IBM COBOL for VSE/ESA

General Information

Release 1

‘.lll:

GC26-8068-00

IBM COBOL for VSE/ESA

General Information

Release 1

GC26-8068-00

—— Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page v.

First Edition (April 1995)

This edition applies to Version 1 Release 1 of IBM COBOL for VSE/ESA, Program Number 5686-068, and to all subsequent releases
and modifications until otherwise indicated in new editions. Changes are made periodically to this publication; consult the latest /BM
System/390, 370, 30xx, 4300, and 9370 Processors Bibliography for current information on this product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58
P.O. Box 49023

San Jose, California, 95161-9023
U.SA.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983,1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices v
Programming Interface v
Trademarks vi
Why COBOL/VSE? 1
What ltls 1
What It IsNot 1
COBOL/VSE—A Composite of New and Existing Function 1
New Function 2
Existing Function 2
The Entire Product and this Book- 3
How COBOL/VSE Streamlines Application Development 4
Coding 4
Debugging 4
Communicating between Languages 4
Maintaining Applications 5
Porting to New Environments L 5
COBOL/VSE and LE/VSE 6
LE/VSE and its Benefits 6
LE/VSE and COBOL Application Development 7
Improved Interlanguage Communication (ILC) 8
Using Assembler Programs with COBOL 10
Improved Storage Tuning 10
Powerful and Comprehensive Callable Services 10
Comprehensive Run-Time Options 14
Support for Reentrancy 16
Support for Extended Architecture 17
COBOL/VSE and Advanced Language Features 20
Structured Programming 20
Coding without Structured Programming 20
Nested Programs 20
Nested COPY Statements 21
Inline PERFORM Statements 22
Explicit Scope Terminators 22
The EVALUATE Statement 22
Intrinsic Functions 23
Using Other Products from COBOL/VSE Programs 25
COBOL/VSE Programs and CICS 25
COBOL/VSE Programs and DOS/VS DL/l 27
COBOL/VSE Programs and DFSORT/VSE 28
COBOL/VSE Programs and SQL/DS 28
COBOL/VSE Programs and LE/VSE 29
Data Types and Character Sets 30
Floating-Point Data 30
Double-Byte Character Set 30
Other Language Features, 30
Flexible Ways of Initializing Values 31
Improved File Handling 31

© Copyright IBM Corp. 1983,1995 jii

Reference Modification 32

COBOL/VSE and Advanced Compiler Features 33

Support for Migration, Compatibility, and Conformance to Standards 33
Availability of Easy-To-Use Compiler Listings 34
Other Ways to Use the Compiler to help Debugging 35
Preparing Your Program to Get a Symbolic Dump 35
Getting Set Up to Check for Valid Data Ranges 35
Optimize the Generated Code 35
Flexible Numeric Sign Processing 36
Speeding Execution for High-Performance Programs 36
Processing Data with Nonconforming Signs 36
Compiler Options that Help You with Storage Management 36
Performance Improvement When You Use SORT/MERGE 36
Without Fast Sort 37
With Fast Sort 37
COBOL/VSE and Industry Standards 38
What Must | Do to Move toward COBOL/VSE? 39
IBM COBOL Products—A History 39
What Hardware and Software Environments Are Supported? 40
Will Existing Applications Still Run? L 40
What Migration Aids Are Available? 41
Where Can | Get More Information to Help Me Use or Move toward
COBOL/VSE? S|
Publications Provided with COBOL/VSE 42
Other Publications: LE/VSE 44
Softcopy Information Available with LE/VSE 45
Additional Publicationso 45
What Steps Do | Take to Get Ready to Move toward COBOL/VSE? 46
Appendix A. Industry Standards 47
Appendix B. COBOL/VSE Intrinsic Functions 50
Bibliography 53
Language Environment Publications 53
LE/VSE-Conforming Language Product Publications 53
Related Publications 53
Softcopy Publications 53
Index 54

iV COBOL/VSE General Information

Notices

References in this publication to IBM* products or services do not imply that they
will be available everywhere IBM operates, nor that only IBM products or services
can be used. Functionally equivalent products or services that do not infringe legal
rights held by IBM can be used instead. Operation with products or services other
than those expressly designated by IBM is your responsibility.

IBM may have patents or pending patent applications covering subject matter
described herein. This document neither grants nor implies any license or immunity
under any IBM or third-party patents, patent applications, trademarks, copyrights, or
other similar rights, or any right to refer to IBM in any marketing activities. Other
than responsibilities assumed via the Agreement for Purchase of IBM Machines
and the Agreement for IBM Licensed Programs, IBM assumes no responsibility for
any infringement of third-party rights that may result from use of the subject matter
disclosed in this publication or from the manufacture, use, lease, or sale of
machines or programs described herein.

Licenses under utility patents held by IBM are available on reasonable and
nondiscriminatory terms. IBM does not grant licenses under its appearance design
patents. Direct licensing inquiries in writing to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A..

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUB-
LICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. This dis-
claimer does not apply in the United Kingdom or elsewhere if inconsistent
with local law.

Programming Interface

This book is intended to help you evaluate and plan for IBM COBOL for VSE/ESA
(COBOL/VSE).

This book also documents General-Use Programming Interface and Associated
Guidance Information.

General-Use programming interfaces allow the customer to write programs that
obtain the services of COBOL/VSE.

General-Use Programming Interface and Associated Guidance Information is identi-
fied where it occurs, either by an introductory statement to a chapter or section or
by the following marking:

| General-Use Programming Interface |

General-Use Programming Interface and Associated Guidance Information...

| End of General-Use Programming Interface

© Copyright IBM Corp. 1983,1995 \'J

Trademarks

The following terms, denoted by an asterisk (*) on their first occurrences in this
publication, are trademarks of the IBM Corporation in the United States and/or
other countries:

BookManager CICS

CICS/VSE 1BM

Language Environment Operating System/2
Operating System/400 0S/2

0S/400 System/370
Systems Application Architecture SAA

SQL/DS VSE/ESA

Vi COBOL/VSE General Information

Why COBOL ?

Why COBOL/VSE?

COBOL/VSE helps you streamline your application development business.

v

B

Existing Application Development Application Development with
COBOLW/VSE

But, what is COBOL/VSE?

What It Is

COBOL/VSE is an implementation of the COBOL language—the most widely used
application programming language in the world today. COBOL/VSE presents the
language at its best. The full-function language and compiler make your applica-
tions much easier to develop and maintain, and portable to many different operating
environments.

This increase in application effectiveness can save you time and money, two of the
most important assets of any business.

What It Is Not

COBOL/VSE is not a revolution; you can move toward it with evolutionary steps.
Most of your existing DOS/VS COBOL and VS COBOL Il programs continue to run
without change while you develop new applications with COBOL/VSE. In addition,
you can selectively update existing applications to take advantage of advanced
COBOL/VSE functions. Migration tools supplied with the product help pave the
way for a smooth transition to COBOL/VSE.

COBOL/VSE—A Composite of New and Existing Function

COBOL/VSE adds new function, but it also builds on function introduced by
DOS/VS COBOL and VS COBOL II.

© Copyright IBM Corp. 1983,1995 1

Why COBOL ?

New Function
New features of COBOL/VSE include support for the functions listed in Table 1.

Table 1. New Features Included in COBOL/VSE Support

New Feature Feature Summary

Intrinsic functions The intrinsic function support provides mathematical, statistical, financial,
string handling, and date and time functions.

COBOL/VSE supports the Intrinsic Function Module of the COBOL 85

Standard. Note that this book uses the term COBOL 85 Standard to refer to
the International Standards Organization (ISO) and American National Stand-
ards Institute (ANSI) standards listed in Appendix A, “Industry Standards” on

page 47.
IBM Language Environment* for LE/VSE is a prerequisite product for COBOL/VSE. It provides a common
VSE/ESA* (LE/VSE) run-time environment for all conforming high-level languages, including

COBOL/VSE. LE/VSE adds improved interlanguage communication (ILC), a
common set of callable services and tuning capability at execution time.
Note that the LE/VSE product is required in order to run COBOL/VSE pro-
grams.

Procedure-pointer support COBOL/VSE adds support for a new procedure-pointer data type. A
procedure-pointer data item can be set to the address of a procedure entry
point and can be passed as an argument to LE/VSE callable services or
other programs. The procedure-pointer support enables you to use COBOL
programs as condition handlers for such conditions as program checks,
abends, or software generated signals.

GLOBAL support in Linkage section Linkage section data items can now be declared GLOBAL, which means that
a single declaration makes the name in one program available to all its sub-

programs.
Reference modification for double- Reference modification, which enables you to refer to substrings of data, can
byte character set (DBCS) now be applied to DBCS items.
General-use programming interface The ADATA compiler option directs the compiler to collect Associated Data
to compilation data information and write ADATA records to the SYSADAT file. The information

expands on, and increases, the data that is available to you via the compiler
listing. The SYSADAT file now provides a general-use programming inter-
face for access to compilation data.

Displayable softcopy publications COBOL/VSE offers the capability to use softcopy versions of COBOL/VSE
Language Reference, COBOL/VSE Programming Guide, and COBOL/VSE
Migration Guide. The softcopy information for COBOL/VSE is available as
BookManager*/Read files.

Existing Function
COBOL/VSE includes many features that were first introduced by DOS/VS COBOL
and VS COBOL Il. For example, the ability to automatically check for valid data
ranges, first introduced by DOS/VS COBOL, is retained by COBOL/VSE's support
of LE/VSE.

Other features, first introduced by VS COBOL Il and available when you develop

and run COBOL/VSE programs, include support for the functions listed in Table 2
on page 3.

2 COBOL/VSE General Information

Why COBOL ?

Table 2. Existing VS COBOL Il Features Included in COBOL/VSE Support

Existing Feature

Feature Summary

Industry standards

The industry standard support provided by VS COBOL i is maintained, and extended,
by COBOL/VSE. For a complete list of the industry standards met by COBOL/VSE,
including the new intrinsic function support, see Appendix A, “Industry Standards” on
page 47.

Structured programming

COBOL/VSE supports nested programs, in-line PERFORM statements, explicit scope
terminators, and the EVALUATE statement. These constructs simplify the develop-
ment of applications that conform to top-down design, modular program development,
and structured programming concepts.

SAA* flagging

COBOL/VSE can flag language constructs to assist in producing programs that
conform to SAA conventions for supporting multiple environments. Note that flagging is
available only for SAA COBOL Level 1.

Improved CICS* COBOL
interface

The CICS COBOL interface eliminates the need for a number of tasks including
coding BLL cell addressing. Several COBOL language constructs are supported in the
CICS environment, including the GOBACK statement and the ADDRESS OF special
register.

Floating point

Floating point can be used for calculating values of mathematical expressions,
including exponentiation.

Double-byte character
support (DBCS)

Double-byte characters are supported for both application data and for characters in
COBOL program user names.

Flexible initialization of
values

When initializing data items, a single INITIALIZE statement can be used to replace
multiple COBOL MOVE statements.

Improved file handling

File handling support includes using variable-length records, new file status codes, and
external files.

Improved string handling

The addition of reference modification, which provides a substring function, makes it
easier to process character strings.

Variety of compiler listing
options

You can include any or all of the following in a compiler listing: source listing, cross-
reference information, Data Division map, nested program map, and a listing of diag-
nostic messages.

Automatic checking for
valid data ranges

Values of subscripts and indexes can be checked before data is inappropriately
stored.

Code optimization

The OPTIMIZE compiler option causes the compiler to generate more efficient code.

Flexible numeric-sign proc-
essing

Numeric sign processing can be optimized for high-performance programs, and data
with nonconforming signs can be processed.

Improved performance for
SORT/MERGE

The FASTSRT compiler option results in faster sorting because the movement of data
is reduced.

Support for reentrancy

COBOL/VSE programs can be reentrant; that is, a single copy of a program can
satisfy several, simultaneous requests.

Support for extended archi-
tecture

COBOL/VSE programs and their data can reside either above or below the
16-megabyte line to take advantage of 31-bit addressing.

The Entire Product and this Book
This book describes the COBOL/VSE product as a whole, including the functions
first introduced by DOS/VS COBOL and VS COBOL Il. The new and old functions
incorporated in COBOL/VSE help your organization streamline the application
development process.

Why COBOLWVSE? 3

Why COBOL ?

How COBOL/VSE Streamlines Application Development
With COBOL/VSE, you can cut the cost and time required to:

Code

Debug

Communicate between languages
Maintain applications

Port to new environments

Coding
COBOL/VSE is a powerful language that greatly simplifies and reduces the code
required for your applications.

COBOL/VSE provides a variety of intrinsic functions that you can invoke directly
from a COBOL statement to perform mathematical, statistical, financial, string han-
dling, or date and time functions.

Using the structured programming features of the COBOL/VSE language adds dis-
cipline, clarity, and organization to application programs, thereby increasing pro-
grammer productivity.

COBOL/VSE supports LE/VSE, thereby reducing coding requirements for all kinds
of application development projects—both simple and complex. With the interlan-
guage communication (ILC) support provided by LE/VSE, mixed-language applica-
tions are easier to implement. You can also use the CALL statement to take
advantage of LE/VSE services in the areas of storage management, message han-
dling, date and time processing, mathematical calculations, national language proc-
essing, and condition handling. The condition handling support makes it possible to
respond to errors and exceptions consistently, uniformly, and predictably, with
minimal disruption to your operating environment.

Debugging
COBOL/VSE minimizes debugging time through support for the LE/VSE dump ser-
vices.

LE/VSE provides a new, improved formatted dump that clearly labels COBOL data
areas, making it easier to locate the source of program errors. The formatted dump
is available from an LE/VSE service that may be called directly from a COBOL
program.

Communicating between Languages

COBOL/VSE works with LE/VSE to simplify communication between the COBOL
language and other languages that support LE/VSE.

The improved interlanguage communication (ILC) provided by LE/VSE makes it
possible to develop a program once, and only once, in the single best language for
the task. Then the program can be called with the same interface from applications
that may employ one or more other languages. Reusing already developed code
instead of repeating the function in more than one language saves application
development time and reduces the potential for introducing errors.

4 COBOL/VSE General Information

Why COBOL ?

Instead of handcrafting an application using a large amount of unique code in a
single language, you can now use a building block approach to application develop-
ment. You can easily combine heterogeneous programs that may include:

* -Programs already written in another language
* Programs generated by tools such as Cross System Product (CSP)
» Vendor-written programs that you want to incorporate into your applications

This building block approach enables you to create applications at considerably
less cost.

