
© 2013 IBM Corporation

Christian Ehrhardt
GSE Leipzig April 2013, Germany

How to Surprise by being a
Linux Performance "know-it-all"

Christian Ehrhardt, IBM R&D Germany,
System Performance Analyst

© 2013 IBM Corporation2 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Agenda

 Tools are your swiss army knife
– ps
– top
– sadc/sar
– iostat
– vmstat
– netstat

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at www.ibm.com/legal/copytrade.shtml.

© 2013 IBM Corporation3 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Agenda

 Tools are your swiss army knife
– ps
– top
– sadc/sar
– iostat
– vmstat
– netstat

© 2013 IBM Corporation4 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Agenda
 Your swiss army knife for the complex cases

– Pidstat – per process statistics

– Slabtop – kernel memory pool consumption

– Lsof – check file flags of open files

– Blktrace – low level disk I/O analysis

– Hyptop – cross guest cpu consumption monitor

– Iptraf - network traffic monitor

– Dstat – very configurable live system overview

– Irqstats – check irq amount and cpu distribution

– Smem – per process/per mapping memory overview

– Java Health Center – high level java overview and monitoring

– Java Garbage Collection and Memory visualizer – in depth gc analysis

– Jinsight – Java method call stack analysis

– Perf – hw counters, tracepoint based evaluations, profiling to find hotspots

– Valgrind – in depth memory/cache analysis and leak detection

– Htop – top on steroids

– Strace – system call statistics

– Ltrace – library call statistics

– Kernel tracepoints – get in-depth timing inside the kernel

– Vmstat – virtual memory statistics

– Sysstat – full system overview

– Iostat – I/O related statistics

– Dasdstat – disk statistics

– scsi statistics – disk statistics

– Netstat – network statistics and overview

– Socket Statistics – extended socket statistics

– top / ps – process overview

– Icastats / lszcrypt – check usage of crypto hw support

– Lsqeth – check hw checksumming and buffer count

– Ethtool – check offloading functions

– Collectl – full system monitoring

– Ftrace – kernel function tracing

– Lttng – complex latency tracing infrastructure (no s390 support yet)

– Systemtap – another kernel tracing infrastructure

© 2013 IBM Corporation5 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Agenda

 Your (little) swiss army knife for the complex cases

– Pidstat

– Slabtop

– Lsof

– Blktrace

– Hyptop

– Iptraf

© 2013 IBM Corporation6 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Non-legal Disclaimer

 This is an introduction and cheat sheet
– Know what is out there
– What could be useful in which case
– How could I debug even further

 These descriptions are not full explanations
– Most tools could get at least 1-2 presentations on their own
– Don't start using them without reading howtos / man pages

 This is not about monitoring
– Some tools used to start performance analysis CAN be monitors, but thats

not part of the presentation

© 2013 IBM Corporation7 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

General thoughts on performance tools

 Things that are always to consider
– Monitoring can impact the system
– Most data gathering averages over a certain period of time

→ this flattens peaks
– Start with defining the problem

• which parameter(s) from the application/system indicates the problem
• which range is considered as bad, what is considered as good

– monitor the good case and save the results
• comparisons when a problem occurs can save days and weeks

 Staged approach saves a lot of work
– Try to use general tools to isolate the area of the issue
– Create theories and try to quickly verify/falsify them
– Use advanced tools to debug the identified area

© 2013 IBM Corporation8 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Tool 1st overview CPU cons. latencies Hot spots Disk I/O Memory Network
top / ps x x
sysstat x x x x
vmstat x x x
iostat x x
dasdstat x
scsistat x
netstat / ss x x
htop / dstat / pidstat x x x x
irqstats x x x
strace / ltrace x
hyptop x
perf x x x x x x
jinsight x x
Health Center x
GMVC x x
blktrace x
lsof x
valgrind x
smem x
slabtop x
iptraf x x
tracepoints x x x x x

Orientation - where to go

© 2013 IBM Corporation9 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

PIDSTAT

 Characteristics: Easy to use extended per process statistics
 Objective: Identify processes with peak activity
 Usage: pidstat [-w|-r|-d]
 Package: RHEL: sysstat SLES: sysstat

 Shows
–-w context switching activity and if it was voluntary

–-r memory statistics, especially minor/major faults per process

–-d disk throughput per process

 Hints
– Also useful if run as background log due to its low overhead

• Good extension to sadc in systems running different applications/services

–-p <pid> can be useful to track activity of a specific process

© 2013 IBM Corporation10 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Pidstat examples

12:46:18 PM PID cswch/s nvcswch/s Command
12:46:18 PM 3 2.39 0.00 smbd
12:46:18 PM 4 0.04 0.00 sshd
12:46:18 PM 1073 123.42 180.18 Xorg

12:47:51 PM PID minflt/s majflt/s VSZ RSS %MEM Command
12:47:51 PM 985 0.06 0.00 15328 3948 0.10 smbd
12:47:51 PM 992 0.04 0.00 5592 2152 0.05 sshd
12:47:51 PM 1073 526.41 0.00 1044240 321512 7.89 Xorg

12:49:18 PM PID kB_rd/s kB_wr/s kB_ccwr/s Command
12:49:18 PM 330 0.00 1.15 0.00 sshd
12:49:18 PM 2899 4.35 0.09 0.04 notes2
12:49:18 PM 3045 23.43 0.01 0.00 audacious2

Voluntarily / Involuntary

How much KB disk I/O per process

Faults per process

© 2013 IBM Corporation11 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

slabtop

 Characteristics: live profiling of kernel memory pools
 Objective: Analyze kernel memory consumption
 Usage: slabtop
 Package: RHEL: procps SLES: procps

 Shows
– Active / Total object number/size
– Objects per Slab
– Object Name and Size
– Objects per Slab

 Hints
– -o is one time output e.g. to gather debug data
– Despite slab/slob/slub in kernel its always slabtop

© 2013 IBM Corporation12 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Slabtop - example

 Active / Total Objects (% used) : 2436408 / 2522983 (96.6%)
 Active / Total Slabs (% used) : 57999 / 57999 (100.0%)
 Active / Total Caches (% used) : 75 / 93 (80.6%)
 Active / Total Size (% used) : 793128.19K / 806103.80K (98.4%)
 Minimum / Average / Maximum Object : 0.01K / 0.32K / 8.00K

 OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME
578172 578172 100% 0.19K 13766 42 110128K dentry
458316 458316 100% 0.11K 12731 36 50924K sysfs_dir_cache
368784 368784 100% 0.61K 7092 52 226944K proc_inode_cache
113685 113685 100% 0.10K 2915 39 11660K buffer_head
113448 113448 100% 0.55K 1956 58 62592K inode_cache
111872 44251 39% 0.06K 1748 64 6992K kmalloc-64
 54688 50382 92% 0.25K 1709 32 13672K kmalloc-256
 40272 40239 99% 4.00K 5034 8 161088K kmalloc-4096
 39882 39882 100% 0.04K 391 102 1564K ksm_stable_node
 38505 36966 96% 0.62K 755 51 24160K shmem_inode_cache
 37674 37674 100% 0.41K 966 39 15456K dm_rq_target_io

 How is kernel memory managed by the sl[auo]b allocator used
– Named memory pools or Generic kmalloc pools
– Active/total objects and their size
– growth/shrinks of caches due to workload adaption

© 2013 IBM Corporation13 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

lsof

 Characteristics: list of open files plus extra details
 Objective: which process accesses which file in which mode
 Usage: lsof +fg
 Package: RHEL: lsof SLES: lsof

 Shows
– List of files including sockets, directories, pipes
– User, Command, Pid, Size, Device
– File Type and File Flags

 Hints
– +fg reports file flags which can provide a good cross check opportunity

© 2013 IBM Corporation14 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

lsof - example

COMMAND PID TID USER FD TYPE FILE-FLAG DEVICE SIZE/OFF NODE NAME
crond 16129 root mem REG 94,1 165000 881893
/usr/lib64/ld-2.16.so
crond 16129 root 0r CHR LG 1,3 0t0 2051 /dev/null
crond 16129 root 1u unix RW 0x0000001f1ba02000 0t0 106645 socket
crond 16129 root 2u unix RW 0x0000001f1ba02000 0t0 106645 socket
crond 16129 root 4r a_inode 0x80000 0,9 0 6675 inotify
crond 16129 root 5u unix RW,0x80000 0x0000001f5d3ad000 0t0 68545 socket
dd 17617 root cwd DIR 94,1 4096 16321 /root
dd 17617 root rtd DIR 94,1 4096 2 /
dd 17617 root txt REG 94,1 70568 1053994 /usr/bin/dd
dd 17617 root mem REG 94,1 165000 881893
/usr/lib64/ld-2.16.so
dd 17617 root 0r CHR LG 1,9 0t0 2055 /dev/urandom
dd 17617 root 1w REG W,DIR,LG 94,1 5103616 16423 /root/test
dd 17617 root 2u CHR RW,LG 136,2 0t0 5 /dev/pts/2

 You can filter that per application or per file
– Fd holds fdnumber, type, characteristic and lock information

• File descriptors can help to read strace/ltrace output

– Flags can be good to confirm e.g. direct IO, async IO
– Size (e.g. mem) or offset (fds), name, ...

