
using execute in place with SLES 9

Christian Bornträger, IBM germany 05/21/05 © 2005 IBM Corporation

Christian Bornträger
cborntra@de.ibm.com

Execute-in-place technology for SLES9

using execute in place with SLES9

© 2005 IBM Corporation2 Christian Bornträger
IBM development lab Böblingen

05/21/05

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

IBM * z/VM *
VM/ESA * zSeries *
S/390 *

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.
Intel is a trademark of the Intel Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
Penguin (Tux) compliments of Larry Ewing.
UNIX is a registered trademark of The Open Group in the United States and other countries.

* All other products may be trademarks or registered trademarks of their respective companies.

using execute in place with SLES9

© 2005 IBM Corporation3 Christian Bornträger
IBM development lab Böblingen

05/21/05

Set up process overview

 Plan the layout of the file system

 Provide a script to over-mount shared directories on startup

 Create a file system image

 Create a DCSS from the image file

 Change the kernel parameter line

 Test the DCSS

 Activate execute in place

Documentation and scripts used in this presentation are available at

http://awlinux1.alphaworks.ibm.com/developerworks/linux390/april2004_documentation.shtml

using execute in place with SLES9

© 2005 IBM Corporation4 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system

 determine the maximum size of the DCSS (SIZE)

– lower limit of the DCSS address range (LOW)

• may not overlap virtual guest storage

• equals the end of virtual guest storage of the
largest guest

– upper limit of the DCSS address range (HIGH)

• 2GB for 64-bit Linux images (z/VM limitation)

• 1960 MB for 31-bit Linux images (Linux
limitation)

– subtract the lower limit from the upper limit to
obtain the maximum possible DCSS size

0

LOW

HIGH

G
ue

st
 1

2GB/
1960MB

S
IZ

E

G
ue

st
 2

G
ue

st
 3

SIZE = HIGH - LOW

using execute in place with SLES9

© 2005 IBM Corporation5 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system

 alternative memory layout with 64bit guests
allows to use more virtual guest storage

– a minimum of 256 Mbyte below the 2GB line
is required for reliable operation

– the amount of virtual guest storage per guest
is not limited by DCSS

– the maximum size of the DCSS can be 1792
Mbyte

SIZE = HIGH - LOW

0

LOW

HIGH

G
ue

st
 1

2GB

S
IZ

E

G
ue

st
 2

G
ue

st
 2

G
ue

st
 3

min
256MB

G
ue

st
 1

using execute in place with SLES9

© 2005 IBM Corporation6 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system – which directories

 On servers, identify directories containing frequently executed files

• issue the ”ps” command on a typical server running typical
workload to identify what processes are running

• use ”which” to find out where the executable files are stored

• use ”ldd” to find out what libraries are required

• check for symbolic links

find <directory> -type l -exec ls -lisa {} \;

using execute in place with SLES9

© 2005 IBM Corporation7 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system – which directories

 Interactive systems

– use the same rules as before

– check the PATH environment variable for the superuser and for regular
users

– check /etc/ld.so.conf for paths containing libraries

 what NOT to share?

– be sure not to share directories that are written to. Note that the
process described here shares subdirectories as well.

– sharing scripts and java bytecode is ineffective, they are not executed
directly but interpreted

– do not share /etc and /var

– use the file command to check the file type

using execute in place with SLES9

© 2005 IBM Corporation8 Christian Bornträger
IBM development lab Böblingen

05/21/05

Plan the layout of the file system – segment size

 calculate space requirements

– issue ”du -sk” for each directory to find the space occupied by each
directory (including subdirectories)

– build the sum of the individual spaces to find the total space occupied

– add 4KB per shared file as filesystem overhead

– add extra space for future software updates like security fixes

– check that the required size does not exceed the maximum DCSS size

 calculate the page frame numbers for start and end address

– a page is 4096 bytes in size

– DCSS needs to start on a page boundary

– start address should be the first page frame after the virtual guest
storage of the largest guest

– end address: add start address and size, round up to next page, -1

using execute in place with SLES9

© 2005 IBM Corporation9 Christian Bornträger
IBM development lab Böblingen

05/21/05

Example – segment planning

 5 guests 128MB, 1 guest 256MB, 4 guests 160MB

 /bin/, /sbin/, /usr/bin/, /usr/sbin/, /lib/, and /usr/lib/ are identified for sharing

