
using execute in place with SLES 9

Christian Bornträger, IBM germany 05/21/05 © 2005 IBM Corporation

Christian Bornträger
cborntra@de.ibm.com

Execute-in-place technology for SLES9

using execute in place with SLES9

© 2005 IBM Corporation2 Christian Bornträger
IBM development lab Böblingen

05/21/05

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

IBM * z/VM *
VM/ESA * zSeries *
S/390 *

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.
Intel is a trademark of the Intel Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
Penguin (Tux) compliments of Larry Ewing.
UNIX is a registered trademark of The Open Group in the United States and other countries.

* All other products may be trademarks or registered trademarks of their respective companies.

using execute in place with SLES9

© 2005 IBM Corporation3 Christian Bornträger
IBM development lab Böblingen

05/21/05

Set up process overview

 Plan the layout of the file system

 Provide a script to over-mount shared directories on startup

 Create a file system image

 Create a DCSS from the image file

 Change the kernel parameter line

 Test the DCSS

 Activate execute in place

Documentation and scripts used in this presentation are available at

http://awlinux1.alphaworks.ibm.com/developerworks/linux390/april2004_documentation.shtml

using execute in place with SLES9

© 2005 IBM Corporation4 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system

 determine the maximum size of the DCSS (SIZE)

– lower limit of the DCSS address range (LOW)

• may not overlap virtual guest storage

• equals the end of virtual guest storage of the
largest guest

– upper limit of the DCSS address range (HIGH)

• 2GB for 64-bit Linux images (z/VM limitation)

• 1960 MB for 31-bit Linux images (Linux
limitation)

– subtract the lower limit from the upper limit to
obtain the maximum possible DCSS size

0

LOW

HIGH

G
ue

st
 1

2GB/
1960MB

S
IZ

E

G
ue

st
 2

G
ue

st
 3

SIZE = HIGH - LOW

using execute in place with SLES9

© 2005 IBM Corporation5 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system

 alternative memory layout with 64bit guests
allows to use more virtual guest storage

– a minimum of 256 Mbyte below the 2GB line
is required for reliable operation

– the amount of virtual guest storage per guest
is not limited by DCSS

– the maximum size of the DCSS can be 1792
Mbyte

SIZE = HIGH - LOW

0

LOW

HIGH

G
ue

st
 1

2GB

S
IZ

E

G
ue

st
 2

G
ue

st
 2

G
ue

st
 3

min
256MB

G
ue

st
 1

using execute in place with SLES9

© 2005 IBM Corporation6 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system – which directories

 On servers, identify directories containing frequently executed files

• issue the ”ps” command on a typical server running typical
workload to identify what processes are running

• use ”which” to find out where the executable files are stored

• use ”ldd” to find out what libraries are required

• check for symbolic links

find <directory> -type l -exec ls -lisa {} \;

using execute in place with SLES9

© 2005 IBM Corporation7 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system – which directories

 Interactive systems

– use the same rules as before

– check the PATH environment variable for the superuser and for regular
users

– check /etc/ld.so.conf for paths containing libraries

 what NOT to share?

– be sure not to share directories that are written to. Note that the
process described here shares subdirectories as well.

– sharing scripts and java bytecode is ineffective, they are not executed
directly but interpreted

– do not share /etc and /var

– use the file command to check the file type

using execute in place with SLES9

© 2005 IBM Corporation8 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system – segment size

 calculate space requirements

– issue ”du -sk” for each directory to find the space occupied by each
directory (including subdirectories)

– build the sum of the individual spaces to find the total space occupied

– add 4KB per shared file as filesystem overhead

– add extra space for future software updates like security fixes

– check that the required size does not exceed the maximum DCSS size

 calculate the page frame numbers for start and end address

– a page is 4096 bytes in size

– DCSS needs to start on a page boundary

– start address should be the first page frame after the virtual guest
storage of the largest guest

– end address: add start address and size, round up to next page, -1

using execute in place with SLES9

© 2005 IBM Corporation9 Christian Bornträger
IBM development lab Böblingen

05/21/05

Example – segment planning

 5 guests 128MB, 1 guest 256MB, 4 guests 160MB

 /bin/, /sbin/, /usr/bin/, /usr/sbin/, /lib/, and /usr/lib/ are identified for sharing

