
1 - 1

CM S Pipelines Tips and Techniques

M artin Zim elis
Ross Patterson

Com puter Associates, Int’l Inc.

1 - 2

Agenda

À Part I - How Not to Program in CM S Pipelines
À Part II - Looping and Calculating in pipes
À Part III - Flowing Text
À Part IV- Integrating User Stages into Pipeline

Execs

1 - 3

Part I - How Not to Program in CM S
Pipelines

À CM S Pipelines is an extrem ely powerful
productivity enhancer, but easy to m isuse

À M any novice plum bers pick up enough
knowledge of Pipelines program m ing
techniques to use it badly

À M ost presentations address the “how to” aspect
of Pipelines program m ing

À W e address som e of the abuses of Pipelines
program m ing techniques and how to avoid
them by presenting a series of exam ples from
actual code

1 - 4

“Not thinking like a plum ber”

‘PIPE < data file | stem recs.’

Do i = 1 To recs.0

:

:

End i

‘PIPE stem newrecs. | > data file a’

À If you can’t do m ore with Pipelines than fill a
stem or write to a file, use EXECIO

À Less bad: Select or transform records before
putting them in the stem

À Best: Do the loop processing inside the
pipeline

1 - 5

M ultistream Pipes Aren’t That Scary

À The problem :
Read a file. Identify one type of record to be deleted from
the file. Put that type of record in a log file. Process the
rem aining records.

1 - 6

M ultistream Pipes Aren’t That Scary

À The problem :
Read a file. Identify one type of record to be deleted
from the file. Put that type of record in a log file.
Process the rem aining records.

‘PIPE < data file a | stem recs.’

(identify the records to be deleted)
‘PIPE stem recs. | locate 1.8 /’key’/ | >> deleted log d’

‘PIPE stem recs. | nlocate 1.8 /’key’/ | stem recs.’

(process the records)

1 - 7

M ultistream Pipes Aren’t That Scary

À The problem :
Read a file. Identify one type of record to be deleted from
the file. Put that type of record in a log file. Process the
rem aining records.

‘PIPE < data file a | stem recs.’

(identify the records to be deleted)
‘PIPE stem recs. | locate 1.8 /’key’/ | >> deleted log d’

‘PIPE stem recs. | nlocate 1.8 /’key’/ | stem recs.’

(process the records)

Â For the last part, try the following instead:
‘PIPE (end ?) stem recs. | n: nlocate 1.8 /’key’/ | stem

recs.’,

 ‘? n: | >> deleted log d’

It runs 35% faster on 22000 80-byte records.

1 - 8

Even LOOKUP Isn’t That Scary...

À Not using “Pipethink”

 del_codes = ’SQ SD SM SL SKX SKV SRD SRE SKT SKB SKI SKC SRN SRS’

 num_codes = words(del_codes)

 do i = 1 to num_codes

 ’Pipe < HRIMSCHG FILE * |’,

 ’locate 111-115 /’left(word(del_codes,i),5)’/ |’,

 'specs 32-40 1 111-115 11 |’,

 'stem delids. append '

 end

 Return

À Pipethink rule #2: If you’re coding a pipeline inside a
loop, you’re not using Pipethink

1 - 9

... Even LOOKUP Isn’t That Scary

À Using the right stage
 del_codes = ’SQ SD SM SL SKX SKV SRD SRE SKT SKB SKI SKC SRN SRS’
 ’PIPE (end ?)’,

 ’< HRIMSCHG FILE |’,

 ’L: lookup pad blank 111.5 1.5 detail |’,

 ’specs 32-40 1 111-115 11 |’,

 ’stem delids.’,

 ’?’,

 ’var del_codes |’,

 ’split |’,

 ’L:’

À Think about the problem like a plum ber.
Â W hen looking for m ultiple values in the sam e field, think

LOOKUP, not loop

1 - 10

The Sam e Problem , But “Unfolded”

’PIPE < XACTSND REQUEST A | STEM ALLREQ.’

 trec. = ’’;trec.0 = 0

 ’PIPE STEM ALLREQ. | LOCATE 1-7 /EXCHGAD/’,

 ’ | STEM TREC.’

