

TCP/IP for VSE/ESA 1.4

Performance considerations

Ingo Franzki e-mail: ifranzki@de.ibm.com VSE/ESA Development

WAVVTCPIP.prz

Agenda

e-business

TCP/IP for VSE/ESA

- ► Startup
- Multiple TCP/IP partitions
- Telnet Performance results
- FTP Performance results
- News with 1.4
- OSA-Express and QDIO
- Secure Socket Layer
 - Performance results

TCP/IP Startup job

- VSE partition size
 - Start with 20-30M partition size
- SETPFIX LIMIT
 - Start with LIMIT=900K
- Type of VSE partition
 - Can be static of dynamic
- Parameters to EXEC IPNET
 - ► SIZE=IPNET
 - IPINIT0x contains all TCP/IP parameters
 - DSPACE=3M max. size of dspace used by VTAM

TCP/IP Dispatch Priority

- Select PRTY sequence (low to high)
 Batch, CICS, TCP/IP, VTAM, POWER
- A second TCP/IP partition is recommended
 - ► If besides Telnet ...
 - Concurrent FTP activity (not FTPBATCH)
 - Concurrent LPR/LPD activities
 - High concurrent FTP (or LPR/LPD) activity may/will impact e.g. Telnet response times
 - Or use FTPBATCH

Multiple TCP/IP Partitions

- Each TCP/IP Partition should have
 - A separate IP address
 - A separate host name
 - Its own set of adapters
 - Its own setup of startup parameters
- Functional reasons
 - Separation of workload
 - Separation of production and test
 - Separation of production workload
 - Separation of network (e.g. security)

Multiple TCP/IP Partitions - continued

- Performance reasons
 - Exploit more than 1 engine for TCP/IP
 - -Only one engine per partition
 - Need of more virtual storage below the line
 - -e.g. Telnet (VTAM) buffers
 - Individual customization
 - Separation of TELNET and FTP/LPR activities
- INET link has no performance benefits
 - Recomendation: let each partition have its own network link

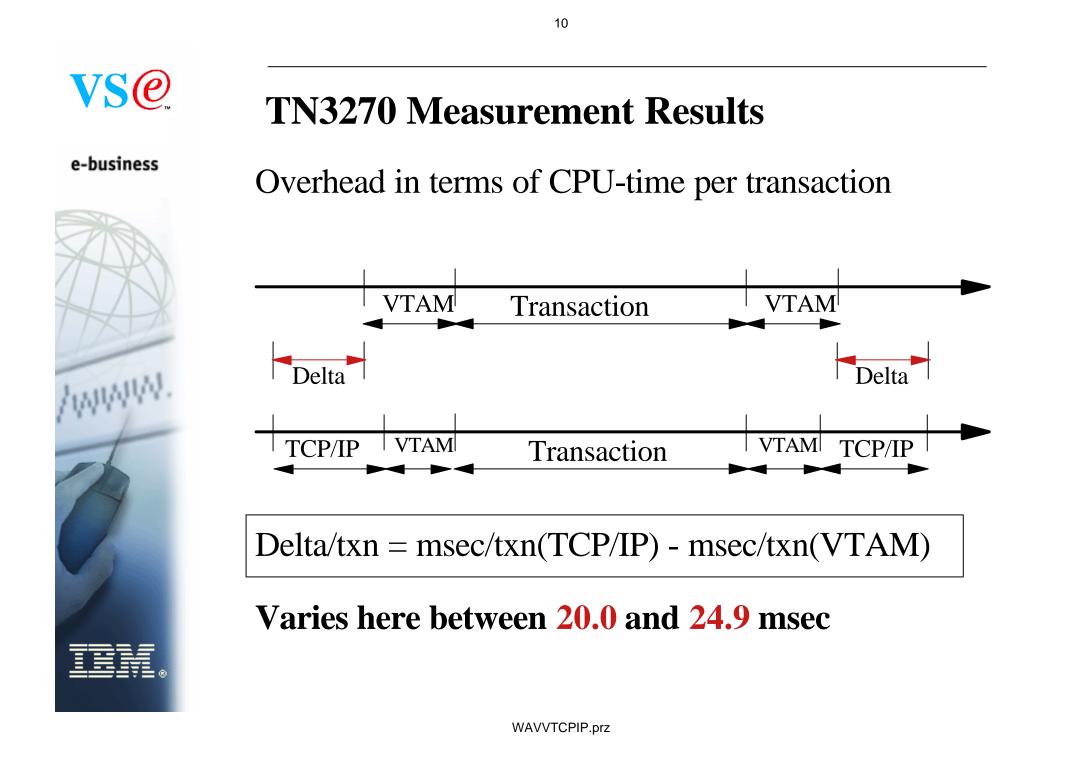
TCP/IP's Access to VSE Data

- VSAM
 - VSAM macros and VSAM code in SVA
- POWER
 - ► POWER SAS (XPCC)
- LIBR
 - LIBRM macro
- ICCF
 - ► SLI (Read only) and DTSIPWR in SVA
- SD
 - DTFSD macro (BAM)

