
©2012 IBM Corporation©2012 IBM Corporation

GCC enhancements for
Linux on System z

Mario HeldzLG14

©2012 IBM Corporation 2

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates in the United States,
 other countries, or both.

Red Hat, Red Hat Enterprise Linux (RHEL) are registered trademarks of Red Hat, Inc. in the
United States and other countries.

SLES and SUSE are registered trademarks of Novell, Inc., in the United States and other
countries.

SPEC and the "performance chart" SPEC logo are registered trademarks of the Standard
Performance Evaluation Corporation.

Other product and service names might be trademarks of IBM or other companies.

Source: If applicable, describe source origin

http://www.ibm.com/legal/copytrade.shtml

©2012 IBM Corporation

Performance
Experience

GCC Hardware
Exploitation

Hardware
Capability

User
Application

Development and
Setup

GCC
Generic
Code
Optimi-
zation

Performance
 Experience

©2012 IBM Corporation 4

Agenda

 Hardware Capability of the z196 and zEC12
 GCC Generic Code Optimization
 GCC Hardware Exploitation

©2012 IBM Corporation 5

z196 PU core
 Each core is a super-scalar, out of order processor with

these characteristics:
 Six execution units

 2 fixed point (integer), 2 load/store, 1 binary floating point, 1
decimal floating point

 Can decode up to three instructions per cycle
 Can execute up to five instructions per cycle
 Runs at 5.2 GHz
 Each core has 3 private caches

 64KB L1 cache for instructions, 128KB L1 cache for data
 1.5MB L2 cache containing both instructions and data

 Approximately 100 new instructions
 Execution can occur out-of-(program)-order

©2012 IBM Corporation 6

Out of Order detail
Out of order yields significant performance benefit through

 Re-ordering instruction execution
 Instructions stall in a pipeline because they are waiting for results from a

previous instruction or the execution resource they require is busy
 In an in-order core, this stalled instruction stalls all later instructions in the

code stream
 In an out-of-order core, later independent instructions are allowed to

execute ahead of the stalled instruction

 Re-ordering storage accesses
 Instructions which access storage can stall because they are waiting on

results needed to compute storage address
 In an in-order core, later instructions are stalled
 In an out-of-order core, later storage-accessing instructions which can

compute their storage address are allowed to execute

 Hiding storage access latency
 Storage accesses can miss the caches and require 10 to 500 additional cycles

to retrieve the storage data
 In an in-order core, later instructions in the code stream are stalled
 In an out-of-order core, later instructions which are not dependent on this

storage data are allowed to execute

©2012 IBM Corporation 7

z196 Out-of-Order (OOO) benefit
 OOO yields significant performance benefit for compute intensive

applications through
 Re-ordering instruction execution
 Later (younger) instructions can execute ahead of an older stalled

instruction
 Re-ordering storage accesses and parallel storage accesses

 OOO maintains good performance growth for traditional applications

L1 miss

Instrs

 1

 2

 3

 4

 5

Time

In-order core execution Out-of-order core execution

L1 miss

Time
Execution

Storage access
Dependency

©2012 IBM Corporation

Compare performance using the same
workload on z196 and z10
 Industry standard benchmark on RHEL6.2 with parameters -O3

-march=<z10 | z196> -funroll-loops
 Improvement caused by hardware but also compiler adaption
 Average throughput change is approximately 70 % with this benchmark

te
st

ca
se

 1

te
st

ca
se

 2

te
st

ca
se

 3

te
st

ca
se

 4

te
st

ca
se

 5

te
st

ca
se

 6

te
st

ca
se

 7

te
st

ca
se

 8

te
st

ca
se

 9

te
st

ca
se

 1
0

te
st

ca
se

 1
1

te
st

ca
se

 1
2

0

20

40

60

80

100

120

Standard benchmark

Applications

T
hr

o
ug

hp
ut

 c
ha

ng
e

 in
 %

©2012 IBM Corporation 9

zEC12 PU core

 Each core is a super-scalar, out of order
processor with these characteristics:
 Six execution units

 2 fixed point (integer), 2 load/store, 1 binary
floating point, 1 decimal floating point

