 161

Contents of the CICS ESM COBPACK (IGZCPCC)

Table 39 lists routines you can include in the CICS ESM COBPACK (IGZCPCC)

and describes each to help you determine which to include in your tailored

COBPACK. Table 39 also indicates which routines are included in the IBM-supplied

COBPACK.

 Table 39. Routines Eligible for Inclusion in the CICS ESM COBPACK (IGZCPCC)

 Name Description

In IBM- Supplied

COBPACK?

Link- Edited

AMODE

Link- Edited

RMODE

CEEARLU3 Anchor lookup Yes 31 ANY

DFHEAI4 CICS DFHEAI module Yes 31 ANY

IGZ9DCM Diagnose calls to DOS/VS COBOL Yes 31 ANY

IGZ9INI1,2,3 Environment initialization Yes 31 ANY

IGZ9MSG1 Object-time message writer Yes 31 ANY

IGZ9POP Perform CICS pop Yes 31 ANY

IGZ9SMG2 Sort/merge interface Yes 31 ANY

IGZ9TCL1 Thread cleanup Yes 31 ANY

IGZ9TRM1 Environment termination Yes 31 ANY

IGZ9TSU1 Thread setup Yes 31 ANY

Notes to Routines Eligible for Inclusion in the CICS ESM COBPACK:

1. Highly recommended for inclusion in the CICS ESM COBPACK.

2. These routines have AMODE (31), RMODE (ANY) in CICS only.

3. If IGZ9INI is included in the COBPACK, you must also include routine CEEARLU.

4. DFHEAI can be removed from the COBPACK only if you remove all of the other routines.

162 LE/VSE: Customization Guide

Appendix E. Customizing C Locale Time Information

This section describes the time information options that you can change at

installation time for the default C locale. When C initializes its environment, it uses

EDC$S370 as its default locale. The only category of EDC$S370 that you can

change at installation time is the LC_TOD category. See LE/VSE C Run-Time

Programming Guide for information on how to create new locales.

The LC_TOD category defines variables that describe time zone difference, time zone

name, and Daylight Savings Time (DST) start and end. The LC_TOD variables are

used by the mktime and localtime functions for determining local time. The time

functions use the time zone difference from the system as the default.

Customizing Locale

After installing LE/VSE and its C-specific component, you can set up your default

run-time environment and customize time information for your installation’s

default locale. You can use the supplied sample job EDCLLOCL.Z to help you

make changes to the time zone and Daylight Savings Time parameters listed

below. To set these time parameters, make your changes to the EDCLLOCL sample

job, and run the modified job stream.

Figure 21 is a hypothetical example. The time zone name in the example is EST.

The time zone difference (TZDIFF) is 300 (minutes), which means EST is 5 hours

west of Greenwich mean time (5 hours must be added to EST to obtain Greenwich

mean time.) If TZDIFF is greater than 1440, the time zone difference from

Greenwich mean time is obtained from the system. The Daylight Savings Time

(DST) information in the example is:

v DST starts in April, in the second week on Sunday.

v DST begins at 2 AM.

v DST shifts 1 hour.

v DST ends in October, in the second week on Sunday.

v DST ends at 2 AM.

v DST time zone name is EDT.

Time Information Options Reference

TZDIFF Time zone difference expressed in minutes. This value is added to the local

time to obtain Greenwich mean time. If the local time zone is west of the

Greenwich Meridian, this value must be positive. If the local time zone is

east of the Greenwich Meridian, this value must be negative. If the

absolute value given for this field is greater than 720 then the results may

not be as expected, except that an absolute value greater than 1440 (the

number of minutes in a day) tells the C Library to get the time zone

difference from the system.

 TZDIFF=300,TNAME=’EST’,

 DSTSTM=4,DSTSTW=2,DSTSTD=0,STARTTM=7200,SHIFT=3600,

 DSTENM=10,DSTENW=2,DSTEND=0,ENDTM=7200,DSTNAME=’EDT’,

Figure 21. Example Time Zone and Daylight Savings Time Information

© Copyright IBM Corp. 1991, 2005 163

Note: You should ensure that the value you specify for TZDIFF

corresponds with the VSE system time zone in effect, otherwise C

date and time functions may produce incorrect results.

TNAME Time zone name such as PST (Pacific Standard Time) specified within

quotation marks. The default for this field is a NULL string.

DSTNAME

A Daylight Savings Time zone name such as PDT (Pacific Daylight Time)

specified within quotation marks, if available. If DST information is not

available, this is set to NULL, which is also the IBM-supplied default. This

field must have a value if Daylight Savings Time information (as provided

by the other fields) is to be taken into account by the mktime and localtime

functions. These functions ignore DST if this field is set to NULL.

DSTSTM Month of the year when DST (Daylight Savings Time) comes into effect.

This value ranges from 1 through 12 inclusive, with 1 corresponding to

January and 12 corresponding to December. If DST is not applicable to a

locale, this is set to 0, which is also the IBM-supplied default.

DSTENM Month of the year when Daylight Savings Time ceases to be in effect.

Semantics similar to DSTSTM.

DSTSTW Week of the month when DST comes into effect. Acceptable values range

from -4 to +4. A value of 4 means the fourth week of the month, while a

value of -4 means fourth week of the month, counting back from the end

of the month. Sunday is considered the start of the week. If DST is not

applicable to a locale, DSTSTW is set to 0, which is also the IBM-supplied

default.

DSTENW Week of the month when DST ceases to be in effect. Semantics similar to

DSTSTW.

Note: DSTSTW and DSTENW need not be used. The DSTSTD and DSTEND fields

can specify either day of week or day of month. If day of month is

specified, DSTSTW and DSTENW become redundant.

DSTSTD Dependent on the value of DSTSTW. If DSTSTW is not equal to 0, this is the

day of the week when DST comes into effect. It ranges from 0 through 6

inclusive, with 0 corresponding to Sunday and 6 corresponding to

Saturday. If DSTSTW equals 0, DSTSTD is the day of the month (for the

current year) when DST comes into effect. It ranges from 1 to the last day

of the month inclusive. The last day of the month is 31 for January, March,

May, July, August, October, and December. It is 30 for April, June,

September, and November. For February, it is 28 on non-leap years and 29

on leap years. If DST is not applicable to a locale, DSTSTD is set to 0, which

is also the IBM-supplied default.

DSTEND The day of the week or the day of the month when DST ceases to be in

effect. Semantics similar to DSTSTD.

STARTTM

Seconds after 12 midnight, local standard time, when DST comes into

effect. For example, if DST is to start at 2:00 AM, STARTTM is assigned the

value 7200; for 12:00 AM (midnight), STARTTM is 0; for 1:00 AM, it is 3600.

ENDTM Seconds after 12 midnight, local standard time, when DST ceases to be in

effect. Semantics similar to STARTTM.

SHIFT DST time shift, expressed in seconds. Default is 3600, for 1 hour.

164 LE/VSE: Customization Guide

Appendix F. Routines Eligible for the Shared Virtual Area

This appendix contains diagnosis, modification, or tuning information.

This appendix provides information for loading LE/VSE routines into the shared

virtual area (SVA).

The routines (or, more correctly, phases containing routines) listed in Table 40,

Table 41 on page 167, and Table 42 on page 169 can be put in the 24-bit SVA or the

31-bit SVA, depending on their RMODE:

v If the RMODE is ANY, the routine can reside in the 24-bit SVA or the 31-bit SVA.

v If the RMODE is 24, the routine can reside only in 24-bit SVA.

