<|lI!

MQSeries® for VSE/ESA

System Management Guide

Version 2 Release 1 Modification 2

GC34-5364-04

<|lI!

MQSeries® for VSE/ESA

System Management Guide

Version 2 Release 1 Modification 2

GC34-5364-04

Note!
Before using this information and the product it supports, be sure to read the general information under
["Notices,” on page 511

Fifth edition (January 2004)

This edition applies to the following product:
* MQSeries for VSE/ESA Version 2 Release 1 Modification 2

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii
Tables ix
About this book . . Xi
Who this book is for . xi
What you need to know to understand th1s book . xi
How to use this book . -xi
Summary of changes . . Xiii
Changes in this edition (GC34-5364-04) . . Xiii
Changes in GC34-5364-03 . . Xiv
Changes in GC34-5364-02 . . Xvi
Changes in GC34-5364-01 . . Xxvii
Chapter 1. Introduction .1
MQSeries and message queuing . .1
Time-independent applications .1
Message-driven processing .1
Messages and queues .1
What messages are .1
What queues are . .2
Objects . .3
Object names . .3
Managing objects . .3
MQSeries queue managers. .4
MQSeries queues . .4
Channels .5
Clients and servers . .6
MQSeries applications in a Chent-server
environment . 6
MQSeries and CICS . . 6
Chapter 2. Installation. .7
Contents of the library tape .7
Prerequisites .o .8
Program number . .8
Hardware requirements. . 8
Software requirements . . 8
Features . -8
Connectivity .9
Compilers supported for MQSerles for VSE / ESA
applications. e e ..o 9
Delivery . . .o .9
Installing MQSeries for VSE / ESA all users. .9
Installation checkpoint (MQSeries installation). . 10
Procedures for new users . .1
Allocate and initialize the requrred MQSerres frles 11
Installing security . . .12
Changing the MQER TDQ def1n1t10n .13
Changing the MQXP TDQ definition . .14
Changing the MQIE TDQ definition . .15
Other considerations for installing security . . 16
Preparing CICS for MQSeries . 16

© Copyright IBM Corp. 1995, 2004

Modify CICS start-up deck .
Recovery and restart
Uppercase translation .
Installation checkpoint (CICS)

Starting MQSeries .

MQSeries initialization
Checking MQ is active.

MQSeries installation verification test
Local queue verification test . .
Installation checkpoint (installation Verrﬁcatron
test) . .
Remote queue Verlflcatron test .

Post installation verification test CICS m0d1f1cat10ns

Mlgratlon procedures for exrstrng users .

Chapter 3. Configuring network
communications .
MQSeries system definitions requrred for
ACF/VTAM . . .
Definitions in CICS for LU 6. 2 connectlons
Connection definition .
Session definition .
MQSeries for VSE/ESA conflguratlon guldehnes .
Queue manager configuration guidelines
Channel configuration guidelines .
Channel exits. ..
Channel security exits .
Channel send and receive exits .
Channel message exits.
Configuring channel exits . .
Writing and compiling channel-exit programs .
Exit programs in CICS. .
Channel-exit calls and data structures
Channel exit sample
Adopt MCA . . .
Adopt MCA parameters .
Bullet-proof channels .
Bullet-proof channel parameters

Chapter 4. System operation
MQSeries master terminal displays
General panel layout .

MQSeries master terminal (MQMT)
Master Terminal transactions
Operator screen action keys .

Configuration functions
Global system definition . e
Guidelines for configuring queue managers
Configuring the queue manager
Backing up the configuration file after creatrng
the queue manager .

Queue definitions
Creating local queues .
Create remote queue
Create alias queue .

main menu

.17
. 18
. 18
. 18
.18
.19
.22
.23
.23

. 26

.27
28

. 28

. 31

.31
.31
. 33
. 34
. 35
. 35
. 36
.43
. 43
. 44
. 46
. 47
. 50
. 51
. 51
. 55
. 55
. 56
. 57
. 58

. 61
. 61
. 62
. 63
. 64
. 65
. 65
. 66
. 66
. 67

.75
.76
.77
. 83
. 84

iii

Create alias queue manager .

Create alias reply queue . .
Modifying and deleting queue deﬁrutlons .
Channel definitions.

Modifying and deleting channel defrmtrons
Selecting an existing channel definition .
Modifying an existing channel definition
Deleting an existing channel definition .
Setting channel SSL parameters.

Setting channel exit parameters.

Code page definitions .

Create a user-defined code page

Modifying and deleting user-defined code pages .

Modifying an existing code page definition.
Deleting an existing code page definition.
Global system definition display
Queue definition display
Channel definition display .
Code page definition display .
Operations functions .
Start/Stop queue .
Open / Close channel
Reset message sequence number .
Initialization of system .
Queue maintenance
Monitoring functions .
Monitor queues.
Monitor channel
Browse function
Administration via a web browser
CICS Web Support
CWS MQSeries modules.
Using CWS with MQSeries .
Communications process
Message expiry .
Instrumentation events .
Queue manager events .
Channel events.
Performance events
Enabling and drsablmg events
Event queues .o
Format of event messages .
Event messages.
Viewing error logs.

Chapter 5. Utilities and interfaces.
System Administration Control Interface
Transactional interface (MQCL)
Programmable interface (MQPCMD)
Background batch modules. ..
MQPUTIL program
Using the batch interface
Batch interface identifier.
Batch interface auto-start
Starting the batch interface .
Stopping the batch interface
How to use the batch interface
Data integrity
Verifying the batch mterface
Restrictions on using the batch mterface
VSAM file maintenance .

1V MQSeries for VSE/ESA System Management Guide

. 85
. 86
. 86
. 88
.91
.91
.92
.92
.92
. 94
. 96
.97
. 98
.99
. 99
.99

. 100
. 100
. 100
. 101
. 101
. 104
. 105
. 106
. 107
. 109
. 110
. 112
. 113
. 114
. 115
. 115
. 116
. 117
. 118
. 120
. 121
. 123
. 123
. 126
. 128
. 129
. 129
. 130

. 131
. 131
. 131
. 132
. 135
. 135
. 136
. 137
. 138
. 138
. 138
. 138
. 139
. 139
. 140
. 140

Delete all function.

MQPREORG function .
Multiple queues sharing a VSAM cluster .
Reorganizing queue files .

Chapter 6. Problem determination
MQSeries setup and local queue operation
Has MQSeries run successfully before? .
Is local queue operation working?
Network problems
Investigating SNA problems
Investigating TCP/IP problems
Investigating SSL problems. .
Does the problem affect specific parts of the
network? .
Applications. o
Are there any error messages?.
Are there any return codes explammg the
problem? .
Can you reproduce the problem7 .
Have any changes been made since the last
successful run? . .
Has the application run successfully before" .
Using the MQSeries API monitor.
Other areas of investigation
Have you obtained incorrect output7

Does the problem occur at specific times of the

day?
Is the problem mtermlttent?
Have you applied any service updates7
Does the problem affect only remote queues?
Is your application or MQSeries for VSE/ESA
running slowly? . .o
Application design consrderatlons
Effect of message length.
Searching for a particular message .
Queues that contain messages of different
lengths .
Use of the MQPUTl call
Incorrect output .
Messages that do not appear on the queue

Messages that contain unexpected or corrupted

information .
Problems with mcorrect output when usmg
distributed queues.
System log
Dead-letter queues
Using MQSeries trace .
Problem determination with chents .
Termmatmg clients .
Error messages with clients.
Problems with SSL enabled channels
SSL availability .
Clpher specrfrcatlon support
Client authentication failure
General channel failure .

Chapter 7. Message data conversion
Data conversion exit programs
Using LE/VSE for conversion .

. 140
. 141
. 141
. 142

. 145
. 145
. 145
. 145
. 146
. 146
. 147
. 148

. 148
. 149
. 149

. 149
. 149

. 149
. 150
. 151
. 153
. 154

. 154
. 154
. 154

154

. 155
. 155
. 156
. 156

. 156
. 156
. 156
. 157

. 158

. 158
. 159
. 159
. 159
. 159
. 160
. 160
. 160
. 161
. 161
. 162
. 162

163

. 164
. 164

Building a conversion exit program . . 165
Chapter 8. Programmable system
management. . . 167
Introduction to Programmable Command Formats
(PCFs). . . 167
The problem PCF commands solve . . 167
What PCFs are . . 167
Preparing MQSeries for PCF . 168
System command queue. . 168
PCF command server. . 169
Using PCFs . . 170
PCF command messages . 170
Responses . 172
Authority checkmg for PCF commands . 174
Definitions of the PCFs . . 174
Error codes applicable to all commands . 175
Change channel . 176
Change queue . . . 183
Change Queue Manager . 191
Copy Channel . . 197
Copy Queue. . 200
Create Channel. . 202
Create Queue . 204
Delete Channel . . 205
Delete Queue . 206
Escape. . 208
Inquire Channel . . 209
Inquire Channel Names . . 212
Inquire Queue . . . 214
Inquire Queue Manager . . 217
Inquire Queue Names . 220
Ping Queue Manager . . 221
Reset Channel . . 222
Start Channel . . 223
Start Channel Listener . 224
Stop Channel . . 225
Data responses to commands . . . 226
Structures used for commands and responses . 240
MQCEFH - PCF header . 240
MQCEFIN - PCF integer parameter . 243
MQCEST - PCF string parameter . . 244
MQCEFIL - PCF integer list parameter . 247
MQCEFSL - PCF string list parameter . 248
Chapter 9. MQSeries commands . . 253
Rules for using MQSeries commands . 253
Issuing MQSeries commands . . 254
MQSC utility program . 254
MQPMQSC sample JCL . . 255
MQSeries command prerequisites . 256
Descriptions of the MQSeries commands . . 256
MQSeries channel commands . . 256
MQSeries queue commands . 263
MQSeries queue manager commands . 273
Chapter 10. Secure Sockets Layer
services. . 279
Installing the SSL feature . 279
Configuring the queue manager for SSL . 280

TCP/IP settings280

SSL parameters. 28l
Configuring a channel for SSL ... 28l
SSL channel parameters282
Activating SSL services284

Chapter 11. Security 285

Why you need to protect MQSeries resources . . 285
Implementing MQSeries security 285
Resources you can protect 286
Connection security286
Queue and message security 286
Command security287
Command resource security o287
Dataset security 288
Using security classes and resources. 288
Resources288
Switch resources . . . oo 289
Protecting MQSeries resources. 290
Resource definitions for connection securrty . .29
Resource definitions for queue security. . . . 292
Resource definitions for command security . . 296
Resource definitions for command resource
security300
Security 1mplementat10n checkhst B 104

Appendix A. CICS control table
definitions. . . . e« 303

Sample file control table entries 303
Sample destination control table entry 305
Sample JCL file definition for CICS deck 306
Sample JCL to create CICS CSD group 307

Appendix B. Appllcatlon Programmlng

Reference. . . . I) K
Structure data types . . R 1 &)
MQDLH - Dead-letter header313
MQGMO - Get message options 313
MQMD - Message descriptor 314
MQOD - Object descriptor. 318
MQPMO - Put message options 319
MQTM - Trigger message320
MQI calls. L3221
MQBACK - Back out changes B A |
MQCLOSE - Close object323
MQCMIT - Commit changes324
MQCONN - Connect queue manager 325
MQDISC - Disconnect queue manager. . . . 327
MQGET - Get message. 328
MQINQ - Inquire about object attrlbutes .. 332
MQOPEN - Open object339
MQPUT - Put message.343
MQPUT1 - Put one message 346
MQSET - Set object attributes 350
Attributes of MQSeries objects. 355
Reasoncodes35

Appendix C. Appllcatlon Programmlng
Guidance 357

Contents V

Supporting application programs that use the MQI 357

Sample source code provided 358
Compiling your application program 358
Developing applications in the C and PL/I
programming languages. 358

Application design guidelines. 358
Syncpoints and triggers 359
Syncpoint Rollback36l
Triggers36l

Appendix D. Sample JCL and

programs 365
Sample JCL to process MQPUTIL36
Sample program TTPTST2.Z365

TTPTST2.Z . . . PG 1 1)
Sample program TTPTST3 Z39

TTPTST3.Z . . . PG 174
Sample program MQPECHO Z O Ao

Appendix E. Example configuration -
MQSeries for VSE/ESA Version 2.1.2 . 451

Configuration parameters for an LU 6.2 connection 451

Configuration worksheet451
Explanation of terms453
Establishing an LU 6.2 connectlon45
Defining a connection455
Defining a session. 455
Installing the new group def1n1t1on 455
What next? 455
Establishing a TCP/ IP connectlon 456
MQSeries for VSE/ESA configuration 456
Configuring channels. 456
Defining a local queve460
Defining a remote queue 460
Defining a SNA LU 6.2 sender Channel ... 461
Defining a SNA LU 6.2 receiver channel . . . 462
Defining a TCP/IP sender channel 463
Defining a TCP/IP receiver channel 463

Appendix F. MQSeries clients 465

Client support 465
Security considerations 465
Client code-page conversion tables B 1)

Appendix G. System messages. . . . 467

Vi MQSeries for VSE/ESA System Management Guide

API system messages. .
MQSeries message definitions .
MQSeries messages
MQSeries message codes
Console Messages .
Batch Interface Console Messages .
Automatic reorganization console messages .

Appendix H. Security implementation

Before you install .

External security manager Conflguratlon
System and application users .
MQSeries datasets.

Protecting transactions

Resource ownership .

Resource protection

Batch user permissions .

Client user permissions .
Command permissions . .
Command resource permissions .
Trigger permissions

CICS startup .

Starting MQSeries .

Stopping MQSeries

Appendix I. Notices .
Copyright license .
Trademarks .

Glossary of terms and abbreviations

Bibliography. . .
MQSeries cross-platform pubhcatlons
MQSeries platform-specific publications
Softcopy books .

BookManager format .

Portable Document Format (PDF)

Windows Help format

MQSeries information available on the Internet .

Index .

Sending your comments to IBM

. 467
. 468
. 468
. 468
. 496
. 496
. 498

499

. 499
. 500
. 500
. 501
. 502
. 503
. 503
. 504
. 505
. 505
. 506
. 507
. 507
. 507
. 508

. 511
. 512
. 512

513

. 521
. 521
. 523
. 524
. 524
. 524
. 524
. 524

. 525

. 531

Figures

NGOk wh =

10.
11.
12.
13.
14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

Default global system definition.
Master terminal main menu .
TTPTST2 screen .

Monitor queues screen .

Browse Queue Records screen — status wrrtten
Browse Queue Records screen — status deleted
Definitions in CICS using RDO for parallel

session partner LU .

Definitions in CICS for smgle session capable

partner LU.

Definitions in CICS srngles session capable LU

Outline MQSeries channel definition .

Outline MQSeries extended queue definition

Channel Definitions screen

Channel Exit Settings screen . .
Communication Setting, Adopt MCA
parameters.

Channel Record, bullet—proof charmel
parameter . .
Display screen relatronshlps .
General panel layout

Master terminal main menu .
Configuration main menu.

System queue manager 1nf0rmat10n
Queue manager communications settings
Queue manager log and trace settings
Queue Manager event settings .
Queue main options screen

Local queue definition .

Local queue extended deflrutron
Remote queue definition .

Alias queue definition .

Alias queue manager deﬁmtron
Alias queue reply definition .

© Copyright IBM Corp. 1995, 2004

. 20
.22
.23
.24

25
26

.32

. 33
33

. 37

40

. 48
. 48

. 56

. 59
. 62
. 63
. 64
. 66
. 68

70

.72
.74
. 76
.77
.79
. 83
. 84
. 85
. 86

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

Object list screen .

Channel record

Channel list

Channel SSL parameters

Channel Exit settings

Data conversion definitions .

User code page definition .

Code page object list screen .

Global system definition display .
Operations main menu .
Start / Stop queue control screen .
Open / Close Channel

Reset channel message sequence .
Initialization of system

Maintain Queue Message Records
Monitor Main Menu .

Monitor queues .

Monitor Queues - detarl

Monitor channel definitions. .
Monitor channel definitions - detail .
Browse Queue Records

Global System Definition.

Extended definition

Batch interface identifier .

API monitor . .

API monitor - browse.

API monitor - hexadecimal format
PCF parameters. .
System command and reply queues .
Queue manager communication settmgs
SSL parameters for a channel
Queues, messages, and applications .
Test System Programs 3 - start .
Channel configuration panel

. 87
. 88
.91
. 93
. 95
. 96
. 97
.99
. 100
. 101
. 102
. 104
. 105
. 106
. 108
. 110
. 110
. 112
. 112
. 113
. 114
. 121
. 127
. 137
. 151
. 152
. 152
. 168
. 255

280

. 282
. 357
. 397
. 463

vii

viii MQSeries for VSE/ESA System Management Guide

Tables

0PN UT LN

Object Characteristics of Connection
CEMT I CONN display output. .

CEDA V SESS display parameter settmgs
Example queue manager configuration
Example channel configuration .
Example queue configuration
Identifying API calls

MQPUTIL program general syntax
MQSC special characters. .
Supported SSL cipher spec1f1cat1ons .
SSL Peer Attribute types .

Classes used by MQSeries

Switch Resources .o

Access levels for queue security .
Command authority for PCF commands

© Copyright IBM Corp. 1995, 2004

. 34
. 34

34
42

.42
.42
. .45
. 135
. 254
. 282
. 283
. 288
. 289
. 292

297

16.
17.
18.
19.
20.
21.
22.

23.

Command authority for MQSeries commands 298

Command authority for MQMT options
Command resource authority for PCF
commands

Command resource authorlty for MQSerles

commands

Command resource authorlty for MQMT
options

Command resource authorlty for MQMT
options 2.5 and 4.0.

Configuration worksheet for VSE / ESA usmg

APPC .
Configuration worksheet for MQSerles for
VSE/ESA .

299

. 300

. 301

. 301

. 301

. 451

. 457

ix

X MQSeries for VSE/ESA System Management Guide

About this book

MQSeries for VSE/ESA Version 2.1.2—referred to in this book as MQSeries for
VSE/ESA or simply MQSeries, as the context permits—is part of the MQSeries
family of products. These products provide application programming services that
enable application programs to communicate with each other using message queues.
This form of communication is referred to as commercial messaging. The applications
involved can exist on different nodes on a wide variety of machine and operating
system types. They use a common application programming interface, called the
Message Queuing Interface or MQJ, so that programs developed on one platform
can be readily transferred to another.

This book describes the system administration aspects of MQSeries for VSE/ESA
Version 2.1.2 and the services it provides to support commercial messaging in a
VSE/ESA environment. This includes managing the queues that applications use to
receive their messages, and ensuring that applications have access to the queues
that they require.

Who this book is for

Primarily, this book is for system administrators, and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book

To use this book, you should have a good understanding of the VSE/ESA
operating system, and utilities associated with it. You do not need to have worked
with message queuing products before, but you should have an understanding of
the basic concepts of message queuing.

How to use this book

Read [Chapter 1, “Introduction,” on page 1| first for an understanding of MQSeries
for VSE/ESA.

The body of this book contains:

* [Chapter 2, “Installation,” on page 7

* |Chapter 3, “Configuring network communications,” on page 31|
* [Chapter 4, “System operation,” on page 61|

« |Chapter 5, “Utilities and interfaces,” on page 131|

« [Chapter 6, “Problem determination,” on page 145|

« |Chapter 7, “Message data conversion,” on page 163

¢ |Chapter 8, “Programmable system management,” on page 167|
e |Chapter 9, “MQSeries commands,” on page 253

« [Chapter 10, “Secure Sockets Layer services,” on page 279

* [Chapter 11, “Security,” on page 285|

At the back of the book there are some appendixes giving information (which will
be incorporated in the appropriate MQSeries books at the next opportunity) on the
following topics:

* |Appendix A, “CICS control table definitions,” on page 303

© Copyright IBM Corp. 1995, 2004 xi

About this book

* |Appendix B, “Application Programming Reference,” on page 313|

* |Appendix C, “Application Programming Guidance,” on page 357

* |Appendix D, “Sample JCL and programs,” on page 365

* |Appendix E, “Example configuration - MQSeries for VSE/ESA Version 2.1.2,” on|
page 451|

¢ |Appendix F, “MQSeries clients,” on page 465|

« [Appendix G, “System messages,” on page 467

+ |Appendix H, “Security implementation,” on page 499

xil MQSeries for VSE/ESA System Management Guide

Summary of changes

This section describes changes to this edition of the MQSeries for VSE/ESA System
Management Guide.

