REXX Socket Programming

— Author

Ursula Braun-Krahl
REXX/VSE Development, IBM Bdblingen Laboratory
braunu@de.ibm.com

Interprocess communication within a computer or between computers is based on
protocols. One concept for interprocess communication is the socket. It is the
endpoint of a communication path.

The socket API is a low-level, general, and flexible application programming inter-
face, very popular especially within the TCP/IP transport protocol. It allows to write
communicating applications that receive data from a network and send data to a
network.

The socket API is based on an open/close/read/write paradigm. Thus network
communication is handled similar to reading from and writing to any other device.

All implementations of the socket programming interface are based on the original
Berkeley Software Distribution (BSD) socket implementation with its roots in the
UNIX environment.

TCP/IP Concepts

To understand socket programming, some basic TCP/IP concepts are listed here
and explained shortly. For a more detailed explanation, one of the members of the
rich set of TCP/IP books is recommended.

TCP/IP Protocols
A protocol is a set of rules or standards that two entities must follow to
exchange and interpret messages. For communication via a network,
TCP/IP defines a protocol stack consisting of different layers together
with different protocols assigned to these layers. Famous protocols are:

IP - Internet Protocol
The IP layer provides the basic packet delivery services, but
does not guarantee error-free arrival of IP packets in a deter-
mined order.

TCP - Transmission Control Protocol
TCP is a connection-oriented transport protocol that provides
a reliable, full-duplex byte stream. It is used by the majority
of TCP/IP applications.

UDP - User Datagram Protocol
UDP is a connectionless protocol that provides datagram ser-
vices. It does not guarantee safe arrival of UDP datagrams.
Such reliability features must be built into UDP applications.

IP Addresses
An IP address identifies the machine within a network. In the current
version, it occupies 32 bits and is usually expressed externally in dotted
decimal form, for instance "9.164.182.254".

Host name
In addition to the number form of IP Addresses, TCP/IP provides facili-
ties to assign a symbolic name to an IP address, known as host name.

Articles Related to VSE/ESA 49

They are resolved in either some local host tables or via a special name
server.

Ports A port number identifies a specific application on a given TCP/IP
machine. It is a 16-bit integer ranging from 0 to 65534. A client appli-
cation must know the port number of a server application to be able to
contact it. Ports 0 to 1023 are reserved for well-known services. Ports
1024 to 5000 are used by TCP/IP for automatic assignments. Server
applications should use port numbers above 5000.

Sockets The endpoint of a communication link between two application ports is
uniquely identified by 3 components making up a socket

e protocol (TCP, UDP, IP)
e local IP-address
¢ local port

A socket descriptor or socket number is a 2-byte integer that acts as an
index into a table of currently allocated sockets. Thus it represents the
socket.

Socket Types
Three different socket types are defined:

Stream socket
connection-oriented (i.e. logical connection is established
before data exchange), full-duplex, reliable, virtually unlimited
size of byte streams, flow-control, TCP as default protocol,
FTP as sample application

Datagram socket
connection-less (i.e. each datagram must contain the full set
of addressing information for its delivery), unreliable, no flow-
control, maximum size for a single datagram, UDP as default
protocol, NFS as sample application

Raw socket
connection-less, unreliable, maximum size for messages, IP
as default protocol, PING as sample application, not sup-
ported in REXX/VSE

Addressing Families
A socket identifies the address of a specific process at a specific com-
puter using a specific transport protocol. The exact syntax of a socket
address depends on the protocol being used, on its addressing family
The only addressing family used in VSE is:

AF_INET
Addressing family Internet

Typical Socket Calls

A basic connection-oriented protocol like TCP consists of the following sequence of
socket calls:

50 VSE/ESA Software Newsletter

SERVER

socket
|
bind
listen
| CLIENT
accept socket
. . |
blocks until Connection
connection < connect
establishment |
recv < send
| data (request to server)
process request
send > recv
| data (reply from server)
close close

Figure 20. Connection-Oriented Protocol

A basic connection-less protocol like UDP consists of the following sequence of

socket calls:

Articles Related to VSE/ESA 51

SERVER

socket
CLIENT
|
bind socket
| |
recvfrom bind

|
blocks until
data receive < sendto
data (request to server)

recvfrom

blocks until
sendto > data received
| data (reply from server)

close close

Figure 21. Connectionless Protocol

REXX Sockets Application Program Interface
With year-end 1999, REXX/VSE provided a REXX Socket API within PTF UQ37224
for VSE/ESA 2.3 and UQ37225 for VSE/ESA 2.4 (APAR PQ31258). It allows you
to write socket applications in REXX/VSE for the TCP/IP environment. The REXX
Socket Interface (i.e. a new function called "SOCKET") has the same syntax and
semantic as the SOCKET function available for REXX/VM and REXX in OS/390.

>>—S0CKET (subfunction) ><

subfunction
name of the socket call

arg
parameters for the socket call

A character string is returned from the SOCKET call that contains several values
separated by blanks, so the string can be parsed using REXX. The first value in
the string is usually the return code. If the return code is zero, the values following

52 VSE/ESA Software Newsletter

the return code are returned by the socket subfunction. If the return code is not
zero, the second value is the name of an error, and the rest of the string the corre-
sponding error message.