Maintaining Applications
Of course, the English-like quality of COBOL makes programs easy to read and
understand. Add to that the structured programming language features supported
by COBOL/VSE and you have a clear-cut maintenance advantage. In addition, the
common run-time environment, and common callable services supplied by LE/VSE,
make maintenance consistent, and productive, across and within applications.

Porting to New Environments
COBOL/VSE supports Systems Application Architecture* (SAA) COBOL Common
Programming Interface (CPI). Programmers can produce applications once to be
run in multiple operating environments: VM/CMS, MVS, Operating System/2*
(0S/2*), and Operating System/400* (OS/400*). This helps increase productivity by
freeing the COBOL application programmer from many system-specific concerns.
SAA support also allows wider use of COBOL applications.

Why COBOLVSE? 5

COBOL/VSE and LE/VSE

COBOL/VSE and LE/VSE

IBM Language Environment for VSE/ESA is a common run-time environment for
high-level languages, including COBOL.

LE/VSE and its Benefits

With LE/VSE come common conventions, common run-time facilities, common call-
able services, and conforming language products, such as COBOL/VSE. These
yield benefits such as uniformity and consistency, improved interlanguage commu-
nication (ILC), reusable libraries, and simplified and more efficient application devel-
opment, as shown in Figure 1.

Common

f;fr;;’ggenti%;;}s

WHAT IS IBM LANGUAGE ENVIRONMENT FOR VSE/ESA ?

WHAT ARE ITS BENEFITS?

Figure 1. LE/VSE and Its Benefits

LE/VSE is consistent across supported operating systems and subsystems, and
across supported languages. Library function is provided by a combination of
common library routines and those provided especially for each language.

When you build applications, you want to be able to use program function wherever
and however it exists, regardless of the language of implementation. The improved
ILC provided by LE/VSE makes it possible to integrate already existing program
packages to form new or updated applications. With LE/VSE you can move from
separate, single-language applications with voluminous unique code to integrated,
multi-language applications with high use of common code.

6 © Copyright IBM Corp. 1983,1995

COBOL/VSE and LE/VSE

Figure 2 depicts the application structure before LE/VSE, and the application struc-
ture you can realize as you move toward LE/VSE.

APPLICATION STRUCTURE
WITHOUT LANGUAGE ENVIRONMENT/VSE

ACCOUNTS OTHER
PAYROLL RECEIVABLE APPLS.

APPLICATION STRUCTURE
WITH LANGUAGE ENVIRONMENT/VSE

ACCOUNTS OTHER
PAYROLL RECEIVABLE APPLS.
Unique Unique Unique
Logic- Logic- Logic-
Hulti- Multi- Multi-

Language Language Language

Common Routines
Multi-language

Common Library Routines
Language Environment/VSE

Figure 2. LE/VSE Application Structure

Because applications can easily share code written in different languages, the
unigue code that is required shrinks while the percentage of common code
expands: Application development becomes more efficient.

LE/VSE and COBOL Application Development
The support of LE/VSE by COBOL/VSE provides these new benefits for COBOL

application development:

* Improved communication between COBOL and other languages

» Alternative ways to use assembler programs to keep the LE/VSE run-time envi-

ronment initialized for COBOL programs

» Tuning capability available at execution time

COBOL/VSE and LENSE 7

COBOL/VSE and LE/VSE

¢ Powerful callable services using the CALL statement, including:

— Condition handling

— Dynamic storage allocation
— Date and time services

— Mathematical calculations

— Message handling

— National language support
— Formatted dump service

* More flexible and comprehensive run-time options

In addition to these new benefits, running applications with LE/VSE maintains func-
tion provided by the VS COBOL Il run-time environment, including support for:

* CICS, DOS/VS DL/I, DFSORT/VSE, Sort/Merge I
* Reentrancy
¢ Extended System Architecture (ESA)

Improved Interlanguage Communication (ILC)

The support of LE/VSE by COBOL/VSE makes interlanguage communication (ILC)
easier and faster than with existing ILC implementations.

A single run unit can contain one or more programs written in any language
enabled by LE/VSE. For the first release of LE/VSE, the enabled languages are
PL/I and COBOL.

A COBOL run unit is equivalent to an LE/VSE enclave. An enclave is an inde-
pendent collection of routines, one of which is designated as the MAIN program.
The MAIN program may, or may not be, a COBOL program.

LE/VSE provides a defined linkage convention to allow programs to call one
another at run time. These protocols lessen the burden of writing an interlanguage
communication (ILC) application. The ILC support, coupled with the common con-
dition handling function of LE/VSE, makes error recovery predictable for multi-
language applications.

8 COBOL/VSE General Information

COBOL/VSE and LE/VSE

Example of ILC
Table 3 shows a COBOL program calling a PL/I routine.

Table 3. COBOL Program COBRTN Calling PL/I Program PENTRY

COBOL program COBRTN PL/I program PENTRY
IDENTIFICATION DIVISION. R T T S T T Y
PROGRAM-ID. 'COBRTN'. /* Set up COBOL linkage for PENTRY =x/

/*************************************/

PENTRY: PROC(STRUCT) OPTIONS(MAIN);

. /* Define Data Structure */
WORKING-STORAGE SECTION. DCL 1 STRUCT,
01 STRUCT-OUT. 2 SUBI FIXED BINARY(31),

05 SUBI PIC S9(9) comP. 2 SUBJ FIXED BINARY(31);

05 SUBJ PIC S9(9) COMP. /* Add SUBI to SUBJ */
PROCEDURE DIVISION. STRUCT.SUBJ = STRUCT.SUBJ + STRUCT.SUBI;
STARTS. END PENTRY;

dhkhkkkhkkkhkhkkkhkhkkkhkkhkhkkhhhhkhhhkhhkkhkhhkkkk
* Set up parameters for call *

khkkkkhkhkkkhkkkhhkhkhkhhkkhhkhrkhhkhrhhkkhhhx

MOVE 11 TO SUBI.
MOVE 22 TO SUBJ.
*kkkkkhkkhkkkhkkhkkkkkkhkkhkkhkkhkkhhkkkkkhkkk
* Call PL/I Program PENTRY *
* parameters by reference *
KAAKAAKRKRAAAAARA KRR KA ARk hhhhhhhhhk

CALL 'PENTRY' USING STRUCT-OUT.

GOBACK.

Improved ILC Performance
When a COBOL program calls a non-COBOL program without using LE/VSE, the
COBOL environment must be saved and restored—a costly process.

With LE/VSE, however, only one environment exists. Programs follow common ILC
conventions, including standard parameter and return code processing. The single
environment and the common conventions make possible a straightforward, faster
process.

Figure 3 shows the ILC process without LE/VSE, and the improved, streamlined
process available with LE/VSE.

ILC ILC
WITHOUT LE/VSE WITH LE/VSE

Figure 3. ILC Process—Improved with LE/VSE

COBOL/VSE and LENVSE 9

COBOL/VSE and LE/VSE

Using Assembler Programs with COBOL

Your applications can contain assembler programs that interact with one or more
COBOL programs. If you have a non-CICS application in which an assembler
program invokes COBOL programs repeatedly, you can make the application run
faster. Invoking COBOL from an assembler program enables you to retain the
LE/VSE run-time environment between COBOL program invocations. To do this,
you can use either of the following:

* An LE/VSE-conforming assembler program
e The LE/VSE pre-initialization function

Saving Processing Time: LE/VSE-conforming Assembler
Program

LE/VSE supplies macros that you can use to develop an LE/VSE-conforming
assembler program that may invoke COBOL programs. Because the LE/VSE run-
time environment for the programs remains when the COBOL programs return
control, you can save computing time by limiting initialization and termination proc-
essing.

Saving Processing Time: LE/VSE Pre-initialization Function

The pre-initialization function can be used from an assembler program that may, or
may not, conform to LE/VSE conventions. The assembler program can interface
with the LE/VSE pre-initialization function to invoke COBOL/VSE programs, which
can, in turn, call either VS COBOL Il or other COBOL/VSE programs. The LE/VSE
run-time environment remains initialized for the COBOL programs until the assem-
bler program is terminated.

Improved Storage Tuning

The LE/VSE support provided by COBOL/VSE makes storage tuning easy and flex-
ible. You can now perform storage tuning at run time in addition to using link-
edited tuning tables. This means that you can change storage parameters until you
are satisfied with how storage is being allocated.

LE/VSE provides run-time options that control the allocation of storage for both user
and system requirements, including space for COBOL working storage and external
data. Run-time options enable you to specify the size of initial allocations and the
size of subsequent incremental storage requests. In addition, storage reports let
you analyze just how storage is being allocated for each application. Through the
additional storage management function provided with LE/VSE, you can more
easily control the allocation of storage for your COBOL applications.

Powerful and Comprehensive Callable Services

Now available, via the standard CALL statement, are more than 80 services that
help you perform:

Condition handling

Dynamic storage management

Date and time calculations

Mathematical calculations

Message handling

National language support

General services such as obtaining an LE/VSE formatted dump

e o o o o o o

10 COBOLWNSE General Information

COBOL/VSE and LE/VSE

Using the services from a COBOL program is easy, as demonstrated by the fol-
lowing example of calling a service that requires two parameters:

77 Parm-string pic x(80) display.
77 Feedback-code pic x(12) display.

Call "CEE5PRM" using parm-string, feedback-code.

Figure 4. Example of Using a Callable Service from COBOL

Parm-string contains the particular parameters required by a service, and LE/VSE
indicates whether the service completed successfully in Feedback-code.

Condition Handling
LE/VSE condition handling provides facilities that allow COBOL/VSE applications to
react to unexpected errors.

You can use language constructs or run-time options to select the level at which
you want to handle each condition. For example, you can decide to handle a par-
ticular error in your COBOL program, let the LE/VSE condition handler take care of
it, or percolate the error so that it is handled by the operating system. Only a truly
catastrophic failure need disrupt your application environment.

In support of LE/VSE condition handling, COBOL/VSE introduces language exten-
sions for procedure pointers, as described in “COBOL/VSE Programs and LE/VSE”
on page 29.

Dynamic Storage Services
These services enable you to get, free, and reallocate storage. In addition, you can
create your own user-defined storage pools.

Date and Time Services

With the date and time services, you can get the current local time and date in
several formats, and perform date and time conversions. Two callable services,
CEEQCEN and CEESCEN, provide a predictable way to handle 2-digit years, such
as 94 for 1994 or 02 for 2002.

Mathematical Services
Calculations that are easy to perform with this type of callable service include loga-
rithmic, exponential, trigonometric, square root, and integer functions.

Note: COBOL/VSE also supports a set of intrinsic functions that include some of
the same mathematical and date functions. The LE/VSE callable services
and intrinsic functions provide equivalent results for the same functions.
See “Intrinsic Functions” on page 23 for an overview of intrinsic functions
and COBOL/VSE Programming Guide for an explanation of the differences
between COBOL/VSE intrinsic functions and LE/VSE date and mathemat-
ical services.

COBOL/VSE and LENSE 11

COBOL/VSE and LE/VSE

Message Handling

Message handling services include getting, dispatching, and formatting messages.
Messages for non-CICS applications can be directed to files or printers, while CICS
messages are directed to a CICS transient data queue. LE/VSE takes care of split-
ting the message to accommodate the record length of the destination, and pre-
senting the message in the correct national language, such as Japanese or
English.

National Language Support Services

These services make it easy for your applications to support the language wanted
by application users. You can set the language and country, and obtain default
date, time, number, and currency formats. For example, you might want dates to
appear as 23 June 99, or 6,23,99.

General Callable Services
LE/VSE also offers a set of general callable services, which include the capability to
get an LE/VSE formatted dump.

Depending upon the options you select, the LE/VSE formatted dump may contain
the names and values of variables, and information about conditions, program
tracebacks, control blocks, storage, and files. All LE/VSE dumps have a common,
well-labeled, and easy-to-read format.

Sample List of LE/VSE Callable Services
The following table gives examples of a few callable services available with

LE/VSE.

Note: Many more services are available than those listed in the table. For a com-
plete list, see LE/VSE Programming Guide.

Table 4 (Page 1 of 2). LE/VSE Callable Services—Types and Sample List.
Function Type For Example:

Date and Time CEEQCEN, CEESCEN To query and set the century. These two callable services
are valuable when one or more programs use two digits to
express a year. That is, 03, can easily be interpreted as
2003 and not 1903.

CEEGMTO To calculate the difference between the local system time and
Greenwich Mean Time.

CEELOCT To get the current local time in your choice of three formats.
Mathematical Services CEESIABS To calculate the absolute value of an integer.
CEESSNWN To calculate the nearest whole number for a single-precision
floating-point number.
CEESSCOS To calculate the cosine of an angle.
Dynamic Storage Services CEEGTST To get storage.
CEECZST To change the size of a previously allocated storage block.
CEEFRST To free storage.
Condition Handling Ser- CEEHDLR To register a user condition handler.
vices CEESGL To raise or signal a condition.
CEEMRCR To specify where execution resumes after the condition

handler has completed.

12 COBOL/NVSE General Information

COBOL/VSE and LE/VSE

Table 4 (Page 2 of 2). LE/VSE Callable Services—Types and Sample List.

Function Type For Example:

Message Handling Ser- CEEMOUT To dispatch a message.

vices CEEMGET To retrieve a message.

National Language Support CEESLNG To change or query the current national language.

Services CEE5CTY To change or query the current national country.
CEE5MCS To obtain the default currency symbol for a given country.

General Services CEE5DMP To obtain an LE/VSE formatted dump.

Using LE/VSE Callable Services—an example

Many callable services offer the COBOL programmer entirely new function that
would require extensive coding using previous versions of COBOL. Two such ser-
vices are CEEDAYS and CEEDATE, which you can use effectively when you want
to format dates for output.

Figure 5 on page 14 shows a sample COBOL program that uses LE/VSE services
to format and display a date from the results of a ACCEPT statement.

