
IBM Language Environment for VSE/ESA

C Run-Time Programming Guide

Version 1 Release 4 Modification Level 4

SC33-6688-05

���

IBM Language Environment for VSE/ESA

C Run-Time Programming Guide

Version 1 Release 4 Modification Level 4

SC33-6688-05

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

xiii.

Sixth Edition (March 2005)

This edition applies to Version 1 Release 4 Modification Level 4 of IBM Language Environment for VSE/ESA,

5686-CF7, and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the addresses given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address

your comments to:

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com

FAX (Germany): 07031-16-3456

FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures ix

Tables xi

Notices xiii

Programming Interface Information xiii

Standards xiii

Trademarks xiv

About This Book xv

What Is LE/VSE? xv

LE/VSE-Conforming Languages xvi

LE/VSE Compatibility with Previous Versions of

COBOL xvi

The C Language xvii

Softcopy Examples xviii

How to Read the Syntax Diagrams xviii

Where to Find More Information . . . xxi

Softcopy Publications xxiii

Summary of Changes xxv

Changes Introduced With Sixth Edition (March

2005) xxv

Changes Introduced With Fifth Edition (March

2003) xxv

Changes Introduced With Fourth Edition

(December 2001) xxv

Part 1. Input and Output 1

Chapter 1. Introduction to C Input and

Output 3

Types of C Input and Output 3

Chapter 2. Models of C I/O 5

The Record Model for C I/O 5

Record Formats 5

The Byte Stream Model for C I/O 13

Mapping the C Types of I/O to the Byte Stream

Model 13

Chapter 3. Opening Files 15

Categories of I/O 15

Specifying What Kind of File to Use 16

SAM Files 16

VSE/Librarian Members 16

VSAM Data Sets 16

Memory Files 16

CICS Data Queues 17

LE/VSE Message File 17

How to Specify RECFM, LRECL, and BLKSIZE 18

VSAM Catalog Information for SAM ESDS Files 19

fopen() Defaults 19

File Definition Statements 21

Chapter 4. Buffering of C Streams . . . 23

Chapter 5. ASA Text Files 25

Example of Writing to an ASA File 26

Chapter 6. LE/VSE C Run-Time Support

for the Double-Byte Character Set

(DBCS) 29

Opening Files 30

Reading Streams and Files 30

Writing Streams and Files 31

Writing Text Streams 31

Writing Binary Streams 33

Flushing Buffers 33

Flushing Text Streams 33

Flushing Binary Streams 34

ungetwc() Considerations 34

Setting Positions within Files 34

Repositioning within Text Streams 34

Repositioning within Binary Streams 35

ungetwc() Considerations 35

Closing Files 36

Chapter 7. Standard Streams and

Redirection 37

Default Open Modes 37

Using the Redirection Symbols 38

Assigning the Standard Streams 39

Using the freopen() Library Function 39

Redirecting Streams with the MSGFILE Option . . . 39

MSGFILE Considerations 39

Redirecting Streams 40

Under VSE Batch 40

Redirecting Streams under CICS 42

Passing Standard Streams across a system() Call . . 42

Passing Binary Streams 43

Passing Text Streams 43

Passing Record I/O Streams 44

Chapter 8. Performing SAM I/O

Operations 47

Opening Files 47

Using fopen() or freopen() 47

Tapes 49

Multivolume Files 49

Other Devices 49

fopen() and freopen() Parameters 50

Buffering 56

DTF (Define The File) Attributes 56

Reading from Files 56

Reading from Binary Files 57

© Copyright IBM Corp. 1995, 2005 iii

Reading from Text Files 57

Reading from Record I/O Files 58

Writing to Files 58

Writing to Binary Files 59

Writing to Text Files 59

Writing to Record I/O Files 62

Flushing Buffers 62

Updating Existing Records 63

Reading Updated Records 63

Writing New Records 65

ungetc() Considerations 65

Repositioning within Files 66

ungetc() Considerations 67

How Long fgetpos() and ftell() Values Last . 67

Using fseek() and ftell() in Binary Files . . . 67

Using fseek() and ftell() in Text Files (ASA

and Non-ASA) 68

Using fseek() and ftell() in Record Files . . . 69

Porting Old C Code that Uses fseek() or ftell() 69

Closing Files 70

Renaming and Removing Files 70

fldata() Behavior 70

Chapter 9. Performing VSE/Librarian

I/O Operations 73

Opening Files 73

Using fopen() or freopen() 73

fopen() and freopen() Parameters 74

Buffering 76

Reading from Files 76

Writing to Files 76

Flushing Buffers 76

Repositioning within Files 76

Closing Files 76

Renaming and Removing Files 76

fldata() Behavior 76

Chapter 10. Performing VSAM I/O

Operations 79

VSAM Types (Data Set Organization) 79

Access Method Services 80

Choosing VSAM Data Set Types 80

Summary of VSAM I/O Operations 84

Opening VSAM Data Sets 85

Using fopen() or freopen() 85

Buffering 90

Record I/O in VSAM 90

RRDS Record Structure 90

Reading Record I/O files 91

Writing to Record I/O Files 92

Updating Record I/O Files 92

Deleting Records 94

Repositioning within Record I/O Files 94

Flushing Buffers 96

Summary of VSAM Record I/O Operations . . 96

Text and Binary I/O in VSAM 98

Reading from Text and Binary I/O Files 98

Writing to and Updating Text and Binary I/O

Files 98

Deleting Records in Text and Binary I/O Files . . 98

Repositioning within Text and Binary I/O Files 98

Flushing Buffers 100

Summary of VSAM Text I/O Operations . . . 100

Summary of VSAM Binary I/O Operations . . 101

Closing VSAM Data Sets 102

VSAM Return Codes 102

VSAM Examples 103

KSDS Example 103

RRDS Example 113

fldata() Behavior 115

Chapter 11. Performing Memory File

I/O Operations 117

Opening Files 117

Using fopen() or freopen() 117

Buffering 121

Reading from Files 121

Writing to Files 121

Flushing Records 122

ungetc() Considerations 122

Repositioning within Files 122

Closing Files 123

Performance Tips 123

Removing Memory Files 123

fldata() Behavior 123

Example Program 124

EDCXGMF3 124

EDCXGMF4 125

Chapter 12. Performing CICS I/O

Operations 127

Chapter 13. Performing LE/VSE

Message File Operations 129

Opening Files 129

Reading from Files 129

Writing to Files 129

Flushing Buffers 130

Repositioning within Files 130

Closing Files 130

Chapter 14. Debugging I/O Programs 131

Using the __amrc Structure 131

Using the __amrc2 Structure 134

Using __last_op Codes 134

Using the SIGIOERR Signal 137

Part 2. Interlanguage Calls with

LE/VSE C Run-Time 141

Chapter 15. Combining C and

Assembler 143

Establishing the LE/VSE C Run-Time Environment 143

Specifying Linkage for C and Assembler 143

Parameter List for OS Linkage 144

Using Standard Macros 144

Assembler Prolog 144

Assembler Epilog 145

iv LE/VSE: C Run-Time Programming Guide

Accessing Automatic Memory 145

Example 146

Register Content at Entry to an ASM Routine

Using OS linkage 147

Register Content at Exit from an ASM Routine

to LE/VSE C Run-Time 149

Retaining the C Environment Using

Preinitialization 149

Part 3. Coding: Advanced Topics 151

Chapter 16. Reentrancy in LE/VSE C

Run-Time 153

Limitations of Reentrancy 154

Using the LE/VSE Prelinker for Reentrancy . . . 154

Controlling External Static 155

Controlling Writable Strings 156

Using Writable Static in Assembler Code . . . 156

Chapter 17. Using the Decimal Data

Type 159

Declaring Data Types 159

Declaring Fixed-Point Decimal Constants . . . 160

Declaring Decimal Variables 160

Defining Decimal Related Constants 161

Using Operators 161

Arithmetic Operators 163

Assignment Operators 166

Unary Operators 166

Cast Operator 167

Summary of Operators Used With Decimal

Types 167

Converting Decimal Data Types 167

Converting Decimal Types to Decimal Types 168

Converting Decimal Types to and from Integer

Types 170

Converting Decimal Types to and from Floating

Types 171

Calling Functions 172

Using Library Functions 172

Using Variable Arguments with Decimal Data

Types 172

Formatting Input and Output Operations 172

Using fprintf() 172

Using fscanf() 174

Validating Values 174

Fix Sign 174

Decimal Absolute 175

Programming Examples 176

Example One 176

Example Two 178

Decimal Exception Handling 179

Restrictions 179

Decimal Exceptions and Interlanguage Calls . . 180

Chapter 18. Handling Error Conditions

and Signals 181

Handling Signals Using signal() and raise() . . 181

Handling Signals using LE/VSE Callable Services 181

LE/VSE C Run-Time Signal Handling Features . . 182

Establishing a Signal 182

Enabling a Signal 182

Interrupting a Program 183

Raising a Signal 183

Identifying Hardware and Software Signals . . 183

SIGABND Considerations 184

SIGIOERR Considerations 185

Default Handling of Signals 185

MAP 0010: Summary of LE/VSE Error Handling 186

Example of C Signal Handling Under LE/VSE C

Run-Time 188

EDCXGEC1 188

Chapter 19. Optimizing Code 189

Using Optimization Facilities 189

Programming Recommendations 192

Specifying Inline Functions 192

Using Variables 193

Using Pointers 193

Passing Function Arguments 193

Coding Expressions 193

Coding Conversions 194

Using Arithmetic Constructions 194

Input/Output Considerations 195

Using Built-In Library Functions and Macros 195

Using Loops and Control Constructs 197

Declaring a Data Type 197

Using Library Extensions 198

Optimizing Dynamic Memory 198

Part 4. LE/VSE C Run-Time

Environments 199

Chapter 20. Using Run-Time User

Exits 201

Using Run-Time User Exits in LE/VSE 201

Understanding the Basics 201

User Exits Supported under LE/VSE 201

Order of Processing of User Exits 202

Using Installation-Wide or Application-Specific

User Exits 203

Using the Assembler User Exit 204

Using Sample Assembler User Exits 204

CEEBXITA Assembler User Exit Interface . . . 206

Parameter Values in the Assembler User Exit 211

High Level Language User Exit Interface . . . 214

Chapter 21. Using Environment

Variables 219

Working with Environment Variables 220

Naming Conventions 221

Environment Variables Specific to the LE/VSE C

Run-Time Library 221

_EDC_BYTE_SEEK 221

_EDC_COMPAT 222

_EDC_RRDS_HIDE_KEY 222

_EDC_STOR_INCREMENT 223

_EDC_STOR_INITIAL 223

Contents v

_EDC_ZERO_RECLEN 224

_CEE_ENVFILE 224

Example 224

Chapter 22. Using the System

Programming C Facilities 227

Using Functions in the System Programming C

Environment 228

System Programming C Facility Considerations

and Restrictions 229

Creating Freestanding Applications 229

Creating Modules without CEESTART 229

Including an Alternative Initialization Routine 230

Initializing a Freestanding Application 230

Building Freestanding Applications 230

Creating System Exit Routines 234

Building System Exit Routines 235

An Example of a System Exit 235

Creating and Using Persistent C Environments . . 238

Building Applications That Use Persistent C

Environments 238

An Example of Persistent C Environments . . . 238

Developing Services in the Application Service

Routine Environment 242

Using Application Service Routine Control Flow 243

Understanding the Stub Perspective 249

Establishing a Server Environment 253

Initiating a Server Request 254

Accepting a Request for Service 254

Returning Control from Service 254

Constructing User-Server Stub Routines . . . 255

Building User-Server Environments 255

Tailoring the System Programming C Environment 255

Generating Abends 255

Getting Storage 256

Getting Page-Aligned Storage 258

Freeing Storage 258

Loading a Module 259

Deleting a Module 260

Abend Reason Codes 260

Additional Library Routines 261

Summary of Application Types 261

Chapter 23. Library Functions for the

System Programming C Facilities . . 263

__xhotc() — Set Up a Persistent C Environment

(No Library) 263

Format 263

Description 263

Returned Value 263

Example 264

__xhott() — Terminate a Persistent C Environment 264

Format 264

Description 264

Example 264

__xhotu() — Run a Function in a Persistent C

Environment 264

Format 264

Description 264

Returned Value 265

Example 265

__xregs — Get Registers on Entry 265

Format 265

Description 265

Returned Value 265

__xsacc() — Accept Request for Service 265

Format 265

Description 265

Returned Value 266

__xsrvc() — Return Control from Service 266

Format 266

Description 266

__xusr() - __xusr2() — Get Address of User Word 266

Format 266

Description 266

Returned Value 266

__24malc() — Allocate Storage below 16MB Line 266

Format 266

Description 267

__4kmalc() — Allocate Page-Aligned Storage . . . 267

Format 267

Description 267

Part 5. Programming with Other

Products 269

Chapter 24. Using CICS 271

Developing C Programs for the CICS Environment 271

Optional Tasks Related to Using CICS with

LE/VSE 271

Designing and Coding for CICS 271

Using the CICS Command-Level Interface . . . 272

Using Input and Output 275

Using LE/VSE C Run-Time Library Support . . 276

Storage Management 278

Using Interlanguage Support 279

Exception Handling 279

MAP 0020: Error Handling in CICS 280

Example of Error Handling in CICS 281

ABEND Codes and Error Messages under

LE/VSE C Run-Time 283

Coding Hints and Tips 283

Translating and Compiling for Reentrancy 284

Translating 284

Translating Example 284

Compiling 289

Sample JCL to Translate and Compile 289

Prelinking and Linking All Object Decks 291

Defining and Running the CICS Program 291

Program Processing 291

Link Considerations 291

CSD Considerations 291

Chapter 25. Using CSP 293

Common Data Types 293

Passing Control 293

Running under CICS Control 294

Examples 294

vi LE/VSE: C Run-Time Programming Guide

Chapter 26. Using DL/I 301

Handling Errors 301

Other Considerations 302

Example 303

Chapter 27. Using QMF 307

Example 307

Chapter 28. Using DB2 311

Example 311

Part 6. Internationalization:

Locales and Character Sets 315

Chapter 29. Introduction to Locale 317

Internationalization in Programming Languages 317

Elements of Internationalization 317

LE/VSE C Run-Time Support for

Internationalization 318

Locales and Localization 318

Locale-Sensitive Interfaces 318

Chapter 30. Building a Locale 321

Using the charmap File 321

The CHARMAP Section 326

The CHARSETID Section 328

Locale Source Files 329

LC_CTYPE Category 332

LC_COLLATE Category 335

LC_MONETARY Category 341

LC_NUMERIC Category 344

LC_TIME Category 345

LC_MESSAGES Category 347

LC_TOD Category 348

LC_SYNTAX Category 350

Using the localedef Utility 352

Locale Naming Conventions 352

Chapter 31. Customizing a Locale . . 359

Using the Customized Locale 360

Referring Explicitly to a Customized Locale . . . 361

Referring Implicitly to a Customized Locale . . . 362

Customizing Your Installation 362

Chapter 32. Definition of S370 C, SAA

C, and POSIX C Locales 363

Differences Between SAA C and POSIX C Locales 369

Chapter 33. Code Set and Locale

Utilities 371

Code Set Conversion Utilities 371

The genxlt Utility 371

The uconvdef Utility 373

The iconv Utility 375

Code Conversion Functions 377

Code Set Converters Supplied 377

Universal Coded Character Set Converters . . 385

The localedef Utility 392

Defining Your Own Locales 394

Examples 394

Chapter 34. Coded Character Set

Considerations with Locale Functions . 399

Variant Character Detail 399

Alternate Code Points 401

Coding without Locale Support 401

Using a Hybrid Coded Character Set 401

Converting Existing Work 403

Converting Hybrid Code 404

Writing Source Code in Coded Character Set

IBM-1047 404

Exporting Source Code to Other Sites 404

Coded Character Set Independence in Developing

Applications 406

Coded Character Set of Source Code and Header

Files 407

The ??=pragma filetag Directive 407

Converting Coded Character Sets at Compile Time 408

Examples 408

Usage 409

Summary of Source and Compile Use 409

Using Predefined Macros 410

Using a Predefined Locale 412

Working With Listings and Output Files 412

Object Decks 413

Listings 413

Considerations With Other Products and Tools . . 415

Appendix A. POSIX Character Set . . 417

Appendix B. Mapping Variant

Characters for C/VSE 421

Displaying Hexadecimal Values 422

Example 422

Using ??=pragma filetag To Specify Code Page 424

Displaying When Using XEDIT on VM 424

Appendix C. LE/VSE C Run-Time

Code Point Mappings 429

Appendix D. Locales Supplied with

LE/VSE C Run-Time 431

Appendix E. Charmap Files Supplied

with LE/VSE C Run-Time 443

Appendix F. Examples of the Charmap

and Locale Definition Source Files . . 445

Charmap File 445

The Locale Definition Source File 452

Appendix G. Converting Code from

Coded Character Set IBM-1047 457

Appendix H. Using Built-In Functions 467

Contents vii

Appendix I. DSECT Conversion Utility 469

DSECT Utility Options 469

BITF0XL | NOBITF0XL 470

BLKSIZE 471

COMMENT | NOCOMMENT 471

DECIMAL | NODECIMAL 471

DEFSUB | NODEFSUB 472

EQUATE | NOEQUATE 472

HDRSKIP | NOHDRSKIP 475

INDENT | NOINDENT 475

LOCALE | NOLOCALE 476

LOWERCASE | NOLOWERCASE 476

LRECL 476

OPTFILE | NOOPTFILE 477

OUTPUT 477

PPCOND | NOPPCOND 478

SECT 478

SEQUENCE | NOSEQUENCE 479

UNIQUE | NOUNIQUE 479

UNNAMED | NOUNNAMED 480

RECFM 480

Generation of C Structures 480

Under VSE Batch 483

Glossary 485

Index 499

viii LE/VSE: C Run-Time Programming Guide

Figures

 1. Blocking Fixed-Length Records 6

 2. Variable-Length Records on VSE 10

 3. Example of Using fopen() with Memory Files 17

 4. ASA Example 26

 5. ungetwc() Example 34

 6. Redirecting stdout under VSE Batch 41

 7. Redirecting Standard Streams Using ASSGN

Statements 42

 8. Example of Reading Updated Records . . . 63

 9. Types and Advantages of VSAM Data Sets 81

10. VSAM Example 83

11. KSDS Example (Program) 104

12. KSDS Example (JCL) 110

13. RRDS Example 113

14. Memory File Example 1 124

15. Memory File Example 2 125

16. __amrc Structure 132

17. Example of Printing the __amrc Structure 133

18. __amrc2 Structure 134

19. Example of Using SIGIOERR 138

20. Example of Parameter Lists for OS Linkages 144

21. Calling C Library Functions from Assembler

Using OS Linkage 146

22. Calling C Library Functions from Assembler

Using OS Linkage 147

23. Calling C Library Functions from Assembler

Using OS Linkage 147

24. Controlling External Static 155

25. Making Strings Constant 156

26. Referencing Objects in the Writable Static

Area-Part 1 157

27. Referencing Objects in the Writable Static

Area-Part 2 158

28. Arithmetic Operators Example 163

29. Relational Operators Example 164

30. Fractional Part Cannot Be Represented 169

31. Integral Part Cannot Be Represented 169

32. Conversion from Integral Type 170

33. Conversion to Integer Type 170

34. Conversion from Floating Type 171

35. Conversion to Floating Type 171

36. Decimal Data Type Example 1 176

37. Decimal Data Type Example 2 178

38. Example Illustrating Signal Handling 188

39. Optimization Example 1 190

40. Optimization Example 2 190

41. Numeric Conversions Example 194

42. Location of User Exits 202

43. Interface for Assembler User Exits 207

44. CEEAUE_FLAGS Format 208

45. Exit_list and Hook_exit Control Blocks 216

46. Environment Variables Example-Part 1 225

47. Environment Variables Example-Part 2 226

48. Specifying Alternative Initialization at Link

Edit 230

49. Sample Freestanding Routine 231

50. Link Edit Control Statements Used to Build a

Freestanding Routine 231

51. Compile and Link 232

52. Sample Reentrant Freestanding Routine 232

53. Building and Running a Reentrant

Freestanding Routine 233

54. System Exit Example—C 235

55. System Exit Example—Assembler 236

56. System Exit Example—JCL 236

57. Example Function Used in a Persistent C

Environment 239

58. Using a Persistent C Environment 239

59. Example User Routine 244

60. Example Application Service Routine 245

61. Linking and Installing the Application Service

Routine 249

62. Example Server Initialization Stub 250

63. Example Server Message Stub 252

64. Example Generate Abend Routine 256

65. Example Get Storage Routine 257

66. Example Free Storage Routine 259

67. Command Level Interface Example 273

68. Format of Data Written to a CICS Data Queue 276

69. Example of Error Handling under CICS 281

70. Child Program Before Translation 284

71. Child Program After Translation 286

72. JCL to Translate, Compile, Prelink, and

Link-Edit 290

73. CSP CALLing LE/VSE C Run-Time under

CICS 295

74. CSP Transferring Control to C under CICS

Using the XFER Statement 296

75. CSP Transferring Control to C under CICS

Using the DXFR Statement 298

76. C Program Using DL/I 303

77. Header File for DL/I Example 305

78. QMF Interface Example 307

79. LE/VSE C Run-Time Program Using DB2 311

80. Referring Explicitly to a Customized Locale 361

81. Referring Implicitly to a Customized Locale 362

82. Determining Which Locale is in Effect 369

83. Sample 1 localedef JCL 395

84. Sample 2 localedef JCL 396

85. Hybrid Coded Character Set Example 402

86. Compile-Edit, Related to Locale Function 406

87. Example of __CODESET__ Macro 411

88. Values of Macros __FILETAG__,

__LOCALE__, and __CODESET__ 412

89. Example of Output When Locale Option

Used 414

90. Example of Displaying Hexadecimal Values 423

91. Coded Character Set for Latin-1/Open

Systems 429

92. Coded Character Set for APL 430

93. Converting Hybrid Code to a Specific

Character Set 457

© Copyright IBM Corp. 1995, 2005 ix

94. Running the DSECT Utility under VSE Batch 483

x LE/VSE: C Run-Time Programming Guide

Tables

 1. LE/VSE-Conforming Languages xvi

 2. LE/VSE Publications xxi

 3. z/VSE Publications xxi

 4. IBM C for VSE/ESA Publications xxi

 5. IBM COBOL for VSE/ESA Publications xxii

 6. IBM PL/I for VSE/ESA Publications xxii

 7. Debug Tool for VSE/ESA Publications xxii

 8. C Control to ASA Characters 8

 9. Kinds of I/O Supported by LE/VSE C

Run-Time 15

10. I/O Categories and Environments Supported 16

11. fopen() Defaults for LRECL and BLKSIZE 20

12. C Control to ASA Characters Translation Table 25

13. C Standard Streams 37

14. LE/VSE C Run-Time Redirection Symbols 38

15. Output Destinations under LE/VSE C

Run-Time 39

16. LE/VSE C Run-Time Interleaved Output 40

17. Parameters for the fopen() and freopen()

Functions for SAM I/O 50

18. fopen() and freopen() Parameters Supported

by File Type 52

19. Parameters for the fopen() and freopen()

Functions for VSE/Librarian I/O 74

20. Summary of VSAM Data Set Characteristics

and Allowable I/O Operations 84

21. Parameters for the fopen() and freopen()

Functions for VSAM Data Sets 88

22. Summary of VSAM Record I/O Operations 96

23. Summary of fseek() and ftell() Parameters

in Text and Binary 100

24. Summary of VSAM Text I/O Operations 100

25. Summary of VSAM Binary I/O Operations 101

26. Parameters for the fopen() and freopen()

Functions for Memory File I/O 119

27. __last_op Codes and Diagnosis Information 134

28. Fixed-Point Decimal Constants and Their

Attributes 160

29. Intermediate Results (Without Overflow in n

or p) 165

30. Intermediate Results (In the General Form) 165

31. Operators Used With Decimal Types 167

32. Hardware Exceptions - Default Run-Time

Messages and System Actions 183

33. Software Exceptions - Default Run-Time

Messages and System Actions 184

34. User Exits Supported under LE/VSE 202

35. Sample Assembler User Exits for LE/VSE 204

36. Parts Used for Freestanding Applications 234

37. Parts Used by Exit Routines 237

38. Parts Used by Persistent Environments 242

39. Parts used by/with Application Server

Routines 255

40. Abend Codes Specific to System

Programming Environments 260

41. Reason Codes Specific to System

Programming Environments 260

42. Summary of Types 261

43. Common Data Types Between C and CSP 293

44. PCB Generated under DL/I 302

45. Characters in Portable Character Set and

Corresponding Symbolic Names 322

46. Supported Language-Territory Names and LT

Codes 354

47. Supported Codeset Names and CC Codes 356

48. Coded Character Set Conversion Table 378

49. UCS-2 Converters 385

50. Mappings of 13 PPCS Variant Characters 400

51. Mappings of Hex Encoding of 13 PPCS

Variant Characters 400

52. Compiled Locales Supplied With LE/VSE C

Run-Time 431

53. Locale Source Files Supplied With LE/VSE C

Run-Time 437

54. Coded Character Set Names and

Corresponding National Languages 443

55. DSECT Utility Options, Abbreviations, and

IBM-Supplied Defaults 469

© Copyright IBM Corp. 1995, 2005 xi

xii LE/VSE: C Run-Time Programming Guide

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of

the intellectual property rights of IBM may be used instead of the IBM product,

program, or service. The evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the

responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement. IBM accepts

no responsibility for the content or use of non-IBM Web sites specifically

mentioned in this publication or accessed through an IBM Web site that is

mentioned in this publication.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Deutschland Informationssysteme GmbH

Department 0215

Pascalstr. 100

70569 Stuttgart

Germany

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

Programming Interface Information

This book is intended to help the customer program for LE/VSE C Run-Time. This

book documents General-Use Programming Interface and associated guidance

information provided by the IBM Language Environment for VSE/ESA (LE/VSE)

and LE/VSE C Run-Time.

General-Use Programming Interfaces allow the customer to write programs that

obtain the services of the C/VSE compiler and LE/VSE.

Standards

Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information

Technology—Portable Operating System Interface (POSIX)—Part 1: System Application

Program Interface (API) [C language] , copyright 1990 by the Institute of Electrical

and Electronic Engineers, Inc.

© Copyright IBM Corp. 1995, 2005 xiii

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to

Information Technology—Portable Operating System Interface (POSIX), Part 1:

System Application Program Interface (API) [C Language], copyright 1992 by the

Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information

Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and Utilities ,

copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard

Information Technology—Portable Operating System Interface (POSIX)—Part 1: System

Application Program Interface (API)—Amendment 2: Threads Extension [C language] ,

copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the

International Organization for Standardization, ISO, and the International

Electrotechnical Commission, IEC. The complete standard can be obtained from

any ISO or IEC member or from the ISO or IEC Central Offices, Case Postal, 1211

Geneva 20, Switzerland. Copyright remains with ISO and IEC.

Portions of this book are extracted from X/Open Specification, Programming

Languages, Issue 3 copyright 1988, 1989, February 1992, by the X/Open Company

Limited, with the permission of X/Open Company Limited. No further

reproduction of this material is permitted without the written notice from the

X/Open Company Ltd, UK.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 AD/Cycle Integrated Language Environment SAA

AIX Language Environment SP

C/370 MVS SQL/DS

CICS MVS/ESA System/370

CICS/VSE OS/2 Systems Application Architecture

DATABASE 2 OS/390 VSE/ESA

DB2 OS/400 z/OS

IBM QMF z/VSE

Microsoft, Windows, the Windows 95 logo, and Windows NT, are trademarks or

registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names, may be trademarks or service marks

of others.

xiv LE/VSE: C Run-Time Programming Guide

About This Book

 This book provides information about implementing programs written for IBM

Language Environment for VSE/ESA (LE/VSE). This book contains guidelines and

information for advanced programming topics for developing C language

programs to run under the VSE operating system with LE/VSE.

To use this book, or any other books in the library of LE/VSE C Run-Time

publications, you must have a working knowledge of the C programming

language, the operating system, and where appropriate, the related products. This

edition of the Programming Guide is intended for users of the C language.

What Is LE/VSE?

LE/VSE is a set of common services and language-specific routines that provide a

single run-time environment for applications written in LE/VSE-conforming versions

of the C, COBOL, and PL/I high level languages (HLLs), and for many

applications written in previous versions of COBOL. (For a list of

LE/VSE-conforming languages, and a description of compatibility with previous

versions of COBOL, see “LE/VSE-Conforming Languages” on page xvi.) LE/VSE

also supports applications written in assembler language using LE/VSE-provided

macros and assembled using High Level Assembler (HLASM).

Prior to LE/VSE, each programming language provided its own separate run-time

environment. LE/VSE combines essential and commonly-used run-time

services—such as message handling, condition handling, storage management, date

and time services, and math functions—and makes them available through a set of

interfaces that are consistent across programming languages. With LE/VSE, you

can use one run-time environment for your applications, regardless of the

application’s programming language or system resource needs, because most

system dependencies have been removed.

Services that work with only one language are available within language-specific

portions of LE/VSE.

LE/VSE consists of:

v Basic routines for starting and stopping programs, allocating storage,

communicating with programs written in different languages, and indicating

and handling error conditions.

v Common library services, such as math services and date and time services, that

are commonly needed by programs running on the system. These functions are

supported through a library of callable services.

z/VSE is the successor to IBM’s VSE/ESA product. Many products and functions

supported on z/VSE may continue to use VSE/ESA in their names.

z/VSE can execute in 31-bit mode only. It does not implement z/Architecture, and

specifically does not implement 64-bit mode capabilities.

z/VSE is designed to exploit select features of IBM eServer zSeries hardware.

© Copyright IBM Corp. 1995, 2005 xv

v Language-specific portions of the common run-time library.

LE/VSE is the implementation of Language Environment on the VSE platform.

Language Environment is also offered on platforms z/OS and VM, and on OS/400

as Integrated Language Environment.

LE/VSE-Conforming Languages

An LE/VSE-conforming language is any HLL that adheres to the LE/VSE common

interface. Table 1 lists the LE/VSE-conforming language compiler products you can

use to generate applications that run with LE/VSE Release 4.

 Table 1. LE/VSE-Conforming Languages

Language LE/VSE-Conforming Language Minimum Release

C IBM C for VSE/ESA Release 1

COBOL IBM COBOL for VSE/ESA Release 1

PL/I IBM PL/I for VSE/ESA Release 1

Any HLL not listed in Table 1 is known as a non-LE/VSE-conforming or,

alternatively, a pre-LE/VSE-conforming language. Some examples of

non-LE/VSE-conforming languages are:

v C/370

v DOS/VS COBOL

v VS COBOL II

v DOS PL/I

v DOS/VS RPG II

Only the following products can generate applications that run with LE/VSE:

v LE/VSE-conforming languages

v HLASM using LE/VSE-provided macros (for details, see LE/VSE Programming

Guide)

v DOS/VS COBOL and VS COBOL II, with some restrictions (see LE/VSE

Compatibility with Previous Versions of COBOL below).

LE/VSE Compatibility with Previous Versions of COBOL

Although DOS/VS COBOL and VS COBOL II are non-LE/VSE-conforming

languages, many applications generated with these compilers can run with

LE/VSE without recompiling. For details about compatibility, see LE/VSE Run-Time

Migration Guide.

However relinking under LE/VSE is the minimum effort in order to migrate

run-time, and involve LE/VSE COBOL-compatibility routines (rather than the old

and unsupported library routines of non-LE/VSE conforming COBOL compilers).

This particularily applies to NORES-compiled units or applications that involve

former initialization techniques such as ILBDSET0. There are even restrictions with

this approach, such as:

v No use of 4-digit dates.

v No exploitation of LE/VSE functionality.

v Interlanguage communication capabilities, and so on.

Therefore you are strongly recommended to carry out a (subsequent) full migration to

a higher ANSI standard and LE/VSE-conforming COBOL compiler (COBOL for

VSE/ESA).

xvi LE/VSE: C Run-Time Programming Guide

VS COBOL II can also dynamically call some LE/VSE date and time callable

services. For details, see LE/VSE Programming Reference.

The C Language

The C language is a general purpose, function-oriented programming language

that allows a programmer to create applications quickly and easily. C provides

high-level control statements and data types as do other structured programming

languages, and it also provides many of the benefits of a low-level language. Using

the C language supported by LE/VSE C Run-Time, you can write portable code

conforming to the ANSI standard.

IBM offers the C language on other platforms, such as the OS/2, AIX/6000,

OS/400, z/OS, and VM operating systems.

The elements of the LE/VSE C Run-Time implementation include:

v All elements of the joint ISO and IEC standard: ISO/IEC 9899:1990 (E)

v ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

v Locale based internationalization support as defined in: ISO/IEC DIS 9945-2:1992/IEEE

POSIX 1003.2-1992 Draft 12 (There are some limitations to fully-compliant behavior as

noted in “LE/VSE C Run-Time Support for Internationalization” on page 318.)

v Extended multibyte and wide character utilities as defined by a subset of the

Programming Language C Amendment 1, which will be ISO/IEC 9899:1990/Amendment

1:1994(E)

About This Book xvii

Softcopy Examples

Most major examples in the following books are available in machine-readable

form:

v LE/VSE C Run-Time Library Reference, SC33-6689

v LE/VSE C Run-Time Programming Guide, SC33-6688

Softcopy examples are indicated in the book by a label in the form EDCXbnnn,

where b refers to the book:

v B is the LE/VSE C Run-Time Library Reference

v G is the LE/VSE C Run-Time Programming Guide

Softcopy examples are installed on your system along with the LE/VSE C

Run-Time component, in the sublibrary PRD2.SCEEBASE.

Example member names are the same as the labels indicated in the book, with a

“.C” extension.

Contact your system programmer if the default names are not used at your

installation.

How to Read the Syntax Diagrams

The following rules apply to the notation used in the syntax diagrams contained in this book:

v Read the syntax diagrams from left to right, top to bottom following the path of the line.

v Each syntax diagram begins with a double arrowhead (==).

v An arrow (─=) at the end of a line indicates that the option, service, or macro syntax continues on the

next line. A continuation line begins with an arrow (=─).

v If a syntax diagram contains too many items or groups to fit in the diagram, the syntax is shown by a

main syntax diagram and one or more syntax fragments. A syntax fragment is referred to in the main

diagram by its fragment name between two vertical bars (│).

Each syntax fragment appears below the main syntax diagram, and begins and ends with a vertical bar

(│). A heading above the fragment indicates the name of the fragment.

Read each syntax fragment as though it were imbedded in the main syntax diagram.

v IBM-supplied default keywords appear above the main path or options path (see the sample on page

xix). In the parameter list, IBM-supplied default choices are underlined.

v Keywords appear in nonitalic capital letters and should be entered exactly as shown. However, some

keywords may be abbreviated by truncation from the right as long as the result is unambiguous. In

this case, the unambiguous truncation is shown in capital letters in the keyword, for example:

ANyheap

v Words in lowercase letters represent user-defined parameters or suboptions.

v Enter parentheses, arithmetic symbols, colons, semicolons, commas, and greater-than signs where

shown.

v Required parameters appear on the same horizontal line (the main path) as the option, service, or

macro:

== OPTION required_parameter =B

v If you can choose from two or more parameters, the choices are stacked one above the other.

If choosing one of the items is optional, the entire stack appears below the main line.

xviii LE/VSE: C Run-Time Programming Guide

== OPTION

optional_parameter_1

optional_parameter_2

optional_parameter_3

 =B

If you must choose one of the items, one item of the stack appears on the main path:

== OPTION required_choice_1

required_choice_2

required_choice_3

 =B

v An arrow returning to the left above a line indicates that an item can be repeated:

==

OPTION

C

repeatable_item

=B

OR

== OPTION

C

repeatable_item

 =B

v A comma or semicolon included in the repeat symbol indicates a separator that you must include

between repeated parameters. These separators must be coded where shown.

v When entering commands, parameters and keywords must be separated by at least one blank if there

is no intervening punctuation.

v A double arrow (─=B) at the end of a line indicates the end of the syntax diagram.

The following example demonstrates how to read the syntax notation. Numbers in the example

correspond to explanations supplied below the example.

==

(1)

ANyheap

(2)

(

(3)

init_size

(4)

,

incr_size

,

ANYWHERE

ANY

BELOW

,

 (6)

FREE

(5)

KEEP

=

=) =B

Notes:

1 Keyword with minimum unambiguous truncation shown in capital letters

2 Opening parenthesis (must be specified if any parameters are specified)

3 Optional parameter

4 Comma (must be specified if there are parameters that follow)

5 Optional keyword

6 Optional keyword (IBM-supplied default)

About This Book xix

xx LE/VSE: C Run-Time Programming Guide

Where to Find More Information

These are the manuals that describe LE/VSE:

 Table 2. LE/VSE Publications

Publication Form Number

LE/VSE Fact Sheet GC33-6679

LE/VSE Concepts Guide GC33-6680

LE/VSE Customization Guide SC33-6682

LE/VSE Programming Guide SC33-6684

LE/VSE Programming Reference SC33-6685

LE/VSE C Run-Time Programming Guide SC33-6688

LE/VSE C Run-Time Library Reference SC33-6689

LE/VSE Debugging Guide and Run-Time Messages SC33-6681

LE/VSE Writing Interlanguage Communication Applications SC33-6686

LE/VSE Run-Time Migration Guide SC33-6687

LE/VSE Licensed Program Specifications GC33-6683

These are the z/VSE manuals to which you might need to refer:

 Table 3. z/VSE Publications

Publication Form Number

z/VSE Administration SC33-8224

z/VSE Messages and Codes, Volume 1 SC33-8226

z/VSE Messages and Codes, Volume 2 SC33-8227

z/VSE Messages and Codes, Volume 3 SC33-8228

z/VSE Planning SC33-8221

z/VSE System Control Statements SC33-8225

z/VSE System Macros Reference SC33-8230

z/VSE System Macros User’s Guide SC33-8236

z/VSE System Upgrade and Service SC33-8223

VSE/VSAM User’s Guide and Application Programming SC33-8246

VSE/VSAM Commands SC33-8245

TCP/IP for VSE/ESA IBM Program Setup and Supplementary Information SC33-6601

These are the manuals that describe IBM C for VSE/ESA:

 Table 4. IBM C for VSE/ESA Publications

Publication Form Number

Licensed Program Specifications GC09-2421

Installation and Customization Guide GC09-2422

Migration Guide SC09-2423

© Copyright IBM Corp. 1995, 2005 xxi

Table 4. IBM C for VSE/ESA Publications (continued)

Publication Form Number

User’s Guide SC09-2424

Language Reference SC09-2425

Diagnosis Guide GC09-2426

These are the manuals that describe IBM COBOL for VSE/ESA:

 Table 5. IBM COBOL for VSE/ESA Publications

Publication Form Number

General Information GC33-6679

Licensed Program Specifications GC33-6680

Migration Guide SC33-6682

Installation and Customization Guide GC33-6680

Programming Guide SC33-6684

Language Reference SC33-6685

Diagnosis Guide SC33-6684

Reference Summary SX26-3834

These are the manuals that describe IBM PL/I for VSE/ESA:

 Table 6. IBM PL/I for VSE/ESA Publications

Publication Form Number

Fact Sheet GC26-8052

Programming Guide SC26-8053

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC33-6684

Installation and Customization Guide SC26-8057

Diagnosis Guide SC26-8058

Compile-Time Messages and Codes SC26-8059

Reference Summary SX26-3836

These are the manuals that describe Debug Tool for VSE/ESA:

 Table 7. Debug Tool for VSE/ESA Publications

Publication Form Number

User’s Guide and Reference SC26-8797

Installation and Customization Guide SC26-8798

Fact Sheet GC26-8925

You might also refer to the ...

xxii LE/VSE: C Run-Time Programming Guide

z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date information about

VSE-related products and services, new z/VSE functions, and other items of interest to VSE users.

You can find the z/VSE home page at:

http://www.ibm.com/servers/eserver/zseries/zvse/

Softcopy Publications

The following collection kit contains the LE/VSE and LE/VSE-conforming language product publications:

 VSE Collection, SK2T-0060

Where to Find More Information xxiii

xxiv LE/VSE: C Run-Time Programming Guide

Summary of Changes

This section describes the changes introduced with the sixth edition and the

previous three editions of the manual.

Changes Introduced With Sixth Edition (March 2005)

These are the changes included in the sixth edition of this manual (for LE/VSE

1.4.4):

v The name VSE/ESA has now changed to z/VSE. However, the names of many

features and programs related to z/VSE remain unchanged (such as IBM

Language Environment for VSE/ESA, IBM COBOL for VSE/ESA, or Debug Tool

for VSE/ESA).

v New entries have been made to these tables because of the ongoing

implementation of Euro support:

– Table 46 on page 354 (“Supported Language-Territory Names and LT Codes”)

– Table 47 on page 356 (“Supported Codeset Names and CC Codes”)

– Table 48 on page 378 (“Coded Character Set Conversion Table”)

– Table 49 on page 385 (“UCS-2 Converters”)

– Table 52 on page 431 (“Compiled Locales Supplied With LE/VSE C

Run-Time”)

– Table 53 on page 437 (“Locale Source Files Supplied With LE/VSE C

Run-Time”)

– Table 54 on page 443 (“Coded Character Set Names and Corresponding

National Languages”)
v DSECT utility options DECIMAL|NODECIMAL and UNIQUE|NOUNIQUE have been

added. See “DECIMAL | NODECIMAL” on page 471 and “UNIQUE |

NOUNIQUE” on page 479 respectively.

Changes Introduced With Fifth Edition (March 2003)

The fifth edition of the C Run-Time Programming Guide, SC33-6688-04 (March 2003),

contained these changes:

v For functions fopen() and freopen(), the maximum blocksize was increased

from 32760 to 65528. See:

– “LRECL and BLKSIZE Defaults” on page 19.

– Table 17 on page 50 (“Parameters for thefopen() and freopen() Functions for

SAM I/O”).

– Table 19 on page 74 (“Parameters for the fopen() and freopen() Functions for

VSE/Librarian I/O”).
v For functions fseek() and ftell(), the maximum blocksize was also increased

from 32760 to 65528. See “Using fseek() and ftell() in Text Files (ASA and

Non-ASA)” on page 68.

Changes Introduced With Fourth Edition (December 2001)

The fourth edition of the C Run-Time Programming Guide, SC33-6688-03 (December

2001), contained minor changes and corrections only.

© Copyright IBM Corp. 1995, 2005 xxv

xxvi LE/VSE: C Run-Time Programming Guide

Part 1. Input and Output

Chapter 1. Introduction to C Input and Output . . 3

Types of C Input and Output 3

Chapter 2. Models of C I/O 5

The Record Model for C I/O 5

Record Formats 5

Fixed-Format Records 6

Variable-Format Records 9

Undefined-Format Records 12

The Byte Stream Model for C I/O 13

Mapping the C Types of I/O to the Byte Stream

Model 13

Chapter 3. Opening Files 15

Categories of I/O 15

Specifying What Kind of File to Use 16

SAM Files 16

VSE/Librarian Members 16

VSAM Data Sets 16

Memory Files 16

EDCXGOF1 17

CICS Data Queues 17

LE/VSE Message File 17

How to Specify RECFM, LRECL, and BLKSIZE 18

Specifying RECFM 18

Specifying LRECL 18

Specifying BLKSIZE 18

VSAM Catalog Information for SAM ESDS Files 19

fopen() Defaults 19

RECFM Defaults 19

LRECL and BLKSIZE Defaults 19

File Definition Statements 21

Chapter 4. Buffering of C Streams 23

Chapter 5. ASA Text Files 25

Example of Writing to an ASA File 26

Chapter 6. LE/VSE C Run-Time Support for the

Double-Byte Character Set (DBCS) 29

Opening Files 30

Reading Streams and Files 30

Writing Streams and Files 31

Writing Text Streams 31

Writing Binary Streams 33

Flushing Buffers 33

Flushing Text Streams 33

Flushing Binary Streams 34

ungetwc() Considerations 34

Setting Positions within Files 34

Repositioning within Text Streams 34

Repositioning within Binary Streams 35

ungetwc() Considerations 35

Closing Files 36

Chapter 7. Standard Streams and Redirection . . 37

Default Open Modes 37

Using the Redirection Symbols 38

Assigning the Standard Streams 39

Using the freopen() Library Function 39

Redirecting Streams with the MSGFILE Option . . . 39

MSGFILE Considerations 39

Redirecting Streams 40

Under VSE Batch 40

Using the PARM Parameter of the EXEC

Statement 40

Using ASSGN Statements 41

Redirecting Streams under CICS 42

Passing Standard Streams across a system() Call . . 42

Passing Binary Streams 43

Passing Text Streams 43

Passing Record I/O Streams 44

Chapter 8. Performing SAM I/O Operations . . . 47

Opening Files 47

Using fopen() or freopen() 47

Filenames for SAM Files 47

Tapes 49

Multivolume Files 49

Other Devices 49

fopen() and freopen() Parameters 50

Parameters Supported by File Type 52

Buffering 56

DTF (Define The File) Attributes 56

Reading from Files 56

Reading from Binary Files 57

Reading from Text Files 57

Reading from Record I/O Files 58

Writing to Files 58

Writing to Binary Files 59

Writing to Text Files 59

Writing to Fixed-Format Text Files 60

Writing to Variable-Format Text Files 60

Writing to Undefined-Format Text Files . . . 61

Truncation vs. Splitting 62

Writing to Record I/O Files 62

Flushing Buffers 62

Updating Existing Records 63

Reading Updated Records 63

EDCXGOS3 63

Simultaneous Reader/Writer 64

Writing New Records 65

Binary Streams 65

Text Streams 65

Record I/O 65

ungetc() Considerations 65

Repositioning within Files 66

ungetc() Considerations 67

How Long fgetpos() and ftell() Values Last . 67

Using fseek() and ftell() in Binary Files . . . 67

Relative Byte Offsets 67

© Copyright IBM Corp. 1995, 2005 1

Encoded Offsets 68

Using fseek() and ftell() in Text Files (ASA

and Non-ASA) 68

Using fseek() and ftell() in Record Files . . . 69

Porting Old C Code that Uses fseek() or ftell() 69

Closing Files 70

Renaming and Removing Files 70

fldata() Behavior 70

Chapter 9. Performing VSE/Librarian I/O

Operations 73

Opening Files 73

Using fopen() or freopen() 73

Filenames for VSE/Librarian Sublibrary

Members 73

File Modes Supported for VSE/Librarian I/O 74

fopen() and freopen() Parameters 74

Buffering 76

Reading from Files 76

Writing to Files 76

Flushing Buffers 76

Repositioning within Files 76

Closing Files 76

Renaming and Removing Files 76

fldata() Behavior 76

Chapter 10. Performing VSAM I/O Operations . . 79

VSAM Types (Data Set Organization) 79

Access Method Services 80

Choosing VSAM Data Set Types 80

Keys, RBAs and RRNs 82

Summary of VSAM I/O Operations 84

Opening VSAM Data Sets 85

Using fopen() or freopen() 85

Filenames for VSAM Data Sets 85

Specifying fopen() and freopen() Keywords 87

fopen() and freopen() Parameters 87

Buffering 90

Record I/O in VSAM 90

RRDS Record Structure 90

Reading Record I/O files 91

Writing to Record I/O Files 92

Updating Record I/O Files 92

Deleting Records 94

Repositioning within Record I/O Files 94

flocate() 94

fgetpos() and fsetpos() 95

ftell() and fseek() 95

rewind() 96

Flushing Buffers 96

Summary of VSAM Record I/O Operations . . 96

Text and Binary I/O in VSAM 98

Reading from Text and Binary I/O Files 98

Writing to and Updating Text and Binary I/O

Files 98

Deleting Records in Text and Binary I/O Files . . 98

Repositioning within Text and Binary I/O Files 98

flocate() 99

fgetpos() and fsetpos() 99

ftell() and fseek() 100

Flushing Buffers 100

Summary of VSAM Text I/O Operations . . . 100

Summary of VSAM Binary I/O Operations . . 101

Closing VSAM Data Sets 102

VSAM Return Codes 102

VSAM Examples 103

KSDS Example 103

KSDS Example 104

RRDS Example 113

EDCXGVS4 113

fldata() Behavior 115

Chapter 11. Performing Memory File I/O

Operations 117

Opening Files 117

Using fopen() or freopen() 117

Filenames for Memory Files 117

fopen() and freopen() Parameters 118

Buffering 121

Reading from Files 121

Writing to Files 121

Flushing Records 122

ungetc() Considerations 122

Repositioning within Files 122

Closing Files 123

Performance Tips 123

Removing Memory Files 123

fldata() Behavior 123

Example Program 124

EDCXGMF3 124

EDCXGMF4 125

Chapter 12. Performing CICS I/O Operations 127

Chapter 13. Performing LE/VSE Message File

Operations 129

Opening Files 129

Reading from Files 129

Writing to Files 129

Flushing Buffers 130

Repositioning within Files 130

Closing Files 130

Chapter 14. Debugging I/O Programs 131

Using the __amrc Structure 131

Using the __amrc2 Structure 134

Using __last_op Codes 134

Using the SIGIOERR Signal 137

This part describes the models of input and output available with IBM Language

Environment for VSE/ESA.

2 LE/VSE: C Run-Time Programming Guide

Chapter 1. Introduction to C Input and Output

This chapter provides you with a general introduction to C input and output

(I/O). The different types of C input and output are discussed in this chapter: text

streams, binary streams, and record I/O.

Types of C Input and Output

A stream is a continuous flow of data elements that are transmitted or intended for

transmission in a defined format. A record is a set of data elements treated as a

unit, and a file is a named set of records that is stored or processed as a unit.

LE/VSE C Run-Time supports three types of input and output: text streams, binary

streams, and record I/O. Text and binary streams are both ANSI standards; record

I/O is an LE/VSE C Run-Time extension, initially provided with C/370.

Note: If you have written data in one of these three types and try to read it as

another type (for example, reading a binary file in text mode), you may not

get the behavior that you expect.

Text streams

contain printable characters and, depending on the type of file, control

characters. Text streams are organized into lines. Each line ends with a control

character, usually a newline. The last record in a text file may or may not end

with a control character, depending on what kind of file you are using. Text

files recognize the following control characters:

\a Alarm.

\b Backspace.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab character.

\v Vertical tab character.

\x0E DBCS shift out character. Indicates the beginning of a DBCS string, if

MB_CUR_MAX > 1 in the definition of the locale that is in effect. For more

information about MB_CUR_MAX, see Chapter 6, “LE/VSE C Run-Time

Support for the Double-Byte Character Set (DBCS),” on page 29.

\x0F DBCS shift in character. Indicates the end of a DBCS string, if

MB_CUR_MAX > 1 in the definition of the locale that is in effect. For more

information about MB_CUR_MAX, see Chapter 6, “LE/VSE C Run-Time

Support for the Double-Byte Character Set (DBCS),” on page 29.

Control characters behave differently in ASA files (see Chapter 5, “ASA Text

Files,” on page 25).

Binary streams

contain an ordered sequence of bytes. For binary streams, the library does not

translate any characters on input or output. It treats them as a continuous

stream of bytes, and ignores any record boundaries.

© Copyright IBM Corp. 1995, 2005 3

Record I/O

is an IBM C Run-Time extension to the ANSI standard. For files opened in

record format, LE/VSE C Run-Time reads and writes one record at a time. If

you try to write more data to a record than the record can hold, the data is

truncated. For record I/O, LE/VSE C Run-Time only allows the use of fread()

and fwrite() to read from and write to files. Any other functions (such as

fprintf(), fscanf(), getc(), and putc()) fail. For record-oriented files, records

do not change size when you update them. If the new data has fewer

characters than the original record, the new data fills the first n characters,

where n is the number of characters of the new data. The record will remain

the same size, and the old characters (those after n) are left unchanged. A

subsequent update begins at the next boundary. For example, if you have the

string "abcdefgh":

 and you overwrite it with the string "1234", the record will look like this:

 LE/VSE C Run-Time record I/O is binary. That is, it does not interpret any of

the data in a record file and therefore does not recognize control characters.

The only exception is for file categories that do not support records. For these

files, LE/VSE C Run-Time uses newline characters as record boundaries.

C Input and Output

4 LE/VSE: C Run-Time Programming Guide

Chapter 2. Models of C I/O

This chapter describes LE/VSE C Run-Time’s support for the major models of C

I/O, the record model and the byte stream model.

The Record Model for C I/O

Almost all the kinds of I/O that LE/VSE C Run-Time supports use this model. The

only one that does not is memory file I/O.

The record model consists of:

v A record, which is the unit of data transmitted to and from a program.

v A block, which is the unit of data transmitted to and from a device. Each block

may contain one or more records.

In the record model of I/O, records and blocks have the following attributes:

RECFM Specifies the format of the data or how the data is organized on

the physical device.

LRECL Specifies the length of logical records (as opposed to physical

ones).

BLKSIZE Specifies the length of physical records (blocks on the physical

device).

Record Formats

Use the RECFM attribute to specify the record format. The records in a file using

the record model have one of the following formats:

F Fixed-length

V Variable-length

U Undefined-length

Note: LE/VSE C Run-Time does not support ISCII/ASCII format-D files.

These formats support the following additional options for RECFM:

A Specifies that the file contains ASA print-control characters.

B Specifies that a file is blocked. A blocked file can have more than one

record in each block.

M Specifies that the file contains machine control codes.

S Specifies that a file is either in standard format (if it is fixed) or spanned (if

it is variable). In a standard file, every block must be full before another

one starts. In a spanned file, a record can be longer than a block. If it is,

the record is divided into segments and stored in consecutive blocks.

The record formats and the additional options associated with them are discussed

in the following sections.

Not all the I/O categories (listed in Table 9 on page 15) support all of these

attributes. Depending on what category you are using, LE/VSE C Run-Time

ignores or simulates attributes that do not apply. For more information, on the

record formats and the options supported for each I/O category, see the section

called “Opening Files” in the chapter pertaining to the category.

© Copyright IBM Corp. 1995, 2005 5

Fixed-Format Records

Record Format (RECFM): These are the formats you can specify for RECFM if

you want to use a fixed-format file:

F Fixed-length, unblocked

FA Fixed-length, unblocked, ASA print-control characters

FB Fixed-length, blocked

FM Fixed-length, unblocked, machine control codes

FS Fixed-length, unblocked, standard

FBA Fixed-length, blocked, ASA print-control characters

FBM Fixed-length, blocked, machine control codes

FBS Fixed-length, blocked, standard

FSA Fixed-length, unblocked, standard, ASA print-control characters

FSM Fixed-length, unblocked, standard, machine control codes

FBSM Fixed-length, blocked, standard, machine control codes

FBSA Fixed-length, blocked, standard, ASA print-control characters

Note: In general, all references in this guide to files with record format FB also

refer to FBM and FBA. The specific behavior of ASA files (such as FBA) is

explained in Chapter 5, “ASA Text Files,” on page 25.

Attention: LE/VSE C Run-Time distinguishes between FB and FBS formats,

because an FBS file contains no embedded short blocks (the last block may be

short). FBS files give you much better performance if file repositioning is used. The

use of standard (S) blocks optimizes the sequential processing of a file on a

direct-access device. With a standard format file, the file pointer can be directly

repositioned by calculating the exact position in that file of a given record rather

than reading through the entire file.

If the records are FB, some blocks may contain fewer records than others, as shown

in Figure 1.

Figure 1. Blocking Fixed-Length Records

Models of C I/O

6 LE/VSE: C Run-Time Programming Guide

Mapping C Types to Fixed Format:

Binary

On binary input and output, data flows over record boundaries. Because

all fixed-format records must be full, LE/VSE C Run-Time completes any

incomplete output record by padding it with nulls ('\0') when you close

the file. Incomplete blocks are not padded. On input, nulls are visible and

are treated as part of the data.

 For example, if LRECL is set to 10 and you are writing 25 characters of

data, LE/VSE C Run-Time will write two full records, each containing 10

characters, and then an incomplete record containing 5 characters. If you

then close the file, LE/VSE C Run-Time will complete the last record with

5 nulls. If you open the file for reading, LE/VSE C Run-Time will read the

records in order; it will not strip off the nulls at the end of the last record.

Text (non-ASA)

When writing in a text stream, you indicate the end of the data for a

record by writing a newline ('\n') or carriage return ('\r') to the stream.

In a fixed-format file, the newline or carriage return will not appear in the

external file, and the record will be padded with blanks from the position

of the newline or carriage return to LRECL. (A carriage return is

considered the same as a newline because the '\r' is not written to the

file.)

 For example, if you have set LRECL to 10, and you write the string "ABC\n"

to a fixed-format text file, LE/VSE C Run-Time will write this to the

physical file:

 A record containing only a newline is written to the file as LRECL blanks.

 When reading in a text stream, the I/O functions place a newline character

('\n') in the buffer to indicate the end of data for the record. In a

fixed-format file, the newline character is placed at the start of the blank

padding at the end of the data.

 For example, if your file position points to the start of the following record

in a fixed-format file opened as a text stream

 and you call fgets() to read the line of text, fgets() places the string

"ABC\n" in your input buffer.

Attention: Any blanks written immediately before a newline or carriage

return will be considered blank padding when the record is read back from

the file. You cannot change the padding character.

When you are updating a fixed-format file opened as a text stream, you

can update the amount of data in a record. The maximum length of the

updated data is LRECL bytes plus the newline character; the minimum

length is zero data bytes plus the newline character. Writing new data into

Models of C I/O

Chapter 2. Models of C I/O 7

an existing record replaces the old data. If the new data is longer or shorter

than the old data, the number of blank padding characters in the record in

the external file is changed. When you extend a record, thereby writing

over the old newline, there will be a newline character implied after the

new characters. For instance, if you were to overwrite the record

mentioned in the previous example with the string "123456", the records in

the physical file would then look like this:

 The blanks at the end of the record imply a newline at position 7. You can

see this newline by calling fflush() and then performing a read. The

implied newline is the first character returned from this read.

 A fixed record can hold only LRECL characters. If you try to write more

than that, LE/VSE C Run-Time truncates the data unless you are using a

standard stream. In this case, the output is split across multiple records. If

truncation occurs, LE/VSE C Run-Time raises SIGIOERR and sets both errno

and the error flag.

Text (ASA)

For ASA files, the first character of each record is reserved for the ASA

print-control character that represents a newline, a carriage return, or a

form feed. This control character represents what should happen before the

record is written.

 Table 8. C Control to ASA Characters

C Control Character ASA Character Description

'\n' ' ' Skip one line

'\n\n' '0' Skip two lines

'\n\n\n' '-' Skip three lines

'\f' '1' New page

'\r' '+' Overstrike

A control character that ends a logical record is represented at the

beginning of the following record in the external file. Since the ASA

print-control character is in the first byte of each record, a record can hold

only LRECL - 1 bytes of data. As with non-ASA text files described above,

LE/VSE C Run-Time adds blank padding to complete any record shorter

than LRECL - 1 when it writes the record to the file. On input, LE/VSE C

Run-Time removes all trailing blanks. For example, if LRECL is 10, and

you enter the string:

 \nABC\nDEF

the record in the physical file will look like this:

 On input, this string is read as follows:

Models of C I/O

8 LE/VSE: C Run-Time Programming Guide

\nABC\nDEF

You can lengthen and shorten records the same way as you can for

non-ASA files. For more information about ASA, refer to Chapter 5, “ASA

Text Files,” on page 25.

Record

As with fixed-format text files, a record can hold LRECL characters. Every

call to fwrite() is considered to be writing a full record. If you write fewer

than LRECL characters, LE/VSE C Run-Time completes the record with

enough nulls to make it LRECL characters long. If you try to write more

than that, LE/VSE C Run-Time truncates the data.

Variable-Format Records

In a file with variable-length records, each record may be a different length. The

variable length formats permit both variable-length records and variable-length

blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word

(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word

(RDW), or, if you are using spanned files, the Segment Descriptor Word (SDW).

Illustrations of variable-length records are shown in Figure 2 on page 10.

Once you have set the LRECL for a variable-format file, you can write up to

LRECL minus 4 characters in each record. LE/VSE C Run-Time does not let you

see RDWs, BDWs, or SDWs when you open a file as variable-format. To see the

RDWs or SDWs and BDWs, open the variable file as undefined-format, as

described in “Undefined-Format Records” on page 12.

The value of LRECL must be greater than 4 to accommodate the RDW or SDW.

The value of BLKSIZE must be greater than or equal to the value of LRECL plus 4.

You should not use a BLKSIZE greater than the maximum logical record length

plus 4 for an unblocked file. Doing so results in buffers that are larger than they

need to be. The largest amount of data that any one record can hold is LRECL

bytes minus 4.

Record Format (RECFM): You can specify the following formats for

variable-length records:

V Variable-length, unblocked

VA Variable-length, unblocked, ASA print-control characters

VB Variable-length, blocked

VM Variable-length, unblocked, machine control codes

VS Variable-length, unblocked, spanned

VBA Variable-length, blocked, ASA print-control characters

VBM Variable-length, blocked, machine control codes

VBS Variable-length, blocked, spanned

VSA Variable-length, unblocked, spanned, ASA print-control characters

VSM Variable-length, unblocked, spanned, machine control codes

VBSA Variable-length, blocked, spanned, ASA print-control characters

VBSM Variable-length, blocked, spanned, machine control codes

Note: In general, all references in this guide to files with record format VB also

refer to VBM and VBA. The specific behavior of ASA files (such as VBA) is

explained in Chapter 5, “ASA Text Files,” on page 25.

V-format signifies unblocked variable-length records. Each record is treated as a

block containing only one record.

Models of C I/O

Chapter 2. Models of C I/O 9

VB-format signifies blocked variable-length records. Each block contains as many

complete records as it can accommodate.

Spanned Records: A spanned record is opened using both V and S in the format

specifier. A spanned record is a variable-length record in which the length of the

record can exceed the size of a block. If it does, the record is divided into segments

and accommodated in two or more consecutive blocks. The use of spanned records

allows you to select a block size, independent of record length, that will combine

optimum use of auxiliary storage with the maximum efficiency of transmission.

VS-format specifies that each block contains only one record or segment of a record.

The first 4 bytes of a block describe the block control information. The second 4

bytes contain record or segment control information, including an indication of

whether the record is complete or is a first, intermediate, or last segment.

VBS-format differs from VS-format in that each block in VBS-format contains as

many complete records or segments as it can accommodate, while each block in

VS-format contains at most one record per block.

Mapping C Types to Variable Format:

Binary

On input and output, data flows over record boundaries. Any record will

hold up to LRECL minus 4 characters of data. If you try to write more

than that, your data will go to the next record, after the RDW or SDW. You

will not be able to see the descriptor words when you read the file.

Note: If you need to see the BDWs, RDWs, or SDWs, you can open and

read a V-format file as a U-format file. See “Undefined-Format

Records” on page 12 for more information.

Figure 2. Variable-Length Records on VSE

Models of C I/O

10 LE/VSE: C Run-Time Programming Guide

LE/VSE C Run-Time never creates empty binary records for files opened

in V-format. See “Writing to Binary Files” on page 59 for more information.

An empty binary record is one that contains only an RDW, which is 4

bytes long. On input, empty records are ignored.

Text (non-ASA)

Record boundaries are used in the physical file to represent the position of

the newline character. You can indicate the end of a record by including a

newline or carriage return character in your data. In variable-format files,

LE/VSE C Run-Time treats the carriage return character as if it were a

newline. LE/VSE C Run-Time does not write either of these characters to

the physical file; instead, it creates a record boundary. When you read the

file back, boundaries are read as newlines.

 If a record only contains a newline character, the default behavior of

LE/VSE C Run-Time is to write a record containing a single blank to the

file. Therefore, the string ' \n' is treated the same way as the string '\n';

both are read back as '\n'. All other blanks in your output are read back

as is. Any empty (zero-length) record is ignored on input. However, if the

environment variable _EDC_ZERO_RECLEN was set to Y at the time the file

was opened, a single newline is written to the file as an empty record, and

a single blank represents ' \n'. On input, an empty record is treated as a

single newline and is not ignored.

 After a record has been written to a file, you cannot change its length. If

you try to shorten a logical record by writing a new, smaller amount of

data into it, the C I/O library will add blank characters until the record is

full. Writing more data to a record than it can hold causes your data to be

truncated unless you are writing to a standard stream. In this case, your

output is split across multiple records. If truncation occurs, LE/VSE C

Run-Time raises SIGIOERR and sets both errno and the error flag.

Note: If you did not explicitly set the _EDC_ZERO_RECLEN environment

variable when you opened the file, you can update a record that

contains a single blank to contain a nonblank character, thereby

lengthening the logical record from '\n' to 'x\n'), where x is the

nonblank character.

Text (ASA)

LE/VSE C Run-Time treats variable-format ASA text files similarly to the

way it treats fixed-format ones. Empty records are always ignored in ASA

variable-format files; for a record to be recognized, it must contain at least

one character as the ASA print-control character.

 For more information about ASA, refer to Chapter 5, “ASA Text Files,” on

page 25.

Record

Each call to fwrite() creates a record that must be less than or equal to the

size established by LRECL. If you try to write more than LRECL bytes on

one call to fwrite(), LE/VSE C Run-Time will truncate your data. LE/VSE

C Run-Time never creates empty records using record I/O. On input,

empty records are ignored unless you have set the _EDC_ZERO_RECLEN

environment variable to Y. In this case, empty records are treated as

records with length 0.

 If your application sets _EDC_ZERO_RECLEN to Y, bear in mind that fread()

returns back 0 bytes read, but does not set errno, and that both feof() and

ferror() return 0 as well.

Models of C I/O

Chapter 2. Models of C I/O 11

Undefined-Format Records

Everything in an undefined-format file is treated as data, including control

characters and record boundaries. Blocks in undefined-format records are

variable-length; each block is considered a record.

It is impossible to have an empty record. Whatever you specify for LRECL has no

effect on your data, but the value of LRECL must be less than or equal to the value

you specify for BLKSIZE. Regardless of what you specify, LE/VSE C Run-Time sets

LRECL to zero when it creates an undefined-format file.

Reading a file in U-format enables you to read an entire block at once.

Record Format (RECFM): You can specify the following formats for

undefined-length records:

U Undefined-length

UA Undefined-length, ASA print-control characters

UM Undefined-length, machine control codes

U, UA, and UM formats permit the processing of records that do not conform to F-

and V-formats. The operating system treats each block as a record; your program

must perform any additional blocking or deblocking.

You can read any file in U-format. This is useful if, for example, you want to see

the BDWs and RDWs of a file that you have written in V-format.

Mapping C Types to Undefined Format:

Binary

When you are writing to an undefined-format file, binary data fills a block

and then begins a new block.

Text (non-ASA)

Record boundaries (that is, block boundaries) are used in the physical file

to represent the position of the newline character. You can indicate the end

of a record by including a newline or carriage return character in your

data. In undefined-format files, LE/VSE C Run-Time treats the carriage

return character as if it were a newline. LE/VSE C Run-Time does not

write either of these characters to the physical file; instead, it creates a

record boundary. When you read the file back, these boundaries are read

as newlines.

 If a record contains only a newline character, LE/VSE C Run-Time writes a

record containing a single blank to the file regardless of the setting of the

_EDC_ZERO_RECLEN environment variable. Therefore, the string ' \n' (a

single blank followed by a newline character) is treated the same way as

'\n': both are written out as a single blank. On input, both are read as

'\n'. All other blank characters are written and read as you intended.

After a record has been written to a file, you cannot change its length. If

you try to shorten a logical record by writing a new, smaller amount of

data into it, the C I/O library adds blank characters until the record is full.

Writing more data to a record than it can hold will cause your data to be

truncated unless you are writing to a standard stream. In this case, your

output is split across multiple records. If truncation occurs, LE/VSE C

Run-Time raises SIGIOERR and sets both errno and the error flag.

Models of C I/O

12 LE/VSE: C Run-Time Programming Guide

Note: You can update a record that contains a single blank to contain a

nonblank character, thereby lengthening the logical record from '\n'

to 'x\n'), where x is the nonblank character.

Text (ASA)

For a record to be recognized, it must contain at least one character as the

ASA print-control character.

 For more information about ASA, refer to Chapter 5, “ASA Text Files,” on

page 25.

Record

Each call to fwrite() creates a record that must be shorter than or equal to

the size established by BLKSIZE. If you try to write more than BLKSIZE

bytes on one call to fwrite(), LE/VSE C Run-Time truncates your data.

The Byte Stream Model for C I/O

The byte stream model differs from the record I/O model. In the byte stream

model, a file is just a stream of bytes, with no record boundaries. Newline

characters written to the stream appear in the external file.

If the file is opened in binary mode, any newline characters previously written to

the file are visible on input. LE/VSE C Run-Time memory file I/O is based on the

byte stream model (see Chapter 11, “Performing Memory File I/O Operations,” on

page 117 for more information).

Mapping the C Types of I/O to the Byte Stream Model

Binary

In the byte stream model, files opened in binary mode do not contain any

record boundaries. Data is written as is to the file.

Text The byte stream model does not support ASA. Newlines, carriage returns,

and other control characters are written as is to the file.

Record

If record I/O is supported by the kind of file you are using, LE/VSE C

Run-Time simulates it by treating newline characters as record boundaries.

Newlines are not treated as part of the record. A record written out with a

newline inside it is not read back as it was written, because LE/VSE C

Run-Time treats the newline as a record boundary instead of data.

 Memory files do not support record I/O.

 As with all other record I/O, you can use only fread() and fwrite() to

read from and write to files. Each call to fwrite() inserts a newline in the

byte stream; each call to fread() strips it off. For example, if you use one

fwrite() statement to write the string ABC and the next to write DEF, the

byte stream will look like this:

 There are no limitations on lengthening and shortening records. If you then

rewind the file and write new data into it, LE/VSE C Run-Time will

replace the old data. For example, if you used the rewind() function on the

Models of C I/O

Chapter 2. Models of C I/O 13

stream in the previous example and then called fwrite() to place the

string 12345 into it, the stream would look like this:

 If you are using files with this model, do not use newline characters in

your output. If you do, they will create extra record boundaries. If you are

unsure about the data being written or are writing numeric data, use

binary instead of text to avoid writing a byte that has the hex value of a

newline.

Models of C I/O

14 LE/VSE: C Run-Time Programming Guide

Chapter 3. Opening Files

This chapter describes how to open I/O files. You can open files using the

standard C fopen() and freopen() library functions. The formats of these functions

are:

C library functions

FILE *fopen(const char *filename,

 const char *mode);

FILE *freopen(const char *filename,

 const char *mode, FILE *stream);

 The C library functions are described in more detail in LE/VSE C Run-Time Library

Reference.

Depending on the type of file being opened, the filename that you specify on these

function calls can be a system logical unit, a programmer logical unit, a DLBL-name,

a TLBL-name, a member of a VSE/Librarian sublibrary, a SAM file, or a VSAM data

set.

In the following, whenever fopen() function call parameters are discussed, it is

implied that these are applicable to both the fopen() and the freopen() function

calls, unless otherwise stated.

Categories of I/O

The following table lists the categories of I/O that LE/VSE C Run-Time supports

and points to the page where each category is described.

 Table 9. Kinds of I/O Supported by LE/VSE C Run-Time

Type of I/O Suggested uses and supported devices Model Page

SAM I/O Used for dealing with the following kinds of files:

v Sequential disk files (SAM and VSAM-managed SAM)

v Tapes

v Printers

v Punch files

v Card reader files

Record 47

VSE/Librarian I/O Used for working with members of VSE/Librarian sublibraries. Record 73

VSAM I/O Used for working with VSAM data sets. Supports direct access to

records by key, relative record number, or relative byte address.

Supports entry-sequenced, relative record, and key-sequenced data sets.

Record 79

Memory Files Used for applications requiring temporary I/O files without the

overhead of system data sets. Fast and efficient.

Byte

stream

117

CICS Data Queues Used under the Customer Information Control System (CICS). CICS

data queues are automatically selected under CICS for the standard

streams stdout and stderr. The CICS I/O commands are supported

through the Command Level interface. The standard stream stdin is

treated as an empty file under CICS.

Record 127

© Copyright IBM Corp. 1995, 2005 15

Table 9. Kinds of I/O Supported by LE/VSE C Run-Time (continued)

Type of I/O Suggested uses and supported devices Model Page

LE/VSE Message File Used when you are running with LE/VSE. The message file is

automatically selected for stderr under LE/VSE.

Record 129

The following table lists the environments that LE/VSE C Run-Time supports, and

which categories of I/O work in which environment.

 Table 10. I/O Categories and Environments Supported

Type of I/O

Environment

VSE batch CICS

SAM I/O Yes No

VSE/Librarian I/O Yes No

VSAM I/O Yes No

Memory Files Yes Yes

CICS Data Queues No Yes

LE/VSE Message File Yes No

Specifying What Kind of File to Use

SAM Files

SAM files include sequential disk files (including SAM ESDS files, but excluding

other VSAM data sets), as well as non-disk files, such as non-VSAM tape files,

printer files, etc.

VSE/Librarian Members

Members of VSE/Librarian sublibraries are identified by their member name and

type. The name of the library and sublibrary is optional.

VSAM Data Sets

LE/VSE C Run-Time recognizes a VSAM data set if the file exists and has been

defined as a VSAM cluster before the call to fopen(). Under VSE, fopen() may be

called with either the data set name or a referencing DLBL/TLBL-name.

Memory Files

You can use regular memory files on all the systems that LE/VSE C Run-Time

supports. To create one, specify type=memory on the fopen() call that creates the

file. A memory file, once created, exists until either of the following happens:

v You explicitly remove it with remove() or clrmemf().

v The root program is terminated.

While a memory file exists, you can just use another fopen() that specifies the

memory file’s name; you do not have to specify type=memory. For example:

Opening Files

16 LE/VSE: C Run-Time Programming Guide

EDCXGOF1

 A valid memory filename will match current file restrictions on a real file.

CICS Data Queues

A CICS transient data queue is a pathway to a single predefined destination. The

destination can be a DLBL-name, another transient data queue, a VSAM data set, a

terminal, or another CICS environment. The CICS system administrator defines the

queues that are active during execution of CICS. (For DCT customization, see

LE/VSE Customization Guide.) All users who direct data to a given queue will be

placing data in the same location, in order of occurrence.

You cannot use fopen() to specify this kind of I/O. It is the category selected

automatically when you call any ANSI functions that reference stdout and stderr

under CICS. If you reference either of these in a C program under CICS, LE/VSE

C Run-Time attempts to open the CESO (stdout) or CESE (stderr) queue. If you

want to write to any other queue, you should use the CICS-provided interface.

LE/VSE Message File

The LE/VSE message file is managed by LE/VSE and may not be directly opened

or closed with fopen(), freopen() or fclose() within a C application. In LE/VSE,

output from stderr is directed to the LE/VSE message file by default. You can use

freopen() and fclose() to manage stderr, or you can redirect it to another

destination. There are application writer interfaces (AWIs) that enable you to access

the LE/VSE message file directly. These are documented in LE/VSE Programming

Guide.

See Chapter 13, “Performing LE/VSE Message File Operations,” on page 129 for

more information on LE/VSE message files.

 /* EDCXGOF1

 This example shows how fopen() may be used with memory files

 */

#include <stdio.h>

char text[3], *result;

FILE * fp;

int main(void)

 {

 fp = fopen("a.b", "w, type=memory"); /* Opens a memory file */

 fprintf(fp, "%d\n",10); /* Writes to the file */

 fclose(fp); /* Closes the file */

 fp = fopen("a.b", "r"); /* Reopens the same */

 /* file (already */

 /* a memory file) */

 if ((result=fgets(text,3,fp)) !=NULL) /* Retrieves results */

 printf("value retrieved is %s\n",result);

 fclose(fp); /* Closes the file */

 return(0);

 }

Figure 3. Example of Using fopen() with Memory Files

Opening Files

Chapter 3. Opening Files 17

How to Specify RECFM, LRECL, and BLKSIZE

The values of the RECFM, LRECL, and BLKSIZE attributes are significant under

VSE. When you open a non-VSAM file, LE/VSE C Run-Time searches for these file

attributes in the following places:

1. The fopen() or freopen() function call that opens the file

2. The DLBL statement if one exists (described in “File Definition Statements” on

page 21)

3. The VSAM catalog (predefined SAM ESDS files only—see also “VSAM Catalog

Information for SAM ESDS Files” on page 19.)

4. The default values for fopen() or freopen()

File attributes for VSAM data sets are determined from the VSAM catalog only.

Note: RECFM, LRECL and BLKSIZE can be provided by the Vendor Exit through

third party products.

When you call fopen() and specify a write mode (w, wb, w+, wb+, or w+b) for an

existing non-VSAM file, LE/VSE C Run-Time uses the supplied or default values

for fopen(), not the values for the existing file. These defaults are listed in Table 11

on page 20.

Certain categories of I/O may ignore or simulate some attributes such as BLKSIZE

or RECFM that are not physically supported on the device. Table 9 on page 15 lists

all the categories of I/O that LE/VSE C Run-Time supports and directs you to

where you can find more information about them.

Specifying RECFM

The record format can only be specified in the recfm parameter on the call to the

fopen() library function for non-VSAM files. However, for VSAM data sets and

predefined SAM ESDS files, RECFM is determined from the VSAM catalog as the

value set by the IDCAMS DEFINE command (for SAM ESDS files, see “VSAM

Catalog Information for SAM ESDS Files” on page 19).

If you are creating a file and you do not select a record format, LE/VSE C

Run-Time might use a default depending on the file type. See “fopen() Defaults”

on page 19 for additional information.

Specifying LRECL

The logical record length can only be specified in the lrecl parameter on the call

to the fopen() library function for non-VSAM files. However, for VSAM data sets

and predefined SAM ESDS files, LRECL is determined from the VSAM catalog as

the value set by the IDCAMS DEFINE command (for SAM ESDS files, see “VSAM

Catalog Information for SAM ESDS Files” on page 19).

If you are creating a file and you do not select a logical record length, LE/VSE C

Run-Time uses a default. See “fopen() Defaults” on page 19 for details on how

defaults are determined.

Specifying BLKSIZE

You can specify the block size for non-VSAM data sets in:

v The BLKSIZE parameter of the JCL DLBL statement for non-FBA SAM files using

noseek

v The blksize parameter on a call to the fopen() or freopen() library function

For VSAM data sets, however, BLKSIZE is determined from the VSAM catalog

only as the value set by the IDCAMS DEFINE command.

Opening Files

18 LE/VSE: C Run-Time Programming Guide

If you are creating a file and you do not select a block size, LE/VSE C Run-Time

uses a default as described in “fopen() Defaults.”

VSAM Catalog Information for SAM ESDS Files

The information contained in the VSAM catalog for SAM ESDS files is sometimes

different than expected:

v To create a SAM ESDS file with VSAM catalog information that correctly reflects

the lrecl, blksize, and recfm parameters from fopen(), you should first remove

the file with remove() and then open the file with the noseek parameter.

v When a SAM ESDS file is created and noseek has not been specified, LE/VSE C

Run-Time will provide the expected behaviour for the record format specified on

fopen(). However, the internal VSAM access will be performed using recfm=U.

This causes RECFM=U and the BLKSIZE to be recorded in the VSAM catalog.

Subsequent opens for read can not rely on the catalog information if the original

file was opened with fixed or variable record formats.

v If an existing non-empty SAM ESDS file is opened for write, the catalog LRECL,

BLKSIZE, and RECFM information is updated only if the block size specified on

fopen() is greater than that of the existing file. This is a VSE/VSAM restriction.

fopen() Defaults

The file attributes RECFM, LRECL, and BLKSIZE for VSAM data sets are

determined from the VSAM catalog only. Any specification of these attributes on

the fopen() function call is ignored by LE/VSE C Run-Time.

For memory files, no defaults are discussed as file attributes are not applicable to

this type of file.

You cannot specify a file attribute more than once on a call to fopen(). If you do,

the function call fails. If a file is opened for append or update and the file

attributes specified on the call to fopen() differ from the actual file attributes of an

existing file, fopen() might fail or file data might be corrupted.

In calls to fopen(), the lrecl, blksize, and recfm parameters are optional. (If you

are opening a file for read or append, any attributes that you specify must match

the existing attributes in the VSAM catalog if these are available, or if they are not,

those used when the file was created.)

If you do not specify file attributes for fopen() you get the following defaults:

RECFM Defaults

If recfm is not specified in the call to fopen() for system logical units (for example,

SYSLST), or for card and printer devices, it will default to recfm=F.

If recfm is not specified in the call to fopen() for VSE/Librarian members, and the

member does not exist or it is being opened for write, it will default to recfm=FB.

No default recfm is supported for file types other than the above.

LRECL and BLKSIZE Defaults

If blksize is not specified in the call to fopen() for VSE/Librarian members, it will

default to blksize=4000. For VSE/Librarian members, blksize specifies the logical

blocking only and has no impact on the physical blocking of the data. Larger

blocksizes will result in a better performance for sequential processing.

Opening Files

Chapter 3. Opening Files 19

LRECL and BLKSIZE defaults for system logical units, and for card and printer

devices, differ from other file types. For example, the default LRECL may be

obtained from the blksize parameter. Refer to “Parameters Supported by File

Type” on page 52 for additional information about LRECL and BLKSIZE defaults

for system logical units, and for card and printer devices.

For other file types (SAM disk and tape files, including SAM ESDS files), the

following defaults apply:

 Table 11. fopen() Defaults for LRECL and BLKSIZE

lrecl

specified?

blksize

specified? RECFM LRECL BLKSIZE

Note: For exceptions to this table, see above.

no no All F 80 80

All FB 80 maximum integral multiple of 80 less

than or equal to 6080 if disk or tape;

80 otherwise

All V or

all VB

1028 if disk or tape 6144 if disk or tape and blocked;

1032 if disk or tape and unblocked

All U 0 6144

yes no All F lrecl lrecl

All FB lrecl maximum integral multiple of lrecl

less than or equal to 6144 if disk or

tape and lrecl less than 6144; lrecl if

disk or tape and lrecl greater than or

equal to 6144

All V lrecl lrecl + 4

All VB lrecl 6144 if disk or tape and lrecl less than

6140; lrecl+4 if disk or tape and lrecl

greater than or equal to 6140

All U 0 lrecl

no yes All F or

all FB

blksize blksize

All V or

all VB

minimum of 1028 or blksize - 4 if

blksize greater than 0; 0 otherwise

blksize

All U 0 blksize

Note: “All” includes the standard (S) specifier for fixed formats, the spanned (S) specifier for variable formats, the

ASA print-control character (A) specifier, and the machine control code (M) specifier.

It is possible to have conflicting LRECL and BLKSIZE attributes. The restrictions

are:

v For a V file, LRECL must be greater than 4 bytes and must be at least 4 bytes

smaller than BLKSIZE.

v For an F file, LRECL must be equal to BLKSIZE, and must be at least 1 for

non-tape files and 18 for tape files.

v For an FB file, BLKSIZE must be an integer multiple of LRECL.

v For a U file, LRECL must be less than or equal to BLKSIZE and must be greater

than or equal to 0. BLKSIZE must be at least 1.

v In spanned files, LRECL and BLKSIZE must both be greater than 4.

Opening Files

20 LE/VSE: C Run-Time Programming Guide

The maximum LRECL supported is 32760. The maximum BLKSIZE supported is

65528. Use of a BLKSIZE greater than 32760 requires the appropriate

hardware-device support. To determine the maximum LRECL and BLKSIZE values

for the various file types and devices available on your operating system, refer to

the publications listed in “Where to Find More Information” on page xxi.

LE/VSE C Run-Time cannot always check to ensure that the blocks read from a

disk file are not larger than the block size specified on the call to fopen(). If the

block size specified on the call to fopen() is smaller than the block size specified

when the file was created, storage will be overwritten. No message will be

returned. Therefore, you must ensure that the block size specified on the call to

fopen() matches the block size specified when the file was created.

File Definition Statements

The DLBL, TLBL, ASSGN and EXTENT job control statements are used to define a file to

the operating system, and is a request to the operating system for the allocation of

input/output resources. Each job step must include a DLBL, TLBL and/or ASSGN

statement for each file that is opened by DLBL/TLBL-name, system logical unit or

programmer logical unit.

Your System Control Statements manual describes the syntax of job control

statements. To define a file to the operating system, the following JCL statements

are used:

v For a disk device, use the DLBL JCL statement. The file-ID parameter specifies the

name of the file. BLKSIZE can be specified for a SAM file. (See “How to Specify

RECFM, LRECL, and BLKSIZE” on page 18 for restrictions regarding the

BLKSIZE parameter.) The amount of space can be specified for a SAM ESDS file

using the RECORDS and RECSIZE parameters.

The EXTENT and ASSGN statements specify the volume(s) on which a non-VSAM

file will reside.

v For a magnetic-tape device, use the TLBL and ASSGN JCL statements for a labeled

tape.

For an unlabeled tape, use the ASSGN statement. The TLBL statement must not be

present.

v For a unit-record device, use the ASSGN JCL statement.

The DLBL, TLBL and ASSGN statements enable you to write C source programs that

are independent of the files and input/output devices they will use. You can

modify the parameters of a file or process different files without recompiling your

program.

Opening Files

Chapter 3. Opening Files 21

22 LE/VSE: C Run-Time Programming Guide

Chapter 4. Buffering of C Streams

This chapter describes buffering modes used by LE/VSE C Run-Time, library

functions available to control buffering and methods of flushing buffers.

LE/VSE C Run-Time uses buffers to map C I/O to system-level I/O. When

LE/VSE C Run-Time performs I/O operations, it uses one of the following

buffering modes:

Line buffering

Characters are transmitted to the system as a block when a newline

character is encountered. Line buffering is meaningful only for text

streams.

Full buffering

Characters are transmitted to the system as a block when a buffer is filled.

No buffering

Characters are transmitted to the system as they are written to a memory

file.

The buffer mode affects the way the buffer is flushed. You can use the setvbuf()

and setbuf() library functions to control buffering, but you cannot change the

buffering mode after an I/O operation has used the buffer, as all read, write, and

reposition operations do. In some circumstances, acquiring a position alters the

contents of the buffer. It is strongly recommended that you only use setbuf() and

setvbuf() before any I/O, to conform with ANSI, and to avoid any dependency on

the current implementation. If you use setvbuf(), LE/VSE C Run-Time may or

may not accept your buffer for its internal use.

Full buffering is the default except in the following cases:

v If you are running under CICS, LE/VSE C Run-Time also uses line buffering.

v stderr is line-buffered by default.

v If you are using a memory file, LE/VSE C Run-Time does not use any buffering.

For record I/O files, buffering is meaningful only for blocked files. For unblocked

files, the buffer is full after every write and is therefore written immediately,

leaving nothing to flush. For blocked files, however, the buffer can contain one or

more records that have not been flushed and that require a flush operation for

them to go to the system.

You can flush buffers to the system in several different ways.

v If you are using full buffering, LE/VSE C Run-Time automatically flushes a

buffer when it is filled.

v If you are using line buffering for a text file, LE/VSE C Run-Time flushes a

buffer when you complete it with a control character. Specifying line buffering

for a record I/O or binary file has no effect; LE/VSE C Run-Time treats the file

as if you had specified full buffering.

v LE/VSE C Run-Time flushes buffers to the system when you close a file or end

a program.

v LE/VSE C Run-Time flushes buffers to the system when you call the fflush()

library function, with the following restrictions:

© Copyright IBM Corp. 1995, 2005 23

– A file opened in text mode does not flush data if a record has not been

completed with a newline.

– A file opened in fixed format does not flush incomplete records to the file.

– An FBS file does not flush out a short block unless it is a disk file opened

without the noseek parameter.
v All streams are flushed across system() calls.

If you are reading a record that another user is writing to at the same time, you

can see the new data if you call fflush() to refresh the contents of the input

buffer.

Note: This is not supported for VSAM data sets.

You may not see output if a program that is using input and output fails, and the

error handling routines cannot close all the open files.

Buffering C Streams

24 LE/VSE: C Run-Time Programming Guide

Chapter 5. ASA Text Files

This chapter describes ASA text files, the print-control characters used in ASA files,

how LE/VSE C Run-Time translates the print-control characters, and how LE/VSE

C Run-Time treats ASA files during input and output. The first column of each

record in an ASA file contains a print-control character (' ', '0', '-', '1', or '+') when it

appears in the external medium.

LE/VSE C Run-Time translates print-control characters in ASA files opened for text

processing (r, w, a, r+, w+, or a+). On input, LE/VSE C Run-Time translates ASA

characters to sequences of control characters, as shown in Table 12. On output,

LE/VSE C Run-Time performs the reverse translation. The following sequences of

control characters are translated, and the resultant ASA character becomes the first

character of the following record:

 Table 12. C Control to ASA Characters Translation Table

C Control Character

Sequence ASA Character Description

\n ’ ’ skip one line

\n\n ’0’ skip two lines

\n\n\n ’-’ skip three lines

\f ’1’ new page

\r ’+’ overstrike

If you are writing to the first record or byte of the file and the output data does

not start with a translatable sequence of C control characters, the ' ' ASA

print-control character is written to the file before the specified data.

LE/VSE C Run-Time does not translate or verify control characters when you open

an ASA file for binary or record I/O.

© Copyright IBM Corp. 1995, 2005 25

Example of Writing to an ASA File

EDCXGAS1

 This program writes five records to the file asa.file, as follows:

record=0abcdef

record=1

record=+345

record=-

record= 9034

Note that the last record is " 9034". The last single '\n' does not create a record

with a single control character (' '). If this same file is opened for read, and the

getc() function is called to read the file 1 byte at a time, the same characters as

those that were written out by fputs() in the first program are read.

ASA files are treated as follows:

v If the first record written does not begin with a control character, then a single

newline is written and then followed by data; that is, the ASA character defaults

to a space when none is specified.

v In ASA files, control characters are treated the same way that they are treated in

other text files, with the following exceptions:

'\f' — form feed

Defines a record boundary and determines the ASA character of the

following record. Refer to Table 12 on page 25.

'\n' — newline

Does either of these:

 /* EDCXGAS1

 This example shows how to write to an ASA file

 */

#include <stdio.h>

#define MAX_LEN 80

int main(void) {

 FILE *fp;

 char s[MAX_LEN+1];

 fp = fopen("asa.file", "w,recfm=fba");

 if (fp != NULL) {

 fputs("\n\nabcdef\f\r345\n\n", fp);

 fputs("\n\n9034\n", fp);

 fclose(fp);

 }

 fp = fopen("asa.file", "rb,recfm=fb,type=record");

 if (fp != NULL) {

 fread(s, 1, MAX_LEN, fp);

 while (!feof(fp)) {

 printf("record=%s\n", s);

 fread(s, 1, MAX_LEN, fp);

 }

 fclose(fp);

 }

}

Figure 4. ASA Example

ASA Text Files

26 LE/VSE: C Run-Time Programming Guide

– Defines a record boundary and determines the ASA character of the

following record (see translation table above).

– Modifies the preceding ASA character if the current position is

directly after an ASA character of ' ' or '0' (see translation table

above).

'\r' — carriage return

Defines a record boundary and determines the ASA character of the

following record (see translation table above).
v Records are terminated by writing a newline ('\n'), carriage return ('\r'), or

form feed ('\f') character.

v An ASA character can be updated to any other ASA character.

Updates made to any of the C control characters that make up an ASA cause the

ASA character to change.

If the file is positioned directly after a ' ' or '0' ASA character, writing a '\n'

character changes the ASA character to a '0' or '-' respectively. However, if the

ASA character is a '-', '1' or '+', the '\n' truncates the record (that is, it adds blank

padding to the end of the record), and causes the following record's ASA

character to be written as a ' '. Writing a '\f' or '\r' terminates the record and

start a new one, but writing a normal data character simply overwrites the first

data character of the record.

v You cannot overwrite the ASA character with a normal data character. The

position at the start of a record (at the ASA character) is the logical end of the

previous record. If you write normal data there, you are writing to the end of

the previous record. LE/VSE C Run-Time truncates data for the following files,

except when they are standard streams:

– Variable-format files

– Undefined-format files

– Fixed-format files in which the previous record is full of data
When truncation occurs, LE/VSE C Run-Time raises SIGIOERR and sets both

errno and the error flag.

v Even when you update an ASA print-control character, seeking to a previously

recorded position still succeeds. If the recorded position was at a control

character that no longer exists (because of an update), the reposition is to the

next character. Often, this is the first data character of the record. For example, if

you have the following string:

 \n\n\nHELLO WORLD

]

 x = ftell()

you have saved the position of the third newline. If you then update the ASA

character to a form feed ('\f'), the logical ASA position x no longer exists.

 \fHELLO WORLD

If you call fseek() with the logical position x, it repositions to the next valid

character, which is the letter 'H'.

 \fHELLO WORLD

]

 fseek() to pos x

v If you try to shorten a record when you are updating it, LE/VSE C Run-Time

adds enough blank padding to fill the record.

v The ASA character can represent up to three newlines, which can increase the

logical record length by 1 or 2 bytes.

v Extending a fixed logical record on update implies that the logical end of the

line follows the last written non-blank character.

ASA Text Files

Chapter 5. ASA Text Files 27

v If an undefined text record is updated, the length of the physical records does

not change. If the replacement record is:

– Longer - data characters beyond the record boundary are truncated. At the

point of truncation, the User error flag is set and SIGIOERR is raised (if the

signal is not set up to be ignored). Truncation continues until you do one of

these:

1. write a newline character, carriage return, or form feed to complete the

current record

2. close the file explicitly or implicitly at termination

3. reposition to another position in the file.
– Shorter - the blank character is used to overwrite the rest of the record.

v If you close an ASA file that has a newline as its last character, LE/VSE C

Run-Time does not write the newline to the physical file. The next time you read

from the file or update it, LE/VSE C Run-Time returns the newline to the end of

the file. An exception to this rule happens when you write only a newline to a

new file. In this case, LE/VSE C Run-Time does not truncate the newline; it

writes a single blank to the file. On input, however, you will read two newlines.

v Using ASA format to read a file that contains zero-length records results in

undefined behavior.

v You may have trouble updating a file if two ASA characters are next to each

other in the file. For example, if there is a single-byte record (containing only an

ASA character) immediately followed by the ASA character of the next record,

you are positioned at or within the first ASA character. If you then write a

sequence of '\n' characters intended to update both ASA characters, the '\n's

will be absorbed by the first ASA character before overflowing to the next

record. This absorption may affect the crossing of record boundaries and cause

truncation or corruption of data.

At least one normal intervening data character (for example, a space) is required

between '\n' and '\n' to differentiate record boundaries.

Note: Be careful when you update an ASA file with data containing more than

one consecutive newline—the result of the update depends on how the

original ASA records were structured.

v If you are writing data to a non-blocked file without intervening flush or

reposition requests, each record is written to the system on completion (that is,

when a '\n', '\r' or '\f' character is written or when the file is closed).

If you are writing data to a blocked file without intervening flush or reposition

requests, and the file is opened in full buffering mode, the block is written to the

system on completion of the record that fills the block. If the blocked file is line

buffered, each record is written to the system on completion.

If you are writing data to a spanned file without intervening flush or reposition

requests, and the record spans multiple blocks, each block is written to the

system once it is full and the user writes an additional byte of data.

v If a flush occurs while an ASA character indicating more than one newline is

being updated, the remaining newlines will be discarded and a read will

continue at the first data character. For example, if '\n\n\n' is updated to be

'\n\n' and a flush occurs, then a '0' will be written out in the ASA character

position.

ASA Text Files

28 LE/VSE: C Run-Time Programming Guide

Chapter 6. LE/VSE C Run-Time Support for the Double-Byte

Character Set (DBCS)

The number of characters in some languages such as Japanese or Korean is larger

than 256, the number of distinct values that can be encoded in a single byte. The

characters in such languages are represented in computers by a sequence of bytes,

and are called multibyte characters. This chapter explains how the LE/VSE C

Run-Time supports multibyte characters.

LE/VSE C Run-Time supports the IBM EBCDIC encoding of multibyte characters,

in which each natural language character is uniquely represented by one to four

bytes. The number of bytes that encode a single character depend on the global

shift-state information. If a stream is in initial shift state, one multibyte character is

represented by a sequence of bytes that has the following characteristics:

v It starts with the byte containing the shift-out (0x0e) character.

v The shift-out character is followed by 2 bytes that encode the decimal value of

the character.

v These bytes may be followed by a byte containing the shift-in (0x0f) character.

If the sequence of bytes ends with the shift-in character, the state remains initial,

making this sequence represent a 4-byte multibyte character. Multibyte characters

of various lengths can be normalized by the set of LE/VSE C Run-Time library

functions and encoded in units of one length. Such normalized characters are

called wide characters; in LE/VSE C Run-Time they are represented by two bytes.

Conversions between multibyte format and wide character format can be

performed by string conversion functions such as wcstombs(), mbstowcs(),

wcsrtombs(), and mbsrtowcs(), as well by the family of the wide character I/O

functions. MB_CUR_MAX is defined in the stdlib.h header file. Depending on its

value, either of the following happens:

v When MB_CUR_MAX is 1, all bytes are considered single-byte characters; shift-out

and shift-in characters are treated as data as well.

v When MB_CUR_MAX is 4:

– On input, the wide character I/O functions read the multibyte character from

the streams, and convert them to the wide characters.

– On output, they convert wide characters to multibyte characters and write

them to the output streams.

Both binary and text streams have orientation. Streams opened with type=record do

not. There are three possible orientations of a stream:

Non-oriented

A stream that has been associated with an open file before any operation

other than setbuf() or setvbuf() is performed. Subsequent operations on

a non-oriented stream change the orientation of the stream. You can use

the setbuf() and setvbuf() functions only on a non-oriented stream.

When you use these functions, the stream remains non-oriented. When you

perform one of the wide character input/output operations on a

non-oriented stream, the stream becomes wide-oriented. When you perform

one of the byte input/output operations on a non-oriented stream, the

stream becomes byte-oriented.

Wide-oriented

A stream on which any wide character input/output functions are

© Copyright IBM Corp. 1995, 2005 29

guaranteed to operate correctly. Conceptually, wide-oriented streams are

sequences of wide characters. The external file associated with a

wide-oriented stream is a sequence of multibyte characters. Using byte I/O

functions on a wide-oriented stream results in undefined behavior. A

stream opened for record I/O cannot be wide-oriented.

Byte-oriented

A stream on which any byte input/output functions are guaranteed to

operate properly. Using wide character I/O functions on a byte

input/output stream results in undefined behavior. Byte-oriented streams

have minimal support for multibyte characters.

Calls to the clearerr(), feof(), ferror(), fflush(), fgetpos(), or ftell()

functions do not change the orientation.

Once you have established a stream’s orientation, the only way to change it is to

make a successful call to the freopen() function, which removes a stream’s

orientation.

The wchar.h header file declares the WEOF macro and the functions that support

wide character input and output. The macro expands to a constant expression of

type wint_t. Certain functions return WEOF type when the end-of-file is reached on

the stream.

Note: The behavior of the wide character I/O functions is affected by the

LC_CTYPE category of the current locale, and the setting of MB_CUR_MAX.

Wide-character input and output should be performed under the same

LC_CTYPE setting. If you change the setting between when you read from a

file and when you write to it, or vice versa, you may get undefined

behavior. If you change it back to the original setting, however, you will get

the behavior that is documented. See the introduction of this chapter for a

discussion of the effects of MB_CUR_MAX.

Opening Files

You can use the fopen() or freopen() library functions to open I/O files that

contain wide characters. You do not need to specify any special parameters on

these functions for wide character I/O.

Reading Streams and Files

Wide character input functions read multibyte characters from the stream and

convert them to wide characters. The conversion process is performed in the same

way that the mbrtowc() function performs conversions.

The following LE/VSE C Run-Time library functions support wide character input:

v fgetwc()

v fgetws()

v getwc()

v getwchar()

v swscanf()

In addition, the following byte-oriented functions support handling multibyte

characters by providing conversion specifiers to handle the wchar_t data type:

v scanf()

v fscanf()

Support for DBCS

30 LE/VSE: C Run-Time Programming Guide

v sscanf()

All other byte-oriented input functions treat input as single-byte.

For a detailed description of unformatted and formatted I/O functions, refer to

LE/VSE C Run-Time Library Reference.

The wide-character input/output functions perform the conversions between

multibyte and single-byte states that the mbrtowc() and wcrtomb() functions do.

When you are using wide-oriented input functions, multibyte characters are

converted to wide characters according to the current shift state. Invalid

double-byte character sequences cause conversion errors on input. As LE/VSE C

Run-Time uses wide-oriented functions to read a stream, it updates the shift state

when it encounters shift-out and shift-in characters. Wide-oriented functions

always read complete multibyte characters. Byte-oriented functions do not check

for complete multibyte characters, nor do they maintain information about the shift

state. Therefore, they are not to be used with wide character I/O.

For binary streams, no validation is performed to ensure that records start or end

in initial shift state. For text streams, however, all records must start and end in

initial shift state.

Writing Streams and Files

Wide character output functions convert wide characters to multibyte characters

and write the result to the stream. The conversion process is performed in the

same way that the wcrtomb() function performs conversions.

The following LE/VSE C Run-Time functions support wide character output:

v fputwc()

v fputws()

v swprintf()

v vswprintf()

v putwc()

v putwchar()

In addition, the following byte-oriented functions support handling multibyte

characters by providing conversion specifiers to handle the wchar_t data type:

v printf()

v fprintf()

v sprintf()

All other output functions do not support the wchar_t data type. However, all of

the output functions support multibyte character output for text streams if

MB_CUR_MAX is 4.

For a detailed description of unformatted and formatted I/O functions, refer to

LE/VSE C Run-Time Library Reference.

Writing Text Streams

When you are using wide-oriented output functions, wide characters are converted

to multibyte characters. For text streams, all records must start and end in initial

Support for DBCS

Chapter 6. LE/VSE C Run-Time Support for the Double-Byte Character Set (DBCS) 31

shift state. The wide-character functions add shift-out and shift-in characters as

they are needed. When the file is closed, a shift-in character may be added to

complete the file in initial shift state.

When you are using byte-oriented functions to write out multibyte data, LE/VSE C

Run-Time starts each record in initial shift state and makes sure you complete each

record in initial shift state before moving to the next record. When a string starts

with a shift-out, all data written is treated as multibyte, not single-byte. This means

that you cannot write a single-byte control character (such as a newline) until you

complete the multibyte string with a shift-in character.

Attempting to write a second shift-out character before a shift-in is not allowed.

LE/VSE C Run-Time truncates the second shift-out and raises SIGIOERR if SIGIOERR

is not set to SIG_IGN.

When you do write a shift-in character to an incomplete multibyte character,

LE/VSE C Run-Time completes the multibyte character with a padding character

(0xfe) before it writes the shift-in. The padding character is not counted as an

output character in the total returned by the output function; you will never get a

return code indicating that you wrote more characters than you provided. If

LE/VSE C Run-Time adds a padding character, however, it does raise SIGIOERR, if

SIGIOERR is not set to SIG_IGN.

Control characters written before the shift-in are treated as multibyte data and are

not interpreted or validated.

When you close the file, LE/VSE C Run-Time ensures that the file ends in initial

shift state. This may require adding a shift-in and possibly a padding character to

complete the last multibyte character, if it is not already complete. If padding is

needed in this case, LE/VSE C Run-Time does not raise SIGIOERR.

Multibyte characters are never split across record boundaries. In addition, all

records end and start in initial shift state. When a shift-out is written to the file,

either directly or indirectly by wide-oriented functions, LE/VSE C Run-Time

calculates the maximum number of complete multibyte characters that can be

contained in the record with the accompanying shift-in. If multibyte output

(including any required shift-out and shift-in characters) does not fit within the

current record, the behavior depends on what type of file it is (a memory file has

no record boundaries and so never has this particular problem). For a standard

stream, data is wrapped from one record to the next. Shift characters may be

added to ensure that the first record ends in initial shift state and that the second

record starts in the required shift state.

For files that are not standard streams or memory files, any attempt to write data

that does not fit into the current record results in data truncation. In such a case,

the output function returns an error code, raises SIGIOERR, and sets errno and the

error flag. Truncation continues until initial state is reached and a newline is

written to the file. An entire multibyte stream may be truncated, including the

shift-out and shift-in, if there are not at least two bytes in the record. For a

wide-oriented stream, truncation stops when a wchar_t newline character is written

out.

Updating a wide-oriented file or a file containing multibyte characters is strongly

discouraged, because your update may overwrite part of a multibyte string or

character, thereby invalidating subsequent data. For example, you could

Support for DBCS

32 LE/VSE: C Run-Time Programming Guide

inadvertently add data that overwrites a shift-out. The data after the shift-out is

meaningless when it is treated in initial shift state. Appending new data to the end

of the file is safe for a wide-oriented file.

Writing Binary Streams

When you are using wide-oriented output functions, wide characters are converted

to multibyte characters. No validation is performed to ensure that records start or

end in initial shift state. When the file is closed, any appends are completed with a

shift-in character, if it is needed to end the stream in initial shift state. If you are

updating a record when the stream is closed, the stream is flushed. See “Flushing

Buffers” for more information.

Byte-oriented output functions do not interpret binary data. If you use them for

writing multibyte data, ensure that your data is correct and ends in initial shift

state.

Updating a wide-oriented file or a file containing multibyte characters is strongly

discouraged (see “Writing Text Streams” on page 31 for details.)

If you update a record after you call fgetpos(), the shift state may change. Using

the fpos_t value with the fsetpos() function may cause the shift state to be set

incorrectly.

Flushing Buffers

You can use the library function fflush() to flush streams to the system. For more

information about fflush(), see LE/VSE C Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode

associated with the stream and the type of stream. If you call one LE/VSE C

Run-Time program from another LE/VSE C Run-Time program by using the ANSI

system() function, all open streams are flushed before control is passed to the

callee.

Flushing Text Streams

When you call fflush() after updating a text stream, fflush() calculates your

current shift state. If you are not in initial shift state, LE/VSE C Run-Time looks

forward in the record to see whether a shift-in character occurs before the end of

the record or any shift-out. If not, LE/VSE C Run-Time adds a shift-in to the data

if it will not overwrite a shift-out character. The shift-in is placed such that there

are complete multibyte characters between it and the shift-out that took the data

out of initial state. LE/VSE C Run-Time may accomplish this by skipping over the

next byte in order to leave an even number of bytes between the shift-out and the

added shift-in.

Updating a wide-oriented or byte-oriented multibyte stream is strongly

discouraged. In a byte-oriented stream, you may have written only half of a

multibyte character when you call fflush(). In such a case, LE/VSE C Run-Time

adds a padding byte before the shift-out. For both wide-oriented and byte-oriented

streams, the addition of any shift or padding character does not move the current

file position.

Calling fflush() has no effect on the current record when you are writing new

data to a wide-oriented or byte-oriented multibyte stream, because the record is

incomplete.

Support for DBCS

Chapter 6. LE/VSE C Run-Time Support for the Double-Byte Character Set (DBCS) 33

Flushing Binary Streams

In a wide-oriented stream, calling fflush() causes LE/VSE C Run-Time to add a

shift-in character if the stream does not already end in initial shift state. In a

byte-oriented stream, calling fflush() causes no special behavior beyond what a

call to fflush() usually does.

ungetwc() Considerations

ungetwc() pushes wide characters back onto the input stream for binary and text

files. You can use it to push one wide character onto the ungetwc() buffer. Never

use ungetc() on a wide-oriented file. After you call ungetwc(), calling fflush()

backs up the file position by one wide character and clears the pushed-back wide

character from the stream. Backing up by one wide character skips over shift

characters and backs up to the start of the previous character (whether single-byte

or double-byte). For text files, LE/VSE C Run-Time counts the newlines added to

the records as single-byte characters when it calculates the file position. For

example, if you have the following stream:

 you can run the following code fragment:

 You can set the _EDC_COMPAT environment variable before you open the file, so

that fflush() ignores any character pushed back with ungetwc() or ungetc(), and

leaves the file position where it was when ungetwc() or ungetc() was first issued.

Any characters pushed back are still cleared. For more information about

_EDC_COMPAT, see Chapter 21, “Using Environment Variables,” on page 219.

Setting Positions within Files

The following conditions apply to text streams and binary streams.

Repositioning within Text Streams

When you use the fseek() or fsetpos() function to reposition within files,

LE/VSE C Run-Time recalculates the shift state.

 fgetwc(fp); /* Returns X'00C1' (the hexadecimal */

 /* wchar representation of A) */

 fgetwc(fp); /* Returns X'00C2' (the hexadecimal */

 /* wchar representation of B) */

 fgetwc(fp); /* Returns X'7FFE' (the hexadecimal */

 /* wchar representation of the DBCS */

 /* character) between the SO and SI */

 /* characters; leaves file position at C */

 ungetwc(’Z’,fp); /* Logically inserts Z before SI character */

 fflush(fp); /* Backs up one wchar, leaving position at */

 /* beginning of X'7FFE' DBCS char */

 /* and DBCS state in double-byte mode; */

 /* clears Z from the logical stream */

Figure 5. ungetwc() Example

Support for DBCS

34 LE/VSE: C Run-Time Programming Guide

If you update a record after a successful call to the fseek() function or the

fsetpos() function, a partial multibyte character can be overwritten. Calling a

wide character function for data after the written character can result in undefined

behavior.

Use the fseek() or fsetpos() functions to reposition only to the start of a

multibyte character. If you reposition to the middle of a multibyte character,

undefined behavior can occur.

Repositioning within Binary Streams

When you are working with a wide-oriented file, keep in mind the state of the file

position that you are repositioning to. If you call ftell(), you can seek with

SEEK_SET and the state will be reset correctly. You cannot use such an ftell()

value across a program boundary unless the stream has been marked

wide-oriented. A seek specifying a relative offset (SEEK_CUR or SEEK_END) will

change the state to initial state. Using relative offsets is strongly discouraged,

because you may be seeking to a point that is not in initial state, or you may end

up in the middle of a multibyte character, causing wide-oriented functions to give

you undefined behavior. These functions expect you to be at the beginning or end

of a multibyte character in the correct state. Using your own offset with SEEK_SET

also does the same. For a wide-oriented file, the number of valid bytes or records

that ftell() supports is cut in half.

When you use the fsetpos() function to reposition within a file, the shift state is

set to the state saved by the function. Use this function to reposition to a wide

character that is not in the initial state.

ungetwc() Considerations

For text files, the library functions fgetpos() and ftell() take into account the

character you have pushed back onto the input stream with ungetwc(), and move

the file position back by one wide character. The starting position for an fseek()

call with an origin of SEEK_CUR also takes into account this pushed-back wide

character. Backing up one wide character means backing up either a single-byte

character or a multibyte character, depending on the type of the preceding

character. The implicit newlines at the end of each record are counted as wide

characters.

For binary files, the library functions fgetpos() and ftell() also take into account

the character you have pushed back onto the input stream with ungetwc(), and

adjust the file position accordingly. However, the ungetwc() must push back the

same type of character just read by fgetwc(), so that ftell() and fgetpos() can

save the state correctly. An fseek() with an origin of SEEK_CUR also accounts for

the pushed-back character. Again, the ungetwc() must “unget” the same type of

character for this to work properly. If the ungetwc() pushes back a character in the

opposite state, you will get undefined behavior.

You can make only one call to ungetwc(). If the current logical file position is

already at or before the first wchar in the file, a call to ftell() or fgetpos() after

ungetwc() fails.

When you are using fseek() with an origin of SEEK_CUR, the starting point for the

reposition also accounts for the presence of ungetwc() characters and compensates

as ftell() and fgetpos() do. Specifying a relative offset other than 0 is not

supported and results in undefined behavior.

Support for DBCS

Chapter 6. LE/VSE C Run-Time Support for the Double-Byte Character Set (DBCS) 35

You can set the _EDC_COMPAT environment variable to specify that ungetwc()

should not affect fgetpos() or fseek(). (It will still affect ftell().) If the

environment variable is set, fgetpos() and fseek() ignore any pushed-back wide

character. See Chapter 21, “Using Environment Variables,” on page 219 for more

information about _EDC_COMPAT.

If a repositioning operation fails, LE/VSE C Run-Time attempts to restore the

original file position by treating the operation as a call to fflush(). It does not

account for the presence of ungetwc() characters, which are lost.

Closing Files

LE/VSE C Run-Time expects files to end in initial shift state. For binary

byte-oriented files, you must ensure that the ending state of the file is initial state.

Failure to do so results in undefined behavior if you reaccess the file again. For

wide-oriented streams and byte-oriented text streams, LE/VSE C Run-Time tracks

new data that you add. If necessary, LE/VSE C Run-Time adds a padding byte to

complete any incomplete multibyte character and a shift-in to end the file in initial

state.

Support for DBCS

36 LE/VSE: C Run-Time Programming Guide

Chapter 7. Standard Streams and Redirection

A C program has associated with it standard streams. You do not have to open these

streams, because they are automatically set up for you by C when you include the

stdio.h header file. Table 13 below shows three standard streams for C and the

functions that implicitly use them.

 Table 13. C Standard Streams

Name of

stream Purpose Functions that use it

stdin The input device from which your C program usually retrieves its data. getchar() scanf()

gets()

stdout The output device to which your C program normally directs its output. printf() puts()

putchar()

stderr The output device to which your C program directs its diagnostic messages.

LE/VSE C Run-Time uses stderr to collect error messages about exceptions

that occur.

perror()

On I/O operations requiring a file pointer, you can use stdin, stdout, or stderr in

the same manner as you would any other file pointer.

The default behavior for the C standard streams is for them to open automatically

on first reference. You do not have to call fopen() to open them. For example:

 printf("%d\n",n);

with no preceding fopen() statement writes the decimal number n to the stdout

stream.

By default, stdin interprets the character sequence /* as indicating that the end of

the file has been reached.

Default Open Modes

The default open modes for the C standard streams are:

stdin r

stdout w

stderr w

Where the streams go depends on what kind of environment you are running

under. These are the defaults:

v Under VSE batch:

– stdin goes to SYSIPT. If SYSIPT cannot be opened, all read operations from

stdin will fail.

– stdout goes first to SYSLST; if SYSLST cannot be opened, the stdout stream is

sent to stderr.

– stderr will go to the LE/VSE MSGFILE.

© Copyright IBM Corp. 1995, 2005 37

v Under CICS:

– stdin is not supported under CICS.

– stdout and stderr are assigned to transient data queues, allocated during

CICS initialization. The CICS standard streams can be redirected only to or

from memory files. You can do this by using freopen().

You can also redirect the standard streams to other files. See “Using the

Redirection Symbols” and sections following.

Using the Redirection Symbols

The following table lists the redirection symbols supported by LE/VSE C

Run-Time for redirection of C standard streams from the PARM parameter of the

EXEC statement or from a system() call. 0, 1, and 2 represent stdin, stdout, and

stderr, respectively.

 Table 14. LE/VSE C Run-Time Redirection Symbols

Symbol Description

<fn associates the file specified as fn with stdin; reopens fn in mode r.

0<fn associates the file specified as fn with stdin; reopens fn in mode r.

>fn associates the file specified as fn with stdout; reopens fn in mode w.

1>fn associates the file specified as fn with stdout; reopens fn in mode w.

>>fn associates the file specified as fn with stdout; reopens fn in mode a.

2>fn associates the file specified as fn with stderr; reopens fn in mode w.

2>> fn associates the file specified as fn with stderr; reopens fn in mode a.

2>&1 associate stderr with stdout; same file and mode.

1>&2 associate stdout with stderr; same file and mode.

In Table 14, fn can be specified as either a DLBL/TLBL-name and/or a logical unit, or

as a file ID.

Notes:

1. If you use the NOREDIR option on a #pragma runopts directive, you cannot

redirect standard streams using the preceding list of symbols.

2. If you want to pass one of the redirection symbols as an argument, you can

enclose it in double quotation marks.

3. When two options specifying redirection conflict with each other, or when you

redirect a standard stream more than once, the redirection fails. If you do the

latter, you will get an abend. For example, if you specify

 2>&1

and then

 1>&2

LE/VSE C Run-Time uses the first redirection and ignores any subsequent

ones. If you specify

 >a.out

and then

 1>&2

the redirection fails and the program abends.

Standard Streams & Redirection

38 LE/VSE: C Run-Time Programming Guide

4. A failed attempt to redirect a standard stream causes your program to fail in

initialization.

Assigning the Standard Streams

You can redirect a C standard stream by assigning a valid file pointer to it, as

follows:

 FILE *stream;

 stream = fopen("new.file", "w+");

 stdout = stream;

This method of redirecting streams is known as direct assignment.

You must ensure that the streams are appropriate; for example, do not assign a

stream opened for w to stdin. Doing so would cause a function such as getchar()

called for the stream to fail, because getchar() expects a stream to be opened for

read access.

Using the freopen() Library Function

You can use the freopen() C library function to redirect C standard streams in all

environments.

Redirecting Streams with the MSGFILE Option

You can redirect stderr by specifying a DLBL/TLBL-name and/or a logical unit on

the MSGFILE run-time option and not redirecting stderr elsewhere (such as on the

PARM parameter of the EXEC statement). The default logical unit for the LE/VSE

MSGFILE is SYSLST. See LE/VSE Programming Guide for more information on MSGFILE.

MSGFILE Considerations

LE/VSE C Run-Time makes a distinction between types of error output according

to whether the output is directed to the MSGFILE, to stderr, or to stdout:

 Table 15. Output Destinations under LE/VSE C Run-Time

Destination of

Output

Type of Message Produced by Default Destination

MSGFILE output LE/VSE messages

(CEExxxx)

LE/VSE conditions LE/VSE MSGFILE

LE/VSE C Run-Time

language messages

(EDCxxxx)

LE/VSE C Run-Time

unhandled conditions

LE/VSE MSGFILE

stderr messages perror() messages

(EDCxxxx)

Issued by a call to

perror()

LE/VSE MSGFILE

User output sent

explicitly to stderr

Issued by a call to

fprintf()

LE/VSE MSGFILE

stdout messages User output sent

explicitly to stdout

Issued by a call to

printf()

stdout

Table 16 on page 40 describes the destination of output to stderr and stdout after

redirection has occurred. Whenever stdout and stderr share a common

destination, the output is interleaved. The default case is the one where stdout and

stderr have not been redirected.

Standard Streams & Redirection

Chapter 7. Standard Streams and Redirection 39

Table 16. LE/VSE C Run-Time Interleaved Output

stderr not redirected stderr redirected to

destination other

than stdout

stderr redirected to

stdout

stdout not redirected stdout to itself

 stderr to MSGFILE

stdout to itself

 stderr to its other

destination

Both to stdout

stdout redirected to

destination other

than stderr

stdout to its other

destination

 stderr to MSGFILE

stdout to its other

destination

 stderr to its other

destination

Both to the new

stdout destination

stdout redirected to

stderr

Both to MSGFILE Both to the new

stderr destination

stdout to stderr

 stderr to stdout

LE/VSE C Run-Time routes error output as follows:

v MSGFILE output

– LE/VSE messages (messages prefixed with CEE)

– Language messages (messages prefixed with EDC)
v stderr output

– perror() messages (messages prefixed with EDC and issued by a call to

perror())

– Output explicitly sent to stderr (for example, by a call to fprintf())

By default, LE/VSE C Run-Time sends all stderr output to the MSGFILE destination

and stdout output to its own destination. You can change this by using LE/VSE C

Run-Time redirection, which enables you to redirect stdout and stderr to a

DLBL/TLBL-name and/or a logical unit, a file ID, or each other. Unless you have

redirected stderr, it always uses the MSGFILE destination. When you redirect

stderr to stdout, stderr and stdout share the stdout destination. When you

redirect stdout to stderr, they share the stderr destination.

Redirecting Streams

This section describes how to redirect C standard streams under VSE.

Under VSE Batch

You can redirect standard streams in the following ways:

v From the freopen() library function call

v On the PARM parameter of the EXEC statement used to invoke your C program

v Using ASSGN statements

Because the topic of JCL statements goes beyond the scope of this book, only

simple examples will be shown here.

Using the PARM Parameter of the EXEC Statement

The following example shows an excerpt taken from a job stream. It demonstrates

the redirection of stdout using the PARM parameter of the EXEC statement:

Standard Streams & Redirection

40 LE/VSE: C Run-Time Programming Guide

The standard streams can only be redirected to files where the file attributes can be

determined by LE/VSE C Run-Time or where defaults are used for the file

attributes. The files that standard streams can be redirected to are as follows:

v Unit record devices (for example, card readers/punches, printers, system logical

units)

v SAM ESDS files that have been explicitly defined

v VSAM ESDS data sets

v Memory files

The files that standard streams cannot be redirected to are as follows:

v SAM files other than SAM ESDS files

v SAM ESDS files that have not been explicitly defined

v Tape devices

v Members of VSE/Librarian sublibraries

Using ASSGN Statements

When you use ASSGN statements to redirect standard streams, the standard streams

will be associated with system logical units as follows:

v stdin will be associated with SYSIPT. If SYSIPT is not assigned, no characters can

be read in from stdin.

v stdout will be associated with SYSLST. If SYSLST is not assigned, no characters

can be written to stdout.

v stderr will be associated with SYSLST (assuming that the LE/VSE &msgfile is

directed to SYSLST as stderr is directed to the LE/VSE MSGFILE). If SYSLST is not

assigned, no characters can be written to stderr.