Here are some examples:

SOCKET (' GetHostId") = '09.,4.3.2'
SOCKET('Recv',socket) ==> '1102 EWOULDBLOCK Problem on non-blocking socket'

The REXX/VSE SOCKET implementation uses the LE/VSE support to access the
TCP/IP socket interface. Thus it maps the socket calls from the C programming
language to REXX/VSE.

Tasks You Can Perform Using REXX Sockets
You can use REXX sockets to perform the following tasks:

1. Processing socket sets

A socket set is a number of preallocated sockets available to a single applica-
tion.

Table 2. REXX Socket Functions for Processing Socket Sets

Function Purpose

Initialize Defines a socket set

Terminate Closes all the sockets in a socket set and releases the
socket set

SocketSet Gets the name of the active socket set

SocketSetList Gets the names of all the available socket sets

SocketSetStatus Gets the status of a socket set

2. Creating, connecting, changing, and closing sockets

A socket is an endpoint for communication that can be named and addressed
in a network.

Table 3. REXX Socket Functions for Creating, Connecting, Changing, and Closing Sockets

Function Purpose

Socket Creates a socket in the active socket set

Bind Assigns a unique local name (network address) to a socket
Listen Converts an active stream socket to a passive socket
Connect Establishes a connection between two stream sockets
Accept Accepts a connection from a client to a server

Shutdown Shuts down a duplex connection

Close Shuts down a socket

3. Exchanging data

You can send and receive data on connected stream sockets and on datagram
sockets.

Articles Related to VSE/ESA 53

Table 4. REXX Socket Functions for Exchanging Data

Function

Purpose

Read

Reads data on a connected socket

Write

Writes data on a connected socket

Recv

Receives data on a connected socket

Send

Sends data on a connected socket

RecvFrom

Receives data on a socket and gets the sender's address

SendTo

Sends data on a socket, and optionally specifies a destina-
tion address

4. Resolving names and other identifiers

You can get information such as name, address, client identification, and host
name. You can also resolve an Internet Protocol address (IP address) to a
symbolic name of a symbolic name to an IP address.

Table 5. REXX Socket Functions for Resolving Names and Other Identifiers

Function

Purpose

GetHostld

Gets the IP address for the host processor

GetHostName

Gets the name of the host processor

GetSockName

Gets the local name to which a socket was bound

GetHostByAddr

Gets the host name for an IP address

GetHostByName

Gets the IP address for a host name

Resolve

Resolves the host name through a name server

5. Managing configurations, options, and modes

You can obtain the version number of the REXX Sockets function package, get
socket options, set socket options, and set the mode of operation.

Table 6. REXX Socket Functions for Managing Configurations, Options and Modes

Function

Purpose

Version

Gets the version and date of the REXX Sockets function
package

Select

Monitors activity on selected sockets

GetSockOpt

Gets the status of options for a socket

SetSockOpt

Sets options for a socket

Fentl

Sets or queries the mode of a socket

loctl

Controls the operating characteristics of a socket

Complete reference material for the new REXX/VSE Socket function is on the

VSE/ESA home page:

http://www.ibm.com/s390s/vse/vsehtmls/vserxsoc.htm

54 VSE/ESA Software Newsletter

REXX Samples Using the Socket Function

The following samples show how to make use of the REXX/VSE Socket function to
establish and carry out (network) communication based on sockets. They demon-
strate the simplicity of socket programming in REXX/VSE.

Two pairs of communicating REXX Socket programs are provided:
 SERVMIRR - CLIEMIRR : demo of basic socket concepts
¢ SERVSAMP - CLIESAMP : comprehensive demo of REXX socket programming

Source code for downloading as well as more samples will be available via the
REXX/VSE home page:
http://www.ibm.com/s390/vse/rexxhome.htm

Here you'll also find counterparts to a REXX/VSE socket program that are written in
Java for REXX for Windows NT/95. Thus they run on a different platform and com-
municate with the REXX/VSE socket program on a VSE/ESA host.

Even though the servers and clients shown here are coded in REXX/VSE, this does
not mean that server and client have to run both on a VSE platform. A REXX/VSE
socket program can communicate with any socket program written in any language
supporting the socket API on any platform supporting TCP/IP, as long as the
counterpart program uses the corresponding sequence of socket calls.

Sending and Receiving Data: Simple Server to Mirror Data

The mirror server receives a string from the client, reverses the order of the charac-
ters in the string and returns it to the client. After returning the mirrored string,
communication is closed.

/***/

/*%%%% SERVMIRR: *kkkkk
/***/
/**x%x% REXX program for a socket server procedure receiving *kkkkk [
/***x%%x data from a client, reversing the data, and sending *kkkkk
[**%x* the data back to the client. n—t

/***/

[xxkx%x initializations *xkkkkdkkkrhhkkrhhhhrrkhhhrrhhhhrrrhhrrrr wxkhks/
rc =0
trace off

[xxx%x%x initialize socketset xxxkkxkkkkrkhhkrkkhhhkrkhhhhkhhhhhrrh wkkkks/

fc = SOCKET('INITIALIZE','SERVMIRR')

parse var fc socket rc .

