.'ll

®

using execute in place with SLES 9

[ ) P 3
y,
C [ ) ' C

DO A(WAC.10 0

Christian Borntrager, IBM germany 05/21/05 © 2005 IBM Corporation



| using execute in place with SLES9

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

IBM * zIVM *
VM/ESA * zSeries *
S/390 *

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Intel is a trademark of the Intel Corporation in the United States and other countries.

Linux is a registered trademark of Linus Torvalds

Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
Penguin (Tux) compliments of Larry Ewing.

UNIX is a registered trademark of The Open Group in the United States and other countries.

* All other products may be trademarks or registered trademarks of their respective companies.

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

Set up process overview

= Plan the layout of the file system

= Provide a script to over-mount shared directories on startup
= Create a file system image

= Create a DCSS from the image file

= Change the kernel parameter line

= Test the DCSS

= Activate execute in place

Documentation and scripts used in this presentation are available at

http://awlinux1.alphaworks.ibm.com/developerworks/linux390/april2004 _documentation.shtml

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

Plan the layout of the file system

= determine the maximum size of the DCSS (SIZE)

— lower limit of the DCSS address range (LOWV) 2GB/ HIGH
1960MB

* may not overlap virtual guest storage

SIZE

* equals the end of virtual guest storage of the
largest guest LOW

— upper limit of the DCSS address range (HIGH)
« 2GB for 64-bit Linux images (z/VM limitation)

™
+ 1960 MB for 31-bit Linux images (Linux = % @
limitation) S 0 =
Q) 0] ©
— subtract the lower limit from the upper limit to 0

obtain the maximum possible DCSS size

SIZE = HIGH - LOW

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

Plan the layout of the file system

= alternative memory layout with 64bit guests
allows to use more virtual guest storage

— a minimum of 256 Mbyte below the 2GB line
is required for reliable operation

— the amount of virtual guest storage per guest
is not limited by DCSS

— the maximum size of the DCSS can be 1792
Mbyte

SIZE = HIGH - LOW

Christian Borntrdger

"g)'; ™
2GB M HIGH
L
N
o)
min [ OW
256MB [ N ®
7)) (7)) 7))
() (O] ()
-} ) -}
0 0] O] 0]

05/21/05

© 2005 IBM Corporation

IBM development lab Béblingen



Plan the layout of the file system — which directories

On servers, identify directories containing frequently executed files

issue the “ps” command on a typical server running typical
workload to identify what processes are running

use “which” to find out where the executable files are stored

use ”1dd” to find out what libraries are required

# 1dd /bin/bash
libreadline.soc.4 => /lib64/libreadline.so.4 (0x0000010000021000)
libhistory.so.4 => /lib64/libhistory.so.4 (0x0000010000063000)
libncurses.so.5 => /libé64/libncurses.so.5 (0x000001000006c000)

libdl.so.2 => /lib64/libdl.so.2 (0x00000100000d44000)
libc.so.6 => /lib64/libc.so.6 (0x0000010000048000)
/lib/1d64.s0.1 => /lib/1d64.s0.1 (0x0000010000000000)

check for symbolic links

# find <directory> -type 1 -exec 1ls -lisa {} \;




using execute in place with SLES9

Plan the layout of the file system — which directories

= Interactive systems

— use the same rules as before

— check the PATH environment variable for the superuser and for regular

ol

users
— check /etec/1d. so.conf for paths containing libraries
= what NOT to share?

— be sure not to share directories that are written to. Note that the
process described here shares subdirectories as well.

— sharing scripts and java bytecode is ineffective, they are not executed
directly but interpreted

— do not share /etc and /var

— use the file command to check the file type

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

Plan the layout of the file system — segment size

= calculate space requirements

— issue “du -sk” for each directory to find the space occupied by each
directory (including subdirectories)

— build the sum of the individual spaces to find the total space occupied

— add 4KB per shared file as filesystem overhead

— add extra space for future software updates like security fixes

— check that the required size does not exceed the maximum DCSS size
= calculate the page frame numbers for start and end address

— a page is 4096 bytes in size

— DCSS needs to start on a page boundary

— start address should be the first page frame after the virtual guest
storage of the largest guest

— end address: add start address and size, round up to next page, -1

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



Example — segment planning
5 guests 128MB, 1 guest 256MB, 4 guests 160MB
/bin/, /sbin/, /usr/bin/, lusr/sbin/, /lib/, and /usr/lib/ are identified for sharing
1. querying the size:

# du -skec /bin/ /sbin/ /1ib/ /usr/bin/ /usr/sbin/ /usr/lib
8619 /bin

11518 /sbin

16335 /1lib

29934 /usr/bin

4687 /usr/sbin

148722 /usr/lib

219813 total

& 219813kb of files to share

2. getting the amount of files
# find /bin/ /sbin/ /l1ib/ /usr/bin/ /usr/sbin/ /usr/lib | wec -1

8929

4kb 8929 = 35716kb as additional overhead
You need 219813kb + 35716 kb = 255529kb

adding some space for updates ,300MB seems a reasonable size




using execute in place with SLES9

Example — segment planning
= The largest guest has 256MB of memory: largest address Oxfffffff

DCSS can start at 256MB ~ 0x10000000
considering 300MB of size: end address ig

size fits well between 256MB and 1960
defseg command needs the address in pages

556 MB-1 ~ 0x22BFFFFF

out the last 3 digits)

00: CP DEFSEG LINSEG1l 10000-22BFF SR

00: HCPNSD440I Saved segment LINSEGl was successfully defined in fileid 0203.
= now the segment is waiting to be filled

= next step is to prepare the linux guests

Christian Borntrager 05/21/05 © 2005 IBM Corporation

i IBM development lab-Boblingen



using execute in place with SLES9

Provide a script to over-mount shared directories on startup
= over-mount in this context means directories are

replaced by their shared copies in DCSS {I: bin
boot

= directories need to be replaced on system startup t: dev
before services are being started (otherwise — none

services and libraries will be loaded from DASD) / |— proc

— root
— sbin
F— tmp

= the best way to do to this is running a script as

initial process that mounts the DCSS, over- — i
mounts all directories in 2 steps, and then starts

the original /sbin/init

= note that /ete/mtab is not writeable at the time

the script runs, therefore mount will not report the
mounts later on. check /proc/mounts for a

complete list of mounted filesystems

= the example script can be found in the execute-in-
place Howto on IBM developerWorks

Christian Borntrager 05/21/05

shared segment

— 1ib
— sbin
— usr

— 1ib

© 2005 IBM Corporation

IBM development lab Béblingen



Create a file system image (one time setup)

get a DASD large enough to store your file system image with the size
calculated earlier and prepare the dasd with a file system

# dasdfmt -b 4096 -d cdl -f /dev/dasdb
# fdasd -a /dev/dasdb

# mke2fs /dev/dasdbl
# mount /dev/dasdbl /mnt

create a file with the size of the planned DCSS on the newly mounted disk
create an ext2 file system on the file

# dd if=/dev/zero of=/mnt/filesystem bs=1M count=300
# mke2fs -b 4096 /mnt/filesystem

/mnt/filesystem is not a block special device.
Proceed anyway? (y,n)

answer the question with yes




_'uéi_ng'exeCUte in place with SLES9

Create a file system image

= create a mount point for the file system and mount it using the “-o loop”
mount option

# mkdir /segment

# mount /mnt/filesystem /segment -o loop

= copy all directories you want to share into the file system image

= unmount the file system image

= a script that generates a file system image automatically can be found in
the execute-in-place Howto on IBM developerWorks

Christian Borntrager 05/21/05 © 2005 IBM Corporation

- IBM development lab Béblingen



_'uéi_ng execute in place with SLES9

Fill a newly created DCSS using the image file

= prepare the disk containing the image file for IPL. Use the zipl command
with the -s parameter along with the image file name and the DCSS start
address:

zipl -t /mnt -s /mnt/filesystem,0x10000000

= take down linux and IPL CMS in your guest machine start address DCSS

= if not already done, define the DCSS in bytes

00: CP DEFSEG LINSEG1l 10000-22BFF SR

00: HCPNSD440I Saved segment LINSEG1l was successfully defined in fileid 0203.

