* SSL for VSE

Connectivity Systems
Product Development
Don Stoever

$ Agenda

The Need

= Secure communications with applications on VSE
The Solution

= The SSL protocol

The Tools

= Standard cryptographic algorithms

The Implementation

= Installing SSL on VSE

= The Benefits

= Creating secure applications for VSE

iThe Need

= E-Business

= E-Commerce

= Secret web sites and ports
= Viruses

= Hackers

= Denial of Service attacks

= Authentication

= Confidentiality

= Data Integrity

& The Need: IP problems

= |P packets have no inherent security
= Relatively easy to forge the addresses
= Modify the contents
= Replay old packets
= Contents easy to inspect
= No guarantee that IP packets are:
= From the claimed sender
= Contain the original data set by sender
= Not inspected by a third party

iThe Need: TCP problems

= TCP provides a reliable connection
= Lost packets are retransmitted
= But no:
= Authentication
« Confidentiality
= Integrity
= Repudiation

& Application Message Integrity

= Messages
= contain sensitive data
= travel a complex path
= must be authenticated
= must be kept confidential
= must not be altered

= Why not AMI for VSE ???

iWhy not just front end VSE ?

= Native solution is:
= More secure
= Efficient
= Cheaper
= Easy to maintain
= Less complicated
= VSE can now do it all too...

= S0, why not have secure messaging
applications on VSE ?

& The Solution: SSL for VSE

= SSL provides secure messaging for
TCP/IP applications on VSE by using:

= Public Key Infrastructure for server and
client authentication

= Data Encryption for confidentiality

= One-way keyed hash functions for
message integrity

= Digital Signatures for proof of authorship

The Solution:
TCP with SSL Protocol

Secure

* SSL Overview

= Two sockets connected
= One must be a Server the other a Client
= Server always authenticated
= Client authentication optional
= Client and Server must:

= Agree on cipher algorithms
= Establish crypto keys

SSL Handshake Hello’s

E

Client_Hello

Y

SSL Handshake Client
Messages

Client_Certificate(Optional)

Client_Key Exchange

LA

Client_Certificate Verify (Optional)

Change_Cipher_Spec

Client_Finished

AAJ

SSL Handshake Server
Messages

Chiont bata < I Samvera)

SSL Handshake Resuming a
Previous Session

Client_Hello [:::::::::>

| Change_Cipher_Spec >
| Client Finished [:::::j:::>

SSL Alerts
E

Close_Notify Warning [:::::::::>

Bad_Certificate Fatal [:::::::::>

$ SSL Enabled Server on VSE

= Server allocates a socket binds to a port,
listens, and issues a accept.

= Client connects to the VSE server and sends
a “client hello”.

= Server passes control to the SSL4VSE secure
socket initialization routine which performs
the actual SSL handshake.

= Server responds to the “client hello” by
choosing the cipher algorithms that will be
used during the session and sending the
clients its x.509v3 PKI certificate.

iSSL Enabled Server on VSE

= Key material is generated that will be
used for encryption, decryption, and
message authentication.

= Once the handshake is completed a
secure connection is ready, and the
server and client can then use secure
socket read and write functions of the
SSL4VSE API.

The Tools: Cryptography
& Algorithms

= SSL requires cryptography functions
= X509v3 PKI certificates for identification
= RSA for key exchange
= DES for data encryption
= MD5 and SHA-1 for message hashing
= HMAC for message authentication

iCrypto Toolkit for VSE

= API for cryptography standards

= Message Digest algorithms
= MD5 RFC1321
= SHA-1 FIPS Pub 180-1
= Bulk Data encryption
= DES FIPS Pub 46-3
= Triple DES Ansi x9.52 Triple DES
= Message authentication
= HMAC RFC2104
= Digital Signatures
= RSA PKCS#1

& RSA Public Key encryption

Used by SSL for initial key exchange and
digital signatures

Separate keys used for encrypt and decrypt

Public key shared with others in signed
certificate

Private key used to decrypt and for creating
digital signatures

RSA patent expired in September, 2000

10

ilnstalling SSL on VSE

= Install a SSL enabled client

= MS-1E, QWS3270 Secure, Zephyr Passport,
etc

= Create a RSA private key file

= Submit a CSR request to a Certificate
Authority.

