
IBM System Storage and IBM System z Together

Information Infrastructure for the World's Most Demanding Customers

Thomas Frey High-End Storage Sales Leader thfrey@de.ibm.com

© 2009 IBM Corporation

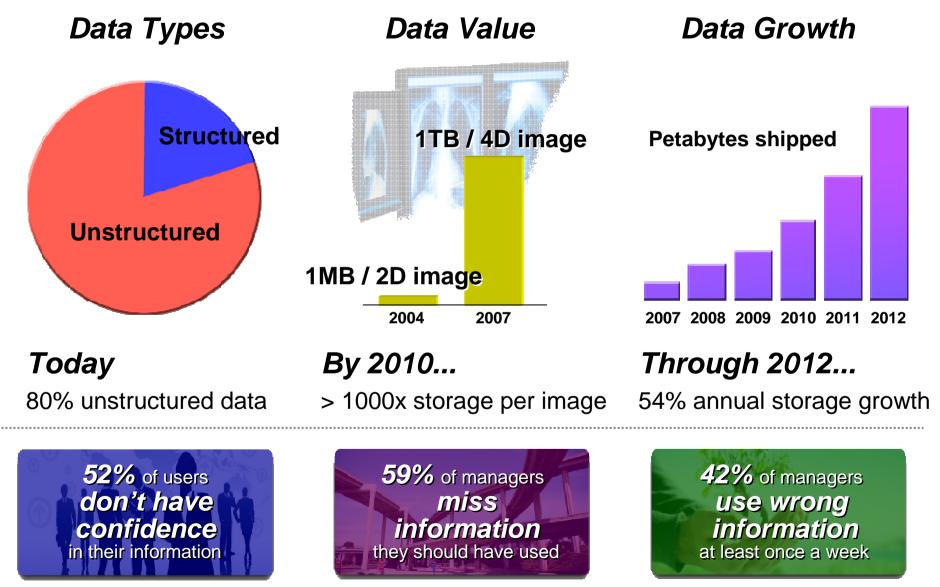
Agenda

- IBM Information Infrastructure
- High-end and enterprise disk systems
 - DS8000
- Enterprise tape
 - Virtualization engine
- Storage virtualization
 - -SAN Volume Controller
 - $-\mathsf{XIV}$
- Summary

The world is changing, enabling organizations to make faster, better-informed decisions as their systems can be made

By 2010, 30 billion RFID tags will be embedded into our world and across entire ecosystems

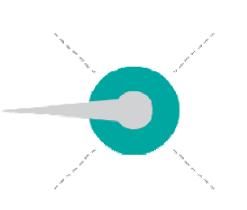
An estimated 2 billion people will be on the Web by 2011 and a trillion connected objects - cars, appliances, camera, roadways, pipelines comprising the "Internet of Things"



Every day, 15 petabytes of new information are being generated. This is 8x more than the information in all U.S. libraries

© 2009 IBM Corporation

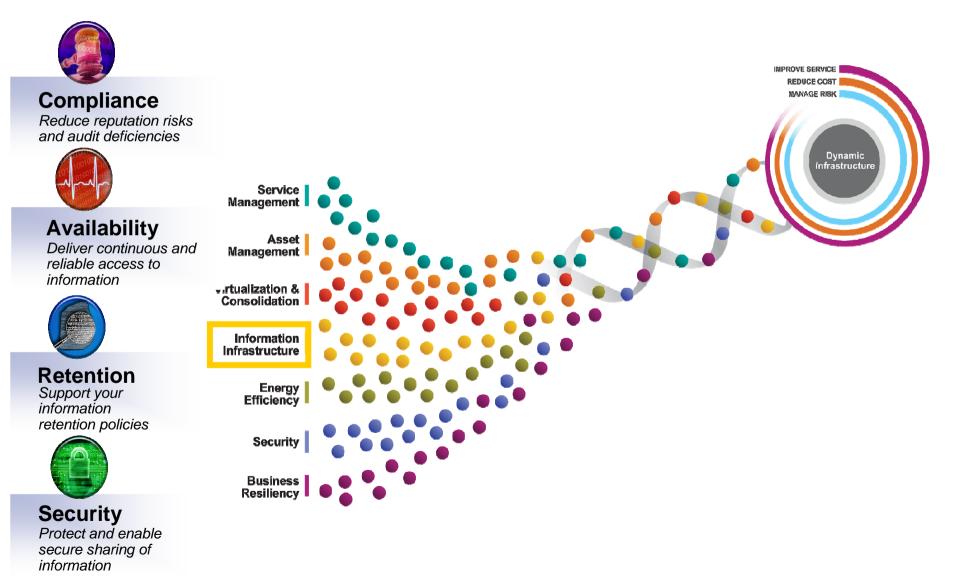
The Information Explosion



Ihr Anspruch an Information ebenfalls...

Relevant und Realtime Verfügbar

Echtzeitanalysen statt "XLS"-Sheets

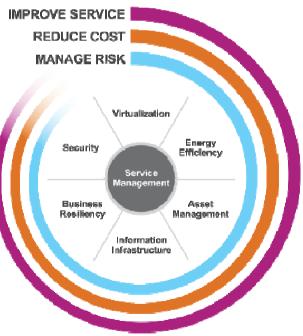

Downtime kostet Existenzen! Übergreiffend und Sicher

Informations-Inseln schränken ein Datensicherheit wird wichtig

Building the infrastructure for a Smarter Planet

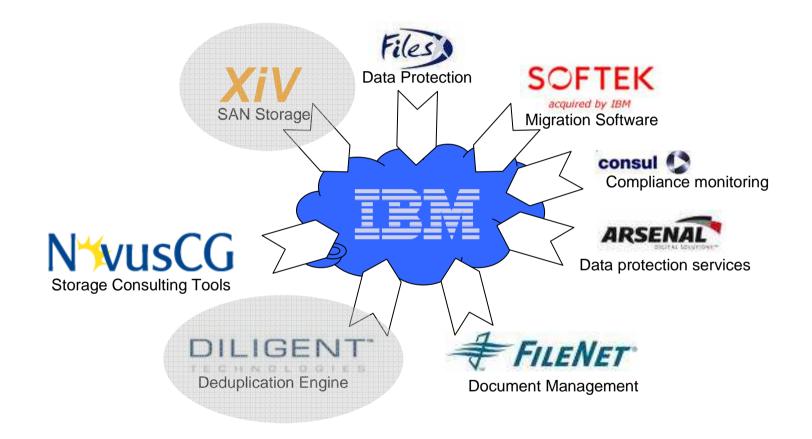
Wir addressieren damit:

Kosten reduzieren

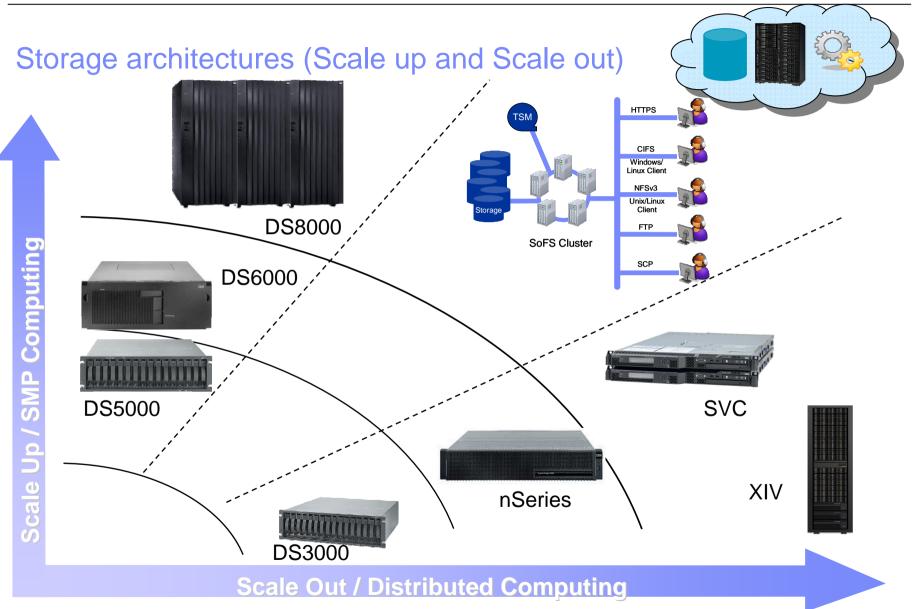

Weniger, effizienterern Storage = Weniger Ausgaben Weniger Daten = Einfacheres Management Bessere Utilisierung und ideales ILM