COBOL/VSE and LEVSE 13

COBOL/VSE and LE/VSE

ID DIVISION. B0000010
PROGRAM-ID. HOHOHO. B0000020
kkkkdkhdkhkhkkhhhkkkhkhkkhkkhkhkkhkkdkhhhkdhhkkrkkhhhrkrkhkrkkdhrhhx B00000O30
* FUNCTION: DISPLAY TODAY'S DATE IN THE FOLLOWING FORMAT: =* B0000040
* WWWWWWWWW, MMMMMMMM DD, YYYY * B0000050
* * B0000060
* I.E. SUNDAY, DECEMBER 25, 1994 * B0000070
* * B0000080O
P L e T T T R e e P R e e B0000OO90
ENVIRONMENT DIVISION. B0000100
DATA DIVISION. B0000110
WORKING-STORAGE SECTION. B0000120
B0000130

01 CHRDATE. B0000140
05 CHRDATE-LENGTH PIC S9(4) COMP VALUE 10. B0000150

05 CHRDATE-STRING PIC X(10). B0000160

01 PICSTR. B0000170
05 PICSTR-LENGTH PIC S9(4) COMP. B0000180

05 PICSTR-STRING PIC X(80). B0000190
B0000200

77 LILIAN PIC S9(9) COMP. B0C00210
77 FORMATTED-DATE PIC X(80). B0000220
77 DAYSFC PIC X(12). B0000230
77 DATEFC PIC X(12). B0000240
B0000250

PROCEDURE DIVISION. B0000260
E R R L B0000270
* USE LE DATE/TIME CALLABLE SERVICES TO PRINT OUT * B0000280
* TODAY'S DATE FROM COBOL ACCEPT STATEMENT. * B0000290
E R X L T L e T B0O000O300
ACCEPT CHRDATE-STRING FROM DATE. B0000310
B0000320

MOVE "YYMMDD" TO PICSTR-STRING. B0000330
MOVE 6 TO PICSTR-LENGTH. B0000340

CALL "CEEDAYS" USING CHRDATE , PICSTR , LILIAN , DAYSFC. B0000350
B0000360

MOVE " WWWWWWWWWZ, MMMMMMMMMZ DD, YYYY " TO PICSTR-STRING. B0000370

MOVE 50 TO PICSTR-LENGTH. B0000380
CALL "CEEDATE" USING LILIAN , PICSTR , FORMATTED-DATE , B0000390
DATEFC. B0000400

B0000410

DISPLAY "#*x*kkkkkkkkkkhrkhhkkkhrkkhkrrrsrr' B0000420
DISPLAY FORMATTED-DATE. B0000430
DISPLAY "**kkkkkkkkkkkkhkhrkkhhrkkhkrkrkxrx' B0000440
B0000450

STOP RUN. B0000460
B0000470

Figure 5. Example of Using LE/VSE Callable Services

Using CEEDAYS and CEEDATE drastically reduces the code required without
LE/VSE.

Comprehensive Run-Time Options
LE/VSE supports a full-function set of run-time options, offering greater flexibility,
while maintaining compatibility with previous COBOL run-time options. Run-time
options determine the conditions under which your application runs. You can use
them to specify:

* How conditions are handled
* What kind of debugging is activated

14 COBOL/VSE General Information

COBOL/VSE and LE/VSE

* How storage management is to be handled for your application
¢ Whether an application has 31-bit addressing

» The national language and country settings

» How messages are processed

Condition Handling

Run-time options enable you to specify the conditions under which an application is
abnormally terminated and what information you want when a condition occurs.
You can specify, by abend code, which failures you want the operating system to
process as abnormal terminations and which you want handled by the LE/VSE con-
dition handler. Upon abnormal termination, you can specify what level of informa-
tion you want; that is, whether you want a dump, a trace, messages, or no
information.

Debugging
Run-time options also specify if debugging is activated. You can specify the
DEBUG run-time option to activate the WITH DEBUGGING feature of COBOL.

You can also use the CHECK run-time option in conjunction with the SSRANGE
compiler option to automatically check for valid data references. This enables you
to make sure that indexes, subscripts, and reference modifiers have values within
an acceptable range to avoid storing data at incorrect storage locations.

Storage Management

In addition to callable services, you can use run-time options to set storage options.
These options enable you to conduct storage tuning at run time instead of via link-
edited tables. In addition, you can specify a run-time option to obtain a storage
report.

Indicating that an Application has 31-bit Addressing

With LE/VSE and COBOL/VSE, you can use the ALL31(ON) run-time option, in
conjunction with the DATA(31) compiler option, to specify that an application is
running with 31-bit addressing.and that external data can be allocated space above
the 16-megabyte line.

National Language
Run-time options specify the initial national language for your application and
country-specific defaults for formats such as date, time, and currency.

Message Handling
You can use run-time options to specify where messages are directed and how
many control blocks to allocate for the messages.

New and Compatible Function

Some run-time options offer entirely new function that is unavailable without
COBOL/VSE, and some provide the equivalent function to that available with VS
COBOL II.

One new function is the capability to perform storage tuning at run time. DOS/VS
COBOL does not support storage tuning, while VS COBOL |l supports it only at
link-edit time. With COBOL/VSE, you can try various parameter combinations
when you run an application and det comprehensive storage reports to determine

COBOL/VSE and LEVSE 15

COBOL/VSE and LE/VSE

optimal storage management parameters. Once established, the tuning parameters
can then be link-edited.

An example of a function that is compatible with one provided by VS COBOL I, but
which is unavailable with DOS/VS COBOL, is the LE/VSE CHECK option. This
option gives you equivalent function to that provided by the VS COBOL i run-time
option, SSRANGE. The CHECK option, in conjunction with the SSRANGE
COBOL/VSE compiler option, can save your organization a considerable amount of
debugging effort for a common, but extremely difficult to debug, programming error.
One cause for an enormous amount of debugging effort occurs when indexes, sub-
scripts, or reference modifiers are incorrectly set to large numbers, and data is
inappropriately stored. Program instructions may even get modified, and the
symptom of the problem may bear no obvious relation to the subscript that is out-
of-range. If the CHECK run-time option is in effect, the problem is automatically
caught, the program terminated, and a message like the following issued:

The reference to table 'ALL-FIXED' by verb number '01' on line
'008000' addressed an area outside the region of the table.

Support for Reentrancy
LE/VSE supports programs that are reentrant. If a reentrant program (or a reen-
trant subroutine) is placed in a shared area of virtual storage, a single copy of the
program will satisfy all requests for the program—even simultaneous requests.

With the improved ILC of LE/VSE, reentrant applications can now include both PL/I
and COBOL subprograms.

In addition to its support for reentrancy, LE/VSE supports programs that are not
reentrant. However, if a program is not reentrant, a separate copy of the program
is used in response to each request. Many copies of the program may be in use at
the same time, consuming extra storage and wasting processing time.

16 COBOLNSE General Information

COBOL/VSE and LE/VSE

Most LE/VSE library routines are reentrant, and LE/VSE supports reentrant pro-
grams generated by the COBOL/VSE compiler. As illustrated by the following
figure, you can save storage in two ways: by sharing reentrant programs and by
sharing library routines.

[=]

request for
1 |l program X

program X request for
(reentrant) program X

O—g‘

=
s

x5

library
routines

request for
program X

Support for Extended Architecture
COBOL/VSE can be used with the VSE/ESA operating system or CICS/VSE* sub-
system in IBM processors that operate in extended architecture mode. As the fol-
lowing figure illustrates, extended architecture stretches the working area—the
address space—available to a program. A program and its data are therefore not
constrained by a 16-million-byte address space.

After extended

architecture—up
to 2 billion bytes
of address space

Before extended 16MB Line

architecture—16
million bytes of
address space

Using 31-bit Addressing

When operating under an environment that exploits extended addressing,
COBOL/VSE can use 31-bit addressing, allowing you to take advantage of address
space above the 16-megabyte line. COBOL/VSE extends the limits on the size of
a program's data area and lets you develop applications that can run in the
extended address space above 16 megabytes.

Thus, you can construct large applications that use extensive tables of data without
resorting to techniques like segmentation to fit large programs into available
address space.

COBOL/VSE and LENSE 17

COBOL/VSE and LE/VSE

The flexibility of 31-bit addressing allows you to run programs either above or below
the 16-megabyte line, depending on the application size.

You need not recompile programs compiled with RENT that run on a System/370*
processor (and its 24-bit addressing mechanism) to exploit 31-bit addressing on an
extended architecture processor.

With COBOL/VSE, 31-bit addressing offers advantages in the following:

CICS: CICS COBOL programs can be run in 31-bit mode and must be com-
piled to be reentrant. If you place a program in a shared area of virtual storage
(for instance, the shared virtual area of VSE/ESA), multiple tasks in a
processor can share it; transactions in separate CICS regions can share it; and
transactions in a single CICS region can share one copy of a program placed
in that region.

DOS/VS DL/I: COBOL/VSE programs that run with the latest versions of DL/I
can reside and run above 16 megabytes, enabling them to take advantage of
the extended address space offered by extended architecture processors. Data
areas used by the application to communicate with DL/l can reside above 16
megabytes; this is accomplished by specifying the compiler option DATA(31).
Note that the DATA(31) option is applicable only if you are using a level of DL/I
that supports data areas above the line.

VSAM buffers: COBOL/VSE locates its VSAM buffers above 16 megabytes
when appropriate. 31-bit addressing under VSE/ESA provides as much as 2
gigabytes of available storage for these large buffers.

SORT/MERGE: COBOL/VSE programs with SORT/MERGE statements can be
run above 16 megabytes to take advantage of the extended address space
offered in extended architecture processors.

The COBOL/VSE compiler itself, and most LE/VSE library routines, can run in
31-bit mode and be loaded above 16 megabytes.
As illustrated in the following figure:

* The operating system can load a COBOL/VSE application at an address in
virtual storage above or below the 16-megabyte line.

* The COBOL/VSE application program can call programs that run above 16
megabytes—even if the calling program is loaded below the 16-megabyte line.

» The COBOL/VSE application can access data that is loaded above or below 16
megabytes.

18 COBOLNSE General Information

Advanced Language Features

The DATA compiler option lets you allocate space for data below 16 mega-
bytes, even if the program that uses the data runs above the 16-megabyte line.

j 16MB Line

COBOL/VSE and LEVSE 19

Advanced Language Features

COBOL/VSE and Advanced Language Features

COBOL/VSE is a comprehensive language that maintains the features introduced
by VS COBOL |l and adds still more. The COBOL/VSE language is powerful; it
encourages structured programming, offers a wide variety of data types, and makes
it easy to use other products such as DFSORT/VSE or CICS. New with
COBOL/VSE is a set of intrinsic functions that enable you to perform mathematical,
statistical, and date and time functions with simple invocations from COBOL state-
ments.

This chapter describes only a subset of the advanced language features available
with COBOL/VSE. These include:

¢ Structured programming language constructs

e Intrinsic functions

» Connectivity to other products such as CICS, DOS/VS DL/I, DFSORT/VSE,
Sort/Merge |l, and LE/VSE

¢ A wide variety of data types and character sets

¢ Other language features such as improved file handling and character string
manipulation

Structured Programming

The COBOL 85 Standard (the ISO and ANSI standards identified in Appendix A,
“Industry Standards” on page 47), supported by COBOL/VSE, provides efficient
language constructs. These constructs include nested programs, in-line PERFORM
statements, nested statements using explicit scope terminators, and the EVAL-
UATE statement. Using these constructs will aid in the development of applications
that conform to top-down design, modular program development, and structured
programming concepts. Maintenance of structured programs is easier and less
costly.

Coding without Structured Programming

Without structured programming support, GO TO statements are frequently neces-
sary, program flow is difficult to follow, and maintenance becomes a headache.
Consequently, the cost of using an application is ever-increasing.

Nested Programs

The COBOL 85 Standard allows you to develop nested COBOL programs, which
help you in top-down design. This means that a COBOL source program can
contain another COBOL source program, and a contained COBOL source program
can in turn contain other COBOL source programs.

20 © Copyright IBM Corp. 1983,1995

Advanced Language Features

The following example illustrates a nested program structure. In this example,
Program A1 can only be called by Program A. Program A2 may be called by
Program A, and, because of the COMMON attribute, can also be called by Pro-
grams A1, A11, and A3.

Program A1

Program At1

Program A2

(Common)

Program A3

Nested COPY Statements

The COPY statement has always allowed you to develop program functions that
can be stored separately from other program code, then be included in the program
at compile time without the run-time overhead that CALL statements require.

With COBOL/VSE, as with VS COBOL I, COPY statements can be nested. A
COPY statement can include a segment of code that contains COPY statements.
And the code included by the nested COPY statement(s) can contain COPY state-
ments that are nested even deeper.

Nested COPY statements can be used to conveniently build nested programs. This
encourages modular application development.

COBOL/VSE and Advanced Language Features 21

Advanced Language Features

Inline PERFORM Statements

The inline PERFORM statement, when paired with the END-PERFORM scope ter-
minator, allows performed procedures to be coded directly inline with the
PERFORM statement that invokes them:

Out-of-Line PERFORM Inline PERFORM

PERFORM OUT-PROCEDURE
UNTIL A = B

0UT-PROCEDURE
(statement(s)
to be performed)
NEXT-PARAGRAPH.

As you can see, the inline PERFORM statement reduces the complexity of program
flow by eliminating transfers of control. And because many control transfers are
eliminated, the program logic is much easier to develop, and understand.

Explicit Scope Terminators
COBOL statements can be nested within one another by using scope terminators
such as END-ADD for the ADD statement and END-PERFORM for the PERFORM
statement. These explicit scope terminators enable you to define precisely the
range of each statement. By making the end of scope visually evident, explicit
scope terminators make the logic of a program much easier to follow.

The EVALUATE Statement

The EVALUATE statement is another construct that allows you to develop and
code structured programs. Just one EVALUATE statement allows several alterna-
tive paths of execution, clarifying program logic and simplifying program coding.

22 COBOLNSE General Information

Advanced Language Features

In addition, one EVALUATE statement can take the place of several IF statements.

For example:
IF Corresponding EVALUATE
Statements Statement
If NUMERIC-ID=1 Evaluate NUMERIC-ID
Move "one" to ALPH-ID When 1
Else Move “one’ to ALPH-ID
If NUMERIC-ID=2 When 2
Move "two" to ALPH-ID S
Else When 3
If NUMERIC-ID=3 __ Move "three" to ALPH-ID
Move "three" to ALPH-ID When Other
Else . Move "zero" to ALPH-ID
Move "zero" to ALPH-ID. ~ End-Evaluate,

Intrinsic Functions

COBOL/VSE offers a set of functions that you can invoke to provide values at exe-
cution time. These values might require complex calculations such as the calcu-
lation of present value or the average of a large number of values. Function
invocations may replace identifiers or arithmetic expressions in many language con-
structs. Intrinsic functions and the ALL subscript are a powerful combination,
making it possible to reduce the code required for applications that require math-
ematical, statistical, financial, or date and time calculations. For example, you
might say

IF FUNCTION MEAN(SALARY(ALL)) IS > 30000

All values of SALARY, a one-dimensional array, are summed, averaged, and the
result compared to $30,000. The ALL specification indicates that all values of
SALARY should be considered.

