

IT Growth Beyond Commodity-Processor Acceleration

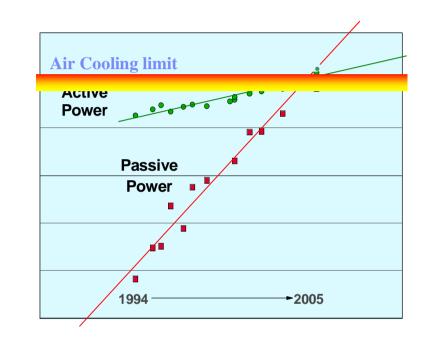
Dr. Karl-Heinz Strassemeyer

Distinguished Engineer System Platforms Member of the IBM Academy of Technology IBM Systems & Technology Group, Boeblingen <u>strasse@de.ibm.com</u>

Intelligence Beats Speed

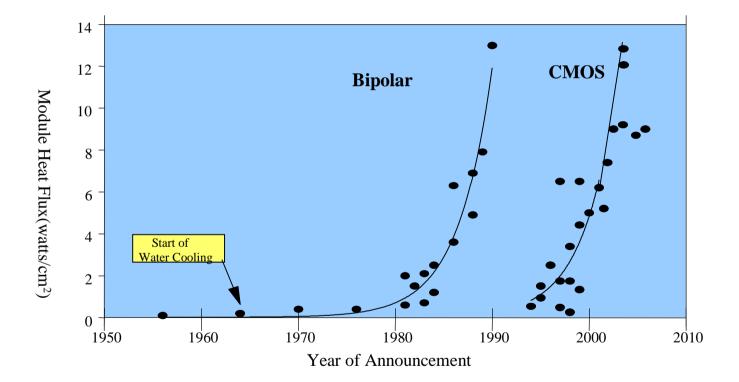
Penetrating the Technology Wall

Intelligence Beats Speed

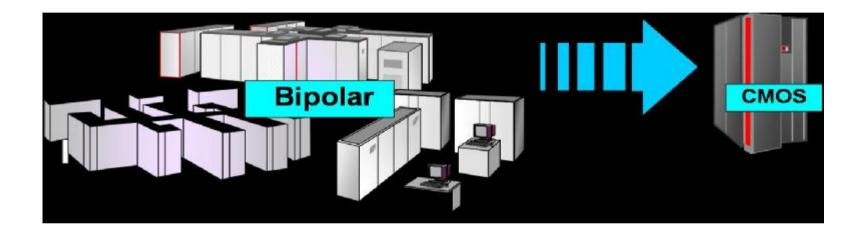

CMOS Power Issue: Active vs. Passive Power

Power Density (W/cm²)

Power


components:

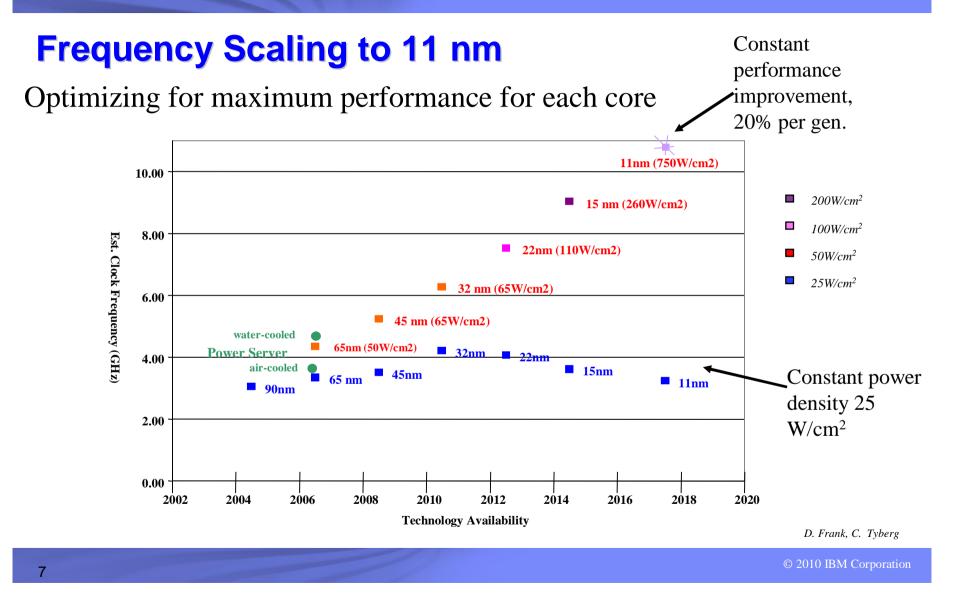
- Active power
- Passive power
 - •Gate leakage
 - Source Drain sub-Vt leakage


