IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

ISO1 — The New Universal Database
Connector (DBCLI)

Ingo Franzki

ifranzki@de.ibm.com

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not
actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtmi:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA,
WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the 1/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without
notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

Agenda

» Options for using Databases with z/VSE applications
= 7/VVSE Database Call Level Interface (DBCLI)
= DBCLI Concepts

= COBOL Example

* Hints & Tips

= Summary

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

z/VSE applications accessing Databases

-
with DB2
Federation

M

‘

..... -ll-----
R N-.-...--.....-llllllll
3 @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

DRDA

Remote system
(Linux, Unix, Windows)

= DB2/VSE or DB2/VM Server z/VSE
— residing in z/VSE or z/VM Batch or CICS
— Lacks support of modern SQL functionality application
i DB2/VSE
— Only quite old SQL level supported S
= DB2/VSE Client Edition S— A—
- (on Linux, Windows, Unix) rocal DB

— Communication via DRDA protocol
— Same old SQL level supported as DB2/VSE Server

— Can not use modern SQL functionality provided by DB2 LUW
— Can only access remote DB2 databases

A 4

With Federation: _

L - - p.Oracle, Sybase, !

DB2 Server ' MSSQL, .. !

—— v — I
DB2 Data . Data

[}
~— 7 N e =-

» Other databases (e.g. MS SQL Server, Oracle, etc) can only be accessed through

IBM InfoSphere Federation Server

= VSAM Redirector

— Primarily used to keep Databases in sync with VSAM data
— Also allows migration from VSAM to database

= New: z/VSE Database Call Level Interface

— Allows z/VSE applications to access a relational database on any suitable database server ﬁﬁm
« IBM DB2, IBM Informix, Oracle, MS SQL Server, MySQL, etc.
— Utilize advanced database functions and use SQL statements provided by modern database products

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

oW

= Allows z/VSE applications to access a relational database on
any suitable database server

— IBM DB2, IBM Informix, Oracle, MS SQL Server, MySQL, etc.
- The database product must provide a or later

—>Utilize advanced database functions and use SQL statements provided by modern
database products

Requires z/VSE 5.1 plus PTFs (UK78892 and UK78893)

z/VVSE Java capable Database Server
platform (may run on the
(e.g. Linux on same system as
Batch or CICS System z) the DBCliServer)
application
independent | | DBCLI AP Y
e <
DBCLI .
Q - DBCliServer Database
[Client (e.g. IBM DB2,
4 Tcpp | 1BM Informix
v v Oracle
or local :
TCP/IP or TCP/IP JDB_C V3 > SMSS(ISEer\;er
Linux Fast Path Driver Ry o

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

» The z/VSE Database Call Level Interface (DBCLI) provides a

(API)
— Call interface for use with : : , C and
—Can be used in applications as well as in applications

— Supports LE enabled as well as non-LE environments (Assembler, REXX)

= It provides callable functions for

— and the AP| Environment

— and to/from the DBCLI Server and the Database
— SQL Statements

— Retrieving through cursors
—Handling of () R
_Retrieving)

= DBCLI can only support what the underlying Database supports

6 @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

= The DBCLI APl is not compatible with DB2/VSE’s EXEC DB2 preprocessor interface
— It provides similar functions and concepts

— The APl is similar to the known from distributed platforms
(ODBC = Open Data Base Connectivity)

= No preprocessor is needed, instead you code the directly in your
program
— Using DBCLI in COBOL.:
» The COBOL copybook IESDBCOB contains common declarations

= A is provided to show how DBCLI can be used in your applications

. Is provided in the updated manual
“z/VSE V5R1 e-business Connectors User's Guide” - SC34-2629-01

— Chapter 9 and 22
— Available on z/VSE web page:

7 @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

Using DBCLI in COBOL.:
— The COBOL copybook IESDBCOB contains common declarations

Using DBCLI in PL/1
— The PL/I copybook IESDBPL1 contains common declarations

Using DBCLIin C
— The C header file IESDBC.h contains common declarations

Using DBCLI in Assembler
— The Assembler macro IESDBASM contains common declarations
, VL
— The following register conventions apply:
« Register 0, 1, 14, and 15 are used by the interface and must be, if necessary, saved prior to invocation
» Register 13 must point to a 72-byte save area provided by the caller

Using DBCLI in REXX
A

— All parameters must be initialized with a value of the appropriate length before calling the DBCLI API.
This is especially true for output parameters.