= It will contain your public key and is
digitally signed with your private key

& Installing SSL on VSE

= Install the CA signed certificate
= Install the CA root certificate
= Configure the SSL daemon on VSE

11

iExample SSL enabled client

= Microsoft Internet Explorer
= Must be version 5 or higher

= Under the the "Tools - Internet Options -
Advanced - Security” the "Use SSL/TLS*
checkbox must be checked

= Under the the "Tools - Internet Options —
Content - Certificates the CA root
certificate must be installed

$ Creating a RSA Key file

s Based on RSA PKCS#1

/1 EXEC CIALSRVR

SETPORT 5622

/*

* * RSA private key created on PC and sent to VSE
/&

12

iCreating a CSR Request

= Based on RFC2314

// EXEC CIALCREQ

Webmaster: dstoever@tcpip4vse.com
Phone: XXX-XXX-XXXX

Server: TCP/IP for VSE 1.4
Common-name: www.dstoever.com
Organization Unit: Development
Organization: Connectivity Systems
Locality: Columbus

State: Ohio

Country: US

/*

Install Certificate Authority
& Root Certificate

// EXEC CIALROOT
MIICpDCCAg2gAWIBAGIDPItCMAOGCSGSIb3DQEBBAUAMIGHMQsWCQYDVQQGEWJa
QTEIMCAGA1UECBMZRK9SIFRFU1RITKegUFVSUEOTRVMgTOSMWTEAMBSGALUEChMU

VGhhd3RIIENIcnRpZmljYXRpb24xFzAVBgNVBASTDIRFU1QgVEVTVCBURVNUMRwWwW

lygW1vNOcNo=

13

ilnstall CA Signed certificate

/1 EXEC CIALCERT
MIICPDCCAg2gAWIBAGIDPItCMAOGCSGGSIb3DQEBBAUAMIGHMQsWCQYDVQQGEWJa
QTEIMCAGALUECBMZRK9SIFRFULRITkcgUFVSUE9TRVMGTOSMWTEAMBSGALUEChMU

VGhhd3RIIENIcnRpZmljYXRpbh24xFzAVBgNVBASTDIRFU1QgVEVTVCBURVNUMRWW

lyqW1vNOcNo=

$ IETF Standards Implemented

http://www.ietf.org/html.charters/tls-charter.html

s RFC2246 The TLS Protocol

= Handshake requires server certificate from
VSE

= RSA used for generating key material
= DES used for application data encryption

= HMAC-SHA1 used for message
authentication

14

iIETF Standards Implemented

= RFC1321 The MD5 Message-Digest Algorithm

RFC2104 HMAC: Keyed hashing for message
authentication

RFC2202 Test Cases for HMAC-MD5 and
HMAC-SHA-1

RFC1113 Universal Printable Character
encoding

RFC2459 Internet x509v3 PKI certificates
Internet draft HTTP over TLS

$ FIPS Standards

PUB 46-3 Data Encryption Standard (DES)
PUB 81 DES Modes of Operation

Cipher Block Chaining mode

PUB 180-1 Secure Hash Standard (SHA-1)
http://www-08.nist.gov/cryptval/des.htm

http://csrc.nist.gov/pki/nist_crypto/welcome.
html

15

iSSL Implementation on VSE

= Using the SSL Pass-Through server
= Defining the SSL pass-through daemon on VSE

= Using the SSL API on VSE
= Client Server application without SSL
= Client Server application with SSL

= Using Cryptography APIs on VSE
= Using DES to encrypt data
= Using SHA-1 to create a message fingerprint
= Using RSA to create a digital signature
= Using BASE64 encoding to transmit binary data

Using the SSL Pass-Through
& Server

= Allows quick and easy implementation
of SSL

= No application modifications

= SSLD on VSE performs handshake with
SSL enabled client
= Encrypts outbound data to SSL client
= Decrypts inbound data from SSL client

= Currently used by TelnetD

16

Defining the SSL daemon on

$VSE

= DEFINE TLSD,
= ID=TLSDO1,
= PORT=443,
= PASSPORT=23
= CIPHER=0A096208
= CERTLIB=KEYLIB
= CERTSUB=SSLKEYS
= CERTMEM=SSL4VSE
= TYPE=1
= MINVERS=0300

Identifier

We listen here

Pass to real daemon
Allowed ciphers
Library name
Sublibrary name
Member name
Server application
Protocol version

Implementing SSL into
& Applications on VSE

= TwoO sockets connected
= One must be a Server the other a Client

= Server always authenticated
= Client authentication optional

= Client and Server must:
= Agree on cipher algorithms
= Establish crypto keys

17

$SSL for VSE API

= Based on IBM OS/390 SSL
Programming Guide and Reference,
manual number SC24-5877

= Easy porting for OS/390 SSL applications
= Callable from either C or BAL

$ Client Server without SSL

= Client = Server
= Allocate socket = Allocate socket
= Connect to server = Bind socket to a port
= Read/Write socket = Listen on port
= Close socket = Accept client

connection
Read/Write socket
Close socket

18

= SSL setup environment
= Allocate socket

= Connect to server

= SSL socket initialization
= SSL read/write socket
= SSL Close socket

= Close socket

iCIient Server with SSL

s Client

= Server

SSL setup environment
Allocate socket

Bind socket to a port
Listen on port

Accept client connection
SSL socket initialization
SSL read/write socket
SSL Close socket

