IBM System z — z/VSE — WAVV 2013

The New z/VSE Database Connector
(DBCLI)

Ingo Franzki

IBM System z — z/VSE — WAVV 2013

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not
actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, 0S/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA,
WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is aregistered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without
notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-1BM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

@ © 2013 IBM Corporation

http://www.ibm.com/legal/copytrade.shtml

IBM System z — z/VSE — WAVV 2013

§ Any information contained in this document regarding Specialty Engines ("SEs") and SE
eligible workloads provides only general descriptions of the types and portions of workloads
that are eligible for execution on Specialty Engines (e.g., zlIPs, zAAPs, and IFLs). IBM
authorizes customers to use IBM SE only to execute the processing of Eligible Workloads of
specific Programs expressly authorized by IBM as specified in the “Authorized Use Table for
IBM Machines” provided at

(“AUT").

§ No other workload processing is authorized for execution on an SE.

§ IBM offers SEs at a lower price than General Processors/Central Processors because
customers are authorized to use SEs only to process certain types and/or amounts of
workloads as specified by IBM in the AUT.

© 2013 IBM Corporation

http://www.ibm.com/systems/support/machine_warranties/machine_code/aut.html

IBM System z — z/VSE — WAVV 2013

z/VVSE applications accessing Databases

z/VSE

CICS or o
batch
Application

DB2/VSE
Server
or Client

-
with DB2
Local Federation
Database ~
. ~
. ~
‘e, ~

...
" ...
. Yay, .*
. Ty ans®
’. Y ""ssgppgmpunnsn®
L 2
L 2
*
L 4
L 4
‘e
L 4
.... -l"---
“taay gumaummu®®
EEEyEEsEEEEEEEEEEER

@ © 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

zIVSE - Remote system

§ DB2/VSE or DB2/VM Server ASvr——— (Linux, Unix, Windows)
— Local database residing in z/VSE or z/VM application ROA With Federation: _
— Lacks sypport of modern SQL functionality Se?\?jr//\é?i':m > DB2 Server ---*;Orl?ﬂcs'e'sg{??feli
— Only quite old SQL level supported | ——17— | | ——T1 — ‘7 Fomm e
§ DB2/VSE Client Edition S— A— — v — Y
. .) Local DB DB2 Data p Data !
— Remote database (on Linux, Windows, Unix) - S :

— Communication via DRDA protocol

— Same old SQL level supported as DB2/VSE Server
— Can not use modern SQL functionality provided by DB2 LUW
— Can only access remote DB2 databases

» Other databases (e.g. MS SQL Server, Oracle, etc) can only be accessed through
IBM InfoSphere Federation Server

§ VSAM Redirector \
— Primarily used to keep Databases in sync with VSAM data “Eﬂ 0
— Also allows migration from VSAM to database

§ New: z/VSE Database Call Level Interface
— Allows z/VSE applications to access a relational database on any suitable database server
* IBM DB2, IBM Informix, Oracle, MS SQL Server, MySQL, etc.
— Utilize advanced database functions and use SQL statements provided by modern database products

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

zIVSE V5.1 + PTFs:

§ Allows z/VSE applications to access a relational database on Xﬁﬁ‘o
any suitable database server

—IBM DB2, IBM Informix, Oracle, MS SQL Server, MySQL, etc.
aThe database product must provide a JDBC driver that supports JDBC V3.0 or later
aUtilize advanced database functions and use SQL statements provided by modern
database products

z/IVVSE Java capable Database Server
platform (may run on the
(e.g. Linux on same system as
Batch or CICS System 2) the DBCliServer)
application
DBCLI API Y
v
%?-CLI DBCIliServer Database
ST (e.g. IBM DB2,
b Tcp/p | 1BM Informix
v v Oracle
or local J
TCP/IP or TCP/IP JDBC V3 > SM Sgclﬁ LSer\;er
Linux Fast Path Driver i/

Requires z/VSE 5.1 plus PTFs (UK78892 and UK78893)

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

z/VSE V5.1 + PTFs: z/VSE Database Call Level Interface (DBCLI)

§ The z/VSE Database Call Level Interface provides a programming interface (API)
— Call interface for use with COBOL, PL/1, Assembler, C and REXX
— Can be used in Balch as well as in CICS TS applications
— Supports LE enabled as well as non-LE environments (Assembler, REXX)