Changes since the previous edition of the book are marked by vertical lines to the
left of the changes.

Changes in this edition (GC34-5364-04)

The changes in this edition of the System Management Guide are updates and
additions to describe the new features and improvements associated with
MQSeries for VSE/ESA V2.1.2.

In addition to minor changes throughout the manual, including updates to screen
images, the major additions and modifications to this edition include:

* Instrumentation events. In MQSeries, an instrumentation event is a logical
combination of conditions that is detected by a queue manager or channel
instance. Such an event causes the queue manager or channel instance to put a
special message, called an event message, on an event queue.

MQSeries instrumentation events provide information about errors, warnings,
and other significant occurrences in a queue manager. You can, therefore, use
these events to monitor the operation of queue managers.

Section [“Instrumentation events” on page 120) has been added to explain
instrumentation events.

* Channel exits. Channel exit programs are called at defined places in the
processing carried out by MQSeries Message Channel Agent (MCA) programs.
Some of these exit programs work in complementary pairs. For example, if an
exit program is called by the sending MCA to encrypt the messages for
transmission, the complementary process must be functioning at the receiving
end to reverse the process.

The different types of channel exit program supported by MQSeries for
VSE/ESA include security, send, receive and message exits.

Section [’Channel exits” on page 43| has been added to explain channel exits and
their use in MQSeries for VSE/ESA.

e Adopt MCA. The Adopt MCA feature is an integral feature of MQSeries channel
operation. It exists to solve a problem with Message Channel Agent (MCA)
receiver tasks falling into an indefinite wait state following a transport error.

The Adopt MCA feature allows an administrator to specify that MQSeries
should automatically stop an orphaned instance of a channel where it receives a
new inbound connection request for that channel.

The administrator can specify the level of checking performed before an
orphaned candidate is adopted based on combinations of the channel name
(must always match for adoption), and the machine address. This allows for less
rigorous checking in, for example a DHCP TCP environment where the partner
machine’s address may change frequently. The Adopt MCA feature is applicable
to TCP/IP channels only. Section [*Adopt MCA” on page 55 has been added to
explain the Adopt MCA feature.

* Bullet-proof channels. MQSeries channels over TCP/IP are difficult to handle
when network failures occur. If the TCP/IP connection is broken when an

© Copyright IBM Corp. 1995, 2004 xiii

Changes in this edition (GC34-5364-04)

MQSeries channel is active, it is not at all uncommon for the receiving end of
the channel to "hang” indefinitely in a TCP/IP receive call.

Rather than entering a potentially indefinite TCP/IP receive call, MQSeries can
instead enter a receive call for a finite amount of time. At the end of this time,
the queue manager has control to decide whether to receive again or to shut
down the channel. The facility to "wake up” channels waiting on a receive call
has been named "bullet-proof channels”.

Although it is the receiver MCA that is generally waiting for data from the
sender, during normal operation, the sender MCA can be waiting for data from
a receiver. In this case, following a communication failure, it is the sender MCA
that can remain in an indefinite wait state. Consequently, the bullet-proof
channels feature applies to both sender and receiver channels.

Section [“Bullet-proof channels” on page 57 has been added to explain the
bullet-proof channels feature.

* MOQI API expansion for MQINQ and MQSET. The MQI application program
interface (API) calls MQINQ and MQSET have been expanded to support the
new queue manager and queue attributes associated with instrumentation
events.

Sections [“MQINQ — Inquire about obiject attributes” on page 332 and

[“MQSET — Set object attributes” on page 350 have been expanded to describe
this new support.

* PCF and MQSC expansion. Programmable Command Format (PCF) and
MQSeries Command (MQSC) support has been expanded to support new object
attributes introduced by instrumentation events and channel exits.

The expanded support is described in [Chapter 8, “Programmable system|
[management,” on page 167| and [Chapter 9, “MQSeries commands,” on page 253

Changes in GC34-5364-03

The changes in this edition of the System Management Guide are updates and
additions to describe the new features and improvements associated with
MQSeries for VSE/ESA V2.1.2.

In addition to minor changes throughout the manual, the major additions and
modifications to this edition include:

* Programmable Command Formats (PCF). PCFs define command and reply
messages that can be exchanged between a program and any queue manager
(that supports PCFs) in a network. PCF commands can be used in a systems
management application program for administration of MQSeries objects: queue
managers, queues and channels. The application can operate from a single point
in the network to communicate command and reply information with any queue
manager, local or remote, via the local queue manager.

Each queue manager has an administration queue with a standard queue name
and applications can send PCF command messages to that queue. Each queue
manager also has a command server to service the command messages from the
administration queue. PCF command messages can therefore be processed by
any queue manager in the network and the reply data can be returned to an
application, using a specified reply queue. PCF commands and reply messages
are sent and received using the normal Message Queue Interface (MQI).
MQSeries for VSE/ESA 2.1.2 supports and processes PCF messages.

[Chapter 8, “Programmable system management,” on page 167 has been added to
describe the PCF feature.

X1V MQSeries for VSE/ESA System Management Guide

Changes in this edition (GC34-5364-04)

¢ MQSeries commands (MQSC). MQSeries commands provide a uniform method
of issuing human-readable commands on MQSeries platforms. MQSC commands
can be used to perform administration tasks, for example defining, altering, or
deleting MQSeries objects. These commands are intended for use by system
programmers, system administrators, and system operators.

MQSeries for VSE/ESA 2.1.2 provides a batch utility program that accepts
MQSC command input and uses the MQ/VSE batch interface and PCF feature
components to translate and process the commands.

apter 9, eries commands,” on page as been added to describe
Chapter 9, “MQSeri ds,” on page 253|has b dded to describ
MQSeries commands and the MQSC batch utility program.

* Command security. Command security checking is carried out when an
MQSeries command is issued to be processed by a local queue manager.
Commands are issued from the MQ/VSE system administration online interface,
via PCF messages, or from the MQSC command utility.

The following new sections have been added to describe command security and
its implications for MQSeries for VSE/ESA:

“Command security” on page 287]

“Resource definitions for command security” on page 296

“Command permissions” on page 505

* Command resource security. Some MQSeries commands, for example changing
a local queue, involve the manipulation of MQSeries resources. Command
resource security involves checks to see if a user is allowed access to a specific
resource relative to the command being issued.

The following new sections have been added to describe command resource
security and its implications for MQSeries for VSE/ESA:

“Command resource security” on page 287

“Resource definitions for command resource security” on page 300)
“Command resource permissions” on page 506|

* Message expiry. MQSeries messages can be placed on a queue, specifying an
expiry interval. This is a period of time expressed in tenths of a second, set by
the application that puts the message. The message becomes eligible to be
discarded if it has not been removed from the destination queue before this
period of time elapses.

The value is decremented to reflect the time the message spends on the
destination queue, and also on any intermediate transmission queues if the put
is to a remote queue. When the message is retrieved by an application using the
MQGET call, the Expiry field represents the amount of the original expiry time
that still remains.

A new section, ["Message expiry” on page 118|has been added to explain the
message expiry feature.

¢ Optional logging to console. During normal MQ operation, messages of
differing severity are written to the MQSeries system log. These messages might
provide information about the system’s operation, or highlight a critical failure
of one of the system’s components.

MQSeries for VSE/ESA 2.1.2 provides a facility to optionally send messages
written to the system log to the VSE/ESA console. Messages sent to the console
can be configured to require an operator response. This way, significant
messages can be immediately brought to the attention of operations personnel.

The section [“Queue Manager Log and Trace Settings” on page 72| has been
expanded to explain the optional logging to console feature.

* MOQI API expansion for MQINQ and MQSET. The MQI application program
interface (API) includes the MQINQ and MQSET calls. These allow application

Summary of changes XV

Changes in this edition (GC34-5364-04)

programs to request or set information about MQSeries queues. The MQINQ call
can also be used to request information about the queue manager.

In MQSeries for VSE/ESA 2.1.2, these MQI calls have been expanded to facilitate
the inquiry and setting of nearly all queue attributes, and in the case of MQINQ,
also inquire on nearly all queue manager attributes.

Sections |”MQINQ — Inquire about object attributes” on page 332| and

[“MQSET — Set object attributes” on page 350 have been expanded to detail the
full list of selectors that are supported.

* Multiple concurrent batch interfaces. Unlike MQSeries on other platforms,
MQSeries for VSE/ESA is implemented as a CICS subsystem. This means that
access to MQSeries objects using the message queue interface (MQI) is restricted
to CICS applications. To avoid this limitation, MQSeries for VSE/ESA provides
an interface for batch programs.

Prior to V2.1.2, MQ/VSE allowed the activation of only one batch interface per
VSE/ESA host. Each interface can manage multiple concurrent batch
connections. V2.1.2 allows the activation of multiple concurrent interfaces. This
means each queue manager, running in its own CICS region, can now have an
active batch interface.

Section [“Using the batch interface” on page 136 has been expanded to explain
the multiple concurrent batch interface feature.

* CICS Web Support. CICS Web Support is a collection of CICS TS resources
supporting direct access to CICS transaction processing services from web
browsers. These resources provide tools to generate HTML source from 3270
map-based applications, and interact with CICS programs from a Web browser.

MQSeries for VSE/ESA, as a CICS subsystem, provides a set of 3270 map-based
programs for system administration. V2.1.2 provides versions of these programs,
and generated HTML source, so that MQ/VSE administration can be managed
from a web browser using CICS Web Support.

A new section, [“Administration via a web browser” on page 114 |has been
added to explain CICS Web Support and administration of MQSeries from a web
browser.

* MQSeries for VSE/ESA diagnostic and error messages are now mixed-case.

These message have been reproduced in their mixed-case format in

[“System messages,” on page 467.|

Changes in GC34-5364—-02

The changes in this edition of the System Management Guide are updates to
describe the new Secure Sockets Layer (SSL) enabled channels feature and
corrections to existing chapter material.

The major additions to this edition include:

* Secure Sockets Layer services. MQSeries can now activate SSL services on a per
channel basis. This is possible through the channel definition. Each channel can
identify whether or not SSL services are required when a connection is made or
accepted, to or from a remote MQ system or MQ client program.

A new chapter has been added to describe the new SSL enabled channels feature
of MQSeries for VSE/ESA. The new chapter describes the configuration and
operation of SSL enabled channels. The new chapter is [Chapter 10, “Secure|
[Sockets Layer services,” on page 279

* SSL enabled channels problem determination. A new subsection has been added
to|Chapter 6, “Problem determination,” on page 145) to deal with problems with
SSL enabled channels. See |[“Investigating SSL problems” on page 148

XVi MQSeries for VSE/ESA System Management Guide

Changes in this edition (GC34-5364-04)

¢ The MQCMIT and MQBACK MQI calls are now supported by MQSeries for
VSE/ESA. A description of these calls and their parameters is provided in
[calls” on page 321

The major modifications to this edition include:

* MQSeries for VSE/ESA prerequisites have been moved from Appendix A to
[Chapter 2, “Installation,” on page 7|See [“Prerequisites” on page 8]

o A full list of MQSeries administration transactions by name and function has
been provided. See [“Master Terminal transactions” on page 64

* System operation for queue manager parameters has changed to include new
configuration screens for the Global System Definition. These are described in
[“Configuring the queue manager” on page 67.|

* System operation for channel definitions has changed to include new
configuration screens for the SSL enabled channels feature. These are described
in[“Setting channel SSL parameters” on page 92.|

* Functionality of the MQ/VSE Command-line interface transaction has expanded.
A full list of supported function codes and their meaning is provided in
[“Transactional interface (MQCL)” on page 131}

* MQSeries for VSE/ESA messages now have an appended severity code. All
messages in [Appendix G, “System messages,” on page 467] have been modified
to reflect their relevant severity. The list of messages has also been revised to
ensure all messages potentially generated by MQ/VSE are given.

Changes in GC34-5364-01

The changes in this edition of the System Management Guide are updates to
describe the new function in MQSeries for VSE/ESA Version 2.1.1.

The major additions to the product for this release include:

* Security control for connections, queues, queue managers, and messages. This is
described in [Chapter 11, “Security,” on page 285 and |[Appendix H, “Security|
[implementation,” on page 499

* Message data conversion. The queue manager supports conversion of a number
of built-in formats. For other formats, you can create a data conversion exit
program.This is described in|Chapter 7, “Message data conversion,” on page 163

* Improved VSAM file reorganization. The VSAM file associated with a selected
queue can be reorganized automatically at specified time intervals. This is
described in [‘Creating local queues” on page 77

 Enhanced batch interface, described in [“Using the batch interface” on page 136

Other additions include:

* Support for Java clients

* Trigger user data support

e TCP/IP domain name support

e TCP/IP performance and recovery improvements

Summary of changes xvii

Changes in this edition (GC34-5364-04)

xviil MQSeries for VSE/ESA System Management Guide

Chapter 1. Introduction

This chapter introduces MQSeries for VSE/ESA from an administrator’s
perspective, and describes the basic concepts of MQSeries and messaging.

MQSeries and message queuing

MQSeries lets VSE/ESA applications use message queuing to participate in
message-driven processing. Applications can communicate across different
platforms by using the appropriate message queuing software products. For
example, VSE/ESA and MVS/ESA™ applications can communicate through
MQSeries for VSE/ESA and MQSeries for OS/390 respectively. The applications
are shielded from the mechanics of the underlying communications.

MQSeries products implement a common application programming interface
(message queue interface or MQI) whatever platform the applications are run on.
This makes it easier to port applications from one platform to another.

The MQI is described in detail in the MQSeries Application Programming Reference
manual.

Time-independent applications

With message queuing, the exchange of messages between the sending and
receiving programs is time independent. This means that the sending and receiving
applications are decoupled so that the sender can continue processing without
having to wait for the receiver to acknowledge the receipt of the message. In fact,
the target application does not even have to be running when the message is sent.
It can retrieve the message after it is started.

Message-driven processing

Applications can be automatically started by messages arriving on a queue using a
mechanism known as triggering. If necessary, the applications can be stopped when
the message or messages have been processed.

Messages and queues

Messages and queues are the basic components of a message queuing system.

What messages are

A message is a string of bytes that has meaning to the applications that use it.
Messages are used for transferring information from one application to another (or
to different parts of the same application). The applications can be running on the
same platform, or on different platforms.

MQSeries messages have two parts; the application data and a message descriptor. The
content and structure of the application data is defined by the application
programs that use them. The message descriptor identifies the message and
contains other control information, such as the type of message and the priority
assigned to the message by the sending application.

© Copyright IBM Corp. 1995, 2004 1

Messages and queues

The format of the message descriptor is defined by MQSeries for VSE/ESA. For a
complete description of the message descriptor, see the MQSeries Application
Programming Reference manual.

Message lengths
In MQSeries for VSE/ESA, the maximum message length is 4 MB (where 1 MB

equals 1 048 576 bytes). In practice, the message length may be limited by:
¢ The maximum message length defined for the receiving queue.
* The maximum message length defined for the queue manager.

¢ The maximum message length defined by either the sending or receiving
application.

¢ The amount of storage available for the message.

This parameter is extremely important for MQSeries for VSE/ESA. The storage
will be used from the CICS® partition in which the queue manager is active.

It may take several messages to send all the information that an application
requires.

What queues are

A queue is a data structure that stores zero or more messages. The messages may
be put on the queue by applications or by a queue manager as part of its normal
operation.

Each queue belongs to a queue manager, which is responsible for maintaining it. The
queue manager puts the messages it receives on the appropriate queues.

Applications send and receive messages using MQI calls. For example, one
application can put a message on a queue, and another application can retrieve the
message from the same queue. The sending application opens the queue for put
operations by making an MQOPEN call. Then it issues an MQPUT call to put the
message onto that queue. When the receiving application opens the same queue
for gets, it can retrieve the message from the queue by issuing an MQGET call.

For more information about MQI calls, see the MQSeries Application Programming
Reference manual.

MQSeries for VSE/ESA supports only predefined queues, which are those created by
an administrator using the appropriate command set, for example, those defined
using the MQSeries Master Terminal (MQMT) utility. Predefined queues are
permanent; they exist independently of the applications that use them and survive
MQSeries for VSE/ESA restarts.

Retrieving messages from queues
In MQSeries for VSE/ESA, suitably authorized applications can retrieve messages
from a queue according to these retrieval algorithms:

* First-in-first-out (FIFO).

* A program request for a specific message, identified by a message identifier or
correlation identifier.

The MQGET request from the application determines the method used.

2 MQSeries for VSE/ESA System Management Guide

Objects

Objects

Many of the tasks described in this book involve manipulating MQSeries objects. In
MQSeries for VSE/ESA, there are three different types of object:
* Queue manag i

* Queues; see ["MQSeries queues” on page 4.

* Channels; see |“Channels” on page 5.

Object names

Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any
given message should be sent.

For the other types of object, each object has a name associated with it and can be
referenced in MQSeries for VSE/ESA by that name. These names must be unique
within one queue manager and object type. For example, you can have a queue
and a process with the same name, but you cannot have two queues with the same
name.

In MQSeries, names can have a maximum of 48 characters, with the exception of
channel names, which have a maximum of 20 characters.

Managing objects

MQSeries provides commands for creating, altering, displaying, and deleting
objects through the panel driven MQSeries Master Terminal (MQMT) system
administration transaction; see ["MQSeries master terminal (MQMT) — main menu”

for further details.

Note: Default object definitions are not supplied with MQSeries for VSE/ESA.

You can perform some limited administration, for example, the starting and
stopping of queues and channels, by using the MQCL transaction. See |[Chapter 5

[‘Utilities and interfaces,” on page 131| for further details.

Local and remote administration

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through TCP/IP, and carry out administration there. In MQSeries, you
can consider this as local administration because no channels are involved, that is,
the communication is managed by the operating system.

Object attributes
The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a queue
can accommodate is defined by its MaxMsgLength attribute (see [Figure 26 on page]

. You can specify this attribute when you create a queue.

In MQSeries for VSE/ESA, there are four ways of accessing an attribute:

e Using the MOQMT transaction, described in |”MQSeries master terminal (MQMT)l
[- main menu” on page 63

* Using the MQINQ function call, described in |”MQINQ — Inquire about objecd
[attributes” on page 332.|

* Using Programmable Command Format (PCF) messages, described in
[“Programmable system management,” on page 167)

Chapter 1. Introduction 3

Objects

 Using MQSeries Commands (MQSC), described in [Chapter 9, “MQSeried
[commands,” on page 253.|

MQSeries queue managers

A queue manager provides queuing services to applications, and manages the
queues that belong to it. Under MQSeries for VSE/ESA, there can be one queue
manager per CICS region. It ensures that:

* Object attributes are changed according to the commands received.

* Special events such as trigger events are generated when the appropriate
conditions are met.

* Messages are put on the correct queue, as requested by the application making
the MQPUT call. The application is informed if this cannot be done, and an
appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager. The queue manager to which an application is connected is
said to be the local queue manager for that application. For the application, the
queues that belong to its local queue manager are local queues.

A remote queue is simply a queue that belongs to another queue manager. A remote
queue manager is any queue manager other than the local queue manager. A remote
queue manager exists on a remote machine across the network, or in a different
CICS region on the same VSE/ESA host.

MaQl calls

A queue manager object may be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MOQINQ.

Note: You cannot put messages on a queue manager object; messages are always
put on queue objects, not on queue manager objects.

MQSeries queues

Queues are defined to MQSeries using the appropriate MOMT transaction, or via
PCF requests. The transaction specifies the type of queue and its attributes. For
example, a local queue object has attributes that specify what happens when
applications reference that queue in MQI calls. Examples of attributes are:

* Whether applications can retrieve messages from the queue (GET enabled).
* Whether applications can put messages on the queue (PUT enabled).

* Whether access to the queue is exclusive to one application or shared between
applications.

¢ The maximum number of messages that can be stored on the queue at the same
time (maximum queue depth).

* The maximum length of messages that can be put on the queue.

Using queue objects
In MQSeries for VSE/ESA, there are three types of queue object. Each type of

object can be manipulated by the product commands and is associated with real
queues in different ways:

1. A local queue object identifies a local queue belonging to the queue manager to
which the application is connected. All queues are local queues in the sense
that each queue belongs to a queue manager and, for that queue manager, the
queue is a local queue.