The sizes indicated in these tables are approximate.

The specific HLL sections contain both a table of routines eligible for the SVA and

a listing of what routines are recommended. You do not need to include

recommended routines if they contain functions your installation does not use.

LE/VSE Base Routines

 Table 40. LE/VSE Routines Eligible for Inclusion in the SVA

LE/VSE Routine Name Description Decimal Size RMODE

CEEBINIT Initialization/termination for batch 53,640 24

CEEBLIBM Library routine retention initialization/ termination 20,748 24

CEEBLRR Library routine retention interface 936 24

CEEBNATX Null Abnormal termination exit 2 ANY

CEEBXITA LE/VSE assembler user exit 156 ANY

CEEBXTAN BATCH Abnormal termination exit table 274 ANY

CEECCICS CICS library support routines 42,008 24

CEECOPP Compiler options parsing program 50,424 ANY

CEECOPT CICS Installation-wide default run-time options 26,688 ANY

CEECXTAN CICS Abnormal Termination Exit table 290 ANY

CEEDOPT BATCH Installation-wide default run-time options 26,688 ANY

CEEKDS Contains dump services 94,256 ANY

CEELCLE Contains locale services 11,064 ANY

CEELEDT LE/VSE to VSE/POWER Interface Routine 8,144 ANY

CEELRRIN Library routine retention initialization interface 352 ANY

CEELRRTR Library routine retention termination interface 344 ANY

CEEMENU0 Message file with mixed-case English; messages

000-999

9,600 ANY

CEEMENU2 Message file with mixed-case English; messages

2000-2999

10,384 ANY

CEEMENU3 Message file with mixed-case English; messages

3000-3999

33,032 ANY

© Copyright IBM Corp. 1991, 2005 165

Table 40. LE/VSE Routines Eligible for Inclusion in the SVA (continued)

LE/VSE Routine Name Description Decimal Size RMODE

CEEMENU4 Message file with mixed-case English; messages

4000-4999

1,032 ANY

CEEMENU5 Message file with mixed-case English; messages

5000-5999

696 ANY

CEEMJPN0 Message file with Japanese; messages 000-999 9,536 ANY

CEEMJPN2 Message file with Japanese; messages 2000-2999 10,488 ANY

CEEMJPN3 Message file with Japanese; messages 3000-3999 33,400 ANY

CEEMJPN4 Message file with Japanese; messages 4000-4999 1,024 ANY

CEEMJPN5 Message file with Japanese; messages 5000-5999 648 ANY

CEEMMS Contains messages services 72,136 ANY

CEEMUEN0 Message file with uppercase English; messages

000-999

9,600 ANY

CEEMUEN2 Message file with uppercase English; messages

2000-2999

10,384 ANY

CEEMUEN3 Message file with uppercase English; messages

3000-3999

33,032 ANY

CEEMUEN4 Message file with uppercase English; messages

4000-4999

1,032 ANY

CEEMUEN5 Message file with uppercase English; messages

5000-5999

696 ANY

CEEPIPI Initialization/termination routines for the LE/VSE

pre-initialization facility

67,936 24

CEEPLPKA Other library routines that can reside above the line 360,040 ANY

CEEPLPKD VSE system-specific routines 75,920 24

CEEQMATH Contains math library services 316,992 ANY

CEEYCD0 Card device LIOCS routines 6,856 24

CEEYDTS Contains date/time library services 49,048 ANY

CEEYPR0 Printer device LIOCS routines 4,528 24

CEL4CMDR LE/VSE attention routine interface 4,805 ANY

CEL4RTO CLER CICS transaction service routine 78,888 ANY

EDCCNEWC Newcopy CICS Installation-wide default run-time

options

14,160 ANY

EDCROPT Report new CICS Installation-wide default run-time

options to MSGFILE

5,568 ANY

166 LE/VSE: Customization Guide

LE/VSE COBOL Component Routines

The base and COBOL component routines recommended for inclusion in the SVA

are:

 CEEBINIT

 CEECCICS

 CEEEV005

 CEEPIPI

 CEEPLPKA

 CEEPLPKD

 CEEQMATH

 CEEYDTS

 IGZCPAC

 IGZCPCO

 Table 41. COBOL/VSE Routines Eligible for Inclusion in the SVA. (Assuming COBPACKs as distributed)

COBOL/VSE Routine

Name Description Decimal Size RMODE

CEEEV005 COBOL event handler 41,000 ANY

IGZCA2D DBCS data manipulation 1,992 ANY

IGZCBUG1 Used for debugging 1,832 24

IGZCD2A DBCS data manipulation 1,112 ANY

IGZCLNC1 Linkage manager for IGZBRDGE (dynamic call and

cancel)

2,688 24

IGZCLNK1 Linkage manager for VS COBOL II and COBOL/VSE

(dynamic call and cancel)

3,120 24

IGZCMGEN COBOL (IGZ) messages in English 19,272 ANY

IGZCMGJA COBOL (IGZ) messages in Japanese 18,856 ANY

IGZCMGUE COBOL (IGZ) messages in uppercase English 19,272 ANY

IGZCMTUE COBOL WTO error messages 504 ANY

IGZCPAC3 COBPACK 106,040 ANY

IGZCPCC3 COBPACK 10,904 ANY

IGZCPCO3 COBPACK 6,264 ANY

IGZCPCR1 Partition dump routine 3,384 ANY

IGZCPPL1 Linkage manager for procedure-pointers 2,192 24

IGZCPSU1 Partition setup routine 3,136 ANY

IGZCULE1 User I/O logic error handler 1,472 24

IGZCWTO COBOL write error message 5,152 ANY

IGZCXFR1 I/O declarative transfer 2,416 24

IGZECKP1 Checkpoint 3,208 24

IGZEDMR1 Reusable environment deactivation 584 24

IGZEINI2 Environment initialization 13,648 24

IGZEINP1 Accept input reader 11,008 24

IGZEOUT1 Display output writer 9,688 24

IGZEPCL COBOL termination 528 24

IGZEPLF COBOL environment initialization 2,824 24

IGZEQBL1 SAM initialization transmission verbs, error exits 8,152 24

Appendix F. Routines Eligible for the Shared Virtual Area 167

Table 41. COBOL/VSE Routines Eligible for Inclusion in the SVA (continued). (Assuming COBPACKs as distributed)

COBOL/VSE Routine

Name Description Decimal Size RMODE

IGZEQCD1 Routine to build DTFCD 4,056 24

IGZEQC01 IGZCDMOD 2,824 24

IGZEQDU1 Routine to build DTFDU 2,096 24

IGZEQD01 IGZDUMOD 2,192 24

IGZEQMT1 Routine to build DTFMT 2,696 24

IGZEQOC1 SAM OPEN/CLOSE 15,760 24

IGZEQPR1 Routine to build DTRPR 2,368 24

IGZEQP01 IGZPRMOD 1,072 24

IGZEQSD1 Routine to build DTFSD 3,248 24

IGZERRE COBOL reusable environment 6,560 ANY

IGZESCD1 SORT-CONTROL I/O handling routine 9,832 24

IGZESMG2 Sort/Merge interface 21,664 24

IGZETRM2 Environment termination 2,136 24

IGZEVAM1 VSAM-to-IDCAMS interface 3,224 24

IGZEVEX1 VSAM exit module for SYNAD and LERAD 880 24

IGZEVIO1 VSAM input/output 12,616 24

IGZEVOC1 VSAM OPEN/CLOSE 4,016 24

IGZEVOP1 VSAM OPEN interface for variable length records 9,296 24

IGZEVO21 VSAM OPEN 5,832 24

IGZEWTO COBOL: write error message to operator’s console 1,096 ANY

IGZINSH1 COBOL DT/VSE Code handler 193,648 ANY

IGZMSGT COBOL message tables 152 ANY

Notes to COBOL/VSE Routines Eligible for the SVA:

1. This module is not included in an IBM-supplied COBPACK. If you customize your COBPACKs and include this

module, do not load it separately in the SVA.