Gate Length (microns)

Technology Discontinuity: CMOS Power Crisis

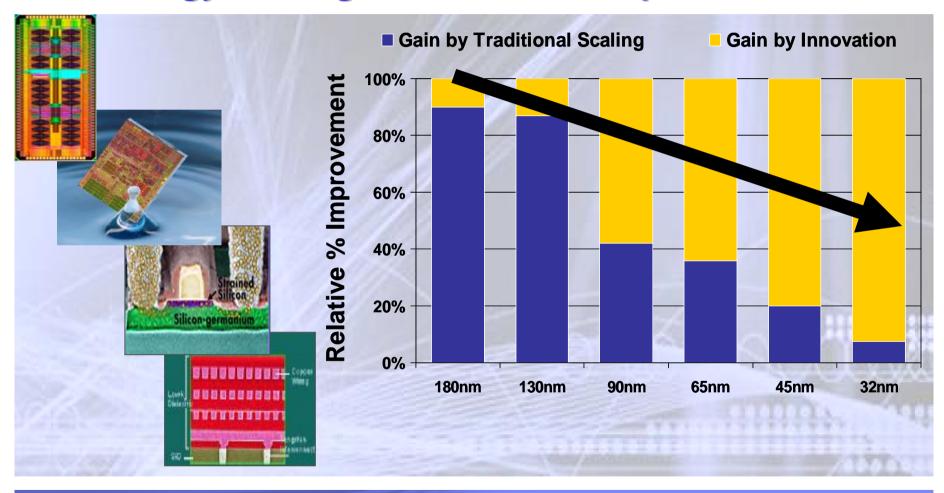
Bipolar to CMOS

Maintenance:	up to 65% reduced
Energy:	up to 97% reduced
Area:	up to 91% reduced

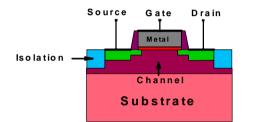

Possible Technology Roadmap

§ Assuming lithography is capable UV 193 nm

m EUV 43 nm?

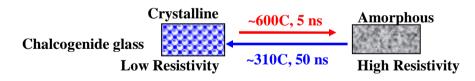

Sou	urce	Gate	Drain
		•	
		- Pitch	

Node	Device Pitch (nm)	Minimum W (nm)	Nominal L (nm)	SRAM Cell Size (μm²)	Technology Availab. Year (Tentative)
45	170-180	70-80	40-45		2008
32	120-130	50-60	30-35		2010
22	80-100	35-45	25-30	0.08-0.1	2012
15	65-75	25-35	20-23	0.04-0.06	2014-15
11	45-55	16-25	12-18	0.02-0.04	2017-18
8	35-45	10-16	9-16		
5	25-35	7-10	7-12		


Technology Scaling... The Fuel of Exponential Growth

Innovation in 45 nm CMOS Process and Outlook

High-K & Metal Gate


Intgrated DRAM Cache

DRAM offers 3-4x more bits / mm² than SRAM Slower but smaller = less wire delay DRAM keep alive power ~ 1/5 of SRAM DRAM Soft Error Rate ~ 1/1000 to 1/5000 of SRAM

45 nm CMOS Process

- ⇒ Hafnium-based gate dielectric (High-K) + Metal Gate
- \Rightarrow Same capacitance with thicker dielectric
- \Rightarrow Gate leakage reduction and higher performance or same performance with much lower total power