§ It provides callable functions for
— Initializing and Terminating the APl Environment
— Connecting and Disconnecting to/from the DBCLI Server and the Database
— Executing SQL Statements
— Retrieving query results through cursors
— Handling of Logical Units of Work (Transactions)
— Retrieving Database Meta Data

N7
o ~GE W
§ Additional enhancement announced: — RN
_ _ APTUN
— Connection Pooling /YN

§ The APl is not compatible with DB2/VSE’'s EXEC DB2 preprocessor interface
— But it provides similar functions
— The APl is similar to the ODBC programming interface

§ A COBOL exampleis provided to show how DBCLI can be used in your applications

@ © 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts:

§ Using DBCLI in COBOL:
— The COBOL copybook IESDBCOB contains common declarations

§ Using DBCLI in PL/1
— The PL/I copybook IESDBPL1 contains common declarations

§ Using DBCLIin C
— The C header file IESDBC.h contains common declarations

§ Using DBCLI in Assembler
— The Assembler macro IESDBASM contains common declarations
VL
— The following register conventions apply:
* Register 0, 1, 14, and 15 are used by the interface and must be saved prior to invocation
* Register 13 must point to a 72-byte save area provided by the caller

§ Using DBCLI in REXX (Batch)

— All parameters must be initialized with a value of the appropriate length before calling the DBCLI API.
This is especially true for output parameters.
— Fullword binary variables must be initialized to contain 4 bytes (for example, VARIABLE = D2C(0,4))
— Since the variable is expected to contain a value in binary representation, you must convert the value from

the REXX string representation into the binary representation and vice versa using the REXX functions C2S
and D2C g

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts:

When using the API provided by the DBCLI client, you must:

§ the API environment by calling the function before calling any other
function

— The INITENYV function allocates an that you must pass to all
subsequent functions

— You can have only one active environment at a time in your program

§ the APl environment (at the end of your program) by calling the
function

— The TERMENYV function frees all resources allocated by the DBCLI code
— The TERMENYV function will also close any "left over" connections or statements
— After the TERMENY function, the environment handle is no longer valid

§ You can set and get various on the "Q’"m
— You do so by calling the or function D.
4

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts:

zIVSE Jave|1 cfapable D?tabase Serr1ver

e S Systam e

To access a Database, you must connect to the DBCLI server | |eanogcs “Ssems | thebaCiSenen

and the Vendor database IS b

Client DBCliServer (e%étlgMa[?Bez,

l l P M Informix

. TCP/IP or TCP/IP JDBC V3 Cver

§ You connect to the DBCLI server (DBCliServer) and the Lo Pt Py

database by calling the functon
8 You must supply the:
- of DBCliServer
— or the JDBC URL to which you wish to connect
— to authenticate with the database

§ The function allocates a that you must pass to all subsequent
functions that require a connection
— You can have multiple connections to the same or different DBCLI servers and databases at a time
— Each connection is represented by its own connection handle

§ When you are finished working with a database, you must disconnect from the database and
the DBCLI server (DBCliServer) by calling the function

— The DISCONNECT function frees the connection handle and all left over statements
(if any) that you have allocated using this connection

§ New: Connection Pooling can be used to speed up the connection establishment

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts:

Per default, a connection operates in
§ Any database updates that you perform are contained in a

§ You can by calling the COMMIT or ROLLBACK functions:
—The function commits all changes done since the beginning of the logical unit
of work and starts a new logical unit of work
—The function rolls back (reverts) all changes since the beginning of the

logical unit of work or up to a savepoint

§ Usually, you should function :

§ If you do not call the COMMIT function, DBCliServer will all changes
— by calling the function

§ If the (for example, because the program abends), the DBCLI server

done since the beginning of the last logical unit of work

8 You can set a connection into

— In auto-commit mode, every SQL statement is treated as and
5 when the statement execution is complete.
» Therefore, you do not have to call the COMMIT or ROLLBACK functions.
— You set a connection into auto-commit mode by calling the function to

set the attribute to TRUE

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts: Preparing SQL Statements