2. A module of this name is included in the IBM-supplied CICS COBPACK (IGZCPCC), but not in any

IBM-supplied batch COBPACK. If you load the CICS COBPACK into the SVA do not load this module separately

into the SVA.

3. Size is as shipped by IBM. The size will vary based on how you customize it.

168 LE/VSE: Customization Guide

LE/VSE PL/I Component Routines

The base and PL/I component routines recommended for inclusion in the SVA are:

 CEEBINIT

 CEECCICS

 CEECOPP

 CEEEV010

 CEEPIPI

 CEEPLPKA

 CEEPLPKD

 CEEQMATH

 CEEYDTS

 IBMRLIB1

 IBMRSAP

Table 42 lists the PL/I VSE phases eligible for inclusion in the SVA.

Phases named IBM3... are used by Debug Tool for VSE/ESA for debugging PL/I

VSE applications. If you do not plan to use Debug Tool for VSE/ESA with LE/VSE

PL/I, do not load these phases into the SVA.

 Table 42. PL/I VSE Routines Eligible for Inclusion in the SVA

PL/I Routine Name Description Decimal Size RMODE

CEEEV010 PL/I event handler 207,840 ANY

IBMMSGT Message table 200 ANY

IBMRBCGA CHAR built-in 368 ANY

IBMRBCIA INDEX (character strings) 270 ANY

IBMRBCTA TRANSLATE (character string) 886 ANY

IBMRBCVA VERIFY (character strings) 278 ANY

IBMRBEIA Graphic string index 280 ANY

IBMRBGBA BOOL (bit strings) 1,304 ANY

IBMRBGCA COMPARE (general bit strings) 392 ANY

IBMRBGIA INDEX (bit strings) 518 ANY

IBMRBGVA VERIFY (bit strings) 496 ANY

IBMRBMPA MPSTR built-in 1,156 ANY

IBMRCCLA Conversion director (complex strings) 2,020 24

IBMRCCRA Conversion director (non-complex strings) 1,145 24

IBMRCOMP Conversion routines vector 15,400 24

IBMRDMPJ Dump formatter for Japanese 2,216 ANY

IBMRDMPM Dump formatter for mixed-case U.S. English 2,088 ANY

IBMRDMPU Dump formatter for uppercase English 2,072 ANY

IBMREOCA ON-code routine / ON-code calculator 928 ANY

IBMREOLA ONLOC built-in function 243 ANY

IBMRJDDA DATETIME built-in 576 ANY

IBMRJDTA DATE built-in 576 ANY

Appendix F. Routines Eligible for the Shared Virtual Area 169

Table 42. PL/I VSE Routines Eligible for Inclusion in the SVA (continued)

PL/I Routine Name Description Decimal Size RMODE

IBMRJTTA TIME built-in 576 ANY

IBMRKDMA Dump bootstrap 384 ANY

IBMRKMRA Main dump control routine 20 24

IBMRLANA Language table (mixed-case U.S. English) 1,880 24

IBMRLANN Language table (Japanese) 1,880 24

IBMRLANU Language table (uppercase English) 1,880 24

IBMRLIB1 Lib pack (below the line) 37,024 24

IBMRMCTA ERF/ERFC (extended float) 1,216 24

IBMROCAA Close routine 2,448 24

IBMROPEA Open routine (VSAM) 3,816 24

IBMROPZA Direct output file formatter 528 24

IBMRPDBA Debugger interface routine 140 24

IBMRPTLA Transient library level data 8 24

IBMRRAAA IBMRRAI: regional sequential output 1,160 24

IBMRRABA REG(1) sequential unbuffered transmitter 1,424 24

IBMRRACA BSAM LOAD REG(2) buffered F-format transmitter 1,224 24

IBMRRADA REG(2) SEQ. unbuffered transmitter 1,512 24

IBMRRAEA REG(3) buffered F-format transmitter 1,128 24

IBMRRAFA REG(3) sequential unbuffered F-format transmitter 1,336 24

IBMRRAGA REG(3) buffered U+V-format transmitter 1,016 24

IBMRRAHA REG(3) sequential unbuffered U+V-format transmitter 1,280 24

IBMRRBAA BSAM REG(1) buffered F-format transmitter 1,072 24

IBMRRBBA BSAM REG(1) unbuffered F-format transmitter 1,528 24

IBMRRBEA BSAM REG(3) buffered U+V-format transmitter 1,120 24

IBMRRBFA BSAM REG(3) update U+V-format transmitter 1,632 24

IBMRRCAA BSAM (consecutive) F-format transmitter 1,520 24

IBMRRDAA REG(1) direct F-format transmitter 1,152 24

IBMRRDBA REG(2)+(3) direct F-format transmitter 2,104 24

IBMRRDCA REG(3) direct U-format transmitter 1,976 24

IBMRRDDA REG(3) direct V+VS-format transmitter 2,144 24

IBMRREAA Consecutive buffered record I/O error routines 700 24

IBMRRECA REG+SEQ+T.P. files record I/O error routines 796 24

IBMRREEA VSAM record I/O error routines 1,030 24

IBMRREFA Record I/O endfile routine 346 24

IBMRRQAA SAM F-format transmitter 1,312 24

IBMRRQBA SAM V-format transmitter 1,440 24

IBMRRQCA SAM U-format transmitter 1,264 24

IBMRRQEA Buffered consecutive spanned record format input 1,112 24

IBMRRQFA Buffered consecutive spanned record format output 424 24

IBMRRQGA Buffered consecutive record format update 896 24

170 LE/VSE: Customization Guide

Table 42. PL/I VSE Routines Eligible for Inclusion in the SVA (continued)