— Fullword binary variables must be initialized to contain 4 bytes (for example, VARIABLE = D2C(0,4))

— Since the variable is expected to contain a value in binary representation, you must convert the value from the
RE():(X string representation into the binary representation and vice versa using the REXX functions C2S and
D2

8 @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

DBCLI Concepts:

When using the API provided by the DBCLI client, you must:

. the API environment by calling the function before calling any other
function

— The INITENV function allocates an that you must pass to all
subsequent functions

— You can have only one active environment at a time in your program

- the API environment (at the end of your program) by calling the
function

— The TERMENV function frees all resources allocated by the DBCLI code
— The TERMENV function will also close any "left over" connections or statements
— After the TERMENYV function, the environment handle is no longer valid

10101001100
00010011101
11100011100

= You can set and get various on the
—You do so by calling the or function D}

‘

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

DBCLI Concepts:

To access a Database, you must connect to the DBCLI server
and the Vendor database

= You connect to the DBCLI server (DBCliServer) and the
database by calling the function

* You must supply the:
— of DBCliServer

z/VSE

Batch or CICS
application

DBCLI API

DBCLI
Client

]

TCP/IP or
Linux Fast Path

TCP/IP

Java capable
platform
(e.g. Linux on
System z)

DBCliServer

l

JDBC V3

Driver

Database Server
(may run on the
same system as
the DBCliServer)

Database
(e.g. IBM DB2,
TCP/IP IBM Informix
orlocal |, . Oracle,
S SQL Server

MySQL, ...)

— or the JDBC URL to which you wish to connect

— to authenticate with the database

= The function allocates a
functions that require a connection

that you must pass to all subsequent

— You can have multiple connections to the same or different DBCLI servers and databases at a

time
— Each connection is represented by its own connection handle

= When you are finished working with a database, you must disconnect from the database and the

DBCLI server (DBCliServer) by calling the function

— The DISCONNECT function frees the connection handle and all left over statements

(if any) that you have allocated using this connection
10

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

DBCLI Concepts:

B

Per default, a connection operates in :
= Any database updates that you perform are contained in a

= You can by calling the COMMIT or ROLLBACK functions:
— The function commits all changes done since the beginning of the logical unit
of work and starts a new logical unit of work
—The function rolls back (reverts) all changes since the beginning of the

logical unit of work or up to a savepoint

= Usually, you should function :

= |f you do not call the COMMIT function, DBCliServer will all changes
— by calling the function

= |f the (for example, because the program abends), the DBCLI server

done since the beginning of the last logical unit of work

= You can set a connection into

— In auto-commit mode, every SQL statement is treated as and
IS when the statement execution is complete.
» Therefore, you do not have to call the COMMIT or ROLLBACK functions.
— You set a connection into auto-commit mode by calling the function to
set the attribute to TRUE

11 © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

DBCLI Concepts: Preparing SQL Statements

In order to execute an SQL statement, you must first prepare the SQL statement

= During preparation, the database will pre-compile the SQL statement and create an
access plan for the statement

— The access plan is kept as long as the statement exists
— You can then execuie the statement as many times as you want

» The PREPARESTATEMENT function prepares an SQL statement for execution
— It allocates a statement handle that represents the statement

SQL statements may contain parameters that are evaluated at execution time
= Parameters are marked by a question mark (7) within the SQL statement
SELECT * FROM EMPLOYEE WHERE EMPNO>? AND SALARY>?
Parameter 1 Parameter 2
» The parameters are numbered in order of appearance, starting with 1

= When using DB2/VSE preprocessor, above statement would look like:
SELECT * FROM EMPLOYEE WHERE EMPNO>:empno AND SALARY>:salary

» The application binds host variables to the parameters using the BINDPARAMETER function

— When the statement is later executed, the content of the host variables is used and sent
to the database

— You also specify the data type and lengih of the variable with the BINDPARAMETER call
— Indicator variables are used to determine if the parameter value is NULL