if socket rc == 0

then do
say 'INITIALIZE failed with return info ' fc
exit 99

end

Figure 22 (Part 1 of 4). Server to Mirror Data

Articles Related to VSE/ESA 55

[**xx% create a TCP socket for client connection requests #¥xx* x¥xx¥x/
fc = SOCKET('SOCKET',"'AF_INET','SOCK_STREAM','IPPROTO_TCP')
parse var fc socket rc newsocketid
if socket rc -= 0
then do
say 'SOCKET failed with return info ' fc
fc = SOCKET('TERMINATE')
exit 99
end

/**%*%* bind socket to well known port 1996 **kkkkkkrkkhkkkkhkkkk *kkkkk/
fc = SOCKET('BIND',newsocketid,'?2 1996 9.164.155.114")
parse var fc bind_rc rest
if bind_rc -= 0
then do
say 'BIND failed with return info ' fc

fc = SOCKET('CLOSE',newsocketid)
fc = SOCKET('TERMINATE')
exit 99

end

[**xxx create a connection queue for a client xxxxxkkkkkrkkkrrr kkkkkk/
fc = SOCKET('LISTEN',newsocketid,'10')
parse var fc listen_rc rest
if listen_rc == 0
then do
say 'LISTEN failed with return info ' fc

fc = SOCKET('CLOSE',newsocketid)
fc = SOCKET('TERMINATE')
exit 99

end

/***** wait for a client to connect **xxkxkkkkkkkkkkhkkkkhkhkkk ******/
fc = SOCKET('ACCEPT',newsocketid)
parse var fc accept_rc rest
if accept_rc == 0
then do
say 'ACCEPT failed with return info ' fc

fc = SOCKET('CLOSE',newsocketid)
fc = SOCKET('TERMINATE')
exit 99

end

parse var rest accepted_socket accept_socket_address
say "Client has established connection."

Figure 22 (Part 2 of 4). Server to Mirror Data

56 VSE/ESA Software Newsletter

[**xx% we don't want any more clients, close request socket x*¥ x¥xx¥x/
fc = SOCKET('CLOSE',newsocketid)
parse var fc close_rc rest
if close rc == 0
then do
say 'CLOSE failed with return info ' fc
exit 99
end

[***** read strjng from Client *xkkxkkkkkrhhhhkrkhhhhrhhhhkkhhhrr *hkxrk/
fc = SOCKET('READ',accepted_socket,'10000"')

parse var fc read_rc num_read_bytes read_string

if read rc == 0

then do
say 'READ failed with return info ' fc
rc = 99
signal SHUTDOWN LABEL

end

say "String read from client: read_string

[*x*%%%* reverse string from client *xkkxkkkkrkhkkrrhhhhrrrhhrrrs wxkhks/
send_string = Reverse(read string)

[/ **%x%x% send string back to client #xsxkxksrkrkrhrhrhrrhkhrhrhhk *kkkx% [
fc = SOCKET('SEND',accepted_socket,send string,'"')

parse var fc send_rc num_sent_bytes

if send rc == 0

then do
say 'SEND failed with return info ' fc
rc = 99
signal SHUTDOWN_LABEL

end

/***** p]ausibi]ity check ***x*xxkxkrhkkhrhrrkhrkhrhhrkhrhkrkkhrhk* ******/
if num_read bytes —-= num sent bytes
then do
say 'number of sent bytes does not match number of read bytes'
rc = 99
signal SHUTDOWN_LABEL
end

Figure 22 (Part 3 of 4). Server to Mirror Data

Articles Related to VSE/ESA 57

/***** close client socket **xx*xxkxkkkkkhkkkkhxkhkhdkhxhrhdkhxh® ******/
SHUTDOWN_LABEL:
fc = SOCKET('CLOSE',accepted_socket)
parse var fc close_rc rest
if close rc == 0
then do
say 'CLOSE failed with return info ' fc
fc = SOCKET('TERMINATE')
exit 99
end

/***** terminate socketSet **xkxxkxkkkdkkhkkhkkhrkhkhhkhrhkhhrkhrhd ******/

fc = SOCKET('TERMINATE")
exit rc

Figure 22 (Part 4 of 4). Server to Mirror Data

A socket set must be initialized first before using any other REXX Socket function.
Then a stream-type socket is created and bound to the well-known port number
1996 and the server IP address. Clients that want to connect to this server have to
specify this port number and IP address.

With socket function LISTEN request, queues for possibly connecting clients are
established; and afterwards the mirror server is prepared to accept its first client
connection request. ACCEPT blocks the server until the first client starts con-
necting. It returns a new socket id to be used to communicate with the client.
Connection of further clients may still be handled via further ACCEPT invocations
using the original socket ID. Here it is not intended to support more clients. Thus
the original socket is closed.

The client string is read, reversed and given back to the client. Afterwards, the
server closes communication and terminates the whole socketset.