 call XACTLOG ’XACTSND there are ’trec.0’ EXCHANGE adds’

 temp. = ’’;temp.0 = 0

 ’PIPE STEM ALLREQ. | LOCATE 1-7 /EXCHGDE/’,

 ’ | STEM TEMP. ’

 call XACTLOG ’XACTSND there are ’temp.0’ EXCHANGE dels’

 if temp.0 > 0 then ’PIPE STEM TEMP. | stem trec. append’

 temp. = ’’;temp.0 = 0

 ’PIPE STEM ALLREQ. | LOCATE 1-7 /EXREA /’,

 ’ | STEM TEMP. ’

 call XACTLOG ’XACTSND there are ’temp.0’ EXCHANGE reactivates’

 if temp.0 > 0 then ’PIPE STEM TEMP. | stem trec. append’

 temp. = ’’;temp.0 = 0

 ’PIPE STEM ALLREQ. | LOCATE 1-7 /NTADD /’,

:
: (for a total of 10 different keys)

1 - 11

How One M ight Do It

xacttype = ’EXCHGAD EXCHANGE adds;EXCHGDE EXCHANGE dels;’,

 ||’EXREA EXCHANGE reactivates;NTADD NT Only adds;’,

 ||’NTADDE NT Only Extended adds;NTCHGE NT Only Extended changes;’,

 ||’NTDELNT Only dels;NTADX NT ADDX;’,

 ||’EXCHGAX EXCHANGE ADDX’

 NTDEL NTADX EXCHGAX’

’PIPE (end ?)’,

 ’stem allreq. |’,

 ’L: lookup 1.7 count detail |’,

 ’stem trec.’,

 ’?’,

 ’var xacttype |’,

 ’split ; |’,

 ’L:’,

 ’? L:’,

 ’? L: |’,

 ’spec /EXEC XACTLOG "XACTSND there are/ 1.10 strip nw 18-* nw /"/ n |

 ’command’

À Getting over “m ulti-stream phobia” opens m any

doors

1 - 12

Som etim es Pipelines is the
W rong Tool

À To wit
out = Date(‘S’) Time() Left(‘UPDATE’,8) Left(Userid(),8)

‘PIPE var out | >> update log d’

À Use instead
‘EXECIO 1 DISKW UPDATE LOG D 0 (STRING’,

Date(‘S’) Time() Left(‘UPDATE’,8) Left(Userid(),8)

1 - 13

Part II - Looping and Calculating in
pipes

À Two exam ples presented
À Both are the result of tool developm ent
À Both use 407 em ulation
À The first one includes a looping pipe

1 - 14

Tool for VM :W ebgateway

À Background
ÂCG I param eters are presented one of two ways, depending
on how program was called

❖ M ETHOD=“GET” - viaHTTP environm ent variable
QUERY_STRING

‘CGI GETVAR QUERY_STRING (VAR QS’

❖ M ETHOD=“POST” - via the input stack
‘CGI READ 1 (VAR QS TRANSLATE USENGLISH’

ÂIn each case, the value returned is the “URL-encoded” form
of the param eters

URL?NAME1=VALUE1&NAME2=VALUE2& . . .

1 - 15

VM :W ebgateway Background

À The CGI URLDECODE com m and
Âperform s translation of encoded characters
Âsplits the param eters into individual variables

‘CGI URLDECODE (VAR QS INTO PARMS.’

ÂThe PARM S.0 variable contains the list of param eter
nam es

Say parms.0

NAME1 NAME2 . . .

which leads to
Say parms.name1

VALUE1

Say parms.name2

VALUE2

1 - 16

W here Is He Going W ith This?

À A custom er gave us a W IBNI
If I don’t need to know, for any other reason, how the
CG I program was invoked, w ouldn’t it be nice if there
were just one way to retrieve its param eters.

À So w e w rote a little EXEC
ÂIt encapsulates this idea and m aterializes the result in
its caller’s nam e space
Call GetParms

would produce PARM S.0 and all the little PARM S..