PL/I Routine Name Description Decimal Size RMODE

IBMRRVAA ESDS transmitter 1,894 24

IBMRRVGA KSDS sequential output 1,100 24

IBMRRVHA KSDS or PATH input/update/direct 2,670 24

IBMRRVIA VSAM RRDS 2,182 24

IBMRRVJA VSAM VRDS 2,250 24

IBMRSAP CICS bootstrap 5,088 ANY

IBMRSOFA Output file transmitter (F-format) 488 24

IBMRSOUA Output file transmitter (U-format) 448 24

IBMRSOVA Output file transmitter (V-format) 560 24

IBMRSTFA Print file transmitter (F-record) 608 24

IBMRSTIA Input file transmitter 456 24

IBMRSTUA Print file transmitter (U-record) 640 24

IBMRSTVA Print file transmitter (V-record) 640 24

IBM3ABF Arith BIF evaluator abstraction 2,416 ANY

IBM3AMI Add message inserts 2,008 ANY

IBM3ANL Analyze execution abstraction 1,280 ANY

IBM3ANX API expression analysis 1,968 ANY

IBM3ASD Perform data assignment 1,368 ANY

IBM3ASK Check assign compatibility 1,120 ANY

IBM3ASN Assignment processor 2,536 ANY

IBM3BGE Bit/String routine Xtrns 320 ANY

IBM3BIF BIF evaluation abstraction 15,368 ANY

IBM3BLK Block abstraction 5,152 ANY

IBM3BRN Build root node information 752 ANY

IBM3CCD Conversion director 4,168 ANY

IBM3CMD Command controller 5,552 ANY

IBM3COG Cleanup on GO/GOTO 1,008 ANY

IBM3CSV Clear session variable 664 ANY

IBM3CUS CU abstraction 7,448 ANY

IBM3DCD Describe condition 7,840 ANY

IBM3DCL Declare processing 13,912 ANY

IBM3DCU Describe CU 3,208 ANY

IBM3DED DED data abstraction 1,632 ANY

IBM3DEV Describe environment 1,248 ANY

IBM3DLL Describe list location 720 ANY

IBM3DPA Describe paths 1,272 ANY

IBM3DSF Stack frame abstraction 1,008 ANY

IBM3DSL Describe symbol location 1,440 ANY

IBM3DST Describe statements 1,032 ANY

IBM3DTP Converts DT tree to PL/I tree 2,440 ANY

Appendix F. Routines Eligible for the Shared Virtual Area 171

Table 42. PL/I VSE Routines Eligible for Inclusion in the SVA (continued)

PL/I Routine Name Description Decimal Size RMODE

IBM3EAB Array BIF evaluator 3,568 ANY

IBM3ECO Comparison evaluator 6,064 ANY

IBM3EEX Exponentiation evaluator 4,840 ANY

IBM3EFB Fixed binary arithmetic 2,544 ANY

IBM3EFD Fixed decimal arithmetic 2,560 ANY

IBM3EMC Equates and messages collector 744 ANY

IBM3ESL Extract source listing 2,000 ANY

IBM3EVB Variable BIF evaluator 6,656 ANY

IBM3EVC Expression value converter 6,312 ANY

IBM3EVX Evaluate expression 592 ANY

IBM3EXP Expression evaluation 15,808 ANY

IBM3FER Free expression internal representation 600 ANY

IBM3FLT Float arithmetic 2,088 ANY

IBM3FTA Format tree attributes 6,216 ANY

IBM3FTI Free storage of type result information 1,016 ANY

IBM3FTV Format tree value 3,592 ANY

IBM3GGE Graphic Xtrns 184 ANY

IBM3GLL Get list location 568 ANY

IBM3GNLA General item equivalents 272 ANY

IBM3GNLN General item equivalents (JPN) 272 ANY

IBM3GNLU General item equivalents 272 ANY

IBM3GQD Get qualifying data handle 944 ANY

IBM3GQN Get qualifying name 696 ANY

IBM3GRW Get reserved words 552 ANY

IBM3GVH Get variable name 560 ANY

IBM3ICU Identify CU 824 ANY

IBM3IDB Identify and describe blocks 1,448 ANY

IBM3IDC Interpret declaration 928 ANY

IBM3IDE Identify entry 920 ANY

IBM3IDO Provide label name(s) for a given offset 928 ANY

IBM3IDV Identify version 1,512 ANY

IBM3IEE Identify expression error 544 ANY

IBM3ILB Request offset of a label 1,184 ANY

IBM3IMC Identify module change 552 ANY

IBM3IMH Identify module handle 552 ANY

IBM3INP Command input services 3,216 ANY

IBM3IRC identify referenced CUs 688 ANY

IBM3ISL Identify source and listing 544 ANY

IBM3IVH Identify variable handle 1,168 ANY

IBM3IXE Identify expression error 1,896 ANY

172 LE/VSE: Customization Guide

Table 42. PL/I VSE Routines Eligible for Inclusion in the SVA (continued)

PL/I Routine Name Description Decimal Size RMODE

IBM3LEXA LEXEME equivalents 3,352 ANY

IBM3LEXN LEXEME equivalents (JPN) 3,344 ANY

IBM3LEXU LEXEME equivalents 3,352 ANY

IBM3LNK Linked list abstraction 1,120 ANY

IBM3MBA Math BIF Xtrns for ATAN routines 360 ANY

IBM3MBE Math BIF Xtrns for extended float routines 1,488 ANY

IBM3MBF Math BIF evaluator abstraction 3,856 ANY

IBM3MBL Math BIF Xtrns for long float routines 1,488 ANY

IBM3MBP Math power Xtrns 312 ANY

IBM3MBS Math BIF Xtrns for short float routines 1,488 ANY

IBM3MBX Fixed mathematical Xtrns 264 ANY

IBM3NRM Normalize input records 6,648 ANY

IBM3OPE Operation evaluator 5,800 ANY

IBM3PEX Perform an assignment 568 ANY

IBM3PRD Parser director 37,800 ANY

IBM3QAE Query array element information 2,256 ANY

IBM3QAI Query array information 728 ANY

IBM3QNS List names execution 3,296 ANY

IBM3QRT Query result type 1,960 ANY

IBM3QSE Query structure element information 1,240 ANY

IBM3QSI Query structure information 1,000 ANY

IBM3REP Reset expression internal representation 536 ANY

IBM3RIR Reset expression internal representation 544 ANY

IBM3RSV Register session variable 952 ANY

IBM3SBE SUBSTR Xtrns 216 ANY

IBM3STR string abstraction 736 ANY

IBM3STT Statement number table routine 4,920 ANY

IBM3TEX Test expression 1,112 ANY

IBM3UTV Update tree value 544 ANY

IBM3VAR Access program variables 14,614 ANY

IBM3VAT Display attributes 1,120 ANY

IBM3VEX Validate an expression tree 1,928 ANY

IBM3VGT Validate and prepare for GOTO 840 ANY

IBM3VIA Variable information 4,784 ANY

IBM3VOCA PLITEST keyword equivalents 8,304 ANY

IBM3VOCN PLITEST keyword equivalents (JPN) 8,272 ANY

IBM3VOCU PLITEST keyword equivalents 8,304 ANY

IBM9LMSA NLS mixed-case message source 21,968 ANY

IBM9LMSN NLS Japanese message source 24,176 ANY

IBM9LMSU NLS uppercase message source 20,112 ANY

Appendix F. Routines Eligible for the Shared Virtual Area 173

Table 42. PL/I VSE Routines Eligible for Inclusion in the SVA (continued)

PL/I Routine Name Description Decimal Size RMODE

IBM9LM2A NLS mixed-case message 11,456 ANY

IBM9LM2N NLS Japanese message 12,008 ANY

IBM9LM2U NLS uppercase English message 10,448 ANY

174 LE/VSE: Customization Guide

LE/VSE C Component Routines

The base and C component modules recommended for inclusion in the SVA are:

v CEEBINIT

v CEECCICS

v CEECOPP

v CEEEV003

v CEEPIPI

v CEEPLPKA

v CEEPLPKD

v CEEQMATH

v CEEYDTS

v EDC$LCNM

v EDC$S370

v EDCMSGT

v EDCUCSNM

v EDCZ24

 Table 43. C Routines Eligible for Inclusion in the SVA

C Routine Name Description Decimal Size RMODE

CEEEV0031 Main C event handler; base library 908,728 ANY

EDC$...4 Locales –5 ANY

EDC@...4 Euro locales –5 ANY

EDC3...4 Pre-euro locales –5 ANY

EDC$LCNM1 Locale name table 1,610 ANY

EDC$S370 Default locale 2,856 ANY

EDCGMENU3 genxlt utility messages - mixed-case English 3,840 ANY

EDCGMJPN3 genxlt utility messages - Japanese 3,912 ANY

EDCGMUEN3 genxlt utility messages - uppercase English 3,840 ANY

EDCIMENU3 iconv utility messages - mixed-case English 4,040 ANY

EDCIMJPN3 iconv utility messages - Japanese 4,152 ANY

EDCIMUEN3 iconv utility messages - uppercase English 4,040 ANY

EDCLMENU3 localedef utility messages - mixed-case English 5,992 ANY

EDCLMJPN3 localedef utility messages - Japanese 6,048 ANY

EDCLMUEN3 localedef utility messages - uppercase English 5,992 ANY

EDCMSGT C/370 message table 192 ANY

EDCNINSP Interface to Debug Tool 185,088 ANY

EDCPRLK2 Prelink utility 380,184 ANY

EDCPVLNK Turn off COMREG link bit. 160 24

EDCU...4 Code page converters –5 ANY

EDCUCSNM1 iconv codeset converter name table 3,530 ANY

EDCZEMSG Mixed-case U.S. English messages 24,920 ANY

EDCZJMSG Japanese messages 27,912 ANY

EDCZUMSG Uppercase English messages 24,920 ANY

Appendix F. Routines Eligible for the Shared Virtual Area 175

Table 43. C Routines Eligible for Inclusion in the SVA (continued)

C Routine Name Description Decimal Size RMODE

EDCZ241 I/O extensions 726,504 ANY

EDDDMENU3 DSECT utility messages - mixed-case English 2,504 ANY

EDDDMJPN3 DSECT utility messages - Japanese 2,760 ANY

EDDDMUEN3 DSECT utility messages - uppercase English 2,504 ANY

Notes to C Routines Eligible for the SVA:

1. Highly recommended for inclusion in the SVA, especially when using Debug Tool/VSE.

2. Highly recommended for inclusion in the SVA if the prelink utility is heavily used.

3. Highly recommended for inclusion in the SVA if the national language resource utilities are heavily used.

4. The default code page converters or locale modules, or customized code page converters or locale modules (the

ones applicable for the user’s country), should be included in the SVA.

5. Sizes might vary significantly, so check the specific locale or converter you plan to use.

176 LE/VSE: Customization Guide

Appendix G. LE/VSE National Language Support Country

Codes

The following table contains valid country / region identifiers along with their

respective countries:

 Table 44. Country / Region Codes

Code Country / Region Code Country / Region

AD Andorra AE United Arab Emirates

AF Afghanistan AG Antigua and Barbuda

AL Albania AN Netherlands Antilles

AO Angola AR Argentina

AT Austria AU Australia

BA Bosnia/ Herzegovina BB Barbados

BD Bangladesh BE Belgium

BF Burkina Faso (Upper Volta) BG Bulgaria

BH Bahrain BI Burundi

BJ Benin BM Bermuda

BN Brunei Darussalam BO Bolivia

BR Brazil BS Bahamas

BU Burma BW Botswana

CA Canada CF Central African Republic

CG Congo CH Switzerland

CI Ivory Coast CL Chile

CM Cameroon CN People’s Republic of China

CO Colombia CR Costa Rica

CU Cuba CY Cyprus

CZ Czech Republic DE Germany

DK Denmark DO Dominican Republic

DZ Algeria EC Ecuador

EE Estonia EG Egypt

ES Spain ET Ethiopia

FI Finland FR France

GA Gabon GB United Kingdom

GH Ghana GM Gambia

GN Guinea GR Greece

GT Guatemala GW Guinea-Bissau

GY Guyana HK Hong Kong

HN Honduras HR Croatia

HT Haiti HU Hungary

ID Indonesia IE Ireland

IL Israel IN India

IQ Iraq IR Iran

IS Iceland IT Italy

JM Jamaica JO Jordan

JP Japan KE Kenya

KR Korea, Republic of KW Kuwait

KY Cayman Islands LB Lebanon

LC Saint Lucia LI Liechtenstein

LT Lithuania LR Liberia

LK Sri Lanka LS Lesotho

LU Luxembourg LV Latvia

© Copyright IBM Corp. 1991, 2005 177

Table 44. Country / Region Codes (continued)

Code Country / Region Code Country / Region

LY Libya MA Morocco

MC Monaco MG Madagascar

MK Macedonia ML Mali

MO Macau MR Mauritania

MT Malta MU Mauritius

MW Malawi MX Mexico

MY Malaysia MZ Mozambique

NA Namibia NC New Caledonia

NG Nigeria NE Niger

NI Nicaragua NL Netherlands

NO Norway NZ New Zealand

OM Oman PA Panama

PE Peru PG Papua New Guinea

PH Philippines PK Pakistan

PL Poland PR Puerto Rico

PT Portugal PY Paraguay

QA Qatar RO Romania

RU Russia SA Saudi Arabia

SC Seychelles SD Sudan

SE Sweden SG Singapore

SI Slovenia SK Slovakia

SL Sierra Leone SN Senegal

SO Somalia SP Serbia and Montenegro

SR Surinam SV El Salvador

SY Syria SZ Swaziland

TD Chad TG Togo

TH Thailand TN Tunisia

TR Turkey TT Trinidad and Tobago

TW Taiwan TZ Tanzania

UG Uganda US United States

UY Uruguay VE Venezuela

VU Vanuatu WS Western Samoa

YE Yemen ZA South Africa

ZM Zambia ZR Zaire

ZW Zimbabwe

Notes on the Country Codes:

In other versions of Language Environment, country code CS was previously used for

Czechoslovakia. Instead of CS you should use either the Czech Republic country code CZ,

or the Slovakia country code SK.

In other versions of Language Environment, country code DE was previously used for the

Federal Republic of Germany.

In other versions of Language Environment, country code SU was previously used for the

Union of Soviet Socialist Republics. Instead of SU you should use the following country

codes for the appropriate country: Estonia, EE; Latvia, LV; Lithuania, LT; Russia, RU; etc.

Country code YU was previously used for Yugoslavia. Instead of YU, you should use the

following country codes for the appropriate country: Slovenia, SI; Croatia, HR; Macedonia,

MK; Bosnia/Herzegovina, BA; Serbia and Montenegro, SP.

178 LE/VSE: Customization Guide

Appendix H. Program and Service Level Information

This appendix provides a list of the APARs included in LE/VSE 1.4.4.

Notes:

1. All APARs previous to those listed below are also included in the LE/VSE 1.4.4

GA code or ISD Level code.

2. Since the APARs listed below are integrated into LE/VSE 1.4.4, they are not

visible in the MSHP History File.

Service Updates to the LE/VSE Base

These are the APARs that have been included in the LE/VSE 1.4.4 Base

component:

 Table 45. APARs against the LE/VSE Base Component

PQ45490*

PQ61177*

PQ63299*

PQ72266*

PQ74398

PQ74720*

PQ77485

PQ78940

PQ82134

PQ82462

PQ84219

PQ86577

PQ87058

PQ89856*

PQ96861

Note: * indicates the APAR has been routed from Language Environment for OS/390

and VM or Language Environment for z/OS.

Service Updates to the C Component of LE/VSE

These are the APARs that have been included in the LE/VSE 1.4.4 C component:

 Table 46. APARs against the C Component of LE/VSE

PQ78133

PQ78949

PQ84983 PQ88853

Service Updates to the COBOL Component of LE/VSE

These are the APARs that have been included in the LE/VSE 1.4.4 COBOL

component:

 Table 47. APARs against the COBOL Component of LE/VSE

PN90452*

PQ74901

PQ77619 PQ93395*

Note: * indicates the APAR has been routed from Language Environment for OS/390

and VM or Language Environment for z/OS.