© 2013 IBM Corporation15 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

BLKTRACE

 Characteristics: High detail info of the block device layer actions
 Objective: Understand whats going with your I/O in the kernel and devices
 Usage: blktrace -d [device(s)]
 Then: blkparse -st [commontracefilepart]
 Package: RHEL: blktrace SLES: blktrace

 Shows
– Events like merging, request creation, I/O submission, I/O completion, ...
– Timestamps and disk offsets for each event
– Associated task and executing CPU
– Application and CPU summaries

 Hints
– Filter masks allow lower overhead if only specific events are of interest
– Has an integrated client/server mode to stream data away

• Avoids extra disk I/O on a system with disk I/O issues

© 2013 IBM Corporation16 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Blktrace – when is it useful

 Often its easy to identify that I/O is slow, but
→ Where?
→ Because of what?

 Blocktrace allows to
– Analyze Disk I/O characteristics like sizes and offsets

• Maybe your I/O is split in a layer below

– Analyze the timing with details about all involved Linux layers
• Often useful to decide if HW or SW causes stalls

– Summaries per CPU / application can identify imbalances

© 2013 IBM Corporation17 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Blktrace - events

Common:
A -- remap For stacked devices, incoming i/o is remapped to device below it in the i/o stack. The remap action details what exactly is being remapped to
what.
Q -- queued This notes intent to queue i/o at the given location. No real requests exists yet.
G -- get request To send any type of request to a block device, a struct request container must be allocated first.
I -- inserted A request is being sent to the i/o scheduler for addition to the internal queue and later service by the driver. The request is fully formed at this
time.
D -- issued A request that previously resided on the block layer queue or in the i/o scheduler has been sent to the driver.
C -- complete A previously issued request has been completed. The output will detail the sector and size of that request, as well as the success or
failure of it.

Plugging & Merges:
P -- plug When i/o is queued to a previously empty block device queue, Linux will plug the queue in anticipation of future I/Os being added before this
data is needed.
U -- unplug Some request data already queued in the device, start sending requests to the driver. This may happen automatically if a timeout period has
passed (see next entry) or if a number of requests have been added to the queue.
Recent kernels associate the queue with the submitting task and unplug also on a context switch.
T -- unplug due to timer If nobody requests the i/o that was queued after plugging the queue, Linux will automatically unplug it after a defined period has
passed.
M -- back merge A previously inserted request exists that ends on the boundary of where this i/o begins, so the i/o scheduler can merge them together.
F -- front merge Same as the back merge, except this i/o ends where a previously inserted requests starts.

Special:
B -- bounced The data pages attached to this bio are not reachable by the hardware and must be bounced to a lower memory location. This causes a big
slowdown in i/o performance, since the data must be copied to/from kernel buffers. Usually this can be fixed with using better hardware -- either a better
i/o controller, or a platform with an IOMMU.
S -- sleep No available request structures were available, so the issuer has to wait for one to be freed.
X -- split On raid or device mapper setups, an incoming i/o may straddle a device or internal zone and needs to be chopped up into smaller pieces for
service. This may indicate a performance problem due to a bad setup of that raid/dm device, but may also just be part of normal boundary conditions. dm
is notably bad at this and will clone lots of i/o.

© 2013 IBM Corporation18 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Blktrace - events

Common:
A -- remap For stacked devices, incoming i/o is remapped to device below it in the i/o stack. The remap action details what exactly is being remapped to
what.
Q -- queued This notes intent to queue i/o at the given location. No real requests exists yet.
G -- get request To send any type of request to a block device, a struct request container must be allocated first.
I -- inserted A request is being sent to the i/o scheduler for addition to the internal queue and later service by the driver. The request is fully formed at this
time.
D -- issued A request that previously resided on the block layer queue or in the i/o scheduler has been sent to the driver.
C -- complete A previously issued request has been completed. The output will detail the sector and size of that request, as well as the success or
failure of it.

Plugging & Merges:
P -- plug When i/o is queued to a previously empty block device queue, Linux will plug the queue in anticipation of future I/Os being added before this
data is needed.
U -- unplug Some request data already queued in the device, start sending requests to the driver. This may happen automatically if a timeout period has
passed (see next entry) or if a number of requests have been added to the queue.
Recent kernels associate the queue with the submitting task and unplug also on a context switch.
T -- unplug due to timer If nobody requests the i/o that was queued after plugging the queue, Linux will automatically unplug it after a defined period has
passed.
M -- back merge A previously inserted request exists that ends on the boundary of where this i/o begins, so the i/o scheduler can merge them together.
F -- front merge Same as the back merge, except this i/o ends where a previously inserted requests starts.

Special:
B -- bounced The data pages attached to this bio are not reachable by the hardware and must be bounced to a lower memory location. This causes a big
slowdown in i/o performance, since the data must be copied to/from kernel buffers. Usually this can be fixed with using better hardware -- either a better
i/o controller, or a platform with an IOMMU.
S -- sleep No available request structures were available, so the issuer has to wait for one to be freed.
X -- split On raid or device mapper setups, an incoming i/o may straddle a device or internal zone and needs to be chopped up into smaller pieces for
service. This may indicate a performance problem due to a bad setup of that raid/dm device, but may also just be part of normal boundary conditions. dm
is notably bad at this and will clone lots of i/o.

Good as documentation,
but hard to

understand/remember

© 2013 IBM Corporation19 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Block device layer – events (simplified)

 Y N

App / A / X

C

Q

G

I

D

P

U

M / Fmergeable

Merge with an
existing request

Need to Generate a
new request

Plug queue and wait a bit if
following requests can be merged

Time from Dispatch to Complete

Unplug on upper limit (stream) or
Time reached / submitting task ctx switch

Dispatch from block device
layer to device driverAdd device driver info like dasdstat and

scsi sysfs statistics to fill this gap
and gain a full circle latency insight

© 2013 IBM Corporation20 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

blktrace

 Example Case
– The snippet shows a lot of 4k requests (8x512 byte sectors)

• We expected the I/O to be 32k

– Each one is dispatched separately (no merges)
• This caused unnecessary overhead and slow I/O

Maj/Min CPU Seq-nr sec.nsec pid Action RWBS sect + size map source / task
94,4 27 21 0.059363692 18994 A R 20472832 + 8 <- (94,5) 20472640
94,4 27 22 0.059364630 18994 Q R 20472832 + 8 [qemu-kvm]
94,4 27 23 0.059365286 18994 G R 20472832 + 8 [qemu-kvm]
94,4 27 24 0.059365598 18994 I R 20472832 + 8 (312) [qemu-kvm]
94,4 27 25 0.059366255 18994 D R 20472832 + 8 (657) [qemu-kvm]
94,4 27 26 0.059370223 18994 A R 20472840 + 8 <- (94,5) 20472648
94,4 27 27 0.059370442 18994 Q R 20472840 + 8 [qemu-kvm]
94,4 27 28 0.059370880 18994 G R 20472840 + 8 [qemu-kvm]
94,4 27 29 0.059371067 18994 I R 20472840 + 8 (187) [qemu-kvm]
94,4 27 30 0.059371473 18994 D R 20472840 + 8 (406) [qemu-kvm]