 Up to three instructions decoded /
completed per cycle

 Up to seven instructions issued per cycle
 Runs at 5.5 GHz
 Each core has 4 private caches

 64KB L1 cache for instructions, 96KB L1 cache
for data

 L2 cache
 1MB for instructions, 1MB for data

 Better branch prediction
 Enhanced out-of-(program)-order (OOO+)

capabilities

©2012 IBM Corporation 10

zEC12 Out-of-Order improved (OOO+) benefit

©2012 IBM Corporation

Compare performance using the same
workload on zEC12 and z196
 Industry standard benchmark on RHEL6.2 with parameters -O3

-march=z196 -funroll-loops
 Improvement caused by hardware only at this point in time
 Average throughput change is approximately 30 % with this benchmark

te
st

ca
se

 1

te
st

ca
se

 2

te
st

ca
se

 3

te
st

ca
se

 4

te
st

ca
se

 5

te
st

ca
se

 6

te
st

ca
se

 7

te
st

ca
se

 8

te
st

ca
se

 9

te
st

ca
se

 1
0

te
st

ca
se

 1
1

te
st

ca
se

 1
2

0

10

20

30

40

50

60

Standard benchmark

Applications

T
hr

o
ug

hp
ut

 c
ha

ng
e

 in
 %

©2012 IBM Corporation 12

Agenda

 Hardware Capability of the z196
 GCC Generic Code Optimization
 GCC Hardware Exploitation

©2012 IBM Corporation

GCC development

GCC-4.5

GCC-4.7

GCC-4.6

GCC 4.4.0
April 21, 2009

GCC 4.5.0
April 14, 2010

GCC 4.6.0
May 25, 2011

SLES11 SP2
add-on

GCC 4.6.1
z196 support

RHEL6.2
GCC 4.4.6 +
backports
z196 support

GCC 4.6.1
June 27, 2011

We are
 here

SLES 11 SP2
GCC 4.3.4

GCC 4.6.2
October 26, 2011

GCC 4.6.3
March 1, 2012

http://www.gnu.org/software/gcc/

GCC-4.8
GCC 4.7.0
 March 3rd, 2012

http://www.gnu.org/software/gcc/

©2012 IBM Corporation 14

GCC versions in Linux on System z supported
distributions

Included in SUSE distribution Included in Red Hat distribution
GCC-3.3 05/2003
GCC-3.4 04/2004 RHEL4 (z990 support)
GCC-4.0 04/2005
GCC-4.1 02/2006 SLES10 (z9-109 support) RHEL5 (z9-109 support)
GCC-4.2 05/2007
GCC-4.3 05/2008
GCC-4.4 04/2009
GCC-4.5 04/2010 SLES11 SP1
GCC-4.6 03/2011 SLES11 SP2 (z196 support)*
GCC-4.7 03/2012 ? ?

GCC
stream

x.y.0
release

SLES9 (z990 backport)

SLES11 (z10 backport)
RHEL5.6**/6.1 (z196 backport)

* included in SDK, optional, not supported
** fully supported add-on compiler

©2012 IBM Corporation

GCC Evolution
 Comparing RHEL4 – RHEL5 – RHEL6- gcc-4.7 (Feb 2012) on a

z196

 Improved machine / instruction support, instruction scheduling

 Advantages of using current compilers are significant

RHEL4 gcc-3.4.6 march=z990

RHEL5 gcc-4.1.2 march=z10

RHEL6 gcc-4.4.6 march=z196

gnu.org gcc-4.7 march=z196
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Industry standard benchmark
GCC versions compared on z196

O
ve

ra
ll

t h
ro

ug
hp

u t
 c

ha
ng

e
in

 %

©2012 IBM Corporation

GCC 4.7.0 Release – March 3rd 2012

 GCC celebrated 25th anniversary with the release of GCC 4.7.0

 GCC 4.7.0 common code highlights:
 LTO improvements: reduced memory usage, better scalability
 Inline heuristic improvements: known value optimizations will be

taken into account when making inline decisions
 String length optimization pass: string length tracking leads to

more strcpy, strcat calls optimized to memcpy
 OpenMP 3.1 standard implemented
 More C++11 standard features (atomics)
 C and C++ software transactional memory support has been

merged!

