<||Ii

‘ Linux on zSeries

Exploiting udev in SLES9 and RHEL4 | |

Christian Borntraeger &
IBM Boeblingen T

'ON DEMAND BUSINESS"

IBM Deutschland Entwicklung GmbH 05/21/05 © 2005 IBM Corporation

‘ Linux on zSeries

Agenda

" introduction
= device access in Linux

= device attach — and then?
— hotplug in Linux
" how udev works

= configuring udev

IBM Deutschland Entwicklung GmbH 05/21/05 'EN DEMAND BUSINESS"‘

‘ Linux on zSeries

How devices are accessed In Linux

* Linux adopts UNIX philosophy
— (almost) everything is a file
— several file types: directory, link, device node, pipe....
— device are accessed via device nodes

= device nodes behave like normal file
— reside on a file system
— file operations like open, read, write, seek are possible
— if you write to the device node the kernel writes to the device
— same with reading
— e.g. you could do an offline backup using the device node:

dd if=/dev/dasdf of=/home/backup/dasdf.img

IBM Deutschland Entwicklung GmbH 05/21/05 [ON DEMAND BUSINESSTM

‘ Linux on zSeries

How devices are accessed In Linux

= special properties
— two numbers: major and minor number
— device type: block device or character device

#ls -1 /dev/dasda

1 root root 2005-01-05 17:50 /dev/dasda

" the kernel cares only about the type and numbers and
ignores the name of the device node

= most applications only care about the name of the device
node

= this relationship can be freely configured by the
administrator

IBM Deutschland Entwicklung GmbH 05/21/05 ON DEMAND BUSINESS"

‘ Linux on zSeries

Creation of device nodes

* manual invocation of mknod
— /proc/devices gives you the major number of every device type

= done by the distributor or the installation program
— all distributions prepare a set of device nodes on their filesystem
Images
= devfs (deprecated by kernel community)

" udev
— newest approach for automated device node creation
— based on sysfs and hotplug

IBM Deutschland Entwicklung GmbH 05/21/05 'HN DEMAND BUSINESS”‘

‘ Linux on zSeries

Introduction into hotplug — attaching new devices (1)

= What happens if a new device arrives?
— the hardware or z/\VVM are creating a machine check
— the Linux machine check handler handles the machine check
— the Linux common I/O layer queries the channel subsystem

— the new devices is registered in the Linux device infrastructure
* a new sysfs entry appears
* a hotplug event is created

IBM Deutschland Entwicklung GmbH 05/21/05 'EN DEMAND BUSINESS"‘

‘ Linux on zSeries

Introduction into hotplug — attaching new devices (2)

Hardware z/VM

Linux Kernel

P!

device model sysfs
~

4

Linux user space

files on /dev

IBM Deutschland Entwicklung GmbH 05/21/05)\ON DEMAND BUSINESS”

‘ Linux on zSeries

How does udev works -general

= the kernel calls /sbin/hotplug with parameters

= [shin/hotplug multiplexes events and calls udev

= parameters are saved in environment variables

= Isys/block/dasdb/dev contains
major and minor number

= [etc/udev/udev.conf specifies
— rules file: howto name
— permissions file: access rights

DEVPATH=/block/dasdb
PATH=/sbin:/bin:/usr/sbin:/usr/bin
ACTION=add

PWD=/

SHLVL=1

HOME=/

SEQNUM=201

= udev examines the configuration files and creates the

device node appropriately

IBM Deutschland Entwicklung GmbH

0512105 'ON DEMAND BUSINESS'

‘ Linux on zSeries

how does udev works — newer version

" newer version of udev also execute /etc/dev.d/
— scripts specific for different devices
— additonal variable DEVNAME giving the name of the device node

— scripts with .dev extension in lexical order in these directories
* letc/dev.d/$(DEVNAME)/*.dev,
* /etc/dev.d/$(SUBSYSTEM)/*.dev
* /etc/dev.d/default/*.dev

= udev can also rename network interfaces (in theory)
— not supported by SLES or RHEL
— network scripts have to be adopted

" newer desktop distributions use udevsend as hotplug
multiplexer

IBM Deutschland Entwicklung GmbH 05/21/05 WN DEMAND BUSINESS”‘

‘ Linux on zSeries

Introduction into hotplug — attaching new devices (3)

" lets have a look at SUSE

— config options for kernel parameter line
* NOHOTPLUG=udev-only
- NOHOTPLUG=[ccw|scsi|any other subsystem..]