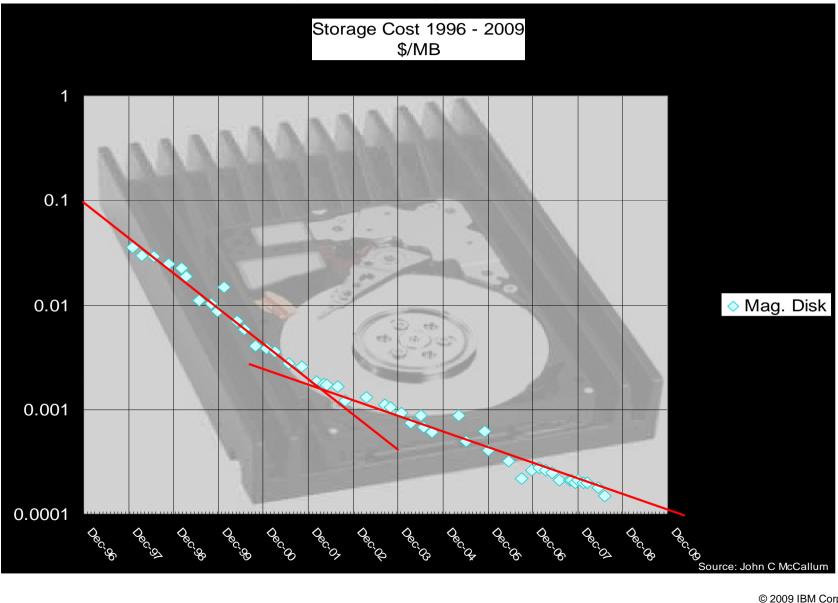
Service verbessern

Weniger Downtime = Höhere Verfügbarkeit und Produktivität Verbesserte Wettbewerbschancen und Kundenzufriedenheit

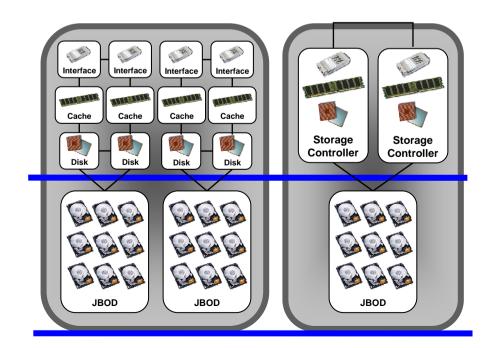

Risiko minimieren

Kein Data lost Schnellere Reaktion auf "legal" Anforderungen

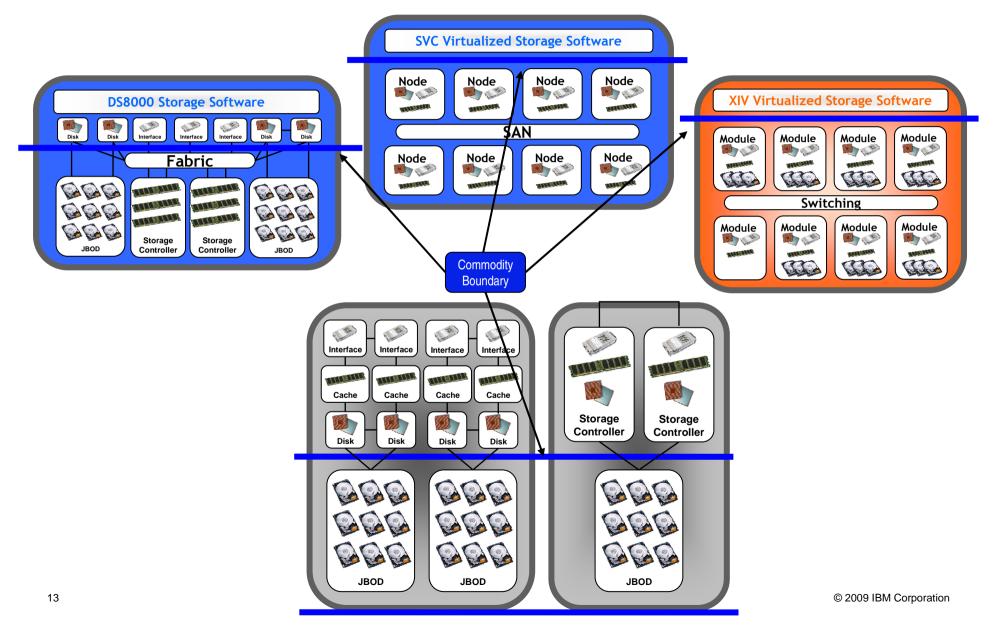



Important STG Acquisitions in Recent Years

IBM



Power (dissipation) – cooling elephants...and mice



Using "commodity" components in Storage Systems

Using "commodity" components in Storage Systems

Agenda

- IBM Information Infrastructure
- High-end and enterprise disk systems
 - DS8000
- Enterprise tape
 - Virtualization engine
- Storage virtualization
 - -SAN Volume Controller
 - $-\mathsf{XIV}$
- Summary

© 2009 IBM Corporation

Built on 50+ Years of Enterprise Class Innovation
IBM's Flagship Enterprise Storage Device for Tier 1
Strong Synergy with IBM Servers (z, i, p)

Over 11,000+ DS8K systems sold worldwide!!!

Over 23,000+ Legacy Systems Active

Performance, Resiliency, and Flexibility to Satisfy the World's Most Demanding Clients

Performance – Architected for highest total throughput

Availability – Designed for 24X7 Environments

Resiliency – Outstanding Copy and Mirroring Capability

Virtualization for Simplification – Storage System LPARs

✤ Flexibility – High Performance, Online & High Capacity, Nearline Disk options to satisfy tiered storage objectives

* Scalability – Scalable 2 TB to 1 PB

Heterogeneous Server Support - IBM z/OS, z/VM, OS/400, i5/OS, AIX, Linux, HP-UX, Sun SOLARIS, Novell, KVM, VMware and Microsoft, among others

Security – Self-encrypting Disk Drives

Long-Term Cost Advantage – Enterprise Choice Warranty, Model-to-Model Upgradeability

5 Key Attributes for Enterprise Storage

Performance

•Superior and consistent performance under all conditions; advanced capabilities to eliminate hotspots and deliver consistent high performance

Reliability

•Business data is more critical than ever; no tolerance for disruption or downtime of service; greater than 5 9's is the new standard

Functionality

•Tier1 functions for replication, thin provisioning, point in time copy etc that are robust, scalable and minimise application performance impact

Manageability

•Virtualised systems delivering superior ease of use and management capabilities

Cost

•Superior cost containment and control; best in class TCO and reduced ongoing management costs

DS8000 Power[™] Server Based Technology **Turbo** The server-based architecture brings pSeries p5 570 continuous improvement 4-way 2.1 GHz 2-way 2.1 GHz Performance **DS8000 IBM POWER5+** Scaling pSeries p5 570 Reliability, Availability, Serviceability 4-way 1.9GHz Features 2-way 1.5GHz **IBM POWER5** Cost ~ 28X H50 **ESS 800** while preserving the code base Turbo 2 pSeries 660 6H1 6-way 750MHz **ESS 800 DS6000** RS64 IV pSeries 660 6H1 PowerPC 750™ ~ 7X H50 4-way 600MHz **ESS Fxx** 6-way 668MHz RS6000 H70 PowerPC RS64 IV ESS Exx 4-way 255MHz ~ 4 to 5X H50 RS6000 H50 PowerPC RS64 II 4-way 332MHz ~ 2X H50 PowerPC 603e[™] **ESS 750** pSeries 660 6H1 2-way 600MHz PowerPC RS64 IV ~ 2.4X H50 Relative performance based on processor TPmC ratings

DS8000 Core Strategy Enterprise Performance Flexibility

Enterprise Features

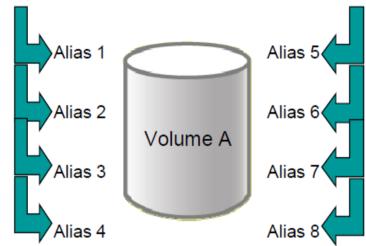
- -Highest Availability
- -Advanced data recovery features
- -Advanced E2E data checking
- Disaster Recovery Feature

Performance

- Best of Breed: Transactional Workloads
- -Copy Service Performance Leader
- Leadership Position in Flash
 Enablement: Hot-spot Workload
 Analysis and Optimization