 GCC 4.7.0 for Linux on System z:
 System z specific improvements to the string length optimization

pass
 Improved loop optimization

©2012 IBM Corporation

GCC Link Time Optimization

 Link Time Optimization (LTO) enables cross-module optimizations without
changing the build infrastructure.

 Problem: Current build mechanics pass one source code file at a time to
the compiler → cross-module optimizations not possible.

 Solution: Optimization is postponed until link-step when all the required
modules are known.

 LTO compilation procedure:
 First the compilation units are optimized separately
 GCC internal code representation (GIMPLE) is embedded into the object file
 During link-step the objects are passed to the compiler again
 Compiler uses the embedded information to redo the optimization step

 High potential together with profile directed feedback (PDF).

 GCC support introduced with GCC 4.5 and matured since then.

 First experiments already show a single-digit performance improvement
with LTO alone (no System z specific tuning so far).

 Options to add: -flto -fwhole-program

©2012 IBM Corporation

GCC Feedback Driven Optimization (FDO)
 FDO is also known as Profiled Directed Feedback (PDF)

 With FDO the compile is done in three phases:
 Profile code generation, instrumentation code gets inserted
 Training run while statistic information gets collected into a file, especially

which code parts are used how often
 Feedback optimization using the collected data from the previous phase to

guide the optimization routines for instance for branch prediction or loop
unrolling

 FDO produces in most cases significant better code and improves
performance significantly

 FDO requires more compile time because of compiling twice and doing
the test run, but it is usually worth the investment

 Best results if the codes' hot paths are not depending on the single input
data
 The advantage of FDO depends on a really representative training workload
 If the training workload is not good your application could even run more

slowly

 Option to add in the first pass: -fprofile-generate

 Option to add in the second pass: -fprofile-use

©2012 IBM Corporation 19

Agenda

 Hardware Capability of the z196
 GCC Generic Code Optimization
 GCC Hardware Exploitation

©2012 IBM Corporation

GCC Compile options
 Produce highly optimized code

 Options -O3 or -O2 (often found in delivered Makefiles) are a good
starting point and best tested by IBM

 Choose the parameter -march = <e.g. z9-109, z10, z196> matching
the oldest by your program supported target machine

 The parameter -march determines the instruction set and defines the same
value to the -mtune value implicitly

 Hint: -march is only upward compatible

 If your new hardware is not supported by the distribution's default compiler
there may be a newer optional compiler on the distribution's SDK which is
worth to give it a try

 Optimize GCC instruction scheduling with the frequently used target
machine in mind using parameter -mtune = <e.g. z9-109, z10, z196>

 Fine Tuning: additional general options on a file-by-file basis
 -funroll-loops has often advantages on System z

 Unrolling is internally delimited to a reasonable value by default

 Use of inline assembler for performance critical functions may have
advantages

 -ffast-math speeds up calculations (if not exact implementation of IEEE
or ISO rules/specifications for math functions is needed)

©2012 IBM Corporation 21

zEnterprise z196 GCC support

Re-compiled code / applications get further performance gains
through approximately 100 new instructions, e.g.:

 Load/Store-on-Condition Facility (6 new instructions)
 Load or store conditionally executed based on condition code
 Dramatic improvement in code with highly unpredictable branches

 Interlocked-Access Facility (12 new instructions)
 Interlocked (atomic) load, value update and store operation in a

single instruction

 Distinct-Operands Facility (22 new instructions)
 Independent specification of result register (different than either

source register)
 Reduces register value copying

 Population-Count Facility (1 new instruction)

 Hardware implementation of bit counting ~5x faster than prior
software implementations

©2012 IBM Corporation 22

zEnterprise zEC12 GCC support

 zEC12 comes with new instructions
 Transactional Memory support
 Improved branch instructions

 New zEC12 instructions not included in supported
Linux distributions yet
 Best use of a zEC12 at this point in time with

-march=z196
 Ongoing development in GCC project at gcc.gnu.org

©2012 IBM Corporation 23

Per function tuning with STT_GNU_IFUNC
support
 Problem: Compiler optimizations using new

instructions get into the field very late. ISVs have to
use -march=x with x being the oldest supported
machine.