Batch FTP From a Separate Partition

// EXEC FTP

- Only FTP initialization is done from a batch partition
- No performance related benefits
- // EXEC FTPBATCH
 - Potential exploitation of >1 engine of an n-way
 - Separate File-I/O routine used per FTP
 - Control of FTP batch CPU dispatch priority
 - More overhead for data transfer between batch and TCP/IP partition
 - Move of data between batch and TCP/IP partition using access registers


8

TN3270 Measurement Environment

- VSE/ESA 2.3
- TCP/IP 1.3 (E/G/J/K) and also 1.4
- Turbo Dispatcher, single engine
- DSW online workload
- 2 CICS/VSE partitions (F4 and F5)
- TCP/IP for VSE/ESA (F7)
- F4 and F5 balanced with F7
- 125 active terminals per CICS partition
 - driven by TPNS
- POOL=YES and TELNETD_BUFFERS=20

TN3270 Measurement Results continued

Expected rel.-CPU-time and ITR-ratio vs SNA

$$ITRR = ITR ratio = \frac{msec/txn (VTAM)}{msec/txn (TCP/IP)}$$

In the measured cases, average overall (VTAM based) CPU-time of a transaction was about 20 msec (~280KI) TCP/IP overhead was between 280KI and 350KI

Type/CPU-Heaviness of workload	Rel. CPU-time with TCP/IP	ITRR
DWS, measured (280KI)	2.0	0.5
Medium customer transaction (560KI)	1.5	0.67
Heavier customer transaction (840KI)	1.33	0.75
Heavy customer transaction (1000KI)	1.28	0.78

TN3270 Measurement Results continued

- TCP/IP for VSE/ESA 1.4 vs. 1.3
 - 7-13 % less TCP/IP CPU-time overhead
- Response time impact is small
- TN3270 overhead
 - VSE/ESA native
 - -Online utilization increases from 50% to 62%
 - VM/VSE Guest
 - -Online utilization increases from 60% to 74%

TN3270 Measurement Results continued

TN3270 Virtual Storage capacity

	125 daemons		per daemon	
	-24	-31	-24	-31
TCP/IP GETVIS	476K	600K	3.8K	4.8K
VTAM GETVIS	0K	52K	0K	0.4K
SVA	20K	524K	0.16K	4.2K

Rough estimate for TN3270 VS-Capacity:

Max. #TN daemons = (remaining GETVIS-24) / 4K

Example:

A remaining GETVIS-24 of about 10M, gives about 2500 Telnet daemons

FTP Measurement Results

- EDR = effective Data Rate (KB/sec)
- It is irrelevant who initiated an FTP transfer
- Transfer of a file from A to B may differ in EDR from transferring the identical file from B to A
 - Speed of physical HDD
 - Read/write caching
 - Blocksizes used (KB/IO)
- The higher the EDR of an FTP transfer, the higher is the required CPU utilization
- EDRs displayed by TCP/IP for VSE/ESA
 - Transfer sends
 - ► File I/O seconds

FTP Measurement Results - continued

e-business

Parameters	FTP speeds		Network	CPUT/KB
	Source	Target		
Network speed and load			X	
TCP/IP parameters	X	Х	X	X
FTP parameters	Х	Х	X	X
DASD speed (READ/WRITE)	Х	Х		
Local file definition				
- type	X	Х		X
- log record length (NFS)	X	Х		
- blocksize on disk	X	Х		X
- I/O blocking (KB/IO)	X	Х		X
- ASCII/EBCDIC/BINARY	X	Х		X
size of files	X	Х		X
Processor speed	X	Х		X
other concurrent activities	Х	Х	X	
TCP4VSE PTF level	X	Х	X	X

FTP Measurement Results - continued

EDR ranges (KB/sec) observed (1.3)