Flexibility

- Satisfy Different Workloads: Performance and Capacity Workloads
- -Scalable from 2 TB to 1 PB
- Optimized for Hybrid media and technologies



DS8000 Major Releases & Functions 2004 – July.2009

	Oct. 2004 DS8000 replaces ESS with 6x the IOPS and 20% less floor space	Aug. 2006 Turbo models with 2-way and 4- way Power5+ engines for enable up to a 15% iOPS; New FATA drives; 4Gb host adapters; 3-site mirroring; Replication mgmt.	Feb. 07 300GB Fibre Channel 15k RPM drive option; Capacity on Demand	Oct 07 FlashCopy 3 Dynamic Vo Expansion; Storage Poo Z/OS Global Multiple Rea DS Storage Mar enhancemer System Stor Productivity (SSPC); Intermix of D machine type	olume of Striping; Mirror der; hager hts; age Center	Oct. 08 High Perfor FICON for S z; z/OS Metro/ Mirror Increr Resync	System Global	July 09 Thin Provisioning; zHPF Multitrack support
2004	2005	2006	2007		2008	2	2009	
	Aug. 2005faster 146GB 15krpm Fibre Channeldrive option;Capacity on DemandCapacity on DemandHyperPAVSupport		May 07 third and fourth expansion units and 1,024 drives; single-phase power option Feb. 08 Extended Distance FICON; z/OS Global Mirror SDM offload to zIIP		Aug. 2008 RAID-6; 450GB 15K rpm Fibre Channel drive option; Variable LPAR; Extended Address Volumes; IPV6		Feb. 09 Full Disk Encryption; 1 TB 7,200 rpm Serial ATA (SATA) drive option; Solid-State Drive (SSD) option; Intelligent Write Caching; Remote Pair FlashCopy	

z/VSE V4.2 Enhancement: Parallel Access Volume (PAV)

- Allows a z/VSE V4.2 host to access a single ECKD disk volume with multiple concurrent requests
 - multiple addresses (alias) to a single logical device
 - enables more than one I/O operation to a single logical device
 - may reduce device queue delays
 - volume sharing not file sharing
- PAV is an optional, licensed feature of IBM DS8000 and DS6000
 - no changes needed for application programs
- Examples of PAV candidates
 - VSAM catalogs, shared clusters, libraries
 - spool files, work files, log files
- Potential benefits include possibility of improved performance/throughput
 - multiple jobs, multiple partitions, CICS
 - gains are highly dependent on workload

Full Disk Encryption on DS8000

- Encrypted data on DS8000 series storage controller
 - Capability to install encrypted 146 GB, 300 GB, and 450 GB 15,000 rpm Fibre Channel drives
 - Full Disk Encryption drive sets are optional to DS8000 series
 - -Available only as plant order
 - -Transparent to applications
 - -Can be used by z/VSE V3.1 or later
- Helps to mitigate the threat of
 - -Theft
 - -Mis-management
 - -Loss of critical data

The System z and System Storage encryption solution: Delivers integrated security

- z/OS encryption controlled via Data Policy (SMS) and user Policy (JCL)
- Open systems encryption controlled via data source, VolSer or drive
- Storage Encryption of Tape and DS8000 managed by IBM Tivoli Key Lifecycle Manager (TKLM) for z/OS V1.0

DS8700- New IBM Power 6-based Controller

DS8k R5

POWER6^{**} BUILT ON

Power

Upgrade der Controller HW, Interconnection und HW auf:

- 4.7 Ghz Prozessor
- PCI-E statt RIO-G
- Arrowhead GX

Nutzen

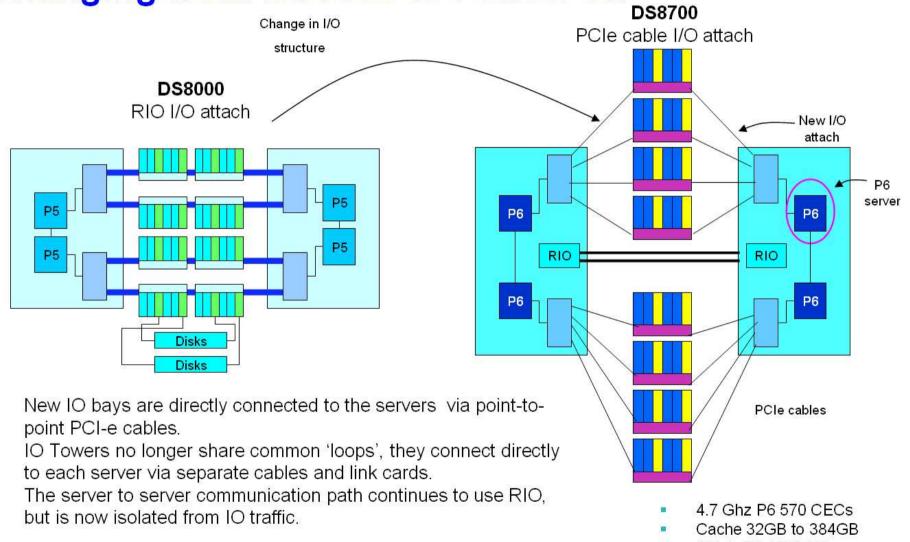
- 2x höhere Performance
- Perfektes Backend f
 ür SSD
- Höhere und bessere Konsolidierungsplatform mit genügend Reserven für Datenspiegelung und FlashCopy
- Schnellerer µCode Load verbessert Service
- 36% weniger Energieverbrauch pro I/O als p5 Modelle
- Update des Daten Analyse Tools um passende Daten auf passende Tierstufen abzuspeichern.
- Optimiert den Einsatz von SSD

GA 6.11 geplant Neu GA: 23.10

Introduce india the New DS8700

The Next Chapter in IBM's Flagship Disk Platform

What's New


Performance

- Up to over 150% performance boost with new IBM POWER6based controller
- New, faster PCI Express (PCI-E) internal fabric enables much higher performance and scalability
- Almost 70% faster ASIC on the device adapters
- Availability
 - Single model, scalable via concurrent upgrade of all components
 - Shorter service windows with faster concurrent microcode updates
- Management
 - Simplified management, data protection now provides applicationaware FlashCopy
- Security
 - Full Disk Encryption enhancements address PCI-DSS compliance

Changing from DS8000 to Follow on

4Gb/s FC / FICON

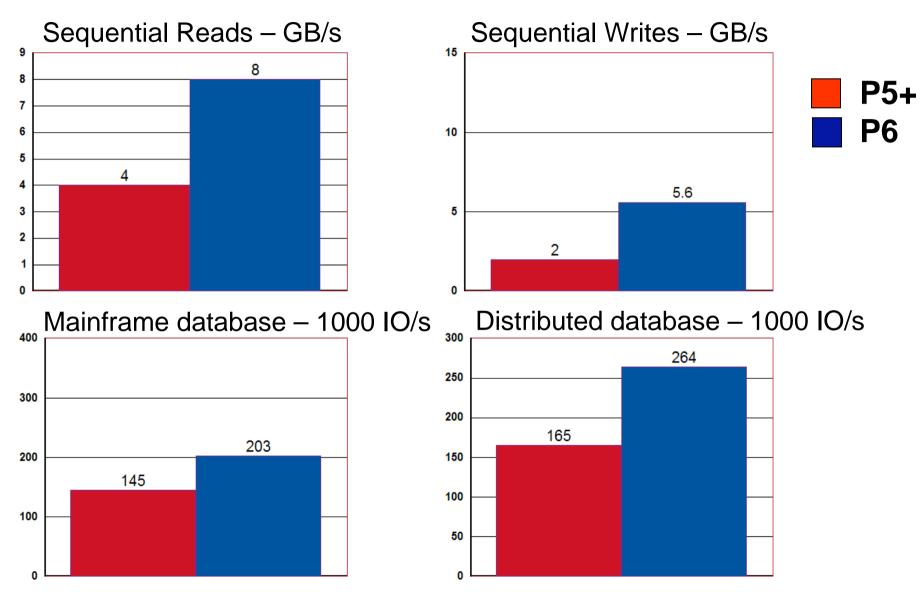
Performance Projections

		DS8700 R5 vs DS8300
	units	P6
Rd Seq	GB/s	2X
Wr Seq	GB/s	2.3X
DBz	K IO/s	1.4X
DB open	K IO/s	1.6X
Power consumptio n	Watt/IOs	0.64X

IBM System Storage - Portfolic Overview DS0700 Performance Matrix (System z workloads)*

Higher Performance for Every Benchmark!