12 @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

DBCLI Concepts:

\

To execute a prepared statement, you must call the function

= |f the statement was an SQL , you can retrieve the number of rows
updated using the function or the parameter at the
EXECUTE function

= |f the statement was a SQL , yOou can to retrieve (fetch) the

result rows and columns
— A statement can provide multiple results (mostly stored procedures)
— To retrieve the additional results you must call the function
— The GETMORERESULTS function will move to the next available cursor or update count

= |f the statement was a stored procedure call, are updated with the data
passed back by the stored procedure

= When you no longer need a statement, you must close it by calling the
function:

— The CLOSESTATEMENT function frees the statement handle and closes all cursors (if
any) that may still be open from the last statement execution

» The statement handle is no longer valid after the CLOSESTATEMENT function

13 © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

DBCLI Concepts:

The execution on an returns a result in form of a
= A cursor allows you to retrieve (fetch) the result rows and columns

—You can use the and

functions to obtain detailed information about the cursor's columns

—The in order of appearance, starting at 1

= To fetch the result rows using the cursor, you must first of
interest
— You bind host variables to the columns of interest by calling the function

— If the FETCH function is called later on, the host variables will be updated with the
contents of the column in the row that has been fetched

» Per default, the function processes the cursor
—You may

» Providing the database supports this and you have created the statement using the
appropriate type (CURSOR-TYPE-SCROLL-INSENSITIVE or CURSOR-TYPE-
SCROLL-SENSITIVE)

= Repositioning can be performed using either the:

— FETCH function with operations , , :
or

14— function

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

DBCLI Concepts:

The DBCLI interface allows you to retrieve
= This includes functions to get a

from the database

, iIndexes, keys, , and so on

= This information is typically stored in system catalog tables in the database.

— You can also execute regular SELECT statements against the system catalog tables, but
this requires that you know which database system and vendor you are using

— System catalog tables are vendor- and database-specific

= The DBCLI interface provides a 10101001100

00010011101

to retrieve meta data information. 11100011100
— These functions are prefixed with 'DB'

— The function DBTABLES for example retries a list of tables
available in the database

= Please note that some databases may not support all of the meta data functions

DBBESTROWIDENT DBPROCEDURES
DBCATALOGS DBSCHEMAS
DBCOLUMNPRIV DBSUPERTABLES
DBCOLUMNS DBSUPERTYPES
DBCROSSREFERENCE DBTABLEPRIV
DBEXPORTEDKEYS DBTABLES
DBIMPORTEDKEYS DBTABLETYPES
DBINDEXINFO DBTYPEINFO
DBPRIMARYKEYS DBUDTS
DBPROCEDURECOLS DBVERSIONCOLS

15

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

COBOL Example

PROCEDURE DIVISION.
MATIN-PROGRAM.
DISPLAY 'COBSAMPL STARTED'.
*
* Perform the INITENV call
*
MOVE 'SOCKET00' TO TCENAME.
MOVE 'EZASCH99' TO ADSNAME.
CALL 'IESDECLI' USING FUNC-INITENV [ENV-HANDLE| <=
TCPNAME ADSHNAME RETCODE.
DISPLAY 'RETCODE OF INITENV IS °
IF RETCODE > ECK THEN
PERFORM CHECK-ERRCR
END-IF.

RETCODE.

16

@ ,

— |nitialize the environment

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

COBOL Example

FROCEDUJEE DIVISIOHN.
MATH-FROGERM.
DISFLAY 'COESEMFL STRRTED'.

*

*

MOVE 10 TO SERVER-LEN.
MOWVE 18178 TO PCET.

MOVE & TO DENAME-LEN.
MOVE & TO USERID-LEN.

MOVE 'password' TO PASSWD.
HOVE 2 TO PASSWD-LEH.

EETCODE.

IF RETCCDE > ECE THEN
PFERFORM CHECE-ERRCR
END-IF.

* * Connect te the DBCLI server and the

database

P or hosthame of

MOVE 'S.152.2.70" TO SERVER. <€

MOVE 'SAMPLE' TO DBNAME. e

DBCLI Server

MOVE ‘dbuserid' TO USERID.'