The following example shows an excerpt taken from a job stream. It demonstrates

the redirection of the three standard streams using DLBL, EXTENT and ASSGN

statements:

 KNOWN: - The program name is BATCHPGM

 - The program has 1 required parameter. In this example, we

 will use ’DEBUG’ for the required parameter

 - The output from BATCHPGM is to be directed to a sequential

 file called ’MAINT.LOG.LISTING’

 USE THE FOLLOWING JCL statements:

 // JOB jobname

 // EXEC BATCHPGM,SIZE=BATCHPGM,PARM=’DEBUG >’’MAINT.LOG.LISTING’’ ’

 .

 .

 .

Figure 6. Redirecting stdout under VSE Batch

Standard Streams & Redirection

Chapter 7. Standard Streams and Redirection 41

Redirecting Streams under CICS

There are several ways to redirect C standard streams under CICS:

v You can assign a memory file to the stream (for example, stdout=myfile).

v You can use freopen() to open a standard stream as a memory file.

v You can use CICS facilities to direct where the stream output goes.

If you assign a file pointer to a stream or use freopen() on it, you will not be able

to use C functions to direct the information outside or elsewhere in the CICS

environment. Once access to a CICS transient data queue has been removed, either

by a call to freopen() or fclose(), or by the assignment of another file pointer to

the stream, LE/VSE C Run-Time does not provide a way to regain access. Once C

functions have lost access to the transient data queues, you must use the

CICS-provided facilities to regain it.

CICS provides a facility that enables you to direct where a given transient data

queue, the default standard stream implementation, will go, but you must

configure this facility before a CICS cold start.

Passing Standard Streams across a system() Call

A system() call occurs when one LE/VSE C Run-Time program calls another

LE/VSE C Run-Time program by using the system() function. Standard streams

are inherited across calls to the ANSI system() function.

Inheritance includes any redirection of the stream as well as the open mode of the

stream. For example, if program A reopens stdout as "A.B" for "wb" and then calls

program B, program B inherits the definition of stdout. If program B reopens

stdout as "C.D" for "ab" and then uses system() to call program C, program C

inherits stdout opened to "C.D" for append. Once control returns to the calling

program, the definitions of the standard streams from the time of the system() call

 KNOWN: - The program name is MONITOR

 - The input to MONITOR is to be retrieved from a sequential

 file called ’SAFETY.CHEM.LIST’

 - The output of MONITOR is to be directed to a new sequential

 file called ’YEAREND.ACTION.CHEM’

 - Any errors generated by MONITOR are to be directed to a new

 sequential file called ’YEAREND.ACTION.CHEM’

 USE THE FOLLOWING JCL statements:

 // JOB jobname

 // DLBL IJSYSIN,’SAFETY.CHEM.LIST’,0,SD

 // EXTENT SYSIPT

 ASSGN SYSIPT,DISK,VOL=volser,SHR

 // DLBL IJSYSLS,’YEAREND.ACTION.CHEM’,0,SD

 // EXTENT SYSLST,volser,...

 ASSGN SYSLST,DISK,VOL=volser,SHR

 .

 .

 .

 // EXEC MONITOR,SIZE=MONITOR

 CLOSE SYSIPT,SYSRDR

 CLOSE SYSLST,PRT1

 .

 .

 .

Figure 7. Redirecting Standard Streams Using ASSGN Statements

Standard Streams & Redirection

42 LE/VSE: C Run-Time Programming Guide

are restored. For example, when program B finally returns control to program A,

stdout is restored to "A.B" opened for "wb".

The file position and the amount of data that is visible in the called and calling

programs depend on whether the standard streams are opened for binary, text, or

record I/O.

Since the I/O Stream standard streams are implemented in terms of the C standard

streams, behavior of the I/O Stream standard streams across a system() call is

based on the behavior of the C standard streams across system().

Passing Binary Streams

If the standard stream being passed across a system() call is opened in binary

mode, any reads or writes issued in the called program occur at the next byte in

the file. On return, the position of the file is wherever the called program is

positioned. This includes any possible repositions made by the called program if

the file is enabled for positioning. Because output to binary files is done byte by

byte, all bytes are written to stdout and stderr in the order they are written. This

is shown in the following example:

 printf("123");

 printf("456");

 system("CHILD"); ──= int main(void) { putc(’7’,stdout);}

 printf("89")

The output from this example is:

 123456789

Memory files are always opened in binary mode, even if you specify text. Any

standard streams redirected to memory files and passed across system() calls will

be treated as binary files.

If freopen() is applied to a C standard stream, thereby creating a binary stream,

the results of I/O to the associated I/O Stream standard stream across a system()

call are undefined.

Passing Text Streams

If the C standard stream being passed across a system() call is opened in text

mode (the default), the file position in the called program is placed at the next

record boundary, if it is not already at the start of a record. Any data in the current

record that is unread is skipped. Here is an example:

 INPUT FILE ROOT C PROGRAM CHILD PROGRAM

 ---------- int main() { int main() {

 abcdefghijklm char c[4] char d[2]

 nopqrstuvwxyz c[0] = getchar(); d[0] = getchar();

 0123456789ABC c[1] = getchar(); d[1] = getchar();

 DEFGHIJKLMNOP system("CHILD"); printf("%.2s\n",

 c[2] = getchar(); d);

 c[3] = getchar(); }

 printf("%.4s\n",c);

 }

 OUTPUT

 no ──= from the child

 ab01 ──= from root

Standard Streams & Redirection

Chapter 7. Standard Streams and Redirection 43

When you write to a spanned file, the file position moves to the beginning of the

next record, if that record exists. If not, the position moves to the end of the

incomplete record.

For non-spanned standard streams opened for output, if the caller has created a

text record missing an ending control character, the last record is hidden from the

called program. The called program can append new data if the stream is open in

append mode. Any appends made by the called program will be after the last

record that was complete at the time of the system() call.

When the called program terminates, it completes any new unfinished text record

with a newline; the addition of the newline does not move the file position. Once

any incomplete record is completed, the file position moves to the next record

boundary, if it is not already on a record boundary or at EOF.

When control returns to the original caller, any incomplete record hidden at the

time of the system() call is restored to the end of the file. If the called program is

at EOF when it is terminated and the caller was within an incomplete record at the

time of the system() call, the position upon return is restored to the original record

offset at the time of the system() call. This position is usually the end of the

incomplete record. Generally, if the caller is writing to a standard stream and does

not complete the last record before it calls system(), writes continue to add to the

last record when control returns to the caller. For example:

 printf("test\n");

 printf("abc");

 system("hello"); ──= int main(void) { printf("hello world\n"); }

 printf("def\n");

The output from this example is as follows:

 test

 hello world

 abcdef

If stdout had been opened for "w+" in this example, and a reposition had been

made to the character 'b' before the system() call, upon return, the incomplete

record "abc" would have been restored and the position would have been at the

'b'. The subsequent write of def would have performed an update to give:

 test

 hello world

 adef

Passing Record I/O Streams

For record I/O, all reads and writes made by the called program occur at the next

record boundary. Since complete records are always read and written, there is no

change in the file position across a system() call boundary.

In the following example, stdout is a variable-length record I/O file.

 fwrite("test",1,4,stdout);

 fwrite("abc",1,3,stdout);

 system("hello"); ──= int main(void) {

 fwrite("def",1,3,stdout); fwrite("hello world",1,11,stdout);

 }

Standard Streams & Redirection

44 LE/VSE: C Run-Time Programming Guide

The output from this code fragment is as follows:

 test

 abc

 hello world

 def

Standard Streams & Redirection

Chapter 7. Standard Streams and Redirection 45

Standard Streams & Redirection

46 LE/VSE: C Run-Time Programming Guide

Chapter 8. Performing SAM I/O Operations

This chapter describes using SAM I/O under VSE batch. SAM I/O includes

support for the following:

v Sequential disk files (SAM and VSAM-managed SAM)

v Non-disk files, such as tapes, printers, etc.

Notes:

1. LE/VSE C Run-Time does not support BDAM or ISAM files.

2. LE/VSE C Run-Time does not support SAM I/O under CICS. All I/O under

CICS must be via the CICS command level interface.

SAM I/O supports text, binary, and record I/O, in three record formats, fixed (F),

variable (V), and undefined (U).

See Chapter 6, “LE/VSE C Run-Time Support for the Double-Byte Character Set

(DBCS),” on page 29 for information about using wide-character I/O with LE/VSE

C Run-Time.

Opening Files

To open a SAM file, use the standard C fopen() or freopen() library functions.

These are described in general terms in LE/VSE C Run-Time Library Reference

Details about them specific to all LE/VSE C Run-Time I/O are discussed in

Chapter 3, “Opening Files,” on page 15. This section describes considerations for

using fopen() and freopen() with SAM files.

Note: The freopen() function cannot be used with SAM ESDS files when

DISP=(,DELETE) has been specified on the DLBL statement.

Using fopen() or freopen()

Files are opened with a call to fopen() or freopen() in the format:

fopen("filename", "mode").

Filenames for SAM Files

Using a File ID: The syntax for the filename argument on your fopen() or

freopen() call when using a file ID is shown in the following diagram:

==

(1)

'

C

 ,

qualifier

'

=B

Notes:

1 The single quotation marks must be matched; if you use one, you must use

the other.

A sample construct is:

'qualifier1.qualifier2'

© Copyright IBM Corp. 1995, 2005 47

' When you enclose a file ID in single quotation marks, the file ID is fully

qualified. The file opened is the one specified by the file ID inside the quotation

marks. If the file ID is not fully qualified, LE/VSE C Run-Time adds the job

name to the front of the file ID. For example, the statement fopen("a.b","w");

opens a file jobname.A.B, where jobname is the name of the job submitted. If the

file ID is fully qualified, LE/VSE C Run-Time does not add a job name.

qualifier

Each qualifier is a 1- to 8-character name. These characters may be

alphanumeric, national ($, #, @), the hyphen, or the character X’C0’. The first

character should be either alphabetic or national.

 You can join qualifiers with periods. The maximum length of a file ID is 44

characters, including periods.

Using a DLBL/TLBL-name and/or Logical Unit: The syntax for the filename

argument on your fopen() or freopen() call when using a DLBL/TLBL-name and/or

logical unit is shown in the following diagram:

== DD: DLBL

LU

(1)

DLBL

(2)

TLBL

 =B

Notes:

1 If both LU and DLBL or TLBL are specified, a dash (-) must be used as

separator (no blanks are allowed).

2 If both LU and DLBL or TLBL are specified, a dash (-) must be used as

separator (no blanks are allowed).

LU

Can be either a system logical unit (SYSIPT, SYSLST, SYSPCH, SYSLNK, or SYSLOG)

or a programmer logical unit (SYS000 to SYS254).

DLBL or TLBL

A 1- to 8-character name of which at most the first 7 characters are used. These

characters may be alphanumeric or national ($, #, @). The first character must

be either alphabetic or national.

LE/VSE C Run-Time interprets the above as follows:

1. If the first or only parameter following DD: is a system logical unit (for

example, SYSLST), the system logical unit will be opened.

2. If a DLBL JCL statement is present for the DLBL specified, a disk file will be

opened.

3. If a TLBL JCL statement is present for the TLBL specified, a labeled tape file will

be opened. The programmer logical unit must also be specified as shown in the

above diagram.

4. If neither a DLBL nor a TLBL JCL statement is present for the DLBL or TLBL

specified, the programmer logical unit (if specified) will be checked to

determine if it is assigned. If it is assigned to a tape device, an unlabeled tape

file will be opened. If it is assigned to a card or printer device, the card or

printer device will be opened.

SAM I/O Operations

48 LE/VSE: C Run-Time Programming Guide

Specification of logical unit is ignored for a SAM ESDS file which must be opened

using a DLBL-name.

Tapes

LE/VSE C Run-Time supports standard label (SL) tapes. If you are creating labeled

tape files, you can only open them by TLBL. LE/VSE C Run-Time provides support

for opening tapes in read, write, or append mode, but not update. When you open

a tape for read or append, any file attributes you specify must match those of the

existing file exactly. The only repositioning function supported for tape files is

rewind(), which is available only when you have opened a tape for read. For tape

files opened for write or append, calling rewind() has no effect. Calls to any

repositioning function other than rewind() will fail.

Opening FBS-format tape files with append-only mode will fail.

When you open a tape file for output, the file ID you specify in the JCL must

match the file ID specified in the tape label, even if the existing tape file is empty.

If this is not the case, you must either change the JCL to specify the correct file ID

or write to another tape file, or reinitialize the tape to remove the tape label and

the data.

You can append only to an existing file on tape. Attempting to append to a file

that does not already exist on a tape will cause an error. You can create an empty

file on a tape by opening the file for write and closing it without writing any data

to it.

If a TLBL exists for the tape file, the file will be opened with standard labels.

Otherwise it will be opened as unlabeled.

Multivolume Files

LE/VSE C Run-Time supports files that span more than one volume of disk or

tape. To open a multivolume file for write, you must open it by DLBL/TLBL-name.

You can open multivolume tape files only for read or write. Opening them for

update or append is not supported.

You can open multivolume disk files for read, write, or update, but not for append.

If you open one in r+ or rb+ mode, you can read and update the file, but you

cannot extend the file.

The only repositioning function which is supported for multivolume files is

rewind(); calls to any of the other repositioning functions fail.

Other Devices

LE/VSE C Run-Time supports several other devices for input and output (for

example, card and printer). You can open these devices only by DLBL-name.

The only repositioning function supported for card reader devices is rewind(). No

repositioning functions are supported for output-only devices such as card punch

devices and printers.

Although LE/VSE C Run-Time supports I/O operations on the system log using

the system logical unit SYSLOG, the actual interface is different from that of other

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 49

file types. As a result, most fopen() parameters are not applicable to this file. If

records which are longer than 68 bytes are written to SYSLOG, they will be

wrapped.

fopen() and freopen() Parameters

The following table lists the parameters that are available on the fopen() and

freopen() functions, tells you which ones are allowed and applicable for SAM

I/O, and lists the option values that are valid for the applicable ones. Detailed

descriptions of these options follow the table.

 Table 17. Parameters for the fopen() and freopen() Functions for SAM I/O

Parameter Allowed? Applicable? Notes

recfm= Yes Yes Any of the 27 record formats available under

LE/VSE C Run-Time, plus A are valid. See the

parameter list below for details.

lrecl= Yes Yes 0 or any positive integer up to 32760 is valid. See

the parameter list below for details.

blksize= Yes Yes 0 or any positive integer up to 65528 is valid. See

the parameter list below for details.

space= Yes Yes Valid for VSAM-managed SAM only. See the

parameter list below for details.

type= Yes Yes May be omitted. If you do specify it, type=record is

the only valid value.

acc= Yes No Not used for SAM I/O.

password= Yes No Not used for SAM I/O.

asis Yes No Ignored.

byteseek Yes Yes Used for binary files to specify that the seeking

functions should use relative byte offsets instead of

encoded offsets. See the parameter list below for

details.

noseek Yes Yes Used to disable seeking functions for improved

performance. See the parameter list below for

details.

OS Yes No Ignored.

rewind= Yes Yes This parameter is supported for tape files only. See

the parameter list below for details.

dsn= Yes No Ignored.

recfm=

LE/VSE C Run-Time allows you to specify any of the 27 possible RECFM

types (listed on pages 6, 9, and 12), as well as the LE/VSE C Run-Time

RECFM A.

 When you are opening an existing file for read or append (or for write, if you

have specified DISP=SHR for a disk file or DISP=SHR/DISP=MOD for a tape file),

any RECFM that you specify must match that of the existing file, except that

you may specify recfm=U to open any file for read, and you may specify

recfm=FBS for a file created as recfm=FB. Specifying recfm=FBS indicates to

LE/VSE C Run-Time that there are no short blocks within the file. If there are,

undefined behavior results.

 For variable-format SAM files, the RDW, SDW, and BDW contain the length of

the record, segment, and block as well as their own lengths. If you open a file

SAM I/O Operations

50 LE/VSE: C Run-Time Programming Guide

for read with recfm=U, LE/VSE C Run-Time treats each physical block as an

undefined-format record. For files created with recfm=V, LE/VSE C Run-Time

does not strip off block descriptor words (BDWs) or record descriptor words

(RDWs), and for blocked files, it does not deblock records. Using recfm=U is

helpful for viewing variable-format files or seeing how records are blocked in

the file.

 Specifying recfm=A indicates that the file contains ASA print-control characters.

If you create a file by opening it for write or append, the A attribute is added

to the default RECFM. For more information about ASA, see Chapter 5, “ASA

Text Files,” on page 25.

 Specifying recfm=* is not supported under LE/VSE C Run-Time.

 The values that may be specified for RECFM for a given file type are subject to

any limitations described in “Parameters Supported by File Type” on page 52.

lrecl= and blksize=

The LRECL that you specify on the fopen() call defines the maximum record

length that the C library allows. Records longer than the maximum record

length are not written to the file. The first 4 bytes of each block and the first 4

bytes of each record of variable-format files are used for control information.

For more information, see “Variable-Format Records” on page 9.

 The maximum LRECL supported for sequential disk files is 32760. The

maximum BLKSIZE supported for sequential disk files is 65528.

 When you are opening an existing file for read or append (or for write, if you

have specified DISP=SHR for a disk file or DISP=SHR/DISP=MOD for a tape file),

any LRECL or BLKSIZE that you specify must match that of the existing file,

except when you open an F or FB format file on a disk device without

specifying the noseek parameter. In this case, you can specify the S attribute to

indicate to LE/VSE C Run-Time that the file has no imbedded short blocks.

Files without short blocks improve LE/VSE C Run-Time’s performance.

 The values that may be specified for LRECL and BLKSIZE for a given file type

are subject to any limitations described in “Parameters Supported by File

Type” on page 52.

space=(records=n) or space=(records=(n,n1))

This parameter enables you to specify the number of records for the primary

allocation (n), and optionally, the number of records for the secondary

allocation (n1) of a SAM ESDS file. It is used in conjunction with the blksize

parameter to modify the DLBL options RECORDS and RECSIZE respectively.

type=

You can omit this parameter. If you specify it, the only valid value for SAM

I/O is type=record, which opens a file for record I/O.

Note: type=record is allowed only when opening a binary file.

acc=

This parameter is not valid for SAM I/O. If you specify it, LE/VSE C

Run-Time ignores it.

password=

This parameter is not valid for SAM I/O. If you specify it, LE/VSE C

Run-Time ignores it.

asis

If you specify this parameter, LE/VSE C Run-Time ignores it.

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 51

byteseek

When you specify this parameter and open a file in binary mode, all

repositioning functions (such as fseek() and ftell()) use relative byte offsets

from the beginning of the file instead of encoded offsets. To have the byteseek

parameter set as the default for all your calls to fopen() or freopen(), you can

set the environment variable _EDC_BYTE_SEEK to Y. See Chapter 21, “Using

Environment Variables,” on page 219 for more information.

noseek

Specifying this parameter on the fopen() call disables the repositioning

functions ftell(), fseek(), fgetpos(), and fsetpos() for as long as the file is

open. When you have specified noseek and have opened a disk file for read

only, the only repositioning function allowed on the file is rewind(), if the

device supports rewinding. Otherwise, a call to rewind() sets errno and raises

SIGIOERR, if SIGIOERR is not set to SIG_IGN. Calls to ftell(), fseek(),

fsetpos(), or fgetpos() return EOF, set errno, and set the stream error flag on.

 The use of the noseek parameter may improve performance when you are

reading and writing files.

Note: If you specify the noseek parameter when you open a file for writing,

you must specify noseek on any subsequent fopen() call that

simultaneously opens the file for reading; otherwise, you will get

undefined behavior.

OS

If you specify this parameter, LE/VSE C Run-Time ignores it.

rewind=

This parameter, which is supported for tape files only, determines whether the

tape is rewound and/or unloaded as a result of fclose() depending on the

value specified as follows:

v If norwd is specified, the tape will not be rewound.

v If unload is specified, the tape will be rewound and unloaded.

If the rewind parameter is omitted, the default is to rewind but not unload.

dsn=

This parameter is not valid for SAM I/O. If you specify it, LE/VSE C

Run-Time ignores it.

Parameters Supported by File Type

Table 18 shows the supported fopen() and freopen() mode, blksize, lrecl and

recfm parameter values for the various file types.

 Table 18. fopen() and freopen() Parameters Supported by File Type

File Type Parameter Value

SYSIPT mode r and rb.

blksize The value specified is not used.

lrecl As required. Default is 80. Maximum is 512.

recfm Fixed. If blocked, ASA print-control characters, or machine control codes

are specified, they are ignored. Default is F.

SAM I/O Operations

52 LE/VSE: C Run-Time Programming Guide

Table 18. fopen() and freopen() Parameters Supported by File Type (continued)

File Type Parameter Value

SYSPCH mode w, wb, a, and ab.

If a or ab is specified, it will be treated as if w or wb was specified.

blksize The value specified is not used.

lrecl As required. Maximum is 512. Default is 80 if neither ASA print-control

characters nor machine control codes are specified—otherwise 81.

recfm Fixed. If blocked is specified, it is ignored. ASA print-control characters are

ignored unless specified with type=record. Machine control codes can be

specified. Default is F.

SYSLNK mode w, wb, a, and ab.

If a or ab is specified, it will be treated as if w or wb was specified.

blksize The value specified is not used.

lrecl The value specified is not used. (Special format SYSLNK records containing

80 bytes of user data are written.)

recfm Fixed unblocked. Default is F.

SYSLST mode w, wb, a, and ab.

If a or ab is specified, it will be treated as if w or wb was specified.

blksize The value specified is not used.

lrecl As required. For fixed or undefined record format, the default is 133 if

using ASA or 132 if not. For variable record format, the default is 129 if

using ASA or 128 if not. If SYSLST is assigned to disk or tape, LRECL is

treated as 121. Maximum is 512.

recfm Fixed, variable, and undefined. If blocked is specified, it is ignored. ASA

print-control characters or machine control codes can be specified. Default

is F.

SYSLOG mode w, wb, a, ab, r, and rb.

If a or ab is specified, it will be treated as if w or wb was specified.

blksize The value specified is not used.

lrecl The value specified is not used.

recfm The value specified is not used.

SAM Disk Files mode r, r+, w, w+, a, a+, rb, r+b, wb, w+b, ab, and a+b.

The append and update modes are not supported for multivolume files.

blksize As required. (Must be a multiple of LRECL for files in fixed blocked record

format.)

For default values, see Table 11 on page 20.

lrecl As required.

For default values, see Table 11 on page 20.

recfm Fixed blocked and unblocked, variable blocked and unblocked, spanned

blocked and unblocked, and undefined. ASA print-control characters or

machine control codes can be specified.

If FBS (fixed block standard) is specified, fseek() and ftell() functions

will process as though all blocks are the same length.

Record format must be specified as there is no default.

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 53

Table 18. fopen() and freopen() Parameters Supported by File Type (continued)

File Type Parameter Value

SAM ESDS Disk Files

(VSAM-managed SAM)

mode r, r+, w, w+, rb, r+b, wb, w+b, a, a+, ab, and a+b.

If the number of blocks that will fit in a CI is greater than 255, the ftell(),

fseek(), fgetpos(), and fsetpos() functions are disabled.

Note: The check performed by the library determines if there can be more

than 255 of the maximum size blocks per CI. Files which are not recfm=FBS

might contain blocks which are shorter than the specified BLKSIZE and

might therefore contain more than 255 blocks per CI. If they do, it will

cause an error during execution.

a, ab, a+ and a+b will be accepted if DISP=OLD is specified on the DLBL JCL

statement. DISP=OLD indicates the file is to be created if it does not exist, or

extended if it does exist.

If a, ab, a+ or a+b is specified and DISP=OLD is not specified on the DLBL JCL

statement, the DLBL will be changed to add DISP=OLD to cause the writes to

append to the file. This can only be added if the additional VSAM label

record is present. That is, the DLBL JCL statement specifies disposition,

space allocation, or buffer space for the SAM ESDS file. The open will fail

if the file is opened for append and the additional VSAM label record is

not present.

If w, wb, w+ or w+b is specified, and DISP=OLD is specified on the DLBL JCL

statement, it will be treated as for append.

blksize As required. (Must be a multiple of LRECL for files in fixed blocked record

format.)

If the file has been defined explicitly using IDCAMS, the block size is

available from the VSAM catalog.

For default values, see Table 11 on page 20.

lrecl As required.

If the file has been defined explicitly using IDCAMS, the logical record

length might be available from the VSAM catalog.

For default values, see Table 11 on page 20.

recfm Fixed blocked and unblocked, variable blocked and unblocked, and

undefined. ASA print-control characters or machine control codes can be

specified.

Record format must be specified if the file does not exist (that is, if the file

has not been predefined) as there is no default. If the file has been

predefined, RECFM is obtained from the VSAM catalog.

Note: VSAM-managed SAM does not support spanned records.

SAM I/O Operations

54 LE/VSE: C Run-Time Programming Guide

Table 18. fopen() and freopen() Parameters Supported by File Type (continued)

File Type Parameter Value

Tape mode r, w, rb, wb, a, and ab.

a and ab will only be accepted for labeled tapes.

If a or ab is specified, and DISP=OLD or DISP=MOD is specified on the TLBL,

the file is opened for output and writes will append to the file. DISP=OLD

indicates the file is to be extended and DISP=MOD indicates it is to be created

if it does not exist, or extended if it does exist.

If a or ab is specified and DISP=OLD or DISP=MOD has not been specified on

the TLBL, the TLBL will be updated to add DISP=MOD.

If w or wb is specified and DISP=OLD or DISP=MOD has been specified on the

TLBL, the file is opened for output and writes will append to the file.

blksize As required. (Must be a multiple of LRECL for files in fixed blocked record

format.)

For default values, see Table 11 on page 20.

lrecl As required.

For default values, see Table 11 on page 20.

recfm Fixed blocked and unblocked, variable blocked and unblocked, spanned

blocked and unblocked, and undefined. ASA print-control characters or

machine control codes can be specified.

Record format must be specified is the file does not exist as there is no

default.

Card Reader mode r and rb.

blksize The value specified is not used.

lrecl As required. Default is 80. Maximum is 512.

recfm Fixed, variable, and undefined. If blocked, ASA print-control characters, or

machine control codes are specified, they are ignored. Default is F.

Card Punch mode w, wb, a, and ab.

If a or ab is specified, it will be treated as if w or wb was specified.

blksize The value specified is not used.

lrecl As required. Maximum is 512. Default is 80 if neither ASA print-control

characters nor machine control codes are specified—otherwise 81.

recfm Fixed, variable, and undefined. If blocked is specified, it is ignored. ASA

print-control characters are ignored unless specified with type=record.

Machine control codes can be specified. Default is F.

Printer mode w, wb, a, and ab.

If a or ab is specified, it will be treated as if w or wb was specified.

blksize The value specified is ignored.

lrecl As required. For fixed or undefined record format, the default is 133 if

using ASA or 132 if not. For variable record format, the default is 129 if

using ASA or 128 if not. Maximum is 512.

recfm Fixed, variable, and undefined. If blocked is specified, it is ignored. ASA

print-control characters or machine control codes can be specified. Default

is F.

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 55

Buffering

LE/VSE C Run-Time uses buffers to map C I/O to system-level I/O.

When LE/VSE C Run-Time performs I/O operations, it uses one of the following

buffering modes:

Line buffering

Characters are transmitted to the system when a newline character is

encountered. Line buffering is meaningless for binary and record I/O files.

Full buffering

Characters are transmitted to the system when a buffer is filled.

C provides a third buffering mode, unbuffered I/O, which is not supported for

SAM files.

You can use the setvbuf() and setbuf() library functions to set the buffering

mode before you perform any I/O operation to the file. setvbuf() fails if you

specify unbuffered I/O. It also fails if you try to specify line buffering for an FBS

data set opened in text mode, where the device does not support repositioning.

This failure happens because LE/VSE C Run-Time cannot deliver records at line

boundaries without violating FBS format. Do not try to change the buffering mode

after you have performed any I/O operation to the file.

For all files except stderr, full buffering is the default, but you can use setvbuf()

to specify line buffering. For binary files, record I/O files, and unblocked text files,

a block is written out as soon as it is full, regardless of whether you have specified

line buffering or full buffering. Line buffering is different from full buffering only

for blocked text files.

DTF (Define The File) Attributes

LE/VSE C Run-Time determines the device type by checking for the presence of

DLBL or TLBL JCL statements and by determining the device assigned to the

programmer or system logical unit. LE/VSE C Run-Time merges the file attributes

specified in a call to fopen() with the file attributes retrieved from the VSAM

catalog (if available) and the DLBL or TLBL JCL statement. The DTF is then built

according to the type of device assigned and the resultant file attributes.

For a SAM disk file, the blksize specified on the DLBL JCL statement overrides the

blksize specified on the call to fopen(). The blksize specified on the DLBL JCL

statement is the blksize for an input file and the blksize+8 for an output file.

For an explicitly defined SAM ESDS file, the blksize from the VSAM catalog

overrides the blksize specified on the call to fopen(). The recfm and lrecl (if

specified on the call to fopen()) must match the values on the VSAM catalog.

For an implicitly defined SAM ESDS file, the recfm, lrecl, and blksize specified

on the call to fopen(), override the values from the VSAM catalog.

Reading from Files

You can use the following library functions to read in information from files:

v fread()

v fgets()

v gets()

SAM I/O Operations

56 LE/VSE: C Run-Time Programming Guide

v fgetc()

v getc()

v getchar()

v scanf()

v fscanf()

fread() is the only interface allowed for reading record I/O files. A read operation

directly after a write operation without an intervening call to fflush(), fsetpos(),

fseek(), or rewind() fails. LE/VSE C Run-Time treats the following as read

operations:

v Calls to read functions that request 0 bytes

v Read requests that fail because of a system error

v Calls to the ungetc() function

LE/VSE C Run-Time does not consider a read to be at EOF until you try to read

past the last byte visible in the file. For example, in a file containing 3 bytes, the

feof() function returns FALSE after three calls to fgetc(). Calling fgetc() one

more time causes feof() to return TRUE.

You can set up a SIGIOERR handler to catch read or write system errors. See

Chapter 14, “Debugging I/O Programs,” on page 131 for more information.

Reading from Binary Files

LE/VSE C Run-Time reads binary records in the order that they were written to

the file. Any null padding is visible and treated as data. Record boundaries are

meaningless.

Reading from Text Files

For non-ASA variable text files, the default for LE/VSE C Run-Time is to ignore

any empty physical records in the file. If a physical record contains a single blank,

LE/VSE C Run-Time reads in a logical record containing only a newline. However,

if the environment variable _EDC_ZERO_RECLEN was set to Y, LE/VSE C Run-Time

reads an empty physical record as a logical record containing a newline, and a

physical record containing a single blank as a logical record containing a blank and

a newline. Thus, when _EDC_ZERO_RECLEN is set to Y, LE/VSE C Run-Time

differentiates between empty records and records containing single blanks, and

does not ignore either of them. For more information about how LE/VSE C

Run-Time treats empty records in variable format, see “Mapping C Types to

Variable Format” on page 10.

For ASA variable text files, if a file was created without a control character as its

first byte, the first byte defaults to the ' ' character (blank). When the file is read

back, the first character is read as a newline.

On input, ASA characters are translated to the corresponding sequence of control

characters. For more information about using ASA files, refer to Chapter 5, “ASA

Text Files,” on page 25.

For undefined format text files, reading a file causes a newline character to be

inserted at the end of each record. On input, a record containing a single blank

character is considered an empty record and is translated to a newline character.

Trailing blanks are preserved for each record.

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 57

For files opened in fixed text format, rightmost blanks are stripped off a record at

input, and a newline character is placed in the logical record. This means that a

record consisting of a single newline character is represented by a fixed-length

record made entirely of blanks.

Reading from Record I/O Files

For files opened in record format, fread() is the only interface that supports

reading. Each time you call fread() for a record I/O file, fread() reads one record.

If you call fread() with a request for less than a complete record, the requested

bytes are copied to your buffer, and the file position is set to the start of the next

record. If the request is for more bytes than are in the record, one record is read

and the position is set to the start of the next record. LE/VSE C Run-Time does not

strip any blank characters or interpret any data.

fread() returns the number of items read successfully, so if you pass a size

argument equal to 1 and a count argument equal to the maximum expected length

of the record, fread() returns the length, in bytes, of the record read. If you pass a

size argument equal to the maximum expected length of the record, and a count

argument equal to 1, fread() returns either 0 or 1, indicating whether a record of

length size was read. If a record is read successfully but is less than size bytes

long, fread() returns 0.

A failed read operation may lead to undefined behavior until you reposition

successfully.

Writing to Files

You can use the following library functions to write to a file:

v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputs()

v fputc()

v putc()

v putchar()

fwrite() is the only interface allowed for writing to record I/O files. See LE/VSE C

Run-Time Library Reference for more information on these library functions.

A write operation directly after a read operation without an intervening call to

fflush(), fsetpos(), fseek(), or rewind() fails unless the read operation has

reached EOF. The file pointer does not reach EOF until after you have tried to read

past the last byte of the file.

LE/VSE C Run-Time counts a call to a write function writing 0 bytes or a write

request that fails because of a system error as a write operation.

If you are updating a file and a system failure occurs, LE/VSE C Run-Time tries to

set the file position to the end of the last record updated successfully. For a

fully-buffered file, this is at the end of the last record in a block. For a line-buffered

file, this may be any record in the current block. If you are writing new data at the

time of a system failure, LE/VSE C Run-Time puts the file position at the end of

SAM I/O Operations

58 LE/VSE: C Run-Time Programming Guide

the last block of the file. In files opened for blocked output, you may lose data

written by other writes to that block before the system failure. The contents of a

file after a system write failure are indeterminate.

If one user opens a file for writing, and another later opens the same file for

reading, the user who is reading the file can check for records that may have been

written past the end of the file by the other user. If the file is a spanned variable

text file, the reader can read part of a spanned record and reach the end of the file

before reading in the last segment of the spanned record.

Writing to Binary Files

Data flows over record boundaries in binary files. Writes or updates past the end

of a record go to the next record. When you are writing to files and not making

any intervening calls to fflush(), blocks are written to the system as they are

filled. If a fixed record is incomplete when you close the file, LE/VSE C Run-Time

completes it with nulls. You cannot change the length of existing records in a file

by updating them.

If you are using variable binary files, note the following:

v On input and on update, records that have no length are ignored; you will not

be notified. On output, zero-length records are not written. However, in spanned

files, if the first segment of a record has been written to the system, and the user

flushes or closes the file, a zero-length last segment may be written to the file.

v If you are writing new data in a recfm=VB file, LE/VSE C Run-Time may add a

short record at the end of a block, to fill the block out to the full block size.

v If your file is spanned, records are written up to length LRECL, spanning

multiple blocks if necessary. You can create a spanned file by specifying a

RECFM containing V and S on the fopen() call.

Writing to Text Files

LE/VSE C Run-Time treats the control characters as follows when you are writing

to a non-ASA text file:

\a Alarm. Placed directly into the file; LE/VSE C Run-Time does not interpret

it.

\b Backspace. Placed directly into the file; LE/VSE C Run-Time does not

interpret it.

\f Form feed. Placed directly into the file; LE/VSE C Run-Time does not

interpret it.

\n Newline. Defines a record boundary; LE/VSE C Run-Time does not place

it in the file.

\r Carriage return. Defines a record boundary; LE/VSE C Run-Time does not

place it in the file. Treated like a newline character.

\t Horizontal tab character. Placed directly into the file; LE/VSE C Run-Time

does not interpret it.

\v Vertical tab character. Placed directly into the file; LE/VSE C Run-Time

does not interpret it.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if

MB_CUR_MAX > 1. Placed into the file.

\x0F DBCS shift-in character. Indicates the end of a DBCS string, if MB_CUR_MAX >

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 59

1. Placed into the file. See Chapter 6, “LE/VSE C Run-Time Support for the

Double-Byte Character Set (DBCS),” on page 29 for more information about

MB_CUR_MAX.

The way LE/VSE C Run-Time treats text files depends on whether they are in

fixed, variable, or undefined format, and whether they use ASA.

As with ASA files in other environments, the first character of each record is

reserved for the ASA print-control character that represents a newline, a carriage

return, or a form feed.

See Chapter 5, “ASA Text Files,” on page 25 for more information.

Writing to Fixed-Format Text Files

Records in fixed-format files are all the same length. You complete each record

with a newline or carriage return character. For fixed text files, the newline

character is not written to the file. Blank padding is inserted to the LRECL of each

record of the block, and the block, when full, is written. For a more complete

description of the way fixed-format files are handled, see “Fixed-Format Records”

on page 6.

A logical record can be shortened to be an empty record (containing just a newline)

or extended to a record containing LRECL bytes of data plus a newline. Because

the physical record represents the newline position by using padding blanks, the

newline position can be changed on an update as long as it is within the physical

record.

Note: Using ftell() or fgetpos() values for positions that do not exist after you

have shortened records results in undefined behavior.

When you are updating a file, writing new data into an existing record replaces the

old data and, if the new data is longer or shorter than the old data, changes the

size of the logical record by changing the number of blank characters in the

physical record. When you extend a record, thereby writing over the old newline, a

newline character is implied after the last character of the update. Calling fflush()

flushes the data out to the file and inserts blank padding between the last data

character and the end of the record. Once you have called fflush(), you can call

any of the read functions, which begin reading at the newline. Once the newline is

read, reading continues at the beginning of the next record.

Writing to Variable-Format Text Files

In a file with variable-length records, each record may be a different length. The

variable length formats permit both variable-length records and variable-length

blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word

(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word

(RDW).

For ASA and non-ASA, the '\n' (newline) character implies a record boundary. On

output, the newline is not written to the physical file; instead, it is assumed to

follow the data of the record.

If you have not set _EDC_ZERO_RECLEN, LE/VSE C Run-Time writes out a record

containing a single blank character to represent a single newline. On input, a

record containing a single blank character is considered an empty record and is

translated to a newline character. Note that a single blank followed by a newline is

SAM I/O Operations

60 LE/VSE: C Run-Time Programming Guide

written out as a single blank, and is treated as just a newline on input. When

_EDC_ZERO_RECLEN is set, writing a record containing only a newline results in a

zero-length variable record.

For more information about environment variables, refer to Chapter 21, “Using

Environment Variables,” on page 219. For more information about how LE/VSE C

Run-Time treats empty records in variable format, see “Mapping C Types to

Variable Format” on page 10.

Attempting to shorten a record on update by specifying less data before the

newline causes the record to be padded with blanks to the original record size. For

spanned records, updating a record to a shorter length results in the same blank

padding to the original record length, over multiple blocks, if applicable.

Attempts to lengthen a record on update generally result in truncation. The

exception to this rule is extending an empty record to a 1-byte record when the

environment variable _EDC_ZERO_RECLEN is not set. Because the physical

representation for an empty record is a record containing one blank character, it is

possible to extend the logical record to a single non-blank character followed by a

newline character. For standard streams, truncation in text files does not occur;

data is wrapped automatically to the next record as if you had added a newline.

When you are writing data to a non-blocked file without intervening flush or

reposition requests, each record is written to the system when a newline or

carriage return character is written or when the file is closed.

When you are writing data to a blocked file without intervening flush or reposition

requests, if the file is opened in full buffering mode, the block is written to the

system on completion of the record that fills the block. If the blocked file is line

buffered, each record is written to the system when it is completed. If you are

using full buffering for a VB format file, a write may not fill a block completely.

The data does not go to the system unless a block is full; you can complete the

block with another write. If the subsequent write contains more data than is

needed to fill the block, it flushes the current block to the system and starts writing

your data to a new block.

When you are writing data to a spanned file without intervening flush or

reposition requests, if the record spans multiple blocks, each block is written to the

system once it is full and the user writes an additional byte of data.

For ASA variable text files, if a file was created without a control character as its

first byte or record (after the RDW and BDW), the first byte defaults to the ' '

character. When the file is read back, the first character is read as a newline.

Writing to Undefined-Format Text Files

In an undefined-format file, there is only one record per block. Each record may be

a different length, up to a maximum length of BLKSIZE. Each record is completed

with a newline or carriage return character. The newline character is not written to

the physical file; it is assumed to follow the data of the record. However, if a

record contains only a newline character, LE/VSE C Run-Time writes a record

containing a single blank to the file to represent an empty record. On input, the

blank is read in as a newline.

Once a record has been written, you cannot change its length. If you try to shorten

a logical record by updating it with a shorter record, LE/VSE C Run-Time

completes the record with blank padding. If you try to lengthen a record by

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 61

updating it with more data than it can hold, LE/VSE C Run-Time truncates the

new data. The only instance in which this does not happen is when you extend an

empty record so that it contains a single byte. Any data beyond the single byte is

truncated.

Truncation vs. Splitting

If you try to write more data to a record than LE/VSE C Run-Time allows, and the

file you are writing to is not one of the standard streams (the defaults, or those

redirected by freopen() or through the JCL EXEC statement PARM field), output is

cut off at the record boundary and the remaining bytes are discarded. LE/VSE C

Run-Time does not count the discarded characters as characters that have been

written out successfully.

In all truncation cases, the SIGIOERR signal is raised if the action for SIGIOERR is not

SIG_IGN. The user error flag is set so that ferror() will return TRUE. For more

information about SIGIOERR, ferror(), and other I/O-related debugging tools, see

Chapter 14, “Debugging I/O Programs,” on page 131. LE/VSE C Run-Time

continues to discard new output until you complete the current record by writing a

newline or carriage return character, close the file, or change the file position.

If you are writing to one of the standard streams, attempting to write more data

than a record can hold results in the data being split across multiple records.

Writing to Record I/O Files

fwrite() is the only interface allowed for writing to a file opened for record I/O.

To open a file for record I/O, the fopen() mode string must contain type=record.

Only one record is written at a time. If you attempt to write more new data than a

full record can hold or you try to update a record with more data than it currently

has, LE/VSE C Run-Time truncates your output at the record boundary. When

LE/VSE C Run-Time performs a truncation, it sets errno and raises SIGIOERR, if

SIGIOERR is not set to SIG_IGN.

When you update a record, you can update less than the full record. The

remaining data that you do not update is left untouched in the file.

When you are writing new records to a fixed-record I/O file, if you try to write a

short record, LE/VSE C Run-Time pads the record with nulls out to LRECL.

At the completion of an fwrite(), the file position is at the start of the next record.

For new data, the block is flushed out to the system as soon as it is full.

Flushing Buffers

You can use the library function fflush() to flush streams to the system. For more

information about fflush(), see LE/VSE C Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode

associated with the stream and the type of streams. If you call one LE/VSE C

Run-Time program from another LE/VSE C Run-Time program by using the ANSI

system() function, all open streams are flushed before control is passed to the

callee, and again before control is returned to the caller.

fflush() is ignored for files on all non-disk devices.

SAM I/O Operations

62 LE/VSE: C Run-Time Programming Guide

Updating Existing Records

Calling fflush() while you are updating flushes the updates out to the system. If

you call fflush() when you are in the middle of updating a record, LE/VSE C

Run-Time writes the partially updated record out to the system. A subsequent

write continues to update the current record.

Reading Updated Records

If you have a file open for read at the same time that the file is open for update in

the same application (see “Simultaneous Reader/Writer” on page 64), you will be

able to see the new data if you call fflush() to refresh the contents of the input

buffer, as in the following example:

EDCXGOS3

 /* EDCXGOS3

 This example demonstrates how updated records are read.

 */

#include <stdio.h>

int main()

{

 FILE *fp1, *fp2;

 int rc1, rc2, rc3, rc4;

 remove("’a.b’"); /* Ensure file is deleted */

 /* Create an empty file and open it for update... */

 if ((fp1 = fopen("’a.b’","w+,recfm=u,blksize=4000")) == NULL)

 perror("Error opening file for write");

 if ((freopen("’a.b’", "r+,recfm=u,blksize=4000", fp1)) == NULL)

 perror("Error opening file for read/write");

 fprintf(fp1,"first record");

 /* Open a simultaneous reader... */

 if ((fp2 = fopen("’a.b’","r,recfm=u,blksize=4000")) == NULL)

 perror("Error opening file for read");

 /* Following gets EOF since fp1 has not completed first

 line of output so nothing will be flushed to file yet */

 rc1 = fgetc(fp2);

 if (rc1 == EOF) puts("At EOF");

 else printf("Read char: %c instead of EOF...\n", rc1);

 fputc(’\n’, fp1); /* This will complete second line */

 fflush(fp1); /* Ensures data is flushed to file */

 rc2 = fgetc(fp2); /* Gets ’f’, 1st char of first record */

 if (rc2 == EOF) puts("At EOF but shouldn’t be...");

 else printf("Read char: %c\n", rc2);

Figure 8. Example of Reading Updated Records (Part 1 of 2)

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 63

Simultaneous Reader/Writer

If, within a single application, a file is first opened for update and then, without an

intermediate close, is opened for read one or more times, then the situation is

known as simultaneous read/write. However, the following restrictions must be

observed:

v The file must exist prior to being opened for update and no w-type open modes

are allowed on the fopen() or freopen() call. (The file might be empty—refer to

“EDCXGOS3” on page 63 for an example of how to create an empty file.)

v The file must be a SAM file (it cannot be a SAM ESDS file).

v The file must be opened for update before the first (or only) open for read.

The “writer” (that is, the stream opened for update) is known as the simultaneous

writer. There can be only one such writer.

Each “reader” (that is, each stream opened for read) is known as a simultaneous

reader. There can be any number of readers.

feof(): The behavior of feof() in this situation is illustrated in the following

scenario:

1. A simultaneous reader reads to end of file (that is, until feof() returns TRUE).

2. The simultaneous writer appends to the file.

3. feof() remains TRUE until one of the following occurs:

v The next read (for example, using fread()).

-or-

v A call to fflush() by the simultaneous writer.

 rewind(fp1);

 fprintf(fp1,"some updates\n");

 rc3 = fgetc(fp2); /* Gets ’i’, does not know about update */

 if (rc3 == EOF) puts("At EOF but shouldn’t be...");

 else printf("Read char: %c\n", rc3);

 fflush(fp1); /* Ensures update makes it to file */

 fflush(fp2); /* This updates reader’s buffer */

 rc4 = fgetc(fp2); /* Gets ’m’, 3rd char of updated record */

 if (rc4 == EOF) puts("At EOF but shouldn’t be...");

 else printf("Read char: %c\n", rc4);

 exit(0);

}

Figure 8. Example of Reading Updated Records (Part 2 of 2)

SAM I/O Operations

64 LE/VSE: C Run-Time Programming Guide

Writing New Records

Binary Streams

LE/VSE C Run-Time treats line buffering and full buffering the same way for

binary files.

If the file has a variable length or undefined record format, fflush() writes the

current record out. This may result in short records. In blocked files, this means

that the block is written to disk, and subsequent writes are to a new block. For

fixed files, no incomplete records are flushed.

For single-volume disk files in FBS format, fflush() flushes complete records in an

incomplete block out to the file. For all other types of FBS files, fflush() does not

flush an incomplete block out to the file.

For files in FB format, fflush() always flushes out all complete records in the

current block. For disk files, new completed records are added to the end of the

flushed block if it is short. For other files, any new record will start a new block.

Text Streams

v Line-Buffered Streams

fflush() has no effect on line-buffered text files, because LE/VSE C Run-Time

writes all records to the system as they are completed. All incomplete new

records remain in the buffer.

v Fully Buffered Streams

Calling fflush() flushes all completed records in the buffer, that is, all records

ending with a newline or carriage return (or form feed character, if you are

using ASA), to the system. LE/VSE C Run-Time holds any incomplete record in

the buffer until you complete the record or close the file.

For ASA text files, if a flush occurs while an ASA character that indicates more

than one newline is being updated, the remaining newlines will be discarded and a

read will continue at the first data character. For example, if '\n\n\n' is updated to

be '\n\n' and a flush occurs, then a '0' will be written out in the ASA character

position.

Record I/O

LE/VSE C Run-Time treats line buffering and full buffering the same way for

record I/O. For files in FB format, calling fflush() writes all records in the buffer

to the system. For single-volume disk files in FBS format, fflush() will flush

complete records in an incomplete block out to the file. For all other types of FBS

files, fflush() will not flush an incomplete block out to the file. For all other

formats, calling fflush() has no effect, because fwrite() has already written the

records to disk.

ungetc() Considerations

ungetc() pushes characters back onto the input stream for binary and text files.

ungetc() handles only single-byte characters. You can use it to push back as many

as four characters onto the ungetc() buffer. For every character pushed back with

ungetc(), fflush() backs up the file position by one character and clears all the

pushed-back characters from the stream. Backing up the file position may end up

going across a record boundary. Remember that for text files, LE/VSE C Run-Time

counts the newlines added to the records as single-byte characters when it

calculates the file position.

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 65

For example, given the stream

 you can run the following code fragment:

 fgetc(fp); /* Returns A and puts the file position at */

 /* the beginning of the character B */

 ungetc(’Z’,fp); /* Logically inserts Z ahead of B */

 fflush(fp); /* Moves the file position back by one to A, */

 /* removes Z from the logical stream */

If you want fflush() to ignore ungetc() characters, you can set the

_EDC_COMPAT environment variable. See Chapter 21, “Using Environment

Variables,” on page 219 for more information.

Repositioning within Files

You can use the following library functions to help you position within a SAM file:

v fseek()

v ftell()

v fgetpos()

v fsetpos()

v rewind()

See LE/VSE C Run-Time Library Reference for more information on these library

functions.

Opening a file with fopen() and specifying the noseek parameter disables all of

these library functions except rewind(). A call to rewind() causes the file to be

reopened, unless the file is a tape file opened for write-only. In this case, rewind()

sets errno and raises SIGIOERR (if SIGIOERR is not set to SIG_IGN, which is its

default).

Note: If a SAM ESDS file is opened for r, rb, w or wb, with noseek specified and

DISP=(,DELETE) is specified on the DLBL statement, calling rewind() will

cause the file to be deleted.

Calling any of these functions flushes all complete and updated records out to the

system. If a repositioning operation fails, LE/VSE C Run-Time attempts to restore

the original file position and treats the operation as a call to fflush(), except that

it does not account for the presence of ungetc() or ungetwc() characters, which are

lost. After a successful repositioning operation, feof() always returns 0, even if the

position is just after the last byte of data in the file.

The fsetpos() and fgetpos() library functions are generally more efficient than

ftell() and fseek(). The fgetpos() function can encode the current position into

a structure that provides enough room to hold the system position as well as

position data specific to C. The ftell() function must encode the position into a

single word of storage, which it returns. This compaction forces fseek() to

calculate certain position information specific to C at the time of repositioning. For

variable-format binary files, you can choose to have ftell() return relative byte

offsets. In previous releases, ftell() returned only encoded offsets, which

contained the relative block number. Since you cannot calculate the block number

from a relative byte offset in a variable-format file, fseek() may have to read

SAM I/O Operations

66 LE/VSE: C Run-Time Programming Guide

through the file to get to the new position. fsetpos() has system position

information available within the fpos_t structure and can generally reposition

directly to the desired location.

You can use the fseek(), ftell(), fgetpos() and fsetpos() functions with

single-volume disk files only. The files must have no more than 255 blocks per

track (CKD devices) or 255 blocks per CI (VSAM-managed SAM and FBA devices).

You can use the rewind() function with disk or tape files only. When noseek is not

specified on fopen() for a multivolume disk file, calling rewind() will cause the

file to be closed and reopened.

ungetc() Considerations

For binary and text files, the library functions fgetpos() and ftell() take into

account the number of characters you have pushed back onto the input stream

with ungetc(), and adjust the file position accordingly. ungetc() backs up the file

position by a single byte each time you call it. For text files, LE/VSE C Run-Time

counts the newlines added to the records as single-byte characters when it

calculates the file position.

If you make so many calls to ungetc() that the logical file position is before the

beginning of the file, the next call to ftell() or fgetpos() fails.

When you are using fseek() with an origin of SEEK_CUR, the starting point for the

reposition also accounts for the presence of ungetc() characters and compensates

as ftell() and fgetpos() do.

If you want fgetpos() and fseek() to ignore ungetc() characters, you can set the

_EDC_COMPAT environment variable. See Chapter 21, “Using Environment

Variables,” on page 219 for details. ftell() is not affected by the setting of

_EDC_COMPAT.

How Long fgetpos() and ftell() Values Last

As long as you do not re-create a file or shorten logical records, you can rely on

the values returned by ftell() and fgetpos(), even across program boundaries

and calls to fclose(). (Calling fopen() or freopen() with any of the w modes

re-creates a file.) Using ftell() and fgetpos() values that point to information

deleted or re-created results in undefined behavior. For more information about

shortening records, see “Writing to Variable-Format Text Files” on page 60.

Using fseek() and ftell() in Binary Files

With binary files, ftell() returns two types of positions:

v Relative byte offsets

v Encoded offsets

Relative Byte Offsets

You get byte offsets by default when you are seeking or positioning in fixed-format

binary files. You can also use byte offsets on a variable or undefined format file

opened in binary mode with the byteseek parameter specified on the fopen() or

freopen() function call. You can specify byteseek to be the default for fopen()

calls by setting the environment variable _EDC_BYTE_SEEK to Y. See Chapter 21,

“Using Environment Variables,” on page 219 for information on how to set

environment variables.

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 67

You do not need to acquire an offset from ftell() to seek to a relative position;

you may specify a relative offset to fseek() with an origin of SEEK_SET. However,

you cannot specify a negative offset to fseek() when you have specified SEEK_SET,

because a negative offset would indicate a position before the beginning of the file.

Also, you cannot specify a negative offset with origins of SEEK_CUR or SEEK_END

such that the resulting file position would be before the beginning of the file. If

you specify such an offset, fseek() fails.

If your file is not opened read-only, you can specify a position that is beyond the

current EOF. In such cases, a new end-of-file position is created; null characters are

automatically added between the old EOF and the new EOF.

fseek() support of byte offsets in variable-format files generally requires reading

all records from the origin to the new position. The impact on performance is

greatest if you open an existing file for append in byteseek mode and then call

ftell(). In this case, ftell() has to read from the beginning of the file to the

current position to calculate the required byte offset. Support for byteseeking is

intended to ease portability from other platforms. If you need better performance,

consider using ftell()-encoded offsets, discussed in the next section.

Encoded Offsets

If you do not specify the byteseek parameter and you set the _EDC_BYTE_SEEK

variable to N, any variable- or undefined-format binary file gets encoded offsets

from ftell(). This keeps this release of LE/VSE C Run-Time compatible with code

generated by old releases of C/370.

Encoded offsets are values representing the block number and the relative byte

within that block, all within one long int. Because LE/VSE C Run-Time does not

document its encoding scheme, you cannot rely on any encoded offset not returned

by ftell(), except 0, which is the beginning of the file. This includes encoded

offsets that you adjust yourself (for example, with addition or subtraction). When

you call fseek() with the origin SEEK_SET, you must use either 0 or an encoded

offset returned from ftell(). For origins of SEEK_CUR and SEEK_END, however, you

specify relative byte offsets. If you want to seek to a certain relative byte offset,

you can use SEEK_SET with an offset of 0 to rewind the file to the beginning, and

then you can use SEEK_CUR to specify the desired relative byte offset.

In earlier releases of C, ftell() could determine position only for files with no

more than 131,071 blocks. In the new design, this number increases depending on

the block size. From a maximum block size of 32,760, every time this number

decreases by half, the number of blocks that can be represented doubles.

If your file is not opened read-only, you can use SEEK_CUR or SEEK_END to specify a

position that is beyond the current EOF. In such cases, a new end-of-file position is

created; null characters are automatically added between the old EOF and the new

EOF. For SEEK_SET, because you are restricted to using offsets returned by ftell(),

any offset that indicates a position outside the current file is invalid and causes

fseek() to fail.

Using fseek() and ftell() in Text Files (ASA and Non-ASA)

In text files, ftell() produces only encoded offsets. It returns a long int, in which

the block number and the byte offset within the block are encoded. You cannot rely

on any encoded offset not returned by ftell() except 0. This includes encoded

offsets that you adjust yourself (for example, with addition or subtraction).

SAM I/O Operations

68 LE/VSE: C Run-Time Programming Guide

When you call fseek() with the origin SEEK_SET, you must use an encoded offset

returned from ftell(). For origins of SEEK_CUR and SEEK_END, however, you

specify relative byte offsets. If you want to seek to a certain relative byte offset,

you can use SEEK_SET with an offset of 0 to rewind the file to the beginning, and

then you can use SEEK_CUR to specify the desired relative byte offset. LE/VSE C

Run-Time counts newline characters and skips to the next record each time it reads

one.

Unlike binary files you cannot specify offsets for SEEK_CUR and SEEK_END that set

the file position past the end of the file. Any offset that indicates a position outside

the current file is invalid and causes fseek() to fail.

In earlier releases, ftell() could determine position only for files with no more

than 131071 blocks. In the new design, this number increases depending on the

block size. From a maximum block size of 32760, every time this number decreases

by half, the number of blocks that can be represented doubles. A maximum block

size of 65528, instead of 32760, can be used for disk files when the appropriate

hardware-device support is available.

Repositioning flushes all updates before changing position. An invalid call to

fseek() is now always treated as a flush. It flushes all updated records or all

complete new records in the block, and leaves the file position unchanged. If the

flush fails, any characters in the ungetc() buffer are lost. If a block contains an

incomplete new record, the block is saved and will be completed by another write

or by closing the file.

Using fseek() and ftell() in Record Files

For files opened with type=record, ftell() returns relative record numbers. The

behavior of fseek() and ftell() is similar to that when you use relative byte

offsets for binary files, except that the unit is a record rather than a byte. For

example,

 fseek(fp,-2,SEEK_CUR);

seeks backward two records from the current position.

 fseek(fp,6,SEEK_SET);

seeks to relative record 6. You do not need to get an offset from ftell().

You cannot seek past the end or before the beginning of a file.

The first record of a file is relative record 0.

Porting Old C Code that Uses fseek() or ftell()

The LE/VSE C Run-Time encoding scheme used by ftell() in non-byteseek mode

is different from that used in older versions of the C/370 compiler.

v If your code obtains ftell() values and passes them to fseek(), the change to

the encoding scheme should not affect your application. On the other hand, your

application may not work if you have saved encoded ftell() values in a file

and your application reads in these encoded values to pass to fseek(). For

non-record I/O files, you can set the environment variable _EDC_COMPAT with

the ftell() encoding set to tell LE/VSE C Run-Time that you have old ftell()

values. Files opened for record I/O do not support old ftell() values saved

across the program boundary.

v In previous versions, the fseek() support for the ftell() encoding scheme

inadvertently supported seeking from SEEK_SET with a byte offset up to 32K.

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 69

This will no longer be supported. Users of this support will have to change to

byteseek mode. You can do this without changing your source code; just use the

_EDC_BYTE_SEEK environment variable.

Closing Files

Use the fclose() library function to close a file. LE/VSE C Run-Time automatically

closes files on normal program termination and attempts to do so under abnormal

program termination or abend. See LE/VSE C Run-Time Library Reference for more

information on this library function.

For files opened in fixed binary mode, incomplete records will be padded with

null characters when you close the file.

For files opened in variable binary mode, incomplete records are flushed to the

system. In a spanned file, closing a file can cause a zero-length segment to be

written. This segment will still be part of the non-zero-length record. For files

opened in undefined binary mode, any incomplete output is flushed on close.

Closing files opened in text mode causes any incomplete new record to be

completed with a newline character. All records not yet flushed to the file are

written out when the file is closed.

For files opened for record I/O, closing causes all records not yet flushed to the

file to be written out.

Renaming and Removing Files

You can remove or rename a SAM file using the remove() or rename() library

functions, respectively. rename() and remove() both accept file IDs. rename() does

not accept DLBL/TLBL-name or logical unit specification, but remove() does.

When using remove() with the DLBL/TLBL-name specification, the DLBL or TLBL

cannot be removed.

When using remove() with the file ID specification:

v The Partition Temporary Labels only will be searched for a DLBL or TLBL

matching the file ID.

v SAM ESDS files will be deleted from the default catalog specified by the IJSYSUC

DLBL if present, or the master catalog otherwise.

When using rename() with the file ID specification:

v The Partition Temporary Labels only will be searched for a DLBL matching the

file ID.

Note: The file ID on the DLBL statement is not updated.

v SAM ESDS files will be renamed in the default catalog specified by the IJSYSUC

DLBL if present, or the master catalog otherwise.

fldata() Behavior

v Any of the __recfm bits may be set on for SAM files; see the example below.

SAM I/O Operations

70 LE/VSE: C Run-Time Programming Guide

v The filename field is fully qualified and includes quotation marks if you have

opened the file by its file ID. If you have opened it by DLBL/TLBL-name and/or

logical unit, the name returned will be the same as the name provided on the

call to the fopen() or freopen() function, including the dd: prefix.

v All SAM files set on __dsorgPS.

v The __dsorgMem, __dsorgVSAM, __dsorgPO and __dsorgPDSmem bits are never set on

for SAM files. The fields __vsamtype, __vsamkeylen, and __vsamRKP are used only

for VSAM; they are not set for SAM files.

v Valid devices are: __DISK, __TAPE, __PRINTER, and __OTHER.

v __blksize is the physical block size read from or written to the device, including

all control information.

v __maxreclen is the maximum number of data bytes in each logical record,

excluding all control information but including ASA print-control characters or

machine control codes if specified.
struct __fileData {

 unsigned int __recfmF : 1, /* if mapping ==> Fixed */

 __recfmV : 1, /* if mapping ==> Variable */

 __recfmU : 1, /* if mapping ==> Undefined */

 __recfmS : 1, /* if mapping ==> Spanned or Standard */

 __recfmBlk : 1, /* if mapping ==> Blocked */

 __recfmASA : 1, /* only if Text mode and ASA */

 __recfmM : 1, /* only if machine print-cntrl codes */

 __dsorgPO : 1, /* see above */

 __dsorgPDSmem : 1, /* see above */

 __dsorgPDSdir : 1, /* N/A; never on */

 __dsorgPS : 1, /* see above */

 __dsorgConcat : 1, /* N/A; never on */

 __dsorgMem : 1, /* N/A; never on */

 __dsorgHiper : 1, /* N/A; never on */

 __dsorgTemp : 1, /* only if file created by tmpfile() */

 __dsorgVSAM : 1, /* never on */

 __reserve1 : 1, /* */

 __openmode : 2, /* normal setting */

 __modeflag : 4, /* normal setting */

 __reserve2 : 9, /* */

 */

 char __device; /* see above */

 unsigned long __blksize, /* block size (may include BDW, RDWs) */

 __maxreclen; /* data length of records (includes */

 /* ASA character if if this is an */

 /* ASA file) */

 unsigned short __vsamtype; /* not used */

 unsigned long __vsamkeylen; /* not used */

 unsigned long __vsamRKP; /* not used */

 char * __dsname; /* filled in for SAM __DISK files */

 /* with file-ID. */

 /* The name is fully qualified but */

 /* contains no quotation marks. */

 /* The name is always uppercased. */

 /* For non-disk devices, this field */

 /* is set to NULL. */

 unsigned int __reserve4; /* */

};

SAM I/O Operations

Chapter 8. Performing SAM I/O Operations 71

SAM I/O Operations

72 LE/VSE: C Run-Time Programming Guide

Chapter 9. Performing VSE/Librarian I/O Operations

This chapter describes using VSE/Librarian I/O under VSE batch.

VSE/Librarian I/O supports text, binary, and record I/O in fixed (F) record format

and binary I/O in undefined (U) record format.

VSE/Librarian I/O is not supported under CICS.

See Chapter 6, “LE/VSE C Run-Time Support for the Double-Byte Character Set

(DBCS),” on page 29 for information about using wide-character I/O with LE/VSE

C Run-Time.

Opening Files

To open a VSE/Librarian sublibrary member, use the standard C fopen() or

freopen() library functions. These are described in general terms in LE/VSE C

Run-Time Library Reference. Details about them specific to all LE/VSE C Run-Time

I/O are discussed in Chapter 3, “Opening Files,” on page 15. This section describes

considerations for using fopen() and freopen() with VSE/Librarian sublibrary

members.

Using fopen() or freopen()

Files are opened with a call to fopen() or freopen() in the format:

fopen("filename", "mode").

Filenames for VSE/Librarian Sublibrary Members

The syntax for the filename argument on your fopen() or freopen() call is shown

in the following diagram:

== DD: (member.type)

lib.sublib
 =B

lib.sublib

Is a valid Librarian sublibrary name.

member.type

Specifies the sublibrary member name and type.

If the sublibrary name is omitted, the default libraries specified by the LIBDEF JCL

statement will be searched. The sublibraries searched will depend on the member

type as follows:

PHASE

Sublibraries in the PHASE search chain (LIBDEF PHASE,SEARCH) are searched

for input. Phases can only be read.

PROC Sublibraries in the PROCEDURE search chain (LIBDEF PROC,SEARCH) are

searched for input.

OBJ Sublibraries in the OBJECT search chain (LIBDEF OBJ,SEARCH) are searched

for input.

DUMP

Sublibraries in the DUMP search chain (LIBDEF DUMP,CATALOG) specifies the

sublibraries to write a DUMP to.

© Copyright IBM Corp. 1995, 2005 73

Other Sublibraries in the SOURCE search chain (LIBDEF SOURCE,SEARCH) are

searched for input.

When a VSE/Librarian member is created and no sublibrary is specified, the

member is created in the first sublibrary in the search chain.

File Modes Supported for VSE/Librarian I/O

The only file modes supported for VSE/Librarian I/O are r, rb, w, wb, a and ab.

fopen() and freopen() Parameters

The following table lists the parameters that are available on the fopen() and

freopen() functions, tells you which ones are allowed and applicable for

VSE/Librarian I/O, and lists the option values that are valid for the applicable

ones. Detailed descriptions of these options follow the table.

 Table 19. Parameters for the fopen() and freopen() Functions for VSE/Librarian I/O

Parameter Allowed? Applicable? Notes

recfm= Yes Yes Must be fixed or undefined. See the parameter list

below for details.

lrecl= Yes Yes Must be 80 if record format is fixed. Ignored

otherwise.

blksize= Yes Yes Any positive integer up to 65528 is valid. Must be

a multiple of LRECL if fixed record format. See the

parameter list below for details.

space= Yes No Not used for VSE/Librarian I/O.

type= Yes Yes May be omitted. If you do specify it, type=record is

the only valid value. See the parameter list below

for details.

acc= Yes No Not used for VSE/Librarian I/O.

password= Yes No Not used for VSE/Librarian I/O.

asis Yes No Ignored.

byteseek Yes Yes Used for binary files to specify that the seeking

functions should use relative byte offsets instead of

encoded offsets. See the parameter list below for

details.

noseek Yes Yes Used to disable seeking functions for improved

performance. See the parameter list below for

details.

OS Yes No Ignored.

rewind= Yes Yes Not used for VSE/Librarian I/O.

dsn= Yes No Ignored.

recfm=

Must be either fixed unblocked (ASA print-control characters or machine

control codes can be specified) or undefined. recfm=U is only allowed when the

file is opened for binary processing. type=record is only allowed when recfm=F

is specified. Specifying recfm=* is not supported under LE/VSE C Run-Time.

 VSE/Librarian members with a type of DUMP must be recfm=U while members

with a type of either OBJ or PROC must be recfm=F.

lrecl=

Must be 80 if record format is fixed. Ignored otherwise.

VSE/Librarian I/O Operations

74 LE/VSE: C Run-Time Programming Guide

blksize=

For fixed record format files, this parameter is used to specify the buffer size

for VSE/Librarian I/O to allow multiple records to be read and/or written at a

time. The block size must be a multiple of LRECL.

 For undefined record format files, the value specified determines the size of

the I/O buffer used by the VSE/Librarian.

 If omitted, BLKSIZE defaults to 4000.

space=

This parameter is not valid for VSE/Librarian I/O. If you specify it, LE/VSE C

Run-Time ignores it.

type=

You can omit this parameter. If you specify it, the only valid value for

VSE/Librarian I/O is type=record, which opens a file for record I/O.

type=record is only allowed when recfm=F is specified and the file is opened

for binary processing.

acc=

This parameter is not valid for VSE/Librarian I/O. If you specify it, LE/VSE C

Run-Time ignores it.

password=

This parameter is not valid for VSE/Librarian I/O. If you specify it, LE/VSE C

Run-Time ignores it.

asis

If you specify this parameter, LE/VSE C Run-Time ignores it.

byteseek

When you specify this parameter and open a file in binary mode, all

repositioning functions (such as fseek() and ftell()) use relative byte offsets

from the beginning of the file instead of encoded offsets. To have the byteseek

parameter set as the default for all your calls to fopen() or freopen(), you can

set the environment variable _EDC_BYTE_SEEK to Y. See Chapter 21, “Using

Environment Variables,” on page 219 for more information.

noseek

Specifying this parameter on the fopen() call disables the repositioning

functions ftell(), fseek(), fgetpos(), and fsetpos() for as long as the file is

open. When you have specified noseek and have opened a disk file for read

only, the only repositioning function allowed on the file is rewind(), if the

device supports rewinding. Otherwise, a call to rewind() sets errno and raises

SIGIOERR, if SIGIOERR is not set to SIG_IGN. Calls to ftell(), fseek(),

fsetpos(), or fgetpos() return EOF, set errno, and set the stream error flag on.

 The use of the noseek parameter may improve performance when you are

reading and writing files.

Note: If you specify the noseek parameter when you open a file for writing,

you must specify noseek on any subsequent fopen() call that

simultaneously opens the file for reading; otherwise, you will get

undefined behavior.

OS

If you specify this parameter, LE/VSE C Run-Time ignores it.

rewind=

This parameter is not valid for VSE/Librarian I/O. If you specify it, LE/VSE C

Run-Time ignores it.

VSE/Librarian I/O Operations

Chapter 9. Performing VSE/Librarian I/O Operations 75

dsn=

This parameter is not valid for VSE/Librarian I/O. If you specify it, LE/VSE C

Run-Time ignores it.

Buffering

Same as for SAM I/O. (See “Buffering” on page 56.)

Unbuffered I/O is not supported for VSE/Librarian files.

Reading from Files

Same as for SAM I/O. (See “Reading from Files” on page 56.)

Writing to Files

Same as for SAM I/O. (See “Writing to Files” on page 58.)

Flushing Buffers

The fflush() function will write out any completed records.

Repositioning within Files

Same as for SAM I/O. (See “Repositioning within Files” on page 66.)

Closing Files

Same as for SAM I/O. (See “Closing Files” on page 70.)

Renaming and Removing Files

You can use remove() and rename() on individual members of VSE/Librarian

sublibraries only. Neither function can be used on entire sublibraries.

When using remove(), if the library/sublibrary is specified, the member is deleted

from that sublibrary. If not, the member is deleted from the first sublibrary in the

chain.

When using rename():

v If the library/sublibrary is specified as part of the “old” name, then the

library/sublibrary specified as part of the “new” name must be the same, or be

omitted. The member will be renamed in the specified sublibrary.

v If the library/sublibrary is not specified as part of the “old” name, then the

library/sublibrary should not be specified as part of the “new” name either. The

member will be renamed in the first sublibrary in the chain.

fldata() Behavior

v Refer to the example below for information about which of the __recfm bits that

may be set on for VSE/Librarian files.

v The filename field is identical to the filename specified on the call to fopen().

v The __dsorgPO and __dsorgPDSmem fields are always set on when you are reading

a member of a VSE/Librarian sublibrary.

VSE/Librarian I/O Operations

76 LE/VSE: C Run-Time Programming Guide

struct __fileData {

 unsigned int __recfmF : 1, /* if mapping ==> Fixed */

 __recfmV : 1, /* N/A; never on */

 __recfmU : 1, /* if mapping ==> Undefined */

 __recfmS : 1, /* N/A; never on */

 __recfmBlk : 1, /* N/A; never on */

 __recfmASA : 1, /* only if Text mode and ASA */

 __recfmM : 1, /* only if machine print-cntrl codes */

 __dsorgPO : 1, /* see above */

 __dsorgPDSmem : 1, /* see above */

 __dsorgPDSdir : 1, /* N/A; never on */

 __dsorgPS : 1, /* see above */

 __dsorgConcat : 1, /* N/A; never on */

 __dsorgMem : 1, /* N/A; never on */

 __dsorgHiper : 1, /* N/A; never on */

 __dsorgTemp : 1, /* only if file created by tmpfile() */

 __dsorgVSAM : 1, /* never on */

 __reserve1 : 1, /* */

 __openmode : 2, /* normal setting */

 __modeflag : 4, /* normal setting */

 __reserve2 : 9, /* */

 */

 char __device; /* __DISK */

 unsigned long __blksize, /* block size */

 __maxreclen; /* data length of records (includes */

 /* ASA character if if this is an */

 /* ASA file) */

 unsigned short __vsamtype; /* not used */

 unsigned long __vsamkeylen; /* not used */

 unsigned long __vsamRKP; /* not used */

 char * __dsname; /* this is the full name of the VSE */

 /* Librarian file in the format */

 /* dd:lib.sublib(member.type) */

 unsigned int __reserve4; /* */

};

VSE/Librarian I/O Operations

Chapter 9. Performing VSE/Librarian I/O Operations 77

VSE/Librarian I/O Operations

78 LE/VSE: C Run-Time Programming Guide

Chapter 10. Performing VSAM I/O Operations

This chapter outlines the use of Virtual Storage Access Method (VSAM) data sets

in LE/VSE C Run-Time. Three I/O processing modes for VSAM data sets are

available in LE/VSE C Run-Time:

v Record

v Text Stream

v Binary Stream

Because VSAM is a record-based access method, record mode is the logical

processing mode and is specified by coding the type=record keyword parameter

on the fopen() function call. LE/VSE C Run-Time also provides limited support

for VSAM text streams and binary streams. Because of the record-based nature of

VSAM, this chapter is organized differently from the other chapters in this section.

The focus of this chapter is on record I/O. Only those aspects of text and binary

I/O that are specific to VSAM are discussed, at the end of the chapter.

VSAM I/O is not supported under CICS, except through the CICS command level

interface.

For more information about the facilities of VSAM, see “Where to Find More

Information” on page xxi.

See Chapter 6, “LE/VSE C Run-Time Support for the Double-Byte Character Set

(DBCS),” on page 29 for information about using wide-character I/O with LE/VSE

C Run-Time.

VSAM Types (Data Set Organization)

There are three types of VSAM data sets supported by LE/VSE C Run-Time, all of

which are held on disk devices.

v Key-Sequenced Data Set (KSDS) is used when a record is accessed through a key

field within the record (for example, an employee directory file where the

employee number can be used to access the record). KSDS also supports

sequential access. Each record in a KSDS must have a unique key value.

v Entry-Sequenced Data Set (ESDS) is used for data that is primarily accessed in

the order it was created (or the reverse order). It supports direct access by

Relative Byte Address (RBA), and sequential access.

v Relative Record Data Set (RRDS) is used for data in which each item has a

particular number, and the relevant record is accessed by that number (for

example, a telephone system with a record associated with each number). It

supports direct access by Relative Record Number (RRN), and sequential access.

In addition to the primary VSAM access described above, for KSDS and ESDS,

there is also direct access by one or more additional key fields within each record.

These additional keys can be unique or non-unique; they are called an alternate

index (AIX).

Note: VSAM Linear Data Sets are not supported in LE/VSE C Run-Time I/O.

© Copyright IBM Corp. 1995, 2005 79

Access Method Services

Access Method Services are generally known by the name IDCAMS on VSE. For

more information, see Access Method Services manual.

Before a VSAM data set is used for the first time, its structure is defined to the

system by the Access Method Services DEFINE CLUSTER command. This command

defines the type of VSAM data set, its structure, and the space it requires.

Before a VSAM alternate index is used for the first time, its structure is defined to

the system by the Access Method Services DEFINE ALTERNATEINDEX command. To

enable access to the base cluster records through the alternate index, use the

DEFINE PATH command. Finally, to build the alternate index, use the BLDINDEX

command.

Once you have built the alternate index, you call fopen() and specify the PATH in

order to access the base cluster through the alternate index. Do not use fopen() to

access the alternate index itself.

Note: You cannot use the BLDINDEX command on an empty base cluster.

Choosing VSAM Data Set Types

When you plan your program, you must first decide the type of data set to use.

Figure 9 on page 81 shows you the possibilities available with the types of VSAM

data sets.

VSAM I/O Operations

80 LE/VSE: C Run-Time Programming Guide

When choosing the VSAM data set type, you should base your choice on the most

common sequence in which you require data. You should follow a procedure

similar to the one suggested below to help ensure a combination of data sets and

indexes that provide the function you require.

The diagrams show how the information contained in the family tree below could be held in VSAM data sets of different types.

VALERIE SUZIE ANN MORGAN (1967)

FRED (1969) ANDY (1970) SUZAN (1972) JANE (1975)

Key-Sequenced Data Set

Entry-Sequenced Data Set

Relative Record Data Set

ANDY

FRED

JANE

SUZAN

Prime
Index

Alternate Indexes
By Birthdate (unique)

69

70

72

75

F

M

empty space

ANDY

FRED

empty space

empty space

JANE

SUZAN

70 M

69 M

75 F

72 F

Alternate Indexes

Alphabetically by name

(unique)

ANDY

FRED

JANE

SUZAN

F

M

FRED 69 M

By sex (non-unique)

By sex (non-unique)

No Alternate IndexesRelative record numbers

can be accessed and

used as keys

Each slot corresponds to a year

ANDY

SUZAN

JANE

70 M

72 F

75 F

FRED

ANDY

empty space for 71

SUZAN

empty space for 73

empty space for 74

JANE

empty space for 76

69 M

70 M

72 F

75 F

1

2

3

4

5

6

7

8

Slot

Data component

Data component

Data component

Relative byte addresses

can be accessed and

used as keys

ANDREW M SMITH &

Figure 9. Types and Advantages of VSAM Data Sets

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 81

1. Determine the type of data and its primary access.

v sequentially—favors ESDS.

v by key—favors KSDS.

v by number—favors RRDS.
2. Determine whether you require access through an alternate index path. These

are only supported on KSDS and ESDS. If you do, determine whether the

alternate index is to have unique or non-unique keys. You should keep in mind

that making an assumption that all future records will have unique keys may

not be practical, and an attempt to insert a record with a non-unique key in an

index that has been created for unique keys causes an error.

3. When you have determined the data sets and paths that you require, ensure

that the operations you have in mind are supported.

Keys, RBAs and RRNs

All VSAM data sets have keys associated with their records. For KSDS, KSDS AIX,

and ESDS AIX, the key is a defined field within the logical record. For ESDS, the

key is the relative byte address (RBA) of the record. For RRDS, the key is a relative

record number (RRN).

Keys for Indexed VSAM Data Sets: For KSDS, KSDS AIX, and ESDS AIX, keys

are part of the logical records recorded on the data set. For KSDS, the length and

location of the keys are defined by the DEFINE CLUSTER command of Access

Method Services. For KSDS AIX and ESDS AIX, the keys are defined by the DEFINE

ALTERNATEINDEX command.

Relative Byte Addresses: Relative byte addresses enable you to access ESDS files

directly. The RBAs are unsigned long int fields, and their values are computed by

VSAM.

Notes:

1. KSDS can also use RBAs. However, because the RBA of a KSDS record can

change if an insert, delete or update operation is performed elsewhere in the

file, it is not recommended.

2. You can call flocate() with RBA values in an RRDS cluster, but flocate()

with RBA values does not work across control intervals. Therefore, using RBAs

with RRDS clusters is not recommended. The RRDS access method does not

support RBAs. LE/VSE C Run-Time supports the use of RBAs in an RRDS

cluster by translating the RBA value to an RRN. It does this by dividing the

RBA value by the LRECL.

3. Alternate indexes do not allow positioning by RBA.

The RBA value is stored in the C structure __amrc, which is defined in the C

stdio.h header file. You can access the field __amrc->__RBA as shown below:

VSAM I/O Operations

82 LE/VSE: C Run-Time Programming Guide

EDCXGVS1:

 For more information about the __amrc structure, refer to Chapter 14, “Debugging

I/O Programs,” on page 131.

Relative Record Numbers: Records in an RRDS are identified by a relative record

number that starts at 1 and is incremented by 1 for each succeeding record

position. Only RRDS files support accessing a record by its relative record number.

 /* EDCXGVS1

 This example shows how to access the __amrc->__RBA field.

 It assumes that an ESDS has already been defined, and has been

 assigned the DLBL-name ESDSCLU.

 */

#include <stdio.h>

#include <stdlib.h>

main() {

 FILE *ESDSfile;

 unsigned long myRBA;

 char recbuff[100]="This is record one.";

 int w_retcd;

 int l_retcd;

 int r_retcd;

 printf("calling fopen(\"dd:esdsclu\",\"rb+,type=record\");\n");

 ESDSfile = fopen("dd:esdsclu", "rb+,type=record");

 printf("fopen() returned 0X%.8x\n",ESDSfile);

 if (ESDSfile==NULL) exit;

 w_retcd = fwrite(recbuff, 1, sizeof(recbuff), ESDSfile);

 printf("fwrite() returned %d\n",w_retcd);

 if (w_retcd != sizeof(recbuff)) exit;

 myRBA = __amrc->__RBA;

 l_retcd = flocate(ESDSfile, &myRBA, sizeof(myRBA), __RBA_EQ);

 printf("flocate() returned %d\n",l_retcd);

 if (l_retcd !=0) exit;

 r_retcd = fread(recbuff, 1, sizeof(recbuff), ESDSfile);

 printf("fread() returned %d\n",r_retcd);

 if (l_retcd !=0) exit;

 return(0);

}

Figure 10. VSAM Example

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 83

Summary of VSAM I/O Operations

Table 20 summarizes VSAM data set characteristics and the allowable I/O

operations on them.

 Table 20. Summary of VSAM Data Set Characteristics and Allowable I/O Operations

KSDS ESDS RRDS

Record Length Variable. Length can be

changed by update.

Variable. Length cannot be

changed by update.

Fixed.

Alternate Index Allows access using unique or

non-unique keys.

Allows access using unique or

non-unique keys.

Not supported by VSAM.

Record Read

(Sequential)

The order is determined by the

VSAM key. Reads proceed in

key sequence for the key of

reference.

By entry sequence. By relative record number.

Record Write

(Direct)

Position determined by the

value in the field designated as

the key.

Record written at the end of

the file.

By relative record number.

Positioning for

Record Read

By key or by RBA value.

Positioning by RBA value is not

recommended because changes

to the file change the RBA.

By RBA value. Alternate index

allows use by key.

By relative record number.

Delete (Record) If not already in correct

position, reposition the file;

read the record using fread();

delete the record using

fdelrec(). fread() must

immediately precede

fdelrec().

Not supported by VSAM. If not already in correct

position, position the file; read

the record using fread(); delete

the record using fdelrec().

fread() must immediately

precede fdelrec().

Update (Record) If not already in correct

position, reposition the file;

read the record using fread();

update the record using

fupdate(). fread() must

immediately precede

fupdate().

If not already in correct

position, reposition the file;

read the record using fread();

update the record using

fupdate(). fread() must

immediately precede

fupdate().

If not already in correct

position, reposition the file;

read the record using fread();

update the record using

fupdate(). fread() must

immediately precede

fupdate().

Empty the File Define the file as reusable using

DEFINE CLUSTER definition, and

then open the data set in write

("wb,type=record" or

"wb+,type=record") mode. Not

supported for alternate indexes.

Define the file as reusable using

DEFINE CLUSTER definition, and

then open the data set in write

("wb,type=record": or

"wb+,type=record") mode. Not

supported for alternate indexes.

Define the file as reusable using

DEFINE CLUSTER definition, and

then open the data set in write

("wb,type=record" or

"wb+,type=record") mode.

Stream Read Supported by LE/VSE C

Run-Time.

Supported by LE/VSE C

Run-Time.

Supported by LE/VSE C

Run-Time.

Stream

Write/Update

Not supported by LE/VSE C

Run-Time.

Supported by LE/VSE C

Run-Time.

Supported by LE/VSE C

Run-Time.

Stream

Repositioning

Supported by LE/VSE C

Run-Time.

Supported by LE/VSE C

Run-Time.

Supported by LE/VSE C

Run-Time.

VSAM I/O Operations

84 LE/VSE: C Run-Time Programming Guide

Opening VSAM Data Sets

To open a VSAM data set, use the standard C library functions fopen() and

freopen() just as you would for opening non-VSAM data sets. The fopen() and

freopen() functions are described in LE/VSE C Run-Time Library Reference.

This section describes considerations for using fopen() and freopen() with VSAM

files. Remember that a VSAM file must exist and be defined as a VSAM cluster

before you call fopen().

For information regarding VSAM-managed SAM (SAM ESDS files), see Chapter 8,

“Performing SAM I/O Operations,” on page 47.

Using fopen() or freopen()

Files are opened with a call to fopen() or freopen() in the format:

fopen("filename", "mode").

Filenames for VSAM Data Sets

Using a Data Set Name: The syntax for the filename argument on your fopen() or

freopen() call when using a data set name is shown in the following diagram:

==

(1)

'

%

%%

C

 ,

qualifier

(1)

'

=B

Notes:

1 The single quotation marks must be matched; if you use one, you must use

the other.

A sample construct is:

'qualifier1.qualifier2'

' When you enclose a data set name in single quotation marks, the data set

name is fully qualified. The file opened is the one specified by the data set name

inside the quotation marks. If the data set name is not fully qualified, LE/VSE

C Run-Time appends the job name to the front of the data set name. For

example, the statement fopen("a.b","w"); opens a file jobname.A.B, where

jobname is the name of the job submitted. If the data set name is fully qualified,

LE/VSE C Run-Time does not append a job name.

% A single %-sign in front of the data set name indicates that you want

VSE/VSAM to append a partition identifier to the data set name specified.

%%

Two %-signs in front of the data set name indicates that you want VSE/VSAM

to append a unique processor identification and a partition identifier to the

data set name specified.

qualifier

Each qualifier is a 1- to 8-character name. These characters may be

alphanumeric, national ($, #, @), the hyphen, or the character X’C0’. The first

character should be either alphabetic or national.

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 85

You can join qualifiers with periods. The maximum length of a data set name

is 44 characters, including periods.

Using a DLBL/TLBL-name: The syntax for the filename argument on your fopen()

or freopen() call when using a DLBL/TLBL-name is shown in the following

diagram:

== DD: DLBL

TLBL

(1)

LU

DLBL

(2)

TLBL

 =B

Notes:

1 If both LU and DLBL or TLBL are specified, a dash (-) must be used as

separator (no blanks are allowed).

2 If both LU and DLBL or TLBL are specified, a dash (-) must be used as

separator (no blanks are allowed).

LU

Specification of logical unit (LU) is ignored.

DLBL or TLBL

A 1- to 8-character name of which at most the first 7 characters are used. These

characters may be alphanumeric or national ($, #, @). The first character must

be either alphabetic or national.

The following example shows how to access a cluster or path by DLBL-name by

writing the required DLBL statement and calling fopen():

If your data set is VSAM.CLUSTER1 and your C program refers to this data set by the

DLBL-name CFILE, you can write the DLBL statement:

 // DLBL CFILE,’VSAM.CLUSTER1’,0,VSAM

and code the following in your C source program:

 #include <stdio.h>

 FILE *infile;

 main()

 {

 infile=fopen("DD:CFILE", "ab+, type=record");

 .

 .

 }

Note: LE/VSE C Run-Time does not check the value of shareoptions at open time,

nor does it provide support for read-integrity and write-integrity, as

required to share files under shareoptions 3 and 4.

To ensure data integrity on concurrent VSAM reads and writes by using common

buffers, the dsn= keyword must be specified on all calls to fopen() for a given data

set (either the base cluster or any of its alternate indexes). Using the dsn= keyword

facilitates VSAM DSN (data set name) sharing regardless of the shareoptions

specification.

VSAM I/O Operations

86 LE/VSE: C Run-Time Programming Guide

For more information on shareoptions, see the information on DEFINE CLUSTER in

the books listed in “Where to Find More Information” on page xxi.

Specifying fopen() and freopen() Keywords

The mode argument is a character string specifying the type of access requested for

the file.

The mode argument contains one positional parameter (access mode) followed by

keyword parameters. A description of these parameters, along with an explanation

of how they apply to VSAM data sets is given in the following sections.

Specifying Access Mode: The access mode is specified by the positional

parameter of the fopen() function call. The possible record I/O and binary modes

you can specify are:

rb Open for reading. If the file is empty, fopen() fails.

wb Open for writing. If the cluster is defined as reusable, the existing contents

of the cluster are destroyed. If the cluster is defined as not reusable

(clusters with paths are, by definition, not reusable), fopen() fails.

However, if the cluster has been defined but not loaded, this mode can be

used to do the initial load of both reusable and non reusable clusters.

ab Open for writing.

rb+ or r+b

Open for reading, writing, and/or updating.

wb+ or w+b

Open for reading, writing, and/or updating. If the cluster is defined as

reusable, the existing contents of the cluster are destroyed. If the cluster is

defined as not reusable (clusters with paths are, by definition, not

reusable), the fopen() fails. However, if the cluster has been defined but

not loaded, this mode can be used to do the initial load of both reusable

and non reusable clusters.

ab+ or a+b

Open for reading, writing, and/or updating.

For text files, you can specify the following modes: r, w, a, r+, w+, and a+.

Note: For keyed VSAM data sets (KSDS, KSDS AIX and ESDS AIX) in text and

binary I/O, the only valid modes are r and rb, respectively. (See also “Text

and Binary I/O in VSAM” on page 98.)

fopen() and freopen() Parameters

The following table lists the parameters that are available on the fopen() and

freopen() functions, tells you which ones are useful for VSAM I/O, and lists the

values that are valid for the applicable ones.

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 87

Table 21. Parameters for the fopen() and freopen() Functions for VSAM Data Sets

Parameter Allowed? Applicable? Notes

recfm= Yes No Ignored.

lrecl= Yes No Ignored.

blksize= Yes No Ignored.

space= Yes No Ignored.

type= Yes Yes May be omitted. If you do specify it, type=record

is the only valid value. See the parameter list

below for details.

acc= Yes Yes Specifies the access direction for VSAM data sets.

Valid values are BWD and FWD. See the parameter

list below for details.

password= Yes Yes Specifies the password for a VSAM data set. See

the parameter list below for details.

asis Yes No Ignored.

byteseek Yes Yes Used for binary stream files to specify that the

seeking functions should use relative byte offsets

instead of encoded offsets. This is the default

setting.

noseek Yes No Ignored.

OS Yes No Ignored.

rewind= Yes Yes Not used for VSAM I/O.

dsn= Yes Yes Specifies the number of strings to be allocated for

data set name sharing. See the parameter list

below for details.

recfm=

Any values passed into fopen() are ignored.

lrecl= and blksize=

These parameters are set to the maximum record size of the cluster as

initialized in the cluster definition. Any values passed into fopen() are ignored.

space=

This parameter is not supported under VSAM.

type=

If you use the type= parameter, the only valid value for VSAM data sets is

type=record. This opens a file for record I/O.

acc=

For VSAM files opened with the parameter type=record, you can specify the

direction by using the acc=access_type parameter on the fopen() function call.

For text and binary files, the access direction is always forward. Attempts to

open a VSAM data set with acc=BWD for either binary or text stream I/O will

fail.

 The access_type can be one of the following:

FWD The acc=FWD parameter specifies that the file be processed in a forward

direction. When the file is opened, it will be positioned at the

beginning of the first physical record, and any subsequent read

operations sets the file position indicator to the beginning of the next

record.

VSAM I/O Operations

88 LE/VSE: C Run-Time Programming Guide

The default value for the access parameter is acc=FWD.

BWD The acc=BWD parameter specifies that the file be processed in a

backward direction. When the file is opened, it is positioned at the

beginning of the last physical record and any subsequent read

operation sets the file position indicator to the beginning of the

preceding record.

 You can change the direction of sequential processing (from forward to

backward or from backward to forward) by using the flocate() library

function. For more information about flocate(), see “Repositioning within

Record I/O Files” on page 94.

Note: When opening paths, records with duplicate alternate index keys are

processed in order of arrival time (oldest to newest) regardless of the

current processing direction.

password=

VSAM facilities provide password protection for your data sets. You access a

data set that has password protection by specifying the password on the

password keyword parameter of the fopen() function call; the password resides

in the VSAM catalog entry for the named file. There can be more than one

password in the VSAM catalog entry; data sets can have different passwords

for different levels of authorization such as reading, writing, updating,

inserting, or deleting. For a complete description of password protection on

VSAM files, see the list of publications listed in “Where to Find More

Information” on page xxi.

 The password parameter has the form:

 password=nx

where x is a 1- to 8-character password, and n is the exact number of

characters in the password. The password can contain special characters such

as blanks and commas.

 If a required password is not supplied, or if an incorrect password is given,

fopen() fails.

asis

If you specify this parameter, LE/VSE C Run-Time ignores it.

byteseek

When you specify this parameter and open a file in binary stream mode,

fseek() and ftell() use relative byte offsets from the beginning of the file.

This is the default setting.

noseek

This parameter is ignored for VSAM data sets.

OS

This parameter is ignored for VSAM data sets.

rewind=

This parameter is not valid for VSAM I/O. If you specify it, LE/VSE C

Run-Time ignores it.

dsn=

This parameter allows you to specify the number of strings to be allocated to

the data set for shared access.

 The dsn paremeter has the form:

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 89

dsn=n

where n specifies a decimal number. The number of strings allocated to a data

set is determined by the first fopen() call for that data set which specifies

dsn=n. VSAM uses the value n to set the ACB BSTRNO value. Subsequent calls

to fopen() for the same data set requires a dsn=n keyword parameter in order

to participate in DSN (data set name) sharing, but the value n is ignored.

 All files opened with a dsn= parameter use ACB MACRF=OUT. VSE/VSAM

does not allow mixed MACRF=IN|OUT ACBs for DSN sharing. This does not

affect C file processing options, such as the access mode.

 For additional information about VSAM DSN sharing, refer to “Where to Find

More Information” on page xxi.

Buffering

Full buffering is the default. You can specify line buffering, but LE/VSE C

Run-Time treats line buffering as full buffering for VSAM data sets. Unbuffered

I/O is not supported under VSAM; if you specify it, your setvbuf() call fails.

To find out how to optimize VSAM performance by controlling the number of

VSAM buffers used for your data set, read the section “Optimizing the

Performance of VSE/VSAM” in IBM VSE/Virtual Storage Access Method (VSAM)

User’s Guide.

Record I/O in VSAM

This section describes how to use record I/O in VSAM.

RRDS Record Structure

For RRDS files opened in record mode, LE/VSE C Run-Time defines the following

key structure in the C header file stdio.h:

 typedef struct {

 long unsigned int __fill,

 __recnum; /* the RRN, starting at 1 */

 }__rrds_key_type;

In your source program, you can define an RRDS record structure as either:

 struct {

 __rrds_key_type rrds_key; /* __fill value always 0 */

 char data[MY_REC_SIZE];

 } rrds_rec_0;

or:

 struct {

 __rrds_key_type rrds_key; /* __fill value always 1 */

 char *data;

 } rrds_rec_1;

The LE/VSE C Run-Time library recognizes which type of record structures you

have used by the value of rrds_key.__fill. Zero indicates that the data is

contiguous with rrds_key and 1 indicates that a pointer to the data follows

rrds_key.

VSAM I/O Operations

90 LE/VSE: C Run-Time Programming Guide

Reading Record I/O files

To read from a VSAM data set opened with type=record, use the standard C

fread() library function. If you set the size argument to 1 and the count argument

to the maximum record size, fread() returns the number of bytes read successfully.

For more information on fread(), see LE/VSE C Run-Time Library Reference.

fread() reads one record from the system from the current file position. Thus, if

you want to read a certain record, you can call flocate() to position the file

pointer to point to it; the subsequent call to fread() reads in that record.

If you use an fread() call to request more bytes than the record about to be read

contains, fread() reads the entire record and returns the number of bytes read. If

you use fread() to request fewer bytes than the record about to read contains,

fread() reads the number of bytes that you specified and returns your request.

LE/VSE C Run-Time VSAM Record I/O does not allow a read operation to

immediately follow a write operation without an intervening reposition. LE/VSE C

Run-Time treats the following as read operations:

v Calls to read functions that request 0 bytes

v Read requests that fail because of a system error

v Calls to the ungetc() function

Calling fread() several times in succession, with no other operations on this file in

between, reads several records in sequence (sequential processing), which can be

forward or backward, depending on the access direction, as described below.

v KSDS, KSDS AIX and ESDS AIX

The records are retrieved according to the sequence of the key of reference, or in

reverse key sequence.

Note: Records with duplicate alternate index keys are processed in order of

arrival time (oldest to newest) regardless of the current processing

direction.

v ESDS

The records are retrieved according to the sequence they were written to the file

(entry sequence), or in reverse entry sequence.

v RRDS

The records are retrieved according to relative record number sequence or

reverse relative record number sequence.

When records are being read, RRNs without an associated record are ignored.

For example, if a file has relative records of 1, 2, and 5, the nonexistent records 3

and 4 are ignored.

By default, in record mode, fread() must be called with a pointer to an RRDS

record structure. The field __rrds_key_type.__fill must be set to either 0 or 1

indicating the type of the structure, and the count argument must include the

length of the __rrds_key_type. fread() returns the RRN number in the __recnum

field, and includes the length of the __rrds_key_type in the return value. You

can override these operations by setting the _EDC_RRDS_HIDE_KEY

environment variable to Y. Once this variable is set, fread() is called with a data

buffer and not an RRDS data structure. The return value of fread() is now only

the length of the data read. In this case, fread() cannot return the RRN. For

information on setting environment variables, see Chapter 21, “Using

Environment Variables,” on page 219.

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 91

Writing to Record I/O Files

To write new records to a VSAM data set opened with type=record, use the

standard C fwrite() library function. If you set size to 1 and count to the desired

record size, fwrite() returns the number of bytes written successfully. For more

information on fwrite() and the type=record parameter, see LE/VSE C Run-Time

Library Reference.

In general, C I/O does not allow a write operation to follow a read operation

without an intervening reposition or fflush(). LE/VSE C Run-Time counts a call

to a write function writing 0 bytes or a write request that fails because of a system

error as a write operation. However, LE/VSE C Run-Time VSAM record I/O

allows a write to directly follow a read.

The process of writing to a data set for the first time is known as initial loading.

Using the fwrite() function, you can write to a new VSAM file in initial load mode

just as you would to a file not in initial load mode. Writing to a KSDS PATH or an

ESDS PATH in initial load mode is not supported.

If your fwrite() call does not try to write more bytes than the maximum record

size, fwrite() writes a record of the length you asked for and returns your request.

If your fwrite() call asks for more than the maximum record size, fwrite() writes

the maximum record size, sets errno, and returns the maximum record size. In

either case, the next call to fwrite() writes to the following record.

Note: If an fwrite() fails, you must reposition the file before you try to read or

write again.

v KSDS, KSDS AIX

Records are written to the cluster according to the value stored in the field

designated as the prime key.

You can load a KSDS in any key order but it is most efficient to perform the

fwrite() operations in key sequence.

v ESDS, ESDS AIX

Records are written to the end of the file.

v RRDS

Records are written according to the value stored in the relative record number

field.

fwrite() is called with the RRDS record structure.

By default, in record mode, fwrite() and fupdate() must be called with a

pointer to an RRDS record structure. The __rrds_key_type fields __fill and

__recnum must be set. __fill is set to 0 or 1 to indicate the type of the structure.

The __recnum field specifies the RRN to write, and is required for fwrite() but

not fupdate(). The count argument must include the length of the

__rrds_key_type. fwrite() and fupdate() include the length of the

__rrds_key_type in the return value.

Updating Record I/O Files

The fupdate() function, a LE/VSE C Run-Time extension to the SAA C library, is

used to update records in a VSAM file. For more information on this function, see

LE/VSE C Run-Time Library Reference.

v KSDS, ESDS, and RRDS

To update a record in a VSAM file, you must perform the following operations:

VSAM I/O Operations

92 LE/VSE: C Run-Time Programming Guide

1. Open the VSAM file in update mode (rb+/r+b, wb+/w+b, or ab+/a+b specified

as the required positional parameter of the fopen() function call and

type=record).

2. If the file is not already positioned at the record you want to update,

reposition to that record.

3. Read in the record using fread().

Once the record you want to update has been read in, you must ensure that

no reading, writing, or repositioning operations are performed before

fupdate().

4. Make the necessary changes to the copy of the record in your buffer area.

5. Update the record from your local buffer area using the fupdate() function.

If an fupdate() fails, you must reposition using flocate() before trying to

read or write.

Notes:

1. If a file is opened in update mode, a read operation can result in the locking

of control intervals, depending on shareoptions specification of the VSAM

file. If after reading a record, you decide not to update it, you may need to

unlock a control interval by performing a file positioning operation to the

same record, such as an flocate() using the same key.

2. If fupdate() wrote out a record the file position is the start of the next

record. If the fupdate() call did not write out a record, the file position

remains the same.
v KSDS and KSDS PATH

You can change the length of the record being updated. If your request does not

exceed the maximum record size of the file, fupdate() writes a record of the

length requested and returns the request. If your request exceeds the maximum

record size of the file, fupdate() writes a record that is the maximum record

size, sets errno, and returns the maximum record size.

You cannot change the prime key field of the record, and in KSDS AIX, you

cannot change the key of reference of the record.

v ESDS

You cannot change the length of the record being updated. If the size of the

record being updated is less than the current record size, fupdate() updates the

amount you specify and does not alter the data remaining in the record. If your

request exceeds the length of the record that was read, fupdate() writes a record

that is the length of the record that was read, sets errno, and returns the length

of the record that was read.

v ESDS PATH

You cannot change the length of the record being updated or the key of

reference of the record. If the size of the record being updated is less than the

current record size, fupdate() updates the amount you specify and does not

alter the data remaining in the record. If your request exceeds the length of the

record that was read, fupdate() writes a record that is the length of the record

that was read, sets errno, and returns the length of the record that was read.

v RRDS

RRDS files have fixed record length. If you update the record with less than the

record size, only those characters specified are updated, and the remaining data

is not altered. If your request exceeds the record size of the file, fupdate() writes

a record that is the record size, sets errno, and returns the length of the record

that was read.

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 93

Deleting Records

To delete records, use the library function fdelrec(), a LE/VSE C Run-Time

extension to the SAA C library. For more information on this function, see LE/VSE

C Run-Time Library Reference.

v KSDS, KSDS PATH, and RRDS

To delete records, you must perform the following operations:

1. Open the VSAM file in update mode (rb+/r+b, ab+/a+b, or wb+/w+b specified

as the required positional parameter of the fopen() function call and

type=record).

2. If the file is not already positioned at the record you want to delete,

reposition to that record.

3. Read the record using the fread() function.

Once the record you want to delete has been read in, you must ensure that

no reading, writing, or repositioning operations are performed before

fdelrec().

4. Delete the record using the fdelrec() function.

Note: If the data set was opened with an access mode of rb+ or r+b, a read

operation can result in the locking of control intervals, depending on

shareoptions specification of the VSAM file. If after reading a record, you

decide not to delete it, you may need to unlock a control interval by

performing a file-positioning operation to the same record, such as an

flocate() using the same key.

v ESDS and ESDS PATH

VSAM does not support deletion of records in ESDS files.

Repositioning within Record I/O Files

You can use the following functions to locate a record within a VSAM data set:

v flocate()

v ftell() and fseek()

v fgetpos() and fsetpos()

v rewind()

For complete details on these library functions, see LE/VSE C Run-Time Library

Reference.

flocate()

The flocate() C library function can be used to locate a specific record within a

VSAM data set given the key, relative byte address, or the relative record number.

The flocate() function also sets the access direction.

The following flocate() parameters set the access direction to forward:

v __KEY_FIRST (the key and key_len parameters are ignored)

v __KEY_EQ

v __KEY_GE

v __RBA_EQ

The following flocate() parameters all set the access direction to backward and are

only valid for record I/O:

v __KEY_LAST (the key and key_len parameters are ignored)

v __KEY_EQ_BWD

v __RBA_EQ_BWD

VSAM I/O Operations

94 LE/VSE: C Run-Time Programming Guide

Note: The __RBA_EQ and __RBA_EQ_BWD parameters are not valid for paths and are

not recommended for KSDS and RRDS data sets.

You can use the rewind() library function instead of calling flocate() with

__KEY_FIRST.

v KSDS, KSDS AIX, and ESDS AIX

The key parameter of flocate() for the options __KEY_EQ, __KEY_GE, and

__KEY_EQ_BWD is a pointer to the key of reference of the data set. The key_len

parameter is the key length as defined for the data set for a full key search, or

less than the defined key length for a generic key search (a partial key match).

For KSDSs, __RBA_EQ and __RBA_EQ_BWD are supported, but are not

recommended.

Alternate indexes do not allow positioning by RBA.

v ESDS

The key parameter of flocate() is a pointer to an unsigned long integer

containing the specified RBA value. The key_len parameter is 4, because RBAs

are unsigned long integers.

v RRDS

For __KEY_EQ, __KEY_GE, and __KEY_EQ_BWD, the key parameter of flocate() is a

pointer to an unsigned long integer containing the specified relative record

number. For __RBA_EQ and __RBA_EQ_BWD, the key parameter of flocate() is a

pointer to an unsigned long integer containing the specified RBA. However,

seeking to RBA values is not recommended, because it is not supported across

control intervals. The key_len parameter is 4, because RRNs and RBAs are

unsigned long integers.

fgetpos() and fsetpos()

fgetpos() is used to store the current file position and access direction. fsetpos()

is used to relocate to a file position stored by fgetpos() and restore the saved

access direction.

v KSDS

fgetpos() stores the RBA value. This RBA value may be invalidated by

subsequent insertions, deletions, or updates.

v KSDS AIX and ESDS AIX

fgetpos() and fsetpos() are not supported for PATHs.

v ESDS and RRDS

There are no special considerations.

ftell() and fseek()

ftell() is used to store the current file position. fseek() is used to relocate to one

of the following:

v A file position stored by ftell()

v A calculated record number (SEEK_SET)

v A position relative to the current position (SEEK_CUR)

v A position relative to the end of the file (SEEK_END)

ftell() and fseek() offsets in record mode I/O are relative record offsets. For

example, the following call moves the file position to the start of the previous

record:

 fseek(fp, -1L, SEEK_CUR);

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 95

You cannot use fseek() to reposition to a file position before the beginning of the

file or to a position beyond the end of the file.

Note: In general, the performance of this method is inferior to flocate().

The access direction is unchanged by the repositioning.

v KSDS and RRDS

There are no special considerations.

v KSDS AIX and ESDS AIX

ftell() and fseek() are not supported.

v ESDS

ftell() is not supported.

v RRDS

fseek() seeks to a relative position in the file, and not to an RRN value. For

example, in a file consisting of RRNs 1, 3, 5 and 7, fseek(fp, 3L, SEEK_SET);

followed by an fread() would read in RRN 7, which is at offset 3 in the file.

rewind()

The rewind() function repositions the file position to the beginning of the file, and

clears the error setting for the file.

rewind() does not reset the file access direction. For example, a call to flocate()

with __KEY_LAST sets the file pointer to the end of the file and sets the access

direction to backwards. A subsequent call to rewind() sets the file pointer to the

beginning of the file, but the access direction remains backwards.

Flushing Buffers

You can use the C library function fflush() to flush buffers. However, fflush()

writes nothing to the system, because all records have already been written there

by fwrite().

fflush() after a read operation does not refresh the contents of the buffer.

For more information on fflush(), see LE/VSE C Run-Time Library Reference.

Summary of VSAM Record I/O Operations

 Table 22. Summary of VSAM Record I/O Operations

KSDS ESDS RRDS PATH

fopen(),

freopen()

rb, rb+, ab, ab+, wb,

wb+ (empty cluster or

reuse specified for wb

& wb+)

rb, rb+, ab, ab+, wb,

wb+ (empty cluster or

reuse specified for wb

& wb+)

rb, rb+, ab, ab+, wb,

wb+ (empty cluster or

reuse specified for wb

& wb+)

rb, rb+, ab, ab+

fwrite() rb+, ab, ab+, wb, wb+ rb+, ab, ab+, wb, wb+ rb+, ab, ab+, wb, wb+ rb+, ab, ab+

fread() rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+

ftell() rb, rb+, ab, ab+, wb,

wb+1

rb, rb+, ab, ab+, wb,

wb+

fseek() rb, rb+, ab, ab+, wb,

wb+1

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

fgetpos() rb, rb+, ab, ab+, wb,

wb+2

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

VSAM I/O Operations

96 LE/VSE: C Run-Time Programming Guide

Table 22. Summary of VSAM Record I/O Operations (continued)

KSDS ESDS RRDS PATH

fsetpos() rb, rb+, ab, ab+, wb,

wb+2

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

flocate() rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+

rewind() rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+

fflush() rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+

fdelrec() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+ (not ESDS)

fupdate() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+

ferror() rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+

feof() rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+

clearerr() rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+

fclose() rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+

fldata() rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+, wb,

wb+

rb, rb+, ab, ab+

Notes:

1 The saved position is based on the relative position of the record within the data set. Subsequent insertions

or deletions may invalidate the saved position.

2 The saved position is based on the RBA of the record. Subsequent insertions, deletions or updates may

invalidate the saved position.

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 97

Text and Binary I/O in VSAM

Because VSAM is primarily record-based, this section only discusses those aspects

of text and binary I/O that are specific to VSAM. For general information on text

and binary I/O, refer to the respective sections in Chapter 8, “Performing SAM

I/O Operations,” on page 47.

Reading from Text and Binary I/O Files

v RRDS

All the read functions support reading from text and binary RRDS files. fread()

is called with a character buffer instead of an RRDS record structure.

Writing to and Updating Text and Binary I/O Files

v KSDS, KSDS AIX, and ESDS AIX

LE/VSE C Run-Time VSAM support for streams does not provide for writing

and updating these types of data sets opened for text or binary stream I/O.

v ESDS

Writes are supported for ESDSs opened as binary or text streams. Updating data

in an ESDS stream cannot change the length of the record in the external file.

Therefore, in a binary stream:

– updates for less than the existing record length leave existing data beyond the

updated length unchanged;

– updates for longer than the existing record length flow over the record

boundary and update the start of the next record.
In text streams:

– updates that specify records shorter than the original record pad the updated

record to the existing record length with blanks;

– updates for longer than the existing record length result in truncation, unless

the original record contained only a newline character, in which case it may

be updated to contain one byte of data plus a newline character.
v RRDS

fwrite() is called with a character buffer instead of an RRDS record structure.

Records are treated as contiguous. Once the current record is filled, the next

record in the file is written to. For example, if the file consisted of only record 1,

record 5, and record 28, a write would complete record 1 and then go directly to

record 5.

Writing past the last record in the file is allowed, up to the maximum size of the

RRDS data set. For example, if the last record in the file is record 28, the next

record to be written is record 29.

Insertion of records is not supported. For example, in a file of records 1, 5, and

28, you cannot insert record 3 into the file.

Deleting Records in Text and Binary I/O Files

fdelrec() is not supported for text and binary I/O in VSAM.

Repositioning within Text and Binary I/O Files

You can use the following functions to locate a record within a VSAM data set:

v flocate()

v ftell() and fseek()

v fgetpos() and fsetpos()

VSAM I/O Operations

98 LE/VSE: C Run-Time Programming Guide

v rewind()

For complete details on these library functions, see LE/VSE C Run-Time Library

Reference.

flocate()

The flocate() C library function can be used to reposition to the beginning of a

specific record within a VSAM data set given the key, relative byte address, or the

relative record number. For more information on this function, see LE/VSE C

Run-Time Library Reference.

The following flocate() parameters set the direction access to forward:

v __KEY_FIRST (the key and key_len parameters are ignored)

v __KEY_EQ

v __KEY_GE

v __RBA_EQ

The following flocate() parameters all set the access direction to backward and are

not valid for text and binary I/O, because backwards access is not supported:

v __KEY_LAST (the key and key_len parameters are ignored)

v __KEY_EQ_BWD

v __RBA_EQ_BWD

You can use the rewind() library function instead of calling flocate() with

__KEY_FIRST.

v KSDS, KSDS AIX, and ESDS AIX

The key parameter of flocate() for the options __KEY_EQ and __KEY_GE is a

pointer to the key of reference of the data set. The key_len parameter is the key

length as defined for the data set for a full key search, or less than the defined

key length for a generic key search (a partial key match).

Alternate indexes do not allow positioning by RBA.

Note: The __RBA_EQ parameter is not valid for paths and is not recommended.

v ESDS

The key parameter of flocate() is a pointer to an unsigned long integer

containing the specified RBA value. The key_len parameter is 4, because RBAs

are unsigned long integers.

v RRDS

For __KEY_EQ and __KEY_GE, the key parameter of flocate() is a pointer to an

unsigned long integer containing the specified relative record number. For

__RBA_EQ, the key parameter of flocate() is a pointer to an unsigned long

integer containing the specified RBA. However, seeking to RBA values is not

recommended, because it is not supported across control intervals. The key_len

parameter is 4, because RRNs and RBAs are unsigned long integers.

fgetpos() and fsetpos()

fgetpos() saves the access direction, an RBA value, and the file position, and

fsetpos() restores the saved access direction.

fgetpos() accounts for the presence of characters in the ungetc() buffer unless you

have set the _EDC_COMPAT variable. See Chapter 21, “Using Environment

Variables,” on page 219 for information about _EDC_COMPAT. If ungetc()

characters back the file position up to before the start of the file, calls to fgetpos()

fail.

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 99

v KSDS

fgetpos() stores the RBA value. This RBA value may be invalidated by

subsequent insertions, deletions or updates.

v KSDS PATH and ESDS PATH

fgetpos() and fsetpos() are not supported for PATHs.

v ESDS and RRDS

There are no special considerations.

ftell() and fseek()

Using fseek() to seek beyond the current end of file in a writable ESDS or RRDS

binary file results in the file being extended with nulls to the new position. An

incomplete last record is completed with nulls, records of length lrecl are added

as required, and the current record is filled with the remaining number of nulls

and left in the current buffer. This is supported for relative byte offset from

SEEK_SET, SEEK_CUR and SEEK_END.

Table 23 provides a summary of the fseek() and ftell() parameters in binary and

text.

 Table 23. Summary of fseek() and ftell() Parameters in Text and Binary

Type Mode ftell() return values fseek() SEEK_SET SEEK_CUR SEEK_END

KSDS Binary Relative byte offset Relative byte offset Relative byte offset Relative byte offset

Text Not supported Zero only Relative byte offset Relative byte offset

ESDS Binary Relative byte offset Relative byte offset Relative byte offset Relative byte offset

Text Not supported Zero only Relative byte offset Relative byte offset

RRDS Binary Encoded byte offset Encoded byte offset Relative byte offset Relative byte offset

Text Encoded byte offset Encoded byte offset Relative byte offset Relative byte offset

PATH Binary Not supported Not supported Not supported Not supported

Text Not supported Not supported Not supported Not supported

Flushing Buffers

You can use the C library function fflush() to flush data.

For text files, calling fflush() to flush an update to a record causes the new data

to be written to the file.

If you call fflush() while you are updating, the updates are flushed out to VSAM.

For more information on fflush(), see LE/VSE C Run-Time Library Reference.

Summary of VSAM Text I/O Operations

 Table 24. Summary of VSAM Text I/O Operations

KSDS ESDS RRDS PATH

fopen(),

freopen()

r r, r+, a, a+, w, w+

(empty cluster or

reuse specified for w

 & w+)

r, r+, a, a+, w, w+

(empty cluster

or reuse specified for w

 & w+)

r

fwrite() r+, a, a+, w, w+ r+, a, a+, w, w+

VSAM I/O Operations

100 LE/VSE: C Run-Time Programming Guide

Table 24. Summary of VSAM Text I/O Operations (continued)

KSDS ESDS RRDS PATH

fprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

fputs() r+, a, a+, w, w+ r+, a, a+, w, w+

fputc() r+, a, a+, w, w+ r+, a, a+, w, w+

putc() r+, a, a+, w, w+ r+, a, a+, w, w+

vfprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

vprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

fread() r r, r+, a+, w+ r, r+, a+, w+ r

fscanf() r r, r+, a+, w+ r, r+, a+, w+ r

fgets() r r, r+, a+, w+ r, r+, a+, w+ r

fgetc() r r, r+, a+, w+ r, r+, a+, w+ r

getc() r r, r+, a+, w+ r, r+, a+, w+ r

ungetc() r r, r+, a+, w+ r, r+, a+, w+ r

ftell() r, r+, a, a+, w, w+

fseek() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+

fgetpos() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+

fsetpos() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+

flocate() r r, r+, a+, w+ r, r+, a+, w+ r

rewind() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+ r

fflush() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+ r

ferror() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+ r

fdelrec()

fupdate()

feof() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+ r

clearerr() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+ r

fclose() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+ r

fldata() r r, r+, a, a+, w, w+ r, r+, a, a+, w, w+ r

Summary of VSAM Binary I/O Operations

 Table 25. Summary of VSAM Binary I/O Operations

KSDS ESDS RRDS PATH

fopen(),

freopen()

rb rb, rb+, ab, ab+, wb, wb+

(empty cluster or

reuse specified for

wb & wb+)

rb, rb+, ab, ab+, wb, wb+

(empty cluster or

reuse specified for

 wb & wb+)

rb

fwrite() rb+, ab, ab+, wb, wb+ rb+, ab, ab+, wb, wb+

fprintf() rb+, ab, ab+, wb, wb+ rb+, ab, ab+, wb, wb+

fputs() rb+, ab, ab+, wb, wb+ rb+, ab, ab+, wb, wb+

fputc() rb+, ab, ab+, wb, wb+ rb+, ab, ab+, wb, wb+

putc() rb+, ab, ab+, wb, wb+ rb+, ab, ab+, wb, wb+

vfprintf() rb+, ab, ab+, wb, wb+ rb+, ab, ab+, wb, wb+

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 101

Table 25. Summary of VSAM Binary I/O Operations (continued)

KSDS ESDS RRDS PATH

vprintf() rb+, ab, ab+, wb, wb+ rb+, ab, ab+, wb, wb+

fread() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

fscanf() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

fgets() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

fgetc() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

getc() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

ungetc() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

ftell() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+

fseek() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+

fgetpos() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+

fsetpos() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+

flocate() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

rewind() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+ rb

fflush() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+ rb

ferror() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+ rb

fdelrec()

fupdate()

feof() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+ rb

clearerr() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+ rb

fclose() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+ rb

fldata() rb rb, rb+, ab, ab+, wb, wb+ rb, rb+, ab, ab+, wb, wb+ rb

Closing VSAM Data Sets

To close a VSAM data set, use the standard C fclose() library function as you

would for closing non-VSAM files. See LE/VSE C Run-Time Library Reference for

more details on the fclose() library function.

For ESDS binary files, if fclose() is called and there is a new record in the buffer

that is less than the maximum record size, this record is written to the file at its

current size. A new RRDS binary record that is incomplete when the file is closed

is filled with null characters to the record size.

A new ESDS or RRDS text record that is incomplete when the file is closed is

completed with a newline.

VSAM Return Codes

When failing return codes are received from LE/VSE C Run-Time VSAM I/O

functions, you can access the __amrc structure to help you diagnose errors. The

__amrc_type structure is defined in the header file stdio.h (when the compiler

option LANGLVL(EXTENDED) is used).

Note: The __amrc struct is global and can be reset by another I/O operation (such

as printf()).

VSAM I/O Operations

102 LE/VSE: C Run-Time Programming Guide

The following fields of the structure are important to VSAM users:

__amrc.__code.__feedback.__rc

Stores the VSAM R15.

__amrc.__code.__feedback.__fdbk

Stores the VSAM error code or reason code.

__amrc.__RBA

Stores the RBA after some operations.

__amrc.__last_op

Stores a code for the last operation. The codes are defined in the header

file stdio.h.

For definitions of these return codes and feedback codes, refer to the publications

listed in “Where to Find More Information” on page xxi.

You can set up a SIGIOERR handler to catch read or write system errors. See

Chapter 14, “Debugging I/O Programs,” on page 131 for more information.

VSAM Examples

This section provides several examples of using I/O under VSAM.

KSDS Example

The example below shows two functions from an employee record entry system

with a mainline driver to process selected options (display, display next, update,

delete, create).

The update routine is an example of KSDS clusters, and the display routine is an

example of both KSDS clusters and alternate indexes.

For these examples, the clusters and alternate indexes should be defined as

follows:

v The KSDS cluster has a record size of 150 with a key length of 4 with offset 0

v The unique KSDS AIX has a key length of 20 with an offset of 10

v The non-unique KSDS AIX has a key length of 40 with an offset of 30

The update routine is passed the following:

v data_ptr, which points to the information that is to be updated

v orig_data_ptr, which points to the information that was originally displayed

using the display option

v A file pointer to the KSDS cluster

The display routine is passed the following:

v data_ptr, which points to the information that was entered on the screen for the

search query

v orig_data_ptr, which is returned with the information for the record to be

displayed if it exists

v File pointers for the primary cluster, unique alternate index and non-unique

alternate index

By definition, the primary key is unique and therefore the employee number was

chosen for this key. The user_id is also a unique key; therefore, it was chosen as

the unique alternate index key. The name field may not be unique; therefore, it was

chosen as the non-unique alternate index key.

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 103

KSDS Example

EDCXGVS2:

 /* EDCXGVS2

 This example demonstrates the use of a KSDS file.