 1. querying the size:

 219813kb of files to share

 2. getting the amount of files

 4kb * 8929 = 35716kb as additional overhead

 You need 219813kb + 35716 kb = 255529kb

 adding some space for updates ,300MB seems a reasonable size

using execute in place with SLES9

© 2005 IBM Corporation10 Christian Bornträger
IBM development lab Böblingen

05/21/05

Example – segment planning

 The largest guest has 256MB of memory: largest address 0xfffffff

 DCSS can start at 256MB ~ 0x10000000

 considering 300MB of size: end address is 556 MB-1 ~ 0x22BFFFFF

 size fits well between 256MB and 1960MB

 defseg command needs the address in pages (without the last 3 digits)

 now the segment is waiting to be filled

 next step is to prepare the linux guests

using execute in place with SLES9

© 2005 IBM Corporation11 Christian Bornträger
IBM development lab Böblingen

05/21/05

Provide a script to over-mount shared directories on startup

 over-mount in this context means directories are
replaced by their shared copies in DCSS

 directories need to be replaced on system startup
before services are being started (otherwise
services and libraries will be loaded from DASD)

 the best way to do to this is running a script as
initial process that mounts the DCSS, over-
mounts all directories in 2 steps, and then starts
the original /sbin/init

 note that /etc/mtab is not writeable at the time
the script runs, therefore mount will not report the
mounts later on. check /proc/mounts for a
complete list of mounted filesystems

 the example script can be found in the execute-in-
place Howto on IBM developerWorks

/
├── bin
├── boot
├── dev
├── etc
├── home
├── lib
├── proc
├── root
├── sbin
├── tmp
├── usr
│ ├── bin
│ ├── lib
│ ├── sbin
│ ├── share
├── var
└── mnt

/
├── lib
├── sbin
├── usr
 ├── lib

shared segment

├── lib
├── sbin
├── usr
 ├── lib

using execute in place with SLES9

© 2005 IBM Corporation12 Christian Bornträger
IBM development lab Böblingen

05/21/05

Create a file system image (one time setup)

 get a DASD large enough to store your file system image with the size
calculated earlier and prepare the dasd with a file system

 create a file with the size of the planned DCSS on the newly mounted disk

 create an ext2 file system on the file

 answer the question with yes

using execute in place with SLES9

© 2005 IBM Corporation13 Christian Bornträger
IBM development lab Böblingen

05/21/05

Create a file system image

 create a mount point for the file system and mount it using the “-o loop”
mount option

 copy all directories you want to share into the file system image

 unmount the file system image

 a script that generates a file system image automatically can be found in
the execute-in-place Howto on IBM developerWorks

mkdir /segment
mount /mnt/filesystem /segment -o loop

using execute in place with SLES9

© 2005 IBM Corporation14 Christian Bornträger
IBM development lab Böblingen

05/21/05

Fill a newly created DCSS using the image file

 prepare the disk containing the image file for IPL. Use the zipl command
with the -s parameter along with the image file name and the DCSS start
address:

 take down linux and IPL CMS in your guest machine

 if not already done, define the DCSS

 use “#cp define store <amount>” to define the virtual guest
storage size large enough that the entire DCSS fits in

 IPL the DASD and wait for the CPU to enter disabled wait

 save the DCSS: “#cp saveseg <name of DCSS>”

 log off and back in to restore system defaults (storage)

start address DCSS
in bytes

using execute in place with SLES9

© 2005 IBM Corporation15 Christian Bornträger
IBM development lab Böblingen

05/21/05

Change the kernel parameter line

 when using the DCSS above all virtual guest storage, the kernel
parameter line needs to be changed as follows:

 start up the Linux system

 add “mem=<value>” to the kernel parameter line, where <value>
equals the end address of the DCSS

 run zipl with the new kernel parameter file

 reboot Linux

 issue “cat /proc/cmdline” to verify that Linux is using the new
parameter

using execute in place with SLES9

© 2005 IBM Corporation16 Christian Bornträger
IBM development lab Böblingen

05/21/05

Changing the storage configuration

 when using virtual guest storage above the 2GByte line, use CP storage
configuration to create your memory setup:

 result:

#cp define storage config 0.256m 2g.1g

00: CP DEF STORE CONFIG 0.256M 2G.1G
00: STORAGE = 1280M
00: Storage Configuration:
00: 0.256M 2G.1G
00: Extent Specification Address Range
00: ---------- -----------------------------------
00: 0.256M 0000000000000000 - 000000000FFFFFFF
00: 2G.1G 0000000080000000 - 00000000BFFFFFFF
00: Storage cleared - system reset.

using execute in place with SLES9

© 2005 IBM Corporation17 Christian Bornträger
IBM development lab Böblingen

05/21/05

Testing the DCSS

 if the Linux kernel has got the xip2 file system as a module, issue
“modprobe xip2” to load the module into memory (optional)

 mount the xip2 file system using the mount command like
“mount -t xip2 -o ro,memarea=<name> none <mount point>”

 if the segment is large, mounting might take a while

 verify that the file system has been mounted correctly by looking at
/proc/mounts

 check with “dmesg”, if an error has occurred. If yes, then check:

– mem parameter is >= end address of dcss

– guest storage does not collide with dcss

– no other loaded segment collides with the new segment (! segments
need a megabyte boundary to other segments)

 verify that the files you copied to the file system image are accessible

using execute in place with SLES9

© 2005 IBM Corporation18 Christian Bornträger
IBM development lab Böblingen

05/21/05

Activate execute-in-place

 unmount the file system again

 test the init script prepared earlier:

– run the script as super user root

– look at /proc/mounts to verify that

• the file system has been mounted at the mount point created earlier

• all directories that have been chosen earlier are over-mounted

 add “init=<full path of script>” to the kernel parameter line

 run zipl with the new kernel parameter line

 reboot Linux

 after reboot, check /proc/mounts to verify that

• the file system has been mounted at its mount point

• all chosen directories are over-mounted

using execute in place with SLES9

© 2005 IBM Corporation19 Christian Bornträger
IBM development lab Böblingen

05/21/05

Introducing the DCSS block device driver

 DCSS block device driver is able to access a DCSS as a block device

 can be built-in or is available as a module called dcssblk.ko

 is controlled using files that are located in /sys/devices/dcssblk

 cannot be used to create new DCSSes

 motivation: XIP filesystem is readonly. DCSS block device driver can be
used with ext2 to update DCSSes containing a filesystem image for
XIP2:

– the structure of a XIP filesystem equals the structure of ext2

– ext2 needs block device to operate

 usable for other scenarios as well

 ext2 + block device driver does currently not implement execute in place!

using execute in place with SLES9

© 2005 IBM Corporation20 Christian Bornträger
IBM development lab Böblingen

05/21/05

Adding and removing DCSSes

 add a DCSS as a block device

– may take a while

– driver will log a message informing about
success/failure to syslog

– a new subdirectory
/sys/devices/dcssblk/DCSSNAME/ appears

 remove the block device associated with a DCSS

– driver will log a message informing about
success/failure to syslog

– subdirectory /sys/devices/dcssblk/DCSSNAME/
disappears

echo LINSEG1 > /sys/devices/dcssblk/add

/sys/devices/
--- dcssblk
 --- add
 --- remove
 --- LINSEG1/
 --- save
 --- shared

echo LINSEG1 > /sys/devices/dcssblk/remove

/sys/devices/
--- dcssblk
 --- add
 --- remove

using execute in place with SLES9

© 2005 IBM Corporation21 Christian Bornträger
IBM development lab Böblingen

05/21/05

The “shared” state

 Every DCSS is by default in shared state.