" use “#cp define store <amount>” to define the virtual guest
storage size large enough that the entire DCSS fits in

= |PL the DASD and wait for the CPU to enter disabled wait
= save the DCSS: “#cp saveseg <name of DCSS>”

= log off and back in to restore system defaults (storage)
Christian Borntrager 05/21/05 © 2005 IBM Corporation

- IBM development lab Béblingen



using execute in place with SLES9

Change the kernel parameter line

= when using the DCSS above all virtual guest storage, the kernel
parameter line needs to be changed as follows:

= start up the Linux system

" add “mem=<value>" to the kernel parameter line, where <value>
equals the end address of the DCSS

= run zipl with the new kernel parameter file

" reboot Linux

" issue “cat /proc/cmdline” to verify that Linux is using the new
parameter

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



Changing the storage configuration

when using virtual guest storage above the 2GByte line, use CP storage
configuration to create your memory setup:

#cp define storage config 0.256m 2g.1lg

result:

CP DEF STORE CONFIG 0.256M 2G.1G

STORAGE = 1280M

Storage Configuration:

0.256M 2G.1G

Extent Specification Address Range

0.256M 0000000000000000 - OOOOOOOOOFFFFFFF
2G.1G 0000000080000000 - OOOOOOOOBFFFFFFF
Storage cleared - system reset.




using execute in place with SLES9

Testing the DCSS

if the Linux kernel has got the xip2 file system as a module, issue
“modprobe xip2” to load the module into memory (optional)

mount the xip2 file system using the mount command like
“mount -t xip2 -0 ro,memarea=<name> none <mount point>”

if the segment is large, mounting might take a while

verify that the file system has been mounted correctly by looking at
/proc/mounts

check with “*dmesg”, if an error has occurred. If yes, then check:

— mem parameter is >= end address of dcss
— guest storage does not collide with dcss

— no other loaded segment collides with the new segment (! segments
need a megabyte boundary to other segments)

verify that the files you copied to the file system image are accessible

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen




using execute in place with SLES9

Activate execute-in-place

= unmount the file system again
= test the init script prepared earlier:
— run the script as super user root
— look at /proc/mounts to verify that
* the file system has been mounted at the mount point created earlier
- all directories that have been chosen earlier are over-mounted
= add “init=<full path of script>" to the kernel parameter line
= run zipl with the new kernel parameter line
* reboot Linux
= after reboot, check /proc/mounts to verify that
+ the file system has been mounted at its mount point
« all chosen directories are over-mounted

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

Introducing the DCSS block device driver

DCSS block device driver is able to access a DCSS as a block device
can be built-in or is available as a module called dcssblk.ko
is controlled using files that are located in /sys/devices/dcssblk

cannot be used to create new DCSSes

motivation: XIP filesystem is readonly. DCSS block device driver can be
used with ext2 to update DCSSes containing a filesystem image for
XIP2:

— the structure of a XIP filesystem equals the structure of ext2

— ext2 needs block device to operate

usable for other scenarios as well

ext2 + block device driver does currently not implement execute in place!

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen




'using execute in place with SLES9

/sys/devices/ /sys/devices/
-—-- dcssblk G dcssblk

--- add Isys/devices/dcssblk/DCSSNAME/ appears add

--- remove remove
LINSEG1l/

= remove-the block\device associated with a DCSS —-- save
_ ) _ _ --- shared
— driver will Idg~a_message infQrming about

success/failure tosyslog

— subdirectory /sys/devices/c DCSSNAME/
disappears

echo LINSEGl > /sys/devices/dcssblk/remove
.

Christian Borntrager 05/21/05 © 2005 IBM Corporation
[ ' IBM development lab Bcblingen




using execute in place with SLES9

The “shared” state

= Every DCSS is by default in shared state.

— the file /sys/devices/dcssblk/ DCSSNAME/shared contains the value
“1 7

— Linux uses the global copy of the DCSS

— can be switched to non-shared mode by writing “0” to
/sys/devices/dcssblk/ DCSSNAME/shared when idle

= non-shared DCSSes:

— the file /sys/devices/dcssblk/ DCSSNAME/shared contains the value
“O”

— Linux uses a private copy of the DCSS

— can be switched back to shared mode by writing “1” to
/sys/devices/dcssblk/ DCSSNAME/shared

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

The “save” state

= Linux can only save DCSSes when they are idle

= Linux remembers save requests while the DCSS is busy and saves the
DCSS as soon as the DCSS becomes idle

= by default the save state is “0” meaning that the DCSS will not be saved
= by writing the value “1” to /sys/devices/dcssblk/ DCSSNAME/save:
— Linux is triggered save the DCSS immediately in case it is idle
— Linux remembers to save the DCSS when it becomes idle
= you need Class E to write a segment!
= by writing the value “0” to /proc/dcssblk/DCSSNAME/save
— a pending save on a DCSS that is in use can be canceled

= Linux reports all above operations in the syslog and the value in
/sys/devices/dcssblk/ DCSSNAME/save can be read to check if there is a
pending request to save a DCSS

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

using the block-device node

= no partitioning
— do not use fdasd or fdisk

= any block device and filesystem tool can be used with the DCSS block
device (like mke2fs, e2fsck, etc.)