	FTP to VSE	FTP from VSE	Major impact
LIBR	340	470	DASD, network speed
POWER	115	290	DBLK
VSAM ESDS		460	to S/390 (CTCA)
		360	to RS/6000 CLAW
		160	Via CLAW & T/R

CPU resources (KI/KB) required (1.3)

	FTP to VSE	FTP from VSE	Dependencies
LIBR	18.9 - 20.1	11.9 - 13.3	
POWER	85	45	
VSAM ESDS		7.6 - 9.2	Convertion

FTP Measurement Results - continued

TCP/IP for VSE/ESA 1.4 (ServPack A) EDRs increased by 10% to 30%

► CPU-time consumption decreased by about 25%

Virtual Storage Capacity

	10 daemons		per daemon	
	-24	-31	-24	-31
TCP/IP GETVIS	3104K	40K	310K	4K

Max #FTP daemons = (remaining GETVIS-24) / 310K

Example:

A remaining GETVIS-24 of about 10M, gives about 32 FTP daemons

FTP with Batch Measurement Results - continued

Data rate comparison (VSAM)

	Overal	1 EDR		
	Transfer (KB/sec)		File I/O (KB/sec)	
	Real 9345 Virt. Disk		Real 9345	Virt. Disk
Interactive FTP	639	930	682	1462
Batch FTP	639	930	682	1462
FTPBATCH	511		682	

- Same rates as for Interactive FTP
 - Except transfer rate seen by FTPBATCH
- Overall EDRs for (single) FTPBATCH are about 15% lower here than from Batch FTP

FTP with BatchMeasurement Results continued

- FTPBATCH with slightly higher CPU-time and with lower EDR
- FTPBATCH file transfers
 - Can be better workload balanced (controlled)
 - -Via PRTY
 - Can run concurrently and thus achieve a higher sum of FTP EDRs
 - Allow to exploit >1 processor engines

News with TCP/IP for VSE/ESA 1.4

- Mainly functional enhancements
 - Implementation of slow start mechanism (outbound TCP)
 - CHECKSUM calculation also in H/W
- PQ40278 (ServPack A)
 - Many fixes and slight enhancements
 - better algorithm to reduce re-transmissions
 - TRACERT and DISCOVER commands

News with TCP/IP for VSE/ESA 1.4 (continued)

- PQ45314 (ServPack B)
 - Multi thread event processing
 - Entire redesign of EMAIL client
 - TELNETD: allocation of all buffers during initialization of TELNETDs (for POOL=NO only)
- PQ52348 (ServPack C)
 Includes SSL for VSE
 - OSA Express Support (VSE/ESA 2.6 only)
- PQ55591 (ServPack D)
 - Removed limitation of 64K per send()

WAVVTCPIP.prz

Multi Thread Event Processing

- More than 1 events can be processed at a time
 - Seperate TCP/IP internal task is assigned to any event (printout)
- Possible problem
 - Unpredictable order of events from independent jobs
 - Some printers only accepts one connection at a time
- SET SINGLEDEST=ON
 - Only one open connection possible to one destination

New: OSA-Express

- VSE/ESA 2.6
 - Available for G5 and above
 - Exploits Queued Direct I/O

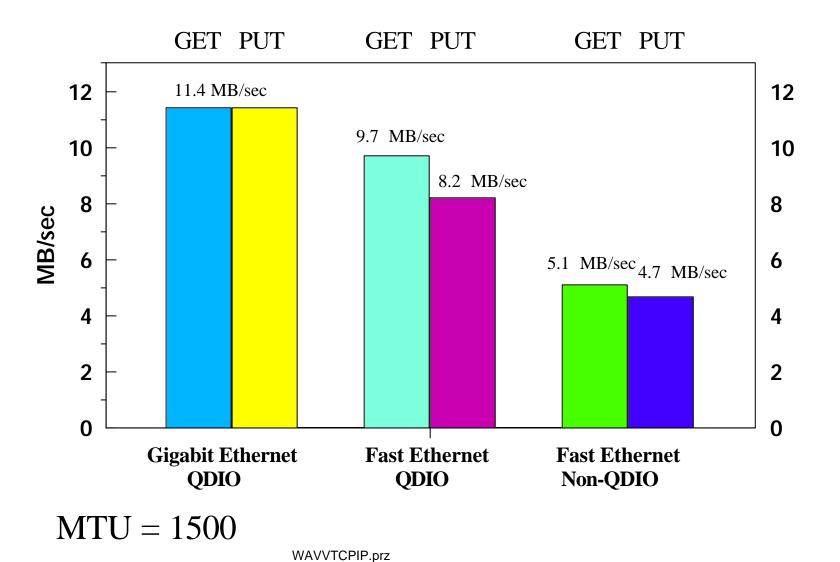
	Gigabit Ethernet	Fast Ethernet 100 Mbps	ATM-LE 155 Mbps	Tokenring 4/16/100 Mbps
CHIPID TYPE=OSE (non-QDIO)	no	yes	yes	yes
CHPID TYPE=OSD (QDIO)	yes	yes	yes	yes