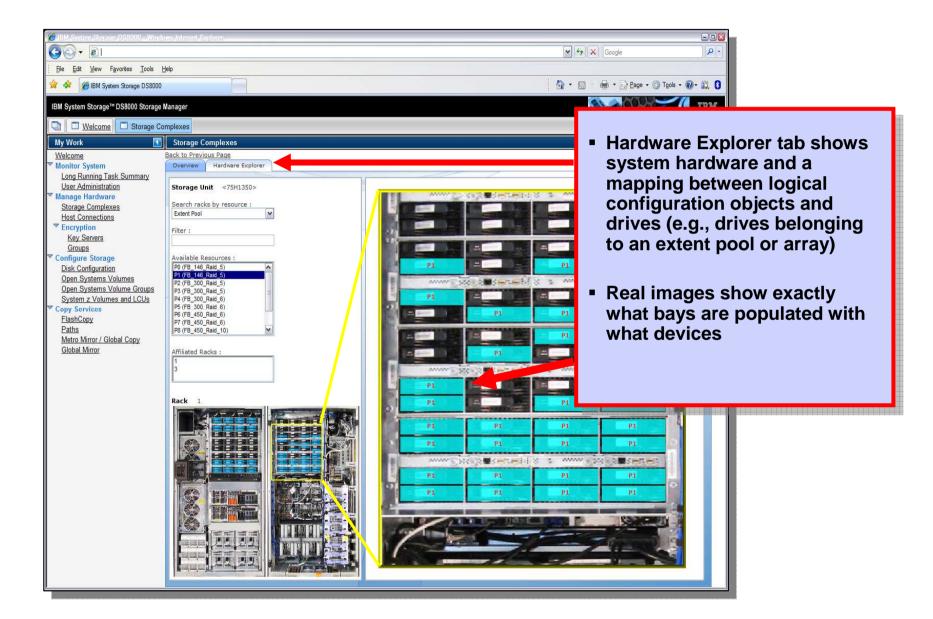
DS8700	DS8300	
Result	Equivalent	Change
364K	232K	56%
145K	120K	20%
420K	344K	22%
162K	124K	30%
181K	124K	45%
142K	89K	59%
206K	142K	45%
201K	165K	21%
156K	109K	43%
227K	189K	20%
129K	64K	101%
89K	62K	43%
128K	86K	48%
90K	63K	42%
9.3	3.7	151%
5.3	2.0	165%
	Result 364K 145K 420K 162K 181K 142K 206K 201K 156K 227K 129K 89K 128K 90K 9.3	Result Equivalent 364K 232K 145K 120K 420K 344K 162K 124K 162K 124K 181K 124K 142K 89K 206K 142K 201K 165K 156K 109K 227K 189K 129K 64K 89K 62K 128K 86K 90K 63K 9.3 3.7


2.65x

*Note: For almost all these maximum throughput benchmarks, all 32 Host Adapters must be utilized.

* Preliminary Pre-GA benchmarks

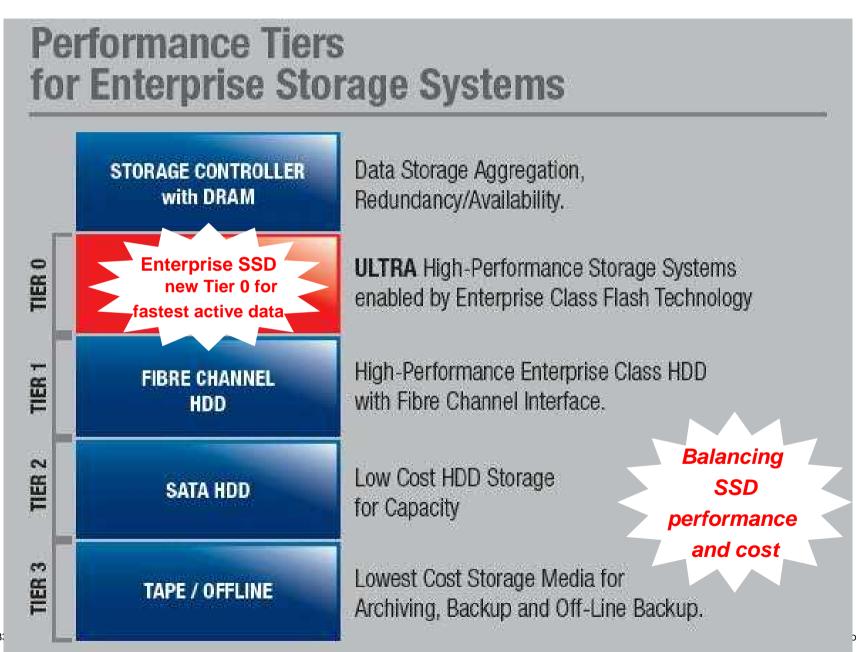
DS8000 POWER6 Estimated Performance



GUI enhancements

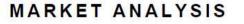
System Summary Panel – Overview Tab

SSD


DS8000 Solid-State Drive Option

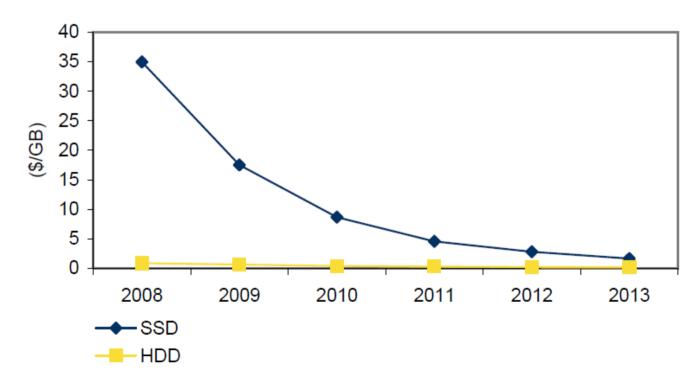
New Tier-0 drives for high priority, time-sensitive applications

- What are solid-state drives?
 - Semiconductor (NAND flash)
 - No mechanical read/write interface
 - No rotating parts
 - Electronically erasable medium
 - Random access storage
- Client Value
 - Increased performance for transactional applications
 - Online Banking / ATM / Currency Trading
 - Point-of-Sale Transactions / Processing
 - Real-time data mining
 - Faster data replication and recovery from outages
 - Historically used for military applications that needed to withstand extreme temperatures, shock, vibration, and dust
- Market view
 - Cost is very expensive compared to spinning disks
 - Industry expecting breakthrough in capacity (currently available in 73GB and 146GB)
 - Analysts foresee rapidly closing gap in pricing
 - Cost may be reduced by lowering cache size



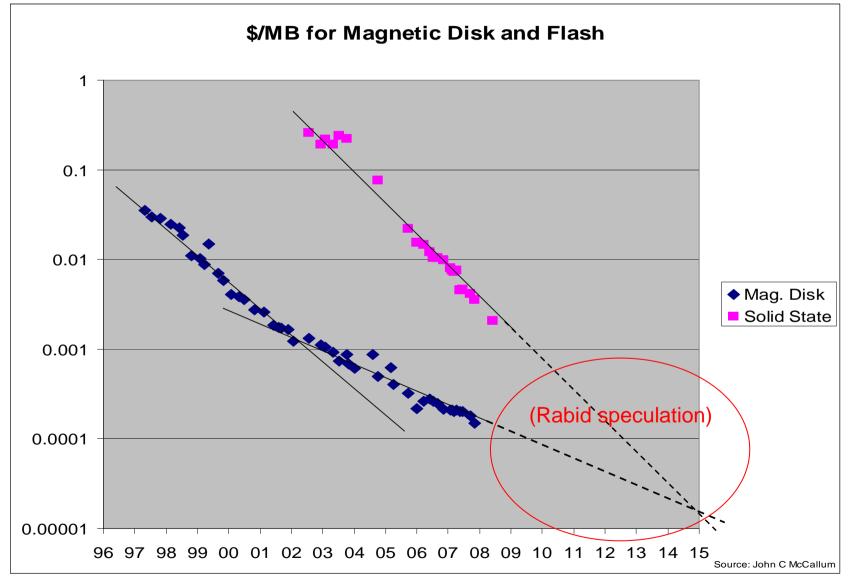
DS8000 R4.2 SSD Release - 1Q2009

- SSD types available
 - 73 GB 16 drives
 - -146 GB 16 drives
- Maximum 16 SSD drives for each DA pair
- RAID-5 only
- Copy services support


Worldwide Solid State Drive 2009-2013 Forecast and Analysis

- In the enterprise, IDC continues to believe that SSDs complement HDDs for certain applications. The desire for increased performance, better utilization, faster access times, and lower power consumption is providing an increasing opportunity for SSD-based solutions in the datacenter where there is a premium on high performance.
- Higher performance. SSDs can achieve multiple gigabytes (GB) per second of random data throughput. SSDs offer high input/outputs per second (IOPs) performance and more consistent I/O response time due to its low access time and high bandwidth.
- Greater energy efficiency. With no mass to move, SSDs offer lower power consumption. This also translates into less heat generation, which in turn lowers cooling costs at the system level.
- Higher reliability. While yet to be validated in the market with years of historical experience, SSDs have no moving or mechanical parts to fail. Early specifications indicate that SSDs provide a high mean time between failure (MTBF) and have a low probability of mechanisms causing an entire SSD to fail.