Close socket

& SSL for VSE API

= Based on IBM 0OS/390 SSL
Programming Guide and Reference,
manual number SC24-5877
= Easy porting for OS/390 SSL applications
= Callable from either C or BAL

iSetup SSL environment

= C function = gsk_initialize()
= C header file = SSLVSE.H
= BAL vcon = IPCRINIT
= BAL macro = SSLVSE.A
= Standard linkage
= R13 = save area
= R14 = return address
= R15 = entry point
= R1 = parameter list
= On return R15 = return code
= Negative = failed, R1=@reason

& Setup SSL environment

= Minimum acceptable protocol version

= ldentify lib.sublib containing the private
key and certificates

= Session timeout value for fast client
reconnect

= Specifies the method for verifying client
certificates

20

ilnitialize SSL socket

= C function = gsk_secure_soc_init()
= C header file = SSLVSE.H
= BAL vcon = IPCRSINI
= BAL macro = SSLVSE.A
= Standard linkage
= R13 = save area
= R14 = return address
= R15 = entry point
= R1 = parameter list
= On return R15 = return code
= Negative = failed, R1=@reason

& Initialize SSL socket

= Type of handshake
= Server/Client without client authentication
= Server/Client with client authentication

= List of acceptable cipher suites
= RSA512-Null-MD5, RSA512-Null-SHA
= RSA512-DES40-SHA
= RSA1024-DES-SHA
= RSA1024-TripleDES-SHA

21

ilnitialize SSL socket

s @ of read socket routine
s @ of write socket routine

= Calls back into your code for reading
and writing to the actual socket

= Parmlist passed contains:
= Fullword handle for use by application
= @ of data receive/send area
= Length of data receive/send area

Using cryptography APIs on
VSE

= SSL requires cryptography functions
= X509v3 PKI certificates for identification
= RSA for key exchange
= DES for data encryption
= MD5 and SHA-1 for message hashing
= HMAC for message authentication

22

iCryptoVSE APl algorithms

= API for cryptography standards

= Message Digest algorithms
= MD5 RFC1321
= SHA-1 FIPS Pub 180-1
= Bulk Data encryption
= DES FIPS Pub 46-3
= Triple DES Ansi x9.52 Triple DES
= Message authentication
= HMAC RFC2104
= Digital Signatures
= RSA PKCS#1

& Using DES to encrypt data

= C function = cry_des_encrypt()
= C header file = SSLVSE.H
= BAL vcon = CRYDESEC
= BAL macro = SSLVSE.A
= Standard linkage
= R13 = save area
= R14 = return address
= R15 = entry point
= R1 = parameter list
= On return R15 = return code
= Negative = failed, R1=@reason

23

iUsing DES to encrypt data

= Parameters addresses off R1
= O(R1) = address of data to encrypt
= 4(R1) = length of data to encrypt
= 8(R1) = address of key
= 12(R1) = length of key
= 16(R1) = address of work area
= 20(R1) = length of work area

Using SHA-1 to create a
$ message fingerprint

= C function = cry_sha_hash()
= C header file = SSLVSE.H
= BAL vcon = CRYSHAHA
= BAL macro = SSLVSE.A
= Standard linkage
= R13 = save area
= R14 = return address
= R15 = entry point
= R1 = parameter list
= On return R15 = return code
= Negative = failed, R1=@reason

24

Using SHA-1 to create a
message fingerprint

= Parameters addresses off R1
= O(R1) = address of input data for hash
= 4(R1) = length of input data
= 8(R1) = not used
= 12(R1) = not used
16(R1) = address of work area
= 20(R1) = length of work area

= 20-byte SHA-1 hash will be returned in the
supplied work area

Using RSA to create a digital
& signature

= C function = cry_rsa_signature_create()
= C header file = SSLVSE.H
= BAL vcon = CRYRSASI
= BAL macro = SSLVSE.A
= Standard linkage
= R13 = save area
= R14 = return address
= R15 = entry point
= R1 = parameter list
= On return R15 = return code
= Negative = failed, R1=@reason

25

Using RSA to create a digital
signature

= Parameters addresses off R1

= O(R1) = address of input data

= 4(R1) = length of input data
8(R1) = address of RSA private key
12(R1) = length of RSA private key
16(R1) = address of work area
= 20(R1) = length of work area

= 64 or 128 byte RSA PKCS#1 digital signature
will be returned in the supplied work area

Using BASEG64 encoding to

$ transmit binary data

= C function = cry_universal_print_encode()
= C header file = SSLVSE.H
= BAL vcon = CRYUPENC
= BAL macro = SSLVSE.A
= Standard linkage
= R13 = save area
= R14 = return address
= R15 = entry point
= R1 = parameter list
= On return R15 = return code
= Negative = failed, R1=@reason

26

Using BASEG64 encoding to
transmit binary data

= Parameters addresses off R1
= O(R1) = address of input data
= 4(R1) = length of input data (48)
= 8(R1) = not used
= 12(R1) = not used
16(R1) = address of work area
= 20(R1) = length of work area

= 64 bytes of universally printable characters
will be returned in the supplied work area

& Questions ?

27

