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What are Containers?

 Virtual environment within Linux OS instance

– So applications share OS kernel

– Only application is started, not entire Linux environment

 Efficiency: no virtualization overhead

– No full system or para-virtualization, but isolation only by the kernel

 Own file system tree via chroot environment

 Container separation of OS objects via „name spaces“

– Process IDs, network devices, mount points, users, and more
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Docker: “Build, Ship, and Run Any App, Anywhere”

 One implementation of a container solution

 Powerful tool to build, modify, deploy, run, manage containers

– Extreme focus on efficiency, fast response times

– Stores incremental differences and caching whenever possible

 Registries serve as central places for images

– Efficient distribution, versioning

 Terminology

– image: a self contained set of files, base for a container

– container: runnable instance, based on an image

 Maintained by Docker, Inc.
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Typical Container Attributes

 Self contained sets of files – escape dependency hell, reduce test matrix

 Serve a single task

 Can build on top of each other

 Can be deployed simple and quickly

 Can easily be customized, re-packaged and versioned

 Can use synergies in the kernel, if images eventually base on the same 

libraries (same file in underlying images)

– without having to use KSM (Kernel Samepage Merging)
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Typical Container Layering
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Ubuntu (base image)

PostgreSQL node.js

app A app B

 Images can build on top of on another

– Allows to build on common infrastructure

 Only differences are stored and pushed

 Memory efficiency and density

 Change in underlying layer requires

rebuilding all depending images

 Will generate a new image

(with new ID) for app A

 Having both versions of app a allows for simple migration and rollback



Docker ties Dev and Ops Together

 Development and Operations use a pervasive tool chain

– Ops uses a deployment that has been developed in and tested for

– No more “but it worked in my environment” by a developer

– Development can quickly get an environment which matches the real deployment

 Docker provides a universal toolchain for Dev and Ops

– Extreme focus on usability, speed, and efficiency for increased productivity

 Decomposition of solution into microservices helps scalability, extensibility, flexibility

– Simple updates and rollback of pieces
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Docker Structure
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Dockerfile Example

 Note: each step will be built using an intermediate container, resulting in an intermediate 
image on the way to the final image
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 Use Dockerfiles for controlled builds of images:

# use this base image. Downloaded if not present.

FROM rhel:7.1

MAINTAINER Whatever my name is <some@address.com>

# run commands:

RUN yum install -y httpd

# copy files into the image

ADD index.html /var/www/html/

# publish a port of the container

EXPOSE 80

# how the container is started

ENTRYPOINT ["/usr/sbin/apachectl","-DFOREGROUND"]



Microservice Architectures
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From monolithic architectures …

 Architecture aligned and optimized to 

server boundaries

– Installed on these servers

 Layered applications with coarse 

granularity

– Static, long living

 Often went virtualized, but no progress 

in solution structure

 Use components which fit to solution

... to microservices

 Solution broken into small units

– Delivered in containers

 Independent services, loosely 

coupled

– Short life time, fast changes

 Resilient services

– Scaling components is simple

 Using best tool for each subtask



Microservice Deployment Types
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Scale up for maximum efficiency Isolation, QoS and scaling
for tiers and tenants

Grouping microservices end-to-end allows for
simple scaling and optimized local communication



Virtualization vs. Containers

Infrastructure oriented:

 coming from servers, now virtualized

 virtual server resource management

 several applications per server

 isolation

 persistence

Service oriented:

 application-centric

 application management

 solution decomposed

 DevOps

 dynamic
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Virtualization and Containers

 Virtual machine separation 

between tenants
– Virtualization management for 

infrastructure

– Isolation

 Many containers within tenants
– Container efficiency

– Docker management and 

ecosystem
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Docker Ecosystem: Basic Docker Tools

 machine: provision Docker onto hosts (local VMs, Clouds)

 compose: create multi-container applications, manage and scale them through single 

commands

 swarm:

use Docker on an entire cluster
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Docker Ecosystem: Registry

 Docker Hub: Public Registry with User and Organization Management

– Private areas available

– Contains ~100 official images of companies (Ubuntu, MongoDB, …)

– Automated builds possible

 On-premise Private Registry („distribution“): Open Source

– Simple user management (No web UI)

 Docker Trusted Registry (DTR): Commercial Docker Offering

– User and organization management

– AD/LDAP authentication

 SUSE Portus: Open Source Authorization Service and Frontend for Private Registry

– Users and organization management

– LDAP authentication
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Docker Ecosystem: How It Plays Together
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Mgmt Infrastructure

Cluster OrchestrationRegistry

Docker Engine

PaaS (or SaaS)

Overlay networks
Storage volumes

 PaaS

– Cloud Foundry

– OpenShift

– BlueMix

– Mesos frameworks (e.g. Marathon)

 Management

– Docker Universal Control Plane (UCP)

– IBM UrbanCode Deploy (UCD)

– or part of PaaS

 Orchestration

– Docker swarm & compose

– Apache Mesos

– Google Kubernetes

– Hashicorp Nomad



Docker Ecosystem: Cluster Orchestration

 Docker swarm and compose

– Simple cluster framework fitted to run Docker containers

– Composite applications with compose

– Docker acquired makers of Mesos Aurora scheduling framework, for

integration of Aurora parts into swarm

 Apache Mesos

– Large scale cluster project

– Marathon framework schedules containers

– Mesos intends to run containers natively (without additional framework)