4 MQSeries for VSE/ESA System Management Guide

Objects

2. A remote queue object identifies a queue belonging to another queue manager.
This queue must be defined as a local queue to that queue manager. The
information you specify when you define a remote queue object allows the
local queue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager.

You must also define a transmission queue and channels between the queue
managers, before applications can send messages to a queue on another queue
manager.

3. An alias queue object allows applications to access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call, the
name is resolved to the name of either a local or a remote queue at run time.
This allows you to change the queues that applications use without changing
the application in any way—you merely change the alias queue definition to
reflect the name of the new queue to which the alias resolves.

An alias queue is not a queue, but an object that you can use to access another
queue.

Specific local queues used by MQSeries
MQSeries uses some local queues for specific purposes related to its operation. You
must define them before MQSeries can use them.

Application queues: A queue that is used by an application (through the MQI) is
referred to as an application queue. This can be a local queue on the queue manager
to which an application is linked, or it can be a remote queue that is owned by
another queue manager.

Applications can put messages on local or remote queues. However, they can only
get messages from a local queue.

Transmission queues: A transmission queue temporarily stores messages that are
destined for a remote queue manager. You must define at least one transmission
queue for each remote queue manager to which the local queue manager is to send
messages directly. For information about the use of transmission queues in
distributed queuing, see the MQSeries Intercommunication book.

Dead-letter queues: A dead-letter queue stores messages that cannot be routed to
their correct destinations. This occurs when, for example, the destination queue is
full. The supplied dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.
These queues are also referred to as undelivered-message queues on other
platforms.

For distributed queuing, you should define a dead-letter queue for each queue
manager.

Event queues: In MQSeries, an instrumentation event is a logical combination of
conditions that is detected by a queue manager or channel instance. Such an event
causes the queue manager or channel instance to put a special message, called an

event message, on an event queue. Event queue names are configurable as part of
the queue manager’s Global System Definition.

Channels

Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers may exist on the same, or

Chapter 1. Introduction 5

Objects

different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages, and
another, complementary one, at the queue manager that is to receive them.

For information on channels and how to use them, see the MQSeries
Intercommunication book.

Clients and servers

MQSeries for VSE/ESA supports client-server configurations for MQSeries
applications, and can act as a server to which all current MQSeries clients can
connect.

Note: There is no VSE/ESA™ client.

An MQSeries client is a part of the MQSeries product that is installed on a machine
to accept MQI calls from applications and pass them to an MQI server machine.
There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

An MQI server is a queue manager that provides queuing services to one or more
clients. For VSE/ESA, there is one MQSeries process for each client connection.

All the MQSeries objects, for example queues, exist only on the queue manager
machine, that is, on the MQI server machine. A server can support normal local
MQSeries applications as well.

The difference between an MQI server and an ordinary queue manager is that a
server has a dedicated communications link with each client. For more information

about creating channels for clients and servers, see the MQSeries Intercommunication
book.

MQSeries applications in a client-server environment

When linked to a server, client MQSeries applications can issue MQI calls in the
same way as local applications. The client application issues an MQCONN call to
connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
queue manager. You must link your applications to the appropriate client libraries.
See the MQSeries Application Programming Guide for further information.

MQSeries and CICS

— Note to users
MQSeries for VSE/ESA runs as a CICS task. Consequently, various features of
the product are controlled by CICS itself.

These features include security and recovery. If you install MQSeries for
VSE/ESA with the security feature, security will be handled by your External
Security Manager (ESM).

6 MQSeries for VSE/ESA System Management Guide

Chapter 2. Installation

This chapter describes the procedure for installing MQSeries for VSE/ESA. It
consists of the following sections:

“Contents of the library tape”|

“Prerequisites” on page §|

“Installing MQSeries for VSE/ESA — all users” on page 9|

“Procedures for new users” on page 11

“Starting MQSeries” on page 18
“MQSeries installation verification test” on page 23|

“Post installation verification test CICS modifications” on page 28]
“Migration procedures for existing users” on page 28|

©ONoOOA~WNE

Contents of the library tape

The distribution tape is in standard IBM® MSHP format and may be stacked or
non-stacked format depending on how the product is ordered but should be

handled in the same way by the VSE install procedures. The tape will contain a
sublibrary for “PRD2.MQSERIES”.

This sublibrary contains:

* Copy books, used by your CICS applications whenever you intend to call the
MQSeries Message Queuing Interface (MQI).

* Object decks, called at linkedit time when you are building your own MQSeries
applications (autolink).

« Phases, to provide MQSeries® operation in CICS and Batch.

* Samples having member type Z. Some of these need to be modified for the
VSE/POWER JECL statements, as follows:

* % JOB to * $$ JOB
* %% LST to =+ §§ LST
* %% SLI to * $$ SLI
* xx E0J to * $$§ EOJ

The samples are:

MQJCONEFG.Z Creation of MQSeries configuration file
MQJSETUP.Z Creation of the setup file

MQJQUEUE.Z VSAM cluster definitions for MQSeries queues
MQJMIGR1.Z Migration of old configuration file (step 1)
MQJMIGR2.Z Migration of old configuration file (step 2)
MQJREORG.Z Batch job to reclaim space of deleted records
MQJUTILY.Z Various batch functions

MQJLABEL.Z Label definitions for the CICS start-up job
MQJCSD.Z Define CICS resources into the CICS CSD
MQCICDCT.Z Entry definitions for CICS DCT
MQCICFCT.Z Entry definitions for CICS FCT

© Copyright IBM Corp. 1995, 2004

Tape contents

MQUSERID.Z Sample assembler to allow a change of user identifier for MCA

communications with remote AS/400® systems

MQJCSD24.Z Define CICS resources into the CICS CSD for CICS TS customers.
MQBICALL.Z Sample batch interface program that shows how to write an MQI

batch program.

MQBISTOP.Z Sample program to stop the batch interface from a batch partition.

DCHFMT4.Z Sample data conversion exit program for message data conversion.

Prerequisites

Program number

5686-A06 MQSeries for VSE/ESA Version 2 Release 1.1 (Europe, the Middle East
and Africa only).

Hardware requirements

MQSeries Servers:

Any IBM System /370" or System/390® machine
Minimum system memory — normal memory supplied with machine
Minimum DASD = VSE library requirements + size of queues
VSE library requirements:
3380 = 3 cylinders
3390 = 2 cylinders
FBA (Fixed Block Architecture) = 4500 blocks

Software requirements

Minimum supported levels are shown. Later levels, if any, will be supported unless
otherwise stated. Note that the latest maintenance for these requirements is
strongly recommended.

VSE/ESA 2.5 (5690-VSE)

CICS/VSE® 2.3 (5686-026) or CICS TS 1.1 (5648-054)

VTAM® for VSE/ESA 4.2 (5666-363)

or

TCP/IP for VSE/ESA 1.4 (5686-A04)

LE/VSE 1.4.1 Runtime library (5696-067)

MQSeries clients:

MQSeries for VSE/ESA supports clients that can be connected using TCP/IP.

Features

The features described in this book are provided with the MQSeries for VSE/ESA
product. Some features, however, are enhancements to the product, and are
available only after the relevant APAR/PTFs have been applied.

The following list indicates the APAR prerequisites for certain enhancement
features:

MQSeries commands requires PQ71065.
Instrumentation events requires PQ75790.
Channel exits requires PQ79855.

Adopt MCA requires PQ82520.

8 MQSeries for VSE/ESA System Management Guide

Overview

* Bullet-proof channels requires PQ82520.

Connectivity

Network protocols supported are SNA LU 6.2 and TCP/IP.
* For SNA connectivity - VTAM for VSE/ESA V4.2
* For TCP/IP connectivity — TCP/IP for VSE/ESA V1.4

Compilers supported for MQSeries for VSE/ESA applications
* Programs can be written using C, COBOL or PL/I
* C programs can use the C for VSE V1.1 compiler (5686-A01)
* COBOL programs can use the COBOL for VSE compiler V1.1 (5686-068)
* PL/I programs can use the PL/I for VSE compiler V1.1 (5696-069)

Delivery

MQSeries for VSE/ESA is available on:
¢ 3480 cartridge
* 4mm DAT tape

Installing MQSeries for VSE/ESA - all users

To install the product, carry out the following procedure:
1. Decide the name of the :
* Target sublibrary

The target sublibrary can be the default supplied, “PRD2.MQSERIES”, or a
name that you specify.

If you use the supplied default sublibrary, go to step

If you specify your own library, you must customize the JCL listed in step
* VSAM catalog into which the product is to be installed

a. Create a VSAM user catalog.

You are recommended to use the Interactive Interface Dialogs (II) to create
this catalog. In the following examples, the VSAM catalog named
MQMCAT is used, and it is assumed that its label is already defined in the
disk label area.

b. Allocate a VSE library.

This step is not required if you restore the product into the PRD2 library.
However, if you want to install MQSeries in another library, you must
create one. You are recommended to use the Interactive Interface dialogs for
creating this library, or run the following sample adapted for your
environment.

If you adapt this sample you must modify the sample provided in section
2.b. to use the same sublibrary name.

e DEFINE S=Tib.sublib to the your selected name

= $$ JOB JNM=MQMSUBL,CLASS=0,DISP=D

// JOB MQMSUBL Define the MQSeries installation library
// DLBL mylib,'1.f.i',yyyy/ddd

// EXTENT ,volume,,,n,m

// EXEC LIBR

DEFINE L=myTib

DEFINE S=mylib.sublib

/*

/&

Chapter 2. Installation 9

Product installation

where:
mylib is the new library name
subTib is the new sublibrary name
1.f.1 is your local file id
yyyyyy/ddd
is the file retention year and day
volume is the local disk volume name
n/m is the start track and size required

See the IBM VSE System Control Statements documentation for further
information about DLBL, EXTENT and LIBR.

2. Restore the MQSeries sublibrary from the library tape. You can do this by
either:
a. Using the Interactive Interface Dialogs, as follows:
1) From an administrator ICCF signon, select the “Installation” option.
2) Select “Install Programs — V2 format”.
3) Select “Prepare for installation”.
This presents you with a series of panels and options to identify the

tape address and process a job, by scanning the mounted tape and
identifying which stacked products are available for installation.

Monitor the VSE console to see when this job has completed. When it
has completed, proceed to the step

4) Select “Install Program(s) from Tape”.

You are presented with a list of products available from the install tape
and suggested install sublibraries. You can select either the default
install library, “PRD2.MQSERIES”, or the name of the customized

library you created in Step
5) Select option 1 to proceed with the installation and press function key
five (PF5) to create a job to be submitted.

or

b. Customizing and processing the following JCL, using the library name from
step Lon pase

% $$ JOB JNM=MQMTAPE,CLASS=0,DISP=D

// JOB MQMTAPE Restore MQSeries from tape

// ASSGN SYS006,cuu

// MTC REW,SYS006

// EXEC MSHP,SIZE=1M

INSTALL PRODUCT FROMTAPE ID='MQSERIES...2.1.2' -
PROD INTO=lib.sublib

/*

/&

* §$ EOJ

Where:
cuu Is the tape drive address

lib.sublib Is the sublibrary into which the product is to be installed,
for example, PRD2.MQSERIES

Installation checkpoint (MQSeries installation)

You should now have correctly installed the MQSeries sublibrary. This can be
verified using a VSE Librarian job to inspect the contents of the library.

10 MQSeries for VSE/ESA System Management Guide

Product installation

The MQSeries phases, objects, and sample jobs are visible.

Note: If the MQSeries product has not installed correctly, check through the
preceding instructions to ensure that they all completed correctly.

If you are a new user, seel”Procedures for new users.”l If you are migrating to
MQSeries for VSE/ESA V2.1.2 from an earlier release, see [‘Migration procedureg|
ffor existing users” on page 28

Procedures for new users

The following steps describe how to
* Allocate and initialize the required MQSeries files
e Customize your CICS system to utilize the MQSeries facilities

The samples for the following jobs can be found in the installation library you
selected, or “PRD2.MQSERIES”.

Allocate and initialize the required MQSeries files

You must now run the jobs to:

* Create the setup file

* Create the MQSeries configuration file

* Create cluster definitions for MQSeries queues

Note to users
The sample JCL jobs must be modified and customized to refer to your own
volume identifiers and catalog names.

This should be done by your VSE systems programmer.

MOQJSETUP.Z
Allocate a VSAM ESDS, MQFSSET, which is needed to populate the
MQSeries configuration file with text and help messages at initialization
time.

Note: Review the section [“Installing security” on page 12|before running
this sample JCL.
MQJCONFG.Z
Allocates the MQSeries (CICS) subsystem configuration file. For this VSAM
KSDS file, each record is a fixed length of approximately 2 KB.

To estimate the space you require, allocate one record, consisting of one

cylinder for normal operation, for each MQSeries channel and queue.
MQJQUEUE.Z

Allocates and initializes the MQSeries message queue files. For these

VSAM KSDS files, each record is of varying length, depending upon the

size of the user data area. A message queue file is required for each queue

defined to the MQSeries (CICS) subsystem.

To estimate the space required for each message queue, use the following

guidelines:

 Each message queue file contains one header record for each local
queue.

* One record is written for each user message.

Chapter 2. Installation 11

New user procedures

* Each record is of variable length and consists of a header of 740 bytes

plus the actual variable-length user data area.

* This job allocates the following system queue files:
MQSERIES.MQFERR — Dead letter queue file
MQSERIES.MQFLOG - Error log queue file
MQSERIES.MQFMON - Monitor queue file
MQSERIES.MQFREOR — Automatic VSAM reorganization file

and optionally the following files:
MQSERIES.MQFACMD - Admin command file
MQSERIES.MQFARPY — Admin reply file
MQSERIES.MQFIEQE - Queue manager events file
MQSERIES.MQFIECE - Channel events file
MQSERIES.MQFIEPE - Performance events file

The following files are sample definitions for user message queues:
MQSERIES.MQFI001
MQSERIES.MQFO001
MQSERIES.MQFI002
MQSERIES.MQFO002
MQSERIES.MQFI003
MQSERIES.MQFO003

You are strongly recommended to define one local queue in each physical file. If
you intend to use the automatic VSAM reorganization feature with a queue, that
queue must be the only queue in a physical VSAM file.

Installing security

You can protect your MQSeries subsystem from unauthorized access by activating
the MQSeries for VSE/ESA security feature. For full details on the security feature,
refer to [Chapter 11, “Security,” on page 285.|

Before installing security, ensure that your environment includes the following
prerequisite systems:

* VSE/ESA 2.5 or above.

* CICS TS 1.1 or above.

* External Security Manager (see below).

You must have an External Security Manager (ESM) that supports the SAF
RACROUTE interface. MQSeries for VSE/ESA is not dependent on any specific
ESM; however, your ESM should recognize and support standard RACROUTE
macro calls. For more information, contact your ESM vendor.

If you have the correct prerequisites and intend to install MQSeries for VSE/ESA
security for your queue manager, you must copy and edit the SYSIN.Z installation
file, available in the MQSeries installation library PRD2.MQSERIES. You must also
change the MQJSETUP.Z sample JCL file that processes the SYSIN.Z file.

The SYSIN.Z file contains installation and configuration parameters that generally
should not be changed. However, the file also contains switches for security, which
are set off by default and need to be set on to activate security.

To activate the security feature, proceed as follows:
1. Make a copy of your SYSIN.Z file.

The file resides in your installation library (default PRD2.MQSERIES). When
making the copy, note down the target file and sublibrary names for later use.

12 MQSeries for VSE/ESA System Management Guide

New user procedures

It is important that you edit the security switches in the copy rather than the
original to ensure that the settings are not overwritten by subsequent
maintenance operations.

2. Edit the SYSIN.Z file settings:

a. Search for keyword QMDEF. This is positioned ahead of a list of queue
manager definition defaults which, with the exception of the security
defaults, can be changed once your system is installed and configured. The
security defaults can only be changed by reinstallation.

b. Locate the default parameter QM-STATUS-SECURITY. The default value for
this parameter is DISABLED. To activate security, change the setting to
ENABLED and save the file.

You will also notice a default parameter for security audit. This is not
implemented in MQSeries for VSE/ESA 2.1.2. It is reserved for future
product extensions.

3. Update the MQJSETUP.Z sample JCL.
The MQJSETUP.Z file defines a VSAM ESDS and imports the contents of the

SYSIN.Z file. You must change the * $$ SLI card in MQJSETUP.Z to identify
your SYSIN.Z copy as follows:

Change:
* $$ SLI MEM=SYSIN.Z,S=PRD2.MQSERIES

To:
* §$ SLI MEM=sysin.copy,S=your.lib

Once you have made these changes, you can run the MQJSETUP.Z sample JCL to
import the contents of the SYSIN.Z file into a VSAM ESDS. The ESDS is processed
by installation transaction MQSU to build your starting MQSeries subsystem
configuration. See |“Starting MQSeries” on page 18| Security installation is not
complete until you run the MQSU transaction.

Changing the MQER TDQ definition

Security installation may also require changes to the MQER transient data queue
(TDQ) definition of MQSeries for VSE/ESA. The default definition for this TDQ is
shipped in file MQCICDCT.Z (see |[‘Preparing CICS for MQSeries” on page 16).

The MQER TDQ definition requires a trigger transaction to be fired every time an
entry is written to the TDQ. The transaction that is started is also called MQER.
With CICS TS, this transaction will run as the CICS default user (DFLTUSER)
unless the DCT definition identifies a USERID.

For security purposes, the user identified with the MQER transaction must have
MQSeries CONNECT authority and UPDATE authority to the SYSTEM.LOG
queue. Therefore, you must decide whether to grant these privileges to the CICS
default user, or to a special user. For security purposes, we recommended that you
identify a special user to run the MQER transaction.

If you intend to grant the appropriate authority to the CICS default user, you do
not need to change the MQCICDCT.Z sample file. However, if you intend to
identify a special user to run the MQER transaction, you need to perform the
following:

1. Create a user with your ESM.

2. Grant CONNECT and UPDATE authority to the user. For details on granting
security access to users, refer to [Chapter 11, “Security,” on page 285)

Chapter 2. Installation 13

New user procedures

3. Copy the MQCICDCT.Z file. We recommend that you copy the MQCICDCT.Z
file rather than directly edit the base file. The MQCICDCT.Z file is a source
fragment that should be included in the DCT source file for your CICS system.

4. Change the MQER TDQ definition in MQCICDCT.Z as follows:
Change:

MQER DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQER,
DESTFAC=FILE,
TRANSID=MQER,
TRIGLEV=1

To:

MQER DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQER,
DESTFAC=FILE,
USERID=youruser,
TRANSID=MQER,
TRIGLEV=1

5. Rebuild your DCT phase. Your CICS system programmer can use the

MQCICDCT.Z source fragment to do this.

Changing the MQXP TDQ definition

Similar to changes to the MQER TDQ definition, security installation may also
require changes to the MQXP transient data queue (TDQ). The default definition
for this TDQ is shipped in file MQCICDCT.Z (see Preparing CICS for MQSeries on

page 14).

The MQXP TDQ is used by the MQSeries queue manager to expire messages. To
expire messages, the MQXP TDQ defines a trigger transaction that is started by
CICS when an expiry request is written to the TDQ by the queue manager. The
transaction that is started is also called MQXP. With CICS TS, this transaction will
run as the CICS default user (DFLTUSER) unless the DCT definition identifies a
USERID.

For security purposes, the user associated with the MQXP transaction must have
MQSeries CONNECT authority and UPDATE authority to the any ReplyToQ that
might exist in the MQMD data structure of an expiring message. The user must
also have UPDATE authority to any VSAM file that can contain expired messages.
In other words, the MQXP transaction must be run by a user that has UPDATE
authority to most, if not all, local queues.

For this reason, it is not recommended that the MQXP transaction runs with the
authority of the CICS default user. Instead, it is recommended that the definition
for the MQXP TDQ is changed to identify a USERID with the appropriate
authority.

To change the MQXP TDQ definition:
1. Create a user with your ESM.

2. Grant CONNECT and queue UPDATE authority to the user. Also ensure that
the user has UPDATE authority to relevant VSAM files. For more information
about security access to users, refer to [Chapter 11, “Security,” on page 285

14 MQSeries for VSE/ESA System Management Guide

New user procedures

3. Copy the MQCICDCT.Z file. We recommend that you copy the MQCICDCT.Z
file rather than directly edit the base file. The MQCICDCT.Z file is a source
fragment that should be included in the DCT source file for your CICS system.