 Part 1 of 2-other file is EDCXGVS3.

 */

#include <stdio.h>

#include <string.h>

 /* global definitions */

struct data_struct {

 char emp_number[4];

 char user_id[8];

 char name[20];

 char pers_info[37];

};

static void print_amrc(void);

int update_emp_rec(struct data_struct *, struct data_struct *, FILE *);

int display_emp_rec(struct data_struct *, struct data_struct *,

 FILE *, FILE *, FILE *);

#define REC_SIZE 69

#define CLUS_KEY_SIZE 4

#define AIX_UNIQUE_KEY_SIZE 8

#define AIX_NONUNIQUE_KEY_SIZE 20

 /* main() function definition */

int main() {

 FILE* clus_fp;

 FILE* aix_ufp;

 FILE* aix_nufp;

 int i;

 struct data_struct buf1, buf2;

 char data[3][REC_SIZE+1] = {

" 1LARRY LARRY HI, I’M LARRY, ",

" 2DARRYL1 DARRYL AND THIS IS MY BROTHER DARRYL, ",

" 3DARRYL2 DARRYL "

 };

Figure 11. KSDS Example (Program) (Part 1 of 7)

VSAM I/O Operations

104 LE/VSE: C Run-Time Programming Guide

/* open file three ways */

 clus_fp = fopen("dd:cluster", "rb+,type=record,dsn=3");

 if (clus_fp == NULL) {

 print_amrc();

 printf("Error: fopen(\"dd:cluster\"...) failed\n");

 return 5;

 }

 /* assume base cluster was loaded with at least one dummy record */

 /* so aix could be defined */

 aix_ufp = fopen("dd:aixuniq", "rb,type=record,dsn=3");

 if (aix_ufp == NULL) {

 print_amrc();

 printf("Error: fopen(\"dd:aixuniq\"...) failed\n");

 return 10;

 }

 /* assume base cluster was loaded with at least one dummy record */

 /* so aix could be defined */

 aix_nufp = fopen("dd:aixnunq", "rb,type=record,dsn=3");

 if (aix_nufp == NULL) {

 print_amrc();

 printf("Error: fopen(\"dd:aixnunq\"...) failed\n");

 return 15;

 }

 /* load sample records */

 for (i = 0; i < 3; ++i) {

 if (fwrite(data[i],1,REC_SIZE,clus_fp) != REC_SIZE) {

 print_amrc();

 printf("Error: fwrite(data[%d]...) failed\n", i);

 return 66+i;

 }

 }

 /* display sample record by primary key */

 memcpy(buf1.emp_number, " 1", 4);

 if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

 return 69;

Figure 11. KSDS Example (Program) (Part 2 of 7)

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 105

/* display sample record by non-unique aix key */

 memset(buf1.emp_number, ’\0’, 4);

 buf1.user_id[0] = ’\0’;

 memcpy(buf1.name, "DARRYL ", 20);

 if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

 return 70;

 /* display sample record by unique aix key */

 memcpy(buf1.user_id, "DARRYL2 ", 8);

 if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

 return 71;

 /* update record just read with new personal info */

 memcpy(&buf1, &buf2, REC_SIZE);

 memcpy(buf1.pers_info, "AND THIS IS MY OTHER BROTHER DARRYL. ", 37);

 if (update_emp_rec(&buf1, &buf2, clus_fp) != 0) return 72;

 /* display sample record by unique aix key */

 if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

 return 73;

 return 0;

}

static void print_amrc() {

 __amrc_type currErr = *__amrc; /* copy contents of __amrc */

 /* structure so that values */

 /* do not get jumbled by printf */

 printf("R15 value = %d\n", currErr.__code.__feedback.__rc);

 printf("Reason code = %d\n", currErr.__code.__feedback.__fdbk);

 printf("RBA = %d\n", currErr.__RBA);

 printf("Last op = %d\n", currErr.__last_op);

 return;

}

Figure 11. KSDS Example (Program) (Part 3 of 7)

VSAM I/O Operations

106 LE/VSE: C Run-Time Programming Guide

/* update_emp_rec() function definition */

int update_emp_rec (struct data_struct *data_ptr,

 struct data_struct *orig_data_ptr,

 FILE *fp)

{

 int rc;

 char buffer[REC_SIZE+1];

 /* Check to see if update will change primary key (emp_number) */

 if (memcmp(data_ptr->emp_number,orig_data_ptr->emp_number,4) != 0) {

 /* Check to see if changed primary key exists */

 rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,__KEY_EQ);

 if (rc == 0) {

 print_amrc();

 printf("Error: new employee number already exists\n");

 return 10;

 }

 clearerr(fp);

 /* Write out new record */

 rc = fwrite(data_ptr,1,REC_SIZE,fp);

 if (rc != REC_SIZE || ferror(fp)) {

 print_amrc();

 printf("Error: write with new employee number failed\n");

 return 20;

 }

 /* Locate to old employee record so it can be deleted */

 rc = flocate(fp,&(orig_data_ptr->emp_number),CLUS_KEY_SIZE,

 __KEY_EQ);

 if (rc != 0) {

 print_amrc();

 printf("Error: flocate to original employee number failed\n");

 return 30;

 }

 rc = fread(buffer,1,REC_SIZE,fp);

 if (rc != REC_SIZE || ferror(fp)) {

 print_amrc();

 printf("Error: reading old employee record failed\n");

 return 40;

 }

 rc = fdelrec(fp);

 if (rc != 0) {

 print_amrc();

 printf("Error: deleting old employee record failed\n");

 return 50;

 }

 } /* end of checking for change in primary key */

Figure 11. KSDS Example (Program) (Part 4 of 7)

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 107

else { /* Locate to current employee record */

 rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,__KEY_EQ);

 if (rc == 0) {

 /* record exists, so update it */

 rc = fread(buffer,1,REC_SIZE,fp);

 if (rc != REC_SIZE || ferror(fp)) {

 print_amrc();

 printf("Error: reading old employee record failed\n");

 return 60;

 }

 rc = fupdate(data_ptr,REC_SIZE,fp);

 if (rc == 0) {

 print_amrc();

 printf("Error: updating new employee record failed\n");

 return 70;

 }

 }

 else { /* record does not exist so write out new record */

 clearerr(fp);

 printf("Warning: record previously displayed no longer\n");

 printf(" : exists, new record being created\n");

 rc = fwrite(data_ptr,1,REC_SIZE,fp);

 if (rc != REC_SIZE || ferror(fp)) {

 print_amrc();

 printf("Error: write with new employee number failed\n");

 return 80;

 }

 }

 }

 return 0;

}

Figure 11. KSDS Example (Program) (Part 5 of 7)

VSAM I/O Operations

108 LE/VSE: C Run-Time Programming Guide

/* display_emp_rec() function definition */

int display_emp_rec (struct data_struct *data_ptr,

 struct data_struct *orig_data_ptr,

 FILE *clus_fp, FILE *aix_unique_fp,

 FILE *aix_non_unique_fp)

{

 int rc = 0;

 char buffer[REC_SIZE+1];

 /* Primary Key Search */

 if (memcmp(data_ptr->emp_number, "\0\0\0\0", 4) != 0) {

 rc = flocate(clus_fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,

 __KEY_EQ);

 if (rc != 0) {

 printf("Error: flocate with primary key failed\n");

 return 10;

 }

 /* Read record for display */

 rc = fread(orig_data_ptr,1,REC_SIZE,clus_fp);

 if (rc != REC_SIZE || ferror(clus_fp)) {

 printf("Error: reading employee record failed\n");

 return 15;

 }

 }

 /* Unique Alternate Index Search */

 else if (data_ptr->user_id[0] != ’\0’) {

 rc = flocate(aix_unique_fp,data_ptr->user_id,AIX_UNIQUE_KEY_SIZE,

 __KEY_EQ);

 if (rc != 0) {

 printf("Error: flocate with user id failed\n");

 return 20;

 }

 /* Read record for display */

 rc = fread(orig_data_ptr,1,REC_SIZE,aix_unique_fp);

 if (rc != REC_SIZE || ferror(aix_unique_fp)) {

 printf("Error: reading employee record failed\n");

 return 25;

 }

 }

Figure 11. KSDS Example (Program) (Part 6 of 7)

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 109

The following JCL can be used to test the previous example:

EDCXGVS3:

 /* Non-unique Alternate Index Search */

 else if (data_ptr->name[0] != ’\0’) {

 rc = flocate(aix_non_unique_fp,data_ptr->name,

 AIX_NONUNIQUE_KEY_SIZE,__KEY_GE);

 if (rc != 0) {

 printf("Error: flocate with name failed\n");

 return 30;

 }

 /* Read record for display */

 rc = fread(orig_data_ptr,1,REC_SIZE,aix_non_unique_fp);

 if (rc != REC_SIZE || ferror(aix_non_unique_fp)) {

 printf("Error: reading employee record failed\n");

 return 35;

 }

 }

 else {

 printf("Error: invalid search argument; valid search arguments\n"

 " : are either employee number, user id, or name\n");

 return 40;

 }

 /* display record data */

 printf("Employee Number: %.4s\n", orig_data_ptr->emp_number);

 printf("Employee Userid: %.8s\n", orig_data_ptr->user_id);

 printf("Employee Name: %.20s\n", orig_data_ptr->name);

 printf("Employee Info: %.37s\n", orig_data_ptr->pers_info);

 return 0;

}

Figure 11. KSDS Example (Program) (Part 7 of 7)

// JOB EDCXGVS3

/* This example illustrates the use of a KSDS file

/* Part 2 of 2-other file is EDCXGVS2

/* --

/* Delete cluster, AIX, and PATH

/* --

// EXEC IDCAMS,SIZE=AUTO

 DELETE -

 userid.KSDS.CLUSTER -

 CLUSTER -

 PURGE -

 ERASE

Figure 12. KSDS Example (JCL) (Part 1 of 3)

VSAM I/O Operations

110 LE/VSE: C Run-Time Programming Guide

/* --

/* Define KSDS

/* --

// EXEC IDCAMS,SIZE=AUTO

 DEFINE CLUSTER -

 (NAME(userid.KSDS.CLUSTER) -

 TRK(4 4) -

 RECSZ(69 100) -

 INDEXED -

 NOREUSE -

 KEYS(4 0) -

 VOLUMES(volume) -

 OWNER(userid) -

) -

 DATA -

 (NAME(userid.KSDS.DA)) -

 INDEX -

 (NAME(userid.KSDS.IX))

/* ---

/* Repro data into KSDS

/* ---

// DLBL FILEOUT,’userid.KSDS.CLUSTER’,,VSAM

// EXEC IDCAMS,SIZE=AUTO

 REPRO -

 INFILE(SYSIPT) -

 OUTFILE(FILEOUT)

0000ZZZZZZZZDUMMY_RECORD

/*/* ---

/* Define unique AIX, define and build PATH

/* ---

// EXEC IDCAMS,SIZE=AUTO

 DEFINE AIX -

 (NAME(userid.KSDS.UAIX) -

 RECORDS(25) -

 KEYS(8,4) -

 VOL(volume) -

 UNIQUEKEY -

 RELATE(userid.KSDS.CLUSTER)) -

 DATA -

 (NAME(userid.KSDS.UAIXDA)) -

 INDEX -

 (NAME(userid.KSDS.UAIXIX))

 DEFINE PATH -

 (NAME(userid.KSDS.UPATH) -

 PATHENTRY(userid.KSDS.UAIX))

 BLDINDEX -

 INDATASET(userid.KSDS.CLUSTER) -

 OUTDATASET(userid.KSDS.UAIX)

/*

Figure 12. KSDS Example (JCL) (Part 2 of 3)

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 111

/* --

/* Define non-unique AIX, define and build PATH

/* --

// EXEC IDCAMS,SIZE=AUTO

 DEFINE AIX -

 (NAME(userid.KSDS.NUAIX) -

 RECORDS(25) -

 KEYS(20, 12) -

 VOL(volume) -

 NONUNIQUEKEY -

 RELATE(userid.KSDS.CLUSTER)) -

 DATA -

 (NAME(userid.KSDS.NUAIXDA)) -

 INDEX -

 (NAME(userid.KSDS.NUAIXIX))

 DEFINE PATH -

 (NAME(userid.KSDS.NUPATH) -

 PATHENTRY(userid.KSDS.NUAIX))

 BLDINDEX -

 INDATASET(userid.KSDS.CLUSTER) -

 OUTDATASET(userid.KSDS.NUAIX)

/*

/* ---

/* Run the testcase

/* ---

// LIBDEF *,SEARCH=(PRD2.SCEEBASE,...)

// DLBL CLUSTER,’userid.KSDS.CLUSTER’,,VSAM

// DLBL AIXUNIQ,’userid.KSDS.UPATH’,,VSAM

// DLBL AIXNUNQ,’userid.KSDS.NUPATH’,,VSAM

// EXEC EDCXGVS2,SIZE=AUTO

/*

/* --

/* Print out the cluster

/* --

// EXEC IDCAMS,SIZE=AUTO

 PRINT -

 INFILE(CLUSTER) CHAR

/*

/&

Figure 12. KSDS Example (JCL) (Part 3 of 3)

VSAM I/O Operations

112 LE/VSE: C Run-Time Programming Guide

RRDS Example

The following program illustrates the use of an RRDS file. It performs the

following operations:

 1. Opens an RRDS file in record mode (the cluster must be defined)

 2. Writes three records (RRN 2, RRN 10, and RRN 32)

 3. Sets the file position to the first record

 4. Reads the first record in the file

 5. Deletes it

 6. Locates the last record in the file and sets the access direction to backwards

 7. Reads the record

 8. Updates the record

 9. Sets the _EDC_RRDS_HIDE_KEY environment variable

10. Reads the next record in sequence (RRN 10) into a character string

EDCXGVS4

 /* EDCXGVS4

 This example illustrates the use of an RRDS file

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct rrds_struct {

 __rrds_key_type rrds_key;

 char *rrds_buf;

};

typedef struct rrds_struct RRDS_STRUCT;

main() {

FILE *fileptr;

RRDS_STRUCT RRDSstruct;

RRDS_STRUCT *rrds_rec = &RRDSstruct;

char buffer1[80] =

 "THIS IS THE FIRST RECORD IN THE FILE. I"

 "T WILL BE WRITTEN AT RRN POSITION 2. ";

char buffer2[80] =

 "THIS IS THE SECOND RECORD IN THE FILE. I"

 "T WILL BE WRITTEN AT RRN POSITION 10. ";

char buffer3[80] =

 "THIS IS THE THIRD RECORD IN THE FILE. I"

 "T WILL BE WRITTEN AT RRN POSITION 32. ";

char outputbuf[80];

unsigned long flocate_key = 0;

Figure 13. RRDS Example (Part 1 of 3)

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 113

/*--*/

 /*| select RRDS record structure 2 by setting __fill to 1 */

 /*| */

 /*| 1. open an RRDS file record mode (the cluster must be defined) */

 /*| 2. write three records (RRN 2, RRN 10, RRN 32) */

 /*--*/

 rrds_rec->rrds_key.__fill = 1;

 fileptr = fopen("DD:RRDSFIL", "wb+,type=record");

 if (fileptr == NULL) {

 perror("fopen");

 exit(99);

 }

 rrds_rec->rrds_key.__recnum = 2;

 rrds_rec->rrds_buf = buffer1;

 fwrite(rrds_rec,1,88, fileptr);

 rrds_rec->rrds_key.__recnum = 10;

 rrds_rec->rrds_buf = buffer2;

 fwrite(rrds_rec,1,88, fileptr);

 rrds_rec->rrds_key.__recnum = 32;

 rrds_rec->rrds_buf = buffer3;

 fwrite(rrds_rec,1,88, fileptr);

/*--*/

 /*| 3. set file position to the first record */

 /*| 4. read the first record in the file */

 /*| 5. delete it */

 /*--*/

 flocate(fileptr, &flocate_key, sizeof(unsigned long), __KEY_FIRST);

 memset(outputbuf,0x00,80);

 rrds_rec->rrds_buf = outputbuf;

 fread(rrds_rec,1, 88, fileptr);

 printf("The first record in the file (this will be deleted):\n");

 printf("RRN %d: %s\n\n",rrds_rec->rrds_key.__recnum,outputbuf);

 fdelrec(fileptr);

Figure 13. RRDS Example (Part 2 of 3)

VSAM I/O Operations

114 LE/VSE: C Run-Time Programming Guide

fldata() Behavior

Following is a sample of fldata() settings for an RRDS file opened as wb+ in

record mode.

If the file is opened by DLBL/TLBL-name and/or logical unit, the filename field

returned by fldata() is the same as the filename parameter specified on the call to

fopen(), including the DD: prefix. Otherwise, if opened by file ID, the filename field

is the fully qualified data set name including quotation marks.

 __recfmF = 1 /* fixed record format (all RRDS) */

 __recfmV = 0 /* variable record format */

 __recfmU = 0 /* undefined record format */

 __recfmS = 0 /* N/A */

 __recfmBlk = 0 /* FALSE */

 __recfmASA = 0 /* FALSE */

 __recfmM = 0 /* N/A */

 __dsorgPO = 0 /* N/A */

 __dsorgPDSmem = 0 /* N/A */

 __dsorgPDSdir = 0 /* N/A */

 __dsorgPS = 0 /* N/A */

 __dsorgConcat = 0 /* N/A */

 __dsorgMem = 0 /* N/A */

 __dsorgHiper = 0 /* N/A */

 __dsorgTemp = 0 /* N/A */

 __dsorgVSAM = 1 /* always TRUE for VSAM files */

 __reserve1 = 0 /* N/A */

 __openmode = 2 /* __BINARY, __RECORD, __TEXT */

 /*--*/

 /*| 6. locate last record in file and set access direction backwards*/

 /*| 7. read the record */

 /*| 8. update the record */

 /*--*/

 flocate(fileptr, &flocate_key, sizeof(unsigned long), __KEY_LAST);

 memset(outputbuf,0x00,80);

 rrds_rec->rrds_buf = outputbuf;

 fread(rrds_rec,1, 88, fileptr);

 printf("The last record in the file (this one will be updated):\n");

 printf("RRN %d: %s\n\n",rrds_rec->rrds_key.__recnum,outputbuf);

 memset(outputbuf,0x00,80);

 memcpy(outputbuf,"THIS IS THE UPDATED STRING... ",30);

 fupdate(rrds_rec,88,fileptr);

/*--*/

 /*| 9. set _EDC_RRDS_HIDE_KEY environment variable */

 /*|10. read the next record in sequence (ie. RRN 10) into a */

 /*| + character string */

 /*--*/

 setenv("_EDC_RRDS_HIDE_KEY","Y",1);

 memset(outputbuf,0x00,80);

 fread(outputbuf, 1, 80, fileptr);

 printf("The middle record in the file (read into char string):\n");

 printf("%80s\n\n",outputbuf);

 fclose(fileptr);

}

Figure 13. RRDS Example (Part 3 of 3)

VSAM I/O Operations

Chapter 10. Performing VSAM I/O Operations 115

__modeflag = 10 /* __READ, __WRITE, ... */

 __reserve2 = 0 /* N/A */

 __device = 0 /* __DISK */

 __blksize = max record length + size of RRN field (8)

 __maxreclen = max record length + size of RRN field (8)

 __vsamtype = 3 /* 0=__NOTVSAM, 1=__ESDS, 2=__KSDS */

 /* 3=__RRDS, 4=__ESDS_PATH, */

 /* 5=__KSDS_PATH */

 __vsamkeylen = 0 /* N/A for RRDS */

 __vsamRKP; = 0 /* N/A for RRDS */

 __dsname = jobname.RRDS.CLUSTER

 __reserve4 = 0 /* N/A */

All values shown whose name starts with two underscore characters (__) have

#defines for them in stdio.h. For a complete explanation of the fldata() function,

see LE/VSE C Run-Time Library Reference.

VSAM I/O Operations

116 LE/VSE: C Run-Time Programming Guide

Chapter 11. Performing Memory File I/O Operations

This chapter describes how to perform memory file I/O operations.

LE/VSE C Run-Time supports files known as memory files. Memory files are

temporary work files that are stored in main memory rather than in external

storage.

Memory files can be written to, read from, and repositioned within like any other

type of file. Memory files exist for the life of your root program, unless you

explicitly delete them by using the remove() or clrmemf() functions. The root

program is the first main() to be invoked. Any main() program called by a

system() call is known as a child program. When the root program terminates,

LE/VSE C Run-Time removes memory files automatically. Memory files may give

you better performance than other types of files.

Note: There may not be a one-to-one correspondence between the bytes in a

memory file and the bytes in some other external representation of the file,

such as a disk file. Applications that mix open modes on a file (for example,

writing a file as text file and reading it back as binary) may not port readily

from external I/O to memory file I/O.

See Chapter 6, “LE/VSE C Run-Time Support for the Double-Byte Character Set

(DBCS),” on page 29 for information about using wide-character I/O with LE/VSE

C Run-Time.

Opening Files

To open a memory file, use the standard C fopen() or freopen() library functions.

These are described in general terms in LE/VSE C Run-Time Library Reference.

Details about them specific to all LE/VSE C Run-Time I/O are discussed in

Chapter 3, “Opening Files,” on page 15. This section describes considerations for

using fopen() and freopen() with memory files.

Memory files are always treated as binary streams of bytes, regardless of the

parameters you specify on the function call that opens them.

Using fopen() or freopen()

Files are opened with a call to fopen() or freopen() in the format:

fopen("filename", "mode").

Filenames for Memory Files

Using a File ID: The syntax for the filename argument on your fopen() or

freopen() call when using a file ID is shown in the following diagram:

==

(1)

'

C

 ,

qualifier

'

=B

© Copyright IBM Corp. 1995, 2005 117

Notes:

1 The single quotation marks must be matched; if you use one, you must use

the other.

A sample construct is:

'qualifier1.qualifier2'

' When you enclose a file ID in single quotation marks, the file ID is fully

qualified. The file opened is the one specified by the file ID inside the quotation

marks. If the file ID is not fully qualified, LE/VSE C Run-Time appends the job

name to the front of the file ID. For example, the statement fopen("a.b","w");

opens a file jobname.A.B, where jobname is the name of the job submitted. If the

file ID is fully qualified, LE/VSE C Run-Time does not append a job name.

qualifier

Each qualifier is a 1- to 8-character name. These characters may be

alphanumeric, national ($, #, @), the hyphen, or the character X’C0’. The first

character should be either alphabetic or national.

 You can join qualifiers with periods. The maximum length of a file ID is 44

characters, including periods.

Note: filename may optionally be specified as “*” to have LE/VSE C Run-Time

generate a temporary name for the memory file. See “Performance Tips” on

page 123 for additional information.

Using a DLBL/TLBL-name and/or Logical Unit: You can specify names that

comply with the rules for using a DLBL/TLBL-name and/or logical unit with

fopen() as described for SAM I/O on page 48 and for VSAM I/O on page 86.

However, LE/VSE C Run-Time treats the entire file description, including the dd:,

as the filename.

Using a VSE/Librarian Sublibrary Member: You can specify names that comply

with the rules for using a VSE/Librarian sublibrary member with fopen() as

described for VSE/Librarian I/O on page 73. However, LE/VSE C Run-Time treats

the entire file description, including the dd:, as the filename.

fopen() and freopen() Parameters

The following table lists the parameters that are available on the fopen() and

freopen() functions, tells you which ones are useful for memory file I/O, and lists

the values that are valid for the applicable ones.

Memory File I/O Operations

118 LE/VSE: C Run-Time Programming Guide

Table 26. Parameters for the fopen() and freopen() Functions for Memory File I/O

Parameter Allowed? Applicable? Notes

recfm= Yes No If you specify a RECFM, it must have correct

syntax. Otherwise ignored for memory files.

lrecl= Yes No If you specify an LRECL, it must have correct

syntax. Otherwise ignored for memory files.

blksize= Yes No If you specify a BLKSIZE, it must have correct

syntax. Otherwise ignored for memory files.

acc= Yes No Ignored for memory files.

password= Yes No Ignored for memory files.

space= Yes No Ignored for memory files.

type= Yes Yes Must be memory. See the parameter list below for

details.

asis Yes No Ignored.

byteseek Yes No Ignored for memory files, as they use byteseeking

by default.

noseek Yes No Ignored for memory files.

OS No No May cause errors for memory files.

rewind= Yes No Ignored for memory files.

dsn= Yes No Ignored for memory files.

recfm=

LE/VSE C Run-Time parses your specification for this value. If it does not

have the correct syntax, your function call fails. If it does, LE/VSE C Run-Time

ignores its value and continues.

lrecl= and blksize=

LE/VSE C Run-Time parses your specification for these values. If they do not

have the correct syntax, your function call fails. If they do, LE/VSE C

Run-Time ignores their values and continues.

acc=

This parameter is ignored for memory files.

password=

This parameter is ignored for memory files.

space=

This parameter is ignored for memory files.

type=

To create a memory file, you must specify type=memory. You cannot specify

type=record; if you do, fopen() or freopen() fails.

 For parameter compatibility with C on other platforms, specification of

type=memory(hiperspace) is treated as if type=memory was specified.

asis

If you specify this parameter, LE/VSE C Run-Time ignores it.

byteseek

This parameter is ignored for memory files.

noseek

This parameter is ignored for memory files.

Memory File I/O Operations

Chapter 11. Performing Memory File I/O Operations 119

OS

This parameter is not allowed for memory files. If you specify it, it may cause

errors.

rewind=

This parameter is ignored for memory files.

dsn=

This parameter is ignored for memory files.

Once a memory file has been created, it can be accessed by the phase that created

it as well as by any function or phase that is subsequently invoked (including

phases that are called using the system() library function), and by any phases in

the current chain of system() calls. Once the file has been created, you can open it

with the same name, without specifying the type=memory parameter. You cannot

specify type=record for a memory file.

This is how LE/VSE C Run-Time searches for memory files:

1. fopen("my.file","w....,type=memory"); LE/VSE C Run-Time checks the open

files to see whether a file with that name is already open. If not, it creates a

memory file.

2. fopen("my.file","w......"); LE/VSE C Run-Time checks the open files to see

whether a file with that name is already open. If not, it then checks to see

whether a memory file exists with that name. If so, it opens the memory file; if

not, it creates a disk file.

3. fopen("my.file","a.....,type=memory"); LE/VSE C Run-Time checks the

open files to see whether a file with that name is already open. If not, it

searches the existing memory files to see whether a memory file exists with

that name. If so, LE/VSE C Run-Time opens it; if not, it creates a new memory

file.

4. fopen("my.file","a...."); LE/VSE C Run-Time checks the open files to see

whether a file with that name is already open. If not, LE/VSE C Run-Time

searches existing files (both disk and memory) according to file mode, and

opens the first file that has that name. If there is no such file, LE/VSE C

Run-Time creates a disk file.

5. fopen("my.file","r....,type=memory"); LE/VSE C Run-Time searches the

memory files to see whether a file with that name exists. If one does, LE/VSE

C Run-Time opens it. Otherwise, the fopen() call fails.

6. fopen("my.file","r...."); LE/VSE C Run-Time searches first through

memory files. If it does not find the specified one, it then tries to open a disk

file.

If you specify a memory filename that has an asterisk (*) as the first (or only)

character, a name is created for that file (you can acquire this name by using

fldata().). For example, you can specify fopen("*","type=memory");. Opening a

memory file this way is faster than using the tmpnam() function.

All valid filenames are accepted for memory files. However, if invalid disk filenames

are used for memory files, difficulties could occur if you try to port memory-file

applications to disk-file applications.

Memory files are always opened in fixed binary mode regardless of the open

mode. There is no blank padding, and control characters such as the new line are

written directly into the file (even if the fopen() specifies text mode).

Memory File I/O Operations

120 LE/VSE: C Run-Time Programming Guide

Buffering

Memory files are not buffered. Any parameters passed to setvbuf() are ignored.

Each character that you write is written directly to the memory file.

Reading from Files

You can use the following library functions to read information from memory files:

v fread()

v fgets()

v gets()

v fgetc()

v getc()

v getchar()

v scanf()

v fscanf()

See LE/VSE C Run-Time Library Reference for more information on these library

functions.

The gets(), getchar(), and scanf() functions read from stdin, which can be

redirected to a memory file.

You can open an existing file for read one or more times, even if it is already open

for write. You cannot open a file for write if it is already open (for either read or

write). If you want to update or truncate a file or append to a file that is already

open for reading, you must first close all the other streams that refer to that file.

For memory files, a read operation directly after a write operation without an

intervening call to fflush(), fsetpos(), fseek(), or rewind() fails. LE/VSE C

Run-Time treats the following as read operations:

v Calls to read functions that request 0 bytes

v Read requests that fail because of a system error

v Calls to the ungetc() function

Writing to Files

You can use the following library functions to write to a file:

v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputs()

v fputc()

v putc()

v putchar()

See LE/VSE C Run-Time Library Reference for more information on these library

functions.

The printf(), puts(), putchar(), and vprintf() functions write to stdout, which

can be redirected to a memory file.

Memory File I/O Operations

Chapter 11. Performing Memory File I/O Operations 121

LE/VSE C Run-Time counts a call to a write function writing 0 bytes, or a write

request that fails because of a system error, as a write operation. For memory files,

the only possible system error that can occur is an error in acquiring storage.

Flushing Records

fflush() does not move data from an internal buffer to a memory file, because the

data is written to the memory file as it is generated. However, fflush() does make

the data visible to readers who have a memory file open for reading while a user

has it open for writing.

The fclose() function also invokes fflush() when it detects an incomplete buffer

for a file that is open for writing or appending.

ungetc() Considerations

ungetc() pushes characters back onto the input stream for memory files. ungetc()

handles only single-byte characters. You can use it to push back as many as four

characters onto the ungetc() buffer. For every character pushed back with

ungetc(), fflush() backs up the file position by one character and clears all the

pushed-back characters from the stream. Backing up the file position may end up

going across a record boundary.

If you want fflush() to ignore ungetc() characters, you can set the

_EDC_COMPAT environment variable. See Chapter 21, “Using Environment

Variables,” on page 219 for more information.

Repositioning within Files

You can use the following library functions to help you position within a memory

file:

v fgetpos()

v fsetpos()

v fseek()

v ftell()

v rewind()

See LE/VSE C Run-Time Library Reference for more information on these library

functions.

Using fseek() to seek past the end of a memory file extends the file using null

characters. This may cause LE/VSE C Run-Time to attempt to allocate more

storage than is available as it tries to extend the memory file.

When you use the fseek() function with memory files, it supports byte offsets

from SEEK_SET, SEEK_CUR, and SEEK_END.

All file positions from ftell() are relative byte offsets from the beginning of the

file. fseek() supports these values as offsets from SEEK_SET.

fgetpos(), fseek() with an offset of SEEK_CUR, and ftell() handle ungetc()

characters unless you have set the _EDC_COMPAT environment variable, in which

case fgetpos() and fseek() do not. See Chapter 21, “Using Environment

Variables,” on page 219 for more information about _EDC_COMPAT. If in handling

these characters, if the current position goes beyond the start of the file, fgetpos()

returns the EOF value, and ftell() returns -1.

Memory File I/O Operations

122 LE/VSE: C Run-Time Programming Guide

fgetpos() values generated by code from previous releases of C are not supported

by fsetpos().

Closing Files

Use the fclose() library function to close a memory file. See LE/VSE C Run-Time

Library Reference for more information on this library function. LE/VSE C

Run-Time automatically closes memory files at the termination of the C root main

environment.

Performance Tips

Memory files perform more efficiently if large amounts of data (10K or more) are

written in one request (that is, if you pass 10K or more of data to the fwrite()

function). You should use fopen("*","type=memory") both to generate a name for a

memory file and to open the file instead of calling fopen() with a name returned

by tmpnam(). You can acquire the file’s generated name by using fldata().

Removing Memory Files

The memory file remains accessible until the file is removed by the remove() or

clrmemf() library functions or until the root program has terminated. You cannot

remove an open memory file, except when you use clrmemf(). See LE/VSE C

Run-Time Library Reference for more information on these library functions.

fldata() Behavior

When you call the fldata() function for an open memory file, it fills in a data

structure as shown in the following.

If the filename specified on the call to fopen() begins with DD: (that is, the file is

opened by DLBL/TLBL-name and/or logical unit, or VSE/Librarian sublibrary

member), the filename field returned by fldata() is the same as the filename

parameter specified on the call to fopen(), including the DD: prefix.

If opened by file ID, the filename field returned is the fully qualified data set name

including quotation marks.

If opened using an ″*″, the filename field returned is the name generated by the

tmpnam() function.

struct __fileData {

 unsigned int __recfmF : 1, /* TRUE */

 __recfmV : 1, /* FALSE */

 __recfmU : 1, /* FALSE */

 __recfmS : 1, /* FALSE */

 __recfmBlk : 1, /* FALSE */

 __recfmASA : 1, /* FALSE */

 __recfmM : 1, /* FALSE */

 __dsorgPO : 1, /* N/A */

 __dsorgPDSmem : 1, /* N/A */

 __dsorgPDSdir : 1, /* N/A */

 __dsorgPS : 1, /* always TRUE */

 __dsorgConcat : 1, /* N/A */

 __dsorgMem : 1, /* TRUE */

 __dsorgHiper : 1, /* N/A */

 __dsorgTemp : 1, /* N/A */

 __dsorgVSAM : 1, /* N/A */

 __reserve1 : 1, /* N/A */

 __openmode : 2, /* */

Memory File I/O Operations

Chapter 11. Performing Memory File I/O Operations 123

__modeflag : 4, /* */

 __reserve2 : 9;

 char __device; /* __MEMORY */

 unsigned long __blksize, /* */

 __maxreclen; /* */

 unsigned short __vsamtype; /* N/A */

 unsigned long __vsamkeylen; /* N/A */

 unsigned long __vsamRKP; /* N/A */

 char * __dsname; /* name used on fopen() call */

 unsigned int __reserve4;

};

For a complete explanation of the fldata() function, see LE/VSE C Run-Time

Library Reference.

Example Program

The following example shows the use of a memory file. The program EDCXGMF3

creates a memory file, calls program EDCXGMF4 and redirects the output of the

called program to the memory file. When control returns to the first program, the

program reads and prints the string in the memory file.

For more information on the system() library function, see LE/VSE C Run-Time

Library Reference.

EDCXGMF3

 /* EDCXGMF3

 This example demonstrates the use of a memory file.

 Part 1 of 2-other file is EDCXGMF4.

 */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(void)

{

 FILE *fp;

 char buffer[20];

 char *rc;

 /* Open the memory file to create it */

 if ((fp = fopen("PROG.DAT","wb+,type=memory")) != NULL)

 {

 /* Close the memory file so that it can be used as stdout */

 fclose(fp);

 /* Call EDCXGMF4 and redirect its output to memory file */

 /* EDCXGMF4 must be an executable PHASE */

 system("EDCXGMF4 >PROG.DAT");

Figure 14. Memory File Example 1 (Part 1 of 2)

Memory File I/O Operations

124 LE/VSE: C Run-Time Programming Guide

EDCXGMF4

 /* Now print the string contained in the file */

 fp = fopen("PROG.DAT","rb");

 rc = fgets(buffer,sizeof(buffer),fp);

 if (rc == NULL)

 {

 perror(" Error reading from file ");

 exit(99);

 }

 printf("%s", buffer);

 }

 return(0);

}

Figure 14. Memory File Example 1 (Part 2 of 2)

 /* EDCXGMF4

 This example demonstrates the use of a memory file.

 Part 2 of 2-other file is EDCXGMF3.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char item1[] = "Hello World\n";

 int rc;

 /* Write the data to the stdout which, at this point, has been

 redirected to the memory file */

 rc = fputs(item1,stdout);

 if (rc == 0) {

 perror("Error putting to file ");

 exit(99);

 }

 return(0);

}

Figure 15. Memory File Example 2

Memory File I/O Operations

Chapter 11. Performing Memory File I/O Operations 125

126 LE/VSE: C Run-Time Programming Guide

Chapter 12. Performing CICS I/O Operations

LE/VSE C Run-Time under CICS supports only three kinds of I/O:

CICS I/O

LE/VSE C Run-Time applications can access the CICS I/O commands through

the CICS command level interface. For additional information regarding this

interface, see CICS Transaction Server for VSE/ESA Application Programming

Guide and CICS Transaction Server for VSE/ESA Application Programming

Reference.

 Files

Memory files are the only type of file that LE/VSE C Run-Time supports

under CICS.

Note: Under CICS, even if the filename specified on the call to fopen() or

freopen() is an unqualified file ID (quotation marks omitted), no

prefixing by jobname will be performed.

VSAM files can be accessed through the CICS command level interface.

CICS data queues

Under CICS, LE/VSE C Run-Time implements the standard output (stdout)

and standard error (stderr) streams as CICS transient data queues. These data

queues must be defined in the CICS Destination Control table (DCT) by the

CICS system administrator before the CICS cold start. Output from all users’

transactions that use stdout (or stderr) is written to the queue in the order of

occurrence. To help differentiate the output, the user’s terminal name, the CICS

transaction identifier, and the current date and time is automatically added by

the run-time library to the beginning of each line written to the queue.

 The queues are as follows:

 Stream Queue

stdout CESO

stderr CESE

stdin Not supported

To access any other queues, you must use the command level interface.

For complete information about using LE/VSE C Run-Time and LE/VSE C

Run-Time I/O under CICS, see “Using Input and Output” on page 275.

For information on using wide characters in the CICS environment, see Chapter 6,

“LE/VSE C Run-Time Support for the Double-Byte Character Set (DBCS),” on page

29.

© Copyright IBM Corp. 1995, 2005 127

128 LE/VSE: C Run-Time Programming Guide

Chapter 13. Performing LE/VSE Message File Operations

This chapter describes input and output with the LE/VSE message file. This file is

write-only; it is non-readable and non-seekable.

The default open mode for the LE/VSE Message File is text. Binary and record I/O

modes are not supported.

See Chapter 6, “LE/VSE C Run-Time Support for the Double-Byte Character Set

(DBCS),” on page 29 for information about using wide-character I/O with LE/VSE

C Run-Time.

The standard stream stderr defaults to using the LE/VSE message file.

Opening Files

The default is for stderr to go to the message file automatically. The message file

is available only as stderr; you cannot use the fopen() or freopen() library

function to open it or to change the access mode.

The record format is always treated as undefined (U) and the logical record length

is always treated as 255 (the maximum length defined by LE/VSE Message File

system write interface).

Reading from Files

The LE/VSE Message file is non-readable.

Writing to Files

v Data written to the LE/VSE Message File is always appended to the end of the

file.

v When the data written is longer than the maximum LRECL of the LE/VSE

Message File (255 bytes), it is written by LE/VSE C Run-Time to the LE/VSE

Message File 255 bytes at a time, with the last write possibly less than 255 bytes.

No truncation will occur.

v When the output data is shorter than the actual LRECL of the LE/VSE Message

File, it is padded with blank characters by the LE/VSE system write interface.

v When the output data is longer than the actual LRECL of the LE/VSE Message

File, it is split into multiple records by the LE/VSE system write interface. The

LE/VSE system write interface splits the output data at the last blank before the

LRECL-th byte, and begins writing the next record with the first nonblank

character. Note that if there are no blanks in the first LRECL bytes (DBCS for

instance), the LE/VSE system write interface splits the output data at the

LRECL-th byte. It also closes off any DBCS string on the first record with a X'0F'

character, and begins the DBCS string on the next record with a X'0E' character.

v The hex characters X'0E' and X'0F' have special meaning to the LE/VSE system

write interface. The LE/VSE system write interface removes adjacent pairs of

these characters (normalization).

v You can set up a SIGIOERR handler to catch system write errors. See Chapter 14,

“Debugging I/O Programs,” on page 131 for more information.

© Copyright IBM Corp. 1995, 2005 129

Flushing Buffers

The fflush() function has no effect on the LE/VSE Message File.

Repositioning within Files

The ftell(), fgetpos(), fseek(), and fsetpos() functions are not allowed, because

the LE/VSE Message File is a non-seekable file. The rewind() function only resets

error flags.

Closing Files

Do not use the fclose() library function to close the LE/VSE message file.

LE/VSE C Run-Time automatically closes files on normal program termination and

attempts to do so under abnormal program termination or abend.

Message File Operations

130 LE/VSE: C Run-Time Programming Guide

Chapter 14. Debugging I/O Programs

This chapter will help you locate and diagnose problems in programs that use

input and output. It discusses several diagnostic methods specific to I/O.

Diagnostic methods for I/O errors include:

v Using return codes from I/O functions

v Using errno values and the associated perror() message

v Using the __amrc structure

v Using the __amrc2 structure

The information provided with the return code of I/O functions and with the

perror() message associated with errno values may help you locate the source of

errors and the reason for program failure. Since return codes and errno values do

not exist for every possible system I/O failure, return codes and errno values are

not useful for diagnosing all I/O errors. This chapter discusses the use of the

__amrc structure and the __amrc2 structure.

Using the __amrc Structure

__amrc is a structure defined in stdio.h (when the compile-time option

LANGLVL(EXTENDED) is in effect) to help you determine errors resulting from an I/O

operation. This structure is changed during system I/O and some C specific error

situations.

When looking at __amrc, be sure to copy the structure into a temporary structure

of type __amrctype since any I/O function calls will change the value of __amrc.

Figure 16 on page 132 shows the __amrc structure as it appears in stdio.h.

© Copyright IBM Corp. 1995, 2005 131

�1� __code

The error or warning value from an I/O operation is in either __error,

__abend, __feedback, or __alloc. You must look at __last_op to determine

how to interpret the __code union.

�2� __error

This field contains the return code from the system macro or utility. Refer

to Table 27 on page 134 for further information.

�3� __abend

This structure contains the abend code when errno is set to indicate a

recoverable I/O abend. __syscode is the system cancel code and __rc is set

to zero. The macros __abendcode() and __rsncode() may be set to the

abend code and reason code of a command when invoked with system().

�4� __feedback

This structure is used for VSAM only. The __rc field stores the VSAM

register 15 and the __fdbk field stores the VSAM error code or reason code.

See also the __RBA field below.

�5� __alloc

This structure contains no valid information under VSE.

�6� __RBA

This is the relative byte address (RBA) value returned by VSAM after an

 typedef struct __amrctype {

 union { �1�

 long int __error; �2�

 struct {

 unsigned short __syscode,

 __rc;

 } __abend; �3�

 struct {

 unsigned char __fdbk_fill,

 __rc,

 __ftncd,

 __fdbk;

 } __feedback; �4�

 struct {

 unsigned short __svc99_info,

 __svc99_error;

 } __alloc; �5�

 } __code;

 unsigned long __RBA; �6�

 unsigned int __last_op; �7�

 struct {

 unsigned long __len_fill;

 unsigned long __len;

 char __str[120];

 unsigned long __parmr0;

 unsigned long __parmr1;

 unsigned long __fill2[2];

 char __str2[64];

 } __msg; �8�

 } __amrc_type;

Figure 16. __amrc Structure

Debugging I/O Programs

132 LE/VSE: C Run-Time Programming Guide

ESDS or KSDS record is written out. For an RRDS, it is the calculated value

from the record number. It may be used in subsequent calls to flocate().

�7� __last_op

This field contains a value that indicates the last I/O operation being

performed by LE/VSE C Run-Time at the time the error occurred. These

values are shown in Table 27 on page 134.

�8� __msg

This may contain an error message from read or write operations, but is

not always filled.

 This field is used by the SIGIOERR handler.

Figure 17 demonstrates how to print the __amrc structure after an error has

occurred to get information that may help you to diagnose an I/O error.

EDCXGDI1

 /* EDCXGDI1

 This example demonstrates how to print the __amrc structure

 */

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <string.h>

int main(void) {

 FILE *fp;

 __amrc_type save_amrc;

 char buffer[80];

 int i = 0;

 /* open a binary file */

 fp = fopen("testfull.file","wb, recfm=F, lrecl=80");

 if (fp == NULL) exit(99);

 memset(buffer, ’A’, 80);

 /* write to file until it runs out of extents */

 while (fwrite(buffer, 1, 80, fp) == 80)

 ++i;

 save_amrc = *__amrc; /* need copy of __amrc structure */

 printf("number of successful fwrites of 80 bytes = %d\n", i);

 printf("last fwrite errno=%d lastop=%d syscode=%X rc=%d\n",

 errno,

 save_amrc.__last_op,

 save_amrc.__code.__abend.__syscode,

 save_amrc.__code.__abend.__rc);

 return 0;

}

Figure 17. Example of Printing the __amrc Structure

Debugging I/O Programs

Chapter 14. Debugging I/O Programs 133

The program writes to a file until it is full. When the file is full, the program will

fail. Following the I/O failure the program makes a copy of the __amrc structure,

and prints the number of successful writes to the file, the errno, the __last_op

code, the abend system code and the return code.

Using the __amrc2 Structure

The __amrc2 structure is an extension of __amrc. There are only 2 fields defined for

__amrc2. Like the __amrc structure, __amrc2 is changed during system I/O and

some C specific error situations.

Note: See “Using the SIGIOERR Signal” on page 137 for information on

restrictions that exist when comparing file pointers if you are using the

__amrc2 structure.

Figure 18 shows the __amrc2 structure as it appears in stdio.h.

 �1� __error2

This field is not used under VSE.

�2� __fileptr

This field is used by the signal SIGIOERR to pass back a FILE pointer that

can then be passed to fldata() to get the name of the file causing the

error.

Using __last_op Codes

The __last_op field is the most important of the __amrc fields. It defines the last

I/O operation LE/VSE C Run-Time was performing at the time of the I/O error.

You should note that the structure is neither cleared nor set by non-I/O operations

so querying this field outside of a SIGIOERR handler should only be done

immediately after I/O operations. Table 27 lists __last_op codes you may receive

and where to look for further information.

 Table 27. __last_op Codes and Diagnosis Information

Code Further Information

__IO_INIT Will never be seen by SIGIOERR exit value given at initialization.

__BSAM_OPEN Sets __error with return code from VSE OPEN macro.

__BSAM_CLOSE Sets __error with return code from VSE CLOSE macro.

__BSAM_READ No return code (either __abend (errno == 92) or __msg (errno ==

66) filled in).

__BSAM_NOTE NOTE returned 0 unexpectedly, no return code.

__BSAM_POINT This will not appear as an error lastop.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg (errno ==

65) filled in).

 struct {

 long int __error2; �1� */

 FILE *__fileptr; �2� */

 long int __reserved[6];

 }

Figure 18. __amrc2 Structure

Debugging I/O Programs

134 LE/VSE: C Run-Time Programming Guide

Table 27. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__BSAM_CLOSE_T Not supported under VSE, but retained for compatibility.

__BSAM_BLDL Not supported under VSE, but retained for compatibility.

__BSAM_STOW Not supported under VSE, but retained for compatibility.

__TGET_READ Not supported under VSE, but retained for compatibility.

__TPUT_WRITE Not supported under VSE, but retained for compatibility.

__IO_DEVTYPE Sets __error with return code from EXTRACT macro.

__IO_TRKCALC Sets __error with return code from GETVCE macro.

__IO_OBTAIN Not supported under VSE, but retained for compatibility.

__IO_LOCATE Not supported under VSE, but retained for compatibility.

__IO_CATALOG Not supported under VSE, but retained for compatibility.

__IO_UNCATALOG Not supported under VSE, but retained for compatibility.

__IO_RENAME Not supported under VSE, but retained for compatibility.

__C_TRUNCATE Set when LE/VSE C Run-Time truncates output data. Usually

this is data written to a text file with no newline such that the

record fills up to capacity and subsequent characters cannot be

written. For a record I/O file this refers to an fwrite() writing

more data than the record can hold. Truncation is always

rightmost data. There is no return code.

__C_FCBCHECK Set when LE/VSE C Run-Time FCB is corrupted. This is due to a

pointer corruption somewhere. File cannot be used after this.

__C_DBCS_TRUNCATE This occurs when writing DBCS data to a text file and there is

no room left in a physical record for anymore double byte

characters. A newline is not acceptable at this point. Truncation

will continue to occur until an SI is written or the file position is

moved. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SO_TRUNCATE This occurs when there is not enough room in a record to start

any DBCS string or else when a redundant SO is written to the

file before an SI. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SI_TRUNCATE This occurs only when there was not enough room to start a

DBCS string and data was written anyway, with an SI to end it.

Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_UNEVEN This occurs when an SI is written before the last double byte

character is completed, thereby forcing LE/VSE C Run-Time to

fill in the last byte of the DBCS string with a padding byte

X’FE’. Cannot happen if MB_CUR_MAX is 1.

__C_CANNOT_EXTEND This occurs when an attempt is made to extend a file that allows

writing, but cannot be extended. Typically this is a member of a

VSE/Librarian sublibrary being opened for update.

__VSAM_OPEN_FAIL Set when a low level VSAM OPEN fails, sets __rc and __fdbk

fields in the __amrc struct.

__VSAM_OPEN_ESDS Does not indicate an error; set when the low level VSAM OPEN

succeeds, and the file type is ESDS.

__VSAM_OPEN_RRDS Does not indicate an error; set when the low level VSAM OPEN

succeeds, and the file type is RRDS.

__VSAM_OPEN_KSDS Does not indicate an error; set when the low level VSAM OPEN

succeeds, and the file type is KSDS.

Debugging I/O Programs

Chapter 14. Debugging I/O Programs 135

Table 27. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__VSAM_OPEN_ESDS_PATH Does not indicate an error; set when the low level VSAM OPEN

succeeds, and the file type is ESDS PATH or AIX.

__VSAM_OPEN_KSDS_PATH Does not indicate an error; set when the low level VSAM OPEN

succeeds, and the file type is KSDS PATH or AIX.

__VSAM_MODCB Set when a low level VSAM MODCB macro fails, sets __rc and

__fdbk fields in the __amrc struct.

__VSAM_TESTCB Set when a low level VSAM TESTCB macro fails, sets __rc and

__fdbk fields in the __amrc struct.

__VSAM_SHOWCB Set when a low level VSAM SHOWCB macro fails, sets __rc and

__fdbk fields in the __amrc struct.

__VSAM_GENCB Set when a low level VSAM GENCB macro fails, sets __rc and

__fdbk fields in the __amrc struct.

__VSAM_GET Set when the last op was a low level VSAM GET; if the GET

fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_PUT Set when the last op was a low level VSAM PUT; if the PUT

fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the

POINT fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ERASE Set when the last op was a low level VSAM ERASE; if the

ERASE fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ENDREQ Set when the last op was a low level VSAM ENDREQ; if the

ENDREQ fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the

CLOSE fails, sets __rc and __fdbk in the __amrc struct.

__QSAM_GET __error is not set (if abend (errno == 92), __abend is set,

otherwise if read error (errno == 66), look at __msg.

__QSAM_PUT __error is not set (if abend (errno == 92), __abend is set,

otherwise if write error (errno == 65), look at __msg.

__QSAM_TRUNC This is an intermediate operation. You will only see this if an

I/O abend occurred.

__QSAM_CLOSE Sets __error to result of VSE CLOSE macro.

__QSAM_OPEN Sets __error to result of VSE OPEN macro.

__CICS_WRITEQ_TD Sets __error with error code from EXEC CICS WRITEQ TD.

Debugging I/O Programs

136 LE/VSE: C Run-Time Programming Guide

Using the SIGIOERR Signal

SIGIOERR is a signal used by the library to pass control to an error handler when

an I/O error occurs. The default for this signal is SIG_IGN. Setting up a SIGIOERR

handler is like setting up any other error handler. The example in Figure 19 on

page 138 adds a SIGIOERR handler to the example shown in Figure 17 on page 133.

Note the way fldata() and the __amrc2 field __fileptr are used to get the name

of the file that caused the error.

EDCXGDI2

Debugging I/O Programs

Chapter 14. Debugging I/O Programs 137

When control is given to a SIGIOERR handler, the __amrc2 structure field __fileptr

will be filled in with a file pointer. The only operation permitted on the file pointer

is fldata(). This operation can be used to extract information about the file that

 /* EDCXGDI2

 This example demonstrates how to use SIGIOERR

 */

#include <stdio.h>

#include <signal.h>

#include <errno.h>

#include <stdlib.h>

#include <string.h>

void iohdlr(int);

int main(void) {

 FILE *fp;

 char buffer[80];

 int i = 0;

 signal(SIGIOERR, iohdlr);

 /* open a binary file */

 fp = fopen("testfull.file","wb, recfm=F, lrecl=80");

 if (fp == NULL) exit(99);

 memset(buffer, ’A’, 80);

 /* write to file until it runs out of extents */

 while (fwrite(buffer, 1, 80, fp) == 80)

 ++i;

 printf("number of successful fwrites of 80 bytes = %d\n", i);

 return 0;

}

 void iohdlr (int signum) {

 __amrc_type save_amrc;

 __amrc2_type save_amrc2;

 char filename[FILENAME_MAX];

 fldata_t info;

 save_amrc = *__amrc; /* need copy of __amrc structure */

 save_amrc2 = *__amrc2; /* need copy of __amrc2 structure */

 /* get name of file causing error from fldata */

 if (fldata(save_amrc2.__fileptr, filename, &info) == 0)

 printf("error on file %s\n",filename);

 perror("io handler"); /* give errno message */

 printf("lastop=%d syscode=%X rc=%d\n",

 save_amrc.__last_op,

 save_amrc.__code.__abend.__syscode,

 save_amrc.__code.__abend.__rc);

 signal(SIGIOERR, iohdlr);

}

Figure 19. Example of Using SIGIOERR

Debugging I/O Programs

138 LE/VSE: C Run-Time Programming Guide

caused the error. Other than freopen() and fclose(), all I/O operations will fail

since the file pointer is marked invalid. Do not issue freopen() or fclose() in a

SIGIOERR handler that returns control. This will result in unpredictable behavior,

likely an abend.

If you choose not to return from the handler, the file is still locked from all

operations except fldata(), freopen(), or fclose(). The file is considered open

and can prevent other incorrect access, such as a SAM file opened more than once

for a write. Like all other files, the file is closed automatically at program

termination if not already explicitly closed.

When you exit a SIGIOERR handler and do not return, the state of the file at closing

is indeterminate. The state of the file is indeterminate because certain control block

fields are not set correctly at the point of error and they do not get corrected unless

you return from the handler.

For example, if your handler were invoked due to a truncation error and you

performed a longjmp() out of your SIGIOERR handler, the file in error would

remain open, yet inaccessible to all I/O functions other than fldata(), fclose(),

and freopen(). If you were to close the file or it was closed at termination of the

program, it is still likely that the record that was truncated will not appear in the

final file.

You should be aware that for a standard stream passed across a system() call, the

state of the file will be indeterminate even after you return to the parent program.

For this reason, you should not jump out of a SIGIOERR handler. For further

information on system() calls and standard streams, see Chapter 7, “Standard

Streams and Redirection,” on page 37.

I/O with files other than the file causing the error is perfectly valid within a

SIGIOERR handler. For example, it is valid to call printf() in your SIGIOERR

handler if the file causing the error is not stdout Comparing the incoming file

pointer to the standard streams is not a reliable mechanism of detecting whether

any of the standard streams are in error. This is because the file pointer in some

cases is only a pointer to a file structure that points to the same__file as the

stream supplied by you. The FILE pointers will not be equal if compared, but a

comparison of the __file fields of the corresponding FILE pointers will be. See the

stdio.h header file for details of type FILE.

If stdout or stderr are the originating files of a SIGIOERR, you should open a

special log file in your handler to issue messages about the error.

Debugging I/O Programs

Chapter 14. Debugging I/O Programs 139

140 LE/VSE: C Run-Time Programming Guide

Part 2. Interlanguage Calls with LE/VSE C Run-Time

Chapter 15. Combining C and Assembler . . . 143

Establishing the LE/VSE C Run-Time Environment 143

Specifying Linkage for C and Assembler 143

Parameter List for OS Linkage 144

Using Standard Macros 144

Assembler Prolog 144

Assembler Epilog 145

Accessing Automatic Memory 145

Example 146

Register Content at Entry to an ASM Routine

Using OS linkage 147

Register Content at Exit from an ASM Routine

to LE/VSE C Run-Time 149

Retaining the C Environment Using

Preinitialization 149

This part describes the LE/VSE C Run-Time-specific considerations about

interlanguage calls in the LE/VSE environment. For complete information about

interlanguage calls (ILC) with LE/VSE C Run-Time and LE/VSE, refer to LE/VSE

Writing Interlanguage Communication Applications.

© Copyright IBM Corp. 1995, 2005 141

142 LE/VSE: C Run-Time Programming Guide

Chapter 15. Combining C and Assembler

This chapter describes how to communicate between LE/VSE C Run-Time and

assembler programs.

There are different prologs and epilogs shipped with LE/VSE. The prolog and

epilog shown in this chapter set up your assembler to imitate LE/VSE C

Run-Time. For more information on LE/VSE with assembler, see LE/VSE Writing

Interlanguage Communication Applications.

Establishing the LE/VSE C Run-Time Environment

Before a LE/VSE C Run-Time function can be called from assembler, a suitable

environment must be established. Do one of the following:

v Call the assembler program from a C main(), even though you simply want to

make a call from assembler to LE/VSE C Run-Time. This establishes the C

environment. Then you can call LE/VSE C Run-Time from assembler by

following the OS linkage conventions. An example is shown on page 146.

v Use preinitialization to set up the C environment. See “Retaining the C

Environment Using Preinitialization” on page 149 for more information on this

task.

Specifying Linkage for C and Assembler

There are two ways to specify the linkage between LE/VSE C Run-Time and

assembler:

v LE/VSE C Run-Time provides a #pragma linkage directive that enables it to

generate and accept parameter lists, using a linkage convention known as OS

linkage. Although functionally different, both calling an assembler routine and

being called by an assembler routine are handled by the same #pragma. Its format

is:

#pragma linkage(identifier, OS)

where identifier is the name of the assembler function to be called from C or the

C function to be called from assembler. The #pragma linkage directive must

occur before the call to the entry point.

v In the absence of a #pragma linkage, a LE/VSE C Run-Time internal linkage is

used. Assembler code written using this method will be more difficult to migrate

to improved linkages. While C code can be migrated by recompiling, assembler

code will have to be rewritten.

You can call LE/VSE C Run-Time library functions when using the OS #pragma

linkage, but it must be done indirectly, through intervening C code, as shown in

Figure 21 on page 146.

Note: Do not use the macros va_arg() and va_start() in functions that participate

in interlanguage calls.

© Copyright IBM Corp. 1995, 2005 143

Parameter List for OS Linkage

A parameter list for OS linkage is a list of pointers. The most significant bit of the

last parameter in the parameter list is turned on by the compiler when the list is

created.

If a parameter is an address type parameter, the address itself is directly stored

into the parameter list. Otherwise, a copy is created for a value parameter and the

address of this copy is stored into the parameter list.

The type of a parameter is specified by the prototype of a function. In absence of a

prototype, the creation of a parameter list is determined by the types of the actual

parameters passed to the function. Figure 20 shows an example of the parameter

list for OS linkage.

In the list, the first parameter and the third parameter are value parameters and

the second parameter is an address parameter.

Using Standard Macros

To communicate properly, assembler routines must preserve the use of certain

registers and particular storage areas, in a fashion consistent with code from the

compiler. LE/VSE C Run-Time provides three macros for use with assembler

routines. These macros are in the LE/VSE installation sublibrary (default is

PRD2.SCEEBASE). They must be assembled using High Level Assembler. The

macros are:

EDCPRLG Generates the prolog for assembler code

EDCEPIL Generates the epilog for assembler code

EDCDSAD Accesses automatic memory

The advantage of writing assembler code using these macros is that the assembler

routine will then participate fully in the C environment, enabling the assembler

routine to call C functions. To establish a C environment, the main program

module must be a C function. The macros also manage automatic storage, and

make the assembler code easier to debug.

Assembler Prolog

Use the EDCPRLG macro to generate assembler prolog code at the start of

assembler routines.

Figure 20. Example of Parameter Lists for OS Linkages

Combining C and Assembler

144 LE/VSE: C Run-Time Programming Guide

== name EDCPRLG

USRDSAL

=

ulen

BASEREG

=

register

DSALEN

=

dlen

 =B

name Is inserted in the prolog. It is used in the processing of certain exception

conditions and is useful in debugging and in reading memory dumps. If

name is absent, the name of the current CSECT is used.

USRDSAL=ulen

Is used only when automatic storage (in bytes) is needed. To address this

storage, see the EDCDSAD macro description. The ulen value is the

requested length of the user space in the DSA.

BASEREG=register

Designates the required base register. The macro generates code needed for

setting the value of the register and for establishing addressability. The

default is Register 3. If register equals NONE, no code for establishing the

base and addressability is generated.

DSALEN=dlen

Is the total requested length of the DSA. The default is 120. If fewer than

120 bytes are requested, 120 bytes are allocated. If both dlen and ulen are

specified, then the greater of dlen or ulen+120 is allocated. If DSALEN=NONE is

specified, no code is generated for DSA storage allocation, and R13 will

still point to the caller’s DSA. Therefore, you should not use the EDCEPIL

macro to terminate the assembler routine. Instead, you have to restore the

registers yourself from the current DSA. To do this, you can use an

assembler instruction such as

LM 13,12,12(13)

You should not use EDCDSAD to access automatic memory if you have

specified DSALEN=NONE, since DSECT is addressable using R13.

Assembler Epilog

Use the EDCEPIL macro to generate assembler epilog code at the end of assembler

routines. Do not use this macro in conjunction with an EDCPRLG macro that

specifies DSALEN=NONE.

== EDCEPIL

name
 =B

name Is the optional name operand, which then becomes the label on the exit

from this code. The name does not have to match the prolog.

Accessing Automatic Memory

Use the EDCDSAD macro to access automatic memory. Automatic memory is

reserved using the USRDSAL, or the DSALEN operand of the EDCPRLG macro. The

length of the allocated area is derived from the ulen and/or dlen values specified

on the EDCPRLG macro. EDCDSAD generates a DSECT, which reserves space for

the stack frame needed for the C environment.

== EDCDSAD

name
 =B

Combining C and Assembler

Chapter 15. Combining C and Assembler 145

name Is the optional name operand, which then becomes the name of the

generated DSECT.

 The DSECT is addressable using Register 13 which is initialized by the prolog

code. If you have specified DSALEN=NONE with EDCPRLG you should not use

EDCDSAD.

Example

The following example shows how to use the #pragma linkage OS and call C

library functions from the assembler routine.

EDCXGCA4

 /* EDCXGCA4

 This example demonstrates C/Assembler ILC.

 Part 1 of 3-other files are EDCXGCA2, EDCXGCA5.

 */

#pragma linkage(callprtf, OS)

int main(void) {

 callprtf();

 return(0);

}

Figure 21. Calling C Library Functions from Assembler Using OS Linkage

Combining C and Assembler

146 LE/VSE: C Run-Time Programming Guide

EDCXGCA2

 EDCXGCA5

Register Content at Entry to an ASM Routine Using OS

linkage

When control is passed to an assembler routine that uses OS linkage, the contents

of the registers are as follows:

* EDCXGCA2

* This example demonstrates C/Assembler ILC.

* Part 2 of 3-other files are EDCXGCA4, EDCXGCA5.

CALLPRTF CSECT

 EDCPRLG

 LA 1,ADDR_BLK parameter address block in r1

 L 15,=V(@PRINTF4) address of routine

 BALR 14,15 call it

 EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..

 DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'

 DC C' which includes an int -- %d --'

 DC AL1(NEWLINE,NEWLINE)

 DC C'and two newline characters'

 DC AL1(NULL)

*

INTVAL DC F'222' The integer value displayed

*

NULL EQU X'00' C NULL character

NEWLINE EQU X'15' C \n character

 END

Figure 22. Calling C Library Functions from Assembler Using OS Linkage

 /* EDCXGCA5

 This example demonstrates C/Assembler ILC.

 Part 3 of 3-other files are EDCXGCA2, EDCXGCA4.

 */

 /**

 * This routine is an interface between assembler code *

 * and the LE/VSE C Run-Time library function printf(). OS *

 * linkage will not tolerate variable length parameter *

 * lists, so this routine is specific to a formatting string *

 * and a single 4-byte substitution parameter. It is *

 * specified as an int here. *

 **/

#pragma linkage(_printf4,OS) /*function will be called from assembler*/

#include <stdio.h>

int _printf4(char *str,int i) {

 return printf(str,i); /* call LE/VSE C Run-Time library function */

}

Figure 23. Calling C Library Functions from Assembler Using OS Linkage

Combining C and Assembler

Chapter 15. Combining C and Assembler 147

Register Contents

R0 0

R1 Points to the parameter list. The parameter list consists of a vector

of addresses, each of which points to an actual parameter. The

address of the last parameter has its high order bit set on, to

indicate the end of the list.

R2 to R11 Undefined.

R12 Points to an internal control block. It can be used by the called

routine but must be restored to its entry value if it calls a routine

that expects a LE/VSE C Run-Time environment.

R13 Points to the caller’s DSA. Part of the DSA is used by EDCPRLG

and EDCEPIL to save and restore registers. If EDCPRLG is in the

called routine, it changes R13 from pointing to the caller’s DSA to

the called routine’s DSA.

R14 The return address.

R15 The address of the entry point being called.

Combining C and Assembler

148 LE/VSE: C Run-Time Programming Guide

Register Content at Exit from an ASM Routine to LE/VSE C

Run-Time

Registers have the following content when control returns to the point of call:

Register Contents

R0 Undefined.

R1 Undefined.

R2 to R13 Must be restored to entry values. This is done by EDCEPIL and

EDCPRLG.

R14 Return address.

R15 Return value for integer types (long int, short int, char) and pointer

types. Otherwise set to 0.

FP0 Returns value for float or double parameters.

FP0 Returns value if long double is passed.

FP2 Returns value if long double is passed.

All other floating point registers are undefined.

Retaining the C Environment Using Preinitialization

If an assembler routine is to call the same C program repeatedly, the creation and

termination of the C environment for each call will be unnecessarily inefficient. The

solution is to create the C environment only once by preinitializing the C program.

You must use the callable service CEEPIPI to preinitialize the environment for your

applications. For more information about this service, see LE/VSE Programming

Guide.

Combining C and Assembler

Chapter 15. Combining C and Assembler 149

150 LE/VSE: C Run-Time Programming Guide

Part 3. Coding: Advanced Topics

Chapter 16. Reentrancy in LE/VSE C Run-Time 153

Limitations of Reentrancy 154

Using the LE/VSE Prelinker for Reentrancy . . . 154

Controlling External Static 155

Controlling Writable Strings 156

EDCXGRE1 156

Using Writable Static in Assembler Code . . . 156

EDCXGRE3 157

EDCXGRE4 158

Chapter 17. Using the Decimal Data Type . . . 159

Declaring Data Types 159

Declaring Fixed-Point Decimal Constants . . . 160

Declaring Decimal Variables 160

Defining Decimal Related Constants 161

Using Operators 161

Arithmetic Operators 163

EDCXGDC1 163

Additive Operators 163

Multiplicative Operators 163

Relational Operators 164

EDCXGDC2 164

Equality Operators 164

Conditional Operators 165

Intermediate Results 165

Assignment Operators 166

Unary Operators 166

sizeof Operator 166

digitsof Operator 166

precisionof Operator 167

Cast Operator 167

Summary of Operators Used With Decimal

Types 167

Converting Decimal Data Types 167

Converting Decimal Types to Decimal Types 168

Examples 168

Fractional Part Cannot Be Represented . . . 169

Integral Part Cannot Be Represented . . . 169

Converting Decimal Types to and from Integer

Types 170

Conversion from Integer Types 170

Conversion to Integer Types 170

Examples of Conversion from Integer Type 170

Examples of Conversion to Integer Type . . 170

Converting Decimal Types to and from Floating

Types 171

Conversion from Floating Types 171

Conversion to Floating Types 171

Examples of Conversion from Floating Type 171

Examples of Conversion to Floating Type . . 171

Calling Functions 172

Using Library Functions 172

Using Variable Arguments with Decimal Data

Types 172

Formatting Input and Output Operations 172

Using fprintf() 172

Using fscanf() 174

Validating Values 174

Fix Sign 174

Decimal Absolute 175

Programming Examples 176

Example One 176

Output from Programming Example One . . 178

Example Two 178

Output from Programming Example Two 178

Decimal Exception Handling 179

Restrictions 179

Decimal Exceptions and Interlanguage Calls . . 180

Assembler Interlanguage Calls 180

Chapter 18. Handling Error Conditions and

Signals 181

Handling Signals Using signal() and raise() . . 181

Handling Signals using LE/VSE Callable Services 181

LE/VSE C Run-Time Signal Handling Features . . 182

Establishing a Signal 182

Enabling a Signal 182

Interrupting a Program 183

Raising a Signal 183

Identifying Hardware and Software Signals . . 183

SIGABND Considerations 184

SIGIOERR Considerations 185

Default Handling of Signals 185

MAP 0010: Summary of LE/VSE Error Handling 186

Example of C Signal Handling Under LE/VSE C

Run-Time 188

EDCXGEC1 188

Chapter 19. Optimizing Code 189

Using Optimization Facilities 189

Programming Recommendations 192

Specifying Inline Functions 192

Selective Mode 192

Automatic Mode 192

Using Variables 193

Using Pointers 193

Passing Function Arguments 193

Coding Expressions 193

Coding Conversions 194

EDCXGOP3 194

Using Arithmetic Constructions 194

Input/Output Considerations 195

Using Built-In Library Functions and Macros 195

Using Loops and Control Constructs 197

Declaring a Data Type 197

Using Library Extensions 198

Optimizing Dynamic Memory 198

© Copyright IBM Corp. 1995, 2005 151

This part contains information that you may find useful once you become more

familiar with using the LE/VSE C Run-Time.

152 LE/VSE: C Run-Time Programming Guide

Chapter 16. Reentrancy in LE/VSE C Run-Time

This chapter describes the concept of reentrancy and how it can help to make your

programs more efficient, and tells you how to prepare reentrant programs and

control writable static in reentrant code.

Reentrant programs are structured to allow more than one user to share a single

copy of a phase or to use a phase repeatedly without reloading it. C achieves

reentrancy by splitting your program into two parts. The first part, which consists

of executable code and constant data, does not change during program execution.

The second part may be altered in the course of the program. This part includes

the DSA (also known as the stack) and a piece of storage known as the writable

static area, which contains all static variables that can be altered. Both of these

parts are areas of memory that are maintained until the program terminates.

If the program is installed in the SVA, only a single copy of the first (constant or

reentrant part) exists within a single partition, no matter how many users are

running the program simultaneously. This reentrant part may be shared across

partitions or across sessions. In this case, the phase is loaded only once. Separate

concurrent invocations of the program share or reenter the same copy of the phase,

which is write-protected. If the program is not installed in the SVA, each

invocation receives a private copy of the code part, but this part may not be

write-protected.

The modifiable writable static part of the program consists of:

v All program variables with the static storage class

v All program variables receiving the extern storage class

v All writable strings

v All function descriptors for all referenced functions

v All variable descriptors to reference imported variables

Each user running the program receives a private copy of the second (variable or

nonreentrant) part. This part, the code area, is modifiable by each user.

The code part of the program consists of:

v Executable instructions

v Read-only constants

v Objects with the variable NORENT #pragma

Reentrant programs can be categorized as having natural or constructed reentrancy.

Programs that contain no references to the writable static objects listed above have

natural reentrancy. Programs that refer to writable static objects must be processed

with the LE/VSE prelinker to make them reentrant; such programs have

constructed reentrancy.

You do not need to use the RENT compiler option if your program is naturally

reentrant.

© Copyright IBM Corp. 1995, 2005 153

Limitations of Reentrancy

Reentrancy is only an advantage if there will be concurrent users of a program.

These advantages become apparent only when the program is large.

Even if a program is large and will have more than one user at the same time,

there are also these limitations to consider:

v Reentrancy requires an extra preparation step if your program contains any

writable static. After the program is compiled, you must use the LE/VSE

prelinker, as described in LE/VSE Programming Guide.

v The shared portion of the program may be installed in the Shared Virtual Area

(SVA).

Using the LE/VSE Prelinker for Reentrancy

If your program contains writable static, use the LE/VSE prelinker to make your

program reentrant. This utility concatenates compile-time initialization information

(for writable static) from one or more object modules into a single initialization

unit. In the process, the writable static part is mapped. If your program does not

contain any writable static, you do not need to use the prelinker to ensure

reentrancy. If you compile your code and wish to link it using the VSE system

linkage editor, you must first call the LE/VSE prelinker.

The LE/VSE prelinker is not a post-compiler. That is, you do not prelink the object

modules individually into separate prelinked object modules as if running the

prelinker were an extension of the compile step. Instead, you prelink all the object

modules together in the same job into one output prelinked object module. This is

because the prelinker cannot process each object deck one at a time—it needs to

calculate how the single writable static area for the program will be structured and

thus needs all of the object decks input in a single step.

The LE/VSE prelinker:

v Maps input L-names from the object modules to output S-names (8 characters

maximum)

v Collects compile-time initialization information on static objects

v Collects objects that exist in writable static into one area by assigning an offset

within the writable static area to each object

v Removes all relocation and name information of objects in the writable static

area

The output of the LE/VSE prelinker is a single prelinked object module. You can

link this object module only on the same platform as where you prelinked it.

Because the prelinker maps names and removes the relocation information, you

cannot use the resulting object module as input for another prelink, nor can you

use the linkage editor to replace a control section (CSECT) that either defines or

references writable static objects.

The LE/VSE prelinker can handle object modules from languages other than C, but

only C or assembler code using the macros EDCDXD and EDCLA may refer to

writable static objects. To generate a reentrant phase, you must follow these steps:

1. If your program contains no writable static, compile your program as you

would normally (that is, no special compiler options are required), and then go

directly to step 4.

C Run-Time Reentrancy

154 LE/VSE: C Run-Time Programming Guide

If you are unsure about whether your program contains writable static, compile

it with the RENT option. Invoking the LE/VSE prelinker with the MAP option and

the object module as input produces a prelinker map. Any writable static data

in the object module appears in the writable static section of the map.

2. If your program contains writable static, you must compile your C source files

using the RENT compiler option.

3. Use the LE/VSE prelinker to combine all input object modules into a single

output object module.

Note: The output object module cannot be used as further input to the LE/VSE

prelinker.

4. Link the program with the SVA option on the PHASE card and install the

program in the SVA area of your system.

You do not need to install your program in the SVA to run, but if you do not,

you will not gain all the benefits of reentrancy.

Controlling External Static

Certain program variables with the extern storage class may be constant and never

written to. If this is the case, every user does not need to have a separate copy of

these variables. In addition, there may be a need to share constant program

variables between C and another language.

You can force a variable to be the part of the program that includes executable

code and constant data by using the #pragma variable(varname, NORENT) directive.

The following program fragment illustrates how this can be done:

 In this example, the source file is to be compiled with the RENT option. The variable

rates is included with the executable code because #pragma

variable(rates, NORENT) has been specified. The variable totals is included with

the writable static. Each user has their own copy of the array totals, and the array

rates is shared among all users of the program.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on,

program variables with the static storage class. Program variables with the static

storage class are always included with the writable static. An informational

message will appear if you do try to write to a nonreentrant variable when the

CHECKOUT compiler option is specified.

When #pragma variable(varname, NORENT) is specified for a variable, you must

ensure that this variable is never written to. Program exceptions or unpredictable

program behavior may result. In addition, #pragma variable(varname, NORENT)

must be included in every source file where the variable is referenced or defined.

#pragma options(RENT)

#pragma variable(rates, NORENT)

extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0 };

extern float totals[5];

int main(void) {

 /* ... */

}

Figure 24. Controlling External Static

C Run-Time Reentrancy

Chapter 16. Reentrancy in LE/VSE C Run-Time 155

Controlling Writable Strings

In a large number of programs, character strings may be constant and never

written to. If this is the case, every user does not need a separate copy of these

strings.

You can force all strings in a given source file to be the part of the program that

includes executable code and constant data by using #pragma strings(readonly).

The following program fragment illustrates how to make the strings constant:

EDCXGRE1

 In this example, the string "hello world\n" will be included with the executable

code because #pragma strings(readonly) is specified. This can yield a performance

and storage benefit. Ensure that read-only strings are never written to. Program

exceptions or unpredictable program behavior may result if an attempt is made to

write to a read-only string.

Using Writable Static in Assembler Code

Programming in C can eliminate most, if not all, of the need to code in assembler,

but there may be instances when you must. In addition, you may also have to

modify writable static from within an assembler program.

One way to modify writable static is to pass the address of the writable static

variable as a parameter to the assembler program. This may be difficult in some

cases. Two assembler macros are provided to make this easier:

v EDCDXD

v EDCLA

These are both in the LE/VSE installation sublibrary (default is PRD2.SCEEBASE).

The restriction on the names of writable static objects accessible in assembler code

is that they are S-names. This means that they may be at most 8 characters long

and may contain only characters allowed in external names by the assembler code.

The macro EDCDXD is used to declare a writable static variable. EDCLA is used to

load the address of the writable static variable into a register. Using the EDCLA

macro in assembler code necessitates coding EDCDXD as well.

The following assembler program illustrates how they are used:

 /* EDCXGRE1

 This example demonstrates how to make strings constant

 */

#pragma strings(readonly)

#include <stdio.h>

int main(void)

{

 printf("hello world\n");

 return(0);

}

Figure 25. Making Strings Constant

C Run-Time Reentrancy

156 LE/VSE: C Run-Time Programming Guide

EDCXGRE3

 In this example, the external variable DSA is declared with the EDCDXD macro.

The size value of 0F (zero fullwords) is used to indicate that DSA is to be treated as

an extern declaration in C. Because DSA is an extern declaration and not a

definition, DSA must be defined in another C or assembler program. The EDCLA

macro is used to load general purpose register 1 with the address of DSA, which

exists in the writable static area.

The external variable TBL@A is declared with the EDCDXD macro. It is also defined

because its size is 20F (20 fullwords or 80 bytes) and corresponds to an external

data definition in C. When the program starts, TBL@A is initialized to zero. Because

TBL@A is an external data definition, there should not be another definition of it in a

C or assembler program.

When these macros are used, pseudo-registers cannot be used within the same

assembler program.

There are no assembler macros for static initialization of a variable with a nonzero

value. You can do this by defining and initializing the variable in C and making an

extern declaration for it in the assembler program. In the example assembler

program, DSA has been declared this way.

The following C program illustrates how to call the above assembler program.

* EDCXGRE3 *

* static area, from assembler code. *

* Part 1 of 2-other file is EDCXGRE4. *

* *

* parameters: none *

* return: none *

* action: store contents of register 13 (callers dynamic *

* storage area) in variable DSA which exists in *

* the writable static area *

* *

* Macros: EDCPRLG, EDCEPIL, EDCDXD, EDCLA in the LE/VSE *

* installation sublibrary (default is PRD2.SCEEBASE) *

DSA EDCDXD 0F ; declaration of DSA in writable static

TBL@A EDCDXD 20F ; definition of TBL@A in writable static

GETDSA CSECT

GETDSA AMODE ANY

GETDSA RMODE ANY

 EDCPRLG ; prolog (save registers etc.)

 EDCLA 1,DSA ; load register 1 with address of DSA

 ST 13,0(,1) ; store contents of reg 13 in DSA

 EDCEPIL ; epilog (restore registers etc.)

 END

Figure 26. Referencing Objects in the Writable Static Area-Part 1

C Run-Time Reentrancy

Chapter 16. Reentrancy in LE/VSE C Run-Time 157

EDCXGRE4

 /* EDCXGRE4

 This example shows how to reference objects in the writable

 static area, from assembler code.

 Part 2 of 2-other file is EDCXGRE3.

 */

#include <stdio.h>

#pragma map(tbl_a,"TBL@A") /* map to match assembler name */

void GETDSA(void); /* assembler routine modifies DSA */

#define SZ 20 /* maximum call depth */

extern void * tbl_a[SZ]; /* defined in assembler program */

void * DSA; /* define it here, source name */

 /* same as assembler name */

 /* call yourself deeper and deeper */

 /* save DSA pointers as you go */

void deeper(int i)

{

 if (i >= SZ) /* if deep enough just return */

 return;

 GETDSA(); /* assign value to DSA */

 tbl_a[i] = DSA; /* save value in table */

 deeper(i+1); /* go deeper in call chain */

}

int main(void) {

 int i;

 deeper(0);

 for(i=0; i<SZ; i++)

 printf("depth %3d, DSA was at %p\n", i, tbl_a[i]);

 return 0;

}

Figure 27. Referencing Objects in the Writable Static Area-Part 2

C Run-Time Reentrancy

158 LE/VSE: C Run-Time Programming Guide

Chapter 17. Using the Decimal Data Type

This chapter describes the fixed-point decimal data types supported by LE/VSE C

Run-Time. This chapter refers to fixed-point decimal data types as “decimal types”.

The decimal data type is an extension of the ANSI C language definition. You can

use decimal data types to represent large numerical quantities accurately, especially

in business and commercial applications for financial calculations.

The decimal data types allow expressions of up to DEC_DIG significant digits

including integral and fractional parts. The value of DEC_DIG is specified in the

header file decimal.h.

You can pass decimal arguments in function calls and define macros. You can also

declare decimal variables, typedefs, arrays, structures, and unions having decimal

members. The following operators apply on decimal variables:

v Arithmetic

v Relational

v Assignment

v Comma

v Conditional

v Equality

v Logical

v Primary

v Unary

When using the decimal data types, you must include the decimal.h header file in

your source code.

Note: To generate more efficient code for decimal operations, use the OPTIMIZE

compiler option.

Declaring Data Types

Use the type specifier decimal(n,p) to declare decimal variables and to initialize

them with fixed-point decimal constants. The decimal macro is defined in

decimal.h.

Decimal types are classified as arithmetic types. decimal(n,p) designates a decimal

number with n digits, and p decimal places. n is the total number of digits for the

integral and decimal parts combined, and p is the number of digits for the decimal

part only. For example decimal(5,2) represents a number, such as 123.45, where n=5

and p=2. The value for p is optional. If it is left out, the default value is 0.

n and p have a range of allowed values according to the following rules:

p ≤ n 1 ≤ n ≤ DEC_DIG 0 ≤ p ≤

DEC_PRECISION

Note: DEC_DIG (the maximum number of digits n) and DEC_PRECISION (the

maximum precision p) are defined in decimal.h. Currently, a maximum of 31

digits is used for both limits.

© Copyright IBM Corp. 1995, 2005 159

Declaring Fixed-Point Decimal Constants

The syntax for fixed-point decimal constants is:

fixed-point-decimal-constant:

 fractional-constant fixed-point-decimal-suffix

fractional-constant (use any one of the following formats):

 digit-sequence . digit-sequence

 . digit-sequence

 digit-sequence .

 digit-sequence

digit-sequence (use any one of the following formats):

 digit

 digit-sequence digit

fixed-point-decimal-suffix (use any one of the following formats):

 D

 d

A fixed-point decimal constant has a numeric part and a suffix that specifies its

type. The components of the numeric part may include a digit sequence

representing the integral part, followed by a decimal point (.), followed by a digit

sequence representing the fractional part. Either the integral part, the fractional

part, or both are present.

Each fixed-point decimal constant has the attributes number of digits (digits) and

number of decimal places (precision). No leading or trailing zeros are stripped off

when the digits and the precision are determined.

Table 28 gives examples of fixed-point decimal constants and their corresponding

attributes:

 Table 28. Fixed-Point Decimal Constants and Their Attributes

Fixed-Point decimal Constant (digits, precision)

1234567890123456D (16, 0)

12345678.12345678D (16, 8)

12345678.d (8, 0)

.1234567890d (10, 10)

12345.99d (7, 2)

000123.990d (9, 3)

0.00D (3, 2)

Declaring Decimal Variables

The following example shows how you can declare a variable as a decimal data

type:

decimal(10,2)

 x; decimal(5,0) y; decimal(5) z; decimal(18,10) *ptr;

decimal(8,2) arr[100];

In the previous example:

v x can have values between -99999999.99D to +99999999.99D.

v y and z can have values between -99999D to +99999D.

v ptr is a pointer to type decimal(18,10).

v arr is an array of 100 elements, where each element is of type decimal(8,2).

Using the Decimal Data Type

160 LE/VSE: C Run-Time Programming Guide

The syntax for the decimal type specifier is as follows:

== decimal (constant-expression

, constant-expression
) =B

The constant-expression is evaluated as a positive integral constant expression. A

second constant-expression is optional. If it is left out, the default value is 0.

decimal(n,0) and decimal(n) are type compatible.

Defining Decimal Related Constants

Use the following numerical limits to define the decimal value in assignments and

expressions. These predefined values are contained in decimal.h.

v Smallest number that can be represented in a decimal type

DEC_MIN

-9999999999999999999999999999999D
v Largest positive number that can be represented in a decimal type

DEC_MAX

+9999999999999999999999999999999D
v Smallest number greater than zero that can be represented in a decimal type

DEC_EPSILON

.0000000000000000000000000000001D
v Maximum number of significant digits that decimal types can hold

DEC_DIG

31
v Maximum number of decimal places that decimal types can hold

DEC_PRECISION

31

Using Operators

You can use arithmetic, relational, assignment, comma, conditional, equality,

logical, primary, and unary cast operators on a decimal data type. Conversions

follow these arithmetic conversion rules:

v First, if either operand has type long double, the other operand is converted to

type long double.

v Otherwise, if either operand has type double, the other operand is converted to

type double.

v Otherwise, if either operand has type float, the other operand is converted to

type float.

v Otherwise, if either operand has type decimal, the other operand is converted to

type decimal.

v Otherwise, the integral promotions are performed on both operands. Then the

following rules are applied:

– If either operand has type unsigned long int, the other operand is converted

to unsigned long int.

– Otherwise, if one operand has type long int and the other has type unsigned

int, if a long int can represent all values of an unsigned int, the operand of

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 161

type unsigned int is converted to long int; if a long int cannot represent all

the values of an unsigned int, both operands are converted to unsigned long

int.

– Otherwise, if either operand has type long int, the other operand is converted

to long int.

– Otherwise, if either operand has type unsigned int, the other operand is

converted to unsigned int.

– Otherwise, both operands have type int.

Using the Decimal Data Type

162 LE/VSE: C Run-Time Programming Guide

Arithmetic Operators

This example shows how to use arithmetic operators and then describes certain

arithmetic, assignment, unary, and cast operators in more detail.

It summarizes how to add, subtract, multiply and divide decimal variables.

EDCXGDC1

Additive Operators

Additive operators follow the arithmetic conversions defined in “Using Operators”

on page 161.

Note: For performance reasons, generating negative zero is possible.

Refer to “Intermediate Results” on page 165 for details on how to get the convert

type during alignment of the decimal point.

Multiplicative Operators

Multiplicative operators follow the arithmetic conversions defined “Using

Operators” on page 161.

 /* EDCXGDC1

 This example demonstrates arithmetic operations on decimal

 variables

 */

#include <decimal.h> /* decimal header file */

#include <stdio.h>

int main(void)

{

decimal(10,2) op_1 = 12d;

decimal(5,5) op_2 = -.12345d;

decimal(24,12) op_3 = 12.34d;

decimal(20,5) op_4 = 11.01d;

decimal(14,5) res_add;

decimal(25,2) res_sub;

decimal(15,7) res_mul;

decimal(31,14) res_div;

res_add = op_1 + op_2;

res_sub = op_3 - op_1;

res_mul = op_2 * op_1;

res_div = op_3 / op_4;

printf("res_add =%D(*,*)\n",digitsof(res_add),

 precisionof(res_add),res_add);

printf("res_sub =%D(*,*)\n",digitsof(res_sub),

 precisionof(res_sub),res_sub);

printf("res_mul =%D(*,*)\n",digitsof(res_mul),

 precisionof(res_mul),res_mul);

printf("res_div =%D(*,*)\n",digitsof(res_div),

 precisionof(res_div), res_div);

return(0);

}

Figure 28. Arithmetic Operators Example

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 163

Note: For performance reasons generating negative zero is possible.

Refer to “Intermediate Results” on page 165 for details on how to get the convert

type during alignment of the decimal point.

Relational Operators

Relational operators follow the arithmetic conversions defined in “Using

Operators” on page 161.

The following example shows you how to use a relational expression less than (<)

for decimals. In this example, decimal types are also compared with other

arithmetic types (integer, float, double, long double), and the implicit conversion of

the decimal types is performed using the arithmetic conversion rules in

“Converting Decimal Data Types” on page 167. Leading zeros in the example are

shown to indicate the size of the number of digits in the decimal data type. You do

not need to enter leading zeros in your decimal type variable initialization.

EDCXGDC2

 Refer to “Intermediate Results” on page 165 for details on how to get the convert

type during alignment of the decimal point.

Equality Operators

Equality operators follow the arithmetic conversions defined in “Using Operators”

on page 161. Where the operands have types and values suitable for the relational

operators, the semantics for relational operators applies.

Note: Positive zero and negative zero compare equal. In the following example,

the expression always evaluates to TRUE:

(-0.00d == +0.00000d)

 /* EDCXGDC2

 This example shows how to use a relational expression with the

 decimal data type

 */

#include <decimal.h>

decimal(10,3) pdval = 0000023.423d; /* Decimal declaration*/

int ival = 1233; /* Integer declaration*/

float fval = 1234.34; /* Float declaration*/

double dval = 251.5832; /* Double declaration*/

long double lval = 37486.234; /* Long double declaration*/

int main(void)

{

 decimal(15,6) value = 000485860.085999d;

 /*Perform relational operation between other data types and decimal*/

 if (pdval < ival) printf("pdval is the smallest !\n");

 if (pdval < fval) printf("pdval is the smallest !\n");

 if (pdval < dval) printf("pdval is the smallest !\n");

 if (pdval < lval) printf("pdval is the smallest !\n");

 if (pdval < value) printf("pdval is the smallest !\n");

 return(0);

}

Figure 29. Relational Operators Example

Using the Decimal Data Type

164 LE/VSE: C Run-Time Programming Guide

Refer to “Intermediate Results” on page 165 below for details on how to get the

convert type during alignment of the decimal point.

Conditional Operators

Conditional operators follow the arithmetic conversions defined in “Using

Operators” on page 161. If both the second and third operands have an arithmetic

type, the usual arithmetic conversions are performed to bring them to a common

type. If both operands are decimal types, the operands are converted to the convert

type and the result has that type.

Refer to “Intermediate Results” on page 165 below for details on how to get the

convert type during alignment of the decimal point.

Intermediate Results

Use one of the following tables to calculate the size of the result. The tables

summarize the intermediate expression results with the four basic arithmetic

operators and conditional operators when applied to the decimal types. Both tables

assume the following:

v x has type decimal(n1, p1)

v y has type decimal(n2, p2)

v decimal(n,p) is the result type

Use Table 29 to calculate the size of the result when no overflow is assumed. You

can use this table most of the time. If overflow occurs, use Table 30 to determine

the resulting type.

 Table 29. Intermediate Results (Without Overflow in n or p)

Expression (n,p)

x * y n = n1

+ n2

p = p1

+ p2

x / y n = DEC_DIG

p = DEC_DIG - ((n1

- p1

+ p2)

x + y p = max(p1, p2)

n = max(n1

- p1, n2

- p2) + p + 1

x - y same rule as addition

z ? x : y p = max(p1, p2)

n = max(n1

- p1, n2

- p2) + p

You can use Table 30 to calculate the size of the result whether there is an overflow

or not.

 Table 30. Intermediate Results (In the General Form)

Expression (n, p)

x * y n = min(n1

+ n2, DEC_DIG)

p = min(p1

+ p2, DEC_DIG - min((n1

- p1) + (n2

- p2), DEC_DIG))

x / y n = DEC_DIG

p = max(DEC_DIG - ((n1

- p1) + p2), 0)

x + y ir

= min(max(n1

- p1, n2

- p2) + 1, DEC_DIG)

p = min(max(p1, p2), DEC_DIG - ir)

n = ir

+ p

x - y same rule as addition

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 165

Table 30. Intermediate Results (In the General Form) (continued)

Expression (n, p)

z ? x : y ir

= max(n1

- p1, n2

- p2)

p = min(max(p1, p2), DEC_DIG - ir)

n = ir

+ p

If overflow occurs in n or p the decimal places are truncated and a message is

issued. As much of the integral part is reserved as possible. If the integral part is

truncated as an expression in the static/extern initialization, an error message is

issued. If the integral part is truncated inside the block scope, only a warning is

issued. On each operation, the complete result is calculated before truncation

occurs.

Assignment Operators

Assignment operators follow the arithmetic conversion defined in “Using

Operators” on page 161.

When values are assigned, SIGFPE may be raised if the operands contain values

that are not valid.

Unary Operators

Use the following unary operators to determine the digits in a decimal data type:

sizeof Determines the total number of bytes occupied by the decimal type

digitsof

Determines the number of digits (n)

precisionof

Determines the number of decimal digits (p)

sizeof Operator

When you use the sizeof operator with decimal(n,p), the result is an integer

constant. The sizeof operator returns the total number of bytes occupied by the

decimal type.

Each decimal digit occupies a halfbyte. In addition, a halfbyte is used for the sign.

The number of bytes used by decimal(n,p) is the smallest whole number greater

than or equal to (n + 1)/2 (that is, sizeof(decimal(n,p)) = ceil((n + 1)/2). The

sizeof result is calculated using this method because the C/VSE compiler uses

packed decimals to implement decimal data types.

The following example shows you how to determine the total number of bytes

occupied by the decimal type:

int y; decimal (5, 2) x; /* This would be calculated

to be 3 bytes*/ y = sizeof(x); /* (5+1)/2 = 3.

 */

digitsof Operator

When you use the digitsof operator with a decimal type, the result is an integer

constant. The digitsof operator returns the number of significant digits (n) in a

decimal type.

This example gives you the number of digits (n) in a decimal type:

decimal (5, 2) x; int n; n = digitsof(x);

 /* the result is n=5 */

Using the Decimal Data Type

166 LE/VSE: C Run-Time Programming Guide

Note: digitsof can be applied only to a decimal type.

precisionof Operator

When you use the precisionof operator with a decimal type, the result is an

integer constant. The precisionof operator tells you the number of decimal digits

(p) of the decimal type.

This example gives you the number of decimal digits (p) of the decimal type:

decimal (5, 2) x; int p; p = precisionof(x); /*

the result is p=2 */

Note: precisionof can be applied only to a decimal type.

Cast Operator

You can explicitly convert the following types:

v Decimal types to decimal types

v Decimal types to and from floating types

v Decimal types to and from integer types

Note: When you are explicitly casting to a decimal type, the truncation on the

leading nonzero digits does not cause an exception at run time. For more

information about how compiler messages and run-time exceptions are

suppressed, refer to “Converting Decimal Data Types” on page 167.

Summary of Operators Used With Decimal Types

Table 31 summarizes all of the operators that can be used with decimal types.

 Table 31. Operators Used With Decimal Types

Operator Name Associativity Operators

Primary left to right ()

Unary right to left ++ -- +

- ! &

(typename) sizeof

digitsof precisionof

Multiplicative left to right * /

Additive left to right + -

Relational left to right < > <= >=

Equality left to right == !=

Conditional right to left ? :

Assignment right to left = += -=

*= /=

Comma left to right ,

Converting Decimal Data Types

The C/VSE compiler implicitly converts the following types:

v Decimal types to decimal types

v Decimal types to and from floating types

v Decimal types to and from integer types

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 167

Converting Decimal Types to Decimal Types

If the value of the decimal type to be converted is within the range of values that

can be represented exactly, the value of the decimal type is not changed.

If the value of the decimal type to be converted is outside the range of values that

can be represented, the value of the decimal type is truncated. Truncation may

occur on the integral part or the fractional part or both.

When truncation occurs on the fraction part, neither a compile time message nor a

run-time exception is generated.

When truncation occurs on the integral part, a compile time message or a run-time

exception or both are generated as follows:

v In the initialization of static or external variables

– Compiler error if nonzero digits are truncated in the integral part
v In the initialization of automatic variables, an assignment or function call with

prototype

– Checkout warning at compile time

– Run-time exception SIGFPE is raised if non-zero digits are truncated in the

integral part at run time

Note: An explicit cast can be used to suppress compile time messages and

run-time exceptions. A run-time exception is generated if and only if the

leading nonzero digits are truncated and the operation is not an explicit cast

operation.

Examples

In the following examples, message represents a compile message and exception

represents a run-time exception (that is, SIGFPE is raised).

Using the Decimal Data Type

168 LE/VSE: C Run-Time Programming Guide

Fractional Part Cannot Be Represented

Conversion of one decimal object to another decimal object with smaller precision

involves truncation on the right of the decimal point.

Integral Part Cannot Be Represented

Conversion of one decimal object to another decimal object with fewer digits

involves truncation on the left of the decimal point.

#include <decimal.h>

void func(void);

void dec_func(decimal(7, 1));

decimal(7, 4) x = 123.4567D;

decimal(7, 1) y;

decimal(7, 1) z = 123.4567D; /* z = 000123.4D <-- No message, */

 /* No exception */

void func(void) {

 decimal(7, 1) a = 123.4567D; /* a = 000123.4D <-- No message, * /

 /* No exception */

 y = x; /* y = 000123.4D <-- No message, No exception */

 y = 123.4567D; /* y = 000123.4D <-- No message, No exception */

 dec_func(x); /* <-- No message, No exception */

}

Figure 30. Fractional Part Cannot Be Represented

void func(void);

void dec_func(decimal(5, 2));

decimal(8, 2) w = 000456.78D;

decimal(8, 2) x = 123456.78D;

decimal(5, 2) y;

decimal(5, 2) z = 123456.78D; /* <-- Compile error */

decimal(5, 2) z1 = (decimal(5, 2)) 123456.78D;

 /* z1 = 456.78D <-- No message, */

 /* No exception */

void func(void) {

 decimal(5, 2) a = 123456.78D; /* <-- Checkout warning */

 /* and exception */

 decimal(5, 2) a1 = (decimal(5, 2)) 123456.78D;

 /* a1 = 456.78D <-- No message, */

 /* No exception */

 y = w; /* y = 456.78D <-- Checkout warning, No exception */

 y = x; /* <-- Checkout warning and exception */

 y = 123456.78D; /* <-- Checkout warning and exception */

 dec_func(x); /* <-- Checkout warning and exception */

 y = (decimal(5, 2)) w;

 /* y = 456.78D <-- No message, No exception */

 y = (decimal(5, 2)) x;

 /* y = 456.78D <-- No message, No exception */

 y = (decimal(5, 2)) 123456.78D;

 /* y = 456.78D <-- No message, No exception */

 dec_func((decimal(5, 2)) x);

 /* <-- No message, No exception */

}

Figure 31. Integral Part Cannot Be Represented

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 169

Converting Decimal Types to and from Integer Types

Conversion from Integer Types

When a value of integer type is implicitly converted to decimal type, the integer

type is converted to type decimal(10,0).

When a value of integer type is explicitly converted to decimal type, the

conversion proceeds as though these two steps are followed:

1. The integer type is converted to type decimal(10,0). A run-time exception can

never occur in this step.

2. Type decimal(10,0) is then converted to decimal(n,p). All rules for decimal type

to decimal type conversion apply in this step.

An unsigned integer type is converted to a positive decimal value.

If the value of the integral part cannot be represented by the decimal type, the

result of the conversion is undefined and SIGFPE is raised.

Conversion to Integer Types

When a value of decimal type is converted to integer type, the fractional part is

discarded. If the value of the integral part cannot be represented by the integer

type, the result of the conversion is undefined. An exception does not occur and

execution continues.

When a negative decimal type is converted to an unsigned integer type, the

conversion proceeds as though these steps are followed:

1. The decimal type is converted to a signed integer type with the same size as

the unsigned integer type.

2. The signed integer type is converted to the unsigned integer type.

Examples of Conversion from Integer Type

 Examples of Conversion to Integer Type

 #include <decimal.h>

 decimal(10,2) pd01 = 1234; /* pd01 = 00001234.00d */

 decimal(5,0) pd02 = 987654; /* compile error */

 int main(void) {

 decimal(5,0) pd03 = 987654; /* run-time exception */

 decimal(13,4) pd04;

 /* The number 321 is converted to decimal(10,0) before the */

 /* addition is performed. */

 pd04 = 1234.56d + 321; /* pd04 = 000001555.5600d */

 }

Figure 32. Conversion from Integral Type

 int i = 1234.5678d; /* i = 1234 */

 int j = -789d; /* j = -789 */

 int k = 9876543210d; /* k is undefined */

Figure 33. Conversion to Integer Type

Using the Decimal Data Type

170 LE/VSE: C Run-Time Programming Guide

Converting Decimal Types to and from Floating Types

Conversion from Floating Types

When a value of floating type is converted to decimal type and the value being

converted cannot be represented by the decimal type, the result is truncated. If the

value of the floating type to be converted is within the range of values that can be

represented, but cannot be represented exactly, the result is also truncated. The

result retains as much value as possible. When the leading non-zero digits are

truncated and the operation is not an explicit cast operation, a decimal overflow

exception occurs at run time and SIGFPE is raised.

When a conversion from a floating type is made with static or external variable

initialization, a compile error message is issued.

The result of the conversion may not be exact because the internal representation

of System/370 floating-point instructions is hexadecimal based. The mapping

between the two representations is not one-to-one, even when the value of a float

type is within the range of the decimal type.

Conversion to Floating Types

The result of the conversion might not be exact because of:

v The limitations of significant digits in different floating types

v The degree to which a value can be stored exactly in a floating type

v The loss of precision during conversion

v The internal hexadecimal representation of the System/370 floating point

instructions.

Examples of Conversion from Floating Type

 Examples of Conversion to Floating Type

 #include <decimal.h>

 decimal(10,2) pd11 = 1234.0; /* pd11 = 00001234.00d */

 decimal(5,0) pd12 = 987654.0; /* compile error */

 int main(void) {

 decimal(5,0) pd13 = 987654.0; /* run-time exception */

 decimal(13,4) pd14 = 12.34567890; /* fractional part is truncated */

 }

Figure 34. Conversion from Floating Type

 /* The content of each floating type variables depends on */

 /* their limitation of significant digits that are specified */

 /* in <float.h>. */

 float a = 12345678901234567890.1234567890d;

 double b = 12345678901234567890.1234567890d;

 long double c = 12345678901234567890.1234567890d;

Figure 35. Conversion to Floating Type

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 171

Calling Functions

There are no default argument promotions on arguments that have type decimal

when the called function does not include a prototype. If the expression for the

called function has a type that includes a prototype, the behavior is as documented

in ANSI with the exception of prototype with an ellipsis (...). If the prototype ends

with an ellipsis (...), default argument promotions are not performed on arguments

with decimal types.

A function may change the values of its parameters, but these changes cannot

affect the values of the arguments. However, it is possible to pass a pointer to a

decimal object, and the function may change the value of the decimal object

pointed to.

Using Library Functions

You can use variable arguments and input/output operations with decimals.

Using Variable Arguments with Decimal Data Types

You can use the va_arg macro with a decimal data type decimal(n,p).

var_type va_arg(va_list arg_ptr, var_type);

Each invocation of va_arg modifies arg_ptr so that the values of successive

arguments are returned in turn.

Formatting Input and Output Operations

Use the following functions to print the value of a decimal type:

v fprintf()

v printf()

v sprintf()

v vfprintf()

v vprintf()

v vsprintf()

Use the following functions to read the value of a decimal type:

v fscanf()

v scanf()

v sscanf()

Using fprintf()

The formatting behavior of the printf(), sprintf(), vfprintf(), vprintf(), and

vsprintf() functions is the same as that of the fprintf() function.

The following is added to the optional precision’s description.

v An optional precision that gives the minimum digits to appear for the d, i, o, u,

x, and X conversions

v The number of digits to appear after the decimal-point character for e, E, f, and

D(n,p) conversions

v The maximum number of significant digits for the g and G conversions

v The maximum number of characters to be written from a string in an s

conversion

Using the Decimal Data Type

172 LE/VSE: C Run-Time Programming Guide

The precision takes the form of a period (.) followed either by an asterisk (*) or by

an optional decimal integer. If only the period is specified, the precision is taken as

zero. If a precision appears with any other conversion specifier, the behavior is

undefined.

The following are added to the list of flag characters and their meanings:

The result is to be converted to an alternative form as follows:

v For o conversion, the precision is increased to force the first digit of the

result to be a zero.

v For x or (X) conversion, a nonzero result will have 0x (or 0X) prefixed to

it.

v For e, E, f, g, G, and D(n,p) conversions, the result will always contain a

decimal-point character, even if no digits follow it. (Normally a

decimal-point character appears in the result of these conversions only if

a digit follows it.)

v For g and G conversions, trailing zeros will not be removed from the

result.

v For other conversions, the behavior is undefined.

0 The conversions are as follows:

v For d, i, o, u, x, X, e, E, f, f, G and D(n,p) conversions, leading zeros

(following any indication of sign or base) are used to pad to the field

width; no space padding is performed. If the 0 and - flags both appear,

the 0 flag will be ignored.

v For d, i, o, u, x and X conversions, if a precision is specified, the 0 flag

will be ignored.

v For other conversions, the behavior is undefined.

The following are added to the list of conversion specifiers:

D(n,p) The decimal argument is converted in the style [-] ddd.ddd, where the

number of digits after the decimal-point character is equal to the precision

of specification. If the precision is missing, it is taken as the p value. If the

precision is zero and # flag is not specified, no decimal-point character

appears. If a decimal-point character appears, at least one digit appears

before it. The value is truncated to the appropriate number of digits

according to the precision.

 The (n,p) descriptor is used to describe the characteristic of the decimal

argument. Both n and p have to be in the form of decimal integers. If p is

missing, a default value of zero is assumed. Blank spaces are allowed in

the conversion specifier, for example

 %D(10 , 2)

The number of digits n and the number of precisions p can be an asterisk

(*), in which case an argument from the argument list supplies the value.

The n and p argument must precede the value being formatted, and follow

the width and precision, if any, in the argument list, for example

 "%*.*D(*,*)",width,precision,n,p,pdec

If the specifier is in a form not stated above, the behavior is undefined.

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 173

Using fscanf()

The formatting behavior of the scanf() and sscanf() functions is the same as that

of the fscanf() function.

The following is added to the list of conversion specifiers:

D(n,p) Matches a decimal number. The expected form of the subject sequence is

an optional plus or minus sign, then a nonempty sequence of digits

optionally containing a decimal point character, but no decimal suffix.

 The subject sequence is defined as the longest initial sub-sequence of the

input string, starting with the first non-white-space character, that is of the

expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first

non-white-space character is other than a sign, a digit, or a decimal-point

character.

Validating Values

It is possible to have invalid representation of decimal value stored in memory,

such as input from file or overlay memory. If the invalid decimal value is used in

an operation or assignment, the result may not be as expected. A built-in function

can be used to report whether the decimal representation is valid or not. The

function call can be in the following form:

status = decchk (x);

The built-in function decchk() accepts a decimal types expression as argument and

returns a status value of type int.

The status can be interpreted as follows:

0 Valid decimal representation value (including nonpreferred but valid sign,

A-F)

1 Leftmost halfbyte is not zero in a decimal type number that has an even

number of digits (for example, 123 is stored in decimal(2,0))

2 Incorrect digits (not 0-9)

4 Incorrect sign (not A-F)

Macro define name for function return status (in decimal.h):

 #define DEC_VALUE_OK 0

 #define DEC_BAD_NIBBLE 1

 #define DEC_BAD_DIGIT 2

 #define DEC_BAD_SIGN 4

The function return status is masked to return multiple status.

Fix Sign

A built-in function can be used to fix nonpreferred sign variables. The function call

can be in the following form:

x = decfix (x);

Using the Decimal Data Type

174 LE/VSE: C Run-Time Programming Guide

The built-in function decfix() accepts a decimal types expression as argument and

returns a decimal value that has the same size (that is, same decimal types) and

same value as the argument with the correct preferred sign. The function does not

change the content of the argument.

Decimal Absolute

The function call can be in the following form:

y = decabs (x);

The built-in function decabs() accepts a decimal types expression as argument and

returns the absolute value of the decimal argument (i.e., same decimal types as the

argument). The function does not change the content of the argument.

See LE/VSE C Run-Time Library Reference for more information on the decabs(),

decchk(), and decfix() library functions.

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 175

Programming Examples

Example One

EDCXGDC3

 /* EDCXGDC3

 This example demonstrates the use of the decimal data type always

 include decimal.h when decimal data type is used

 */

#include <decimal.h>

 /* Declares a decimal(10,2) variable */

decimal(10,2) pd01;

 /* Declares a decimal(15,4) variable and initializes it with the */

 /* value 1234.56d */

decimal(15,4) pd02 = 1234.56d;

 /* Structure that has decimal related members */

struct pdec

 { /* members’ data types */

 int m; /* - integer */

 decimal(23,10) pd03; /* - decimal(23,10) */

 decimal(10,2) pd04[3]; /* - array of decimal(10,2) */

 decimal(10,2) *pd05; /* - pointer to decimal(10,2) */

 } pd06,

 pd07 = &pd06; / pd07 points to pd06 */

 /* Array of decimal(31,30) */

decimal(31,30) pd08[2];

 /* Prototype for function that accepts decimal(10,2) and int as */

 /* arguments and has return type decimal(25,5) */

decimal(25,5) product(decimal(10,2), int);

decimal(5,2) PdCnt; /* decimal loop counter */

int i;

Figure 36. Decimal Data Type Example 1 (Part 1 of 3)

Using the Decimal Data Type

176 LE/VSE: C Run-Time Programming Guide

int main(void)

{

 pd01 = -789.45d; /* simple assignment */

 pd06.m = digitsof(pd06.pd03) + precisionof(pd02); /* 23 + 4 */

 pd06.pd03 = sizeof(pd01);

 pd06.pd04[0] = pd02 + pd01; /* decimal addition */

 *(pd06.pd04 + 1) = (decimal(10,2)) product(pd07->pd04[0], pd07->m);

 pd07->pd04[2] = product(pd07->pd04[0], pd07->pd04[1]);

 pd07->pd05 = &pd01; /* taking the address of a */

 /* decimal variable */

 /* These two statements are different */

 pd08[0] = 1 / 3d;

 pd08[1] = 1d / 3d;

 printf("pd01 = %D(10,2)\n", pd01);

 printf("pd02 = %*.*D(*,*)\n",

 20, 5, digitsof(pd02), precisionof(pd02), pd02);

 printf("pd06.m = %d, pd07->m = %d\n", pd06.m, pd07->m);

 printf("pd06.pd03 = %D(23,10), pd07->pd03 = %D(23,10)\n",

 pd06.pd03, pd07->pd03);

 /* You will get an infinite loop if floating type is */

 /* used instead of the decimal data types. */

 for (PdCnt = 0.0d; PdCnt != 3.6d; PdCnt += 1.2d)

 {

 i = PdCnt / 1.2d;

 printf("pd06.pd04[%d] = %D(10,2), \

 pd07->pd04[%d] = %D(10,2)\n",

 i, pd06.pd04[i], i, pd07->pd04[i]);

 }

 printf("*(pd06.pd05) = %D(10,2), *(pd07->pd05) = %D(10,2)\n",

 *(pd06.pd05), *(pd07->pd05));

 printf("pd08[0] = %D(31,30)\n", pd08[0]);

 printf("pd08[1] = %D(31,30)\n", pd08[1]);

 return(0);

}

Figure 36. Decimal Data Type Example 1 (Part 2 of 3)

 /* Function definition for product() */

decimal(25,5) product(decimal(10,2) v1, int v2)

{

 /* The following happens in the return statement */

 /* - v2 is converted to decimal(10,0) */

 /* - after the multiplication, the expression has resulting */

 /* type decimal(20,2) (i.e. (10,2) * (10,0) ==> (20,2)) */

 /* - the result is then converted implicitly to decimal(25,5) */

 /* before it is returned */

 return(v1 * v2);

}

Figure 36. Decimal Data Type Example 1 (Part 3 of 3)

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 177

Output from Programming Example One

pd01 = -789.45

pd02 = 1234.56000

pd06.m = 27, pd07->m = 27

pd06.pd03 = 6.0000000000, pd07->pd03 = 6.0000000000

pd06.pd04[0] = 445.11, pd07->pd04[0] = 445.11

pd06.pd04[1] = 12017.97, pd07->pd04[1] = 12017.97

pd06.pd04[2] = 5348886.87, pd07->pd04[2] = 5348886.87

*(pd06.pd05) = -789.45, *(pd07->pd05) = -789.45

pd08[0] = 0.333333333333333333333000000000

pd08[1] = 0.333333333333333333333333333333

Example Two

EDCXGDC4

 Note: See “Intermediate Results” on page 165 to understand the output from this

example and why decimal variables with size 31 should be used with

caution in arithmetic operations.

Output from Programming Example Two

pd01 = 1235.5670

pd02 = 1235.5678

 /* EDCXGDC4

 This example demonstrates the use of the decimal data type

 */

#include <decimal.h>

decimal(31,4) pd01 = 1234.5678d;

decimal(29,4) pd02 = 1234.5678d;

int main(void)

{

 /* The results are different in the next two statements */

 pd01 = pd01 + 1d;

 pd02 = pd02 + 1d;

 printf("pd01 = %D(31,4)\n", pd01);

 printf("pd02 = %D(29,4)\n", pd02);

 /* Warning: The decimal variable with size 31 should not be */

 /* used in arithmetic operation. */

 /* In the above example: (31,4) + (1,0) ==> (31,3) */

 /* (29,4) + (1,0) ==> (30,4) */

 return(0);

}

Figure 37. Decimal Data Type Example 2

Using the Decimal Data Type

178 LE/VSE: C Run-Time Programming Guide

Decimal Exception Handling

LE/VSE C Run-Time decimal instructions produce the following exceptions that

are unique to decimal operations:

v Data exception (interrupt code hex ’7’)

This may be caused by invalid sign or digit codes in a packed decimal number

operated on by packed decimal instructions, for example, ADD DECIMAL or

COMPARE DECIMAL.

When an operation is performed on decimal operands and the assignment is not

through an explicit cast operation, the following situations cause run-time

exceptions at execution time and SIGFPE is raised.

v Decimal-overflow exception (interrupt code hex ’A’)

This exception may be caused when nonzero digits are lost because the

destination field in a decimal operation is too short to contain the result.

Note: The unhandled decimal overflow message

CEE3210S The system detected a Decimal-overflow exception.

is the same for both decimal overflow and fixed overflow conditions.

Fixed overflow conditions should not occur because the fixed overflow

condition is normally disabled (masked) and is ignored by the run-time.

v Decimal-divide exception (interrupt code hex ’B’)

This exception may be caused when, in decimal division, the divisor is zero, or

the quotient exceeds the specified data-field size. The decimal divide is indicated

only if the sign codes of both the divisor and dividend are valid and only if the

digit or digits used in establishing the exception are valid.

Note: The unhandled divide message

CEE3211S The system detected a Decimal-divide exception.

does not distinguish between a decimal divide condition and a fixed

divide by zero condition. Both are mapped into the same error message.

v A decimal data exception may be produced by the printf() family when

processing an invalid decimal operand. This may result in abnormal termination

of your program with the run-time message:

Under VSE

CEE3207S The system detected a Data exception

Under CICS

EDCK007 ABEND=8097 Data Exception

Other exceptions indicated by the decimal instruction set are not unique.

Restrictions

v printf() and scanf()

You must ensure that valid packed decimal data is present when attempting to

use it with run-time library decimal routines. No additional validation is

performed on decimal data to ensure format correctness. Use the decchk()

routine to validate decimal data operands in such circumstances.

v Additional Considerations

Using the Decimal Data Type

Chapter 17. Using the Decimal Data Type 179

– When the operands of a decimal operation contain invalid digits, the result is

undefined, and a run-time exception can occur. To validate a decimal number,

call the decchk() built-in function in your code.

– Code should be written in a manner that does not depend on the ability of

the run-time to recover from a decimal overflow exception.

– In a multiprocessor configuration, decimal operations cannot be used safely to

update a shared storage location when the possibility exists that another

processor may also be updating that location. This possibility arises because

the bytes of a decimal operand are not necessarily accessed concurrently.

– If a decimal exception occurs in user code or library routines, the expected

results of the instruction causing the exception or the library routine where

the exception occurred are undefined. The results produced by the library

routine’s execution are also undefined.

– If a SIGFPE handler is coded to handle decimal exceptions, it should re-enable

itself prior to resuming normal execution or recovery from the error. This

reestablishes the exception environment consistent with good programming

practice.

Decimal Exceptions and Interlanguage Calls

Support for C enabled with decimal exception has not changed for PL/I and

COBOL.

Assembler Interlanguage Calls

Calls to an assembler language procedure or function assume that the called

routine will save and restore the value of the Program Mask if the routine alters it.

Ensure that the Program Mask is preserved across an assembler language interface.

If it is not preserved, the recognition of subsequent decimal overflow exceptions in

C code will be unpredictable.

Using the Decimal Data Type

180 LE/VSE: C Run-Time Programming Guide

Chapter 18. Handling Error Conditions and Signals

This chapter discusses how to handle error conditions and signals with LE/VSE C

Run-Time. It describes how to establish, enable and raise a signal, and provides a

list of signals supported by LE/VSE C Run-Time.

The LE/VSE environment uses a stack-based model to handle error conditions.

This environment establishes a last-in, first-out (LIFO) queue of 0 or more user

condition handlers for each stack frame. The LE/VSE condition handler calls the

user condition handler at each stack frame to handle error conditions when they

are detected. For more information about the callable services in LE/VSE, refer to

“Handling Signals using LE/VSE Callable Services” on page 181.

Handling Signals Using signal() and raise()

The LE/VSE C Run-Time environment provides two functions that alter the signal

handling capabilities available in the run-time environment. These are the signal()

function and the raise() function. The signal() function registers a condition

handler and the raise() function raises the condition.

You can use the signal() function to perform one of the following actions:

v Ignore the condition. For example, use the SIG_IGN condition to specify

signal(SIGFPE,SIG_IGN).

v Reset the Global Error Table for default handling. For example, use the SIG_DFL

condition to specify signal(SIGSEGV,SIG_DFL). See “C Condition Handling

Semantics” in LE/VSE Programming Guide for information regarding the C Global

Error Table.

v Register a function to handle the specific condition. For example, pass a pointer

to a function for the specific condition with signal(SIGILL,cfunc1). The

function registered for signal() must be declared with C linkage.

Handling Signals using LE/VSE Callable Services

You can set up user signal handlers with the LE/VSE condition handling services.

Some of the LE/VSE callable services available for condition handling are:

CEEHDLR Register a user-written condition handler.

CEEHDLU Remove a registered user-written condition handler.

CEESGL Raise a LE/VSE condition.

In addition, with LE/VSE, when an exception occurs after an interlanguage call,

the exception may be handled where it occurs or percolated to its caller (written in

any LE/VSE-conforming language) or promoted. For more information on how to

handle exceptions under the LE/VSE condition handling model, refer to LE/VSE

Programming Guide.

Specific considerations for C under LE/VSE:

1. The TRAP run-time option determines how the LE/VSE condition manager is to

act upon error conditions and program interrupts. If the TRAP(OFF) run-time

option is in effect, conditions detected by the operating system, often due to

machine interrupts, will not be handled by the LE/VSE environment and thus

cannot be handled by a LE/VSE C Run-Time program.

© Copyright IBM Corp. 1995, 2005 181

Note: TRAP(OFF) only blocks the handling of hardware (program checks) and

operating system (abend) conditions. It does not block software

conditions such those that are associated with a raise or CEESGL. Any

conditions that are blocked because of TRAP(OFF) are not presented to

any handlers (whether registered by a signal or by CEEHDLR). In

particular, even for TRAP(OFF), conditions that are initiated by a signal or

by CEESGL are presented to handlers registered by either signal() or

CEEHDLR.

The use of the TRAP(OFF) option is not recommended; refer to LE/VSE

Programming Reference for more information.

2. You can use the ERRCOUNT run-time option to specify how many errors are to be

tolerated during the execution of your program before an abend occurs. The

counter is incremented by one for every severity 2, 3, or 4 condition that

occurs. Both hardware-generated and software-generated signals increment the

counter.

Note: The LE/VSE C Run-Time registered condition handlers (those registered by

signal() and raise()), are activated after the LE/VSE registered condition

handlers for the current stack frame are activated. This means that if there

are condition handlers for both LE/VSE C Run-Time and LE/VSE, the

LE/VSE handlers are activated first.

LE/VSE C Run-Time Signal Handling Features

The terms used to describe implementation features and concepts are:

Establishing a Signal

A signal, sig_num, becomes established when signal(sig_num, sig_handler) is

executed. (Two values of sig_handler are reserved: SIG_IGN and SIG_DFL. They are

pointers to library-supplied functions that establish the action taken.) sig_handler

is a pointer to a function to be called when the signal is raised. This function is

also known as a signal handler. The function must be written in C with the default

linkage in effect. That is, sig_handler cannot have OS, PLI, or COBOL linkage. The

signal ceases to be established when:

v The signal is explicitly reset to the system default by using signal(sig_num,

SIG_DFL).

v The signal is explicitly reset by using signal(sig_num, SIG_IGN).

v The signal is implicitly reset to the system default when the signal is raised.

When sig_handler is called, signal handling is reset to the default as if an

implicit signal(sig_num, SIG_DFL) had been executed. Depending on the

purpose of the signal handler, you may want to reestablish the signal from

within the signal handler.

v A phase is deleted using the release() function and a signal handler for the

signal resides in the phase. In this case, default handling will be reset for all the

affected signals.

