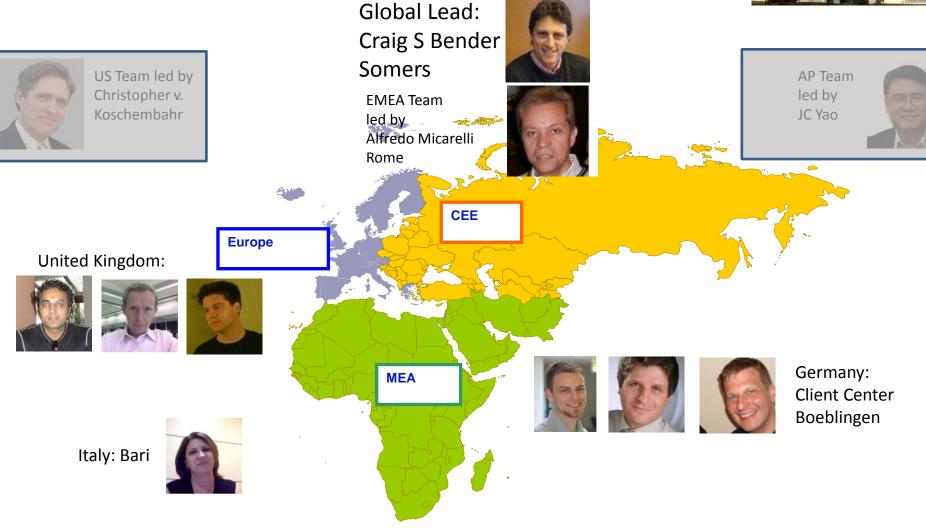

- What is TCO?
- The EAGLE Method for TCO studies
 - Study process and parameters
 - Cost model the 4 dimensions of cost
- Example Studies with System z
 - z/OS Offload
 - Server Consolidation
 - with Oracle & WAS
 - with Open Source Middleware
 - New Workload
 - Rehosting of CRM System with System z and pureFlex


- Total cost of Ownership
 - "cost" related: What does a solution cost?
 - Determines rentability of a solution!
 - "total": comprehensive
 - Should cover all aspects of "cost"
- Why is that important?
 - Did you recently "buy" a "free" cellphone?
 - Did you recently "win" a "free" holiday?
- Hidden cost can impact rentability severely
 - Cost might be hidden by accident or on purpose

"Cost" means a variety of things:

EAGLE TCO Consultants: Take Cost Out

High End customers qualify for EAGLE studies with IBM platforms

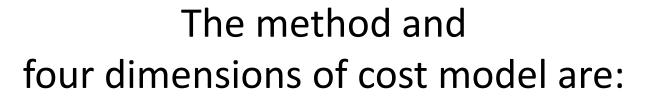
- System z:
 - z/OS, z/VSE, z/TPF, Linux on System z
- High End Power Systems:
 - AIX, Linux on Power
- High End Storage:
 - DS8#00, V7000, XIV
- pureSystems:
 - p and x compute nodes, storage nodes

Various scenarios qualify for EAGLE studies

- Competitive Situations:
 - Intended offload from "Legacy Systems"
 - Competitive offerings for new workload
- Server/Storage Consolidation:
 - Reduce complexity of environment
 - Optimize resource utilization
- "Cloud"-like environments
 - Shorten deployment time
 - Increase efficiency of systems management

The EAGLE Method:

- Listen to our customers
 - Business background and requirements
 - IT Strategy and Project Goals
 - Non-functional requirements
- Define scope of study and scenarios to compare
 - Fit-4-Purpose can be used to identify best technical options
 - Frequently best technical fit is also cheapest, because built-in capabilities do not need to be established at extra cost.
 - Establish equivalence or assign value to differences
- Calculate detailed total cost for each scenario
- Identify solution which fulfills requirements at lowest cost


A study consists of 7 steps

- 1. Identify client sponsor for support
- 2. Conduct Kick-off workshop
 - 1. Interview with sponsor/business stakeholders
 - 2. Interview with technical stakeholders
 - 3. Define Study Parameters, Scope and Scenarios
- 3. Attempt to establish equivalence
- 4. Agree with customer on High-Level Architectures as subject of study
- 5. Perform financial modeling for scenarios (4 dim of cost)
- 6. Re-fine architecture and financial model in up to three iterations with EAGLE peers, client team and customer
- 7. Present study result and recommendations to customer

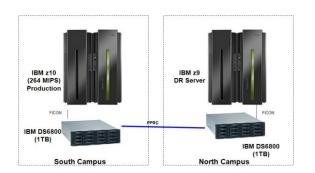
EAGLE studies are kicked off by the IBM client team and are free of charge. Fast-Path studies are available at lower detail level starting from 2 days.