© 2013 IBM Corporation21 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

blktrace

 Example Case
– Analysis turned out that the I/O was from the swap code

• Same offsets were written by kswapd

– A recent code change there disabled the ability to merge I/O
– The summary below shows the difference after a fix

Total initially
 Reads Queued: 560,888, 2,243MiB Writes Queued: 226,242, 904,968KiB
 Read Dispatches: 544,701, 2,243MiB Write Dispatches: 159,318, 904,968KiB
 Reads Requeued: 0 Writes Requeued: 0
 Reads Completed: 544,716, 2,243MiB Writes Completed: 159,321, 904,980KiB
 Read Merges: 16,187, 64,748KiB Write Merges: 61,744, 246,976KiB
 IO unplugs: 149,614 Timer unplugs: 2,940

Total after Fix
 Reads Queued: 734,315, 2,937MiB Writes Queued: 300,188, 1,200MiB
 Read Dispatches: 214,972, 2,937MiB Write Dispatches: 215,176, 1,200MiB
 Reads Requeued: 0 Writes Requeued: 0
 Reads Completed: 214,971, 2,937MiB Writes Completed: 215,177, 1,200MiB
 Read Merges: 519,343, 2,077MiB Write Merges: 73,325, 293,300KiB
 IO unplugs: 337,130 Timer unplugs: 11,184

© 2013 IBM Corporation22 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Hyptop

 Characteristics: Easy to use Guest/LPAR overview
 Objective: Check CPU and overhead statistics of your and sibling images
 Usage: hyptop
 Package: RHEL: s390utils-base SLES: s390-tools

 Shows
– CPU load & Management overhead
– Memory usage (only under zVM)
– Can show image overview or single image details

 Hints
– Good “first view” tool for linux admins that want to look “out of their linux”
– Requirements:

• For z/VM the Guest needs Class B
• For LPAR “Global performance data control” checkbox in HMC

© 2013 IBM Corporation23 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Hyptop

Why are exactly 4 CPUs
used in all 6 CPU guests

All these do not fully
utilize their 2 CPUs

No peaks in service guests

service guest weights

LPAR images would see
other LPARs

memuse = resident

© 2013 IBM Corporation24 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

IPTRAF

 Characteristics: Live information on network devices / connections
 Objective: Filter and format network statistics
 Usage: iptraf
 Package: RHEL: iptraf SLES: iptraf

 Shows
– Details per Connection / Interface
– Statistical breakdown of ports / packet sizes
– LAN station monitor

 Hints
– Can be used for background logging as well

• Use SIGUSR1 and logrotate to handle the growing amount of data

– Knowledge of packet sizes important for the right tuning

© 2013 IBM Corporation25 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

iptraf

 Questions that usually can be addressed
– Connection behavior overview
– Do you have peaks in your workload characteristic
– Who does your host really communicate with

 Comparison to wireshark
– Not as powerful, but much easier and faster to use
– Lower overhead and no sniffing needed (often prohibited)

IF
details

Packet
sizes

© 2013 IBM Corporation26 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Tool 1st overview CPU cons. latencies Hot spots Disk I/O Memory Network
top / ps x x
sysstat x x x x
vmstat x x x
iostat x x
dasdstat x
scsistat x
netstat / ss x x
htop / dstat / pidstat x x x x
irqstats x x x
strace / ltrace x
hyptop x
perf x x x x x x
jinsight x x
Health Center x
GMVC x x
blktrace x
lsof x
valgrind x
smem x
slabtop x
iptraf x x
tracepoints x x x x x

Orientation - where to go

© 2013 IBM Corporation27 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Appendix Preview covering even more tools
 Further complex tools

– Dstat – very configurable live system overview
– Irqstats – check irq amount and cpu distribution
– Smem – per process/per mapping memory overview
– Java Health Center – high level java overview and monitoring
– Java Garbage Collection and Memory visualizer – in depth gc analysis
– Jinsight – Java method call stack analysis
– Perf – hw counters, tracepoint based evaluations, profiling to find hotspots
– Valgrind – in depth memory/cache analysis and leak detection
– Htop – top on steroids
– Strace – system call statistics
– Ltrace – library call statistics
– Kernel tracepoints – get in-depth timing inside the kernel

 Entry level Tools
– Vmstat – virtual memory statistics
– Sysstat – full system overview
– Iostat – I/O related statistics
– Dasdstat – disk statistics
– scsi statistics – disk statistics
– Netstat – network statistics and overview
– Socket Statistics – extended socket statistics
– top / ps – process overview

 Further tools - (no slides yet)
– Icastats / lszcrypt – check usage of crypto hw support
– Lsqeth – check hw checksumming and buffer count
– Ethtool – check offloading functions
– Collectl – full system monitoring
– Ftrace – kernel function tracing
– Lttng – complex latency tracing infrastructure (no s390 support yet)
– Systemtap – another kernel tracing infrastructure

© 2013 IBM Corporation28 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Ultimate Swiss Army knife

 The one you should always have → IBM System z Enterprise

© 2013 IBM CorporationGSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Questions

 Further information is available at
–Linux on System z – Tuning hints and tips

http://www.ibm.com/developerworks/linux/linux390/perf/index.html

– Live Virtual Classes for z/VM and Linux
http://www.vm.ibm.com/education/lvc/

Research & Development
Schönaicher Strasse 220
71032 Böblingen, Germany

ehrhardt@de.ibm.com

Christian Ehrhardt
Linux on System z
Performance Evaluation

© 2013 IBM Corporation30 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

STRACE

 Characteristics: High overhead, high detail tool
 Objective: Get insights about the ongoing system calls of a program
 Usage: strace -p [pid of target program]
 Package: RHEL: strace SLES: strace

 Shows
– Identify kernel entries called more often or taking too long

• Can be useful if you search for increased system time

– Time in call (-T)

– Relative timestamp (-r)

 Hints
– The option “-c” allows medium overhead by just tracking counters and

durations

© 2013 IBM Corporation31 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

strace - example

strace -cf -p 26802
Process 26802 attached - interrupt to quit
^Process 26802 detached
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 58.43 0.007430 17 450 read
 24.33 0.003094 4 850 210 access
 5.53 0.000703 4 190 10 open
 4.16 0.000529 3 175 write
 2.97 0.000377 2 180 munmap
 1.95 0.000248 1 180 close
 1.01 0.000128 1 180 mmap
 0.69 0.000088 18 5 fdatasync
 0.61 0.000078 0 180 fstat
 0.13 0.000017 3 5 pause
------ ----------- ----------- --------- --------- ----------------
100.00 0.012715 2415 225 total

shares to rate importance

a lot, slow or
failing calls?

name (see man pages)

© 2013 IBM Corporation32 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

strace / ltrace – full trace

 Without -c both tools produce a full detail log
– Via -f child processes can be traced as well
– Extra options “-Tr” are useful to search for latencies

follow time in call / relative timestamp
– Useful to “read” what exactly goes on when

Example strace'ing a sadc data gatherer
0.000028 write(3, "\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0"..., 680) = 680 <0.000007>
0.000027 write(3, "\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0"..., 680) = 680 <0.000007>
0.000026 fdatasync(3) = 0 <0.002673>
0.002688 pause() = 0 <3.972935>
3.972957 --- SIGALRM (Alarm clock) @ 0 (0) ---
0.000051 rt_sigaction(SIGALRM, {0x8000314c, [ALRM], SA_RESTART}, 8) = 0 <0.000005>
0.000038 alarm(4) = 0 <0.000005>
0.000031 sigreturn() = ? (mask now []) <0.000005>
0.000024 stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2309, ...}) = 0 <0.000007>
0.000034 open("/proc/uptime", O_RDONLY) = 4 <0.000009>
0.000024 fstat(4, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0 <0.000005>
0.000029 mmap(NULL, 4096, PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x3fffd20a000 <0.000006>
0.000028 read(4, "11687.70 24836.04\n", 1024) = 18 <0.000010>
0.000027 close(4) = 0 <0.000006>
0.000020 munmap(0x3fffd20a000, 4096) = 0 <0.000009>

© 2013 IBM Corporation33 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

DSTAT

 Characteristics: Live easy to use full system information
 Objective: Flexible set of statistics
 Usage: dstat -tv –aio –disk-util -n –net-packets -i –ipc
 -D total,[diskname] –top-io [...] [interval]
 Short: dstat -tinv
 Package: RHEL: dstat SLES: n/a WWW: http://dag.wieers.com/home-made/dstat/