OSA-Express for IBM eServer zSeries and S/390, G221-9110-01, 11/2001

New: OSA-Express - continued

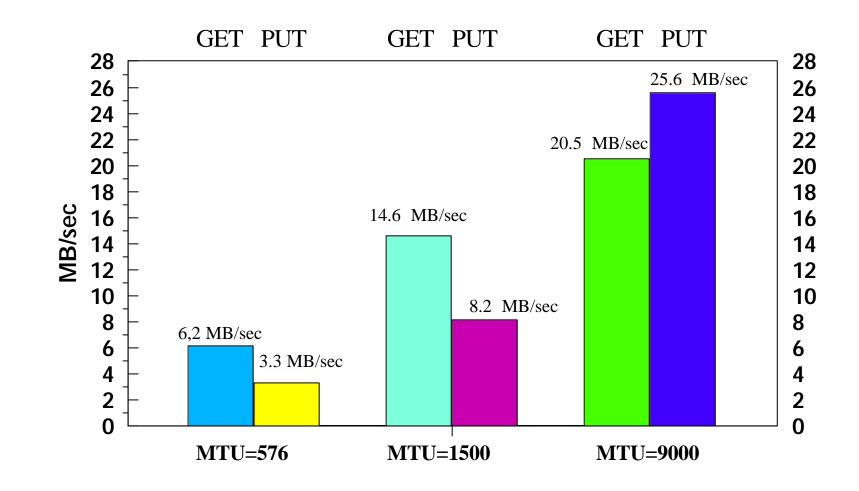
- Queued Direct I/O
 - Designed for very efficient exchange of data
 - Uses the QDIO Hardware Facility, without traditional S/390 I/O instructions
 - Without interrupts (in general)
 - Use of internal queues
 - With pre-defined buffers in memory for asynchronous use

OSA-Express Measurements


- Environment
 - VSE/ESA 2.6 on G6 native (LPAR)
 - -TCP/IP 1.4 ServPak C
 - Linux on Netfinity
- Network attachment
 - Gigabit Ethernet QDIO (MTU=1500)
 - ► Fast Ethernet QDIO (MTU=1500)
 - ► Fast Ethernet Non-QDIO (MTU=1500)
- Workload
 - ► GET = VSE to Linux, 100MB \$NULL file
 - ► PUT = Linux to VSE, 100MB \$NULL file

OSA-Express Measurements - continued

e-business



Gigabit Ethernet Measurements

- Environment
 - VSE/ESA 2.6 on G6 native (LPAR)
 - -TCP/IP 1.4 ServPak C
 - ► Linux on G6 native (LPAR)
- Network attachment
 - Gigabit Ethernet QDIO
 - ► MTU = 576...9000
- Workload
 - ► GET = VSE to Linux, 100MB \$NULL file
 - ► PUT = Linux to VSE, 100MB \$NULL file

Gigabit Ethernet Measurements continued

IEM

WAVVTCPIP.prz

SSL Overview

e-business

- SSL for VSE is part of the TCP/IP base (ServPack C)
- Enabled with the Application Pak
- Integrated into TCP/IP for VSE/ESA
- Supports SSL 3.0 and TLS 1.0
- Key exchange: RSA
- Data Encryption: DES and Triple DES
- Hash algorithm: MD5, SHA
- Supports X.509v3 PKI Certificates
- SSL daemon implementation for HTTPS, Telnet
- SSL API compatible with the OS/390 SSL API

Key Management

- Keys and certificates are stored in a "keyring file"
 In a VSE library
- SSL for VSE uses 3 VSE library members:
 - keyname.PRIV the private key
 - keyname.CERT the certificate
 - keyname.ROOT the root certificate
- Stored in library CRYPTO.KEYRING per default
- Utilities available for key management and creation
 - ► CIALPRVK, CIALCERT, CIALROOT
- \$SOCKOPT.PHASE defines the SSL parameters