Sending and Receiving Data: Simple Client to Have Data
Mirrored
A REXX client program able to talk to the previous mirror server begins on the next

page:

58 VSE/ESA Software Newsletter

/***/

[**%%% CLIEMIRR: Kxkkkk [
/***/
/**xx% REXX program for a socket client procedure sending *kkkokok [
/**x%% data to a server and receiving the reversed data from *okkkkk
/**%*%* the server. *kkkkk [

/***/

[xxkxx initializations *xxkkrdkkkrhhdhrhhhhrrhhh AR kR FARRIKFERRK* KR k*k* [
rc =0
trace off

[**xx% string to be reversed is given as parameter xsxxkxxkxxkk kkkkkk/
arg read_string

[xx%%% initialize socketset xxxkkxkkkkrkkkkrrkhhhhrhhhhrrhhhkrrs Hrkkhks/
fc = SOCKET('INITIALIZE','CLIEMIRR')
parse var fc socket rc .
if socket_rc -= 0
then do
say 'INITIALIZE failed with return info ' fc
exit 99
end

/***** Create a TCP Socket kkhkkkkhkkhkhkkhkkhkkhhkhhkkhkkhhkkhkkhkhkkhkkkxkx ******/
fc = SOCKET('SOCKET','AF_INET','STREAM','TCP')
parse var fc socket rc newsocketid
if socket rc -= 0
then do
say 'SOCKET failed with return info ' fc
fc = SOCKET('TERMINATE')
exit 99
end

[**x%x% connect new socket to the specified server xxkxxkxxkxxx* *kkxkx/
fc = SOCKET('CONNECT',newsocketid,'AF_INET 1996 9.164.155.114")
parse var fc connect rc rest
if connect_rc = 0
then do
say 'CONNECT failed with return info ' fc
rc = 99
signal SHUTDOWN_ LABEL
end

Figure 23 (Part 1 of 2). Client to Have Data Mirrored

Articles Related to VSE/ESA 59

[**%%%* send string to the Mirror server xxxkkkxkkkkxkkkkrkhkrrrx *kkxrk/
fc = SOCKET('SEND',newsocketid,read string,'"')
parse var fc send rc num_sent bytes
if send rc == 0
then do
say 'SEND failed with return info ' fc
rc = 99
signal SHUTDOWN_ LABEL
end

JEZT T p]ausibi]ity Check *x%kkxkskkkrhhhhrrhhhhrhhhhhrkrhhhrrhhs *hkkkx/
if length(read_string) -= num_sent_bytes

then do
say 'number of sent bytes does not match number of read bytes'
rc = 99
signal SHUTDOWN_ LABEL

end

/***** receive answer from mirror SerVer **xkkkkkkkkhkkkkkhhkkkhkkx ******/
fc = SOCKET('READ',newsocketid,'10000"')

parse var fc read_rc num_read_bytes received_string

if read rc == 0

then do
say 'READ failed with return info ' fc
rc = 99
signal SHUTDOWN_LABEL
end
say "String '" read string "' was mirrored to: '" received string "'"

[xxx%x% close the SoCket **kkkkkkkkkkkkrhhhhrhhhhhrkhhhhrhhhhkrrh wkkhks/

SHUTDOWN_LABEL:

fc = SOCKET('CLOSE',newsocketid)

parse var fc close_rc rest

if close rc == 0

then do
say 'CLOSE failed with return info ' fc
fc = SOCKET('TERMINATE')
exit 99

end

[xxxx%x terminate SOCKELSEt *xkkkkkkkkkhhhkhkkhhhhkhhhhhkhkhhhhrrh *kkkkks/

fc = SOCKET('TERMINATE')

exit rc
/***/

Figure 23 (Part 2 of 2). Client to Have Data Mirrored

After socket set initialization, the stream-type socket is created and connected to
the well-known port and server address. Using the established connection, the
given input string is sent to the server and the following READ blocks the client
until the server has sent an answer. Then this specific socket communication is
closed first, and afterwards the whole REXX-Socket communication setup is termi-
nated.

60 VSE/ESA Software Newsletter

Server for VSE Files and Console Commands

A more complex, but also more meaningful, REXX Socket sample follows. It is
able to handle more than one client connected to the server at the same time.
After receiving a retrieval command, it transfers library members, VSAM files,
POWER queue entries, or console command responses back to its clients.

/***/

/*- SERVSAMP -- Example demonstrating the usage of REXX Sockets ----- */

/***/

[**%xx REXX program for a socket server procedure waiting for ##xxxx/

/**x%x% clients to connect, receiving one of the commands: *okKkkkk [
[FHxxk READLIB - retrieve a library member *kKkkk
[FxwHx READVSAM - retrieve a VSAM file *kkkkk [
JEZEEE READPOW - retrieve a POWER queue entry *kkkkk [
[HFxxk console command - execute *okKkkk
/**x%x% and sending the resulting library member, VSAM file, *okkkkk
/**xx% POWER queue entry or console command response back to *okKkkk
/**%%% the client. *kkkk% [

/***/

[xxkxx initializations *xsxskkkkkskrkrkhhhhrhhhhhrkhhhhrhhhhrrhhhbrrr wxkhkhs/
[**x%x% Port can be specified as argument. Default port is 5678. *¥xx¥x/
trace o
Parse Arg Port
If Port = "" Then
Port = 5678

[**%%x Open socket at well known port and wait for clients ##xx x¥xxxx/
SocketNr = ListenPort(Port)
If SocketNr = -1 Then Do
Call Socket 'Terminate'
Exit 1
End

[**%%x Close the socket when program is interrupted *xxsxxxxsrx wkxxx*/
Signal On Halt
Call Opermsg 'On'

timeout = 15
fc = ASSGN('STDOUT', 'SYSLOG")
Say "Enter 'MSG " || SYSPID ||",DATA=HI' to exit program."

fc = ASSGN('STDOUT','SYSLST')