 Shows
– Throughput
– Utilization
– Summarized and per Device queue information
– Much more … it more or less combines several classic tools like iostat and vmstat

 Hints
– Powerful plug-in concept

• “--top-io” for example identifies the application causing the most I/Os

– Colorization allows fast identification of deviations

© 2013 IBM Corporation34 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Dstat – the limit is your screen width

 ●●●

●●●

similar to vmstat
similar to iostat
(also per device)

new in live tool

© 2013 IBM Corporation35 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

smem

 Characteristics: Memory usage details per process/mapping
 Objective: Where is userspace memory really used
 Usage: smem -tk -c "pid user command swap vss uss pss rss”
 smem -m -tk -c "map count pids swap vss uss rss pss avgrss avgpss"

 Package: RHEL: n/a SLES: n/a WWW http://www.selenic.com/smem/

 Shows
– Pid, user, Command or Mapping, Count, Pid
– Memory usage in categories vss, uss, rss, pss and swap

 Hints
– Has visual output (pie charts) and filtering options as well
– No support for huge pages or transparent huge pages (kernel interface missing)

© 2013 IBM Corporation36 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

smem – process overview
smem -tk -c "pid user command swap vss uss pss rss”

 PID User Command Swap VSS USS PSS RSS
 1860 root /sbin/agetty -s sclp_line0 0 2.1M 92.0K 143.0K 656.0K
 1861 root /sbin/agetty -s ttysclp0 11 0 2.1M 92.0K 143.0K 656.0K
 493 root /usr/sbin/atd -f 0 2.5M 172.0K 235.0K 912.0K
 1882 root /sbin/udevd 0 2.8M 128.0K 267.0K 764.0K
 1843 root /usr/sbin/crond -n 0 3.4M 628.0K 693.0K 1.4M
 514 root /bin/dbus-daemon --system - 0 3.2M 700.0K 771.0K 1.5M
 524 root /sbin/rsyslogd -n -c 5 0 219.7M 992.0K 1.1M 1.9M
 2171 root ./hhhptest 0 5.7G 1.0M 1.2M 3.2M
 1906 root -bash 0 103.8M 1.4M 1.5M 2.1M
 2196 root ./hhhptest 0 6.2G 2.0M 2.2M 3.9M
 1884 root sshd: root@pts/0 0 13.4M 1.4M 2.4M 4.2M
 1 root /sbin/init 0 5.8M 2.9M 3.0M 3.9M
 2203 root /usr/bin/python /usr/bin/sm 0 109.5M 6.1M 6.2M 6.9M

 How much of a process is:
– Swap - Swapped out
– VSS - Virtually allocated
– USS - Really unique
– RSS - Resident
– PSS - Resident accounting a proportional part of shared memory

© 2013 IBM Corporation37 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

smem – mappings overview

smem -m -tk -c "map count pids swap vss uss rss pss avgrss avgpss"

Map Count PIDs Swap VSS USS RSS PSS AVGRSS AVGPSS
[stack:531] 1 1 0 8.0M 0 0 0 0 0
[vdso] 25 25 0 200.0K 0 132.0K 0 5.0K 0
/dev/zero 2 1 0 2.5M 4.0K 4.0K 4.0K 4.0K 4.0K
/usr/lib64/sasl2/libsasldb.so.2.0.23 2 1 0 28.0K 4.0K 4.0K 4.0K 4.0K 4.0K
/bin/dbus-daemon 3 1 0 404.0K 324.0K 324.0K 324.0K 324.0K 324.0K
/usr/sbin/sshd 6 2 0 1.2M 248.0K 728.0K 488.0K 364.0K 244.0K
/bin/systemd 2 1 0 768.0K 564.0K 564.0K 564.0K 564.0K 564.0K
/bin/bash 2 1 0 1.0M 792.0K 792.0K 792.0K 792.0K 792.0K
[stack] 25 25 0 4.1M 908.0K 976.0K 918.0K 39.0K 36.0K
/lib64/libc-2.14.1.so 75 25 0 40.8M 440.0K 9.3M 1.2M 382.0K 48.0K
/lib64/libcrypto.so.1.0.0j 8 4 0 7.0M 572.0K 2.0M 1.3M 501.0K 321.0K
[heap] 16 16 0 8.3M 6.4M 6.9M 6.6M 444.0K 422.0K
<anonymous> 241 25 0 55.7G 20.6M 36.2M 22.3M 1.4M 913.0K

 How much of a mapping is:
– Swap - Swapped out
– VSS - Virtually allocated
– USS - Really unique
– RSS - Resident
– PSS - Resident accounting a proportional part of shared memory
– Averages as there can be multiple mappers

© 2013 IBM Corporation38 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Valgrind

 Characteristics: in-depth memory analysis
 Objective: Find out where memory is leaked, sub-optimally cached, ...
 Usage: valgrind [program]
 Package: RHEL: valgrind SLES: valgrind

 Shows
– Memory leaks
– Cache profiling
– Heap profiling

 Hints
– Runs on binaries, therefore easy to use
– Debug Info not required but makes output more useful

© 2013 IBM Corporation39 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Valgrind Overview

S
ys

te
m

 c
al

l i
nt

e
rf

ac
e

 Technology is based on a JIT (Just-in-Time Compiler)
 Intermediate language allows debugging instrumentation

Binary
000000008000062c <main>:
stmg %r9,%r15,72(%r15)
lay %r15,-80160(%r15)
lhi %r12,0
lhi %r10,10000
la %r9,160(%r15)
lgr %r13,%r9
lgr %r11,%r9
lghi %r2,1
brasl %r14,8000044c <malloc@plt>
lgfr %r1,%r12
ahi %r12,1
stg %r2,0(%r11)
sllg %r1,%r1,3
aghi %r11,8
pfd 2,96(%r1,%r9)
brct %r10,8000064c <main+0x20>
lay %r12,80160(%r15)
lg %r2,0(%r13)
aghi %r13,8
brasl %r14,8000048c <free@plt>
cgrjne %r12,%r13,8000067e <main+0x52>
lhi %r13,0
lhi %r12,10000
lgfr %r2,%r13
ahi %r13,1
brasl %r14,800005c0 <stacker>
brct %r12,8000069c <main+0x70>
lg %r4,80272(%r15)
lmg %r9,%r15,80232(%r15)
br %r4

valgrind

translation
into IR

instrumentation

translation
To machine code

kernel

New
binary

xxx

libraries

Replace
some of

The library
calls by
Using a
preload
library

System call
wrapper

© 2013 IBM Corporation40 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Valgrind – sample output of “memcheck”

valgrind buggy_program
==2799== Memcheck, a memory error detector
==2799== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==2799== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==2799== Command: buggy_program
==2799==
==2799== HEAP SUMMARY:
==2799== in use at exit: 200 bytes in 2 blocks
==2799== total heap usage: 2 allocs, 0 frees, 200 bytes allocated
==2799==
==2799== LEAK SUMMARY:
==2799== definitely lost: 100 bytes in 1 blocks
==2799== indirectly lost: 0 bytes in 0 blocks
==2799== possibly lost: 0 bytes in 0 blocks
==2799== still reachable: 100 bytes in 1 blocks
==2799== suppressed: 0 bytes in 0 blocks
==2799== Rerun with --leak-check=full to see details of leaked memory
[...]