In the previous version of COBOL, you would have to calculate the average salary
(without the benefit of a function), place the value in an identifier, and then test the
identifier.

COBOL/VSE intrinsic functions help you make mathematical, statistical, financial,
character string, and date calculations. The following table presents examples of a
few of the intrinsic functions available with COBOL/VSE.

Note: Many more intrinsic functions are available than are listed in the table. For
a complete list, see Appendix B, “COBOL/VSE Intrinsic Functions” on
page 50.

COBOL/VSE and Advanced Language Features 23

Advanced Language Features

Table 5. Intrinsic Functions—Types and Sample List.

Function Type For Example:
Mathematical SIN To calculate the sine of an angle.
ATAN To calculate the arctangent; that is to find the angle,
given the tangent.
MAX To calculate the maximum value.
SQRT To calculate the square root.
Statistical MEAN To calculate the average.
RANDOM To generate a random number.
STANDARD-DEVIATION To calculate the standard deviation.
Financial ANNUITY To perform ANNUITY calculations.

PRESENT-VALUE

To calculate the present value.

Date and Time

CURRENT-DATE

DAY-OF-INTEGER

To get the current date and the difference from
Greenwich Mean Time.

To find the Julian date equivalent (YYYYDDD) of an
integer date.

Character String LOWER-CASE To convert a string to lowercase.
NUMVAL To find the numeric value of a simple numeric string.
REVERSE To reverse the order of the characters in a string.
Miscellaneous ORD-MAX To find the ordinal position n, of a maximum value. For
example, you could find that the nth person in the list
has the highest salary, and use n as a subscript to find
the person's name.
LENGTH To find the length of an argument.
WHEN-COMPILED To find the date and time a program was compiled.

Intrinsic functions can be nested. If, for example, you want to calculate the log of
the factorial of 2X+1 and store the result in Z, you can use this statement:

Compute Z =
function log(function factorial(2 * X + 1))

Assume that you require a program to calculate the total payroll, the average
salary, the salary and name of the employee with the maximum salary, and the
salary range.

Table 6 shows the Procedure Division calculations required with COBOL/VSE, and
Table 7 on page 25 shows the Procedure Division calculations required without
COBOL/VSE.

Table 6. Intrinsic Function Example with COBOL/VSE

compute max-salary = function max(emp-salary(all)).
compute i = function ord-max(emp-salary(all)).

move emp-name(i) to highest-paid.

compute avg-salary = function mean(emp-salary(all)).
compute salary-range = function range(emp-salary(all)).
compute total-payroll = function sum(emp-salary(all)).

24 COBOL/VSE General Information

Advanced Language Features

Table 7. Intrinsic Function Example without COBOL/VSE

compute max-salary = salary(1).
compute min-salary = salary(1).
move emp-name(1) to highest-paid.
perform varying x from 1 by 1
until x > emp-count
if salary(x) > max-salary then
compute max-salary = salary(x)
move emp-name(x) to highest-paid
else
if salary(x) < min-salary then
compute min-salary = salary(x)
end-if
end-if
compute total-payroll = total-payroll + salary(x)
end-perform.
compute avg-salary = total-payroll / emp-count.
compute salary-range = max-salary - min-salary.

Using Other Products from COBOL/VSE Programs

The COBOL/VSE language makes it easy to use the services of other products.

DU
CICS/VSE Sort/Merge I
COBOL/VSE
LE/VSE SQLUDS
DFSORT/VSE

Figure 6. COBOL/VSE Connects to Other Products

Among the products that you can use from COBOL/VSE programs are:

» Customer Information Control System (CICS)

» DOS/VS DL/I

* DFSORT/VSE

e Sort/Merge |

¢ Structured Query Language/Data System (SQL/DS*)
¢ IBM Language Environment for VSE/ESA (LE/VSE)

COBOL/VSE Programs and CICS
CICS provides facilities for real-time, transaction-oriented database/data communi-
cations applications. These facilities include the management of programs, tasks,
storage, files, and transient data that may be used in applications such as message
switching, inquiry, data collection, and conversational data entry.

COBOL/VSE and Advanced Language Features 25

Advanced Language Features

The support of CICS COBOL applications by COBOL/VSE, in combination with
LE/VSE, can boost productivity and aid in top-down design and modular program
development. Because COBOL/VSE subprograms can contain CICS commands,
modular design and development principles are easier to implement.

In addition, it is no longer necessary to perform the time-consuming task of BLL
(Base Locator for Linkage) cell addressing since based addressing is now done
using pointer variables and the ADDRESS OF special register.

Improved CICS COBOL Application Development
COBOL/VSE-CICS applications are now much easier to design and code, because
many of the tasks required for previous versions of COBOL have been eliminated.
These tasks include:

« Defining and manipulating lists of pointers (BLL cells) for COBOL programs in
locate mode. (In locate mode, the CICS commands for data access specify the
SET option rather than the INTO or FROM option.)

* Issuing SERVICE RELOAD statements to re-initialize BLL cells.
» Specifying the length of the data for many CICS commands.
» Taking special actions if the size of a data record exceeds 4 Kilobytes.

Additionally, as part of this simplified COBOL-CICS interface first introduced with
VS COBOL I, you can use the following language elements:

GOBACK statement: Returns control to another COBOL program or to CICS.

EXIT PROGRAM statement: Returns control from a COBOL subprogram to a
COBOL main program.

STOP RUN statement: Returns control to CICS.

CALL statement: When operating under CICS, COBOL/VSE programs can
call, or be called by, VS COBOL Il or other COBOL/VSE programs. Both static
call and the CALL identifier form of dynamic call are supported by
COBOL/VSE. All VS COBOL Il and COBOL/VSE subprograms that are called
can also contain CICS commands.

In addition, with LE/VSE, ILC within a run unit is now supported for CICS appli-
cations.

Data manipulation statements: The use of the STRING, UNSTRING, and
INSPECT statements is supported in the CICS environment.

ADDRESS OF special register: COBOL/VSE allows the use of the ADDRESS
OF special register when operating under CICS. You can use the ADDRESS
OF special register to hold the address of a variably-located record area, such
as an area to hold input or output records.

LENGTH OF special register: COBOL/VSE allows the use of the LENGTH OF
special register when operating under CICS. A reference to the LENGTH OF
special register returns the current length of an associated data item. For
example, the statement MOVE LENGTH OF A TO B places the current length of
item A into item B.

CICS uses the LENGTH OF special register to determine the length of a refer-
enced data item in a CICS command if the length is not explicitly stated in the
command.

26 COBOL/VSE General Information

Advanced Language Features

Pointer data type: An extension of the USAGE clause, USAGE IS POINTER,
defines a type of data item that can be used to hold addresses. It allows you
to move addresses received from other programs or licensed products to a part
of a record, then pass this record to another program.

Using pointer data items, you can also set up or process chained lists within a
program.

Example of CICS-COBOL Code Simplification

The following example illustrates the coding required by DOS/VS COBOL com-
pared with COBOL/VSE in a program that interfaces with CICS. The program
reads data from, and writes data to, a file in a CICS environment. Note the simpli-
fied coding in the COBOL/VSE program.

COBOL-CICS Interface COBOL-CICS Interface
DOS/VS COBOL COBOL/VSE

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP.

LINKAGE SECTION.

01 BLLCELLS.
02 FILLER PIC S9(8) COMP.
02 BLL-RECIA PIC S9(8) COMP.
02 BLL-REC1B PIC S9(8) COMP.
02 BLL-REC2 PIC S9(8) COMP.

01 REC-1.
02 CTR PIC 9(4) comp.
02 FLD PIC X(100)

OCCURS 1 TO 50 TIMES
DEPENDING ON CTR.

01 REC-2.
02 ...

PROCEDURE DIVISION.

EXEC CICS READ UPDATE ...
SET (BLL-REC1A)
LENGTH (LRECL-REC1)
END-EXEC.

SERVICE RELOAD REC-1.

IF LRECL-REC1 > 4096
THEN ADD 4096 TO BLL-REC1A
GIVING BLL-REC1B.

EXEC CICS REWRITE ...
FROM (REC-1)
LENGTH (LRECL-REC1)
END-EXEC.

COBOL/VSE Programs and DOS/VS DL/l

DOS/VS DL/I provides both batch and online processing services for hierarchical
databases. These services include:

+ Database services: retrieving, inserting, deleting, and replacing data, and the
processing of statistical requests

* System services: basic and symbolic checkpoint, extended restart, and rollback

COBOL/VSE and Advanced Language Features 27

Advanced Language Features

Your COBOL programs can use DOS/VS DL/I services with calls to the DL/I inter-
face. The following example shows a COBOL statement that calls DOS/VS DL/I
using the CBLTDLI interface to replace (REPL) a data segment with data stored in
MAST-SEG-IN.

CALL 'CBLTDLI' USING FUNC-REPL, DB-PCB-MAST, MAST-SEG-IN.

New with COBOL/VSE via LE/VSE is the CEETDLI call interface, which takes
advantage of the LE/VSE condition handling services. When DL/I is executing on
behalf of an application and an exception occurs, the LE/VSE condition handling
services will percolate the condition handling to DL/I. This will allow DL/I to perform
database rollback to provide data integrity at abnormal termination of the applica-
tion.

Advantages of using CEETDLI are:

¢ You can run your program with TRAP(ON)
» Take advantage of exception handling services
» Percolate DL/I conditions to DL/I to ensure data integrity

COBOL/VSE Programs and DFSORT/VSE

DFSORT/VSE is a fast and efficient data processing tool that sorts, merges, and
copies files. DFSORT/VSE is as effective for small amounts of data and simple
jobs, such as alphabetizing a list of names, as it is for very large amounts of data
and complex jobs, such as running a billing system.

COBOL/VSE allows you to use the COBOL SORT/MERGE feature for sequential,
relative, and indexed files, except for those whose access mode is random.
The COBOL/VSE language supports DFSORT/VSE with these constructs:

¢ The SORT statement to sort records from one or more files

¢ The MERGE statement to combine two or more already sorted files into one,
newly sorted file

¢ Sort Description entries to define sort and merge files in the File Section of a
COBOL program

¢ Several special registers to pass information to DFSORT/VSE

Following is a SORT statement that sorts the file EMPLOYEE-FILE first by last
name and then by first name.

SORT EMPLOYEE-FILE
ON ASCENDING KEY LAST-NAME FIRST-NAME

COBOL/VSE Programs and SQL/DS

The relational database services of SQL/DS are available via SQL (Structured
Query Language) statements embedded in your COBOL program. SQL is both
simple and powerful. Single SQL statements can perform the same functions as
many lines of conventional code. SQL/DS includes support for these relational
database functions:

» Defining, creating, and deleting databases
» Retrieving, adding, deleting, and updating data from a database

28 COBOLNSE General Information

Advanced Language Features

¢ Checkpoint and restart
¢ Sorting and grouping data
« Built-in functions and mathematical calculations

An SQL statement that updates the manager number (MGRNO) column in the
DSN8130.TDEPT table follows.

EXEC SQL
UPDATE DSN8130.TDEPT
SET MGRNO = :MGR-NUM
WHERE DEPTNO = :INT-DEPT
END-EXEC

Please note that the SQL statement is enclosed by EXEC SQL and END-EXEC. A
COBOL program with SQL statements must be precompiled by a preprocessor
before it can be compiled by the COBOL compiler. The preprocessor accepts the
mixture of COBOL and SQL as input, and produces:

» A source module that can be compiled by COBOL/VSE

¢ SQL information, obtained from the embedded SQL statements, that is required
for SQL/DS processing

With COBOL/VSE, as with VS COBOL I, your SQL/DS applications can be reen-
trant; that is, only one copy is required, but that copy can be used by many users
or programs concurrently. Under DOS/VS COBOL, SQL/DS programs cannot be
reentrant.

Also, with COBOL/VSE, as with VS COBOL Il, you can use all features of dynamic
SQL,; that is, you can construct SQL statements dynamically at run time. Under
DOS/VS COBOL, dynamic SQL is severely limited.

COBOL/VSE Programs and LE/VSE

LE/VSE, the common run-time environment for COBOL/VSE programs, provides
over 80 services that you can call directly from COBOL/VSE programs, using the
CALL statement. COBOL/VSE introduces language extensions to support these
LE/VSE services.

For LE/VSE callable services that require the address of a procedure to be passed
as an argument, COBOL/VSE adds new extensions for both the USAGE clause
and the SET statement. Now, you can specify in the USAGE clause that a data
item is being used as a procedure pointer; that is, it contains the address of a pro-
cedure entry point. With the SET extension you can assign the address of a proce-
dure entry point to the data item. Then, if you want, you can use the name of the
data item as a parameter when you call LE/VSE services such as CEEHDLR,
which establishes a user condition handler.

These language extensions enable you to use COBOL programs as condition han-
dlers for such conditions as program checks, abends, or software generated
signals. LE/VSE condition handling as supported by COBOL/VSE enables your
applications to continue processing for all but the most catastrophic system failures.

For more information about the benefits of LE/VSE in general, see “COBOL/VSE
and LE/VSE” on page 6; for a complete list of LE/VSE callable services, see
LE/VSE Programming Guide.

COBOL/VSE and Advanced Language Features 29

Advanced Language Features

Data Types and Character Sets

In addition to standard data types such as alphabetic, numeric, and alphanumeric,
COBOL/VSE supports floating-point calculations, which frequently can improve the
accuracy realized by application program calculations.

COBOL/VSE supports both the single-byte character set (SBCS) and the double-
byte character set (DBCS). The inclusion of floating-point and DBCS widens the
applicability of COBOL to your organization's application requirements.

Floating-Point Data
COBOL/VSE provides highly accurate floating-point exponentiation and a highly
accurate conversion algorithm for floating-point calculation, and lets you choose
when to use floating-point data types to enhance program performance.

For example, fixed-point exponentiations with large exponents can be evaluated
more quickly and accurately when the operands force the exponentiations to be
evaluated in floating-point. (Floating-point exponentiations often return more accu-
rate results than fixed-point exponentiations.)

Calculation of arithmetic expressions evaluated in floating-point mode are most effi-
cient when the operands involved require the least amount of conversion. There-
fore, if you define the items in an expression as floating-point, COBOL/VSE
efficiently and more accurately computes the expression.

Double-Byte Character Set
COBOL/VSE accepts characters in the Double-Byte Character Set (DBCS) and the
standard COBOL set of characters. DBCS support makes it easier to develop
COBOL applications that require a DBCS character set—such as applications using
Kanji data.