- Flexible to (manually) connect to different sources
 - Server inventory and configuration tools
 - Sizing tools for establishing equivalence
 - RACEv, Gartner/IDEAS International competitive profiles,...
 - Other specialized TCO tools:
 - TCOnow! for storage, alinean for pureFlex,...
- A most comprehensive model of total cost
 - Extensible to special customer requirements
 - Reducable to most important criteria (fast path)

2. Environments	PROD	Dev/TEST	НА	Q/A	D/R	4. NFRs
1. Cost Items						Reliability
HW acquisition						Availability
SW licenses						Security
Maintenance & Support						Scalability
Network cost						Compliance
Power and Cooling						Standards
Facilities						Legal
Storage						Data Retention

- Today runs order processing system on System z
 - ~1.2M LOC legacy TX code, COBOL etc.
 - Outages immediately impact business: D/R RTO < 1hr
 - < 10GB of data in IMS and DB/2 mirrored w/ PPRC to D/R site</p>
- Plans to reengineer/modernize application
 - COCOMO porting estimate: USD ~12M/4yrs @ >40 FTE peak
 - Migrate data into Oracle database
- Platform candidates: Power Systems, Intel
 - HA, Dev&Test separate from PROD for isolation purposes
 - Virtualization widely used to reduce number of physical servers

Case 1 – System Z

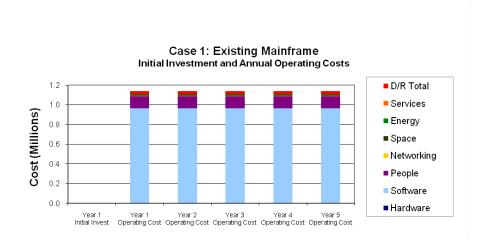

- z10 BC @ 264 MIPS
- DR Server on old z9
- DS6800 (1TB) with PPRC
- IMS and DB2 Databases

Case 2- System P

- 3x IBM Power 770
 32co@3.1GHz AIX,
 PowerVM(Pr./Dev./DR)
- Cold Fusion & Oracle
 DB

Case 3 – System X

- 6x IBM System x3950 80xE7-8850 @2.0GHz (2x Pr./Dev./DR)
- VMWare
- Cold Fusion & Oracle
 DB w/Data Guard



Accumulated TCO Cost Comparison

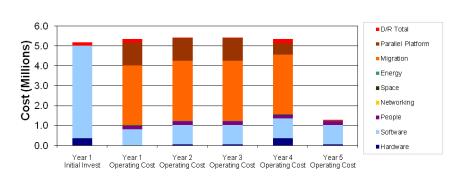
40

35

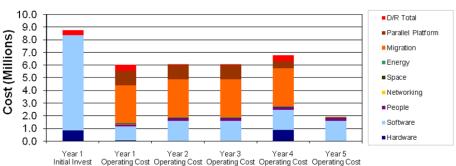
Case 1: Remain on the Mainframe
Case 2: Re-engineer on System P
Case 3: Re-engineer on System X

50

Year 1

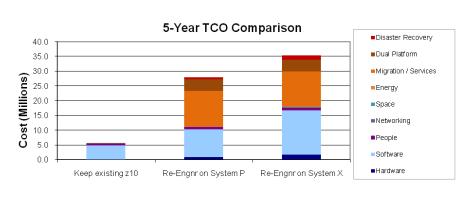

Year 2

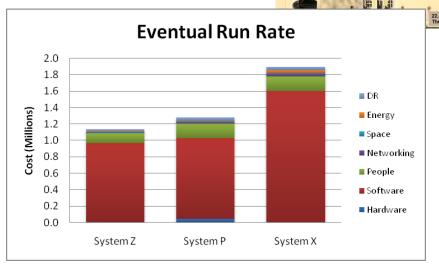
Year 3


Year 4

Year 5

Case 2 – Re-Engineer on System P
Initial Investment and Annual Operating Costs




Case 3 – Re-Engineer on System X
Initial Investment and Annual Operating Costs

Offload: Cost Analysis

Cost Factors

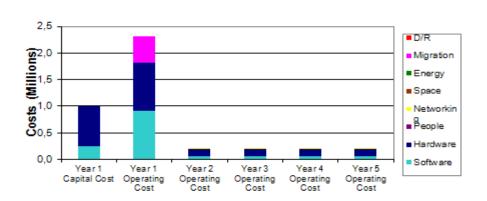
- Migration effort
 - Parallel environments
- Software priced per core
 - More cores -> more cost
 - License & maintenance