Database alias name

CALL 'IESDECLI' USING FUNC-CONNECT ENV-HANDLE
SERVER SERVER-LEN PFORT DENAME DBEMNAME-LEN
USERID USERID-LEN PASSWD PAS5WD-LEMN

DISPLAY '"EETCODE OF CONMECT IS5 ' RETCODE.

CCH-HANDLE

\

User-ID & Password

— Connect to the
DBCLI Server

and the Database

17

‘ @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

COBOL Example

MATH-FROGERM.
DISFLAY

'COBSAMEL

FROCEDUJEE DIVISIOHN.

STARTED'.

*
* * Connect to
-

MOVE '"S.
MOVE 10
HMOVE

MOVE

tEhe

152.2.70"
TO SERVER-LEN.
15178
'SEMPLE"
MOVE & TO DENAME-LEN.

DECLT server and the database

T2 SEEVEER.

TO PORT.
TO DENAME.

*

* Prepars
*

HOVE

MOVE
CALL

DISPLAY
IF RETCCDE > ECE THEN

FEEFOEM CHECE-ERERCE
END-IF.

Zn 20L statement for later sxscution
"SELECT * FRCM EMPLOYEE WHERE EMENO>?
TO SQL.

LENGTH OF SQL TO SQL-LEN.

'IESDBCLIC
CON-HRNDLE |STMT-HANDLE| 5QL SQL-LEN
CURSOR-TYPE-SCROLL-INSENSITIVE
HOLD-CURSORS-OVER-COMMIT RETCODE.
"RETCODE OF PREELRESTATEMENT IS °

US5ING FUNC-PREPARESTATEMENT

LWL SLLABRY>2"

CURSCR-CONCUR-EEAD-CHLY

EETCCODE.

ENV-HANDLE

h

18

SQL Statement
Containing Parameter

_ Markers (*7')

— Prepare an

SQL Statement
for later execution

‘ @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

COBOL Example

EMEFNC EMFHNC-LEN EMPHNO-THD
CODEFAGE CCDEPAGE-LEN RETCCDE.
DISPLAY 'BEETCODE ©OF BINDPRRRZMETER IS °
IF RETCODE > ECE THEN
PERFORM CHECE-ERRCE
END-IF.

FROCEDUBRE DIVISICH.
MLTH-FPROGERM.
DISPLAY 'CCOESLZMPL STARTED'.
*
* *
* * Connect fo the DBCLI server and the databasse
=
MOVE '2.152.2.70" TO S5ERVEER.
MOVE 10 TO SERVER-LEN.
MOVE 161782 TO PORT.
MOVE 'SLMPLE' TO DBMAME.
MOVE & TO DENAME-LEN.
*
= FPrat E— —= S =
* * Bind the EMFNO host wariskhle (Text) to paramster 1.
* Here we specify the opticonal codepage parametsr to
* zend the text dats 1n the desirsd codspags
*
MOVE 1 TO PARM-TIDX.
MOVE LENGTH OF EMPHC TO EMPMNO-LEN.
MOVE 'CF1047' TO CODEPAGE.
MOVE LENGTH OF CCODEPAGE TO CODEPAGE-LEN.
CALL '"IESDECLI' TUSING FUNC-BINDPARAMETER ENV-HAMNDLE
STMT-HANDLE PABM-TIDX NATIVE-TYPE-STRING

RETCCODE.

Bind host variable
L “EMPNQO”

to parameter

number 1

as STRING

19

© 2012 IBM Corporation

@ ,

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

COBOL Example

FROCEDUJEE DIVISIOHN.
MATH-FROGERM.
DISFLAY

'COBSAMFEL STRAETED'.

—
Connech

MOVE
MOVE
HOVE
MOVE
HMOVE

te Ehe DBECLI server and the database

'5.152.2.70" TO S5ERVER.
10 TO SERVER-LEN.

16178 TO PCRT.

'SEMPLE' TO DENAME.

& TO DEHNAME-LEHN.

Bind host variable
“SALARY”
to parameter

P 2 e .

* Pra COT i de

Bind the EMFNO

host warisblese (Text)
Hers we specify

send the tewt Aats 1n

dsS

=
the eoptional codspage param=eter Lo //

the Aseqrad ~odsesas

number 2

°PACKED decimal

* * * ¥ #*

* & * & W

HMOVE 2

MOVE 2

DISFLAY

END-IF.