 1. querying the size:

 219813kb of files to share

 2. getting the amount of files

 4kb * 8929 = 35716kb as additional overhead

 You need 219813kb + 35716 kb = 255529kb

 adding some space for updates ,300MB seems a reasonable size

using execute in place with SLES9

© 2005 IBM Corporation10 Christian Bornträger
IBM development lab Böblingen

05/21/05

Example – segment planning

 The largest guest has 256MB of memory: largest address 0xfffffff

 DCSS can start at 256MB ~ 0x10000000

 considering 300MB of size: end address is 556 MB-1 ~ 0x22BFFFFF

 size fits well between 256MB and 1960MB

 defseg command needs the address in pages (without the last 3 digits)

 now the segment is waiting to be filled

 next step is to prepare the linux guests

using execute in place with SLES9

© 2005 IBM Corporation11 Christian Bornträger
IBM development lab Böblingen

05/21/05

Provide a script to over-mount shared directories on startup

 over-mount in this context means directories are
replaced by their shared copies in DCSS

 directories need to be replaced on system startup
before services are being started (otherwise
services and libraries will be loaded from DASD)

 the best way to do to this is running a script as
initial process that mounts the DCSS, over-
mounts all directories in 2 steps, and then starts
the original /sbin/init

 note that /etc/mtab is not writeable at the time
the script runs, therefore mount will not report the
mounts later on. check /proc/mounts for a
complete list of mounted filesystems

 the example script can be found in the execute-in-
place Howto on IBM developerWorks

/
├── bin
├── boot
├── dev
├── etc
├── home
├── lib
├── proc
├── root
├── sbin
├── tmp
├── usr
│ ├── bin
│ ├── lib
│ ├── sbin
│ ├── share
├── var
└── mnt

/
├── lib
├── sbin
├── usr
 ├── lib

shared segment

├── lib
├── sbin
├── usr
 ├── lib

using execute in place with SLES9

© 2005 IBM Corporation12 Christian Bornträger
IBM development lab Böblingen

05/21/05

Create a file system image (one time setup)

 get a DASD large enough to store your file system image with the size
calculated earlier and prepare the dasd with a file system

 create a file with the size of the planned DCSS on the newly mounted disk

 create an ext2 file system on the file

 answer the question with yes

using execute in place with SLES9

© 2005 IBM Corporation13 Christian Bornträger
IBM development lab Böblingen

05/21/05

Create a file system image

 create a mount point for the file system and mount it using the “-o loop”
mount option

 copy all directories you want to share into the file system image

 unmount the file system image

 a script that generates a file system image automatically can be found in
the execute-in-place Howto on IBM developerWorks

mkdir /segment
mount /mnt/filesystem /segment -o loop

using execute in place with SLES9

© 2005 IBM Corporation14 Christian Bornträger
IBM development lab Böblingen

05/21/05

Fill a newly created DCSS using the image file

 prepare the disk containing the image file for IPL. Use the zipl command
with the -s parameter along with the image file name and the DCSS start
address:

 take down linux and IPL CMS in your guest machine

 if not already done, define the DCSS

 use “#cp define store <amount>” to define the virtual guest
storage size large enough that the entire DCSS fits in

 IPL the DASD and wait for the CPU to enter disabled wait

 save the DCSS: “#cp saveseg <name of DCSS>”

 log off and back in to restore system defaults (storage)

start address DCSS
in bytes

using execute in place with SLES9

© 2005 IBM Corporation15 Christian Bornträger
IBM development lab Böblingen

05/21/05

Change the kernel parameter line

 when using the DCSS above all virtual guest storage, the kernel
parameter line needs to be changed as follows:

 start up the Linux system

 add “mem=<value>” to the kernel parameter line, where <value>
equals the end address of the DCSS

 run zipl with the new kernel parameter file

 reboot Linux

 issue “cat /proc/cmdline” to verify that Linux is using the new
parameter

using execute in place with SLES9

© 2005 IBM Corporation16 Christian Bornträger
IBM development lab Böblingen

05/21/05

Changing the storage configuration

 when using virtual guest storage above the 2GByte line, use CP storage
configuration to create your memory setup:

 result:

#cp define storage config 0.256m 2g.1g

00: CP DEF STORE CONFIG 0.256M 2G.1G
00: STORAGE = 1280M
00: Storage Configuration:
00: 0.256M 2G.1G
00: Extent Specification Address Range
00: ---------- -----------------------------------
00: 0.256M 0000000000000000 - 000000000FFFFFFF
00: 2G.1G 0000000080000000 - 00000000BFFFFFFF
00: Storage cleared - system reset.

using execute in place with SLES9

© 2005 IBM Corporation17 Christian Bornträger
IBM development lab Böblingen

05/21/05

Testing the DCSS

 if the Linux kernel has got the xip2 file system as a module, issue
“modprobe xip2” to load the module into memory (optional)

 mount the xip2 file system using the mount command like
“mount -t xip2 -o ro,memarea=<name> none <mount point>”

 if the segment is large, mounting might take a while

 verify that the file system has been mounted correctly by looking at
/proc/mounts

 check with “dmesg”, if an error has occurred. If yes, then check:

– mem parameter is >= end address of dcss

– guest storage does not collide with dcss

– no other loaded segment collides with the new segment (! segments
need a megabyte boundary to other segments)

 verify that the files you copied to the file system image are accessible

using execute in place with SLES9

© 2005 IBM Corporation18 Christian Bornträger
IBM development lab Böblingen

05/21/05

Activate execute-in-place

 unmount the file system again

 test the init script prepared earlier:

– run the script as super user root

– look at /proc/mounts to verify that

• the file system has been mounted at the mount point created earlier

• all directories that have been chosen earlier are over-mounted

 add “init=<full path of script>” to the kernel parameter line

 run zipl with the new kernel parameter line

 reboot Linux

 after reboot, check /proc/mounts to verify that

• the file system has been mounted at its mount point

• all chosen directories are over-mounted

using execute in place with SLES9

© 2005 IBM Corporation19 Christian Bornträger
IBM development lab Böblingen

05/21/05

Introducing the DCSS block device driver

 DCSS block device driver is able to access a DCSS as a block device

 can be built-in or is available as a module called dcssblk.ko

 is controlled using files that are located in /sys/devices/dcssblk

 cannot be used to create new DCSSes

 motivation: XIP filesystem is readonly. DCSS block device driver can be
used with ext2 to update DCSSes containing a filesystem image for
XIP2:

– the structure of a XIP filesystem equals the structure of ext2

– ext2 needs block device to operate

 usable for other scenarios as well

 ext2 + block device driver does currently not implement execute in place!

using execute in place with SLES9

© 2005 IBM Corporation20 Christian Bornträger
IBM development lab Böblingen

05/21/05

Adding and removing DCSSes

 add a DCSS as a block device

– may take a while

– driver will log a message informing about
success/failure to syslog

– a new subdirectory
/sys/devices/dcssblk/DCSSNAME/ appears

 remove the block device associated with a DCSS

– driver will log a message informing about
success/failure to syslog

– subdirectory /sys/devices/dcssblk/DCSSNAME/
disappears

echo LINSEG1 > /sys/devices/dcssblk/add

/sys/devices/
--- dcssblk
 --- add
 --- remove
 --- LINSEG1/
 --- save
 --- shared

echo LINSEG1 > /sys/devices/dcssblk/remove

/sys/devices/
--- dcssblk
 --- add
 --- remove

using execute in place with SLES9

© 2005 IBM Corporation21 Christian Bornträger
IBM development lab Böblingen

05/21/05

The “shared” state

 Every DCSS is by default in shared state.