= 4096 bytes block size
— use -b 4096 for mke2fs or other tools depending on the block size

= any file system that supports 4096 bytes block size can be used with the
DCSS block device driver (like ext2, ext3, ReiserFS, GFS)

= only ext2 is compatible with xip2 and can be used to process DCSSes
intended to be used with the xip2 file system

= can be used as well for doing the first time setup. Just create a segment
filled with random garbage and update this segment: use defseg +
saveseg to create an active segment

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

DCSSes as swap space

= why use a dcss for swapping?

— fast write into z/VMs storage and swap caching when guest is memory
constrained but z/VM is not

— allows to shrink guest virtual memory size while maintaining acceptable
performance for peak workloads (move overcommitment to guest level)

— can be much faster than vdisk
— no hypervisor calls required
= what is required?

— the block device kernel parameter and support for mixed EW/EN
segments — both included in upcoming SLES9 SP2

— a lot of paging space assigned to z/VM
— address space for using dcss (same as with execute in place)

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



DCSSes as swap space

create an empty DCSS in CMS, first page should be EW, the rest EN

#cp defseg SWAPPING 20000-20000 EW 20001-6ffff EN

#cp saveseg SWAPPING

in Linux initialize the segment (one time setup only!)

echo “SWAPPING” >/sys/devices/dcssblk/add
mkswap /dev/dcssblk0
echo 1 >/sys/devices/dcssblk/SWAPPING/save
swapon /dev/dcssblk0

After above setup, syslog should indicate that the segment SWAPPING was
saved. In addition, /proc/swaps should mention the segment as active swap
space.




DCSSes as swap space

in order to activate swap, you need to add the following kernel parameter
and re-run zipl:

dcssblk.segments=SWAPPING

add this line to your /etc/fstab file:

/dev/dcssblk0 swap sw 0 O

After rebooting the system swap should now be activated. You can check
/proc/swaps to verify this.

In case of a mixed swap setup with both DCSS and DASD as swap target,
DCSS needs to get a higher swap priority than DASD for optimal
performance.




using execute in place with SLES9

Outlook

= SLES9 is GA
— SLES9 includes execute-in-place
— all new file system features like Access Control Lists
— device node creation is made automatically by udev

= SLES9 SP2 soon
— adds support for EW/EN mixed mode segments (swapping)
— provides much better system messages for dcss (cleanup)
— adds support for the dcssblk.segments parameter (swapping, root dev)
— new “Howto” documentation on developerworks

= integration into the ext2 file system

= union mount for overlaying DCSS with normal file system

= better management and update solutions

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



| using execute in place with SLES9

Questions and Discussion

#* Now

% After this session
* Any time during WAVV
% Email:

* cborntra@de.ibm.com
* cotte(@de.ibm.com

* Thank you for your attention

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

Background

technical background

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Boblingen



using execute in place with SLES9

_ application runtime data 3
lllustration of the problem

application binary code 3

Linux kernel 3

= Linux running as guest operating system on
z/NVM requires a similar amount of memory
to Linux on a dedicated server while it is application runtime data 2
active

application binary code 2

= when running multiple Linux servers that
run the same application, the application is
present multiple times in physical memory

Linux kernel 2

application runtime data 1

= storing the same data multiple times in
memory is inefficient application binary code 1

Linux kernel 1

z/VVM Nucleus

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

Basic idea of the solution

= store only one copy of the
application in memory

= share access to the application
among multiple servers

= let z/VM load the application into
memory

= restrict write access to the
application for servers (security!)