© Copyright IBM Corp. 1991, 2005 179

Service Updates to the PL/I Component of LE/VSE

This APAR has been included in the LE/VSE 1.4.4 PL/1 component:

 Table 48. APAR against the PL/I Component of LE/VSE

PQ75732 PQ76258 PQ94317

180 LE/VSE: Customization Guide

Index

A
abnormal termination exit

CEEEXTAN CSECT 38

CEEXAHD macro 38

CEEXART macro 38

CEEXAST macro 39

creating 37

generating for LE/VSE 39

CICS 42

non-CICS 40

planning to customize 6

syntax 155

using 155

abnormal termination exit CSECT,

creating 37

above-the-line storage
placing COBPACKs in 48

ABPERC run-time option 70

ABTERMENC run-time option 72

AIXBLD run-time option 74

ALL31 run-time option 75

ANYHEAP run-time option 76

APAR (Authorized Program Analysis

Report) 58

fixes from previous releases

included 179

APARs included in LE/VSE 1.4.3 179

applying service updates
checking prerequisite APARs or

PTFs 58

overview 58

AR commands, activating 11

assembler language
user exit 143

application-specific 34

changing 32

CICS installation-wide 33

non-CICS installation-wide 32

planning to customize 6

attention routine commands,

activating 11

B
BELOWHEAP run-time option 78

C
C

customizing locale time

information 163

mapping LE/VSE options to C/370

options 66, 67

C/370
mapping LE/VSE options to C/370

options 66, 67

CBLOPTS run-time option 79

CBLPSHPOP run-time option 80

CEEBBATX.A 37

CEEBDATX abnormal termination

exit 44

CEEBINIT initialization phase 57

CEEBXITA assembler user exit 143

CEEBXITA, behavior during enclave

initialization 145

CEEBXITA, behavior during enclave

termination 145

CEEBXITA, behavior during process

termination 145

CEECATX1.A 37

CEECCICS initialization phase 57

CEECDATX abnormal termination

exit 42

CEECOPT customization member 21

CEECOPT run-time options (CICS)
sample generation 21

CEEDOPT run-time options (batch)
sample generation 19

CEEEXTAN abnormal termination exit

CSECT, creating 38

CEELOPT customization macro 21

CEELOPT macro 109

CEEUOPT object module 22

CEEWCCHA.A, sample job 35

CEEWCCSD job 47

CEEWUCHA.A sample code 35

assembling & link-editing using

CEEWCCHA.Z 35

assembling & link-editing using

CEEWWCHA.Z 35

CEEWWCHA.Z sample job 35

CEEXAHD macro 38

CEEXART macro 38

CEEXAST macro 39

CEEXOPT macro 17

requirements for coding 23

CEEYCD0 LIOCS phase
sample invocation 27

CEEYDU0 LIOCS phase
sample invocation 28

CEEYPR0 LIOCS phase
sample invocation 28

CHECK run-time option 81

CICS
tailoring COBPACKs 48

CICS coexistence, setting up for 55

CICS CSD settings 55

CICS LE/VSE language components,

de-activating 47

CICS-wide options, activating

changes 125

CICS-wide options, display/modify 121

CICS-wide run-time options, printing to

console (ROPC) 127

CLER CICS transaction 121

COBOL
compatibility of run-time options 69

customizing reusable run-time

environment 50

COBOL (continued)
mapping LE/VSE options to VS

COBOL II options 67, 68, 69

performance considerations 157

using with LE/VSE 157

COBPACK usage 48

COBPACKs
adding and deleting routines 49

IGZCPAC general COBPACK 158

IGZCPCC CICS ESM COBPACK 162

IGZCPCO environment-specific

COBPACK 160

placing above the 16MB line 48

tailoring 48, 158

Country Codes, NLS Support 177

COUNTRY run-time option 82

CRDERR parameter
specifying in CEEYCD0 130

CTLCHR parameter
specifying in CEEYCD0 131

specifying in CEEYPR0 138

customization
abnormal termination exit 37

assembler language user exit 32

C locale time 163

COBOL 157

COBOL reusable run-time

environment 50

COBPACKs 48, 158

high-level language user exit 35

jobs (IBM-supplied) 12

LIOCS routines 26

overview 16

placing LE/VSE in SVA 44

planning to 1

run-time options 17

sample jobs 16

customization & verification jobs 12

D
Daylight Saving Time (DST) C locale time

option 163

DCT (destination control table) 53

de-activating language components used

by CICS 47

DEBUG run-time option 83

DELLECOB job 47

DELLEPLI job 47

DEPTHCONDLMT run-time option 84

DEVICE parameter
specifying in CEEYCD0 132

specifying in CEEYPR0 139

DOS PL/I
mapping LE/VSE options to DOS

PL/I options 69

DSTEND (C locale time option) 164

DSTENM (C locale time option) 164

DSTENW (C locale time option) 164

DSTNAME (C locale time option) 164

DSTSTD (C locale time option) 164

© Copyright IBM Corp. 1991, 2005 181

DSTSTM (C locale time option) 164

DSTSTW (C locale time option) 164

DUMP sub-option of

TERMTHDACT 108

E
ENDTM (C locale time option) 164

ENVAR run-time option 85

environment-specific COBOL modules

(ESM) 48

ERRCOUNT run-time option 86

exit
abnormal termination syntax

syntax 155

assembler user
customizing 32, 143

planning to customize 6

F
FSU (Fast Service Upgrade), and CICS

CSD settings 55

H
HEAP run-time option 87

HEAPCHK run-time option 89

high-level language user exit 35, 143

homepage, VSE xix

I
IGZCPAC, general routine

COBPACK 158

IGZCPCC, CICS ESM COBPACK 162

IGZCPCO, environment-specific

COBPACK 160

IGZERRE INIT 50

IGZERREO 50

Internet address, VSE homepage xix

IOAREA2 parameter
specifying in CEEYCD0 133

specifying in CEEYPR0 139

J
JCL

for checking prerequisite APARs or

PTFs 58

jobs, customization & verification 12

L
LC_TOD, C locale time information 163

LE/CICS-Wide Options, activating

changed options 125

LE/CICS-Wide Options,

display/modify 121

LE/VSE support
LE/CICS-Wide Option, installing

CLER 122

LE/CICS-Wide Option, using

NEWC 125

LIBSTACK run-time option 90

LIOCS logic routines
CEEXCDMD macro

syntax 129

use in IBM-supplied phase

CEEYCD0 27

CEEXDUMD macro
syntax 135

use in IBM-supplied phase

CEEYDU0 28

CEEXPRMD macro
syntax 137

use in IBM-supplied phase

CEEYPR0 28

CEEYCD0, phase containing card

device routines 4, 129

CEEYDU0, phase containing diskette

device routines 4, 129, 135

CEEYPR0, phase containing printer

device routines 4, 129, 137

customizing IBM-supplied phases 26,

129

planning to customize IBM-supplied

phases 4

locale time information, C 163

LSTQ sub-option of TERMTHDACT 109

M
mapping

run-time options 66

MSG sub-option of TERMTHDACT 108

MSGFILE run-time option 92

MSGFL sub-option of

TERMTHDACT 109

MSGQ run-time option 93

N
NATLANG run-time option 94

NEWC CICS transaction 125

NONOVR attribute in CEEDOPT and

CEECOPT 17

NONOVR sub-option of

TERMTHDACT 110

NOTEST run-time option 95