1 - 17

The Basic Logic

‘pipe’,

 ‘var parms.0 |’, /* Variable names */

 ‘split |’, /* One per record */

 ‘strip |’, /* Cleanliness */

 ‘literal PARMS.0|’, /* Include main */

 ‘spec /(stagesep !) var/ 1’,

 ‘w1 nw’, /* Build a pipe to */

 ‘/! parms./ nw’, /* promote to next */

 ‘w1 n’, /* level */

 ‘/ 1/ n |’,

 ‘runpipe’ /* Run it */

ÂThis works fine until you get a SELECT MULTIPLE tag or
som ething else that produces duplicate nam es

1 - 18

A Bit of Com plexity

ÂIf a user selects two (or m ore) item s from a SELECT
box with the MULTIPLE option specified
URL?NAME1=VALUE1&NAME2=VALUE2A&NAME2=VALUE2B .
. .

Â After URLDECODE…
Say parms.0

NAME1 NAME2 NAME2 . . .

Say parms.name2

VALUE2B

ÂW hat we don’t see from PARMS.0 is that a sub-stem
has also been created
PARMS.NAME2.0 PARMS.NAME2.1 PARMS.NAME2.2

2 VALUE2A VALUE2B

1 - 19

The Problem

À Construct the com plete set of variables created by
URLDECO DE and m aterialize them into GetParm s
caller’s nam e space

À The conceptual solution
ÂDeterm ine how m any occurrences of each nam e appear in
PARMS.0

ÂFor those that appear once, process as before
ÂFor those that appear m ore than once

❖ pass along one copy of the nam e for processing as before
❖ construct a stem with as m any entries as there are
occurrences of the nam e; don’t forget the count entry (..0)

1 - 20

The Solution Details

À Identify the “m ultiples”
‘pipe’,

 ‘var parms.0 |’,

 ‘split |’,

 ‘strip |’,

 ‘sort |’,

 ‘unique count last |’,

ÂNow we have records of the form
 2 NAME2
 10 chars

1 - 21

Passing the Original Variables

ÂSince all “sim ple stem ” variables have to be passed,
m ake a copy of the records

 ‘o: fanout |’,

ÂFrom one of those stream s, select just the m ultiples
 ‘pick 1.10 >> / 1/ |’,

ÂUse the count and the nam e to construct an elem ent of
the second level stem

 ‘spec 11-* 11’,

 ‘/./ n’,

 ‘1-10 strip n’,

1 - 22

Generating the Substem Elem ents

ÂW e still need to generate the rem aining substem elem ents,
including the count

ÂUsing 407 em ulation to do som e arithm etic
‘spec 11-* 11’,

 ‘/./ n’,
 ‘c: 1-10 strip n write’,
 ‘print c-1 1.10 right’,
 ‘11-* n |’, /* Rec w/ decremented count */

ÂTo m ake it really spiffy, route the two types of records to
different output stream s

‘ s: spec 11-* 11’,
 ‘/./ n’,
 ‘c:1-10 strip n write’,
 ‘outstream 1’,
 ‘print c-1 1.10 right’,
 ‘11-* n |’,

1 - 23

Creating a Loop

ÂIn order to generate all of the elem ents of the sub-stem ,
route the secondary output of the specs stage back to its
prim ary input

❖ This is done by putting an elastic stage im m ediately prior
to the specs stage

 ‘pick 1.10 >> / 1/ |’,
 ‘e: elastic |’,
 ‘s: specs 11-* 11’,

:
 ‘?’,
 ‘s: |’,
 ‘e:’

ÂW e still need a way to term inate the loop
❖ As written, it would decrem ent the count forever

1 - 24

“Closing” the Loop

ÂTerm inate the loop when the count goes negative
❖ W hen a ‘-’ appears in the count field (colum ns 1-10)

:

:

 ‘s: |’,

 ‘nlocate 1-10 /-/ |’,

 ‘e:’

1 - 25

Putting the Pieces Together

À Gather the variable nam es
ÂThe secondary output of fanout
ÂThe prim ary output of specs

À Generate sm all pipe specifications to export the
variables to the caller’s nam e space
ÂAfter the first specs stage…

 ‘ i: faninany |’,
 ‘spec /(stagesep !) var parms./ 1
 ‘11-* n’,
 ‘/ ! var parms./ n’
 ‘11-* n / 1/ n |’,
 ‘runpipe’,
 ‘?’,
 ‘o: | i:’

1 - 26

The Com plete Solution (pt 1)

