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IBM Technologies……..
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All build on sand     .........
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Fortunately we know how do turn sand into hardware
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Interesting fact:  Top 8 elements make up ~ 98.5% of earth’s crust
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It started different
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Konrad Zuse Z1

 First freely programmable computer using
Boolean logic

Binary floating point

 Build between 1936-1938 during WW II in Berlin

 Contained all parts of a modern computer
Control unit

Memory

Micro sequences

Floating point unit

Two registers

 Technology: mechanical via metal sheets
Driven by manually or optinal electrical motor from a vacuum cleaner

Never worked flawlessly due to mechanical problems

Source: http://user.cs.tu-berlin.de/%7Ezuse/Konrad_Zuse/en/rechner_z1.html
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Metal sheets vs CMOS transistors:
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4 metal sheets to build a logic gate
2 inputs, 1 output, 1„clock“
=> 30000 metal sheets represent 7500 logic gates

4 CMOS transistors per logic gate
CMOS needs two complementary pairs of CMOS transistors
Six CMOS transistors for a single memory cell
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Moore‘s Law or What do a 1000 $ buy?

Source: Kurzweil 1999 – Moravec 1998
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CMOS Scaling

 Transistor (1947), Bardeen, Brattain & Shockley

 First integrated circuit (1959), Kilby

 Moore‘s Law (1965)
„Cramming more components onto integrated circuits“

Complexity of chips doubles every 24 months 
.
.
.

 Cell Processor (2005)
234 Million Transistors in 90nm Technology

 POWER 6 (2006)
790 Million Transistors in 65nm Technology

.

.

.

 POWER 7+ (2012)
2.1 Billion Transistors in 32nm Technology
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Trends Observed Across Industry (ISSCC 2013 Supplement)
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Trends Observed Across Industry (ISSCC 2013 Supplement)

zMainframe



© 2014 IBM Corporation13

Development of Commercial Aviation

1900 1920 1940 1960 1980 2000 2020
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Source: F. M. Schellenberg, UCB Bodega Bay, 5-10-2007
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Commercial Aviation
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Traditional CMOS Scaling (Dennard, 1974)

p substrate, doping  *NA

L/
xd/

Gate

Source Drain

WiringVoltage, V / 

W/
tox/

SCALING:

Voltage: V/

Oxide: tox /

Wire width: W/

Gate width: L/

Diffusion: xd /

Substrate:  * NA

Higher Density: ~2

Higher Speed: ~

Power/ckt: ~1/2

Power Density: ~Constant

< 65 nm

Channel Effects

•Drain Induced Barrier Lowering

•Increasing Ioff

•Vt dependence on Vds

•Sub-threshold slope
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Improving Performance

No longer possible by scaling alone

New Device Structures

New Device Design point

New Materials

Before 90’s1
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CMOS Technology Trends

Conventional CMOS scaling benefits are diminishing.

Transistor performance 

scaling to continue, but 

at a slower rate

Power is limiting 

practical performance

Single thread 

performance growth is 

slowing dramatically
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v
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Lithography
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Pushing the Physical Limits of Optical Lithography

Lars Liebmann

 Historically driven by lowering wavelength or increasing lens numerical aperture

 Immersion lithography with 193nm extended for five generation through 10 nm 

double patterning, implementation of restricted design rules, etc…

 EUV offers a return to single patterning with 13.5nm wavelength

- facing many delays in maturation (radiation source power output)

=> EUV still carries significant risk going forward

 Targeting insertion of 

EUV at 7nm node 

 “Invention required” 

past 5nm
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Double pattern Variants

Lars Liebmann
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EUV: extreme ultra-violet lithography

Lars Liebmann
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MAPPER: multiple e-beam mask-less lithography

Lars Liebmann
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Devices inovation

S D

G

 Nanowire offers optimum electrostatic gate control of 

channel

 Improved scaling: Lg ~1.5 diameter

 Reduced leakage current/power

Electrostatic control of the channel depends on 

the gate architecture (gate control).
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Silicon Nanowires, 5nm and beyond

Source Drain

Gate

Nanowire

Source Drain

Gate

Nanowire
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Potential device roadmap
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FinFET @ 40 nm CPP

22nm 14nm 10nm 8nm 6nm 5nm

Device 

Architecture

Materials

Planar FinFET / Nanowire Next Generation

Smaller Fins Tunnel FET

Novel Device 

Concepts
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Sub-10nm CNT FET
CNT devices with scaled channel length are 

fabricated on one CNT

 Channel length was scaled: 320 nm to 9 nm

 First demo of sub-10 nm channel CNT FET

 Minimal short channel effects into the 

sub-10nm channel length region

Gate	

Source	 Drain	

~	10	nm	

Increasing 
Ion

Consistent 
Subthreshold 

Slope 
(94 mV/dec)

 A. Franklin, IBM, IEDM 2011.



© 2014 IBM Corporation27

The Third Dimension

Despite all innovative materials/structures CMOS scaling looses benefits

• Large chips => long wires

• Cache memory size limited => access time critical for performance

• Power-Management, -Delivery, -Distribution, -Dissipation

• I/O => Bandwidth, latency, on-chip integration

• Let‘s enter the 3rd dimension

Embedded DRAM on SOI, 2006
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3D Chip Integration

Benefits
• Density

• Memory access time

• Performance (Bandwidth, Latency)

• Heterogeneous components

Challenges
• Process

• 3D Design / EDA Tools

• Heat Dissipation, Hotspots

• Test

• Yield / Reliablity
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3D Interconnect schemes

• Wire Bonding

• Microbump (C4)

• Coupled virtual connections 

(capacitive, inductive)

• Through Silicon Vias (TSV)
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Pb-free C4

Pb-free C4

Thinned Die

TSV

FEOL 

& BEOL

FEOL 

& BEOL

Grind side

Device side

Face 1

Back 2

Close up of 45 nm 3D module (Face to Back)

MEPTEC 2.5D & 3D, 2011, S.S. Iyer

Face 2
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Hybrid Memory Cube
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System on Silicon Interposer

Barth et al, SRC 2011
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3D-chips cooled with interlayer liquid cooling

A look inside a 3D-chip stack

• Microchannel

• Pin fin

Through silicon via electrical bonding and 

water insulation scheme

 

cross-section through fluid port 

and cavities

Test vehicle with fluid manifold 

and connection

Exploit 3D to full extent

=> System in a Cube...

B. Michel et al, CeBIT 2011
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Thank You

Dieter Wendel

wendel@de.ibm.com

+49-7031-163019

IBM System & Technology Group

Vielen Dank

mailto:wendel@de.ibm.com
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