Figure 24 (Part 1 of 14). Server for VSE Files and Console Commands

Articles Related to VSE/ESA 61

[xxx%% Check for new events: *xkkxkkkkrkkkkrkkkhkkrkhkhhhrrhhhkrrh *kkkk*/

[**%x%%x A new client may want to start communication with this *%¥x¥x/
[**x%x% server, or an existing client may want to sent data, *¥x%¥x/

[**x%x% or the timeout interval has finished without any *okKkkk [
[**%%x special event. Kk [
Do Forever
sockevtlist = 'Read * Write Exception'

parse value Socket('Select',sockevtlist,timeout) with rc socknum sellist
If rc /= 0 Then
Do
Say "??? Select failed ?2?"
Call Close SocketNr
Return -1
End
parse upper var sellist . 'READ' orlist 'WRITE' . 'EXCEPTION'
If orlist /= '' Then Do
event = 'SOCKET'
parse var orlist orsocket .
rest = 'READ' orsocket
End
Else event = 'TIME'

Figure 24 (Part 2 of 14). Server for VSE Files and Console Commands

62 VSE/ESA Software Newsletter

Select

/* Accept connections from clients */
When event = 'SOCKET' Then Do
parse var rest keyword ts .

/* Accept new connections from clients */
if keyword = 'READ' & ts=SocketNr Then Do
/* wait for client to connect and start handler */
Say "Waiting for client to connect."
Parse Value Socket('Accept',SocketNr) ,
with rc ClientSocket NetworkAddress
Say "Client connected"
End

/* Receive Command */
if keyword = 'READ' & ts/=SocketNr Then Do
Command = ReceiveRequest(ts)
If Command = 'QUIT' Then Do
Call Close ts
Say 'SERVSAMP: Disconnected socket' ts
End
Else Do
End
End

End /* When */

When event = 'TIME' Then Do
Say "Timeout occurred"
End

/* Unknown event =/
Otherwise Nop
End /* Select */
End /* Do Forever =/

Halt:

Call Close SocketNr
Call Socket 'Terminate'
Exit

Figure 24 (Part 3 of 14). Server for VSE Files and Console Commands

Articles Related to VSE/ESA 63

/**/

/*
/*
/*
/*
/*
/*

*/
Procedure: Close */
Purpose: Close the specified socket. */
Arguments: Socket - active socket number */
Returns: nothing */
*/

/**/
Close: Procedure

Parse Arg SocketNr

Call Socket 'Close',SocketNr

Return

/**/

/*
/*
/*
/*
/*
/*
/*
/*
Li

*
/
Function: ListenPort */
Purpose: Create a socket, bind it to a port and */
Tisten at the port for connecting clients.*/

Arguments: Port - port number */
Returns: Socket number if successful, -1 otherwise */
*

/
***/

stenPort: Procedure
Parse Arg Port

/* initialize socketset */
parse value Socket('Initialize','SERVSAMP') ,
with rc .
If rc /= 0 Then
Do
Say "Unable to initialize socketset"
Return -1
End

/* create a TCP socket */

parse value Socket('Socket','AF INET','Sock stream','0') ,
with rc SocketNr

If rc /= 0 Then

Do
Say "Unable to create socket"
Return -1

End

Figure 24 (Part 4 of 14). Server for VSE Files and Console Commands

64 VSE/ESA Software Newsletter

/* find out local IP address and bind socket to port =*/
parse value Socket('GetHostId') with rc IpAddr
Host = "AF_INET" Port IpAddr
rc = Socket('Bind',SocketNr,Host)
if rc /= 0 Then
Do
Say "Unable to bind to port:" Port
Call Close SocketNr
Return -1
End

/* Tisten at the port, allow 5 clients in queue */
rc = Socket('Listen',SocketNr,5)
if rc /= 0 Then
Do
Say "Unable to Tisten at port:" Port
Call Close SocketNr
Return -1
End

Return SocketNr

Figure 24 (Part 5 of 14). Server for VSE Files and Console Commands

Articles Related to VSE/ESA 65

/**/

/* */
/* Function: ReceiveRequest */
/* Purpose: Wait for a command from the client and */
/* execute it. Return the identifier of the =/
/* command to the caller. */
/* Arguments: Socket - active socket number */
/* Returns: command identifier */
/* */

/**/

ReceiveRequest: Procedure
Parse Arg SocketNr

/* wait for the command from the client */
parse value Socket('Recv',SocketNr,1024) ,
with rc BytesRcvd CommandLine

Say "Command line from client:" CommandLine

CommandLine = Translate(CommandLine)
If rc /= 0 Then
CommandLine = "QUIT"
Select;
When Word(CommandLine,1)
Nop
When Word(CommandLine,1) = "READLIB" Then
Call ProcessLib SocketNr, Commandline
When Word(CommandLine,1) = "READVSAM" Then
Call ProcessVsam SocketNr, Commandline
When Word(CommandLine,1) = "READPOW" Then
Call ProcessPow SocketNr, Commandline
Otherwise Call ProcessCommand SocketNr, Commandline
End; /* Select */

"QUIT" Then

/* send end of answer marker back to client =/
Call Socket 'Send',SocketNr,">>>End_of_transmission<<<"
Return CommandLine