Bind the 54
Here we specifh
E

wvant to ser

TO PREM-IDX.

LENGTH OF SALLEY TO SALARY-LEN.
TO DECEOS.

'IESDECLI"
STHMT-HANDLE PARM-TDX HATIVE-TYPE-PFACEED-SIGHED
SALARY SALARY-LEN SALARY-THD

DECPOS RETCCLDE.

=
& with 2 implied decifi

US5ING FUNC-BINDPARAMETER ENV-HANDLE

'"EETCODE OF BINDFLELMETER IS5 ' RETCODE.

IF RETCCDE > EOK THEN
FEEFOREM CHECE-ERECE

20

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

COBOL Example

21

Execute the

FROCEDUBRE DIVISICH. /
MLTH-FPROGERM. —
DISPLAY 'CCOESLZMPL STARTED'. L . . .
. * Left the host variables valuss andfcocoresponding indicator
. [* * varighles:
* * Connect fte the DECLI server and th*
- MOVE '000030" TO EMPHO.
MOVE '9S.152.2.70' TO SERVER. MOVE INDICATE-NOTHULL TO EMPHNOCO-IND.
MOVE 10 TO SERVER-LEN. MOVE 01000.00 TO 5ALARY.
MOVE 16178 TO PORT. MOVE INDICRATE-NCOTHULL TO SALARY-THD.
MOVE 'SLMPLE' TO DBMAME. -
MOVE & TO DENRME-LEMN. * Execute the statement. This will use the values of the
- * host variables for the paramsters.
= FPrat E— —= =
* « Bind the EMPNG host varial CALL '"IESDECLI'" TUSING FUNC-EXECUTE ENV-HAMNDLE
e e] STMT-HANDLE RETCODE.
* Her=s wve speclify thE.DptiD; IF RETCCDE > EOK THEN
* smand Fhe Fewb HAsts 0 Ehe _ -
- FERFORM CHECE-ERROR
- * Bind the SALARY host END-IF.
* Here= we sp=cify the d DISPLAY 'RETCCODE OF EXECUIE IS ° TCODE.
* want to send the numd IF EETCCODE > ECE THEN
- FERFORM CHECE-ERRCR
MOVE Z TO PARM-IDH EHND-IF,
MOVE LENGTH OF 5SRLAEY TO SALAREY-LEN. \\
MOVE 2 TO DECPOS.
CALL '"IESDEBCLI'" TUSING FUNC-BEINDPARAMETER ENV-HAMNDLE
STMT-HANDLE PARM-TDX HNATIVE-TYPE-PACKEED-SIGHED
SALARY SALARY-LEN SALARY-IND -t t -t
DECPDS RETCCDE. S a‘ emen
DISPLAY '"RETCCODE OF BINDPARLMETER IS5 ' RETCODE.
IF RETCCDE > ECOE THEN
PFERFORM CHECE-ERRCR
END-IF.