 Important parameters:
– --leak-check=full
– --track-origins=yes

© 2013 IBM Corporation41 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Valgrind - Tools

 Several tools
– Memcheck (default): detects memory and data flow problems
– Cachegrind: cache profiling
– Massif: heap profiling
– Helgrind: thread debugging
– DRD: thread debugging
– None: no debugging (for valgrind JIT testing)
– Callgrind: codeflow and profiling

 Tool can be selected with –tool=xxx
 System z support since version 3.7 (SLES-11-SP2)
 Backports into 3.6 (SLES-10-SP4, RHEL6-U1)

© 2013 IBM Corporation42 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Perf

 Characteristics: Easy to use profiling and kernel tracing
 Objective: Get detailed information where & why CPU is consumed
 Usage: perf (to begin with)
 Package: RHEL: perf SLES: perf

 Shows
– Sampling for CPU hotspots

• Annotated source code along hotspots

– CPU event counters
– Further integrated non-sampling tools

 Hints
– Without HW support only userspace can be reasonably profiled
– “successor” of oprofile that is available with HW support (SLES11-SP2)
– Perf HW support partially upstream, wait for next distribution releases

© 2013 IBM Corporation43 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Perf

 What profiling can and what it can't
– + Search hotspots of CPU consumption worth to optimize
– + List functions according to their usage
– - Search where time is lost (I/O, Stalls)

 Perf is not just a sampling tool
– Integrated tools to evaluate tracepoints like

“perf sched”, “perf timechart”, …
• Opposite to real sampling this can help to search for stalls

– Counters provide even lower overhead and report HW and Software events

© 2013 IBM Corporation44 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Perf stat - preparation

 Activate the cpu measurement facility
– If not you'll encounter this
Error: You may not have permission to collect stats.

Consider tweaking /proc/sys/kernel/perf_event_paranoid

Fatal: Not all events could be opened.

– Check if its activated
echo p > /proc/sysrq-trigger

dmesg

[...]

SysRq : Show Regs

perf.ee05c5: CPU[0] CPUM_CF: ver=1.2 A=000F E=0000 C=0000

[...]

– A = authorized, E=enabled (ready for use), C=controlled (currently running)
– F = last four bits for basic, problem, crypto and extended set

© 2013 IBM Corporation45 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Perf stat - usage

perf stat -B --event=cycles,instructions,r20,r21,r3,r5,sched:sched_wakeup find / -iname
"*foobar*"

 Performance counter stats for 'find / -iname *foobar*':
 3,623,031,935 cycles # 0.000 GHz
 1,515,404,340 instructions # 0.42 insns per cycle
 1,446,545,776 r20
 757,589,098 r21
 705,740,759 r3
 576,226,424 r5
 40,675 sched:sched_wakeup
 6.156288957 seconds time elapsed

 Events
– Cycles/Instructions globally
– R20,R21 – Cycles/Instructions of Problem state
– R3/R5 – Penalty cycles due for L1 instruction/data cache
– Not only HW events, you can use any of the currently 163 tracepoints

 Further releases will make that readable and work with few arguments
– Until then you can refer to this document to get the event numbers

The Load-Program-Parameter and CPU-Measurement Facilities

http://www-01.ibm.com/support/docview.wss?uid=isg26fcd1cc32246f4c8852574ce0044734a

© 2013 IBM Corporation46 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Java Performance in general

 “Too” many choices
– There are many Java performance tools out there

 Be aware of common Java myths often clouding perception

 Differences
– Profiling a JVM might hide the Java methods
– Memory allocation of the JVM isn't the allocation of the Application

© 2013 IBM Corporation47 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Java - Health Center

 Characteristics: Lightweight Java Virtual Machine Overview
 Objective: Find out where memory is leaked, sub-optimally cached, ...
 Usage: IBM Support Assistant (Eclipse)
 Package: RHEL: n/a SLES: n/a WWW: ibm.com/developerworks/java/jdk/tools/healthcenter

 Java Agents integrated V5SR10+, V6SR3+, usually no target install required

 Shows
– Memory usage
– Method Profiling
– I/O Statistics
– Class loading
– Locking

 Hints
– Low overhead, therefore even suitable for monitoring
– Agent activation -Xhealthcenter:port=12345
– Can trigger dumps or verbosegc for in-depth memory analysis

© 2013 IBM Corporation48 GSE Leipzig April 2013

Linux on System z Performance Evaluation

Health Center - example

 Example of method profiling

© 2013 IBM Corporation49 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Java - Garbage Collection and Memory Visualizer

 Characteristics: in-depth Garbage Collection analysis
 Objective: Analyze JVM memory management
 Usage: IBM Support Assistant (Eclipse)
 Package: RHEL: n/a SLES: n/a WWW: ibm.com/developerworks/java/jdk/tools/gcmv

 reads common verbosegc output, so usually no target install required

 Shows
– Memory usage
– Garbage Collection activities
– Pauses
– Memory Leaks by stale references

 Hints
– GCMV can also compare output of two runs
– Activate verbose logs -verbose:gc -Xverbosegclog:<log_file>

© 2013 IBM Corporation50 GSE Leipzig April 2013

Linux on System z Performance Evaluation

Garbage Collection and Memory Visualizer

 Most important values / indicators are:
– Proportion of time spent in gc pauses (should be less than 5%)
– For gencon: global collections << minor collections

© 2013 IBM Corporation51 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

IRQ Statistics

 Characteristics: Low overhead IRQ information
 Objective: Condensed overview of IRQ activity
 Usage: cat /proc/interrupts and cat /proc/softirqs
 Package: n/a (Kernel interface)

 Shows
– Which interrupts happen on which cpu
– Where softirqs and tasklets take place

 Hints
– Recent Versions (SLES11-SP2) much more useful due to better naming
– If interrupts are unintentionally unbalanced
– If the amount of interrupts matches I/O

• This can point to non-working IRQ avoidance

© 2013 IBM Corporation52 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

IRQ Statistics

 Example
– Network focused on CPU zero (in this case unwanted)
– Scheduler covered most of that avoiding idle CPU 1-3
– But caused a lot migrations, IPI's and cache misses

 CPU0 CPU1 CPU2 CPU3
EXT: 21179 24235 22217 22959
I/O: 1542959 340076 356381 325691
CLK: 15995 16718 15806 16531 [EXT] Clock Comparator
EXC: 255 325 332 227 [EXT] External Call
EMS: 4923 7129 6068 6201 [EXT] Emergency Signal
TMR: 0 0 0 0 [EXT] CPU Timer
TAL: 0 0 0 0 [EXT] Timing Alert
PFL: 0 0 0 0 [EXT] Pseudo Page Fault
DSD: 0 0 0 0 [EXT] DASD Diag
VRT: 0 0 0 0 [EXT] Virtio
SCP: 6 63 11 0 [EXT] Service Call
IUC: 0 0 0 0 [EXT] IUCV
CPM: 0 0 0 0 [EXT] CPU Measurement
CIO: 163 310 269 213 [I/O] Common I/O Layer Interrupt
QAI: 1 541 773 338 857 354 728 324 110 [I/O] QDIO Adapter Interrupt
DAS: 1023 909 1384 1368 [I/O] DASD
[…] 3215, 3270, Tape, Unit Record Devices, LCS, CLAW, CTC, AP Bus, Machine Check

© 2013 IBM Corporation53 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

IRQ Statistics II

 Also softirqs can be tracked which can be useful to
– check if tasklets execute as intended
– See if network, scheduling and I/O behave as expected

 CPU0 CPU1 CPU2 CPU3
 HI: 498 1522 1268 1339
 TIMER: 5640 914 664 643
 NET_TX: 15 16 52 32
 NET_RX: 18 34 87 45
 BLOCK: 0 0 0 0
BLOCK_IOPOLL: 0 0 0 0
 TASKLET: 13 10 44 20
 SCHED: 8055 702 403 445
 HRTIMER: 0 0 0 0
 RCU: 5028 2906 2794 2564

© 2013 IBM Corporation54 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Java - Jinsight

 Characteristics: zoomable call stack
 Objective: Analyze method call frequency and duration
 Usage: jinsight_trace -tracemethods <yourProgram> <yourProgramArgs>
 Package: RHEL: n/a SLES: n/a WWW: IBM alphaworks

 Shows
– Call Stack and time

 Hints
– Significant slowdown, not applicable to production systems
– No more maintained, but so far still working

© 2013 IBM Corporation55 GSE Leipzig April 2013

Linux on System z Performance Evaluation

Jinsight Execution View

Threads

 Threads in columns, select one to zoom in

© 2013 IBM Corporation56 GSE Leipzig April 2013

Linux on System z Performance Evaluation

Jinsight Execution View, continued

Method Call Stack

E
xecu

tio
n

 T
im

e

 Many horizontal stages mean deep call stacks
 Long vertical areas mean long method execution
 Rectangles full of horizontal lines can be an issue

© 2013 IBM Corporation57 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Perf profiling

 Perf example how-to
– We had a case where new code caused cpus to scale badly
–perf record “workload”

• Creates a file called perf.data that can be analyzes

– We used “perf diff” on both data files to get a comparison

 “Myriad” of further options/modules
– Live view with perf top
– Perf sched for an integrated analysis of scheduler tracepoints
– Perf annotate to see samples alongside code
– Perf stat for a counter based analysis
– [...]