CEETEST--invoke debug tool,

NOTEST run-time option and 112

NOUSRHDLR run-time option 95

O
OLPD records 37

OVR attribute in CEEDOPT and

CEECOPT 17

OVR sub-option of TERMTHDACT 110

P
performance considerations

for COBOL 157

PL/I
mapping LE/VSE options to DOS

PL/I options 69

planning
for customization 1

Q
QUIET sub-option of

TERMTHDACT 108

R
RDONLY parameter

specifying in CEEYCD0 133

specifying in CEEYDU0 136

specifying in CEEYPR0 140

RECFORM parameter
specifying in CEEYCD0 134

specifying in CEEYPR0 140

RETZERO run-time option 95

reusable run-time environment,

COBOL 50

RMODE, in COBPACKs 158

ROPC transaction 127

RPTOPTS run-time option 96

RPTSTG run-time option 98

RTEREUS run-time option 101

run-time options
ABPERC–exempt a condition from

normal condition handling 70

ABTERMENC--set enclave termination

behaviour 72

activating changed CICS-wide

options 125

AIXBLD--invoke AMS for COBOL 74

ALL31--indicate whether application

runs in AMODE(31) 75

ANYHEAP--control unrestricted

library heap storage 76

BELOWHEAP--control library heap

storage below 16MB 78

CBLOPTS--specify format of COBOL

parameters 79

CBLPSHPOP--control CICS

commands 80

changing batch defaults 18

changing CICS defaults 20

CHECK--detect checking errors 81

COUNTRY--specify default date/time

formats 82

DEBUG--activate COBOL batch

debugging 83

DEPTHCONDLMT--limit extent of

nested conditions 84

display/modify CICS-wide

options 121

ENVAR--set initial values for

environment variables 85

ERRCOUNT--specify number of errors

allowed 86

HEAP--control allocation of heaps 87

HEAPCHK–check if heap storage

damaged 89

installing CLER CICS-wide

option 122

LIBSTACK--control library stack

storage 90

182 LE/VSE: Customization Guide

run-time options (continued)
mapping LE/VSE options to C/370,

VS COBOL II, and DOS PL/I 66

MSGFILE--specify filename of

diagnostic file 92

MSGQ--specify number of ISI blocks

allocated 93

NATLANG--specify national

language 94

NOTEST 95

planning to customize 2

printing CICS-wide options to console

(ROPC) 127

Quick Reference Tables 66

RETZERO–set return code to zero 95

RPTOPTS--generate a report of

run-time options used 96

RPTSTG--generate a report of storage

used 98

RTEREUS--initialize a reusable

COBOL environment 101

STACK--allocate stack storage 102

STORAGE--control storage 104

syntax 61

TERMTHDACT–set info. level for

severity 2 or more 107

TEST--specify how debug tool takes

control 111

TRACE--establish initial setting for

trace table 113

TRAP–specify level of condition

handling 114

UPSI--set UPSI switches 117

using NEWC CICS-wide option 125

USRHDLR–register user condition

handler at stack frame 0 118

XUFLOW--specify program interrupt

due to exponent underflow 119

run-time options, CICS-wide,

activating 125

run-time options, CICS-wide,

display/modify 121

run-time options, CICS-wide, printing

(ROPC) 127

S
SHIFT (C locale time option) 164

SKLE370 job 47

STACK run-time option 102

STARTTM (C locale time option) 164

STLIST parameter
specifying in CEEYPR0 141

storage
loading COBPACKs 10

shared
for COBPACKs 10

shared virtual area 8, 44, 165

STORAGE run-time option 104

SVA (shared virtual area)
eligible C routines 175, 176

eligible COBOL routines 167, 168,

169, 170, 171, 172, 173, 174

eligible LE/VSE base routines 165

installing routines in 8, 44, 165

storage required 8

syntax diagrams
of run-time options 62

T
tailoring COBPACKs 48

TERMTHDACT 110

TERMTHDACT run-time option 107

TEST run-time option 111

INSPREF preference file 112

TNAME (C locale time option) 164

TRACE run-time option 113

TRAP run-time option 114

TYPEFLE parameter
specifying in CEEYCD0 134

specifying in CEEYDU0 136

TZDIFF (C locale time option) 163

U
UADUMP sub-option of

TERMTHDACT 108

UPSI run-time option 117

user exit
assembler 6, 32, 143

high-level language 35, 143

USRHDLR run-time option 118

V
verification jobs (IBM-supplied) 12

VS COBOL II
compatibility with LE/VSE

options 69

customizing LIOCS phases 5

mapping LE/VSE options to VS

COBOL II options 67, 68, 69

W
WORKA parameter

specifying in CEEYCD0 135

specifying in CEEYPR0 141

worksheet
changing run-time option defaults 2

X
XUFLOW run-time option 119

Index 183

184 LE/VSE: Customization Guide

Readers’ Comments — We’d Like to Hear from You

IBM Language Environment for VSE/ESA

Customization Guide

Version 1 Release 4 Modification Level 4

 Publication No. SC33-6682-06

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-6682-06

SC33-6682-06

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File Number: S370/S390-34

Program Number: 5686-CF7

Printed in USA

SC33-6682-06

Sp
in

e
in

fo
rm

at
io

n:

 �
�

�

LE
/V

SE

Cu
st

om
iz

at
io

n
G

ui
de

Ve
rs

io
n

1
R

el
ea

se

4

M
od

ifi
ca

tio
n

L
ev

el

4

SC
33

-6
68

2-
06

	Contents
	Figures
	Tables
	Notices
	Trademarks and Service Marks

	About This Book
	What Is LE/VSE?
	LE/VSE-Conforming Languages
	LE/VSE Compatibility with Previous Versions of COBOL

	How to Read the Syntax Diagrams

	Where to Find More Information
	Softcopy Publications

	Summary Of Changes
	Changes Introduced with Seventh Edition (March 2005)
	Changes Introduced with Sixth Edition (September 2003)
	Changes Introduced with Fifth Edition (March 2003)

	Chapter 1. Planning to Customize LE/VSE
	How the Pre-Installed LE/VSE Is Structured
	Deciding Whether and What to Customize
	Planning to Customize LE/VSE Run-Time Options
	Why Do It
	Choices to Make Now
	An Example of Customizing LE/VSE Run-Time Options

	Planning to Customize Run-Time LIOCS Phases
	Why Do It
	Choices to Make Now
	An Example of Customizing Run-Time LIOCS Phases

	Planning to Customize User Exits
	Why Do It
	Choices to Make Now
	An Example of Customizing User Exits

	Planning to Install in the Shared Virtual Area
	Why Do It
	Choices to Make Now
	An Example of Installing in the Shared Virtual Area

	Planning to Tailor the COBOL COBPACKs
	Why Do It
	Choices to Make Now
	Some Examples of Tailoring the COBOL COBPACKs

	Planning to Customize C Locale Time Information
	Why Do It
	Choices to Make Now

	Planning to Activate LE/VSE Attention Routine Commands
	Why Do It
	Tasks Required For Activating the Attention Routine Support
	Review the Current SVA Load List
	Tailor and Submit the Customization Jobs

