

IBM Q

Arwed Tschoeke IBM Client Center Böblingen

Moore's Law

Our intuition about what we can compute is wrong

Molecular Dynamics, Drug Design, Materials ...

The best supercomputer in the we can accurately simulate a 40-5 electron system					
		Bond Length (Å)			
Species	Name	Experimental	Calculated	Difference	
CaF	Calcium monofluoride	1.967	4.079	2.112	
Na ₂	Sodium diatomic	3.079	2.379	-0.700	

IB

The "Traveling Salesman" Problem

There are many intractable problems where the best known algorithm has runtime that scales exponentially with input size

Exponential Scaling

On the first day...

After one week...127 grains of rice

After one month... 5,368 1kg bags of rice

After 64 days ... 461 billion metric tons of rice

IBM Q

The cradle of life cannot be solved with today's HPC...

$H_2S \rightarrow FeS_2 + 2H^+$ FeS

Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly, it's a wonderful problem, because it doesn't look so easy." SPACE

-Richard P. Feynman

Quantum Applications is about working out how to use two principles, superposition and entanglement in a new model of computation

Superposition

A single quantum bit (qubit) can exist in a superposition of 0 and 1, and n qubits allow for a superposition all possible 2n combinations

Entanglement

The states of entangled qubits cannot be described independently of each other

Quantum Computer

N qubits 2^N paths

N bit output 010101...

Quantum heuristic algorithms

...Quantum computers are the only known game-changer

Factoring is in this set, but in practice quantum systems that can do this are decades away!

What else is there in here that we can do with systems in the next few years?

Three types of quantum computing

Quantum Annealing

Limited use, equivalent power to classical

Approximate Universal Quantum Computer

Partial use, high power

Fault-Tolerant Universal Quantum Computer Complete use cases, holy grail Number of qubits (more is better)

IBM

Errors (less is better)

Connectivity (more is better)

Gate set (more is better)

Quantum Volume

Keyword search for Quantum Volume on our IBM Quantum Experience community forum: https://quantumexperience.ng.bluemix.net/qstage/#/community

How powerful is a quantum computer

IBM **Q**

Quantum Volume

Number of qubits (more is better)

Errors (less is better)

Connectivity (more is better)

Gate set (more is better)

The Road to Quantum Advantage

Quantum Science

Quantum Ready

Quantum Advantage

Fundamentals of	
quantum information	
science	

Create and scale qubits with increasing coherence

Create error detection and mitgation schemes

	Core algorithm development	Increase quantum volume	Demonstrate an advantage to using QC for real problems of interest	Extract commercial value	Enable scientific discovery
	Standardize performance benchmarks	System infrastructure and software enablement			
Launch of IBM Q Experience	F				

What applications can we use in the near-term with a handful of qubits and without using error correction?

Today ~10¹ qubits

Near future

50-100 qubits Too big to simulate

Future

Millions of qubits Fully fault-tolerant IB

Initial applications will leverage algorithms that can tolerate or mitigate errors found in approximate quantum computers. Research & development for commercial use cases must be focused on selecting algorithms and determining how to best map problems to them.

Traveling Salesman

Max Cut

quantum algorithm

- 1. **initialization** of all qubits in $|0\rangle$
- 2. sequence of **operations** on single or multiple qubits
- 3. **measurement** (read-out) concludes algorithm
- many repetitions for **statistical claims** necessary

qubits

IBM Q

 $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $|1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$ **Bloch sphere** ^{|0)} Z, Bit 0" $|\psi
angle = lpha |0
angle + eta |1
angle \qquad |lpha|^2 + |eta|^2 = 1$ $\frac{\left|0\right\rangle + i\left|1\right\rangle}{\sqrt{2}}$ $|+
angle=rac{1}{\sqrt{2}}(|0
angle+|1
angle), \hspace{1cm} |angle=rac{1}{\sqrt{2}}(|0
angle-|1
angle),$ Х $| \circlearrowright
angle = rac{1}{\sqrt{2}} (|0
angle + i|1
angle) \hspace{0.5cm} | \circlearrowleft
angle = rac{1}{\sqrt{2}} (|0
angle - i|1
angle)$ ^{[1⟩} "Bit 1"

measurement and quantum gates

research.ibm.com/ibm-qx

IBM Q experience

Launched May 2016 Program 5 qubit quantum processor from any web browser

Upgraded Mar 2017

API access SDK launched

Upgraded May 2017 16 qubit beta program

IBM Q experience

IBM Q

50,000 users

All 7 continents

>150 colleges and universities

Over 1 Million experiments

20 publications since last May

IBM **Q**

Very simple interface, several Jupyter notebook examples Set up the API

In [2]: import Qconfig

api = IBMQuantumExperience.IBMQuantumExperience(Qconfig.APItoken, Qconfig.config)

IBM **O**

Submit a job

In [4]: out = api.run_job(qasms = [{'qasm' : make_bell}],device = 'sim',shots = 1024, max_credits=3)
print(out['status'])

Wait for completion

```
In [5]: import time
```

```
jobids=out['id']
results = api.get_job(jobids)
print(results['status'])
while (results['status'] == 'RUNNING'):
   time.sleep(2)
   results = api.get_job(jobids)
   print(results['status'])
```

RUNNING RUNNING COMPLETED

IBM Q commercial initiative

Announced May 2017

IBM's first prototype commercial processor with 17 qubits

- Most powerful quantum processor created to date - leverages significant materials, device, and architecture improvements
- Engineered to be at least twice as powerful as the experience delivered on IBM Cloud
- Basis for IBM Q commercial systems

IBM

A Quantum Algorithm

The spread

First part of the algorithm is make a equal superposition of all 2ⁿ states. Apply H gates

The problem

The second part is to encode the problem into this states (phases on the on the all 2ⁿ states.

The magic

The magic of quantum algorithms is to interfere all these states back to a few outcomes containing the solution