© 2012 IBM Corporation

@ ,

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

COBOL Example

22

Bind host variable
“FIRSTNAME” to
result set column

FROCEDURE DIVISICH.
MATHN-PROGELM. —
DISPLAY 'CCBSAMEPL STARTED'. L . . .
. * Laeft the host variables valuss and coresponding indicator
. [* * varighles:
* * Connect fte the DECLI server and th* o
* # Bind host varizhles FIRSTNAME (text) to the column 2
MOVE "2.152.2.70" TO SERVER. F Here we do not specify the codspage paramster so we
MOVE 10 TO SERVEER-LEN. F recslve the text dats in the default codspags.
MOVE 16178 TO PORT. =
MOVE 'SAMEFLE' TO DENAME. - MOVE 2 TO COL-IDX.
MOVE & TO DENAME-LEN. - MOVE LENGTH OF FIRSTHAME TO FIERSTHAME-LEN.
* * h CALL 'IESDECLI'" USING FUNC-BINDCOLUMN ENV-HANDLE
= FPrat E— E— = STHT-HANDLE COL-IDX MATIVE-TYPE-STRIHNG
* + Bind the EMPNO host varial FIERSTHNAME FIRSTHAME-LEN FIRSTHAME-TIHND
* Here we specify the optio] RETCODE.
: send the teyt dats in the DISPLAY 'RETCODE OF BINDCONUMN IS ' RETCODE.
. * IF REETCCODE > ECKE THEN
* Bind the SALARY host PERFORM CHECE-ERRCR
* Herse we specify the g END-IF.
* want to send the numdg 1T ELITWLL CUL TOGH
* FERFORM CHECE-ERRCE
MOVE 2 TO PABM-IDX END-IF.
MOVE LENGTH OF SALAKY TUO SALAEY-LEN. \\
MOVE 2 TO DECPOS.
CALL '"IESDECLI' USING FUNC-EINDPARAMETER ENV-HANDLE
STHMT-HLWNDLE PAEM-IDX HATIVE-TYPE-PLACEED-SIGHED
SALARY SALARY-LEM SALARY-IND
DECEFCS ERETCODE.
DISPLAY '"REETCODE OF BINDPARLMETER IS ' RETCCDE.
IF RETCODE > ECKE THEN
PERFOEM CHECE-ERRCER
END-IF. number 2

© 2012 IBM Corporation

@ ,

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

COBOL Example

FROCEDUEE DIVISICH.
MATH-PROGEAM. —
DISPLAY 'COESAMPL STARTED' o _ .
. * Left the host variables valuss and coresponding indicator
. [* * varighles:
* * Connect Lo the DECLI server and LH Tk
* F Bind host varisbls FIRSTNAME (text) to the column =.
MOVE '"S.152.2.70" TO SERVER. FOHd=
MOVE 10 TO SERVER-LEN. “ ¥4+ Fetch all available rows and display the data
MOVE 17E TOOPORT . i * Zince columns mEy be NULL we check the indicator variskles
-
F t h ” . * FETCH without an opsration argument means FETCH NEXT
elCn all rOwWsS /& |
:5_
- }i\ PERFOEM WITH TEST AFTER UNTIL ERETCCDE > EOQOK
* Prgy I — \ CALL 'IESDBCLI' USING FUNC-FETCH ENV-HANDLE
- * Bind the EMPNO host varial STMT-HANDLE ERETCODE
+ Hare we specify the optiol DISPLAY 'RETCODE OF FETCH IS ' RETCODE
* zapd the tewd Ast= 18 the IF RETCCDE > ECE AND EETCCDE NHOT = ENCMOREDATA THEN
ok
*) PERFOEM CHECE-ERERCR
* Bind the SALARY host END-IF
- T = = e o=
HEXS We SpeCclly tas g IF RETCODE = ECE THEN
* 21 =0 heas nums
want to ssnc thas nums - DISPLAY 'ROW DATR INFO FOR ROW NUMBER ' ROW-NUMEER
-
. - IF EMPNO-IND = INDICATE-NULL THEN
M < TOF -1D4 DISPLAY ! EMENO IS NULL®
MOVE LENGTH OF SALAERY TO ELSE
M ¢ TO DECEOS. DISPLAY ! EHMENC IS5 ' EMEMNC
CALL '"IESDZCLI'" USING FUN FND-IF
STMI-EANDLE EARM-IDX IF FIRSTNAME-IND = INDICATE-NULL THEN
SALARY SRLARY-LEN 5% DISPLAY ' FIRSTNAME IS NULL'
DECPOS RETCODE. ELSE
TOFTTODRE] ETHED
DISPLAY 'REICODE OF SINDE DISPLAY ! FIRSTHMAME IS ' FIRSTHAME
IF RETCODE »> EOK THEN END-IF
PERFOEM CHECE-ERRCOR
EHND-IF.
23 @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

» The following steps need to be performed to connect to a database

— Initialize the environment using

— [optional] Set environment attributes (if needed) using
— Connect to the DBCLI server and database using

— [optional] Set connection attributes (if needed) using

— Commit (or rollback) the changes using (or)
— Disconnect from the database using
— Terminate the environment using

24

S

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

= The following steps need to be performed to execute SQL statements

— Prepare the SQL statement using
« Statement may contain parameter markers
— [optional] Set statement attributes (if needed) using
— Bind statement parameters to host variables using
—> — Set the content of the host variables to be used for the execution
— Execute the statement using