	Restrictions When Using Attention Routine Commands

	IBM-Provided Customization and Verification Jobs

	Chapter 2. Customizing LE/VSE
	Overview of Customization
	Changing Run-Time Options Defaults
	Setting Installation-Wide Default Options with the CEEXOPT Macro
	Changing the Installation-Wide Run-Time Options Default (Batch)
	Changing the Installation-Wide Run-Time Options Default (CICS)
	Creating Application-Specific Options Using the CEEXOPT Macro
	Using the CEEUOPT Run-Time Option Module

	Requirements for Coding the CEEXOPT Macro

	Changing Run-Time LIOCS Phases Defaults
	Changing the Card-Device Run-Time LIOCS Phase
	Changing the Diskette-Device Run-Time LIOCS Phase
	Changing the Printer-Device Run-Time LIOCS Phase

	Changing the Assembler Language User Exit
	Changing the Installation-Wide Assembler Language User Exit (Batch)
	Changing the Installation-Wide Assembler Language User Exit (CICS)
	Creating an Application-Specific Assembler Language User Exit

	Creating a High-Level Language User Exit
	Creating a User-Written Handler for Compatibility with VS COBOL II and DOS PL/I
	Customizing LE/VSE Abnormal Termination Exits
	Shipped Defaults
	Sample Source Programs
	Creating an LE/VSE Abnormal Termination Exit
	Creating a CEEEXTAN Abnormal Termination Exit CSECT
	CEEXAHD Macro
	CEEXART Macro
	CEEXAST Macro
	Installation Jobs to Generate and Modify CEEEXTAN CSECT

	Identifying an Abnormal Termination Exit (Batch)
	Identifying an Abnormal Termination Exit (CICS)

	Placing LE/VSE Routines in the Shared Virtual Area (SVA)
	De-Activating LE/VSE Language Components Used By CICS
	Tailoring the COBOL COBPACKs
	Adding and Deleting Routines in a COBPACK
	Where to Place the Tailored COBPACKs

	Customizing the COBOL Reusable Run-Time Environment
	Customizing the COBOL Reusable Environment
	Customizing the Behaviour of the COBOL Reusable Environment

	Changing the C Locale Time Information
	Including the CSD for LE/VSE Support Under CICS
	Tailoring the CICS Destination Control Table (Optional)
	Members That You Use for Your DCT Implementation

	Ensuring CICS Coexistence is Set Up Correctly

	Chapter 3. Maintaining LE/VSE
	Separating User-Customized Modules From IBM-Shipped Code
	Applying Service Updates
	What You Receive
	Step 1: Check Prerequisite APARs or PTFs
	Step 2: Run the Installation Verification Program (IVP)

	To Report a Problem with LE/VSE

	Appendix A. LE/VSE Run-Time Options
	Quick Reference Table of LE/VSE Run-Time Options
	Language Run-Time Option Mapping
	COBOL Compatibility

	LE/VSE Run-Time Options
	ABPERC
	Usage Notes
	For More Information

	ABTERMENC
	Usage Notes
	For More Information

	AIXBLD (COBOL Only)
	Usage Notes
	Performance Considerations
	For More Information

	ALL31
	Usage Notes
	Performance Consideration
	For More Information

	ANYHEAP
	Usage Notes
	Performance Considerations
	For More Information

	BELOWHEAP
	Usage Notes
	Performance Considerations
	For More Information

	CBLOPTS (COBOL Only)
	For More Information

	CBLPSHPOP (COBOL Only)
	Performance Consideration
	For More Information

	CHECK (COBOL Only)
	Usage Note
	Performance Consideration

	COUNTRY
	Usage Notes
	For More Information

	DEBUG (COBOL Only)
	Performance Consideration
	For More Information

	DEPTHCONDLMT
	Usage Notes
	For More Information

	ENVAR (C Only)
	Usage Notes
	For More Information

	ERRCOUNT
	Usage Notes
	For More Information

	HEAP
	Usage Notes
	Performance Considerations
	For More Information

	HEAPCHK
	Usage Notes
	Performance Considerations
	For More Information

	LIBSTACK
	Usage Notes
	Performance Considerations
	For More Information

	MSGFILE
	Usage Notes
	For More Information

	MSGQ
	For More Information

	NATLANG
	Usage Notes
	For More Information

	NOTEST
	NOUSRHDLR
	RETZERO (COBOL Only)
	Usage Notes

	RPTOPTS
	Usage Notes
	Performance Considerations
	For More Information

	RPTSTG
	Usage Notes
	Performance Considerations
	For More Information

	RTEREUS (COBOL Only)
	Usage Notes
	Performance Considerations
	For More Information

	STACK
	Usage Notes
	Performance Considerations
	For More Information

	STORAGE
	Usage Notes
	Performance Considerations

	TERMTHDACT
	Usage Notes
	For More Information

	TEST
	Usage Notes
	Performance Consideration
	For More Information

	TRACE
	For More Information

	TRAP
	Usage Notes
	CICS Considerations
	Performance Considerations
	Fore More Information

	UPSI (COBOL Only)
	Usage Notes
	For More Information

	USRHDLR
	Usage Notes
	For More Information

	XUFLOW
	Usage Notes

	CLER: Interactively Process CICS-Wide Run-Time Options
	Pre-Defined Settings For Use With CLER
	Using CLER to Change Options
	Considerations When Changing the LSTQ Options

	NEWC: Activate Changed CICS-Wide Run-Time Options
	ROPC: Print CICS-Wide Run-Time Options to Console

	Appendix B. LE/VSE Run-Time LIOCS Phases
	CEEYCD0—Card Device Run-Time LIOCS Phase
	CRDERR
	Usage Notes

	CTLCHR
	Usage Notes

	DEVICE
	IOAREA2
	Usage Notes

	RDONLY
	Usage Notes

	RECFORM
	TYPEFLE
	WORKA

	CEEYDU0—Diskette Device Run-Time LIOCS Phase
	RDONLY
	Usage Notes

	TYPEFLE

	CEEYPR0—Printer Device Run-Time LIOCS Phase
	CTLCHR
	DEVICE
	IOAREA2
	RDONLY
	Usage Notes

	RECFORM
	STLIST
	Usage Notes

	WORKA

	Appendix C. Customizing LE/VSE User Exits
	When User Exits Are Invoked
	CEEBXITA Behavior During Enclave Initialization
	CEEBXITA Behavior During Enclave Termination
	CEEBXITA Behavior During Process Termination
	Specifying Abnormal Conditions to Be Exempted from Condition Handling
	Actions Taken for Errors That Occur within the Assembler User Exit

	CEEBXITA Assembler User Exit Interface
	Parameter Values in the Assembler User Exit

	Abnormal Termination Exit Syntax

	Appendix D. Using COBOL with LE/VSE
	Using COBOL Side-File Exits
	Using the Search Function of the COBOL Side-File
	Contents of the General COBPACK (IGZCPAC)
	Contents of the Environment-Specific COBPACK (IGZCPCO)
	Contents of the CICS ESM COBPACK (IGZCPCC)

	Appendix E. Customizing C Locale Time Information
	Customizing Locale
	Time Information Options Reference

	Appendix F. Routines Eligible for the Shared Virtual Area
	LE/VSE Base Routines
	LE/VSE COBOL Component Routines
	LE/VSE PL/I Component Routines
	LE/VSE C Component Routines

	Appendix G. LE/VSE National Language Support Country Codes
	Appendix H. Program and Service Level Information
	Service Updates to the LE/VSE Base
	Service Updates to the C Component of LE/VSE
	Service Updates to the COBOL Component of LE/VSE
	Service Updates to the PL/I Component of LE/VSE

	Index
	Readers’ Comments — We'd Like to Hear from You