4. Change the MQXP TDQ definition in MQCICDCT.Z.
Change:

MQXP DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQXP,
DESTFAC=FILE,
TRANSID=MQXP,
TRIGLEV=1

To:

MQXP DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQXP,
DESTFAC=FILE,
USERID=youruser,
TRANSID=MQXP,
TRIGLEV=1

5. Rebuild your DCT phase. Your CICS system programmer can use the
MQCICDCT.Z source fragment to do this.

Changing the MQIE TDQ definition

Similar to changes to the MQXP TDQ definition, security installation may also
require changes to the MQIE transient data queue (TDQ). The default definition for
this TDQ is shipped in file MQCICDCT.Z (see [“Preparing CICS for MQSeries” on|

The MQIE TDQ is used by the MQSeries queue manager to register
Instrumentation Event (IE) requests. An instrumentation event is a logical
combination of conditions that is detected by a queue manager or channel instance.
Such an event causes the queue manager or channel instance to put a special
message, called an event message, on an event queue. To achieve this, the queue
manager places an IE request on the MQIE transient data queue. Such requests are
processed by the IE processor transaction, also called MQIE.

For security purposes, the user associated with the MQIE transaction must have
MQSeries CONNECT authority and UPDATE authority to the event queues. The
event queues are identified by the queue manager’s global system definition. The
user must also have UPDATE authority to the VSAM files that host the event
queues.

Rather than allowing the MQIE transaction to run as the CICS default user, it is
recommended that the definition for the MQIE TDQ is changed to identify a
USERID with the appropriate authority.

To change the MQIE TDQ definition:

1. Create a user with your ESM.

2. Grant CONNECT and queue UPDATE authority for each of the event queues
to the user. Also ensure that the user has UPDATE authority to relevant VSAM
files. For more information about security access to users, refer to
[“Security,” on page 285

Chapter 2. Installation 15

New user procedures

3. Copy the MQCICDCT.Z file. It is recommended that you copy the
MQCICDCT.Z file rather than directly edit the base file. The MQCICDCT.Z file
is a source fragment that should be included in the DCT source file for your
CICS system.

4. Change the MQIE TDQ definition in MQCICDCT.Z. Change:

MOQIE DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQIE,
DESTFAC=FILE,
TRANSID=MQIE,
TRIGLEV=1

to:

MOQIE DFHDCT TYPE=INTRA,
RSL=PUBLIC,
DESTID=MQIE,
DESTFAC=FILE,
USERID=youruser,
TRANSID=MQIE,
TRIGLEV=1
5. Rebuild your DCT phase. Your CICS system programmer can use the
MQCICDCT.Z source fragment to do this.

Other considerations for installing security
Other installation steps involve:
1. Activation of security classes.
2. Creation of ESM resources.
3. Creation of users.
4

. Assignment of resource permissions to users.

Each of these is covered in detail in [Chapter 11, “Security,” on page 285,

Preparing CICS for MQSeries

Various CICS tables and definitions must be created and customized for use by the
MQSeries subsystem.

You must define the following:

* CICS resources into the CICS CSD

* Entry definitions for the CICS Destination Control Table
* Entry definitions for the CICS File Control Table

The definitions should be reviewed by your CICS systems programmer.

Use the samples (see |Appendix D, “Sample JCL and programs,” on page 365)
provided with the product. See[Appendix A, “CICS control table definitions,” on|

for further information.

To help you install the PCT and PPT CICS definitions, the sample MQJCSD.Z is
provided. MQJCSD.Z automatically defines the MQSeries entries required into the
CICS Definition Data Set (without using migrated CICS, DFHPPT and DFHPCT
tables).

16 MQSeries for VSE/ESA System Management Guide

New user procedures

You may need to modify this sample to fit your own environment, because all
entries are defined in group “MQM”, which is then added to the VSELIST list.

MQJCSD.Z - Define CICS resources into the CICS CSD
Sample code that can be used to create CICS-specific PCT and PPT
definitions, which are required by the MQSeries subsystem.

MQJCSD24.Z — Define CICS resources for CICS TS
Sample JCL that can be used to create PCT, PPT, and FCT definitions
specific to CICS TS that are required by the MQSeries subsystem.

MQCICFCT.Z - File Control Table (FCT)
The sample code provided can be used for creating CICS definitions for
the MQSeries configuration and sample queue files. These definitions may
require changing to your site’s specific requirements.

Note: If you install under CICS TS, you do not need to create your File
Control Table (FCT) definitions with this sample. File definitions are
provided in the MQJCSD24.Z sample JCL file.

MQCICDCT.Z - Destination Control Table (DCT)
The MQSeries product requires intrapartition transient data queues (TDQ)
MQER, MQXP and MQIE, for the processing of log, message expiry and
instrumentation events respectively

Note: If you install the security feature, you may need to make special
changes to the MQER, MOQXP and MQIE transient data queue
definitions. See [“Installing security” on page 12| for more details.

Modify CICS start-up deck

For CICS applications to use the MQSeries facilities, you must inform CICS of the
MQSeries configuration and workfiles, and the location of the MQSeries for
VSE/ESA phases as follows:

¢ Add the label definitions for the CICS start-up job (MQJLABEL.Z) to your CICS
start-up deck, or to the standard label procedures. It contains information about
the datasets that MQSeries for VSE/ESA uses.

This step is not necessary when MQSeries is running in a CICS TS environment.
However, if required, label definitions in the CICS TS startup JCL can be used to
override MQ VSAM file definitions in the CSD.

Note to users
This file must be modified and customized to refer to the correct volume
identifiers and catalog names.

This should be done by your VSE systems programmer.

¢ Add the MQSeries for VSE/ESA subsystem install library defined in
[MQSeries for VSE/ESA — all users” on page 9 (default name
“PRD2.MQSERIES”) to the LIBDEF control statement in your CICS startup deck.

 If you are using TCP/IP for queue manager to queue manager or client
connections, you must also ensure the PRD1.BASE (TCP/IP base library) is
concatenated ahead of the PRD2.SCEEBASE (LE base library). This will ensure
that the TCP/IP runtime is correctly referenced.

For example:

Chapter 2. Installation 17

New user procedures

// LIBDEF *,SEARCH=(PRD2 .MQSERIES,
PRD2.CONFIG,
PRD1.BASE,
PRD2.SCEEBASE,
.

* %k X X

Recovery and restart

Although MQSeries uses its own recovery and restart logic, it also uses standard
CICS file management. When MQSeries is running in a CICS/VSE environment, it
is important that all MQ VSAM clusters are defined in the DFHFCT with the LOG
parameter set to YES. In addition, the CICS logging facility should be activated
with JCT = xx or YES in the DFHSIT.

When MQSeries is running in a CICS TS environment, CSD file definitions for MQ
datasets should be defined with RECOVERY(BACKOUTONLY).

If you do not fulfill the above conditions, unpredictable results can occur, such as
loss of messages or inaccurate values for message sequence numbers.

CICS journal control table

The CICS journal control table (JCT) can be affected by the queue definitions. If a
physical record is larger than the buffer size specified in the JCT, a CICS task
abend of “AFCL” occurs.

The provided sample FCT queue definitions specify a maximum record length of
4089 bytes. If large records are written, you should set the BUFSIZE parameter of
the CICS DFHJCT to a different value; a BUFSIZE value of 4200 is usually
sufficient.

For further information, see the CICS/VSE Resource Definition (Macro) manual.

This is reflected in either the MQSeries System Log or the CSMT TD queue when
an MQPUT call is processed trying to perform this function.

Uppercase translation

Queue manager, queue and channel names are case sensitive on MQSeries systems.
If MQSeries for VSE/ESA sends messages to other MQSeries systems, you must
specify UCTRAN = TRANID or UCTRAN = NO in your CICS terminal definitions.

If you do not do this, the names you enter into the MQSeries panels are translated
into uppercase, and they may not match the actual names on the target MQSeries
system.

Installation checkpoint (CICS)

You have now set up the CICS system, and it is ready to be restarted to update the
system configuration and utilize the MQSeries subsystem.

Note: If the CICS system has not been updated correctly, check through the
preceding instructions to ensure that they all completed correctly.

Starting MQSeries

The MQ CICS environment requires a cold start. Following the restart, the
MQSeries for VSE/ESA configuration file must be initialized and populated before
the MQSeries for VSE/ESA subsystem can be used.

18 MQSeries for VSE/ESA System Management Guide

Starting MQSeries

You do this with the MQSU transaction. However, you are strongly recommended to
ensure that all the MQSeries for VSE/ESA subsystem files are available for access
by CICS before running this job.

You do this by issuing the CICS transaction:
CEMT INQUIRE FILE(MQF«)

All of the MQSeries for VSE/ESA files defined in |”Allocate and initialize thel
Irequired MQSeries files” on page 11| should be visible, and you should be able to
open, close, enable, and disable the files.

If you cannot access these files, refer to your CICS systems programmer and
review the steps in [“Preparing CICS for MQSeries” on page 16)

If the files are accessible, issue the transaction MQSU. This completes with the
message “MQSU — MQSeries Install Completed, NNNN input records read”. The
number of input records represented by NNNN may change depending on the
current maintenance level.

Note that you need only run the MQSU transaction once whenever you install
MQSeries for VSE/ESA. This rule applies to initial installations of the product, as
well as subsequent installations.

MQSeries initialization

Before you initialize your MQSeries for VSE/ESA system, if you decide to install
the security feature, you must carry out a basic security implementation first. For
details of how to implement security, refer to [Chapter 11, “Security,” on page 285)

If you have already implemented security, or you do not wish to install the
security feature, you can now initialize your MQSeries for VSE/ESA subsystem as
follows:

1. Set up the MQSeries for VSE/ESA environment.
Run MQSE (Setup Environment).

The response “MQSE:MQSeries environment setup completed” is displayed, after
a few seconds.

2. Specify the queue manager name.

There can be only one queue manager on each MQSeries for VSE/ESA system
and each MQSeries system should have a unique queue manager name. The
name is specified using the MOMT System Administration transaction, as
follows:

a. Enter the transaction code MQMT on a CICS terminal.
b. Select option 1 for the “Configuration” menu.
C. Select option 1 for the “Global System Definition” update screen.

Chapter 2. Installation 19

Starting MQSeries

s

12/09/2002 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQ212
14:15:45 Global System Definition CIC1
MQWMSYS Queue Manager Information A0GO1
Queue Manager: VSE.TS.QM1
Description Line 1.:
Description Line 2. g

Queue System Values
Maximum Number of Tasks . .: 00000100 System Wait Interval : 00000030
Maximum Concurrent Queues .: 00000100 Max. Recovery Tasks : 0000
Allow TDQ Write on Errors : Y CSMT Allow Internal Dump : Y

Queue Maximum Values
Maximum Q Depth: 00100000 Maximum Global Locks.: 00001000
Maximum Message Size. . . .: 00004096 Maximum Local Locks .: 00001000
Maximum Single Q Access . .: 00000100

Global QUEUE /File Names
Local Code Page . . : 01047
Configuration File. : MQFCNFG
LOG Queue Name. . . : SYSTEM.LOG
Dead Letter Name. . : SYSTEM.DEAD.LETTER.QUEUE
Monitor Queue Name. : SYSTEM.MONITOR
Requested record displayed.

\‘PF2=Return PF3=Quit PF4/Enter=Read PF6=Upd PF9=Comms PF10=Log PFll=Event

Figure 1. Default global system definition

d. Change the “Queue Manager” field to the name that you are giving to your
local queue manager.

e. Press function key six (PF6) to update the configuration.
f. Press function key three (PF3) to quit the screen.

You can leave the other fields unchanged.
3. Define system queues

The System Log is a local queue used to record system diagnostic and error
messages. It should be defined before the MQ system is started for the first
time.

The name of the system log queue is specified in the queue manager’s global
system definition (MQMT option 1.5). The default name for the queue is
SYSTEM.LOG, however, this can be changed using MQMT option 1.1.

To create the system log queue, carry out the following:

a. Type MQMT at the system prompt.

b. Type 1 on the main menu to select Configuration.

c. Type 2 on the Configuration menu to select queue definitions.
The “Queue Main Options” screen will be displayed.

d. Complete the following fields:
* Object Type L
* Object Name SYSTEM.LOG

e. Press PF5 (Add) to display the “Local Queue Definition” screen.

f. Press PF5 (Add) to display the “Queue Extended Definition” screen and
change the default values in the following fields:

* Usage mode N (Normal)

* Physical File Name MQFLOG (file name from FCT)
* Maximum Q Depth 00005000

* Maximum Message Length 00002048

20 MQSeries for VSE/ESA System Management Guide

Starting MQSeries

g. Press PF5 (Add) to save the changes.

Once the system log queue has been defined to the queue manager the MQ
system can be started. Although it is not immediately necessary, it is
recommended that the system dead letter, system monitor, system admin
command and system admin reply queues are also defined at this time,
repeating steps through Bg| above. The names of these queues are
configurable using MOMT option 1.1. The default names for these queues, and
their default CICS filenames are:

SYSTEM.DEAD.LETTER.QUEUE MQFERR

SYSTEM.MONITOR MQFMON

SYSTEM.ADMIN.COMMAND.QUEUE MQFACMD
SYSTEM.ADMIN.REPLY.QUEUE MQFARPY

In addition, if instrumentation events are required, it is recommended that the
event queues are defined at this time. The event queues are specified as part of
the queue manager’s global system definition (MQMT 1.1, PF11). Sample
VSAM files for the event queues are provided in file MQJQUEUE.Z, and file
definitions for CICS are provided in MQCICFCT for CICS 2.3, and
MQJCSD24.Z for CICS TS.

. Define a local queue.

You must define some local queues to test the operation of the MQSeries for
VSE/ESA subsystem. This task is also carried out by using the MQMT
transaction.

The following definitions allow the installation verification program, TST2, to
send messages to ANYQ.

Carry out the following procedure:
a. Type MQMT at the system prompt.
b. Type 1 on the main menu to select Configuration.

c. Type 2 on the Configuration menu to select queue definitions. The “Queue
Main Options” screen appears.

d. Complete the following fields:
* Object Type L
* Object Name ANYQ

e. Press PF5 (Add) to display the “Local Queue Definition” screen.

f. Press PF5 (Add) to display the “Queue Extended Definition”screen and
change the default values in the following fields:
» Usage mode N (Normal)
* Physical File Name MQFI001 (file name from FCT)
* Maximum Q Depth 00000100
* Maximum Message Length 00002048

g. Press PF5 (Add) to save the changes.
h. Press PF2 (Options) to return to the Queue Main Options Screen.
i. Press PF9 (List) to display a selection screen.

j- On the selection screen, use the cursor keys to select the queue. Press any
character key followed by the Enter key.

A screen displays the queue parameters that you have entered. Check that
the correct data has been entered.

. Initialize the MQSeries for VSE/ESA queue manager. There are two ways of

doing this. Either:
a. Type MQIT on a CICS terminal.

Chapter 2. Installation 21

Starting MQSeries

The response “MQIT: No channel definitions. Initialization completed”

is displayed when the process has completed. This is normal.

or

b. Use the MQSeries for VSE/ESA System Administration transaction

(MQMT), as follows:

1) Issue MQMT to display the main menu panel of MQSeries Administration.

2) Select 2 - Operation.

3) Select 4 - Initialization/Shutdown.

4) Type I in the function field and press function key six (PF6).

Note: If you carry out the initialization before you perform system setup,
you receive the message MQ900000:MQSERIES VSE ENVIRONMENT NOT

INITIALIZED.

In the future, you can combine Step and Step by issuing
MQSE with the parameter I to perform the initialization step, as follows:

MQSE I

The response “MQSE:MQSeries environment setup and initialized” is displayed
when the process has completed.

Checking MQ is active

When you have completed the steps listed in [“MQSeries initialization” on page 19|
the queue manager is active and you can verify this by typing MQMT on a CICS

console, to display

~
/'12/09/2002 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQ212
14:45:45 *%%x Master Terminal Main Menu *** CIC1
MQWMTP A0O1
SYSTEM IS ACTIVE
1. Configuration
2. Operations
3. Monitoring
4. Browse Queue Records
Option:
Please enter one of the options listed.
5686-A06 (C) Copyright IBM Corp. 1998, 2002. A1l Rights Reserved.
Clear/PF3=Exit Enter=Select
%

Figure 2. Master terminal main menu

shows the MQ Master Terminal main menu. Ensure that the “SYSTEM IS

ACTIVE” message is displayed.

22 MQSeries for VSE/ESA System Management Guide

Installation verification test

MQSeries installation verification test

The MQSeries subsystem is now ready for the installation verification procedures.

Stop the MQSeries subsystem, using either the MQST transaction, or the
Operations Shutdown menu — MOMT option 2.4, and then reinitialize the
MQSeries subsystem (see|“MQSeries initialization” on page 19).

To carry out the installation verification test you need:
* One local queue

e The sample transaction TST2

* The program TTPTST2 provided with the product

e Access to two terminals

Local queue verification test

The local queue verification test consists of five steps:

Initialize the MQSeries runtime environment.

Use the test program TTPTST2 to send a number of messages.
Use MQMT to verify that these messages are on the queue.
Use the test program TTPTST2 to read the messages.

Use MQMT to verify that the messages have been delivered.

aprwNE

Step [1] (initializing the MQSeries runtime environment) is achieved by running
transaction MQSE, and either MQIT or MQMT option 2.4. Steps 2 through 5 are
achieved as follows:
1. On one terminal, issue the transaction code TST2. This invokes the MQSeries
for VSE/ESA test program TTPTST2 and produces the screen in

TST2 is a test facility for SENDING / RECEIVING messages
The format of command is as follows:

TST2 XXXX NN QQQQQQQQQQQeQQeQQQQQeaQeqQeQQeQQeQQeqeQQeqQeeQQq

(NOTE: parameters are separated by space(s)).
XXXX 4-character function code, pad with trailing blank
HELP - DISPLAY THIS HELP TEXT
PUT - MQPUT MESSAGES
PUT1 - MQPUT1 MESSAGES
PUTR - MQPUT W/ REPLY MESSAGE
GET - MQGET MESSAGES
GETD - MQGET W/ BROWSE & DELETE
BOTH - MQPUT FOLLOWED BY MQGET
INQ - INQ ABOUT QUEUE (no count NN)
NN 2-digit number with leading zero (01 TO 99)
QQQQ A 48-character field giving the name of a queue.
An additional prompt will ask for the name of the reply queue for PUTR option.

. %
Figure 3. TTPTST2 screen

2. On a second terminal, start MOQMT and use option 3.1 to monitor queue
operations. This displays the screen in|Figure 4 on page 24}

Chapter 2. Installation 23

Installation verification test

4 12/09/2002 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQ212
15:02:45 Monitor Queues CIC1
MQWMMOQ A0O1

QUEUING SYSTEM IS ACTIVE

S QUEUE FILE T INBOUND OUTBOUND LR QDepth
ANYQ MQFIOO1 N IDLE IDLE 0 0
SYSTEM.DEAD.LETTER.QUEUE MQFERR N IDLE IDLE 0 0
SYSTEM. LOG MQFLOG N IDLE IDLE 0 4
SYSTEM.MONITOR MQFMON N IDLE IDLE 0 0

Information displayed.

Enter=Refresh PF2=Return PF3=Exit PF7=Back PF8=Forward

9 PF9=A11 Select or PF10=Detail)

Figure 4. Monitor queues screen

3. On the first terminal, issue:

TST2 PUT 10 ANYQ

Note: If you type TST2 without parameters, the HELP screen for using
TTPTST2 is displayed.

TTPTST2 sends the specified messages addressed to ANYQ.
You receive the following message on successful completion of the transaction:

FULL CYCLE HAS BEEN PERFORMED SUCCESSFULLY
QUEUE USED - ANYQ
NUMBER OF MESSAGES PROCESSED - 10
TOTAL SECONDS ..vvvviivniiennnn... - hh:mm:ss

where:
* 10 is the number of messages you specified (nn).
* hh:mm:ss is the time taken to process nn messages.

Return to the terminal running the MQMT Monitor Queue process.
Press the Enter key on this terminal.

The QDEPTH column for queue ANYQ now equals 10. This is the value
specified for nn in Step

Messages on an MQSeries for VSE/ESA queue can be displayed at any time
using the MOQMT Browse Queue facility (MQMT option 4). Select this option,
enter the queue name in the “Object” field, and press the Enter key.