 Improvement: Provide critical functions optimized for
different CPU levels and choose at runtime.
 STT_GNU_IFUNC is a new ELF symbol type.
 IFUNC symbols are resolved through a user provided

resolver function.
 Resolver function is invoked by the dynamic loader at

runtime (only once).

©2012 IBM Corporation 24

STT_GNU_IFUNC implementation

 Usually a symbol is resolved by the dynamic linker using information provided in
the symbol table of the involved objects

 STT_GNU_IFUNC introduces that this reference can be made upon other criteria.
For instance upon the capabilities of the CPU where the code gets executed
 Usually a symbol entry points to the symbol location directly
 STT_GNU_IFUNC symbols instead point to a 'resolve' function
 The 'resolve' function returns the symbol location that should be used for

references to the symbol in question

 A simple example shows the implementation

 of various memcpy function instances

Source: If applicable, describe source origin

glibc:
resolve_memcpy () {
 if (ask_stfle () == z9)
 return &memcpy_z9;
if (ask_stfle () == z10)
 return &memcpy_z10;
if (ask_stfle () == z196)
 return &memcpy_z196;
 else
 return &memcpy_z196; }

memcpy_z10 (...) {
 pfd ...
}

memcpy_z196 ...

foo:
memcpy (...);

Dynamic Loader
ld.so

pfd is a prefetch
instruction available on
z10 and higher

©2012 IBM Corporation 25

STT_GNU_IFUNC - memcpy on z10
2

5
6

4
2

4
6

8
0

10
2

4
17

0
4

27
2

8
4

0
9

6
6

8
2

4
1

0
9

2
0

16
3

8
4

27
3

0
4

4
3

6
8

8
6

5
5

3
6

10
9

2
2

4
17

4
7

6
0

26
2

1
4

4
43

6
9

0
4

6
9

9
0

4
8

1
0

4
8

5
7

6
17

4
7

6
2

4
27

9
6

2
0

0
41

9
4

3
0

4
69

9
0

5
0

4
1

1
1

8
4

8
0

8
1

6
7

7
7

2
1

6
27

9
6

2
0

2
4

44
7

3
9

2
4

0
67

1
0

8
8

6
4

1
1

1
8

4
8

1
0

4
1

7
8

9
5

6
9

6
8

2
6

8
4

3
5

4
5

6
44

7
3

9
2

4
2

4

Cache performance

inline (march=z9
mtune=z10)
inline (march=z10)
glibc (base)

Vector size in Bytes

T
hr

o
ug

hp
ut

 STT_GNU_IFUNC results are expected between inlined code for z9
optimized (red) and z10 optimized (blue, target machine) results and
better than old glibc implementation (yellow)

©2012 IBM Corporation 26

STT_GNU_IFUNC - memcpy on z10 (cont.)
2

5
6

4
2

4
6

8
0

1
0

2
4

1
7

0
4

2
7

2
8

40
9

6
6

8
2

4
1

0
9

2
0

16
3

8
4

27
3

0
4

43
6

8
8

65
5

3
6

10
9

2
2

4
17

4
7

6
0

26
2

1
4

4
43

6
9

0
4

69
9

0
4

8
10

4
8

5
7

6
17

4
7

6
2

4
27

9
6

2
0

0
41

9
4

3
0

4
69

9
0

5
0

4
1

1
1

8
4

8
0

8
1

6
7

7
7

2
1

6
2

7
9

6
2

0
2

4
4

4
7

3
9

2
4

0
6

7
1

0
8

8
6

4
1

1
1

8
4

8
1

0
4

1
7

8
9

5
6

9
6

8
2

6
8

4
3

5
4

5
6

4
4

7
3

9
2

4
2

4

Cache performance

inline (march=z9
mtune=z10)
inline (march=z10)
glibc (base)
glibc
(STT_GNU_IFUNC
patch)

Vector size in Bytes

T
hr

o
ug

hp
ut

 STT_GNU_IFUNC (green graph) expectation met with vector sizes > 2k

 Vector sizes <= 2K are faster when inlined (GCC adaptions upstream)

 Tremendous performance improvement compared to old glibc implementation

©2012 IBM Corporation

Make use of 64-bit registers in 32-bit code

 Use of 64 bit registers while staying link-compatible to existing 32-
bit code.