= allows running the same workload
with less memory consumption

= allows to run more workload with
the same memory consumption as
before

Christian Borntrdger

application runtime data 3

application binary code 3

Linux kernel 3

application runtime data 3

application runtime data 2

application binary code 2

Linux kernel 2

application runtime data 1

application binary code 1

Linux kernel 3

application runtime data 2

Linux kernel 2

application runtime data 1

Linux kernel 1

Linux kernel 1

application binary code

z/VM Nucleus

z/VM Nucleus

05/21/05

© 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

What is “execute in place”?

applications are being executed directly from where they are
permanently stored

was invented for embedded systems that do not have disk drives
= applications can be run directly in flash or ROM memory

= execute in place is a popular feature of embedded operating systems
such as uCLinux

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How applications are launched in Linux

= when Linux launches an application, it does not load it into memory
immediately

= for application binary files and libraries, Linux:
— remembers the position in the application address space
— remembers the corresponding file on disk

= when the application accesses a page in memory that has not been
loaded yet:

— Linux interrupts the application
— the page is loaded into memory
— the application is resumed, and it retries to access the page

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How applications are launched in Linux

address space of application Linux physical address space (WM virtual) block device (dasd, scsi-disk and such)

(empty page)

(empty page) e

{empty page) \"""‘-———————--“'/
{empty page) (binfbash part 3/3
{empty page) (binfbash part 2/3
{empty page) (/bin/bash part 1/3
{not mapped) :
corresponds (not mapped)

with fbinfbash Linux kernel U

{not mapped)

virtual physical dasd

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How applications are launched in Linux

address space of application Linux physical address space (WM virtual) block device (dasd, scsi-disk and such)

(empty page)

(empty page) e
(empty page) \"'""-'—————'-"""/

{empty page) (binfbash part 3/3
{empty page) /binfbash part 2/3
{empty page) /binjbash part 1/3

{not mapped)

corresponds {not mapped)

with /binfbash Linux kernel u

{not mapped)

page fault while reading 1st instruction

virtual physical dasd

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How applications are launched in Linux

corresponds
with /bin/bash

address space of application

{not mapped)

{not mapped)

(binfbash part 1/3 (read-only)

virtual

Linux physical address space (WM virtual)

(empty page)

{empty page)

{empty page)

{empty page)

(empty page)

/bin/bash part 1/3

Linux kernel

physical

Ioaaing

block device (dasd, scsi-disk an such)

¥ i
\.._______—___d__,../

(binfbash part 3/3

/binjbash part 2/3

/binjbash part 1/3

"'\,\_______j—-"

dasd

Christian Borntrdger
IBM development lab Béblingen

05/21/05

© 2005 IBM Corporation




using execute in place with SLES9

How applications are launched in Linux

address space of application Linux physical address space (WM virtual) block device (dasd, scsi-disk and such)

(empty page)

(empty page) e

(empty page) \“"———————""/
{(empty page) (binfbash part 3/3
{empty page) /binjbash part 2/3
/bin/bash part 1/3 /binjbash part 1/3
{not mapped) :
corresponds {not mapped)

with fbinfbash

Linux kernel \‘*'--—___-—J/

(binfbash part 1/3 (read-only)

page fault while reading a variable on the 2nd page

virtual physical dasd

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How applications are launched in Linux

address space of application Linux physical address space (WM virtual) block device (dasd, scsi-disk and such)

(empty page)

(empty page) e
{empty page) \“"———————""/

{empty page)

(binfbash part 3/3

Ioa@iing
/bin/bash part 2/3 -q— /binjbash part 2/3

/bin/bash part 1/3 /binjbash part 1/3

{not mapped)

corresponds [binfbash part 2/3 (read-only)
with /bin/bash

Linux kernel \‘*'--—___-—J/

(binfbash part 1/3 (read-only)

virtual physical dasd

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How applications are launched in Linux

corresponds
with /bin/bash

address space of application

{not mapped)

(binfbash part 2/3 {read-only

(binfbash part 1/3 {read-only

page fault while writing to a variable

virtual

Linux physical address space (WM virtual)

(empty page)

{empty page)

{empty page)

{empty page)

/bin/bash part 2/3

/bin/bash part 1/3

Linux kernel

physical

block device (dasd, scsi-disk and such)

¥ i
\.._______—___d__,../

(binfbash part 3/3

/binjbash part 2/3

/binjbash part 1/3

"'\,\_______j—-"

dasd

Christian Borntrdger

05/21/05

© 2005 IBM Corporation

IBM development lab Béblingen




using execute in place with SLES9

How applications are launched in Linux

corresponds
with /bin/bash

address space of application

{not mapped)

/binjbash part 2/3 (read+write)