SSL Daemon (SSLD)

e-business

Define a SSL daemon for each TCP port that you want to secure:

► DEFINE TLSD,ID=MYSSLD, PORT=443, PASSPORT=443, CIPHER=0A096208, CERTLIB=CRYPTO, CERTSUB=KEYRING, CERTSUB=KEYRING, CERTMEM=MYKEY, TYPE=1, MINVERS=0300, DRIVER=SSLD

HTTPS port

Cipher suites library name sublibrary name member name server application SSL 3.0 Driver phase name

Secure Socket Layer API

- Compatible to OS/390 SSL API
- Functions available for
 - Session initiating
 - Sending/receiving data
 - Ending a session
- SSL API is based on Socket API
- SSL API can be called from
 - ► LE-C programs
 - Assembler programs

CryptoVSE API

- Native cryptographic API (not available though LE)
- Provides cryptographic services:
 - Data encryption
 - -DES
 - Triple DES
 - -RSA PKCS #1
 - Message Digest
 - MD5
 - -SHA-1
 - Digital Signatures
 - RSA PKCS #1 with SHA1 or MD5
 - Message Authentication
 - -HMAC

Restrictions

e-business

Cipher Suites supported:

- ► 01 RSA512_NULL_MD5
- ▶ 02 RSA512_NULL_SHA
- ▶ 08 RSA1024_DES40_CBC_SHA
- ▶ 09 RSA1024_DES_CBC_SHA
- ► 0A RSA1024_3DES_CBC_SHA
- ► 62 RSA1024_EXPORT_DES_CBC_SHA
- Only one Root certificate
- Certificate revocation lists not supported
- Keyring is not password protected
- Software encryption only

Performance Related Parameters

e-business

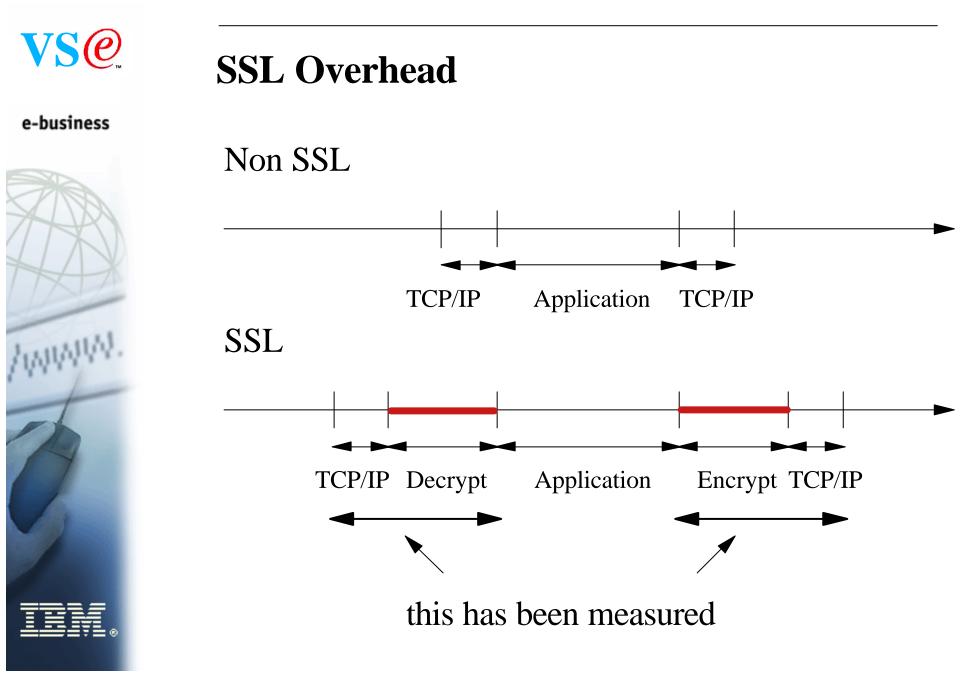
Parameters	Session initiating	Data exchange
Key exchange algorithm		
RSA512	X	-
RSA1024	X	-
Encryption Algorithm		
NULL	-	Χ
DES40CBC	-	Χ
EXPORT_DESCBC	-	Χ
DESCBC	-	Χ
3DESCBC	-	X
Hash Algorithm		
MD5	X	Χ
SHA	X	X
Session caching	X	-
Message Length	-	X