In order to execute an SQL statement, you must first prepare the SQL statement

§ During preparation, the database will pre-compile the SOQL statement and create an
access plan for the statement

— The access plan is kept as long as the statement exists
—You can then execute the statement as many times as you want

§ The PREPARESTATEMENT function prepares an SQL statement for execution
— It allocates a statement handle that represents the statement
— An application can have multiple prepared statements at a time
§ The PREPARECALL function prepares a stored procedure call statement for execution

§ SQL statements may contain parameters that are evaluated at execution time
— Parameters are marked by a question mark (?) within the SQL statement
— The parameters are numbered in order of appearance, starting with 1

§ After preparing, the application can bind host variables to the parameters using the
BINDPARAMETER function

— When the statement is later executed, the content of the host variables Is used and sent

to the database.
@ © 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts: Preparing SQL Statements

In order to execute an SQL statement, you must first prepare the SQL statement

§ During preparation, the database will pre-compile the SOQL statement and create an
access plan for the statement

— The access plan is kept as long as the statement exists
—You can then execute the statement as many times as you want

§ The PREPARESTATEMENT function prepares an SQL statement for execution
— It allocates a statement handle that represents the statement

SQL statements may contain parameters that are evaluated at execution time
§ Parameters are marked by a question mark (?) within the SQL statement
SELECT * FROM EMPLOYEE WHERE EMPNO>? AND SALARY>?
Parameter 1 Parameter 2
§ The parameters are numbered in order of appearance, starting with 1

8 When using DB2/VSE I:pr(e]&rocessor, above statement would look like:
SELECT * FR EMPLOYEE WHERE EMPNG>: enpno AND SALARY>: sal ary

§ The application binds host variables to the parameters using the BINDPARAMETER function

— When the statement is later executed, the content of the host variables Is used and sent
to the database

— You also specify the data type and length of the variable with the BINDPARAMETER call
— Indicator variables are used to determine if the parameter value is NULL

@ © 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts:

A\

To execute a statement, you must call the function

§ If the statement was an SQL , YOu can retrieve the number of rows
updated using the function or the parameter at the
EXECUTE function

§ If the statement was a SQL , YOu can to retrieve (fetch) the

result rows and columns
— A statement can provide multiple results (mostly stored procedures)
— To retrieve the additional results you must call the function
— The GETMORERESULTS function will move to the next available cursor or update count

§ If the statement was a stored procedure call, are updated with the data
passed back by the stored procedure

§ When you no longer need a statement, you must close it by calling the
function:

— The CLOSESTATEMENT function frees the statement handle and closes all cursors (if
any) that may still be open from the last statement execution

§ The statement handle is no longer valid after the CLOSESTATEMENT function

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts: Result sets and Cursors

The execution on an SOL query returns aresult in form of a cursor
§ A cursor allows you to retrieve (fetch) the result rows and columns

—You can use the GETNUMCOLUMNS and GETCOLUMNINFO
functions to obtain detailed information about the cursor's columns

— The columns are numbered in order of appearance, starting at 1

§ To fetch the result rows using the cursor, you must first bind host variables to the
columns of interest

— You bind host variables to the columns of interest by calling the BINDCOLUMN
function

— If the FETCH function is called later on, the host variables will be updated with the
contents of the column in the row that has been fetched

§ Per default, the FETCH function processes the cursor from the beginning to the end
—You may reposition with a cursor

* Providing the database supports this and you have created the statement using
the appropriate type

§ Repositioning can be performed using either the:

— FETCH function with operations FETCH-PREVIOUS, FETCH-FIRST, FETCH-
LAST, FETCH-ABSOLUTE or FETCH-RELATIVE.

— SETPOS function @

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts:

The DBCLI interface allows you to retrieve from the database
§ This includes functions to get a , iIndexes, keys, , and so on
§ This information is typically stored in system catalog tables in the database.