Figure 24 (Part 6 of 14). Server for VSE Files and Console Commands

66 VSE/ESA Software Newsletter

/**/

/* */
/* Procedure: Answer */
/* Purpose: Send one answer line back to the client */
/* and wait for acknowledgement from client. */
/* Arguments: Socket - active socket number */
/* AnswerString - line to send to client */
/* Returns: nothing */
/* */

/**/
Answer: Procedure

Parse Arg SocketNr, AnswerString

Call Socket 'Send',SocketNr,AnswerString

Call Socket 'Recv',SocketNr,256

Return

/**/

/* */
/* Procedure: AnswerQueue */
/* Purpose: Send all Tines contained in AnswerlLines. =/
/* back to the client as the answer of the =/
/* previous executed command. */
/* Arguments: Socket - active socket number */
/* Returns: nothing */
/* */

/**/
AnswerQueue: Procedure Expose AnswerLines.
Parse Arg SocketNr

/* send answer lines until session queue is empty */
Do I =1 to AnswerLines.0

/* empty lines will be sent as space */
If AnswerLines.I = "" Then
AnswerLines.I = " "

Call Answer SocketNr, AnswerlLines.I
End
Drop AnswerLines.
Return

Figure 24 (Part 7 of 14). Server for VSE Files and Console Commands

Articles Related to VSE/ESA 67

/**/

/* */
/* Procedure: ProcessCommand */
/* Purpose: Process the console command that was */
/* received from the client and send back */
/% the result. */
/* Arguments: Socket - active socket number */
/* CommandLine - console command */
/* Returns: nothing */
/* */

/**/
ProcessCommand: Procedure

Parse Arg SocketNr, CommandLine

Call SYSVAR SYSPID

carToken = 'SERVER' || SYSPID

/* activate console session */
ADDRESS CONSOLE 'ACTIVATE NAME' carToken 'PROFILE REXNORC'
ADDRESS CONSOLE 'CART' carToken

/* issue the command */
ADDRESS CONSOLE CommandLine

/* get the command result =/
fc = GETMSG('AnswerLines.','RESP',carToken,,15)

/* deactivate console session */
ADDRESS CONSOLE 'DEACTIVATE' carToken

if AnswerlLines.0 = 0 Then
Do

AnswerLines.0 =1

AnswerlLines.1l = '??? no result ??7?'
End

Call AnswerQueue SocketNr
Return

Figure 24 (Part 8 of 14). Server for VSE Files and Console Commands

68 VSE/ESA Software Newsletter

/**/

/*
/*
/*
/*
/*
/*
/*
/*

Procedure: ProcessLib

*/
*/

Purpose: Transfer the library member back to the =*/

client.

Arguments: Socket - active socket number
CommandLine - READLIB request

Returns: nothing

*/
*/
*/
*/
*/

/**/

Pr

ocessLib: Procedure
Parse Arg SocketNr, CommandLine

Parse Var CommandLine ,

"READLIB " Tib "." slib "." memname "." memtype .

/* check for existence of the desired library member */

Call REXXIPT 'libr_in.'
Call OUTTRAP 'libr_out.',, "NOCONCAT'
Tibr_in.0 = 2

libr_in.1 = 'SEARCH ' || memname || '.' || memtype || ,

' suBLIB=" || 1ib || "." ||

Tibr_in.2 = '/+!
ADDRESS LINK 'LIBR'

slib

Figure 24 (Part 9 of 14). Server for VSE Files and Console Commands

Articles Related to VSE/ESA 69

IfRC =20

Then Do
/* read the desired library member =/
Tibr_in.0 = 3
Tibr_in.1 = 'ACCESS SUBLIB=' || Tib || '." || slib
Tibr_in.2 = 'LIST ' memname || '.' || memtype

Tibr_in.3 = '/«!
ADDRESS LINK 'LIBR'

If RC =0
Then Do
Do I=1 to libr_out.0-7
AnswerLines.I = value('libr_out.' || I+6)
End
AnswerLines.0 = Tibr_out.0-7
End
Else Do

1
'??? Problem reading library member ?77'

AnswerlLines.0
AnswerLines.1
End
End

Else Do
/* desired library member has not been found =/
AnswerlLines.0 =1

If RC = 2
Then
AnswerLines.1 = '??? Library member not found ??7?'
Else
AnswerLines.l = '??? Problem accessing Tibrary member ???'
End
if AnswerlLines.0 = 0 Then
Do
AnswerLines.0 =1
AnswerLines.l = '??? no result ???'
End

Call AnswerQueue SocketNr
Return

Figure 24 (Part 10 of 14). Server for VSE Files and Console Commands

70 VSE/ESA Software Newsletter

/*
/*
/*
/*
/*
/*
/*
/*
/*
Pr

***/

*
/
Procedure: ProcessVsam */
Purpose: Transfer the VSAM file back to the client.*/
Arguments: Socket - active socket number */
CommandLine - READVSAM request */

Returns: nothing */
*/
***/

ocessVsam: Procedure
Parse Arg SocketNr, CommandLine
Parse Var CommandLine ,
"READVSAM" filename catalog .
If catalog = '' Then catalog = 'IJSYSCT'
/* read the desired VSAM file =/
ADDRESS JCL
"// DLBL PRINTFL,'" || filename || "',,VSAM,CAT=" || catalog
II/*II
Call REXXIPT 'idcams_in.'
Call OUTTRAP 'idcams_out.',,'NOCONCAT'
idcams_in.0 =1
jdcams_in.1 = 'PRINT INFILE (PRINTFL) CHARACTER'
ADDRESS LINK 'IDCAMS MARGINS(1 80)'

If RC =0
Then Do
Do I=1 to idcams_out.0-11
AnswerLines.I = value('idcams out.' || I+7)
End
AnswerLines.0 = idcams_out.0-11
End
Else Do

1
'??? Problem reading VSAM file ??7?'