This displays the screen in [Figure 5 on page 25

24 MQSeries for VSE/ESA System Management Guide

Installation verification test

/'06/21/2002 IBM MQSeries for VSE/ESA Version 2.1.2 MQ21CICS
10:19:19 Browse Queue Records CICS
MQMDISP SYSTEM IS ACTIVE BOO1

Object Name: ANYQ
QSN Number : 00000001 LR- 0, LW- 10, DD-MQFIOO1
Queue Data Record
Record Status : Written. PUT date/time : 20000509102430
Message Size : 00000200 GET date/time
Queue Tline.

THIS IS A MESSAGE TEXT

Information displayed.

5686-A06 (C) Copyright IBM Corp. 1998,2002. A1l Rights Reserved.
ENTER = Process PF2 = Main Menu PF3 = Quit PF4 = Next PF5 = Prior
PF7 = Up PF8 = Down PF9=Hex/Char PF10=Txt/Head

Figure 5. Browse Queue Records screen — status written

10.

11.
12.

The queue can then be browsed forwards and backwards using function keys
four and five (PF4 and PF5).

Note that in this example, the “Record Status” field is Written. This indicates
that the message has been placed on the queue but not retrieved.

Move to the other terminal.
At the CICS prompt, type:
TST2 GETD 10 ANYQ

Note: If you type TST2 without parameters, the HELP screen for using
TTPTST2 is displayed.

TTPTST2 reads the specified messages from ANYQ.

You receive the following message on successful completion of the transaction:

FULL CYCLE HAS BEEN PERFORMED SUCCESSFULLY
QUEUE USED - ANYQ
NUMBER OF MESSAGES PROCESSED - 10
TOTAL SECONDS +.vvveieinieinennns - hh:mm:ss

where:
* 10 is the number of messages you specified (nn).
* hh:mm:ss is the time taken to process nn messages.

Return to the terminal, running the MOQMT Monitor Queue process.

Press the Enter key. The Monitor Queue screen still displays ANYQ as the
only defined queue.

Notes:

1. The QDEPTH number, representing the number of messages on the queue,
has decreased to zero.

2. The total number of messages read from the queue (LR) has increased by
the number you read using TTPTST2.

Chapter 2. Installation 25

Installation verification test

13. Use the MQMT Browse facility to view ANYQ. The “Record Status” field has
changed to Deleted, and the “GET date/time” field is now completed.

This indicates that the record has now been retrieved by an application. In this
case the test transaction TST2 was used with parameters “TST2 GETD 5
ANYQ".

/,06/21/2002 IBM MQSeries for VSE/ESA Version 2.1.2 MQ21CICS
10:19:19 Browse Queue Records CICS
MQMDISP SYSTEM IS ACTIVE BOO1

Object Name: ANYQ
QSN Number : 00000001 LR- 5, LW- 10, DD-MQFIOO1
Queue Data Record
Record Status : Deleted PUT date/time : 20000509102430
Message Size : 00000200 GET date/time : 20000509102825
Queue Tine.

THIS IS A MESSAGE TEXT

Information displayed.

5686-A06 (C) Copyright IBM Corp. 1998,2002. A11 Rights Reserved.
ENTER = Process PF2 = Main Menu PF3 = Quit PF4 = Next PF5 = Prior
PF7 = Up PF8 = Down PF9=Hex/Char PF10=Txt/Head

Figure 6. Browse Queue Records screen — status deleted

Note that MQSeries for VSE/ESA differs from many other MQSeries
platforms, in that when a message is retrieved from a queue it is logically
deleted but not physically deleted. The messages are merely flagged as
“Deleted”.

As a consequence of this technique of flagging messages as “written” and
“deleted”, messages can have their logical state changed, and where necessary,
reprocessed.

You can do this using MQMT option 2.5. However, you are advised to carry
out this procedure only when you are familiar with the MQSeries for
VSE/ESA system.

You have now completed a local installation verification test demonstrating that
two applications can send and receive messages through an MQSeries queue.

Installation checkpoint (installation verification test)

You can now:

* Define local queues.

 Start and stop the queue manager.

* Browse queues using MQMT.

* Monitor the status of queues.

* Run simple MQSeries programs that use local queues.

26 MQSeries for VSE/ESA System Management Guide

Installation verification test

Note: If the installation verification test has not completed, check through the
preceding instructions.

Remote queue verification test

In order to expand this test to include a remote link, you must carry out the
following steps:

1. Using the appropriate manufacturer’s directions, install the prerequisite
hardware and software required to support the selected transport protocol
(SNA LU 6.2 or TCP/IP).

2. Define the MQSeries channels that you require. See [“Channel definitions” on|
and coordinate this task with the remote system administrator.

You will need to define a Sender channel to send messages from MQSeries for
VSE/ESA to a remote MQ system, and a Receiver channel to receiver message
from a remote MQ system.

Sender and receiver channels operate in pairs. They must have the same name,
for example, a Sender channel under MQSeries might be called VSE1.TO.NTS5,
and the Receiver channel on the remote NT system would also be called
VSE1.TO.NT5. Sender and Receiver channel pairs must also have matching
channel parameter values, that is, matching maximum messages size, batch size
and wrap sequence.

3. Configure the transmission queues and remote queues required by MQSeries to
communicate over the channel — see [“Channel definitions” on page 88

For the remote queue verification test, you will need to define a remote queue
that identifies a local queue on a remote queue manager, and a transmission
queue used to temporarily store messages while they are transmitted to the
remote queue manager.

To test remote queuing to MQSeries for VSE/ESA, you will also need a local
queue that can be identified in a remote queue definition on a remote queue
manager.

Use transaction TST2 to place test messages on a remote queue. These messages
will be temporarily stored in the transmission queue identified in the remote queue
definition. The MQSeries for VSE/ESA queue manager will subsequently transmit
the message to the remote queue manager. Verify that the test messages arrive
successfully on the remote system.

Remote MQ systems will have a utility program similar to the TST2 transaction.
On some systems, this program is called ‘amqgsput’. Use the utility program on the
remote system to put messages on the remote queue that points to a local queue
on the MQSeries for VSE/ESA system. Verify that the test messages arrive
successfully on the local queue.

You have now installed and locally verified MQSeries and you can use the
administrative programs and the MQI libraries.

However, before your user applications can effectively use the system for message
transmission, you must fully configure the system with your queue definitions.

This last step is the most important part of the installation. The requirements are
detailed in:

Chapter 3, “Configuring network communications,” on page 31 which provides
the configuration guidelines.

Chapter 2. Installation 27

Installation verification test

* |Chapter 4, “System operation,” on page 61,|which describes the MQSeries
system administration screens used in the configuration.

Post installation verification test CICS modifications

The MQSeries for VSE/ESA subsystem can be started and stopped automatically
as part of the normal CICS startup and shutdown procedures. You do this by
adding appropriate entries to the CICS Initialization and Shutdown parameters.

Note to users

You must not carry out these steps until you have installed MQSeries for
VSE/ESA.

CICS Program List Table Post Initialization (PLTPI)
The MQSeries subsystem requires initialization before applications can start
using the queue manager. These steps set up the MQSeries environment
and initialize the MQSeries resources.

To start MQSeries automatically, you can add the following programs to
the CICS initialization PLT (PLTPI) list:

MQPSENV Set up the MQSeries environment.

MQPSTART Initialize the resources.

For example:
DFHPLT TYPE=ENTRY, PROGRAM=MQPSENV DFHPLT TYPE=ENTRY, PROGRAM=MQPSTART

Other methods are given in |”MQSeries initialization” on page 19.|
CICS Program List Table Shut Down (PLTSD)
The MQSeries subsystem should be shutdown correctly before shutting
down CICS. This can be done:
* Manually, using transaction MQST
* Automatically, by placing the MQSeries program MQPSTOP in the CICS
shutdown PLT before the DFHDELIM statement

For example:
DFHPLT TYPE=ENTRY, PROGRAM=MQPSTOP

This ensures that MQSeries ends during the first phase of CICS
shutdown.

Migration procedures for existing users

You are strongly recommended to review the section [“Installing MQSeries for]
[VSE/ESA — all users” on page 9 before proceeding with the instructions in this
section.

Conveniently, migration from MQSeries for VSE/ESA 2.1.0 or 2.1.1 does not
require the deletion and re-creation of your VSAM datasets. This means your
existing files can be used with their existing data. The only exception to this is the
MQSeries configuration file.

To carry out the migration, follow the procedure under [‘Installing MQSeries for|
[VSE/ESA - all users” on page 9 with the following modifications:

1. Do not run sample job MQJCONFG.Z.

28 MQSeries for VSE/ESA System Management Guide

Migration procedures

Running MCJCONFG.Z will delete and redefine your MQSeries configuration
file, which contains, among other things, your application queue definitions.
Instead, the execution of the MQJSETUP.Z job and transaction MQSU will
ensure your configuration is upgraded correctly to 2.1.2. MQJSETUP.Z and
MQSU are standard steps during installation.

. Do not run sample job MQJQUEUE.Z.

The MQJQUEUE.Z job deletes and redefines your MQ VSAM datasets. You
must not run this job if you want to keep your existing queue data.

. Reset your queue manager definition.

If you have just installed your V2.1.2 system and you expect it to be configured
exactly the same as your V2.1.0 or V2.1.1 system, you may need to review your
queue manager definition. On installation, the V2.1.2 queue manager definition
will adopt installation defaults. These may not match your V2.1.0 or V2.1.1
system.

Use MOMT option 1.1 to review and modify your global system definition.

. You must now relink all your MQSeries for VSE/ESA applications with LIBDEF
pointing the 2.1.2 sublib in order to include the new MQSeries for VSE/ESA
application programming interface objects. Relinking is required for CICS and
batch applications.

When, after completing the full installation process with the above modifications,
you start MQSeries for VSE/ESA 2.1.2, you should see your existing queues with
their previous data, and your existing channel definitions. This completes the
migration process for V2.1.0 and V2.1.1 systems.

Note: If the migration has not completed correctly, check through the preceding

instructions.

Chapter 2. Installation 29

Migration procedures

30 MQSeries for VSE/ESA System Management Guide

Chapter 3. Configuring network communications

This chapter describes the steps you perform to configure MQSeries to run on the
CICS system and communicate with other MQSeries systems. The chapter assumes
that your chosen communications software has been installed and correctly
configured on your system.

For ACF/VTAM, using MQSeries should not require any changes to the:
* VTAM parameters
¢ Definition of CICS systems to VTAM

However, you must define all the LUs that are involved.

For TCP/IP, using MQSeries with the TCP/IP communications protocol requires
the installation of TCP/IP for VSE/ESA V1.4 or later.

TCP/IP is shipped as part of the VSE/ESA base product in library PRD1.BASE,
and simply requires that you install a product key together with your customer
information. For further details refer to the TCP/IP for VSE/ESA User’s Guide.

MQSeries for VSE/ESA does not have any special TCP/IP installation or
configuration requirements.

Note: If TCP/IP is to be used as a transport protocol, the TCP/IP phase library
must be added to the LIBDEF statement in the CICS startup JCL before the
SCEEBASE library.

This is because SCEEBASE contains a TCP/IP phase stub that handles
TCP/IP API calls when TCP/IP is not installed.

This chapter describes how to define connections and sessions for LU 6.2 channel
connections, and provides guidelines for configuring the queue manager, channels
and queues for effective communications.

MQSeries system definitions required for ACF/VTAM

The local MQSeries for VSE/ESA system has to be informed about remote
MQSeries systems with which it will communicate. MQSeries has to be defined to:
* MQSeries on CICS (in the network specific parts of the channel definition)
 CICS itself, in one of the following ways:

— In a TERMINAL definition

— In CONNECTION/SESSION definitions

— Through the CICS AUTOINSTALL facility

* VTAM (either predefined, or by VTAM dynamic resource definition), if you are
using SNA LU6.2.

Definitions in CICS for LU 6.2 connections

If the CICS end of an MQSeries channel is to initiate the channel connection (that
is, the CICS channel-endpoint is a sender), CICS performs an EXEC CICS
ALLOCATE. However, this succeeds only if CICS is:

* A contention winner

© Copyright IBM Corp. 1995, 2004 31

MQSeries definitions

* Already bound
* Not already allocated

If CICS has no definition of the resource, CICS is incapable of formulating a
request to VTAM for session establishment. In these circumstances, CICS
AUTOINSTALL is inappropriate — autoinstall is for incoming session establishment
requests, not for outgoing ones.

Therefore, for sender channel-endpoints on VSE, a definition of the remote system
is required at the CICS level.

If the remote system, at the network level, is capable of supporting parallel
sessions (for example, it has independent LU 6.2 capability, or it is another CICS
system) and, you intend to configure several channels between the two systems,
you should use CONNECTION and SESSIONS definitions.

Typical definitions, using the CICS Resource Definition Online (RDO) transaction,
CEDA, are shown in

DEFINE GROUP(<group name 1>)
CONNECTION(<remote conn>)
NETNAME (<remote Tuname>)
ACCESSMETHOD (VTAM)

PROTOCOL (APPC)
SINGLESESS(NO)

DEFINE GROUP(<group name 1>)

SESSIONS (<sess name>)

CONN(<remote conn>)

MODE (<1ogmode 1>)

MAXIMUM(<max sessions>,<max CICS contention winners>)
INSTALL GROUP(<group name 1>)

ADD GROUP(<group name 1>) LIST(<start-up Tist>) {AFTER(<group name>)}

Figure 7. Definitions in CICS using RDO for parallel session partner LU

If the remote LU is capable of only one session, then it may be defined to CICS as
either a single-session connection definition or as a terminal definition

32 MQSeries for VSE/ESA System Management Guide

MQSeries definitions

DEFINE GROUP(<group name 2>)
CONNECTION(<remote conn>)
NETNAME (<remote Tuname>)
ACCESSMETHOD (VTAM)

PROTOCOL (APPC)
SINGLESESS(YES)

DEFINE GROUP(<group name 2>)
SESSIONS (<sess name>)
CONN(<remote conn>)

MODE (<1ogmode 2>)
MAXIMUM(1,1)

INSTALL GROUP(<group name 2>)

ADD GROUP(<group name 2>) LIST(<start-up list>) {AFTER(<group name>)}

Figure 8. Definitions in CICS for single-session capable partner LU

DEFINE GROUP(<group name 3>)
TERMINAL (<remote conn>)
NETNAME (<remote Tuname>)
TYPETERM(DFHLU62T)

MODENAME (<Togmode 2>)

INSTALL GROUP(<group name 3>)

ADD GROUP(<group name 3>) LIST(<start-up Tist>) {AFTER(<group name>)}

Figure 9. Definitions in CICS singles-session capable LU

The CICS supplied typeterm definition, DFHLU62T, provides a suitable terminal
type definition. It exists in group DFHTYPE, which should be installed on your
system.

Sample definitions for CICS tables can be found in the sublibrary
PRD2.MQSERIES. However, other definitions are specific to your environment and
you have to create them manually using the CEDA transaction, or DEFINE
commands if using the DFHCSDUP batch program.

The definitions consist of a:
+ Connection definition — see|“Connection definition”]
» Session definition — see [“Session definition” on page 34|

Connection definition

CICS uses the connection name to identify the other systems. For example, if
sessions in VSE1 are to converse with sessions in VSE2 and MVS™, you must
define both VSE and MVS connections in each direction.

You must also define all the sessions and terminals involved if you are using SNA
LU 6.2.

Type CEDA DEF CONN GROUP(MQSERIES) to create connections, and set the fields to
the following values:

Chapter 3. Configuring network communications 33

MQSeries definitions

Table 1. Object Characteristics of Connection

Category Parameter Desired Value
Connection VSE2
Group MQSERIES
Connection Identifiers Netname vse2lu62
Connection Properties ACcessmethod Vtam
Protocol Appc
Datastream User
RECordformat U
Operational Properties AUtoconnect Yes
INService Yes
Security ATtachsec Local

The settings detailed, together with default values are sufficient for operation. For
other parameters, refer to the CICS/VSE 2.3 Resource Definition (Macro) manual.

You can also display the connection status by typing CEMT INQ CONN, to display:

Table 2. CEMT | CONN display output.

STATUS: RESULTS - OVERTYPE TO MODIFY

Conn(VSE2) Net(xxxxxxxx) Ins Acq

Conn(MVS) Net(xxxxxxxx) Ins Rel

Session definition

Type CEDA DEF SESSION G(MQSERIES) to create session names. Enter the values

shown in to complete the fields.
Table 3. CEDA V SESS display parameter settings

Category Parameter Desired Value
Sessions VSE1VSE2
Group MQSERIES
Session Identifiers Connection VSE2
Session Properties Protocol Appc
Maximum 00006,00003
RECEIVEcount No
SENDCount No
SENDSize 04096
RECEIVESize 04096
Operational Properties Autoconnect Yes
Buildchain Yes
RELreq No
Discreq No
Recovery RECOvoption Sysdefault

34 MQSeries for VSE/ESA System Management Guide

MQSeries definitions

The settings detailed, together with default values, are sufficient for operation. For
other parameters, refer to the CICS/VSE 2.3 Resource Definition Guide.

Note: The DFHSIT Table must have the parameter ISC = YES to make the
MQSeries system work.

MQSeries for VSE/ESA configuration guidelines

The following guidelines refer to the MQSeries master terminal (MQMT)
administration dialogs. For information about using MQMT, see [“MQSeries master|
terminal (MQMT) — main menu” on page 63

There are three levels of configuration:
* The queue manager

* The channel

* The queue

Some fields are the same in all three levels, for example, the Maximum Message
Size.
Notes:

1. The maximum message size defined in the queue manager configuration must
be the largest of all those defined in the channels for this queue manager.

2. The size defined in the channel configuration must be equal to, or greater than,
the largest message size that is accessing this channel.

3. Each level of maximum message size configuration utilizes different kinds of
resources. Unnecessarily large sizes will consume address space.

Queue manager configuration guidelines

When configuring the queue manager (see ['Global system definition” on page 66),
use the following guidelines:

Maximum Number of Tasks
The maximum number (integer) of simultaneous connections to the queue
manager. Though there is a slight overhead for each unused reservation,
there is no harm in setting a large number, for example, 200.

Maximum Concurrent Queues
The maximum number of simultaneous open local queues allowed for the
queue manager. You are recommended to set this to a large number, for
example, 200.

System Wait Interval
The maximum polling time (in seconds) for the system monitor program
after the system starts. A value of thirty seconds is usually sufficient.

Note: The system monitor task remains active until the CICS region is shut
down, but exists in a wait state until the task is activated by the
expiration of the System Wait Interval or by some specific application
interface tasks.

The system monitor task starts up the trigger program and schedules
the processes that reclaim resources held by applications that have
ended abnormally. If there are too many, the System Wait Interval
should be reduced to schedule this cleanup process more frequently.

Chapter 3. Configuring network communications 35

Product configuration

Maximum Q Depth

The maximum number of active messages allowed by the queue manager for
each queue. This value serves as the default Maximum Q Depth value when
defining a queue. Any inbound message that causes the queue depth to
exceed this size will be rejected as “Queue Full”.

If this value is smaller than the Maximum Q Depth specified in the queue
definition, it becomes the limiting value for the queue. You should set the
value to double the maximum number of messages expected to be queued
before any application starts to process them.

Maximum Message Size

The maximum number of characters allowed by the queue manager for each
message. This field needs only to be large enough to accommodate the
largest message. Setting a higher value than necessary wastes resource.

For example, if you anticipate the largest message to be 10 KB (10,240 bytes)
you should set this field to 10240.

Note: Messages are stored in VSAM clusters and large messages can span
multiple VSAM records. However, you should avoid spanning
multiple clusters wherever possible, because of performance
implications.

Where an entire message is stored within a single VSAM record, a
message header of 740 bytes, for identification and description, is
prefixed to the message.

Where a message is split across multiple records, each subsequent
record uses a 56-byte header as a prefix to the data.

Maximum Single Q Access

This field defines the maximum number of MQOPEN calls against any queue
handled by this queue manager. A value of 1000 calls is an acceptable value,
if the maximum number of opens for each queue in the system is 100.

Maximum Global Locks

The maximum number of entries that the queue manager can use to maintain
uncommitted MQPUT or MQGET calls, for each queue in the system, for
recovery. A value of 500 is normally used.

Maximum Local Locks

The maximum number of entries that the queue manager can use to maintain
uncommitted MQPUT or MQGET calls for each queue and task for recovery.
Since an entry of a local lock is deleted once an application issues an explicit
SYNCPOINT CICS command to commit updates, the more often an
application takes the checkpoint, the fewer the maximum number of local
locks needed. You should specify a value greater than the largest message
batch size for all the channel records. A value of 20 is usually sufficient.