– IBM intends to add value with Platform Computing scheduler (EGO)

 Google Kubernetes

– Large scale cluster manager/scheduler by Google

– Base for CNCF (Cloud Native Compute Foundation) orchestration

– Grouping and co-location of containers as pods, forming a service

 Hashicorp Nomad

– Cluster manager and scheduler for VMs, Containers, language runtimes

– Simple, efficient, scalable, limited scope (just cluster management and scheduling)20
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Docker on z Systems

 Docker is written in Go

– golang on x86, gccgo on s390x (at first)

– Docker has accepted patches for full gcc support

 Includes CI (being established for z Systems)

– golang port available, switch to golang over time

 Availability in distributions

– Support available today: Fedora 23, SUSE SLES 12 SP1+containers module

– Ubuntu 16.04 by April 2016

– Working with Red Hat on inclusion (tech preview from IBM on devWorks)

 Docker ecosystem working at large: registry, compose, swarm, cAdvisor, machine 

(prototype), kubernetes (prototype), ...

– Community base images available on Docker Hub

 IBM UrbanCode Deploy supports Linux on z Systems
22



Docker and Registry Will Do „Multi-Arch“

 Docker and registry will become multi-architecture aware

– Contribution mainly driven by IBM

– Today, docker images are blobs and happen to be mostly x86‘ish

– Changes for future releases of docker and registry:

 Architecture awareness of Docker

 Pushing content of different architectures to an existing name:tag will add that 

architecture to the definition (manifest)

 i.e. „docker pull ubuntu:16.04“ will do the right thing

– wherever you are
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Docker on z Systems – Summary and Outlook

 Docker and base ecosystem available with full functionality

 Content (images) being added for most popular Open Source projects

 Docker today enables mixed architecture development and deployment

 Multi-arch support and availability of Ubuntu further simplify portability

 Second level virtualization provides perfect tenant isolation with low overhead while 

providing Docker agility and efficiency

 Docker performance inherits platform performance characteristics

– Allows both scale-up and scale-out in a box: structure solutions along client 

requirements, not environment-imposed restrictions
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Open Container Initiative

 Docker is de-facto container format standard

– CoreOS launched competitive and open approach (rocket container runtime, appc container format)

 Open Container Initiative to define industry standard container format and runtime

– Housed under the Linux Foundation, sponsored by many IT companies

 Including CoreOS, Docker, Google, IBM, the Linux Foundation, Mesosphere, Microsoft, Red Hat, SUSE, VMWare, and many 

more

 Docker donated their container format and runtime („runc“)

 OCI principles for container specification:

– Not bound to specific higher level stack (e.g. orchestration)

– Not bound to particular client, vendor, or project

– Portable across OS, hardware, CPU architectures, public clouds
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Docker Ecosystem: OpenStack

 Management integration and standardization (keystone etc.)

– But giving up on Docker CLI flexibility

 OpenStack components

– Nova: Docker virt driver

 Runs Docker images on hosts, images stored in glance

– Heat: Docker plugin

 Use Docker containers in Heat templates

– Magnum: control orchestration via Docker and Kubernetes

 Goal to fully leverage Docker efficiency

 Multi-tenancy for Docker and Kubernetes

 Side note, different direction: Kolla deploys OpenStack environment in containers
27



Docker And Cross-Platform Portability

 Docker user experience (CLI, REST API) is identical across platforms

 Containers in binary form are not portable, so source code or s390x binary must be 

available

 Microservice architectures often have clean structure and simple individual components

 Containers are often created through Dockerfiles (build descriptions) containing:

– Specification of base image

 If same distribution is available on s390x, usually simple

 Currently, closest thing to Ubuntu on x86 is Debian on z

 If base image is not available, need some workarounds to get there (e.g. „golang“)

– Additional steps to modify image. Very often platform independent
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Docker and Performance

 Docker containers mainly use namespaces for isolation and cgroups for resource control

– Starts workload and gets out of the way – application runs directly on kernel

 Workload performance under Docker is defined through platform performance

– Docker has no direct implication on workload runtime behavior

– If you can run hundreds of applications in a Linux, you can run it under Docker with 

about the same performance

– SDN and SDS mechanisms chosen define networking and storage limitations

 Typically low overhead

 Scaling characteristics of z Systems allows for both scale-up and scale-out

– Hundreds to low thousands of containers in a large Linux system

– Hundreds of tenants on smaller scale Linux systems

– Design environment according to your solution requirements, not according to your 

systems constraints!
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Docker on z: Getting Started

 Base images

– Create based on your host distro (e.g. with a script from blog below)

– Use a public z Systems image from Docker hub (no warranty for content!): 

https://registry.hub.docker.com/search?q=s390x

 A lot of Open Source applications being made available (build description, Dockerfiles), 

linked from

– https://www.ibm.com/developerworks/community/groups/community/lozopensource/

– https://github.com/linux-on-ibm-z/ (e.g. for cAdvisor)

– https://registry.hub.docker.com/search?q=s390x

 Tutorial with z in mind at http://containerz.blogspot.com/

– first steps, ecosystem, advanced topics
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