(binfbash part 1/3 (read-only)

virtual

Linux physical address space (WM virtual)

{empty page)

{empty page)

{empty page)

— - private copy part

213

copy

/bin/bash part 2/3

/bin/bash part 1/3

Linux kernel

physical

block device (dasd, scsi-disk and such)

¥ i
\.._______—___d__,../

(binfbash part 3/3

/binjbash part 2/3

/binjbash part 1/3

"'\,\_______j—-"

dasd

Christian Borntrdger

05/21/05

© 2005 IBM Corporation

IBM development lab Béblingen




using execute in place with SLES9

How applications are launched in Linux

address space of application Linux physical address space (WM virtual) block device (dasd, scsi-disk and such)

(empty page)

(empty page) e
- /bin/bash part 3/3 \“'*--—_—_—-*"'/

—- private copy part 2/3 fBinfbash part 3/3

/binfbash was started 1x
3 memory pages were read
3 memaory pages in use

/bin/bash part 2/3 /binjbash part 2/3

/bin/bash part 1/3 /binjbash part 1/3

/binfbash part 3/2 (read-only)

corresponds /binfbash part 2/3 (read+write)
with fbinfbash

Linux kernel \‘*'--—___-—J/

(binfbash part 1/3 (read-only)

virtual physical dasd

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How applications are launched in Linux

address space of 1st application

address space of 2nd application Linux physical address space (WM virtual)

(empty page)

private copy part 2/3 -<u

/binfbash was started 2x
3 memory pages were read
4 memory pages are in use

/binfbash part 3/2 (read-only)

/binfbash part 2/3 (read+write)

(binfbash part 3/3
copy

private copy part 2/3

/bin/bash part 2/3 —

e
b Za-
.—-"
—ire

30

/binfbash part 3/3 (read-only)

/binjbash part 1/3

fbinfbash part 2/3 (read+write)

(binfbash part 1/3 {read-only)

virtual

Jbin/bash part 1/3 (read-only)

Linux kernel

virtual

physical

Christian Borntrdger

05/21/05

© 2005 IBM Corporation

IBM development lab Béblingen




using execute in place with SLES9

Goals for “execute in place” with Linux on z/VM

= improve resource usage in a virtual environment

reduce memory requirements

reduce |I/O bandwidth requirements

keep individual servers separated for security reasons

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How “execute in place” works

address space of application {on LinuxA)E Linux physical address space (LinuxA)

/binfbash part 3/3

/binfbash part 2/3

/binfbash part 1/3

(empty page)

Linux physical address space (LinuxB) address space of application (on LinuxB)

zVM DCSS :
shared read-only between i
LinuxA and LinuxB H

(empty page)

(empty page)

(empty page)

{not mapped)

(empty page)

(not mapped)

Linux kernel

(not mapped)

virtual

(empty page)
{not mapped)

physical

Linux kernel {(not mapped)

(not mapped)

physical virtual

Christian Borntrdger

05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How “execute in place” works

address space of application (on LinuxA)E Linux physical address space (LinuxA) Linux physical address space (LinuxB) address space of application (on LinuxB)

/binfbash part 3/3

/binfbash part 2/3

/binfbash part 1/3

(empty page) (empty page)
(empty page) (empty page)
: (empty page) (empty page) :
(not mapped) {not mapped)
t d s t d
ek miBkped) Linux kernel Linux kernel g haRPed)
/ (not mapped) / (not mapped)
page fault while reading 1st instruction page fault while reading 1st instruction
virtual physical physical virtual

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How “execute in place” works

address space of application {on LinuxA)E Linux physical address space (LinuxA) Linux physical address space (LinuxB) address space of application (on LinuxB)

/binfbash part 3/3

/binfbash part 2/3

o /binfbash part 1/3 =
(empty page) (empty page)
(empty page) (empty page)
: (empty page) (empty page) :
(not mapped) {not mapped)
et miBkped) H Linux kernel Linux kernel H gk aRPed)
fbinfbash 1/3 (read-only) /binfbash 1/3 (read-only)
virtual physical physical virtual

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How “execute in place” works

address space of application {on LinuxA)E Linux physical address space (LinuxA) Linux physical address space (LinuxB) address space of application (on LinuxB)