 ’pipe (end ? name GETPARMS)’,

 ’var parms.0 |’, /* Take the list of variables */

 ’split |’, /* Split it to one per record */

 ’strip |’, /* Left justify them */

 ’literal PARMS.0|’, /* Include the .0 variable */

 ’sort |’, /* Set up to look for dups */

 ’unique count last |’, /* Identify how many of each */

 ’o: fanout |’, /* Keep a copy of the original */

 ’pick 1-10 >> / 1/ |’, /* Only interested in multiples */

 ’e: elastic |’, /* (Loop stall control) */

 ’s: spec’, /* Build two records: */

 ’11-* 11’, /* First is one element of */

 ’/./ n’, /* the multi-level stem */

 ’c: 1-10 strip n write’, /* (e.g., PARMS.B.2). */

 ’outstream 1’, /* Second is like the original */

 ’print c-1 1.10 right’, /* record with the count */

 ’11-* n |’, /* decremented by one. */

 ’i: faninany |’,

1 - 27

The Com plete Solution (pt 2)

 ’spec’, /* Prefix each var name with */

 ’/(stagesep !) var parms./ 1’, /* the stem root. Construct */

 ’11-* n’, /* a pipe to pass the local */

 ’/ ! var’ parms.’/ n’, /* copy of each variable up to */

 ’11-* n’, /* the caller. */

 ’/ 1/ n |’,

 ’runpipe’,

 ’?’,

 ’s: |’, /* If the count remains non- */

 ’nlocate 1.10 /-/ |’, /* negative, route the record */

 ’e:’, /* back for another pass. */

 ’?’,

 ’o: |’, /* Send a copy of the original */

 ’i:’ /* variable back to the caller */

1 - 28

Another 407 Em ulation Exam ple

À W orking with counters
ÂCP M onitor data (for exam ple) accum ulates in counters
that do not reset between system IPLs.

ÂThey are perpetually increasing (decreasing) in value
ÂTo get the count of som ething between two
observations, com pute the difference between the
observations

Counter Difference
Obs 1: 14837 ?
Obs 2: 15112 275
Obs 3: 15399 287

1 - 29

Differencing Counters - M ethod 1

À One m ethod of differencing takes advantage of the
407’s two reading stations

/* Example of using 407 emulation to do field differencing */

’Callpipe (name DIFF0)’,

 ’*: |’,

 ’spec w1-3 1’, /* Just pass along other fields */

 ’s:w4 .’, /* Specify an identifier */

 ’select second’, /* Specify previous record */

 ’f:w4 .’, /* Identifier on the prior rec */

 ’print s-f picture sssssssss9 nw |’, /* Output difference */

 ’drop 1 |’, /* First one isn’t meaningful */

 ’*:’

ÂJust one shortcom ing exists: use of the second reading
station delays the record

1 - 30

Differencing Counters - M ethod 2

À An alternative approach exists, using two counters
and one reading station

/* Example of using 407 emulation to do field differencing */

 ’callpipe (name DIFF1)’,

 ’*: |’,

 ’spec w1-3 1’, /* Just pass along other fields */

 ’s:w4 .’, /* Specify an identifier */

 ’set #1:=s-#0’, /* Compute difference */

 ’set #0:=s’, /* Save "previous" value */

 ’print #1 picture sssssssss9 nw |’, /* Output it */

 ’drop 1 |’, /* First one isn’t meaningful */

 ’*:’

ÂThis approach relies on the fact that counters are
initialized to 0

ÂIn both cases, for decrem enting counters, sim ply reverse
the order of argum ents in the subtraction

1 - 31

Part III - Flowing Text
A m ore elegant approach

À The text flowing problem has been around for
m any years
Â Flow blocks of text together m aking lines that are

less than or equal in length to a specified value
while preserving paragraph breaks.

À M arty had a Pipeline solution for a num ber of
years but “I wasn’t happy with it”
Â It used a subroutine Pipeline in a loop
Â It was slow

À Attem pts to solve the problem without a
Callpipe for each “paragraph” m et with repeated
failures

1 - 32

The Problem

À A paragraph is defined as a block of lines that
Â is delim ited by blank lines
Â begins with an indented line (one or m ore leading

blanks)
Â or both

À M arty couldn’t find a solution that correctly
dealt with all three cases
Â Preceding blank line, first line indented
Â Preceding blank line, first line not indented
Â No preceding blank line, first line indented (the

“obvious” fourth case isn’t the start of a paragraph)

1 - 33

The Three Cases - Pictorially

...~~~~ ~~ ~~~~~~~~
~~~~

~~~~~.
   ~~~ ~~~~~ ~~~~~ ~~~
~~~~~~ ~~~~ ~~~ ~~~~

~~~,
~~~ ~~ ~~ ~~~~~

~~~~~~~~~
~~~~.
   ~~~~ ~~ ~~~ ~~~~~~~
~~~~~~~~~...