Phase Change Memory (PCM)

- Material can be heated to change between amorphous and crystalline states

- Read Latency: ~100ns;

Write Latency: ~1000ns

- 100 times density of DRAM

Future Solution Focus

Intelligence Beats Speed

Mike Rhodin - Vice President IBM SW Solutions

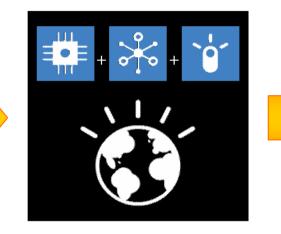
Boeblingen Lab Visit July 14th, 2009 - at that time General Manager Northeast Europe

IBM does since hundred years the same thing: Help customers to solve their important problems with technology

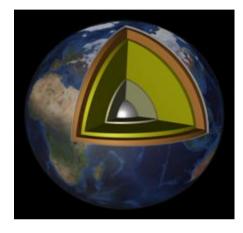
We started with the Chicago Meat Industry

In the fifties Thomas J. Watson focused us on the theme: Automation of the Banking Industry

Last year Sam Palmisano set the goal for the next fifty years: Creation of a Smarter Planet



Evolution of the Smarter Planet


Smarter Planet (Past)

Distinct physical, people, IT and business worlds

Smarter Planet (Present)

Instrumented, interconnected, and intelligent

Smarter Planet (Future)

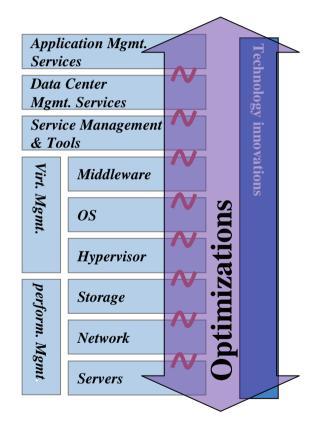
Interactive, interconnected & interdependent, digitally represented world

§ Interconnected and interdependent behavioral models optimize Smarter Planet solutions
§ Dynamic capture and assimilation of data using closed-loop models for prediction & response
§ Individual and community behaviors & preferences leveraged for improved business outcomes

Workload Optimized Systems

Intelligence Beats Speed

Workload Optimized Systems

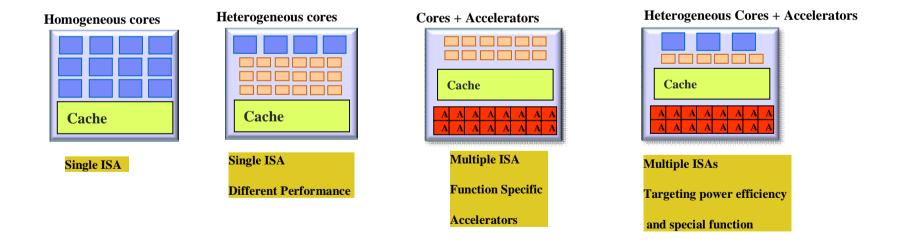

A Workload Optimized System:

• provides value for particular workload or set of workloads important to the client

• provides unique functionality or differentiated performance

• reduces cost of deployment and operation

• is accomplished through co-design of HW, SW and services


Chip Level Architecture

Many options in chip-level architecture will be available:

Number and types of cores Memory hierarchy Interconnect structure

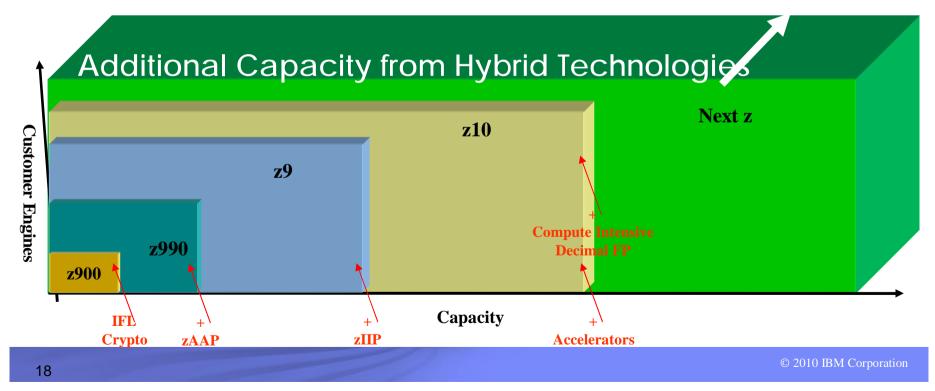
§ Optimization for Power vs Performance will be important