Enabling a Signal

A signal is enabled when the occurrence of the condition will result in either the

execution of an established signal handler or the default system response. The

signal is disabled when the occurrence is to be ignored. This can be done by

making the call signal(sig_num, SIG_IGN).

Error Conditions and Signals

182 LE/VSE: C Run-Time Programming Guide

Interrupting a Program

Program interrupts or errors detected by the hardware and identified to the

program by operating system mechanisms are known as hardware signals. For

example, the hardware can detect a divide by zero and this result can be raised to

the program.

Raising a Signal

Signals that are explicitly raised by the user (by using the raise() function) are

known as software signals.

Identifying Hardware and Software Signals

The following is a list of the LE/VSE C Run-Time supported signals:

SIGABND System abend.

SIGABRT Abnormal termination (software only).

SIGFPE Erroneous arithmetic operation (hardware and software).

SIGILL Invalid object module (hardware and software).

SIGINT Interactive attention interrupt by raise() (software only).

SIGIOERR Serious software error such as a system read or write. You can

assign a signal handler to determine the file in which the error

occurs or whether the condition is an abort or abend. This

minimizes the time required to locate the source of a serious error.

SIGSEGV Invalid access to memory (hardware and software).

SIGTERM Termination request sent to program (software only).

SIGUSR1 Reserved for user (software only).

SIGUSR2 Reserved for user (software only).

The applicable hardware signals or exceptions that are supported are listed in

Table 32. It also lists those hardware exceptions that are not supported (for

example, fixed-point overflow) and are masked.

The applicable software signals or exceptions that are supported are listed in

Table 33 on page 184.

 Table 32. Hardware Exceptions - Default Run-Time Messages and System Actions

C Signal

Hardware

Exception

Default Run-Time

Message with

LE/VSE

Default

System Action

with LE/VSE Library

SIGILL Operation

exception

CEE3201 Abnormal termination

VSE rc=3000

Privileged

operation

exception

CEE3202

Execute exception CEE3203

SIGSEGV Protection exception CEE3204 Abnormal termination

VSE rc=3000 Addressing exception CEE3205

Specification exception CEE3206

Error Conditions and Signals

Chapter 18. Handling Error Conditions and Signals 183

Table 32. Hardware Exceptions - Default Run-Time Messages and System

Actions (continued)

C Signal

Hardware

Exception

Default Run-Time

Message with

LE/VSE

Default

System Action

with LE/VSE Library

SIGFPE Data exception CEE3207 Abnormal termination

VSE rc=3000 Fixed-point divide CEE3209

Decimal overflow CEE3210

Decimal divide CEE3211

Exponent overflow CEE3212

Floating point divide CEE3215

Note: The default run-time program mask is enabled for decimal overflow exceptions.

Table 33 shows software signals or exceptions, their origin, default run-time

messages and default system actions.

 Table 33. Software Exceptions - Default Run-Time Messages and System Actions

 C Signal Software Exception

Default Run-Time

Message with LE/VSE

Default System Action

with LE/VSE Library

SIGILL raise(SIGILL) EDC6001 Abnormal Termination VSE

rc=3000

SIGSEGV raise(SIGSEGV) EDC6002 Abnormal Termination VSE

rc=3000

SIGFPE raise(SIGFPE) EDC6002 Abnormal Termination VSE

rc=3000

SIGABND raise(SIGABND) EDC6003 Abnormal Termination VSE

rc=3000

SIGTERM raise(SIGTERM) EDC6004 Abnormal Termination VSE

rc=3000

SIGINT raise(SIGINT) EDC6005 Abnormal Termination VSE

rc=3000

SIGABRT raise(SIGABRT) EDC6006 Abnormal Termination VSE

rc=2000

SIGUSR1 raise(SIGUSR1) EDC6007 Abnormal Termination VSE

rc=3000

SIGUSR2 raise(SIGUSR2) EDC6008 Abnormal Termination VSE

rc=3000

SIGIOERR raise(SIGIOERR) EDC6009 Signal is ignored.

SIGABND Considerations

When the SIGABND signal is registered with an address of a LE/VSE C Run-Time

specific handler using the signal() function, control cannot resume at the

instruction following the abend or the invocation of raise() with SIGABND. If the C

signal handler is returned, the abend is percolated and the default behavior occurs.

The longjmp() or exit() function can be invoked from the handler to control the

behavior.

Error Conditions and Signals

184 LE/VSE: C Run-Time Programming Guide

If SIG_IGN is the specified action for SIGABND and an abend occurs (or SIGABND was

raised), the abend will not be ignored because a resume cannot occur. The abend

will percolate and the default action will occur.

Two macros are available in signal.h header file that provide information about an

abend. The __abendcode() macro returns the abend that occurred and __rsncode()

returns the corresponding reason code for the abend. These values are available in

a C signal handler that has been registered with the SIGABND signal. If you are

looking for the abend and reason codes, using these macros, they should only be

checked when in a signal handler. The values returned by the __abendcode() and

__rsncode() macros are undefined if the macros are used outside a registered

signal handler.

SIGIOERR Considerations

When the SIGIOERR signal is raised, codes for the last operation will be set in the

__amrc structure to aid you in error diagnosis. See “Using the __amrc Structure” on

page 131 for more information.

Default Handling of Signals

The run-time environment will perform default handling of a given signal unless

the signal is established (signal(sig_num, sig_handler)) or the signal is disabled

(signal(sig_num, SIG_IGN)). A user can also set or reset default handling by

coding:

signal(sig_num, SIG_DFL);

The default handling depends upon the signal that was raised. Refer to the two

preceding tables for information on the default handling of a given signal.

Note: When using the atexit() library function, the atexit list will not be run if

the application is abnormally terminated.

Error Conditions and Signals

Chapter 18. Handling Error Conditions and Signals 185

MAP 0010: Summary of LE/VSE Error Handling

001

Signal is raised. Is SIG_IGN set for the signal? Or is the signal blocked?

Yes No

 002

Continue at Step 006.

 003

Is the signal for a SIGABND?

Yes No

 004

Resume at the next instruction.

 005

Condition is percolated for default behavior.

 006

Was the signal previously blocked?

Yes No

 007

Is a LE/VSE user handler registered?

Yes No

 008

Is a C handler established for the signal by signal()?

Yes No

 009

Continue at Step 015 on page 187.

 010

Run C handler and resume at the next instruction.

 011

Run LE/VSE user handler. The handler can resume, percolate or promote the

signal. See LE/VSE Programming Guide for more details.

Error Conditions and Signals

186 LE/VSE: C Run-Time Programming Guide

012

Is a C handler established for the signal?

Yes No

 013

Perform default processing.

 014

Run C handler and transfer control to the next instruction following interrupt.

 015

At stack frame 0?

Yes No

 016

Default handling for the signal and percolate to next stack frame.

 017

Perform default processing.

MAP 0010 (continued)

Chapter 18. Handling Error Conditions and Signals 187

Example of C Signal Handling Under LE/VSE C Run-Time

In the following example, the call to signal() in main() establishes the function

handler to process the interrupt signal when it occurs. An error value returned

from this call to signal() causes the program to end with a printed error message.

EDCXGEC1

 /* EDCXGEC1

 This example demonstrates signal handling

 */

#include <stdio.h>

#include <signal.h>

#include <stdlib.h>

void handler(int);

Figure 38. Example Illustrating Signal Handling (Part 1 of 2)

int main(void) {

 if (signal(SIGINT,handler) == SIG_ERR) {

 perror("Could not set SIGINT");

 abort();

 }

 /* add code here if desired */

 raise(SIGINT);

 /* add code here if desired */

 return(0);

}

void handler(int sig_num) {

 signal(SIGINT, handler);

 printf("Signal handler entered\n");

 exit(0);

}

Figure 38. Example Illustrating Signal Handling (Part 2 of 2)

Error Conditions and Signals

188 LE/VSE: C Run-Time Programming Guide

Chapter 19. Optimizing Code

This chapter briefly describes the optimization methods used by the C/VSE

compiler and discusses some programming practices that can further improve the

execution performance of your code.

For optimization, the compiler changes the unoptimized code sequences, derived

from the source code, into equivalent code sequences that execute faster and

usually require less memory space. It is possible for an expression that would

normally cause an exception to be removed by optimization, thus preventing the

exception.

Note: The C/VSE compiler provides two optimization levels. To generate

unoptimized code, specify the NOOPTIMIZE option. To generate optimized

code, specify OPTIMIZE. Some releases of C/370 supported three levels,

OPTIMIZE(0), OPTIMIZE(1), and OPTIMIZE(2). If you run a program which

has been compiled with one of these, LE/VSE C Run-Time maps them to

their corresponding values. OPTIMIZE(0) maps to NOOPTIMIZE; OPTIMIZE(1)

and OPTIMIZE(2) map to OPTIMIZE.

Because the optimization is achieved by transforming the code using knowledge

obtained from a larger program context, the direct correspondence between source

and object code is often lost. Therefore, debugging information for programs

compiled with the optimization option is limited to setting break points at function

entry points only. Optimized code is also more sensitive to subtle coding errors.

For these reasons, optimization should not be used while a program is under

development. Only the final version of a program should be compiled with

optimization.

Using Optimization Facilities

The compiler performs the following optimizations:

Inlining

Inlining replaces certain function calls with the actual code of the function

and is performed before all other optimizations. Inlining not only

eliminates the linkage overhead but also exposes the entire function to the

caller and thus allows the compiler to better optimize your code.

 Inlining is performed when the compiler option INLINE is specified. Any

OPTIMIZE level including NOOPT can be used.

 Consider the following program:

 EDCXGOP1

© Copyright IBM Corp. 1995, 2005 189

In this example, if you specify the #pragma inline directive for the function

which_group(), and compile with the OPTIMIZE and INLINE options, after

optimizations, the compiler determines that the above code is equivalent

to:

 EDCXGOP2

 /* EDCXGOP1

 This example demonstrates optimization

 */

#include <stdio.h>

int which_group(int);

#pragma inline(which_group)

int main (void) {

 int j;

 j = which_group (7);

 return(0);

}

int which_group (int a) {

 if (a < 0) {

 printf("first group\n");

 return(99);

 }

 else if (a == 0) {

 printf("second group\n");

 return(88);

 }

 else {

 printf("third group\n");

 return(77);

 }

}

Figure 39. Optimization Example 1

 /* EDCXGOP2

 This example demonstrates optimization

 */

#include <stdio.h>

int main(void) {

 int j;

 printf("third group\n"); /* a lot less code generation */

 j = 77;

 return(0);

}

Figure 40. Optimization Example 2

Optimizing Code

190 LE/VSE: C Run-Time Programming Guide

Value Numbering

Value numbering involves local constant propagation, local expression

elimination, and folding several instructions into a single instruction.

Straightening

Straightening is rearranging the program code to minimize branching logic

and to combine physically separate blocks of code.

Common Expression Elimination

Common expressions recalculate the same value in a subsequent

expression. The duplicate expression can be eliminated by using the

previous value. This is done even for intermediate expressions within

expressions. For example, if your program contains the following

statements:

 a = c + d;

 .

 .

 .

 f = c + d + e;

the common expression c + d is saved from its first evaluation and is used

in the subsequent statement to determine the value of f.

Code Motion

If variables used in a computation within a loop are not altered within the

loop, it may be possible to perform the calculation outside of the loop and

use the results within the loop.

Strength Reduction

Less efficient instructions are replaced with more efficient ones. For

example, in array addressing, an add instruction replaces a multiply.

Constant Propagation

Constants used in an expression are combined and new ones generated.

Some mode conversions are done, and compile time evaluation of some

intrinsic functions takes place.

Instruction Scheduling

Instructions are reordered to minimize execution time.

Dead Store Elimination

The compiler eliminates stores when the value stored is never referred to

again. For example, if two stores to the same location have no intervening

load, the first store is unnecessary, and is therefore removed.

Dead Code Elimination

The compiler may eliminate code for calculations that are not required.

Other optimization techniques may cause code to become dead.

Under OPT, these optimization techniques are performed locally and can be

achieved with minimal increases in storage and compilation time requirements

over NOOPT.

Optimizing Code

Chapter 19. Optimizing Code 191

Programming Recommendations

The following section contains tips on how to write code to best use the

optimization techniques used by the compiler.

Specifying Inline Functions

To get maximum performance improvements, specify the INLINE compile-time

option with OPTIMIZE. Use the REPORT suboption when tuning your code.

If you inline too large a function, your run-time performance may degrade.

Two types of calls are not inlined:

v The number of parameters on the call does not match the function definition. An

example of this is a var arg function call.

v The call is directly recursive; the routine calls itself.

Selective Mode

If you know exactly which functions are frequently invoked from within a compile

unit, you can simply add the appropriate #pragma inline directives in your source

and compile with INLINE (NOAUTO,REPORT,,).

If your code contains complex macros, the macros can now be made into static

routines at no execution-time cost. All static routines that are interfaces to a data

object can be placed into a header file.

Note: You can use Debug Tool for VSE/ESA to get this information or use

available execution time analyzers.

For best run-time performance, the inliner should be used in selective mode

(INLINE(NOAUTO,,,)) to fine-tune your final application rather than rely on the

inliner in automatic mode (INLINE(AUTO,,,)).

Automatic Mode

To provide assistance in choosing which routines to inline, you can compile with

INLINE(AUTO,REPORT,,). Specifying larger values for threshold and limit will inline

more functions and thus increase the size of functions containing inlined functions.

The threshold and limit parameters are defined as follows:

threshold

Maximum relative size of a function to inline. The default value is 250

Abstract Code Units (ACU) instructions. ACUs are proportional in size to

the executable code in the function; your C code is translated into ACUs

by the compiler. Specifying a threshold of 0 is equivalent to specifying

NOAUTO.

limit Maximum relative size a function can grow before auto-inlining stops. The

default is 1000 ACUs for the specific function. Specifying a limit of 0 is

equivalent to specifying NOAUTO.

Note: When functions become too large, run-time performance can degrade.

Inlining a function that is rarely invoked can degrade performance. Use the

#pragma noinline directive to instruct the automatic inliner not to inline these

types of functions.

Optimizing Code

192 LE/VSE: C Run-Time Programming Guide

Once you are satisfied with the selection of inlined routines, you should add the

appropriate #pragma inline directives to the source. That is, once the selected

routines are forced with these directives, you can then compile the program in

selective mode. This way, you do not need to be affected by changes made to the

heuristics used in the auto inliner.

Automatic mode is provided to assist you in starting to optimize your code. It is

not recommended for final compilation of production level code.

Using Variables

Use local variables, preferably automatic variables, as much as possible. The

compiler can accurately analyze their use, while it has to make several worst case

assumptions about global variables. These assumptions tend to hinder

optimizations. For example, if you code a function that uses external variables

heavily, and also calls several external functions, the compiler has to assume that

every call to an external function could change the value of every external variable.

If you know that none of the function calls will affect the global variables that you

are using, and you have to read them frequently with function calls interspersed,

copying the global variables to local variables and then using these local variables

will help the compiler to perform optimizations that otherwise would not be done.

If you want to share variables between functions within the same compilation unit,

use static variables instead of external variables.

Choose static variables rather than external variables wherever possible. In a file

with several related functions and static variables, the optimizer can gather and

use more information about the variables.

To access an external variable, the compiler has to make an extra memory access to

obtain the variable’s address. The compiler removes extraneous address loads, but

this means that the compiler has to use a register to keep the address. Using many

external variables simultaneously takes up many registers, thereby causing spilling

of registers to storage. Group external data into structures (all elements of an

external structure use the same base address) or arrays wherever it makes sense to

do so.

The compiler treats register variables the same way it treats automatic variables

that do not have their address taken. If you specify the OPTIMIZE compiler option,

using the register attribute can greatly affect a program’s performance.

Using Pointers

Because it is difficult, and in some cases impossible, to keep track of where

pointers point to, use of pointers inhibits most memory optimizations such as dead

store elimination and store motion.

Passing Function Arguments

Optimization is effective when function arguments are used. It is usually better to

pass a value as an argument to a function than to let the function take the value

from a global variable.

Coding Expressions

If components of an expression are duplicate expressions, code them either at the

left end of the expression or within parentheses. For example:

Optimizing Code

Chapter 19. Optimizing Code 193

a = b*(x*y*z); /* Duplicates recognized */

c = x*y*z*d;

e = f + (x + y);

g = x + y + h;

a = b*x*y*z; /* No duplicates recognized */

c = x*y*z*d;

e = f + x + y;

g = x + y + h;

The compiler can recognize x*y*z and x + y as duplicate expressions because they

are either coded in parentheses or coded at the left end of the expression.

When components of an expression in a loop are constant, code the expressions

either at the left end of the expression or within parentheses. If c, d, and e are

constant and v, w, and x are variable, the following examples show the difference

in evaluation:

v*w*x*(c*d*e); /* Constant expressions recognized */

c + d + e + v + w + x;

v*w*x*c*d*e; /* Constant expressions not recognized */

v + w + x + c + d + e;

Coding Conversions

Avoid forcing the compiler to convert numbers between integer and floating-point

internal representations. Conversions require several instructions, including some

double-precision floating-point arithmetic. For example:

EDCXGOP3

 When you must use mixed-mode arithmetic, code the fixed-point and

floating-point arithmetic in separate computations as much as possible.

Using Arithmetic Constructions

Wherever possible, use multiplication rather than division. For example,

x*(1.0/3.0); /* 1.0/3.0 is evaluated at compile time */

 /* EDCXGOP3

 This example shows how numeric conversions are done

 */

int main(void)

{

 int i;

 float array[10];

 float x = 1.0;

 for (i = 0; i < 10; i++)

 {

 array[i] = array[i]*x; /* No conversions needed */

 x = x + 1.0;

 }

 for (i = 1; i <= 9; i++)

 array[i] = array[i]*i; /* Multiple conversions needed */

 return(0);

}

Figure 41. Numeric Conversions Example

Optimizing Code

194 LE/VSE: C Run-Time Programming Guide

produces faster code than:

x/3.0;

Assigning the divisor’s reciprocal to a temporary variable and then multiplying by

that variable is beneficial, especially if you divide many values by the same

number in your code.

Input/Output Considerations

Consider the use of the file when choosing file attributes:

v Specify largest possible BLKSIZE (blocked files).

v fseek() on sequential files is most efficient when using recfm=F or recfm=FBS.

The proper choice of file attributes is important for efficient I/O.

When accessing files:

v Use the putc() or getc() macros instead of fputc() or fgetc(), respectively, if

you must read or write a character.

The fputc() function, as defined by ANSI, will put a single character to the text

stream. Special action is taken when a control character is written. On the other

hand, the putc() macro buffers characters in storage and invokes fputc() only

when a control character is encountered. This reduces call overhead when

writing characters one at a time.

v Use fread() instead of fgets() and fwrite() in place of fputs() wherever

possible.

v Avoid using fscanf() or fprintf() if you can use other I/O routines instead.

v When using fflush() beware of NULL file pointers; fflush(NULL) will flush all

streams.

v Use fgetpos() and fsetpos() instead of ftell() and fseek() when you are

saving a position you will return to later. fgetpos() saves more information

about the position than ftell().

v Use memory files rather than files created with tmpfile().

Using Built-In Library Functions and Macros

Include the appropriate library header files to trigger the use of built-in functions

(that is, compiler-generated expansion for the function).

Including the proper library header files also prevents parameter type mismatch

and ensures optimal performance. For a list of the built-in functions, see

Appendix H, “Using Built-In Functions,” on page 467. If you want an explicit call,

you can enclose the function in parentheses, for example, (memcpy)(buf1, buf2,

len) to force the function call.

For best performance, you should always include the ctype.h header file to use the

following macros rather than their equivalent functions:

 isalpha()

isalnum()

iscntrl()

isdigit()

isgraph()

islower()

isprint()

ispunct()

isspace()

isupper()

isxdigit()

toupper()

tolower()

Use memcmp() to compare arrays, as in the following example:

Optimizing Code

Chapter 19. Optimizing Code 195

if (!memcmp (a, b, sizeof(a)))

 /* arrays are equal */

is more efficient than a comparison in a loop such as:

int a[1000], b[1000];

for (i = 0; i < 1000; ++i)

 if (a[i] != b[i])

 break;

if (i == 1000)

 /* arrays are equal */

Arrays are often compared using a loop (one element at a time). When two arrays

are being compared for equality, the loop can be replaced with a memcmp(). In some

cases, this means that the execution of hundreds (or thousands) of machine

instructions are replaced by the execution of a few.

The C language does not allow structure comparison, because structures may

contain padding bytes with undefined values. When it is known that no padding

bytes exist, memcmp() should be used to compare structures. The AGGREGATE

compiler option can be used to obtain a structure and union map.

As well, use memset() to clear structs, unions, arrays or character buffers as

follows:

char c[10];

for (i = 0; i < 10; i++) /* do not use */

 c[i] = ’ ’;

memset (c, ’ ’, sizeof (c)); /* better */

The memset() library function should be used to initialize a character buffer and

when an array needs to be initialized to a repetitive byte pattern (such as zeros).

When using strlen() do not hide size information. Less code is needed for

strlen() when the upper bound is known at compile time.

char small_str_array[100];

char *small_str_ptr; ...
x = strlen(small_str_ptr); /* unknown upper bound */

x = strlen(small_str_array); /* better */

For best performance, if you are concatenating strings, use strcat() instead of

sprintf(). If you are performing character to integer conversions, use atoi()

rather than sscanf().

Try to replace strxxx() functions with their corresponding memxxx() functions,

because memxxx() functions are more efficient. Some ways to minimize the

execution cost of a strxxx() function are to use fixed length character buffers or to

save the length of incoming string (including null terminator) for subsequent calls

to memcpy() and memcmp().

total_len = strlen (s) + 1; ...
for (i = 0; i < 10; i++)

 if (memcmp (s, t[i], total_len) == 0)

Optimizing Code

196 LE/VSE: C Run-Time Programming Guide

...

memcpy (a, s, total_len);

For efficient string processing, save the length of a null-terminated string and use

memxxx() function calls; subsequent operations to compare or copy the string can

use this length.

Note: You cannot replace all strcmp() calls with a memcmp() call with a strlen()

value of one of the strings. memcmp() will not stop comparing strings when it

encounters a null in one of the strings, possibly resulting in an attempt to

access protected storage which follows the shorter string. This, in turn, could

result in an exception.

Using Loops and Control Constructs

For the for-loop index variable:

v Some data types are preferred in terms of efficiency of reference: int and double.

v If you do not need to use float type variables, use int or double. If you do not

need double, use int.

v If you use enum variable, expand the variable to be a fullword.

v Do not use the address operator (&) on the index.

v Index should not be a member of union.

v Use the auto or register storage class over the extern or static storage class.

When using if statements, order the if conditions efficiently; put the most

decisive tests first and the most expensive tests last. By performing the most

common tests before performing the less common tests, you increase the efficiency

of your code; fewer loops are required to meet the test conditions.

if (command.is_classg &&;

 command.len == 6 &&;

 !strcmp (command.str, "LOGON")) /* call to strcmp() most expensive */

 logon ();

Declaring a Data Type

Use the int data type instead of char when performing arithmetic:

char_var += ’0’;

int_var += ’0’; /* better */

A char type variable is efficient when you are:

v Assigning a literal to a char variable

v Comparing the variable with a char literal
char_var = 27;

if (char_var == ’D’)

These data types are more expensive to reference:

v Unsigned short

v Signed char

v Float

v Long double

For example, use a double rather than a float when possible.

float_var++;

double_var++; /* better */

Optimizing Code

Chapter 19. Optimizing Code 197

For storage efficiency, the compiler will pack enumeration variables in 1, 2 or 4

bytes depending on the largest value of constant. If performance is critical, expand

size to fullword by adding an enumeration constant with large value.

enum byte { land, sea, air, space };

enum word { low, medium, high, expand_to_fullword = INT_MAX };

For example, fullword enumeration variables are preferred when used as function

parameters.

For efficient use of extern variables,

v Place scalars ahead of arrays in extern struct.

v Copy heavily referenced scalar to auto or register variables (especially when

used in a loop).

When using bit fields:

v Even though the compiler supports a bit field spanning more than 4 bytes, the

cost of referencing it is higher.

v An unsigned bit field is preferred over a signed bit field.

v A single bit member is referenced more efficiently than multiple bits.

v A bit field used to store integer values should have length 8, 16, or 24 bits and

be on a byte boundary.
struct { unsigned xval :8,

 xbool :1,

 xmany :6,

 xset :1;

} b;

if (b.xval == 3) ...
if (b.xmany + 5 == x) /* inefficient because it does not */

 /* fall on a byte boundary */ ...
if (b.xbool) ...

Using Library Extensions

Consider fetch() instead of system() for calling other LE/VSE C Run-Time

modules.

A system() call does full environment initialization and termination, but a

fetch()ed routine shares the environment of the calling routine. As well, you have

control of when the module is deleted with release(), and you can easily pass

parameters to a fetch()ed module.

Use memory files as efficient temporary files, by using the type=memory attribute in

fopen() before creating the temporary file. Some applications use temporary files

to pass data between program modules.

Optimizing Dynamic Memory

Use the STACK, HEAP, and RPTSTG(ON) run-time options to optimize your run-time

space requirements. See LE/VSE Programming Guide for more information on

run-time storage.

Optimizing Code

198 LE/VSE: C Run-Time Programming Guide

Part 4. LE/VSE C Run-Time Environments

Chapter 20. Using Run-Time User Exits 201

Using Run-Time User Exits in LE/VSE 201

Understanding the Basics 201

User Exits Supported under LE/VSE 201

Order of Processing of User Exits 202

Using Installation-Wide or Application-Specific

User Exits 203

Using the Assembler User Exit 204

Using Sample Assembler User Exits 204

CEEBXITA Behavior during Enclave

Initialization 204

CEEBXITA Behavior during Enclave

Termination 204

CEEBXITA Behavior during Process

Termination 205

Specifying Abend Codes to Be Percolated by

LE/VSE 205

Actions Taken for Errors that Occur within

the Assembler User Exit 205

CEEBXITA Assembler User Exit Interface . . . 206

Parameter Values in the Assembler User Exit 211

First Enclave within Process

Initialization—Entry 211

First Enclave within Process

Initialization—Return 211

First Enclave within Process

Termination—Entry 211

First Enclave within Process

Termination—Return 212

Nested Enclave Initialization—Entry 212

Nested Enclave Initialization—Return . . . 212

Nested Enclave Termination—Entry 213

Nested Enclave Termination—Return . . . 213

Process Termination—Entry 213

Process Termination—Return 214

High Level Language User Exit Interface . . . 214

Usage Requirements 217

Chapter 21. Using Environment Variables . . . 219

Working with Environment Variables 220

Naming Conventions 221

Environment Variables Specific to the LE/VSE C

Run-Time Library 221

_EDC_BYTE_SEEK 221

_EDC_COMPAT 222

_EDC_RRDS_HIDE_KEY 222

_EDC_STOR_INCREMENT 223

_EDC_STOR_INITIAL 223

_EDC_ZERO_RECLEN 224

_CEE_ENVFILE 224

Example 224

Example 224

Chapter 22. Using the System Programming C

Facilities 227

Using Functions in the System Programming C

Environment 228

System Programming C Facility Considerations

and Restrictions 229

Creating Freestanding Applications 229

Creating Modules without CEESTART 229

Including an Alternative Initialization Routine 230

Initializing a Freestanding Application 230

Building Freestanding Applications 230

EDCJL084 231

EDCJN018 232

Special Considerations for Reentrant Phases 232

EDCJL086 232

EDCJN019 233

Creating System Exit Routines 234

Building System Exit Routines 235

An Example of a System Exit 235

EDCJN020 235

EDCJN021 236

EDCJN022 236

Creating and Using Persistent C Environments . . 238

Building Applications That Use Persistent C

Environments 238

An Example of Persistent C Environments . . . 238

EDCJL089 239

EDCJL090 239

Developing Services in the Application Service

Routine Environment 242

Using Application Service Routine Control Flow 243

Service Routine User Perspective 243

Service Routine Perspective 245

Understanding the Stub Perspective 249

EDCJL093 250

EDCJL094 252

Establishing a Server Environment 253

EDCXSRVI 253

Initiating a Server Request 254

EDCXSRVN 254

Accepting a Request for Service 254

EDCXSACC 254

Returning Control from Service 254

EDCXSRVC 254

Constructing User-Server Stub Routines . . . 255

Building User-Server Environments 255

Tailoring the System Programming C Environment 255

Generating Abends 255

EDCXABND 255

Getting Storage 256

EDCXGET 256

Getting Page-Aligned Storage 258

EDCX4KGT 258

Freeing Storage 258

EDCXFREE 258

Loading a Module 259

EDCXLOAD 259

Deleting a Module 260

© Copyright IBM Corp. 1995, 2005 199

EDCXUNLD 260

Abend Reason Codes 260

Additional Library Routines 261

Summary of Application Types 261

Chapter 23. Library Functions for the System

Programming C Facilities 263

__xhotc() — Set Up a Persistent C Environment

(No Library) 263

Format 263

Description 263

Returned Value 263

Example 264

__xhott() — Terminate a Persistent C Environment 264

Format 264

Description 264

Example 264

__xhotu() — Run a Function in a Persistent C

Environment 264

Format 264

Description 264

Returned Value 265

Example 265

__xregs — Get Registers on Entry 265

Format 265

Description 265

Returned Value 265

__xsacc() — Accept Request for Service 265

Format 265

Description 265

Returned Value 266

__xsrvc() — Return Control from Service 266

Format 266

Description 266

__xusr() - __xusr2() — Get Address of User Word 266

Format 266

Description 266

Returned Value 266

__24malc() — Allocate Storage below 16MB Line 266

Format 266

Compiler Option 267

Description 267

__4kmalc() — Allocate Page-Aligned Storage . . . 267

Format 267

Compiler Option 267

Description 267

This part describes the different LE/VSE C Run-Time environments.

200 LE/VSE: C Run-Time Programming Guide

Chapter 20. Using Run-Time User Exits

This chapter shows how to use run-time user exits with the LE/VSE run-time

library. This is general-use programming interface information and associated

guidance information for using the library.

This chapter is provided here for your convenience. For further information on

using run-time user exits in the LE/VSE environment, refer to LE/VSE Programming

Guide.

Using Run-Time User Exits in LE/VSE

LE/VSE provides user exits that you can use for functions at your installation. You

can use the assembler user exit (CEEBXITA) or the HLL user exit (CEEBINT). This

section provides information about using these run-time user exits.

Understanding the Basics

User exits are invoked under LE/VSE to perform enclave initialization functions

and both normal and abnormal termination functions. User exits offer you a

chance to perform certain functions at a point where you would not otherwise

have a chance to do so. In an assembler initialization user exit, for example, you

can specify a list of run-time options that establish characteristics of the

environment. This is done prior to the actual execution of any of your application

code. Another example is using an assembler termination user exit to request a

dump after your application has terminated with an abend.

In most cases, you do not need to modify any user exit to run your application.

Instead, you can accept the IBM-supplied default versions of the exits, or the

defaults as defined by your installation. To do so, run your application in the

normal manner and the default versions of the exits are invoked. You may also

want to read the sections “User Exits Supported under LE/VSE” and “Order of

Processing of User Exits” on page 202, which provide an overview of the user exits

and describe when they are invoked.

If you plan to modify either of the user exits to perform some specific function,

you must link the modified exit to your application before running, as described in

“Using Installation-Wide or Application-Specific User Exits” on page 203. In

addition, the sections “Using the Assembler User Exit” on page 204 and “High

Level Language User Exit Interface” on page 214 describe the respective user exit

interfaces to which you must adhere to change an assembler or HLL user exit.

User Exits Supported under LE/VSE

LE/VSE provides two user exit routines, one written in assembler and the other in

an LE/VSE-conforming HLL. You can find sample jobs containing these user exits

in the LE/VSE installation sublibrary (default is PRD2.SCEEBASE).

© Copyright IBM Corp. 1995, 2005 201

The user exits supported by LE/VSE are shown in Table 34.

 Table 34. User Exits Supported under LE/VSE

Name Type of User Exit When Invoked

CEEBXITA Assembler user exit Enclave initialization

Enclave termination

Process termination

CEEBINT HLL user exit. CEEBINT can be written in LE/VSE

C Run-Time, PL/I, LE/VSE-conforming assembler

(see restrictions in “Order of Processing of User

Exits”).

Enclave initialization

Order of Processing of User Exits

The location and order in which user exits are driven for your application are

summarized in Figure 42.

 In Figure 42, run-time user exits are invoked in the following sequence:

1. Assembler user exit is invoked for enclave initialization.

The assembler user exit (CEEBXITA) is invoked very early during the

initialization process before the enclave initialization is complete. Early

invocation of the assembler exit allows the enclave initialization code to benefit

from any changes that might be contained in the exit. If run-time options are

provided in the assembler exit, the enclave initialization code is aware of the

new options.

Figure 42. Location of User Exits

Run-Time User Exits

202 LE/VSE: C Run-Time Programming Guide

2. Environment is established.

3. HLL user exit is invoked.

The HLL initialization exit (CEEBINT) is invoked just before the invocation of

the application code. In LE/VSE, this exit can be written in C PL/I, or

LE/VSE-conforming assembler. However, you can only write CEEBINT in C if

the following conditions are met:

v CEEBINT must be declared with OS linkage, that is, you must include the

#pragma linkage(CEEBINT,OS) preprocessor directive. Your application code

must be compiled with the RENT compile-time option.

v You must prelink together your application code and CEEBINT object

modules.

v CEEBINT must be used as an application-specific user exit, rather than as an

installation-wide user exit (refer to “Using Installation-Wide or

Application-Specific User Exits” for more information).
The HLL initialization exit can not be written in COBOL, although COBOL

applications can use this HLL user exit. At the time when CEEBINT is invoked,

the run-time environment is fully operational and all LE/VSE-conforming

HLLs are supported.

4. Main routine is invoked.

5. Main routine returns control to caller.

6. Environment is terminated.

7. Assembler user exit is invoked for termination of the enclave.

CEEBXITA is invoked for enclave termination processing after all application

code in the enclave has completed, but prior to any enclave termination

activity.

8. Assembler user exit is invoked for termination of the process.

CEEBXITA is invoked again when the LE/VSE process terminates.

Although both the assembler and HLL exits are invoked for initialization, they do

not perform exactly the same functions. See “CEEBXITA Behavior during Enclave

Initialization” on page 204 and “High Level Language User Exit Interface” on page

214 for a detailed description of each exit.

LE/VSE provides the CEEBXITA assembler user exit for termination but does not

provide a corresponding HLL termination user exit.

Using Installation-Wide or Application-Specific User Exits

IBM offers default versions of CEEBXITA and CEEBINT. You can use the

IBM-supplied default version of either exit, or you can customize CEEBXITA or

CEEBINT for use on an installation-wide basis. When CEEBXITA or CEEBINT is

linked with the LE/VSE initialization/termination library routines during

installation, it functions as an installation-wide user exit.

Finally, you can customize CEEBXITA or CEEBINT yourself for use on your

application. When CEEBXITA or CEEBINT is linked in your phase, it functions as

an application-specific user exit. The application-specific exit is used only when

you run that application. The installation-wide assembler user exit is not executed.

In order to obtain an application-specific user exit, you must explicitly include it at

link-edit time in the application phase using an INCLUDE link-edit control

statement. Any time that the application-specific exit is modified, it must be

relinked with the application.

Run-Time User Exits

Chapter 20. Using Run-Time User Exits 203

The assembler user exit interface is described in “CEEBXITA Assembler User Exit

Interface” on page 206. The HLL user exit interface is described in “High Level

Language User Exit Interface” on page 214.

Using the Assembler User Exit

The assembler user exit CEEBXITA tailors the characteristics of the enclave before

it is established. CEEBXITA must be written in assembler language because an

HLL environment may not yet be established when the exit is invoked. CEEBXITA

is driven for enclave initialization and enclave termination regardless of whether

the enclave is the first enclave in the process or a nested enclave. CEEBXITA can

differentiate easily between first and nested enclaves. For more information about

nested enclaves, see LE/VSE Programming Guide.

CEEBXITA behaves differently depending on when it is invoked, as described in

the following sections.

Using Sample Assembler User Exits

Sample assembler user exit programs are distributed with LE/VSE. You can use

them and modify the code for the requirements of your own application. Choose a

sample program appropriate for your application. The following assembler exit

user programs are delivered with LE/VSE.

 Table 35. Sample Assembler User Exits for LE/VSE

Example User Exit Operating System Language (if Language Specific)

CEEBXITA VSE (default)

CEECXITA CICS (default)

CEEBX05A VSE COBOL

Notes:

1. CEEBXITA and CEECXITA are the defaults on your system for VSE and CICS, if

LE/VSE is installed at your site without modification.

2. The source code for CEEBXITA and CEEBX05A can be found on VSE in the LE/VSE

installation sublibrary (default is PRD2.SCEEBASE).

3. CEEBX05A is an example user exit program for COBOL applications on VSE.

CEEBXITA Behavior during Enclave Initialization

The CEEBXITA assembler user exit is invoked before enclave initialization is

performed. You can use it to help guide the establishment of the environment in

which your application runs. The user exit can interrogate program parameters

supplied in the JCL and change them if desired. In addition, you can specify

run-time options in the user exit using the CEEAUE_OPTION field of the assembler

interface (see “CEEBXITA Assembler User Exit Interface” on page 206 for

information about how to do this).

CEEBXITA performs no special tasks, but simply returns control to LE/VSE

initialization.

CEEBXITA Behavior during Enclave Termination

The CEEBXITA assembler exit is invoked after the user code for the enclave has

completed, but before the occurrence of any enclave termination activity. For

example, CEEBXITA is invoked before the storage report is produced (if one was

requested), data sets are closed, and HLLs are invoked for enclave termination. In

other words, the assembler user exit for termination is invoked when the

environment is still active.

Run-Time User Exits

204 LE/VSE: C Run-Time Programming Guide

The VSE assembler user exits allow you to request an abend. Under VSE (as well

as CICS under VSE), you can also request a dump to assist in problem diagnosis.

Note that termination activities have not yet begun when the user exit is invoked.

Thus, the majority of storage has not been modified when the dump is produced.

It is possible to request an abend and dump in the enclave termination user exit

for all enclave-terminating events.

Example code that shows how to request an abend and dump when there is an

unhandled condition of severity 2 or greater can be found in the member

CEEBX05A.A in the LE/VSE installation sublibrary (default is PRD2.SCEEBASE).

CEEBXITA Behavior during Process Termination

The CEEBXITA assembler exit is invoked after:

v All enclaves have terminated.

v The enclave resources have been relinquished.

v Any LE/VSE-managed files have been closed.

v Debug Tool for VSE/ESA has terminated.

This allows you to free files at this time, and it presents another opportunity to

request an abend.

During termination, CEEBXITA can interrogate the LE/VSE reason and return

codes and, if necessary, request an abend with or without a dump. This can be

done at either enclave or process termination.

The IBM-supplied CEEBXITA performs no special tasks, but simply returns control

to LE/VSE termination.

Specifying Abend Codes to Be Percolated by LE/VSE

The assembler user exit, when invoked for initialization in the batch environment,

can return a list of VSE cancel codes, program-interruption codes, and user abend

codes (contained in the CEEAUE_CODES field of the assembler user exit interface—see

“CEEBXITA Assembler User Exit Interface” on page 206) that are to be exempted

from LE/VSE condition handling.

When an abend or program interrupt occurs in your application, and TRAP(ON) is

in effect, and the VSE cancel code, program-interruption code, or user abend code

is in the CEEAUE_CODES list, LE/VSE produces an abnormal termination message

and issues an abend to terminate the enclave. Normal LE/VSE condition handling

is never invoked to handle these conditions. The feature is useful when you do not

want LE/VSE condition handling to intervene for certain abends, and when you

want to produce a system dump.

When TRAP(OFF) is specified and there is a program interrupt, the user exit for

termination is not driven. The use of TRAP(OFF) is not recommended; refer to

LE/VSE Programming Reference for more information.

Actions Taken for Errors that Occur within the Assembler User

Exit

If any errors occur during the enclave initialization user exit, the standard system

action occurs because LE/VSE condition handling has not yet been established.

Any errors occurring during the enclave termination user exit lead to abnormal

termination (through an abend) of the LE/VSE environment.

Run-Time User Exits

Chapter 20. Using Run-Time User Exits 205

If there is a program check during the enclave termination user exit and TRAP(ON)

is in effect, the application ends abnormally with ABEND code 4044 and reason

code 44. If there is a program check during the enclave termination exit and

TRAP(OFF) has been specified, the application ends abnormally without additional

error checking support. LE/VSE provides no condition handling; error handling is

performed by the operating system. The use of TRAP(OFF) is not recommended;

refer to LE/VSE Programming Reference for more information.

LE/VSE takes the same actions as described above for program checks during the

process termination user exit.

CEEBXITA Assembler User Exit Interface

You can modify CEEBXITA to perform any function desired, although the exit

must have the following attributes after you modify it:

v The user-supplied exit must be named CEEBXITA.

v The exit must be reentrant.

v The exit must be capable of executing in AMODE(ANY) and RMODE(ANY).

v The exit must be relinked with the application after modification (if you want an

application-specific user exit), or relinked with LE/VSE

initialization/termination routines after modification (if you want an

installation-wide user exit).

If a user exit is modified, you are responsible for conforming to the interface

shown in Figure 43 on page 207. This user exit must be written in assembler.

Run-Time User Exits

206 LE/VSE: C Run-Time Programming Guide

When the user exit is called, register 1 (R1) points to a word that contains the

address of the CXIT control block. The high order bit is on.

The CXIT control block contains the following fullwords:

CEEAUE_LEN (input parameter)

A fullword integer that specifies the total length of this control block. For

LE/VSE, the length is 48 bytes.

CEEAUE_FUNC (input parameter)

A fullword integer that specifies the function code. In LE/VSE, the following

function codes are supported:

 1 – Initialization of the first enclave within a process

 2 – Termination of the first enclave within a process

 3 – Nested enclave initialization

 4 – Nested enclave termination

 5 – Process termination

The user exit should ignore function codes other than those numbered from 1

through 5.

CEEAUE_RETURN (input/output parameter)

A fullword integer that specifies the return or abend code. CEEAUE_RETURN has

different meanings, depending on whether it is an input parameter or an

output parameter:

v As an input parameter, CEEAUE_RETURN is the enclave return code.

Figure 43. Interface for Assembler User Exits

Run-Time User Exits

Chapter 20. Using Run-Time User Exits 207

v As an output parameter, CEEAUE_RETURN has different meanings, depending

on the flag CEEAUE_ABND (see below):

– If the flag CEEAUE_ABND is off, CEEAUE_RETURN is interpreted as the LE/VSE

return code placed in register 15.

– If the flag CEEAUE_ABND is on, CEEAUE_RETURN is interpreted as an abend

code used when an abend is issued. (In batch, run-time message

CEE3322C is produced and an operating system request is issued to

terminate the enclave; in CICS, an EXEC CICS ABEND is issued.)

See LE/VSE Programming Guide for more information about how LE/VSE

computes return and reason codes.

CEEAUE_REASON (input/output parameter)

A fullword integer that specifies the reason code for CEEAUE_RETURN.

CEEAUE_REASON has different meanings, depending on whether it is an input

parameter or an output parameter:

v As an input parameter, CEEAUE_REASON is the LE/VSE return code modifier.

v As an output parameter, CEEAUE_REASON has different meanings, depending

on the flag CEEAUE_ABND (see below):

– If the flag CEEAUE_ABND is off, CEEAUE_REASON is interpreted as the LE/VSE

return code modifier placed in register 0.

– If the flag CEEAUE_ABND is on, CEEAUE_REASON is interpreted as an abend

reason code used when an abend is issued. (CEEAUE_REASON is used in the

batch abnormal-termination run-time message CEE3322C, but is ignored

in the CICS environments when an EXEC CICS ABEND is issued.)

See LE/VSE Programming Guide for more information about how LE/VSE

computes return and reason codes.

CEEAUE_FLAGS (input/output parameter)

Contains four flag bytes. CEEBXITA uses only the first byte but reserves the

remaining bytes. All unspecified bits and bytes must be zero. The layout of

these flags is shown in Figure 44.

 Byte 0 (CEEAUE_FLAG1) has the following meaning:

CEEAUE_ABTERM (input parameter)

Figure 44. CEEAUE_FLAGS Format

Run-Time User Exits

208 LE/VSE: C Run-Time Programming Guide

OFF Indicates that the enclave terminates normally (severity 0 or 1

condition).

ON Indicates that the enclave terminates with an LE/VSE return

code modifier of 2 or greater. This could, for example, indicate

that a condition of severity 2 or greater was raised that was

unhandled.

CEEAUE_ABND (input/output parameter)

OFF Indicates that the enclave should terminate without an abend

being issued. Thus, CEEAUE_RETURN and CEEAUE_REASON are

placed into register 15 and register 0 respectively and returned

to the enclave creator.

ON Indicates that the enclave terminates with an abend. Thus,

CEEAUE_RETURN and CEEAUE_REASON are used by LE/VSE in the

invocation of the abend. When running in the batch

environment, run-time message CEE3322C is produced and an

operating system request is issued to terminate the enclave.

When running under CICS, an EXEC CICS ABEND command is

issued using the abend code contained in CEEAUE_RETURN.

CEEAUE_REASON is ignored under CICS.

The TRAP run-time option does not affect the setting of CEEAUE_ABND.

CEEAUE_DUMP (output parameter)

OFF Indicates that if you request an abend, an abend is issued

without requesting a system dump.

ON Indicates that if you request an abend, an abend is issued

requesting a system dump.

CEEAUE_PARM (input/output parameter)

A fullword pointer to the parameter address list of the application program.

 As an input parameter, this fullword contains the register 1 value passed to the

main routine. The exit can modify this value, and the value is then passed to

the main routine. If run-time options are present in the invocation command

string, they are stripped off before the exit is called.

 If the parameter inbound to the main routine is a character string, CEEAUE_PARM

contains the address of a fullword address that points to a halfword prefixed

string. If this string is altered by the user exit, the string must not be extended

in place.

CEEAUE_WORK (input parameter)

Contains a fullword pointer to a 256-byte work area that the exit can use. On

entry, it contains binary zeros and is doubleword-aligned.

 This area does not persist across exits.

CEEAUE_OPTION (output parameter)

On return, this field contains a fullword pointer to the address of a halfword

length prefixed character string that contains run-time options. These options

are processed for enclave initialization only. When invoked for enclave

termination, this field is ignored.

 These run-time options override all other sources of run-time options except

those that are specified as nonoverrideable in the installation default run-time

options.

Run-Time User Exits

Chapter 20. Using Run-Time User Exits 209

Under CICS, the STACK run-time option cannot be modified using the

assembler user exit.

CEEAUE_USER (input/output parameter)

Contains a fullword whose value is maintained without alteration and passed

to every user exit. On entry to the enclave initialization user exit, it is zero.

Thereafter, the value of the user word is not altered by LE/VSE or any

member libraries. The user exit can change the value of this field and LE/VSE

maintains this value. This allows a user exit to initialize the fullword and pass

it to subsequent user exits.

CEEAUE_CODES (output parameter)

During the initialization exit, CEEAUE_CODES contains the fullword address of a

table of VSE cancel codes, program-interruption codes, and user-abend codes

that the LE/VSE condition handler exempts from normal condition handling.

Therefore, the application is not given the opportunity to field the abend. The

table consists of:

v A fullword count of the number of cancel codes, program-interruption

codes, and abend codes that are to be exempted from LE/VSE condition

handling, and passed to the operating system.

v A fullword for each of the particular cancel codes, program-interruption

codes, or abend codes that are to be exempted from LE/VSE condition

handling, and passed to the operating system.

– User abend codes are specified as F'uuu'. For example, if you want user

abend 777 to be exempted from LE/VSE condition handling, code F'777'.

– VSE cancel codes are specified as X'000000cc'. Avoid specifying the value

X'00000020', which indicates a program check has occurred. If you specify

the value X'00000020', LE/VSE ignores it, and normal LE/VSE condition

handling semantics take effect. If you want to exempt specific program

checks from LE/VSE condition handling, specify the program-interruption

codes.

– Program-interruption codes are specified as X'800000ii'. For example, if

you want an operation exception to be exempted from LE/VSE condition

handling, code X'80000001'.

This function is not enabled under CICS.

CEEAUE_FBCODE (input parameter)

Contains the fullword address of the condition token with which the enclave

terminated. If the enclave terminates normally (that is, not because of a

condition), the condition token is zero.

CEEAUE_PAGE (input/output parameter)

Usage of this field is related to PL/I BASED variables that are allocated storage

outside of AREAs. You can indicate whether storage should be allocated on a

4K-page boundary. You can specify the minimum number of bytes of storage

that you want allocated. Your allocation request must be an exact multiple of

4K. The IBM-supplied default setting for CEEAUE_PAGE is 32768 (32K).

 If CEEAUE_PAGE is set to zero, PL/I BASED variables can be placed on other than

4K-page boundaries.

 CEEAUE_PAGE is honored only during enclave initialization (that is, when

CEEAUE_FUNC is 1 or 3).

Run-Time User Exits

210 LE/VSE: C Run-Time Programming Guide

Parameter Values in the Assembler User Exit

The parameters described in the following sections contain different values

depending on how the user exit is used. Possible values are shown for the

parameters based on how the assembler user exit is invoked.

First Enclave within Process Initialization—Entry

CEEAUE_LEN 48

CEEAUE_FUNC 1 (first enclave within process initialization

function code).

CEEAUE_RETURN 0

CEEAUE_REASON 0

CEEAUE_FLAGS 0

CEEAUE_PARM The register 1 value from the operating system.

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER 0

CEEAUE_FBCODE 0

CEEAUE_PAGE Minimum number of storage bytes to be allocated

for PL/I BASED variables (default is 32768).

First Enclave within Process Initialization—Return

CEEAUE_RETURN 0, or if CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON 0, or if CEEAUE_ABND = 1, the reason code for

CEEAUE_RETURN.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

 CEEAUE_DUMP = 1 if the abend should request a

dump.

CEEAUE_PARM Register 1, used as the new parameter list.

CEEAUE_OPTION Pointer to the address of a halfword prefixed

character string containing run-time options, or 0.

CEEAUE_USER Value of CEEAUE_USER for all subsequent exits.

CEEAUE_CODES Pointer to the abend code table, or 0.

CEEAUE_PAGE User specified PAGE value. Minimum number of

storage bytes to be allocated for PL/I BASED

variables (default is 32768).

First Enclave within Process Termination—Entry

CEEAUE_LEN 48

CEEAUE_FUNC 2 (first enclave within process termination function

code).

CEEAUE_RETURN Return code issued by the application that is

terminating.

CEEAUE_REASON Reason code that accompanies CEEAUE_RETURN.

Run-Time User Exits

Chapter 20. Using Run-Time User Exits 211

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the application is terminating

with a LE/VSE return code modifier of 2 or

greater, or 0 otherwise.

 CEEAUE_ABND = 0

 CEEAUE_DUMP = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER Return value from the previous exit.

CEEAUE_FBCODE Feedback code causing termination.

First Enclave within Process Termination—Return

CEEAUE_RETURN If CEEAUE_ABND = 0, the return code placed in

register 15 when the enclave terminates.

 If CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON If CEEAUE_ABND = 0, the enclave reason code.

 If CEEAUE_ABND = 1, the abend reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

 CEEAUE_DUMP = 1 if the abend should request a

dump.

CEEAUE_USER The value of CEEAUE_USER for all subsequent exits.

Nested Enclave Initialization—Entry

CEEAUE_LEN 48

CEEAUE_FUNC 3 (nested enclave initialization function).

CEEAUE_RETURN 0

CEEAUE_REASON 0

CEEAUE_FLAGS 0

CEEAUE_PARM The register 1 value discovered in a nested enclave

creation.

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER The return value from previous exit.

CEEAUE_FBCODE 0

CEEAUE_PAGE Minimum number of storage bytes to be allocated

for PL/I BASED variables (default is 32768).

Nested Enclave Initialization—Return

CEEAUE_RETURN 0, or if CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON 0, or if CEEAUE_ABND = 1, the reason code for

CEEAUE_RETURN.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

Run-Time User Exits

212 LE/VSE: C Run-Time Programming Guide

CEEAUE_DUMP = 1 if the abend should request a

dump.

CEEAUE_PARM Register 1 used as the new parameter list.

CEEAUE_OPTION Pointer to a fullword address that points to a

halfword prefixed string containing run-time

options, or 0.

CEEAUE_USER The value of CEEAUE_USER for all subsequent exits.

CEEAUE_CODES Pointer to the abend code table, or 0.

CEEAUE_PAGE User specified PAGE value. Minimum number of

storage bytes to be allocated for PL/I BASED

variables (default is 32768).

Nested Enclave Termination—Entry

CEEAUE_LEN 48

CEEAUE_FUNC 4 (termination function).

CEEAUE_RETURN Return code issued by the enclave that is

terminating.

CEEAUE_REASON Reason code that accompanies CEEAUE_RETURN.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the application is terminating

with an LE/VSE return code modifier of 2 or

greater, or 0 otherwise.

 CEEAUE_ABND = 0

 CEEAUE_DUMP = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER Return value from previous exit.

CEEAUE_FBCODE Feedback code causing termination.

Nested Enclave Termination—Return

CEEAUE_RETURN If CEEAUE_ABND = 0, the return code from the

enclave.

 If CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON If CEEAUE_ABND = 0, the enclave reason code.

 If CEEAUE_ABND = 1, the enclave reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

 CEEAUE_DUMP = 1 if the abend should request a

dump.

CEEAUE_USER Value of CEEAUE_USER for all subsequent exits.

Process Termination—Entry

CEEAUE_LEN 48

CEEAUE_FUNC 5 (process termination function).

CEEAUE_RETURN Return code presented to the invoking system in

Run-Time User Exits

Chapter 20. Using Run-Time User Exits 213

register 15 that reflects the value returned from the

first enclave within process termination.

CEEAUE_REASON Reason code accompanying CEEAUE_RETURN that is

presented to the invoking system in register 0 and

reflects the value returned from the first enclave

within process termination.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the last enclave is terminating

abnormally (that is, an LE/VSE return code

modifier is 2 or greater). This reflects the value

returned from the first enclave within process

termination (function code 2).

 CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing first enclave within process termination

(function code 2).

 CEEAUE_DUMP = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER The return value from previous exit.

CEEAUE_FBCODE The feedback code causing termination.

Process Termination—Return

CEEAUE_RETURN If CEEAUE_ABND = 0, the return code from the

process.

 If CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON If CEEAUE_ABND = 0, the reason code for

CEEAUE_RETURN from the process.

 If CEEAUE_ABND = 1, reason code for the

CEEAUE_RETURN abend reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

 CEEAUE_DUMP = 1 if the abend should request a

dump.

CEEAUE_USER The value of CEEAUE_USER for all subsequent exits.

High Level Language User Exit Interface

LE/VSE provides CEEBINT, an HLL user exit, for enclave initialization. You can

code CEEBINT in LE/VSE C Run-Time, PL/I, or LE/VSE C Run-Time (subject to

the restrictions in “Order of Processing of User Exits” on page 202), or

LE/VSE-conforming assembler. The HLL user exit cannot be written in COBOL.

COBOL programmers can use an HLL exit written in LE/VSE C Run-Time, PL/I,

LE/VSE-conforming assembler, LE/VSE C Run-Time (again, subject to the

restrictions in “Order of Processing of User Exits” on page 202), or default to the

IBM-supplied default HLL user exit (which is written in LE/VSE C Run-Time).

The HLL enclave initialization exit is invoked after the enclave has been

established, after the Debug Tool for VSE/ESA initial command string has been

processed, and prior to the invocation of compiled code. When invoked, it is

Run-Time User Exits

214 LE/VSE: C Run-Time Programming Guide

passed a parameter list that conforms to the LE/VSE definition. The parameters

are all fullwords and are defined as follows:

Number of arguments in parameter list (input)

A fullword binary integer.

v On entry: Contains 7.

v On exit: Not applicable.

Return code (output)

A fullword binary integer.

v On entry: 0.

v On exit: Able to be set by the exit, but not interrogated by LE/VSE.

Reason code (output)

A fullword binary integer.

v On entry: 0

v On exit: Able to be set by the exit, but not interrogated by LE/VSE.

Function code (input)

A fullword binary integer.

v On entry: 1, indicating the exit is being driven for initialization.

v On exit: Not applicable.

Address of the main program entry point (input)

A fullword binary address.

v On entry: The address of the routine that gains control first.

v On exit: Not applicable.

User word (input/output)

A fullword binary integer.

v On entry: Value of the user word (CEEAUE_USER) as set by the assembler user

exit. See page 210 for a description of the CEEAUE_USER field.

v On exit: The value set by the user exit, maintained by LE/VSE and passed

to subsequent user exits.

Exit List Address (output)

A fullword binary integer reserved for future use.

 This allows the establishment of one or more user exits when the enclave user

exit sets this field to a list of user exits. Currently, only one user exit is

supported in LE/VSE.

A_Exits

The address of the exit list control block, Exit_list.

v On entry: 0.

v On exit: 0, unless you establish a hook exit, in which case you would set this

pointer and fill in relevant control blocks. The control blocks for Exit_list

and Hook_exit are shown in Figure 45 on page 216.

As supplied, CEEBINT has only one exit defined that you can establish: the hook

exit described by the Hook_exit control block. This exit gains control when hooks

generated by the PL/I compile-time TEST option are executed. You can establish

this exit by setting appropriate pointers (A_Exits to Exit_list to Hook_exit).

Figure 45 on page 216 illustrates the Exit_list and Hook_exit control blocks.

Run-Time User Exits

Chapter 20. Using Run-Time User Exits 215

The control block Exit_list exit contains the following fields:

Exit_list_len

The length of the control block. It must be 1.

Exit_list_hooks

The address of the Hook_exit control block.

The control block for the hook exit must contain the following fields:

Hook_exit_len

The length of the control block.

Hook_exit_rtn

The address of a routine you want invoked for the exit. When the routine is

invoked, it is passed the address of this control block. Because this routine is

invoked only if the address you specify is nonzero, you can turn the exit on

and off.

Hook_exit_fnccode

The function code with which the exit is invoked. This is always 1.

Hook_exit_retcode

The return code set by the exit. You must ensure it conforms to the following

specifications:

0 Requests that Debug Tool for VSE/ESA be invoked next

4 Requests that the program resume immediately

Figure 45. Exit_list and Hook_exit Control Blocks

Run-Time User Exits

216 LE/VSE: C Run-Time Programming Guide

16 Requests that the program be terminated

Hook_exit_rsncode

The reason code set by the exit. This is always zero.

Hook_exit_userwd

The user word passed to the user exits.

Hook_exit_ptr

An exit-specific user word.

Hook_exit_reserved

Reserved.

Hook_exit_dsa

The contents of register 13 when the hook was executed.

Hook_exit_addr

The address of the hook instruction executed.

Usage Requirements

1. The user exit must not be a main-designated routine. For example, it cannot be

a C main() function.

2. The HLL exit routines must be linked with compiled code. If you do not

provide an initialization user exit, an IBM-supplied default, which simply

returns control to your application, is linked with the compiled code.

3. The exit cannot be written in COBOL.

4. The exit should be coded so that it returns for all unknown function codes.

5. LE/VSE C Run-Time constructs such as the exit(), abort(), raise(SIGTERM),

and raise(SIGABRT) functions terminate the enclave.

6. A PL/I EXIT or STOP statement terminates the enclave.

7. Use the callable service IBMBHKS to turn hooks on and off. For more

information about IBMBHKS, see IBM PL/I for VSE/ESA Programming Guide.

Run-Time User Exits

Chapter 20. Using Run-Time User Exits 217

Run-Time User Exits

218 LE/VSE: C Run-Time Programming Guide

Chapter 21. Using Environment Variables

This chapter describes environment variables that affect the LE/VSE C Run-Time

environment. You can use environment variables to define the characteristics of a

specific environment. They may be set, retrieved, and used during the execution of

a LE/VSE C Run-Time program.

The following environment variables affect the LE/VSE C Run-Time environment

if they are on when an application program runs. The variables that begin with

EDC and _CEE_ are described in detail in “Environment Variables Specific to the

LE/VSE C Run-Time Library” on page 221. See “Locale Source Files” on page 329

for more information on the locale-related environment variables.

_CEE_ENVFILE

Used to read environment variables from a specified file.

_EDC_BYTE_SEEK

Specifies that fseek() and ftell() should use relative byte offsets.

_EDC_COMPAT

Specifies that LE/VSE C Run-Time should use specific functional behavior

from previous releases of C/370.

_EDC_RRDS_HIDE_KEY

Relevant for VSAM RRDS files opened in record mode. Enables calls to

fread() that specify a pointer to a character string and do not append the

Relative Record Number to the beginning of the string.

_EDC_STOR_INCREMENT

Sets the size of increments to the internal library storage subpool.

_EDC_STOR_INITIAL

Sets the initial size of the internal library storage subpool.

_EDC_ZERO_RECLEN

Enables processing of zero-length records in a SAM file opened in variable

format.

LANG

Determines the locale to use for the locale categories when neither the

LC_ALL environment variable nor the individual locale environment

variables specify locale information. This environment variable does not

interact with the language setting for messages.

LC_ALL

Determines the locale to be used to override any values for locale

categories specified by the settings of the LANG environment variable or

any individual locale environment variables.

LC_COLLATE

Determines the locale to be used to define the behavior of ranges,

equivalence classes, and multicharacter collating elements.

LC_CTYPE

Determines the locale for the interpretation of byte sequences of text data

as characters (for example, single-byte versus multibyte characters in

arguments and input files).

© Copyright IBM Corp. 1995, 2005 219

LC_MESSAGES

Determines the locale which defines the language in which messages are

written.

LC_MONETARY

Determines the locale for monetary-related numeric formatting

information.

LC_NUMERIC

Determines the locale for numeric formatting (for example, thousands

separator and radix character) information.

LC_TIME

Determines the locale for date and time formatting information.

LC_TOD

Determines the locale for time of day and Daylight Savings Time

formatting information.

Working with Environment Variables

The following library functions affect environment variables:

v setenv()

v clearenv()

v getenv()

The setenv() function adds, changes, and deletes environment variables in the

Environment Variable Table. The getenv() function retrieves the values from the

table. If it does not find an environment variable, getenv() returns NULL. The

clearenv() function clears the environment variable table, and resets to default

behavior the actions affected by LE/VSE C Run-Time-specific environment

variables.

For a complete description of these functions, refer to LE/VSE C Run-Time Library

Reference.

Environment variables may be set any time in an application program or user exit.

You can use the exit routine CEEBINT to set environment variables through calls to

setenv(). For more information on the LE/VSE user exit CEEBINT, refer to “Using

Run-Time User Exits in LE/VSE” on page 201. You can also set environment

variables by using the ENVAR run-time option. The syntax for this option is

 ENVAR("1st_var=1st_value", "2nd_var=2nd_value").

For more information on this run-time option, refer to LE/VSE Programming

Reference.

Specifying the _CEE_ENVFILE environment variable with a filename on the ENVAR

option enables you to read more environment variables from that file. See

“Environment Variables Specific to the LE/VSE C Run-Time Library” on page 221

for more information about _CEE_ENVFILE.

Environment variables set with the setenv() function exist only for the life of the

program, and are not saved before program termination. Child programs are

initialized with the environment variables of the parent. However, environment

variables set by a child program are not propagated back to the parent upon

termination of the child program.

Using Environment Variables

220 LE/VSE: C Run-Time Programming Guide

Naming Conventions

Avoid the following when creating names for environment variables:

= This is invalid and will generate an error message.

EDC This is reserved for LE/VSE C Run-Time-specific environment

variables.

CEE This is reserved for LE/VSE C Run-Time-specific environment

variables used with LE/VSE. See “Environment Variables Specific

to the LE/VSE C Run-Time Library” for more information.

DBCS Characters

Multibyte and DBCS characters should not be used in environment

variable names. Their use can result in unpredictable behavior.

 Multibyte and DBCS characters are allowed in environment

variable values; however, the values are not validated, and

redundant shifts are not removed.

White Space Blank spaces are valid characters and should be used carefully in

environment variable names and values.

 For example, setenv(" my name"," David ",1) sets the

environment variable <space>my<space>name to

<space><space>David. A call to getenv("my name"); returns NULL

indicating that the variable was not found. You must specifically

query getenv(" my name") to retrieve the value of " David".

The environment variable names are case sensitive.

The empty string is a valid environment variable name.

Environment Variables Specific to the LE/VSE C Run-Time Library

The following LE/VSE C Run-Time-specific environment variables are supported

to provide various functions. LE/VSE C Run-Time variables have the prefix _CEE_

or _EDC_. You should not use these prefixes to name your own variables.

v _EDC_BYTE_SEEK

v _EDC_COMPAT

v _EDC_RRDS_HIDE_KEY

v _EDC_STOR_INCREMENT

v _EDC_STOR_INITIAL

v _EDC_ZERO_RECLEN

v _CEE_ENVFILE

There are no default settings for the environment variables that begin with _EDC_.

There are, however, default actions that occur if these environment variables are

undefined or are set to invalid values. See the descriptions of each variable below.

The LE/VSE C Run-Time specific environment variables may be set with the

setenv() function.

_EDC_BYTE_SEEK

The environment variable _EDC_BYTE_SEEK indicates to LE/VSE C Run-Time

that, for all binary files, ftell() should return relative byte offsets, and fseek()

should use relative byte offsets as input. The default behavior is for only binary

files with a fixed record format to support relative byte offsets.

Using Environment Variables

Chapter 21. Using Environment Variables 221

_EDC_BYTE_SEEK is set with the command:

setenv("_EDC_BYTE_SEEK","Y",1);

_EDC_COMPAT

The environment variable _EDC_COMPAT indicates to LE/VSE C Run-Time that it

should use old functional behavior for various items in code ported from old

releases of C/370. These functional items are specified by the value of the

environment variable.

_EDC_COMPAT is set with the command

setenv("_EDC_COMPAT","x",1);

where x is an integer. LE/VSE C Run-Time converts the string "x" into its decimal

integer equivalent, and treats this value as a bit mask to determine which functions

to use in compatibility mode. The following table interprets the least significant bit

as bit zero.

Bit Function affected

0 ungetc()

1 ftell()

2 Reserved

3 through 31 Unused

For this release, calls to fseek() with an offset of SEEK_CUR, fgetpos(), and

fflush() take into account characters pushed back with the ungetc() library

function. You must set the _EDC_COMPAT environment variable for ungetc() if

you want these functions to ignore ungetc() characters as they did in old C/370

code.

For ftell(), LE/VSE C Run-Time uses an encoding scheme that varies according

to the attributes of the underlying file. You must set the _EDC_COMPAT

environment variable for ftell() if you want to use encoded ftell() values

generated in old C/370 code.

Here are some examples of how you can set _EDC_COMPAT:

setenv("_EDC_COMPAT","1",1);

invokes old ungetc() behavior.

setenv("_EDC_COMPAT","2",1);

invokes old ftell() behavior.

setenv("_EDC_COMPAT","3",1);

invokes both old ungetc() behavior and old ftell() behavior.

_EDC_RRDS_HIDE_KEY

The LE/VSE C Run-Time environment variable _EDC_RRDS_HIDE_KEY applies to

VSAM RRDS files opened in record mode. When this environment variable is set,

you can call fread() with a pointer to a character string, and the Relative Record

Number is not appended to the beginning of the record.

The _EDC_RRDS_HIDE_KEY environment variable is set with the command

Using Environment Variables

222 LE/VSE: C Run-Time Programming Guide

setenv("_EDC_RRDS_HIDE_KEY","Y",1);

By default, when you open a VSAM record in record mode, the fread() function is

called with the RRDS record structure, and the record is preceded by the Relative

Record Number.

_EDC_STOR_INCREMENT

This environment variable is used to set the size of increments to the internal

library storage subpool. By default, when the storage subpool is filled, its size is

incremented by 8K. When _EDC_STOR_INCREMENT is set, its value string is

translated to its decimal integer equivalent. This integer is then the new setting of

the subpool storage increment size.

The _EDC_STOR_INCREMENT value must be greater than zero, and must be a

multiple of 4K. If the value is less than zero, the default setting of 8K is used. If

the value is not a multiple of 4K, then it is rounded up to the next 4K interval. If

_EDC_STOR_INCREMENT is set to an invalid value that must be modified

internally to be divisible by 4K, this modification is not reflected in the character

string that appears in the environment variable table.

Consider the case where setenv() is called as follows:

 setenv("_EDC_STOR_INCREMENT","9000",1);

Internally, the storage subpool increment value is set to 12288 (that is, 12K).

However, the subsequent call

 getenv("_EDC_STOR_INCREMENT");

returns "9000", as set by the call to setenv().

_EDC_STOR_INITIAL

This environment variable is used to set the initial size of the internal library

storage subpool. The default subpool storage size is 12K. When

_EDC_STORE_INITIAL is set, its value string is translated to its decimal integer

equivalent. This integer is then the new setting of the subpool storage increment

size.

The _EDC_STORE_INITIAL value must be greater than zero, and must be a

multiple of 4K. If the value is less than zero, the default setting of 12K is used. If

the value is not a multiple of 4K, then it is rounded up to the next 4K interval. If

_EDC_STORE_INITIAL is set to an invalid value that must be modified internally

to be divisible by 4K, this modification is not reflected in the character string that

appears in the environment variable table.

Consider the case where setenv() is called from CEEBINT as follows:

 setenv("_EDC_STORE_INITIAL","16000",1);

with the CEEBINT user exit linked to the application.

Internally, the storage subpool is initialized to 16384 (that is, 16K). However, the

subsequent call

 getenv("_EDC_STORE_INITIAL");

returns "16000" as set by the setenv() call.

Using Environment Variables

Chapter 21. Using Environment Variables 223

_EDC_ZERO_RECLEN

This environment variable allows processing of zero-length records in a SAM

Variable file opened in either record or text mode.

_EDC_ZERO_RECLEN is set with the command

setenv("_EDC_ZERO_RECLEN","Y",1);

For details on the behavior of this environment variable, refer to Chapter 8,

“Performing SAM I/O Operations,” on page 47.

_CEE_ENVFILE

This environment variable enables a list of environment variables to be set from a

specified file. This environment variable only takes effect when it is set through the

run-time option ENVAR on initialization of a parent program.

When _CEE_ENVFILE is defined under these conditions, its value is taken as the

name of the file to be used.

Depending on the format of the name, LE/VSE C Run-Time will open the file

using different attributes:

v If the name begins with DD: (a DLBL/TLBL-name and/or logical unit, or a

VSE/Librarian sublibrary member), the file is opened as fixed length record

format with an LRECL of 80 bytes.

v If the name does not begin with DD:, the file is opened as variable length record

format with an LRECL of 80 bytes and a BLKSIZE of 4000 bytes.

Note: If using any type of file other than a member of a VSE/Librarian sublibrary,

care must be taken to ensure that the attributes of the file are compatible

with the above.

Example

To read a member called MYVARS.Z from a VSE/Librarian sublibrary called

MY.LIB, you would call your program with the ENVAR run-time option as follows:

 ENVVAR("_CEE_ENVFILE=DD:MY.LIB(MYVARS.Z)")

Because the name begins with DD:, the specified file is opened as a fixed length

record file. Each record consists of NAME=VALUE. For example, a file with the

following two records:

 _EDC_RRDS_HIDE_KEY=Y

 World_Champions=Toronto_Blue_Jays

would set the environment variable _EDC_RRDS_HIDE_KEY to the value Y, and

the environment variable World_Champions to the value Toronto_Blue_Jays.

Note: Using _CEE_ENVFILE to set environment variables through a file is not

supported under CICS.

Example

The following example sets the environment variable _EDC_BYTE_SEEK. A child

program is then initiated by a system call. This example illustrates that

environment variables are propagated forward, but not backward.

Using Environment Variables

224 LE/VSE: C Run-Time Programming Guide

EDCXGEV1

 /* EDCXGEV1

 This example shows how environment variables are propagated.

 Part 1 of 2-other file is EDCXGEV2.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 char *x;

 /* set the environment variable _EDC_BYTE_SEEK */

 setenv("_EDC_BYTE_SEEK","Y",1);

 /* set x to the current value of _EDC_BYTE_SEEK */

 x = getenv("_EDC_BYTE_SEEK");

 printf("edcxgev1 _EDC_BYTE_SEEK = %s\n",

 (x != NULL) ? x : "undefined");

 /* call the child program */

 system("edcxgev2");

 /* set x to the current value of _EDC_BYTE_SEEK */

 x = getenv("_EDC_BYTE_SEEK");

 printf("edcxgev1 _EDC_BYTE_SEEK = %s\n",

 (x != NULL) ? x : "undefined");

 return(0);

}

Figure 46. Environment Variables Example-Part 1

Using Environment Variables

Chapter 21. Using Environment Variables 225

EDCXGEV2

 The preceding program produces the following output:

edcxgev1 _EDC_BYTE_SEEK = Y

edcxgev2 _EDC_BYTE_SEEK = Y

edcxgev2 _EDC_BYTE_SEEK = undefined

edcxgev1 _EDC_BYTE_SEEK = Y

 /* EDCXGEV2

 This example shows how environment variables are propagated.

 Part 2 of 2-other file is EDCXGEV1.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 char *x;

 /* set x to the current value of _EDC_BYTE_SEEK */

 x = getenv("_EDC_BYTE_SEEK");

 printf("edcxgev2 _EDC_BYTE_SEEK = %s\n",

 (x != NULL) ? x : "undefined");

 /* clear the Environment Variables Table */

 clearenv();

 /* set x to the current value of _EDC_BYTE_SEEK */

 x = getenv("_EDC_BYTE_SEEK");

 printf("edcxgev2 _EDC_BYTE_SEEK = %s\n",

 (x != NULL) ? x : "undefined");

 return(0);

}

Figure 47. Environment Variables Example-Part 2

Using Environment Variables

226 LE/VSE: C Run-Time Programming Guide

Chapter 22. Using the System Programming C Facilities

Note on Documentation

Chapter 22, “Using the System Programming C Facilities” and Chapter 23,

“Library Functions for the System Programming C Facilities” explain how to

use the system programming C (SPC) facilities with LE/VSE. Note that this

support is also available with the VSE C Run-Time Support of z/VSE (which

is a subset of LE/VSE).

When C applications are compiled, many routines are needed to support the

LE/VSE C Run-Time environment that are not included in your executable phase.

These routines, which are in the C Run-Time Library, are dynamically loaded at

run time. This reduces the size of the loaded phase to its practical minimum and

provides for the sharing of C Run-Time library code by allowing its placement in

the Shared Virtual Area.

The C Run-Time Library provides the environment and services that make LE/VSE

C Run-Time ANSI-compatible. It sets up the environment, performing such

services as error handling, low-level storage management and run-time option

parsing, and contains the ANSI C library functions provided by LE/VSE. The

library also provides an environment suitable for using Debug Tool/VSE,

LE/VSE’s full-screen debugging tool; for the ctest.h, cdump(), csnap(), and

ctrace() library functions; and for the performance of interlanguage calls among

the many languages that LE/VSE supports.

There are, however, some situations in which the library is either not desired or

not available. In some supported environments there may be specific cases, such as

system exit routines, where there is no vehicle for locating or loading the dynamic

library or the overhead of doing so may make its use impractical.

LE/VSE makes the use of the C Run-Time Library optional. Note that without the

library, most of the services it provides are not available. For example, there is no

support for Debug Tool/VSE; the ctest.h, cdump(), csnap(), and ctrace() library

functions; interlanguage call facilities; or the specification of options at run-time;

support for the RENT

1 compiler option and for most functions normally provided

by the C Run-Time Library, including the C file system and the mathematical

functions.

System programming facilities enable you to run applications without the C

Run-Time Library, and to:

v Use a subset of the C language to develop specialized applications that do not

require the C Run-Time Library on the machines where the application will run.

For more information on this type of application, see “Creating Freestanding

Applications” on page 229.

v Use C as an assembler language alternative, such as for writing exit routines.

For more information on this type of application, see “Creating System Exit

Routines” on page 234.

1. Except in freestanding applications described in “Initializing a Freestanding Application” on page 230

© Copyright IBM Corp. 1995, 2005 227

v Develop applications featuring a persistent C environment, where a C

environment is created once and used repeatedly for C function execution.

For more information on this type of application, see “Creating and Using

Persistent C Environments” on page 238.

v Develop co-routines using a two-stack model, as used in client-server style

applications. In this style, the user application calls upon the applications server

to perform services independently of the user and then returns to the user.

For more information on this type of application, see “Developing Services in

the Application Service Routine Environment” on page 242.

Note: Using the decimal data type and its related functions (decabs(), decchk(),

and decfix()) without the C Run-Time Library is not supported.

Using Functions in the System Programming C Environment

The following functions are available in the SPC environment:

v The following built-in functions provided by the C/VSE Compiler;:

Mathematical abs(), fabs()

Memory manipulation memchr(), memcmp(), memcpy(), memset(), cds(),

cs()

String operations strcat(), strchr(), strcmp(), strcpy(),

strlen(), strrchr()

The built-in versions of these functions are available only if the appropriate

header file (string.h, math.h, or stdlib.h) is included in the source file. The use

of these functions is described in the LE/VSE C Run-Time Library Reference.

v The memory management functions, including complete support for:

– The malloc() function

– The calloc() function

– The realloc() function

– The free() function

– The HEAP run-time option
v The exit() function

v The sprintf() function.

Additional memory management functions are available in the system

programming C environment, as follows:

__4kmalc() to allocate page-aligned storage

__24malc() to allocate storage below the 16MB (where MB is 1048576 bytes)

line in ESA systems even when HEAP(ANYWHERE) is specified.

Storage allocated by these functions is not part of the heap, so freeing it is your

responsibility (using free()); it is not freed when the environment is terminated.

In this environment, low-level memory management functions and contents

supervision (loading and deleting executable code) are supported by low-level

routines that you can replace to support non-standard environments. This is

described in “Tailoring the System Programming C Environment” on page 255.

SPC Facilities

228 LE/VSE: C Run-Time Programming Guide

System Programming C Facility Considerations and Restrictions

When using any system programming C environment, consider the following:

v The fetch() function is not supported when you are running in a system

programming C environment. You can use the EDCXLOAD routine, as described in

“EDCXLOAD” on page 259, to simulate some of the functionality of the fetch()

function.

v The DLI parameter list established by the #pragma runopts(PLIST(DLI)) directive

is not supported in any of the system programming environments. However,

this does not preclude the use of DLI within these environments, because the

registers upon entry are available using the __xregs() function and ctdli is

bound statically. For more information on __xregs(), refer to “__xregs — Get

Registers on Entry” on page 265.

v Interlanguage calls to COBOL and PL/I are not supported.

v SPC is not supported under CICS.

v The only run-time options supported under the system programming C

environment ares STACK and HEAP.

v Redirection of standard streams is not supported.

v The default value for STACK is the minimum size required to start the C

program. (This default is different from the non-systems programming C

environments.) If a size is specified, that actual value is used, provided it is large

enough. If the value specified is smaller than the requirements for the program,

the required value is used.

v Exception handling is not supported.

v The POSIX locale features and coded character set conversion routines are not

available.

Creating Freestanding Applications

Freestanding applications are C modules that run without the C Run-Time library.

The initialization routine provided by SPC for building freestanding applications is

EDCXSTRT. The applications can use no C Run-Time library functions.

Certain restrictions apply to freestanding applications initialized by EDCXSTRT.

These restrictions are as follows:

v They cannot perform interlanguage calls, except with assembler language

routines that preserve register 12 and use the IBM-supplied macros for entry and

exit.

v The parameters received by the main() function (normally argc and argv) are

undefined. __xregs() (described in “__xregs — Get Registers on Entry” on page

265) can be used to examine the parameters passed by the calling environment.

v They cannot do arithmetic using long double variables on pre-XA machines (that

is, on machines that do not support the DXR instruction).

Creating Modules without CEESTART

In many of the environments described in this chapter, the initialization normally

performed by LE/VSE is replaced by special-purpose routines that are tailored to

the specific requirements of the type of application. This requires replacing the

initialization routine (CEESTART) normally used by LE/VSE.

SPC Facilities

Chapter 22. Using the System Programming C Facilities 229

When you do not use the System Programming C Facilities, the compiler generates

a CEESTART CSECT (control section) whenever a main() or fetchable function is

encountered in the source file. With the NOSTART compiler option, you can suppress

the generation of CEESTART for source files that contain a main() function where

this is required. In a system programming C environment, you must compile using

the NOSTART option. The object modules created will then be suitable for inclusion

in applications that use the alternative initialization routines described in this

chapter.

Including an Alternative Initialization Routine

When NOSTART is used to suppress the generation of CEESTART, an alternative

initialization routine must be explicitly included in the executable phase by the

user at Link Edit. Use the Linkage Editor INCLUDE and ENTRY control statements.

For example, you can use the following linkage editor statements to specify

EDCXSTRT as an alternative initialization routine:

 The alternative initialization routines are in the LE/VSE library.

Another example of specifying alternative initialization is shown in Figure 50 on

page 231.

Initializing a Freestanding Application

EDCXSTRT must be explicitly included in the executable phase and specified as

the executable phase entry point.

Under this environment, only the following library routines are supported:

v Built-in compiler functions. For a list of these functions, refer to the table on

page on page 228.

v Memory management routines, including malloc(), calloc(), realloc(), and

free().

v The exit() and sprintf() functions.

v The __4kmalc() and __24malc() functions.

The value returned to the host system will be the return value from main().

The RENT compiler option is supported in this environment.

Building Freestanding Applications

The routine to support this function (EDCXSTRT) is a CEESTART replacement

(described in “Creating Modules without CEESTART” on page 229) in your

module. Therefore, it must be explicitly included ahead of your module at link

edit.

A simple freestanding routine is shown in Figure 49 on page 231.

//OPTION LINK

 PHASE phase_name

 INCLUDE EDCXSTRT

 INCLUDE EDC0XSPC

 INCLUDE main_function

 ENTRY EDCXSTRT

Figure 48. Specifying Alternative Initialization at Link Edit

SPC Facilities

230 LE/VSE: C Run-Time Programming Guide

EDCJL084

 This routine is compiled with the NOSTART option and link edited using control

statements shown in Figure 50.

Note: EDC0XSPC is an include book which includes the modules required for

most SPC programs.

Figure 51 on page 232 shows how to compile and link a freestanding program.

int main(void)

{

 int x = 1;

 x = x + 10;

 return(x);

}

Figure 49. Sample Freestanding Routine

 ACTION NOMAP

 PHASE CSPC1,*

 INCLUDE EDCXSTRT

 INCLUDE EDC0XSPC

 INCLUDE

.

.

.

(Object deck)

.

.

.

 ENTRY EDCXSTRT

Figure 50. Link Edit Control Statements Used to Build a Freestanding Routine

SPC Facilities

Chapter 22. Using the System Programming C Facilities 231

EDCJN018

Special Considerations for Reentrant Phases

A simple freestanding routine is shown in Figure 52. To develop a reentrant phase,

this routine must be compiled with both the RENT (because the phase contains

writable static at �1�) and NOSTART (because this is a system programming

environment) compiler options. This routine uses the exit() function (�2�), which

is normally part of the C Run-Time library. Like sprintf(), it is available to

freestanding routines without requiring the LE/VSE run-time library.

EDCJL086

 The JCL required to build and execute this routine is shown in Figure 53 on page

233.

* $$ JOB JNM=CSPC1,LDEST=(*,uid),PDEST=(*,uid),CLASS=Z

// JOB CSPC1

// LIBDEF *,SEARCH=(MY.LIB,PRD2.DBASE,PRD2.SCEEBASE)

// LIBDEF PHASE,CATALOG=MY.LIB

// OPTION CATAL,NODUMP

 ACTION NOMAP

 PHASE CSPC1,*

 INCLUDE EDCXSTRT

 INCLUDE EDC0XSPC

// EXEC EDCCOMP,SIZE=EDCCOMP,PARM=’NOSTART’

int main(void)

{

 int x = 1;

 x = x + 10;

 return(x);

}

/*

// LIBDEF *,SEARCH=PRD2.SCEEBASE

// EXEC PGM=LNKEDT

/&

* $$ EOJ

Figure 51. Compile and Link

main()

{

 static int i[5]={0,1,2,3,4}; �1�

 exit(320+i[1]); �2�

}

Figure 52. Sample Reentrant Freestanding Routine

SPC Facilities

232 LE/VSE: C Run-Time Programming Guide

EDCJN019

 The following notes refer to Figure 53.

�1� The alternative initialization routine (EDCXSTRT in this example) must be

included explicitly in the module. If this is not the first CSECT in the

module, it must be explicitly named as the module entry point.

�2� EDCXEXIT must be explicitly included if the exit() function is used in the

application.

�3� The routine EDCRCINT must be explicitly included in the module if the RENT

compiler option is used. No error will be detected at load time if this

routine is not explicitly included. At execution time, abend 2106, reason

code 7205, will result if EDCRCINT is required but not included.

�4� The LE/VSE prelinker must be used for modules compiled with the RENT

compiler option.

�5� The output from the prelinker is made available to the linkage editor.

�6� Because the resultant phase is freestanding, the run-time libraries are not

required. The LIBDEF statement removes these libraries.

* $$ JOB JNM=CSPCRENT,LDEST=(*,uid),PDEST=(*,uid),CLASS=Z

// JOB CSPCRENT

// LIBDEF *,SEARCH=(MY.LIB,PRD2.DBASE,PRD2.SCEEBASE)

// LIBDEF PHASE,CATALOG=MY.LIB

// OPTION CATAL,NODUMP

 ACTION NOMAP

 PHASE CSPCRENT,*

 INCLUDE EDCXSTRT �1�

 INCLUDE EDCXEXIT �2�

 INCLUDE EDCRCINT �3�

 INCLUDE EDCKSMSK

 INCLUDE EDCXFREE

 INCLUDE EDCXGET

 INCLUDE EDCX4KGT

 INCLUDE EDCXABND

 INCLUDE EDCXBTCA

 INCLUDE EDCXCEE

 INCLUDE EDCXHEAP

 INCLUDE EDCXHFRE

 INCLUDE EDCXHGET

 INCLUDE EDCXOBJP

 INCLUDE EDCXTOVF

 INCLUDE CEESG003

// EXEC EDCCOMP,SIZE=EDCCOMP,PARM=’/NOSTART RENT’

main()

{

 static int i[5]={0,1,2,3,4};

 exit(320+i[1]);

}

/*

// EXEC PGM=EDCPRLK �4�

// EXEC PGM=LNKEDT �5�

// LIBDEF *,SEARCH=(MY.LIB) �6�

// EXEC PGM=CSPCRENT

// EXEC PGM=LISTLOG

/&

* $$ EOJ

Figure 53. Building and Running a Reentrant Freestanding Routine

SPC Facilities

Chapter 22. Using the System Programming C Facilities 233

Table 36 lists the parts used for freestanding applications and their function and

location.

 Table 36. Parts Used for Freestanding Applications

Part Name Function Inclusion in Executable Phase Location

 Notes

EDCXSTRT This module is the mainline. 1 This CSECT must be the

module entry point.

Member of

PRD2.SCEEBASE

EDCXSPRT System programming version of

sprintf().

2 Member of

PRD2.SCEEBASE

EDCXEXIT System programming version of exit(). 2 Member of

PRD2.SCEEBASE

EDCXMEM System programming version of

malloc(), calloc(), realloc(), free(),

__4kmalc(), and __24malc().

2 Member of

PRD2.SCEEBASE

EDCRCINT This must be included if the compiler

option RENT is to be used.

2 Member of

PRD2.SCEEBASE

Notes:

1 This module must be explicitly included in the Executable Phase using the VSE INCLUDE link edit control

statement.

2 This module must be explicitly included if you want to use the system programming version of the

function.

Creating System Exit Routines

LE/VSE C Run-Time allows the creation of routines that have no environmental

requirements on entry except:

v Register 13 must point to a 72-byte save area

v Register 14 must contain the return address

v Register 15 must contain the entry address.

There is no requirement on the name of the entry point (that is, it does not have to

be main()), so several different entry points, with names specified by the calling

environment, can be combined in the same executable phase.

C routines that do not require the LE/VSE environment should specify:

#pragma environment(function-name)

This pragma causes the compiler to generate a different prolog for the specified

function. The prolog contains the instructions at the beginning of the routine that

perform the housekeeping necessary for the function to run, including allocation of

the function’s automatic storage. This prolog will set up a C environment sufficient

for both the function in which it is specified and any function that may be called.

Called functions should not specify this pragma, unless they are called elsewhere

without a C environment present.

The RENT compiler option is not supported in this environment; if you require

reentrant system exit routines, the routine must be naturally reentrant. See LE/VSE

C Run-Time Library Reference for more information about reentrancy.

System exit routines can be linked with their callers or dynamically loaded and

invoked.

SPC Facilities

234 LE/VSE: C Run-Time Programming Guide

Building System Exit Routines

The PRD2.SCEEBASE object library must be available at link-edit time. You should

include EDCXENV first or explicitly name the entry point with an ENTRY statement.

An Example of a System Exit

The following C program shown in Figure 54 is an example of a system exit

routine called by assembler program CSPCEX1 shown in Figure 55 on page 236.

Figure 56 on page 236 shows an example of the JCL required to compile, link, and

execute the sample exit.

EDCJN020

 The following note refers to Figure 54.

�1� The #pragma environment directive sets up an entry point CSPCEX2.

#pragma environment(cspcex2) �1�

#include <spc.h>

#include <string.h>

int cspcex2()

{

 void **parm;

 short parmlen;

 char arg[20];

 parm = (void *)__xregs(1);

 memset(arg, ’\0’, sizeof(arg));

 memcpy(arg, (char *)*parm, 4);

 if (strcmp(arg, "fred") == 0)

 exit(0);

 else

 exit(2);

}

Figure 54. System Exit Example—C

SPC Facilities

Chapter 22. Using the System Programming C Facilities 235

EDCJN021

EDCJN022

CSPCEX1 CSECT

 USING *,15

 STM 14,12,12(13)

*

 ST 13,SAVEAREA+4 Backchain save area

 LA 13,SAVEAREA Activate mine

 DROP 15

*

 BALR 3,0

 USING *,3

*

 WTO ’In CSPCEX1’

 CALL CSPCEX2,STRING

 LTR 15,15

 BZ OK

 WTO ’Returned to CSPCEX1 with RC ¬= 0’

 B EXIT

OK WTO ’Returned to CSPCEX1 with RC = 0’

*

EXIT L 13,4(,13) Address of caller’s save area

 LM 14,12,12(13)

 SR 15,15

 BR 14

*

 DS 0F

SAVEAREA DS CL72

STRING DC C’fred’

 END

Figure 55. System Exit Example—Assembler

* $$ JOB JNM=CSPCEX1,LDEST=(*,uid),PDEST=(*,uid),CLASS=5

// JOB CSPCEX1

// LIBDEF *,SEARCH=(MY.LIB,PRD2.DBASE,PRD2.SCEEBASE)

// LIBDEF PHASE,CATALOG=MY.LIB

// OPTION DECK,NODUMP

// DLBL IJSYSPH,’PUNCH.OUTPUT’,0,SD

// EXTENT SYSPCH,SYSWK2,1,0,10000,100

ASSGN SYSPCH,DISK,VOL=SYSWK2,SHR

// EXEC EDCCOMP,SIZE=EDCCOMP,PARM=’/NAME(CSPCEX2), NOSTART’

.

.

.

(C source code from

Figure 54 on page 235)

.

.

.

/*

CLOSE SYSPCH,FED

Figure 56. System Exit Example—JCL (Part 1 of 2)

SPC Facilities

236 LE/VSE: C Run-Time Programming Guide

Table 37 lists the parts used by exit routines, and their function and location.

 Table 37. Parts Used by Exit Routines

Part Name Function Inclusion in Executable Phase Location

 Notes

EDCXENV Extended prolog code for exits that do

not require the library.

1 Member of

PRD2.SCEEBASE

EDCXSPRT System programming version of

sprintf()

2 Member of

PRD2.SCEEBASE

EDCXEXIT System programming version of exit() 2 Member of

PRD2.SCEEBASE

// DLBL IJSYSIN,’PUNCH.OUTPUT’,0,SD

// EXTENT SYSIPT

ASSGN SYSIPT,DISK,VOL=SYSWK2,SHR

// EXEC LIBR,PARM=’ACCESS SUBLIB=MY.LIB’

CLOSE SYSIPT,SYSRDR

/*

// DLBL IJSYSPH,’PUNCH.OUTPUT’,0,SD

// EXTENT SYSPCH,SYSWK2,1,0,10000,100

ASSGN SYSPCH,DISK,VOL=SYSWK2,SHR

// EXEC ASMA90,SIZE=512K,PARM=’EXIT(LIBEXIT(EDECKXIT))’

 PUNCH ’CATALOG CSPCEX1.OBJ REPLACE=YES’

.

.

.

(Assembler source code from

Figure 55 on page 236)

.

.

.

/*

CLOSE SYSPCH,FED

// DLBL IJSYSIN,’PUNCH.OUTPUT’,0,SD

// EXTENT SYSIPT

ASSGN SYSIPT,DISK,VOL=SYSWK2,SHR

// EXEC LIBR,PARM=’ACCESS SUBLIB=MY.LIB’

CLOSE SYSIPT,SYSRDR

/*

// OPTION CATAL,NODECK,NODUMP

// LIBDEF *,SEARCH=(MY.LIB,PRD2.SCEEBASE)

/*

// OPTION CATAL,NODECK,NODUMP

 ACTION NOMAP

 PHASE CSPCEX1,*

 INCLUDE CSPCEX1

 INCLUDE EDCXENV

 INCLUDE EDCXREGS

 INCLUDE EDCXEXIT

 INCLUDE EDC0XSPC

// EXEC PGM=LNKEDT

// LIBDEF *,SEARCH=(MY.LIB)

// EXEC PGM=CSPCEX1

// EXEC PGM=LISTLOG

/&

* $$ EOJ

Figure 56. System Exit Example—JCL (Part 2 of 2)

SPC Facilities

Chapter 22. Using the System Programming C Facilities 237

Table 37. Parts Used by Exit Routines (continued)

Part Name Function Inclusion in Executable Phase Location

 Notes

EDCXMEM System programming version of

malloc(), calloc(), realloc(), free(),

__4kmalc(), and __24malc().

2 Member of

PRD2.SCEEBASE

Notes:

1 This module must be explicitly included in the Executable Phase using the VSE INCLUDE link-edit control

statement.

2 This module must be explicitly included if you want to use the system programming version of the

function.

Creating and Using Persistent C Environments

Three routines are available to create and use a persistent C environment. These

routines are used by an assembler language application that needs a C

environment available to support the C functions (not including main()) that it

calls.

An initialization routine, EDCXHOTC, is called to create a C environment. This call

returns a handle that can be used (through EDCXHOTU) to call C subroutines. The

environment persists until it is explicitly terminated by calling EDCXHOTT.

The routines are:

EDCXHOTC Sets up a persistent C environment (no run-time library)

EDCXHOTU Runs a function in a persistent C environment

EDCXHOTT Terminates a persistent C environment

The functions that act as entry points for these routines are __xhotc(), __xhotu(),

and __xhott(), respectively. For more information on these functions, refer to

Chapter 23, “Library Functions for the System Programming C Facilities,” on page

263.

The RENT compiler option is not supported in the persistent environment described

in this chapter.

Exception handling is not supported in persistent C environments.

Building Applications That Use Persistent C Environments

There are no special restrictions for building applications that use persistent C

environments.

An Example of Persistent C Environments

The assembler routine shown in Figure 58 on page 239 illustrates the use of this

feature to call a C function shown in Figure 57 on page 239.

SPC Facilities

238 LE/VSE: C Run-Time Programming Guide

EDCJL089

 This C function accepts two parameters: an integer and a printf()-style formatting

string. The formatting string has a maximum length of 300 bytes; it is terminated

by an @ if shorter. This routine must use OS linkage (Figure 57�1�). The routine

scans the formatting string for the terminator, copies it to a local work area, adds a

trailing newline and NULL character, and prints the integer according to the

formatting string.

The structure of the assembler caller is shown in Figure 58.

EDCJL090

#pragma linkage(crtn,OS) �1�

#include <string.h>

#include <stdio.h>

#define INSIZE 300 /* the maximum length we’ll tolerate */

void crtn(int p1,char *p2,char *outstring) {

 char hold[2+INSIZE];

 char *endptr;

 int i;

 endptr=memchr(p2,’@’,INSIZE);

 if (NULL==endptr)

 i=INSIZE; /* no ender? use max */

 else

 i=endptr-p2; /* length of stuff before it */

 memcpy(hold,p2,i); /* copy formatting string */

 hold[i++]=’\n’; /* add a new-line.. */

 hold[i]=’\0’; /* ..and a null terminator */

 sprintf(outstring,hold,p1); /* print it out */

 return; /* and return */

}

Figure 57. Example Function Used in a Persistent C Environment

ENVA CSECT

ENVA AMODE ANY

ENVA RMODE ANY

 STM R14,R12,12(R13) �1�

 LR R3,R15

 USING ENVA,R3

 LA R0,DSALEN

 GETVIS LENGTH=(R0)

 LTR R15,R15

 BZ GOTSTOR

 WTO ’ENVA - GETVIS failed’

 B EXIT

Figure 58. Using a Persistent C Environment (Part 1 of 3)

SPC Facilities

Chapter 22. Using the System Programming C Facilities 239

GOTSTOR ST R13,4(,R1)

 LR R13,R1

 USING DSA,R13

 WTO ’In ENVA’

 LA R4,HANDLE �2�

 LA R5,STKSIZE

 LA R6,STKLOC

 STM R4,R6,PARMLIST

 OI PARMLIST+8,X’80’

 WTO ’Calling EDCXHOTC’

 LA R1,PARMLIST

 L R15,=V(EDCXHOTC)

 BALR R14,R15

 LA R9,10 �3�

LOOP DS 0H

 ST R9,LOOPCTR �4�

 LA R4,HANDLE

 LA R5,USEFN

 LA R6,LOOPCTR

 LA R7,FMTSTR1

 LA R8,OUTSTRING

 STM R4,R8,PARMLIST

 OI PARMLIST+16,X’80’

 MVC OUTSTRING,CLEAR

 WTO ’Calling EDCXHOTU’

 LA R1,PARMLIST

 L R15,=V(EDCXHOTU)

 BALR R14,R15

 MVC WTOLIST+4(L’OUTSTRING),OUTSTRING

 WTO MF=(E,WTOLIST)

 LA R7,FMTSTR2 �5�

 LA R8,OUTSTRING

 STM R4,R8,PARMLIST

 OI PARMLIST+16,X’80’

 MVC OUTSTRING,CLEAR

 WTO ’Calling EDCXHOTU’

 LA R1,PARMLIST

 L R15,=V(EDCXHOTU)

 BALR R14,R15

 MVC WTOLIST+4(L’OUTSTRING),OUTSTRING

 WTO MF=(E,WTOLIST)

 BCT R9,LOOP

 ST R4,PARMLIST �6�

 OI PARMLIST,X’80’

 WTO ’Calling EDCXHOTT’

 LA R1,PARMLIST

 L R15,=V(EDCXHOTT)

 BALR R14,R15

 LR R1,R13 �7�

 L R13,4(0,R13)

 LA R0,DSALEN

 FREEVIS ADDRESS=(R1),LENGTH=(R0)

Figure 58. Using a Persistent C Environment (Part 2 of 3)

SPC Facilities

240 LE/VSE: C Run-Time Programming Guide

The following notes refer to Figure 58 on page 239.

�1� This routine is entered with standard linkage conventions. It saves the

registers in the save area pointed to by register 13, acquires a dynamic

storage area for its own use, and chains the save areas together.

�2� A C environment is created by calling EDCXHOTC. The parameter list for this

call is the address of the handle (for the persistent C environment created),

the address of a word containing the initial stack size, and the address of a

word containing the initial stack location (0 for below the 16MB line and 1

for above). This parameter list uses the normal OS linkage format.

�3� The routine loops 10 times calling the C function crtn twice each time

through the loop.

�4� The parameter list for the first call is the address of the handle, the address

of a word pointing to the function, and the parameters to be received by

the function. EDCXHOTU is called. This causes the specified C function,

crtn() to be given control with register 1 pointing to the remaining

parameters, LOOPCTR and FMTSTR1.

�5� The C function is called again, this time with FMTSTR2 as the second

parameter.

EXIT WTO ’Leaving ENVA’

 LM R14,R12,12(R13)

 SR R15,R15

 BR R14

USEFN DC V(CRTN)

STKSIZE DC A(4096)

STKLOC DC A(1)

FMTSTR1 DC C’1st value of loopctr is %i@’

FMTSTR2 DC C’value on 2nd call is %i@’

CLEAR DC C’ ’

OUTSTRING DS CL70

 LTORG

WTOLIST WTO (’ X

 ’),MF=L

DSA DSECT , The dynamic storage area

SAVEAREA DS 18A The save area

PARMLIST DS 5A

HANDLE DC A(0)

LOOPCTR DC A(1)

DSALEN EQU *-DSA

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END ENVA

Figure 58. Using a Persistent C Environment (Part 3 of 3)

SPC Facilities

Chapter 22. Using the System Programming C Facilities 241

�6� When the loop ends, EDCXHOTT is called to terminate the environment

created at �2�.

�7� The routine terminates by freeing its dynamic storage area and returning to

its caller.

 Table 38 lists the parts used by persistent environments, and their function and

location.

 Table 38. Parts Used by Persistent Environments

Part Name Function Inclusion in Executable Phase Location

 Notes

EDCXHOTC This module is called to set up a C

environment with no Library.

 Member of

PRD2.SCEEBASE

EDCXHOTT This module is called to terminate a C

environment set up by EDCXHOTC.

 Member of

PRD2.SCEEBASE

EDCXHOTU This module is called to use a C

environment set up by EDCXHOTC.

 Member of

PRD2.SCEEBASE

EDCXSPRT System programming version of

sprintf().

1 Member of

PRD2.SCEEBASE

EDCXEXIT System programming version of exit(). 1 Member of

PRD2.SCEEBASE

EDCXMEM System programming version of

malloc(), calloc(), realloc(), free(),

__4kmalc(), and __24malc().

1 Member of

PRD2.SCEEBASE

Notes:

1 This module must be explicitly included if you want to use the system programming version of the

function.

Developing Services in the Application Service Routine Environment

The purpose of an application service routine environment is to allow the

development, using LE/VSE, of services that can be developed, tested, and

packaged independently of their intended users. You can:

v Isolate the service code from its user

v Specify and enforce a clearly defined Application Programming Interface (API)

between the user (another application program) and the service routine

v Share server code among more than one (perhaps different) user applications

simultaneously

v Enhance or maintain the service routine code with no disruption to its various

user applications.

In this environment, a service application is developed as a C main() function

together with any functions it may call, and packaged as a complete load module.

This load module, if it is reentrant, can be freely installed in the SVA and shared

by all of its users.

To provide the service to a user application, the developer of the service must offer

small assembler language stub routines that are link edited with the user code.

These stub routines use services provided by the System Programming Facilities to

load or locate the server code and pass messages to it for execution. Examples of

these stub routines are shown in “Constructing User-Server Stub Routines” on

page 255.

SPC Facilities

242 LE/VSE: C Run-Time Programming Guide

Using Application Service Routine Control Flow

In this section examples are based on a service routine that manages a storage

queue. This server might be used by languages that do not support dynamic

memory allocation, or by applications that do not want to concern themselves with

the management of such data structures. The operations supported by this service

routine are:

v Initialize

v Terminate

v Add an element to the head of the queue (last in, first out)

v Add an element to the tail of the queue (first in, first out)

v Get the element at the head of the queue

The user routine shown in the example is written in C.

Service Routine User Perspective

A conversation is initiated when a user routine calls a startup routine supplied by

the author of the service to establish a connection between the user and the server.

This routine returns a handle to the user that represents the server environment.

User routines may establish connections with many different services or many

times with the same server as long as the needed resources, principally memory,

are available in the system. Each connection has a different handle, and it is the

user routine’s responsibility to keep track of them.

Once the user has initialized the server, it uses other server-supplied stub routines

to send requests (messages) to the server for action. One of the parameters to this

routine will be the handle returned by the initialize call. These request stubs would

typically return a feedback code to indicate success or failure as well as any other

information requested. The server defines the parameter list to be passed and the

feedback codes to be given to the user.

When the user is finished with the server, it calls yet another stub routine to

terminate the server.

This structure is illustrated in a sample user routine shown in Figure 59 on page

244:

SPC Facilities

Chapter 22. Using the System Programming C Facilities 243

EDCJL091:

 The following notes refer to Figure 59.

�1� The user routine sets up a variable that will be used to hold the handle

returned by the server. The form taken by this handle is up to the supplier

of the service, but a fullword (4 bytes) should be regarded as typical.

�2� The user routine calls the initialize routine to set up the connection

between the user routine and the server.

�3� The user routine adds three strings to the queue. In this example, the first

character of the string indicates the order in which the user expects to

retrieve the strings.

�4� The user enters a loop in which the strings are retrieved from the queue.

�5� The user routine prints out the strings passed back by the call to the server.

If there is no string remaining in the queue a null string (zero length) is

returned.

�6� Before ending, the user routine closes down the server.

#pragma linkage(qmginit,OS)

#pragma linkage(qmglifo,OS)

#pragma linkage(qmgfifo,OS)

#pragma linkage(qmgget,OS)

#pragma linkage(qmgterm,OS)

 /* Example User-Service Routine application */

void main () {

int handle; �1�

int feedback, chlen, i;

char ch[100];

printf("Initializing the server\n");

qmginit(&handle); �2�

printf("Server initialized. Handle is %x\n", handle);

 /* Feed some strings to the server */ �3�

printf("Feeding first string to server\n");

qmglifo(handle, &feedback, 17, "2 Sample string 1");

printf("Return code is %d\n", feedback);

printf("Feeding second string to server\n");

qmglifo(handle, &feedback, 23, "1 Another sample string");

printf("Return code is %d\n", feedback);

printf("Feeding third string to server\n");

qmgfifo(handle, &feedback, 20, "3 Yet another string");

printf("Return code is %d\n", feedback);

 /* Get the strings back, print out length and value */

printf("Getting the strings back from server\n");

for (i=0; i<3; i++){ �4�

 qmgget(handle, &feedback, &chlen, ch);

 printf("String is \"%.*s\".Return code is %d\n",chlen,ch,feedback); �5�

}

 /* Terminate the server */

printf("Terminating the server\n");

qmgterm(handle); �6�

}

Figure 59. Example User Routine

SPC Facilities

244 LE/VSE: C Run-Time Programming Guide

This routine is linked normally with the server-supplied stub routines (described in

“Constructing User-Server Stub Routines” on page 255).

Service Routine Perspective

A service routine is a complete, stand alone module that runs in its own C

environment. Its environment is created on demand by user application routines

that call it using stub routines supplied by the server. When this happens, the

server code enters at its main() entry point and, typically, goes into a loop that

contains a function call to get the next to-do. One possible to-do is terminate; when

this command is received the server should exit() or return from its main()

function. The environment created when the server was started terminates and all

resources held by the server are freed (except storage acquired by _ _24malc() or

_ _4kmalc(), as described in “__24malc() — Allocate Storage below 16MB Line” on

page 266 and “__4kmalc() — Allocate Page-Aligned Storage” on page 267.

This structure is illustrated in a sample user routine shown in Figure 60:

EDCJL092:

#include <spc.h> �1�

#include <stdlib.h>

#include <string.h>

#define LIFO 1 �2�

#define FIFO 2

#define GET 3

#define TERM -1

int main(void) { �3�

 int retcode=0;

 /* data structures to manage the queue */

 struct queue_entry { �4�

 struct queue_entry *next;

 int length;

 char val[1];

 };

 struct queue_entry *head;

 struct queue_entry *tail;

 struct { �5�

 int code;

 union info *plist;

 } *req;

Figure 60. Example Application Service Routine (Part 1 of 3)

SPC Facilities

Chapter 22. Using the System Programming C Facilities 245

union info { �6�

 struct {

 int *length;

 char *string;

 } lifo;

 struct {

 int *length;

 char *string;

 } fifo;

 struct {

 int *length;

 char *string;

 } get;

 };

 /* initialize the queue pointers */

 head = NULL; �7�

 tail = NULL;

 /* the main processing loop goes on until a termination signal

 is sent */

 for(;;) { �8�

 union info *info;

 int length;

 char *string;

 struct queue_entry *ent;

 /* get a message from the user routine */

 req=__xsrvc(retcode); �9� �18�

 info = req->plist; �10�

 switch(req->code) { �11�

 case LIFO: { �12�

 length=*(*info).lifo.length;

 string= (*info).lifo.string;

 ent = malloc(sizeof *ent - 1 + length); �13�

 memcpy((*ent).val,string,length);

 __xsacc(0); �14�

 (*ent).length=length;

 (*ent).next=head;

 head=ent;

 if (NULL==tail) tail=ent;

 break;

 }

 case FIFO: { �15�

 length=*(*info).fifo.length;

 string= (*info).fifo.string;

 ent = malloc(sizeof *ent - 1 + length);

 memcpy((*ent).val,string,length);

 __xsacc(0);

 (*ent).length=length;

 (*ent).next=NULL;

 if (NULL==head) head=ent;

 else (*tail).next=ent;

 tail=ent;

 break;

 }

Figure 60. Example Application Service Routine (Part 2 of 3)

SPC Facilities

246 LE/VSE: C Run-Time Programming Guide

The following notes refer to Figure 60 on page 245.

�1� The server routine should include the appropriate header files. spc.h

contains the function prototypes for the routines that are used to maintain

the conversation between the server routine and the user routine. string.h

is required if string or memory functions are used in the code; this header

file contains the directives necessary to use these built-in functions.

�2� These are the command codes of the requests that can be sent to this server.

�3� The server begins with a main() function. This function gets control when

the user calls QMGINIT.

�4� This server manages an in-storage queue of unstructured elements. It does

this by maintaining a linked list of elements. The structure queue_entry

contains an individual entry; head and tail point to the first and last

entries in the queue.

�5� Requests come to the server in the form of a pointer to a structure

containing a command code (in this case, one of LIFO, FIFO, GET, or TERM)

and a pointer to a parameter list associated with the command code. The

parameter list is what follows HANDLE and FEEDBACK in the calls to QMGLIFO,

QMGFIFO, and QMGGET. Like the command codes, the structure of this

parameter list is established in concert with the stub routines.

�6� In this example, all the commands have exactly the same format. This may

not generally be the case, so a union of the various parameter list formats

is appropriate. Then the interface can be expanded without disrupting

existing code.

�7� Before accepting commands, required initialization is performed.

�8� This server is structured as an endless loop. This loop terminates when a

terminate message sends control to a return statement at �17�.

�9� At this point, the server is ready for work. The call to _ _xsrvc causes the

 case GET: { �15�

 if (NULL==head) {

 *(*info).get.length=0;

 break;

 }

 length = (*head).length;

 string = (*info).get.string;

 memcpy(string,(*head).val,length);

 *(*info).get.length=length;

 __xsacc(0);

 ent=head;

 head=(*ent).next;

 free(ent);

 if (NULL==head) tail=NULL;

 break;

 }

 case TERM: �16�

 return 0;

 default:

 __xsacc(666); �17�

 }

 }

}

Figure 60. Example Application Service Routine (Part 3 of 3)

SPC Facilities

Chapter 22. Using the System Programming C Facilities 247

user routine to resume execution at the place it left off when it last called

the server. The value passed as the parameter is made available to the stub

routines for use as a feedback code. This function will not return until the

user application sends a request (using one of the stub routines, in this

example QMGLIFO, QMGFIFO, QMGGET, or QMGTERM).

�10� Extract the parameters from the structure pointed to by the call to

_ _xsrvc.

�11� Examine the request code sent by the user application.

�12� The LIFO request code is handled here.

�13� These library functions (and many others, the complete list is given in

“Using Functions in the System Programming C Environment” on page

228) are normally available in this environment even though the C

Run-Time Library is not available at run time.

 The amount of storage allocated is the size of the queue entry (defined at

�4�) minus 1 (because the definition of the entry allowed for 1 character of

value) plus the length actually required for the value.

�14� This function should be used to indicate that the server has completed its

use of any data structures (parameters and data areas pointed to by the

parameters) belonging to the user application. The value passed to this

function or the value passed by the next call to __xsrvc() (whichever is

greater in magnitude) will be passed to the stub routine for use as a

feedback code.

�15� The handling of FIFO and GET is similar.

�16� When a terminate request is received, the server returns. This terminates

the loop (at �8�) and the environment set up when the server was first

called.

�17� If the command code is not recognized the server acknowledges the

request and sets a return code that can be analyzed by the stub routine or

the user application.

�18� The server returns to the request for another to-do. The value passed as a

parameter here or the last value passed to __xsacc(), whichever has the

greater magnitude, is passed to the stub routine for use as a feedback code.

 The server is built as a freestanding C application as described in “Creating

Freestanding Applications” on page 229. This routine must be built with EDCXSTRT

as shown in Figure 61 on page 249.

SPC Facilities

248 LE/VSE: C Run-Time Programming Guide

Understanding the Stub Perspective

The stub routines provide the link between the user application and the

application service module. They are responsible for:

v Locating or loading the server code

v Providing the Application Programming Interface (API) seen by the user.

Many choices are available in the design of the API and how single calls in the

user are mapped. For example, the initialize call could accept parameters

governing the behavior of the session being established and pass them to the

server as commands once the server has been initialized. In the example the

interactions are straight forward, the initialize only starts up the server, and the

message calls send single messages, untouched and unexamined, to the server.

There are two kinds of stubs: the initialization stub and the message stubs.

Termination is a special case of a message stub. These stubs are most appropriately

written in assembler so that they can run in any language environment with

minimal performance cost.

The initialization stub is responsible for loading and calling the server. It can use

the low-level storage management and contents supervision routines supplied in

PRD2.SCEEBASE. These routines are described in “Tailoring the System

Programming C Environment” on page 255. The structure of an initialization stub

is shown in Figure 62 on page 250:

* $$ JOB JNM=QMGSERV,LDEST=(*,uid),PDEST=(*,uid),CLASS=Z

// JOB QMGSERV

// LIBDEF *,SEARCH=PRD2.SCEEBASE

// LIBDEF PHASE,CATALOG=MY.LIB

// OPTION CATAL,NODUMP

 ACTION NOMAP

 PHASE QMGSERV,*

 INCLUDE EDCXSTRT

 INCLUDE EDCXMEM

 INCLUDE EDCXSACC

 INCLUDE EDCXSRVC

 INCLUDE EDC0XSPC

 INCLUDE

.

.

.

(Object deck)

.

.

.

/*

// EXEC PGM=LNKEDT

/&

* $$ EOJ

Figure 61. Linking and Installing the Application Service Routine

SPC Facilities

Chapter 22. Using the System Programming C Facilities 249

EDCJL093

QMGINIT TITLE ’SERVER supplied stub to initialize’

QMGINIT CSECT ,

 STM R14,R12,12(R13) �1�

 LR R3,R15

 USING QMGINIT,R3

 USING INPARMS,R1 �2�

 L R6,HANDLE@

 LA R6,0(,R6)

 DROP R1

 LA R0,WALEN length of work area, below the line �3�

 L R15,=V(EDCXGET) GETVIS some storage

 BALR R14,R15

 USING WA,R1

 ST R13,SA+4

 LR R13,R1

 USING WA,R13 This is now our DSA

 LA R1,NAME �4�

 L R15,=V(EDCXLOAD)

 BALR R14,R15 Load the server

 ST R1,PLIST �5�

 MVC PLIST+4(12),PLISTINI

 L R15,=V(EDCXSRVI)

 LA R1,PLIST

 BALR R14,R15

 MVC 0(4,R15),=CL4’QMqm’ eye-catcher �6�

 ST R13,4(,R15) �7�

 ST R15,0(,R6) Save handle in users parameter �8�

 L R13,4(,R13) �9�

 LM R14,R12,12(R13)

 SR R15,R15

 BR R14

PLISTINI DS 0D

 DC A(0),V(EDCXGET,EDCXFREE)

NAME DC CL8’QMGSERV’

INPARMS DSECT

HANDLE@ DS F

WA DSECT

SA DS 18F

PLIST DS 4F

WALEN EQU *-WA

*

Figure 62. Example Server Initialization Stub (Part 1 of 2)

SPC Facilities

250 LE/VSE: C Run-Time Programming Guide

The following notes refer to Figure 62 on page 250.

�1� Stub routines are presumed to have a save area available at the location

pointed to by register 13.

�2� The parameter list passed to stub routines is OS linkage; that is, register 1

points to a list of addresses. In this example, the initialization stub receives

only one parameter, the handle, that gets the address of a control block

representing the environment.

�3� For efficiency, this routine gets a work area that will be used by all the stub

routines. The low level storage management routine EDCXGET, (described in

“EDCXGET” on page 256) is available for this purpose. This area will be

the DSA for this and all other stub routines. It begins with an 18-word save

area for use by routines called by this stub. It will be freed by the

“terminate” stub.

�4� Once a save area is available, EDCXLOAD (described in “EDCXLOAD” on

page 259) is called to load the server.

�5� EDCXSRVI is called to initialize the server. When control is returned from

this call, the server has built a complete environment and has asked for

something to do. It is waiting at �9� in Figure 60 on page 245.

�6� The value returned by EDCXSRVI is the address of a control block that is

used to manage the interface between the user application and the service

application module. The first 3 words (12 bytes) of this control block are

reserved for the exclusive use of the stub routines. The fields following the

first 3 words may not be used by either the stub routines or the user, nor

may their values be altered. In this example, an eye-catcher (often useful for

debugging) is moved into the first word.

�7� The address of the work area acquired for dynamic storage requirements is

moved into the second word. The address of this control block is stored in

the user’s handle.

�8� The address of the control block from EDCXSRVI is placed in the user

routine’s handle. The user routine has no knowledge of the contents or

format of this field; it is simply a token that is passed to other stub routines

to manage the conversation between the user and the service routine.

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 62. Example Server Initialization Stub (Part 2 of 2)

SPC Facilities

Chapter 22. Using the System Programming C Facilities 251

�9� Having initialized the server, the stub returns to the user at �2� in

Figure 59 on page 244.

 Message stubs are responsible for passing requests from the user application to the

service application. Like the initialization stub, they are free to use the low-level

storage management and contents supervision routines supplied with the C

Run-Time Library. An example message stub is shown in Figure 63.

EDCJL094

 The following notes refer to Figure 63.

�1� Like the initialize stub, the message stubs expect a standard save area

pointed to by register 13. The parameters are passed with standard OS

linkage (register 1 pointing to a list of addresses).

�2� The handle contains the value that was placed there by the initialization

QMGLIFO TITLE ’SERVER supplied stub for feeding strings LIFO’

QMGLIFO CSECT

 STM R14,R12,12(R13) �1�

 LR R3,R15

 USING QMGLIFO,R3

 LR R5,R1

 USING INPARMS,R5

 L R6,HANDLE@

 L R6,0(,R6) Point to the handle �2�

 L R1,4(,R6) Point to work area got by QMGINIT �3�

 USING WA,R1

 ST R13,SA+4 Keep savearea passed into us

 LR R13,R1 WA is new savearea

 USING WA,R13

 LA R7,LIFO �4�

 LA R8,INPARMS+8 User parms start at 3rd

 STM R6,R8,PLIST handle, LIFO, Other parms

 LA R1,PLIST

 L R15,=V(EDCXSRVN) �5�

 BALR R14,R15

 L R1,FEEDBK@ �6�

 ST R15,0(,R1)

 L R13,4(,R13) �7�

 L R14,12(R13)

 LM R0,R12,20(R13)

 BR R14

INPARMS DSECT

HANDLE@ DS F

FEEDBK@ DS F

LENGTH@ DS F

STRING@ DS F

WA DSECT

SA DS 18F

PLIST DS 4F

WALEN EQU *-WA

LIFO EQU 1

FIFO EQU 2

GET EQU 3

TERM EQU -1

 REGEQU

 END

Figure 63. Example Server Message Stub

SPC Facilities

252 LE/VSE: C Run-Time Programming Guide

stub at �8� in Figure 62 on page 250. This is the address of the control

block that is used to manage the interface between the user application

and the server.

�3� Recover the address of the stub work area for use as a Dynamic Storage

Area (DSA). This value was saved here by the initialization stub at �7� in

Figure 62 on page 250. The save area back chain field is set according to

usual conventions.

�4� A parameter list consisting of the handle (as returned by EDCXSRVI at �5� in

Figure 62 on page 250 in the initialization stub), code for LIFO, and the

address of the remaining parameters.

�5� Call EDCXSRVN to re-awaken the server. This causes the server to resume

control at �9� in Figure 60 on page 245 in the server. The server has control

until it asks for the next to-do, in this example at �9� in Figure 60 on page

245, again.

�6� The value passed to __xsrvc() appears as the return code from EDCXSRVN.

This value is passed back to the user application in the second parameter.

This is part of the API defined by this particular server, not something inherent in

the user-server relationship.

�7� Control is returned to the user in the normal way.

 This routine uses functions supplied in to load or locate the server code and

initialize its environment.