– the file /sys/devices/dcssblk/DCSSNAME/shared contains the value
“1”

– Linux uses the global copy of the DCSS

– can be switched to non-shared mode by writing “0” to
/sys/devices/dcssblk/DCSSNAME/shared when idle

 non-shared DCSSes:

– the file /sys/devices/dcssblk/DCSSNAME/shared contains the value
“0”

– Linux uses a private copy of the DCSS

– can be switched back to shared mode by writing “1” to
/sys/devices/dcssblk/DCSSNAME/shared

using execute in place with SLES9

© 2005 IBM Corporation22 Christian Bornträger
IBM development lab Böblingen

05/21/05

The “save” state

 Linux can only save DCSSes when they are idle

 Linux remembers save requests while the DCSS is busy and saves the
DCSS as soon as the DCSS becomes idle

 by default the save state is “0” meaning that the DCSS will not be saved

 by writing the value “1” to /sys/devices/dcssblk/DCSSNAME/save:

– Linux is triggered save the DCSS immediately in case it is idle

– Linux remembers to save the DCSS when it becomes idle

 you need Class E to write a segment!

 by writing the value “0” to /proc/dcssblk/DCSSNAME/save

– a pending save on a DCSS that is in use can be canceled

 Linux reports all above operations in the syslog and the value in
/sys/devices/dcssblk/DCSSNAME/save can be read to check if there is a
pending request to save a DCSS

using execute in place with SLES9

© 2005 IBM Corporation23 Christian Bornträger
IBM development lab Böblingen

05/21/05

using the block-device node

 no partitioning

– do not use fdasd or fdisk

 any block device and filesystem tool can be used with the DCSS block
device (like mke2fs, e2fsck, etc.)

 4096 bytes block size

– use -b 4096 for mke2fs or other tools depending on the block size

 any file system that supports 4096 bytes block size can be used with the
DCSS block device driver (like ext2, ext3, ReiserFS, GFS)

 only ext2 is compatible with xip2 and can be used to process DCSSes
intended to be used with the xip2 file system

 can be used as well for doing the first time setup. Just create a segment
filled with random garbage and update this segment: use defseg +
saveseg to create an active segment

using execute in place with SLES9

© 2005 IBM Corporation24 Christian Bornträger
IBM development lab Böblingen

05/21/05

DCSSes as swap space

 why use a dcss for swapping?

– fast write into z/VMs storage and swap caching when guest is memory
constrained but z/VM is not

– allows to shrink guest virtual memory size while maintaining acceptable
performance for peak workloads (move overcommitment to guest level)

– can be much faster than vdisk

– no hypervisor calls required

 what is required?

– the block device kernel parameter and support for mixed EW/EN
segments – both included in upcoming SLES9 SP2

– a lot of paging space assigned to z/VM

– address space for using dcss (same as with execute in place)

using execute in place with SLES9

© 2005 IBM Corporation25 Christian Bornträger
IBM development lab Böblingen

05/21/05

DCSSes as swap space

 create an empty DCSS in CMS, first page should be EW, the rest EN

 in Linux initialize the segment (one time setup only!)

After above setup, syslog should indicate that the segment SWAPPING was
saved. In addition, /proc/swaps should mention the segment as active swap
space.

#cp defseg SWAPPING 20000-20000 EW 20001-6ffff EN
#cp saveseg SWAPPING

echo “SWAPPING” >/sys/devices/dcssblk/add
mkswap /dev/dcssblk0
echo 1 >/sys/devices/dcssblk/SWAPPING/save
swapon /dev/dcssblk0

using execute in place with SLES9

© 2005 IBM Corporation26 Christian Bornträger
IBM development lab Böblingen

05/21/05

DCSSes as swap space

 in order to activate swap, you need to add the following kernel parameter
and re-run zipl:

 add this line to your /etc/fstab file:

After rebooting the system swap should now be activated. You can check
/proc/swaps to verify this.

 In case of a mixed swap setup with both DCSS and DASD as swap target,
DCSS needs to get a higher swap priority than DASD for optimal
performance.

dcssblk.segments=SWAPPING

/dev/dcssblk0 swap sw 0 0

using execute in place with SLES9

© 2005 IBM Corporation27 Christian Bornträger
IBM development lab Böblingen

05/21/05

Outlook

 SLES9 is GA

– SLES9 includes execute-in-place

– all new file system features like Access Control Lists

– device node creation is made automatically by udev

 SLES9 SP2 soon

– adds support for EW/EN mixed mode segments (swapping)

– provides much better system messages for dcss (cleanup)