© 2013 IBM Corporation58 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Perf profiling

 Perf example (perf diff)
– found a locking issue causing increased cpu consumption

Baseline Delta Symbol

........

#

 12.14% +8.07% [kernel.kallsyms] [k] lock_acquire

 8.96% +5.50% [kernel.kallsyms] [k] lock_release

 4.83% +0.38% reaim [.] add_long

 4.22% +0.41% reaim [.] add_int

 4.10% +2.49% [kernel.kallsyms] [k] lock_acquired

 3.17% +0.38% libc-2.11.3.so [.] msort_with_tmp

 3.56% -0.37% reaim [.] string_rtns_1

 3.04% -0.38% libc-2.11.3.so [.] strncat

© 2013 IBM Corporation59 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

HTOP

 Characteristics: Process overview with extra features
 Objective: Get a understanding about your running processes
 Usage: htop
 Package: RHEL: n/a SLES: n/a WWW: http://htop.sourceforge.net/

 Shows
– Running processes
– CPU and memory utilization
– Accumulated times
– I/O rates
– System utilization visualization

 Hints
– Htop can display more uncommon fields (in menu)
– Able to send signals out of its UI for administration purposes
– Processes can be sorted/filtered for a more condensed view

© 2013 IBM Corporation60 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

htop

Configurable utilization visualization

Common process info

Hierarchy

Accumulated Usage
and IO rates

© 2013 IBM Corporation61 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

LTRACE

 Characteristics: High overhead, high detail tool
 Objective: Get insights about the ongoing library calls of a program
 Usage: ltrace -p [pid of target program]
 Package: RHEL: ltrace SLES: ltrace

 Shows
– Identify library calls that are too often or take too long

• Good if you search for additional user time
• Good if things changed after upgrading libs

– Time in call (-T)

– Relative timestamp (-r)

 Hints
– The option “-c” allows medium overhead by just tracking counters and durations

– The option -S allows to combine ltrace and strace

© 2013 IBM Corporation62 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

ltrace - example

ltrace -cf -p 26802
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
 98.33 46.765660 5845707 8 pause
 0.94 0.445621 10 42669 strncmp
 0.44 0.209839 25 8253 fgets
 0.08 0.037737 11 3168 __isoc99_sscanf
 0.07 0.031786 20 1530 access
 0.04 0.016757 10 1611 strchr
 0.03 0.016479 10 1530 snprintf
 0.02 0.010467 1163 9 fdatasync
 0.02 0.008899 27 324 fclose
 0.02 0.007218 21 342 fopen
 0.01 0.006239 19 315 write
 0.00 0.000565 10 54 strncpy
------ ----------- ----------- --------- --------------------
100.00 47.560161 59948 total

shares to rate importance
a lot or slow calls?

name (see man pages)

© 2013 IBM Corporation63 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Tracepoints (Events)

 Characteristics: Complex interface, but a vast source of information
 Objective: In kernel latency and activity insights
 Usage: Access debugfs mount point /tracing
 Package: n/a (Kernel interface)

 Shows
– Timestamp and activity name
– Tracepoints can provide event specific context data
– Infrastructure adds extra common context data like cpu, preempts depth, ...

 Hints
– Very powerful and customizable, there are hundreds of tracepoints

• Some tracepoints have tools to be accessed “perf sched”, “blktrace” both base on them
• Others need custom postprocessing

– There are much more things you can handle with tracepoints check out
Kernel Documentation/trace/tracepoint-analysis.txt (via perf stat)
Kernel Documentation/trace/events.txt (custom access)

© 2013 IBM Corporation64 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Tracepoints – example I/III

 Here we use custom access since there was tool
– We searched for 1.2ms extra latency

• Target is it lost in HW, Userspace, Kernel or all of them

– Workload was a simple 1 connection 1 byte←→1 byte load
– Call “perf list” for a list of currently supported tracepoints

– We used the following tracepoints
Abbreviation Tracepoint Meaning
R netif_receive_skb low level receive
P napi_poll napi work related to receive
Q net_dev_queue enqueue in the stack
S net_dev_xmit low level send

© 2013 IBM Corporation65 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Tracepoints – example II/III
– (Simplified) Script

• # full versions tunes buffer sizes, checks files, ...
echo latency-format > /sys/kernel/debug/tracing/trace_options # enable tracing type
echo net:* >> /sys/kernel/debug/tracing/set_event # select specific events
echo napi:* >> /sys/kernel/debug/tracing/set_event # “
echo "name == ${dev}" > /sys/kernel/debug/tracing/events/net/filter # set filters
echo "dev_name == ${dev}" > /sys/kernel/debug/tracing/events/napi/filter # “
cat /sys/kernel/debug/tracing/trace >> ${output} # synchronous
echo !*:* > /sys/kernel/debug/tracing/set_event # disable tracing

– Output
_------=> CPU#
/ _-----=> irqs-off
| / _----=> need-resched
|| / _---=> hardirq/softirq
||| / _--=> preempt-depth
|||| / delay
cmd pid ||||| time | caller
\ / ||||| \ | /
 <...>-24116 0..s. 486183281us+: net_dev_xmit: dev=eth5 skbaddr=0000000075b7e3e8 len=67 rc=0
 <idle>-0 0..s. 486183303us+: netif_receive_skb: dev=eth5 skbaddr=000000007ecc6e00 len=53
 <idle>-0 0.Ns. 486183306us+: napi_poll: napi poll on napi struct 000000007d2479a8 fordevice eth
 <...>-24116 0..s. 486183311us+: net_dev_queue: dev=eth5 skbaddr=0000000075b7e3e8 len=67
 <...>-24116 0..s. 486183317us+: net_dev_xmit: dev=eth5 skbaddr=0000000075b7e3e8 len=67 rc=0

© 2013 IBM Corporation66 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Tracepoints – example III/III

 Example postprocessed

 SUM COUNT AVERAGE MIN MAX STD-DEV
P2Q: 8478724 1572635 5.39 4 2140 7.41
Q2S: 12188675 1572638 7.65 3 71 4.89
S2R: 38562294 1572636 24.42 1 2158 9.08
R2P: 4197486 1572633 2.57 1 43 2.39
SUM: 63427179 1572635 40.03

 SUM COUNT AVERAGE MIN MAX STD-DEV
P2Q: 7191885 1300897 5.53 4 171 1.31
Q2S: 10622270 1300897 8.17 3 71 5.99
S2R: 32078550 1300898 24.66 2 286 5.88
R2P: 3707814 1300897 2.85 1 265 2.59
SUM: 53600519 1300897 41.20

– Confirmed that ~all of the 1.2 ms were lost inside Linux (not in the fabric)
– Confirmed that it was not at/between specific function tracepoints

• Eventually it was an interrupt locality issue causing bad caching

© 2013 IBM Corporation67 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Valgrind - Good to know

 No need to recompile, but
– Better results with debug info
– Gcc option -O0 might result in more findings(the compiler might hide some

errors)
– Gcc option -fno-builtin might result in more findings

 --trace-children=yes will also debug child processes
 Setuid programs might cause trouble

– Valgrind is the process container (→ no setuid)
– Possible solution: remove setuid and start as the right user, check

documentation for other ways

 The program will be slower
– 5-30 times slower for memcheck

© 2013 IBM Corporation68 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

smem - visualizations

 Example of a memory distribution Visualization (many options)
 But before thinking of monitoring be aware that the proc/#pid/smaps

interface is an expensive one

© 2013 IBM Corporation69 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

vmstat

 Characteristics: Easy to use, high-level information
 Objective: First and fast impression of the current state
 Usage: vmstat [interval in sec]
 Package: RHEL: sysstat.s390x SLES: sysstat