The routines in the following section are used to create and use a persistent C

environment for a server co-routine, written using C and EDCXSTRT, and callable by

a user application written in any language.

An initialization routine, EDCXSRVI, is called to start up a server. Control returns

from the initialization call with the server code started and waiting for work.

As with the persistent C environment, the initialization call returns a handle that is

used by EDCXSRVN for further communication with the created environment.

EDCXSRVN suspends the execution of the calling routine and sends a message to the

waiting server. When the server completes the function called for by the message

its execution is suspended and the caller of EDCXSRVN resumes.

The server environment is terminated when a Terminate message is sent to the

server.

Establishing a Server Environment

EDCXSRVI

This routine creates an LE/VSE environment for the server part of user-server

application. It is intended that this routine be called by a stub routine supplied by

the server and statically bound with the user application. The stub routine is

responsible for loading the server application code.

Parameters:

1. The address of the entry point of the server code. This must be the address of

the EDCXSTRT entry point.

SPC Facilities

Chapter 22. Using the System Programming C Facilities 253

2. The value to be in R1 when the server entry point is called. This can be used

for communication between the initialization stub and the server mainline; its

value can be retrieved in the server code. EDCXREGS(1) will return a pointer to

this list of parameters.

3. The address of a low-level get-storage routine (meeting the same interface as

EDCXGET, but not necessarily EDCXGET).

4. The address of a low-level free-storage routine (meeting the same interface as

EDCXFREE, but not necessarily EDCXFREE).

Return: When this routine returns the server environment is fully established and

waiting for a message from the user. R15 points to a handle that is used in

subsequent calls to EDCXSRVN to send messages to the server.

Initiating a Server Request

EDCXSRVN

This routine is used by the stub routines that are linked with user application

routines to send a message to an active server in a user-server application.

Parameters:

1. The address of the handle returned by EDCXSRVI.

2. The function code for the function to be performed. The value -1 is used to

indicate that the server should terminate. This value should not be used for any

other purpose.

3. Other parameters, which are passed to the server code.

Return: R15 will contain the return code supplied by the server (as the parameter

to EDCXSACC) for this service.

Accepting a Request for Service

EDCXSACC

This routine operates in the server part of a user-server application. It is used to

indicate acceptance or rejection of the last-requested service.

Parameters:

1. The return code of the last-requested service 0 indicating that the request was

accepted and will be processed.

For more information on EDCXSACC, see “__xsacc() — Accept Request for Service”

on page 265.

Returning Control from Service

EDCXSRVC

This routine operates in the server part of a user-server application. It is used to

indicate completion of the last-requested service and to get information required

for the next service to be performed.

Parameters:

1. The return code for the last-requested service.

For more information on EDCXSRVC, see “__xsrvc() — Return Control from Service”

on page 266.

SPC Facilities

254 LE/VSE: C Run-Time Programming Guide

Constructing User-Server Stub Routines

Part of building a server for use in a user-server environment is the construction of

stub routines that load and initialize the server, pass messages to the server, and

terminate the server. These stub routines are typically written in assembler

language to allow them to be freely called from other environments without regard

to the characteristics of the calling environment.

Building User-Server Environments

To build your server application, follow the rules for building a freestanding

application as described in “Building Freestanding Applications” on page 230.

There are no special considerations for building user applications.

 Table 39. Parts used by/with Application Server Routines

Part Name Function Inclusion in Executable Phase Location

 Notes

EDCXSRVI This module is used by a server-supplied

stub routine to start up a server.

 In the user load module Member of

PRD2.SCEEBASE

EDCXSRVN This module is used by a server-supplied

stub routine to send a service-request

message to a server.

 In the user load module Member of

PRD2.SCEEBASE

EDCXSRVC This module is used by a server to wait

for the next message to process.

 In the server load

module

Member of

PRD2.SCEEBASE

EDCXSACC This module is used by a server to accept

the last message received.

 In the server load

module

Member of

PRD2.SCEEBASE

EDCXSPRT System programming version of

sprintf()

1 Member of

PRD2.SCEEBASE

EDCXEXIT System programming version of exit(). 1 Member of

PRD2.SCEEBASE

EDCXMEM System programming version of

malloc(), calloc(), realloc(), free(),

__4kmalc(), and __24malc().

1 Member of

PRD2.SCEEBASE

Notes:

1 This module must be explicitly included if you want to use the system programming version of the

function.

Tailoring the System Programming C Environment

Depending on the environment under which you want to run your C routines, you

might want to replace some of the following routines for system-specific routines.

To work correctly, your routines should match the interface as documented in this

section.

The routines as supplied by IBM with LE/VSE C Run-Time meet the interface as

documented and are designed for VSE/ESA.

Generating Abends

EDCXABND

This routine is called to generate an abend if there is an internal error during

initialization or termination of a system programming C environment.

SPC Facilities

Chapter 22. Using the System Programming C Facilities 255

Parameter:

R1 The address of the error code and reason code.

 This routine is not provided with a save area. In addition to the linkage registers,

this routine may freely alter registers 2 and 4.

This module must have the entry point name of @@XABND.

EDCJL095:

Getting Storage

EDCXGET

This routine is called to get storage from the operating system.

Parameter:

R0 The requested length, in bytes. If the high-order bit is zero or if the request

was made in 24-bit addressing mode, the storage will be allocated below

the 16M line. If the high-order bit is on and the request is made in 31-bit

addressing mode, storage will be allocated anywhere with a preference for

storage above the 16M line if available.

Return:

R0 The length of the storage block acquired, in bytes.

R1 The address of the acquired area or zero if not available.

@@XABEND TITLE ’GENERATE AN ABEND’

EDCXABND CSECT

EDCXABND AMODE ANY

EDCXABND RMODE ANY

@@XABND DS 0H

 ENTRY @@XABND

 USING *,R9

 LR R9,R15

 SPACE 1

*

* L R1,0(,R1) get address to codes

 USING PARMS,R1

 L R7,ERROR_RC get error code

 L R8,REAS_RC get reason code

ABEND EDCXPIRE RC=(7),REASON=(8),DUMP=Y

*

 LTORG

 EJECT

PARMS DSECT

ERROR_RC DS F

REAS_RC DS F

DEND DS 0H

*

R1 EQU 1

R7 EQU 7

R8 EQU 8

R9 EQU 9

R15 EQU 15

 END

Figure 64. Example Generate Abend Routine

SPC Facilities

256 LE/VSE: C Run-Time Programming Guide

This routine is not provided with a save area. In addition to the linkage registers,

this routine may freely alter registers 2 and 4.

The entry point name for this routine must be @@XGET.

If you provide your own EDCXGET routine, it will be used when C library functions

explicitly get storage. Whenever the library functions invoke operating system

services, there may be implicit requests for storage that cannot be tailored.

EDCJL096:

@@XGET TITLE ’Obtain memory as specified in R0’

EDCXGET CSECT

EDCXGET AMODE ANY

EDCXGET RMODE ANY

@@XGET DS 0H

 ENTRY @@XGET

 SPACE 1

 BALR R2,R0

 USING *,R2

**

**| Obtain memory using GETVIS

**| if the high bit of R1 is on

**| turn high bit off

**| invoke GETVIS indicating to get memory above the line

**| else invoke GETVIS indicating to get memory below the line

**

 LTR R0,R0 Memory above or below?

 BNL BELOW

 SLL R0,1 Want memory anywhere

 SRL R0,1

 LTR R2,R2 are we running above the line?

 BNL BELOW no, so ignore above request

 GETVIS LENGTH=(R0),LOC=ANY

 LTR R15,R15 Was it successful?

 BZR R14 Yes...

 SR R1,R1 No, indicate failure

 BR R14

BELOW DS 0H Get memory below the line

 GETVIS LENGTH=(R0),LOC=BELOW

 LTR R15,R15 Was it successful?

 BZR R14 Yes...

 SR R1,R1 no, indicate failure in R1

 BR R14

*

R0 EQU 0

R1 EQU 1

R2 EQU 2

R4 EQU 4

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 65. Example Get Storage Routine

SPC Facilities

Chapter 22. Using the System Programming C Facilities 257

Getting Page-Aligned Storage

EDCX4KGT

This routine is called to get page-aligned storage from the operating system.

Parameter:

R0 The requested length, in bytes. If the high-order bit of this register is zero

or if the request was made in 24-bit addressing mode, the storage is

allocated below the 16M line. If the high-order bit is on and the request is

made in 31-bit addressing mode, storage is allocated above the 16M line. If

this space is not available, storage is allocated elsewhere.

Return:

R0 The length of the storage block acquired, in bytes. This length may be

greater than the size requested.

R1 The address of the acquired area or zero if not available.

 This routine is not provided with a save area. In addition to the linkage registers,

this routine may freely alter registers 2 and 4.

Its entry point must be @@X4KGET.

Freeing Storage

EDCXFREE

This routine is called to return storage to the operating system.

Parameters:

R0 The length of storage to be freed, in bytes

R1 The address of the area to be freed

Return:

R15 A system-dependent return code, which must be zero on success and

nonzero otherwise

 This routine is not provided with a save area. In addition to the linkage registers,

this routine may freely alter registers 2 and 4.

Its entry point must be @@XFREE.

If you provide your own EDCXFREE routine, it will be used when C library functions

explicitly free storage. Whenever the library functions invoke operating-system

services, there may be implicit requests to free storage that cannot be tailored.

SPC Facilities

258 LE/VSE: C Run-Time Programming Guide

EDCJL136:

Loading a Module

EDCXLOAD

This routine is called to load a named module into storage.

Parameter:

R1 Points to the name of the routine to be loaded.

Return:

R1 The address and AMODE of the routine, or zero if not loaded.

 This routine is provided with a save area. Apart from the linkage registers, it must

save and restore all registers used.

Its entry point must be @@XLOAD.

@@XFREE TITLE ’Free memory as specified in R1’

EDCXFREE CSECT

EDCXFREE AMODE ANY

EDCXFREE RMODE ANY

@@XFREE DS 0H

 ENTRY @@XFREE

 SPACE 1

 DS 0H

 USING *,R15

*

**

**| clear off high bit in R0 to make sure length is positive

**| invoke FREEVIS with length in R0 and address in R1

**| return 0 if successful, nonzero if failed

**

 SLL R0,1 clear off ...

 SRL R0,1 ... high order bit

 FREEVIS LENGTH=(R0),ADDRESS=(R1)

 BR R14 return

*

R0 EQU 0

R1 EQU 1

R2 EQU 2

R4 EQU 4

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 66. Example Free Storage Routine

SPC Facilities

Chapter 22. Using the System Programming C Facilities 259

Deleting a Module

EDCXUNLD

This routine is called to delete a named module from storage.

Parameter:

R1 Points to the name of the routine to be deleted

Return:

R15 A system-dependent return code, which must be zero on success and

nonzero otherwise

 This routine is provided with a save area. Apart from the linkage registers, it must

save and restore all registers used.

Its entry point must be @@XUNLD.

Abend Reason Codes

The following tables contain the abend codes and reason codes specific to the

system programming facilities.

 Table 40. Abend Codes Specific to System Programming Environments

Abend

Code Description

2100 No storage abend code

2101 Error freeing storage

2102 Error finding stack seg home

2103 Error loading library

2104 Error with heap allocation

2105 Error with system level command

2106 Error initializing statics

4000 Error when handling abend

 Table 41. Reason Codes Specific to System Programming Environments

Reason Code Description

7201 Error in initialization

7202 Error in termination

7203 Error when extending stack

7204 Error during longjmp/setjmp

7205 Can not locate static init. The routine EDCRCINT must be included in

your module if you use the RENT compiler option.

7207 No initial heap allocation is specified and a heap is required.

SPC Facilities

260 LE/VSE: C Run-Time Programming Guide

Additional Library Routines

The following routines provide additional support that is unique to applications

running in a system programming C environment. These routines are packaged as

part of the run-time library.

__xregs() Get registers on entry

__xusr() Get address of User Word

__xusr2() Get address of User Word

__4kmalc() Allocate page-aligned storage

__24malc() Allocate storage below 16MB line

For more information on these routines refer to Chapter 23, “Library Functions for

the System Programming C Facilities,” on page 263.

Summary of Application Types

Table 42 summarizes application types, how they are called, and the module entry

points.

 Table 42. Summary of Types

Type of Application How It Is Called Module Entry Point Run-Time Options (1) and Other

Considerations

A mainline function

that requires no

dynamic library

facilities

From the JCL EDCXSTRT, which

must be explicitly

included at link time

Run-time options are specified by #pragma

runopts in compilation unit for the main()

function. The heap and stack options are

honored. The stack defaults to be above the

line.

A C subroutine called

from assembler

language using a

pre-established

persistent

environment

A handle, the address

of the subroutine and

a parameter list are

passed to EDCXHOTU.

Run-time options are specified by #pragma

runopts in any compile unit. The heap and

stack options are honored, except that the

stack will default to be above the line. The

runopts in the first object module in the link

edit that contains runopts will prevail, even

if this compilation unit is part of the calling

application.

The environment is established by calling

EDCXHOTC. These functions return a value

(the handle) which is used to call functions

that use the environment.

A Server User code includes a

stub routine that calls

EDCXSRVI. This causes

the server to be

loaded and control to

be passed to its entry

point.

EDCXSTRT Run-time options are the same as for

EDCXSTRT.

The author of the server must supply stub

routines which call EDCXSRVI and EDCXSRVN

to initialize and communicate with the

server. These are bound with the user

application.

A User of an

Application Server

The author of the server must supply stub

routines which call EDCXSRVI and EDCXSRVN

to initialize and communicate with the

server.

1. The STAE, SPIE option is ignored if the library is not included.

SPC Facilities

Chapter 22. Using the System Programming C Facilities 261

SPC Facilities

262 LE/VSE: C Run-Time Programming Guide

Chapter 23. Library Functions for the System Programming C

Facilities

This chapter describes the library functions specific to the System Programming C

(SPC) environment. The following functions are available:

 __xhotc()

 __xhott()

 __xhotu()

 __xregs()

 __xsacc()

 __xsrvc()

 __xusr()

 __xusr2()

 __24malc()

 __4kmalc()

These library functions are now described.

__xhotc() — Set Up a Persistent C Environment (No Library)

Format

#include <spc.h>

void *__xhotc(void *handle, int stack, int location);

Description

The function creates a persistent C environment with no C Run-Time Library. The

parameters are fullwords (4 bytes).

1. handle is the field for the token (or handle) which is returned.

2. stack is the initial stack allocation required for the environment.

3. location is the location of the stack:

0 Below the line

1 Above the line

__xhotc() is specific to SPC. It is part of the group serving the persistent C

environment.

The function is also available under the name EDCXHOTC.

Returned Value

__xhotc() returns a token (or handle) which is used in subsequent calls to

__xhotu() and __xhott() to use or terminate a persistent C environment. This

handle is found in both the first parameter passed and R15.

The RENT compiler option is not supported for routines called using this

environment.

© Copyright IBM Corp. 1995, 2005 263

Example

For an extensive example of the use of __xhotc() see “Creating and Using

Persistent C Environments” on page 238.

__xhott() — Terminate a Persistent C Environment

Format

#include <spc.h>

void __xhott(void *handle);

Description

This function terminates a persistent C environment created by __xhotc().

The parameter of __xhott() is a handle returned by __xhotc().

__xhott() is specific to SPC. It is part of the group serving the persistent C

environment.

The function is also available under the name EDCXHOTT.

Example

For an extensive example of the use of __xhott() see “Creating and Using

Persistent C Environments” on page 238.

__xhotu() — Run a Function in a Persistent C Environment

Format

#include <spc.h>

void *__xhotu(void *handle, void *function, ...);

Description

This function is used to run a function in a persistent C environment. The

parameters are fullwords (4 bytes):

1. handle is a handle—returned by __xhotc() or __xhotl()

2. function is a function pointer, which points to the desired C function

3. First parameter to pass to the function

4. Second parameter to pass to the function ...

This routine, and the C function being called, must use OS linkage. C functions

being invoked using __xhotu() must be compiled with #pragma

linkage(func_name,OS).

__xhotu() is specific to SPC. It is part of the group serving the persistent C

environment.

The function is also available under the name EDCXHOTU.

Library Functions for SPC

264 LE/VSE: C Run-Time Programming Guide

Returned Value

The returned value from __xhotu() is the returned value from the function run in

the persistent C environment.

Example

For an extensive example of the use of __xhotu() see “Creating and Using

Persistent C Environments” on page 238.

__xregs — Get Registers on Entry

Format

#include <spc.h>

int __xregs(int register_number);

Description

This routine finds the value a specified register had on entry to EDCXSTRT, or the

main routine of an exit routine compiled with #pragma environment(...).

__xregs() is available in these environments only. For more information about

EDCXSTRT, see “Creating Freestanding Applications” on page 229.

__xregs() is specific to SPC. It is part of the client-server group of functions.

The function is also available under the name EDCXREGS.

Returned Value

__xregs() returned the value found.

__xsacc() — Accept Request for Service

Format

#include <spc.h>

void __xsacc(int message);

Description

This routine operates in the server part of a user-server application. It is used to

indicate acceptance or rejection of the last-requested service.

Calls to __xsacc are optional but, if made, should be when the request is validated

and all server references to user-owned storage are complete. __xsacc does not

cause a return of control to the user; its sole purpose is to indicate that user-owned

storage is no longer required by the application server.

In the case of a request that cannot be processed, possibly because the user’s

command is not recognized by the server or the parameter format is invalid, the

call to __xsacc should be omitted.

__xsacc() is specific to SPC. It is part of the client-server group of functions.

The function is also available under the name EDCXSACC.

Library Functions for SPC

Chapter 23. Library Functions for the System Programming C Facilities 265

Returned Value

The return code for the last-requested service, zero indicating that the request was

accepted and will be processed.

__xsrvc() — Return Control from Service

Format

#include <spc.h>

void *__xsrvc(int message);

Description

This routine operates in the server part of a user-server application. It is used to

indicate completion of the last-requested service and to get the information

required for the next service to be performed.

message is the return code for the last-requested service.

__xsrvc() is specific to SPC. It is part of the client-server group of functions.

The function is also available under the name EDCXSRVC.

__xusr() - __xusr2() — Get Address of User Word

Format

#include <spc.h>

void *__xusr(void);

void *__xusr2(void);

Description

There are two words in an internal control block that are available for customer

use. These words have an initial value of zero (that is, all bits are 0), but are

otherwise ignored by compiled code. The values in these words may be freely

queried or set by application code using the pointers returned by these functions.

__xusr() and __xusr2() are specific to SPC.

The __xusr() and __xusr2() functions are also available under the names EDCXUSR

and EDCXUSR2, respectively.

Returned Value

__xusr() and __xusr2() return the addresses of these user words. The words, and

indeed __xusr() and __xusr2() themselves, are available in any environment, not

only the system programming environments.

__24malc() — Allocate Storage below 16MB Line

Format

#include <spc.h>

void *__24malc(size_t size);

Library Functions for SPC

266 LE/VSE: C Run-Time Programming Guide

Compiler Option

LANGLVL(EXTENDED)

Description

This function performs in the same manner as malloc except that it allocates

storage below the 16MB line in z/VSE systems even when the run-time option

HEAP(ANYWHERE) is specified.

Storage allocated by this function is not part of the heap, so you must free this

storage explicitly using the free() function; it is not automatically freed when the

environment is terminated.

The function is available under the System Programming Environment.

__4kmalc() — Allocate Page-Aligned Storage

Format

#include <spc.h>

void *__4kmalc(size_t size);

Compiler Option

LANGLVL(EXTENDED)

Description

This function performs in the same manner as malloc() except that it allocates

page-aligned storage.

Storage allocated by this function is not part of the heap, so you must free this

storage explicitly, using the free() function; it is not automatically freed when the

environment is terminated.

The function is available under the System Programming Environment.

Library Functions for SPC

Chapter 23. Library Functions for the System Programming C Facilities 267

268 LE/VSE: C Run-Time Programming Guide

Part 5. Programming with Other Products

Chapter 24. Using CICS 271

Developing C Programs for the CICS Environment 271

Optional Tasks Related to Using CICS with

LE/VSE 271

Designing and Coding for CICS 271

Using the CICS Command-Level Interface . . . 272

EDCXGCI1 273

Using Input and Output 275

Standard Stream Support 275

Full Memory File Support 276

Support for Disk Files and Other Devices . . 276

Using LE/VSE C Run-Time Library Support . . 276

Arguments to C main() 276

Run-Time Options 276

Using Packed Decimal with CICS 277

Locales 277

Code Set Conversion Tables 277

DL/I 277

Dump Functions 277

The fetch() Function 277

The release() Function 277

The system() Function 277

Time Functions 277

The iscics() Function 277

Program Termination 278

Storage Management 278

Using Interlanguage Support 279

Exception Handling 279

MAP 0020: Error Handling in CICS 280

Example of Error Handling in CICS 281

EDCXGCI2 281

ABEND Codes and Error Messages under

LE/VSE C Run-Time 283

Coding Hints and Tips 283

Translating and Compiling for Reentrancy 284

Translating 284

Translating Example 284

EDCXGCI3 284

Compiling 289

Sample JCL to Translate and Compile 289

Prelinking and Linking All Object Decks 291

Defining and Running the CICS Program 291

Program Processing 291

Link Considerations 291

CSD Considerations 291

Chapter 25. Using CSP 293

Common Data Types 293

Passing Control 293

Running under CICS Control 294

Examples 294

EDCXGCP5 294

EDCXGCP6 295

EDCXGCP7 298

Chapter 26. Using DL/I 301

Handling Errors 301

Other Considerations 302

Example 303

EDCXGIM2 303

EDCXGIM3 305

Chapter 27. Using QMF 307

Example 307

Chapter 28. Using DB2 311

Example 311

This part describes LE/VSE C Run-Time support for C programs using the

following products:

v Customer Information Control System (CICS command level interface)

v Cross System Product (CSP)

v Data Language/I (DL/I)

v Query Management Facility (QMF)

v SQL/DS

Some of these tools do not support source code in any code page other than the

default code page, 1047. To use these tools and write your code in a code page

other than 1047, you must use the LE/VSE C Run-Time preprocessor iconv to

convert your code to code page 1047. See Chapter 33, “Code Set and Locale

Utilities,” on page 371 for details.

For general information about working with locale functions, including those locale

functions that help with coded character set issues, see Chapter 29, “Introduction

to Locale,” on page 317.

© Copyright IBM Corp. 1995, 2005 269

270 LE/VSE: C Run-Time Programming Guide

Chapter 24. Using CICS

This chapter describes how to develop C programs for the Customer Information

Control System (CICS). The LE/VSE library provides support for C programs that

run under the CICS Transaction Server for VSE/ESA (or CICS/VSE Version 2

Release 3 Version 2 Release 3 or later). You can find more information about the

general features of LE/VSE and CICS in LE/VSE Programming Guide.

For information on using CSP/AD or CSP/AE under CICS, see Chapter 25, “Using

CSP,” on page 293.

Note: As of publication, the CICS translator does not recognize the C/VSE

compiler’s support for alternative locales and coded character sets.

Therefore, you should write all your CICS C code in coded character set

IBM-1047 (APL 293).

Developing C Programs for the CICS Environment

When developing a program to run under CICS you must:

1. Prepare CICS for use with LE/VSE.

2. Design and code the CICS program.

3. Translate and compile the translated source for reentrancy.

4. Prelink and link all object decks with the CICS stub.

5. Define the program to CICS.

Optional Tasks Related to Using CICS with LE/VSE

LE/VSE includes the C run-time environment, which is required in order to use

the CICS Transaction Server.

Since LE/VSE is pre-installed on your system, you are not required to prepare the

C run-time environment for using CICS.

Note: Under no circumstances should you remove the LE C component from your

VSE system!

However, you might need to carry out some later customization tasks, such as:

v Including the Group (CEE) in the CSD file for LE/VSE support under the

CICS/VSE Coexistence Environment.

v Tailoring the CICS Destination Control Table (DCT).

v Printing CICS-wide run-time options to the console.

v Ensuring that CICS coexistence is set up correctly.

These tasks are described in the LE/VSE Customization Guide.

Designing and Coding for CICS

This section describes what you must do differently when designing and coding a

LE/VSE C Run-Time program for CICS, such as how to use EXEC CICS commands

in your code, using input and output, using LE/VSE C Run-Time functions,

managing storage, using interlanguage calls, and exception handling.

© Copyright IBM Corp. 1995, 2005 271

Using the CICS Command-Level Interface

The CICS Transaction Server provides a set of commands to access CICS. The

format of a CICS command is:

EXEC CICS function [option[(arg)]]...;

In the following CICS command, the function is SEND TEXT. This function has 4

options: FROM, LENGTH, RESP and RESP2. Each of the options takes one argument.

EXEC CICS SEND TEXT FROM(mymsg)

 LENGTH(mymsglen)

 RESP(myresp)

 RESP2(myresp2)

For further information on the EXEC CICS interface and a list of available CICS

functions, refer to CICS Transaction Server for VSE/ESA Application Programming

Guide and CICS Transaction Server for VSE/ESA Application Programming Reference.

When you are designing and coding your CICS application, remember the

following:

v The EXEC CICS command and options should be in uppercase. The arguments

follow general C conventions.

v Before any EXEC CICS command is issued, the EXEC Interface Block (EIB) must

be addressed by the EXEC CICS ADDRESS EIB command.

v LE/VSE C Run-Time does not support the use of EXEC CICS commands in

macros.

The example in Figure 67 on page 273 uses EXEC CICS commands to:

�1� Initialize the CICS interface

�2� Access the storage passed from the caller

�3� Handle unexpected abends

�4� and �7� Perform I/O to RRDS files

�5� and �6� Request and format time

Refer to “EDCXGCI3” on page 284 for the functions sendmsg() and

unexpected_prob().

CICS

272 LE/VSE: C Run-Time Programming Guide

EDCXGCI1

#pragma runopts(rptstg(on))

 /* EDCXGCI1

 This example shows how to use EXEC CICS commands.

 Program : GETSTAT (part 1).

 */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void check_4_down_status(char *status_record);

#define FILE_LEN 40

int *quiet;

main ()

{

 unsigned char status_record[41];

 long int vsamrrn;

 signed short int vsamlen;

 signed long int myresp;

 signed long int myresp2;

 /* get addressability to the EIB first */

 EXEC CICS ADDRESS EIB(dfheiptr); �1�

 /* access common area sent from caller */

 EXEC CICS ADDRESS COMMAREA(quiet); �2�

 /* call the CATCHIT prog. if it abends */

 EXEC CICS HANDLE ABEND PROGRAM("CATCHIT"); �3�

 vsamrrn = 1;

 vsamlen = FILE_LEN;

 /* read the status record from the file*/

 EXEC CICS READ FILE("STATFILE") �4�

 INTO(status_record)

 RIDFLD(vsamrrn)

 RRN

 LENGTH(vsamlen)

 RESP(myresp)

 RESP2(myresp2);

Figure 67. Command Level Interface Example (Part 1 of 3)

CICS

Chapter 24. Using CICS 273

/* check cics response */

 /* -- non 0 implies a problem */

 if (myresp != DFHRESP(NORMAL))

 unexpected_prob("Unable to read from file",61);

 if (memcmp(status_record,"DOWNTME ",8) == 0)

 check_4_down_status(status_record);

 if (*quiet != 1)

 sendmsg(status_record);

 exit(11);

}

/**/

 void check_4_down_status(char *status_record)

{

 unsigned char uptime[9];

 unsigned char update[9];

 char curabs[8];

 unsigned char curtime[9];

 unsigned char curdate[9];

 long int vsmrrn;

 signed short int vsmlen;

 signed long int dnresp;

 signed long int dnresp2;

 strncpy((status_record+8),update,8);

 strncpy((status_record+16),uptime,8);

 update[8] =’\0’;

 uptime[8] =’\0’;

 /* get the current time/date */

 EXEC CICS ASKTIME ABSTIME(curtime) �5�

 RESP(dnresp)

 RESP2(dnresp2);

 if (dnresp != DFHRESP(NORMAL))

 unexpected_prob("Unexpected prob with ASKTIME",dnresp);

 /* format current date to YYMMDD */

 /* format current time to HHMMSS */

 EXEC CICS FORMATTIME ABSTIME(curabs) �6�

 YYMMDD(curdate)

 TIME(curtime);

Figure 67. Command Level Interface Example (Part 2 of 3)

CICS

274 LE/VSE: C Run-Time Programming Guide

Using Input and Output

This section describes how to use LE/VSE C Run-Time I/O with CICS. It describes

the file and device support and the type of I/O used with CICS.

Note: You can set up a SIGIOERR handler to catch read or write system errors. See

Chapter 14, “Debugging I/O Programs,” on page 131 for more information.

Standard Stream Support

Under CICS, stdout and stderr are assigned to transient data destinations

(queues). The type of queue, intrapartition or extrapartition, is determined during

CICS initialization. Intrapartition queues are used for queueing messages and data

within a CICS region. Extrapartition queues are used to send data outside the CICS

region or to receive data from outside the CICS region.

The transient data queues associated with stdout and stderr are CESO and CESE

respectively.

Records sent to the transient data queues associated with stdout and stderr take

the form of a message. The entire message record can be preceded by an ASA

Standard control character. Figure 68 on page 276 illustrates the recommended

message format.

 if (dnresp != DFHRESP(NORMAL))

 unexpected_prob("Unexpected prob with FORMATTIME",dnresp);

 curdate[8] =’\0’;

 curtime[8] =’\0’;

 if ((atoi(curdate) > atoi(update)) ||

 (atoi(curdate) == atoi(update) && atoi(curtime) >= atoi(uptime)))

 {

 strcpy(status_record,"OK ");

 vsmrrn = 1;

 vsmlen = FILE_LEN;

 /* update the first record to OK */

 EXEC CICS WRITE FILE("STATFILE") �7�

 FROM(status_record)

 RIDFLD(vsmrrn)

 RRN

 LENGTH(vsmlen)

 RESP(dnresp)

 RESP2(dnresp2);

 if (dnresp != DFHRESP(NORMAL))

 unexpected_prob("Unexpected prob with WRITE",dnresp);

 printf("%s %s Changed status from DOWNTME to OK\n",curdate,

 curtime);

 }

}

Figure 67. Command Level Interface Example (Part 3 of 3)

CICS

Chapter 24. Using CICS 275

In Figure 68:

ASA is the carriage-control character.

Terminal ID is a 4-character terminal identifier.

Transaction ID

is a 4-character transaction identifier.

Sp is a space.

Time Stamp is the date and time displayed in the format

YYYYMMDDHHMMSS.

Data is the data outputted to the standard streams stdout and stderr.

The following are sample messages of data written to a CICS data queue:

 SAMATST1 19960801080523 Hello World - from transaction TST1!

 BOBATST3 19960801112348 Hello World - from transaction TST3!

 TEDATST2 19960801112348 Hello World - from transaction TST2!

Standard streams can only be redirected to or from memory files.

Because only one transient data queue can be associated with each of stdout and

stderr, these queues can contain output written in chronological order from many

C programs. This output must be sorted as necessary into the desired sequence.

Full Memory File Support

The full set of C I/O library functions is supported under CICS for memory files.

Memory files are created with the parameter type=memory on the fopen() call.

Support for Disk Files and Other Devices

There is no support by the C I/O library for using disk files and other devices

with CICS. I/O to access methods supported by CICS must use the CICS

Application Programming Interface.

Using LE/VSE C Run-Time Library Support

This section discusses restrictions and support for the LE/VSE C Run-Time library

with CICS.

Arguments to C main()

When a LE/VSE C Run-Time program is running under CICS, you cannot pass

command line arguments to it. The values for argc and argv have the following

settings:

argc 1

argv[0] 4-character CICS transaction ID

Run-Time Options

Command line run-time options cannot be passed in CICS. To specify run-time

options, you must include the #pragma runopts directive in the code. Figure 67 on

page 273 shows how to do this. See LE/VSE Programming Guide for information on

other ways to supply run-time options when you are running under CICS.

Figure 68. Format of Data Written to a CICS Data Queue

CICS

276 LE/VSE: C Run-Time Programming Guide

Using Packed Decimal with CICS

The packed decimal data type is supported in CICS. However, the CICS translator

does not support packed decimal. CICS usually stores packed decimal strings as

arrays of characters. If you want to manipulate these arrays as a packed decimal

number, you should define the array of characters in union with the appropriate

packed decimal definition. Refer to CICS Transaction Server for VSE/ESA Application

Programming Reference for information on how to define the data fields for the EXEC

CICS commands you are using.

Locales

All locale functions are supported for locales that have been defined in the CSD.

CSD definitions for the IBM-supplied locales are provided as member CEECCSD.Z

in the LE/VSE installation sublibrary (default is PRD2.SCEEBASE). setlocale()

returns NULL if the locales are not defined.

Code Set Conversion Tables

The code set conversion tables that are used by the iconv functions must be

defined in the CSD.

DL/I

There is no support for the ctdli() function under CICS. If you call ctdli() in

CICS, the return value is -1. Refer to CICS Transaction Server for VSE/ESA

Application Programming Guide for information on the CICS method to access DL/I.

Dump Functions

The dump functions csnap(), cdump(), and ctrace() are supported in LE/VSE. The

output is sent to the CESE transient data queue. The dump can not be written if

the queue does not have a sufficient LRECL. An LRECL of at least 161 is

recommended.

The fetch() Function

The fetch() function is supported under CICS. Modules to be fetched must be

defined to the CSD and installed in the PPT.

The release() Function

The release() function is supported under CICS.

The system() Function

The system() function is not supported in CICS. However, there are two EXEC CICS

commands that give you similar functionality:

EXEC CICS LINK

This command enables you to transfer control to another program and

return to the calling program later. See Figure 69 on page 281.

EXEC CICS XCTL

This command enables you to transfer control to another program. Control

does not return to the caller after completion of the called program.

Time Functions

All time functions are supported except the clock() function, which returns the

value (time_t)(-1) if it is used under CICS.

The iscics() Function

The iscics() function is an extension to the C library. It returns a non-zero value

if your program is currently running under CICS. If your program is not running

under CICS, iscics() returns the value 0. The following example shows how to

use iscics() in your C program to specify non-CICS or CICS specific behavior.

CICS

Chapter 24. Using CICS 277

if (iscics() == 0)

 < non-CICS behavior>

 else

 < CICS-specific behavior>

Program Termination

A C program running under CICS will terminate when:

v An exit() function call or a return statement is issued in the C program. The

atexit() list of functions is run when the C program terminates.

Note: On return from a C language application, the return statement or values

passed by C through the exit() function are saved in the EIBRESP2 field

of the EIB.

v An abend occurs and is not handled.

v An EXEC CICS RETURN is issued in your C program. The atexit() list of functions

runs after these calls.

v The abort() function is started.

Storage Management

A LE/VSE C Run-Time program can acquire storage from and release storage to

CICS implicitly or explicitly.

Storage is acquired and released implicitly by the run-time environment. This

storage is used for automatic, external, and static variables. External variables are

valid until program completion.

Storage is acquired and released explicitly by the user with the C library functions

malloc(), calloc(), realloc(), or free(), with LE/VSE Callable Services (refer to

LE/VSE Programming Guide), or with the EXEC CICS commands EXEC CICS GETMAIN,

or EXEC CICS FREEMAIN.

v If you request the storage by using the C functions malloc(), realloc(), or

calloc() you must deallocate it by using C functions as well.

v If you request the storage by using LE/VSE Callable Services, you must

deallocate it by using LE/VSE Callable Services.

v If you request the storage by using EXEC CICS GETMAIN, you must deallocate it by

using EXEC CICS FREEMAIN.

All other combinations of methods of requesting and deallocating storage are

unsupported and lead to unpredictable behavior.

Partial deallocations are not supported. All storage allocated at a given time must

be deallocated at the same time.

Under the LE/VSE library, LE/VSE C Run-Time uses the LE/VSE Callable Services

to allocate and free storage. Refer to LE/VSE Programming Guide for specific

information on memory and storage manipulation in CICS.

The LE/VSE C Run-Time library functions acquire all storage from the Extended

Dynamic Storage Area (EDSA) unless you specify otherwise using the ANYHEAP,

BELOWHEAP, HEAP, STACK, or LIBSTACK run-time options.

Storage that is acquired with the EXEC CICS GETMAIN command exists for the

duration of the CICS task.

CICS

278 LE/VSE: C Run-Time Programming Guide

Using Interlanguage Support

The LE/VSE library supports a variety of different types of interlanguage calls

(ILC) with CICS. For information on supported configurations, please refer to

LE/VSE Programming Guide.

Exception Handling

There are three different kinds of exception handlers you can use when running C

programs in a CICS environment: CICS exception handlers, LE/VSE abend

handlers, and C exception handlers.

If the CICS command EXEC CICS HANDLE ABEND PROGRAM(name) was specified in the

application, it will be called for any program exception that occurs (such as an

operation exception or a protection exception) as well as for any EXEC CICS ABEND

ABCODE(...) command that is run.

LE/VSE provides facilities to set up a user handler. These facilities are discussed in

detail in LE/VSE Programming Guide.

In CICS, the C error handling facilities have almost the same behavior as discussed

in Chapter 18, “Handling Error Conditions and Signals,” on page 181. A signal

raised with the raise() function is handled by its corresponding signal handler or

the default actions if no handler is installed. If a program exception such as a

protection exception occurs, it is handled by the appropriate C handler if no CICS

or LE/VSE handler is present.

When a C application is invoked by an EXEC CICS LINK PROGRAM(...), the invoked

program inherits any handlers registered by EXEC CICS HANDLE ABEND PROGRAM(...)

in the parent program. Any handlers registered in the child override the inherited

handlers. C signal handlers are not inherited.

The following chart shows the process for handling abends in CICS.

CICS

Chapter 24. Using CICS 279

MAP 0020: Error Handling in CICS

001

Is this the result of a call to raise()?

Yes No

 002

Has EXEC CICS HANDLE ABEND been issued?

Yes No

 003

Continue at Step 005.

 004

Call LE/VSE C Run-Time-CICS interface for termination of program. CICS

turns off signal and runs program in handler.

 005

Is SIG_IGN set for the signal?

Yes No

 006

Is a LE/VSE handler registered?

Yes No

 007

Is a C handler established?

Yes No

 008

Default handling the program check and percolate to next stack

frame.

 009

Run C handler.

 010

Run LE/VSE user handler. See LE/VSE Programming Guide for more details.

 011

Resume at the next instruction.

CICS

280 LE/VSE: C Run-Time Programming Guide

Example of Error Handling in CICS

The example in Figure 69 shows how to handle errors when using LE/VSE C

Run-Time with CICS. The numbers in the following list correspond to the numbers

in the example code.

�1� The program CATCHIT has been installed as the CICS abend handler.

Because this CICS abend handler is installed, C exception handlers will

only catch signals raised with the raise() function.

Note: The CATCHIT program has not been supplied as its function would

be installation dependent.

�2� Install a C signal handler to catch the user defined signal SIGUSR1. This

handler will only be called if raise(SIGUSR1) is run.

�3� This command causes the flow of control to shift to a child program called

GETSTAT. GETSTAT will inherit CHKSTAT’s CICS abend handler.

�4� The C signal handler status_not_OK that was previously installed, will be

invoked if this line is run. The raise() function will not trigger the CICS

abend handler.

EDCXGCI2

 /* EDCXGCI2

 This example demonstrates error handling under CICS.

 Program : CHKSTAT.

 Transaction : Called stand alone from transaction CHST.

 Is also used by other transactions to determine

 system status.

 */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <signal.h>

#define FILE_LEN 40

void status_not_ok(int sig);

void unexpected_prob(char* desc, int rc);

volatile unsigned char status_record [41];

Figure 69. Example of Error Handling under CICS (Part 1 of 3)

CICS

Chapter 24. Using CICS 281

main (int argc, char *argv [])

{

 int quiet;

 long int vsamrrn;

 signed short int vsamlen;

 signed long int myresp;

 signed long int myresp2;

 if (strcmp(argv[0],"CHST") !=0)

 quiet = 1;

 else

 quiet = 0;

 /* get addressability to the EIB first */

 EXEC CICS ADDRESS EIB(dfheiptr);

 EXEC CICS HANDLE ABEND PROGRAM("CATCHIT"); �1�

 signal(SIGUSR1,status_not_ok); �2�

 EXEC CICS LINK PROGRAM("GETSTAT") �3�

 RESP(myresp)

 RESP2(myresp2)

 COMMAREA(quiet)

 LENGTH(4);

 /* check for failure in linked-to program */

 if (myresp != DFHRESP(NORMAL))

 unexpected_prob("CICS failure on EXEC CICS LINK\n",51);

 if (myresp2 != 11)

 unexpected_prob("Unexpected rc from GETSTAT\n",myresp2);

 vsamrrn = 1;

 vsamlen = FILE_LEN;

 EXEC CICS READ FILE("STATFILE")

 INTO(status_record)

 RIDFLD(vsamrrn)

 RRN

 LENGTH(vsamlen)

 RESP(myresp)

 RESP2(myresp2);

 /* check for cics response - non-0 implies problem */

 if (myresp != DFHRESP(NORMAL))

 unexpected_prob("Unable to read from file",52);

 if (memcmp(status_record,"OK ",3) != 0)

 raise(SIGUSR1); �4�

 exit(11);

}

Figure 69. Example of Error Handling under CICS (Part 2 of 3)

CICS

282 LE/VSE: C Run-Time Programming Guide

ABEND Codes and Error Messages under LE/VSE C Run-Time

For information on ABEND Codes and error messages used by the LE/VSE library,

refer to LE/VSE Programming Guide and LE/VSE Debugging Guide and Run-Time

Messages.

Coding Hints and Tips

v Do not use EXEC CICS commands in macros.

v Do not use EXEC CICS commands in header files. This makes the translation

process much simpler.

v Do not set atexit() routines before an EXEC CICS XCTL. You will get

unpredictable results.

v If you call fclose() or freopen() for a standard stream, you cannot redirect or

reopen the link to the transient data queue. LE/VSE C Run-Time does not

provide a method of opening or reopening the transient data queues.

v The actual transient data queue is not closed when you call fclose() or

freopen() for a standard stream; however, the transaction will lose access to the

stream.

v You should not use the stdin stream unless you are redirecting it from a

memory file.

v When CICS handlers (using EXEC CICS HANDLE ABEND PROG) are activated along

with C signal handlers, the CICS handler is invoked when an abend occurs. The

C signal handler that corresponds to that class of abends is ignored.

void unexpected_prob(char* desc, int rc)

{

 long int msgresp, msgresp2;

 int msglen;

 msglen = strlen(desc);

 EXEC CICS SEND TEXT FROM(desc)

 LENGTH(msglen)

 RESP(msgresp)

 RESP2(msgresp2);

 fprintf(stderr,"%s\n",desc);

 if (msgresp != DFHRESP(NORMAL))

 exit(99);

 else

 exit(rc);

}

void status_not_ok(int sig)

{

 if (memcmp(status_record,"DOWNSTR ",3) != 0)

 exit(22);

 else

 exit(33);

}

Figure 69. Example of Error Handling under CICS (Part 3 of 3)

CICS

Chapter 24. Using CICS 283

v If you do an EXEC CICS RETURN out of an atexit() routine, the resulting return

code (RESP2) is undefined.

Translating and Compiling for Reentrancy

This section discusses and provides examples of using the CICS language

translator and compiling for CICS. It also discusses reentrancy issues with respect

to CICS.

Translating

CICS provides a utility program called the CICS language translator. This program

translates the EXEC CICS statements into C code. The translator supplies a control

block (DFHEIBLK) for passing information between CICS and the application

program. C function references for the EXEC CICS commands are generated. The

translation step is not required if you do not use EXEC CICS statements.

The CICS translator does not evaluate preprocessor statements such as #include or

#define. You should ensure that all EXEC CICS statements are translated.

Translating Example

Figure 70 shows a piece of code before it is translated with the CICS language

translator. Figure 71 on page 286 shows the corresponding program after

translation.

EDCXGCI3

 /* EDCXGCI3

 This is an example of a CICS program.

 Program : GETSTAT (part 2 - infrequent use routines).

 */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void unexpected_prob(char* desc, int rc);

void sendmsg(char* status_record)

{

 long int msgresp, msgresp2;

 char outmsg[80];

 int outlen;

 if (memcmp(status_record,"OK ",3)==0)

 strcpy(outmsg,"The system is available.");

 else if (memcmp(status_record,"DOWNTME ",8)==0)

 strcpy(outmsg,"The system is down for regular backups.");

 else

 strcpy(outmsg,"SYSTEM PROBLEM -- call help line for details.");

 outlen=strlen(outmsg);

Figure 70. Child Program Before Translation (Part 1 of 2)

CICS

284 LE/VSE: C Run-Time Programming Guide

In Figure 70 on page 284 observe the following:

�1� and �2�

This program contains two EXEC CICS commands to be translated by the

CICS translator. A single instance of the EXEC CICS ADDRESS EIB command

is required before any other call to the EXEC CICS interface. In this case, the

main program (see Figure 67 on page 273) issues the ADDRESS EIB

command. Since the two pieces of code make up one program there is no

need to ADDRESS the EIB again.

 EXEC CICS SEND TEXT FROM(outmsg) �1�

 LENGTH(outlen)

 RESP(msgresp)

 RESP2(msgresp2);

 if (msgresp != DFHRESP(NORMAL))

 unexpected_prob("Message output failed from sendmsg",71);

}

void unexpected_prob(char* desc, int rc)

{

 long int msgresp, msgresp2;

 int msglen;

 msglen = strlen(desc);

 EXEC CICS SEND TEXT FROM(desc) �2�

 LENGTH(msglen)

 RESP(msgresp)

 RESP2(msgresp2);

 fprintf(stderr,"%s\n",desc);

 if (msgresp != DFHRESP(NORMAL))

 exit(99);

 else

 exit(rc);

}

Figure 70. Child Program Before Translation (Part 2 of 2)

CICS

Chapter 24. Using CICS 285

The program once translated appears as follows:

#ifndef __dfheitab

 #define __dfheitab 1

 static char *dfhldver = "LD TABLE DFHEITAB 230." ;

 static unsigned short int dfheib0 = 0 ;

 static char *dfheid0 = "\x00\x00\x00\x0c" ;

 static char *dfheicb = " " ;

 typedef struct { �3�

 unsigned char eibtime [4] ;

 unsigned char eibdate [4] ;

 unsigned char eibtrnid [4] ;

 unsigned char eibtaskn [4] ;

 unsigned char eibtrmid [4] ;

 signed short int eibfil01 ;

 signed short int eibcposn ;

 signed short int eibcalen ;

 unsigned char eibaid ;

 unsigned char eibfn [2] ;

 unsigned char eibrcode [6] ;

 unsigned char eibds [8] ;

 unsigned char eibreqid [8] ;

 unsigned char eibrsrce [8] ;

 unsigned char eibsync ;

 unsigned char eibfree ;

 unsigned char eibrecv ;

 unsigned char eibfil02 ;

 unsigned char eibatt ;

 unsigned char eibeoc ;

 unsigned char eibfmh ;

 unsigned char eibcompl ;

 unsigned char eibsig ;

 unsigned char eibconf ;

 unsigned char eiberr ;

 unsigned char eiberrcd [4] ;

 unsigned char eibsynrb ;

 unsigned char eibnodat ;

 signed long int eibresp ;

 signed long int eibresp2 ;

 unsigned char eibrldbk ;

 } DFHEIBLK;

 static DFHEIBLK *dfheiptr;

#endif

Figure 71. Child Program After Translation (Part 1 of 4)

CICS

286 LE/VSE: C Run-Time Programming Guide

#ifndef __dfhtemps

#pragma linkage(dfhexec,OS) /* force OS linkage */

void dfhexec(); /* Function to call CICS */

 #define __dfhtemps 1

 static signed short int dfhb0020, *dfhbp020 = &dfhb0020 ;

 static signed short int dfhb0021, *dfhbp021 = &dfhb0021 ;

 static signed short int dfhb0022, *dfhbp022 = &dfhb0022 ;

 static signed short int dfhb0023, *dfhbp023 = &dfhb0023 ;

 static signed short int dfhb0024, *dfhbp024 = &dfhb0024 ;

 static signed short int dfhb0025, *dfhbp025 = &dfhb0025 ;

 static unsigned char dfhc0010, *dfhcp010 = &dfhc0010 ;

 static unsigned char dfhc0011, *dfhcp011 = &dfhc0011 ;

 static signed short int dfhdummy;

#endif

 /* this is an example of a CICS program */

 /* program : GETSTAT (part 2 - infrequent use routines) */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void unexpected_prob(char* desc, int rc);

void sendmsg(char* status_record)

{

 long int msgresp, msgresp2;

 char outmsg[80];

 int outlen;

 if (memcmp(status_record,"OK ",3)==0)

 strcpy(outmsg,"The system is available.");

 else if (memcmp(status_record,"DOWNTME ",8)==0)

 strcpy(outmsg,"The system is down for regular backups.");

 else

 strcpy(outmsg,"SYSTEM PROBLEM -- call help line for details.");

 outlen=strlen(outmsg);

Figure 71. Child Program After Translation (Part 2 of 4)

CICS

Chapter 24. Using CICS 287

In Figure 71 on page 286 observe the following:

�3� The structure DFHEIBLK is used for passing information between CICS and

the application program.

�4� This is the CICS command that was interpreted by the translator. The

translator comments out the EXEC CICS commands.

�5� The translator inserts this call to the function dfhexec() and comments out

the EXEC CICS commands for further processing by the C/VSE compiler.

The values msgresp and msgresp2 are set from the values in the DFHEIBLK

structure.

�6� This EXEC CICS command is similar in format to the one discussed in 4.

 /* EXEC CICS SEND TEXT FROM(outmsg) �4�

 LENGTH(outlen)

 RESP(msgresp)

 RESP2(msgresp2) */

 {

 dfhb0020 = outlen;

 dfhexec("\x18\x06\x60\x00\x2F\x00\x00\x00\x00\x00\x20\x04\x00\x00\x20\xF0\xF0\

\xF0\xF0\xF2\xF7\xF0\xF0",dfhdummy,outmsg,dfhbp020); �5�

 msgresp = dfheiptr->eibresp;

 msgresp2 = dfheiptr->eibresp2;

 }

 if (msgresp != 0 /* DFHRESP(NORMAL)=0 */)

 unexpected_prob("Message output failed from sendmsg",71);

}

 void unexpected_prob(char* desc, int rc)

{

 long int msgresp, msgresp2;

 int msglen;

 msglen = strlen(desc);

Figure 71. Child Program After Translation (Part 3 of 4)

 /* EXEC CICS SEND TEXT FROM(desc)

 LENGTH(msglen)

 RESP(msgresp)

 RESP2(msgresp2) */

 {

 dfhb0020 = msglen;

 dfhexec("\x18\x06\x60\x00\x2F\x00\x00\x00\x00\x00\x20\x04\x00\x00\x20\xF0\xF0\

\xF0\xF0\xF4\xF4\xF0\xF0",dfhdummy,desc,dfhbp020); �6�

 msgresp = dfheiptr->eibresp;

 msgresp2 = dfheiptr->eibresp2;

 }

 fprintf(stderr,"%s\n",desc);

 if (msgresp != 0 /* DFHRESP(NORMAL)=0 */)

 exit(99);

 else

 exit(rc);

}

Figure 71. Child Program After Translation (Part 4 of 4)

CICS

288 LE/VSE: C Run-Time Programming Guide

However, you should note that the generated call to dfhexec() is different.

For this reason it is important that EXEC CICS commands are not imbedded

in macros.

Compiling

CICS requires that programs be reentrant at CICS entry points. This means:

v If your program is not naturally reentrant, you must compile with the RENT

compiler option.

v If you are compiling code that was translated by the CICS translator, you must

compile with the RENT compiler option. The CICS translator puts external

writable static in the program.

v If your program is naturally reentrant and has not been translated, you can

compile and link it just as you would a non-CICS program.

Sample JCL to Translate and Compile

The sample JCL in Figure 72 on page 290 shows you how to translate and compile

a C module (steps 1 and 2).

CICS

Chapter 24. Using CICS 289

�1� Code the LIBDEF search chain to include all the library names that the

CICS translator needs.

�2� Code the LIBDEF search chain to include all the library names that the

C/VSE compiler, the prelinker, and the linkage editor needs.

�3� This is the library to which the phase is written.

�4� You can code the translator options (XOPTS) either on the PARM parameter

of the EXEC job control statement as shown, or on a #pragma directive

preceding the C source program.

* $$ JOB JNM=jobname,PDEST=(*,uid),LDEST=(*,uid),PRI=prty,CLASS=class

* $$ PUN DISP=I

// JOB jobname

// LIBDEF *,SEARCH=(PRD2.SCEEBASE,...) �1�

// EXEC IESINSRT

$ $$ LST DISP=D

// JOB CXLTCL

// LIBDEF *,SEARCH=(PRD2.SCEEBASE,...) �2�

// LIBDEF PHASE,CATALOG=phase_lib �3�

 /* --

 /* STEP 2: Compile the generated source and write the object module

 /* to SYSLNK

 /*

 /* Note: Although step 2 appears before step 1 in this JCL

 /* stream, it is actually executed after step 1. The JCL

 /* comprising step 2 is first copied to SYSLNK, then step

 /* 1 (which appends the output from the translator to

 /* SYSLNK) is executed. Only then is step 2 (and

 /* subsequently step 3 and 4) executed.

 /* --

// OPTION CATAL

// EXEC EDCCOMP,SIZE=EDCCOMP,PARM=’/RENT’

* $$ END

 /* --

 /* STEP 1: Translate program source

 /* --

// EXEC DFHEDP1$,PARM=’CICS,...’ �4�

 #pragma runopts(options)

 .

 C source statements

 .

 /*

// EXEC IESINSRT

 /*

 /* --

 /* STEP 3: Pre-link the object module and write the output to SYSLNK

 /* --

 PHASE phase_name,*

 INCLUDE DFHELII �5�

// EXEC EDCPRLK,SIZE=EDCPRLK �6�

 /* --

 /* STEP 4: Link-edit pre-linked program

 /* --

// EXEC LNKEDT �7�

 /*

$ $$ EOJ

* $$ END

/&

* $$ EOJ

Figure 72. JCL to Translate, Compile, Prelink, and Link-Edit

CICS

290 LE/VSE: C Run-Time Programming Guide

See CICS Transaction Server for VSE/ESA Application Programming Guide for

details of the translator options.

Prelinking and Linking All Object Decks

The sample JCL in Figure 72 on page 290 shows you how to prelink and link-edit a

C module (steps 3 and 4).

�5� CICS provides a stub called DFHELII, which must be link-edited with the

phase. The INCLUDE statement for DFHELII must follow immediately after

the PHASE statement and before the EXEC EDCPRLK statement. A name card

should also be passed to the linkage editor.

 If you have compiled your source with the RENT compile-time option, you

must prelink all of the text decks together. The prelinker accepts one or

more text decks, combines them, and generates a single output text deck

which can then be linked.

 For further information on the prelinker, see LE/VSE Programming Guide.

Note: If your program is to be installed in the SVA, ensure you linkedit

the module using the SVA option on the PHASE card.

 All applications must run AMODE=31. It is recommended that the text deck is

linked with AMODE(31) and RMODE(ANY). CICS does not require any other

linkage editor options.

�6� If it is necessary to use some of the prelinker control statements, you have

to catalog the object into a sublibrary first. In this case, the compiler needs

the NAME and DECK options, and prelinker statements could be used to

supply the phase name and to include DFHELII, in addition to performing

the other functions requested. The prelinker reads the input from SYSIPT.

See LE/VSE Programming Guide for further information.

�7� Weak external references (WXTRN) unresolved by the linkage editor, and

their associated messages about unresolved address constants, can be

ignored.

Defining and Running the CICS Program

Program Processing

In a CICS environment, a single copy of a program is used by several transactions

concurrently. One section of a program can process a transaction and then be

suspended (usually as a result of an EXEC CICS command); another transaction can

then start or resume processing the same or any other section of the same

application program. This behavior requires that the program be reentrant.

Link Considerations

If your program is to be installed in the SVA, the module must be linkedited using

the SVA option on the PHASE card.

CSD Considerations

Before you can run a program, you must define it in the CICS CSD.

CICS

Chapter 24. Using CICS 291

292 LE/VSE: C Run-Time Programming Guide

Chapter 25. Using CSP

This chapter briefly describes the interface between LE/VSE C Run-Time and

applications generated through the Cross System Product/Application

Development (CSP/AD) and the Cross System Product/Application Execution

(CSP/AE) Version 3 Release 3 Modification 0 or later. CSP refers to both CSP/AD

and CSP/AE.

CSP/AD is an interactive application generator that provides methods for

interactively defining, testing, and generating application programs. It can aid in

improving productivity in application development.

CSP/AE takes the generated program and executes it in a production environment.

For more information on CSP, see “Where to Find More Information” on page xxi.

Calls from LE/VSE C Run-Time to CSP applications are only supported under

CICS/VSE.

Common Data Types

Table 43 lists the data types common to both CSP and LE/VSE C Run-Time.

 Table 43. Common Data Types Between C and CSP

LE/VSE C Run-Time CSP

signed short BIN - 2 bytes

signed int/long BIN - 4 bytes

struct RECORD

char array[size] Characters

You must use the function __csplist() to receive the parameter list from a CSP

application. See LE/VSE C Run-Time Library Reference for more information on this

function.

Passing Control

You can pass control between CSP and LE/VSE C Run-Time as follows:

CALL Calls another application or subroutine to be run. When execution is

completed, control is returned to the statement following the CALL

statement in the original application.

XFER|DXFR

Transfers control and initiates execution of a CSP application or non-CSP

program or transaction. The current application is terminated when the

transfer statement is executed.

 Under CICS, XFER is used to transfer control to another CICS transaction,

while DXFR is used to transfer control to an application or program. If the

target name is an application, control remains in CSP and the application is

initiated immediately. If the target name is a program, CSP issues CICS

XCTL to the program name.

© Copyright IBM Corp. 1995, 2005 293

Note: From a LE/VSE C Run-Time program, you can pass control to a CSP

application but you cannot pass control to another LE/VSE-enabled

language (C, COBOL, PL/I) from that CSP application. Only one

LE/VSE-enabled language can be in the chain of calls.

Running under CICS Control

CSP-CICS Note: Because all LE/VSE C Run-Time applications running under

CICS must run with AMODE=31, when passing parameters to CSP,

you must either

v Pass parameters below the line

or

v Relink CSP applications with AMODE=31

The following example program shows how parameters are received from a CSP

application that uses a CALL statement to transfer control. The LE/VSE C Run-Time

program is expecting to receive an int as a parameter.

Examples

EDCXGCP5

CSP

294 LE/VSE: C Run-Time Programming Guide

The following example program shows how parameters are received from a CSP

application that uses an XFER statement to transfer control.

EDCXGCP6

 /* EDCXGCP5

 This example shows how to call C from CSP under CICS, and how

 parameters are passed

 */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

main()

{

 struct tag_commarea { /* commarea passed to C from R924A1 */

 int *ptr1 ;

 int *ptr2 ;

 int *ptr3 ;

 } * ca_ptr ; /* commarea ptr */

 int *parm1_ptr ;

 int *parm2_ptr ;

 int *parm3_ptr ;

 /* addressability to EIB control block */

 /* and COMMUNICATION AREA */

 EXEC CICS ADDRESS EIB(dfheiptr) COMMAREA(ca_ptr) ;

 parm1_ptr = ca_ptr->ptr1 ;

 parm2_ptr = ca_ptr->ptr2 ;

 parm3_ptr = ca_ptr->ptr3 ;

 *parm3_ptr = (int) pow((double) *parm1_ptr,

 (double) *parm2_ptr);

 EXEC CICS RETURN;

}

Figure 73. CSP CALLing LE/VSE C Run-Time under CICS

CSP

Chapter 25. Using CSP 295

/* EDCXGCP6

 This example shows how to XFER control to C from CSP under CICS

 XFER CALL

 R924A3 ====> EDCXGCP6 ====> R924A6

 R924A3 and R924A6 are CSP applications

 */

#include <math.h>

#include <string.h>

 /* structure passed to R924A6*/

void main()

{

 struct {

 char *appl_ptr;

 _Packed struct tag_a3rec *rec3_ptr ;

 } parm_ptr ;

 /* Structure received R924A3*/

 struct tag_a3rec {

 char a3ct [4];

 char a3lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a3xbc; /* int field 1 for LE/VSE C Run-Time */

 int a3ybc; /* int field 2 for LE/VSE C Run-Time */

 int a3zbc; /* int field 3 for LE/VSE C Run-Time */

 };

 _Packed struct tag_a3rec a3rec ;

Figure 74. CSP Transferring Control to C under CICS Using the XFER Statement (Part 1 of

2)

CSP

296 LE/VSE: C Run-Time Programming Guide

The following example program shows how parameters are received from a CSP

application that uses a DXFR statement to transfer control. You must receive a

structure.

 char lk_appl[16] = "USR5ALF.R924A6 " ;

 struct tag_a3progx {

 char alfx [8];

 char applx [8];

 };

 _Packed struct tag_a3progx a3progx = {"USR5ALF.","R924A6 "};

 short length_a3rec = sizeof(a3rec) ;

 char * pa3rec ;

 short i ;

 /*----- start of CSP XFER-ing to C under CICS ------------------*/

 EXEC CICS ADDRESS EIB(dfheiptr);

 /* retrieve data from CSP */

 EXEC CICS RETRIEVE INTO(&a3rec) LENGTH(length_a3rec) ;

 a3rec.a3zbc = (int) pow((double) a3rec.a3xbc,

 (double) a3rec.a3ybc);

 /*----- end of CSP XFER-ing to C under CICS --------------------*/

 /* call CSP to display results*/

 parm_ptr.appl_ptr = lk_appl ; /* alf.application */

 parm_ptr.rec3_ptr = &a3rec ;

 /* LINK to CSP application */

 EXEC CICS LINK PROGRAM("DCBINIT ")

 COMMAREA(parm_ptr)

 LENGTH(8) ;

 if (dfheiptr->eibresp2 != 0) {

 printf("EDCXGCP6: EXEC CICS LINK returned non zero \n");

 printf(" return code. eibresp2 =%d\n",

 dfheiptr->eibresp2);

 }

 /*----- end of C calling CSP under CICS ------------------------*/

 EXEC CICS RETURN ;

}

Figure 74. CSP Transferring Control to C under CICS Using the XFER Statement (Part 2 of

2)

CSP

Chapter 25. Using CSP 297

EDCXGCP7

 /* EDCXGCP7

 This example shows how to transfer control to C from CSP under

 CICS, using the DXFR statement

 DXFR XCTL(equivalent to dxfr)

 R924A3 ====> EDCXGCP7 ====> DCBINIT (appl R924A5)

 R924A3 is a CSP application

 */

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #include <math.h>

main ()

{

 struct tag_a3rec {

 char a3ct [4];

 char a3lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a3xbc ;

 int a3ybc ;

 int a3zbc ;

 };

 /* commarea passed to C from R924A3 */

 struct tag_commarea {

 char a3ct [4] ;

 char a3lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a3xbc ;

 int a3ybc ;

 int a3zbc ;

 } * ca_ptr ; /* commarea ptr */

 struct tag_a5progc {

 char alfc [8] ;

 char applc [8] ;

 struct tag_a3rec a3rec;

 } a5progc = {"USR5ALF.","R924A5 "};

 short length_a3rec = sizeof(struct tag_a3rec) ;

 short length_a5progc = sizeof(struct tag_a5progc) ;

 /* addreasability to EIB control block */

 /* and COMMUNICATION AREA */

Figure 75. CSP Transferring Control to C under CICS Using the DXFR Statement (Part 1 of

2)

CSP

298 LE/VSE: C Run-Time Programming Guide

EXEC CICS ADDRESS EIB(dfheiptr) COMMAREA(ca_ptr) ;

 if (dfheiptr->eibcalen == length_a3rec) {

 memcpy(&a5progc.a3rec, ca_ptr , length_a3rec);

 /* calculate the pow(x,y) */

 a5progc.a3rec.a3zbc = (int) pow((double) a5progc.a3rec.a3xbc,

 (double) a5progc.a3rec.a3ybc);

 EXEC CICS XCTL

 PROGRAM("DCBINIT ")

 COMMAREA(a5progc)

 length(length_a5progc) ;

 if (dfheiptr->eibresp2 != DFHRESP(NORMAL)) {

 printf ("EDCXGCP7: failed on xctl call to DCBINIT\n");

 printf (" \n");

 }

 }

 else {

 printf ("EDCXGCP7:"

 "length of COMMAREA is different from expected\n");

 printf (" expected %d, actual %d\n",

 length_a3rec, dfheiptr->eibcalen);

 printf (" \n");

 EXEC CICS RETURN;

 }

 EXEC CICS RETURN;

}

Figure 75. CSP Transferring Control to C under CICS Using the DXFR Statement (Part 2 of

2)

Chapter 25. Using CSP 299

300 LE/VSE: C Run-Time Programming Guide

Chapter 26. Using DL/I

This chapter explains how DL/I and C handle errors and describes the limitations

to using DL/I with C.

LE/VSE C Run-Time provides the ctdli() C library function to invoke DL/I

facilities (see LE/VSE C Run-Time Library Reference for more information).

You can also invoke DL/I facilities with the callable service CEETDLI which is

provided by the LE/VSE. The CEETDLI interface performs essentially the same

functions as ctdli(). If you use the CEETDLI interface instead of ctdli(),

condition handling is improved because of the coordination between LE/VSE and

DL/I condition handling facilities. For complete information on the CEETDLI

interface, see LE/VSE Programming Guide.

For a description of writing DL/I batch and online programs in C, see the

appropriate book listed in “Where to Find More Information” on page xxi.

To use DL/I from LE/VSE C Run-Time, you must keep the following in mind:

v The file ims.h must be included in the program.

v The PLIST(OS) and the ENV(DLI) suboptions of the #pragma runopts preprocessor

directive must be used to compile DL/I C application programs. PLIST(OS)

establishes the correct parameter list format when invoked under DL/I and

ENV(DLI) establishes the correct operating environment.

v When you use the PLIST(OS) option on the #pragma runopts preprocessor

directive, argc will contain 1 (one) and argv[0] will contain NULL.

v DL/I provides a language interface module (DLZLI000) that gives a common

interface to DL/I. This module must be link-edited with the application

program.

For the remainder of this chapter, it is assumed that you are using the ctdli()

interface.

Handling Errors

The DL/I environments are sensitive to errors and error-handling issues. A failing

DL/I transaction or program can potentially corrupt a DL/I database. DL/I must

know about the failure of a transaction or program that has been updating a

database so that it can back out any updates made by that failing program.

C provides extensive error-handling facilities for the programmer, but special steps

are required to coordinate DL/I and C error handling so that DL/I can do its

database rollbacks when a program fails.

When you are using DL/I from C:

v Run your C program with the TRAP(ON,MAX) option, and use DL/I interfaces by

calling the ctdli() library function.

v The ctdli() library function will keep track of calls to and returns from DL/I. If

an abend or program check occurs and the C error handler gets control, it can

determine if the problem arose on the DL/I side of the interface or on the C

side.

© Copyright IBM Corp. 1995, 2005 301

v If a program check or abend occurs in DL/I, when the C exception handler gets

control, it immediately passes control to the DL/I partition controller. The DL/I

partition controller ensures that the integrity of the database is preserved.

v If a program check occurs in the C program rather than in DL/I, all the facilities

of C error handling apply, provided that you meet certain conditions when you

code your program. For any error condition that arises, you must do one of the

following:

1. Resolve the error completely so that the application can continue.

2. Have DL/I back out the program’s updates by issuing a rollback call to

DL/I, and then terminate the program.

3. Make sure that the program terminates abnormally and provide an

installation-modified run-time user exit that turns all abnormal terminations

into operating system ABENDs to effect DL/I rollbacks. See LE/VSE

Programming Guide for more information.
The errors you most likely can fix in your program are arithmetic exception

(SIGFPE) conditions. It is unlikely that you can resolve other types of program

checks or system abends in your program.

Any program that invokes DL/I by way of some other DL/I interface should be

executed with TRAP(OFF). You should be sure that the program contains code to

issue a rollback call to DL/I before terminating after an error. Refer to LE/VSE

Programming Reference for more information about the limitations of using

TRAP(OFF).

Other Considerations

A program communication block (PCB) is a control block used by DL/I to describe

results of a DL/I call (DB PCB) or the results of a message retrieval or insertion

(I/O PCB) made by your program. A valid PCB is one that has been correctly

initialized by DL/I and passed to you through your C program. For details on

PCBs, refer to “Where to Find More Information” on page xxi. See also the sample

C-DL/I program in LE/VSE C Run-Time Library Reference.

When you are running under DL/I, you should note the following effects of

specifying PLIST(OS), ENV(DLI), and their combinations. Specifying PLIST(OS)

results in an argc value of 1 (one), and argv[0] = NULL. Also, the following chart

shows the combinations of PLIST(OS) and ENV(DLI) and the resulting PCB

generated:

 Table 44. PCB Generated under DL/I

Combination Running under DL/I

ENV(DLI) only Valid PCB

PLIST(OS) only Null PCB

ENV(DLI) and PLIST(OS) Valid PCB

For more information on the run-time options ENV and PLIST, see LE/VSE

Programming Reference.

DL/I

302 LE/VSE: C Run-Time Programming Guide

Example

The following is an example of a LE/VSE C Run-Time program that makes a DL/I

call and checks the return code status of the call in DL/I batch.

EDCXGIM2

 /* EDCXGIM2

 This is an example of how to use DL/I with C

 */

#pragma runopts(env(dli),plist(os))

#include <ims.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "edcxgim3.h"

int main(void) {

 /***/

 /* Declare the database pointer control block for the database */

 /***/

 PCB_STRUCT_8_TYPE *cusdb_ptr;

/***/

 /* IO area used for DL/I call */

 /***/

 auto IOA2 aio_area;

 IOA2 *io_area;

/***/

 /* SSAs for DL/I calls */

 /***/

 static char qual0[] = "STSCCST (STQCCNO =000001)";

 static char qual1[] = "STSCLOC ";

 static char qual2[] = "STPCORD ";

 static int six = 6;

 static char gu[4] = "GU ";

 int rc;

 int failed = 0; /* Indicate if any part of test case failed. */

 /***/

 /* Get the pointer to the database from the parameter list */

 /***/

 cusdb_ptr = (__pcblist[1]);

Figure 76. C Program Using DL/I (Part 1 of 2)

DL/I

Chapter 26. Using DL/I 303

/***/

 /* Make a call to get some data from the database */

 /***/

 printf("DL/I Test starting\n");

 io_area = malloc(sizeof(IOA2));

 /***/

 /* Issue a DL/I call with arguments below the line (using CTDLI) */

 /***/

 rc = ctdli(six,gu,cusdb_ptr,&aio._area,qual0,qual1,qual2);

 if ((cusdb_ptr->stat_code[0] == ’ ’ &&; cusdb_ptr->stat_code_1}==’ ’)

 && (rc == 0))

 printf("Call to CTDLI returned successfully\n");

 else

 {

 printf("Call to CTDLI returned status of %c%c.\n",

 cusdb_ptr->stat_code[0],cusdb_ptr->stat_code[1]);

 failed = 1;

 }

 if (failed == 0)

 printf("Test Successful\n");

 else printf("Test Failed");

 return(0);

}

Figure 76. C Program Using DL/I (Part 2 of 2)

DL/I

304 LE/VSE: C Run-Time Programming Guide

EDCXGIM3

Figure 77. Header File for DL/I Example (Part 1 of 3)

 /* EDCXGIM3

 This header file is used with the DL/I example

 */

 /*------------------*/

 /* DB PCB */

 /*------------------*/

typedef struct {

 char db_name[8];

 char seg_level[2];

 char stat_code[2];

 char proc_opt[4];

 int dli;

 char seg_name[8];

 int len_kfb;

 int no_senseg;

 char key_fb[2];

} DB_PCB;

 /*------------------*/

 /* IO PCB */

 /*------------------*/

typedef struct {

 char term[8];

 char ims_res[2];

 char stat_code[2];

 char date[4];

 char time[4];

 int input_seq;

 char output_mess[8];

 char mod_nme[8];

 char user_id[8];

 } IO_AREA;

 /*------------------*/

 /* SPA DATA */

 /*------------------*/

 typedef struct {

 short int uosplth;

 char uospres1[4];

 char uosptran[8];

 char uospuser;

 char fill[85];

 } SPA_DATA;

 /*------------------*/

 /* INPUT MESSAGE */

 /*------------------*/

typedef struct {

 short int ll;

 char zz[2];

 char fill[2];

 char numb[4];

 char nme[6];

} IN_MSG;

Figure 77. Header File for DL/I Example (Part 2 of 3)

DL/I

Chapter 26. Using DL/I 305

/*------------------*/

 /* OUTPUT MESSAGE */

 /*------------------*/

typedef struct {

 short int ll;

 char z1;

 char z2;

 char fill[2];

 char sca[2];

} OUT_MSG;

 /*------------------*/

 /* IO AREA */

 /*------------------*/

typedef struct {

 char key[20];

} IOA1;

typedef struct {

 char item[40];

} IOA2;

Figure 77. Header File for DL/I Example (Part 3 of 3)

DL/I

306 LE/VSE: C Run-Time Programming Guide

Chapter 27. Using QMF

LE/VSE C Run-Time’s support of the Query Management Facility (QMF) interface,

a query and report writing facility, enables you to write applications through the

SAA callable interface. You can create applications to perform a variety of tasks

such as data entry, query building, administration aids, and report analysis.

You must include the header file dsqcommc.h (provided with the QMF application),

which contains the function and structure definitions necessary to use the QMF

interface.

For information on how to write your LE/VSE C Run-Time applications with the

QMF interface, see the appropriate manual listed in “Where to Find More

Information” on page xxi.

Example

The following example demonstrates the interface between the QMF facility and

LE/VSE C Run-Time.

EDCXGQM1

 /* EDCXGQM1

 This example shows how to use the interface between QMF and C

 */

#include <string.h>

#include <stdlib.h>

#include <dsqcommc.h> /* QMF header file */

int main(void)

{

 struct dsqcomm communication_area; /* found in DSQCOMMC */

 /**/

 /* Query interface command length and commands */

 /**/

 signed long command_length;

 static char start_query_interface [] = "START";

 static char set_global_variables [] = "SET GLOBAL";

 static char run_query [] = "RUN QUERY Q1";

 static char print_report [] = "PRINT REPORT (FORM=F1)";

 static char end_query_interface [] = "EXIT";

Figure 78. QMF Interface Example (Part 1 of 3)

© Copyright IBM Corp. 1995, 2005 307

/**/

 /* Query command extension, number of parameters and lengths */

 /**/

 signed long number_of_parameters;

 signed long keyword_lengths[10];

 signed long data_lengths[10];

 /**/

 /* Variable data type constants */

 /**/

 static char char_data_type[] = DSQ_VARIABLE_CHAR;

 static char int_data_type[] = DSQ_VARIABLE_FINT;

 /**/

 /* Keyword parameter and value for START command */

 /**/

 static char start_keywords[] = "DSQSCMD";

 static char start_keyword_values[] = "USERCMD1";

 /**/

 /* Keyword parameter and value for SET command */

 /**/

 #define SIZE_VAL 8

 char set_keywords[3][SIZE_VAL];

 signed long set_values[3];

 /**/

 /* Start a Query Interface Session */

 /**/

 number_of_parameters = 1;

 command_length = sizeof(start_query_interface);

 keyword_lengths[0] = sizeof (start_keywords);

 data_lengths[0] = sizeof(start_keyword_values);

 dsqcice(&communication_area,

 &command_length,

 &start_query_interface[0],

 &number_of_parameters,

 &keyword_lengths[0],

 &start_keywords[0],

 &data_lengths[0],

 &start_keyword_values[0],

 '_data_type[0]);

Figure 78. QMF Interface Example (Part 2 of 3)

QMF

308 LE/VSE: C Run-Time Programming Guide

/**/

 /* Set numeric values into query using SET command */

 /**/

 number_of_parameters = 3;

 command_length = sizeof(set_global_variables);

 strcpy(set_keywords[0],"MYVAR01");

 strcpy(set_keywords[1],"SHORT");

 strcpy(set_keywords[2],"MYVAR03");

 keyword_lengths[0] = SIZE_VAL;

 keyword_lengths[1] = SIZE_VAL;

 keyword_lengths[2] = SIZE_VAL;

 data_lengths[0] = sizeof(long);

 data_lengths[1] = sizeof(long);

 data_lengths[2] = sizeof(long);

 set_values[0] = 20;

 set_values[1] = 40;

 set_values[2] = 84;

 dsqcice(&communication_area,

 &command_length,

 &set_global_variables[0],

 &number_of_parameters,

 &keyword_lengths[0],

 &set_keywords[0],

 &data_lengths[0],

 &set_values[0],

 &int_data_type[0]);

 /**/

 /* Run a Query */

 /**/

 command_length = sizeof(run_query);

 dsqcic(&communication_area, &command_length, &run_query[0]);

 /**/

 /* Print the results of the query */

 /**/

 command_length = sizeof(print_report);

 dsqcic(&communication_area, &command_length, &print_report[0]);

 /**/

 /* End the query interface session */

 /**/

 command_length = sizeof(end_query_interface);

 dsqcic(&communication_area, &command_length,

 &end_query_interface[0]);

 exit(0);

}

Figure 78. QMF Interface Example (Part 3 of 3)

Chapter 27. Using QMF 309

310 LE/VSE: C Run-Time Programming Guide

Chapter 28. Using DB2

Both LE/VSE and LE/VSE C Run-Time provide an interface to the DB2 Server for

VSE & VM. If you are using the previous Structured Query Language/Data System

(SQL/DS), the terms mentioned in this section are also valid. Refer to “Where to

Find More Information” on page xxi for a list of books describing the DB2 Server.

An application program requests DB2 services using DB2 statements imbedded in

the program. The DB2 preprocessor translates imbedded DB2 statements into host

language statements that perform assignments and call a database language

interface module.

The DB2 Server processes a request and then returns to the application. Any errors

occurring during database processing are handled by the database product.

If a program is terminated, the DB2 server takes appropriate action depending on

the nature of termination.

The DB2 translator does not recognize the LE/VSE C Run-Time’s support for

alternate locales/codepages. Therefore, all DB2 LE/VSE C Run-Time code should

be written in codepage IBM1047 (APL293).

Example

The following program creates a DB2 table called CTAB1, inserts values in the table,

and then drops the table. You must run the program through a DB2 preprocessor,

and then you can compile and link it like a regular C program.

EDCXGDB4

 /* EDCXGDB4

 This example demonstrates how to use DB2 with C

 */

#include <string.h>

#include <stdio.h>

EXEC SQL INCLUDE SQLCA;

Figure 79. LE/VSE C Run-Time Program Using DB2 (Part 1 of 3)

© Copyright IBM Corp. 1995, 2005 311

int main(void)

{

 if (CreaTab() == -1)

 {

 printf("Test Failed in table-creation.\n");

 exit(-1);

 }

 if (DropTab() == -1)

 {

 printf("Test Failed in table-dropping.\n");

 exit(-1);

 }

 printf("Test Successful.\n");

 return(0);

}

 /*

 * This routine creates the table CTAB1 and inserts some values

 * into it

 */

int CreaTab(void)

{

 EXEC SQL CREATE TABLE CTAB1

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 LASTNME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3) NOT NULL,

 PHONENO CHAR(7),

 EDUCLVL SMALLINT,

 SALARY FLOAT(21)) IN DATABASE DSNUCOMP;

 if (sqlca.sqlcode != 0)

 {

 printf("ERROR - SQL code returned non-zero for "

 "creation of CTAB1, received %d\n",sqlca.sqlcode);

 return(-1);

 }

Figure 79. LE/VSE C Run-Time Program Using DB2 (Part 2 of 3)

DB2

312 LE/VSE: C Run-Time Programming Guide

/* Now insert some values into the table */

 EXEC SQL INSERT INTO CTAB1 VALUES

 ('097892','John','Adams','003','8883945',3,29500.00);

 EXEC SQL INSERT INTO CTAB1 VALUES

 ('000002','Joe','Smith','004','8883791',NULL,25500.00);

 EXEC SQL INSERT INTO CTAB1 VALUES

 ('043929','Ralph','Holland','001','8888734',1,NULL);

 EXEC SQL INSERT INTO CTAB1 VALUES

 ('000010','Holly','Waters','001','8884590',3,29550.00);

 if (sqlca.sqlcode != 0)

 {

 printf("ERROR - SQL code returned non-zero for "

 "insert into tables, received %d\n",sqlca.sqlcode);

 return(-1);

 }

 return(0);

}

 /*

 * This routine will drop the table.

 */

int DropTab(void)

{

 EXEC SQL DROP TABLE CTAB1;

 if (sqlca.sqlcode != 0)

 {

 printf("ERROR - SQL code returned non-zero for "

 "drop of CTAB1 received %d??\n",sqlca.sqlcode);

 return(-1);

 }

 EXEC SQL COMMIT WORK;

 return(0);

}

Figure 79. LE/VSE C Run-Time Program Using DB2 (Part 3 of 3)

Chapter 28. Using DB2 313

314 LE/VSE: C Run-Time Programming Guide

Part 6. Internationalization: Locales and Character Sets

Chapter 29. Introduction to Locale 317

Internationalization in Programming Languages 317

Elements of Internationalization 317

LE/VSE C Run-Time Support for

Internationalization 318

Locales and Localization 318

Locale-Sensitive Interfaces 318

Chapter 30. Building a Locale 321

Using the charmap File 321

The CHARMAP Section 326

The CHARSETID Section 328

Locale Source Files 329

LC_CTYPE Category 332

LC_COLLATE Category 335

Collating Rules 335

Collating Keywords 337

Comparison of Strings 341

LC_MONETARY Category 341

LC_NUMERIC Category 344

LC_TIME Category 345

LC_MESSAGES Category 347

LC_TOD Category 348

LC_SYNTAX Category 350

Using the localedef Utility 352

Locale Naming Conventions 352

Chapter 31. Customizing a Locale 359

Using the Customized Locale 360

Referring Explicitly to a Customized Locale . . . 361

Referring Implicitly to a Customized Locale . . . 362

Customizing Your Installation 362

Chapter 32. Definition of S370 C, SAA C, and

POSIX C Locales 363

Differences Between SAA C and POSIX C Locales 369

Chapter 33. Code Set and Locale Utilities . . . 371

Code Set Conversion Utilities 371

The genxlt Utility 371

Example 373

The uconvdef Utility 373

Example 375

The iconv Utility 375

Example 377

Code Conversion Functions 377

Code Set Converters Supplied 377

Universal Coded Character Set Converters . . 385

Codeset Conversion Using UCS-2 388

UCMAP Source Format 389

The localedef Utility 392

Defining Your Own Locales 394

Examples 394

Chapter 34. Coded Character Set

Considerations with Locale Functions 399

Variant Character Detail 399

Alternate Code Points 401

Coding without Locale Support 401

Using a Hybrid Coded Character Set 401

Converting Existing Work 403

Converting Hybrid Code 404

Writing Source Code in Coded Character Set

IBM-1047 404

Exporting Source Code to Other Sites 404

Coded Character Set Independence in Developing

Applications 406

Coded Character Set of Source Code and Header

Files 407

The ??=pragma filetag Directive 407

Converting Coded Character Sets at Compile Time 408

Examples 408

Usage 409

Summary of Source and Compile Use 409

Using Predefined Macros 410

Using a Predefined Locale 412

Working With Listings and Output Files 412

Object Decks 413

Listings 413

Considerations With Other Products and Tools . . 415

This part describes internationalization and provides information on IBM

Language Environment for VSE/ESA support for internationalization.

© Copyright IBM Corp. 1995, 2005 315

316 LE/VSE: C Run-Time Programming Guide

Chapter 29. Introduction to Locale

Internationalization in Programming Languages

Internationalization in programming languages is a concept that comprises

externally stored cultural data, a set of programming tools to create such cultural data,

a set of programming interfaces to access this data, and a set of programming methods

that enable you to use provided interfaces to write programs that do not make any

assumptions about the cultural environments they run in. Such programs modify

their behavior according to the user’s cultural environment, specified during the

program’s execution.

Elements of Internationalization

The typical elements of cultural environment are as follows:

Native language

The text that the executing program uses to communicate with a user or

environment, that is, the natural language of the end user.

Character sets and coded character sets

Maps an alphabet, the characters used in a particular language, onto the

set of hexadecimal values (code points) that uniquely identify each

character. This mapping creates the coded character set, which is uniquely

identified by the character set it encodes, the set of code point values, and

the mapping between these two. EBCDIC coded character set IBM-273

(Germany Country Extended Code Page) and EBCDIC coded character set

IBM-293 (APL-USA) are examples of two different character sets mapped

onto the same set of code points. EBCDIC IBM-273 and ASCII IBM-1047

are examples of the same character set mapped differently onto the same

range of code points.

Collating and ordering

The relative ordering of characters used for sorting.

Character classification

Determines the type of character (alphabetic, numeric, and so forth)

represented by a code point.

Character case conversion

Defines the mapping between uppercase and lowercase characters within a

single character set.

Date and time format

Defines the way date and time data (names of weekdays and months;

order of month, day, and year, and so forth) are formatted.

Format of numeric and non-numeric numbers

Defines the way numbers and monetary units are formatted with commas,

decimal points, and so forth.

© Copyright IBM Corp. 1995, 2005 317

LE/VSE C Run-Time Support for Internationalization

The LE/VSE C Run-Time support of internationalization is based on the IEEE

POSIX P1003.2 and X/Open Portability Guide standards for global locales and

coded character set conversion, with the following exceptions:

v Collating symbols and collating elements are not supported in one-to-many

mapping in the LC_COLLATE category of the charmap file.

v The grouping arguments in the LC_NUMERIC and LC_MONETARY categories

must be strings, not sets of integers.

v The use of the ellipsis (...) in the LC_COLLATE category is limited.

See “Using the charmap File” on page 321 for more information about charmap

files.

Locales and Localization

A locale is a collection of data that encodes information about the cultural

environment. Localization is an action that establishes the cultural environment for

an application by selecting the active locale. Only one locale can be active at one

time, but a program can change the active locale at any time during its execution.

The active locale affects the behavior on the locale-sensitive interfaces for the entire

program. This is called the global locale model.

Locale-Sensitive Interfaces

The LE/VSE C Run-Time library products provide many interfaces to manipulate

and access locales. You can use these interfaces to write internationalized C

programs.

This list summarizes all the LE/VSE C Run-Time library functions which affect or

are affected by the current locale.

Selecting locale

Changing the characteristics of the user’s cultural environment by

changing the current locale: setlocale()

Querying locale

Retrieving the locale information that characterizes the user’s cultural

environment:

Monetary and numeric formatting conventions:

&localeconv

Date and time formatting conventions:

localdtconv()

User-specified information:

nl_langinfo()

Encoding of the variant part of the portable character set:

getsyntx()

Character set identifier:

csid(), wcsid()

Classification of characters:

Single-byte characters:

isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),

islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit()

Introduction to Locale

318 LE/VSE: C Run-Time Programming Guide

Wide characters:

iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(),

iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),

iswupper(), iswxdigit(), wctype(), iswctype()

Character case mapping:

Single-byte characters:

tolower(), toupper()

Wide characters:

towlower(), towupper()

Multibyte character and multibyte string conversion:

mblen(), mbrlen(), mbtowc(), mbrtowc(), wctomb(), wcrtomb(), mbstowcs(),

mbsrtowcs(), wcstombs(), wcsrtombs(), mbsinit(), wctob()

String conversions to arithmetic:

strtod(), wcstod(), strtol(), wcstol(), strtoul(), wcstoul(), atof(),

atoi(), atol()

String collating:

strcoll(), strxfrm(), wcscoll(), wcsxfrm()

Character display width:

wcswidth(), wcwidth()

Date, time, and monetary formatting:

strftime(), strptime(), wcsftime(), mktime(), ctime(), gmtime(),

localtime() strfmon()

Formatted input/output:

printf() (and family of functions), scanf() (and family of functions),

vswprintf(), swprintf(), swscanf()

Processing regular expressions:

regcomp(), regexec()

Wide character unformatted input/output:

fgetwc(), fgetws(), fputwc(), fputws(), getwc(), getwchar(), putwc(),

putwchar(), ungetwc()

Response matching:

rpmatch()

Collating elements:

ismccollel(), strtocoll(), colltostr(), collequiv(), collrange(),

collorder(), cclass(), maxcoll(), getmccoll(), getwmccoll()

Introduction to Locale

Chapter 29. Introduction to Locale 319

Introduction to Locale

320 LE/VSE: C Run-Time Programming Guide

Chapter 30. Building a Locale

Cultural information is encoded in the locale source file using the locale definition

language. One locale source file characterizes one cultural environment. See

Appendix D, “Locales Supplied with LE/VSE C Run-Time,” on page 431 for a list

of the locale source and object files supplied with the LE/VSE C Run-Time.

The locale source file is processed by the locale compilation tool, called the

localedef tool.

To enhance portability of the locale source files, certain information related to the

character sets can be encoded using the symbolic names of characters. The

mapping between the symbolic names and the characters they represent and its

associated hexadecimal value is defined in the character set description file or

charmap file. See Appendix E, “Charmap Files Supplied with LE/VSE C

Run-Time,” on page 443 for a list of the charmap files shipped with your product.

The conceptual model of the locale build process is presented below:

Using the charmap File

The charmap file defines a mapping between the symbolic names of characters and

the hexadecimal values associated with the character in a given coded character

set. Optionally, it can provide the alternate symbolic names for characters.

Characters in the locale source file can be referred to by their symbolic names or

alternate symbolic names, thereby allowing for writing generic locale source files

independent of the encoding of the character set they represent.

© Copyright IBM Corp. 1995, 2005 321

Each charmap file must contain at least the definition of the portable character set

and the character symbolic names associated with each character. The characters in

the portable character set and the corresponding symbolic names, and optional

alternate symbolic names, are defined in Table 45.

 Table 45. Characters in Portable Character Set and Corresponding Symbolic Names

Symbolic Name

Alternate

Name Character Hex Value

<NUL> 00

<tab> <SE10> 05

<vertical-tab> <SE12> 0b

<form-feed> <SE13> 0c

<carriage-return> <SE14> 0d

<newline> <SE11> 15

<backspace> <SE09> 16

<alert> <SE08> 2f

<space> <SP01> 40

<period> <SP11> . 4b

<less-than-sign> <SA03> < 4c

<left-parenthesis> <SP06> (4d

<plus-sign> <SA01> + 4e

<ampersand> <SM03> & 50

<right-parenthesis> <SP07>) 5d

<semicolon> <SP14> ; 5e

<hyphen> <SP10> - 60

<hyphen-minus> <SP10> - 60

<slash> <SP12> / 61

<solidus> <SP12> / 61

<comma> <SP08> , 6b

<percent-sign> <SM02> % 6c

<underscore> <SP09> _ 6d

<low-line> <SP09> _ 6d

<greater-than-sign> <SA05> > 6e

<question-mark> <SP15> ? 6f

<colon> <SP13> : 7a

<apostrophe> <SP05> ' 7d

<equals-sign> <SA04> = 7e

<quotation-mark> <SP04> " 7f

<a> <LA01> a 81

 <LB01> b 82

<c> <LC01> c 83

<d> <LD01> d 84

<e> <LE01> e 85

<f> <LF01> f 86

Building a Locale

322 LE/VSE: C Run-Time Programming Guide

Table 45. Characters in Portable Character Set and Corresponding Symbolic

Names (continued)

Symbolic Name

Alternate

Name Character Hex Value

<g> <LG01> g 87

<h> <LH01> h 88

<i> <LI01> i 89

<j> <LJ01> j 91

<k> <LK01> k 92

<l> <LL01> l 93

<m> <LM01> m 94

<n> <LN01> n 95

<o> <LO01> o 96

<p> <LP01> p 97

<q> <LQ01> q 98

<r> <LR01> r 99

<s> <LS01> s a2

<t> <LT01> t a3

<u> <LU01> u a4

<v> <LU01> v a5

<w> <LW01> w a6

<x> <LX01> x a7

<y> <LY01> y a8

<z> <LZ01> z a9

<A> <LA02> A c1

 <LB02> B c2

<C> <LC02> C c3

<D> <LD02> D c4

<E> <LE02> E c5

<F> <LF02> F c6

<G> <LG02> G c7

<H> <LH02> H c8

<I> <LI02> I c9

<J> <LJ02> J d1

<K> <LK02> K d2

<L> <LL02> L d3

<M> <SM02> M d4

<N> <LN02> N d5

<O> <LO02> O d6

<P> <LP02> P d7

<Q> <LQ02> Q d8

<R> <LR02> R d9

Building a Locale

Chapter 30. Building a Locale 323

Table 45. Characters in Portable Character Set and Corresponding Symbolic

Names (continued)

Symbolic Name

Alternate

Name Character Hex Value

<S> <LS02> S e2

<T> <LT02> T e3

<U> <LU02> U e4

<V> <LV02> V e5

<W> <LW02> W e6

<X> <LX02> X e7

<Y> <LY02> Y e8

<Z> <LZ02> Z e9

<zero> <ND10> 0 f0

<one> <ND01> 1 f1

<two> <ND02> 2 f2

<three> <ND03> 3 f3

<four> <ND04> 4 f4

<five> <ND05> 5 f5

<six> <ND06> 6 f6

<seven> <ND07> 7 f7

<eight> <ND08> 8 f8

<nine> <ND09> 9 f9

<vertical-line> <SM13> | (4f)

<exclamation-mark> <SP02> ! (5a)

<dollar-sign> <SC03> $ (5b)

<circumflex> <SD15> ^ (5f)

<circumflex-accent> <SD15> ^ (5f)

<grave-accent> <SD13> (79)

<number-sign> <SM01> # (7b)

<commercial-at> <SM05> @ (7c)

<tilde> <SD19> (a1)

<left-square-bracket> <SM06> [(ad)

<right-square-bracket> <SM08>] (bd)

<left-brace> <SM11> { (c0)

<left-curly-bracket> <SM11> { (c0)

<right-brace> <SM14> } (d0)

<right-curly-bracket> <SM14> } (d0)

<backslash> <SM07> \ (e0)

<reverse-solidus> <SM07> \ (e0)

Building a Locale

324 LE/VSE: C Run-Time Programming Guide

The portable character set is the basis for the syntactic and semantic processing of

the localedef tool, and for most of the utilities and functions that access the locale

object files. Therefore, the portable character set must always be defined. It is

conceptually divided into two parts:

Invariant

Characters for which encoding must be constant among all charmap files.

The required encoded values are specified in Table 45 on page 322. If any

of these values change, the behavior of any locale-sensitive tool or interface

on LE/VSE C Run-Time is unpredictable.

Variant

Characters for which encoding may vary from one charmap file to another.

Only the following characters are allowed in this group:

<backslash>

<right-brace>

<left-brace>

<right-square-bracket>

<left-square-bracket>

<circumflex>

<tilde>

<exclamation-mark>

<number-sign>

<vertical-line>

<dollar-sign>

<commercial-at>

<grave-accent>

The default encoding of each variant character is shown by a hexadecimal

value in parentheses in Table 45 on page 322.

 The charmap file is divided into two main sections:

1. The charmap section, or CHARMAP

2. The character set identifier section, or CHARSETID

The following definitions can precede the two sections listed above. Each consists

of the symbol shown in the following list, starting in column 1, including the

surrounding brackets, followed by one or more <blank>s, followed by the value to

be assigned to the symbol.

<code_set_name>

The string literal containing the name of the coded character set (IBM-1047,

IBM-273, etc.)

<mb_cur_max>

The maximum number of bytes in a multibyte character which can be set

to a value of either 1 or 4. If it is 1, each character in the character set

defined in this charmap is encoded by a one-byte value. If it is 4, each

character in the character set defined in this charmap is encoded by a one-

, two-, three-, or four-byte value. If it is not specified, the default value of 1

is assumed. If a value of other than 1 or 4, is specified, a warning message

is issued and the default value of 1 is assumed.

<mb_cur_min>

The minimum number of bytes in a multibyte character. Can be set to 1

only. If a value of other than 1 is specified, a warning message is issued

and the default value of 1 is assumed.

<escape_char>

Specifies the escape character that is used to specify hexadecimal or octal

Building a Locale

Chapter 30. Building a Locale 325

notation for numeric values. It defaults to the hexadecimal value 0xe0,

which represents the \ character in the coded character set IBM-1047.

 For portability among the EBCDIC based systems, the escape character has

been redefined to the / or <slash> character in all IBM-supplied charmap

files, with the following statement:

 <escape_char> /

<comment_char>

Denotes the character chosen to indicate a comment within a charmap file.

It defaults to the hexadecimal value 0x7b, which represents the # character

in the coded character set IBM-1047.

 For portability among the EBCDIC based systems, the comment character

has been redefined to the % or <percent-sign> character in all

IBM-supplied charmap files, with the following statement:

 <comment_char> %

<shift_out>

Specifies the value of the shift-out control character that is prepended to

each double-byte value indicating the EBCDIC multibyte character. If

specified, it must be the value of the EBCDIC shift-out (SO) character

(hexadecimal value 0x0e). It is ignored if the <mb_cur_max> value is 1.

<shift_in>

Specifies the value of the shift-in control character that is appended to each

double-byte value indicating the EBCDIC multibyte character. If specified,

it must be the value of the EBCDIC shift-in (SI) character (hexadecimal

value 0x0f). It is ignored if the <mb_cur_max> value is 1.

The CHARMAP Section

The CHARMAP section defines the values for the symbolic names representing

characters in the coded character set. Each charmap file must define at least the

portable character set. The character symbolic names or alternate symbolic names

(or both) must be used to define the portable character set. These are shown in

Table 45 on page 322.

Additional characters can be defined by the user with symbolic character names.

The CHARMAP section starts with the line containing the keyword CHARMAP, and ends

with the line containing the keywords END CHARMAP. CHARMAP and END CHARMAP must

both start in column one.

The character set mapping definitions are all the lines between the first and last

lines of the CHARMAP section.

The formats of the character set mappings for this section are as follows:

"%s %s %s\n", <symbolic-name>, <encoding>, <comments>

"%s...%s %s %s\n", <symbolic-name>, <symbolic-name>, <encoding>, <comments>

The first format defines a single symbolic name and a corresponding encoding. A

symbolic name is one or more characters with visible glyphs, enclosed between

angle brackets.

For reasons of portability, a symbolic name should include only the characters from

the invariant part of the portable character set. If you use variant characters or

decimal or hexadecimal notation in a symbolic name, the symbolic name will not

Building a Locale

326 LE/VSE: C Run-Time Programming Guide

be portable. A character following an escape character is interpreted as itself; for

example, the sequence <\\\>> represents the symbolic name \> enclosed within

angle brackets, where the backslash (\) is the escape character. If / is the escape

character, the sequence <///>> represents the symbolic name />. In the supplied

charmap files, the escape character has been redefined to the forward slash (/).

The second format defines a group of symbolic names associated with a range of

values. The two symbolic names are comprised of two parts, a prefix and suffix.

The prefix consists of zero or more non-numeric invariant visible glyph characters

and is the same for both symbolic names. The suffix consists of a positive decimal

integer. The suffix of the first symbolic name must be less than or equal to the

suffix of the second symbolic name. As an example, <j0101>...<j0104> is

interpreted as the symbolic names <j0101>,<j0102>,<j0103>,<j0104>. The common

prefix is ’j’ and the suffixes are ’0101’ and ’0104’.

The encoding part can be written in one of two forms:

 <escape-char><number> (single-byte value)

 <escape-char><number><escape-char><number> (double-byte value)

The number can be written using octal, decimal, or hexadecimal notation. Decimal

numbers are written as a ’d’ followed by 2 or 3 decimal digits. Hexadecimal

numbers are written as an ’x’ followed by 2 hexadecimal digits. An octal number

is written with 2 or 3 octal digits. As an example, the single-byte value x1F could

be written as ’\37’, ’\x1F’, or ’\d31’. The double-byte value of x1A1F could be

written as ’\13\17’, ’\x1A\x1F’, or ’\d10\d15’.

In lines defining ranges of symbolic names, the encoded value is the value for the

first symbolic name in the range (the symbolic name preceding the ellipsis).

Subsequent names defined by the range have encoding values in increasing order.

When constants are concatenated for multibyte character values, they must be of

the same type, and are interpreted in byte order from first to last with the least

significant byte of the multibyte character specified by the last constant. Each value

is then prepended by the byte value of <shift_out> and appended with the byte

value of <shift_in>. Such a string represents one EBCDIC multibyte character. For

example:

<escape_char> /

<comment_char> %

<mb_cur_max> 4

<mb_cur_min> 1

<shift-out> /x0e

<shift-in> /x0f

CHARMAP

% many definition lines

<j0101>...<j0104> /d129/d254

%many definition lines

END CHARMAP

is interpreted as

<j0101> /d129/d254

<j0102> /d129/d255

<j0103> /d130/d0

<j0104> /d130/d1

It produces four 4-byte long multibyte EBCDIC characters:

Building a Locale

Chapter 30. Building a Locale 327

<j0101> x0Ex81xFEx0F

<j0102> x0Ex81xFFx0F

<j0103> x0Ex82x00x0F

<j0104> x0Ex82x01x0F

The CHARSETID Section

The character set identifier section of the charmap file maps the symbolic names

defined in the CHARMAP section to a character set identifier.

Note: The two functions csid() and wcsid() query the locales and return the

character set identifier for a given character. This information is not

currently used by any other library function.

The CHARSETID section starts with a line containing the keyword CHARSETID, and

ends with the line containing the keywords END CHARSETID. Both CHARSETID and END

CHARSETID must begin in column 1. The lines between the first and last lines of the

CHARSETID section define the character set identifier for the defined coded character

set.

The character set identifier mappings are defined as follows:

"%s %c", <symbolic-name>, <value>

"%c %c", <value>, <value>

"%s...%s %c", <symbolic-name>, <symbolic-name>, <value>

"%c...%c %c", <value>, <value>, <value>

"%s...%c %c", <symbolic-name>, <value>, <value>

"%c...%s %c", <value>, <symbolic-name>, <value>

The individual characters are specified by the symbolic name or the value. The

group of characters are specified by two symbolic names or by two numeric values

(or combination) separated by an ellipsis (...). The interpretation of ranges of values

is the same as specified in the CHARMAP section. The character set identifier is

specified by a numeric value.

For example:

<comment_char> %

<escape_char> /

<code_set_name> "IBM-930"

<mb_cur_max> 4

<mb_cur_min> 1

<shift_out> /x0e

<shift_in> /x0f

%

% CHARMAP

%

CHARMAP

...

<j0110> /x42/x5a

<j0111>...<j0112> /x43/xbe

<judc2001>...<judc2094> /x72/x8d

...

END CHARMAP

%

% CHARSETID

%

CHARSETID

...

<j0110> 1

Building a Locale

328 LE/VSE: C Run-Time Programming Guide

<j0111>...<j0112> 1

<judc2001>...<judc2094> 3

...

END CHARSETID

Locale Source Files

Locales are defined through the specification of a locale definition file. The locale

definition contains one or more distinct locale category source definitions and not

more than one definition of any category. Each category controls specific aspects of

the cultural environment. A category source definition is either the explicit

definition of a category or the copy directive, which indicates that the category

definition should be copied from another locale definition file.

The definition file is composed of an optional definition section for the escape and

comment characters to be used, followed by the category source definitions.

Comment lines and blank lines can appear anywhere in the locale definition file. If

the escape and comment characters are not defined, default code points are used

(xE0 for the escape character and x7B for the comment character, respectively). The

definition section consists of the following optional lines:

escape_char <character>

comment_char <character>

where <character> in both cases is a single-byte character to be used, for example:

escape_char /

defines the escape character in this file to be ’/’ (the <slash> character).

Locale definition files passed to the localedef utility are assumed to be in coded

character set IBM-1047.

To ensure portability among EBCDIC systems, you should redefine these characters

to characters from the invariant part of the portable character set. The suggested

redefinition is:

 escape_char /

 comment_char %

This suggested redefinition is used in all locale definition files supplied by IBM.

For reasons of portability, you should use the suggested redefinition in all your

customized locale definition files. See Chapter 31, “Customizing a Locale,” on page

359 for information about customizing locales. These two redefinitions should be

placed in the first lines of the locale definition source file, before any of the

redefined characters are used.

Each category source definition consists of a category header, a category body, and

a category trailer, in that order.

Category Header

Consists of the keyword naming the category. Each category name starts

with the characters LC_. The following category names are supported:

LC_CTYPE, LC_COLLATE, LC_NUMERIC, LC_MONETARY, LC_TIME,

LC_MESSAGES, LC_TOD, and LC_SYNTAX.

 The LC_TOD and LC_SYNTAX categories, if present, must be the last two

categories in the locale definition file.

Building a Locale

Chapter 30. Building a Locale 329

Category Body

Consists of one or more lines describing the components of the category.

Each component line has the following format:

 <identifer> <operand1>

 <identifer> <operand1>;<operand2>;...;<operandN>

<identifier> is a keyword that identifies a locale element, or a symbolic

name that identifies a collating element. <operand> is a character, collating

element, or string literal. Escape sequences can be specified in a string

literal using the <escape_character>. If multiple operands are specified,

they must be separated by semicolons. White space can be before and after

the semicolons.

Category Trailer

Consists of the keyword END followed by one or more <blank>s and the

category name of the corresponding category header.

Here is an example of locale source containing the header, body, and trailer:

escape_char /

comment_char %

%

% Here is a simple locale definition file consisting of one

% category source definition, LC_CTYPE.

%

LC_CTYPE

upper <A>;...;<Z>

END LC_CTYPE

You do not have to define each category. Where category definitions are absent

from the locale source, default definitions are used.

In each category the keyword copy followed by a string specifies the name of an

existing locale to be used as the source for the definition of this category. If the

locale is not found, an error is reported and no locale output is created.

You can continue a line in a locale definition file by placing an escape character as

the last character on the line. This continuation character is discarded from the

input. Even though there is no limitation on the length of each line, for portability

reasons it is suggested that each line be no longer than 2048 characters (bytes).

There is no limit on the accumulated length of a continued line. You cannot

continue comment lines on a subsequent line by using an escaped <newline>.

Individual characters, characters in strings, and collating elements are represented

using symbolic names, as defined below. Characters can also be represented as the

characters themselves, or as octal, hexadecimal, or decimal constants. If you use

non-symbolic notation, the resultant locale definition file may not be portable

among systems and environments. The left angle bracket (<) is a reserved symbol,

denoting the start of a symbolic name; if you use it to represent itself, you must

precede it with the escape character.

The following rules apply to the character representation:

1. A character can be represented by a symbolic name, enclosed within angle

brackets. The symbolic name, including the angle brackets, must exactly match

a symbolic name defined in the charmap file. The symbolic name is replaced by

the character value determined from the value associated with the symbolic

name in the charmap file.

Building a Locale

330 LE/VSE: C Run-Time Programming Guide

The use of a symbolic name not found in the charmap file constitutes an error,

unless the name is in the category LC_CTYPE or LC_COLLATE, in which case

it constitutes a warning. Use of the escape character or right angle bracket

within a symbolic name is invalid unless the character is preceded by the

escape character. For example:

<c>;<c-cedilla>

specifies two characters whose symbolic names are "c" and

"c-cedilla"

"<M><a><y>"

specifies a 3-character string composed of letters represented by

symbolic names "M", "a", and "y"

"<a><\>>"

specifies a 2-character string composed of letters represented by

symbolic names "a" and ">" (assuming the escape character is \)
If the character represented by the symbolic name is a multibyte character

defined by 2 byte values in the charmap file, and the shift-out and shift-in

characters are defined, the value is enclosed within shift-out and shift-in

characters before the localedef utility processes it any further.

2. A character can represent itself. Within a string, the double quotation mark, the

escape character, and the left angle bracket must be escaped (preceded by the

escape character) to be interpreted as the characters themselves. For example:

c ’c’ character represented by itself

"may" represents a 3-character string, each character within the string

represented by itself

"%%%"%>"

represents the three character long string "%">", where the escape

character is defined as %

3. A character can be represented as an octal constant. An octal constant is

specified as the escape character followed by two or more octal digits. Each

constant represents a byte value.

For example:

\131 "\212\129\168" \16\66\193\17

4. A character can be represented as a hexadecimal constant. A hexadecimal

constant is specified as the escape character, followed by an x, followed by two

or more hexadecimal digits. Each constant represents a byte value.

Example: \x83 "\xD4\x81\xA8"

5. A character can be represented as a decimal constant. A decimal constant is

specified as the escape character followed by a d followed by two or more

decimal digits. Each constant represents a byte value.

Example: \d131 "\d212\d129\d168" \d14\d66\d193\d15

For multibyte characters, the entire encoding sequence, including the shift-out and

shift-in characters, must be present. Otherwise, the sequence of bytes not enclosed

between the shift-out and shift-in characters are interpreted as a sequence of single

byte characters.

Multibyte characters can be represented by concatenating constants specified in

byte order with the last constant specifying the least significant byte of the

character. If the sequence of octal, hexadecimal, or decimal constants is to represent

a multibyte character, it must be enclosed in shift-out and shift-in constants.

Building a Locale

Chapter 30. Building a Locale 331

Example: \x0e\x42\xC1\x0f

LC_CTYPE Category

This category defines character classification, case conversion, and other character

attributes. In this category, you can represent a series of characters by using three

adjacent periods as an ellipsis symbol (...). An ellipsis is interpreted as including

all characters with an encoded value higher than the encoded value of the

character preceding the ellipsis and lower than the encoded value following the

ellipsis.

An ellipsis is valid within a single encoded character set.

For example, \x30;...;\x39; includes in the character class all characters with

encoded values from X'30' to X'39'.

The keywords recognized in the LC_CTYPE category are listed below. In the

descriptions, the term "automatically included" means that it is not an error either

to include or omit any of the referenced characters; they are assumed by default

even if the entire keyword is missing and accepted if present. If a keyword is

specified without any arguments, the default characters are assumed.

When a character is automatically included, it has an encoded value dependent on

the charmap file in effect. If no charmap file is specified, the encoding of the

encoded character set IBM-1047 is assumed.

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keywords

are present in this category. If the locale is not found, an error is reported

and no locale output is created. The copy keyword cannot specify a locale

that also specifies the copy keyword for the same category.

upper Defines characters to be classified as uppercase letters. No character

defined for the keywords cntrl, digit, punct, or space can be specified.

The uppercase letters A through Z are automatically included in this class.

 The isupper() and iswupper() functions test for any character and wide

character, respectively, included in this class.

lower Defines characters to be classified as lowercase letters. No character

defined for the keywords cntrl, digit, punct, or space can be specified.

The lowercase letters a through z are automatically included in this class.

 The islower() and iswlower() functions test for any character and wide

character, respectively, included in this class.

alpha Defines characters to be classified as letters. No character defined for the

keywords cntrl, digit, punct, or space can be specified. Characters

classified as either upper or lower are automatically included in this class.

 The isalpha() and iswalpha() functions test for any character or wide

character, respectively, included in this class.

digit Defines characters to be classified as numeric digits. Only the digits 0, 1,

2, 3, 4, 5, 6, 7, 8, 9 can be specified. If they are, they must be in

contiguous ascending sequence by numerical value. The digits 0 through 9

are automatically included in this class.

 The isdigit() and iswdigit() functions test for any character or wide

character, respectively, included in this class.

Building a Locale

332 LE/VSE: C Run-Time Programming Guide

space Defines characters to be classified as whitespace characters. No character

defined for the keywords upper, lower, alpha, digit, or xdigit can be

specified for space. The characters <space>, <form-feed>, <newline>,

<carriage-return>, <horizontal-tab>, and <vertical-tab>, and any

characters defined in the class blank are automatically included in this

class.

 The functions isspace() and iswspace() test for any character or wide

character, respectively, included in this class.

cntrl Defines characters to be classified as control characters. No character

defined for the keywords upper, lower, alpha, digit, punct, graph, print,

or xdigit can be specified for cntrl.

 The functions iscntrl() and iswcntrl() test for any character or wide

character, respectively, included in this class.

punct Defines characters to be classified as punctuation characters. No character

defined for the keywords upper, lower, alpha, digit, cntrl, or xdigit, or

as the <space> character, can be specified.

 The functions ispunct() and iswpunct() test for any character or wide

character, respectively, included in this class.

graph Defines characters to be classified as printing characters, not including the

<space> character. Characters specified for the keywords upper, lower,

alpha, digit, xdigit, and punct are automatically included. No character

specified in the keyword cntrl can be specified for graph.

 The functions isgraph() and iswgraph() test for any character or wide

character, respectively, included in this class.

print Defines characters to be classified as printing characters, including the

<space> character. Characters specified for the keywords upper, lower,

alpha, digit, xdigit, punct, and the <space> character are automatically

included. No character specified in the keyword cntrl can be specified for

print.

 The functions isprint() and iswprint() test for any character or wide

character, respectively, included in this class.

xdigit Defines characters to be classified as hexadecimal digits. Only the

characters defined for the class digit can be specified, in contiguous

ascending sequence by numerical value, followed by one or more sets of

six characters representing the hexadecimal digits 10 through 15, with each

set in ascending order (for example, A, B, C, D, E, F, a, b, c, d, e, f).

The digits 0 through 9, the uppercase letters A through F, and the

lowercase letters a through f are automatically included in this class.

 The functions isxdigit() and iswxdigit() test for any character or wide

character, respectively, included in this class.

blank Defines characters to be classified as blank characters. The characters

<space> and <tab> are automatically included in this class.

 The functions isblank() and iswblank() test for any character or wide

character, respectively, included in this class.

toupper

Defines the mapping of lowercase letters to uppercase letters. The operand

consists of character pairs, separated by semicolons. The characters in each

character pair are separated by a comma; the pair is enclosed in

parentheses. The first character in each pair is the lowercase letter, and the

Building a Locale

Chapter 30. Building a Locale 333

second is the corresponding uppercase letter. Only characters specified for

the keywords lower and upper can be specified for toupper. The lowercase

letters a through z and their corresponding uppercase letters A through Z

are automatically in this mapping, but only when the toupper keyword is

omitted from the locale definition.

 It affects the behavior of the toupper() and towupper() functions for

mapping characters and wide characters, respectively.

tolower

Defines the mapping of uppercase letters to lowercase letters. The operand

consists of character pairs, separated by semicolons. The characters in each

character pair are separated by a comma; the pair is enclosed by

parentheses. The first character in each pair is the uppercase letter, and the

second is its corresponding lowercase letter. Only characters specified for

the keywords lower and upper can be specified. If the tolower keyword is

omitted from the locale definition, the mapping is the reverse mapping of

the one specified for the toupper.

 The tolower keyword affects the behavior of the tolower() and towlower()

functions for mapping characters and wide characters, respectively.

You may define additional character classes using your own keywords. A

maximum of 31 classes are supported in total: the 12 standard classes, and up to 29

user-defined classes.

The defined classes affect the behavior of the wctype() and iswctype() functions.

Here is an example of the definition of the LC_CTYPE category:

escape_char /

comment_char %

%%%%%%%%%%%%%

LC_CTYPE

%%%%%%%%%%%%%

% upper letters are A-Z by default plus the three defined below

upper <A-acute>;<A-grave>;<C-acute>

% lower case leters are a-z by default plus the three defined below

lower <a-acute>;<a_grave><c-acute>

% space characters are default 6 characters plus the one defined below

space <hyphen-minus>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/

 <form-feed>;<carriage-return>;<NUL>;/

 <SO>;<SI>

% default graph, print,punct, digit, xdigit, blank classes

% toupper mapping defined only for the following three pairs

toupper (<a-acute),<A-acute>);/

 (<a-grave),<A-grave>);/

 (<c-acute),<C-acute>);

% default upper to lower case mapping

% user defined class

myclass <e-ogonek>;<E-ogonek>

END LC_CTYPE

Building a Locale

334 LE/VSE: C Run-Time Programming Guide

LC_COLLATE Category

A collation sequence definition defines the relative order between collating

elements (characters and multicharacter collating elements) in the locale. This order

is expressed in terms of collation values. It assigns each element one or more

collation values (also known as collation weights). The collation sequence

definition is used by regular expressions, pattern matching, and sorting and

collating functions. The following capabilities are provided:

1. Multicharacter collating elements. Specification of multicharacter collating

elements (sequences of two or more characters to be collated as an entity).

2. User-defined ordering of collating elements. Each collating element is

assigned a collation value defining its order in the character (or basic) collation

sequence. This ordering is used by regular expressions and pattern matching,

and unless collation weights are explicitly specified, also as the collation weight

to be used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be assigned

1 to 6 collating weights for use in sorting. The first weight is referred to as the

primary weight.

4. One-to-many mapping. A single character is mapped into a string of collating

elements.

5. Many-to-many substitution. A string of one or more characters are mapped to

another string (or an empty string). The character or characters are ignored for

collation purposes.

6. Equivalence class definition. Two or more collating elements have the same

collation value (primary weight).

7. Ordering by weights. When two strings are compared to determine their

relative order, the two strings are first broken up into a series of collating

elements. Each successive pair of elements is compared according to the

relative primary weights for the elements. If they are equal, and more than one

weight is assigned, then the pairs of collating elements are compared again

according to the relative subsequent weights, until either two collating elements

are not equal or the weights are exhausted.

Collating Rules

Collation rules consist of an ordered list of collating order statements, ordered from

lowest to highest. The <NULL> character is considered lower than any other

character. The ellipsis symbol ("...") is a special collation order statement. It

specifies that a sequence of characters collate according to their encoded character

values. It causes all characters with values higher than the value of the <collating

identifier> in the preceding line, and lower than the value for the <collating

identifier> on the following line, to be placed in the character collation order

between the previous and the following collation order statements in ascending

order according to their encoded character values.

The use of the ellipsis symbol ties the definition to a specific coded character set

and may preclude the definition from being portable among implementations.

The ellipsis symbol must be on a line by itself, not the first or last line, and the

preceding and succeeding lines must not specify a weight.

A collating order statement describes how a collating identifier is weighted.

Each <collating-identifier> consists of a character, <collating-element>,

<collating-symbol>, or the special symbol UNDEFINED. The order in which collating

elements are specified determines the character order sequence, such that each

Building a Locale

Chapter 30. Building a Locale 335

collating element is considered lower than the elements following it. The <NULL>

character is considered lower than any other character. Weights are expressed as

characters, <collating-symbol>s, <collating-element>s, or the special symbol

IGNORE. A single character, a <collating-symbol>, or a <collating-element>

represents the relative position in the character collating sequence of the character

or symbol, rather than the character or characters themselves. Thus, rather than

assigning absolute values to weights, a particular weight is expressed using the

relative "order value" assigned to a collating element based on its order in the

character collation sequence.

A <collating-element> specifies multicharacter collating elements, and indicates

that the character sequence specified by the <collating-element> is to be collated

as a unit and in the relative order specified by its place.

A <collating-symbol> can define a position in the relative order for use in

weights.

The <collating-symbol> UNDEFINED is interpreted as including all characters not

specified explicitly. Such characters are inserted in the character collation order at

the point indicated by the symbol, and in ascending order according to their

encoded character values. If no UNDEFINED symbol is specified, and the current

coded character set contains characters not specified in this clause, the localedef

utility issues a warning and places such characters at the end of the character

collation order.

The syntax for a collation order statement is:

<collating-identifier> <weight1>;<weight2>;...;<weightn>

Collation of two collating identifiers is done by comparing their relative primary

weights. This process is repeated for successive weight levels until the two

identifiers are different, or the weight levels are exhausted. The operands for each

collating identifier define the primary, secondary, and subsequent relative weights

for the collating identifier. Two or more collating elements can be assigned the

same weight. If two collating identifiers have the same primary weight, they

belong to the same equivalence class.

The special symbol IGNORE as a weight indicates that when strings are compared

using the weights at the level where IGNORE is specified, the collating element

should be ignored, as if the string did not contain the collating element. In regular

expressions and pattern matching, all characters that are IGNOREd in their primary

weight form an equivalence class.

All characters specified by an ellipsis are assigned unique weights, equal to the

relative order of the characters. Characters specified by an explicit or implicit

UNDEFINED special symbol are assigned the same primary weight (they belong to

the same equivalence class).

One-to-many mapping is indicated by specifying two or more concatenated

characters or symbolic names. For example, if the character "<ezset>" is given the

string "<s><s>" as a weight, comparisons are performed as if all occurrences of the

character <ezset> are replaced by <s><s> (assuming <s> has the collating weight

<s>). If it is desirable to define <ezset> and <s><s> as an equivalence class, then a

collating element must be defined for the string "ss".

If no weight is specified, the collating identifier is interpreted as itself.

Building a Locale

336 LE/VSE: C Run-Time Programming Guide

For example, the order statement

<a> <a>

is equivalent to

<a>

Collating Keywords

The following keywords are recognized in a collation sequence definition.

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

shall be present in this category. If the locale is not found, an error is

reported and no locale output is created. The copy keyword cannot specify

a locale that also specifies the copy keyword for the same category.

collating-element

Defines a collating-element symbol representing a multicharacter collating

element. This keyword is optional.

 In addition to the collating elements in the character set, the

collating-element keyword can be used to define multicharacter collating

elements. The syntax is:

"collating-element %s from %s\n", <collating-element>, <string>

The <collating-element> should be a symbolic name enclosed between

angle brackets (< and >), and should not duplicate any symbolic name in

the current charmap file (if any), or any other symbolic name defined in

this collation definition. The string operand is a string of two or more

characters that collate as an entity. A <collating-element> defined with

this keyword is only recognized within the LC_COLLATE category.