WorldwideSolidStateDrive2009-2013 Forecast andAnalysis


Worldwide Enterprise Average Price per Gigabyte Enterprise Flash SSD and Enterprise HDD Comparison, 2008–2013

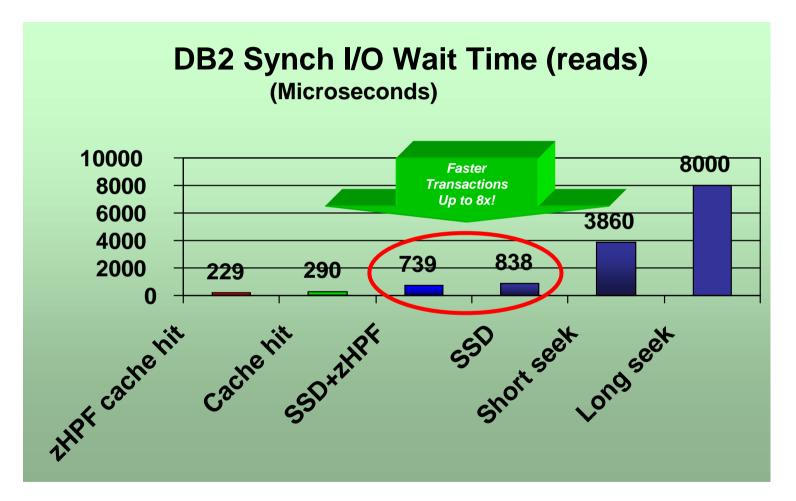
SSD vs. HDD cost

WorldwideSolidStateDrive2009-2013 Forecast andAnalysis

Worldwide Enterprise SSD Shipments, Revenue, ASP, and Capacity Shipped, 2008–2013

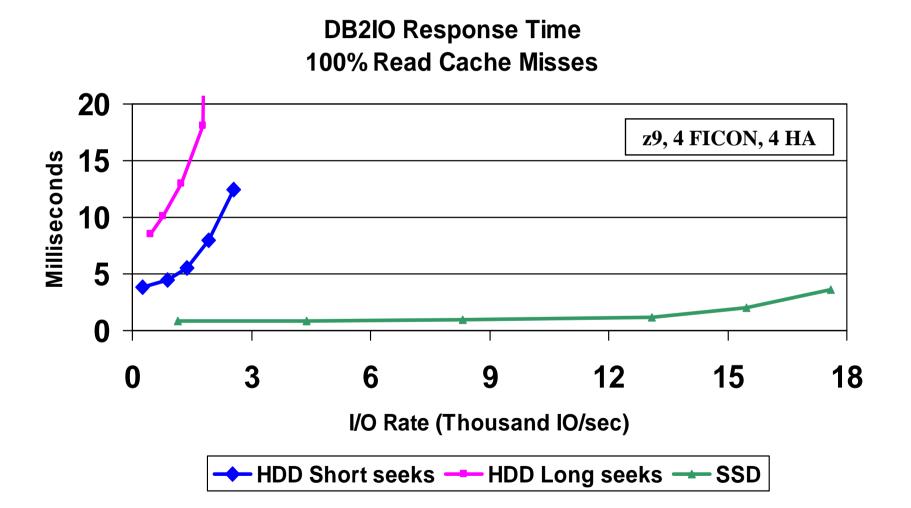
	2008	2009	2010	2011	2012	2013	2008–2013 CAGR (%)
Shipments (000)							
Enterprise DRAM	0.6	0.8	0.9	1.0	1.1	1.3	15.2
Enterprise NAND IO intensive	11.7	56.5	290.1	776.1	1,618.3	3,160.0	206.7
Enterprise NAND	29.2	87.9	204.7	607.4	955.3	1,248.1	1 11.9
Total	41.5	145.2	495.6	1,384.5	2,574.8	4,409.4	154.3

IBM System Storage - Portfolio Overview



DB2

for z/OS


DS8000 SSD Performance

DB2 Sync I/Os Running on z/OS

HDD vs SSD Response Time on DS8000 DB2IO Workload, one RAID-5 rank

IBM SAP International Competence Center

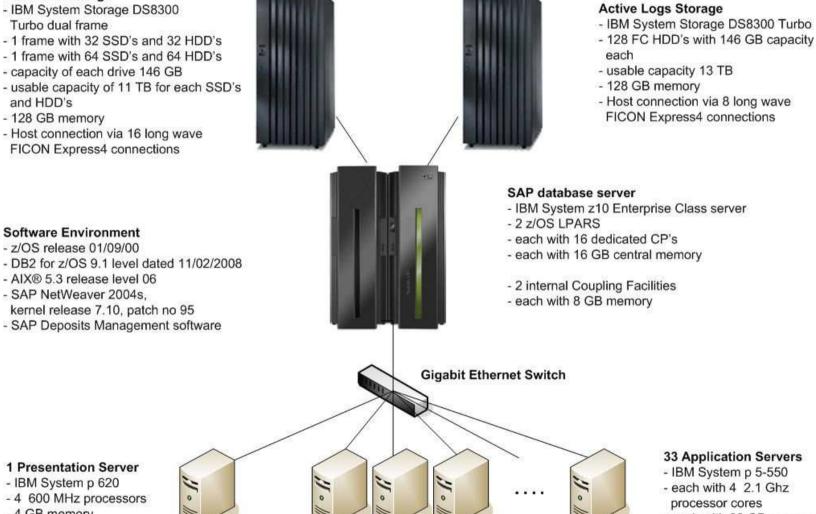
... combining our strengths

IBM System z and IBM DS8000 for SAP Environments - a winning combination -

Maik Gasterstaedt Technical Sales enablement for IBM System Storage and SAP

IBM System Storage - Portfolio Overview

SAP and IBM Improved performance with zHPF and SSD's (Solid State Drives)


Database Storage

- IBM System Storage DS8300
- Turbo dual frame
- 1 frame with 32 SSD's and 32 HDD's
- 1 frame with 64 SSD's and 64 HDD's
- capacity of each drive 146 GB
- usable capacity of 11 TB for each SSD's and HDD's
- 128 GB memory

- IBM System p 620

4 GB memory

- Host connection via 16 long wave **FICON Express4 connections**

- 33 Application Servers
- IBM System p 5-550
- each with 4 2.1 Ghz
- processor cores
- each with 32 GB memory

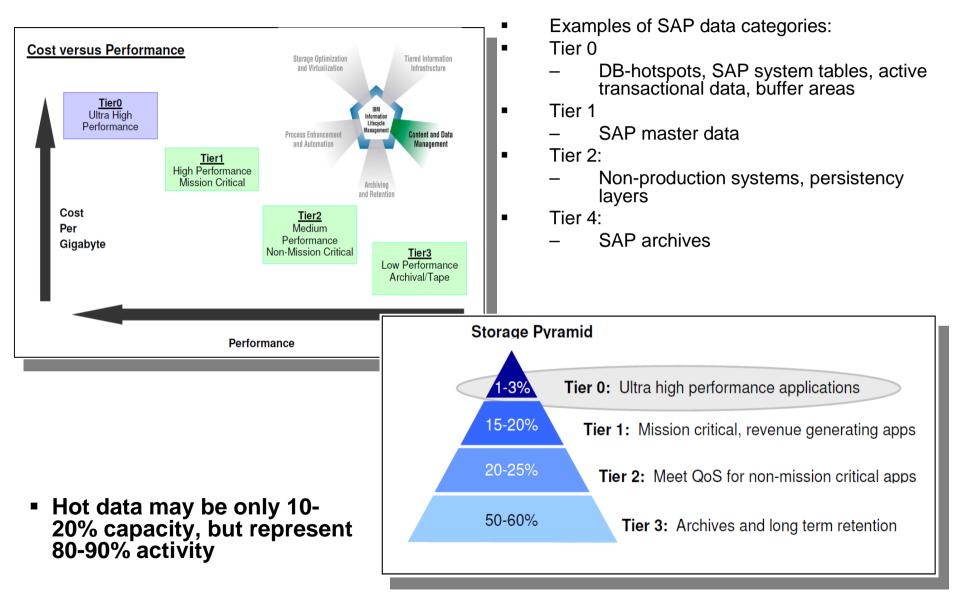
SAP and IBM - Core Banking Day Posting Workload Improved performance with zHPF and SSD's (Solid State Drives)