— You can also execute regular SELECT statements against the system catalog tables, but

this requires that you know which database system and vendor you are using
— System catalog tables are vendor- and database-specific

§ The DBCLI interface provides a "::""“
to retrieve meta data information. ay,
— These functions are prefixed with 'DB’ 2 D)

— The function DBTABLES for example retries a list of tables
available in the database

§ Please note that some databases may not support all of the meta data functions

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

DBCLI Concepts:

W
NRW
§ Creating database connections is time-consuming

— Because of the overhead of establishing a network connection and initializing access to
a database server

§ Connection pooling
— Reducing the time to establish a connection to the database

— This can be especially beneficial for short-lived, CICS DBCLI applications that will be
running frequently

§ DBCLI applications can by setting environment
variable to TRUE prior to calling the CONNECT function

— No further applications changes are required
— The use of the connection pool is transparent to DBCLI applications

— Existing DBCLI applications will continue to work unchanged, that is without using the
connection pool

§ Connection Pooling is only available under CICS
— The Connection Pool Manager transaction must be active (long running transaction)
— Pooling of SSL connections is not supported

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

COBOL Example

FROCEDUEE DIVISION.
HMATH-PROGERAM.
DISPLAY 'COBSAMFPL STAETED'.

* Perform the INITENV call

-
MOVE '"SOCEETOO'" TO TCPMAME.
MOVE '"EZLRSOHZ9' TO ADSHMLME.

TCPFHMAME ADSHAME ERETCODE.

IF RETCCDE > ECE THEN

FERFOEM CHECE-EERERCE
END-IF.

DISPLAY ‘RETCCDE ©OF INITEHWNV IS °

CALL '"IESDECLI' USING FUNC-INITENV |ENV-HANDLE| <

EETCCDE .

Initialize the environment

@ © 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

COBOL Example

FROCEDUEE DIVISION.
HMATH-PROGERAM.
DISPLAY 'COBSAMFPL STAETED'.

- * Connect to the DBEBCLI server and the databass

MOVE '9.152.2.70" TO SERVER., IP Or hOStname Of

MOVE 10 TO SERVER-LEM.
MOVE 18178 TO PORT. DBCLI Server
MOVE 'SAMELE' TO DENAME. Qo
MOVE & TO DEMNAME-LEN.

MOVE 'dbuserid' TO USERID.q Database allaS name

MOVE & TO USERID-LEH.

MOVE 'password' TO PASSWD. User_ID & Password

MOVE & TO PASSWD-LEH.
CALL 'IESDBCLI'" USING FUNC-CCOHNNECT ENV-HANDLE (CON-HANDLE

SERVER S5ERVER-LEN PCRT DBNAME DBNAME-LEN \
USERID TUSERID-LEN PASSWD PASSWD-LEN

RETCODE. — Connect to the
e RErcODE o 2O TEEN DBCLI Server

PERFOEM CHECE-ERERCE

— and the Database

: @ © 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

COBOL Example

FROCEDUEE DIVISION.
HMATH-PROGERAM.

DISPLAY

'COBSAMEL

STAETED".

ot

o

MOVE
MOVE

the DBCLI server and the

'9.152.2.70" TO SERVER.
10 TO SERVER-LEH.

16178
'SAMFPFLE" TO DENAME.
& TO DENAME-LEN.

databas=

T POET.

*+
* Prepars
*+

MOVE

MOVE
CALL

DISPLAY 'RETCODE OF PREPARESTATEMENT IS5 " RETCOCDE.
IF RETCCDE > ECE THEN

FERFORM CHECE-ERRCE
END-IF.

an 50L statement for later execution /

'"SELECT * FRCOM EMPLOYEE WHERE EMPFNO>? LND S4ALARY>?2?"'
TO 5QL.
LENGTH OF 5QL TO SQL-LEH.

"IESDECLI' USING FUNC-PREPARESTATEMENT ENV-HANDLE
CON-HANDLE |STMT-HANDLE| SQL SQL-LEN D a—
CURSOR-TYPE-SCROLL-INSENSITIVE CURSOR-CONCUR-READ-ONLY
HOLD-CURSORS-OVER-COMMIT RETCODE.

SQL Statement
Containing Parameter

_ Markers ('?)

— Prepare an
SQL Statement
for later execution

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

COBOL Example

FROCEDUEE DIVISION.
HMATH-PROGERAM.

DISPLAY 'COBSAMPL STLRERTED'.
- -
- * CJonnect te the DBCOLI server and the databass
-
MOVE '9.152.2.70'" TO S5EEVER.
MOVE 10 TO SERVER-LEHN.
MOVE 18178 TO PORT.
MOVE 'SAMPLE' TO DEMNAME.
MOVE & TO DENAME-LEN.