Other considerations

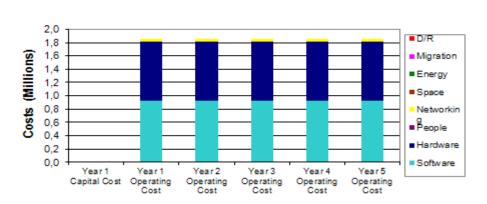
- Risks
 - Functional equivalence
 - Performance
 - scalability
- Changed HA/DR capabilities

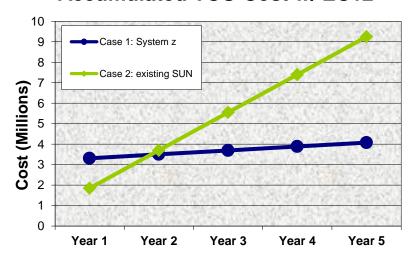
- Existing mainframe solution is cheapest:
 - In regard to Total Cost of Ownership in any year on a 5 year horizon
 - In regard to Annual Operation Cost after migration
- Migration cost never pays off
 - Not generally true, but frequently
- Functional and non-functional risks not valued

Example studies: Consolidation



- Current environment: >300 UNIX server farm
 - SUN/SPARC, Power Systems, Intel
 - Mainly Oracle database, Application Servers
- Servers considered for consolidation:
 - Oldest SUN servers, which are depreciated
 - Database servers only
 - 25 servers with 188 cores can go to 7 IFLs on zEC12
 - Average utilization rate from std. UNIX 17% up to 50%


Consolidation I: Cost structure and analysis


System z - EC12 5-Year OTC and Operating Costs

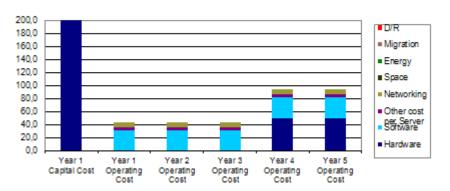
Existing SUN servers 5-Year OTC and Operating Costs

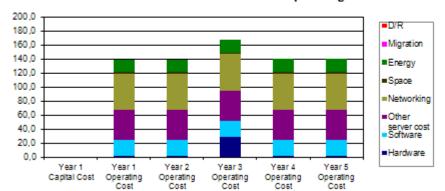
Accumulated TCO Cost w/ EC12

HW investment ~USD 1M for zEC12

- pays off in year 2
- Annual SW cost down 600k
 - Reduction of cores
- Annual HW cost down 700k
 - Reduction of servers

- Current Environment:
 - 8x Fujitsu BX6000 + 2x HP DL 380 w/ Linux
 - Complex network topology
 - Home-grown application based on Open Source Middleware
- Target environment:
 - zEC 12 with 5 IFLs
 - z/VM virtualization
 - VSWITCH virtual and secure networks


Consolidation II: Cost structure and analysis


22

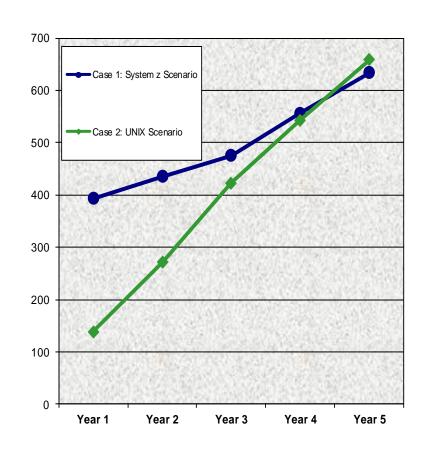
- Networking cost
 - VSWITCH and HiperSockets eliminate physical network ports
- Other server cost
 - Reduced server inventory
 - System z RAS reduced number of OS images
- Higher avg. system utilization
 - 45% vs. 1-20%
 - 66 cores to 5 (13.2:1)
- Energy and space cost covered by existing System z