-Data exchange overhead is proportional to bytes/msg

-CPU-time overhead caused by SSL is in

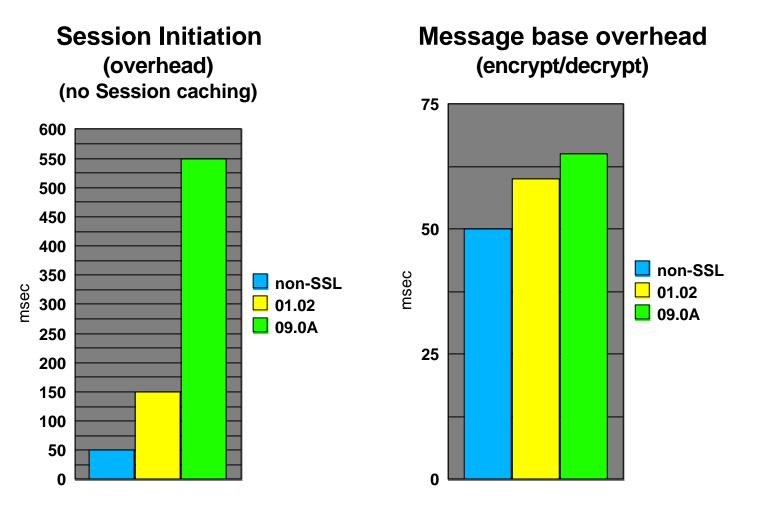
- -TCP/IP partition for SSL Daemon -application partition for API usage
 - WAVVTCPIP.prz

Measurement Environment


- ECHO Server
 - receives and decrypts a message (80 bytes)
 - encrypts and sends the message
 - Application/Transaction time is minimal
- VSE Connectors (SSL enabled)
 - download of a LIBR member to PC (1KB, 7KB)
 - mainly VSE outbound = encrypt
 - ▶ upload of a LIBR member to VSE (1KB, 7KB)
 - mainly VSE inbound = decrypt
 - Application time contains LIBR I/Os

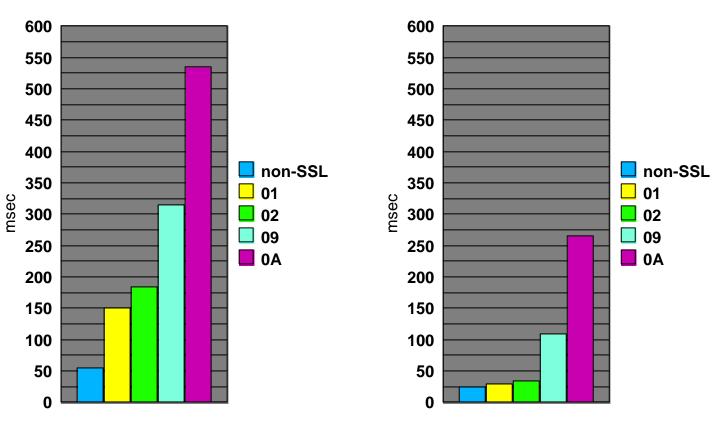
Measurement Environment - continued

- Variations
 - ► SSL / non-SSL
 - Cipher Suites
 - -01 RSA512_NULL_MD5
 - -02 RSA512_NULL_SHA
 - -09 RSA1024_WITH_DES_CBC_SHA
 - -0A RSA1024_WITH_3DES_EDE_CBC_SHA
 - ▶ key length (512 / 1024 bit)


38

SSL Measurements Results

e-business



SSL Measurements Results - continued

Per KB Overhead (Download 7KB, encrypt)

Per KB Overhead

(Upload 7KB, decrypt)

Note: These measurements includes application CPU-time for reading/writing LIBR member

WAVVTCPIP.prz

SSL Measurements Results - continued

Per KB CPU-time Per KB CPU-time (Download, encrypt) (Upload, decrypt) total = base + encrypt total = base + decrypt 600 600 500 non-SSL 500 non-SSL 01 01 400 400 \diamond Λ usec 300 msec 02 02 $\mathbf{\nabla}$ 300 09 09 Δ Λ 200 200 **0**A **0**A 100 100 0 0 2 7 2 7 1 1 KB KB

WAVVTCPIP.prz

SSL Performance Recommendations

Use SSL only if there is a need for

- ► If at least one of the follwoing is required
 - Keeping secrets
 - Proving identity
 - Verifying information
- Cipher Suites 01 and 02 has less CPU-time consumption, but NO data encryption
 - ► RSA512_NULL_MD5, RSA512_NULL_SHA
- If data encryption is required
 - Use cipher suites 09 or 0A