...~~~~ ~~ ~~~~~~~~ ~~~~
~~~~~.

   ~~~ ~~~~~ ~~~~~ ~~~
~~~~~~ ~~~~ ~~~ ~~~~

~~~,
~~~ ~~ ~~ ~~~~~ ~~~~~~~~
~~~~.

   ~~~~ ~~ ~~~ ~~~~~~~
~~~~~~~~~...

...~~~~ ~~ ~~~~~~~~ ~~~~
~~~~~.

~~~ ~~~~~ ~~~~~ ~~~
~~~~~~

~~~~ ~~~ ~~~~ ~~~, ~~~
~~

~~ ~~~~~ ~~~~~~~~~~
~~~~.

~~~~ ~~ ~~~ ~~~~~~~
~~~~~~~~~...



1 - 34

The Environm ent

À The solution would appear in an environm ent
such as this:

‘pipe’,

   ‘< input file |’, /* The data source */

   ‘textflow 72 |’,  /* Lines <=72 chars*/

   ‘> output file’   /* The data sink   */



1 - 35

The “Old” Solution

/* TextFLOW records, breaking at any line that begins with a blank
   (including empty lines)
*/
   Parse Arg width
   Do Forever
      ’peekto line’                 /* Ensure there’s something there */
      If Rc ¬= 0 Then Exit (Rc¬=12)*Rc
      If Strip(line) = '' Then Do   /* Just pass any empty lines */
         'output' line
         'readto'
      End
      Else Do
         'callpipe (name TFLOW)',
            '*: |',
            'drop 1 |',           /* Don't look at first line (might   */
                      ,           /*               begin with a blank) */
            'pad 1 |',            /* Ensure at least 1 blank */
            'strtolabel / /|',    /* Pass records until the next break */
            'literal' line'|',    /* Replace first line of group */
            'join * / / |',
            'spill' width '|',    /* Flow to width */
            '*:'                  /* Pass to caller */
      End
   End



1 - 36

A Flash of Insight

À W hile reviewing the latest version of M elinda
Varian’s “Stream lining Your Pipelines,” M arty
had an epiphany

À There probably was no all-encom passing single
stream  solution to the problem

À The insight was that, in order to reconstruct
paragraphs after flowing, I had to identify their
boundaries

(Yes, I know.  Obvious once you think of it.)



1 - 37

The New Solution
/* FLOW REXX:
   Flow each paragraph in a stream of text to the width specified
   in the argument.
*/
   Parse Arg width .
   ’callpipe (end ? Name FLOW)’,
      ’*: |’,
     ’l: locate w1 |’,                 /* Isolate blanks lines         */
     ’n: nfind _|’,             /* Lines w/ leading blank also delimit */
     ’i: faninany |’,
      ’joincont not leading x00 / / |’,   /* One record per paragraph  */
      ’change x0140 x01 |’,            /* See block comment below      */
      ’split x01 |’,                   /* Formerly blank line restored */
      ’spill’ width ’|’,               /* Spill to desired width       */
      ’change x00 // |’,               /* Remove paragraph markers     */
      ’pad 1 |’,                       /* Retain blank lines if        */
      ’*:’,                            /*  writing to a file.          */
    ’?’,
     ’l: |’,
      ’spec x0001 1 |’,                /* Replace empty line with 00 01*/
     ’i:’,
    ’?’,
     ’n: |’,
      ’change // x00 |’,               /* Prepend marker character     */
     ’i:’



1 - 38

The New Solution (continued)

/*

   A paragraph is, for purposes of this stage, a block of text that

   is delimited by a blank line or by a first line that is indented

   one or more spaces (or both).

   The first CHANGE stage (CHANGE X0140 X01) handles the case where

   paragraphs are delimited by blank lines and are NOT indented.  In

   that case, the JOINCONT stage will join the ’0001’x blank line

   marker with the line of text that follows, inserting a single

   blank between them.  This blank must be removed.

*/



1 - 39

The Acid Test -- Perform ance

À The obvious questions is “How do they
com pare in resource consum ption?”

À W e chose one of M arty’s NOTEBOOK files as an
input source