 For example:

collating-element <ch> from "<c><h>"

collating-element <e-acute> from "<acute><e>"

collating-element <ll> from "ll"

collating-symbol

Defines a collating symbol for use in collation order statements.

 The collating-symbol keyword defines a symbolic name that can be

associated with a relative position in the character order sequence. While

such a symbolic name does not represent any collating element, it can be

used as a weight. This keyword is optional.

 This construct can define symbols for use in collation sequence statements,

between the order_start and order_end keywords.

 The syntax is:

"collating-symbol %s\n", <collating-symbol>

The <collating-symbol> must be a symbolic name, enclosed between

angle brackets (< and >), and should not duplicate any symbolic name in

the current charmap file (if any), or any other symbolic name defined in

this collation definition. A <collating-symbol> defined with this keyword

is only recognized within the LC_COLLATE category.

 For example:

collating-symbol <UPPER_CASE>

collating-symbol <HIGH>

Building a Locale

Chapter 30. Building a Locale 337

substitute

The substitute keyword defines a substring substitution in a string to be

collated. This keyword is optional. The following operands are supported

with the substitute keyword:

"substitute %s with %s\n", <regular-expr>, <replacement>

The first operand is treated as a basic regular expression. The replacement

operand consists of zero or more characters and regular expression

back-references (for example, \1 through \9). The back-references consist of

the backslash followed by a digit from 1 to 9. If the backslash is followed

by two or three digits, it is interpreted as an octal constant.

 When strings are collated according to a collation definition containing

substitute statements, the collation behaves as if occurrences of substrings

matching the basic regular expression are replaced by the replacement

string, before the strings are compared based on the specified collation

sequence. Ranges in the regular expression are interpreted according to the

current character collation sequence and character classes according to the

character classification specified by the LC_CTYPE environment variable at

collation time. If more than one substitute statement is present in the

collation definition, the collation process behaves as if the substitute

statements are applied to the strings in the order they occur in the source

definition. The substitution for the substitute statements are processed

before any substitutions for one-to-many mappings. The support of the

″substitute″ keyword is an IBM LE/VSE C Run-Time extension to the

POSIX standard.

order_start

Define collating rules. This statement is followed by one or more collation

order statements, assigning character collation values and collation weights

to collating elements.

 The order_start keyword must precede collation order entries. It defines

the number of weights for this collation sequence definition and other

collation rules.

 The syntax of the order_start keyword is:

order_start <sort-rule1>;<sort-rule1>;...;<sort-rulen>

The operands of the order_start keyword are optional. If present, the

operands define rules to be applied when strings are compared. The

number of operands define how many weights each element is assigned; if

no operands are present, one forward operand is assumed. If any is

present, the first operand defines rules to be applied when comparing

strings using the first (primary) weight; the second when comparing

strings using the second weight, and so on. Operands are separated by

semicolons (;). Each operand consists of one or more collation directives

separated by commas (,). If the number of operands exceeds the limit of 6,

the localedef utility issues a warning message.

 The following directives are supported:

forward

Specifies that comparison operations for the weight level proceed

from the start of the string towards its end.

Building a Locale

338 LE/VSE: C Run-Time Programming Guide

backward

Specifies that comparison operations for the weight level proceed

from the end of the string toward its beginning.

no-substitute

No substitution is performed, such that the comparison is based on

collation values for collating elements before any substitution

operations are performed.

Notes:

1. This is an IBM LE/VSE C Run-Time extension to the POSIX

standard.

2. When the no-substitute keyword is specified, one-to-many

mappings are ignored.

position

Specifies that comparison operations for the weight level must

consider the relative position of non-IGNOREd elements in the

strings. The string containing a non-IGNOREd element after the

fewest IGNOREd collating elements from the start of the comparison

collates first. If both strings contain a non-IGNOREd character in the

same relative position, the collating values assigned to the elements

determine the order. If the strings are equal, subsequent

non-IGNOREd characters are considered in the same manner.

 order_end

The collating order entries are terminated with an order_end keyword.

Here is an example of an LC_COLLATE category:

 LC_COLLATE

 % ARTIFICIAL COLLATE CATEGORY

 % collating elements

 �1� collating-element <ch> from "<c><h>"

 collating-element <Ch> from "<C><h>"

 collating-element <eszet> from "<s><z>"

 %collating symbols for relative order definition

 collating-symbol <LOW>

 �2� collating-symbol <UPPER-CASE>

 collating-symbol <LOWER-CASE>

 collating-symbol <NONE>

 �3� order_start forward;backward;forward

 <NONE>

 �4� <LOW>

 <UPPER-CASE>

 <LOWER-CASE>

 �5� UNDEFINED IGNORE;IGNORE;IGNORE

 <space>

 �6�

 <quotation-mark>

 �7� <a> <a>;<NONE>;<LOWER-CASE>

�10� <a-acute> <a>;<a-acute>;<LOWER-CASE>

�11� <a-grave> <a>;<a-grave>;<LOWER-CASE>

 �8� <A> <a>;<NONE>;<UPPER-CASE>

�11� <A-acute> <a>;<a-acute>;<UPPER-CASE>

�11� <A-grave> <a>;<a-grave>;<UPPER-CASE>

�11� <ch> <ch>;<NONE>;<LOWER-CASE>

Building a Locale

Chapter 30. Building a Locale 339

�11� <Ch> <ch>;<NONE>;<UPPER-CASE>

 �9� <s> <s>;<s>;<LOWER-CASE>

�12� <eszet> "<s><s>";"<eszet><s>";<LOWER-CASE>

 �9� <z> <z>;<NONE>;<LOWER-CASE>

 order_end

The example is interpreted as follows:

 1. Collating elements

v Character <c> followed by <h> collate as one entity named <ch>

v Character <C> followed by <h> collate as one entity named <Ch>

v Character <s> followed by <z> collate as one entity named <eszet>

 2. Collating symbols <LOW>, <UPPER-CASE>, <LOWER-CASE> and <NONE> are defined

to be used in relative order definition.

 3. Up to 3 string comparisons are defined:

v First pass starts from the beginning of the strings

v Second pass starts from the end of the strings, and

v Third pass starts from the beginning of the strings
 4. The collating weights are defined such that

v <LOW> collates before <UPPER-CASE>

v <UPPER-CASE> collates before <LOWER-CASE>

v <LOWER-CASE> collates before <NONE>

 5. All characters for which collation is not specified here are ordered after

<NONE>, and before <space> in ascending order according to their encoded

values.

 6. All characters with an encoded value larger than the encoded value of

<space> and lower than the encoded value of <quotation-mark> in the current

encoded character set, collate in ascending order according to their values.

 7. <a> has a:

v Primary weight of <a>

v Secondary weight <NONE>

v Tertiary weight of <LOWER-CASE>

 8. <A> has a:

v Primary weight of <a>

v Secondary weight of <NONE>

v Tertiary weight of <UPPER-CASE>

 9. The weights of <s> and <z> are determined in a similar fashion to <a> and

<A>.

10. <a-acute> has a:

v Primary weight of <a>

v Secondary weight of <a-acute> itself

v Tertiary weight of <LOWER-CASE>

11. The weights of <a-grave>, <A-acute>, <A-grave>, <ch> and <Ch> are

determined in a similar fashion to <a-acute>.

12. <eszet> has a:

v Primary weight determined by replacing each occurrence of <eszet> with

the sequence of two <s>’s and using the weight of <s>

v Secondary weight determined by replacing each occurrence of <eszet> with

the sequence of <eszet> and <s> and using their weights

Building a Locale

340 LE/VSE: C Run-Time Programming Guide

v Tertiary weight is the relative position of <LOWER-CASE>

Comparison of Strings

Compare the strings s1="aAch" and s2="AaCh" using the above LC_COLLATE

definition:

1. s1=> "aA<ch>", and s2=> "Aa<Ch>"

2. First pass:

a. Substitute the elements of the strings with their primary weights:

s1=> "<a><a><ch>", s2=> "<a><a><ch>"

b. Compare the two strings starting with the first element—they are equal.
3. Second pass:

a. Substitute the elements of the strings with their secondary weights:

s1=> "<NONE><NONE><NONE>", s2=>"<NONE><NONE><NONE>"

b. Compare the two strings from the last element to the first—they are equal.
4. Third pass:

a. Substitute the elements of the strings with their third level weights:

s1=> "<LOWER-CASE><UPPER-CASE><LOWER-CASE>", s2=> "<UPPER-
CASE><LOWER-CASE><UPPER-CASE>"

b. Compare the two strings starting from the beginning of the strings:

s2 compares lower than s1 because <UPPER-CASE> is before <LOWER-CASE>.

Compare the strings s1="a1sz" and s2=>"a2ss":

1. s1=> "a1<eszet>" and s2= "a2ss"

2. First pass:

a. Substitute the elements of the strings with their primary weights:

s1=> "<a><s><s>", s2=> "<a><s><s>"

b. Compare the two strings starting with the first element—they are equal.
3. Second pass:

a. Substitute the elements of the strings with their secondary weights:

s1=> "<a-acute><eszet><s>", s2=>"<a-grave><s><s>"

b. Compare the two strings from the last element to the first—<s> is before

<ezset>.

LC_MONETARY Category

This category defines the rules and symbols used to format monetary quantities.

The operands are strings or integers. The following keywords are supported:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

should be present in this category. If the locale is not found, an error is

reported and no locale output is created. The copy keyword cannot specify

a locale that also specifies the copy keyword for the same category.

int_curr_symbol

Specifies the international currency symbol. The operand is a four-character

string, with the first three characters containing the alphabetic international

currency symbol in accordance with those specified in ISO4217 Codes for the

Representation of Currency and Funds . The fourth character is the character

used to separate the international currency symbol from the monetary

quantity.

Building a Locale

Chapter 30. Building a Locale 341

If not defined, it defaults to the empty string (″″).

currency_symbol

Specifies the string used as the local currency symbol. If not defined, it

defaults to the empty string (″″).

mon_decimal_point

The string used as a decimal delimiter to format monetary quantities.

 If not defined it defaults to the empty string (″″).

mon_thousands_sep

Specifies the string used as a separator for groups of digits to the left of

the decimal delimiter in formatted monetary quantities. If not defined, it

defaults to the empty string (″″).

mon_grouping

Defines the size of each group of digits in formatted monetary quantities.

The operand is a string representing a sequence of integers separated by

semicolons. Each integer specifies the number of digits in each group, with

the initial integer defining the size of the group immediately preceding the

decimal delimiter, and the following integers defining the preceding

groups. If the last integer is not -1, then the size of the previous group (if

any) is used repeatedly for the rest of the digits. If the last integer is -1,

then no further grouping is performed. If not defined, mon_grouping

defaults to -1 which indicates no grouping. An empty string is interpreted

as -1.

positive_sign

A string used to indicate a formatted monetary quantity with a

non-negative value. If not defined, it defaults to the empty string (″″).

negative_sign

Specifies a string used to indicate a formatted monetary quantity with a

negative value. If not defined, it defaults to the empty string (″″).

int_frac_digits

Specifies an integer representing the number of fractional digits (those to

the right of the decimal delimiter) to be displayed in a formatted monetary

quantity using int_curr_symbol. If not defined, it defaults to -1.

frac_digits

Specifies an integer representing the number of fractional digits (those to

the right of the decimal delimiter) to be displayed in a formatted monetary

quantity using currency_symbol. If not defined, it defaults to -1.

p_cs_precedes

Specifies an integer set to 1 if the currency_symbol or int_curr_symbol

precedes the value for a non-negative formatted monetary quantity, and set

to 0 if the symbol succeeds the value. If not defined, it defaults to -1.

p_sep_by_space

Specifies an integer set to 0 if no space separates the currency_symbol or

int_curr_symbol from the value for a non-negative formatted monetary

quantity, set to 1 if a space separates the symbol from the value, and set to

2 if a space separates the symbol and the string sign, if adjacent. If not

defined, it defaults to -1.

n_cs_precedes

An integer set to 1 if the currency_symbol or int_curr_symbol precedes the

value for a negative formatted monetary quantity, and set to 0 if the

symbol succeeds the value. If not defined, it defaults to -1.

Building a Locale

342 LE/VSE: C Run-Time Programming Guide

n_sep_by_space

An integer set to 0 if no space separates the currency_symbol or

int_curr_symbol from the value for a negative formatted monetary

quantity, set to 1 if a space separates the symbol from the value, and set to

2 if a space separates the symbol and the string sign, if adjacent. If not

defined, it defaults to -1.

p_sign_posn

An integer set to a value indicating the positioning of the positive_sign for

a non-negative formatted monetary quantity. The following integer values

are recognized:

0 Parentheses surround the quantity and the currency_symbol or

int_curr_symbol.

1 The sign string precedes the quantity and the currency_symbol or

int_curr_symbol.

2 The sign string succeeds the quantity and the currency_symbol or

int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or

int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or

int_curr_symbol.

The following value may also be specified, though it is not part of the

POSIX standard.

5 Use debit-sign or credit-sign for p_sign_posn or n_sign_posn.

 If not defined, it defaults to -1.

n_sign_posn

An integer set to a value indicating the positioning of the negative_sign

for a negative formatted monetary quantity. The recognized values are the

same as for p_sign_posn. If not defined, it defaults to -1.

left_parenthesis

The symbol of the locale’s equivalent of (to form a negative-valued

formatted monetary quantity together with right_parenthesis. If not

defined, it defaults to the empty string (″″).

Note: This is an IBM-specific extension.

right_parenthesis

The symbol of the locale’s equivalent of) to form a negative-valued

formatted monetary quantity together with left_parenthesis. If not

defined, it defaults to the empty string (″″);

Note: This is an IBM-specific extension.

debit_sign

The symbol of locale’s equivalent of DB to indicate a non-negative-valued

formatted monetary quantity. If not defined, it defaults to the empty string

(″″);

Note: This is an IBM-specific extension.

credit_sign

The symbol of locale’s equivalent of CR to indicate a negative-valued

formatted monetary quantity. If not defined, it defaults to the empty string

(″″);

Building a Locale

Chapter 30. Building a Locale 343

Note: This is an IBM-specific extension.

Here is an example of the definition of the LC_MONETARY category:

escape_char /

comment_char %

%%%%%%%%%%%%%

LC_MONETARY

%%%%%%%%%%%%%

int_curr_symbol "<J><P><Y><space>"

currency_symbol "<yen>"

mon_decimal_point "<period>"

mon_thousands_sep "<comma>"

mon_grouping "3;0"

positive_sign ""

negative_sign "<hyphen-minus>"

int_frac_digits 0

frac_digits 0

p_cs_precedes 1

p_sep_by_space 0

n_cs_precedes 1

n_sep_by_space 0

p_sign_posn 1

n_sign_posn 1

debit_sign "<D>"

credit_sign "<C><R>"

left_parenthesis "<left-parenthesis>"

right_parenthesis "<right-parenthesis>"

END LC_MONETARY

LC_NUMERIC Category

This category defines the rules and symbols used to format non-monetary numeric

information. The operands are strings. The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

should be present in this category. If the locale is not found, an error is

reported and no locale output is created. The copy keyword cannot specify

a locale that also specifies the copy keyword for the same category.

decimal_point

Specifies a string used as the decimal delimiter in numeric, non-monetary

formatted quantities. This keyword cannot be omitted and cannot be set to

the empty string.

thousands_sep

Specifies a string containing the symbol that is used as a separator for

groups of digits to the left of the decimal delimiter in numeric,

non-monetary, formatted quantities.

grouping

Defines the size of each group of digits in formatted non-monetary

quantities. The operand is a string representing a sequence of integers

separated by semicolons. Each integer specifies the number of digits in

each group, with the initial integer defining the size of the group

immediately preceding the decimal delimiter, and the following integers

defining the preceding groups. If the last integer is not -1, then the size of

the previous group (if any) is used repeatedly for the rest of the digits. If

the last integer is -1, then no further grouping is performed. An empty

string is interpreted as -1.

Building a Locale

344 LE/VSE: C Run-Time Programming Guide

Here is an example of how to specify the LC_NUMERIC category:

escape_char /

comment_char %

%%%%%%%%%%%%%

LC_NUMERIC

%%%%%%%%%%%%%

decimal_point "<comma>"

thousands_sep "<space>"

grouping "3;0"

END LC_NUMERIC

LC_TIME Category

The LC_TIME category defines the interpretation of the field descriptors used for

parsing, then formatting, the date and time. The descriptors identify the

replacement portion of the string, while the rest of a string is constant. The

definition of descriptors is included in LE/VSE C Run-Time Library Reference. All

these descriptors can be used in the format specifier in the time formatting

function strftime().

The following keywords are supported:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

should be present in this category.

 If the locale is not found, an error is reported and no locale output is

created. The copy keyword cannot specify a locale that also specifies the

copy keyword for the same category.

abday Defines the abbreviated weekday names, corresponding to the %a field

descriptor. The operand consists of seven semicolon-separated strings. The

first string is the abbreviated name corresponding to Sunday, the second

string corresponds to Monday, and so forth.

day Defines the full weekday names, corresponding to the %A field descriptor.

The operand consists of seven semicolon-separated strings. The first string

is the full name corresponding to Sunday, the second string to Monday,

and so forth.

abmon Defines the abbreviated month names, corresponding to the %b field

descriptor. The operand consists of twelve strings separated by semicolons.

The first string is an abbreviated name that corresponds to January, the

second corresponds to February, and so forth.

mon Defines the full month names, corresponding to the %B field descriptor. The

operand consists of twelve strings separated by semicolons. The first string

is an abbreviated name that corresponds to January, the second

corresponds to February, and so forth.

d_t_fmt

Defines the appropriate date and time representation, corresponding to the

%c field descriptor. The operand consists of a string, which may contain

any combination of characters and field descriptors.

d_fmt Defines the appropriate date representation, corresponding to the %x field

descriptor. The operand consists of a string, and may contain any

combination of characters and field descriptors.

t_fmt Defines the appropriate time representation, corresponding to the %X field

Building a Locale

Chapter 30. Building a Locale 345

descriptor. The operand consists of a string, which may contain any

combination of characters and field descriptors.

am_pm Defines the appropriate representation of the ante meridian and post

meridian strings, corresponding to the %p field descriptor. The operand

consists of two strings, separated by a semicolon. The first string represents

the ante meridian designation, the last string the post meridian

designation.

t_fmt_ampm

Defines the appropriate time representation in the 12-hour clock format

with am_pm, corresponding to the %r field descriptor. The operand

consists of a string and can contain any combination of characters and field

descriptors.

era Defines how the years are counted and displayed for each era (or

emperor’s reign) in a locale.

 No era is needed if the %E field descriptor modifier is not used for the

locale. See the description of the strftime() function in LE/VSE C

Run-Time Library Reference for information about this field descriptor.

 For each era, there must be one string in the following format:

direction:offset:start_date:end_date:name:format

where

direction

Either a + or - character. The + character indicates the time axis

should be such that the years count in the positive direction when

moving from the starting date towards the ending date. The -

character indicates the time axis should be such that the years

count in the negative direction when moving from the starting date

towards the ending date.

offset A number of the first year of the era.

start_date

A date in the form yyyy/mm/dd where yyyy, mm and dd are the

year, month and day numbers, respectively, of the start of the era.

Years prior to the year AD 0 are represented as negative numbers.

For example, an era beginning March 5th in the year 100 BC would

be represented as -100/3/5.

end_date

The ending date of the era in the same form as the start_date

above or one of the two special values -* or +*. A value of -*

indicates the ending date of the era extends to the beginning of

time while +* indicates it extends to the end of time. The ending

date may be either before or after the starting date of an era. For

example, the strings for the Christian eras AD and BC would be:

+:0:0000/01/01:+*:AD:%EC %Ey

+:1:-0001/12/31:-*:BC:%EC %Ey

name A string representing the name of the era which is substituted for

the %EC field descriptor.

format A string for formatting the %EY field descriptor. This string is

usually a function of the %EC and %Ey field descriptors.

Building a Locale

346 LE/VSE: C Run-Time Programming Guide

The operand consists of one string for each era. If there is more than one

era, strings are separated by semicolons.

era_year

Defines the format of the year in alternate era format, corresponding to the

%EY field descriptor.

era_d_fmt

Defines the format of the date in alternate era notation, corresponding to

the %Ex field descriptor.

alt_digits

Defines alternate symbols for digits, corresponding to the %O field

descriptor modifier. The operand consists of semicolon-separated strings.

The first string is the alternate symbol corresponding to zero, the second

string is the symbol corresponding to one, and so forth. A maximum of 100

alternate strings may be specified. The %O modifier indicates that the string

corresponding to the value specified by the field descriptor is used instead

of the value.

For the definitions of the time formatting descriptors, see the description of the

strftime() function in LE/VSE C Run-Time Library Reference.

LC_MESSAGES Category

The LC_MESSAGES category defines the format and values for positive and

negative responses.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If you specify this keyword, no other keyword

should be present in this category.

 If the locale is not found, an error is reported and no locale output is

created. The copy keyword cannot specify a locale that also specifies the

copy keyword for the same category.

yesexpr

The operand consists of an extended regular expression that describes the

acceptable affirmative response to a question that expects an affirmative or

negative response.

noexpr The operand consists of an extended regular expression that describes the

acceptable negative response to a question that expects an affirmative or

negative response.

Here is an example that shows how to define the LC_MESSAGES category:

%%%%%%%%%%%%%

LC_MESSAGES

%%%%%%%%%%%%%

% yes expression is a string that starts with

% "SI", "Si" "sI" "si" "s" or "S"

yesexpr "<circumflex><left-parenthesis><left-square-bracket><s><S>/

<right-square-bracket><left-square-bracket><i><I><right-square-bracket>/

<vertical-line><left-square-bracket><s><S><right-square-bracket>/

<right-parenthesis>"

% no expression is a string that starts with

% "NO", "No" "nO" "no" "N" or "n"

noexpr "<circumflex><left-parenthesis><left-square-bracket><n><N>/

<right-square-bracket><left-square-bracket><o><O><right-square-bracket>/

Building a Locale

Chapter 30. Building a Locale 347

<vertical-line><left-square-bracket><n><N><right-square-bracket>/

<right-parenthesis>"

END LC_MESSAGES

LC_TOD Category

The LC_TOD category defines the rules used to define the beginning, end, and

duration of daylight savings time, and the difference between local time and

Greenwich Mean time. This is an IBM extension.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

should be present in this category.

 If the locale is not found, an error is reported and no locale output is

created. The copy keyword cannot specify a locale that also specifies the

copy keyword for the same category.

Note: If you specify this keyword, no other keyword should be present in

this category.

timezone_difference

An integer specifying the time zone difference expressed in minutes. If the

local time zone is west of the Greenwich Meridian, this value must be

positive. If the local time zone is east of the Greenwich Meridian, this

value must be negative. An absolute value greater than 1440 (the number

of minutes in a day) for this keyword indicates that LE/VSE is to get the

time zone difference from the system.

timezone_name

A string specifying the time zone name such as "PST" (Pacific Standard

Time) specified within quotation marks. The default for this field is a NULL

string.

daylight_name

A string specifying the Daylight Saving Time zone name, such as "PDT"

(Pacific Daylight Time), if there is one available. The string must be

specified within quotation marks. If DST information is not available, this

is set to NULL, which is also the default. This field must be filled in if DST

information as provided by the other fields is to be taken into account by

the &mktime and localtime() functions. These functions ignore DST if this

field is NULL.

start_month

An integer specifying the month of the year when Daylight Saving Time

comes into effect. This value ranges from 1 through 12 inclusive, with 1

corresponding to January and 12 corresponding to December. If DST is not

applicable to a locale, start_month is set to 0, which is also the default.

end_month

An integer specifying the month of the year when Daylight Saving Time

ceases to be in effect. The specifications are similar to those for

start_month.

start_week

An integer specifying the week of the month when DST comes into effect.

Acceptable values range from -4 to +4. A value of 4 means the fourth week

of the month, while a value of -4 means fourth week of the month,

Building a Locale

348 LE/VSE: C Run-Time Programming Guide

counting from the end of the month. Sunday is considered to be the start

of the week. If DST is not applicable to a locale, start_week is set to 0,

which is also the default.

end_week

An integer specifying the week of the month when DST ceases to be in

effect. The specifications are similar to those for start_week.

Note: The start_week and end_week need not be used. The start_day and

end_day fields can specify either the day of the week or the day of

the month. If day of month is specified, start_week and end_week

become redundant.

start_day

An integer specifying the day of the week or the day of the month when

DST comes into effect. The value depends on the value of start_week. If

start_week is not equal to 0, this is the day of the week when DST comes

into effect. It ranges from 0 through 6 inclusive, with 0 corresponding to

Sunday and 6 corresponding to Saturday. If start_week equals 0, start_day

is the day of the month (for the current year) when DST comes into effect.

It ranges from 1 through to the last day of the month inclusive. The last

day of the month is 31 for January, March, May, July, August, October, and

December. It is 30 for April, June, September, and November. For February,

it is 28 in non-leap years and 29 in leap years. If DST is not applicable to a

locale, start_day is set to 0, which is also the default.

end_day

An integer specifying the day of the week or the day of the month when

DST ceases to be in effect. The specifications are similar to those for

start_day.

start_time

An integer specifying the number of seconds after 12 midnight, local

standard time, when DST comes into effect. For example, if DST is to start

at 2 a.m., start_time is assigned the value 7200; for 12 midnight,

start_time is 0; for 1 a.m., it is 3600.

end_time

An integer specifying the number of seconds after 12 midnight, local

standard time, when DST ceases to be in effect. The specifications are

similar to those for start_time.

shift An integer specifying the DST time shift, expressed in seconds. The default

is 3600, for 1 hour.

uctname

A string specifying the name to be used for Coordinated Universal Time. If

this keyword is not specified, the uctname will default to "UTC".

Building a Locale

Chapter 30. Building a Locale 349

Here is an example of how to define the LC_TOD category:

escape_char /

comment-char %

%%%%%%%%%%%%%

LC_TOD

%%%%%%%%%%%%%

% the time zone difference is 8hrs; the name of the daylight saving

% time is PDT, and it starts on the first Sunday of April at 2 a.m.

% and ends on the second Sunday of October at 2 a.m.

timezone_difference +480

timezone_name "<P><S><T>"

daylight_name "<P><D><T>"

start_month 4

end_month 10

start_week 1

end_week 2

start_day 1

end_day 30

start_time 7200

end_time 3600

shift 3600

END LC_TOD

LC_SYNTAX Category

The LC_SYNTAX category defines the variant characters from the portable

character set. LC_SYNTAX is an IBM-specific extension. This category can be

queried by the C library function getsyntx() to determine the encoding of a

variant character if needed.

 Attention: Customizing the LC_SYNTAX category is not recommended. You

should use the LC_SYNTAX values obtained from the charmap file when you use

the localedef utility.

The operands for the characters in the LC_SYNTAX category accept the single byte

character specification in the form of a symbolic name, the character itself, or the

decimal, octal, or hexadecimal constant. The characters must be specified in the

LC_CTYPE category as a punct character. The values for the LC_SYNTAX

characters must be unique. If symbolic names are used to define the encoding, only

the symbolic names listed for each character should be used.

The code points for the LC_SYNTAX characters are set to the code points specified.

Otherwise, they default to the code points for the respective characters from the

charmap file, if the file is present, or to the code points of the respective characters

in the IBM-1047 code page.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If you specify this keyword, no other keyword

should be present.

 If the locale is not found, an error is reported and no locale output is

created. The copy keyword cannot specify a locale that also specifies the

copy keyword for the same category.

backslash

Specifies a string that defines the value used to represent the backslash

Building a Locale

350 LE/VSE: C Run-Time Programming Guide

character. If this keyword is not specified, the value from the charmap file

for the character <backslash>, <reverse-solidus>, or <SM07> is used, if it is

present.

right_brace

Specifies a string that defines the value used to represent the right brace

character. If this keyword is not specified, the value from the charmap file

for the character <right-brace>, <right-curly-bracket>, or <SM14> is used,

if it is present.

left_brace

Specifies a string that defines the value used to represent the left brace

character. If this keyword is not specified, the value from the charmap file

for the character <left-brace>, <left-curly-bracket>, or <SM11> is used, if

it is present.

right_bracket

Specifies a string that defines the value used to represent the right bracket

character. If this keyword is not specified, the value from the charmap file

for the character <right-square-bracket>, or <SM08> is used, if it is present.

left_bracket

Specifies a string that defines the value used to represent the left bracket

character. If this keyword is not specified, the value from the charmap file

for the character <left-square-bracket>, or <SM06> is used, if it is present.

circumflex

Specifies a string that defines the value used to represent the circumflex

character. If this keyword is not specified, the value from the charmap file

for the character <circumflex>, <circumflex-accent>, or <SD15> is used, if

it is present.

tilde Specifies a string that defines the value used to represent the tilde

character. If this keyword is not specified, the value from the charmap file

for the character <tilde>, or <SD19> is used, if it is present.

exclamation_mark

Specifies a string that defines the value used to represent the exclamation

mark character. If this keyword is not specified, the value from the

charmap file for the character <exclamation-mark>, or <SP02> is used, if it

is present.

number_sign

Specifies a string that defines the value used to represent the number sign

character. If this keyword is not specified, the value from the charmap file

for the character <number-sign>, or <SM01> is used, if it is present.

vertical_line

Specifies a string that defines the value used to represent the vertical line

character. If this keyword is not specified, the value from the charmap file

for the character <vertical-line>, or <SM13> is used, if it is present.

dollar_sign

Specifies a string that defines the value used to represent the dollar sign

character. If this keyword is not specified, the value from the charmap file

for the character <dollar-sign>, or <SC03> is used, if it is present.

commercial_at

Specifies a string that defines the value used to represent the commercial at

character. If this keyword is not specified, the value from the charmap file

for the character <commercial-at>, or <SM05> is used, if it is present.

Building a Locale

Chapter 30. Building a Locale 351

grave_accent

Specifies a string that defines the value used to represent the grave accent

character. If this keyword is not specified, the value from the charmap file

for the character <grave-accent>, or <SD13> is used, if it is present.

Here is an example of how the LC_SYNTAX category is defined:

escape_char /

comment-char %

%%%%%%%%%%%%%

LC_SYNTAX

%%%%%%%%%%%%%

backslash "<backslash>"

right_brace "<right-brace>"

left_brace "<left-brace>"

right_bracket "<right-square-bracket>"

left_bracket "<left-square-bracket>"

circumflex "<circumflex>"

tilde "<tilde>"

exclamation_mark "<exclamation-mark>"

number_sign "<number-sign>"

vertical_line "<vertical-line>"

dollar_sign "<dollar-sign>"

commercial_at "<commercial-at>"

grave_accent "<grave-accent>"

END LC_SYNTAX

Using the localedef Utility

The locale objects or locales are generated using the localedef utility and the

C/VSE compiler. The localedef utility:

1. Reads the locale definition file.

2. Resolves all the character symbolic names to the values of characters defined in

the specified character set definition file.

3. Produces a C source file.

The C source file created by the localedef utility must be compiled using the

C/VSE compiler and the resulting text deck link-edited to produce a locale phase.

The locale phase can be loaded by the setlocale() function and then accessed by

the LE/VSE C Run-Time functions that are sensitive to the cultural information, or

that can query the locales. For a list of all the library functions sensitive to locale,

see “Locale-Sensitive Interfaces” on page 318. For detailed information on how to

invoke the localedef utility, see “The localedef Utility” on page 392.

Locale Naming Conventions

The setlocale() library function that selects the active locale maps the descriptive

locale name into the name of the locale object before loading the locale and making

it accessible.

In LE/VSE C Run-Time programs, the locale phases are referred to by descriptive

locale names. The locale names themselves are not case sensitive. They follow

these conventions:

Language-Territory.Codeset@Modifier

Building a Locale

352 LE/VSE: C Run-Time Programming Guide

Where:

Language

is a two-letter uppercase abbreviation for the language name. The

abbreviations come from the ISO 639 standard.

Territory

is a two-letter uppercase abbreviation for the territory name. The

abbreviation comes from the ISO 3166 standard.

Codeset

is the name registered by the MIT X Consortium that identifies the

registration authority that owns the specific encoding. Codeset is not

required. If it is not specified, it defaults to the codeset described in

Table 46 on page 354.

Modifier

In general, this is used to select a specific instance of localization data

within a single category. The modifier euro is used to select euro-currency

specific data in the LC_MONETARY category. The modifier preeuro is used to

select the previous (local) currency specific data in the LC_MONETARY

category. See the note on page 431. Modifier is not required. If it is not

specified, it defaults to nothing.

The mapping between the descriptive locale name and the eight-character name of

the locale object is performed as follows:

1. The Language-Territory part is mapped into a two-letter LT code.

2. The Codeset part is mapped into a two-letter CC code.

3. If the Modifier is not specified, the object name is built from the characters

EDC$, the two-letter LT code, and the two-letter CC code.

4. If the Modifier is euro, the object name is built from the characters EDC@

2 , the

two-letter LT code, and the two-letter CC code.

5. If the Modifier is preeuro, the object name is built from the characters EDC3, the

two-letter LT code, and the two-letter CC code.

Here are some examples that illustrate the above rules:

 Fr_BE.IBM-1148 maps to EDC$FBHO

 Fr_BE.IBM-1148@euro maps to EDC@FBHO

 Fr_BE.IBM-1148@preeuro maps to EDC3FBHO

The mapping between Language-Territory and the two-letter LT code is defined in

the LT conversion table EDC$LCNM, built with assembler macros as follows:

EDC$LCNM TITLE ’LOCALE NAME CONVERSION TABLE’

EDC$LCNM CSECT

 EDCLOCNM TYPE=ENTRY,LOCALE=’DA_DK’,CODESET=’IBM-1047’,CODE=’DA’

 EDCLOCNM TYPE=ENTRY,LOCALE=’DE_CH’,CODESET=’IBM-1047’,CODE=’DC’

 EDCLOCNM TYPE=ENTRY,LOCALE=’DE_DE’,CODESET=’IBM-1047’,CODE=’DD’

 EDCLOCNM TYPE=ENTRY,LOCALE=’JA_JP’,CODESET=’IBM-939’,CODE=’JA’ ...
 EDCLOCNM TYPE=END

 END EDC$LCNM

LOCALE specifies the Language-Territory name, while CODE specifies the respective

LT code.

2. The @-sign in the locale names always has Latin-1/Open Systems encoding. See IBM-1047 CHARMAP.

Building a Locale

Chapter 30. Building a Locale 353

You can customize this table by adding new LOCALE name mappings. LE/VSE C

Run-Time reserves alphabetic LT codes, but you can use codes containing numeric

values for your own customized names.

The following Language-Territory names and their mappings into LT codes are

provided:

 Table 46. Supported Language-Territory Names and LT Codes

Locale Name Language Country or Region Default Codeset

2-byte LT

Code

BG_BG Bulgarian Bulgaria IBM-1025 BG

C IBM-1047 CC

CA_ES Catalan Spain IBM-924 CS

CS_CZ Czech Czech Republic IBM-870 CZ

DA_DK Danish Denmark IBM-1047 DA

DE_AT German Austria IBM-924 DT

DE_CH German Switzerland IBM-1047 DC

DE_DE German Germany IBM-1047 ¹ DD

DE_LU German Luxembourg IBM-924 DL

EL_GR Greek Greece IBM-875 ² EL

EN_BE English Belgium IBM-924 EB

EN_GB English United Kingdom IBM-1047 EK

EN_IE English Ireland IBM-924 EI

EN_JP English Japan IBM-1027 EJ

EN_US English United States IBM-1047 EU

ES_ES Spanish Spain IBM-1047 ³ ES

ET_EE Estonian Estonia IBM-1122 EE

FI_FI Finish Finland IBM-1047 ⁴ FI

FR_BE French Belgium IBM-1047 ⁵ FB

FR_CA French Canada IBM-1047 FC

FR_CH French Switzerland IBM-1047 FS

FR_FR French France IBM-1047 ⁶ FF

FR_LU French Luxembourg IBM-924 FL

HR_HR Croatian Croatia IBM-870 HR

HU_HU Hungarian Hungary IBM-870 HU

IS_IS Icelandic Iceland IBM-1047 IS

IT_IT Italian Italy IBM-1047 ⁷ IT

IW_IL Hebrew Israel IBM-424 IL

JA_JP Japanese Japan IBM-939 JA

KO_KR Korean Korea IBM-933 KR

LT_LT Lithuanian Lithuania IBM-1112 LT

MK_MK Macedonian Macedonia IBM-1025 MM

NL_BE Dutch Belgium IBM-1047 ⁸ NB

NL_NL Dutch Netherlands IBM-1047 ⁹ NN

Building a Locale

354 LE/VSE: C Run-Time Programming Guide

Table 46. Supported Language-Territory Names and LT Codes (continued)

Locale Name Language Country or Region Default Codeset

2-byte LT

Code

NO_NO Norwegian Norway IBM-1047 NO

PL_PL Polish Poland IBM-870 PL

PT_BR Portugese Brazil IBM-1047 BR

PT_PT Portugese Portugal IBM-1047 ¹⁰ PT

RO_RO Romanian Romania IBM-870 RO

RU_RU Russian Russia IBM-1025 RU

SH_SP Serbian

(Latin)

Serbia IBM-870 SL

SI_SI Slovene Slovenia IBM-870 SI

SK_SK Slovak Slovakia IBM-870 SK

SQ_AL Albanian Albania IBM-1047 SA

SR_SP Serbian

(Cyrillic)

Serbia IBM-1025 SC

SV_SE Swedish Sweden IBM-1047 SV

TH_TH Thai Thailand IBM-838 TH

TR_TR Turkish Turkey IBM-1026 TR

ZH_CN Chinese

(simplified)

China IBM-935 ZC

ZH_TW Chinese

(traditional)

Taiwan IBM-937 ZT

Notes:

 1. Germany should use the codeset IBM-924 or IBM-1141. Also see Note 11

below.

 2. Greece should use the codeset IBM-4971. Also see Note 11 below.

 3. Spain should use the codeset IBM-924 or IBM-1145. Also see Note 11 below.

 4. Finland should use the codeset IBM-924 or IBM-1143. Also see Note 11 below.

 5. Belgium should use the codeset IBM-924 or IBM-1148. Also see Note 11 below.

 6. France should use the codeset IBM-924 or IBM-1147. Also see Note 11 below.

 7. Italy should use the codeset IBM-924 or IBM-1144. Also see Note 11 below.

 8. Belgium should use the codeset IBM-924 or IBM-1148. Also see Note 11 below.

 9. The Netherlands should use the codeset IBM-924 or IBM-1140. Also see Note

11 below.

10. Portugal should use the codeset IBM-924 or IBM-1140. Also see Note 11 below.

Note: 11. If used with the default codeset, this locale does NOT support the Euro

currency.

The mapping between Codeset and the two-letter CC code is defined in the CC

conversion table EDCUCSNM. This table is built with assembler macros as follows:

EDCUCSNM TITLE ’CODE SET NAME CONVERSION TABLE’

EDCUCSNM CSECT

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-037’,CODE=’EA’

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-273’,CODE=’EB’

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-274’,CODE=’EC’

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-277’,CODE=’ED’

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-278’,CODE=’EE’

Building a Locale

Chapter 30. Building a Locale 355

...
 EDCCSNAM TYPE=END

 END EDCUCSNM

CODESET specifies the Codeset name; CODE specifies the respective CC code.

You can customize this table by adding new Codeset names. The alphabetic codes

in the first byte of each CC name are reserved by IBM for future use, but you can

use codes starting with numeric values for your own customized names.

The following Codeset names and their mappings into CC codes are provided:

 Table 47. Supported Codeset Names and CC Codes

Codeset Country or Region

2-byte CC

Code

EBCDIC Codesets

IBM-037 USA, Canada, Brazil EA

IBM-273 Germany, Austria EB

IBM-274 Belgium EC

IBM-275 Brazil ED

IBM-277 Denmark, Norway EE

IBM-278 Finland, Sweden EF

IBM-280 Italy EG

IBM-281 Japan (Latin-1) EH

IBM-282 Portugal EI

IBM-284 Spain, Latin America EJ

IBM-285 United Kingdom EK

IBM-290 Japan (Katakana) EL

IBM-297 France EM

IBM-424 Israel FB

IBM-500 International EO

IBM-838 Thailand EP

IBM-870 Croatia, Czech Republic, Hungary, Poland, Romania,

Serbia (Latin), Slovakia, Slovenia

EQ

IBM-871 Iceland ER

IBM-875 Greece ES

IBM-924 Latin 9/Open Systems EZ

IBM-930 Japan Katakana Extended (combined with DBCS) EU

IBM-933 Korea GZ

IBM-935 China GY

IBM-937 Taiwan GW

IBM-939 Japan (latin) Extended (combined with DBCS) EV

IBM-1025 Bulgaria, Macedonia, Russia, Serbia (Cyrillic) FE

IBM-1026 Turkey EW

IBM-1027 Japan (Latin) Extended EX

Building a Locale

356 LE/VSE: C Run-Time Programming Guide

Table 47. Supported Codeset Names and CC Codes (continued)

Codeset Country or Region

2-byte CC

Code

IBM-1047 Latin-1/Open Systems EY

IBM-1112 Lithuania GD

IBM-1122 Estonia FD

IBM-1124 Ukraine AU

IBM-1140 USA, Canada, Brazil (Euro) HA

IBM-1141 Austria, Germany (Euro) HB

IBM-1142 Denmark, Norway (Euro) HE

IBM-1143 Finland, Sweden (Euro) HF

IBM-1144 Italy (Euro) HG

IBM-1145 Spain, Latin America (Euro) HJ

IBM-1146 United Kingdom (Euro) HK

IBM-1147 France (Euro) HM

IBM-1148 International (Euro) HO

IBM-1149 Iceland (Euro) HR

IBM-1153 Croatia, Czech Republic, Hungary, Poland, Romania,

Serbia (Latin), Slovakia, Slovenia (Euro)

MB

IBM-1154 Bulgaria, Macedonia, Russia, Serbia/Cyrillic (Euro) HT

IBM-1155 Turkey (Euro) HW

IBM-1156 Lithuania (Euro) HZ

IBM-1157 Estonia (Euro) HD

IBM-1160 Thailand (Euro) HP

IBM-1371 Taiwan (Euro) KA

IBM-4971 Greece (Euro) HS

IBM-5123 Japan (Latin Extended with Euro) HX

IBM-8482 Japan (Katakana with Euro) HL

IBM-12712 Israel (Euro) HH

ASCII Codesets (IBM-PC and AIX)

IBM-850 IBM PC - International AA

IBM-932 IBM PC - Japanese AB

IBM-eucJP Japanese AC

ISO8859 Codesets

ISO8859-1 ISO Standard ASCII I1

ISO8859-7 ISO ASCII - Greece I7

ISO8859-9 ISO ASCII - Turkey I9

The exceptions to the rule above are the following special locale names, which are

already recognized:

v C

v POSIX

v SAA

v S370

Building a Locale

Chapter 30. Building a Locale 357

The special names C, POSIX, SAA, and S370 always refer to the built-in locales,

which cannot be modified.

v GERM

v FRAN

v UK

v ITAL

v SPAI

v USA

These names are for locales in the old format, created with assembler macros

rather than with the localedef utility.

Note: These locales are not up-to-date, and do not support the Euro currency.

You can use the following macros, defined in the locale.h header file, as synonyms

for the special locale names above.

 Macro Locale Compiled locale

C C Not applicable

POSIX POSIX EDC$POSX

SAA SAA EDC$SAAC

S370 S370 EDC$S370

LC_C_GERMANY "GERM" EDC$GERM

LC_C_FRANCE "FRAN" EDC$FRAN

LC_C_UK "UK" EDC$UK

LC_C_ITALY "ITAL" EDC$ITAL

LC_C_SPAIN "SPAI" EDC$SPAI

LC_C_USA "USA" EDC$USA

The predefined name for the built-in locale in the old format is S370.

The rest of the special names refer to the locale objects whose names are built by

prepending the letters EDC$ to the special name, as for EDC$FRAN.

Building a Locale

358 LE/VSE: C Run-Time Programming Guide

Chapter 31. Customizing a Locale

This chapter describes how you can create your own locales, based on the locale

definition files supplied by IBM. The information in this chapter applies to the

format of locales based on the localedef utility.

In this example you will build a locale named TEXAN using the charmap file

representing the IBM-1047 encoded character set. The locale is derived from the

locale representing the English language and the cultural conventions of the United

States.

1. Determine the source of the locale you are going to use from the Table 53 on

page 437. In this case, it is the English language in the United States locale, the

source for which is the member EDC$EUEY.L in the LE/VSE installation

sublibrary (default is PRD2.SCEEBASE).

2. Copy the member EDC$EUEY.L from the LE/VSE installation sublibrary

(default is PRD2.SCEEBASE) to a sublibrary named LOCALE.WRK (which has

been predefined using the VSE/Librarian) as member name TEXAN.L.

3. In your new file, change the locale variables to the desired values. For example,

change

d_t_fmt "%a %b %e %H:%M:%S %Z %Y

to

d_t_fmt "Howdy Pardner %a %b %e %H:%M:%S %Z %Y"

4. Using the localedef utility, and subsequently the C/VSE compiler and the

linkage editor, generate a new locale as member EDC$1TEY.PHASE in the

LOCALE.WRK sublibrary. See “The localedef Utility” on page 392 for detailed

information about how to use the localedef utility. Specifically, the example on

page 394 shows how the above phase can be produced.

The member name in the LOCALE.WRK sublibrary has the predefined prefix

EDC$. The next two characters must consist of a numerical character

(alphabetics are reserved for IBM use) followed by an alphanumeric character.

For this example, the letters 1T defines the TEXAN locale (defined in the next

step). You can determine the last two characters which identify the

CodesetRegistry-CodesetEncoding from Table 47 on page 356. In this case they

should be the value of the CC code for the coded character set IBM-1047, which

is EY. If you are using your own charmap file you must define its two-letter CC

code (starting with a numeric value) in the table EDCUCSNM. This is done in a

similar way to defining EDC$LCNM, as described in the next step.

5. Copy the member EDC$LCNM.A from the LE/VSE installation sublibrary

(default is PRD2.SCEEBASE) to the LOCALE.WRK sublibrary. LE/VSE C

Run-Time uses this table to map locale code registry prefixes into two-character

codes. For this example, insert a new line into the assembler table before the

last EDCLOCNM TYPE=END entry:

EDCLOCNM TYPE=ENTRY,LOCALE=’TEXAN’,CODESET=’IBM-1047’,CODE=’1T’

6. Assemble the EDC$LCNM.A member and link-edit it into the LOCALE.WRK

sublibrary with the member name EDC$LCNM.PHASE.

© Copyright IBM Corp. 1995, 2005 359

Using the Customized Locale

The customized locale is now ready to be used in these ways:

v Explicitly referenced by name in LE/VSE C Run-Time application code that uses

setlocale() calls referring to the locale descriptive name (recommended) such

as:

setlocale(LC_ALL, "TEXAN.IBM-1047");

or by a short internal name (not recommended) such as:

setlocale(LC_ALL, "1TEY");

v Explicitly referenced in the LE/VSE C Run-Time initialization exit, using

customized setup code in CEEBINT.

v Implicitly specified in each user environment with environment variables.

v Passed via the PARM parameter of the EXEC statement to the compiler as an

argument on the LOCALE compiler option. For example,

 PARM=’locale("TEXAN.IBM-1047")’

tells the compiler to use the TEXAN.IBM-1047 locale at compile time and

generate output in code page IBM-1047. For more information, refer to

“Converting Coded Character Sets at Compile Time” on page 408.

Note: You cannot customize the built-in locales, C, POSIX, SAA, or S370. The

locale source files EDC$POSX and EDC$SAAC are provided for reference

only.

Customizing a Locale

360 LE/VSE: C Run-Time Programming Guide

Referring Explicitly to a Customized Locale

Here is a program with an explicit reference to the TEXAN locale.

EDCXGCL1

 Compile the above program. Before you execute it, ensure the VSE/Librarian

sublibrary containing the TEXAN locale and updated table is available.

The output should be similar to:

Default locale is S370

Local C datetime is 96/08/14 03:12:14

New locale is Texan.IBM-1047

Texan datetime is Howdy Pardner Wed Aug 14 15:12:14 1996

Note that if the second operand to setlocale() had been NULL, rather than "", the

default locale name returned would have been ″C″.

setlocale(LC_ALL,"") returns "S370"

setlocale(LC_ALL,NULL) returns "C"

Note: For setlocale(LC_ALL,""), "S370" is returned unless the locale-related

environment variables are set. See Chapter 32, “Definition of S370 C, SAA C,

and POSIX C Locales,” on page 363 for more information about the

definition of the S370 locale.

 /* EDCXGCL1

 This example shows how to get the local time formatted by the

 current locale

 */

#include <stdio.h>

#include <time.h>

#include <locale.h>

int main(void){

 char dest[80];

 int ch;

 time_t temp;

 struct tm *timeptr;

 temp = time(NULL);

 timeptr = localtime(&temp);

 /* Fetch default locale name */

 printf("Default locale is %s\n",setlocale(LC_ALL,""));

 ch = strftime(dest,sizeof(dest)-1,

 "Local C datetime is %c", timeptr);

 printf("%s\n", dest);

 /* Set new Texan locale name */

 printf("New locale is %s\n", setlocale(LC_ALL,"Texan.IBM-1047"));

 ch = strftime(dest,sizeof(dest)-1,

 "Texan datetime is %c ", timeptr);

 printf("%s\n", dest);

 return(0);

}

Figure 80. Referring Explicitly to a Customized Locale

Customizing a Locale

Chapter 31. Customizing a Locale 361

Referring Implicitly to a Customized Locale

An installation may require that a global mechanism should be used for all C

programs. The exit CEEBINT may be used for this purpose. Users can insert a

setlocale() call inside the routines referencing the locale required. Here is an

example:

EDCXGCL2

 If the above example is compiled and executed with the TEXAN locale, the results

are as follows:

 CEEBINT entry. number = 7

 Locale = Texan.IBM-1047

 Default NULL locale = Texan.IBM-1047

 Default "" locale = S370

The exit CEEBINT may provide a uniform way of restricting the use of customized

locales across an installation. To do this, a system programmer can compile

CEEBINT separately, and link it with the application program that will use it. The

disadvantage to this approach is that CEEBINT must be link-edited into each user

phase explicitly. See Chapter 20, “Using Run-Time User Exits,” on page 201 for

more information about user exits.

Customizing Your Installation

When LE/VSE C Run-Time initializes the environment, it uses the C locale as its

default locale. The only values that may be customized when Language

Environment is installed are those associated with the LC_TOD category. Details on

this customization are provided in LE/VSE Customization Guide.

 /* EDCXGCL2

 This example refers implicitly to a customized locale

 */

#pragma linkage(CEEBINT,OS)

#pragma map(CEEBINT,"CEEBINT")

void CEEBINT(int, int, int, int, void**, int, void**);

#include <locale.h>

#include <stdio.h>

int main(void){

 printf("Default NULL locale = %s\n", setlocale(LC_ALL,NULL));

 printf("Default \"\" locale = %s\n", setlocale(LC_ALL,""));

 }

void CEEBINT(int number, int retcode, int rsncode, int fnccode,

 void **a_main, int userwd, void **a_exits)

 { /* user code goes here */

 printf("CEEBINT entry. number = %i\n", number);

 printf("Locale = %s\n", setlocale(LC_ALL,"Texan.IBM-1047"));

 }

Figure 81. Referring Implicitly to a Customized Locale

Customizing a Locale

362 LE/VSE: C Run-Time Programming Guide

Chapter 32. Definition of S370 C, SAA C, and POSIX C

Locales

The default C locales for POSIX SAA, and S370 are pre-built into the run-time

library. The SAA C locale provides compatibility with previous releases of C/370.

The POSIX C locale provides consistency with POSIX requirements.

The POSIX definition of the C locale is described below, with the IBM extensions

LC_SYNTAX and LC_TOD showing their default values.

The SAA and S370 definitions of the C locale are different from the POSIX

definition; consistency with previous releases of LE/VSE C Run-Time is provided

for migration compatibility. The differences are described in “Differences Between

SAA C and POSIX C Locales” on page 369.

The relationship between the POSIX C and SAA C locales is as follows.

1. The SAA C locale definition is the default. "C", "SAA", and "S370" are synonyms

for the SAA C locale definition, which is pre-built into the library.

The source file EDC$SAAC.L is provided for reference, but cannot be used to

alter the definition of this pre-built locale.

2. Issuing setlocale(category, "") has the following effect:

v Locale-related environment variables are checked to find the name of locales)

to use to set the category specified. Querying the locale with

setlocale(category, NULL) returns the name of the locales specified by the

appropriate environment variables.

v If no non-null environment variable is present, then it is the equivalent of

having issued setlocale(category, "S370") That is, the locale chosen is the

SAA C locale definition, and querying the locale with

setlocale(category, NULL) returns "S370" as the locale name.
3. If no setlocale() function is issued, or setlocale(LC_ALL, "C"), then the

locale chosen is the pre-built SAA C locale, and querying the locale with

setlocale(category, NULL) returns ″C″ as the locale name.

4. For setlocale(LC_ALL, "SAA"), the locale chosen is the pre-built SAA C locale,

and querying the locale with setlocale(category, NULL) returns ″SAA″ as the

locale name.

5. For setlocale(LC_ALL, "S370"), the locale chosen is the pre-built SAA C locale,

and querying the locale with setlocale(category, NULL) returns "S370" as the

locale name.

6. For setlocale(LC_ALL, "POSIX"), the locale chosen is the pre-built POSIX C

locale, and querying the locale with setlocale(category, NULL) returns

"POSIX" as the locale name.

The setlocale() function supports locales built using the localedef utility, as well

as locales built using the assembler source and produced by the EDCLOC macro.

The LC_TOD category for the SAA C and POSIX C locales can be customized

during installation of the library by your system programmer. See “Customizing

Your Installation” on page 362 for more information. The supplied default will

obtain the time zone difference from the operating system. However, it will not

define the daylight savings time.

© Copyright IBM Corp. 1995, 2005 363

The LC_SYNTAX category for the SAA C and POSIX C locales is set to the

IBM-1047 definition of the variant characters.

The other locale categories for the POSIX C locale are as follows.

escape_char /

comment_char %

%%%%%%%%%%%%

LC_CTYPE

%%%%%%%%%%%%

% "alpha" is by default "upper" and "lower"

% "alnum" is by definition "alpha" and "digit"

% "print" is by default "alnum", "punct" and <space> character

% "punct" is by default "alnum" and "punct"

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/

 <N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/

 <n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

digit <zero>;<one>;<two>;<three>;<four>;/

 <five>;<six>;<seven>;<eight>;<nine>

space <tab>;<newline>;<vertical-tab>;<form-feed>;/

 <carriage-return>;<space>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/

 <form-feed>;<carriage-return>;/

 <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;/

 <SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;/

 <ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;/

 <IS1>;

punct <exclamation-mark>;<quotation-mark>;<number-sign>;/

 <dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;/

 <left-parenthesis>;<right-parenthesis>;<asterisk>;/

 <plus-sign>;<comma>;<hyphen>;<period>;<slash>;/

 <colon>;<semicolon>;<less-than-sign>;<equals-sign>;/

 <greater-than-sign>;<question-mark>;<commercial-at>;/

 <left-square-bracket>;<backslash>;<right-square-bracket>;/

 <circumflex>;<underscore>;<grave-accent>;/

 <left-curly-bracket>;<vertical-line>;<right-curly-bracket>;<tilde>

xdigit <zero>;<one>;<two>;<three>;<four>;/

 <five>;<six>;<seven>;<eight>;<nine>;/

 <A>;;<C>;<D>;<E>;<F>;/

 <a>;;<c>;<d>;<e>;<f>

blank <space>;/

 <tab>

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);/

 (<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);/

 (<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);/

 (<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);/

 (<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);/

 (<z>,<Z>)

tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);/

 (<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);/

 (<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);/

 (<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);/

 (<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);/

 (<Z>,<z>)

END LC_CTYPE

S370 C, SAA C, and POSIX C Locales

364 LE/VSE: C Run-Time Programming Guide

%%%%%%%%%%%%

LC_COLLATE

%%%%%%%%%%%%

order_start

% ASCII Control characters

<NUL>

<SOH>

<STX>

<ETX>

<EOT>

<ENQ>

<ACK>

<alert>

<backspace>

<tab>

<newline>

<vertical-tab>

<form-feed>

<carriage-return>

<SO>

<SI>

<DLE>

<DC1>

<DC2>

<DC3>

<DC4>

<NAK>

<SYN>

<ETB>

<CAN>

<SUB>

<ESC>

<IS4>

<IS3>

<IS2>

<IS1>

<space>

<exclamation-mark>

<quotation-mark>

<number-sign>

<dollar-sign>

<percent-sign>

<ampersand>

<apostrophe>

<left-parenthesis>

<right-parenthesis>

<asterisk>

<plus-sign>

<comma>

<hyphen>

<period>

<slash>

<zero>

<one>

<two>

<three>

<four>

<five>

<six>

<seven>

<eight>

<nine>

<colon>

<semicolon>

<less-than-sign>

S370 C, SAA C, and POSIX C Locales

Chapter 32. Definition of S370 C, SAA C, and POSIX C Locales 365

<equals-sign>

<greater-than-sign>

<question-mark>

<commercial-at>

<A>

<C>

<D>

<E>

<F>

<G>

<H>

<I>

<J>

<K>

<L>

<M>

<N>

<O>

<P>

<Q>

<R>

<S>

<T>

<U>

<V>

<W>

<X>

<Y>

<Z>

<left-square-bracket>

<backslash>

<right-square-bracket>

<circumflex>

<underscore>

<grave-accent>

<a>

<c>

<d>

<e>

<f>

<g>

<h>

<i>

<j>

<k>

<l>

<m>

<n>

<o>

<p>

<q>

<r>

<s>

<t>

<u>

<v>

<w>

<x>

<y>

<z>

<left-curly-bracket>

<vertical-line>

<right-curly-bracket>

<tilde>

S370 C, SAA C, and POSIX C Locales

366 LE/VSE: C Run-Time Programming Guide

order_end

END LC_COLLATE

%%%%%%%%%%%%

LC_MONETARY

%%%%%%%%%%%%

int_curr_symbol ""

currency_symbol ""

mon_decimal_point ""

mon_thousands_sep ""

mon_grouping ""

positive_sign ""

negative_sign ""

int_frac_digits -1

frac_digits -1

p_cs_precedes -1

p_sep_by_space -1

n_cs_precedes -1

n_sep_by_space -1

p_sign_posn -1

n_sign_posn -1

END LC_MONETARY

%%%%%%%%%%%%

LC_NUMERIC

%%%%%%%%%%%%

decimal_point "<period>"

thousands_sep ""

grouping ""

END LC_NUMERIC

%%%%%%%%%%%%

LC_TIME

%%%%%%%%%%%%

abday "<S><u><n>";/

 "<M><o><n>";/

 "<T><u><e>";/

 "<W><e><d>";/

 "<T><h><u>";/

 "<F><r><i>";/

 "<S><a><t>"

day "<S><u><n><d><a><y>";/

 "<M><o><n><d><a><y>";/

 "<T><u><e><s><d><a><y>";/

 "<W><e><d><n><e><s><d><a><y>";/

 "<T><h><u><r><s><d><a><y>";/

 "<F><r><i><d><a><y>";/

 "<S><a><t><u><r><d><a><y>"

abmon "<J><a><n>";/

 "<F><e>";/

 "<M><a><r>";/

 "<A><p><r>";/

 "<M><a><y>";/

 "<J><u><n>";/

 "<J><u><l>";/

 "<A><u><g>";/

 "<S><e><p>";/

 "<O><c><t>";/

 "<N><o><v>";/

 "<D><e><c>"

S370 C, SAA C, and POSIX C Locales

Chapter 32. Definition of S370 C, SAA C, and POSIX C Locales 367

mon "<J><a><n><u><a><r><y>";/

 "<F><e><r><u><a><r><y>";/

 "<M><a><r><c><h>";/

 "<A><p><r><i><l>";/

 "<M><a><y>";/

 "<J><u><n><e>";/

 "<J><u><l><y>";/

 "<A><u><g><u><s><t>";/

 "<S><e><p><t><e><m><e><r>";/

 "<O><c><t><o><e><r>";/

 "<N><o><v><e><m><e><r>";/

 "<D><e><c><e><m><e><r>"

% equivalent of AM/PM (%p)

am_pm "<A<>M>";"<P<>M>"

% appropriate date and time representation (%c) "%a %b %e %H:%M:%S %Y"

d_t_fmt "<percent-sign><a><space><percent-sign><space><percent-sign><e>/

<space><percent-sign><H><colon><percent-sign><M>/

<colon><percent-sign><S><space><percent-sign><Y>"

% appropriate date representation (%x) "%m/%d/%y"

d_fmt "<percent-sign><m><slash><percent-sign><d><slash><percent-sign><y>"

% appropriate time representation (%X) "%H:%M:%S"

t_fmt "<percent-sign><M><colon><percent-sign><M><colon><percent-sign><S>"

% appropriate 12-hour time representation (%r) "%I:%M:%S %p"

t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon><percent-sign><S>/

<space><percent-sign><p>"

END LC_TIME

%%%%%%%%%%%%

LC_MESSAGES

%%%%%%%%%%%%

yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"

noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"

END LC_MESSAGES

S370 C, SAA C, and POSIX C Locales

368 LE/VSE: C Run-Time Programming Guide

Differences Between SAA C and POSIX C Locales

In fact, there are three built-in locales, S370 C, SAA C, and POSIX C. The default

locale at your site depends on the system that is running the application. Issuing

setlocale(LC_ALL, "") sets the default, based on the current environment. Issuing

setlocale(LC_ALL, "SAA") sets the SAA C locale. Likewise,

setlocale(LC_ALL, "POSIX") sets the POSIX locale.

If you are running in a C locale, one way you can determine whether the SAA C

or the POSIX locale is in effect is to check whether the cent sign (¢ at X'4A') is

defined as a punctuation character. Under the default POSIX support, the cent sign

is not part of the POSIX portable character set. The following code illustrates how

to perform this test:

EDCXGDL1

 Alternatively, the collating sequence may be tested: under the SAA or System/370

default locales, the lowercase letters collate before the uppercase letters, whereas

under the POSIX definition, the lowercase letters collate after the uppercase letters.

This difference may be tested using the string collate function strcoll(). The

locale "" is the same locale as the one obtained from setlocale(LC_ALL, ""). For

more detail on these special environment variables, see Chapter 21, “Using

Environment Variables,” on page 219.

Other differences between the SAA C locale and the POSIX C locale are as follows:

<mb_cur_max>

The POSIX C locale is built using coded character set IBM-1047, with

<mb_cur_max> as 1.

 The SAA C locale is built using coded character set IBM-1047, with

<mb_cur_max> as 4.

 /* EDCXGDL1

 This example shows how to determine whether the SAA C or POSIX

 locale is in effect

 */

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 if (ispunct(0x4A)) {

 printf(" cent sign is punct\n");

 printf(" current locale is SAA- or S370-like\n");

 }

 else {

 printf(" cent sign is not punct\n");

 printf(" default locale is POSIX-like\n");

 }

return(0);

}

Figure 82. Determining Which Locale is in Effect

S370 C, SAA C, and POSIX C Locales

Chapter 32. Definition of S370 C, SAA C, and POSIX C Locales 369

The cent sign

In the default POSIX support, the cent sign (¢) is not part of the POSIX

portable character set, but in the SAA locale it is defined as a punctuation

character.

Collation weight by case

In the POSIX definition, the lowercase letters collate after the uppercase

letters, whereas in the SAA or System/370 default locales, the lowercase

letters collate before the uppercase letters.

LC_CTYPE category

The SAA C locale has all the EBCDIC control characters defined in the

’cntrl’ class. The POSIX C locale has only the ASCII control characters in

the ’cntrl’ class.

 The SAA C locale includes ¢ (the cent character) and ¦ (the broken vertical

line) as ’punct’ characters. The POSIX C locale does not group these

characters as ’punct’ characters.

LC_COLLATE category

The default collation for the SAA C locale is the EBCDIC sequence. The

POSIX C locale uses the ASCII collation sequence; the first 128 ASCII

characters are defined in the collation sequence, and the remaining

EBCDIC characters are at the end of the collating sequence.

LC_TIME category

The SAA C locale uses the date and time format (d_t_fmt) as "%Y/%M/%D

%X", whereas the POSIX C locale uses "%a %b %d %H/%M/%S %Y".

 The SAA C locale uses the strings "am" and "pm", whereas the POSIX C

locale uses "AM" and "PM".

S370 C, SAA C, and POSIX C Locales

370 LE/VSE: C Run-Time Programming Guide

Chapter 33. Code Set and Locale Utilities

This chapter describes the code set conversion utilities which help you convert a

file from one code set to another and the localedef utility which allows you to

define the language and cultural conventions used in your environment.

Code Set Conversion Utilities

This section describes the code set conversion utilities provided with LE/VSE C

Run-Time. These utilities are as follows:

The genxlt utility

Generates a translation table for use by the iconv utility and iconv

functions to perform code set conversion. It can be used to build code set

conversion tables for existing code pages, whether or not these are

supplied with LE/VSE C Run-Time.

The uconvdef utility

Generates a UCS-2 translation table for use by the iconv utility and iconv

functions to perform code set conversion between a multibyte code set and

UCS-2.

Note: UCS-2 (or Unicode) is the Universal Multiple-Octet Coded Character

Set defined by ISO/IEC 10646-1:1993(EE), while multibyte code sets

consist of one or more bytes per character.

The iconv utility

Converts a file from one code set encoding to another. It can be used to

convert C source code before compilation or to convert data files.

The iconv functions

Performs code set translation. These functions are iconv_open(), iconv(),

and iconv_close(). They are used by the iconv utility and may be called

from any LE/VSE C Run-Time program requiring code set translation.

See LE/VSE C Run-Time Library Reference for descriptions of the iconv functions.

The genxlt Utility

The genxlt utility reads a source translation file as specified using the IFILE option

described below and writes the compiled version to SYSLNK or SYSPCH depending

on the DECK, LINK, and CATAL JCL options. The source translation file contains

directives that are acted upon by the genxlt utility to produce the compiled

version of the translation table. The source input to the genxlt utility is assumed to

be implicitly specified in code page IBM-1047.

The output from the genxlt utility must be link-edited to produce a phase whose

name adheres to the following naming convention:

v The name must start with the constant four-letter prefix EDCU.

v The prefix is followed by the two-letter CC code that corresponds to the “from”

code set defined in Table 47 on page 356.

v The first CC code is followed by the two-letter CC code than corresponds to the

“to” code set defined in Table 47 on page 356.

© Copyright IBM Corp. 1995, 2005 371

To generate your own conversions, you must modify the code set name table

EDCUCSNM with the macros described in “Locale Naming Conventions” on page

352. In addition, if you plan to use your own conversions under CICS, you must

add the name of your phase to your CSD file.

The genxlt utility has the following options. If the same option is specified more

than once, the last option specified is used. The options are specified on the EXEC

PARM, and may be separated by spaces or commas.

DBCS|NODBCS

Specifies whether the DBCS characters within shift-out and shift-in characters

will be converted. The DBCS option should only be specified when an EBCDIC

code page is being converted to a different EBCDIC code page.

 If the DBCS option is specified, when a shift-out character is encountered in the

input, the characters up to the shift-in character are copied to the output, and

not converted. There must be an even number of characters between the

shift-out and shift-in characters, and the characters must be valid DBCS

characters.

 If the NODBCS option is specified (or by default), all the characters are

converted, and no checking of DBCS characters is performed.

IFILE(...)

Specifies the source translation file containing the character conversion

information as follows:

genxlt IFILE Option

== IFILE (

DD:SYS001-SYSUT1

i_name

80

,

lrecl

=

i_lrecl

 =

=
FB

,

recfm

=

i_recfm

4000

,

blksize

=

i_blksize

) =B

where

i_name

is the file specification in any of the formats supported by the fopen()

function. (See the “Opening Files” sections in this book for additional

information regarding file specification formats.) Default is

DD:SYS001-SYSUT1.

i_lrecl

is the input file logical record length in bytes. Default is 80.

i_recfm

is the input file record format. Default is FB.

i_blksize

is the input file block size in bytes. Default is 4000.

 Notes:

1. All of the above parameters are optional.

2. If more than one parameter is specified, a comma (,) must be used as a

separator between each parameter.

3. No spaces are allowed.

4. If i_name is specified, it must be the first parameter. Other parameters are

non-positional.

Code Set & Locale Utilities

372 LE/VSE: C Run-Time Programming Guide

Example:

IFILE(dd:file1,recfm=vb)

NAME(obj_name)|NONAME

Specifies the name obj_name to be used on one of the following:

v The PHASE card if the VSE JCL option LINK and/or CATAL is in effect as

follows:

PHASE obj_name,*,SVA

v The CATALOG card if the VSE JCL option DECK is in effect as follows:

CATALOG obj_name.OBJ REPLACE=YES

The PHASE or CATALOG card is written as the first record to the output file from

the genxlt utility in order to produce a valid input stream for the linkage

editor or the VSE Librarian respectively.

Messages from the genxlt utility are written to stdout/stderr.

Example

In the following example, the input source translation file is member EDCUEAEY.X

in the default LE/VSE installation sublibrary PRD2.SCEEBASE. The output from

the genxlt utility is link-edited and a phase FRED01 is placed in the

VSE/Librarian sublibrary FRED.LIB.

// JOB GXLTSAMP

// LIBDEF *,SEARCH=PRD2.SCEEBASE

// LIBDEF PHASE,CATALOG=FRED.LIB

// OPTION LINK,CATAL

// EXEC EDCGNXLT,PARM=’IFILE(DD:PRD2.SCEEBASE(EDCUEAEY.X)),NODBCS, X

 NAME(FRED01)’

 ENTRY TABLENAM

/*

// EXEC LNKEDT

/*

// EXEC LISTLOG

/&

Note: The ’X’ at the end of statement ’// EXEC EDCGNXLT...’ is in column 72.

The uconvdef Utility

The uconvdef utility reads a source file that defines a mapping between UCS-2 and

a multibyte code set, as specified using the IFILE option described below, and

writes the compiled version to SYSLNK or SYSPCH depending on the DECK, LINK, and

CATAL JCL options. The source file contains directives that are acted upon by the

uconvdef utility to produce the compiled version of the translation table for use by

the iconv utility and iconv functions. Refer to “UCMAP Source Format” on page

389 for information on these directives.

The output from the uconvdef utility must be link-edited to produce a phase

whose name is of the form EDCUUccU, where cc is a two-letter CC code that

corresponds to a code set defined in Table 47 on page 356. To generate your own

conversions, you must modify the code set name table EDCUCSNM with the

macros described in “Locale Naming Conventions” on page 352.

The uconvdef utility is invoked by specifying EDCUCDEF as the program name on

the EXEC statement, and has the following options. If the same option is specified

more than once, the last option specified is used. The options are specified on the

EXEC PARM, and may be separated by spaces or commas.

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 373

IFILE(...)

Specifies the source file defining the mapping between UCS-2 and a multibyte

code set, as follows:

uconvdef IFILE Option

==

IFILE(
 DD:SYS001-SYSUT1

i_name

80

,

lrecl

=

i_lrecl

=

=
FB

,

recfm

=

i_recfm

4000

,

blksize

=

i_blksize

)

 =B

where

i_name

is the file specification in any of the formats supported by the fopen()

function. (See the “Opening Files” sections in this book for additional

information regarding file specification formats.) Default is

DD:SYS001-SYSUT1.

i_lrecl

is the input file logical record length in bytes. Default is 80.

i_recfm

is the input file record format. Default is FB.

i_blksize

is the input file block size in bytes. Default is 4000.

Notes:

1. All of the above parameters are optional.

2. If more than one parameter is specified, a comma (,) must be used as a

separator between each parameter.

3. No spaces are allowed.

4. If i_name is specified, it must be the first parameter. Other parameters are

non-positional.

 Example:

IFILE(dd:file2,recfm=vb)

NAME(obj_name)|NONAME

Specifies the name obj_name to be used on one of the following:

v The PHASE card if the VSE JCL option LINK and/or CATAL is in effect as

follows:

PHASE obj_name,*,SVA

v The CATALOG card if the VSE JCL option DECK is in effect as follows:

CATALOG obj_name.OBJ REPLACE=YES

The PHASE or CATALOG card is written as the first record to the output file from

the uconvdef utility in order to produce a valid input stream for the linkage

editor or the VSE Librarian respectively.

VERBOSE|NOVERBOSE

Specifies whether the source file statements will be written to stdout.

 If the VERBOSE option is specified, the source file statements from the input file

will be written to stdout as they are encountered.

Code Set & Locale Utilities

374 LE/VSE: C Run-Time Programming Guide

If the NOVERBOSE option is specified (or by default), the source file statements

will not be written to stdout.

 Messages from the uconvdef utility are written to stdout/stderr.

Example

In the following example, the input source file is member EDCUUEYU.UCMAP in

the default LE/VSE installation sublibrary PRD2.SCEEBASE. The output from the

uconvdef utility is link-edited and a phase FRED02 is placed in the VSE/Librarian

sublibrary FRED.LIB.

// JOB UCDESAMP

// LIBDEF *,SEARCH=PRD2.SCEEBASE

// LIBDEF PHASE,CATALOG=FRED.LIB

// OPTION LINK,CATAL

// EXEC EDCUCDEF,PARM=’IFILE(DD:PRD2.SCEEBASE(EDCUUEYU.UCMAP)), X

 NAME(FRED02)’

/*

// EXEC LNKEDT

/*

// EXEC LISTLOG

/&

The iconv Utility

The iconv utility converts the characters in the input file from one coded character

set (code set) definition to another code set definition, and writes the characters to

the output file.

The conversion is performed according to the tables generated by the genxlt

utility. The tables used are determined by the CC codes of the “from” and “to”

code sets, appended to the four-character string EDCU. See “The genxlt Utility” on

page 371 for more information.

The iconv utility uses the iconv_open(), iconv(), and iconv_close() functions to

convert the input file records from the coded character set definition for the input

code page to the coded character set definition for the output code page. There is

one record in the output file for each record in the input file. No padding or

truncation of records is performed.

When conversions are performed between single-byte code pages, the output

records are the same length as the input records. When conversions are performed

between double-byte code pages, the output records may be longer or shorter than

the input records because the shift-out and shift-in characters may be added or

removed.

The iconv utility has the following options. If the same option is specified more

than once, the last option specified is used. The options are specified on the EXEC

PARM, and must be separated by spaces or commas.

IFILE(...)

Specifies the input file as follows:

iconv IFILE Option

== IFILE (

DD:SYS001-SYSUT1

i_name

80

,

lrecl

=

i_lrecl

 =

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 375

=
FB

,

recfm

=

i_recfm

4000

,

blksize

=

i_blksize

) =B

where

i_name

is the input file specification in any of the formats supported by the

fopen() function. (See the “Opening Files” sections in this book for

additional information regarding file specification formats.) Default is

DD:SYS001-SYSUT1.

i_lrecl

is the input file logical record length in bytes. Default is 80.

i_recfm

is the input file record format. Default is FB.

i_blksize

is the input file block size in bytes. Default is 4000.

 Notes:

1. All of the above parameters are optional.

2. If more than one parameter is specified, a comma (,) must be used as a

separator between each parameter.

3. No spaces are allowed.

4. If i_name is specified, it must be the first parameter. Other parameters are

non-positional.

Example:

IFILE(dd:file1,recfm=vb)

OFILE(...)

Specifies the output file as follows:

iconv OFILE Option

== OFILE (

DD:SYS002-SYSUT2

o_name

i_lrecl

,

lrecl

=

o_lrecl

 =

=
i_recfm

,

recfm

=

o_recfm

i_blksize

,

blksize

=

o_blksize

) =B

where

o_name

is the output file specification in any of the formats supported by the

fopen() function. (See the “Opening Files” sections in this book for

additional information regarding file specification formats.) Default is

DD:SYS002-SYSUT2.

o_lrecl

is the output file logical record length in bytes. Default is the explicit or

implicit input file logical record length.

o_recfm

is the output file record format. Default is the explicit or implicit input file

record format.

o_blksize

is the output file block size in bytes. Default is the explicit or implicit input

file block size.

Code Set & Locale Utilities

376 LE/VSE: C Run-Time Programming Guide

Notes:

1. All of the above parameters are optional.

2. If more than one parameter is specified, a comma (,) must be used as a

separator between each parameter.

3. No spaces are allowed.

4. If o_name is specified, it must be the first parameter. Other parameters are

non-positional.

 Example:

OFILE(’my.file’,lrecl=121,blksize=4840)

FROMCODE(from_code_set)

Specifies the name from_code_set, of the code set in which the input data is

encoded.

TOCODE(to_code_set)

Specifies the name to_code_set, of the code set to which the output data is to be

converted.

Messages from the iconv utility are written to stdout/stderr.

Example

In the following example, the input file is INPUT.FILE in code page IBM-037 and

the output file is OUTPUT.FILE in code page IBM-1047.

// JOB ICNVSAMP

// LIBDEF *,SEARCH=PRD2.SCEEBASE

// EXEC EDCICONV,PARM=’IFILE(’’INPUT.FILE’’),OFILE(’’OUTPUT.FILE’’), X

 FROMCODE(IBM-037),TOCODE(IBM-1047)’

/*

// EXEC LISTLOG

/&

Code Conversion Functions

The iconv_open(), iconv(), and iconv_close() library functions can be called from

C source to initialize and perform the character conversions from one character set

encoding to another.

See LE/VSE C Run-Time Library Reference for additional information regarding these

library functions.

Code Set Converters Supplied

There is a set of code set converters that are provided in the base component of

LE/VSE.

The converters are as follows:

v Code set converters between Latin-1 and some non-Latin-1 coded character sets

and coded character set IBM-1047. The code set conversions between the

non-Latin-1 coded character sets and IBM-1047 use the “Round Trip Conversion”

that follows the direction of the IBM CDRA.

v Code set converters to convert to and from IBM-1047, IBM-850, and ISO8859-1.

v Code set converters between the Japanese coded character sets. These

conversions will use the “Enforced subset match technique” according to IBM

CDRA direction.

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 377

The code set converters provided as phases are shown in Table 48. Also shipped

are the source files for these converters. The converters, and their source files

whose member name extension is “.X”, are in the LE/VSE installation sublibrary

(default is PRD2.SCEEBASE).

Because the “Round Trip Integrity” method is used, the string after conversion

may contain characters that were not in the original string.

The converters that have the source code supplied (GENXLT source column marked

“Yes”) can be modified by the users. The converters for which conversions are

performed by the library code (GENXLT source column marked “No”) cannot be

modified.

 Table 48. Coded Character Set Conversion Table

FromCode ToCode GENXLT source Phase Name

IBM-037 IBM-924 Yes EDCUEAEZ

IBM-037 IBM-1047 Yes EDCUEAEY

IBM-273 IBM-924 Yes EDCUEBEZ

IBM-273 IBM-1047 Yes EDCUEBEY

IBM-274 IBM-1047 Yes EDCUECEY

IBM-274 IBM-1148 Yes EDCUECHO

IBM-275 IBM-1047 Yes EDCUEDEY

IBM-275 IBM-1148 Yes EDCUEDHO

IBM-277 IBM-1047 Yes EDCUEEEY

IBM-278 IBM-924 Yes EDCUEFEZ

IBM-278 IBM-1047 Yes EDCUEFEY

IBM-280 IBM-924 Yes EDCUEGEZ

IBM-280 IBM-1047 Yes EDCUEGEY

IBM-281 IBM-1047 Yes EDCUEHEY

IBM-281 IBM-1148 Yes EDCUEHHO

IBM-282 IBM-1047 Yes EDCUEIEY

IBM-282 IBM-1148 Yes EDCUEIHO

IBM-284 IBM-924 Yes EDCUEJEZ

IBM-284 IBM-1047 Yes EDCUEJEY

IBM-285 IBM-924 Yes EDCUEKEZ

IBM-285 IBM-1047 Yes EDCUEKEY

IBM-290 IBM-1027 Yes EDCUELEX

IBM-290 IBM-1047 Yes EDCUELEY

IBM-290 IBM-1148 Yes EDCUELHO

IBM-297 IBM-924 Yes EDCUEMEZ

IBM-297 IBM-1047 Yes EDCUEMEY

IBM-437 IBM-1047 Yes EDCUAVEY

IBM-500 IBM-924 Yes EDCUEOEZ

IBM-500 IBM-1047 Yes EDCUEOEY

IBM-500 IBM-1140 Yes EDCUEOHA

Code Set & Locale Utilities

378 LE/VSE: C Run-Time Programming Guide

Table 48. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT source Phase Name

IBM-500 IBM-1141 Yes EDCUEOHB

IBM-500 IBM-1142 Yes EDCUEOHE

IBM-500 IBM-1143 Yes EDCUEOHF

IBM-500 IBM-1144 Yes EDCUEOHG

IBM-500 IBM-1145 Yes EDCUEOHJ

IBM-500 IBM-1146 Yes EDCUEOHK

IBM-500 IBM-1147 Yes EDCUEOHM

IBM-500 IBM-1149 Yes EDCUEOHR

IBM-850 IBM-1047 Yes EDCUAAEY

IBM-850 IBM-1140 Yes EDCUAAHA

IBM-850 IBM-1141 Yes EDCUAAHB

IBM-850 IBM-1142 Yes EDCUAAHE

IBM-850 IBM-1143 Yes EDCUAAHF

IBM-850 IBM-1144 Yes EDCUAAHG

IBM-850 IBM-1145 Yes EDCUAAHJ

IBM-850 IBM-1146 Yes EDCUAAHK

IBM-850 IBM-1147 Yes EDCUAAHM

IBM-850 IBM-1148 Yes EDCUAAHO

IBM-850 IBM-1149 Yes EDCUAAHR

IBM-858 IBM-1047 Yes EDCUAIEY

IBM-858 IBM-1140 Yes EDCUAIHA

IBM-858 IBM-1141 Yes EDCUAIHB

IBM-858 IBM-1142 Yes EDCUAIHE

IBM-858 IBM-1143 Yes EDCUAIHF

IBM-858 IBM-1144 Yes EDCUAIHG

IBM-858 IBM-1145 Yes EDCUAIHJ

IBM-858 IBM-1146 Yes EDCUAIHK

IBM-858 IBM-1147 Yes EDCUAIHM

IBM-858 IBM-1148 Yes EDCUAIHO

IBM-858 IBM-1149 Yes EDCUAIHR

IBM-871 IBM-924 Yes EDCUEREZ

IBM-871 IBM-1047 Yes EDCUEREY

IBM-875 IBM-1047 Yes EDCUESEY

IBM-875 ISO8859-7 Yes EDCUESI7

IBM-924 IBM-037 Yes EDCUEZEA

IBM-924 IBM-273 Yes EDCUEZEB

IBM-924 IBM-278 Yes EDCUEZEF

IBM-924 IBM-280 Yes EDCUEZEG

IBM-924 IBM-284 Yes EDCUEZEJ

IBM-924 IBM-285 Yes EDCUEZEK

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 379

Table 48. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT source Phase Name

IBM-924 IBM-297 Yes EDCUEZEM

IBM-924 IBM-500 Yes EDCUEZEO

IBM-924 IBM-871 Yes EDCUEZER

IBM-924 IBM-1047 Yes EDCUEZEY

IBM-924 IBM-1140 Yes EDCUEZHA

IBM-924 IBM-1141 Yes EDCUEZHB

IBM-924 IBM-1142 Yes EDCUEZHE

IBM-924 IBM-1143 Yes EDCUEZHF

IBM-924 IBM-1144 Yes EDCUEZHG

IBM-924 IBM-1145 Yes EDCUEZHJ

IBM-924 IBM-1146 Yes EDCUEZHK

IBM-924 IBM-1147 Yes EDCUEZHM

IBM-924 IBM-1148 Yes EDCUEZHO

IBM-924 IBM-1149 Yes EDCUEZHR

IBM-924 IBM-4971 Yes EDCUEZHS

IBM-930 IBM-932 No EDCUEUAB

IBM-930 IBM-eucJP No EDCUEUAC

IBM-932 IBM-930 No EDCUABEU

IBM-932 IBM-939 No EDCUABEV

IBM-939 IBM-932 No EDCUEVAB

IBM-939 IBM-eucJP No EDCUEVAC

IBM-1026 IBM-1047 Yes EDCUEWEY

IBM-1027 IBM-290 Yes EDCUEXEL

IBM-1027 IBM-1047 Yes EDCUEXEY

IBM-1027 IBM-1148 Yes EDCUEXHO

IBM-1047 IBM-037 Yes EDCUEYEA

IBM-1047 IBM-273 Yes EDCUEYEB

IBM-1047 IBM-274 Yes EDCUEYEC

IBM-1047 IBM-275 Yes EDCUEYED

IBM-1047 IBM-277 Yes EDCUEYEE

IBM-1047 IBM-278 Yes EDCUEYEF

IBM-1047 IBM-280 Yes EDCUEYEG

IBM-1047 IBM-281 Yes EDCUEYEH

IBM-1047 IBM-282 Yes EDCUEYEI

IBM-1047 IBM-284 Yes EDCUEYEJ

IBM-1047 IBM-285 Yes EDCUEYEK

IBM-1047 IBM-290 Yes EDCUEYEL

IBM-1047 IBM-297 Yes EDCUEYEM

IBM-1047 IBM-437 Yes EDCUEYAV

IBM-1047 IBM-500 Yes EDCUEYEO

Code Set & Locale Utilities

380 LE/VSE: C Run-Time Programming Guide

Table 48. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT source Phase Name

IBM-1047 IBM-850 Yes EDCUEYAA

IBM-1047 IBM-858 Yes EDCUEYAI

IBM-1047 IBM-871 Yes EDCUEYER

IBM-1047 IBM-875 Yes EDCUEYES

IBM-1047 IBM-924 Yes EDCUEYEZ

IBM-1047 IBM-1026 Yes EDCUEYEW

IBM-1047 IBM-1027 Yes EDCUEYEX

IBM-1047 IBM-1140 Yes EDCUEYHA

IBM-1047 IBM-1141 Yes EDCUEYHB

IBM-1047 IBM-1142 Yes EDCUEYHE

IBM-1047 IBM-1143 Yes EDCUEYHF

IBM-1047 IBM-1144 Yes EDCUEYHG

IBM-1047 IBM-1145 Yes EDCUEYHJ

IBM-1047 IBM-1146 Yes EDCUEYHK

IBM-1047 IBM-1147 Yes EDCUEYHM

IBM-1047 IBM-1148 Yes EDCUEYHO

IBM-1047 IBM-1149 Yes EDCUEYHR

IBM-1047 ISO8859-1 Yes EDCUEYI1

IBM-1140 IBM-500 Yes EDCUHAEO

IBM-1140 IBM-850 Yes EDCUHAAA

IBM-1140 IBM-858 Yes EDCUHAAI

IBM-1140 IBM-924 Yes EDCUHAEZ

IBM-1140 IBM-1047 Yes EDCUHAEY

IBM-1140 IBM-1148 Yes EDCUHAHO

IBM-1140 ISO8859-1 Yes EDCUHAI1

IBM-1141 IBM-500 Yes EDCUHBEO

IBM-1141 IBM-850 Yes EDCUHBAA

IBM-1141 IBM-858 Yes EDCUHBAI

IBM-1141 IBM-924 Yes EDCUHBEZ

IBM-1141 IBM-1047 Yes EDCUHBEY

IBM-1141 IBM-1148 Yes EDCUHBHO

IBM-1141 ISO8859-1 Yes EDCUHBI1

IBM-1142 IBM-500 Yes EDCUHEEO

IBM-1142 IBM-850 Yes EDCUHEAA

IBM-1142 IBM-858 Yes EDCUHEAI

IBM-1142 IBM-924 Yes EDCUHEEZ

IBM-1142 IBM-1047 Yes EDCUHEEY

IBM-1142 IBM-1148 Yes EDCUHEHO

IBM-1142 ISO8859-1 Yes EDCUHEI1

IBM-1143 IBM-500 Yes EDCUHFEO

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 381

Table 48. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT source Phase Name

IBM-1143 IBM-850 Yes EDCUHFAA

IBM-1143 IBM-858 Yes EDCUHFAI

IBM-1143 IBM-924 Yes EDCUHFEZ

IBM-1143 IBM-1047 Yes EDCUHFEY

IBM-1143 IBM-1148 Yes EDCUHFHO

IBM-1143 ISO8859-1 Yes EDCUHFI1

IBM-1144 IBM-500 Yes EDCUHGEO

IBM-1144 IBM-850 Yes EDCUHGAA

IBM-1144 IBM-858 Yes EDCUHGAI

IBM-1144 IBM-924 Yes EDCUHGEZ

IBM-1144 IBM-1047 Yes EDCUHGEY

IBM-1144 IBM-1148 Yes EDCUHGHO

IBM-1144 ISO8859-1 Yes EDCUHGI1

IBM-1145 IBM-500 Yes EDCUHJEO

IBM-1145 IBM-850 Yes EDCUHJAA

IBM-1145 IBM-858 Yes EDCUHJAI

IBM-1145 IBM-924 Yes EDCUHJEZ

IBM-1145 IBM-1047 Yes EDCUHJEY

IBM-1145 IBM-1148 Yes EDCUHJHO

IBM-1145 ISO8859-1 Yes EDCUHJI1

IBM-1146 IBM-500 Yes EDCUHKEO

IBM-1146 IBM-850 Yes EDCUHKAA

IBM-1146 IBM-858 Yes EDCUHKAI

IBM-1146 IBM-924 Yes EDCUHKEZ

IBM-1146 IBM-1047 Yes EDCUHKEY

IBM-1146 IBM-1148 Yes EDCUHKHO

IBM-1146 ISO8859-1 Yes EDCUHKI1

IBM-1147 IBM-500 Yes EDCUHMEO

IBM-1147 IBM-850 Yes EDCUHMAA

IBM-1147 IBM-858 Yes EDCUHMAI

IBM-1147 IBM-924 Yes EDCUHMEZ

IBM-1147 IBM-1047 Yes EDCUHMEY

IBM-1147 IBM-1148 Yes EDCUHMHO

IBM-1147 ISO8859-1 Yes EDCUHMI1

IBM-1148 IBM-274 Yes EDCUHOEC

IBM-1148 IBM-275 Yes EDCUHOED

IBM-1148 IBM-281 Yes EDCUHOEH

IBM-1148 IBM-282 Yes EDCUHOEI

IBM-1148 IBM-290 Yes EDCUHOEL

IBM-1148 IBM-850 Yes EDCUHOAA

Code Set & Locale Utilities

382 LE/VSE: C Run-Time Programming Guide

Table 48. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT source Phase Name

IBM-1148 IBM-858 Yes EDCUHOAI

IBM-1148 IBM-924 Yes EDCUHOEZ

IBM-1148 IBM-1027 Yes EDCUHOEX

IBM-1148 IBM-1047 Yes EDCUHOEY

IBM-1148 IBM-1140 Yes EDCUHOHA

IBM-1148 IBM-1141 Yes EDCUHOHB

IBM-1148 IBM-1142 Yes EDCUHOHE

IBM-1148 IBM-1143 Yes EDCUHOHF

IBM-1148 IBM-1144 Yes EDCUHOHG

IBM-1148 IBM-1145 Yes EDCUHOHJ

IBM-1148 IBM-1146 Yes EDCUHOHK

IBM-1148 IBM-1147 Yes EDCUHOHM

IBM-1148 IBM-1149 Yes EDCUHOHR

IBM-1148 ISO8859-1 Yes EDCUHOI1

IBM-1149 IBM-500 Yes EDCUHREO

IBM-1149 IBM-850 Yes EDCUHRAA

IBM-1149 IBM-858 Yes EDCUHRAI

IBM-1149 IBM-924 Yes EDCUHREZ

IBM-1149 IBM-1047 Yes EDCUHREY

IBM-1149 IBM-1148 Yes EDCUHRHO

IBM-1149 ISO8859-1 Yes EDCUHRI1

IBM-4909 IBM-4971 Yes EDCUIAHS

IBM-4971 IBM-924 Yes EDCUHSEZ

IBM-4971 IBM-4909 Yes EDCUHSIA

IBM-eucJP IBM-930 No EDCUACEU

IBM-eucJP IBM-939 No EDCUACEV

ISO8859-1 IBM-1047 Yes EDCUI1EY

ISO8859-1 IBM-1140 Yes EDCUI1HA

ISO8859-1 IBM-1141 Yes EDCUI1HB

ISO8859-1 IBM-1142 Yes EDCUI1HE

ISO8859-1 IBM-1143 Yes EDCUI1HF

ISO8859-1 IBM-1144 Yes EDCUI1HG

ISO8859-1 IBM-1145 Yes EDCUI1HJ

ISO8859-1 IBM-1146 Yes EDCUI1HK

ISO8859-1 IBM-1147 Yes EDCUI1HM

ISO8859-1 IBM-1148 Yes EDCUI1HO

ISO8859-1 IBM-1149 Yes EDCUI1HR

ISO8859-7 IBM-875 Yes EDCUI7ES

ISO8859-9 IBM-1026 Yes EDCUI9EW

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 383

The following code set converters are also supplied. These converters are used by

the code set converters between the codesets IBM-930, IBM-932, IBM-939, and

IBM-eucJP.

 FromCode ToCode GENXLT source Phase Name

IBM-290 IBM-932 Yes EDCUELAB

IBM-290 IBM-eucJP No EDCUELAC

IBM-300 IBM-eucJP No EDCUENAC

IBM-300 IBM-932 No EDCUENAB

IBM-932 IBM-290 Yes EDCUABEL

IBM-932 IBM-300 No EDCUABEN

IBM-932 IBM-1027 Yes EDCUABEX

IBM-1027 IBM-932 Yes EDCUEXAB

IBM-1027 IBM-eucJP No EDCUEXAC

IBM-eucJP IBM-290 No EDCUACEL

IBM-eucJP IBM-300 No EDCUACEN

IBM-eucJP IBM-1027 No EDCUACEX

Code Set & Locale Utilities

384 LE/VSE: C Run-Time Programming Guide

Universal Coded Character Set Converters

You can use the name UCS-2 to request setup for conversion to and from UCS-2.

For example, iconv_open("UCS-2", "IBM-1047") requests setup for conversion from

IBM-1047 character encoding to UCS-2 character encoding. You can also use the

name UTF-8 to request setup for conversion to and from Transform Format 8,

UTF-8. This is specified in the Unicode Standard, Version 2.1, Appendixes A-7 and

A-8. For example, iconv_open("UTF-8", "IBM-1047") requests setup for conversion

from IBM-1047 character encoding to UTF-8 character encoding.

The code set converters provided as phases are shown in Table 49. The converter

names are of the form EDCUUccU; where cc is the CC code associated with a

particular coded character set name. The converters are used for conversions to

and from UTF-8 as well as UCS-2, and are in the LE/VSE installation sublibrary

(the default is PRD2.SCEEBASE).

The uconvdef utility produces the phases required by iconv_open() from UCS-2

source files.

 Table 49. UCS-2 Converters

Codeset Name CC code Phase Name

IBM-850 AA EDCUUAAU

IBM-4946 AA EDCUUAAU

IBM-301 AB EDCUUABU

IBM-942 AB EDCUUABU

IBM33722 AC EDCUUACU

IBM-EUCJP AC EDCUUACU

IBM-922 AD EDCUUADU

IBM-1046 AF EDCUUAFU

IBM-859 AK EDCUUAKU

IBM-1124 AU EDCUUAUU

IBM-437 AV EDCUUAVU

IBM-921 BD EDCUUBDU

IBM-866 BE EDCUUBEU

IBM-862 BH EDCUUBHU

IBM-874 BU EDCUUBUU

IBM-964 BW EDCUUBWU

IBM-1383 BY EDCUUBYU

IBM-EUCKR BZ EDCUUBZU

IBM-970 BZ EDCUUBZU

IBM-861 CA EDCUUCAU

IBM-852 CB EDCUUCBU

IBM-855 CE EDCUUCEU

IBM-864 CF EDCUUCFU

IBM-869 CG EDCUUCGU

IBM-856 CH EDCUUCHU

IBM-1115 CL EDCUUCLU

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 385

Table 49. UCS-2 Converters (continued)

Codeset Name CC code Phase Name

IBM-1380 CM EDCUUCMU

IBM-904 CN EDCUUCNU

IBM-927 CO EDCUUCOU

IBM-1088 CP EDCUUCPU

IBM-951 CQ EDCUUCQU

IBM-1363 CU EDCUUCUU

IBM-938 CW EDCUUCWU

IBM-948 CW EDCUUCWU

IBM-1381 CY EDCUUCYU

IBM-949 CZ EDCUUCZU

IBM-1252 DA EDCUUDAU

IBM-1250 DB EDCUUDBU

IBM-1251 DE EDCUUDEU

IBM-1256 DF EDCUUDFU

IBM-1253 DG EDCUUDGU

IBM-1255 DH EDCUUDHU

IBM-5348 DJ EDCUUDJU

IBM-5349 DK EDCUUDKU

BIG5 DW EDCUUDWU

IBM-947 DW EDCUUDWU

IBM-950 DW EDCUUDWU

IBM-928 DY EDCUUDYU

IBM-936 DY EDCUUDYU

IBM-946 DY EDCUUDYU

IBM-037 EA EDCUUEAU

IBM-28709 EA EDCUUEAU

IBM-273 EB EDCUUEBU

IBM-274 EC EDCUUECU

IBM-275 ED EDCUUEDU

IBM-277 EE EDCUUEEU

IBM-278 EF EDCUUEFU

IBM-280 EG EDCUUEGU

IBM-282 EI EDCUUEIU

IBM-284 EJ EDCUUEJU

IBM-290 EL EDCUUELU

IBM-297 EM EDCUUEMU

IBM-300 EN EDCUUENU

IBM-4396 EN EDCUUENU

IBM-500 EO EDCUUEOU

IBM-838 EP EDCUUEPU

Code Set & Locale Utilities

386 LE/VSE: C Run-Time Programming Guide

Table 49. UCS-2 Converters (continued)

Codeset Name CC code Phase Name

IBM-870 EQ EDCUUEQU

IBM-871 ER EDCUUERU

IBM-875 ES EDCUUESU

IBM-880 ET EDCUUETU

IBM-930 EU EDCUUEUU

IBM-5026 EU EDCUUEUU

IBM-939 EV EDCUUEVU

IBM-5035 EV EDCUUEVU

IBM-1026 EW EDCUUEWU

IBM-1027 EX EDCUUEXU

IBM-1047 EY EDCUUEYU

IBM-924 EZ EDCUUEZU

IBM-424 FB EDCUUFBU

IBM-1122 FD EDCUUFDU

IBM-1025 FE EDCUUFEU

IBM-420 FF EDCUUFFU

IBM-1112 GD EDCUUGDU

IBM-836 GL EDCUUGLU

IBM-837 GM EDCUUGMU

IBM-835 GO EDCUUGOU

IBM-833 GP EDCUUGPU

IBM-834 GQ EDCUUGQU

IBM-1364 GU EDCUUGUU

IBM-937 GW EDCUUGWU

IBM-935 GY EDCUUGYU

IBM-5031 GY EDCUUGYU

IBM-933 GZ EDCUUGZU

IBM-1140 HA EDCUUHAU

IBM-1141 HB EDCUUHBU

IBM-16804 HC EDCUUHCU

IBM-1157 HD EDCUUHDU

IBM-1142 HE EDCUUHEU

IBM-1143 HF EDCUUHFU

IBM-1144 HG EDCUUHGU

IBM-12712 HH EDCUUHHU

IBM-1145 HJ EDCUUHJU

IBM-1146 HK EDCUUHKU

IBM-8482 HL EDCUUHLU

IBM-1147 HM EDCUUHMU

IBM-1148 HO EDCUUHOU

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 387

Table 49. UCS-2 Converters (continued)

Codeset Name CC code Phase Name

IBM-1160 HP EDCUUHPU

IBM-1149 HR EDCUUHRU

IBM-4971 HS EDCUUHSU

IBM-1154 HT EDCUUHTU

IBM-1155 HW EDCUUHWU

IBM-5123 HX EDCUUHXU

IBM-1156 HZ EDCUUHZU

IBM-819 I1 EDCUUI1U

IBM-912 I2 EDCUUI2U

IBM-914 I4 EDCUUI4U

IBM-915 I5 EDCUUI5U

IBM-1089 I6 EDCUUI6U

IBM-813 I7 EDCUUI7U

IBM-916 I8 EDCUUI8U

IBM-920 I9 EDCUUI9U

IBM-4909 IA EDCUUIAU

IBM-1371 KA EDCUUKAU

IBM-1370 LA EDCUULAU

IBM-902 LD EDCUULDU

IBM-872 LE EDCUULEU

IBM-808 LF EDCUULFU

IBM-9061 LG EDCUULGU

IBM-901 LH EDCUULHU

IBM-9238 LI EDCUULIU

IBM-867 LJ EDCUULJU

IBM-1161 LU EDCUULUU

IBM-1153 MB EDCUUMBU

IBM-5346 NB EDCUUNBU

IBM-5347 NE EDCUUNEU

IBM-5352 NF EDCUUNFU

IBM-9044 NG EDCUUNGU

IBM-5351 NH EDCUUNHU

IBM-5350 NI EDCUUNIU

IBM-17248 NJ EDCUUNJU

Codeset Conversion Using UCS-2

LE/VSE iconv supports use of UCS-2 as an intermediate code set for conversion of

characters encoded in one code set to another. The _ICONV_UCS2 environment

variable instructs iconv_open("Y", "X") whether or not to set up indirect

conversion from code set X to code set Y using UCS-2 as an intermediate code set.

Values iconv_open() recognizes for _ICONV_UCS2 are:

Code Set & Locale Utilities

388 LE/VSE: C Run-Time Programming Guide

1 Set up indirect conversion using UCS-2 first. If this fails, try to set up

direct conversion.

2 Set up direct conversion first. If this fails, try to set up indirect conversion

using UCS-2. This is the default.

O Only set up indirect conversion using UCS-2. If required converters cannot

be found, the iconv_open() request is not successful.

N Never set up indirect conversion using UCS-2. If a direct converter cannot

be found, the iconv_open() request fails.

Notes:

1. If the value of the _ICONV_UCS2 environment variable allows iconv_open("Y",

"X") to use UCS-2 as an intermediate code set when it cannot find a direct

converter from X to Y, iconv_open() will attempt to do so even if X and Y are

not compatible code sets. That is, even if character sets encoded by X and Y are

not the same, iconv_open() will set up conversion from X to UCS-2 to Y.

2. The application must specify compatible source and target code set names on

various iconv_open() requests. For example, this can be accomplished by using

a code set registry such as is used by DCE (Distributed Computing

Environment) to prevent iconv setup for conversion from incompatible code

sets.

UCMAP Source Format

A UCMAP source file defines UCS-2 conversion mappings for input to the

uconvdef utility. Conversion mapping values are defined using UCS-2 symbolic

character names followed by character encoding (code point) values for the

multibyte code set. For example:

<U0020> \x20

represents the mapping between the <U0020> UCS-2 symbolic character name for

the space character and the \x20 hexadecimal code point for the space character in

ASCII.

In addition to the code set mappings, directives are interpreted by the uconvdef

utility to produce the compiled table. These directives must precede the code set

mapping section. They consist of the following keywords surrounded by <> (angle

brackets), starting in column 1, followed by white space and the value to be

assigned to the symbol:

<comment_char>

Character used to denote start of escape sequence. Default escape character

is <number_sign> (#). In UCMAP source shipped with LE/VSE,

<percent_sign> (%) is specified for <comment_char>.

<escape_char>

Character used to denote start of escape sequence. Default escape character

is <backslash> (\). In UCMAP source shipped with LE/VSE, <slash> (/) is

specified for <escape_char>.

<code_set_name>

The name of the coded character set, enclosed in quotation marks (″), for

which the character set description file is defined.

<mb_cur_max>

The maximum number of bytes in a multibyte character. The default value

is 1.

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 389

<mb_cur_min>

An unsigned positive integer value that defines the minimum number of

bytes in a character for the encoded character set. The value is less than or

equal to <mb_cur_max>. If not specified, the minimum number is equal to

<mb_cur_max>.

<char_name_mask>

A quoted string consisting of format specifiers for the UCS-2 symbolic

names. This must be a value of Uxxxx, where xxxx is 4 hexadecimal digits

which represent the UCS-2 code point for the character. An example of a

symbolic character name based on this mask is <U0020>, which is the

UCS-2 space character.

<uconv_class>

Specifies the type of the code set. It must be one of the following:

SBCS Single-byte encoding

DBCS Stateless double-byte, single-byte, or mixed encodings

EBCDIC_STATEFUL

Stateful double-byte, single-byte, or mixed encodings

MBCS Stateless multibyte encoding

This type is used to direct uconvdef on the type of table to build. It is also

stored in the table to indicate the type of processing algorithm in the UCS

conversion methods.

<locale>

Specifies the default locale name to be used if locale information is needed.

<subchar>

Specifies the encoding of the default substitute character in the multibyte

code set.

The mapping definition section consists of a sequence of mapping definition lines

preceded by a CHARMAP declaration and terminated by an END CHARMAP

declaration. Empty lines and lines containing <comment_char> in the first column

are ignored.

Symbolic character names in mapping lines must follow the pattern specified in

the <char_name_mask>, except for the reserved symbolic name, <unassigned>,

that indicates the associated code points are unassigned.

Each noncomment line of the character set mapping definition must be in one of

the following formats:

1. <symbolic_name> <encoding> <comments>

For example:

<U3004> \x81\x57

This format defines a single symbolic character name and a corresponding

encoding.

The encoding part is expressed as one or more concatenated decimal,

hexadecimal, or octal constants in the following formats:

v <escape_char> <decimal byte value>

v <escape_char> <hexadecimal byte value>

v <escape_char> <octal byte value>

Code Set & Locale Utilities

390 LE/VSE: C Run-Time Programming Guide

Decimal constants are represented by two or more decimal digits preceded by

the escape character and the lowercase letter d, as in \d97 or \d143.

Hexadecimal constants are represented by two or more hexadecimal digits

preceded by an escape character and the lowercase letter x, as in \x61 or \x8f.

Octal constants are represented by two or more octal digits preceded by an

escape character.

Each constant represents a single-byte value. When constants are concatenated

for multibyte character values, the last value specifies the least significant octet

and preceding constants specify successively more significant octets.

2. <symbolic-name> <symbolic_name> <encoding> <comments>

For example:

<U3003><U3006> \x81\x56

This format defines a range of symbolic character names and corresponding

encodings. The range is interpreted as a series of symbolic names formed from

the alphabetic prefix and all the values in the range defined by the numeric

suffixes.

The listed encoding value is assigned to the first symbolic name, and

subsequent symbolic names in the range are assigned corresponding

incremental values. For example, the line:

<U3003>...<U3006> \x81\x56

is interpreted as:

<U3003> \x81\x56

<U3004> \x81\x57

<U3005> \x81\x58

<U3006> \x81\x59

3. <unassigned> <encoding> <comments>

This format defines a range of one or more unassigned encodings. For example,

the line:

<unassigned> \x9b...\x9c

is interpreted as:

<unassigned> \x9b

<unassigned> \x9c

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 391

The localedef Utility

A locale is the definition of the subset of your environment that depends on

language and cultural conventions. The locale objects contain the rules and

pointers to methods used to implement the language and cultural conventions. A

locale object is made up of a number of categories, identified by name, that control

specific aspects of the behavior of components of the system.

The locale objects are generated by first executing the localedef utility according

to the rules defined in the locale definition file, and then compiling and

link-editing the C source deck produced. The locale object is a phase that can be

loaded via the operating system load and used by the locale specific library

functions.

The options for the localedef utility are as follows. The options are specified on

the EXEC PARM and are separated by spaces or commas. If the same option is

specified more than once, the last specification of the option is used.

CHARMAP(mbr_name)

Specifies a coded character set name. This name is converted to the name of a

VSE/Librarian member containing the mapping of the character symbols to

actual character encodings. The member name is the character set name with

the - (dash) converted to an @ (at) sign and a “.K” extension. For example,

IBM-1047 maps to member name IBM@1047.K.

 If this option is not specified, the localedef utility defaults to use the coded

character set IBM-1047.

FLAG(W|E)

The FLAG option controls whether warning messages are issued. If FLAG(W) is

specified (or by default), warning and error messages are issued. If FLAG(E) is

specified, only the error messages are issued.

BLDERR|NOBLDERR

If the BLDERR option is specified, the locale is generated even if errors are

detected. If the NOBLDERR option is specified (or by default), the locale is not

generated if an error is detected.

Code Set & Locale Utilities

392 LE/VSE: C Run-Time Programming Guide

IFILE(...)

Specifies the input file as follows:

localedef IFILE Option

== IFILE (

DD:SYS001-SYSUT1

i_name

80

,

lrecl

=

i_lrecl

 =

=
FB

,

recfm

=

i_recfm

4000

,

blksize

=

i_blksize

) =B

where

i_name

is the input file specification in any of the formats supported by the

fopen() function. (See the “Opening Files” sections in this book for

additional information regarding file specification formats.) Default is

DD:SYS001-SYSUT1.

i_lrecl

is the input file logical record length in bytes. Default is 80.

i_recfm

is the input file record format. Default is FB.

i_blksize

is the input file block size in bytes. Default is 4000.

 Notes:

1. All of the above parameters are optional.

2. If more than one parameter is specified, a comma (,) must be used as a

separator between each parameter.

3. No spaces are allowed.

4. If i_name is specified, it must be the first parameter. Other parameters are

non-positional.

 Example:

IFILE(dd:file1,recfm=vb)

OFILE(...)

Specifies the output file as follows:

localedef OFILE Option

== OFILE (

DD:SYS002-SYSUT2

o_name

i_lrecl

,

lrecl

=

o_lrecl

 =

=
i_recfm

,

recfm

=

o_recfm

i_blksize

,

blksize

=

o_blksize

) =B

where

o_name

is the output file specification in any of the formats supported by the

fopen() function. (See the “Opening Files” sections in this book for

additional information regarding file specification formats.) Default is

DD:SYS002-SYSUT2.

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 393

o_lrecl

is the output file logical record length in bytes. Default is the explicit or

implicit input file logical record length.

o_recfm

is the output file record format. Default is the explicit or implicit input file

record format.

o_blksize

is the output file block size in bytes. Default is the explicit or implicit input

file block size.

 Notes:

1. All of the above parameters are optional.

2. If more than one parameter is specified, a comma (,) must be used as a

separator between each parameter.

3. No spaces are allowed.

4. If o_name is specified, it must be the first parameter. Other parameters are

non-positional.

 Example:

OFILE(DD:SYS006-MYFILE,lrecl=121,blksize=4840)

Messages from the localedef utility are written to stdout/stderr.

Defining Your Own Locales

Some of the locales shipped from LE/VSE 1.4.1 onwards are very large. As a

result, if you plan to use locales as the basis for defining your own locales:

1. You will require a large amount of virtual storage in the partition in which the

object code is to be generated. This applies to the:

v localedef utility itself.

v C compiler which is used to compile the code that is generated by the

localedef utility.
2. You will probably need to:

v Increase the size of the work files used by the C compiler.

v Adjust some of the LE/VSE run-time options that control the amount of

virtual storage used in the partition.
3. The C source code that is generated by the localedef utility might contain

records with a column-size of more than 80. Therefore, you should use a

variable-length record file in which to store the C source code.

4. As the C compiler will only accept variable-length records from a

VSAM-managed SAM dataset, you should use VSAM-managed SAM as the

intermediate C source file.

Examples

In the first example, the input source is a member TEXAN.L in a VSE/Librarian

sublibrary LOCALE.WRK. Having created the C source file using the localedef

utility, the C/VSE compiler and the linkage editor is used to produce a locale

phase as member EDC$1TEY.PHASE in the LOCALE.WRK sublibrary.

Code Set & Locale Utilities

394 LE/VSE: C Run-Time Programming Guide

In the first example, please notice the following:

�1� Code the LIBDEF search chain to include all the sublibrary names that the

localedef utility and the C/VSE compiler needs.

�2� This is the sublibrary to which the phase is written.

�3� The entry point in the locale phase must be INSTANTI.

The second example shows how to generate the EDC$ZCGY locale to create the

relevant locale phase.

* $$ JOB JNM=jobname,PDEST=(*,uid),LDEST=(*,uid),PRI=prty,CLASS=class

* $$ PUN DISP=I

// JOB jobname

// LIBDEF *,SEARCH=(PRD2.DBASE,PRD2.SCEEBASE,...) �1�

// LIBDEF PHASE,CATALOG=LOCALE.WRK �2�

// OPTION CATAL

/* --

/* Step 1: Create the C source using the localedef utility

/* --

// EXEC EDCLLDEF,PARM=’IFILE(DD:LOCALE.WRK(TEXAN.L)), X

 OFILE(DD:LOCALE.WRK(EDC$1TEY.C))’

/* --

/* Step 2: Compile the generated C source and write the object module

/* to SYSLNK

/* --

// EXEC EDCCOMP,SIZE=EDCCOMP,PARM=’/LIST,SOURCE,NAME(EDC$1TEY)’

#include "edc$1tey.c"

/*

/* --

/* Step 3: Link-edit the object module to produce the phase

/* --

 ENTRY INSTANTI �3�

// EXEC LNKEDT

/*

/&

* $$ EOJ

Figure 83. Sample 1 localedef JCL

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 395

In this second example, please note the following:

�1� The DLBL statement defines a VSAM-managed SAM data set to contain

the C source. The C program generated from the EDC$ZHCN locale will

consist of approximately 150,000 lines of code. The RECSIZE=60 parameter

defines the average record size for VSAM space calculation.

 Note that this is a VSAM implicit definition. If you wish to predefine the

file (explicit definition), you should use the following IDCAMS parameters:

 DEFINE CLUSTER(NAME(%LOCALE.CSOURCE) -

 NONINDEXED -

 RECORDFORMAT(VB) -

 RECORDSIZE(60 128) -

 RECORDS(150000 500) -

)

�2� The OFILE parameter defines where the localedef utility is to place the C

source file that it generates. The DD:CSOURCE option relates it to the DLBL

statement that defines the VSAM-managed SAM file. The RECFM, LRECL and

BLKSIZE options define the format of the data set. These are required for an

implicitly-defined file, and are ignored for an explicitly-defined file.

�3� The work files that the C compiler uses need to be large enough to process

the C source file. If your standard labels define smaller work files, you will

need to provide DLBL statements to override them.

�4� The DLBL statement defines the data set that contains the C source

program. If the data set is explicitly defined, the DISP parameter should

not be specified.

// JOB LOCALED

// LIBSDEF *,SEARCH=(PRD2.BASE,PRD2.SCEEBASE)

/. C --

/. C Step 1 : Generate the C source using the localedef utility

/. C --

// DLBL CSOURCE,’%LOCALE.CSOURCE’,,VSAM,DISP=(NEW,KEEP), �1� X

 RECORDS=(150000,500),RECSIZE=60

// EXEC EDCLLDEF,PARM=’/CHARMAP(IBM-935),IFILE(DD:SYSIPT), X

 OFILE(DD:CSOURCE,RECFM=VB,LRECL=128,BLKSIZE=6000)’ �2�

 ... (locale source) ...

/*

/. C --

/. C Step 2 : Compile the C source

/. C --

// DLBL IJSYS05,’%DOS.WORKFILE.SYS005’,0,VSAM,DISP=(NEW,DELETE), �3�X

 RECORDS=(1500,200),RECSIZE=4096

// DLBL IJSYS06,’%DOS.WORKFILE.SYS006’,0,VSAM,DISP=(NEW,DELETE), X

 RECORDS=(1500,200),RECSIZE=4096

// DLBL CSOURCE,’%LOCALE.CSOURCE’,,VSAM,DISP=(OLD,DELETE) �4�

// LIBDEF PHASE,CATALOG=...

// OPTION CATAL

 PHASE EDC$ZCGY,*

// EXEC EDCCOMP,SIZE=AUTO,PARM=’BE(2K,512),H(32K,32K,ANY,FREE,1K,5’,X �5�

 PARM=’12),LIBS(2K,512),STAC(4K,2K,BELOW,FREE),STO(,,,0’,X

 PARM=’),TRACE(,0)/NOLIST,SPILL(3900),IFILE(DD:CSOURCE)’ �6�

/. C --

/. C Step 3 : Link edit

/. C --

 ENTRY INSTANTI

// EXEC LNKEDT

/&

Figure 84. Sample 2 localedef JCL

Code Set & Locale Utilities

396 LE/VSE: C Run-Time Programming Guide

�5� You need to specify a number of LE/VSE run-time options for the C

compile step to reduce the amount of storage used by LE/VSE functions

and allow more for the compiler itself. The JCL in this example was run in

a partition with a virtual storage allocation of 25600K, and the run-time

options that relate to storage allocations were specified as shown to reduce

LE/VSE’s own virtual storage requirements.

 Note that, in order to use this form of the EXEC statement that allows up

to 300 characters of information in the PARM parameter, your z/VSE

system must have the PTF or the relevant APAR applied. The APAR

numbers are:

 (for VSE/ESA Version 1 - DY44232)

 for VSE/ESA Version 2 - DY44173

�6� The options after the slash are options for the compiler itself rather than

for LE/VSE. The IFILE(DD:CSOURCE) option relates to the DLBL statement

that defines the input source file.

Code Set & Locale Utilities

Chapter 33. Code Set and Locale Utilities 397

Code Set & Locale Utilities

398 LE/VSE: C Run-Time Programming Guide

Chapter 34. Coded Character Set Considerations with Locale

Functions

Each EBCDIC coded character set consists of a mapping of all the available glyphs to

their respective hex encodings and also to their unique Graphic Character Global

Identifiers (GCGIDs). GCGIDs are unique identifiers assigned to each character in

the Unicode standard. A glyph is the printed appearance of a character. Each coded

character set is intended to serve one linguistic environment.

There is a wide variation among coded character sets: many glyphs do not appear

in all coded character sets, and hexadecimal encodings for some glyphs differ from

one coded character set to another. You may have trouble when you export a file

from a system running in one coded character set to a system running in another

coded character set. For example, a left bracket ([) entered under the APL-293 or

Open Systems IBM-1047 coded character set appears as the capitalized Y-acute (Ý)

in such common coded character sets as International 500, France 297, Germany

273, and US/Canada 037.

LE/VSE C Run-Time now contains the following extensions to prevent such

problems:

v The ??=pragma filetag directive (see “The ??=pragma filetag Directive” on

page 407).

v The locale compile-time option (see “Converting Coded Character Sets at

Compile Time” on page 408).

These new facilities cause the compiler to respect your code page. Thus, you can

enter source code with what appears to you to be the correct characters, and the

compiler will recognize those characters.

The rest of this chapter discusses other ways to work efficiently in different locales.

Variant Character Detail

The POSIX Portable Character Set (PPCS) identifies the core set of 128 characters

that are needed to write code and run applications. Of these, 13 characters are

variant among the EBCDIC coded character sets.

Table 50 on page 400 lists these 13 characters and shows how they appear when

the Open Systems coded character set IBM-1047 hexadecimal values are entered,

on systems where different Country Extended Coded Character Sets are installed.

These hex values are the ones expected by LE/VSE C Run-Time, and are consistent

with the use of the APL-293 coded character set. Table 51 on page 400 lists the

hexadecimal values assigned across some of the EBCDIC coded character sets for

the 13 variant characters from the PPCS. Appendix C, “LE/VSE C Run-Time Code

Point Mappings,” on page 429 gives more information about the mapping of

glyphs. Appendix A, “POSIX Character Set,” on page 417 lists the full PPCS.

© Copyright IBM Corp. 1995, 2005 399

Table 50. Mappings of 13 PPCS Variant Characters

 Character

Open

Systems

Hex Value

(Default)

Open

Systems

IBM-1047

View

APL

IBM-293

View

Inter-

national

IBM-500

View

France

IBM-297

View

Germany

IBM-273

View

US/

Canada

IBM-037

View

left bracket AD [[Ý Ý Ý Ý

right bracket BD]] ü ~ } }

left brace C0 { { { é ä {

right brace D0 } } } è ü }

backslash E0 \ \ \ ç Ö \

circumflex 5F ^ ¬ ^ ^ ^ ¬

tilde A1 ~ ~ ~ ü ß ~

exclamation mark 5A ! !] § Ü !

pound (number) sign 7B # # # £ # #

vertical bar 4F | | ! ! ! |

accent grave 79 ` ` ` µ ` `

dollar sign 5B $ $ $ $ $ $

commercial ″at″ 7C @ @ @ á § @

Two tables are available to show the full code point mappings for Open Systems

coded character set IBM-1047 (Figure 91 on page 429) and for the APL coded

character set IBM-293 (Figure 92 on page 430). If you look at those coded character

sets, you will notice that coded character set 1047 is a ″latinized″ coded character

set IBM-293, in the sense that all the APL code points have been replaced by

Latin-1 code points, thus allowing a one-to-one mapping among coded character

set IBM-1047 and all the other coded character sets in the Latin-1 group.