SSD Measured results	Baseline HDD only	HDD + SSD	% Improvement	HDD + SSD + zHPF	% Improvement
Throughput	14.3M postings/hour	18.0M postings/hou	r ^{26%}	18.7M postings/hour	31%
DB request time	1.13 sec	0.682 sec	40%	0.605 sec	41%
DASD response time	5.18 ms	3.35 ms	35%	2.85 ms	45%

Feature	Benefits
	 Increased data throughput Improved Database response time
SSD (Solid-State Drive)	 Improved data center environmental results, (e.g., reduced electrical energy needs, facility space, emissions, etc.)
zHPF (High Performance FICON for System z)	 Exploits a new channel protocol especially designed for more efficient I/O operations Designed to satisfy the performance requirements of bandwidth-hungry applications

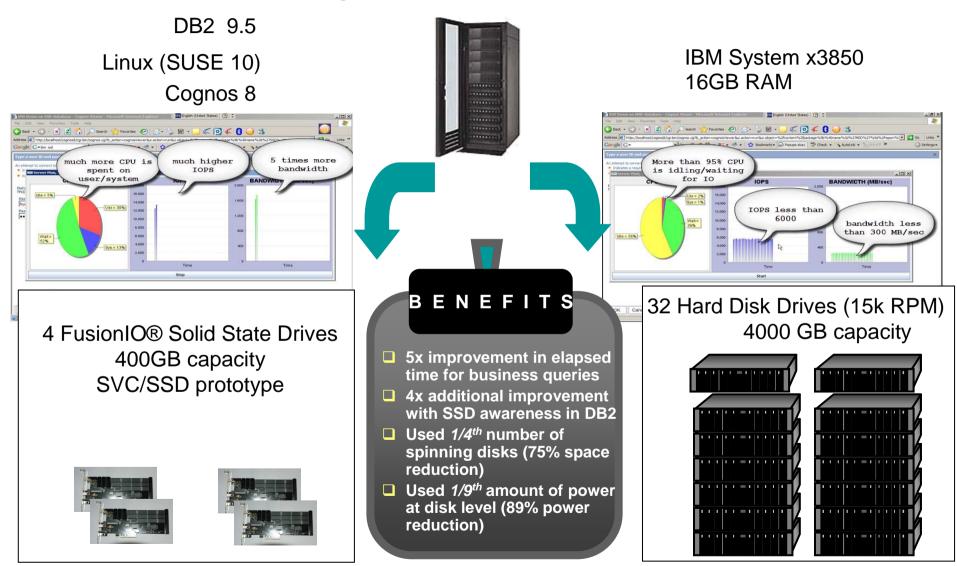
SSDs for DS8000 in SAP Distributed Environments

Optimize Disk infrastructure with mix of SDD/HDD

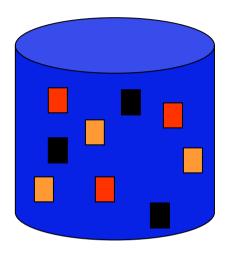

(Sample Workload OLTP / DB*)

 SSDs or "flash drives" offer a new way of running your system to boost I/O Ultra high speed I/O can 	All HDD (Hard Disk Drives)	800 HDD
 Improve your system performance 	Optimized Mix: SSD + HDD	36 SSD + 80 HDD
 Save space in your computer 	Total transactions 1.65x more	
room Lower your electrical/cooling costs 	Average drive throughput – I/O per second (HDD + SDD)	10.8x more (SSD does 97% work)
 Fewer drives improves overall hardware reliability 	SSD average I/O response time	3.1x better Reads
	Fewer total drives	86% reduction
	Energy for I/O	90% reduction

© 2009 IBM Corporation


IBM System Storage - Portfolio Overview

SSD positioning for SAP application data

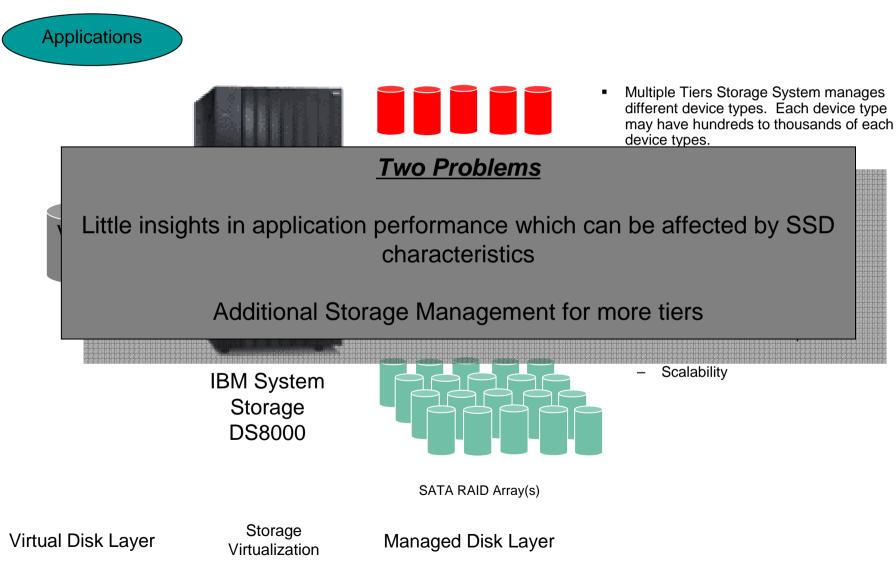

DB2 Data Warehouse Configurations

IBM System Storage - Portfolio Overview

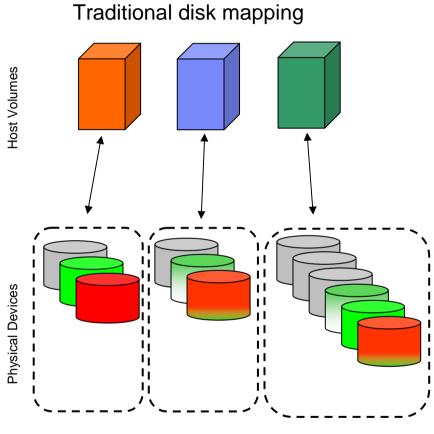
Sub-LUN Optimization

"hot" extent		
Medium use		
Low use		

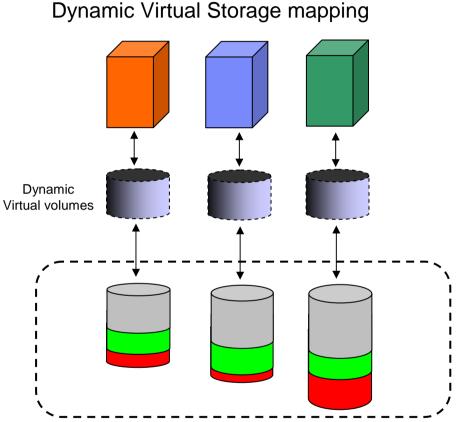
SSD



SATA



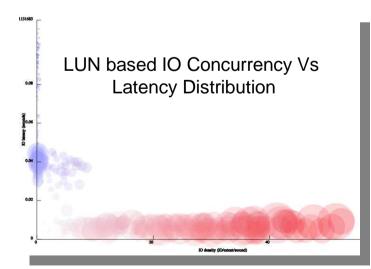
Multiple Tiers Storage System Naturally Embraces SSD Tier



Traditional Disk Mapping vs. Dynamic Virtual Storage Mapping

Volumes have different characteristics. Applications need to place them on correct tiers of storage based on usage.