/binfbash part 3/3

/binfbash part 2/3

o /binfbash part 1/3 =
(empty page) (empty page)
(empty page) (empty page)
: (empty page) (empty page) :
(not mapped) {not mapped)
t d : t d
et miBkped) Linux kernel Linux kernel / gk aRPed)
/binfbash 1/3 (read-only) y [binfbash 1/3 (read-only)
page fault on reading a variable page fault on reading a variable
virtual physical physical virtual

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How “execute in place” works

address space of application {on LinuxA)E Linux physical address space (LinuxA) Linux physical address space (LinuxB) address space of application (on LinuxB)

/binfbash part 3/3

o] /bin/bash part 2/3 ad
o /binfbash part 1/3 =
(empty page) (empty page)
(empty page) (empty page)
(empty page) (empty page)

{not mapped) : {not mapped)
fbinfbash 2/3 (read-only) : e e bl fbinfbash 2/3 (read-only)
fbinfbash 1/3 (read-only) /binfbash 1/3 (read-only)

virtual physical physical virtual

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How “execute in place” works

address space of application {on LinuxA)E Linux physical address space (LinuxA) Linux physical address space (LinuxB) address space of application (on LinuxB)

/binfbash part 3/3

. /binfbash part 2/3 -]
o /binfbash part 1/3 =
(empty page) (empty page)
(empty page) (empty page)
(empty page) (empty page)
{not mapped) : {not mapped)
bin/bash 2/3 (read-onl : bin/b 2/3 ad-on|
binfbash 2/3 (read-only) S i / infbash 2/3 (read-only)
/binfbash 1/3 (read-only) y [binfbash 1/3 (read-only)
page fault while writing to a variable page fault while writing to a variable
virtual physical physical virtual

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How “execute in place” works

address space of application {on LinuxA)E Linux physical address space (LinuxA)

Linux physical address space (LinuxB)

/binfbash part 3/3

/bin/bash part 2/3

{not mapped)

fbinfbash 2/3 (read+write) r

/binfbash 1/3 (read-only)

virtual

=S /binfbasH part 1/3 =
(ermpty page) (ernpty page)
(empty page) (empty page)
private copy part 2/3 e : e private copy part 2/3
copy fcopy
Linux kernel Linux kernel
physical physical

address space of application (on LinuxB)

{not mapped)

{bin/bash 2/3 (read+write)

/bin/bash 1/3 (read-only)

virtual

Christian Borntrdger

05/21/05

© 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

How “execute in place” works

address space of application {on LinuxA)E Linux physical address space (LinuxA) Linux physical address space (LinuxB) address space of application (on LinuxB)
/bin/bash was started 2x - /bin/bash part 3/3 =

0 pages read by Linux

3 pages read by z/VM /binfbash part 2/3

=> 3 pages read total

2 pages in use by Linux B /binfbash part 1/3 s

2 pages in use by z/NM :

== 4 pages in use total

== same totals like running two (ermpty page) (empty page)
instances within a single Linux
== memory usage per Linux {empty page) (empty page)
reduced by factor 3 F ;
: private copy part 2/3 private copy part 2/3 i
/binfbash 3/3 (read-only) /binfbash 3/3 (read-only)
binfbash 2/3 (read+wri : bin/b 2/3 (read-+writ
fbinis {3 kA Fitel Linux kernel Linux kernel : /binfbash 2/3 (read+write)
fbinfbash 1/3 (read-only) /binfbash 1/3 (read-only)
virtual physical physical virtual

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

Characteristics of Linux on z/VM with execute in place

implemented as filesystem type “xip2”

= can only be used read-only, writing is not supported
= the filesystem layout is compatible with ext2

= requires z/VM DCSS as storage

= does not need write access to the DCSS, individual servers remain
strictly separated in memory (security!)

= the DCSS block device driver can be used with ext2 to write data to the
DCSS

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



using execute in place with SLES9

Characteristics of Linux on z/VM with execute in place

no changes to the operating system outside the filesystem module

no changes to applications, existing applications can benefit without
modifications

provides major improvement for memory consumption of servers
allows to run more active servers with given resources

source code is available at http://www.linuxvm.org/Patches

is available as update to SUSE Linux Enterprise Server Version 8
is integrated in SUSE Linux Enterprise Server Version 9

— new ext2 features supported (dirindex, acl...)

— remove memory restriction to 2GByte

Christian Borntrager 05/21/05 © 2005 IBM Corporation

IBM development lab Béblingen