 64-bit registers are always available when running in z/Architecture
mode (64 bit kernel)

 32 bit code is generally faster due to more efficient cache usage
 Useful for small applications not exceeding the 2GB address space

 GCC, Linux Kernel, GNU C library, binutils, and GDB support needed.
 Linux kernel with the “highgprs” feature required (see /proc/cpuinfo)
 Executables are prevented to be used with older kernel versions.
 New core dump format including the upper register halves supported

by the kernel and GDB.

 Enabled with compile parameters “m31 mzarch”.
 Not enabled by default yet due to problems with inline assemblies, but

we are working on this

 Available with SLES11 SP2 add-on GCC and RHEL6.1

©2012 IBM Corporation

GCC s390: 64-bit registers in 31-bit code

long long
foo (long long a, long long b,
 long long c)
{
 return a * b / c;
}

Still the best: -m64
foo:
 msgr %r2,%r3
 lgr %r1,%r2
 dsgr %r0,%r4
 lgr %r2,%r1
 br %r14

NEW: -m31 -mzarch
1 x mul, 1 x div
foo:
 sllg %r2,%r2,32
 sllg %r4,%r4,32
 llgfr %r3,%r3
 llgfr %r5,%r5
 ogr %r3,%r2
 ogr %r5,%r4
 msgr %r3,%r5
 dsg %r2,96(%r15)
 lgr %r2,%r3
 srlg %r2,%r2,32
 br %r14

OLD: -m31
3 x mul + function call!
foo:
 stm %r14,%r15,56(%r15)
 lr %r1,%r2
 ahi %r15,-96
 msr %r4,%r3
 msr %r1,%r5
 mlr %r2,%r5
 ar %r1,%r4
 ar %r2,%r1
 lm %r4,%r5,192(%r15)
 brasl %r14,__divdi3
 lm %r14,%r15,152(%r15)
 br %r14

©2012 IBM Corporation

GCC s390: 64-bit registers in 31-bit code
 -m64 / -m31 show comparable average performance with tested

applications

 -m64 / -m31 -mzarch shows 12,8% improvement
 All performance degradations are gone

 Results may vary from application to application
te

st
ca

se
 1

te
st

ca
se

 2

te
st

ca
se

 3

te
st

a
cs

e
 4

te
st

ca
se

 5

te
st

ca
se

 6

te
st

ca
se

 7

te
st

ca
se

 8

te
st

ca
se

 9

te
st

ca
se

 1
0

te
st

ca
se

 1
1

te
st

ca
se

 1
2

-60

-40

-20

0

20

40

60

80

Standard benchmark

-m31
-m31- mzarch

Applications

T
hr

o
ug

hp
ut

 c
ha

ng
e

 in
 %

©2012 IBM Corporation

Conclusions and Reference

 Performance experience is influenced by (order by importance)
 Application design, programming and proper setup
 Hardware capabilities of mainframe models

 Computation rate, instruction set, cache hierarchy, execution units, number of
processors, supported memory, I/O options ...

 Highly optimized code tuned to the target machine model

 Use -O3 or -O2 compile parameter

 Proper machine tuning with -march / -mtune

 Link Time Optimization and Feedback Directed Optimization

 Use of current GCC versions

 New internal technologies and features

 Latest machine and instruction set support

 In some distributions there is an (unsupported) newer optional compiler included,
which has advantages

 More GCC related information is provided on the Linux Performance
website:

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_compiler.html

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_compiler.html

©2012 IBM Corporation 31

Questions

 Further information is located at
 Linux on System z – Tuning hints and tips

http://www.ibm.com/developerworks/linux/linux390/perf/index.html

 Live Virtual Classes for z/VM and Linux
http://www.vm.ibm.com/education/lvc/

IBM Deutschland Research
& Development
Schoenaicher Strasse 220
71032 Boeblingen, Germany

Phone +49 (0)7031–16–4257
Email mario.held@de.ibm.com

Mario Held

Linux on System z
System Software
Performance Engineer

http://www.ibm.com/developerworks/linux/linux390/perf/index.html
http://www.vm.ibm.com/education/lvc/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	z196 Out of Order Detail
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Selecting a template
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