AnswerLines.0
AnswerLines.1

End
if AnswerlLines.0 = 0 Then
Do
AnswerlLines.0 =1
AnswerlLines.l = '??? no result ???'
End

Call AnswerQueue SocketNr
Return

Figure 24 (Part 11 of 14). Server for VSE Files and Console Commands

Articles Related to VSE/ESA

7

/**/

/* */
/* Procedure: ProcessPow */
/* Purpose: Transfer POWER queue entry back to the */
/* client. */
/* Arguments: Socket - active socket number */
/* CommandLine - READPOW request */
/* Returns: nothing */
/* */

/**/

ProcessPow: Procedure
Parse Arg SocketNr, CommandLine
Parse Var CommandLine ,

"READPOW" queue entryname entrynum entryclass .
if queue /= 'RDR' & queue /= 'LST' & queue /= 'PUN'
Then Do

AnswerlLines.0 =1
AnswerLines.l = '??? queue specification invalid 7?7’
Call AnswerQueue SocketNr
Return
End

Figure 24 (Part 12 of 14). Server for VSE Files and Console Commands

72 VSE/ESA Software Newsletter

Call OUTTRAP 'power out.',,'NOCONCAT'

/* determine user of POWER queue entry */
ADDRESS POWER

'PDISPLAY ' || queue || ',* || entryname

Do I=2 To power_out.0

If entrynum = "'

Then Do
entrynum = word(power out.I,3)

End

If entryclass =

Then Do
entryclass = word(power out.I,6)

End

If word(power_out.I,2) = entryname & ,
word (power _out.I,3) = entrynum & ,
word(power out.I,6) = entryclass

Then Do
Parse Var power _out.I . 'FROM=(' from_ user ')' .
Parse Var power out.I . 'TO=(' to_user ')' .
Select
When from user /= '' Then setuid_user = from_ user
When to_user /= '' Then setuid_user = to_user

Otherwise Do
setuid_user = 'REXX'

fc = SENDCMD('PALTER' queue || '," || entryname || ,
", || entrynum || ',USER=' || setuid user ,

)
End

End /* Select */
Leave

End
End

Figure 24 (Part 13 of 14). Server for VSE Files and Console Commands

Articles Related to VSE/ESA 73

/* read the desired POWER queue entry x/
'SETUID' setuid_user
ADDRESS POWER 'GETQE' queue 'JOBNAME' entryname ,
"JOBNUM' entrynum ,
'"CLASS' entryclass ,
'STEM AnswerLines.'
If RC = 0 & power_out.0 = 0
Then Do
Nop
End
Else Do
AnswerLines.0
AnswerLines.1

1
'??? Problem reading POWER queue entry 7?7’

End
if AnswerlLines.0 = 0 Then
Do
AnswerLines.0 =1
AnswerLines.1 = '??? no result ???'
End

Call AnswerQueue SocketNr
Return

Figure 24 (Part 14 of 14). Server for VSE Files and Console Commands

This server runs until an operator interrupts it via the console operator communi-
cation exit:

MSG <partition_id>,DATA=HI

Using the Socket SELECT function, the server determines whether a new client is
starting communication or an existing client is issuing a new server request.
Incoming requests that do not start with one of the keywords QUIT, READLIB,
READVSAM, or READPOW are treated as console commands and given to the
console router using the REXX console command environment.

To transfer a library member, the server checks first via LIBR SEARCH if the
desired library member exists. If available, it moves its contents into a REXX stem
variable and sends these lines to the client. To transfer a VSAM file, the server
invokes IDCAMS PRINT to retrieve its data into a REXX stem variable, whose
content is then sent to the client.

For POWER queue entries, the server determines existence and ownership of a
requested entry using a PDISPLAY command. For entries without FROM- and
TO-user assigned an artificial TO-user, REXX is defined to be authorized to access
the POWER queue entry. Afterwards, the entry is retrieved via ADDRESS POWER
GETQE into a REXX stem variable to be sent.

74 VSE/ESA Software Newsletter

Client for VSE Files and Console Commands

A corresponding client for the previous REXX Socket sample is given here. It
sends commands to the server requesting transfer of library members, VSAM files,
POWER queue entries, or console command responses. For demonstration pur-
poses, the received response is displayed at the console.