§ Accelerators and heterogeneity will be exploited to optimize for workload specific special functions

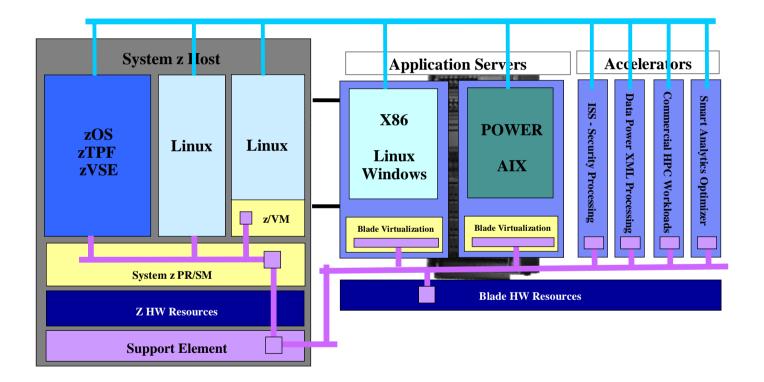
Accelerators

§ Hardware / software units, customized and integrated to deliver client value in a specific solution area

§ Implemented at all Levels

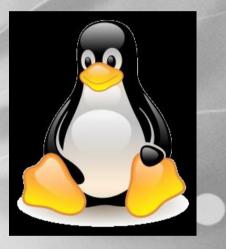


Transaction Processing System z, a Workload Q10Cessing **Optimized System** Becovery concorded the second Architeciure since 45 years 80% of Instruction Execution Modths 06cl SIE Integration Coupling **Crypto Accelerator** Transaction Processing Compression Focus: LARD SSCH Coupling Originally z10... Data Processing Computing. LSPR (Specint). HiperSockets Transport Application Processing


Processor-Performance and Scalability

Ø extend the scalability beyond the traditional growth

Ø zFuture will take advantage of extended integrated Technologies


Expand Systems Management and Connectivity

Ten Years Linux on the Mainframe

The Beginning of a Heterogeneous Data Center in one System

Intelligence Beats Speed

From Skunk-Work in Boeblingen to a Strategic Product

UNIX X on S/390: AIX Unix System Services on OS/390 Auto Unix

May 1998:	Started Linux study VSE Team GCC Compiler available (microcode)
Oct. 12 th 1998:	IBM Academy of Technology Birds of Feather session (Java just in time compiler)
Jan. 1999:	Feasibility Established (Kernel + 5 I/O drivers)

Focus on baby /390 Target Sept. 1999

Focus on IBM top down strategy

Oct. 1999	WAVV Meeting		
Early Nov. 1999:	"Show" code to Linus Tor	valds promise	ed Release into OpenSource 1999
Dec. 15 th 1999:	Release into developerW	/orks	
Dec. 16 th 1999:	Linux 1.16.1 including Pa	tch for Mainfram	es from IBM
Jan. 2000:	Linux World New York	Palmisano	1B\$ into the ECO System
		Linus Torvalds	1B\$ is a lot of money but not that mutch

May 15th 2001: Announcement in Palm Springs

IBM

Middleware Support 2001

2.4 Kernel/glibc 2.2, 31 bit

DB2 UDB (incl. DB2 Connect) CICS Transaction Gateway IMS Connect MQ Client (C) / Server (S) Java JDK WebSphere Commerce Suite Pro Edition Portal Enable Solution Edge Server