Case 1: System z scenario
Initial Investment and Annual Operating Costs

Case 2: Unix Servers
Initial Investment and Annual Operating Costs

Consolidation II: Analysis

Accumulated TCO Cost Comparison


- Technical advantages:
 - D/R environment added to System z with CBU
 - Reduced network and server complexity
- Financial advantages:

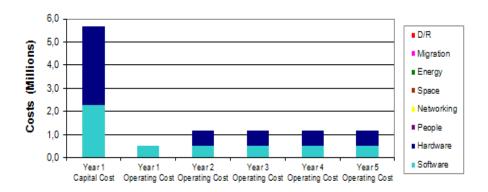
In regard to 5yr-TCO

\$55k (8%) at 0% interest

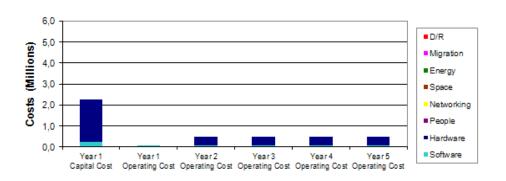
In regard to annual cost

\$74k avg. in years 2-5 \$46k (33%) in year 5

Example studies: New Workload



- New CRM System needs to be hosted
 - Siebel CRM with Oracle DB
- Platform candidates:
 - Competitive proposal:
 - 2x SUN M9000 for DB
 - 32 T4-2/4 servers + 2 HS22 Blades for Apps
 - zEC12 assessment requested by customer:
 - 7 IFLs required for Oracle DB
 - IFLs cannot run Siebel aplications:
 - 1. Option: 2x Power 780+ w/ Power VM&HA for Apps
 - 2. Option: 20x p460 nodes in pure Flex


New Workload: Cost structure & analysis

Oracle Proposal 5-Year OTC and Operating Costs

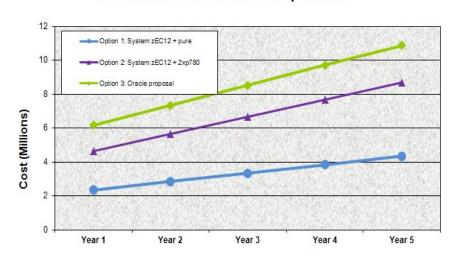
System z - EC12 + pure 5-Year OTC and Operating Costs

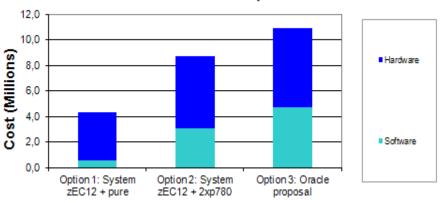
Savings driven by:

- Acquisition cost for
 Oracle SW Licenses (down 2M on EC12)
 #licenses down 64:7
 Server HW (down 1.4M with pure)
- Maintenance cost
 Oracle DB+RAC (down 440k on EC12)
 Server HW (down 240k with pure)
- Year 1 S&S included for IBM SW&HW

Factors not considered

- 1. Simplified network and server topology
- 2. Ease of administration with pureFlex
- Add D/R capability with zEC12/CBU
- Dev/Test & QA environment


New Workload: financial analysis


Recommendation:

Implement Siebel CRM
on zEC12 with pureFlex for flexibility and
minimal cost
or zEC12 with 2xp780 for maximum
consolidation

Accumulated TCO Cost Comparison

5-Year TCO Comparison

Case	5yr TCO	Savings	Annual in year 5	Savings
EC12 + pure	\$ 4.3M	-\$ 6.5M (-60%)	\$ 0.5M	-\$.7M (-57%)
EC12 + 2xp780	\$ 8.7M	-\$ 2.2M (-20%)	\$ 1.0M	- \$ 160k (-14%)
Oracle proposal	\$ 10.8M		\$ 1.2M	

Summary: Functional and financial advantages

- Functional advantages
 - Virtualization of any resources, higher utilization
 - LPAR/guest isolation
 - Availability advantages (z-ero downtime)
 - Hybrid systems w/ zBX
 - Unique functions: Parallel Sysplex, DB2 for z/OS
- Total Cost of Ownership advantages
 - If many servers need to be replaced old ones preferred
 - If development/test systems sprawl
 - If servers are low utilized
 - If complex topologies need to be simplified
 - If a System z exists and new workload can be put in whitespace or addt'l capacity
 - If legacy systems are intended to be migrated
 - If non-functional requirements are important
 - If large new workload needs to be hosted
- Migration of legacy systems tends to never pay off
- Consolidation can pay off starting at 10 servers