Channel configuration guidelines

Defining the remote MQSeries system to the local queue manager is described in

[“Channel definitions” on page 88.|However, from the point of view of showing

where fields in the various definitions have to correspond, an outline MQSeries
channel definition is shown in [Figure 10 on page 37}

36 MQSeries for VSE/ESA System Management Guide

Product configuration

/i1/05/2003 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQBD h
15:19:47 Channel Record DISPLAY CIC1
MQMMCHN A00O
Channel : VSE7.TO.VSE8

Desc. . :

Protocol: T (L/T) Type : S (Sender/Receiver/svrConn) Enabled : Y
Sender

Remote TCP/IP port : 01414 LU62 Allocation retry num : 00000000
Get retry number : 00000003 LU62 delay fast (secs). . : 00000000
Get retry delay (secs) . . : 00000015 LU62 delay slow (secs). . : 00000000
Convert msgs(Y/N). : N

Transmission queue name. . : VSE7.VSE8.XQ5

TP name. . :
Sender/Receiver

Connection : VSE8HOST

Max Messages per Batch . . : 000050 Message Sequence Wrap . . : 999999
Max Message Size : 0005000 Dead letter store(Y/N) . : N

Max Transmission Size . . : 032766 Split Msg(Y/N) :N

Max TCP/IP Wait : 000300
Channel record displayed.

F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

Figure 10. Outline MQSeries channel definition

When configuring the channel, use the following guidelines:

Protocol
The required transport options for this channel. The options are:
« L-LU6.2 (SNA)
 T-TCP/IP

Remote TCP/IP port
The port number; relevant for TCP/IP defined channels only.

This field is relevant only for sender channels. Receiver channels are
started by the MQSeries listener program which uses the port number
configured in the global system definition.

Type Channel type of sender, receiver, or client.

Connection
The channel partner name. This is the CICS connection ID for LU 6.2
channels, or the remote hostname or IP address for TCP/IP channels.

For TCP/IP this field is relevant only for sender channels. Sender channels
identify a specific host for communications, whereas receiver channels can
accept communications from any host.

Note that for TCP/IP channels, the connection name does not include a
port number as it may do on other MQ platforms. The port number is
configured as a separate channel parameter.

LU62 Allocation Retry Num
The retry count field represents the number of times an allocation is retried
when the conversation has not been established. You should set the retry
count at less than 10. If this value is exceeded, the system can be placed
under stress.

For receiver channels, this value should be set to zero.

Chapter 3. Configuring network communications 37

Product configuration

Note: When you configure a new environment, failures occurring more
frequently than this can indicate a network problem. You should
investigate the problem LU, and its associated resources, to ensure
that the session is bound and to establish why the conversation
cannot be allocated.

LU62 Delay fast
The time interval, in seconds, that an allocation of conversation is retried
for the first cycle of retries. A value of one to five seconds is sufficient for
this field, with the longer time being used for a slow environment, for
example, a dial-up SDLC.

For receiver channels, this value should be set to zero.

LU62 Delay slow
The time interval, in seconds, that an allocation of conversation is retried
for the next cycle of retries, should the first cycle of retries fail. A value
between three and 10 seconds is sufficient for this field, with the longer
time being used for a slow environment.

For receiver channels, this value should be set to zero.

Get retry number
The number of retries for the MQGET call when the queue is depleted. If a
transmission queue is empty, the queue manager retries at the Delay-Time
interval before disconnecting the channel or making a request to disconnect
the channel.

For receiver channels, this value should be set to zero.

Get retry delay
The time interval, in seconds, between retries. The value of this field may
depend on the size of message and the platforms where the LU resides.
The optimum value can vary from 1 to 20 seconds.

The longer the delay time specified, the less frequently a channel is
reopened. For time-consuming dial-up connections, you are recommended
to use a value of 20 seconds.

For receiver channels, this value should be set to zero.

Note: By using a value of zero for the Number of Retries, and a value of
“n” seconds for the Delay Time it is possible for you to set a simple
disconnection interval similar to that provided on other MQSeries

platforms.

Max Messages per Batch
The maximum number of messages in the batch.

Message Sequence Wrap
The message sequence number (MSN) wrap count represents the highest
MSN value used on this channel, after which the MSN reverts to one. You
are recommended to set this value to 999 999.

Note: The value of the MSN Wrap count must be the same at both the
sending and receiving ends of the channel.

Max Transmission Size
The mutually accepted maximum number of characters for each
transmission. The minimum value should be equal to the maximum
message size expected on this channel, plus 476 bytes for the transmission
header.

38 MQSeries for VSE/ESA System Management Guide

Product configuration

Max Message Size
The maximum number of bytes for each message that is allowed for this
channel.

Convert Msgs
A field that identifies whether message data is converted before it is sent to
a remote queue manager. To convert message data, set this field to Y.

Split Msg
A field that identifies whether message data can be split across network
transmissions. For example, if the transmission size is 8 KB and message
data lengths are up to 30 KB, then the message data must be split across
transmissions.To split message data in such situations, set this field to Y.

TP Name
The remote task ID, character only, of the receiver on a remote CICS region
or a Transaction Program name on a remote system. This is required by the
sender, and since CICS uses four bytes as the transaction identifier, only
the first four bytes of the remote task ID are meaningful for CICS to CICS
conversation.

This field is not relevant for TCP/IP channels.

Note: VSE converts the name to uppercase, therefore, the corresponding
name on the remote system should be defined in uppercase
characters.

Max TCP/IP Wait
The maximum number of second that a Message Channel Agent (MCA)
should wait to receive TCP/IP data before terminating the connection with
an error. See [“Bullet-proof channels” on page 57|for more information

Queue configuration guidelines
Defining queues to the local queue manager is described in [’Queue definitions” on|

age 76.Certain parameters in queue definitions are important when configuring
network communications. The queue extended definition, shown in |Figure 11 on

page 40} includes these parameters.

Chapter 3. Configuring network communications 39

Product configuration

/11/11/2003 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQBD
13:00:08 Queue Extended Definition CIC1
MQMMQUE A0O5

Object Name: MQTS.MQ23.XQl

General Maximums Events

Type . . : Local Max. Q depth . : 00001000 Service int. event: N

File name : MQF0002 Max. msg length: 00004000 Service interval : 00000000
Usage . . : T Max. Q users . : 00000100 Max. depth event : N
Shareable : Y Max. gbl Tocks : 00000200 High depth event : N

Max. 1cl Tocks : 00000200 High depth Timit : 000
Low depth event . : N

Triggering Low depth Timit . : 000
Enabled . : Y Transaction id.:

Type . . . : E Program id . . : MQPSEND

Max. starts: 0001 Terminal id 3

Restart . : N Channel name . : MQTS.T0.MQ23

User data

Requested record displayed.
PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update

PF9=List PF10=Queue
o J

Figure 11. Outline MQSeries extended queue definition

When configuring the queue (see [“Queue definitions” on page 76), use the
following guidelines:

File name
The CICS file name, of up to seven characters, used to store messages for
this queue. A physical file can hold as many queues as required. A
message queue can be logically replenished, if its associated physical file
name is changed.

Note: You should not use the MQFREOR file for queue definitions. The
MQEFREOR file is used by the automatic VSAM reorganization
feature and is deleted and redefined during reorganization.
Therefore, message data for queues defined in MQFREOR would be
lost.

Max. Q depth
The maximum number of records that can remain unread on this queue.
Any inbound message that causes the queue depth to exceed this size is
rejected as “Queue Full”. The minimum value you set should be the
maximum number of messages on the queue before the application starts
to read and process the queue. In practice, you can set this to 9,999,999.

Max. msg length
The maximum number of characters for each message that this queue
allows. If this queue is a transmission queue, the value needs to be
sufficiently large to accommodate all messages using this queue as the
outbound queue.

Max. Q users
The maximum number of MQOPEN calls that can occur on this queue.
You are recommended to set a value of 100 for each queue that is not a
transmission queue. For a transmission queue you should add a value of

40 MQSeries for VSE/ESA System Management Guide

Product configuration

100 calls, to the base of 100 calls, for each additional target queue that
receives messages from this transmission queue. Setting a high value can
use too much overhead.

Max. gbl locks
The maximum number of entries that the queue manager uses to maintain
committed MQPUT and MQGET calls for this queue for system recovery. If
the queue is intended for random message retrieval, rather than sequential
processing, then specify a higher value (for example, 1000). For sequential
processing, a lower value (for example, 200) should be sufficient.

Max lcl locks
The maximum number of entries that the queue manager uses to maintain
uncommitted MQPUT and MQGET calls for this queue for recovery. Since
an entry of a local lock is deleted once an application issues an explicit
SYNCPOINT CICS command to commit updates, the more often an
application takes the checkpoint, the fewer the maximum number of local
locks needed. A value similar to the Global Lock Entries setting is
recommended.

Trigger Type
“F” is used to generate a trigger when an MQPUT call changes the status
of a queue from empty to nonempty. The triggered transaction must have
sufficient logic to empty the queue, including messages that may arrive
during the process, in a single thread. “E” is used to generate a trigger
whenever an MQPUT call occurs and may have as many threads as
specified in Max Trigger Starts.

Max. starts
The maximum number of trigger threads that can be activated
simultaneously. This field applies to Trigger Type “E” only.

Transaction id
The transaction to be started by the trigger. This field is mutually exclusive
with the Program ID. You are recommended to leave this field blank and
use a Program ID, for example MQPSEND, unless you require a user
transaction.

Once the initial maximum trigger starts is reached then MQSeries for
VSE/ESA only checks that the maximum trigger starts are running at every
system interval and not when each task completes. If it is important to
have a definite number of trigger instances running against a queue, you
should use Program ID to identify your trigger program.

Program id
You should use the MQPSEND call on a transmission queue if you require
triggering.

Terminal id
You should leave this field blank unless you require a terminal for problem
determination purposes.

Channel Name
This field should be left blank except for a transmission queue definition.
For a transmission queue definition, this field must identify a channel
name.

User Data
This field is for static data that you want to pass to the trigger instance.
When a trigger instance is activated, it is passed data in the form of the

Chapter 3. Configuring network communications 41

Product configuration

MQTM structure (see the CMQTML and CMQTMYV copybooks). Data in
the User Data field is passed in the MQTM-USERDATA field.

Event The event settings for queues do not affect network communications. For a
full description of the event settings, refer to [“Local queue extended]
definition screen” on page 79|

Permitted number of channels
The limit on the number of channels depends upon the availability of system
resources. The queue manager can support as many channels and transmission

queues as the resource in the system permits.

Example configuration

The following tables give a set of values that can be used to set up your system.

See:

* [Table 4 for the queue manager
* [Table j for a channel

* [Table ¢ for a queue

Table 4. Example queue manager configuration

Parameter

Value | Units

Maximum Number of MQCONN

200 | integer

Maximum Open Queue

200 | integer

System Wait Interval

30 | seconds

Maximum Q Depth

9999999 | integer

Maximum Message Size

5000 | bytes

Maximum Number of Opens

500 | integer

Max Number of Global Locks

500 | integer

Max Number of Local Locks

500 | integer

Table 5. Example channel configuration

Parameter Value | Units
Allocation Retries 4 |integer
Delay Time-Fast 1|second
Delay Time-Slow 3| seconds
Get Retries 1|integer
Delay Time 10 | seconds
Message Sequence Wrap 999999 | integer
Maximum Transmission Size 3821 | bytes
Maximum Message Size 5000 | bytes

Table 6. Example queue configuration

Parameter

Value | Units

Maximum Q Depth

999999 | integer

Maximum Message Size

5000 | bytes

Maximum Number of Opens

1000 (transmit queue) 100 | integer
(other queues)

Max Number of Global Locks

1000 (transmit queue) 100 | integer
(other queues)

42 MQSeries for VSE/ESA System Management Guide

Product configuration

Table 6. Example queue configuration (continued)

Parameter Value | Units

Max Number of Local Locks 1000 (transmit queue) 100 | integer
(other queues)

Trigger Type E | character

Maximum Trigger Starts 1|integer

Transaction 1d <blank> | character

Program Id MQPSEND (transmit queue) | character

user app. (other queues)

Channel exits

Channel-exit programs are called at defined places in the processing carried out by
MQSeries Message Channel Agent (MCA) programs.

Some of these user-exit programs work in complementary pairs. For example, if a
user-exit program is called by the sending MCA to encrypt the messages for
transmission, the complementary process must be functioning at the receiving end
to reverse the process.

The different types of channel-exit program include:
Security exit
Send exit
Receive exit
Message exit
Message retry exit
Auto-definition exit
Transport retry exit

MQ/VSE does not support message retry, auto-definition or transport retry exits
since these exits involve features of MQ that are not supported by MQ/VSE.

Review section |“Features” on page 8 for prerequisites for this feature.

Channel security exits

You can use security exit programs to verify that the partner at the other end of a
channel is genuine.

Channel security exit programs are called at the following places in an MCA'’s
processing cycle:

¢ At MCA initiation and termination.

e Immediately after the initial data negotiation is finished on channel startup. The
receiver end of the channel may initiate a security message exchange with the
remote end by providing a message to be delivered to the security exit at the
remote end. It may also decline to do so. The exit program is re-invoked to
process any security message received from the remote end.

e Immediately after the initial data negotiation is finished on channel startup. The
sender end of the channel processes a security message received from the remote
end, or initiates a security exchange when the remote end cannot. The exit
program is re-invoked to process all subsequent security messages that may be
received.

Chapter 3. Configuring network communications 43

Channel send and receive exits

Channel send and receive exits

You can use the send and receive exits to perform tasks such as data compression
and decompression. In MQ/VSE you can configure a channel for only one
send/receive exit program (MQ/VSE does not support exit lists).

Channel send and receive exit programs are called at the following places in an

MCA’s processing cycle:

* The send and receive exit programs are called for initialization at MCA initiation
and for termination at MCA termination.

e The send exit program is invoked at either end of the channel, immediately
before a transmission is sent over the link.

* The receive exit program is invoked at either end of the channel, immediately
after a transmission has been taken from the link.

There may be many transmissions for one message transfer, and there could be
many iterations of the send and receive exit programs before a message reaches the
message exit at the receiving end.

The channel send and receive exit programs are passed an agent buffer containing
the transmission data as sent or received from the communications link. For send
exit programs, the first eight bytes of the buffer are reserved for use by the MCA,
and must not be changed. If the program returns a different buffer, then these first
eight bytes must exist in the new buffer. The format of data presented to the exit
programs is not defined.

A good response code must be returned by send and receive exit programs. Any
other response will cause an MCA abnormal end (abend). Since data traffic can

continue after an abnormal end (so as to communicate the channel failure to the
remote MCA), send and receive exits are automatically suppressed following an
bad response code. However, the exit is still called at termination of the channel.

Send and receive exits usually work in pairs. For example a send exit may
compress the data and a receive exit decompress it, or a send exit may encrypt the
data and a receive exit decrypt it. When you define the appropriate channels, make
sure that compatible exit programs are named for both ends of the channel.

Channel send and receive exits may be called for message segments other than for
application data, for example, status messages. They are not called during the
startup dialog, nor the security check phase.

Although message channels send messages in one direction only, channel-control
data flows in both directions, and these exits are available in both directions, also.
However, some of the initial channel startup data flows are exempt from
processing by any of the exits.

There are circumstances in which send and receive exits could be invoked out of
sequence; for example, if you are running a series of exit programs or if you are
also running security exits. Then, when the receive exit is first called upon to
process data, it may receive data that has not passed through the corresponding
send exit. If the receive exit were just to perform the operation, for example
decompression, without first checking that it was really required, the results would
be unexpected.

44 MQSeries for VSE/ESA System Management Guide

Channel send and receive exits

You should code your send and receive exits in such a way that the receive exit
can check that the data it is receiving has been processed by the corresponding
send exit. The recommended way to do this is to code your exit programs so that:

* The send exit sets the value of the ninth byte of data to 0 and shifts all the data
along one byte, before performing the operation. (The first eight bytes are
reserved for use by the MCA.)

* If the receive exit receives data that has a 0 in byte 9, it knows that the data has
come from the send exit. It removes the 0, performs the complementary
operation, and shifts the resulting data back by one byte.

* If the receive exit receives data that has something other than 0 in byte 9, it
assumes that the send exit has not run, and sends the data back to the caller
unchanged.

When using security exits, if the channel is ended by the security exit it is possible
that a send exit may be called without the corresponding receive exit. One way to
prevent this from being a problem is to code the security exit to set a flag, in
MQCD.SecurityUserData or MQCD.SendUserData, for example, when the exit
decides to end the channel. Then the send exit should check this field, and process
the data only if the flag is not set. This prevents the send exit from unnecessarily
altering the data, and thus prevents any conversion errors that could occur if the
security exit received altered data.

In the case of MQI channels for clients, byte 10 of the agent buffer identifies the
API call in use when the send or receive exit is called. This is useful for identifying
which channel flows include user data and may require processing such as
encryption or digital signing.

The following table shows the data that appears in byte 10 of the channel flow
when an API call is being processed (note that these are not the only values of this
byte; there are other reserved values):

Table 7. Identifying API calls

API call Value of byte 10
MQCONN request'” > X'81
MQCONN reply 2 X91’
MQDISC request’ X’'82
MQDISC reply1 X'92'
MQOPEN request X'83
MQOPEN reply X'93
MQCLOSE request X84
MQCLOSE reply X'94’
MQGET request® X85
MQGET reply® X'95
MQPUT request® X'86
MQPUT reply® X'96’
MQPUT1 request® X'87
MQPUT1 reply® X'97’
MOQSET request X'88
MQSET reply X'98

Chapter 3. Configuring network communications 45

Channel send and receive exits

Table 7. Identifying API calls (continued)

MOQINQ request X’'89
MQINQ reply X'99’
MQCMIT request X'8A’
MQCMIT reply X'9A’
MOQBACK request X'8B’
MQBACK reply X'9B’
Notes:

1. The connection between the client and server is initiated by the client application using
MQCONN. Therefore, for this command in particular, there will be several other
network flows. This also applies to MQDISC that terminates the network connection.

2. MQCONNX is treated in the same way as MQCONN for the purposes of the
client-server connection.

3. If the message data exceeds the transmission segment size, there may be a large
number of network flows per single API call.

Channel message exits

You can use the channel message exit for the following:
* Encryption on the link

* Validation of incoming user IDs

* Substitution of user IDs according to local policy

* Message data conversion

* Journaling

* Reference message handling

In MQ/VSE you can configure a channel for only one message exit program
(MQ/VSE does not support exit lists).

Channel message exit programs are called at the following places in an MCA'’s
processing cycle:

* At MCA initiation and termination
* Immediately after a sending MCA has issued an MQGET call
* Before a receiving MCA issues an MQPUT call

The message exit is passed an agent buffer containing the transmission queue
header, MQXQH, and the application message text as retrieved from the queue.
(The format of MQXQH is given in the MQSeries Application Programming
Reference book.) If you use reference messages, that is messages that contain only
a header which points to some other object that is to be sent, the message exit
recognizes the header, MOQRMH. It identifies the object, retrieves it in whatever
way is appropriate appends it to the header, and passes it to the MCA for
transmission to the receiving MCA. At the receiving MCA, another message exit
recognizes that this is a reference message, extracts the object, and passes the
header on to the destination queue. See the MQSeries Application Programming
Guide for more information about reference messages and some sample message
exits that handle them.

Message exits can return the following responses:

46 MQSeries for VSE/ESA System Management Guide

Channel message exits

* Send the message (GET exit). The message may have been changed by the exit.
(This returns MQXCC_OK.)

* Put the message on the queue (PUT exit). The message may have been changed
by the exit. (This returns MQXCC_OK.)

* Do not process the message. The message is placed on the dead-letter queue
(undelivered message queue) by the MCA.

* Close the channel.
e Bad return code, which causes the MCA to abend.

Message exits are called just once for every complete message transferred, even
when the message is split into parts. An exit runs in the same thread as the MCA
itself. It also runs inside the same unit of work (UOW) as the MCA because it uses
the same connection handle. Therefore, any calls made under syncpoint are
committed or backed out by the channel at the end of the batch. For example, one
channel message exit program can send notification messages to another and these
messages will only be committed to the queue when the batch containing the
original message is committed.