Â 1148 records (form at V 181)
Â alm ost 48K bytes

À Lovely Rita gave us the answer



1 - 40

Perform ance -- Before

CPU Utilization by Pipeline Specification      from: 12 Jan 1999 09:22:54

                                                 to: 12 Jan 1999 09:23:24

CPU utilization of pipeline specification "NoName001":

     5.980 (     5.980) ms (  53K) in stage   1 of pipeline  1: < share notebook

   148.040 (   104.104) ms (   3K) in stage   2 of pipeline  1: tflow2 72

    11.034 (    11.034) ms (  65K) in stage   3 of pipeline  1: > eraseme file a

   165.054 (   121.118) ms total in "NoName001" (1 invocation) <=====

CPU utilization of pipeline specification "TFLOW":

     4.141 (     4.141) ms (  <1K) in stage   2 of pipeline  1: drop 1

     6.455 (     6.455) ms (  <1K) in stage   3 of pipeline  1: pad 1

     9.447 (     9.447) ms (  <1K) in stage   4 of pipeline  1: strtolabel / /

     1.682 (     1.682) ms (  <1K) in stage   5 of pipeline  1: literal ========

    13.917 (    13.917) ms (   7K) in stage   6 of pipeline  1: join * / /

     8.294 (     8.294) ms (   1K) in stage   7 of pipeline  1: spill 72

    43.936 (    43.936) ms total in "TFLOW" (243 invocations) <=====



1 - 41

Perform ance -- Before (continued)

 165.054 ms attributed to stages; no virtual I/O.

     2 pipeline specifications used (9 stages).

   244 pipeline specifications issued.

     0.023 ms in general overhead.

   189.402 ms in scanner.

    14.625 ms in commands.

   142.823 ms in dispatcher.

   212.808 ms in accounting overhead.

   724.735 ms total.



1 - 42

Perform ance -- After

CPU Utilization by Pipeline Specification      from: 11 Jan 1999 15:28:39
                                                 to: 11 Jan 1999 15:28:40

CPU utilization of pipeline specification "FLOW":
    11.783 (    11.783) ms (   1K) in stage   2 of pipeline  1: locate w1
     6.105 (     6.105) ms (  <1K) in stage   3 of pipeline  1: nfind _
     6.601 (     6.601) ms (  <1K) in stage   4 of pipeline  1: faninany
    15.880 (    15.880) ms (   6K) in stage   5 of pipeline  1: joincont not

leading x00 / /
     7.845 (     7.845) ms (   7K) in stage   6 of pipeline  1: change x0140 x01
     5.570 (     5.570) ms (   1K) in stage   7 of pipeline  1: split x01
     4.230 (     4.230) ms (   1K) in stage   8 of pipeline  1: spill 72
    12.119 (    12.119) ms (   1K) in stage   9 of pipeline  1: change x00 //
     4.758 (     4.758) ms (  <1K) in stage  10 of pipeline  1: pad 1
     4.304 (     4.304) ms (   4K) in stage   2 of pipeline  2: spec x0001 1
     2.326 (     2.326) ms (   1K) in stage   2 of pipeline  3: change // x00
    81.521 (    81.521) ms total in "FLOW" (1 invocation) <=====

CPU utilization of pipeline specification "NoName001":
     3.669 (     3.669) ms (  53K) in stage   1 of pipeline  1: < share notebook
    84.438 (     2.917) ms (   3K) in stage   2 of pipeline  1: flow 72
     9.523 (     9.523) ms (  65K) in stage   3 of pipeline  1: > eraseme file a
    97.630 (    16.109) ms total in "NoName001" (1 invocation) <=====



1 - 43

Perform ance -- After (continued)

97.630 ms attributed to stages; no virtual I/O.
     2 pipeline specifications used (14 stages).
     2 pipeline specifications issued.

     0.021 ms in general overhead.
     2.709 ms in scanner.
     0.065 ms in commands.
    75.216 ms in dispatcher.
     2.421 ms in accounting overhead.

   178.062 ms total.

À The bottom  line:  CPU consum ption in this case
decreases by 75%   (1 - 178.062/724.735)

À Not surprising, but very satisfying
À The m oral: A subroutine pipeline in a loop can

be a very expensive solution



1 - 44

Part IV- Integrating User Stages into