Although the official current coded character set for LE/VSE C Run-Time is now

coded character set IBM-1047 (Open Systems), the coded character set IBM-293

syntax points are still being honored. Those points are the ones with syntactic

relevance to the C/VSE compiler; they are listed in both Table 50 and Table 51.

 Table 51. Mappings of Hex Encoding of 13 PPCS Variant Characters

Character Name Glyph GCGID

Open

Systems

IBM-1047

View

APL

IBM-293

View

Inter-

national

IBM-500

View

France

IBM-297

View

Germany

IBM-273

View

US/

Canada

IBM-037

View

left bracket [SM060000 AD AD 4A 90 63 BA

right bracket] SM080000 BD BD 5A B5 FC BB

left brace { SM110000 C0 C0 C0 51 43 C0

right brace } SM140000 D0 D0 D0 54 DC D0

backslash \ SM070000 E0 E0 E0 48 EC E0

circumflex ^ SD150000 5F 5F 5F 5F 5F B0

tilde ~ SD190000 A1 A1 A1 BD 59 A1

exclamation mark ! SP020000 5A 5A 4F 4F 4F 5A

pound (number) sign # SM010000 7B 7B 7B B1 7B 7B

vertical bar | SM130000 4F 4F BB BB BB 4F

Coded Character Set and Locale Functions

400 LE/VSE: C Run-Time Programming Guide

Table 51. Mappings of Hex Encoding of 13 PPCS Variant Characters (continued)

Character Name Glyph GCGID

Open

Systems

IBM-1047

View

APL

IBM-293

View

Inter-

national

IBM-500

View

France

IBM-297

View

Germany

IBM-273

View

US/

Canada

IBM-037

View

accent grave ` SD130000 79 79 79 A0 79 79

dollar sign $ SC030000 5B 5B 5B 5B 5B 5B

commercial ″at″ @ SM050000 7C 7C 7C 44 B5 7C

Alternate Code Points

All syntactic code points that were supported in previous versions of LE/VSE C

Run-Time will continue to be supported if you are compiling with the nolocale

option.

The following four alternate code points are not supported with the locale

compiler option. If your code relies on these alternate code points, IBM

recommends that you start using the ??=pragma filetag directive and the locale

option instead, and stop using the alternate code points.

v The French open and close double quotation marks (« at X'8B' and » at X'9B').

These symbols no longer serve as alternates for the left and right braces ({ at

X'C0' and } at X'D0').

v The APL-293 left brace and right brace (↓ at X'8B' and ⊂ at X'9B'). These symbols

no longer serve as alternates for the left and right braces either. These alternate

code points were supported by the C/370 and AD/Cycle C/370 compilers (the

nolocale option was required if you were using the AD/Cycle C/370 Version 1

Release 2 compiler).

For reasons of compatibility, the vertical bar character can be represented by two

encodings, if you are not using a locale compiler option or if you are using the

nolocale option. These two encodings are X'4F' and X'6A' If you do specify the

locale option, each of these characters is represented by a unique value as

specified in the LC_SYNTAX category of the selected locale.

Coding without Locale Support

If you want to avoid using the locale option of the compiler, you must use a

hybrid coded character set. A hybrid piece of code is one where the data is in the

local coded character set but the syntax is written as if it was in coded character set

IBM-1047.

Using a Hybrid Coded Character Set

You can continue coding in the local coded character set, writing the syntax as if it

was in coded character set IBM-1047. This solution uses the existing behavior of

the compiler and will continue to be supported. However, this method is not

recommended. The code becomes difficult to read and may not even look like C

code anymore. There may be ambiguities in the code. Finally, exporting code to

another site can be difficult because the mapping between the hybrid characters

actually used and the target coded character set may not be exact.

Coded Character Set and Locale Functions

Chapter 34. Coded Character Set Considerations with Locale Functions 401

The following example illustrates these difficulties.

EDCXGCC1

 /* EDCXGCC1

 This example uses a hybrid coded character set.

 This has strings in codepage 273 with APL 293 syntax, and is a

 pre-locale source file for a user in Germany.

 */

#define MAX_NAMES 20

#define MAX_NAME_LEN 80

#define STR(num) #num

#define SCAN_FORMAT(len) "%"STR(len)"s %"STR(len)"s"

struct NameList ä �1�

 char firstÝMAX_NAME_LEN+1}; �2� �3�

 char surnameÝMAX_NAME_LEN+1}; �2� �3�

ü; �4�

int compareNames(const void *elem1, const void *elem2) ä �1�

 struct NameList *name1 = (struct NameList *) elem1;

 struct NameList *name2 = (struct NameList *) elem2;

 int surnameComp = strcoll(name1->surname,

 name2->surname);

 int firstComp = strcoll(name1->first,

 name2->first);

 return(surnameComp ? surnameComp : firstComp);

ü �4�

main() ä �1�

 int i, rc, numEntries;

 struct NameList curName;

 struct NameList nameListÝMAX_NAMES}; �2� �3�

 printf("Bitte geben Sie die Namen ein, "

 "im Format <Familienname> <Vorname> "

 "(Maximum %d Namen!)Ön", �8� �5�

 MAX_NAMES);

 for (i=0; i<MAX_NAMES; ++i) ä �1�

 printf("Name (oder EOF wenn fertig):Ön"); �5�

 rc = scanf(SCAN_FORMAT(MAX_NAME_LEN),

 curName.surname, curName.first);

 if (rc Ü= 2) ä �6� �1�

 break;

 ü �4�

 nameListÝi} = curName; �2� �3�

 ü �4�

Figure 85. Hybrid Coded Character Set Example (Part 1 of 2)

Coded Character Set and Locale Functions

402 LE/VSE: C Run-Time Programming Guide

The code points in the example above with different glyphs in character code set

IBM-273 and APL-293 are highlighted in the previous example and described here:

�1� This is the code point for the { character. In coded character set 273 this is

the character ä.

�2� This is the code point for the [character. In coded character set 273 this is

the character Ý.

�3� This is the code point for the] character. In coded character set 273 this is

the character }.

�4� This is the code point for the } character. In coded character set 273 this is

the character ü.

�5� This is the code point for the \ character. In coded character set 273 this is

the character Ö.

�6� This is the code point for the ! character. In coded character set 273 this is

the character Ü.

�7� This is the code point for the | character. In coded character set 273 this is

the character !. This particular code point mapping is unfortunate because

the | and the ! character are both valid C syntax characters. Note that the !

used in the printf() call at �8� will appear as ! on a terminal displaying in

coded character set 273.

This example illustrates some of the problems with hybrid files. To write this code

would require the following steps:

1. The programmer looks up each variant character in coded character set

IBM-1047 to find out what the compiler expects. For example, LE/VSE C

Run-Time expects the character [to have a byte value of X'AD'.

2. The programmer determines which glyph is at X'AD' in her own coded

character set so that she can code that character in her application.

3. The programmer takes care to always use the appropriate substitution. For

example, for a needed [in Germany, we look up X'AD' in the German IBM-273

coded character set, and we find the character Ý.

Converting Existing Work

This section describes some issues in conversion and illustrates some conversions.

We assume that existing source code and libraries will not be quickly converted

from mixed coded character sets to a common coded character set, so we suggest a

staged approach:

v Code your new source in one coded character set, preferably IBM-1047. Tag all

new source files to make them more portable: put the ??=pragma filetag

directive at the top of each one.

 numEntries = i;

 qsort(nameList, numEntries, sizeof(struct NameList),

 compareNames);

 for (i=0; i<numEntries; ++i) ä �1�

 printf("Name %d:<%s, %s>Ön", i+1, �5�

 nameListÝi}.surname, �2� �3�

 nameListÝi}.first); �2� �3�

 ü �4�

 i != (MAX_NAMES << sizeof(int)/2); �7�

 return(i);

ü �4�

Figure 85. Hybrid Coded Character Set Example (Part 2 of 2)

Coded Character Set and Locale Functions

Chapter 34. Coded Character Set Considerations with Locale Functions 403

v If you need to interface with existing code, compile your new code using the

locale that the existing code was written in.

v If you wish to write code in a coded character set that does not have a

one-to-one mapping to coded character set IBM-1047 (that is, a coded character

set which is not Latin-1), you can create your own conversion table and compile

it with the genxlt utility. Such a compiled table can then be used with the iconv

utility to convert your source code to coded character set IBM-1047.

Converting Hybrid Code

Existing code that was written in a hybrid coded character set will continue to be

accepted.

Appendix G, “Converting Code from Coded Character Set IBM-1047,” on page 457

shows you a program you can use to convert the hybrid code to another coded

character set.

Writing Source Code in Coded Character Set IBM-1047

It is recommended for two reasons that you write source in coded character set

IBM-1047.

First, even though LE/VSE C Run-Time provides support for multiple coded

character sets, other tools may not do so. Tools such as CICS and SQL/DS may not

support source code in any coded character set other than the default coded

character set, IBM-1047. If you are using these tools, and you write your code in a

code page other than IBM-1047, then you need to use the LE/VSE C Run-Time

iconv utility to convert your code to coded character set IBM-1047 before you can

use the tool.

Second, older versions of the C/370 product do not support source in coded

character sets other than IBM-1047. This makes it difficult to share code with a site

using an older compiler.

Exporting Source Code to Other Sites

This section deals with exporting of code from one Latin-1 coded character set to

another. That is, it deals with how to write code that will be run in a locale that

uses a different coded character set than the one used to write the source.

The most simple way to export code is to use the iconv utility to convert each

source file, header file, and data file to the target coded character set, then to send

all files to the target location for compilation. You should ensure that your code

runs with the same locale that it was compiled under before you try running it

with any other locales.

1. Use the ??=pragma filetag directive to tag each source file, header file, and

data file.

2. To write truly portable code, you should use message files for all external

strings, such as prompts, help screens, and error messages. Convert these

strings to the run-time coded character set in your application code.

3. Use the setlocale() function so that the library functions are sensitive to the

run-time coded character set.

Be sure that locale-sensitive information, such as decimal points, is displayed

appropriately. Use either nl_langinfo() or localeconv() to obtain this

information.

Coded Character Set and Locale Functions

404 LE/VSE: C Run-Time Programming Guide

The setlocale() function does not change the CEE functions under Language

Environment in such areas as date, time, currency, and time zones.

Internationalization is specific to LE/VSE C Run-Time applications. Also, the

LE/VSE CEE callable services do not change the LE/VSE C Run-Time locales.

For a list of the Language Environment callable services, see LE/VSE

Programming Guide.

4. Compile with locale specifying coded character set IBM-1047.

If you specify locale("locale-name"), your code will run correctly with libraries

running in the same coded character set. However, if you compile with a different

locale than you run under, you have to ensure that your code has no internal

data, and also that all libraries you use are run-time locale sensitive. Consider the

following code fragment:

int main() {

 setlocale(LC_ALL, "");

 ...
 rc = scanf("%[1234567890abcdefABCDEF]", hexNum);

 ...
}

For example, if you compile with locale("De_DE.IBM-273"), the square brackets

will be converted to the hex values X'63' and X'FC'. If the default locale you then

run under is not ″De_DE.IBM-273″, but instead ″En_US.IBM-1047″, and you have

not used setlocale(), then the square brackets will be interpreted as Ä and Ü, and

the call to scanf() will not do what you intended.

If you only need to run your code locally or export your code to a site that has

your locale environment, you can solve this problem by coding:

int main() {

 setlocale(LC_ALL, __LOCALE__);

 ...
 rc = scanf("%[1234567890abcdefABCDEF]", hexNum);

 ...
}

This ensures that your code runs with the same locale it was compiled under.

Library functions such as printf(), scanf(), strfmon(), and regcomp() are

sensitive to the current coded character set. The __LOCALE__ macro is described in

“Using Predefined Macros” on page 410.

If you are generating code to export to a site that may not have your locale

environment, you should write your code in IBM-1047.

Coded Character Set and Locale Functions

Chapter 34. Coded Character Set Considerations with Locale Functions 405

Coded Character Set Independence in Developing Applications

To work effectively with the locale functionality, you may need to use functions,

macros, and tools. Here is a summary of the compile-edit work flow, showing

what functions you can use where.

 The illustration in Figure 86 refers to the following functions:

�1� Setup.

 The localedef information (see overview in Chapter 31, “Customizing a

Locale,” on page 359 and details in “Locale Source Files” on page 329)

�2� Coded character set of source, header files, and data.

 The coded character set used to create a source file must be understood by

the compiler so that it will recognize the variant C syntax characters

correctly.

v The ??=pragma filetag directive identifies the coded character set of the

source file as well as in library or user’s include files (see overview in

“The ??=pragma filetag Directive” on page 407)

v Predefined macros __LOCALE__, __FILETAG__, and __CODESET__ (see

overview in “Using Predefined Macros” on page 410)

v The function setlocale() (see LE/VSE C Run-Time Library Reference)

�3� Coded character set conversion utilities & functions.

 The coded character set of a file, or a stream of data, can be converted to

another coded character set using the utilities genxlt and iconv (see “Code

Set Conversion Utilities” on page 371 for details) as well as the functions in

the run-time library.

�4� Coded character set conversion at compile time.

 This is determined by the compile-time locale, and supported by the

compile-time options, locale and nolocale (see overview in “Converting

Coded Character Sets at Compile Time” on page 408; details in IBM C for

VSE/ESA User’s Guide),

Figure 86. Compile-Edit, Related to Locale Function

Coded Character Set and Locale Functions

406 LE/VSE: C Run-Time Programming Guide

�5� Run-time environment.

 During run time, the setlocale() function has an effect on such run-time

functions, such as printf(), scanf(), and regcomp(), which use variant

characters.

�6� Listings and output files.

 Listings, pre-processed source code, and text decks (see overview in

“Working With Listings and Output Files” on page 412) may be affected by

the coded character set used to create or to convert source files. Your

application can, however, include logic, using the following functions, to

minimize the impact:

v Use of __LOCALE__, __FILETAG__, and __CODESET__

v Use of locale functions such as setlocale()

Coded Character Set of Source Code and Header Files

There are three locale-related activities that can take place from source code:

1. You may tag your source code, and other associated files, with the

??=pragma filetag directive to specify the coded character set that was used

while entering the file. Having done so, you can run compiles being sure that

all variant characters in your file are respected.

2. You may use the three macros: __LOCALE__, __FILETAG__, and

__CODESET__. These C/VSE compiler macros expand to provide information

about the ??=pragma filetag directive of the current source, and the locale and

target coded character set used by the compiler at compile time. Refer to the

description of predefined macros in your LE/VSE-conforming C compiler’s

Language Reference for more information.

3. You may use the setlocale() function to set the run-time locale to be the same

as the locale used to compile the application. This can be used when your

application contains dependencies on the coded character set, as it would when

comparing constants with external data. Using the macros forces the run-time

locale to be the same as the one used to compile your code.

The ??=pragma filetag Directive

By using ??=pragma filetag directive, you may write your programs in any

convenient supported coded character set (see Appendix D, “Locales Supplied with

LE/VSE C Run-Time,” on page 431 for a list of coded character set names). The

??=pragma filetag directive instructs the C/VSE compiler how to “read” the

source. As long as you tag the source files, the header files, and all data files

(including messages) with the ??=pragma filetag directive, you will be keeping

the information about the coded character set used to create each source file in the

source file itself. This information can be helpful when moving source files to

systems with different coded character sets. Here is the syntax.

??=pragma filetag

== ??=pragma filetag (″ code-page-name ″) =B

Here is an example tag that uses the German coded character set IBM-273:

??=pragma filetag("IBM-273")

Because the # character is variant in different coded character sets, you must use

the trigraph ??= instead for the pragma filetag directive.

Coded Character Set and Locale Functions

Chapter 34. Coded Character Set Considerations with Locale Functions 407

The ??=pragma filetag directive specifies the coded character set in which the

source or data was entered. The coded character set specified in the

??=pragma filetag directive is in effect for the entire source file, but not for any

other source file. This applies also to header files and data files.

This directive may appear at most once per file. It must appear before the first

statement in a program. If it is encountered anywhere else, a warning is issued and

the directive is ignored. Comments which contain variant characters, and which

appear before the directive, will not be translated.

 Attention: If you use the iconv utility on a file tagged with the

??=pragma filetag directive, you must update the file manually to change the

filetag to the correct converted coded character set. The iconv utility does not

update the pragma in source files.

Converting Coded Character Sets at Compile Time

The compiler option locale enables the user to tell the compiler what locale to use

at compile time; specifically, in what coded character set to generate output. The

output affected consists of:

v Pre-processed source code

v Listings

v Object deck

The syntax is:

Compiler Option local

== locale (″ locale-name ″)

nolocale
 =B

Further detail on this option is available in IBM C for VSE/ESA User’s Guide

Examples

Run the compiler using the following compiler option on the PARM parameter of the

EXEC statement:

LOCALE("De_DE.IBM–273")

The compiler recognizes "De_DE.IBM-273" as a valid locale and automatically

converts the source code to coded character set IBM-273, for its own use. The

compiler would then generate listings in the German coded character set 273.

Here are the input files that are affected:

v The primary source file

v Library header files

v User header files

To generate a pre-processed file that can be sent to other sites, at which different

coded character sets are used, use the compiler options:

LOCALE("De_DE.IBM–273") PPONLY

The compiler will insert the ??=pragma filetag directive at the start of the

pre-processed file, using the coded character set specified in the locale option. In

this example, ??=pragma filetag("IBM-273") is inserted.

Coded Character Set and Locale Functions

408 LE/VSE: C Run-Time Programming Guide

Since the pre-processed file has been tagged, it can be compiled using the C/VSE

compiler at any site, regardless of the locale used.

Usage

If no ??=pragma filetag directive was specified for the source file, and the locale

compile-time option is used, then no conversion is performed. The compiler

assumes that the file is in the correct target coded character set already.

The locale-name is a string that represents the locale the user wants to compile

source with; this will determine the characteristics of output, including the coded

character set used for variant characters in the source. Usually, a locale-name

consists of two components, the territory name and the coded character set. For

example, the German locale for coded character set 273 is De_DE.IBM-273. The

territory name is De_DE and the coded character set is IBM-273. To determine the coded

character set of a given locale, use the function nl_langinfo(CODESET).

The special locale-name "" gives you the default locale, which can be set using

environment variables. The locale name "C" specifies the C default locale. Full

detail about the C locale is found in Chapter 32, “Definition of S370 C, SAA C, and

POSIX C Locales,” on page 363.

The default option setting is nolocale. It instructs the compiler to do no conversion

of text for input or for output. With nolocale, no conversion is performed on

source files being read. A warning message is issued if a ??=pragma filetag

directive is encountered.

You can create your own locales by using the localedef utility. See “Locale Source

Files” on page 329 for details.

Summary of Source and Compile Use

The following list shows the results from different combinations of the

??=pragma filetag directive and the locale compiler option.

locale option specified:

In this case, the compiler does the following:

v Converts the source code from the coded character set specified with the

??=pragma filetag directive to the code set specified by the locale

option.

v If no ??=pragma filetag directive is specified, the compiler assumes the

source is in the same coded character set as specified by the locale, and

does not perform any conversion.

v Converts compiler error messages from coded character set IBM-1047 to

the coded character set specified in locale.

v Generates compiler output in the same coded character set as that of the

locale specified in the locale option.

v Inserts the ??=pragma filetag directive, using the coded character set

specified in the locale option, at the start of the preprocessor file, if

PPONLY is specified.

nolocale specified:

In this case, the compiler does the following:

v Does not convert text in the input or output file, and uses the default

coded character set IBM-1047 to interpret syntactic characters.

Coded Character Set and Locale Functions

Chapter 34. Coded Character Set Considerations with Locale Functions 409

v If a ??=pragma filetag directive is specified, the compiler suppresses the

??=pragma filetag directive in the preprocessor file. The compiler issues

warnings if the ??=pragma filetag directive specifies a coded character

set other than IBM-1047, and uses IBM-1047 anyway.

Using Predefined Macros

There are three macros for the C/VSE compiler that relate to locale.

__LOCALE__

This macro expands to a string literal representing the locale of the locale

compiler option. This macro can be used to set the run-time locale to be the

same as the compiled locale:

main() {

 setlocale(LC_ALL, __LOCALE__);

 ...
}

The value of this macro is defined per compilation. If no locale compiler

option was supplied, the macro is undefined.

__FILETAG__

This macro expands to a string literal representing the character coded

character set of the ??=pragma filetag directive associated with the current

file. For example, to convert to the coded character set specified by the locale

option from the coded character set specified by the ??=pragma filetag

directive, you would use the iconv_open() function:

iconv_open(__FILETAG__,variable);

The value of this macro is defined per source file. If no ??=pragma filetag

directive is present, the macro is undefined.

__CODESET__

This macro expands to a string literal representing the character coded

character set of the locale compiler option. If a value was not supplied at

compilation, the macro is undefined.

Coded Character Set and Locale Functions

410 LE/VSE: C Run-Time Programming Guide

EDCXGCC2

 /* EDCXGCC2

 This example shows how to use the __CODESET__ macro

 */

#include <iconv.h>

#include <string.h>

#include <stdio.h>

 /* The following function could be in a header file */

#ifdef __CODESET__

 static int convstr(iconv_t convInfo, char *in, int inSize,

 char *out, int outSize) {

 return(iconv(convInfo, in, inSize, out, outSize))

 }

#else

 static int convstr(iconv_t convInfo, char *in, int inSize,

 char *out, int outSize) {

 memcpy(out, in, outSize > inSize ? inSize : outSize);

 return(outSize > inSize ? -1 : 0);

 }

#endif

iconv_t convInfo;

int main() {

#ifdef __CODESET__

 char *runtimeCodeSet;

 setlocale(LC_ALL, ""); /* set locale to default locale */

 runtimeCodeSet = nl_langinfo(CODESET);

 convInfo = iconv_open(runtimeCodeSet, __CODESET__);

#endif

 char intro[] = "Welcome to my variant world!\n";

 char nlIntro[sizeof(intro)];

 convstr(convInfo, intro, sizeof(intro),

 nlIntro, sizeof(nlIntro));

 puts(nlIntro); /* string will print appropriately */

#ifdef __CODESET__

 iconv_close(convInfo);

#endif

return(0);

}

Figure 87. Example of __CODESET__ Macro

Coded Character Set and Locale Functions

Chapter 34. Coded Character Set Considerations with Locale Functions 411

The illustration below shows the values that these macros will take on,

emphasizing that for __FILETAG__, a value is assigned for each source file, but for

__LOCALE__ and __CODESET__, a value is assigned for a compilation.

Using a Predefined Locale

You can change the run-time locale to any one of the other predefined locales

listed in Table 52 on page 431. To use a defined locale, refer to it by its setlocale()

parameter.

To define a new locale, copy the source file provided, edit it, and assemble it (see

Chapter 31, “Customizing a Locale,” on page 359).

Working With Listings and Output Files

The compiler respects the locale specified by the locale compile option in

generating the listing. If the nolocale compiler option is in effect, no locale

information is used and no conversion is performed on any of the output files.

The output files affected:

v Object Decks

v Pre-processed source code

v Listings

Figure 88. Values of Macros __FILETAG__, __LOCALE__, and __CODESET__

Coded Character Set and Locale Functions

412 LE/VSE: C Run-Time Programming Guide

Object Decks

If the locale option is specified, the object deck is generated in the coded character

set of your current locale. Otherwise, the object deck is generated in the coded

character set IBM-1047.

Code will run correctly if the run-time locale is the same as the locale of the object

deck.

If the object was generated with a different locale from the one you run under, you

must ensure that your code can run under different locales. Refer to Chapter 31,

“Customizing a Locale,” on page 359 for more information.

For information about exporting code to other sites, see “Exporting Source Code to

Other Sites” on page 404.

Listings

You can use the compiler option locale to ensure that listings are sensitive to a

specified locale. For example, here is the result from compiling the source file

HELLO with the compiler options:

LIST SOURCE LOCALE("De_DE.IBM-273")

Coded Character Set and Locale Functions

Chapter 34. Coded Character Set Considerations with Locale Functions 413

In the listing above, notice the locale-specific information:

�1� The date at the top right.

�2� The name of the locale and the Code Set.

�3� The currency decimal-separator.

15686A01 V1 R1 M00 IBM C/VSE DD:SYSIPT �1� 12.04.01 10:19:41 PAGE 1

 * * * * * P R O L O G * * * * *

 COMPILE TIME LIBRARY : 11040000

 COMMAND OPTIONS:

 PROGRAM NAME. : DD:SYSIPT

 COMPILER OPTIONS. : *NOGONUMBER *NONAME *NODECK *NORENT *TERMINAL *NOUPCONV *SOURCE *LIST

 : *NOXREF *NOAGGR *NOPPONLY *NOEXPMAC *NOSHOWINC *NOOFFSET *NOMEMORY *NOSSCOMM

 : *NOCSECT *NOLONGNAME *START *EXECOPS *NOEVENTS *NOINFILE

 : *TARGET() *FLAG(I) *NOTEST(SYM,BLOCK,LINE,NOPATH) *OPTIMIZE(0)*SPILL(128)

 : *NOINLINE(AUTO,NOREPORT,250,1000) *NESTINC(16)

 : *NOCHECKOUT(NOPPTRACE,PPCHECK,GOTO,ACCURACY,PARM,NOENUM,

 : * NOEXTERNAL,TRUNC,INIT,NOPORT,GENERAL)

 : *NOSEARCH

 : *NOLSEARCH

 : *OBJECT *NOHWOPTS *LOCALE

 LANGUAGE LEVEL. : *EXTENDED

 SOURCE MARGINS. :

 VARYING LENGTH. : 1 - 32767

 FIXED LENGTH : 1 - 72

 SEQUENCE COLUMNS. :

 VARYING LENGTH. : NONE

 FIXED LENGTH. : 73 - 80

 LOCALE NAME : DE_DE.IBM-273 �2�

 CODE SET. : IBM-273

15686A01 V1 R1 M00 IBM C/VSE DD:SYSIPT 12.04.01 10:19:41 PAGE 2

 * * * * * S O U R C E * * * * *

 LINE STMT SEQNBR INCNO

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9.......

 1 |??=pragma filetag("IBM-1047") | 1

 2 |int main(void) ä | 2

 3 1 | printf("Hello worldÖn"); | 3

 4 |ü | 4

 * * * * * E N D O F S O U R C E * * * * * ...
 I B M / 3 7 0 I N S T R U C T I O N U S A G E

 OP CODE NUM % OP CODE NUM % OP CODE NUM % OP CODE NUM %

 L 7 25,93 �3� LA 4 14,81 BALR 3 11,11 BCR 2 7,41

 BC 2 7,41 ST 2 7,41 LR 2 7,41 STM 2 7,41

 CL 1 3,70 MVI 1 3,70 LM 1 3,70

Figure 89. Example of Output When Locale Option Used

Coded Character Set and Locale Functions

414 LE/VSE: C Run-Time Programming Guide

Considerations With Other Products and Tools

Note

Any software tool that scans source code or compiler listings is affected by

the introduction of the locale functionality. Tools that read or generate source

code now need to recognize the ??=pragma filetag directive. Tools that read

listings need to recognize the coded character set in the title header.

 Since the following tools scan source code, they may be affected.

v Debug Tool for VSE/ESA does not support code written in any coded character

set other than IBM-1047.

v Translators such as CICS and SQL/DS read source files and generate new source

files. If they do not recognize the ??=pragma filetag directive, then follow these

steps:

1. Convert the source file to coded character set IBM-1047 using the iconv

utility.

2. Remove the ??=pragma filetag directive from the source file, or change it to

??=pragma filetag("IBM-1047"). Run the source that is in the IBM-1047

coded character set through the appropriate translator, if needed.

Coded Character Set and Locale Functions

Chapter 34. Coded Character Set Considerations with Locale Functions 415

416 LE/VSE: C Run-Time Programming Guide

Appendix A. POSIX Character Set

POSIX 1003.2, section 2.4, specifies the characters that are in the portable character

set. The following table lists the characters in the portable character set with their

symbolic name, the GCGID, and the graphic symbol for the character. Some of the

characters (the hyphen, for example) also have alternate symbolic names.

The input files for the localedef utility, the charmap file and the locale definition

file, are coded using the characters in the portable character set.

 Symbolic Name Alternate Name Character

<NUL>

<alert> <SE08>

<backspace> <SE09>

<tab> <SE10>

<newline> <SE11>

<vertical-tab> <SE12>

<form-feed> <SE13>

<carriage-return> <SE14>

<space> <SP01>

<exclamation-mark> <SP02> !

<quotation-mark> <SP04> "

<number-sign> <SM01> #

<dollar-sign> <SC03> $

<percent-sign> <SM02> %

<ampersand> <SM03> &

<apostrophe> <SP05> '

<left-parenthesis> <SP06> (

<right-parenthesis> <SP07>)

<asterisk> <SM04> *

<plus-sign> <SA01> +

<comma> <SP08> ,

<hyphen> <SP10> -

<hyphen-minus> <SP10> -

<period> <SP11> .

<slash> <SP12> /

<zero> <ND10> 0

<one> <ND01> 1

<two> <ND02> 2

<three> <ND03> 3

<four> <ND04> 4

<five> <ND05> 5

<six> <ND06> 6

<seven> <ND07> 7

<eight> <ND08> 8

<nine> <ND09> 9

<colon> <SP13> :

<semicolon> <SP14> ;

<less-than-sign> <SA03> <

<equals-sign> <SA04> =

<greater-than-sign> <SA05> >

<question-mark> <SP15> ?

<commercial-at> <SM05> @

© Copyright IBM Corp. 1995, 2005 417

Symbolic Name Alternate Name Character

<A> <LA02> A

 <LB02> B

<C> <LC02> C

<D> <LD02> D

<E> <LE02> E

<F> <LF02> F

<G> <LG02> G

<H> <LH02> H

<I> <LI02> I

<J> <LJ02> J

<K> <LK02> K

<L> <LL02> L

<M> <SM02> M

<N> <LN02> N

<O> <LO02> O

<P> <LP02> P

<Q> <LQ02> Q

<R> <LR02> R

<S> <LS02> S

<T> <LT02> T

<U> <LU02> U

<V> <LV02> V

<W> <LW02> W

<X> <LX02> X

<Y> <LY02> Y

<Z> <LZ02> Z

<left-square-bracket> <SM06> [

<backslash> <SM07> \

<reverse-solidus> <SM07> \

<right-square-bracket> <SM08>]

<circumflex> <SD15> ^

<circumflex-accent> <SD15> ^

<underscore> <SP09> _

<low-line> <SP09> _

<grave-accent> <SD13> `

<a> <LA01> a

 <LB01> b

<c> <LC01> c

<d> <LD01> d

<e> <LE01> e

<f> <LF01> f

<g> <LG01> g

<h> <LH01> h

<i> <LI01> i

<j> <LJ01> j

<k> <LK01> k

<l> <LL01> l

<m> <LM01> m

<n> <LN01> n

<o> <LO01> o

<p> <LP01> p

<q> <LQ01> q

<r> <LR01> r

<s> <LS01> s

418 LE/VSE: C Run-Time Programming Guide

Symbolic Name Alternate Name Character

<t> <LT01> t

<u> <LU01> u

<v> <LU01> v

<w> <LW01> w

<x> <LX01> x

<y> <LY01> y

<z> <LZ01> z

<left-brace> <SM11> {

<left-curly-bracket> <SM11> {

<vertical-line> <SM13> |

<right-brace> <SM14> }

<right-curly-bracket> <SM14> }

<tilde> <SD19> ~

With LE/VSE C Run-Time, the localedef utility uses code page IBM-1047 as the

definition of the code points for the characters in the Portable Character Set.

Therefore the default values for the escape-char and comment-char are the code

points from the IBM-1047 code page.

There are some coded character sets, such as the Japanese Katakana coded

character set 290, that have code points for the lowercase characters different from

the code points for the lowercase characters in the set IBM-1047. A charmap file or

locale definition file cannot be coded using these coded character sets.

Appendix A. POSIX Character Set 419

420 LE/VSE: C Run-Time Programming Guide

Appendix B. Mapping Variant Characters for C/VSE

This appendix describes how you can enter and display the variant characters such

as the square brackets [and], and the caret character, ^, for the host environment.

If you use a programmable workstation or a 3270 terminal, you can follow the

documented procedures to map the keys on your keyboard to send the correct

variant character hexadecimal values to the host system for the C/VSE compiler. In

the following sections, square brackets are used to illustrate the suggested

procedures.

 Note: If you are running a programmable workstation using host emulation

software, apply your host emulation software’s keyboard remapping first. If

this allows correct hexadecimal values for the variant characters to be sent

to the host, then you have completed the task.

© Copyright IBM Corp. 1995, 2005 421

Displaying Hexadecimal Values

If you are not sure whether your current keys generate correct hexadecimal values

for the C/VSE compiler and LE/VSE C Run-Time, you can use the following

program to show their hexadecimal values on the display. This program displays

the hexadecimal values for the variant characters that your current setup uses and

the values that the compiler and library expect.

Note: See the appropriate section of IBM C for VSE/ESA User’s Guide for

information on the LOCALE/NOLOCALE option and the list of IBM-supported

locales that can be used at compile or run time. The default C locale is

encoded in code page IBM-1047; therefore the default encoding of variant

characters is as in IBM-1047.

Example

The sample program reads the ten characters from the input file MYFILE.DAT and

displays the character values in hexadecimal notation. The program also queries

the current compile time locale for the character values that compiler would

expect. These ten variant characters are selected because they are syntactically

important to the C compiler. You must type them in MYFILE.DAT in this order on a

single line, without spaces between them:

v backslash \

v right square bracket]

v left square bracket [

v right brace }

v left brace {

v circumflex ^

v tilde ~

v exclamation mark !

v number sign #

v vertical line |

You can use the sample program to display the character values and then reset

your environment to generate the codes as shown in the column EXPECTED BY

COMPILER. After re-editing your input file, you can run this program again. Consult

your system programmer for the coded character set that your installation uses.

422 LE/VSE: C Run-Time Programming Guide

EDCXGMV1

 /* EDCXGMV1

 This example will display hexadecimal values for the variant

 characters

 */

#include <stdio.h>

#include <locale.h>

#include <variant.h>

#include <stdlib.h>

void read_user_data(char *, int);

void main() {

 char *user_char, *compiler_char;

 struct variant *compiler_var_char;

 int num_var_char, index;

 char *code_set;

 char *char_names[]={"backslash",

 "right bracket",

 "left bracket",

 "right brace",

 "left_brace",

 "circumflex",

 "tilde",

 "exclamation mark",

 "number sign",

 "vertical line"};

 num_var_char=sizeof(char_names)/sizeof(char *);

 if ((user_char=(char*)calloc(num_var_char, 1)) == NULL)

 {

 printf("Error: Unable to allocate the storage\n");

 exit(99);

 }

 read_user_data(user_char, num_var_char);

 /* managed to read the users’ characters from the file */

 code_set="default IBM-1047";

 compiler_char="\xe0\xbd\xad\xd0\xc0\x5f\xa1\x5a\x7b\x4f";

 /* standard compiler code page */

 printf("Compiler and library code page is : %s\n\n", code_set);

 printf(" Variant character values:\n");

 printf(" %16s expected by compiler your current\n", "");

 for (index=0; index<num_var_char; index++)

 printf(" %16s : %X %X\n",

 char_names[index], compiler_char[index], user_char[index]);

 exit(0);

}

Figure 90. Example of Displaying Hexadecimal Values (Part 1 of 2)

Appendix B. Mapping Variant Characters for C/VSE 423

Note: After executing this program you can use some of the procedures described

above to make sure that your special characters on the keyboard generate

the hexadecimal values expected by the LE/VSE C Run-Time.

Using ??=pragma filetag To Specify Code Page

Add the following ??=pragma filetag in the source and header file to specify the

code page that a C program uses:

??=ifdef __COMPILER_VER__

 ??=pragma filetag ("codepage")

??=endif

codepage is the codepage that the source code is written in.

Note: If you are running standard 3270 emulation in the U.S., your workstation

software most likely uses code page 37. You can then use this alternative by

specifying IBM-037 as codepage.

Displaying When Using XEDIT on VM

If you know that the hexadecimal values of the square brackets that you key in are

not those accepted by the C/VSE compiler as square brackets, then you can add

SET INPUT commands in your XEDIT profile to convert the hexadecimal values of

the keyed-in square brackets to ones that the compiler recognizes. This conversion

will then happen during your XEDIT session. If you know that the square brackets

that you key in are written correctly into the source file but are not displayed as

square brackets, you can add SET OUTPUT commands to display the keyed-in square

brackets correctly during the XEDIT session. The following are three samples of

XEDIT profile changes you can make to make sure that XEDIT writes out

hexadecimal values recognizable by the compiler for the square brackets, and

displays the [and] characters correctly during the XEDIT session.

void read_user_data(char* char_array, int num_var_char)

{

 FILE *stream;

 int num;

 if (stream = fopen ("myfile.dat", "rb"))

 if(!(num = fread(char_array, 1, num_var_char, stream)))

 {

 printf("Error: Unable to read from the file\n");

 exit(99);

 }

 else { ;}

 else

 {

 printf("Error: Unable to open the file\n");

 exit(99);

 }

 fclose(stream);

 return;

}

Figure 90. Example of Displaying Hexadecimal Values (Part 2 of 2)

424 LE/VSE: C Run-Time Programming Guide

Example One (For Keyboard with [and] Keys)

The following can be added to your XEDIT PROFILE if:

1. Your keyboard has [and] keys and it generates code page 37 characters

2. The [key generates X'BA'

3. The] key generates X'BB'

4. The C/VSE compiler recognizes X'AD' as the [(code page 1047)

5. The C/VSE compiler recognizes X'BD' as the] (code page 1047)

6. XEDIT displays X'BA' as the [

7. XEDIT displays X'BB' as the]

Note: You can use the program “Displaying Hexadecimal Values” on page 422 to

find out the hexadecimal values that the special keys on your keyboard

generate.
 /*---*/

 /* Display: read x’AD’ and x’BD’ in the source file and display */

 /* them as square brackets */

 /*---*/

 /* */

 /* XEDIT displays x’BA’ which is a left square bracket when it */

 /* encounters x’AD’ in the source file */

 Address XEDIT ’SET OUTPUT AD’ ’BA’x /* Left square bracket */

 /* */

 /* XEDIT displays x’BB’ which is a right square bracket when it */

 /* encounters x’BD’ in the source file */

 Address XEDIT ’SET OUTPUT BD’ ’BB’x /* Right square bracket*/

 /*---*/

 /* Write: gets x’BA’ and x’BB’ from keyboard and writes them in the */

 /* file as the hexadecimal values that the C */

 /* compiler recognizes as the left and right square */

 /* brackets */

 /*---*/

 /* */

 /* XEDIT writes out x’AD’ when it gets x’BA’ from the keyboard */

 Address XEDIT ’SET INPUT BA AD’ /* Left square bracket */

 Address XEDIT ’SET INPUT BB BD’ /* Right square bracket*/

 /* */

 /*---*/

 /* Turn off text and APL characters for this XEDIT session */

 /*---*/

 /* */

 Address XEDIT ’SET TEXT OFF’

 Address XEDIT ’SET APL OFF’

 /* */

 /*---*/

 /*Turn off text and APL characters at CP level for this logon session*/

 /*---*/

 /* */

 Address COMMAND ’CP TERMINAL TEXT OFF’

 Address COMMAND ’CP TERMINAL APL OFF’

Appendix B. Mapping Variant Characters for C/VSE 425

Example Two (For Keyboard with No [and] Keys)

The following can be added to your XEDIT PROFILE if:

1. Your keyboard has no [and] keys

2. You have not remapped @ and $

3 by using your host emulation software

3. You want the @ and $ keys to generate square brackets X’AD’ and X’BD’

during XEDIT

4. The C/VSE compiler recognizes X’AD’ as the [(code page 1047)

5. The C/VSE compiler recognizes X’BD’ as the] (code page 1047)

6. XEDIT displays X’BA’ as the [

7. XEDIT displays X’BB’ as the]
 /*---*/

 /* Display: read x’AD’ and x’BD’ in the source file and display */

 /* them as square brackets */

 /*---*/

 /* */

 /* XEDIT displays x’BA’ which is a left square bracket when it */

 /* encounters x’AD’ in the source file */

 Address XEDIT ’SET OUTPUT AD’ ’BA’x /* Left square bracket */

 /* */

 /* XEDIT displays x’BB’ which is a right square bracket when it */

 /* encounters x’BD’ in the source file */

 Address XEDIT ’SET OUTPUT BD’ ’BB’x /* Right square bracket*/

 /*---*/

 /* Write: gets x’AD’ and x’BD’ from keyboard and writes them in the */

 /* file as correct hexadecimal values that the C */

 /* compiler recognizes as the left and right square */

 /* brackets */

 /*---*/

 /* */

 /* XEDIT writes out x’AD’ when it gets x’7C’ from the keyboard */

 Address XEDIT ’SET INPUT 7C AD’ /* Left square bracket */

 /* XEDIT writes out x’BD’ when it gets x’5B’ from the keyboard */

 Address XEDIT ’SET INPUT 5B BD’ /* Right square bracket*/

 /* */

 /*---*/

 /* Turn off text and APL characters for this XEDIT session */

 /*---*/

 /* */

 Address XEDIT ’SET TEXT OFF’

 Address XEDIT ’SET APL OFF’

 /* */

 /*---*/

 /*Turn off text and APL characters at CP level for this logon session*/

 /*---*/

 /* */

 Address COMMAND ’CP TERMINAL TEXT OFF’

 Address COMMAND ’CP TERMINAL APL OFF’

3. These characters are not used in the C language.

426 LE/VSE: C Run-Time Programming Guide

Example Three (For Keyboard with No [and] Keys)

The following can be added to your XEDIT PROFILE if:

1. Your keyboard has no [and] keys

2. You have remapped @ and $, respectively, using your host emulation software

to generate X’AD’ and X’BD’ which are [and]

3. The C/VSE compiler recognizes X’AD’ as the [(code page 1047)

4. The C/VSE compiler recognizes X’BD’ as the] (code page 1047)

5. XEDIT displays X’BA’ as the [

6. XEDIT displays X’BB’ as the]
 /*---*/

 /* Display: read x’AD’ and x’BD’ in the source file */

 /* or gets them from the keyboard and displays */

 /* them as left and right square brackets */

 /*---*/

 /* */

 /* XEDIT displays x’BA’ which is a left square bracket when it */

 /* encounters x’AD’ in the source file */

 Address XEDIT ’SET OUTPUT AD’ ’BA’x /* Left square bracket */

 /* */

 /* XEDIT displays x’BB’ which is a right square bracket when it */

 /* encounters x’BD’ in the source file */

 Address XEDIT ’SET OUTPUT BD’ ’BB’x /* Right square bracket*/

 /* */

 /*---*/

 /* Set Input is not necessary */

 /*---*/

 /*---*/

 /* Turn off text and APL characters for this XEDIT session */

 /*---*/

 /* */

 Address XEDIT ’SET TEXT OFF’

 Address XEDIT ’SET APL OFF’

 /* */

 /*---*/

 /*Turn off text and APL characters at CP level for this logon session*/

 /*---*/

 /* */

 Address COMMAND ’CP TERMINAL TEXT OFF’

 Address COMMAND ’CP TERMINAL APL OFF’

Note: You can use QUERY INPUT and QUERY OUTPUT to find out the existing settings

for your XEDIT session. You can also create your own EXEC with SET INPUT

and SET OUTPUT to clear settings and/or reset them.

Appendix B. Mapping Variant Characters for C/VSE 427

428 LE/VSE: C Run-Time Programming Guide

Appendix C. LE/VSE C Run-Time Code Point Mappings

The tables below show the code point mappings for Latin-1/Open Systems coded

character set 1047 (Figure 91) and for the APL coded character set 293 (Figure 92 on

page 430).

Code Page 01047

Figure 91. Coded Character Set for Latin-1/Open Systems

© Copyright IBM Corp. 1995, 2005 429

Code Page 00293

Figure 92. Coded Character Set for APL

430 LE/VSE: C Run-Time Programming Guide

Appendix D. Locales Supplied with LE/VSE C Run-Time

The following table lists the compiled locales supported by default with LE/VSE C

Run-Time. All of these locale files are provided with the base feature of LE/VSE.

The table lists each setlocale() parameter and its corresponding language,

country, codeset, and actual phase name. The S370 C, POSIX C and SAA C locales

do not have locale modules associated with them. They are built-in locales that

cannot be modified, and are always present. Their names cannot be changed. These

locales are based on the coded character set IBM-1047. The new versions of the

POSIX C and SAA C locales can be provided, but to refer to them, you must specify

the full name of the requested locale, including the CodesetRegistry-
CodesetEncoding names. For example,

 "SAA.IBM-037"

refers to the SAA C locale built from the coded character set IBM-037.

Notes:

1. Prior to LE/VSE Version 1 Release 4 Modification Level 4 (V1R4.4), the default

currency for the European Economic Community was set to “local currency” in

the LC_MONETARY category of the base locale. If you wanted to set the Euro as

currency, you had to use setlocale() to set the @euro locales. However, from

LE/VSE V1R4.4 onwards the LC_MONETARY category in the base locale is now set

to use the Euro. If you set the base locale, you now have the Euro as your

default currency. If you wish to use your previous (local) currency, you must

issue setlocale() to set the @preeuro locales.

2. Locales using a euro-currency codeset (for example, IBM-114x) use the symbolic

name <euro-sign> instead of <currency>. Locales used when the @euro

modifier is specified have int_curr_symbol and currency_symbol in the

LC_MONETARY category set to euro-currency symbols.

 Table 52. Compiled Locales Supplied With LE/VSE C Run-Time

Local name as in

setlocale() argument Language

Country or

Region Codeset Phase name

Bg_BG.IBM-1025 Bulgarian Bulgaria IBM-1025 EDC$BGFE

Bg_BG.IBM-1154 Bulgarian Bulgaria IBM-1154 EDC$BGHT

Ca_ES.IBM-924 Catalan Spain IBM-924 EDC$CSEZ

Ca_ES.IBM-924@euro Catalan Spain IBM-924 EDC@CSEZ

Ca_ES.IBM-924@preeuro ¹ Catalan Spain IBM-924 EDC3CSEZ

Cs_CZ.IBM-870 Czech Czech Republic IBM-870 EDC$CZEQ

Cs_CZ.IBM-1153 Czech Czech Republic IBM-1153 EDC$CZMB

Da_DK.IBM-1142@euro Danish Denmark IBM-1142 EDC@DAHE

Da_DK.IBM-277 Danish Denmark IBM-277 EDC$DAEE

Da_DK.IBM-924 Danish Denmark IBM-924 EDC$DAEZ

Da_DK.IBM-924@euro Danish Denmark IBM-924 EDC@DAEZ

Da_DK.IBM-1047 Danish Denmark IBM-1047 EDC$DAEY

Da_DK.IBM-1142 Danish Denmark IBM-1142 EDC$DAHE

Da_DK.IBM-1142@euro Danish Denmark IBM-1142 EDC@DAHE

© Copyright IBM Corp. 1995, 2005 431

Table 52. Compiled Locales Supplied With LE/VSE C Run-Time (continued)

Local name as in

setlocale() argument Language

Country or

Region Codeset Phase name

De_AT.IBM-924 German Austria IBM-924 EDC$DTEZ

De_AT.IBM-924@euro German Austria IBM-924 EDC@DTEZ

De_AT.IBM-924@preeuro ¹ German Austria IBM-924 EDC3DTEZ

De_CH.IBM-500 German Switzerland IBM-500 EDC$DCEO

De_CH.IBM-1047 German Switzerland IBM-1047 EDC$DCEY

De_CH.IBM-1148 German Switzerland IBM-1148 EDC$DCHO

De_CH.IBM-1148@euro German Switzerland IBM-1148 EDC@DCHO

De_DE.IBM-273 ¹ German Germany IBM-273 EDC$DDEB

De_DE.IBM-924 German Germany IBM-924 EDC$DDEZ

De_DE.IBM-924@euro German Germany IBM-924 EDC@DDEZ

De_DE.IBM-924@preeuro ¹ German Germany IBM-924 EDC3DDEZ

De_DE.IBM-1047 ¹ German Germany IBM-1047 EDC$DDEY

De_DE.IBM-1141 German Germany IBM-1141 EDC$DDHB

De_DE.IBM-1141@euro German Germany IBM-1141 EDC@DDHB

De_DE.IBM-1141@preeuro ¹ German Germany IBM-1141 EDC3DDHB

De_LU.IBM-924 German Luxembourg IBM-924 EDC$DLEZ

De_LU.IBM-924@euro German Luxembourg IBM-924 EDC@DLEZ

De_LU.IBM-924@preeuro ¹ German Luxembourg IBM-924 EDC3DLEZ

El_GR.IBM-875 ¹ Greek Greece IBM-875 EDC$ELES

El_GR.IBM-4971 Greek Greece IBM-4971 EDC$ELHS

El_GR.IBM-4971@euro Greek Greece IBM-4971 EDC@ELHS

El_GR.IBM-4971@preeuro ¹ Greek Greece IBM-4971 EDC3ELHS

En_BE.IBM-924 English Belgium IBM-924 EDC$EBEZ

En_BE.IBM-924@euro English Belgium IBM-924 EDC@EBEZ

En_BE.IBM-924@preeuro ¹ English Belgium IBM-924 EDC3EBEZ

En_GB.IBM-285 English United

Kingdom

IBM-285 EDC$EKEK

En_GB.IBM-924 English United

Kingdom

IBM-924 EDC$EKEZ

En_GB.IBM-924@euro English United

Kingdom

IBM-924 EDC@EKEZ

En_GB.IBM-1047 English United

Kingdom

IBM-1047 EDC$EKEY

En_GB.IBM-1146 English United

Kingdom

IBM-1146 EDC$EKHK

En_GB.IBM-1146@euro English United

Kingdom

IBM-1146 EDC@EKHK

En_IE.IBM-924 English Ireland IBM-924 EDC$EIEZ

En_IE.IBM-924@euro English Ireland IBM-924 EDC@EIEZ

En_IE.IBM-924@preeuro ¹ English Ireland IBM-924 EDC3EIEZ

En_JP.IBM-1027 English Japan IBM-1027 EDC$EJEX

432 LE/VSE: C Run-Time Programming Guide

Table 52. Compiled Locales Supplied With LE/VSE C Run-Time (continued)

Local name as in

setlocale() argument Language

Country or

Region Codeset Phase name

En_JP.IBM-5123 English Japan IBM-5123 EDC$EJHX

En_US.IBM-037 English United States IBM-037 EDC$EUEA

En_US.IBM-1047 English United States IBM-1047 EDC$EUEY

En_US.IBM-1140 English United States IBM-1140 EDC$EUHA

En_US.IBM-1140@euro English United States IBM-1140 EDC@EUHA

Es_ES.IBM-284 ¹ Spanish Spain IBM-284 EDC$ESEJ

Es_ES.IBM-924 Spanish Spain IBM-924 EDC$ESEZ

Es_ES.IBM-924@euro Spanish Spain IBM-924 EDC@ESEZ

Es_ES.IBM-924@preeuro ¹ Spanish Spain IBM-924 EDC3ESEZ

Es_ES.IBM-1047 ¹ Spanish Spain IBM-1047 EDC$ESEY

Es_ES.IBM-1145 Spanish Spain IBM-1145 EDC$ESHJ

Es_ES.IBM-1145@euro Spanish Spain IBM-1145 EDC@ESHJ

Es_ES.IBM-1145@preeuro ¹ Spanish Spain IBM-1145 EDC3ESHJ

Et_EE.IBM-1122 Estonian Estonia IBM-1122 EDC$EEFD

Et_EE.IBM-1157 Estonian Estonia IBM-1157 EDC$EEHD

Fi_FI.IBM-278 ¹ Finnish Finland IBM-278 EDC$FIEF

Fi_FI.IBM-924 Finnish Finland IBM-924 EDC$FIEZ

Fi_FI.IBM-924@euro Finnish Finland IBM-924 EDC@FIEZ

Fi_FI.IBM-924@preeuro ¹ Finnish Finland IBM-924 EDC3FIEZ

Fi_FI.IBM-1047 ¹ Finnish Finland IBM-1047 EDC$FIEY

Fi_FI.IBM-1143 Finnish Finland IBM-1143 EDC$FIHF

Fi_FI.IBM-1143@euro Finnish Finland IBM-1143 EDC@FIHF

Fi_FI.IBM-1143@preeuro ¹ Finnish Finland IBM-1143 EDC3FIHF

Fr_BE.IBM-500 ¹ French Belgium IBM-500 EDC$FBEO

Fr_BE.IBM-924 French Belgium IBM-924 EDC$FBEZ

Fr_BE.IBM-924@euro French Belgium IBM-924 EDC@FBEZ

Fr_BE.IBM-924@preeuro ¹ French Belgium IBM-924 EDC3FBEZ

Fr_BE.IBM-1047 ¹ French Belgium IBM-1047 EDC$FBEY

Fr_BE.IBM-1148 French Belgium IBM-1148 EDC$FBHO

Fr_BE.IBM-1148@euro French Belgium IBM-1148 EDC@FBHO

Fr_BE.IBM-1148@preeuro ¹ French Belgium IBM-1148 EDC3FBHO

Fr_CA.IBM-037 French Canada IBM-037 EDC$FCEA

Fr_CA.IBM-1047 French Canada IBM-1047 EDC$FCEY

Fr_CA.IBM-1140 French Canada IBM-1140 EDC$FCHA

Fr_CA.IBM-1140@euro French Canada IBM-1140 EDC@FCHA

Fr_CH.IBM-500 French Switzerland IBM-500 EDC$FSEO

Fr_CH.IBM-1047 French Switzerland IBM-1047 EDC$FSEY

Fr_CH.IBM-1148 French Switzerland IBM-1148 EDC$FSHO

Fr_CH.IBM-1148@euro French Switzerland IBM-1148 EDC@FSHO

Appendix D. Locales Supplied with LE/VSE C Run-Time 433

Table 52. Compiled Locales Supplied With LE/VSE C Run-Time (continued)

Local name as in

setlocale() argument Language

Country or

Region Codeset Phase name

Fr_FR.IBM-297 ¹ French France IBM-297 EDC$FFEM

Fr_FR.IBM-924 French France IBM-924 EDC$FFEZ

Fr_FR.IBM-924@euro French France IBM-924 EDC@FFEZ

Fr_FR.IBM-924@preeuro ¹ French France IBM-924 EDC3FFEZ

Fr_FR.IBM-1047 ¹ French France IBM-1047 EDC$FFEY

Fr_FR.IBM-1147 French France IBM-1147 EDC$FFHM

Fr_FR.IBM-1147@euro French France IBM-1147 EDC@FFHM

Fr_FR.IBM-1147@preeuro ¹ French France IBM-1147 EDC3FFHM

Fr_LU.IBM-924 French Luxembourg IBM-924 EDC$FLEZ

Fr_LU.IBM-924@euro French Luxembourg IBM-924 EDC@FLEZ

Fr_LU.IBM-924@preeuro ¹ French Luxembourg IBM-924 EDC3FLEZ

Hr_HR.IBM-870 Croatian Croatia IBM-870 EDC$HREQ

Hr_HR.IBM-1153 Croatian Croatia IBM-1153 EDC$HRMB

Hu_HU.IBM-870 Hungarian Hungary IBM-870 EDC$HUEQ

Hu_HU.IBM-1153 Hungarian Hungary IBM-1153 EDC$HUMB

Is_IS.IBM-871 Iceland Iceland IBM-871 EDC$ISER

Is_IS.IBM-1047 Iceland Iceland IBM-1047 EDC$ISEY

Is_IS.IBM-1149 Icelandic Iceland IBM-1149 EDC$ISHR

Is_IS.IBM-1149@euro Icelandic Iceland IBM-1149 EDC@ISHR

It_IT.IBM-280 ¹ Italian Italy IBM-280 EDC$ITEG

It_IT.IBM-924 Italian Italy IBM-924 EDC$ITEZ

It_IT.IBM-924@euro Italian Italy IBM-924 EDC@ITEZ

It_IT.IBM-924@preeuro ¹ Italian Italy IBM-924 EDC3ITEZ

It_IT.IBM-1047 ¹ Italian Italy IBM-1047 EDC$ITEY

It_IT.IBM-1144 Italian Italy IBM-1144 EDC$ITHG

It_IT.IBM-1144@euro Italian Italy IBM-1144 EDC@ITHG

It_IT.IBM-1144@preeuro ¹ Italian Italy IBM-1144 EDC3ITHG

Iw_IL.IBM-424 Hebrew Israel IBM-424 EDC$ILFB

Iw_IL.IBM-12712 Hebrew Israel IBM-12712 EDC$ILHH

Ja_JP.IBM-290 Japanese Japan IBM-290 EDC$JAEL

Ja_JP.IBM-930 Japanese Japan IBM-930 EDC$JAEU

Ja_JP.IBM-939 Japanese Japan IBM-939 EDC$JAEV

Ja_JP.IBM-1027 Japanese Japan IBM-1027 EDC$JAEX

Ja_JP.IBM-5123 Japanese Japan IBM-5123 EDC$JAHX

Ja_JP.IBM-8482 Japanese Japan IBM-8482 EDC$JAHL

Ko_KR.IBM-933 Korean Korea IBM-933 EDC$KRGZ

Lt_LT.IBM-1112 Lithuanian Lithuania IBM-1112 EDC$LTGD

Lt_LT.IBM-1156 Lithuanian Lithuania IBM-1156 EDC$LTHZ

Mk_MK.IBM-1025 Macedonian Macedonia IBM-1025 EDC$MMFE

434 LE/VSE: C Run-Time Programming Guide

Table 52. Compiled Locales Supplied With LE/VSE C Run-Time (continued)

Local name as in

setlocale() argument Language

Country or

Region Codeset Phase name

Mk_MK.IBM-1154 Macedonian Macedonia IBM-1154 EDC$MMHT

Nl_BE.IBM-500 ¹ Dutch Belgium IBM-500 EDC$NBEO

Nl_BE.IBM-924 Dutch Belgium IBM-924 EDC$NBEZ

Nl_BE.IBM-924@euro Dutch Belgium IBM-924 EDC@NBEZ

Nl_BE.IBM-924@preeuro ¹ Dutch Belgium IBM-924 EDC3NBEZ

Nl_BE.IBM-1047 ¹ Dutch Belgium IBM-1047 EDC$NBEY

Nl_BE.IBM-1148 Dutch Belgium IBM-1148 EDC$NBHO

Nl_BE.IBM-1148@euro Dutch Belgium IBM-1148 EDC@NBHO

Nl_BE.IBM-1148@preeuro ¹ Dutch Belgium IBM-1148 EDC3NBHO

Nl_NL.IBM-037 ¹ Dutch Netherlands IBM-037 EDC$NNEA

Nl_NL.IBM-924 Dutch Netherlands IBM-924 EDC$NNEZ

Nl_NL.IBM-924@euro Dutch Netherlands IBM-924 EDC@NNEZ

Nl_NL.IBM-924@preeuro ¹ Dutch Netherlands IBM-924 EDC3NNEZ

Nl_NL.IBM-1047 ¹ Dutch Netherlands IBM-1047 EDC$NNEY

Nl_NL.IBM-1140 Dutch Netherlands IBM-1140 EDC$NNHA

Nl_NL.IBM-1140@euro Dutch Netherlands IBM-1140 EDC@NNHA

Nl_NL.IBM-1140@preeuro ¹ Dutch Netherlands IBM-1140 EDC3NNHA

No_NO.IBM-277 Norwegian Norway IBM-277 EDC$NOEE

No_NO.IBM-1047 Norwegian Norway IBM-1047 EDC$NOEY

No_NO.IBM-1142 Norwegian Norway IBM-1142 EDC$NOHE

No_NO.IBM-1142@euro Norwegian Norway IBM-1142 EDC@NOHE

Pl_PL.IBM-870 Polish Poland IBM-870 EDC$PLEQ

Pl_PL.IBM-1153 Polish Poland IBM-1153 EDC$PLMB

Pt_BR.IBM-037 Portugese Brazil IBM-037 EDC$BREA

Pt_BR.IBM-1047 Portugese Brazil IBM-1047 EDC$BREY

Pt_BR.IBM-1140 Portugese Brazil IBM-1140 EDC$BRHA

Pt_BR.IBM-1140@euro Portugese Brazil IBM-1140 EDC@BRHA

Pt_PT.IBM-037 ¹ Portugese Portugal IBM-037 EDC$PTEA

Pt_PT.IBM-924 Portugese Portugal IBM-924 EDC$PTEZ

Pt_PT.IBM-924@euro Portugese Portugal IBM-924 EDC@PTEZ

Pt_PT.IBM-924@preeuro ¹ Portugese Portugal IBM-924 EDC3PTEZ

Pt_PT.IBM-1047 ¹ Portugese Portugal IBM-1047 EDC$PTEY

Pt_PT.IBM-1140 Portugese Portugal IBM-1140 EDC$PTHA

Pt_PT.IBM-1140@euro Portugese Portugal IBM-1140 EDC@PTHA

Pt_PT.IBM-1140@preeuro ¹ Portugese Portugal IBM-1140 EDC3PTHA

Ro_RO.IBM-870 Romanian Romania IBM-870 EDC$ROEQ

Ro_RO.IBM-1153 Romanian Romania IBM-1153 EDC$ROMB

Ru_RU.IBM-1025 Russian Russia IBM-1025 EDC$RUFE

Ru_RU.IBM-1154 Russian Russia IBM-1154 EDC$RUHT

Appendix D. Locales Supplied with LE/VSE C Run-Time 435

Table 52. Compiled Locales Supplied With LE/VSE C Run-Time (continued)

Local name as in

setlocale() argument Language

Country or

Region Codeset Phase name

Sh_SP.IBM-870 Serbian

(Latin)

Serbia IBM-870 EDC$SLEQ

Sh_SP.IBM-1153 Serbian

(Latin)

Serbia IBM-1153 EDC$SLMB

Sr_SP.IBM-1154 Serbian

(Cyrillic)

Serbia IBM-1154 EDC$SCHT

Si_SI.IBM-870 Slovene Slovenia IBM-870 EDC$SIEQ

Si_SI.IBM-1153 Slovene Slovenia IBM-1153 EDC$SIMB

Sk_SK.IBM-870 Slovak Slovakia IBM-870 EDC$SKEQ

Sk_SK.IBM-1153 Slovak Slovakia IBM-1153 EDC$SKMB

Sq_AL.IBM-1047 Albanian Albania IBM-1047 EDC$SAEY

Sq_AL.IBM-1148 Albanian Albania IBM-1148 EDC$SAHO

Sq_AL.IBM-1148@euro Albanian Albania IBM-1148 EDC@SAHO

Sr_SP.IBM-1025 Serbian

(Cyrillic)

Serbia IBM-1025 EDC$SCFE

Sv_SE.IBM-278 Swedish Sweden IBM-278 EDC$SVEF

Sv_SE.IBM-924 Swedish Sweden IBM-924 EDC$SVEZ

Sv_SE.IBM-924@euro Swedish Sweden IBM-924 EDC@SVEZ

Sv_SE.IBM-1047 Swedish Sweden IBM-1047 EDC$SVEY

Sv_SE.IBM-1143 Swedish Sweden IBM-1143 EDC$SVHF

Sv_SE.IBM-1143@euro Swedish Sweden IBM-1143 EDC@SVHF

Th_TH.IBM-838 Thai Thailand IBM-838 EDC$THEP

Th_TH.IBM-1160 Thai Thailand IBM-1160 EDC$THHP

Tr_TR.IBM-1026 Turkish Turkey IBM-1026 EDC$TREW

Tr_TR.IBM-1155 Turkish Turkey IBM-1155 EDC$TRHW

Zh_CN.IBM-935 Simplified

Chinese

China IBM-935 EDC$ZCGY

Zh_TW.IBM-937 Traditional

Chinese

Taiwan IBM-937 EDC$ZTGW

Zh_TW.IBM-1371 Traditional

Chinese

Taiwan IBM-1371 EDC$ZTKA

Note:

1. This locale does NOT support the Euro currency. Only the “non euro” locales

for countries that adapted the Euro as their legal currency are flagged with this

note.

The locale source files are supplied to enable you to build locales in coded

character sets other than those supplied. The locale sources supplied are listed in

the following table. Under VSE, the source files are in the LE/VSE installation

sublibrary (default is PRD2.SCEEBASE).

The “Applicable Codesets” column indicates which charmap files can be used with

the source files to build the locales. The values in this column indicate the

following:

436 LE/VSE: C Run-Time Programming Guide

All The locale source contains only the portable character set and can be used

to build a locale with any of the supplied charmap files.

Latin-1

The locale source contains characters from the Latin-1 character set, and

can be used to build a locale from any of the supplied Latin-1 charmap

files. See Appendix E, “Charmap Files Supplied with LE/VSE C

Run-Time,” on page 443 for a list of Latin-1 charmap files.

Other The locale source is specific to the specified coded character set, and can

only be used to build a locale with the specified charmap file.

 Table 53. Locale Source Files Supplied With LE/VSE C Run-Time

Language Country or Region Source name Applicable Codesets

POSIX (built-in) EDC$POSX All

SAA (built-in) EDC$SAAC Latin-1

Bulgarian Bulgaria EDC$BGFE IBM-1025

Bulgarian Bulgaria EDC$BGHT IBM-1154

Portugese Brazil EDC$BREY Latin-1

Portugese Brazil EDC$BRHA IBM-1140

Portugese (Euro) Brazil EDC@BRHA IBM-1140

Catalan (Euro) Spain EDC$CSEZ IBM-924

Catalan (Euro) Spain EDC@CSEZ IBM-924

Catalan ¹ Spain EDC3CSEZ IBM-924

Czech Czech Republic EDC$CZEQ IBM-870

Czech Czech Republic EDC$CZMB IBM-1153

Danish Denmark EDC$DAEY Latin-1

Danish Denmark EDC$DAEZ IBM-924

Danish (Euro) Denmark EDC@DAEZ IBM-924

Danish Denmark EDC$DAHE IBM-1142

Danish (Euro) Denmark EDC@DAHE IBM-1142

German Switzerland EDC$DCEY Latin-1

German Switzerland EDC$DCHO IBM-1148

German (Euro) Switzerland EDC@DCHO IBM-1148

German ¹ Germany EDC$DDEY Latin-1

German (Euro) Germany EDC$DDEZ IBM-924

German (Euro) Germany EDC@DDEZ IBM-924

German ¹ Germany EDC3DDEZ IBM-924

German (Euro) Germany EDC$DDHB IBM-1141

German (Euro) Germany EDC@DDHB IBM-1141

German ¹ Germany EDC3DDHB IBM-1141

German (Euro) Luxembourg EDC$DLEZ IBM-924

German (Euro) Luxembourg EDC@DLEZ IBM-924

German ¹ Luxembourg EDC3DLEZ IBM-924

German (Euro) Austria EDC$DTEZ IBM-924

German (Euro) Austria EDC@DTEZ IBM-924

Appendix D. Locales Supplied with LE/VSE C Run-Time 437

Table 53. Locale Source Files Supplied With LE/VSE C Run-Time (continued)

Language Country or Region Source name Applicable Codesets

German ¹ Austria EDC3DTEZ IBM-924

English (Euro) Belgium EDC$EBEZ IBM-924

English (Euro) Belgium EDC@EBEZ IBM-924

English ¹ Belgium EDC3EBEZ IBM-924

Estonian Estonia EDC$EEFD IBM-1122

Estonian Estonia EDC$EEHD IBM-1157

English (Euro) Ireland EDC$EIEZ IBM-924

English (Euro) Ireland EDC@EIEZ IBM-924

English ¹ Ireland EDC3EIEZ IBM-924

English Japan EDC$EJEX IBM-1027

English Japan EDC$EJHX IBM-5123

English United Kingdom EDC$EKEY Latin-1

English United Kingdom EDC$EKEZ IBM-924

English (Euro) United Kingdom EDC@EKEZ IBM-924

English United Kingdom EDC$EKHK IBM-1146

English (Euro) United Kingdom EDC@EKHK IBM-1146

Greek ¹ Greece EDC$ELES IBM-875

Greek (Euro) Greece EDC$ELHS IBM-4971

Greek (Euro) Greece EDC@ELHS IBM-4971

Greek ¹ Greece EDC3ELHS IBM-4971

Spanish ¹ Spain EDC$ESEY Latin-1

Spanish (Euro) Spain EDC$ESEZ IBM-924

Spanish (Euro) Spain EDC@ESEZ IBM-924

Spanish ¹ Spain EDC3ESEZ IBM-924

Spanish (Euro) Spain EDC$ESHJ IBM-1145

Spanish (Euro) Spain EDC@ESHJ IBM-1145

Spanish ¹ Spain EDC3ESHJ IBM-1145

English United States EDC$EUEY Latin-1

English United States EDC$EUHA IBM-1140

English (Euro) United States EDC@EUHA IBM-1140

Finnish ¹ Finland EDC$FIEY Latin-1

Finnish (Euro) Finland EDC$FIEZ IBM-924

Finnish (Euro) Finland EDC@FIEZ IBM-924

Finnish ¹ Finland EDC3FIEZ IBM-924

Finnish (Euro) Finland EDC$FIHF IBM-1143

Finnish (Euro) Finland EDC@FIHF IBM-1143

Finnish ¹ Finland EDC3FIHF IBM-1143

French ¹ Belgium EDC$FBEY Latin-1

French (Euro) Belgium EDC$FBEZ IBM-924

French (Euro) Belgium EDC@FBEZ IBM-924

438 LE/VSE: C Run-Time Programming Guide

Table 53. Locale Source Files Supplied With LE/VSE C Run-Time (continued)

Language Country or Region Source name Applicable Codesets

French ¹ Belgium EDC3FBEZ IBM-924

French (Euro) Belgium EDC$FBHO IBM-1148

French (Euro) Belgium EDC@FBHO IBM-1148

French ¹ Belgium EDC3FBHO IBM-1148

French Canada EDC$FCEY Latin-1

French Canada EDC$FCHA IBM-1140

French (Euro) Canada EDC@FCHA IBM-1140

French ¹ France EDC$FFEY Latin-1

French (Euro) France EDC$FFEZ IBM-924

French (Euro) France EDC@FFEZ IBM-924

French ¹ France EDC3FFEZ IBM-924

French (Euro) France EDC$FFHM IBM-1147

French (Euro) France EDC@FFHM IBM-1147

French ¹ France EDC3FFHM IBM-1147

French (Euro) Luxembourg EDC$FLEZ IBM-924

French (Euro) Luxembourg EDC@FLEZ IBM-924

French ¹ Luxembourg EDC3FLEZ IBM-924

French Switzerland EDC$FSEY Latin-1

French Switzerland EDC$FSHO IBM-1148

French (Euro) Switzerland EDC@FSHO IBM-1148

Croatian Croatia EDC$HREQ IBM-870

Croatian Croatia EDC$HRMB IBM-1153

Hungarian Hungary EDC$HUEQ IBM-870

Hungarian Hungary EDC$HUMB IBM-1153

Hebrew Israel EDC$ILFB IBM-424

Hebrew Israel EDC$ILHH IBM12712

Icelandic Iceland EDC$ISEY Latin-1

Icelandic Iceland EDC$ISHR IBM-1149

Icelandic (Euro) Iceland EDC@ISHR IBM-1149

Italian ¹ Italy EDC$ITEY Latin-1

Italian (Euro) Italy EDC$ITEZ IBM-924

Italian (Euro) Italy EDC@ITEZ IBM-924

Italian ¹ Italy EDC3ITEZ IBM-924

Italian (Euro) Italy EDC$ITHG IBM-1144

Italian (Euro) Italy EDC@ITHG IBM-1144

Italian ¹ Italy EDC3ITHG IBM-1144

Japanese Japan EDC$JAEL IBM-290

Japanese Japan EDC$JAEU IBM-930

Japanese Japan EDC$JAEV IBM-939

Japanese Japan EDC$JAEX IBM-1027

Appendix D. Locales Supplied with LE/VSE C Run-Time 439

Table 53. Locale Source Files Supplied With LE/VSE C Run-Time (continued)

Language Country or Region Source name Applicable Codesets

Japanese Japan EDC$JAHL IBM-8482

Japanese Japan EDC$JAHX IBM-5123

Korean Korea EDC$KRGZ IBM-933

Lithuanian Lithuania EDC$LTGD IBM-1112

Lithuanian Lithuania EDC$LTHZ IBM-1156

Macedonian Macedonia EDC$MMFE IBM-1025

Macedonian Macedonia EDC$MMHT IBM-1154

Dutch ¹ Belgium EDC$NBEY Latin-1

Dutch (Euro) Belgium EDC$NBEZ IBM-924

Dutch (Euro) Belgium EDC@NBEZ IBM-924

Dutch ¹ Belgium EDC3NBEZ IBM-924

Dutch (Euro) Belgium EDC$NBHO IBM-1148

Dutch (Euro) Belgium EDC@NBHO IBM-1148

Dutch ¹ Belgium EDC3NBHO IBM-1148

Dutch ¹ Netherlands EDC$NNEY Latin-1

Dutch (Euro) Netherlands EDC$NNEZ IBM-924

Dutch (Euro) Netherlands EDC@NNEZ IBM-924

Dutch ¹ Netherlands EDC3NNEZ IBM-924

Dutch (Euro) Netherlands EDC$NNHA IBM-1140

Dutch (Euro) Netherlands EDC@NNHA IBM-1140

Dutch ¹ Netherlands EDC3NNHA IBM-1140

Norwegian Norway EDC$NOEY Latin-1

Norwegian Norway EDC$NOHE IBM-1142

Norwegian (Euro) Norway EDC@NOHE IBM-1142

Polish Poland EDC$PLEQ IBM-870

Polish Poland EDC$PLMB IBM-1153

Portuguese ¹ Portugal EDC$PTEY Latin-1

Portuguese (Euro) Portugal EDC$PTEZ IBM-924

Portuguese (Euro) Portugal EDC@PTEZ IBM-924

Portuguese ¹ Portugal EDC3PTEZ IBM-924

Portuguese (Euro) Portugal EDC$PTHA IBM-1140

Portuguese (Euro) Portugal EDC@PTHA IBM-1140

Portuguese ¹ Portugal EDC3PTHA IBM-1140

Romanian Romania EDC$ROEQ IBM-870

Romanian Romania EDC$ROMB IBM-1153

Russian Russia EDC$RUFE IBM-1025

Russian Russia EDC$RUHT IBM-1154

Albanian Albania EDC$SAEY Latin-1

Albanian Albania EDC$SAHO IBM-1148

Albanian (Euro) Albania EDC@SAHO IBM-1148

440 LE/VSE: C Run-Time Programming Guide

Table 53. Locale Source Files Supplied With LE/VSE C Run-Time (continued)

Language Country or Region Source name Applicable Codesets

Serbian (Cyrillic) Serbia EDC$SCFE IBM-1025

Serbian (Cyrillic) Serbia EDC$SCHT IBM-1154

Slovak Slovakia EDC$SKEQ IBM-870

Slovak Slovakia EDC$SKMB IBM-1153

Slovene Slovenia EDC$SIEQ IBM-870

Slovene Slovenia EDC$SIMB IBM-1153

Serbian (Latin) Serbia EDC$SLEQ IBM-870

Serbian (Latin) Serbia EDC$SLMB IBM-1153

Swedish Sweden EDC$SVEY Latin-1

Swedish Sweden EDC$SVEZ IBM-924

Swedish (Euro) Sweden EDC@SVEZ IBM-924

Swedish Sweden EDC$SVHF IBM-1143

Swedish (Euro) Sweden EDC@SVHF IBM-1143

Thai Thailand EDC$THEP IBM-838

Thai Thailand EDC$THHP IBM-1160

Turkish Turkey EDC$TREW IBM-1026

Turkish Turkey EDC$TRHW IBM-1155

Simplified Chinese China EDC$ZCGY IBM-935

Traditional Chinese Taiwan EDC$ZTGW IBM-937

Traditional Chinese Taiwan EDC$ZTKA IBM-1371

Note:

1. This locale does NOT support the Euro currency. Only the “non euro” locales

for countries that adapted the Euro as their legal currency are flagged with this

note.

Appendix D. Locales Supplied with LE/VSE C Run-Time 441

442 LE/VSE: C Run-Time Programming Guide

Appendix E. Charmap Files Supplied with LE/VSE C Run-Time

All the locales supplied were built using the appropriate charmap file that

represents the coded character sets described by the CodesetRegistry-
CodesetEncoding element of the locale name.

All of these charmap files are provided with the base feature of LE/VSE in the

LE/VSE installation sublibrary (default is PRD2.SCEEBASE). The - sign is

converted to the @ character.

The following table lists the coded character set name, which is the same as the

name of the corresponding charmap file, and the national language each code set

represents.

The column marked Latin-1 indicates whether the charmap file is for a coded

character set that contains the Latin-1 character set.

 Table 54. Coded Character Set Names and Corresponding National Languages

Codeset Country or Region Latin-1

IBM-037 USA, Canada, Brazil Yes

IBM-273 Germany, Austria Yes

IBM-274 Belgium Yes

IBM-275 Brazil Yes

IBM-277 Denmark, Norway Yes

IBM-278 Finland, Sweden Yes

IBM-280 Italy Yes

IBM-281 Japan (Latin-1) Yes

IBM-282 Portugal Yes

IBM-284 Spain, Latin America Yes

IBM-285 United Kingdom Yes

IBM-290 Japan (Katakana) No

IBM-297 France Yes

IBM-424 Israel No

IBM-500 International Yes

IBM-838 Thailand No

IBM-870 Croatia, Czech Republic, Hungary, Poland, Romania, Serbia

(Latin), Slovakia, Slovenia

No

IBM-871 Iceland Yes

IBM-875 Greece No

IBM-924 Latin 9/Open Systems No

IBM-930 Japan (Katakana, combined with DBCS) No

IBM-933 Korea No

IBM-935 China No

IBM-937 Taiwan No

© Copyright IBM Corp. 1995, 2005 443

Table 54. Coded Character Set Names and Corresponding National Languages (continued)

Codeset Country or Region Latin-1

IBM-939 Japan (Latin, combined with DBCS) No

IBM-1025 Bulgaria, Macedonia, Russia, Serbia (Cyrillic) No

IBM-1026 Turkey No

IBM-1027 Japan (Latin) extended No

IBM-1047 Latin-1/Open Systems Yes

IBM-1112 Lithuania No

IBM-1122 Estonia No

IBM-1124 Ukraine No

IBM-1140 USA, Canada, Brazil (Euro) Yes

IBM-1141 Germany, Austria (Euro) Yes

IBM-1142 Denmark, Norway (Euro) Yes

IBM-1143 Finland, Sweden (Euro) Yes

IBM-1144 Italy (Euro) Yes

IBM-1145 Spain, Latin America (Euro) Yes

IBM-1146 United Kingdom (Euro) Yes

IBM-1147 France (Euro) Yes

IBM-1148 International (Euro) Yes

IBM-1149 Iceland (Euro) Yes

IBM-1153 Croatia, Czech Republic, Hungary, Poland, Romania, Serbia

(Latin), Slovakia, Slovenia

No

IBM-1154 Bulgaria, Macedonia, Russia, Serbia, (Cyrillic) No

IBM-1155 Turkey No

IBM-1156 Lithuania No

IBM-1157 Estonia No

IBM-1160 Thailand No

IBM-1371 Taiwan No

IBM-4971 Greece No

IBM-5123 Japan No

IBM-8482 Japan No

IBM-12712 Israel No

Only the charmap files for IBM-930 and IBM-939 specify <mb_cur_max> as 4 and

include the definition of the double-byte characters. All other charmap files define

the single-byte character sets, and specify the <mb_cur_max> as 1.

Note: The SAA C locale is built with the charmap IBM-1047, but has <mb_cur_max>

set to 4 in order to maintain compatibility with old releases of C/370.

Any of these charmaps that represent the same character set, even though they

represent different encoding of the same character sets, can be used with the any

locale source that uses the same character set, to build a new locale and charmap

combination. See Chapter 30, “Building a Locale,” on page 321 for information

about building your own locales.

444 LE/VSE: C Run-Time Programming Guide

Appendix F. Examples of the Charmap and Locale Definition

Source Files

Following are examples of the charmap source and locale definition source files.

Charmap File

This example shows the charmap file for the encoded character set IBM-1047.

Charmap File

<code_set_name> "IBM-1047"

<mb_cur_max> 1

<mb_cur_min> 1

<escape_char> /

<comment_char> %

CHARMAP

<NUL> /x00

<SOH> /x01

<STX> /x02

<ETX> /x03

<SEL> /x04

<tab> /x05

<HT> /x05

<RNL> /x06

 /x07

<GE> /x08

<SPS> /x09

<RPT> /x0a

<vertical-tab> /x0b

<VT> /x0b

<form-feed> /x0c

<FF> /x0c

<carriage-return> /x0d

<CR> /x0d

<SO> /x0e

<SI> /x0f

<DLE> /x10

<DC1> /x11

<DC2> /x12

<DC3> /x13

<RES> /x14

<newline> /x15

<backspace> /x16

<BS> /x16

<POC> /x17

<CAN> /x18

 /x19

<UBS> /x1a

<CU1> /x1b

<IFS> /x1c % file separator

<IS4> /x1c

<FS> /x1c

<IGS> /x1d % group separator

<IS3> /x1d

<GS> /x1d

<IRS> /x1e % record separator

<IS2> /x1e

<RS> /x1e

<IUS> /x1f % unit separator

<IS1> /x1f

© Copyright IBM Corp. 1995, 2005 445

<US> /x1f

<ITB> /x1f

<DS> /x20

<SOS> /x21

<FS> /x22 % field separator

<WUS> /x23

<BYP> /x24

<LF> /x25

<ETB> /x26

<ESC> /x27

<SA> /x28

<SFE> /x29

<SM> /x2a

<CSP> /x2b

<MFA> /x2c

<ENQ> /x2d

<ACK> /x2e

<alert> /x2f

<BEL> /x2f

<SYN> /x32

<IR> /x33

<PP> /x34

<TRN> /x35

<NBS> /x36

<EOT> /x37

<SBS> /x38

<IT> /x39

<RFF> /x3a

<CU3> /x3b

<DC4> /x3c

<NAK> /x3d

<SUB> /x3f

<space> /x40

<SP01> /x40

<RSP> /x41

<SP30> /x41

<a-circumflex> /x42

<LA15> /x42

<a-diaeresis> /x43

<LA17> /x43

<a-grave> /x44

<LA13> /x44

<a-acute> /x45

<LA11> /x45

<a-tilde> /x46

<LA19> /x46

<a-ring> /x47

<LA27> /x47

<c-cedilla> /x48

<LC41> /x48

<n-tilde> /x49

<LN19> /x49

<cent> /x4a

<SC04> /x4a

<period> /x4b

<SP11> /x4b

<less-than-sign> /x4c

<SA03> /x4c

<left-parenthesis> /x4d

<SP06> /x4d

<plus-sign> /x4e

<SA01> /x4e

<vertical-line> /x4f

<SM13> /x4f

<ampersand> /x50

<SM03> /x50

<e-acute> /x51

446 LE/VSE: C Run-Time Programming Guide

<LE11> /x51

<e-circumflex> /x52

<LE15> /x52

<e-diaeresis> /x53

<LE17> /x53

<e-grave> /x54

<LE13> /x54

<i-acute> /x55

<LI11> /x55

<i-circumflex> /x56

<LI15> /x56

<i-diaeresis> /x57

<LI17> /x57

<i-grave> /x58

<LI13> /x58

<s-sharp> /x59

<LS61> /x59

<exclamation-mark> /x5a

<SP02> /x5a

<dollar-sign> /x5b

<SC03> /x5b

<asterisk> /x5c

<SM04> /x5c

<right-parenthesis> /x5d

<SP07> /x5d

<semicolon> /x5e

<SP14> /x5e

<circumflex> /x5f

<circumflex-accent> /x5f

<SD15> /x5f

<hyphen> /x60

<hyphen-minus> /x60

<SP10> /x60

<slash> /x61

<SP12> /x61

<A-circumflex> /x62

<LA16> /x62

<A-diaeresis> /x63

<LA18> /x63

<A-grave> /x64

<LA14> /x64

<A-acute> /x65

<LA12> /x65

<A-tilde> /x66

<LA20> /x66

<A-ring> /x67

<LA28> /x67

<C-cedilla> /x68

<LC42> /x68

<N-tilde> /x69

<LN20> /x69

<broken-bar> /x6a

<SM65> /x6a

<comma> /x6b

<SP08> /x6b

<percent-sign> /x6c

<SM02> /x6c

<underscore> /x6d

<SP09> /x6d

<greater-than-sign> /x6e

<SA05> /x6e

<question-mark> /x6f

<SP15> /x6f

<o-slash> /x70

<LO61> /x70

<E-acute> /x71

<LE12> /x71

Appendix F. Examples of the Charmap and Locale Definition Source Files 447

<E-circumflex> /x72

<LE16> /x72

<E-diaeresis> /x73

<LE18> /x73

<E-grave> /x74

<LE14> /x74

<I-acute> /x75

<LI12> /x75

<I-circumflex> /x76

<LI16> /x76

<I-diaeresis> /x77

<LI18> /x77

<I-grave> /x78

<LI14> /x78

<grave-accent> /x79

<SD13> /x79

<colon> /x7a

<SP13> /x7a

<number-sign> /x7b

<SM01> /x7b

<commercial-at> /x7c

<SM05> /x7c

<apostrophe> /x7d

<SP05> /x7d

<equals-sign> /x7e

<SA04> /x7e

<quotation-mark> /x7f

<SP04> /x7f

<O-slash> /x80

<LO62> /x80

<a> /x81

<LA01> /x81

 /x82

<LB01> /x82

<c> /x83

<LC01> /x83

<d> /x84

<LD01> /x84

<e> /x85

<LE01> /x85

<f> /x86

<LF01> /x86

<g> /x87

<LG01> /x87

<h> /x88

<LH01> /x88

<i> /x89

<LI01> /x89

<left-angle-quotes> /x8a

<guillemot-left> /x8a

<SP17> /x8a

<right-angle-quotes> /x8b

<guillemot-right> /x8b

<SP18> /x8b

<eth> /x8c

<LD63> /x8c

<y-acute> /x8d

<LY11> /x8d

<thorn> /x8e

<LT63> /x8e

<plus-minus> /x8f

<SA02> /x8f

<degree> /x90

<SM19> /x90

<j> /x91

<LJ01> /x91

<k> /x92

448 LE/VSE: C Run-Time Programming Guide

<LK01> /x92

<l> /x93

<LL01> /x93

<m> /x94

<LM01> /x94

<n> /x95

<LN01> /x95

<o> /x96

<LO01> /x96

<p> /x97

<LP01> /x97

<q> /x98

<LQ01> /x98

<r> /x99

<LR01> /x99

<feminine> /x9a

<SM21> /x9a

<masculine> /x9b

<SM20> /x9b

<ae> /x9c

<LA51> /x9c

<cedilla> /x9d

<SD41> /x9d

<AE> /x9e

<LA52> /x9e

<currency> /x9f

<SC01> /x9f

<mu> /xa0

<SM17> /xa0

<tilde> /xa1

<SD19> /xa1

<s> /xa2

<LS01> /xa2

<t> /xa3

<LT01> /xa3

<u> /xa4

<LU01> /xa4

<v> /xa5

<LV01> /xa5

<w> /xa6

<LW01> /xa6

<x> /xa7

<LX01> /xa7

<y> /xa8

<LY01> /xa8

<z> /xa9

<LZ01> /xa9

<exclamation-down> /xaa

<SP03> /xaa

<question-down> /xab

<SP16> /xab

<Eth> /xac

<LD62> /xac

<left-square-bracket> /xad

<SM06> /xad

<Thorn> /xae

<LT64> /xae

<registered> /xaf

<SM53> /xaf

<not> /xb0

<SM66> /xb0

<sterling> /xb1

<SC02> /xb1

<yen> /xb2

<SC05> /xb2

<dot> /xb3

<SD63> /xb3

Appendix F. Examples of the Charmap and Locale Definition Source Files 449

<copyright> /xb4

<SM52> /xb4

<section> /xb5

<SM24> /xb5

<paragraph> /xb6

<SM25> /xb6

<one-quarter> /xb7

<NF04> /xb7

<one-half> /xb8

<NF01> /xb8

<three-quarters> /xb9

<NF05> /xb9

<Y-acute> /xba

<LY12> /xba

<diaeresis> /xbb

<SD17> /xbb

<macron> /xbc

<SM15> /xbc

<right-square-bracket> /xbd

<SM08> /xbd

<acute> /xbe

<SD11> /xbe

<multiply> /xbf

<SA07> /xbf

<left-brace> /xc0

<left-curly-bracket> /xc0

<SM11> /xc0

<A> /xc1

<LA02> /xc1

 /xc2

<LB02> /xc2

<C> /xc3

<LC02> /xc3

<D> /xc4

<LD02> /xc4

<E> /xc5

<LE02> /xc5

<F> /xc6

<LF02> /xc6

<G> /xc7

<LG02> /xc7

<H> /xc8

<LH02> /xc8

<I> /xc9

<LI02> /xc9

<syllable-hyphen> /xca

<SP32> /xca

<o-circumflex> /xcb

<LO15> /xcb

<o-diaeresis> /xcc

<LO17> /xcc

<o-grave> /xcd

<LO13> /xcd

<o-acute> /xce

<LO11> /xce

<o-tilde> /xcf

<LO19> /xcf

<right-brace> /xd0

<right-curly-bracket> /xd0

<SM14> /xd0

<J> /xd1

<LJ02> /xd1

<K> /xd2

<LK02> /xd2

<L> /xd3

<LL02> /xd3

<M> /xd4

450 LE/VSE: C Run-Time Programming Guide

<LM02> /xd4

<N> /xd5

<LN02> /xd5

<O> /xd6

<LO02> /xd6

<P> /xd7

<LP02> /xd7

<Q> /xd8

<LQ02> /xd8

<R> /xd9

<LR02> /xd9

<one-superior> /xda

<ND011> /xda

<u-circumflex> /xdb

<LU15> /xdb

<u-diaeresis> /xdc

<LU17> /xdc

<u-grave> /xdd

<LU13> /xdd

<u-acute> /xde

<LU11> /xde

<y-diaeresis> /xdf

<LY17> /xdf

<backslash> /xe0

<reverse-solidus> /xe0

<SM07> /xe0

<divide> /xe1

<division> /xe1

<SA06> /xe1

<S> /xe2

<LS02> /xe2

<T> /xe3

<LT02> /xe3

<U> /xe4

<LU02> /xe4

<V> /xe5

<LV02> /xe5

<W> /xe6

<LW02> /xe6

<X> /xe7

<LX02> /xe7

<Y> /xe8

<LY02> /xe8

<Z> /xe9

<LZ02> /xe9

<two-superior> /xea

<ND021> /xea

<O-circumflex> /xeb

<LO16> /xeb

<O-diaeresis> /xec

<LO18> /xec

<O-grave> /xed

<LO14> /xed

<O-acute> /xee

<LO12> /xee

<O-tilde> /xef

<LO20> /xef

<zero> /xf0

<ND10> /xf0

<one> /xf1

<ND01> /xf1

<two> /xf2

<ND02> /xf2

<three> /xf3

<ND03> /xf3

<four> /xf4

<ND04> /xf4

Appendix F. Examples of the Charmap and Locale Definition Source Files 451

<five> /xf5

<ND05> /xf5

<six> /xf6

<ND06> /xf6

<seven> /xf7

<ND07> /xf7

<eight> /xf8

<ND08> /xf8

<nine> /xf9

<ND09> /xf9

<three-superior> /xfa

<ND031> /xfa

<U-circumflex> /xfb

<LU16> /xfb

<U-diaeresis> /xfc

<LU18> /xfc

<U-grave> /xfd

<LU14> /xfd

<U-acute> /xfe

<LU12> /xfe

<eo> /xff

END CHARMAP

CHARSETID

<NUL>...<SUB> 0

<space>...<U-acute> 1

END CHARSETID

The Locale Definition Source File

This example shows the typical locale definition file representing the cultural and

language conventions in the United States of America. For this example

(LC_COLLATE), please note the following:

v The digits (0...9) sort before the letters.

v Upper case and lowercase letters have the same primary sorting weight.

v For each letter, the uppercase letter sorts before the equivalent lowercase letter.

Locale Definition File

escape_char /

comment-char %

%%%%%%%%%%%%%

LC_CTYPE

%%%%%%%%%%%%%

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/

 <N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/

 <n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

space <tab>;<newline>;<vertical-tab>;<form-feed>;/

 <carriage-return>;<space>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/

 <form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;/

 <ETX>;<SEL>;<RNL>;;<GE>;<SPS>;<RPT>;<SI>;<SO>;<DLE>;<DC1>;/

 <DC2>;<DC3>;<RES>;<POC>;<CAN>;;<UBS>;<CU1>;<IFS>;/

 <IGS>;<IRS>;<ITB>;<DS>;<SOS>;<fs>;<WUS>;<BYP>;<LF>;/

 <ETB>;<ESC>;<SA>;<SM>;<CSP>;<MFA>;<ENQ>;<ACK>;/

 <SYN>;<IR>;<PP>;<TRN>;<NBS>;<EOT>;<SBS>;<IT>;<RFF>;/

 <CU3>;<DC4>;<NAK>;<SUB>

452 LE/VSE: C Run-Time Programming Guide

punct <exclamation-mark>;<quotation-mark>;<number-sign>;<dollar-sign>;/

 <percent-sign>;<ampersand>;<apostrophe>;<left-parenthesis>;/

 <right-parenthesis>;<asterisk>;<plus-sign>;<comma>;/

 <hyphen-minus>;<period>;<slash>;<colon>;<semicolon>;/

 <less-than-sign>;<equals-sign>;<greater-than-sign>;/

 <question-mark>;<commercial-at>;<left-square-bracket>;/

 <backslash>;<right-square-bracket>;<circumflex>;/

 <underscore>;<grave-accent>;<left-curly-bracket>;/

 <vertical-line>;<right-curly-bracket>;<tilde>

digit <zero>;<one>;<two>;<three>;<four>;/

 <five>;<six>;<seven>;<eight>;<nine>

xdigit <zero>;<one>;<two>;<three>;<four>;/

 <five>;<six>;<seven>;<eight>;<nine>;/

 <A>;;<C>;<D>;<E>;<F>;/

 <a>;;<c>;<d>;<e>;<f>

blank <space>;<tab>

END LC_CTYPE

%%%%%%%%%%%%%

LC_COLLATE

%%%%%%%%%%%%%

order_start forward;forward

<NUL>

...

<SUB>

<space>

<exclamation-mark>

<quotation-mark>

<number-sign>

<dollar-sign>

<percent-sign>

<ampersand>

<apostrophe>

<left-parenthesis>

<right-parenthesis>

<asterisk>

<plus-sign>

<comma>

<hyphen-minus>

<period>

<slash>

<zero>

...

<nine>

<colon>

<semicolon>

<less-than-sign>

<equals-sign>

<greater-than-sign>

<question-mark>

<commercial-at>

<A> <A>;<A>

 ;

<C> <C>;<C>

<D> <D>;<D>

<E> <E>;<E>

<F> <F>;<F>

<G> <G>;<G>

<H> <H>;<H>

<I> <I>;<I>

<J> <J>;<J>

Appendix F. Examples of the Charmap and Locale Definition Source Files 453

<K> <K>;<K>

<L> <L>;<L>

<M> <M>;<M>

<N> <N>;<N>

<O> <O>;<O>

<P> <P>;<P>

<Q> <Q>;<Q>

<R> <R>;<R>

<S> <S>;<S>

<T> <T>;<T>

<U> <U>;<U>

<V> <V>;<V>

<W> <W>;<W>

<X> <X>;<X>

<Y> <Y>;<Y>

<Z> <Z>;<Z>

<left-square-bracket>

<backslash>

<right-square-bracket>

<circumflex>

<underscore>

<grave-accent>

<a> <A>;<a>

 ;

<c> <C>;<c>

<d> <D>;<d>

<e> <E>;<e>

<f> <F>;<f>

<g> <G>;<g>

<h> <H>;<h>

<i> <I>;<i>

<j> <J>;<j>

<k> <K>;<k>

<l> <L>;<l>

<m> <M>;<m>

<n> <N>;<n>

<o> <O>;<o>

<p> <P>;<p>

<q> <Q>;<q>

<r> <R>;<r>

<s> <S>;<s>

<t> <T>;<t>

<u> <U>;<u>

<v> <V>;<v>

<w> <W>;<w>

<x> <X>;<x>

<y> <Y>;<y>

<z> <Z>;<z>

UNDEFINED

order_end

END LC_COLLATE

%%%%%%%%%%%%%

LC_MONETARY

%%%%%%%%%%%%%

int_curr_symbol "<U><S><D><space>"

currency_symbol "<dollar-sign>"

mon_decimal_point "<period>"

mon_thousands_sep "<comma>"

mon_grouping "3;0"

positive_sign ""

negative_sign "<hyphen-minus>"

int_frac_digits 2

frac_digits 2

p_cs_precedes 1

454 LE/VSE: C Run-Time Programming Guide

p_sep_by_space 0

n_cs_precedes 1

n_sep_by_space 0

p_sign_posn 2

n_sign_posn 2

debit_sign "<D>"

credit_sign "<C><R>"

left_parenthesis "<left-parenthesis>"

right_parenthesis "<right-parenthesis>"

END LC_MONETARY

%%%%%%%%%%%%%

LC_NUMERIC

%%%%%%%%%%%%%

decimal_point "<period>"

thousands_sep "<comma>"

grouping "3;0"

END LC_NUMERIC

%%%%%%%%%%%%%

LC_TIME

%%%%%%%%%%%%%

abday "<S><u><n>";/

 "<M><o><n>";/

 "<T><u><e>";/

 "<W><e><d>";/

 "<T><h><u>";/

 "<F><r><i>";/

 "<S><a><t>"

day "<S><u><n><d><a><y>";/

 "<M><o><n><d><a><y>";/

 "<T><u><e><s><d><a><y>";/

 "<W><e><d><n><e><s><d><a><y>";/

 "<T><h><u><r><s><d><a><y>";/

 "<F><r><i><d><a><y>";/

 "<S><a><t><u><r><d><a><y>"

abmon "<J><a><n>";/

 "<F><e>";/

 "<M><a><r>";/

 "<A><p><r>";/

 "<M><a><y>";/

 "<J><u><n>";/

 "<J><u><l>";/

 "<A><u><g>";/

 "<S><e><p>";/

 "<O><c><t>";/

 "<N><o><v>";/

 "<D><e><c>"

mon "<J><a><n><u><a><r><y>";/

 "<F><e><r><u><a><r><y>";/

 "<M><a><r><c><h>";/

 "<A><p><r><i><l>";/

 "<M><a><y>";/

 "<J><u><n><e>";/

 "<J><u><l><y>";/

 "<A><u><g><u><s><t>";/

 "<S><e><p><t><e><m><e><r>";/

 "<O><c><t><o><e><r>";/

 "<N><o><v><e><m><e><r>";/

 "<D><e><c><e><m><e><r>"

Appendix F. Examples of the Charmap and Locale Definition Source Files 455

d_t_fmt "%a %b %e %H:%M:%S %Z %Y"

d_fmt "%m//%d//%y"

t_fmt "%H:%M:%S"

am_pm "<A><M>";"<P><M>"

END LC_TIME

%%%%%%%%%%%%%

LC_MESSAGES

%%%%%%%%%%%%%

yesexpr "<circumflex><left-parenthesis><left-square-bracket><y><Y>/

<right-square-bracket><left-square-bracket><e><E><right-square-bracket>/

<left-square-bracket><s><S><right-square-bracket><vertical-line>/

<left-square-bracket><y><Y><right-square-bracket><right-parenthesis>"

noexpr "<circumflex><left-parenthesis><left-square-bracket><n><N>/

<right-square-bracket><left-square-bracket><o><O><right-square-bracket>/

<vertical-line><left-square-bracket><n><N><right-square-bracket>/

<right-parenthesis>"

END LC_MESSAGES

%%%%%%%%%%%%%

LC_SYNTAX

%%%%%%%%%%%%%

backslash "<backslash>"

right_brace "<right-brace>"

left_brace "<left-brace>"

right_bracket "<right-square-bracket>"

left_bracket "<left-square-bracket>"

circumflex "<circumflex>"

tilde "<tilde>"

exclamation_mark "<exclamation-mark>"

number_sign "<number-sign>"

vertical_line "<vertical-line>"

dollar_sign "<dollar-sign>"

commercial_at "<commercial-at>"

grave_accent "<grave-accent>"

END LC_SYNTAX

%%%%%%%%%%%%%

LC_TOD

%%%%%%%%%%%%%

timezone_difference +480

timezone_name "<P><S><T>"

daylight_name "<P><D><T>"

start_month 0

end_month 0

start_week 0

end_week 0

start_day 0

end_day 0

start_time 0

end_time 0

shift 3600

END LC_TOD

456 LE/VSE: C Run-Time Programming Guide

Appendix G. Converting Code from Coded Character Set

IBM-1047

The following program shows you how to convert hybrid code to a specified code

page. Hybrid code is code in which the data is in the local coded character set but

the syntax is written as if the code were in IBM-1047.

EDCXGHC1

 /*

 * EDCXGHC1: Sample code to convert all C syntax from code page 1047

 * to the coded character set the user specifies.

 * Comments, string literals and character constants are

 * left alone. The escape character in an escape sequence

 * is changed, since it is variant.

 *

 * Usage: EDCXGHC1 <coded character set>

 * The input file is read from stdin and the output is

 * written to stdout.

 *

 * Example: If you want to convert all C syntax, written in coded

 * character set 1047, in a file (test1047.c) to coded

 * character set 500, you can use EDCXGHC1 by invoking it

 * with the following EXEC PARM:

 *

 * PARM=’<’test1047.c’’ >’’test1047.gen’’ IBM-500’

 *

 * The result will be stored in the "test1047.gen" file.

 */

#include <stdio.h>

#include <stdlib.h>

#include <iconv.h>

#include <errno.h>

enum boolean { false=0, False=0, FALSE=0, true=1, True=1, TRUE=1 };

 /*

 * CharState - state that the FSM is in. Initial State is CodeState

 */

enum CharState { CodeState, SQuoteState, DQuoteState, CommentState,

 DBCSState, EscState, EOFState };

 /*

 * CharVal - characters that can change the state of the FSM

 */

enum CharVal { SlashChar=’/’, SQuoteChar=’\’, DQuoteChar=’"’,

 StarChar=’*’, SOChar=’\x0E’, SIChar=’\x0F’,

 BSlashChar=’\\’, EOFChar= -1 };

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 1 of 10)

© Copyright IBM Corp. 1995, 2005 457

/*

 * XlateTable - type of translation table

 */

typedef iconv_t XlateTable;

static char *Initialize(int argc, char *argv[]);

static int Convert(char *codeset);

static int InitConv(char **inBuff, char **outBuff, int *maxRecSize,

 char *codeSet, XlateTable *xlateTable);

static void ConvBuff(int start, int end,

 char *buff, XlateTable xlateTable);

static enum CharVal LookAhead(char *inBuff, char *outBuff,

 int *recSize, int *curPos,

 int maxRecSize, int *codeStartPos,

 enum CharState state,

 XlateTable xlateTable);

static enum CharVal GetNextChar(char *inBuff, char *outBuff,

 int *recSize, int maxRecSize,

 int *curPos, int *codeStartPos,

 enum CharState state,

 XlateTable xlateTable);

static int UpdateAndRead(char *inBuff, char *outBuff,

 int *recSize, int maxRecSize,

 int codeStartPos, enum CharState state,

 XlateTable xlateTable);

static int ReadAndCopy(char *inBuff,char *outBuff, int maxRecSize);

#pragma inline(LAST_POS)

#pragma inline(NEXT_TO_LAST_POS)

#pragma inline(LookAhead)

#pragma inline(GetNextChar)

#pragma inline(ConvBuff)

 /*

 * Initialize the environment, and if everything is ok, convert input

 */

main(int argc, char *argv[]) {

 char *codeset = Initialize(argc, argv);

 if (codeset == NULL) {

 return(8);

 }

 return(Convert(codeset));

}

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 2 of 10)

458 LE/VSE: C Run-Time Programming Guide

/*

 * Check that 1 parameter was specified - the coded character set to

 * convert the the syntax to.

 * Re-open stdin and stdout as binary files for record IO.

 * Return the code set if everything is ok, NULL otherwise

 */

static char *Initialize(int argc, char *argv[]) {

 if (argc != 2) {

 fprintf(stderr, "Expected %d argument but got %d\n",

 1, argc-1);

 return(NULL);

 }

 stdin = freopen("", "rb,type=record", stdin);

 stdout= freopen("", "wb,type=record", stdout);

 if (stdin == NULL || stdout == NULL) {

 fprintf(stderr, "Could not re-open standard streams\n");

 return(NULL);

 }

 return(argv[1]);

}

 /*

 * Return the last position in a record

 */

static int LAST_POS(int recSize) {

 return(recSize-1);

}

 /*

 * Return the next to last position in a record

 */

static int NEXT_TO_LAST_POS(int recSize) {

 return(recSize-2);

}

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 3 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 459

/*

 * Convert the stdin file using codeset and write to stdout.

 * Set up the translation table.

 * Read the first record and copy it into the output buffer.

 * Go through the FSM, starting in the Code State and leaving

 * when EOFState is reached (End Of File).

 * Close the translation table.

 */

static int Convert(char *codeset) {

 enum CharVal c;

 int recSize;

 enum CharState prvState;

 int rc;

 int codeStartPos = 0;

 int curPos = 0;

 enum boolean high = FALSE;

 enum CharState state = CodeState;

 char * inBuff;

 char * outBuff;

 int maxRecSize;

 XlateTable xlateTable;

 rc = InitConv(&inBuff, &outBuff, &maxRecSize, codeset, &xlateTable);

 if (rc) {

 if (inBuff) free(inBuff);

 if (outBuff) free(outBuff);

 return(rc);

 }

 recSize = ReadAndCopy(inBuff, outBuff, maxRecSize);

 while (state != EOFState) {

 c = GetNextChar(inBuff, outBuff, &recSize, maxRecSize,

 &curPos, &codeStartPos, state, xlateTable);

 if (c == EOFChar) {

 state = EOFState;

 }

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 4 of 10)

460 LE/VSE: C Run-Time Programming Guide

switch(state) {

 case CodeState:

 switch (c) {

 case BSlashChar:

 curPos = LAST_POS(recSize);

 break;

 case SlashChar:

 if (LookAhead(inBuff, outBuff, &recSize,

 &curPos, maxRecSize, &codeStartPos,

 state, xlateTable)

 == StarChar) {

 state = CommentState;

 }

 break;

 case SQuoteChar:

 state = SQuoteState;

 break;

 case DQuoteChar:

 state = DQuoteState;

 break;

 }

 if (state != CodeState || curPos == NEXT_TO_LAST_POS(recSize)) {

 if (curPos == NEXT_TO_LAST_POS(recSize)) {

 ++curPos;

 }

 else {

 ConvBuff(codeStartPos, curPos, outBuff, xlateTable);

 }

 }

 break;

 case CommentState:

 switch(c) {

 case BSlashChar:

 curPos = LAST_POS(recSize);

 break;

 case StarChar:

 if (LookAhead(inBuff, outBuff, &recSize,

 &curPos, maxRecSize, &codeStartPos,

 state, xlateTable)

 == SlashChar) {

 state = CodeState;

 codeStartPos = curPos;

 }

 break;

 }

 break;

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 5 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 461

case DQuoteState:

 switch(c) {

 case DQuoteChar:

 state = CodeState;

 codeStartPos = curPos;

 break;

 case SOChar:

 prvState = state;

 state = DBCSState;

 break;

 case BSlashChar:

 ConvBuff(curPos, curPos, outBuff, xlateTable);

 if (curPos != LAST_POS(recSize)) {

 prvState = state;

 state = EscState;

 }

 break;

 }

 break;

 case SQuoteState:

 switch(c) {

 case SQuoteChar:

 state = CodeState;

 codeStartPos = curPos;

 break;

 case SOChar:

 prvState = state;

 state = DBCSState;

 break;

 case BSlashChar:

 ConvBuff(curPos, curPos, outBuff, xlateTable);

 if (curPos != LAST_POS(recSize)) {

 prvState = state;

 state = EscState;

 }

 break;

 }

 break;

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 6 of 10)

462 LE/VSE: C Run-Time Programming Guide

case DBCSState:

 high ¬= 1; /* TRUE -> FALSE or FALSE -> TRUE */

 if (high && (c == SIChar)) {

 state = prvState;

 high = FALSE;

 }

 break;

 case EscState:

 state = prvState; /* really, this is ok */

 break;

 case EOFState:

 break;

 default:

 fprintf(stderr, "Internal error - ended up in state %d\n",

 state);

 return(16);

 } /* end of switch statement */

 ++curPos;

 }

 rc = TermConv(inBuff, outBuff, xlateTable);

 return(0);

}

/*

 * Initialize the translation table and allocate the input and

 * output buffers to use.

 * Return 0 if successful.

 */

static int InitConv(char **inBuff, char **outBuff, int *maxRecSize,

 char *codeset, XlateTable* xlateTable) {

 static char fileNameBuff[FILENAME_MAX+1];

 fldata_t info;

 int rc;

 *outBuff = *inBuff = NULL;

 rc = fldata(stdin, fileNameBuff, &info);

 if (rc) {

 return(rc);

 }

 *maxRecSize = info.__maxreclen;

 *inBuff = malloc(*maxRecSize);

 *outBuff = malloc(*maxRecSize);

 if ((*xlateTable = iconv_open(codeset,"IBM-1047")) == (iconv_t)(-1)) {

 fprintf(stderr,"Cannot open convertor from IBM-1047 to %s",codeset);

 return (8);

 }

 return(!inBuff || !outBuff);

}

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 7 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 463

/*

 * Convert the buffer from start to end using the translation table

 */

static void ConvBuff(int start, int end,

 char *buff, XlateTable xlateTable) {

 int rc;

 size_t inleft, outleft, org;

 char *inptr, *outptr;

 outleft = inleft = end-start+1;

 inptr = outptr = &buff[start];

 while (1) {

 rc = iconv(xlateTable,&inptr,&inleft,&outptr,&outleft);

 if (rc == -1) {

 switch (errno) {

 /* Skip the invalid character */

 case EILSEQ: if (--inleft == 0) return;

 ++inptr;

 ++outptr;

 --outleft;

 break;

 default: fprintf(stderr,"iconv() fails with errno = %d\n",errno);

 exit(8);

 }

 } else

 return;

 }

}

 /*

 * Look ahead to the next character. If the current position

 * is the last character of the input record, write the current

 * output record and read in the next record.

 * Return the ’character’ read, which may be EOF if the end of

 * the file was reached.

 */

static enum CharVal LookAhead(char *inBuff, char *outBuff,

 int *recSize, int *curPos,

 int maxRecSize, int *codeStartPos,

 enum CharState state,

 XlateTable xlateTable) {

 if (*curPos == LAST_POS(*recSize)) {

 if (UpdateAndRead(inBuff, outBuff, recSize, maxRecSize,

 *codeStartPos, state, xlateTable)) {

 return(EOFChar);

 }

 *curPos = 0;

 *codeStartPos = 0;

 }

 else {

 (*curPos)++;

 }

 return(inBuff[*curPos]);

}

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 8 of 10)

464 LE/VSE: C Run-Time Programming Guide

/*

 * Similar to LookAhead(), but return the current character

 */

static enum CharVal GetNextChar(char *inBuff, char *outBuff,

 int *recSize, int maxRecSize,

 int *curPos, int *codeStartPos,

 enum CharState state,

 XlateTable xlateTable) {

 if (*curPos > LAST_POS(*recSize)) {

 if (UpdateAndRead(inBuff, outBuff, recSize, maxRecSize,

 *codeStartPos, state, xlateTable)) {

 return(EOFChar);

 }

 *curPos = 0;

 *codeStartPos = 0;

 }

 return(inBuff[*curPos]);

}

/*

 * If the current state is the code state, translate the remaining

 * part of the record.

 * Write out the record to stdout

 * Read in the next record and copy it to the output buffer.

 */

static int UpdateAndRead(char *inBuff, char *outBuff,

 int *recSize, int maxRecSize,

 int codeStartPos, enum CharState state,

 XlateTable xlateTable) {

 if (state == CodeState) {

 ConvBuff(codeStartPos, LAST_POS(*recSize), outBuff, xlateTable);

 }

 fwrite(outBuff, 1, *recSize, stdout);

 *recSize = ReadAndCopy(inBuff, outBuff, maxRecSize);

 return((*recSize == 0) ? 1 : 0);

}

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 9 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 465

/*

 * Read in a record from stdin and copy it to the output buffer.

 * Return the number of bytes read.

 */

static int ReadAndCopy(char *inBuff, char *outBuff,

 int maxRecSize) {

 int recSize;

 recSize = fread(inBuff, 1, maxRecSize, stdin);

 if (feof(stdin) && recSize == 0) {

 return(0);

 }

 else {

 memcpy(outBuff, inBuff, recSize);

 return(recSize);

 }

}

 /*

 * Free allocated storage and close the translation table.

 */

static int TermConv(char *inBuff,

 char *outBuff, XlateTable xlateTable) {

 iconv_close(xlateTable);

 free(inBuff);

 free(outBuff);

 return(0);

}

Figure 93. Converting Hybrid Code to a Specific Character Set (Part 10 of 10)

466 LE/VSE: C Run-Time Programming Guide

Appendix H. Using Built-In Functions

The following is a list of all the functions which are built into the C/VSE compiler.

The C/VSE compiler generates inline code for these functions at compile time.

 Built-In Function Header File

abs() stdlib.h

cds() stdlib.h

cs() stdlib.h

decabs() decimal.h

decchk() decimal.h

decfix() decimal.h

fabs() math.h

memchr() string.h

memcpy() string.h

memcmp() string.h

memset() string.h

strcat() string.h

strchr() string.h

strcmp() string.h

strcpy() string.h

strlen() string.h

strrchr() string.h

tsched() mtf.h

Note: Built-in functions are not associated with inline functions resulting from the

use of the compile-time option INLINE and the #pragma inline directive.

Refer to IBM C for VSE/ESA User’s Guide for more information.

© Copyright IBM Corp. 1995, 2005 467

468 LE/VSE: C Run-Time Programming Guide

Appendix I. DSECT Conversion Utility

This chapter describes how to use the DSECT conversion utility.

The DSECT conversion utility generates a C structure to map an assembler DSECT.

This utility is used when a C program calls or is called by an Assembler program

and a C structure is required to map the area passed.

The source for the assembler DSECT is assembled using High Level Assembler

specifying the ADATA option. (See IBM High Level Assembler Programmer’s Guide , for

a description of the ADATA option.) The DSECT utility then reads the SYSADAT file

produced by High Level Assembler and produces a file containing the C structure

according to the options specified.

The SYSADAT file must be RECFM=VB, BLKSIZE=8192, and LRECL=8188.

The file to which the C structure is written is specified using the OUTPUT

option—the attributes are specified using the RECFM, LRECL, and BLKSIZE options.

DSECT Utility Options

The options that you can use to control the generation of the C structure are as

follows. You can specify them in upper- or lowercase, separating them by spaces or

commas.

 Table 55. DSECT Utility Options, Abbreviations, and IBM-Supplied Defaults

DSECT Utility Option Abbreviated Name IBM Supplied Default

BITF0XL|NOBITF0XL BITF|NOBITF NOBITF0XL

BLKSIZE[(blksize)] None C Library defaults

COMMENT[(delim,...)]|NOCOMMENT COM|NOCOM COMMENT

DECIMAL|NODECIMAL None NODECIMAL

DEFSUB|NODEFSUB DEF|NODEF DEFSUB

EQUATE[(suboptions,...)]|NOEQUATE EQU|NOEQU NOEQUATE

HDRSKIP[(length)]|NOHDRSKIP HDR|NOHDR NOHDRSKIP

INDENT[(count)]|NOINDENT IN|NOIN INDENT(2)

LOCALE(name)|NOLOCALE LOC|NOLOC NOLOCALE

LOWERCASE|NOLOWERCASE LC|NOLC LOWERCASE

LRECL[(lrecl)] None C Library defaults

OPTFILE(filename)|NOOPTFILE OPTF|NOOPTF NOOPTFILE

OUTPUT[(filename)] OUT OUTPUT(DD:SYSPCH)

PPCOND[(switch)]|NOPPCOND PP|NOPP NOPPCOND

RECFM[(recfm)] None C Library defaults

SEQUENCE|NOSEQUENCE SEQ|NOSEQ NOSEQUENCE

SECT[(name,...)] None SECT(ALL)

UNIQUE|NOUNIQUE None NOUNIQUE

UNNAMED|NOUNNAMED UNN|NOUNN NOUNNAMED

© Copyright IBM Corp. 1995, 2005 469

Table 55. DSECT Utility Options, Abbreviations, and IBM-Supplied Defaults (continued)

DSECT Utility Option Abbreviated Name IBM Supplied Default

Note: [] surrounding a suboption indicates that the suboption is optional.

BITF0XL | NOBITF0XL

DEFAULT: NOBITF0XL

Specify the BITF0XL option when the bit fields are mapped into a flag byte as in

the following example:

FLAGFLD DS F

 ORG FLAGFLD+0

B1FLG1 DC 0XL(B’10000000’)’00’ Definition for bit 0 of 1st byte

B1FLG2 DC 0XL(B’01000000’)’00’ Definition for bit 1 of 1st byte

B1FLG3 DC 0XL(B’00100000’)’00’ Definition for bit 2 of 1st byte

B1FLG4 DC 0XL(B’00010000’)’00’ Definition for bit 3 of 1st byte

B1FLG5 DC 0XL(B’00001000’)’00’ Definition for bit 4 of 1st byte

B1FLG6 DC 0XL(B’00000100’)’00’ Definition for bit 5 of 1st byte

B1FLG7 DC 0XL(B’00000010’)’00’ Definition for bit 6 of 1st byte

B1FLG8 DC 0XL(B’00000001’)’00’ Definition for bit 7 of 1st byte

 ORG FLAGFLD+1

B2FLG1 DC 0XL(B’10000000’)’00’ Definition for bit 0 of 2nd byte

B2FLG2 DC 0XL(B’01000000’)’00’ Definition for bit 1 of 2nd byte

B2FLG3 DC 0XL(B’00100000’)’00’ Definition for bit 2 of 2nd byte

B2FLG4 DC 0XL(B’00010000’)’00’ Definition for bit 3 of 2nd byte

When the bit fields are mapped as shown in the above example, the bit fields can

be tested using the following code:

TM FLAGFLD,L’B1FLG Test bit 0 of byte 1

Bx label Branch if set/not set

When you specify the BITF0XL option, the length attribute of the following fields is

used to provide the mapping for the bits within the flag bytes.

The length attribute of the following fields is used to map the bit fields if a field

conforms to the following rules:

v Does not have a duplication factor of zero.

v Has a length between 1 and 4 bytes and does not have a bit length.

v Does not have more than 1 nominal value.

and the following fields conform to the following rules:

v Has a Type attribute of ’B’, ’C’ or ’X’.

v Has the same offset as the field (or consecutive fields have overlapping offsets).

v Has a duplication factor of zero.

v Does not have more than 1 nominal value.

v Has a length attribute between 1 and 255, and does not have a bit length.

v The length attribute maps one bit or consecutive bits. For example, B’10000000’

or B’11000000’, but not B’10100000’.

The fields must be on consecutive lines and must overlap a named field. If the

fields above are used to define the bits for a field, any EQU statements following the

field are not used to define the bit fields.

The following fields are used to define the bit fields as long as they map

consecutive bits. If two consecutive fields are equivalent, the second field is

skipped.

470 LE/VSE: C Run-Time Programming Guide

You can abbreviate the option to BITF or NOBITF.

BLKSIZE

DEFAULT: C Library default

The BLKSIZE option specifies the block size for the file to be produced. The block

size specified must not be greater than 32767. This option is required if the file

specified using the OUTPUT option is a SAM file or a member of a VSE/Librarian

sublibrary. If it is not specified, the C library defaults will be used.

COMMENT | NOCOMMENT

DEFAULT: COMMENT

The COMMENT[(delim,...)] option specifies whether the comments on the line where

the field is defined will be placed in the C structure produced.

If you specify the COMMENT option without a delimiter, the entire comment is placed

in the C structure.

If you specify a delimiter, any comments following the delimiter are skipped and

are not placed in the C structure. You can remove changes that are flagged with a

particular delimiter. The delimiter cannot contain imbedded spaces or commas. The

case of the delimiter and comment text is not significant. You can specify up to 10

delimiters, and they can contain up to 10 characters each.

You can abbreviate the option to COM or NOCOM.

DECIMAL | NODECIMAL

DEFAULT: NODECIMAL

The DECIMAL option will instruct the DSECT utility to convert all SYSADATA DC/DS

records of type P to datatype decimal(w,0), where w is the number of digits. The

parameter w is computed as follow:

1. Multiply the byte size of the P-type data by the value 2.

2. Subtract the value 1 from the result above.

This can be written as: (byte_size * 2) -1 . You can find the byte size of the

P-type data in the SYSADATA DC/DS record.

The precision will always be “left as zero”, since there is no way to calculate the

value from the SYSADATA DC/DS record. The zero will be outputted rather than

simply the digit size (that is, decimal(w,0) rather than decimal(w)). This allows

you to easily edit the DSECT utility output, and adjust for the level of precision

you require.