To handle DBCS data, COBOL/VSE offers:

e The USAGE DISPLAY-1 clause

+ PICTURE clause symbols that define 2-byte characters (as opposed to 1-byte
EBCDIC characters)

* Formats for DBCS literals and for nonnumeric literals containing double-byte
characters

In addition to using DBCS for application data, you can also use double-byte char-
acters in COBOL program user names.

Other Language Features
Other language features include:

¢ Flexible ways of initializing values
» Improved file handling
» Reference modification

30 COBOL/VSE General Information

Advanced Language Features

Flexible Ways of Initializing Values

The INITIALIZE statement, first introduced with VS COBOL I, enables you to set
certain types of data items to predetermined values. It is functionally equivalent to
one or more MOVE statements. For example, assume that you have a structure G,
defined as follows:

01 G.

03 A PIC A.

03 AN PIC X.

03 N PIC 9.

03 ANE PIC XB.

03 NE PIC 9,999.

03 FLT USAGE COMP-1
03 BIN USAGE BINARY.

If you want to use standard initializations of blank for alphabetic or alphanumeric
data items and zero for numeric data items, COBOL/VSE makes it especially easy.
If you are restricted to DOS/VS COBOL constructs, you need several COBOL
statements.

Table 8. Initializing via DOS/VS COBOL and via COBOL/VSE
DOS/VS COBOL COBOL/VSE
MOVE SPACES TO A. INITIALIZE G.

MOVE SPACES TO AN.

MOVE ZERO TO N.

MOVE SPACES TO ANE.

MOVE ZERO TO NE.

MOVE ZERO TO FLT.

MOVE ZERO TO BIN.

Yes, with COBOL/VSE it takes only one statement.

Improved File Handling

Already one of the strong suits in the COBOL language, file-handling improve-
ments, introduced in VS COBOL I, are part of COBOL/VSE. COBOL/VSE enables
you to use variable-length records, new file status codes, and external files.

Variable-Length Records
In the past, using DOS/VS COBOL, variable-length record programming techniques
required:

» Storing the record length into an explicit field in the record, or
* Calling assembly language routines, or
« |llegally accessing the data management-supplied record length field.

COBOL/VSE enables you to use:
RECORD IS VARYING...DEPENDING ON dataname

COBOL/VSE and Advanced Language Features 31

Advanced Language Features

When a COBOL program successfully reads a record, dataname is automatically
set to the length of the record. With READ INTO and RETURN INTO, the length of
the record in the implicit move is automatically provided.

File Status Codes for VSAM Input and Output Requests
Using the FILE-STATUS clause, you can obtain detailed information in response to
your VSAM input/output requests.

As the following example demonstrates, you can specify FS-CODE, a 2-byte area that
holds status information, plus VSAM-CODE, a 6-byte area to receive information from
VSAM.

FILE-STATUS IS FS-CODE, VSAM-CODE

External Files and Data

COBOL/VSE enables you to share files and data across an entire run unit. Two
programs can do input and output on one file, whereas with DOS/VS COBOL, data
has to be passed through CALL USING and the LINKAGE section.

Reference Modification

Reference modification gives you the capability to operate upon substrings of data
items, which can reduce the need for subordinate data definitions. For example,

MOVE WHOLE-NAME(1:25) TO LAST-NAME

transfers the first 25 characters in the variable WHOLE-NAME to the variable
LAST-NAME.

Together with other statements such as STRING and UNSTRING, the COBOL/VSE
language makes it easy to process character strings.

Note: This chapter has highlighted only a few of the language features of
COBOL/VSE. For a complete description of the language, see
COBOL/VSE Language Reference.

32 COBOLNSE General Information

Advanced Compiler Features

COBOL/VSE and Advanced Compiler Features

COBOL/VSE is a full-function compiler that can:

» Assist in migration, compatibility, and conformance to standards
e Produce easy-to-use listings

* Generate code that is set up for debugging

» Optimize generated code

» Provide flexible numeric sign processing

* Help you manage storage

* Offer performance improvements in sorting

You can control the operation of the compiler with over 40 compiler options.

Support for Migration, Compatibility, and Conformance to Standards

The use of one or more of the compiler options listed in Table 9 can help provide
compatibility with programs written for previous versions of COBOL and can help
ensure conformance to industry standards and SAA conventions.

Table 9 (Page 1 of 2). Compiler Options That Assist in Migration, Compatibility, and Stand-
ards Conformance

Compiler Option Description

NUMPROC(MIG) The NUMPROC(MIG) compiler option causes numeric sign han-
dling in COBOL/VSE programs to be similar to numeric sign han-
dling in DOS/VS COBOL. This saves programming effort and
alleviates many incompatibility problems.

Specifying NUMPROC(MIG) for a COBOL/VSE program makes
migration from DOS/VS COBOL much easier.

CMPR2 The CMPR2 compiler option lets you continue to use your valid VS
COBOL Il Release 2 programs by providing the same run-time
results. The NOCMPR2 compiler option allows you to take full
advantage of the COBOL 85 Standard support for your new
COBOL/VSE programs.

FLAGMIG The FLAGMIG compiler option can be used in combination with the
CMPR2 compiler option to help identify language elements that
exhibit different behavior between VS COBOL |l Release 2 and
COBOL/VSE.

TRUNC(BIN) The TRUNC(BIN) compiler option tells COBOL/VSE to perform
truncation on binary numeric fields based on the size of the binary
field in storage, rather than on the number of digits specified by the
PICTURE clause. Binary truncation is more consistent with the
handling of binary data by other System/370 software such as
CICS.

FLAG You can identify prior IBM COBOL code that needs modification by
recompiling existing application programs with the COBOL/VSE
compiler and specifying the FLAG option. The FLAG option deter-
mines what level of error messages you want to receive. Speci-
fying that you want to receive all error messages, even those at the
warning level, can help you identify which code requires change.

© Copyright IBM Corp. 1983,1995 33

Advanced Compiler Features

Table 9 (Page 2 of 2). Compiler Options That Assist in Migration, Compatibility, and Stand-

ards Conformance

Compiler Option

Description

FLAGSTD

The FLAGSTD compiler option can help ensure that your programs
conform to the COBOL 85 Standard, and to the Federal Information
Processing Standards Publication (FIPS PUB 21-3).

FLAGSTD flags any statement in a program that does not conform
to a specific level of the COBOL 85 Standard.

You can also request the flagging for optional COBOL 85 Standard
subsets and for obsolete language elements.

FLAGSAA

The FLAGSAA compiler option can help ensure that your programs
conform to the Systems Application Architecture (SAA) COBOL
interface definition.

FLAGSAA flags statements not conforming to that interface defi-
nition, making it easy to spot nonportable language elements.

Note: This flagging support is available only for SAA COBOL
Level 1.

Availability of Easy-To-Use Compiler Listings

The COBOL/VSE compiler produces, on request, a wide variety of information
about a program and its compilation. Optionally, you can include in the listing gen-
erated by the COBOL/VSE compiler any of the information described in Table 10.

Table 10 (Page 1 of 2). Description of the Information Available in a Compiler Listing

Type of Information

Description

Source listing

Provides a list of the COBOL source statements in your program.
You can tailor source statement information to meet your specific
needs. A variety of information can be embedded right in your
source listing:

» Diagnostic messages immediately following the relevant state-
ment

» Cross-reference information

« Data Division map information

Cross-reference
information

Shows where COBOL/VSE verbs, procedures, data names, and
programs are defined and used. Cross-reference lists are sorted
alphabetically for ease of use.

Data Division map

lllustrates the structure of defined data in a program, and provides
other pertinent information such as where the data is defined and
what its attributes are.

Nested program map

Displays, using indentation, the hierarchy of nested programs. In
addition, the map indicates the statement number where each
nested program is defined and lists the attributes of each nested
program.

Diagnostic message
listing

Provides a list of diagnostic messages generated by the compiler.
You can use compiler options to control the severity level of the
messages to be included in the list.

34 COBOLWNSE General Information

Advanced Compiler Features

Table 10 (Page 2 of 2). Description of the Information Available in a Compiler Listing

Type of Information Description

Procedure Division Provides information about the Procedure Division, including infor-

list mation about program verb usage, global tables, working storage,
and literals, together with a complete list of the assembler code
generated by the compiler. Optionally, if you do not want the full
assembler listing, you can get a condensed list.

For complete information about the listing options that are available, see
COBOL/VSE Programming Guide.

Many of the listings you generate from the compiler can help you debug but the
compiler helps you debug in other ways, as well.

Other Ways to Use the Compiler to help Debugging
You can use compiler options to generate object code that is set up to:

* Get a symbolic dump of the Data Division of COBOL application programs
« Automatically check for an out-of-range condition

Preparing Your Program to Get a Symbolic Dump
Also with the TEST compiler option, the object code can contain the names of all
symbols defined in the Data Division of your COBOL program. LE/VSE uses this
information to generate a symbolic dump, which makes it easy to locate the values
of all program variables. You can get a dump automatically when a program termi-
nates abnormally, or you can explicitly request a dump from your COBOL program
by calling the LE/VSE dump service.

Getting Set Up to Check for Valid Data Ranges

By using the SSRANGE compiler option, you can generate information in the
program object code that makes possible automatic range checking. When you
specify the CHECK option at run time, values of subscripts, indexes, and reference
modifiers are checked automatically before data is stored. For more information
about the value of range checking, see “New and Compatible Function” on

page 15.

Optimize the Generated Code

To reduce the run time of an object program, the COBOL/VSE compiler can opti-
mize code if you specify the OPTIMIZE compiler option.

COBOL/VSE does some of this optimization automatically. For instance, the com-
piler ensures that the code it produces for table handling is efficient and that code
is addressed efficiently. You can use the OPTIMIZE compiler option to:

» Eliminate unnecessary transfers of control (branches) or simplify inefficient
branches.

» Simplify the compiled code for PERFORM or internal CALL statements and
their associated procedures. Where it can, the compiler places procedure code
inline, eliminating the need for linkage code.

COBOL/VSE and Advanced Compiler Features 35

Advanced Compiler Features

e Streamline redundant computations by substituting the results of initial compu-
tations for later repetitions.

¢ Eliminate constant computations by performing them when the program is com-
piled.

» Aggregate moves of contiguous, equal-sized items into a single move.

» Delete code that will never be run and identify the deleted code with a warning
message.

Flexible Numeric Sign Processing
The NUMPROC compiler option enables you to:

e Speed execution for high-performance programs

¢ Process data with nonconforming signs

* Make numeric sign handling in COBOL/VSE programs similar to numeric sign
handling in DOS/VS COBOL (see the description of NUMPROC(MIG) in
Table 9 on page 33)

Speeding Execution for High-Performance Programs

If high performance is a prime consideration, you can choose the NUMPROC(PFD)
compiler option. This option tells the COBOL/VSE compiler that numeric signs in
packed and zoned decimal fields are in the "preferred-sign" format. If the compiler
can make this assumption, it can generate more efficient code.

Processing Data with Nonconforming Signs
For programs processing input data that does not conform to the "preferred-sign”
conventions, the NUMPROC(NOPFD) option performs invalid sign processing for all
numeric input data.

Compiler Options that Help You with Storage Management
You can use compiler options to:
¢ Generate reentrant code, with the RENT option.

+ Determine whether data areas for reentrant code are obtained from above or
below the 16-megabyte line, or from unrestricted storage, with the DATA
option.

For information about the value of reentrant code and the use of virtual storage
above the 16-megabyte line, see “Support for Reentrancy” on page 16 and
“Support for Extended Architecture” on page 17, respectively.

Performance Improvement When You Use SORT/MERGE

The performance of programs that sort data via the COBOL SORT/MERGE feature
can be improved by using the FASTSRT compiler option. First, consider the
process required without the FASTSRT option.

36 COBOL/VSE General Information

Advanced Compiler Features

Without Fast Sort

With Fast Sort

The following figure shows the process required if you do not use the FASTSRT
compiler option.

input file
unsorted A B
COBOL/VSE
without fast Sort/Merge
sort <
sorted c
output file

COBOL/VSE will call the SORT/MERGE product to do the actual sorting of data (B
in the figure), but COBOL/VSE itself will process the related input and output data
(A and C). Thus, for every file to be sorted, COBOL/VSE must perform the steps
necessary to release all of the input records needed for the SORT/MERGE product,
and to return the sorted records when the process is complete.

The following figure illustrates how the SORT/MERGE feature works if you specify
the FASTSRT option.

input file A

unsorted

COBOW/VSE |
with fast sort > SorMerge | B

sorted

T

output file C

COBOL/VSE can speed up sorting because it can call the SORT/MERGE product
to do both the sorting and the processing of the related input/output. This reduces
the number of times the data must be moved for processing. DFSORT/VSE pro-
vides this SORT/MERGE capability.

If you request fast sorting but the object program cannot perform it, you receive a
message indicating which conditions were not met. If you do not request fast
sorting and your program meets the fast-sorting conditions, you receive a message
to that effect.

COBOL/VSE and Advanced Compiler Features 37

Industry Standards

COBOL/VSE and Industry Standards

38

COBOL/VSE supports the COBOL 85 Standard, as defined in Appendix A,
“Industry Standards” on page 47. Many organizations contribute to industry stand-
ards and practices for the COBOL language:

CODASYL

ISO FIPS

The complete names for the organizations are:

¢ American National Standards Institute (ANSI)

¢ Conference On Data Systems Languages (CODASYL)
Federal Information Processing Standard (FIPS)

¢ International Standards Organizations (ISO)

The COBOL 85 Standard met by COBOL/VSE is the accepted standard of the
industry. Tools and other products that interface with COBOL applications use this
standard as their base. For a list of the industry standards met by COBOL/VSE,
see Appendix A, “Industry Standards” on page 47 and for a complete description
of the COBOL/VSE language, see COBOL/VSE Language Reference.

© Copyright IBM Corp. 1983,1995

Moving towards COBOL

What Must | Do to Move toward COBOL/VSE?

This chapter provides:

¢ An overview of the history of IBM COBOL products

* A list of the hardware and software supported by COBOL/VSE

* An overview of the compatibility you can expect between COBOL/VSE and pre-
vious System/370 COBOL products

A short description of the migration aids that are available

A list of steps to take to move toward COBOL/VSE

IBM COBOL Products—A History

COBOL/VSE builds upon the functions that IBM introduced with DOS/VS COBOL
and VS COBOL |l. Figure 7 gives an overview of the functions available with the
last releases of DOS/VS COBOL and VS COBOL Il. In addition, Figure 7 shows
that the new functions added by COBOL/VSE include the following:

e Intrinsic functions
e Language extensions, such as the new procedure-pointer support

e Support for LE/VSE, which provides: improved ILC, common services, condi-
tion handling, and tuning at run time

¢ A general-use programming interface for access to compilation data in the
SYSADAT file (via the ADATA compiler option)

DOS/VS COBOL VS COBOL Il COBOL/VSE
Figure 7. COBOL-A History and COBOL/VSE-The Future

Because COBOL/VSE offers many advantages over previous COBOL products,
you may want to begin preparing now to use COBOL/VSE for your organization's
applications. First, consider which operating systems and subsystems you can use
with COBOL/VSE.