Pipeline Execs

À User-W ritten Stages
Â Are created when

❖ built-in stages can’t do the task at hand
❖ you want to write a “m acro” of pipeline stages

Â Typically appear in a file with a filetype of REXX
Â Are called by nam e

À But there’s another way
Â to write them
Â to incorporate them  in a pipeline



1 - 45

Another W ay to Invoke
a User-W ritten Stage

‘Pipe (end ?)’,
:
:

  ‘Label: rexx *.1: |’,/*The insertion point*/
:
:

‘?’,

   ‘var uws |’,  /* The user-written stage*/

  ‘Label:’

where uws looks like this

uws = “/* Comment */ stmt_1; stmt_2; . . . ”



1 - 46

W hy W ould Anyone W ant to Do That?

À M akes application m aintenance easier
Â There’s only one file to transport
Â No worry of “does the version of the stage m atch the

version of the EXEC?”

À M arginally faster than using an external file for
the user-written stage
Â Pipelines doesn’t have to find and read another file

À M ost effective if the user-written stage is unique
to one pipeline



1 - 47

How Do I Get There?

À How do I turn this

/* Comment */

Signal On Error

Do Forever

   ‘peekto rec’

:

:

   ‘output’ something

   ‘readto’

End

À Into this

“/* Comment */;”,

“Signal On Error;”,

“Do Forever;”,

   “‘peekto rec’;”,

:

:

   “‘output’
something;”,

   “‘readto’;”,

“End;”

conveniently?



1 - 48

Converting a User-W ritten Stage

À Add punctuation using M KSTAGE EXEC
  mkstage uws rexx a = insert =

Â (M KSTAGE EXEC is included as the last page of
this presentation or drop the author a note for a
m achine-readable copy)

À Edit file containing the parent pipeline
Â Insert the file containing the m odified stage before

the parent pipeline
  get uws insert a

Â Assign the string containing the user-written stage to
a variable

Â M odify the parent pipeline to use the now-internal
stage according to the technique shown on page 3



1 - 49

The M odified Parent Pipeline

‘Pipe’,

  ‘< some file |’,

  ‘locate /Marty/ |’,

  ‘uws |’, /* External
*/

  ‘> modified file a’

uws = “ [contents of
user-written stage]”

‘Pipe (end ?)’,

  ‘< some file |’,

  ‘locate /Marty/ |’,

 ‘U: rexx (*.1:) |’,

  ‘> modified file a’ ,

 ‘?’,

  ‘var uws |’,

 ‘U:’



1 - 50

   ’PIPE (end ? name MKSTAGE)|’,
      ’<’ infn inft infm ’|’,
      ’change /"/ /""/ |’,             /* Double up any existing ’"’s  */
      ’reverse |’,
      ’strip leading |’,               /* Actually STRIP TRAILING      */
     ’n:nfind , |’,                    /* For non-continuation lines.. */
      ’strip leading ;|’,              /*  Remove any existing ’;’s    */
      ’insert /;/ |’,                  /*  before adding after _every_ */
     ’i1:faninany |’,                  /*  line.                       */
      ’insert /,"/ |’,                 /* Trailing quote and continuat.*/
      ’reverse |’,                     /* Forwards again               */
     ’c: chop 0 before not blank |’,   /* Set up to put the leading    */
     ’j: juxtapose |’,                 /*  quote after any indentation.*/
     ’d: drop last 1 |’,               /* Go remove the trailing comma */
     ’i2: fanin |’,                    /*  on the last line.           */
      ’>’ outfn outft outfm,
    ’?’,
     ’n: |’,                           /* For continuation lines, lose */
      ’strip leading , |’,             /* the now-redundant ’,’        */
     ’i1:’,
    ’?’,
     ’c: |’,                           /* Put leading quote just before*/
      ’insert /"/ |’,                  /*  first non-blank character.  */
     ’j:’,
    ’?’,
     ’d: |’,
      ’strip trailing str /,/ |’,      /* Remove continuation comma on */
     ’i2:’                             /*  last line.                  */