If the DECIMAL option is enabled and type P records are found, the utility will

also include the following code at the beginning of the output file:

 #ifndef __decimal_found

 #define __decimal_found

 #include <decimal.h>

 #endif

Appendix I. DSECT Conversion Utility 471

DEFSUB | NODEFSUB

DEFAULT: DEFSUB

The DEFSUB option specifies whether #define directives will be built for fields that

are part of a union or substructure.

If the DEFSUB option is in effect, fields within a substructure or union have the field

names prefixed by an underscore. A #define directive is written at the end of the

structure to allow the field name to be specified directly as in the following

example.

_Packed struct dsect_name {

 int field1;

 _Packed struct {

 int _subfld1;

 short int _subfld2;

 unsigned char _subfld3[4];

 } field2;

 }

#define subfld1 field2._subfld1

#define subfld2 field2._subfld2

#define subfld3 field2._subfld3

If the DEFSUB option is in effect, the fields prefixed by an underscore may match

the name of another field within the structure. No warning is issued.

You can abbreviate the option to DEF or NODEF.

EQUATE | NOEQUATE

DEFAULT: NOEQUATE

The EQUATE[(suboptions,...)] option specifies whether the EQU statements following a

field are to be used to define bit fields, to generate #define directives, or are to be

ignored.

The suboptions specify how the EQU statement is used. You can specify one or

more of the suboptions, separating them by spaces or commas. If you specify more

than one suboption, the EQU statements following a field are checked to see if they

are valid for the first suboption. If so, they are formatted according to that option.

Otherwise, the subsequent suboptions are checked to see if they are applicable.

If you specify the EQUATE option without suboptions, EQUATE(BIT) is used. If you

specify NOEQUATE (or select it by default), the EQU statements following a field is

ignored.

You can specify the following suboptions for the EQUATE option:

BIT indicates that the value for an EQU statement is used to define the bits for a

field where the field conforms to the following rules:

v Does not have a duplication factor of zero.

v Has a length between 1 and 4 bytes and has a bit length that is a

multiple of 8.

v Does not have more than 1 nominal value.

and the EQU statements following the field conform to the following rules:

v The value for the EQU statements following the field mask consecutive

bits (for example, X’80’ followed by X’40’).

472 LE/VSE: C Run-Time Programming Guide

v The value for an EQU statement masks one bit or consecutive bits. For

example, B’10000000’ or B’11000000’, but not B’10100000’.

v Where the length of the field is greater than 1 byte, the bits for the

remaining bytes can be defined by providing the EQU statements for the

second byte after the EQU statement for the first byte.

v The value for the EQU statement is not a relocatable value.

When you specify EQUATE(BIT), the EQU statements are converted as in the

following example:

FLAGFLD DS H

FLAG21 EQU X’80’

FLAG22 EQU X’40’

FLAG23 EQU X’20’

FLAG24 EQU X’10’

FLAG25 EQU X’08’

FLAG26 EQU X’04’

FLAG27 EQU X’02’

FLAG28 EQU X’01’

FLAG2A EQU X’80’

FLAG2B EQU X’40’

_Packed struct dsect_name {

 unsigned int flag21 : 1,

 flag22 : 1,

 flag23 : 1,

 flag24 : 1,

 flag25 : 1,

 flag26 : 1,

 flag27 : 1,

 flag28 : 1,

 flag2a : 1,

 flag2b : 1,

 : 6;

 };

BITL indicates that the length attribute for an EQU statement is used to define the

bits for a field where the field conforms to the following rules:

v Does not have a duplication factor of zero.

v Has a length between 1 and 4 bytes and has a bit length that is a

multiple of 8.

v Does not have more than 1 nominal value.

and the EQU statements following the field conform to the following rules:

v The value specified for the EQU statement has the same or overlapping

offset as the field.

v The length attribute for the EQU statement is between 1 and 255.

v The length attribute for the EQU statement masks one bit or consecutive

bits. For example, B’10000000’ or B’11000000’, but not B’10100000’.

v The value for the EQU statement is a relocatable value.

When you specify EQUATE(BITL), the EQU statements are converted as in the

following example:

BYTEFLD DS F

B1FLG1 EQU BYTEFLD+0,B’10000000’

B1FLG2 EQU BYTEFLD+0,B’01000000’

B1FLG3 EQU BYTEFLD+0,B’00100000’

B1FLG4 EQU BYTEFLD+0,B’00010000’

B1FLG5 EQU BYTEFLD+0,B’00001000’

B1FLG6 EQU BYTEFLD+0,B’00000100’

B1FLG7 EQU BYTEFLD+0,B’00000010’

B1FLG8 EQU BYTEFLD+0,B’00000001’

Appendix I. DSECT Conversion Utility 473

B2FLG1 EQU BYTEFLD+1,B’10000000’

B2FLG2 EQU BYTEFLD+1,B’01000000’

B2FLG3 EQU BYTEFLD+1,B’00100000’

B2FLG4 EQU BYTEFLD+1,B’00010000’

_Packed struct dsect_name {

 unsigned int b1flg1 : 1,

 b1flg2 : 1,

 b1flg3 : 1,

 b1flg4 : 1,

 b1flg5 : 1,

 b1flg6 : 1,

 b1flg7 : 1,

 b1flg8 : 1,

 b2flg1 : 1,

 b2flg2 : 1,

 b2flg3 : 1,

 b2flg4 : 1,

 : 20;

 };

DEF indicates that the EQU statements following a field are used to build

#define directives to define the possible values for a field. The #define

directives are placed after the end of the C structure. The EQU statements

should not specify a relocatable value.

 When you specify EQUATE(DEF), the EQU statements are converted as in the

following example:

FLAGBYTE DS X

FLAG1 EQU X’80’

FLAG2 EQU X’20’

FLAG3 EQU X’10’

FLAG4 EQU X’08’

FLAG5 EQU X’06’

FLAG6 EQU X’01’

_Packed struct dsect_name {

 unsigned char flagbyte;

 }

 /* Values for flagbyte field */

#define flag1 0x80

#define flag2 0x20

#define flag3 0x10

#define flag4 0x08

#define flag5 0x06

#define flag6 0x01

You can abbreviate the option to EQU or NOEQU.

474 LE/VSE: C Run-Time Programming Guide

HDRSKIP | NOHDRSKIP

DEFAULT: NOHDRSKIP

The HDRSKIP[(length)] option specifies that the fields within the specified number of

bytes from the start of the section are to be skipped. Use this option where a

section has a header that is not required in the C structure produced.

The value specified on the HDRSKIP option indicates the number of bytes at the

start of the section that are to be skipped. HDRSKIP(0) is equivalent to NOHDRSKIP.

In the following example, if you specify HDRSKIP(8), the first two fields are

skipped and only the remaining two fields are built into the structure.

SECTNAME DSECT

PREFIX1 DS CL4

PREFIX2 DS CL4

FIELD1 DS CL4

FIELD2 DS CL4

_Packed struct sectname {

 unsigned char field1[4];

 unsigned char field2[4];

 }

If the value specified for the HDRSKIP option is greater than the length of the

section, the C structure is not be produced for that section.

You can abbreviate the option to HDR or NOHDR.

INDENT | NOINDENT

DEFAULT: INDENT(2)

The INDENT[(count)] option specifies the number of character positions that the

fields, unions, and substructures are indented. Turn off indentation by specifying

INDENT(0) or NOINDENT. The maximum value that you can specify for the INDENT

option is 32767.

You can abbreviate the option to IN or NOIN.

Appendix I. DSECT Conversion Utility 475

LOCALE | NOLOCALE

DEFAULT: NOLOCALE

The LOCALE(name) option specifies the name of a locale to be passed to the

setlocale() function. Specifying LOCALE without the name parameter is equivalent to

passing the NULL string to the setlocale() function.

The structure produced contains the left and right brace, and left and right square

bracket, backslash, and number sign which have different code point values for the

different code pages. When the LOCALE option is specified, and these characters are

written to the output file, the code point from the LC_SYNTAX category for the

specified locale is used.

You can abbreviate the option to LOC or NOLOC.

LOWERCASE | NOLOWERCASE

DEFAULT: LOWERCASE

The LOWERCASE option specifies whether the field names within the C structure are

to be converted to lowercase or left as entered. If you specify LOWERCASE, all the

field names are converted to lowercase. If you specify NOLOWERCASE, the field names

are built into the structure in the case in which they were entered in the assembler

section.

You can abbreviate the option to LC or NOLC.

LRECL

DEFAULT: C Library default

The LRECL option specifies the logical record length for the file to be produced. The

logical record length specified must not be greater than 32767. This option is

required if the file specified using the OUTPUT option is a SAM file or a member of

a VSE/Librarian sublibrary. If it is not specified, the C library defaults will be

used.

476 LE/VSE: C Run-Time Programming Guide

OPTFILE | NOOPTFILE

DEFAULT: NOOPTFILE

The OPTFILE(filename) option specifies the filename containing the records that

specify the options to be used for processing the sections. The filename can be any

of the file specification formats supported by the fopen() function. (See the

“Opening Files” sections in this book for additional information regarding file

specification formats.) The filename will be passed to fopen() as entered. The

records must be as follows:

v The lines must begin with the SECT option, with only one section name

specified. The options following determine how the structure is produced for the

specified section. The section name must only be specified once.

v The lines may contain the options BITF0XL, COMMENT, DEFSUB, EQUATE, HDRSKIP,

INDENT, LOWERCASE, PPCOND, and UNNAMED, separated by spaces or commas. These

override the options specified on the command line for the section.

The OPTFILE option is ignored if the SECT option is also specified on the command

line.

You can abbreviate the option to OPTF or NOOPTF.

OUTPUT

DEFAULT: OUTPUT(DD:SYSPCH)

The C structures produced are, by default, written to SYSPCH. You can use the

OUTPUT option to specify a different filename for writing the C structures using any

of the file specification formats supported by the fopen() function. (See the

“Opening Files” sections in this book for additional information regarding file

specification formats.) The filename will be passed to fopen() as entered.

You can abbreviate the option to OUT.

Appendix I. DSECT Conversion Utility 477

PPCOND | NOPPCOND

DEFAULT: NOPPCOND

The PPCOND[(switch)] option specifies whether preprocessor directives will be built

around the structure definition to prevent duplicate definitions.

If you specify PPCOND, the following are built around the structure definition.

#ifndef switch

#define switch ...
 structure definition for section ...
#endif

where switch is the switch specified on the PPCOND option or the section name

prefixed and suffixed by two underscores, for example, _ _name_ _.

If you specify a switch, the #ifndef and #endif directives are placed around all

structures that are produced. If you do not specify a switch, the #ifndef and

#endif directives are placed around each structure produced.

You can abbreviate the option to PP or NOPP.

SECT

DEFAULT: SECT(ALL)

The SECT option specifies the section names for which C structures are to

produced. The section names can be either CSECT or DSECT names. They must

exist in the SYSADAT file produced by the Assembler. If you do not specify the SECT

option or if you specify SECT(ALL), C structures are produced for all CSECTs and

DSECTs defined in the SYSADAT file, except for private code and unnamed DSECTs.

If High Level Assembler is run with the BATCH option, only the section names

defined within the first program can be specified on the SECT option. If you specify

SECT(ALL) (or select it by default), only the sections from the first program are

selected.

478 LE/VSE: C Run-Time Programming Guide

SEQUENCE | NOSEQUENCE

DEFAULT: NOSEQUENCE

The SEQUENCE option specifies whether sequence numbers will be placed in

columns 73 to 80 of the output record. If you specify the SEQUENCE option, the C

structure is built into columns 1 to 72 of the output record and sequence numbers

are placed in columns 73 to 80. If you specify NOSEQUENCE (or select it by default),

sequence numbers are not generated and the C structure is built within all

available columns in the output record.

If the record length for the output file is less than 80 characters, the SEQUENCE

option is ignored.

You can abbreviate the option to SEQ or NOSEQ.

UNIQUE | NOUNIQUE

DEFAULT: NOUNIQUE

The UNIQUE option tells the DSECT utility to use a unique string as though it does

not occur in any of the field names contained in the SYSADATA input. This user

wishes to guarantee that if the DSECT utility were to use the unique string to map

national characters, no conflict would occur with any other field name. Given this

guarantee, the DSECT utility will map the national characters as follows:

 # = unique string + ’n’ + unique string

 @ = unique string + ’a’ + unique string

 $ = unique string + ’d’ + unique string

For example, if the default “_” unique string was used, the national characters

would be mapped as:

 # = _n_

 @ = _a_

 $ = _d_

If the default NOUNIQUE option is enabled, the DSECT utility converts all

national characters to a single underscore even if there is a conflict between the

resulting label names.

Appendix I. DSECT Conversion Utility 479

UNNAMED | NOUNNAMED

DEFAULT: NOUNNAMED

The UNNAMED option specifies that names are not generated for the unions and

substructures within the main structure.

You can abbreviate the option to UNN or NOUNN.

RECFM

DEFAULT: C Library default

The RECFM option specifies the record format for the file to be produced. You can

specify up to 10 characters. This option is required if the file specified using the

OUTPUT option is a SAM file or a member of a VSE/Librarian sublibrary. If it is not

specified, the C library defaults are used.

Generation of C Structures

The C structure is produced as follows according to the options in effect.

v The section name is used as the structure name. The structure is generated with

the _Packed attribute to ensure it matches the assembler section.

Whenever you specify the structure name, you should also specify the _Packed

attribute.

v Any nonalphanumeric characters in the section or field names are converted to

underscores. Duplicate names may be generated when the field names are

identical except for the national character. No warning is issued.

v Where fields overlap, a substructure or union is built within the main structure.

A substructure is produced where possible. When substructures and unions are

built, the structure and unions names are generated by the DSECT utility.

v The substructures and unions within the main structure are indented according

to the INDENT option unless the record length is too small to permit any further

indentation.

v Fillers are added within the structure when required. A filler name is generated

by the DSECT utility.

v Where there is no direct equivalent for an assembler definition within the C

language, the field is defined as a character field.

v If a field has a duplication factor of zero, but cannot be used as a structure

name, the field is defined as though the duplication factor of zero was

eliminated.

v Where a line within the assembler input consists of an operand with a

duplication factor of zero (for alignment), followed by the field definition, the

first operand is skipped. For example:

FIELDA DS OF,CLB

is treated as though the following was specified.

FIELDA DS CLB

v When the COMMENT option is in effect, the comment on the line following the

definition of the field is placed in the C structure. The comment is placed on the

same line as the field definition where possible, or on the following line.

/* is removed from the beginning of comments and */ is removed from the end

of comments. Any remaining instances of */ in the comment are converted to **.

480 LE/VSE: C Run-Time Programming Guide

Each field within the section is converted to a field within the C structure as

shown in the following examples:

v Bit length fields

If the field has a bit length that is not a multiple of 8, it is converted as follows.

Otherwise, it is converted according to the field type.

DS CL.n unsigned int name : n;

 where n is from 1 to 31.

DS CL.n unsigned char name[x];

 where n is greater than 32. x will be the number of bytes

required (that is, the bit length / 8 + 1).

DS 5CL.n unsigned char name[x];

 where x will be the number of bytes required (that is, the

duplication factor * bit length / 8 + 1).
v Characters

DS C unsigned char name;

DS CL2 unsigned char name[2];

DS 4CL2 unsigned char name[4][2];

v Graphic Characters

DS G wchar_t name;

DS GL1 unsigned char name;

DS GL2 wchar_t name;

DS GL3 unsigned char name[3];

DS 4GL1 unsigned char name[4];

DS 4GL2 wchar_t name[4];

DS 4GL3 unsigned char name[4][3];

v Hexadecimal Characters

DS X unsigned char name;

DS XL2 unsigned char name[2];

DS 4XL2 unsigned char name[4][2];

v Binary fields

DS B unsigned char name;

DS BL2 unsigned char name[2];

DS 4BL2 unsigned char name[4][2];

v Half and Fullword Fixed-point

DS F int name;

DS H short int name;

DS FL1 or HL1

char name;

DS FL2 or HL2

short int name;

DS FL3 or HL3

int name : 24;

DS FLn or HLn

unsigned char name[n];

 where n is greater than 4.

DS 4F int name[4];

DS 4H short int name[4];

DS 4FL1 or 4HL1

char name[4];

DS 4FL2 or 4HL2

short int name[4];

Appendix I. DSECT Conversion Utility 481

DS 4FL3 or 4HL3

unsigned char name[4][3];

DS 4FLn or 4HLn

unsigned char name[4][n];

 where n is greater than 4.
v Floating Point

DS E float name;

DS D double name;

DS L long double name;

DS 4E float name[4];

DS 4D double name[4];

DS 4L long double name[4];

DS EL4 or DL4 or LL4

float name;

DS EL8 or DL8 or LL8

double name;

DS LL16 long double name;

DS E, D or L unsigned char name[n];

 where n is other than 4, 8 or 16.
v Packed Decimal

DS P unsigned char name;

DS PL2 unsigned char name[2];

DS 4PL2 unsigned char name[4][2];

v Zoned Decimal

DS Z unsigned char name;

DS ZL2 unsigned char name[2];

DS 4ZL2 unsigned char name[4][2];

v Address

DS A void *name;

DS AL1 unsigned char name;

DS AL2 unsigned short name;

DS AL3 unsigned int name : 24;

DS 4A void *name[4];

DS 4AL1 unsigned char name[4];

DS 4AL2 unsigned short name[4];

DS 4AL3 unsigned char name[4][3];

v Y-type Address

DS Y unsigned short name;

DS YL1 unsigned char name;

DS 4Y unsigned short name[4];

DS 4YL1 unsigned char name[4];

v S-type Address (Base and displacement)

DS S unsigned short name;

DS SL1 unsigned char name;

DS 4S unsigned short name[4];

DS 4SL1 unsigned char name[4];

v External Symbol Address

DS V void *name;

DS VL3 unsigned int name : 24;

DS 4V void *name[4];

DS 4VL3 unsigned char name[4][3];

v External Dummy Section Offset

DS Q unsigned int name;

482 LE/VSE: C Run-Time Programming Guide

DS QL1 unsigned char name;

DS QL2 unsigned short name;

DS QL3 unsigned int name : 24;

DS 4Q unsigned int name[4];

DS 4QL1 unsigned char name[4];

DS 4QL2 unsigned short name[4];

DS 4QL3 unsigned char name[4][3];

v Channel Command Words

When a CCW, CCW0, or CCW1 assembler instruction is present within the

section, a typedef ccw0_t or ccw1_t is defined to map the format of the CCW.

The CCW, CCW0 or CCW1 is built into the C structure as follows:

CCW cc,addr,flags,count ccw0_t name;

CCW0 cc,addr,flags,count ccw0_t name;

CCW1 cc,addr,flags,count ccw1_t name;

Under VSE Batch

Under VSE, you can execute the DSECT utility as shown in the following example:

 In the above example, High Level Assembler is invoked to assemble the source

provided with the ADATA option. The DSECT utility is then executed to produce the

C structure. The C structure is written to the file specified by the OUTPUT option. A

report is written to SYSLST indicating the options in effect and any error messages.

// JOB DSECTXMP

// LIBDEF *,SEARCH=(PRD2.SCEEBASE,hlasm.lib)

// DLBL SYSADAT,’file.name’,0,VSAM,RECORDS=100,RECSIZE=80,DISP=OLD

// OPTION NOLINK,NODUMP

// EXEC ASMA90,SIZE=512K,PARM=’ADATA’

 ...
 Assembler source code

 ...
 /*

// EXEC EDCDSECT,PARM=’OUT(DD:SYSLST)’

 /*

// EXEC LISTLOG

/&

Figure 94. Running the DSECT Utility under VSE Batch

Appendix I. DSECT Conversion Utility 483

484 LE/VSE: C Run-Time Programming Guide

Glossary

This glossary defines terms and abbreviations that

are used in this book. Included are terms and

definitions from the following sources:

v American National Standard Dictionary for

Information Systems , ANSI/ISO X3.172-1990,

copyright 1990 by the American National

Standards Institute (ANSI/ISO). Copies may be

purchased from the American National

Standards Institute, 1430 Broadway, New York,

New York 10018. Such definitions are indicated

by the symbol ANSI/ISO after the definition.

v IBM Dictionary of Computing , SC20-1699. These

definitions are indicated by the registered

trademark IBM after the definition.

v X/Open CAE Specification. Commands and

Utilities, Issue 4. July, 1992 . These definitions

are indicated by the symbol X/Open after the

definition.

v ISO/IEC 9945-1:1990/IEEE POSIX 1003.1-1990

These definitions are indicated by the symbol

ISO.1 after the definition.

v The Information Technology Vocabulary ,

developed by Subcommittee 1, Joint Technical

Committee 1, of the International Organization

for Standardization and the International

Electrotechnical Commission (ISO/IEC

JTC1/SC1). Definitions of published parts of

this vocabulary are identified by the symbol

ISO-JTC1 after the definition; definitions taken

from draft international standards, committee

drafts, and working papers being developed by

ISO/IEC JTC1/SC1 are identified by the

symbol ISO Draft after the definition, indicating

that final agreement has not yet been reached

among the participating National Bodies of

SC1.

A

abend. Abnormal end of task. Synonym for abnormal

termination.

abstract code unit. See ACU.

access mode. The manner in which files are referred

to by a computer. Access can be sequential (records are

referred to one after another in the order in which they

appear on the file), access can be random (the

individual records can be referred to in a nonsequential

manner), or access can be dynamic (records can be

accessed sequentially or randomly, depending on the

form of the input/output request). IBM.

ACU (abstract code unit). A measurement used by C

compilers for judging the size of a function. The

number of ACUs that comprise a function is

proportional to its size and complexity.

addressing mode. See AMODE.

alignment. The storing of data in relation to certain

machine-dependent boundaries. IBM.

American National Standards Institute. See

ANSI/ISO.

AMODE (addressing mode). In VSE, a program

attribute that refers to the address length that a

program is prepared to handle upon entry. In VSE,

addresses may be 24 or 31 bits in length. IBM.

ANSI/ISO (American National Standards Institute).

An organization consisting of producers, consumers,

and general interest groups, that establishes the

procedures by which accredited organizations create

and maintain voluntary industry standards in the

United States. ANSI/ISO.

API (application program interface). A functional

interface supplied by the operating system or by a

separately orderable licensed program that allows an

application program written in a high-level language to

use specific data or functions of the operating system

or the licensed program. IBM.

application. (1) The use to which an information

processing system is put; for example, a payroll

application, an airline reservation application, a

network application. IBM. (2) A collection of software

components used to perform specific types of

user-oriented work on a computer. IBM.

application program. A program written for or by a

user that applies to the user’s work, such as a program

that does inventory control or payroll. IBM.

argument. (1) A parameter passed between a calling

program and a called program. IBM. (2) In a function

call, an expression that represents a value that the

calling function passes to the function specified in the

call. Also called parameter.

array. In programming languages, an aggregate that

consists of data objects, with identical attributes, each

of which may be uniquely referenced by subscripting.

IBM.

array element. A data item in an array. IBM.

© Copyright IBM Corp. 1995, 2005 485

ASCII (American National Standard Code for

Information Interchange). The standard code, using a

coded character set consisting of 7-bit coded characters

(8 bits including parity check), that is used for

information interchange among data processing

systems, data communication systems, and associated

equipment. The ASCII set consists of control characters

and graphic characters. IBM.

Note: IBM has defined an extension to ASCII code

(characters 128-255).

assembler language. A source language that includes

symbolic language statements in which there is a

one-to-one correspondence with the instruction formats

and data formats of the computer. IBM.

automatic storage. Storage that is allocated on entry to

a routine or block and is freed on the subsequent

return. Sometimes referred to as stack storage or dynamic

storage.

B

backslash. The character \. This character is named

<backslash> in the portable character set.

batch processing. (1) Serial processing of computer

programs. (2) Pertaining to the technique of processing

a set of computer programs in such a way that each is

completed before the next program of the set is started.

batch program. A program that is processed in series

with other programs and therefore normally processes

data without user interaction.

binary stream. (1) An ordered sequence of

untranslated characters. (2) A sequence of characters

that corresponds on a one-to-one basis with the

characters in the file. No character translation is

performed on binary streams. IBM.

blank character. (1) A graphic representation of the

space character. ANSI/ISO. (2) A character that

represents an empty position in a graphic character

string. ISO Draft. (3) One of the characters that belong

to the blank character class as defined via the

LC_CTYPE category in the current locale. In the POSIX

locale, a blank character is either a tab or a space

character. X/Open.

block. (1) In programming languages, a compound

statement that coincides with the scope of at least one

of the declarations contained within it. A block may

also specify storage allocation or segment programs for

other purposes. ISO-JTC1. (2) A string of data elements

recorded or transmitted as a unit. The elements may be

characters, words or physical records. ISO Draft. (3) The

unit of data transmitted to and from a device. Each

block contains one record, part of a record, or several

records.

blocking. The process of combining (or cutting)

records into blocks.

boundary alignment. The position in main storage of

a fixed-length field, such as a halfword or doubleword,

on a byte-level boundary for that unit of information.

IBM.

brackets. The characters [(left bracket) and] (right

bracket), also known as square brackets. When used in

the phrase “enclosed in (square) brackets” the symbol [

immediately precedes the object to be enclosed, and]

immediately follows it. When describing these

characters in the portable character set, the names

<left-bracket> and <right-bracket> are used. X/Open.

built-in. (1) A function that the compiler will

automatically inline instead of making the function call,

unless the programmer specifies not to inline. (2) In

programming languages, pertaining to a language

object that is declared by the definition of the

programming language; for example the built-in

function SIN in PL/I, the predefined data type

INTEGER in FORTRAN. ISO-JTC1. Synonymous with

predefined. IBM.

C

call. To transfer control to a procedure, program,

routine, or subroutine. IBM.

callable services. A set of services that can be invoked

by a Language Environment-conforming high level

language using the conventional Language

Environment-defined call interface, and usable by all

programs sharing the Language Environment

conventions.

 Use of these services helps to decrease an application’s

dependence on the specific form and content of the

services delivered by any single operating system.

call chain. A trace of all active routines and

subroutines.

caller. A routine that calls another routine.

cast. In the C language, an expression that converts

the type of the operand to a specified data type (the

operator). IBM.

catalog. (1) A directory of files and libraries, with

reference to their locations. A catalog may contain other

information such as the types of devices in which the

files are stored, passwords, blocking factors. (2) To store

a library member such as a phase, module, or book in a

sublibrary.

chained sublibraries. A facility that allows

sublibraries to be chained by specifying the sequence in

which they must be searched for a certain library

member.

486 LE/VSE: C Run-Time Programming Guide

chaining. A logical connection of sublibraries to be

searched by the system for members of the same type

(phases or object modules, for example).

character. (1) A letter, digit, or other symbol that is

used as part of the organization, control, or

representation of data. A character is often in the form

of a spatial arrangement of adjacent or connected

strokes. ANSI/ISO. (2) A sequence of one or more bytes

representing a single graphic symbol or control code.

This term corresponds to the ISO C standard term

multibyte character (multibyte character), where a

single-byte character is a special case of the multibyte

character. Unlike the usage in the ISO C standard,

character here has no necessary relationship with

storage space, and byte is used when storage space is

discussed. X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters sharing an

attribute associated with the name of the class. The

classes and the characters that they contain are

dependent on the value of the LC_CTYPE category in

the current locale. X/Open.

character constant. (1) A constant with a character

value. IBM. (2) A string of any of the characters that

can be represented, usually enclosed in apostrophes.

IBM. (3) In some languages, a character enclosed in

apostrophes. IBM.

character set. (1) A finite set of different characters

that is complete for a given purpose; for example, the

character set in ISO Standard 646, 7-bit Coded

Character Set for Information Processing Interchange.

ISO Draft. (2) All the valid characters for a

programming language or for a computer system. IBM.

(3) A group of characters used for a specific reason; for

example, the set of characters a printer can print. IBM.

(4) See also portable character set.

character special file. (1) A special file that provides

access to an input or output device. The character

interface is used for devices that do not use block I/O.

IBM. (2) A file that refers to a device. X/Open. ISO.1.

character string. A contiguous sequence of characters

terminated by and including the first null byte. X/Open.

child. A node that is subordinate to another node in a

tree structure. Only the root node is not a child.

CICS (Customer Information Control System).

Pertaining to an IBM licensed program that enables

transactions entered at remote terminals to be

processed concurrently by user-written application

programs. It includes facilities for building, using, and

maintaining databases. IBM.

CICS system definition (CSD) file. See CSD.

CKD device. Count-key-data device.

C library. A system library that contains common C

language subroutines for file access, string operators,

character operations, memory allocation, and other

functions. IBM.

COBOL (Common Business-Oriented Language). A

high-level language, based on English, that is primarily

used for business applications.

coded character set. (1) A set of graphic characters

and their code point assignments. The set may contain

fewer characters than the total number of possible

characters: some code points may be unassigned. IBM.

(2) A coded set whose elements are single characters;

for example, all characters of an alphabet. ISO Draft. (3)

Loosely, a code. ANSI/ISO.

code page. (1) An assignment of graphic characters

and control function meanings to all code points; for

example, assignment of characters and meanings to 256

code points for an 8-bit code, assignment of characters

and meanings to 128 code points for a 7-bit code. (2) A

particular assignment of hexadecimal identifiers to

graphic characters.

code point. (1) A 1-byte code representing one of 256

potential characters. (2) An identifier in an alert

description that represents a short unit of text. The

code point is replaced with the text by an alert display

program.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to

determine the logical ordering of character or

wide-character strings. A collating element consists of

either a single character, or two or more characters

collating as a single entity. The value of the

LC_COLLATE category in the current locale determines

the current set of collating elements. X/Open.

collating sequence. (1) A specified arrangement used

in sequencing. ISO-JTC1. ANSI/ISO. (2) An ordering

assigned to a set of items, such that any two sets in

that assigned order can be collated. ANSI/ISO. (3) The

relative ordering of collating elements as determined by

the setting of the LC_COLLATE category in the current

locale. The character order, as defined for the

LC_COLLATE category in the current locale, defines

the relative order of all collating elements, such that

each element occupies a unique position in the order.

This is the order used in ranges of characters and

collating elements in regular expressions and pattern

matching. In addition, the definition of the collating

weights of characters and collating elements uses

collating elements to represent their respective positions

within the collation sequence.

collation. The logical ordering of character or

wide-character strings according to defined precedence

rules. These rules identify a collation sequence between

Glossary 487

the collating elements, and such additional rules that

can be used to order strings consisting or multiple

collating elements. X/Open.

collection. (1) An abstract class without any ordering,

element properties, or key properties. All abstract

classes are derived from collection. (2) In a general

sense, an implementation of an abstract data type for

storing elements.

command. A request to perform an operation or run a

program. When parameters, arguments, flags, or other

operands are associated with a command, the resulting

character string is a single command.

COMMAREA. A communication area made available

to applications running under CICS.

common anchor area (CAA). Dynamically acquired

storage that represents a LE/VSE thread.

Thread-related storage/resources are anchored off of

the CAA. This area acts as a central communications

area for the program, holding addresses of various

storage and error-handling routines, and control blocks.

The CAA is anchored by an address in register 12.

compilation unit. (1) A portion of a computer

program sufficiently complete to be compiled correctly.

IBM. (2) A single compiled file and all its associated

include files. (3) An independently compilable sequence

of high-level language statements. Each high-level

language product has different rules for what makes up

a compilation unit.

compile. To translate a source program into an

executable program (object program). See also assembler.

compiler. A program used to compile.

condition. (1) A relational expression that can be

evaluated to a value of either true or false. IBM. (2) An

exception that has been enabled, or recognized, by the

Language Environment and thus is eligible to activate

user and language condition handlers. Any alteration to

the normal programmed flow of an application.

Conditions can be detected by the hardware/operating

system and result in an interrupt. They can also be

detected by language-specific generated code or

language library code.

const. (1) An attribute of a data object that declares

the object cannot be changed. (2) A keyword that

allows you to define a variable whose value does not

change.

constant. (1) In programming languages, a language

object that takes only one specific value. ISO-JTC1. (2)

A data item with a value that does not change. IBM.

constant expression. An expression having a value

that can be determined during compilation and that

does not change during the running of the program.

IBM.

control character. (1) A character whose occurrence in

a particular context specifies a control function. ISO

Draft. (2) Synonymous with nonprinting character. IBM.

(3) A character, other than a graphic character, that

affects the recording, processing, transmission, or

interpretation of text. X/Open.

conversion. (1) In programming languages, the

transformation between values that represent the same

data item but belong to different data types.

Information may be lost because of conversion since

accuracy of data representation varies among different

data types. ISO-JTC1. (2) The process of changing from

one method of data processing to another or from one

data processing system to another. IBM. (3) The process

of changing from one form of representation to another;

for example to change from decimal representation to

binary representation. IBM. (4) A change in the type of

a value. For example, when you add values having

different data types, the compiler converts both values

to a common form before adding the values.

coordinated universal time (UTC). Equivalent to

Greenwich Mean Time (GMT)

count-key-data (CKD) device. A disk device that

stores data in the record format: count field, key field,

data field. The count field contains, among others, the

address of the record in the format: cylinder, head

(track), record number and the length of the data field.

The key field, if present, contains the record’s key or

search argument. CKD disk space is allocated by tracks

and cylinders. Contrast with FBA disk device.

Cross System Product. See CSP.

CSD (CICS system definition) file. A component of

CICS resource definition online (RDO). It keeps a

permanent record of resource information,

independently of the active CICS system. The

information held in the CSD is used for installing new

resources and at a CICS restart.

CSP (Cross System Product). A set of licensed

programs designed to permit the user to develop and

run applications using independently defined maps

(display and printer formats), data items (records,

working storage, files, and single items), and processes

(logic). The Cross System Product set consists of two

parts: Cross System Product/Application Development

(CSP/AD) and Cross System Product/Application

Execution (CSP/AE). IBM.

Customer Information Control System. See CICS.

D

DATABASE 2 (DB2). An IBM relational database

management system.

data object. (1) A storage area used to hold a value.

(2) Anything that exists in storage and on which

488 LE/VSE: C Run-Time Programming Guide

operations can be performed, such as files, programs,

classes, or arrays. (3) In a program, an element of data

structure, such as a file, array, or operand, that is

needed for the execution of a program and that is

named or otherwise specified by the allowable

character set of the language in which a program is

coded. IBM.

data set. Under VSAM, a named collection of related

data records that is stored and retrieved by an assigned

name.

data stream. A continuous stream of data elements

being transmitted, or intended for transmission, in

character or binary-digit form, using a defined format.

IBM.

data structure. The internal data representation of an

implementation.

data type. The properties and internal representation

that characterize data.

DBCS (double-byte character set). A set of characters

in which each character is represented by 2 bytes.

Languages such as Japanese, Chinese, and Korean,

which contain more symbols than can be represented

by 256 code points, require double-byte character sets.

 Because each character requires 2 bytes, the typing,

display, and printing of DBCS characters requires

hardware and programs that support DBCS. IBM.

DB2. See DATABASE 2.

DCT. Destination control table.

declaration. (1) In the C language, a description that

makes an external object or function available to a

function or a block statement. IBM. (2) Establishes the

names and characteristics of data objects and functions

used in a program.

default argument. An argument that is declared with

a default value in a function prototype or declaration. If

a call to the function omits this argument, the default

value is used. Arguments with default values must be

the trailing arguments in a function prototype

argument list.

default locale. (1) The C locale, which is always used

when no selection of locale is performed. (2) A system

default locale, named by locale-related environmental

variables.

define directive. A preprocessor statement that directs

the preprocessor to replace an identifier or macro

invocation with special code.

definition. (1) A data description that reserves storage

and may provide an initial value. (2) A declaration that

allocates storage, and may initialize a data object or

specify the body of a function.

degree. The number of children of a node.

demangling. The conversion of mangled names back

to their original source code names. During C

compilation, identifiers such as functions are mangled

(encoded) with type and scoping information to ensure

type-safe linkage. These mangled names appear in the

object file and the final executable file. Demangling

(decoding) converts these names back to their original

names to make program debugging easier. See also

mangling.

device. A computer peripheral or an object that

appears to the application as such. X/Open. ISO.1.

difference. Given two sets A and B, the difference

(A-B) is the set of all elements contained in A but not

in B. For bags, there is an additional rule for duplicates:

If bag P contains an element m times and bag Q

contains the same element n times, then, if m>n, the

difference contains that element m-n times. If m≤n, the

difference contains that element zero times.

directory. A type of file containing the names and

controlling information for other files or other

directories. IBM.

display. To direct the output to the user’s terminal. If

the output is not directed to the terminal, the results

are undefined. X/Open.

DLBL. Disk Label Information job control statement.

double-byte character set. See DBCS.

DTF (Define the File). Generalized term used for

various VSE Define the File macros. For example,

DTFCD, DTFSD and DTFPR.

dump. To copy data in a readable format from main

or auxiliary storage onto an external medium such as

tape, diskette, or printer. IBM.

dynamic. Pertaining to an operation that occurs at the

time it is needed rather than at a predetermined or

fixed time. IBM.

dynamic storage. Synonym for automatic storage.

E

EBCDIC (extended binary-coded decimal interchange

code). A coded character set of 256 8-bit characters.

IBM.

E-format. Floating-point format, consisting of a

number in scientific notation. IBM.

element. The component of an array, subrange,

enumeration, or set.

Glossary 489

empty string. (1) A string whose first byte is a null

byte. Synonymous with null string. X/Open. (2) A

character array whose first element is a null character.

ISO.1.

enclave. In LE/VSE, an independent collection of

routines, one of which is designated as the main

routine. An enclave is roughly analogous to a program

or run unit.

entry point. In assembler language, the address or

label of the first instruction that is executed when a

routine is entered for execution.

exception. (1) Any user, logic, or system error detected

by a function that does not itself deal with the error

but passes the error on to a handling routine (also

called throwing the exception). (2) In programming

languages, an abnormal situation that may arise during

execution, that may cause a deviation from the normal

execution sequence, and for which facilities exist in a

programming language to define, raise, recognize,

ignore, and handle it; for example, (ON-) condition in

PL/I, exception in ADA. ISO-JTC1.

executable file. A regular file acceptable as a new

process image file by the equivalent of the exec family

of functions, and thus usable as one form of a utility.

The standard utilities described as compilers can

produce executable files, but other unspecified methods

of producing executable files may also be provided.

The internal format of an executable file is unspecified,

but a conforming application cannot assume an

executable file is a text file. X/Open.

extension. (1) An element or function not included in

the standard language. (2) File name extension.

F

FBA disk device. Fixed-block architecture disk device.

feature test macro. A macro (#define) used to

determine whether a particular set of features will be

included from a header. X/Open. ISO.1.

file. A named set of records stored or processed as a

unit. Synonymous with data set.

file descriptor. (1) A small positive integer that the

system uses instead of the file name to identify an open

file. IBM. (2) A per-process unique, non-negative

integer used to identify an open file for the purpose of

file access. ISO.1.

 The value of a file descriptor is from zero to

{OPEN_MAX}—which is defined in limits.h. A process

can have no more than {OPEN_MAX} file descriptors

open simultaneously. File descriptors may also be used

to implement directory streams. X/Open.

file-ID. The unique name associated with a file on a

volume.

file mode. The mode in which a file is opened (read,

write, update, etc.).

file offset. The byte position in the file where the next

I/O operation begins. Each open file description

associated with a regular file, block special file, or

directory has a file offset. A character special file that

does not refer to a terminal device may have a file

offset. There is no file offset specified for a FIFO.

X/Open. ISO.1.

file scope. A name declared outside all blocks and

classes has file scope and can be used after the point of

declaration in a source file.

first element. The element visited first in an iteration

over a collection. Each collection has its own definition

for first element. For example, the first element of a

sorted set is the element with the smallest value.

fixed-block architecture (FBA) disk device. A disk

device that stores data in blocks of fixed size. These

blocks are addressed by block number relative to the

beginning of the file. Contrast with CKD device.

flat collection. A collection that has no hierarchical

structure.

for statement. A looping statement that contains the

word for followed by a list of expressions enclosed in

parentheses (the condition) and a statement (the

action). Each expression in the parenthesized list is

separated by a semicolon. You can omit any of the

expressions, but you cannot omit the semicolons.

function. A named group of statements that can be

called and evaluated and can return a value to the

calling statement. IBM.

function call. An expression that moves the path of

execution from the current function to a specified

function and evaluates to the return value provided by

the called function. A function call contains the name of

the function to which control moves and a

parenthesized list of values. IBM.

G

global. Pertaining to information available to more

than one program or subroutine. IBM.

global variable. A symbol defined in one program

module that is used in other independently compiled

program modules.

glyph. (1) An image, usually of a character, in a font.

(2) A graphic symbol whose appearance conveys

information; for example, the vertical and horizontal

arrows on cursor keys that indicate the directions in

which they control cursor movement, the sunburst

symbol on the screen illumination control of a display

device.

490 LE/VSE: C Run-Time Programming Guide

GMT (Greenwich Mean Time). The solar time at the

meridian of Greenwich, formerly used as the prime

basis of standard time throughout the world. GMT has

been superseded by coordinated.

Greenwich Mean Time. See GMT.

H

header file. A text file that contains declarations used

by a group of functions, programs, or users.

High Level Assembler. An IBM licensed program.

Translates symbolic assembler language into binary

machine language.

I

identifier. (1) One or more characters used to identify

or name a data element and possibly to indicate certain

properties of that data element. ANSI/ISO. (2) In

programming languages, a token that names a data

object such as a variable, an array, a record, a

subprogram, or a function. ANSI/ISO. (3) A sequence of

letters, digits, and underscores used to identify a data

object or function. IBM.

if statement. A conditional statement that contains the

keyword if, followed by an expression in parentheses

(the condition), a statement (the action), and an

optional else clause (the alternative action). IBM.

ILC (interlanguage call). A function call made by one

language to a function coded in another language.

Interlanguage calls are used to communicate between

programs written in different languages.

ILC (interlanguage communication). The ability of

routines written in different programming languages to

communicate. ILC support enables the application

writer to readily build applications from component

routines written in a variety of languages.

include directive. A preprocessor directive that causes

the preprocessor to replace the statement with the

contents of a specified file.

include file. See header file.

initializer. An expression used to initialize data

objects. In the C language, there are two types of

initializers:

1. An expression followed by an assignment operator

is used to initialize fundamental data type objects

2. An expression enclosed in braces ({ }) is used to

initialize aggregates.

input stream. A sequence of control statements and

data submitted to a system from an input unit.

Synonymous with input job stream, job input stream.

IBM.

inlined function. A function whose actual code

replaces a function call. The function must be declared

inline using the #pragma inline directive.

instruction. A program statement that specifies an

operation to be performed by the computer, along with

the values or locations of operands. This statement

represents the programmer’s request to the processor to

perform a specific operation.

integer constant. A decimal, octal, or hexadecimal

constant.

interlanguage call. See ILC. (1)

internationalization. The capability of a computer

program to adapt to the requirements of different

native languages, local customs, and coded character

sets. X/Open.

I/O. Input/output.

I/O Stream library. A class library that provides the

facilities to deal with many varieties of input and

output.

iteration. The process of repeatedly applying a

function to a series of elements in a collection until

some condition is satisfied.

J

JCL (job control language). A control language used

to identify a job to an operating system and to describe

the job’s requirements. IBM.

job control. A facility that allows users to selectively

stop (suspend) the execution of a process and continue

(resume) their execution at a later point. X/Open. ISO.1.

K

key function. (1) When used on a flat collection, a

function that returns a reference to the key of an

element. (2) In general, a function, called by a member

function, that manipulates the keys of a class.

key set. An unordered flat collection that uses keys

and does not allow duplicate elements.

keyword. (1) A predefined word reserved for the C

language, that may not be used as an identifier. (2) A

symbol that identifies a parameter in JCL.

L

label. (1) An identifier within or attached to a set of

data elements. ISO Draft. (2) An identification record

for a tape, disk, or diskette volume or for a file on such

a volume.

Glossary 491

LE/VSE. Abbreviated form of IBM Language

Environment for VSE/ESA. Pertaining to an IBM

software product that provides a common run-time

environment and run-time services to applications

compiled by LE/VSE-conforming compilers.

librarian. The set of programs that maintains, services,

and organizes the system and private libraries.

library. (1) A collection of functions, calls, subroutines,

or other data. IBM. (2) A set of object modules that can

be specified in a link command.

library member. The smallest unit of data to be stored

in and retrieved from a sublibrary.

line. A sequence of zero or more non-newline

characters plus a terminating newline character.

X/Open.

link. To interconnect items of data or portions of one

or more computer programs; for example, linking of

object programs by a linkage editor to produce an

executable file.

linkage editor. Synonym for linker.

linker. A computer program for creating phases from

one or more object modules by resolving cross

references among the modules and, if necessary,

adjusting addresses. IBM.

literal. (1) In programming languages, a lexical unit

that directly represents a value; for example, 14

represents the integer fourteen, “APRIL” represents the

string of characters APRIL, 3.0005E2 represents the

number 300.05. ISO-JTC1. (2) A symbol or a quantity in

a source program that is itself data, rather than a

reference to data. IBM. (3) A character string whose

value is given by the characters themselves; for

example, the numeric literal 7 has the value 7, and the

character literal CHARACTERS has the value

CHARACTERS. IBM.

local. (1) In programming languages, pertaining to the

relationship between a language object and a block

such that the language object has a scope contained in

that block. ISO-JTC1. (2) Pertaining to that which is

defined and used only in one subdivision of a

computer program. ANSI/ISO.

locale. The definition of the subset of a user’s

environment that depends on language and cultural

conventions. X/Open.

lvalue. An expression that represents a data object

that can be both examined and altered.

M

macro. An identifier followed by arguments (may be a

parenthesized list of arguments) that the preprocessor

replaces with the replacement code located in a

preprocessor #define directive.

macro instruction. Synonym for macro.

main function. An external function with the

identifier main that is the first user function, aside from

exit routines, to get control when program execution

begins. Each C program must have exactly one function

named main.

mangling. The encoding during compilation of

identifiers such as function and variable names to

include type and scope information. The prelinker uses

these mangled names to ensure type-safe linkage. See

also demangling.

mask. A pattern of characters that controls the

keeping, deleting, or testing of portions of another

pattern of characters. ISO-JTC1. ANSI/ISO.

member. (1) A data object or function in a structure or

union. Members can also be enumerations, bit fields,

and type names. (2) The smallest unit of data to be

stored in and retrieved from a sublibrary.

migrate. To move to a changed operating

environment, usually to a new release or version of a

system. IBM.

mode. A collection of attributes that specifies a file’s

type and its access permissions. X/Open. ISO.1.

module. A program unit that usually performs a

particular function or related functions, and that is

distinct and identifiable with respect to compiling,

combining with other units, and loading.

multibyte character. A mixture of single-byte

characters from a single-byte character set and

double-byte characters from a double-byte character set.

N

name. In the C language, a name is commonly

referred to as an identifier. However, syntactically, a

name can be an identifier, operator function name,

conversion function name, or qualified name.

node. In a tree structure, a point at which subordinate

items of data originate. ANSI/ISO.

NULL. In the C language, a pointer that does not

point to a data object. IBM.

null character (NUL). The ASCII or EBCDIC character

’\0’ with the hex value 00, all bits turned off. It is used

to represent the absence of a printed or displayed

character. This character is named <NUL> in the

portable character set.

null pointer. The value that is obtained by converting

the number 0 into a pointer; for example, (void *) 0.

492 LE/VSE: C Run-Time Programming Guide

The C language guarantee that this value will not

match that of any legitimate pointer, so it is used by

many functions that return pointers to indicate an error.

X/Open.

null string. (1) A string whose first byte is a null byte.

Synonymous with empty string. X/Open. (2) A character

array whose first element is a null character. ISO.1.

null value. A parameter position for which no value is

specified. IBM.

null wide-character code. A wide-character code with

all bits set to zero. X/Open.

number sign. The character #, also known as pound

sign and hash sign. This character is named

<number-sign> in the portable character set.

O

object. A region of storage. An object is created when

a variable is defined or new is invoked. An object is

destroyed when it goes out of scope. (See also instance.)

object module. (1) All or part of an object program

sufficiently complete for linking. Assemblers and

compilers usually produce object modules. ISO Draft.

(2) A set of instructions in machine language produced

by a compiler from a source program. IBM.

open file. A file that is currently associated with a file

descriptor. X/Open. ISO.1.

open file description. A record of how a process or a

group of processes are accessing a file. Each file

descriptor refers to exactly one open file description,

but an open file description can be referred to by more

than one file descriptor. A file offset, file status, and file

access modes are attributes of an open file description.

X/Open. ISO.1.

operand. An entity on which an operation is

performed. ISO-JTC1. ANSI/ISO.

operating system (OS). Software that controls

functions such as resource allocation, scheduling,

input/output control, and data management.

operator precedence. In programming languages, an

order relation defining the sequence of the application

of operators within an expression. ISO-JTC1.

orientation of a stream. After application of an input

or output function to a stream, it becomes either

byte-oriented or wide-oriented. A byte-oriented stream

is a stream that had a byte input or output function

applied to it when it had no orientation. A

wide-oriented stream is a stream that had a wide

character input or output function applied to it when it

had no orientation. A stream has no orientation when it

has been associated with an external file but has not

had any operations performed on it.

overflow. (1) A condition that occurs when a portion

of the result of an operation exceeds the capacity of the

intended unit of storage. (2) That portion of an

operation that exceeds the capacity of the intended unit

of storage. IBM.

P

pack. To store data in a compact form in such a way

that the original form can be recovered.

parameter. (1) In the C language, an object declared as

part of a function declaration or definition that acquires

a value on entry to the function, or an identifier

following the macro name in a function-like macro

definition. X/Open. (2) Data passed between programs

or procedures. IBM.

path name. (1) A string that is used to identify a file.

A path name consists of, at most, {PATH_MAX} bytes,

including the terminating null character. It has an

optional beginning slash, followed by zero or more file

names separated by slashes. If the path name refers to

a directory, it may also have one or more trailing

slashes. Multiple successive slashes are considered to be

the same as one slash. A path name that begins with

two successive slashes may be interpreted in an

implementation-dependent manner, although more than

two leading slashes will be treated as a single slash.

The interpretation of the path name is described in

pathname resolution. ISO.1. (2) A file name specifying all

directories leading to the file.

path name resolution. Path name resolution is

performed for a process to resolve a path name to a

particular file in a file hierarchy. There may be multiple

path names that resolve to the same file. X/Open.

path prefix. A path name, with an optional ending

slash, that refers to a directory. ISO.1.

pattern. A sequence of characters used either with

regular expression notation or for path name

expansion, as a means of selecting various characters

strings or path names, respectively. The syntaxes of the

two patterns are similar, but not identical. X/Open.

period. The character (.). The term period is contrasted

against dot, which is used to describe a specific

directory entry. This character is named <period> in the

portable character set.

phase. All or part of a computer program in a form

suitable for loading into main storage for execution. A

phase is usually the output of a linkage editor.

pointer. In the C language, a variable that holds the

address of a data object or a function. IBM.

portable character set. The set of characters specified

in POSIX 1003.2, section 2.4:

Glossary 493

<NUL>

<alert>

<backspace>

<tab>

<newline>

<vertical-tab>

<form-feed>

<carriage-return>

<space>

<exclamation-mark> !

<quotation-mark> "

<number-sign> #

<dollar-sign> $

<percent-sign> %

<ampersand> &

<apostrophe> '

<left-parenthesis> (

<right-parenthesis>)

<asterisk> *

<plus-sign> +

<comma> ,

<hyphen> –

<hyphen-minus> –

<period> .

<slash> ⁄

<zero> 0

<one> 1

<two> 2

<three> 3

<four> 4

<five> 5

<six> 6

<seven> 7

<eight> 8

<nine> 9

<colon> :

<semicolon> ;

<less-than-sign> <

<equals-sign> =

<greater-than-sign> >

<question-mark> ?

<commercial-at> @

<A> A

 B

<C> C

<D> D

<E> E

<F> F

<G> G

<H> H

<I> I

<J> J

<K> K

<L> L

<M> M

<N> N

<O> O

<P> P

<Q> Q

<R> R

<S> S

<T> T

<U> U

<V> V

<W> W

<X> X

<Y> Y

<Z> Z

<left-square-bracket> [

<backslash> \

<reverse-solidus> \

<right-square-bracket>]

<circumflex> ^

<circumflex-accent> ^

<underscore> _

<low-line> _

<grave-accent> `

<a> a

 b

<c> c

<d> d

<e> e

<f> f

<g> g

<h> h

<i> i

<j> j

<k> k

<l> l

<m> m

<n> n

<o> o

<p> p

<q> q

<r> r

<s> s

<t> t

<u> u

<v> v

<w> w

<x> x

<y> y

<z> z

<left-brace> {

<left-curly-bracket> {

<vertical-line> |

<right-brace> }

<right-curly-bracket> }

<tilde> ~

portability. The ability of a programming language to

compile successfully on different operating systems

without requiring changes to the source code.

positional parameter. A parameter that must appear

in a specified location relative to other positional

parameters. IBM.

precedence. The priority system for grouping different

types of operators with their operands.

predefined macros. Frequently used routines provided

by an application or language for the programmer.

preinitialization. A process by which an environment

or library is initialized and can then be used repeatedly

to avoid the inefficiency of initializing the environment

or library each time it is needed.

494 LE/VSE: C Run-Time Programming Guide

prelinker. A utility provided with LE/VSE that can be

used for application programs that are reentrant, or

have external symbol names that are longer than what

the linkage editor supports. The prelinker is invoked

before the linkage editor.

preprocessor. A phase of the compiler that examines

the source program for preprocessor statements that are

then executed, resulting in the alteration of the source

program.

printable character. One of the characters included in

the print character classification of the LC_CTYPE

category in the current locale. X/Open.

programmer logical unit. A logical unit available

primarily for user-written programs.

Q

Query Management Facility (QMF). Pertaining to a

query and report writing facility that enables a variety

of tasks such as data entry, query building,

administration, and report analysis.

queue. A sequence with restricted access in which

elements can only be added at the back end (or bottom)

and removed from the front end (or top). A queue is

characterized by first-in, first-out behavior and

chronological order.

R

radix character. The character that separates the

integer part of a number from the fractional part.

X/Open.

reason code. A code that identifies the reason for a

detected error. IBM.

redirection. In the shell, a method of associating files

with the input or output of commands. X/Open.

reentrant. The attribute of a program or routine that

allows the same copy of a program or routine to be

used concurrently by two or more tasks.

refresh. To ensure that the information on the user’s

terminal screen is up-to-date. X/Open.

regular expression. (1) A mechanism to select specific

strings from a set of character strings. (2) A set of

characters, meta-characters, and operators that define a

string or group of strings in a search pattern. (3) A

string containing wildcard characters and operations

that define a set of one or more possible strings.

regular file. A file that is a randomly accessible

sequence of bytes, with no further structure imposed

by the system. X/Open. ISO.1.

relation. An unordered flat collection class that uses

keys, allows for duplicate elements, and has element

equality.

relative path name. The name of a directory or file

expressed as a sequence of directories followed by a file

name, beginning from the current directory. See path

name resolution. IBM.

root. A node that has no parent. All other nodes of a

tree are descendants of the root.

run-time library. A compiled collection of functions

whose members can be referred to by an application

program during run-time execution. Typically used to

refer to a dynamic library that is provided in object

code, such that references to the library are resolved

during the linking step. The run-time library itself is

not statically bound into the application modules.

S

SAM. Sequential access method.

SAM ESDS file. A SAM file managed in VSE/VSAM

space, so it can be accessed by both SAM and

VSE/VSAM macros.

scope. (1) That part of a source program in which a

variable is visible. (2) That part of a source program in

which an object is defined and recognized.

sequence. A sequentially ordered flat collection.

sequential data set. A data set whose records are

organized on the basis of their successive physical

positions, such as on magnetic tape. IBM.

session. A collection of process groups established for

job control purposes. Each process group is a member

of a session. A process is considered to be a member of

the session of which its process group is a member. A

newly created process joins the session of its creator. A

process can alter its session membership. There can be

multiple process groups in the same session. X/Open.

ISO.1.

shared virtual area (SVA). In VSE, a high address area

that contains a system directory list (SDL) of frequently

used phases, resident programs shared between

partitions, and an area for system support.

signal. (1) A condition that may or may not be

reported during program execution. For example,

SIGFPE is the signal used to represent erroneous

arithmetic operations such as a division by zero. (2) A

mechanism by which a process may be notified of, or

affected by, an event occurring in the system. Examples

of such events include hardware exceptions and

specific actions by processes. The term signal is also

used to refer to the event itself. X/Open. ISO.1.

Glossary 495

signal handler. A function to be called when the

signal is reported.

slash. The character /, also known as solidus. This

character is named <slash> in the portable character

set.

S-name. An external name in an object module

produced by compiling with the NOLONGNAME

option. Such a name is up to 8 characters long and

single case.

software signal. A signal that is explicitly raised by

the user (by using the raise() function).

source file. A file that contains source statements for

such items as high-level language programs and data

description specifications. IBM.

source program. A set of instructions written in a

programming language that must be translated to

machine language before the program can be run. IBM.

space character. The character defined in the portable

character set as <space>. The space character is a

member of the space character class of the current

locale, but represents the single character, and not all of

the possible members of the class. X/Open.

spanned record. A logical record contained in more

than one block. IBM.

specifiers. Used in declarations to indicate storage

class, fundamental data type and other properties of

the object or function being declared.

SQL (Structured Query Language). A language

designed to create, access, update and free data tables.

stack storage. Synonym for automatic storage.

standard error. An output stream usually intended to

be used for diagnostic messages. X/Open.

standard input. (1) An input stream usually intended

to be used for primary data input. X/Open. (2) The

primary source of data entered into a command.

Standard input comes from the keyboard unless

redirection or piping is used, in which case standard

input can be from a file or the output from another

command. IBM.

standard output. An output stream usually intended

to be used for primary data output. X/Open.

statement. An instruction that ends with the character

; (semicolon) or several instructions that are

surrounded by the characters { and }.

static. A keyword used for defining the scope and

linkage of variables and functions. For internal

variables, the variable has block scope and retains its

value between function calls. For external values, the

variable has file scope and retains its value within the

source file. For class variables, the variable is shared by

all objects of the class and retains its value within the

entire program.

stream. See data stream.

string. A contiguous sequence of bytes terminated by

and including the first null byte. X/Open.

string constant. Zero or more characters enclosed in

double quotation marks.

struct. An aggregate of elements, having arbitrary

types.

structure. A construct (a class data type) that contains

an ordered group of data objects. Unlike an array, the

data objects within a structure can have varied data

types. A structure can be used in all places a class is

used. The initial projection is public.

stub routine. Within run-time libraries, contains the

minimum lines of code required to locate a given

routine at run time.

sublibrary. In VSE, a subdivision of a library.

Members can only be accessed in a sublibrary.

subscript. One or more expressions, each enclosed in

brackets, that follow an array name. A subscript refers

to an element in an array.

support. In system development, to provide the

necessary resources for the correct operation of a

functional unit. IBM.

SVA. See shared virtual area.

system logical unit. A logical unit available primarily

for operating system use.

T

tab character. A character that in the output stream

indicates that printing or displaying should start at the

next horizontal tabulation position on the current line.

The tab is the character designated by ’\t’ in the C

language. If the current position is at or past the last

defined horizontal tabulation position, the behavior is

unspecified. It is unspecified whether the character is

the exact sequence transmitted to an output device by

the system to accomplish the tabulation. X/Open.

 This character is named <tab> in the portable character

set.

task. (1) In a multiprogramming or multiprocessing

environment, one or more sequences of instructions

treated by a control program as an element of work to

be accomplished by a computer. ISO-JTC1. ANSI/ISO.

(2) A routine that is used to simulate the operation of

programs. Tasks are said to be nonpreemptive because

only a single task is executing at any one time. Tasks

496 LE/VSE: C Run-Time Programming Guide

are said to be lightweight because less time and space

are required to create a task than a true operating

system process.

task library. A class library that provides the facilities

to write programs that are made up of tasks.

template. A family of classes or functions with

variable types.

text file. A file that contains characters organized into

one or more lines. The lines must not contain NUL

characters and none can exceed {LINE_MAX}—which is

defined in limits.h—bytes in length, including the

newline character. The term text file does not prevent

the inclusion of control or other non-printable

characters (other than NUL). X/Open.

thread. The smallest unit of operation to be performed

within a process. IBM.

tilde. The character ~. This character is named <tilde>

in the portable character set.

TLBL. Tape Label Information job control statement.

token. The smallest independent unit of meaning of a

program as defined either by a parser or a lexical

analyzer. A token can contain data, a language

keyword, an identifier, or other parts of language

syntax. IBM.

tokenization. The process of parsing input into

tokens.

traceback. A section of a dump that provides

information about the stack frame, the program unit

address, the entry point of the routine, the statement

number, and the status of the routines on the call-chain

at the time the traceback was produced.

trap. An unprogrammed conditional jump to a

specified address that is automatically activated by

hardware. A recording is made of the location from

which the jump occurred. ISO-JTC1.

tree. A hierarchical collection of nodes that can have

an arbitrary number of references to other nodes. A

unique path connects every two nodes.

truncate. To shorten a value to a specified length.

type. The description of the data and the operations

that can be performed on or by the data. See also data

type.

type conversion. Synonym for boundary alignment.

type specifier. Used to indicate the data type of an

object or function being declared.

U

undefined behavior. Referring to a program or

function that may produce erroneous results without

warning because of its use of an indeterminate value,

or because of erroneous program constructs or

erroneous data.

underflow. A condition that occurs when the result of

an operation is less than the smallest possible nonzero

number.

union. (1) In the C language, a variable that can hold

any one of several data types, but only one data type at

a time. IBM. (2) For bags, there is an additional rule for

duplicates: If bag P contains an element m times and

bag Q contains the same element n times, then the

union of P and Q contains that element m+n times.

unspecified behavior. Referring to a program or

function that may produce erroneous results without

warning because of erroneous program constructs or

erroneous data.

user name. A string that is used to identify a user.

ISO.1.

V

variable. In programming languages, a language

object that may take different values, one at a time. The

values of a variable are usually restricted to a certain

data type. ISO-JTC1.

visible. Visibility of identifiers is based on scoping

rules and is independent of access.

VSAM (Virtual Storage Access Method). An IBM

licensed program that controls communication and the

flow of data in an SNA network. It provides

single-domain, multiple-domain, and interconnected

network capability. IBM.

W

while statement. A looping statement that contains

the keyword while followed by an expression in

parentheses (the condition) and a statement (the

action). IBM.

white space. (1) Space characters, tab characters,

form-feed characters, and newline characters. (2) A

sequence of one or more characters that belong to the

space character class as defined via the LC_CTYPE

category in the current locale. In the POSIX locale,

white space consists of one or more blank characters

(space and tab characters), newline characters,

carriage-return characters, form-feed characters, and

vertical-tab characters. X/Open.

Glossary 497

wide character. A character whose range of values can

represent distinct codes for all members of the largest

extended character set specified among the supporting

locales.

wide-character code. An integral value corresponding

to a single graphic symbol or control code. X/Open.

wide-character string. A contiguous sequence of

wide-character codes terminated by and including the

first null wide-character code. X/Open.

wide-oriented stream. See orientation of a stream.

wrapping of output. The automatic disposition of a

line of output onto two or more lines, necessitated by

the limitation of the width of the device or file to

which output is directed.

write. (1) To output characters to a file, such as

standard output or standard error. Unless otherwise

stated, standard output is the default output

destination for all uses of the term write. X/Open. (2) To

make a permanent or transient recording of data in a

storage device or on a data medium. ISO-JTC1.

ANSI/ISO.

498 LE/VSE: C Run-Time Programming Guide

Index

Special characters
__amrc structure

debugging I/O programs 131

using with VSAM 82

! (exclamation point)
entering and displaying 422

\ (backslash)
entering and displaying 422

\a (alarm) 59

\b (backspace) 59

\f (form feed) 59

\n (newline) 59

\r (carriage return) 59

\t (horizontal tab) 59

\v (vertical tab) 59

\x0E (DBCS shift out) 59

\x0F (DBCS shift in) 60

] (right square bracket) and [(left square

bracket)
entering and displaying 421

| (vertical bar)
entering and displaying 422

(number sign)
entering and displaying 422

__24malc() library function 266

__4kmalc() library function 267

__amrc2 structure
usage 134

__csplist() library function 293

__last_op codes for __amrc 134

__rsncode() macro 185

__xhotc() library function 263

__xhott() library function 264

__xhotu() library function 264

__xregs() library function 265

__xsacc() library function 265

__xsrvc() library function 266

__xusr() library function 266

__xusr2() library function 266

??=pragma filetag directive 407

#pragma
See pragma directives

abort() library function
HLL user exit and 217

acc= parameter for fopen()
memory file I/O 119

SAM I/O 51

VSAM data sets 88

VSE/Librarian I/O 75

asis parameter, fopen()
memory file I/O 119

SAM I/O 51

VSAM data sets 89

VSE/Librarian I/O 75

ASSGN statement 21

atoi() library function 196

blksize parameter
defaults 19

memory file I/O 119

SAM I/O 51

specifying 18

blksize parameter (continued)
VSAM data sets 88

VSE/Librarian I/O 75

byteseek parameter in fopen()
effects on SAM files 67

memory file I/O 119

SAM I/O 52

VSAM data sets 89

VSE/Librarian I/O 75

calloc() library function 227

system programming C

environment 238, 242, 255

cdump() library function 277

clearenv() library function 220

clock() library function 277

clrmemf() library function
memory I/O files 123

csid() library function 318

csnap() library function 277

ctdli() library function 277

ctrace() library function 277

decchk() library function 179

DLBL statement 21

DLBL-name
opening a memory I/O file 118

opening a SAM I/O file 48

opening a VSAM I/O file 86

DSECT utility
BITF0XL option 470

BLKSIZE option 471

COMMENT option 471

DEFSUB option 472

EQUATE option 472

HDRSKIP option 475

INDENT option 475

LOCALE option 476

LOWERCASE option 476

LRECL option 476

OUTPUT option 477

PPCOND option 478

RECFM option 480

SECT option 478

SEQUENCE option 479

structure produced 480

UNNAMED option 480

VSE batch 483

dsn= parameter for fopen()
memory file I/O 120

SAM I/O 52

VSAM data sets 89

VSE/Librarian I/O 76

exit() library function
CEEBINT HLL user exit and 217

in freestanding routines 232

return value under CICS 278

system programming C

environment 237, 242, 255

F-format records 6

fclose() library function
_EDC_COMPAT environment

variable 222

fdelrec() library function
using to delete records 84, 94

fetch() library function
calling other LE/VSE C Run-Time

modules 198

system programming C

environment 229

under CICS 277

fflush() library function
_EDC_COMPAT environment

variable 222

optimizing code 195

fgetc() library function
See reading

fgetpos() library function
_EDC_COMPAT environment

variable 222

See also positioning

optimizing code 195

fgets() library function
See reading

fgetwc() library function 30

fgetws() library function 30

fldata() library function
behavior 115

memory file I/O 123

SAM I/O files 70

VSE/Librarian I/O files 76

flocate() library function
VSAM data sets 82, 94

fopen() library function
See also opening

acc= parameter
See acc= parameter for fopen()

asis parameter
See asis parameter, fopen()

blksize parameter
See blksize parameter

byteseek parameter
See byteseek parameter in fopen()

noseek parameter
See noseek parameter

OS parameter
See OS parameter, fopen()

password= parameter
See password= parameter

recfm parameter
See RECFM (record format)

space= parameter
See space= parameter

type= parameter
See type= parameter

list of parameters, for
memory file I/O 118

SAM I/O 50

VSAM I/O 87

VSE/Librarian I/O 74

restrictions 19

fprintf() library function
See also writing

with decimal 172

© Copyright IBM Corp. 1995, 2005 499

fputc() library function
See also writing

optimizing code 195

fputs() library function
See also writing

optimizing code 195

fputwc() library function 31

fputws() library function 31

fread() library function
See also reading

optimizing code 195

free() library function 227

system programming C

environment 238, 242, 255

freopen() library function
See also opening

acc= parameter
See acc= parameter for fopen()

asis parameter
See asis parameter, fopen()

blksize parameter
See blksize parameter

noseek parameter
See noseek parameter

password= parameter
See password= parameter

recfm parameter
See RECFM (record format)

space= parameter
See space= parameter

type= parameter
See type= parameter

VSAM data sets 85

fscanf() library function
See also reading

decimal 174

fseek() library function
_EDC_COMPAT environment

variable 222

See also repositioning

optimizing code 195

fsetpos() library function
See also repositioning

optimizing code 195

ftell() library function
_EDC_COMPAT environment

variable 222

See repositioning

fupdate() library function
use of 84, 92

fwrite() library function
See writing

genxlt utility 371

getc() library function
See reading

getchar() library function
See reading

getenv() library function 220

getsyntx() library function 318

getwc() library function 30

getwchar() library function 30

iconv library functions 377

iconv utility
converting code sets 375

preparing source code for

exporting 404

iscics() library function 277

localdtconv() library function 318

localeconv() library function 318

lrecl (logical record length) parameter
DSECT utility option 476

fopen() library function
memory file I/O 119

SAM I/O 51

VSAM data sets 88

VSE/Librarian I/O 74

defaults 19

malloc() library function 227

system programming C

environment 238, 242, 255

memcmp() library function 195

memset() library function 196

nl_langinfo() library function 318

noseek parameter
memory file I/O 119

SAM I/O 52

VSAM data sets 89

VSE/Librarian I/O 75

OS parameter, fopen()
memory file I/O 120

SAM I/O 52

VSAM I/O 89

VSE/Librarian I/O 75

password= parameter
memory file I/O 119

SAM I/O 51

VSAM data sets 89

VSE/Librarian I/O 75

printf() library function
with decimal 172

putc() library function
optimizing code 195

putchar() library function
See writing

puts() library function
See writing

putwc() library function 31

putwchar() library function 31

raise() library function
error handling 181

HLL user exit and SIGTERM 217

realloc() library function 227

system programming C

environment 238, 242, 255

remove() library function
memory I/O files 123

SAM I/O files 70

VSE/Librarian I/O files 76

rename() library function
SAM I/O files 70

VSE/Librarian I/O files 76

rewind() library function
See repositioning

rewind= parameter for fopen()
memory file I/O 120

SAM I/O 52

VSAM data sets 89

VSE/Librarian I/O 75

scanf() library function
decimal 174

setenv() library function
setting environment variables 220

setlocale() library function 318

signal() library function
error handling 181

space= parameter
memory file I/O 119

SAM I/O 51

VSAM data sets 88

VSE/Librarian I/O 75

sprintf() library function
in freestanding routines 232

system programming C

environment 237, 242, 255

with decimal 172

sscanf() library function
character to integer conversions 196

decimal 174

stderr
redirecting with LE/VSE MSGFILE

option 39

strcat() library function 196

strlen() library function 196

swprintf() library function 31

swscanf() library function 31

SYSLOG, special considerations 49

system() library function
CICS 277

library extension 198

TLBL statement 21

TLBL-name
opening a memory I/O file 118

opening a SAM I/O file 48

opening a VSAM I/O file 86

TRAP run-time option
CEEBXITA assembler user exit

and 205

how CEEAUE_ABND is affected

by 209

type= parameter
memory file I/O 119

SAM I/O 51

VSAM data sets 88

VSE/Librarian I/O 75

ungetc() library function
_EDC_COMPAT environment

variable 222

SEEK_CUR 67

memory file I/O, effect on

fflush() 122

SAM I/O, effect on fflush() 65

SAM I/O, effect on fgetpos() and

ftell() 67

ungetwc() library function
SEEK_CUR 35

effect on fflush(), wide character

I/O 34

effect on fgetpos(), ftell() and

fseek() 35

V-format records 9

VB-format records 9

VBS-format records 9

vfprintf() library function 172

See writing

vprintf() library function 172

See writing

VS-format records 9

vsprintf() library function 172

vswprintf() library function 31

wcsid() library function 318

500 LE/VSE: C Run-Time Programming Guide

{ (left brace)
entering and displaying 422

} (right brace)
entering and displaying 422

 ̂ (caret)
entering and displaying 421

~ (tilde)
entering and displaying 422

A
abend

TRAP run-time option 206

CICS and assembler user exit 209

codesrefid=abend
CEEBXITA, CEEAUE_RETURN

field 207

specifying those to be

percolated 210

dumps, CEEAUE_DUMP 209

generating 255

percolating 205, 210

requesting
dump 209

with CEEBXITA 205

system 205

user 205, 210

abnormal program termination
See abend

absolute value, decimal data type 175

additive operators, decimal 163

addressing mode
See AMODE processing option

alarm escape sequence \a 59

alternate code point support 401

AMODE processing option
for CEEBXITA user exit 206

AMODE/RMODE under CICS 271, 291

application service routines 242

argc under CICS 276

argv under CICS 276

arithmetic
constructions 194

operators, decimal data type
additive 163

conditional 165

equality 164

multiplicative 163

relational 164

ASA (American Standards Association)
files

description 6

processing 26

overview 25

print-control characters 25

assembler
epilog 145

generation of C structures 480

interlanguage calls 143

level 144

macros 143

multiple invocations 149

prolog 144

system programming alternative 227

user exits
CEEBXITA 202

assignment
operators, decimal 166

standard stream 39

B
backspace escape sequence \b 59

BDAM files, restriction 47

BDW (block descriptor word)
viewing 50

binary
files 7

byte stream behavior 13

fixed behavior 7

undefined format behavior 12

variable behavior 10

I/O, description 3

using fseek() and ftell(), SAM

I/O 67

bit fields 198

BITF0XL DSECT utility option 470

BLKSIZE DSECT utility option 471

block
viewing I/O blocks 50

block descriptor word (BDW)
See BDW

block size parameter
See blksize parameter

blocked records 6

buffers
full buffering 23

line buffering 23

no buffering
memory files 23

SAM I/O 56

terminology 23

using 23

VSE/Librarian I/O 76

building 227

persistent C environments 238

system exit routines 234

user-server environments 255

built-in library functions
list of 467

optimizing code 195

C
C

interlanguage calls
with assembler 143

locale
comparing with POSIX and SAA

locales 369

defined 363

C interlanguage calls
with assembler 143

C locale
comparing with POSIX and SAA

locales 369

defined 363

CALL
command 293

calling
assembler from C 143

C from assembler 143

calling (continued)
functions repeatedly 149

card
punch output 49

reader input 49

caret character
See ̂ (caret)

carriage return escape sequence \r 59

cast operator 167

decimal 167

cast operator, decimal 167

CEEAUE_ parameters 205

CEEBINT HLL user exit
customizing 203

exit routine 220

invoking 202

using default version 203

CEEBXITA assembler user exit
abends 205

customizing for your installation 203

during enclave termination 204

during process termination 205

effects of run-time options 205, 209

error handling 205

invoking 202, 204

using default version 203

CEESTART 227

data set 227

creating modules without 229

CEESTART data set 227

creating modules without 229

CESE, CICS data queue 127

CESO, CICS data queue 127

character set
hexadecimal values 429

POSIX 417

charmap file
example 445

input 417

restriction, Japanese Katakana 419

CHARMAP section 326

CHARSETID section 328

CICS (Customer Information Control

System)
cdump() library function 277

clock() library function 277

csnap() library function 277

ctdli() library function 277

ctrace() library function 277

fetch() library function 277

iscics() library function 277

release() library function 277

system() library function 277

AMODE/RMODE

considerations 271, 291

and CICS coexistence 271

arguments to C main() 276

CESE data queue 127

CESO data queue 127

compile 284, 289

Cross System Product (CSP) 293

CSD considerations 291

define and run the program 291

designing and coding a program 271

developing a C program 271

dump functions 277

including CSD 271

Index 501

CICS (Customer Information Control

System) (continued)
input and output 17, 127

interlanguage support 279

link considerations 291

link phase 291

linking for reentrancy 291

locale support 277, 415

memory file support 276

overview 271

packed decimal support 277

prelinking 291

preparing for use with LE/VSE 271

printing CICS-wide run-time

options 271

program processing 291

program termination 278

redirecting standard streams 42

reentrancy 291

requirements 271

run-time 276

options 276

run-time options 276

standard stream support 275

storage management 278

tailoring DCT 271

Transaction Server 271

translate 284

using LE/VSE C Run-Time library

support 276

using with DL/I 277

CICS coexistence 271

CICS-wide run-time options,

printing 271

clearing memory 196

closing
LE/VSE message file 130

memory files 123

SAM I/O files 70

VSAM data sets 102

VSE/Librarian I/O files 76

COBOL
assembler user exit 204

code
motion 191

point mapping 429

coded character set
CICS support 271

considerations with locale 399

conversion during compile 408

conversion utilities 371

converters supplied 377

definition 487

IBM-1047
converting code from 457

converting code to 404

IBM-1047 vs. IBM-293 400

independence 406

related to compile-edit cycle 406

collating sequence difference, SAA and

POSIX 369

COMMENT DSECT utility option 471

common expression elimination 191

Common Programming Interface

(CPI) 307

compile-edit cycle related to coded

character set 406

compiler options, locale 408

compiling for a locale 408

condition
severity, CEEBXITA assembler user

exit 208

conditional operators, decimal 165

constant
fixed-point decimal 160

propagation 191

control characters
ASA text files 25

recognized by LE/VSE C Run-Time

text files 3

SAM I/O text files 59

conversions
code set 371

coding with optimizations 194

decimal types
decimal to decimal 168

decimal to float 171

decimal to integer 170

float to decimal 171

integer to decimal 170

hybrid code from IBM-1047 457

hybrid code to IBM-1047 404

converters, locale code set 377

CPI (Common Programming

Interface) 307

Cross System Product (CSP)
See CSP

CSD, including 271

CSECT (control section) 227

CEESTART 229

CSP (Cross System Product)
common data types 293

overview 293

passing control 293

passing parameters 293

under CICS 293

CSP/AD (Cross System

Product/Application

Development) 293

CSP/AE (Cross System

Product/Application Execution) 293

Customer Information Control System

(CICS)
See CICS

customizing locales 392

CXIT control block 205

D
DB2

locale support 415

with LE/VSE C Run-Time 311

DBCS (Double-Byte Character Support)
input and output functions 29

reading 30

shift in character 60

shift out character 59

writing 31

DCT, tailoring 271

dead code elimination 191

dead store elimination 191

Debug Tool for VSE/ESA, CEEBINT 214

Debug Tool/VSE, system programming

environment 227

debugging, I/O programs 131

DEC_DIG decimal constant
numerical limit 161

range of values 159

DEC_EPSILON decimal constant 161

DEC_MAX decimal constant 161

DEC_MIN decimal constant 161

DEC_PRECISION decimal constant
numerical limit 161

range of values 159

decimal data type
absolute value 175

assignments 161

constants 160

conversions 167

declarations 159

exception handling 179

fixing sign of 174

operators 161

printing with library functions 172

validating 174

variables 160

viewing with library functions 172

DECIMAL DSECT utility option 471

declarations
decimal 159

using optimization 197

default
fopen() 19

BLKSIZE, fopen() 19

C locales for POSIX, SAA, and

S370 363

locales 363, 369

LRECL, fopen() 19

RECFM, fopen() 19

DEFSUB DSECT utility option 472

delete
named module from storage 260

VSAM records 94

differences among C, POSIX, and SAA

locales 369

differences between SAA C and POSIX

C 369

digitsof operator 166

direct processing 92

disabled signals 182

displaying variant characters 421

DL/I (Data Language/I)
error handling 301

other considerations 302

using with CICS 277

with LE/VSE C Run-Time 301

Double-Byte Character Support (DBCS)
See DBCS

DSECT utility
DECIMAL option 471

UNIQUE option 479

dsqcommc.h header file 307

dumps
requesting in the CEEBXITA assembler

user exit 205, 209

duplicate alternate index keys
retrieval sequence 91

under VSAM 89

DXFR, transfer control 293

dynamic 227

libraries 227

502 LE/VSE: C Run-Time Programming Guide

dynamic memory 198

E
EDCDSAD macro 144, 145

EDCDXD macro 156

EDCEPIL macro 144, 145

EDCLA macro 156

EDCPRLG macro 144

EDCRCINT routine 234

EDCX4KGT routine 258

EDCXABND routine 255

EDCXENV module 237

EDCXEXIT module 227

exit(), system programming

version 237, 242, 255

freestanding applications 234

EDCXFREE routine 258

EDCXGET routine 256

EDCXHOTC library function 263

EDCXHOTC routine 242

EDCXHOTT library function 264

EDCXHOTT routine 242

EDCXHOTU library function 264

EDCXHOTU routine 242

EDCXLOAD routine 259

EDCXMEM module 227

freestanding applications 234

persistent environment 242

system programming memory

management 238, 255

EDCXREGS library function 265

EDCXSACC library function 265

EDCXSACC routine 227

accepting a request for service 254

EDCXSPRT module 227

sprintf(), system programming

version of 237

in freestanding applications 234

System programming version of

sprintf() 255

EDCXSRVC routine 254, 266

EDCXSRVI routine 227

establishing a server

environment 253

EDCXSRVN routine 227

initiating a server request 254

EDCXSTRT module 227, 230

in freestanding applications 234

EDCXUNLD routine 260

EDCXUSR library function 266

EDCXUSR2 library function 266

EDXCSPRT module 227

sprintf(), system programming

version 242

empty records
_EDC_ZERO_RECLEN 11, 224

enabled signals 182

enclave
terminating enclave created by

CEEBINT HLL user exit 217

terminating with an abend
using CEEAUE_ABND to 209

encoded offset 67

Entry-Sequenced Data Set (ESDS)
See ESDS

enum 198

ENV preprocessor directive, DL/I 301

environment variables
_CEE_ENVFILE 224

_EDC_BYTE_SEEK 52, 67, 75, 221

_EDC_COMPAT 222

_EDC_RRDS_HIDE_KEY 222

_EDC_STOR_INCREMENT 223

_EDC_STOR_INITIAL 223

_EDC_ZERO_RECLEN 224

locale 219

naming conventions 221

using 220

equality operators, decimal 164

EQUATE DSECT utility option
BIT suboption 472

BITL suboption 473

DEF suboption 474

ERRCOUNT run-time option 182

error handling
See exception handling

errors, debugging 185

ESDS (Entry-Sequenced Data Set)
alternate index keys 82

use of 79

established signals 182

euro support
codesets for 443

locales using euro-currency

codeset 431

examples
edcxgas1 26

edcxgca2 147

edcxgca4 146

edcxgca5 147

edcxgcc1 402

edcxgcc2 411

edcxgci1 273

edcxgci2 281

edcxgci3 284

edcxgcl1 361

edcxgcl2 362

edcxgcp5 294

edcxgcp6 295

edcxgcp7 298

edcxgdb4 311

edcxgdc1 163

edcxgdc2 164

edcxgdc3 176

edcxgdc4 178

edcxgdi1 133

edcxgdi2 137

edcxgdl1 369

edcxgec1 188

edcxgev1 225

edcxgev2 226

edcxghc1 457

edcxgim2 303

edcxgim3 305

edcxgmf3 124

edcxgmf4 125

edcxgmv1 423

edcxgof1 17

edcxgop1 189

edcxgop2 190

edcxgop3 194

edcxgos3 63

edcxgqm1 307

examples (continued)
edcxgre1 156

edcxgre3 157

edcxgre4 158

edcxgvs1 83

edcxgvs2 104

edcxgvs3 110

edcxgvs4 113

exception handling
C-DL/I 301

CEEBXITA assembler user exit 205

decimal data type 179

description 181

EXEC CICS commands
FREEMAIN 278

GETMAIN 278

how to use 272

LINK 277

RETURN 278

WRITEQ TD 136

XCTL 277

exporting source to other sites 404

expressions
optimizing 193

expressions, optimizing 193

external
static 155

variables 193, 198

F
file definition statements 21

filename
opening a memory file 117

opening a SAM file 47

opening a VSAM data set 85

opening a VSE/Librarian sublibrary

member 73

files
memory

closing 123

extending 122

flushing 122

opening 117

positioning 122

reading 121

repositioning 122

writing 121

multivolume 49

SAM
flushing 62

opening 47

reading 56

removing 70

renaming 70

repositioning 66, 70

writing to 58

VSAM
closing 102

deleting a record 94

flushing 96

locating a record 94

reading a record 91

repositioning 94

updating a record 92

writing a record 92

filetag pragma 407

Index 503

fixed-format records
overview 6

standard format 6

floating-point
registers 147

floating-point registers 147

flushing
binary streams, wide character

I/O 34

LE/VSE message file 130

memory files 122

SAM I/O files 62

text streams, wide character I/O 34

VSAM data sets 96, 100

VSE/Librarian I/O files 76

for statement 197

form feed escape sequence \f 59

format-D files restriction, ISCII/ASCII 5

freestanding applications 227

EDCXSTRT 230

full buffering 23

functions
arguments 193

G
global assembler user exit 203

global variables 193

H
hard-coding 401

hardware signals 183

HDRSKIP DSECT utility option 475

HEAP run-time option 228

high-level language user exits
CEEBINT 202

homepage, VSE xxiii

horizontal tab escape sequence \t 59

hybrid coded character set, using 401

I
I/O

binary stream 3

card input and output 49

category descriptions
CICS data queues 17

LE/VSE message files 17

memory files 16

SAM files 16

VSAM data sets 16

VSE/Librarian files 16

CICS 127, 275

debugging 131

errors 131

LE/VSE message file 129

memory file 117

multivolume files 49

optimizing code 195

printer output 49

record
introduction 4

model 5

SAM 47

summary table 15

I/O (continued)
tapes 49

text stream 3

types, general information 3

VSE/Librarian 73

wide characters 29

IBM-1047 coded character set
converting code from 457

converting code to 404

INCLUDE control statement
application specific user exit 203

INDENT DSECT utility option 475

initialization
nested enclave

CEEBXITA’s function code

for 207

using CEEBXITA 204

inlining
optimization 189

suggestions 192

input and output
See I/O

installation-wide assembler user exit 203

instruction scheduling 191

interface
CICS 271

DL/I 301

locale-sensitive 318

SQL/DS 311

interlanguage calls
C and assembler 143

international enabling
for programming languages 317

LE/VSE C Run-Time support for 318

internationalization
See locale

Internet address, VSE homepage xxiii

ISAM files, restriction 47

ISCII/ASCII format-D files, restriction 5

K
Key-Sequenced Data Set (KSDS)

See KSDS

keyboard, mapping variant

characters 421

KSDS (Key-Sequenced Data Set)
alternate index, under VSAM 82

description 79

L
LC_ALL locale variable 329

LC_COLLATE locale variable 329

LC_CTYPE locale variable 329

LC_MONETARY locale variable 329

LC_NUMERIC locale variable 329

LC_SYNTAX locale variable 350

LC_TIME locale variable 329

LC_TOD locale variable 329

LE/VSE
message file I/O, description 17

message file output 129

LE/VSE support
library functions for system

programming C facilities 263

LE/VSE support (continued)
system programming C facilities 227

left square bracket
See] (right square bracket) and [(left

square bracket)

Librarian
See VSE/Librarian I/O

library extensions 198

line buffering 23

linear data sets 80

linkage editor, CICS 271

linkage pragma for interlanguage

calls 147

listings
locale sensitive 412

loading
named module into storage 259

VSAM data sets 92

local
constant propagation 191

expression elimination 191

locale 363

DSECT utility option 476

C 363

categories
LC_ALL 329

LC_COLLATE locale variable 329

LC_MONETARY locale

variable 329

LC_NUMERIC locale variable 329

LC_SYNTAX locale variable 350

LC_TIME locale variable 329

LC_TOD locale variable 329

LC_TYPE locale variable 329

CICS support 271

compiler option examples 408

compiler options 408

converting existing work 403

customizing 359, 392

definition file 392

environment variables 219

generating an object deck 413

hybrid coded character set,

using 401

library functions
localdtconv() 318

localeconv() 318

setlocale() 318

macros 410

object 392

overview of LE/VSE C Run-Time

support 318

predefined 412

source-code functions summary 407

summary of support in compiler 409

using with CICS 277

localedef file, example 445

logical record length parameter
See lrecl (logical record length)

parameter

logical unit
opening a memory I/O file 118

opening a SAM I/O file 48

loop statements 197

LOWERCASE DSECT utility option 476

LRECL DSECT utility option 476

504 LE/VSE: C Run-Time Programming Guide

M
machine control codes 6

macros
EDCDSAD 144

EDCEPIL 144

EDCPRLG 144

use with locale 410

mapping, variant characters 421

MB_CUR_MAX macro 29

MB_CUR_MAX, effect on DBCS 29

memory files
ungetc() considerations 122

automatic name generation 120

closing 123

example program 124

extending 122

flushing 122

I/O, description 16

input and output 117

opening 117

positioning within 122

reading from 121

repositioning within 122

return values for fldata() 123

specifying asterisk as filename 120

support under CICS 276

text mode treated as binary 121

using to optimize code 198

writing to 121

MSGFILE (LE/VSE)
closing 130

flushing buffers 130

opening files 129

output 129

reading from 129

repositioning within 130

writing to 129

multibyte characters 29

effect of MB_CUR_MAX 29

reading 30

writing 31

multibyte characters, effect of

MB_CUR_MAX 29

multiple invocations, preinitialized

program 149

multiplicative operators, decimal 163

multivolume data sets
opening 49

N
naming

environment variables 221

national language support
See locale

natural reentrancy 153

newline escape sequence \n 59

non-disk devices, I/O 49

nonoverrideable run-time options in the

user exit 209

O
opening

CICS data queues 17

determining type of file to open 15

opening (continued)
files for I/O, overview 15

LE/VSE message files 17, 129

memory files 16

memory I/O files 117

multibyte character files 30

SAM files 16

VSAM data sets 16, 85

VSE/Librarian members 16

operators, decimal
arithmetic 163

assignment 166

cast 167

summary 167

unary 166

optimization
noseek parameter for SAM I/O 52

noseek parameter for VSE/Librarian

I/O 75

arithmetic constructions 194

code motion 191

common expression elimination 191

constant propagation 191

control constructs 197

conversions 194

dead code elimination 191

dead store elimination 191

declarations 197

dynamic memory 198

expressions 193

fixed standard format records 6

function arguments 193

inlining 189, 192

input/output 195

instruction scheduling 191

levels 189

library extensions 198

library functions 195

loop statements 197

pointers 193

programming recommendations 6,

192

straightening 191

strength reduction 191

techniques 189

value numbering 191

variables 193

OS linkage 144, 147

OUTPUT DSECT utility option 477

overrideable run-time options in the user

exit 209

P
packed decimal

assignments 161

conversions 167

declarations 159

operators 161

using with CICS 277

variables 160

parameter 144

list, OS 144

passing, OS 144

passing streams across system() calls 42

PATH, under VSAM 82

performance
noseek parameter for SAM I/O 52

noseek parameter for VSE/Librarian

I/O 75

impact from byteseek mode for SAM

files 68

improvements by using fixed standard

format records 6

memory files 117

opening memory files 120

specifying FBS format 51

persistent C environments 238

PLIST 227

directive (IMS) 227

system programming

environment 229

PLIST preprocessor directive, DL/I 301

pointers 193

optimization 193

portable character set 399

positioning
LE/VSE message file 130

memory files 122

SAM I/O files 66

VSE/Librarian I/O files 76

POSIX
character set 417

locale, defined 363

POSIX C locale and SAA C locale

differences 369

PPCOND DSECTutility option 478

pragma directives
environment 234, 235

filetag 407

inline 467

runopts 227, 261

DL/I 301

plist 229

PRD2.SCEEBASE 144

precisionof operator 167

predefined locale 412

preinitialization 149

prelinker
assembler user exit for termination

of 207

punch
See card, punch output

Q
QMF (Query Management Facility)

callable interface 307

Query Management Facility (QMF)
See QMF

R
random seeking

See byteseek parameter in fopen()

RBA (Random Byte Address)
in VSAM 82

RDW (record descriptor word)
viewing 50

reader
See card, reader input

Index 505

reading
from memory files 121

from the LE/VSE message file 129

from VSAM data sets 91

multibyte characters 30

SAM I/O files 56, 57

using recfm=U 50

VSE/Librarian I/O files 76

reason codes
in user exits 208

RECFM (record format)
F (fixed-format) 6

recfm=A extension 51

S (fixed standard) 6

S (variable spanned) 10

U (undefined format)
overview 12

reading SAM files 50

V (variable format)
overview 9

defaults 19

memory file I/O 119

overview 5

restrictions 20

SAM I/O 50

specifying 18

VSAM data sets 88

VSE/Librarian I/O 74

RECFM DSECT utility option 480

record
empty

_EDC_ZERO_RECLEN 11, 224

files, using fseek() and ftell() 69

fixed standard format 6

I/O
byte stream behavior 13

fixed-format behavior 9

introduction 4

restriction 30

undefined-format behavior 13

variable-format behavior 11

spanned 10

specifying length 18

undefined-length 12

variable-length 9

zero-byte
_EDC_ZERO_RECLEN 11, 224

record descriptor word (RDW)
See RDW

redirection 42

stderr, with LE/VSE MSGFILE

option 39

standard streams 37

introduction 40

using freopen() 40

standard streams in a system

programming C environment 229

stream, using assignment 39

streams under CICS 42

streams, using freopen() 39

symbols 38

redirection of streams 40

under VSE batch 40

using ASSGN statements 41

using PARM 40

reentrancy
in LE/VSE C Run-Time 153

reentrancy (continued)
limitations 154

modified CEEBXITA user exit 206

register conventions 147

relational operators, decimal 164

relative byte address (RBA)
See RBA

relative byte offset 67

Relative Record Data Set (RRDS)
See RRDS

Relative Record Number (RRN)
See RRN

RENT compiler option 153

restrictions 227

repositioning
binary streams, wide character

I/O 35

LE/VSE message file 130

memory files 122

SAM I/O files 66

VSAM records 94

VSE/Librarian I/O files 76

retaining environment for multiple

invocations
assembler to C repeatedly 149

preinitialized program 149

return
codes

__amrc structure 102

CEEAUE_RETURN field of

CEEBXITA and 207

in user exits 207

value under CICS 278

return character
See control characters

right square bracket
See] (right square bracket) and [(left

square bracket)

RRDS (Relative Record Data Set)
choosing whether key and data are

contiguous 90

choosing whether key is returned with

data on read 91

key structure 90

related environment variable 222

use of 79

RRN (Relative Record Number)
under VSAM 83

run-time
options

TRAP 205, 206, 209

CICS 276

in the user exit 204, 209

user exits 201

Run-Time Library 227

S
S370 locale 363

SAA (Systems Application Architecture)
applications using QMF callable

interface 307

differences between C and POSIX

locales 369

locale 363

SAM ESDS
VSAM catalog information 19

SAM I/O
acc= parameter 51

asis parameter 51

byteseek parameter 52

fgetpos() and ftell() values 67

password= parameter 51

rewind= parameter 52

space= parameter 51

type= parameter 51

ungetc() considerations 65, 67

asynchronous reads 52

asynchronous writes 52

buffering 56

closing files 70

description 16

flushing records 62

multivolume files 49

opening files 47

overview 47

reading from files 56

repositioning within files 66

tapes 49

writing to files 58

SECT DSECT utility option 478

SEEK_CUR macro
effects of ungetc() 67

effects of ungetwc() 35

seeking
LE/VSE message file 130

SAM I/O files 66

VSE/Librarian I/O files 76

within memory files 122

SEQUENCE DSECT utility option 479

sequential processing 91, 92

service routines 242

severity of a condition
CEEBXITA assembler user exit 208

shared programs 153

Shared Virtual Area (SVA)
See SVA

shareoptions specification, VSAM
deleting records 93

opening a data set 86

shift-in character (DBCS) 60

shift-out character (DBCS) 59

SIGABND signal 183

SIGABRT signal 183

description 183

HLL user exit and 217

SIGFPE signal
error condition 183

under decimal 166

SIGILL signal 183

SIGINT signal 183

SIGIOERR signal 137, 183

signal handling
default 185

disabled 182

enabled 182

established 182

hardware 183

raise 181

software 183

with signal() and raise() 181

with LE/VSE 181

SIGSEGV signal 183

SIGTERM signal 183

506 LE/VSE: C Run-Time Programming Guide

SIGTERM signal (continued)
description 183

HLL user exit and 217

SIGUSR1 signal 183

SIGUSR2 signal 183

sizeof operator 166

software signals 183

spanned records
overview 10

SPC facilities
abend codes 260

additional library routines 261

developing services 242

exit routines 234

freestanding applications 229

functions available 228

library functions 263

overview of use 227

persistent C environment 238

restrictions 229

stub routines 249

tailoring 255

square brackets ([and])
displaying on workstation or

3270 421

stand-alone modules 229

standard
records 6

stream
buffering 23

default open modes 37

direct assignment 39

passing across a system() call 42

redirecting 37

redirection under VSE 40

stderr 37

stdin 37

stdout 37

support under CICS 275

using 37

standard error, redirecting 37

standard in, redirecting 37

standard out, redirecting 37

storage 227

allocating with the system

programming C environment 228

freeing with EDCXFREE 258

getting with EDCXGET 256

page-aligned, getting with

EDCX4KGT 258

storage, under CICS 278

straightening 191

streams, orientation of 29

strength reduction 191

strings
comparisons 195

processing 196

structure comparison 196

Structured Query Language/Data System

(SQL/DS)
See SQL/DS

stub routines 227

in a user-server environment 255

SVA (Shared Virtual Area) 154

system 227

exit routines 227, 234

functions 227

system (continued)
built-in 228

memory management 228

programming facilities 227

additional library routines 261

building persistent C

environments 238

building system exit routines 234

building user-server

environments 255

Debug Tool/VSE 227

freestanding applications 229

restrictions 227

tailoring the environment 255

using 227

system programming C

environment 228

System Programming C facilities
See SPC facilities

T
tab

horizontal 59

vertical 59

tapes
input and output 49

multivolume files 49

temporary files 117

termination
enclave

as indicated in CEEAUE_ABND

field of CEEAUE_FLAGS 209

as indicated in CEEAUE_ABTERM

field of CEEAUE_FLAGS 208

CEEBXITA’s behavior during 204

CEEBXITA’s function codes

for 207

terminating enclave created by

CEEBINT HLL user exit 217

process 205, 207

text
files

ASA RECFM fixed-format

behavior 8

ASA RECFM undefined-format

behavior 13

ASA RECFM variable-format

behavior 11

non-ASA RECFM fixed-format

behavior 7

non-ASA RECFM

undefined-format behavior 12

non-ASA RECFM variable-format

behavior 11

RECFM byte stream behavior 13

using fseek() and ftell() 68

I/O 3

time
zone, specifying 329

translation tables 371

U
uconvdef utility

example 375

uconvdef utility (continued)
how to use 373

overview 371

syntax 373

with UCS-2 371

UCS-2
converters 384

with uconvdef utility 371

unary operators, decimal data type
digitsof 166

precisionof 167

sizeof 166

unbuffered I/O
setvbuf() function 56

undefined format records 12

Unicode
See UCS-2

UNIQUE DSECT utility option 479

UNNAMED DSECT utility option 480

updating VSAM records 92

user 227

words 266

user exit
for initialization 204

for termination 203, 204, 205

run-time options 209

under CICS 207, 209, 210

user words 266

user-server stub routines 255

V
value numbering 191

variable-format records
overview 9

variables
decimal 160

environment
locale 219

variant characters
detail 399

mapping 399

mapping keyboard 421

use of 399

vertical tab escape sequence \v 59

Virtual Storage Access Method (VSAM)
See VSAM

VSAM (Virtual Storage Access Method)
__amrc structure 102

catalog information, SAM ESDS

files 19

closing a data set 102

examples 103

KSDS 103

RRDS 113

I/O operations
deleting a record 94

loading a data set 92

locating a record 94

opening a data set 85

overview 79

reading a record 91

repositioning 94

specifying access mode 87

summary of binary I/O

operations 101

summary of operations 84

Index 507

VSAM (Virtual Storage Access Method)

(continued)
summary of record I/O

operations 96

summary of text I/O

operations 100

updating a record 92

using fopen() 85

using freopen() 85

writing a record 92

I/O, description 16

keys 82

linear data sets 80

organization of data sets 79

Relative Byte Addresses (RBA) 82

Relative Record Numbers (RRN) 83

responses to fldata() 115

return codes 102

types and advantages of data sets 81

VSE 227

alternative initialization routine 230

building freestanding

applications 230

reentrant phases 232

VSE/Librarian I/O
acc= parameter 75

asis parameter 75

byteseek parameter 75

password= parameter 75

rewind= parameter 75

space= parameter 75

type= parameter 75

asynchronous reads 75

asynchronous writes 75

buffering 76

closing files 76

flushing records 76

I/O, description 16

opening files 73

overview 73

reading from files 76

removing files 76

renaming files 76

repositioning within files 76

writing to files 76

W
wide characters

ungetwc() considerations 34

effect of MB_CUR_MAX 29

input and output functions 29

reading streams and files 30

writing streams and files 31

writable static
assembler code 156

in reentrant programs 153

writing
binary streams, wide character

I/O 33

in coded character set IBM-1047 404

multibyte characters 31

text streams, wide character I/O 33

to memory files 121

to SAM I/O files 58

to the LE/VSE message file 129

to VSE/Librarian I/O files 76

writing (continued)
VSAM data sets 92

X
XFER, transfer control 293

XITPTR, CXIT control block 207

Z
zero-byte records,

_EDC_ZERO_RECLEN 11, 224

508 LE/VSE: C Run-Time Programming Guide

Readers’ Comments — We’d Like to Hear from You

IBM Language Environment for VSE/ESA

C Run-Time Programming Guide

Version 1 Release 4 Modification Level 4

 Publication No. SC33-6688-05

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-6688-05

SC33-6688-05

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5686-CF7

Printed in USA

SC33-6688-05

Sp
in

e
in

fo
rm

at
io

n:

 �
�

�

LE
/V

SE

C

Ru

n-
Ti

m
e

Pr
og

ra
m

m
in

g
G

ui
de

Ve
rs

io
n

1
R

el
ea

se

4

M
od

ifi
ca

tio
n

L
ev

el

4

	Contents
	Figures
	Tables
	Notices
	Programming Interface Information
	Standards
	Trademarks

	About This Book
	What Is LE/VSE?
	LE/VSE-Conforming Languages
	LE/VSE Compatibility with Previous Versions of COBOL

	The C Language
	Softcopy Examples
	How to Read the Syntax Diagrams

	Where to Find More Information
	Softcopy Publications

	Summary of Changes
	Changes Introduced With Sixth Edition (March 2005)
	Changes Introduced With Fifth Edition (March 2003)
	Changes Introduced With Fourth Edition (December 2001)

	Part 1. Input and Output
	Chapter 1. Introduction to C Input and Output
	Types of C Input and Output

	Chapter 2. Models of C I/O
	The Record Model for C I/O
	Record Formats
	Fixed-Format Records
	Variable-Format Records
	Undefined-Format Records

	The Byte Stream Model for C I/O
	Mapping the C Types of I/O to the Byte Stream Model

	Chapter 3. Opening Files
	Categories of I/O
	Specifying What Kind of File to Use
	SAM Files
	VSE/Librarian Members
	VSAM Data Sets
	Memory Files
	EDCXGOF1

	CICS Data Queues
	LE/VSE Message File
	How to Specify RECFM, LRECL, and BLKSIZE
	Specifying RECFM
	Specifying LRECL
	Specifying BLKSIZE

	VSAM Catalog Information for SAM ESDS Files
	fopen() Defaults
	RECFM Defaults
	LRECL and BLKSIZE Defaults

	File Definition Statements

	Chapter 4. Buffering of C Streams
	Chapter 5. ASA Text Files
	Example of Writing to an ASA File

	Chapter 6. LE/VSE C Run-Time Support for the Double-Byte Character Set (DBCS)
	Opening Files
	Reading Streams and Files
	Writing Streams and Files
	Writing Text Streams
	Writing Binary Streams

	Flushing Buffers
	Flushing Text Streams
	Flushing Binary Streams
	ungetwc() Considerations

	Setting Positions within Files
	Repositioning within Text Streams
	Repositioning within Binary Streams
	ungetwc() Considerations

	Closing Files

	Chapter 7. Standard Streams and Redirection
	Default Open Modes
	Using the Redirection Symbols
	Assigning the Standard Streams
	Using the freopen() Library Function
	Redirecting Streams with the MSGFILE Option
	MSGFILE Considerations

	Redirecting Streams
	Under VSE Batch
	Using the PARM Parameter of the EXEC Statement
	Using ASSGN Statements

	Redirecting Streams under CICS

	Passing Standard Streams across a system() Call
	Passing Binary Streams
	Passing Text Streams
	Passing Record I/O Streams

	Chapter 8. Performing SAM I/O Operations
	Opening Files
	Using fopen() or freopen()
	Filenames for SAM Files

	Tapes
	Multivolume Files
	Other Devices
	fopen() and freopen() Parameters
	Parameters Supported by File Type

	Buffering
	DTF (Define The File) Attributes
	Reading from Files
	Reading from Binary Files
	Reading from Text Files
	Reading from Record I/O Files

	Writing to Files
	Writing to Binary Files
	Writing to Text Files
	Writing to Fixed-Format Text Files
	Writing to Variable-Format Text Files
	Writing to Undefined-Format Text Files
	Truncation vs. Splitting

	Writing to Record I/O Files

	Flushing Buffers
	Updating Existing Records
	Reading Updated Records
	EDCXGOS3
	Simultaneous Reader/Writer

	Writing New Records
	Binary Streams
	Text Streams
	Record I/O

	ungetc() Considerations

	Repositioning within Files
	ungetc() Considerations
	How Long fgetpos() and ftell() Values Last
	Using fseek() and ftell() in Binary Files
	Relative Byte Offsets
	Encoded Offsets

	Using fseek() and ftell() in Text Files (ASA and Non-ASA)
	Using fseek() and ftell() in Record Files
	Porting Old C Code that Uses fseek() or ftell()

	Closing Files
	Renaming and Removing Files
	fldata() Behavior

	Chapter 9. Performing VSE/Librarian I/O Operations
	Opening Files
	Using fopen() or freopen()
	Filenames for VSE/Librarian Sublibrary Members
	File Modes Supported for VSE/Librarian I/O

	fopen() and freopen() Parameters

	Buffering
	Reading from Files
	Writing to Files
	Flushing Buffers
	Repositioning within Files
	Closing Files
	Renaming and Removing Files
	fldata() Behavior

	Chapter 10. Performing VSAM I/O Operations
	VSAM Types (Data Set Organization)
	Access Method Services
	Choosing VSAM Data Set Types
	Keys, RBAs and RRNs

	Summary of VSAM I/O Operations

	Opening VSAM Data Sets
	Using fopen() or freopen()
	Filenames for VSAM Data Sets
	Specifying fopen() and freopen() Keywords
	fopen() and freopen() Parameters

	Buffering

	Record I/O in VSAM
	RRDS Record Structure
	Reading Record I/O files
	Writing to Record I/O Files
	Updating Record I/O Files
	Deleting Records
	Repositioning within Record I/O Files
	flocate()
	fgetpos() and fsetpos()
	ftell() and fseek()
	rewind()

	Flushing Buffers
	Summary of VSAM Record I/O Operations

	Text and Binary I/O in VSAM
	Reading from Text and Binary I/O Files
	Writing to and Updating Text and Binary I/O Files
	Deleting Records in Text and Binary I/O Files
	Repositioning within Text and Binary I/O Files
	flocate()
	fgetpos() and fsetpos()
	ftell() and fseek()

	Flushing Buffers
	Summary of VSAM Text I/O Operations
	Summary of VSAM Binary I/O Operations

	Closing VSAM Data Sets
	VSAM Return Codes
	VSAM Examples
	KSDS Example
	KSDS Example

	RRDS Example
	EDCXGVS4

	fldata() Behavior

	Chapter 11. Performing Memory File I/O Operations
	Opening Files
	Using fopen() or freopen()
	Filenames for Memory Files
	fopen() and freopen() Parameters

	Buffering

	Reading from Files
	Writing to Files
	Flushing Records
	ungetc() Considerations

	Repositioning within Files
	Closing Files
	Performance Tips

	Removing Memory Files
	fldata() Behavior
	Example Program
	EDCXGMF3
	EDCXGMF4

	Chapter 12. Performing CICS I/O Operations
	Chapter 13. Performing LE/VSE Message File Operations
	Opening Files
	Reading from Files
	Writing to Files
	Flushing Buffers
	Repositioning within Files
	Closing Files

	Chapter 14. Debugging I/O Programs
	Using the __amrc Structure
	Using the __amrc2 Structure
	Using __last_op Codes
	Using the SIGIOERR Signal

	Part 2. Interlanguage Calls with LE/VSE C Run-Time
	Chapter 15. Combining C and Assembler
	Establishing the LE/VSE C Run-Time Environment
	Specifying Linkage for C and Assembler
	Parameter List for OS Linkage
	Using Standard Macros
	Assembler Prolog
	Assembler Epilog
	Accessing Automatic Memory

	Example
	Register Content at Entry to an ASM Routine Using OS linkage
	Register Content at Exit from an ASM Routine to LE/VSE C Run-Time

	Retaining the C Environment Using Preinitialization

	Part 3. Coding: Advanced Topics
	Chapter 16. Reentrancy in LE/VSE C Run-Time
	Limitations of Reentrancy
	Using the LE/VSE Prelinker for Reentrancy
	Controlling External Static
	Controlling Writable Strings
	EDCXGRE1

	Using Writable Static in Assembler Code
	EDCXGRE3
	EDCXGRE4

	Chapter 17. Using the Decimal Data Type
	Declaring Data Types
	Declaring Fixed-Point Decimal Constants
	Declaring Decimal Variables

	Defining Decimal Related Constants
	Using Operators
	Arithmetic Operators
	EDCXGDC1
	Additive Operators
	Multiplicative Operators
	Relational Operators
	EDCXGDC2
	Equality Operators
	Conditional Operators
	Intermediate Results

	Assignment Operators
	Unary Operators
	sizeof Operator
	digitsof Operator
	precisionof Operator

	Cast Operator
	Summary of Operators Used With Decimal Types

	Converting Decimal Data Types
	Converting Decimal Types to Decimal Types
	Examples
	Fractional Part Cannot Be Represented
	Integral Part Cannot Be Represented

	Converting Decimal Types to and from Integer Types
	Conversion from Integer Types
	Conversion to Integer Types
	Examples of Conversion from Integer Type
	Examples of Conversion to Integer Type

	Converting Decimal Types to and from Floating Types
	Conversion from Floating Types
	Conversion to Floating Types
	Examples of Conversion from Floating Type
	Examples of Conversion to Floating Type

	Calling Functions
	Using Library Functions
	Using Variable Arguments with Decimal Data Types

	Formatting Input and Output Operations
	Using fprintf()
	Using fscanf()

	Validating Values
	Fix Sign
	Decimal Absolute
	Programming Examples
	Example One
	Output from Programming Example One

	Example Two
	Output from Programming Example Two

	Decimal Exception Handling
	Restrictions
	Decimal Exceptions and Interlanguage Calls
	Assembler Interlanguage Calls

	Chapter 18. Handling Error Conditions and Signals
	Handling Signals Using signal() and raise()
	Handling Signals using LE/VSE Callable Services
	LE/VSE C Run-Time Signal Handling Features
	Establishing a Signal
	Enabling a Signal
	Interrupting a Program
	Raising a Signal
	Identifying Hardware and Software Signals
	SIGABND Considerations
	SIGIOERR Considerations
	Default Handling of Signals

	Example of C Signal Handling Under LE/VSE C Run-Time
	EDCXGEC1

	Chapter 19. Optimizing Code
	Using Optimization Facilities
	Programming Recommendations
	Specifying Inline Functions
	Selective Mode
	Automatic Mode

	Using Variables
	Using Pointers
	Passing Function Arguments
	Coding Expressions
	Coding Conversions
	EDCXGOP3

	Using Arithmetic Constructions
	Input/Output Considerations
	Using Built-In Library Functions and Macros
	Using Loops and Control Constructs
	Declaring a Data Type
	Using Library Extensions
	Optimizing Dynamic Memory

	Part 4. LE/VSE C Run-Time Environments
	Chapter 20. Using Run-Time User Exits
	Using Run-Time User Exits in LE/VSE
	Understanding the Basics
	User Exits Supported under LE/VSE
	Order of Processing of User Exits
	Using Installation-Wide or Application-Specific User Exits
	Using the Assembler User Exit
	Using Sample Assembler User Exits
	CEEBXITA Behavior during Enclave Initialization
	CEEBXITA Behavior during Enclave Termination
	CEEBXITA Behavior during Process Termination
	Specifying Abend Codes to Be Percolated by LE/VSE
	Actions Taken for Errors that Occur within the Assembler User Exit

	CEEBXITA Assembler User Exit Interface
	Parameter Values in the Assembler User Exit
	First Enclave within Process Initialization—Entry
	First Enclave within Process Initialization—Return
	First Enclave within Process Termination—Entry
	First Enclave within Process Termination—Return
	Nested Enclave Initialization—Entry
	Nested Enclave Initialization—Return
	Nested Enclave Termination—Entry
	Nested Enclave Termination—Return
	Process Termination—Entry
	Process Termination—Return

	High Level Language User Exit Interface
	Usage Requirements

	Chapter 21. Using Environment Variables
	Working with Environment Variables
	Naming Conventions

	Environment Variables Specific to the LE/VSE C Run-Time Library
	_EDC_BYTE_SEEK
	_EDC_COMPAT
	_EDC_RRDS_HIDE_KEY
	_EDC_STOR_INCREMENT
	_EDC_STOR_INITIAL
	_EDC_ZERO_RECLEN
	_CEE_ENVFILE
	Example

	Example

	Chapter 22. Using the System Programming C Facilities
	Using Functions in the System Programming C Environment
	System Programming C Facility Considerations and Restrictions
	Creating Freestanding Applications
	Creating Modules without CEESTART
	Including an Alternative Initialization Routine
	Initializing a Freestanding Application
	Building Freestanding Applications
	EDCJL084
	EDCJN018
	Special Considerations for Reentrant Phases
	EDCJL086
	EDCJN019

	Creating System Exit Routines
	Building System Exit Routines
	An Example of a System Exit
	EDCJN020
	EDCJN021
	EDCJN022

	Creating and Using Persistent C Environments
	Building Applications That Use Persistent C Environments
	An Example of Persistent C Environments
	EDCJL089
	EDCJL090

	Developing Services in the Application Service Routine Environment
	Using Application Service Routine Control Flow
	Service Routine User Perspective
	Service Routine Perspective

	Understanding the Stub Perspective
	EDCJL093
	EDCJL094

	Establishing a Server Environment
	EDCXSRVI

	Initiating a Server Request
	EDCXSRVN

	Accepting a Request for Service
	EDCXSACC

	Returning Control from Service
	EDCXSRVC

	Constructing User-Server Stub Routines
	Building User-Server Environments

	Tailoring the System Programming C Environment
	Generating Abends
	EDCXABND

	Getting Storage
	EDCXGET

	Getting Page-Aligned Storage
	EDCX4KGT

	Freeing Storage
	EDCXFREE

	Loading a Module
	EDCXLOAD

	Deleting a Module
	EDCXUNLD

	Abend Reason Codes
	Additional Library Routines
	Summary of Application Types

	Chapter 23. Library Functions for the System Programming C Facilities
	__xhotc() — Set Up a Persistent C Environment (No Library)
	Format
	Description
	Returned Value
	Example

	__xhott() — Terminate a Persistent C Environment
	Format
	Description
	Example

	__xhotu() — Run a Function in a Persistent C Environment
	Format
	Description
	Returned Value
	Example

	__xregs — Get Registers on Entry
	Format
	Description
	Returned Value

	__xsacc() — Accept Request for Service
	Format
	Description
	Returned Value

	__xsrvc() — Return Control from Service
	Format
	Description

	__xusr() - __xusr2() — Get Address of User Word
	Format
	Description
	Returned Value

	__24malc() — Allocate Storage below 16MB Line
	Format
	Compiler Option

	Description

	__4kmalc() — Allocate Page-Aligned Storage
	Format
	Compiler Option

	Description

	Part 5. Programming with Other Products
	Chapter 24. Using CICS
	Developing C Programs for the CICS Environment
	Optional Tasks Related to Using CICS with LE/VSE
	Designing and Coding for CICS
	Using the CICS Command-Level Interface
	EDCXGCI1

	Using Input and Output
	Standard Stream Support
	Full Memory File Support
	Support for Disk Files and Other Devices

	Using LE/VSE C Run-Time Library Support
	Arguments to C main()
	Run-Time Options
	Using Packed Decimal with CICS
	Locales
	Code Set Conversion Tables
	DL/I
	Dump Functions
	The fetch() Function
	The release() Function
	The system() Function
	Time Functions
	The iscics() Function
	Program Termination

	Storage Management
	Using Interlanguage Support
	Exception Handling
	Example of Error Handling in CICS
	EDCXGCI2

	ABEND Codes and Error Messages under LE/VSE C Run-Time
	Coding Hints and Tips

	Translating and Compiling for Reentrancy
	Translating
	Translating Example
	EDCXGCI3

	Compiling
	Sample JCL to Translate and Compile

	Prelinking and Linking All Object Decks
	Defining and Running the CICS Program
	Program Processing
	Link Considerations
	CSD Considerations

	Chapter 25. Using CSP
	Common Data Types
	Passing Control
	Running under CICS Control
	Examples
	EDCXGCP5
	EDCXGCP6
	EDCXGCP7

	Chapter 26. Using DL/I
	Handling Errors
	Other Considerations
	Example
	EDCXGIM2
	EDCXGIM3

	Chapter 27. Using QMF
	Example

	Chapter 28. Using DB2
	Example

	Part 6. Internationalization: Locales and Character Sets
	Chapter 29. Introduction to Locale
	Internationalization in Programming Languages
	Elements of Internationalization
	LE/VSE C Run-Time Support for Internationalization
	Locales and Localization
	Locale-Sensitive Interfaces

	Chapter 30. Building a Locale
	Using the charmap File
	The CHARMAP Section
	The CHARSETID Section

	Locale Source Files
	LC_CTYPE Category
	LC_COLLATE Category
	Collating Rules
	Collating Keywords
	Comparison of Strings

	LC_MONETARY Category
	LC_NUMERIC Category
	LC_TIME Category
	LC_MESSAGES Category
	LC_TOD Category
	LC_SYNTAX Category

	Using the localedef Utility
	Locale Naming Conventions

	Chapter 31. Customizing a Locale
	Using the Customized Locale
	Referring Explicitly to a Customized Locale
	Referring Implicitly to a Customized Locale
	Customizing Your Installation

	Chapter 32. Definition of S370 C, SAA C, and POSIX C Locales
	Differences Between SAA C and POSIX C Locales

	Chapter 33. Code Set and Locale Utilities
	Code Set Conversion Utilities
	The genxlt Utility
	Example

	The uconvdef Utility
	Example

	The iconv Utility
	Example

	Code Conversion Functions
	Code Set Converters Supplied
	Universal Coded Character Set Converters
	Codeset Conversion Using UCS-2
	UCMAP Source Format

	The localedef Utility
	Defining Your Own Locales
	Examples

	Chapter 34. Coded Character Set Considerations with Locale Functions
	Variant Character Detail
	Alternate Code Points
	Coding without Locale Support
	Using a Hybrid Coded Character Set

	Converting Existing Work
	Converting Hybrid Code

	Writing Source Code in Coded Character Set IBM-1047
	Exporting Source Code to Other Sites

	Coded Character Set Independence in Developing Applications
	Coded Character Set of Source Code and Header Files
	The ??=pragma filetag Directive

	Converting Coded Character Sets at Compile Time
	Examples
	Usage
	Summary of Source and Compile Use
	Using Predefined Macros
	Using a Predefined Locale

	Working With Listings and Output Files
	Object Decks
	Listings

	Considerations With Other Products and Tools

	Appendix A. POSIX Character Set
	Appendix B. Mapping Variant Characters for C/VSE
	Displaying Hexadecimal Values
	Example

	Using ??=pragma filetag To Specify Code Page
	Displaying When Using XEDIT on VM

	Appendix C. LE/VSE C Run-Time Code Point Mappings
	Appendix D. Locales Supplied with LE/VSE C Run-Time
	Appendix E. Charmap Files Supplied with LE/VSE C Run-Time
	Appendix F. Examples of the Charmap and Locale Definition Source Files
	Charmap File
	The Locale Definition Source File

	Appendix G. Converting Code from Coded Character Set IBM-1047
	Appendix H. Using Built-In Functions
	Appendix I. DSECT Conversion Utility
	DSECT Utility Options
	BITF0XL | NOBITF0XL
	BLKSIZE
	COMMENT | NOCOMMENT
	DECIMAL | NODECIMAL
	DEFSUB | NODEFSUB
	EQUATE | NOEQUATE
	HDRSKIP | NOHDRSKIP
	INDENT | NOINDENT
	LOCALE | NOLOCALE
	LOWERCASE | NOLOWERCASE
	LRECL
	OPTFILE | NOOPTFILE
	OUTPUT
	PPCOND | NOPPCOND
	SECT
	SEQUENCE | NOSEQUENCE
	UNIQUE | NOUNIQUE
	UNNAMED | NOUNNAMED
	RECFM

	Generation of C Structures
	Under VSE Batch

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