= If the statement was a query (e.g. SELECT), retrieve the result set via a cursor:
— Bind result set columns of interest to host variables using
— Fetch the result rows using
* You can reposition within the result set via fetch operation or
— Close the cursor using
* You may re-execute the statement as many times as you want
— Close the statement using

25 @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

= The following steps need to be performed to execute stored procedures

— Prepare the SQL statement using

« Call statement may contain parameter markers for input and/or output parameters

— [optional] Set statement attributes (if needed) using

— Bind statement parameters to host variables using

— Set the content of the host variables to be used for the execution
— Execute the call statement using

= |f the call returned a result set, retrieve the result set via a cursor:

— > — Bind result set columns of interest to host variables using
— Fetch the result rows using
* You can reposition within the result set via fetch operation or
— Close the cursor using
— Move on to the next result set using
« This will set the all statement's output parameters (if any)
— Close the statement using

26

S

© 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

Differences between DBCLI and embedded SQL

An application that uses an embedded SQL interface requires a precompiler

— To convert the SQL statements into code, which is then compiled, bound to the data source, and
executed

In contrast, a DECLI application does not have to be precompiled or bound
— Instead uses a set of functions to execute SQL statements and related services at run time

This difference is important because precompilers are specific to the
database product used

— This ties your applications 1o a specific database product and vendor

DBCLI enables you to write applications that are independent of any
particular database product or vendor

Further differences:
— DBCLI does not require the explicit declaration of cursors, they are generated as needed The
application can then use the generated cursor to fetch the result rows

— A COMMIT or ROLLBACK in DBCLI is issued using the COMMIT or ROLLBACK functions calls rather
than by passing it as an SQL statement

— DBCLI manages statement related information on behalf of the application, and provides a statement
handle to refer to it as an abstract object. This handle eliminates the need for the application to use
product specific data structures

— Similar to the statement handle, the environment handle and connection handle provide a means to
refer to all global variables and connection specific information

27 @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

28

Ideally suits the in which the target data source is unknown when the
application is built
— It provides a , regardless of which database server the application

connects to

Lets you write applications that are

— DBCLI applications do not have to be recompiled or rebound to access different database. Instead they connect to the
appropriate database at run time.

Lets applications from the same application

Allocates and controls data structures, and provides a handle for the application to refer to them

— Applications such as the SQLDA and SQLCA
Lets you retrieve generated from a call to a stored procedure
Provides a that is contained in various database

management system catalog tables

— The result sets that are returned are consistent across database management systems. Application programmers can
avoid writing version-specific and server-specific catalog queries

Programming interface is very similar to the

Allows application developers to apply their knowledge of industry standards directly to DBCLI

— The interface is intuitive for programmers who are familiar with function libraries but know little about product specific
methods of embedding SQL statements into a host language
@ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

= The DBCLI code is

— If running under CICS, any memory allocations are performed using
EXEC CICS GETMAIN instead of using the GETVIS macro

= When using the DBCLI API in CICS transactions while CICS operates with storage
protection,

— This is also true for those programs that link to these programs
— TASKDATAKEY(CICS) for the transaction definition is NOT required.

= When using the DBCLI API in CICS transactions, the
(TRUE) before these transactions can be run

— For details on how to activate this TRUE, refer to "CICS Considerations for the EZA Interfaces" in the
z/NSE TCP/IP Support, SC34-2640

= Most JDBC drivers will only accept
— They will not accept SQL preprocessor statements that are used for DB2 Server for VSE applications
— Basically DBCLI can execute any SQL statement that can be prepared dynamically in embedded SQL

= The call to the IESDBCLI function must be a in COBOL
— Do not use the DYNAM compiler option

29 @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

z/VSE applications accessing Databases

DBCLI

/ And others ...
/7
7/
/7
/7
/7
DBCLI & /7
DRDA
-
-
-
with DB2
Federation
~
~
~
~

DBCLI

30 : @ © 2012 IBM Corporation

IBM System z — z/VSE — 6th European GSE / IBM Technical University for z/VSE, z/VM and Linux on System z

31

S

© 2012 IBM Corporation