 Output sample:
 vmstat 1

 procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu------

 r b swpd free buff cache si so bi bo in cs us sy id wa st

 2 2 0 4415152 64068 554100 0 0 4 63144 350 55 29 64 0 3 4

 3 0 0 4417632 64832 551272 0 0 0 988 125 60 32 67 0 0 1

 3 1 0 4415524 68100 550068 0 0 0 5484 212 66 31 64 0 4 1

 3 0 0 4411804 72188 549592 0 0 0 8984 230 42 32 67 0 0 1

 3 0 0 4405232 72896 555592 0 0 0 16 105 52 32 68 0 0 0

 Shows
– Data per time interval
– CPU utilization
– Disk I/O
– Memory usage/Swapping

 Hints
– Shared memory usage is listed under 'cache'

© 2013 IBM Corporation70 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

sadc/sar

 Characteristics: Very comprehensive, statistics data on device level
 Objective: Suitable for permanent system monitoring and detailed analysis
 Usage (recommended):

– monitor /usr/lib64/sa/sadc [-S XALL] [interval in sec] [outfile]

– View sar -A -f [outfile]

 Package: RHEL: sysstat.s390x SLES: sysstat

 Shows
– CPU utilization
– Disk I/O overview and on device level
– Network I/O and errors on device level
– Memory usage/Swapping
– … and much more
– Reports statistics data over time and creates average values for each item

 Hints
– sadc parameter “-S XALL” enables the gathering of further optional data
– Shared memory is listed under 'cache'
– [outfile] is a binary file, which contains all values. It is formatted using sar

• enables the creation of item specific reports, e.g. network only
• enables the specification of a start and end time → time of interest

© 2013 IBM Corporation71 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

SAR - Processes created

Processes created per second usually small except during startup.
If constantly at a high rate your application likely has an issue.
Be aware – the numbers scale with your system size and setup.

© 2013 IBM Corporation72 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

SAR - Context Switch Rate

Context switches per second usually < 1000 per cpu
except during startup or while running a benchmark
if > 10000 your application might have an issue.

© 2013 IBM Corporation73 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

SAR - CPU utilization
Per CPU values:
watch out for
 system time (kernel)
 user (applications)
 irq/soft (kernel, interrupt handling)
 idle (nothing to do)
 iowait time (runnable but waiting for I/O)
 steal time (runnable but utilized somewhere else)

© 2013 IBM Corporation74 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Per interface statistic of packets/bytes
You can easily derive average packet sizes from that.
Sometimes people expect - and planned for – different sizes.

Has another panel for errors, drops and such events.

SAR - Network traffic

© 2013 IBM Corporation75 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

SAR – Disk I/O I – overall

Overview of
- operations per second
- transferred amount

© 2013 IBM Corporation76 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

SAR – Disk I/O II – per device

Is your I/O balanced across devices?
Imbalances can indicate issues wit a LV setup.

tps and avgrq-sz combined can be important.
Do they match your sizing assumptions?

Await shows the time the application has to wait.

© 2013 IBM Corporation77 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

SAR - Memory statistics - the false friend

Be aware that high %memused and low kbmemfree
is no indication of a memory shortage (common mistake).

Same for swap – to use swap is actually good,
but to access it (swapin/-out) all the time is bad.

© 2013 IBM Corporation78 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

SAR - Memory pressure - Swap

The percentage seen before can be high,
But the swap rate shown here should be low.
Ideally it is near zero after a rampup time.
High rates can indicate memory shortages.

© 2013 IBM Corporation79 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

SAR - Memory pressure – faults and reclaim

Don't trust pgpgin/-out absolute values
Faults populate memory
Major faults need I/O
Scank/s is background reclaim by kswap/flush (modern)
Scand/s is reclaim with a “waiting” allocation
Steal is the amount reclaimed by those scans

© 2013 IBM Corporation80 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

SAR - System Load

Runqueue size are the currently runnable programs.
It's not bad to have many, but if they exceed the amount
of CPUs you could do more work in parallel.

Plist-sz is the overall number of programs, if that is always
growing you have likely a process starvation or connection issue.

Load average is a runqueue length average for 1/5/15 minutes.

© 2013 IBM Corporation81 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

iostat

 Characteristics: Easy to use, information on disk device level
 Objective: Detailed input/output disk statistics
 Usage: iostat -xtdk [interval in sec]
 Package: RHEL: sysstat.s390x SLES: sysstat

 Shows
– Throughput
– Request merging
– Device queue information
– Service times

 Hints
– Most critical parameter often is await

• average time (in milliseconds) for I/O requests issued to the device to be served.
• includes the time spent by the requests in queue and the time spent servicing them.

– Also suitable for network file systems

© 2013 IBM Corporation82 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

iostat

 Output sample:

Time: 10:56:35 AM
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
dasda 0.19 1.45 1.23 0.74 64.43 9.29 74.88 0.01 2.65 0.80 0.16
dasdb 0.02 232.93 0.03 9.83 0.18 975.17 197.84 0.98 99.80 1.34 1.33

Time: 10:56:36 AM
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
dasda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dasdb 0.00 1981.55 0.00 339.81 0.00 9495.15 55.89 0.91 2.69 1.14 38.83

Time: 10:56:37 AM
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
dasda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dasdb 0.00 2055.00 0.00 344.00 0.00 9628.00 55.98 1.01 2.88 1.19 41.00

© 2013 IBM Corporation83 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

DASD statistics

 Characteristics: Easy to use, very detailed
 Objective: Collects statistics of I/O operations on DASD devices
 Usage:

– enable: echo on > /proc/dasd/statistics

– show:
• Overall cat /proc/dasd/statistics

• for individual DASDs tunedasd -P /dev/dasda

 Package: n/a for kernel interface, s390-tools for dasdstat

 Shows:
– various processing times:

Histogram of I/O till ssch
Histogram of I/O between

ssch and IRQ
Histogram between

I/O and End
Start End

Histogram of I/O times

Build channel program
wait till subchannel is
free

Processing data transfer
from/to storage server

Tell block dev layer
Data has arrived

New Tool “dasdstat” available
to handle that all-in-one

© 2013 IBM Corporation84 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

DASD statistics - report

 Sample:

 8*512b = 4KB <= request size < 1*512b =8KB 1ms <= response time < 2 ms

29432 dasd I/O requests
with 6227424 sectors(512B each)
 __<4 ___8 __16 __32 __64 _128 _256 _512 __1k __2k __4k __8k _16k _32k _64k 128k
 _256 _512 __1M __2M __4M __8M _16M _32M _64M 128M 256M 512M __1G __2G __4G _>4G

Histogram of sizes (512B secs)
 0 0 9925 3605 1866 4050 4102 933 2700 2251 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Histogram of I/O times (microseconds)
 0 0 0 0 0 0 0 1283 1249 6351 7496 3658 8583 805 7 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Histogram of I/O time till ssch
 2314 283 98 34 13 5 16 275 497 8917 5567 4232 7117 60 4 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq
 0 0 0 0 0 0 0 14018 7189 2402 1031 4758 27 4 3 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Histogram of I/O time between irq and end
 2733 6 5702 9376 5781 940 1113 3781 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

of req in chanq at enqueuing (1..32)
 0 2740 628 1711 1328 23024 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Hints
– Also shows data per sector which usually only confused

© 2013 IBM Corporation85 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

FCP statistics

 Characteristics: Detailed latency information (SLES9 and SLES10)
 Objective: Collects statistics of I/O operations on FCP devices on request base,

 separate for read/write
 Package: n/a (Kernel interface)

 Usage:
– enable

• CONFIG_STATISTICS=y must be set in the kernel config file
• debugfs is mounted at /sys/kernel/debug/
• For a certain LUN in directory
/sys/kernel/debug/statistics/zfcp-<device-bus-id>-<WWPN>-<LUN>
issue echo on=1 > definition (turn off with on=0, reset with data=reset)

– view
• cat /sys/kernel/debug/statistics/zfcp-<device-bus-id>-<WWPN>-<LUN>/data

 Hint
– FCP and DASD statistics are not directly comparable, because in the FCP case many I/O

requests can be sent to the same LUN before the first response is given. There is a
queue at FCP driver entry and in the storage server

© 2013 IBM Corporation86 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

FCP statistics

 Shows:
– Request sizes in bytes (hexadecimal)
– Channel latency Time spent in the FCP channel in nanoseconds
– Fabric latency processing data transfer from/to storage server incl. SAN in nanoseconds
– (Overall) latencies whole time spent in the FCP layer in milliseconds