– adds support for the dcssblk.segments parameter (swapping, root dev)

– new “Howto” documentation on developerworks

 integration into the ext2 file system

 union mount for overlaying DCSS with normal file system

 better management and update solutions

using execute in place with SLES9

© 2005 IBM Corporation28 Christian Bornträger
IBM development lab Böblingen

05/21/05

Questions and Discussion

Now

After this session

Any time during WAVV

Email:

cborntra@de.ibm.com

cotte@de.ibm.com

Thank you for your attention

using execute in place with SLES9

© 2005 IBM Corporation29 Christian Bornträger
IBM development lab Böblingen

05/21/05

Background

technical background

using execute in place with SLES9

© 2005 IBM Corporation30 Christian Bornträger
IBM development lab Böblingen

05/21/05

Illustration of the problem

 Linux running as guest operating system on
z/VM requires a similar amount of memory
to Linux on a dedicated server while it is
active

 when running multiple Linux servers that
run the same application, the application is
present multiple times in physical memory

 storing the same data multiple times in
memory is inefficient

using execute in place with SLES9

© 2005 IBM Corporation31 Christian Bornträger
IBM development lab Böblingen

05/21/05

Basic idea of the solution

 store only one copy of the
application in memory

 share access to the application
among multiple servers

 let z/VM load the application into
memory

 restrict write access to the
application for servers (security!)

 allows running the same workload
with less memory consumption

 allows to run more workload with
the same memory consumption as
before

using execute in place with SLES9

© 2005 IBM Corporation32 Christian Bornträger
IBM development lab Böblingen

05/21/05

What is “execute in place”?

 applications are being executed directly from where they are
permanently stored

 was invented for embedded systems that do not have disk drives

 applications can be run directly in flash or ROM memory

 execute in place is a popular feature of embedded operating systems
such as uCLinux

using execute in place with SLES9

© 2005 IBM Corporation33 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

 when Linux launches an application, it does not load it into memory
immediately

 for application binary files and libraries, Linux:

– remembers the position in the application address space

– remembers the corresponding file on disk

 when the application accesses a page in memory that has not been
loaded yet:

– Linux interrupts the application

– the page is loaded into memory

– the application is resumed, and it retries to access the page

using execute in place with SLES9

© 2005 IBM Corporation34 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation35 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation36 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation37 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation38 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation39 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation40 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation41 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation42 Christian Bornträger
IBM development lab Böblingen

05/21/05

How applications are launched in Linux

using execute in place with SLES9

© 2005 IBM Corporation43 Christian Bornträger
IBM development lab Böblingen

05/21/05

Goals for “execute in place” with Linux on z/VM

 improve resource usage in a virtual environment

 reduce memory requirements

 reduce I/O bandwidth requirements

 keep individual servers separated for security reasons

using execute in place with SLES9

© 2005 IBM Corporation44 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation45 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation46 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation47 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation48 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation49 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation50 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation51 Christian Bornträger
IBM development lab Böblingen

05/21/05

How “execute in place” works

using execute in place with SLES9

© 2005 IBM Corporation52 Christian Bornträger
IBM development lab Böblingen

05/21/05

Characteristics of Linux on z/VM with execute in place

 implemented as filesystem type “xip2”

 can only be used read-only, writing is not supported

 the filesystem layout is compatible with ext2

 requires z/VM DCSS as storage

 does not need write access to the DCSS, individual servers remain
strictly separated in memory (security!)

 the DCSS block device driver can be used with ext2 to write data to the
DCSS

using execute in place with SLES9

© 2005 IBM Corporation53 Christian Bornträger
IBM development lab Böblingen

05/21/05

Characteristics of Linux on z/VM with execute in place

 no changes to the operating system outside the filesystem module

 no changes to applications, existing applications can benefit without
modifications

 provides major improvement for memory consumption of servers

 allows to run more active servers with given resources

 source code is available at http://www.linuxvm.org/Patches

 is available as update to SuSE Linux Enterprise Server Version 8

 is integrated in SuSE Linux Enterprise Server Version 9

– new ext2 features supported (dirindex, acl...)

– remove memory restriction to 2GByte