* Prgs EE— E— — —
* . — - P - o
* Bind the EMPNC host variable (Tert) fo parameter 1. Eglr](j r]()f;t \/EirIEit)IEB
* Hers we speclfy the opticonsl codspags parameter to
. . (14 1
* gend the text data i1in the desirsed codspags. / EMPNO
= I

MOVE 1 TO PARM-TIDX.
MOVE LENGTH OF EMPNC TO EMPHCO-LEN. to parameter
MOVE "CPl047' TO CODEPAGE.

MOVE LENGTH OF CCODEPAGE TO CODEPAGE-LEN. number 1

CALL '"IESDECLI" USING FUNC-BINDFARAMETER ENV-HLNDLE
STHT-HLWNDLE FPLEM-TDX HNATIVE-TYPE-STRING aS STRI NG
EMPHNC EMPNCO-LEN EMPNO-IHD
CODEPAGE CODEPAGE-LEN RETICOCDE. |

DISPLAY 'RETCODE OF EINDPARELMETEER IS ' EETCODE.

IF EETCCDE > ECE THEN

FERFOEM CHECE-EERERCE

END-IF.

@ © 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

COBOL Example

FROCEDUEE DIVISION.
HMATH-PROGERAM.
DISPLAY 'COBSAMFPL STAETED'.

- * Connect to the DBEBCLI server and the databass

MOVE '5.152.2.70" TO SEEVER.
MOVE 10 TO SERVER-LEH.

MOVE 16178 TO PORT.

MOVE 'S&MFLE' TO DENAME.

Bind host variable
“SALARY”

to parameter
number 2

as PACKED decimal

+ * * * #

MOVE & TO DENAME-LEN.
*+
* Prgs EE— E— — —
* . — - P - o
* Bind the EMPNCO host variable (Text) to parameter 1.
* Hers we speclfy the opticonsl codspags parameter to
* pond the tewt Asts Tn the Aseirad ~odonsags /
*+

Silad LR o H.AJ_LP:LR:{ mosc bﬂr_i.ﬂb_—l‘._ = k_d d_ui;.ﬂ_L
i
g

Here wve speclf

want to send the numeric ds

MOVE 2 TO PARM-IDX.

MOVE LENGTH OF SALARY TO SALARY-LEHN.

MOVE 2 TO DECFOS.

CALL 'IESDBCLI' USING FUNC-BINDEARAMETER ENV-HANDLE
STHT-HANDLE PAEM-IDX MNATIVE-TYPE-PACEED-SIGNED
SALARY SALARY-LEN SALARY-THND
DECPCS RETCCDE.

DISPLAY 'RETCODE OF BINDPARAMETER IS5 ' RETCODE.

IF RETCCDE > ECE THEN

FERFOEM CHECE-ERRCE

END-IF.

© 2013 IBM Corporation

lis)

IBM System z — z/VSE — WAVV 2013

COBOL Example

LN S

ENE S

MOVE '000030°
MOVE INDICATE-WNOTHULL

T5ING
STMT-HANDLE RETC
IF RETCCDE > ECE THEN
FERFOEM CHECE-ERRCE
END-IF.
DISPLAY 'RETCODE OF
IF RETCCDE > ECE THEN
FERFOEM CHECE-ERRCE
END-IF.

CALL

'IESDECLI"

EXECUTE

TO EMENC.

TO EMPNCO-IND.

J.00 TO SALARY.

FUNC-EXECUTE ENV-HANDLE
CDE .

DISFLAY

'RETCODE

END-IF.

PROCEDURE DIVISION.
HMOTHN-PROGERAM.
DISPLAY 'COBSAMPL STARTED'
- -
- * Jonnect te the DBCLI server and tH
+
HMOVE '9.152.2.70" TO SERVER.
HMOVE 10 TO SEEVEERE-LEN.
HMOVE 18172 TO PORT.
MOVE 'SAMPLE' TO DENAME.
HMOVE & TO DENAME-LEHN.
*
* Pra= e —e =
i * Bind the EMPNO host wvaris]
* Here we speclfy the optiod
* 55;—: the tewt Asts 1n t+ho
} # Bind the SALARY host
* Herse we specify the g
* want to send the numdg
*
MOVE 2 TO PARM-IDX
MOVE LENGTH OF SALAETY
MOVE 2 TO DECPOS.
CALL '"IESDECLI'

BINDFARABMETER

TO SALARY-LEN.