Therefore, it is possible to issue syncpoint MQI calls from a channel message exit
program.

Configuring channel exits

Channel exits, and their associated exit data, can be configured using:

* Master Terminal transaction (MQMT)

* Programmable Command Formats (PCF)

* MQSeries Commands (MQSC)

Configuration using MQMT

Channel definitions can be created and modified using the master master terminal

transaction, MOQMT option 1.3, “Channel Definitions”.

The Channel Definitions screen appears as follows:

Chapter 3. Configuring network communications 47

Configuration using MQMT

/'12/17/2003 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQBD)
10:41:01 Channel Record DISPLAY CIC1
MQMMCHN A00O
Channel : VSE7.T0.0S390X

Desc. . :

Protocol: T (L/T) Type : S (Sender/Receiver/svrConn) Enabled : N
Sender

Remote TCP/IP port : 01414 LU62 Allocation retry num : 00000003
Get retry number : 00000003 LU62 delay fast (secs). . : 00000005
Get retry delay (secs) . . : 00000005 LU62 delay slow (secs). . : 00000001
Convert msgs(Y/N). : N

Transmission queue name. . : AIX2.XQl

TP name. . :

Sender/Receiver

Connection : AIXSERV2

Max Messages per Batch . . : 000001 Message Sequence Wrap . . : 999999
Max Message Size : 0004096 Dead letter store(Y/N) : N

Max Transmission Size . . : 032766 Split Msg(Y/N) : N

Max TCP/IP Wait : 000000

Channel record displayed.

F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

Figure 12. Channel Definitions screen

From this screen, PF11 activates the Channel Exit Settings screen, which appears as

follows:

4 . . N
12/17/2003 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQBD
10:45:17 Channel Exit Settings CIC1
MQMMCHN AGOO
Channel name . . . : VSE7.T0.0S390X
Channel type . . . : Sender
Send exit name . . : V20SSNDX
Send exit data . . :

Receive exit name. : V20SRCVX

Receive exit data. :

Security exit name : V20SSECX

Security exit data : COA

Message exit name. :

Message exit data. :

Channel exit settings displayed.

F2=Return PF3=Quit PF4=Read Fb6=Update)

Figure 13. Channel Exit Settings screen

The Channel Exit Settings screen allows channel exit programs, and associated

data, to be set for send, receive, security and message exits.

Channel exit names can be 1-8 characters, and follow the naming standard for any

program defined in the CICS CSD.

48 MQSeries for VSE/ESA System Management Guide

Configuration using MQMT

Channel exit data can be 1-32 characters and is optional. Data specified in the
channel definition is passed to exit programs when they are invoked in the
Channel Definition (MQCD) data structure.

Configuration using PCF
Channel definitions can be created and modified using the Programmable
Command Formats (PCF).

Channel exits, and their associated data, can be manipulated using the following
PCF commands:

¢ Create Channel
* Change Channel
* Copy Channel

¢ Inquire Channel

For each of these commands, the following parameters are supported:

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).
The maximum length of the exit name is restricted to the
MQ_EXIT_NAME_LENGTH constant.

MsgExit (MQCFST)
Message exit name (parameter identifierr MQCACH_MSG_EXIT_NAME).
The maximum length of the exit name is restricted to the
MQ_EXIT_NAME_LENGTH constant.

SendExit (MQCEFST)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME). The
maximum length of the exit name is restricted to the
MQ_EXIT_NAME_LENGTH constant.

ReceiveExit (MQCFST)
Receive exit name (parameter identifierr MQCACH_RCV_EXIT_NAME).
The maximum length of the exit name is restricted to the
MQ_EXIT_NAME_LENGTH constant.

SecurityUserData (MQCEFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA). The maximum length of the exit user
data is restricted to the MQ_EXIT_DATA_LENGTH constant.

MsgUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA). The maximum length of the exit
user data is restricted to the MQ_EXIT_DATA_LENGTH constant.

SendUserData (MQCFST)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA). The maximum length of the exit
user data is restricted to the MQ_EXIT_DATA_LENGTH constant.

ReceiveUserData (MQCEFST)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA). The maximum length of the exit user
data is restricted to the MQ_EXIT_DATA_LENGTH constant.

Chapter 3. Configuring network communications 49

Configuration using MQSC

Configuration using MQSC

Channel definitions can be created and modified using MQSeries Commands
(MQSQ).

Channel exits, and their associated data, can be manipulated using the following
MQSC commands:

* DEFINE CHANNEL
* ALTER CHANNEL
» DISPLAY CHANNEL

For each of these commands, the following parameters are supported:

SCYEXIT (string)
Channel security exit name. For MQ/VSE, exit names are 1-8 characters.

MSGEXIT (string)
Channel message exit name. For MQ/VSE, exit names are 1-8 characters.

SENDEXIT (string)
Channel send exit name. For MQ/VSE, exit names are 1-8 characters.

RCVEXIT (string)
Channel receive exit name. For MQ/VSE, exit names are 1-8 characters.

SCYDATA (string)
Channel security exit user data. For MQ/VSE, exit user data can be 0-32
characters.

MSGDATA (string)
Channel message exit user data. For MQ/VSE, exit user data can be 0-32
characters.

SENDDATA (string)
Channel send exit user data. For MQ/VSE, exit user data can be 0-32
characters.

RCVDATA (string)
Channel receive exit user data. For MQ/VSE, exit user data can be 0-32
characters.

Writing and compiling channel-exit programs

Channel exits must be named in the channel definition. You can do this when you
first define the channels, or you can add the information later using, for example,
the MQSC command ALTER CHANNEL. The format of the exit name must
comply with the naming standards for program entries defined in the CICS CSD.

If the channel definition does not contain a user-exit program name, a user exit is
not called.

User exits and channel-exit programs are able to make use of all MQI calls, except
as noted in the sections that follow. To get the connection handle, an MQCONN
must be issued, even though a warning, MOQRC_ALREADY_CONNECTED, is
returned because the channel itself is connected to the queue manager.

Note: You are recommended to avoid issuing the following MQI calls in
channel-exit programs:

« MQCMIT
« MQBACK

50 MQSeries for VSE/ESA System Management Guide

Writing and compiling channel-exit programs

An exit runs in the same thread as the MCA itself and uses the same connection
handle. So, it runs inside the same UOW as the MCA and any calls made under
syncpoint are committed or backed out by the channel at the end of the batch.

Therefore, a channel message exit could send notification messages that will only
be committed to that queue when the batch containing the original message is
committed. So, it is possible to issue syncpoint MQI calls from a channel message
exit.

Channel-exit programs should not modify the Channel data structure (MQCD),
except in the case that it is necessary to communicate with Other exit programs via
associated user exit data.

Also, for programs written in C, non-reentrant C library function should not be
used in a channel-exit program.

All exits are called with a channel exit parameter structure (MQCXP), a channel
definition structure (MQCD), a prepared data buffer, data length parameter, and
buffer length parameter. The buffer length must not be exceeded:

* For message exits, you should allow for the largest message required to be sent
across the channel, plus the length of the MQXQH structure.

* For send and receive exits, the largest buffer you should allow for is 64 KB.
Note: Receive exits on sender channels and sender exits on receiver channels use
2 KB buffers for TCP.

* For security exits, the distributed queuing facility allocates a buffer of 1000
bytes.

It is permissible for the exit to return an alternate buffer, together with the relevant
parameters. See [“MQ CHANNEL_EXIT - Channel exit” on page 52

Exit programs in CICS

An exit program must be written in Language Environment (LE) C, COBOL, or
PL/I. In CICS, the exits are invoked with EXEC CICS LINK with the Parameters
passed by pointers (addresses) in the CICS communication Area (COMMAREA).
The exit programs, named in the channel definitions, reside in a library in the
LIBDEF SEARCH concatenation of the CICS startup JCL. They must be defined in
the CICS system definition file CSD, and must be enabled.

User-exit programs can also make use of CICS API calls, but you should not issue
syncpoints because the results could influence units of work declared by the MCA.

Any non-MQSeries for VSE/ESA resources updated by an exit are committed, or
backed out, at the next syncpoint issued by the channel program.

Channel-exit calls and data structures

This topic provides reference information about the special MQSeries calls and
data structures used when writing channel exit programs. This is product-sensitive
programming interface information. You can write MQSeries user exits in LE C,
COBOL or PL/I

In a number of cases, parameters are arrays or character strings whose size is not
g 4

fixed. For these, a lowercase “n” is used to represent a numeric constant. When the
declaration for that parameter is coded, the “n” must be replaced by the numeric

Chapter 3. Configuring network communications 51

Channel-exit calls and data structures

value required. For further information about the conventions used in these
descriptions, see the MQSeries Application Programming Reference book.

The calls are:

MQ_CHANNEL_EXIT
Channel exit

The data structures are:

MQCD
Channel data structure

MQCXP
Channel exit parameter structure

MQ_CHANNEL_EXIT - Channel exit

This call definition is provided solely to describe the parameters that are passed to
each of the channel exits called by the Message Channel Agent. No entry point
called MQ_CHANNEL_EXIT is actually provided by the queue manager; the name
MQ_CHANNEL_EXIT is of no special significance since the names of the channel
exits are provided in the channel definition MQCD.

MQSeries for VSE/ESA supports four types of channel exit:
* Channel security exit

¢ Channel message exit

¢ Channel send exit

¢ Channel receive exit

The parameters are similar for each type of exit, and the description given here
applies to all of them, except where specifically noted.

Syntax:

MQ_CHANNEL_EXIT (ChannelExitParms, ChannelDefinition, DatalLength,
AgentBufferLength, AgentBuffer, ExitBufferLength,
ExitBufferAddr)

Parameters: The MQ_CHANNEL_EXIT call has the following parameters.

ChannelExitParms (MQCXP) - input/output
Channel exit parameter block. This structure contains additional
information relating to the invocation of the exit. The exit sets information
in this structure to indicate how the MCA should proceed.

ChannelDefinition (MQCD) - input/output
Channel definition. This structure contains parameters set by the
administrator to control the behavior of the channel.

DataLength (MQLONG) - input/output
Length of data. When the exit is invoked, this contains the length of data
in the AgentBuffer parameter. The exit must set this to the length of the
data in either the AgentBuffer or the ExitBufferAddr (as determined by the
ExitResponse2 field in the ChannelExitParms parameter) that is to proceed.

The data depends on the type of exit:

* For a channel security exit, when the exit is invoked this contains the
length of any security message in the AgentBuffer field, if ExitReason is
MQXR_SEC_MSG. It is zero if there is no message. The exit must set this
field to the length of any security message to be sent to its partner if it
sets ExitResponse to MQXCC_SEND_SEC_MSG or

52 MQSeries for VSE/ESA System Management Guide

MQ_CHANNEL_EXIT - Channel exit

MQXCC_SEND_AND_REQUEST_SEC_MSG. The message data is in
either AgentBuffer or ExitBufferAddr.

The content of security messages is the sole responsibility of the security
exits.

* For a channel message exit, when the exit is invoked this contains the
length of the message (including the transmission queue header). The
exit must set this field to the length of the message in either AgentBuffer
or ExitBufferAddr that is to proceed.

* For a channel send or channel receive exit, when the exit is invoked this
contains the length of the transmission. The exit must set this field to the
length of the transmission in either AgentBuffer or ExitBufferAddr that
is to proceed.

If a security exit sends a message, and there is no security exit at the
other end of the channel, or the other end sets an ExitResponse of
MQXCC_OK, the initiating exit is re-invoked with MQXR_SEC_MSG
and a null response (DataLength=0).

AgentBufferLength (MQLONG) - input

Length of agent buffer. This can be greater than DataLength on invocation.

For channel message, send, and receive exits, any unused space on
invocation can be used by the exit to expand the data in place. If this is
done, the DataLength parameter must be set appropriately by the exit.

AgentBuffer (MQBYTE | AgentBufferLength) - input/output

Agent buffer. The contents of this depend upon the exit type:

For a channel security exit, on invocation of the exit it contains a security
message if ExitReason is MQXR_SEC_MSG. If the exit wishes to send a
security message back, it can either use this buffer or its own buffer
(ExitBufferAddr).

For a channel message exit, on invocation of the exit this contains the
transmission queue header (MQXQH), which includes the message
descriptor (which itself contains the context information for the message),
immediately followed by the message data.

If the message is to proceed, the exit can do one of the following:

* Leave the contents of the buffer untouched

* Modify the contents in place (returning the new length of the data in
DataLength; this must not be greater than AgentBufferLength)

* Copy the contents to the ExitBufferAddr, making any required changes

Any changes that the exit makes to the transmission queue header are not
checked; however, erroneous modifications may mean that the message
cannot be put at the destination.

For a channel send or receive exit, on invocation of the exit this contains
the transmission data. The exit can do one of the following;:

* Leave the contents of the buffer untouched

* Modify the contents in place (returning the new length of the data in
DataLength; this must not be greater then AgentBufferLength)

+ Copy the contents to the ExitBufferAddr, making any required changes

Note that the first 8 bytes of the data must not be changed by the exit.

Chapter 3. Configuring network communications 53

MQ_CHANNEL_EXIT - Channel exit

ExitBufferLength (MQLONG) - input/output
Length of exit buffer. On the first invocation of the exit, this is set to zero.
Thereafter whatever value is passed back by the exit, on each invocation, is
presented to the exit next time it is invoked.

ExitBufferAddr (MQPTR) - input/output
Address of exit buffer. This is a pointer to the address of a buffer of
storage managed by the exit, where it can choose to return message or
transmission data (depending upon the type of exit) to the agent if the
agent’s buffer is or may not be large enough, or if it is more convenient for
the exit to do so.

On the first invocation of the exit, the address passed to the exit is null.
Thereafter whatever address is passed back by the exit, on each invocation,
is presented to the exit the next time it is invoked.

Usage notes: The function performed by the channel exit is defined by the
provider of the exit. The exit, however, must conform to the rules defined here and
in the associated control block, the MQCXP.

The ChannelDefinition parameter passed to the channel exit, for MQ/VSE, is
always MQCD_VERSION_1.

In general, channel exits are allowed to change the length of message data. This
may arise as a result of the exit adding data to the message, or removing data from
the message, or compressing or encrypting the message. However, special
restrictions apply if the message is a segment that contains only part of a logical
message. In particular, there must be no net change in the length of the message as
a result of the actions of complementary sending and receiving exits.

For example, it is permissible for a sending exit to shorten the message by
compressing it, but the complementary receiving exit must restore the original
length of the message by decompressing it, so that there is no net change in the
length of the message.

This restriction arises because changing the length of a segment would cause the
offsets of later segments in the message to be incorrect, and this would inhibit the
queue manager’s ability to recognize that the segments formed a complete logical
message.

CICS invocation: The MQSeries MCA uses the CICS command level LINK call to
pass control to the exit program.

The LINK call passes a communication area (COMMAREA) to the exit program
that contains the addresses of the exit parameters as follows:

struct tagEXITPARMS

{
MQCXP *ChannelExitParms;
MQCD *ChannelDefinition;
MQLONG =*Datalength;
MQLONG *AgentBufferLength;
VOID *AgentBuffer;
MQLONG *ExitBufferlLength;
VOID *ExitBufferAddr;

} EXITPARMS;

54 MQSeries for VSE/ESA System Management Guide

MQ_CHANNEL_EXIT - Channel exit

MQCD - Channel data structure

The MQCD structure contains the parameters which control execution of a channel.
It is passed to each channel exit that is called from a Message Channel Agent
(MCA). See[“MQ_CHANNEL_EXIT - Channel exit” on page 52)

The MQCD data structure is described in the MQSeries Intercommunication
manual.

MQCXP - Channel exit parameter structure
The MQCXP structure is passed to each type of exit called by a Message Channel
Agent (MCA). See [“MQ_CHANNEL_EXIT - Channel exit” on page 52

The exit should not expect that any input fields that it changes in the channel exit
parameter block will be preserved for its next invocation. Changes made to
input/output fields (for example, the ExitUserArea field), are preserved for
invocations of that instance of the exit only. Such changes cannot be used to pass
data between different exits defined on the same channel, or between the same exit
defined on different channels.

The MQCXP data structure is described in the MQSeries Intercommunication
manual.

Channel exit sample

MQSeries for VSE/ESA provides a sample channel exit with the installation library.
The sample exit is a CICS COBOL program provided in sublibrary member
MQPCHNX.Z.

The MQPCHNX sample can be used as a base for your own exit programs. It is
generic in the sense that it includes logic to function as a security, send, receive
and message exit. It achieves this by examining the contents of the Exitld field in
the MQCXP data structure. The Exitld Field indicates which type of exit is being
called. Depending on the exit type, the sample branches to appropriate logic.

Alternatively, the sample can be used as a base for individual exit programs that
handle only one type of exit call, for example, the message exit. To use the sample
in this way, additional logic that examines the Exitld can be removed.

Adopt MCA

The Adopt MCA feature is an integral feature of MQSeries channel operation. It
exists to solve a problem with Message Channel Agent (MCA) Receiver tasks
falling into an indefinite wait state following a transport error.

When such an error occurs the receiver channel is often unaware of this and
remains RUNNING even though the sender is RETRYING.

Once communication is re-established the retrying sender attempts to start a new
receiver instance, but since a prior instance of this receiver still exists (because it
didn’t detect the communication failure), MQSeries "believes” that there has been
an invalid attempt to start multiple instances of the same receiver, from the same
location, and accordingly treats this as an error, and fails the request.

This problem continues until either the original receiver instance detects the failure,
or the channel is forcibly stopped.

Chapter 3. Configuring network communications 55

MQ_CHANNEL_EXIT - Channel exit

Typically an MQSeries receiver is waiting for messages from its sending partner. In
the event of a network failure we would hope the receiver (which is effectively in a
communication receive call) would be alerted to this by the communication
subsystem. In some cases this is not possible and the receiver will continue
running indefinitely, even though its partner MCA has ended.

This causes problems when the remote side attempts to re-establish the channel as
MQSeries finds the receiver is already running and prevents a duplicate instance
from starting up. The channel cannot be restarted until either the operator has
manually stopped the orphaned receiver or some communication timeout such as
the TCP/IP keepalive timer causes the receiver to eventually fail.

The Adopt MCA feature allows an administrator to specify that MQSeries should
automatically stop an orphaned instance of a channel where it receives a new
inbound connection request for that channel.

The administrator can specify the level of checking performed before an orphaned
candidate is adopted based on combinations of the channel name (must always
match for adoption), and the machine address. This allows for less rigorous
checking in, for example a DHCP TCP environment where the partner machine’s
address may change frequently. Note that the Adopt MCA feature is applicable to
TCP/IP channels only.

Review section [“Features” on page 8§ for prerequisites for this feature.

Adopt MCA parameters

Adoption can be enabled or disabled, and the level of checking can be set, via the
queue manager’s global system definition, MQMT option 1.1, PF9:

/,12/17/2003 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQBD h
12:35:25 Global System Definition CIC1
MQMMSYS Communications Settings A0OO
TCP/IP settings Batch Interface settings
TCP/IP listener port : 01461 Batch Int. identifier: MQBISERV
Licensed clients . . : 00000 Batch Int. auto-start: Y
Adopt MCA Y
Adopt MCA Check . . : Y

SSL parameters
Key-ring sublibrary : PRD2.SSLKEYS
Key-ring member . . : VSEIKEY

PCF parameters

System command queue : SYSTEM.ADMIN.COMMAND.QUEUE
System reply queue . : SYSTEM.ADMIN.REPLY.QUEUE
Cmd Server auto-start: Y

Cmd Server convert . : N

Cmd Server DLQ store : Y

Requested record displayed.
PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 14. Communication Setting, Adopt MCA parameters

The communication setting parameters that affect Adopt MCA feature operation
include:

56 MQSeries for VSE/ESA System Management Guide

Adopt MCA parameters

Adopt MCA
Adopt MCA Check

Adopt MCA
The Adopt MCA parameter specifies whether or not an orphaned instance of a
channel will be automatically restarted. Valid values include:

YES Automatically stop an orphaned MCA instance, if the appropriate Adopt
MCA checks are met.

NO Do not automatically stop an orphaned MCA instance.
The default value is NO.

Activating the Adopt MCA feature by setting this parameter to (Y)es, applies to all
TCP/IP Receiver channels.

Adopt MCA Check

The Adopt MCA Check parameter specifies whether the network address of the
new MCA must be from the same address as the instance already running. Valid
values include:

NO Do not check the new MCA request is from the same network address as
the instance that is already running.