© Copyright IBM Corp. 1983,1995 39

Moving towards COBOL

What Hardware and Software Environments Are Supported?

You can run COBOL/VSE application programs in all environments supported by
LE/VSE. With LE/VSE, you can run COBOL/VSE generated object programs
under, or with, the following products:

« VSE/ESA Version 1 Release 4

o VSE/ESA Version 2 Release 1

¢ CICS/VSE Version 2 Release 3

o DL/I DOS VS Version 1 Release 10

e DFSORT/VSE Version 3 Release 1

» DOS/VS Sort/Merge |l Version 2 Release 5

» High Level Assembler/MVS & VM & VSE Release 1
¢ High Level Assembler/VSE Release 2

* SQL/DS (VSE) Version 3 Release 4

IBM Language Environment for VSE/ESA Release 1 will run on the System/370
and its follow-on machines supporting the above programming systems.

Will Existing Applications Still Run?

Yes, you can run DOS/VS COBOL and VS COBOL |l programs in the new run-time
environment; in fact, DOS/VS COBOL, VS COBOL |, and COBOL/VSE programs
can all coexist. You can have a single application that mixes programs from all
three compilers.

COBOL/VSE provides upward source program compatibility with VS COBOL I
Version 1 Release 4 for VSE with certain necessary exceptions that are detailed in
the COBOL/VSE Migration Guide. This means that, in general, you can take an
existing COBOL source program that runs under VS COBOL Il Release 4 or later,
recompile it without change under COBOL/VSE, and run it successfully under
LE/VSE. Or, you can take the source program, make whatever changes you want
to make, including taking advantage of new COBOL/VSE language function,
compile it under COBOL/VSE, and run it under LE/VSE.

For pre-Release 4 VS COBOL Il programs and for DOS/VS COBOL programs, you
can use the COBOL and CICS Command Level Conversion Aid for VSE (CCCA)
program offering 5785-CCC to convert the program source to COBOL/VSE source.

LE/VSE supports existing and new programs, as either phases or object modules,
compiled with:

¢ Release 3 of DOS/VS COBOL
o All releases of VS COBOL II

In most cases both phase and object module compatibility are provided for existing
COBOL code that is run under LE/VSE. Therefore, you can continue to run your
old COBOL phases under LE/VSE, without recompiling and link-editing the pro-
grams. The phases may consist of COBOL compiled code or assembler code that
is written to the standards documented in the COBOL/VSE Programming Guide.
Also, you can link-edit existing COBOL object modules or assembler object
modules with the LE/VSE library, and then run them under LE/VSE and get equiv-
alent results.

40 COBOL/NSE General Information

Moving towards COBOL

Note: If any part of a phase is recompiled with COBOL/VSE, the phase must be
relinked with the LE/VSE library.

What Migration Aids Are Available?

COBOL/VSE supports a number of compiler options that help you migrate, as
described in “Support for Migration, Compatibility, and Conformance to Standards”
on page 33.

In addition, you may want to use one of these IBM products that can help smooth
migration to COBOL/VSE:

Table 11. Migration Aids

Migration Product Description
COBOL and CICS Converts DOS/VS source code or CICS COBOL pro-
Command Level Conversion grams into COBOL/VSE source code.

Aid for VSE (CCCA)
Program Offering 5785-CCC

IBM COBOL Structuring Facility Running under MVS or VM, COBOL/SF transforms

Version 3 unstructured DOS/VS COBOL or VS COBOL Il to
(COBOL/SF) structured COBOL/VSE programs, automatically
Program Product 5696-737 invoking conversion using CCCA.
Please note that COBOL/SF is not available under
VSE.
COBOL Report Writer Converts DOS/VS Report Writer statements into
Precompiler ' COBOL/VSE source code or runs as a preprocessor
Program Offering 5798-DYR for COBOL/VSE. This tool supplements CCCA source

code conversions.

For more information about these migration features and how you might use them
in your migration process, see COBOL/VSE Migration Guide.

Where Can | Get More Information to Help Me Use or Move toward

COBOL/VSE?

You can find helpful information in the COBOL/VSE and LE/VSE publication
libraries.

The structure of these libraries is designed to support the basic programming tasks
shown in the following figure: ‘

What Must | Do to Move toward COBOLAVSE? 41

Moving towards COBOL

COMPILE-TIME TASKS RUN-TIME TASKS

o o o o

Code/Compile Link/Run

v

Debug ————

Figure 8. Division of Programming Tasks by Library

Bear in mind that:

* Publications supporting coding and compiling tasks are available with the lan-
guage products you use.

¢ Publications supporting linking and running tasks are available with LE/VSE
There are exceptions to this method of dividing tasks, but it is a good model to use

in finding information. Note also that interlanguage communication is discussed pri-
marily in the LE/VSE publications.

Publications Provided with COBOL/VSE
Publications provided with the COBOL/VSE product include the following:

Table 12. IBM COBOL for VSE/ESA Publications

Task Publication Order
number
Evaluation and Planning General Information GC26-8068
Migration Guide GC26-8070
Installation and Customization Guide SC26-8071
Programming Programming Guide SC26-8072
Language Reference SC26-8073
Reference Summary SX26-3834
Diagnosis Diagnosis Guide SC26-8528
~ Warranty Licensed Program Specifications GC26-8069

COBOL/VSE General Information
Contains high-level information designed to help you evaluate the
COBOL/VSE product. This book describes new compiler and language
features, application development with LE/VSE, and product support for
industry standards.

COBOL/VSE Migration Guide
Contains detailed migration and compatibility information for current
users of DOS/VS COBOL and VS COBOL Il who wish to migrate to, or
reuse their existing applications on, COBOL/VSE. This book also
describes several migration aids or tools to help you plan a migration
path for your installation.

42 COBOLNSE General Information

Moving towards COBOL

COBOL/VSE Installation and Customization Guide
Provides information you will need in order to install and customize the
COBOL/VSE product in VSE/ESA or CICS/VSE environment. Detailed
planning information includes:

e Systems and storage requirements for COBOL/VSE
 Information about changing compiler option defaults

COBOL/VSE Programming Guide
Contains guidance information for writing and compiling application pro-
grams using COBOL/VSE, including information on the following topics:

¢ Programming using new product features, such as intrinsic functions
» Processing techniques for VSAM and SAM files

» Debugging techniques using compiler options and listings

¢ Nested programming techniques

* Subsystem considerations

COBOL/VSE Language Reference
Provides syntax and semantic information about the implementation of
the COBOL language, including rules for writing source programs and
descriptions of IBM language extensions. This book is meant to be
used in conjunction with the COBOL/VSE Programming Guide, which
provides programming task-oriented information.

COBOL/VSE Reference Summary
Contains a convenient summary of the COBOL/VSE language
syntax—including new intrinsic functions—and syntax for compiler
options, compiler-directing statements, and the COBOL/VSE reserved
word list.

COBOL/VSE Diagnosis Guide
Provides instructions for diagnosing failures in the COBOL/VSE compiler
product that are not caused by user error. This book will help you con-
struct a keyword string that allows you or IBM Service to search the
product failure database for previously documented problems and appro-
priate corrections.

COBOL/VSE Licensed Program Specifications
Contains a product description and product warranty information for the
COBOL/VSE compiler.

What Must | Do to Move toward COBOLVSE? 43

Moving towards COBOL

Other Publications: LE/VSE
The publications provided with the LE/VSE product are listed in Table 13.

Table 13. IBM Language Environment for VSE/ESA Publications

Task Publication Order
number

Evaluation and Planning Fact Sheet GC26-8062

Concepts Guide GC26-8063

Installation and Customization Guide SC26-8064
Programming Programming Guide SC26-8065

Debugging Guide and Run-Time Messages SC26-8066
Diagnosis Diagnosis Guide SC26-8060
Warranty Licensed Program Specifications GC26-8069
LE/VSE Fact Sheet

Provides a brief overview and description of LE/VSE, and COBOL/VSE.

LE/VSE Concepts Guide
Provides a detailed overview of program models and intended architec-
ture for LE/VSE, the common run-time environment.

LE/VSE Installation and Customization Guide
Contains information needed to plan for installing and customizing the
LE/VSE product.

LE/VSE Programming Guide
Provides detailed information on the following topics:

¢ Directions for linking and running programs that use LE/VSE ser-
vices

¢ Information on storage management, run-time message handling,
and condition handling models

« Callable services and run-time options and how to use them

» Instructions for writing programs that use interlanguage.communi-
cation (ILC)

This book also contains language-specific run-time information.

LE/VSE Debugging Guide and Run-Time Messages
Provides detailed information on the following topics:

* Debugging techniques and services
¢ Run-time messages and their explanation
¢ Abend codes

LE/VSE Diagnosis Guide
Describes the procedures for creating a keyword string and reporting
errors to IBM Service.

LE/VSE Licensed Program Specifications
Contains a product description and warranty information.

44 COBOLNSE General Information

Moving towards COBOL

Softcopy Information Available with LE/VSE
The LE/VSE Programming Guide is also available in softcopy.

Additional Publications

Other publications that may help you move toward the COBOL/VSE product
include:

COBOL and CICS Command Level Conversion Aid for VSE
Provides detailed information about how to use the CCCA migration aid.

COBOL Structuring Facility User's Guide and Reference
Gives the programming rules for using COBOL/SF.

COBOL Report Writer Installation and Operation Manual (VSE)
Describes the basic functions of the precompiler, and how to install and
customize it. The book also discusses various debugging problems that
may arise from its use.

COBOL Report Writer Precompiler Programmers Manual .
Provides the information needed by application programmers engaged in
the writing or maintenance of COBOL programs using Report Writer.

What Must | Do to Move toward COBOL/VSE? 45

Moving towards COBOL

What Steps Do | Take to Get Ready to Move toward COBOL/VSE?

Read this book,
and others

Order products,
as necessary

Plan, by applica-
tion, how you will
migrate

Install products

Begin to use
COBOL/VSE

It is easy to get started. Just take these steps:

You have already started preparing for COBOL/VSE because you are reading this
book: COBOL/VSE General Information. In addition, consider reading:

LE/VSE Concepts Guide
To understand the new concepts introduced by LE/VSE.

LE/VSE Installation and Customization Guide
To understand how to install and customize LE/VSE.

COBOL/VSE Installation and Customization Guide
To understand how to plan for installing and customizing COBOL/VSE.

COBOL/VSE Migration Guide
To understand the detailed requirements for migrating applications to
COBOL/VSE.

Other books, as required:
To understand more about the products you are planning to install. See
“Where Can | Get More Information to Help Me Use or Move toward
COBOL/VSE?" on page 41 for a list of books to consider reading.

You can place an order for COBOL/VSE and LE/VSE, and one or more of the
migration products listed in “What Migration Aids Are Available?” on page 41.

Consider dividing your organization's applications into these categories:

» Those you plan to run in compatibility mode; that is, those applications that, at
least initially, you want to run without modification and without recompiling and
relinking.

» Those you plan to modify to take advantage of one or more new COBOL/VSE
features.

» New applications to be developed completely with COBOL/VSE.

Before you install the products you have chosen, follow the instructions given in
COBOL/VSE Installation and Customization Guide, LE/VSE Installation and
Customization Guide, and COBOL/VSE Migration Guide. Be sure to run several
tests to make sure that the products are installed correctly.

After you have installed COBOL/VSE and LE/VSE, you can begin to reap some
benefits immediately without disruption to existing applications. Gradually, as you
migrate applications to COBOL/VSE, and create new applications to take advan-
tage of COBOL/VSE's new features, you can continue to reap more and more ben-
efits to help you streamline the entire application development process.

46 COBOL/VSE General Information

Appendix A. Industry Standards

COBOL/VSE supports the following industry standards in the VSE/ESA environ-
ment, as understood and interpreted by IBM as of September 1989:

1. 1ISO 1989:1985, Programming Languages - COBOL

ISO 1989/Amendment 1, Programming Languages - COBOL - Amendment 1:
Intrinsic function module.

ISO 1989:1985 is identical to X3.23-1985, American National Standard for
Information Systems - Programming Language - COBOL.

ISO 1989/Amendment 1 is identical to X3.23a-1989, American National
Standard for Information Systems - Programming Language - Intrinsic Function
Module for COBOL.

For supported modules, see item 2 below.

2. X3.23-1985, American National Standard for Information Systems - Program-
ming Language - COBOL.

X3.23a-1989, American National Standard for Information Systems - Program-
ming Language - Intrinsic Function Module for COBOL.

COBOL/VSE supports all required modules at the intermediate level. It also
supports all required modules at the high level with the exception of the fol-
lowing language features:

e EXTEND phrase of the OPEN statement
» REVERSED phrase of the OPEN statement
¢ OF/IN phrase of the COPY statement

See Level 2 Restrictions below.

In the following list, the shorthand notation describing module levels is shown in
parentheses. For example, to summarize module information for sequential
input/output, the shorthand notation is (2 SEQ 1,2).

(2 SEQ 1,2)

L———» Maximum level supported
Minimum level supported
Abbreviation of module name
Supported Tevel of elements

¢ Nucleus (2 NUC 1,2)
» Sequential I-O (1 SEQ 1,2) file.

Level 2 restriction: the EXTEND phrase of the OPEN statement is not
supported except for VSAM sequential files.

Level 2 restriction: the REVERSED phrase of the OPEN statement does
not cause file positioning, and is only applicable to tape files.

Relative 1-O (2 REL 0,2)

Indexed I-O (2 INX 0,2)

Sort-Merge (1 SRT 0,1)

Inter-Program Communication (2 IPC 1,2)
Source Text Manipulation (1 STM 0,2)

© Copyright IBM Corp. 1983,1995 47

Level 2 restriction: the OF/IN phrase of the COPY statement is treated as
documentation.