USING FUNC-BINDPARAMETER ENV-HANDLE
STHT-HANDLE PAEM-IDX MNATIVE-TYPE-PACEED-SIGNED
SALARY SALARY-LEN SALARY-THND
DECPCS RETCCDE.
oF
IF RETCCDE > ECE THEN

FERFOEM CHECE-ERRCE

IS

' RETCODE.

lis)

Execute the
statement

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

COBOL Example

FROCEDUEE DIVISION.
HMATH-PROGERAM.

DISPLAY 'COBSAMEPL STARTED! i}
* Set the heost variables values and coresponding indicator
. [* * variables:
- + Connect to the DBCLI server and tH = [
= * Bind host wariabhles FIRSTNAME (text) to the column 2.
MOVE '2.152.2.70" TO SEERVER. * Hers we do not spescify the codspags paramseter so we
MOVE 10 TO SERVEER-LEHN. * recsive the text dats in the default codspage.
MOVE 18178 TO PORT. =
MOVE 'SAMPLE' TO DEMNAME. - HMOVE 2 TO COL-IDX.
MOVE & TO DENAME-LEN. T E HMOVE LENGTH OF FIRSTHAME TO FIRSTHAME-LEN.
* *h CALL '"IESDECLI' USING FUNC-BINDCOLUMN ENV-HANDLE
* Prgs EE— E— = STMT-HANDLE COL-IDX HATIVE-TYPE-STRING
* + Bind the EMPNO host varial FIRSTHAME FIRSTHAME-LEN FIRSTHNAME-IND
* Here we speclfy the optiod RETCODE .
+ gepd the eyt dAsts in the DISPLAY 'EETCODE OF BINDCONJUMN IS ' EETCODE.
. * IF RETCCDE » ECKE THEN
Bind the S5ALARY host PERFORM CHECE-ERROR
* Hers we specify the 4 END-IF.
= wvant te SE'ECE 1:_?15 nums I BEIVUTIE A TN
* FERFORM CHECE-ERROE
MOVE 2 TO PARM-IDH END-IF.
MOVE LENGTH OF SALARY TO SALARY-LEH. \\
MOVE 2 TO DECPOS.
CALL '"IESDECLI'" USING FUNC-BINDPAERAMETER ENV-HANDLE
STHMT-HLNDLE PABM-IDX NATIVE-TYPE-PACEED-SIGHED
SALARY SALARY-LEMN SALARY-TIND
DECPCS RETICCLE.
DISPLAY 'RETCODE OF BINDPARAMETER IS " EETCODE.
IF REETCODE > ECE THEN
FERFORM CHECE-ERECE
END-IF. number 2

Bind host variable
“FIRSTNAME” to
result set column

sy

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

COBOL Example

PROCEDURE DIVISION.
HMOTHN-PROGERAM. —
DISPLAY 'COBSAMPL STARTED' s ~
* Set the heost variables values and coresponding indicator
. - * variables:
- * Jonnect te the DBCLI server and tH * ok
* * Bind host wariabhles FIRSTNAME (text) to the column 2.
HMOVE '9.152.2.70" TO SERVER. = Hy=
MOVE 10 TO SERVER-LEN. * ¥4+ Fetch all available rows and display the data.
MOUE TR TO BORT . i * Since columns may be NULL we check the indicator variables
*
F: t r1 II r . * FETCH without an operation argument means FETCH NEXT.
elcn all rOWs |- 9 |
e
- ~:‘ﬁ-~ PERFORM WITH TEST AFTEER UNHTIL EETCODE > EOE
* Prgy E— — ~\"‘\; CALL "IESDECLI' USING FUNC-FETCH ENV-HANDLE
* |+ Bind the EMPNO host varia] STMT-EANDLE RETCODE
*# gepd the tewt Asts {n the IF RETCODE > ECOKE AND EETCCODE NOT = ENCMOREDATR THEN
= -) PERFOEM CHECE-ERRCE
* Bind the SALARY host FND-IF
* Here we specify the g IF RETCODE = EOK THEN
= T s = FITm
* want Lo send Lhe nums - DISPLAY 'ROW DATZ INFC FOR ROW NUMBER ' ROW-NUMBER
*
_ m IF EMFHO-IND = INDICATE-NULL THEN
MOVE 2 TO PRRM-IDH DISPLAY ' EMPNO IS NULL"
MOVE LENGTH OF SALAEY TO ELSF
H ¢ TO DECEOCS. DISPLAY ' EMENC IS ' EMPHO
CALL '"IESDECLI'" USING FUH END-IF
STMI-HANDLE PARM-IDH IF FIRSTNAME-IND = INDICATE-NULL THEN
5 T35 T-LEN 3E DISPLAY ' FIRSTHAME IS5 HULL'
DECPOS EETCOLDE. ELSF
"RETCODE] BETET
DISPLAY 'RETCODE COF BINDH DISPLAY ' FIRSTHAME IS5 ' FIRSTHAME
IF RETCODE > EOE THEN END-IF
PERFOEM CHECE-ERERCE
END-IF.