YES Check that the new MCA request is from the same network address as the
instance that is already running.

The default is NO.

If the Adopt MCA Check parameter is set to (Y)es, the channel will only be
adopted if the new MCA request is from the same network address as the instance
that is already running.

Bullet-proof channels

MQSeries channels over TCP/IP are difficult to handle when network failures
occur. If the TCP/IP connection is broken when an MQSeries channel is active, it is
not at all uncommon for the receiving end of the channel to "hang” indefinitely in
a TCP/IP receive call.

When connectivity is restored, the sender channel is generally unable to reconnect
to the hanging receiver. In order to restart the channel, operator intervention is
required to forcibly stop the channel. Once this is done, the sending side can
normally reconnect.

The circumvention for this problem, on some MQ platforms, has been to use the
TCP/IP KeepAlive function by adding a stanza to the qm.ini file (mgs.ini for
clients) reading "TCP: KeepAlive=Yes". With this stanza in place, MQSeries will
enable the SO_KEEPALIVE option on the socket.

This results in TCP/IP itself sending packets across the link from time to time to
verify the connection. If enough packets in a row are lost, the connection is

presumed to be lost.

From an MQSeries perspective, the receiving side of the channel is notified by
TCP/IP that the connection is gone, and thus given a chance to shut down

Chapter 3. Configuring network communications 57

Bullet-proof channels

gracefully. Subsequent reconnection attempts by the sending side of the channel
can then proceed normally without operator intervention.

TCP/IP KeepAlive is an excellent solution to this problem, but it has one
significant drawback, that is, the KeepAlive timeout interval for connections is
generally tunable only on a machine wide basis. In terms of MQSeries channels, a
timeout on the order of a few minutes might be reasonable. However, there may
be other programs which rely on a timeout of one or two hours. If TCP/IP
KeepAlive is the only solution, then MQSeries may not coexist well with these
other programs.

Rather than entering a potentially indefinite TCP/IP receive call, and relying on
KeepAlive (if it has been properly configured and is in use) to wake up the
channel, MQSeries can instead enter a receive call for a finite amount of time. At
the end of this time, the queue manager has control to decide whether to receive
again or to shut down the channel.

The facility to "wake up” channels waiting on a receive call has been named
"bullet-proof channels”.

Although it is the Receiver MCA that is generally waiting for data from the sender,
during normal operation, the Sender MCA can be waiting for data from a receiver.
In this case, following a communication failure, it is the Sender MCA that can
remain in an indefinite wait state. Consequently, the bullet-proof channel feature
applies to both sender and receiver channels.

Review section |“Features” on page §| for prerequisites for this feature.

Bullet-proof channel parameters

The bullet-proof channel feature is configurable on a per channel basis. The
channel parameter that determines whether a channel will "wake up” after a
configurable time is the Max TCP/IP Wait parameter.

The Max TCP/IP Wait parameter is configurable from the Channel Record screen,
MQOQMT option 1.3.

58 MQSeries for VSE/ESA System Management Guide

Bullet-proof channel parameters

/'12/17/2003 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQBD
13:32:11 Channel Record DISPLAY CIC1
MQMMCHN A00O
Channel : AIX2.TCP.VSE1

Desc. . :

Protocol: T (L/T) Type : R (Sender/Receiver/svrConn) Enabled : N
Sender

Remote TCP/IP port : 00000 LU62 Allocation retry num : 00000000
Get retry number : 00000000 LU62 delay fast (secs). . : 00000000
Get retry delay (secs) . . : 00000000 LU62 delay slow (secs). . : 00000000
Convert msgs(Y/N). : N

Transmission queue name. . :

TP name. . :
Sender/Receiver

Connection :

Max Messages per Batch . . : 000050 Message Sequence Wrap . . : 999999
Max Message Size : 0004096 Dead letter store(Y/N) . : N

Max Transmission Size . . : 032766 Split Msg(Y/N) :N

Max TCP/IP Wait : 000300
Channel record displayed.

F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF11=Ext PF12=Del

Figure 15. Channel Record, bullet-proof channel parameter

The Max TCP/IP Wait parameter specifies a period of time (in seconds) for which
the channel will wait to receive data from a remote sender. If no data is received
within the specified period, the channel will terminate with an error.

By setting the Max TCP/IP Wait parameter to 0, the channel will wait indefinitely
to receive data from a remote sender. Effectively, this disables the bullet-proof
feature for the channel.

Care must be taken not to specify Max TCP/IP Wait value that is less than the
disconnection interval for the channel. The disconnection interval is a parameter of
the sender channel definition, and determines how long the sender will keep a
channel open when its transmission queue is empty. If the Max TCP/IP Wait value
is less than the disconnection interval, the channel will always terminate with an
error.

Note: For MQSeries for VSE/ESA, the disconnection interval is equivalent to the
Get retry number multiplied by the Get retry delay of the sender channel.

Chapter 3. Configuring network communications 59

Bullet-proof channel parameters

60 MQSeries for VSE/ESA System Management Guide

Chapter 4. System operation

There are four ways of managing an MQSeries for VSE/ESA system:
* You can use the CICS transaction MQMT.

MQMT allows you to configure, operate, and monitor an MQSeries for
VSE/ESA system. MOMT also supports the browsing of message queues and is
described in this chapter.

* You can use the MQSeries Command Line interface (MQCL).

MQCL supports management of queues and channels, and is described in
[Chapter 5, “Utilities and interfaces,” on page 131/

* You can use Programmable Command Format (PCF) messages, as described in
[Chapter 8, “Programmable system management,” on page 167.|

* You can use a web browser to access the MQSeries master terminal and
associated CICS transactions using the MQSeries for VSE/ESA CICS Web
Support (CWS) feature. For more information, refer to|“Administration via a
[web browser” on page 114.|

MQSeries master terminal displays

The MQMT menus and display screens are organized in an informal hierarchy as
depicted in the following diagram. The hierarchy is informal in the sense that
non-hierarchical paths between screens can be invoked by using the function keys.
For improved legibility, the chart omits certain exit and return paths available from
lower level screens.

© Copyright IBM Corp. 1995, 2004 61

Display menus

Global System
Definitions
mgmmsys

Channel
Maintenance
mgmmchn

Queue
Maintenance
mgmmaque

Codepage
Maintenance
mgmmcpg

Main Menu
mgmmtp
Configuration Operations Monitor B
mgmmcfg mgmmopr mgmmmon rowse
Global System Start/Stop Browse
Display Queue Queue
mqgmmsys mqmmss mgmdisp
Channel Open/Close
Display Channel
mgmmchn mgmmsc
Monitor all
Queue Reset Channel Local Queues
Display MSN — mgmmmoq
mgmmaque mgmmmsn
Codepage Initialize/Shut Monitor all
Display Down System | | Channels
mgmmcpg mqmmsi mgmmmoc

Figure 16. Display screen relationships

Maintain Queue

Records
magmmdel

The main MQMT menu is shown in [“MQSeries master terminal (MQMT) — main|

imenu” on page 63)and the operator functions available through each of the

secondary panels are shown in [’Configuration functions” on page 65,

General panel layout

MQSeries panels are either menu panels or data entry panels. In either case, they
show the following fields:

62 MQSeries for VSE/ESA System Management Guide

General panel layout

/bate IBM MQSeries for VSE/ESA Version 2.1.2 CICS-Appl h
Time Q-Manager
Panel-Id Termid
Message line
PF key Tline 1
PF key 1ine 2 (if necessary)
& %

Figure 17. General panel layout

Where:
CICS-Appl
The VTAM application ID for this CICS partition.
Panel-Id
The name of the displayed panel.
Q-Manager
The name of the MQSeries queue manager specified in the global
definitions.
Termid
The ID of the CICS terminal on which this panel is displayed.

MQSeries master terminal (MQMT) — main menu

You can invoke the MQSeries system administrator program, MOMT, from any
3270 terminal. To access the operator functions, type MQMT at the CICS prompt.

When MQMT starts, the main menu is displayed.

Chapter 4. System operation 63

MQSeries master terminal

/67/06/2002 IBM MQSeries for VSE/ESA Version 2.1.2 MQBDTS
10:55:25 *x%x Master Terminal Main Menu #*x= CIC1
MQMMTP A0O1

SYSTEM IS ACTIVE
1. Configuration
2. Operations
3. Monitoring

4. Browse Queue Records

Option:

Please enter one of the options listed.
5686-A06 (C) Copyright IBM Corp. 1998,2002. A1l Rights Reserved.
CLEAR/PF3 = Exit ENTER=SeTlect

Figure 18. Master terminal main menu

From the main menu, one of several submenus can be selected. The first three
selections correspond to broad categories that include most MQSeries operator
functions:

* Configuring MQSeries

* Operating (controlling) MQSeries

* Monitoring MQSeries

The fourth function allows you to display the records on a selected queue:
* Browsing MQSeries queues

Each submenu presents a list of operator functions available from that screen.
When a specific function is selected, the appropriate data entry or data display
screens are presented to the operator.

Master Terminal transactions

The functions of the MQSeries system administrator program can be invoked
directly using the following transaction code table. For those customers using an
External Security Manager, specific functions can be restricted to certain users or
class of users. Alternatively, administration tasks can be restricted by enabling
command and command resource security (for more information refer to

“Command security” on page 287|and ‘Command resource security’
security” on page 287.

MQMT Master Terminal Main Menu

===> MQMC Configuration Main Menu
===> MQMS Global System Definition \
===> MQMQ Queue Main Options \maintenance
===> MQMH Channel Record \mode
===> MQMP Code Page Definition \
===> MQDS Global System Definition \
===> MQDQ Queue Main Options \display
===> MQDH Channel Record \mode
+===> MQDP Code Page Definition \

64 MQSeries for VSE/ESA System Management Guide

MQSeries master terminal

===> MQMM Monitor Main Menu
|===> MQQM Monitor Queues
+===> MQCM Monitor Channels

===> MQMO Operations Main Menu

MQMA Start / Stop Queue

MQMB Open / Close Channel

MQMR Reset Channel Message Sequence

MQMI Initialization / Shutdown of System
MQMD Maintain Queue Message Records

vV Vv

v

[| I | B | I 1}

[| | B | I 1}

o ounonon
\%

+
\2

+===> MQBQ Browse Queue Records

Operator screen action keys

The action keys available on each MQSeries operator screen are displayed at the
bottom of the screen with an explanation of their function. In general, the
following keys are available and associated with the indicated action:

CLEAR - Exit MOQMT

PF2 - Return to previous menu
PF3 — Exit to CICS

PF4 — Select/Read (Same as Return or Enter keys)
PF5 - Add

PF6 - Update

PF7 — Backward

PF8 — Forward

PF9 — Screen-dependent

PF10 — Screen-dependant

PF11 — Screen-dependant

PF12 — Delete

Configuration functions

Selecting option 1 (Configuration) from the master terminal main menu (see
[Figure 18 on page 64) displays the following screen:

Chapter 4. System operation 65

Configuration functions

4 12/24/2002 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQ212
09:45:52 *xx Configuration Main Menu *xx CIC1
MQWMCFG A0O1

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions
4. Code Page Definitions

Display Options g
5. Global System Definition
6. Queue Definitions
7. Channel Definitions
8. Code Page Definitions

Option:

Please enter one of the options listed.
5686-A06 (C) Copyright IBM Corp. 1998, 2002. A1l Rights Reserved.
Enter=Process PF2=Return PF3=Exit

Figure 19. Configuration main menu

On this screen, selections 1, 2, 3, and 4 allow you to perform maintenance
functions on various MQSeries configuration objects. Selections 5, 6, 7 and 8 allow
viewing of the same objects.

Global system definition

Before you can do anything with messages and queues, you must configure a
queue manager. Once the installation process is complete, you use the MQSeries
“Global System Definition” screen to configure the queue manager and start it.

Default objects form the basis of any object definitions that you make. System
objects are required for queue manager operation and you must create these
objects for the queue manager that you created.

Guidelines for configuring queue managers

A queue manager manages the resources associated with it, in particular the
queues that it owns. It provides queuing services to applications for Message
Queuing Interface (MQI) calls and commands to create, modify, display, and delete
MQSeries objects. Some tasks you must consider when creating a queue manager
are:

* Selecting a unique queue manager name, as described on Page @I
* Creating the dead-letter and system log queues, as described on Page @
* Backing up the configuration file, as described on Page

The tasks in this list are explained in the sections that follow.

Specifying a unique queue manager hame

When you create a queue manager, you must ensure that no other queue manager
has the same name, anywhere in your network. Queue manager names are not
checked at create time, and non-unique names will prevent you from using
channels for distributed queuing.

66 MQSeries for VSE/ESA System Management Guide

Queue manager guidelines

One method of ensuring uniqueness is to prefix each queue manager name with its
own (unique) node name. For example, if a node is called accounts, you could
name your queue manager accounts.saturn.queue.manager, where saturn
identifies a particular queue manager and queue.manager is an extension you can
give to all queue managers. Alternatively, you can omit this, but note that
accounts.saturn and accounts.saturn.queue.manager are different queue manager
names.

If you are using MQSeries for communicating with other enterprises, you can also
include your own enterprise as a prefix. We do not actually do this in the
examples, because it makes them more difficult to follow.

Specifying the dead-letter and system log queues
The dead-letter queue is a local queue where messages are put if they cannot be
routed to their correct destination.

Attention: It is vitally important to have a dead-letter queue on each queue
manager in your network. Failure to do so may mean that errors in application
programs cause channels to be closed or that replies to administration commands
are not received.

You create a dead-letter queue as a local queue; [‘Creating local queues” on page|
for details.

For example, if an application attempts to put a message on a queue on another

queue manager, but the wrong queue name is given, the channel is stopped, and
the message remains on the transmission queue. Other applications cannot then

use this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues. The
undelivered message is simply put on the dead-letter queue at the receiving end,
leaving the channel and its transmission queue available.

Therefore, when you create a queue manager you should specify the name of the
dead-letter queue.

Similarly, the system log queue is essential for normal queue manager operation.
The system log is used by the queue manager to report diagnostic and error
messages. Some informational messages are generated when the queue manager is
started, consequently, the system log queue should be defined to the queue
manager before the system is started for the first time.

Like the system dead-letter queue, the system log is an MQSeries queue and
should be defined as a local queue.

Configuring the queue manager

For each installation of the MQSeries system, one (and only one) queue manager
must be defined. This is accomplished through the screen shown in
This screen is also used to modify the default or previously defined global
parameters.

Chapter 4. System operation 67

Queue manager creation

4 12/24/2002 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQ212
10:16:45 Global System Definition CIC1
MQWMSYS Queue Manager Information A0GO1
Queue Manager: VSE.TS.QM1
Description Line 1.:

Description Line 2. g
Queue System Values

Maximum Number of Tasks . .: 00001000 System Wait Interval : 00000030
Maximum Concurrent Queues .: 00001000 Max. Recovery Tasks : 0000
Allow TDQ Write on Errors : Y CSMT Allow Internal Dump : Y

Queue Maximum Values
Maximum Q Depth: 00640000 Maximum Global Locks.: 00001000
Maximum Message Size. . . .: 00004096 Maximum Local Locks .: 00001000
Maximum Single Q Access . .: 00000100

Global QUEUE /File Names
Local Code Page . . : 01047
Configuration File. : MQFCNFG
LOG Queue Name. . . : SYSTEM.LOG
Dead Letter Name. . : SYSTEM.DEAD.LETTER.QUEUE

Monitor Queue Name. : SYSTEM.MONITOR

Requested record displayed.

\PF2=Retur‘n PF3=Quit PF4/Enter=Read PF6=Upd PF9=Comms PF10=Log PFll=Event

Figure 20. System queue manager information

On this screen, the data entry fields are:

Queue Manager
This is the name of the local queue manager for this MQSeries system
installation. The name may be up to 48 characters and must conform to the
MQSeries naming requirements.

Description Lines 1 & 2
Text fields for operator use only. They may each be up to 32 characters.

Queue System Values
Maximum Number of Tasks

The maximum number of simultaneous connections to the queue manager.
Maximum Concurrent Queues

The maximum number of simultaneously open queues.
Allow TDQ Write on Errors

Y - allow writes to the CICS TDQ ‘CSMT’ if SYSTEM.LOG not available

N - do not allow write to the CICS TDQ

B — write to both SYSTEM.LOG and the CMST TDQ.

System Wait Interval
The sleep time in seconds for the system monitor program and startup of
trigger programs after system initialization.

Max. Recovery Tasks
Maximum number of tasks attached by the system monitor when errors
are detected in queues or control blocks attached to queues. A high
number would lead to the use of too many CICS resources and have a
negative impact on the overall CICS performance. The suggested value is
Zero.

Allow Internal Dump
Allow the MQSeries API to process a CICS Task Dump if the internal areas
are corrupted.

Queue Maximum Values
Maximum Q Depth
The maximum number of records that will be left unread on a queue.

68 MQSeries for VSE/ESA System Management Guide

Queue manager creation

Maximum Message Size
The maximum size of any message.

Maximum Single Q Access
The maximum number of object handles allowed for a queue.

Maximum Global Locks
The maximum number of entries that the queue manager uses to maintain
destructive PUT or GET locks, per queue, for the system.

Maximum Local Locks
The maximum number of entries that an application can use to maintain
destructive PUT, or GET locks, per queue, for each individual task.

Global QUEUE /File Names

Local Code Page
The code page in use on the local system. If you plan to support remote
client connections, you must use a local code page that can be translated
into the code page of the remote client system. Generally, code page 1047 is
a good choice, because many translations for this code page are provided
with LE. Alternatively, you can define your own translation tables (see
[Appendix F, “MQSeries clients,” on page 465) and set the local code page
appropriately.

Configuration File
The CICS file definition name of the MQSeries configuration file.

LOG Queue Name
The queue name where the MQSeries programs write information and
error messages. This is the system log queue.

Dead Letter Name
The file where channel programs write messages that are received with the
wrong queue manager name or queue name. These messages will have the
dead letter header placed in front of the queue record.

Monitor Queue Name
Diagnostic queue for MQI monitoring. The MQI monitor can be activated
using MQMT option 2.1 (for more details refer to[|‘Queuing System|
[Request” on page 103.)

Note: Queue maximum value fields restrict the allowed values in the queue
definition field values, while the rest of the fields affect the run-time values
when the System is initialized.

Queue Manager Communications Settings
Press PF9 (Comms) on the Global System Definition screen to display the Queue
Manager Communications Settings screen:

Chapter 4. System operation 69

Queue manager creation

/'11/05/2003 IBM MQSeries for VSE/ESA Version 2.1.2 TSMQBD
14:47:42 Global System Definition CIC1
MQMMSYS Communications Settings AOOO

TCP/IP settings Batch Interface settings

TCP/IP listener port : 01414 Batch Int. identifier: MQBISERV
Licensed clients . . : 00000 Batch Int. auto-start: Y

Adopt MCA : Y

Adopt MCA Check . . : Y

SSL parameters
Key-ring sublibrary : PRD2.SSLKEYS
Key-ring member . . : MQVSEKEY

PCF parameters

System command queue : SYSTEM.ADMIN.COMMAND.QUEUE
System reply queue . : SYSTEM.ADMIN.REPLY.QUEUE
Cmd Server auto-start: Y

Cmd Server convert . : N

Cmd Server DLQ store : Y

Requested record displayed.
\PF2=Queue Manager details PF3=Quit PF4/Enter=Read PF6=Update

Figure 21. Queue manager communications settings

TCP/IP settings:

TCP/IP listener port
The port number that MQSeries uses for accepting TCP/IP connection
requests from remote queue managers and MQ clients. The default port
value is 1414, however any unreserved port number can be used.

Licensed clients
The number of clients for which the MQSeries system is registered. This
represents the maximum number of concurrent remote client connections
that the local system will support at any one time. Use the number from
your MQSeries for VSE/ESA license documentation.

Adopt MCA
Indicates whether an Message Channel Agent (MCA) should adopt another
MCA process if one is already running. For more information about the
Adopt MCA feature, see|’Adopt MCA” on page 55/

Adopt MCA Check
Indicates whether the network address of an existing MCA should be
checked before adopting the MCA process. For more information, see
[“Adopt MCA” on page 55.|

SSL parameters:

Key-ring sublibrary
The key-ring sublibrary identifies the VSE sublibrary name that contains
the private key and certificate intended for use by SSL enabled MQ
channels. This is the SSL p