— letc/hotplug/ is a directory containing several agents

« /sbin/hotplug <system> <parm> -> /etc/hotplug/<system>.agent parm
is called
— ccw.agent, scsi.agent, tty.agent and so on

— udeyv is called as /etc/hotplug/generic_udev.agent for all devices

— Debugging: create a folder /events: everything is logged into this
folder

10 IBM Deutschland Entwicklung GmbH 05/21/05 'HN DEMAND BUSINESS”‘

‘ Linux on zSeries

Introduction into hotplug — attaching new devices (4)

= what about RHEL4?

— /etc/hotplug.d/default/ contains 4 scripts
+ 05-wait_for_sysfs.hotplug
* 10-udev.hotplug
 20-hal.hotplug
* default.hotplug

— there are additional tool called udevd and udevsend

* udevsend submits the taks to udevd

- udevd queues all events according to the sequence number and calls
udev for each event

IBM Deutschland Entwicklung GmbH 05/21/05 'T)N DEMAND BUSINESS"‘

‘ Linux on zSeries

Current Status

= udev is part of SUSE SLES9, RedHat RHEL4 and Debian
= different versions in different distributions
= only a minimal configuration

= coldplugged devices (already present during boot) are
not handled by udev on SLES9

— static device nodes are used instead
— manual invocation: udevstart or /etc/init.d/boot.udev start

= device nodes are named after kernel names
— DEVPATH=/block/dasdb

= big infrastructure for a small bonus

IBM Deutschland Entwicklung GmbH 05/21/05 m DEMAND BUSINESS"‘

‘ Linux on zSeries

So, what is also possible?

= define your own access rights for dynamically attached
devices

= get persistent names for your devices
= create symbolic links to have several names for a device

" use volume ID, device number or other characteristic
hardware information to name your device

= Lots of other ideas...

IBM Deutschland Entwicklung GmbH 05/21/05 ‘HN DEMAND BUSINESS”‘

‘ Linux on zSeries

The udev config files

= central config file is /etc/udev/udev.conf

— define general options

udev root where should udev create device nodes, e.g. /dev/”
dev db where to create udevs data base , e.g. "/dev/.udev.tdb"
default mode standard permissions of files, e.g. “0600"
default owner standard user id of files, e.g. "root”

default group standard group id of files, e.g. "root”

udev log if setto “yes”, udev will log its activity into syslog

— define the location of other config files

udev rules rules for udev, e.g. etc/udev/udev.rules”

udev permissions permissions for udev, e.g
“etc/udev/udev.permissions”

IBM Deutschland Entwicklung GmbH 05/21/05 'HN DEMAND BUSINESS”‘

‘ Linux on zSeries

udev.permissions

= sets the permissions of device nodes
— override udev.conf for matching device nodes

— permissions in UNIX style USER GROUP THERS
R'W E R/ W E R W E

+ UserGroupOthers X Read(4) Write(2) Execute (1)
- octal coding: just add Read, Write and Execute for each user spec

« example: dasd/0190/*:root:users:640
— read and write access for root, read access for all users in group users
= Do not play. Think about your rules. You are dealing with
security |
— e.g. if the disk is mounted during boot, only root needs access #

IBM Deutschland Entwicklung GmbH 05/21/05 'HN DEMAND BUSINESS”‘

‘ Linux on zSeries

udev rules

= one rule per line: key[,key...][,NAME] [,SYMLINK]
" key=

— BUS every device on this bus

— KERNEL every device matching this kernel name

— PROGRAM execute this program, pass parameters

— RESULT query the return value of the program

— 1D match the id of the device within the bus

— SYSFS { x } match the content of the sysfs file

= you can specify a name, a symlink or both

= of no name is specified, the kernel name is used

= “NAME=" makes this rule the last one
IBM Deutschland Entwicklung GmbH 05/21/05 WN DEMAND BUSINESS"

‘ Linux on zSeries

udev rules

= some parameters for NAME, SYMLINK and PROGRAM

— %n the "kernel number", e.g. “dasda1” has “1”

— %Kk the "kernel name" for the device, e.g. dasda

— %p the devpath for the device. (not in SLES9)

— %M the kernel major number for the device

— %m the kernel minor number for the device

— %b the bus id for the device

— %c ,%Cc{N} the string/substring returned by the external program
— Y%s{filename} the content of a sysfs attribute

— %% the % character itself

IBM Deutschland Entwicklung GmbH 05/21/05 ‘HN DEMAND BUSINESS”‘

‘ Linux on zSeries

udev rules

" some usage examples:
— BUS="scsi”, SYMLINK="scsi/%k"
— KERNEL="dcssblk*, SYMLINK="dcssblk/%b"
— BUS="ccw”’, PROGRAM="/sbin/magictool”’, SYMLINK="%c"

— BUS="ccw”, PROGRAM="/sbin/vendor-abc --check”,
RESULT="supported”, SYMLINK="abc%n"

—1D="0.0.0191", KERNEL="dasd*[a-z]", SYMLINK="cmshome"
— BUS="scsi”, SYSFS{model}="2105"", SYMLINK="ESS800-%k"

IBM Deutschland Entwicklung GmbH 05/21/05 'HN DEMAND BUSINESS”‘

Linux on zSeries

distinction between coldplug/hotplug

coldplug brings up statically set up devices (your
mindisk or network adapter)

hotplug is for devices which appear while running
udev is only used for hotplugged devices.....