lis)

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

Differences between DBCLI and embedded SQL

§ An application that uses an embedded SOQL interface requires a precompiler

— To convert the SQL statements into code, which is then compiled, bound to the data source, and
executed

§ In contrast, a DBCLI application does not have to be precompiled or bound
— Instead uses a set of functions to execute SQL statements and related services at run time

§ This difference is important because precompilers are specific to the
database product used

— This ties your applications to a specific database product and vendor

§ DBCLI enables you to write applications that are independent of any
particular database product or vendor

§ Futher differences:

— DBCLI does not require the explicit declaration of cursors, they are generated as needed The
application can then use the generated cursor to fetch the result rows

— A COMMIT or ROLLBACK in DBCLI is issued using the COMMIT or ROLLBACK functions calls rather
than by passing it as an SQL statement

— DBCLI manages statement related information on behalf of the application, and provides a statement
handle to refer to it as an abstract object. This handle eliminates the need for the application to use
product specific data structures

— Similar to the statement handle, the environment handle and connection handle provide a means to
refer to all global variables and connection specific information

@ © 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

§ Ideally suits the in which the target data source is unknown when the
application is built
— It provides a , regardless of which database server the application

connects to

§ Lets you write applications that are

— DBCLI applications do not have to be recompiled or rebound to access different database. Instead they connect to the
appropriate database at run time.

§ Lets applications from the same application

§ Allocates and controls data structures, and provides a handle for the application to refer to them

— Applications such as the SQLDA and SQLCA
§ Lets you retrieve generated from a call to a stored procedure
§ Provides a that is contained in various database

management system catalog tables

— The result sets that are returned are consistent across database management systems. Application programmers can
avoid writing version-specific and server-specific catalog queries

§ Programming interface is very similar to the

§ Allows application developers to apply their knowledge of industry standards directly to DBCLI

— The interface is intuitive for programmers who are familiar with function libraries but know little about product specific
methods of embedding SQL statements into a host language

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

§ The DBCLI code is

— If running under CICS, any memory allocations are performed using
EXEC CICS GETMAIN instead of using the GETVIS macro

§ When using the DBCLI API in CICS transactions while CICS operates with storage
protection,
— This is also true for those programs that link to these programs
— TASKDATAKEY(CICS) for the transaction definition is NOT required.

§ When using the DBCLI APl in CICS transactions, the (TRUE)
before these transactions can be run

— For details on how to activate this TRUE, refer to "CICS Considerations for the EZA Interfaces" in the
z/VSE TCP/IP Support, SC34-2640

§ Most JDBC drivers will only accept

— They will not accept SQL preprocessor statements that are used for DB2 Server for VSE applications
§ The call to the IESDBCLI function must be a in COBOL

— Do not use the DYNAM compiler option

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

z/VVSE applications accessing Databases

DBCLI

z/IVSE
CICS or
batch
Application
DBCLI DBCLI &
DRDA

DB2 LUW

DBCLI

And others ...

with DB2
Federation

DBCLI

© 2013 IBM Corporation

IBM System z — z/VSE — WAVV 2013

Questions ?

'OU

@ © 2013 IBM Corporation