Tivoli TSM Client (C) / Server (S) Tivoli Policy Director Lotus Domino Enterprise Server

4Q01	1Q02	2Q02	3Q02	4Q02	1Q03
V7.2 V1.1 V5.2 C V1.3.0	V1.3.1	V8 V4		V5.3 S	
		V4.0.3 V4	V5 V5.2		
		V4.2 C V4.0	V6		V4.2 S

Colour coding: available in plan under consideration

Middleware and Applications on Mainframe Linux now

§ Information management software

- Cognos Business intelligence
- Content Manager
- DB2 9 for Linux, UNIX and Windows
- DB2 Connect, features and tools
- DB2 Enterprise Server Edition
- FileNet product family
- Informix Dynamic Server

§ WebSphere software

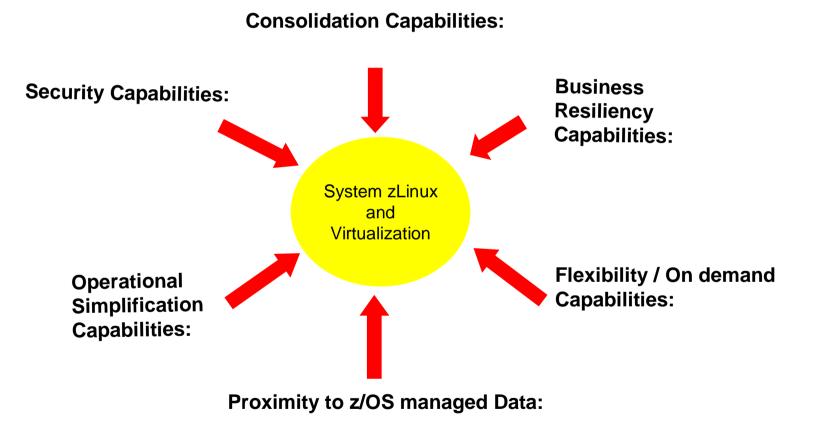
- WebSphere Application Server
- WebSphere Business Monitor
- WebSphere Commerce
- WebSphere Dynamic Process Edition
- WebSphere Enterprise Service Bus
- WebSphere Event Broker, WebSphere Message Broker
- WebSphere Federation Server
- WebSphere Process Server
- WebSphere Process Choreographer
- WebSphere Adapters
- WebSphere MQ
- Communication Server

§ Lotus software

- Lotus Domino
- Lotus Connections
- WebSphere Portal / Portlet Factory

§ Rational software

- Rational Developer for System z
- Rational Host Access Transformation Services
- Rational Quality Manager
- Rational Team Concert
- Rational Asset Manager
- Rational ClearQuest Mulitplatform


§ Tivoli software

- Maximo Asset Manager
- Tivoli Access Manager
- Tivoli Business Service Manager
- Tivoli Common Inventory Technology
- Tivoli Configuration Manager
- Tivoli Enterprise Console
- Tivoli Monitoring
- Tivoli Netcool
- Tivoli Omegamon XE
- Tivoli Provisoning Manager
- Tivoli Risk Manager
- Tivoli Storage Manager
- Tivoli System Automation
- Tivoli Workload Scheduler

See the IBM Middleware Matrix for more products:

http://www.ibm.com/linux/matrix/

Linux is Linux... *but...* System z provides unmatched value propositions to Linux workloads

Integration with Linux – Customer Examples

The Home Depot

Second largest retailer in the United States, over 1800 stores, 300,000 employees and around 1.2 billion customer transactions a year. Revenue 90Billion

Solution / Benefits:

- § Migrated SAP R/3 to DB2 on z/OS
- **§** Near continuous operations
- § Strategic investment to move retail apps to SAP retail
- § Moving application servers to Linux on z for provisioning ease
- § Faster time to market for new offerings in stores
- **§ SAP BW with operational data**

"For The Home Depot, given our size and our requirements, IBM System z is the only choice." Jim Fisher, Home Depot

Nationwide

Fortune 100 insurance & financial services company

Solution:

- § Consolidated Intel and UNIX application servers to Linux on System z - 478 virtual Linux servers
- § 12 mission critical applications deployed to Linux on System z
 - 100,000+ active users every day

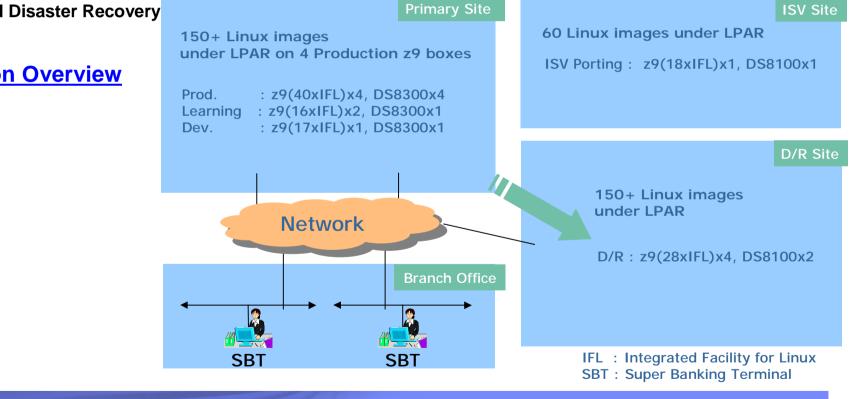
Benefits

§ Better TCO (\$15 million savings over 3 years)

- 50% reduction in Web hosting monthly costs
- 80% reduction in data center floor space needs; power conservation
- 50% reduction in hardware & OS support efforts
- Significant savings on middleware costs; WebSphere, DB2 UDB, Oracle

§ Faster provisioning speed (months to days)

- Dynamic allocation of compute power
- Capacity on demand; increase/reduce compute power
- Simple and robust high availability & disaster recovery


"Nationwide's Linux on System z project is currently estimated to save \$16 million dollars over the next three years, not including floor space. We also were able to provide a reduction in server cost of more than 50 percent to our customers. The Linux on System z system saved significant data center floor space and power consumption."

Steve Womer, Senior IT Architect

Customer Issues & Requirements:

Branch servers were based on Windows NT and reached the end of support **Japanese Bank**

- About 800 servers constantly causing troubles §
- § Lower TCO by consolidating servers on a stable & reliable system
- Core banking applications needed to be ported to new platform §
- **Needed Disaster Recovery** Ş

Solution Overview

Green Effect Japanese Bank 4 System z9 EC 762 IA Server 386.3KW 88.2kW **Power consumption** Power consumption per hour per hour 1878t **Å**‡ 429[.] 1418 trees 6210 trees **Required trees** Annual CO2 Annual CO2 **Required trees** to absorb CO2 Emission to absorb CO2 Emission

The Role of Linux in IBM Products

MCP based (Embedded Linux)

- True Embedded Devices (Controllers/Service Modules)
 - OS burned into Flash/ROM at manufacturing
 - ^ø System control/service stack must be operational at first boot
 - Examples: FSP (System i/p/z), AMM (BladeCenter), IMM(System x)
- Systems Management Devices
 - $_{\mbox{\scriptsize o}}$ OS needs to be pre-installed
 - Management stack must be operational immediately
 - Examples:HMC (Power & z), System z Service Element, SanVC (Storage)
- Special Purpose Appliances
 - OS and software stack combination manufactured into device
 - Customer cannot install OS after system purchase
 - Examples: RSS 4690(RSS), DataPower(SWG), Image Capture(GBS), XIV((Storage)
- Diagnostics/Systems Deployment
 - Diagnostic image delivered as bootable CD, flash drive
 - Image cannot be created by customer to include OS and diagnostics
 - Examples: ToolsCenter(System x), RSS Diags(RSS), Tivoli OS Provisioning(SWG)

Software Group Offerings

- ¹ OpenClient for Linux
- IBM Client for Smart Work
- Websphere Cloud Burst

on a Chip

From a Data Center

in one System

to Solutions