All volumes appear to be "logically" homogenous to apps. But data is placed at the right tier of storage based on its usage through smart data placement and migration.



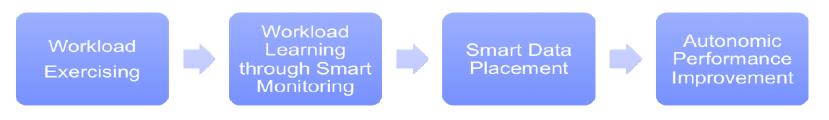
Detailed Report Shows Application Performance Issues

	IO density (
LUN	mean	std dev	max	99%		
<u>0x1020</u>	1.148	5.379	63.93	33.1		
<u>0x1040</u>	1.13	5.301	55.97	31.99		
<u>0x1060</u>	0.9824	4.997	58.5	30.61		
<u>0x1120</u>	1.138	5.303	59.79	33.4:		
<u>0x1140</u>	1.146	5.332	54.89	32.59		
<u>0x1160</u>	0.9803	4.959	60.26	31.0 ₄		
<u>0x1200</u>	1.151	5.413	60.36	33.19		
<u>0x1220</u>	1.149	5.356	59.01	32.90		
<u>0x1240</u>	0.969	4.893	58.93	30.23		
<u>0x1260</u>	0.9923	4.994	55.82	31.2		
<u>0x1300</u>	1.149	5.353	62.48	33.4		
<u>0x1320</u>	1.158	5.406	57.27	33.19		
<u>0x1340</u>	0.9811	4.935	58.54	31.0		
<u>0x1360</u>	0.9685	4.882	55.15	31.34		
All	1.068	5.168	63.93	32.34		

Heatmap index

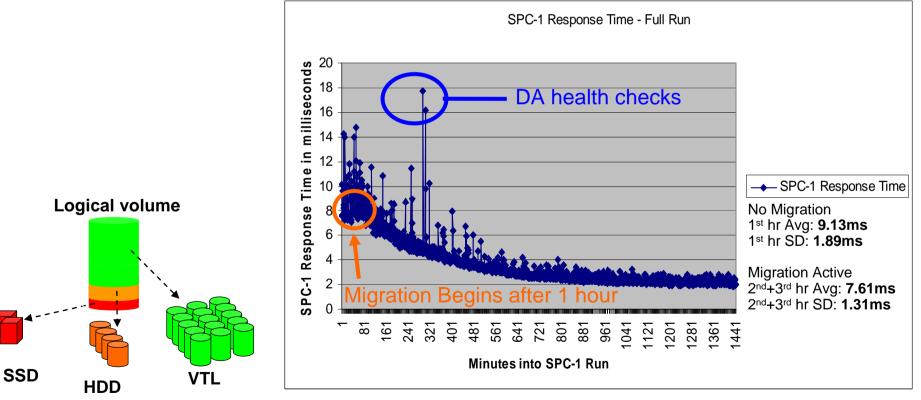
<u>0x1020</u>	<u>0x1040</u>	<u>0x1060</u>	<u>0x1120</u>	<u>0x1140</u>	<u>0x116</u>
<u>0x1240</u>	<u>0x1260</u>	<u>0x1300</u>	<u>0x1320</u>	<u>0x1340</u>	<u>0x136</u>

Smart Tools for Optimizing Tiered Storage



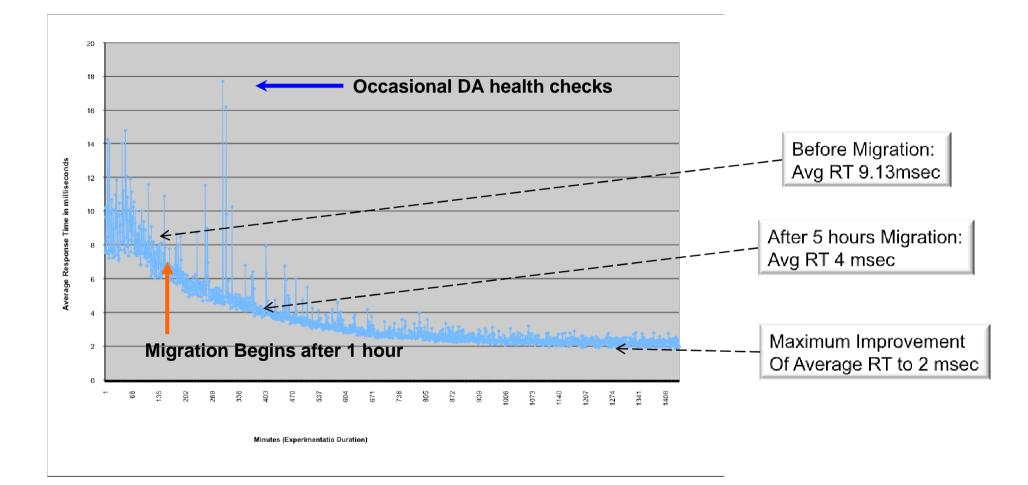
Smart data migration tools

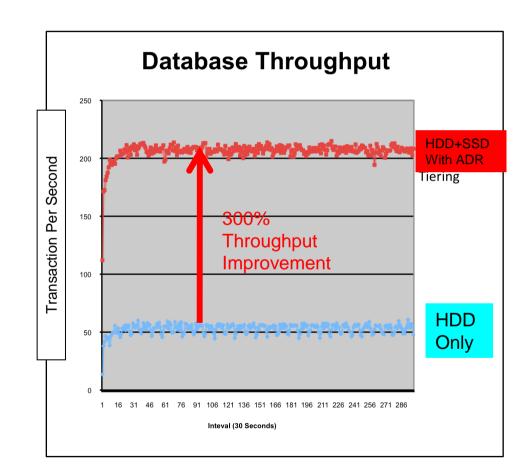
- Upcoming D8000 automated data relocation function to dynamically move hot and cold extents across drive tiers
- DB2 Online Reorg function for migrating DB2 table spaces to appropriate drive tier
- z/OS DFSMS to migrate data to the right tier via HSM policies
- Tivoli Storage Productivity Center Storage Optimizer to identify opportunities for tiered storage exploitation and enable plans to place data on the right tier
- Softek Data Mobility Console for z/OS for real time data analysis and data movement without disrupting applications
- Softek Data Migration Services can migrate mainframe and open data non-disruptively Relocating only 10% of existing data to SSDs, can result in increased system throughput by 300% *

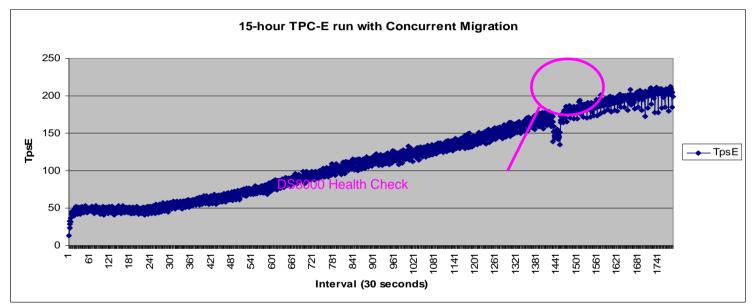


Technology Directions – Smart Placement

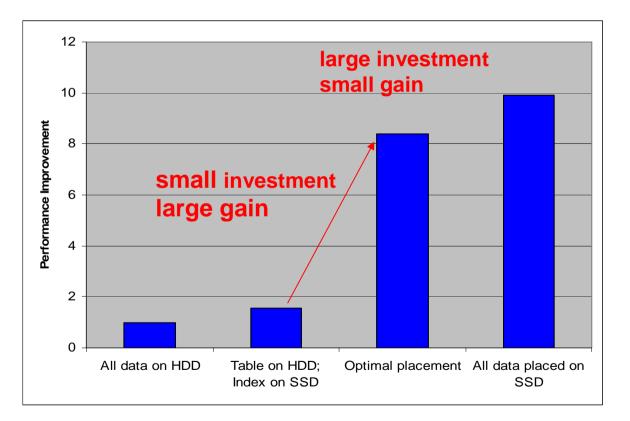
- SPC-1 Benchmark with smart placement technique May, 2009
- For Brokerage benchmark, 5% data moved for >50% response time improvement
- Most customer workloads have non-uniformities which will lead to performance gains with smart placement.
- Positive customer response on value


Smart placement moved just 5% of the data from HDDs to SSDs, yet reduced response time from 9ms to 2ms!!!