In addition, the following levels of optional modules are supported:
¢ Intrinsic Functions (1 ITR 0,1)
¢ Debug (1 DEB 0,2)
¢ Segmentation (2 SEG 0,2)

The following optional modules of the standard are not supported:

¢ Report Writer
¢ Communications
¢ Debug (2 DEB 0,2)

3. FIPS Publication 21-3, Federal Information Processing Standard 21-3 ,
COBOL high subset.

4. International Reference Version of the ISO 7-bit code defined in International
Standard 646, 7-Bit Coded Character Set for Information Processing Inter-
change.

5. The 7-bit coded character sets defined in American National Standard
X3.4-1977, Code for Information Interchange.

Under CICS, the following language elements of X3.23-1985 are not supported:

ACCEPT

CLOSE

DELETE

DISPLAY

MERGE

OPEN

READ

RERUN

REWRITE

SORT which requires COBOL to perform I/O
START

STOP 'literal'

WRITE

USE declaratives (except USE FOR DEBUGGING)
ENVIRONMENT DIVISION and FILE SECTION when entries relate to data
management.

NOTES:
The term "COBOL 85 Standard" is used in this book to refer to the combination of
the following standards:

¢ 1SO 1989:1985, Programming Languages - COBOL

ISO 1989/Amendment 1, Programming Languages - COBOL - Amendment 1:
Intrinsic function module.

* X3.23-1985, American National Standard for Information Systems - Program-
ming Language - COBOL.

X3.23a-1989, American National Standard for Information Systems - Program-
ming Language - Intrinsic Function Module for COBOL.

48 COBOL/VSE General Information

The term "COBOL 74 Standard" is used in this book to refer to the following
standards:

¢ X3.23-1974, American National Standard for Information Systems - Program-
ming Language - COBOL.

¢ ISO 1989:1978, Programming Languages - COBOL
Note: The ISO Standards are equivalent to the American National Standards.

The following options are required to support the above standards:

Compiler Options LE/VSE Run-Time Options

ADV AIXBLD

DYNAM TRAP(ON)

FLAGSTD(H)

LIB

NOCMPR2

NOCURRENCY

NODBCS

NOFASTSRT

NOFLAGMIG

NOFLAGSAA

NONUMBER

NOSEQUENCE

NUMPROC(NOPFD) or
NUMPROC(MIG)

QUOTE

TRUNC(STD)

NOWORD

ZWB

The following LE/VSE run-time options are used in support of the standards: UPSI,

DEBUG, and NODEBUG.

A complete description of the COBOL/VSE language is available in COBOL/VSE
Language Reference.

Appendix A. Industry Standards

49

Appendix B. COBOL/VSE Intrinsic Functions

50

Note: This appendix contains general-use programming interfaces and associated
guidance information.

Table 14 provides an overview of the argument type, function type and value
returned for each of the Intrinsic Functions provided by COBOL/VSE.

Argument types and function types are abbreviated as follows:

A = alphabetic
| = integer
N = numeric

X = alphanumeric

Table 14 (Page 1 of 3). Table of Functions

Function-name Arguments Type Value returned
ACOS N1 N Arccosine of N1
ANNUITY N1, 12 N Ratio of annuity paid for

I2 periods at interest of
N1 to initial investment of

one

ASIN N1 N Arcsine of N1

ATAN N1 N Arctangent of N1

CHAR 11 X Character in position 1 of
program collating
sequence

COS N1 N Cosine of N1

CURRENT-DATE None X Current date and time
: and difference from
Greenwich Mean Time

DATE-OF-INTEGER 1 | Standard date equivalent
(YYYYMMDD) of integer
date

DAY-OF-INTEGER I I Julian date equivalent
(YYYYDDD) of integer
date

FACTORIAL I | Factorial of 1

INTEGER N1 I The greatest integer not
greater than N1

INTEGER-OF-DATE 1 | Integer date equivalent of
standard date
(YYYYMMDD)

INTEGER-OF-DAY 11 I Integer date equivalent of
Julian date (YYYYDDD)

INTEGER-PART N1 | Integer part of N1

© Copyright IBM Corp. 1983,1995

Table 14 (Page 2 of 3). Table of Functions

Function-name Arguments Type Value returned
LENGTH At or I Length of argument
N1 or
X1
LOG N1 N Natural logarithm of N1
LOG10 N1 N Logarithm to base 10 of
N1
LOWER-CASE A1 or X1 X All letters in the argument
are set to lowercase
MAX Al...or X Value of maximum argu-
ment; note that the type
I1...or I :
of function depends on
N1...or N the arguments
X1... X
MEAN N1... N Arithmetic mean of argu-
ments
MEDIAN N1... N Median of arguments
MIDRANGE N1... N Mean of minimum and
maximum arguments
MIN Al..or X Value of minimum argu-
ment; note that the type
1..or |)
of function depends on
N1...or N the arguments
X1... X
MOD 11,12 | 11 modulo 12
NUMVAL X1 N Numeric value of simple
_ numeric string
NUMVAL-C X1 N Numeric value of numeric
X1 X2 string with optional
commas and currency
sign
ORD A1 or X1 I Ordinal position of the
argument in collating
sequence
ORD-MAX Al.. or I Ordinal position of
N1...or maximum argument
X1...
ORD-MIN Al..or I Ordinal position of
N1._.or minimum argument
X1...
PRESENT-VALUE N1 N Present value of a series
N2 of future period-end

amounts, N2, at a dis-
count rate of N1

Appendix B. COBOL/VSE Intrinsic Functions 51

Table 14 (Page 3 of 3). Table of Functions

Function-name Arguments Type Value returned
RANDOM 11 or N Random number
none
RANGE ... or | Value of maximum argu-
N1 N ment minus value of

minimum argument; note
that the type of function
depends on the argu-

ments.
REM N1,N2 N Remainder of N1/N2
REVERSE A1 or X1 X Reverse order of the
characters of the argu-
ment
SIN N1 N Sine of N1
SQRT ' N1 N Square root of N1
STANDARD- N1... N Standard deviation of
DEVIATION arguments
SUM I1...or | Sum of arguments; note
that the type of function
N1... N
depends on the argu-
ments.
TAN N1 N Tangent of N1
UPPER-CASE A1 or X1 X All letters in the argument
are set to uppercase
VARIANCE N1... N Variance of arguments
WHEN-COMPILED None X Date and time when

program was compiled

52 COBOL/VSE General Information

Bibliography

Language Environment
Publications

IBM Language Environment for VSE/ESA
Fact Sheet, GC26-8062
Concepts Guide, GC26-8063
Installation and Customization Guide, SC26-8064
Programming Guide, SC26-8065

Debugging Guide and Run-Time Messages,
SC26-8066

Diagnosis Guide, SC26-8060
Licensed Program Specifications, GC26-8061
Reference Summary, SX26-3835

LE/VSE-Conforming Language
Product Publications

IBM COBOL for VSE/ESA
General Information, GC26-8068
Migration Guide, GC26-8070
Installation and Customization Guide, SC26-8071
Programming Guide, SC26-8072
Language Reference, SC26-8073
Reference Summary, SX26-3834
Diagnosis Guide, SC26-8528
Licensed Program Specifications, GC26-8069

IBM PL/I for VSE/ESA
Fact Sheet, GC26-8052
Programming Guide, SC26-8053

© Copyright IBM Corp. 1983,1995

Language Reference, SC26-8054

Licensed Program Specifications, GC26-8055
Migration Guide, SC26-8056

Installation and Customization Guide, SC26-8057
Diagnosis Guide, SC26-8058

Reference Summary, SX26-3836

Compile-Time Messages and Codes, SC26-8059

Related Publications

COBOL and CICS Command Level Conversion Aid
for VSE, SC26-8269

COBOL Structuring Facility MVS and VM User's
Guide, SC26-3278

COBOL Structuring Facility Reference Version 3.1,
SC26-3411

COBOL Structuring Facility Getting Started Version
3.1, SC26-3415

COBOL Report Writer Precompiler Installation and
Operation, SC26-4864

COBOL Report Writer Precompiler Programmer's
Manual, SC26-4301

Softcopy Publications

These collections contain the COBOL/VSE and
LE/VSE-conforming language product publications:
VSE Collection, SK2T-0060
Application Development Collection, SK2T-1237

You can order these publications from Mechanicsburg
through your local IBM representative.

53

Index

Numerics
16-bit character support with DBCS 30
16-megabyte line
support above or below
accessing programs and data 18
benefits of 31-bit addressing 17
support by LE/VSE 17—19
31-bit addressing
benefits 17—19
CICS 18
DL/ 18
SORT/MERGE 18
support by LE/VSE 17—19
VSAM buffers 18

A
ADATA
Associated Data File 2
ADDRESS OF special register
benefits for CICS-COBOL programming 26
elimination of BLL coding requirement 26
example 27
address space, expanding 17
ALL subscript 23
ALL31 run-time option 15
ANSI (American National Standards Institute) 38
See also standards, COBOL language
application development
application structure 7
building block approach 5
communicating between languages 4
debugging 4
See also debugging
maintenance 5
modular development 20, 26
porting to new environments 5
streamlining 4
application efficiency features
code optimization 35
code sharing 16—17
fast sorting 36
floating-point data type 30
improved ILC performance $
using LE/VSE pre-initialization 10
using LE/VSE-conforming assembler 10
using preferred numeric sign formats 36
application growth with COBOL/VSE 17
applications
existing applications 1, 40
migrating 39—46

54

applications (continued)
mixed-language 6, 8—9

running in common run-time environment 6—19

streamlining application development 4
assembler

LE/VSE pre-initialization 10

LE/VSE-conforming 10

using to make applications run faster 10
Associated Data File

ADATA compiler option 2

BLL cell addressing
not required 26
books
bibliography 42
COBOL/VSE 42
LE/VSE 44
related 45
building block approach 5

C

CALL statement
callable service examples 11, 13
using COPY statements instead of CALLs 21
using to call a PL/I program 9
using to invoke callable services 4, 10
using with CICS 26
callable services provided by LE/VSE
COBOL language extensions 29
description 10—14
examples
calling from COBOL program 11, 13
formatting and displaying dates 13
sample list of services 12
types of services 10

CCCA (COBOL and CICS Command Level Conversion

Aid for VSE) 41
character sets
double-byte
application expansion 30
benefits 30
Kaniji support 30
language support 30
program user names 30
character strings
reference modification 32
string handling intrinsic functions 24
CHECK run-time option 16

© Copyright IBM Corp. 1983,1995

checking data ranges 16, 35
CICS
benefits of COBOL/VSE support 25—27
code sharing 18
extensive language element support
ADDRESS OF special register usage 26
CALL statement 26
EXIT PROGRAM statement 26
GOBACK statement 26
INSPECT statement 26
LENGTH OF special register usage 26
pointer data type usage 27
STOP RUN statement 26
STRING statement 26
UNSTRING statement 26
improved application development
elimination of old tasks 26
simplified COBOL-CICS interface 26
language support 25—27
simplified coding
BLL cell addressing not required 26
elimination of several tasks 26
example 27
using 31-bit addressing 18
CMPR2 compiler option 33
COBOL 74 Standard
See COBOL/VSE, industry standards
COBOL 85 Standard
programming productivity 20
support by COBOL/VSE 38
COBOL and CICS Command Level Conversion Aid for
VSE 41
COBOL data structures
See language features
COBOL products
COBOLW/VSE
See also COBOL/VSE
existing function 2
new function 2
DOS/VS COBOL 2, 39
history 39
migration 39—46
VS COBOL Il 2,39
COBOL Report Writer Precompiler 41
COBOL run unit
equivalent to LE/VSE enclave 8
interlanguage communication (ILC) supported 8
sharing files and data 32
COBOL/SF 41
COBOL/VSE
compiler features 33—37
See also compiler features
existing function 2
industry standards 38, 47
See also standards, COBOL language
language features 20—32
See also language features

COBOL/VSE (continued)
language standard 38, 47
migration 39—46
See also migration
new function 2
support for LE/VSE 6—19
See also LE/VSE
COBOL/VSE system requirements 40
CODASYL (Conference On Data Systems
Languages) 38
See also standards, COBOL language
code
coding examples
ILC (interlanguage communication) 9
improved COBOL-CICS interface 27
initializing values 31
using callable services 11, 13
using EVALUATE statements 23
using inline PERFORM statements 22
using intrinsic functions 24
optimization 35
reducing code 4
sharing 16
communicating between languages 4
See also ILC (interlanguage communication)
compatibility
coexistence of DOS/VS COBOL, VS COBOL Il, and
COBOL/VSE 40
compiler options for 33
CMPR2
FLAG
FLAGMIG
FLAGSAA
FLAGSTD
NUMPROC
TRUNC
object module compatibility 40
phase compatibility 40
source program compatibility 40
compiler features
compatibility 33
See also compatibility
compiler options that assist in migration 33—34
See also migration
debugging 35
See also debugging
listing 34—35
See also listing generated by the compiler
numeric sign processing 36
optimization 35
sort performance 36—37
See also SORT/MERGE feature
storage management 36
compiler listing 34—35
available information
cross-reference information 34
Data Division map 34

Index 55

compiler listing (continued)
available information (continued)
diagnostic message listing 34
nested program map 34
Procedure Division list 35
source list 34
compiler optimization
automatic optimization 35
OPTIMIZE compiler option 35
compiler options
controlling the compiler 33—37
preparing to get a symbolic dump
TEST 35
selecting listing information 34
setting up to check data ranges
SSRANGE 35
using for migration and compatibility 33
CMPR2
FLAG
FLAGMIG
FLAGSAA
FLAGSTD
NUMPROC
TRUNC
using for numeric sign processing
NUMPROC 36
using to improve sorting performance
FASTSRT 36
using to manage storage
DATA 36
RENT 36
using to optimize code
OPTIMIZE 35
compiling a COBOL program
compiler features 33—37
condition handling
COBOL/VSE language extensions 29
DL/I CEETDLI call interface 28
improvements through LE/VSE 11, 15
LE/VSE callable services
general description 11
sample list 12
LE/VSE run-time options 15
conversion

COBOL and CICS Command Level Conversion Aid

for VSE(CCCA) 41
COBOL Report Writer Precompiler 41
COBOL/SF 41
COPY statement
nested COPY statements 21
using instead of CALL statement 21
cross-reference information 34