– the file /sys/devices/dcssblk/DCSSNAME/shared contains the value
“1”

– Linux uses the global copy of the DCSS

– can be switched to non-shared mode by writing “0” to
/sys/devices/dcssblk/DCSSNAME/shared when idle

 non-shared DCSSes:

– the file /sys/devices/dcssblk/DCSSNAME/shared contains the value
“0”

– Linux uses a private copy of the DCSS

– can be switched back to shared mode by writing “1” to
/sys/devices/dcssblk/DCSSNAME/shared

using execute in place with SLES9

© 2005 IBM Corporation22 Christian Bornträger
IBM development lab Böblingen

05/21/05

The “save” state

 Linux can only save DCSSes when they are idle

 Linux remembers save requests while the DCSS is busy and saves the
DCSS as soon as the DCSS becomes idle

 by default the save state is “0” meaning that the DCSS will not be saved

 by writing the value “1” to /sys/devices/dcssblk/DCSSNAME/save:

– Linux is triggered save the DCSS immediately in case it is idle

– Linux remembers to save the DCSS when it becomes idle

 you need Class E to write a segment!

 by writing the value “0” to /proc/dcssblk/DCSSNAME/save

– a pending save on a DCSS that is in use can be canceled

 Linux reports all above operations in the syslog and the value in
/sys/devices/dcssblk/DCSSNAME/save can be read to check if there is a
pending request to save a DCSS

using execute in place with SLES9

© 2005 IBM Corporation23 Christian Bornträger
IBM development lab Böblingen

05/21/05

using the block-device node

 no partitioning

– do not use fdasd or fdisk

 any block device and filesystem tool can be used with the DCSS block
device (like mke2fs, e2fsck, etc.)

 4096 bytes block size

– use -b 4096 for mke2fs or other tools depending on the block size

 any file system that supports 4096 bytes block size can be used with the
DCSS block device driver (like ext2, ext3, ReiserFS, GFS)

 only ext2 is compatible with xip2 and can be used to process DCSSes
intended to be used with the xip2 file system

 can be used as well for doing the first time setup. Just create a segment
filled with random garbage and update this segment: use defseg +
saveseg to create an active segment

using execute in place with SLES9

© 2005 IBM Corporation24 Christian Bornträger
IBM development lab Böblingen

05/21/05

DCSSes as swap space

 why use a dcss for swapping?

– fast write into z/VMs storage and swap caching when guest is memory
constrained but z/VM is not

– allows to shrink guest virtual memory size while maintaining acceptable
performance for peak workloads (move overcommitment to guest level)

– can be much faster than vdisk

– no hypervisor calls required

 what is required?

– the block device kernel parameter and support for mixed EW/EN
segments – both included in upcoming SLES9 SP2

– a lot of paging space assigned to z/VM

– address space for using dcss (same as with execute in place)

using execute in place with SLES9

© 2005 IBM Corporation25 Christian Bornträger
IBM development lab Böblingen

05/21/05

DCSSes as swap space

 create an empty DCSS in CMS, first page should be EW, the rest EN

 in Linux initialize the segment (one time setup only!)

After above setup, syslog should indicate that the segment SWAPPING was
saved. In addition, /proc/swaps should mention the segment as active swap
space.

#cp defseg SWAPPING 20000-20000 EW 20001-6ffff EN
#cp saveseg SWAPPING

echo “SWAPPING” >/sys/devices/dcssblk/add
mkswap /dev/dcssblk0
echo 1 >/sys/devices/dcssblk/SWAPPING/save
swapon /dev/dcssblk0

using execute in place with SLES9

© 2005 IBM Corporation26 Christian Bornträger
IBM development lab Böblingen

05/21/05

DCSSes as swap space

 in order to activate swap, you need to add the following kernel parameter
and re-run zipl:

 add this line to your /etc/fstab file:

After rebooting the system swap should now be activated. You can check
/proc/swaps to verify this.