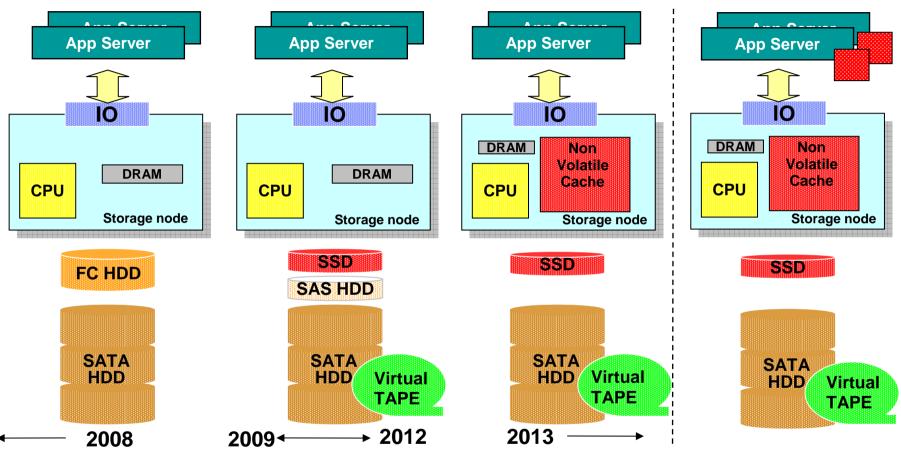

Significant Improvement on Average Application Response Time Concurrently with Live Workload


Brokerage Workload using DB2 with ADR

- Scalable Throughput
 - 300% throughput improvement.
- Identify hot "database objects" and smartly placed in the right tier.
- Substantial IO Bound Transaction Response time Improvement
 - 45%-75% response time improvement.


300% Increase (4x) in Application Throughput (transaction per second) with Concurrent Migration

- 65% of accessed extents were moved from HDD to SSD
 - 2 GB moved every 5 minutes, 6.8 MB/s
- Host CPU utilization increased from 17% to 73%
 - Idle changed from 48% to 5%, wait changed from 35% to 22%
- Host IOPS increased from 9040 to 39,600
- Host bandwidth increased from 38 MB/s to 160 MB/s



Get the Most Benefit from Solid State Technology

Blind placement of database objects on SSDs result in less Maluerporation

- . Step one start with NAND flash SSDs, emulate HDD and embed within disk arrays
- . Step two use as an extension of subsystem Cache
 - . Keep Flash based SSDs as devices under the cache?
- . An additional model server integration

© 2009 IBM Corporation

Agenda

- IBM Information Infrastructure
- High-end and enterprise disk systems
 - DS8000
- Enterprise tape
 - Virtualization engine
- Storage virtualization
 - -SAN Volume Controller
 - $-\mathsf{XIV}$
- Summary

Agenda

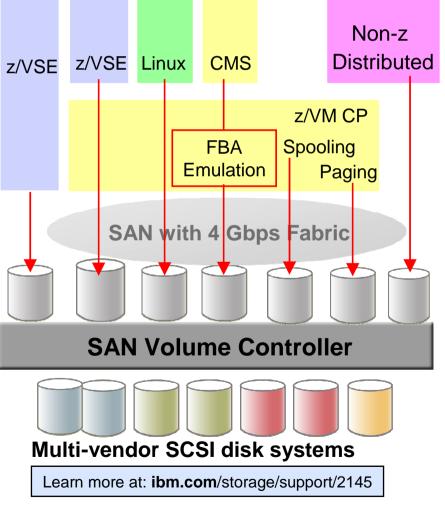
- IBM Information Infrastructure
- High-end and enterprise disk systems
 - DS8000
- Enterprise tape
 - Virtualization engine
- Storage virtualization
 - -SAN Volume Controller
 - $-\mathsf{XIV}$
- Summary

IBM Information Infrastructure for Storage Virtualization IBM System Storage SAN Volume Controller

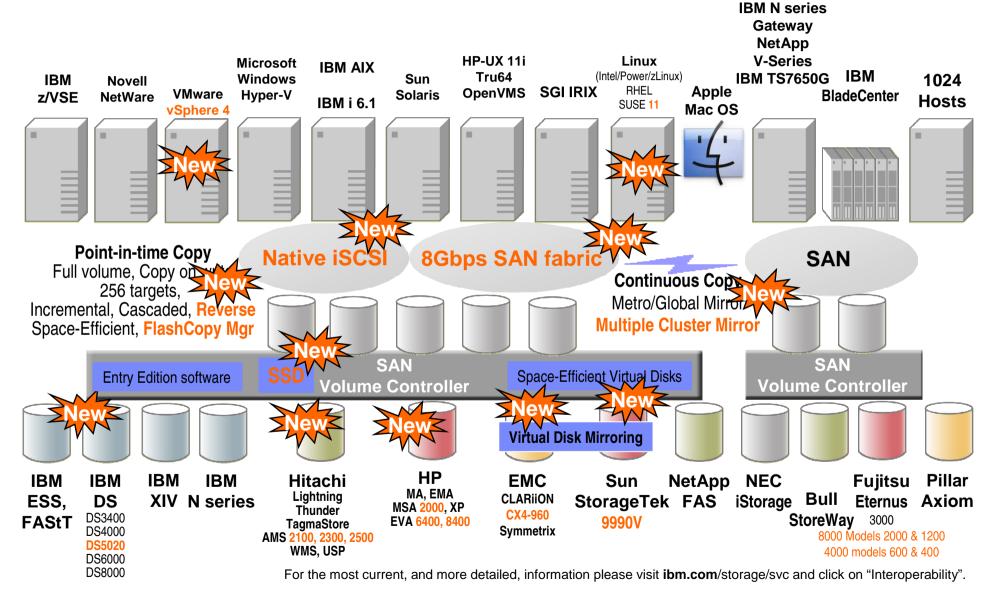
Client Value

- Improves storage utilization and reduces storage growth
- Reduces power and cooling requirements helping make data centers more "green"
- Boosts performance and simplifies storage management for IBM and non-IBM disk
 - Improve storage administration productivity by up to 2x
- Redundant architecture supports enterprise-class availability
 - Non-disruptive upgrades of both hardware and software
- Supports non-disruptive data movement

Powerful data management capabilities

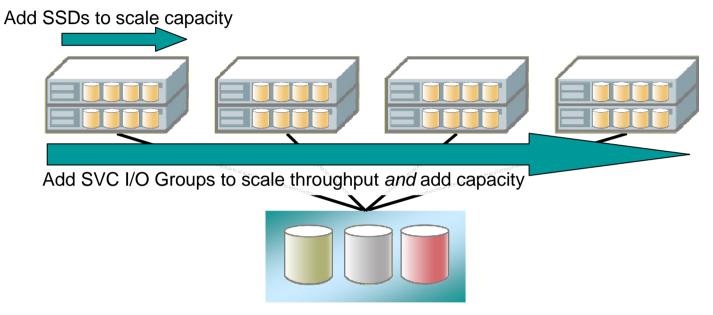

- Space-Efficient Virtual Disks support on demand provisioning
- Space-Efficient FlashCopy dramatically reduces storage needed for backup copies by as much as 75% or more
- Virtual Disk Mirroring helps improve availability for critical applications

Outstanding performance, flexibility, and high availability while controlling storage TCO **Information Avail**



z/VSE V4.2 Enhancement: SAN Volume Controller (SVC)

- SAN Volume Controller (SVC) creates a single pool of SCSI disk capacity
- Disk storage options include IBM DS8000, DS6000, ESS, DS4000, etc. plus qualified systems from various non-IBM vendors
- SVC *platform* includes both hardware and software components:
 - SVC 'nodes' provide redundant components plus cache
 - Systems Storage Productivity Center (SSPC) software provides administrative and copy services
- Also supported in z/VM V5.3 and later, as well as Linux on System z


Asset Utilization: Virtualizing Existing IT with SVC

© 2009 IBM Corporation

Scalability: Scale-Out SVC SSD Implementation

- Add SSDs to SVC engines for more capacity
 - SSDs may be added without disruption to engines
- Add SVC engines for more capacity and throughput
 - Additional engines provide more processing power, more bandwidth, more SAN attachments
 - SVC designed to deliver maximum I/O capability of SSDs
 - Up to 50,000 read IOPS per SSD
 - Up to 200,000 read IOPS per SVC I/O Group
 - Up to 800,000 read IOPS per SVC cluster

IBM Storage Systems and System z Together

© 2009 IBM Corporation