...... but it can work for available devices as well

/etc/init.d/boot.udev start
creating device nodes

to do this every boot:

chkconfig boot.udev on

‘ Linux on zSeries

Setting Up SUSE SLES9 - special rules

= SUSE has several early rules

scsi", PROGRAM="/sbin/udev.get persistent device name.sh", NAME="%k" SYMLINK="%c{1l+}"
usb", PROGRAM="/sbin/udev.get persistent device name.sh", NAME="%k" SYMLINK="%c{1l+}"

ide", PROGRAM="/sbin/udev.get persistent device name.sh", NAME="%k" SYMLINK="%c{l+}"
ccw", PROGRAM="/sbin/udev.get persistent device name.sh", NAME="%k" SYMLINK="%c{l+}"

= after a matching rule with NAME= udev stops

= to apply your rules

— put your rules at the beginning
— do not use NAME, only use SYMLINK

= save your rule file and watch for package update

IBM Deutschland Entwicklung GmbH 05/21/05 ON DEMAND BUSINESS"

‘ Linux on zSeries

Setting up RedHat RHEL4

= redhat ships with udev version 0.50

" rules are applied to coldplugged devices as well
— during boot the script /sbin/start_udev is called

= you can put your rules in an separate file to avoid trouble
during updates, e.g. /etc/udev/rules.d/51-my.rules

IBM Deutschland Entwicklung GmbH 05/21/05 'HN DEMAND BUSINESS"‘

‘ Linux on zSeries

|deas for dasd devices

= some persistent device names already exist:

— SUSE SLES9 has already rules for persistent device names
* Volume ID and device number
- /dev/disk/by-id/<VOLUME_ID>
- /dev/disk/by-path/ccw-<BUS_|ID>
- activated by boot.udev script

— Redhat RHEL4
* device number

 /dev/dasd/<BUS ID>/disc and /dev/dasd/<BUS _|ID>/part[1-3]
— e.g /dev/dasd/0.0.0150/disc

IBM Deutschland Entwicklung GmbH 05/21/05 'EN DEMAND BUSINESS"‘

Linux on zSeries

to use the volume id in redhat you need a program

#'!/bin/bash

MINOR=$2

let PARENT=MINOR-MINORS%4

TEMPDIR="mktemp -d /tmp/dasd.XXXXXX"

if [$?2 '= 0] ; then

exit 1

fi

mknod $TEMPDIR/dasd-$1-$SPARENT b $1 S$PARENT
RETURN= "dasdview -j -f $TEMPDIR/dasd-$1-$PARENT"
rm -f $TEMPDIR/dasd-$1-$PARENT

rmdir $TEMPDIR

echo S$SRETURN

and rules to use it

KERNEL="dasd*[a-z]", PROGRAM="/sbin/getdasd.sh %M %m", SYMLINK="dasd/%c/disc"
KERNEL="dasd*[0-9]", PROGRAM="/sbin/getdasd.sh %M %m", SYMLINK="dasd/%c/part%n"

IBM Deutschland Entwicklung GmbH

‘ Linux on zSeries

|deas for dcss block devices

" segment name

— device nodes named after the DCSS
— KERNEL="dcssblk*", SYMLINK="dcssblk/%b"

IBM Deutschland Entwicklung GmbH 05/21/05)\ON DEMAND BUSINESS”

‘ Linux on zSeries

other ideas

= encode the WWPN or volume ID of an FCP/SCSI device

= create link to 3270 or 3215 console device nodes
depending on the used console

= tell me!

IBM Deutschland Entwicklung GmbH 05/21/05 '@N DEMAND BUSINESS"‘

‘ Linux on zSeries

Outlook

= udev got additional modifiers

— %N the name of a created temporary device node
— %P The node name of the parent device.
— %e adds a number if the device node already exists

= better integration in newer distributions (SLES10,
RHELYS)

" better integration in a hardware abstraction layer

26 IBM Deutschland Entwicklung GmbH 05/21/05 'HN DEMAND BUSINESS”‘

‘ Linux on zSeries

Question and Discussion

= Now
= After this session
= Any time during WAVV

= Email:
— cborntra@de.ibm.com

= Thank you for your attention

IBM Deutschland Entwicklung GmbH 05/21/05)\ON DEMAND BUSINESS”