 In case of a mixed swap setup with both DCSS and DASD as swap target,
DCSS needs to get a higher swap priority than DASD for optimal
performance.

dcssblk.segments=SWAPPING

/dev/dcssblk0 swap sw 0 0

using execute in place with SLES9

© 2005 IBM Corporation27 Christian Bornträger
IBM development lab Böblingen

05/21/05

Outlook

 SLES9 is GA

– SLES9 includes execute-in-place

– all new file system features like Access Control Lists

– device node creation is made automatically by udev

 SLES9 SP2 soon

– adds support for EW/EN mixed mode segments (swapping)

– provides much better system messages for dcss (cleanup)

– adds support for the dcssblk.segments parameter (swapping, root dev)

– new “Howto” documentation on developerworks

 integration into the ext2 file system

 union mount for overlaying DCSS with normal file system

 better management and update solutions

using execute in place with SLES9

© 2005 IBM Corporation28 Christian Bornträger
IBM development lab Böblingen

05/21/05

Questions and Discussion

Now

After this session

Any time during WAVV

Email:

cborntra@de.ibm.com

cotte@de.ibm.com

Thank you for your attention

using execute in place with SLES9

© 2005 IBM Corporation29 Christian Bornträger
IBM development lab Böblingen

05/21/05

Background

technical background

using execute in place with SLES9

© 2005 IBM Corporation30 Christian Bornträger
IBM development lab Böblingen

05/21/05

Illustration of the problem

 Linux running as guest operating system on
z/VM requires a similar amount of memory
to Linux on a dedicated server while it is
active

 when running multiple Linux servers that
run the same application, the application is
present multiple times in physical memory

 storing the same data multiple times in
memory is inefficient

using execute in place with SLES9

© 2005 IBM Corporation31 Christian Bornträger
IBM development lab Böblingen

05/21/05

Basic idea of the solution

 store only one copy of the
application in memory

 share access to the application
among multiple servers

 let z/VM load the application into
memory

 restrict write access to the
application for servers (security!)

 allows running the same workload
with less memory consumption

 allows to run more workload with
the same memory consumption as
before

using execute in place with SLES9

© 2005 IBM Corporation32 Christian Bornträger
IBM development lab Böblingen

05/21/05

What is “execute in place”?

 applications are being executed directly from where they are
permanently stored

 was invented for embedded systems that do not have disk drives

 applications can be run directly in flash or ROM memory

 execute in place is a popular feature of embedded operating systems
such as uCLinux

using execute in place with SLES9

© 2005 IBM Corporation33 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

 when Linux launches an application, it does not load it into memory
immediately

 for application binary files and libraries, Linux:

– remembers the position in the application address space

– remembers the corresponding file on disk

 when the application accesses a page in memory that has not been
loaded yet:

– Linux interrupts the application

– the page is loaded into memory

– the application is resumed, and it retries to access the page

using execute in place with SLES9

© 2005 IBM Corporation34 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation35 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation36 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation37 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation38 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation39 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation40 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation41 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation42 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation43 Christian Bornträger
IBM development lab Böblingen

05/21/05

Goals for “execute in place” with Linux on z/VM

 improve resource usage in a virtual environment

 reduce memory requirements

 reduce I/O bandwidth requirements

 keep individual servers separated for security reasons

using execute in place with SLES9

© 2005 IBM Corporation44 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation45 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation46 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation47 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation48 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation49 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation50 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation51 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation52 Christian Bornträger
IBM development lab Böblingen

05/21/05

Characteristics of Linux on z/VM with execute in place

 implemented as filesystem type “xip2”

 can only be used read-only, writing is not supported

 the filesystem layout is compatible with ext2

 requires z/VM DCSS as storage

 does not need write access to the DCSS, individual servers remain
strictly separated in memory (security!)

 the DCSS block device driver can be used with ext2 to write data to the
DCSS

using execute in place with SLES9

© 2005 IBM Corporation53 Christian Bornträger
IBM development lab Böblingen

05/21/05

Characteristics of Linux on z/VM with execute in place

 no changes to the operating system outside the filesystem module

 no changes to applications, existing applications can benefit without
modifications

 provides major improvement for memory consumption of servers

 allows to run more active servers with given resources

 source code is available at http://www.linuxvm.org/Patches

 is available as update to SuSE Linux Enterprise Server Version 8

 is integrated in SuSE Linux Enterprise Server Version 9

– new ext2 features supported (dirindex, acl...)

– remove memory restriction to 2GByte