– Calculate the pass through time for the FCP layer as
pass through time = overall latency – (channel latency + fabric latency)

→ Time spent between the Linux device driver and FCP channel adapter inclusive in Hypervisor

Start End

Channel
Latency

Fabric
Latency

Overall Latency

© 2013 IBM Corporation87 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

FCP statistics example

cat /sys/kernel/debug/statistics/zfcp-0.0.1700-0x5005076303010482-0x4014400500000000/data
...
request_sizes_scsi_read 0x1000 1163
request_sizes_scsi_read 0x80000 805
request_sizes_scsi_read 0x54000 47
request_sizes_scsi_read 0x2d000 44
request_sizes_scsi_read 0x2a000 26
request_sizes_scsi_read 0x57000 25
request_sizes_scsi_read 0x1e000 25
...
latencies_scsi_read <=1 1076
latencies_scsi_read <=2 205
latencies_scsi_read <=4 575
latencies_scsi_read <=8 368
latencies_scsi_read <=16 0
...
channel_latency_read <=16000 0
channel_latency_read <=32000 983
channel_latency_read <=64000 99
channel_latency_read <=128000 115
channel_latency_read <=256000 753
channel_latency_read <=512000 106
channel_latency_read <=1024000 141
channel_latency_read <=2048000 27
channel_latency_read <=4096000 0
...
fabric_latency_read <=1000000 1238
fabric_latency_read <=2000000 328
fabric_latency_read <=4000000 522
fabric_latency_read <=8000000 136
fabric_latency_read <=16000000 0
...

request size 4KB, 1163 occurrences

response time <= 1ms

Channel response time <= 32μs
= all below driver

Fabric response time <= 1ms
= once leaving the card

© 2013 IBM Corporation88 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

netstat

 Characteristics: Easy to use, connection information
 Objective: Lists connections
 Usage: netstat -eeapn
 Package: RHEL: net-tools SLES: net-tools

 Shows
– Information about each connection
– Various connection states

 Hints
– Inodes and program names are useful to reverse-map ports to applications

© 2013 IBM Corporation89 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

netstat -s

 Characteristics: Easy to use, very detailed information
 Objective: Display summary statistics for each protocol
 Usage: netstat -s

 Shows
– Information to each protocol
– Amount of incoming and outgoing packages
– Various error states, for example TCP segments retransmitted!

 Hints
– Shows accumulated values since system start, therefore mostly the differences

between two snapshots are needed
– There is always a low amount of packets in error or resets
– Retransmits occurring only when the system is sending data

When the system is not able to receive, then the sender shows retransmits
– Use sadc/sar to identify the device

© 2013 IBM Corporation90 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

netstat -s

 Output sample:

Tcp:

 15813 active connections openings

 35547 passive connection openings

 305 failed connection attempts

 0 connection resets received

 6117 connections established

 81606342 segments received

 127803327 segments send out

 288729 segments retransmitted

 0 bad segments received.

 6 resets sent

© 2013 IBM Corporation91 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Socket statistics

 Characteristics: Information on socket level
 Objective: Check socket options and weird connection states
 Usage: ss -aempi
 Package: RHEL: iproute-2 SLES: iproute2

 Shows
– Socket options
– Socket receive and send queues
– Inode, socket identifiers

 Sample output
 ss -aempi

 State Recv-Q Send-Q Local Address:Port Peer Address:Port

 LISTEN 0 128 :::ssh :::*
 users:(("sshd",959,4)) ino:7851 sk:ef858000 mem:(r0,w0,f0,t0)

 Hints
– Inode numbers can assist reading strace logs
– Check long outstanding queue elements

© 2013 IBM Corporation92 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

 Characteristics: Easy to use
 Objective: Shows resource usage on process level
 Usage: top -b -d [interval in sec] > [outfile]
 Package: RHEL: procps SLES: procps

 Shows
– CPU utilization
– Detailed memory usage

 Hints
– Parameter -b enables to write the output for each interval into a file
– Use -p [pid1, pid2,...] to reduce the output to the processes of interest
– Configure displayed columns using 'f' key on the running top program
– Use the 'W' key to write current configuration to ~/.toprc

→ becomes the default

Top

© 2013 IBM Corporation93 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

top (cont.)

 See ~/.toprc file in backup

 Output sample:
top - 11:12:52 up 1:11, 3 users, load average: 1.21, 1.61, 2.03
Tasks: 53 total, 5 running, 48 sleeping, 0 stopped, 0 zombie
Cpu(s): 3.0%us, 5.9%sy, 0.0%ni, 79.2%id, 9.9%wa, 0.0%hi, 1.0%si, 1.0%st
Mem: 5138052k total, 801100k used, 4336952k free, 447868k buffers
Swap: 88k total, 0k used, 88k free, 271436k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ P SWAP DATA WCHAN COMMAND
3224 root 18 0 1820 604 444 R 2.0 0.0 0:00.56 0 1216 252 - dbench
3226 root 18 0 1820 604 444 R 2.0 0.0 0:00.56 0 1216 252 - dbench
2737 root 16 0 9512 3228 2540 R 1.0 0.1 0:00.46 0 6284 868 - sshd
3225 root 18 0 1820 604 444 R 1.0 0.0 0:00.56 0 1216 252 - dbench
3230 root 16 0 2652 1264 980 R 1.0 0.0 0:00.01 0 1388 344 - top
 1 root 16 0 848 304 256 S 0.0 0.0 0:00.54 0 544 232 select init
 2 root RT 0 0 0 0 S 0.0 0.0 0:00.00 0 0 0 migration migration/0
 3 root 34 19 0 0 0 S 0.0 0.0 0:00.00 0 0 0 ksoftirqd ksoftirqd/0
 4 root 10 -5 0 0 0 S 0.0 0.0 0:00.13 0 0 0 worker_th events/0
 5 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 0 0 0 worker_th khelper

 Hints
– virtual memory: VIRT = SWAP + RES unit KB
– physical memory used: RES = CODE + DATA unit KB
– shared memory SHR unit KB

© 2013 IBM Corporation94 GSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Linux ps command

 Characteristics: very comprehensive, statistics data on process level
 Objective: reports a snapshot of the current processes
 Usage: “ps axlf”
 Package: RHEL: procps SLES: procps

 Hints
– Do not specify blanks inside the -o format string
– Many more options available

 PID TID NLWP POL USER TTY NI PRI PSR P STAT WCHAN START TIME %CPU %MEM VSZ SZ RSS - COMMAND
 871 871 1 TS root ? -5 29 0 * S< kauditd_thre 10:01 00:00:00 0.0 0.0 0 0 0 - [kauditd]
2835 2835 1 TS root pts/2 0 23 0 * Ss+ read_chan 10:38 00:00:00 0.0 0.0 5140 824 2644 - -bash
3437 3437 1 TS root pts/1 0 23 0 * S+ wait4 11:39 00:00:00 0.0 0.0 1816 248 644 - dbench 3
3438 3438 1 TS root pts/1 0 20 0 0 R+ - 11:39 00:00:24 33.1 0.0 1820 252 604 - dbench 3
3439 3439 1 TS root pts/1 0 20 0 0 R+ - 11:39 00:00:23 32.8 0.0 1820 252 604 - dbench 3
3440 3440 1 TS root pts/1 0 20 0 0 R+ - 11:39 00:00:23 31.8 0.0 1820 252 604 - dbench 3
…

© 2013 IBM CorporationGSE Leipzig April 2013April 22, 2013

Linux on System z Performance Evaluation

Questions

 Further information is available at
–Linux on System z – Tuning hints and tips

http://www.ibm.com/developerworks/linux/linux390/perf/index.html

– Live Virtual Classes for z/VM and Linux
http://www.vm.ibm.com/education/lvc/

Research & Development
Schönaicher Strasse 220
71032 Böblingen, Germany

ehrhardt@de.ibm.com

Christian Ehrhardt
Linux on System z
Performance Evaluation

	Title of Presentation (Type Size=32, can accommodate up to a maximum of 3 lines)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Health Center
	Slide 49
	Garbage Collection and Memory Visualizer
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Jinsight Execution View
	Jinsight Execution View, continued
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