/***/

/*- CLIESAMP -- Example demonstrating the usage of REXX Sockets ----- */

/***/

[**%xx REXX program for a socket client procedure sending one #¥xxx%/

[**x%% of the commands Kok kk
[FHxxk READLIB - retrieve a library member *kKkkk
[FxwHx READVSAM - retrieve a VSAM file *kkkkk [
JEZEEE READPOW - retrieve a POWER queue entry *kkkkk [
[HFxxk console command - execute *okKkkk
/**x%% to the server, and writing the data returned from the *okkkkk
[**xx% server to SYSLOG. *okKkkk

/***/

[xxkxx inTtializations *xxkkxdkkkrhhd kR hhdh ARk *FERRKFARRKKKER*K* KR k*Kkk [

[**x%% Server must be specified as argument. *kkKkKkk [
[**%xx Optionally a port can be specified in addition separated ##xxxx/
/**%*% by a colon. Default port is 5678 *kkkkk
trace o
Parse Arg Server
CALL ASSGN 'STDIN','SYSLOG' /* Input stream: SYSLOG =*/
CALL ASSGN 'STDOUT', 'SYSLOG' /* Output stream: SYSLOG */
/* check command Tine arguments, server is required */
If Server = "" Then
Do

Say "Usage: CLIESAMP Servername"
Say " Servername may contain a port number separated with a colon."
Exit 1

End

Figure 25 (Part 1 of 4). Client for VSE Files and Console Commands

Articles Related to VSE/ESA 75

/* Connect to remote control server =/
Socket = Connect(Server)
If socket = -1 Then Do
Call Socket 'Terminate'
Exit 1
End

/* loop until QUIT command was entered =*/
Do Until Command = "QUIT"
Say "Please enter:"

Say " console command"
Say " '"READLIB' Tib.s1ib.memname.memtyp"
Say " '"READVSAM' vsam.name catalog"

Say " 'READPOW' RDR|LST|PUN name number class"
Say "or QuiTt'"
Parse Pull CommandLine
Parse Upper Var CommandLine Command Option
If Length(Command) > 0 Then
Call SendCommand Socket, CommandLine
End

/* Close connection to server */
Call Close Socket

Call Socket 'Terminate'

Exit

Figure 25 (Part 2 of 4). Client for VSE Files and Console Commands

76 VSE/ESA Software Newsletter

/**/
/* */
/* Function: Connect */
/* Purpose: Create a socket and connect it to server. */
/* Arguments: Server - server name, may contain port no.*/
/* Returns: Socket number if successful, -1 otherwise =/
/* */
/**/
Connect: Procedure

Parse Arg Server

/* if the servername has a port address specified */
/* then use this one, otherwise use the default port =*/
/* for the remote control server (5678) */
Parse Var Server Server ":" Port
If Port = "" Then

Port = 5678

/* initialize a socketset */
parse value Socket('Initialize','clielib') ,
with rc .
If rc /= 0 Then
Do
Say "Unable to initialize socketset"
Return -1
End

/* create a TCP socket */
parse value Socket('Socket','2','1','0') ,

with rc SocketNr
If rc /= 0 Then

Do
Say "Unable to create socket"
Return -1
End
/* connect the new socket to the specified server x/

Host = "AF_INET" Port Server
rc = Socket('Connect',SocketNr,Host)
if Words(rc) > 1 Then
Do
Say "Unable to connect to server:" Server
Call Close SocketNr
Return -1
End

Return SocketNr

Figure 25 (Part 3 of 4). Client for VSE Files and Console Commands

Articles Related to VSE/ESA 77

/**/

/* */
/* Function: SendCommand */
/* Purpose: Send a command via the specified socket =*/
/* and display the full response from server */
/* Arguments: SocketNr - active socket number */
/* Command - command string */
/* Returns: nothing */
/* */

/**/

SendCommand: Procedure
Parse Arg SocketNr, Command

/* send the command to the remote control server */
Call Socket 'Send', SocketNr, Command

Do Forever
parse value Socket('Recv',SocketNr,1024) ,
with rc BytesRcvd RcvData

/* error or end of response encountered */
Ifrc /=0,

RcvData = ">>>End_of_transmission<<<" Then

Leave

/* display response and send acknowledge to server =/
Say RcvData
Call Socket 'Send', SocketNr, "OK!"
End
Say "----- end of output from command:" Command "----- !
Return

/**/

/* */
/* Function: Close */
/* Purpose: Close the specified socket */
/* Arguments: SocketNr - active socket number */
/* Returns: nothing */
/* */

/**/
Close: Procedure

Parse Arg SocketNr

Call Socket 'Close', SocketNr

Return
/***/

Figure 25 (Part 4 of 4). Client for VSE Files and Console Commands
This client runs until command QUIT is entered at the console. All other console

input is sent to the server, where it is either interpreted as some kind of file retrieval
command (READLIB, READVSAM, or READPOW)) or as console command.

78 VSE/ESA Software Newsletter

Additional Information
Besides the complete reference material for the REXX/VSE Socket function on the

VSE/ESA home page:
http://www.ibm.com/s390/vse/vsehtmlis/vserxsoc.htm
you can find more information in:
e TCP/IP for VSE/ESA User's Guide, SC33-6601-01
e MVS TCP/IP Sockets, GG24-2561-00

Even though the book is intended for MVS programmers, it contains lots of
general information on socket programming valid also for VSE/ESA.

e TCP/IP for VSE/ESA home page
http://www.ibm.com/s390/vse/vsehtmis/tcphome.htm

e REXX/VSE home page
http://www.ibm.com/s390/vse/rexx/rexxhome.htm

If you have any questions or comments about this article or about REXX/VSE,
please feel free to contact me using email at braunu@de.ibm.com.

Articles Related to VSE/ESA 79