56 COBOL/NVSE General Information

D

Data Division map 34
Data Language/l (DL/I) 28
data range checking 16, 35
data structures
See language features
data types
floating point
accuracy improvement 30
performance improvement 30
support 30
date functions
COBOL/VSE intrinsic functions 24
LE/VSE callable services
general description 11
sample list 12
DBCS (Double-Byte Character Set)
advantages 30
language features 30
debugging
overview 4
using LE/VSE to help debugging
formatted dump 12, 13
run-time options 15
using the compiler to help debugging
compiler listings 34—35
setting up to check data ranges 35
setting up to get a symbolic dump 35
DFSORT/VSE
description of DFSORT/VSE support 28
fast sorting 36
running above 16 megabytes 18, 36

using DFSORT/VSE from a COBOL program 28

diagnostic messages 34
DU/I (Data Language/l) 28
DOS/VS COBOL
features included in COBOL/VSE 2
migration from 39—46
overview of functions 39
DOS/VS DU/
benefits of 31-bit addressing 18
using from a COBOL program 27
Double-Byte Character Set (DBCS) 30

dump
formatted 4, 12
symbolic 35

E

efficiency features
code optimization 35
code sharing 16—17 .
fast sorting 36
floating-point data type 30
improved ILC performance 9

efficiency features (continued)
using LE/VSE pre-initialization 10
using LE/VSE-conforming assembler 10
using preferred numeric sign formats 36
enclave
definition 8
equivalence to COBOL run unit 8
ESA (Extended System Architecture)
extended architecture support 17
See also extended architecture support
supported systems 40
EVALUATE statement 22
exception handling
COBOL/VSE language extensions 29
DU/I CEETDLI call interface 28
improvements through LE/VSE
LE/VSE callable services
general description 11
sample list 12
LE/VSE run-time options 15
existing applications
compatibility 33, 40
migrating to COBOL/VSE 39—46
running under COBOL/VSE 40
EXIT PROGRAM statement 26
extended architecture support
benefits 17—19
CICS 18
DUI 18
SORT/MERGE 18
support by LE/VSE
VSAM buffers 18
external data 32
external file 32

F

FASTSRT compiler option 36
file handling 31—32
external data 32
external files 32
file status 32
variable-length records 31
FILE-STATUS clause 32
FIPS (Federal Information Processing Standard) 38
See also standards, COBOL language
FLAG compiler option 33
FLAGMIG compiler option 33
FLAGSAA compiler option 34
FLAGSTD compiler option 34
floating point
accuracy improvement 30
calculation 30
exponentiation 30
performance improvement 30

11,15

17—19

formatted dump 4, 12

G

GLOBAL support in Linkage section 2
GO TO statement 20
GOBACK statement 26

H

hardware environments supported 40

IBM COBOL Structuring Facility 41
IBM DFSORT/VSE
description of DFSORT/VSE support 28
fast sorting 36
running above 16 megabytes 18, 36
using DFSORT/VSE from a COBOL program 28
IBM Language Environment for VSE/ESA
(LE/VSE) 6—19
See also LE/VSE
ILC (interlanguage communication)
benefits of LE/VSE support 8—9
effects upon application development
decreasing unique code 6
using building block approach 5, 6
example 9
improved performance 9
index value checking 16, 35
industry standards
efficient language constructs 20
list of modules supported by COBOL/VSE 47
standards organizations 38
support by COBOL/VSE 47
support for COBOL 85 Standard 38, 47
support for Intrinsic Function Module 23, 47
industry standards, COBOL 47
INITIALIZE statement 31
initializing values
example 31
INITIALIZE statement 31
INSPECT statement 26
interlanguage communication (ILC) 8
See also ILC (interlanguage communication)
intrinsic functions
description 23—25
example
sample list 24
sample program 24
list 50
nested 24
types 23
ISO (International Standards Organizations) 38
See also standards, COBOL language

Index

57

Kanji
DBCS (Double-Byte Character Set) 30
support by COBOL/VSE 30

L

language features
character sets 30
CICS support 25—27
See also CICS
data types 30
DFSORT/VSE support 28
See also SORT/MERGE feature
DOS/VS DU/I support 27—28
See also DOS/VS DUI
file handling 31—32
initializing values 31
intrinsic functions 23—25
See also intrinsic functions
language extensions for LE/VSE 29
SQL/DS support 28—29
structured programming 20—23
LE/VSE
application structure 7
benefits 6—19
COBOL/VSE application development
callable services 10
comprehensive run-time options 14
extended architecture 17

improved ILC (interlanguage communication)

improved storage tuning 10
reentrancy 16
description 6—19
LE/VSE callable services
COBOL language extensions 29
description 10—14
examples
calling from COBOL program 11, 13
formatting and displaying dates 13
sample list of services 12
types of services 10
LE/VSE run-time options

example: automatic checking of subscript

values 16
new and compatible function 15
types 14
LE/VSE-conforming assembler
alternative to pre-initialization 10
keeping COBOL initiated 10
LENGTH OF special register 26
library)
common LE/VSE library 6
extended architecture 18
linking existing COBOL programs 40

58 COBOL/VSE General Information

library (continued)
reentrancy 17
Linkage section GLOBAL support 2
listing generated by the compiler 34—35
available information
cross-reference information 34
Data Division map 34
diagnostic message listing 34
nested program map 34
Procedure Division list 35
source list 34

machines supported 40
maintenance of applications 5, 20
manuals
bibliography 42
COBOL/VSE 42
LE/NSE 44
related 45
mathematical functions
COBOL/VSE intrinsic functions 24
LE/VSE callable services
general description 11
sample list 12
message handling
LE/VSE callable services
general description 12
sample list 13
LE/VSE run-time options 15
migration
compiler options 33
CMPR2 compiler option
FLAG compiler option
FLAGMIG compiler option
FLAGSAA compiler option
FLAGSTD compiler option
NUMPROC compiler option
TRUNC compiler option
getting more information 41—45
helpful books 41—45
history of IBM COBOL products 39
migration aids 41

CCCA (COBOL and CICS Command Level Con-

version Aid for VSE) 41

COBOL Report Writer Precompiler 41
COBOL/SF (IBM COBOL Structuring Facility) 41

planning 46
running existing applications 40—41

software environments no longer supported 40

software environments supported 40
steps 46
modular application development 20, 26

N programs
coding examples

national Ianguage support ILC (interlanguage communication) 9
callable services improved COBOL-CICS interface 27
general Qescrlptlon 12 initializing values 31
sample ll§t 13 using a callable service 11, 13
run-time options 15 using EVALUATE statements 23
nested COPY statements 21 using inline PERFORM statements 22
nested program map 34 using intrinsic functions 24
nested programs 20 listing 34
numeric sign processing nesting 20
NUMPROC(MIG) 33 publications
processing nonconforming signs 36 bibliography 42
speeding execution 36 COBOL/VSE 42
NUMPROC compiler option 33, 36 LE/VSE 44
related 45
optimization R
automatic optimi;ation _35 records
OPTIMIZE cov_npller pptlon 35 fast sorting 37
OPTIMIZE compiler option 35 language standards for input/output
OS/VS Report Writer Precompiler 41 See COBOL/VSE, industry standards
variable length 31
P reentrancy
ILC 16

PERFORM statement 22
performance features
code optimization 35
- code sharing 16—17
fast sorting 36
floating-point data type 30
improved ILC performance 9
using LE/VSE pre-initialization 10
using LE/VSE-conforming assembler 10
using preferred numeric sign formats 36
pointer data type 27
porting to new environments 5
pre-initialization 10

shared code 16, 18
sharing library programs 17
sharing reentrant programs 17
supported by LE/VSE 16—17
reference modification 2, 32
Report Writer Precompiler 41
required product
LE/VSE 2
See also LE/VSE
requirements
COBOL/VSE prerequisite product
See also LE/VSE

precompiler for report writer 41 S S';:é VSEO 2
prerequisite product yst
LENVSE 2 run unit
See also LE/VSE equivalent to LE/VSE enclave 8

interlanguage communication (ILC) supported 8
sharing files and data 32
run-time environment
See also LE/VSE
common 6—19
keeping COBOL initialized 10
run-time options provided by LE/VSE
example: automatic checking of subscript

Procedure Division list 35
procedure-pointer support 2, 29
productivity features
COBOL-CICS interface 25—27
DBCS support 30
extended architecture support 17—19
provided by LE/VSE 6—19
streamlining application development 4

values 16
pro\ﬁcﬁgﬂ request feedback 32 new and compatible function 15
See also COBOL products types 14
LE/VSE

benefits 6—19
description 6—19
prerequisite to COBOL/VSE 2

Index 59

S

scope terminators 22
sharing code 7, 16
sign processing
NUMPROC(MIG) 33
processing nonconforming signs 36
speeding execution 36
sixteen-bit character support with DBCS 30
sixteen-megabyte line
support above or below
accessing programs and data 18
benefits of 31-bit addressing 17
support by LE/VSE 17—19
softcopy publications
COBOL/VSE 2
LE/VSE 45
software environments
supported 40
SORT/MERGE feature
description of DFSORT/VSE support 28
fast sorting 36
running above 16 megabytes 18, 36

using DFSORT/VSE from a COBOL program 28

source listing 34
SQL/DS
using from COBOL/VSE 28
versions and releases supported 40
SSRANGE compiler option 16, 35
standards, COBOL 47
standards, COBOL language
efficient language constructs 20

list of modules supported by COBOL/VSE 47

standards organizations 38
support by COBOL/VSE 47
support for COBOL 85 Standard 38, 47

support for Intrinsic Function Module 23, 47

statistical functions 24
STOP RUN statement 26
storage
management
callable services 11
compiler options 36
run-time options 15
storage reports 10
shared 16, 18
tuning with LE/VSE
run-time options 10, 15
tuning capability at run time 10, 15
storage dump
formatted 4, 12
symbolic 35
streamlining application development 1, 4
string handling 2, 32
STRING statement 26, 32

60 COBOL/VSE General Information

structured programming 20—23
EVALUATE statement 22
inline PERFORM statement 22
nested copy statement 21
nested programs 20
scope terminator 22

structuring facility 41

subscript value checking 16, 35

substring 2, 32

symbolic dump 35

SYSADAT File
Use of 2

system requirements 40

T

table boundary checks 16, 35
thirty-one-bit addressing
See also extended architecture support
advantages 18
time functions
COBOL/VSE intrinsic functions 24
LE/VSE callable services
general description 11
sample list 12
top-down (structured) programs 20—23
EVALUATE statement 22
inline PERFORM statement 22
nested copy statement 21
nested programs 20
scope terminator 22
TRUNC compiler option 33
tuning
storage tuning at run time 10
storage tuning with run-time options 15

U

UNSTRING statement 26, 32

\'

variable-length records 31
VS COBOL Il
features included in COBOL/VSE 2
migration from 39—46
overview of functions 39
VSAM
file status code 32
FILE-STATUS clause 32
input request 32
output request 32
VSE/ESA environment
addressing flexibility 18
CICS 18,25
DOS/VS DL/I 18, 27

VSE/ESA environment (continued)
SORT/MERGE
fast sort 36
running above 16 megabytes 18
using from COBOL programs 28
system requirements 40
VSAM 18, 32

Index 61

We'd Like to Hear from You

IBM COBOL for VSE/ESA
General Information
Release 1

Publication No. GC26-8068-00

Please use one of the following ways to send us your comments about this book:

¢ Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

¢ Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

¢ Electronic mail—Use one of the following network IDs:

— IBMMail: USIB2VVG at IBMMAIL
— IBMLink: COBPUBS at STLVM27
— Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:
— Title and publication number of this book
— Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the informa-
tion is presented. To request additional publications, or to comment on other IBM informa-
tion or the function of IBM products, please give your comments to your IBM representative
or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

Readers' Comments

IBM COBOL for VSE/ESA
General Information
Release 1

Publication No. GC26-8068-00

How satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Technically accurate] O O O O
Complete O O O] O
Easy to find O O] 0 O
Easy to understand O O O O 0
Well organized]]] m] a
Applicable to your tasks o o O O]
Grammatically correct and consistent o O O O 0
Graphically well designed] | o m] m]
Overall satisfaction o m] | m] m]

Please tell us how we can improve this book:

May we contact you to discuss your comments? O Yes O No

Name Address

Company or Organization

Phone No.

Readers’ Comments
GC26-8068-00

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58

International Business Machines Corporation
PO BOX 49023

SAN JOSE CA 95161-9945

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

GC26-8068-00

Please do not staple

Fold and Tape

Cut or
Along

Cut or
Along

Readers' Comments

IBM COBOL for VSE/ESA
General Information
Release 1

Publication No. GC26-8068-00

How satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Technically accurate] m] m] m] m]
Complete]]]]]
Easy to find]]] | m]
Easy to understand O]] O]
Well organized u]] o m|]
Applicable to your tasks O O O O O
Grammatically correct and consistent O O O O O
Graphically well designed O o o i o
Overall satisfaction O O O] O

Please tell us how we can improve this book:

May we contact you to discuss your comments? O Yes O No

Name Address

Company or Organization

Phone No.

Readers' Comments
GC26-8068-00

Fold and Tape

Please do not staple

T
®

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58

International Business Machines Corporation
PO BOX 49023

SAN JOSE CA 95161-9945

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

GC26-8068-00

Please do not staple

Fold and Tape

Cut or
Along |

Cut o1
Along

Program Number: 5686-086

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber

IBM COBOL for VSE/ESA Publications

SC26-8528
GC26-8068
GC26-8069
5C26-8073
GC26-8070
5C26-8072
5C26-8071
5X26-3834

Diagnosis Guide

General Information

Licensed Program Specification
Language Reference

Migration Guide

Programming Guide

Installation and Customization Guide
Reference Summary

	0001.tif
	0002.tif
	0003.tif
	0004.tif
	0005.tif
	0006.tif
	0007.tif
	0008.tif
	0009.tif
	0010.tif
	0011.tif
	0012.tif
	0013.tif
	0014.tif
	0015.tif
	0016.tif
	0017.tif
	0018.tif
	0019.tif
	0020.tif
	0021.tif
	0022.tif
	0023.tif
	0024.tif
	0025.tif
	0026.tif
	0027.tif
	0028.tif
	0029.tif
	0030.tif
	0031.tif
	0032.tif
	0033.tif
	0034.tif
	0035.tif
	0036.tif
	0037.tif
	0038.tif
	0039.tif
	0040.tif
	0041.tif
	0042.tif
	0043.tif
	0044.tif
	0045.tif
	0046.tif
	0047.tif
	0048.tif
	0049.tif
	0050.tif
	0051.tif
	0052.tif
	0053.tif
	0054.tif
	0055.tif
	0056.tif
	0057.tif
	0058.tif
	0059.tif
	0060.tif
	0061.tif
	0062.tif
	0063.tif
	0064.tif
	0065.tif
	0066.tif
	0067.tif
	0068.tif
	0069.tif
	0070.tif
	0071.tif
	0072.tif
	0073.tif
	0074.tif
	0075.tif
	0076.tif

