6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

Data High Availability **RAID and Mirroring Technology**

October 23, 2012

Dr. Holger Smolinski smolinski@de.ibm.com Global Client Center, IBM Germany R&D

22-24 October 2012 Hotel Hilton Mainz

Data Availability is critical to Application Availability

- In an operational model, which does not include availability measures, there are many single points of failure:
 - Internet connection
 - Network interface
 - Server node
 - Application instance
 - Storage connectivity
 - Data residing on disk
- If any of the above fails, the entire application cannot run.

Data on disk redundancy is the first step considered

RAID (Redundant Array of Inexpensive Disks) protects data against single data drive failure

- RAID 0: linear concatenation no protection
- RAID 1: mirrored disks all data is written to two disk drives. Single disk outage can be detected and recovered.
- RAID 5: three units of data are distributed on 5 disks. Single and double disk outage can be detected and recovered. Single data corruption can be detected and corrected.
- RAID 10: combination of RAID0 and RAID1 – characteristics of RAID1.

Infrastructure redundancy is the second step towards application availability

Paradigm: make all external connectivity redundant

- Mitigate risk of defective cabling
- Mitigate risk of defective parts

Network

 Since IP addresses are 'the address' of the application we will learn about network HA techniques in the networking track of this class

Storage

 Use independent paths to the storage controllers

In a third step a SPOF is eliminated by clustering the server

Sharing data across two servers is not a trivial problem

- Systems might cache data or file system metadata → both instances might see different contents or override their changes
- Clustering Software must perform a selection of:
 - Lock data files and metadata to avoid colliding access
 - Use DIRECTIO to bypass operating system caches
 - Mandatorily assign ownership to data resources → STONITH in case of a cluster split

There is only one SPOF left: The storage controller

- All previous components could be made redundant by just adding identical resources
 - They either are stateless or the state becomes meaningless in case of an error.
- But the disk subsystem has a state: 'the data on the disk' needs to be the same even if storage is duplicates
- Storage replication techniques are required!

Option 1: Host Based RAID 1 – Disk Mirroring

Linux brings two (3) host based RAID1 implementations

- 1. device mapper (LVM) based
- 2. MD device driver (mdadm) based
- 3. IBM LVM based real-time mirror

Properties

- Symmetric configuration
- Host controls completion of request, data integrity policy and recovery procedure

First 2 implementations suffer from some weaknesses e.g.:

 Transient failure (timeout) handled as error → RAID array breaks or blocks.

Option 2: Controller Based Replication - synchronous

Example:

 IBM Metro Mirror (synchronous) aka synchronous PPRC

Properties

- Asymmetric configuration
- Write request is reported complete after successful replication
- Identical data on both sides guaranteed
- Any failure on local/remote storage and/or replication link will block replication and IO requests

Option 3: Controller Based Replication - asynchronous

Example:

 IBM Metro Mirror (asynchronous) aka asynchronous PPRC

Properties

- Asymmetric configuration
- Write request is reported complete after successful replication on primary side
- Identical data on both sides guaranteed within size of backlog

Option 4: Controller Based Replication - batched

Example:

IBM Global Mirror aka XRC

Properties

- Asymmetric configuration
- Write request is reported complete after successful replication on primary side
- Identical data on both sides guaranteed within size of backlog

IBM

Everything is redundant and disk storage replicated – let's build a HA solution!

Left to Right: Failure of a server

Cluster SW takes care of it

Top to Bottom: Failure of a storage subsystem

- Asymmetric solutions require the secondary to become primary
- Top-Left to Bottom-Right can also be considered a site-failover:
 - Replication latency might become an issue

However – it's not that simple...

Disk Storage does not only hold application data but – often overlooked:

- Swap space, holding user heap and stack data paged out from memory
- Backing store for binary program text, loaded on demand, when code needs to be executed
- Backing store for shared memory segments paged out on memory shortage.

In consequence for a multi-site HA solution:

- Synchronous replication may cause application stalls or outages
 - Delayed load of data, text, or heap&stack
 - Inbound network traffic may get queued and fill up memory
 - Outbound data buffers, too
- Asynchronous replication may cause inconsistency of data on both sides
- Symmetric Host based replication requires cabling from both hosts to both sites
- Asymmetric Controller based replication requires identity switch (pri \rightarrow sec \rightarrow pri)
 - Usually some controlling software is required JavaCL Tool, z/OS Sysples et.al.

Chose, which meets your NFRs best! SHARE San Diego 9285, Holger Smolinski, IBM STG - LTC BoeblingenIBM Confidential

Examples

Example 1: LPAR Linux system, host based replication, LVM volumes

Example 1: Characteristics

Used IBM Real-Time Disk Mirroring (LVM based)

- Hybrid between synchronous and asynchronous mirroring
 - Synchronous until grace period has expired
 - Asynchronous then up to 100% difference
 - automatic resynch after transient error
- Tunable grace period guarantees application availability
- Supports any type of data storage, swap space, journalling file systems
 - Concurrent access of cluster members prohibited

Tivoli System Automation for Multiplatform controls all resources

Example 2: SCSI only z/VM & Linux system, controller based replication, 2 site configuration

Site B

Site A

IBM

Example 2: Configuration Actions required

Create three Zones for Site A, Site B, and Replication

Configure z/VM to attempt to access both sides' FCP devices

For z/VM LUN 1 define two statements:

EDEV 2a0 TYP FBA ATTR typ FCP_DEV 10a0 WWPN S1a LUN 1a FCP_DEV 11a0 WWPN S2a LUN 1a EDEV 2b0 TYP FBA ATTR typ FCP_DEV 10b0 WWPN S1b LUN 1b FCP_DEV 11b0 WWPN S2b LUN 1b

Selection of the right EDEV will be performed automagically by VOLSER

Configure Linux to attempt to access both sides

- Add other side WWPNs manually to Linux system
- Create 2 initial ramdisks one for each site

17

- Might be tricky, because not supported in standard mkinitrd tool
- Specify 2 sections in /etc/zipl.conf one for each site with initrd and kernel command line

Thank you ! Feel free to ask questions!

Questions?

Holger Smolinski

Certified IT Specialist Linux on System z

Schönaicher Strasse 220 71032 Böblingen, Germany

Phone +49 (0)7031-16-4652 Holger.Smolinski@de.ibm.com